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1 INTRODUCTION

The description of many physical properties of condensed
matter involves the theoretical treatment of an inhomoge-
neous electron gas in the potential of atomic nuclei. The
ground-state structure, the vibrational and optical proper-
ties, and the magnetic properties of a solid are determined
by the electrons and their interactions, quantum mechani-
cally described by the (many-body) Schrödinger equation.
Wave function–based approximations, like the Hartree–Fock
method, have a long tradition of dealing with this compli-
cated many-body problem. In the last 40 years, density-
functional theory (DFT) has developed into a successful
alternative to these methods and it seems to be currently one
of the most widespread methods in computational solid-state
theory (Argaman and Makov, 2000). It has applications in
diverse fields like studying the properties of defects in solids,
heterogeneous catalysis, organic and biomolecular reactions,
and also magnetism.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Magnetism in the solid state comprises a large variety of
phenomena that can be characterized by quantities like the
magnetic moment, the magnetic order, the ordering tempera-
ture, the magnetization direction, and so on. The physical
concepts, used to describe these quantities on a theoreti-
cal basis, are again diverse and include relativistic quantum
mechanics, statistical theories, and classical electrodynam-
ics. The magnetic moment of a solid can be obtained, for
example, by quantum-mechanical theories, while ordering
temperatures can be accessed by statistical theories which
use input parameters of quantum-mechanical calculations.
Exchange interactions have to be described on a quantum-
mechanical basis, but it is usually sufficient to describe
dipole–dipole interactions classically.

Although there is no single theoretical approach to all
magnetic phenomena, it can be stated that magnetism is
a uniquely quantum-mechanical phenomenon and, in the
solid state, DFT is the most widespread theoretical method
used to determine the magnetic properties of matter. Vector-
spin DFT allows – at least in principle – the access to
the spin magnetic moment and the magnetic order of the
ground state and it can serve to extract other quantities,
like exchange interactions, that can serve as input for other
theoretical approaches. Although DFT is designed as a
ground-state method, that is, all results refer to a temperature
of zero Kelvin, it can, nevertheless, be used to infer some
finite-temperature properties of materials. This contribution
starts with an outline of DFT and describes the successes
and current limitations of the theory. Some methods to
overcome these limitations, like self-interaction correction
(SIC) or orbital polarization (OP), are discussed. Concepts
to formulate spin dynamics based on DFT are presented
and strategies to determine the magnetic ground state of a
system are discussed. This involves also the mapping of DFT
results on model Hamiltonians, which can be used to describe
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other properties – like ordering temperatures – in a certain
approximation. Orbital magnetism, which is particularly
important in low-dimensional systems, is briefly discussed
here and – in more detail – in later chapters.

Most examples given in this contribution are metallic sys-
tems, typically transition metals and their alloys and com-
pounds. DFT has proved to be particularly valuable in the
description of these materials, while other classes of magnetic
systems – like magnetic insulators – have been traditionally
approached with other methods. Modern magnetoelectronic
and spintronic applications involving orbitally ordered sys-
tems, low-dimensional structures, and so on, may require
theoretical approaches beyond those presented here. But for
the majority of magnetic systems DFT presents a good start-
ing point for a theoretical description.

2 DENSITY-FUNCTIONAL THEORY

In any realistic calculation, the straightforward quantum-
mechanical treatment of a system of identical particles is
limited to a very small number of particles. This is mainly
due to the appearance of the many-body wave function,
which contains a tremendous amount of information – but
typically we are interested only in a limited number of
physical observables. DFT starts directly from the density of
the particles in question (in our case electrons) and, bypassing
the troublesome many-body wave function, allows thereby
the treatment of a large number of particles. In this section,
only a short and certainly incomplete review of DFT can
be given. For a more detailed account of this theory, the
reader is referred to the review of Jones and Gunnarsson
(1989) or to the books of Parr and Yang (1989) and Eschrig
(2003).

2.1 The non-spin-polarized version of DFT

Hohenberg and Kohn (1964) worked out two central
theorems that form the basis of DFT: For a system of N par-
ticles (e.g., electrons) moving in an external potential v(r)
(caused by, e.g., nuclei) in a nondegenerate ground state, (i)
the many-body wave function � and v(r) are uniquely deter-
mined by the particle density distribution n(r) and (ii) there
exists an energy functional of this density, E[n(r)], which is
stationary with respect to variations of the ground-state den-
sity. These two theorems allow – at least in principle – the
determination of the ground-state density and energy of an
N -particle system. Extracting the classical Coulomb interac-
tion energy, such a Hohenberg–Kohn energy functional takes

the form

E[n(r)] =
∫

v(r)n(r)dr

+1

2

∫ ∫
n(r)n(r′)
|r − r′| drdr′ + G[n(r)] (1)

where the functional G[n(r)] contains all other contributions.
If we succeed in finding the functional G[n(r)] or a

good approximation to it, the immediate advantage of DFT
is that, instead of dealing with the full many-body wave
function, �(r1, r2, . . . , rN), we can work with the much
more tractable density, n(r). Although more information is
directly accessible from the wave function than from the
density,

n(r) =
∫

dr2 . . .

∫
drN�∗(r, r2, . . . , rN)

× �(r, r2, . . . , rN) (2)

in DFT many physical quantities, like the structural prop-
erties or bond strength, can be obtained for large systems,
where a many-body wave function would be impossible to
access. For example, calculations of the ground-state ener-
gies for different external potentials, as they result from a
variation of the lattice parameters in a periodic solid, allow
the determination of the equilibrium lattice constant, which is
nowadays possible to within a few percents. Early attempts
to use the density as a key parameter for calculations of
periodic solids were made by Lenz (1932) based on the
statistical method of Thomas (1927) and Fermi (1928). In
this approach, G[n(r)] was considered to contain the kinetic
energy density (taken to be proportional to [n(r)](5/3)). In
the Thomas–Fermi–Dirac method G[n(r)] even contains an
exchange energy density term proposed by Dirac (1930) (pro-
portional to [n(r)](1/3)). Although the Thomas–Fermi theory
still has its applications today, it never became useful as a
theoretical method for the prediction of material properties
(Slater and Krutter, 1934).

The key idea, that made DFT a success, was to extract
from G[n(r)] the kinetic energy T0 of a noninteracting elec-
tron gas in its ground state which has the same density distri-
bution, n(r), as the interacting system. In this Kohn–Sham
theory (Kohn and Sham, 1965), a new functional

Exc[n(r)] = G[n(r)] − T0[n(r)] (3)

appears, that remains to be determined. Exc is a much smaller
term than G and is called exchange-correlation energy func-
tional, since – as we will see in the following text – without
Exc our energy functional E would yield just the energy in
the Hartree approximation. If we take into account that par-
ticle conservation, that is, N = ∫

n(r)dr, has to be ensured,
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we can formulate the stationarity of E in equation (1) with
respect to variations of the ground-state density, n, as

δT0

δn(r)
+ v(r) +

∫
n(r′)

|r − r′|dr′ + δExc

δn(r)
− λ = 0 (4)

where the Lagrange parameter λ ensures the particle con-
servation. Expressing the kinetic energy of the noninteract-
ing particles via their wave functions, φi , we can recast
equation (4) in the form of an effective single-particle
Schrödinger equation, the Kohn–Sham equation:

[
− �

2

2m
∇2 + v(r) +

∫
n(r′)

|r − r′|dr′ + δExc

δn(r)

]
φi(r) = εiφi(r)

(5)
which has to be solved self-consistently since n(r) =∑N

i=1 |φi(r)|2. We can see now that without Exc equation (5)
reduces to the Hartree equation. Therefore, this last term of
the Hamiltonian is called the exchange-correlation potential.

Although λ was introduced as a Lagrange multiplier and
the εi’s also should be strictly interpreted in this way, it is
usual to derive from the εi’s band structures of a crystal
and use the wave functions φi(r) as approximations to true
quasiparticle wave functions. Some justification will be given
below and comparison with experimental data often confirms
this point of view, but there are also well-known examples,
where this interpretation leads to significant ‘errors’, like
in the comparison of the band gaps of semiconductors and
insulators with band structures derived from these εi’s.

2.2 The density and potential matrix

DFT allows us – at least in principle – to determine the
correct ground-state charge density. For a magnetic system
we are interested not only in n(r) but also in accessing
the magnetization density, m(r), directly. If ψα(r) is the
field operator for a particle of spin α, the particle and the
magnetization density can be formulated as

n(r) =
∑

α

〈�|ψ+
α (r)ψα(r)|�〉;

m(r) = −µB

∑
α,β

〈�|ψ+
β σ αβψα(r)|�〉 (6)

where we introduced the Bohr magneton, µB = (e�/2mc),
and the Pauli matrices (underlined symbols denote 2 × 2
matrices):

σx =
(

0 1
1 0

)
, σ y =

(
0 −i

i 0

)
, σ z =

(
1 0
0 −1

)
(7)

Instead of n(r) and m(r), we can now introduce a
hermitian 2 × 2 spin-density matrix, n(r), with components
defined as

nαβ(r) = 〈�|ψ+
β (r)ψα(r)|�〉 (8)

The density matrix can then be decomposed into a scalar
and a vectorial part, corresponding to the particle and spin
density:

n(r) = 1

2

(
n(r)I + σ · s(r)

)
= 1

2

(
n(r) + sz(r) sx(r) − isy(r)

sx(r) + isy(r) n(r) − sz(r)

)
(9)

where I is a 2 × 2 unit matrix and s(r) is the spin density
that differs from the magnetization density by a factor of
−µB. Likewise, a potential matrix corresponding to this spin-
density matrix is denoted as v(r) and can be written in terms
of a scalar potential and magnetic field, B(r):

v(r) = v(r)I + µBσ · B(r) (10)

In 1972, von Barth and Hedin used these matrices to
extend the DFT concept to spin-polarized systems (von Barth
and Hedin, 1972), replacing the scalar quantities by their
2 × 2 matrix counterparts. In this way, they were able to
derive a spin-polarized version of the Kohn–Sham equations:

[(
− �

2

2m
∇2 +

∑
α

∫
nαα(r′)
|r − r′|dr′

)
I + v(r) + δExc

δn(r)

]

×
(

φ
(+)
i (r)

φ
(−)
i (r)

)
= εi

(
φ

(+)
i (r)

φ
(−)
i (r)

)
(11)

In contrast to the original, non-spin-polarized, version of
DFT, here the uniqueness of the potential is not guaranteed
(Capelle and Vignale, 2001), but for most practical purposes
this poses no problems. We can now write the exchange-
correlation potential also as a 2 × 2 matrix:

δExc

δn(r)
= vxc(r) = vxc(r)I + µBσ · Bxc(r) (12)

for which suitable approximations have to be found. A
solution of equation (11) yields again Kohn–Sham wave
functions, from which the density matrix can be determined:

nαβ(r) =
N∑

i=1

φ∗α
i (r)φβ

i (r) where α, β = (+), (−) (13)

As in the non-spin-polarized theory, a solution for
equations (11) and (13) has to be obtained self-consistently.
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If the density matrix turns out to be diagonal, at any
point in space the magnetic moments are aligned along
the same direction (z) and the magnetization is called
collinear. Otherwise, we speak of noncollinear magnetic
structures. Examples of collinear magnetization densities are
displayed in Figure 1 for bcc and fcc Fe. Experimentally,

(a)

(b)

Figure 1. Isosurfaces of the magnetization density of ferromagnetic
bcc Fe (a) and a (hypothetical) ferromagnetic fcc Fe with the
lattice constant of bulk Cu (b). The isosurface in bcc Fe shows the
boundary between regions of positive and negative magnetization
density; in fcc Fe a small but negative magnetization density, mz,
is plotted. Plots were generated with a program of Kokalj (2003).

fcc Fe can be stabilized as precipitate in Cu and was
found to have a noncollinear magnetic structure (Tsunoda,
1989).

Numerically, equation (11) can be solved by expanding
φi(r) in a linear combination of suitable basis functions
χj (r). Then equation (11) transforms into a problem of lin-
ear algebra, that is, to find the eigenvalues and eigenvectors
of a matrix. The eigenvectors, that have to be determined,
give the linear combination coefficients, cij , of the expan-
sion φi(r) = ∑

j cijχj (r). In such an eigenvalue problem,
the computational effort scales in the most general case
with the third power of the number of basis functions.
Compared to the nonmagnetic problem, equation (5), this
number is doubled in equation (11). Therefore, the com-
putational effort for a general, noncollinear calculation is
increased by a factor 8 as compared to the nonmagnetic
calculation.

2.3 Collinear magnetic structures within DFT

Supposing that the potential matrices in equations (10) and
(12) are diagonal (i.e., the magnetic and exchange fields point
in z direction), equation (11) decouples into two equations
of the type of equation (5):

(
− �

2

2m
∇2 + vCoul(r) + v(r) + Bz(r) + v(+)

xc (r)
)

× φ
(+)
i (r) = ε

(+)
i φ

(+)
i (r)(

− �
2

2m
∇2 + vCoul(r) + v(r) − Bz(r) + v(−)

xc (r)
)

× φ
(−)
i (r) = ε

(−)
i φ

(−)
i (r) (14)

where vCoul now denotes the classical Coulomb potential and
v

(±)
xc the exchange-correlation potential that arises from the

functional derivative of the exchange-correlation energy with
respect to the spin-up (+) or spin-down (−) part of the
diagonal density matrix.

The spin-up and spin-down part of the density can be
calculated from the wave functions as

n(+)(r) =
∑

i

w
(+)
i |φ(+)

i (r)|2 and

n(−)(r) =
∑

i

w
(−)
i |φ(−)

i (r)|2 (15)

where the weight factors, wi , are determined such that the
density of states (DOS), N(E), integrated up to the same
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Fermi level, EF, yields the correct number of particles:

N =
∫ EF

[N(+)(E) + N(−)(E)]dE where

N(±)(E) =
∑

i

δ(E − ε
(±)
i ) (16)

In this way, the two equations (14) are coupled in the self-
consistency cycle. Furthermore, a coupling occurs via the
Coulomb potential and the exchange-correlation potential,

v(±)
xc = v + B(±) = δExc[n(+), n(−)]

δn(±)(�r) (17)

depending on the functional form of Exc. A particularly
simple form can be derived from the local approximation to
Hartree–Fock theory and includes only the exchange part:

Exc = Ex = −3

2

(
3

4π

) 1
3
∫

dr
[
(n(+)(r))

4
3 + (n(−)(r))

4
3

]
(18)

Empirical modifications by a multiplicative factor have
been used to compensate for the missing correlation energy,
but modern functionals include reliable estimates for the
correlation, so that no adjustable parameters are needed.

Systems that can be described by equation (14) are all
kinds of magnetic materials that assume a collinear mag-
netic order, for example, ferromagnetic, antiferromagnetic,
or ferrimagnetic states. Since the two equations (14) can
be solved independently, the computational effort for a
collinear calculation seems to be just twice the effort for
a nonmagnetic calculation. However, most magnetic calcu-
lations are computationally considerably more demanding
since the quantities in question (magnetic moments, energy
differences between various magnetic configurations) require
much higher accuracy than what is needed for nonmag-
netic systems. To explore different magnetic orders in a
system, unit cells much larger than the chemical unit cell
are required, for example, antiferromagnetic body-centered
cubic (bcc) chromium requires a calculation with at least two
atoms in the unit cell (as compared to one, in a nonmagnetic
calculation).

The ground-state density is a property that can – at least
in principle – be obtained exactly in DFT. In the same way,
the magnetization density is a property that can be obtained
directly from spin-polarized DFT:

m(r) = −µB

∑
α,β

φ∗
α(r)σ αβφβ(r) (19)

The integral magnetic (spin) moment, M , for a collinear
system is then (in units of µB) simply

M = |
∫

m(r)dr| =
∫

(n(+)(r) − n(−)(r))dr (20)

But what is essentially responsible for the formation of a
magnetic moment in the DFT framework, that is, which term
has to be included in the exchange-correlation potential to
describe magnetic systems? For a qualitative understanding
of this problem, it is instructive to develop a simple model
for magnetism in the next subsection.

2.4 A Stoner-like model for magnetism

Consider a simple elemental magnet with a magnetic
moment, M , per atom (again in units of µB). The exchange-
correlation B-field, v

(+)
xc − v

(−)
xc , can be expanded in orders

of M:

v(+)
xc − v(−)

xc = Mv(1)
xc + O(M2) where

M =
∫ EF

[N(+)(E) − N(−)(E)]dE (21)

This potential difference acts as a magnetic field that splits
the eigenvalues, εi , according to

�εi = ε
(+)
i − ε

(−)
i ≈ M〈φi |v(1)

xc |φi〉 (22)

that is, it introduces a shift of the eigenvalues of ± 1
2MI(εi).

In the Stoner model (Stoner, 1939), it is assumed that
all states are shifted by ± 1

2MI , where I is an energy-
independent exchange integral, the Stoner parameter. Within
DFT, a generalized Stoner parameter I (ε) can be introduced
and calculated (Gunnarsson, 1976).

In the Stoner model, the magnetization that results from
the splitting of the eigenvalues by ± 1

2MI is given by

F(M) =
∫ EF

[
N

(
E + 1

2
IM

)
− N

(
E − 1

2
IM

)]
dE

(23)
and this magnetization, F(M), has to correspond to the mag-
netic moment M that induces the splitting. Since the DOS
is always positive, F(M) can only grow monotonously with
M . Furthermore, we see from equation (23) that F(M) =
−F(−M) and in the limit M → ±∞ it levels off to ±N (full
spin polarization). From these conditions, we can derive that
the equation F(M) = M has the trivial solution M = 0 and
two nontrivial solutions if (dF(M)/dM)|0 > 1. This leads to
the famous Stoner criterion

dF(M)

dM
|0 = IN(EF) > 1 (24)
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Within DFT the Stoner parameter can be calculated
from a given exchange-correlation potential and the wave
functions. Typically, values around 0.4 − 0.5 eV are obtained
for transition metals and I turns out to be only weakly
material dependent. Therefore, it is mainly the variation
in the DOS at the Fermi level, N(EF), that determines
whether a material is magnetic or not. DFT calculations of
the (paramagnetic) DOS of a material already offer a first
indication of whether (ferro)magnetism has to be expected or
not. Assuming a parabolic DOS of the d-states, this explains
why the magnetic moment is large in the middle of the 3d
transition metals (Mn) and gets smaller for elements with
almost filled or almost empty d-band. This behavior is similar
to Hund’s first rule, and can be observed well for thin
magnetic films (See also Magnetism of Low-dimensional
Systems: Theory, Volume 1).

Of course, the self-consistent calculation with spin-
polarized DFT will give a much more accurate estimate
of the magnetic moments than this model. But a com-
parison between the predictions of the Stoner-like model
and the actual DFT calculation of the magnetic system
(Figure 2) for bcc Fe shows that our simple Stoner-like
model is not so far from a self-consistent, spin-polarized DFT
solution.

An exchange-correlation potential that gives a reasonable
estimate for the (generalized) Stoner parameter, I , can be
expected to also give reasonable magnetizations. Therefore,
even relatively simple exchange correlation energy function-
als, like given in equation (18), describe magnetic trends in
DFT qualitatively correct, provided the nonmagnetic DOS
is also described correctly. Properties that are required for
a (non)spin-polarized exchange correlation potential will be
discussed in the next subsection.

2.5 Exchange-correlation energy functionals

One of the first interpretations of the term, which emerged
as the exchange-correlation potential in DFT, was given by
Slater and Krutter (1934) in the context of the Thomas–Fermi
method and later in connection with the Hartree–Fock
method (Slater, 1951). Essentially, it describes the interac-
tion of a particle with the ‘hole’ that is created by its own
presence in the gas of the other particles. This means that
the probability of finding an electron at a position r reduces
the probability of finding another electron at a position r′

nearby, depending of course also on the spin of the two par-
ticles (therefore, in the Hartree–Fock method this hole has
been given the name ‘exchange hole’).

To derive some properties of the exchange-correlation
energy functional, it is useful to write this ‘hole’ (exchange-
correlation hole in DFT), nxc, in terms of a two-particle
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Figure 2. (a) Paramagnetic DOS of bcc Fe (black, full line) shifted
by ± 1

2 IM . The resulting DOS (dashed line) is compared (b) to the
result of a spin-polarized DFT calculation (gray, full line). The
spin-down DOS are plotted with negative values.

correlation function, g(r, r′) (Kohn and Vashista, 1983):

nxc(r, r′) = n(r′)
∫ 1

0
dλ[gn(r, r′, λ) − 1]

≡ n(r′)h(r, r′) (25)

Here, gn(r, r′, λ) is the correlation function of a system
of charged particles where the Coulomb interaction is scaled
by a factor λ and a λ-dependent potential has been added,
so that the density, n(r), is independent of λ. Additionally,
the so-called hole function, h(r, r′), was introduced. The
exchange-correlation energy can then be written as

Exc[n(r)] = 1

2

∫
drn(r)

∫
dr′ 1

|r − r′|nxc(r, r′) (26)
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Although the exchange-correlation hole can be very com-
plicated in shape, it was soon realized that only its radial
dependence enters in the exchange-correlation energy (Gun-
narsson, Jonson and Lundqvist, 1979). This means that, in
practice, Exc is rather insensitive to details of shape of nxc.
Some properties of the exchange-correlation hole can be
derived from the definition via the correlation function g, for
example, there is a sum rule which states that nxc corresponds
exactly to one electron, that is, that

∫
dr′nxc(r, r′) = −1 (27)

has to be fulfilled. Such relations can guide the construction
of exchange-correlation functionals or help in judging the
validity of existing approximations to Exc.

One of the big surprises in the early days of DFT was
certainly the fact that even a simple exchange-correlation
functional like the LDA leads to relatively convincing results.
The LDA starts from the limit of the homogeneous electron
gas, assuming Exc rather as a function than as a functional
of n(r). Its success can now be explained by the fact
that the exchange-correlation hole in the LDA is of the
form

nLDA
xc (r, r′) = n(r′)h0(|r − r′|; n(r′)) (28)

where h0(|r − r′|; n) is the hole function of a uniform inter-
acting electron gas of density n. For a uniform density,
this exchange-correlation hole satisfies equation (27). For a
nonuniform density, the sum rule should be at least approx-
imately fulfilled and Gunnarsson and Lundqvist (1976)
showed that in LDA this is, on average, the case. This,
together with the fact that Exc depends only on the spherical
average of nxc, is mainly responsible for the success of the
LDA.

Also modern, spin-dependent exchange-correlation func-
tionals including gradient corrections are constructed in such
a form that they fulfill certain conditions that are known
exactly in different limits (like high or low density, con-
stant or slowly varying density, etc.). In this way, exchange-
correlation potentials are improved on a parameter-free basis.
Alternatively, the functionals (or parts of the functionals, e.g.
the correlation energy) can be fitted to numerical results from
many-body calculations. Another strategy – often used in the
chemical literature – is to adjust the functional to yield best
results (like bond length, dissociation energies, etc.) for a
given set of systems.

Although the exchange-correlation potential of spin-
dependent DFT was first formulated in terms of 2 × 2 spin
matrices, almost all practically used exchange-correlation

functionals are restricted to the form

Exc[n(+)(r), n(−)(r)] =
∫

drn(r)εxc(n
(+)(r), n(−)(r)) (29)

(local spin-density approximation, LSDA) and possibly
also containing the gradients of n(±)(r) (GGA). There
are also formulations including the kinetic energy den-
sity, τ (±)(r), (meta-GGA) and other hybrid schemes (Tao,
Perdew, Staroverov and Scuseria, 2003), which will not be
discussed here since extensive tests on magnetic systems are
not yet available. But all these schemes work basically with
‘spin-up’ and ‘spin-down’ quantities, and a study that went
beyond this approximation (proposing a spin angular gradi-
ent approximation to DFT) indicated rather small effects on
the calculated properties as compared to the collinear version
of Exc (Katsnelson and Antropov, 2003).

Early calculations of elemental ferromagnets demonstrated
that LSDA is rather successful in the prediction of the
(spin) magnetic moments. The increase of the magnetic
moment with decreasing coordination (e.g., at surfaces or
in thin films) is well described by DFT and chemical
trends similar to Hund’s first rule can be observed in lower
dimensions. Some examples are presented in Magnetism
of Low-dimensional Systems: Theory, Volume 1; some
results for bulk systems are given in Table 1. It can be
seen that spin polarization leads to a significant expansion
of the lattice constant not only for Fe and Co but also
for Mn and several magnetic alloys. This magnetovolume
effect can be explained by the exchange splitting of the
d-band, as observed in Figure 2 for Fe: It leads to an
enhanced population of antibonding majority-spin states
(at the top of the band) and a reduced population of
bonding and nonbonding states (bottom and middle of the
band) in the minority spin channel. The weaker bonding
leads to an expansion of the lattice and also reduces the
bulk modulus of these metals (Janak and Williams, 1976).
While spin polarization improves the lattice constant as
compared to non-spin-polarized LDA, for 3d metals LSDA
still gives smaller values than observed experimentally. The
use of gradient corrections and a correct treatment of the
nonspherical charge distribution in the solid finally leads to
reliable lattice constants for these transition metals (Asato
et al., 1999).

Here, one has to note that the LSDA results for the mag-
netic moments in Table 1 were obtained from calculations
assuming the experimental lattice constants of the elements.
Attempts to theoretically describe both the magnetic and
structural properties of iron showed that LSDA predicts an
fcc ground state with an almost vanishing magnetic moment
(Wang, Klein and Krakauer, 1985). For this system, it turned
out that only inclusion of gradient corrections can save the
situation and GGA calculations finally correctly predicted a
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Table 1. Magnetic moments (in µB per atom) and lattice constants (in Å) of ferromagnetic elements
in the bulk. The experimentally determined total magnetization, Mtot, consists of spin and orbital
moment contributions. The LDA (non-spin-polarized) and LSDA (spin-polarized) results for Fe, Co,
and Ni are taken from Moruzzi, Janak and Williams (1978); the GGA values of the magnetic moments,
from Shallcross, Kissavos, Meded and Ruban (2005) where experimental values are also quoted. The
calculated Gd data is from Kurz, Bihlmayer and Blügel (2002) and the experimental one is from White
et al. (1975). The GGA values of the lattice constants of Fe and Ni are from Asato et al. (1999) and
the Co lattice constant is from Battocletti, Ebert and Akai (1996).

Property Source Fe (bcc) Co (fcc) Ni (fcc) Gd (hcp)

Mspin LSDA 2.15 1.56 0.59 7.63
Mspin GGA 2.22 1.62 0.62 7.65
Mspin Experiment 2.12 1.57 0.55
Mtot Experiment 2.22 1.71 0.61 7.63
a0 LDA 2.73 3.41 3.47
a0 LSDA 2.76 3.47 3.47 3.58
a0 GGA 2.83 3.55 3.55 3.69
a0 Experiment 2.86 3.53 3.53 3.63

bcc ground state structure with a magnetic moment that is
slightly larger than the experimental one (Asada and Ter-
akura, 1992).

As noted above, for 3d transition metals GGA improves
the lattice constants and, thereby, in most cases also the mag-
netic moments. This success of the GGA is contrasted here
with the case of Cr, where up to now no satisfactory agree-
ment with experimental results was obtained: while LSDA
calculations of antiferromagnetic Cr at the experimental lat-
tice constant give a magnetic moment in good agreement
with experimental data (0.5 − 0.6 µB), and also a slight sta-
bilization of the experimentally observed incommensurate
sinusoidal modulation of the antiferromagnetic structure was
predicted (Hirai, 1998), calculations at the lattice constant
determined with LSDA (which is 3% too small) yield a non-
magnetic ground state. GGA calculations, on the other hand,
give a reasonable lattice constant but the magnetic moment
is more than 60% too large (Singh and Ashkenazi, 1992).
Furthermore, the unmodulated antiferromagnetic structure of
Cr seems to be stabilized by GGA, whereas a modulated
structure is observed experimentally (Hafner, Spišák, Lorenz
and Hafner, 2002).

Despite these critical remarks on the success of DFT in
describing Fe and Cr (and much more could be said on Mn
(Hobbs and Hafner, 2003)), it should be emphasized that
DFT is an excellent theory for the prediction of magnetic
properties of materials – despite some limitations. As the
vast amount of literature in this field shows, the area of
applicability of this method is constantly expanding. Recent
examples from the field of magnetism in low dimensions
can be found in Magnetism of Low-dimensional Systems:
Theory, Volume 1.

Up to now, we focused on the spin density and the
resulting, in most cases collinear, magnetization. We should

notice that the direction of this magnetization with respect
to the lattice did not enter in the formalism and we relied
on the assumption that the total energy is invariant with
respect to a uniform rotation of the magnetization direction.
This was implicitly assumed when we arbitrarily (or, better,
for convenience) selected in equation (14) the z direction
as global magnetization axis. Indeed, in the absence of
an external B-field (or in its presence, as long as it is
oriented in the z direction) this implies no loss in generality,
if the interactions included in vxc are isotropic in space.
If we start from a Schrödinger–Pauli-like theory, there is
indeed no term that could couple the spin space to the
lattice. The dipole–dipole interaction, which can introduce
a magnetic anisotropy, results from a relativistic two-particle
term and is not contained in LSDA or GGA (but it can
be added as a classical magnetostatic term ‘by hand’, if
the magnetic moment is known). However, the presence of
an orbital moment can introduce a coupling between spin
and lattice by the spin-orbit coupling term, which follows
from the single-particle Dirac equation. The formation of
orbital moments in DFT will be discussed in the next
subsection.

2.6 Orbital magnetism

The magnetization density and the magnetization,
equation (19), are clearly a consequence of the imbal-
ance of electrons with spin-up or spin-down and, therefore,
the quantity defined in equation (20) is called spin moment.
From atomic physics we know that the total magnetic
moment is a sum of spin and orbital contributions,
Mtot = Mspin + Morb. The orbital moment results, in a
classical picture, from the orbital motion of the electron
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around the nucleus. Compared to the situation in a free
atom, where Morb can be even larger than Mspin, in a solid
this motion is restricted by the crystal field that quenches the
orbital moment. In bulk samples, small moments (typically
0.1–0.2 µB) can be found (compare Table 1).

DFT in the known LSDA or GGA formulations provides
no term that could lead to the formation of an orbital moment
in the presence of a crystal field. In an atomic LSDA
calculation of scandium (3d1 configuration), all d-levels
of a given spin (ml = −2, −1, . . . , 2) are energetically
degenerate if no external magnetic field is present. A small
crystal field would immediately lead to the formation of
linear combinations of these levels (e.g., dxy or dx2−y2 ) which
carry no orbital moment. Current- and spin-density functional
theory (Vignale and Rasolt, 1988) would provide a natural
starting point for the description of orbital magnetism, but
so far the success is limited.

As noted above, the Dirac equation provides a term that
couples the spin to the orbital moment and, thereby, coun-
teracts the influence of the crystal field and leads to the
formation of an orbital moment. For a deep and funda-
mental discussion of relativistic effects in DFT, we refer
the reader to a paper by Jansen (1988) and the review of
Staunton (1994). Here, we take a simpler approach: inter-
preting the Kohn–Sham equation or its spin-polarized form,
equation (11), like a single-particle Schrödinger equation, we
can compare this equation with a two-component approxima-
tion to the Dirac equation from relativistic quantum mechan-
ics (Bethe and Salpeter, 1977). This Pauli equation has the
same form as the Schrödinger equation, but additionally sev-
eral terms, like the Darwin or mass-velocity term, appear as
a consequence of the relativistic treatment. If these terms are
now included in the Kohn–Sham equation, we can hope to
improve the description of heavier elements, without having
to modify the exchange-correlation potential; for example,
the scalar-relativistic approximation takes over from the Pauli
equation these terms that are diagonal in spin and prove to
be essential for the description of 5d elements.

Another term of the Pauli equation, the spin-orbit coupling
term, couples up- and down-spin and also provides a
mechanism that leads to orbital polarization, that is, the
formation of an orbital moment. The electron, traveling on
a classical trajectory around the nucleus, experiences the
electric field (from the screened nucleus) as a magnetic field.
This field couples to the magnetic (spin) moment of the
electron and, thus, leads to a preferential orientation of the
spin to the orbital motion. Using the orbital moment operator
L = r × v, we can write the spin-orbit coupling term in the
vicinity of a nucleus with a radial potential v(r) as

Hso = 1

r

dv(r)

dr
(σ · L) (30)

Adding this term to equation (11) will destroy the decou-
pling of spin-up and -down equations like in equation (14). It
also invalidates the aforementioned assumption that the total
energy is not affected by a uniform rotation of the spin direc-
tions: the crystal field in a solid acts on the orbital motion of
the electron so that there is a preferential plane for this orbital
motion. Therefore, a total energy difference arises when the
solid is magnetized in two different directions (Stöhr, 1999).
This difference, the magnetocrystalline anisotropy energy
(MCA) energy, is small for bulk systems with high sym-
metry, for example, cubic crystals like Fe or Ni. It is larger
for crystals with a unique crystallographic axis, like hexag-
onal Co. But for lower-dimensional systems, thin films, or
atomic wires, the MCA will essentially determine the mag-
netic properties, especially at finite temperatures (Bihlmayer,
2005). Examples of calculations of the MCA within DFT can
be found in Wu and Freeman (1999). The MCA energy is
also discussed in Theory of Magnetocrystalline Anisotropy
and Magnetoelasticity in Transition-metal Systems, Vol-
ume 1.

The orbital magnetization can be defined in analogy to the
spin magnetization, equation (19), now expressed in single-
particle wave functions φi :

morb(r) = −µB

∑
i

〈φi |r × v|φi〉 (31)

At a certain atom ν, the orbital moment Morb
ν can then be

obtained by an integration (denoted 〈〉ν) in a sphere centered
around this atom:

Morb
ν = −µB

∑
i

〈φi |L|φi〉ν (32)

Although this definition of the orbital moment poses
no difficulties in periodic solids, we note here that the
evaluation of the total orbital moment of a periodic crystal
is more involved (Thonhauser, Ceresoli, Vanderbilt and
Resta, 2005). As will be shown in later chapters, relativistic
DFT calculations successfully predict the chemical trends
(similar to Hund’s second and third rules), the changes of
the orbital moment with the coordination of the atom or
the dimensionality of the system, and the variation of the
orbital moment with the magnetization direction. It should
be noted that in most cases the atomic orbital moments
and also the MCA energies, obtained in DFT calculations,
are too small compared to experiment; for example, the
calculated orbital moments of Fe, Co, and Ni in LSDA are
0.05, 0.08, and 0.05 µB, respectively (Beiden et al., 1998).
Compared to the experimental values (Table 1, difference
between total and spin moment) the values of Fe and Co
are about 50% too small, for Ni the value is surprisingly



10 Electron theory of magnetism

good. Orbital polarization can be incorporated in DFT to
compensate for this deficiency at least partially (Solovyev,
2005). Similar approaches to correct the magnetic anisotropy
energy have also been discussed in the literature (Yang,
Savrasov and Kotliar, 2001). Some account of these methods
will be presented in the next section. Finally, we should
notice that the orbital moment, as expressed in equation (32),
is not a quantity that can be directly accessed in DFT.
In this equation, single-particle wave functions have been
used that describe a noninteracting electronic system in an
effective potential, and they yield the correct ground-state
density but do not necessarily lead to the correct orbital
moments.

The computational effort for calculations that include
the spin-orbit coupling term, equation (30), in a straight-
forward way is comparable to a noncollinear calculation,
even if collinear systems are considered. This effort can
be reduced if this term is considered as a small per-
turbation to the nonrelativistic Schrödinger-Pauli Hamilto-
nian. Furthermore, the so-called magnetic force theorem
(Weinert, Watson and Davenport, 1985) can be used
to evaluate quantities like the MCA. But even these
calculations require considerable computational resources,
since the energy differences to be determined are very
small and – compared to normal calculations – drastically
increased numerical cutoffs can be necessary. Systems in
which spin-orbit coupling is strong require a self-consistent
treatment including equation (30) in the Hamiltonian. In
these systems, of course, the relativistic effects are stronger
so that moderate numerical cutoffs can be used, but the
computational complexity brought by the spin-orbit coupling
term and the loss of symmetry leads to an increased compu-
tational effort.

3 EXTENSIONS TO ‘STANDARD DFT’
APPROACHES

While the ‘standard DFT’ approaches, like LSDA or GGA,
are quite successful for many metals, semiconductors, and
most insulators, it was realized that there are certain classes
of materials that require an extension to the usual exchange-
correlation terms (van der Marel and Sawatzky, 1988); for
example, many transition metal oxides, like FeO or CoO, turn
out to be metallic in LSDA, while they are actually wide
band gap insulating. Problems also occur with 4f metals,
where the treatment of the localized f-electrons with LDA
or GGA is often insufficient. Some strategies to overcome
these problems are presented in this section. A more detailed
account of some of these methods will follow in later
chapters of this book.

3.1 Self-interaction correction

Let us consider DFT in the LDA for a single particle in a
potential v(r). Our equation,

ESP[n(r)] = T0 +
∫

v(r)n(r)dr + 1

2

∫ ∫
n(r)n(r′)
|r − r′| drdr′

+
∫

n(r)εxc(n(r))dr (33)

would be correct, that is, its functional derivative with
respect to the density would lead to the ordinary Schrödinger
equation, if in the last term εxc would compensate for
the spurious Coulomb interaction of the single electron
interacting with itself,

USP[n(r)] = +1

2

∫ ∫
n(r)n(r′)
|r − r′| drdr′ (34)

This means that the exact ‘exchange-correlation energy
density for a single particle’ (which certainly does not
deserve this name) would have the form

εSP
xc (n(r)) = −1

2

∫
n(r′)

|r − r′|dr′ (35)

More properly, this last term should be named a self-
interaction correction (SIC). While the situation is simple for
one particle, in DFT normally many particles are described.
To eliminate the self-interaction for a many-particle system
is naturally more complicated than the case studied above.

Since the exact DFT energy functional has to be self-
interaction-free, Exc has to account in some way for a
correction. Although in the limit of very low densities SIC
can be seen to give only a small contribution, for very
localized electrons this correction can be important. One
of the first attempts to include SIC in DFT was made by
Perdew and Zunger (1981). Their idea was to introduce
an orbital-wise removal of the self-interaction on top of a
given approximation to the exchange-correlation potential.
If the density of single, fully occupied orbital of spin α is
ni,α = |φi,α|2, then the self-interaction-corrected version of
an exchange-correlation energy (e.g., in LSDA) would be

ESIC
xc = ELSDA

xc [n(+)(r), n(−)(r)] −
∑
i,α

(
U [ni,α(r)]

− ELSDA
xc [ni,α(r), 0]

)
(36)

If we use for an estimate of this correction the inequality
(Gadre, Bartolotti and Handy, 1980)

U [n(r)] ≤ 1.092N
2
3

∫
[n(r)]

4
3 dr where N =

∫
n(r)dr

(37)
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and compare this to equation (18), we see that for an orbital
i, α the correction δi,α is bounded by

δi,α ≤ 0.16
∫

[ni,α(r)]
4
3 dr and ESIC

xc = ELSDA
xc −

∑
i,α

δi,α

(38)

Here, the correction amounts to about 17% of the EHF
x

evaluated for a single orbital. In any case, the SIC introduces
a significant complication of the Kohn–Sham equations,
since the exchange-correlation potential that follows from
(36) is now orbital dependent. This leads to the SIC equations
(Svane, 1996):

(H LSDA + V SIC
i,α )φi,α = εi,αφi,α +

occ′∑
{i,α}′

λ{i,α},{i,α}′φ{i,α}′ (39)

where the Lagrange multipliers λ{i,α},{i,α}′ ensure orthogo-
nality of the wave functions. The SIC potential, V SIC

i,α is the
functional derivative of ESIC

xc as defined in equation (36) with
respect to the density of the state {i, α}. Methods exist to
solve these equations at different levels of approximations;
for a review see Temmerman et al. (2000).

As a typical system where SIC helps improve the DFT
results we consider NiO here. In LDA a small gap of
0.2–0.5 eV is found, while experimentally it is more than
4.0 eV. Of course we should be careful when comparing
Kohn–Sham band structures with real spectra, but in this
case the error is exceptionally large. Also, the band ordering
turns out to be wrong and – most disturbingly – the magnetic
moment is only 1.0 µB as compared to the experimental value
of 1.7 µB (Anisimov, Zaanen and Andersen, 1991). If the
strongly localized d-electrons of Ni in NiO are the sources
of the error here, we can suspect that SIC can help improve
the situation. Indeed, an inclusion of SICs not only increases
the magnetic moment to 1.6 µB but also opens up the band
gap to more than 3.0 eV and considerably improves the
calculated spectra (Dudarev et al., 1998). Other examples,
like the 4f metal Ce, can be found in Temmerman et al.
(2000).

3.2 The LDA+U method

Dealing with f and some d transition metals and their com-
pounds, it was realized that, while the s, p and some d elec-
trons can successfully be described in standard DFT methods,
for the strongly localized electrons an atomic-like description
is appropriate (van der Marel and Sawatzky, 1988). Taking
into account the different atomic potentials and the stronger
screening in the metal, an atomic theory (Slater, 1929) for

these localized states can describe the situation quite sat-
isfactorily. Following this approach, Anisimov, Zaanen and
Andersen (1991) merged this atomic picture with band theory
(i.e. standard DFT), to get a ‘band approach’ to Hubbard-
type models: for the localized d and f states, the Coulomb
interaction of the electrons is formulated in the spirit of the
Anderson model:

Eee = 1

2
U

∑
i �=j

ninj (40)

where the n’s are the d-orbital occupation numbers here
and U is the famous Hubbard parameter, describing the
on-site Coulomb interaction. In the LDA to this model, the
energy of the d–d interaction is (Anisimov, Aryasetiawan
and Lichtenstein, 1997)

ELDA
ee = 1

2
UN(N − 1) where N =

∑
i

ni (41)

If we add Eee from equation (40) to the LDA energy
functional, ELDA

ee should be subtracted, so that

ELDA+U = ELDA + 1

2
U

∑
i �=j

ninj − 1

2
UN(N − 1) (42)

This is a simple version of the LDA+U method. Such
a modification of the LDA results in a shift of the LDA
eigenvalues:

εi = dE

dni

= εLDA
i + U

(
1

2
− ni

)
(43)

that is, more-than-half-filled bands are shifted down in
energy, while less-than-half-filled bands are shifted up.
Despite the formal similarity with the Stoner model of
section 2.4, it should be noted that the physical background
of this model is quite different (Anisimov, Zaanen and
Andersen, 1991). A simple example is given in Figure 3,
where the LDA+U method was used to correct the positions
of the 4f states in ferromagnetic bcc Eu. It is easy to see that
the correction has almost no effect on the s and p states, but
shifts down the occupied 4f states (an enhanced localization
of these states can be seen by the narrowing of the band)
and pushes the unoccupied 4f levels to higher energies. How
large this shift is depends of course on the chosen U. Before
we turn to the question of how to obtain a reasonable estimate
for U, we have to refine the model to see how we can apply
the LDA+U method on a certain set of states (e.g., 4f) at a
given atom.

To separate the localized orbitals from the itinerant states,
for which the LDA already provides a good description,
one chooses a site-centered, {l, m}-dependent orbital basis,
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Figure 3. (a) Density of states of bcc Eu calculated with standard LDA (dashed line) and the LDA+U (full line) method. A Hubbard U

of about 6 eV was used to correct the positions of the 4f states. The local partial 4f DOS as obtained in LDA is shown as gray shaded
area, the LDA+U result in black. (b) Eu band structure obtained in the LDA+U method: majority-spin states (full lines) and minority-spin
states (broken lines).

|ν, l, m〉, where ν is the site index of the selected atom and
l and m are the angular and azimuthal quantum numbers,
respectively. If the density is given by Kohn–Sham orbitals
like in equation (15), we can define a density matrix for spin
α in m, m′-space:

nαν
mm′ =

∑
i

wα
i 〈ν, l, m|φα

i 〉〈φα
i |ν, l, m′〉 (44)

If we want to apply the LDA+U method on 4f states,
we need for each spin a 7 × 7 density matrix, where the
diagonal elements give the occupancy of the l = 3, m =
−3, −2, . . . , 3 orbitals of the selected atom. Using this
density matrix, the electron–electron interaction energy can
be formulated as (Liechtenstein, Anisimov and Zaanen,
1995)

Eee = 1

2

∑
ν

α,β∑
mm′pq

nαν
mm′

[
〈m, p|Vee|m′, q〉

− 〈m, p|Vee|q, m′〉δαβ

]
nβν

pq (45)

and used instead of the simpler version, equation (40). Here,
the electron–electron interaction can be expressed in terms
of an angular part, contained in ak , and the radial part that
is given by the effective Slater integrals (Slater, 1929), Fk:

〈m, p|Vee|m′, q〉 =
∑

k

ak(m, p, m′, q)Fk; 0 ≤ k ≤ 2l

(46)

In terms of the screened Coulomb and exchange parame-
ters, U and J , the Slater integrals can be approximated, for
example, for l = 2, as

U = F0; J = F2 + F4

14
and

F4

F2
= 5

8
(47)

and the ak are sums of integrals of the angular part of the
wave function with spherical harmonics. Then, we can define
an orbital selective potential,

V αν
mm′ =

∑
pqβ

[〈m, p|Vee|m′, q〉 − 〈m, p|Vee|q, m′〉δαβ

]
nβν

pq

−
[
U

(
nν − 1

2

)
− J

(
nαν − 1

2

)]
δmm′ (48)

where nαν = ∑
m nαν

mm and nν = ∑
α nαν . This spin-, site-

and l, m-dependent potential now enters the Kohn–Sham
equation via

[−∇2 + V α
LDA(�r)]φα

i +
∑

ν

∑
mm′

V αν
mm′

δnαν
mm′

δφα
i

= εα
i φα

i (49)

Thus, we have introduced a Hartree–Fock-like potential
term that acts on a certain subset of the orbitals, leaving the
others (in a first approximation) unchanged. Equation (49)
has to be solved self-consistently, until both the density
and the density matrix are converged. If the Kohn–Sham
equations are solved by expanding the wave function into
some basis set, for different types of basis sets also a different
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orbital basis, |ν, l, m〉, will be convenient. It is clear that the
result of the LDA+U calculation will also depend, to some
extent, on the choice of the orbital basis, but in practice for
the same parameters U and J also qualitatively the same
answers are reached.

When applied to 4f metals like Eu or Gd, one can use
the LDA+U method to shift the position of the 4f as a
function of U . A comparison to the position where they are
spectroscopically measured can be used to determine a value
for U , although other methods are described below. One of
the problems of LSDA, the prediction of an antiferromagnetic
ground state for hcp Gd, is resolved when the LDA+U

method is applied in this way (Kurz, Bihlmayer and Blügel,
2002). Another success of the LDA+U approach can be seen
in the case of Eu, where LDA would predict a much too small
lattice constant, while LDA+U removes this overbinding
caused by the 4f states (Turek et al., 2003). Also the
problems in NiO, mentioned in the last section in connection
with the SIC, can be resolved in this way (Dudarev et al.,
1998).

Although the LDA+U method is rather simple and
quite successful, it faces the problem that it introduces an
external parameter and thus destroys the ab initio character
of the conventional LDA approach. Therefore, concepts to
calculate U within constrained DFT (Solovyev, Dederichs
and Anisimov, 1994) (see also subsection 4.2) and with the
GW method (Solovyev and Imada, 2005) (cf. subsection 3.4)
have been developed. Fortunately, in many cases the results
do not depend too sensitively on the exact values of U and
J . But there are also systems, like YMnO3, where depending
on the value of U different magnetic ground states can be
stabilized (Picozzi, Yamauchi, Bihlmayer and Blügel, 2006).
A collection of applications of the LDA+U method can be
found in Anisimov, Aryasetiawan and Lichtenstein (1997).

3.3 Orbital polarization

As we noted in subsection 2.6, one of the deficiencies of
standard DFT approaches is to underestimate the orbital
moments in solids, especially in lower dimensions (thin
films, chains, adatoms). To get a better description of the
total moments of bulk actinides, Brooks (1985) proposed
a correction term inspired by Hartree–Fock theory, which
induces a splitting of the eigenvalues of states with positive
and negative azimuthal quantum number m, proportional
to the difference in population of states with positive and
negative m:

ε(m(+)) − ε(m(−)) = −IOP (
N(m(+)) − N(m(−))

)
(50)

where IOP can be estimated from a Slater-type atomic theory.
The structure of this correction looks similar to the simple

LDA+U approach of equation (43). Later Eriksson, Brooks
and Johansson (1990) refined this idea, again based on
the atomic theory of the orbital moments. They followed
an analogy of the mean-field-like approach (MFA) to the
interaction between spin moments s:

−
∑
νν ′

sνsν′
MFA−−→ −

(∑
ν

sz
ν

) (∑
ν′

sz
ν′

)
= −S2

z (51)

which leads to a spin-polarization energy of −IS2
z where I

is the Stoner parameter (subsection 2.4). The same approach
for the orbital moment l,

−
∑
νν′

lν lν′
MFA−−→ −

(∑
ν

lzν

)(∑
ν′

lz
ν′

)
= −L2

z leads to

EOP = −1

2
IOPL2

z (52)

so that an orbital-dependent potential for a state with the
quantum number ml was proposed:

�Vml
= −1

2
IOPLzm̂l where Lz =

∑
i

wi〈φi |m̂l |φi〉

(53)
and m̂l is the z-component of the angular momentum operator
(again the magnetization is assumed to be oriented along
z). For d electrons IOP is the Racah parameter, B, and can
be obtained from the Slater integrals similar to U and J .
For f-electrons this term is denoted as E(3). This OP was
used successfully for bulk metals (Rodriguez et al., 2001)
and systems of different dimensionality (Ederer, Komelj
and Fähnle, 2003), although sometimes a rescaling of the
Racah parameter obtained from the Slater integrals of the
local atomic wave functions is necessary (Gambardella et al.,
2003). Like in the LDA+U approach, this then introduces
an external parameter in the DFT and destroys the ab initio
character of the method.

Although the proposed OP provides an intuitive and often
successful approach to include OP in DFT, its physical inter-
pretation remains somewhat unclear. Solovyev, Liechtenstein
and Terakura (1998) derived an OP term in the frame-
work of open-shell Hartree–Fock theory as a limiting case,
which is generally more complicated than the OP suggested
in equation (53). This simple form can be recovered when
U ≈ 1.5J (for d electrons). For this choice of U and J , the
LDA+U method is close to the OP scheme derived above. It
is clear that the LDA+U method can also be used to include
OP in DFT and successes in this direction have been reported
by Shick and Mryasov (2003). A comparison can be found
in Table 2.
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Table 2. Orbital moments of Fe and Co with the magnetization oriented along the direction M̂ . The LDA
and OP (1) results are from Rodriguez et al. (2001), OP (2) is from Trygg, Johansson, Eriksson and Wills
(1995), while the LDA+U calculations were performed by Shick and Mryasov (2003). The experimental
values are quoted in these references.

M̂ Morb(µB)

LDA OP (1) OP (2) LDA+U Experimental

Fe (bcc) [001] 0.048 0.086 0.078 0.085 0.08
Co (hcp) [0001] 0.079 0.13 0.123 0.153 0.14

3.4 Methods using DFT output: GW and
LDA+DMFT

In many cases, it is also desirable to go beyond DFT beca-
use one is interested in properties that cannot be accessed
directly in conventional DFT, for example, band gaps or
finite-temperature properties. To describe spectral proper-
ties or lifetimes of quasiparticle states, it is therefore more
natural to start from many-body theory, where the quasi-
particle equation (Hedin, 1965) can be studied. It has a
similar structure as the Kohn–Sham equation, but the nonlo-
cal, energy-dependent, self-energy �(r, r′, ε) takes the role
of the exchange-correlation potential here. The wave func-
tions describe now quasiparticles and the eigenvalues are
energies that are required to remove or add an electron. In
principle, the solution of such an equation gives just the quan-
tities lacking in conventional DFT schemes, but in practice
these equations are too complicated to solve except for some
special cases. Therefore, they are often used to provide a
‘correction’ to the Kohn–Sham eigenvalues. One of these
schemes is the many-body perturbation theory in the GW

approximation (Aryasetiawan and Gunnarsson, 1998), where
the self-energy is approximated by the product of a Green
function G and the screened Coulomb interaction W , both
obtained from the output quantities of a DFT calculation. Of
course there are DFT-based methods, like time-dependent
density-functional theory (TDDFT), which provide a way to
calculate spectra and there are also temperature-dependent
nonlocal exchange-correlation potentials. It is too early to say
whether these methods will become more popular than other
well-established methods like the GW method, but some, like
TDDFT, are active research fields today (Onida, Reining and
Rubio, 2002).

In the last three subsections we discussed different exten-
sions of the conventional DFT schemes that are designed
to circumvent some of the problems of the common LSDA
or GGA functionals. In general they consist of an orbital-
dependent potential, that is added to the Kohn–Sham
equation, which is solved self-consistently. In this way,
‘many-body effects’ are incorporated in an approximate
form, for example, static correlations that are underestimated

by LDA are included by the LDA+U method. But these are
mean-field-type approximations that cannot describe dynam-
ical correlation effects that go beyond Hartree–Fock-like
methods. If dynamical correlations are important for the
description of a certain property of a specific material, then
it is necessary to go beyond these approaches. To study such
many-body effects, one has to start from an explicit many-
body problem which normally can only be solved for model
Hamiltonians under special conditions. To account for the
realistic material properties, DFT results are then incorpo-
rated in these many-body theories, hoping that this synthesis
provides a realistic description both of the many-body effects
and of the material properties.

As an example for a method that is used to study
magnetism in the solid state, we mention here the dynamical
mean field theory (DMFT) which, in conjunction with LDA
or GGA band structures, is a popular approach to describe
dynamical correlations in realistic materials. Correlations
can determine order parameters in transition-metal oxides
(Tokura and Nagaosa, 2000) or phase transitions in low-
dimensional systems (Sachedev, 2000) which are outside
a mean-field description. Since lattice Hamiltonians, like
the Hubbard Hamiltonian, give at least the right qualitative
behavior of many quantities of interest, one starts from a
multiband Hubbard model:

H = −
∑
νν′

α∑
mm′

tανν′
mm′ (cαν

m )†cαν′
m′ + 1

2

∑
ν

×

α �=β∑

mm′
Uν

mm′nαν
m n

βν

m′ +
α∑

m�=m′
(Uν

mm′ −J ν
mm′)nαν

m nαν
m′


 (54)

This can be interpreted as hopping terms between an
orbital m on site ν and an orbital m′ on site ν′ plus an elec-
tron–electron interaction term as encountered in the LDA+U

method, equation (40), but keeping only the diagonal of
the density matrix. If the hopping parameters t are taken
from a DFT calculation, a Hartree–Fock-like solution of
this model is similar to the first iteration in the LDA+U

method. The DMFT goes beyond Hartree–Fock, but at the
expense of other simplifications, like the use of a local
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self-energy instead of a nonlocal or momentum-dependent
one (Liechtenstein and Katsnelson, 2001). A description of
this method and its extensions is given in Dynamical Mean-
field Theory of Itinerant Electron Magnetism, Volume 1.
Here, it should be sufficient to say that this LDA+DMFT
approach was successfully applied to the description of
many transition-metal oxides, orbitally ordered systems, and
actinides. For a review, see Held et al. (2002).

4 THE MAGNETIC GROUND STATE AND
BEYOND

In the first section, we dealt with the problem of finding the
magnetic ground state in DFT without worrying about possi-
ble metastable solutions or local minima on the total energy
surface. Indeed, non-spin-polarized DFT calculations for a
given external potential (i.e., a selected arrangement of the
atomic nuclei) normally lead to a single solution. In spin-
polarized calculations it is possible to start the calculations
from different initial magnetizations and to stabilize different
magnetic solutions, say a ferromagnetic and an antiferromag-
netic one, and obtain total energies for both magnetic states.
In this section, we will discuss methods to find the magnetic
state of lowest energy, the ground state.

To determine the magnetic ground state it is possible to
follow several directions: similar to molecular-dynamics cal-
culations, spin dynamics allows the study of the magnetic
degrees of freedom by exploring the ground state config-
uration. Another possibility is to determine the magnetic
interactions between the atoms by DFT calculations which

are then mapped onto a model (in the simplest case a classical
Heisenberg model). This model is then solved, either analyti-
cally or numerically. In both cases we introduce a discretiza-
tion of the (vector) magnetization density: In spin dynamics,
the evolution of discrete spins, that is, vectors attached to cer-
tain (atomic) positions can be monitored. Also mapping the
ab initio results to a model Hamiltonian which contains inter-
actions between spins requires that it is possible to assign a
definite spin to an atom, so that it should be possible to write
in the vicinity of an atom ν, for example, within some sphere
centered at the nucleus, the magnetization density, m(r), as

m(r) = |〈m(r)〉ν |êν = Mν êν (55)

where Mν is the magnetization and êν is the magnetization
direction. Vector-spin DFT calculations allow the estimation
of whether equation (55) is a good approximation or not (cf.
Figure 4).

If the magnetization density in the vicinity of some atom
ν is expressible by equation (55), then the total energy of
a magnetic system as a function of its magnetic structure
can be described as a functional E[{êν}] of the directions
of the magnetic moments at the atoms ν in the magnetic
unit cell. In this context, collinear states (êν is parallel for
all atoms) are special solutions where E[{êν}] has a local
or global extremum. Therefore, they constitute an important
class of magnetic configurations that are often realized in
magnetic materials in the ground state. But to describe
magnetic materials at elevated temperatures even in this case
more general, noncollinear, magnetic configurations have to
be calculated. Some techniques will be presented in this

(a) (b)

Figure 4. (a) Ground-state magnetization density of a hexagonal Cr monolayer with the Cu(111) in-plane lattice constant; the absolute
value of the magnetization is shown in grayscale and the local directions are marked by small arrows. The average magnetization direction
around an atom is indicated as gray arrow. (b) Schematic picture of the magnetic structure (Néel state) of the hexagonal Cr monolayer.
(Reprinted figures from Kurz, P., Bihlmayer, G., Hirai, K. and Blügel, S. Three-Dimensional Spin Structure on a Two-Dimensional Lattice:
Mn/Cu(111), Phys. Rev. Lett 86, 1106–1109. Copyright 2004 by the American Physical Society.)
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section. A more detailed presentation can be found in the
book of Kübler (2000).

4.1 Spin dynamics, magnetic torque

If one is interested in the magnetic ground state of a
system of given chemical composition and atomic positions,
the final goal is to minimize the functional E[{êν}]. The
dimensionality of this problem will, of course, depend on the
size of the chosen unit cell (some multiple of the chemical
unit cell) and this minimization will involve the tricky task
of determining the absolute minimum on a high-dimensional
total energy surface. In analogy to molecular dynamics, that
is, the problem of minimizing the energy as a function of
the atomic positions, we introduce here a spin dynamics,
where the magnetic orientations, êν , take the role of the
variables.

Any vector-spin DFT calculation has to start with a
reasonably chosen spin configuration in a prescribed unit
cell. On a simple level, one can ‘relax’ the directions of the
magnetization at the atoms by allowing the directions êν to
change during the self-consistency cycle. The magnetization
directions will then change to minimize the total energy
(cf. Figure 5), but the final magnetic state that will be
reached will, in general, depend on the starting point of the
calculation. Therefore, a more elaborate technique will be
needed to avoid being trapped in some local minimum of
E[{êν}].

To this end, we have to develop an equation of motion
for the magnetization of an atom. To keep things sim-
ple, we will focus on the case where the magnetization
stays collinear within the vicinity of the atom. Let us
start from the Hamiltonian of equation (11) and assume
that the external potential matrix, v(r), has been chosen
to be diagonal and the exchange-correlation potential is
separated into diagonal and off-diagonal parts. Following
Antropov, Katsnelson, van Schilfgaarde and Harmon (1995)
and Antropov et al. (1996) we set up a time-dependent anal-
ogon of equation (11):

i
d�

dt
= [

Hd − σ · B(r, t)
]
� where � =

(
φ(+)

φ(−)

)
(56)

and Hd is the Hamiltonian that now contains only diagonal
parts.

In the spirit of the Born–Oppenheimer approximation,
we can separate the evolution of the magnetization into
fast (value of the magnetization) and slow (direction of
the magnetization) degrees of freedom. The former part
will be described quantum mechanically, while the latter
is treated on a semiclassical level. At a given time, t , the
time-independent version of equation (56) can be solved for
a given magnetization characterized by {êν}. Now we have
to determine an equation of motion for the magnetization
m(r, t).

This equation of motion can be obtained by multiplying
equation (56) from the left with �∗σ and adding the complex
conjugate equation. Comparing with the time derivative of
equation (19) and using the relation σ (σ · B) = B − iσ × B,

(a) (b)

Figure 5. Determination of the magnetic ground state of ordered FeMn. Experimentally, FeMn is a disordered alloy and the 2q-state is the
magnetic ground state. This is the initial magnetic configuration for a simulated ordered alloy (a). A more complex magnetic arrangement
is obtained (b) when the local spin directions are allowed to change in the simulation. The Fe moments are shown by lighter arrows, the
Mn moments by darker arrows.
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we get in units of µB

dm(r, t)

dt
= 2m × B + i

2
∇(�∗σ · ∇� − c.c.) (57)

The second term on the right side is complicated and
describes longitudinal changes of the magnetization, which
we will not consider at this level. Omitting this term,
equation (57) describes the precession of the magnetization
direction at an atom under the influence of the magnetic field
generated by the atom itself and other atoms of the crystal.

Returning once more to equation (55), we can simplify
equation (57) and write for the evolution of the magnetiza-
tion direction in atom ν

dêν

dt
= − 2

µB
êν × Iν (58)

where Iν = µBB. If we explicitly also want to take into
account the effect of other fields acting onto a magnetization
direction, for example, stemming from the spin-orbit interac-
tion (magnetic anisotropy) or dipole–dipole interaction, these
fields can be added to equation (58) into I = Iν + ISO + Id–d.
More general expressions of equation (58), suitable for spin
dynamics with finite temperatures included, can be found in
the paper of Antropov et al. (1996).

The next question, that has to be answered, is how
to determine the fields Iν , that is, given a certain set of
magnetization directions {êν} what is the torque on a selected
magnetic moment (Stocks et al., 1998)? This problem can be
solved in constrained vector-spin DFT, as introduced in the
next section.

4.2 Constrained DFT

In general, an arbitrary magnetic configuration given by
a set of local (atomic) magnetization directions {êν} is
not an extremum or a stationary solution of the total
energy functional E

[
n(r)

]
. Exceptions are high-symmetry

states, like collinear magnetic states, a certain class of
spin-spiral states (see Section 4.3) and particular linear
superpositions of several spin-spiral states. The constrained
DFT developed by Dederichs, Blügel, Zeller and Akai
(1984) provides the necessary generalization to deal with
arbitrary magnetic configurations, that is, configurations
where the orientations of the local moments are constrained
to nonequilibrium directions. We define a generalized energy
functional Ẽ

[
n(r)|{êν}

]
, where we ensure that the average

magnetization in an atom, 〈m〉ν , points in the direction êν .
This condition, êν × 〈m〉ν = 0, is introduced by a Lagrange

multiplier, λ, so that (Kurz et al., 2004)

Ẽ
[
n(r)|{êν}

] = E
[
n(r)

] +
∑

ν

λν · (êν × 〈m〉ν)

= E
[
n(r)

] + µB

∑
ν

Bν
c · 〈m〉ν (59)

Here, we recast the Lagrange multiplier in the form of a
magnetic field, Bν

c , which is the constraining field in atom
ν that keeps the local (integrated) magnetic moment, that is,
the magnetization density averaged over the sphere where
equation (55) holds,

〈m(r)〉ν = Mν =
∫

MT ν

m(r) d3r (60)

parallel to the prescribed direction êν .
In an actual constrained local moment (CLM) calculation,

n(r) and Bν
c have to be determined self-consistently. The

density matrix is calculated in the usual self-consistency
cycle. At the same time, the local constraint fields Bν

c have to
be adjusted, until the constraint conditions, êν × 〈m〉ν = 0,
are fulfilled (cf. Figure 6). At the end of such a calculation,
we obtain the self-consistent densities and a set of local
constraint B fields. The total energy of the system is given
by the constrained energy functional, equation (59).

According to the Hellmann–Feynman theorem we find
that the change of the energy due to a change in magnetiza-
tion direction, dêν , is given by dE = −µBMν · (Bν

c × dêν).
Therefore, the constraint field can be interpreted as a torque
acting on the magnetic moment, in the spirit of the spin
dynamics, formulated in the previous section. Combined with
techniques known from molecular dynamics, like simulated
annealing, this provides a formalism that allows the find-
ing – at least in principle – of the magnetic ground state of
a system (Újfalussy et al., 1999). The chapter Dissipative
Magnetization Dynamics Close to the Adiabatic Regime,
Volume 1 gives a more complete account of adiabatic spin
dynamics and its applications.

CLM calculations can also be used in a different way. In
the next section, we describe how they can be used to deter-
mine the exchange interactions in a system and utilize these
results in models, such as the classical Heisenberg model,
to obtain information about the ground state, but also about
excited states of a magnetic system. Of course, constrained
DFT can also be used to fix the value of the magnetic moment
(Dederichs, Blügel, Zeller and Akai, 1984) (in this case, the
constraining field is a longitudinal magnetic field, in contrast
to the transverse field discussed above) or to vary the occu-
pation numbers of a certain band (e.g., the d band) for an
estimate of the Hubbard parameter U (Solovyev, Dederichs
and Anisimov, 1994).
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4.3 Mapping on model Hamiltonians

From the classical Heisenberg model, we can derive a Hamil-
tonian that describes the interaction between two spins S at
sites ν and ν′ in the form

H = −
∑
νν′

Jνν′Sν · Sν′ (61)

where Jνν′ is the exchange coupling constant between
the two spins. The sign of Jνν′ determines whether a
parallel (ferromagnetic) or antiparallel (antiferromagnetic)
alignment of Sν and Sν′ is preferred. This can be used
as a phenomenological starting point in the investigation
of the magnetic interaction in a crystal. Although the
Heisenberg model was originally introduced for magnetic
insulators with localized moments (Anderson, 1963), we can
also apply equation (61) to metallic systems, as shown in
Figure 7. In these hexagonal unsupported monolayers the
behavior of the total energy as a function of the relative
angle between the atoms can be described as cosinelike
function, the exchange coupling constant being negative
for Cr and Mn (preferring antiferromagnetic coupling) and
positive for Fe (leading to a ferromagnetic ground state).
The total energy has been calculated by a constrained
DFT calculation as described above. We further see that

the magnetic moment does not change significantly as
the spins are rotated, an important requirement for the
application of the classical Heisenberg model. For spin
systems which do not fulfill this requirement, a spin-
cluster expansion has been developed to map energetics
obtained by DFT calculations on a more general model
that has been inspired by alloy theory (Drautz and Fähnle,
2004).

From the right part of Figure 7 we can see that rotating
the local magnetic moment direction of one atom in the two-
atom unit cell of the hexagonal lattice will change the relative
orientation of that atom to four nearest neighbors, but does
not affect two of the nearest-neighbor (NN) atoms. Likewise,
only four of the six second-NN atoms will change the relative
orientation to the original atom. This leads to an expression
for the total energy in the classical Heisenberg model up to
second-NN:

E = −S2(J1 + J2)(2 + 4 cos θ) (62)

if S is now the total spin moment treated as a classical vector.
This means, from a CLM calculation we can at least estimate
the size of (J1 + J2). It is not difficult to find other unit cells
and rotations that allow the determination of other linear
combinations of J1 and J2, thereby separating the individual

eν 〈m〉^ eν
^ eν

^

Beff
Beff

Bxc

Bc

〈m〉

etc.

Figure 6. Determination of the constraint field: Initially, the effective B field is parallel to the prescribed direction êν (left). The resulting
magnetization, 〈m〉, is generally not parallel to this direction. Therefore, a constraint field Bc is introduced that points in a direction opposite
to the component of the magnetization that is perpendicular to êν . Using this Beff, the direction of the magnetization is then adjusted toward
êν (right).
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exchange coupling constants (Kurz, Bihlmayer, Hirai and
Blügel, 2001).

Of course, the energies obtained from the CLM calculation
contain contributions of all Jν and also from interactions that
are not described by the Heisenberg model. Examples such as
the biquadratic interaction or the four-spin interaction result
from processes that have to be described by an Hamilto-
nian which includes a product of four spin operators. Taking
spin-orbit interaction into account gives rise to a third-order
process, the so-called Dzyaloshinsky–Moriya interaction
(Yosida, 1996). All these different interaction terms can be
extracted from a set of suitable ab initio calculations (possi-
bly including spin-orbit interaction) and can be used to deter-
mine the magnetic ground state within the chosen model.

4.4 Low temperatures: magnons and spin waves

In a periodic crystal, it is convenient to replace the quan-
tities in equation (61) by their Fourier-transformed equiva-
lents:

S(q) = 1

N

∑
ν

Sνe−iqRν and J (q) =
∑

ν

J0νe−iqRν (63)

Exploiting the translational invariance of the lattice, we
can then rewrite equation (61) as

H = −N
∑

q

J (q)S(q) · S(−q) (64)

where we have to ensure that the length of all spins S2
ν = S2

is conserved on all sites ν. This condition is fulfilled by
solutions of the type (Yosida, 1996)

Sν = S
(
êx cos(q · Rν) + êy sin(q · Rν)

)
(65)

where the unit vectors êx and êy just have to be perpendic-
ular to each other, otherwise their directions are arbitrary.
Equation (65) describes an spiral spin density wave (SSDW)

q

Figure 8. Spiral spin-density wave (SSDW) or spin spiral propa-
gating along the with a wave vector q. The opening angle is 45◦

in the upper and 90◦ in the lower example. (Reprinted figures from
Kurz, P., Bihlmayer, G., Hirai, K. and Blügel, S. Three-Dimensional
Spin Structure on a Two-Dimensional Lattice: Mn/Cu(111), Phys.
Rev. Lett 86, 1106–1109. Copyright 2004 by the American Physical
Society.)

as shown in the lower half of Figure 8. A more general
form of SSDWs can be obtained, when the magnetization
precesses on a cone with an opening angle ϑ :

Sν = S
(
êx cos(q · Rν) sin ϑ + êy sin(q · Rν) sin ϑ

+ êz cos ϑ
)

(66)

as shown in the upper half of Figure 8.
All solutions of the classical Heisenberg model can be

described as SSDWs or, if there are several degenerate solu-
tions, as linear combination of SSDWs. From equation (64),
we can conclude that the SSDW with the lowest total energy
will be the one with the propagation vector Q which max-
imizes J (q). If Q = 0 maximizes J (q), the solution cor-
responds to the ferromagnetic state; if Q = êz

π
az

and az is
the lattice constant in z-direction, then the structure is lay-
ered antiferromagnetic in z-direction. Three examples for bcc
crystals are illustrated in Figure 9: Cr is a typical antiferro-
magnet, where no stable ferromagnetic solution can be found
and magnetic moments form only for large q-vectors. In Mn
both a ferro- and an antiferromagnetic phase can be formed,
the former with a smaller and the latter with a larger magnetic
moment. From the energy E(q) it can be seen that bcc Mn is
antiferromagnetic, while bcc Fe is ferromagnetic. In Fe, the
magnetic moment changes continuously from the ferromag-
netic solution (2.2 µB) to the antiferromagnetic one (1.5 µB).

SSDWs are sometimes also called frozen magnons, since
a spin-spiral looks like a ‘snapshot’ of a single magnon
at a fixed time. Spin-spiral calculations can therefore be
used to simulate the effect of temperature on a magnetic
system in the adiabatic approximation, in particular at very
low temperatures, when magnons with long wavelengths
dominate. But also at T = 0 many compounds and even
elements show SSDW ground states. Some examples are
shown in Figure 10.

At low, but finite temperatures, collective spin-wave
excitations or magnons are excited in the ferromagnetic
crystal. These magnons can again be characterized by their
wave vector q. In the long wavelength limit, that is, around
q = 0, the spin-wave dispersion behaves almost quadratically
and can be described as E(q) = Dq2. The spin stiffness,
D, characterizes the magnetic properties of a ferromagnet at
low temperatures and can be calculated from the exchange
coupling constants in real space (Pajda et al., 2001). Since

E(q) = E(0) + 2S
∑
ν �=0

J0ν

(
1 − eiqRν

)
(67)

by differentiation D is obtained as

D = M

6µB

∑
ν

J0νR
2
ν (68)
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Here, M = 2 µBS is the magnetic moment of the ferro-
magnetic state. Some results of ab initio calculations are
given in Table 3. For Fe and Co, agreement with experi-
mental data is reasonable, but for Ni most methods fail to
reproduce the experimental spin stiffness. More about spin
waves can be found in Spin Waves: History and a Sum-
mary of Recent Developments, Volume 1 and in the review
of Staunton (1994).

Owing to the long-range nature of the exchange
interactions in itinerant magnets, the so-called Ruder-
mann–Kittel–Kasuya–Yoshida (RKKY) interaction, the
evaluation of equation (68) is problematic (Pajda et al.,
2001). Therefore, it is more natural to evaluate E(q) directly
in reciprocal space. This can be efficiently done, using the
generalized Bloch theorem introduced in the next subsection.

4.5 Spin spirals and the generalized Bloch
theorem

A very elegant treatment of spin spirals by first-principles
calculations is possible when the generalized Bloch theorem
(Herring, 1966; Sandratskii, 1986) is applied. However,
this theorem can only be proved when spin-orbit coupling
is neglected. For this reason, the spin-rotation axis will
always be considered parallel to the z axis of the spin
coordinate frame. Thus, only the mx and my components are
rotated, while mz does not change. Following Sandratskii
(1986) we can define a generalized translation, Tν , that
combines a lattice translation, Rν , and a spin rotation U
that commutes with the Hamiltonian H . Applying such a
generalized translation to H� yields

TνH(r)�(r) = U(−qRν)H(r + Rν)U†(−qRν)U(−qRν)

× �(r + Rν) = H(r)U(−qRν)�(r + Rν) (69)

where U(qRν) is the spin 1/2 rotation matrix

U(qRν) =
(

e−iϕ/2 0
0 eiϕ/2

)
, ϕ = q · Rν (70)

In analogy with the proof of Bloch’s theorem (Ashcroft
and Mermin, 1976), it follows that the eigenstates can be
chosen such that

Tν�(k, r) = U(−qRν)�(k, r + Rν) = eik·Rν�(k, r) (71)

Since these eigenstates are labeled with the same Bloch
vector k as the eigenstates of the translation operator with-
out the spin rotation, the lattice periodic part of these states
follows the chemical lattice, Rν , that is, we can calculate the

spin-spiral state in the chemical unit cell. In a reciprocal-
space method, that is, when all quantities like potential or
wave functions are expressed as Fourier transforms, the com-
putational effort scales with the volume of the unit cell.
Without the application of the generalized Bloch theorem
the investigation of spin-spiral states requires very large unit
cells, and a description of SSDWs that are incommensurate
with the lattice would be not possible. Within this formalism,
incommensurate magnetic structures can also be described
in the framework on DFT. Two recent examples, LaMn2Ge2

and bcc Eu (Turek et al., 2003), are shown in Figure 10.
Since the spin spiral is the exact solution of the classical

Heisenberg model at T = 0, it is believed that it covers
a large and important part of the phase space of possible
spin states. Thus, among all possible magnetic states, spin
spirals are the next relevant class of spin states besides the
high-symmetry magnetic states, that is, the ferromagnetic,
antiferromagnetic, or ferrimagnetic configurations.

A further computational simplification can be reached
when the SSDW is considered just as a small perturbation
to the parent (most often ferromagnetic) structure. This may
be justified in the limit of small q-vectors or small opening
angles ϑ (cf. equation (66)). The limit of ϑ → 0 is particu-
larly important in the study of finite temperature effects, since
it describes elementary perturbations of the collinear ground
state. In this limit, the magnetic force theorem (Weinert, Wat-
son and Davenport, 1985) can be applied again, thus reducing
the computational efforts significantly (Ležaić, 2005).

In real-space methods the calculation of J (q) is most con-
veniently done via the right of equation (63), that is, the
evaluation of J0ν . In this case the direction of the magneti-
zation at a reference atom, 0, is perturbed and the response
on the other atoms, ν, calculated. Also in this case, a
kind of magnetic force theorem can be used (Turek et al.,
2003).

4.6 High temperatures: TC and TN

Let us now see how higher temperatures influence the mag-
netic order in a ferromagnetic solid. Staying within the
Heisenberg model, we will assume that the magnitude of
the magnetic moments at the atoms will – in first approxi-
mation – not be changed, and discuss just their mutual ori-
entation. At T = 0, the spin at a selected atom will be fixed
in parallel direction to the spins at all other atoms by an
effective field that will be proportional to S

∑
ν �=0 J0ν = SJ0.

At a finite temperature T , this field, that acts on the spin
at site 0, is reduced owing to the thermal fluctuation on
the sites ν. The thermal average of the projection of the
spin at site ν on the spin at site 0 is denoted as 〈S(Rν)〉.
In the ‘mean-field approximation’ (MFA), it is assumed
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Table 3. Calculated and experimental spin-wave stiffness (D) for Fe, Co, and Ni. The theoretical data was obtained in
different approximations as described by Rosengaard and Johansson (1997) (theoretical (1)), Kübler (2000) (theoretical (2)),
Shallcross, Kissavos, Meded and Ruban (2005) (theoretical (3)), and Pajda et al. (2001) (theoretical (4)); the experimental
data was taken as cited in these references.

D (meV Å2)

Theoretical (1) Theoretical (2) Theoretical (3) Theoretical (4) Experimental

Fe (bcc) 247 355 322, 313 250 280, 314, 330
Co (fcc) 502 510 480, 520 663 510, 580
Ni (fcc) 739 790 541, 1796 756 422, 550, 555

that the effective field at finite temperatures that acts on
spin 0 is

Beff =
∑

ν

J0ν〈S(Rν)〉 (72)

In this model it is possible to calculate the temperature
dependence of the average magnetization of the solid and,
specifically, the temperature where the average magnetization
vanishes, the critical temperature. For a ferromagnet this
temperature is called Curie temperature and in the MFA it is
given by

TC = 2S(S + 1)

3kB
J0 (73)

It has to be mentioned that in most cases the MFA
severely overestimates TC (in bulk crystals by about 20 to
50%, depending on the lattice; in lower dimensions MFA
is even qualitatively wrong). Nevertheless, it gives a simple
estimate of the ordering temperature in bulk systems, where
the approximations of the Heisenberg model are reasonable.
On the other hand, some properties, like the – material
independent – critical exponents, are in any case not usefully
reproduced by the MFA.

On a more sophisticated level, the ‘random phase approx-
imation’ (RPA) can give quite reliable results. In contrast
to the MFA, where the thermal averaging was done over
the sites ν that determine Beff, here the Hamiltonian is first
transformed into reciprocal space (equation (64)), and then
the averaging is done over one of the Fourier components:

H = −N
∑

q

J (q)S(q) · 〈S(−q)〉 (74)

If the term S(S + 1) (in a classical model S2) is included in
the exchange coupling constants (as it is usually done, when
the J ’s are determined from first-principles calculations),
then the Curie temperature in the MFA and RPA can be

expressed as

kBT MFA
C = 2

3
J0 = 2

3

∑
ν

J0ν = M

6µB

1

N

∑
q

E(q) (75)

kBT RPA
C = 2

3
N

(∑
q

1

J (0) − J (q)

)−1

= M

6µB
N

(∑
q

1

E(q)

)−1

(76)

where N is the number of q-vectors included in the sum. If
the exchange coupling constants are calculated in reciprocal
space (J (q)) by using the generalized Bloch theorem, the
calculation of TC requires a dense q-point sampling in both
approximations. From equations (75) and (76) it can be seen
that MFA gives more weight to the interaction with near
neighbors, while in RPA the exchange interaction with distant
neighbors is emphasized. Therefore, the Curie temperature
in RPA is smaller than in MFA and usually also in better
agreement with experimental values.

Also for antiferromagnets (or generally spin-spiral states
characterized by a vector Q) expressions for the ordering
temperature, the Néel temperature TN, can be derived. In
the MFA with S(S + 1) again included in J , this is given
simply by

kBT MFA
N = 2

3
J (Q) (77)

while a slightly more involved expression can be derived
in the random phase approximation (Turek et al., 2003).
Comparison of these results with experimental values gave
reasonable results, for example, for bcc europium, Néel
temperatures of 147 K and 110 K were obtained in MFA and
RPA, respectively (Turek et al., 2003). These values have to
be compared with the experimental TN of 90.5 ± 0.5 K.

Although there exist several additional methods to cal-
culate critical temperatures from DFT results, we outline
just one further possibility here, which seems to be rather
flexible and appropriate for many systems with different
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Table 4. Calculated and experimental Curie temperature TC for some ferromagnetic
materials. MFA and RPA data for Fe, Co, and Ni taken from Pajda et al. (2001),
MFA2 results and experimental values as quoted by Shallcross, Kissavos, Meded and
Ruban (2005), while the MC results were obtained by Rosengaard and Johansson
(1997). Spin dynamics (SD) calculations have been performed by Antropov (2005).
Data for Gd can be found in the papers of Kurz, Bihlmayer and Blügel (2002) and
Turek, Kudrnovský, Bihlmayer and Blügel (2003).

TC (K)

MFA MFA2 RPA MC SD Experimental

Fe (bcc) 1414 550, 1190 950 1060 1070 1044–1045
Co (fcc) 1645 1120, 1350 1311 1080 1388–1390
Ni (fcc) 397 320, 820 350 510 470 624–631
Gd (hcp) 334 293

magnetic ground states: the Monte Carlo technique (MC)
allows the study of finite-temperature magnetic properties by
implementation of a Heisenberg Hamiltonian (equation (61),
possible with extensions like biquadratic terms or a uniaxial
anisotropy (see following text)), into a Metropolis algorithm
(Metropolis et al., 1953). Unit cells of different size are then
studied so that finite-size effects can be eliminated. In these
unit cells, the evolution of the magnetic property in ques-
tion (in our case the average magnetization) as a function of
temperature can then be monitored.

Results of ab initio calculations of the Curie temperature
of Fe, Co, and Ni are presented in Table 4. From this table
one can easily see that, compared to RPA, the MFA typ-
ically overestimates TC by 25–50%. For Fe and Co, RPA
gives quite good estimates of the Curie temperature, while
for Ni, TC is underestimated in both approximations. MC
simulations work better for Ni and Fe, but give too low a TC

for Co. Finally, the results of spin dynamics calculations, per-
formed along the line sketched in subsection 4.1, give results
comparable to MC calculations for Fe and Ni, but have the
advantage that they do not rely on a model Hamiltonian
(Antropov, 2005). More information on finite-temperature
effects and their calculation can be found in Electron Theory
of Finite Temperature Magnetism, Volume 1.

While we quoted here results for ‘simple’ metals, it
is nowadays possible to investigate in the same manner
the temperature-dependent properties of complex multicom-
ponent systems, for example, half-metallic Heusler alloys
(Şaşıoğlu, Sandratskii and Bruno, 2005) or dilute magnetic
semiconductors (Sato, Dederichs and Katayama-Yoshida,
2005). In this way, materials for modern spintronic applica-
tions can be studied at physically relevant temperatures and
their detailed magnetic properties can be predicted on the
basis of quantum mechanics. The combination of advanced
numerical techniques and massively parallel supercomputers
makes computational material science based on DFT one of
the most rapidly growing fields of physics with relevance

for basic and applied science. It covers many aspects of
magnetism and some of them have been outlined in this
chapter. A more complete and more detailed presentation
will be given in the following chapters.
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Kübler, J. (2000). Theory of Itinerant Electron Magnetism, Volume
106 of International Series of Monographs in Physics, Clarendon
Press: Oxford.

Kurz, P., Bihlmayer, G. and Blügel, S. (2002). Magnetism and
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1 INTRODUCTION

A breakthrough in the understanding of the itinerant fer-
romagnetism of the 3d transition metals occurred when
density-functional (DF) calculations, performed in the local
density approximation (LDA) (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965) or rather its spin generalized vari-
ant, local spin-density approximation (LSDA) (Gunnarsson
and Lundqvist, 1976), obtained seemingly perfect values for
the magnetic moments of the metals. Good results were also
obtained for other ground-state properties: binding energies,

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

equilibrium volumes, bulk moduli, and Fermi surfaces, to
name a few (Poulson, Kollar and Anderson, 1976; Janak and
Williams, 1976; Callaway, 1981).

A crucial aspect in this context is the behavior of the
3d electrons. The 3d atomic orbitals are largely localized
in space around the nuclei, and form rather narrow tight-
binding bands with a width of roughly 5 eV. This localization
is considerably stronger for the 3d than for the heavier 4d or
5d transition metals. In the following work, the consequences
of this localization are investigated for the 3d transition
metals.

While there have been many speculations about a full
localization of the 3d electrons and about a representation of
their degrees of freedom by spin Hamiltonians, the delocal-
ization is a feature that is strongly supported by experiment.
Already before the success of LSDA, the experimental bind-
ing energies were unambiguously connected to delocalized
3d electrons (Friedel, 1969). In LSDA, the explicit part of
the kinetic energy is obtained from a maximally delocalized
single-determinant reference state while correlation correc-
tions are contained in a functional. Consequently the former
part represents the limit of maximal delocalization of the 3d
electrons. On the other hand, there is evidence that the LSDA
results overemphasize binding by up to 20% (Moruzzi, Janak
and Williams, 1978), possibly owing to a mishandling of cor-
relation corrections. This deviation in turn sets an upper limit
to possible correlation corrections. In particular, strong corre-
lations or electronic degrees of freedom that can be described
in terms of atomic moments are ruled out.

With the 3d electrons basically delocalized in tight-
binding bands, magnetism must result from the electronic
interactions. As already mentioned, these cannot be so strong
that localized atomic moments arise. Even more, it needs to
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be understood why the LSDA is apparently able to handle
these interactions that are definitely connected to the spatially
strongly localized atomic orbital representation of the 3d
electrons. It is hard to imagine how a homogeneous electron-
gas exchange-correlation potential can adequately deal with
such inhomogeneous atomic features. In fact it cannot.

Bare local Coulomb-interaction matrix elements between
electrons in these atomic orbitals are of the order of 20 eV,
far larger than the kinetic energy gained from delocalization
into bands. Therefore, a second problem is to understand how
these bare interactions are reduced into the required smaller
interactions.

The optimal way to deal with these questions would be
a full ab initio correlation calculation. The only method
available for such a treatment is the local ansatz (LA)
(Stollhoff and Fulde, 1980; Stollhoff, 1996). It starts from
Hartree–Fock (HF) ab initio calculations for solids and adds
correlations in a variational way like quantum chemistry
(QC) methods do. However, it differs from these methods by
using specifically constructed subsets of correlation operators
with a well-defined local meaning instead of trying to cover
the whole correlation space in an orthogonal representation.
This results in a loss of typically one to a few percent
of the correlation energy in a given basis, but it leads to
a large gain in efficiency, and it enables the LA to treat
metals. First ab initio calculations for metals (Heilingbrunner
and Stollhoff, 1993) and for a metallic transition metal
compound (Stollhoff, 1998) have already been performed,
and calculations for nonmagnetic transition metals are under
way (Stollhoff, unpublished), but a complete coverage of the
magnetic problem has not yet been obtained. Therefore, the
problems mentioned above could so far only be addressed
using correlation calculations for models.

The minimal level of complexity for such models is well
defined: a tight-binding Hamiltonian for the 3d electrons,
that is, a five-band (per spin) Hamiltonian. The hope is
that the 4s and 4p orbitals of the transition metals do not
need to be explicitly included for the basic understanding
of magnetism, since they contribute little to the electronic
density of states in the relevant energy range around the
Fermi energy. This omission certainly causes defects, for
example, of the Fermi surface. For the interactions, a first
choice is the inclusion of only local (atomic) interactions of
the 3d electrons. It is known that these can be condensed into
three Slater parameters. We will, in the following, rearrange
those terms and call the resulting interactions Hubbard (U )
interaction, Hund’s rule exchange terms (J ), and anisotropy
terms (�J ) (Kleinmann and Mednick, 1981). The underlying
assumption is that longer-range contributions of the Coulomb
interaction are almost perfectly screened for these metals.

Such models have for long been the basis of attempts
to understand the itinerant ferromagnetism. However, these

attempts were mostly restricted to simplified single-band
models and/or to the approximate treatment of the interaction
in HF approximation, or when the treatment was extended to
finite temperatures within a functional integral formulation,
in an equivalent static approximation. For an early overview,
refer to Moriya (1981).

Here, the LA led to a sizable improvement. Since it can
be applied to models as well as to ab initio calculations,
we were able to perform satisfactory correlation calculations
for the model described above, and we have computed the
nonmagnetic (Stollhoff and Thalmeier, 1981) as well as
the magnetic (Oleś and Stollhoff, 1984) cases. The tool to
understand the magnetic phase transition for the case of
delocalized electrons is the Stoner–Wohlfarth theory (Stoner,
1938; Wohlfarth, 1949). Such an analysis had been earlier
performed in the case of LSDA computations (Gunnarsson,
1976). We also analyzed our results in the same way (Oleś
and Stollhoff, 1988; Stollhoff, Oleś and Heine, 1990), and
managed to work out why the LSDA calculations had been
so successful for the transition metals but had failed for a set
of transition-metal compounds (Stollhoff, Oleś and Heine,
1990, 1996). We abstained from any attempts to generalize
the treatment of the order parameter beyond a mean-field
(or Stoner–Wohlfarth) approximation. It should be noted
that for the simplified handling of the interaction in HF or
static approximation, a generalized spin fluctuation theory is
available (Moriya, 1985).

It turned out from our analysis that the fivefold degeneracy
of the model bands is very relevant. Single-band or two-band
models are not able to catch the essence of the 3d magnetism
at all. Many of the degeneracy features also are lost when
restricting to a HF or static approximation. As will be shown
in the subsequent text, a reduction of the degeneracy would
require also larger and larger interactions and would incor-
rectly push the treatment into a strong-correlation direction
which is inadequate for the 3d transition metals.

Five-band models have been rarely treated by other meth-
ods beyond HF approximation. A first attempt was made in
the context of an insufficient second-order perturbation com-
putation (Kajzar and Friedel, 1978; Treglia, Ducastelle and
Spanjaard, 1980). Quasiparticle calculations followed using
the Kanamori t-matrix approach (Kanamori, 1963) for almost
filled degenerate band systems such as Ni (Liebsch, 1979,
1981; Penn, 1979; Davis and Feldkamp, 1980). Recently,
calculations have been performed for nine-band models start-
ing from an R = 0 approximation that had also been used
by the LA but employing a full configuration interaction
(CI) calculation instead of the weak-correlation expansion
or of a two-particle excitation CI calculation both within the
LA (Bünemann, Weber and Gebhard, 1998; Bünemann et al.,
2003). Finally, the dynamical mean-field theory (DMFT) has
been used for such a model (Lichtenstein, Katsnelson and
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Kotliar, 2001). The latter is the appropriate generalization
of the functional integral schemes just mentioned, and goes
beyond the static approximation.

We will in the following introduce the five-band model
plus its interactions, and describe in detail the LA treatment
and the different approximations made. We will also establish
connections to the other computational schemes.

In a next step, results of the calculations for the nonmag-
netic case will be presented, and the different approximations
will be tested. A further step is to compute and analyze the
magnetic results for Fe, Co, and Ni. Based on them, con-
clusions on the comparability to experiment and on specific
deficiencies of the LSDA and its results will be made.

Finally, connections between the model and first ab initio
correlation results will be made, and the limits of the
Hubbard-model scenario will be revealed.

2 MODEL HAMILTONIAN AND
SINGLE-PARTICLE GROUND STATE

The aim of the qualitative treatment is to understand the delo-
calization and interaction of the 3d electrons which is the
expected key for the understanding of magnetism in the 3d-
elemental solids. There are five 3d electrons per spin and site
(atom). A compact description of their delocalization is in the
form of canonical d bands (Andersen and Jepsen, 1977). This
is essentially a tight-binding description and has the addi-
tional advantage of containing only a single open parameter,
namely, the 3d bandwidth W . The single-particle part of the
model Hamiltonian (H0) is given in terms of these orbitals in
eigenvalue representation. In the computations, these bands
are constructed for the two relevant lattices, bcc and fcc.

For these electrons we further assume that they only
interact when they are on the same atom l. These interactions
can be given in terms of three Slater interactions; here we
choose a slightly different but equivalent notation. The full
Hamiltonian H reads as

H = H0 + H1 (1)

H0 =
∑
νσk

eν(k)nνσ (k) (2)

H1 =
∑

l

H1(l) (3)

H1(l) = 1

2

∑
ijσσ

Uij a
†
iσ (l)a

†
jσ ′(l)ajσ ′(l)aiσ (l)

+ 1

2

∑
ijσσ

Jij

[
a

†
iσ (l)a

†
jσ ′(l)aiσ ′(l)ajσ (l)

+ a
†
iσ (l)a

†
iσ ′(l)ajσ ′(l)ajσ (l)

]
(4)

The eν(k) represent the five (ν = 1.5) canonical bands,
and the nνσ (k) the corresponding number operators of the
Bloch eigenstates, whose creation and annihilation operators
are c†

νσ (k), cνσ (k). The Uij and Jij are the local (atomic)
interaction matrices and are related by

Uij = U + 2J − 2Jij (5)

where U and J are the average Coulomb and exchange
interaction constants. The matrix Jij contains the third
interaction parameter �J that is a measure of the difference
between the eg and t2g interactions. For details of this matrix,
we refer to Kleinmann and Mednick (1981) and Oleś and
Stollhoff (1984). For �J = 0, it holds that Jij = J . The
interactions are expressed in terms of the five local 3d orbitals
i on atomic positions l whose creation and annihilation
operators are given as a

†
iσ (l), aiσ (l).

The size of these parameters will be fixed later. Typically,
it holds that the bandwidth W that scales the single-particle
part H0 is roughly 5 eV. The interactions are reduced to a
single free parameter by setting J � 0.2U and �J � 0.2J .
For U it holds that typically U � 0.5W.

Starting point of the following correlation treatment is the
solution to the single-particle Hamiltonian H0, called �0.
This is written as

|�0(nd, 0)〉 =
∏
kνσ

ekν≤eF(nd )

c†
νσ (k)|0〉 (6)

This solution differs slightly from the self-consistent field
(SCF) solution of the full model Hamiltonian H . The latter
generates additional self-consistently obtained crystal-field
terms that may lead to charge redistributions between the eg

and t2g orbitals. However, since the interactions are not too
large, and the original site occupations are almost degenerate,
these redistributions can be almost neglected. An exception
that will be discussed later is the case of ferromagnetic Ni
where the second requirement does not hold. Such a solution
is found for all fillings nd per atom of the five-band system,
with nd ranging from 0 to 10. eF(nd) is the occupation-
dependent Fermi energy.

In addition to this nonmagnetic solution, magnetic solu-
tions with a moment m are constructed by generating states

|�0(nd, m)〉 =
∏

kν
ekν≤eF(nd+m)

∏
k′ν

ek′ν≤eF(nd−m)

c
†
ν↑(k)c

†
ν↓(k′)|0〉 (7)

Here, the majority band with spin up is occupied with
(nd + m)/2 electrons, and the minority band with spin down
with (nd − m)/2. This ansatz is a rigid band approach.
Again, a self-consistent solution might lead to small charge
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redistributions in the minority and majority bands if these
are not empty or filled, respectively.

The Fermi energy for the individual cases like Fe, Co,
Ni is chosen so that the maximal magnetic moment agrees
with the same one of the LSDA calculations. This implies an
occupation of 7.4, 8.4, 9.4 for Fe, Co, and Ni, respectively.
It is known from more careful charge analyzes that the true
atomic 3d occupations are somewhat smaller. For Fe for
example they amount to 6.5. Consequently, the d orbitals
of this model Hamiltonian are not maximally localized
3d tight-binding orbitals but their tails have small 4s,
4p contributions.

3 CORRELATED GROUND STATE

3.1 Deficiencies of the single-particle ground state

The single-particle ground state �0 is an eigenstate for
the single-particle part of the Hamiltonian but results in a
poor coverage of the interaction part. Being represented by
eigenfunctions in momentum space, this state has maximal
local charge fluctuations that are uncorrelated for the different
bands. A measure of these charge fluctuations is the atomic
quantity �n2 for a given wave function. It is given as

�n2 = 〈�|n2(l)|�〉 − 〈�|n(l)|�〉2 (8)

n(l) =
∑
iσ

niσ (l) (9)

where niσ (l) is the density operator for an electron with spin
σ in orbital i on site l.

For the single-particle ground state, it holds that

�n2(�0(nd, 0)) =
∑
iσ

niσ (1 − niσ ) (10)

niσ = 〈�0|niσ (l)|�0〉 (11)

These fluctuations increase linearly with the number of
bands. For the half-filled five-band case with degenerate
occupation we find that �n2 = 2.5. Correspondingly, the
interaction energy costs per atom of this state in compari-
son to the disordered atomic limit amount to 1.25

(
U − 2

9J
)
.

This needs to be compared to a kinetic energy gain, which
for a roughly constant density of states equals −1.25W. This
indicates that half the delocalization energy is lost in this
approximation for a ratio U � 0.5W. However, the electrons
on the individual atoms order by Hund’s rule and can gain
an energy of − 70

9 J at half-filling. Consequently even for this
relatively modest screened interaction, the solid is no longer
bound in single-particle approximation, and a better treat-
ment is required, that is, the correlated ground state needs to

be computed. Without including correlations explicitly, any
broken symmetry, even disordered local moments would be
favorable.

3.2 The local ansatz

For a three-dimensional model with five degenerate bands,
the correlation treatment cannot be done exactly but only
approximately. Since the parameter choice let us expect that
the electrons are not too strongly correlated, the natural
approach is to start from the single-particle ground state and
add correlations as corrections.

This is how the LA is set up. Here, the following
variational ansatz is made for the correlated ground state:

|�corr〉 = e−S |�0〉 (12)

S =
∑

ν

ηνOν (13)

Oν =



ni↑(l)ni↓(l)

ni(l)nj (l
′)

�si(l) · �sj (l
′)

(14)

The niσ (l) and �si(l) are density and spin operators for
an electron in the local orbital i on site l. The operators
have a transparent meaning. For example, the first operator
ni↑(l)ni↓(l), when applied to |�0〉, picks out all configu-
rations with two electrons in orbital i. When applied with
a variational parameter ην , as in equation (12), it partially
suppresses those configurations. For a single-band Hubbard
model such an ansatz was first made by Gutzwiller (1965).
Similarly, the operators ni(l)nj (l

′) introduce density corre-
lations between electrons in local orbitals i, j either on the
same site or on different sites l, l′. The wave function gen-
erated by these two sets of operators, when applied to the
homogeneous electron gas problem, is the Jastrow function
(Jastrow, 1955). The operators �si · �sj generate spin correla-
tions. On the same site, they introduce Hund’s rule corre-
lations, while when applied for different sites they result in
magnetic correlations.

For the same sites, all these operators are directly con-
nected to H1. They allow to correct exactly those features
that are addressed by the interaction terms.

In the following, we will no longer use the full operators
but only their two-particle excitation contributions. The
standard approximation to derive the energy and to obtain
the variational parameters is an expansion in powers of η,
up to second order,

EG = ESCF + Ecorr (15)

Ecorr = −2
∑

ν

ην〈O†
νH 〉 +

∑
µν

ηνηµ〈O†
νHOµ〉c (16)
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When optimizing this energy, the following equations arise
that determine the energy and the variational parameters.

Ecorr = −
∑

ν

ην〈O†
νH 〉 (17)

0 = −〈O†
νH 〉 +

∑
µ

ηµ〈O†
νHOµ〉c (18)

Here, 〈A〉 is the expectation value of the operator A within
|�0〉, and 〈〉c indicates that only connected contributions
are included. It holds that ESCF = 〈H 〉 These equations can
also be identified as a linearized coupled-cluster expansion
with singles and doubles (LCCSD), restricted to particular
two-particle (double) and one-particle (single) excitations.
The concept of coupled-cluster (CC) equations was intro-
duced into many-body physics and into QC a long time
ago (Coester, 1958; Coester and Kümmel, 1960; Cizek,
1966, 1969). In the presented calculations on models, single-
particle excitations were, in contrast to the ab initio calcula-
tions, not included in the correlation treatment itself, but were
covered by direct modifications in the trial single-particle
wave functions.

The full treatment of these equations poses no problems, in
particular, when the operators are restricted to on-site terms.
Then, without consideration of intrinsic symmetries, one has
5 Gutzwiller-like operators and 10 density and spin operators
each. The most expensive step is the solution of a set of linear
equations with dimension 25.

3.3 The R = 0 approximation and alternatives to
the local ansatz

The correlation calculations can be performed in a further
approximation in which one may go beyond the LCCSD
equations. This approximation applies only when restricting
to on-site operators. In this case, one can approximately set
all those terms in the matrices 〈OH〉 and 〈OHO〉 equal to zero
where the operators in the O or in H1 are not on the same
site. In this approximation, the full correlation treatment sep-
arates into independent contributions covering a single site
each in a noncorrelated and noninteracting environment. This
approximation is called single-site or R = 0 approximation.
It was introduced for the first time in a second-order per-
turbation treatment of a five-band Hamiltonian that is very
similar to the one used here. There, however, no restriction
to a particular choice of correlation operators was made but
the full two-particle operator space was covered (Treglia,
Ducastelle and Spanjaard, 1980). In the single-site approx-
imation of the LA, all required terms are simply obtained
from two sets of single-particle elements, the individual occu-
pations niσ and the average energies on these sites, eiσ ,

are given as

eiσ =
∫ eF

−∞
eniσ (e) de (19)

where niσ (e) is the local partial density of states for
orbital i with spin σ . More details can be found in Stoll-
hoff and Thalmeier (1981) and Oleś and Stollhoff (1984).
All terms that are left out in the single-site approxima-
tion contain nondiagonal density matrix elements of the
form Pij (l, l′) = 〈a†

i (l)aj (l
′)〉 with R = l − l′ 
= 0, explain-

ing the name. With rising number of nearest neigh-
bors, these contributions shrink in weight and disappear
for the limit of infinitely many neighbors (or equiva-
lently dimensions d). The approximation was therefore
more recently called d = ∞ approximation (Vollhardt et al.,
1999).

In a way, this approximation represents the correlation
generalization of an approximate coherent potential approxi-
mation (CPA) where a single-site mean-field calculation with
broken symmetry is performed which leads to disordered
local moments. With on-site correlations properly included,
a broken symmetry result no longer arises, at least not prior
to a Mott–Hubbard transition. Or, in other words, disordered
local moments are a poor man’s approach to correlations.

This single-site approximation allows a more general
treatment than the LCCSD approximation. One possibility
is to perform a CI calculation for this single site. The exact
energy of the variational state with two-particle excitations
included is obtained. It represents a lower limit to the exact
result, while the LCCSD approximation usually overshoots
the latter. The correlated wave function for the single site l

is defined as

|�corr(l)〉 =
(

1 −
∑
ν∈l

Oν

)
|�0〉 (20)

Its exact energy is

EG(l) = ESCF + Ecorr(l) (21)

Ecorr(l) =
−2

′∑
ν

ην〈O†
νH ′〉 +

′∑
µν

ηνηµ〈O†
νH

′Oµ〉c

1 +
′∑

µν

ηνηµ〈O†
νOµ〉c

(22)

Here the
∑′ indicates a restriction of the summation to

operators on site l, and H ′ = H0 + H1(l). When optimizing
this energy, the resulting equations that determine the energy
and the variational parameters can be written in close
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similarity to the LCCSD equations (17) and (18).

Ecorr(l) = −
′∑
ν

ην〈O†
νH

′〉 (23)

0 = −〈O†
νH

′〉 +
′∑
µ

ηµ〈O†
νH

′Oµ〉c

+
′∑
µ

ηµ〈O†
νOµ〉c

′∑
µ′

ηµ′ 〈H ′Oµ′ 〉c (24)

The newly added terms in equation (24) are responsible for
the difference. One may generalize in this approximation
and perform a full CI calculation not restricted to two-
particle operators. The system of equations (20), (22)–(24)
stays the same but the operators Oν are not restricted
to two-particle excitations. The available operator space
explodes exponentially with degeneracy, and the numerical
demands rise sharply, but recently even nine-band models
could be addressed this way (i.e., the 3d plus the 4s and
4p orbitals were included) (Bünemann, Weber and Gebhard,
1998; Bünemann et al., 2003).

An even more extended approach is to perform an exact
calculation for the single-site problem, based on dynamically
fluctuating disordered local moments, called DMFT (for
an introduction of its origins, see Vollhardt et al., 1999).
This computation is based on a Green’s function formalism,
and is by far the most expensive method. Formally, the
operator space is extended beyond strictly local operators.
Not all electrons are covered equally but their treatment is
influenced by their individual energies. Applications for a
nine-band model were done for Fe and Ni (Lichtenstein,
Katsnelson and Kotliar, 2001) by this method. A further
advantage of this scheme is that quasiparticle results can
be obtained and a transition to thermodynamic quantities is
possible since the computations are performed on a Green’s
function level.

Let’s return to the most simple scheme, the LA. In con-
trast to the other methods, it cannot be applied to the
Mott–Hubbard transition. However, it is the only scheme that
can be extended beyond R = 0 and can treat finite dimension
corrections. Furthermore, it can deal with long-range inter-
actions, and even manage ab initio calculations with the full
interaction.

There is actually a rather simple extension of the LA
that makes it more tolerant of stronger correlations. This is
the application of the full coupled-cluster expansion with
singles and doubles (CCSD) equations. They arise from a
full equation of motion of the original ansatz for the wave
function, and not from a weak coupling approximation. The

resulting equations read as follows:

Ecorr = −
∑

ν

ην〈O†
νH 〉 (25)

0 = −〈O†
νH 〉 +

∑
µ

ηµ〈O†
νHOµ〉c

−1

2

∑
µµ′

ηµηµ′ 〈O†
νHOµOµ′ 〉c (26)

This generalization would improve the results for larger
ratios of U/W . When applied to a single-band Hamiltonian
in R = 0 approximation, the result should, with single-
particle operators properly added, reproduce the Gutzwiller
approximation (Stollhoff and Heilingbrunner, 1991).

3.4 Error estimates of the different
approximations in the local ansatz

In the present treatment of the LA, three approximations are
made that need to be controlled.

The first is the weak-correlation approximation. It may be
tested by a comparison of the LCCSD and the CI result in
the R = 0 approximation.

The second is the R = 0 approximation itself. It can be
tested only in the weak-correlation approximation.

The last is the restriction in correlation operator space.
Again, this will be tested in the weak-correlation expansion.

The last restriction is best tested for the one-dimensional
single-band Hubbard model. Here, the exact energy is
known, and also its weak-correlation limit. The correspond-
ing Gutzwiller ansatz, which contains only single-site oper-
ators yields 92% of the exact correlation energy in this
limit for the half-filled case. A large fraction of the miss-
ing energy can be obtained by longer-range density and spin
correlations.

The situation is worse for almost empty bands. Here,
additional correlation operators of the form [H0, Oν] are
required for a satisfactory result. Such operators do not open
new correlation channels but allow us to take into account
the band energies of the electrons involved in the correlation
process. Such operators are included in the ab initio scheme
and have turned out to be important in a different context
(Stollhoff, 1996). We had found for the nonmagnetic five-
band calculations (Stollhoff and Thalmeier, 1981; Stollhoff,
1986) that these operators do not lead to noticeable changes.
Although being of nonlocal nature, such operators contribute
in R = 0 approximation, and bridge the difference between a
correlation calculation restricted to local correlation operators
and a DMFT calculation.
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For the five-band model, we had also included nearest-
neighbor operators in the nonmagnetic calculations (Stollhoff
and Thalmeier, 1981). The energy gain due to these terms
was only a few percent; thus we can trust the results of
calculations restricted to on-site correlations for the five-band
Hamiltonian.

The R = 0 approximation depends on the number of
neighbors. For a two-site problem with a single orbital each,
the R = 0 result is only half the correct result. For the one-
dimensional Hubbard model, the R = 0 result needs to be
enhanced by 33% to obtain the final LA result with on-
site operators for half-filling, but already nearest neighbor or
R = 1 corrections reduce the deficiency to 1%. For the five-
band problems treated here, the R = 1 corrections turned
out to be 2–3% for fcc or bcc, respectively (Stollhoff
and Thalmeier, 1981). Most of our calculations and all
calculations for the magnetic state were therefore restricted
to the R = 0 approximation. On the other hand, these results
indicate that an R = 0 or d∞ approximation should not be
applied to systems with less than six neighbors.

Let’s finally turn to the validity of the weak-correlation
approximation. It will definitely fail around half-filling for
ratios (U/W) > 1. In Figure 1, correlation energies in the
R = 0 approximation are given for a ratio of U = 0.5W. The
dashed curve gives the HF-energy costs �ESCF = ESCF −
〈H0〉. The topmost curve gives the result of a correlation
calculation performed in second-order perturbation (MP2)
expansion (the LCCSD equation can be reduced to MP2 by
replacing 〈OHO〉 by 〈OH0O〉). This result overshoots the HF
term and is definitely wrong. The second solid curve gives
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Figure 1. Several energies in units of W as a function of band
filling nd . The interaction energy costs in SCF approximation
are given by the dashed line. The top full line gives the MP2
correlation result, the second full line the LCCSD result, and
the dotted line just below it the CI result. The lowest full
line and the dotted line below give the amount of correlation
energy that is lost when the spin correlation operators are omitted
from the LCCSD or CI calculations, respectively. All correlation
calculations were performed for the bcc case and in the R = 0
approximation. (Reproduced from G. Stollhoff and P. Thalmeier:
‘Variational Treatment of Electronic Correlations in d-Band Metals’,
Z. Physik B 43, 13 (1981) with permission from Springer Science
and Business Media.)

the final result in LCCSD, and the dotted curve below it gives
the CI result. The maximal relative difference around half-
filling amounts to 25%. When considering that the CI result
is a true lower limit, the LCCSD result should not overshoot
the correct result by more than 5%. The lowest curves display
the energies that are lost when spin correlations are omitted.
Here, the relative differences between CI and LCCSD are
considerably larger but again the true result is expected to be
close to the LCCSD result.

These particular features are closely connected to the
degeneracy. As mentioned before, fluctuation costs arise in
five channels i in the HF approximation. The correlation
ansatz however makes 15 density correlation channels i, j

available. Thus, treating these channels independently as
is done in perturbation theory very soon overscreens the
fluctuations. The term H1 in 〈OHO〉 by which the LCCSD
equations differ from MP2 guarantees that the different
channels take note of each other and act coherently. This
distribution of correlation corrections among many different
states also makes it plausible why the CI and LCCSD results
are so close to each other although five degenerate orbitals
need to be treated.

For the spin correlations, the situation is different. Here
each pair i, j can gain an interaction energy J independent
of each other. This is reproduced in the LCCSD equations,
while it is a particular feature of the CI calculations restricted
to two-particle excitations that at each moment one has
either the one or the other electron pair corrected. Thus, the
different contributions, also the spin and density contribu-
tions actually impede each other, and a considerably smaller
energy is obtained. This explains why the largest part of the
difference between the two schemes in the full calculation
arises from the addition of the spin correlations. On a CI
level, this deficiency might only be corrected by including
in the variational ansatz for the CI wave function not only
2-particle excitations but also their products, and finally up
to 10-particle excitations.

The failure of MP2 found here is related to the failure
of this approximation when the screening of the long-
range Coulomb interactions in metals is concerned. There
fluctuations are also diagonal, that is, connected to the local
sites l. The correlation space, however, offers l, l′ density
correlations that are independent in MP2 and cause the well-
known divergence of the correlation energy. The LCCSD
scheme used here does not result in a divergence but it
is not perfect either for the homogeneous electron gas. It
generates only half of the screening of the long-range charge
fluctuations (Stollhoff and Heilingbrunner, 1991).

The weak-correlation expansion used here, looks very sim-
ple, but this is not at all the case when evaluated in a
diagrammatic representation. In the linear equations (17) and
(18) the interaction is included in both sets of terms. In a
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diagram representation, this means that infinite orders of dia-
grams are summed up. The LCCSD approximation includes
the Tamm–Dancoff approximation plus all related exchange
diagram corrections, and also contains the Kanamori limit. It
does not yet contain the random phase approximation (RPA)
limit (plus all exchange corrections). The RPA limit is cov-
ered by the full CCSD equations in (25) and (26).

These findings also explain why reliable Green’s function
results for the transition metals are rare. The only area well
accessible was the almost empty or filled band case, the
Kanamori limit (Liebsch, 1979, 1981; Penn, 1979; Davis
and Feldkamp, 1980). For the case of Fe, one was restricted
to MP2 calculations that are more or less empirically
renormalized (Unger, Igarashi and Fulde, 1994; Katsnelson
and Lichtenstein, 1999). Only the DMFT has made a
significant progress by the use of large scale Monte Carlo
computations (Lichtenstein, Katsnelson and Kotliar, 2001).

4 RESULTS FOR THE NONMAGNETIC
GROUND STATE

4.1 Ground-state energies

In the last section, some specific total energy contributions
have been analyzed. Here, we discuss them in more detail.
The results discussed represent the bcc case, and the ratio
(U/W) = (1/2) is used. Also �J is disregarded in the
qualitative discussion for simplicity.

All total energies are related to an average interaction
energy of electrons with the same occupation with localized
electrons and without Hund’s rule ordering:

E0(nd) =
(

U − 2

9
J

)
nd(nd − 1) (27)

The Hund’s rule energy gain for the ordered atoms is then

Eatom(nd) = − 7

18
J ñd(ñd − 1) where (28)

ñd =
{

nd for nd ≤ 5
(10 − nd) for nd ≥ 5

(29)

The occupation dependence of this energy is shown in
Figure 2 (upper full line). It is strongly peaked at nd = 5. It is
compared to the ground-state energy for H0 that is contained
in the figure as the lowest solid line. This figure indicates the
binding due to the 3d electron delocalization. Disregarding
slight shifts, the difference between these two extremal
curves is a good representation of the LDA binding energy
contributions of the 3d electrons. This can be seen when
comparing Figure 2 with the LDA binding energy Figure 1.1

0 2

E
/W

−1

−0.5

0

4 6
nd

8 10

Figure 2. Energies for various approximations of the ground state
in powers of W as a function of band filling nd for the bcc case.
The upper solid line represents the atomic energy, the lowest solid
line the kinetic energy. The upper broken line represents the HF
energy, the lower broken line, the result with density correlations
included, and the dotted line, the final LA result.

in Moruzzi, Janak and Williams (1978). Two corrections
should be made. The first one is that the real atoms have
occupations differing from the solids (Fe atom, nd = 6 vs
nd = 7.4 in the model), and the second one is that the bands
are narrower for the heavier elements. By setting W = 5 eV,
a typical binding of 2.5 eV arises.

The upper broken curve in Figure 2 represents the HF
energy. As already mentioned, half of the band energy gain
is lost. Even worse, the uncorrelated ground state is no longer
binding in the occupation range from 4 to 7. The situation
is corrected when the full correlation treatment is performed
(dotted curve). The correlated ground state is always bound,
although marginally at half-filling. This is in rough agreement
with experiment, where the d-orbital contributions to the
binding in Mn are not larger than 1 eV. Actually, the
difference between the noninteracting and the fully correlated
result matches roughly the difference between the LSDA
and experimental binding energies for these cases (see again
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Figure 1.1 in Moruzzi, Janak and Williams, 1978), and might
well explain it as will be discussed later. The figure also
contains the energy when spin correlations are omitted (lower
broken curve). As can be seen, the contributions of the spin
correlations to the total energy are not large but important.

4.2 Correlation functions

From our calculations, local correlation functions for the
transition metals were obtained for the first time. The
effects of the correlations are large, and should be basically
experimentally accessible wasn’t it for the yet lacking spatial
resolution of X-rays, and for the too small energies of the
neutrons. But it is still valuable to discuss a few theoretical
results. The first correlation function is the atomic charge
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Figure 3. (a) Charge fluctuations as function of d-band filling
nd (bcc). Upper curve without correlations, lower curve with
correlations included. (b) Local spin correlations S2 as function of
d-band filling nd (bcc). Upper curve: Atomic limit, lower curve:
SCF result. Full line: LA result. (Reproduced from G. Stollhoff
and P. Thalmeier: ‘Variational Treatment of Electronic Correlations
in d-Band Metals’, Z. Physik B 43, 13 (1981) with permission from
Springer Science and Business Media.)

fluctuation �n2. The reduction of this quantity due to
correlations is shown in Figure 3. As can be seen, it is
sizable, although the electrons are not strongly correlated.
This is due to the many available correlation channels. When
turning to the spin correlation function S2, one has to be
aware that the autocorrelation of the electrons leads to a
finite value even in the uncorrelated state. This is given as
the lower broken line in Figure 3(b). Of importance is also
the fully localized limit whose values of S2 are given as the
dotted line in this figure. The correlation result is given as
the full line. As can be seen, spin correlations are strong,
but significantly smaller than in the localized limit. They are
almost halfway in between, the relative change being 0.45,
almost independent of band filling. This also indicates that
the proximity of the energy to the atomic limit at half-filling
(see Figure 2) does not yet cause a resonance-like correlation
enhancement.

This presence of relatively strong spin correlations poses
the question whether these can be treated in a good approx-
imation as quasilocal moments, whether they for example,
already require a different timescale, or whether these corre-
lations decay as fast as the electrons move, and only form a
polarization cloud around the moving electrons.

The answer cannot be directly obtained from ground-state
calculations. There is, however, an indirect way to address
this question, where one includes short-range magnetic cor-
relations into the LA calculation. There is no direct neigh-
bor interaction in the Hamiltonian. Thus a strong magnetic
neighbor correlation would indicate the formation of local
moments, at least in cases when the nonmagnetic ground state
is only metastable, and a ferromagnetic ground state exists.
The calculation can be easily done by adding neighbor spin
operators to the correlation treatment. This rules out an R=0
approximation. In the required computation, all matrix ele-
ments Pij (0, l) with l nearest neighbors are included, and all
nearest-neighbor correlations are added up (Stollhoff, 1986).

The discussion of the obtained quantities requires some
care because the nonmagnetic ground state is a singlet. This
implies that the positive magnetic correlation function on
the same site must be compensated by short-range anti-
ferromagnetic correlations in order to obtain S2

tot|�i〉 = 0,
no matter whether the single particle (i = 0) or correlated
(i = corr) ground state is concerned. Neighbor antiferromag-
netic correlations have therefore no relevance as such, but
only their eventual changes due to added degrees of free-
dom are of importance. Consequently, we compare for every
filling every change in correlation with the maximal possi-
ble change, namely, the local moment formation. We discuss
therefore the quantity

�S2
δ = C(δ) − C0(δ)

S2
loc − S2

0

(30)
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Here, it holds that

C(δ) = 〈�corr|S(l)S(l + δ)|�corr〉 (31)

C0(δ) = 〈�0|S(l)S(l + δ)|�0〉 (32)

Figure 4 displays these relative changes. In the upper part,
the relative change of the on-site spin correlation is given,
in the lower part the one of the neighbor functions. The
solid line displays the result without neighbor correlations
that had just been discussed. The upper curve indicates on an
average 45% of the maximal correlation, and the lower curve
indicates the required antiferromagnetic reordering due to the
on-site correlations in the neighbor function. This calculation
was performed for the bcc case. As can be seen, the ratio is
a slightly lesser than 1/4. Therefore additional longer-range
compensation effects are expected. The most interesting
result is the changes due to added neighbor correlations.
The resulting curves are given in Figure 4 as dotted lines.
These changes are very small. However, it is interesting that
they recover the expected trends correctly. They indicate
a tendency toward antiferromagnetism only around half-
filling (from occupations of 3.5 < nd < 6.5). Apparently, the
magnetic susceptibilities are slightly enhanced for the proper
magnetic ordering. However, the moments themselves do not
change at all, except around half-filling. Here, the stability
of the nonmagnetic state is smallest, as discussed above. It
should be noted that for this choice of parameters, the stable
ground state is ferromagnetic for band fillings of nd > 7.0.

To conclude, on-site correlations on neighbor atoms do not
support each other. Barely, noticeable neighbor correlations
form. These results strongly contradict a local moment
assumption. The energy gain due to the added operators
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Figure 4. Relative change of the spin correlation function as func-
tion of band filling. Upper curves: change of on-site correlations,
lower curves: change of neighbor correlations. Full lines with-
out neighbor correlations, broken curves with neighbor correlations
added. (Reproduced from G. Stollhoff: ‘Magnetic correlations in the
paramagnetic state of 3d-transition metals’, J. Magn. Magn. Mat.
1043 (1986), copyright  1986, with permission from Elsevier.)

is small – it amounts to less than 100 K per atom for
Fe. Consequently, the strong on-site correlations cannot
be interpreted as quasi static local moments. Magnetic
ordering restricted to nearest neighbors does not exist in
these compounds. If magnetic order exists – and it must
exist – then it is only for domains considerably larger than
a single atom and its neighbors. This demonstrates again
that the electrons in the transition metals are delocalized,
and that spin fluctuations can only exist for small moments
q, as experiments demonstrate (the stiffness constant of
Fe, for example, allows magnetic excitations with energies
smaller than Tc only for moments q smaller than one fifth
of the Brillouin zone). If there is really a need to address
the strong magnetic scattering above Tc for Ni, (Brown,
Deportes, Givord and Ziebeck, 1982), by methods extending
beyond a critical Stoner enhancement that was computed in
Steiner, Albers and Sham (1992), then this can only be done
by long-range spin or order parameter fluctuation theories
(Korenman, Murray and Prange, 1977; Capellmann, 1974,
1979).

4.3 Compton scattering

While experiments have not yet been able to provide
information about correlation functions, they have succeeded
for another quantity that displays correlation effects: the
density distribution in momentum space, n(k). The scattering
intensity I (q) measured in Compton scattering is given
by the integral over all densities n(k) with kq = q2. The
variation in I (q) with direction q provides a direct measure
of the anisotropy of the Fermi surface (Bauer and Schneider,
1985). These experimental results are in good qualitative
agreement with Fermi surfaces obtained in LSDA for Cu
(Bauer and Schneider, 1985), Va (Rollason, Cooper and
Holt, 1983; Wakoh and Matsumoto, 1990), Cr (Wakoh and
Matsumoto, 1990), and Ni (Anastassopoulos et al., 1991)
with exception of a constant scaling factor. For Fe (Rollason,
Holt and Cooper, 1983; Sundararajan, Kanhere and Singru,
1991), the agreement is less good.

This constant scaling factor provides a measure of the
correlation correction. In the single-particle approximation,
all states with energies smaller than the Fermi energy are
filled and the others are empty. This implies a maximal step
at n(kF). This result is changed by correlations. The changes
are qualitatively depicted in Figure 5(a). For simplicity let
us assume that correlations cause a constant shift α in
occupations for the occupied and unoccupied parts of the
partially filled bands. Then this correction α can be directly
extracted from the scaling factor by which experiments
(correlations included) and single-particle calculations (no
correlations included) differ.
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Figure 5. (a) Qualitative picture of changes in occupation around
the Fermi energy owing to correlations. Dots represent the real
behavior, and the dotted line the average change. (b) Values of the
quantity α in the left figure for different transition metals. The bars
represent the values deduced from experiment in comparison to
LSDA results. Crosses give a homogeneous electron gas estimate
ahom, and squares give the contributions αLA due to the atomic
correlations of the screened d electrons alone to this value. (From
Stollhoff, 1995a.)

Figure 5(b) contains the values for α for the mentioned
transition metals and for Cu as deduced from experiment. As
can be seen, this reduction amounts to 20–25% in all cases.

This reduction α can be compared to its counterpart αhom

obtained for a homogeneous system with the same average
density. For its derivation, we refer to Bauer and Schneider
(1985) and Stollhoff (1995a). When taking for Cu a single
valence electron only (i.e., considering the d electrons as
part of the core), the experimental value is regained. This
indicates that as far as this property is concerned, the 4s (and
4p) electrons correlate as a homogeneous system of the same
average density. For the transition metals, on the other hand,
the d electrons need to be incorporated into the estimate.
The resulting rs value is much smaller than in the case of
Cu which implies – within the theory of the homogeneous
electron gas – a smaller reduction of the occupation. The

latter amounts to less than half of the correlation effects
determined experimentally.

Within our scheme, the reduction αLA is obtained from the
change of the expectation value of H0, the so-called kinetic or
band energy, with correlations. For the uncorrelated ground
state, it holds that

E(band)0 = 〈�o|H0|�0〉 =
∑
νσ

∫
eν (k)≤eF(σ )

d3keν(k) (33)

while the band energy of the correlated ground state is

E(band) = 〈�corr|H0|�corr〉 = (1 − αLA)E(band)0 (34)

because the model Hamiltonian is constructed such that
Tr(H0) = 0. Thus, the quantity αLA also represents the
relative change of the band or kinetic energy of the model
by correlations. For the magnetic cases, the values for
the magnetic ground state are selected. The interaction
parameters are chosen so that they correspond to the actual
transition metals. The values found indicate again that the
electrons are weakly correlated. Only 10% of the kinetic
energy is lost due to atomic correlations.

The restriction to this model implies that only a part of the
correlation corrections α can be obtained, namely, the one
that arises from the atomic correlations due to the strongly
screened atomic d-electron interactions. The contributions of
the screening itself to the momentum density, for example,
are not included in this estimate. As can be seen from
Figure 5, the particular atomic correlation contributions αLA

alone as derived from the model computations are as
large as the total homogeneous electron gas values αhom.
Therefore, they must to a large extent be neglected in a
homogeneous electron gas approximation as was explained
before. They amount to almost half the experimental value
α and can therefore explain the largest part of the deficit of
a homogeneous electron gas treatment.

Correlations are included in a homogeneous electron gas
approximation when LSDA calculations are performed. Such
calculations must therefore lack a satisfactory description of
these atomic correlations for the case of the transition metals.

5 RESULTS FOR THE MAGNETIC
GROUND STATE

5.1 Parameterization of the Hubbard
Hamiltonian

Of main interest in the case of the magnetic transition
metals is the magnetic moment itself. So far, for Hubbard
models the interaction parameters were always chosen such
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Table 1. Parameters for our model
(energies in electron volts). (From
Oleś and Stollhoff, 1984.)

Fe Co Ni

n 7.4 8.4 9.4
m 2.1 1.6 0.6
W 5.4 4.8 4.3
U 2.4 3.1 3.3

that the experimental magnetic moment was obtained. It is
an indication for the accuracy of the different discussed
correlation treatments that these parameters are now closely
related. Global differences for the most typical value U + 2J

are not larger than 10% and are connected with band structure
differences between five-band and nine-band models. This
holds true as long as the interaction is restricted. When
interactions on and between the 4s, 4p orbitals are also
included, the 3d interaction also needs to be enhanced and
the screening of the latter interaction by the 4s, 4p electrons
is explicitly covered.

The values for W and U for our model are given in
Table 1 together with the moment used. In all cases, the
ratio J = 0.2 ∗ U was kept. Only for the case of Fe was
U unambiguously determined from the magnetic moment.
In the other cases, we had only lower limits which were
2.6 and 3.1 eV for Co and Ni, respectively. We will, in the
subsequent text, make comparison between the values of U ,
obtained here, and the ones obtained from other sources.

5.2 Dependence of magnetism on degeneracy

The degeneracy of the energy bands of the transition metals
is of vital importance for magnetism itself, and also imposes
strict boundary conditions on the possible treatments. To
explain this, the magnetic energy gain and its magnetic
moment dependence are analyzed as a function of the
represented method i for the actual moment m0.

�Ei(m0) = Ei(m0) − Ei(0) (35)

This energy gain as a function of magnetization is rewritten
in the following form:

�Ei(m0) = 1

4

∫ m2
0

0
D(m)dm2 − 1

4

∫ m2
0

0
Ii(m)dm2 (36)

Here, the first term describes the loss in (noninteracting) band
or kinetic energy. It holds that

D(0) = 1

n(EF)
(37)

is the inverse total density of states per spin at the Fermi
energy. Its generalization for finite m is simple and can
be found in Stollhoff, Oleś and Heine (1990). The second
part describes the interaction energy gain and is defined
by this function. It is a generalized Stoner parameter. The
optimal magnetic moment in approximation i is defined by
the condition

D(m0) = Ii(m0) (38)

For m0 = 0, this is the standard Stoner criterion, and the
Stoner parameter Ii is the limiting Ii(O). For a system with
orbital degeneracy N and a Hubbard interaction in the form
of equation (4), it holds in HF approximation

ISCF(m0) = 1

N
(U + J (N + 1)) (39)

If we assume a structureless density of states with a
bandwidth W , then D(0) = W/N , and for the single-band
model the Stoner criterion in SCF approximation reads
U + 2J = W . In a single-band Hamiltonian, the interaction
terms are usually condensed into a single U , but for the
degeneracy treatment we will stay in our notation. Ferro-
magnetism in a single-band system can therefore only be
expected for a strong interaction with U ≥ W where correla-
tions are important. Correlations however, strongly diminish
I from ISCF, and shift the onset of magnetism to an even
larger interaction. Thus, if spurious magnetism due to peaks
in the density of states is disregarded, itinerant magnetism
with large moments and weak correlations can arise only for
highly degenerate systems. This is why we could obtain mag-
netism for five-band systems with rather weak interactions of
U/W ≥ 0.5. The atomic exchange interaction J is the rel-
evant quantity in this respect, and it requires an adequate
treatment. Note that for the case with the smallest interac-
tion, Fe, magnetism is strongly supported by a peak in the
density of states, and that Fe does not become fully magnetic.

We had already mentioned that the treatment of degenerate
band systems puts strong additional demands on the many-
body methods used. This also is the case for magnetic prop-
erties. Figure 6 contains for the bcc Fe case the correlated
Stoner parameter I (0) as a function of interaction U , renor-
malized by the SCF Stoner parameter (roughly (U + 6J )) to
I . For U = 0, I (0) is therefore equal to 1, and it decreases
due to correlation corrections. As can be seen, there is first
a fast decrease, but then, at U/W = 0.1 a rigorous slowing
down of the screening occurs. From the logarithmic deriva-
tive, it can be seen that the exponent changes from 2 to 1/2.
This is the point where a second-order perturbation treatment
is no longer sufficient, and a better approach is necessary.

Owing to these experiences we decided to include in this
review neither contributions that used false degeneracies nor
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the logarithmic deviation is given. (Reproduced with permission
from fig. 5 in G. Stollhoff, A. M. Oles, and V. Heine: ‘Stoner
exchange interaction in transition metals’, Phys. Rev. B 41, 7028
(1990), copyright  1990 by the American Physical Society.)

contributions that are unable to treat degenerate systems
well. Therefore, we did not cover work that is based on
MP2 or lowest-order diagram techniques. Besides the LA
only the full CI method given in Bünemann, Weber and
Gebhard (1998) and Bünemann et al. (2003); Kanamori
t-matrix applications, and the first full application of the
DMFT to the transition metals (Lichtenstein, Katsnelson and
Kotliar, 2001) remained.

5.3 Magnetic energy gains, Stoner parameter,
and Tc

Besides the moment that was taken from experiment, the
most basic ground-state quantity connected with the broken
symmetry is the magnetization energy gain �E.

The values of the energy gain are given in Table 2 for
our calculations in the single-particle approximation, for the
full treatment of correlations, and for LSDA calculations

Table 2. Magnetic energy gain in HF approximation and
for the correlated ground state (Oleś and Stollhoff, 1984)
and from LSDA calculations (Gunnarsson, 1976). Stoner-
transition temperatures from LSDA calculations (Gunnars-
son, 1976), DMFT (Lichtenstein, Katsnelson and Kotliar,
2001), and experiment.

Fe Co Ni

�EHF (eV) 0.56 0.43 0.12
�Ecorr 0.15 0.13 0.03
�ELSDA 0.28 0.10 0.08

Tc(LSDA)(K) 4400 3300 2900
Tc(DMFT) 2000 700
Tc(exp) 1040 1400 631

(Gunnarsson, 1976). A comparison of �EHF and �Ecorr

shows how correlations reduce the magnetization energy
gains. Be aware that the interactions employed are already
strongly reduced screened interactions. When comparing
the model and LSDA magnetic energy gains, the LSDA
quantities come out twice as large for Fe and Ni. Without
caring for any specific dependences on details of the density
of states, this would imply a corresponding reduction in the
Stoner Tc. An exception is the case of Co but here we had
possibly chosen a model interaction that was too large for
reasons explained in the subsequent text.

The differences between the LA and the LSDA results
can be understood by a discussion of the Stoner parameter
I (m). In the SCF-approximation, it holds for the degenerate
band case

ISCF(m) = 1

5
(U + 6J ) (40)

(the terms �J are disregarded). ISCF is independent of mag-
netization. The function �ELSDA contains the same expres-
sion for the kinetic energy as the quantities defined in the
preceding text because in this approximation the uncorrelated
kinetic energy of the reference wave function is used, and
also ILSDA turns out to be independent of magnetic moment.
Even more important, ILSDA is also essentially independent
of the kind of transition-metal atom and its environment. It
holds (within 10% variation) ILSDA = 0.9 eV (Gunnarsson,
1976).

While in LSDA, the uncorrelated kinetic energy is used,
and the losses in band energy due to magnetism are large,
correlations reduce these losses for Fe by 30% (Stollhoff,
Oleś and Heine, 1990). These corrections are included in
I (m). In particular, if D(m) changes with m, then a partial,
compensating change must occur in this function. This holds
true for Fe, where it is well known that D(m) strongly
rises with m and cuts off the magnetic moment before the
maximum. It holds that D(m0) = 1.6 × D(0) (Stollhoff, Oleś
and Heine, 1990). Correspondingly, Icorr(m) must contain
a correcting change. Since Icorr(m0) = D(m0), it holds that
Icorr(m0) = 1.2Icorr(0) due to this effect alone.

There is a further interesting correction that can be seen
immediately for Co where the density of states is constant
and causes no m dependences in I (m). Figure 7 displays the
function Icorr(m), (called I (m) in the figure) in comparison to
D(m). As can be seen, it increases sizably with m. The origin
is due to spin correlations. When these are turned off in the
correlation calculation, the resulting quantity I2(m) no longer
displays m dependencies. Spin correlations are most relevant
in the nonmagnetic state and die out in the full magnetic limit.
Also contained in the figure is the quantity I3(m) which is
obtained when all interaction contributions originating from
J are treated in the HF approximation.
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This proper treatment of Hund’s rule effects which cor-
rects the Stoner parameter, strongly contrasts to fictitious
disordered local moments that result from a locally symme-
try broken HF treatment of the exchange interaction. If such
local moments existed in reality, then they would from the
beginning prefer to order and to enhance the kinetic energy
of the electrons.

The effect seen here is a quasi ‘antidisordered’ local
moment effect. It definitely squeezes Co into a first-order
magnetic phase transition. The nonmagnetic ground state for
Co is even metastable at T = 0. It requires a polarization
beyond a critical size to destabilize it toward the ground
state. Consequently, we would expect that the LSDA value
for the transition temperature is not only overestimated due to
a missing correlation correction of the kinetic energy loss, but
that the true first-order transition is considerably below that
corrected quantity. We have not performed thermodynamic
estimates but it looks as if the experimental Tc for Co might
be reached this way. Our original choice of U for Co (Oleś
and Stollhoff, 1984) had been motivated by the wish to bring
Co close to a second-order phase transition.

Where Ni is concerned, our results indicate a strong
reduction of the magnetic energy in comparison to LSDA.

For this case, a proper thermodynamic treatment has been
made in DMFT (Lichtenstein, Katsnelson and Kotliar, 2001).
The Hamiltonian was very close to the one that we used, and
here also a local mean field or Stoner theory was applied.
The outcome was a Tc slightly above the experimental value.
Also the critical spin fluctuations due to Stoner enhancement
just above Tc were in good qualitative agreement with
experiment. Corrections by spin-wave fluctuations that were
disregarded in the DMFT calculations are definitely of
relevance but have apparently little effect. One should
remember, though, that the values of the interaction U are
not unambiguously fixed for the Ni-model calculations. The
agreement of the DMFT calculations and experiment might
originate in part from a value for U that is slightly too small.
On the other hand, there is again the trend that I (m0) is
20% larger than I (m) (Stollhoff, Oleś and Heine, 1990), in
part due to the spin correlations, and in part due to a small
reduction of the change in D(m). Since these two corrections
are missing in LSDA calculations, one would expect that the
true Stoner Tc is considerably smaller than the LSDA Tc.

For Fe, relative changes in the partial neg and nt2g

occupations with magnetization arise as artifacts of the five-
band model. These cause an enhancement of ISCF(m) for
small m. Being only partly screened by correlations, this
partially compensates the above mentioned corrections for
small m. Nevertheless, a reduction of the magnetic energy
by half was still found (Stollhoff, Oleś and Heine, 1990).
However, this should, due to the pathology of the Fe density
of states, only lead to a reduction of Tc by less than half
(Gunnarsson, 1976). The DMFT calculation for a nine-band
Hamiltonian for Fe produced a Tc of 2000 K (Lichtenstein,
Katsnelson and Kotliar, 2001), which is unsatisfactory.
Here, the interactions were unambiguously fixed, and the
deficiencies of the five-band model should not occur.

Thus Fe is the only case that still poses a major problem.
There are two possible scenarios for its solution: either the
phase transition in Fe is not at all correctly described by
a Stoner-like picture but rather by spin-wave fluctuation
theories (for the earliest ones, see Korenman, Murray and
Prange, 1977; Capellmann, 1974, 1979), or alternatively the
starting point, the rigid band system derived from LSDA
together with local Hubbard interactions is insufficient. Very
recently, we obtained evidence (Stollhoff, unpublished) that
the latter case holds true. Its discussion is necessary for an
understanding of the limits of a Hubbard-model treatment
but goes beyond the original scope of this contribution. It
will therefore be shortly addressed at the end.

5.4 Anisotropic exchange splitting for Ni

For ferromagnetic Ni, an interesting anisotropy occurs.
The majority bands are completely filled. The charge in
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the minority bands is not equally distributed among the
different 3d orbitals, but charge is missing almost exclusively
from the t2g orbitals which form the most antibonding
band states. This anisotropic charge distribution is to a
smaller amount already present for the nonmagnetic state
without interaction (occupations of 0.98 or 0.92 for the eg

and t2g orbitals, respectively). In the SCF approximation,
already for the nonmagnetic state, an anisotropic crystal field
exists. Even more interesting, for the ferromagnetic state,
an anisotropic exchange splitting builds up. With exchange
splitting, we refer to the difference between majority and
minority crystal-field terms. In the SCF approximation, it
holds for the splitting �SCF(i) (with terms in the Hamiltonian
�J disregarded)

�SCF(i) = (U + J )(ni↑ − ni↓) + J sz (41)

where

sz =
∑

i

(ni↑ − ni↓) (42)

While the second term is isotropic and amounts to 0.4 eV for
Ni, the first one contributes a splitting of 0.7 eV only for the
t2g orbitals.

With correlations, the interaction effects are partially
screened. Also, a single-particle potential is no longer unam-
biguously defined. We obtained approximate values from our
ground-state calculations by keeping the correlation oper-
ators restricted to two-particle excitations, and by energy
optimizing correlated states starting from different single-
determinant trial states that were each generated with particu-
lar exchange splittings. The optimal trial state determined the
ground-state exchange splitting. We obtained for Ni exchange
splittings of �corr(eg) = 0.15 eV and �corr(t2g) = 0.57 eV
(Oleś and Stollhoff, 1984). Actually, here interaction terms
�J contributed. Without them, the splittings would be 0.27
and 0.50 eV, respectively. These changes indicate a screening
of the J contributions by almost half, and of the U contri-
butions by more than half. Exchange splittings from LSDA
come out isotropic and amount to 0.6 eV.

These anisotropies were measured in angle-resolved pho-
toemission experiments (Eastman, Himpsel and Knapp,
1978; Eberhardt and Plummer, 1980) and came out as 0.1 or
0.4 eV, respectively. The agreement with our values is good
particularly, if one takes into account that we computed our
splitting for non-renormalized bands while in photoemission
experiments the 15–20% mass renormalization due to many-
body effects is included (Eastman, Himpsel and Knapp, 1980;
Cooke, Lynn and Davis, 1980).

Many-body calculations for quasiparticle properties had
actually been done before for a five-band Hamiltonian with

very similar interactions (lacking the �J contributions). This
calculation was based on the Kanamori t-matrix approxima-
tion and had obtained splittings of 0.21 and 0.37 eV, with
which our results agreed well. That computation had not
only obtained the anisotropic splitting but also reasonable
band renormalizations of 15% and even the experimentally
seen shake-up peak (Liebsch, 1979, 1981). Very recently,
ground-state calculations for a Hamiltonian similar to ours
were performed, this time again within the R = 0 approx-
imation but for a nine-band model Hamiltonian, and by a
full CI calculation. The agreement for the exchange splitting
was again very good (0.16 and 0.38 eV), but this time also
relativistic contributions were included, and the experimental
Fermi surface was reproduced with high quality (Bünemann
et al., 2003). Here, the anisotropic exchange splitting plays
a big role, and the Fermi surface of the LSDA is false.

In the computations, such anisotropies in the exchange
splitting did not show up for Co, but we found them for Fe. In
Fe, the eg orbitals carry a larger moment because the majority
states are completely filled, but the minority bands are less
populated than the t2g analogs. We had found splittings of
�(eg) = 1.74 eV and �(t2g) = 1.30 eV. LSDA calculations
obtain an isotropic splitting of 1.55 eV, and experiments
obtain 1.45 eV (Eastman, Himpsel and Knapp, 1980) but
cannot resolve an anisotropy.

6 INTERACTION PARAMETERS U

It is of interest to compare the interaction parameters U

obtained for Fe to Ni to parameters obtained by other means,
and to try to gain a more global understanding. Figure 8
contains these parameters as functions of the band filling.

Spectroscopy experiments for transition-metal impurities
in noble metals were interpreted with the help of atomic
interactions (van der Marel and Sawatzky, 1988). The values
of the resulting quantity, U (or F0, as it is called in van der
Marel and Sawatzky, 1988), are given in Figure 8, too. They
are in very good agreement with the values of U obtained
by the LA, in particular, if one considers the different envi-
ronments. This indicates that the screening patterns must be
similar, and must also originate from the 4s, 4p orbitals on
the one hand, or from the 5s, 5p orbitals on the other. In
the impurity case, results exist for a whole range of tran-
sition metal impurities. The maximal reduction is obtained
for the half-filled case (Cr) with U = 0.9 eV taken from
spectroscopy results, while for less then half-filling, the inter-
action increases again (van der Marel and Sawatzky, 1988).

The occupation dependence of U can be understood with
the help of a residual neighbor electron interaction V .

It has been worked out before for a single-band model
(Stollhoff, 1995b), how a Hamiltonian with on-site and



16 Electron theory of magnetism

6

U
 (

eV
)

4

2

0
0 5

Ti V Mn Fe Co Ni

10
nd

Figure 8. Values of the interaction U , obtained for different
transition metals as a function of band filling. The values obtained
by the LA are given as squares, the ones obtained from core
spectroscopy (van der Marel and Sawatzky, 1988) are given by
crosses. The full curve indicates the occupation dependence when
a residual neighbor interaction V is included. Bars with circles
indicate estimates of U , obtained from ab initio LA calculations
(Stollhoff, unpublished), bars without circles estimates from frozen
charge approximation computations (Anisimov and Gunnarsson,
1991; Drchal, Gunnarsson and Jepsen, 1991).

neighbor interactions,

Hint = U0

∑
i

n↑(i)n↓(i) + V

2

∑
(i,j)

a†
σ (i)a

†
σ ′(j)aσ ′(j)aσ (i)

(43)
can be mapped into the Hubbard interaction Hint =
U

∑
i n↑(i)n↓(i). The sum over (i, j) runs over the z nearest

neighbors j for each atom i. Here, it is implicitly assumed
that all longer-range interactions are equal to zero. For the
Hamiltonian with only on-site interactions, the only mean-
ingful response to the interaction can be condensed into
the expectation value 〈n↑(i)n↓(i)Hint〉. It is therefore plau-
sible to choose U so that it yields the same response as
the pair U0, V . Assuming for �0 the following relations
for the single-particle density matrix, P (0) = 〈|nσ (0)|〉 = n,
P (0, l) = 〈|a†

σ (0)aσ (l)|〉 � p for (l) nearest neighbors, and
zero elsewhere, one obtains

〈|ni↑ni↓Hint|〉 = U0((n(1 − n))2 + zp4) − 2V zn(1 − n)p2

(44)
and

U = U0 − 2V zn(1 − n)p2

(n(1 − n))2 + zp4
= U0 − αV (45)

The parameter U depends therefore on band filling as well
as on the number of nearest neighbors. For almost empty
bands, it holds that p � n since kF � 1/(| �Ri − �Rj |) and
consequently U � U0. At half-filling, it holds from P 2 =
P , that n � n2 + zp2 and therefore α = 2z/(z + 1). For
almost completely filled bands it holds that α ∼ δn, where
δn represents the number of holes. The curve drawn into

Figure 8 is based on an U0 = 3.5 eV and a V = 1.2 eV.
It is deliberately put 0.5–1.0 eV below the data points.
Apparently, a pair of interactions U = 4.2 eV, V = 1.2 eV
can replace the so far independent terms for the specific
elements.

Accepting such a residual interaction V for the transition
metals resolves a further problem. The LDA bandwidth for
transition metals is known to roughly agree with experiment
for Fe but to be too large for Co and Ni (Cooke, Lynn and
Davis, 1980; Eastman, Himpsel and Knapp, 1980). The latter
deficiency has been understood to arise from correlations
caused by the on-site interactions (Liebsch, 1979). From
model calculations with the LA (Oleś and Stollhoff, 1984;
Stollhoff, Oleś and Heine, 1990), it can be deduced that the
reduction of the bandwidth δW due to U is similar in all
three (!) cases. The apparent discrepancy for the case of Fe
can be resolved when a neighbor interaction V = 1.2 eV is
included. The exchange broadening δW due to V increases
the bandwidth of Fe by 10% which partly compensates the
correlation correction due to U . The exchange corrections for
Co and Ni are smaller since it holds again that δW ∼ V δn.

Effective local interactions U were computed from LDA
frozen charge calculations for the transition metal Fe and
for Mn impurities in Ag (Anisimov and Gunnarsson, 1991;
Drchal, Gunnarsson and Jepsen, 1991). They are plotted in
Figure 8 as well. Apparently, these results do not depend on
band filling. They are of the same size as for the case of Cu
with a completely filled 3d band (Anisimov and Gunnarsson,
1991). There, they match experiment. These frozen charge
calculations actually computed the interaction costs to bring
two electrons together from infinite distance but not the
change in interaction from a neighbor site to the same site
which is the relevant quantity in a half-filled band system. It
is thus not astonishing that frozen charge LDA calculations
are unable to treat band filling effects on effective local
interactions.

The convolution of a longer-range interaction into an on-
site term alone is not sufficient to determine a model U . A
model always lacks degrees of freedom that are present in the
ab initio calculation. If degrees of freedom were removed,
then there is an alternative procedure to obtain a residual
local interaction U . It is to require that particular correlation
properties of the model are identical to the same ab initio
quantities. Owing to the restriction of the model interaction to
atomic terms, the relevant properties are atomic correlations.
For the cases discussed here, the proper representative is
the change of the atomic charge fluctuations �n2. For the
model, this quantity was discussed in Section 4.2. Exactly the
same quantity can be calculated from ab initio calculations.
There, atomic orbitals are unambiguously defined, the same
operators are included into the correlation calculations, and
the same correlation function is available. U is then chosen
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so that the model correlation function matches the ab initio
result. First applications have been presented in Stollhoff,
1995b. From first ab initio calculations, correlation functions
for V and Fe are available (Stollhoff, unpublished). They
lead to values of U that are also included in Figure 8. The
big error bars originate from a mismatch of the five-band
Hamiltonian to the correct atomic orbitals. We did not want
to enter poorly described 3d orbitals with 4s and 4p tails
into the ab initio calculations. On the other hand, lacking
a general tight-binding program, we could not improve the
model. Also, in our ab initio calculation, we did not treat the
very short-range part of the correlation hole well. Thus, our
ab initio results rather represent an upper limit to the U .

Even for these error bars, the results show that an unam-
biguous convolution and condensation of the full Coulomb
interaction into meaningful model interactions is possible. So
far, model interactions were always chosen to fit a model to
experiment. We had done so for the transition metals, and
had obtained good agreement, but we had encountered other
cases where a particular physical effect was incorrectly con-
nected solely to an on-site interaction, and the resulting fit
led to a wrong U . The case we have in mind is polyacety-
lene whose bond alternations also depends on interactions
but not solely on a local term U (König and Stollhoff, 1990;
Stollhoff, 1995b).

Of interest is also the case of the high-Tc superconducting
compounds where we had performed such an analysis
(Stollhoff, 1998, 2002).

7 RELATION OF THE HUBBARD-MODEL
RESULTS TO THE LSDA

In the previous sections, we had shown how difficult an
adequate treatment even of model interactions is. This makes
it even more astonishing that LSDA calculations managed
to get sizable parts of magnetism correct, in particular, the
magnetic moments of the transition metals. To a certain
degree this results from the fact that the 3d electrons are not
too strongly correlated, and that for the delocalized electrons
extended-Hückel features prevail, which the LSDA describes
well. This may explain the cases of Co and Ni, where
the magnetic moment is maximal, provided the 3d-band
occupation is correct.

But as our evaluations have made clear, the correct
magnitude of the magnetic moment of Fe required an
accuracy that the LSDA cannot possess. Consequently, the
correct result can only arise due to a chance compensation
of a set of errors. As was shown, the magnetic moment is
determined by the Stoner parameter I , which depends equally
on the local interactions U and J for fivefold degenerate
systems.

Let us first sum up all contributions where U alone
is relevant, and connect these to LSDA deficiencies. U

dominates the strength of correlations. Owing to it, electrons
lose considerably more kinetic or band energy than would
be expected for a homogeneous electron gas approximation.
This can be seen in the Compton scattering. From the
latter, one gets the impression that a treatment based on
homogeneous electron gas ideas must miss most of U .

The next topics are binding energies, equilibrium dis-
tances, and magnetovolume effect. All transition metals have
LSDA binding energies that are too large – actually almost
exactly by the amount which is removed by the residual
U . Also the equilibrium distances are too short. The LSDA
magnetovolume effect is always too large – in part, it can be
corrected by effects of the residual U (Stollhoff, Oleś and
Heine, 1990; Kaiser, Oleś and Stollhoff, 1988).

Finally, the interaction U causes sensitivities to charge
anisotropies. This is relevant for the anisotropic exchange
splitting of Ni. Owing to its effect on the Fermi surface, it is
basically a ground-state property. LSDA lacks this splitting.

Consequently one may safely conclude that LSDA misses
all U contributions, or more cautiously expressed, it reduces
U to J (this would avoid attractive interactions). This finding,
however, raises a problem. U is very important for the Stoner
parameter and for the magnetic moment. Roughly half of the
weight in the latter comes from U . Consequently, a second
error in connection with J must occur.

J leaves a direct imprint only on a single feature, namely,
the m dependence of I (m). Owing to the inclusion of
spin correlations, I (0) is typically reduced by 10–20% in
comparison to I (m). Sadly, other contributions (in particular,
correlation effects due to U cause a magnetic moment
dependence too. There is a single exception, Co. LSDA
shows no feature like this, but on the other hand, there is
not yet experimental evidence for this effect.

It is worthwhile to investigate in more detail how ILSDA

is obtained from LSDA calculations. As mentioned before,
whenever an LSDA calculation is made, even for atoms,
ILSDA has the same value. In the atomic case, LSDA is
assumed to describe the Hund’s rule ground state, and LDA
is usually assumed to describe an average over all possible
atomic states. Consequently, ILSDA must describe just the
atomic exchange J , and it must do so in a mean-field
approximation – no moment without broken symmetry. In
this respect, it must behave exactly like a HF theory, or like
the incorrect SCF approximation of our model Hamiltonian.

Only if LSDA behaves this way can one understand why
it obtains the correct moment for Fe (Stollhoff, Oleś and
Heine, 1990, 1996). I depends roughly to equal parts on
U and J . Correlations reduce the effects of these terms
by 40% from the SCF limit. As a consequence, the error
involved in skipping U (or in reducing it to J ) is almost
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exactly compensated by the error in not correlating J . For
magnetism in general, this compensation works only for
fivefold degeneracy. The error on the U side is considerably
larger than the error on the J side for a single-band system.
Consequently the LDA must and usually does underestimate
magnetism in general.

This latter deficiency is actually known, as the popularity
of more recent ‘LDA plus U ’ approximations demonstrates.
Here, a local interaction is added and treated in mean-field
approximation to boost magnetism. However, all attempts to
generate a kind of compensation within the DF framework to
upkeep the correct magnetic moment of Fe have failed. They
had to fail because the second error, the one for J is of a
different origin and thus independent. Even worse, these two
are not the only LDA errors in the transition-metal context
as will be demonstrated in the next section.

These findings also call a particular field of LSDA
applications into question, namely, all so-called ab initio
disordered local moment calculations with which one has
attempted to correct the false LSDA Stoner theory results.
As just derived, these LSDA disordered local moments are
nothing but the false and inadequate model disordered local
moment approximations for the Hubbard model. The local
degrees of freedom generated by either method are artifacts
of the approximation and have no connection to reality.

The only meaningful extensions of LDA schemes are like
the ones we had made for the first time a quarter century ago
(Stollhoff and Thalmeier, 1981; Oleś and Stollhoff, 1984)
and like those that are now made in connection with DMFT
applications (Lichtenstein, Katsnelson and Kotliar, 2001): to
condense the LDA results into a tight-binding Hamiltonian,
to connect it to a local model interaction and to perform a
careful correlation treatment of the latter.

A problem arises with the charge distributions in the
ground state of these models. It is often but not always a
good choice to freeze the charge distribution of this state to
the one of the LDA input. Counterexamples are the changes
in the Fermi surface of Ni that would not show up this
way, or the inverse magnetovolume effect of Ni that arises
from anisotropic exchange contributions that cause a charge
transfer from the 4s, 4p to the 3d orbitals. There are also
systems like the high-Tc superconductors where the LDA-
charge distribution is wrong (Stollhoff, 1998, 2002). As
shown next, the case of Fe is another example where it does
not pay off to stay close to LSDA results even for the charge
distribution.

8 AB INITIO CORRELATION
CALCULATIONS FOR Fe

As mentioned before, the model calculations using the LA
are only a special application of the original ab initio scheme.

Here, first results of an ab initio calculation for nonmagnetic
Fe will be presented in order to contribute to the resolution of
the open problem of Tc. We address nonmagnetic Fe because
we assume that the ferromagnetic state is rather well repro-
duced in LSDA. The moment is correct, and also the Fermi
surface seems to be in agreement with experiment. The defi-
ciencies in the description of the magnetic phase transition
might instead be connected to the nonmagnetic ground state.

Like the nonmagnetic HF ground state and the LDA
ground state, the correlated nonmagnetic ground state is
theoretically well defined. The only possible problem in the
latter case might be that the added correlations allow long-
range ferromagnetic patterns, and that in the approximation
used the calculations turn instable. We proceeded only up to
second nearest-neighbor corrections for the case of Fe, and
found no instability up to this range.

The details of the calculation will be given elsewhere
(Stollhoff, unpublished). It should just be mentioned that
for the HF calculation and the parallel LDA calculation
the program Crystal was used (Saunders et al., 1998). The
basis set quality was of double-ζ quality, and better for
the 3d electrons, and the computation was performed at the
experimental lattice constant. A first correlation calculation
starting from the LDA ground state single determinant
worked fine. Although the calculation was performed with
the full and unscreened interaction, the electrons in the nine
valence orbitals screened each other perfectly. Correlations
were as weak as for the model calculation with screened
interaction. Note that this time for the 9 fluctuating channels,
45 correlation channels were available.

From the 3d-correlation patterns we could also obtain an
estimate on the effective local interactions, as mentioned
before. This turned out to be 3 ± 1 eV and was in reasonable
agreement with the interaction needed for the Hubbard-model
treatment.

The LDA-charge distribution was analyzed using the LA.
Within this scheme, precise atomic orbitals are required for
correlation purposes. A method had been developed to unam-
biguously obtain these from the single-particle density matrix
Pij (l, l′) (Pardon, Gräfenstein and Stollhoff, 1995). For a
similar application, see Stollhoff (1998, 2002). The two right
columns of Table 3 contain our charge analysis in compar-
ison to a standard tight-binding fit (Papaconstantopoulos,
1968). There is good agreement, except a small charge trans-
fer from the 4p orbitals into the 3d orbitals in the case of
the fit. We assume that this occurs because for the fit, the
completely empty 4p bands needed to be included which
probably hybridize with the 4d bands. This apparently has
an effect on the resulting charge distribution. In our numeri-
cal determination, only the occupied part of the bands was of
relevance. The occupation anisotropy � = nt2g

− neg which
is most relevant comes out the same.
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Table 3. Charge distributions for bcc nonmag-
netic Fe. Given are values for the HF, LA,
and LDA calculations. Also values of a LDA
tight-binding fit (Papaconstantopoulos, 1968)
are included.

Orbital HF LA LDA LDA(tbf)

4s 0.272 0.273 0.288 0.29
4p 0.203 0.173 0.163 0.06
3d(t2g) 0.966 0.715 0.678 0.73
3d(eg) 0.100 0.542 0.611 0.66

� 0.866 0.173 0.067 0.07

While performing the HF calculation, a very different
charge distribution was obtained. The 4s- and 4p-orbital
occupations did not change but a complete charge rearrange-
ment occurred for the 3d orbitals. The t2g orbitals were
almost completely filled, and the eg orbitals almost empty.
This charge distribution is definitely incorrect. It would never
deliver the required sizable binding energy contributions of
the 3d bands. The values for the true ground state are also
given. In particular � is considerably closer to the LDA
value.

This charge transfer represented by � is originally not
connected to on-site interactions. Neither did our correlation
calculation based on the LDA ground state show instabilities
toward a charge transfer, nor had the earlier model calcula-
tions given any hint for such a behavior.

Rather, this charge transfer is due to a quantity that has
been almost completely disregarded in the past: the nonlocal
exchange. The long-range exchange contributions per site are
formally of the form

�Eexch = −
∑
ij l

V (i, 0; j, l)Pij (0, l)2 (46)

Here, V is the Coulomb-interaction term between orbital i on
site 0 and orbital j on site l, and Pij (0, l) the corresponding
density matrix that was introduced above. For the density
matrix of a single-determinant state, the following sum rule
applies

∑
j l

Pij (0, l)2 = ni (47)

As a consequence, delocalization pushes weight from neigh-
bor terms into longer-range terms and costs considerable
exchange energy. The amount is related to the size of long-
range fluctuations and depends strongly on the density of
states n(EF). The latter, and even more the peak structure
around it, is very large for nonmagnetic Fe and is extremely
costly in exchange energy. The peak structure is formed by

antibinding eg and t2g orbitals. For the only nonlocal con-
tribution to the LDA calculation, the kinetic energy, this
peak is apparently irrelevant, but adding only a small part
of the nonlocal exchange immediately starts to separate the
different contributions. The eg orbitals are pushed up, and
the t2g orbitals are pushed down. When computed using the
LDA, then the big charge transfer toward the LA ground state
costs less than 0.1 eV per atom in energy. This is negligibly
small in comparison to the binding energy and still smaller
than the magnetization energy. However, 1.5 eV are gained
from the full exchange, and 0.3 eV remain when the latter
is screened. The ground-state charge distribution is then fur-
ther influenced by the strong spin correlations between the
eg electrons forming when these reach half-filling.

The most relevant quantity in our context is the resulting
density of states. The LDA total density of states (summed
over spins) and the one of the LA ground state are given
in Figure 9. As can be seen, the LDA peak close to the
Fermi energy splits and is shifted to both sides of it. n(eF)

is reduced from 3.2 to 1.1 eV−1. It becomes so small that
the Stoner criterion is no longer fulfilled. Consequently,
there is a true metastable nonmagnetic bcc ground state
for Fe, and the magnetic phase transition is of first order.
Thus it is no wonder that there has been no chance to
obtain a reasonable transition temperature starting from
the unphysical nonmagnetic ground state of the LDA. The
instability of the LDA state is such that already an admixture
of only 5% of nonlocal exchange is sufficient to reduce the
density of state at the Fermi energy by half.

These nonlocal exchange effects create a general trend
toward weak localization. In Fe, they can act without
symmetry breaking, but for single-band systems they would
enter mostly via a symmetry lowering charge-density wave
instability.
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Figure 9. Total density of states n(E) for bcc nonmagnetic Fe,
obtained in LDA (dotted line) and by the LA (full line). EF is set
to zero for both cases.
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The LA density of states indicates a widening of the 3d
bands by 1.0 eV. It has been obtained from a single-particle
calculation with such a fraction of the nonlocal exchange
added that the correct charge distribution was reproduced.
Neither this density of states nor the original LDA density of
states contain any mass enhancements due to further many-
body contributions. The latter should amount to 15–20% and
shrink the bandwidths accordingly.

Sadly, no experimental information about the density of
states above the magnetic transition temperature is available.
They might immediately verify our results since these differ
strongly from LDA, and also from the ferromagnetic results
obtained either experimentally or in LSDA. There is no
strong peak just below the Fermi energy either, as it
originates from the majority states in the ferromagnetic case.

There is an experiment, though, that can be explained by
these new results: the measurements of the unoccupied Fe
energy bands (Kirschner, Gloebl, Dose and Scheidt, 1984).

For this purpose, the energy bands of the LDA and of the
LA ground state are presented in Figure 10.

The full lines represent the LA case, and the dotted
lines the LDA case. This time, the LA bands have been
renormalized so that the occupied width matches the LDA
case, in order to facilitate comparison. The renormalization
factor is 0.8, and may be deduced from Figure 9. As can
be seen, nonlocal exchange has pushed the bands with eg-
character around EF roughly 1 eV above EF, while bands
with t2g character are a little lowered (around the H and
N points). This explains the changes in the density of
states.

It is of interest to compare the energy bands of the true
nonmagnetic state with the ones of the ferromagnetic ground
state. The latter can be derived from the LDA bands by
either an upward shift by 1 eV for the minority bands or a
downward shift by the same amount for the majority bands.
As a consequence, the unoccupied minority bands are almost
exactly where the corresponding nonmagnetic bands are. An
exception is the H point where minority and majority bands
enclose the nonmagnetic band asymmetrically.

With temperature increasing toward Tc, the unoccupied
minority bands are therefore expected to stay in place while
the bands around the H points are shifted. This is exactly
what has been measured. The unoccupied minority and
majority bands around the H point are shifted towards a
center position, the former slightly more. The minority bands
measured in the vicinity of the P point and in between N
and P points did not shift at all, however (Kirschner, Gloebl,
Dose and Scheidt, 1984). These experiments fully confirm
our results for the nonmagnetic ground state.

So far, the experimental results have been interpreted
differently. It has been speculated that parts of the magnetic
order do not break down when Tc is reached, and that
certain directions in momentum space might keep a magnetic
memory for some unknown reasons. It would be worthwhile
to reanalyze the experimental data and also to extract how
the majority bands become unfilled and jump towards the
true nonmagnetic bands.

The proper computation of the first order phase transition
remains a topic to be adressed in the future. On the model level,
this would imply the inclusion of at least neighbor interactions,
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Figure 10. Energy bands of nonmagnetic bcc Fe from the LDA calculation (dots) and from the LA calculation (full lines). The occupied
bandwidth of the latter bands is renormalized to the one of the LDA bands.
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and is definitely out of the range for the present DMFT. Further
speculations on giant spin fluctuation theories should be put on
hold, however, because it is very probable that they will never
be needed for Fe, either.

We do not expect that nonlocal exchange contributions
play a role for the ferromagnetic ground state of Fe, except
for a certain band widening as discussed above (this is also
why we have rescaled the LA bands to the LDA bands in
Figure 10). n(EF) is already rather low for the ferromagnetic
case. The role of nonlocal exchange contributions shrinks
further when dealing with more strongly occupied bands as
for Co and Ni. Also, there is no peak in the density of states
at the Fermi energy in these systems that might be removed.

On the other hand, we expect that these nonlocal exchange
contributions play a significant role for the Fe compounds. It
is known that the LSDA usually does not treat these correctly,
but it does so without an apparent systematic trend. The
Fe–O compounds come out more magnetic in reality than
using the LSDA while for the Fe–Al compounds the inverse
holds true. In all these cases, there is a sizable crystal field
that Fe itself lacks. This would make these compounds even
more susceptible to a charge redistribution and accompanying
weak localization than Fe itself.

There is not only a competition between nonmagnetic and
magnetic states for the transition metals, but also one between
more or less weakly localized states. While the interactions
behind the former competition are U and J , the ones behind
the latter are V .

9 CONCLUSION

The aim of this work has been to present theoretical
achievements in the computation of multiband Hubbard
models for transition metals. Luckily, this application turned
out to be sufficiently remote from any kind of Mott–Hubbard
transition so that currently well-controlled weak-correlation
expansions could be used. As a consequence, we can be
certain that a model and not a deficiency in the treatment
is responsible if we do not match experiment. We could
exclude a strong correlation scenario for a set of experimental
findings, but the strongest argument against this scenario is
the not fully magnetized ground state of Fe.

This weak-correlation scenario also made it possible to
connect with LSDA calculations, and to analyze and explain
a set of errors, even failures of the latter method.

Our findings indicate the seeming success of LSDA for
the magnetism of the transition metals is basically due to a
chance compensation of two big errors, an overscreening of
U on the one hand, and a mishandling of the atomic exchange
interaction J in a mean-field approximation on the other.

We have shown that these model interactions are of very
similar size when obtained from fits to different experiments,
and that it is even possible to understand the trend among
these values for different transition metals. This indicates that
these model interactions are more meaningful quantities than
just fitting parameters. We have also given an indication of
how these parameters will, in the future, be directly computed
from ab initio correlation calculations using the LA.

On the model level, a set of different properties could be
understood. Also with the help of more extensive CI cal-
culations (Bünemann et al., 2003), and in particular, thanks
to quasiparticle calculations using the DMFT (Lichtenstein,
Katsnelson and Kotliar, 2001), a basic understanding has
finally been reached of the problems that had been raised
half a century ago (Stoner, 1938; van Vleck, 1945; Wohl-
farth, 1949; Gutzwiller, 1965; Herring, 1966), and that had
been mostly put aside in the last 40 years as far as the DF
approach was concerned.

We now know that the magnetic phase transition of the
transition metals can basically be described following the
ideas of Stoner and Wohlfarth, and that the electrons stay
almost completely delocalized. We also know that orbital
degeneracy plays the most important role in this context, and
that the atomic exchange interaction is of great importance.

A very surprising twist is that for the magnetism of
Fe, also residual nonlocal interactions seem to be relevant.
There has been earlier evidence that they are present in
Fe, originating from trends in the dependence of U on
the individual atoms, and from matches and mismatches of
theoretical and experimental photoemission results. These
nonlocal interaction contributions lead to big changes of
the LDA results for the nonmagnetic ground state, although
those latter results were and still are the basis of a satisfying
description of the ferromagnetic ground state.

All these findings demonstrate how important it is to
understand and to treat the interactions of the electrons
directly. It is an advantage of the LA that the correlation
treatment does not disappear within the black box of a
numerical program but that all different correlation details
can be obtained directly and understood. One aim of this
contribution was to present, with the help of the LA, a lucid
and understandable decomposition of the complex many-
body world.

REFERENCES

Anastassopoulos, D.L., Priftis, G.D., Papanicolaou, N.I., et al.
(1991). Calculation of the electron moment density and Compton
scattering measurements for Ni. Journal of Physics: Condensed
Matter, 3, 1099.



22 Electron theory of magnetism

Andersen, O.K. and Jepsen, O. (1977). Advances in the theory of
one-electron energy states. Physica, B 91, 317.

Anisimov, V.I. and Gunnarsson, O. (1991). Density-functional
calculation of effective Coulomb interactions in metals. Physical
Review B, 43, 7570.

Bauer, G.E. and Schneider, J.R. (1985). Electron correlation effect
in the momentum density of copper metal. Physical Review, B 31,
681.

Brown, P.J., Deportes, D., Givord, D. and Ziebeck, K.R.A. (1982).
Paramagnetic scattering studies of the short-range order above
Tc in 3d transition metals compounds and pure Fe. Journal of
Applied Physics, 53, 1973.

Bünemann, J., Gebhard, F., Ohm, T., et al. (2003). Atomic cor-
relations in itinerant ferromagnets: quasi-particle bands of Ni.
Europhysics Letters, 61, 667.

Bünemann, J., Weber, W. and Gebhard, F. (1998). Multiband
Gutzwiller wave functions for general on-site interactions. Phys-
ical Review B, 57, 6896.

Callaway, J. (1981). Physics of Transition Metals, Institute of
Physics: Bristol.

Capellmann, H. (1974). Ferromagnetism and strong correlations in
metals. Journal of Physics, F 4, 1466.

Capellmann, H. (1979). Theory of itinerant ferromagnetism in the
3d-transition metals. Zeitschrift fur Physik, B 34, 29.

Cizek, J. (1966). On the correlation problem in atomic and
molecular physics. Journal of Chemical Physics, 45, 4256.

Cizek, J. (1969). Use of the cluster expansion and the technique
of diagrams in calculations of correlation effects in atoms and
molecules. Advances in Chemical Physics, 14, 35.

Coester, F. (1958). Bound states of a many-particle system. Nuclear
Physics, 7, 421.
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1 INTRODUCTION

The theory of electronic structure and magnetism of solids
has historically been split into two distinct parts, namely,
the model investigations of many-body effects and the cal-
culations of the energy spectra and properties of specific
compounds in the framework of density functional theory
(DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965;
Jones and Gunnarsson, 1989). Recently, within the dynamical
mean-field theory (DMFT, for a review see Georges, Kotliar,

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Krauth and Rozenberg, 1996) correlation effects have been
incorporated into realistic electronic structure calculations
(Anisimov et al., 1997; Lichtenstein and Katsnelson, 1997,
1998; Katsnelson and Lichtenstein, 1999, 2000; Chitra and
Kotliar, 2000; Held et al., 2001b; Lichtenstein and Kat-
snelson, 2001; Lichtenstein, Katsnelson and Kotliar, 2002;
Savrasov and Kotliar, 2004; Kotliar and Vollhardt, 2004).
This method has been successfully applied to a number of
classical problems of solid state physics such as the finite-
temperature magnetism of iron group metals (Lichtenstein,
Katsnelson and Kotliar, 2001), α − δ transition in pluto-
nium (Savrasov, Kotliar and Abrahams, 2001), and electronic
structure of doped Mott insulators (Held et al., 2001a). In
contrast with the standard DFT scheme, in this new approach
known as local density approximation (LDA)+DMFT (Anisi-
mov et al., 1997; Lichtenstein and Katsnelson, 1997, 1998),
the total energy of the system (or, more accurately, ther-
modynamic potential �) is considered as a functional of
the local Green function instead of the density matrix (Kat-
snelson and Lichtenstein, 2000; Chitra and Kotliar, 2000;
Lichtenstein and Katsnelson, 2001; Lichtenstein, Katsnelson
and Kotliar, 2002; Savrasov and Kotliar, 2004). To stress
this new feature more explicitly, we will use the term spec-
tral density functional (SDF). The analytical properties of
the Green function guarantee that the knowledge of the
spectral density is equivalent to the knowledge of the time-
dependent Green function whereas, the density matrix is
just the static value of the latter (Abrikosov, Gorkov and
Dzyaloshinski, 1975). Here we will describe the basic ideas
of the SDF method, both in the framework of standard
DMFT and from a more general point of view, and con-
sider the applications of SDF to the correlation effects and
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magnetism in transition metals and other itinerant-electron
magnets.

2 REALISTIC DESCRIPTION
OF MAGNETIC CRYSTALS USING
DYNAMICAL MEAN-FIELD THEORY

2.1 LDA+DMFT: general considerations

In order to calculate the electronic structure of strongly cor-
related systems, we have to solve a complicated many-body
problem for a crystal corresponding to the inhomogeneous
gas of interacting electrons in an external periodic poten-
tial. To this aim, the original problem is split into effective
one-particle problem for the crystal (in DFT approach this
is the Kohn–Sham equation, Hohenberg and Kohn, 1964;
Kohn and Sham, 1965; Jones and Gunnarsson, 1989) and
a many-body problem for some appropriate auxiliary sys-
tem (for LDA to DFT this is a homogeneous electron gas).
Since intra-atomic electron correlations are the strongest and
the most important for local-moment formations in met-
als, we will use DMFT approach as a best local approxi-
mation. The DMFT scheme (Georges, Kotliar, Krauth and
Rozenberg, 1996) maps the interaction lattice models into
quantum impurity models (see Figure 1) subject to a self-
consistency condition. This quantum impurity is an atom in
a self-consistent effective medium. In this sense, the DMFT
approach is complementary to the LDA stressing from the
beginning atomic-like features in the electronic structure.
The resulting many-body multi-orbital impurity problem can
be solved by various rigorous approaches (Quantum Monte
Carlo (QMC), exact diagonalization, etc.) or by approximate
schemes such as iterated perturbation theory (IPT), local
fluctuating exchange (FLEX) approximation, or noncrossing
approximation (NCA) (Georges, Kotliar, Krauth and Rozen-
berg, 1996; Lichtenstein and Katsnelson, 1997, 1998; Held
et al., 2001b; Lichtenstein and Katsnelson, 2001; Lichten-
stein, Katsnelson and Kotliar, 2002).

∑∑∑

∑ ∑

∑∑∑

τ

G(τ−τ′)

τ′

U

U

Figure 1. Mapping of the lattice model to the quantum impurity
model in the dynamical mean-field theory: the local self-energy one
can be obtained from the solution of one correlated site in effective
time-dependent fermionic bath G(τ − τ ′).

In this section, we describe LDA+DMFT approach
for the electronic structure calculations. The method was
first applied in a simplified one-band approximation to
La1−xSrxTiO3 (Anisimov et al., 1997) which is a classical
example of a strongly correlated metal. A general formulation
of LDA+DMFT, including the justification of the effective
impurity formulation in multiband case has been proposed
in Lichtenstein and Katsnelson (1997, 1998) and applied to
iron in Katsnelson and Lichtenstein (1999, 2000).

The simplest way to develop the LDA+DMFT scheme is
to start with the band-structure approach where an explicit
tight-binding Hamiltonian exist, such as a first-principle lin-
ear muffin-tin orbital (LMTO) tight-binding method (Ander-
sen, 1975; Andersen and Jepsen, 1984):

H0 =
∑

ilm,j l′m′,σ
(εil nilmσ δilm,j l′m′ + tilm,j l′m′ c†

ilmσ cjl′m′σ )

(1)
where i is site index, lm are orbital indices and σ is spin
index, c+, c are the Fermi creation and annihilation operators
(n = c+c); εil are orbital energies and tilm,j l′m′ are hopping
matrix elements. Note that the DMFT approach was also
implemented in the full-potential LMTO method (Savrasov
and Kotliar, 2004) and in multiple-scattering methods such
as exact muffin-tin orbital (EMTO) (Chioncel et al., 2003b)
or Korringa–Kohn–Rostoker (KKR) (Minár et al., 2005)
schemes.

The LDA one-electron potential (Kohn–Sham potential)
is orbital independent and the Coulomb interaction between
d-electrons is taken into account in this scheme in an
averaged way. In the LDA+DMFT method, as well as in
the static limit, which corresponds to LDA+U (Anisimov,
Aryasetiawan and Lichtenstein, 1997), this Hamiltonian is
generalized for the explicit local Coulomb correlations with
the additional interaction term for correlated il shell:

Hint = 1

2

∑
ilmm′σ

Uil
mm′nimσ nim′−σ

+1

2

∑
ilm�=m′σ

(Uil
mm′ − J il

mm′)nimσnim′σ (2)

where i is the site index and m is the orbital quantum num-
bers; σ =↑, ↓ is the spin projection; ε and t in equation (1)
are effective one-electron energies and hopping parameters
obtained from the LDA in the orthogonal LMTO basis set.
To avoid double counting of electron–electron interactions
one must subtract the averaged Coulomb interaction energy
term, which is present in the LDA. In the spirit of LDA+U,
we introduce new ε0

d where the d–d Coulomb interaction is
excluded. There are few possibilities to subtract the double-
counting term coming from average interactions already
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taking into account in the LDA: the so-called fully localized
limit (Anisimov et al., 1993; Anisimov, Aryasetiawan and
Lichtenstein, 1997) which is suitable for strongly correlated
materials and the so-called around mean field (Anisimov,
Zaanen and Andersen, 1991; Czyzyk and Sawatzky, 1994)
which is appropriate for more delocalized systems. We used
the first scheme, which corresponds to the following form
of subtraction of average atomic Coulomb (U) and exchange
(J) interactions

ε0
dσ = εdσ − U

(
nd − 1

2

)
+ 1

2
J

(
nσ

d − 1

2

)
(3)

where U and J are the average values of Umm′ and Jmm′
matrices and nd is the average number of d-electrons.

The screened Coulomb and exchange vertex for the
d-electrons are defined as

Umm′ = <mm′|Vee(r − r′)|mm′>,

Jmm′ = <mm′|Vee(r − r′)|m′m> (4)

Then, the new Hamiltonian will have the following form:

H = H0 + Hint

H 0 =
∑

ilm,j l′m,′σ
(ε0

ilnilmσ δilm,j l′m′ + tilm,j l′m′c†
ilmσ cjl′m′σ )

(5)
In reciprocal space the matrix elements of the operator H 0

are

H 0
qlm,q′l′m′(k) = HLDA

qlm,q′ l′m′(k) − δqlm,q′ l′m′δql,id ld

×
[
U

(
nd − 1

2

)
− 1

2
J

(
nσ

d − 1

2

)]
(6)

(q is an index of the atom in the elementary unit cell). It is
worthwhile to note that the method can also be formulated
with a complete rotationally invariant LDA+U Hamiltonian
where the interaction is described by complete four orbital
indices (Lichtenstein and Katsnelson, 1997, 1998; Katsnelson
and Lichtenstein, 1999).

One of the main difficulties of standard DFT approach
in describing the finite-temperature magnetism is related
with the problem of unknown temperature dependence of
exchange-correlation potential. In practice, it is not diffi-
cult to take into account the Stoner-like temperature effects
into the electronic structure calculations via the Fermi dis-
tribution function. However, it is well known, that the Bose
degrees of freedom such as spin fluctuations are the domi-
nant temperature dependent effects. At the same time both
Fermi and Bose excitations can be easily treated in the
framework of the SDF using standard many-body Green

function approach. For describing the correlations effects
in magnets we will use the finite-temperature Matsubara
formalism (Abrikosov, Gorkov and Dzyaloshinski, 1975).
In the local, frequency dependent, dynamical mean-field
theory, the effect of Coulomb correlation is described by
the self-energy matrix �(iωn) in the basis of correlated
atomic orbitals. Our main goal within the finite-temperature
formalism is to obtain the one-electron Green functions
Gm,m′(τ − τ ′) = −〈Tτ c

†
mcm′ 〉 which describe all single parti-

cle dynamics of many-body systems (Abrikosov, Gorkov and
Dzyaloshinski, 1975). The inverse Green function matrix is
defined as

G−1
qlm,q′ l′m′(k, iωn) = (iωn + µ)δqlm,q′ l′m′ − H 0

qlm,q′ l′m′(k)

−δql,q′ l′δql,id ld �m,m′(iωn) (7)

where µ is chemical potential, ωn = (2n + 1)πT are the
Matsubara frequencies for temperature T ≡ β−1 (n = 0,

±1, . . .) and the local Green function obtained via integra-
tion over a Brillouin zone:

Gqlm,q′l′m′(iωn) = 1

VB

∫
dkGqlm,q′ l′m′(k, iωn) (8)

(VB is the volume of the Brillouin zone).
A so-called bath Green function which defines a hybridiza-

tion with the surrounding crystal in the effective Anderson
model and preserves the double-counting of the local self-
energy is obtained by a solution of the effective impurity
problem (Georges, Kotliar, Krauth and Rozenberg, 1996):

G−1
m,m′(iωn) = G−1

m,m′(iωn) + �
m,m′ (iωn) (9)

In the simplest case of massive downfolding to the
d-orbital problem, we could incorporate the double counted
correction in the chemical potential µ obtained self-consis-
tently from the total number of d-electrons

1

β

∑
iωn

eiωn0+
G(iωn) = Nd (10)

Further, one has to find the self-energy �
m,m′ (iωn) in

terms of the bath Green function Gm,m′(iωn) and use it in
the self-consistent LDA+DMFT loop (equations 8 and 9)
schematically presented in Figure 2.

2.2 The quantum Monte Carlo solution of the
impurity problem

Here we describe the most rigorous way to solve an
effective impurity problem using the multiband QMC method



4 Electron theory of magnetism

∫D[c+c]cc+e−S1G = − Z

Quantum impurity solverBand problem

Bath Green Function

G−1

N(E)
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Figure 2. The schematic view of the LDA+DMFT cycle: one can
start from a guess for the self-energy, find the local Green function
in the electronic structure program, then obtain the effective bath
Green function and solve quantum-impurity problem, and then
obtain the new self-energy till a self-consistent solution is reached.

(Takegahara, 1993; Rozenberg, 1997). In the framework of
the LDA+DMFT, this approach was used first in Katsnelson
and Lichtenstein (2000) for the case of ferromagnetic iron.
We use the path integral formalism and describe the discrete
Hubbard–Stratonovich transformations for calculations of
partition functions:

Z =
∫

D[c+(τ), c(τ )]e−S (11)

and corresponding Green function. In this method, the
local Green function is calculated for the imaginary time
interval [0, β] with the mesh τ l = l�τ , l = 0, . . . , L − 1,

where �τ = β/L (β = 1
T

is the inverse temperature)
using the path integral formalism (Georges, Kotliar, Krauth
and Rozenberg, 1996). The multi-orbital DMFT prob-
lem can be reduced to the general impurity action (see
Figure 1):

S = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

i,j

c+
i (τ )G−1

ij (τ − τ ′)cj (τ
′)

+1

2

∫ β

0
dτ

∑
i,j

ni(τ )Uijnj (τ) (12)

where i = {m, σ } labels both orbital and spin indices (we
should remind the reader that we have no site indices
since we are now solving the one-site effective impurity
problem). Without spin-orbital coupling we have Gij =
Gσ

m,m′δσσ ′ .
In the auxiliary fields Green function QMC scheme,

one used the discrete Hubbard–Stratonovich transformation

introduced by Hirsch and Fye (1986)

exp

[
−�τUij

(
ninj − 1

2
(ni + nj )

)]

= 1

2

∑
sij=±1

exp
[
λij sij (ni − nj )

]
(13)

where sij (τ ) are the auxiliary Ising fields for each pair of
spins, orbitals, and time slices with the strength:

λij = arccosh

[
exp

(
�τ

2
Uij

)]
(14)

Using Hirsch’s transformation we can transform the non-
linear action to a normal Gaussian one and exactly inte-
grated out fermionic fields in the path integral (equation 11).
Then the resulting partition function and Green function
matrix have the following form (Georges, Kotliar, Krauth
and Rozenberg, 1996)

Z = 1

2Nf L

∑
sij (τ )

det[Ĝ−1(sij )]

Ĝ = 1

Z

1

2Nf L

∑
sij (τ )

Ĝ(sij ) det[Ĝ−1(sij )] (15)

where Nf is the number of Ising fields, L is the number of
time slices, and Ĝ(sij ) is the Green function of noninteract-
ing fermions for a given configuration of the external Ising
fields:

G−1
ij (s) = G−1

ij + �iδij δττ ′

�i = (eVi − 1)

Vi(τ) =
∑
j ( �=i)

λij sij (τ )σ ij (16)

here, we introduce the generalized Pauli matrix:

σ ij =
{ +1, i < j

−1, i > j

For efficient calculation of the Green function Gij (s)

for arbitrary configuration of Ising fields one can use the
following Dyson equation (Hirsch and Fye, 1986):

G′ = [1 + (1 − G)(eV ′−V − 1)]−1G (17)

where V and G are potential and Green function before the
Ising spin flip and V ′ and G′ are those after the flip. The
QMC important sampling scheme allowed us to integrate
over the Ising fields with the modulus of (det[Ĝ−1(sij )])
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as a stochastic weight (Hirsch and Fye, 1986; Georges,
Kotliar, Krauth and Rozenberg, 1996). Using the output local
Green function from QMC and input bath Green functions,
the new self-energy is obtained via equation (9) and the
self-consistent loop can be closed through equation (8)
(see Figure 2). The main problem of the multiband QMC
formalism is the large number of the auxiliary fields Sl

mm′ .
For each time slice l, it is equal to M(2M − 1) where M

is the total number of the orbitals which gives 45 Ising
fields for the d-states case and 91 fields for the f-states.
Analytical continuations of the QMC Green functions from
the imaginary time to the real energy axis can be done within
the maximum entropy method (Jarrell and Gubernatis, 1996).

It is important to emphasize that for the diagonal Green
function Gij = Giδij , the determinant ratio is always pos-
itive. This means that the sign problem, which is the main
obstacle for the application of the QMC method to fermionic
problems (von der Linden, 1992), does not arise for this case.
Real computational experience shows that even for generic
multiband case, the sign problem for the effective impurity
calculations is not serious. This means that the QMC solution
in the context of DMFT can be considered as a practically
exact scheme.

3 SPECTRAL DENSITY VERSUS
DENSITY FUNCTIONALS

In the standard DFT approach, the thermodynamic potential
�c for noncorrelated conduction – ‘c’ electrons is repre-
sented as a functional of the electron density ρ (r) which
is, generally speaking, a matrix in spin indices. Formally
it can be represented as a thermodynamic potential of the
Kohn–Sham quasiparticles (QPs) (Hohenberg and Kohn,
1964; Kohn and Sham, 1965), �sp, minus the contribution
of the so-called double counted terms, �dc:

�c = �c
sp − �c

dc

�c
sp = −T r log[iω + ∇2/2 − VKS]

�c
dc =

∫
VKS(r)ρ(r) dr −

∫
Vext (r)ρ(r) dr

−1

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′ − Exc[ρ] (18)

where T r = T rωqLσ , T rω is the sum over Matsubara fre-
quencies T rω . . . = T

∑
ω eiω0+

. . . , ω = πT (2n + 1), n =
0, ±1, . . . , T is the temperature, and qLσ are site num-
bers (q), orbital quantum numbers (L = l, m), and spin pro-
jections σ , correspondingly, Vext (r) is the external poten-
tial, Exc[ρ] is the exchange-correlation energy, and the

Kohn–Sham effective potential is defined as

VKS(r) = Vext (r) +
∫

ρ(r′)
|r − r′|dr′ + δExc[ρ]

δρ(r)
(19)

In contrast to the standard DFT, the SDF approach deals
with the real dynamical QPs for correlated ‘d-electrons’
defined via the local Green functions rather than with
Kohn–Sham ‘QPs’ which are, strictly speaking, only aux-
iliary states used to calculate the total energy. Therefore,
instead of working with the thermodynamic potential � as
a density functional we start from its general expression
in terms of an exact Green function (Luttinger and Ward,
1960; Carneiro and Pethick, 1975; Chitra and Kotliar, 2001;
Georges, 2004)

�d = �d
sp − �d

dc

�d
sp = −T r

{
ln

[
� − G−1

0

]}
�d

dc = T r�G − � (20)

where G, G0, and � are the exact Green function, its bare
value, and self-energy, respectively. � is the Luttinger-Ward
generating functional (sum of the all connected skeleton
diagrams without free lines), correspondingly. A complete
SDF thermodynamic potential is equal to � = �c + �d . We
have to also keep in mind the Dyson equation

G−1 = G−1
0 − � (21)

and the variational identity

� = δ�

δG
(22)

When neglecting the QP damping, �sp will be nothing
but the thermodynamic potential of ‘free’ fermions but with
exact QP energies. Formal analogy between equations (18)
and (20), (19) and (22) are obvious: the self-energy plays
the role of the Kohn–Sham potential (without the external
potential) and the Green function plays the role of the density
matrix. As an example of this correspondence one can prove
(Katsnelson and Lichtenstein, 2000), in the framework of
the SDF, a useful identity known as the local force theorem
basically in the same way as it has been done in DFT scheme
(Mackintosh and Andersen, 1980; Liechtenstein, Katsnelson,
Antropov and Gubanov, 1987). We will use this property
in the next section to derive the expressions for exchange
parameters in LDA+DMFT (Katsnelson and Lichtenstein,
2000).
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4 EFFECTIVE EXCHANGE
INTERACTIONS

Let us discuss the problem of calculation of effective
exchange interactions (Jij ) in correlated systems. In prin-
ciple, the Jij parameters are not well-defined for arbitrary
magnetic systems, and the traditional way to study spin exci-
tations is related to the calculation of nonlocal frequency
dependent spin susceptibility (Georges, Kotliar, Krauth and
Rozenberg, 1996; Aryasetiawan and Karlsson, 1999; Kat-
snelson and Lichtenstein, 2004). In this case, the auxiliary
space–time dependent magnetic field is added to the Hamil-
tonian: σh(r, τ ) and the second derivative of free-energy
with respect to magnetic field gives the interacting spin sus-
ceptibility: χ−1 = χ−1

0 − �, where χ0 is an empty-loop sus-
ceptibility and � is the vertex corrections (Georges, Kotliar,
Krauth and Rozenberg, 1996; Aryasetiawan and Karlsson,
1999). Here we consider a simple approximation of ‘rigid
spin rotation’ of spectral density for a small angle:

δei = δϕi × ei , (23)

where ei is a unit vector determining general direction of
constrained effective spin-dependent potential on site i and
δϕi is an infinithesimal rotation vector. In this case it is useful
to write explicitly the spinor structure of the self-energy and
Green functions:

�i = �c
i + �s

i σ

Gij = Gc
ij + Gs

ijσ (24)

where �
(c,s)
i = 1

2

(
�

↑
i ± �

↓
i

)
, �s

i = �s
i ei , σ = (σ x, σ y, σ z)

are Pauli matrices, Gc
ij = 1

2T rσ (Gij ) and Gs
ij = 1

2T rσ

(Gijσ ).
We suppose that the bare Green function G0 does not

depend on spin directions and all the spin-dependent terms
including the Hartree–Fock terms are incorporated in the self
energy. In the rigid spin approximation we assume that the
unit vector ei does not depend on the energy, orbital indices
and represents the direction of the average local magnetic
moment on the site i. Note, that the thermodynamic potential
� should be considered as a constrained SDF which depends
on ei as external parameter (cf. Stocks et al., 1998). Then
the variation of the thermodynamic potential with respect to
small-spin rotation can be written as

δ� = δ∗�sp + δ1�sp − δ�dc (25)

where δ∗ is the variation without taking into account the
change of the ‘self-consistent potential’ (i.e., self-energy)
and δ1 is the variation due to this change of �. Taking into

account equation (22) it can be easily shown (cf. Luttinger
and Ward, 1960; Carneiro and Pethick, 1975) that

δ1�sp = δ�dc = T rGδ� (26)

and hence

δ� = δ∗�sp = −δ∗ T r ln
[
� − G−1

0

]
(27)

which is an analog of the magnetic ‘local force theorem’ in
the DFT (Liechtenstein, Katsnelson, Antropov and Gubanov,
1987).

In the case of rigid spin rotation the corresponding
variation of the thermodynamic potential can be written as

δ� = Viδϕi (28)

where the torque Vi is equal to

Vi = 2T rωL

[
�s

i × Gs
ii

]
(29)

On the basis of the expansion of this expression (29) in
a sum of pairwise contributions one can obtain a useful
formula for the effective magnetic interactions (Katsnelson
and Lichtenstein, 2000):

Jij = −T rωL

(
�s

i G
↑
ij�

s
jG

↓
ji

)
(30)

and, correspondingly, for the stiffness tensor of a
ferromagnet:

Dαβ = − 2

M
T rωL

∑
k

(
�s ∂G↑ (k)

∂kα

�s ∂G↓ (k)

∂kβ

)
(31)

where M is the magnetic moment per unit cell. These results
generalize the LDA expressions of Liechtenstein, Katsnel-
son, Antropov and Gubanov (1987) to the case of correlated
systems. Note that the crucial step from equation (29) to
equation (30) is not rigorous, since the exchange parameters
are connected with the second variations of the �-potential
and use of the local force theorem cannot be justified. Rela-
tions between the local force theorem and more accurate
approach based on the magnetic susceptibility is discussed
in Katsnelson and Lichtenstein (2004); Bruno (2003) and
Antropov (2003). An alternative approach to the exchange
parameters in the context of the LDA+DMFT based on the
diagrammatic perturbation theory in the rotation angle (Kat-
snelson and Lichtenstein, 2002) proves that equation (30)
corresponds to the ‘empty-loop’ approximation neglecting
the vertex corrections. At the same time, for the stiffness
constant the latter are absent and equation (31) appears to be
exact provided that the self-energy and three-point vertex are
local (as in the DMFT) (Lichtenstein and Katsnelson, 2001).
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5 ELECTRON CORRELATIONS
AND FINITE-TEMPERATURE
MAGNETISM IN IRON AND NICKEL

We now describe the applications of the SDF approach to
the classical problem of finite-temperature magnetism of the
iron group transition metals (Lichtenstein, Katsnelson and
Kotliar, 2001). Despite a lot of attempts starting from the
seminal works by Heisenberg and Frenkel (for review of
early theories see e.g., Herring, 1966; Vonsovsky, 1974;
Moriya, 1985), we have no complete quantitative theory
describing their magnetic and spectral properties. In order
to describe the magnetic properties of Fe, Co, and Ni, one
has to solve the problem of moderately strong electronic
correlations for systems where approaches developed both
for weakly correlated systems such as normal group metals
and to highly correlated systems such as Mott insulators
are not reliable. There were a lot of attempts to introduce
correlation effects in the real electronic structure of these
metals (Liebsch, 1981; Treglia, Ducastelle and Spanjaard,
1982; Manghi, Bellini and Arcangelli, 1997; Manghi et al.,
1997; Nolting, Rex and Mathi Jaya, 1987; Steiner, Albers
and Sham, 1992). But the question of applicability of
specific approximations, such as the lowest order perturbation
theory (Treglia, Ducastelle and Spanjaard, 1982; Steiner,
Albers and Sham, 1992), moment method (Nolting, Rex
and Mathi Jaya, 1987), or three-body Faddeev equations
(Manghi, Bellini and Arcangelli, 1997; Manghi et al., 1997)
is still not clear. On other hand, it has been demonstrated in
Lichtenstein, Katsnelson and Kotliar (2001) that the ab initio
dynamical mean-field theory does give a very successful
description of both correlation effects in the electron energy
spectra and the finite-temperature magnetic properties of
Fe and especially, Ni. Here we present the corresponding
results.

We start with the LDA Hamiltonian in the tight-binding
orthogonal LMTO representation HLDA

mm′ (k) (1), where m

describes the orbital basis set containing 3d-, 4s-, and 4p-
states. The interactions are parameterized by the matrix of
the screened local Coulomb interactions and a matrix of
exchange constants Jmm′ (2), which are expressed in terms
of two screened Hubbard parameters U and J describing
the average Coulomb repulsion and the interatomic ferro-
magnetic exchange respectively. We use the values U =
2.3 (3.0) eV for Fe (Ni) and the same value of the inter-
atomic exchange, J = 0.9 eV for both Fe and Ni, a result of
constrained LDA calculations (Bandyopadhyay and Sarma,
1989) and the static limit of GW calculations (Aryasetiawan
et al., 2004). These parameters, which are consistent with
those of many other studies result in a very good description
of the physical properties of Fe and Ni.

We used the impurity QMC scheme described in the
preceding text for the solution of the multiband DMFT
equations. In order to sample efficiently all the spin con-
figurations in the multiband QMC scheme, it is important
to use ‘global’ spin-flips: [sσσ ′

mm′] → [−s−σ−σ ′
mm′ ], in addition

to the local moves of the auxiliary fields (Lichtenstein, Kat-
snelson and Kotliar, 2001). The number of QMC sweeps was
of the order of 105. A parallel version of the DMFT program
was used to sample the 45 Ising fields for 3d-orbitals. We
used 256 k-points in the irreducible part of the Brillouin
zone for the k integration. Ten to 20 DMFT iterations were
sufficient to achieve convergence far from the Curie point.
Owing to the cubic symmetry of the bcc (Fe) and fcc (Ni)
lattices, the local Green function is diagonal in the basis of
real spherical harmonics. The spectral functions for real fre-
quencies were obtained from the QMC data by applying the
maximum entropy method.

Our results for the local spectral function for iron and
nickel are shown in Figures 3 and 4, respectively. The SDF
approach describes well all the qualitative features of the
density of states (DOS), which are especially nontrivial for
nickel. Our QMC results reproduce well the three main
correlation effects of the one-particle spectra below TC (Iwan,
Himpsel and Eastman, 1979; Eberhardt and Plummer, 1980;
Altmann et al., 2000): the presence of the famous 6 eV
satellite; the 30% narrowing of the occupied part of d-band;
and the 50% decrease of exchange splitting compared to the
LDA results. Note that the satellite in Ni has substantially
more spin-up contributions in agreement with photoemission
spectra (Altmann et al., 2000). The exchange splitting of the
d-band depends very weakly on temperature from T = 0.6TC
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Figure 3. LDA+DMFT results for ferromagnetic iron (T =
0.8TC). The partial densities of d-states (full lines) is compared with
the corresponding LSDA results at zero temperature (dashed lines)
for the spin-up (arrow up) and spin-down (arrow down) states. The
insert shows the spin–spin autocorrelation function for T = 1.2TC .
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Figure 4. Same quantities as in Figure 3 for ferromagnetic nickel
(T = 0.9TC). The insert shows the spin–spin autocorrelation func-
tion for T = 1.8TC .

to T = 0.9TC . Correlation effects in Fe are less pronounced
than in Ni, due to its large spin splitting and the characteristic
bcc structural dip in the DOS for spin-down states near Fermi
level, which reduces the DOS for particle hole excitations.

Now we discuss the applications of the SDF approach
to the description of finite-temperature magnetic proper-
ties of iron and nickel. Although DFT can, in principle,
provide a rigorous description of the thermodynamic
properties, at present there is no accurate practical imple-
mentation available. As a result the finite-temperature prop-
erties of magnetic materials are estimated following a sim-
ple suggestion (Liechtenstein, Katsnelson, Antropov and
Gubanov, 1987), whereby constrained DFT at T = 0 is used
to extract exchange constants for a classical Heisenberg
model, which in turn is solved using approximation meth-
ods (e.g., random phase approximation (RPA), mean field)
from classical statistical mechanics of spin systems (Liecht-
enstein, Katsnelson, Antropov and Gubanov, 1987; Rosen-
gaard and Johansson, 1997; Halilov, Eschrig, Perlov and
Oppeneer, 1998; Antropov et al., 1996). The most recent
implementation of this approach gives good values for
the transition temperature of iron but not of nickel (Pajda
et al., 2001). Although these localized spin models give,
by construction, at high temperatures a Curie–Weiss-like
magnetic susceptibility, as observed experimentally in Fe
and Ni, they encountered difficulties in predicting the cor-
rect values of the Curie constants (Staunton and Gyorffy,
1992).

The uniform spin susceptibility in the paramagnetic state:
χq=0 = dM/dH was extracted from the QMC simulations by
measuring the induced magnetic moment in a small external
magnetic field. It includes the polarization of the impurity
Weiss field by the external field (Georges, Kotliar, Krauth and
Rozenberg, 1996). The dynamical mean field results account
for the Curie–Weiss law which is observed experimentally

in Fe and Ni. As the temperature increases above TC , the
atomic character of the system is partially restored resulting
in an atomic-like susceptibility with an effective moment:

χq=0 = µ2
eff

3(T − TC)
(32)

The temperature dependence of the ordered magnetic
moment below the Curie temperature and the inverse of
the uniform susceptibility above the Curie point are plot-
ted in Figure 5 together with the corresponding experimental
data for iron and nickel (Wolfarth, 1986). The LDA+DMFT
calculations describe the magnetization curve and the slope
of the high-temperature Curie–Weiss susceptibility remark-
ably well. The calculated values of high-temperature mag-
netic moments extracted from the uniform spin susceptibility
are µeff = 3.09 (1.50) µB for Fe (Ni), in good agreement
with the experimental data µeff = 3.13 (1.62) µB for Fe (Ni)
(Wolfarth, 1986).

We have estimated the values of the Curie temperatures
of Fe and Ni from the disappearance of spin polariza-
tion in the self-consistent solution of DMFT problem and
from the Curie–Weiss law in equation (32). Our estimates
TC = 1900 (700) K are in reasonable agreement with exper-
imental values of 1043 (631) K for Fe (Ni) respectively (Wol-
farth, 1986), considering the single-site nature of the DMFT
approach, which is not able to capture the reduction of TC due
to long wavelength spin waves. These effects are governed
by the spin-wave stiffness. Since the ratio of the spin-wave
stiffness (D) to TC , TCa2/D is nearly a factor of 3 larger
for Fe than for Ni (Wolfarth, 1986) (a is the lattice dis-
tance), we expect the DMFT TC to be much higher than
the observed Curie temperature in Fe than in Ni. Note that
this is a consequence of the long-range oscillating character
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Figure 5. Temperature dependence of ordered moment and the
inverse ferromagnetic susceptibility for Fe (open square) and Ni
(open circle) compared with experimental results for Fe (square)
and Ni (circle).



Dynamical mean-field theory of itinerant electron magnetism 9

of exchange interactions in iron compared to short-range
ferromagnetic exchange interactions in nickel (Pajda et al.,
2001). The deeper reason for this difference is the almost
half-metallic character of the electron energy spectrum for
nickel (with almost complete majority-spin d-band), whereas
for well-pronounced Friedel oscillations of the exchange
parameters the spectrum should be metallic for both spin
projections.

Within DMFT one can also compute the local spin
susceptibility defined by

χloc = g2
s

3

∫ β

0
dτ 〈S (τ ) S(0)〉 (33)

where gs = 2 is the gyromagnetic ratio and S =
1
2

∑
m,σ,σ ′ c†

mσσ σσ ′cmσ ′ is single-site spin operator. It differs
from the q = 0 susceptibility, by the absence of spin polar-
ization in the Weiss field of the impurity model. Equation
(33) cannot be probed directly in experiments but it is
easily computed in DMFT-QMC. Its behavior as a func-
tion of temperature, gives a very intuitive picture of the
degree of correlations in the system. In a weakly corre-
lated system we expect expression (33) to be nearly tem-
perature independent, whereas in a strongly correlated sys-
tem we expect a leading Curie–Weiss behavior at high
temperatures χlocal = µ2

loc/(3T + const) where µloc is an
effective local magnetic moment. In the Heisenberg model
with spin S, µ2

loc = S(S + 1)g2
s and well-defined local mag-

netic moments (e.g., for rare earth magnets), this quantity
should be temperature independent. For the itinerant-electron
magnets µloc is temperature dependent due to a variety of
competing many-body effects such as Kondo screening, the
induction of local magnetic moment by temperature (Moriya,
1985), and thermal fluctuations which disorders the moments
(Irkhin and Katsnelson, 1994). All these effects are included
in the DMFT calculations. The τ -dependence of the corre-
lation function 〈S (τ ) S(0)〉 results in the temperature depen-
dence of µloc and is displayed in the inserts in the Figures 3
and 4. Iron can be considered as a magnet with very well-
defined local moments above TC (the τ -dependence of the
correlation function is relatively weak), whereas nickel is a
more itinerant-electron magnet (stronger τ -dependence of the
local spin–spin autocorrelation function).

The comparison of the values of the local and the q = 0
susceptibility gives a crude measure of the degree of short-
range order which is present above TC . As expected, the
moments extracted from the local susceptibility equation (33)
are a bit smaller (2.8 µB for iron and 1.3 µB for nickel) than
those extracted from the uniform magnetic susceptibility.
This reflects the small degree of the short-range correlations
which remain well above TC (Mook and Lynn, 1985). The
high-temperature LDA+DMFT clearly show the presence

of a local moment above TC . This moment is correlated
with the presence of high-energy features (of the order of
the Coulomb energies) in the photoemission. This is also
true below TC , where the spin dependence of the spectra
is more pronounced for the satellite region in nickel than
that of the QP bands near the Fermi level (see Figure 4).
This can explain the apparent discrepancies between dif-
ferent experimental determinations of the high-temperature
magnetic splittings (Kisker, Schröder, Campagna and Gudat,
1984; Sinkovic et al., 1997; Kreutz, Greber, Aebi and Oster-
walder, 1998) as being the result of probing different energy
regions. The resonant photoemission experiments (Sinkovic
et al., 1997) reflects the presence of local-moment polariza-
tion in the high-energy spectrum above Curie temperature in
nickel, whereas the low-energy angle-resolved photoemission
(ARPES) investigations (Kreutz, Greber, Aebi and Oster-
walder, 1998) result in nonmagnetic bands near the Fermi
level. This is exactly the DMFT view on the electronic struc-
ture of transition metals above TC . Fluctuating moments and
atomic-like configurations are large at short times, which
result in correlation effects in the high-energy spectra such
as spin-multiplet splitting. The moment is reduced at longer
timescales, corresponding to a more band-like, less correlated
electronic structure near the Fermi level.

Angle-resolved photoemission spectra of iron, as well as
spin-polarized thermoemission data for cesiated iron were
discussed in the context of LDA+DMFT in Katsnelson and
Lichtenstein (1999), a perturbative FLEX-based solver of
the effective impurity problem being used instead of QMC.
For both types of spectra, an agreement between theory
and experiment is drastically improved in comparison with
standard LDA calculations. The QP damping in iron can be
as large as 30% of the binding energy for the states in the
region of majority-spin DOS peak.

Using the self-consistent values for �(iω) computed by
QMC technique, we calculate the exchange interactions
(equation 30) and spin-wave spectrum for Fe (Katsnelson
and Lichtenstein, 2000) and Ni (Katsnelson and Lichtenstein,
2002). The spin-wave spectrum for ferromagnetic iron is pre-
sented in Figure 6 in comparison with the results of LSDA-
exchange calculations (Liechtenstein, Katsnelson, Antropov
and Gubanov, 1987) and with different experimental data
(Lynn, 1975; Mook and Nicklow, 1973; Perring et al., 1991).
This room-temperature neutron scattering experiments has
a sample dependence (Fe-12%Si in Lynn (1975); Perring
et al. (1991) and Fe-4%Si in Mook and Nicklow (1973))
due to problems with the bcc-Fe crystal growth. Note that for
high-energy spin waves the experimental data (Perring et al.,
1991) has large error-bars due to Stoner damping (we show
one experimental point with the uncertainties in the q space).
On the other hand, the expression of magnon frequency in
terms of exchange parameters itself becomes problematic in
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Figure 6. The spin-wave spectrum for ferromagnetic iron in the
LSDA and LDA+DMFT approximations compared with different
experiments (circles Lynn, 1975, squares Mook and Nicklow, 1973,
and diamonds Perring, Boothroyd, Paul, et al., 1991).

that region due to the breakdown of adiabatic approximation,
as discussed in the preceding text.

Therefore, we think that comparison of theoretical results
with experimental spin-wave spectrum for the large energy
needs additional investigation of Stoner excitation and
requires calculations of dynamical susceptibility in the
LDA+DMFT approach (Georges, Kotliar, Krauth and Rozen-
berg, 1996). Our LSDA spin-wave spectrum agrees well with
the results of frozen magnon calculations (Sandratskii and
Kübler, 1992; Halilov, Eschrig, Perlov and Oppeneer, 1998).
At the lower energy, where the present adiabatic theory is
reliable, the LDA+DMFT spin-wave spectrum agrees better
with the experiments than the result of the LSDA calcu-
lations. Experimental value of the spin-wave stiffness D =
280 meV Å−2 (Mook and Nicklow, 1973) agrees well with the
theoretical LDA+DMFT estimations of 260 meV Å−2 (Kat-
snelson and Lichtenstein, 2000). We have shown that correla-
tion effects in magnon spectra are less important than in the
electron spectra but, in general, an agreement between theory
and experiment is also better for the LDA+DMFT approach.

6 CORRELATION EFFECTS IN ARPES:
THE CASE OF fcc-Mn

Electronic spectra of transition metals have been probed
intensively by angle-resolved photoemission, a technique
that allows for the determination of the dispersion law that

describes the dependence of the QP energy on quasimomen-
tum. Copper was the first metal to be investigated thoroughly
by this technique and the results were in excellent agree-
ment with band structure calculations (Thirty et al., 1979;
Knapp and Himpsel, 1979). The same technique, however,
showed substantial deviations when applied to Ni and pro-
vided evidence for many-body behavior, such as the famous
6 eV satellite discussed in the previous section. Correlation
effects are indeed important for metals with partially filled
3d bands and should be taken into account for an adequate
description of ARPES spectra. Nevertheless, the main part
of the spectral density in Fe is related to usual QPs, and the
spectral weight of the satellite in Ni amounts to only 20%
(Altmann et al., 2000). Surprisingly strong correlation effects
have been found both experimentally and theoretically for the
case of fcc-(γ ) phase of manganese (Biermann et al., 2004).

Normally the geometrical frustrations in crystals (such
as in the fcc lattice) further enhance electronic correlations
(Georges, Kotliar, Krauth and Rozenberg, 1996) so that one
of the best candidates among the transition metals for the
search of strong correlation effects is the fcc-(γ ) phase of
manganese. It is an example of a very strongly frustrated
magnetic system; according to band-structure calculations,
(Moruzzi, Marcus and Kübler, 1989) the antiferromagnetic
ground state of γ -Mn lies extremely close to the boundary
of the nonmagnetic phase. Moreover, an anomalously low
value of the bulk modulus (Guillermet and Grimvall, 1989)
might be considered as a first experimental hint of strong
electronic correlations (Zein, 1995).

The physical properties of bulk γ -Mn are hardly acces-
sible in the experiment, since the γ -phase is only stable at
temperatures between 1368 K and 1406 K, where it shows
paramagnetic behavior. In Biermann et al. (2004) thin films
of γ -Mn grown on Cu3Au(100) substrate have been experi-
mentally investigated by ARPES. The spectra were character-
ized by two striking features. These are a weakly dispersive
QP band near the Fermi level EF and a broad and almost
k-independent maximum at approximately 2.7 eV below EF .
This data cannot be understood in the framework of a stan-
dard QP picture, since calculations of the first principles of
the band structure for different magnetic phases of γ -Mn
show an energy dispersion of more than 1.5 eV (Crockford,
Bird and Long, 1991). Instead, the overall shape of the exper-
imental spectra is very close to that of the Hubbard model
on the metallic side of the Mott transition with a QP band
near the Fermi level and a broad Hubbard band (HB) below
EF (Georges, Kotliar, Krauth and Rozenberg, 1996).

To test this hypothesis, LDA+DMFT calculations have
been done with the QMC solution of the effective impurity
problem within the same approximations as described in
the preceding text for Fe and Ni. Carrying out between 10
and 15 DMFT iterations with about 105 Quantum Monte
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Carlo sweeps allowed us to obtain not only the local Green
function G(τ) but also highly accurate self-energies which
can then be used for the computation of the k-resolved local
Green function. Inversion of the spectral representations of
the local Green’s function and the dd-block of the k-resolved
one by means of a Maximum Entropy scheme (Jarrell and
Gubernatis, 1996) yields the DOS ρ(ω) and the spectral
function A(k, ω).

The results for the k-resolved spectral functions A(k, iω)

are shown in Figure 7, for k points in the �-L directions
(Biermann, Lichtenstein and Katsnelson, 2001). In the neg-
ative energy part (i.e., for the occupied states) of all spectra
two main peaks carry – for a given k–point – the main part
of the spectral weight: a narrow QP feature near the Fermi
level and a very broad HB (at about −2.4 eV). These fea-
tures are shared between the experimental and theoretical
curves. Given the facts that (i) the experiments are done
at a somewhat lower temperature than the calculations, (ii)
we did not take into account matrix elements for interpret-
ing the photoemission data and (iii) using the Maximum
Entropy scheme for determining the spectral function intro-
duces a further approximation, the theoretical spectra agree
reasonably well with the experimental data. The absence of
LDA bands in the energy region near EF carrying most
of the spectral weight around the �-point is striking and
underlines the necessity of a proper many-body treatment
as done in LDA+DMFT. Note that assuming antiferromag-
netic order (of the type detailed in the subsequent text) would
slightly shift the LDA bands. However, the antiferromagnetic
LDA band structure displays a dispersion of more than 2 eV
and thus, could not explain the nondispersive photoemission
feature.
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QP resonance at the Fermi level is typical of strongly correlated
systems. The dashed line is the calculated photoemission spectrum.

The calculated (k-integrated and k-resolved) DOS curves
(see Figure 8) demonstrate a characteristic ‘three-peak
structure’, with two broad HBS and a narrow QP Kondo
resonance at the Fermi level which is typical of strongly
correlated electron systems (Georges, Kotliar, Krauth and
Rozenberg, 1996).

The energy scale associated with the correlation effects
that lead to the formation of the HBs (∼ U ) is much
larger than that of the magnetic interactions. Therefore,
the effects under discussion are not very sensitive to long-
range magnetic order. We have carried out the electronic
structure calculations for both the paramagnetic and the
antiferromagnetic structure with wave vector Q = (π, 0, 0),
which is typical of γ -Mn-based alloys (Fishman and Liu,
1999). The magnetic ordering changes the electron spectrum
less in comparison with the nonmagnetic case. However,
in comparison with the results of standard band theory
(Moruzzi, Marcus and Kübler, 1989), the correlation effects
stabilize the antiferromagnetic structure leading to a magnetic
moment of about 2.9 µB.

According to these results, γ -Mn can be considered a
unique case of a strongly correlated transition metal. An
even larger correlation would transform the system to a
Mott insulator where every atomic multiplet forms its own
narrow but dispersive HB (Mott, 1974). On the other hand,
in most metals correlations are small enough for the QPs
to be well-defined in the whole energy region, and usual
band theory gives a reasonable description of the energy
dispersion. Note that the correlation strength and bandwidth
have almost the same magnitude for all 3d metals. γ -Mn is
probably an exceptional case among the transition elements
due to the half-filled d-band and geometric frustrations in the
fcc structure.
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The ARPES data for the γ -phase of manganese and their
theoretical analysis by means of LDA+DMFT, an approach
that accounts not only for band-structure effects on the
LDA level but also allows for a full description of local
effects of strong Coulomb correlations, provide evidence
for the formation of HBs in metallic manganese. This is a
qualitatively new aspect in the physics of magnetic transition
metals.

7 CORRELATION EFFECTS
IN HALF-METALLIC FERROMAGNETS

Half-metallic ferromagnets (HMFs) (de Groot, Mueller, van
Engen and Buschow, 1983; Irkhin and Katsnelson, 1994;
Pickett and Moodera, 2001) recently attracted a great sci-
entific and industrial attention due to their importance for
spin-dependent electronics or ‘spintronics’ Prinz, 1998. The
HMFs have metallic electronic structure for one-spin projec-
tion (majority- or minority-spin states), but for the opposite
spin direction the Fermi level lies in the energy gap (de
Groot, Mueller, van Engen and Buschow, 1983). Therefore,
the spin-up and spin-down contributions to electronic trans-
port properties have different orders of magnitude, which
can result in a huge magnetoresistance for heterostructures
containing the HMFs (Irkhin and Katsnelson, 1994).

At the same time, the HMFs are very interesting con-
ceptually as a class of materials which may be suitable for
investigation of the essentially many-body physics ‘beyond
standard band theory’. In most cases, many-body effects lead
only to renormalization of the QP parameters in the sense
of Landau’s Fermi-liquid theory, the electronic liquid being
qualitatively similar to the electron gas (see, e.g., Nozieres,
1964; Pines and Nozieres, 1966; Vonsovsky and Katsnel-
son, 1989a, 1989b). On the other hand, due to specific band
structure of the HMF, an important role belongs to inco-
herent (nonquasiparticle (NQP)) states which occur near the
Fermi level because of correlation effects (Irkhin and Kat-
snelson, 1994). The appearance of NQP states in the energy
gap near the Fermi level is one of the most interesting cor-
relation effects typical for the HMFs. The origin of these
states is connected with ‘spin-polaron’ processes: the spin-
down low-energy electron excitations, which are forbidden
for the HMFs in standard one-particle scheme, turn out to be
possible as superpositions of spin-up electron excitations and
virtual magnons. The density of these NQP states vanishes at
the Fermi level, but increases drastically at the energy scale
of the order of a characteristic magnon frequency ω. The
NQP states were first considered theoretically by (Edwards
and Hertz, 1973) in the framework of a broadband Hub-
bard model for itinerant-electron ferromagnets. Later it was

demonstrated (Irkhin and Katsnelson, 1983, 1985) that for a
narrow-band (infinite-U ) Hubbard model, the whole spec-
tral weight for one-spin projection belongs to the NQP states
which is of crucial importance for the problem of stability of
Nagaoka’s ferromagnetism (Nagaoka, 1966) and for adequate
description of the corresponding excitation spectrum. The
NQP states in the s − d exchange model of magnetic semi-
conductors have been considered in Auslender and Irkhin
(1985). It was shown that depending on the sign of the s − d

exchange integral, the NQP states can form either only below
the Fermi energy EF or above it. Later it was realized that the
HMFs are natural substances for theoretical and experimen-
tal investigating of the NQP effects (Irkhin and Katsnelson,
1990). A variety of these effects in the electronic and mag-
netic properties has been considered (for review of the earlier
works see Irkhin and Katsnelson (1994)). As an example of
highly unusual properties of the NQP states, we note that
they can contribute to the T -linear term in the electron heat
capacity (Irkhin and Katsnelson, 1990; Irkhin, Katsnelson
and Trefilov, 1989, 1994), despite their density at EF vanish-
ing at temperature T = 0. Existence of the NQP states at the
HMFs surface has been predicted in Katsnelson and Edwards
(1992) and may be important for their detection by surface-
sensitive methods such as the ARPES or by spin-polarized
scanning tunneling microscopy. NQP states are also essential
for the transport properties of tunneling junctions between
HMFs (Irkhin and Katsnelson, 2002; McCann and Fal’ko,
2003), and for the temperature dependence of nuclear mag-
netic relaxation rate in HMFs (Irkhin and Katsnelson, 2001);
they also contribute to their core-level spectra (Irkhin and
Katsnelson, 2005). Recently, the density of NQP states has
been calculated from first principles for a prototype HMF,
NiMnSb (Chioncel, Katsnelson, de Groot and Lichtenstein,
2003a).

Before considering the real HMF case, it is worthwhile
to check the applicability of DMFT scheme for quantitative
description of the NQP states. Let us start from the DMFT
calculations for the one-band Hubbard Hamiltonian

H = −
∑
i,j,σ

tij (c
†
iσ cjσ + c

†
jσ ciσ ) + U

∑
i

ni↑ni↓ (34)

on the Bethe lattice with coordination z → ∞ and nearest-
neighbor hoping tij = t/

√
z (in this limit the DMFT is

formally exact (Georges, Kotliar, Krauth and Rozenberg,
1996). In this case, the DOS have a semicircular form:

N(ε) = 1

2πt2

√
4t2 − ε2 (35)

In order to stabilize the HMF state in our toy model, we
have added an external magnetic spin splitting �, which
mimics the local Hund polarization from other electrons in
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Figure 9. Density of states for HMFs in the Hartree–Fock (HF)
approximation (dashed line) and the QMC solution of DMFT
problem for semicircular model (solid line) with the bandwidth W =
2 eV, Coulomb interaction U = 2 eV, spin splitting � = 0.5 eV,
chemical potential µ = −1.5 eV, and temperature T = 0.25 eV.
Insets: imaginary part of the local spin-flip susceptibility (left) and
the spin-resolved self-energy (right).

the real NiMnSb compound. This HMF state corresponds to a
mean-filed (Hartree–Fock) solution with a LSDA-like DOS
(see Figure 9).

We can study an average magnon spectrum in this model
through the two-particle correlation function. The local spin-
flip susceptibility represents the response function required
and can be calculated using the numerically exact enumer-
ation QMC scheme (Georges, Kotliar, Krauth and Rozen-
berg, 1996). The model DMFT results are presented in
Figure 9. In comparison with a simple Hartree–Fock solu-
tion (dashed line), one can see an additional well-pronounced
states appearing in the spin-down gap region, just above the
Fermi level. This new many-body feature corresponds to the
NQP states. In addition to these states visible in both spin
channels of the DOS around 0.5 eV, a many-body satellite
appears at the energy of 3.5 eV.

The left inset in Figure 9 represents the imaginary part of
local spin-flip susceptibility. One can see a well pronounced
shoulder (around 0.5 eV), which is connected with an average
magnon DOS. In addition there is a broad maximum (at
1 eV) corresponding to the Stoner excitation energy. The
right inset in Figure 9 represents the imaginary part of
self-energy calculated from our ‘toy model’. The spin-up
channel can be described by a Fermi-liquid type behavior
with a parabolic energy dependence −Im�↑ ∝ (E − EF )2,
whereas in the spin-down channel the imaginary part −Im�↓

shows the 0.5 eV NQP shoulder. Owing to the relatively high
temperature of our QMC calculation (an exact enumeration
technique with the number of time slices equal to L = 24),

the NQP tail goes a bit below the Fermi level; at temperature
T = 0 the NQP tail should end exactly at the Fermi
level.

Let us consider now the calculations for real HMF
material–NiMnSb. The details of the computational scheme
have been described in Chioncel, Katsnelson, de Groot
and Lichtenstein (2003a), and only the key points will be
mentioned here. In order to integrate the DMFT approach
into the band structure calculation, the so-called exact muffin-
tin orbital method (EMTO) was used; the implementation
of the DMFT scheme in the EMTO method is described in
detail in the Chioncel et al. (2003b). One should note that
in addition to the usual self-consistency of the many-body
problem (self-consistency of the self-energy), a charge self-
consistency has been achieved.

For the interaction Hamiltonian, a most general rotation-
ally invariant form of the generalized Hubbard Hamiltonian
with four-index interaction matrix has been used (Lichten-
stein and Katsnelson, 1997, 1998; Katsnelson and Lichten-
stein, 1999). The effective many-body impurity problem was
solved using the spin polarized T -matrix plus fluctuation-
exchange approximation (SPTF) scheme proposed in the
Katsnelson and Lichtenstein (2002). It is important that this
perturbative scheme includes off-diagonal in spin indices
(spin-flip) effective interaction which is responsible for spin-
platonic effects.

The results for DOS using LSDA and LDA+DMFT (with
U = 3 eV and J = 0.9 eV) approaches are presented in the
Figure 10. For the spin-up states we have a normal Fermi-
liquid behavior −Im�

↑
d (E) ∝ (E − EF )2 with a typical
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Figure 10. Density of states for HMF NiMnSb in LSDA scheme
(dashed line) and in LDA+DMFT scheme (solid line) with effective
Coulomb interaction U = 3 eV, exchange parameter J = 0.9 eV
and temperature T = 300 K. The NQP state is evidenced just above
the Fermi level for spin-down band.
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energy scale of the order of several eV. The spin-down self-
energy behaves in a similar way below the Fermi energy,
with a slightly smaller energy scale (which is still larger than
1 eV). At the same time, a significant increase in Im�

↓
d (E)

with a much smaller energy scale (few tenths of eV) occurs
just above the Fermi level, which is more pronounced for
t2g states. The similar behavior of the imaginary part of
electronic self-energy and the DOS just above Fermi level
is a signature of the NQP states and is also noticed in the
model calculation (see Figure 9).

8 CONCLUSIONS

SDF approach in the LDA+DMFT approximation allows
the study of correlation effects in solids based on the
realistic electronic structure calculations. Among all possible
applications we have chosen the magnetism of transition
metals and other itinerant-electron magnets. From these
examples, one can see all the main advantages of the new
approach in comparison with the standard density functional
theory. First, we can describe the spectral density transfer
phenomena (e.g., the formation of 6 eV satellite in Ni), the
QP damping and other effects connected with the frequency
dependence of the self-energy, including the formation of
NQP states of spin-polaronic origin; all these phenomena are
absent completely not only in the DFT approach but also in
the Hartree–Fock, LDA+U, or self-interaction corrections
approximation. Second, we can adequately describe the
contribution of the Bose degrees of freedom (e.g., spin
fluctuations) to the electronic structure and thermodynamic
properties. In the DFT-based calculations the temperature is
taken into account only via the thermal expansion and the
Fermi distribution function (Jarlborg, 1997). It was the main
reason for which the standard band theory failed to describe
the finite-temperature effects in magnetic metals. We show
that the LDA+DMFT approach gives satisfactory solution of
this complicated problem of itinerant-electron magnetism.
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1 INTRODUCTION

The comparison of experimental measurements on quantum
magnets to microscopic models requires the ability to accu-
rately calculate magnetic and other thermodynamic proper-
ties of these models. Like for most many-body problems,
exact solutions are not available except for certain models,
such as the two-dimensional classical Ising model or some
one-dimensional quantum spin models. While mean-field the-
ories can give reliable results in high-dimensional systems
deep inside ordered phases, they are unreliable when fluc-
tuations are strong. These can be either classical thermal
fluctuations close to finite-temperature phase transitions or
strong quantum fluctuations in low-dimensional systems.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Unbiased numerical methods are required to obtain reliable
results for classical and quantum lattice models of magnetic
systems, especially in the vicinity of phase transitions, in
frustrated models, and in systems where quantum effects are
important. For classical magnets, the Monte Carlo method
is the method of choice since it can treat large systems.
Using modern sampling algorithms, such as cluster updates,
extended ensemble methods, or parallel tempering strategies,
most classical magnets can be efficiently simulated with
the computational effort scaling, with a low power of the
system size, and are usually linear in system size. The notable
exceptions are spin glasses, known to be nondeterministic-
polynomially (NP) hard (Barahona, 1982) and where, most
likely, no polynomial-time algorithm can exist (Cook, 1971).

For quantum magnets, quantum Monte Carlo (QMC)
methods are also the methods of choice whenever they are
applicable. Over the last decade, the efficient algorithms for
classical Monte Carlo simulations have been generalized to
quantum systems, and systems with millions of quantum
spins have been simulated (Kim and Troyer, 1998).

Unfortunately, in contrast to classical magnets, QMC
methods are efficient only for nonfrustrated magnets. Frus-
tration in quantum systems usually leads to the ‘negative sign
problem’, when the weights of some configurations become
negative (Troyer and Wiese, 2005). These negative weights
cannot be directly interpreted as probabilities in the Monte
Carlo process and lead to cancellation effects in the sampling.
As a consequence, the statistical errors grow exponentially
with inverse temperature and system size, and the QMC
methods are restricted to small systems and not too low tem-
peratures. For quasi-one-dimensional quantum systems such
as spin chains and spin ladders, the density matrix renormal-
ization group (DMRG) method can be an alternative (White,
1992,1993; Schollwöck, 2005). The problem of simulating
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strongly frustrated quantum magnets in more than one dimen-
sion and at low temperatures is, however, still an unsolved
problem.

In this article, we will review the QMC method for
nonfrustrated or weakly frustrated quantum magnets where
efficient algorithms are available. We will start in section 2
with an introduction to the general theory of Markov
chain Monte Carlo sampling, followed in section 3 by an
overview of classical Monte Carlo methods, and how the
problem of critical slowing down at phase transition can
be solved by using cluster update algorithms or generalized
ensembles. Section 4 will provide a review of world-line
QMC algorithms for purely magnetic models such as the
quantum Heisenberg model and variants thereof. The final
section 5 will introduce determinental QMC algorithms for
the more microscopic fermionic models of quantum magnets,
such as the Hubbard model.

2 THE MONTE CARLO METHOD

In this chapter, we outline the Monte Carlo method for
calculating general integrals of the form

〈O〉 =
∫

�

dxP (x)O(x) (1)

Here � denotes a discrete or continuous configuration
space with elements x and P (x) is a probability distribution
on this space, where

∫
�

dxP (x) = 1 and P (x) ≥ 0 ∀ x ε �. (2)

O is an observable (or random variable) on the configuration
space �. In later chapters, we will show how this general
method can be applied to quantum magnets.

Stochastic processes are based on the idea that it suffices to
sample configurations x according to their importance, P (x).
For a given chain of configurations, x1, · · · , xN , sampled
according to their importance, we can then approximate our
observable 〈O〉 with

〈O〉N � 1

N

N∑
i=1

O(xi) (3)

Clearly the value of 〈O〉N depends on the specific real-
ization of the chain of configurations. However, under the
assumptions that O(xi) are statistically independent and that
N is large enough, the central limit theorem tells us that,

〈O〉N follows a Gaussian distribution of width

σ =

√√√√√ 1

N − 1


 1

N

N∑
i=1

O(xi)2 −
(

1

N

N∑
i=1

O(xi)

)2

 (4)

σ corresponds to the error. Hence, the accuracy of the Monte
Carlo approach scales as the inverse square root of the
computational time, N , irrespective of the dimensionality
of the configuration space. It is this feature which makes
the Monte Carlo approach attractive in the limit of large
dimensions.

Our task is now to generate a chain of configurations
x1, · · · , xN , sampled according to P (x). For simplicity let
us consider a discrete configurations space �. We introduce
a Monte Carlo time t and a time-dependent probability
distribution Pt(x) which evolves according to a Markov
process, that is, the future (t + 1) depends only on the present
(t). To define the Markov process, we introduce a matrix Ty,x

which corresponds to the transition probability from state x

to state y. The time evolution of Pt(x) is given by:

Pt+1(y) =
∑

x

Ty,xPt (x) (5)

T has to satisfy the following properties.

∑
y

Ty,x = 1, Ty,x ≥ 0 (6)

Hence, if Pt(x) is a probability distribution then Pt+1(x)

is equally a probability distribution.
T has to be ergodic:

∀x, y ε � ∃ s| (T s
)
y,x

> 0 (7)

Thus, we are assured of sampling the whole phase
space provided the above equation is satisfied. Finally, the
requirement of stationarity:

∑
x

Ty,xP (x) = P (y) (8)

Once we have reached the desired distribution, P (x), we
wish to stay there. Stationarity is automatically satisfied if

Ty,xP (x) = Tx,yP (y) (9)

as may be seen by summing on both sides over x. This rela-
tion is referred to as detailed balance or microreversibility.
However, one has to keep in mind that stationarity and not
detailed balance is essential.



Quantum Monte Carlo methods 3

As given in the preceding text, in the Monte Carlo
simulation we will generate the Markov Chain,

x1, x2, · · · , xN (10)

where the conditional probability of sampling the state xt+1

given the state xt reads:

P (xt+1|xt ) = Txt+1,xt (11)

One can show that as n → ∞ the fraction of the time one
can expect the Markov process to be in state x reads P (x)

independently of the initial state x1. More precisely, since
the probability of being in state x at time t in the Markov
process reads

[
T t

]
x,x1

, one can show that

lim
n→∞

1

n

n∑
t=1

[
T t

]
x,x1

= P (x) (12)

irrespective of the starting point x1. For a demonstration of
the above, the reader is referred to (Kemeny and Snell, 1960).

Having defined T , we now have to construct it explicitly.
Let T 0

y,x be the probability of proposing a transition from
x to y and ay,x be the probability of accepting it. 1 − ay,x

corresponds to the probability of rejecting the move. T 0 is
required to satisfy equation (6). Since, in general, we want
to propose moves which change the initial configuration,
T 0

x,x = 0. With ay,x and T 0
y,x we build Ty,x with:

Ty,x =
{

T 0
y,xay,x if y 	= x∑

z
z 	=x

T 0
z,x

(
1 − az,x

)
if y = x

(13)

Clearly Ty,x satisfies equation (6). To satisfy the station-
arity, we impose the detailed balance condition to obtain the
equality:

T 0
y,xay,xPx = T 0

x,yax,yPy (14)

Let us set:

ay,x = F
(

T 0
x,yPy

T 0
y,xPx

)
(15)

with F :]0 : ∞[→ [0, 1]. Since

ax,y = F
(

T 0
y,xPx

T 0
x,yPy

)
= F


 1

T 0
x,yPy

T 0
y,xPx


 (16)

the detailed balance condition reduces to:

F (Z)

F (1/Z)
= Z where Z = T 0

x,yPy

T 0
y,xPx

(17)

There are many possible choices. The Metropolis algo-
rithm (Metropolis et al., 1953) is based on the choice:

F (Z) = min (Z, 1) (18)

Thus, one proposes a transition from x to y and accepts it

with probability Z = T 0
x,yPy

T 0
y,xPx

. In the practical implementation,

one picks a random number r in the interval [0, 1]. If
r < Z(r > Z) one accepts (rejects) the move. Alternative
choices of F (Z) are for example:

F (Z) = Z

1 + Z
(19)

which is referred to as the heat bath method.
Whether the so constructed T matrix is ergodic depends

upon the choice of T 0. In many cases, one will wish to
combine different types of moves to achieve ergodicity. For a
specific move i, we construct T (i) as shown above so that T (i)

satisfies conditions (6) and (9). The moves may be combined
in two ways:

T =
∑

i

λiT
(i),

∑
i

λi = 1 (20)

which is referred to as random updating since one picks with
probability λi the move T (i). Clearly, T equally satisfies
(6), (9) and if the moves have to be chosen appropriately to
satisfy the ergodicity condition. Another choice is sequential
updating. A deterministic ordering of the moves is chosen to
obtain:

T =
∏

i

T (i) (21)

This choice does not satisfy detailed balance condition, but
does satisfy stationarity (8) as well as (6). Again ergodicity
has to be checked on a case-to-case basis.

The observable O may now be estimated with:

〈O〉P ≈ 1

N

N∑
t=1

O(xt) (22)

The required value of N depends on the autocorrelation
time of the observable O:

CO(t) =
1

N

∑N

s=1
O(xs)O(xs+t ) −

(
1

N

∑N

s=1
O(xs)

)2

1

N

∑N

s=1
O(xs)

2 −
(

1

N

∑N

s=1
O(xs)

)2

(23)
One expects CO(t) ∼ e−t/τO where τO corresponds to the

autocorrelation time. The autocorrelation time corresponds to
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the time scale on which memory of the initial value of the
observable is lost. To obtain meaningful results as well as a
reliable estimate of the error, N � τO is needed.

3 CLASSICAL MONTE CARLO
METHODS AND CRITICAL SLOWING
DOWN

3.1 The local update algorithm for the Ising
model

Before discussing quantum magnets in the following
chapters, we first apply the Monte Carlo method to classical
lattice models to illustrate the important issues, algorithms,
and sampling strategies on simple classical models. We will
start with the Ising ferromagnet with Hamilton function

H = −J
∑
〈i,j〉

σ iσ j − gµBh

N∑
i=1

σ i (24)

where J is the exchange constant, h the magnetic field, g

the Landee g-factor, µB the Bohr magneton, and N the total
number of spins. The sum runs over all pairs of nearest
neighbors i and j and σ i = ±1 is the value of the Ising
spin at site i.

To calculate the value of an observable, such as the mean
magnetization at an inverse temperature β = 1/kBT with T

being the temperature and kB the Boltzmann constant, we
need to evaluate

〈m〉 =
∑

c

m(c) exp(−βE(c))/Z (25)

where,

m(c) = 1

N

N∑
i=1

σ i (26)

is the magnetization of the configuration c, E(c) the energy
of the configuration and

Z =
∑

c

exp(−βE(c)) (27)

the partition function. Comparing to equation (1) in the pre-
vious chapter we identify the space � with the space of
configurations {c}, the observable O(x) with the magnetiza-
tion m(c) and the weight P (x) with the Boltzmann weight
exp(−βE(c))/Z.

As discussed above, Monte Carlo sampling can be per-
formed using the Metropolis or heat bath methods, which, in
their simplest form, are local updates of single spins:

1. Pick a random site i.
2. Calculate the energy cost �E for flipping the spin at site

i: σ i → −σ i .
3. Flip the spin either with the Metropolis probabil-

ity min[1, exp(−β�E)] or the heat bath probability
exp(−β�E)/(1 + exp(−β�E)). If rejected, keep the
original spin value.

4. Perform a measurement independent of whether the spin-
flip was accepted or rejected.

The same local update algorithm can be applied to systems
with longer-range interactions and with coupling constants
that vary from bond to bond. For more complex classical
models, such as Heisenberg models, local updates will no
longer consist of simple spin flips, but of arbitrary rotations
of the local spin vectors.

3.2 Critical slowing down and cluster update
algorithms

Local update algorithms are easy to implement and work well
away from phase transitions. Problems arise in the vicinity
of continuous (second order) phase transitions, when these
algorithms suffer from ‘critical slowing down’ (Swendsen
and Wang, 1987). As the correlation length ξ diverges upon
approaching the phase transition, the autocorrelation times
τO also diverge as

τO ∝ min(L, ξ)z (28)

with a dynamical critical exponent of z ≈ 2. L is the linear
extent of the system. The origin of critical slowing down is
the fact that close to the critical temperature large ordered
domains of linear extent ξ are formed and the single-spin
updates are not effective in changing these large domains.
The value z ≈ 2 can be understood considering that the time
for a domain wall to move a distance ξ by a random walk
scales as ξ 2.

The solutions to critical slowing down are cluster updates,
flipping carefully selected clusters of spins instead of sin-
gle spins. Cluster update algorithms were originally invented
by Swendsen and Wang for the Ising model (Swendsen and
Wang, 1987) and soon generalized to O(N) models, such as
the Heisenberg model (Wolff, 1989). These cluster update
algorithms are discussed in textbooks on classical Monte
Carlo simulations and in computational physics textbooks.
While most cluster algorithms require spin-inversion invari-
ance and thus do not allow for external magnetic fields,
extensions to spin models in magnetic fields have been pro-
posed (Redner, Machta and Chayes, 1998; Evertz, Erkinger
and von der Linden, 2002).
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An open-source implementation of local and cluster
updates for Ising, Potts, XY and Heisenberg models is avail-
able through the ALPS (Applications and Libraries for
Physics Simulations) project (Alet et al., 2005) at the web
page http://alps.comp-phys.org/.

3.3 First order phase transitions and the
multicanonical ensemble

While cluster updates can solve critical slowing down at
second order phase transitions, they are usually inefficient
at first order phase transitions and in frustrated systems.
Let us consider a first order phase transition, such as
in a two-dimensional q-state Potts model with Hamilton
function

H = −J
∑
〈i,j〉

δσ iσ j
(29)

where the spins σ i can now take the integer values
1, . . . , q. For q > 4 this model exhibits a first order phase
transition, accompanied by exponential slowing down of
local single-spin updates. The exponential slowdown is
caused by the free energy barrier between the two coex-
isting metastable states at the first order phase transi-
tion.

This barrier can be quantified by considering the energy
histogram

Hcanonical[E] = g(E)PBoltzmann(E) ∝ g(E) exp(−βE) (30)

which is the probability of encountering a configuration with
energy E during the Monte Carlo simulation. Here

g(E) =
∑

c

δE,E(c) (31)

is the density of states. Away from first order phase tran-
sitions, Hcanonical[E] has approximately Gaussian shape,
centered around the mean energy. At first order phase transi-
tions where the energy jumps discontinuously, the histogram
Hcanonical[E] develops a double-peak structure. The minimum
of Hcanonical[E] between these two peaks, which the simula-
tion has to cross in order to go from one phase to the other,
becomes exponentially small upon increasing the system size.
This leads to exponentially large autocorrelation times.

A solution to this tunneling problem are extended ensem-
bles, such as the multicanonical ensemble (Berg and
Neuhaus, 1991, 1992), where the weight of a configura-
tion c is given by Pmulticanonical(c) ∝ 1/g(E(c)) instead of the

Boltzmann weight exp(−βE(c)). The multicanonical ensem-
ble leads to a flat histogram in energy space

Hmulticanonical[E] = g(E)Pmulticanonical(E) ∝ g(E)
1

g(E)

= constant (32)

removing the exponentially small minimum. After perform-
ing a simulation, measurements in the multicanonical ensem-
ble are reweighted by a factor PBoltzmann(E)/Pmulticanonical(E)

to obtain averages in the canonical ensemble.
Since the density of states g(E) and thus the multicanon-

ical weights Pmulticanonical are not known initially, a scalable
algorithm to estimate these quantities is needed. The Wang-
Landau algorithm (Wang and Landau, 2001a, b) is a simple
iterative method to obtain the density of states g(E) and the
multicanonical weights Pmulticanonical(E) ∝ 1/g(E).

Recent investigations have shown that a flat histogram,
as obtained by the multicanonical ensemble, is not optimal
but still shows signs of critical slowing down (Dayal et al.,
2004). Optimized ensembles, assigning larger weights to
configurations in the critical region, can be found and lead
to further improvements in the efficiency of algorithms by
several orders of magnitude (Trebst, Huse and Troyer, 2004).

3.4 Frustrated systems and parallel tempering

The simulation of frustrated systems suffers from a similar
tunneling problem as the simulation of first order phase
transitions: local minima in energy space are separated by
barriers that grow with system size. While the multicanonical
or optimized ensembles do not help with the NP-hard
problems faced by spin glasses, they are efficient in speeding
up simulations of frustrated magnets without disorder.

An alternative to these extended ensembles for the sim-
ulation of frustrated magnets is the ‘parallel tempering’ or
‘exchange’ Monte Carlo method (Hukushima and Nemoto,
1996). Instead of performing a single simulation at a fixed
temperature, simulations are performed for M replicas at a
set of inverse temperatures β1, . . . , βM . In addition to stan-
dard Monte Carlo updates at a fixed temperature, exchange
moves are proposed to swap two replicas between adjacent
temperatures. These swaps are accepted with a probability
min[1, exp(−�β�E)], where �β is the difference in inverse
temperatures and �E the difference in energy between the
two replicas.

The effect of these exchange moves is that a replica can
drift from a local free energy minimum at low temperatures
to higher temperatures, where it is easier to cross energy
barriers. Upon cooling (by another sequence of exchanges),
it can end up in a different local minimum in time that is
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much shorter than for a single simulation at a fixed low
temperature.

4 QUANTUM MONTE CARLO
WORLD-LINE ALGORITHMS

4.1 The S = 1/2 quantum XXZ model

In this chapter, we will generalize the Monte Carlo methods
described in chapter 3 for classical spin systems to quantum
spin systems. As examples we will use the spin-1/2 quantum
Heisenberg or XXZ models with Hamiltonian

H =
∑
〈i,j〉

[
JzS

z
i S

z
j + Jxy

(
Sx

i Sx
j + S

y

i S
y

j

)]
− gµBh

N∑
i=1

Sz
i

=
∑
〈i,j〉

[
JzS

z
i S

z
j + Jxy

2

(
S+

i S−
j + S−

i S+
j

)]
− gµBh

N∑
i=1

Sz
i

(33)
where Sα

i are spin S = 1/2 operators fulfilling the standard
commutation relations and in the second line, we have
replaced Sx

i and S
y

i by the spin raising and lowering operators
S+

i and S−
i .

The case Jxy = 0 corresponds to the classical Ising model
(24) up to a change in sign: while in classical Monte
Carlo simulations (where there is no difference in the
thermodynamics of the ferromagnet and the antiferromagnet)
a positive exchange constant J denotes the ferromagnet, the
convention for quantum systems is usually opposite with a
positive exchange constant denoting the antiferromagnet. The
other limit Jz = 0 corresponds to the quantum XY-model,
while Jz = Jxy is the Heisenberg model.

4.2 Representations

The basic problem for Monte Carlo simulations of quantum
systems is that the partition function is no longer a simple
sum over classical configurations as in equation (27) but an
operator expression

Z = Tr exp(−βH) (34)

where H is the Hamilton operator and the trace Tr goes over
all states in the Hilbert space. Similarly the expression for an
observable, like the magnetization, is an operator expression:

〈m〉 = 1

Z
Tr

[
m exp(−βH)

]
(35)

and the Monte Carlo method cannot directly be applied
except in the classical case where the Hamilton operator H is
diagonal and the trace reduces to a sum over all basis states.
The first step of any QMC algorithm is thus the mapping of
the quantum system to an equivalent classical system

〈m〉 = 1

Z
Tr

[
m exp(−βH)

] =
∑

c

m(c)P (c) (36)

where the sum goes over configurations c in an artificial
classical system (e.g., a system of world lines), m(c) will
be the value of the magnetization or another observable
as measured in this classical system and P (c) the weight
of the classical configuration. We will now present two
different but related methods for this mapping: the path-
integral representation and the SSE representation.

4.2.1 The path-integral representation

The path-integral formulation of a quantum system goes back
to (Feynman, 1953), and forms the basis of most QMC
algorithms. Instead of following the historical route and
discussing the Trotter-Suzuki (checkerboard) decomposition
(Trotter, 1959; Suzuki, 1976) for path integrals with discrete
time steps �τ we will directly describe the continuous-time
formulation used in modern codes.

The starting point is a time-dependent perturbation expan-
sion in imaginary time to evaluate the density matrix operator
exp(−βH). Using a basis in which the Sz operators are diag-
onal, we follow (Prokofev, Svistunov and Tupitsyn, 1998)
and split the Hamiltonian H = H0 + V into a diagonal term
H0, containing the Sz term and an off-diagonal perturbation
V , containing the exchange terms (Jxy/2)(S+

i S−
j + S−

i S+
j ).

In the interaction representation, the time-dependent pertur-
bation is V (τ) = exp(τH0)V exp(−τH0) and the partition
function can be represented as:

Z = Tr exp(−βH) = Tr

[
exp(−βH0)T exp

∫ β

0
dτV (τ)

]

= Tr

[
exp(−βH0)

(
1 −

∫ β

0
dτ 1V (τ 1) + 1

2

∫ β

0
dτ 1

×
∫ β

τ1

dτ 2V (τ 1)V (τ 2) + . . .

)]

=
∑

i

〈i|
[

exp(−βH0)

(
1 −

∫ β

0
dτ 1V (τ 1) + 1

2

∫ β

0
dτ 1

×
∫ β

τ1

dτ 2V (τ 1)V (τ 2) + . . .

)]
|i〉 (37)

where the symbol T denotes time-ordering of the exponential
and in the last line, we have replaced the trace by a sum over
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a complete set of basis states |i〉, that are eigenstates of the
local Sz operators. Note that, in contrast to a real-time path
integral, the imaginary-time path integral always converges
on finite systems of N spins at finite temperatures β, and the
expansion can be truncated at orders n � βJxyN .

Equation (37) is now just a classical sum of integrals
and can be evaluated by Monte Carlo sampling in the
initial states |i〉, the order of the perturbation n and the
times τ i(i = 1, . . . , n). This is best done by considering a
graphical world-line representation of the partition function
(37) shown in Figure 1. The zeroth order terms in the sum∑

i〈i| exp(−βH0)|i〉 are given by straight world lines shown
in Figure 1(a). First order terms do not appear since the
matrix elements 〈i|V |i〉 are zero for the XXZ model. The
first nontrivial terms are appear in second order with two
exchanges, as shown in Figure 1(b). A general configuration
of higher order is depicted in Figure 2(a).

Since the XXZ Hamiltonian commutes with the z-compo-
nent of total spin

∑
i Sz

i , the total magnetization is conserved
and all valid configurations are represented by closed world
lines as shown in Figures 1 and 2. Models that break
this conservation of magnetization, such as general XYZ
models with different couplings in all directions, models with
transverse fields coupling to Sx

i or higher spin models with
single ion anisotropies (Sx

i )2 or (S
y

i )2 will in addition contain
configurations with broken world-line segments.

4.2.2 The stochastic series expansion representation

An alternative representation is the stochastic series expan-
sion (SSE) (Sandvik and Kurkijärvi, 1991), a generaliza-
tion of Handscomb’s algorithm (Handscomb, 1962) for the
Heisenberg model. It starts from a Taylor expansion of the
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Figure 1. Examples of simple world-line configurations in imagi-
nary time for a quantum spin model. Up-spins are shown by bold
lines and down spins by thin lines. (a) a configuration in zeroth
order perturbation theory where the spins evolve according to the
diagonal term exp(−βH0) and the weight is given by the classical
Boltzmann weight of H0. (b) a configuration in second order per-
turbation theory with two exchanges at times τ 1 and τ 2. Its weight
is given by the matrix elements of the exchange processes and the
classical Boltzmann weight of H0 of the spins.
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Figure 2. Examples of world-line configurations in (a) a path-
integral representation where the time direction is continuous and
(b) the stochastic series expansion (SSE) representation where the
‘time’ direction is discrete. Since the SSE representation perturbs
not only in off-diagonal terms but also in diagonal terms, additional
diagonal terms are present in the representation, indicated by dashed
lines.

partition function in orders of β:

Z = Tr exp(−βH) =
∞∑

n=0

βn

n!
Tr(−H)n

=
∞∑

n=0

βn

n!

∑
{i1,. . .,in}

∑
{b1,. . .,bn}

〈i1| − Hb1 |i2〉

×〈i2| − Hb2 |i3〉 · · · 〈in| − Hbn |i1〉 (38)

where, in the second line, we decomposed the Hamiltonian
H into a sum of single-bond terms H = ∑

b Hb, and again
inserted complete sets of basis states. We end up with a
similar representation as equation (37) and a related world-
line picture shown in Figure 2(b).

The key difference is that the SSE representation is a per-
turbation expansion in all terms of the Hamiltonian, while the
path-integral representation perturbs only in the off-diagonal
terms. Although the SSE method thus needs higher expansion
orders for a given system, this disadvantage is compensated
by a simplification in the algorithms: only integer indices of
the operators need to be stored instead of continuous-time
variables τ i . Except in strong magnetic fields or for dissi-
pative quantum spin systems (Sachdev, Werner and Troyer,
2004; Werner, Völker, Troyer and Chakravarty, 2005) the
SSE representation is thus the preferred representation for
the simulation of quantum magnets.

4.2.3 The negative sign problem

While the mapping from the quantum average to a classical
average in equation (36) can be performed for any quantum
system, it can happen in frustrated quantum magnets, that
some of the weights P (c) in the quantum system are
negative, as is shown in Figure 3.
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– Jxy /2

– Jxy /2

– Jxy /2

Figure 3. Example of a frustrated world-line configuration in a
Heisenberg quantum antiferromagnet on a triangle. The closed
world-line configuration contains three exchange processes, each
contributing a weight proportional to −Jxy/2. The overall is
proportional to (−Jxy/2)3 and is negative, causing a negative sign
problem for the antiferromagnet with Jxy > 0.

Since Monte Carlo sampling requires positive weights
P (c) > 0, the standard way of dealing with the negative
weights of the frustrated quantum magnets is to sample
with respect to the unfrustrated system by using the absolute
values of the weights |P (c)| and to assign the sign, s(c) ≡
sign P (c) to the quantity being sampled:

〈m〉 =
∑

c
m(c)P (c)∑
c
P (c)

=
∑

c
m(c)s(c)|P (c)|

/∑
c
|P (c)|∑

c
s(c)|P (c)|

/∑
c
|P (c)|

≡ 〈ms〉′
〈s〉′ (39)

While this allows Monte Carlo simulations to be per-
formed, the errors increase exponentially with the particle
number N and the inverse temperature β. To see this, con-
sider the mean value of the sign 〈s〉 = Z/Z′, which is just
the ratio of the partition functions of the frustrated system
Z = ∑

c p(c) with weights p(c) and the unfrustrated sys-
tem used for sampling with Z′ = ∑

c |p(c)|. As the partition
functions are exponentials of the corresponding free energies,
this ratio is an exponential of the differences �f in the free
energy densities:〈s〉 = Z/Z′ = exp(−βN�f ). As a conse-
quence, the relative error �s/〈s〉 increases exponentially with
increasing particle number and inverse temperature:

�s

〈s〉 =
√(〈s2〉 − 〈s〉2

)
/M

〈s〉 =
√

1 − 〈s〉2
√

M〈s〉 ∼ exp(βN�f )√
M

(40)

Here M is the number of uncorrelated Monte Carlo
samples. Similarly the error for the numerator increases
exponentially and the time needed to achieve a given relative
error scales exponentially in N and β.

It was recently shown that the negative sign problem is
NP-hard, implying that almost certainly no solution for this
exponential scaling problem exists (Troyer and Wiese, 2005).
Given this exponential scaling of QMC simulations for
frustrated quantum magnets, the QMC method is best suited
for nonfrustrated magnets and we will restrict ourselves to
these sign problem free cases in the following.

4.2.4 Measurements

Physical observables that can be measured in both the path-
integral representation and the SSE representation include,
next to the energy and the specific heat, any expectation value
or correlation function that is diagonal in the basis set {|i〉}.
This includes the uniform or staggered magnetization in the
z direction, the equal time correlation functions and structure
factor of the z-spin components and the z-component uniform
and momentum-dependent susceptibilities.

Off-diagonal operators, such as the magnetization in the
x- or y-direction, or the corresponding correlation functions,
structure factors, and susceptibilities require an extension of
the sampling to include configurations with broken world-
line segments. These are hard to measure in local update
schemes (described in section 4.3) unless open world-line
segments are already present when the Hamiltonian does
not conserve magnetization, but are easily measured when
nonlocal updates are used (see section 4.4 and 4.5).

The spin stiffness ρs can be obtained from fluctuations
of the winding numbers of the world lines (Pollock and
Ceperley, 1987), a measurement which obviously requires
nonlocal moves that can change these winding numbers.

Dynamical quantities are harder to obtain, since the
QMC representations only give access to imaginary-time
correlation function. With the exception of measurements
of spin gaps, which can be obtained from an exponential
decay of the spin-spin correlation function in imaginary time,
the measurement of real-time or real-frequency correlation
functions requires an ill-posed analytical continuation of
noisy Monte Carlo data, for example using the Maximum
Entropy Method (Jarrell and Gubernatis, 1996; von der
Linden, 1995; Beach, 2004).

Thermodynamic quantities that cannot be expressed as the
expectation value of an operator, such as the free energy or
entropy cannot be directly measured but require an extended
ensemble simulation, discussed in section 4.6.

4.3 Local updates

To perform a QMC simulation on the world-line represen-
tation, update moves that are ergodic and fulfill detailed
balance are required. The simplest types of moves are again
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(a) (b)

Figure 4. Examples of local updates of world lines. (a) a pair of
exchange processes can be inserted or removed; (b) an exchange
process is moved in imaginary time.

local updates. Since magnetization conservation prohibits the
breaking of world lines, the local updates need to move world
lines instead of just changing local states as in a classical
model.

A set of local moves for a one-dimensional spin-1/2 model
is shown in Figure 4 (Suzuki, Miyashita and Kuroda, 1977;
Prokofev, Svistunov and Tupitsyn, 1996). The two required
moves are the insertion and removal of a pair of exchange
processes (Figure 4a) and the shift in time of an exchange
process (Figure 4b). Slightly more complicated local moves
are needed for higher-dimensional models, for example, to
allow world lines to wind around elementary squares in a
square lattice (Makivić and Ding, 1991). Since these local
updates cannot change global properties, such as the number
of world lines (the magnetization) or their spatial winding,
they need to be complemented with global updates (Makivić
and Ding, 1991).

While the local update world-line and SSE algorithms
enable the simulation of quantum systems they suffer from
critical slowing down at second order phase transitions. Even
worse, changing the spatial and temporal winding numbers
usually has an exponentially small acceptance rate. While
the restriction to zero spatial winding can be viewed as a
boundary effect, changing the temporal winding number and
thus the magnetization is essential for simulations at fixed
magnetic fields.

4.4 Cluster updates and the loop algorithm

The ergodicity problems of purely local updates and the
critical slowing down observed also in quantum systems
require the use of cluster updates. The loop algorithm
(Evertz, Lana and Marcu, 1993) and its continuous-time
version (Beard and Wiese, 1996), are generalizations of
the classical cluster algorithms (Swendsen and Wang, 1987;
Wolff, 1989) to quantum systems. They not only solve the
problem of critical slowing down, but can also change the
magnetization and winding numbers efficiently, avoiding the
ergodicity problem of local updates. While the loop algorithm
was initially developed for the path-integral representation, it
can also be applied to simulations in the SSE representation.

Since there exist extensive recent reviews of the loop
algorithm (Evertz, 2003; Kawashima and Harada, 2004),

we will only outline the loop algorithm here. It constructs
clusters of spins, similar to the Swendsen and Wang (1987)
clusters of the classical Ising model (section 3.2). Upon
applying the cluster algorithms to world lines in QMC we
have to take into account that – in systems with conserved
magnetization – the world lines may not be broken. This
implies that a single spin cannot be flipped by itself, but, as
shown in Figure 5, connected world-line segments of spins
must be flipped together. These world-line segments form a
closed loop, hence the name ‘loop algorithm’.

While the loop algorithm was originally developed only
for spin-1/2 models it has been generalized to higher spin
models (Kawashima and Gubernatis (1994, 1995); Harada,
Troyer and Kawashima, 1998; Todo and Kato, 2001) and
anisotropic spin models (Kawashima, 1996). Since an effi-
cient open-source implementation of the loop algorithm is
available (see section 4.7) we will not discuss further algo-
rithmic details but refer interested readers to the reviews
(Evertz, 2003; Kawashima and Harada, 2004).

4.5 Worm and directed-loop updates

4.5.1 The loop algorithm in a magnetic field

As successful as the loop algorithm is, it is restricted – as
most classical cluster algorithms – to models with spin-
inversion symmetry. Terms in the Hamiltonian, which break
this spin-inversion symmetry, such as a magnetic field, are
not taken into account during loop construction. Instead, they
enter through the acceptance rate of the loop flip, which can
be exponentially small at low temperatures.

As an example consider two S = 1/2 quantum spins in a
magnetic field:

H = JS1S2 − gµBh(Sz
1 + Sz

2) (41)

In a field gµBh = J , the singlet state 1/
√

2(| ↑↓〉 − | ↓↑〉)
with energy −3/4J is degenerate with the triplet state
| ↑↑〉 with energy 1/4J − h = −3/4J . As illustrated in
Figure 6(a), we start from the triplet state | ↑↑〉 and propose

(a) (b) (c)

Figure 5. A loop cluster update. (a) world-line configuration before
the update, where the world line of an up-spin is drawn as a
thick line and that of a down-spin as a thin line; (b) world-line
configuration and a loop cluster (grey line); (c) the world-line
configurations after all spins along the loop have been flipped.
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(a) (b) (c) (d)

Figure 6. A loop update for two antiferromagnetically coupled
spins in a magnetic field with J = gµBh. (a) Starting from the
triplet configuration | ↑↑〉, (b) a loop is constructed, proposing
to go to (c), the intermediate configuration | ↑↓〉, which has an
exponentially small acceptance rate, and finally into configurations
like (d) which represent the singlet state 1/

√
2(| ↑↓〉 − | ↓↑〉). As

in the previous figure, a thick line denotes an up-spin and a thin
line a down-spin.

a loop shown in Figure 6(b). The loop construction rules,
which ignore the magnetic field, propose to flip one of
the spins and go to the intermediate configuration | ↑↓〉
with energy −1/4J shown in Figure 6(c). This move costs
potential energy J/2 and thus has an exponentially small
acceptance rate exp(−βJ/2). Once we accept this move,
immediately many small loops are built, exchanging the spins
on the two sites, and gaining exchange energy J/2 by going
to the spin singlet state. A typical world-line configuration for
the singlet is shown in Figure 6d). The reverse move has the
same exponentially small probability, since the probability to
reach a world-line configuration without any exchange term
(Figure 6c) from a spin singlet configuration (Figure 6d) is
exponentially small.

This example clearly illustrates the reason for the exponen-
tial slowdown: in the first step, we lose all potential energy,
before gaining it back in exchange energy. A faster algorithm
could thus be built if, instead of doing the trade in one big
step, we could trade potential with exchange energy in small
pieces, which is exactly what the worm algorithm does.

4.5.2 The worm algorithm

The worm algorithm (Prokofev, Svistunov and Tupitsyn,
1998) works in an extended configuration space, where in
addition to closed world-line configurations one open world-
line fragment (the ‘worm’) is allowed. Formally, this is done
by adding a source term to the Hamiltonian, which for a spin
model is

Hworm = H − η
∑

i

(S+
i + S−

i ) (42)

This source term allows world lines to be broken with a
matrix element proportional to η. The worm algorithm now

(a) (b) (c) (d)

S+

S–

S+

S–

(e)

S+

S–

Figure 7. A worm update for two antiferromagnetically coupled
spins in a magnetic field with J = gµBh. (a) starting from the
triplet configuration | ↑↑〉 a worm is constructed in (b) by inserting
a pair of S+ and S− operators. (c) these ‘worm end’ operators are
then moved by local updates until (d) they meet again, when a move
to remove them is proposed, which leads to the closed world-line
configuration (e). As in the two previous figures a thick line denotes
an up-spin and a thin line a down-spin.

proceeds as follows: a worm (i.e., a world-line fragment) is
created by inserting a pair (S+

i , S−
i ) of operators at nearby

times, as shown in Figure 7(a) and (b). The ends of this
worm are then moved randomly in space and time (Figure
7c), using local Metropolis or heat bath updates until the
two ends of the worm meet again as in Figure 7(d). Then an
update which removes the worm is proposed, and if accepted
we are back in a configuration with closed world lines only,
as shown in Figure 7(e).

This algorithm is straightforward, consisting just of local
updates of the worm ends in the extended configuration space
but it can perform nonlocal changes. A worm end can wind
around the lattice in the temporal or spatial direction and in
this way change the magnetization and winding number.

In contrast to the loop algorithm in a magnetic field, where
the trade between potential and exchange energy is done by
first losing all of the potential energy, before gaining back
the exchange energy, the worm algorithm performs this trade
in small pieces, never suffering from an exponentially small
acceptance probability.

While it is not as efficient as the loop algorithm in zero
magnetic field (the worm movement follows a random walk
while the loop algorithm can be interpreted as a self-avoiding
random walk), the big advantage of the worm algorithm is
that it remains efficient in the presence of a magnetic field.

4.5.3 The directed-loop algorithm

Algorithms with a similar basic idea as the worm algorithm in
the path-integral representations are the operator-loop update
(Sandvik, 1999; Dorneich and Troyer, 2001) and the directed-
loop algorithms (Syljuasen and Sandvik, 2002) which can be
formulated in both an SSE and a world-line representation.
Like the worm algorithm, these algorithms create two world-
line discontinuities, and move them around by local updates.
The main difference compared to the worm algorithm is that
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here these movements do not follow an unbiased random
walk but have a preferred direction – always trying to move
away from the last change, which further speeds up the
simulations.

4.6 Extended ensemble methods and parallel
tempering

Extended ensemble methods, such as the multicanonical
ensemble, Wang-Landau sampling or parallel tempering can
also be generalized to quantum systems (Troyer, Wessel
and Alet, 2003, 2004). Similar to classical systems, they
accelerate the tunneling through free energy barriers and
thus speed up simulations at first order phase transitions.
Note, however, that frustrated quantum spin systems gener-
ally suffer from the negative sign problem. Since the neg-
ative sign problem is a property of the representation and
not the ensemble or the updates, the scaling will remain
exponential even when using improved sampling algorithms,
in contrast to classical simulations where extended ensem-
ble algorithms and parallel tempering could speed up the
simulations.

The main advantage of generalized ensemble simulations
in quantum systems is thus, next to speeding up simula-
tions of first order phase transitions, the ability to directly
calculate the density of states and from this to calculate
thermodynamic properties such as the entropy or the free
energy that are not directly accessible in canonical ensemble
simulations.

4.7 Open-source implementations: the ALPS
project

The loop, worm, and directed-loop algorithms can be used
for the simulation of a wide class of quantum magnets.
They are of interest not only to theoretical physicists,
but also to experimentalists who want to fit experimental
measurements to theoretical models. The wide applicability
of these methods has led to the publication of open-source
versions of these algorithms as part of the ALPS project
(Algorithms and Libraries for Physics Simulations) (Alet
et al., 2005) on the web page http://alps.comp-phys.org/.

5 DETERMINENTAL ALGORITHMS

In this chapter, we review the basic concepts involved
in the formulation of various forms of auxiliary field – or
determinental – QMC algorithms. Auxiliary field methods
are based on a Hubbard-Stratonovich (HS) decomposition of

the two-body interaction term thereby yielding a functional
integral expression for the partition function.

Tr
[
e−β(H−µN)

] ∝
∫

d(i, τ )e−S[φ(i,τ)] (43)

Here, i runs over all lattice sites and τ from 0 to β. For
a fixed HS field, (i, τ), one has to compute the action,
S[(i, τ)], corresponding to a problem of noninteracting
electrons in an external space and imaginary time-dependent
field. The required computational effort depends on the
formulation of the algorithm. In the Blankenbecler Scalapino
Sugar (BSS) (Blankenbecler, Scalapino and Sugar, 1981)
approach, appropriate for lattice models such as the Hubbard
Hamiltonian, it scales as βN3. In the Hirsch-Fye approach
(Hirsch and Fye, 1986), appropriate for impurity problems,
it scales as β3N3

imp where Nimp corresponds to the number
of impurity or correlated sites. Having solved for a fixed HS
field, we have to sum over all possible fields. This is done
stochastically with the Monte Carlo method.

In comparison to loop algorithms, auxiliary field methods
are slow. However, the attractive point of the approach lies
in the fact that the sign problem is absent in many nontrivial
cases where the loop algorithm fails. Here, we review
different formulations appropriate for lattice and impurity
problems.

5.1 Lattice methods

To describe the algorithm, we concentrate on the Hubbard
model

H = Ht + HU with

Ht = −t
∑

〈�i, �j〉,σ
c

†
�i,σ c �j,σ and

HU = U
∑

�i

(
n�i,↑ − 1/2

) (
n�i,↓ − 1/2

)
(44)

and show how to compute

〈O〉 = Tr
[
e−β(H−µN)O

]
Tr

[
e−β(H−µN)

] (45)

for an arbitrary observable O .

5.1.1 Formulation of the partition function

We first use the Trotter decomposition to separate the single
body Hamiltonian Ht from the two-body interaction term in
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the imaginary-time propagation.

Z = Tr
[
e−β(H−µN)

] = Tr
[(

e−�τHU e−�τHt
)m

]
+ O

(
�τ 2)

(46)
Here, we have included the chemical potential in a redefi-
nition of Ht , and m�τ = β. The systematic error of order
�τ 2 will be omitted in the following. There are many pos-
sible ways of decoupling the Hubbard interaction and the
efficiency as well as the severity of the sign problem will
depend upon this choice. The standard procedure is to use
a discrete HS transformation introduced by Hirsch in which
the field takes two values (Ising spin) and couples to the
z-component of the magnetization.

e
−�τU

∑
�i
(
n�i,↑−1/2

)(
n�i,↓−1/2

)
= C

∑
s1,...,sN=±1

e
α

∑
�i s�i

(
n�i,↑−n�i,↓

)

(47)
where cosh(α) = exp (�τU/2) and on an N -site lattice, the
constant C = exp (�τUN/4) /2N . This equation is readily
verified for a single site where the Hilbert space is spanned
by the four states: | ↑〉, | ↓〉, | ↑↓〉, and |0〉.

To simplify the notation we introduce the index x = (�i, σ )

to define:

Ht =
∑
x,y

c†
xTx,ycy ≡ �c†T �c and

α
∑

�i
s�i

(
n�i,↑ − n�i,↓

)
=

∑
x,y

c†
xV (�s)x,ycy ≡ �c†V (�s)�c (48)

We furthermore define the imaginary-time propagators:

U�s(τ 2, τ 1) =
n2∏

n=n1+1

e�c†V (�sn)�ce−�τ �c†T �c and

B�s(τ 2, τ 1) =
n2∏

n=n1+1

eV (�sn)e−�τT (49)

where, n1�τ = τ 1 and n2�τ = τ 2

For a given HS configuration of Ising spins we can now
integrate out the fermionic degrees of freedom to obtain:

Z = Cm
∑

�s1,···,�sm
Tr [U�s(β, 0)]

= Cm
∑

�s1,···,�sm
det [1 + B�s(β, 0)] (50)

5.1.2 The single particle Green function

One of the big advantages of the auxiliary field approach is
its ability of measuring arbitrary observables. This is based
on the fact that for a given HS field we have to solve

a problem of noninteracting fermions in the external field.
Hence Wick’s theorem holds for a single HS configuration.
Here, we concentrate on equal time observables, show how to
compute Green functions, and finally demonstrate the validity
of Wick’s theorem within the present formulation.

In general, we have to evaluate:

Tr
[
e−βHO

]
Tr

[
e−βH

] =
∑

�s
P�s〈O〉�s (51)

where

P�s = det (1 + B�s(β, 0))∑
�s det (1 + B�s(β, 0))

,

〈O〉�s = Tr [U�s(β, τ)OU�s(τ , 0)]

Tr [U�s(β, 0)]

Here, we measure the observable at time τ . Single body
observables, O = �c†A�c are given by:

〈O〉�s = ∂ ln Tr
[
U�s(β, τ )eηOU�s(τ , 0)

]
∂η

∣∣∣∣∣
η=0

= ∂ ln det
[
1 + B�s(β, τ)eηAB�s(τ , 0)

]
∂η

∣∣∣∣∣
η=0

= ∂Tr ln
[
1 + B�s(β, τ )eηAB�s(τ , 0)

]
∂η

∣∣∣∣∣
η=0

= Tr
[
B�s(τ , 0)(1 + B�s(β, 0))−1B�s(β, τ)A

]
= Tr

[(
1 − (1 + B�s(τ , 0)B�s(β, τ))−1)A

]
(52)

In particular the Green function reads:

Gx,y(τ , τ) = 〈cxc
†
y〉�s = (1 + B�s(τ , 0)B�s(β, τ))−1

x,y (53)

5.1.3 Wick’s theorem

We now show that any multipoint correlation function
decouples into a sum of products of the above defined Green
functions. First, we define the cumulants:

〈〈On · · · O1〉〉�s

= ∂n ln Tr
[
U�s(β, τ )eηnOn · · · eη1O1U�s(τ , 0)

]
∂ηn · · · ∂η1

∣∣∣∣∣
η1···ηn=0

with Oi = �c†A(i)�c (54)
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The following rule, which may be proven by induction
(Tsvelik, 1995), emerges:

〈On · · ·O1〉�s = 〈〈On · · ·O1〉〉�s

+
n∑

j=1

〈〈On · · · Ôj · · ·O1〉〉�s〈〈Oj 〉〉�s

+
∑
j>i

〈〈On · · · Ôj · · · Ôi · · ·O1〉〉�s〈〈OjOi〉〉�s

+ · · · + 〈〈On〉〉�s · · · 〈〈O1〉〉�s (55)

where Ôj means that the operator Oj has been omitted from
the product.

We can compute the cumulants order by order to see that
they depend only on the single particle Green function. For
instance, it is easy to show that

〈〈O2O1〉〉�s = Tr
(
G�s(τ , τ )A(2)G�s(τ , τ )A(1)

)
with G = 1 − G (56)

or that

〈〈O3O2O1〉〉�s
= Tr

(
G�s(τ , τ )A(3)G�s(τ , τ )A(2)G�s(τ , τ )A(1)

)
−Tr

(
G�s(τ , τ )A(3)G�s(τ , τ )A(1)G�s(τ , τ )A(2)

)
(57)

Hence, with equation (55) we have shown that any n-point
correlation function may be calculated from the knowledge
of the Green function.

5.1.4 Imaginary-time-displaced Green functions.

Imaginary-time-displaced correlation yield important infor-
mation. On one hand they may be used to obtain spin and
charge gaps (Assaad and Imada, 1996b; Assaad, 1999), as
well quasiparticle weights (Brunner, Assaad and Muramatsu,
2000). On the other hand, with the use of the Maximum
Entropy method (Jarrell and Gubernatis, 1996; von der Lin-
den, 1995) dynamical properties such as spin and charge
dynamical structure factors, optical conductivity, and single
particle spectral functions may be computed. Those quantities
offer the possibility of direct comparison with experiments,
such as photoemission, neutron scattering, and optical mea-
surements.

Since there is again a Wick’s theorem for time displaced
correlation functions, it suffices to compute the single particle
Green function for a given HS configuration. For a given HS

field, we evaluate:

G�s(τ 1, τ 2)x,y = 〈T cx(τ 1)c
†
y(τ 2)〉�s

=
{ 〈cx(τ 1)c

†
y(τ 2)〉�s if τ 1 ≥ τ 2

−〈c†
y(τ 2)cx(τ 1)〉�s if τ 1 < τ 2

(58)

where T corresponds to the time ordering. Thus for τ 1 >

τ 2G�s(τ 1, τ 2)x,y reduces to

〈cx(τ 1)c
†
y(τ 2)〉�s

= Tr
[
U�s(β, τ 1)cxU�s(τ 1, τ 2)c

†
yU�s(τ 2, 0)

]
Tr [U�s(β, 0)]

=
Tr

[
U�s(β, τ 2)U

−1
�s (τ 1, τ 2)cxU�s(τ 1, τ 2)c

†
yU�s(τ 2, 0)

]
Tr [U�s(β, 0)]

(59)
Evaluating U−1(τ 1, τ 2)cxU�s(τ 1, τ 2) boils down to the cal-
culation of

cx(τ ) = eτ �c†A�ccxe
−τ �c†A�c ≡ (

e−A�c)
x

We can use the above equation successively to obtain:

U−1
�s (τ 1, τ 2)cxU�s(τ 1, τ 2) = (B�s(τ 1, τ 2)�c)x (60)

We can pull out B from the trace in equation (59) to obtain:

G�s(τ 1, τ 2)x,y = 〈cx(τ 1)c
†
y(τ 2)〉�s

= [B�s(τ 1, τ 2)G�s(τ 2, τ 2)]x,y τ 1 > τ 2 (61)

where G�s(τ 2, τ 2) is the equal time Green function computed
previously. A similar calculation will yield for τ 2 > τ 1

G�s(τ 1, τ 2)x,y = −〈c†
y(τ 2)cx(τ 1)〉�s

= −
[
(1 − G�s(τ 1, τ 1)) B−1

�s (τ 2, τ 1)
]
x,y

(62)

5.1.5 Local updates

Since an exact enumeration of all HS field configuration
is out of reach on large lattice sizes, we sample the most
relevant ones with the Monte Carlo method. The problem at
hand is very similar in nature to the Ising model, presented
in section 3. The important difference, however, is that the
action is nonlocal. Under a single spin-flip we will have to
compute the ratio

R = P�s′

P�s
= det [1 + B�s′(β, 0)]

det [1 + B�s(β, 0)]
(63)
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to decide if we accept the proposed update or not. Here �s
and �s ′ differ only at one point in space and imaginary time,
�i, n.

s ′
�i′,n′ =

{
s�i′,n′ if �i ′ 	= �i and n′ 	= n

−s�i,n if �i ′ = �i and n′ = n
(64)

The calculation of R boils down to computing the ratio
of two determinants. For the Hubbard interaction with HS
transformation of equation (47) only the matrix V (�sn) will
be affected by the move. Hence, with

eV ( �s′
n) =


1 +

(
eV ( �s′

n)e−V (�sn) − 1
)

︸ ︷︷ ︸
�


 eV (�sn) (65)

we have:

B�s′(β, 0) = B�s(β, τ) (1 + �) B�s(τ , 0) (66)

The ratio is then given by:

R = det [1 + B�s(β, τ )(1 + �)B�s(τ , 0)]

det [1 + B�s(β, 0)]

= det
[
1 + �B�s(τ , 0) (1 + B�s(β, 0))−1 B�s(β, τ )

]
= det

[
1 + �

(
1 − (1 + B�s(τ , 0)B�s(β, τ))−1)]

= det
[
1 + �G�s(τ , τ )

]
(67)

Here we have used the fact that det [1 + AB] =
det [1 + BA] for arbitrary rectangular matrices. Hence, the
Green function determines the Monte Carlo dynamics.

Having calculated the ratio R for a single spin-flip one may
now decide stochastically within, for example, a Metropolis
scheme if the move is accepted or not. In case of acceptance,
we have to update the Green function since this quantity is
required at the next step.

Since in general the matrix � has only a few non-
zero entries, it is convenient to use the Sherman-Morrison
formulas (Press, Teukolsky, Vetterling and Flannery, 1992)
to update the Green function. This formula states that:

(A + �u ⊗ �v)−1 = A−1 −
(
A−1 �u) ⊗ (�vA−1

)
1 + �v • A−1 �u (68)

where A is a N × N matrix, �u, �v N-dimensional vectors with
tensor product defined as (�u ⊗ �v)x,y = �ux �vy .

To show how to use the above formula for the updating
of the Green function, let us first assume that matrix � has

only one nonvanishing entry: �x,y = δx,zδy,z′η(z,z′).

G�s′(τ )

= [1 + (1 + �)B�s(τ , 0)B�s(β, τ)]−1

= B−1
�s (β, τ ) [1 + B�s(β, τ)(1 + �)B�s(τ , 0)]−1 B�s(β, τ )

= B−1
�s (β, τ )

[
1 + B�s(β, τ)B�s(τ , 0) + �u ⊗ �v]−1

B�s(β, τ)

(69)
where

�ux = [B�s(β, τ )]x,z η(z,z′) and �vx = [B�s(τ , 0)]z′,x (70)

Using the Sherman-Morrison formula for inverting 1 +
B�s(β, τ)B�s(τ , 0) + �u ⊗ �v yields

[G�s′(τ , τ)]x,y

= [G�s(τ , τ )]x,y

− [G�s(τ , τ )]x,z η(z,z′) [1 − G�s(τ , τ )]z′,y
1 + η(z,z′) [1 − G�s(τ , τ )]z′,z

(71)

In the above, we have assumed that the matrix � has only a
single non-zero entry. In general, it is convenient to work on
a basis where � is diagonal with n nonvanishing eigenvalues.
One will then iterate the above procedure n-times to update
the Green function.

In principle, we now have all the elements required to carry
out a QMC simulation. The space we have to sample is that of
Nm Ising spins. Here N is the number of lattice sites and m is
the number of imaginary-time slices. It is convenient to adopt
a sequential updating scheme so as to sweep from time slice
τ = 0 to τ = β. After initially computing the Green function
on time at τ = 0, we iteratively repeat the following steps:

1. Given the Green function on time slice τ , we sequen-
tially go through all the spins on this time slice. For each
Ising spin we compute R and flip the spin with probabil-
ity min[1, R] or the heat bath probability R/(1 + R). If
accepted we update the Green function, and if rejected
we keep the old Green function and old Ising spin
configuration.

2. Perform measurements.
3. Propagate the Green function from time slice τ to times

slice τ + 1 using the equation

G�s(τ + 1, τ + 1) = B�s(τ + 1, τ )G�s(τ , τ)B−1
�s (τ + 1, τ )

(72)
4. Iterate the procedure.

It is to be noted that the implementation of the above
algorithm suffers from numerical instabilities at low temper-
atures. One can, however, stabilize the code by avoiding the
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mixing of different scales. An account of those numerical sta-
bilization techniques can be found in (Assaad, 2002b; Loh
and Gubernatis, 1992).

5.2 The sign problem

One of the big advantages of the auxiliary field method is
that, one can use symmetries to show explicitly that the sign
problem does not occur. In the case of the half-filled Hubbard
model on a bipartite lattice, particle-hole symmetry ensures
that the statistical weight is always positive. The usual proof
is based on the factorization of the determinant. Consider the
HS transformation of equation (47), then:

det (1 + B(β, 0)) = det
(
1 + B↑(β, 0)

)
det

(
1 + B↓(β, 0)

)
(73)

With the particle-hole transformation for a two-dimensional
lattice

P−1c
†
�i P = (−1)ix+iy c�i (74)

for spinless fermions and ht = ∑
�i, �j c

†
�i T�i, �j c �j we have:

det
(
1 + B↑(β, 0)

) = Tr

[∏
n

e
α

∑
�i s�i,nn�i e−�τht

]

= Tr

[∏
n

e
α

∑
�i s�i,nPn�iPe−�τP−1htP

]
(75)

= Tr

[∏
n

e
α

∑
�i s�i,n(1−n�i )e−�τht

]

= e
α

∑
�i,n s�i,n det

(
1 + B↓(β, 0)

)
(76)

Here, we assumed that P−1htP = ht which restricts us
to half-filling. Thus the symmetry locks together the sign of
both determinants so that no sign problem occurs.

There are more general ways of showing the absence of the
sign problem (Wu and Zhang, 2005) which are independent
on the factorization of the determinant. If there exists an
antiunitary transformation T such that:

T −1HtT = Ht T −1�c†V (�sn)�cT = �c†V (�sn)�c and

T 2 = −1 (77)

the eigenvalues of the matrix 1 + B(β, 0) always occur in
complex conjugate pairs such that:

det (1 + B(β, 0)) =
∏

i

|λi |2 (78)

Hence, no sign problem occurs.

5.3 The Hirsch-Fye impurity algorithm

This algorithm is used to solve impurity problems such as
the Kondo and Anderson models. The strong point of the
algorithm is that the CPU time is independent of the volume
of the system thus allowing one to carry out simulations
directly in the thermodynamic limit. The price, however,
is a β3 scaling of the CPU time where β is the inverse
temperature. The Hirsch-Fye algorithm is extensively used
in the framework of dynamical mean-field theories (DMFT)
which become exact in the limit of infinite dimensions.
In this limit, the Hubbard model maps onto the single
impurity Anderson model (SIAM) supplemented with a self-
consistency loop. At each iteration step, an Anderson model
has to be solved and this is carried out with the Hirsch-
Fye algorithm (Jarrell, 1992; Georges, Kotliar, Krauth and
Rozenberg, 1996). In this chapter, we will concentrate on
the Anderson model defined as:

H − µN = H0 + HU with

H0 =
∑
�k,σ

(
ε(�k) − µ

)
c

†
�k,σ

c�k,σ

+ V√
N

∑
�k,σ

c
†
�k,σ fσ + f †

σ c�k,σ + εf

∑
σ

f †
σ fσ ,

HU = U
(
f

†
↑f↑ − 1/2

) (
f

†
↓f↓ − 1/2

)
(79)

We have shown (see equation (50)) that the grand canon-
ical partition function may be written as:

Z ≡ Tr
[
e−β(H−µN)

]
=

∑
�s

[∏
σ

det
[
1 + Bσ

mBσ
m−1 · · · Bσ

1

]]
(80)

with m�τ = β.
To define the matrices Bσ

n , we will label all the orbitals
(conduction and impurity) with the index �i and use the
convention that �i = 0 denotes the f -orbital and �i = 1 · · ·N
the conduction orbitals. We will furthermore define the
fermionic operators:

a
†
�i,σ =

{
f †

σ if �i = 0
c

†
�i,σ otherwise

(81)

such that the noninteracting term of the Anderson model
takes the form:

H0 =
∑
σ

Hσ
0 , Hσ

0 =
∑
�i, �j

a
†
�i,σ (h0)�i, �j a �j,σ

(82)
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Using the HS transformation of equation (47), the B

matrices read:

Bσ
n = eV σ

n e−�τh0

(V σ
n )�i, �j = δ�i, �j δ�i,0ασsn, cosh(α) = e�τU/2 (83)

The determinant in a given spin sector may be written as

det
[
1 + Bσ

mBσ
m−1 · · ·Bσ

1

] = det Oσ with (84)

Oσ =




1 0 . . 0 Bσ
1

−Bσ
2 1 0 . . 0

0 −Bσ
3 1 . . 0

. 0 −Bσ
4 . . .

. . 0 . . .

. . . . . .

0 . . 0 −Bσ
m 1




(85)

One can verify that:

(Oσ )−1 ≡ gσ

=




Gσ(1, 1) Gσ (1, 2) . . Gσ (1, m)

Gσ (2, 1) Gσ (2, 2) . . Gσ (2, m)

. . . . .

Gσ (m, 1) Gσ (m, 2) . . Gσ (m, m)



(86)

where Gσ (n1, n2) are the time displaced Green functions:
defined in Equation (61) and (62). Given a HS configuration
�s and �s ′ and associated matrices

V σ =




V σ
1 0 . . . 0
0 V σ

2 0 . . 0
0 0 V σ

3 0 . 0
. . . . . .

0 . . . 0 V σ
m


 (87)

and V ′σ the Green functions gσ and g′σ satisfy the following
Dyson equation:

gσ = g′σ + g′σ�(1 − gσ ) with �σ = (eV ′σ
e−V σ − 1)

(88)
To demonstrate the above, we consider

Õσ = e−V σ
Oσ

=




e−V σ
1 0 . . 0 e−�τh0

−e−�τh0 e−V σ
2 0 . . 0

0 −e−�τh0 e−V σ
3 . . 0

. 0 −e−�τh0 . . .

. . 0 . . .

. . . . . .

0 . . 0 −e−�τh0 e−V σ
m




(89)

so that (omitting the spin index σ )

g̃ ≡ Õ−1 = [Õ ′ + Õ − Õ ′︸ ︷︷ ︸
≡e−V −e−V ′

]−1

= g̃′ − g̃′
(
e−V − e−V ′)

g̃ (90)

The above equation follows from the identity: 1
A+B

=
1
A

− 1
A
B 1

A+B
. Substitution, g̃ = geV , leads to the Dyson

equation (88).
The above Dyson equation is the central identity in

the Hirsch-Fye algorithm: all quantities required for the
algorithm may be derived directly from this equality. An
implementation of the algorithm involves two steps.

5.3.1 Calculation of the impurity Green function for a
given HS configuration

The starting point of the algorithm is to compute the green
function for a random HS configuration of Ising spins �s ′. We
will only need the Green function for the impurity f-site. Let
x = (τ x,�ix) with Trotter index τx and orbital �ix . Since

(eV ′
e−V − 1)x,y = (eV ′

e−V − 1)x,xδx,yδ�ix ,0 (91)

we can use the Dyson equation only for the impurity Green
function:


gσ

f,f ′ = g′σ
f,f ′ +

∑
f ′′

g′σ
f,f ′′�σ

f ′′,f ′′(1 − gσ )f ′′,f ′


 (92)

with indices f ≡ (τ , 0) running from 1 · · ·m. Hence, the
m × m impurity Green function matrix,

g
I,σ

f,f ′ = gσ
f,f ′ (93)

satisfies the Dyson equation:

gI,σ = g′I,σ + g′I,σ�I,σ (1 − gI,σ ) with

�
I,σ

f,f ′ = �σ
f,f ′ (94)

For V = 0, gI is nothing but the impurity Green function
of the noninteracting Anderson model which may readily be
computed. Thus using the Dyson equation, we can compute
the Green function g′I for an arbitrary HS configuration �s ′ at
the cost of a m × m matrix inversion. This involves a CPU
cost scaling as m3 or equivalently β3.
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5.3.2 Updating

At this point we have computed the impurity Green function
for a given HS configuration �s. Adopting a single-spin flip
algorithm we will propose the configuration �s ′ which stems
from configuration �s with one flipped spin at time f1.

We accept this change with probability

R =
∏
σ

Rσ with Rσ = det
[
1 + B ′σ

mB ′σ
m−1 · · ·B ′σ

1

]
det

[
1 + Bσ

mBσm − 1 · · · Bσ
1

]
= det

[
gσ (g′σ )−1] = det

[
1 + �σ

(
1 − gσ

)]
(95)

The last identity follows from the Dyson equation
to express gσ as gσ = g′σ [

1 + �σ (1 − gσ )
]
. Since �s

and �s ′ differ only by one entry the matrix �σ has
one nonzero matrix element: �σ

f1,f1
. Hence, Rσ = 1 +

�σ
f1,f1

(
1 − gσ

f1,f1

)
. Since the impurity Green function gI,σ

is at hand, we can readily compute R.
If the move (spin-flip) is accepted, we will have to

recalculate (update) the impurity Green function. From the
Dyson equation (94), we have:

g′I,σ = gI,σ
[
1 + �I,σ

(
1 − gI,σ

)]−1
(96)

To compute
[
1 + �I,σ

(
1 − gI,σ

)]−1
we can use the

Sherman-Morrison formulas (68) to obtain:

g′I,σ
f,f ′ = g

I,σ

f,f ′ + g
I,σ
f,f1

�σ
f1,f1

(gI,σ − 1)f1,f ′

1 + (1 − gI,σ )f1,f1�
σ
f1,f1

(97)

Thus, the updating of the Green function under a single
spin-flip is an operation which scales as m2. Since for a single
sweep we have to visit all spins, the computational cost of a
single sweep scales as m3.

By construction, the Hirsch-Fye algorithm is free from
numerical stabilization problems. Furthermore, the absence
of the sign problem has recently been proven for the
single impurity Anderson model (Yoo et al., 2004). Clearly
the attractive feature of the Hirsch-Fye impurity algorithm
is that the algorithm may be formulated directly in the
thermodynamic limit. This is not possible within the lattice
formulation of the auxiliary field QMC method. Within this
approach the dimension of the matrices scale as the total
number of orbitals, N , and the CPU time for a single sweep
as N3β. The Hirsch-Fye algorithm is not limited to impurity
models. However, when applied to lattice models, such as
the Hubbard model, it is not efficient since the CPU time
will scale as (βN)3.

5.4 Projective methods

Each of the above finite-temperature methods has a projective
counterpart to access ground state properties. We can start
from a trial wave function |�T 〉 in which we can embed prior
knowledge of the ground state, |�0〉 such as symmetries or
overlaps. Assuming that the trial wave is nonorthogonal to
the ground state,

〈�0|O|�0〉
〈�0|�0〉 = lim

β→∞
〈�T |e−βH Oe−βH |�T 〉

〈�T |e−2βH |�T 〉 (98)

The extrapolation to infinite values of the projection
parameter, β, is done numerically. A comparison of both
algorithms for a SIAM is shown in Figure 8. We note that
recently more efficient continuous time algorithms have been
developed (Rubtsov, Savkin and Lichtenstein, 2005; Werner
et al., 2006; Werner and Millis, 2006) and refer the interested
reader to these publications for details.

6 APPLICATIONS

We will finally present typical applications of the above
algorithms by reviewing a small and necessarily biased
selection.

6.1 Applications of the loop algorithm

The loop algorithm has been applied to a wide range of prob-
lems, ranging from purely theoretical questions to experimen-
tal data fitting. In the subsequent text, we list a small selection
of applications that provide an overview of the possibilities
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Figure 8. Comparison between the zero temperature (open squares)
and finite-temperature Hirsch-Fye (bullets) algorithms for the sym-
metric Anderson model, with a one-dimensional half-filled density
of states. For those parameters, the Kondo temperature is of the
order of 0.02t . In the limit βt → ∞ both algorithms yield the same
result for the double occupancy. Ground state results are, however,
more efficiently obtained within the projective method. Further-
more, the projective approach is extremely efficient when used as
an impurity solver in the framework of DMFT of the Hubbard
model (Feldbacher, Assaad and Held, 2004).
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of the loop algorithm. The first simulation using the loop
algorithm was an accurate determination of the ground state
properties (staggered magnetization, spin stiffness, and spin
wave velocity) of the square-lattice spin-1/2 quantum Heisen-
berg antiferromagnet (Wiese and Ying, 1992). In a similar spirit
the uniform susceptibility, correlation length, and spin gap of
spin ladder models (Frischmuth, Ammon and Troyer, 1996;
Greven, Birgeneau and Wiese, 1996) and integer spin chains
(Todo and Kato, 2001) was calculated, confirming the pres-
ence of a spin gapped ground state in even-leg spin ladders
and integer spin chains.

As the loop algorithm is efficient also at critical points,
it has been used in the first high accuracy simulations
of the critical properties of quantum phase transitions by
studying the Néel to quantum paramagnet transition in two-
dimensional quantum spin systems (Troyer, Imada and Ueda,
1997), for a determination of the low-temperature asymptotic
scaling of two-dimensional quantum Heisenberg antiferro-
magnets (Kim and Troyer, 1998; Beard, Birgeneau, Greven
and Wiese, 1998; Harada, Troyer and Kawashima, 1998),
and for accurate calculations of the Néel temperature of
anisotropic quasi-one- and quasi-two-dimensional antiferro-
magnets (Yasuda et al., 2005).

The loop algorithm is not only restricted to toy models,
but can be applied to realistic models of quantum magnets.
Comparisons to experimental measurements are done by
fitting simulation data to experimental measurements, as
for alternating chain compounds (Johnston et al., 2000b),
spin ladder materials (Johnston, et al., 2000a) or frustrated
square-lattice antiferromagnets (Melzi et al., 1999). In the
latter material, the sign problem due to frustration limits the
accuracy. As an example, we show in Figure 9 the good
quality of a fit of QMC data to experimental measurements
on the spin ladder compound SrCu2O3.

Another interesting application is to simulate realistic
models for quantum magnets, using exchange constants
calculated by ab initio methods. Comparing these ab initio
QMC data to experimental measurements, as done for a series
of vanadates (Korotin et al., 1998) and for ladder compounds
(Johnston, et al., 2000a) allows to quantitatively check the ab
initio calculations.

6.2 Applications of the worm and directed-loop
algorithms

The worm and directed-loop algorithms are applied when
magnetic fields are present. Typical examples include the
calculation of magnetization curves of quantum magnets
(Woodward et al., 2002), the determination of the first order
nature of the spin flop transition in two dimensions (Schmid,
Todo, Troyer and Dorneich, 2002) and the calculation of
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Figure 9. Fits of experimental measurements of the uniform sus-
ceptibility of SrCu2O3. (Azuma et al., 1994) to the results of QMC
simulations, determining a coupling J ≈ 1904 K along the chains of
the ladder and a ratio J ′/J ≈ 0.488 for the rung to chain coupling.

phase diagrams of dimerized quantum magnets in a magnetic
field (Nohadani, Wessel, Normand and Haas, 2004).

6.3 Applications of the determinental algorithms

The applications of the auxiliary field algorithms to cor-
related electron systems are numerous. Here, we will only
mention a few, starting with the attractive Hubbard model.
This model essentially describes the electron–phonon prob-
lem in terms of the Holstein model which in the antiadiabatic
limit maps onto the attractive Hubbard model (Hirsch and
Fradkin, 1983). Both models are free of a sign problem
in arbitrary dimensions and on arbitrary lattice topologies.
The salient features of those models have been investigated
in detail. For instance, the crossover from long coher-
ence length (BCS) to short coherence length superconduc-
tors. In the short coherence length limit, a liquid of pre-
formed pairs with non-Fermi liquid character is apparent
above the transition temperature (Randeria, Trivedi, Moreo
and Scalettar, 1992; Trivedi and Randeria, 1995). Further-
more, the disorder driven superfluid to insulator transi-
tion has been studied in the framework of the attractive
Hubbard model (Randeria, Trivedi, Moreo and Scalettar,
1996).

Recently, a new class of models of correlated electron
models showing no sign problem has been investigated
(Assaad et al., 2003; Wu, Hu and Zhang, 2003; Capponi,
Wu and Zhang, 2004; Wu and Zhang, 2005). Those models
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have exotic ground states including phases with circulating
currents (Capponi, Wu and Zhang, 2004; Assaad, 2005)
striped phases (Assaad et al., 2003), as well as possible
realizations of gapless spin liquid phases (Assaad, 2005).

A lot of work using the BSS algorithm is centered around
the repulsive Hubbard model in two dimensions, as well
as the three-band Hubbard model of the CuO2 planes in
the cuprates. On the basis of Monte Carlo simulations, it
is now accepted that at half-band filling those models are
Mott (charge transfer for the three-band model) insulators
with long-range antiferromagnetic order (Hirsch and Tang,
1989; White et al., 1989; Dopf, Muramatsu and Hanke,
1992a). In the case of the three-band Hubbard model, a
minimal set of parameters were found so as to reproduce
experimental findings (Dopf, Muramatsu and Hanke, 1992b).
The issue of superconductivity at low doping away from half-
filling is still open. General concepts – independent of the
symmetry of the pair wave function and including possible
retardation effects – such as flux quantization and superfluid
density have been used to attempt to answer the above
question (Assaad, Hanke and Scalapino, 1994; Scalapino,
White and Zhang, 1993). Within the algorithmic limitations,
no convincing sign of superconductivity has been found
to date.

The nature of the doping induced metal–insulator tran-
sition in the two-dimensional Hubbard model has attracted
considerable interest (Furukawa and Imada, 1993; Assaad
and Imada, 1995, 1996a). In particular, it has been argued
the the transition is driven by the divergence of the effective
mass rather than by the vanishing of the number of charge
carriers. The origin of such a metal–insulator transition is to
be found in a very flat dispersion relation around the (π, 0)

and (0, π) points in the Brillouin zone (Dopf et al., 1992c;
Gröber, Eder and Hanke, 2000). An extensive review of this
topic as well as a consistent interpretation of the numerical
data in terms of hyperscaling Ansatz may be found in (Imada,
Fujimori and Tokura, 1998).

Aspects of the physics of heavy fermion systems have
been investigated in the framework of the two-dimensional
periodic Anderson model (PAM) (Vekic et al., 1995) and
of the Kondo lattice model (KLM) (Capponi and Assaad,
2001). It is only recently that a sign free formulation of
the KLM for particle-hole symmetric conduction bands has
been put forward (Assaad, 1999). Extensive calculations both
at T = 0 and at finite T allow to investigate the mag-
netic order–disorder transition triggered by the competition
between the RKKY interaction and the Kondo effect (Cap-
poni and Assaad, 2001). Across this quantum phase transi-
tion, single hole dynamics as well as spin excitations were
investigated in detail. One can show numerically that the
quasiparticle residue in the vicinity of �k = (π, π) tracks
the the Kondo scale of the corresponding single impurity

problem. This statement is valid both in the magnetically
ordered and disordered phases (Assaad, 2004). This sug-
gests that the coherence temperature tracks the Kondo scale.
Furthermore, the effect of a magnetic field on the Kondo
insulating state was investigated. For the particle-hole sym-
metric conduction band, results show a transition from the
Kondo insulator to a canted antiferromagnet (Milat, Assaad
and Sigrist, 2004; Beach, Lee and Monthoux, 2004). Finally,
models with regular depletion of localized spins can be inves-
tigated (Assaad, 2002a). Within the framework of those mod-
els, the typical form of the resistivity versus temperature can
be reproduced.

The most common application of the Hirsch-Fye algo-
rithm is in the framework of dynamical mean-field theories
(Georges, Kotliar, Krauth and Rozenberg, 1996) which map
the Hubbard model onto an Anderson impurity problem sup-
plemented by a self-consistency loop. At each iteration, the
Hirsch-Fye algorithm is used to solve the impurity problem
at finite temperature (Jarrell, 1992) or at T = 0 (Feldbacher,
Assaad and Held, 2004). For this particular problem, many
competing methods such as DMRG (Nishimoto, Gebhard and
Jeckelmann, 2004) and NRG (Bulla, 1999) are available. In
the dynamical mean-field approximation, spatial fluctuations
are frozen out. To reintroduce them, one has to generalize
to cluster methods such as the dynamical cluster approx-
imation (DCA) (Hettler, Jarrell and Krishnamurthy, 2000)
or cellular-DMFT (CDMFT) (Kotliar, Savrasov, Pálsson and
Biroli1, 2001). Within these approaches, the complexity of
the problem to solve at each iteration is that of an N -impurity
Anderson model (N corresponds to the cluster size). Gen-
eralizations of DMRG and NRG to solve this problem are
difficult. On the other hand, as a function of cluster size
the sign problem in the Hirsch-Fye approach becomes more
and more severe but is, in many instances, still tractable. It,
however, proves to be one of the limiting factors in achieving
large cluster sizes.

7 CONCLUSION

To conclude, we discuss which algorithm is preferred for
which models. For fermionic models, such as the Hub-
bard, the determinental quantum Monte Carlo (QMC) algo-
rithm should be employed in more than one dimension
because of the reduced sign problem in this formulation.
For pure spin models the world-line algorithms are bet-
ter because of their almost linear scaling with system
size, in contrast to the cubic scaling of the determinental
algorithms.

Among the world-line algorithms, the loop algorithm
is the method of choice for problems with spin-inversion
symmetry, that is, in the absence of magnetic fields, whereas
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the worm or directed-loop algorithms should be used when
magnetic fields are present. Implementations of these world-
line QMC algorithms are available through the open-source
ALPS project.

A negative sign problem occurs even for pure spin mod-
els, in the presence of frustration in the x- and y-components
of the exchange couplings. This sign problem restricts sim-
ulations to temperatures not lower than the magnitude of
the frustrating coupling. As a solution to this sign problem
is unlikely (Troyer and Wiese, 2005), alternative methods,
such as the density matrix renormalization group method
(White, 1992, 1993; Schollwöck, 2005) should be considered
for low-dimensional strongly frustrated quantum magnets at
low temperatures.
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1 INTRODUCTION: ‘ASYMPTOTIC
FREEDOM’ IN A CRYOSTAT

The term heavy fermion was coined by Steglich et al. (1976)
in the late 1970s to describe the electronic excitations in
a new class of intermetallic compound with an electronic
density of states as much as 1000 times larger than copper.
Since the original discovery of heavy-fermion behavior in
CeAl3 by Andres, Graebner and Ott (1975), a diversity of
heavy-fermion compounds, including superconductors, anti-
ferromagnets (AFMs), and insulators have been discovered.
In the last 10 years, these materials have become the focus of
intense interest with the discovery that intermetallic AFMs
can be tuned through a quantum phase transition into a
heavy-fermion state by pressure, magnetic fields, or chemical
doping (von Löhneysen et al., 1994; von Löhneysen, 1996;

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Mathur et al., 1998). The ‘quantum critical point’ (QCP) that
separates the heavy-electron ground state from the AFM rep-
resents a kind of singularity in the material phase diagram
that profoundly modifies the metallic properties, giving them
a a predisposition toward superconductivity and other novel
states of matter.

One of the goals of modern condensed matter research
is to couple magnetic and electronic properties to develop
new classes of material behavior, such as high-temperature
superconductivity or colossal magnetoresistance materials,
spintronics, and the newly discovered multiferroic materials.
Heavy-electron materials lie at the very brink of magnetic
instability, in a regime where quantum fluctuations of the
magnetic and electronic degrees are strongly coupled. As
such, they are an important test bed for the development of
our understanding about the interaction between magnetic
and electronic quantum fluctuations.

Heavy-fermion materials contain rare-earth or actinide
ions, forming a matrix of localized magnetic moments. The
active physics of these materials results from the immersion
of these magnetic moments in a quantum sea of mobile con-
duction electrons. In most rare-earth metals and insulators,
local moments tend to order antiferromagnetically, but, in
heavy-electron metals, the quantum-mechanical jiggling of
the local moments induced by delocalized electrons is fierce
enough to melt the magnetic order.

The mechanism by which this takes place involves a
remarkable piece of quantum physics called the Kondo
effect (Kondo, 1962, 1964; Jones, 2007). The Kondo effect
describes the process by which a free magnetic ion, with a
Curie magnetic susceptibility at high temperatures, becomes
screened by the spins of the conduction sea, to ultimately
form a spinless scatering center at low temperatures and
low magnetic fields (Figure 1a). In the Kondo effect, this
screening process is continuous, and takes place once the
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Figure 1. (a) In the Kondo effect, local moments are free at high temperatures and high fields, but become ‘screened’ at temperatures and
magnetic fields that are small compared with the ‘Kondo temperature’ TK, forming resonant scattering centers for the electron fluid. The
magnetic susceptibility χ changes from a Curie-law χ ∼ 1
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at high temperature, but saturates at a constant paramagnetic value χ ∼ 1

TK
at low

temperatures and fields. (b) The resistivity drops dramatically at low temperatures in heavy fermion materials, indicating the development
of phase coherence between the scatering of the lattice of screened magnetic ions. (Reproduced from J.L. Smith and P.S. Riseborough,
J. Mag. Mat. 47–48, 1985, copyright  1985, with permission from Elsevier.)

magnetic field, or the temperature drops below a character-
istic energy scale called the Kondo temperature TK. Such
‘quenched’ magnetic moments act as strong elastic scatter-
ing potentials for electrons, which gives rise to an increase
in resistivity produced by isolated magnetic ions. When the
same process takes place inside a heavy-electron material, it
leads to a spin quenching at every site in the lattice, but now,
the strong scattering at each site develops coherence, lead-
ing to a sudden drop in the resistivity at low temperatures
(Figure 1b).

Heavy-electron materials involve the dense lattice analog
of the single-ion Kondo effect and are often called Kondo
lattice compounds (Doniach, 1977). In the lattice, the Kondo
effect may be alternatively visualized as the dissolution of
localized and neutral magnetic f spins into the quantum
conduction sea, where they become mobile excitations. Once
mobile, these free spins acquire charge and form electrons
with a radically enhanced effective mass (Figure 2). The

net effect of this process is an increase in the volume of
the electronic Fermi surface, accompanied by a profound
transformation in the electronic masses and interactions.

A classic example of such behavior is provided by the
intermetallic crystal CeCu6. Superficially, this material is
copper, alloyed with 14% Cerium. The Cerium Ce3+ ions
in this material are Ce3+ ions in a 4f1 configuration with
a localized magnetic moment with J = 5/2. Yet, at low
temperatures, they lose their spin, behaving as if they were
Ce4+ ions with delocalized f electrons. The heavy electrons
that develop in this material are a thousand times ‘heavier’
than those in metallic copper, and move with a group velocity
that is slower than sound. Unlike copper, which has Fermi
temperature of the order 10 000 K, that of CeCu6 is of the
order 10 K, and above this temperature, the heavy electrons
disintegrate to reveal the underlying magnetic moments of
the Cerium ions, which manifest themselves as a Curie-law
susceptibility χ ∼ 1

T
. There are many hundreds of different
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varieties of heavy-electron material, many developing new
and exotic phases at low temperatures.

This chapter is intended as a perspective on the the current
theoretical and experimental understanding of heavy-electron
materials. There are important links between the material
in this chapter and the proceeding chapter on the Kondo
effect by Jones (2007), the chapter on quantum criticality
by Sachdev (2007), and the perspective on spin fluctuation
theories of high-temperature superconductivity by Norman
(2007). For completeness, I have included references to an
extensive list of review articles spanning 30 years of dis-
covery, including books on the Kondo effect and heavy
fermions (Hewson, 1993; Cox and Zawadowski, 1999), gen-
eral reviews on heavy-fermion physics (Stewart, 1984; Lee
et al., 1986; Ott, 1987; Fulde, Keller and Zwicknagl, 1988;
Grewe and Steglich, 1991), early views of Kondo and mixed
valence physics (Gruner and Zawadowski, 1974; Varma,
1976), the solution of the Kondo impurity model by renor-
malization group and the strong coupling expansion (Wil-
son, 1976; Nozières and Blandin, 1980), the Bethe Ansatz
method (Andrei, Furuya and Lowenstein, 1983; Tsvelik and
Wiegman, 1983), heavy-fermion superconductivity (Sigrist
and Ueda, 1991a; Cox and Maple, 1995), Kondo insula-
tors (Aeppli and Fisk, 1992; Tsunetsugu, Sigrist and Ueda,
1997; Riseborough, 2000), X-ray spectroscopy (Allen et al.,
1986), optical response in heavy fermions (Degiorgi, 1999),
and the latest reviews on non-Fermi liquid behavior and
quantum criticality (Stewart, 2001; Coleman, Pépin, Si and
Ramazashvili, 2001; Varma, Nussinov and van Saarlos, 2002;
von Löhneysen, Rosch, Vojta and Wolfe, 2007; Miranda
and Dobrosavljevic, 2005; Flouquet, 2005). There are
inevitable apologies, for this chapter is highly selective and,
partly owing to lack of space, it neither covers dynamical

mean-field theory (DMFT) approaches to heavy-fermion
physics (Georges, Kotliar, Krauth and Rozenberg, 1996; Cox
and Grewe, 1988; Jarrell, 1995; Vidhyadhiraja, Smith, Logan
and Krishnamurthy, 2003) nor the extensive literature on the
order-parameter phenomenology of heavy-fermion supercon-
ductors (HFSCs) reviewed in Sigrist and Ueda (1991a).

1.1 Brief history

Heavy-electron materials represent a frontier in a journey of
discovery in electronic and magnetic materials that spans
more than 70 years. During this time, the concepts and
understanding have undergone frequent and often dramatic
revision.

In the early 1930s, de Haas, de Boer and van der
Berg (1933) in Leiden, discovered a ‘resistance minimum’
that develops in the resistivity of copper, gold, silver,
and many other metals at low temperatures (Figure 3). It
took a further 30 years before the purity of metals and
alloys improved to a point where the resistance minimum
could be linked to the presence of magnetic impurities
(Clogston et al., 1962; Sarachik, Corenzwit and Longinotti,
1964). Clogston, Mathias, and collaborators at Bell Labs
(Clogston et al., 1962) found they could tune the conditions
under which iron impurities in Niobium were magnetic, by
alloying with molybdenum. Beyond a certain concentration
of molybdenum, the iron impurities become magnetic and a
resistance minimum was observed to develop.

In 1961, Anderson formulated the first microscopic model
for the formation of magnetic moments in metals. Earlier
work by Blandin and Friedel (1958) had observed that
localized d states form resonances in the electron sea.
Anderson extended this idea and added a new ingredient:
the Coulomb interaction between the d-electrons, which he
modeled by term

HI = Un↑n↓ (1)

Anderson showed that local moments formed once the
Coulomb interaction U became large. One of the unexpected
consequences of this theory is that local moments develop
an antiferromagnetic coupling with the spin density of
the surrounding electron fluid, described by the interaction
(Anderson, 1961; Kondo, 1962, 1964; Schrieffer and Wolff,
1966; Coqblin and Schrieffer, 1969)

HI = J �σ(0) · �S (2)

where �S is the spin of the local moment and �σ(0) is
the spin density of the electron fluid. In Japan, Kondo
(1962) set out to examine the consequences of this result.
He found that when he calculated the scattering rate 1

τ
of
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electrons of a magnetic moment to one order higher than
Born approximation,

1

τ
∝
[
Jρ + 2(Jρ)2 ln

D

T

]2

(3)

where ρ is the density of state of electrons in the conduction
sea and D is the width of the electron band. As the
temperature is lowered, the logarithmic term grows, and the
scattering rate and resistivity ultimately rises, connecting the
resistance minimum with the antiferromagnetic interaction
between spins and their surroundings.

A deeper understanding of the logarithmic term in this
scattering rate required the renormalization group concept
(Anderson and Yuval, 1969, 1970, 1971; Fowler and Zawad-
owskii, 1971; Wilson, 1976; Nozières, 1976; Nozières and
Blandin, 1980). The key idea here is that the physics of a
spin inside a metal depends on the energy scale at which it
is probed. The ‘Kondo’ effect is a manifestation of the phe-
nomenon of ‘asymptotic freedom’ that also governs quark
physics. Like the quark, at high energies, the local moments
inside metals are asymptotically free, but at temperatures
and energies below a characteristic scale the Kondo tem-
perature,

TK ∼ De−1/(2Jρ) (4)

where ρ is the density of electronic states; they interact so
strongly with the surrounding electrons that they become
screened into a singlet state, or ‘confined’ at low energies,
ultimately forming a Landau–Fermi liquid (Nozières, 1976;
Nozières and Blandin, 1980).

Throughout the 1960s and 1970s, conventional wisdom
had it that magnetism and superconductivity are mutually

exclusive. Tiny concentrations of magnetic impurities pro-
duce a lethal suppression of superconductivity in conven-
tional metals. Early work on the interplay of the Kondo effect
and superconductivity by Maple et al. (1972) did suggest that
the Kondo screening suppresses the pair-breaking effects of
magnetic moments, but the implication of these results was
only slowly digested. Unfortunately, the belief in the mutual
exclusion of local moments and superconductivity was so
deeply ingrained that the first observation of superconductiv-
ity in the ‘local moment’ metal UBe13 (Bucher et al., 1975)
was dismissed by its discoverers as an artifact produced by
stray filaments of uranium. Heavy-electron metals were dis-
covered by Andres, Graebner and Ott (1975), who observed
that the intermetallic CeAl3 forms a metal in which the Pauli
susceptibility and linear specific heat capacity are about 1000
times larger than in conventional metals. Few believed their
speculation that this might be a lattice version of the Kondo
effect, giving rise to a narrow band of ‘heavy’ f electrons in
the lattice. The discovery of superconductivity in CeCu2Si2
in a similar f-electron fluid, a year later by Steglich et al.
(1976), was met with widespread disbelief. All the measure-
ments of the crystal structure of this material pointed to the
fact that the Ce ions were in a Ce3+ or 4f1 configuration. Yet,
this meant one local moment per unit cell – which required
an explanation of how these local moments do not destroy
superconductivity, but, rather, are part of its formation.

Doniach (1977), made the visionary proposal that a heavy-
electron metal is a dense Kondo lattice (Kasuya, 1956), in
which every single local moment in the lattice undergoes
the Kondo effect (Figure 2). In this theory, each spin is
magnetically screened by the conduction sea. One of the great
concerns of the time, raised by Nozières (1985), was whether
there could ever be sufficient conduction electrons in a dense
Kondo lattice to screen each local moment.
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Theoretical work on this problem was initially stalled for
want of any controlled way to compute properties of the
Kondo lattice. In the early 1980s, Anderson (1981) proposed
a way out of this log-jam. Taking a cue from the success
of the 1/S expansion in spin-wave theory, and the 1/N

expansion in statistical mechanics and particle physics, he
noted that the large magnetic spin degeneracy N = 2j + 1
of f moments could be used to generate an expansion in the
small parameter 1/N about the limit where N → ∞. Ander-
son’s idea prompted a renaissance of theoretical development
(Ramakrishnan, 1981; Gunnarsson and Schönhammer, 1983;
Read and Newns, 1983a,b; Coleman, 1983, 1987a; Auerbach
and Levin, 1986), making it possible to compute the X-ray
absorption spectra of these materials and, for the first time,
examine how heavy f bands form within the Kondo lattice.
By the mid-1980s, the first de Haas van Alphen experiments
(Reinders et al., 1986; Taillefer and Lonzarich, 1988) had
detected cyclotron orbits of heavy electrons in CeCu6 and
UPt3. With these developments, the heavy-fermion concept
was cemented.

On a separate experimental front, in Ott, Rudigier, Fisk
and Smith (1983), and Ott et al. (1984) returned to the mate-
rial UBe13, and, by measuring a large discontinuity in the
bulk specific heat at the resistive superconducting transition,
confirmed it as a bulk heavy-electron superconductor. This
provided a vital independent confirmation of Steglich’s dis-
covery of heavy electron superconductivity, assuaging the
old doubts and igniting a huge new interest in heavy-electron
physics. The number of heavy-electron metals and supercon-
ductors grew rapidly in the mid-1980s (Sigrist and Ueda,
1991b). It became clear from specific heat, NMR, and ultra-
sound experiments on HFSCs that the gap is anisotropic, with
lines of nodes strongly suggesting an electronic, rather than
a phonon mechanism of pairing. These discoveries prompted
theorists to return to earlier spin-fluctuation-mediated models
of anisotropic pairing. In the early summer of 1986, three
new theoretical papers were received by Physical Review,
the first by Monod, Bourbonnais and Emery (1986) working
in Orsay, France, followed closely (6 weeks later) by papers
from Scalapino, Loh and Hirsch (1986) at UC Santa Barbara,
California, and Miyake, Rink and Varma (1986) at Bell Labs,
New Jersey. These papers contrasted heavy-electron super-
conductivity with superfluid He-3. Whereas He-3 is domi-
nated by ferromagnetic interactions, which generate triplet
pairing, these works showed that, in heavy-electron sys-
tems, soft antiferromagnetic spin fluctuations resulting from
the vicinity to an antiferromagnetic instability would drive
anisotropic d-wave pairing (Figure 4). The almost coinci-
dent discovery of high-temperature superconductivity the
very same year, 1986, meant that these early works on
heavy-electron superconductivity were destined to exert huge
influence on the evolution of ideas about high-temperature

(a) (b) (c) (d)

Figure 4. Figure from Monod, Bourbonnais and Emery (1986), one
of three path-breaking papers in 1986 to link d-wave pairing to
antiferromagnetism. (a) The bare interaction, (b), (c), and (d), the
paramagnon-mediated interaction between antiparallel or parallel
spins. (Reproduced from M.T.B. Monod, C. Bourbonnais, and
V. Emery, Phys. Rev. B. 34, 1986, 7716, copyright  1986 by the
American Physical Society, with permission of the APS.)

superconductivity. Both the resonating valence bond (RVB)
and the spin-fluctuation theory of d-wave pairing in the
cuprates are, in my opinion, close cousins, if not direct
descendents of these early 1986 papers on heavy-electron
superconductivity.

After a brief hiatus, interest in heavy-electron physics
reignited in the mid-1990s with the discovery of QCPs in
these materials. High-temperature superconductivity intro-
duced many important new ideas into our conception of
electron fluids, including

• Non-Fermi liquid behavior: the emergence of metallic
states that cannot be described as fluids of renormalized
quasiparticles.

• Quantum phase transitions and the notion that zero tem-
perature QCPs might profoundly modify finite tempera-
ture properties of metal.

Both of these effects are seen in a wide variety of heavy-
electron materials, providing an vital alternative venue for
research on these still unsolved aspects of interlinked,
magnetic, and electronic behavior.

In 1994 Hilbert von Löhneysen and collaborators discov-
ered that by alloying small amounts of gold into CeCu6, one
can tune CeCu6−xAux through an antiferromagnetic QCP,
and then reverse the process by the application of pressure
(von Löhneysen, 1996; von Löhneysen et al., 1994). These
experiments showed that a heavy-electron metal develops
‘non-Fermi liquid’ properties at a QCP, including a linear
temperature dependence of the resistivity and a logarith-
mic dependence of the specific heat coefficient on tempera-
ture. Shortly thereafter, Mathur et al. (1998), at Cambridge
showed that when pressure is used to drive the AFM CeIn3
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through a quantum phase transition, heavy-electron supercon-
ductivity develops in the vicinity of the quantum phase tran-
sition. Many new examples of heavy-electron system have
come to light in the last few years which follow the same
pattern. In one fascinating development, (Monthoux and Lon-
zarich, 1999) suggested that if quasi-two-dimensional ver-
sions of the existing materials could be developed, then the
superconducting pairing would be less frustrated, leading to
a higher transition temperature. This led experimental groups
to explore the effect of introducing layers into the material
CeIn3, leading to the discovery of the so-called 1 − 1 − 5
compounds, in which an XIn2 layer has been introduced
into the original cubic compound. (Petrovic et al., 2001;
Sidorov et al., 2002). Two notable members of this group are
CeCoIn5 and, most recently, PuCoGa5 (Sarrao et al., 2002).
The transition temperature rose from 0.5 to 2.5 K in moving
from CeIn3 to CeCoIn5. Most remarkably, the transition tem-
perature rises to above 18 K in the PuCoGa5 material. This
amazing rise in Tc, and its close connection with quantum
criticality, are very active areas of research, and may hold

important clues (Curro et al., 2005) to the ongoing quest to
discover room-temperature superconductivity.

1.2 Key elements of heavy-fermion metals

Before examining the theory of heavy-electron materials, we
make a brief tour of their key properties. Table 1 shows a
selective list of heavy fermion compounds

1.2.1 Spin entropy: a driving force for new physics

The properties of heavy-fermion compounds derive from
the partially filled f orbitals of rare-earth or actinide ions
(Stewart, 1984; Lee et al., 1986; Ott, 1987; Fulde, Keller
and Zwicknagl, 1988; Grewe and Steglich, 1991). The large
nuclear charge in these ions causes their f orbitals to collapse
inside the inert gas core of the ion, turning them into localized
magnetic moments.

Moreover, the large spin-orbit coupling in f orbitals com-
bines the spin and angular momentum of the f states into a

Table 1. Selected heavy-fermion compounds.

Type Material T ∗ (K) Tc, xc, Bc Properties ρ m J mol−1K−2 References
γ n

Metal CeCu6 10 – Simple HF
metal

T 2 1600 Stewart, Fisk and Wire (1984a)
and Onuki and Komatsubara
(1987)

Super-
conductors

CeCu2Si2 20 Tc = 0.17 K First HFSC T 2 800–1250 Steglich et al. (1976) and
Geibel et al. (1991a,b)

UBe13 2.5 Tc = 0.86 K Incoherent
metal→HFSC

ρc ∼
150 µ� cm

800 Ott, Rudigier, Fisk and Smith
(1983, 1984)

CeCoIn5 38 Tc = 2.3 Quasi 2D
HFSC

T 750 Petrovic et al. (2001) and
Sidorov et al. (2002)

Kondo
insulators

Ce3Pt4Bi3 Tχ ∼ 80 – Fully gapped
KI

∼e�/T – Hundley et al. (1990) and
Bucher, Schlessinger,
Canfield and Fisk (1994)

CeNiSn Tχ ∼ 20 – Nodal KI Poor metal – Takabatake et al. (1990, 1992)
and Izawa et al. (1999)

Quantum
critical

CeCu6−xAux T0 ∼ 10 xc = 0.1 Chemically
tuned QCP

T ∼ 1
T0

ln
(

T0
T

)
von Löhneysen et al. (1994) and

von Löhneysen (1996)

YbRh2Si2 T0 ∼ 24 B⊥ = 0.06 T
B‖ = 0.66 T

Field-tuned
QCP

T ∼ 1
T0

ln
(

T0
T

)
Trovarelli et al. (2000), Paschen

et al. (2004), Custers et al.
(2003) and Gegenwart et al.
(2005)

SC + other
order

UPd2Al3 110 TAF = 14 K,
Tsc = 2 K

AFM + HFSC T 2 210 Geibel et al. (1991a), Sato et al.
(2001) and Tou et al. (1995)

URu2Si2 75 T1 = 17.5 K,
Tsc = 1.3 K

Hidden order
and HFSC

T 2 120/65 Palstra et al. (1985) and Kim
et al. (2003)

Unless otherwise stated, T ∗ denotes the temperature of the maximum in resistivity. Tc , xc , and Bc denote critical temperature, doping, and field. ρ denotes
the temperature dependence in the normal state. γ n = CV /T is the specific heat coefficient in the normal state.
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state of definite J , and it is these large quantum spin degrees
of freedom that lie at the heart of heavy-fermion physics.

Heavy-fermion materials display properties which change
qualitatively, depending on the temperature, so much so, that
the room-temperature and low-temperature behavior almost
resembles two different materials. At room temperature, high
magnetic fields, and high frequencies, they behave as local
moment systems, with a Curie-law susceptibility

χ = M2

3T
M2 = (gJ µB)2J (J + 1) (5)

where M is the magnetic moment of an f state with
total angular momentum J and the gyromagnetic ratio gJ .
However, at temperatures beneath a characteristic scale,
we call T ∗ (to distinguish it from the single-ion Kondo
temperature TK), the localized spin degrees of freedom melt
into the conduction sea, releasing their spins as mobile,
conducting f electrons.

A Curie susceptibility is the hallmark of the decoupled,
rotational dynamics of the f moments, associated with an
unquenched entropy of S = kB ln N per spin, where N =
2J + 1 is the spin degeneracy of an isolated magnetic
moment of angular momentum J . For example, in a Cerium-
heavy electron material, the 4f1 (L = 3) configuration of
the Ce3+ ion is spin-orbit coupled into a state of definite
J = L − S = 5/2 with N = 6. Inside the crystal, the full
rotational symmetry of each magnetic f ion is often reduced
by crystal fields to a quartet (N = 4) or a Kramer’s doublet
N = 2. At the characteristic temperature T ∗, as the Kondo
effect develops, the spin entropy is rapidly lost from the
material, and large quantities of heat are lost from the
material. Since the area under the specific heat curve
determines the entropy,

S(T ) =
∫ T

0

CV

T ′ dT ′ (6)

a rapid loss of spin entropy at low temperatures forces a sud-
den rise in the specific heat capacity. Figure 5 illustrates this
phenomenon with the specific heat capacity of UBe13. Notice
how the specific heat coefficient CV /T rises to a value of
order 1 J mol−1K2, and starts to saturate at about 1 K, indicat-
ing the formation of a Fermi liquid with a linear specific heat
coefficient. Remarkably, just as the linear specific heat starts
to develop, UBe13 becomes superconducting, as indicated by
the large specific heat anomaly.

1.2.2 ‘Local’ Fermi liquids with a single scale

The standard theoretical framework for describing metals is
Landau–Fermi liquid theory (Landau, 1957), according to
which the excitation spectrum of a metal can be adiabatically
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ej
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dT ′ = Spin entropy (T)
T

0
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Specific heat

Figure 5. Showing the specific heat coefficient of UBe13 after (Ott,
Rudigier, Fisk and Smith, 1985). The area under the CV /T curve up
to a temperature T provides a measure of the amount of unquenched
spin entropy at that temperature. The condensation entropy of
HFSCs is derived from the spin-rotational degrees of freedom of
the local moments, and the large scale of the condensation entropy
indicates that spins partake in the formation of the order parameter.
(Reproduced from H.R. Ott, H. Rudigier, Z. Fisk, and J.L. Smith,
in W.J.L. Buyers (ed.): Proceedings of the NATO Advanced Study
Institute on Moment Formation in Solids, Vancouver Island, August
1983, Valence Fluctuations in Solids (Plenum, 1985), p. 309. with
permission of Springer Science and Business Media.)

connected to those of a noninteracting electron fluid. Heavy-
fermion metals are extreme examples of Landau–Fermi
liquids which push the idea of adiabaticity into an regime
where the bare electron interactions, on the scale of electron
volts, are hundreds, even thousands of times larger than
the millivolt Fermi energy scale of the heavy-electron
quasiparticles. The Landau–Fermi liquid that develops in
these materials shares much in common with the Fermi
liquid that develops around an isolated magnetic impurity
(Nozières, 1976; Nozières and Blandin, 1980), once it is
quenched by the conduction sea as part of the Kondo effect.
There are three key features of this Fermi liquid:

• Single scale: T ∗ The quasiparticle density of states ρ∗ ∼
1/T ∗ and scattering amplitudes Akσ ,k′σ ′ ∼ T ∗ scale
approximately with a single scale T ∗.

• Almost incompressible: Heavy-electron fluids are ‘almost
incompressible’, in the sense that the charge suscepti-
bility χc = dNe/dµ � ρ∗ is unrenormalized and typi-
cally more than an order of magnitude smaller than the
quasiparticle density of states ρ∗. This is because the
lattice of spins severely modifies the quasiparticle den-
sity of states, but leaves the charge density of the fluid
ne(µ), and its dependence on the chemical potential µ

unchanged.
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• Local: Quasiparticles scatter when in the vicinity of a
local moment, giving rise to a small momentum depen-
dence to the Landau scattering amplitudes (Yamada,
1975; Yoshida and Yamada, 1975; Engelbrecht and
Bedell, 1995).

Landau–Fermi liquid theory relates the properties of a
Fermi liquid to the density of states of the quasiparticles and
a small number of interaction parameters (Baym and Pethick,
1992). If Ekσ is the energy of an isolated quasiparticle, then
the quasiparticle density of states ρ∗ = ∑

kσ δ(Ekσ − µ)

determines the linear specific heat coefficient

γ = LimT →0

(
CV

T

)
= π2k2

B

3
ρ∗ (7)

In conventional metals, the linear specific heat coefficient is
of the order 1–10 mJ mol−1 K−2. In a system with quadratic
dispersion, Ek = �

2k2

2m∗ , the quasiparticle density of states and
effective mass m∗ are directly proportional

ρ∗ =
(

kF

π2�2

)
m∗ (8)

where kF is the Fermi momentum. In heavy-fermion com-
pounds, the scale of ρ∗ varies widely, and specific heat
coefficients in the range 100–1600 mJ mol−1 K−2 have been
observed. From this simplified perspective, the quasiparticle
effective masses in heavy-electron materials are two or three
orders of magnitude ‘heavier’ than in conventional metals.

In Landau–Fermi liquid theory, a change δnk′σ ′ in the
quasiparticle occupancies causes a shift in the quasiparticle
energies given by

δEkσ =
∑
k′σ ′

fkσ ,kσ ′δnk′σ ′ (9)

In a simplified model with a spherical Fermi surface, the
Landau interaction parameters only depend on the relative
angle θk,k′ between the quasiparticle momenta, and are
expanded in terms of Legendre Polynomials as

fkσ ,kσ ′ = 1

ρ∗
∑

l

(2l + 1)Pl(θk,k′)[F s
l + σσ ′Fa

l ] (10)

The dimensionless ‘Landau parameters’ F
s,a
l parameterize

the detailed quasiparticle interactions. The s-wave (l = 0)
Landau parameters that determine the magnetic and charge
susceptibility of a Landau–Fermi liquid are given by Landau
(1957), and Baym and Pethick (1992)

χs = µ2
B

ρ∗

1 + Fa
0

= µ2
Bρ∗ [1 − Aa

0

]

χc = e2 ρ∗

1 + F s
0

= e2ρ∗ [1 − As
0

]
(11)

where the quantities

A
s,a
0 = F

s,a
0

1 + F
s,a
0

(12)

are the s-wave Landau scattering amplitudes in the charge
(s) and spin (a) channels, respectively (Baym and Pethick,
1992).

The assumption of local scattering and incompressibility
in heavy electron fluids simplifies the situation, for, in this
case, only the l = 0 components of the interaction remain
and the quasiparticle scattering amplitudes become

Akσ ,k′σ ′ = 1

ρ∗
(
As

0 + σσ ′Aa
0

)
(13)

Moreover, in local scattering, the Pauli principle dictates that
quasiparticles scattering at the same point can only scatter
when in opposite spin states, so that

A
(0)
↑↑ = As

0 + Aa
0 = 0 (14)

and hence As
0 = −Aa

0. The additional assumption of incom-
pressibility forces χc/(e

2ρ∗) � 1, so that now As
0 = −Aa

0 ≈
1 and all that remains is a single parameter ρ∗.

This line of reasoning, first developed for the single
impurity Kondo model by Nozières and Blandin (1980) and,
Nozières (1976) and later extended to a bulk Fermi liquid by
Engelbrecht and Bedell (1995), enables us to understand two
important scaling trends amongst heavy-electron systems.
The first consequence, deduced from equation (11), is that
the dimensionless Sommerfeld ratio, or ‘Wilson ratio’ W =(

π2k2
B

µ2
B

)
χs

γ
≈ 2. Wilson (1976) found that this ratio is almost

exactly equal to 2 in the numerical renormalization group
treatment of the impurity Kondo model. The connection
between this ratio and the local Fermi liquid theory was
first identified by Nozières (1976), and Nozières and Blandin
(1980). In real heavy-electron systems, the effect of spin-orbit
coupling slightly modifies the precise numerical form for this
ratio, nevertheless, the observation that W ∼ 1 over a wide
range of materials in which the density of states vary by more
than a factor of 100 is an indication of the incompressible
and local character of heavy Fermi liquids (Figure 6).

A second consequence of locality appears in the trans-
port properties. In a Landau–Fermi liquid, inelastic electron–
electron scattering produces a quadratic temperature depen-
dence in the resistivity

ρ(T ) = ρ0 + AT 2 (15)
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Figure 6. Plot of linear specific heat coefficient versus Pauli susceptibility to show approximate constancy of the Wilson ratio. (Reproduced
from P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham, and J.W. Wilkins, Comments Condens. Matt. Phys. 9212, (1986) 99, with permission
from Taylaor & Francis Ltd, www.informaworld.com.)

In conventional metals, resistivity is dominated by electron–
phonon scattering, and the ‘A’ coefficient is generally too
small for the electron–electron contribution to the resis-
tivity to be observed. In strongly interacting metals, the
A coefficient becomes large, and, in a beautiful piece of
phenomenology, Kadowaki and Woods (1986), observed
that the ratio of A to the square of the specific heat
coefficient γ 2

αKW = A

γ 2
≈ (1 × 10−5)µ�cm(mol K2mJ−1) (16)

is approximately constant, over a range of A spanning four
orders of magnitude. This can also be simply understood
from the local Fermi-liquid theory, where the local scattering
amplitudes give rise to an electron mean-free path given by

1

kFl∗
∼ constant + T 2

(T ∗)2
(17)

The ‘A’ coefficient in the electron resistivity that results
from the second term satisfies A ∝ 1

(T ∗)2 ∝ γ̃ 2. A more
detailed calculation is able to account for the magnitude of
the Kadowaki–Woods constant, and its weak residual depen-
dence on the spin degeneracy N = 2J + 1 of the magnetic
ions (see Figure 7).

The approximate validity of the scaling relations

χ

γ
≈ cons,

A

γ 2
≈ cons (18)

for a wide range of heavy-electron compounds constitutes
excellent support for the Fermi-liquid picture of heavy
electrons.

A classic signature of heavy-fermion behavior is the
dramatic change in transport properties that accompanies
the development of a coherent heavy-fermion band structure
(Figure 6). At high temperatures, heavy-fermion compounds
exhibit a large saturated resistivity, induced by incoherent
spin-flip scattering of the conduction electrons of the local
f moments. This scattering grows as the temperature is
lowered, but, at the same time, it becomes increasingly
elastic at low temperatures. This leads to the development of
phase coherence. the f-electron spins. In the case of heavy-
fermion metals, the development of coherence is marked by
a rapid reduction in the resistivity, but in a remarkable class
of heavy fermion or ‘Kondo insulators’, the development
of coherence leads to a filled band with a tiny insulating
gap of the order TK. In this case, coherence is marked
by a sudden exponential rise in the resistivity and Hall
constant.

The classic example of coherence is provided by metallic
CeCu6, which develops ‘coherence’ and a maximum in
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Figure 7. Approximate constancy of the Kadowaki–Woods ratio,
for a wide range of heavy electrons. (After Tsujji, Kontani and
Yoshimora, 2005.) When spin-orbit effects are taken into account,
the Kadowaki–Woods ratio depends on the effective degeneracy
N = 2J + 1 of the magnetic ion, which when taken into account
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its resistivity around T = 10 K. Coherent heavy-electron
propagation is readily destroyed by substitutional impurities.
In CeCu6, Ce3+ ions can be continuously substituted with
nonmagnetic La3+ ions, producing a continuous crossover
from coherent Kondo lattice to single impurity behavior
(Figure 8).

One of the important principles of the Landau–Fermi liq-
uid is the Fermi surface counting rule, or Luttinger’s theorem
(Luttinger, 1960). In noninteracting electron band theory, the
volume of the Fermi surface counts the number of conduction
electrons. For interacting systems, this rule survives (Martin,
1982; Oshikawa, 2000), with the unexpected corollary that
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Figure 8. Development of coherence in Ce1−xLaxCu6. (Repro-
duced from Y. Onuki and T. Komatsubara, J. Mag. Mat. 63–64,
1987, 281, copyright  1987, with permission of Elsevier.)

the spins of the screened local moments are also included in
the sum

2VFS

(2π)3
= [ne + nspins] (19)

Remarkably, even though f electrons are localized as mag-
netic moments at high temperatures, in the heavy Fermi
liquid, they contribute to the Fermi surface volume.

The most direct evidence for the large heavy f-Fermi sur-
faces derives from de Haas van Alphen and Shubnikov de
Haas experiments that measure the oscillatory diamagnetism
or and resistivity produced by coherent quasiparticle orbits
(Figure 9). These experiments provide a direct measure of
the heavy-electron mass, the Fermi surface geometry, and
volume. Since the pioneering measurements on CeCu6 and
UPt3 by Reinders and Springford, Taillefer, and Lonzarich
in the mid-1980s (Reinders et al., 1986; Taillefer and Lon-
zarich, 1988; Taillefer et al., 1987), an extensive number of
such measurements have been carried out (Onuki and Komat-
subara, 1987; Julian, Teunissen and Wiegers, 1992; Kimura
et al., 1998; McCollam et al., 2005). Two key features are
observed:

• A Fermi surface volume which counts the f electrons as
itinerant quasiparticles.

• Effective masses often in excess of 100 free electron
masses. Higher mass quasiparticle orbits, though inferred
from thermodynamics, cannot be observed with current
measurement techniques.

• Often, but not always, the Fermi surface geometry is in
accord with band theory, despite the huge renormaliza-
tions of the electron mass.

Additional confirmation of the itinerant nature of the f
quasiparticles comes from the observation of a Drude peak in
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the optical conductivity. At low temperatures, in the coherent
regime, an extremely narrow Drude peak can be observed in
the optical conductivity of heavy-fermion metals. The weight
under the Drude peak is a measure of the plasma frequency:
the diamagnetic response of the heavy-fermion metal. This
is found to be extremely small, depressed by the large mass
enhancement of the quasiparticles (Millis and Lee, 1987a;
Degiorgi, 1999).

∫
|ω| <˜ TK

dω

π
σqp(ω) = ne2

m∗ (20)

Both the optical and dHvA experiments indicate that the
presence of f spins depresses both the spin and diamagnetic
response of the electron gas down to low temperatures.

2 LOCAL MOMENTS AND THE KONDO
LATTICE

2.1 Local moment formation

2.1.1 The Anderson model

We begin with a discussion of how magnetic moments form
at high temperatures, and how they are screened again at low
temperatures to form a Fermi liquid. The basic model for
local moment formation is the Anderson model (Anderson,
1961)

H =
Hresonance︷ ︸︸ ︷∑

k,σ

εknkσ +
∑
k,σ

V (k)
[
c

†
kσ fσ + f †

σ ckσ

]

+ Efnf + Unf↑nf↓︸ ︷︷ ︸
Hatomic

(21)

where Hatomic describes the atomic limit of an isolated
magnetic ion and Hresonance describes the hybridization of
the localized f electrons in the ion with the Bloch waves of
the conduction sea. For pedagogical reasons, our discussion
initially focuses on the case where the f state is a Kramer’s
doublet.

There are two key elements to the Anderson model:

• Atomic limit: The atomic physics of an isolated ion with
a single f state, described by the model

Hatomic = Ef nf + Unf ↑nf ↓ (22)

Here Ef is the energy of the f state and U is the
Coulomb energy associated with two electrons in the
same orbital. The atomic physics contains the basic
mechanism for local moment formation, valid for f
electrons, but also seen in a variety of other contexts,
such as transition-metal atoms and quantum dots.
The four quantum states of the atomic model are

|f 2〉
|f 0〉

E(f 2) = 2Ef + U

E(f 0) = 0

}
nonmagnetic

|f 1 ↑〉 |f 1 ↓〉 E(f 1) = Ef magnetic

(23)

In a magnetic ground state, the cost of inducing a
‘valence fluctuation’ by removing or adding an electron
to the f1 state is positive, that is,

removing: E(f 0) − E(f 1)

= −Ef > 0 ⇒ U

2
> Ef + U

2
(24)

adding: E(f 2) − E(f 1)

= Ef + U > 0 ⇒ Ef + U

2
> −U

2
(25)
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or (Figure 10).

U

2
> Ef + U

2
> −U

2
(26)

Under these conditions, a local moment is well defined,
provided the temperature is lower than the valence fluc-
tuation scale TVF = max(Ef + U, −Ef). At lower tem-
peratures, the atom behaves exclusively as a quantum
top.

• Virtual bound-state formation. When the magnetic ion is
immersed in a sea of electrons, the f electrons within
the core of the atom hybridize with the Bloch states of
surrounding electron sea (Blandin and Friedel, 1958) to
form a resonance described by

Hresonance =
∑
k,σ

εknkσ

+
∑
k,σ

[
V (k)c

†
kσ fσ + V (k)∗f †

σ ckσ

]
(27)

where the hybridization matrix element V (k) =
〈k|Vatomic|f 〉 is the overlap of the atomic potential
between a localized f state and a Bloch wave. In the
absence of any interactions, the hybridization broadens
the localized f state, producing a resonance of width

� = π
∑

k

|V (k)|2δ(εk − µ) = πV 2ρ (28)

where V 2 is the average of the hybridization around the
Fermi surface.

There are two complementary ways to approach the
physics of the Anderson model:

Local
moments

Ef  + U/2 = −U

f 1f 2

f 0

Charge Kondo effect

U

Ef  + U/2

Ef  + U/2 = U

Figure 10. Phase diagram for Anderson impurity model in the
atomic limit.

• The ‘atomic picture’, which starts with the interacting,
but isolated atom (V (k) = 0), and considers the effect
of immersing it in an electron sea by slowly dialing up
the hybridization.

• The ‘adiabatic picture’, which starts with the noninter-
acting resonant ground state (U = 0), and then considers
the effect of dialing up the interaction term U .

These approaches paint a contrasting and, at first sight,
contradictory picture of a local moment in a Fermi sea. From
the adiabatic perspective, the ground state is always a Fermi
liquid (see 1.2.2), but from atomic perspective, provided the
hybridization is smaller than U , one expects a local magnetic
moment, whose low-lying degrees of freedom are purely
rotational. How do we resolve this paradox?

Anderson’s original work provided a mean-field treatment
of the interaction. He found that at interactions larger than
Uc ∼ π� local moments develop with a finite magnetization
M = 〈n↑〉 − 〈n↓〉. The mean-field theory provides an approx-
imate guide to the conditions required for moment formation,
but it does not account for the restoration of the singlet sym-
metry of the ground state at low temperatures. The resolution
of the adiabatic and the atomic picture derives from quantum
spin fluctuations, which cause the local moment to ‘tunnel’
on a slow timescale τ sf between the two degenerate ‘up’ and
‘down’ configurations.

e−
↓ + f 1

↑ � e−
↑ + f 1

↓ (29)

These fluctuations are the origin of the Kondo effect. From
the energy uncertainty principle, below a temperature TK,
at which the thermal excitation energy kBT is of the order
of the characteristic tunneling rate �

τ sf
, a paramagnetic state

with a Fermi-liquid resonance forms. The characteristic
width of the resonance is then determined by the Kondo
energy kBTK ∼ �

τ sf
. The existence of this resonance was first

deduced by Abrikosov (1965), and Suhl (1965), but it is more
frequently called the Kondo resonance. From perturbative
renormalization group reasoning (Haldane, 1978) and the
Bethe Ansatz solution of the Anderson model (Wiegmann,
1980; Okiji and Kawakami, 1983), we know that, for large
U � �, the Kondo scale depends exponentially on U . In the
symmetric Anderson model, where Ef = −U/2,

TK =
√

2U�

π2
exp

(
−πU

8�

)
(30)

The temperature TK marks the crossover from a a high-
temperature Curie-law χ ∼ 1

T
susceptibility to a low-

temperature paramagnetic susceptibility χ ∼ 1/TK.
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2.1.2 Adiabaticity and the Kondo resonance

A central quantity in the physics of f-electron systems is the
f-spectral function,

Af (ω) = 1

π
ImGf (ω − iδ) (31)

where Gf (ω) = −i
∫∞
−∞ dt〈Tfσ (t)f †

σ (0)〉eiωt is the Fourier
transform of the time-ordered f-Green’s function. When
an f electron is added, or removed from the f state, the
final state has a distribution of energies described by the
f-spectral function. From a spectral decomposition of the
f-Green’s function, the positive energy part of the f-spectral
function determines the energy distribution for electron
addition, while the negative energy part measures the energy
distribution of electron removal:

Af (ω)=




Energy distribution of state formed by adding one f electron︷ ︸︸ ︷∑
λ

∣∣〈λ|f †
σ |φ0〉

∣∣2 δ(ω−[Eλ−E0]), (ω>0)∑
λ

∣∣〈λ|fσ |φ0〉
∣∣2 δ(ω−[E0−Eλ]),

︸ ︷︷ ︸
Energy distribution of state formed by removing an f electron

(ω<0)
(32)

where E0 is the energy of the ground state, and Eλ is
the energy of an excited state λ, formed by adding or
removing an f electron. For negative energies, this spectrum
can be measured by measuring the energy distribution of
photoelectrons produced by X-ray photoemission, while for
positive energies, the spectral function can be measured from
inverse X-ray photoemission (Allen et al., 1986; Allen, Oh,
Maple and Torikachvili, 1983). The weight beneath the Fermi
energy peak determines the f charge of the ion

〈nf 〉 = 2
∫ 0

−∞
dωAf (ω) (33)

In a magnetic ion, such as a Cerium atom in a 4f1 state, this
quantity is just a little below unity.

Figure 11 illustrates the effect of the interaction on the
f-spectral function. In the noninteracting limit (U = 0), the
f-spectral function is a Lorentzian of width �. If we turn on
the interaction U , being careful to shifting the f-level position
beneath the Fermi energy to maintain a constant occupancy,
the resonance splits into three peaks, two at energies ω = Ef

and ω = Ef + U corresponding to the energies for a valence
fluctuation, plus an additional central ‘Kondo resonance’
associated with the spin fluctuations of the local moment.

At first sight, once the interaction is much larger than
the hybridization width �, one might expect there to be no
spectral weight left at low energies. But this violates the idea
of adiabaticity. In fact, there are always certain adiabatic

U

0

w

∆

Kondo

Infinite U Anderson

Af (w)

e− + f 1 → f 2
TK

 f 1 → f 0 + e−

w = Ef

w = Ef  + U

Figure 11. Schematic illustration of the evaluation of the f-spectral
function Af (ω) as interaction strength U is turned on continuously,
maintaining a constant f occupancy by shifting the bare f-level
position beneath the Fermi energy. The lower part of diagram is the
density plot of f-spectral function, showing how the noninteracting
resonance at U = 0 splits into an upper and lower atomic peak at
ω = Ef and ω = Ef + U .

invariants that do not change, despite the interaction. One
such quantity is the phase shift δf associated with the
scattering of conduction electrons of the ion; another is the
height of the f-spectral function at zero energy, and it turns
out that these two quantities are related. A rigorous result
owing to (Langreth, 1966) tells us that the spectral function
at ω = 0 is directly determined by the f-phase shift, so that
its noninteracting value

Af (ω = 0) = sin2 δf

π�
(34)

is preserved by adiabaticity. Langreth’s result can be heuris-
tically derived by noting that δf is the phase of the
f-Green’s function at the Fermi energy, so that Gf (0 −
iε)−1 = |G−1

f (0)|e−iδf . Now, in a Fermi liquid, the scatter-
ing at the Fermi energy is purely elastic, and this implies
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that ImG−1
f (0 − iε) = �, the bare hybridization width.

From this, it follows that ImG−1
f (0) = |G−1

f (0)| sin δf = �,
so that Gf (0) = eiδf /(� sin δf ), and the preceding result
follows.

The phase shift δf is set via the Friedel sum rule, according
to which the sum of the up-and-down scattering phase shifts,
gives the total number of f-bound electrons, or

∑
σ

δf σ

π
= 2

δf

π
= nf (35)

for a twofold degenerate f state. At large distances, the wave
function of scattered electrons ψf (r) ∼ sin(kFr + δf )/r is
‘shifted inwards’ by a distance δl/kF = (λF/2) × (δl/π).
This sum rule is sometimes called a node counting rule
because, if you think about a large sphere enclosing the
impurity, then each time the phase shift passes through π , a
node crosses the spherical boundary and one more electron
per channel is bound beneath the Fermi sea. Friedel’s sum
rule holds for interacting electrons, provided the ground state
is adiabatically accessible from the noninteracting system
(Langer and Ambegaokar, 1961; Langreth, 1966). Since
nf = 1 in an f1 state, the Friedel sum rule tells us that
the phase shift is π/2 for a twofold degenerate f state. In
other words, adiabaticity tell us that the electron is resonantly
scattered by the quenched local moment.

Photoemission studies do reveal the three-peaked structure
characteristic of the Anderson model in many Ce systems,
such as CeIr2 and CeRu2 (Allen, Oh, Maple and Torikachvili,
1983) (see Figure 12). Materials in which the Kondo
resonance is wide enough to be resolved are more ‘mixed
valent’ materials in which the f valence departs significantly
from unity. Three-peaked structures have also been observed
in certain U 5f materials such as UPt3 and UAl2 (Allen et al.,
1985) materials, but it has not yet been resolved in UBe13.
A three-peaked structure has recently been observed in 4f
Yb materials, such as YbPd3, where the 4f13 configuration
contains a single f hole, so that the positions of the three
peaks are reversed relative to Ce (Liu et al., 1992).

2.2 Hierarchies of energy scales

2.2.1 Renormalization concept

To understand how a Fermi liquid emerges when a local
moment is immersed in a quantum sea of electrons, theorists
had to connect physics on several widely spaced energy
scales. Photoemission shows that the characteristic energy
to produce a valence fluctuation is of the order of volts, or
tens of thousands of Kelvin, yet the characteristic physics
we are interested in occurs at scales hundreds or thousands
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(a) CeAI

(b) CeIr2

(c) CeRu2

Figure 12. Showing spectral functions for three different Cerium
f-electron materials, measured using X-ray photoemission (below
the Fermi energy ) and inverse X-ray photoemission (above the
Fermi energy). CeAl is an AFM and does not display a Kondo
resonance. (Reproduced from J.W. Allen, S.J. Oh, M.B. Maple and
M.S. Torikachvili: Phys. Rev. 28, 1983, 5347, copyright  1983 by
the American Physical Society, with permission of the APS.)

of times smaller. How can we distill the essential effects of
the atomic physics at electron volt scales on the low-energy
physics at millivolt scales?

The essential tool for this task is the ‘renormalization
group’ (Anderson and Yuval, 1969, 1970, 1971; Anderson,
1970, 1973; Wilson, 1976; Nozières and Blandin, 1980;
Nozières, 1976), based on the idea that the physics at low-
energy scales only depends on a small subset of ‘relevant’
variables from the original microscopic Hamiltonian. The
extraction of these relevant variables is accomplished by
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‘renormalizing’ the Hamiltonian by systematically eliminat-
ing the high-energy virtual excitations and adjusting the
low-energy Hamiltonian to take care of the interactions that
these virtual excitations induce in the low energy Hilbert
space. This leads to a family of Hamiltonian’s H(�), each
with a different high-energy cutoff �, which share the same
low-energy physics.

The systematic passage from a Hamiltonian H(�) to
a renormalized Hamiltonian H(�′) with a smaller cutoff
�′ = �/b is accomplished by dividing the eigenstates of
H into a a low-energy subspace {L} and a high-energy
subspace {H}, with energies |ε| < �′ = �/b and a |ε| ∈
[�′, �] respectively. The Hamiltonian is then broken up into
terms that are block-diagonal in these subspaces,

H =
[

HL

V

∣∣∣∣ V †

HH

]
(36)

where V and V † provide the matrix elements between {L}
and {H}. The effects of the V are then taken into account by
carrying out a unitary (canonical) transformation that block-
diagonalizes the Hamiltonian,

H(�) → UH(�)U† =
[

H̃L

0

∣∣∣∣∣ 0

H̃H

]
(37)

The renormalized Hamiltonian is then given by H(�′) =
H̃L = HL + δH . The flow of key parameters in the Hamil-
tonian resulting from this process is called a renormalization
group flow.

At certain important crossover energy scales, large tracts
of the Hilbert space associated with the Hamiltonian are

projected out by the renormalization process, and the char-
acter of the Hamiltonian changes qualitatively. In the Ander-
son model, there are three such important energy scales,
(Figure 13)

• �I = Ef + U , where valence fluctuations e− + f 1 �
f 2 into the doubly occupied f2 state are eliminated.
For � � �I , the physics is described by the infinite
U Anderson model

H =
∑
k,σ

εknkσ +
∑
k,σ

V (k)
[
c

†
kσX0σ + Xσ0ckσ

]

+Ef

∑
σ

Xσσ , (38)

where Xσσ = |f 1 : σ 〉〈f 1 : σ |, X0σ = |f 0〉〈f 1σ | and
Xσ0 = |f 1 : σ 〉〈f 0| are ‘Hubbard operators’ that con-
nect the states in the projected Hilbert space with no
double occupancy.

• �II ∼ |Ef | = −Ef , where valence fluctuations into the
empty state f 1 � f 0 + e− are eliminated to form a local
moment. Physics below this scale is described by the
Kondo model.

• � = TK, the Kondo temperature below which the local
moment is screened to form a resonantly scattering local
Fermi liquid.

In the symmetric Anderson model, �I = �II , and the
transition to local moment behavior occurs in a one-step
crossover process.

2.2.2 Schrieffer–Wolff transformation

The unitary or canonical transformation that eliminates
the charge fluctuations at scales �I and �II was first

H(Λ)

FP

ΛI  = Ef  + U

ΛII ~ −Ef

ΛIII  =  −TK

Λ

Local Fermi liquid

Infinite U Anderson model

Kondo model

Anderson model

Hamiltonian

(a) (b)

Valence fluctuations

Local moments

Moment formation

Quasiparticles

Flows Excitations

f 0 f 1

f 0 f 1 f 2

f 1 f 1

Figure 13. (a) Crossover energy scales for the Anderson model. At scales below �I , valence fluctuations into the doubly occupied state
are suppressed. All lower energy physics is described by the infinite U Anderson model. Below �II , all valence fluctuations are suppressed,
and the physics involves purely the spin degrees of freedom of the ion, coupled to the conduction sea via the Kondo interaction. The Kondo
scale renormalizes to strong coupling below �III , and the local moment becomes screened to form a local Fermi liquid. (b) Illustrating
the idea of renormalization group flows toward a Fermi liquid fixed point.



16 Strongly correlated electronic systems

carried out by Schrieffer and Wolff (1966), and Coqblin
and Schrieffer (1969), who showed how this model gives
rise to a residual antiferromagnetic interaction between the
local moment and conduction electrons. The emergence
of this antiferromagnetic interaction is associated with a
process called superexchange: the virtual process in which
an electron or hole briefly migrates off the ion, to be
immediately replaced by another with a different spin. When
these processes are removed by the canonical transformation,
they induce an antiferromagnetic interaction between the
local moment and the conduction electrons. This can be seen
by considering the two possible spin-exchange processes

e−
↑ + f 1

↓ ↔ f 2 ↔ e−
↓ + f 1

↑ �EI ∼ U + Ef

h+
↑ + f 1

↓ ↔ f 0 ↔ h+
↓ + f 1

↑ �EII ∼ −Ef (39)

Both processes require that the f electron and incoming
particle are in a spin-singlet. From second-order perturbation
theory, the energy of the singlet is lowered by an amount
−2J , where

J = V 2
[

1

�E1
+ 1

�E2

]
(40)

and the factor of two derives from the two ways a singlet
can emit an electron or hole into the continuum [1] and
V ∼ V (kF) is the hybridization matrix element near the
Fermi surface. For the symmetric Anderson model, where
�E1 = �EII = U/2, J = 4V 2/U .

If we introduce the electron spin-density operator �σ(0) =
1
N
∑

k,k′ c
†
kα �σαβck′β , where N is the number of sites in the

lattice, then the effective interaction has the form

HK = −2JPS=0 (41)

where PS=0 =
[

1
4 − 1

2 �σ(0) · �Sf

]
is the singlet projection

operator. If we drop the constant term, then the effective
interaction induced by the virtual charge fluctuations must
have the form

HK = J �σ(0) · �Sf (42)

where �Sf is the spin of the localized moment. The complete
‘Kondo Model’, H = Hc + HK describing the conduction
electrons and their interaction with the local moment is

H =
∑
kσ

εkc
†
�kσ

c�kσ + J �σ(0) · �Sf (43)

2.2.3 The Kondo effect

The antiferromagnetic sign of the superexchange interac-
tion J in the Kondo Hamiltonian is the origin of the

spin-screening physics of the Kondo effect. The bare inter-
action is weak, but the spin fluctuations it induces have
the effect of antiscreening the interaction at low ener-
gies, renormalizing it to larger and larger values. To see
this, we follow an Anderson’s ‘Poor Man’s’ scaling pro-
cedure (Anderson, 1973, 1970), which takes advantage of
the observation that at small J the renormalization in the
Hamiltonian associated with the block-diagonalization pro-
cess δH = H̃L − HL is given by second-order perturbation
theory:

δHab = 〈a|δH |b〉 = 1

2
[Tab(Ea) + Tab(Eb)] (44)

where

Tab(ω) =
∑

|�〉∈{H }

[
V

†
a�V�b

ω − E�

]
(45)

is the many-body ‘t-matrix’ associated with virtual transi-
tions into the high-energy subspace {H }. For the Kondo
model,

V = PHJ �S(0) · �SdPL (46)

where PH projects the intermediate state into the high-
energy subspace, while PL projects the initial state into
the low-energy subspace. There are two virtual scatter-
ing processes that contribute to the antiscreening effect,
involving a high-energy electron (I) or a high-energy
hole (II).

Process I is denoted by the diagram

s′s′′

ka

k ′′l

s

k ′b

and starts in state |b〉 = |kα, σ 〉, passes through a virtual
state |�〉 = |c†

k′′ασ ′′〉 where εk′′ lies at high energies in the
range εk′′ ∈ [�/b, �] and ends in state |a〉 = |k′β, σ ′〉. The
resulting renormalization

〈k′β, σ ′|T I (E)|kα, σ 〉

=
∑

εk′′ ∈[�−δ�,�]

[
1

E−εk′′

]
J 2×(σ a

βλσ
b
λα)(Sa

σ ′σ ′′Sb
σ ′′σ )

≈ J 2ρδ�

[
1

E − �

]
(σ aσ b)βα(SaSb)σ ′σ (47)

In Process II, denoted by
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ka

s

s ′′

s ′

k ′b

k ′′l

the formation of a virtual hole excitation |�〉 = ck′′λ|σ ′′〉
introduces an electron line that crosses itself, introducing
a negative sign into the scattering amplitude. The spin
operators of the conduction sea and AFM reverse their
relative order in process II, which introduces a relative minus
sign into the T-matrix for scattering into a high-energy hole-
state,

〈k′βσ ′|T (II)(E)|kασ 〉

= −
∑

εk′′ ∈[−�,−�+δ�]

[
1

E − (εk + εk′ − εk′′)

]

×J 2(σ bσ a)βα(SaSb)σ ′σ

= −J 2ρδ�

[
1

E − �

]
(σ aσ b)βα(SaSb)σ ′σ (48)

where we have assumed that the energies εk and εk′ are
negligible compared with �.

Adding equations (47 and 48) gives

δH int
k′βσ ′;kασ = T̂ I + T II = −J 2ρδ�

�
[σa, σ b]βαSaSb

= 2
J 2ρδ�

�
�σβα · �Sσ ′σ (49)

so the high-energy virtual spin fluctuations enhance or
‘antiscreen’ the Kondo coupling constant

J (�′) = J (�) + 2J 2ρ
δ�

�
(50)

If we introduce the coupling constant g = ρJ , recognizing
that d ln � = − δ�

�
, we see that it satisfies

∂g

∂ ln �
= β(g) = −2g2 + O(g3) (51)

This is an example of a negative β function: a signature of
an interaction that grows with the renormalization process.
At high energies, the weakly coupled local moment is
said to be asymptotically free. The solution to the scaling
equation is

g(�′) = go

1 − 2go ln(�/�′)
(52)

and if we introduce the ‘Kondo temperature’

TK = D exp

[
− 1

2go

]
(53)

we see that this can be written

2g(�′) = 1

ln(�/TK)
(54)

so that once �′ ∼ TK, the coupling constant becomes of the
order one – at lower energies, one reaches ‘strong coupling’
where the Kondo coupling can no longer be treated as a
weak perturbation. One of the fascinating things about this
flow to strong coupling is that, in the limit TK � D, all
explicit dependence on the bandwidth D disappears and the
Kondo temperature TK is the only intrinsic energy scale in the
physics. Any physical quantity must depend in a universal
way on ratios of energy to TK, thus the universal part of the
free energy must have the form

F(T ) = TK�
T

TK
(55)

where �(x) is universal. We can also understand the resis-
tance created by spin-flip scattering of a magnetic impurity in
the same way. The resistivity is given by ρi = ne2

m
τ(T , H),

where the scattering rate must also have a scaling form

τ (T , H) = ni

ρ
�2

(
T

TK
,

H

TK

)
(56)

where ρ is the density of states (per spin) of electrons
and ni is the concentration of magnetic impurities and
the function �2(t, h) is universal. To leading order in the
Born approximation, the scattering rate is given by τ =
2πρJ 2S(S + 1) = 2πS(S+1)

ρ
(g0)

2 where g0 = g(�0) is the
bare coupling at the energy scale that moments form. We
can obtain the behavior at a finite temperature by replacing
g0 → g(� = 2πT ), where upon

τ (T ) = 2πS(S + 1)

ρ

1

4 ln2(2πT/TK)
(57)

gives the leading high-temperature growth of the resistance
associated with the Kondo effect.

The kind of perturbative analysis we have gone through
here takes us down to the Kondo temperature. The physics at
lower energies corresponds to the strong coupling limit of the
Kondo model. Qualitatively, once Jρ � 1, the local moment
is bound into a spin-singlet with a conduction electron. The
number of bound electrons is nf = 1, so that by the Friedel
sum rule (equation (35)) in a paramagnet the phase shift
δ↑ = δ↓ = π/2, the unitary limit of scattering. For more
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details about the local Fermi liquid that forms, we refer the
reader to the accompanying chapter on the Kondo effect by
Jones (2007).

2.2.4 Doniach’s Kondo lattice concept

The discovery of heavy-electron metals prompted Doniach
(1977) to make the radical proposal that heavy-electron
materials derive from a dense lattice version of the Kondo
effect, described by the Kondo Lattice model (Kasuya,
1956)

H =
∑
kσ

εkc
†
kσ ckσ + J

∑
j

�Sj · c
†
kα �σαβck′βei(k′−k)·Rj (58)

In effect, Doniach was implicitly proposing that the key
physics of heavy-electron materials resides in the interaction
of neutral local moments with a charged conduction electron
sea.

Most local moment systems develop an antiferromagnetic
order at low temperatures. A magnetic moment at location
x0 induces a wave of ‘Friedel’ oscillations in the electron
spin density (Figure 14)

〈�σ(x)〉 = −Jχ(x − x0)〈�S(x0)〉 (59)

where

χ(x) = 2
∑
k,k′

(
f (εk) − f (εk′)

εk′ − εk

)
ei(k−k′)·x (60)

is the nonlocal susceptibility of the metal. The sharp dis-
continuity in the occupancies f (εk) at the Fermi surface is
responsible for Friedel oscillations in induced spin density
that decay with a power law

〈�σ(r)〉 ∼ −Jρ
cos 2kFr

|kFr|3 (61)

where ρ is the conduction electron density of states and r is
the distance from the impurity. If a second local moment is
introduced at location x, it couples to this Friedel oscillation
with energy J 〈�S(x) · �σ(x)〉, giving rise to the ‘RKKY’

(Ruderman and Kittel, 1954; Kasuya, 1956; Yosida, 1957)
magnetic interaction,

HRKKY =
JRKKY(x−x′)︷ ︸︸ ︷

−J 2χ(x − x′) �S(x) · �S(x′) (62)

where

JRKKY(r) ∼ −J 2ρ
cos 2kFr

kFr
(63)

In alloys containing a dilute concentration of magnetic
transition-metal ions, the oscillatory RKKY interaction gives
rise to a frustrated, glassy magnetic state known as a spin
glass. In dense systems, the RKKY interaction typically
gives rise to an ordered antiferromagnetic state with a Néel
temperature TN of the order J 2ρ. Heavy-electron metals
narrowly escape this fate.

Doniach argued that there are two scales in the Kondo
lattice, the single-ion Kondo temperature TK and TRKKY,
given by

TK = De−1/(2Jρ)

TRKKY = J 2ρ (64)

When Jρ is small, then TRKKY is the largest scale and an
antiferromagnetic state is formed, but, when the Jρ is large,
the Kondo temperature is the largest scale so a dense Kondo
lattice ground state becomes stable. In this paramagnetic
state, each site resonantly scatters electrons with a phase shift
∼π/2. Bloch’s theorem then insures that the resonant elastic
scattering at each site acts coherently, forming a renormalized
band of width ∼TK (Figure 15).

As in the impurity model, one can identify the Kondo
lattice ground state with the large U limit of the Anderson
lattice model. By appealing to adiabaticity, one can then
link the excitations to the small U Anderson lattice model.
According to this line of argument, the quasiparticle Fermi
surface volume must count the number of conduction and f
electrons (Martin, 1982), even in the large U limit, where it
corresponds to the number of electrons plus the number of
spins

2
VFS

(2π)3
= ne + nspins (65)

Figure 14. Spin polarization around magnetic impurity contains Friedel oscillations and induces an RKKY interaction between the spins.
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Fermi
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TK ~ Dexp[−1/Jr]

TN ~ J2r

Figure 15. Doniach diagram, illustrating the antiferromagnetic
regime, where TK < TRKKY and the heavy-fermion regime, where
TK > TRKKY. Experiment has told us in recent times that the tran-
sition between these two regimes is a quantum critical point. The
effective Fermi temperature of the heavy Fermi liquid is indicated
as a solid line. Circumstantial experimental evidence suggests that
this scale drops to zero at the antiferromagnetic quantum critical
point, but this is still a matter of controversy.

Using topology, and certain basic assumptions about the
response of a Fermi liquid to a flux, Oshikawa (2000) was
able to short circuit this tortuous path of reasoning, proving
that the Luttinger relationship holds for the Kondo lattice
model without reference to its finite U origins.

There are, however, aspects to the Doniach argument that
leave cause for concern:

• It is purely a comparison of energy scales and does
not provide a detailed mechanism connecting the heavy-
fermion phase to the local moment AFM.

• Simple estimates of the value of Jρ required for heavy-
electron behavior give an artificially large value of the
coupling constant Jρ ∼ 1. This issue was later resolved
by the observation that large spin degeneracy 2j + 1 of
the spin-orbit coupled moments, which can be as large
as N = 8 in Yb materials, enhances the rate of scaling
to strong coupling, leading to a Kondo temperature
(Coleman, 1983)

TK = D(NJρ)
1
N exp

[
− 1

NJρ

]
(66)

Since the scaling enhancement effect stretches out across
decades of energy, it is largely robust against crystal
fields (Mekata et al., 1986).

• Nozières’ exhaustion paradox (Nozières, 1985). If one
considers each local moment to be magnetically screened
by a cloud of low-energy electrons within an energy
TK of the Fermi energy, one arrives at an ‘exhaus-
tion paradox’. In this interpretation, the number of
electrons available to screen each local moment is of
the order TK/D � 1 per unit cell. Once the concen-
tration of magnetic impurities exceeds TK

D
∼ 0.1% for

(TK = 10 K, D = 104 K), the supply of screening elec-
trons would be exhausted, logically excluding any sort of
dense Kondo effect. Experimentally, features of single-
ion Kondo behavior persist to much higher densities.
The resolution to the exhaustion paradox lies in the more
modern perception that spin screening of local moments
extends up in energy, from the Kondo scale TK out to the
bandwidth. In this respect, Kondo screening is reminis-
cent of Cooper pair formation, which involves electron
states that extend upward from the gap energy to the
Debye cutoff. From this perspective, the Kondo length
scale ξ ∼ vF/TK is analogous to the coherence length of
a superconductor (Burdin, Georges and Grempel, 2000),
defining the length scale over which the conduction spin
and local moment magnetization are coherent without
setting any limit on the degree to which the correlation
clouds can overlap (Figure 16).

2.3 The large N Kondo lattice

2.3.1 Gauge theories, large N, and strong correlation

The ‘standard model’ for metals is built upon the expansion
to high orders in the strength of the interaction. This
approach, pioneered by Landau, and later formulated in the
language of finite temperature perturbation theory by Landau
(1957), Pitaevskii (1960), Luttinger and Ward (1960), and
Nozières and Luttinger (1962), provides the foundation for
our understanding of metallic behavior in most conventional
metals.

The development of a parallel formalism and approach
for strongly correlated electron systems is still in its infancy,
and there is no universally accepted approach. At the heart
of the problem are the large interactions, which effectively
remove large tracts of Hilbert space and impose strong
constraints on the low-energy electronic dynamics. One way
to describe these highly constrained Hilbert spaces is through
the use of gauge theories. When written as a field theory,
local constraints manifest themselves as locally conserved
quantities. General principles link these conserved quantities
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Figure 16. Contrasting (a) the ‘screening cloud’ picture of the
Kondo effect with (b) the composite fermion picture. In (a),
low-energy electrons form the Kondo singlet, leading to the
exhaustion problem. In (b), the composite heavy electron is a highly
localized bound-state between local moments and high-energy
electrons, which injects new electronic states into the conduction
sea at the chemical potential. Hybridization of these states with
conduction electrons produces a singlet ground state, forming a
Kondo resonance in the single impurity, and a coherent heavy
electron band in the Kondo lattice.

with a set of gauge symmetries. For example, in the Kondo
lattice, if a spin S = 1/2 operator is represented by fermions,

�Sj = f
†
jα

( �σ
2

)
αβ

fjβ (67)

then the representation must be supplemented by the con-
straint nf (j) = 1 on the conserved f number at each site.
This constraint means one can change the phase of each f
fermion at each site arbitrarily

fj → eiφj fj (68)

without changing the spin operator �Sj or the Hamiltonian.
This is the local gauge symmetry.

Similar issues also arise in the infinite U Anderson or
Hubbard models where the ‘no double occupancy’ constraint
can be established by using a slave boson representation
(Barnes, 1976; Coleman, 1984) of Hubbard operators:

Xσ0(j) = f
†
jσ bj , X0σ (j) = b

†
j fjσ (69)

where f
†
jσ creates a singly occupied f state, f

†
jσ |0〉 ≡

|f 1, jσ 〉, while b† creates an empty f 0 state, b†
j |0〉 = |f 0, j〉.

In the slave boson, the gauge charges

Qj =
∑
σ

f
†
jσ fjσ + b

†
j bj (70)

are conserved and the physical Hilbert space corresponds to
Qj = 1 at each site. The gauge symmetry is now fjσ →
eiθj fjσ , bj → eiθj bj . These two examples illustrate the link
between strong correlation and gauge theories.

Strong correlation ↔ Constrained Hilbert space

↔ Gauge theories (71)

A key feature of these gauge theories is the appearance of
‘fractionalized fields’, which carry either spin or charge, but
not both. How, then, can a Landau–Fermi liquid emerge
within a Gauge theory with fractional excitations?

Some have suggested that Fermi liquids cannot reconsti-
tute themselves in such strongly constrained gauge theories.
Others have advocated against gauge theories, arguing that
the only reliable way forward is to return to ‘real-world’
models with a full fermionic Hilbert space and a finite inter-
action strength. A third possibility is that the gauge theory
approach is valid, but that heavy quasiparticles emerge as
bound-states of gauge particles. Quite independently of one’s
position on the importance of gauge theory approaches, the
Kondo lattice poses a severe computational challenge, in no
small part, because of the absence of any small parameter
for resumed perturbation theory. Perturbation theory in the
Kondo coupling constant J always fails below the Kondo
temperature. How, then, can one develop a controlled com-
putational tool to explore the transition from local moment
magnetism to the heavy Fermi liquid?

One route forward is to seek a family of models that
interpolates between the models of physical interest, and a
limit where the physics can be solved exactly. One approach,
as we shall discuss later, is to consider Kondo lattices in
variable dimensions d, and expand in powers of 1/d about
the limit of infinite dimensionality (Georges, Kotliar, Krauth
and Rozenberg, 1996; Jarrell, 1995). In this limit, electron
self-energies become momentum independent, the basis of
the DMFT. Another approach, with the advantage that it
can be married with gauge theory, is the use of large N

expansions. The idea here is to generalize the problem to a
family of models in which the f-spin degeneracy N = 2j + 1
is artificially driven to infinity. In this extreme limit, the
key physics is captured as a mean-field theory, and finite N

properties are obtained through an expansion in the small
parameter 1/N . Such large N expansions have played an
important role in the context of the spherical model of
statistical mechanics (Berlin and Kac, 1952) and in field
theory (Witten, 1978). The next section discusses how the
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gauge theory of the Kondo lattice model can be treated in a
large N expansion.

2.3.2 Mean-field theory of the Kondo lattice

Quantum large N expansions are a kind of semiclassical
limit, where 1/N ∼ � plays the role of a synthetic Planck’s
constant. In a Feynman path integral

〈xf (t)|xi, 0〉 =
∫

D[x] exp

[
i

�
S[x, ẋ]

]
(72)

where S is the classical action and the quantum action
A = 1

�
S is ‘extensive’ in the variable 1

�
. When 1

�
→ ∞,

fluctuations around the classical trajectory vanish and the
transition amplitude is entirely determined by the classical
action to go from i to f . A large N expansion for the partition
function Z of a quantum system involves a path integral in
imaginary time over the fields φ

Z =
∫

D[φ]e−NS[φ,φ̇] (73)

where NS is the action (or free energy) associated with the
field configuration in space and time. By comparison, we see
that the large N limit of quantum systems corresponds to
an alternative classical mechanics, where 1/N ∼ � emulates
Planck’s constant and new types of collective behavior not
pertinent to strongly interacting electron systems start to
appear.

Our model for a Kondo lattice of spins localized at sites
j is

H =
∑
kσ

εkc
†
kσ ckσ +

∑
j

HI (j) (74)

where

HI (j) = J

N
Sαβ(j)c

†
jβcjα (75)

is the Coqblin Schrieffer form of the Kondo interaction
Hamiltonian (Coqblin and Schrieffer, 1969) between an f
spin with N = 2j + 1 spin components and the conduction
sea. The spin of the local moment at site j is represented as
a bilinear of Abrikosov pseudofermions

Sαβ(j) = f
†
jαfjβ − nf

N
δαβ (76)

and

c
†
jσ = 1√

N
∑

k

c
†
kσ e−ik· �Rj (77)

creates an electron localized at site j , where N is the number
of sites.

Although this is a theorists’ idealization – a ‘spherical
cow approximation’, it nevertheless captures key aspects
of the physics. This model ascribes a spin degeneracy of
N = 2j + 1 to both the f electrons and the conduction
electrons. While this is justified for a single impurity, a more
realistic lattice model requires the introduction of Clebsch–
Gordon coefficients to link the spin-1/2 conduction electrons
with the spin-j conduction electrons.

To obtain a mean-field theory, each term in the Hamil-
tonian must scale as N . Since the interaction contains two
sums over the spin variables, this criterion is met by rescaling
the coupling constant replacing J → J̃

N
. Another important

aspect to this model is the constraint on charge fluctuations,
which in the Kondo limit imposes the constraint nf = 1.
Such a constraint can be imposed in a path integral with a
Lagrange multiplier term λ(nf − 1). However, with nf = 1,
this is not extensive in N , and cannot be treated using a
mean-field value for λ. The resolution is to generalize the
constraint to nf = Q, where Q is an integer chosen so that as
N grows, q = Q/N remains fixed. Thus, for instance, if we
are interested in N = 2, this corresponds to q = nf /N = 1

2 .
In the large N limit, it is then sufficient to apply the con-
straint on the average 〈nf 〉 = Q through a static Lagrange
multiplier coupled to the difference (nf − Q).

The next step is to carry out a ‘Hubbard–Stratonovich’
transformation on the interaction

HI(j) = − J

N

(
c

†
jβfjβ

) (
f

†
jαcjα

)
(78)

Here, we have absorbed the term − J
N

nf c
†
jαcjα derived

from the spin-diagonal part of (equation (76)) by a shift
µ → µ − Jnf

N2 in the chemical potential. This interaction has

the form −gA†A, with g = J
N

and A = f
†
jαcjα, which we

factorize using a Hubbard–Stratonovich transformation,

−gA†A → A†V + V A + V V

g
(79)

so that (Lacroix and Cyrot, 1979; Read and Newns, 1983a)

HI (j) → HI [V, j ] = V j

(
c

†
jσ fjσ

)
+
(
f

†
jσ cjσ

)
Vj

+N
V jVj

J
(80)

This is an exact transformation, provided the Vj (τ ) are
treated as fluctuating variables inside a path integral. The Vj

can be regarded as a spinless exchange boson for the Kondo
effect. In the parallel treatment of the infinite Anderson
model (Coleman, 1987a), Vj = V bj is the ‘slave boson’ field
associated with valence fluctuations.
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In diagrams:

J/N

J
N

(c†
s fs) ( f†s ′cs ′)−

J
N d (t − t′)

c†
s fs f †

s′cs′

(81)

The path integral for the Kondo lattice is then

Z =
∫

D[V, λ]

=Tr
[
T exp

(
− ∫ β

0 H [V,λ]dτ
)]

︷ ︸︸ ︷∫
D[c, f ] exp


−

∫ β

0


∑

kσ

c
†
kσ ∂τ ckσ +

∑
jσ

f
†
jσ ∂τ fjσ + H [V, λ]




 (82)

where

H [V, λ] =
∑
kσ

εkc
†
kσ ckσ

+
∑

j

(
HI [Vj , j ] + λj [nf (j) − Q]

)
(83)

This is the ‘Read–Newns’ path integral formulation (Read
and Newns, 1983a; Auerbach and Levin, 1986) of the Kondo
lattice model. The path integral contains an outer integral∫
D[V, λ] over the gauge fields Vj and λj (τ), and an inner

integral
∫
D[c, f ] over the fermion fields moving in the

environment of the gauge fields. The inner path integral
is equal to a trace over the time-ordered exponential of
H [V, λ].

Since the action in this path integral grows extensively
with N , the large N limit is saturated by the saddle point
configurations of V and λ, eliminating the the outer integral
in equation (83). We seek a translationally invariant, static,
saddle point, where λj (τ ) = λ and Vj (τ ) = V . Since the
Hamiltonian is static, the interior path integral can be written
as the trace over the Hamiltonian evaluated at the saddle
point,

Z = Tre−βHMFT (N → ∞) (84)

where

HMFT =H [V, λ]=
∑
kσ

εkc
†
kσ ckσ +

∑
j,σ

(
V c

†
jσ fjσ +Vf

†
jσ cjσ

+λf
†
jσ fjσ

)
+ Nn

(
V V

J
− λoq

)
(85)

The saddle point is determined by the condition that
the Free energy F = −T ln Z is stationary with respect to
variations in V and λ. To impose this condition, we need
to diagonalize HMFT and compute the Free energy. First we
rewrite the mean-field Hamiltonian in momentum space,

HMFT =
∑
kσ

(
c

†
kσ , f

†
kσ

) [
εk V

V λ

](
ckσ

fkσ

)

+Nn

(
V V

J
− λq

)
(86)

where

f
†
�kσ = 1√

N

∑
j

f
†
jσ ei�k· �Rj (87)

is the Fourier transform of the f-electron field. This Hamil-
tonian can then be diagonalized in the form

HMFT =
∑
kσ

(
a

†
kσ , b

†
kσ

) [
Ek+ 0

0 Ek−

](
akσ

bkσ

)

+NNs

( |V |2
J

− λq

)
(88)

where a
†
kσ and b

†
kσ are linear combinations of c

†
kσ and

f
†
�kσ

, which describe the quasiparticles of the theory. The
momentum state eigenvalues E = E �k± are the roots of the
equation

Det

[
E1 −

(
εk V

V λ

)]
= (E − εk)(E − λ) − |V |2

= 0 (89)

so

Ek± = εk + λ

2
±
[(

εk − λ

2

)2

+ |V |2
] 1

2

(90)

are the energies of the upper and lower bands. The dispersion
described by these energies is shown in Figure 17. Notice
that:
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(a) (b)
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‘hole’ Fermi surface
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r∗(E)

Direct gap 2V
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gap ∆g

Figure 17. (a) Dispersion produced by the injection of a composite fermion into the conduction sea. (b) Renormalized density of states,
showing ‘hybridization gap’ (�g).

• hybridization between the f-electron states and the con-
duction electrons builds an upper and lower Fermi band,
separated by an indirect ‘hybridization gap’ of width
�g = Eg(+) − Eg(−) ∼ TK, where

Eg(±) = λ ± V 2

D∓
(91)

and ±D± are the top and bottom of the conduction band.
The ‘direct’ gap between the upper and lower bands is
2|V |.

• From (89), the relationship between the energy of the
heavy electrons (E) and the energy of the conduc-
tion electrons (ε) is given by ε = E − |V |2/(E − λ),
so that the density of heavy-electron states ρ∗(E) =∑

k,± δ(E − E
(±)
k ) is related to the conduction electron

density of states ρ(ε) by

ρ∗(E) = ρ
dε

dE
= ρ(ε)

(
1 + |V |2

(E − λ)2

)

∼
{

ρ
(

1+ |V |2
(E−λ)2

)
outside hybridization gap,

0 inside hybridization gap,

(92)
so the ‘hybridization gap’ is flanked by two sharp peaks

of approximate width TK.
• The Fermi surface volume expands in response to the

injection of heavy electrons into the conduction sea,

NaD VFS

(2π)3
=
〈

1

Ns

∑
kσ

nkσ

〉
= Q + nc (93)

where aD is the unit cell volume, nkσ = a
†
kσ akσ +

b
†
kσ bkσ is the quasiparticle number operator and nc is

the number of conduction electrons per unit cell. More

instructively, if ne = nc/a
D is the electron density,

e− density︷︸︸︷
ne =

quasi particle density︷ ︸︸ ︷
N

VFS

(2π)3
− Q

aD︸︷︷︸
positive background

(94)

so the electron density nc divides into a contribution
carried by the enlarged Fermi sea, whose enlargement is
compensated by the development of a positively charged
background. Loosely speaking, each neutral spin in the
Kondo lattice has ‘ionized’ to produce Q negatively
charged heavy fermions, leaving behind a Kondo singlet
of charge +Qe (Figure 18).

To obtain V and λ, we must compute the free energy

F

N
= −T

∑
k,±

ln

[
1 + e−βEk±

]
+ Ns

( |V |2
J

− λq

)
(95)

+Qe

E(k) −(Q + nc)e

+
+

(a) (b)

++
+ +

++ Kondo singlets:
charged background.

Heavy electrons

−nce

−
−−

−−

Figure 18. Schematic diagram from Coleman, Paul and Rech
(2005a). (a) High-temperature state: small Fermi surface with a
background of spins; (b) Low-temperature state, where large Fermi
surface develops against a background of positive charge. Each
spin ‘ionizes’ into Q heavy electrons, leaving behind a a Kondo
singlet with charge +Qe. (Reproduced from P. Coleman, I. Paul,
and J. Rech, Phys. Rev. B 72, 2005, 094430, copyright  2005 by
the American Physical Society, with permission of the APS.)
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At T = 0, the free energy converges the ground-state energy
E0, given by

E0

NNs

=
∫ 0

−∞
ρ∗(E)E +

( |V |2
J

− λq

)
(96)

Using equation (92), the total energy is

Eo

NNs

=
∫ 0

−D

dερEdE +
∫ 0

−D

dEρ|V |2 E

(E − λ)2

+
( |V |2

J
− λq

)

=

Ec/(NNs )︷ ︸︸ ︷
−D2ρ

2
+

EK/(NNs )︷ ︸︸ ︷
�

π
ln

(
λe

TK

)
− λq (97)

where we have assumed that the upper band is empty and

the lower band is partially filled. TK = De
− 1

Jρ as before.
The first term in (97) is the conduction electron contribution
to the energy Ec/Nns , while the second term is the lattice
‘Kondo’ energy EK/NNs

. If now we impose the constraint
∂Eo

∂λ
= 〈nf 〉 − Q = 0 then λ = �

πq
so that the ground-state

energy can be written

EK

NNs

= �

π
ln

(
�e

πqTK

)
(98)

This energy functional has a ‘Mexican Hat’ form, with a
minimum at

� = πq

e2
TK (99)

confirming that � ∼ TK. If we now return to the quasiparticle
density of states ρ∗, we find it has the value

ρ∗(0) = ρ + q

TK
(100)

at the Fermi energy so the mass enhancement of the heavy
electrons is then

m∗

m
= 1 + q

ρTK
∼ qD

TK
(101)

2.3.3 The charge of the f electron

How does the f electron acquire its charge? We have
emphasized from the beginning that the charge degrees of
freedom of the original f electrons are irrelevant, indeed,
absent from the physics of the Kondo lattice. So how are
charged f electrons constructed out of the states of the
Kondo lattice, and how do they end up coupling to the
electromagnetic field?

The large N theory provides an intriguing answer. The
passage from the original Hamiltonian equation (75) to the
mean-field Hamiltonian equation (85) is equivalent to the
substitution

J

N
Sαβ(j)c

†
jβcjα −→ V f

†
jαcjα + V c

†
jαfjα (102)

In other words, the composite combination of spin and
conduction electron are contracted into a single Fermi
field

J

N
Sαβ(j)c

†

jβ =

 J

N
f

†
jαfjβc

†

jβ


 → Vf

†
jα (103)

The amplitude V = J
N

fjβc

†

jβ = − J
N

〈c†
jβfjβ〉 involves elec-

tron states that extend over decades of energy out to the
band edges. In this way, the f electron emerges as a compos-
ite bound-state of a spin and an electron. More precisely, in
the long-time correlation functions,

〈[Sγα(i)ciγ

]
(t)

[
Sαβ(j)c

†
jβ

]
(t ′)〉

|t−t ′|��/TK−−−−−−−→ N |V 2|
J 2

〈fiα(t)f
†
jα(t ′)〉 (104)

Such ‘clustering’ of composite operators into a single entity
is well-known statistical mechanics as part of the operator
product expansion (Cardy, 1996). In many-body physics,
we are used to the clustering of fermions pairs into a
composite boson, as in the BCS model of superconductiv-

ity, −gψ↑(x)ψ↓(x ′) → �(x − x ′). The unfamiliar aspect
of the Kondo effect is the appearance of a composite
fermion.

The formation of these composite objects profoundly mod-
ifies the conductivity and plasma oscillations of the electron
fluid. The Read–Newns path integral has two U(1) gauge
invariances – an external electromagnetic gauge invariance
associated with the conservation of charge and an internal
gauge invariance associated with the local constraints. The f
electron couples to the internal gauge fields rather than the
external electromagnetic fields, so why is it charged?

The answer lies in the broken symmetry associated with
the development of the amplitude V . The phase of V

transforms under both internal and external gauge groups.
When V develops an amplitude, its phase does not actually
order, but it does develop a stiffness which is sufficient to
lock the internal and external gauge fields together so that,
at low frequencies, they become synonymous. Written in a
schematic long-wavelength form, the gauge-sensitive part of
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the Kondo lattice Lagrangian is

L =
∑
σ

∫
dDx

[
c†
σ (x)(−i∂t + e�(x) + εp−e �A)cσ (x)

+f †
σ (x)(−i∂t + λ(x))fσ (x)

+
(

V (x)c†
σ (x)fσ (x) + H.c

)]
(105)

where p = −i �∇. Suppose V (x) = |V (x)|eiφ(x). There are
two independent gauge transformations that increase the
phase φ of the hybridization. In the external, electromagnetic
gauge transformation, the change in phase is absorbed onto
the conduction electron and electromagnetic field, so if
V → V eiα ,

φ → φ + α, c(x) → c(x)e−iα(x),

e�(x) → e�(x) + α̇(x), e �A → e �A − �∇α(x) (106)

where (�, �A) denotes the electromagnetic scalar and vector
potential at site j and α̇ = ∂tα ≡ −i∂τα denotes the deriva-
tive with respect to real time t . By contrast, in the internal
gauge transformation, the phase change of V is absorbed
onto the f fermion and the internal gauge field (Read and
Newns, 1983a), so if V → V eiβ ,

φ → φ + β, f (x) → f (x)eiβ(x),

λ(x) → λ(x) − β̇(x) (107)

If we expand the mean-field free energy to quadratic order
in small, slowly varying changes in λ(x), then the change in
the action is given by

δS = −χQ

2

∫
dDxdτδλ(x)2 (108)

where χQ = −δ2F/δλ2 is the f-electron susceptibility eval-
uated in the mean-field theory. However, δλ(x) is not gauge
invariant, so there must be additional terms. To guarantee
gauge invariance under both the internal and external trans-
formation, we must replace δλ by the covariant combination
δλ + φ̇ − e�. The first two terms are required for invariance
under the internal gauge group, while the last two terms are
required for gauge invariance under the external gauge group.
The expansion of the action to quadratic order in the gauge
fields must therefore have the form

S ∼ −χQ

2

∫
dτ
∑

j

(φ̇ + δλ(x) − e�(x))2 (109)

so the phase φ acquires a rigidity in time that generates
a ‘mass’ or energy cost associated with difference of the

external and internal potentials. The minimum energy static
configuration is when

δλ(x) + φ̇(x) = e�(x) (110)

so when the external potential changes slowly, the internal
potential tracks it. It is this effect that keeps the Kondo
resonance pinned at the Fermi surface. We can always choose
the gauge where the phase velocity φ̇ is absorbed into the
local gauge field λ. Recent work by Coleman, Marston and
Schofield (2005b) has extended this kind of reasoning to the
case where RKKY couplings generate a dispersion jp−A for
the spinons, where A is an internal vector potential, which
suppresses currents of the gauge charge nf . In this case, the
long-wavelength action has the form

S = 1

2

∫
d3xdτ

[
ρs

(
e �A + �∇φ − �A

)2

−χQ(e� − φ̇ − δλ)2
]

(111)

In this general form, heavy-electron physics can be seen
to involve a kind of ‘Meissner effect’ that excludes the
difference field e �A − �A from within the metal, locking the
internal field to the external electromagnetic field, so that
the f electrons, which couple to it, now become charged
(Figure 19).

2.3.4 Optical conductivity of the heavy-electron fluid

One of the interesting consequences of the heavy-electron
charge is a complete renormalization of the electronic plasma
frequency (Millis, Lavagna and Lee, 1987b). The electronic

(b)(a)

A(x)A(x)

A(x)
A(x)

Figure 19. (a) Spin liquid, or local moment phase, internal field
A decoupled from electromagnetic field. (b) Heavy-electron phase,
internal gauge field ‘locked’ together with electromagnetic field.
Heavy electrons are now charged and difference field [e �A(x) −
A(x)] is excluded from the material.



26 Strongly correlated electronic systems

plasma frequency is related via a f-sum rule to the integrated
optical conductivity

∫ ∞

0

dω

π
σ(ω) = f1 = π

2

(
nce

2

m

)
(112)

where ne is the density of electrons [2]. In the absence of
local moments, this is the total spectral weight inside the
Drude peak of the optical conductivity.

When the heavy-electron fluid forms, we need to consider
the plasma oscillations of the enlarged Fermi surface. If the
original conduction sea was less than half filled, then the
renormalized heavy-electron band is more than half filled,
forming a partially filled hole band. The density of electrons
in a filled band is N/aD , so the effective density of hole
carriers is then

nHF = (N − Q − Nc)/a
D = (N − Q)/aD − nc (113)

The mass of the excitations is also renormalized, m → m∗.
The two effects produce a low-frequency ‘quasiparticle’
Drude peak in the conductivity, with a small total weight

∫ ∼V

0
dωσ(ω) = f2 = π

2

nHFe
2

m∗ ∼ f1

× m

m∗

(
nHF

nc

)
� f1 (114)

Optical conductivity probes the plasma excitations of the
electron fluid at low momenta. The direct gap between the
upper and lower bands of the Kondo lattice are separated by
a direct hybridization gap of the order 2V ∼ √

DTK. This
scale is substantially larger than the Kondo temperature, and
it defines the separation between the thin Drude peak of the
heavy electrons and the high-frequency contribution from the
conduction sea.

In other words, the total spectral weight is divided up into a
small ‘heavy fermion’ Drude peak, of total weight f2, where

σ(ω) = nHFe
2

m∗
1

(τ ∗)−1 − iω
(115)

separated off by an energy of the order V ∼ √
TKD from an

‘interband’ component associated with excitations between
the lower and upper Kondo bands (Millis and Lee, 1987a;
Degiorgi, Anders, Gruner and Society, 2001). This second
term carries the bulk ∼f1 of the spectral weight (Figure 20).

Simple calculations, based on the Kubo formula, confirm
this basic expectation, (Millis and Lee, 1987a; Degiorgi,
Anders, Gruner and Society, 2001) showing that the relation-
ship between the original relaxation rate of the conduction
sea and the heavy-electron relaxation rate τ ∗ is

(τ ∗)−1 = m

m∗ (τ )−1 (116)

ne
2 t

m

‘Interband’

w

pne2

2m∗f2 =

pne2

2m
f1 =

∆w~ V~ TKD

m∗(t∗)−1 = t−1 m

s
(w

)

TKD~

Figure 20. Separation of the optical sum rule in a heavy-fermion
system into a high-energy ‘interband’ component of weight f2 ∼
ne2/m and a low-energy Drude peak of weight f1 ∼ ne2/m∗.

Notice that this means that the residual resistivity

ρo = m∗

ne2τ ∗ = m

ne2τ
(117)

is unaffected by the effects of mass renormalization. This
can be understood by observing that the heavy-electron
Fermi velocity is also renormalized by the effective mass,
v∗

F = m
m∗ , so that the mean-free path of the heavy-electron

quasiparticles is unaffected by the Kondo effect.

l∗ = v∗
Fτ ∗ = vFτ (118)

The formation of a narrow Drude peak, and the presence
of a direct hybridization gap, have been seen in optical
measurements on heavy-electron systems (Schlessinger, Fisk,
Zhang and Maple, 1997; Beyerman, Gruner, Dlicheouch and
Maple, 1988; Dordevic et al., 2001). One of the interesting
features about the hybridization gap of size 2V is that the
mean-field theory predicts that the ratio of the direct to the

indirect hybridization gap is given by 2V
TK

∼ 1√
ρTK

∼
√

m∗
me

,
so that the effective mass of the heavy electrons should scale
as square of the ratio between the hybridization gap and the
characteristic scale T ∗ of the heavy Fermi liquid

m∗

me

∝
(

2V

TK

)2

(119)

In practical experiments, TK is replaced by the ‘coherence
temperature’ T ∗, where the resistivity reaches a maximum.
This scaling law is broadly followed (see Figure 21) in
measured optical data (Dordevic et al., 2001), and provides
further confirmation of the correctness of the Kondo lattice
picture.
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2.4 Dynamical mean-field theory

The fermionic large N approach to the Kondo lattice provides
an invaluable description of heavy-fermion physics, one that
can be improved upon beyond the mean-field level. For
example, the fluctuations around the mean-field theory can be
used to compute the interactions, the dynamical correlation
functions, and the optical conductivity (Coleman, 1987b;
Millis and Lee, 1987a). However, the method does face a
number of serious outstanding drawbacks:

• False phase transition: In the large N limit, the crossover
between the heavy Fermi liquid and the local moment
physics sharpens into a phase transition where the 1/N

expansion becomes singular. There is no known way of
eliminating this feature in the 1/N expansion.

• Absence of magnetism and superconductivity: The large
N approach, based on the SU(N) group, cannot form
a two-particle singlet for N > 2. The SU(N) group
is fine for particle physics, where baryons are bound-
states of N quarks, but, for condensed matter physics,
we sacrifice the possibility of forming two-particle
or two-spin singlets, such as Cooper pairs and spin-
singlets. Antiferromagnetism and superconductivity are
consequently absent from the mean-field theory.

Amongst the various alternative approaches currently
under consideration, one of particular note is the DMFT. The

idea of DMFT is to reduce the lattice problem to the physics
of a single magnetic ion embedded within a self-consistently
determined effective medium (Georges, Kotliar, Krauth and
Rozenberg, 1996; Kotliar et al., 2006). The effective medium
is determined self-consistently from the self-energies of the
electrons that scatter off the single impurity. In its more
advanced form, the single impurity is replaced by a cluster
of magnetic ions.

Early versions of the DMFT were considered by Kuramoto
and Watanabe (1987), and Cox and Grewe (1988), and others,
who used diagrammatic means to extract the physics of
a single impurity. The modern conceptual framework for
DMFT was developed by Metzner and Vollhardt (1989),
and Georges and Kotliar (1992). The basic idea behind
DMFT is linked to early work of Luttinger and Ward (1960),
and Kotliar et al. (2006), who found a way of writing the
free energy as a variational functional of the full electronic
Green’s function

Gij = −〈T ψi(τ )ψ
†
j (0)〉 (120)

Luttinger and Ward showed that the free energy is a
variational functional of F [G] from which Dyson’s equation
relating the G to the bare Green’s function G0

[G−1
0 − G−1]ij = �ij [G] (121)
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Figure 22. In the dynamical mean-field theory, the many-body
physics of the lattice is approximated by a single impurity in a self-
consistently determined environment. Each time the electron makes
a sortie from the impurity, its propagation through the environment
is described by a self-consistently determined local propagator G(ω),
represented by the thick gray line.

The quantity �[G] is a functional, a machine which takes the
full propagator of the electron and outputs the self-energy of
the electron. Formally, this functional is the sum of the one-
particle irreducible Feynman diagrams for the self-energy:
while its output depends on the input Greens function, the
actual the machinery of the functional is determined solely
by the interactions. The only problem is that we do not know
how to calculate it.

DMFT solves this problem by approximating this func-
tional by that of a single impurity or a cluster of magnetic
impurities (Figure 22). This is an ideal approximation for
a local Fermi liquid, where the physics is highly retarded
in time, but local in space. The local approximation is also
asymptotically exact in the limit of infinite dimensions (Met-
zner and Vollhardt, 1989). If one approximates the input
Green function to � by its on-site component Gij ≈ Gδij ,
then the functional becomes the local self-energy functional
of a single magnetic impurity,

�ij [Gls] ≈ �ij [Gδls] ≡ �impurity[G]δij (122)

DMFT extracts the local self-energy by solving an Ander-
son impurity model embedded in an arbitrary electronic envi-
ronment. The physics of such a model is described by a path
integral with the action

S = −
∫ β

0
dτdτ ′f †

σ (τ )G−1
0 (τ − τ ′)fσ (τ ′)

+U

∫ β

0
dτn↑(τ )n↓(τ ) (123)

where G0(τ ) describes the bare Green’s function of the
f electron, hybridized with its dynamic environment. This

quantity is self-consistently updated by the DMFT. There are,
by now, a large number of superb numerical methods to solve
an Anderson model for an arbitrary environment, including
the use of exact diagonalization, diagrammatic techniques,
and the use of Wilson’s renormalization group (Bulla, 2006).
Each of these methods is able to take an input ‘environment’
Green’s function providing as output the impurity self-energy
�[G0] = �(iωn).

Briefly, this is how the DMFT computational cycle works.
One starts with an estimate for the environment Green’s
function G0 and uses this as input to the ‘impurity solver’ to
compute the first estimate �(iωn) of the local self-energy.
The interaction strength is set within the impurity solver. This
local self-energy is used to compute the Green’s functions of
the electrons in the environment. In an Anderson lattice, the
Green’s function becomes

G(k, ω) =
[
ω − Ef − V 2

ω − εk
− �(ω)

]−1

(124)

where V is the hybridization and εk the dispersion of the
conduction electrons. It is through this relationship that the
physics of the lattice is fed into the problem. From G(k, ω),
the local propagator is computed

G(ω) =
∑

k

[
ω − Ef − V 2

ω − εk
− �(ω)

]−1

(125)

Finally, the new estimate for the bare environment Green’s
function G0 is then obtained by inverting the equation G−1 =
G−1

0 − �, so that

G0(ω) = [
G−1(ω) + �(ω)

]
(126)

This quantity is then reused as the input to an ‘impurity
solver’ to compute the next estimate of �(ω). The whole pro-
cedure is then reiterated to self-consistency. For the Anderson
lattice, Cyzcholl (Schweitzer and Czycholl, 1991) has shown
that remarkably good results are obtained using a perturba-
tive expansion for � to the order of U 2 (Figure 23). Although
this approach is not sufficient to capture the limiting Kondo
behavior much, the qualitative physics of the Kondo lattice,
including the development of coherence at low temperatures,
is already captured by this approach. However, to go to the
strongly correlated regime, where the ratio of the interaction
to the impurity hybridization width U/(π�) is much larger
than unity, one requires a more sophisticated solver.

There are many ongoing developments under way using
this powerful new computational tool, including the incor-
poration of realistic descriptions of complex atoms, and the
extension to ‘cluster DMFT’ involving clusters of magnetic
moments embedded in a self-consistent environment. Let me
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end this brief summary with a list of a few unsolved issues
with this technique

• There is, at present, no way to relate the thermodynamics
of the bulk to the impurity thermodynamics.

• At present, there is no natural extension of these methods
to the infinite U Anderson or Kondo models that
incorporates the Green’s functions of the localized f-
electron degrees of freedom as an integral part of the
DMFT.

• The method is largely a numerical black box, making
it difficult to compute microscopic quantities beyond
the electron-spectral functions. At the human level,
it is difficult for students and researchers to separate
themselves from the ardors of coding the impurity
solvers, and make time to develop new conceptual and
qualitative understanding of the physics.

3 KONDO INSULATORS

3.1 Renormalized silicon

The ability of a dense lattice of local moments to transform
a metal into an insulator, a ‘Kondo insulator’ is one of the
remarkable and striking consequences of the dense Kondo
effect (Aeppli and Fisk, 1992; Tsunetsugu, Sigrist and Ueda,
1997; Riseborough, 2000). Kondo insulators are heavy-
electron systems in which the the liberation of mobile charge
through the Kondo effect gives rise to a filled heavy-electron
band in which the chemical potential lies in the middle
of the hybridization gap. From a quasiparticle perspective,
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∆ = 750°K
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Figure 24. Schematic band picture of Kondo insulator, illustrating
how a magnetic field drives a metal-insulator transition. Modified
from Aeppli and Fisk (1992). (Reproduced from V. Jaccarino,
G.K. Wertheim, J.H. Wernick, C.R. Walker and S. Arajs, Phys. Rev.
160, 1967, 476 copyright  1967 by the American Physical Society,
with permission of the APS.)

Kondo insulators are highly renormalized ‘band insulators’
(Figure 24). The d-electron Kondo insulator FeSi has been
referred to as renormalized silicon. However, like Mott–
Hubbard insulators, the gap in their spectrum is driven by
interaction effects, and they display optical and magnetic
properties that cannot be understood with band theory.

There are about a dozen known Kondo insulators, includ-
ing the rare-earth systems SmB6 (Menth, Buehler and
Geballe, 1969), YB12 (Iga, Kasaya and Kasuya, 1988),
CeFe4P12 (Meisner et al., 1985), Ce3Bi4Pt3 (Hundley et al.,
1990), CeNiSn (Takabatake et al., 1992, 1990; Izawa et al.,
1999) and CeRhSb (Takabatake et al., 1994), and the d-
electron Kondo insulator FeSi. At high temperatures, Kondo
insulators are local moment metals, with classic Curie sus-
ceptibilities, but, at low temperatures, as the Kondo effect
develops coherence, the conductivity and the magnetic sus-
ceptibility drop toward zero. Perfect insulating behavior is,
however, rarely observed due to difficulty in eliminating
impurity band formation in ultranarrow gap systems. One of
the cleanest examples of Kondo-insulating behavior occurs
in the d-electron system FeSi (Jaccarino et al., 1967; DiTusa
et al., 1997). This ‘flyweight’ heavy-electron system provides
a rather clean realization of the phenomena seen in other
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Figure 25. Temperature-dependent susceptibility in FeSi (after Jaccarino et al., 1967), fitted to the activated Curie form χ(T ) =
(C/T )e−�/(kBT ), with C = (gµB)2j (j + 1), and g = 3.92, � = 750 K. The Curie tail has been subtracted. (Reproduced from G. Aeppli
and Z. Fisk, Comm. Condens. Matter Phys. 16 (1992) 155, with permission from Taylor & Franics Ltd, www/.nformaworld.com.)

Kondo insulators, with a spin and charge gap of about 750 K
(Schlessinger, Fisk, Zhang and Maple, 1997). Unlike its
rare-earth counterparts, the small spin-orbit coupling in this
materials eliminates the Van Vleck contribution to the sus-
ceptibility at T = 0, giving rise to a susceptibility which
almost completely vanishes at low temperatures (Jaccarino
et al., 1967) (Figure 25).

Kondo insulators can be understood as ‘half-filled’ Kondo
lattices in which each quenched moment liberates a nega-
tively charged heavy electron, endowing each magnetic ion
an extra unit of positive charge. There are three good pieces
of support for this theoretical picture:

• Each Kondo insulator has its fully itinerant semiconduct-
ing analog. For example, CeNiSn is isostructural and
isoelectronic with the semiconductor TiNiSi containing
Ti4+ ions, even though the former contains Ce3+ ions
with localized f moments. Similarly, Ce3Bi4Pt3, with a
tiny gap of the order 10 meV is isolectronic with semi-
conducting Th3Sb4Ni3, with a 70 meV gap, in which the
5f-electrons of the Th4+ ion are entirely delocalized.

• Replacing the magnetic site with isoelectronic nonmag-
netic ions is equivalent to doping, thus in Ce1−xLaxBi4
Pt3, each La3+ ion behaves as an electron donor in a lat-
tice of effective Ce4+ ions. Ce3−xLaxPt4Bi3 is, in fact,
very similar to CePd3, which contains a pseudogap in
its optical conductivity, with a tiny Drude peak (Bucher
et al., 1995).

• The magnetoresistance of Kondo insulators is large and
negative, and the ‘insulating gap’ can be closed by the
action of physically accessible fields. Thus, in Ce3Bi4Pt3,
a 30 T field is sufficient to close the indirect hybridization
gap.

These equivalences support the picture of the Kondo effect
liberating a composite fermion.

Figure 26(a) shows the sharp rise in the resistivity of
Ce3Bi4Pt3 as the Kondo-insulating gap forms. In Kondo
insulators, the complete elimination of carriers at low tem-
peratures is also manifested in the optical conductivity.
Figure 26(b) shows the temperature dependence of the opti-
cal conductivity in Ce3Bi4Pt3, showing the emergence of a
gap in the low-frequency optical response and the loss of
carriers at low energies.

The optical conductivity of the Kondo insulators is of
particular interest. Like the heavy-electron metals, the devel-
opment of coherence is marked by the formation of a direct
hybridization gap in the optical conductivity. As this forms, a
pseudogap develops in the optical conductivity. In a noninter-
acting band gap, the lost f-sum weight inside the pseudogap
would be deposited above the gap. In heavy-fermion metals,
a small fraction of this weight is deposited in the Drude peak
– however, most of the weight is sent off to energies com-
parable with the bandwidth of the conduction band. This is
one of the most direct pieces of evidence that the formation
of Kondo singlets involves electron energies that spread out
to the bandwidth. Another fascinating feature of the heavy-
electron ‘pseudogap’ is that it forms at a temperature that is
significantly lower than the pseudogap. This is because the
pseudogap has a larger width given by the geometric mean of
the coherence temperature and the bandwidth 2V ∼ √

TKD.
The extreme upward transfer of spectral weight in Kondo
insulators has not yet been duplicated in detailed theoretical
models. For example, while calculations of the optical con-
ductivity within the DMFT do show spectral weight transfer,
it is not yet possible to reduce the indirect band gap to the
point where it is radically smaller than the interaction scale U

(Rozenberg, Kotliar and Kajueter, 1996). It may be that these
discrepancies will disappear in future calculations based on
the more extreme physics of the Kondo model, but these
calculations have yet to be carried out.
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Figure 26. (a) Temperature-dependent resistivity of Ce3Pt4Bi3
showing the sharp rise in resistivity at low temperatures. (Repro-
duced from M.F. Hundley, P.C. Canfield, J.D. Thompson, Z. Fisk,
and J.M. Lawrence, Phys. Rev. B. 42, 1990, 6842, copyright 
1990 by the American Physical Society, with permission of the
APS.) Replacement of local moments with spinless La ions acts
like a dopant. (b) Real part of optical conductivity σ 1(ω) for Kondo
insulator Ce3Pt4Bi3. (Reproduced from B. Bucher, Z. Schlessinger,
P.C. Canfield, and Z. Fisk 03/04/2007 Phys. Rev. Lett 72, 1994,
522, copyright  1994 by the American Physical Society, with
permission of the APS.) The formation of the pseudogap associ-
ated with the direct hybridization gap leads to the transfer of f-sum
spectral weight to high energies of order the bandwidth. The pseu-
dogap forms at temperatures that are much smaller than its width
(see text). Insert shows σ 1(ω) in the optical range.

There are, however, a number of aspects of Kondo
insulators that are poorly understood from the the simple
hybridization picture, in particular,

• The apparent disappearance of RKKY magnetic interac-
tions at low temperatures.

• The nodal character of the hybridization gap that devel-
ops in the narrowest gap Kondo insulators CeNiSn and
CeRhSb.

• The nature of the metal-insulator transition induced by
doping.

3.2 Vanishing of RKKY interactions

There are a number of experimental indications that the low-
energy magnetic interactions vanish at low frequencies in a
Kondo lattice. The low-temperature product of the suscepti-
bility and temperature χT reported (Aeppli and Fisk, 1992)
to scale with the inverse Hall constant 1/RH , representing
the exponentially suppressed density of carriers, so that

χ ∼ 1

RHT
∼ e−�/T

T
(127)

The important point here is that the activated part of the
susceptibility has a vanishing Curie–Weiss temperature. A
similar conclusion is reached from inelastic neutron scatter-
ing measurements of the magnetic susceptibility χ ′(q, ω) ∼
in CeNiSn and FeSi, which appears to lose all of its momen-
tum dependence at low temperatures and frequencies. There
is, to date, no theory that can account for these vanishing
interactions.

3.3 Nodal Kondo insulators

The narrowest gap Kondo insulators, CeNiSn and CeRhSb,
are effectively semimetals, for although they do display
tiny pseudogaps in their spin and charge spectra, the purest
samples of these materials develop metallic behavior (Izawa
et al., 1999). What is particularly peculiar (Figure 27) about
these two materials is that the NMR relaxation rate 1/(T1)

shows a T 3 temperature dependence from about 10 to 1 K,
followed by a linear Korringa behavior at lower temperatures.
The usual rule of thumb is that the NMR relaxation rate is
proportional to a product of the temperature and the thermal
average of the electronic density of states N∗(ω)

1

T1
∼ T N(ω)2 ∼ T [N(ω ∼ T )]2 (128)

where N(ω)2 = ∫
dε
(
− ∂f (ω)

∂ω

)
N(ω)2 is the thermally smea-

red average of the squared density of states. This suggests
that the electronic density of states in these materials has
a ‘V ’ shaped form, with a finite value at ω = 0. Ikeda
and Miyake (1996) have proposed that the Kondo-insulating
state in these materials develops in a crystal-field state with
an axially symmetric hybridization vanishing along a single
crystal axis. In such a picture, the finite density of states
does not derive from a Fermi surface, but from the angular
average of the coherence peaks in the density of states. The
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Figure 27. (a) NMR relaxation rate 1/T1 in CeRhSb and CeNiSn, showing a T 3 relaxation rate sandwiched between a low- and a
high-temperature T -linear Korringa relaxation rate, suggesting a V -shaped density of states. (Reproduced from K. Nakamura, Y. Kitaoka,
K. Asayama, T. Takabatake, H. Tanaka, and H. Fujii, J. Phys. Soc Japan 63, 1994, 33, with permission of the Physical Society of Japan.) (b)
Contour plot of the ground-state energy in mean-field theory for the narrow gap Kondo insulators, as a function of the two first components
of the unit vector b̂ (the third one is taken as positive). The darkest regions correspond to lowest values of the free energy. Arrows point
to the three global and three local minima that correspond to nodal Kondo insulators. (Reproduced from J. Moreno and P. Coleman, Phys.
Rev. Lett. 84, 2000, 342, copyright  2000 by the American Physical Society, with permission of the APS.) (c) Density of states of Ikeda
and Miyake (1996) state that appears as the global minimum of the Kinetic energy. (Reproduced from H. Ikeda, and K. Miyake J. Phys.
Soc. Jpn. 65, 1996, 1769, with permission of the Physical Society of Japan.) (d) Density of states of the MC state (Moreno and Coleman,
2000) that appears as a local minimum of the Kinetic energy, with more pronounced ‘V’-shaped density of states.

odd thing about this proposal is that CeNiSn and CeRhSb are
monoclinic structures, and the low-lying Kramers doublet of
the f state can be any combination of the | ± 1

2 〉, | ± 3
2 〉, or

| ± 5
2 〉 states:

|± = b1| ± 1/2〉 + b2| ± 5/2〉 + b3| ∓ 3/2〉 (129)

where b̂ = (b1, b2, b3) could, in principle, point anywhere
on the unit sphere, depending on details of the monoclinic
crystal field. The Ikeda Miyake model corresponds to three
symmetry-related points in the space of crystal-field ground
states,

b̂ =
{

(∓
√

2
4 , −

√
5

4 , 3
4 )

(0, 0, 1)
(130)

where a node develops along the x, y, or z axis, respectively.
But the nodal crystal-field states are isolated ‘points’ amidst
a continuum of fully gapped crystal-field states. Equally
strangely, neutron scattering results show no crystal-field
satellites in the dynamical spin susceptibility of CeNiSn,
suggesting that the crystal electric fields are quenched
(Alekseev et al., 1994), and that the nodal physics is a many-
body effect (Kagan, Kikoin and Prokof’ev, 1993; Moreno and
Coleman, 2000). One idea is that Hund’s interactions provide
the driving force for this selection mechanism. Zwicknagl,
Yaresko and Fulde (2002) have suggested that Hund’s

couplings select the orbitals in multi f electron heavy-electron
metals such as UPt3. Moreno and Coleman (2000) propose a
similar idea in which virtual valence fluctuations into the
f2 state generate a many-body or a Weiss effective field
that couples to the orbital degrees of freedom, producing an
effective crystal field that adjusts itself in order to minimize
the kinetic energy of the f electrons. This hypothesis is
consistent with the observation that the Ikeda Miyake state
corresponds to the Kondo-insulating state with the lowest
kinetic energy, providing a rational for the selection of
the nodal configurations. Moreno and Coleman also found
another nodal state with a more marked V -shaped density
of states that may fit the observed properties more precisely.
This state is also a local minimum of the electron Kinetic
energy. These ideas are still in their infancy, and more work
needs to be done to examine the controversial idea of a Weiss
crystal field, both in the insulators and in the metals.

4 HEAVY-FERMION
SUPERCONDUCTIVITY

4.1 A quick tour

Since the discovery (Steglich et al., 1976) of superconduc-
tivity in CeCu2Si2, the list of known HFSCs has grown to
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include more than a dozen (Sigrist and Ueda, 1991b) mate-
rials with a great diversity of properties (Sigrist and Ueda,
1991a; Cox and Maple, 1995). In each of these materials,
the jump in the specific heat capacity at the superconducting
phase transition is comparable with the normal state specific
heat

(Cs
v − Cn

v )

CV

∼ 1 − 2 (131)

and the integrated entropy beneath the Cv/T curve of the
superconductor matches well with the corresponding area for
the normal phase obtained when superconductivity is sup-
pressed by disorder or fields

∫ Tc

0
dT

(Cs
v − Cn

v )

T
= 0 (132)

Since the normal state entropy is derived from the f moments,
it follows that these same degrees of freedom are involved
in the development of the superconucting state. With the
exception of a few anomalous cases, (UBe13, PuCoGa5, and
CeCoIn5), heavy-fermion superconductivity develops out of
the coherent, paramagnetic heavy Fermi liquid, so heavy
fermion superconductivity can be said to involve the pairing
of heavy f electrons.

Independent confirmation of the ‘heavy’ nature of the pair-
ing electrons comes from observed size of the London pen-
etration depth λL and superconducting coherence length ξ in
these systems, both of which reflect the enhanced effective
mass. The large mass renormalization enhances the penetra-
tion depth, whilst severely contracting the coherence length,
making these extreme type-II superconductors. The Lon-
don penetration depth of HFSCs agree well with the value
expected on the assumption that only spectral weight in the
quasiparticle Drude peak condenses to form a superconduc-
tor by

1

µoλ
2
L

= ne2

m∗ =
∫

ω∈D.P

dω

π
σ(ω) � ne2

m
(133)

London penetration depths in these compounds are a factor of
20–30 times longer (Broholm et al., 1990) than in supercon-
ductors, reflecting the large enhancement in effective mass.
By contrast, the coherence lengths ξ ∼ vF/� ∼ hkF/(m

∗�)

are severely contracted in a HFSC. The orbitally limited
upper critical field is determined by the condition that an area
ξ 2 contains a flux quantum ξ 2Bc ∼ h

2e
. In UBe13, a super-

conductor with 0.9 K transition temperature, the upper critical
field is about 11 T, a value about 20 times larger than a con-
ventional superconductor of the same transition temperature.

Table 2 shows a selected list of HFSCs. ‘Canonical’
HFSCs, such as CeCu2Si2 and UPt3, develop superconductiv-
ity out of a paramagnetic Landau–Fermi liquid. ‘Preordered’

superconductors, such as UPt2Al3 (Geibel et al., 1991a,b),
CePt3Si, and URu2Si2, develop another kind of order before
going superconducting at a lower temperature. In the case
of URu2Si2, the nature of the upper ordering transition
is still unidentified, but, in the other examples, the upper
transition involves the development of antiferromagnetism.
‘Quantum critical’ superconductors, including CeIn3 and
CeCu2(Si1−xGex)2, develop superconductivity when pressure
is tuned close to a QCP. CeIn3 develops superconductivity at
the pressure-tuned antiferromagnetic quantum critical point
at 2.5 GPa (25 kbar). CeCu2 (Si,Ge)2 has two islands, one
associated with antiferromagnetism at low pressure and a
second at still higher pressure, thought to be associated with
critical valence fluctuations (Yuan et al., 2006).

‘Strange’ superconductors, which include UBe13, the 115
material CeCoIn5, and PuCoGa5, condense into the supercon-
ducting state out of an incoherent or strange metallic state.
UBe13 has a resistance of the order 150 µ�cm at its transi-
tion temperature. CeCoIn5 bears superficial resemblance to
a high-temperature superconductor, with a linear tempera-
ture resistance in its normal state, while its cousin, PuCoGa5

transitions directly from a Curie paramagnet of unquenched
f spins into an anisotropically paired, singlet superconductor.
These particular materials severely challenge our theoretical
understanding, for the heavy-electron quasiparticles appear to
form as part of the condensation process, and we are forced
to address how the f-spin degrees of freedom incorporate into
the superconducting parameter.

4.2 Phenomenology

The main body of theoretical work on heavy-electron sys-
tems is driven by experiment, and focuses directly on the
phenomenology of the superconducting state. For these pur-
poses, it is generally sufficient to assume a Fermi liquid
of preformed mobile heavy electrons, an electronic analog
of superfluid Helium-3, in which the quasiparticles interact
through a phenomenological BCS model. For most purposes,
the Landau–Ginzburg theory is sufficient. I regret that, in this
short review, I do not have time to properly represent and
discuss the great wealth of fascinating phenomenology, the
wealth of multiple phases, and the detailed models that have
been developed to describe them. I refer the interested reader
to reviews on this subject. (Sigrist and Ueda, 1991a).

On theoretical grounds, the strong Coulomb interac-
tions of the f electrons that lead to moment formation in
heavy-fermion compounds are expected to heavily suppress
the formation of conventional s-wave pairs in these sys-
tems. A large body of evidence favors the idea that the
gap function and the anomalous Green function between
paired heavy electrons Fαβ(x) = 〈c†

α(x)c
†
β(0)〉 is spatially
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Table 2. Selected HFSCs.

Type Material Tc (K) Knight shift Remarks Gap symmetry References
(singlet)

Canonical
CeCu2Si2 0.7 Singlet First HFSC Line nodes Steglich et al. (1976)

UPt3 0.48 ? Double transition to
T-violating state

Line and point
nodes

Stewart, Fisk, Willis and
Smith (1984b)

Preordered
UPd2Al3 2 Singlet Néel AFM

TN = 14 K
Line nodes

� ∼ cos 2χ

Geibel et al. (1991a),
Sato et al. (2001) and
Tou et al. (1995)

URu2Si2 1.3 Singlet Hidden order at
T0 = 17.5 K

Line nodes Palstra et al. (1985) and
Kim et al. (2003)

CePt3Si 0.8 Singlet and
Triplet

Parity-violating
crystal. TN = 3.7 K

Line nodes Bauer et al. (2004)

Quantum
critical

CeIn3 0.2 (2.5 GPa) Singlet First quantum critical
HFSC

Line nodes Mathur et al. (1998)

CeCu2 (Si1−xGex)2 0.4 (P = 0)
0.95 (5.4 GPa)

Singlet Two islands of SC as
function of pressure

Line nodes Yuan et al. (2006)

Quadrupolar PrOs4Sb12 1.85 Singlet Quadrupolar
fluctuations

Point nodes Isawa et al. (2003)

Strange
CeCoIn5 2.3 Singlet Quasi-2D

ρn ∼ T

Line nodes
dx2−y2

Petrovic et al. (2001)

UBe13 0.86 ? Incoherent metal at Tc Line nodes Andres, Graebner and Ott
(1975)

PuCoGa5 18.5 Singlet Direct transition Curie
metal → HFSC

Line nodes Sarrao et al. (2002)

anisotropic, forming either p-wave triplet or d-wave singlet
pairs.

In BCS theory, the superconducting quasiparticle excita-
tions are determined by a one-particle Hamiltonian of the
form

H =
∑
k,σ

εkf
†
kαfkα +

∑
k

[f †
kα�αβ(k)f

†
−kβ

+f−kβ�βα(k)fkα] (134)

where

�αβ(k) =
{

�(k)(iσ 2)αβ (singlet)
�d(k) · (iσ 2 �σ)αβ (triplet)

(135)

For singlet pairing, �(k) is an even parity function of k,
while for triplet pairing, �d(k) is a an odd-parity function of
k with three components.

The excitation spectrum of an anisotropically paired sin-
glet superconductor is given by

Ek =
√

ε2
k + |�k|2 (136)

This expression can also be used for a triplet superconductor
that does not break the time-reversal symmetry by making
the replacement |�k|2 ≡ �d†(k) · �d(k).

Heavy-electron superconductors are anisotropic supercon-
ductors, in which the gap function vanishes at points, or,
more typically, along lines on the Fermi surface. Unlike
s-wave superconductors, magnetic and nonmagnetic impu-
rities are equally effective at pair breaking and suppressing
Tc in these materials. A node in the gap is the result of sign
changes in the underlying gap function. If the gap function
vanishes along surfaces in momentum space, the intersection
of these surfaces with the Fermi surface produces ‘line nodes’
of gapless quasiparticle excitations. As an example, consider
UPt3, where, according to one set of models (Blount, Varma
and Aeppli, 1990; Joynt, 1988; Puttika and Joynt, 1988; Hess,
Tokuyasu and Sauls, 1990; Machida and Ozaki, 1989), pair-
ing involves a complex d-wave gap

�k ∝ kz(k̂x ± iky), |�k|2 ∝ k2
z (k

2
x + k2

y) (137)

Here �k vanishes along the basal plane kz = 0, producing a
line of nodes around the equator of the Fermi surface, and
along the z axis, producing a point node at the poles of the
Fermi surface.
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One of the defining properties of line nodes on the Fermi
surface is a quasiparticle density of states that vanishes
linearly with energy

N∗(E) = 2
∑

k

δ(E − Ek) ∝ E (138)

The quasiparticles surrounding the line node have a ‘rela-
tivistic’ energy spectrum. In a plane perpendicular to the
node, Ek ∼

√
(vF k1)2 + (αk2)2, where α = d�/dk2 is the

gradient of the gap function and k1 and k2 the momen-
tum measured in the plane perpendicular to the line node.
For a two-dimensional relativistic particle with dispersion
E = ck, the density of states is given by N(E) = |E|

4πc2 . For
the anisotropic case, we need to replace c by the geometric
mean of vF and α, so c2 → vF α. This result must then be
doubled to take account of the spin degeneracy and averaged
over each line node:

N(E) = 2
∑

nodes

∫
dk‖
2π

|E|
4πvF α

= |E|

×
∑

nodes

(∫
dk‖

4π2vF α

)
(139)

In the presence of pair-breaking impurities and in a vortex
state, the quasiparticle nodes are smeared, adding a small
constant component to the density of states at low energies.

This linear density of states is manifested in a variety of
power laws in the temperature dependence of experimental
properties, most notably

• Quadratic temperature dependence of specific heat CV ∝
T 2, since the specific heat coefficient is proportional to
the thermal average of the density of states

CV

T
∝

∝T︷ ︸︸ ︷
N(E) ∼ T (140)

where N(E) denotes the thermal average of N(E).
• A ubiquitous T 3 temperature dependence in the nuclear

magnetic relaxation (NMR) and nuclear quadrupole
relaxation (NQR) rates 1/T1. The nuclear relaxation rate
is proportional to the thermal average of the squared
density of states, so, for a superconductor with line
nodes,

1

T1
∝ T

∝T 2︷ ︸︸ ︷
N(E)2 ∼ T 3 (141)

Figure 28 shows the T 3 NMR relaxation rate of the
Aluminum nucleus in UPd2Al3.
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Figure 28. Temperature dependence of the 27Al NQR relaxation
rate 1/T1 for UPd2Al3 (after Tou et al., 1995) showing T 3 depen-
dence associated with lines of nodes. Inset showing nodal struc-
ture � ∝ cos(2θ) proposed from analysis of anisotropy of ther-
mal conductivity in Won et al. (2004). (Reproduced from H. Tou,
Y. Kitaoka, K. Asayama, C. Geibel, C. Schank, and F. Steglich,
1995, J. Phys. Soc. Japan 64, 1995 725, with permission of the
Physical Society of Japan.)

Although power laws can distinguish line and point nodes,
they do not provide any detailed information about the triplet
or singlet character of the order parameter or the location
of the nodes. The observation of upper critical fields that
are ‘Pauli limited’ (set by the spin coupling, rather than the
diamagnetism), and the observation of a Knight shift in most
HFSCs, indicates that they are anisotropically singlet paired.
Three notable exceptions to this rule are UPt3, UBe13, and
UNi2Al3, which do not display either a Knight shift or a
Pauli-limited upper critical field, and are the best candidates
for odd-parity triplet pairing. In the special case of CePt3Sn,
the crystal structure lacks a center of symmetry and the
resulting parity violation must give a mixture of triplet and
singlet pairs.

Until comparatively recently, very little was known
about the positions of the line nodes in heavy-electron
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superconductors. In one exception, experiments carried out
almost 20 years ago on UPt3 observed marked anisotropies in
the ultrasound attenuation length and the penetration depth
(Bishop et al., 1984; Broholm et al., 1990) that appear to
support a line of nodes in the basal plane. The ultrasonic
attenuation αs(T )/αn in single crystals of UPt3 has a T lin-
ear dependence when the polarization lies in the basal plane
of the gap nodes, but a T 3 dependence when the polarization
is along the c axis.

An interesting advance in the experimental analysis of
nodal gap structure has recently occurred, owing to new
insights into the behavior of the nodal excitation spectrum
in the flux phase of HFSCs. In the 1990s, Volovik (1993)
observed that the energy of heavy-electron quasiparticles in
a flux lattice is ‘Doppler shifted’ by the superflow around the
vortices, giving rise to a finite density of quasiparticle states
around the gap nodes. The Doppler shift in the quasiparticle
energy resulting from superflow is given by

Ek → Ek + �p · �vs = Ek + �vF · �

2
�∇φ (142)

where �vs is the superfluid velocity and φ the superfluid
phase. This has the effect of shifting quasiparticle states

by an energy of the order �E ∼ �
vF
2R

, where R is the
average distance between vortices in the flux lattice. Writing
πHR2 ∼ �0, and πHc2ξ

2 ∼ �0 where �0 = h
2e

is the flux
quantum, Hc2 is the upper critical field, and ξ is the

coherence length, it follows that 1
R

∼ 1
ξ

√
H

Hc2
. Putting ξ ∼

vF/�, where � is the typical size of the gap, the typical
shift in the energy of nodal quasiparticles is of the order

EH ∼ �
√

H
Hc2

. Now since the density of states is of the

order N(E) = |E|
�

N(0), where N(0) is the density of states
in the normal phase, it follows that the smearing of the nodal
quasiparticle energies will produce a density of states of the
order

N∗(H) ∼ N(0)

√
H

Hc2
(143)

This effect, the ‘Volovik effect’, produces a linear component

to the specific heat CV /T ∝
√

H
Hc2

. This enhancement of

the density of states is largest when the group velocity �VF

at the node is perpendicular to the applied field �H , and
when the field is parallel to �vF at a particular node, the
node is unaffected by the vortex lattice (Figure 29). This
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Figure 29. Schematic showing how the nodal quasiparticle density of states depends on field orientation (after Vekhter, Hirschfield, Carbotte
and Nicol, 1999). (a) Four nodes are activated when the field points toward an antinode, creating a maximum in density of states. (b) Two
nodes activated when the field points toward a node, creating a minimum in the density of states. (c) Theoretical dependence of density
of states on angle. (After Vekhter, Hirschfield, Carbotte and Nicol, 1999.) (d) Measured angular dependence of Cv/T (after Aoki et al.,
2004) is 45◦ out of phase with prediction. This discrepancy is believed to be due to vortex scattering, and is expected to vanish at lower
fields. (Reproduced from I. Vekhter, P. Hirschfield, J.P. Carbotte, and E.J. Nicol, Phys. Rev. B 59, 1998, R9023, copyright  1998 by the
American Physical Society, with permission of the APS.)
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gives rise to an angular dependence in the specific heat
coefficient and thermodynamics that can be used to measure
the gap anisotropy. In practice, the situation is complicated at
higher fields where the Andreev scattering of quasiparticles
by vortices becomes important. The case of CeCoIn5 is of
particular current interest. Analyses of the field-anisotropy
of the thermal conductivity in this material was interpreted
early on in terms of a gap structure with dx2−y2 , while
the anisotropy in the specific heat appears to suggest a
dxy symmetry. Recent theoretical work by Vorontsov and
Vekhter (2006) suggests that the discrepancy between the
two interpretations can be resolved by taking into account
the effects of the vortex quasiparticle scattering that were
ignored in the specific heat interpretation. They predict that,
at lower fields, where vortex scattering effects are weaker,
the sign of the anisotropic term in the specific heat reverses,
accounting for the discrepancy

It is clear that, despite the teething problems in the inter-
pretation of field-anisotropies in transport and thermodynam-
ics, this is an important emerging tool for the analysis of gap
anisotropy, and, to date, it has been used to give tentative
assignments to the gap anisotropy of UPd2Al3, CeCoIn5, and
PrOs4Sb12.

4.3 Microscopic models

4.3.1 Antiferromagnetic fluctuations as a pairing
force

The classic theoretical models for heavy-fermion supercon-
ductivity treat the heavy-electron fluids as a Fermi liquid
with antiferromagnetic interactions amongst their quasipar-
ticles (Monod, Bourbonnais and Emery, 1986; Scalapino,
Loh and Hirsch, 1986; Monthoux and Lonzarich, 1999).
UPt3 provided the experimental inspiration for early theories
of heavy-fermion superconductivity, for its superconduct-
ing state forms from within a well-developed Fermi liquid.
Neutron scattering on this material shows signs of antifer-
romagnetic spin fluctuations (Aeppli et al., 1987), making it
natural to presuppose that these might be the driving force
for heavy-electron pairing.

Since the early 1970s, theoretical models had predicted
that strong ferromagnetic spin fluctuations, often called para-
magnons, could induce p-wave pairing, and this mechanism
was widely held to be the driving force for pairing in super-
fluid He–3. An early proposal that antiferromagnetic interac-
tions could provide the driving force for anisotropic singlet
pairing was made by Hirsch (1985). Shortly thereafter, three
seminal papers, by Monod, Bourbonnais and Emery (1986)
(BBE), Scalapino, Loh and Hirsch (1986) (SLH) and by
Miyake, Miyake, Rink and Varma (1986) (MSV), solidified

this idea with a concrete demonstration that antiferromag-
netic interactions drive an attractive BCS interaction in the
d-wave pairing channel. It is a fascinating thought that at the
same time that this set of authors was forging the foundations
of our current thoughts on the link between antiferromag-
netism and d-wave superconductivity, Bednorz and Mueller
were in the process of discovering high-temperature super-
conductivity.

The BBE and SLH papers develop a paramagnon theory
for d-wave pairing in a Hubbard model with a contact
interaction I , having in mind a system, which in the modern
context, would be said to be close to an antiferromagnetic
QCP. The MSV paper starts with a model with a preexisting
antiferromagnetic interaction, which, in the modern context,
would be associated with the ‘t–J’ model. It is this approach
that I sketch here. The MSV model is written

H =
∑

εka
†
kσ akσ + Hint (144)

where

Hint = 1

2

∑
k,k′

∑
q

J (k − k′)�σαβ · �σγ δ

×
(
a

†
k+q/2αa

†
−k+q/2γ

) (
a−k′+q/2δak′+q/2β

)
(145)

describes the antiferromagnetic interactions. There are a
number of interesting points to be made here:

• The authors have in mind a strong coupled model,
such as the Hubbard model at large U , where the
interaction cannot be simply derived from paramagnon
theory. In a weak-coupled Hubbard model, a contact
interaction I and bare susceptibility χ0(q), the induced
magnetic interaction can be calculated in a random phase
approximation (RPA) (Miyake, Rink and Varma, 1986)
as

J (q) = − I

2[1 + Iχ0(q)]
(146)

MSV make the point that the detailed mechanism that
links the low-energy antiferromagnetic interactions to
the microscopic interactions is poorly described by a
weak-coupling theory, and is quite likely to involve other
processes, such as the RKKY interaction, and the Kondo
effect that lie outside this treatment.

• Unlike phonons, magnetic interactions in heavy-fermion
systems cannot generally be regarded as retarded inter-
actions, for they extend up to an energy scale ω0 that is
comparable with the heavy-electron bandwidth T ∗. In a
classic BCS treatment, the electron energy is restricted
to lie within a Debye energy of the Fermi energy. But
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here, ω0 ∼ T ∗, so all momenta are involved in magnetic
interactions, and the interaction can transformed to real
space as

H =
∑

εka
†
kσ akσ + 1

2

∑
i,j

J (Ri − Rj )�σ i · �σj (147)

where J (R) = ∑
q eiq·RJ (q) is the Fourier transform of

the interaction and �σ i = a
†
iα �σαβaiβ is the spin density at

site i. Written in real space, the MSV model is seen to be
an early predecessor of the t –J model used extensively
in the context of high-temperature superconductivity.

To see that antiferromagnetic interactions favor d-wave
pairing, one can use the ‘let us decouple the interaction’ in
real space in terms of triplet and singlet pairs. Inserting the
identity [3]

�σαβ · �σγδ = −3

2
(σ 2)αγ (σ 2)βδ + 1

2
(�σσ 2)αγ · (σ 2 �σ)βδ

(148)
into equation (147) gives

Hint = −1

4

∑
i,j

Jij

[
3�

†
ij�ij − ��†

ij · ��ij

]
(149)

where

�
†
ij =

(
a

†
iα(−iσ )αγ a

†
jγ

)
��†

ij =
(
a

†
iα(−i �σσ 2)αγ a

†
jγ

)
(150)

create singlet and triplet pairs with electrons located at sites
i and j respectively. In real space, it is thus quite clear that
an antiferromagnetic interaction Jij > 0 induces attraction
in the singlet channel, and repulsion in the triplet channel.
Returning to momentum space, substitution of equation (148)
into (145) gives

Hint = −
∑

k,k′,q
J (k − k′)

[
3�

†
k, q�k′, q − ��†

k, q · ��k′, q

]
(151)

where �
†
k,q = 1

2

(
a

†
k+q/2 α(−iσ 2)αγ a

†
−k−q/2 γ

)
and ��†

k,q =
1
2

(
a

†
k+q/2 α(−i �σσ 2)αγ a

†
−k−q/2 γ

)
create singlet and triplet

pairs at momentum q respectively. Pair condensation is
described by the zero momentum component of this inter-
action, which gives

Hint =
∑
k,k′

[
V

(s)

k,k′�
†
k�k′ + V

(t)

k,k′ ��†
k · ��k′

]
(152)

where �
†
k = 1

2

(
a

†
kα(−iσ 2)αβ a

†
−kβ

)
and ��†

k,q = 1
2

(
a

†
kα

(−i �σσ 2)αβ a
†
−kβ

)
create Cooper pairs and

V
(s)

k,k′ = −3[J (k − k′) + J (k + k′)]/2

V
(t)

k,k′ = [J (k − k′) − J (k + k′)]/2 (153)

are the BCS pairing potentials in the singlet and triplet chan-
nel, respectively. (Notice how the even/odd-parity symmetry
of the triplet pairs pulls out the corresponding symmetrization
of J (k − k′).)

For a given choice of J (q), it now becomes possible to
decouple the interaction in singlet and triplet channels. For
example, on a cubic lattice of side length, if the magnetic
interaction has the form

J (q) = 2J (cos(qxa) + cos(qya) + cos(qza)) (154)

which generates soft antiferromagnetic fluctuations at the
staggered Q vector Q = (π/a, π/a, π/a), then the pairing
interaction can be decoupled into singlet and triplet compo-
nents,

V s
k,k′ = −3J

2

[
s(k)s(k′) + dx2−y2(k)dx2−y2(k′)

+d2z2−r2(k)d2z2−r2(k′)
]

V t
k,k′ = J

2

∑
i=x,y,z

pi(k)pi(k′) (155)

where

s(k) =
√

2
3 (cos(kxa)

+ cos(kya) + cos(kza)) (extended s-wave)
dx2−y2(k) = (cos(kxa) − cos(kya)

d2z2−r2(k) = 1√
3
(cos(kxa)

+ cos(kya)−2 cos(kza))


 (d-wave)

(156)
are the gap functions for singlet pairing and

pi(q) =
√

2 sin(qia), (i = x, y, z), (p-wave) (157)

describe three triplet gap functions. For J > 0, this particular
BCS model then gives rise to extended s- and d-wave
superconductivity with approximately the same transition
temperatures, given by the gap equation

∑
k

tanh

(
εk

2Tc

)
1

εk

{
s(k)2

dx2−y2(k)2

}
= 2

3J
(158)
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4.3.2 Toward a unified theory of HFSC

Although the spin-fluctuation approach described provides a
good starting point for the phenomenology of heavy-fermion
superconductivity (HFSC), it leaves open a wide range of
questions that suggest this problem is only partially solved:

• How can we reconcile heavy-fermion superconductivity
with the local moment origins of the heavy-electron
quasiparticles?

• How can the incompressibility of the heavy-electron
fluid be incorporated into the theory? In particular,
extended s-wave solutions are expected to produce a
large singlet f-pairing amplitude, giving rise to a large
Coulomb energy. Interactions are expected to signifi-
cantly depress, if not totally eliminate such extended
s-wave solutions.

• Is there a controlled limit where a model of heavy-
electron superconductivity can be solved?

• What about the ‘strange’ HFSCs UBe13, CeCoIn5, and
PuCoGa5, where Tc is comparable with the Kondo tem-
perature? In this case, the superconducting order parame-
ter must involve the f spin as a kind of ‘composite’ order
parameter. What is the nature of this order parameter,
and what physics drives Tc so high that the Fermi liquid
forms at much the same time as the superconductivity
develops?

One idea that may help understand the heavy-fermion
pairing mechanism is Anderson’s RVB theory (Anderson,

1987) of high-temperature superconductivity. Anderson pro-
posed (Anderson, 1987; Baskaran, Zou and Anderson, 1987;
Kotliar, 1988) that the parent state of the high-temperature
superconductors is a two-dimensional spin liquid of RVBs
between spins, which becomes superconducting upon doping
with holes. In the early 1990s, Coleman and Andrei (1989)
adapted this theory to a Kondo lattice. Although an RVB
spin liquid is unstable with respect to the antiferromagnetic
order in three dimensions, in situations close to a magnetic
instability, where the energy of the antiferromagnetic state is
comparable with the Kondo temperature, EAFM ∼ TK, con-
duction electrons partially spin-compensate the spin liquid,
stabilizing it against magnetism (Figure 30a). In the Kondo-
stabilized spin liquid, the Kondo effect induces some RVBs
in the f-spin liquid to escape into the conduction fluid where
they pair charged electrons to form a heavy-electron super-
conductor.

A key observation of the RVB theory is that, when charge
fluctuations are removed to form a spin fluid, there is no
distinction between particle and hole (Affleck, Zou, Hsu and
Anderson, 1988). The mathematical consequence of this is
that the the spin-1/2 operator

�Sf = f
†
iα

( �σ
2

)
αβ

f †
α , nf = 1 (159)

is not only invariant under a change of phase fσ → eiφfσ ,
but it also possesses a continuous particle-hole symmetry

f †
σ → cos θf †

σ + sgnσ sin θf−σ (160)
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Figure 30. Kondo-stabilized spin liquid, diagram from Coleman and Andrei (1989). (a) Spin liquid stabilized by Kondo effect, (b) Kondo
effect causes singlet bonds to form between spin liquid and conduction sea. Escape of these bonds into the conduction sea induces
superconductivity. (c) Phase diagram computed using SU(2) mean-field theory of Kondo Heisenberg model. (Reproduced from P. Coleman
and N. Andrei, 1989, J. Phys. Cond. Matt. C 1 (1989) 4057, with permission of IOP Publishing Ltd.)
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These two symmetries combine to create a local SU(2)

gauge symmetry. One of the implications is that the constraint
nf = 1 associated with the spin operator is actually part of
a triplet of Gutzwiller constraints

f
†
i↑fi↑ − fi↓f

†
i↓ = 0, f

†
i↑f

†
i↓ = 0, fi↓fi↑ = 0 (161)

If we introduce the Nambu spinors

f̃i ≡
(

fi↑
f

†
i↓

)
, f̃

†
i = (f

†
i↑, fi↓) (162)

then this means that all three components of the ‘isospin’ of
the f electrons vanish,

f̃
†
i �τ f̃i = (f

†
i↑, fi↓)

[(
0 1
1 0

)
,

(
0 −i

i 0

)
,

(
1 0
0 −1

)]

×
(

fi↑
f

†
i↓

)
= 0 (163)

where �τ is a triplet of Pauli spin operators that act on the
f-Nambu spinors. In other words, in the incompressible f
fluid, there can be no s-wave singlet pairing.

This symmetry is preserved in spin-1/2 Kondo models.
When applied to the Heisenberg Kondo model

H =
∑
kσ

εkc
†
kσ ckσ + JH

∑
(i,j)

Si · Sj

+JK

∑
j

c
†
jσ �σσσ ′cjσ ′ · Sj (164)

where Si = f
†
iα

(
�σ
2

)
αβ

fiβ represents an f spin at site i, it

leads to an SU(2) gauge theory for the Kondo lattice with
Hamiltonian

H =
∑

k

εkc̃
†
kτ 3c̃k +

∑ �λj f̃
†
j �τ f̃j +

∑
(i,j)

[f̃ †
i Uij f̃j + H.c]

+ 1

JH
Tr[U †

ijUij ]+
∑

i

[f̃ †
i Vi c̃i +H.c]+ 1

JK
Tr[V †

i Vi]

(165)
where λj is the Lagrange multiplier that imposes the
Gutzwiller constraint �τ = 0 at each site, c̃k = ( ck↑

c
†
−k↓

)
and

c̃j = ( cj↑
c

†
j↓

)
are Nambu conduction electron spinors in the

momentum and position basis, respectively, while

Uij =
(

hij �ij

�ij −hij

)
Vi =

(
Vi αi

αi −V i

)
(166)

are matrix order parameters associated with the Heisenberg
and Kondo decoupling, respectively. This model has the local
gauge invariance f̃j → gj f̃j , Vj → gjVj Uij → giUijg

†
j ,

where gj is an SU(2) matrix. In this kind of model, one
can ‘gauge fix’ the model so that the Kondo effect occurs
in the particle-hole channel (αi = 0). When one does so,
however, the spin-liquid instability takes place preferentially
in an anisotropically paired Cooper channel. Moreover, the
constraint on the f electrons not only suppresses singlet
s-wave pairing, it also suppresses extended s-wave pairing
(Figure 30).

One of the initial difficulties with both the RVB and
the Kondo-stabilized spin liquid approaches is that, in its
original formulation, it could not be integrated into a large
N approach. Recent work indicates that both the fermionic
RVB and the Kondo-stabilized spin-liquid picture can be
formulated as a controlled SU(2) gauge theory by carrying
out a large N expansion using the group SP (N) (Read and
Sachdev, 1991), originally introduced by Read and Sachdev
for problems in frustrated magnetism, in place of the group
SU(N). The local particle-hole symmetry associated with
the spin operators in SU(2) is intimately related to the
symplectic property of Pauli spin operators

σ 2 �σT σ 2 = −�σ (167)

where �σT is the transpose of the spin operator. This relation,
which represents the sign reversal of spin operators under
time-reversal, is only satisfied by a subset of the SU(N)

spins for N > 2. This subset defines the generators of the
symplectic subgroup of SU(N), called SP (N).

Concluding this section, I want to briefly mention the
challenge posed by the highest Tc superconductor, PuCoGa5

(Sarrao et al., 2002; Curro et al., 2005). This material, dis-
covered some 4 years ago at Los Alamos, undergoes a direct
transition from a Curie paramagnet into a heavy-electron
superconductor at around Tc = 19 K (Figure 31). The Curie
paramagnetism is also seen in the Knight shift, which scales
with the bulk susceptibility (Curro et al., 2005). The remark-
able feature of this material is that the specific heat anomaly
has the large size (110 mJ mol−1 K2 (Sarrao et al., 2002))
characteristic of heavy-fermion superconductivity, yet there
are no signs of saturation in the susceptibility as a precursor
to superconductivity, suggesting that the heavy quasiparti-
cles do not develop from local moments until the transition.
This aspect of the physics cannot be explained by the spin-
fluctuation theory (Bang, Balatsky, Wastin and Thompson,
2004), and suggests that the Kondo effect takes place simul-
taneously with the pairing mechanism. One interesting possi-
bility here is that the development of coherence between the
Kondo effect in two different channels created by the differ-
ent symmetries of the valence fluctuations into the f 6 and
f 4 states might be the driver of this intriguing new super-
conductor (Jarrell, Pang and Cox, 1997; Coleman, Tsvelik,
Andrei and Kee, 1999).
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Figure 31. Temperature dependence of the magnetic susceptibility
of PuCoGa5. (After Sarrao et al., 2002.) The susceptibility shows a
direct transition from Curie–Weiss paramagnet into HFSC, without
any intermediate spin quenching. (Reproduced from Sarrao, J.L.,
L.A. Morales, J.D. Thompson, B.L. Scott, G.R. Stewart, F. Wastlin,
J. Rebizant, P. Boulet, E. Colineau, and G.H. Lander, 2002, with
permission from Nature Publishing.  2002.)

5 QUANTUM CRITICALITY

5.1 Singularity in the phase diagram

Many heavy electron systems can be tuned, with pres-
sure, chemical doping, or applied magnetic field, to a

point where their antiferromagnetic ordering temperature is
driven continuously to zero to produce a ‘QCP’ (Stewart,
2001, 2006; Coleman, Pépin, Si and Ramazashvili, 2001;
Varma, Nussinov and van Saarlos, 2002; von Löhneysen,
Rosch, Vojta and Wolfe, 2007; Miranda and Dobrosavljevic,
2005). The remarkable transformation in metallic properties,
often referred to as ‘non-Fermi liquid behavior’, which is
induced over a wide range of temperatures above the QCP,
together with the marked tendency to develop supercon-
ductivity in the vicinity of such ‘quantum critical points’
has given rise to a resurgence of interest in heavy-fermion
materials.

The experimental realization of quantum criticality returns
us to central questions left unanswered since the first
discovery of heavy-fermion compounds. In particular:

• What is the fate of the Landau quasiparticle when
interactions become so large that the ground state is
no longer adiabatically connected to a noninteracting
system?

• What is the mechanism by which the AFM transforms
into the heavy-electron state? Is there a breakdown of the
Kondo effect, revealing local moments at the quantum
phase transition, or is the transition better regarded as a
spin-density wave transition?

Figure 32 illustrates quantum criticality in YbRh2Si2 (Custers
et al., 2003), a material with a 90 mK magnetic transition
that can be tuned continuously to zero by a modest magnetic
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field. In wedge-shaped regions, either side of the transition,
the resistivity displays the T 2 dependence ρ(T ) = ρ0 + AT 2

(black) that is the hallmark of Fermi-liquid behavior. Yet, in
a tornado shaped region that stretches far above the QCP to
about 20 K, the resistivity follows a linear dependence over
more than three decades. The QCP thus represents a kind of
‘singularity’ in the material phase diagram.

Experimentally, quantum critical heavy-electron materi-
als fall between two extreme limits that I shall call ‘hard’
and ‘soft’ quantum criticality. ‘Soft’ quantum critical sys-
tems are moderately well described in terms quasiparticles
interacting with the soft quantum spin fluctuations created
by a spin-density wave instability. Theory predicts (Moriya
and Kawabata, 1973) that, in a three-dimensional metal, the
quantum spin-density wave fluctuations give rise to a weak√

T singularity in the low-temperature behavior of the spe-
cific heat coefficient

CV

T
= γ 0 − γ 1

√
T (168)

Examples of such behavior include CeNi2Ge2 (Grosche
et al., 2000; Küchler et al., 2003) chemically doped Ce2−x

LaxRu2Si2 and ‘A’-type antiferromagnetic phases of CeCu2

Si2 at a pressure-tuned QCP.
At the other extreme, in ‘hard’ quantum critical heavy

materials, many aspects of the physics appear consistent
with a breakdown of the Kondo effect associated with
a relocalization of the f electrons into ordered, ordered
local moments beyond the QCP. Some of the most heav-
ily studied examples of this behavior occur in the chem-
ically tuned QCP in CeCu6−xAux (von Löhneysen et al.,
1994; von Löhneysen, 1996; Schroeder et al., 1998, 2000).
and YbRh2Si2−xGex (Custers et al., 2003; Gegenwart et al.,
2005) and the field-tuned QCP of YbRh2Si2 (Trovarelli et al.,
2000) and YbAgGe (Bud’ko, Morosan and Canfield, 2004,
2005; Fak et al., 2005; Niklowitz et al., 2006). Hallmarks of
hard quantum criticality include a logarithmically diverging
specific heat coefficient at the QCP,

Cv

T
∼ 1

T0
ln

(
T0

T

)
(169)

and a quasilinear resistivity

ρ(T ) ∼ T 1+η (170)

where η is in the range 0–0.2. The most impressive results
to date have been observed at field-tuned QCPs in YbRh2Si2
and CeCoIn5, where linear resistivity has been seen to extend
over more than two decades of temperature at the field-tuned
QCP (Steglich et al., 1976; Paglione et al., 2003, 2006; Ron-
ning et al., 2006). Over the range where linear, where the

ratio between the change in the size of the resistivity �ρ to
the zero temperature (impurity driven) resistivity ρ0

�ρ/ρ0 � 1 (171)

CeCoIn5 is particularly interesting, for, in this case, this resis-
tance ratio exceeds 102 for current flow along the c axis
(Tanatar, Paglione, Petrovic and Taillefer, 2007). This obser-
vation excludes any explanation which attributes the unusual
resistivity to an interplay between spin-fluctuation scatter-
ing and impurity scattering (Rosch, 1999). Mysteriously,
CeCoIn5 also exhibits a T 3/2 resistivity for resistivity for
current flow in the basal plane below about 2 K (Tanatar,
Paglione, Petrovic and Taillefer, 2007). Nakasuji, Pines and
Fisk (2004) have proposed that this kind of behavior may
derive from a two fluid character to the underlying conduc-
tion fluid.

In quantum critical YbRh2Si2−xGex , the specific heat
coefficient develops a 1/T 1/3 divergence at the very lowest
temperature. In the approach to a QCP, Fermi liquid behavior
is confined to an ever-narrowing range of temperature.
Moreover, both the linear coefficient of the specific heat and
the the quadratic coefficient A of the resistivity appear to
diverge (Estrela et al., 2002; Trovarelli et al., 2000). Taken
together, these results suggests that the Fermi temperature
renormalizes to zero and the quasiparticle effective masses
diverge

T ∗
F → 0

m∗

m
→ ∞ (172)

at the QCP of these three-dimensional materials. A central
property of the Landau quasiparticle is the existence of
a finite overlap ‘Z’, or ‘wave function renormalization’
between a single quasiparticle state, denoted by |qp−〉 and
a bare electron state denoted by |e−〉 = c

†
kσ |0〉,

Z = |〈e−|qp−〉|2 ∼ m

m∗ (173)

If the quasiparticle mass diverges, the overlap between the
quasiparticle and the electron state from which it is derived
is driven to zero, signaling a complete breakdown in the
quasiparticle concept at a ‘hard’ QCP (Varma, Nussinov and
van Saarlos, 2002).

Table 3 shows a tabulation of selected quantum criti-
cal materials. One interesting variable that exhibits singular
behavior at both hard and soft QCPs is the Grüneisen ratio.
This quantity, defined as the ratio

� = α

C
= − 1

V

∂ ln T

∂P

∣∣∣∣
S

∝ 1

T ε
(174)
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Table 3. Selected heavy-fermion compounds with quantum critical points.

Compound xc/Hc
Cv
T

ρ ∼ T a �(T ) = α
CP

Other References

CeCu6−xAux xc = 0.1 1
T0

ln
(

To
T

)
T + c – χ ′′

Q0
(ω, T ) =
1

T 0.7 F
[

ω
T

] von Löhneysen et al. (1994),
von Löhneysen (1996) and
Schroeder et al. (1998, 2000)

Hard YbRh2Si2 Bc‖ = 0.66 T – T – Jump in Hall
constant

Trovarelli et al. (2000) and
Paschen et al. (2004)

YbRh2Si2−xGex xc = 0.1 1
T 1/3 ↔
1
T0

ln
(

To
T

) T T −0.7 – Custers et al. (2003) and
Gegenwart et al. (2005)

YbAgGe Bc| = 9T

Bc⊥ = 5T

1
T0

ln
(

T0
T

)
T – NFL over

range of
fields

Bud’ko, Morosan and Canfield
(2004), Fak et al. (2005) and
Niklowitz et al. (2006)

Soft CeCoIn5 Bc = 5 T 1
T0

ln
(

T0
T

)
T /T 1.5 – ρc ∝ T ,

ρab ∝ T 1.5
Paglione et al. (2003, 2006),

Ronning et al. (2006) and
Tanatar, Paglione, Petrovic
and Taillefer (2007)

CeNi2Ge2 Pc = 0 γ 0 − γ 1

√
T T 1.2−1.5 T −1 – Grosche et al. (2000) and

Küchler et al. (2003)

of the thermal expansion coefficient α = 1
V

dV

dT
to the specific

heat C, diverges at a QCP. The Grüneisen ratio is a sensi-
tive measure of the rapid acquisition of entropy on warming
away from QCP. Theory predicts that ε = 1 at a 3D spin den-
sity wave critical point, as seen in CeNi2Ge2. In the ‘hard’
quantum critical material YbRh2Si2−xGex , ε = 0.7 indicates
a serious departure from a 3D spin-density wave instability
(Küchler et al., 2003).

5.2 Quantum versus classical criticality

Figure 33 illustrates some key distinctions between classical
and quantum criticality (Sachdev, 2007). Passage through a
classical second-order phase transition is achieved by tuning
the temperature. Near the transition, the imminent arrival of
order is signaled by the growth of droplets of nascent order
whose typical size ξ diverges at the critical point. Inside
each droplet, fluctuations of the order parameter exhibit a
universal power-law dependence on distance

〈ψ(x)ψ(0)〉 ∼ 1

xd−2+η
, (x � ξ) (175)

Critical matter ‘forgets’ about its microscopic origins: Its
thermodynamics, scaling laws, and correlation exponents
associated with critical matter are so robust and universal
that they recur in such diverse contexts as the Curie point
of iron or the critical point of water. At a conventional
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Figure 33. Contrasting classical and quantum criticality in heavy-
electron systems. At a QCP, an external parameter P , such as
pressure or magnetic field, replaces temperature as the ‘tuning
parameter’. Temperature assumes the new role of a finite size
cutoff lτ ∝ 1/T on the temporal extent of quantum fluctuations.
(a) Quantum critical regime, where lτ < ξ tau probes the interior
of the quantum critical matter. (b) Fermi-liquid regime, where
lτ > ξτ , where like soda, bubbles of quantum critical matter
fleetingly form within a Fermi liquid that is paramagnetic (B1),
or antiferromagnetically ordered (B2).

critical point, order-parameter fluctuations are ‘classical’,
for the characteristic energy of the critical modes �ω(q0),
evaluated at a wave vector q0 ∼ ξ−1, inevitably drops below
the thermal energy �ω(q0) � kBTc as ξ → ∞.

In the 1970s, various authors, notably Young (1975) and
Hertz (1976), recognized that, if the transition temperature of
a continuous phase transition can be depressed to zero, the
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critical modes become quantum-mechanical in nature. The
partition function for a quantum phase transition is described
by a Feynman integral over order-parameter configurations
{ψ(x, τ)} in both space and imaginary time (Sachdev, 2007;
Hertz, 1976)

Zquantum =
∑

space–time configurations

e−S[ψ] (176)

where the action

S[ψ] =
∫ �

kBT

0
dτ

∫ ∞

−∞
ddxL[ψ(x, τ )] (177)

contains an integral of the Lagrangian L over an infinite
range in space, but a finite time interval

lτ ≡ �

kBT
(178)

Near a QCP, bubbles of quantum critical matter form within
a metal, with finite size ξx and duration ξτ (Figure 33).
These two quantities diverge as the quantum critical point
is approached, but the rates of divergence are related by a
dynamical critical exponent (Hertz, 1976),

ξτ ∼ (ξx)
z (179)

One of the consequences of this scaling behavior is that time
counts as z spatial dimensions, [τ ] = [Lz] in general.

At a classical critical point, temperature is a tuning
parameter that takes one through the transition. The role of
temperature is fundamentally different at a quantum critical
point: it sets the scale lτ ∼ 1/T in the time direction,
introducing a finite size correction to the QCP. When the
temperature is raised, lτ reduces and the quantum fluctuations
are probed on shorter and shorter timescales. There are then
two regimes to the phase diagram,

(a) Quantum critical: lτ � ξτ (180)

where the physics probes the ‘interior’ of the quantum critical
bubbles, and

(b) Fermi liquid/AFM lτ � ξτ (181)

where the physics probes the quantum fluid ‘outside’ the
quantum critical bubbles. The quantum fluid that forms in
this region is a sort of ‘quantum soda’, containing short-
lived bubbles of quantum critical matter surrounded by a
paramagnetic (B1) or antiferromagnetically ordered (B2)
Landau–Fermi liquid. Unlike a classical phase transition,
in which the critical fluctuations are confined to a narrow

region either side of the transition, in a quantum critical
region (a), fluctuations persist up to temperatures where lτ
becomes comparable the with the microscopic short-time
cutoff in the problem (Kopp and Chakravarty, 2005) (which
for heavy-electron systems is most likely, the single-ion
Kondo temperature lτ ∼ �/TK).

5.3 Signs of a new universality

The discovery of quantum criticality in heavy-electron sys-
tems raises an alluring possibility of quantum critical matter,
a universal state of matter that, like its classical counter-
part, forgets its microscopic, chemical, and electronic origins.
There are three pieces of evidence that are particularly fas-
cinating in this respect:

1. Scale invariance, as characterized by E/T scaling in the
quantum-critical inelastic spin fluctuations observed in
CeCu1−xAux (Schroeder et al., 1998, 2000). (x = xc =
0.016),

χ ′′
Q0

(E, T ) = 1

T a
F (E/T ) (182)

where a ≈ 0.75 and F [x] ∝ (1 − ix)−a . Similar behavior
has also been seen in powder samples of UCu5−xPdx

(Aronson et al., 1995).
2. A jump in the Hall constant of YbRh2Si2 when field

tuned through its QCP (Paschen et al., 2004). (see
Figure 34a).

3. A sudden change in the area of the extremal Fermi
surface orbits observed by de Haas van Alphen at a
pressure-tuned QCP in CeRhin5 (Shishido, Settai, Harima
and Onuki, 2005). (see Figure 34b).

Features 2 and 3 suggest that the Fermi surface jumps from
a ‘small’ to ‘large’ Fermi surface as the magnetic order is
lost, as if the phase shift associated with the Kondo effect
collapses to zero at the critical point, as if the f component of
the electron fluid Mott-localizes at the transition. To reconcile
a sudden change in the Fermi surface with a second-order
phase transition, we are actually forced to infer that the
quasiparticle weights vanish at the QCP.

These features are quite incompatible with a spin-density
wave QCP. In a spin-density wave scenario, the Fermi
surface and Hall constant are expected to evolve continuously
through a QCP. Moreover, in an SDW description, the
dynamical critical exponent is z = 2 so time counts as
z = 2 dimensions in the scaling theory, and the effective
dimensionality Deff = d + 2 > 4 lies above the upper critical
dimension, where mean-field theory is applicable and scale-
invariant behavior is no longer expected.
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These observations have ignited a ferment of theoretical
interest in the nature of heavy-fermion criticality. We con-
clude with a brief discussion of some of the competing ideas
currently under consideration.

5.3.1 Local quantum criticality

One of the intriguing observations (Schroeder et al., 1998)
in CeCu6−xAux is that the uniform magnetic susceptibil-
ity, χ−1 ∼ T a + C, a = 0.75 displays the same power-law
dependence on temperature observed in the inelastic neutron
scattering at the critical wave vector Q0. A more detailed set
of measurements by Schroeder et al. (2000) revealed that the
scale-invariant component of the dynamical spin susceptibil-
ity appears to be momentum independent,

χ−1(q, E) = T a[�(E/T )] + χ−1
0 (q) (183)

This behavior suggests that the critical behavior associated
with the heavy-fermion QCP contains some kind of local
critical excitation (Schroeder et al., 1998; Coleman, 1999).

One possibility is that this local critical excitation is the
spin itself, so that (Coleman, 1999; Sachdev and Ye, 1993;
Sengupta, 2000)

〈S(τ)S(τ ′)〉 = 1

(τ − τ ′)2−ε
(184)

is a power law, but where ε �= 0 signals non-Fermi liquid
behavior. This is the basis of the ‘local quantum criticality’
theory developed by Smith and Si (2000) and Si, Rabello,
Ingersent and Smith (2001, 2003). This theory requires that
the local spin susceptibility χ loc = ∑

q χ(q, ω)ω=0 diverges
at a heavy-fermion QCP. Using an extension of the methods
of DMFT (Georges, Kotliar, Krauth and Rozenberg, 1996;
Kotliar et al., 2006) Si et al. find that it is possible to account
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for the local scaling form of the dynamical susceptibility,
obtaining exponents that are consistent with the observed
properties of CeCu6−xAux (Grempel and Si, 2003).

However, there are some significant difficulties with this
theory. First, as a local theory, the quantum critical fixed
point of this model is expected to possess a finite zero-
point entropy per spin, a feature that is, to date, inconsistent
with thermodynamic measurements (Custers et al., 2003).
Second, the requirement of a divergence in the local spin
susceptibility imposes the requirement that the surrounding
spin fluid behaves as layers of decoupled two-dimensional
spin fluids. By expanding χ−1

0 (q) (183) about the critical
wave vector Q, one finds that the singular temperature
dependence in the local susceptibility is given by

χ loc(T ) ∼
∫

ddq
1

(q − Q)2 + T α
∼ T (d−2)α/2 (185)

requiring that d ≤ 2.
In my judgement, the validity of the original scaling

by Schroeder et al still stands and that these difficulties
stem from a misidentification of the critical local modes
driving the scaling seen by neutrons. One possibility, for
example, is that the right soft variables are not spin per se,
but the fluctuations of the phase shift associated with the
Kondo effect. This might open up the way to an alternative
formulation of local criticality.

5.3.2 Quasiparticle fractionalization and deconfined
criticality

One of the competing sets of ideas under consideration at
present is the idea that, in the process of localizing into
an ordered magnetic moment, the composite heavy electron
breaks up into constituent spin and charge components. In
general,

e−
σ � sσ + h− (186)

where sσ represents a neutral spin-1/2 excitation or ‘spinon’.
This has led to proposals (Coleman, Pépin, Si and Ramaza-
shvili, 2001; Senthil, Vojta, Sachdev and Vojta, 2003; Pépin,
2005) that gapless spinons develop at the QCP. This idea is
faced with a conundrum, for, even if free neutral spin-1/2
excitations can exist at the QCP, they must surely be con-
fined as one tunes away from this point, back into the Fermi
liquid. According to the model of ‘deconfined criticality’ pro-
posed by Senthil et al. (2004), the spinon confinement scale
ξ 2 introduces a second diverging length scale to the phase
transition, where ξ 2 diverges more rapidly to infinity than ξ 1.
One possible realization of this proposal is the quantum melt-
ing of two-dimensional S = 1/2 Heisenberg AFM, where the

smaller correlation length ξ 1 is associated with the transition
from AFM to spin liquid, and the second correlation length
ξ 2 is associated with the confinement of spinons to form a
valence bond solid (Figure 35).

It is not yet clear how this scenario will play out for heavy
electron systems. Senthil, Sachdev and Vojta (2005) have
proposed that, in a heavy-electron system, the intermediate
spin liquid state may involve a Fermi surface of neutral
(fermionic) spinons coexisting with a small Fermi surface
of conduction electrons, which they call an FL∗ state. In
this scenario, the QCP involves an instability of the heavy-
electron fluid to the FL∗ state, which is subsequently unstable
to antiferromagnetism. Recent work suggests that the Hall
constant can indeed jump at such a transition (Coleman,
Marston and Schofield, 2005b).

5.3.3 Schwinger bosons

A final approach to quantum criticality, currently under
development, attempts to forge a kind of ‘spherical model’
for the antiferromagnetic QCP through the use of a large
N expansion in which the spin is described by Schwinger
bosons, rather than fermions (Arovas and Auerbach, 1988;
Parcollet and Georges, 1997),

Sab = b†
abb − δab

nb

N
(187)

where the spin S of the moment is determined by the
constraint nb = 2S on the total number of bosons per
site. Schwinger bosons are well suited to describe low-
dimensional magnetism (Arovas and Auerbach, 1988). How-
ever, unlike fermions, only one boson can enter a Kondo

x2

x1

Valence bond
solid

Spinon
Quantum critical

Spin liquid

Figure 35. ‘Deconfined criticality’ (Senthil et al., 2004). The quan-
tum critical droplet is defined by two divergent length scales - ξ1
governing the spin correlation length, ξ 2 on which the spinons
confine, in the case of the Heisenberg model, to form a valence
bond solid. (Adapted using data from T. Senthil, A. Vishwanath,
L. Balents, S. Sachdev and M.P.A. Fisher, Science 303 (2004)
1490.)
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singlet. To obtain an energy that grows with N , Parcollet and
Georges proposed a new class of large N expansion based
around the multichannel Kondo model with K channels (Cox
and Ruckenstein, 1993; Parcollet and Georges, 1997), where
k = K/N is kept fixed. The Kondo interaction takes the form

Hint = JK

N

∑
ν=1,K,α,β

Sαβc
†
νβµcνα (188)

where the channel index ν runs from one to K . When
written in terms of Schwinger bosons, this interaction can
be factorized in terms of a charged, but spinless exchange
fermion χν (‘holon’) as follows:

Hint →
∑
να

1√
N

[
(c†

ναbα)χ†
ν + H.c

]+
∑

ν

χ†
νχν

JK

(189)

Parcollet and Georges originally used this method to study
the overscreened Kondo model (Parcollet and Georges,
1997), where K > 2S.

Recently, it has proved possible to find the Fermi liquid
large N solutions to the fully screened Kondo impurity
model, where the number of channels is commensurate with
the number of bosons (K = 2S) (Rech, Coleman, Parcollet
and Zarand, 2006; Lebanon and Coleman, 2007). One of
the intriguing features of these solutions is the presence of
a gap for spinon excitations, roughly comparable with the
Kondo temperature. Once antiferromagnetic interactions are
introduced, the spinons pair-condense, forming a state with
a large Fermi surface, but one that coexists with gapped
spinon (and holon) excitations (Coleman, Paul and Rech,
2005a).

The gauge symmetry associated with these particles guar-
antees that, if the gap for the spinon goes to zero con-
tinuously, then the gap for the holon must also go to
zero. This raises the possibility that gapless charge degrees
of freedom may develop at the very same time as mag-
netism (Figure 36). In the two impurity model, Rech et al.
have recently shown that the large N solution contains
a ‘Jones–Varma’ QCP where a static valence bond forms
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Figure 36. Proposed phase diagram for the large N limit of the two impurity and Kondo lattice models. Background – the two impurity
model, showing contours of constant entropy as a function of temperature and the ratio of the Kondo temperature to Heisenberg coupling
constant. (Reproduced from Rech, J., P. Coleman, O. Parcollet, and G. Zarand, 2006, Phys. Rev. Lett 96, 016601.) Foreground – proposed
phase diagram of the fully screened, multichannel Kondo lattice, where S̃ is the spin of the impurity. At small S̃, there is a phase
transition between a spin liquid and heavy-electron phase. At large S̃, a phase transition between the AFM and heavy-electron phase. If
this phase transition is continuous in the large N limit, then both the spinon and holon gap are likely to close at the QCP. (Reproduced
from Lebanon, E., and P. Coleman, 2007, Fermi liquid identities for the Infinite U Anderson Model, Phys. Rev. B (submitted), URL
http://arxiv.org/abs/cond-mat/0610027.)
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between the Kondo impurities. At this point, the holon
and spinon excitations become gapless. On the basis of
this result, Lebanon, Rech, Coleman and Parcollet (2006)
have recently proposed that the holon spectrum may
become gapless at the magnetic QCP (Figure 36) in three
dimensions.

6 CONCLUSIONS AND OPEN QUESTIONS

I shall end this chapter with a brief list of open questions in
the theory of heavy fermions.

1. To what extent does the mass enhancement in heavy-
electron materials owe its size to the vicinity to a nearby
quantum phase transitions?

2. What is the microscopic origin of heavy-fermion super-
conductivity and in theextreme cases UBe13 and PuCoGa5

how does the pairing relate to both spin quenching and
the Kondo effect?

3. What is the origin of the linear resistivity and the
logarithmic divergence of the specific heat at a ‘hard’
heavy-electron QCP?

4. What happens to magnetic interactions in a Kondo
insulator, and why do they appear to vanish?

5. In what new ways can the physics of heavy-electron
systems be interfaced with the tremendous current devel-
opments in mesoscopics? The Kondo effect is by now a
well-established feature of Coulomb blockaded quantum
dots (Kouwenhoven and Glazman, 2001), but there may
be many other ways in which we can learn about local
moment physics from mesoscopic experiments. Is it pos-
sible, for example, to observe voltage-driven quantum
phase transitions in a mesoscopic heavy-electron wire?
This is an area grown with potential.

It should be evident that I believe there is tremendous
prospect for concrete progress on many of these issues in
the near future. I hope that, in some ways, I have whet your
appetite enough to encourage you also to try your hand at
their future solution.

NOTES

[1] To calculate the matrix elements associated with valence
fluctuations, take

|f 1c1〉 = 1√
2
(f

†
↑ c

†
↓ − c

†
↑f

†
↓ )|0〉,

|f 2〉 = f
†
↑f

†
↓ |0〉 and |c2〉 = c

†
↑c

†
↓|0〉

then 〈c2|∑σ V c†
σ fσ |f 1c1〉 = √

2V and 〈f 2|∑σ Vf †
σ cσ

|f 1c1〉 = √
2V

[2] The f-sum rule is a statement about the instantaneous, or
short-time diamagnetic response of the metal. At short
times dj/dt = (nce

2/m)E, so the high-frequency limit
of the conductivity is σ(ω) = ne2

m
1

δ−iω
. But using the

Kramer’s Krönig relation

σ(ω) =
∫

dx

iπ

σ (x)

x − ω − iδ

at large frequencies,

ω(ω) = 1

δ − iω

∫
dx

π
σ(x)

so that the short-time diamagnetic response implies the
f-sum rule.

[3] To prove this identity, first note that any two-dimensional
matrix, M , can be expanded as M = m0σ 2 + �m · σ 2 �σ ,
(b=(1, 3)) where m0 = 1

2 Tr[Mσ 2] and �m= 1
2 Tr[M �σσ 2],

so that in index notation

Mαγ = 1

2
Tr[Mσ 2](σ 2)αγ

+1

2
Tr[M �σσ 2] · (σ 2 �σ)αγ

Now, if we apply this relationship to the αγ components
of �σαβ · �σγ δ , we obtain

�σαβ · �σγ δ = 1

2

(
�σT σ 2 �σ

)
δβ

(σ 2)αγ

+1

2

∑
b=1,3

(
�σT σ 2σb �σ

)
δβ

(σ 2σ b)αγ

If we now use the relation �σT σ 2 = −σ 2 �σ , together with
�σ · �σ = 3 and �σσb �σ = −σb, we obtain

�σαβ · �σγ δ = −3

2
(σ 2)αγ (σ 2)δβ + 1

2
(�σσ 2)αγ · (σ 2 �σ)δβ

ACKNOWLEDGMENTS

This research was supported by the National Science Founda-
tion grant DMR-0312495. I would like to thank E. Lebanon
and T. Senthil for discussions related to this work. I would
also like to thank the Aspen Center for Physics, where part
of the work for this chapter was carried out.



Heavy fermions: electrons at the edge of magnetism 49

REFERENCES

Abrikosov, A.A. (1965). Electron scattering on magnetic impurities
in metals and anomalous resistivity effects. Physics, 2, 5.

Aeppli, G. and Fisk, Z. (1992). Kondo insulators. Comments on
Condensed Matter Physics, 16, 155.

Aeppli, G., Goldman, A., Shirane, G., et al. (1987). Development of
antiferromagnetic correlations in the heavy-fermion system UPt3.
Physical Review Letters, 58, 808.

Affleck, I., Zou, Z., Hsu, T. and Anderson, P.W. (1988). SU(2)
gauge symmetry of the large-U limit of the Hubbard model.
Physical Review B, 8, 745.

Alekseev, P.A., Klement’ev, E.S., Lazukov, V., et al. (1994).
4f electrons and the formation of the ground state in the Kondo
insulator CeNiSn. JETP, 79, 665.

Allen, J.W., Oh, S.J., Maple, M.B. and Torikachvili, M.S. (1983).
Large Fermi-level resonance in the electron-addition spectrum of
CeRu2 and CeIr2. Physical Review, 28, 5347.

Allen, J.W., Oh, S.J., Cox, L.E., et al. (1985). Spectroscopic
evidence for the 5f coulomb interaction in UAl2 and UPt3.
Physical Review Letters, 2635, 54.

Allen, J., Oh, S., Gunnarsson, O., et al. (1986). Electronic structure
of cerium and light rare-earth intermetallics. Advances in Physics,
35, 275.

Anderson, P.W. (1961). Localized magnetic states in metals.
Physical Review, 124, 41.

Anderson, P.W. (1970). Poor Man’s derivaton of scaling laws for
the Kondo problem. Journal of Physics C, 3, 2346.

Anderson, P.W. (1973). Kondo Effect IV: out of the wilderness.
Comments on Solid State Physics, 5, 73.

Anderson, P.W. (1981). Conference summary. In Valence Fluctua-
tions in Solids, Falicov, L.M., Hanke, W. and Maple, M.P. (Eds.),
North Holland: Amsterdam, p. 451.

Anderson, P.W. (1987). The resonating valence bond state in
La2CuO4 and superconductivity. Science, 235, 1196.

Anderson, P.W. and Yuval, G. (1969). Exact results in the Kondo
problem: equivalence to a classical one-dimensional coulomb gas.
Physical Review Letters, 45, 370.

Anderson, P.W. and Yuval, G. (1970). Exact results for the Kondo
problem: one-body theory and extension to finite temperature.
Physical Review B, 1, 1522.

Anderson, P.W. and Yuval, G. (1971). Some numerical results on
the Kondo problem and the inverse square one-dimensional Ising
model. Journal of Physics C, 4, 607.

Andrei, N., Furuya, K. and Lowenstein, J. (1983). Solution of the
Kondo problem. Reviews of Modern Physics, 55, 331–402.

Andres, K., Graebner, J. and Ott, H.R. (1975). 4f-virtual-bound-
state formation in CeAl3 at low temperatures. Physical Review
Letters, 35, 1779.

Aoki, H., Sakahibara, T., Shishido, H., et al. (2004). Field-angle
dependence of the zero-energy density of states in the uncon-
ventional heavy-fermion superconductor CeCoIn5. Journal of
Physics: Condensed Matter, 16, L13–L19.

Aronson, M., Osborn, R., Robinson, R., et al. (1995). Non-Fermi-
liquid scaling of the magnetic response in UCu5−xPdx(x =
1, 1.5). Physical Review Letters, 75, 725.

Arovas, D. and Auerbach, A. (1988). Functional integral theories of
low-dimensional quantum Heisenberg models. Physical Review
B, 38, 316.

Auerbach, A. and Levin, K. (1986). Kondo bosons and the Kondo
lattice: microscopic basis for the heavy Fermi liquid. Physical
Review Letters, 57, 877.

Bang, Y., Balatsky, A.V., Wastin, F. and Thompson, J.D. (2004).
Possible pairing mechanisms of PuCoGa5 superconductor. Phys-
ical Review, 70, 104512.

Barnes, S.E. (1976). New method for the Anderson model. Journal
of Physics, F 6, 1375.

Baskaran, G., Zou, Z. and Anderson, P.W. (1987). The resonating
valence bond state and high-Tc superconductivity- a mean field
theory. Solid State Communications, 63, 973.

Bauer, E., Michor, G.H.H., Paul, C., et al. (2004). Heavy fermion
superconductivity and magnetic order in noncentrosymmetric
CePt3Si. Physical Review Letters, 92, 027003.

Baym, G. and Pethick, C. (1992). Landau Fermi-Liquid Theory,
Wiley: New York.

Berlin, T.H. and Kac, M. (1952). The spherical model of a
ferromagnet. Physical Review, 86, 821.

Beyerman, W.P., Gruner, G., Dlicheouch, Y. and Maple, M.B.
(1988). Frequency-dependent transport properties of UPt3. Phys-
ical Review B, 37, 10353.

Bishop, D.J., Varma, C.M., Batlogg, B., et al. (1984). Ultrasonic
Attenuation in UPt3. Physical Review Letters, 53(10), 1009.

Blandin, A. and Friedel, J. (1958). Journal de Physique et le Radium,
20, 160 (1959).

Blount, E.I., Varma, C.M. and Aeppli, G. (1990). Phase diagram of
the heavy-fermion superconductor UPt3. Physical Review Letters,
64, 3074.

Broholm, C., Aeppli, G., Kleiman, R.N., et al. (1990). Kondo
insulators. Physical Review Letters, 65, 2062.

Bucher, B., Schlessinger, Z., Canfield, P.C. and Fisk, Z. (1994).
Charge dynamics in the Kondo insulator Ce3Bi4Pt. Physical
Review Letters, 72, 522.

Bucher, B., Schlessinger, Z., Mandrus, D., et al. (1995). Charge
dynamics of Ce-based compounds: connection between the mixed
valent and Kondo-insulator states. Physical Review B, 53, R2948.

Bucher, E., Maita, J.P., Hull, G.W., et al. (1975). Electronic
properties of beryllides of the rare earth and some actinides.
Physical Review B, 11, 440.

Bud’ko, S.L., Morosan, E. and Canfield, P.C. (2004). Magnetic field
induced non-Fermi-liquid behavior in YbAgGe single crystals.
Physical Review B, 69, 014415.

Bud’ko, S.L., Zapf, V., Morosan, E. and Canfield, P.C. (2005).
Field-dependent Hall effect in single-crystal heavy-fermion
YbAgGe below 1 K. Physical Review B, 72, 172413.

Bulla, R. (2006). Dynamical mean-field theory: from quantum
impurity physics to lattice problems. Philosophical Magazine,
86, 1877.

Burdin, S., Georges, A. and Grempel, D.R. (2000). Coherence scale
of the Kondo lattice. Physical Review Letters, 85, 1048.



50 Strongly correlated electronic systems

Cardy, J. (1996). Renormalization in Statistical Physics, Cambridge
University Press: Cambridge.

Clogston, A.M., Mathias, B.T., Peter, M., et al. (1962). Local
magnetic moment associated with an iron atom dissolved in
various transition metal alloys. Physical Review, 125, 541.

Coleman, P. (1983). 1/N expansion for the Kondo lattice. Physical
Review, 28, 5255.

Coleman, P. (1984). New approach to the mixed-valence problem.
Physical Review, 29, 3035.

Coleman, P. (1987a). Constrained quasiparticles and conduction in
heavy-fermion systems. Physical Review B, 35, 5072.

Coleman, P. (1987b). Mixed valence as an almost broken symmetry.
Physical Review Letters, 59, 1026.

Coleman, P. (1999). Theories of non-Fermi liquid behavior in heavy
fermions. Physica B, 259–261, 353.

Coleman, P. and Andrei, N. (1989). Kondo-stabilized spin liquids
and heavy fermion superconductivity. Journal of Physics: Con-
densed Matter, C 1, 4057.

Coleman, P., Tsvelik, A.M., Andrei, N. and Kee, H.Y. (1999). Co-
operative Kondo effect in the two-channel Kondo lattice. Physical
Review, B60, 3608.
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1 INTRODUCTION

The Kondo effect is interesting on a number of fronts, not
the least that it is a fully many-body quantum-mechanical
effect which can be seen at temperatures as high as room
temperature or above, although typical Kondo temperatures
are more in the tens, rather than hundreds, of kelvin.
Moreover, it is a large effect, causing significant changes
to transport and thermodynamics. Originally believed to
reside mainly in systems of dilute magnetic impurities
in a three-dimensional, metallic, host, Kondo effects are
now seen on surfaces, in dense periodic structures such as
heavy fermions (see also Heavy Fermions: Electrons at
the Edge of Magnetism, Volume 1), and even in Kondo
insulators (Aeppli and Fisk, 1992), in quantum dots (see
also The Kondo Effect in Mesoscopic Quantum Dots,
Volume 5), and in atomic-scale structures created on surfaces
by scanning tunneling microscopes (STM).

The Kondo effect was suspected for some time before it
was identified as such. In 1930 Meissner and Voight noted a

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

rise in the resistivity of ‘pure gold’ below 10 K, in contrast
to ordinary metals whose resistivity tends toward zero at low
temperatures (owing to a decrease in vibrations). In reality
the gold had traces of Fe impurities from the manufacturing
process, and these were acting as the Kondo impurities.
The effect was first definitively identified by Jun Kondo
(1964) as arising from interactions in a system of dilute
magnetic impurities in a metal. Later experimentalists would
see characteristic peaks in the linear coefficient of specific
heat, as well as a flattening in the magnetic susceptibility
(see Figure 1). Further experimental signatures also appear
in the magnetoresistance, thermopower, and excess entropy
extracted from the specific heat.

The essence of the Kondo effect is the exchange inter-
action between a local magnetic moment and the spin
of conduction electrons at the impurity site. As the tem-
perature is lowered, a resonance develops in the interac-
tion, and below a critical, Kondo, temperature, the spin
of the local moment is screened. Pauli exclusion effects
lead to a resulting increase of scattering at the impu-
rity site. This scattering manifests itself as a resonance
in the density of states at the Fermi level with width
TK, where TK ∼ (ρJ )1/2 exp(−1/ρJ ); ρ is the density of
states. There is evidence that such a resonance can be
seen in X-ray photoemission spectroscopy (XPS) and/or
bremsstrahlung-isochromat spectroscopy (BIS) experiments
(Lee et al., 1986). A general review of the Kondo problem
for single impurities leading up to heavy fermions is found
in Hewson (1993).

The remainder of this review will proceed as follows.
In Section 2, we review the now well-understood spin-1/2
single-impurity Kondo model, giving some historical devel-
opment of the solution, and focusing on the numerical renor-
malization group (NRG) technique and solution. We next
describe the Coqblin–Schrieffer model and the Nozières



2 Strongly correlated electronic systems

 CeAl3 - Equilibrium and transport properties  

0.2

0.4

0
0.1 1 10

0.4

0.2

0

20

10

100

50

0
0.1 1 10 100

T (K)

r (T )

M
ag

ne
tic

su
sc

ep
tib

ili
ty

 (
em

u 
m

ol
 -1

) 
R

es
is

tiv
ity

(µ
Ω

cm
)

C
(T

)
k B

C
(T

)
k B

S
pe

ci
fic

 h
ea

t
(m

J 
m

ol
−1

 k
−1

)

30×10−3

T (K)

(log scale)

r
(T

)
r
(o

)

1.2
1.0
0.8
0.6
0.4
0.2

 c
(T

)
c

(0
) 1

(T − q)

Dilute systems

Figure 1. Universal functional forms for the spin-1/2 Kondo systems: specific heat, showing peak with extra ln2 entropy; magnetic
susceptibility (note rollover to Pauli paramagnetism at low temperatures); and resistivity, clearly showing rise of scattering at low
temperatures. Also for comparison are the same properties for a typical Kondo lattice system. Schematic drawings composed by the
author for this article from typical experimental results.

and Blandin phenomenology of Kondo models with mul-
tiple channels and spins. An important example of a mul-
tichannel model is the two-channel Kondo model, which is
described in some detail. We will focus primarily in this
review on exact results, but refer to a few key perturba-
tive calculations. In Section 3, we describe the challenges of
two-impurity Kondo problems, and the unusual non-Fermi
liquid (NFL) fixed point, which can occur for high symme-
try. We also describe the effects on the NFL fixed point of
the two-channel problem, when a second impurity is added.
Section 4 covers the Anderson model, describing how the
physics is different from the Kondo model, but related as a
more general version of it. This section also covers in more
detail the 1/N expansion method, reviewing key prior results
and discussing its application to the two-impurity infinite-U
Anderson model, which maps onto the two-impurity Kondo
problem. We also provide a brief review of Kondo lattice
physics, but refer the reader to Heavy Fermions: Elec-
trons at the Edge of Magnetism, Volume 1 for more detail,
since the overlap with that subject is considerable. Finally
in Section 5 we cover modern experimental developments

with few-impurity Kondo systems. The work on quantum
dots we refer to The Kondo Effect in Mesoscopic Quan-
tum Dots, Volume 5, but cover in detail the experiments
with STM in imaging Kondo effects, including interesting
physics found outside that predicted by the Hamiltonian cal-
culations of the previous sections. We end with a look at
future opportunities in the area of physics of the Kondo
effect.

2 SINGLE-IMPURITY KONDO
PROBLEMS

The single-impurity Kondo problem is at this point con-
sidered completely understood – one of the few many-body
quantum models of which this can be said.

The Kondo Hamiltonian for a single impurity is expressed,
in second-quantized notation as,

H =
∑
kµ

εkc+
kµckµ + J

∑
kk′

∑
µµ′

c+
kµ

1/2σµµ′ck′µ ·S0 (1)
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Here the first term represents the kinetic energy of the sea
of conduction electrons and the second term is the exchange
interaction between the spin of the conduction electrons at the
origin, taken to be the impurity site, and the local moment.

The exchange coupling J can in the abstract be of
either sign. However, when derived from a Hamiltonian
expressing the hybridization between local and itinerant
wave functions (the Anderson model, see subsequently) it
is antiferromagnetic, as it is when observed experimentally
in many systems.

How such a deceptively simple Hamiltonian can give
the dramatic thermodynamic and transport properties is a
story that incorporates many of the advanced theoretical
developments of the last half-century.

The simplest approach could be to take J to be a small
parameter and do a perturbation expansion. However, as was
found by Kondo (1964), logarithmic divergences appear at
higher order and further expansion becomes invalid. This
increase of the expansion parameter does give an indication
that growth of the effective J (and of the scattering amplitude
at low temperature) is an important part of the physics of the
problem.

2.1 ‘Poor man’s’ scaling

An early approach was Anderson’s poor man’s scaling.
(Anderson and Yuval, 1969; Anderson, Yuval and Hamann,
1970). Using perturbation theory, scattering processes are
successively eliminated at lower and lower energies. Details
can be found in the publications and in Anderson’s book
Basic Notions of Condensed Matter Physics (Anderson,
1984). This scaling results in an equation for the coupling
Jτ as a function of cutoff energy. (Here τ is the cutoff
time, the time for an electron to pass the local spin.) As
the cutoff energy is lowered, Jτ increases if the exchange
was antiferromagnetic and decreases for ferromagnetic. Thus
the ferromagnetic Kondo problem is essentially trivial: the
exchange scales to zero as temperature is lowered; the local
moment remains essentially free, with no buildup of scatter-
ing or increase in resistivity.

For the more usual antiferromagnetic coupling, the exch-
ange scales ever larger, with a cutoff imposed in real-
istic systems by other scales. If a Kondo temperature is
defined by Jτ = 1, then an expression for TK is obtained,
TK ≈ EC(J τ)1/2e−1/(J τ), which is remarkably similar to the
expression produced by the essentially exact NRG methods
obtained by Wilson in the mid-1970s, with the ‘cutoff time’
replaced by the density of states at the Fermi energy. The
physical picture produced by poor man’s scaling, of log-
arithmic contributions to scattering and to the increase of
J as temperature is lowered, has been established as cor-
rect. What remained as needed was an exact solution which

carried all the way from small J , past TK, down to T = 0, and
which showed how the low- and high-temperature regimes
are connected. For this came Wilson’s method of NRG.

2.1.1 Numerical renormalization group

Wilson’s method of NRG (Wilson, 1975) comprises sev-
eral theoretical developments in all. First, it is a unique and
insightful way of dividing real and energy space, to focus
on behavior at the Fermi energy, and at lower and lower
temperatures, and in recasting the Hamiltonian in this form.
This aspect is analytical in nature. Second, it is an iterative,
computational method for solving a many-body Hamiltonian.
And thirdly, it incorporates the concepts of Fermi-liquid the-
ory to extract the exact zero temperature thermodynamic
properties, using the numerical results as input to set param-
eters in analytical expressions.

Wilson’s own paper on the solution of the Kondo problem
using the NRG is lengthy, and readers are referred to it, and
to the exceptionally clear papers by Krishnamurthy, Wilkins,
and Wilson (1980a,b) for details of NRG implementation.
We will give a summary here.

The first steps are to discretize energy and real space. To
prepare, the Hamiltonian is recast from sums over k states
to integrals over energy. The Fermi surface is assumed to
be a single, isotropic conduction band extending from −D

to D. New second-quantized operators are defined, which
are a set of spherical waves about the impurity site. For
a single impurity, only the s-wave states couple. Higher-
angular-momentum states come in only in the kinetic energy
and do not couple to the impurity; hence they are discarded.

The resulting simplified Hamiltonian is

H =
∫ D

−D

dε εa+
εµaεµ + J

D∫∫
−D

dεdε′ρ(ε)a+
εµ

1/2σµµ′aε′µ′ · S0

(2)
Taking ρ(ε) to be a constant evaluated at the Fermi energy

gives the dimensionless parameter ρJ .
Next is the logarithmic discretization of energy and space.

A parameter � is defined, typically taken to be 2.5 or
3, and energy intervals defined by �−(n+1) < ±ε < �−n.
A set of complete orthonormal functions spanning energy
space is defined by a Fourier series in each interval, and
operators are expanded in this basis. Integrals over energy
are now replaced by sums over intervals n. Finally, define
new operators so that the first one, fo, is localized nearest the
impurity. Wilson has derived a set of orthonormal operators
fn that couple at most n to n ± 1 in the kinetic energy. The
result is an effective Hamiltonian for each energy scale,
indexed by N . The zeroth level connects just with the
impurity. A recursion relation connects Hamiltonians at level
N to those at N + 1.



4 Strongly correlated electronic systems

The next step is computational. The iterative procedure is
carried out, diagonalizing Ho first, and then using the eigen-
states, combined with the next N = 1 degree of freedom, to
make basis states for the N = 1 iteration. At each stage, the
Hamiltonian is diagonalized and the lowest energy levels,
labeled by spin, are observed. During the first iterations, the
energy levels typically change quite rapidly with iteration
number. However, after a number of iterations, the eigen-
states start to level out, and eventually the levels become
exponentially less sensitive to iteration (with an added even-
odd iteration differentiation). At this point the iterations are
at an eigenstate of the Hamiltonian, and the relative values
of the energy levels become meaningful.

Two technical points of the computational part of NRG:
First, the rate at which the levels converge is determined by
the parameter �. The larger �, the faster the convergence.
The less-fine discretization of energy space results from
larger �, however, and so the choice of � is a tradeoff
between these two considerations. A typical range used is
2–3. (Oliveira et al. have pioneered the use of a much
larger � to extract spectral functions and other detail not
obtainable with smaller � (Campo and Oliveira, 2005; Silva
et al., 1996), and references therein).) The second point is
the imposition at each iteration of an energy cutoff, beyond
which states are thrown away. Since every iteration N →
N + 1 introduces a new set of operators, the basis set would
quickly grow to unmanageable size if this were not done.
However, care must be taken so that the discarded states do
not contribute to key energy levels, otherwise this step can
be a source of error.

With the eigenstates identified, the final analytic stage
of calculating properties can begin. In Fermi-liquid theory,
especially as discussed by Nozières (1974), an effective
Hamiltonian is formulated for each fixed point, with a certain
number of parameters which reflect the low-energy degrees
of freedom. In NRG, there is a systematic way to derive
these terms, and then the coefficients are derived from the
numerical eigenstates. Various thermodynamic properties can
then be calculated analytically, using the approach of the
energy levels to their fixed point values (i.e., small deviations
in energy as a function of iteration number).

For the single-impurity Kondo problem there are two fixed
points. The first is the ρJ = 0 point, which is free electrons
with a free local moment, the so-called weak-coupling fixed
point. The second fixed point is ρJ → ∞. This effectively
has the local moment removed from the low-temperature
properties, to be replaced by scattering at the unitarity limit,
that is, in both up and down spin channels the phase shift
is π/2. By Friedel’s sum rule (White, 1983) this means that
effectively one electron has been removed from the problem,
acting to screen the local moment. (A reminder here that the
Kondo effect is not an actual bound state of a conduction

electron with the local moment, but rather a resonance–the
energy is at the Fermi energy, above the top of the potential
‘well’, which is the impurity level.) This is known as the
strong coupling fixed point.

With the only relevant operator ρJ effectively removed
from the problem, what remains at low temperatures are the
leading irrelevant operators. For the single-impurity problem
there are two: a hopping integral, and a local repulsive
Coulomb-type interaction U(n1 − 1)2, involving the nearest-
neighbor orbitals. This effective Hamiltonian around the
T = 0 point enables the calculation of specific heat and
susceptibility in the T = 0 limit. Wilson formulated a ratio
(the Summerfeld–Wilson ratio) of susceptibility to linear
coefficient of specific heat γ :

R ≡ (4π2/3)(kB
2/gµB)2χ/γ (3)

This ratio takes the independent, universal value of 2 in the
Kondo problem. For free electrons, the value is 1, indicating
the enhanced role of spin interactions in the Kondo case.

A notable aspect of Kondo physics is the universal nature
of the results. That is, there is only a single parameter,
TK, which governs the energy scale. While the value of the
Kondo temperature varies with impurity and host, once the
Kondo temperature is determined for a specific system, each
physical property has a specific universal shape such that
when the experiments are scaled by TK, the curves all fall
on top of one another. For example, as the temperature is
lowered, the susceptibility changes near TK from a Curie law
to that of Pauli paramagnetism, indication that the moment
has been quenched. The resistivity rises logarithmically and
reaches a maximum at zero temperature. Figure 1 illustrates
these universal curves.

2.1.2 Summary of single-impurity spin-1/2
Kondo physics

At this point we provide a summary of single-impurity
Kondo physics. There are, for antiferromagnetic exchange
coupling, two fixed points. The ρJ = 0 weak-coupling fixed
point is unstable, and ρJ effectively scales to infinity as
temperature is lowered to zero. The ρJ = ∞ fixed point at
T = 0 is the true Kondo ground state, and it is characterized
by scattering at the unitarity limit, δ↑,↓ = π/2. The spin of
the local moment has been screened and disappears from
the problem. From an NRG point of view, one conduction
electron has been removed from the system to do this
screening. The Kondo ground state has universal scaling with
the Kondo temperature TK, and the Wilson ratio takes the
universal value 2. In a magnetic field of order TK, the Kondo
effect’s many-body spin-symmetric screening is broken, and
no Kondo effect is obtained. Finally, the ferromagnetic
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Kondo problem has ρJ scaling to 0, and the local moment
stays free.

There are other methods which have notably been used
for the Kondo problem. One of these is the exact solution
by Bethe Ansatz (Andrei, 1980; Andrei and Lowenstein,
1981; Rajan, Lowenstein and Andrei, 1982; Wiegmann,
1980, 1981), obtained in the early 1980s. This solution
is very complex, and although it enables the calculation
of properties, the primary physical insight is in the nature
of the symmetries at the ground state. Another solution
method which is not exact, but with far more utility in
fitting to a range of experiments, is the 1/N expansion
(Read and Newns, 1983a,b; Coleman, 1984; Gunnarsson and
Schonhammer, 1983; Bickers, Cox and Wilkins, 1987a). This
method is remarkably precise in matching a wide range of
experimental properties for an extensive range of materials
which display single-impurity Kondo behavior. (It should be
noted in contrast that for two Kondo impurities, although
ferromagnetic interimpurity coupling is reproduced well, the
antiferromagnetic regime is less well. More details in the
subsequent text.) The 1/N expansion is actually implemented
on a broader version of the Kondo Hamiltonian, the Anderson
model, and will be described in that section.

2.1.3 Coqblin–Schrieffer model

Before moving on to the Anderson model, there are several
important variants of the Kondo model. The first variant is to
allow the spin to have more than s-wave behavior, and in fact
to be larger than spin-1/2. Such a model, with orbital degrees
of freedom is the Coqblin–Schrieffer model (Coqblin and
Schrieffer, 1969),

H =
∑
k,α

εkc+
kαckα + J

∑
kk′

∑
αα′

c+
kαck′α′ f+

α′ fα (4)

where c+
kα are creation operators of the conduction electrons’

partial harmonics with angular momentum m = j + 1 − α,
and α = 1, 2, . . . 2j + 1. Here j is the size of the spin. The
f+α describe the impurity spin, with degrees of freedom α.
Bethe Ansatz methods have been successfully used on this
model (Bazhanov, Lukyanov and Tsvelik, 2003). Magnetic
fields have a large effect on the Kondo temperature; if
small fields, the Kondo temperature is the full value, which
may be quite large, hundreds if not thousands of degrees
for rare-earth impurities. If larger than TK, magnetic fields
can break the full spin symmetry and drive the system to
lower-symmetry states with Kondo temperatures of just a
few degrees. In general the behavior of this model is more
complex than the spin-1/2 model, but tractable by modern
methods (i.e., 1/N , Bethe ansatz, NRG, some forms of
scaling).

2.1.4 ‘M-N-ology’

In general one can consider a Kondo problem of N impurities
(spins) and M channels. Multiple scattering channels in a
Kondo problem can be obtained, for example, in crystal-
electric fields (Cox, 1987) in which orthogonal sets of
electrons, interacting with the impurity, can be considered
as different ‘flavors’ of electrons. Using an analysis of
channels, spins, and impurities, Nozières and Blandin (1980)
have presented a picture which stands the test of time
well. It is as follows. For systems in which the number of
spin-1/2 impurities equals the number of scattering channels
of conduction electrons, a Kondo effect will occur and the
ground state will be a Fermi-liquid singlet. If the number of
channels is less than the number of spin-1/2 impurities, then
a partial Kondo effect will occur, the ground state will be a
Fermi liquid, but with a net spin (underscreened case). But
if the number of channels is greater than the number of spin-
1/2 impurities (overscreened case), then the ground state is
predicted to be an NFL unusual state.

We see from sample models how well this holds. For a
single-impurity Kondo model, with one impurity and one
channel, the ground state is indeed a Fermi liquid. A spin-1
single-impurity, single-channel system has a spin-1/2 Fermi-
liquid ground state (Cragg and Lloyd, 1979; Jones and
Varma, 1987). We will see below that two spin-1/2 impurities
separated by a finite distance have two channels: spin and
parity. The ground state is indeed a Fermi-liquid singlet at
all parts of its phase space but one. And not all versions
of the Fermi-liquid singlet in this case have a full Kondo
effect. For the case of a single spin-1/2 with two channels,
the so-called multichannel Kondo problem, unusual behavior
is predicted – and indeed occurs.

2.1.5 The multichannel Kondo model

The multichannel Kondo Hamiltonian (Nozières and Blandin,
1980) has the form:

H =
∑

kµ,n=a,b

εkc+
kµnckµn +

∑
kk′

∑
µµ′,n=a,b

Jnc+
kµn

1/2σµµ′ck′µ′n · S0 (5)

The sources for the two channels can be multiple: crystal-
electric field effects in certain heavy fermions (Cox, 1987,
1988; Cox and Jarrell, 1996; Cox and Zawadowski, 1999);
electron-assisted tunneling in metallic glasses; and quantum
dot systems with multiple explicit channels of conduction
electron contacts (see also The Kondo Effect in Mesoscopic
Quantum Dots, Volume 5).

When Ja 	= Jb, the system flows to scaling and a Kondo
effect in whichever coupling constant is larger. However,
when Ja = Jb, the system flows to a stable nontrivial
critical point at T = 0 which displays NFL behavior such
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as logarithmically diverging specific heat coefficient C/T
and susceptibility. The residual entropy is 1/2 ln 2 (that is,
21/2 degrees of freedom in the ground state, compared to
ln2 as the entropy removed by the regular Kondo effect).
This Hamiltonian has been treated by Bethe ansatz (Andrei
and Destri, 1984), NRG (Pang and Cox, 1991), and 1/N

expansion (several authors, e.g., Cox and Ruckenstein, 1993).
Of continued interest theoretically is the exact nature of the
NFL point, and the relationship of the various solutions to
one another. A naı̈ve picture would have the local moment
alternatively screened by the spin-up of both a and b
channels, then by spin-down of both channels, in concentric
rings around the impurity, in each case never obtaining a
singlet ground state, extending all the way to infinity. This
would have a net spin of 1/2. Some versions of the Bethe
ansatz solution are spin symmetric. What then, are the 21/2

degrees of freedom? Such can be the nonintuitive aspects
of NFL states. Potential multichannel Kondo systems have
long been observed in bulk materials, especially those with
NFL properties (see also Heavy Fermions: Electrons at the
Edge of Magnetism, Volume 1), but recently experimental
evidence has been given for observing the effect in quantum
dots, which should provide a cleaner system for study.

An important theoretical technique adapted from high-
energy theory to study condensed matter systems is con-
formal field theory (CFT), pioneered in Kondo systems by
Affleck and Ludwig (Affleck, Ludwig, Pang and Cox, 1992;
Affleck and Ludwig, 1993). This is an exact solution, which
emphasizes the role of symmetries and extracts the confor-
mal operators for the various fixed points. Although it can
identify fixed points independently, it is optimally used in
conjunction with the NRG to utilize the energy levels to fix
the values of the parameters. CFT was used on the multi-
channel problem, revealing anomalous critical properties of
the NFL state, and was also used to obtain insight into the
two-impurity Kondo problem (see subsequent text).

3 TWO-IMPURITY PROBLEMS

The next level of complexity is to introduce a second
impurity. This is the simplest level of Hamiltonian to
include interimpurity interactions, leading toward models for
a lattice. The two-impurity Kondo problem has the form:

H =
∑
kµ

εkc+
kµckµ + J [sc(r1) · S1 + sc(r2) · S2] (6)

where

sc(ri ) =
∑
kk′

∑
µµ′

ei(k′−k)·ri c+
kµ

1/2σµµ′ck′µ (7)

Now the impurities can interact with each other as well as
with the conduction electrons. The form of the interimpurity
exchange is the Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction (Ruderman and Kittel, 1954). In this interaction,
the local moments spin polarize the conduction electron sea
around them. There are not enough k vectors to make a
delta function of spin at each impurity site, since filling the
conduction electron states stops at the Fermi level (and a
delta function would need Fourier components all the way
to infinity). This sharp cutoff in energy occupation gives an
oscillation to the spin polarization. One can calculate this
by treating the interaction terms of the Hamiltonian as a
perturbation on the kinetic energy, which gives a change
in energy of the form |ρJ |2F(R)S1·S2, where F(R) is an
oscillating function of impurity separation which decays as
cos(kFR)/(kFR)3 for R → ∞.

For ferromagnetic interactions the moments will just
create a larger attraction for the Kondo effect. But for
separations for which the interaction is antiferromagnetic,
do the moments create their own spin singlet, which will
preclude having a Kondo effect? Likewise, if a Kondo
effect occurs will this preclude an RKKY interaction, since
the moments are screened? How do ferromagnetic and
antiferromagnetic sides of the phase diagram connect?

Prior to the exact solution, the thinking was that as soon
as there was any antiferromagnetic interaction, the moments
would quench each other. Thermodynamic scaling analy-
sis (Jayaprakash, Krishnamurthy and Wilkins, 1981), for
example, found an effective Hamiltonian with two param-
eters, the Kondo and RKKY couplings. For ferromagnetic
RKKY, they found a two-stage Kondo effect. This is much
in agreement with later NRG calculations. For antiferro-
magnetic interactions, however, the analysis indicated an
either/or scenario: RKKY precluded Kondo and vice versa.
Analysis by Doniach of his more complex Kondo neck-
lace model (Doniach, 1977) indicated a similar dichotomy
between states. Quantum Monte Carlo (Hirsch and Fye,
1986; Fye, Hirsch and Scalapino, 1987) was also tried on
this model, with results which likewise have some compari-
son with the exact solutions.

The exact solution was obtained by NRG in the late 1980s
(Jones and Varma, 1987; Jones, Varma and Wilkins, 1988).
Whereas the single-impurity Kondo problem(s) proved even-
tually amenable to a variety of techniques (poor man’s scal-
ing, 1/N expansion, Bethe ansatz, NRG, conformal field
theories, etc.), all of which gave consistent and correct results
in the regimes in which they operated, the two-impurity prob-
lem, only one impurity more, and still far to go toward a
lattice, produced subtle and unexpected results only com-
pletely seen by NRG and CFT (a Bethe ansatz solution for
the two-impurity problem remains still problematic at this
writing).
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What was found by NRG was the following. Because
of mirror symmetry about the center of the two impurities,
parity is a conserved quantity. All states can be classified
as being of either even or odd parity, in addition to having
quantum numbers of spin and charge (actually axial charge, a
symmetry of Kondo Hamiltonians discovered by the author
(Jones, Varma and Wilkins, 1988; Jones, 1990), and later
found in other strongly correlated Hamiltonians such as the
Hubbard model). Interaction in the Hamiltonian can involve
interactions between even parity alone, or odd parity, or a
mix of even and odd (and spin-0 and spin-1 states of the
impurities). The Hamiltonian in the particle–hole symmetric
limit is as follows:

H/D =
∫

dε ε
[
a+

εeµaεeµ + a+
εoµaεoµ

] + ρJese · (S1 + S2)

+ρJoso · (S1 + S2) + ρJm(seo + soe) · (S1 − S2),

where spp′ =
∫∫

dεdε′a+
εpµ

1/2σµµ′aε′p′µ′ (8)

Here the integrals extend from −1 to 1 since the bandwidth
has been scaled out. States are labeled by parity as e or o.
Only one parity subscript on a spin term represents a repeated
value of that parity. (In the most general, particle–hole
asymmetric form, there are energy- and distance-dependent
form factors within each integral, making it very challenging
to implement the Wilson procedure of projection onto Fourier
states in each logarithmic energy interval. The approximation
represented here thus explores only a portion of phase space.)

Because there are in addition two spin scattering channels,
the two-impurity Kondo problem has four channels of
conduction electrons. The NRG analysis revealed three low-
temperature fixed points, or ground states of the system.

1. For the case of particle–hole symmetry, there is a Kondo
effect for all values of RKKY from moderately antifer-
romagnetic (RKKY/TK near −2.2), through zero RKKY
(two independent moments) to all values of ferromag-
netic RKKY. For the larger values of ferromagnetic
RKKY/TK, there is a two-stage Kondo effect as pre-
viously predicted, with the Kondo effect happening sep-
arately in the even and the odd channels, with the larger
coupling constant having the higher of the two Kondo
temperatures. The ground state is a singlet with a π/2
phase shift in every scattering channel.

2. For larger antiferromagnetic RKKY, with RKKY/TK

more negative than −2.2, the moments form a singlet,
and no Kondo effect occurs.

3. At a value of RKKY/TK near −2.2, there is an unex-
pected unstable NFL fixed point. At this point there is
a second-order quantum critical point as a function of
the parameter RKKY/TK, at T = 0. At this point the
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Figure 2. Thermodynamic properties for the two-impurity Kondo
Hamiltonian (symmetric case), obtained by NRG. The magnetic
susceptibility, the staggered susceptibility (susceptibility under
an opposite magnetic field on the two sites), and the linear
coefficient of specific heat, all at zero temperature, are plotted
as a function of the ratio of the RKKY coupling to the Kondo
temperature. Antiferromagnetic RKKY is on the left side of the
figure. Note the divergence of staggered susceptibility and linear
coefficient of specific heat at the non-Fermi-liquid fixed point, near
an antiferromagnetic RKKY/TK ratio of near 2.2. The uniform
susceptibility remains finite, if with a possible discontinuity. The
system is in a Kondo singlet to the right of the critical point, and
in an antiferromagnetic singlet to the left with no Kondo effect.
(Reproduced from Jones et al., 1988, with permission from the
American Physical Society.  1988.)

linear coefficient of specific heat and the magnetic sus-
ceptibility diverge. The staggered susceptibility (related
to S1–S2) remains finite, with a possible finite discon-
tinuity. These thermodynamics are shown in Figure 2.

Further understanding of the phases of this system is
obtained with the calculation of the bare spin–spin corre-
lation function, shown in Figure 3. Notice that the spin–spin
correlation function is smooth and continuous throughout the
range of parameters, and only becomes ferromagnetic or anti-
ferromagnetic at the extreme range of RKKY. How is this
consistent with three separate ground states, one of which is
an antiferromagnetic state for a finite range of RKKY? The
answer is that the ground state phases are many-body states,
involving not only the local moments, but a large percent-
age of the conduction electrons. The local moments take on
intermediate values as the RKKY varies, but the conduction
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Figure 3. Spin–spin correlation function for the two-impurity
Kondo Hamiltonian (symmetric case), obtained by NRG. (Same
horizontal axis as Figure 2.) This is the correlation function between
the bare local moments; the fixed point represents the moments
as dressed by the electrons. Note that exchange coupling exists
between the two impurities, even when they are in a Kondo state,
and that a pure singlet state only exists at the limit of very large
RKKY. Kondo does not preclude RKKY, nor vice versa. The
spin–spin correlation function at the critical point takes the value
−1/4. (Reprinted from Jones B.A. Ph.D. thesis, Cornell University,
copyright 1988 by Barbara A. Jones.)

electrons have a noncontinuous reaction to this state, decid-
ing that there is enough of a moment to make a Kondo effect
for RKKY ratio greater than 2.2, and conversely helping the
local moments to form a spin singlet without Kondo effect
for larger antiferromagnetic RKKY.

What, then, are the conduction electrons aiding when the
local moment spin–spin correlation function is −1/4, exactly
half way between antiferromagnetic −3/4 and ferromagnetic
1/4? This is the location of the unstable NFL point. It
seems that the unstable point is the point at which, coming
down from more ferromagnetic RKKY, the moment is just
barely too small to generate a Kondo effect. The electrons
try to form a many-body resonance, but the cloud extends
to infinity, and there is no finite-size screening cloud for
electrons coming from infinite to scatter off of, and thus
define a Fermi liquid (Jones, 1991).

The Wilson ratio has also been calculated and is shown in
Figure 4. One can see the Wilson ratio going to the Kondo
value of 2 and above for the ferromagnetic side. For the
antiferromagnetic side, the Wilson ratio is always less than
2, and in fact goes to 0 at the value of the unstable fixed point.
For large antiferromagnetic coupling, the Wilson ratio goes
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Figure 4. Wilson ratio, proportional to the ratio of the magnetic
susceptibility to the linear coefficient of specific heat. The non-
constant value shows the nonuniversal nature of the two-impurity
system (no single-parameter scaling). Free electrons have value 1,
a Kondo effect gives a value 2, and the critical point has a value
near if not at 0, showing a suppression of magnetic interactions
(or an enhancement of electronic ones). (Reproduced from Jones
et al., 1988, with permission from the American Physical Society.
 1988.)

to the free-electron value of 1. One of the central findings of
the two-impurity Kondo Hamiltonian is that the results are
strongly nonuniversal. There is no one scaling parameter, as
there is for the single-impurity case. The variation of R on
the ferromagnetic side is less, with perhaps rough scaling
possible there, but on the antiferromagnetic side it is clearly
ruled out.

It should be noted that for much of the phase diagram,
there is simultaneous Kondo effect and RKKY interactions,
both ferromagnetic and antiferromagnetic. The RKKY is
not stopped by the Kondo effect, nor do antiferromagnetic
RKKY interactions necessarily preclude a Kondo effect.
In fact, it is proposed that simultaneous antiferromagnetic
RKKY and Kondo effect may be what is occurring in
the Kondo lattice compounds, where there is a famous
conundrum posed by P.W. Anderson, of where the electrons
are coming from to form a Kondo singlet with every
moment in the dense lattice, if only electrons within TK

of the Fermi energy can participate. In a lattice, there
are not nearly enough electrons in that energy range to
form a ‘sea’ for every moment. However, if the moments
partially compensate each other, then far fewer compensating
electrons are needed.
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3.1 Removal of particle–hole symmetry

When the requirement of particle–hole symmetry is lifted
(with for example the addition of potential scattering terms
to the Hamiltonian above), for most values, the divergences
in susceptibility and specific heat coefficient are rounded to
peaks, and the quantum phase transition goes away (Jones,
1991). There is no unstable NFL point. All ground states
are a Fermi liquid. The phase shifts in this case vary
continuously from π/2 on the ferromagnetic side down to
eventually 0 for very large antiferromagnetic RKKY. Thus
the ground states for every value of antiferromagnetic RKKY
are ‘partial Kondo effect’, with the moments doing part
of the compensating and the electrons doing the rest. The
Wilson ratio still varies, however, and the solution is still
nonuniversal. Lest one conclude that the critical parameter is
purely particle–hole symmetry, however, it should be noted
that when potential scattering is added which has parity-
symmetric form, although particle–hole symmetry is broken,
these Hamiltonians still give a line of NFL fixed points.
The symmetry breaking is somewhat subtle, and only has
an effect when there is not a reflection symmetry between
odd and even.

The exact nature of the critical operators was obtained
later by conformal field theoretical analysis (Affleck and
Ludwig, 1992; Affleck, Ludwig and Jones, 1995) and an
SO(7) complex symmetry identified at the critical point. They
calculated the staggered susceptibility at the critical point to
depend logarithmically on temperature and frequency.

As a final conclusion, the single-particle result, the Kondo
effect, is strongly modified by two-spin results, and hence
pair interaction terms must be included in any theories
for the lattice. RKKY and Kondo effects are not mutually
exclusive, either for ferromagnetic or for antiferromagnetic
coupling.

3.1.1 Two-impurity, two-channel Kondo

When adding a second impurity to the two-channel prob-
lem, the question naturally arises whether the NFL state
for Ja = Jb still remains. This problem has been looked
at by NRG, and the solution is as follows (Ingersent,
Jones and Wilkins, 1992). The phase diagram is shown in
Figure 5. This is the calculation for Ja = Jb, and particle–
hole symmetry. The previous, single-impurity NFL point
is shown in the center of the figure at RKKY I/TK = 0.
This fixed point proves to be unstable to any RKKY inter-
actions, ferromagnetic or antiferromagnetic. For antiferro-
magnetic RKKY, the previous fixed point flows to a line
of fixed points, at a critical value of RKKY/TK. Thus the
physics of a bulk two-channel Kondo system should be gov-
erned more by the properties of the marginal line of NFL

Even-parity
Kondo

Odd-parity
Kondo

Free
electron

−∞ +∞

Γe−Γo

Γe+Γo +1

0

−1

Marginal

I /TK

Figure 5. Phase diagram for the two-impurity, two-channel Kondo
Hamiltonian in the symmetric case, obtained by NRG. The hor-
izontal axis is the ratio of RKKY to Kondo temperature, as in
figures 2–4. The non-Fermi-liquid fixed point for the one impurity
case is at the center of the figure at the origin. Note that it is unsta-
ble in all directions, either to flow to a Fermi liquid, or to a line
of non-Fermi-liquid fixed points at intermediate coupling. Even if
the non-Fermi-liquid fixed points were to be changed to crossovers
in the presence of particle–hole symmetry breaking, the point at
the origin would still be unstable to the Fermi liquid around it.
(Reproduced from Ingersent et al., 1992, with permission from the
American Physical Society.  1992.)

points, not by the single-impurity point! Similarly to the
two-impurity, single-channel problem, for large enough anti-
ferromagnetic RKKY, the moments form their own singlet
and no Kondo effect occurs. This is a Fermi-liquid ground
state.

For ferromagnetic RKKY, the single-impurity NFL point
is again unstable. If there is any even-odd parity asymmetry,
the RG flows are to a Kondo effect in either parity channel,
with Fermi-liquid ground state. Only in the case of equal
even- and odd–parity coupling (isolated points in the phase
space of RKKY coupling) does the single-impurity NFL
point flow to a new stable ferromagnetic NFL point at
intermediate coupling.

In summary, the phase diagram for adding a second impu-
rity to the two-channel problem is surprisingly complex.
Unexpectedly, the single-impurity NFL result is unstable to
any amount of RKKY coupling. If ferromagnetic, the most
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likely result is a Fermi-liquid Kondo ground state with no
NFL behavior. If antiferromagnetic coupling, the flow is to
a line of new marginal NFL fixed points, with properties
different from that of a noninteracting impurity. Two main
questions are raised, the first being whether additional impu-
rities add yet more complexity and yet different fixed points,
so that it becomes difficult to predict the main interactions
for a multichannel lattice. The second challenge is to treat
a more general band structure, to see whether particle–hole
symmetry has created some nonuniversal effects.

These questions have been looked at with the addition of
potential scattering, and it appears that for general values of
even- and odd-parity scattering, all the intermediate-RKKY
NFL fixed points may be destabilized. A reminder that
even though it remains, the NFL point at RKKY = 0, for
two independent impurities, is unstable to any RKKY, and
will flow to strong coupling fixed points. It appears that a
Fermi liquid is the preferred general ground state. For the
multichannel Kondo problem, except in special cases, the
addition of a second impurity reduces complexity and flows
are to stable Fermi-liquid fixed points. Since this Hamiltonian
was the hope of modeling NFL in many systems, it raises
the final question of where the microscopic Hamiltonian
basis of NFL behavior may come from in a lattice model.
Certainly at finite temperatures, even low ones, the system
could flow near interesting phases in these models, since
what is important are the crossover exponents.

4 THE ANDERSON MODEL

So far we have been discussing the Kondo model, in which
the local moment occupation is kept fixed, a result of large,
tending to infinite Coulomb repulsion. For many systems,
however, there is a finite Coulomb repulsion on the impurity
site, and fluctuations to double or no occupancy can occur.
The more general model for these systems is the Anderson
model (Anderson, 1961) with a Hamiltonian as follows:

H =
∑
kµ

εkc+
kµckµ + εdc+

dµcdµ

+
∑
kµ

(Vk,dc+
kµcdµ+V ∗

k,dc+
dµckµ)+U(c+

d↑ck↑)(c+
d↓ck↓)

(9)
Here the first term is the kinetic energy of the conduction

electrons; εd is the energy of the local level (be it d or
f electrons), with operators c+

dµ; Vk,d is the hybridization
between the local level and the conduction electrons; and
U is the Coulomb repulsion at the local level site.

The Anderson model has some very interesting physics
of its own, but first we wish to show how the Anderson

and Kondo models are related. This is done by means of
a Schrieffer–Wolff transformation (Schrieffer and Wolff,
1966). Assume that U is much larger than V . Then by
choosing a generator matrix S, such that

H̃ = exp(S) H exp(−S) and (I − P )H̃P = 0, with P the
projector onto the singly-occupied ground state, eliminate
V to first order. The resulting Hamiltonian H̃ has a term
of the Kondo form, with a coefficient, the effective J ,
depending on k and k′. Evaluating J at the Fermi energy
gives a relation to the parameters of the Anderson model:
J = 2|Vkf|2U/(εd(εd + U)). Often the symmetric case is
considered, in which εd = −U/2, giving J = −8|Vkf|2/U .
One can see that for large U , J is usually fairly small.
However, as we have seen from the single-impurity Kondo
results, even small values of J scale to large as temperature is
lowered. The Anderson model contains thus a larger subset of
physics than the Kondo model, since the Kondo interactions
are contained as a limiting case.

We now look at the Anderson model itself. The primary
new behavior introduced by such a model is so-called mixed
valent physics. That is, it allows the local moment to have
an occupancy, which is a mix between two definite values.
Such physics is seen in some rare-earth compounds (e.g.,
α-Ce), and the subject of mixed valent physics has been a
very active one both experimentally and theoretically in the
past. Unfortunately we do not have room here to review
this literature, and will focus on the physics emerging from
solutions of the Anderson Hamiltonian above.

The definitive NRG study of this Hamiltonian was done
by Krishnamurthy, Wilkins and Wilson (1980a), who studied
both the symmetric and asymmetric cases. The results are
reviewed here. NRG finds that the local moment behavior
described above as the Kondo effect occurs as a fairly large
part of phase space. As long as U is roughly greater than
the hybridization V, for fairly low temperatures, the system
maps onto the spin-1/2 Kondo model with coupling given
as per the Schrieffer–Wolff transformation, even up to very
large values of ρJ . For U not particularly large, the impurity
orbital remains essentially free at high temperatures, and then
develops a moment when T drops below U . Finally, for small
Coulomb repulsion U , the free impurity orbital flows straight
to strong coupling at low temperature. (see Figure 6).

For the asymmetric case, the valence-fluctuating regime is
the primary characteristic. This is reached for −εd � T �
U . Here the nd = 0 and nd = 1 configurations are equally
populated, and the effective impurity level energy becomes
temperature dependent, and a function of the hybridization
and U as well. Although properties are universal for the
symmetric model, the asymmetric model shows evidence
of nonuniversal behavior. Several varieties of Bethe ansatz
solutions for the Anderson model have also been obtained,
such as Schlottmann (1983).
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Γ (d-level width)

T (Temperature)
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Figure 6. Phase diagram of the symmetric single-impurity Ander-
son model, with axes as labeled. At low temperature, the sys-
tem scales to strong coupling for all values of hybridization and
Coulomb energy U , even for very small values of U , unless U

is identically zero. (Reproduced from Krishnamurthy et al., 1980,
with permission from the American Physical Society.  1980.)

4.1 1/N calculations

Besides the NRG, another very successful technique for
the single-impurity Anderson model has been the large-N
expansion. Here N corresponds to the size of the impurity
spin. While in archetypal Kondo systems the spin is 1/2,
corresponding to N = 2, hardly a large number, in many
alloy systems the magnetic moments have a reasonably large
angular momentum. The 1/N method is in two parts, a mean
field approximation, plus corrections, based on Gaussian
approximation, to get the fluctuations from the mean field.
The fluctuations enable the calculation of thermodynamics.
The key benefits of the 1/N expansion have been its ability
to obtain a unified approach to both the static and dynamic
properties of magnetic alloys, and in particular the excitation
spectrum. Dynamics are difficult for many techniques, and a
good calculation provides insight into many key experiments.
Also, unlike many perturbation methods, 1/N obtains a
singlet ground state for Anderson and Kondo problems,
which may be a clue to its success even for N = 2, spin-1/2
systems.

Pioneering work was done by Read and Newns, who
developed the functional integral approach to 1/N calcula-
tions for the symmetric Anderson model (Read and Newns,
1983a; Newns and Read, 1987) (using formalism, in par-
ticular the slave-boson technique, laid by (Coleman, 1983,
1984, 1987). Over the following years, they and others cal-
culated much of the transport coefficients, finding universal
behavior especially in the Kondo regime. For a good review
of the groundwork of 1/N techniques, see Bickers, (1987b).

A major body of work for spectral functions for valence-
fluctuating compounds was done using a 1/N technique by
Gunnarsson and Schonhammer (1983). High-energy spec-
troscopy data and static susceptibility were calculated and
fit to a wide range of materials using a single set of model
parameters.

4.2 The two-impurity infinite-U Anderson model

Another advantage of the 1/N technique is that it can be
straightforwardly extended to multiple impurities and even
the lattice. For two impurities, it is the antiferromagnetic
side, which poses the greatest challenges, and interest, to
many alternative theoretical techniques. An example is the
1/N expansion done for the two-impurity problem, explicitly
adding an RKKY term in order to span the full range of inter-
impurity interactions (Jones, Kotliar and Millis, 1989; Millis,
Kotliar and Jones, 1990).

In order to calculate for the Coulomb U → ∞ limit, an
auxiliary boson is added in the standard technique, giving a
Hamiltonian:

H =
∑
km

εkc+
kmckm +

∑
m,α=1,2

E0f
+
αmfαm

+ V N1/2
∑

km,α=1,2

(b+
α eik·rαc+

kmfαm + H.c.)

+ I/N
∑
m′m

f +
1mf2mf +

2m′f1m′ (10)

Here α labels spin sites 1 and 2, and the constraint is
enforced nfα + nbα = N/2. In this constraint, nfα and nbα are
the numbers of f electrons and auxiliary bosons at site α. N is
the size of the spin, with the model valid in an N → ∞ limit.
I is the RKKY interaction, taken to be antiferromagnetic.
Details of the subsequent analysis appear in Jones, Kotliar
and Millis (1989).

The 1/N approach does find a phase transition for the
case of particle-hole symmetry, and at about the right ratio
of TK/I ≈ 0.5, but (to leading order in 1/N ) it is primarily
of first order rather than second. Since the order of the
phase transition determines behavior of the thermodynamic
properties in the entire region of the critical point, it is
the thermodynamics of 1/N , which differ the most, never
diverging or strongly peaking at the critical point, as in
the NRG solution. Nevertheless, the 1/N calculation does
identify a critical parameter associated with particle–hole
symmetry breaking, and indicates that breaking particle–
hole symmetry can give rise to a gradual crossover rather
than a transition, details which were confirmed by NRG
calculations.
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4.2.1 Multiple impurities and the Kondo lattice

Finally we touch on calculations for the lattice. It is here
we overlap most with the chapter on heavy fermions, so
this will be kept brief. Interestingly, many 1/N calculations
for the Kondo lattice model show that Kondo effect occurs,
but there is little interaction between local moments in the
Kondo state. The ground state is a Fermi liquid. Other effects
toward heavy-fermion behavior were shown by the early
1/N calculation for the lattice by Coleman (1983). There
has been a large body of theoretical work on the Kondo
lattice, using a variety of theoretical methods. Fairly recently
a two-fluid model for the lattice was put forward (Nakatsuji,
Pines and Fisk, 2004) composed of Kondo impurities and
heavy electron Fermi liquids. Modern techniques for strongly
correlated lattices developed within the last decade and a
half include dynamical mean-field theory (Georges et al.,
1996), a nonperturbative technique which effectively solves
the problem at infinite number of dimensions. Also promising
is density matrix renormalization group (DMRG) (White,
1992), a real-space renormalization, is an improvement on
NRG, which optimizes the set of functions kept for basis
states, to enable correct interactions with other sites, as well
as on-site terms.

It is interesting to speculate, with all the exotic NFL states,
which populate the few-impurity Kondo impurity systems,
how much of this is likely to carry to the lattice. With the
addition of degrees of freedom, will there be ever more
unusual fixed points? A clue to this may be found from
the two-impurity work in the most general cases, without
particle–hole symmetry. In these, many of the NFL ground
states are not reached, and the ground state is a Fermi liquid.
It is likely that the most exotic fixed points are a result of
a strong amount of local symmetry. In the lattice, there is a
new symmetry, the periodicity of the material, which might
lead to new types of interesting states, besides the heavy-
fermion correlations, which have already been found. At this
point a full solution of the Kondo or Anderson lattice is still
pending. New experimental approaches such as construction
of magnetic nanostructures using STM techniques also open
possibilities for future interesting Kondo and Anderson
model physics.

5 EXPERIMENTAL IMAGING USING
STM TECHNIQUES

Experimentally, among the most promising for realizations
of Kondo Hamiltonian systems have been two systems:
quantum dots, for which the reader is referred to that chapter
of this volume, and systems created by atomic manipulation
and imaged by STM. We briefly review here the work on

imaging Kondo systems at the atomic scale by STM. The
single-impurity Kondo effect was first observed in 1998
for Co atoms on a Au(111) surface and for Ce atoms on
a Ag(111) surface (Madhavan et al., 1998; Li, Schneider,
Berndt and Delley, 1998). They observed a sharp Fano
resonance (Újsághy, Kroha, Szunyogh and Zawadowski,
2000; Plihal and Gadzuk, 2001), characteristic of tunneling
both into the impurity and also into the conduction states
of the surface. The Crommie group subsequently measured
the temperature-dependent electronic structure and observed
the characteristic broadening of the Kondo resonance as
temperature was increased (Nagaoka, Jamneala, Grobis and
Crommie, 2002). A Kondo effect of the orbital moments
can also occur (Kolesnychenko et al., 2002). In 2000 a
remarkable feature was observed: the so-called quantum
mirage effect (Manoharan, Lutz and Eigler, 2000). An ellipse
was built of Co atoms, and one Co atom placed at just
one focus of the ellipse. When the STM was placed over
the Co atom, a Kondo resonance was observed. However,
when imaging over the empty focus site, surprisingly the
STM picked up a Kondo resonance as well, although with
reduced amplitude: the mirage effect. If the foci were close
together, this effect would be expected to include many-body
correlations between the two sites. However, experimentally
the foci were tens of angstroms apart, and the STM images
were fit well by single-particle scattering calculations from
a model Kondo phase shift (Fiete et al., 2001).

Kondo effects have also been observed in clusters of mag-
netic atoms. Clusters of Co on metallic single-walled carbon
nanotubes give an effectively one-dimensional host for the
observed Kondo effect (Odom, Huang, Cheung and Lieber,
2000). An antiferromagnetic trimer of Cr atoms also gives
a Kondo effect (Jamneala, Madhavan and Crommie, 2001).
Theoretical models indicate that for ferromagnetic clusters,
the Kondo coupling is inversely proportional to the total
spin of the cluster, and thus the Kondo temperature drops
rapidly as the cluster size increases (Fiete, Zarand, Halperin
and Oreg, 2002). Clusters can also have mesoscopic fluctu-
ations of charge and magnetization, leading to asymmetric
voltage dependence of the spectroscopic features.

The addition of surface layers of adsorbates between
the magnetic impurity and the rest of the surface can
change the Kondo features (Hirjibehedin, Lutz and Heinrich,
2006; Schneider et al., 2005a), leading to questions of
whether the surface Kondo effect primarily concerns just
the electrons of the surface states, and to what extent
the bulk electrons are involved. Experiments show that
the surface/bulk contribution ratio varies to some degree
based on the combination of magnetic impurity and surface
adsorbate layer, but that primarily the Kondo effect is a bulk
effect (Knorr, Schneider and Diekhöner, 2002; Schneider
et al., 2005b). This has been shown theoretically as well,
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using properties of the electronic states of both surface and
bulk (Lin, Castro Neto and Jones, 2005).

It seems clear that as theorists explore Kondo Hamiltoni-
ans of various symmetries, number of impurities, and chan-
nels, interesting NFL fixed points, and intriguing phase dia-
grams in general, will continue to be found. Likewise atomic
manipulation on the STM, structures made with quantum
dots, and spins in other low-dimensional systems provide a
promising experimental ground for exploring Kondo physics,
and even tuning the systems to achieve these special critical
points predicted by theory which often need high symmetry.
Finally, progress on understanding the phase diagram of the
Kondo lattice will proceed on (at least) three fronts: with new
theoretical techniques and insightful models, with new mate-
rials discoveries with bulk Kondo lattice materials, and with
increased sophistication and imaging techniques, both real
space and spectroscopy, from the STM, which will someday
be able to build and measure a purpose built Kondo lattice.
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1 INTRODUCTION

Strong correlations in transition-metal oxides (TMO)
generate spins and orbitals as low-energy degrees of free-
dom. Their interplay with both real-charge motion and
virtual-charge excitations lead to a fascinating richness of
spin–charge–orbital-ordered phases, to striking phenomena
like the colossal magnetoresistance (CMR), the switch-
ing of charge-ordered phases into metallic phases by
applied magnetic fields, and many other fascinating effects
(Tokura and Nagaosa, 2000; Tokura, 2003; Imada, Fuji-
mori and Tokura, 1998). The focus of this article is on

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

recent developments while discussions of known concepts
are kept short. As compensation the article has a large
bibliography.

In undoped compounds, magnetism is determined via
Heisenberg–Anderson superexchange (SE) interactions
between spins (Anderson, 1959), which result from virtual-
charge excitations. In orbital-degenerate systems, magnetism
is controlled by spin-orbital models. These models contain
apart from the Heisenberg-like spin dynamics also the quan-
tum dynamics of the orbitals themselves as well as coupled
spin-orbital interactions; that is, in addition to the relativistic
spin-orbit interaction. In simple terms: Orbitals determine the
interactions among spins, while spins determine the interac-
tion between orbitals. In certain cases, the exchange interac-
tion between spins may even fluctuate between ferromagnetic
(FM) and antiferromagnetic (AF) if orbitals are dominated
by quantum fluctuations. However, this subtle interplay may
be controlled or quenched via an interaction with the lat-
tice, like the Jahn–Teller (JT) interaction in LaMnO3 which
favors alternating orbitals and thereby selects ferromagnetism
in the (a, b) plane and antiferromagnetism along c direc-
tion. In fact this is the typical case, that is, magnetism
controlled by the Goodenough–Kanamori (GK) rules, where
fixed, occupied orbitals determine the magnetic structure.
Yet there are other systems which show evidence of the
more complex interplay of spin and orbital quantum fluc-
tuations. Candidates discussed here are t2g systems like the
cubic titanates and vanadates, and the orbital-Peierls effect
in YVO3.

The study of one-dimensional spin-orbital models has
been an active field, stimulated by specific analytic and
numerical tools. This has given some important deeper
insights into the features of spin-orbital models. Some
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Figure 1. Temperature dependence and anisotropy of optical con-
ductivity of cubic vanadate compounds LaVO3 and YVO3 reflects
the interrelation of spectral weight transfers and magnetic structure
(Data reproduced from Miyasaka, Okimoto and Tokura, 2002.) The
strong increase of spectral weight for c polarization in the range of
the high-spin multiplet transition (1.5 < ω < 2.5 eV) with decreas-
ing temperature reflects the evolution of ferromagnetism along c
direction. The strong anisotropy of the basically cubic crystal struc-
ture is due to the magnetic anisotropy, that is, the so-called C-type
magnetic order with antiferromagnetic correlations in the (ab) plane
and ferromagnetism along c.

instructive aspects are described, such as the interplay of
orbital and spin correlations in SU(4) and other spin-orbital
models, spin-orbital entanglement, and the role of composite
spin-orbital fluctuations.

Virtual-charge excitations which determine SE interac-
tions, and thereby magnetism, correspond, on the other hand,
to real optical transitions (see Figure 1). This fact provides
an important link between the SE energy and the partial
sum rules for the different optical multiplet transitions. Thus,
the temperature dependence of the optical spectral weights
and spectral weight transfers, particularly at phase transi-
tions, are determined by the low-energy spin-orbital model.

This leads to the unification of optics and magnetism, that
is, in the sense that it allows to combine the interpretation of
data obtained by optical spectroscopy and magnetic neutron
scattering. Thus it yields important guidance for the further
exploration of the electronic structure of TMO.

Finally, key features of the interplay of spin-, charge-, and
orbital degrees of freedom in doped TMO are addressed.
As examples, some of the complex-ordered phases and the
CMR of manganites are discussed. Starting from a gen-
eralized orbital-degenerate Kondo-lattice model (KLM) we
discuss the double-exchange (DE) interaction and the evi-
dence for the orbital degree of freedom in the intrinsic
CMR. Besides, the orbital liquid phase and the complex-
ity of spin-/orbital-ordered phases is touched with a brief
discussion of the charge-ordered phases in half-doped man-
ganites.

There is another aspect of general importance and of
conceptual novelty. In doped Mott insulators with degenerate
or nearly degenerate orbitals charge carriers will move as
composite polarons, where the doped holes are not only
accompanied (or dressed) by lattice distortions but also by
orbital excitations and spin clouds. A particular remarkable
example is the orbital polaron in manganites which in
combination with spin disorder in the paramagnetic phase
offers an explanation for an intrinsic mechanism of CMR.

This field has already a history of about half a century.
Its origin is usually connected with the seminal experimental
work by Jonker and van Santen (1950) on the magnetotrans-
port of manganites. Subsequently Zener (1951) proposed the
DE mechanism and was thereby able to explain the appear-
ance of ferromagnetism and metallicity at moderate doping.
The upcoming thermal neutron scattering technique provided
deep insight into the magnetic structure. The data obtained in
the pioneering neutron work by Wollan and Koehler (1955)
was subsequently interpreted by Goodenough, Kanamori,
and others (Goodenough, 1955, 1963; Kanamori, 1959). The
important insights achieved in those early years, revealed the
interplay of magnetic structure and orbital occupation (Pauli
principle and Hunds’ rule). The insights up to the year 1963
has been summed up by Anderson in an article in ‘Mag-
netism’ by Rado and Suhl (Anderson, 1963).

Formally this physics is described by spin-orbital models,
which may be interpreted as generalized Heisenberg models,
where the magnetic exchange integrals are themselves oper-
ators which are controlled by the orbital degrees of freedom.
SE models for transition-metal perovskites with partly filled
degenerate orbitals have a more complex structure than for
nondegenerate orbitals and have been discussed in a seminal
review by Kugel and Khomskii (1982a). Such models allow
for both AF and FM SE (Kugel and Khomskii, 1982a; Cyrot
and Lyon-Caen, 1975; Inagaki, 1975; Castellani, Natoli and
Ranninger, 1978). The different contributions to SE results
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from the multiplet structure of excited transition metal ions
which depends on the Hund’s exchange JH and generates a
competition between high-spin and low-spin excitations. The
exchange interactions are then intrinsically frustrated even on
a cubic lattice, which enhances quantum effects both for eg,
(Khaliullin and Oudovenko, 1997; Feiner, Oleś and Zaanen,
1998; Khaliullin and Kilian, 1999; Oleś, Feiner and Zaa-
nen, 2000) and for t2g systems. (Khaliullin and Maekawa,
2000; Khaliullin, 2001; Khaliullin, Horsch and Oleś, 2001).
This frustration is partly removed in anisotropic AF phases,
which break the cubic symmetry and may lead to dimen-
sionality changes, such as in A-type AF phase realized in
LaMnO3, or in C-type AF phase in LaVO3.

The renaissance of orbital physics in the 90th was trig-
gered by the discovery of CMR in the manganites (von
Helmolt et al., 1993; Jin et al., 1994). The experimental and
theoretical work on metal–insulator transitions in TMO has
been subsequently reviewed by (Imada, Fujimori and Tokura,
1998). CMR has been reviewed by Kaplan and Mahanti
(1998) and Tokura (2006) and orbital specific aspects have
been addressed by Oleś, Cuoco and Perkins (2000), and
Rückamp et al. (2005) and Khaliullin (2005). Moreover
a number of valuable textbooks have already appeared
(Dagotto, 2003; Maekawa et al., 2004; Fazekas, 1999).

This chapter describes CMR as an intrinsic phenomenon
where the orbital degree of freedom plays a key role.
The orbital liquid phase and various spin-, charge-, and
orbital-ordered phases are discussed in the framework of
theoretical models, such as the orbital degenerated KLM
and the orbital t –J model. Although advanced many-body
treatment of the quantum physics characteristic for spin-
orbital models is required in general, we want to present
here simple principles which help to understand the heart
of the problem and give some guidelines for interpreting
experiments.

This text focuses on the generalization of spin models
into spin-orbital models in the case of orbital degeneracy,
thereby likewise important developments in the field are not
touched. Most importantly the large progress in the field
of ab initio band-structure methods is not covered. This
field has made a significant leap forward through a merger
with dynamical mean-field theory (DMFT) (Metzner and
Vollhardt, 1989; Georges, Kotliar, Krauth and Rozenberg,
1996; Kotliar and Vollhardt, 2004), which allows to describe
the Mott transition, that was out of reach of the traditional
density-functional approaches. Still these approaches are not
fully ab initio, as intermediate multiband Hubbard models
need to be defined and then analyzed by help DMFT (Held).
Often the more pragmatic LDA + U approach (Anisimov,
Zaanen and Andersen, 1991) or the Hartree–Fock method
(Solovyev, 2006) are used to compensate for the deficiency
of LDA to describe Mott gaps.

2 ORBITAL-DEGENERATE MOTT
INSULATORS AND SPIN-ORBITAL
MODELS

2.1 Multiband Hubbard model and strong
correlations

TMO with integer valence electron number are frequently
insulators, that is Mott insulators because of the strong intra-
atomic Coulomb interaction, and not because of a gap in
the single-particle band structure. Typically this happens
when the bandwidth W is smaller than the intraorbital
Coulomb matrixelement U . At small hopping t the Mott-
insulating state is formed by one single ionic configuration,
for example, Mn3+ in LaMnO3. All other ionization states
are separated by large gaps. Such a state is very distinct from
an uncorrelated or Hartree–Fock state where the local charge
fluctuates strongly and involves all possible ionization states.
In a Mott insulator the neighboring valency, for example,
Mn2+ in LaMnO3, is suppressed in the wave function by the
factor t/U , and Mn1+ by (t/U)2. It is this suppression of
charge fluctuations and the emergence of the ionic structure
which forms the basis of SE, that is, of spin models like the
Heisenberg model or in the case of degenerate orbitals the
spin-orbital models.

The effective spin-orbital models of TMO with partly filled
degenerate orbitals depend in a characteristic way upon those
aspects of the electronic structure which decide whether
a given strongly correlated system can be classified as a
Mott insulator or as a charge transfer (CT) insulator. As
suggested in the original classification of Zaanen, Sawatzky
and Allen (1985), the energy of the d–p CT excitation �

has to be compared with the Coulomb interaction U – if
U < �, the first excitation is at a transition-metal ion and
the system is a Mott insulator, otherwise it is a CT insulator.
Yet both are strongly correlated insulators, in one limit the
dominant virtual excitations are of d−d type, whereas in the
other limit they are of p−d type. One may consider this
issue more precisely by analyzing the full multiplet structure,
and comparing the lowest excitation energy (to a high-
spin configuration) at a transition-metal ion, εHS = U − 3JH,
with that of the lowest CT excitation (of energy �) between
a transition-metal ion and a ligand ion. (We note, however,
that frequently the average energy of a CT type excitation
� is considered instead and compared with U .) One can
regard a given perovskite as a charge transfer insulator if
εHS > �, and as a Mott–Hubbard insulator if εHS < �. By
analyzing these parameters it follows that the late TMO may
be classified as CT insulators (Imada, Fujimori and Tokura,
1998). In this case, important new contributions to the SE
arise (Goodenough, 1963; Zaanen and Oleś, 1988; Eskes
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and Jefferson, 1993; Mostovoy and Khomskii, 2004) called
charge transfer terms. We shall avoid this discussion here,
and refer to Oleś, Khaliullin, Horsch and Feiner (2005) for
a detailed discussion of CT excitations in KCuF3 and the
LaMnO3.

The spin-orbital SE model is an effective low-energy
Hamiltonian which allows to discuss excitations on the
energy scale J ∼ t2/U , such as spin waves and orbital exci-
tations but also polaron formation and transport properties in
the doped case. A convenient starting point for the deriva-
tion of SE is the multiband Hubbard model for the d-electron
bands. First we consider the effective single-particle Hamil-
tonian operator H0 for the transition-metal ion states, where
the ligand states are integrated out. Hence only the magnetic
ions appear explicitly in this formulation:

H0 =
∑
iασ

εiαniασ +
∑

ij,α,β,σ

t
α,β

i,j a
†
iασ ajβσ (1)

Here εiα is the single-particle energy of an electron in orbital
α at site i, niασ is the number operator that determines the
number of electrons with spin σ in orbital α at site i. The
second term describes the kinetic energy, that is, the hopping
of electrons from site j to site i in terms of annihilation
and creation operators ajβσ and a

†
iασ , respectively. t

α,β

i,j are
effective hopping elements via ligand orbitals – they depend
on the type of considered orbitals, t2g or eg (Figure 2),
as discussed in Andersen, Klose and Nohl (1978) and
Zaanen and Oleś (1993), and are proportional to t2pd/�.
The energy scale for the hopping is set by the largest
hopping element t : the (ddσ) element in case of eg systems,
and the (ddπ) element when only π bonds are considered
in systems with degenerate and partly filled t2g orbitals.
Whereas the hopping between t2g orbitals is diagonal along
the cubic axis, the eg electrons do have off-diagonal matrix
elements. The orientation of the eg basis orbitals {|x〉, |z〉} =
{x2 − y2, 3z2 − r2} is reflected in the transfer matrices that
describe the hopping in the (a, b) plane and along the c axis,
respectively.

t
α,β

ij ||a(b) = t

4

(
3 ∓√

3
∓√

3 1

)
, t

α,β

ij ||c = t

(
0 0
0 1

)
(2)

Here ∓ distinguish hopping along the a and b cubic axis.
The flexibility to choose the occupied orbital as some linear
combination of the two basis orbitals is the underlying reason
for the large flexibility of eg systems to form complex orbital
and spin-ordered patterns. The orbital state at site i:

|θ〉 = cos
(θ

2

)
|z〉 + sin

(θ

2

)
|x〉 (3)

xy

(a)

(b)

xzyz

x2 − y2 3z2 − r2

x2 − y2

x2 − z2

3y2 − r2

3z2 − r2

3x2 − r2

y2 − z2

q = 2π/3

Figure 2. (a) In a cubic crystal field the degeneracy of d orbitals
is lifted. The energy of the eg orbitals (x2 − y2 and 3z2 − r2) is
higher than the t2g subgroup (xy, yx, zy) because the lobes of eg

orbitals at the transition metal A point toward the negative O ions
in the AO6 octahedra, whereas the t2g orbitals point in between.
(b) Schematic representation of states that can be obtained from the
two eg basis states by linear combination (rotation by angle θ , see
equation (3)).

is here parameterized by an angle θ which defines the
amplitudes of the orbital states

|z〉 ≡ (3z2 − r2)/
√

6, |x〉 ≡ (x2 − y2)/
√

2 (4)

being a local eg orbital basis at each site. This remarkable
flexibility offers the possibility to lower the dimensionality
and to optimize thereby the SE energy, or in doped systems
the kinetic energy.

For noninteracting electrons the Hamiltonian H0 would
lead to tight-binding bands, but in a Mott insulator the
large Coulomb interaction U suppresses charge excita-
tions in the regime of U � t . Thus for integer electron
number per transition-metal ion the hopping elements can
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xy
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U

U + 2JH

U − 3JH

t

A A B

1

3

2

Ground state d2 d2

B

Figure 3. Sketch of superexchange (charge) excitations d2
i d2

j →
d3

i d1
j between two S = 1 V2+ ions. Because of Hund’s rule the

high-spin multiplet state (of the d3 ion) is the lowest intermediate
state (U − 3JH). Along c direction only xz and yz orbital have
finite hopping matrix elements. With one electron in xy due to
crystal-field splitting, the remaining electron of ion A is either in
xz or yz and can form an orbital singlet with its neighbor B, while
spins align ferromagnetically, and thereby profit from the virtual
transition into the high-spin state at U − 3JH.

only contribute via virtual excitations, leading to the SE
(Figure 3).

The SE in the 3d cubic systems with orbital degeneracy is
described by spin-orbital models, which arise from virtual-
charge excitations between two neighboring transition-metal
ions, dm

i dm
j � dm+1

i dm−1
j , which involve an increase of

energy owing to the Coulomb interactions. Such transitions
are mediated by the ligand orbitals between the two ions
and have the same roots as the SE in a Mott insulator with
nondegenerate orbitals (Anderson, 1959). Their multiplet
structure depends on the involved ionic configurations and
the strength of the Hund coupling JH. The relevant multiplet
energies have to be determined by analyzing the eigenstates
of the local Coulomb interactions Hint, where H = H0 + Hint

is the multiband Hubbard Hamiltonian:

Hint = U
∑
iα

niα↑niα↓

+
∑

i,α<β

(
Uαβ − 1

2
Jαβ

)
niαniβ − 2

∑
i,α<β

JαβSiα · Siβ

+
∑

i,α<β

Jαβ

(
d†

iα↑d†
iα↓diβ↓diβ↑ + d†

iβ↑d†
iβ↓diα↓diα↑

)
(5)

with σ = −σ . The multiplet structure depends in the general
case on three Racah parameters A, B, and C (Griffith, 1971).
In solids these parameters are screened and therefore smaller
than the tabulated atomic values (Griffith, 1971). Whereas

the intraorbital Coulomb element

U = A + 4B + 3C (6)

is identical for all 3d orbitals, the interorbital Coulomb and
exchange elements, Uαβ and Jαβ , are anisotropic and depend
on the involved pair of orbitals; the values of Jαβ are given
in Table 1. The Coulomb and exchange elements are related
to the intraorbital element U by a relation which guarantees
the invariance of interactions under rotation in the orbital
space,

U = Uαβ + 2Jαβ (7)

In cases where only the orbitals of one type (eg or t2g)
are partly filled, as, for example, in the titanates, vanadates,
or copper fluorides, all relevant exchange elements Jαβ are
the same (see Table 1) and one may use a simplified form of
on-site interactions (Oleś, 1983)

H
(0)
int = U

∑
iα

niα↑niα↓ +
(
U − 5

2
JH

) ∑
i,α<β

niαniβ

+ JH

∑
i,α<β

(
d†

iα↑d†
iα↓diβ↓diβ↑ + d†

iβ↑d†
iβ↓diα↓diα↑

)

− 2JH

∑
i,α<β

Siα · Siβ (8)

with only two parameters: the intraorbital Coulomb (or Hub-
bard) interaction parameter U (6) and the Hund’s coupling
JH, being 4B + C for eg and 3B + C for t2g systems, respec-
tively. However, when both types of orbitals are partly filled
(as in the manganites) and therefore both participate in charge
excitations, the Hamiltonian (8) is only approximate, and
the full excitation spectra of the transition-metal ions (Grif-
fith, 1971) which follow from equation (5) have to be used
instead. A few examples of spectra for dm

i dm
j � dm+1

i dm−1
j

charge excitations at transition-metal ions are shown in
Figure 4. As a universal feature, the high-spin excitation
is found at energy U − 3JH in all cases, provided that

Table 1. On-site interorbital exchange elements Jαβ for 3d
orbitals as functions of the Racah parameters B and C (for more
details see Griffith, 1971).

Orbital xy yz zx x2−y2 3z2−r2

xy 0 3B + C 3B + C C 4B + C

yz 3B + C 0 3B + C 3B + C B + C

zx 3B + C 3B + C 0 3B + C B + C

x2−y2 C 3B + C 3B + C 0 4B + C

3z2−r2 4B + C B + C B + C 4B + C 0



6 Strongly correlated electronic systems

d2 d3

U

(a)

d8 d5

(b)

U + 3JH

U + 2JH

U − 3JH U − 3JH

U + JH

U − JH U − JH

1A1

1A1

3A2
6A1

3T1
4A2

4A1

4A2

2T2

2T1,2E

1T2,1E1E

4E

Figure 4. Energies of dm
i dm

j → dm+1
i dm−1

j charge excitations in
selected cubic transition-metal oxides, as obtained from equation
(8) for: (a) eg excitations of Cu3+ (d8) and Mn2+ (d5) ions (in
the d5 case the spectrum was obtained from equation (5)); (b) t2g

excitations of Ti2+ (d2) and V2+ (d3) ions. The splittings between
different states are due to Hund’s exchange element JH which refers
to a pair of eg electrons in (a), and to a pair of t2g electrons in (b),
respectively. (Reproduced from Oles et al., 2005, with permission
from the American Physical Society.  2005.)

JH is understood as Hund’s exchange for that partly filled
manifold (eg or t2g) of degenerate d orbitals which partici-
pate in charge excitations. The structure of the excited states
depends on the partly occupied orbitals (Fractional contri-
butions due to exchange terms ∝ JH shown in the spectrum
for the d5 case (see Figure 4a) follow from the differences
between the exchange elements Jαβ in Hamiltonian Hint (5)
(see Table 1), and were obtained using the relation C � 4B

satisfied approximately by the experimental values for Mn2+

ions (Zaanen and Sawatzky, 1990) and on the actual valence
m – the distance between the high-spin and low-spin excita-
tions increases with the number of electrons for m ≤ 5 (holes
for m > 5).

2.2 Superexchange at orbital degeneracy

At orbital degeneracy the SE which connects ions at sites i

and j along the bond 〈ij〉 involves orbital operators which
depend on the bond direction. Therefore, it is useful to
introduce the index γ = a, b, c to label the three a priori
equivalent directions in a cubic crystal. In order to analyze
the consequences of each individual charge excitation n that
contributes to the SE in a given transition-metal compound
with degenerate d orbitals, we shall use below a general
way of writing the effective low-energy Hamiltonian as a
superposition of such individual terms on each bond 〈ij〉,

HU =
∑

n

∑
〈ij〉‖γ

H (γ )
n (ij) (9)

with the energy unit (absorbed in individual H
(γ )
n (ij) terms)

given by the SE constant,

J = 4t2

U
(10)

It follows from d−d charge excitations with an effective
hopping element t between transition-metal ions, and is the
same as that obtained in a Mott insulator with nondegenerate
orbitals in the regime of U � t (Anderson, 1959).

In the SE Hamiltonian equation (9) the contributions
which originate from all possible virtual excitations dm

i dm
j �

dm+1
i dm−1

j just add up to the total SE interaction, in which
the individual terms cannot be distinguished. Yet each of
these excitations involves a different state in the multiplet
structure of at least one of the transition-metal ions, that is,
either in the dm+1 or in the dm−1 configuration or in both,
depending on the actual process and on the value of m. The
same multiplet transitions also appear in the optical spectra.
As pointed out in Khaliullin, Horsch and Oleś (2004), this
fact can be used to calculate from the low-energy spin-orbital
model the spectral weights of the individual transitions that
occur at energies of several electron volts.

The generic structure of each individual SE contribution
is for a bond 〈ij〉 given by

H(γ )
n (ij) = (an + bnSi · Sj )Q

(γ )
n (τ i , τ j )

= anQ
(γ )
n (τ i , τ j ) + bnQ

(γ )
n (τ i , τ j )Si · Sj (11)

where the orbital dependence of the SE is described by
means of orbital projection operators Q

(γ )
n which in the cases

discussed here can be expressed in terms of components of
orbital pseudospin T = 1/2 operators τ i , τ j at sites i and j .
The coefficients an and bn, which measure the strength of the
pure orbital part and of the spin and orbital part of the SE,
respectively, follow from second-order perturbation theory
involving the charge excitation n. In the case of perovskites,
where the bond between two transition-metal ions through
the ligand ion (F or O) connecting them is close to linear
(180◦), the coefficients an and bn are of similar magnitude
(in contrast to the situation in layered compounds like LiNiO2

with 90◦ bonds where the pure orbital interaction is stronger
by an order of magnitude than the spin and orbital interaction
(Mostovoy and Khomskii, 2002; Reitsma, Feiner and Oleś,
2005).

Spin-orbital models have been derived for a number of
TMOs, and we refer for the details of such derivations
and further reference to the original literature: KCuF3,
La2CuO4 (Oleś, Feiner and Zaanen, 2000; Oleś, 2003, 2005),
LaTiO3 (Khaliullin and Maekawa, 2000; Khaliullin, 2001;
Aharony et al., 2005), LaVO3 (Khaliullin, Horsch and Oleś,
2001), LiVO2 (Pen, van den Brink, Khomskii and Sawatzky,
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Figure 5. (a) Splitting of d-orbitals in a cubic crystal field (�E = 10Dq) and the further splitting of eg and t2g orbitals in a tetragonal
field. The parallel alignment of spins in the d4(S = 2) configuration of Mn3+ is dictated by the strong Hund coupling JH. (b) Tetragonal
symmetry where the oxygen octahedron is elongated (squeezed) along c direction favors the d3z2−r2 (dx2−y2 ) orbital, respectively.

1997), NaV2O5 (Mostovoy and Khomskii, 2000; Cuoco,
Horsch and Mack, 1999), V2O3 (Shiina, Mila, Zhang and
Rice, 2001; Di Matteo, Jackeli, Lacroix and Perkins, 2004;
Di Matteo, Jackeli and Perkins, 2005), LaMnO3 (Ishihara,
Inoue and Maekawa, 1997; Shiina, Nishitani and Shiba,
1997; Feiner and Oleś, 1999), LiNiO2 (Mostovoy and
Khomskii, 2002; Reitsma, Feiner and Oleś, 2005; Vernay,
Penc, Fazekas and Mila, 2004), the isoelectronic ruthenate
alloy Ca2−xSrxRuO4 (Sigrist and Troyer, 2004), and the
layered cobalt oxides NaxCoO2 (Khaliullin, Koshibae and
Maekawa, 2004; Khaliullin, 2005).

2.3 Effective spin model and spin waves

Here, we consider systems having cubic symmetry at high
temperature. Yet often already at rather high temperature this
symmetry is spontaneously broken – usually driven by the
joint effect of (i) the orbital part of the SE interaction, and
(ii) the JT coupling of the same degenerate (and therefore
JT active) 3d orbitals to lattice modes. The result is a
simultaneous onset of a macroscopic lattice distortion and
of orbital order (OO), that is, a cooperative JT effect. At
temperatures well below the transition temperature Ts of this
combined structural and orbital ordering phase transition the
OO is effectively frozen, and the SE interactions between the
spins may then be obtained by replacing the orbital projection
operators in equation (9) by their expectation values,

Q(γ )
n (τ i , τ j ) −→ 〈Q(γ )

n (τ i , τ j )〉 = Q(γ )
n (〈τ i〉, 〈τ j 〉) (12)

Obviously, this leads to anisotropic magnetic interactions,

Hs = J
∑

n

∑
〈ij〉‖γ

bn 〈Q(γ )
n 〉 Si · Sj (13)

which will in general induce a further magnetic phase
transition at lower temperature. It is noteworthy that in this
situation the spin degrees of freedom get decoupled from
the orbital degrees of freedom, although the pure orbital (an)
and spin and orbital (bn) SE terms are of similar strength.
Responsible for this behavior is the JT contribution to the
structural phase transition, which enhances Ts above the
value it would have if the transition were driven by orbital
SE alone. A typical case is LaMnO3 which shows OO below
a structural transition at Ts ∼ 780 K (Murakami et al., 1998).

Thus starting from the microscopic spin-orbital SE model
we arrive at low temperature, that is, in the orbital-ordered
state, at an effective Heisenberg spin model. Rewritten from
equation (13), its generic form is:

Hs = Jc

∑
〈ij〉c

Si · Sj + Jab

∑
〈ij〉ab

Si · Sj (14)

with two different effective magnetic exchange interactions:
Jc along the c axis, and Jab within the ab planes. The latter
Jab interactions could in principle still take two different
values in case of inequivalent lattice distortions (caused, e.g.,
by octahedra tilting or pressure effects) making the a and
b axes inequivalent. Here, we shall limit the discussion to
idealized structures with these two axes being equivalent.
The resulting spin–spin correlations along the c axis and
within the ab planes,

sc = 〈Si · Sj 〉c, sab = 〈Si · Sj 〉ab (15)

play, as we shall see below, an important role for the
interpretation of the optical conductivity data, its anisotropy
and its temperature dependence.
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2.4 Spin-orbital models: two examples

2.4.1 t2g systems LaVO3 and YVO3

The orientation of ferromagnetically aligned magnetic
moments can be reversed in a sufficiently large magnetic
field pointing in the opposite direction. This property is the
basis of magnetic recording and storage devices. The cubic
vanadate YVO3 compound shows a very peculiar tempera-
ture induced magnetization reversal as reported by Ren et al.
(1998). Actually there are two reversals in this compound,
one at 77 K connected with a first-order structural phase tran-
sition. Upon heating the value of the magnetization decreases
linearly and leads to another sign change at about ∼95 K. In
these compounds, the net magnetic moment results from a
tilting of the antiferromagnetically aligned moments of the
(S = 1) V3+ ions.

The SE in cubic vanadates originates from virtual-charge
excitations, d2

i d2
j → d3

i d1
j , by the hopping t which couples

pairs of identical orbitals. As shown in Figure 4 there are
three multiplet levels n = 1, 2, 3 arising from the transitions
to: (i) a high-spin state 4A2 at energy U − 3JH, (ii). two
degenerate low-spin states 2T1 and 2E at U , and (iii) 2T2 low-
spin state at U + 2JH. When all processes are analyzed and
collected on individual bonds 〈ij〉 ‖ γ along each cubic axis
γ = a, b, c, one finds the spin-orbital Hamiltonian for S = 1
spins (J = 4t2/U ) (Khaliullin, Horsch and Oleś, 2001),

H = J
∑
γ

∑
〈ij〉‖γ

[
1

2
(Si · Sj + 1)Ĵ

(γ )

ij + K̂
(γ )

ij

]
+ H ′ (16)

where the orbital operators Ĵ
(γ )

ij and K̂
(γ )

ij depend on the
pseudospin τ = 1/2 operators τ i = {τ x

i , τ
y

i , τ z
i }, given by

two orbital flavors active along a given direction γ . For
instance, yz and zx orbitals are active along c axis, and we
label them as a and b, as they lie in the planes orthogonal to
these axes. The c (xy) orbitals, on the other hand, have no
finite hopping matrixelements t

α,β

i,j along c direction and are
therefore inactive on such bonds. H ′ stands for other relevant
(non-SE) interactions, to be discussed later. The general form
of the SE (11) was discussed before, and has cubic symmetry
in the orbital sector.

There is structural evidence that c (xy) orbitals are shifted
to lower energies at the structural transition Ts (Mahajan,
Johnston, Torgeson and Borsa, 1992; Noguchi et al., 2000;
Ren et al., 2000; Blake et al., 2001, 2002). In YVO3 the
latter occurs at ∼200 K; the subsequent magnetic transitions
into the magnetic C (G phase) are at 114(77) K, respectively
(Figure 6). LaVO3 has only a C phase with TN = 140 K.
Hence, the cubic symmetry is broken and it is assumed that
the xy orbitals are occupied (nic = 1). Actually, this is also
concluded from electronic structure calculations (Sawada,

Hamada, Terakura and Asada, 1996). The electron densities
in a and b orbitals satisfy the local constraint nia + nib = 1
and therefore can fluctuate along the c direction. Whereas
along a(b) direction orbital fluctuations are inhibited because
of the occupied xy orbitals. This leads to a dramatic
anisotropy of magnetic properties, which are always AF
along a(b) directions but can be strongly FM along c, due
to orbital-singlet fluctuations.

The exchange constants are now operators depending on
the orbital degrees of freedom (which are expressed in the
present case by spin-1/2 pseudospin operators controlling
the two active orbitals along each Cartesian direction). The
interactions along the c axis are expressed as:

Ĵ
(c)
ij = (1 + 2R)

(
τ i · τ j + 1

4

)

− r
(
τ i ⊗ τ j + 1

4

)
− R (17)

K̂
(c)
ij = R

(
τ i · τ j + 1

4

)
+ r

(
τ i ⊗ τ j + 1

4

)
(18)

they involve the fluctuations of a and b orbitals ∝ τ i · τ j ,
and τ i ⊗ τ j = τ x

i τ
x
j − τ

y

i τ
y

j + τ z
i τ

z
j . The interactions along

the γ = a(b) axis depend on the static correlations ∝ nibnjb

(nianja) only; for instance:

Ĵ
(a)
ij = 1

2

[
(1 − r)(1 + nibnjb) − R(nib − njb)

2
]

(19)

K̂
(a)
ij = 1

2
(R + r)(1 + nibnjb). (20)

The Hund’s exchange η = JH/U determines the multiplet
structure of d3 excited states which enters via the coefficients:
R = η/(1 − 3η) and r = η/(1 + 2η). The pseudospin opera-
tors in equations (17–18) may be represented by Schwinger
bosons: τ x

i = 1
2 (a

†
i bi + b

†
i ai), τ

y

i = 1
2 i(a

†
i bi − b

†
i ai), τ z

i =
1
2 (nia − nib).

To develop some deeper insight, we consider the limit
of vanishing Hund coupling JH → 0. In this case, the d3-
multiplet splitting shrinks to zero and the SE expression
becomes SU(2) symmetric also in the orbital sector:

H0 = 1

2
J

∑
〈ij〉‖c

(Si · Sj + 1)

(
τ i · τ j + 1

4
ninj

)(c)

(21)

where a constant energy of −2J per V3+ ion is neglected,
and also the coupling in the (a, b) plane is dropped for the
moment.

To understand why orbital fluctuations along c direction
support FM order it is instructive to consider H0 with
all spins ferromagnetically aligned. The remaining orbital
model is a spin-1/2 Heisenberg chain with the known Bethe
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Figure 6. Orientation of occupied t2g orbitals in: (a) the magnetic G type and orbital C type low-temperature structure of YVO3 and (b) the
magnetic C (orbital G) type low-temperature structure of LaVO3. (S = 1 spins are indicated by black arrows.) For the C phase a double-side
arrow indicates the fluctuating orbital occupation between a = yz and b = xz orbitals along the c direction. A second vanadium t2g electron
occupies the xy orbital (nc = 1) at each vanadium ion and is not shown. The occupied xy orbital suppresses orbital fluctuations in the
(a, b) plane.

ansatz result 〈τ i · τ i+1〉 = −0.443, that is, for the nearest-
neighbor correlation function in the singlet ground state.
Owing to the orbital quantum fluctuations this yields a very
low energy per bond E = −0.193J . It should be noted that
for a classical alternating orbital state 〈τ i · τ i+1〉 = −1/4,
thus J

(c)
i,j = 0! That is, quantum fluctuations are essential for

the ferromagnetism.
Yet surprisingly, the ground state of H0 is an orbital

dimer state or orbital valence bond (OVB) state with energy
E0 = −0.25J per bond. In the OVB state orbital singlets
appear together with spin pairs coupled into a S = 2 state,
the AF arrangement leads to basically decoupled pairs (see
Figure 7). Therefore, the system can profit from the orbital
dimer energy 〈τ i · τ i+1〉 = −3/4 on each second bond. That
is, in the η = 0 case, the local dimers win over the global
singlet. It requires finite Hund coupling JH to stabilize the C
phase (Horsch, Khaliullin and Oleś, 2003) (see Figure 7).

Next we consider the reasons for the stability of the G
phase in YVO3. Unlike LaVO3 with almost equal V–V
bonds, this compound crystallizes in the distorted structure
(Goodenough, 1955; Kawano, Yoshizawa and Ueda, 1994),
indicating that the JT effect plays a significant role. It
was suggested that energy may be gained due to C-type
orbital ordering, with a and b orbitals staggered in (a, b)

planes and repeated along c axis, while nic = 1 (Ren et al.,
2000; Mizokawa, Khomskii and Sawatzky, 1999; Sawada
and Terakura, 1998). Such ordering can be promoted by
Khaliullin, Horsch and Oleś (2001)

HJT = −2V
∑
〈ij〉‖c

τ z
i τ

z
j + V

∑
〈ij〉‖(a,b)

τ z
i τ

z
j (22)

C phaseOVB

(a) (b)

Figure 7. (a) Orbital valence bond (OVB) ground state of H0,
equation (21), consists of orbital singlets (double line). The resulting
FM coupling leads to a coupling of pairs of spin 1 into S = 2
spin pairs. These are only marginally coupled because of weak AF
correlations between dimers. (b) FM aligned S = 1 spins lead to a
global orbital-singlet state (solid line). Weak AF coupling between
different chains along c is indicated by dashed lines.

and competes with the orbital disorder. This behavior is
remarkably different from the eg systems, where the JT effect
and SE support each other, inducing orbital ordering (Kugel
and Khomskii, 1982a,b; Tokura and Nagaosa, 2000; Oleś,
Feiner and Zaanen, 2000). Although V > 0 causes orbital
splitting by 4V and thus lowers the energy of the G phase
(EG), it has little effect on the energy of the C phase.

2.4.2 eg system LaMnO3

Although eg and t2g electrons behave quite differently in
LaMnO3 and are frequently treated as two subsystems,
(Dagotto, Hotta and Moreo, 2001; Dagotto, 2003, 2005)



10 Strongly correlated electronic systems

0 0.05 0.10 0.15 0.20
η

0

0.1

(a)

(b)

0.2

0.3

0.4

J a
b 

, J
c

J a
b 

, J
c

Jab

−Jc
c

a,b

0 0.1 0.2 0.3
Λ/4V

0

0.1

0.2

0.3

c

b
a

ab

cJab

Jc

Figure 8. Magnetic exchange couplings Jc and Jab (in units of J ):
(a) as function of Hund-coupling strength η in the C phase of
LaVO3 and YVO3 with large ferromagnetic Jc due to strong
orbital fluctuations along c direction. The inset indicates the
fluctuation of a(b) orbital occupancy. (b) Exchange constants in
the G-antiferromagnetic low-temperature phase of YVO3 versus
relativistic spin-orbit coupling �/V . Inset shows the corresponding
C-orbital structure. (Reproduced from Klhallili et al., 2001, with
permission from the American Physical Society.  2001.)

the neutron experiments (Hirota, Kaneko, Nishizawa and
Endoh, 1996; Moussa, Hennion and Rodrı́guez-Carvajal,
1996; Biotteau et al., 2001) which measure the spin waves in
the A−AF phase below TN leave no doubt that an adequate
description of the magnetic properties requires a magnetic
Hamiltonian of the form given by equation (14), describing
SE between total S = 2 spins of the Mn3+ ions. The high-
spin 5E ground state at each Mn3+ ion is stabilized by the
large Hund’s exchange JH. The situation is more complex
than in the vanadate system discussed before. The SE terms
between Mn3+ ions originate from various d4

i d4
j � d5

i d3
j

charge excitations, which can originate from transitions of
both eg or t2g electrons. This leads to different excited states
in the intermediate d5 configuration on a Mn2+(d5

i ) ion.
Such processes determine the U term HU(d4) defined by
equation (9), and were analyzed in detail in (Feiner and
Oleś, 1999), and lead to the structure of HU(d4) given below.

However, the CT processes, H�(d4), contribute as well and
the complete model for LaMnO3 reads

H(d4) = HU (d4) + H�(d4) (23)

The SE constant J is here defined again by equation (10),
using an average hopping element along an effective (ddσ)

bond, t = t2
pd/�, where � is an average CT excitation

energy.
We consider here only the more important U terms,

HU(d4), due to excitations of eg electrons (see Figure 4),
and refer to Oleś, Khaliullin, Horsch and Feiner (2005)
for a discussion of the CT contributions for LaMnO3. The
energies of the five possible excited states: Griffith (1971)
(i) the high-spin 6A1 state (S = 5/2), and (ii–v) the low-
spin (S = 3/2) states: 4A1, 4E (4Eε , 4Eθ ), and 4A2, will
be parameterized again by the intraorbital Coulomb element
U (6), and by Hund’s exchange JH between a pair of eg

electrons. The energies of the excited states are given in
terms of the Racah parameters in Griffith (1971); in order to
parameterize this spectrum by JH we apply an approximate
relation 4B � C which holds for the spectroscopic values
of the Racah parameters for a Mn2+ (d5) ion: (Zaanen and
Sawatzky, 1990; Bocquet et al., 1992) B = 0.107 eV and
C = 0.477 eV. One finds then the excitation spectrum: U −
3JH, U + 3JH/4, U + 5JH/4, U + 5JH/4, and U + 13JH/4
(Figure 4a). Unlike JH, the value of U is known with less
accuracy – hence one may use it as a parameter which can
be deduced a posteriori from the SE J which is able to
explain the experimental values for two exchange constants
responsible for the A−AF phase observed in LaMnO3 well
below the structural transition (here again TN � Ts).

Using the spin algebra (Clebsch–Gordon coefficients), and
making a rotation of the terms derived for a bond 〈ij〉 ‖ c to
the other two cubic axes a and b, one finds five contributions
to HU(d4) due to different (t32ge1

g)i(t
3
2ge1

g)j � (t32ge2
g)i(t

3
2g)j

excitations by eg electrons (Feiner and Oleś, 1999). In
the following we shall drop the index U and denote the
individual multiplet contributions H

(γ )
n :

H
(γ )

1 = − J

20
r1

(
Si · Sj + 6

)(1

4
− τ

(γ )

i τ
(γ )

j

)
(24)

H
(γ )

2 = 3J

160
r2

(
Si · Sj − 4

)(1

4
− τ

(γ )

i τ
(γ )

j

)
(25)

H
(γ )

3 = J

32
r3

(
Si · Sj − 4

)(1

4
− τ

(γ )

i τ
(γ )

j

)
(26)

H
(γ )

4 = J

32
r4

(
Si · Sj − 4

)(1

2
− τ

(γ )

i

)(1

2
− τ

(γ )

j

)
(27)

H
(γ )

5 = J

32
r5

(
Si · Sj − 4

)(1

2
− τ

(γ )

i

)(1

2
− τ

(γ )

j

)
(28)
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The orbital operators τ
(γ )

i depend on the direction of a
considered bond 〈ij〉, and are given by

τ
(ab)
i = −1

4

(
σ z

i ∓
√

3σx
i

)
, τ

(c)
i = 1

2
σ z

i (29)

where σz
i and σ x

i are Pauli matrices acting on the orbital
pseudospins and the signs ± in τ

(ab)
i correspond to a and b

axis, respectively. The coefficients

r1 = 1

1 − 3η
, r2 = 1

1 + 3η/4
,

r3 = r4 = 1

1 + 5η/4
, r5 = 1

1 + 13η/4
(30)

follow from the above multiplet structure of Mn2+ (d5)
ions, and η = JH/U is the Hund-coupling parameter. The
meaning of the various terms is straightforward: the first
term H

(γ )

1 describes the high-spin excitations to the 6A1

state while the remaining ones, H
(γ )
n with n = 2, . . . , 5, arise

due to the low-spin excited states 4A1, 4Eθ , 4Eε , and 4A2,
respectively.

The SE leads in the (a, b) plane to (|x〉 ± |z〉)/√2 OO in
combination with ferromagnetism; this is driven by the r1

term. Similarly OO in LaMnO3 is favored by collective JT
distortions (Kanamori, 1959; Goodenough, 1963), which may
lead to a further rotation of alternating orbitals toward d3x2−r2

and d3x2−r2 , respectively. This OO implies as consequence
of SE FM spin order in the (a,b) plane, but AF order between
planes, and is called A-type order. A powerful technique to
determine the OO is the resonant X-ray scattering (RXS)
technique (for a theoretical discussion, see Ishihara’s account
in Maekawa et al., 2004). The OO of LaMnO3 has been
determined by (Murakami et al., 1998) using RXS. They
have shown that the OO in this compound sets in at
TO = 780 K, while the AF ordering occurs at much lower
Neél temperature TN = 140 K.

2.5 Goodenough–Kanamori rules and
spin-orbital order

The magnetism of Mott-insulating TMO is traditionally
interpreted by means of the GK rules (Goodenough, 1963;
Kanamori, 1959). These rules state that the pattern of
occupied orbitals determines the spin structure. In the case
of 180◦ bonds, as shown in Figure 9 for a Mn3+ –O–Mn3+

bond, there are two key rules (Anderson, 1963):

1. If there is large overlap between partly occupied orbitals
at two magnetic ions, the SE interaction between them
is strongly AF, because the fluctuating electron meets

1.2.

Favored by Hund’s coupling

Required by Pauli’s principle

Mn3+Mn3+

(a) AF

(b) FM

Figure 9. Sketch of Goodenough–Kanamori rules in case of Mn3+
with one eg orbital occupied. (a) Large overlap of occupied orbitals
favors antiferromagnetism because of Pauli’s principle; In case (b)
there is a large overlap between an occupied orbital at the left ion
with an unoccupied orbital on the right ion, while in this case AF
and FM orientation is possible, Hund’s rule on the right ion will
favor ferromagnetic alignment. For completeness the intermediate
oxygen p orbitals which are active in the superexchange process are
shown as well.

another electron in the same orbital, thus Pauli principle
requires antiparallel spins.

2. Large overlap between partly occupied and unoccupied
orbitals on neighboring sites yields weak FM interaction
due to Hund’s exchange.

Whereas the AF–SE interaction (i) is proportional to
t2/U , the FM interaction (ii) is a weaker interaction
∼t2JH/U 2, as it arises from a total balance of AF and FM
SE processes, where the FM process wins by a factor JH/U

(see e.g., Figure 3). In the archetypical case of 180◦ bonds
through a single ligand ion, this translates into a complemen-
tary interdependence between spin order and OO (Imada,
Fujimori and Tokura, 1998): ferro-orbital (FO) order sup-
ports strong AF spin order, while alternating orbital (AO)
order supports weak FM spin order. The canonical examples
for this behavior are LaMnO3 and KCuF3. In LaMnO3 the
alternating OO in the (a, b) plane favors ferromagnetism.
In KCuF3 weak FM (positive) spin correlations in the ab

planes and strong AF (negative) correlations along the c axis
are accompanied by alternating OO in the ab planes and FO
order along the c axis.

As the bond angle controls the hopping matrix elements
it is obvious that the GK rules depend sensitively on the
bond angle. Angles close to 90◦ deserve particular care.
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In this case, AF–SE interaction may become small and
the total interaction on a bond may become ferromag-
netic as other SE channels become relevant (Mizuno
et al., 1998; Tornow, Entin-Wohlman and Aharony, 1999).
Also some compounds have more complex SE channels
(Feldkemper and Weber, 1998; Daré, Hayn and Richard,
2003).

2.5.1 Crystal fields and Jahn–Teller distortions

The GK rules have been successful in explaining the mag-
netic structure in a wide range of materials. This may seem
surprising because they presuppose that the orbital occupa-
tion is static, whereas it has become clear that if partly filled
orbitals are degenerate, both spin and orbital degrees of free-
dom should be considered as dynamic quantum variables
and be described by spin-orbital models as, for example, in
equation (16):

H = J
∑
γ

∑
〈ij〉‖γ

[(
Si · Sj + S2

)
Ĵ

(γ )

ij + K̂
(γ )

ij

]
+ Horb (31)

In fact, there are other interactions Horb between orbitals and
the lattice, which can be stronger than the SE interactions
and quench the orbital fluctuations. The GK rules work
that well because in many compounds a structural phase
transition, driven by the JT coupling of degenerate orbitals
to the lattice, lifts the degeneracy and fixes the orbital
occupation well above the magnetic transition. This happens
typically for electrons in eg orbitals where large cooperative
JT distortions favor OO (Millis, 1996; Ahn and Millis,
2000). A good example is LaMnO3 where the alternating
OO, Figure 10, and the JT distortion occur simultaneously
at TOO ∼ 780 K (Imada, Fujimori and Tokura, 1998). For
t2g orbitals, however, the JT coupling is rather weak. More
significant in cubic vanadates RVO3 and titanates RTiO3 is
the GdFeO3 distortion which controls the t2g level splitting
(Mochizuki and Imada, 2003, 2004; Cwik et al., 2003;
Solovyev, 2004; Pavarini, Yamasaki, Nuss and Andersen,
2005; Pavarini et al., 2004). Here, the dominant contribution
to the crystal-field stems from the R ions and not from the O
neighbors (Pavarini, Yamasaki, Nuss and Andersen, 2005),
which reflects the fact that the O octahedra are rotated but
only weakly distorted. This leads to a significant variation of
orbital ordering transition temperatures in the cubic vanadate
systems RVO3 as function of the cation size which controls
the GdFeO3 distortion (Miyasaka, Okimoto, Iwama and
Tokura, 2003), Figure 12. In layered ruthenates, the GdFeO3

distortion even induces a metal–insulator transition (see
following subsection). Recent experiments in pseudocubic
perovskite titanates (Keimer et al., 2000) and vanadates

Figure 10. Alternating (|x〉 ± |z〉)/√2 in the ferromagnetic ab
plane of LaMnO3 as obtained from superexchange. The alternating
orbital order is further stabilized by a cooperative Jahn–Teller
distortion of the involved MnO6 octahedra.

Figure 11. Crystal structure of the GdFeO3 distorted perovskite
vanadates RVO3 and titanates RTiO3 for small R ions. The corner-
sharing octahedra are tilted around the b axis in alternating
directions and subsequently rotated around the c axis. (Reproduced
from E. Pavarini, Y. Yamasaki, J. Nuss, and O.K. Andersen, New
J. Phys. 7, 2005, 188, with permisison from Elsevier.)

(Ulrich et al., 2003), however, indicate that the relevant t2g

orbital occupations fluctuate and the conditions for applying
the GK rules may not be not satisfied.
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type orbital ordering temperature TOO1 and C-type spin ordering
TSO1, respectively. Triangles indicate G-type spin (C-type orbital)
ordering temperature TSO2 = TOO2. (Reproduced from Miyasaki
et al., 2003, with permission from the American Physical Society.
 2003.)

2.5.2 Orbital-selective Mott transition in layered
ruthenates

The discovery of unconventional superconductivity in Sr2Ru
O4 (Maeno et al., 1994) has attracted considerable interest
in the electronic properties of layered perovskite ruthenates.
With a highest Tc ∼ 1.5 K they are the only superconduc-
tors isostructural with the high-temperature superconducting
cuprates. In contrast to singlet pairing in high-Tc supercon-
ductors, here triplet pairing with p-wave symmetry of the
superconducting order parameter is the most probabe sce-
nario. Spin-triplet pairing is favored by strong FM fluctu-
ations that are believed to dominate the pair-formation in
Sr2RuO4. These aspects have been reviewed in depth by
Mackenzie and Maeno (2003).

Surprising insights were obtained when replacing the Sr
ion in this compound. For example, the substitution of the
smaller Ca2+ ions for Sr2+ ions does not lead to a more
metallic state, as one might naively expect, but to an AF
Mott insulator with a staggered moment of S = 1 as expected
for a localized Ru4+ ion which has four electrons in the t2g

subshell.
The insulating behavior of Ca2RuO4 is triggered by the

typical GdFeO3 distortions that appear when small cations
are inserted into the perovskite structure (Fang and Ter-
akura, 2001; Anisimov et al., 2002; Friedt et al., 2001):
(i) With the replacement of Sr2+ ions by Ca2+ ions the
RuO6 octahedra change from c-axis elongation to com-
pression. This implies that the xy orbital is shifted below
the degenerate xz and yz orbitals, that is, the systems

Ca2RuO4 Sr2RuO4

xy

xz, yz

xy

xz, yz

xz, yz

xz, yz

xy

xy

t2g t2g

(a) (b)

Figure 13. Local electronic structure of the end compounds of the
isoelectronic alloy Ca2−xSrxRuO4 triggered by the GdFeO lattice
distortion connected with the cation size. In Ca2RuO4 the down-
spin electron occupies the xy-orbital in Ca2RuO4 (a), whereas
in Sr2RuO4 (b) this electron occupies a level with xz/yz orbital
degeneracy. (Reproduced from V.I. Anisimov, I.A. Nekrasov, D.E.
Kondakov, T.M. Rice, and M. Sigrist, Eur. Phys. J B 25, 2002, 191,
with permisison of EDP Sciences.)
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Figure 14. Orbital waves calculated for the alternating orbital
order ((|x〉 ± |z〉)/√2) of the 2D orbital model that represents
the ferromagnetic ab plane of LaMnO3. The solid (dashed) lines
represent results for the two orbiton modes obtained by the linear
spin-wave theory. The symbols indicate the orbital excitation
energies obtained by exact diagonalization. (Reproduced from Van
den Brink et al., 1999, with permission from the American Physical
Society.  1999.)

changes from an orbital-degenerate state into an insulating
nondegenerate state in the case of Ca2RuO4. (ii) Moreover,
the tilt of octahedra associated with the GdFeO3 distor-
tion reduces the resonance integrals. That is, the result-
ing smaller bandwidth implies stronger correlations. Thus,
in combination with the Hund coupling this explains the
Mott-insulating behavior of Ca2RuO4, as three of the four
Ru4+ electrons fill the up-spin t2g orbitals while the remain-
ing electron fills the nondegenerate down-spin state with xy
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symmetry. It should be seen that these arguments imply
that the system is in the strong correlation regime, and
the bandwidth is small compared to the relevant level
splittings. This also suggests that Sr2RuO4 is a correlated
metal. Recent high-precision angular resolved photoemis-
sion spectroscopy (ARPES) experiments measurements have
indeed confirmed that Sr2RuO4 represents a Fermi liq-
uid with a relatively strong renormalization of the Fermi
velocity due to electron–electron interactions (Ingle et al.,
2005).

The metal–insulator transition in the isoelectronic alloy
Ca2−xSrxRuO4 has been dubbed orbital-selective Mott tran-
sition (Anisimov et al., 2002). In this context, degenerate
two-band Hubbard models (with diagonal hopping) but with
different bandwidth have been explored with different tech-
niques. It was found that for different Coulomb interac-
tions there are separate Mott transitions, that is, allowing
for the coexistence of itinerant and localized electrons in
the intermediate regime (Koga, Kawakami, Rice and Sigrist,
2004, 2005; Sigrist and Troyer, 2004; Knecht, Blümer and
van Dongen, 2005; Liebsch, 2005). The detailed phase dia-
gram of Ca2−xSrxRuO4 is discussed in Nakatsuji and Maeno
(2000a,b), Friedt et al. (2001), and Anisimov et al. (2002).
Resonant X-ray diffraction experiments indicate the appear-
ance of OO in Ca2RuO4 at about 260 K, that is, well above
the AF phase transition at TN = 110 K (Zegkinoglou et al.,
2005).

2.6 Orbital excitations and collective orbital
waves

In the presence of OO we expect collective orbital excitations,
that is, like phonons in a crystalline lattice. Such orbiton
excitations may be visualized as a local orbital excitation
that propagates through the orbital-ordered lattice. While a
local crystal-field excitation also qualifies as orbiton, we have
here in mind moving excitations with pronounced momentum
dependence. We begin by considering a simple case, namely,
a two-dimensional model for the alternating OO which is rel-
evant for the A phase of LaMnO3 (Figure 10). As the planes
are basically saturated ferromagnets at zero temperature, it
suffices to consider the orbital degree freedom. Introducing
orbital operators T α

i = 1
2σα

i we obtain from equation (24)
the orbital Hamiltonian for the plane (van der Brink, Horsch,
Mack and Oleś, 1999; Ishihara, Inoue and Maekawa, 1997;
Shiina, Nishitani and Shiba, 1997)

HJ = 1

2
J

∑
〈ij〉||

×
[
T z

i T z
j + 3T x

i T x
j ∓

√
3(T x

i T z
j + T z

i T x
j )

]
(32)

where J = t2/(U − 3JH) as the high-spin transition is
relevant. We will show here that in many cases linear
spin-wave (or orbital-wave) theory is the convenient tool
to study orbital excitations. One starts by introducing Hol-
stein–Primakoff bosons

T +
i = a

†
i (1 − a

†
i ai)

1/2,

T −
i = (1 − a

†
i ai)

1/2ai, T z
i = a

†
i ai − 1

2
(33)

The linearized Hamiltonian simplifies after Fourier transfor-
mation

HLSW = J
∑

k

[
Aka

†
kak + 1

2
Bk(a

†
ka

†
−k + aka−k)

]
(34)

leading finally to the dispersion

ω±
k = 3J

√
1 ± 1

3
γ ‖(k),

γ ‖(k) = 1

2
(cos kx + cos ky) (35)

which consists of two branches, that is, analogous to the case
of spin waves in an antiferromagnet.

Different from SU(2) symmetric spin models, the orbital
correlation functions sensitively depend on the basis with
respect to which the orbital correlation functions are defined.
In Figure 15 the two correlation functions 〈T z

q T z
−q〉 and

〈T +
q T −

−q〉 are defined with respect to the initial global |z〉,
|x〉 basis equation (4). In this case the two orbiton branches
in Figure 15 are displayed separately. The results obtained
by linear spin (orbital) wave theory using the truncated
Hamiltonian, where T zT x terms have been dropped, coincide
with the exact diagonalization results for that model. The
numerical spectra for the full Hamiltionian equation (32) are
more complex, but still the first moment is well captured by
orbital-wave theory.

The alternating orbital order melts for the model defined
by equation (32) at TO ∼ J (Horsch, Jaklic and Mack, 1999;
Mack and Horsch, 1999). Figure 16 shows the evolution
of orbital excitations with temperature. At low temperature,
in the (alternating) orbital-orderered phase, the spectra are
characterized by a Bragg peak at q = (π, π) and a well-
defined orbital-wave branch. When the OO melts the orbitons
disappear and pronounced quasielasic scattering is seen over
the whole Brillouin zone and still there is a continuum of
spectral weight up to the orbiton energy. That is, there are
liquid like excitations up to the bare interaction scale ∼3J .

A calculation of orbitons in LaMnO3 with degenerate eg

orbitals was performed in (Ishihara, Inoue and Maekawa,
1997; Shiina, Nishitani and Shiba, 1997; van der Brink,



Orbital physics in transition-metal oxides: magnetism and optics 15

0 2 4 6

w/J

0 2 4 6

w/J

0

20

0

20

0

20

|<
T

z q 
T

z −q
 >

ω
(1

 −
 e

xp
(−

ω
/t

))
|

Hfull

Htrunc

Hfull

Htrunc

0

20

0

20

0

20

q = (0,0)

q = (p/2,0)

q = (p,0)

q = (p,p/2)

q = (p,p)

q = (p/2,p/2)

0

20

0

20

0

20

|<
T

+ q 
T

− − q
 >

ω
(1

 −
 e

xp
(−

ω
/t

))
|

0

20

0

20

0

20

q = (0,0)

q = (p/2,0)

q = (p,0)

q = (p,p/2)

q = (p,p)

q = (p/2,π/2)

Figure 15. Orbital excitations and spectral functions of the 2D orbital model describing the alternating orbital order (|x〉 ± |z〉)/√2 of
the ferromagnetic ab plane of LaMnO3: Comparison of spectra 〈T z
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q T −
−q〉 obtained by exact diagonalization for (i) the full

Hamiltonian (solid lines) and (ii) the truncated Hamiltonian (dashed lines), and the result (iii) from linear spin-wave theory obtained for
case (ii) (vertical lines). (Reproduced from Van den Brink et al., 1999, with permission from the American Physical Society.  1999.)

Horsch, Mack and Oleś, 1999). The effect of strong crystal-
field splitting which is relevant to the LaMnO3 case because
of the strong compression of octahedra has also been
considered (van der Brink, Horsch, Mack and Oleś, 1999).
More recently Ishihara (Ishihara, 2004; Ishihara et al., 2005)
has studied orbital waves in the orbital-ordered vanadate
compounds LaVO3 and YVO3 as well as for the titanate
YTiO3. The direct observation of orbital waves has proven
to be rather difficult, however. Insights concerning the status
of experiment may be found in Rückamp et al. (2005) and
Ishihara et al. (2005). Although LaMnO3 appears at first
glance an ideal candidate for the observation of orbitons,
the evidence of orbitons in Raman scattering (Saitoh et al.,
2001) has been discussed controversially (Grüninger et al.,
2002; Saitoh et al., 2002). In real materials, the coupling
of orbital excitations to lattice distortions (e.g., JT and
breathing phonons) may modify the orbital excitation spectra
considerably. Theoretical work in this direction has been
undertaken in Perebeinos and Allen (2000), van den Brink
(2001), Weisse and Fehske (2004), and Schmidt, Grüninger
and Uhrig.

Strongly frustrated systems like the titanates may remain
in an orbital liquid state or develop only weak OO in a

strongly fluctuating orbital system as proposed by Khal-
iullin and Maekawa (2000) and Khaliullin and Okamoto
(2002, 2003). In that case, the orbital excitation spec-
trum would resemble a (possibly gapped) continuum rather
than collective modes. The orbital liquid picture relies on
the expectation that crystal fields are sufficiently weak in
compounds like LaTiO3 so that the intrinsic frustration of
the spin-orbital model leads to strong fluctuations. Recent
Raman experiments of LaTiO3 and YTiO3 (Ulrich et al.,
2006) and NMR data (Kiyama et al., 2005) have been
indeed interpreted in terms of strongly fluctuating orbitals.
However, there are experiments which are interpreted as
evidence for strong crystal fields as well (Cwik et al.,
2003).

While the origin of orbital liquid behavior in undoped
systems is the inherent frustration of the spin-orbital SE
interaction, that is, not all bonds can be optimized simul-
taneously, the lowering of symmetry does not help either. In
that respect, the S = 1/2 cubic titanates are strikingly differ-
ent from the S = 1 vanadate compounds. We shall encounter
later in doped manganites another orbital liquid state, namely,
the FM metallic phase where orbital liquid behavior is due
the hole motion.
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2.7 Composite spin-orbital phenomena

2.7.1 Spin-orbit coupling

The intrinsic quartic terms of the form SiSjTiTj in the
generic spin-orbital model can lead to entanglement of spin
and orbital degrees of freedom. While such terms are not
difficult to handle in some cases, as we shall discuss later,
they lead in other cases to strong spin-orbital fluctuations and
a complete breakdown of any mean-field (MF) theory. We
postpone this discussion to Section 3.

Here, we shall address instead the additional coupling
between orbital and spin resulting from the relativistic spin-
orbit coupling Hλ.

Hλ = �
∑

i

Li · Sj (36)

where we introduce λ = �/J as parameter. This interaction
is quenched in the case of real OO, whereas when orbitals
fluctuate like in LaVO3 and YVO3 this interaction can
induce orbital moments (OMs) and decide over the alignment
of spins (Ulrich et al., 2002; Horsch, Khaliullin and Oleś,
2003). Hence in the t2g systems where orbital fluctuations
are strong it is important to include spin-orbit interaction as
well. Here we add Hλ simply to the spin-orbital model H,
equation (16), for vanadates. An alternative approach would
start from the multiband Hubbard model and a derivation of

SE with Hλ included from the outset, as in Schmitz et al.
(2005) for the titanates.

Owing to the GdFeO3 distortion the individual VO6

octahedra are tilted by the angle φi = ±φ, which alternate
along the c axis (Blake et al., 2001, 2002). As the xy orbital
is inactive, two components of the OM Li are quenched,
while the third one, Lz

i = 2τ
y

i parallel to the local axis of a
VO6 octahedron, couples to the spin projection. Because of
AF correlations of τ

y

i moments, spin-orbit coupling induces
a staggered spin component. As the spin interactions are FM,
weak spin-orbit coupling would give no energy gain, if the
spins were oriented along the c axis. Thus, finite � breaks the
SU(2) symmetry and favors easy magnetization axis within
the (a, b) plane. As quantization axis for Li (Si) we use
the octahedral axis. Thus the spin-orbit term is (Horsch,
Khaliullin and Oleś, 2003):

Hλ = 2�
∑

i

(
Sx

i cos φi + Sz
i sin φi

)
τ

y

i . (37)

In Schwinger boson representation τ
y

i = 1
2 i(a+

i bi − b+
i ai),

that is, this operator leads to local fluctuations of a and b

orbital occupancy, whereas SE leads to similar fluctuations
by exchanging a and b electrons between neighbor sites
along the c axis.

Spin-orbit coupling Hλ competes with Hund’s exchange (η
terms), which favors real OO, and triggers a novel phase (see
Figure 17), where the ordering of the t2g orbital moments is
stabilized by the tilting of the VO6 octahedra. This explains
qualitatively spin canting and the reduction of magnetization
observed in YVO3 (Ulrich et al., 2002; Horsch, Khaliullin
and Oleś, 2003). Moreover Hλ implies a substantial reduction
of spin-wave energies.

2.7.2 Orbital-Peierls distortion in YVO3

In a neutron scattering study, (Ulrich et al., 2002) found
evidence for a dimerization of the finite temperature C
phase in YVO3 (Figure 12) by the observation of a splitting
finite temperature magnetic C phase. This was subsequently
interpreted as evidence for orbital-Peierls distortion, as no
significant lattice dimerization was observed. That is, the
proposed mechanism is a modulation of spin exchange
constants Jc,1 and Jc,2, that is, controlled by orbital dimer
formation (Ulrich et al., 2002; Horsch, Khaliullin and Oleś,
2003; Sirker and Khaliullin, 2003).

Thus the underlying idea is, that the system can profit
from orbital dimer formation as in the OVB state. However,
one also recognizes that the C−AF phase cannot dimerize
at T = 0 because the FM (along c) state is inert, and does
not allow for any modulation in the orbital sector. Orbital
singlets need the decoupling via the magnetic sector. That is,
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spin-orbital model for cubic vanadates. The phase diagram shows
the competition of different phases as function of the Hund-coupling
constant η = JH/U and the relativistic spin-orbit coupling λ. Near
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lines and circles denote results from exact diagonalization, while
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(Reproduced from Horsch et al., 2003, with permission from the
American Physical Society.  2003.)

the spin correlations 〈Si · Sj〉 on the adjacent bonds must be
weakened by spin deviations, which may occur via thermal
fluctuations at higher temperature.

Results obtained by finite temperature diagonalization
(Horsch, Khaliullin and Oleś, 2003) show that the chain
dimerizes at finite temperatures due to the intrinsic instability
toward alternating orbital singlets (Sirker and Khaliullin,
2003). Except at low temperature, the spin correlations
〈Si · Si+1〉 (Figure 18a), alternate between strong and weak
FM bonds due to the orbital-Peierls dimerization, 2δτ =
|〈τ i · τ i+1〉 − 〈τ i · τ i−1〉|, which has a distinct maximum at
T � 0.24J for η = 0.12. Consistent with the discussion in
the preceding text, the modulation of 〈Si · Si+1〉 vanishes in
the C phase at low T .

Figure 18(b) shows the dynamical spin structure factor
S(q, ω) obtained by exact diagonalization of a cluster with
periodic boundary conditions at T = 0, assuming the same
orbital dimerization, 〈τ i · τ i+1〉, as found in the preceding
text for T /J = 0.25. At q = (0, 0, π

2 ) one finds a splitting of
the spin wave similar to experiment. The finite energy of the
q = (0, 0, 0) mode results from the �-term in equation (37)
and the MF coupling to neighbor chains. Additional features
seen in S(q, ω), for example, for q = (0, 0, π) at ω ∼ 1.25J ,
can be attributed to the coupling to orbital excitations. The
spin-wave energies can be fitted by a simple Heisenberg
model with two FM coupling constants: Jc1 = 5.7, Jc2 =
3.3 meV, and a small anisotropy term, as shown in the inset
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Figure 18. Calculated dimerization and spin-excitation spectra in
the C-AF phase at T > 0: (a) temperature dependence of spin–spin
correlations 〈Si · Si+1〉 on strong and weak FM bonds (solid and
dashed line); (b) spin response S(q, ω) in the dimerized C-AF
phase for q = (0, 0, q) with q = 0, π

2 , π . Inset: filled (open) circles
indicate strong (weak) features in S(q, ω); lines show the fitted spin-
wave dispersion for: η = 0.12, λ = 0.4. (Reproduced from Horsch
et al., 2003, with permission from the American Physical Society.
 2003.)

(solid lines). A measure for the dimerization strength is the
ratio Jc1/Jc2 ∼ 1.73 consistent with an experimental value
1.82 (Ulrich et al., 2002).

Subsequently, the quasi one-dimensional (S = 1/2) tita-
nium pyroxene compound NaTiSi2O6 was proposed to reveal
orbital dimerization, and is considered as second system
showing the high-temperature orbital-Peierls phase (Kon-
stantinović et al., 2004).

3 ONE-DIMENSIONAL SPIN-ORBITAL
MODELS

The study of one-dimensional spin-orbital models has been
an active field, stimulated by specific analytic and numeri-
cal tools. Particularly widely studied are models where it is
assumed that also the orbital sector has the full rotational
SU(2) symmetry. This has given some important deeper
insights into the features of spin-orbital models and the
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variety of phases of such models. Some instructive cases
are described, such as the interplay of orbital and spin cor-
relations in SU(4) and other spin-orbital models, spin-orbital
entanglement and the role of composite spin-orbital fluctua-
tions. One-dimensional spin-orbital models may also repre-
sent spin models on two-leg ladders with quartic interactions
(Nerseyan and Tsvelik, 1997; Koleshuk and Mikeska, 1998;
Mikeska and Koleshuk, 2004).

3.1 Spin-1/2 models

As the most prominent example, among others, the one-
dimensional spin-orbital model with SU(4) symmetry, which
describes a spin-1/2 system with twofold orbital degener-
acy, has been widely investigated (Affleck, 1986; Sutherland,
1975; Itakura and Kawakami, 1995; Yamashita, Shibata and
Ueda, 1998; Frischmuth, Mila and Troyer, 1999). A slightly
extended 1D spin-orbital model with SU(2)⊗SU(2) symme-
try and free constants A and B (Pati, Singh and Khom-
skii, 1998; Azaria, Gogolin, Lecheminant and Nersesyan,
1999; Azaria, Boulat and Lecheminant, 2000; Yamashita,
Shibata and Ueda, 2000; Tsukamoto, Kawakami, Yamashita
and Ueda, 2000; Itoi, Qin and Affleck, 2000)

H = J
∑

i

(
Si · Si+1 + A

4

) (
Ti · Ti+1 + B

4

)
(38)

has been studied in detail. Here Si is an S = 1/2 spin
operator at the ith site and Ti is a T = 1/2 pseudospin
operator acting on the doubly degenerate orbital degrees of
freedom. In particular, the ground-state phase diagram has
been established (Figure 19), which consists of a variety of
phases including gapful/gapless spin and orbital phases (Pati,
Singh and Khomskii, 1998; Azaria, Gogolin, Lecheminant
and Nersesyan, 1999; Azaria, Boulat and Lecheminant,
2000; Yamashita, Shibata and Ueda, 2000; Tsukamoto,
Kawakami, Yamashita and Ueda, 2000; Itoi, Qin and Affleck,
2000). At (A, B) = (1, 1) on the I−V phase boundary the
model has SU(4) symmetry and is Bethe ansatz integrable
(Affleck, 1986; Sutherland, 1975; Itakura and Kawakami,
1995; Yamashita, Shibata and Ueda, 1998; Frischmuth, Mila
and Troyer, 1999). The SU(4) symmetry results from the
fact that the Hamiltonian in this case consists simply of
permutation operators

(
2Si · Si+1 + 1

2

)
, which interchange

states on neighbor sites, and also includes the interchange
of orbital and spin sector. The low-energy theory is a SU(4)1

Wess–Zumino–Witten model with central charge c = 3. One
can imagine the ground state formed by spin-singlet (orbital-
triplet) pairs fluctuating into orbital-singlet (spin-triplet) pairs
and back. A particularly striking result in the SU(4) case is
the equality of the spin-, orbital-, and composite correlation
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Figure 19. Phase diagram of the S = 1/2 spin-orbital model. Phase
I is a gapful phase with doubly degenerate ground states which form
alternating spin and orbital singlets. In the phase II, the spin degrees
of freedom are in the fully polarized ferromagnetic state while the
orbitals are in the antiferromagnetic ground state and vice versa in
the phase III. Both spin and orbital degrees of freedom are in the
fully polarized ferromagnetic states in the phase IV. The phase V is
a gapless phase including an integrable SU(4) point (A = B = 1).
(Reproduced from S. Miyashita and N. Kawakami, J. Phys. Soc.
Jpn. 74, 758 (2005), with permission from the Physical Society of
Japan.)

functions (Li, Ma, Shi and Zhang, 1998; Frischmuth, Mila
and Troyer, 1999):

〈Sα
i Sα

j 〉 = 〈T α
i T α

j 〉 = 4〈Sα
i Sα

j T
β

i T
β

j 〉 = wi−j (39)

independent of the indices α, β = x, y, z. Remarkably the
nearest-neighbor correlation functions (CFs) are all negative!
For the infinite chain w1 = −0.07168(1) (Frischmuth, Mila
and Troyer, 1999). That is, our usual imagination of MF
factorization, that is, 〈Sα

i Sα
j 〉〈T α

i T α
j 〉, which suggests that, if

the individual CFs are negative, the composite CF should be
positive, fails here dramatically.

3.2 Spin-1 models

Next we consider the S = 1 extension of the 1D spin-
orbital model with uniaxial single-ion anisotropy D, which
is characterized by two coupling constants A and B related
to the spin and orbital degrees of freedom (Miyashita,
Kawaguchi, Kawakami and Khaliullin, 2004; Miyashita and
Kawakami, 2005). The Hamiltonian reads

H = J
∑

i

[
(Si · Si+1 + A)

(
Ti · Ti+1 + B

4

)]

+ D
∑

i

(
Sz

i

)2
(40)

where Si is an S = 1 spin operator at the ith site and Ti is a
T = 1/2 pseudospin operator acting on the doubly degener-
ate orbital degrees of freedom. J controls the magnitude of
the exchange couplings, which will be taken as the energy
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unit in the following discussions. The D term represents
uniaxial single-ion anisotropy, which has been discussed in
detail so far in the Haldane spin chain systems.

The model (40) is regarded as a natural extension of the 1D
S = 1/2 spin-orbital model with SU(2)⊗SU(2) symmetry,
for which the D term is absent, and A → A/4 for the spin
(S = 1/2) part. As spin S = 1 is more classical than S = 1/2
the comparison of these two models may allow to clarify the
role of spin fluctuations.

At the special point (A = B = 1 and D = 0), the sym-
metry is enhanced to SU(2)⊗SU(2). It is known that the
ground state in this case is the orbital liquid with a small spin
gap, which is called the orbital valence bond (OVB) phase
(Shen, Xie and Zhang, 2002; Horsch, Khaliullin and Oleś,
2003; Sirker and Khaliullin, 2003; Miyashita, Kawaguchi,
Kawakami and Khaliullin, 2004). The spin-orbital model
studied by Khaliullin et al for the cubic vanadates LaVO3 and
YVO3 (Khaliullin, Horsch and Oleś, 2001; Sirker and Khal-
iullin, 2003; Horsch, Khaliullin and Oleś, 2003) includes the
above special case in the limit of vanishing Hund coupling.

The asymmetry between the spin and orbital sector in the
S = 1 model is particularly manifest in the OVB state I in
Figure 20. Orbital singlets appear together with spin pairs
coupled into a S = 2 state, the AF arrangement leads to
basically decoupled pairs. Instead in phase II all spins are
aligned ferromagnetically, while the pseudospins describing
the orbitals form a T = 1/2 Heisenberg chain. It is quite
surprising, that the total energy of phase I which stems from
each second bond only can be lower than that of phase II
which has a large contribution of the 1D Heisenberg chain
on each bond. The OVB state has a small spin gap and a
large orbital gap. The phase diagram of the S = 1 and the
S = 1/2 model are quite similar, except that the phase V is
missing. Negative uniaxial single-ion anisotropy D leads to
further phases (Miyashita and Kawakami, 2005).

3.3 Spin-orbital entanglement and violation of
GK rules

Composite spin-orbital excitations and the breakdown of
mean-field (MF) theory has been studied by Oleś, Horsch,
Feiner and Khaliullin (2006) for several 1D spin-orbital
models. Spins and orbitals get entangled due to composite
spin-orbital quantum fluctuations and the familiar static
GK rules are violated to the extent that even the signs
of the magnetic interactions may fluctuate in time. To
demonstrate this general feature in the most transparent way,
three different spin-orbital models are considered: Correlated
insulators with 180◦ perovskite bonds between d1, d2, and
d9 ionic configurations, respectively, where the GK rules
(Section 2.5) definitely predict complementary signs of spin
and orbital intersite correlations. The first two models are
derived for t2g electrons as in LaTiO3 (d1) and LaVO3 (d2),
and it is demonstrated that the GK rules are violated at
small Hund coupling. The third model is for eg holes as in
KCuF3 (d9), in which the GK rules are perfectly obeyed. The
qualitative difference results from the quantum nature of t2g

orbitals which may form singlets, while eg orbitals behave
more Ising-like and orbital singlets cannot form. The SE

H = J
∑
〈ij〉‖c

[(
Si · Sj + S2

)
Ĵ

(c)
ij + K̂

(c)
ij

]
+ Horb (41)

contains interactions like (S+
i T −

i )(S−
j T +

j ) + (S−
i T +

i )

(S+
j T −

j ), which generate simultaneous fluctuations of spins
and orbitals described by the composite operators Q+

i ≡
S+

i T −
i , and so on. At finite Hund coupling η = HH/U both

Ĵ
(c)
ij (d1) and Ĵ

(c)
ij (d2) (see Section 2.4.1) also contain

Ti ⊗ Tj = 1
2

(
T +

i T +
j + T −

i T −
j

) + T z
i T z

j (42)
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Figure 20. Phase diagram of the 1D S = 1 spin-orbital model in the A − B plane without uniaxial single-ion anisotropy. The phase I is the
OVB phase (see text). In the phase II, the spin part is in the fully polarized state while the orbital part forms the gapless antiferromagnetic
T = 1/2 Heisenberg chain. On the other hand, in the phase III, the orbital sector is in the ferromagnetic phase while the spin sector is in the
S = 1 Haldane phase. Spins and pseudospins are in the fully polarized ferromagnetic states in the phase IV. All the transitions are of first
order. (Reproduced from S. Miyashita and N. Kawakami, J. Phys. Soc. Jpn. 74, 758 (2005), with permission from the Physical Society.)
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This operator appears because double occupancy of either
active (yz or zx) orbital is not an eigenstate of the on-site
Coulomb interaction. Consequently, the total T and T z quan-
tum numbers are not conserved and orbital fluctuations are
amplified. Finally, GdFeO3-type distortions induce nearest-
neighbor orbital interactions Horb = −V

∑
〈ij〉 T z

i T z
j favor-

ing FO order along the c axis (Mizokawa, Khomskii and
Sawatzky, 1999).

It has been shown that a clear measure of entanglement is
provided by the comparison of the intersite spin-, orbital-,
and composite spin-orbital correlations. These have been
calculated for the above spin-orbital models. To make the
results comparable in all cases, the following definitions were
chosen:

Sij = 〈Si · Sj 〉/(2S)2 (43)

for the spin correlations. The orbital and spin-orbital corre-
lations are defined for the t2g (d1 and d2) models as

T
(t)
ij = 〈

Ti · Tj

〉
, (44)

C
(t)
ij = [〈

(Si · Sj )(Ti · Tj )
〉 − 〈

Si · Sj

〉〈
Ti · Tj

〉]
/(2S)2 (45)

If the composite correlation function C
(t)
ij = 0, orbitals and

spins are disentangled and the two sectors can be factorized.
Alternative measures of spin-orbital entanglement are possi-
ble, for example, (Chen, Wang, Li and Zhang, 2006) have
used a reduced von Neumann entropy to explore the phase
diagram of a spin-orbital chain with SU(2) ⊗ SU(2) symme-
try. For the eg (d9) model the conventions are analogous,
for details see Oleś, Horsch, Feiner and Khaliullin (2006). In
Figure 21(a) relevant for the d1 titanates one finds at η = 0
the SO (4) point where all correlation functions are negative.
This exotic phase stops at ηS = 0.1 where the spin correla-
tion get FM and the correlation function Cij that measures the
entanglement becomes exactly zero. The anomalous behav-
ior of CF’s exists also in Figure 21(b) relevant for the S = 1
vanadates. If FM OO is enforced by the GdFeO3-type dis-
tortion as in Figure 21(d) the entangled regime is reduced to
intermediate values for ηS.

Particularly remarkable is a comparison of spin corre-
lations in Figure 21 and the magnetic exchange constants
Jij = 〈Ĵ (c)

ij 〉 (Figure 22) determined via a MF factorization
of orbital and spin sector. In Figure 22 the shaded regions in
case of t2g models show negative (FM) exchange constant,
whereas the actual spin correlations are AF!

Summarizing, in correlated insulators with partly filled t2g

shells, orbitals, and spins are entangled, and average spin
and orbital correlations are typically in conflict with the
(static) GK rules. The key difference between eg and t2g

electrons is that the latter can form orbital singlets. Thus the
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Figure 21. Intersite spin Sij (filled circles), orbital T
(t,e)
ij (empty

circles), and composite spin-orbital C
(t,e)
ij (crosses) correlations as

functions of Hund’s exchange ηS, for V = 0 (left) and for V = J

(right) for: (a,d) d1 (titanate) model, (b,e) d2 (vanadate) model, and
(c,f) d9 (cuprate) model. (Reproduced from Oles et al., 2006, with
permission from the American Physical Society.  2006.)

dynamical spin and orbital correlations are complementary to
each other, and fluctuate between orbital-singlet/spin-triplet
and orbital-triplet/spin-singlet configurations. This implies
the fluctuation of the sign of the spin exchange constants
Jij , as can be seen from equation (17).

4 SUPEREXCHANGE, MAGNETISM, AND
OPTICS

Although this field is already quite mature, it has been real-
ized only recently that the magnetic and the optical proper-
ties of correlated insulators with partly filled d orbitals are
intimately related to each other, being just different exper-
imental manifestations of the same underlying spin-orbital
physics (Oleś, Khaliullin, Horsch and Feiner, 2005; Khali-
ullin, Horsch and Oleś, 2004; Lee, Kim and Noh, 2005). On
the other hand, it has been well known that the often dra-
matic temperature dependence of optical spectra is connected
to magnetic structure (Miyasaka, Okimoto and Tokura, 2002)
and that the variation of spectral weights is controlled by
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Figure 22. Spin exchange constants Jij = 〈Ĵ (c)
ij 〉 at V = 0 (left)

and at V = J (right) as functions of Hund’s exchange ηS for (a),
(d) d1 model; (b), (e) d2 model; (c), (f) d9 model. In the shaded
regions in (a), (b), (d), (e), Jij is negative (FM) and yet the spin
correlations are AF, Sij < 0 (see Figure 21). (Reproduced from Oles
et al., 2006, with permission from the American Physical Society.
 2006.)

the temperature dependence of the nearest-neighbor spin-
correlation functions 〈Si · Sj 〉, that is, by SE energy (Aich-
horn, Horsch, von der Linden and Cuoco, 2002). Although it
is clear that the low-energy effective SE Hamiltonian decides
about the magnetic interactions, it is not immediately obvi-
ous that the high-energy optical excitations and their partial
sum rules have the same roots and may be described by the
SE as well.

The new concept of partial spectral weights makes it
necessary to reanalyze the spin-orbital SE models to obtain
the partial optical sum rules. In a further subsection, the
three-dimensional spin-orbital model for the cubic vanadate
compound LaVO3 is solved approximately to illustrate the
interdependence of spin and orbital correlations as well as
the emergence of highly anisotropic optical spectral weights.

4.1 Partial optical sum rules and magnetism

The d-d charge excitations that are seen in optics reflect the
rich multiplet structure of transition-metal ions determined by
Hund’s exchange coupling JH. The same multiplet transitions
that reflect the spin and orbital degrees of freedom determine

the SE interactions (Kugel and Khomskii, 1982a; Kugel
and Khomskii, 1982b). When spin and orbital correlations
change, for example, as function of temperature or magnetic
field, the individual components of the optical multiplet
reflect characteristic spectral weight transfer. Moreover, the
cubic symmetry may be broken by orbital and spin order,
and thus one expects anisotropic optical absorption. Indeed,
pronounced anisotropy was reported for LaMnO3 (Tobe,
Kimura, Ohimoto and Tokura, 2001), both for the A-type AF
phase (A-type (C-type) AF phase consists of ferromagnetic
planes (chains) with AF order between them) as well as
for the orbital-ordered phase above the Néel temperature
TN. Recently, the anisotropy in optical absorption and its
strong temperature dependence near the magnetic transitions
were found for cubic vanadates (Miyasaka, Okimoto and
Tokura, 2002; Tsvetkov et al., 2004; Motome, Seo, Fang and
Nagaosa, 2003). This latter example is even more puzzling as
the magnetic properties are anomalous (Mahajan, Johnston,
Torgeson and Borsa, 1992; Noguchi et al., 2000). Neutron
scattering (Ulrich et al., 2003) and Raman experiments
(Miyasaka et al., ) have revealed nontrivial quasi one-
dimensional (1D) correlations of spin and orbital degrees
of freedom that are surprising for crystals with nearly cubic
crystal structure. Indeed, a theory of spin and orbital states in
cubic vanadates predicted that quasi-1D orbital fluctuations
lead to a spontaneous breaking of the cubic symmetry in the
SE model (Khaliullin, Horsch and Oleś, 2001).

The SE interaction in a cubic Mott insulator with orbital
degrees of freedom has the generic form,

HJ = Hs + Hτ + Hsτ =
∑

n

∑
〈ij〉‖γ

H (γ )
n (ij) (46)

and consists of separate spin (Hs) and orbital (Hτ ) inter-
actions, and of a dynamical coupling between them (Hsτ ).
This complex form of HJ, given by equation (46), follows
from the terms H

(γ )
n (ij) for each bond 〈ij〉 along a given

cubic axis γ = a, b, c, that arise from the transitions to var-
ious upper Hubbard bands labeled by n. The partial optical
sum rules for the different multiplet transitions n and photon
polarization γ are determined by the respective terms of the
SE energy (Khaliullin, Horsch and Oleś, 2004):

a0�
2

e2

∫ ∞

0
σ (γ )

n (ω)dω = −π

2
K(γ )

n = −π
〈
H(γ )

n (ij)
〉

(47)

Here the tight-binding model is implied and a0 is the distance
between magnetic ions.

〈
H

(γ )
n (ij)

〉
is the SE energy for a

bond 〈ij〉 along axis γ and multiplet transition n. The first
equality in equation (47) follows from the optical sum rule
for a given transition n, and relates the kinetic energy K

(γ )
n

to the optical conductivity σ
(γ )
n (ω) for this band, while the
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second equality relates the associated kinetic energy to the
SE energy via the Hellman–Feynman theorem (Baeriswyl,
Carmelo and Luther, 1986).

Experimental data is often presented in terms of an
effective carrier number (see, e.g., equation (2) of (Miyasaka,
Okimoto and Tokura, 2002)), N

(γ )

eff,n = (2m0v0/πe2)
∫ ∞

0 σ
(γ )
n

(ω)dω, where m0 is the free electron mass, and v0 = a3
0 is

the volume per magnetic ion. This gives the partial optical
sum rules in the following form (Khaliullin, Horsch and Oleś,
2004):

N
(γ )

eff,n = −m0a
2
0

�2
K(γ )

n = −m0a
2
0

�2

〈
2H(γ )

n (ij)
〉

(48)

Each level n of the multiplet represents an upper Hubbard
band with its own spin and orbital quantum numbers. The key
point is that while the full kinetic energy and the correspond-
ing total intensity may show only moderate T dependence
and weak anisotropy, the behavior of the individual transi-
tions is much richer. In particular, spectral weight transfers
between different multiplet transitions directly reflect the
change of spin and orbital correlations.

To conclude this section, we note that strong spin-orbital
fluctuations imply large virtual kinetic energy, which is
measured by the partial spectral weights. Hence by careful
quantitative study of optical spectra, their anisotropy and
temperature dependence it should be possible to decide
whether orbitals fluctuate strongly or whether they are
quenched by crystal fields or JT distortions.

4.2 Optical anisotropy and partial sum rules in
cubic vanadates

In Mott insulators with orbital degeneracy the orbital occu-
pation and correlation functions determine the interaction
between spins, while the resulting spin correlations influ-
ence the interaction between orbitals. We have seen that in
some cases quantum fluctuations decide about the resulting
order, the lowering of dimensionality, and so forth. In the
following, this interrelation and the implications for the par-
tial optical spectral weights will be described for one case
in more detail. In Section 2.4, we have already discussed
the spin-orbital Hamiltonain, equation (16), for LaVO3. Our
main task here is to separate this expression into the individ-
ual contributions arising from the different multiplet transi-
tions. These individual terms contain precisely the required
information for the partial spectral weights of the different
optical excitations (see Figure 3). In case of vanadates, one
has three optical bands n = 1, 2, 3 arising from the transi-
tions to: (i) a high-spin state 4A2 at energy U − 3JH, (ii) two
degenerate low-spin states 2T1 and 2E at U , and (iii) 2T2 low-
spin state at U + 2JH (Khaliullin, Horsch and Oleś, 2001).

Using η = JH/U , the multiplet structure is parameterized by:
R = 1/(1 − 3η) and r = 1/(1 + 2η). In LaVO3 xy orbitals
are singly occupied (Mahajan, Johnston, Torgeson and Borsa,
1992; Noguchi et al., 2000). Hence the cubic symmetry is
broken and one obtains a high-spin contribution for bonds
〈ij〉 along c axis:

H
(c)
1 = −1

3
JR

∑
〈ij〉

(
Si ·Sj + 2

)(1

4
− τ i ·τ j

)
(49)

while H
(ab)
1 = − 1

6JR
∑

〈ij〉(Si ·Sj + 2)( 1
4 − τ z

i τ
z
j ) for (a, b)

planes. In equation (49) pseudospin operators τ i describe
low-energy dynamics of (initially degenerate) xz and yz

orbital doublet at site i; this dynamics is quenched in H
(ab)
1 .

The operator 1
3 (Si ·Sj +2) is the projection operator on the

high-spin state for S = 1 spins.
The terms H

(c)
n (ij) for low-spin excitations (n = 2, 3) con-

tain instead the spin operator (1 − Si ·Sj ) (which guarantees
that these terms vanish for fully polarized spins on a consid-
ered bond, 〈Si · Sj 〉 = 1):

H
(c)
2 = − 1

12
J
(

1 − Si · Sj

)(7

4
− τ z

i τ
z
j − τ x

i τ
x
j + 5τ

y

i τ
y

j

)

H
(c)
3 = −1

4
J r

(
1 − Si · Sj

)

×
(1

4
+ τ z

i τ
z
j + τ x

i τ
x
j − τ

y

i τ
y

j

)
(50)

For the application of the partial sum rules, equation
(48), we need to know the temperature dependence of
the different spin and orbital correlation functions. One
approach is a Bethe–Peierls MF approximation for the spin
and orbital bond correlations which are determined self-
consistently after decoupling them from each other in HJ

(46). Within such a MF treatment composite spin-orbital
(quartic) interaction terms can be included perturbatively
(Khaliullin, Horsch and Oleś, 2004). Spin correlations follow
by solution of the effective spin Hamiltonian:

Hs = J s
ab

∑
〈ij〉ab

Si ·Sj − J s
c

∑
〈ij〉c

Si ·Sj (51)

where the exchange integrals along c and a(b) directions:

J s
c = 1

2
J

[
ηR − (R − ηR − ηr)

(
1

4
+ 〈τ i ·τ j 〉

)

− 2ηr〈τ y

i τ
y

j 〉
]

J s
ab = 1

4
J

[
1 − ηR − ηr + (R − ηR − ηr)

×
(

1

4
+ 〈τ z

i τ
z
j 〉

)]
(52)
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are determined by the corresponding nearest-neighbor orbital
correlation functions! Note that J s

c turns out FM because of
singlet fluctuations in the orbital sector (a minus sign in front
of J s

c has been included in equation (51)).
The orbital correlation functions are determined by the

orbital Hamiltonian which is given as:

Hτ =
∑
〈ij〉c

[
J τ

c τ i ·τ j − J (1 − sc)ηrτ
y

i τ
y

j

]

+ J τ
ab

∑
〈ij〉ab

τ z
i τ

z
j (53)

with exchange integrals:

J τ
c = 1

2
J
[
(1 + sc)R + (1 − sc)η(R + r)

]

J τ
ab = 1

4
J
[
(1 − sab)R + (1 + sab)η(R + r)

]
(54)

depending on spin correlations: sc = 〈Si ·Sj 〉c and sab =
−〈Si ·Sj 〉ab.

In addition to spin-orbital SE HJ (46), orbitally degenerate
systems are sensitive to lattice distortions which may lift
orbital degeneracy, like, for example, in the case of the
JT effect. In the present vanadate case, the effect of such
couplings on the degenerate a and b orbitals can be expressed
by the following term (Khaliullin, Horsch and Oleś, 2001):

HV = Vab

∑
〈ij〉ab

τ z
i τ

z
j − Vc

∑
〈ij〉c

τ z
i τ

z
j (55)

where the interactions Vab > 0 originate from the coupling
of nearest-neighbor t2g orbitals in (a, b) planes to the bond
stretching oxygen vibrations in corner-shared perovskite
structure. They generate antidistortive oxygen displacements
and staggered OO (supporting SE), whereas the Vc > 0 term
due to the GdFeO3-type distortion (Mizokawa, Khomskii
and Sawatzky, 1999) favors FO alignment along c axis, and
thus competes with SE. The complete model H = HJ + HV

represents a nontrivial many-body problem. Interactions are
highly frustrated, leading to strong competition between
different spin and orbital states.

It is evident that the calculations need to be done self-
consistently. Figure 23 shows the high anisotropy in the
orbital sector in the magnetic C phase of LaVO3, that is,
below TN/J = 0.4. The quasi-1D behavior documented by
the large exchange constant J τ

c implies strong orbital-singlet
fluctuations along the c direction supported by the FM
correlations along c in the spin sector. Note that the magnetic
structure is 3D, yet highly anisotropic. In particular, the FM
J s

c and the AF J s
ab are of comparable size. The large value

of the FM exchange coupling is due to the orbital-singlet
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Figure 23. Exchange constants as functions of T along c (a/b)
axis: (a) orbital J τ

γ (54), and (b) spin J s
γ (52). Parameters: η = 0.12,

Vc = 0.9J , Vab = 0.2J , TN = 0.4J . (Reproduced from Khaliullin
et al., 2004, with permission from the American Physical Society.
 2004.)

fluctuations along c direction. Although the GK rules would
also predict FM interaction along c in this case, the large
value of the FM coupling J s

c is unexpected.
Figure 24 shows the temperature dependence of the partial

sum rules for the individual multiplet transitions. Because
of the FM spin correlations along c in the C phase of
LaVO3 basically all weight is in the high-spin transition
n = 1 below the Neél temperature TN, whereas above TN

weight is transferred to the low-spin transitions n = 2, 3
reflecting the onset of paramagnetic behavior, consistent with
experimental data. Because of antiferromagnetism in the ab

plane the trends for a(b) polarizations are reversed. At low
temperature the main weight is in the low-spin channels,
while there is almost no weight in the high-spin channel.
This leads to the extreme anisotropy seen in the experimental
data (see Figure 1).

Thus the basic experimental findings in the optical spectra
of LaVO3, (Miyasaka, Okimoto and Tokura, 2002) such as:
(i) pronounced temperature dependence of c axis intensity
(changing by a factor of 2 below 300 K), (ii) large anisotropy
between the optical spectral weights along c and a/b axis
(both below and above TN), are qualitatively reproduced by
this theory (see Figure 24). This strongly supports the picture
of quantum orbital chains in the C-AF phase of vanadates.

The basic requirement for the study of partial spectral
weights is the subdivision of the spin-orbital SE Hamilto-
nian into its multiplet contributions. Apart from the cubic
vanadates (Khaliullin, Horsch and Oleś, 2004), this has been
done in Oleś, Khaliullin, Horsch and Feiner (2005) for
KCuF3, LaMnO3, and the cubic titanates. Ellipsometry data
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Figure 24. Partial kinetic energies K
(γ )
n /2J (solid lines) and total

kinetic energy (dashed lines) calculated for LaVO3: (a) c axis and
(b) ab-plane polarization. Parameters as in Figure 23. Experimental
data (squares) for high-spin transition taken from Miyasaka, Oki-
moto and Tokura (2002). (Reproduced from Khaliullin et al., 2004,
with permission from the American Physical Society.  2004.)

of LaMnO3 was analyzed by (Kovaleva et al., 2004) using
partial sum rules.

5 DOPED MANGANITES: INTERPLAY OF
ORBITAL, SPIN, AND CHARGE

5.1 Phase diagram of manganites and
double-exchange mechanism

The early history of transport properties of doped manganites
starts with the pioneering work of Jonker and van San-
ten (1950). They observed that the manganite compounds
La1−xAxMnO3 (A = Sr, Ca, Ba) become around x = 0.3
FM and good metallic conductors, while they are antifer-
romagnets and insulators at low doping. The origin of the
appearance of ferromagnetism upon doping holes was the
central question in the early 1950s. It was answered by
Zener (1951) who proposed the so-called double-exchange
mechanism. Because of a large Hund coupling JH the eg

electron spin of Mn3+ prefers the high-spin state, that is, to
be aligned with the S = 3/2 spin of the t2g core electrons
(see Figure 25). In the case of doping the eg electron of a
Mn3+ ion can move on a Mn4+ site. However, to reach again
the low-energy (high-spin) state, the t2g spin on the neigh-
bor site should be parallel, whereas for antiparallel alignment
hopping is suppressed. Zener did not consider the eg orbital
degeneracy at the Mn3+ ion. The name DE stems from the
fact that the hopping t between Mn3+ to Mn4+ involves two

t

eg

t2g

Sc = 3/2Mn4+ Mn3+ Mn4+

JH

Figure 25. The large Hund coupling JH forces the eg electron spin
parallel to the core spin Sc = 3/2 formed by the three t2g electrons.
The kinetic energy of itinerant eg electrons favors parallel alignment
of spins. This so-called double-exchange mechanism is the source
of the ferromagnetic metallic phase in manganites at intermediate
doping and low temperature.

scattering processes, namely, the creation of a hole in the
occupied p orbital of the intermediate oxygen ligand ion and
its subsequent annihilation. Thereby the Mn3+ and Mn4+

ions are interchanged.
The quantum treatment of DE usually starts from the FM

KLM (Kubo and Ohata, 1972):

H = −t
∑
〈i,j〉σ

d†
iσ djσ − JH

∑
iσσ ′

Sc
i · d†

iσσ σσ ′diσ ′

+ JAF

∑
〈i,j〉

Sc
i Sc

j (56)

The model consists of the kinetic energy and the FM Hund
coupling. To reflect the tendency toward antiferromagnetism
in the undoped case here an AF interaction between core
spins is included. The interplay of global AF interactions (on
all bonds) and local FM alignment induced by the motion of
an eg electron via the DE mechanism is a subtle problem.
In the high-temperature phase magnetism is controlled by
FM polarons which move in the paramagnetic background
(Varma, 1996; Horsch, Jaklic and Mack, 1999; Koller, Prüll,
Evertz and von der Linden, 2003). The magnetic moment
and size of the FM polarons increases with decreasing
temperature until the system undergoes the phase transition
into the FM phase.

In the paramagnetic phase charge carriers polarize the
t2g spins in their neighborhood to optimize their kinetic
energy. The total spin of the polaron and its temperature
dependence can be estimated using a FM spin-polaron pic-
ture (Varma, 1996; Horsch, Jaklic and Mack, 1999). The
spin polaron is determined by the number P of ferromag-
netically aligned spins around the hole which allows the
particle to improve its kinetic energy in the paramagnetic
system. The gain of kinetic energy is counterbalanced by
the loss of spin entropy due to the coupling of P spins
S2, which can no longer rotate independently. An estimate
for the change of free energy is δF (P ) = at/P η + PkBT

ln(2S2 + 1). The kinetic energy exponent η = 2/3, 1, 2 in
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three, two, and one dimensions, respectively, and S2 = 2 for
Mn3+. Minimization with respect to P gives the size of the
spin polaron and its temperature dependence (Horsch, Jaklic
and Mack, 1999):

P (T ) =
(

ηat

BkBT

)1/(1+η)

(57)

with B = ln(2S2 + 1). The number P (T ) of aligned S2 spins
that form the FM polaron depends in a nonlinear fashion
on the inverse temperature. This can be used further to
calculate the temperature dependence of the susceptibility in
the paramagnetic phase – in good agreement with numerical
simulations (Horsch, Jaklic and Mack, 1999; Yi, Hur and Yu,
2000).

Thus at sufficiently low temperature the motion of charge
carriers overcomes the spin entropy and leads to a full
alignment of spins, that is to a paramagnetic to FM transition,
where the Curie temperature TC is expected to scale with
doping. This scaling of TC can be seen in the phase diagrams
for La1−xAxMnO3 (A = Sr, Ca) and Nd1−xSrxMnO3 shown
in Figure 26. One unsatisfactory aspect of the (orbital
nondegenerate) KLM is the high symmetry of the phase
diagram with respect to doping, that is, TC ∼ x(1 − x) for
JAF = 0 (Horsch, Jaklic and Mack, 1999).

Often the t2g spins are treated as classical spins, then the
effective hopping of eg electrons can be expressed in terms
of the angles �i of the core spins and a phase �i (Müller-
Hartmann and Dagotto, 1996):

tij /t = cos

(
�i

2

)
cos

(
�j

2

)

+ sin

(
�i

2

)
sin

(
�j

2

)
exp

[
i(�i − �j)

]
(58)

The phase variable is of quantum-mechanical origin and may
have important consequences. Nevertheless, frequently the
absolute value tij = t cos(�ij /2) of the above expression
is used. This model is usually called the double-exchange
model and depends only on the relative angle �ij between
the t2g spins (Anderson and Hasegawa, 1955). Recently it
has been shown that Zener’s model of ferromagnetism is
also at work in dilute FM semiconductors like Ga1−xMnxAs
and Zn1−xMnxTe, and even allows to estimate relatively
reliable values for the Curie temperature TC (Dietl et al.,
2000). Ferromagnetism in dilute magnetic semiconductors
depends on the existence of delocalized carriers or shallow
impurity states that couple to the spins at the transition-metal
site. Systems derived from wide-gap compounds like ZnO
are considered particularly promising as candidates for spin-
optoelectronic devices (Xu et al., 2006).

5.2 Colossal magnetoresistance and optics

The observation of large magnetoresistance (von Helmolt
et al., 1993; Jin et al., 1994) �R/R = (Rh − R0)/Rh (Rh

is the resistance in a magnetic field) in a number of man-
ganite compounds stimulated research in orbital degenerate
systems greatly. The name colossal magnetoresistance was
proposed by Jin et al. (1994) who investigated thin films of
La1−xCaxMnO3. The data by Tomioka, Asamitsu and Tokura
(2000) displayed in Figure 27 shows the dramatic drop of the
resistivity ρ(T ) in La0.7Ca0.3MnO3 by 2 orders of magnitude.
The gradual onset of magnetization at higher temperatures in
finite magnetic fields leads to pronounced changes of ρ(T ).

An important characteristic feature of CMR is the activated
behavior of ρ(T ) above the Curie temperature TC, that is, in
the paramagnetic phase. In the phase diagram, Figure 26, this
regime is denoted as paramagnetic insulating (PI) phase in
contrast to the paramagnetic metallic (PM) phase. CMR is
intrinsically connected with the appearance of the PI phase.

The activated behavior of ρ(T ) in the PI phase has proven
as central theoretical challenge. A short list of possible
theoretical explanations includes: (i) Localization due to spin
disorder in paramagnetic phase (Varma, 1996), (ii) small
lattice polaron formation due to strong JT coupling (but
neglect of correlations) (Millis, Littlewood and Shraiman,
1995), (iii) polaron-bipolaron mechanism (Alexandrov and
Bratkovsky, 1999), (iv) localization due to charge disorder
(Allub and Alascio, 1997), (v) nanoscale phase separation in
metallic and insulating domains (Mayr et al., 2001; Burgy,
Dagotto and Mayr, 2003), (vi) spin disorder and orbital-
polaron formation (Kilian and Khaliullin, 1999).

The localization due to spin disorder alone can be ruled
out as mechanism for the strong activated behavior of ρ(T ).
Calculations of the LKM using quantum spins do not give
evidence of significant activated behavior. Nevertheless, spin
disorder is crucial as it reduces the kinetic energy in the
paramagnetic phase and thereby supports polaron formation
and the tendency toward localization in combination with
other mechanisms as in (ii), (iii), and (vi). Important further
experimental constraints follow from the behavior of the
optical conductivity as we shall see next.

The variation of the optical conductivity σ(ω) in mangan-
ites as function of doping and temperature is rather complex
and is only partially understood. Here, we confine the discus-
sion on the remarkable behavior of σ(ω) in the FM metallic
phase and the PI phase, that is the doping range relevant
for CMR. Naively one would expect that the FM polar-
ized phase shows simple Drude behavior as spin disorder
and fluctuations are frozen out, and only scattering from
defects and phonons remain in a homogeneous system. Yet,
the optical experiments show a completely different behav-
ior, which was first reported by Okimoto et al. (1995, 1997)
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magnetic fields for y = 0 (La0.7Ca0.3MnO3) and y = 1 (La0.7

Sr0.3MnO3) as an example of a bandwidth-controlled system. The
y = 0 compound shows the typical CMR behavior, that is, low
resistivity in the ferromagnetic phase and high resistivity together
with activated behavior in the paramagnetic insulating (PI) phase.
The anomalously large MR or CMR at y = 0 changes into a weaker
MR behavior at y = 1. (Reproduced from Tonioko et al., 2000, with
permission from the American Physical Society.  2000.)

and Saitoh, Asamitsu, Okimoto and Tokura (2000) for the
La1−xSrxMnO3 compound.

Figure 28 shows the typical temperature dependence of
the optical conductivity σ(ω) in the CMR doping regime.
We note here four key features: (i) The gradual increase of

absorption σ(ω) in the range ω < 0.5 − 1.0 eV with decreas-
ing temperature! That is, in the FM polarized phase this
anomalous absorption is particularly large; (ii) this continuum
appears to be gapless; (iii) evolution of a narrow Drude peak
at low temperatures with strongly suppressed spectral weight
(width ∼20 − 30 meV, see inset of Figure 28b); (iv) At high
temperature, that is, in the PI phase, the optical conductivity
develops a pseudogap σ(ω) ∼ ω up to about 1 eV.

This behavior clearly demonstrates, that the change of
transport properties is connected with changes of the exci-
tation spectra on the 1-eV scale, for example, distinct from
quasielastic impurity scattering. In particular, the activated
behavior of ρ(T ) in the PI phase is connected with pseudo-
gap formation (iv).

5.3 Orbital t –J model and orbital liquid

The peculiar behavior of the optical conductivity in the uni-
form FM phase at low temperature, namely, the simultaneous
observation of a very narrow Drude absorption and a broad
incoherent background of ∼1 eV width, finds a natural expla-
nation in the orbital degree of freedom.

Orbital fluctuations in the FM state and their effect on the
optical conductivity were studied first by Ishihara, Yamanaka
and Nagaosa (1997) who arrived at the conclusion that the
quasi-2D nature of orbital fluctuations leads to an orbital
liquid in 3D cubic systems. Orbital disorder was treated in a
static approximation. Because of this assumption there is no
Drude component in the theoretical description of Ishihara,
Yamanaka and Nagaosa (1997). Subsequently within a zero
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Figure 28. Temperature dependence of optical conductivity σ(ω) in the CMR regime of various compounds: Data of (Kim, Jung and Noh,
1998) for La0.7Ca0.3MnO3 shows the typical behavior of σ(ω) in the CMR regime. (a) There is a strong spectral weight transfer on the
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(c) Data of Quijada et al. (1998) for La0.7Sr0.3MnO3, La0.7Ca0.3MnO3 and Nd0.7Sr0.3MnO3 amplifies that this behavior is universal. Notice
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σ(ω) ∼ ω right above the Curie temperature over a wide energy range (0.5–1 eV)!

temperature slave boson approach Kilian and Khaliullin
(1998) could show that there are both features (i) the highly
incoherent spectrum due to the scattering of charge carriers
from orbital fluctuations and (ii) a Drude peak with strongly
reduced spectral weight.

The relevant (and most simple) model for the fully spin-
polarized state is the orbital t − J model, which consists of
the SE interaction between orbitals and the kinetic energy of
holes Hkin. Actually it turns out that for typical values for
the exchange interaction at moderate doping (xt >> J ) the
kinetic energy and the constraint dominate the behavior. The
orbital t − J model is defined as:

HotJ = −
∑
〈ij〉γ

(
t
αβ

ij d̃
†
iαd̃jβ + H.c.

)

+ J
∑
〈ij〉γ

(
τ

γ

i τ
γ

j − 1

4
ninj

)
(59)

with the constraint that each site can only be occupied by at

most one (eg) electron, that is, d̃
†
iα = d†

iα(1 − niα), α denotes
the orthogonal eg orbital with respect to α, and γ = x, y, z.
The orbital SE is defined by pseudospin operators τ

x/y

i =
− 1

4 (σ z ± √
3σx), τ z

i = 1
2σ z, with Pauli matrices σ

x/z

i acting
on the orbital subspace. The orientation of the basis orbitals
{|x〉, |z〉} = {x2 − y2, 3z2 − r2} is reflected in the transfer
matrices that describe the hopping in the (a, b) plane and
along the c axis, respectively.

t
αβ

ij ||a(b) = t

4

(
3 ∓√

3
∓√

3 1

)
t
αβ

ij ||c = t

(
0 0
0 1

)
(60)

Here ∓ distinguish hopping along a and b directions.
This model resembles the t − J model which gives the

description of hole motion in quantum antiferromagnets, that
is one of the standard models for the high-TC cuprates. Here
the orbital index replaces the spin index in the t − J model,
and importantly the hopping has off-diagonal elements.
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The o − t − J and the t − J model have in common the
large incoherent absorption (with energy scale given by the
free bandwidth) and the coherent motion of dressed charge
carriers leading to a Drude absorption. A crucial difference
of the two models is observed in 2D where the doped
t − J model is in a spin-liquid state, whereas due to the
off-diagonal hopping elements the o– t –J model selects a
long-range ordered state with x2 − y2 OO that maximizes
the kinetic energy in the 2D xy plane. The difference lies
in the cubic and SU(2) symmetry of orbitals and spins,
respectively. In the 3D cubic orbital t –J model, however,
orbitals prefer a liquid state as x2 − y2, x2 − z2, and y2 − z2

orbital correlations are equally possible, and the system is
highly frustrated. Yet also the broken symmetry state with
x2 − y2 order appears in the manganite phase diagram as
poor metallic highly doped A phase (Mack and Horsch,
1999).

The temperature dependence of the optical conductivity
in the orbital t − J model has been studied using finite
temperature Lanczos method (Horsch, Jaklic and Mack,
1999). The frequency dependent conductivity σ 0(ω) consists
of two parts:

σ 0(ω) = 2πe2Dcδ(ω) + σ(ω) (61)

namely, the regular finite frequency absorption σ(ω) and a
δ-function contribution which is proportional to the charge
stiffness Dc (Kohn, 1964; Shastry and Sutherland, 1990). The
latter vanishes in insulators. This contribution is broadened
into a usual Drude peak in the presence of other scattering
processes like impurities which are not contained in the
present model. The finite frequency absorption (or regular
part) σ(ω) is determined by the current–current correlation
function using the Kubo formula

σ(ω) = 1 − e−ω/T

Nω
Re

∫ ∞

0
dteiωt 〈jx(t)jx〉 (62)

where the x component of the current operator is proportional
to the electron charge e and the x component of the hopping
vector u

jx = −ie
∑

j,u,ab

tab
j+ujux d̃

†
j+ua d̃jb (63)

The increase of the anomalous absorption with decreasing
temperature is quite natural as it reflects the increase kinetic
energy of the orbital t–J model with decreasing T (Horsch,
Jaklic and Mack, 1999), and is dictated by the optical sum
rule (Baeriswyl, Carmelo and Luther, 1986). (This form of
the sum rule applies for nn-hopping, for a more general case

(see Aichhorn, Horsch, von der Linden and Cuoco, 2002):

∫ ∞

−∞
σ 0(ω)dω = −πe2

N
〈Hxx

kin〉 (64)

here xx indicates that only hopping processes along x

contribute. It is important to notice that the dominant
coupling between charge and orbital degrees of freedom
is the kinetic energy Hkin, therefore the half-width ω1/2 ∼
3t is related to the bandwidth (Figure 29). For a cubic
lattice ρ0 = �a/e2. If we consider La1−xSrxMnO3 with
lattice constant a = 5.5 Å and �/e2 = 4.11 K� we obtain
ρ0 = 0.23 · 10−3 �cm. Interestingly in combination with the
sum rule the kinetic energy determines the maximal size
of the incoherent absorption (given the energy scale of the
continuum) and is consistent with typical experimental data
(Horsch, Jaklic and Mack, 1999). The only unknown quantity
is the broadening � of the δ function. In the inset of Figure 29
a value � ∼ 20 meV taken from experiment (Okimoto et al.,
1995) was used, and in combination with the calculated
charge stiffness Dc this leads to consistent values for the
DC conductivity. The scattering processes that determine �

(and the DC conductivity) are extrinsic with respect to the
electronic model (59). That is, � is due to impurities, grain
boundaries, and at high temperatures also due to scattering
with phonons.

Thus, the very peculiar features of the optical conductivity
in the uniform FM regime can be naturally explained by
orbital degeneracy. On the other hand, typical lattice polaron
models require large electron phonon coupling g and large
polaron binding energy to generate incoherent absorption
up to ∼1 eV (Hartinger et al., 2004; Puchkov et al., 1995).
However, in such a strong coupling regime no narrow Drude
absorption does exist simultaneously (Reik and Heese, 1967).

5.4 Orbital-degenerate Kondo lattice model

For the study of the interplay of charge, orbital, and spin
degree freedom in doped manganites a natural starting point
is the orbital-degenerate KLM (Horsch, Jaklic and Mack,
1999; Mack and Horsch, 1999). As in the nondegenerate
KLM, equation (56), the Mn eg electrons are coupled ferro-
magnetically to the t2g core spins via the Hund coupling JH:

HKLM = −
∑

〈ij〉αβ,σ

(
t
αβ

ij d̃
†
iασ d̃jβσ + H.c.

)

− JH

∑
〈ij 〉ασσ ′

Si · d̃
†
iασσ σσ ′ d̃iασ ′ (65)

where the kinetic energy matrix is defined as in equation
(60) and the creation operators respect the constraint that
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Figure 29. Temperature dependence of optical absorption σ(ω) in the orbital liquid phase. The results obtained for the orbital t − J model
at 20% doping show the characteristic increase of absorption with decreasing temperature and the gapless nature of the spectrum. Inset
shows the appearance of a narrow Drude peak in σ 0(ω) at low temperature. Typical value for energy scale t ∼ 0.3 eV. (Reproduced from
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allows only Mn4+ and Mn3+ configurations, that is, d̃
†
iασ =

d†
iασ (1 − niασ )

∏
σ ′(1 − niασ ′), and all other alternative eg

states are projected out. The total Hamiltonian

H = HKLM + H ′ (66)

usually contains additional relevant interactions that are
summarized in H ′ and whose importance on the electronic
properties may depend on the doping regime. Examples are
the AF interaction between core spins, Coulomb interaction
supporting charge ordering near quarter filling, or effective
orbital interactions that simulate cooperative JT interactions.

For example, the tendency toward alternating charge order
as in (a, b) plane of undoped or weakly doped LaMnO3

may be expressed by a nearest-neighbor orbital interaction
HOO. There are two different mechanisms contributing to
the OO interaction: (i) the cooperative JT effect (Feiner
and Oleś, 1999) and (ii) SE interactions (Horsch, Jaklic and
Mack, 1999; van der Brink, Horsch, Mack and Oleś, 1999).
Neglecting more complex spin-orbital terms (Ishihara, Inoue
and Maekawa, 1997; Shiina, Nishitani and Shiba, 1997;
Feiner and Oleś, 1999) both effects can be described by van
der Brink, Horsch, Mack and Oleś (1999)

HOO = 2κ
∑
〈ij 〉

Tij (67)

where the two-site orbital operator, Tij , between nearest-
neighbor Mn sites in the {|x〉, |z〉} basis has the form,

Tij = T z
i T z

j + 3T x
i T x

j ∓
√

3(T x
i T z

j + T z
i T x

j ) (68)

T z
i and T x

i are described in terms of pseudospin operators:

T +
i = ∑

σ d̃
†
ixσ d̃izσ , and T −

i = ∑
σ d̃

†
izσ d̃ixσ . The sign of the

mixed term ∝ √
3 depends on orbital phases and is negative

in the a direction and positive in the b direction.
As in the orbital nondegenerate case further simplifica-

tion can be achieved by introducing classical t2g spins. This
allows for the combination of (finite temperature) Monte
Carlo simulation of the classical t2g spins with exact diago-
nalization of the orbital many-body problem (Dagotto, 2003;
Daghofer, Oleś, Neuber and von der Linden, 2006).

5.5 Orbital polarons and colossal
magnetoresistance

A very important mechanism, that actually can trigger the
CMR behavior as well as the appearance of the ferromagnetic
insulating (FI) phase, is the orbital polarization around the
charge carrier (hole) as proposed by Kilian and Khaliullin
(1999),

H 3D
� = −1

2
�

∑
γ

∑
〈ij〉‖γ

(1 − ni)τ
γ

j (69)

where γ = a, b, c refers to different lattice directions and
the pseudospin operators in the {|x〉, |z〉} orbital basis are
defined as:

τ
a(b)
j = −1

2

(
T z

j ∓
√

3T x
j

)
, τ c

j = T z
j (70)
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Figure 30. Orbital polaron in the strong coupling limit, where six
eg orbitals point toward the doped hole. This mechanism leads to
heavy quasiparticles and eventually to localization. (Reproduced
from Kilian & Khaliullin, 1999, with permission from the American
Physical Society.  1999.)

The interaction (69) splits locally the eg states giving
preference for the directional orbitals pointing toward an
empty neighboring site as shown in Figure 30. Two main
mechanisms for this level splitting were proposed: (i) the
displacements of oxygen ions around an empty site; (ii)
the Coulomb attraction between a hole and electrons on
neighboring sites.

Various aspects of orbital polarons have been already
investigated (Kilian and Khaliullin, 1999), here we briefly
address the effects on optical conductivity and resistivity.The
characteristic activated behavior of resisitivity ρ(T ) in the
paramagnetic phase, and its dramatic decrease in the FM
phase, follows in a natural way as a combined effect of
orbital-polaron formation and spin disorder. Figure 31 shows
results for σ(ω) and the resistivity obtained by the finite
temperature Lanzcos method. The activated behavior of ρ(T )

is reflected by the evolution of a pseudogap in σ(ω).
We note, that the orbital polaron also describes the

transition from the FM metallic into FI phase at low doping
(see Figure 26). This is not immediately obvious as insulating
implies that carriers do not move, whereas ferromagnetism
via DE requires carrier motion! The resolution of this puzzle
is straightforward (Kilian and Khaliullin, 1999), the coherent
mass of the orbital polaron increases with reduced doping,
such that the polaron can get bound by impurities or even
form an orbital polaron lattice (at 1/8 filling) (Mizokawa,
Khomskii and Sawatzky, 2000). Yet the internal motion of
the hole inside the orbital polaron persists, that is the DE
mechanism is still active and supports ferromagnetism.

Orbital polarization and its coupling to the lattice exists in
the FM and the paramagnetic phase, but its effect is increased
due to spin disorder in the paramagnetic regime. Thus leading
to the activated behavior in the PI phase.The interplay of
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the units with ρ0 = e2/�d ∼ 0.2 × 10−3 (�cm) and ρ−1

0 , respec-
tively.

orbital-polaron dynamics and phonons is seen, for example,
in the neutron scattering data of (Argyriou et al., 2002) for
the double layer compound La2−2xSr1+2xMn2O7, (x = 0.38),
which shows a strongly coupled transverse optical phonon
below the Curie temperature TC but not above.

The properties of composite polarons are subtle as different
mechanisms and energy scales are involved in renormaliza-
tion of the charge carriers which may support or compete
with each other. Other examples are the spin-lattice polarons
(Ramšak, Horsch and Fulde, 1992; Mishenko and Nagaosa,
2004; Rösch et al., 2005; Prelovšek, Zeyher and Horsch,
2006) in high-TC compounds and spin-orbital polarons in
layered cobaltates (Daghofer, Horsch and Khaliullin, 2006).

5.6 Spin waves in the double-exchange regime

In the uniform FM phase the spin-wave stiffness is deter-
mined by the kinetic energy, that is, in contrast to magnons
in undoped compounds that are controlled by SE. One of the
successes of DE theory was the derivation of the FM magnon
dispersion ωq from the (single orbital) KLM (Kubo and
Ohata, 1972; Furukawa, 1996). The resulting dispersion cor-
responds to an isotropic, nearest-neighbor Heisenberg model.
This prediction is well satisfied for manganites with large
Curie temperature TC like, for example, La0.7Pb0.3MnO3



Orbital physics in transition-metal oxides: magnetism and optics 31

0 0.25 0.5

(0,0,x)

50

100

150

E
ne

rg
y 

(m
eV

)

0 0.25 0.5

(x,x,0)

0 0.25 0.5

(x,x,x)

Figure 32. (a) Magnon dispersion of Pr0.63Sr0.37MnO3 along three
principal directions (circles) (Hwang et al., 1998); ξ = 0.5 corre-
sponds to the cubic Brillouin zone boundary; (b) mean-field disper-
sion corresponding to nearest-neighbor Heisenberg form (dashed
lines); (c) Solid lines, theoretical results including charge, orbital,
and lattices effects. (Reproduced from Khalliliun & Kilian, 2000,
with permission from the American Physical Society.  2000.)

(Furukawa, 1996). Yet in compounds with small TC strong
deviations from n.n. Heisenberg behavior were observed at
large momentum transfer (see Figure 32).

We focus next on the role of the orbital fluctuations by con-
sidering the kinetic energy of the orbital-degenerate model
(Khaliullin and Kilian, 2000; Oleś and Feiner, 2002). At
small magnon numbers, that is, at low temperatures T � TC,
the kinetic energy operator in equation (65) can be mapped
onto the following expression (Khaliullin and Kilian, 2000):

Ht = −
∑
〈ij〉γ

∑
αβ

tαβ
γ ĉ

†
iαĉjβ

×
[3

4
+ 1

4S2

(
Sz

i S
z
j + S−

i S+
j

) ]
+ H.c. (71)

Equation (71) highlights an important point: The strength
of DE bonds is a fluctuating complex quantity. Only when
treating the orbital and charge sectors on average, that is,
when replacing the bond operators ĉ

†
iαĉiβ by their MF value

〈ĉ†
iαĉiβ〉, an effective Heisenberg model as in a conventional

MF treatment of DE is obtained: H = JDE
∑

〈ij〉 SiSj with
the exchange constant dependent on the orbital and charge
degrees of freedom:

JDE = 1

2S2

∑
αβ

tαβ
γ 〈ĉ†

iαĉjβ〉 (72)

This determines the magnon energies ωq = 2zSJDEνq , with
νq = (2 − cos qx − cos qy)/4 in 2D, or νq = (3 − cos qx −
cos qy − cos qz)/6 in 3D. Note that the isotropy of the spin
Hamiltonian results from the orbital liquid state, where no
direction is preferred.

Next we discuss the modification of the MF picture due
to the fluctuations in the bond amplitude. The exchange JDE

is actually not a ‘constant’ but is varying with time. The FM
interaction is connected with the hopping process of an eg

electron along a bond. In the case of orbital degeneracy such
hopping processes are controlled by the orbital dynamics,
that is, by the actual orientation of orbitals that fluctuate
in time. As long as the energy scale of orbital fluctuations
is large compared to the magnon scale JDE, the magnon
spectrum is basically unchanged, and given by time averages
which restore the cubic symmetry. On the other hand, if
orbitals fluctuate slower than spins or on the same timescale,
the anisotropy and the damping of spin waves emerges.
Figure 32 shows data from calculations of (Khaliullin and
Kilian, 2000). In these calculations, in addition to charge
and orbital fluctuations also the presence of JT phonons is
considered.

5.7 Ordered and insulating phases prevail

The electronic properties of manganites R1−xAxMn O3

are gradually changing from the wide band materials like
(R = La, A = Sr) to the narrow band systems (La, Ca)
and (Pr, Ca) as documented in Figure 33. The bandwidth
is controlled by the ionic size of the cations R and A,
respectively. Small cations lead to large GdFeO3 type
distortion (tilt of MnO6 octahedra) with a large deviation
of the Mn–O–Mn angle from 180◦, which reduces the
effective hopping between the Mn ions (Imada, Fujimori
and Tokura, 1998). In the narrow band case the metallic
(uniform FM) regime is confined to a narrow doping range,
and new insulating phases emerge like the CE phase at and
near x = 0.5 doping. The name of this phase is due to
Goodenough (1955). It is remarkable that in the Orbital-
degenerate manganites basically all phases are insulating,
with the exception of the uniform FM phase. The A phase
near x = 0.5 is a poor 2D metallic conductor. This is in
striking contrast to the high-TC cuprates where eg orbital
degeneracy is lifted by ∼1 eV and basically only at low
doping insulating behavior is found.

The large variation of physical properties of manganites as
function of doping or temperature originates from a complex
interplay of spin, orbital, and charge degrees of freedom, as
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perovskites displaying the strong dependence on the bandwidth, that
is, bandwidth increases from bottom to top. Here F denotes the
FM state, while A, CE, C, and G denote antiferromagnetic states
of A type, CE type, and G type, respectively. CxE1−x represents
an incommensurate charge-/orbital-ordered state. (Reproduced from
Kajimoto et al., 2002, with permission from the American Physical
Society.  2002.)

well as the interaction with the lattice (Tokura and Nagaosa,
2000; Tokura, 2003). An important example for the control
of magnetic order due to the orbital degree of freedom is
the checkerboard charge-ordered CE phase at quarter filling
which we address here briefly. In the CE-phase FM zigzag
chains are staggered antiferromagnetically and the occupied
eg orbitals at the Mn3+ sites are oriented along the FM bonds
in the (a, b) planes (Goodenough, 1955) (Figure 34a,b). The
CE structure reflects the cooperative action of AF SE and FM
DE. Because of the AF correlations between FM chains, the
carrier motion is basically confined to the FM chains. This
consideration has stimulated the study of one-dimensional
models for the CE phase (van den Brink, Khaliullin and
Khomskii, 1999).

Yet it has been argued that these interactions alone do
not guarantee the stability of the CE phase (Khomskii and
Kugel, 2003; Calderon, Millis and Ahn, 2003; Bała, Horsch
and Mack, 2004) and longer distant elastic strain and/or JT
interactions are essential for the stability of the CE-OO.
This claim is actually supported by the fact that CE-type
orbital correlations have also been observed in the absence
of antiferromagnetism, namely, in the FM metallic phase of
Nd1/2Sr1/2MnO3 (Geck et al., 2002). The JT distortion of
the O ions and the resulting shift of the position of the Mn4+

ions shown in Figure 34(c) leads to a further neighbor JT
coupling which supports CE-OO (Bała, Horsch and Mack,
2004; Bala and Horsch, 2005). The AF-CE phase was
observed in cubic (Nd,Pr)1/2(Sr,Ca)1/2MnO3 (Tokura and
Nagaosa, 2000) and in layered La1/2Sr3/2MnO4 (Sternlieb
et al., 1996; Murakami et al., 1998), LaSr2Mn2O7 (Kubota
et al., 1999) manganites. An alternative proposal for the

(c)(a) (b)

Figure 34. Spin-, orbital-, and charge structure of CE phase.
(a) Shows the spin and charge order, where small (large)
arrows indicate spin S = 3/2(2) of Mn4+ (Mn3+), respectively.
(b) Orbital order consistent with the ferromagnetic zigzag chains.
(c) Jahn–Teller distortion of the Mn3+ octahedra. (Reproduced
from Bala & Horsch, 2005, with permission from the American
Physical Society.  2005.)

x = 0.5 structure, the Zener polaron picture, where the eg

electrons are centered on bonds (Daoud-Aladine et al., 1955;
Efremov, van den Brink and Khomskii, 2004) rather than
cite centered as in the CE structure, was not confirmed by
experiment (Senff et al., 2006). An important feature of the
CE phase is a large optical gap and a broad absorption
maximum at 1–2 eV shifting toward lower frequencies with
increasing temperature (Ishikawa, Ookera and Tokura, 1999;
Jung et al., 2000; Kim et al., 2002). Remarkably a similar
spectral shift is observed in photoexcitation experiments,
which reveal ultrafast response times of such Mott-insulating
structures (Tokura, 2003; Ogasawara et al., 2002).

It is evident that a real understanding of this or other
phases is only achieved if not only the calculated magnetic
and orbital structure is right but also the calculated excita-
tion spectra are consistent with experiment. This statement is
particularly important when several degrees of freedom act
together like in the manganites and complex phase diagrams
appear. For example insulating systems with CE structures
like Pr1/2Ca1/2MnO3 or Nd1/2Ca1/2MnO3 show an insula-
tor to metal transition connected with the collapse of the
electronic gap of ∼1 eV in high magnetic fields (Tokura and
Nagaosa, 2000). Similar transitions occur in the related Sr
compounds at smaller magnetic fields of about 5 T. This
suggests that by varying the spin structure the orbital and
charge order collapses.

Figure 35 shows the calculated optical conductivity for
the CE phase as function of temperature. The calculation was
performed by finite temperature diagonalization starting from
the KLM HKLM with degenerate orbitals and residual interac-
tions H ′ which include (i) the AF interaction between core
spins, (ii) a nearest-neighbor Coulomb repulsion V which
favors checkerboard charge order at quarter filling, and (iii)
a second neighbor JT interaction κ ′ (Bala and Horsch, 2005).

There are still many open questions, for example, con-
cerning the charge modulation of phases beyond x = 0.5.
Even concerning the strength of charge modulations, that
is, weak or strong, there is frequently disagreement among
different theoretical approaches and also between different
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experimental techniques. Although the definition of the
effective charge on an atom or ion is not that well defined, it
is worrying that such seemingly simple questions cannot be
better resolved. Electron diffraction studies of La1−xCaxMn
O3 at doping concentrations x = 0.52, 0.58, 0.67 are com-
patible with a weak charge density wave modulation rather
than strong charge order with discommensurations (Loudon
et al., 2005). Thus these investigations suggest weak charge
lattice coupling. Weak implies here, that modulations are not
to be understood as stripes, that is, soliton-like discommen-
surations.

6 SUMMARY AND OUTLOOK

Through orbital, spin, and charge degrees of freedom strongly
correlated electrons acquire an immense flexibility toward
pattern formation. This is reflected in the complex phase
diagrams of TMO families. Spin-orbital models that are
derived from SE interactions describe the subtle interplay
between spin and orbitals in TMO have been presented as
useful theoretical approach. Spin-orbital models have only
few parameters, the exchange constant J , the Hund-coupling
parameter η = JH/U , the spin-orbit coupling λ and the JT
coupling, for example. In any case a small number compared
to multiband Hubbard models. Spin-orbital models allow to
calculate orbital and spin ordering, spin excitations – that
can be compared with data obtained by neutron scattering

or other experiments. Surprisingly, these models also allow
to calculate the absolute value of optical spectral weights of
multiplet transitions in the electron volt regime. The temper-
ature dependence of the optical weights closely reflects the
variation of orbital and magnetic structure. Thus this provides
a useful link between magnetic and optical experiments.

The complex electronic properties of TMO can be tuned
by various means, for example, by magnetic field, by pres-
sure, by internal pressure, that is chemically via the cation
sizes. Charge-ordered states with large energy gap can by
switched into conducting states by applying moderate mag-
netic fields. A new playing ground is opened by nanoscale
multilayer interfaces of correlated materials (Okamoto and
Millis, 2004). Careful control of orbital structure at inter-
faces between two materials can generate novel physical
phenomena and functionalities, that are not a property of
the constituent materials themselves. Examples are bilayers
of Mott and band-insulating materials yielding a metallic
interface (Ohmoto and Hwang, 2004). Other possibilities
are combination of CMR manganite and high- TC supercon-
ducting materials (Soltan, Albrecht and Habermeier, 2004;
Chakhalian et al., 2006).

There are a number of developments that could not be
covered here either because of limited space or because
they have been discussed recently elsewhere in detail. This
list includes, for example, magnetic field and photo-induced
phase transitions in charge- and orbital-ordered systems
(Tokura and Nagaosa, 2000), colossal electroresistance in
perovskite oxides (Beck et al., 2000; Liu, Wu and Ignatiev,
2000), multiferroic behavior (Kimura et al., 2003; Efremov,
van den Brink and Khomskii, 2004; Khomskii, 2006), the
magnetoelectric effect (Fiebig, 2005; Katsura, Nagaosa and
Balatsky, 2005; Arima et al., 2006).

The steady experimental progress in this field will continue
to represent a strong stimulation to theory. The full theo-
retical problem, namely, the description of the interplay of
spin, orbital, charge, and lattice degrees of freedom remains
a challenge for improved and new simulation techniques.
Analytical techniques dealing with these strongly correlated
systems need to be developed further in the future and tested
against numerical simulation. Last but not least, even the
spin-orbital models describing the undoped systems represent
a great challenge for theorists. One example is the orbital-
Peierls dimerization. Spin-orbital models show more subtle
behavior than the Heisenberg and Ising models that have
been invented about 80 years ago, and have been explored
ever since.
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Oleś, A.M., Horsch, P., Feiner, L.F. and Khaliullin, G. (2006). Spin-
orbital entanglement and violation of the Goodenough-Kanamori
rules. Physical Review Letters, 96, 147205.
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1 INTRODUCTION

In the middle of the 19th century, it was found that linearly
polarized light gets elliptically polarized when it is transmit-
ted through a magnetized sample (Faraday, 1846). This was
obviously the first clear demonstration that the spectroscopic
properties of a solid depend on its magnetic properties. Later
on, several other magneto-optical effects have been discov-
ered, such as the Kerr, Zeeman, Voigt, or Cotton–Moutton
effect (Reim and Schoenes, 1990), that can be exploited to
monitor the magnetic state of a sample. This applies in par-
ticular to the magneto-optical Kerr effect (MOKE), which
is extensively used for the recording of magnetic hysteresis
loops, imaging of magnetic domains (Hubert and Schäfer,
1998), or in sensor and storage technology (Mansuripur,
1995). The various magneto-optical effects were originally
observed in the energy regime of conventional optics. How-
ever, the availability of tunable synchrotron radiation of
high intensity and well-defined polarization allowed the
exploration of magneto-optical effects in the X-ray regime

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

also (Beaurepaire, Scheurer, Krill and Kappler, 2001). Apart
from the mentioned effects (Mertins et al., 2000), the most
prominent phenomena are the magnetic linear dichroism in
X-ray absorption (XMLD) (van der Laan et al., 1986) and
magnetic circular dichroism in X-ray absorption (XMCD)
(Schütz et al., 1987; Wende, 2004), the magnetic dichro-
ism in X-ray fluorescence (Strange, Durham and Györffy,
1991), and the nonresonant and resonant magnetic scattering
(Namikawa, Ando, Nakajima and Kawata, 1985; Gibbs et al.,
1988; Lovesey, 1993). In addition, one has to mention the
various dichroic effects in core-level (Baumgarten et al.,
1990; Roth, Hillebrecht, Rose and Kisker, 1993) and valence-
band (Kuch and Schneider, 2001) photoemission. Similar to
the MOKE, dichroic effects in the X-ray regime can also be
used to probe the magnetization of a sample. Because X-ray
absorption and core-level photoemission imply the excita-
tion of tightly bound core electrons, these spectroscopies
supply the basis for element-specific hysteresis loop record-
ing (Chen et al., 1993) and magneto-microscopy (Schneider
et al., 1993; Eimüller et al., 2001).

Magneto-optical and dichroic effects in spectroscopy not
only allow one to image the magnetization of a sample or
to follow its variation with time (Ghiringhelli et al., 2001)
but also supply a very important probe for their electronic
structure. For the MOKE, it was shown around 1930 that
it is caused by an interplay of magnetization and spin-orbit
coupling (Hulme, 1932). This would later on be confirmed by
detailed calculations based on an ab initio description of the
electronic structure (Wang and Callaway, 1974; Oppeneer,
Maurer, Sticht and Kübler, 1992). The mechanism leading
to the MOKE was expected to give rise also to the XMCD
(Erskine and Stern, 1975). Again, this would be confirmed
by calculations that accounted for magnetism and spin-orbit
coupling at the same time (Ebert, Strange and Györffy,
1988). In addition, it would be shown that XMCD spectra
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essentially reflect the spin and orbital polarization (OP) of
the electronic states above the Fermi level. This finding led
to the sum rules that supply a formal basis for deducing from
XMCD spectra an estimate for the spin and orbital magnetic
moment of the absorbing atoms (Thole, Carra, Sette and van
der Laan, 1992; Carra, Thole, Altarelli and Wang, 1993).
Accordingly, recording the anisotropy of the XMCD signal
gives information on the anisotropy of the orbital magnetic
moment. Because of the interrelation of the latter and the
magnetic anisotropy energy, �Eaniso (Bruno, 1989), one gets
a spectroscopic access to �Eaniso (Stöhr, 1999). Owing to
these outstanding features, the XMCD became a valuable tool
to study the properties of a great variety of magnetic solids.

Angle-resolved valence-band photoemission spectroscopy
allows one to probe the electronic structure of a solid in a
most detailed way (Kevan, 1992). Spin-resolved experiments
on magnetic solids, in addition, give access to the dispersion
relation E(�k) of the two spin subsystems separately, that
can be studied for example, as a function of temperature
(Kisker, Schröder, Campagna and Gudat, 1984). The obser-
vation of various forms of dichroism, however, showed that
such a decomposition is not strictly possible. Corresponding
experimental and theoretical investigations demonstrated that
spin- and angle-resolved valence-band photoemission spec-
troscopies – in contrast to all other spectroscopies – allow
probing of the hybridization of states with different spin char-
acter in a rather direct and detailed way (Feder and Henk,
1996).

Among the various spectroscopies mentioned in the pre-
ceding text, the MOKE, the magnetic dichroism in X-ray
absorption, and valence-band photoemission will be dealt
with in this contribution as important and representative
examples. For all three cases, the theoretical basis for a cal-
culation and discussion of the corresponding spectra will be
presented together with some examples. In the next section,
it will be demonstrated by some simple arguments that the
various magneto-optical and dichroic phenomena to be dis-
cussed are caused by an interplay of exchange splitting and
spin-orbit coupling. For this reason, a brief overview on the
techniques used to perform corresponding electronic struc-
ture calculations to supply an adequate basis for a quantita-
tive study of the various phenomena is given in addition.

2 THEORETICAL FRAMEWORK

2.1 The importance of spin-orbit coupling for
spectroscopy

Many spectroscopic properties of solids can be discussed
on the basis of their optical conductivity tensor σ (ω),
whose shape reflects the symmetry of its crystal structure

(Kleiner, 1966). In the case of a magnetic solid, the magnetic
ordering reduces its symmetry compared to the nonmagnetic
state, because any symmetry operation not only has to be
conform with the crystal structure but also has to leave
the magnetization �M unchanged. For cubic systems for
example, the effective symmetry is tetragonal, trigonal,
or orthorhombic, respectively, depending on whether the
magnetization is aligned along the [001], the [111], or the
[110] axis (Cracknell, 1969). As a consequence, there are
less restrictions for the shape of σ (ω) leading for example,
for the first and last cases to:

σ [001] =

 σ xx σ xy 0

−σ xy σ xx 0
0 0 σ zz


 and

σ [110] =

 σ xx σ xy σ xz

σ xy σ xx −σ xz

−σ xz σ xz σ zz


 (1)

instead of the diagonal degenerate form in the case of a
nonmagnetic cubic solid.

It is important to note that the reduction in symmetry
due to the magnetization that is reflected by the preceding
equations occurs only if spin-orbit coupling is present. If
one could switch off spin-orbit coupling for a spin-polarized
system, its properties would not depend on the orientation of
the magnetization anymore, and, for this reason, its symmetry
would be that of the corresponding nonmagnetic state. Thus,
it is the magnetization together with spin-orbit coupling
that leads to a symmetry reduction as compared to the
nonmagnetic case. Accordingly, many important magneto-
optical phenomena occur only because of the simultaneous
presence of magnetic ordering and spin-orbit coupling. For
a shape of the optical conductivity tensor σ (ω) according
to the upper part of of equation (1) for example, one can
trace back the magneto-optical Faraday and Kerr effect in the
optical regime to the occurrence of the off-diagonal element
σ xy. Expressing the X-ray absorption coefficient in terms
of the absorptive parts of the elements of σ (ω), one finds
that magnetic circular dichroism, that is, the difference in
absorption for left- and right-circularly polarized light, is
again due to σ xy. Magnetic linear dichroism (MLD), on
the other hand, is caused by the difference in σ xx and σ zz.
Similar symmetry considerations have to be made when
dealing with photoemission experiments also. To achieve a
full understanding of all observed phenomena, not only the
spin-orbit coupling but also the influence of the surface on
the symmetry of the system has to be accounted for (Feder
and Henk, 1996).

The importance of spin-orbit coupling for the spectroscopy
of magnetic solids can also be demonstrated in an alternative
way by the excitation scheme shown in Figure 1. Here initial
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Figure 1. Absorption cross section for left-circularly polarized
light represented by the line thickness, for transitions within
a system with initial p and final s and d states. The various
magnetic sublevels are indexed by the corresponding magnetic
quantum number µ. The light and dark bars above and below the
excitation scheme represent the expectation values 〈χ�|σ z|χ�′ 〉 and
〈χ�|lz|χ�′ 〉, that is, they are a measure for the spin and orbital
magnetic moments, µspin and µorb, respectively, of these sublevels.

p and final s and d states that are split owing to the spin-
orbit coupling into j = l ± 1/2 levels and resolved according
to the magnetic quantum number µ with µ = −j, . . . , +j

are considered. Using the angular matrix elements for the
absorption of left-circularly polarized light (see following
text), one arrives at an absorption cross section that strongly
depends on the involved initial and final states. In the case
of GaAs, one can identify the initial p states with the top
of the valence band, while the final s states correspond to
the bottom of the conduction band. Because of spin-orbit
coupling of the p states, one has only p3/2 →s1/2 transitions
at the absorption threshold. Owing to the µ dependence of
the absorption cross section, the s states with µ = −1/2 are
dominantly populated leading to a spin polarization of the
photoelectron current with P = −50%. As long as the energy
of the various levels does not depend on the sign of µ, the
polarization is just reversed when the helicity of the light is
reversed. This observation of spin-polarized photoelectrons
from a nonmagnetic sample owing to the use of circularly
polarized light is called Fano effect (Fano, 1969).

Interchanging the role of initial and final states in Figure 1
and identifying the s states with the 1s core shell and the
final states with unoccupied p-like band states of a solid
correspond to K-edge X-ray absorption. In this case, one

finds that a finite orbital angular momentum is obtained for
the final states occupied by absorption of circularly polarized
light. Again the sign of the orbital angular momentum is
reversed if the helicity is reversed. Shifting the various
spin-orbit split levels in Figure 1, one has the excitation
scheme for L2,3-edge X-ray absorption spectra. Here one
finds that the final states carry a spin and an orbital angular
momentum that also change their sign upon reversing the
helicity of the light. However, if the magnetic ordering
destroys the remaining degeneracy with respect to µ, this
symmetry disappears. In particular, one finds a magnetic
circular dichroism (MCD) that reflects – depending on the
involved transitions – the spin and OP of the final states.

These qualitative considerations show that spin-orbit cou-
pling not only influences the spectroscopic properties of
solids by its impact on the energy levels but also gives rise
to new phenomena. Particularly for magnetic solids, this is
the basis for many spectroscopies that allow one to monitor
and probe their magnetic properties.

2.2 Electronic structure calculations

From the preceding considerations it is obvious that a full
understanding of the spectroscopic properties of magnetic
solids on a microscopic level can be achieved only by
a description of the underlying electronic structure that
accounts for magnetic ordering and spin-orbit coupling at
the same time. For this purpose, either a localized or an
itinerant point of view is taken depending on which is more
appropriate for the system considered.

In the latter case one may assume, in addition, that spin
magnetism dominates, implying that spin density functional
theory (SDFT) or, in practice, the local spin density approx-
imation (LSDA) supplies a satisfying framework for cor-
responding electronic structure calculations. To account for
relativistic effects, it is quite common to incorporate, as a
first step, only the appropriate scalar-relativistic corrections
into the radial Kohn–Sham equations (Koelling and Harmon,
1977). These modifications, which represent the Darwin and
mass–velocity terms, obviously do not involve the electronic
spin. For that reason, they do not affect the symmetry of the
system, allowing each subspin system to be treated sepa-
rately. The spin-orbit coupling term (Rose, 1961):

HSOC = �

4m2c2

1

r

dV

dr

1

2
�σ · �l (2)

on the other hand, mixes the two subsystems leading to
pronounced changes in the electronic structure.

As a direct consequence, one finds that spin is no more
a good quantum number; that is, the expectation value
〈ψj �k|σ z|ψj �k〉 for σ z, with |ψj �k〉 being a Bloch state, is
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not restricted to ±1 but may take any value in between.
In particular, the spin character may change continuously
from majority to minority or vice versa when going along
an electron band Ej �k. (An example for this can be found
in Figure 8.) Another consequence of spin-orbit coupling is
that the orbital angular momentum is no more quenched; that
is, the finite expectation value 〈ψj �k|lz|ψj �k〉 leads to a spin-
orbit-induced orbital magnetic moment. Finally, it should be
noted that the electronic band structure Ej �k depends on the

orientation of the magnetization �M reflecting the magneto-
crystalline anisotropy.

Using a conventional band structure scheme that is based
on the variational principle, the corresponding basis func-
tions are, in general, calculated on a scalar-relativistic level.
Spin-orbit coupling is then accounted for within the vari-
ational step; that is, the spin-orbit coupling matrix evalu-
ated using equation (2) and the basis functions are added to
the LSDA-based Hamiltonian (Callaway and Wang, 1973).
Alternatively, one first solves the LSDA-based band structure
problem and then includes the effect of spin-orbit coupling in
a second variational step for those states one is interested in
(Singh, 1994). Using the Korringa-Kohn-Rostoker (KKR) or
multiple-scattering approach instead of a variational method,
spin-orbit coupling has to be included when calculating the
basis functions (Koelling and Harmon, 1977; MacLaren and
Victora, 1994).

All approaches mentioned so far have the common feature
that they account for relativistic effects by appropriate cor-
rections to an electronic system dealt on the basis of nonrel-
ativistic SDFT. Accordingly, the underlying two-component
basis functions and, with this, all derived electronic prop-
erties are classified by the conventional quantum numbers
l, ml and ms . On the other hand, a scheme that treats spin
magnetism and all relativistic effects on the same footing is
achieved by starting from the Dirac equation set up within
the framework of relativistic SDFT (Rajagopal and Callaway,
1973; MacDonald and Vosko, 1979):

[
c

i
�α · �∇ + c2

2
(β − I ) + VH(�r)

+V xc(�r) + β �σ · �B(�r)
]

φi(�r, E) = E φi(�r, E) (3)

with αi and β being the standard Dirac matrices and VH(�r),
the Hartree potential. The exchange correlation potential
consists of a spin-averaged (V xc) and a spin-dependent
( �B) part.

Because of the spin-dependent part �B of the potential,
the four-component solutions to equation (3) for an isolated
potential well have no unique spin-angular character, but
have to be constructed as a superposition (Feder, Rosicky and

Ackermann, 1983; Strange, Staunton and Györffy, 1984):

φi(�r, E) =
∑
�

(
g�i(r, E) χ�(r̂)

if�i(r, E) χ−�(r̂)

)
(4)

Here g�(r, E) and f�(r, E) are the major as below and
minor radial wave functions, respectively, and χ�(r̂) are
the spin-angular functions of the relativistic spin-orbit and
magnetic quantum numbers κ and µ, respectively, (� =
(κ, µ); −� = (−κ, µ)) (Rose, 1961). Equation (4) implies
that the degeneracy of the radial wave functions with respect
to the quantum number µ is removed. In addition, for
each linearly independent solution i to equation (3) not
only a set of radial equations for g�(r, E) and f�(r, E)

has to be solved but instead one also has to deal with an
extended set of coupled radial equations depending on the
quantum numbers and the geometrical shape of the potential
(Huhne et al., 1998). The technical problems caused by
basis functions with the form given by equation (4) can be
avoided by calculating in a first step the basis functions from
equation (3) without the spin-dependent potential Vspin(�r).
Using a conventional band structure method this term can
then be included in the variational step (Ebert, 1988).
As an alternative to this, replacing equations (3–4) by an
approximate interpolation scheme, a simpler form of the
basis functions could be retained (Ankudinov and Rehr,
1997). In spite of the mentioned technical problems, several
band structure schemes have been extended on the basis
of equations (3–4) that indeed treat spin magnetism and all
relativistic effects on the same level. This applies to several
linear methods based on the variational principle (Ebert,
1988; Solovyev et al., 1989; Krutzen and Springelkamp,
1989). For example for the linear muffin-tin orbital (LMTO)
method, the Bloch wave functions ψj �k can still be written in
the standard way:

ψj �k(�r, Ej �k) =
∑

i

A
j �k
i φiν(�r) + B

j �k
i φ̇iν(�r) (5)

with φiν and φ̇iν basis functions having the form given

by equation (4). The expansion coefficients A
j �k
i and B

j �k
i

are determined by the appropriate potential parameters,
relativistic LMTO structure constants, and the eigenvectors.
In addition, a corresponding extension to the KKR or
multiple-scattering approach has been worked out. Again,
the electronic Green’s function G(�rn, �rm, E) can be written
in the usual way (Ebert, 2000):

G(�rn, �rm, E) =
∑
��′

Z�(�rn, E)τnm
��′(E)Z×

�′(�rm, E)

−
∑
�

Z�(�r<, E)J×
� (�r>, E)δnm (6)
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with Z�(�rn, E) and J�(�rn, E) being the solutions to the
single-site Dirac equation (3) for site n with their form
given by equation (4). The scattering path operator τnm

��′(E)

describes all multiple-scattering events in the system in a
self-consistent way.

Compared with variational schemes, the KKR method has
a number of appealing features. The calculation of the scatter-
ing path operator, that is, solving the band structure problem,
can be done in principle for any geometry as, for example,
finite, two-dimensional layered or three-dimensional bulk
systems. The use of the Dyson equation allows one to deal
with complex geometries starting from a simpler reference
system as, for example, in the case of clusters deposited on
a substrate. Representing the electronic structure in terms of
the Green’s function also enables the treatment of disordered
systems by combining the KKR with the coherent potential
approximation (CPA) alloy theory. Finally, the availability
of the Green’s function makes the KKR method a suitable
platform, when dealing with spectroscopic properties.

For many core-level spectroscopies an adequate descrip-
tion of the involved core states that treat exchange splitting
and spin-orbit coupling on the same level is indispensable
(Mertins et al., 2001). This can also be achieved on the basis
of the Dirac equation (3) (Ebert, 1989).

Using one of the schemes described in the preceding
text to calculate properties that are connected to spin-
orbit-induced orbital magnetism, the results are in general
too low when compared to experimental data. In addition,
one finds that correlation effects are often insufficiently
described on the basis of plain LSDA. These problems
can in most cases be reduced or removed by applying
appropriate corrections to the Hamilton matrix or directly
to the Dirac equation (3). This can be done for example,
using Brooks’ OP scheme (Brooks, 1985) or the LSDA + U
method (Anisimov, Aryasetiawan and Lichtenstein, 1997).
While the latter approach represents only static correlations, a
more accurate treatment of correlation effects is achieved by
a combination of LSDA and the dynamical mean field theory
(DMFT) (Georges, Kotliar, Krauth and Rozenberg, 1996).

For strongly correlated systems, the various extensions to
the LSDA seem to be insufficient and an approach putting
strong emphasis on many-body effects is more appropriate.
To describe, for example, the pronounced multiplet structure
reflected by corresponding core-level spectra of rare earth
systems, it is sometimes sufficient to deal with an isolated
atom on a Hartree–Fock level (Vogel et al., 1991). A
simple way to account for the influence of the surrounding
on the electronic structure is to include a crystal field
having a corresponding symmetry. As an alternative to this
configuration interaction (CI), cluster model calculations are
done that account for hybridization as well as for electron
correlation effects.

2.3 Matrix elements

The various spectroscopies dealt with in the following
text have in common that they hinge upon the interaction
of electrons and photons. Treating the photon field in a
classical way the electron–photon interaction operator is
given by

X�qλ(�r) = −1

c
�jel · âλAei �q�r (7)

Here the vector potential �A�qλ(�r) = âλAei �q�r represents radi-
ation with amplitude A, wave vector �q, and polarization λ,
with âλ representing the corresponding polarization vector.
Adopting a relativistic formulation, the electronic current
density operator �jel = −ec�α is expressed in terms of the
Dirac α matrices.

Investigating electronic transitions on the basis of the
description of the electronic structure described in the
preceding text, one is led to transition matrix elements of
the form

M
�qλ

fi = 〈�f|X�qλ|�i〉 (8)

where the initial and final wave functions �i(f) may stand for
itinerant band states or tightly bound core states. Adopting
the dipole approximation, the matrix elements connecting
states φ� with spin-angular character � are given by:

M
�qλ

��′ = 〈φ�|�α · âλ|φ�′ 〉
= i

[
R1

��′Aλ
�−�′ − R2

��′Aλ
−��′

]
(9)

in terms of the radial and angular matrix elements R
1(2)

��′ and
Aλ

��′ , respectively, with:

R1
��′ =

∫
r2 drg�(r, E)f�′(r, E′) (10)

R2
��′ =

∫
r2 drf�(r, E)g�′(r, E′) (11)

Aλ
��′ = 〈χ�|�α · âλ|χ�′ 〉 (12)

The angular matrix element Aλ
��′ gives rise to the selection

rules according to the polarization of the radiation (see
Figure 1). The radial matrix elements R

1(2)

��′ , on the other
hand, depend on the energy owing to the energy dependence
of the radial wave functions. In general, the elements R

1(2)

��′
strongly favor transitions with l → l′ = l + 1 as compared to
those with l → l′ = l − 1 (Ebert et al., 1996). This, however,
does not hold if a Cooper minimum occurs at a certain energy
for one of these transitions (Durham, 1984).
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Applications using the KKR Green’s function method
properly account for the energy dependence of the radial
matrix elements, as the underlying wave functions φ�′(�r, E)

(corresponding to Z�(�r, E) and J�(�r, E) in equation (6))
are calculated for each energy E. Instead, using a linear
band structure method as, for example, the LMTO, the energy
dependence is accounted for in an approximate way by using
φiν(�r) and its energy derivative φ̇iν(�r) evaluated at a fixed
energy Eν (see equation (5)). As Eν can be chosen freely,
this is not a severe numerical restriction in practice. However,
using the TB formalism, the energy dependence of the radial
matrix elements is completely ignored.

3 MAGNETO-OPTICAL PROPERTIES IN
THE OPTICAL REGIME

3.1 The optical conductivity tensor and the
magneto-optical effects

For many situations, it is adequate to neglect surface effects
and to assume that magneto-optical properties reflect the
electronic structure of a bulk material. The bridge between
both sides is supplied by the dielectric tensor ε(ω) or, equiva-
lently, the optical conductivity tensor σ (ω), which are linked
by the relation ε(ω) = 1 + 4πi

ω
σ (ω). An expression for the

optical conductivity tensor σ (ω) was derived within the
framework of Kubo’s linear response formalism (Callaway,
1974):

σλλ′(ω)

= ie2

m2�V

∑
j ′ �k occ.

j �k unocc.

1

ωjj ′

[
�λ

j ′j�
λ′
jj ′

ω − ωjj ′ + i/τ
+

(�λ
j ′j�

λ′
jj ′)∗

ω + ωjj ′ + i/τ

]

(13)
with ωjj ′ = (Ej �k − Ej ′ �k)/� and the matrix elements �λ

jj ′ =
〈�j �k|pλ|�j ′ �k〉 of the electronic momentum operator. Here

the argument �k of ωjj ′ and �λ
jj ′ has been suppressed and

λ = x, y, or z denotes one of the Cartesian components. The
quantity τ is the relaxation time parameter.

Although equation (13) can be used directly in connection
with a nonrelativistic as well as a fully relativistic band
structure calculation (Oppeneer and Antonov, 1996), it is
advantageous to calculate in a first step only the absorptive
parts of the tensor element (Wang and Callaway, 1974). The
dispersive parts can then be obtained in a second step by
making use of Kramers–Kronig relations (Ebert, 1996b).

The matrix elements �λ
jj ′ in equation (13) imply a spatial

integration over the whole crystallographic unit cell. Because
the square of �λ

jj ′ enters the expression for the optical

conductivity tensor σ (ω), however, it is not possible to
decompose σ (ω) unambiguously into site or component
contributions in the case of compounds or multilayer systems.
A corresponding decomposition gives rise to cross-term
contributions that might be negative or even surpass the
site-diagonal contributions (Koenig and Knab, 1990). For
multilayer systems, such a decomposition turned out to be
very helpful to analyze the rather complex spectra. For
this purpose, a so-called layer-resolved optical conductivity
tensor σ IJ (ω) was introduced (Perlov and Ebert, 2000) on
the basis of equation (13), with I and J numbering the
atomic layers within a multilayer. For the absorptive part
of the corresponding diagonal tensor element σ 1 IJ

λλ (ω) one
gets, for example, the expression

σ 1 IJ
λλ (ω) = πe2

�ωm2VI

∑
j ′ �k occ.

j �k unocc.

�I λ
jj ′ �J λ

j ′j δ(ω − ωjj ′) (14)

with the evaluation of the matrix elements �I λ
jj ′ restricted to

layer I with volume VI . Ignoring the variation of the electric
field from layer to layer, a simplification that is in general
inherently made when dealing with the optical properties of
solids, allows one to introduce the layer-projected optical
conductivity:

σ 1,I (ω) =
∑
J

σ 1,IJ (ω) (15)

which can be calculated by making use of Bloch’s theorem.
This leads to:

σ 1 I
λλ (ω) = πe2

�ωm2VI

∑
j ′ �k occ.

j �k unocc.

�I λ
jj ′ �λ

j ′j δ(ω − ωjj ′) (16)

with the conventional matrix elements �λ
jj ′ = ∑

J∈uc �J λ
jj ′

connected with the full unit cell; that is, the summation runs
over all sites J within the unit cell. For the special case
of a multilayer system, the unit cell is a column of atomic
cells representing the stacking sequence of atomic layers.
For that reason, the site specific matrix elements �J λ

jj ′ are
representative for the various types of atomic layers.

If the influence of the sample surface has to be accounted
for, as for example, in the case of surface layer systems,
the preceding expressions for the optical conductivity tensor
are of limited use. However, reformulating equation (13) by
representing the electronic structure in terms of the Green’s
function G(E), a very general expression for the spatially
resolved optical conductivity σ (�r, �r ′, ω) is obtained. For a
two-dimensional periodic layered system, the correspond-
ing layer-resolved optical conductivity σ IJ (ω) is given by
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(Huhne and Ebert, 1999b):

σ IJ
λλ′(ω)

= i�

π2AWS dI

∫ EF

−∞
dE

∫ ∞

EF

dE′
∫

AI
WS

d2r

∫
layer I

dr

×
∫

layer J

d3r ′ Trace
{
jλ(�r) 
G+(E′)jλ′(�r ′) 
G+(E)

}
(E′ − E − i �

τ
)(�ω + E − E′ + i �

τ
)

+Trace
{
jλ′(�r ′) 
G+(E′)jλ(�r) 
G+(E)

}
(E′ − E + i �

τ
)(�ω + E′ − E + i �

τ
)

(17)

with dI the thickness of layer I , AI
WS the cross-section area

of the corresponding unit cell and jλ′(�r) the electronic current
density operator.

When discussing magneto-optical phenomena, in general,
two special geometric situations are of primary interest. For
the Voigt or Cotton–Mouton configuration, the magnetiza-
tion is aligned perpendicular to the wave vector �q of the light,
while for the Faraday or polar configuration it is parallel or
antiparallel to the wave vector. In the case of the later con-
figuration, a linearly polarized light beam that impinges on a
magnetized sample will get elliptically polarized upon trans-
mission or reflection. No matter whether the magnetization
is present spontaneously or induced by an external magnetic
field, these phenomena are called Faraday and Kerr effect,
respectively. In both cases, the polarization ellipsis of the
transmitted or reflected, respectively, light is characterized by
its ellipticity ε and its rotation by the angle θ with respect to
the original polarization vector (Reim and Schoenes, 1990).
In the case of the Faraday effect, the rotation is a magnetic
circular birefringence while the accompanying ellipticity is
caused by magnetic circular dichroism. Making use of the
connection of the dielectric tensor ε(ω) and the complex
index of refraction n�qλ(ω), one can express the ellipticity ε

and rotation angle θ for the Faraday and Kerr effect in terms
of the elements of the optical conductivity tensor σ (ω) (Reim
and Schoenes, 1990). For the complex Faraday rotation angle
φF = θF + iεF, which combines both quantities, one finds:

φF � 2πid

c

σ xy√
1 − 4πi

ω
σ xx

(18)

with d the thickness of the sample. Accordingly, one has for
the complex Kerr rotation angle φK = θK + iεK:

φK � σ xy

σ xx

√
1 − 4πi

ω
σ xx

(19)

The expressions given in the preceding text for the Faraday
and Kerr rotations φF and φK, respectively, are sufficiently

accurate for angles up to several degrees. For the large rota-
tion angles encountered sometimes in actinide compounds
or the giant rotation angles up to 90 ◦C found for some Ce
compounds (Yaresko et al., 1996), one has to use the corre-
sponding exact expressions. Another restriction for the use of
equations (18 and 19) is connected with the symmetry of the
investigated system. In deriving these equations, a shape of
the optical conductivity tensor σ (ω) has been assumed that
corresponds to a system with its magnetization aligned to, at
least, a threefold rotation axis that in turn is parallel to the
light beam. This holds, for example, for cubic systems with
the magnetization along one of the cubic axes or the [111]
direction, as well as for a tetragonal or hexagonal system
with the magnetization along the c axis. For systems with
lower symmetry, the expressions for the Faraday and Kerr
rotation can still be derived straightforwardly by solving the
corresponding Fresnel equation for an anisotropic material.
In this case, one will have a superposition of magneto-optical
effects and natural birefringence.

Equations (18) and (19) have been derived for a homoge-
neous magneto-optical medium. An extension to inhomoge-
neous, that is, for example layered, media is straightforward
if the layer thicknesses are relatively large. For thin magnetic
surface films, however, the spatial variation of the optical
conductivity has to be accounted for. The layer-resolved opti-
cal conductivity mentioned in the preceding text allows one
to set up and solve the corresponding Maxwell equations for
an inhomogeneous system (Huhne and Ebert, 2002). Various
techniques to solve these equations have been developed and
described in the literature (Huhne and Ebert, 2002; Vernes,
Szunyogh and Weinberger, 2002).

Finally, it should be pointed out that equations (18) and
(19) reflect the fact that (for the geometries considered in the
preceding text) the Kerr effect occurs only for a nonvanishing
off-diagonal element σxy(ω) of the conductivity tensor σ (ω).
Expressing σ (ω) with respect to left (+) and right (−)
circular and z-linear polarization of the light, one has the
relationship σ±(ω) = σxx(ω) ∓ iσ xy(ω). As demonstrated
by several authors, σ+(ω) and σ−(ω) differ only if spin-orbit
coupling and exchange splitting are simultaneously present
(Erskine and Stern, 1973; Reim and Schoenes, 1990). This
situation is therefore the source for the Kerr effect normally
observed in the regime of conventional optics and also for the
circular magnetic dichroism in X-ray absorption considered
in the following text.

3.2 Magneto-optical properties of bulk materials

The formalism sketched in the preceding text was applied
successfully for the first time at the beginning of the 1990s
for a calculation of magneto-optical spectra (Oppeneer, Sticht
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and Herman, 1991; Oppeneer, Maurer, Sticht and Kübler,
1992). By performing model calculations, with the strength
of the spin-orbit coupling ξ and the exchange splitting �Exc

manipulated, one could demonstrate that the Kerr rotation
is nearly proportional to ξ and varies monotonously with
�Exc (Oppeneer, Maurer, Sticht and Kübler, 1992; Ebert,
Freyer, Vernes and Guo, 1996). In particular, for compounds
like CoPt3 it could be shown that a normally nonmagnetic
component can have a large impact on the Kerr rotation if it
possess a large spin-orbit coupling (Weller et al., 1992).

In spite of the connection of the Kerr effect with the spin-
orbit coupling and the exchange splitting demonstrated by
these model calculations as well as analytical considerations
(Erskine and Stern, 1973; Reim and Schoenes, 1990), there
is no simple relationship between the Kerr rotation and ellip-
ticity or, equivalently, the σxy(ω) spectra and the spin and
orbital magnetic moments of the investigated solid. However,
in analogy to the f-sum rule (Wallis and Balkanski, 1986),
which relates the total number of electrons in the volume
to the integral of the absorptive part of the diagonal opti-
cal conductivity σxx(ω) with respect to the frequency ω, a
corresponding sum rule for the off-diagonal element σxy(ω)

could be derived (Kunes and Oppeneer, 2000). Integrating
the imaginary part of σxy(ω) with respect to the frequency ω

leads to the total orbital magnetic moment in the volume and
an additional term. In contrast to this, the sum rules dealing
with the magnetic circular dichroism in X-ray absorption (see
following text) imply the restriction to a specific absorption
edge and, for that reason, give access to the spin and orbital
magnetic moments in an angular momentum- and element-
resolved way.

The aforementioned study on pure 3d ferromagnets was
followed by a large number of theoretical investigations on a
wide range of compounds (Ebert, 1996b; Antonov, Yaresko,
Perlov and Nemoshkalenko, 1999). A comparison of the-
oretical spectra based on different approaches shows that
inclusion of the spin-orbit coupling as a perturbation within
a scalar-relativistic calculation is well justified in most cases.

When compared to the experimental spectra, a satisfying
agreement is found in general for transition metal systems.
Figure 2 shows as an example the Kerr rotation and ellip-
ticity spectra for the Heusler alloys NiMnSb, PdMnSb, and
PtMnSb, which have the C1b structure. Previous band struc-
ture calculations revealed their half-metallic behavior, which
was made responsible for the extraordinary Kerr rotation of
PtMnSb (de Groot, Mueller, van Engen and Buschow, 1983).
Other authors ascribed the high Kerr angle to a low plasma
frequency (Feil and Haas, 1987) or to scalar-relativistic
effects (Wijngaard, Haas and de Groot, 1989). However,
the calculation of the spectra shown in Figure 2 demon-
strated that a combination of various favorable properties of
the band structure of PtMnSb – in particular the mentioned
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Figure 2. Experimental Kerr rotation and ellipticity spectra of
NiMnSb, PdMnSb, and PtMnSb (van Engen, 1983) together with
the corresponding theoretical spectra obtained using the relativistic
LMTO method (Oppeneer and Antonov, 1996). (Reproduced from
Oppeneer, P., et al., 1996, with permission from Springer-Verlag
GmbH.  1996.)

half-metallic behavior and the low plasma frequency – is
responsible for its large Kerr rotation.

The examples shown in Figure 2 demonstrate that calcu-
lated Kerr spectra may deviate in some cases in a significant
way from corresponding experimental data. This is often
caused by problems with the sample preparation, as could
be convincingly demonstrated, for example for the com-
pounds FeCo and FePt (Weller, 1996). On the other hand, one
might ascribe deviations to the neglect of so-called local-field
effects when using equation (13) directly. These effects stem
from the fact that the actual electric field that acts on an elec-
tron differs from the external electric field associated with the
light owing to induced charge fluctuations that, in principle,
can be accounted for by a self-consistent field scheme (Wallis
and Balkanski, 1986). For transition metals, these effects are
generally assumed to be negligible. Correlation effects, that
are not accounted for within plain SDFT seem to be more
important. In fact, the use of Brooks’ OP formalism or of
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the local density approximation (LDA) + U led in the case
of actinide systems to a much better agreement with experi-
ment (Antonov et al., 1999). This also applies to calculations
for transition metal systems based on the LSDA + DMFT
scheme (Perlov, Chadov and Ebert, 2003).

3.3 Magneto-optical properties of layered systems

Most of the experimental as well as theoretical studies
on the magneto-optical properties of transition metal sys-
tems were motivated by their application in sensor and
storage technology (Kryder, 1985). This applies in par-
ticular for the investigations on multilayers. These sys-
tems allow to some extent the optimization of Kerr rota-
tion spectra with regard to the position and height of
prominent peaks by a suitable combination of atomic lay-
ers and choice of their thickness. This is demonstrated in
Figure 3, which shows Kerr rotation and ellipticity spec-
tra for the multilayer system 6Co/mCu with the thickness
m of the Co layers varied between 3 and 9 atomic lay-
ers (Uba et al., 1997). As mentioned in the preceding text,
one notes that the peak positions in the theoretical spec-
tra are somewhat shifted as compared to the experimen-
tal ones because the local-field and correlation effects are
neglected. The various features of the Kerr rotation and ellip-
ticity spectra and their variation with the thickness of the
Cu layers, however, are well described by the calculations.
This implies, in particular, that imperfections at the Co/Cu
interface have only a minor influence on the experimental
spectra.

Extensive studies have also been made on the multilayer
systems nCo/mPd and nCo/mPt (Uba et al., 1995; Zeper,
1991; Bertero and Sinclair, 1995; Daalderop, 1991) because
here the ferromagnetic component Co is combined with an
element having a stronger spin-orbit coupling. In addition,
Pd and Pt show a pronounced polarizability leading to an
induced spin magnetic moment in the order of 0.2 µB at the
interface (Schütz et al., 1993). Furthermore, the high spin-
orbit coupling of Pd and Pt is one of the main reasons for
the pronounced out-of-plane magnetic anisotropy of these
Co-based multilayer systems.

Figure 3 suggests that the calculation of the magneto-
optical spectra of multilayer systems should lead, in general,
to rather reliable results. On the other hand, it is obviously
quite hard or impossible to explain the various spectral
features and their variation with the multilayer composition
on the basis of such calculations. This severe problem
could be reduced to some extent by the introduction of
the layer-resolved optical conductivity (Huhne and Ebert,
1999a). The first application of this concept to bcc Fe
demonstrated that the contribution of the neighboring atomic
layers J to the optical response of an atomic layer I

drops off very rapidly with the distance |I − J | between
the layers. In particular, it was found that the diagonal
tensor element σ IJ

xx (ω) is by far dominated by the layer-
diagonal term (I = J ), while for the off-diagonal tensor
element σ IJ

xy (ω) the contribution from neighboring layers
(|I − J | = 1) is of the same order of magnitude as the layer-
diagonal term (I = J ). As a consequence, it turned out that
it is, in general, sufficient to consider contributions from
neighboring layers with |I − J | = 3–4 when constructing
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the layer-projected optical conductivities σ I
xx(ω) and σ I

xy(ω)

for layer I . Corresponding results for the absorptive part
of the off-diagonal tensor element σ I

xy(ω) of the multilayer
system Co9/Pd9 are shown in Figure 4 for the inequivalent
layers I = 1–10. For the innermost (I = 1) of the nine
Co layers, one finds that σ 2,I

xy (ω) is nearly identical to
that of pure fcc Co. This reflects the rapid decay of
σ IJ

xy (ω) with the layer distance |I − J | and implies that the
inner Co layers behave essentially like bulk Co concerning
their magneto-optical response. Apparently, approaching the
Co/Pd interface, σ 2,I

xy (ω) is more and more modified leading
to an appreciable distortion for the spectrum of the Co
interface layer (I = 5). As mentioned in the preceding text,
there is an appreciable moment induced for the Pd layers
next to the interface (see the numbers following the layer
indices in Figure 4) that rapidly drops with the distance
from the interface. The induced moments are reflected by
an appreciable nonzero layer-projected off-diagonal tensor
element σ 2,I

xy that is most pronounced for the Pd layers close
to the interface (I = 6, 7) and then decreases very rapidly.
For the innermost Pd layer (I = 10) σ 2,I

xy (ω) is close to zero;
that is, again one has nearly the magneto-optical behavior of
nonmagnetic bulk Pd.

The results shown in Figure 4 imply that for most mul-
tilayer systems with relatively large thicknesses of the sub-
systems one may expect a pronounced variation of the local
magneto-optical response only within 3–4 layers next to the
interfaces, while the inner regimes should show a bulklike
behavior. This property has been exploited with success to
construct the magneto-optical response of multilayer systems
with large subsystem thicknesses from the layer-projected
optical conductivity tensor σ I (ω) calculated for a multilayer
system with the same composition but smaller subsystem
thicknesses (Baukasten or modular principle) (Perlov and
Ebert, 2000).

The results in Figure 4 also imply that for increasing sub-
system thicknesses the influence of the interface regime on
the magneto-optical response of the whole layer system will
diminish rapidly. As a consequence, representing the subsys-
tems by the optical conductivity of the corresponding bulk
material together with a treatment of the whole system by
means of classical optics is well justified (Heavens, 1991).
This approach has also been used when dealing with mag-
netic surface layers with a thickness of 20 Å or more on top
of a nonmagnetic substrate. For this peculiar situation, one
may write for the complex Kerr rotation

φK = i
4πd

λ

σxy

σ sub
xx

(20)

where λ is the wavelength of the radiation and σ sub
xx is

the diagonal optical conductivity of the substrate (Katayama
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Figure 4. Absorptive part of the off-diagonal layer-projected opti-
cal conductivity tensor elements σ 2,I

xy (ω) for the 10 nonequivalent
atomic layers in the multilayer system 9Co/9Pd. The layer index
I = 1 denotes the innermost Co layer, while I = 5 labels the Co
layer at the Co/Pd interface. Accordingly I = 6 and 10 are the inter-
face and central Pd layers. The numbers accompanying the layer
index give the corresponding spin magnetic moments per atom in
Bohr magnetons µB. The results of bulk calculations for fcc Co are
shown by a marked line (Perlov and Ebert, 2000). (Reproduced from
Perlov et al., 2000, with permission from EDP Sciences.  2000.)

et al., 1988; Reim and Weller, 1989). Equation (20) implies
that one can get a resonance-like enhancement of φK if a suit-
able substrate is chosen. This holds, for example for Fe films
deposited on top of a Cu, Ag, or Au substrate (Katayama
et al., 1988; Suzuki et al., 1992; Suzuki et al., 1993) for
which σ sub

xx is rather small in the vicinity of the plasma
edge of the noble metal. In fact, a very satisfying descrip-
tion of available experimental data has been achieved on
the basis of equation (20). For thin magnetic films, however,
this equation is no more applicable due to the occurrence
of quantum confinement effects (Suzuki et al., 1992; Ben-
nett, Schwarzacher and Egelhoff, 1990; Carl and Weller,
1995). In particular, it does not describe the oscillations of
the Kerr rotation found as a function of the thickness of
the magnetic film (Geerts et al., 1994) or of a capping non-
magnetic film (Suzuki et al., 1998). An explanation for the
oscillations observed for the system Au(001)/nFe/mAu could
be given by a treatment of quantum confinement effects in
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analogy to the approach used when dealing with the inter-
layer exchange coupling. This way, the wavelengths of the
oscillations were traced back to the bulk electronic structure
of the magnetic (Fe) and capping (Au) film material. Calcu-
lations of the layer-resolved optical conductivity σ IJ (ω) of
Au(001)/nFe/mAu supplied the basis to set up and solve the
corresponding inhomogeneous Maxwell equations (Huhne
and Ebert, 2002). This approach allowed not only the calcu-
lation of the Kerr rotation spectra as a function of the layer
thickness n and m, but also the investigation of the distri-
bution of the current density induced by the electromagnetic
radiation in the region near the surface. Similar investigations
have also been made for the system Pt(111)/nCo (Vernes,
Szunyogh and Weinberger, 2002).

4 X-RAY ABSORPTION SPECTROSCOPY

4.1 Absorption coefficient, magnetic dichroism,
and sum rules

The absorption coefficient µ�qλ(ω) of a sample for radiation
of energy �ω, wave vector �q, and polarization λ is determined
by its complex index of refraction n�qλ. Expressing n�qλ by
means of the dielectric function ε �qλ and making use of
the relation ε(ω) = 1 + 4πi

ω
σ (ω), one can express µ�qλ(ω)

for the X-ray regime in terms of the absorptive part of the
corresponding scalar optical conductivity σ �qλ(ω):

µ�qλ(ω) = 4π

c
σ 1

�qλ(ω) (21)

Accordingly, using either equation (13) or Fermi’s golden
rule, µ�qλ(ω) can be obtained from:

µ�qλ(ω) = πc2

�ωmV A2

∑
i occ.

∑
f unocc.

|〈�f |X�qλ|�i〉|2

×δ(�ω − Ef + Ei) (22)

where A specifies the amplitude of the radiation field
according to equation (7).

When studying a specific absorption edge, the summation
over the initial states |�i〉 can be restricted to the correspond-
ing core shell. On the other hand, the final states |�f 〉 can be
represented by Bloch wave functions �j �k when dealing with
an ordered solid. A more general expression is obtained by
representing the final states in terms of the Green’s function
G(E) to get the form (Shaich, 1984):

µ�qλ(ω) ∝
∑
i occ.

〈�i |X×
�qλ


G(Ei + �ω) X�qλ|�i〉

×θ(Ei + �ω − EF) (23)

This expression can be evaluated by making use of multiple-
scattering theory to determine G(E) (see equation (6)).
Accordingly, equation (23) can be applied to arbitrary sys-
tems and is the basis for dealing not only with near-edge
spectra but also with conventional (Rehr and Albers, 2000) as
well as magnetic (Ebert, Popescu and Ahlers, 1999) extended
X-ray absorption fine structure (EXAFS). In addition, it sup-
plies an appropriate basis for including many-body effects
(Schwitalla and Ebert, 1998).

In the case of rare earth systems, the preceding approach is
often inadequate because of the formation of a ground-state
electronic configuration according to Hund’s rule. Restrict-
ing to a free-atom description one gets the corresponding
absorption coefficient by considering all transitions from a
single ground-state level |JMk

J 〉 to all final states |J ′ Mk
J + q〉

by absorption of light with polarization λ (Goedkoop et al.,
1988):

µλk
J (ω) =

∑
J ′

µλk
JJ ′(ω)

=
∑

k

∣∣∣∣
(

J ′ 1 J

−(Mk
J + λ) λ Mk

J

)∣∣∣∣
2

µk(ω) (24)

Here (. . .) is a Wigner 3j symbol and the µk are the par-
tial absorption coefficients for the three possible values of
k = �J = −1, 0, +1.

For a nonmagnetic system, it can be shown that the absorp-
tion coefficient µ�qλ evaluated on the basis of equation (22)
or (23) can be written as a sum over partial angu-
lar momentum–resolved density of states (DOS) func-
tions nκ(E) weighted by the corresponding absorption
cross section Wn′κ ′→nκ(E) (Mattheiss and Dietz, 1980).
If an exchange splitting is present in addition to spin-
orbit coupling, the degeneracy of the magnetic sublevels
is removed (see Figure 1) and magnetic dichroism occurs.
Alternatively, this can be demonstrated by considering
an exchange-split system with spin-orbit coupling treated
as a perturbation. Ignoring the energy and spin depen-
dence of the cross section, the absorption coefficient
for the K edge for left- (or right-) circularly polarized
light is given by W1s→np

∑
ms

nl=1,ml ,ms (E) with ml =
+1(−1), where nlmlms is the (l, ml, ms)-resolved DOS for p
states. The corresponding magnetic dichroic signal �µK =
µ+

K − µ−
K is therefore given by W1s→np

∑
ms

(n1,+1,ms (E) −
n1,−1,ms (E)). From this expression, it is obvious that �µK

vanishes if there is no exchange splitting or if there
is no spin-orbit coupling. In addition, one can identify
�µK – apart from the cross section – with the orbital polar-
ization

∑
ml

∑
ms

mlnlmlms (E) of the p states. Integrating the
dichroic signal over the unoccupied regime of the np shell,
one therefore gets a measure for the orbital magnetic moment
connected with the p holes, or – by reversing the sign – of
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the p electrons. This simple interpretation of the dichroic
signal for initial states with s character (e.g., K or L1 edges)
can be expressed by the sum rule (Igarashi and Hirai, 1994):∫

�µK / E dE∫
µK / E dE

= 3

Nhp
〈lz p〉 (25)

Here Nhp is the number of p holes and 〈lz〉p is the orbital
angular momentum for the p electrons. The integration of the
polarization-averaged absorption and dichroic spectra µK(E)

and �µK(E), respectively, has to be extended from the
absorption edge over all unoccupied states of the np shell.

Considerations similar to those presented in the preceding
text for the K edge were first made for the M2,3 edge of Ni
(Erskine and Stern, 1975). Accounting for spin-orbit coupling
only for the initial 3p core states and for exchange splitting
only for the final 3d states, a relative intensity of the white
line peaks at the M2 and M3 edges (branching ratio) of 1:2
is expected. For the corresponding circular dichroic signal
�µM2,3

a ratio of +1:−1 should occur, with �µM2,3
reflect-

ing the spin polarization of the 3d states. Extending the model
by accounting, additionally, for the spin-orbit coupling for
the final d-like states (Smith, Chen, Sette and Mattheis, 1991;
Stöhr, 1999), these ratios deviate from the ideal values. In
particular, �µM2,3

is now determined by the spin and orbital
polarization and by an additional term connected with the
magnetic dipole operator Tz = 1

2

(�σ − 3�̂r(�̂r · �σ)
)

z. The corre-
sponding sum rules for initial states with p character (e.g.,
L2,3 or M2,3 edges) are given by (Thole, Carra, Sette and van
der Laan, 1992; Carra, Thole, Altarelli and Wang, 1993):∫ (

�µL3
− 2�µL2

)
dE = N

3Nhd
(〈σ z〉 + 7〈Tz〉) (26)

∫ (
�µL3

+ �µL2

)
dE = N

2Nhd
〈lz〉 (27)

where

N =
∫ ∑

λ=±z

(µλ
L2

+ µλ
L3

) dE (28)

is the polarization-averaged absorption spectrum and Nhd is
the number of d holes.

The various sum rules obviously supply a formal basis to
deduce the spin and orbital magnetic moments from exper-
imental spectra in an element specific way. For transition
metal systems for example, the L2,3-edge spectra give direct
information on the d electrons, which are of central impor-
tance for their magnetic properties. Unfortunately, there are
a number of problems when applying the sum rules to exper-
imental data. The most obvious are that the number of holes

Nhd is in general not known, the absorption spectra µ+(−)

have to be separated from the background, and the upper
limit for the energy integration has to be fixed.

Originally, the sum rules have been derived on the basis of
a localized description for the electronic structure. However,
it could be shown that it is also possible to derive them
adopting an itinerant description (Ankudinov and Rehr,
1995; Benoist, Carra and Andersen, 2000). Nevertheless, one
has to keep in mind that a number of assumptions were
made for their derivation. Corresponding test calculations
demonstrated that these assumptions are reasonably well
justified for many situations (Wu, Wang and Freeman, 1993;
Ebert, 1996b). These calculations, in particular, showed that
the sum rules also hold in their differential or energy-resolved
form that is obtained by dropping the energy integration
for the dichroic spectrum �µ and replacing the expectation
values by the corresponding polarization function, that is,
replacing, for example, the spin moment 〈σz〉 by the spin
polarization d

dE
〈σ z〉 that corresponds to the difference of

the DOS curves for spin up and down. Finally, it has to
be noted that the applicability of the sum rules does not
depend on whether the magnetic moment of the absorbing
atom is spontaneously formed or whether it is induced
via hybridization by neighboring magnetic atoms. This also
applies for a magnetic moment that is induced by an
external magnetic field. In this case, the sum rules give
access to the component-projected spin and orbital magnetic
susceptibilities (Ebert and Mankovsky, 2003).

While the sum rules allow one to determine the orbital
magnetic moment separately, this is obviously not true
for the spin magnetic moment that is connected with the
term 〈Tz〉. The latter term, which has a counterpart in the
hyperfine field and the magnetic form factor used when
dealing with neutron scattering, can be seen as a measure
for the angular variation of the spin magnetization. It is
nonzero only for systems having a symmetry that is lower
than cubic. For systems with a cubic lattice, 〈Tz〉 is therefore
only nonzero due to the presence of spin-orbit coupling.
Accordingly, it should be quite small in that case unless
one is dealing with elements with a large atomic number.
However, for low-dimensional magnetic systems such as
multilayers (Guo, Ebert, Temmerman and Durham, 1994),
films, wires (Komelj, Ederer, Davenport and Fähnle, 2002),
or clusters (Gambardella et al., 2003) 〈Tz〉 may be quite large
and nonnegligible as compared to 〈σz〉.

4.2 Magnetic circular dichroism in X-ray
absorption

Owing to technical reasons, the first successful experimental
investigations on the XMCD have been made in the hard
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X-ray regime. The measurements at the K edge of bcc Fe
(Schütz et al., 1987) were soon followed by experiments at
the L2,3 edges of 5d transition metals dissolved substitution-
ally in bcc Fe (Wienke, Schütz and Ebert, 1991). Owing
to the dipole selection rules and the l dependence of the
X-ray absorption cross section, the corresponding spectra are
dominated by p–d transitions. The strong spin-orbit splitting
of the involved initial states, together with the appreciable
exchange splitting of the final states – induced by the ferro-
magnetic host – leads to a relative XMCD signal of up to
20%. These spectra could be reproduced in a very satisfying
way by corresponding calculations done on the basis of rela-
tivistic multiple-scattering theory (Ebert, 1996b). Use of the
sum rules (26) to (27) allowed one to deduce from the exper-
imental XMCD spectra �µL2,3

the spin and orbital magnetic
moments that are induced on the impurity atoms. As the
XMCD probes the expectation value of the magnetic moment
of the absorbing atom, 〈µ〉, not only the magnitude of the
induced magnetic moments but also their relative orienta-
tion with respect to that of the Fe host could be determined.
Obviously, the results given in Figure 5 are in reasonable
agreement with corresponding theoretical work (Kornherr,
1997), which allows a more detailed discussion of the data.
In particular, theory allows one to ascribe the variation of
the spin magnetic moment with the atomic number Z of
the impurity atom to the relative position of its d level with
respect to the exchange-split d levels of the host. The vari-
ation of the orbital magnetic moment, on the other hand,
can be explained by treating spin-orbit coupling as a per-
turbation leading to a direct interrelation with the partial
spin-resolved DOS of the impurity atom at the Fermi level

(Popescu, Ebert, Nonas and Dederichs, 2001). The magnetic
moments deduced from the XMCD spectra are obviously also
in reasonable accordance with results of neutron-scattering
experiments that, however, do not allow a simple decom-
position of the moment into spin and orbital parts. Such a
decomposition was possible in the past only by simulations
of magnetic neutron-scattering form factors or indirectly on
the basis of NMR data (Kawakami, Enokiya and Okamoto,
1985).

Figure 5 demonstrates that the XMCD supplies element-
specific information because of the local nature of the
involved initial core states. This outstanding feature that has
been exploited in many subsequent investigations allowed
the probing of the induced magnetic moment of an otherwise
nonmagnetic impurity atom. Similar work has also been done
on compounds, disordered alloys, and multilayer systems.

Measurements at the L2,3 edges of 3d transition metals
(Chen, Sette, Ma and Modesti, 1990) opened the way to study
the magnetic properties of these important elements in a
rather direct and detailed way. The large XMCD signal found
normally in experiment can in general be described fairly
well on the basis of an itinerant description of the underlying
electronic structure. Nevertheless, there are often features in
the experimental spectra that cannot be accounted for on the
basis of plain LSDA and therefore require extensions to this.

Use of time dependent local density approximation
(TDLDA) for example, allowed one to account for dynam-
ical screening effects leading to an improved agreement
of theory and experiment concerning the so-called L2,3-
edge branching ratio in the case of 3d transition metals
(Schwitalla and Ebert, 1998; Ankudinov, Nesvizhskii and
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Figure 5. Induced spin (a) and orbital (b) magnetic moment, µspin and µorb, respectively, of 5d-transition metal impurities in Fe as
deduced from experimental XMCD spectra at the L2,3 edges (A: (Wienke, Schütz and Ebert, 1991; Schütz, Knülle and Ebert, 1993),
B: (Wilhelm et al., 2001)) and neutron-scattering measurements (NS) (Campbell, 1966) and obtained from SPR-KKR band structure
calculations (Kornherr, 1997).
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Rehr, 2003). This approach led to corresponding changes
for the XMCD spectra (Schwitalla, 1997) also. Using plain
LSDA to calculate spin-orbit-induced ground-state properties
as for example, orbital magnetic moments often gives results
that are too small when compared with experiment. An
improved description of correlation effects based on Brooks’
OP scheme reduces or removes this problem in many cases.
Using this approach while calculating XMCD spectra leads
to changes with respect to plain-LSDA results that are in
full accordance with the corresponding change in the orbital
magnetic moment and the sum rules (Ebert, 1996a; Guo,
1997).

Application of the LSDA + U scheme also led in many
cases to appreciable improvements compared to work based

on plain LSDA. An interesting example for this is a study
of the XMCD spectra of Fe in Fe3O4 (Antonov, Harmon
and Yaresko, 2003) that is ferrimagnetically ordered below
≈850 K. The tetrahedral lattice sites (A) in the inverse spinel
structure are occupied by Fe3+ ions, whereas the octahedral
lattice sites (B) are occupied alternately by equal numbers of
Fe2+ and Fe3+ ions. In contrast to this experimental finding,
LSDA-based calculations lead to a half-metallic ferrimagnet,
with the Fermi level crossed only by the majority spin bands
and equivalent Fe ions on all B sites. The corresponding
XMCD spectra for the L2,3 edges of the inequivalent A and B
sites are shown in Figure 6(a). Obviously, the ferrimagnetic
order of the system is reflected by the different sign of the
XMCD spectra for the two sites. The resulting total XMCD
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Figure 6. (a) and (b) show results for the total and site-resolved XMCD spectra at the L2,3 edges of Fe in Fe3O4 obtained on the basis
of the LSDA and LSDA + U, respectively, (Antonov, Harmon and Yaresko, 2003) in comparison with experiment (Kuiper et al., 1997).
(c) shows the corresponding spectra for the M2,3 edges of Fe in Fe3O4 in comparison with experiment. (Reproduced from Koide et al.,
1996, with permission from Elsevier.  1996.)
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spectrum is in qualitative agreement with experiment that
does not allow one to distinguish the various lattice site
contributions. In contrast to LSDA, the use of the LSDA + U
leads, in line with experiment, to a charge-ordered insulator
with two inequivalent B sites. This qualitative change in
the electronic structure is reflected by the various site-
resolved XMCD spectra shown in Figure 6(b). As one
notes, the resulting total XMCD spectrum is now in much
better agreement with experiment. This also holds for M2,3

edges for which the LSDA + U-based results are shown in
Figure 6(c). Here obviously a strong overlap of the M2 and
M3 spectra occurs because the spin-orbit splitting of the
initial 3p core states is much smaller than that of the 2p
core states involved in the L2,3 spectra. As a result of this
overlap, the total M2,3-XMCD spectrum is strongly reduced
in amplitude compared to the L2,3 spectrum.

While the LSDA + U-based calculations reproduce the
experimental L2,3 and M2,3 spectra very well, they are,
nevertheless, not able to describe the small positive shoulder
seen at the high-energy side of the main peaks of the L3

spectrum. Similar problems occurred for other systems also.
For example, a satellite at 6 eV above the L3 absorption edge
is found in the experimental XMCD spectrum of Ni, which
obviously cannot be described by band structure calculations.
On the other hand, adopting a CI viewpoint on the basis
of the Anderson impurity model for the Ni d states, this
satellite has been ascribed to a superposition of d8, d9, and
d10 configurations for the ground state (Jo and Sawatzky,
1991).

4.3 Magnetic linear dichroism in x-ray absorption

The first successful experimental demonstration of the mag-
netic dichroism in X-ray absorption was done for the lin-
ear dichroism (XMLD) observed at the M4,5 edge of Tb
in Tb-Fe-garnet (van der Laan et al., 1986). These investi-
gations were accompanied by simulations based on atomic
Hartree–Fock calculations (Cowan, 1981) for transitions
from the 4fn(J) Hund’s rule ground state to the manifold
of 3d94fn+1(J′) final states, which allowed the interpretation
of the recorded spectra in detail. Results of similar inves-
tigations on the M5 edge of Tb in amorphous TbxFe1−x

films (Vogel et al., 1991) are shown in Figure 7. Here the
angular and temperature dependence of the absorption has
been analyzed assuming a magnetic interaction that splits
the 7F6 ground state of Tb into 13 Zeeman levels. This
allowed the estimation of the magnetic parameters in this
alloy system as a function of the concentration, leading
for example, for the saturation moment normal to the film
surface to 5.5 µB and to an effective exchange field of
about 14 T.
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Figure 7. XMLD at the M5 edge of Tb in amorphous TbxFe1−x

films as a function of angle (left) and temperature (right). Exper-
imental data are represented by symbols. Theoretical results are
given by lines. (Reproduced from Vogel et al., 1991, with permis-
sion from Elsevier.  1991.)

Similar to the situation for the magneto-optical effects in
the low-energy regime, where most experimental investiga-
tions were done for the polar geometry, the XMCD is in gen-
eral much more pronounced than the XMLD. Nevertheless,
the XMLD (Schwickert et al., 1998) and related phenomena
(Mertins et al., 2001) observed in transition metal systems
can be described fairly well on the basis of the formalism
sketched in the preceding text. In addition, the anisotropy of
the XMLD was investigated and found to be quite apprecia-
ble (Kunes and Oppeneer, 2003). As was pointed out already
in the first XMLD studies on the XMLD (van der Laan
et al., 1986), the effect measures the expectation value of the
square of the magnetic moment of the absorbing atom, 〈µ2〉.
Accordingly, in contrast to the XMCD, the XMLD can also
be observed in antiferromagnetic systems. This feature has
been exploited, for example, to study the surface magnetism
of a NiO(100) film grown on MgO(100) as a function of
the temperature (Stöhr et al., 1999). Furthermore, the XMLD
has been suggested to be used as a probe for the magneto-
crystalline anisotropy (van der Laan, 1999). This approach in
particular, avoids the determination of the orbital magnetic
moment and its anisotropy on the basis of Bruno’s model
making use of the XMCD (van der Laan, 2001).
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5 VALENCE-BAND PHOTOEMISSION

5.1 One-step model of photoemission

The traditional way to discuss valence-band photoemission
spectroscopy (VB-PES) of solids is to use the so-called three-
step model (Berglund and Spicer, 1964) that divides the
photoemission process into excitation, transport to the sur-
face, and escape to the vacuum. This scheme gives some
justification for the reconstruction of the bulk dispersion rela-
tion E(�k) from experimental angle-resolved ultraviolet pho-
toemission spectroscopy (ARUPS) data. For this procedure,
however, a free electron–like dispersion has to be assumed
in addition for the final state. More detailed information on
the electronic structure of the investigated system is obtained
by performing an ARUPS experiment using linearly and/or
circularly polarized light together with a spin analysis of the
photocurrent. On the basis of the underlying selection rules,
information on the spin character and hybridization is gained
for the probed electronic states that in principle allows one
to map the spin and orbital magnetic moments along the
electronic bands in a �k-resolved way (Braun, 1996). As for
a magnetic solid, these properties depend strongly on the
complex interplay of spin-orbit coupling and exchange split-
ting, corresponding experimental investigations have to be
supported by appropriate accompanying theoretical work.

The most general basis to discuss photoemission exper-
iments is supplied by the one-step model (Feibelman and
Eastman, 1974) that describes all steps in a coherent way.
Adopting the one-electron approximation and starting from
Fermi’s golden rule, the photoemission current emitted from
a single crystal surface in an angle-resolved experiment is
given by:

I �qλ = − 1

π
Im

∫
d3r

∫
d3r ′ψ∗

f (�r, �k, Ef)X�qλ(�r)G(�r, �r ′, Ei)

×X
†
�qλ

(�r ′)ψ f(�r ′, �k, Ef) (29)

Here, excitation by light with wave vector �q, frequency ω,
and polarization λ is considered with X�qλ(�r) the correspond-
ing electron–photon interaction operator. The manifold pos-
sible initial states at energy Ei are represented by the Green’s
function G(�r, �r ′, Ei), while the final states ψ f(�r, �k, Ef) with
wave vector �k, and energy Ef = Ei + �ω are given by a
time-reversed low energy electron diffraction (LEED) state
(Feibelman and Eastman, 1974). If equation (29) is applied
within a nonrelativistic calculation separately to the spin-up
(↑) and spin-down (↓) states of a ferromagnet, one obtains
corresponding spin-resolved partial intensities I↑(↓). Revers-
ing the magnetization �M while keeping all other parame-
ters fixed, just interchanges I↑ and I↓. As a consequence,
the spin polarization �P = (I↑ − I↓)/(I↑ + I↓) �M/| �M|, that

is parallel to �M reverses sign, while the total intensity
I = I↑ + I↓ remains unchanged. This situation, however,
changes if the spin-orbit coupling is accounted for in addition
to the exchange splitting. Symmetry and analytical consid-
erations allow in this case to predict in detail under which
conditions an asymmetry in the spin-averaged photocurrent
upon reversal of magnetization, that is, a magnetic dichroism,
can be observed (Feder and Henk, 1996; Henk, Scheune-
mann, Halilov and Feder, 1996).

For this purpose, it is most convenient to introduce the
2 × 2 spin density matrix (Ginatempo, Durham, Györffy and
Temmerman, 1985; Feder and Henk, 1996):

ρ
�qλ

σσ ′ = 1

2i

(
I

�qλ

σσ ′ − I
�qλ

σσ ′
∗)

(30)

with the partial intensity functions

I
�qλ

σσ ′ = − 1

π
Im

∫
d3r

∫
d3r ′ψ∗

fσ (�r, �k, Ef)X�qλ(�r)G(�r, �r ′, Ei)

×X
†
�qλ

(�r ′)ψ fσ ′(�r ′, �k, Ef) (31)

where the final state ψ fσ (�r, �k, Ef) is restricted to have the
spin character σ with respect to some chosen direction. This
way, one has for the total intensity and spin polarization

I = Trace ρ and �P = Trace �σρ/I (32)

with �σ the vector of Pauli matrices.
The central condition for the occurrence of magnetic

dichroism is that spin-orbit coupling gives rise to a com-
ponent of the spin polarization �P along the magnetization �M
if a corresponding nonmagnetic system is considered.

Assuming a sample is magnetized either perpendicular or
in-plane with respect to the surface and normal emission
induced by light impinging along the surface normal, this
condition is met only for certain combinations of the sym-
metry of the system and polarization of the light. As Table 1
shows, MCD is observed for any system if the magnetiza-
tion is oriented perpendicular but not if it is oriented in-plane.
MLD, on the other hand, may occur for both orientations of
the magnetization, depending on the symmetry and the rel-
ative orientation of the magnetization and the polarization
vector of the light.

Symmetry and analytical considerations allow one to
examine in detail the interplay of spin-orbit coupling and
exchange splitting, which gives rise to magnetic dichroism
in photoemission. A corresponding quantitative description
is achieved by evaluating equations (30)–(32) within the
framework of the relativistic multiple-scattering or KKR for-
malism of magnetic solids, which treats spin-orbit coupling
and exchange splitting on the same footing. For the partial



Magnetic spectroscopy 17

Table 1. Magnetic dichroic effects and photoelectron spin-polarization components Pi for perpendicular ( �M||�̂ez) and
in-plane ( �M||�̂ey) magnetization �M of surfaces with twofold, threefold, or fourfold rotational axes. s, p, and c stand for
s-, p-, and normally incident circularly polarized light. The signs indicate whether the respective component Pi occurs
(+ sign) or not (− sign) and whether only spin-orbit coupling (first sign), only exchange splitting (second sign), or
both (third sign) are present. MLD (L) and MCD (C) occur if a spin-polarization component parallel to �M is produced
by spin-orbit coupling in the nonmagnetic case, that is, if there is a combination (+,+,+) (Feder and Henk, 1996).
(Reproduced from Feder, R. et al., 1996, with permission from Springer- Verlag GmbH.  1996.)

Polarisation Symmetry �M perpendicular �M in-plane

Px Py Pz I Px Py Pz I

s 2mm −,−,− −,−,− +,+,+ L −,−,+ −,+,+ +,−,+
4mm −,−,− −,−,− −,+,+ −,−,+ −,+,+ −,−,+
3m +,−,+ +,−,+ −,+,+ +,−,+ +,+,+ −,−,+ L

p 2mm +,−,+ +,−,+ +,+,+ L +,−,+ +,+,+ +,−,+ L
4mm +,−,+ +,−,+ −,+,+ +,−,+ +,+,+ −,−,+ L
3m +,−,+ +,−,+ −,+,+ +,−,+ +,+,+ −,−,+ L

c 2mm −,−,− −,−,− +,+,+ C −,−,+ −,+,+ +,−,+
4mm −,−,− −,−,− +,+,+ C −,−,+ −,+,+ +,−,+
3m −,−,− −,−,− +,+,+ C −,−,+ −,+,+ +,−,+

intensity functions, one is led to the following expression:

Imsm
′
s
(E, �k; ω, �q, λ)

= C
∑
��′′

il−l′′C−ms

� C
−m′

s

�′′ Y
µ+ms∗
l (−k̂)

×Y
µ′′+m′

s

l′′ (−k̂)
∑
mm′

ei�k( �Rm− �Rm′ )

×
∑
n n′

ei �q( �Rn− �Rn′ )
∑

�′ �′′′
τnm

�′�(E′)τ n′m′∗
�′′′�′′(E′) (33)


 ∑

�1 �2

M
�qλ

�′�1
τnn′

�1�2
(E)M

�qλ

�2�′′′ − δn n′
∑
�1

I
�qλ

�′�1�′′′




Here M
�qλ

��′ and M
�qλ

��′ are matrix elements that are usually
evaluated making use of the dipole approximation. The
additional single-site term I

�qλ

��′�′′ stems from the irregular
solution of the Dirac equation and contributes only if one
uses a complex energy or self-energy � to account for finite
lifetime or many-particle effects. Equation (33) involves
several summations over lattice sites (n, n′, m, m′). This can
be evaluated in direct space when a restriction to a finite
cluster is made (Woods, Ernst, Strange and Temmerman,
2001). In general, however, a half-infinite crystal is assumed
that shows a two-dimensional periodicity for the atomic
plane parallel to the surface. In this case the scattering
within the planes can be treated by a two-dimensional
Fourier transformation. The scattering between the planes
is dealt with in a subsequent step either by introducing

transmission and reflectivity matrices (Hopkinson, Pendry
and Titterington, 1980) or by summing directly in real space
(Lüders et al., 2001).

For high photon energies, multiple scattering can safely be
neglected for the final states (single-scatterer approximation).
This assumption seems to be well justified not only for
the XPS regime but also down to several tens of eV
(Lüders et al., 2001; Ostanin and Ebert, 1998). Using this
single-scatterer approximation and taking the average with
respect to the wave vector �k of the emitted electrons, one
ends up with a simple expression for the angle-integrated
photoemission spectrum (PES). In the case of a paramagnetic
system, one finds that angle-integrated PES for unpolarized
light maps the sum over angular momentum–projected DOS
curves that are weighted by a corresponding photoemission
cross section (Marksteiner et al., 1986). Using circularly
polarized light for the excitation, a spin polarization in the
photoelectron current is induced; that is, the Fano effect can
be observed (Minár et al., 2001). Reversing the helicity of
the light just reverses the polarization of the photoelectron
current. This symmetry is broken for a ferromagnet in the
case of a polar geometry, giving rise also to magnetic circular
dichroism for an angular-integrated spectrum (Ebert and
Schwitalla, 1997).

5.2 Angle-resolved photoemission of transition
metals

The formalism sketched in the preceding text allows one to
investigate in a very detailed and quantitative way the various
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dichroic phenomena observed in core-level (Venus, 1993) as
well as valence-band (Kuch and Schneider, 2001) photoemis-
sion spectroscopy. As an example for the latter case, Figure 8
summarizes the results of an investigation on the spin- and
angle-resolved normal photoemission from Ni(001) (Feder
and Henk, 1996). Figure 8(a) of this figure shows the dis-
persion relation E(�k) for the magnetization �M perpendicular
to the surface. Owing to the inclusion of the spin-orbit cou-
pling, the electronic states have no pure spin character but
show only either dominantly spin-up or dominantly spin-
down character, indicated by full and dotted lines, respec-
tively. The dash-dotted line represents the relevant allowed
final states that have negligible exchange splitting and can be
reached with a photon energy of 21.22 eV. As they have been
shifted downwards by that energy, the band intersections
labeled a–f indicate possible vertical transitions. Because
of the symmetry of the system, the spin polarization �P of
the resulting photocurrent has to be aligned along the surface

normal; that is, parallel or antiparallel to the magnetization.
The corresponding partial and spin-projected intensities I↑

and I↓, respectively, obtained in a spin-resolved experiment
with un- or s-polarized light are shown in panel (d). Obvi-
ously, these curves primarily reflect the exchange splitting of
the material. As Table 1 suggests, use of circularly polarized
radiation will lead to MCD. This is confirmed by the data
shown in panel (c), where, instead of spectra for the two
opposite orientations of �M , spectra for fixed �M but oppo-
site circular helicity of the light are presented. The origin of
the observed asymmetry in intensity I ( �M, σ+) − I ( �M, σ−)

can be traced back in detail by studying the partial projected
intensities I

↑(↓)

+(−) shown in panel (b) of Figure 8. For the peak
labeled b, an admixture of the spin-up character is found
owing to spin-orbit coupling. Because of the symmetry-
determined selection rules, only the final state with spin-up
character can be reached, provided the excitation is done with
light that has polarization σ+. The right-hand side of Figure 8
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shows results for the magnetization in-plane along [110]. The
two upper panels showing theoretical (g) and experimental
(h) spectra for s-polarized light demonstrate that a rather
satisfactory agreement between both can be achieved, allow-
ing for an unambiguous interpretation of the experimental
spectra. Again, as suggested by Table 1 a linear magnetic
dichroism can be expected for p-polarized light. This is con-
firmed by the results shown in panel (e), which have been
obtained for the light incident at polar angle θ = 45 ◦C in
the plane normal to �M with an azimuthal angle of 0 ◦C (p+)
and 180 ◦C (p−). As for the MCD, a detailed analysis is
achieved on the basis of the corresponding spin-projected
spectra shown in panel (f).

Another example for the occurrence of the MLD in angle-
resolved valence-band photoemission is given in Figure 9,
which shows the corresponding spectra for normal emission
from a seven monolayer Co film with hcp(0001) structure
grown on a (110)-oriented W substrate. Within the experi-
ment, the magnetization was aligned along the easy axis that
coincides with the [110] direction of the W substrate. For
an orientation of the plane of incidence of the p-polarized
light perpendicular to the magnetization, the reversal of the
magnetization changes the intensity of the photocurrent in
line with the expectations based on Table 1.

When comparing experimental photoemission spectra with
corresponding theoretical results based on plain LSDA, a
qualitative agreement is found in general. Similar to the
case of optical properties, however, the prominent spectral
features are usually shifted against one another owing to
the influence of many-body effects (Liebsch, 1979). For that
reason, a shift of 2 eV in the photon energy has been applied
for the theoretical spectra shown in Figure 9. The rather
good agreement with experiment obtained this way justifies
a detailed analysis of the experimental data on the basis of
the theoretical results. As found very often in photoemission
experiments on thin films (Henk and Johansson, 1999), the
thickness of the Co film already gives rise to a dispersion
relation corresponding to that of bulk hcp Co. Accordingly,
the main peak seen in the photoemission spectra at around
0.7 eV binding energy, whose position depends only slightly
on the photon energy, reflects a rather flat band of the Co
band structure. The onset of the peak close to the Fermi level
that is observed for the photon energy around 24 eV, on the
other hand, is ascribed to a state at the � point.

The calculations of the photoemission spectra shown in
Figure 9 have been done in a fully relativistic way. For
that reason, they are able to reproduce the magnitude and
the energy dependence of the observed MLD. From the
calculations, it was suggested that the MLD is caused by
a strong mixing of the initial-state spin subsystems owing to
spin-orbit coupling together with a nonvanishing exchange
splitting for the final states. In particular, it could be shown
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Figure 9. Left: Valence-band photoemission spectra from a seven
ML thick hcp(0001) Co film on W substrate, taken with linearly
polarized radiation for opposite magnetization directions. Right:
Corresponding asymmetry values for binding energies between
−2 eV and EF. (a) Experiment; (b) theory. (Reprinted from Bans-
mann et al., 2000 with permission from Elsevier,  2000.)

that the observed MLD is nearly exclusively connected with
d–f transitions.
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Stöhr, J., Scholl, A., Regan, T.J., et al. (1999). Images of the
antiferromagnetic structure of a NiO(100) surface by means
of x-ray magnetic linear dichroism spectromicroscopy. Physical
Review Letters, 83, 1862.

Strange, P., Durham, P.J. and Györffy, B.L. (1991). Dichroic x-ray
fluorescence. Physical Review Letters, 67, 3590.

Strange, P., Staunton, J.B. and Györffy, B.L. (1984). Relativistic
spin-polarized scattering theory – solution of the single-site prob-
lem. Journal of Physics C: Solid State Physics, 17, 3355.

Suzuki, Y., Katayama, T., Bruno, P., et al. (1998). Oscillatory
magneto-optical effect in a Au(001) film deposited on Fe: exper-
imental confirmation of a spin-polarized quantum-size effect.
Physical Review Letters, 80, 5200.

Suzuki, Y., Katayama, T., Thiaville, A., et al. (1993). Magneto-
optical properties of Au/Fe/Ag and Ag/Fe/Au(001) sandwich
films. Journal of Magnetism and Magnetic Materials, 121,
539.

Suzuki, Y., Katayama, T., Yoshida, S., et al. (1992). New magneto-
optical transition in ultrathin Fe(100) films. Physical Review
Letters, 68, 3355.

Thole, B.T., Carra, P., Sette, F. and van der Laan, G. (1992). X-ray
circular dichroism as a probe of orbital magnetization. Physical
Review Letters, 68, 1943.

Uba, S., Uba, L., Gontarz, R., et al. (1995). Experimental and
theoretical study of the magneto-optical properties of Co/Pt
multilayers. Journal of Magnetism and Magnetic Materials, 144,
575.

Uba, S., Uba, L., Perlov, A.Y., et al. (1997). Experimental and ab
initio theoretical study of optical and magneto-optical properties
of Co/Cu multilayers. Journal of Physics. Condensed Matter, 9,
447.

Venus, D. (1993). Magnetic circular-dichroism in angular-
distributions of core-level photoelectrons. Physical Review B, 48,
6144.

Vernes, A., Szunyogh, L. and Weinberger, P. (2002). Limitations of
the two-media approach in calculating magneto-optical properties
of layered systems. Physical Review B, 66, 214404.

Vogel, J., Sacchi, M., Kappert, R.J.H., et al. (1991). Magnetic prop-
erties of Fe and Tb in TbxFe1−x amorphous films studied with
soft x-ray circular and linear dichroism. Journal of Magnetism
and Magnetic Materials, 150, 293.

Wallis, R.F. and Balkanski, M. (1986). Many Body Aspects of Solid
State Spectroscopy. North Holland: Amsterdam.

Wang, C.S. and Callaway, J. (1974). Band structure of nickel: spin-
orbit coupling, the Fermi surface, and the optical conductivity.
Physical Review B, 9, 4897.

Weller, D. (1996). Spin-orbit Influenced Spectroscopies of Magnetic
Solids, Vol. 466 of Lecture Notes in Physics, Springer: Berlin,
p. 1.

Weller, D., Sticht, J., Harp, G.R., et al. (1992). Enhanced orbital
magnetic moment on Co atoms in Co/Pd multilayers: a magnetic
circular x-ray dichroism study. Physical Review Letters, 69, 2307.

Wende, H. (2004). Recent advances in x-ray absorption spec-
troscopy. Reports on Progress in Physics, 67, 2105.
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1 INTRODUCTION

The importance of observations made by interpreting the
scattering of radiation cannot be overstated. Indeed, many
of the most important developments in science during
the past century have come from scattering experiments.
These developments include Rutherford’s discovery of the
atomic nucleus, atomic and nuclear structure, nuclear fission,
antiferromagnetism, and additions to a classification within
the elementary-particle zoo. Today, scattering experiments
continually provide vital information in biology, physics,
chemistry, and materials science that cannot be obtained by
any other experimental technique.

The information derived about a material by shooting
radiation at it depends on the nature of the radiation and
its interaction with the constituents of the material, namely,
electrons and nuclei. Beams of photons, leptons (electrons
and muons), and baryons have proved to be the most
useful for studies of condensed matter. Here, we discuss the
scattering of neutrons and X rays by magnetic materials.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Neutrons interact strongly with nuclei and, also, the
magnetization from unpaired electrons, while the absence
of a charge makes them a delicate probe of matter. X rays
interact strongly with electrons, and the observations about
their magnetization made by interpreting the scattering of
X rays nicely complements that derived by interpreting the
scattering of neutrons. While the latter is a well-established
technique, some of the potential from X-ray scattering to
the study of electron magnetism has been realized relatively
recently with growth in the availability of bright, energy-
tuneable, and polarized beams of X rays from synchrotron
sources.

Scattering by a regular array of ions, in a crystal or fab-
ricated structure, contains Bragg reflections that arise only
when strict geometric conditions are satisfied. The experi-
mental techniques of neutron and X-ray Bragg diffraction
are cornerstones of crystallography. Atomic resonances can
significantly influence X-ray scattering, and resonant X-ray
Bragg diffraction has received much attention because it
yields unique and valuable information in favorable cases.
A fundamental limitation on resonant X-ray Bragg diffrac-
tion is that the contribution to scattering by the electrons
of interest is not precisely factored. X-ray scattering off
resonance and most applications of neutron scattering pos-
sess a precise factoring of the probe radiation from the
electrons.

Bragg diffraction is a purely elastic scattering event,
because in the kinematics of the event, the relevant mass is
the mass of the sample. It is also purely coherent scattering
because any form of disorder (static or dynamic) violates the
strict geometric conditions to be satisfied in Bragg reflections.
The amplitude for Bragg diffraction is always the mean value
of the scattering amplitude, as this amplitude describes a
perfect crystal. The Bragg amplitude is to be derived by
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averaging the scattering amplitude over all forms of static
and dynamic disorders, which may arise from both classical
and quantum processes.

Inelastic neutron scattering is an immensely valuable tech-
nique, and it provides direct and extensive information on
lattice vibrations and their magnetic counterparts called spin
waves or magnons. Inelastic X-ray scattering provides a
more limited coverage of lattice vibrations, but the infor-
mation might be singularly valuable because it is inac-
cessible with neutron scattering by virtue of kinetic and
intensity restrictions in the neutron scattering event. The
relative balance in the strengths and weaknesses of neu-
tron versus X-ray scattering techniques changes as the qual-
ity of instruments and radiation sources evolve. Certainly,
some X-ray experiments recently performed were simply
impossible to perform without the development of instru-
ments supplied by synchrotron sources in the preceding
decade.

The extreme inelastic X-ray scattering called Compton
scattering is also incoherent scattering. The information it
provides about electron magnetization is confined to spin
magnetization. A separation of spin and orbital magnetiza-
tion can be achieved with X-ray diffraction, whereas neu-
tron diffraction is made by the total magnetization in the
sample.

In the following sections, we survey salient features of the
theory of neutron and X-ray scattering by magnetic materi-
als. Observations are interpreted with a scattering amplitude
(more correctly referred to as a scattering length because
of its dimension) for each type of radiation. The distribu-
tion in space and energy of the radiation deflected by a
material is related to a cross section that has the dimen-
sion of area divided by energy. The cross section in question
is proportional to the square of the modulus of the scat-
tering length and weighted by a δ-function that expresses
the conservation of energy. Note that absorption of radiation
by a material is related to the imaginary part of the scat-
tering length evaluated for zero deflection. Thus, scattering
and absorption of a radiation by a sample are two sides of
one coin.

By and large, in this survey of magnetic scattering theory,
we adopt the notation and conventions used by Lovesey
(1987), Lovesey and Collins (1996) and Lovesey et al.
(2005). The reader is referred to these articles for much of
the background material, such as formal aspects of scatter-
ing theory, the description of states of partial polarization,
and the Stokes parameters for a beam of X rays. Our sur-
vey is skewed toward magnetic X-ray scattering because it is
less well established than magnetic neutron scattering which
has been thoroughly reviewed in several places. We do not
describe sources of radiation, diffraction instruments, or data
analysis.

2 X-RAY SCATTERING

A beam of X rays illuminating a sample is principally
deflected by the charge, spin, and orbital degree of freedom
of the electrons in the sample. The nuclei in the sample also
contribute, of course, but, in most cases, their contribution
to scattering can be safely neglected because the ratio
of the nuclear and electron scattering lengths is of the
order of the inverse of the ratio of their masses which
is ≈1/1836.

2.1 Thomson scattering by a material
with translational order

A translationally ordered material is represented by the
regular repetition of a unit cell. The lattice that generates
the regular repetition possesses a conjugate lattice defined
by reciprocal lattice vectors, which we denote by τ . Bragg
reflection can occur when the change in the wave vector of
the radiation (X rays), upon scattering, matches a reciprocal
lattice vector. Strong Bragg reflections in a diffraction pattern
arise from equivalent electron charge densities in the unit
cells that are related by translational symmetry. In an atomic
model, the densities are attached to sites occupied by ions in
the unit cell.

A relatively few electrons in the valence states of a
material that possess angular anisotropy and, possibly, a
magnetic moment, can cause weak reflections in a diffraction
pattern. The importance of observations made by analyzing
the weak reflections can hardly be exaggerated, for the
valence electrons in question participate in many of the
material’s properties, including both structural and transport
properties.

It is customary to develop the X-ray scattering length in
powers of E/mec

2 where E is the primary energy and the
rest mass energy of an electron mec

2 = 0.511 MeV. The first
term in the development is proportional to the spatial Fourier
transform of the electron charge density and it is responsible
for the Thomson scattering of X rays. (The development
referred to is summarized in equation (8.17) in Lovesey and
Collins (1996).)

Let k denote the difference between the primary q and
secondary q′ wave vectors with k = q − q′. The corre-
sponding polarization vectors are ε and ε′ and they satisfy
q·ε = q′·ε′ = 0. Writing re = α2a0 = 0.282 × 10−12 cm for
the classical radius of the electron, the Thomson contribution
to the X-ray scattering length per unit cell is −re(ε

′·ε)Fc(k)

where Fc(k) is the appropriate unit cell structure factor. Here,
we attach a subscript c to denote the charge density.

In an atomic model of the electron density in the sample,
Fc(k) is a sum over every ion in the unit cell that contributes
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to scattering. A site in the unit cell is labeled by its position d.
We then have

Fc(k) =
∑

d

eik·d
〈∑

j

eik·Rj

〉
d

(1)

where angular brackets denote the expectation value, or time-
average, of the enclosed quantity and the j sum is over the
positions Rj of the electrons associated with the site d. The

quantity
〈∑

j eik·Rj

〉
is often called an atomic form factor and

it is equal to the number of electrons when k = 0. If there
is translational symmetry between the sites in the cell, Fc(k)

is simply proportional to the sum of the spatial phase factors
eik·d, and the sum is different from zero for k = τ (hkl), where
the Miller indices hkl label a space group allowed reflection.

To describe the contribution made by valence electrons to

Fc(k), we introduce an atomic tensor
〈
T K

Q

〉
c

for each ion.

Here the positive integer K is the rank of the spherical
tensor and the projection Q can take (2K + 1) integer values
that satisfy −K ≤ Q ≤ K . An atomic tensor is also called
a multipole moment and they are named by the Greek word
for the number 2K . For completeness, Table 1 contains the
names of multipoles for K = 1 to K = 6.

An actual definition of
〈
T K

Q

〉
c

follows by separating

the angular dependence of k and Rj in eik·Rj which is
accomplished with the identity,

eik·Rj = 4π
∑
KQ

iKjK

(
kRj

) {
YK

Q (k̂)
}∗

YK
Q (R̂j ) (2)

Here, k̂ = k/k and R̂j = Rj /Rj are unit vectors, jK(kRj ) is

a spherical Bessel function, and YK
Q (k̂) = (−1)Q

{
YK

−Q(k̂)
}∗

is a spherical harmonic. Using (2), we write the expectation
value of eik·Rj , which is required in the structure factor as

Table 1. Parity-even multipoles.
Even-rank multipoles are time-
even. Odd-rank multipoles are
time-odd and they vanish in the
absence of magnetic order.

Rank K Name = 2K

K = 1 Dipole
K = 2 Quadrupole
K = 3 Octupole
K = 4 Hexadecapole
K = 5 Triakontadipole
K = 6 Hexacontatetrapole

〈∑
j

eik·Rj

〉
= (4π)

1
2
∑
KQ

iK 〈jK 〉 (−1)QYK
−Q(k̂)

〈
T K

Q

〉
c

(3)

with

〈
T K

Q

〉
c
= (4π)

1
2
∑

j

〈
YK

Q (R̂j )
〉

(4)

We note three properties of the Thomson atomic tensor. First,

its Hermitian conjugate
(
T K

Q

)† = (−1)QT K
−Q and, secondly,

Hermitian conjugation is identical to the reversal of time.
Thirdly, under inversion of the electron coordinates T K

Q →
(−1)KT K

Q . In equation (3), 〈jK(k)〉 is the integral of a
spherical Bessel function of order K weighted by the radial
density of the valence wave function and 〈jk(0)〉 = 0 for

K > 0. The atomic tensor
〈
T K

Q

〉
c

evaluated for K = Q = 0

is equal to the number of valence electrons. Weak Bragg
reflections arise from tensors with rank K > 0.

We have written the right-hand side of (3) as a scalar
product of two tensors of equal rank; if A and B are
vector quantities (tensors of rank 1), their scalar product
A·B = AxBx + AyBy + AzBz written in terms of spheri-
cal components, A+1 = −(Ax + iAy)/

√
2, A0 = Az, and

A−1 = (Ax − iAy)/
√

2 and similar expressions for BQ, is
A·B = ∑

Q(−1)QA−QBQ.
After inserting (3) in (1), the Thomson structure factor

may be written as

Fc(k) = (4π)
1
2
∑
KQ

iK 〈jK 〉 (−1)QYK
−Q(k̂)�K

Q (5)

where

�K
Q =

∑
d

eik·d 〈
T K

Q

〉
c,d

(6)

We assume that 〈jK 〉 is the same for each ion that contributes
to the weak Bragg reflection in question, for which �0

0 = 0.
Note that Fc(k) is a scalar product of a tensor YK

Q (k̂)

associated with the X rays and a tensor �K
Q associated with

the electrons. This feature of the structure factor will appear
again and again in scattering processes, including resonant
X-ray diffraction.

2.2 Thomson scattering by DyB2C2

By way of an example, let us consider diffraction by a
crystal of dysprosium borocarbide (DyB2C2). On lowering
the temperature to T = 24.7 K, the material undergoes a
continuous structural phase transition in which there is a
buckling of B and C rings of ions normal to the crystal c axis.
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Figure 1. Low-temperature structure of DyB2C2 (Tanaka et al., 1999). In the left-hand panel, the c axis is normal to the plane of the
diagram which contains the Dy ions represented by large shaded circles. The right-hand panel illustrates the configuration of Dy magnetic
moments. (Reproduced from Y Tanaka et al: J Phys: Condens. Matter 11, 1999, with permission from IOP Publishing Ltd.)

The transition reduces the crystal symmetry to P 42/mnm,
down from the crystal symmetry P 4/mbm (Tanaka et al.,
1999). The change in symmetry is accompanied by doubling
the unit cell along the c axis, and a reduction in symmetry
of the sites occupied by Dy ions to 2/m (C2h) from 4/m

(C4h). Various aspects of the crystal structure are illustrated
in Figure 1.

When it comes to calculating �K
Q, we apply to

〈
T K

Q

〉
c,d

the

symmetry operators that relate the four Dy sites in the unit
cell of P 42/mnm. One finds (Lovesey and Knight, 2001)

�K
Q = 〈

T K
Q

〉
c,1

{
1 + νQeik·d3

} + (−1)KνQ

〈
T K

−Q

〉
c,1

× {
eik·d2 + νQeik·d4

}
(7)

where νQ = eiQπ/2. We consider two classes of space-group
forbidden reflections hkl which we label (a) and (b). The
corresponding spatial phase factors are as follows:

(a) h + k odd and l = (2n + 1)/2,

eik·d2 = eik·d3 = −1, eik·d4 = +1

(b) h + k even and l = (2n + 1)/2,

eik·d2 = +1, eik·d3 = eik·d4 = −1

We find

�K
Q(a) = (1 − νQ)

{〈
T K

Q

〉
c,1

− (−1)KνQ

〈
T K

−Q

〉
c,1

}
(8)

and

�K
Q(b) = (1 − νQ)

{〈
T K

Q

〉
c,1

+ (−1)KνQ

〈
T K

−Q

〉
c,1

}
(9)

and the common prefactor guarantees �K
0 (a) = �K

0 (b) =
0, a result that is a signature of space-group forbidden
reflections.

There are more selection rules on K and Q that are derived
from �K

Q. First, for Thomson scattering, K is an even inte-
ger, as we mentioned, and the maximum K = 2l when l

is the angular momentum of the valence shell occupied by
the equivalent electrons. In our example, the valence shell is
expected to be formed by the Dy 4f state and l = 3. Thus, the
possible �K

Q are �2
Q, �4

Q, �6
Q which, respectively, are linear

combinations of quadrupoles, hexadecapoles, and hexacon-
tatetrapoles of the Dy 4f valence state. The contributions they
make to Fc(k) are weighted by 〈j2〉, 〈j4〉, and 〈j6〉, which
vanish as k = |k| goes to zero, and the magnitude of 〈j2〉
is typically much larger than the magnitudes of both 〈j4〉
and 〈j6〉. Secondly, the diad parallel to the c axis requires

that
〈
T K

Q

〉
c,1

be unchanged by a rotation by π about the c

axis, that is,
〈
T K

Q

〉
c,1

= eiQπ
〈
T K

Q

〉
c,1

. The nontrivial condi-

tion is that Q be an even integer Q = ±2, ±4, . . .. However,
a necessary condition for scattering is νQ = eiQπ/2 = −1,
and hence the allowed Q = ±2, ±6, . . .. Notice that, in the
room-temperature structure P 4/mbm, there is no Thomson
scattering because dysprosium ions occupy sites with a tetrad
parallel to the c axis, and this rotation symmetry restricts Q

to values 0, ±4, ±8, . . . for which �K
Q = 0.
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Below the structural phase transition, at T = 24.7 K, the
structure factor for Thomson scattering is derived from

�K
Q(a) = 2

{〈
T K

Q

〉
c,1

+ 〈
T K

−Q

〉
c,1

}
= �K

−Q(a) = 4Re
〈
T K

Q

〉
c,1

(10)
and

�K
Q(b) = 2

{〈
T K

Q

〉
c,1

− 〈
T K

−Q

〉
c,1

}
= −�K

−Q(b)

= 4iIm
〈
T K

Q

〉
c,1

(11)

To express �K
Q in terms of the real or imaginary parts of〈

T K
Q

〉
c,1

, we have used a result for
〈
T K

−Q

〉
that is valid in the

general case, namely,
〈
T K

−Q

〉
= (−1)Q

〈
T K

Q

〉∗
, together with

the fact that Q is an even integer.
The Thomson structure factors are (Tanaka et al., 2004)

Fc(k) = (4π)
1
2

∑
K=2,4,6

iK
∑

Q=2,6

[
YK

−Q(k̂) + YK
Q (k̂)

]

× 〈jK 〉 �K
Q(a)

= −4

√
15

2
〈j2〉

(
k̂2
a − k̂2

b

)
Re

〈
T 2

2

〉
c,1 + · · · (12)

and

Fc(k) = (4π)
1
2

∑
K=2,4,6

iK
∑

Q=2,6

[
YK

−Q(k̂) − YK
Q (k̂)

]

× 〈jK 〉 �K
Q(b)

= −4
√

30 〈j2〉 k̂a k̂b Im
〈
T 2

2

〉
c,1 + · · · (13)

Dots in these expressions denote terms with tensors of rank
4 and rank 6, and k̂a and k̂b are proportional to the Miller
indices h and k, respectively. Our findings, (12) and (13),
are in complete agreement with experimental data reported
by Adachi et al. (2002), which we display in Figure 2.

2.3 Magnetic X-ray scattering

The first correction, in an expansion of E/mec
2, to the

Thomson contribution of the X-ray scattering length includes
magnetic terms. These magnetic terms also appear in the
amplitudes for the magnetic scattering of neutrons. In the
neutron case, the spin (S) and orbital (L) magnetic moments
of the unpaired electrons in the crystal are linked together and
the amplitude is proportional to the total magnetic moment
L + 2S, to a good approximation. By contrast, the magnetic
X-ray amplitude is such that the spin and orbital moments
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Figure 2. Thomson scattering by DyB2C2. Raw data of the l-scan
measurements are displayed for various types of reflections. The
crystal was held at a temperature of 18 K except for data gathered
in scans about (014). Intensities reported in panel (b) were taken at
18 K (solid circles) and 30 K (open circles) and they are attributed
to multiple scattering. (Reproduced from Adachi et al., 2002, with
permission from the American Physical Society.  2002.)

can be separately measured (de Bergevin and Brunel, 1981;
Brunel and de Bergevin, 1981).

Let us introduce a vector structure factor for spin moments
and a vector structure factor for orbital moments, in analogy
with the Thomson structure factor Fc(k). To a first approx-
imation, that is often perfectly adequate for the analysis of
observations, our new structure factors are

FS �
∑

d

fS(k; d)〈S〉deik·d (14)

and

FL � 1

2

∑
d

fL(k; d)〈L〉deik·d (15)

Here, fS(k; d) and fL(k; d) are atomic form factors for
the spin and orbital moment distributions, respectively, and
fS(0; d) = fL(0; d) = 1. The general expressions for the
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Figure 3. The diagram illustrates the Cartesian coordinate system
(xyz) adopted for Bragg diffraction and the relation to the states
of polarization, σ and π , in the primary and secondary beams of
X rays.

magnetic structure factors can include octupole and higher-
order multipole moments.

The magnetic X-ray scattering length has a nontrivial
dependence on the polarization in the primary and secondary
beams. It is normal practice to label by σ , polarization
perpendicular to the plane of scattering, which is defined
by q and q′. Polarization in the plane is labeled by π .
Our choice of Cartesian axes (xyz) for the geometry of the
experiment is illustrated in Figure 3, where σ and z axis
are parallel and k = τ (hkl) is directed along −x. The X-
ray scattering length is expressed as −reG, where G is a
2 × 2 matrix with components Gσ ′σ , Gπ ′π , Gσ ′π , and Gπ ′σ .
The Thomson structure factor appears in channels where the
polarization in the primary beam is not rotated on deflection
by the crystal, namely, Gσ ′σ and Gπ ′π . These two channels
may also contain magnetic components, Fz

S (k) and Fz
L(k),

normal to the plane of scattering. The rotated channels,
with amplitudes Gσ ′π and Gπ ′σ are purely magnetic, and
components of FS(k) and FL(k) lie in the plane.

It is convenient to express the components of G in terms
of four other quantities specified in the following text:

β = −1

2
(1 + cos 2θ) Fc(k) − iδ sin(2θ)

{
Fz

S (k)

+ (1 − cos 2θ) F z
L(k)

}
(16)

α3 = −1

2
(1 − cos 2θ) Fc(k) + iδ(1 − cos 2θ)

× sin(2θ)F z
L(k) (17)

α2 = δ cos θ (1 − cos 2θ)
{
2F

y
L (k) + F

y

S (k)
}

(18)

α1 = −iδ sin θ (1 − cos 2θ) F x
S (k) (19)

In these expressions, δ = E/mec
2 = �q/mec, and θ is the

Bragg angle illustrated in Figure 3. The virtue in using
(16–19), instead of G, lies in the ease of handling polar-
ization. If P = (P1, P2, P3) is the Stokes vector, the X-ray
cross section is simply

dσ

d	
= r2

e

{
α∗·α + |β|2 + β∗ (P·α) + (

P·α∗)β

+ iP· (α∗ × α
)}

(20)

By way of illustration of (20), let us consider pure charge
scattering, that is, set FS(k) = FL(k) = 0 in (17–19). The
equation (20) then reduces to

dσ

d	
= 1

2
r2

e |Fc(k)|2 {
1 + cos2(2θ) + P3 sin2(2θ)

}
(21)

The cross section for X rays polarized perpendicular to
the plane P3 = +1 (σ polarization) is larger than the cross
section for X rays polarized in the plane P3 = −1 (π
polarization).

When the polarization is nearly perfect, the components
of G provide the corresponding cross sections. For example,
with pure σ polarization, the unrotated cross section is
re|Gσ ′σ |2. The four components of G are,

Gσ ′σ = β + α3 = −Fc(k) − iδ sin(2θ)F z
S (k)

Gπ ′π = β − α3

Gσ ′π = α1 − iα2

Gπ ′σ = α1 + iα2 (22)

The component Gσ ′σ is written out in full to emphasize that
it depends on the spin and not on the orbital magnetization.

The spin moment is the dominant magnetic contribution
in the limit of small Bragg angles achieved with very
hard X rays, and the appropriate cross section has a very
simple form. For Bragg diffraction from planes of reflection
separated by a distance d and X rays with a wavelength
λ 
 d, the Bragg angle is of the order of (λ/d) and the
cross section is

dσ

d	
= r2

e

∣∣∣∣Fc(k) + i

(
λ0

d

)
Fz

S (k)

∣∣∣∣
2

(23)

Here, λ0 = (2παa0) = (2πre/α) � 0.0243 Å is the Comp-
ton wavelength.

Let us now consider the calculation of FS(k) and FL(k).
Results (14) and (15) are not adequate if the wave vector
is large enough for 〈j2(k)〉 to be larger than 〈j0(k)〉, where
〈jK(k)〉 is the Bessel function transform of order K of the
radial component of the valence wave function introduced in
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Section 2.1. In fact, (14) and (15) become exact in the limit
k → 0 at which the atomic form factors are unity.

The definition of FS(k) is similar to the definition of the
Thomson (charge) structure factor (1), except that FS(k) is
related to the spatial Fourier transform of the spin density
and it is a vector quantity. We have

FS(k) =
∑

d

eik·d
〈∑

j

eik·Rj sj

〉
d

(24)

where Rj and sj are the position and spin operators of the
j th electron associated with the site d in the unit cell. The
orbital structure factor FL(K) is constructed from an operator
built from eik·Rj and the linear momentum pj . One finds

FL(k) =
∑

d

eik·d
〈(

1

ik2

) ∑
j

eik·Rj
(
k × pj

)〉
d

(25)

In evaluating matrix elements of the operator in (25), one
can usefully take advantage of the fact that FL(k) appears in
G in a scalar product with vectors that are perpendicular to
k, namely, q + q′ and q × q′

Spherical components of structure factors for the magnetic
scattering of X rays by spin and orbital moments are

(FS(k))p =
∑
KQ

∑
K ′Q′

(4π)
1
2 YK

Q (k̂)�K ′
Q′ (S)

(
KQK ′Q′|1p

)
(26)

and

(FL(k))p =
∑
Q

∑
K ′Q′

(4π)
1
2 YK ′−1

Q (k̂)�K ′
Q′(L)

× (
K ′ − 1QK ′Q′|1p

)
(27)

In these expressions, (KQK ′Q′|jm) is a Clebsch–Gordan
coefficient and,

�K ′
Q′ (S) =

∑
d

eik·d
〈
T K ′

Q′
〉
S,d

(28)

�K ′
Q′(L) =

∑
d

eik·d
〈
T K ′

Q′
〉
L,d

(29)

Notice that FS is essentially a product of two spherical
tensors, YK

Q and �K ′
Q , that form a spherical tensor of rank

1 (a vector). The same is true of FL and we have in this case
added the two contributions K = K ′ ± 1.

The spherical tensors for spin and orbital magnetization
in (28) and (29) are constructed for equivalent electrons in
a valence shell with angular momentum quantum number l.
For example, in the case of the ion Dy+3, there are nine

electrons in the 4f shell (l = 3). The spherical tensors are
called Hermitian tensors for they satisfy (results (30–32)
apply to the spin and orbital tensors, and we omit subscripts
S and L)

(
T K ′

Q′
)† = (−1)Q

′
T K ′

−Q′ (30)

Behavior with respect to time reversal is of paramount
importance, and under this transformation

T K ′
Q′ −→ (−1)K

′+Q′
T K ′

−Q′ (31)

The results (30) and (31) tell us how the expectation value〈
T K ′

Q′
〉

behaves with respect to reversal of the polarity of a
magnetic field acting on the spin. The field, H, can be an
applied field or the direction of the spontaneous moment
developed by the ion. The requested result is

〈
T K ′

Q′
〉
H

= (−1)K
′ 〈

T K ′
Q′

〉
−H

(32)

from which we conclude that multipoles with odd K ′ are
absent in a material with no long-range magnetic order.
Tensors with odd (even) K ′ are said to be time-odd (time-
even) on the basis of their behavior with respect to the
polarity of H. Under an inversion of the coordinates of the
electrons (Rj → −Rj and sj → sj ), the spherical tensors
do not change. Tensors with this property are called parity-
even tensors and they are either true (or polar) tensors that
have even K ′, or pseudotensors (or axial tensors) that have
odd K ′.

The integer K in (26) is even with K = 0, 2, 4, . . . , 2l.
The corresponding integer K ′ = K and K ′ = K ± 1. Thus,
the spin structure factor can contain both even-rank (polar)
tensors and odd-rank (axial) tensors even though the elec-
trons are equivalent and occupy one atomic shell. However,
even-rank tensors are often forbidden by a selection rule.
One possibility is that �K ′

Q′(S) vanishes for even K ′ as a
direct result of the motif of magnetic moments. A second
possibility is that the reduced matrix element of T K ′

Q′ van-
ishes for even K ′. This is the case when all electrons occupy
a single manifold, labeled by quantum numbers S, L, and
J . Turning to (27), for the orbital structure factor, the inte-
ger K is also even. However, K ′ is an odd integer and
K ′ = 1, 3, . . . , (2l − 1). In (27), we have exploited a result
which relates the two contributions with K = K ′ ± 1 and a
given K ′.

Expectation values of the spin and orbital spherical tensors
can be calculated, given an appropriate wave function for
the valence shell. An individual matrix element in the
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expectation value is of the form

〈
SLJM

∣∣∣T K ′
Q′

∣∣∣ S ′L′J ′M ′
〉
= (−1)J−M

(
J K ′ J ′

−M Q′ M ′

)

×
(
SLJ ||T K ′ ||S ′L′J ′

)
(33)

and now we set out expressions for the reduced matrix

elements
(
SLJ ||T K ′ ||S ′L′J ′

)
. We choose to express the spin

and orbital reduced matrix elements in terms of quantities
C(K, K ′) and A(K, K ′), which are extensively tabulated for
3d and 4f valence shells (Balcar and Lovesey (1989, 2002)).
Reduced matrix elements required in (26) and (27) can be
derived from the tables in conjunction with the defining
relations (Lovesey, 1987)(

SLJ ||
(
T K ′)

S
||S ′L′J ′

)
= iK(−1)J

′−J+K ′

×
{

1

3
(2J + 1)(2K ′ + 1)

} 1
2

C(K, K ′) (34)

and(
SLJ ||

(
T K ′)

L
||S ′L′J ′

)
= (−1)J

′−J+K ′
(2J + 1)

1
2

×2K ′ + 1

K ′ + 1
A(K ′ − 1, K ′) (35)

The somewhat awkward form of these relations is a quirk of
the historical development of magnetic neutron diffraction
in which C(K, K ′) and A(K, K ′) were first used. Note that
C(K, K ′) and A(K, K ′) depend on the full range of quantum
numbers required to specify the valence shell of an ion.

We recall that the Thomson atomic tensors introduced
in Section 2.1 satisfy (30), while under the time-reversal
transform T K

Q → (−1)QT K
−Q in place of (31). These two

properties give
〈
T K

Q

〉
c,H

=
〈
T K

Q

〉
c,−H

in place of (32), which

confirms that the Thomson atomic tensor is a time-even
tensor. It is also a polar tensor.

2.4 Resonant X-ray Bragg diffraction

Figure 4 shows data collected in X-ray Bragg diffraction
by V2O3 with the sample held at a temperature below its
Néel temperature, at which it becomes a fully compensating
antiferromagnet Paolasini et al. (1999, 2001). The crystal
structure is a body-centered cell and all the data in Figure 4
are collected at space-group forbidden reflections, for which
the sum of the Miller indices is an odd integer. The panels on
the left-hand side of Figure 4 show the intensity as a function
of X-ray energy collected near the vanadium K edge, and in
the unrotated (σ ′σ ) and rotated (π ′σ ) channels of scattering.

There is a strong resonance enhancement of the Bragg
intensities, and the same phenomenon has been observed with
many different resonant ions and many crystal structures.
In the case of V2O3, the diffraction is due to magnetic
multipoles that disorder above the Néel temperature and
the Bragg intensities disappear. The strong feature in panel
(a) of Figure 4 that sits around 5.475 keV is due to an
El event from the vanadium K edge, at which an electron
in the 1s core is photoejected in a process that changes
orbital angular momentum by one unit. In panel (a), there
is a second, weaker feature at an energy of 5.465 eV that
is due to an E2 event at the vanadium K edge. With this
process, the photoejected electron visits a 3d valence state,
which is the state occupied by the unpaired electrons that
form the vanadium magnetic moment. Looking at panel (c)
in Figure 4, the El event is absent. This observation is one
consequence of a selection rule that, for odd h and even k + l,
forbids resonance events caused by vectorlike interactions,
that is, tensors with rank K = 1.

Panels (b) and (d) in Figure 4 show Bragg intensities as
a function of rotation of the V2O3 domain about the Bragg
wave vector. If the scattering was from electronic states with
no angular anisotropy, the intensity in such scans would
be constant. As it is, Bragg intensities depend strongly on
the angle of rotation and, also, states of polarization in the
diffracted beam.

The data in Figure 4, collected on V2O3, nicely illus-
trates the wealth of information in X-ray resonance-enhanced
Bragg diffraction. In this section, we outline a framework
for the interpretation of the observations. Applied to V2O3,
it shows that the observations reported in Figure 4 are in
complete accord with the established chemical and mag-
netic structures. Parity-odd contributions to scattering, which
are allowed because the resonant vanadium ions occupy
sites that are not centers of inversion symmetry, are not
visible in available diffraction data. In particular, data col-
lected in reflections with odd h and even k + l are a
direct observation of the vanadium octupole moment cre-
ated by orbital magnetization in the vanadium 3d valence
shell.

Resonance-enhanced Bragg diffraction has most to offer
when the intermediate state, visited by the photoejected core
electron, is the valence state of the resonant ion occupied
by unpaired electrons, namely, 3d, 4f, and 5f states of 3d
transition, lanthanide, and actinide ions. In these experiments,
the observations are directly related to states that participate
in magnetic, magneto-electronic, and charge-ordering effects.
Observations on other states of a resonant ion, for example,
an El event at the K edge of a 3d transition-metal ion,
can provide insight into the valence state of interest but it
is less credible because there are more assumptions in the
interpretation.
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Figure 4. Energy profiles (panels a and c) and azimuthal-angle scans (panels b and d) for resonant Bragg diffraction by a domain within
antiferromagnetic V2O3. The observations are at space-group forbidden reflections and in channels with unrotated and rotated polarization.
(Information taken from Paolasini et al., 2001, with permission from Elsevier, and Paolasini et al., 1999, with permission from the American
Physical Society.  1999.)

The X-ray scattering length expanded to the first order
in E/mec

2 has two contributions with denominators that
depend explicitly on the X-ray energy. These terms arise
in the scattering length from inclusion at the second level
of application of the radiation–matter interaction that is
linear in the vector potential. To be more specific, the
two energy-dependent terms are second order in the current
operator, J(q) = ∑

(pj + isj × q)eiq·Rj , where pj , Rj , and
sj are, respectively, the electron linear momentum, position,
and spin operators. We have already encountered these two
terms in the limit of large E where they are the source of
the contribution to scattering by orbital angular momentum
l = R × p. Taken together with the Thomson contribution
to the scattering length and the limit of small E, the terms
in question produce the Rayleigh limit of the cross section,
while the one term that admits an energy resonance gives, in
this condition, the Kramers–Heisenberg dispersion formula.
Here, we are interested in the energy resonance and its
influence on Bragg diffraction, which is a strictly elastic
scattering process.

Let us label the virtual intermediate states by the quantum
number η. Unlike the initial and final states of the crystal,
intermediate states are not from the equilibrium configura-
tion of the crystal and they decay on a timescale ∼�/�,
where � is the total width of the resonance. The reso-
nant contribution to the scattering length for Bragg diffrac-
tion is

f = −
(

re

me

) ∑
η()

〈{ε′·J(−q′)|η〉〈η|ε·J(q)}〉
E −  + i�/2

(36)

where the sum of intermediate states is limited to those that
contribute at the resonance energy . Of course,  and
� have a dependence on the intermediate states but this
dependence is weak in some cases and the energy profile
is observed to be that expected for a single oscillator like
(36). Notice that one requires the expectation value of the
operators in the numerator of f to describe Bragg diffraction.

Let us examine matrix elements of J(q). After expanding
J(q) to the first order in q,

〈η|ε·J(q)|µ〉 = (ime)
∑

j

〈
η|ε·Rj

(
1 + i

2
q·Rj

)
|µ

〉

+
(

i

2

)
〈η| (q × ε) · (L + 2S) |µ〉 (37)

where  = Eη − Eµ is the energy of the resonance. The first
contribution on the right-hand side is the sum of the El and
E2 processes, and the second contribution is magnetic and
includes a matrix element of the magnetic moment L + 2S.
The relative magnitudes of the magnetic and El contributions
is of the order (magnetic dipole/electric dipole) ∼µB/ea0,
where µB and a0 are the Bohr magneton and the Bohr radius,
and the ratio µB/ea0 = α/2 which leads us to expect that
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the El process is the dominant one. On the other hand, the
magnitudes of E2 and magnetic processes can be similar
at very low energies although evidence in the X-ray region
is that the E2 process is the most significant. Similarly, in
the X-ray region, E1–E2 interference is more significant
than the E1-magnetic interference process. Our calculation
of resonant X-ray Bragg diffraction will therefore be based
on the El and E2 processes in (37), parity-even events that
are pure El or pure E2. Resonant Bragg diffraction in the
E1–E2 interference channel, and associated dichroic signals,
is discussed by Lovesey et al. (2005).

An additional assumption is to neglect in the numerator
of (36), its dependence on the projection M of the angular
momentum of the core state, J . The assumption is valid
in the absence of an interaction between the core state and
the photoejected electron, and the absence of a significant
exchange coupling of the core and valence states. An energy
profile that is very different from a single Lorentzian shape,
which is expected for a single oscillator, would suggest that
the assumed degeneracy with respect to M is not good. The
assumption that we make is equivalent to the fast-collision
approximation used by Hannon et al. (1988, 1989) and Luo
et al. (1993); See also Carra and Thole (1994).

For an E1 event, we write the resonant X-ray scattering
length as

f = −
(

2πe

λ

)2
Z(E1)

E − 1 + i�1/2
(38)

with

Z(E1) =
∑

d

eik·d ∑
η()

〈∑
j (d)

{ε′·Rj |η〉〈η|ε·Rj }
〉

(39)

The prefactor in (38) is obtained by equating  with the
X-ray energy E = �cq = 2π�c/λ. Since Z(E1) is a scalar
quantity, the right-hand side of (39) can be written as a scalar
product of a spherical tensor

XK
Q =

∑
qq′

ε′
qεq′

(
1q1q ′|KQ

)
(40)

and an atomic tensor
〈
T K

Q

〉
E1

. The structure factor is

F(E1) =
∑
KQ

(−1)QXK
−Q�K

Q (41)

where, as in previous cases,

�K
Q =

∑
d

eik·d 〈
T K

Q

〉
E1,d

(42)

and the sum on d is over all resonant ions in the unit cell.
Because XK

Q is constructed from two vector quantities, the
triangular condition gives K = 0, 1, and 2.

A pure E2 event might be visible in the energy profile at
an energy 2 that is usually less than 1. At this juncture,
the reader can usefully visit Figure 4. With the assumption
that we make, the contribution to the scattering length has
the form shown in (38) with a resonance energy and total
width 2 and �2, respectively. The numerator Z(E2) is
proportional to a structure factor which is a scalar product
of HK

Q that describes the polarization and directions of the
primary and secondary X-ray beams, and �K

Q modeled on

(42) but with an atomic tensor
〈
T K

Q

〉
E2

. We find,

F(E2) =
∑
KQ

(−1)K+QHK
−Q�K

Q (43)

�K
Q =

∑
d

eik·d 〈
T K

Q

〉
E2,d

(44)

The definition of HK
Q is found in Lovesey et al. (2005).

The atomic tensors in (42) and (44) satisfy (30–32). A
time-odd contribution to an E1 event can appear in the rotated
channel of scattering. This selection rule does not apply to
an E2 event.

We see in Figure 4 that the Bragg intensity can vary
as the crystal is rotated about the Bragg wave vector
τ (hkl) in an azimuthal-angle scan. The variation is directly
related to the angular anisotropy in the valence shell that
accommodates the photoejected electron, provided the X-
ray beam illuminates a single domain within the crystal.
Observations, like the ones reported in Figure 4, thus provide
valuable insight into the ordering of the charge and orbital
degrees of freedom in the valence shell. In the next section,
we examine the observations made on DyB2C2.

2.5 Resonant Bragg diffraction by DyB2C2

Figure 5 shows the energy spectra of the (0 0 3/2),
(0 0 5/2), (1 0 1/2), and (0 0 2) reflections observed for
DyB2C2 at a temperature below the quadrupole order tem-
perature TQ = 24.7 K. The azimuthal angle ψ is defined by
the angle between the a axis and the scattering plane. The res-
onant enhancement at Dy LIII absorption edge is successfully
interpreted in terms of the coherent sum of two oscillators
for E1 and E2 transitions. Here, the E1 transition is from
the 2p state to the 5d vacant state, and the E2 is from the
2p state to the 4f vacant state, respectively. Each oscillator
is defined by a resonance energy  and a width �, and the
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Figure 5. Energy dependence of the intensity of the (0 0 3/2)
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corresponding scattering length is

fµν = F (E1)
µν (hkl)

E − 1 + i
2�1

+ r
F (E2)

µν (hkl)

E − 2 + i
2�2

(45)

In this expression µ and ν label the secondary and primary
polarizations, respectively, r is an unknown mixing parame-
ter that could depend on µ, ν, and F (E1)

µν (hkl) and F (E2)
µν (hkl)

are structure factors for E1 and E2 enhanced diffraction,
expressed in terms of mean values of atomic tensors denoted

by
〈
T

(K)
q

〉
.

Scattering enhanced by an E1 event at (0 0 l) reflections

contain only
〈
T

(2)
q

〉
. One finds

F
(E1)

σ ′σ (0 0 l) = 4 sin(2ψ) Im
〈
T

(2)
+2

〉
d

(46)

F
(E1)

π ′σ (0 0 l) = −4 sin θ cos(2ψ) Im
〈
T

(2)
+2

〉
d

(47)

In these expressions, we have added a subscript d to atomic
tensors to indicate that absorption at the 2p edge and an E1

event lead to a sensitivity to d-like, presumably strongly 5d,
valence states. The dependences of E1 structure factors on
the azimuthal angle ψ and the Bragg angle θ are consistent
with results reported by Tanaka et al. (2004).

Structure factors for an E2 event are

F
(E2)

σ ′σ (0 0 l) = sin2 θ sin(2ψ) Im

[
3
√

2
〈
T

(2)
+2

〉

−
√

11
〈
T

(4)
+2

〉 ]
(48)

F
(E2)

π ′σ (0 0 l) = − sin θ cos(2ψ) Im

[
3
√

2
〈
T

(2)
+2

〉
×(3 − 4 sin2 θ)

+1

2

√
11

〈
T

(4)
+2

〉
(1 + sin2 θ)

]
(49)

The structure factors are linear combinations of the imaginary

parts of
〈
T

(2)
+2

〉
and

〈
T

(4)
+2

〉
, and these atomic tensors describe

properties of the Dy 4f valence shell. We note that

〈
T

(2)
+2

〉
= 1√

6

〈
T (2)

xx − T (2)
yy + 2iT (2)

xy

〉
∝ 〈Qaa − Qbb + 2iQab〉 (50)

where the Cartesian tensors
〈
T

(2)
αβ

〉
are purely real. F (2)

µν (0 0 l)

contains a component of the quadrupole moment
〈
T

(2)
xy

〉
∝〈

Qxy

〉
and that of the hexadecapole Im

〈
T

(4)
+2

〉
, and all con-

tributions transform according to the representation Ag of
2/m.

The data shown in panels from (a) to (d) in Figure 5
are interpreted by the coherent sum of two oscillators E1
and E2 transitions as shown in equation 45. The E1 and E2
transitions are located at 7.790 and 7.780 keV, respectively.
Note that the E1 event width is so wide that the interference
of two oscillators cannot be neglected at E = 2.

Figure 6 shows the azimuthal-angle scans for (0 0 1/2),
(0 0 3/2), and (0 0 5/2) reflections, measured at E = 1 and
E = 2. The fourfold periodicity and the antiphase signals
for the σ ′ − σ channel and π ′ − σ channel are interpreted
by equations from (46) to (49). The mixing parameter,
r , in (45) is found to be independent of the states of
polarization and independent of the Bragg angle, to a very
good approximation. These findings provide confidence in
the use of (45) to model the energy profiles.

2.6 Compton scattering

Magnetic Compton scattering is reviewed by Lovesey and
Collins (1996) and Cooper et al. (2004), where it is argued
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Figure 6. Change of the integrated intensities with the rotation of sample around the reflection vectors, (0 0 1/2), (0 0 3/2), and (0 0 5/2)
at (a) 7.790 keV and at (b) 7.780 keV. Azimuthal angle ψ is defined by the angle between the a axis and the scattering plane. Circles
(triangles) represent the signal through the π ′ − σ (σ ′ − σ ) channel. The full curves and broken curves are squared sinusoidal functions
which are fit to each of the data. (Reproduced from Tanaka et al., 2004, with permission from the American Physical Society.  2004.)

that it is a probe of the spin magnetization. Figure 7 shows
the Compton profiles observed in extensive experiments on
an iron crystal, together with the reconstructed spin density
and the corresponding quantity calculated by a band-structure
method. Dimunition in density at zero momentum transfer
is believed to be a result of negative spin polarization of
the s,p-like band electrons, while the surrounding ridge of
density is due to d-like electrons in wave functions localized
on sites occupied by Fe atoms.

The Compton limit of scattering is achieved with hard
X rays. In the energy region E ∼ 40–60 keV, the parameter
δ = E/mec

2 is small enough to be a good expansion
parameter in which to develop the scattering length, as we
indicated in Section 2.3. Experiments performed at much
higher energies require, for their interpretation, a theory not
based on a simple expansion in powers of δ (Bell, Felsteiner
and Pitaevskii, 1996).

Using the scattering length already employed in
Section 2.3, and developing the cross section for scatter-
ing at the first level of approximation in δ, we find a cross
section that is the sum of the standard Compton limit plus an
interference between charge and spin amplitudes induced by
circular polarization in the primary X-ray beam. The ori-
gin of the interference term can be seen in (20). Taking
P = (0, P2, 0) the polarization dependent terms are of the

form β + α2 and α3 + α1. Inspection of (16–19) shows that
both β + α2 and α3 + α1 contain contributions of order δ.
Only the charge–spin interference contribution to scattering
survives in the Compton limit of these two terms.

Let us denote by ρ(Q), the momentum distribution func-
tion of the bound electrons in the ground state of the material,
namely,

ρ(Q) = 〈δ(Q − p)〉 (51)

where p in the argument of the δ-function is the operator for
the linear momentum of an electron � = 1. In the Compton
limit of scattering, the conservation of energy is the same
as that for scattering by a single, free electron with a wave
vector Q, and this is

ω = ER + k·Q/me (52)

where the recoil energy ER = k2/2me and ω is the change
in energy of the X rays. By setting Q0 = me(ω − ER)/k and
choosing k parallel to the z axis, we find

ω − ER − k·Q/me = (k/me)(Q0 − Qz) (53)
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Figure 7. (a) A cross section of the experimental ρmag in the
(001) plane including the � point. (b) A cross section of the
theoretical ρmag in the (001) plane including the � point. The
density is convoluted with the experimental resolution expressed
by a Gaussian of full width at half-maximum (FWHM) 0.76 a.u.
(Reproduced from Tanaka et al., 1993, with permission from the
American Physical Society.  1993.)

With these definitions, the standard Compton limit of
scattering is described by a cross section

d2σ

d	dE′ = 1

2
(q ′/q)r2

e

(
1 + cos2 2θ

)
×

∫
dQρ(Q)δ(ω − ER − k·Q/me) (54)

Here, E′ = E − ω is the final X-ray energy, d	 is the
element of solid angle subtended by the X-ray detector, and
the X-ray beam is deflected through an angle 2θ . The so-
called Compton profile J (Q) is defined by

(me/k)J (Q0) =
∫

dQρ(Q)δ(ω − ER − k·Q/me)

= (me/k)

∫
dQx

∫
dQyρ(Qx, Qy, Q0) (55)

We define a spin-weighted Compton profile, Jα
S (Q), where

α is a Cartesian component, by an expression similar to (55).
Let

(Nme/k)J α
S (Q0) =

∫
dQ

∑
j

〈
δ(Q − pj )s

α
j

〉
×δ(ω − ER − k·Q/me) (56)

The integral of J (Q0) over all Q0 is unity, whereas the same
integral of JS(Q0) is proportional to the spin magnetization.

Adding to (54) the charge–spin interference scattering, we
arrive at a cross section

d2σ

d	 dE′ = (Nr2
e me/k)

{
1

2

(
1 + cos2 2θ

)
J (Q0)

−δP2(1 − cos 2θ)(q̂ cos 2θ + q̂′) × JS(Q0)

}

(57)
In this expression, P2 is the helicity of the primary beam of
X rays, and q̂ and q̂′ are unit vectors with q̂·q̂′ = cos 2θ .
The charge–spin interference contribution to (57) can be
separated from the standard Compton contribution, which
is essentially Thomson scattering, by reversing either the
magnetizing field applied to the sample or the handedness
of primary helicity, P2. The cross section (57) is the basis of
the interpretation of data gathered on iron and displayed in
Figure 7.

3 MAGNETIC NEUTRON SCATTERING

Neutrons are scattered by the magnetization in a material
that is created by the spin and orbital moments of unpaired
electrons (Lovesey, 1987). The orbital interaction is identical
to the one encountered in the magnetic scattering of X rays,
and the actual operator is displayed in (25). The spin
interaction for neutron scattering is also very similar to
the spin interaction in X-ray scattering. The one difference
between the two cases is that in neutron scattering the spin
of an electron is linked to the deflection of the beam in a
double vector product k × (sj × k)/k2. We denote by Q⊥
the sum of the spin and orbital interactions

Q⊥ =
∑

j

eik·Rj

(
1

k2

){
k × (sj × k) − i(k × pj )

}
(58)

A neutron with spin sn has a scattering length γ resn·Q⊥,
where γ = −1.9130 is the gyromagnetic ratio.

The total neutron scattering length is the sum of the
nuclear scattering and the magnetic scattering lengths. On
borrowing the language adopted in Section 2.3, nuclear
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scattering contributes to both β and α while magnetic
scattering contributes only to α. The cross section for
neutron scattering can be derived from (20) where P is the
mean value of 2sn. Purely magnetic contributions to the cross
section follow by the identifications α = γ reQ⊥ and β = 0.

3.1 Bragg diffraction

It is often convenient to employ an interaction operator Q
which is related to Q⊥ through

Q⊥ = {
k × (Q × k)/k2} (59)

In neutron diffraction, we can use FL(k) + FS(k) for the
expectation value 〈Q〉, where the two structure factors are
defined by (24) and (25).

For small scattering wave vectors, 〈Q〉 is related to
magnetic moments. With µ = 〈L + 2S〉, one has µ = g〈J〉
for a lanthanide ion, where g is the Landé splitting factor. For
a 3d transition-metal ion, µ = g〈S〉, and the gyromagnetic
factor g is close to the value 2 that is correct when the orbital
magnetic moment 〈L〉 = (g − 2)〈S〉 is fully quenched. The
small-k limit of 〈Q〉 is,

〈Q〉 = FS(k) + FL(k)

≈ 1

2

∑
d

eik·dµd (60)

In the more general case, when the scattering wave vector is
not particularly small, one needs to use (26) and (27) for the
spin and orbital structure factors appearing in (60).

3.2 Inelastic scattering

When both the wave vector and the energy of the radi-
ation change in a scattering event, the cross section is
best described in terms of a correlation function. The cor-
relation function in purely magnetic neutron scattering is〈
Q†

⊥·Q⊥(t)
〉
, where Q⊥(t) is the Heisenberg operator cre-

ated from (58), and Q⊥ = Q⊥(0). The conventional form of
the cross section is

d2σ

d	 dE′ = (γ re)
2 (q ′/q)S(k, ω) (61)

where k = q − q′ and ω = E − E′ are the changes in the
wave vector and the energy (� = 1), respectively. S(k, ω) in

(61) is the Van Hove response function,

S(k, ω) = 1

2π

∫ ∞

−∞
dte−iωt

〈
Q†

⊥·Q⊥(t)
〉

=
∑
αβ

(
δαβ − k̂αk̂β

) 1

2π

∫ ∞

−∞
dte−iωt

〈
QαQβ(t)

〉
(62)

Purely elastic scattering, such as Bragg diffraction, is
described by the cross section obtained from (62) with〈
Q†

⊥·Q⊥(t = ∞)
〉
= |〈Q⊥〉|2.

The most general form of the cross section is derived
from (20) treating α and β as operators. Usually, the largest
contributions to β and α are the nuclear and magnetic
interactions. In the general use of (20), it creates a partial
differential cross section, like (61), and each of the five terms
on the right-hand side is a response function similar to (62).
For example, the third term β∗(P·α) in (20) is interpreted as
the response function

1

2π

∫ ∞

−∞
dte−iωt

〈
β†P·α(t)

〉
(63)

Analytic properties of the cross section are discussed
by Lovesey and Watson (1998). The cross sections discussed
in this section are the basis for the interpretation of data that
provides the dispersion of spin waves and critical magnetic
fluctuations in magnetic salts and metallic magnets.
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1 INTRODUCTION

In diverse forms of condensed matter, both the thermody-
namic properties and the linear response of materials to
external probes are controlled by the nature of the col-
lective excitations in the system of interest. In the case
of macroscopic crystals, we have the well-known phonon
modes, which are wave like excitations of atomic motions,
which propagate through the crystal. Each phonon mode is
described by a wave vector �k which resides in the appropriate
Brillouin zone. When |�k|a0 � 1, with a0 the lattice constant,
the dispersion relation of these modes may be described by a
continuum theory, the classical theory of elasticity. We must
turn to fully microscopic theories when the wavelength and
the lattice constant are comparable.

In ordered magnets of all forms (ferromagnets, antiferro-
magnets, ferrimagnets, . . .) we encounter the spin analog of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

the phonon modes just described. These are wave like exci-
tations that propagate through the lattice of ordered spins;
if we focus on the given spin in the lattice when such a
mode is excited, the spin is tipped slightly away from its
equilibrium direction and engages in circular or elliptical
precession. As one progresses down the lattice of spins in
a direction parallel to the wave vector, the phase angle ϕ(�l)
associated with the motion of the spin on lattice site �l varies
as �k · �l, once again with �k a wave vector in the appropriate
Brillouin zone. Introductory descriptions of these excitations
may be found in textbooks. For example, see the discussion
by Kittel (1976). As in the case of phonons, the energy of
spin waves is quantized in units of �ω(�k), with ω(

⇀
k ) the

frequency of the spin wave mode with wave vector �k. The
relationship between frequency and wave vector is referred
to as the spin-wave dispersion relation. When one wishes to
emphasize the quantum-mechanical character of these col-
lective excitations, one refers to them as magnons. For the
purposes of this chapter, the term spin wave and magnon are
regarded as interchangeable.

Spin-wave quanta or magnons are thermally excited, and at
temperatures well below the magnetic ordering temperature
(Curie temperature, Neel temperature) one may develop
descriptions of the contribution of the magnetic degrees of
freedom to the thermodynamic properties of magnets by
combining the dispersion relation with the fact that spin
waves are bosons (Kittel, 1963a). We have as an example
the celebrated Bloch T 3/2 law which describes the initial
falloff with increasing temperature of the magnetization in
ferromagnets (Kittel, 1963a). It is the case as well that spin
waves couple to external probes, thus allowing their study
by experimental methods such as inelastic neutron scattering
(Kittel, 1963b). In addition, they control the response of
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magnetic materials to external probes, so long as one is
in the linear response regime. If one wishes to describe a
ferromagnetic resonance (FMR) experiment, for example, the
physical origin of the resonant absorption is excitation of a
long wavelength spin wave by the microwave field which
illuminates the sample.

At the time of this writing, the theory of spin waves,
along with their interaction with each other and with external
probes is a mature, well-developed field. It is the case
as well that experimental studies of spin waves and their
influence on materials is also very well developed. Owing to
this, it is impossible to review the field in any meaningful
sense in a brief chapter such as this. We refer the reader
to the classic Rado–Suhl volumes (Rado and Suhl, 1963a,
1963b, 1965, 1966), within which the reader will find an
excellent collection of articles that describe basic aspects of
spin waves and their interactions. These volumes, though
published many years ago, still stand as excellent reference
material on fundamental aspects of this topic. We shall
focus here on recent developments. Our discussion will be
focused on the theory and experimental study of the spin
wave excitations in the ultrathin ferromagnets, which play
such a central role in contemporary nanoscale magnetic
devices. We shall also discuss the nature of spin waves
in the bulk 3d ferromagnets and the means of studying
them experimentally, since this will acquaint us with physics
we need to understand spin dynamics in ultrathin metallic
magnets. It should be remarked that in our discussion, we
not only focus on very recent developments but also cover a
considerable amount of material which has appeared after the
Rado–Suhl volumes were published but nonetheless some
years ago. This is required, in the mind of the author, to set
down the conceptual basis for the work of more recent years.

Before we turn to this topic, some additional general
remarks are in order. The ultrathin films of current interest
are fabricated largely from the 3d ferromagnetic elements or
their alloys. Certainly magnetism in bulk forms of the 3d
ferromagnets along with that in thick (micron range) films
has been studied in great detail for many decades. However,
surprisingly our knowledge of the spin waves in these
materials is not so complete. FMR studies and Brillouin light
scattering (BLS) have provided us with detailed information
on spin-wave modes in the regime where the wavelengths
are long compared to the lattice constant. FMR probes
modes in these metals whose wavelength is comparable to
the microwave skin depth, the order of a micron. BLS, a
spectroscopy confined to the near surface because of the
optical skin depth (∼150–200 Å), allows one to probe modes
which propagate parallel to the surface with wavelengths of
the order of that of visible light, approximately one-half
micron. As we shall see, spin-wave modes of such long
wavelengths may be described by a phenomenology similar

in spirit to the theory of elasticity when it is applied to the
description of phonons.

To obtain truly microscopic information on the physics
of the response of the spin system, one needs to study
modes whose wavelength is comparable to the underlying
lattice constant. The method used standardly in the study of
short wavelength collective excitations in condensed matter
physics, the inelastic scattering of thermal neutrons, in these
materials can probe only the near vicinity of the center of the
Brillouin zone, perhaps wave vectors smaller than 107 cm−1.
The reason for this is that the spin system is very ‘stiff’ in
the 3d ferromagnets, with the consequence that the excitation
energy of short wavelength spin waves (|�k| ∼ 108 cm−1) is
in the range of 250–300 meV. Such large excitation energies
are beyond the reach of thermal neutrons. Spallation sources
must then be used, and it is also the case that the neutron
excitation cross section is very small at large wave vectors.
Experimental studies of short wavelength neutrons in the 3d
ferromagnets are thus a challenge, with the consequence that
only few studies are found in the literature.

Theoretical description of spin waves in these materials
is also a challenge. The materials are itinerant ferromagnets,
wherein the magnetic moment carrying electrons reside in
the broad 3d energy bands, whose width is the order of 4 eV.
(For an introduction to the fundamental physics of itinerant
magnets, see the lengthy discussion by Herring, 1966.) Thus,
one must begin with a full electronic structure calculation
of the ferromagnetic ground state, and then generate a
description of the spin waves through use of a methodology
such as time dependent density-functional theory. Such an
undertaking has been possible for a number of years now
for bulk materials, but since data on the short wavelength
spin waves is sparse, theoretical efforts which explore the
entire Brillouin zone (as opposed to the spin-wave exchange
stiffness which controls the long wavelength form of the
dispersion relation) are not so large in number. It is curious
and surprising that at the time of this writing, our knowledge
of short wavelength spin waves in these most common of
ferromagnets is less complete than those in very complex
materials.

We shall see that a recently developed experimental
method, spin polarized electron energy loss spectroscopy
(SPEELS), now allows us to examine short wavelength
spin waves in ultrathin films out to the boundary of the
surface Brillouin zone. The method overcomes the difficulty
associated with neutron probes through use of beam electrons
with kinetic energy of several electron volts. It is the case as
well that one realizes an appreciable cross section for exciting
modes of short wavelength with this method.

The outline of this chapter is as follows. In Section 2, we
discuss experimental methods of exciting and probing spin
waves in the 3d transition-metal ferromagnets, with emphasis
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on recent studies of ultrathin films. In Section 3, we dis-
cuss theoretical methods for describing these excitations. We
remark that in this chapter our aim is to acquaint the reader
with basic concepts, and we direct the reader to representa-
tive papers in the literature. This is not an exhaustive review,
in which all papers in the subarea covered are cited and
discussed. Relevant references are found in the papers we
cite.

2 EXPERIMENTAL PROBES OF SPIN
WAVES IN THE 3D FERROMAGNETS

In this section, we shall survey the principal experimental
methods for exciting spin waves in bulk ferromagnetic
metals, and also in the ferromagnetic ultrathin films. Two of
the methods, FMR and BLS, probe modes whose wavelength
is very long compared to the lattice constant. The second two
we discuss, inelastic neutron scattering and SPEELS, endow
us with the ability to look at modes whose wavelength is
comparable to the underlying lattice constant, though neutron
scattering has the limitations noted in the preceding text. We
begin with some introductory remarks.

If our interest is in spin-wave modes with wavelength long
compared to the lattice constant, then a description of the
modes may be obtained from a phenomenology based on the
Landau–Lifschitz–Gilbert (LLG) equation. This describes
the motion of the magnetization per unit volume �M(�r, t);
the notion is that we may consider a volume whose linear
dimensions are small compared to the wavelength of the
mode of interest, and within this volume we have a large
number of spins coupled together tightly by the strong
exchange interactions responsible for the ferromagnetism.
The magnetization per unit volume is then a vector of
fixed length, which precesses in response to various effective
magnetic fields, which exert a torque on it. For our purposes
here, we write the LLG equation in the form

d �M(�r, t)

dt
= −γ [ �Heff(�r, t) × �M(�r, t)]

− G

γM2
S

[
�M(�r, t) × d �M(�r, t)

dt

]
(1)

Here γ is the magnitude of the gyromagnetic ratio, and
�Heff(�r, t) is the effective magnetic field which drives the spin

precession. The second term is a phenomenological damping
term. We will have much to say about the appropriateness
of this term in our discussion of FMR linewidths in ultrathin
films.

The effective magnetic field has several contributions.
First, there will be an externally applied Zeeman field, which

gives rise to an internal field that one may assume to be
constant in magnitude and direction for many simple sample
geometries. Anisotropy contributes to the effective field
along with macroscopic dipolar fields generated by virtue
of motions of the spins. Also exchange interactions between
the spins provide a restoring torque, which resists spatial
gradients. This leads to a contribution to the effective field
of the form (D/MS)∇2 �M(�r, t), where MS is the saturation
magnetization, and D is a parameter called the exchange
stiffness, a magnetic analog to the elastic constants of
elasticity theory. We shall present a more detailed discussion
of this long wavelength phenomenology in Section 3.

The LLG equation is a nonlinear differential equation
when written out in full, and allows a discussion of large
amplitude motions of the spin system within the framework
of its phenomenological basis. Spin waves are the magnetic
normal modes, which describe small amplitude deviations
of the spins from the ferromagnetic equilibrium orientation.
Thus, in the infinitely extended crystal, one obtains a
description of spin waves by linearizing the LLG equation
and then seeking plane wave solutions where the small
deviations have the dependence on space and time given by
exp[i(�k · �r − ω(�k)t)]. From this procedure one can generate
a dispersion relation for the spin waves. We shall quote the
result for a simple case. We consider an infinitely extended
ferromagnet with magnetization directed along an easy axis,
and external Zeeman field applied parallel to the easy axis.
The dispersion relation is then given by (Kittel, 1963a)

ω(�k) = γ [(H + Dk2)(H + 4πMS sin2 θ �k + Dk2)]1/2 (2)

In this expression, H = H0 + Ha is the sum of the external
Zeeman field H0 and the effective anisotropy field Ha, which
acts parallel to the easy axis. The angle θ �k is the angle
between the wave vector �k and the easy axis.

With the dispersion relation in equation (2) in hand, we
can now discuss aspects of FMR and BLS in the metallic
ferromagnets. We begin first with bulk materials or thick
(several micron) films, and then we turn our attention to
ultrathin ferromagnets.

2.1 Ferromagnetic resonance studies of the 3d
ferromagnets

2.1.1 Bulk materials

In a FMR study, microwaves illuminate the sample, and one
realizes resonant absorption of the microwaves when their
frequency matches that of the long wavelength spin waves.
In the usual geometry, the magnetization is parallel to the
sample surface. The wave vector of the microwaves is normal
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to the surface, and hence the wave vectors of the spin waves
excited in the experiment are normal to the magnetization
and also to the surface. Thus, in this geometry the dispersion
relation of the spin waves is given by equation (2), for the
case where the angle θ �k is 90

◦
.

The wavelength of the microwaves is so long that one
might suppose one could also set the wave vector �k to zero
in equation (2). However, in the metallic 3d ferromagnets,
the microwave field does not penetrate into the sample in
a uniform manner, but is limited to the skin depth δ0. As
one approaches the ferromagnetic resonance frequency of the
system, excitation of the spins in the ferromagnet causes the
spin depth to contract. The skin depth is given by δ(ω) =
δ0/

√
µeff(ω), where µeff(ω) is an effective susceptibility

that peaks strongly on resonance. (For a recent discussion
of the influence of the frequency variation of the skin
depth on microwave devices, we refer the reader to a paper
by Camley and Mills, 1997.) On resonance, the effective
skin depth can contract to only a few hundred angstroms.
Suppose, under these circumstances, one makes a spatial
Fourier decomposition of the microwave field inside the
sample. The resulting spectrum will contain a range of wave
vectors from zero up to values as large as 106 cm−1. Under
these circumstances, the microwave field may excite finite
wave vector spin waves, with wave vectors extending over
this entire range. Thus, the frequency shifts contained in the
exchange term Dk2 must be incorporated into any analysis of
data. We may use the value of the exchange stiffness of Fe to
set the scale of such effects. In Fe, D ∼ 2.5 × 10−9 G-cm2.
Thus, in magnetic field units, a spin wave with wave vector of
106 cm−1 is shifted away from the nominal FMR frequency
[H(H + 4πMS)]1/2 by some 250 G.

Under the conditions just described, even in the absence of
damping of the spin motions, the FMR spectrum will consist
of a rather broad line, with line shape controlled by the spatial
Fourier spectrum of the microwave field, which penetrates
into the sample. In such experiments, one scans applied field
and measures microwave absorption at fixed frequency; one
realizes absorption of energy by spin waves over a rather
wide range of fields.

It then follows that in such studies, one cannot determine
the damping constant G which appears in the LLG equation
simply from the observed width of the feature seen in the
FMR spectrum. One must fit the spectrum carefully by a
description of the absorption provided by an analysis based
on application of the Maxwell equations in combination
with the LLG equation. The theory of FMR absorption
in the ferromagnetic metals was developed many years
ago (Amendt and Rado, 1955). We refer the reader to a
classic experimental study of ferromagnetic resonance in
these materials, where detailed comparisons between theory
and experiment were presented (Bhagat and Lubitz, 1974).

These authors conclude that the damping term, which appears
in the LLG equation accounts very well for their data, and
they extract values for the (temperature dependent) damping
constant G over a wide range of temperatures. Data is
presented for Fe, Ni, and hcp-Co.

2.1.2 Ultrathin films

FMR has been used actively in the study of ultrathin
ferromagnnets for well over a decade, at the time of
this writing. It has proved a powerful means of exploring
aspects of magnetism unique to these materials, along with
damping or relaxation mechanisms not operative in the bulk
ferromagnetic metals. Before we begin our discussion, we
remark that the term ultrathin ferromagnet refers to a film
consisting of a small number of atomic layers, from two or
three layers to perhaps twenty or so. The thickness of these
films thus ranges from a few angstroms to perhaps 50 Å.

First, we comment on the spin-wave spectrum of such
materials. As noted above in a FMR measurement, one
excites spin-wave modes whose wave vector parallel to the
surface is very close to zero. In the case of FMR studies
of thick, bulk crystals of the 3d ferromagnetic metals, we
saw that in such measurements, a continuum of modes
are excited; the wave vector perpendicular to the surface
can take on any desired value, so long as it lies within
the appropriate two-dimensional Brillouin zone. The range
of wave vectors excited depends on the spatial profile of
the microwave field inside the sample. In films of finite
thickness, the perpendicular component of the wave vector
is quantized, and assumes values of ≈nπ/d where d is the
film thickness, and n an integer. The lowest mode with
n = 0 is the uniform mode, wherein all spins in the film
precess in phase. Consider the first standing wave mode, with
n = 1. When we examine the structure of equation (2) in the
preceding text, we see that the term D(π/d)2 upshifts the
mode in frequency in very much the same manner as a larger
applied magnetic field. Suppose we consider the magnitude
of this shift in a film whose thickness is in the range of 30 Å.
We recall from our example in the preceding text that in
Fe, we have D ∼ 2.5 × 10−9 G-cm2. The exchange induced
frequency shift of the first standing wave spin-wave mode
for a 30-Å Fe film is thus equivalent to that provided by an
effective field in the range of 2.5 × 105 G! The frequency of
such a mode is in the 100 GHz range, well outside the regime
accessible to conventional FMR spectrometers. Hence, in the
ultrathin films under discussion here, the microwaves excite
a single mode of the film, the uniform mode wherein all spins
precess coherently.

The frequency of the uniform mode provides one with
access to key properties of the ultrathin film, such as the
anisotropy and also the value of the magnetization MS.
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Of central interest in the study of these materials is the nature
of the anisotropy, which can be dramatically different than
that found in bulk materials. It is beyond the scope of the
present chapter to provide the reader with an understand-
ing of the origin of anisotropy in ferromagnets, but we can
provide a brief sketch. There are two forms of anisotropy,
each with a very different origin. One, referred to as shape
anisotropy, has its origin in the fact that ferromagnetic align-
ment of atomic moments creates a macroscopic dipolar field.
If a thin film is magnetized in the z direction normal to its sur-
faces, one sees easily that magnetic poles on the film surface
lead to an internal field of strength −4πMSẑ perpendicular
to the film surfaces, and antiparallel to the magnetization.
Conversely, if the film is magnetized parallel to its surface,
there is no such internal field. A consequence is that shape
anisotropy forces the magnetization in ferromagnetic films
to lie in plane, under circumstances where it is dominant.
The second form of anisotropy has its origin in spin-orbit
coupling, and the interaction of the moment bearing ions in
the material with crystalline fields from the neighboring ions.
This provides the magnetic moments with the means of sens-
ing the local site symmetry. For a magnetic ion which sits in
a site of cubic symmetry, the spin orbit induced anisotropy
is quite weak, whereas in sites with uniaxial symmetry it can
be up to 2 orders of magnitude stronger than for cubic sites.
Elsewhere, in an article directed toward ultrathin ferromag-
nets, the present author has set forth a simple physical picture
which allows one to appreciate why this is so (Mills, 1994).

In an ultrathin film, a very large fraction of the magnetic
ions sit in either surface or interface sites, whose symme-
try is necessarily very low. In a five-layer film, for instance,
40% of the ions sit in such sites. As a consequence, in an
ultrathin film of Fe or Ni, the spin-orbit anisotropy can be
enormously larger than realized in the bulk. It can over-
whelm the shape anisotropy in magnitude and for many
film/substrate combinations one can realize films where the
easy axis is in fact normal to the surface. An additional
source of spin orbit induced anisotropy arises from the mis-
match between the lattice constants of the material in the
film and the substrate. This results in films whose interior
sites have tetragonal rather than cubic symmetry, and once
again the easy axis associated with this source can be either
normal to or in the plane perpendicular to the film surfaces.
Clearly, one can control both the strength and character of
the very strong anisotropy realized in ultrathin ferromagnets
by varying the growth conditions, the substrate, and also the
composition of any capping layer that may be present. This
allows one to create materials with desired hysteresis loops
or microwave response by design. One may refer to spin
engineering in these materials, a magnetic analogue of the
band gap engineering so important in semiconductor device
design.

FMR proves to be a most powerful means of deducing the
nature of the anisotropy present in any sample of interest.
The key measurement is the variation of the FMR resonance
field with angle relative to the various symmetry axes of
the system. Such data can be interpreted in impressive
quantitative detail, to provide one with a remarkably detailed
picture of all aspects of anisotropy. We refer the reader to
excellent articles where such experiments are reviewed, and
the analysis required to interpret the data is discussed (Prinz,
1994; Heinrich, 1994).

An issue discussed very actively in the recent literature is
the nature of the damping of the spin motions in ultrathin
ferromagnets. Is the physics which underlies the damping in
these systems the same as in the bulk 3d ferromagnets, or
does one have new mechanisms unique to the ultrathin film
environment, not present in the bulk? Indeed, one may also
inquire if the damping term in the simple LLG equation is
applicable to the thin-film environment; perhaps a more com-
plex form is appropriate. These questions are very important
from the point of view of contemporary device technol-
ogy. Devices which contain ultrathin ferromagnets depend
on either small amplitude motions of the magnetization, or
perhaps its complete reversal as the basis for their oper-
ation. The speed of the device is clearly then controlled
by damping rates realized on the nanoscale. By now it is
very clear that in ultrathin films, new damping mechanisms
not present in bulk materials are operative, and these can
often be the dominant source damping. It is now well estab-
lished that in commonly encountered structures, the damping
term provided by the LLG phenomenology is qualitatively
incorrect. We conclude this section with comments on this
issue.

Two mechanisms unique to ultrathin ferromagnets have
been invoked in discussions in the literature. One is intrinsic,
and operative for ultrathin films on metallic substrates and
the second is extrinsic and relies on growth defects to be
activated.

The intrinsic mechanism is referred to in the literature
as the spin pumping contribution to the damping rate. In
physical terms, it is best visualized within the picture where
we have local moments of spin �S localized on each lat-
tice sites. Each such local moment is coupled to conduction
electrons by an exchange interaction −J �S · �σ with �σ the
conduction electron spin. While this is surely an oversim-
plified description of the 3d ferromagnets, which are fully
itinerant in character, nonetheless this model has been used
frequently in the literature, particularly in the early papers
on spin pumping. When the FMR spin wave is excited, the
local moments on the lattice engage in coherent precession.
Through the exchange interaction just described, they transfer
angular momentum to the conduction electrons. This results
in a spin current normal to the interface between the film



6 Spin dynamics and relaxation

and the substrate (assumed metallic), and there is thus a loss
of spin angular momentum within the system of precessing
local moments. This is then a damping mechanism, which
relaxes the excited spins by returning them to their equi-
librium orientation. This mechanism was first proposed as
a relaxation mechanism by Berger (1996) and Slonczewski
(1999). FMR studies in which this mechanism was found
to play a key role were reported by Urban, Woltersdorf and
Heinrich (2001). It should be remarked that this mechanism
is fully compatible with the phenomenological damping term
in the LLG equation. For instance, it provides a contribution
to the FMR linewidth, which scales linearly with frequency,
very much as provided by the phenomenology. In the recent
literature, theoretical treatments have appeared which recog-
nize the fully itinerant character of the magnetism in the 3d
transition-metal films studied in these experiments. We shall
discuss these in more detail in Section 3. Thus, we have a
new mechanism operative for ultrathin films, and it may be
incorporated into LLG phenomenology.

As noted above, a second mechanism found to contribute
to the FMR linewidth and to spin damping in ultrathin
ferromagnets is extrinsic in origin. This is referred to in the
literature as two-magnon damping, a term introduced decades
ago in the literature on FMR linewidths in macroscopic
garnet samples. Thus, some brief historical remarks will
prove useful.

Early experimental studies of FMR linewidths in the gar-
nets encountered lines very much wider than expected from
theory applied to the ideal Heisenberg ferromagnet, with
localized spins coupled by exchange and dipolar interac-
tions. In a key experimental paper, it was found that the
FMR linewidth depended sensitively on the size of grit used
to polish the sample surfaces (LeCraw, Spencer and Porter,
1958). In a seminal theoretical paper, Kittel and coworkers
developed a theory based on what they called two-magnon
scattering which provided an excellent account of the obser-
vations (Sparks, Loudon and Kittel, 1961). These authors
noted that the frequency ωFMR of the FMR modes in the
garnet spheres used in the experiments is degenerate in fre-
quency with finite wave vector spin waves, whose dispersion
relation is given in equation (2) above for the limit where the
wavelength of the spin wave is small compared to the radius
of the sphere. Now for an absolutely perfect spherical sample,
all of the spin wave modes are independent normal modes
of the system, so energy cannot be transferred directly from
the uniform precession FMR mode to the degenerate short
wavelength spin waves. However, if defects are present in the
sample, energy may be scattered from the FMR mode to the
degenerate short wavelength spin waves through a matrix ele-
ment provided by the defect. In the case of the garnet spheres,
surface pits produced in the polishing process proved to be
the source of the scattering. In the language of resonance

physics, the two-magnon contribution to the linewidth is a
dephasing mechanism. A process that scatters a spin wave
quantum of the FMR mode to a short wavelength spin wave
scrambles the phases of the spins all of which initially precess
in phase.

It is the case that in ultrathin ferromagnetic films mag-
netized in plane, there are also finite wave vector spin
waves degenerate with the uniform FMR mode. This occurs
because of a peculiar aspect of the magnetic dipolar inter-
action between spins in the two-dimensional environment. If
one has a film of thickness d, and considers the influence
of dipolar interactions on spin waves whose wave vector
satisfies kd � 1, then the dipolar interaction contributes a
term to the dispersion relation linear in wave vector. For
an in plane magnetized film and for range of propagation
angles, the coefficient of this term is negative, so the spin-
wave frequency decreases with increasing wave vector. The
presence of exchange stiffness provides the contribution Dk2,
very much as in equation (2), so there is a minimum in the
dispersion relation at a wave vector km which is in the range
of 105 cm−1 for typical films. (A detailed theory of the con-
tribution of two-magnon scattering in ultrathin films has been
presented by Arias and Mills, 1999). Experimental confirma-
tion of key predictions of the theory is found in the studies
of Azevedo, Olivera, de Aguiar and Rezende (2000) and in
earlier work of the NIST group, who suggested the impor-
tance of this mechanism in ultrathin ferromagnets grown on
exchange biasing substrates (McMichael, Stiles, Chen and
Egelhoff, 1998). It is now clear that this mechanism con-
tributes to the FMR linewidth importantly in diverse ultrathin
ferromagnets; it is the case that for films on exchange biased
substrates, it is strong and usually dominant. For films on
exchange biased substrates, we refer the reader to the theory
and fascinating data presented by the Recife group (Rezende,
Azevedo, Lucena and Augiar, 2001). We also refer the reader
to a review article which discusses early experiments, and the
theory (Mills and Rezende, 2003).

A key prediction of the LLG equation is that the FMR
linewidth should scale linearly with ωFMR, the frequency of
the FMR mode. The theoretical prediction in the paper of
Arias and Mills is that when the two-magnon mechanism is
dominant, the linewidth should increase much more slowly
with frequency than linearly. These authors argued that the
observation of apparent linear frequency dependence in early
studies (Celinski and Henrich, 1991) is a consequence of
sampling a narrow range of FMR frequencies (10, 24, and
36 GHz). It was argued as well that the zero field linewidth
inferred indirectly from such data could be an artifact (Arias
and Mills, 1999). This discussion stimulated a remarkable
series of new measurements of FMR linewidths in ultrathin
Fe films, with data from 1 to 80 GHz (Lindner et al., 2003).
The data is fitted well by the sublinear dependence predicted
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for the two-magnon mechanism, supplemented with a linear
term such as that provided by the LLG phenomenology. A
possible ‘zero field linewidth’ was included in the fitting
process, but this parameter came out to be vanishingly
small. There is also a very large in-plane anisotropy of the
linewidth, compatible with the theory if the defects have a
symmetry character proposed by Arias and Mills (1999). In
the earlier work by the Recife group, it was also established
experimentally that one realizes a very strong wave vector
dependence in the measured linewidths; an extension of the
original theory shows that a fully quantitative account of
these observations follows from the two-magnon mechanism
(Rezende, Azevedo, Lucena and Augiar, 2001). The LLG
phenomenology is a theory of local damping, and there is
thus no intrinsic wave vector dependence contained in this
picture, in clear disagreement with the data.

Despite the fact the experiments cited in the preceding
paragraph shows that the LLG phenomenology commonly
provides a qualitatively incorrect description of both the
wave vector and the frequency dependence of the linewidths
observed in ultrathin ferromagnets, authors still often utilize
the predictions of this well-known equation. If one measures
the FMR linewidth at rather low frequencies, in the 10 GHz
range, and wishes to asses the response characteristics at
much higher frequencies, an extrapolation based on an
assumed linear frequency dependence can be in serious
error. Similarly, as magnetic devices are made smaller and
smaller, one will have large spatial gradients in the dynamic
magnetization, with the consequence that the strong wave
vector dependence absent from LLG phenomenology will be
of importance. The reader should keep in mind that for a
permalloy film grown on an exchange biased substrate, the
linewidth measure in BLS, where the spin-wave vector is in
the range of 105 cm−1 is over five times larger than that found
in FMR on the same sample (Rezende, Azevedo, Lucena and
Augiar, 2001). The wave vector dependence can be dramatic,
a clear contradiction with the prediction provided by the LLG
equation.

Hence unless the origin of the damping mechanism in any
given ultrathin film structure is understood, extrapolation of
linewidths measured in FMR to higher or lower frequencies
must be treated with caution. It is also the case that similar
extrapolations to the damping of spin motions with an appre-
ciable spatial gradient can lead to misleading conclusions
regarding the damping rate of spin motions.

2.2 Brillouin light scattering studies of spin waves
in 3d ferromagnets

We begin with introductory comments. In the BLS experi-
ment, a laser photon is incident on the sample; the photons

typically have frequencies in the visible range. The photon
may interact with thermal fluctuations in the magnetization
within the optical skin depth, typically 100–200 Å for the
3d ferromagnetic metals. Thus, for bulk samples or for films
whose thickness is large compared to the optical skin depth,
one learns about the nature of spin fluctuations near the sur-
face, whereas in ultrathin films the incident laser fields are
uniform throughout the film, to excellent approximation.

In the BLS scattering event, the laser photon can either
emit (‘Stokes scattering’) or absorb (‘anti-Stokes scatter-
ing’) a thermal spin-wave quantum. The frequency ωS of
the scattered photon then follows from energy conservation,
�ωS = �ωI ± �ωSW, where ωI is the frequency of the inci-
dent photon, and ωSW that of the spin wave involved in the
scattering event. If the surfaces are smooth and flat, then
the presence of translational symmetry in the plane paral-
lel to the surfaces of the sample (we consider here only
bulk, semi-infinite crystals, along with films or multilayers
on substrates) requires that wave vector components of the
interacting quanta parallel to the surfaces be conserved. Thus,
the direction of the outgoing scattered photon is controlled
by the conservation condition �kS‖ = �kI‖ ± �kSW‖. The direc-
tion of the outgoing photon is controlled by the wave vector
�kSW‖, since spin-wave frequencies are orders of magnitude
smaller than the photon frequencies. In these statements, �k‖
is the projection of �k onto a plane parallel to the surface.
Thus, for a particular scattering geometry, one obtains infor-
mation regarding the frequencies of the spin waves in the
sample whose wave vector projection onto the plane paral-
lel to the surface is �kSW‖. In the discussion below, we shall
provide examples of BLS spectra taken on thick crystals,
in films whose thickness is large compared to the optical
skin and also for ultrathin films. Note that the wave vector
of the spins probed in such measurements is in the range
of that of optical frequency photons, so |�kSW‖| ∼ 105 cm−1.
Thus, the method reaches out into the Brillouin zone, in con-
trast to FMR which, as we have seen, samples spin waves
for which �kSW‖ ≈ 0. It remains the case, however, that BLS
samples spin waves whose wavelength is very long com-
pared to a lattice constant. They are thus well described by
the macroscopic phenomenology employed to derive the bulk
spin-wave dispersion relation displayed in equation (2), so no
truly microscopic information is contained in the data. For
this, we require a probe whose wavelength is comparable to
a lattice constant. The BLS technique is complementary to
FMR. A virtue of BLS is that when the sample is in a fixed
external magnetic field, one may scan the frequency response
of system in a continuous manner. In contrast, FMR exper-
iment employs a resonant microwave cavity with a single
resonance frequency. In FMR, one drives the frequency the
spin wave of through the cavity resonance by varying the
external magnetic field. In essence, one samples the response
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of the system at one single frequency. To scan a broad range
of frequencies, one must use several cavities, each with its
own resonance frequency. However, the resolution of FMR
is far greater than BLS, so FMR allows study linewidths.
The BLS method can resolve linewidths only if the modes
studies are rather broad.

2.2.1 Spin waves in the BLS spectra of bulk crystals

In this section, we review the information on spin waves
one obtains from BLS spectra, which have been taken on
thick crystals of the 3d ferromagnets. We should mention
that the first BLS study of spin waves in magnetically
ordered materials was reported by Grunberg and Metawe,
who studied the semiconducting ferromagnet material EuO
(Grunberg and Metawe, 1977). A theoretical account of these
spectra was given shortly afterward by Camley and the
present author (Camley and Mills, 1978a). Very soon after
these very beautiful experiments, Sandercock and Wettling
reported BLS spectra for thick samples of Fe and Ni.
(Sandercock and Wettling, 1978, 1979). Camley and the
present author developed the detailed theory of the nature
of spin fluctuations near ferromagnetic surfaces, with BLS
spectra of the metallic ferromagnets in mind, along with a
quantitative theory of the final spectra (Camley and Mills,
1978b). With the emphasis of this chapter in mind, we shall
focus our attention on the BLS spectra of the ferromagnetic
metals. Before we turn to the nature of the actual spectra we
need to comment on the nature of spin wave excitations on
the surface of ferromagnetic materials, in the regime where
the wavelength is long compared to the underlying lattice
constant.

The spin-wave modes of a ferromagnetic film in the usual
configuration, magnetized parallel to its surface, were stud-
ied in a classic paper by Damon and Eshbach (1960). They
employed the magnetostatic approximation, in which the
exchange stiffness parameter D is set to zero. By taking the
limit as the film thickness becomes infinite and focusing on
the near vicinity of the surface, one obtains the spin-wave
frequencies and eigenvectors appropriate to the semi-infinite
ferromagnet. One has bulk spin waves, whose dispersion
relation is described by equation (2) with exchange stiffness
set to zero, which can propagate up to and reflect the surface.
These have frequencies, which range from γH0 for propa-
gation parallel to both the surface and the magnetization,
to γ [H0(H0 + 4πMS)]1/2 for propagation in plane perpen-
dicular to it. A most striking surface spin wave appears in
this theory. Its frequency, γ [H0 + 2πMS] lies above the fre-
quency band appropriate to the bulk spin waves. It has the
most peculiar feature that it is a ‘unidirectional’ wave: it
will propagate from left to right across the magnetization,
but not from right to left. Surface waves with asymmetric

left/right propagation characteristics are referred to as hav-
ing nonreciprocal propagation characteristics. We have here
the most dramatic form of nonreciprocal propagation, where
one realizes ‘one way’ propagation only. In a very thick film,
with thickness large compared to the penetration depth of the
Damon–Eshbach surface wave, on the lower surface of the
film, one has a wave which propagates from left to right.
The penetration depth of the mode is in fact just |�kSW‖|−1.
If the film thickness d is decreased, the eigenvector extends
over the entire film when |�kSW‖|d ∼ 1, with larger ampli-
tude on the upper surface for right to left propagation, and
larger amplitude on the lower surface for left to right prop-
agation. In the thin film limit |�kSW‖|d � 1, the eigenvector
is uniform across the film and the frequency of the mode
drops to the FMR frequency γ [H0(H0 + 4πMS)]1/2. As we
shall see shortly, the Damon–Eshbach surface spin wave is
a prominent feature in the BLS spectra of thick ferromag-
netic crystals. We remark that this mode exists only when the
magnetization is parallel to the surface, and there is no ana-
logue of it when the magnetization is normal to the surface.
For a discussion of the effects on Damon–Eshbach surface
spin waves of tipping the magnetization out of plane, see
the discussion presented by Rahman and the present author
(Rahman and Mills, 1982).

The discussion in the previous paragraph describes magne-
tostatic spin waves, that is, modes whose wavelength is suffi-
ciently long that exchange may be ignored in their description.
As we see again from equation (2), as wave vector increases,
exchange as manifested in the Dk2 term in this equation,
upshifts the frequency of short wavelength bulk spin waves
above the upper bound γ [H0(H0 + 4πMS)]1/2 appropriate
to the long wavelength magnetostatic waves. Thus, we have
short wavelength bulk spin waves, upshifted by exchange,
degenerate with the Damon–Eshbach wave. Camley and the
present author have carried out detailed theoretical studies
which show that even for a perfectly flat surface in the semi-
infinite crystal, finite wave vector, Damon–Eshbach surface
waves acquire a finite lifetime by decaying onto degenerate
bulk spin waves. The lifetime associated with this process
decreases with increasing wave vector, and vanishes at zero
wave vector (Camley and Mills, 1978b).

The points discussed above are illustrated in Figure 1,
where we reproduce a comparison between theory and
experiment, for a BLS spectrum taken on bulk crystalline Fe
magnetized parallel to its surface. The scattering geometry
is arranged so the wave vector transfer is perpendicular to
the magnetization. On the Stokes side, we see the strong,
sharp peak associated with Brilluoin scattering from the
Damon–Eshbach surface spin wave. The absence of such
a feature on the anti-Stokes side of the spectrum is an
elegant demonstration of the ‘one way’ character of these
modes, as discussed above. If the magnetization is reversed,
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Figure 1. A comparison between theory (solid line) and experi-
ment (open dots), for a Brilluoin light scattering spectrum taken on
a single crystal of ferromagnetic Fe. The feature labeled SM is a
Stokes feature associated with scattering from the Damon–Eshbach
surface spin wave, and the broad bands are scatterings from bulk
spin waves. (The data is that of Sandercock and Wettling, 1979, and
the figure is taken from the paper by Camley, Rahman and Mills,
1981.)

this feature will appear on the anti-Stokes side, if the
scattering geometry is held fixed. The broad asymmetric
bands are features produced by scattering from bulk spin
waves, which propagate up to and reflect off the surface.
These have wavelengths sufficiently short that they are
influenced importantly by exchange, so we see that the bulk
spin-wave feature extends to frequencies well above that of
the Damon–Eshbach wave. This figure shows clearly that
the Damon–Eshbach wave sits on top of a manifold of bulk
spin waves, and its linewidth in the BLS spectrum shown is
influenced substantially by the decay process summarized
in the preceeding paragraph. It should be remarked that
no adjustable parameters are involved in the theoretically
calculated spectrum. All parameters which control the shape
of the spectrum are well known.

Very interesting BLS studies of spin waves in Ni/Mo
superlattices have been reported by Keuny and collaborators
(Kueny, Khan, Schuller and Grimsditch, 1984). There is
an interesting issue in regard to such structures. When one
considers their dynamic response, does one think of an array
of uncoupled ferromagnetic films, or is it that the superlattice
structure has its own spectrum of collective excitations, and
thus its own unique response characteristics? In essence, have
we created a new material?

The question just posed was explored within the theory of
magnetostatic spin waves by Camley, Rahman, and Mills
(1983). It is the case that magnetic superlattices have a
unique collective excitation spectrum, even when the non-
magnetic spacer layer is sufficiently thick that exchange
coupling between adjacent ferromagnetic films is negligi-
ble. A Damon–Eshbach surface spin wave on a given film

generates a dynamic dipole field outside the film, which
provides a means of interfilm coupling. One thus realizes
collective excitations of the superlattice, where the new col-
lective modes are appropriate linear combinations of single
film eigenstates. There is a striking prediction of the the-
ory. Suppose the ferromagnetic constituents have thickness
d1 while the nonmagnetic spacer layers have thickness d2.
If d1 > d2, the semi-infinite superlattice supports collective
Damon–Eshbach wave with frequency identical to that of
a semi-infinite whose magnetization is the same as that in
the films. As one decreases d1 for fixed nonmagnetic spacer
layer thickness, when d1 approaches d2 the high-frequency
side of the collective bulk spin-wave modes rises, until
the Damon–Eshbach wave is merged into the bulk spin
waves. The very extensive BLS studies of NiMo superlat-
tices reported by Kueny et al. are in excellent accord with the
predictions of Camley, Rahman, and Mills, except for super-
lattices with nonmagnetic spacer layers so thin that interfilm
exchange influences the response characteristics of the sam-
ple. These experimental studies are remarkable, it should be
said, since the magnetic properties of a very large number of
samples were studied. In this work, superlattices whose con-
stituents had thicknesses from 50 to 5000 Å were explored,
with the ratio for d1/d2 assuming the values 1/3, 1, and 3.

2.2.2 BLS studies of ferromagnetic films

As one moves from very thick crystalline samples to thin fer-
romagnetic films, the Damon–Eshbach spin wave remains a
prominent feature in the spectrum. With exchange neglected,
in a film magnetized in plane with finite thickness, its fre-
quency is given by Damon and Eshbach (1960)

ωDE(k) = γ [(H0 + 2πMS)
2 − 4π2M2

S exp(−2kd)]1/2 (3)

for the standardly studied case where the mode propagates
perpendicular to the magnetization. At fixed wave vector, as
the film thickness is decreased, the frequency of the mode
decreases from the value appropriate to the semi-infinite crys-
tal, γ [H0 + 2πMS] down to γ [H0(H0 + 4πMS)]1/2, which
is the FMR frequency of the film, as we have commented
earlier.

The bulk spin waves have wave vector component normal
to the surface quantized, so the normal component of wave
vector becomes k⊥ = k

(n)
⊥ ≈ nπ/d. Thus, the bulk spin-wave

continuum evident in the data on very thick crystals as
illustrated by Figure 1 breaks up into a series of lines, each
associated with a particular standing wave resonance of the
film, as we have noted above.

We illustrate this in Figure 2(a) for a film of the amorphous
ferromagnetic Fe80B20. The data is that of Grimsditch and his
collaborators (1979). The thickness of the film used in this
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Figure 2. In (a), we show an experimental BLS spectrum taken
from an Fe80B20 ferromagnetic film whose thickness is 106 nm. The
frequency scale is in GHz, and a magnetic field of strength 2.6 kOe
is applied in plane. (The data are from the paper by Grimsditch and
collaborators, 1979.) In (b) we show theoretical spectra as calculated
by Camley and coworkers (1981).)

experiment is 106 nm, and it is magnetized in plane with an
external magnetic field of strength 2.6 kOe applied in plane.
In order to understand this spectrum, some comments on the
nature of the BLS measurement are useful. In these studies,
the spectral composition of the scattered light is analyzed
through use of a Fabry–Perot interferometer. Let light with
only the laser frequency be introduced into this device.
One then sees a sequence of interference features associated
with the standing wave resonances of the interferometer. In
Figure 2(a) two of these structures are evident, at the far left
and the far right of the figure. In this particular detector, they
are separated by 36.7 GHz, which is referred to as the spectral
range of the device. The detector, it should be noted, is placed
at an angle removed from that associated with specularly
reflected light. Roughness on the surface leads to a bit of
elastically scattered light off the specular direction and hence
one sees ‘markers’ at the laser frequency as the spectrum is

scanned. The spin-wave signal then consists of peaks, which
fall between two such laser structures. The peaks labeled
Ai in Figure 2(a) are anti-Stokes scatterings from bulk spin
waves associated with the leftmost laser feature, and the
peaks labeled Si are bulk spin wave losses associated with
the rightmost laser feature. The strong line labeled SM is
the Damon–Eshbach surface magnon, which appears in the
Stokes spectrum for this scattering configuration. We clearly
see that the bulk spin-wave continuum evident in Figure 1
now consists of individual standing spin-wave modes. From
the separation of these modes in frequency, one may infer
the value of the exchange stiffness parameter which enters
equation (2) in the preceding text.

In Figure 2(b), we reproduce a theoretical spectrum from
the paper by Camley and collaborators (1981). One sees
that the theory provides a remarkably quantitative account
of the data. There is one parameter in the theory. At
the film surfaces, the magnetic moments can encounter
strong anisotropy fields with origin in the low symmetry
of the surface environment, as we have discussed in the
section on the FMR spectrum of films. Such anisotropy
fields, if sufficiently strong, can ‘pin’ or suppress the spin
motion at the surface. As illustrated in the paper just
cited, the presence of surface anisotropy affects the relative
intensity of the modes in the bulk spin-wave spectrum. For
the particular sample explored in Figure 2(a), the data is
accounted for very well assuming that surface anisotropy is
absent.

As noted in the preceding text, the data in Figure 2(a)
was taken on a rather thick film, with thickness of 106 nm.
As the film is made thinner, the standing wave bulk modes
shift upward in frequency, through action of the Dk2 term
in equation (2). We have seen one estimating this effect by
replacing the k by its quantized value k

(n)
⊥ ≈ nπ/d. In the

ultrathin limit, the standing wave modes are shifted well
above the spectral range accessible to the BLS technique,
very much as in FMR. One is left with the signature of only
the Damon–Eshbach mode, whose frequency is now very
close to the FMR mode, as one sees from equation (3) with
kd � 1. The eigenvector of this mode is now rather uniform
across the film.

In the discussion we have given above, we have remarked
that in thick samples, the Damon–Eshbach surface spin wave
appears on only one side of the laser line in BLS stud-
ies, either the Stokes or the anti-Stokes side, depending
on the details of the scattering geometry. In the very thin-
film limit where kd � 1, one finds that the eigenvector of
both the mode localized on the upper layer of the film and
that localized on its lower surface become uniform across
the film. Furthermore, in the ultrathin film limit, the opti-
cal skin depth is comparable to or perhaps even larger than
the film thickness. In this limit, one should expect to see
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the Damon–Eshbach mode on both the Stokes and the anti-
Stokes side of the laser line with very close to equal intensity,
since the incident light ‘sees’ both modes in a roughly equal
manner. However, early experimental studies of films with
thickness in the 10 nm range, where one should be well into
the limit just described, a large Stokes/anti-Stokes asymmetry
persists (Camley, Grunberg and Mayr, 1982). These authors
set forth an elegant theoretical explanation of the data, based
on an interesting interference effect in the matrix element for
excitation of the Stokes and the anti-Stokes Damon–Eshbach
mode.

The discussion in the preceding text sets forth the principal
concepts, which control our understanding of BLS in ferro-
magnetic films. We now turn our attention to the information
one may obtain by applying this method to ultrathin ferro-
magnets and bilayers or superlattices formed from ultrathin
ferromagnetic films. There is by now a very extensive liter-
ature on this topic. Thus, a complete review of this literature
is beyond the scope of the present chapter. In the discussion
below, we shall select examples of what may be learned
from this technique, which is complementary to FMR. We
direct the reader to the excellent article by Cochran, which
discusses key concepts and presents a complete list of the ear-
lier seminal papers in this area (Cochran, 1994). Our focus
will also be on earlier selected studies, since these set out the
principal concepts illustrated by data on important systems.

A first question is whether the BLS technique has the
sensitivity to study true ultrathin ferromagnets. In all the
examples discussed in the preceding text, recall that the opti-
cal skin depth is in the range of 10–20 nm. Thus, the spectra
are produced through coupling of the laser light to perhaps
50 or 100 atomic layers of spins. To illustrate spectra that
can be measured from truly ultrathin films, in Figure 3, we
reproduce data taken on a three monolayer film of Fe grown
on the Cu(100) substrate (Dutcher et al., 1988). The signal-
to-noise ratio in this data is most impressive indeed. Thus,
it is clear that the BLS method may be used to probe spin
waves down to the single monolayer level, if desired.

As remarked above, the BLS method has been employed
to obtain quantitative information on the magnetic properties
and response characteristics on diverse ultrathin films and
magnetic multilayers. In an interesting early study, Grunberg
and his collaborators explored the BLS spectra of ultrathin
Fe, Ni, and Permalloy films (Grunberg, Mayr, Vach and
Grimsditch, 1982). From the spectra, they extracted all the
key magnetic properties of these films. All these materials had
been studied earlier by FMR, and they compared the results
obtained by BLS and FMR. The agreement is very good.

As we have mentioned in the preceding text in our discus-
sion of FMR, in ultrathin films the strength of the effective
anisotropy can be very much larger than in bulk materials
with the same atomic constituents, because a large fraction
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Figure 3. A Brillouin light scattering spectrum of three monolayers
of Fe, grown on a Cu(100) substrate. (Reproduced from Dutcher,
J.R. ,Heinrich, B., Cochran, J.F., Steigerwald, D.A., and Egelhoff
Jr., W.F., (1988), “Magnetic Properties of Sandwiches and Super-
lattices of FCC Fe(100) Grown on Cu(100) Substrates”, J. Appl.
Phys. 63, copyright  1988 American Institute of Physics, with
permission from the AIP.)

of atoms reside at surface or interface sites of low symme-
try. In a very thin film, the spins are locked together tightly
by the very strong exchange interactions as they engage in
precession after a long wavelength spin wave is excited.
Thus, one measures an effective anisotropy energy averaged
over all layers, in both FMR and BLS studies of ultrathin
films. Strong surface or interface anisotropy then contributes
a term to the average anisotropy, which scales inversely with
the film thickness. In BLS data, Hillebrands and coworkers
observe very strong surface anisotropy, in BLS studies of
ultrathin films of Fe grown on W(110) (Hillebrands, Baum-
gart and Guntherodt, 1987). The Fe films ranged in thickness
from 15 nm down to a few monolayers; below 6 nm in thick-
ness, the spin-wave frequency is found to increase strongly
with decreasing thickness until it is larger than that appropri-
ate to the thick films by a factor of 3. This is an illustration of
the dramatic effect that the surface anisotropy can have on the
dynamic response characteristics of ultrathin ferromagnets.

In the studies cited in the preceding text and many others,
BLS is used to determine the fundamental parameters, which
control the frequency spectrum of the dynamic response of
ultrathin films. Examples are the nature of the anisotropy, the
magnetization itself, and the exchange stiffness parameter.
Another crucial feature of the response of such systems
is the magnitude and nature of the damping of the spin
motions. In general, FMR has far higher frequency resolution
than BLS, and thus is more frequently used to explore
the nature of damping. We presented a discussion of this
topic above, in the section on FMR of ultrathin films.
However, there are circumstances where BLS can also
measure the intrinsic linewidth of spin-wave excitations
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under circumstances where the damping is appreciable.
It is the case that when films are grown on exchange biasing
substrates, the two-magnon mechanism discussed in the
preceding text can be very strong. Under such circumstances,
the linewidths of the spin-wave modes can be substantial,
and accessible to the BLS technique. Earlier we noted the
paper by of Rezende et al. where large linewidths could
be measured directly by the BLS method. These authors
measured the linewidth in FMR and also in BLS, for the
same samples of exchange biased Permalloy films. The
BLS linewidth is five times larger than that found in FMR
on the same film. The FMR linewidth is also large, and
these authors applied the theory of two-magnon damping
(Arias and Mills, 1999) to extract the magnitude of the
matrix element which controls this process from the FMR
linewidth, under the assumption that two-magnon scattering
is dominant. They argue that this source of damping is
wave vector dependent, and extended the theory of Arias
and Mills to take this feature into account. They show that
this is so by comparing theory with the BLS data; through
use of exactly the same matrix element extracted from the
FMR spectra, they were able to obtain a fully quantitative
account of the larger linewidths found in BLS. As noted
in our section on FMR in ultrathin films, their conclusion
that the linewidth of long wavelength spin waves in ultrathin
films is strongly wave vector dependent, combined with the
dramatic deviations from the linear law in the dependence of
the FMR linewidth in ultrathin films (Lindner et al., 2003)
show that in materials where the two-magnon mechanism
is operative the widely used LLG equation breaks down
qualitatively.

In magnetic multilayer or superlattice structures, there will
be interactions between adjacent films in the structure, with
the consequence that the spin-wave modes are collective
excitations of the structure as a whole. We have already
encountered an example of such collective modes in our dis-
cussion above of the BLS studies of NiMo superlattices (for
data see Kueny et al., 1984, and for theory related to these
experiments, see Camley, Rahman and Mills, 1983). In these
samples, the Ni and Mo films were quite thick, and the inter-
film coupling responsible for the collective character of the
modes studied had their origin in long-ranged dipolar interac-
tions between the ferromagnetic constituents. As the spins in
a given ferromagnetic film precess upon excitation of a spin
wave within the film, a dynamic, time dependent dipolar field
is generated outside the film by the spin motions. This field
has strength and range given roughly by 4πMSkd exp(−kz)

with d the film thickness, k the wave vector of the spin wave,
and z the distance from the film, measured along the normal.
Such dynamic fields couple the various films together, to
produce collective modes of the structure as a whole as we
have discussed.

If we consider a multilayer or superlattice wherein the
ferromagnetic films are separated by nonmagnetic metallic
spacers as in the example of the NiMo structure, when the
spacer layers become very thin there is a direct exchange
coupling between adjacent ferromagnetic films with origin
in the spin polarization of the conduction electrons in the
nonmagnetic spacer layer. The effective exchange coupling
necessarily oscillates with the thickness of the spacer layer,
as proved theoretically over four decades ago (Bardasis et al.,
1965). Thus, the interfilm coupling may be antiferromagnetic
or ferromagnetic in character, depending on the thickness of
the spacer layer. (A recent review of this topic is provided
by Stiles 2006.)

Exchange coupled ferromagnetic bilayers, wherein the
magnetization of one of the two ferromagnets is pinned by
strong anisotropy field provided by the exchange bias mech-
anism (Berkowitz and Kodama, 2006) are referred to as spin
valves. These structures play a vital role in current com-
puter technology, as we see from the new generation of read
heads, which incorporate spin valves as essential elements.
Very high sensitivity in the read head results from the phe-
nomenon of giant magnetoresistance. (Fert, Barthelemy and
Petroff, 2006). Thus, there is great interest in the study of
the influence of interfilm exchange coupling on the dynamic
response of magnetic nanostructures such as spin valves.

The BLS technique offers a means of directly measuring
the strength of the exchange between adjacent ferromagnetic
films separated by a nonmagnetic spacer. Consider two such
films in the form of a ferromagnetic film grown on a sub-
strate, a nonmagnetic spacer is then deposited on this film,
and then a second film is deposited on top of the spacer.
The system will exhibit collective spin-wave modes, with an
in-phase acoustic mode and an out-of-phase ‘optical’ mode
split in frequency by the exchange coupling and/or dipolar
interactions between the films. Experimental studies of such
modes along with the related theory have been reported by
Grunberg and his collaborators, for Fe/Au/Fe and Fe/Cr/Fe
structures (Grunberg et al., 1986). Subsequent measurements
have provided direct access to the oscillatory exchange cou-
pling in the important Co/Ru system. In these measurements,
the value of the coupling between neighboring Co films as a
function of Ru thicknesswas measured and the period of the
oscillation was found to be 1.15 nm (Fassbender et al., 1992).

It is possible to grow bilayers or multilayers from ultrathin
films in which both constituents are ferromagnets. An
example is the Fe/Ni system, whose spin-wave modes
have been studied by Heinrich and his colleagues (1988).
Here one realizes strong interfilm exchange coupling across
the interface between the two constituents. These authors
also provided a theoretical analysis of the spin waves
in ferromagnetic bilayers, including both the role of the
exchange stiffness D discussed above, and also the influence
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of dynamic dipole fields generated by the spin motions
in the ferromagnets. There is an important comment one
must make regarding this analysis and others found in the
literature on similar systems. A boundary condition linking
the dynamic magnetizations and their derivatives across the
interface between the two ferromagnetic films is required,
before one can solve the differential equations, which form
the basis of the theory. Quite commonly a boundary condition
is employed in such calculations (Hoffman, 1970). However,
it is the case that the boundary condition found in Hoffman’s
paper leads to unphysical conclusions, as discussed by
the present author (Mills, 1993). An energy conservation
law is violated, since the energy transported across the
interface is not conserved when the Hoffman boundary
connects spin motions on both sides of the interface. Also,
in the mathematical limit that the two ferromagnets become
identical, the reflectivity can be nonzero. Thus, the Hoffman
boundary condition is in fact unphysical. In the paper just
cited by the present author, a boundary condition compatible
with both of these constraints has been formulated and stated.
Clearly for valid quantitative conclusions to be deduced from
the data, one must use a boundary condition free of the
difficulties found in the Hoffman boundary condition.

In this section on BLS studies of spin waves in ferromag-
nets, our attention has been directed toward bulk materials,
films, ultrathin films, and magnetic multilayers composed of
ultrathin films. In the recent literature, the method has been
employed to explore patterned media of diverse sorts. This
constitutes a most powerful extension of the method. For
instance, BLS has been used to study spin dynamics in the
vortex state of a circular magnetic dot (Novosad et al., 2002).
A theoretical study of such spin excitations has been given
by Giovanni and his colleagues (2004). An extension of the-
ory and experiment to the study of dots of elliptical shape is
given by Gubbiotti et al. (2005). A series of BLS studies of
the spin-wave excitations of arrays of ferromagnetic ribbons
has been carried out by Demokritov and his colleagues. A
recent article discusses this work, and also covers the use of
spatially resolved BLS to explore nonlinear spin-wave phe-
nomena in systems driven beyond the linear response regime
(Demokritov, Hillebrands and Slavin, 2001). We note that
Arias and the present author have presented an exact the-
ory of magnetostatic spin waves in ferromagnetic ribbons of
arbitrary cross section, and compared the results of theory to
the high aspect ratio ribbons studied by Demokritov and his
colleagues (Arias and Mills, 2005).

2.3 Some general comments

The last two sections have reviewed both FMR and BLS
studies of spin waves in the metallic ferromagnets, again

in bulk crystalline form, in films, in ultrathin films, and in
magnetic multilayers. We see that both of these important
methods provide us with information on the basic mag-
netic parameters of materials in these diverse forms. Also,
they are complementary in that each of these methods can
probe different aspects of the response, as we have seen.
However, they have one common feature. This is that both
probe modes whose wavelength is very long compared to
the lattice constant of the underlying material. Thus the-
oretical descriptions of the modes can be obtained from
macroscopic theory constructed through use of phenomeno-
logical parameters. We shall review the structure of such
theories in Section 3. The parameters generated by such
analyses may, of course, be compared with the results of
ab initio theories, wherein one begins with a density func-
tional description of the ferromagnetic state, and then calcu-
lates from this point the relevant parameters deduced from
the application of macroscopic theory. The current state of
the art is such that we now may obtain reliable and quan-
titative accounts of these parameters from ab initio density
functional based theory.

If we set damping parameters aside, by the means
just discussed one may extract information from the data
on anisotropies, magnetization of various constituents, the
exchange stiffness, and in the case of ultrathin multilayer
structures the spacer mediated exchange between ferromag-
netic constituents, as we have noted in the preceding text.
Although one requires a truly dynamical theory to describe
the damping of spin motions, these parameters are all ground
state parameters, which may be calculated by adiabatic meth-
ods from the description of the ground state. One might
think that the exchange stiffness D is a dynamical parameter,
but in fact in the phenomenology it describes the change in
ground state energy with respect to long wavelength static
distortions of the spin system. Thus this may be generated
from information on the ground state. A recent discussion
of this point has been given by Muniz and the present
author, for ultrathin ferromagnetic films (Muniz and Mills,
2002).

To obtain truly microscopic information on the nature of
spin excitations in any magnetically ordered material, one
must study short wavelength spin excitations, with wave
vectors of a considerable fraction of the distance from the
center of the appropriate Brillouin zone to the zone boundary.
The remainder of the present section will be devoted to
experiments, which can probe this regime. At least for
classical, well-studied materials like the bulk 3d ferromagnets
Fe, Co, and Ni and their various alloys, one would think this
to be well trodden ground. However, this is not the case. As
we shall see, there is still much to learn about these basic
and fundamental materials, whose ferromagnetism has been
known for centuries.
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2.4 Neutron scattering studies of the
ferromagnetic transition metals

For many decades now, the technique of inelastic neutron
scattering has been one of the most important means of
studying diverse elementary excitations in materials. The
experiment is conceptually similar to the BLS studies,
which have just occupied our attention, except the probe
beam now consists of monoenergetic neutrons rather than
photons. The loss spectrum is measured as a function of
scattering angle, and from the data one may then construct
the dispersion curves of phonons, spin waves, and other
elementary excitations as well. As we shall see, in contrast to
BLS, neutron spectroscopy can reach throughout the entire
Brilluoin zone. The kinematics of the excitation process
may be described in exactly the same language we have
just employed. Let �kI be the wave vector of a neutron
incident on a crystal, and suppose it creates or absorbs a
quantum of an elementary excitation whose wave vector
is �k. Then the wave vector of the scattered neutron will
be

⇀
k

S
= �kI ± �k, with the plus sign chosen for the case

where the quantum is absorbed, and the minus sign if it
is emitted. Energy conservation then reads E(�kS) = E(�kI) ±
�ω(�k). Here, E(�k) = �

2k2/2mN is the energy of a neutron
of wave vector �k. Thus, a measurement of the loss spectrum
of the neutron as a scattering angle allows one to construct
the dispersion curves of elementary excitations of interest.
There is by now a very large literature on neutron scattering
from spin waves in diverse magnetic crystals, along with
other ‘magnetically active’ excitations. We refer the reader
to the excellent text by Lovesey for a detailed exposition
of the theory of neutron scattering from spin excitations in
magnetic materials (Lovesey, 1984).

Thermal neutrons are commonly used in such experiments,
since very high neutron fluxes are generated by nuclear reac-
tors designed for neutron spectroscopy. Thus, the neutrons in
the beam have kinetic energies on the order of kBT , where the
temperature is roughly room temperature. Thus, typical beam
kinetic energies are in the range of 50 meV or somewhat
less. The wave vector of such a neutron is approximately
5 × 108 cm−1, so we can appreciate that in contrast to light
scattering spectroscopy, we have here a means of reaching
out to the boundary of the Brillouin zone. In regard to spin
waves, for materials which may be described by a Heisen-
berg–Hamiltonian, a rule of thumb is that modes at the zone
boundary have excitation energies in the range of kBT0, with
T0 the ordering temperature (the Curie temperature for fer-
romagnets, or the Neel temperature for antiferromagnets).
Almost all insulating magnetic materials have ordering tem-
peratures in the vicinity of room temperature or below, so
inelastic neutron scattering is a most powerful probe for the

experimental study of spin waves in a very wide class of
magnetic materials.

The ferromagnetic transition metals, which are the primary
focus of this review have spin waves of a character quali-
tatively different than discussed in the previous paragraph.
First, of course, almost all of these materials have Curie
temperatures well above room temperature, in the vicinity of
1000 K. Second, the spin waves in these materials are very
‘stiff’, and the frequency of short wavelength spins waves
can be much higher than kBTC. Consider, for instance, ferro-
magnetic Fe. The frequency of a spin wave of wave vector
�k may be approximated by Dk2, for excitation energies suf-
ficiently large that Zeeman, dipolar, and anisotropy energies
may be set aside. For Fe, the low temperature value of the
exchange stiffness D is approximately 300 meV Å2. If we
just extrapolate this quadratic form out to the Brillouin zone
boundary, we see that spin-wave excitations energies will be
in the range of 300 meV, or in temperature units we have
3000 K, far above the range accessible to thermal neutrons.
The breakdown of the relationship between spin-wave energy
at the zone boundary and kBTC has its origin in the fact
that these materials are itinerant electron ferromagnets, and
a Heisenberg model with short ranged exchange interactions
fails very badly for this important class of ferromagnets.

The remarks in the previous paragraph lead to the conclu-
sion that thermal neutrons can explore only spin waves of
rather small wave vector, in the 3d ferromagnets. To reach
the zone boundary, one requires high-energy neutron beams,
from a spallation source. It is the case that the neutron cross
section is small at large wave vectors, so such experiments
are a major challenge. A consequence is that there is little
data in hand, even at this mature state of the field, on the
nature of short wave length spin waves in the ferromagnetic
transition metals. This situation is remarkable in the view of
the present writer. The ferromagnetism of these metals has
been known well since antiquity, and historically they have
played a central role in electromagnetic technology since the
nineteenth century. Indeed, they occupy center stage today,
as we see from their role in the remarkable giant magnetore-
sistance (GMR) read heads, and in magnetic random access
memories (MRAMs). Despite the very long history of study
of these materials, and their central role in past and current
technology, we have less information regarding the nature of
their spin excitations than we do of very exotic materials.

2.4.1 Neutron scattering studies of spin waves
in the bulk 3d ferromagnets

Early studies of spin waves in Fe, Co, and Ni were carried
out by the Brookhaven group. We refer the reader to a
review of this data (Shirane, Minkiewicz and Nathans, 1968).
The data explored spin waves with excitation energy below
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50 meV, and wave vector transfers in the range 0.5 A−1

and below. In this regime, the dominant contribution to
the spin wave excitation energy is the classical Dk2 term
discussed in the preceding text. The data was fitted with the
form Dk2(1 − βk2), and values of the exchange stiffness D

and the parameter β are found in this paper. For hcp-Co,
the data explores spin waves, which propagate along the c

direction. For the case of fcc-Co, Sinclair and Brockhouse
have measured the exchange stiffness, through measurement
of the spin-wave dispersion near the center of the Brillouin
zone (Sinclair and Brockhouse, 1960). It should be remarked
that in some of the measurements just cited, it was not
possible to obtain pure single crystals large enough for
detectable neutron signals. In the case of Fe and also fcc-Co,
it was necessary to add several percent of Si for the purpose
of stabilizing large crystals. Thus, the measured spin-wave
dispersion in such studies may differ somewhat from that
appropriate to the pure single crystal.

Mook and collaborators have extended the measurements
to higher spin-wave excitation energies, to approximately
120 meV, and to wave vectors as large as 0.8 A−1. In
the case of Ni, they found a dramatic falloff in intensity,
for spin waves above 100 meV in energy (Mook, Nicklow,
Thompson and Wilkinson, 1969). They attributed this to
damping by coupling of the spin wave to Stoner excitations,
a process unique to itinerant ferromagnets. We shall discuss
this damping process in detail in Section 3, when we turn
our attention to theoretical descriptions of spin waves in these
materials. Briefly stated, the damping process arises from the
following. Imagine one sets up a spin wave in the material at
time zero. The precession of the spins take place in a metallic
environment, where all electrons reside in spin-polarized
energy bands. The electronic system has a continuous energy
spectrum of spin triplet particle hole pairs, formed by taking
an electron from an occupied state in a majority spin band,
thus creating a hole, and placing it in an unfilled state in
the minority spin band. The continuum of such particle hole
pairs is referred to as the Stoner excitation spectrum. The
spin wave may then decay by creating such particle hole
pairs. If the spin wave is destroyed by this process, as we
know from elementary discussions of the properties of spin
waves (Kittel, 1963a), destruction of a spin wave increases
the spin angular momentum of the substrate by �. Angular
momentum conservation requires that the excitation to which
its energy is transferred must have angular momentum −�.
Hence there must be a spin flip in the gas of conduction
electrons in the process, which transfers the energy of the
spin wave to the band electrons. We shall see that the decay
process just described is of central importance when we
discuss spin waves in ultrathin metallic ferromagnets. In the
case of the neutron scattering studies of Ni, the sudden falloff
in intensity found by Mook and coworkers was interpreted in

terms of crossing a wave vector threshold for creating Stoner
excitations. Mook and Nicklow shortly thereafter reported
neutron scattering studies of spin waves in Fe, where similar
behavior was found (Mook and Nicklow, 1973).

We shall discuss the theory of itinerant spin waves in the
3d ferromagnetic metals in Section 3. In the present section,
we wish to make a comment on a theoretical prediction that
has stimulated much discussion. Cooke and his collaborators
presented the first theoretical description of spin waves in
Ni and Fe, within the framework of the itinerant electron
picture of ferromagnetism, combined with use of a realistic
electronic band structure (Cooke, Lynn and Davis, 1980).
One striking and unexpected feature found in this study
was a curious hybridization gap in the spin-wave dispersion
relation for Ni and Fe, along the [100] direction. One has an
upper branch above this gap which is called an optical spin
wave by Cooke and his collaborators. These materials are, of
course, monatomic crystals with one atom per unit cell, so
the appearance of such structures are both surprising, and of
course very interesting. We shall discuss this topic in detail in
Section 3. It is the view of present writer and his colleagues,
based on our studies of spin waves in ultrathin films, that
such features are in fact artifacts of poor convergence in the
sums over wave vector in the Brillouin zone in constructing
the kernal of the integral equation which must be solved to
extract information on the spin wave excitations. In our own
calculations of the spin-wave spectrum of Fe (Tang, Plihal
and Mills, 1998) and Ni (Hong and Mills, 2000) we have not
encountered such features. We did find hybridization gaps
qualitatively similar to those in the paper of Cooke and his
collaborators in our study of spin waves in the Fe monolayer
on W(110) (Muniz and Mills, 2002). As we discussed in this
paper, upon improving the convergence in our k space sums
this feature disappeared.

Evidence for an apparent gap in the spin-wave dispersion
relation in Ni along the [100] direction has been provided
by Mook and Paul (1985). In the theory to which the data
is compared, the hybridization feature is considerably more
than that found in the data as one sees from the solid line in
Figure 3 of the by Mook and Paul. There are no actual loss
spectra displayed, in the wave regime where the hybridization
gap is found. Evidently an optical spin-wave feature was not
seen directly, but rather structure in the acoustical spin-wave
loss peak was assumed to be evidence for the optical mode
(Mook, private communication). Studies of high-frequency
spin excitations in Fe also suggest that an optical spin-wave
feature may have been observed (Perring et al., 1991). Our
calculations, however, suggest that this may be structure in
the low-lying sector of the Stoner excitations. We refer the
reader to Figure 5 of the paper by Tang, Plihal, and the
present author, and the associated discussion (Tang, Plihal
and Mills, 1998). We thus regard the question of the existence
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of hybridization gaps in the spin-wave spectrum of the simple
3d transition-metal ferromagnets to be an open question, from
both the experimental and the theoretical point of view.

2.4.2 Neutron scattering from ultrathin films
and magnetic multilayers

Quite clearly it is not possible to detect inelastic neutron
scattering from a single ultrathin film, simply because the
signals will be orders of magnitude smaller than can be
detected. The studies of spin waves in bulk materials
described in the previous section were carried out on large
single crystal samples. As we mentioned, to obtain such
large, perfect crystals it was often necessary to allow Fe or
Co with Si. Thus, even for the study of bulk spin waves,
considerable effort must be expended in sample preparation
and sometimes this requires a compromise. As we see, many
of the experiments just discussed are carried out on alloys
rather than perfect, elemental single crystals.

It is possible to detect magnetic neutron scattering from
magnetic multilayers, which incorporate ultrathin films as
elements. At the time of this writing, there is a considerable
experimental literature devoted to studies of static spin
arrangements in magnetic multilayers. A beautiful study of
the evolution of the surface spin flop state in finite Fe/Cr
superlattices provides one with an illustration of the power
and sophistication of such experiments (Te Velthuis, Jiang,
Bader and Felcher, 2002). We also refer the reader to a
discussion of the application of neutrons to such studies;
this paper also contains very impressive data, including
preliminary data on inelastic neutron scattering from spin
waves in Dy/Y superlattices (Schreyer et al., 2000). We
are unaware of further studies of spin waves in magnetic
multilayers by inelastic neutron scattering at the time of this
writing.

2.5 Studies of spin waves by spin polarized
electron energy loss spectroscopy (SPEELS)

Because of the limitations of neutron scattering when applied
to the study of spin waves in the 3d ferromagnets, most
particularly when they are in the form of ultrathin films,
until very recently we have had in hand no experimental
information on the nature of large wave vector, or short
wavelength spin waves in such films. Indeed, as we have
just seen, the number of experiments which explore the
entire Brillouin zone, is remarkably limited for the bulk
materials, even at this very mature point in the field. There
is compelling reason to learn about the nature of large wave
vector spin waves in ultrathin structures. In the current era,
devices based on ultrathin film magnetic structures have

had a massive impact on information technology, as we see
from the remarkable GMR based read heads. MRAM is just
coming on line in early form at the time of this writing.
As such devices are made smaller and smaller, we require
quantitative information on the nature of spin motions with
large spatial gradients, in the materials that are the focus of
the present chapter. Much in this area can be learned through
the study of large wave vector spin waves in ultrathin films.

For a considerable number of years, there have been
discussions in the electron energy loss spectroscopy (EELS)
community regarding the possibility of utilizing electrons,
spin polarized if possible, as a means of studying spin
waves in ultrathin films or on magnetic surfaces. Indeed,
the present author proposed this possibility many years
ago (Mills, 1967), and explored issues in the area through
model calculations of the spin wave contribution to the loss
cross section of electrons scattered from the surface of a
Heisenberg ferromagnet. An attempt to detect spin waves on
a Ni(100) surface in 1983 was unsuccessful (Ibach, private
communication), for reasons we now understand (Hong and
Mills, 2000). We shall discuss this point in the following
text, in the present section.

The use of electrons rather than neutrons to study large
wave vector spin waves in ultrathin films overcomes two
principal difficulties with neutron scattering. First, typical
electron energies utilized in loss studies range from a
few electron volts, to a few tens of electron volts. Thus,
the incident particle has more than enough kinetic energy
to excite spin waves in the 3d ferromagnets, in contrast
to thermal neutrons. Furthermore, the mean free path of
electrons in the 3d ferromagnets is very short, even for
electrons with kinetic energy very close to the vacuum
level (Abraham and Hopster, 1987). Thus, beam electrons
backscattered from these surfaces sample magnetic moments
in the outer surface layer primarily. The short penetration
depth thus makes electrons ideal for the study of ultrathin
film magnetism. All the electrons, which are detected, carry
information primarily about the outer layer of atoms.

It should be remarked that for many years now, EELS has
been utilized for the study of phonons on crystal surfaces.
With this technique, one may measure dispersion curves of
surface phonons out to the Brillouin zone boundary, and
probe the influence of bulk phonons on surface vibrations
as well. For a discussion of such a study, and a comparison
between theory and experiment, we refer the reader to the
discussion by Hall and Mills and the references cited therein
(Hall and Mills, 1986). As one envisions using this method
for the study of spin waves, it is highly desirable to be
able to discriminate between losses produced by phonons
or other ‘magnetically inactive’ excitations, and spin waves.
The use of a highly spin-polarized electron beam allows
one to identify spin-wave features in a unique manner.
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In elementary text book discussions of spin waves, one sees
that when a spin wave is excited in a ferromagnet, the spin
angular momentum of the substrate decreases by exactly �

(Kittel, 1963a). Suppose such a spin wave is excited by an
electron whose spin is antiparallel to the ferromagnetically
aligned spins in the sample. Then angular momentum will
be conserved in the scattering process if beam electron flips
its spin from antiparallel to parallel to the aligned spins in
the substrate. If, however, the beam electron has its spin
aligned parallel to those in the sample, it cannot excite the
spin wave and conserve angular momentum in the scattering
event. Hence, if the experiment were to be carried out with
an ideal beam that is 100% polarized, one would see spin-
wave losses when the spin polarization is antiparallel to the
substrate spins, and the spin-wave feature would disappear
when the beam polarization (or sample magnetization) is
reversed.

Some years ago, there were SPEELS study of the magnetic
excitations in both Fe (Venus and Kirschner, 1988) and Ni
(Abraham and Hopster, 1989). In both of these experiments,
termed complete experiments, the incident beam was spin
polarized and the spin of the scattered electron was detected
as well, a most challenging experimental undertaking. This
allowed separation of losses into the two nonspin flip
loss channels (both beam and scattered electron parallel
or antiparallel to substrate majority spins), and the spin
flip processes. The spin flip scattering events provide us
with information on the nature of the continuum of Stoner
excitations, and as we have seen earlier with sufficient
resolution one should also be able to see spin waves. In both
of these experiments, only the Stoner regime was studied. In
Fe, the peak of this broad continuum is in the 2 eV range,
well above the spin-wave loss regime. It is the case that
the spectrometer utilized had insufficient energy resolution to
explore the low-energy regime where one may expect to find
spin waves. Much more interesting, from the perspective of
our present discussion, is the data on Ni. In Ni, the exchange
splitting in the d bands is roughly 300 meV, and thus the
Stoner spectrum lies very close to the spin-wave regime.
The data reported by Abraham and Hopster goes down to
100 meV, and the resolution of the instrument, 17 meV, was
remarkably high. It is puzzling that under these conditions,
no evidence of a spin-wave signal was found. This reminds
one of Ibach’s early failed attempt to detect spin waves in
EELS, also on Ni(100).

The present author and his colleagues have been engaged
in the studies of large wave vector spin waves in ultrathin
films, and also of the theory of spin-polarized electrons loss
spectra. We wish to comment on conclusions reached in these
studies, before we introduce the reader to recent SPEELS
data in which large wave vector spin waves were studied in
very beautiful recent experiments.

A central question that was addressed in our studies was
the following. As we have just seen, the spectrum of Stoner
excitations had been detected in SPEELS studies of both Fe
and Ni quite some time ago. So an important question is
the relative intensity of the spin-wave loss feature to that of
the Stoner spectrum. Is there enough integrated strength in
the spin-wave loss structure at large wave vectors for it to
stand out as a clear structure on the background of Stoner
excitations? Through use of a microscopic description of the
Coulomb exchange matrix element appropriate to SPEELS
and a quantitative description of the spin-wave/Stoner excita-
tion spectrum of Fe, it was predicted that in Fe, the spin-wave
loss structure should be a prominent feature in the SPEELS
spectrum (Plihal and Mills, 1998). The first spin-wave sig-
nature SPEELS was reported shortly thereafter, in a study of
an ultrathin Fe film on W(110) (Plihal, Mills and Kirschner,
1999). Further study showed that the feature observed failed
to disperse with wave vector transfer. Evidently, the Fe film
had a substantial concentration of dislocations, with origin
of the lattice mismatch between the Fe film and the under-
lying W(110) substrate. This could cause a breakdown of
wave vector conservation in the spin-wave excitation process,
thus producing a broad loss feature reminiscent of spectra
associated with diffuse neutron scattering from phonons in
disordered crystals. In such circumstances, the breakdown
of �k conservation produces a broad structure, which does
not disperse with wave vector. It is clear, however, that the
feature reported by Plihal et al. was a spin-wave structure.

At this point, one must inquire why spin waves were
not detected in scattering from Ni(100); two experiments
evidently failed to see such structures. We should remark
that Ibach’s 1983 attempt to observe spin waves was known
widely in the electron loss community, and this discouraged
attempts to see spin-wave features in the electron loss
spectrum. We also know, of course, as discussed in the
preceding text that large wave vector spin waves in bulk Ni
have been studied by inelastic neutron scattering (Mook and
Paul, 1985). Thus, the absence of these features in SPEELS
is puzzling.

We have set forth an explanation for the above annoy-
ing situation (Hong and Mills, 2000). One must appreci-
ate that the neutron and electron beams create spin waves
through different mechanisms. Neutrons interact with elec-
tron spins in magnetic materials through the magnetic dipole
interaction, which is a long-ranged interaction. Thus, the neu-
tron senses the total magnetic moment in each unit cell,
but is not sensitive to its shape or the details of its elec-
tronic structure. The theory of inelastic neutron scattering
from magnetic materials show that the loss spectrum is con-
trolled by a response function referred to by theorists as the
wave vector and frequency dependent susceptibility, writ-
ten as χ+,−(�k, ω). Here �k is the wave vector transfer in the
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scattering process, and �ω is the energy loss of the neu-
tron. This response is precisely the same response function
which, in linear response theory, provides the magnitude of
the transverse magnetic moment induced by a time and spa-
tially dependent applied magnetic field, where the space and
time dependence is given by cos(�k · �r − ωt). We shall have
more to say on this topic in Section 3.

In contrast, the excitation of spin waves by electrons
involves a Coulomb exchange scattering process, as men-
tioned earlier. In physical terms, one may picture this as
follows. The d electrons inside an Fe or Ni atom reside in
3d orbitals of either eg or tg character, if we allow ourselves
to think in terms of a localized atom picture for a moment.
The incoming electron penetrates into the atom and in the
process of creating a spin excitation may transfer a particu-
lar electron from one orbital to a distinctly different orbital.
The shape of the moment cloud in real space has thus been
altered in the excitation process. When the theoretical anal-
ysis is completed (Plihal and Mills, 1998), one finds that the
SPEELS spectrum is described not by χ+,−(�k, ω) but rather
by a distinctly different response function we may refer to as
χSPEELS(�k, ω). When we calculate each of these two response
functions, we find that the loss spectra described by them
are dramatically different. In both bulk crystals and in ultra-
thin films, our extensive series of calculations show that the
Stoner spectrum is virtually absent in χ+,−(�k, ω). One sees
only spin-wave loss features in this response function, and
in our numerical calculations even at large wave vectors, the
Stoner region is very weak. We first found this behavior in
our studies of spin waves in bulk Fe, and in ultrathin Fe(100)
films (Tang, Plihal and Mills, 1998). On the other hand, in
both Fe and Ni, in χSPEELS(�k, ω) the Stoner spectrum is a
strong feature, very much as found in the early SPEELS
studies of these materials. In Fe, as noted above, we also
found a visible, clear spin wave in the low-energy wing of
the Stoner loss spectrum, which as mentioned earlier peaks
near 2 eV. However, in Ni, the SPEELS response function
shows no sign of loss structures from spin waves, save very
close to the center of the Brillouin zone. The Stoner spec-
trum lies very low in energy, in the vicinity of 300 meV as
mentioned earlier, and this is all one sees in χSPEELS(�k, ω).
However, when we calculate χ+,−(�k, ω) through use of pre-
cisely the same description of the electronic structure, we see
clear spin-wave loss structures for Ni very much as in the
neutron studies (Hong and Mills, 2000).

The remarks in the previous paragraph show that one can
then understand the differences between the SPEELS spectra
in Fe and Ni; in Fe, one sees clear spin-wave loss features,
as predicted by theory Plihal and Mills (1998), while in Ni,
so far as we know at present, one sees only the low-lying
broad Stoner excitations. Quite in contrast to this, inelastic
neutron scattering sees spin waves in both materials, and in

the case of Ni the low-lying Stoner excitations are absent.
This striking difference between loss spectra taken by the two
methods, which seem so similar from the superficial point
of view, have their origin in the fact that the neutrons and
electrons interact with the magnetic moments in the material
in a qualitatively different manner, with the consequence that
the loss spectra are described by different response functions.
This suggests that to observe spin waves in an itinerant
ferromagnet with the SPEELS technique, one may be limited
to materials with exchange splittings in the d bands that are
large compared to spin-wave excitation energies.

After the observation of the spin-wave loss feature in
Fe, a new spectrometer was designed and constructed in
Julich, and then rendered operational in the Max Planck
Institute in Halle. We now have very beautiful experimental
studies in hand of spin wave dispersion and damping in
an ultrathin film of Co on Cu(100) (Vollmer et al., 2003).
As we shall see shortly, the data are in qualitative and
quantitative agreement with the picture that has emerged
from our theoretical studies. Subsequent studies of other
ultrathin films have been completed by the Halle group.
We shall not review these experiments in detail here, since
an excellent and careful review of this body of data and
the related theoretical literature is found elsewhere in this
series (Etzkorn, Anil Kumar, and Kirschner, 2007). However,
we wish to comment on some general features, and also
on the new aspects of short wavelength spin excitations in
ultrathin films predicted by theory, and illustrated by the
data.

Earlier, we pointed out that by virtue of angular momen-
tum conservation in the excitation process, spin-wave exci-
tation is forbidden if the beam polarization is parallel to the
majority spins in the substrate, and allowed only if the beam
polarization is antiparallel to the majority spins. This is illus-
trated well in Figure 4, taken from the paper by Vollmer
and collaborators (2003). The curve labeled I↓ is the loss
spectrum taken for the case where the beam polarization is
antiparallel to the spins of the majority electrons in the sam-
ple. We see a very clear loss feature. The curve labeled I↑
is for the case where the beam polarization is parallel to the
substrate majority spins. The loss feature is absent, except for
a small feature with origin in the fact that the beam is not
perfectly polarized. This data serves as a lovely experimental
verification of a fundamental conservation law, which fol-
lows from the fact that the excitation matrix element has its
origin in the spin independent Coulomb interaction. We see
clearly from this example that through use of polarized elec-
tron beams, one may unambiguously identify loss features as
spin waves.

Figure 5, again reproduced from the paper of Vollmer
et al., shows a series of loss spectra taken for a sequence
of wave vector transfer directed along the [11] direction
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Figure 4. An example of the spin-wave loss feature in the SPEELS
spectrum of an ultrathin Co film on Cu(001). The scattering
geometry is illustrated in the inset. The curve labeled I↓ is a loss
spectrum taken with beam polarization antiparallel to that of the
majority spins in the substrate, whereas the curve labeled I↑ is
taken with beam polarization parallel to the majority spins in the
substrate. (Reproduced from Vollmer et al., 2003, with permission
from the American Physical Society.  2003.)

of the two-dimensional Brillouin zone. In (a), we have
loss spectra taken with beam polarization parallel to the
substrate majority spins, in (b) we have spectra taken for the
antiparallel configuration, and in (c) we have the asymmetry
A defined as A = (I↓ − I↑)/(I↓ + I↑). One sees two key
features in these data (i) there is a single loss feature, which
shows dispersion with wave vector similar to that expected
for a spin wave, and (ii) the linewidth increases with wave
vector, to become very large at the largest wave vectors
explored in the experiment. The spectrometer has resolution
to resolve the linewidth in all the loss spectra shown. Thus,
as we move out in the Brillouin zone, we have a very heavily
damped excitation with a short lifetime.

The spectra just described are striking. To see this, we
discuss what is expected on the basis of the commonly
used model of spin excitations in ferromagnets, the Heisen-
berg model. Here one envisions localized magnetic moments
on the lattice sites, described by the Hamiltonian H =
− ∑

i,j Ji,j
�Si · �Sj . If one applies this Hamiltonian to a fer-

romagnetic film with N layers, the following picture of the
spin excitations emerges (Mills, 1970, 1984). First of all,
by virtue of translational symmetry in the two directions of
the surface all spin-wave modes are characterized by a two-
dimensional wave vector �k, which resides in the appropriate
two-dimensional Brillouin zone. Then for an N layer film,
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Figure 5. A series of loss spectra illustrating the spin-wave loss
feature, taken for various wave vector transfers along the [11]
direction of the surface Brillouin zone, for an ultrathin Co film
on Cu(001). In (a), the loss spectra are for the case where the beam
polarization is parallel to the majority spins in the sample, in (b)
the beam polarization is antiparallel to the majority spins in the
substrate, and (c) is the asymmetry A, defined as (I↓ − I↑)/(I↓ +
I↑). (Reproduced from Vollmer et al., 2003, with permission from
the American Physical Society.  2003.)

for each choice of �k, there are precisely N distinct spin-wave
frequencies. Each mode, of course shows dispersion as the
wave vector is varied. Very importantly, in the Heisenberg
model, each of these N modes is an exact excited state of
the Hamiltonian and has infinite lifetime. Of course at finite
temperatures, there will be a finite linewidth for each mode,
but well below the Curie temperature the linewidth calculated
from the Heisenberg model is small.

So the spectra reported by Vollmer and coworkers differ
qualitatively from the description in the previous paragraph.
They are in full agreement with the predictions of our earlier
calculations, carried out within the framework of an itinerant
description of the metallic ferromagnetic film/substrate com-
bination (Muniz and Mills, 2002; Costa, Muniz and Mills,
2003a,b). While these studies were carried out for Fe films
on the W(110) surface rather than Co on Cu(100), as later
work shows the qualitative nature of the theoretical spec-
tra seems robust and very similar for these two different
systems. The theory shows that near center of the Brillouin
zone, one has an acoustical spin-wave mode where the spins
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in the various layers precess in phase. This mode is rather
weakly damped for small wave vectors. Near the center of the
Brillouin zone, one finds higher energy standing spin-wave
modes, with wave vector perpendicular to the film given to
good approximation by q⊥ ∼ nπ/d, with d the film thick-
ness. The Heisenberg model leads one to expect standing
wave modes with n ranging from 1 to N − 1 which, when
combined with the acoustic mode provides us with N modes.
The theory for these itinerant systems shows that even the
mode with n = 1 is very heavily damped, and when the spin
fluctuation spectrum of the film is calculated this mode has a
linewidth larger than that of the acoustic mode by roughly 2
orders of magnitude. The higher order standing wave modes
with n > 1 are so heavily damped that they are barely per-
ceptible as structures in the spectrum of spin fluctuations. As
one proceeds into the Brillouin zone toward the zone bound-
ary, one sees two or three low-lying modes, which become
progressively more heavily damped until they merge into a
single broad feature. This single broad feature shows dis-
persion characteristic of a spin very much as we see in the
spectra illustrated in Figure 5. The damping mechanism is
unique to the metallic state of these ultrathin ferromagnets.

The physical picture of the origin of the damping is as
follows. If one imagines setting up a coherent spin wave
in the array of atomic moments at time t = 0, then the
moments are precessing in a gas of conducting electrons.
The spin motions are damped through what one might call
a kind of friction created by stirring up the conduction
electrons. To be more precise, the spin-wave frequency
in these systems is embedded within the continuum of
Stoner excitations, and thus the spin wave can decay to this
manifold of excited states. This mechanism also enters in
the metallic ferromagnets as we have seen and as discussed
many years ago (Cooke, Lynn and Davis, 1980). However,
the calculations for the ultrathin films show this damping
to be much more severe than in the bulk materials. It is
clear that the metallic nature of the substrate plays a role
for the thinnest films. The damping is much less severe for
free-standing films, in the theory, than for films adsorbed on
metallic substrates. Also, in the bulk materials spin waves
are characterized by a three-dimensional wave vector, and
there is conservation of wave vector in the damping process.
The combined wave vector of the particle and the hole in
the final state Stoner excitation is constrained to sum up to
that of the spin wave. In the film, the absence of translational
symmetry in the system in the direction normal to the surface
relaxes of perpendicular wave vector, thus opening up new
decay channels.

In Figure 6, we show a comparison between theory
and experiment, for data on the eight layer Co film on
Cu(001) reported by Vollmer and his collaborators (Vollmer
et al., 2003) In (a), the data and theory are compared
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Figure 6. A comparison between theory and experiment, for the
case of a spin-wave loss feature for the eight layer Co film on
Cu(001). In (a) we have a direct comparison, and in the theory the
spin wave is a bit higher in frequency than found in the experiment.
In (b) the theoretical curve has been shifted down a bit so the
width of the theoretical and experimental feature may be compared
directly. (Reproduced from Costa et al., 2004, with permission from
the American Physical Society.  2004.)

directly. In the theory, which contains no free parameters,
the calculated spin-wave frequency is a bit higher than found
in the experiment. In (b), the theoretical curve has been
shifted so the calculated linewidth and lineshapes may be
compared with experiment. The agreement between theory
and experiment is excellent. We note that, as discussed by
Costa et al., the calculated spin-wave frequencies are found
to be quite sensitive to the strength of the intra-atomic
Coulomb repulsion between electrons within the 3d shell of
the Co atoms (Costa, Muniz and Mills, 2004). A small shift in
this parameter, taken from an empirical analysis of exchange
splittings within d shells measured by photoemission, can
bring the calculated frequencies in line with the data. In
the data, we see the spin wave loss structure followed
by an upturn in the loss spectrum. The upturn is the low
frequency wing of the Stoner spectrum. This is from the
theory, since the calculations explore not χSPEELS but rather
χ+,−. The latter can be computed much more easily than the
former, particularly for ultrathin films on substrates. A full
calculation of χSPEELS for a multilayer ferromagnetic film on
a substrate remains a computational challenge, so we must
do with χ+,− at present.

Thus, we see that the spin-wave features in the SPEELS
loss spectra differ qualitatively from the expectations of the
Heisenberg model. However, the general features of the
observed spectrum are in accord with predictions, and in
fact subsequent theory provides an excellent account of the
observations. The metallic character of both the ultrathin
ferromagnet and the substrate are responsible for the behavior
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found. We shall have much more to say about this issue
in the following section on theoretical descriptions of spin
excitations in the 3d ferromagnets.

At the time of this writing, the experimental study of spin
waves by the SPEELS technique is in its early stages. As new
and improved spectrometers come on line, we may expect
this method to emerge as a powerful tool for the study of
spin excitations in diverse magnetic materials.

3 THEORETICAL DESCRIPTIONS OF
SPIN WAVES IN THE 3D
FERROMAGNETIC METALS

In Section 2, in our discussion of experimental studies
of spin waves in the 3d ferromagnetic metals, we cited
and discussed numerous theoretical papers which provide a
conceptual base for understanding the measurements, and for
interpretation of the data. However, we said very little about
the theoretical techniques employed in these studies. In this
section, we will describe how one goes about generating
theoretical descriptions of the spin waves probed in the
experiments described in the preceding text. We shall divide
the discussion into three parts. First, we have seen that both
FMR and BLS studies explore spin waves whose wavelength
is long compared to the lattice constant of the material. As we
have seen, such long wavelength modes may be described by
phenomenology for which ferromagnetism is the analog to
the theory of elasticity for the treatment of long wavelength
acoustical phonons. We then discuss microscopic theories of
spin waves in the bulk 3d ferromagnets, and finally we turn
to theoretical descriptions of the ultrathin film systems

3.1 Phenomenological theory of long wavelength
spin waves in bulk ferromagnets and in
magnetic nanostructures

In remarks above, we outlined very briefly the principal
concepts that enter the phenomenology of long wave spin
waves in ferromagnets. Here, we discuss the topic in more
detail.

The description proceeds by introducing the magnetization
per unit volume �M(�r, t). We consider a microscopic volume
�V sufficiently large that many spins are contained within
it. The spins within �V are tightly coupled by very strong
exchange interactions so they always remain parallel and
fully ferromagnetically aligned. As we move through the
material and sample, the magnetization over length scales
very large compared to the linear dimensions of �V ,
this quantity may vary slowly in space and time. As the

magnetization precesses in response to an external probe,
or engages in thermal fluctuations, this vector remains fixed
in length everywhere. Thus, the phenomenology is confined
to disturbances in the magnetization whose length scale is
sufficiently long that a volume �V such as that just defined
can be introduced.

To proceed with the discussion of the dynamics of the
magnetization, we must construct an underlying Hamiltonian
and then we must develop the means of generating an
equation of motion from this Hamiltonian. For the purposes
of this section, we limit our attention to the case for which the
magnetization in its quiescent state is spatially uniform. We
then write the magnetization as ẑMS, where MS is referred
to as the saturation magnetization. The assumption that the
magnetization is uniform in space is adequate for many
of the sample configurations encountered in practice. If we
consider samples of selected shapes, application of a modest
external magnetic field will suffice to remove domains, and
produce a state wherein the magnetization is uniform over
the sample. This is the case for films, which may be viewed
as infinite in extent, for cylinders, for spheres, and more
generally for samples of elliptical shape. Films, cylinders,
and spheres are all special limits of an ellipsoid of revolution.
In samples of more complex shape, such as a rectangular
prism, in sufficiently high applied field the magnetization
may be regarded as spatially uniform to good approximation,
though one must proceed with caution in such situations,
since the static internal demagnetizing fields generated by
surface magnetic charges can be quite nonuniform in space.
A measure of the strength of such fields can generally be
taken to be 4πMS as a rough guide, and the magnetization
will be spatially uniform to good approximation only if the
applied external field is large compared to this quantity.

We may construct a phenomenological Hamiltonian as
follows. First, we have the Zeeman interaction of the
magnetization with the externally applied field. This may
be written

HZ = −Hint

∫
V

Mz(�r) d3r (4)

We prefer to discuss the phenomenology in the language
of the quantum theory, since there are physical situations
where we need to describe the quantum nature of the spin-
wave excitations. An example is BLS, where single quanta
are created or adsorbed in the scattering process. Thus,
in equation (4), Mz(�r) is the operator, in the Schrodinger
representation of quantum mechanics, corresponding to the z

component of magnetization density. We shall have more
to say about the structure of this operator shortly. In
equation (4), Hint is the internal magnetic field, which is
parallel to magnetization density for samples of the special
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shapes outlined above. Thus, for a sphere, we have Hint =
H0 − 4πMS/3, for a film magnetized parallel to its surface,
Hint = H0 and for a film magnetized perpendicular to its
surface, Hint = H0 − 4πMS. In the latter case, in the absence
of surface anisotropy the perpendicular state is stable only if
H0 > 4πMS. Here H0 is the externally applied field.

When the magnetization is set in motion, it generates a
dipolar field we may call �hd(�r). We thus have a second term,
the interaction of the magnetization with this dipolar field.
This has the form

Hd = −1

2

∫
V

�h(d)(�r) · �M(�r) d3r (5)

The factor of 1/2 enters equation (5) because, as we see
next, the dipolar field is linearly proportional to the spatially
varying magnetization itself, so we have here a self energy
term in the Hamiltionian.

To excellent approximation, the dipolar field may be
calculated from magnetostatics. Thus we may write �h(d)(�r) =
−�∇�M(�r), where the magnetic potential is found from the
condition �∇ · �b = 0, with �b = �h(d) + 4π �M . Thus, we find the
magnetic potential from Poisson’s equation

∇2�M(�r) = 4π∇ · �M(�r) (6)

It is an elementary matter to write down the formal solution
to equation (6). When this is used to calculate the dipolar
field �h(d)(�r) and the result inserted into equation (5), one can
express Hd as a quadratic form in the magnetization density
�M(�r).

Spatial variations in the magnetization are resisted by the
strong exchange interactions between the spins, which are
responsible for the ferromagnetism in the material. This gives
rise to a contribution to the energy density of the material,
which is quadratic in the spatial derivatives ∂Mα/∂xβ . The
coefficients are the analogue of the elastic constants of the
theory of elasticity. For this exposition, we confine our
attention to the case where the material is cubic in form.
Then symmetry reduces the structure to one in which we
have a single parameter D, the spin-wave exchange stiffness.
We refer to this term as the exchange contribution to the
Hamiltonian, and write it as (for the cubic case)

Hex = D

2MS

∑
α

∫
V

∣∣∣ �∇Mα(�r)
∣∣∣2

(7)

When this formalism is applied to ultrathin films, care must
be taken to structure an exchange term compatible with
the symmetry of the system considered. For example, films
grown on the W(110) surface have a rectangular unit cell.
Explicit calculations of the exchange stiffness for an Fe

monolayer on W(110) show that there is a very large in-plane
exchange anisotropy for this case (Muniz and Mills, 2002). If
a film is grown on a substrate where the two-dimensional unit
cell is a square, such as the Cu(100) surface, then the lattice
mismatch may lead to a unit cell in the film tetragonal in
character. Thus, once again we have symmetry much lower
than assumed in the commonly used form in equation (7).
The in-plane exchange stiffness is necessarily the same in the
two principal directions, but may differ substantially from
that perpendicular to the plane in the example just cited. An
example of a system where such a tetragonal distortion is
large and exerts an influence on various magnetic properties
has been discussed by Baberschke and his coworkers Schultz
and Baberschke (1994). We shall remain here with the simple
form in equation (7).

A partial integration on equation (7) yields a more useful
form for the exchange energy:

Hex = − D

2MS

∑
α

∫
V

Mα(�r)∇2Mα(�r) d3r

+ D

2MS

∑
α

∫
S

Mα(�r)n̂ · �∇Mα(�r) dS (8)

The second term is an integral over the surface of the sample,
with n̂ an outward pointing unit normal to the surface.

In our earlier discussion of anisotropy, it was men-
tioned that there were two sources of anisotropy, the shape
anisotropy and a local anisotropy of spin-orbit origin whose
form is controlled by the local site symmetries in the material.
Shape anisotropy, whose origin is in the long-ranged dipo-
lar fields generated by the magnetization, is included fully
by the above structure through Hint. Anisotropy of spin-orbit
origin must be introduced through additional terms in the
Hamiltionian. These take the form

Ha =
∑
αβ

K
(2)
αβ

M2
S

∫
V

d3rMα(�r)Mβ(�r) d3r

+
∑
α,. . .δ

K
(4)
αβγ δ

M4
S

∫
V

d3rMα(�r)Mβ(�r)Mγ (�r)Mδ(�r) (9)

Time reversal symmetry allows only even powers of the mag-
netization to appear on the right hand side of equation (9).
Symmetry controls which coefficients in equation (9) are
nonzero. For the commonly encountered but special case of
cubic symmetry, one has Kαβ = Kδαβ , so the first term is
then proportional to M2

x + M2
y + M2

z = M2
S. Thus the first

term is silent for such materials, and their anisotropy is con-
trolled by the quartic term. We could include higher powers
of the magnetization in equation (9), but they will be small
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in magnitude because equation (9) can be understood to be
a perturbation expansion in powers of the strength of the
spin-orbit coupling, which is weak for the 3d ferromagnets.
If λ measures the strength of the spin-orbit coupling, and W

is the bandwidth of the itinerant 3d electrons which carry
the magnetism in the materials of interest, then equation (9),
formally, is an expansion in powers of (λ/W) (Mills, 1994).

We have one more term to discuss. This is the surface or
interface anisotropy, which we have seen in the preceding
text plays a critical role in ultrathin films and more generally
in nanoscale magnetic structures. The site symmetry on
surfaces and interfaces is uniaxial, and usually the leading
term in an expansion such as that in equation (9) is dominant.
We may then write the surface anisotropy in the form

H(S)
a =

∫
S

KS(n̂)

M2
S

[n̂ · �M(�r, t)]2 dS (10)

When KS(n̂) is positive, the local region on the surface is a
hard axis, and when it is negative, we have an easy axis. Here
n̂ is an outward directed unit vector normal to the surface.

The next step is to generate an equation of motion for
the magnetization components. Within our quantum theoretic
formulation, we may write down equations of motion for the
operators Mα(�r, t) in the Heisenberg representation. These
have the well-known form

i�
∂Mα(�r, t)

∂t
= [Mα(�r, t), H ] (11)

To proceed with the construction of the right hand side of
equation (11), we require commutation relations between the
various components of the magnetization. These have been
derived by Kittel (1963a) and take the form

[Mx(�r, t), My(�r ′, t)] = iµ0Mz(�r, t)δ(�r − �r ′) (12)

plus forms generated by permuting x, y, and z. We also
have [Mα(�r, t), Mα(�r ′, t)] = 0. In these expressions, µ0 is
the magnetic moment in each unit cell of the material.

The discussion just given allows one to derive equations
of motion that describe not only the small amplitude spin
motions of interest to spin-wave theory but also the full
nonlinear equations which can be applied to large amplitude
spin motions as well. One may show that the right hand side
of equation (11) can be written in the form of the first torque
term in equation (1), where the effective field �Heff(�r, t)is
given by ẑHint + �hd(�r, t) plus terms from the exchange and
anisotropy contributions to the Hamiltonian. We shall not
quote the general form of this structure; the interested reader
can derive its form for any particular model of interest. The
relaxation term at the right hand side of equation (1) does not

emerge from the formalism set up so far. This must either be
added as a phenomenological structure such as that shown in
equation (1) or derived from a suitable microscopic theory,
though this cannot be done in general. As we have seen
from our discussion of the two-magnon damping mechanism
in the section on FMR in ultrathin films, in real materials
the simple phenomenological form in equation (1) can prove
inadequate.

If our desire is to discuss small amplitude motions of the
magnetization appropriate to the description of spin waves,
then one proceeds as follows. One writes

�M(�r, t) = Mz(�r, t)ẑ + mx(�r, t)x̂ + my(�r, t)ŷ (13)

where mx,y(�r, t) are regarded as small. Then in the limit
of small amplitude motions, from the constraint m2

x + m2
y +

M2
z = M2

S, we have

Mz
∼= MS − 1

2MS
(mx(�r, t)2 + my(�r, t)2) (14)

Through use of equations (13) and (14), the Hamiltonian
may be reduced to a quadratic form in the small amplitudes
mx(�r, t) and my(�r, t). The relevant commutation relation
for use in generating equations of motion for mx(�r, t) and
my(�r, t) becomes

[mx(�r, t), my(�r, t)] = iµ0MSδ(�r − �r ′) (15)

Suppose we apply the above formalism to a simple but
commonly encountered geometry. This is a film of thickness
d magnetized parallel to its surfaces, with surface anisotropy
present. We take the z axis parallel to the magnetization,
and the y axis normal to the film surfaces, which are then
parallel to the xz plane. We have the ultrathin film limit in
mind, and we suppose that surface anisotropy is dominant.
The Hamiltonian can then be written

H = HV + H>
S + H<

S (16)

where

HV = H0

2MS

∫
V

[
mx(�r)2 + my(�r)2] d3r

−1

2

∫
V

[
h(d)

x (�r)mx(�r) + h(d)
y my(�r)

]
d3r

− D

2MS

∫
V

[
mx(�r)∇2mx(�r) + my(�r)∇2my(�r)

]
d3r

(17)
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H>
S = + D

2MS

∫
y=+d/2

[
mx(�r)∂mx(�r)

∂y
+ my

∂my(�r)
∂y

]
dxdz

+KS
>

M2
S

∫
y=+d/2

my(�r)2dxdz (18)

and

H<
S = − D

2MS

∫
y=−d/2

[
mx(�r)∂mx (�r)

∂y
+my(�r)∂my(�r)

∂y

]
dxdz

+KS
<

M2
S

∫
y=−d/2

my(�r)2 dxdz (19)

This Hamiltonian structure leads to equations of motion in
the bulk of the film, in the regime −(d/2) < y < +(d/2),
of the form

∂mx

∂t
= −γ (H0 − D∇2)my + γh(d)

y (20a)

∂my

∂t
= γ (H0 − D∇2)mx − γ h(d)

x (20b)

where once again we have �h(d) = −∇�M and for the film

∇2�M = 4π

[
∂mx

∂x
+ ∂my

∂y

]
(20c)

We have boundary conditions at each surface of the film,
which must be imposed, in order to obtain a solution to these
equations. The first two may be called the electrodynamic
boundary conditions. We must conserve the two tangential
components of the dipolar field �h(d)across both surfaces;
as we know from textbook discussions of magnetostatics,
this is insured if the magnetic potential �M is conserved.
Then we must also conserve the normal (y) component of
�b = �h(d) + 4π �m. One must recognize that in general, the spin
motion creates time dependent fields of dipolar origin outside
the body of the film. One may describe these by introducing
a magnetic potential �

(ext)
M the region outside the film, which

satisfies LaPlace’s equation.
There are then boundary conditions imposed by the surface

terms contained in equations (18) and (19). Formally these
introduce terms into the equations of motion for the variables
mx and my which are proportional to δ(y ± d/2). The
boundary conditions follow by requiring equation (19) to
be satisfied everywhere in the film including y = ±d/2, and
then one must set the coefficients of the two delta functions to
zero if this is to be the case. At the upper surface y = +d/2
one then has the two conditions,

D
∂my

∂y
+ 2K>

S

MS
my

∣∣∣∣
y=+d/2

= D
∂mx

∂y

∣∣∣∣
y=+d/2

= 0 (21a)

whereas on the lower surface y = −d/2 we have

D
∂my

∂y
− 2K<

S

MS
my

∣∣∣∣
y=−d/2

= D
∂mx

∂y

∣∣∣∣
y=−d/2

= 0 (21b)

We have traced through this particular example to illustrate
how the presence surface anisotropy enters the description
of spin dynamics in ultrathin films. For this case, and for
diverse magnetic nanostructures for which the continuum
theory described above is appropriate, the surface anisotropy
manifests itself in the boundary conditions applied to the
dynamic magnetization at the surface of the sample.

In the exposition in the preceding text, we have phrased the
discussion in terms of the quantum theory of magnetization
motions, since there are circumstances one encounters where
truly quantum phenomena are encountered in ultrathin films
and also in other nanostructures. Thus, it is useful to
have the full quantum-mechanical formalism in hand. We
direct the reader to an excellent discussion by Heinrich
and Cochran (Heinrich and Cochran, 1993). These authors
frame the discussion entirely in the language of the classical
physics. The equations of motion generated by the quantum
theory are in fact identical to those generated by the
classical approach. The fact that this is so is insured by
the correspondence principle of quantum theory, and the
fact that the magnetization density as defined here is a
macroscopic variable. However, even though this is so, there
are circumstances where a quantum theoretic formulation of
the problem is essential. This is the case any time we wish to
discuss phenomena in which a single spin-wave quantum is
created or destroyed; as remarked above, BLS is an example
of such a physical process.

Both the classical theory and the quantum theory nec-
essarily produce identical eigenvectors for the spin-wave
modes of a sample, since each emerges from the same
equation of motion. However, in the discussion of quantum-
dominated phenomena, including the calculation of the tem-
perature dependent magnetization at low temperatures, one
must phrase the discussion in terms of spin-wave annihi-
lation and creation operators, which destroy or create spin
waves described by properly normalized eigenstates. There
is no way one can arrive at a normalization criterion through
use of the classical approach. To do this properly, a quan-
tum theory is required. Interestingly, for finite samples of
general shape, the question of how to properly normalize
the eigenfunction has been discussed only very recently, by
the present author (Mills, 2006). It should also be remarked
that the present author finds it much more straightforward to
derive equations of motion in the quantum rather than the
classical method, though this clearly is a matter of taste.

We conclude this section by referring once again to the
review paper by Heinrich and Cochran cited in the preceding
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text (Heinrich and Cochran, 1993). Here one finds application
of the theory to the analysis of data on ultrathin films for
diverse systems.

3.2 Microscopic theories of spin waves in the bulk
3d ferromagnets

In the previous section, we have seen that long wavelength
spin waves in bulk crystals, films, and more generally mag-
netic nanostructures may be described by a simple phe-
nomenology which involves a small number of parameters
which may be fitted to data.

If our interest is in short wavelength spin waves whose
wave vector is well out into the Brillouin zone, then we
must resort to a microscopic model. For ferromagnets and
other forms of magnetically ordered crystals, the standard
approach is based on the use of the Heisenberg model,
which utilizes a scheme based on the notion that in each unit
cell of the material we have a spatially localized magnetic
moment. One then envisions that these moments are coupled
together by exchange interactions of the classical Heisenberg
form; so two neighboring spins interact via the classical
exchange interaction, which may be written as −J12 �S1· �S2.
Such interactions in many materials may extend to next
nearest neighbors and beyond.

Although it is not uncommon to see such a picture applied
to the 3d ferromagnets, in fact it is clear that the physics of
spin excitations in these materials is very different than what
follows from the Heisenberg model. We have discussed some
of these issues above, and we will address them in more detail
here.

The Heisenberg model is appropriate to insulating materi-
als where the ‘magnetically active’ electrons are very tightly
bound within the ions, which sit on the various lattice sites.
Overlap between wave functions of the spin-aligned electons
on neighboring lattice sites is very small, and the partially
filled magnetic shell has wave functions which differ only
slightly from those in the free atom. In the language of band
theory, these electrons reside in bands of zero width. Such
a picture applies very well to transition-metal ions in insu-
lating crystals, and to the rare-earth magnets where the 4f
electrons are very tightly bound indeed. A signature of the
fact that the magnetic electrons are highly localized is that
the magnetic moment associated with the various ions in
the crystal lattice is very close to that expected for an iso-
lated atom, influenced by crystal fields. One then finds the
magnetic moment per ion to be very close to an integral
number of Bohr magnetons. The first clue that this pic-
ture fails badly in the 3d ferromagnets is the fact that the
moment per ion is a nonintegral number of Bohr magne-
tons. For example, in Fe, the moment per ion is 2.2 µB, in

Co 1.7 µB, and in Ni one has 0.6 µB, with µB the Bohr
magneton.

At this point, the electronic band structure of the 3d
ferromagnets is very well understood. The electrons of
interest reside in a series of nine energy bands (per spin
direction) formed from the 4p, 4s, and 3d states of the
free atom. The Fermi energy intersects this band structure
where the 3d admixture into the Bloch functions is very
large; the width of this region is roughly 4 eV for the 3d
metals, whereas the width of the 4sp complex is in the range
of 10 eV. The Bloch functions of general wave vector are
admixtures of s, p, and d character as a consequence of
hybridization between these states.

Ferromagnetism occurs when the Coulomb interaction
between electrons becomes sufficiently strong. A rather
simple argument allows one to appreciate why this is so.
Suppose we consider electrons in energy bands with a
paramagnetic ground state, so for each wave vector �k below
the Fermi energy we have one electron with spin up, and one
with spin down. We then have E↑(�k) = E↓(�k), where the
subscript refers to spin direction, and also we have N↑ = N↓
in this state.

Now suppose that we create a spin-polarized state by
taking all down spin electrons within the energy �E of
the Fermi level, increase the energy of each electron by
�E, flip its spin and place in an empty state in the up
spin band, just above the Fermi energy EF. We suppose that
�E � EF. The change in kinetic energy of the electrons is
�T = �E�N = (�N)2/N(EF), where �N is the number
of electrons transferred. Thus, this operation has increased
the kinetic energy of the electrons in the energy bands. It
costs kinetic energy to create a spin-polarized state.

Now consider the influence of the Coulomb interaction
between electrons. If we consider the ‘magnetically active’
3d electrons in the transition metals, there is a strong
Coulomb interaction between electrons which reside in the 3d
shell on a given lattice site. The dominant Coulomb inter-
action is between antiparallel spins on each site; the Pauli
principle does not allow two parallel spins to occupy the
same point in space (the many-body wave function van-
ishes in this circumstance) and by continuity the probability
that two parallel spin electrons come close together is small.
There is no such restriction on electrons of opposite spin, so
to first approximation we may write the Coulomb interac-
tion as UN↑N↓. After we create the spin-polarized state, we
have N↑ = N + �N and N↓ = N − �N . Hence the change
in Coulomb energy is �VC = −U(�N)2.

The above argument shows that by creating a net
spin polarization in an initially paramagnetic metal, if the
Coulomb interaction between antiparallel spins is sufficiently
strong that the product UN(EF) > 1, the paramagnetic state
is unstable with respect to formation of ferromagnetism.
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This is known as the Stoner criterion. The criterion, derived
above from a crude argument, survives within the framework
of contemporary density-functional theory, and in fact the
theory provides one with an ab initio value for the parameter
U (Marcus and Moruzzi, 1988).

We pause to remark that the Stoner criterion allows one
to understand the occurrence of ferromagnetism in the 3d
metals. As one moves from left to right in a given row of
the transition-metal series, the nuclear charge increases and
causes the d wave functions to contract. Hence U increases as
we move from left to right, since it scales inversely with the
radius of the d orbital. This also causes the d bands to narrow,
since overlap between neighboring d orbitals decreases. This
increases N(EF), so the Stoner product UN(EF) increases.
The ferromagnetic metals Fe, Co, and Ni lie on the right side
of the 3d row. As one moves vertically downward in a given
column, the 4d orbitals are spatially more extended than the
3ds, and the 5d orbitals more so than the 4d wave functions.
Hence as we go down a column from the 3d row to the
5d row, the Stoner product decreases. The consequence is
that ferromagnetism is found only on the right end of the 3d
series.

The first step in generating a microscopic description
of spin waves in the itinerant 3d ferromagnets is then
to complete an electronic structure calculation, wherein
the ferromagnetism is driven by the presence of Coulomb
interactions between the electrons. It is a nontrivial step to
proceed from the electronic band structure calculation to a
description of spin waves in the itinerant magnets.

The analysis proceeds by calculating the quantity referred
to as the wave vector and frequency dependent susceptibility,
denoted usually by χ+,−(�k, ω), and exploring its structure
as a function of frequency for fixed wave vector. The
physical meaning of this function is as follows. Suppose
we take our ferromagnet with magnetization parallel to the
z axis, and apply a circularly polarized magnetic field in
the xy plane, which oscillates with frequency ω and has
a spatial dependence characterized by the wave vector �k.
The field is thus �h(�r, t) = h�k,ω[x̂ cos(�k · �r − ωt) + ŷ sin(�k ·
�r − ωt)]. This applied field will excite the spins, and
introduce a spatially varying disturbance, which may be
written as 〈S+(�r, t)〉 = 〈S+〉�k,ω[x̂ cos(�k · �r − ωt) + ŷ sin(�k ·
�r − ωt)]. Linear response theory then provides one with a
link between the amplitude of the exciting field and the
response of the system. One writes

〈S+〉�k,ω = χ+,−(�k, ω)h�k,ω (22)

Thus, the wave vector and frequency dependent transverse
susceptibility is the proportionality constant between the
applied transverse field and the amplitude of the transverse
spin density induced by the field.

One proceeds to study spin waves by devising a means of
calculating the transverse susceptibility just described. For
fixed wave vector, if frequency is scanned, there will be
a pole of this function at the frequency ω(�k) of the spin
wave with wave vector �k. If the spin wave is damped by
some intrinsic process, instead of a pole one will find a
resonant peak with finite width; the lifetime of the spin wave
is the inverse of this width. In results to be presented below,
we shall show calculations of the quantity Im[χ+,−(�k, ω)].
The spin wave appears as a resonant peak in this quantity,
centered around the spin-wave frequency ω(�k).

The calculation of the transverse susceptibility takes one
into the realm of many-body theory. One is led to an integral
equation, which must be solved numerically for all but the
most schematic descriptions of the electron band structure.
An introduction to such analyses for the very simple one
band Hubbard model, where the analysis is elementary and
can be carried out analytically is given by White (1970).

Two methods have been used in the study of spin-wave
excitations in the bulk 3d metals. The first, introduced by
Cooke and collaborators (1980) utilizes an empirical tight
binding description of the electron energy bands. One begins
with ab initio energy bands for the paramagnetic state of the
material of interest, and generates a tight binding description
of the 3d/4sp complex by choosing intersite hopping integrals
and 3d/4sp hybridization parameters to reproduce the band
structure. Ferromagnetism is driven by empirically described
Coulomb interactions between electrons, which reside within
the 3d shell of an ion on a specific lattice site. Depending on
the scheme used, there can be from one to three parameters
for this purpose. The Coulomb parameters are adjusted
empirically to fit certain ground state properties such as
the total magnetic moment, the fraction of the moment
of 3d character, which has eg symmetry, and the fraction
which has tg symmetry. We may refer to such schemes as
multiband generalizations of the well-known Hubbard model
of magnetism in itinerant systems. One may find descriptions
of such analyses in various papers (Cooke, Lynn and Davis,
1980; Tang, Plihal and Mills, 1998). We note that it is
essential for the empirical term which describes the Coulomb
interaction to be form invariant under spin rotations. The
initial studies of Cooke and coworkers used a form that
did not have this property (Cooke, Lynn and Davis, 1980),
though in subsequent work we see this matter corrected
(Blackman et al., 1985).

The scheme just described is based on a realistic under-
lying electronic band structure, though this is described by
the empirical method just discussed. The transverse suscep-
tibility χ+,−(�k, ω) is calculated through use of a many-body
scheme known as the random phase approximation (RPA).
The method leads to a certain integral equation one must
solve numerically. The virtue of the empirical tight binding
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method is that once the kernal of the integral equation is
generated by numerical methods, the actual solution of the
integral equation is achieved through simple inversion of a
small matrix. For this reason, at present the empirical tight
method is the only means of addressing spin-wave excita-
tions in adsorbed ultrathin films, which we discuss in the
next section. A full ab initio treatment such as that discussed
in the next paragraph is still beyond the computational power
available at present.

A much more satisfactory means of generating theoreti-
cal descriptions of spin waves is through ab initio theory,
where the spin-polarized version of density-functional the-
ory is used to generate the ground state, without resort to
the simple empirical description of the Coulomb interac-
tion employed in the empirical tight binding scheme. The
transverse susceptibility is then generated through applica-
tion of time dependent density-functional theory. In this fully
ab initio scheme there are no adjustable parameters, of
course. Full density-functional calculations of spin waves in
bulk Ni and Fe have been reported by Savrasov, and also by
Karlsson and Aryasetiawan (Savrasov, 1998; Karlsson and
Aryasetiawan, 2000a,b).

While as just stated, full ab initio calculations of spin-
wave spectra are surely more satisfactory than those based
on the empirical tight binding approach, from the per-
spective of the physics incorporated in the two methods,
there are similarities. For instance, both methods utilize a
simple self-consistent mean-field description of the ground
state. In density-functional theory, the influence of elec-
tron correlation beyond that in, say, Hartree–Fock theory is
embedded within the exchange correlation potential, which
contains no adjustable parameters. In the empirical tight
binding methods, correlation effects are surely incorpo-
rated into the effective Coulomb matrix elements, but as
discussed in the preceding text these are adjusted to fit
data on the ground state. If one describes the content
of time dependent density-functional theory by Feynman
diagrams, the diagrams summed are in fact the same as
those, which enter the RPA. Both methods have the fea-
ture that once the ground state is described, no further
parameters are introduced to generate the description of spin
waves.

As one can see from the discussions above, there are
important differences in the nature of the spin waves in the
itinerant ferromagnets, and those insulating solids for which
application of the Heisenberg model is appropriate. In the
Heisenberg model, the spin waves are exact eigenstates of
the Hamiltonian, as excitations from the ground state. This
is not the case in the itinerant materials. Here one has, for
each wave vector �k, a continuum of spin triplet particle hole
excitations formed by taking an electron from a majority spin
band, and then placing it in a state in the minority spin band

complex after flipping its spin and translating its wave vector
by the amount �k. These bands of particle hole excitations
are called the Stoner continuum as noted in our discussion
of neutron scattering from spin waves. As discussed there,
spin waves in the itinerant ferromagnets thus have a finite
lifetime by virtue of the fact that they can decay into the
Stoner continuum. These features appear in the calculations
cited in the preceding text, and the onset of strong damping
with increasing wave vector is evident in the neutron data we
have discussed in Section 2. We shall see in our discussion
of spin waves in ultrathin films adsorbed on metal substrates
that in such systems, the damping is very severe indeed, to
the point where the spin wave ‘lives’ for only two or three
periods, when its wave vector is large.

We wish to conclude this section with comments on an
issue that has been discussed since the early work of Cooke
and his colleagues (Cooke, Lynn and Davis, 1980). We also
mentioned this matter earlier, and here we wish to explore
it in more detail. These authors found apparent gaps in
the spin-wave dispersion relation in both Fe and Ni, along
high symmetry directions and roughly in the middle of the
Brillouin zone. The physical reason why such gaps should
occur is puzzling, at least to the present author. The piece of
dispersion curve on the high-frequency side of the gap was
called an optical spin wave by Cooke et al., though clearly
these materials are monatomic in nature. As remarked earlier,
in our studies of spin-wave dispersion in both Fe and Ni
through use of the empirical tight binding method, we have
failed to find such features. We find smooth dispersion curves
throughout the Brillouin zone (Tang, Plihal and Mills, 1998;
Hong and Mills, 2000).

However, other authors have also found apparent gaps in
spin-wave dispersion relations for Fe and Ni. We note that
a survey of the literature shows that there is no consensus
regarding the direction in the Brilluoin zone or the point
at which the apparent gaps occur. For instance, Cooke and
coworkers report a doublet in the spectral density of Fe along
[100] (Cooke, Lynn and Davis, 1980) while Savrasov finds
a smooth featureless dispersion curve in Fe along this same
direction, in clear conflict with the earlier paper (Savrasov,
1998). Karlsson and Aryasetiawan find a gap in the spin-
wave dispersion along the [111] direction in Ni (Karlsson
and Aryasetiawan, 2000a), but Cooke and collaborators find
their structures along the [100] direction in Ni. Furthermore
the nature of their structures differs qualitatively from the
gap reported by Savrasov along Ni [100] (Savrasov, 1998;
Cooke, Blackman and Morgan, 1985).

Thus, while various authors have found gaps and unusual
structures in the effective spin-wave dispersion relations of
both Fe and Ni, no two theoretical papers agree on their
nature, or even which symmetry direction in the zone the
features are found. With this in mind, we wish to discuss our
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own experience in which we encountered such a structure.
In our study of the spin waves in an Fe monolayer adsorbed
on the W(110) surface, we initially found a dispersion
relation with a clear gap when the wave vector was directed
along the �X direction in the two-dimensional Brillouin
zone. The gap in our case was an artifact caused by poor
convergence in the k space sums required to construct the
kernal of the integral equation one must solve in the RPA
description of the transverse susceptibility. The convergence
issue involved is quite curious, and we illustrate this in
Figure 7, reproduced from our paper on the Fe monolayer
on W(110) (Muniz and Mills, 2002). The three panels show
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Figure 7. We illustrate convergence issues encountered in our cal-
culation of the spin-wave dispersion relation for the Fe monolayer
on W(110). We plot the imaginary part of the transverse susceptibil-
ity χ+,− for selected wave vectors in the two-dimensional Brillouin
zone, along the �X direction. In (a) the reduced wave vector is 0.25,
in (b) it is 0.50, and in (c) it is 0.35. The dashed curve is a calcu-
lation based on 262 special points in the irreducible Brillouin zone
for the kernal which appears in the RPA integral equation, the light
solid curve is for 1036 special points, and the heavy solid curve
is for 4120 points. (Reproduced from Muniz & Mills 2002, with
permission from the American Physical Society.  2002.)

the spin-wave resonance in Im(χ+,−) for three selected
reduced wave vectors along the �X direction. In (a), we
show the calculation for a reduced wave vector of 0.25,
in (b) we show the result for 0.50, and in (c) we show
the result for 0.35. Let us first look at the results in (a)
and in (b). In these figures, the dashed line results from a
calculation where the computation of the kernal in the RPA
integral equation utilized 262 special points in the irreducible
Briilouin zone, and the thin solid line is a calculation, which
employed 1036 such points. The dashed curve and the thin
solid line nearly lie on top of each other, so it is reasonable
to assume that for all wave vectors, adequate convergence
can be achieved with use of 262 points. If we proceed to
do this, then for a reduced wave vector of 0.35 we generate
the double peaked structure evident in part (c) of the figure.
If we were to stop here, and plot an effective dispersion
for spin waves along the �X direction, we would find a
gap near the reduced wave vector of 0.35. The dispersion
curve and its gap have an appearance qualitatively similar
to those found by Savrasov along Ni(100), and that found
by Karlsson and Aryasetiawan along the (111) direction
in Ni.

However, in our case the apparent gap and the doublet
in Figure 7(c) are an artifact produced by poor convergence
around the particular wave vector in the figure. When we
use 1036 points, the doublet has disappeared (thin solid line),
and we are left with a single peak. The calculation has now
settled down, since use of 4120 points yields virtually the
same structure.

This example, along with the contradictions found in the
theoretical literature on spin waves in Fe and Ni suggests
that further study of the apparent gaps and optical spin
wave features should be undertaken before their existence
is viewed as firmly established.

3.3 Theoretical studies of spin waves
in ferromagnetic ultrathin films

It was remarked in the previous section that a full density-
functional analysis of the spin-wave spectra of ultrathin fer-
romagnets adsorbed on substrates is beyond our capability at
present. It is the case that through use of density-functional
methods, one may calculate effective Heisenberg exchange
interactions between nearby spins in a ferromagnetic lat-
tice (Frota Pessoa, Muniz and Kudrnovsky, 2000; Grother,
Ederer and Fahnle, 2001; Bruno, 2003). Such methods can
be applied to ultrathin films to generate spin-wave spectra
calculated within the adiabatic approximation (Padja et al.,
2000; Udvardi, Szunyodh, Palotos and Weinberger, 2003).
Such exchange couplings may be inserted into a Heisen-
berg–Hamiltonian and one may then generate a spin-wave
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spectrum for the ultrathin film. In our discussion of the
SPEELS data on spin waves in ultrathin films in Section 2,
we have seen that a procedure such as this produces a mis-
leading picture of the nature of short wavelength spin waves
in ultrathin films. The author and his colleagues have formu-
lated a means by which spin excitations in ultrathin structures
on substrates of infinite extent may be described within a
fully dynamical theory similar to the RPA descriptions dis-
cussed in the previous section of spin waves in the bulk 3d
ferromagnets (Tang, Plihal and Mills, 1998; Muniz and Mills,
2002; Costa Muniz and Mills, 2003a). In the discussion pre-
sented in the subsequent text, we shall make explicit compar-
isons between results of full dynamical calculations and those
generated from a Heisenberg–Hamiltonian applied to the
ultrathin film. The dramatic failure of the latter approach will
be evident. We first comment on aspects of the calculation.

A detailed discussion of our method is given in our
first paper on adsorbed films (Muniz and Mills, 2002). We
employ the empirical tight binding method to the adsorbed
film/substrate combination. Thus, the one-electron states
extend throughout the system, in general. To generate a
description of the ground state of the structure, we require
the one-electron Green’s function. This can be built up
for the film/substrate combination by an iteration method,
applied numerically. As in the bulk ferromagnets, we use
a mean-field description of the ferromagnetic ground state,
but the magnetic moments in the ferromagnetic film are
allowed to vary in a layer-by-layer fashion. There are some
technical issues that must be addressed here. For instance, the
multiband Hubbard model with on-site Coulomb interactions
within the 3d shell does not properly incorporate the long-
ranged feature of the full Coulomb interaction employed
in ab initio, density functional based theories. Thus, one
finds that the surface layer of the ultrathin film is highly
charged, if one works within the multiband Hubbard model.
The ground state so generated is thus rather unphysical. One
must then adjust the energies of the one-electron orbitals in
the surface so the orbital occupancies are brought in line
with those generated from ab initio studies of the film. A
detailed discussion of this issue, and comparisons between
the empirical tight binding description of ultrathin films is
presented in the paper by Tang and coworkers (1998).

Once a description of the ground state is found, one
must set up an appropriate wave vector and frequency
dependent susceptibility for the film by extending the concept
described in the above for the bulk. This new object is
defined as follows. We suppose we subject the film/substrate
combination to a circularly polarized transverse magnetic
field of frequency ω once again. This field has a wave vector
�k‖ in the plane parallel to the film surface, but may vary in
the direction normal to the surface in an arbitrary manner. If
we use l to label the atomic planes in the structure, then the

externally applied field has the form

�h(�r‖, l; t) = h�k‖,ω‖(l)[x̂ cos(�k‖ · �r‖ − ωt)

+ŷ sin(�k‖ · r‖ − ωt)] (23)

Such an external field induces a transverse moment
〈S+(�r‖, l; t)〉 of the form

〈S+(�r‖, l; t)〉 = 〈S+(l)〉�k‖,ω‖(l)[x̂ cos(�k‖·�r‖ − ωt)

+ŷ sin(�k‖·r‖ − ωt)] (24)

From linear response theory, one finds that one can write

〈S+(l))〉�k‖ω =
∑
l′

χ+,−(l, l′; �k‖, ω)h(l′)�k‖,ω (25)

One may formulate a means of calculating the response
function introduced in equation (25) through use of the
RPA. There is a kernal, referred to in the literature as the
irreducible particle hole propagator, that must be generated
from a convolution of two single particle Green’s functions,
which one knows once the description of the ground state
of the system is completed. This object is a matrix structure
with elements labeled by plane and orbital indices. A very
considerable amount of computational effort is involved
in generating the large number of elements to sufficient
accuracy to insure converged results. Once this is done,
however, for each wave vector and frequency the response
function can be generated by means of a straightforward
matrix inversion. This step is rendered simple by the fact that
the Coulomb interaction between electrons is local in space,
confined to the electrons within the 3d shell of a single ion.
The computational labor required to carry through a full time
dependent density-functional analysis of the large structures
we have explored would be some orders of magnitude larger
than that expended in our calculations.

A feeling for the physical content of the response function
defined in equation (25) may be obtained by displaying its
form if we do describe the spin-wave excitations in the film
through use of the Heisenberg model. As we have seen, for
a film with N layers, for each choice of the wave vector
�k‖ we have N spin-wave frequencies we may refer to as
ωα(�k‖), where α ranges from 1 to N . Associated with each
mode is an eigenvector eα(�k‖; l), with l the layer index. The
eigenvector tells us the amplitude of mode α on layer l. Then
for suitably normalized eigenvectors, one finds

χ+,−(l, l′; �k‖, ω) =
N∑

α=1

eα(�k‖, l)eα(�k‖l′)
ωα(�k‖) − ω − iη

(26)
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Where η is infinitesimal. To illustrate the results generated
from our full dynamical calculations we shall display the
quantity S(l; �k‖, ω) = (1/π)Im{χ+,−(l, l; �k‖, ω)}. We refer
to this quantity as the spectral density of spin fluctuations on
layer l of the film. For the Heisenberg model, one has

S(l; �k‖, ω) =
N∑

α=1

eα(�k‖, l)2δ(ω − ωα(�k‖)) (27)

The spectral density function associated with layer l thus
consists of, in the Heisenberg model, a series of delta
functions at the spin-wave frequencies associated with the
wave vector selected, and the integrated strength of each
of the delta functions is the square of the amplitude of the
eigenvector of each mode on layer l. When we calculate this
function for the itinerant ferromagnetic film adsorbed on the
substrate, the damping of each mode provided by its decay to
the continuum of Stoner excitations will produce resonances
of finite width. The lifetime of the damped spin wave is given

by the inverse of this width. The integrated strength of the
broadened feature can be taken to be an indication of the
square of the amplitude of each of the modes, which appear
in the spectrum.

We now turn to a discussion of our results for the layer
dependent spectral densities for a five-layer film of bcc-Fe on
W(110). These results illustrate the behavior of the spin-wave
spectra we have calculated for several ultrathin film/substrate
combinations.

In Figure 8(a), we show the layer dependent spectral
densities for a reduced wave vector of 0.05 along the [10]
direction of the two-dimensional Brillouin zone. The dashed
lines are for a free-standing film, whereas the solid lines
are for the film adsorbed on the substrate. For the adsorbed
film, the low frequency feature is the acoustical spin-wave
mode. This mode, extrapolated back to zero wave vector, is
the mode one would observe in FMR. The linewidth is very
narrow. We shall comment further on intrinsic linewidths
in FMR later. Then the second mode is the first standing
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Figure 8. We show spectral densities calculated for a five-layer Fe film on W(110), for selected wave vectors along the [10] direction in
the two-dimensional Brillouin zone. These are the layer dependent spectral densities defined in the text. The layer labeled S is the outer
layer of the film, and layer 1 is at the interface between the film and substrate. In (a), we have results for the case where the reduced wave
vector is 0.05, and in (b) the reduced wave vector is 0.2. (Reproduced from Costa et al., 2003, with permission from the American Physical
Society.  2003.)
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spin-wave mode, whose eigenvector clearly has the cosine
squared form expected through use of equation (27) as a
means of representing the layer dependent spectral densities.
It is, however, broadened enormously in comparison to the
acoustic spin wave. Comparison of this mode with that for
the free-standing film (dashed curves in Figure 8(a)) shows
that the substrate plays a strong role in providing damping.
This mode decays to the continuum of Stoner excitations,
which carry off the spin angular momentum stored in the spin
wave into the substrate by virtue of hybridization of the Fe
film electron wave functions with those of the substrate. The
third standing spin-wave mode is broadened so much that
it is barely perceptible as a feature in the spectral density.
There is a very small, broad feature evident in the middle
layer of the film for this mode. Recall that if we apply the
Heisenberg model to the film we would expect from equation
(27) to see five modes, each with infinite lifetime. Clearly,
such a picture is qualitatively wrong for systems such as
these.

In Figure 8(b), we show the same information, but now
for a reduced wave vector of 0.2. We see three modes, all
heavily damped and they are beginning to merge into a
single broad structure. Notice the difference in vertical scale
between Figure 8(a) and (b). As we see from Figure 9, which
shows the spectra for the reduced wave vector of 0.6, in the
outer layer of the film probed by the electrons in SPEELS,
we see a single broad feature. If one follows the position of
this peak as a function of wave vector, one will obtain a spin
wave like dispersion curve, as one sees from the example in
Figure 2 of Costa Muniz and Mills (2004).

Finally in Figure 10, we show a comparison between spec-
tral densities calculated within the full dynamical theory, and
for a Heisenberg model with exchange interactions generated
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Figure 9. Same as Figure 8, except the reduced wave vector is
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Figure 10. For an eight layer Co film on Cu(100), we show a
comparison of the layer-by-layer spectral densities calculated within
the full dynamical theory with those for a Heisenberg model of the
film whose exchange integrals have been generated from adiabatic
theory applied to the same electronic structure utilized in the full
dynamical theory. The reduced wave vector is 0.3 along the [11]
direction in the surface Brillouin zone. (Reproduced from Costa
et al., 2004, with permission from the American Physical Society.
 2004.)

by adiabatic theory for the same electronic structure used
in the full dynamical calculations. The calculations are for
an eight layer fcc-Co film adsorbed on Cu(100), and for a
reduced wave vector of 0.3 directed along the [11] direc-
tion of the surface Brillouin zone. We remind the reader that
this is the system explored in the SPEELS experiments of
Vollmer and collaborators (Vollmer et al., 2003).

We should comment on the reason for the breakdown of
the Heisenberg model, when applied to the itinerant ultra-
thin ferromagnets. The basis for the Heisenberg model is
the assumption that the adiabatic approximation is valid for
a description of the spin excitations of the system. If one
accepts this assumption, then one proceeds by calculating the
exchange interactions between a selected pair of moments
from the energy change associated with a static reorienta-
tion of the moments. If one tips a selected moment from the
direction of the magnetization, torques are felt by neighbor-
ing moments, and one may deduce the value of the exchange
interactions from the magnitude of the calculated torques.
The infinitely long lived spin waves of the Heisenberg model
follow by supposing the spin motions are sufficiently slow
that adiabatic theory describes their dynamics. The calcu-
lations we have shown in Figures 8–10 show that for spin
waves in the ultrathin, itinerant ferromagnets, we have a qual-
itative breakdown of adiabatic theory. The RPA is indeed a
approximate many-body technique, but it is a fully dynami-
cal scheme that does not invoke the adiabatic approximation.
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We see from Figure 6, discussed above, that the results which
emerge from this scheme applied to the empirical tight bind-
ing model appear to agree very well with the data.

In calculations of phonon spectra of metals, including
that of adsorbate overlayers, the adiabatic approximation
is standardly employed and the method works splendidly
(Heid and Bohnen, 2003). One is tempted to argue that
since the frequency of spin waves in the itinerant magnets is
perhaps an order of magnitude larger than that of phonons in
these same systems, this offers a basis for the breakdown of
adiabatic theory for spin waves. This does not seem correct,
however, because the damping rate of both phonons and spin
waves scales linearly with frequency to good approximation.
The damping of both phonons and spin waves in metals
has its origin in decay to particle hole pairs, and if the
frequency of both is low to the Fermi energy or any other
characteristic energy of the electron band structure, then the
damping term in the relevant dynamical response function
must vary linearly with frequency. Thus, if there were no
other difference, one would expect the ‘Q factor’ (the number
of oscillations in one lifetime) of both spin waves and
phonons to be roughly the same.

The breakdown of the adiabatic approximation for spin
waves cannot thus be related to the much higher frequency
of spin waves. Instead the breakdown has its origin in the
fact that the coupling constant of the spin waves to the
Stoner continuum is very much larger than the dimensionless
electron–phonon coupling constant. In essence, for itinerant
ferromagnets the dimensionless coupling constant is the
Stoner factor, UN(EF) encountered in our simple discussion
of the instability of the paramagnetic state of electrons
with respect to the ferromagnetic state. This is of order
unity for the 3d transition-metal ferromagnets, whereas the
dimensionless electron–phonon coupling constant is small
compared to unity.

We conclude this section with a discussion of one final
topic, the intrinsic FMR linewidth in the ultrathin films.
As discussed in the section on FMR, in the bulk form
of 3d ferromagnets, the linewidth is a spin orbit based
mechanism, whereas in the ultrathin films a new intrinsic
mechanism is present and can be substantial in magnitude.
This is the ‘spin pumping’ contribution to the linewidth,
present when an ultrathin metallic ferromagnet is deposited
on a metallic substrate. The picture set forth in the early
theoretical papers which predicted the phenomenon (Berger
1996; Slonczewski, 1998) was discussed above. When the
spins in the ultrathin ferromagnet are set in motion, angular
momentum is transferred to the conduction electrons in these
metallic films, and in the process a spin current normal
to the interface is created. Thus, spin angular momentum
is transported into the substrate where it is ultimately
dissipated. These early calculations were based on a rather

primitive model of localized spins exchange coupled to
conduction electrons, viewed as free electrons. A theory of
spin pumping based on one-electron theory has been set forth
by Tserkovnyak, Brataas and Bauer (2002a,b) and subsequent
calculations based on this formalism applied to a realistic
electronic structure account well for data on spin pumping
(Zwierzycki et al., 2005).

The spin pumping mechanism just described is clearly very
much the same mechanism responsible for damping the large
wave vector spin waves observed in SPEELS. To explore that
this is so, we have applied our response function analyses to
the issue of the linewidth in FMR. We may do this by cal-
culating the spectral density functions at the center of the
two-dimensional Brillouin zone, and then comparing the cal-
culated linewidths to data. In our method, unfortunately, it
is not possible to carry out calculations of the linewidth of
the very low frequency modes actually studied in FMR. We
must then apply an artificially large Zeeman and exploit the
fact that the linewidth varies linearly with frequency. The
method provides an excellent account of the data, as we see
from Figure 11, where a comparison is made with the origi-
nal observations of Urban, Woltersdorf and Heinrich (2001).
We have applied our methodology also to trilayers (ferromag-
netic film/nonmagnetic spacer/ferromagnetic film) adsorbed
on metallic substrates, to find very excellent descriptions
of the variation of linewidth of the acoustical and optical
spin-wave mode of the trilayer with spacer thickness (Costa,
Muniz and Mills, 2006).

It thus appears that we now have in hand theoretical
descriptions of spin waves and their damping in the ultrathin
ferromagnets from the zone center out to large wave vectors,
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Figure 11. We show a comparison between theory (open circles)
and experiment (solid dots) for the spin pumping linewidth, for Fe
films on Au(100). For both theory and experiment, we show the
linewidth divided by the FMR frequency, as a function of Fe film
thickness. (Reproduced from Costa et al., 2006, with permission
from the American Physical Society.  2006. The data in the plot
has been reported by Urban and coworkers, 2001.)
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and the theory provides an excellent account of the data. A
most important step remains. This is be the appearance of
theoretical studies not based on the empirical tight binding
method supplemented by the RPA but on the analyses,
which employ full time dependent density-functional theory.
It would be of very great interest to see such studies even
for relatively small systems such as few layer free-standing
films, so the results of full ab initio theory can be compared
alongside those generated by the empirical approach. It is
the view of this writer that we may see studies of small
systems in the near future, but we are unfortunately far from
the time where full ab initio calculations may be applied
to the very large systems that have been studied by the
empirical tight binding method. In density functional based
theories of only the ground state, it is still necessary to
approximate a semi-infinite substrate by a small number of
layers. It is unlikely that use of such a scheme will provide
adequate accounts on the damping of the spin-wave modes in
ultrathin films adsorbed on metallic substrates though surely
the ground state is well described with only a few substrate
layers present.
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1 INTRODUCTION

In the last few years, there has been extensive research
activity to achieve a basic understanding of ultrafast mag-
netization processes in magnetically ordered materials. From
the viewpoint of fundamental research, this issue is very
interesting because the coupling of the electronic system to
the lattice has to be taken into account for dissipative spin
dynamics, and this is often achieved by a combination of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

methods of electron theory with methods of irreversible ther-
modynamics. From the viewpoint of magnet technology, a
strong impetus came from the promising and possible appli-
cations of magnetization dynamics in micro- and nanosized
magnets for advanced information storage and data process-
ing devices in which the binary information is stored in two
magnetization states, either up and down, or up and zero (i.e.,
demagnetized). Thereby, three different modes are currently
discussed for changing the magnetic state (switching) – the
application of an antiparallel or perpendicular (precessional
switching) field pulse (Back and Pescia, 2004; Hillebrands
and Fassbender, 2002); switching by use of a spin-polarized
current (Stiles and Miltat, 2006); or switching by heating up
a spot of the sample with an intensive laser pulse followed
by demagnetization of the spin systems via thermalization of
the highly excited electrons and excitation of phonons (Koop-
mans, 2003). The ultimate objective is to achieve switching
times as short as possible.

The timescale of the magnetization processes is most
essential for the physics and for the type of theories that
are used to describe them. For near-adiabatic processes, the
timescales are longer than typically several picoseconds, and
then the electronic system is always close to its ground state
with respect to the momentary magnetization configuration
(see Section 4). Examples include the dynamics of domain
walls (Thiaville, Nakatani, Miltat and Suzuki, 2005), the
field- or current-induced magnetization dynamics in nano-
structures (Back and Pescia, 2004; Hillebrands and Fass-
bender, 2002; Stiles and Miltat, 2006), and the propagation
of spin waves of long wavelengths (Grotheer, Ederer and
Fähnle, 2001). To describe spin waves with shorter wave-
length (Costa, Muniz and Mills, 2003) or the relaxation
processes on the sub-picosecond timescale after intense laser
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pulses (Koopmans, 2003), strong electronic excitations from
these ground states have to be taken into account (see also
the contribution of D.L. Mills in volume I). In the present
review, we confine ourselves mainly to processes close to
the adiabatic limit. The main objective is to figure out the
appropriate equation of motion (EOM) for magnetization
dynamics, thereby including dissipative processes due to
the coupling of magnetic degrees of freedom to the lattice
degrees of freedom, which leads to damping. On a phe-
nomenological level ((Kronmüller and Fähnle, 2003), see
also the corresponding articles of volume II), magnetization
dynamics is often described by the Gilbert equation (Gilbert,
1956) for magnetization M(r, t),

dM
dt

= −γ (M × Heff) + 1

M
M × α

dM
dt

(1)

Here, γ is the gyromagnetic ratio; Heff is the effective field
composed of the external field as well as the exchange,
anisotropy, and dipolar fields; and α is a phenomenological
damping parameter. We will see that this equation is strictly
valid only under very restricted circumstances, and we will
discuss appropriate modifications.

In earlier times, the dissipative magnetization dynamics
driven by external fields has been discussed. In 1996, two
pioneering papers (Slonczewski, 1996; Berger, 1996) initi-
ated an overwhelming activity on magnetization dynamics
induced by transport currents mainly in magnetic multilay-
ers with very small layer thickness. In the present review,
we concentrate mainly on processes driven by external
fields and transport currents in single-phase systems (whereas
(Stiles and Miltat (2006) and Heinrich (2005) give excellent
overviews on the multilayer systems), and we just make com-
ments on how the physical processes in non-multilayer and
multilayer systems are interrelated. Furthermore, we concen-
trate on the spin dynamics in metals and do not consider
insulators or magnetic semiconductors. We also neglect the
effect of thermal fluctuations on EOM (for corresponding
papers, see, e.g., Safonov and Bertram (2005) and Rebei and
Parker (2003)).

A discussion of all the relevant papers on dissipative mag-
netization dynamics would go far beyond the scope of the
present review. Instead, we illustrate the basic physical mech-
anisms by two intuitive and, in some respect, complementary
models – the s–d model and the breathing Fermi surface
model. The outline of our review is as follows. In Section 2,
we define the dynamical magnetic variables used for vari-
ous experimental situations, and damping is introduced in
Section 3. In Section 4 we discuss two situations without
(direct) damping, the case of vanishing and that of infi-
nite scattering time of electrons. The scattering processes
leading to direct damping mechanisms are discussed qualita-
tively in Section 5. In Section 6, we treat using two examples

(s–d model and breathing Fermi surface model), how theory
can describe damping by including the coupling of magne-
tization to other degrees of freedom in a phenomenological
manner via relaxation times. In Section 7, the present status
of spin dynamics simulations by the ab initio electron the-
ory is described, and in Section 8, concluding remarks are
given.

2 DYNAMICAL MAGNETIC VARIABLES

The starting point of any theory of magnetic dynamics
is the definition of appropriate dynamical variables. The
choice of these variables depends on the experimental
setup that will be used to study magnetization dynamics.
Because magnetization arises from spin and orbital degrees
of freedom, the most general dynamical variable is the
density of spin and orbital magnetic moment, m(r, t) =
ms(r, t) + ml(r, t), where ms and ml denote the spin and
orbital contributions, respectively, which are defined as the
quantum-mechanical expectation values of the corresponding
Schrödinger operators,

m̂s(r) = −gµB

2

∑
s,s′

ψ̂
†
s (r) σ̂ s,s′ ψ̂s′(r) (2)

m̂l(r) = −µB

∑
s

ψ̂
†
s (r) L̂ ψ̂s(r) (3)

In these equations, µB is Bohr’s magneton, −gµB/2 is
the magnetic moment of the free electron, ψ̂s is the s

component of the spinor field operator, σ̂ is the vector of
Pauli matrices, and L̂ is the angular momentum operator.
The time dependencies of m(r, t) = 〈m̂(r)〉 and the like arise
because the expectation values have to be formed with the
many-body Schrödinger wave function |ψ(t)〉 which is a
solution of the time-dependent wave equation,

Ĥ |ψ〉 = i� |ψ̇〉 (4)

where the Hamiltonian in general acts on the positional and
spin degrees of freedom of all electrons and nuclei. (In
the following, we neglect all effects resulting from dipolar
interactions between magnetic moments; to take them into
account would require the inclusion of a coupling term
between current and vector potential in Ĥ .)

Presently, there is no experimental technique to monitor
m(r, t) on all scales in space – including the subatomic
scale – and on all timescales down to the shortest possible
timescale (corresponding to the fast degrees of freedom)
which is the electronic intersite hopping time h/W ≈ 10−15 s
(h is Planck’s quantum and W is the width of the electronic
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m(r, t )

0

M(r, t ) d3q dw
(2p)2

1
dM(q, w)ei(q·r−wt )dM(r, t )

FMR,
Brillouin light scattering,
neutron scattering

Magnetic
microscopy

=

Spatial coarse graining

Temporal coarse graining

Mi (t ) = ∫m (r, t ) d3r  =  ei (t )Mi(t )
Ωi

Mi (t ) = n ∫  ∫ m (r, t ′) d3r dt ′ = ei (t )Mi ({ej (t )})
1/n

Ωi

M(t ) = ∫M (r, t ) d3r
M(t ) = ∫ M (r, t ) d3r

∫∫

Laser pump-and-probe sample
sample

Figure 1. Schematic representation (see text) of the spatial and temporal coarse graining of m(r, t) to define the appropriate dynamical
variables for various experiments.

energy band in the solid). Therefore m(r, t) is not an
appropriate dynamical variable, it has to be coarse-grained
step by step both in space and in time (see Figure 1).
Concerning the coarse graining in space, we first eliminate
the information at the subatomic level. To do this, we
subdivide the system into disjunct space-filling parts around
the atoms at sites i with volumes �i , and we define atomic
magnetic moments

Mi (t) = ei (t) Mi(t) = 〈M̂i〉 (5)

as expectation values for the site-moment operators

M̂i =
∫
�i

m̂(r) d3r (6)

The atomic moments Mi (t) in equation (5) are character-
ized by their momentary directions ei (t) that represent the
transversal degrees of freedom and the magnitudes Mi(t)

that represent the longitudinal degrees of freedom. The oper-
ators M̂i fulfill certain commutation relations, for example,
the spin part M̂s,i obeys

[M̂s,iα, M̂s,jβ ] = −igµB δij εαβγ M̂s,iγ (7)

where α, β, and γ refer to the Cartesian indices, and where
εαβγ are the components of the antisymmetric tensor of the
fundamental three form. In the second step of spatial coarse
graining, we get rid of the atomic scale information and
keep only the information on the mesoscopic scale via a
continuation of the atomic magnetization Mi/�i , yielding

the magnetization field M(r, t),

M(r, t) =
∑

i∈�(r)

Mi (t)

�i

(8)

where �(r) is the volume of a mesoscopic part of the sample
around r. Finally, we can define the magnetic moment M(t)

of the whole sample via

M(t) =
∑

i

Mi (t) =
∫

sample

M(r, t) d3r (9)

In a typical laser pump-and-probe experiment (Koopmans,
2003), it is often the moment averaged over a more or less
macroscopic regime which is monitored on the femtosecond
timescale, so that M(t) as given by equation (9) is the
appropriate dynamical variable. Many other experiments,
however, explore only the slow magnetic degrees of freedom
defined in the following way. Due to the mutual Coulomb
and exchange interactions, the electronic intersite hopping is
not random but the electrons arrive at an atom and leave the
atom in a highly correlated way. As a result, a finite value
remains for the time-averaged quantity

Mi (t) = ν

t+1/ν∫
0

Mi (t
′) dt ′ (10)

where ν ≈ 1013 s−1 is the frequency of a typical long-
wavelength spin wave. On timescales larger than 1/ν, the
orientations ei (t) of Mi change in time and represent
the independent transversal fluctuations. In contrast, the
magnitudes Mi(t) are totally determined (see Section 4) by
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the orientations ej (t) at all sites j , that is, the longitudinal
fluctuation modes are ‘slaved’ by the independent transversal
modes, and thus we can write

Mi (t) = ei (t) Mi({ej (t)}) (11)

In analogy to equations (8 and 9), the quantities Mi (t) may
be further coarse grained in space, yielding M(r, t) and
M(t). In the following sections, only such situations are
discussed, and therefore we omit the ‘bar’ denoting time
average for simplicity, that is, with Mi (t) or M(r, t) we
address those slow degrees of freedom. As an example,
for the magnetic microscopy on the nanosecond and sub-
nanosecond timescale (e.g., by using (Stoll et al., 2004)
the X-ray magnetic circular dichroism (XMCD)), the so-
defined magnetization field M(r, t) is the appropriate dynam-
ical variable. Furthermore, we define the deviation, δM =
M(r, t) − Mref(r), from an appropriately chosen reference
state with

δM(r, t) = 1

(2π)2

∫∫
d3q dω δM(q, ω) ei(q·r−ωt) (12)

The limited spatial resolution thereby defines the upper
limit for the q integration in equation (12), that is, the
dynamical variable M(r, t) also depends on the experimen-
tal details. Finally, there are other experiments on the slow
timescale that investigate only single Fourier components
of the deviation δM from a saturated ferromagnetic refer-
ence state. Examples are the ferromagnetic resonance (FMR)
experiments (Lindner et al., 2003) for the uniform mode
q = 0, the Brillouin scattering experiments (Demokritov and
Hillebrands, 2002) for spin waves with small q, and the
neutron scattering experiments (Mook and Paul, 1985) for
spin waves with arbitrary q. In these cases, the consid-
ered spin-wave mode δM(q, ω) is the appropriate dynamical
variable.

Finally, we comment on the spin and orbital contributions
to magnetization. When a sample is investigated by a mag-
netometer (mainly used for static situations), then the experi-
mental signal is directly related to the total magnetic moment
including both contributions. However, in most experiments
with temporal and spatial resolution, things are more compli-
cated. For instance, the signals from the XMCD microscopy
(Stoll et al., 2004) at fixed X-ray energy are not propor-
tional to the sum of spin and orbital contributions, but to
a more complicated combination of these two contributions
plus additional contributions (Ankudinov and Rehr, 1995).
The resolution of spin and orbital contributions would require
magneto-spectromicroscopy. Fortunately, in many metallic
bulk magnets, the contribution of orbital magnetism is small
for slow dynamics, and therefore in many papers (includ-
ing the following sections of the present review), the term

magnetization is used synonymously with the term spin
magnetization. For the pump-and-probe experiments on the
femtosecond timescale, however, it is important to inves-
tigate the transfer of magnetic moment between spin and
orbital degrees of freedom. Such an analysis is rendered even
more difficult because there is no simple relation (Koopmans,
2003) between the Kerr effect probe signal after the laser
pulse and the magnetic moments.

3 DISSIPATION

When we include in the wave equation (4) the couplings
between all positional and spin degrees of freedom of all
electrons and nuclei, and solve it for |ψ(t)〉 for a given
initial state |ψ(t = 0)〉, we obtain a quantum-mechanically
coherent dynamics for m(r, t) which contains far too much
information than is required for an interpretation of most
experiments. (The coherent part of the dynamics is of
relevance only for the femtosecond dynamics after an intense
laser pulse (Hübner and Zhang, 1998)). Furthermore, all
equations would be local in time and the notion of damping
would not appear in such a theory.

However, it is not the objective to investigate the dynamics
of m(r, t) obtained in this way, but to study the behavior
of the dynamical variables that are appropriate for the
experiment under consideration, and to write down an EOM
that explicitly contains only these variables, for example, by
integrating out all the other degrees of freedom. The outcome
of this process is that in general the EOM contains terms
which depend on the entire history (Suhl, 1998; Capelle
and Gyorffy, 2003), and this is the signature for damping
processes which describe the transfer of energy and angular
momentum (and concomitant magnetic moment) from the
considered dynamical variable to the eliminated degrees of
freedom. As an example, the damping term in the Gilbert
equation (1) may be conceived as the first term of the
evaluation of a general damping term that is nonlocal in
time, and the dissipated power R due to this term is given
by Brown (1963)

R =
∫

1

2

α

γM

(
dM
dt

)2

dt (13)

When all the eliminated degrees of freedom are nonmagnetic,
then damping is denoted as direct damping, whereas relax-
ation processes describing the transfer from the considered
dynamical variable to other magnetic degrees of freedom are
called indirect damping (Suhl, 1998). Direct damping may
be subdivided further (Heinrich, 2005) into intrinsic damp-
ing (related to ‘unavoidable’ phonons) and extrinsic damping
(related to defects or complex geometrical features of the
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sample). An example for indirect damping is the transfer
from adiabatic magnetic variables to fast magnetic degrees
of freedom (Costa, Muniz and Mills, 2003; Capelle and
Gyorffy, 2003). Another example is the transfer from a spe-
cial δM(q, ω) to other modes of the spectrum, for example,
from the uniform ferromagnetic mode of an FMR experiment
to spin-wave modes of finite wavelengths.

In spite of this well-defined definition of damping in the-
ory, it is in general a delicate problem to analyze damping
quantitatively, and to separate direct and indirect damping
experimentally. A relatively simple situation arises if a spe-
cial mode is investigated by external excitations, for example,
the uniform mode in an FMR experiment or spin-wave modes
in neutron or Brillouin light scattering experiments, because
the excitation linewidth is a measure for damping. Further-
more, in FMR experiments on ultrathin ferromagnetic layers,
the direct and indirect contributions can be separated by mea-
suring the frequency dependence of the linewidth (Lindner
et al., 2003). In more general situations, however, a sim-
ple procedure would exist only if there were experimentally
accessible observables that are constants of motion for the
case without damping. The magnetic energy Emagn is a con-
stant of motion if there is no direct damping, but it is not a
directly accessible observable. Another possible constant of
motion is the total angular momentum of the system,

J = Le + Se + Lphonon (14)

where Le and Se are the total orbital and total spin moment
of the electrons, and Lphonon is the total lattice (phonon) con-
tribution. (For simplicity, we have omitted the momentum of
the electromagnetic field due to radiation at the moment.) If
there is no direct damping, the electronic angular momentum
Le + Se is a constant of motion for isotropic systems. This,
however, does not mean that the total magnetic moment,
derived from equation (9) using equations (2 and 3),

M = −µB(Le + gSe) (15)

is also a constant of motion. Only in bulk metallic sys-
tems where the orbital moment −µBLe is much smaller
than the spin moment −µBgSe can we assume that the
magnetic moment is approximately a constant of motion
for macroscopically isotropic systems. Because the systems
are not isotropic in most experiments, the investigation of
M(t) often does not help the analysis of damping. There-
fore, for a general situation the procedure to analyze damping
is rather complicated. First, we have to determine M(r, t)

by some kind of magnetic microscopy (Back and Pescia,
2004; Hillebrands and Fassbender, 2002; Stoll et al., 2004),
with the given resolution, in space and time, of the instru-
ment. Then we compare the measured M(r, t) with data

from simulations based on an EOM including damping,
for example, the Gilbert equation (1) hoping that this EOM
describes the situation adequately. The comparison yields the
damping constant α that can be compared with theoretical
predictions in order to figure out which physical damping
mechanism is operative. To check for consistency, we can
calculate the magnetic energy Emagn from an energy func-
tional Emagn[M(r, t)] that is consistent with the nondamped
part of the EOM, for example, the micromagnetic energy
functional (Kronmüller and Fähnle, 2003) for the slow mag-
netic degrees of freedom, and Emagn should decrease in time
if there is direct damping.

From the above discussion, it becomes obvious that damp-
ing is intimately related to the choice of the dynamical vari-
able. Therefore it is not guaranteed that the parameters which
describe damping for one choice are of much relevance for
damping with respect to another choice. For instance, for the
dynamics of the adiabatic variables, only electrons close to
the Fermi surface are relevant (see Section 6.2), whereas for
experiments on the femtosecond timescale after an intense
laser pulse, ‘hot’ electrons are involved. Another example
comes from the near-adiabatic regime. Due to the limited
spatial resolution of a magnetic microscope, the adiabatic
modes with wavelengths shorter than the scale of resolu-
tion are already ‘integrated out’ by the instrument. There-
fore, instruments with different spatial resolutions in general
yield at least slightly different damping parameters (Miltat,
Albuquerque and Thiaville, 2002), and erroneous conclusions
arise if this difference is tentatively related to different direct
relaxation mechanisms.

The reader might have become disappointed after having
heard about all these problems that render an accurate anal-
ysis of the data, in terms of damping mechanisms, difficult.
Indeed, as is always the case for a complicated physical situa-
tion, many different experiments on many different materials
will be required to arrive at a description that is at least to
some extent consistent. Fortunately, a very detailed analy-
sis is not always required to solve the big question on the
ultimate timescales that can be achieved for the switching of
the magnetic information in data processing devices. To do
this, often the existing order of magnitude estimates are suf-
ficient, and the large variety of experimental and theoretical
investigations should be able to clarify this point.

For the rest of the paper, we consider as dynamical vari-
ables, mainly, the slow degrees of freedom; then, damping
arises from any transfer of energy and angular momentum
to other magnetic and nonmagnetic degrees of freedom.
Examples of the involvement of the fast magnetic degrees
of freedom are considered by Costa, Muniz and Mills (2003)
and Capelle and Gyorffy (2003). In the following we discuss
only the direct damping mechanisms related to the nonmag-
netic degrees of freedom.
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4 SITUATIONS WITHOUT DIRECT
DAMPING – ZERO AND INFINITE
ELECTRONIC SCATTERING TIMES

In the following we describe the system by an effective
single-electron representation (e.g., the density-functional
electron theory), and we discuss the effect of phonons or
lattice defects by a scattering approach via a scattering
time τ . Interestingly enough, there are two situations without
damping, corresponding to τ → ∞ and τ → 0. The first case
is intuitively clear because it describes the situation for which
there is no coupling of the electronic system to the lattice, and
hence no damping. Damping will be related to noninfinite
scattering times, and for finite but still large τ we expect
an increase of damping with decreasing τ . The second case
corresponds to the strictly adiabatic limit (τ → 0), which
will be discussed in the following. We will see that zero
scattering time also rules out damping.

For the dynamics of the atomic magnetic moments Mi (t),
we distinguish between transversal degrees of freedom, given
by the orientations ei of Mi = ei (t)Mi(t), and longitudi-
nal degrees of freedom, given by Mi(t). In the model of
a strictly adiabatic situation (Gyorffy et al., 1985), it is
assumed that for the timescale of the slow magnetization
fluctuations (see Section 2), the primary fluctuation modes
of Mi (t) are the directional fluctuations ei (t), whereas the
longitudinal fluctuations are ‘slaved’ by the transversal fluc-
tuations, that is, they are completely determined by the
momentary orientational configurations {ej } of the orien-
tations ej at all sites j , Mi(t) = Mi[{ej (t)}]. This means
that the electronic system is assumed to be at any instant
in its ground state with respect to the momentary configu-
ration {ej (t)}. The operators M̂i given by equation (6) may
then be represented in the form M̂i = Mi êi where êi are
the operators related to the dynamical variables ei and Mi

are just numbers at any instant. The idea is similar to the
one of the Born–Oppenheimer approximation (Born and
Oppenheimer, 1927), which separates the timescales for the
dynamics of electrons and nuclei. Nevertheless, the magnetic
situation is more complicated because it separates slow and
fast degrees of freedom for the same ‘species’, that is, for
the inhomogeneous spin-polarized electron liquid. Therefore,
the derivation of an EOM for the slow degrees of freedom,
that is, for ei (t), is less straightforward. As a result, there
are various approaches in the literature (Antropov, Katsnel-
son, van Schilfgaarde and Harmon, 1995; Antropov et al.,
1996; Halilov, Eschrig, Perlov and Oppeneer, 1998; Niu
and Kleinman, 1998; Gebauer and Baroni, 2000; Grotheer,
2002) which are formally different but are all based on
the same central idea. We present a derivation similar to
the one given by Grotheer (2002) which is a variant of the

approach of Niu and Kleinman (1998) and Gebauer and
Baroni (2000).

We introduce an adiabatic state |ψ({ej (t)})〉 that depends
on the whole momentary configuration {ej (t)} given by the
momentary orientations ej (t) at all sites j , with the following
properties:

1.

〈
ψ({ej (t)})

∣∣ êi

∣∣ψ({ej (t)})
〉 = ei (t) (16)

2. Among all the states compatible with equation (16), we
select the one that corresponds to a minimal energy,

E({ej }) = 〈
ψ({ej (t)})

∣∣ Ĥ ∣∣ψ({ej (t)})
〉 = min (17)

From 1 and 2, it follows that |ψ({ej (t)})〉 may be constructed
as the ground state of a modified Hamiltonian,

Ĥ ′ = Ĥ −
∑

k

λk êk (18)

according to the lowest-energy solution of

Ĥ ′|ψ({ej (t)})〉 = E′({ej })|ψ({ej (t)})〉 (19)

with

E′({ej }) = E({ej }) −
∑

k

λkek (20)

Thereby the Lagrangian parameters λk = λk({ej }) were
introduced to guarantee that equation (16) is fulfilled. Please
note that the state depends parametrically (via the ej (t)) on
the time, but at any instant the state |ψ({ej (t)})〉 is the ground
state of the time-independent equation (19).

In the adiabatic approximation, we demand that the devel-
opment in time of the state |ψ(t)〉 in Hilbert space is forced
to be the one of the adiabatic states |ψ({ej (t)})〉. In reality,
however, when we solve the time-dependent wave equation
with the initial state |ψ(t = 0)〉 = |ψ({ej (t = 0)})〉, the state
|ψ(t)〉 deviates from the adiabatic state |ψ({ej (t)})〉 very
quickly if we neglect electronic scattering processes. The
only way to realize a strictly adiabatic situation is to assume
that the scattering processes instantaneously lead |ψ(t)〉 back
to |ψ({ej (t)})〉, that is, the adiabatic approximation corre-
sponds to τ → 0. Using Ehrenfest’s theorem, we then obtain
the following EOM for ek,

ėk = 1

i�

〈
ψ({ej (t)})

∣∣ [êk, Ĥ ]
∣∣ψ({ej (t)})

〉
(21)



Dissipative magnetization dynamics close to the adiabatic regime 7

Using equations (18–20) to reexpress Ĥ |ψ〉, inserting equa-
tions (5–7), and making use of the relation

λk = δE

δek

(22)

which may be obtained from equation (19), we finally find
the EOM in adiabatic approximation,

ėk = −2µB

�

∂E

∂ek

× ek (23)

For instance, if the ek deviate only slightly from a preferred
direction, we can evaluate E({ej }) into a Taylor series trun-
cated after the second-order term and linearize equation (23)
to obtain the well-known adiabatic EOM for spin waves
(Grotheer, Ederer and Fähnle, 2001; Halilov, Eschrig, Perlov
and Oppeneer, 1998). Of course, equation (23) already has
the form of the Gilbert equation (1) without damping, that
is, by the assumption τ → 0 underlying the strictly adiabatic
limit, the damping of magnetization dynamics is eliminated.
This will become clearer in Sections 6.1 (s–d model) and
6.2 (breathing Fermi surface model). The dissipated power
density for magnetization dynamics described by the Gilbert
equation (1) is 1

2
α

γM
(Ṁ)2. Obviously, in the strict adiabatic

limit, that is, for τ → 0 for which there is only a precession
term but no damping term in the EOM, there is no energy
dissipation. The situation is similar for the Drude model of
electrical conductivity for which the dissipated power den-
sity is σE2 with the electric field E and conductivity σ that
is proportional to τ , that is, it vanishes for zero scattering
time.

According to the above discussed limits of zero damping
for τ → 0 and τ → ∞, we expect with increasing τ an
increase of damping for small τ and a decrease of damping
for large τ ; see also Sections 5 and 6.

5 QUALITATIVE DISCUSSION
OF VARIOUS DIRECT DAMPING
MECHANISMS

In the following, the change of magnetic energy via elec-
tromagnetic radiation of the time-dependent magnetization
field as well as relaxations due to dipolar interactions are
neglected. Then a direct damping of spin magnetism is pos-
sible only in a system with spin-orbit coupling; otherwise,
the Hamiltonian commutes with the operator of the total spin
momentum, and the total magnetic spin moment is a constant
of motion.

The various theories of direct damping of the slow
magnetic degrees of freedom may be subdivided as follows:

1. Theories for the transfer of angular momentum directly
from the slow magnetic degrees of freedom to the lattice;

2. Theories that treat this transfer at the electron level.

In class 1 theories, the spin-orbit coupling is taken into
account implicitly on a phenomenological level via the
magnetoelastic coupling between the magnetization field
M(r, t) and the lattice strain field ε(r, t) arising from a
lattice defect or from a phonon distortion. Most theories
determine the time for the scattering of one or more
magnons at one or more phonons (Haas and Callen, 1963)
or at lattice defects (e.g., Kloss and Kronmüller, 1971).
In contrast, in Suhl (1998) the dynamics of a general
magnetization field M(r, t) is considered by solving the
coupled system of EOMs for M(r, t) and ε(r, t) which are
derived from a general magnetoelastic energy functional.
When including a shear viscosity term in the elastic part
of this functional, the resulting EOM for M(r, t) contains
various other damping terms in addition to the Gilbert
damping term of equation (1). Physically, damping arises
because the magnetoelastic rearrangement of the atoms
induced by a change of M(r, t) requires a repopulation of
phonon modes via phonon scattering (‘phonon dragging’)
and hence requires time.

The theories of class 2 may be subdivided according to
the physical mechanisms which transfer energy and magnetic
moment from the atomic magnetic moments (describing
the slow degree of freedom) to the single electrons, that
is, Coulomb interactions or spin-current interactions. An
example for the latter case is the eddy-current damping
(Kittel, 1958), where the motion of the atomic moments
Mi (t) induces electrical fields that couple to the conduction
electrons in a metallic system. This leads to eddy currents
which then experience Ohmic damping.

For the final transfer of energy and angular momentum
from the electrons of type 2 theories to the lattice, a scattering
at impurities or lattice vibrations is required. The eigenstates
ψk(r) of the band electrons with wave vector k may be
written as

ψk(r) = ak(r)|↑〉 + bk(r)|↓〉 (24)

where |↑〉 and |↓〉 are the spinor states with spin �/2 and
−�/2, respectively. The two spinor states are in any case
mixed by spin-orbit coupling (an additional source for this
mixing is a noncollinearity of the magnetic configuration).
For the small mixing via spin-orbit coupling the variety
of states ψk can be subdivided into those that have pre-
dominantly spin-up character (ak(r) 
 bk(r), denoted by
ψ

↑
k(r)) and those that have predominantly spin-down char-

acter (bk(r) 
 ak(r), denoted by ψ
↓
k(r)). Deviations from

the translationary invariance of the system due to phonons
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or lattice defects provide scattering potentials (Yafet, 1965)
which mediate transitions between the various ψσ

k (r) which
contribute to damping. We can therefore consider ordinary
scattering processes (Yafet, 1965; Kamberský, 1970) among
ψ

↑
k and ψ

↑
k′ states or among ψ

↓
k and ψ

↓
k′ states. Because

states with various k correspond to different mixtures of
|↑〉 and |↓〉, such processes will change the probability
of finding the considered electron in one of the two spin
states, that is, angular momentum will be transferred to
the lattice. On the other hand, there are spin-flip processes
(Yafet, 1965; Kamberský, 1970) that involve ψ

↑
k and ψ

↓
k′

states, respectively. Finally, there are intraband scattering
processes of electrons within the same energy band of the
solid (for which the wave functions for different k often
exhibit approximately the same orbital character) as well as
interband scattering (for which the orbital character is often
different). In Heinrich (2005) and Kamberský (1976, 1984)
it is assumed that damping is proportional to the scattering
time τ if the energy differences between the scattering states
are small compared to �/τ , which is likely for intraband
scattering and small τ , whereas it is proportional to τ−1 if
the energy differences are larger than �/τ , which is likely for
interband scattering and large τ . Because for near-adiabatic
processes any deviations of the wave functions from the
adiabatic wave functions are eliminated almost instantly
by scattering, these scattering processes involve only slight
changes in electronic single-particle energies, that is, they
correspond to intraband scattering.

It is certainly a highly nontrivial problem to figure out
which relaxation mechanisms are relevant for damping
in a considered magnet. To get information on that, it
is important to start with measurements on high-purity
bulk crystals to separate the effect of intrinsic damping;
then damping can be modified by doping with impurities
and by bringing the material to a complex geometrical
shape to study extrinsic damping. Systematic studies in
this way are still lacking. For high-purity single-crystalline
Ni, it was found (Heinrich, Meredith and Cochran, 1979)
that the temperature dependence of damping below room
temperature is well described by two terms which are equal
in strength and proportional to the conductivity σ (ascribed
to intraband scattering) and the resistivity ρ (ascribed to
interband scattering). The effect of doping of Permalloy with
Tb impurities was studied in Russek, McMichael, Donahue
and Kaka (2003). A modest concentration of 2% of Tb
resulted in a 10-fold increase of damping as measured
by FMR (for an interpretation see also (Heinrich, 2005)).
Extrinsic damping due to the geometry of an ultrathin film
is discussed in Mills and Rezende (2003), and effects of
interfaces between magnetic and nonmagnetic metallic layers
are studied in Tserkovnyak, Brataas and Bauer (2002) and
Berger (2001).

6 TWO QUANTITATIVE MODELS
FOR DISSIPATIVE SPIN DYNAMICS

In the present section, we discuss two quantitative models
for dissipative spin dynamics, the s–d model (Section 6.1)
that covers both the cases of small and large scattering times,
and the breathing Fermi surface model (Section 6.2) for small
scattering times (Kamberský, 1970). In the s–d model, the
electrons are subdivided into two types, itinerant electrons
of which those that are close to the Fermi level EF are
responsible for spin-dependent transport and are denoted as
s electrons (although conduction electrons with p character
may of course also contribute); and localized electrons far
below the Fermi level which form the magnetic moments
(inducing in turn a spin polarization of the itinerant electrons)
and which are denoted as d electrons. While the s–d model
may be applied to metallic systems with 4f impurities (the
‘d electrons’ then represent the 4f electrons) or to sp metal
hosts with 3d impurities, its application to 3d impurities
in transition-metal hosts (Beuerle, Hummler, Elsässer and
Fähnle, 1994) or to concentrated magnetic transition metals
and alloys should be considered with much caution. The
reason is that in these systems there is considerable weight of
the d density of electronic states at the Fermi level so that a
subdivision into itinerant and localized magnetic electrons is
no longer possible. Because of its conceptual simplicity, the
s–d model is used, nevertheless, also for magnetic transition
metals. The breathing Fermi surface model does not require
the subdivision into itinerant and localized electrons and may
be applied to any magnetic system, but it is conceptually
more difficult.

6.1 The s–d model

In the literature, there are several variants of the s–d model;
our discussion will be based on the paper of Zhang and Li
(2004).

In the following, we consider only the magnetization
M(r, t) related to electronic spin and neglect the orbital
contribution. As outlined in the preceding text, in the s–d
model, M(r, t) is composed of a d contribution Md(r, t)

with fixed length Md, and a contribution of the conduction
electrons, m(r, t)

M(r, t) = Md(r, t) + m(r, t) (25)

The basic physics of the s–d model is most easily dis-
cussed by looking at the homogeneous ferromagnetic pre-
cession mode. If there was no spin-flip scattering for the
conduction electrons (τ sf → ∞), then the d magnetization
and the conduction electron magnetization that are coupled
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via the s–d exchange interaction would be in parallel align-
ment and would precess in phase. A finite scattering time
τ sf generates a part δm(r, t) transversal to Md, as well as
a torque acting on δm, with a component which leads to a
precession of δm around Md, and a component which turns
δm toward Md. For large τ sf, the latter component, which
contributes to damping will increase with increasing scatter-
ing rate, that is, decreasing τ sf. For small τ sf, however, the
magnitude of δm is reduced because the angular momentum
related to δm is very quickly transferred to the lattice, that
is, damping will decrease with increasing scattering rate, and
finally we end up with the strictly adiabatic situation where
the conduction electron magnetization exhibits at any instant
its equilibrium value with respect to the momentary config-
uration Md. As outlined in Section 4, noninfinite scattering
times are required for damping, but zero scattering times rule
out damping.

For a quantitative formulation, Zhang and Li (2004)
assumed that the dynamics of d magnetization is described
by a Gilbert type EOM (see equation (1)) with an additional
term T(r, t),

∂Md(r, t)

∂t
= −γ (Md × Heff,d) + 1

Md
Md × α

∂Md

∂t

+ T(r, t) (26)

In equation (26), Heff,d and α are the effective field expe-
rienced by the d magnetization and the damping constant
that would describe damping of the d magnetization when
switching off the conduction electron magnetization, that is,
which is due to direct relaxation processes of the d elec-
trons, respectively. The additional term T(r, t) describes the
torque density exerted on Md(r, t) by m(r, t) when these
two magnetization fields are not collinear. The two remaining
problems are to calculate T(r, t) from the two magnetization
fields and to determine m(r, t).

The first problem is solved by assuming a classical
Heisenberg interaction,

Esd = −Jex s(r, t)·S(r, t) (27)

with the exchange coupling constant Jex, yielding

T = − 1

τ exMd
Md × m (28)

with

τ ex = �

SJex
(29)

For the solution of the second problem, the generalized
continuity equation for the conduction electron spin density

m(r, t) is used, which may be written in the form

∂m(r, t)

∂t
= Tm (30)

where

Tm = −∇·J − T − �re (31)

is the total torque density acting on the conducting electron
spin density. Thereby J is the expectation value of the spin-
current density tensor operator Ĵ ,

Ĵ = Re
∑
s,s′

ψ̂
†
s (r) σ̂ ss′ ⊗ v̂ ψ̂s′(r) (32)

which involves the outer product between σ̂ and the velocity
operator v̂, and �re represents the spin relaxation (Section 5)
due to spin-flip scattering of the conduction electrons.
Equations (30 and 31) tell that the torque on the conduction
electron spin density in a volume element of volume dV

arises from the net flux of spin current through the surface dS
bounding dV , from the torque exerted by the d magnetization
which would like to induce a precession of m around Md with
frequency τ−1

ex , and from the spin-flip relaxation.
To solve equation (30), phenomenological ansatzes are

made for the quantities m(r, t), J (r, t), and �re. The
conduction electron spin density is separated into two parts,

m(r, t) = m0(r, t) + δm(r, t) (33)

where m0 represents the adiabatic spin density that would
arise if the conduction electron magnetization followed the
d magnetization Md(r, t) instantaneously, and δm(r, t) is
the nonadiabatic contribution. In the paper of Zhang and Li
(2004) it is assumed that m0(r, t) is parallel to Md(r, t),

m0(r, t) = m0
Md(r, t)

Md
(34)

While equation (34) certainly holds for a spatially homoge-
neous d magnetization, the situation in general is much more
complicated for an inhomogeneous Md(r, t) where the direc-
tions of the s and p contributions to the magnetic moments
may deviate strongly from the directions of the d contri-
butions (Fähnle, Singer, Steiauf and Antropov, 2006). For
strong cantings of the magnetic moments on an atomic scale,
for example, in the center of a vortex or in an extremely nar-
row domain wall, this complication may change the results
both qualitatively and quantitatively. For the sake of simplic-
ity we adopt equation (34), and this should be justified for
systems with slow spatial variations of Md(r, t).

The spin-current density J (r, t) is nonzero even in a
situation where there is no transport current. Then ∇·J
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describes the dependence of the kinetic energy on the
relative orientations of the magnetic moments, and it has
been emphasized repeatedly (see, e.g., Antropov, Harmon
and Smirnov, 1999; Grotheer, Ederer and Fähnle, 2001;
Stiles and Miltat, 2006) that this kinetic exchange term is
very essential. In the paper of Zhang and Li (2004), the
kinetic exchange for conduction electrons is neglected (which
again may be justified approximately for systems with slow
spatial variations of Md(r, t)) and only the contribution of
a possible transport spin current is taken into account. In
analogy to equation (33), the spin-current density is then
subdivided into an adiabatic part J0(r, t) and a nonadiabatic
part δJ (r, t),

J (r, t) = J0(r, t) + δJ (r, t) (35)

The adiabatic part J0(r, t) is written in a form that
holds for one-dimensional problems (Stiles and Miltat,
2006), that is, as an outer product of the charge cur-
rent density je and the spin direction e of the transport
electrons,

J0(r, t) = −µBP

e0
je ⊗ e (36)

Here e0 is the elementary charge, and the quantity P is the
modulus of the spin-current polarization in the ferromagnet
which is the up spin current minus the down spin current,
all divided by the total current. In the paper of Zhang and
Li (2004), it is assumed that P is a constant throughout
the material, that is, the transport current has a spin polar-
ization of constant magnitude but varying direction, which
is certainly an approximation. Furthermore, it is assumed
that for the adiabatic part of J , the spin direction e of
the transport electrons is parallel to Md(r, t) everywhere,
that is,

e(r, t) = Md(r, t)

Md
(37)

Let us pause to elucidate the physics behind equation (37).
The assumption underlying this equation is equivalent to
Slonczewski’s assumption (Slonczewski, 1996) of complete
spin filtering of an ideal, homogeneously magnetized fer-
romagnetic layer, which is assumed to completely remove
that component of the spin polarization of an incident spin-
polarized current perpendicular to the layer magnetization.
To explain the spin filter effect see, e.g., Stiles and Mil-
tat, 2006, the spinor field of an incident electron with given
spin direction is written as a coherent superposition of spinor
states with spin up and spin down relative to the direction
of the layer magnetization. Because the conduction electrons
in the ferromagnet experience an exchange interaction which

produces a spin-dependent effective potential, the transmis-
sion probability will be larger for spin up than for spin
down, that is, the perpendicular component of the spin of
an electron entering the ferromagnet is reduced (spin filter-
ing) but it is not yet zero. Furthermore, in the ferromag-
net the two components of the spinor field with different
spin belong to different wave vectors k1 and k2 because
of the different effective potentials. Therefore the phase
between the spin-up and the spin-down part of the spinor
field in the ferromagnet, exp[i(k↑ −k↓)x], changes as the
electron penetrates into the magnet, describing the preces-
sion of the electron with nonzero perpendicular spin around
magnetization. Because electrons on different parts of the
Fermi surface precess at different rates, there is a dephas-
ing of different electrons. As a result of this dephasing,
the remaining transverse spin current entering the ferro-
magnet decays with a characteristic decay length which is
smaller, the more dissimilar the Fermi surfaces for spin-up
and spin-down electrons. When scattering is included, that
is, when the assumption of ballistic transport underlying the
above reasoning is abandoned and a diffusive transport is
considered, then the transverse component of spin polariza-
tion (called spin accumulation) decays exponentially on a
short length scale and then its elimination takes place very
close to the interface. (The influence of the small resid-
ual transverse spin accumulation which creates an effective
field for the precession of the ferromagnetic magnetization
is discussed, in Heide, Zilberman and Elliott, 2001; Heide,
2001, 2002). Equation (37) represents a generalization of all
these considerations to the case of a continuously varying
magnetization configuration. In general, this equation will
be valid only if the length that characterizes the magneti-
zation inhomogeneity is much larger than the characteris-
tic decay length for the transverse component of the spin
polarization, and this often will require strong scattering.
However, in the special case of a domain wall, the conduc-
tion electron spin polarization will stay close to the mag-
netization of the domain wall even in the ballistic limit,
because of the special properties of the precession of the
conduction electrons in a domain wall (Waintal and Viret,
2004).

In the paper of Zhang and Li (2004) the quantities P and je

appearing in equation (36) are fixed, that is, it is assumed that
the transport current je is constant and has a spin polarization
of constant magnitude but varying direction (always parallel
to Md), which is certainly an approximation. In contrast, for
a theoretical description of a multilayer with abrupt changes
of magnetization, these quantities are not prescribed but
determined by classical or semiclassical transport theories
for which the results of the calculations for spin filtering at
the interfaces enter as boundary conditions (for a review, see
Stiles and Miltat, 2006).
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The nonadiabatic contribution δJ is related to the nonadia-
batic δm via a diffusion equation with diffusion constant D0,

δJ = −D0 ∇ ⊗ δm (38)

in very much the same way as the current density is related
to the concentration gradient in a nonequilibrium situation.
In the following we consider situations where magnetization
varies on a length scale much larger than the spin diffusion
transport length; then the term ∇ ⊗ δm is neglected (Zhang
and Li, 2004) in equations (30 and 31) (of course this
approximation does not apply for the layer systems with
abrupt changes of magnetization).

Finally, for the relaxation term a simple relaxation time
approximation is used,

�rel = δm(r, t)

τ sf
(39)

with a relaxation time τ sf for the spin-flip scattering of the
conduction electrons.

As outlined in Section 5, it is customary to subdivide the
scattering processes into ordinary scattering between states
with the same spin index (↑ or ↓) and spin-flip scattering
between states with different spin index. However, it should
be recalled that due to spin-orbit coupling, the up and down
states are not pure spin states but states with small spin
mixing, so that even ordinary scattering processes change
the probability to find the considered electron in one of the
spin states |↑〉 or |↓〉. The quantity τ sf then encompasses
both spin-flip scattering and ordinary scattering.

Solving equations (30, 31, 33–37, and 39) with δJ = 0,
thereby neglecting the higher-order term ∂δm/∂t , yields
four contributions to the torque T on the d magnetization
according to equation (28),

T =
4∑

i=1

Ti (40)

T1 = ξm0

(1 + ξ 2)M2
d

Md × ∂Md

∂t
(41)

T2 = − m0

(1 + ξ 2)Md

∂Md

∂t
(42)

T3 = − µBP

(1 + ξ 2)e0M
3
d

Md × [Md × (je·∇)Md] (43)

T4 = − µBPξ

(1 + ξ 2)e0M
2
d

Md × (je·∇)Md (44)

ξ = τ ex

τ sf
(45)

While T3 and T4 are related to the transport current je, the
terms T1 and T2 do not depend on je but arise as a conse-
quence of the dynamical evolution of the d magnetization,
that is, they exist for ∂Md/∂t = 0. For very strong spin-
flip scattering, that is, τ sf → 0 and ξ → ∞, the nonadiabatic
contribution δm vanishes; that is, m follows Md adiabatically
and all contributions Ti to T are zero.

First we consider the case without transport current je,
that is, T3 = T4 = 0. For small τ sf (i.e., large ξ), the
torque T1 results primarily from the relaxation term �rel of
equations (30 and 31), whereas for large τ sf (small ξ), T2

is primarily related to the s–d exchange torque T in these
equations that leads to a precession of m around Md. The
equations (26 and 40–42) yield an EOM of Gilbert form,
equation (1), with γ and α replaced by

γ ′ = γ

1 + η
(46)

α′ = α + ξη

1 + η
(47)

η = m0

(1 + ξ 2)Md
(48)

The torque T1 thereby gives a new contribution,

�α = ξη (49)

for the damping constant, while T2 renormalizes γ and
(α + �α) by the factor 1/(1 + η).

We note that �α is proportional to τ−1
sf for the case

of low spin-flip rate, τ ex � τ sf, ξ � 1. As outlined in the
introduction of Section 6.1, deviations δm are produced by
spin-flip scattering processes and hence damping increases
for decreasing τ sf at large values of τ sf. In Tserkovnyak,
Fiete and Halperin (2004) it is pointed out that the physics of
this low-spin-flip-rate regime is similar to the spin-pumping
damping (Tserkovnyak, Brataas and Bauer, 2002; Zwierzycki
et al., 2005) of a thin ferromagnetic film on a nonmagnetic
conductor. The moving magnetization in the film ‘pumps’
spins into the conduction electron system. For a low spin-
flip scattering rate, the spin polarization of these conduction
electrons is conserved for a long time and relaxes only
far inside the nonmagnetic conductor, leading to a nonlocal
damping of magnetization dynamics in the film. The only
difference is that in the present section the spins are pumped
into the own delocalized states of the magnet rather than
in the delocalized states outside the magnet. For the case
of high spin-flip rate, τ ex 
 τ sf, ξ 
 1, �α is proportional
to τ sf. This corresponds to the situation outlined in the
introduction of Section 6.1 that for a high spin-flip rate the
magnitude of δm is strongly reduced because the related
angular momentum is transferred very quickly to the lattice.
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Insofar, the s–d model yields two contributions to damping,
the first proportional to τ−1

sf and the second one proportional
to τ sf. It is tempting to relate these two contributions to
the two contributions found experimentally for pure Ni
(Heinrich, Meredith and Cochran, 1979) that are proportional
to the conductivity σ ∼ τ at low temperatures and to the
resistivity ρ ∼ τ−1 at higher temperatures. However, there
are two important differences. First, we have to distinguish
between the relaxation time τ sf for spin-flip scattering and the
Drude relaxation time τ appearing in the theory of electrical
conduction which involves both spin channels. Second, in the
experiments the term proportional to τ dominates at large τ

(resp. low temperature), whereas in the s–d model the term
proportional to τ sf dominates for small τ . See also the next
paragraph for the relevance of the s–d damping �α.

Estimates for Jex and τ sf are given in Zhang and Li (2004)
(Jex ≈ 1.6 × 10−12 erg, τ sf ≈ 10−12 s) and in Waintal and
Viret (2004) (Jex ≈ 10−13 erg, τ sf ≈ 5 × 10−14 s), yielding
the values ξ ≈ 4 × 10−4 and ξ = 10−1 for S = 2. A typical
value of η ≈ m0/Md is 1/20. This yields �α = 2 × 10−5

and 0.5 × 10−2; typical experimental values for the damping
constant are in the range of multiples of 10−2 to multiples of
10−1. In Zhang and Li (2004), it was therefore concluded that
the damping of magnetization dynamics in metals is not dom-
inated by spin-flip scattering of s and p electrons. Probably
the factor η ≈ m0/Md which describes the smallness of the
conduction electron magnetization as compared to the d mag-
netization is responsible for this (see also the footnote 5 of
Kamberský, 1970). Obviously, a theory of damping in metal-
lic magnets has to include the scattering of the d electrons (as
will be the case in the d band models of Kamberský (1976,
1984) and in the breathing Fermi surface model (Kamberský,
1970), see Section 6.2).

We now discuss the influence of a transport current je.
Equations (43 and 44) show that je is effective only for
an inhomogeneous situation, that is, when the direction of
Md(r, t) varies in space. The current je enters the EOM (30)
for m(r, t) via the term ∇·J0 (see equation (31)). Because
the spin polarization of the conduction electrons is parallel
to Md(r, t) everywhere for J0, the angular momentum
of the spin current has to change in space: When the
spin-polarized conduction electrons flow into the volume
element d3r around r, that part of the spin polarization
which is originally transverse to Md(r, t) will be totally
transferred to the surroundings in d3r . The result is the torque
−∇·J0 exerted on the magnetization m(r, t), generating a
component δm(r, t) that is not parallel to Md(r, t), that will
experience a precession around Md via the s–d exchange
torque T in equation (30), and a relaxation via the term
�rel. It becomes obvious from equation (43) that the term
T3 (denoted (Zhang and Li, 2004) as adiabatic spin torque)
results primarily (apart from the factor (1 + ξ 2) in the

denominator) from the s–d exchange term T in combination
with ∇·J0, whereas T4 (denoted (Zhang and Li, 2004)
as nonadiabatic spin torque) is primarily related to the
relaxation term �rel in combination with ∇·J0. The term T3

may be considered (Li and Zhang, 2004) as a generalization
to the case of a continuously nonuniform magnetization
of the spin-transfer torque due to complete spin filtering
introduced by Slonczewski (1996) for multilayers where
magnetization changes abruptly at the interface. Formally,
the mathematical structure of the term T4 looks like a
corresponding generalization of an additional multilayer
torque arising from an effective field generated by the
residual transverse spin accumulation (Zhang, Levy and
Fert, 2002; Shpiro, Levy and Zhang, 2003). Thiaville,
Nakatani, Miltat and Suzuki (2005) have introduced in a
phenomenological manner a term of the form T4 in addition
to the torque T3 to describe the current-driven domain-wall
motion.

Zhang and Li (2004) have applied their theory to investi-
gate the effects a spin-polarized transport current on the form
and the dynamics of a Néel wall in a nanowire. The adiabatic
T3 term causes a domain-wall distortion and is responsi-
ble for the initial velocity of the wall, whereas the terminal
velocity of the wall is controlled by the nonadiabatic T4 term
(although it is much smaller in size than T3). It should be
noted that, while in the above discussed paper of Zhang and
Li (2004) the diffusive conduction electron flow is consid-
ered, Waintal and Viret (2004) determine the torque exerted
on the domain wall by the ballistic motion of conduction
electrons, yielding other torques that are explicitly related to
the precession of the electron spins around the magnetization
in the domain wall.

Finally, we note that Xiao, Zangwill and Stiles (2006)
argue that the phenomenological form of �rel as given by
equation (39) should not be used for systems with an inho-
mogeneous situation, and therefore doubt the existence of
the nonadiabatic spin torque. Furthermore, they commented
critically on the torque reported by Waintal and Viret (2004).

6.2 Breathing Fermi surface model

As outlined in Section 6.1, a theory of damping in ferro-
magnetic metals has to take into account the scattering of d
electrons, like the breathing Fermi surface model originally
introduced by Kamberský (1970) and further developed in
Kuneš and Kamberský (2002, 2003) and Steiauf and Fähnle
(2005). In the following, we discuss extensively the basic
physical assumptions of this phenomenological model and
the results of a calculation that determines the quantities
entering this model by the ab initio density-functional elec-
tron theory.
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For a complete quantum-mechanical description of the
angular momentum and energy transfer from the electrons
to the lattice, one had to start from the time-dependent wave
equation for electrons and nuclei, involving spin-orbit cou-
pling. Instead, we want to describe the situation approxi-
mately by an effective single-particle theory that involves
only electrons and that describes the transfer empirically via
relaxation times. In such a theory, the expectation values of
the observables are determined by the matrix elements of the
respective operators formed with the single-particle spinor
wave functions ψjk(r, t) – where j and k denote the band
index and the wave vector – and by the occupation numbers
njk(t) describing the occupation of these states at time t . For
instance, the spin magnetization density is given by

ms(r, t) = −gµB

2

∑
j,k
s,s′

njk(t) ψ∗
jks(r, t) σ̂ ss′ ψjks′(r, t)

(50)
where ψjks is the s component of the spinor ψjk, and the
band-structure energy is

Eband(t) =
∑
jk

njk(t)
〈
ψjk(t)

∣∣Ĥ ∣∣ψjk(t)
〉

=
∑
jk

njk(t) εjk(t) (51)

where Ĥ is the effective single-particle Hamiltonian of the
density-functional electron theory.

In principle, the ψjk(r, t) should be determined from the
time-dependent single-electron wave equation. In a strictly
adiabatic situation, however, the ψjk(r, t) are given by solu-
tions of the time-independent wave equation for the effec-
tive potential related to the momentary directions {ei (t)}
of the atomic moments, ψjk(r, t) = ψjk(r, {ei (t)}). Cor-
respondingly, we have εjk(t) = εjk[{ei (t)}] and njk(t) =
f (εjk[{ei (t)}]) = fjk, where the fjk are the Fermi–Dirac
equilibrium occupation numbers, with a Fermi energy
εF[{ei (t)}] and a corresponding Fermi surface. For a non-
collinear magnetization configuration, the ψjk and εjk

depend on the orientations {ei (t)} mainly because the ori-
entations determine the kinetic exchange part of Ĥ . For a
homogeneous magnetization, the dependence of the εjk on
the {ei} arises from the spin-orbit coupling. When changing
{ei} in time, the adiabatic ψjk, εjk, and εF also change in
time and the Fermi surface will continuously attain a slightly
different form (breathing Fermi surface).

There are two basic assumptions of the breathing Fermi
surface model. The first one is that even in a slightly
nonadiabatic situation we can insert into equations (50
and 51) the adiabatic wave functions and the adiabatic
single-electron energies corresponding to the momentary

directions {ei (t)}. The deviation from the adiabatic situa-
tion is taken into account only by nonadiabatic occupation
numbers njk(t) which lag behind the adiabatic occupation
numbers f (εjk[{ei (t)}]). The reason is that the redistri-
bution of the occupation numbers, which is necessary to
adjust to the steadily changing Fermi surface requires scat-
tering processes between various electronic states jk around
the Fermi surface, and hence requires time. For quasistatic
changes, the characteristic timescale τ e for the changes of the
momentary directions ei is much larger than the characteris-
tic timescale τ s for the scattering process, τ e 
 τ s, and then
njk(t) = fjk(t) at any instant. In the general case, however,
njk never catches up with fjk, and the deviation between
njk and the fictitious fjk generates the dynamical evolution
of njk. In Kamberský’s theory, this process is described by
a relaxation ansatz (Kamberský, 1970)

dnjk(t)

dt
= − 1

τ jk

[
njk(t) − fjk(t)

]
(52)

with the relaxation times τ jk, which in general will depend
on the respective electronic state jk. It becomes obvious
that the breathing Fermi surface model describes a situation
close to the adiabatic limit, that is, for very small relaxation
times τ jk.

The exact solution of equation (52) is

njk(t) =
t∫

t0

1

τ jk
fjk(t

′) e−(t−t ′)/τjk dt ′ + njk(t0) e−(t−t0)/τjk

(53)
Neglecting the second term in equation (53) for t0 → −∞
and evaluating fjk(t

′) around t ′ = t into a Taylor series, we
find for njk(t) a power series in τ jk,

njk(t) = fjk(t) − τ jk
dfjk(t)

dt
+ . . . (54)

which converges for τ jk � τ e. In the case of a large
timescale τ e for changes of the moment directions the
deformation of the Fermi surface is very gradual and requires
only scattering processes between electronic states that are
close in energy, that is, those belonging to the same energy
band j and – in the case of small spin mixing due to spin-
orbit coupling – to the subband with the same spin index.
Therefore the use of equation (54) implies that we make a
theory of damping due to ordinary intraband scattering with
small relaxation times.

In the following, we consider a homogeneous situation
where Mi = M = Me for all sites i and where the absolute
value M depends only slightly on e so that we take it as
a constant. For the strictly adiabatic situation the EOM (23)
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then reads

Ṁi = −γ (Mi × Heff,i) (55)

with the adiabatic effective field

Heff,i = − 1

M

δE

δei

(56)

The second basic assumption of the breathing Fermi
surface model is that for the slightly nonadiabatic situation
the form of the EOM (55) is retained, with Heff,i replaced
by a nonadiabatic effective field,

H̃eff,i = − 1

M

δFdiss

δei

(57)

Here the effect of damping is included in a dissipative free-
energy functional Fdiss of the magnetization configuration.
For instance, a simple phenomenological Fdiss has been
written down by Brown (1963) by including a Rayleigh
dissipation function in the free energy (see equation (13)).

For T = 0 K, we construct the dissipative free-energy
functional for the breathing Fermi surface model from a
phenomenological extension of the total energy expression
of the density-functional theory,

E[n, {ei (t)}] =
∑
jk

njkεjk + Edc[n] (58)

where n = [ρ(r, {ei (t)}); m(r, {ei (t)})] with the electron
density ρ. The first (second) term is the band-structure energy
(double-counting term), and the phenomenological extension
consists of inserting the nonadiabatic occupation numbers
njk(t), equation (54), rather than the fjk(t). Using the vari-
ational property of E[n], and assuming that changes of the
njk due to a change of {ei (t)} occur exclusively for states
close to εF with relaxation times τ jk that do not depend on
the state jk, that is, τ jk = τ , we find

H̃eff = − 1

M

∑
jk

njk(e(t))
∂εjk(e(t))

∂e
(59)

Inserting (54) into (59) yields

H̃eff = Haniso + Hdamp (60)

with the anisotropy field

Haniso = − 1

M

∑
jk

fjk
∂εjk(e)

∂e
(61)

and the damping field

Hdamp = − 1

γM
α · dM

dt
(62)

with the damping matrix

αlm

τ
= − γ

M

∑
jk

∂fjk

∂εjk

∂εjk

∂el

∣∣∣∣
M

∂εjk

∂em

∣∣∣∣
M

(63)

We note the similarity of equation (63) with the Drude
equation for the conductivity tensor σ in semiclassical
approximation,

σ lm

τ
= −e2

0

∑
jk

∂fjk

∂εjk

∂εjk

∂kl

∂εjk

∂km

(64)

Please note that in equations (63 and 64), the quan-
tity τ describes the Drude relaxation time and not the
spin-flip scattering time τ sf that appeared in the s–d
model.

Inserting equations (60–62) into equation (55) yields the
EOM

Ṁ = −γ M × Haniso + 1

M
M ×

(
α · dM

dt

)
(65)

which looks very much like the original Gilbert equation (1),
with the only but very important difference that the damping
scalar of equation (1) is replaced by a damping matrix α of
the form (Steiauf and Fähnle, 2005)


a2 ab 0

ab b2 0
0 0 0


 (66)

so that in general Hdamp is not parallel to dM/dt . A Gilbert
equation is obtained only for the special case that dM/dt

corresponds to one of the two eigenvectors of α(M), which
are orthogonal to the momentary M and orthogonal to each
other (and then the respective momentary damping constant
is given by one of the eigenvalues α̃p, p = 1, 2), or if M is
momentarily aligned to a threefold of fourfold symmetry axis
of the system. For a general dM/dt , it is always possible to
write down (Steiauf and Fähnle, 2005) a ‘momentary’ Gilbert
equation with a ‘momentary’ gyromagnetic ratio γ̃ (Ṁ, M)

and a ‘momentary’ damping scalar α̃(Ṁ, M) that is between
α̃1 and α̃2.

Altogether, the breathing Fermi surface model yields an
EOM which, to lowest order, in the Taylor expansion (54),
that is, for situations very close to the adiabatic limit, is
an extension of the Gilbert EOM to the case of a damping
matrix. Higher-order terms in equation (54) would contribute
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further terms to the EOM. The theory predicts a damping
matrix which is proportional to the relaxation time τ as the
conductivity σ . It does not yield the contribution proportional
to the resistivity ρ ∼ 1/τ found experimentally for high-
purity Ni (Heinrich, Meredith and Cochran, 1979; see
Section 5). The reason is (see the preceding text) that the
theory implies τ � τ e, and hence it corresponds to the
regime with high relaxation rates for which α vanishes for
τ → 0 like σ . Experimentally, the contribution proportional
to σ has been found for pure single crystals of Ni (Heinrich,
Meredith and Cochran, 1979) and Co (Bhagat and Lubitz,
1974), but not for Fe (Bhagat, Anderson and Hirst, 1966;
Bhagat, Anderson and Ning, 1967).

The quantity α/τ according to equation (64) has been cal-
culated by the ab initio density-functional electron theory for
bulk materials (Kuneš and Kamberský, 2002, 2003; Steiauf
and Fähnle, 2005), as well as for hexagonal monolayers and
for monatomic wires (Steiauf and Fähnle, 2005) of Fe, Co,
and Ni, yielding the following results:

(1) For reasonable assumptions about τ , the calculated value
of α for bulk Ni is in reasonable agreement with
the experimental data at low temperatures (Kuneš and
Kamberský, 2002).

(2) The dependence of the two eigenvalues α̃p on the
orientation of magnetization is already substantial in
bulk materials (e.g., variations up to a factor of 4 in
hexagonal Co, see Figure 2), and it is very strong for
systems with reduced dimensionality like monatomic
layers and monatomic wires. In these systems there
are orientations of M for which damping is identically
zero for any dM/dt . For the layer, these orientations
are perpendicular, in-plane orientations parallel to the
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Figure 2. The two eigenvalues α̃p (symbols • and �) of α for
different orientations of M in bulk hcp Co. (Reprinted figure from
Steiauf, D. and Fähnle, M. (2005), Physical Review B, 72, 064450-
1–13. With permisson from APS.  2005.)
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Figure 3. The two eigenvalues α̃p of α for different orientations
of M in a monatomic wire of Ni. The wire is along [010]. Note
that both eigenvalues are zero for M perpendicular to the wire or in
wire direction, that is, there is no damping for any arbitrary dM/dt

out of this direction. In addition, for an arbitrary orientation, the
eigenvalue corresponding to a rotation of the magnetization around
the wire axis (symbol �) is also zero (because this rotation is
equivalent to a reverse rotation of the coordinate system which does
not change anything), whereas the second eigenvalue (symbol •)
is large. (Reprinted figure from Steiauf, D. and Fähnle, M. (2005),
Physical Review B, 72, 064450-1–13. With permisson from APS.
 2005.)

most densely packed rows of the layer, and in-plane
orientations perpendicular to these rows. For the wire,
these are the orientations perpendicular to the wire or in
its direction, see Figure 3. Altogether, the dependence of
damping on the orientation of M represents an additional
option to optimize a magnetization reversal process in
a nanostructured system by choosing a magnetization
trajectory that is most appropriate from the viewpoint
of damping. So far the magnetization dynamics in
nanostructures has been optimized in micromagnetic
simulations only with respect to the shape of the sample,
the form of the switching field and the magnitude of the
damping scalar are assumed to be independent of the
orientation of M.

(3) It is often assumed that the larger the damping, the
larger the magnetic anisotropy. From the inspection of
equations (61 and 64), it becomes clear that this is not at
all guaranteed: The anisotropy field contains the deriva-
tives ∂εjk/∂e linearly. These derivatives may exhibit
positive and negative values, which may compensate
to a large extent when performing the summation in
equation (61). In contrast, the derivatives enter quadrat-
ically when calculating αll from equation (64). In fact,
Table 1 shows that there is no simple relation between
damping and magnetic anisotropy. For instance, for bulk
Co the magnetic anisotropy is 2 orders of magnitude
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Table 1. The maximum eigenvalues µ2
BMα̃p/�

2γ τ and the max-
imum anisotropy energies �Emagn for Co and Ni bulk, mono-
layer, and wire. The magnetic anisotropies of bulk Co and Ni
have not been calculated. The experimental room-temperature
anisotropy constants for bulk Fe, Co, and Ni are K1 = 4.6 × 105,
4.1 × 106, −5 × 104 erg cm−3 and K2 = 1.5 × 105, 1 × 106, −3 ×
104 erg cm−3.

Bulk Monolayer Wire

Co
µ2

BMα̃p/�
2γ τ (1020 s−2) 6 230 6500

�Emagn/atom (mRy) – 6 8

Ni
µ2

BMα̃p/�
2γ τ (1020 s−2) 15.5 95 250

�Emagn/atom (mRy) – 0.1 9

larger than for bulk Ni, but damping of Ni is a factor of
2 larger than the one of Co (when we insert the same τ ).
For the monolayer, the magnetic anisotropy is a factor of
60 larger in Co than in Ni, but damping is only a factor
of about 2.5 larger. Finally, for the wire the magnetic
anisotropy is about the same for Co and Ni but damping
is a factor of about 30 larger for Co.

In future the theory has to be extended to account for
noncollinear magnetization configurations (Fähnle, Singer,
Steiauf and Antropov, 2006). For strong noncollinearities on
an atomic scale, like in the center of a vortex or in narrow
domain walls in nanowires, the electronic eigenvalues εjk

change strongly when changing the magnetic configuration,
and this might result in very strong damping because the
Fermi surface shows large deformations in time, which have
to be realized by strong redistributions of the occupation
numbers via scattering processes. It will be interesting to see
whether damping for a strongly noncollinear situation indeed
differs from the one of a homogeneous situation.

7 AB INITIO SPIN DYNAMICS

The theoretical investigations of magnetization dynamics in
the literature may be subdivided essentially in those based
on micromagnetic simulations (e.g., see Stiles and Miltat,
2006; Kronmüller and Fähnle, 2003; Thiaville, Nakatani,
Miltat and Suzuki, 2005; Thiaville et al., 2003; Leine-
weber and Kronmüller, 1999; Hertel, 2002; Berkov, 2002;
Van Wayenberge, 2006) and those based on the classical
nearest-neighbor Heisenberg model (see, e.g., Nowak and
Hinzke, 2001). The micromagnetic simulations are designed
to resolve magnetization inhomogeneities on a mesoscopic
scale, and use mainly the Gilbert equation (1) with the
phenomenological micromagnetic effective field Heff(r, t)

(Kronmüller and Fähnle, 2003). Forming the scalar product
of equation (1) with M yields

M · dM
dt

= 1

2

d

dt
M2 = M ·

(
−γ M × Heff + 1

M
M × α

dM
dt

)

=0 (67)

because the vector in the bracket of equation (67) is per-
pendicular to M. This means that the magnitude M(r, t)

is conserved at any position r. In the Heisenberg model
the magnitudes Mi (t) of the atomic moments at sites r
are also taken as constants. Therefore both approaches are
unable to describe configurations with strong cantings of
the magnetic moments on an atomic scale for which the
Mi (t) depend strongly on the orientations of the surrounding
magnetic moments (Heine, Lichtenstein and Mryasov, 1990;
Turzhevskii, Likhtenshtein and Katsnel’son, 1990; Singer,
Fähnle and Bihlmayer, 2005). As an example, Figure 4
shows the magnitude M0 of a Ni moment M0 at site
i = 0, which is surrounded by ferromagnetic Ni bulk and
for which the orientation of M0 is fixed via constraining
fields (Singer, Fähnle and Bihlmayer, 2005) with an angle
θ0 between M0 and the surrounding moments. The mag-
nitude M0 strongly decreases with increasing θ0 and col-
lapses to zero for θ0 = 90◦. A similar strong dependence
is found for Co albeit the magnitude M0 never vanishes
totally, whereas for Fe the moments are much more stable
(Singer, Fähnle and Bihlmayer, 2005). It is thus clear that
configurations with atomic scale cantings can be described
neither by micromagnetic simulations nor by the Heisenberg
model. Finally, the conventional Heisenberg model neglects
the influence of multispin interactions (Müller-Hartmann,

0.6

0.4

M
0 

(m
B

)

0.2

0.0

0° 15° 30° 45° 60° 75° 90°
J0

Figure 4. The magnitude M0 of the magnetic moment M0 of a
Ni atom at site 0 which is rotated by an angle ϑ0 out of the
ferromagnetic alignment of the surrounding fcc Ni bulk. (Reprinted
figure from Singer, R., Fähnle, M. and Bihlmayer, G. (2005),
Physical Review B, 71, 214435-1–6. With permission from APS.
 2005)
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Köbler and Smardz, 1997; Drautz and Fähnle, 2004, 2005),
which may also become important for strongly canted con-
figurations. Such configurations often appear in nanoscale
materials that may have high-technological relevance in the
future, examples are domain walls on the atomic scale in
quasi-one-dimensional Fe nanostripes (Pratzer et al., 2001),
vortex structures in platelets (Miltat and Thiaville, 2002)
with a radius of the vortex core of 4–5 nm, and Bloch-point-
mediated processes for vortices (Thiaville et al., 2003). All
the above problems are avoided in microscopic simulations
based on the ab initio spin density-functional electron theory.

Starting point of the existing ab initio spin dynamics
simulations is the EOM, equation (23), for the orientations
ek of the atomic moments at sites k in the strictly adiabatic
situation,

ėk = −2µB

�

∂E({ei})
∂ek

× ek (68)

Suggestions on how to take into account the damping of spin
systems as well as stochastic fluctuation fields that model
finite temperature effects are given in Antropov et al. (1996)
and Fähnle et al. (2005), and a method for simultaneous
molecular and spin dynamics is discussed in Antropov
et al. (1996). In this latter reference, it is also shown that
equation (68) holds not only for orientations of the total
magnetic moments Mk composed of different orbital states
ν (ν = s, p, d, . . .) but, approximately, also for the separate
orbital contributions Mν,k with corresponding effective fields
∂E/∂eν,k for the various orbitals ν.

In principle, simulations based on equation (68) proceed
in the following line. First, the initial orientation configu-
ration {ei (t = t0)} at the initial time t0 is generated, in the
most strict way by use of constraining fields (Stocks et al.,
1998; Singer, Fähnle and Bihlmayer, 2005), and the ‘slaved’
magnitudes Mk({ei (t = t0)}) are calculated by the ab initio
density-functional electron theory, yielding the initial mag-
netic configuration {Mi (t0) = Mi(t0) e(t0)}. Furthermore, the
‘effective fields’ ∂E({ei})/∂ek are calculated by appropri-
ate methods of the ab initio electron theory (Stocks et al.,
1998; Singer, Fähnle and Bihlmayer, 2005). Then the ori-
entational configuration for the time t0 + dt is calculated
from equation (68), the new magnitudes Mk({ei (t0 + dt)})
and the new effective fields ∂E/∂ek are determined ab ini-
tio, and so on. By far, the most time-consuming step in
this procedure is the ab initio calculation of the quanti-
ties Mk and ∂E({ei})/∂ek , which makes the present ab
initio spin dynamics simulations extremely costly. There-
fore, there are so far only extremely few ab initio studies
of the magnetization dynamics. In Section 7.1 an alterna-
tive method is described that circumvents the use of the ab
initio electron theory for each time step of the solution of
equation (68), while still providing near-ab initio accuracy. A

code based on this new method will probably be very much
faster than the existing ab initio spin dynamics simulation
codes.

7.1 The spin-cluster expansion

The basic idea to facilitate the use of equation (68) for
ab initio spin dynamics simulations is to construct analytical
parameterizations for the functionals Mk({ei}) and E({ei})
from which the required quantities Mk and ∂E/∂ek can be
calculated analytically so that their ab initio determination
in each time step can be avoided. In order to obtain near-
ab initio accuracy, the parameterizations have to be obtained
by the use of the ab initio electron theory, which will
be the most costly part of the method. However, this
parameterization has to be done just once before starting the
simulation, and the simulation itself will then be very easy.

To obtain the desired parameterization, the recently devel-
oped (Drautz and Fähnle, 2004) spin-cluster expansion (SCE)
technique, which is an extension of the conventional cluster
expansion method in alloy theory (Sanchez, Ducastelle and
Gratias, 1984), can be used. In the SCE, it is shown that every
quantity O({ei}) may be written as a sum of contributions of
all conceivable spin clusters, α (pairs, triplets, quartets, etc.),
in the system,

O({ei}) = O0 +
∑
α

∑
ν

Oαν�αν({ei}) (69)

�αν({ei}) = Yν1(ei1)Yν2(ei2) . . . Yνk
(eik ) (70)

Here α = (i1, i2, . . . , ik) labels the sites included in the
cluster α; ν = (ν1, ν2, . . . , νk) gives the quantum numbers
(l, m) characterizing the spherical harmonics Ylm; and Oαν

are expansion coefficients. In a practical calculation, the SCE
has to be terminated at a maximum cluster αmax and by a
maximum quantum number lmax. The expansion coefficients
can then be obtained by fitting the terminated SCE to
the observables calculated for a relatively small number of
appropriately chosen reference spin configurations {ei}ref by
the ab initio electron theory for noncollinear spin systems
(see, e.g., Grotheer, Ederer and Fähnle, 2001; Antropov
et al., 1996; Halilov, Eschrig, Perlov and Oppeneer, 1998;
Stocks et al., 1998; Grotheer, 2002; Singer, Fähnle and
Bihlmayer, 2005), prescribing the directions ei by local
transverse constraining fields (Stocks et al., 1998; Singer,
Fähnle and Bihlmayer, 2005). When we thereby take into
account the spin-orbit coupling, E({ei}) encompasses the
magnetic anisotropy in addition to the exchange energy, and
in Drautz and Fähnle (2004), it is shown how the dipolar
energy and the Zeeman energy can be incorporated in the
SCE. On the basis of the experience gained for conventional
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cluster expansions in the alloy theory, we expect that SCEs
for E({ei}) and Mk({ei}) which exhibit ab initio or near
ab initio accuracy, can be obtained by including relatively
few clusters. Finally, it should be noted that O({ei}) has to
fulfill symmetry demands, for example, it must be invariant
with respect to the operations of the symmetry group of
the magnetic systems. In Singer and Fähnle (2006), it is
shown how this can be achieved for the case of magnetically
isotropic systems by constructing from the basis functions
�αν of equation (70), appropriate rotationally invariant basis
functions.

8 CONCLUDING REMARKS

From the discussion of the preceding sections, it can be con-
cluded that the basic physics that determines magnetization
dynamics in metallic magnets close to the adiabatic limit is
known. First, it should be recalled that direct damping is a
consequence of the spin-orbit coupling in the system. Second,
because of the itineracy of magnetism in 3d transition metals,
any theory for these systems should start from the delocal-
ized electronic states. Thereby, the s–d model has shown
that damping in metallic bulk magnets results mainly from
the scattering of d electrons, and that s and p electrons play
only a minor role in situations without transport currents. The
breathing Fermi surface model is an intuitive physical model
to deal with the scattering of s, p, and d electrons on equal
footing in the limit of high scattering rates (i.e., impure crys-
tals and/or high temperatures), and it is able to incorporate in
a reliable manner the specific electronic properties of a given
material when it is combined with the state-of-the-art ab ini-
tio density-functional electron theory. It has been shown in
Section 6.2 that this is highly important for systems with
reduced dimensionality, which are promising candidates for
future technological applications. So far this model has been
worked out quantitatively only for homogeneous magnetiza-
tion. For this simple situation, the theory yields an EOM of
Gilbert form with the only but very important difference that
the damping scalar of the Gilbert equation is replaced by
a damping matrix α(M) which depends on the momentary
orientation of M. This dependence can be very large for sys-
tems with reduced dimensionality, offering a further option
to optimize magnetization dynamics especially in nanostruc-
tured materials. The damping matrix is proportional to the
electronic relaxation time τ as the conductivity σ , and this
results from the fact that the model is designed to describe a
near-adiabatic situation with high scattering rates. Damping
that is proportional to 1/τ as the resistivity (found in exper-
iments on pure samples) probably arises mainly for small
scattering rates, and it is not included in the breathing Fermi
surface model. Inserting reasonable values for τ obtained

from conductivity measurements yields damping comparable
in magnitude to experimentally observed damping. It remains
to generalize the model to the case of strongly noncollinear
magnetization configurations for which strong damping is
expected.

Altogether the breathing Fermi surface model is a powerful
model to describe dissipative spin dynamics in metallic
magnets in the limit of high scattering rates, for example,
in highly doped materials. It is a big challenge to explore
the limitations of the near-adiabatic approach. Because the
model is designed for a near-adiabatic situation, it probably
does not make sense to try to extend it to the regime of
small scattering rates. There are other theories including
this regime (Kamberský, 1976, 1984; Korenman and Prange,
1972) which, however, are rather formal and do not exhibit
the physical intuition of the breathing Fermi surface model.

In our opinion, it is rather difficult to figure out which
physical mechanisms (electronic scattering at phonons or
various types of lattice defects) determine the damping
of a specific material under consideration. In order to
investigate the intrinsic damping due to phonons, high-
purity crystals have to be used. Research on high-purity
crystalline Ni samples has shown convincingly (Heinrich,
2005) that intrinsic damping in Ni is indeed caused by the
delocalized nature of the electrons in combination with spin-
orbit scattering. Damping may be considerably increased by
introducing defects, for example, rare-earth impurities, giving
the chance to engineer the desired damping properties for
technological applications. Finally, it should be noted that
it is possibly questionable whether much information on the
damping mechanism can be extracted from the comparison of
experiments for the near-adiabatic timescale and for the sub-
picosecond timescale of laser pump-and-probe experiments
because electronic states at different energies are involved in
these two situations.

The s–d model – albeit unable to describe damping in
metallic bulk magnets – is a good starting point to describe
the effect of a transport current on magnetization dynam-
ics, both in bulk materials with continuous inhomogeneous
magnetization configurations like domain walls as well as
in layered systems with discontinuous changes of magneti-
zation. (In Section 6.1 the interrelations between the torque
arising for these two situations are discussed.) Quantitatively
there are certainly many open questions for bulk materials
already. (For problems in the treatment of layered struc-
tures, see Stiles and Miltat, 2006). For instance, the role of
noncollinearity between the s, p, and d contributions for sit-
uations with strong cantings of magnetic moments has to be
figured out. Furthermore, it is an open question as to how the
ballistic (Waintal and Viret, 2004) and the diffusive (Zhang
and Li, 2004) approach to describe the influence of transport
currents on domain walls should be reconciled.
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In the last few years, it became possible to treat the
adiabatic spin dynamics by means of the ab initio density-
functional electron theory, albeit the respective computer
codes are very time consuming. This latter problem may
by overcome by use of the SCE method, as described in
Section 7. The remaining challenge is to incorporate into
the ab initio spin dynamics the effect of damping. One way
would be to construct a SCE with expansion coefficients that
depend parametrically on the positions of the atoms, thereby
including the spin-orbit coupling in the calculation of the
magnetic energy of the respective reference configurations.
A simultaneous treatment of spin dynamics and atomic
dynamics (with ab initio determined force constants) would
then represent an ab initio theory for the spin dynamics
including intrinsic damping via phonons.
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Kamberský, V. (1976). Ferromagnetic resonance damping in metals.
Czechoslovak Journal of Physics Section B, 26, 1366–1383.
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1 INTRODUCTION

In magnetic insulator compounds (e.g., transition metal
oxides) and the majority of rare earth metals, atomic mag-
netic moments are localized at lattice sites and have integral
magnitudes (amplitudes) that are temperature independent.
While superexchange interactions (usually antiferromagnetic
in nature) couple magnetic moments in the former type of
materials, indirect exchange interaction mediated by conduc-
tion electrons performs this function in rare earth metals.
Within the framework of the Heisenberg model, the magnetic
ground state of the system is determined by the sign of the
interatomic exchange interaction constant, J , and the range of
exchange interactions. For instance, in the ground state, spins
on all the lattice sites are ferromagnetically (antiferromagnet-
ically or ferrimagnetically) coupled in a three-dimensional
Heisenberg system with short-range exchange interactions

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

when J > 0 (J < 0). The Heisenberg (localized-spin) model
and the generalizations thereof that make allowance for mag-
netic anisotropies (of either dipolar or spin-orbit plus crystal-
field origin) adequately describe the ground state as well as
finite temperature properties of the localized moment sys-
tems. In this model, the only form of collective excitations
is the thermally excited propagating transverse spin fluctua-
tions (spin waves) which have a small energy dispersion and
fill the entire Brillouin zone.

By contrast, the electrons responsible for magnetism in
transition metals, alloys, and intermetallic compounds are
itinerant and have delocalized wave functions that are phase
coherent over large distances at very low temperatures. At
every atomic site, the magnetic moment originates from a
spin splitting of the d-electron bands owing to the intra-
atomic exchange interaction. The typical time, tq, for a 3d
electron to hop from one lattice site to the other is of the
order of tq ≈ h/W ≈ 10−15s, where W is the bandwidth.
As a result of the electron hopping, even in the ground
state the magnetic moment has very fast quantum fluctua-
tions and hence does not have a constant magnitude. An
experiment with a ‘time window’ larger than tq will aver-
age over the quantum fluctuations and measure the aver-
age magnetic moment per atom (or equivalently, ‘atomic
moment’) which is necessarily nonintegral in magnitude.
At low temperatures, the spin-flip excitation spectrum con-
sists of single-particle excitations and collective excitations.
Spin-up holes and spin-down electrons, created by intra-
atomic spin-flip transitions of electrons from a spin-up band
to a spin-down band (as sketched in Figure 1(a) and (b)
for weak and strong itinerant-electron ferromagnets) and
moving independent of one another in a common mean
(exchange) field, constitute the single-particle excitations.
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Such excitations form the Stoner continuum, which, at finite
momentum transfer q, extends from Eq = 0 in Figure 1(a)
(Eq = �′ = EF(Fermi energy) − E

top
↑ in Figure 1b) to high

energies, as schematically depicted in Figure 2(a) and (b) for
weak (strong) itinerant-electron ferromagnets. Single-particle
excitations with zero momentum transfer (q = 0) cost an
energy equal to the exchange splitting � (Figure 2). The
transfer of an electron–hole pair excitation, which results
from a spin flip on an atom, from atom to atom gives rise
to spin-wave excitations (Figure 3). The typical spin-wave
energy is nearly 2 orders of magnitude smaller than the band-
width and hence the timescale associated with this energy is
tsw ≈ 10−13s. In itinerant-electron ferromagnets, spin waves
exist as well-defined collective excitations only in the small q

and small Eq = �ωq region in the Brillouin zone (Figure 2),
where the Stoner single-particle excitations require high ener-
gies of the order of intra-atomic exchange splitting � =
I (n↑ − n↓); I is the intra-atomic exchange interaction and
n↑(n↓) is the population of the spin-up (spin-down) band
(Figures 1 and 3). As the momentum transfer q increases
from zero, the energy gap between the Stoner continuum
and spin-wave spectrum reduces rapidly such that beyond a
certain threshold value of q = qSB, the spin-wave dispersion
curve enters the Stoner continuum. For q > qSB, the spin
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Figure 1. Schematic representation of a spin-flip Stoner single-
particle excitation in a (a) weak itinerant-electron ferromagnet and
(b) strong itinerant-electron ferromagnet.
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∆
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Figure 2. Schematic representation of magnetic dispersion and
magnetic excitations in a (a) weak itinerant-electron ferromagnet
and (b) strong itinerant-electron ferromagnet.

E

EF

E

D

n  (E)n  (E)(a) (b)n  (E) n  (E)

Figure 3. Schematic representation of a spin-wave excitation in a
weak itinerant-electron ferromagnet.

waves get damped with the result that the collective mag-
netic excitations in the Stoner continuum are the overdamped
(nonpropagating) modes of exchange-enhanced longitudinal
and transverse spin-density fluctuations (Figure 2). For spin
fluctuations of given q, in the longitudinal mode, the mag-
netic moments point in the same direction but their ampli-
tude fluctuates from one lattice site to the other, whereas in
the transverse mode, amplitude of the magnetic moments
remains nearly constant while their direction varies from
site to site. Since spin-wave modes of larger and larger q

are excited as the temperature is raised from T = 0, the
transition at q = qSB from well-defined spin waves to non-
propagating exchange-enhanced transverse spin fluctuations
should be observed at a certain finite value of temperature.
By contrast, the thermally excited nonpropagating exchange-
enhanced longitudinal spin-density fluctuations persist down
to q = 0 and coexist with, but are swamped by, spin waves
for q ≤ qSB. A detailed description of the nature of mag-
netic excitations in different systems and their experimental
determination is furnished in Section 2.

A phase transition from a magnetically ordered state to
a magnetically disordered (paramagnetic) state occurs at a
well-defined temperature when critical fluctuations of the
order parameter (spontaneous magnetization) get correlated
over distances of the order of the system size. At the critical
point, spin waves in localized-spin systems and nonpropa-
gating longitudinal as well as transverse spin-density fluctu-
ations in weak itinerant-electron systems destroy long-range
magnetic order. The rudiments of thermally driven phase
transitions and critical phenomena as well as the intricacies
in the data analyses are dealt with at length in Section 3.

For a detailed theoretical background to the nature
of magnetic excitations and phase transitions in Heisen-
berg (localized-spin) and band (itinerant-electron) magnets,
the reader is referred to Gautier (1982), Moriya (1985),
Capellmann (1987), Barbara, Gignoux and Vettier (1988),
Callaway (1991), Yosida (1996), and Mohn (2003), see also
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Spin Waves: History and a Summary of Recent Develop-
ments, Volume 1 and Theory of Magnetic Phase Transi-
tions, Volume 1.

2 MAGNETIC EXCITATIONS

As the temperature of the spin system is raised from very low
temperatures, different types of magnetic excitations become
important, in the following sequence, in different temperature
regimes till the critical point is reached at which the long-
range magnetic order is completely destroyed and a phase
transition to the magnetically disordered (paramagnetic) state
occurs.

2.1 Propagating transverse spin fluctuations
(spin waves)

In a wide variety of spin systems regardless of whether
they are crystalline or amorphous, insulating (localized-
electron) or metallic (itinerant-electron), ferromagnetic or
antiferromagnetic, or even ferrimagnetic, spin waves exist
as well-defined low-lying (in energy) collective magnetic
excitations from the ground state. Spin-wave excitations,
involving energy transfers typically of the order of 100 meV,
are amenable to direct detection in the inelastic neutron-
scattering (INS) experiments on bulk samples.

If z axis is chosen as the spin quantization direction, the
partial differential cross-section for the inelastic (inel ) scat-
tering of unpolarized thermal neutrons due to the magnetic
interaction between neutron spin and the spins of unpaired
electrons, localized at the lattice sites of a system of N atoms,
is given by Squires (1978), Lovesey (1987), and Stirling and
McEwen (1987)

(
d2σ

d�dE

)
inel

=
(

γ e2

mec2

)2
k′

k

{
1

2
g F(Q)

}2

× e−2W(Q) N

π(gµB)2
[1 + n(ω)]

×
[
(1 − Q̂

2
z) Imχ ||(Q, ω)

+ (1 + Q̂
2
z) Imχ⊥(Q, ω)

]
(1)

In this equation, k and k′ are the wave vectors of the
incident and scattered neutrons, Q = k − k′, Q̂z is the z com-
ponent of the unit vector Q̂ = Q/|Q|, F (Q) and e−2W(Q) are
the form factor and the Debye–Waller factor, respectively,
for the magnetic lattice, E = �ω = (�2/2mn)(k

2 − k′2) is the
energy transfer, n(ω) = [exp(�ω/kBT ) − 1]−1 is the Bose

function, Imχ ||(Q, ω) and Imχ⊥(Q, ω) are the imaginary
parts of the longitudinal (i.e., along the direction of magneti-
zation (z axis)) and transverse (i.e., perpendicular to z axis)
wave-vector- and frequency-dependent magnetic susceptibil-
ities and the remaining symbols have their usual meaning.
In equation (1), the inelastic scattering cross-section is the
sum of longitudinal and transverse contributions. At low tem-
peratures, where the linear spin-wave approximation holds
and the spin-wave linewidths are negligible, the longitudi-
nal part of the cross section leads (Squires, 1978; Lovesey,
1987) only to elastic scattering, whereas the transverse part
takes the form (Squires, 1978; Lovesey, 1987; Stirling and
McEwen, 1987):

(
d2σ

d�dE

)⊥

inel

=
(

γ e2

mec2

)2
k′

k

{
1

2
g F(Q)

}2

×e−2W(Q) (1 + Q̂
2
z)

S

2

(2π)3

v0

×
∑
q,τ

{
(nq + 1) δ(Eq − E) δ(Q − q − τ )

+ nq δ(Eq + E) δ(Q + q − τ )
}

(2)

where nq = [exp(�ωq/kBT ) − 1]−1 is the (Boson) occupa-
tion factor for the magnons (spin waves) of wave vector
q and energy Eq = �ωq, (2π)3/v0 is the volume of a unit
cell in the reciprocal lattice and τ is the reciprocal-lattice
vector. The first (second) term in the inelastic scattering
cross-section corresponds to the creation (annihilation) of an
infinite-lifetime magnon and the consequent neutron energy
loss (gain). Note that the expression for the transverse inelas-
tic cross section for the scattering of neutrons by spin waves
in an itinerant-electron ferromagnet bears a striking similar-
ity (Lovesey, 1987) with equation (2), which is valid for a
Heisenberg ferromagnet. Since both momentum- and energy-
conservation conditions govern the creation or annihilation
of a magnon, the INS experiments provide a direct means
of determining the whole spin-wave spectrum (dispersion).
Obviously, creation of magnons is favored over annihilation
at low temperatures (kBT � �ω). At higher temperatures,
dynamic magnon–magnon interactions become important
and broaden the spin-wave peaks. In order to fit the constant-
q INS scans, the spectral weight function F⊥(Q, ω) in
the expression Imχ⊥(Q, ω) = πω χ⊥(Q) F⊥(Q, ω) (where
χ⊥(Q) is the static wave vector–dependent susceptibility),
and hence in equation (2) via equation (1), is often approxi-
mated by either a double Lorentzian (DL)

F DL
⊥ (q, E) = 1

2π

[
	q

(E − Eq)2 + 	2
q

+ 	q

(E + Eq)2 + 	2
q

]

(3)
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Figure 4. Constant-q scans for (a) amorphous Fe86B14 at q = 0.08, 0.10, and 0.12 Å−1 and T = 495 K and (b) the weak itinerant-
electron ferromagnet Ni3Al at q = 0.035 Å−1 and T = 58 K (0.8TC), 65 K (0.9TC). The solid curves denote the least-squares fits based on
equation (3).

or a damped-harmonic-oscillator (DHO) form

F DHO
⊥ (q, E) = 1

π

	q(E
2
q + 	2

q)

[(E − Eq)2 + 	2
q][(E + Eq)2 + 	2

q]
(4)

where 	q is the q-dependent half-width at half-maximum
(HWHM) of the spin-wave peak. Figure 4(a) (taken from
Fernandez-Baca, Lynn, Rhyne and Fish, 1987) and 4(b)
(taken from Semadeni et al., 2000), pertaining, respectively,
to the amorphous Invar alloy Fe86B14 (which behaves as a
Heisenberg ferromagnet but the canonical examples of such
a ferromagnet are EuO and EuS) and the well-known weak
itinerant-electron ferromagnet Ni3Al, serve to illustrate as to
how the magnon dispersion for a ferromagnet is measured in
an INS experiment. In Figure 4, (i) the spin-wave excitations
manifest themselves as inelastic peaks centered at ±Eq (on
either side of the elastic peak centered at E = 0) in the
neutron-scattering intensity versus the energy transfer E

isotherm taken at a fixed value of q, (ii) the continuous

curves in Figure 4 are the theoretical fits obtained by
assuming that the spectral weight function in the transverse
(longitudinal) part of the cross section in equation (1) can be
approximated by equation (3) (a δ function centered at E = 0
in Figure 4a) and treating Eq and 	q as free parameters,
(iii) Eq and 	q corresponding to different values of q

are thus directly obtained from the constant-q scans taken
at a given temperature while their temperature variations,
Eq(T ) and 	q(T ), are determined from the constant-q
scans taken at different temperatures. Details about the INS
determination of the spin-wave spectrum in a wide variety of
magnetic systems are given in Stirling and McEwen (1987),
Tomiyoshi et al. (1987), Mook (1988), Lynn and Rhyne
(1988), Shapiro (1988), and Fernandez-Baca et al. (1990);
see also X-ray and Neutron Scattering by Magnetic
Materials, Volume 1 and Spin Structures and Spin Wave
Excitations, Volume 3.

Regardless of the nature (localized or itinerant) of mag-
netic electrons, the spin-wave dispersion relation has the form
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Eq(T ) = �ωq(T ) = �SW + D(T )q2(1 − βq2) (5)

where �SW is an effective energy gap in the spin-wave
spectrum originating from dipole–dipole interactions, mag-
netic anisotropy, and external magnetic field (if present) and
the spin-wave stiffness, D, renormalizes with temperature
according to the relation

D(T ) = D(0)(1 − D2 T 2 − D5/2 T 5/2) (6)

for both localized-electron (Izuyama and Kubo, 1964; Keffer,
1966) and itinerant-electron (Izuyama and Kubo, 1964;
Mathon and Wohlfarth, 1968) models. Within the framework
of the Heisenberg model, the T 2 term is appreciable only
when the localized spins interact with one another via the
spin of conduction electrons and this term is normally sev-
eral orders of magnitude smaller than the T 5/2 term, which
arises from the magnon–magnon interactions. By contrast,
the T 2 term in the band model results from the interac-
tion between spin waves and single-particle excitations and
dominates over the T 5/2 term, which originates from the
magnon–magnon interactions, as in the localized-electron
case. Thus, the expressions D(T ) = D(0)(1 − D2 T 2) and
D(T ) = D(0)(1 − D5/2 T 5/2) essentially denote the varia-
tion of the spin-wave stiffness with temperature for the
itinerant- and localized-electron models, respectively. These
models also make specific predictions about the functional
dependence of 	q on q. In the long-wavelength (q → 0)

limit, equation (5) reduces to Eq(T ) = D(T ) q2 for an
isotropic ferromagnet in the absence of external magnetic
field. In the limit as q → 0, Eq(T ) ∝ q2 (Eq(T ) ∝ q) for a
ferrimagnet (antiferromagnet).

By virtue of the fact that the INS experiments directly
determine Eq(q, T ) (and hence D(T )) and 	q(q, T ), the
INS technique is the most powerful experimental tool for
clearly distinguishing between the localized and band models
(and thereby reveal the exact nature of magnetic electrons)
by unambiguously verifying their predictions concerning the
thermal renormalization of spin-wave stiffness, D(T ), and
the variations of spin-wave linewidth with q and temper-
ature, 	q(q, T ). This is particularly true when spin waves
fill the entire Brillouin zone and the spin-wave dispersion
falls within the energy transfer range covered in the INS
experiments (as is the case for Heisenberg ferromagnets).
However, the INS technique suffers from a number of draw-
backs. First, owing to very weak interaction of neutrons with
matter, this method has the required sensitivity only for bulk
samples or large multilayer systems. Second, it fails to detect
other excitations accompanying spin waves. For instance, in
those amorphous ferromagnets or Invar systems that have
a noncollinear ground-state arrangement of local magnetic

moments (caused by a strong competition between the ferro-
magnetic and antiferromagnetic interactions), the diffusive
modes (‘diffusons’) associated with the longitudinal spin
fluctuations contribute to the T 3/2 decrease of magnetization
as significantly as the propagating transverse spin fluctua-
tions (spin waves) do (Continentino and Rivier, 1979; Valiev
and Menshikov, 1995; Kaul, 1999). Unlike spin waves, the
diffusons show up as the central (elastic) peak (which already
contains contributions from small-angle and incoherent scat-
tering from the sample and its environment) in the constant-q
INS scans. It is, therefore, not possible to resolve this compo-
nent from the nuclear scattering. Further complication arises
when the coupling between the longitudinal spin fluctuations
and the spin-wave modes gives rise to inelastic peaks that are
centered at the spin-wave energies (Vaks, Larkin and Pikin,
1968), besides a much smaller central peak corresponding
to spin diffusion. Third, the limited range of energy transfer
accessible to the INS experiments does not permit a simul-
taneous detection of spin waves and (high energy) Stoner
single-particle excitations, which are present in itinerant-
electron ferromagnets. The first and third limitations of
the INS method have been overcome in a relatively new
experimental technique called the spin-polarized electron-
energy-loss spectroscopy (SPEELS). In this experiment, the
spin-polarized incident electron beam of fixed energy gets
scattered from the surface of an itinerant-electron ferromag-
net and spin polarization of the scattered beam is measured
as a function of the energy loss suffered by the electrons
during the scattering process. Recognizing that the energy
loss is mainly due to the exchange scattering from elec-
tron–hole pair excitations, this technique directly probes the
Stoner single-particle (spin-flip or non-spin-flip) excitations
(Venus and Kirschner, 1988; Penn and Apell, 1988; Abraham
and Hopster, 1989). SPEELS, with considerably improved
energy resolution, has recently enabled observation of large
wave vector (∼= 1 Å−1) and large energy (∼= 250 meV) spin
waves in ultrathin Fe or Co films (Plihal, Mills and Kirschner,
1999; Vollmer et al., 2003, 2004; see also High-energy
Surface Spin Waves Studied by Spin-polarized Electron
Energy Loss Spectroscopy, Volume 3). Like SPEELS, the
ferromagnetic resonance and Brillouin light scattering tech-
niques are extremely powerful surface-sensitive experimental
tools but they can detect spin waves of small wave vector
(≤ 0.01 Å−1) only. As far as the second limitation is con-
cerned, a comparison of the value of spin-wave stiffness at
0 K, directly determined from the INS experiments, Dn(0),
with that, Dm(0), deduced from the magnetization measure-
ments, reveals the existence or absence of the concomitant
excitations and gives important clues about the nature of such
excitations (Kaul, 1984a). This calls for high-resolution mag-
netization measurements and an elaborate data analysis, as
elucidated in the following text.
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The decline in magnetization, M(T, H), due to the
thermally excited long-wavelength spin-wave excitations
at temperature, T , and external magnetic field, H , for
Heisenberg (Keffer, 1966) as well as band (Kaul, 1999, 2005)
ferromagnets is given by

M(T, H) = M(0, H) − gµB

∫ ∞

0

nSW(ω) dω

e(�ω+gµBHeff)/kBT − 1
(7)

In equation (7), the magnon density of states, nSW(ω), and
the effective field, Heff, have the forms

nSW(ω) = 1

4π2

(
�

D(T )

)3/2

ω1/2 (8)

and Heff = H − HD + HL + HA with HD, HL, and HA rep-
resenting the demagnetizing, Lorentz, and anisotropy fields,
respectively, while the magnon (Bose) occupation factor
makes use of the spin-wave dispersion relation, equation (5),
but with β = 0 (i.e., �ω(T ) = D(T ) q2) and �SW =
gµBHeff. In a more general case, where the Bose factor in
equation (7) is replaced by [exp{�ωq(T )/kBT } − 1]−1 (with
�ωq(T ) given by equation (5)) and nSW(ω) by nSW(ωq), and
both spin-wave (SW) and Stoner single-particle (SP) excita-
tions contribute to the fractional decrease in magnetization,
defined as �m(T , H) ≡ [M(0, H) − M(T, H)]/M(0, H),
�m(T , H) has the functional form (Thompson, Wohlfarth
and Bryan, 1964; Keffer, 1966)

�m(T , H) = �mSW(T , H) + �mSP(T , H) (9)

�mSW(T , H) = gµB

M(0, H)

[
Z(3/2, tH)

(
kBT

4πD(T )

)3/2

+15πβ Z(5/2, tH)

(
kBT

4πD(T )

)5/2
]

(10)

�mSP(T , H) = A′(H)T 3/2 exp(−�SP/kBT )

for a strong itinerant-electron ferromagnet

= A(H)T 2

for a weak itinerant-electron ferromagnet

(11)
In equation (10), the Bose–Einstein integral functions

Z(s, tH)=∑∞
n=1 n−s exp(−ntH) and tH =gµBHeff/kBT allow

for the extra energy gap gµBHeff(= �SW = kBTg) in the
spin-wave spectrum arising from the effective field that the
spins experience within the sample, and the T 3/2 (T 5/2) term
has its origin in the q2 (q4) term in the spin-wave disper-
sion relation, equation (5). Taking cognizance of the theo-
retical prediction that D(T ) in equation (10) varies as T 2

or T 5/2 for band or Heisenberg ferromagnets, it is obvi-
ous from the expressions (10) and (11) that magnetization is

expected to be a smoothly varying function of temperature
that may include T 3/2, T 2, T 5/2, T 7/2, and exponential terms.
An unambiguous determination of the spin-wave and single-
particle contributions is, therefore, not possible unless the
magnetization is measured with extremely high precision
and an elaborate data analysis is carried out. This strategy
has been successfully implemented, and has yielded several
interesting results, in a number of systems that include Fe and
Ni (Ododo and Anyakoha, 1983), crystalline (Nakai, 1983,
1990; Nakai, Ono and Yamada, 1983; Nakai and Maruyama,
1992), and amorphous (Kaul, 1983; Yamada et al., 1986;
Nakai et al., 1987; Kaul and Babu, 1994a, 1998; Semwal and
Kaul, 1999, 2004) Invar alloys. For instance, from a reanal-
ysis of the already published magnetization data on Fe and
Ni, Ododo and Anyakoha (1983) concluded that (i) at low
temperatures (T ≤ 0.4TC), besides the dominant spin-wave
contribution, Stoner non-spin-flip single-particle excitations
rather than their spin-flip counterpart significantly contribute
to thermal demagnetization in both Fe and Ni, and (ii) a gap
between the ‘acoustic’ and ‘optical’ branches in the spin-
wave dispersion spectrum of Ni occurs at the wave vector
qco = 0.47 ± 0.01 Å−1 and energy Eco = 120 ± 6 meV, and
predicted a similar gap between the ‘acoustic’ and ‘optical’
magnon branches at qco = 0.74 ± 0.02 Å−1 and Eco = 166 ±
10 meV in Fe. While the SPEELS (Venus and Kirschner,
1988; Penn and Apell, 1988; Abraham and Hopster, 1989)
experiments on Fe and Ni, and INS experiments (Mook and
Paul, 1985) on Ni, later confirmed the findings (i) and (ii),
the prediction of a gap in the spin-wave spectrum of Fe
has found firm support in the recent many-body calculations
(Karlsson and Aryasetiawan, 2000). Similarly, in conformity
with the results of the magnetoresistance (Kaul and Rosen-
berg, 1983), spin-polarized photoemission (Hopster et al.,
1985), Compton scattering (Anderjczuk et al., 1992), and
spin-polarized INS (Lynn, Rosov and Fish, 1993) measure-
ments, an extensive analysis of high-resolution magnetization
data (Kaul and Babu, 1994a) reveals that all the compo-
sitions in the amorphous (FepNi1−p)80 (B,Si)20 alloy series
behave as weak itinerant-electron ferromagnets, while a tran-
sition from weak to strong itinerant ferromagnetism occurs
at p ∼= 0.75 in the amorphous (FepNi1−p)80P14B6 alloys and
that propagating longitudinal spin fluctuations make as sig-
nificant a contribution to the T 3/2 decrease of magnetization
as their transverse counterpart (spin waves) does for the
compositions p > 0.75 in both the alloy series. An example
(Semwal and Kaul, 1999, 2004), shown in Figure 5, serves
to illustrate (see the deviation plots in the lower panel) that
at temperatures T ≤ 0.24TC (where TC is the Curie tem-
perature) spin waves (manifesting themselves as M(T ) ∼
T 3/2) swamp the contributions to magnetization arising from
both Stoner single-particle (M(T ) ∼ T 2) and nonpropagating
collective electron–hole pair (M2(T ) ∼ T 2; for details,
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Figure 5. The upper panel depicts the temperature variation of
magnetization measured at an external magnetic field of Hext = 1
kOe for the weak itinerant-electron ferromagnet Ni3Al at low
temperatures and the continuous curve is the least-squares fit based
on equation (10). The lower panel displays the percentage deviation
of the data from the least-squares fits based on equations (10) and
(11). Notice that the functional form given by equation (10) yields
minimum deviations.

see Section 2.3) excitations in the weak itinerant-electron
ferromagnet Ni3Al. Furthermore, the observation (Semwal
and Kaul, 1999) that Dn(0) = Dm(0), within the uncertainty
limits, permits the conclusion that no diffusons are present
in this material.

2.2 Magnon-fracton crossover

Understanding the nature of quantized excitations in fractal
networks, the crossover between extended (phonon, magnon)
and strongly localized (fracton) excitations, and the effect of
this crossover on thermodynamic and transport properties of
random physical systems, continues to be a fascinating sub-
ject (Nakayama, Yakubo and Orbach, 1994). Alexander and
Orbach (1982) determined the density of states and the dis-
persion relation for vibrational excitations of Df-dimensional
fractal network. They termed such excitations as fractons and
conjectured that the fracton dimensionality d̃f = 4/3 for per-
colation networks with Euclidean dimension d ≥ 2. One of
the well-known realizations of a self-similar (fractal) network
is a quenched random site–diluted Heisenberg magnet with
the concentration of magnetic atoms (p) near the percola-
tion threshold (pc). At p = pc, an infinite magnetic cluster

first appears (i.e., for p < pc, only finite magnetic clusters
are present and no long-range magnetic order exists even for
temperatures as low as T ≈ 0 K), and the percolation corre-
lation length at T = 0 K, ξ 0(p), diverges in accordance with
the relation (Stauffer and Aharony, 1992)

ξ 0(p) = ξp (p − pc)
−νp (12)

The divergence in ξ 0(p) ≡ ξ(T = 0, p) induces a cross-
over in the dynamics of Heisenberg spins from hydrodynamic
(magnon) behavior for qξ<1 to critical (fracton) behav-
ior for qξ > 1, where q is the inverse wavelength of spin
waves in the hydrodynamic regime and the inverse charac-
teristic length of the localized fracton modes in the critical
regime. Change from Euclidean dimension, d, to fractal
dimension, Df, causes a crossover in the dispersion relation
and the density of states from their long-wavelength (low-
frequency, ω � ωco) magnon forms to short length scale
(high-frequency, ω � ωco) magnetic fracton forms at a char-
acteristic frequency ωco. Such a crossover has a profound
effect on those static thermal properties that are directly
related to the excitation of spin waves such as magnetiza-
tion and specific heat. The dilution-induced hydrodynamic-
to-critical crossover in the dynamics of Heisenberg spins on
a percolation network and the consequent crossover in the
thermal behavior of magnetization for concentrations just
above the percolation threshold, has been theoretically stud-
ied by Stinchcombe and Pimentel (1988). This crossover
is, however, distinctly different from the usual thermal-to-
percolation crossover (Stauffer and Aharony, 1992) which
occurs when the thermal fluctuations of the order parame-
ter become critical at a concentration-dependent temperature
TC(p), as the percolation critical point Q(p = pc, T = 0)

is approached by reducing the temperature to zero at fixed
values of p with p → pc in the T − p diagram (Figure 6).
For a given concentration, p, of the magnetic atoms, TC(p)

is the temperature at which a transition from a magnet-
ically disordered (paramagnetic) state to a magnetically
ordered (ferromagnetic, antiferromagnetic, or ferrimagnetic)
state occurs when the temperature is lowered from high
temperatures.

In its most general scaling form, the density of vibrational
states of a percolating network for p > pc is given by
(Aharony, Alexander, Entin-Wohlman and Orbach, 1985;
Aharony, Entin-Wohlman, Alexander and Orbach, 1987)

N(ω) = A ωx−1f (ω/ωco) (13)

where x is the fracton dimensionality whose explicit expres-
sion depends on the particular fractal model chosen, ωco is the
frequency at which a crossover from hydrodynamic (phonon
or magnon) regime to the critical (fracton) regime occurs,
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Q (p = pC, T = 0)

1p

T

Figure 6. Schematic T – p phase diagram in which the arrows
depict the path through which the percolation critical point Q(p =
pC, T = 0) is approached by reducing temperature to zero at fixed
values of the concentration, p, of the magnetic atoms for p just
above the percolation threshold, pC. This diagram also roughly
sketches a typical thermal-to-percolation crossover line, TC(p).

and A is a constant independent of ωco. The scaling func-
tion in equation (13) has the asymptotic limits f (z) → 1
as z → ∞ and f (z) → zd ′−x as z → 0 so that (Aharony,
Alexander, Entin-Wohlman and Orbach, 1985; Aharony,
Entin-Wohlman, Alexander and Orbach, 1987)

Nhy(ω) = A ωx−d ′
co ωd ′−1 (14)

in the hydrodynamic (ω � ωco) limit and

Ncr(ω) = A ωx−1 (15)

in the critical (ω � ωco) limit. In the case of magnon–fracton
crossover, the fracton dimensionality x and the dimension d ′

are x = d̃f/2 and d ′ = d/2. Salamon and Yeshurun (1987)
suggested an expression for the effective density of states,
neff(ω), in d = 3 percolating ferromagnetic networks that is
supposed to be valid not only in the magnon and fracton
regimes but also in the entire crossover region. Early attempts
(Salamon and Yeshurun, 1987; Yeshurun and Salamon,
1987; Zadro, 1996) to experimentally determine the fracton
contribution to M(T ) in site-diluted amorphous ferromagnets
with p ≥ pc, based on this form of neff(ω), however, yielded
widely different values for d̃f. Subsequently, this discrepancy

in the values of d̃f was traced to a number of major flaws
(Kaul and Srinath, 2001) in both the form of the effective
density of states and the data analysis used by Salamon
and Yeshurun (1987) and Zadro (1996). The extensive
investigations of ferromagnetic fractons in quenched random
site–diluted ferromagnets (Kaul and Srinath, 2001; Kaul and
Semwal, 2004) have completely got rid of these flaws by
carrying out a thorough data analysis and by using the density
of states of the form

neff(ω) =
(

1

4π2

) [
�

D(p)

]d/2

(p − pc)
νp(Df−d)

× ω(d/2)−1
(

1 + ω

ωco

)(d̃f−d)/2

(16)

proposed by Kaul and Srinath (2001). Unlike the earlier
(Salamon and Yeshurun, 1987) form of the density of
states, equation (16) (i) yields the correct asymptotic forms
(Aharony, Alexander, Entin-Wohlman and Orbach, 1985;
Aharony, Entin-Wohlman, Alexander and Orbach, 1987;
Stauffer and Aharony, 1992)

nSW(ω) = A′ ω(d̃f−d)/2
co ω(d/2)−1 (17)

and

nfr(ω) = A′ ω(d̃f/2)−1 (18)

with A′ = (1/4π2){�ω
[1−(d̃f/d)]
p /dp}d/2, in the magnon (ω �

ωco) (cf. equations (14) and (17)) and fracton (ω � ωco)
(cf. equations (15) and (18)) regimes, (ii) ensures a smooth
crossover between the two regimes at ω = ωco, and
(iii) consistent with the theoretical predictions (Aharony,
Alexander, Entin-Wohlman and Orbach, 1985; Aharony,
Entin-Wohlman, Alexander and Orbach, 1987; Stauffer and
Aharony, 1992) yields the ratio nfr(ωco)/nSW(ωco), which is
a constant independent of ωco (i.e., the ratio is noncritical).
In arriving at the equations (17) and (18), use has been made
of the following relations (Nakayama, Yakubo and Orbach,
1994)

D(p) = dp (p − pc)
2νp[(Df/d̃f)−1] (19)

and

ωco(p) = ωp (p − pc)
2νpDf/d̃f (20)

Note that for d = 3 equation (17) has the same form as
equation (8). For computing magnetization at finite fields
and temperatures with greater ease, an alternative form of
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equation (16), given below, is preferred (Kaul and Srinath,
2001)

neff(ω) =
(

1

4π2

) [
�

D(p)

]d/2 (
m∗

p

M0(p)

)

× ω(d/2)−1
(

1 + ω

ωco

)(d̃f−d)/2

(21)

This expression is obtained from equation (16) by using
the relations (Stauffer and Aharony, 1992; Nakayama,
Yakubo and Orbach, 1994)

Df = d − (βp/νp) (22)

and

M0(p) = m∗
p (p − pc)

βp = mp (p − pc)
βp

× [1 + a (p − pc)
�] (23)

The main steps involved in the data analysis are as fol-
lows. At first, employing the usual extrapolation (to H = 0)
method, spontaneous magnetization at 0 K for each com-
position, M0(p) ≡ M(T = 0, p), is determined from the
M − H isotherm taken at the lowest possible temperature
(T0

∼= 1 K). The percolation critical exponent (amplitude),
βp (mp), the ‘correction-to-scaling’ amplitude, a, and the
percolation threshold, pc, (and hence the quantity m∗

p) are
determined from the best theoretical fit to the M0(p) data,
based on equation (23), in which the ‘correction-to-scaling’
exponent � is fixed at its theoretically predicted value � = 1
(Stauffer and Aharony, 1992) while mp, pc, βp, and a, are
treated as free fitting parameters. Next, the magnetization
M(T, H) is calculated from equation (7) by replacing the
magnon density of states, nSW(ω), with the effective den-
sity of states, neff(ω), given by equation (21), and perform-
ing the integration over ω numerically. At any given field
strength, the agreement between the observed and calculated
values of M at different temperatures T ≤ TC is optimized,
at first, by keeping d̃f fixed at values differing by 0.01 in
the range 1.0 ≤ d̃f ≤ 2.0 (which embraces the theoretically
expected (Alexander and Orbach, 1982) value of d̃f = 4/3 for
percolation networks with Euclidean dimension d ≥ 2) and
varying M(0, H), D, and ωco. A cross-check for a correct
estimation of these parameters is provided by the stringent
conditions that the above optimization process should yield
the result M(0, H) = M(T0, H) (the value of magnetization
corresponding to a given field measured at T = T0) and d̃f

independent of both H and p. The values of M(0, H) and
d̃f, so obtained, are kept constant in the subsequent fits that
involve only two parameters, D and ωco. This procedure not

only unravels the true functional form of the thermal renor-
malization of spin-wave stiffness, D(T ), and of the magnetic
field dependence of magnon-to-fracton crossover frequency,
ωco(H), but also yields accurate values for D0(p) ≡ D(T =
0, p), ωco(p) ≡ ωco(p, 0) ≡ ωco(p, H = 0), (and their cor-
responding percolation critical exponents) and d̃f for d = 3
percolating ferromagnetic networks with the concentration of
magnetic atoms, p, just above the percolation threshold, pc

(Kaul and Babu, 1994b; Kaul and Srinath, 2001; Kaul and
Semwal, 2004).

ωco(p) permits determination of the temperature T ∗
co(p) =

�ωco(p)/kB at which the crossover from hydrodynamic
regime to critical regime occurs. The locus of T ∗

co val-
ues for different compositions in a given quenched random
site-diluted ferromagnetic alloy series is the crossover line
that divides the ferromagnetic (FM) phase into two regions
(1) and (2) in the magnetic phase diagrams, as illustrated
by the dashed curve shown in Figure 7 for the amorphous
(FepNi1−p)80B16Si4 and (Cop′Ni1−p′)80B16Si4 alloys (Kaul
and Srinath, 2001). In region (2), thermal demagnetiza-
tion is solely due to hydrodynamic spin waves, whereas
in region (1) both hydrodynamic and critical magnons (i.e.,
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Figure 7. Magnetic phase diagrams for the amorphous alloy series
(FepNi1−p)80B16Si4 and (Cop′Ni1−p′)80B16Si4 that display the two
crossover lines: the thermal-to-percolation crossover line, TC(p),
(solid curves) and the magnon-to-fracton crossover line, T ∗

co(p),
(dashed curves) within the ferromagnetic (FM) phase.
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ferromagnetic fractons) are responsible for the decline of
spontaneous magnetization with increasing temperature. The
magnon-to-fracton crossover line appears at lower temper-
atures in addition to the thermal-to-percolation crossover
line (continuous curve), that is, the phase boundary between
the magnetically disordered (paramagnetic, PM) phase and
ordered (ferromagnetic, FM) phase. The magnetic phase dia-
gram predicted by the theory (Stinchcombe and Pimentel,
1988) for a quenched random site–diluted Heisenberg fer-
romagnet conforms well to the phase diagrams shown in
Figure 7. Note that in the amorphous (FepNi1−p)80M20 and
(Cop′Ni1−p′)80M20 (M = P,B,Si) alloys Ni atoms (substi-
tuting for Fe and Co atoms at random) carry very small
magnetic moments (Kaul, 1981; Liebs and Fähnle, 1996)
and hence these systems are the experimental realizations of
quenched random site–diluted Heisenberg ferromagnets.

Extensive investigations on amorphous (Kaul and Babu,
1994b; Kaul and Srinath, 2001) and crystalline (Kaul and
Semwal, 2004) systems (i) enable an accurate determina-
tion of the hydrodynamic-to-critical spin-wave crossover line
in the magnetic phase diagram, the percolation-to-thermal
crossover exponent, the fractal and fracton dimensionali-
ties, the percolation critical exponents for magnetization, and
the spin-wave stiffness, (ii) vindicate the Alexander–Orbach
conjecture (Alexander and Orbach, 1982) by demonstrating
that d̃f

∼= 4/3 for d = 3 percolating network, and (iii) con-
clusively prove that quenched randomness does not alter the
critical behavior of percolation on a regular d = 3 lattice.
A direct experimental evidence for antiferromagnetic fracton
excitations in a d = 3 site-diluted Heisenberg antiferromag-
net with the concentration of the magnetic atoms near the
percolation threshold, RbMn0.39 Mg0.61F3, has recently been
provided by INS experiments (Ikeda et al., 1994).

2.3 Nonpropagating exchange-enhanced
spin-density fluctuations

Weak itinerant-electron ferromagnets, as opposed to their
strong counterparts, facilitate the study of the interaction of
collective spin-wave modes with the Stoner single-particle
excitations since the relatively small spin splitting of the d
band ensures that spin-wave dispersion curve intersects the
boundary of Stoner continuum (henceforth referred to as the
Stoner boundary , SB) tangentially at much lower values of
energy, Eq, and momentum, q (Moriya, 1985). Within the
(Eq, q) space covered by the Stoner continuum, spin waves
are degenerate in energy with single-particle excitations and
hence have a short lifetime. The lifetime depends on the
density of states of Stoner excitations; the higher the den-
sity of states, the shorter the spin-wave lifetime and broader
the spin-wave peaks in the INS cross-section. Thus, the

spin-wave linewidth increases abruptly at the SB, whereas the
integrated intensity (of the spin-wave peaks) starts decreas-
ing before the spin-wave dispersion curve enters the Stoner
continuum at a threshold value q = qSB (Figure 2) and falls
to very low values above qSB, indicating thereby that the
spin waves are severely damped upon crossing the SB. An
abrupt increase in the linewidth and a steep drop in the
intensity of spin-wave peaks in the inelastic scattering cross-
section of unpolarized (spin-polarized) neutrons at the SB
has been observed by Ishikawa, Shirane, Tarvin and Kohgi
(1977) and Semadeni et al. (1999) in the weak itinerant-
electron ferromagnet MnSi at the energy transfer ESB

∼=
2.5 meV (ESB

∼= 3.0 meV) and momentum transfer qSB
∼=

0.25 Å−1(qSB
∼= 0.36 Å−1), and by Mook, Nicklow, Thomp-

son, and Wilkinson (1969) and Mook and Nicklow (1973)
in the early INS experiments on itinerant-electron ferromag-
nets Fe and Ni at the energies ESB

∼= 80 meV and ESB
∼=

110 meV, respectively. A drop in the magnon intensity as
the SB is approached in an itinerant-electron ferromagnet
sharply contrasts with the q-independent spin-wave intensity
in the case of localized-spin ferromagnets. An experimental
determination of the dependence of magnon intensity on q

by INS thus provides a decisive means (Ishikawa, 1978) of
ascertaining whether the spins in a given system are localized
or itinerant. For q > qSB, the collective magnetic excita-
tions in an itinerant-electron ferromagnet are the overdamped
(nonpropagating) modes of exchange-enhanced longitudinal
and transverse spin-density fluctuations (henceforth simply
termed as spin fluctuations) that give rise to the elastic peak
centered at zero energy transfer, E = 0, in the partial differ-
ential INS cross-section, d2σ/d�dE, versus E plot at a fixed
value of q (i.e., in the constant-q scan). At very low tem-
peratures (T � TC), spin-wave modes and nonpropagating
longitudinal spin fluctuations of q in the range 0 ≤ q ≤ qup

(say) are thermally excited. Note that propagating transverse
and nonpropagating longitudinal spin fluctuation modes of
larger and larger q get thermally excited as the temperature
is raised from T = 0 K and hence qup increases with tem-
perature. As the temperature is progressively raised, a tem-
perature T = TSB is reached when qup = qSB. Consequently,
at temperatures T ≤ TSB, spin waves and longitudinal spin
fluctuations of wave vectors 0 ≤ q ≤ qSB coexist, whereas
for TSB < T ≤ TC, spin-wave modes of 0 ≤ q ≤ qSB accom-
pany longitudinal spin fluctuations of 0 ≤ q ≤ qup as well as
transverse spin fluctuations of qSB < q ≤ qup. Thus, in the
constant-q scans taken at temperatures T ≤ TC, the inelastic
spin-wave peaks centered at E = ±Eq occur in association
with the elastic peak centered at E = 0 arising from lon-
gitudinal spin fluctuations (both longitudinal and transverse
spin fluctuations) for T ≤ TSB (TSB < T ≤ TC). Occurrence
of inelastic peaks alongside an elastic peak, however, limits
the energy transfer resolution of the elastic spin-fluctuation
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peak. Since spin waves cease to exist at temperatures above
the Curie point, spin fluctuations are amenable to an accu-
rate experimental scrutiny only in the paramagnetic state
where the spin system is completely isotropic with the result
that Imχ(Q, ω) ≡ Imχ ||(Q, ω) ∼= Imχ⊥(Q, ω) in the par-
tial differential neutron-scattering cross section, given by
equation (1). The energy- and momentum-resolved neutron-
scattering experiments, employing the time-of-flight tech-
nique, on canonical weak itinerant-electron ferromagnets
such as Ni3Al (Bernhoeft, Lonzarich, Paul, and Mitchell,
1986), ZrZn2 (Bernhoeft, Lonzarich, Paul, and Mitchell,
1986; Bernhoeft, Law, Lonzarich and Paul, 1988), and MnSi
(Ishikawa et al., 1985; Ishikawa, 1986) at temperatures T >

TC as well as on the exchange-enhanced paramagnet Ni3Ga
(Bernhoeft et al., 1989) have revealed that the scattering of
neutrons from thermally excited nonpropagating spin fluc-
tuations in these materials is characterized by a simple
Lorentzian frequency spectrum, that is, by the imaginary
part of the dynamic wave vector–dependent susceptibility,
Imχ(Q, ω), of the form

Imχ(Q, ω) = ω χ(q)
	(q)

ω2 + 	2(q)
(24)

in equation (1), where the momentum transfer q is mea-
sured from a reciprocal-lattice point. In accordance with
the predictions of the random phase approximation (RPA)
for an electron gas in the low q limit (Moriya, 1985;
Lonzarich and Taillefer, 1985), the wave vector-dependent
susceptibility,χ(q), and the relaxation frequency, 	(q), of
spin fluctuations, in the above expression, are given by

χ(q) = χ(q, ω = 0) = χ(0)
κ2

κ2 + q2
(25)

	(q) = γ qχ−1(q) = γ q c (κ2 + q2) (26)

In equations (25) and (26), χ(0) = χ(q = 0) = (cκ2)−1

is the bulk static susceptibility, κ is the inverse spin
fluctuation–spin fluctuation correlation length, c is a constant
which can be identified with the coefficient of the gradient
squared term in the Ginzburg–Landau free energy expansion,
and γ characterizes the relaxation transport of spin carriers
(Lonzarich and Taillefer, 1985); the quantities c and γ

depend on the details of the band structure near the Fermi
level (Lonzarich and Taillefer, 1985). The neutron-scattering
intensity, I (Q, ω), is calculated from the partial differential
scattering cross-section by evaluating the integral

I (Q, ω) =
∫

d2σ

d�d(�ω)
(Q′, ω′) R(Q − Q′, ω − ω′) dω′ dQ′

(27)
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Figure 8. Energy dependence of the neutron-scattering intensity
(+) in Ni3Al at 45 K (T > TC) relative to the 5 K background,
measured by the time-of-flight technique for an elastic scatter-
ing wave vector q = 0.063 Å−1 and incident neutron wavelength
λ ∼= 8 Å. The solid circles represent the scattering intensity calcu-
lated from equations (1) and (24–27) using c = 1.5 × 105 Å2 and
�γ = 3.3 µeV Å.

where R(Q − Q′, ω − ω′) is the resolution function of the
spectrometer. As an illustrative example, Figure 8 (taken
from Bernhoeft, Lonzarich, Paul, and Mitchell, 1986) com-
pares the energy transfer dependence of the neutron-
scattering intensity observed in Ni3Al at a temperature T >

TC (plus symbols) with that calculated (solid circles) from
the equations (1) and (24–27) by treating the quantities
c and γ as free fitting parameters while optimizing agree-
ment between theory and experiment. Note that the band
parameter c can also be independently determined from
the relation (Moriya, 1985; Lonzarich and Taillefer, 1985)
D(T ) = g µB M(T ) c between the spin-wave stiffness, D,
and spontaneous magnetization, M , and once c is known,
κ can be calculated from the observed bulk susceptibility,
χ(0), using the relation κ = (cχ(0))−1/2. The band param-
eters c and γ , in turn, permit a quantitative analysis of the
thermodynamic properties of weakly or nearly ferromagnetic
or antiferromagnetic metals.

Besides complementing the information about the under-
lying band structure deduced from the neutron-scattering
experiments, the bulk magnetization measurements enable
a thorough investigation of spin fluctuations at intermediate
temperatures and for temperatures close to TC (the temper-
ature range normally inaccessible to the neutron-scattering
experiments so far as an accurate determination of the band
parameters c and γ is concerned) because in this temperature
range, the contribution due to spin fluctuations to the thermal
demagnetization dominates over the spin-wave contribution.
For a better understanding of what can be learnt about spin
fluctuations from bulk magnetization studies, a brief account
of the theoretical developments in this field, given in the
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following text, is required. One of the earliest theories that
self-consistently renormalizes the mutually coupled modes
of exchange-enhanced spin fluctuations (localized in the
reciprocal (q) space), the so-called self-consistent renormal-
ization theory (Moriya and Kawabata, 1973), yielded the
temperature dependence of spontaneous magnetization for
weakly ferromagnetic metals as M2(0, 0) − M2(T , 0) = aT 2

at low temperatures and M2(T , 0) = a′(T 4/3
C − T 4/3) over a

wide temperature range below TC by taking into account
only the transverse modes of thermally excited spin fluctu-
ations. Takeuchi and Masuda (1979) extended this theory to
include the effect of external magnetic field on magnetization
by using the electron gas model to calculate the magnetic
field – and temperature-dependent static susceptibility that
is consistent with the magnetic equation of state (MES).
A good quantitative agreement between the theoretically
predicted and experimentally observed variations of mag-
netization with temperature and magnetic field in the weak
itinerant-electron ferromagnet Sc3In was achieved (Takeuchi
and Masuda, 1979) by using a number of adjustable param-
eters. Recognizing the importance of longitudinal spin fluc-
tuations and the fact that the electron gas model forms an
oversimplified description of the band structure of real weak
itinerant-electron magnetic systems, Lonzarich and Taillefer
(1985) calculated the MES of nearly or weakly ferromag-
netic metals, which includes corrections to the conventional
Stoner theory arising from both longitudinal and transverse
spin fluctuations, by making use of the band parameters
obtained from neutron-scattering experiments rather than the
unrealistic electron gas model. The effect of including lon-
gitudinal spin fluctuations (in addition to the transverse spin
fluctuations) is to (Lonzarich and Taillefer, 1985) widen the
temperature range (which now includes intermediate temper-
atures as well) over which the squared spontaneous magneti-
zation varies with temperature as M2(T , 0) ∼ T 2 and narrow
down the temperature range (so as to restrict it to temper-
atures not too far from TC) where M2(T , 0) ∼ T 4/3. The
above-mentioned spin-fluctuation models considered only the
thermally-excited spin fluctuations but completely ignored
the contribution to magnetization due to zero-point (quan-
tum) spin fluctuations whose significance was realized only
later (Takahashi, 1986, 2001; Solontsov and Wagner, 1994,
1995; Kaul, 1999; Kaul and Semwal, 1999). Among the the-
oretical approaches that take into account both thermally
excited and zero-point spin fluctuations (Takahashi, 1986,
2001; Kaul, 1999; Kaul and Semwal, 1999), the treatment
proposed by Kaul (1999) clearly brings out the roles of
zero-point and thermally excited spin fluctuations in the ther-
mal demagnetization of weak itinerant-electron ferromagnets
and the extent to which these excitations get suppressed by
the external magnetic field. The results of the bulk mag-
netization studies on amorphous (Kaul and Babu, 1998)

and crystalline (Kaul and Semwal, 1999; Semwal and Kaul,
1999, 2004) weakly ferromagnetic metallic alloys validate
this theoretical approach (Kaul, 1999), as illustrated in the
following text.

The thermal variances of the local magnetization par-
allel (||), 〈m2

||〉, and perpendicular (⊥), 〈m2
⊥〉, to the

average magnetization, M, are related to the imaginary
part of the dynamical wave-vector-dependent suscepti-
bility, Imχν(q, ω), where ν(= ||, ⊥) is the polarization
index, through the well-known fluctuation-dissipation rela-
tion (Moriya, 1985; Lonzarich and Taillefer, 1985; Taka-
hashi, 1986)

〈m2
ν〉 = 4�

∫
d3q

(2π)3

∫
dω

2π

(
n(ω) + 1

2

)
Imχν(q, ω) (28)

where the thermally-excited spin fluctuations and zero-point
spin fluctuations are represented by the Bose function, n(ω),
and the factor 1/2, respectively. Calculating the longitudinal,
〈m2

||〉, and transverse, 〈m2
⊥〉, spin-fluctuation contributions to

magnetization (in the ferromagnetic state) from equation (28)
by combining the equations (24–26) and (28), and substitut-
ing the result in the MES (Lonzarich and Taillefer, 1985;
Kaul, 1999)

[
M(T, H)

M(0, 0)

]2

= 1 − 3〈m2
||〉 + 2〈m2

⊥〉
M2(0, 0)

+ 2χ(0, 0)
H

M(T , H)

(29)
finally yields the expressions for magnetization (Kaul,
1999)

M(T, H) = M(0, H)[1 − (T /T0)
2 − (T /T1)

4/3]1/2 (30)

and

M(T, H) = M(0, H)[1 − A(H) T 4/3]1/2 (31)

at intermediate temperatures and for temperatures close to
TC but outside the critical region, respectively. The expres-
sions (30) and (31) are valid for both zero and finite mag-
netic fields. The T 2 term in equation (30) originates from
thermally-excited spin fluctuations alone and its coefficient
T −2

0 depends on H through the field dependence of the
static susceptibility, χν(0). By contrast, the T 4/3 term in
equation (30) is a net outcome of the competing claims
made by the thermally-excited and zero-point components of
spin fluctuations (the contribution due to thermally-excited
spin fluctuations decreases with T as T 4/3 and is domi-
nated by the one arising from zero-point spin fluctuations,
which increases with T as T 4/3) and its coefficient T

−4/3
1

is essentially independent of field. Owing to this compe-
tition, the T 4/3 term in equation (30) is very small com-
pared to the T 2 term. In equation (31), the T 4/3 term for
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Figure 9. The upper panels depict the temperature variation of magnetization measured at an external magnetic field of Hext = 1 kOe for
the weak itinerant-electron ferromagnet Ni3Al at (a) intermediate temperatures and (b) temperatures close to the Curie temperature, and
the continuous curves are the least-squares fits based on (a) equation (30) and (b) equation (31). The lower panel displays the percentage
deviation of the data from the least-squares fits based on equations (10), (11), (30), and (31). Notice that the functional forms given by
equations (30) and (31) yield minimum deviations in the cases (a) and (b), respectively.

H = 0 has its origin in both zero-point and thermally excited
spin fluctuations (SF) in that their contributions to the coef-
ficient, A(H = 0) = (T SF

C )−4/3, of this term are additive;
however, for H �= 0, the thermally excited spin fluctuations
alone are responsible for the coefficient A(H) = A(H =
0)[1 − η

√
H ], of the T 4/3 term. The results of exten-

sive magnetization measurements performed on amorphous
weakly ferromagnetic metallic alloys (Kaul and Babu, 1998)
and crystalline weak itinerant-electron ferromagnet Ni3Al
with (Semwal and Kaul, 2004) and without site disorder
(Kaul and Semwal, 1999; Semwal and Kaul, 1999) corrobo-
rate the above theoretical predictions (Kaul, 1999) concern-
ing the relative magnitudes of the zero-point and thermally
excited spin-fluctuation contributions to thermal demagneti-
zation and the functional forms of their dependence on tem-
perature and magnetic field in different temperature ranges.
Treating the well-known weak itinerant-electron ferromag-
net Ni3Al as an example, Figure 9 (taken from Semwal
and Kaul, 1999) and Figure 10 (taken from Semwal and
Kaul, 2004), respectively, serve to demonstrate the valid-
ity of the theoretical expressions (30), (31), and A(H) =
A(H = 0)[1 − η

√
H ] (i.e., magnetic field suppresses ther-

mally excited spin fluctuations according to the theoretically
predicted

√
H power law). Nuclear spin-lattice relaxation
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Figure 10.
√

H variation of the coefficient A of the T 4/3 term in
equation (31) for the annealed (S1) and quenched (S2) samples of
the weak itinerant-electron ferromagnet Ni3Al.

provides yet another powerful experimental technique to
study spin fluctuations. The relevant details about the the-
oretical and experimental aspects of this technique are given
by Moriya (1985).
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3 THERMALLY-DRIVEN MAGNETIC
PHASE TRANSITIONS

In the critical region (whose extent depends on the type
of material and is typically of the order of |ε| = |(T −
TC)/TC| ≤ 0.01, where TC is the critical temperature) as
the critical temperature is approached, the thermally-excited
critical fluctuations of the local spin-density (order param-
eter) rapidly pick up in amplitude and get correlated in
space over larger and larger distances with the result that
they destroy the long-range magnetic order at TC, where
the spin-density-fluctuation–spin-density-fluctuation correla-
tion length, ξ(T = TC), (henceforth referred to as spin–spin
correlation length , for brevity) diverges and the mag-
netic order–disorder phase transition occurs. Note that the
thermally-driven ‘classical’ phase transitions are distinctly
different from the quantum phase transitions which occur
only at the temperature of absolute zero where the quan-
tum (zero-point) fluctuations, demanded by the Heisenberg
uncertainty principle, destroy cooperative ordering in the
system (the reader is referred to Quantum Phase Tran-
sitions, Volume 1 for a detailed discussion of quantum
phase transitions). Experimental investigations in the crit-
ical region near a thermally-driven phase transition pro-
vide a unique and direct means of probing the type
of interactions present and the interplay between them,
which finally decides the nature of magnetic order pre-
vailing in the systems under study for temperatures below
the transition temperature. This is so because the criti-
cal behavior of a system is solely governed by the nature
of the underlying interactions. For instance, an interplay
between interactions, such as crystal-field (leading to uni-
axial anisotropy), isotropic short-range (ISR) Heisenberg,
and long-range dipole–dipole interactions, in a localized-
spin system gives rise to a series of crossovers from uniaxial
dipolar (UD) critical regime (where both uniaxial anisotropy
and dipolar interactions dominate) to isotropic dipolar critical
regime (where anisotropy is negligibly small and isotropic
dipolar interactions take over) to isotropic Heisenberg
critical regime (where short-range isotropic Heisenberg inter-
actions become prominent), and so on, as the tempera-
ture is raised above TC in the critical region. To facili-
tate understanding of the magnetic phase transitions, the
prerequisites such as the definition of the asymptotic crit-
ical exponents and amplitudes, which quantify the static
critical behavior near a magnetic order–disorder phase tran-
sition, and the physical concepts relating to the critical phe-
nomena such as the scaling hypothesis, universality, renor-
malization group (RG) approach, and crossover between
different critical regimes, are covered in the following
subsections.

3.1 Static critical exponents and amplitudes

In the asymptotic critical region, the behavior of a magnetic
system is characterized by a set of critical exponents and
amplitudes (Stanley, 1971; Kaul, 1985). Critical exponents
are the exponents in the power laws that define the deviations
of various thermodynamic quantities from their values at
the critical point TC and the corresponding amplitudes are
the forefactors in these power laws. The asymptotic critical
exponents and amplitudes for the second-order ferromagnetic
(FM) to paramagnetic (PM) phase transition are defined as
follows.

3.1.1 Spontaneous magnetization

In the asymptotic critical region, spontaneous magnetization,
MS, the order parameter for the FM–PM phase transition,
varies with the reduced temperature ε = (T − TC)/TC as

MS(T ) = lim
H→0

M(T, H) = B (−ε)β ε < 0 (32)

3.1.2 Initial susceptibility

Initial susceptibility, defined as χ0 = limH→0[∂M/∂H ]T ,
diverges at TC as

χ0(T ) = 	− (−ε)−γ −
ε < 0 (33)

χ0(T ) = 	+ ε−γ +
ε > 0 (34)

3.1.3 Critical isotherm

At T = TC, magnetization M varies with field H as

M(TC, H) = A0 H 1/δ or

H = D Mδ ε = 0 (35)

3.1.4 Specific heat

Zero-field (H = 0) specific heat diverges at TC as

CH=0(T ) = A−

α− [(−ε)−α− − 1] + B− ε < 0 (36)

CH=0(T ) = A+

α+ [ε−α+ − 1] + B+ ε > 0 (37)

Specific heat exhibits a cusp at TC when α < 0, whereas
for α = 0 the singularity is logarithmic. B− and B+ represent
the nonsingular background for ε < 0 and ε > 0, respec-
tively, in the asymptotic critical region.
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3.1.5 Spin–spin correlation function

At TC, the correlation function for the spin fluctuations at the
points 0 and r in space, G(r) ≡ 〈[S(r) − 〈S〉][S(0) − 〈S〉]〉,
decays with distance, r , as

G(|r|) = N |r|−(d−2+η) [large|r|, ε = H = 0] (38)

where d is the dimensionality of the lattice and η is a measure
of the deviation from the mean-field behavior.

3.1.6 Spin–spin correlation length

Correlation length, ξ , is the distance over which the order
parameter fluctuations are correlated and is defined through
the relation G(|r|) = e−|r|/ξ(T )/|r|, where |r| → ∞. In the
critical region, ξ depends on temperature as

ξ(T ) = ξ−
0 (−ε)−ν−

ε < 0, H = 0 (39)

ξ(T ) = ξ+
0 ε−ν+

ε > 0, H = 0 (40)

In equations (32–40), β, γ −, γ +, δ, α−, α+, η, ν−, and
ν+ are the asymptotic critical exponents and B, 	−, 	+, A0,
or D, A−, A+, N, ξ−

0 , and ξ+
0 are the corresponding asymp-

totic critical amplitudes. There are nine critical exponents
in total but only two of them are independent (Stanley,
1971). This is a consequence of the scaling relations between
them, for example, α+ =α−, γ + =γ −, ν+ =ν−, βδ=β+γ

(Widom equality), α+2β+γ =2 (Rushbrooke equality), α+
β(δ+1)=2 (Griffiths equality), (2 − η)ν = γ (Fisher equa-
lity), and dν = 2 − α (Josephson equality), to name a few.

The single power laws are strictly valid only at
T = TC. In practice, however, the power laws are fitted to
the experimental data over a finite temperature range. Conse-
quently, such an approach yields only average exponent val-
ues since, in general, the amplitudes as well as the exponents
are temperature-dependent and they assume temperature-
independent values only in the asymptotic critical region
(Kaul, 1985). In order to tackle this problem effectively,
the concept of effective critical exponent was introduced
by Riedel and Wegner (1974). The effective critical expo-
nents provide a local measure for the degree of singularity
of physical quantities in the critical region. The effective
critical exponent, λeff(µ), of a function f (µ) is defined by
the logarithmic derivative λeff(µ) = d ln f (µ)/d ln µ. In the
limit µ → 0, λeff(µ) coincides with the asymptotic critical
exponent λ.

3.2 Scaling and universality

Historically, the observation that a huge body of experimental
data on a variety of systems could be represented in the form
of a scaled equation of state led to the scaling hypothesis,

which asserts that in the asymptotic critical region the
singular part of the Gibbs free energy, Gs(ε, H), is a
generalized homogeneous function (Stanley, 1971) of its
arguments ε and H . Scaling hypothesis or, equivalently,
the homogeneity postulate makes two specific predictions:
(i) it relates various critical exponents through the scaling
equalities, and (ii) makes specific predictions concerning
the form of the equation of state. For magnetic systems,
the scaling hypothesis predicts that all the magnetization,
M(ε, H), curves (either magnetization isotherms at different
temperatures or M(ε) at different fields) taken in the critical
region collapse onto two universal curves, one for ε < 0
and the other for ε > 0, if scaled magnetization, M/|ε|β ,
is plotted against scaled field, H/|ε|�, where � = βδ

is the gap exponent. Both the above-mentioned scaling
predictions have been vindicated by experiments on widely
different magnetic systems (Stanley, 1971; Kaul, 1985;
Kellner, Fähnle, Kronmüller and Kaul, 1987; Fähnle, Kellner
and Kronmüller, 1987; Kaul and Sambasiva Rao, 1991, 1994;
Sambasiva Rao and Kaul, 1995; Seeger, Kaul, Kronmüller
and Reisser, 1995; Babu and Kaul, 1997; Fischer, Kaul and
Kronmüller, 2002). The RG approach (Section 3.3) makes
use of the homogeneity postulate to relate critical exponents
to the eigenvalues of the RG operator and thereby permits
quantitative determination of the critical exponents.

A related concept is the universality, which basically
amounts to cataloging, under a single category (class), all
types of systems that possess the same values for critical
exponents and critical amplitude ratios and for which the
equation of state and the correlation functions become identi-
cal near criticality, provided the order parameter, the ordering
field, and the correlation length (time) are scaled properly by
material-dependent factors. Thus, the critical exponents and
the ratios between critical amplitudes (but not the amplitudes
themselves) are universal (Kaul, 1985; Privman, Hohenberg
and Aharony, 1991; Kaul and Sambasiva Rao, 1994; Seeger,
Kaul, Kronmüller and Reisser, 1995; Babu and Kaul; 1997;
Fischer, Kaul and Kronmüller, 2002) in the sense that they
possess exactly the same numerical values for a number of
widely different systems belonging to the same universality
class. The universality class, in turn, is decided by (i) the
space dimensionality ‘d’, (ii) the number of order parameter
components, or equivalently, the order parameter dimension-
ality ‘n’, (iii) the symmetry of the Hamiltonian, and (iv)
the range of interactions. For d = 3, n = 1 corresponds to a
three-dimensional Ising system in which the spins on a three-
dimensional lattice are constrained to point either in the +z

(up) or −z (down) directions. In this example, the range of
interactions is too short compared to the spin–spin correla-
tion length and the symmetry of the Hamiltonian is reflected
through the extremely large uniaxial anisotropy which con-
strains the spins to point up or down.
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3.3 Renormalization group and crossover
phenomena

Wilson’s RG treatment has provided a powerful theoretical
method to accurately calculate not only the asymptotic
critical exponents and asymptotic critical amplitude ratios but
also the ‘correction-to-scaling’ critical exponents and critical
amplitudes. The RG approach has, therefore, become the
subject of many books and reviews, the recent ones being
Goldenfeld (1994), Cardy (1996), Domb (1996), and Fisher
(1998). The main essence of one of the variants of RG
(Ma, 1976) and its practical implications are given in the
following text. Starting with an effective cell-Hamiltonian
(Ma, 1976) (i.e., the Hamiltonian of a unit cell of spins),
the RG transformation proceeds in two steps. First, the cell
size in each direction is increased by a factor b and the
bigger cell-Hamiltonian is constructed out of the smaller cell-
Hamiltonian using the well-known Kadanoff transformation.
Second, a scale transformation, in which the length scale
changes by a factor b = el in all linear dimensions, is
performed such that the bigger-cell volume shrinks back to
the original smaller-cell volume, that is, V (l) = e−dlV (0).
As a consequence, free energy is left unaltered but the
free energy density transforms according to gl=0 = e−dlgl ,
while the Hamiltonian H0 = H{µi} transforms into Hl =
H{µi eyi l}, where µi are the scaling fields and yi are the
scaling exponents. RG transformation thus requires that
(Wegner, 1972; Fisher, 1974; Kaul, 1994)

g{µi} = g(µ0) − e−dl gsin g{µi eyi l} (41)

The scaling fields µi can be identified with the relevant
fields µε = |ε| and µh = H = h. Since the parameter l is
arbitrary, it can be chosen such that |ε| eyεl =1 or e−yεl =|ε|.

Thus,

e−dl = (e−yεl)d/yε = |ε|d/yε = |ε|2−α (42)

and

eyhl = (e−yεl)−yh/yε = |ε|−� (43)

where 2 − α = d/yε and � = yh/yε . Combining equations
(41–43) yields (Kaul, 1994)

g(T , H) = g0(T ) − |ε|2−α Y±(±1, h/|ε|�) (44)

For the sake of convenience, the microscopic volume of
the system is set equal to unity (V = 1). Thus, the first-
and second-order derivatives of g with respect to H yield
magnetization M(T, H) and ‘in-field’ susceptibilityχ(T , H),
respectively, whereas the second-order derivative of g with

respect to temperature yields the specific heat, C(T , H).
Therefore (Aharony and Fisher, 1983; Kaul, 1994),

M(T, H) = −
(

∂g(T , H)

∂H

)
T

= |ε|2−α−�

(
∂Y±(±1, h/|ε|�)

∂h

)
T

or

M(ε, h) = |ε|βf±(h/|ε|�) (45)

χ(T , H) =
(

∂M(T , H)

∂H

)
T

= |ε|2−α−2�

(
∂f±(h/|ε|�)

∂h

)
T

or

χ(ε, h) = |ε|−γ

(
∂f±(h/|ε|�)

∂h

)
T

(46)

C(T , 0) = −T

(
∂2g

∂T 2

)
H=0

= C(ε, 0)

= (1 − α)(2 − α)T −1
C Y±(0) |ε|−α(1 + ε) (47)

In equations (44–47), Y±(±1, h/|ε|�), f±(h/|ε|�),
(∂f±(h/|ε|�)/∂h)T and Y±(0) are the scaling functions,
which, in the asymptotic limit, assume constant values
and + and − signs denote ε > 0 and ε < 0, respectively.
A comparison of (45–47) with the definitions (32–34),
(36), and (37) reveals that these constant limiting values
are nothing but the asymptotic critical amplitudes and
that β = 2 − α − � and γ = −2 + α + 2�. From these
relations, it immediately follows that β + γ = � and
α + 2β + γ = 2 (which is the Rushbrooke scaling equality).
Furthermore, equation (45) is the MES or just the scaling
equation of state (SES). As ε → 0, |ε|�/h → 0 and the
MES can be cast into an alternate form (Aharony and Fisher,
1983; Kaul, 1994)

M(ε, h) = |h|β/�f0

( |ε|
|h|1/�

)
(48)

In the limit |ε|/|h|1/� � 1, the function f0(z) can
be expanded in a Taylor series around z = 0 with the
result M(ε, h) = |h|β/�[f0(0) + (|ε|/|h|1/�)f ′

0(0) + . . .].
At |ε| = 0, M(0, h) = f0(0) |h|β/� or equivalently,

M(0, H) = f0(0) H 1/δ (49)

Comparing (49) with (35) gives β/� = 1/δ or βδ = �.
Now that β + γ = � (as shown in the preceding text),
β + γ = βδ, which is the Widom scaling equality. The fore-
going calculations serve to illustrate how the RG approach
relates asymptotic critical amplitudes with the scaling func-
tions and provides a theoretical basis for the scaling equalities
between asymptotic critical exponents.
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Having defined renormalization group, the RG transfor-
mation is iterated through the repeated application of the RG
operator, R, that is, H′ = R [H],H′′ = R [H′], . . ., till the
fixed point of RG transformation, that is, the critical point,
is reached where the Hamiltonian maps onto itself under
the RG transformation and such a Hamiltonian is called a
fixed point Hamiltonian, H∗. The fixed point Hamiltonian is
defined by its invariance under RG transformation, that is,
R [H∗] = H∗. A visualization of the approach to criticality
is facilitated when the RG operator is linearized about H∗,
for example, (Fisher, 1974)

H′ = R [H] = R [H∗ + µQ] = H∗ + µLQ + ϑ(µ2) (50)

where L is a linear operator defined by the eigenvalue
equation

L Qi = eyi l Qi (51)

This equation also defines eigenoperators (or eigenper-
turbations) Qi , eigenvalues eyi l , and scaling exponents yi .
Assuming that the eigenoperators form a complete set of
operators, any Hamiltonian H0 can be expanded in terms
of this complete set, that is, H0 = H∗ + ∑

i µiQi . In this
expression, the Hamiltonian is parameterized by the scaling
fields µi . Thus,

Hl = R [H0] = H∗ +
∑

i

µi eyi l Qi (52)

For instance, we saw earlier that when H0 = H∗ +
µεQε + µhQh with µε = |ε| and µh = h, the singular
part of the free energy density is given by gsin g(ε, h) =
|ε|2−α Y±(±1, h/|ε|�). If one starts with the Hamilto-
nian H0 = H∗ + µεQε + µhQh + µiQi , generalization of
this procedure yields, within the linear approximation, the
Hamiltonian

Hl = H∗ + µε eyεl Qε + µh eyhl Qh + µi eyi l Qi (53)

and the singular part of the free energy density (Wegner,
1972)

gsin g(ε, h, µi) = |ε|2−α Y±
(

±1,
h

|ε|� ,
µi

|ε|φi

)
(54)

Depending upon the sign of the exponent φi , three
different cases arise.

1. φi < 0. As the critical point is approached, (|ε| → 0),
the reduced fields µi = µi/|ε|φi tend to zero. The
leading singularity in the asymptotic behavior is the
same as if all the scaling fields µi were zero. Hence

the operators Qi are irrelevant and µi are called
irrelevant scaling fields. However, a Taylor expansion
of the scaling function Y±(x) about x = 0 corrects the
dominant singular terms by additive terms (called the
correction-to-scaling terms) proportional to |ε|2−α+|φi |.

2. φi > 0. As |ε| → 0, three distinct temperature regions
can be identified, |ε|φi � µi, |ε|φi ≈ µi , and |ε|φi �
µi . In the first region, far from the critical point,
µi are extremely small and the behavior is as if
µi are zero. In the second region, centered at the
crossover temperature |ε∗| ≈ µ

1/φi

i , the perturbation
begins to make its presence felt. Finally in the third
region, closest to the critical point, the reduced fields
µi become very large and grow rapidly as |ε| → 0
with the result that the perturbative treatment breaks
down. Either there is no critical behavior at all, as, for
instance, in the presence of a magnetic field, which
suppresses the transition (� = βδ is always positive
and hence can be thought of as a crossover exponent
φi), or else the actual critical behavior is quite different
from that corresponding to µi = 0 and depends on
the nature of the operators Qi (i.e., the perturbation).
Such crossover phenomena from one kind of critical
behavior to another reflect competition between two
critical regimes; the µi = 0 critical behavior yields
progressively to the µi �= 0 critical behavior as the
critical point is approached such that the latter critical
behavior takes over at ε = 0. This also implies that the
presence of the relevant operator Qi and relevant scaling
fields µi leads to a crossover from one critical regime
to the other and causes a shift in the critical temperature
from TC(µi = 0) to TC(µi �= 0). In sharp contrast
with a crossover between different critical regimes
brought about by the linear relevant scaling fields, the
nonlinear relevant (irrelevant) scaling fields give rise
to analytic (nonanalytic) ‘correction-to-scaling’ terms
(Aharony and Fisher, 1983; Kaul, 1994) that become
important for temperatures far away from the critical
point (in the asymptotic critical region).

3. φi = 0. In this case, the operators Qi and scaling fields
µi are marginal and they can have various conse-
quences, such as multiplicative logarithmic corrections
(MLCs) to the power laws, or critical exponents varying
continuously with the strength of the scaling fields µi .
The subsequent subsections deal with the experimental
realizations of the cases (1–3).

3.4 Static critical phenomena

From the foregoing text, it is clear that the critical behavior
of a spin system near the magnetic order–disorder phase
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transition depends on the nature of the perturbing inter-
actions, that is, whether they are irrelevant, relevant, or
marginal in the RG sense, and the physical phenomena in the
critical region (i.e., the critical-point phenomena or simply
the critical phenomena) are characterized by the asymptotic
critical exponents and asymptotic critical amplitude ratios. A
vast body of literature exists on the determination of criti-
cal exponents for a very large number of magnetic systems
using a variety of experimental techniques. Among static crit-
ical exponents, the exponents α, β, γ , and δ for ‘zero-field’
specific heat, spontaneous magnetization, initial magnetic
susceptibility, and the magnetization versus magnetic field
isotherm at T = TC have been more frequently determined.
In most cases, either the asymptotic analysis (AA) or the SES
analysis (for details, see Kaul, 1985) is used to deduce above
critical exponents from specific heat or electrical resistivity,
magnetization and ac susceptibility data. It is customary to fit
the data to single power laws (i.e., equations (32–37)) in AA
or to the different forms of the SES in the SES analysis over
temperature ranges that lie either completely or partly out-
side the asymptotic critical region. Now that the single power
laws, or equivalently, the scaling, are strictly valid only in
the asymptotic critical region, this exercise invariably yields
the effective critical exponents (e.g., αeff, βeff, and γ eff) that
depend on the temperature range chosen for a given anal-
ysis. The effective critical exponents, so obtained, can be
quite different (Kellner, Fähnle, Kronmüller and Kaul, 1987;
Fähnle, Kellner and Kronmüller, 1987; Kaul, 1988; Kaul and
Sambasiva Rao, 1991, 1994; Sambasiva Rao and Kaul, 1995;
Babu and Kaul, 1997) from the asymptotic critical exponents.
Thus, a quantitative comparison between the values of effec-
tive critical exponents and those of the asymptotic critical
exponents, yielded by the theory, is rendered meaningless
in that no definite conclusions about the nature and origin
of the leading singularity at TC can be drawn. This situa-
tion is remedied by the following approach which permits
an accurate determination of asymptotic critical exponents
and amplitudes.

3.4.1 Irrelevant scaling fields: additive
‘correction-to-scaling’ terms

The RG calculations (Lubensky, 1975; Grinstein and Luther,
1976), based on the random-exchange model (which com-
bines within itself both quenched random site- and bond-
diluted spin models), reveal that the asymptotic critical
behavior of a quenched random spin system is the same
as that of an ordered counterpart if the specific heat criti-
cal exponent, αp, of the ordered system is negative (better
known as Harris criterion) since in this case the quenched
randomness acts as an irrelevant scaling field in the RG

sense. Thus, according to these RG calculations, sponta-
neous magnetization, MS(ε), initial susceptibility, χ0(ε), and
specific heat or equivalently (Kaul, 1985), the temperature
derivative of electrical resistivity normalized to the resistiv-
ity value at TC, r(ε) ≡ (dρ(T )/dT )/ρ(TC), of a quenched
random Heisenberg system with space dimensionality d = 3
and spin dimensionality n = 3 are not described by the sim-
ple power laws (32–34), (36), and (37) in the asymptotic
critical region but by the expressions

MS(ε) = m0(−ε)β[1 + a−
M1

(−ε)�1 + a−
M2

(−ε)�2 ] ε < 0

(55)

χ0(ε) = 	ε−γ [1 + a+
χ1

ε�1 + a+
χ2

ε�2 ] ε > 0 (56)

r(ε) = (A±/α±) (±ε)−α± [
1 + a±

c1
α± (±ε)�1

+ a±
c2

α± (±ε)�2
] − (A±/α±) + B± (57)

In equations (55–57), plus and minus signs denote tem-
peratures above and below TC; m0, 	 ≡ (m0/h0), A±(a−

M1
,

a−
M2

; a+
χ1

, a+
χ2

; a±
c1

, a±
c2

) and β, γ , α± (�1, �2) are the asymp-
totic (leading ‘correction-to-scaling’) critical amplitudes and
critical exponents, respectively. It immediately follows that
equations (55–57) reduce to the simple power laws (32–34),
(36), and (37) only in the limit ε → 0. Note that, like asymp-
totic critical exponents and amplitude ratios, the ‘correction-
to-scaling’ critical exponents and amplitude ratios are uni-
versal (i.e., they possess unique values for systems falling
within a given universality class). However, in practice, sim-
ple power laws are fitted to the data taken in a finite tempera-
ture range around TC with the result that both the amplitudes
and exponents in these power laws now depend on tempera-
ture. In other words, in such a temperature range, the simple
power laws assume the modified forms

MS(ε) = meff
0 (ε) (−ε)βeff(ε) ε < 0 (58)

χ0(ε) = 	eff(ε) ε−γ eff(ε) ε > 0 (59)

r(ε) = [A±
eff(ε)/α

±
eff(ε)] [(±ε)−α±

eff(ε) − 1] + B±
eff(ε) (60)

The most direct way of determining the asymptotic critical
exponents and amplitudes is to fit the expressions (55–57)
to the experimental data in the asymptotic critical region
and optimize agreement between theory and experiment
by treating TC, asymptotic and ‘correction-to-scaling’ crit-
ical amplitudes and critical exponents as free parame-
ters (Kaul, 1988; Kaul and Sambasiva Rao, 1991, 1994;
Sambasiva Rao and Kaul, 1995; Babu and Kaul, 1997). An
alternative method of determining these quantities makes
use of the relations between the effective and asymp-
totic critical exponents and amplitudes, as explained in
the following text for MS(ε) and χ0(ε). Having calcu-
lated MS(T ) [χ−1

0 (T )] from the intercepts on the ordinate
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Figure 11. A typical modified Arrott (M1/β vs (H/M)1/γ ) plot in
the critical region.

(abscissa) at T < TC [T > TC] obtained by linearly extrap-
olating the modified Arrott plot (i.e., [M(T, H)]1/β versus
[H/M(T , H)]1/γ plot) isotherms taken in the asymptotic
critical region to H = 0 (as shown in Figure 11, taken
from Babu and Kaul, 1997), the quantities Y(T ) and X(T ),
defined as

Y(T ) ≡ MS(T )[dMS(T )/dT ]−1 = (T − TC)/βeff(ε)

= [TC/βeff(ε)]ε (61)

X(T ) ≡ χ−1
0 (T )[dχ−1

0 (T )/dT ]−1 = (T − TC)/γ eff(ε)

= [TC/γ eff(ε)]ε (62)

are computed from the MS(T ) and χ−1
0 (T ) data. The

right-hand sides of equations (61) and (62) follow from
equations (58) and (59). Since βeff and γ eff approach their
asymptotic values β and γ only in the limit T → TC, Y (T )

and X(T ) plots tend to be linear in the immediate vicin-
ity of TC so that the Y(T ) and X(T ) straight lines yield
the inverse slopes as βeff and γ eff (which are very close
to β and γ ) and intercepts on the T axis as T −

C and
T +

C , respectively. Closer the TC is approached in a given
experiment, closer are the values of βeff and γ eff to β

and γ , and more rigorously is the equality T −
C = T +

C sat-
isfied. This procedure fixes the value of TC very accu-
rately. With TC fixed at the value so obtained, the effective
critical exponents βeff and γ eff as functions of temper-
ature are deduced from the Y(T ) and X(T ) data using
equations (61) and (62), that is, the relations βeff(ε) =
TC ε/Y (T ) and γ eff(ε) = TC ε/X(T ). In the asymptotic crit-
ical region, the effective critical exponents βeff and γ eff

are related to the asymptotic critical exponents β and γ

through the relations (Kaul, 1988; Kaul and Sambasiva

Rao, 1994; Sambasiva Rao and Kaul, 1995; Babu and
Kaul, 1997).

βeff(ε) = d[ln MS(ε)]

d ln ε
= β + a−

M1
�1 (−ε)�1

+ a−
M2

�2 (−ε)�2 (63)

γ eff(ε) = d[ln χ−1
0 (ε)]

d ln ε
= γ − a+

χ1
�1 ε�1 − a+

χ2
�2 ε�2 (64)

The corresponding relations between the effective and
asymptotic critical amplitudes are (Kaul, 1988; Kaul and
Sambasiva Rao, 1994)

meff
0 (ε) = m0

[
1 + a−

M1
(−ε)�1

+ a−
M2

(−ε)�2
]
(−ε)

−[a−
m1

�1(−ε)�1+a−
M2

�2(−ε)�2 ]

(65)

	eff(ε) = 	(1 + a+
χ1

ε�1 + a+
χ2

ε�2)ε
−(a+

χ1
�1ε�1 +a+

χ2
�2ε�2 )

(66)
It is evident from equations (63) and (64) that over a

finite temperature range around TC, where the ‘correction-to-
scaling’ confluent singularity terms are significant, the effec-
tive critical exponents can appreciably differ from the asymp-
totic ones and that βeff(ε) and γ eff(ε) coincide with β and γ

only in the limit |ε| → 0. The βeff(ε) and γ eff(ε) data, typical
of amorphous ferromagnets, presented in Figure 12 (taken
from Babu and Kaul, 1997) not only testify to the valid-
ity of this statement but also depict the optimum theoretical
fits (continuous curves), based on equations (63) and (64),
obtained by treating β, a−

M1
, and a−

M2
, and γ , a+

χ1
, and a+

χ2
as

free fitting parameters and fixing �1 and �2 at their theoreti-
cally predicted values. The values of β, a−

M1
, and a−

M2
, and γ ,

a+
χ1

, and a+
χ2

, so determined, are then used in equations (65)
and (66) to compute the values of the asymptotic critical
amplitudes m0 and 	. This method thus enables an accurate
determination of the universal critical exponents α±, β, γ ,
critical amplitude ratios A+/A−, Dmδ

0/h0, ‘correction-to-
scaling’ critical exponents �1, �2 (in some cases, Kaul,
1988; Kaul and Sambasiva Rao, 1994) and amplitude
ratios a−

M1
/a+

χ1
, a−

M2
/a+

χ2
, a+

c1
/a−

c1
, a+

c2
/a−

c2
, a+

c1
/a+

χ1
, a+

c2
/a+

χ2
,

and thereby allows a complete characterization of the leading
singularity at TC. True asymptotic critical behavior of a large
number of ferromagnets with quenched random-exchange
disorder (Kaul, 1988; Kaul and Sambasiva Rao, 1991, 1994;
Sambasiva Rao and Kaul, 1995; Babu and Kaul, 1997;
Peruma et al., 2001; Perumal, Srinivas, Rao and Dunlap,
2003) and site-disordered magnetic spinel semiconductors
(Tsurkan et al., 1999) has been determined by following the
above method of analysis. Other important points to note
are as follows: (i) ac susceptibility data, taken at a driving
ac field of very small root-mean-square amplitude (typically



20 Phase transitions and finite temperature magnetism

(b)(a) e

b
eff

0.001
1.38

1.42

1.38

1.38

1.50

1.44

1.42

1.46

0.01

g
ef

f

0.48

0.44

0.40

0.36

0.44

0.40

0.36

0.44

0.40

0.36
0–0.03–0.06–0.09

a–Fe91Zr9

a–Fe90Zr10

a–Fe90Co1Zr10

a–Fe89Co1Zr10

a–Fe90Zr10

a–Fe91Zr9

–0.12
e

Figure 12. The effective critical exponents (a) for spontaneous magnetization, βeff, and (b) susceptibility, γ eff, as functions of the reduced
temperature ε = (T − TC)/TC in the asymptotic critical region. The solid curves represent the least-squares fits based on (a) equation (63)
and (b) equation (64).

1 × 10−7 or 10−6 T) after compensating for the earth’s mag-
netic field, get rid of the errors, if any, introduced by the
extrapolation of the modified Arrott plots. The results of the
above-mentioned analysis of the ac susceptibility data thus
serve as a cross-check (Kaul, 1988; Kaul and Sambasiva
Rao, 1994) for those extracted from the extrapolated suscep-
tibility data. (ii) Loss of accuracy suffered in constructing
the temperature derivative of resistivity, dρ(T )/dT , from
ρ(T ) data can be avoided by directly measuring dρ(T )/dT

employing the heat-pulse method. Recently, the direct rela-
tions between the magnetic contributions to sound veloc-
ity and ‘zero-field’ specific heat, and between the mag-
netic contribution to Young’s modulus and inverse magnetic
susceptibility have been exploited to accurately determine
(Balakrishnan and Kaul, 2002) the specific heat and suscep-
tibility asymptotic and ‘correction-to-scaling’ critical expo-
nents and amplitudes for amorphous weak itinerant-electron
ferromagnets.

3.4.2 Relevant scaling fields: isotropic Heisenberg to
isotropic dipolar crossover

In insulating magnetic systems, localized magnetic
moments interact with one another not only through
Heisenberg exchange interactions but also via relatively

weak dipole–dipole interactions. Compared to ISR (Heisen-
berg) exchange interactions, magnetic dipole–dipole
interactions have both a long range and a reduced symmetry.
The RG calculations (Aharony and Fisher, 1973; Wilson and
Kogut, 1974; Bruce and Aharony, 1974; Bruce, Kosterlitz
and Nelson, 1976; Bruce, 1977; Frey and Schwabl, 1991)
on ferromagnets with both short-range Heisenberg exchange
and long-range dipolar interactions revealed the following.
(i) Dipolar perturbations, being relevant scaling fields, make
the ISR (nearest-neighbor) Heisenberg fixed point of RG
unstable and give rise to a new stable ‘dipolar’ fixed point,
whose nature depends on the type (cubic, XY, Ising) of
anisotropy present. (ii) In an isotropic d = 3, n = 3 spin
system, isotropic dipolar fixed point is characterized by
critical exponents whose values differ only slightly from
those associated with d = 3 pure isotropic Heisenberg
ferromagnet. (iii) Even though the asymptotic critical
behavior of an isotropic dipolar ferromagnet is practically
indistinguishable from that of a d = 3 ferromagnet with ISR
Heisenberg exchange interactions only, such ferromagnets
exhibit a deep minimum (a dip) in the effective critical
exponent for susceptibility, γ eff, versus reduced temperature,
ε = (T − TC)/TC, (TC is the Curie temperature of isotropic
dipolar ferromagnet), curve in the crossover region for ε > 0.
Such a dip in γ eff(ε) turns out to be a universal feature of
d = 3 ferromagnets with weak isotropic dipolar interactions.
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The scaling approach (Bruce, Kosterlitz and Nelson, 1976;
Bruce, 1977), when applied to the crossover phenomena in
a d = 3 ISR Heisenberg ferromagnet with weak isotropic
dipolar interactions of normalized strength gD, yields ‘zero-
field’ susceptibility for temperatures close to criticality as

χ(εH , gD) = 	 ε
−γH
H X(y) (67)

where εH = [T − TC(0)]/TC(0) and 	 is a nonuniversal
constant; TC(0) ≡ TC(gD = 0) and γ H , respectively, are the
transition temperature and susceptibility critical exponent of
pure (gD = 0) ISR Heisenberg (d = 3, n = 3) spin system,
y = x/xg, x ≡ gD/ε

φ
H , xg ≡ gD/ε

φ
g , εg = [TC(gD) − TC(0)]

/TC(0) is the shift in the transition temperature caused by
long-range dipolar interactions, φ is the crossover expo-
nent which equals γ H , and X(y) is the crossover scaling
function. As the true transition temperature TC ≡ TC(gD),
is approached, dipolar interactions dominate and give rise
to a singularity in X(y) at y = 1 (or equivalently, at ε =
[(T − TC)/TC] = 0) with the result

X(y ≈ 1) ∼ (1 − y)−γ D (68)

where TC and γ D are the transition temperature and the sus-
ceptibility critical exponent of the isotropic dipolar ferromag-
net. According to equations (67) and (68), dipolar interac-
tions make their presence felt when a crossover temperature
εco ≡ g

1/φ
D is reached by lowering the temperature from high

temperatures (T � TC) such that for ε � εco the spin sys-
tem behaves as a pure d = 3, n = 3 system with only ISR
exchange interactions, whereas for ε � εco the asymptotic
critical behavior is that of a d = 3 isotropic dipolar ferromag-
net. A detailed RG calculation (Bruce, Kosterlitz and Nelson,
1976; Bruce, 1977) of the crossover scaling function yields
the explicit forms of the susceptibility and its effective critical
exponent (defined as γ eff(ε) = d[ln χ−1(ε)]/d(ln ε)) as

χ(y) = 	̃ yγ H /φ (1 − y)−γ D p(y) (69)

and

γ eff(y) = (1 − y1/φ)

[
γ H +φ γ D

(
y

1 − y

)
+ φ

(
y p′(y)

p(y)

)]
(70)

in terms of the ‘correction-to-scaling’ function, p(y). The
reduced temperature, ε, is related to y as y−1/φ − 1 =
ε̂ = [(1 + εg)/εg] ε. The expression (70), like (69), is valid
across the entire crossover region and yields the limiting
values γ D = γ eff(y → 1) and γ H = γ eff(y � 1) that char-
acterize the critical behavior of susceptibility in the isotropic
long-range dipolar (ILD) and ISR Heisenberg regimes,
respectively. According to equation (70), γ eff as a function
of y goes through a minimum at a certain value of ε̂ in the

crossover region. Moreover, in the asymptotic critical regime
(0 < ε � εco) y ∼= 1, the function p(y) in equations (69) and
(70) can be expanded to obtain (Kogon and Bruce, 1982) the
expressions

χ(ε) = Aχ ε−γ D (1 + aχ ε�D) (71)

γ eff(ε) = γ D − aχ�D ε�D (72)

aχ
∼= 0.099 ε−�D

g (73)

εg
∼= 0.349 ε̇ (74)

where aχ and �D are the leading ‘correction-to-scaling’
amplitude and exponent, respectively, and ε̇ is the reduced
temperature ε at which the inverse initial (intrinsic) suscep-
tibility χ−1 = 4π .

Despite intense efforts (Menyuk, Dwight and Reed, 1971;
Høg and Johansson, 1973; Huang, Pindak and Ho, 1974;
Berkner, 1975; Kornblit and Ahlers, 1975; Als-Nielsen,
Dietrich and Passell, 1976; Kornblit, Ahlers and Buehler,
1978) to unravel the exact nature of the leading singular-
ity in the asymptotic critical region of well-known d = 3
dipolar ferromagnets EuO and EuS in the past, the above
theoretical predictions had to wait for experimental confir-
mation till recently when their validity was demonstrated
by the results of extensive ac (‘zero-field’) susceptibil-
ity measurements (Srinath, Kaul and Sostarich, 2000; Sri-
nath and Kaul, 2000) on amorphous (FepNi1−p)80B16Si4
and (Cop′Ni1−p′)80B16Si4 alloys with p and p′ just above
the respective critical concentrations for the onset of long-
range ferromagnetic order, that is, pC = 0.0285(5) and p′

C =
0.0688(5). The effective critical exponent for susceptibility
as a function of reduced temperature, γ eff(ε), is obtained
from the measured ac susceptibility after correcting it for
demagnetization by following the procedure described in
detail in the previous subsection. γ eff(ε) exhibits a pro-
nounced dip at εmin and attains the ILD and ISR Heisenberg
values γ D and γ H in the limits ε → 0 and ε → ε∗∗ for the
alloys with the Fe or Co concentration p or p′ just above pC

or p′
C in which dipolar interactions are comparable in strength

to ISR Heisenberg exchange interactions. A detailed quan-
titative comparison between theory (equations (67–74)) and
experiment is depicted in Figure 13 (taken from Srinath, Kaul
and Sostarich, 2000). Another important physical implication
of the above experimental study (Srinath, Kaul and Sostarich,
2000; Srinath and Kaul, 2000) on amorphous ferromagnets,
which either do or do not exhibit reentrant behavior at low
temperatures, is that it clearly brings out the importance of
isotropic dipolar interactions in establishing long-range fer-
romagnetic order in reentrant amorphous ferromagnets. For
different types of crossover phenomena, the reader is referred
to Kaul (2002).
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Figure 13. Comparison between the theoretically predicted and
experimentally observed temperature variation of the suscep-
tibility effective critical exponent, γ eff, for the amorphous
(FepNi1−p)80B16Si4 and (Cop′Ni1−p′)80B16Si4 alloys with the con-
centration of magnetic Fe or Co atoms just above the percolation
threshold for long-range ferromagnetic order. This figure serves to
highlight the dip in γ eff(ε) that is characteristic of the isotropic
long-range dipolar to isotropic short-range Heisenberg crossover.

3.4.3 Marginal scaling fields: multiplicative
logarithmic corrections to the power laws

The crossover scenario as well as the asymptotic critical
behavior gets more complicated when, in addition to the
dipolar interaction, magnetic anisotropy is present in an oth-
erwise ISR (d = 3, n = 3) Heisenberg spin system. In the
presence of magneto-crystalline anisotropy, dipolar interac-
tions act as marginal scaling fields and hence modify the
critical behavior of the d = 3, n = 1 system (i.e., three-
dimensional spin system with infinite uniaxial anisotropy)
so much so that, instead of behaving as a three-dimensional
Ising ferromagnet in the asymptotic critical region, it exhibits
mean-field behavior with logarithmic multiplicative correc-
tions (Wegner and Riedel, 1973; Brézin and Zinn-Justin,
1976; Frey and Schwabl, 1990; Ried, Millev, Fähnle and
Kronmüller, 1995) in this regime. Elaborate RG study (Frey
and Schwabl, 1990; Ried, Millev, Fähnle and Kronmüller,
1995) of the second-order phase transition in a Heisenberg
ferromagnet in which, in addition to the dominant short-range
exchange interactions, dipole–dipole interactions and uniax-
ial anisotropy are present, reveals that, due to a competition
between the three types of interactions that differ in sym-
metry and range, the critical region embraces a series of
crossovers between four nontrivial fixed points: Gaussian →
ISR Heisenberg → isotropic dipolar → uniaxial dipolar, as
the critical point is approached from high temperatures. In

this case, ‘zero-field’ susceptibility takes the scaling form

χ(εH , gD, gA) ∝ ε
−γ H
H X

(
gD

ε
φD
H

,
gA

ε
φA

H

)
(75)

where εH = [T − TC(0)]/TC(0), TC(0) = TC(gD = gA = 0)

and γ H , respectively, are the reduced temperature, tran-
sition temperature, and susceptibility critical exponent of
pure (gD = gA = 0) ISR Heisenberg (d = 3, n = 3) spin
system. The crossover exponents φD and φA are positive
while gD (gA) is the dimensionless ratio of dipolar energy
(anisotropy energy) and ISR exchange energy. Alternatively,
gD and gA are a direct measure of the dipolar and anisotropy
(relevant) perturbations. For sufficiently high temperatures,
that is, εH � g

1/φD
D , g

1/φA
A , the critical behavior is that of

an isotropic Heisenberg ferromagnet. As the temperature is
lowered toward the critical point, a series of crossovers occur
depending on the initial values of gA and gD and their rel-
ative strengths. In the temperature ranges g

1/φD
D � εH �

g
1/φA
A and g

1/φA
A � εH � g

1/φD
D , the spin system exhibits

anisotropic short-range (e.g., d = 3, n = 1) and isotropic
dipolar critical behavior, respectively. The behavior of the
system in the asymptotic critical region, that is, at tem-
peratures εH � g

1/φD
D , g

1/φA
A or equivalently, in the limit

ε → 0, is determined by both anisotropy and dipolar inter-
actions; the reduced temperature ε measures the temperature
deviation from the critical temperature TC(gD �= 0, gA �= 0)

of the anisotropic dipolar fixed point. The RG calcula-
tions (Frey and Schwabl, 1990; Ried, Millev, Fähnle and
Kronmüller, 1995) have addressed three distinctly different
cases. On the basis of the calculated temperature dependence
of the effective critical exponent for susceptibility, γ eff(ε) =
d ln χ−1(ε)d ln ε, at temperatures spanning the asymptotic
critical region and crossover regimes, these RG theories
predict the following sequences of crossovers as the tem-
perature is lowered from high temperatures to the critical
point, TC. Case I: when both gD and uniaxial anisotropy
(gU) are extremely large (Frey and Schwabl, 1990), Gaussian
regime → short-range Ising (I) → uniaxial dipolar (UD)
fixed point (characterized by mean-field power laws with
MLCs (Wegner and Riedel, 1973; Brézin and Zinn-Justin,
1976; Frey and Schwabl, 1990; Ried, Millev, Fähnle and
Kronmüller, 1995)). Case II: when gU � gD (Ried, Millev,
Fähnle and Kronmüller, 1995), Gaussian → isotropic short-
range Heisenberg (IH) → I → UD. Case III: when gU � gD

(Ried, Millev, Fähnle and Kronmüller, 1995), Gaussian →
IH → isotropic long-range dipolar (ID) → UD.

The existence of MLCs to the mean-field power laws, char-
acteristic of the UD fixed point, in uniaxial ferromagnets
GdCl3, LiTbF4, and LiHoF4 (Kötzler and Scheithe, 1973;
Frowein and Kötzler, 1982; Griffin, Huster and Folweiler,
1980; Frowein, Kötzler, Schaub and Schuster, 1982) as well
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as a crossover from Ising to asymptotic UD critical behavior
in LiTbF4 (Frey and Schwabl, 1990) was confirmed experi-
mentally by Frowein, Kötzler, Schaub and Schuster (1982).
Even though early electrical resistivity (Geldart, De’Bell,
Cook and Laubitz, 1987) and specific heat (Bednarz, Geldart
and White, 1993) data strongly indicated that the asymp-
totic critical behavior of Gd could be that of a UD ferro-
magnet, it was only recently that an elaborate analysis of
extensive high-resolution ac susceptibility (Srinath, Kaul and
Kronmüller, 1999) and bulk magnetization (Srinath and Kaul,
1999) data taken along the c axis (easy direction of magne-
tization) of a high-purity Gd single crystal over four decades
in the reduced temperature ε = (T − TC)/TC provided a con-
clusive experimental evidence for (i) a UD asymptotic criti-
cal behavior, (ii) a sequence of crossovers: UD → isotropic
dipolar (ID) → Gaussian (the latter crossover proceeds with-
out the intervening ID → isotropic short-range Heisenberg
(IH) crossover, predicted theoretically by Frey and Schwabl
(1990) and by Ried, Millev, Fähnle and Kronmüller (1995)
for temperatures above TC (critical temperature correspond-
ing to the UD fixed point) as T → T +

C , and (iii) the UD →
IH crossover as the temperature is lowered below T −

C . The
UD → IH crossover is accompanied by a transition from
linear (uniaxial dipolar/Ising) domain wall to Bloch (Heisen-
berg) domain wall and no theoretical predictions exist for
this crossover (details given in Srinath and Kaul, 1999). The
effective critical exponents βeff(ε) and γ eff(ε) for sponta-
neous magnetization and ‘zero-field’ susceptibility (obtained
by employing the method of data analysis already described
in Section 3.4.1) displayed in Figure 14 (taken from Sri-
nath and Kaul, 1999) highlights the crossovers UD → IH
for T < T −

C and UD → ID for T > T +
C . A detailed anal-

ysis (Srinath and Kaul, 1999) of the spontaneous magneti-
zation, M(ε, 0), (inverse ‘zero-field’ susceptibility, χ−1(ε))

data in the asymptotic critical region, that is, |ε| ≤ |εUD→IH
co |

[|ε| ≤ |εUD→ID
co |], and the critical M − H isotherm reveals

that, in conformity with the RG predictions (Wegner and
Riedel, 1973; Brézin and Zinn-Justin, 1976; Frey and Schw-
abl, 1990; Ried, Millev, Fähnle and Kronmüller, 1995) for
a d = 3 UD ferromagnet, the asymptotic critical behavior of
these quantities is accurately described by the expressions

M(ε, 0) = B̂ (−ε)β |ln |ε||x−
ε < 0 (76)

χ−1(ε) = 	̂
−1

εγ |ln ε|−x+
ε > 0 (77)

H = D̂ Mδ |ln |M||−3x−
ε = 0 (78)

with the asymptotic critical exponents β = 0.5002(6), γ =
1.0003(3), δ = 3.005(5), and logarithmic correction expo-
nents x− = 0.330(2), x+ = 0.329(1). These experimental
values match quite well with the theoretical values β = 0.5,
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Figure 14. Temperature variations of the effective critical expo-
nents βeff (bottom panel) and γ eff (top panel) for gadolinium metal.
The onset temperatures of the uniaxial dipolar (UD)-to-isotropic
Heisenberg (IH) and uniaxial dipolar (UD)-to-isotropic dipolar (ID)
crossovers as well as the peak in βeff(ε), where a transition from
the linear domain wall to Bloch domain wall occurs, are marked by
the arrows.

γ = 1, δ = 3, and x− = 3/(n + 8), x+ = (n + 2)/(n + 8)

with n = 1. Such a close agreement is also true for the uni-
versal amplitude ratio Rχ = D̂B̂δ−1	̂ and hence these results
unambiguously establish that the asymptotic critical behavior
of Gd is that of a d = 3 UD ferromagnet.

Another example of marginal scaling fields is provided
by the long-range exchange interactions of the specific form
J (r) ∼ r−(d+σ) with σ = d/2 (Fisher, Ma and Nickel, 1972)
that couple spins in an isotropic d-dimensional spin sys-
tem with n-component order parameter. Such interactions
thus give rise to logarithmic corrections (Fisher, Ma and
Nickel, 1972) to the mean-field critical behavior. MLCs to
the mean-field power laws in the asymptotic critical region
(henceforth referred to as the MLC fixed point) of the
type given by equations (76–78) and a gradual crossover
to the Gaussian fixed point at temperatures outside the crit-
ical regime have been unambiguously detected in recent
bulk magnetization and ac susceptibility experiments on var-
ious polycrystalline samples of d = 3, n = 3 weak itinerant-
electron ferromagnet Ni75Al25 ‘prepared’ in different states
of site disorder (Semwal and Kaul, 2001, 2002). In these
samples, crossover to the Gaussian fixed point is followed at
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higher temperatures (T > TC) by a crossover from Gaussian
(G) to mean-field (MF) regime. Site disorder (or equiva-
lently, quenched random-exchange disorder) turns out to
be irrelevant (Semwal and Kaul, 2002) in the RG sense
in Ni75Al25. The MLC fixed point is distinctly different
from the UD fixed point in that the universal amplitude
ratio Rχ = D̂B̂δ−1	̂ and the logarithmic correction expo-
nents have widely different values (Semwal and Kaul, 2002)
in the two cases.

4 CONCLUDING REMARKS

In this brief review of the vast field of finite tempera-
ture magnetism and magnetic phase transitions (from the
experimental point of view), more emphasis has been delib-
erately laid on itinerant-electron (band or metallic) mag-
netism than on localized-spin (Heisenberg) magnetism, for
the following reasons. First, itinerant systems form the bulk
of real magnetic materials. Second, magnetic excitations
and magnetic phase transitions are more varied in nature
in metallic systems than in localized systems. Inability of
the early INS experiments (due to the limited range of
energy transfer accessible to them) to simultaneously detect
spin waves and Stoner single-particle excitations, together
with nonpropagating longitudinal and transverse spin fluc-
tuations, in strong or weak itinerant-electron systems not
only gave birth to SPEELS (a relatively new experimen-
tal technique) but also led to significant improvements in
the traditional neutron-scattering techniques; one such impro-
vised technique is the spin-polarized neutron scattering with
spin-polarized detection. Third, weak itinerant magnets act
as model systems for understanding strongly correlated sys-
tems, which have gained considerable attention in the scien-
tific community recently because of the discovery of high-
temperature superconductivity and magnetically mediated
superconductivity, on the one hand, and renewed interest in
the metal-insulator transition particularly in the colossal mag-
netoresistance materials (doped LaMnO3 compounds), on the
other.

Phase transitions in spin systems with quenched random-
exchange disorder attracted considerable attention in the late
1970s and early 1980s because certain features of the critical
behavior, inherent to these systems, were distinctly different
from those witnessed earlier in crystalline systems. One
such feature is the nonmonotonic temperature dependence of
the effective exponent, γ eff, for susceptibility in amorphous
ferromagnets (Kaul, 1984b, 1985) over an extremely wide
temperature range above the Curie point, TC (i.e., with
temperature increasing above TC, γ eff increases from a value
close to that (γ = 1.386) for a d = 3 Heisenberg ferromagnet
in the asymptotic critical region to a broad maximum before

decreasing at a very slow rate toward the mean-field value of
γ = 1.0 at T � TC). This nonmonotonic behavior of γ eff(ε)

arises from the interplay between the thermal spin–spin
correlation length, ξ(T ), (of the spins in the ferromagnetic
‘backbone’/network) and the length scale characteristic of
random structural disorder (temperature-dependent length
scale determined by the caliper dimension of the finite
spin clusters at T > TC) in the correlated molecular-field
theory proposed by Fähnle and Herzer (1984) (in the infinite-
ferromagnetic-network plus finite-spin-clusters model due to
Kaul (1984b, 1985)). The Monte Carlo simulations of the
phase transitions in bond- and site-disordered ferromagnets
(Fähnle, 1984, 1985, 1987) revealed that the nonmonotonic
temperature dependence of γ eff was mainly due to site
disorder.

The experimental techniques and the methods of data
analysis used in the literature to study static critical phe-
nomena in magnetic systems were extensively reviewed by
Kaul (1985) with particular emphasis on ferromagnets with
quenched random-exchange disorder. By contrast, Section 3
of the present article deals exclusively with refinements in
the data analyses and recent advances in the experimen-
tal detection of the asymptotic (static) critical behavior and
crossover between different critical regimes in ISR exchange
ferromagnets with or without long-range interactions (e.g.,
dipole–dipole interactions) and magnetic anisotropy. How-
ever, due to space restrictions, this description of the static
critical phenomena has in a sense preempted the dynamical
aspects of such phenomena, which are equally interesting
and sometimes yield more decisive information about the
nature of underlying interactions in a given system. One of
the most glaring examples where this is indeed the case is the
following. The static critical behavior of d = 3 ISR Heisen-
berg ferromagnet is practically indistinguishable from that of
d = 3 ILD ferromagnet since the values of the static critical
exponents for such ferromagnets differ only slightly (by less
than 0.5%). By contrast, the dynamical critical exponent z

(which characterizes the dynamics of the critical spin fluctu-
ations) has widely different values z ∼= 2 and z ∼= 2.5 for the
ILD and ISR Heisenberg fixed points and hence permits a
clear-cut distinction between them. A ‘feel’ for the dynamical
critical phenomena is essentially conveyed by the observation
of a cooperative growth of the short-range magnetic order
(or equivalently, spin patches or clusters), characterized by
a correlation length, ξ , and a correlation time, τ , both of
which diverge at TC, as the critical point is approached from
temperatures above TC. This is the well-known ‘critical slow-
ing down’ phenomenon. To account for this dynamical aspect
of critical phenomena, the (equal time) correlation func-
tion, given earlier by equation (38), should be generalized to
include time, that is, G(r, τ ) = [〈S0(0) · Sr(τ )〉 − 〈S0〉〈Sr〉].
As a consequence of this generalization, the lifetime of the
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spin fluctuations of wave vector q is governed by a temper-
ature dependence |ε|−zν (where z and ν are the dynamical
and correlation length critical exponents, respectively), with
a characteristic divergence as T → TC. Excellent reviews of
the subject of dynamical critical phenomena are available in
the literature both from theoretical (Hohenberg and Halperin,
1977; Frey and Schwabl, 1994; Henneberger et al., 1999) and
experimental (Hohenemser, Rosov and Kleinhammes, 1989;
Collins, 1989) standpoints.
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1 INTRODUCTION

Wohlfarth, in an important review (1980), stated that the
three ferromagnetic transition metals are of importance to
the whole subject of metallic magnetism and their proper-
ties should be thoroughly understood before attempting to
understand those of the transition-metal alloys. In fact, we
repeat only one of Wohlfarth’s tables in Table 1 and can now
state, clearly, how far our understanding goes and where the
challenge lies.

The saturation magnetization appearing in the first two
lines of Table 1 can be calculated to very good precision
ab initio using the density-functional theory in the local spin-
density functional approximation (LSDA), an approximation
that is well documented and is widely used for calculating
ground-state properties. In the next section, some of the
salient facts of the LSDA are collected. So, depending

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

somewhat on one’s point of view, one can say that these
data are well understood.

The Curie temperatures listed in the third line of Table 1
and the fourth line are not so well understood, but progress
has been made in the recent past as we have documented
here.

Historically, the important question was whether the
magnetic carriers were localized or itinerant and each of
these two viewpoints had eminent proponents. Although, of
course, colloquially, the terms localized or itinerant seem
clear, a physical definition is more helpful. A simple one
was given more than 40 years ago by Rhodes and Wohlfarth
(1963). This is how they might have argued.

The susceptibility in the paramagnetic state of a local
moment ferromagnet is given by the Curie–Weiss law:

χ = C

T − Tc
(1)

The Curie constant, C can be written as

C = 1

3
qc(qc + 2)µ2

B/kB (2)

where qc is called the number of magnetic carriers, which is
obtained from the experimental Curie–Weiss susceptibility.
In Table 1, the values of qc are collected and the ratio qc/qs

is also listed, where qs is the moment at zero temperature. A
local moment system is characterized by the ratio qc/qs = 1.
We see from Table 1 how the elemental ferromagnets Fe, Co,
and Ni progressively deviate from locality.

Rhodes and Wohlfarth obtained the ratios of qc/qs for
a large number of ferromagnetic metallic compounds and
alloys from experimental data and plotted them as a function
of the measured Curie temperatures. The result is now called
the Rhodes-Wohlfarth plot, as shown in Figure 1.
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Table 1. Fundamental magnetic properties of bcc Fe, Co, and fcc
Ni (Co is hcp at low and fcc at high temperatures). (Reproduced
from E.P. Wohlfarth, 1980, with permission of Elsevier.)

Fe Co Ni

Saturation magnetization 221.71 ± 0.08 162.55 58.57 ± 0.03
[emu g−1]
Saturation magnetization (qs) 2.216 1.715 0.616
[µB per atom]
Curie temperature (Tc) (K) 1044 ± 2 1388 ± 2 627.4 ± 0.3
kTc [meV] 90.0 119.6 54.1
Number of magnetic carriers 2.29 2.29 0.90
from Curie–Weiss law (qc)
qc/qs 1.03 1.34 1.46

This phenomenological curve gives intuitive insight into
the different kinds of magnetism. For, considering a system
with localized moments, we do not expect the magnitude of
the moment to change much when it is measured below and
above Tc, giving ratios qc/qs of order unity. Thus, we find
systems with localized moments on the line qc/qs = 1. We
attribute the rather systematic deviation of qc/qs from unity
to magnetic moments due to itinerant, that is, essentially
delocalized, magnetic moments. Of course, the saturation
moments become small in general for decreasing Tc, but
the increase in qc/qs is mainly due to increasing effective
magnetic carriers at high temperatures. The challenge is that
we do not deal with two disjunct cases, localized or itinerant,
but with a distribution, which requires a unified treatment that
interpolates between the two limits.

The theory of itinerant-electron magnetism has tradi-
tionally been pursued along two different directions, until
recently by two separate communities. One uses model
Hamiltonians, most prominently the Hubbard (1979) model,
in conjunction with many-body techniques, the other density-
functional theory and its LSDA. In contrast to the former, the
latter is an ab initio approach that does not require empirical
parameters as input. It appears, however, that the two main
streams are about to merge into one; of the many examples,
only the work of Lichtenstein, Katsnelson and Kotliar (2001)
should be mentioned here because of its relevance for the
finite-temperature properties of Fe and Ni. Since, otherwise,
the model Hamiltonian approach will receive much attention
in this volume (see for instance Density-functional Theory
of Magnetism, Volume 1 and Dynamical Mean-field The-
ory of Itinerant Electron Magnetism, Volume 1), we can
pass over this important topic here and turn to the density-
functional approach, which will carry us a long way.

A readable and clear introduction to the history of mag-
netism and various ways to the treatment of localized and
itinerant-electron magnets can be found in the book by Mohn
(2003). In the book by Kübler (2000), much of the method-
ology is described, which makes the spin-density-functional
theory amenable to numerical solutions.

Returning now to the need of a unified treatment of
itinerant-electron magnetism, we emphasize the work of
Moriya and his students (Moriya and Takahashi, 1978a,b;
Moriya, 1985,1987), which supplies such a unified concept
and spells out the key approximations, as for instance the
adiabatic approximation to be dealt with later on. Although
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the theory in its entirety is not easily amenable to ab initio
calculations, which are at the heart of this chapter, we will
make an attempt to follow the physical insight it supplies
as far as possible without too many formal derivations.
It emerges that starting from the elemental metals is not
advantageous. It is the limit of the weak ferromagnets with
very large values of qc/qs that provides initially more insight
into the physics of the itinerant-electron magnets.

2 SPIN-DENSITY-FUNCTIONAL THEORY

We begin with a brief excursion into density-functional
theory. It is of some didactic advantage to do this using
the version by Mermin (1965), which is formulated for
finite temperatures. We give an outline of this theory even
though we presently do not know a physically meaningful
approximation to the finite-temperature exchange-correlation
potential. The discussion given in this section, therefore,
serves on the one hand to restate, in the modern form,
the Stoner–Wohlfarth theory (and why it fails) and, on the
other hand, to define our limits of understanding. It should
be noted that the formulation that follows – differing from
Mermin’s – is based on two-component spinor functions this
way accounting for the spin of the electron in a sufficiently
detailed, yet simple way.

We consider a many-electron system in an external poten-
tial giving first the connection of the external potential with
the density matrix:

V [ρ̃] =
∑
αβ

∫
vext

αβ (r)ρ̃βα(r)dr (3)

where α, β = 1, 2 are spin indices and ρ̃βα(r) are the
elements of the density matrix, ρ̃, which define the particle
density through the trace

ρ(r) = Tr ρ̃(r) (4)

and the vector of the magnetization by

m(r) = Tr σ ρ̃(r) (5)

where σ is given by the Pauli spin matrices.
Mermin (1965) laid the formal foundations for the proof

that in the grand canonical ensemble at a given temperature
T and chemical potential µ the equilibrium density matrix
ρ̃(r), that is, the equilibrium particle density ρ(r) and
the equilibrium magnetization m(r) are determined by the
external potential and magnetic field that make up vext

αβ (r).
It must be added, however, that Mermin did not discuss
magnetic systems and based his theory on the density, not

the density matrix. Allowing for this generalization without
any formal proofs, we state that the correct ρ(r) and m(r)
minimize the Gibbs grand potential �:

�[ρ̃] =
∑
αβ

∫
vext

αβ (r)ρ̃βα(r)dr +
∫∫

dr dr′ ρ(r)ρ(r′)
|r − r′|

−µ

∫
drρ(r) + G[ρ̃] (6)

where G is a unique functional of charge and magnetization
at a given temperature T and chemical potential µ. The
reader interested in more details is referred to Mermin’s
original paper or to reviews like that by Ramana and
Rajagopal (1983), Kohn and Vashishta (1983), and Eschrig
(1996). The quantity G[ρ̃] in equation (6) is written as the
sum of three terms, that is,

G[ρ̃] = T0[ρ̃] − T S0[ρ̃] + �xc[ρ̃] (7)

with T0, S0 being, respectively, the kinetic energy and
entropy of a system of noninteracting electrons with density
matrix ρ̃ at a temperature T . The quantity �xc is the
exchange and correlation contribution to the Gibbs grand
potential.

We now construct the minimum of the grand potential
using a system of noninteracting electrons moving in an
effective potential. We thus assume we can determine single-
particle functions {ψiα(r)} that permit us to write the
elements of the density matrix as

ρ̃βα(r) =
∞∑
i=1

ψiβ(r)ψ∗
iα(r)f (εi) (8)

where α and β, due to the electron spin, take on the values 1
and 2 and f (ε) = [

1 + exp β(ε − µ)
]−1

is the Fermi–Dirac
distribution function (β = 1/kBT ). We obtain the single-
particle spinor functions by solving the Schrödinger equation

∑
β

[−δαβ∇2 + v′
αβ(r) − εiδαβ ]ψiβ(r) = 0 (9)

and attempt to determine the potential, v′, by minimizing the
grand potential, thus obtaining the effective potential as

v′
αβ(r) ≡ veff

αβ(r) = vext
αβ (r) + 2δαβ

∫
ρ(r′)

|r − r′|dr′ + vxc
αβ(r)

(10)

where

vxc
αβ(r) = δ

δρ̃βα(r)
�xc[ρ̃] (11)
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With the result for the effective potential, we may finally
rewrite the grand potential as

�[ρ̃] = −β−1
∞∑
i=1

ln[1 + exp β(µ − εi)]

−
∫∫

drdr′ ρ(r)ρ(r′)
|r − r′|

−
∑
αβ

∫
drvxc

αβ(r)ρ̃βα(r) + �xc[ρ̃] (12)

Formally, the problem now appears to be solved: the poten-
tial in the Schrödinger equation, equation (9), is given by
the equations (10) and (11) in which the density matrix
is given by equation (8). For a ferromagnet at zero tem-
perature, we know that the basic Schrödinger equation, in
the local-density-functional approximation, is diagonal in
spin space and hence easily solved. But, at finite temper-
atures, the formal expression for the exchange-correlation
potential, vxc

αβ(r), equation (11), gives no clue regarding
its general properties. If we assume it remains diago-
nal in spin space and use the zero-temperature exchange-
correlation potential, we may again solve the Schrödinger
equation, temperature in this case entering only through
the Fermi–Dirac distribution in equation (8). This is not
a hard calculation and one obtains for the temperature
where the magnetization vanishes, values that, compared
with the experimental Curie temperatures, are unacceptably
large.

This disagreement is part of what is normally called
the failure of Stoner–Wohlfarth theory. Another well-known
defect is the magnetic susceptibility for which one calculates
for the temperature range of interest Pauli-like (i.e., temper-
ature independent) behavior. This is in stark contradiction to
the well-known, experimentally observed Curie–Weiss law,
which receives a lot of attention in Section 3.

We have chosen here to discuss the problem using a
version of Mermin’s finite-temperature density-functional
theory and see that our basic assumption of a diagonal
effective potential is most likely the weak part of this
treatment. Restricting the effective potential to diagonal form
implies that the magnetization decreases as the temperature
increases because of excitations that are of the order of
the exchange splitting, that is, of rather high energies,
since the exchange splitting is large on the scale of the
Curie temperatures. We are thus led to look for low-energy
excitations to explain the magnetic phase transition.

Awareness of low-energy excitations arose in the 1970s
predominantly through the pioneering work of Korenman
Murray and Prange (1977), Hubbard (1979), Hasegawa
(1979), Edwards (1982), Heine and Samson (1983), Moriya
(1985), and Gyorffy et al. (1985), and others, the review

of Staunton (1994) constituting a clear summary. The
broad consensus reached was that orientational fluctuations
of the local magnetization represent the essential ingredi-
ents of a thermodynamic theory. This cannot be incor-
porated in a straightforward way into the Stoner–Mermin
theory.

To proceed with the density-functional theory, one ignores
the difficulties connected with the exchange-correlation grand
potential and assumes in its place the exchange-correlation
total energy at zero temperature making, at the same time, the
LSDA. One may use here any of the established schemes like
those of von Barth and Hedin (1972) or Perdew and Wang
(1992). The next step then is a formulation of the LSDA that
allows for general, that is, noncollinear configurations of the
magnetic moments in a magnetic crystal. To accomplish this,
one may proceed as follows.

In its most simple version, one partitions the space in the
crystal into atomic spheres over which one integrates the den-
sity matrix defined in equation (8), that is, one determines
the quantity

ραβ =
∫

S
ρ̃αβ(r)dr (13)

for the atomic sphere S. Having chosen a quantization axis,
usually the z axis, the integrated (or atomic) density matrix
ραβ will naturally be diagonal for a ferromagnet in the
ground state. For other kinds of magnetic systems, it may
not be so; in this case, one can diagonalize the magnetic
moment by means of the spin-1/2 rotation matrix, U(θ, ϕ),
by performing the operation UρU †. The spherical polar coor-
dinates, θ and ϕ then define the orientation of the magnetic
moment of the atom in sphere S with respect to the z axis
(Kübler, Höck, Sticht and Williams, 1988; Sticht, Höck and
Kübler, 1989). We note that the integration in equation (13)
to obtain the atomic density matrix is not a necessary step
as one can deal directly with the full space dependence of
ρ̃αβ(r) and calculate polar angles for each point in space as
was done by Knöpfle, Sandratskii and Kübler (2000) for the
noncollinear ground state of γ -Fe; this topic, however, is not
pursued here any further. A relation connecting the diagonal
with the nondiagonal atomic density matrix can easily be
obtained as

δρi

δραβ

= UiαU
†
βi (14)

Hence, the exchange-correlation potential in equation (11)
can be written as

vxc
αβ(r) =

2∑
i=1

U
†
αi

(
δ�xc

δρi

)
Uiβ (15)
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This allows the determination of the nondiagonal elements of
the exchange-correlation potential from the usual functional
derivative of the Gibbs potential (total energy).

The next step now is to model the effects of nonzero
temperatures by ‘freezing in’ deviations from the ground-
state spin orientation by a meaningful choice of noncollinear
moment arrangement. The most appealing approach is that
by Herring (1966), which was later independently rediscov-
ered by Sandratskii (1986a,b); they showed that spiral mag-
netic structures have ideal mathematical properties for this
purpose. These are described in reciprocal space. Another
approach exists, which, starting with real space, has great
virtues when translational symmetry is broken or partially
broken. We will deal with this after the reciprocal-space
approach.

2.1 Magnetic interactions from a reciprocal-space
approach

A spiral magnetic structure is defined by giving the Cartesian
coordinates of the magnetization vector, Mn, as

Mn = M
[
cos(q · Rn) sin θ, sin(q · Rn) sin θ, cos θ

]
(16)

Here, M is the magnitude of the magnetic moment at site
Rn, and (q · Rn) as well as θ are polar angles. On first sight,
it appears that the periodicity is lost with respect to lattice
translations nonorthogonal to q. One should notice, however,
that all atoms of the spiral structure separated by a translation
Rn are equivalent, possessing magnetic moments of equal
magnitude. This equivalence leads to the useful property for
the single-particle spinor functions, which is embodied in a
generalized Bloch theorem:

{q · Rn|ε|Rn}ψk(r) = eik·Rnψk(r) (17)

where the ψk(r) are eigenspinors. The operator {q · Rn|ε|Rn}
combines a lattice translation Rn and the identity space
rotation, denoted by the identity symbol ε, with a spin
rotation about the z axis by an angle q · Rn. The vectors
k lie in the first Brillouin zone, which is defined in the
usual way. The spin spiral defined in equation (16) does not
break the translational symmetry of the lattice, although, in
general, the point-group symmetry is reduced. This statement
is independent of the choice of q, which, therefore, need not
be commensurate with the lattice. A practical consequence is
that no supercell is needed to solve the Schrödinger equation
in the presence of spin spirals. From a representation of
the generalized translation operator, which is easily obtained

from the spin-1/2 rotation matrix as

{q · Rn|ε|Rn}ψ(r)

=
(

exp(iq · Rn/2) 0
0 exp(−iq · Rn/2)

)
ψ(r − Rn) (18)

one can see that for elemental metals the spiral wave vector
q is chosen from inside the first Brillouin zone; q vectors
outside give nothing new. The details of the underlying
analysis can be found in the original literature or the review
paper by Sandratskii (1998).

Finally, if the Schrödinger equation (9) is written in the
usual form as Hqψ = εψ , then by means of equation (15),
the Hamiltonian, Hq, can be specified in the following form

Hq = −1∇2 +
∑

n

(|rn|)U+(θ, ϕ, q)

×
(

veff+ (|rn|) 0
0 veff− (|rn|)

)
U(θ, ϕ, q) (19)

where |rn| = |r − Rn|, (|rn|) is the unit step function that
vanishes outside the atomic sphere centered at |Rn| and the
indices + and − label the spin-up and spin-down effective
potential in the local diagonal frame of reference.

An important observation is that the Hamiltonian in the
preceding text, Hq, depends on a parameter q, the wave
vector characterizing the spin spiral. Niu and Kleinman
(1998) realized that, just like the adiabatic approximation for
decoupling the electronic from the ionic motion in solids, this
parameter leads to a Berry phase (Berry, 1984). In fact, they,
and later Niu et al. (1999), showed that the Berry curvatures
involved in the equation of motion describe how the total
spin component along the symmetry axis changes due to spin
deviations from the ground-state configuration. So, if the total
energy is calculated by constraining the magnetic moment to
the ground-state value M for a small value of θ , then the
spin wave energy for an itinerant-electron ferromagnet is (in
atomic units) given by

ω(q) = lim
θ→0

4

M

E(q, θ)

sin2 θ
(20)

where the total energy E(q, θ) is counted from the ground-
state value. Since the total energy is very nearly proportional
to sin2 θ , the choice of θ is not very critical. This formula
not only establishes the spiral energy as a physical quantity
but has also been shown to lead to very good agreement
with measured magnon energies for Fe, Co, and Ni (Halilov,
Eschrig, Perlov and Oppeneer, 1998; Brown, Nicholson,
Wang and Schulthess, 1999; Gebauer and Baroni, 2000).

To summarize, it is the total energy and its changes with
some parameters that are at the center of interest. To manage
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these calculations, one solves the single-particle equations,
equation (9), self-consistently. This means, in particular, a
solution of the Schrödinger equation Hqψ = εψ , where Hq

is given by equation (19); the Bloch function ψ and the
energy eigenvalues ε depend on the parameter q, and on
the angles θ and ϕ. To proceed, one commonly expands
the Bloch function in terms of suitable basis sets and then
uses the variational principle. The result is the total energy,
E(q, θ, ϕ).

In practical applications, one must bear in mind that, for a
general value of θ , that is, θ �= 0 and θ �= 90◦, the magnetic
moment experiences a torque; the resulting precession leads
to convergence problems and inaccurate values of the total
energy change. This problem can be solved by means of
constraints that are formulated with appropriate Lagrange
multipliers in the Schrödinger equation. An elegant method
has been proposed and successfully applied by Grotheer,
Ederer and Fähnle (2001).

An alternative way is to employ Green’s functions to
solve the single-particle Schrödinger equation. The great
virtue is their applicability when translational symmetry is
broken. Clearly, surfaces and nanostructures call for such
a method. But, even if one considers twisting slightly the
magnetic moment of one atom in an otherwise ferromagnet
environment, one encounters a problem of broken symmetry.
Therefore, before we embark on the main topic of this
chapter, we now digress and describe the Green’s function
or real-space approach.

2.2 Magnetic interactions from a real-space
approach

The Green’s function approach can be expressed as the solu-
tion of the multiple scattering problem. Thus, if G describes
free particle propagation from any individual scattering event
to the next, for which the single-site scattering matrix is
denoted by t , we may describe multiple scattering by means
of the sum

τ = t + tGt + tGtGt + · · · = t + tG(t + tGt

+tGtGt + · · ·) = t + tGτ (21)

or

τ = (1 − tG)−1t = (t−1 − G)−1 (22)

where τ is called the scattering path operator or the
scattering path matrix.

Next, the total energy change to be effected is writ-
ten in a simple way by using the so-called force theorem.
This concept, originally due to Heine (1980) as well as

Mackintosh and Andersen (1980) – later extended to mag-
netic systems by Oswald, Zeller, Braspenning and Dederichs
(1985) – allows the total energy change in first order to be
written as the change in the sum on the single-particle ener-
gies, provided the potential is kept as its unperturbed value. It
is brought about by a subtle cancellation of terms. So, look-
ing in particular at equation (12) – for simplicity evaluated
at T = 0 – a first-order change of the grand potential is the
sum of changes in the first term on the right-hand side and
the other three terms, the so-called double-counting terms;
the latter cancel the change in the former. For mathematical
details and limitations, see Methfessel and Kübler (1982).

The force theorem was applied by Liechtenstein, Kat-
snelson and Gubanov (1984) Liechtenstein, Katsnelson,
Antropov and Gubanov (1987) to obtain the magnetic inter-
actions as follows.

A total energy change, brought about by a change of
the magnetic structure, which changes the density of states
(DOS) by δn(ε), is given by

δE =
∫ EF

εδn(ε) dε (23)

After integration by parts, one obtains

δE = −
∫ EF

δN(ε) dε (24)

where N(ε) is the integrated DOS, or n(ε) = dN/dε. Now,
let the magnetic structure be described by the Heisenberg
Hamiltonian

H = −
∑
ij

′
Jij ei · ej (25)

where Jij are the exchange parameters (including the mag-
netic moment squared) and ei is the unit vector in the
direction of the magnetization. Then, the twisting of one
magnetic moment at site 0 by the angle θ causes the energy
to change by

δE = 2
∑

j

J0j (1 − cos θ) 	 J0θ
2 (26)

where we defined J0 = ∑
j J0j . Next, one uses the fact that

the integrated DOS is connected with the scattering path
operator by means of Lloyd’s formula (Lloyd and Smith,
1972), that is,

N(ε) = N0 + 1

π
Im tr ln τ (ε) (27)
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Thus, equating (26) with equation (24) and using equation
(27), one obtains

J0θ
2 = 1

π

∫ EF

Im tr ln[1 + δt−1τ (ε)] dε (28)

Liechtenstein, Katsnelson, Antropov and Gubanov (1987)
next specify the form of the t-matrix change at site i as

ti = 1

2
(ti↑ + ti↓) + 1

2
(ti↑ − ti↓) × (ei · σ ) (29)

where the components of the vector σ are the Pauli matrices.
This implies

δt−1
i = 1

2
(t−1

i↑ − t−1
i↓ ) × (δei · σ ) (30)

which gives with the chosen spin rotation, δe0 = (sin θ, 0,

cos θ − 1)

δt−1
i = 1

2
δi,0(t

−1
i↑ − t−1

i↓ ) ×
(

cos θ − 1 sin θ

sin θ 1 − cos θ

)
(31)

The trace of the logarithm in spinor-space is now evaluated
using the relation tr ln T = ln det T . One obtains from
equation (28)

J0 = − 1

4π

∫ EF

Im trL[�0(τ
00
↑ − τ 00

↓ ) + �0τ
00
↑ �0τ

00
↓ ]

(32)
where �0 = (t−1

i↑ − t−1
i↓ ).

The pair interaction parameter Jij is obtained by rotating
two spin moments at the sites i and j by opposite angles
±θ/2. Taking care of double counting, one obtains the
desired parameter from

δEij − δEi − δEj 	 1

2
Jij θ

2 (33)

and, after some manipulations, for which the reader can
find the details in the paper by Liechtenstein, Katsnelson,
Antropov and Gubanov (1987), one finally derives the result

Jij = 1

4π

∫ EF

Im trL[�iτ
ij

↑ �jτ
ji

↓ ] (34)

A collection of formulas of the preceding type valid for
more general perturbations can be found in the paper by
Antropov, Harmon and Smirnov (1999). A brief review of
the theory appeared in the book by Gubanov, Liechtenstein
and Postnikov (1992), and early numerical applications of
the formalism are quite encouraging.

When the formalism is applied to the determination of
spin-wave spectra, the parameter θ is no longer small, but is

of the order of q · R, q being the magnon wave vector. This
limits the applicability of the theory to the limit of small |q|.
To overcome this limit, Bruno (2003) developed a theory
for renormalized magnetic interactions, or a renormalized
magnetic force theorem.

It is also of interest to point out that the multiple scattering
theory sketched in the preceding text is the key to a
formulation of the disordered local moment (DLM) picture in
the coherent-potential approximation (Gyorffy et al., 1985).
We will briefly return to this theory in Sections 3.3.3 and
4.3, but continuing here in detail would carry us too far
afield.

Finally, a method to calculate the effective exchange
interaction parameters for correlated magnetic crystals, for
which the LSDA is no longer applicable, has been formulated
by Katsnelson and Lichtenstein (2000) very much along the
lines of the approach in the preceding text.

3 THERMODYNAMICS

3.1 Weakly ferromagnetic metals: formulation

We begin the thermodynamics with the weakly ferro-
magnetic metals and later take up the other cases. In
Chapter 4 of his book, Moriya (1985) obtained the ener-
gies of various spin configurations in metals by using
the Hartree–Fock approximation (HFA) and random phase
approximation (RPA), whereas here the energies are based
on those of spin spirals. It is thus assumed that the frozen-
magnon energies represent the relevant excited states suf-
ficiently well. One can put this differently by saying that
the adiabatic approximation is invoked, which is loosely
justified by observing that the motion of the electrons
is much faster than that of the magnetic moments, since
the latter possess energies of the order of milli-electron
volts, whereas the former move in bands of widths of
the order of electron volts. However, it is not a pri-
ori clear how well this approximation is justified in gen-
eral.

The space-varying spin density M(R) is now regarded as
a classical field and the free energy F is formally obtained
by the following functional integral:

F = −kBT ln
∫

δM(R) exp{−�[M(R)]/kBT } (35)

where �[M(R)] is the energy functional of the spin config-
uration. The latter is written as

M(R) = Mez + m(R) = Mez +
∑
j,q

mjq exp(iq · R)ej

(36)
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Here, M is the magnetization along some direction, say the z-
direction, and m(R) is a local deviation of the magnetization,
which is expanded in a Fourier series. Since it is real, the
Fourier coefficients obey mj−q = m∗

jq. The quantities ej (j =
1, 2, 3) are Cartesian unit vectors.

For weakly ferromagnetic metals, the local amplitude of
spin fluctuations, mjq, is expected to be relatively small.
Therefore, the energy functional can be expanded in powers
of the magnetization. In this step, one follows the work of
Murata and Doniach (1972), who, however, took a scalar
field for the spin density, whereas here a vector field is
employed. The work of Lonzarich and Taillefer (1985)
constitutes one of the key papers in the field of weak
itinerant ferromagnets, and a lucid introduction to the physics
of spin fluctuations can be found in the book by Mohn
(2003).

The mode–mode coupling functional proposed is written
in two parts

� = �1 + �2 (37)

where

�1 = 1

2
α

1

N

∑
n

M(Rn)
2 + 1

4
β

1

N

∑
n

M(Rn)
4 (38)

and

�2 = 1

N

∑
n,m

J (Rn − Rm) M(Rn) · M(Rm) (39)

where N denotes the number of particles in the system and
the coefficients α and β can be viewed as Landau coefficients
controlling changes of the size of the magnetization. They
here are assumed to be independent of the temperature. The
quantity J (R) describes the exchange interaction between
sites separated by R. In the weakly ferromagnetic limit,
only the fourth-order term in equation (38) is needed,
which simplifies the analysis considerably, but carrying the
expansion to a higher order poses no real difficulties.

To obtain the free energy, a variational principle is used
by employing a Gaussian functional in this subsection

� =
∑
j,q

ajq|mjq|2 (40)

ajq being variational parameters. Using the convexity prop-
erties of exponentials (also called the Bogoliubov–Peierls
inequality), one writes

F < −kBT ln
∫

δM exp

( −�

kBT

)
+ 〈� − �〉0

.= F̃ (41)

The average < . . . >0 is defined through the Gaussian
distribution, equation (40). By substituting equation (36) and
Fourier transforming, one obtains after some algebra

F̃ = −1

2
kBT

∑
j,q

ln
(
π

〈|mjq|2
〉
0

) + 1

2
α

(
M 2 + 2m2

⊥ + m2
‖
)

+1

4
β

[
M 4 + 2M 2 (

2m2
⊥ + 3m2

‖
) + 8m4

⊥ + 4m2
⊥m2

‖

+3m4
‖

]
+ 2

∑
q

j (q)
〈|m⊥q|2

〉
0 +

∑
q

j (q)
〈|m‖q|2

〉
0

(42)
where j = ⊥ and j = ‖ distinguish the fluctuations per-
pendicular and parallel to the macroscopic magnetization.
Furthermore,

m2
j =

∑
q

〈|mjq|2
〉
0 (43)

for j = ⊥ and j = ‖. The quantity j (q) is defined by the
Fourier transform

j (q) =
∑

n

J (Rn) exp(iq · Rn) (44)

and describes the exchange interaction in reciprocal space.
The minimization of F̃ with respect to the variational

parameter ajq is equivalent to minimization with respect to
the fluctuations because equation (40) implies

〈|mjq|2
〉
0 =

kBT /(2ajq). The result of the minimization is most com-
pactly written as

m2
j = kBT

N

∑
q

χj (q) (45)

where, one finds for the longitudinal case, j = ‖,

χ−1
‖ (q) = α + β(3M 2 + 2m2

⊥ + 3m2
‖) + 2j (q) (46)

and for the perpendicular case, j = ⊥,

χ−1
⊥ (q) = α + β(M 2 + 4m2

⊥ + m2
‖) + 2j (q) (47)

Equation (45) is the static (or high-temperature) limit of
an exact relation, which states that in linear response theory
the average fluctuations squared are connected with the
frequency-dependent, nonuniform susceptibility χnj (q, ω) in
the form

〈|mjq|2
〉 = 2

πN

∫ ∞

0
dω Im

{
χj (q, ω)

}
N(ω) (48)
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where, N(ω), omitting zero-point fluctuations, denotes the
Planck distribution function. This is the famous fluctuation-
dissipation theorem (Callen and Welton, 1951; Becker and
Sauter, 1968; Jones and March, 1973; White, 1983).

The connection between equation (48) and the equations
(43) and (45) is made in the limit of high temperatures and
by using the Kramers–Kronig relations.

The partial derivative of the free energy with respect to
the magnetization gives the magnetic field. Requiring this to
be zero, one obtains

M2

M2
0

= 1 − (2m2
⊥ + 3m2

‖)

M2
0

(49)

known also as the Moriya relation. Here, the relation α =
−βM2

0 was used, which is the minimum condition for the
free energy in the absence of all fluctuations, that is, at zero
temperature, T = 0, at which the magnetization is M0.

For a vanishing magnetization, that is, above the ordering
temperature, the longitudinal and perpendicular fluctuations
and susceptibilities become equal. Thus, writing m2

⊥ = m2
‖ =

m2
p, one determines the paramagnetic fluctuations using

m2
p =

∑
q

〈|mpq|2
〉
0 = kBT

N

∑
q

[
α + 5βm2

p + 2j (q)
]−1

(50)
The inverse susceptibility is then given by

χ−1 = α(1 − 5m2
p/M

2
0 ) (51)

It was initially thought (Uhl and Kübler, 1996; Kübler,
2000, Ch.5) that self-consistent solutions of the basic
equations (45)–(47) together with equations (49) and (51)
describe the phase transition below and above the Curie tem-
perature for the elemental ferromagnets. We will see that
this, unfortunately, is not true. In fact, numerical values for
the two Landau coefficients, α and β were obtained by con-
straining the magnetic moment, M , such that the total energy
counted from the nonmagnetic state E(M) is expressed as a
function of M . This is achieved by a Langrange multiplier in
the total energy calculations (Dederichs, Blügel, Zeller and
Akai, 1984). The function E(M) thus obtained can then be
identified with equation (38) in the absence of all fluctua-
tions, which is written in this case as �1(0), a simple fit
subsequently giving

�1(0) = 1

2
αM2 + 1

4
βM4 (52)

This is very similar to the approach taken by Luchini, Heine
and McMullan (1991) to describe the magnetic fluctuations
of iron. The other parameter appearing in the basic equations
is the exchange function j (q), which was calculated by

assuming the noncollinear moment arrangement of the form
given in equation (16). The total energy change ensuing,
�E(q), gives j (q) through

�E(q) = M2
0 j (q) sin2 θ (53)

choosing θ = 90◦ and constraining the magnetic moment to
its ground-state value, M0. This choice of θ leads to a small
error, which can be removed by better constraints, as was
shown by Grotheer, Ederer and Fähnle (2001) and Singer,
Fähnle and Bihlmayer (2005). But, for the sake of simplicity,
we stick to this simple choice. No cutoff parameter is needed
for the summations (integrations) in reciprocal space since,
because of equation (44), the function j (q) is periodic.
Finally, if the phase transition calculated is of second order,
one obtains from the basic equations the following formula
for the Curie temperature:

kBT SF
c = 2M2

0

5

[
1

N

∑
q

1

j (q)

]−1

(54)

which carries the label SF , for spin fluctuation, in order to
distinguish it from other expressions that are given in the
subsequent text.

Before the partial success and the shortcomings of this
approach are discussed, it is worthwhile to improve the
approximations by going beyond the static approximation.
The essential step here is the replacement of equation (45)
by equation (48); the resulting theory is commonly called
the dynamic approximation. The importance of this step has
been stressed repeatedly by Moriya (1985).

One may conveniently start by writing the free energy in
the form

F(M, T ) = 1

2
αM2 + 1

4
βM4 + F1(M, T ) (55)

and employ a formula for the free energy part F1(M, T ) that
is due to Dzyaloshinski and Kondratenko (1976). This is

F1(M, T ) = F0(T ) + 1

2N

∑
j,q

∫ ∞

−∞

dω

2π

×Im
{

ln χ−1
j (q, ω)

}
coth

(
ω

2kBT

)
(56)

Here, F0(T ) does not depend on the magnetization and is,
therefore, at this point, of no concern. The inverse dynamic
susceptibilities are approximated by

χ−1
j (q, ω) = χ−1

j (q) − iω

�q
(57)
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where the real part, χ−1
j (q), is assumed to be given by the

results of the static approximation, equation (46) for j = ‖
and equation (47) for j = ⊥.

The complex part of the inverse, dynamic susceptibility
is a widely used approximation for the weakly ferromag-
netic metals, where long wavelength fluctuations of small
frequencies predominate. It rests on a broad experimental
and theoretical basis (Moriya, 1985; Lonzarich and Taillefer,
1985). The latter has most concisely been summarized by
Lonzarich and Taillefer, who give the small ω and small q

expansion of the dynamic Lindhard susceptibility as equation
(57), valid for a single tight-binding band and omitting matrix
elements. In this approximation, one can express the dissi-
pation constant � in terms of band-structure quantities as

� = (4/πV )µ2
BNFEF/kF (58)

where V is the volume of the primitive unit cell, NF is the
DOS at the effective Fermi energy EF, kF is the Fermi wave
vector, and the magnetization is assumed to be small.

By taking next the second derivative of the free energy,
equations (55) and (56) with respect to M (but neglecting
derivatives of the fluctuations), one verifies that the uni-
form, static, longitudinal susceptibility is given by χ‖(q =
0), equation (46), provided the fluctuations are connected
with the susceptibility through the fluctuation-dissipation
theorem, equation (48). The transverse susceptibility, how-
ever, is slightly different from χ⊥(q = 0), equation (47). It is
believed, though, that this is still a good approximation since
numerically the two susceptibilities come out very nearly the
same.

The remaining calculation is the evaluation of the fluc-
tuation equation (48). With the preceding approximation
for the dynamic susceptibility, the frequency integration
can be carried out analytically, as was done by Lonzarich
and Taillefer (1985), who refer to a paper by Ramakrish-
nan (1974), obtaining

〈|mjq|2
〉 = kBT χj (q)g(z)/N where

g(z) = 2z (ln z − 1/2z − ψ(z)), ψ(z) is Euler’s psi function
and z = �|q|χ−1

j (q)/2πkBT . To a very good approximation,
one can write g(z) 	 1/(1 + 5.63602z), which finally gives

∑
q

〈|mjq|2
〉 = kBT

N

∑
q

χj (q) − ξ�

N

∑
q

|q|

×
[

1 + ξ�|q|
kBT

χ−1
j (q)

]−1

(59)

The constant appearing is ξ = 0.897. Note that, for � = 0,
the results of the static approximation are obtained.

One could now argue that all important quantities are
determined by the total energy and the band structure.
However, the assumptions underlying equation (58) are

heavily idealized, and so this relation can only be expected
to give an order of magnitude estimate of the dissipation
constant �, as we will see. In principle, the dynamic
susceptibility can be easily formulated, but, in the appropriate
integral equation, a kernel remains unknown (Antropov,
Harmon and Smirnov, 1999). A desirable approach would
be that of Savrasov (1998), who calculated the dynamical
susceptibility ab initio but did not direct his attention to the
problems addressed here. Similarly, the ab initio theory of
Staunton et al. (2000) should be applied to ferromagnets.

Furthermore, even more serious, as it turns out, is a
conceptual error made in the determination of the Landau
coefficients α and β from the total energy. This point is
exposed in detail in the following examples.

The determination of the exchange function j (q), how-
ever, is seen to be quite reliable, thus turning out to be one
of the strong points of the theory.

3.2 Weakly ferromagnetic metals: examples

3.2.1 An exploratory calculation for nickel

Although Ni is not understood to be a weakly ferromagnetic
metal, we start with this case since the calculations are
quickly performed, allowing the formalism to be exposed
together with its strengths and weaknesses.

In Table 2, we collect some of the relevant data for
nickel. The lattice constant used for the calculations is
seen to be somewhat smaller than the experimental value,
which is due to the well-known overbinding property of
the LSDA. The calculated value of the magnetic moment,
M0, is also listed. Its being smaller than the experimental
value is due to the missing orbital and spin-orbit coupling
(SOC) contributions. By means of total energy calculations,
the input coefficients α, β = −α/M2

0 , and j (q) are easily
obtained and the basic equations (45)–(47) together with
equation (49) as well as equations (50) and (51) are solved
numerically, first in the static approximation. The Curie
temperature given in equation (54) is evaluated and given
in Table 2. With the knowledge of the exchange function
j (q), other approximations for the Curie temperature can be

Table 2. Calculated and experimental values for Ni: lattice con-
stant, a, calculated spin fluctuation, T SF

c , spherical model, T SP
c ,

and mean field, T MF
c Curie temperatures, and magnetic moment,

M0.

a (Å) T SF
c (K) T SP

c (K) T MF
c (K) M0 (µB)

Calculated 3.468 322 537 643 0.598
Experimental 3.525 627 0.616
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obtained. These are

kBT SP
c = 2M2

0

3

[
1

N

∑
q

1

j (q)

]−1

(60)

which are derived in Section 3.3.1 in the spherical approx-
imation. This equation is also known as the RPA expres-
sion. The well-known mean-field approximation gives for the
Curie temperature

kBT MF
c = 2M2

0

3N

∑
q

j (q) (61)

This is a convenient formula to express the average value of
the exchange function j (q). Results obtained in the spherical
and mean-field approximations are also listed in Table 2
and are seen to approximate the measured Curie temperature
much better than the spin-fluctuation value.

When, however, the basic equations are solved with the
value of α obtained from the total energy, the phase transition
to the paramagnetic state is found to be weakly of first order,
giving a Curie temperature of about 370 K. Although the
inverse susceptibility above the Curie point is calculated to
be a Curie–Weiss law, its slope is much too large, giving
a value for the number of carriers, qc smaller than qs, the
saturation value at zero temperature.

In an attempt to analyze the situation, one first finds a
condition for the transition to be of second order. This is
αM2

0 /J0 < 1, where J0 is the average of j (q) defined by
the sum in equation (61). This condition is not satisfied
for the value of α used in the preceding text. Next one
expresses the coefficient α by the total energy gained in
the ferromagnetic state, which in Figure 2(a) is denoted by
EB; this is trivially from equation (52) α = −4EB/M2

0 . To
continue, it is convenient to turn to the dynamic approx-
imation, choosing a dissipation constant � such that the
experimental Curie temperature is obtained, assuring, how-
ever, that the transition is of second order by using smaller
values of α than required by the total energy value EB.
Thus, Figure 2(b) illustrates that the inverse susceptibility
shows, indeed, Curie–Weiss behavior; however, its value
agrees with the experimental data (also given in the figure)
only for a vastly reduced EB (or α). Can one justify this
reduction?

The simple relation α = −4EB/M2
0 shows that the coef-

ficient α is defined with respect to the nonmagnetic ground
state, since this is the offset for EB. For Ni – or any other
ferromagnet – the nonmagnetic ground state, however, is
a computational fiction. Another reference state should be
used, one that is magnetic with no long-range order. In
Chapter 7 of his book, Moriya (1985) identified the refer-
ence state qualitatively by means of the Anderson condition,
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Figure 2. (a) Total energy of Ni as a function of the magnetic
moment, M , obtained by a constrained-moment calculation (dots),
counted from the nonmagnetic state. Solid line is the fit, equation
(52). Label EB is used as parameter in part (b) of this figure.
Inverse susceptibility for Ni above the Curie point. Experimental
data (circles) from Shimizu (1981); data calculated in the dynamic
approximation are shown for different values of the parameter EB

in mRy.

which marks the appearance of randomly oriented local
moments in metals. We will come back to this problem in
Section 3.3.

It is clear now that the Landau coefficients must be
renormalized. One is tempted therefore to abandon the LSDA
in favor of a many-body treatment since there is no formal
answer within the theory presented. It is still worthwhile
to continue anyway by observing that the appearance (or
disappearance) of local moments can clearly be seen in the
enhancement of the nonuniform susceptibility, χ(q). The
susceptibility enhancement was discussed, for instance, by
Sandratskii and Kübler (1992) (see also Kübler, 2000, Ch.4),
who obtained χ(q) by using spiral-moment arrangements in
LSDA calculations and demonstrated that it peaks strongly
at values of q, where the magnetic moment becomes small.
The calculations have been repeated here for Ni with high
precision and the results are shown in Figure 3 for q along
the (1,0,0)-direction. Since, locally, in reciprocal space, the
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Figure 3. Relative magnetic moment of Ni, M(q)/M0 and relative
nonuniform susceptibility χ(q)/χmax, both as a function of the
wave vector q = (q, 0, 0) in units of 2π/a. A value of χmax =
149µ2

B/Ry = 0.35 · 10−3emu mol−1 is obtained along this direction
in the Brillouin zone.

total energy can be expanded as

E(q, M) = E(q, M0(q)) + (M − M0(q))2

2χ(q)
(62)

one sees that the total energy is very flat as a function of M

in those regions of the Brillouin zone where the susceptibility
becomes large. Proceeding empirically, we assume that it is
this value of the total energy that determines the coefficient
α and consequently EB. We are thus led to using α =
−(2χmax)

−1, which gives EB = 0.4 mRy. Figure 2(b) shows
that this leads to very good agreement with the experimental
Curie–Weiss susceptibility. We take this agreement as an
indication for a useful procedure to apply to all weakly
ferromagnetic materials, which are described in the sequel
of the chapter.

In Figure 4, we show the magnetization as a function of
the temperature for Ni in reduced units. For comparison,
the experimental data for Fe, Co, and Ni are also shown
together with the well-known Brillouin function valid in the
mean-field approximation. One can see that especially at low
temperatures the calculated curve does not agree with the
experimental values. This is due to an improper treatment of
the magnon excitations. As will be explained later, for the
case of iron, the low-temperature phase transition is better
described by a local moment approximation.

We complete this subsection by giving the value of the
dissipation constant that leads to the experimental Curie
temperature shown in Figure 2(b); this is � = 0.641 µeVÅ2.
Although, differing from equation (57), the experimental
wave-vector dependence proportional to q2 was used in the
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Figure 4. Temperature dependence of the magnetization of Ni in
reduced units from theory of weak ferromagnetism.

calculations, we cannot expect agreement with the measured
value of �, which is 3 orders of magnitude larger (Steinsvoll,
Majkrzak, Shirane and Wicksted, 1984). This should not
be surprising in view of the simplifications made in the
modeling of the imaginary part of the susceptibility.

3.2.2 The weakly ferromagnetic compound ZrZn2

ZrZn2, like the compounds Ni3Al, MnSi, and Sc3In, belongs
to the class of weakly ferromagnetic materials with small
magnetic moments (of the order of a tenth of a µB) and
small Curie temperatures (of the order of 5–40 K). Because
of its large effective moment in the paramagnetic phase,
it is found on the far left in Figure 1. It was discovered
by Matthias and Bozort (1958) to be ferromagnetic. The
unit cell of the cubic C15 Laves phase of ZrZn2 contains
six atoms, the two Zr atoms occupying a diamond lattice
and the four Zn atoms forming tetrahedra in the interstices.
A number of generalizations need be done to apply the
theory given in Section 3.1 to a crystal structure possessing
a basis, as ZrZn2 does. Thus, equation (36) is changed
to

Mτ (R) = Mτ ez +
∑
n,j,q

mnjqCnτ exp(iq·R)ej (63)

where τ labels the basis and the coefficient Cnτ allows one
to treat normal modes, which are numbered by n. All other
symbols are defined as in equation (36).

Beginning with the static approximation, the Curie tem-
perature, the magnetic order parameter, and the high-
temperature susceptibility are calculated by evaluating the
basic equations (45)–(47) together with equation (49) as



Electron theory of finite temperature magnetism 13

well as equations (50) and (51) as a function of the pres-
sure (volume) (Kübler, 2004). The two equivalent magnetic
Zr atoms lead to two normal modes and two exchange func-
tions j11(q) and j12(q), which require a number of simple
modifications in the basic equations. Thus, the total energy
change, equation (53), is replaced by

�E = 2M 2
0 j11(q) + 2M 2

0 j12(q) cos(q · τ ) (64)

where τ = ( 1
4 , 1

4 , 1
4 ) in units of the lattice constant is the basis

vector for the second magnetic atom in ZrZn2, assuming the
first at the origin. The quantity M0 is the Zr moment in the
ground state. Since, by virtue of equation (44), the exchange
functions are periodic with the periodicity of the reciprocal
lattice, but cos(k · τ ) is not, we may determine j11(q) and
j12(q) from equation (64) with a choice of a reciprocal lattice
vector, K = (0, 0, 2) 2π/a, where a is the lattice constant.
Thus, replacing q by q + K, we get an equation to solve for
j11(q), finally eliminating the cosine by choosing all phases
to be zero to obtain j12(q).

The variation described in Section 3.1 now leads via a
standard normal-mode analysis to two inverse static suscep-
tibilities, χ−1

‖,±(q) and χ−1
⊥,±(q), which replace the equations

(46)–(47) by changing the single exchange functions there
to j11(q) ± j12(q). The Curie temperature is then

kBTc = 4

5
M2

0 ·
(

1

N

∑
q

1

j11(q) + j12(q)

+ 1

N

∑
q

1

j11(q) − j12(q)

)−1

(65)

instead of equation (60), provided the phase transition is of
second order.

The total energy calculations to obtain the exchange
functions should be done by constraining the magnetic
moments to the ground-state values. Much more efficient,
however, is to use the force theorem, that is, by calculating
the total energy differences from the band energies, as
described and justified in Section 2.2. This was done
here, even though an error is to be expected, as pointed
out by Bruno (2003). By a somewhat lengthy numerical
computation, the error was estimated and found to amount
to roughly a factor of 1.7.

Some pertinent experimental and theoretical data for ZrZn2

are collected in Table 3. As in the case of Ni, the coefficient
α is to be obtained from the maximum value of the enhanced,
nonuniform susceptibility, α = −χ−1

Max/2. We stress that this
renormalization is not derived theoretically, but is motivated
empirically through the appearance of the magnetic moment
in the metal (see also Section 3.2.1). Figure 5 shows that the
appearance (or disappearance) of the moment is accompanied

Table 3. Calculated and experimental values for ZrZn2: lattice
constant, a, calculated spin fluctuation, T SF

c , spherical model,
T SP

c Curie temperatures, magnetic moment, M0, and Curie–Weiss
law ratio qc/qs. Values in parentheses are estimates derived from
constrained-moment total energy calculations.

a (Å) T SF
c (K) T SP

c (K) M0 (µB) qc/qs

Calculated 7.284 8.0 (14) 13.3 (23) 0.20 2.8
Experimental 7.393 28.1 0.17 4.1

|q|
0

0

0.2

0.4

0.6

0.8

1

0.1

M/M0

M/M0

0.2 0.3

|q|
0 0.1 0.2 0.3

1

0.8

0.6

0.4

0.2

0

c(q)/cMax c(q)/cMax

Figure 5. Reduced magnetic moment, M/M0, and reduced suscep-
tibility, χ(q)/χMax, as a function of the wave vector, q, along the
(1,1,1)-direction. Left panel calculated at the experimental lattice
constant, a = 7.393 Å, right panel calculated for a = 7.217 Å, cor-
responding to the last nonvanishing magnetization before the tran-
sition. The values of M0 and χMax are M0 = 0.36 µB per formula
unit and χMax = 3.111 · 10−3 emu mol−1 on the left; on the right
they are M0 = 0.079 µB per formula unit and χMax = 1.652 · 10−3

emu mol−1.

by a large enhancement of the susceptibility, which is shown
for two different volumes. With this choice of α, the phase
transition is calculated to be of second order. The results
for the Curie temperature are graphed in Figure 6, where
the full pressure range used for the calculations is shown.
The measured value of Tc at ambient pressure is 28.1 K
where in the calculations – due to the well-known LSDA-
overbinding – the pressure is found to be negative. Here,
the calculated value of Tc is Tc = 30 K. Although it agrees
well with the experimental value, we discard it in favor
of the calculation at the theoretical equilibrium at P = 0:
Tc = 8 K obtained using the force theorem; this value is
underestimated and could be as large as 14 K in a constrained
total energy calculation of the type suggested by Grotheer,
Ederer and Fähnle (2001) and Singer, Fähnle and Bihlmayer
(2005). In the spherical approximation, the Curie temperature
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Figure 6. Curie temperature of ZrZn2 as function of the pressure
calculated with equation (65) using the force theorem to calculate
the exchange functions j11(q) and j12(q). Inset: Magnetic moment
of Zr as function of the pressure.

is calculated to be of the order of 13.3–23 K. The estimated
values are given in parentheses in Table 3.

Turning now to the dynamic approximation, we start the
calculation with an experimental value for the dissipation
constant, �, which was obtained by Bernhoeft, Law, Lon-
zarich and Paul (1988) by neutron-scattering studies. Above
the Curie temperature, this value is given as � = 1.8 µeVÅ.
Inserting this value into our equations, however, we over-
estimate the Curie temperature by a factor of 2. In fact, the
experimental value of the Curie temperature at ambient pres-
sure is obtained by using a value of � = 0.44 µeVÅ.

We may relate these values to the simple approximation
given in equation (58). Taking the calculated value for the
density of states at the Fermi energy to be about 40 states
per Ry and kF of the order of 2π/a (Kübler, 2004), the
experimental value of � suggests a value of the Fermi energy
of about 1.6 eV, whereas the theoretical value would require
0.4 eV, both values being within range of the band structure
of ZrZn2. But, a rigorous value of � cannot be extracted
from equation (58).

In an attempt to use the value of � = 0.44 µeVÅ for higher
pressures revealed that it must be reduced further for very
low temperatures, thus obtaining the pressure dependence
shown in Figure 7 (labelled dynamic approximation). The
results of the static approximation and the experimental
results of Pfleiderer et al. (2001) are also shown.

In Figure 8(a), the calculated relative magnetization as a
function of the temperature is shown, which is compared
with experimental data from Uhlarz, Pfleiderer and Hayden
(2004). The agreement is very good. It depends sensitively
on the value of the dissipation constant �, concerning not
only the Curie temperature but also the curvature of the
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Figure 7. Curie temperature of ZrZn2 as function of the pressure
calculated with equation (65) (static approximation with the force
theorem) and using finite dissipation constant (see text on dynamic
approximation). The experimental data shown are from Pfleiderer
et al. (2001).

magnetization; smaller values of �, in particular the static
approximation (� = 0), lead to a much flatter M(T ). It
should be noticed that the disagreement seen in the calculated
magnetization for Ni at low temperatures is not present in
this case.

The calculated susceptibility in the paramagnetic temper-
ature range is shown in Figure 8(b). Being very nearly lin-
ear, this shows a nice Curie–Weiss law. Its slope depends
only very weakly on the dissipation constant, but is largely
determined by the value of the coefficient α. The empirical
renormalization leads to the value of qc/qs given in Table 3,
where it is also compared with an experimental estimate of
Uhlarz, Pfleiderer and Hayden (2004).

In this context, it is of interest to point out the work
of Takahashi (1986), who formulated a theory for the
Rhodes–Wohlfarth plot. His theory, however, relies on the
zero-point spin fluctuations, which we ignored, and the
assumption of a conserved local spin-fluctuation amplitude.
Although zero-point spin fluctuations may play a certain role,
we cannot make definite ab initio estimates because a cutoff
frequency is needed.

3.2.3 The weakly ferromagnetic compound Ni3Al

Another, thoroughly studied itinerant-electron weak fer-
romagnet is Ni3Al. Early experimental work is that by
De Boer, Schinkel, Biesterbos and Proost (1969), followed
by Kortekaas and Franse (1976), Buis, Franse and Brom-
mer (1981), and others. Bernhoeft, Lonzarich, Mitchell and



Electron theory of finite temperature magnetism 15

T (K)

0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200

(b)T (K)

M
(T

)/
M

0

0
0

0.2

0.4

0.6

0.8

1

5 10 15 20

(a)

Calculated

Experiment

25 30

c
−1

 (
10

3  
m

ol
 e

m
u−1

)

Figure 8. (a) Reduced magnetic moment, M/M0, as a function of T for ZrZn2. The experimental data (circles) were kindly supplied by
Ch. Pfleiderer (Uhlarz, Pfleiderer and Hayden, 2004) (b) Calculated Curie–Weiss law.

Paul (1983) did neutron-scattering studies. In the theoreti-
cal work of Lonzarich and Taillefer (1985) and Lonzarich
(1986), Ni3Al was used as the prime example.

Ni3Al is simple-cubic and has the Cu3Au structure, which
possesses a basis of three atoms. Thus, three normal modes
are taken into account in equation (63), of which two
are found to be degenerate. One obtains the three inverse
static susceptibilities from χ−1

‖,±(q) and χ−1
⊥,±(q) by using

that labelled with the minus sign twice. This is defined
by changing the single exchange functions in the equations
(46)–(47) by the combination j11(q) − j12(q), whereas the
susceptibility labeled with the plus sign is defined by the
combination j11(q) + 2j12(q). The Curie temperature is then
given by

kBTc = 6

5
M2

0 ·
(

1

N

∑
q

2

j11(q) − j12(q)

+ 1

N

∑
q

1

j11(q) + 2j12(q)

)−1

(66)

provided the transition is of second order.
The exchange functions are obtained from the total energy

of a spin spiral given in the case of Ni3Al by

�E = M2
0 [3j11(q) + 2j12(q)

3∑
i=1

cos(q · τ i )] (67)

The quantity M0 is the Ni moment in the ground state and
τ i are the basis vectors. Since the exchange functions are
periodic with the periodicity of the reciprocal lattice, they
are obtained from equation (67) with a choice of three
reciprocal lattice vectors, K1 = (1, 0, 0), K2 = (0, 1, 0), and
K3 = (0, 0, 1) in units of 2π/a, where a is the lattice

constant. Thus, replacing q by q + Kj j = 1, 2, 3, we get
equations to solve for j11(q), finally eliminating the cosine
by choosing all phases to be zero to determine j12(q).

The static approximation gives a second-order phase
transition if the coefficient α is obtained from the maxi-
mum of the nonuniform susceptibility as described before.
Its q-dependence is very similar to that shown for
ZrZn2 in Figure 5; its maximum value of χMax 	 0.88 ·
10−3 emu mol−1 is smaller, however, and occurs at q 	
(0.1, 0, 0)2π/a.

The total energy differences needed to evaluate the
exchange functions are obtained by both the force theorem
and constrained-moment calculations. Together with other
pertinent experimental and theoretical data, the result of the
latter is given in Table 4, where it is denoted by T SF

c . As
expected, it is larger than the estimate from the force theorem,
which leads to Tc = 12.7 K.

To obtain the experimental Curie temperature in the
dynamic approximation, the dissipation constant is chosen as
� = 0.15 µeVÅ. The calculated temperature dependence of
the magnetization is shown in Figure 9(a) and is seen to agree
nearly perfectly with the experimental data measured by De
Boer, Schinkel, Biesterbos and Proost (1969). The value of �

is, however, considerably smaller than the neutron-scattering
value of � = 3.3 µeVÅ measured by Bernhoeft, Lonzarich,

Table 4. Calculated and experimental values for Ni3Al: lattice
constant, a, calculated spin fluctuation, T SF

c , spherical model, T SP
c

Curie temperatures, magnetic moment, M0, and Curie–Weiss law
ratio qc/qs.

a (Å) T SF
c (K) T SP

c (K) M0 (µB) qc/qs

Calculated 3.5283 18.4 30.6 0.12 1.8
Experimental 3.568 41.0 0.075 7.5
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Figure 9. (a) Reduced magnetic moment, M(T )/M0, as a function of the reduced temperature, T/Tc of Ni3Al. The experimental data
(circles) were taken from the paper by Lonzarich (1986) who used data by De Boer, Schinkel, Biesterbos and Proost (1969). (b) Calculated
Curie–Weiss law using α = −5014 determined with susceptibility maximum, χMax = 0.88 · 10−3 emu mol−1, and α = −1159. (Reproduced
from G.G. Lonzarich and L. Taillefer: ‘Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic
metals’, Journal of Physics C: Solid State Physics B 18 (1985), 4339.)

Mitchell and Paul (1983). Finally, the calculated inverse
Curie–Weiss susceptibility shown in Figure 9(b) (solid
line with α = −5014 in Gaussian units) gives an effective
magnetic moment at T > Tc larger than in the ground state,
as it should, but the calculated ratio of qc/qs given in Table 4
is too small. Possible reasons for this discrepancy may be our
empirical renormalization scheme and (or) Stoner excitations,
which could decrease the coefficient α considerably. To
illustrate the dependence on α, we include in Figure 9(b)
(dashed line) the results for a value of α = −1159, which
was found by Lonzarich and Taillefer (1985) to describe the
experimental data. This value gives for the ratio qc/qs the
value qc/qs = 5.

3.2.4 The weakly ferromagnetic compound MnSi

As the final example, we discuss the compound MnSi. It
is considered to be a weak itinerant-electron ferromagnet
(Moriya, 1985; Lonzarich and Taillefer, 1985), although in
zero magnetic field it possesses a helical ground state with a
very long period (170 Å) (Ishikawa, Tajima, Bloch and Roth,
1976). In recent experimental work (Pfleiderer, McMullan,
Julian and Lonzarich, 1997; Pfleiderer et al., 2004), MnSi
was studied under hydrostatic pressure, P . At P = 14.6 kbar,
a phase transition to a state identified as a non-Fermi liquid
was found. The neutron diffraction studies of Pfleiderer et al.
(2004) reveal that long-range magnetic order is suppressed
at Pc = 14.6 kbar, but sizable quasistatic magnetic moments
survive far into the non-Fermi liquid state. It is the helical
modulation along a Q vector in the (111)-direction that is
crucial for the experiments, since the corresponding Bragg
scattering at |Q| = 0.037 Å−1 is easily tracked as a function
of the pressure. The findings are a challenge for the theory
presented in this chapter.

MnSi is simple-cubic in the B-20 crystal structure pos-
sessing four Mn and four Si atoms in the unit cell at the
positions (u, u, u), ( 1

2 + u, 1
2 − u, −u), (−u, 1

2 + u, 1
2 − u),

and ( 1
2 − u, −u, 1

2 + u), where for Mn u = 0.137 and for Si
u = 0.845. This structural information is important because
the symmetry of the crystal structure and the type of mag-
netic order are intimately connected (Sandratskii, 1998). The
reasoning is as follows.

Beginning an electronic structure calculation with the
Hamiltonian given in equation (19) for a spin spiral of a
given q, we find for MnSi the total-energy minimum at
q = 0. Indeed, from the work of Bak and Jensen (1980),
Nakanishi, Yanase, Hasegawa and Kataoka (1980), and
Kataoka, Nakanishi, Yanase and Kanamori (1984), it is
known that the helical ground state of MnSi has its origin
in the SOC, which is neglected in the scalar relativistic
Hamiltonian. It is not difficult to add an appropriate SOC
Hamiltonian to equation (19) (Sandratskii, 1998) but, since
SOC does not commute with the generalized translations
introduced in Section 2, a spin spiral or helical structure
is unstable. We will immediately come back to this apparent
contradiction, but first discuss SOC in MnSi in the absence of
a helical state. In this case, self-consistent calculations lead
to a ferromagnet with slightly canted moments. This type
of magnetic order is a consequence of the symmetry of the
lattice in combination with the SOC. The latter requires the
application of a spin–space group (Sandratskii, 1998), which
in this case is D2. The elements of this group permute the Mn
atoms together with their magnetic moments. The canting
angles calculated are rather small, being at the theoretical
equilibrium lattice constant θ1 	 0.3◦ and φ1 	 120◦ (θj

and φj for j = 1 . . . 4 such that a regular rectangle is
formed). Under pressure, the canting increases slightly. The
calculations reveal, furthermore, a second state with a small
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Table 5. Calculated and experimental values for MnSi: lattice
constant, a, calculated spin-fluctuation Curie temperature, T SF

c ,
magnetic moment, M0, and compressibility, κ .

a (Å) T SF
c (K) M0 (µB) κ (10−4 kbar−1)

Calculated 4.483 42 0.55 4.7
Experimental 4.56 30 0.4 6

magnetic moment and slightly higher total energy (fractions
of a mRy per unit cell), which possesses canting angles with
θ1 	 1.0◦ and φ1 	 143◦.

Some pertinent calculated and experimental data for MnSi
are collected in Table 5. The calculated lattice constant is as
usual smaller than the experimental one, but is larger than
that determined by Yamada and Terao (1999), presumably
because they ignored SOC. The calculated magnetic moment
is somewhat larger than the experimental one, but is of the
same order as that determined by Yamada and Terao at our
lattice constant; the compressibility is in moderate agreement
with the experiment.

Before we comment on the calculated value of the Curie
temperature, we return to the apparent contradiction posed
by the observed helical spin structure.

The physics of the observed helical structure is different
from that discussed in Section 2. In fact, it was shown
(Bak and Jensen, 1980; Nakanishi, Yanase, Hasegawa and
Kataoka, 1980; Kataoka, Nakanishi, Yanase and Kanamori,
1984) to come about through the Dzyaloshinski–Moriya
exchange interaction (DMI) (Dzyaloshinsky, 1958; Moriya,
1960), which is a consequence of the SOC. It is of the form
D(S1 × S2) and is finite if the crystal lacks an inversion
center, as in the case of MnSi. The simultaneous rotation of
all magnetic moments about the direction of the ‘exchange
vector’ D does not change the energy of the system. This
property of the DMI allows the symmetry, with respect
to the generalized translations, to be maintained, which is
a necessary condition for the stability of helical structures
(Sandratskii and Lander, 2001). The work of Bak and
Jensen (1980), Nakanishi, Yanase, Hasegawa and Kataoka
(1980), and Kataoka, Nakanishi, Yanase and Kanamori
(1984) reveals that the DMI breaks the symmetry of the
wave-vector-dependent susceptibility with respect to the
reversal of q, as a consequence of which the total energy
E(q) is no longer invariant under a reversal of q, leading
to a small shift of the minimum of the total energy to an
incommensurate Q. Presently, this cannot be simulated with
an ab initio total energy calculation.

It should be clear now that, strictly speaking, one cannot
use spin spirals to determine the exchange function of MnSi
and whence the Curie temperature. However, assuming that
SOC has only a small effect on the electronic structure,

leaving aside its subtle influence on the magnetic order,
we may use the converged potentials to calculate the band
structure without SOC and subsequently determine the total
energy for spin spirals by employing the force theorem. To
do this, one notes that the four magnetic atoms in MnSi
require four normal modes in equation (63) and the total
energy difference of a spin spiral becomes

�E = M2
0 [4j11(q) + 2j12(q)

6∑
i=1

cos(q · τ i )] (68)

where M0 is the Mn moment in the ground state and τ i

are the six basis vector differences describing the regular
tetrahedron characteristic for the crystal structure of MnSi.
To obtain the two exchange functions, one calculates the set
of reciprocal lattice vectors, {Kκ } for which

8∑
κ=1

6∑
i=1

cos[(q + Kκ) · τ i] = 0 (69)

The Curie temperature in the static approximation is then
given by

kBTc = 12

5
M2

0 ·
(

1

N

∑
q

3

j11(q) − j12(q)

+ 1

N

∑
q

1

j11(q) + 3j12(q)

)−1

(70)

where we used the appropriate combinations of the exchange
functions that describe the normal modes.

The result of the numerical calculations is given in Table 5
as T SF

c . In contrast to ZrZn2 and Ni3Al, it is larger than
the experimental value and the overestimate increases if
the dynamic approximation is applied. Furthermore, it is
found that the pressure dependence of the calculated T SF

c
is much too weak being near ambient pressure dTc/dP 	
−0.3 K kbar−1, which is to be compared with the experi-
mental value of dTc/dP 	 −1.6 K kbar−1 (Pfleiderer et al.,
2004). Since the calculated compressibility is in fair agree-
ment with the measured value of Pfleiderer et al. (2004) (see
Table 5), we conclude that the subtle properties of the mag-
netic structure are ill-described by the naive application of
the spin spiral configurations.

3.3 Toward a unified theory

It is desirable to have a theory that covers the whole range
of cases, from weak ferromagnets to the local moment limit,
ideally all the cases displayed by the Rhodes–Wohlfarth
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plot, Figure 1. Such a theory was proposed by Moriya and
Takahashi (1978a,b) (Moriya, 1985, Chapters 7–8) who used
the Stratonovich–Hubbard functional integral method. One
can construct a simple form for the functional that does not
contain the original model parameters, thus representing all
the spin configurations including intermediate cases in an
approximate way. In a notation somewhat different from that
of Moriya and Takahashi, the formalism may be described
as follows.

A functional � = �(M, ML, Mq) is constructed that
depends on the magnetization, M , the length of the moments,
ML, and the fluctuation vector Mq = (mxq, myq, mzq). The
functional integral to be evaluated is then

exp (−F/kBT ) ∝
∫

dM2
L

∫ ∏
q

dMq

× exp[−�(M, ML, Mq)/kBT ] (71)

which supplies the free energy, F . An important approxima-
tion is now to use Lagrange multipliers, λα, to enforce all
lengths of the magnetic moments to be near a most probable
length, thus writing for the functional

� =
∑

q

j (M2
L, q)|Mq|2 + E(M, M2

L)

−
∑
α

λα

(
M2

αL + M2 −
∑

q

|mαq|2
)

(72)

Here j (M2
L, q) is the exchange interaction that may be

determined with the methods described in Section 2 and is
defined such that j (M2

L, q = 0) = 0. E(M, M2
L) is the energy

of the configuration having the magnetization M and the local
magnetic moment ML. The integral over Mq can now be
carried out easily. But, we single out the q = 0 component
Mq=0 = (0, 0, mz0) = (0, 0, M), which is identified as the
macroscopic magnetization. The result is

exp (−F/kBT ) ∝
∫

dM2
L

∫
dM

× exp

{
− [E(M, M2

L) − ∑
α λαM2

αL]

kBT

−1

2

∑
α,q

ln
λα + j (M2

L, q)

πkBT

}
(73)

Next, differentiating with respect to λα , we get for the length,
M2

L = ∑3
α=1 M2

αL,

M2
L = kBT

N

∑
α

∑
q

χα(q) (74)

where

χα(q) = 1

[2λα + 2j (M2
L, q)]

(75)

The saddle-point condition for M2
αL gives another equation

by taking the derivative with respect to M2
αL. This gives

λα = ∂E(M, M2
L)

∂M2
αL

+ kBT

N

∑
q

χα(q)
∂j (M2

L, q)

∂M2
αL

(76)

Here the inverse susceptibility is identified with the fluct-
uation-dissipation theorem in the static approximation. If the
magnetization is finite, that is, below the Curie temperature,
the integration over M indicated in equation (73) must be
carried out. Treating this also with a saddle-point integration,
we obtain the condition

∂E(M, M2
L)

∂M
+ kBT

N

∑
α

∑
q

χα(q)
∂j (M2

L, q)

∂M
= 0 (77)

To determine the local magnetic moment, the magnetization
and the susceptibility, and thus the Curie temperature, the
four equations (74)–(77) must be solved simultaneously.

Unfortunately, this formalism does not provide a new
method to determine the energy functional E(M, M2

L). In the
work referred to by Moriya (1985), an approximation to the
grand potential defined in equation (12) is employed. Indeed,
one can extract the appropriate terms for E(M, M2

L) from
equation (42) and find that the preceding formalism leads
exactly to the theory described in Section 3.1 in the static
approximation, provided the derivatives ∂j (M2

L, q)/∂M2
αL

and ∂j (M2
L, q)/∂M are neglected in equations (76) and (77).

This again implies the need to renormalize the coefficients in
equation (42) if one attempts to calculate them in the LSDA.
One can construct expansions of order higher than that given
in equation (42), which involve the magnetization and the
fluctuations, the latter – it must be emphasized – appearing
as Gaussian averages. An example of this can be found in
the seminal review article by Shimizu (1981), who gives an
expansion up to eighth order in M . Actual numerical experi-
ments with expansions of varying order show, however, that
only very little is gained in accuracy by high-order expan-
sions compared to the simpler low-order cases. In Chapter 8
of his book, Moriya (1985), correctly points out that the
preceding equations are more general than any expansions.
They are also useful for explaining physical trends; it must
be emphasized, however, that powerful ab initio algorithms
still have to be developed. For this, a promising approach
using a spin-cluster expansion appears to be that recently
proposed by Drautz and Fähnle (2004).

The unified approach sketched in the preceding text
can still be profitably used for a simple demonstration
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of a formula for the Curie temperature in the spherical
approximation. Usually, the resulting formula is known as
the RPA formula, which is derived for localized-moment
systems by Green’s function methods (see Tahir-Keli and
ter Haar, 1962a,b; Tahir-Keli and Jarrett, 1964; Tyablikov,
1969; Wagner, 1972). Furthermore, the unified approach
sheds light on bcc Fe above the Curie temperature and
provides means to interpolate between the intermediate cases
in the Rhodes–Wohlfarth plot. While the interpolation is
quite empirical and is not pursued here any further (see
Moriya, 1985, Chapter 7), it is worthwhile to use the unified
approach for the ‘nearly localized’ case of bcc Fe at and
above the Curie temperature.

3.3.1 The spherical approximation and bcc iron

In the paramagnetic region, that is, above the Curie temper-
ature, T > Tc, the equations (74)–(76) simplify because of
isotropy and become

M2
L = 3kBT

N

∑
q

χ(q) (78)

as well as

χ−1
0 = 2

∂E(M2
L)

∂M2
L

+ 6kBT

N

∑
q

χ(q)
∂j (M2

L, q)

∂M2
L

(79)

where

χ(q) = 1/[χ−1
0 + 2j (M2

L, q)] (80)

M2
L is the magnetic moment squared at high temperatures,

which for a local moment system is equal to the saturation
moment squared, M2

L = M2
0 . Since at the Curie temperature

χ−1
0 = 0, equations (78) and (80) imply

kBT SP
c = 2 M2

0

3

[
1

N

∑
q

1

j (M2
0 , q)

]−1

(81)

which gives the Curie temperature in the spherical approx-
imation, or, as was pointed out in the preceding text,
in the RPA. Note that equation (79) was ignored in this
step. Continuing to ignore this equation, one can discuss a
Curie–Weiss law that is obtained by requiring M2

L = M2
0

at all temperatures above Tc but calculating χ−1
0 by using

equation (80) in equation (78). This problem is easily solved
numerically and the inverse susceptibility that results is
shown as the dashed curve in Figure 10; it can, obviously,
not explain the experimental susceptibility. A collection of
data pertinent for bcc Fe is given in Table 6.
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Figure 10. Calculated inverse susceptibility of bcc Fe (for the
definition of ML, see the text). Dashed curve is the spherical
approximation inverse susceptibility, solid curve is obtained from
solving equations (78)–(80) self-consistently. Experimental data
from Shimizu (1981). (Reproduced from J. Kübler, 2006, with
permission from IOP Publishing Ltd.  2006.)

Table 6. Calculated and experimental values for bcc Fe: lattice
constant, a, calculated spherical model (RPA), T SP

c , mean field,
T MF

c Curie temperatures, magnetic moment, M0, and Curie
temperature.

a (Å) T SP
c (K) T MF

c (K) M0(µB) Tc (K)

Calculateda 2.8158 893 1343 2.171 1018
Calculatedb 2.8660 824 1328 2.268
Calculatedc 2.8210 790 1150
Calculatedd 2.8680 675 1035
Experiment 2.8660 2.216 1044

aThis calculation at theoretical lattice constant.
bThis calculation at experimental lattice constant.
cMoran, Ederer and Fähnle (2003).
dMoran, Ederer and Fähnle (2003).

The exchange function j (q) was in the cases discussed
here obtained by total energy calculations using equation (53)
for θ = 90◦ constraining the magnetic moment in the atom or
local frame of reference to the desired self-consistent ground-
state value. Results are given for two lattice constants, the
first line in Table 6 applying to the theoretical equilibrium
and the second line to the experimental atomic volume.
Values for the calculated spherical approximation Curie
temperature and the mean-field value from equation (61) for
the appropriate atomic volumes are also listed in Table 6.
Before discussing these numbers any further, we show that a
semiempirical explanation of the Curie–Weiss law is possible
by considering equation (79) together with equations (78)
and (80).
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If one assumes that for the case of a nearly localized
ferromagnet an expansion of the energy function E(M2

L)

about the value of M2
L/M2

0 = 1 is meaningful, then the
derivative of the exchange function with respect to M2

L
in equation (79) might be estimated from ∂j (M2

0 , q)/∂M2
0 ,

that is, replacing ML by M0. The latter derivative can be
obtained numerically by finite differences using constrained
total energy calculations to values of the magnetic moment,
M0 ± �M .

The derivative calculated for bcc Fe may be characterized
by the number

1

N

∑
q

∂ log j (M2
0 , q)

∂M2
0

	 −0.129 (82)

and an evaluation of the self-consistency equations (78)–(80)
gives, using the expansion

E(M2
L) = 1

4
χ−1

eff (M
2
L/M2

0 − 1) (83)

the result shown in Figure 10 as solid line. The value used
here for the expansion coefficient is χ eff 	 0.67 · 10−4 emu
mol−1. The Curie temperature is obtained as Tc = 1018 K
and is also given in Table 6. The value of the magnetic
moment at the calculated Curie temperature is ML 	 1.07M0.
It should be stressed that the only input parameter is
χ eff, which together with the ab initio exchange function
j (M2

0 , q) explains both the slope and the Curie temperature.
The expansion coefficient χ eff should be obtained from a
renormalized theory, which is beyond the scope of our
approach. But it is interesting to observe that it is of the order
of magnitude of a Brillouin zone average of the nonuniform
susceptibility χ(q). The agreement with the experimental
data is surprising, but perhaps fortuitous.

For completeness, we report results for the magnetization
of bcc Fe below the Curie temperature. An application of an
expansion of the energy function E(M, M2

L) in equations
(76) and (77) of rather high order cannot explain the
magnetization properly. But since the magnon-spectrum can
be calculated by means of spiral total energies, using for
instance a formula like equation (20), one can resort to
established theories for local moment systems. Antropov,
Harmon and Smirnov (1999) used an interpolation formula
given by Tyablikov (1969) and calculated magnon energies
to obtain the magnetization shown in Figure 11, which
explains the experimental results to an amazing accuracy.
It should be added, however, that the visual agreement is
enhanced by using reduced units, which was not done in
the original publication by Antropov, Harmon and Smirnov
(1999).

We complete the discussion by commenting on the remain-
ing numbers in Table 6. Moran, Ederer and Fähnle (2003)
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Figure 11. Temperature dependence of the magnetization of bcc
Fe in reduced units. The data for the curve labelled Antropov et al.
were extracted from Figure 13 of the paper of Antropov, Harmon
and Smirnov (1999) and are based on the Tyablikov formalism.

calculated the Curie temperature as a function of the volume
and found that its value increases as the volume is decreased.
Two of their values are included in Table 6 together with
two values calculated here. The latter support the calcula-
tions of Moran et al., although our rate of change is some-
what smaller, being ∂T SP

c /∂P 	 0.58 K kbar−1 compared
with their value of ∂T RPA

c /∂P 	 1.8 K kbar−1. It is not
the difference in these numbers that is of importance (our
estimate perhaps being less precise because of our simpli-
fied constraining scheme, see Grotheer, Ederer and Fähnle,
2001 and Singer, Fähnle and Bihlmayer (2005)), it is the
sign that is quite counterintuitive. Indeed, it violates the
Bethe–Slater curve, according to which the nearest-neighbor
exchange constant for iron should decrease with decreasing
interatomic distance (Sommerfeld and Bethe, 1933; see also
Kouvel and Wilson, 1961 as well as Jiles, 1998). Moran
et al. point out that one has to go far beyond the nearest
and next-nearest exchange constants to see the origin of the
behavior in the rate of change. Since the experimental data
give ∂Tc/∂P 	 0 (Leger, Loriers-Susse and Vodar, 1972),
they conclude that the pressure effect cannot be correctly
described by the Heisenberg model. (Note that the quantities
T SP

c or T RPA
c or T MF

c depend only on the exchange func-
tion j (q)). Thus, we have to look at the role of pressure
in the energy function E(M2

L), for which, unfortunately, an
ab initio expression is lacking.

3.3.2 Other work on elementary magnets

We begin this subsection by referring back to the grand
potential given in equation (12) and consider the
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paramagnetic state as consisting of local moments that are
disordered like atoms in a disordered alloy. To evaluate the
grand potential for this situation, one needs a method to
solve the single-particle equations in the presence of disorder.
A powerful scheme to treat the disorder is the coherent-
potential approximation (CPA) (Ehrenreich and Schwartz,
1976), which can be combined with Green’s function meth-
ods implied in Section 2.2, where the real-space method for
obtaining the exchange interactions was sketched. The initial
steps of the CPA theory are easily explained.

If we are given a situation where the concentration of A

atoms is x, then, in a binary alloy, that of the B atoms is
(1 − x) and the average of the scattering path matrix defined
in equation (22) is

〈τ 〉 = xτA + (1 − x)τB .= τC (84)

where a scattering path operator, τC, of a coherent medium is
defined. Physically, a random crystal potential is replaced by
an effective medium that is described with a single scattering
path matrix τC. Starting from here, a single-site t-matrix
is defined in correspondence with equation (22). There are
a number of different ways to proceed, all are, however,
beyond the scope of this chapter. A good discussion can be
found in the paper by Gyorffy et al. (1985). We stress that the
CPA is ideally suited for obtaining the exchange constants
from the real-space approach.

The paramagnetic state of a magnet is now modeled as
a random distribution of an equal amount of up- and down-
spin atoms and the grand potential is determined variationally
dropping all double-counting terms. Using this approach,
which leads to the so-called disordered local moment picture
(DLM), Staunton, Gyorffy, Stocks and Wadsworth (1986)
have derived an expression for the temperature-dependent,
paramagnetic spin susceptibility. This approach has been
very successful in explaining the magnetic correlations in
the paramagnetic state of several magnetic metals and alloys

as well as determining the Curie temperatures (Staunton and
Gyorffy, 1992).

We begin our comparison of a number of noteworthy,
ab initio calculations for the Curie temperatures for Fe, Co,
and Ni with the results of Staunton and Gyorffy (1992),
which appear in the first column of Table 7. This prominent
paper also contains a demonstration of the Curie–Weiss law
and its relation to experimental data. It should be noted that
this theory does not require a mapping onto an effective
Heisenberg model.

The remaining entries of Table 7 are calculated with
methods more in line with the present review. Thus, the
second column summarizes the results of Halilov, Eschrig,
Perlov and Oppeneer (1998), who, in an important and
very detailed paper, obtained the exchange interaction in
the reciprocal-space approach. They also, besides detailed
magnon spectra, calculated and showed the magnetization as
a function of the temperature for Fe, Co, and Ni, giving the
Curie temperatures in the mean-field approximation.

The results obtained by Uhl and Kübler (1996) (Referencec

in Table 7) were based on the spin-fluctuation theory using,
besides the exchange function j (q), the calculated values for
the expansion coefficients α and β. This, as was pointed out
in the preceding text, unfortunately leads to inaccurate Curie
constants.

The results by Rosengaard and Johansson (1997) in the
column marked Referenced are described in a very inspir-
ing paper, in which the real-space and reciprocal-space
approaches for obtaining the exchange interaction are com-
pared. The actual calculations were carried out with exchange
constants obtained in the reciprocal space approach using
spin spirals. The magnetization as a function of the tem-
perature was determined using the Monte Carlo method,
which, in principle, is exact, given exact exchange constants
and a sufficiently large sampling volume. Unfortunately, this
method cannot be dealt with here, so a reference must suf-
fice (Landau and Binder, 2000). (See also Quantum Monte

Table 7. Collection of calculated Curie temperatures and experimental values (from Table 1) in Kelvin of bcc
Fe, fcc Co, and fcc Ni.

Referencea Referenceb Referencec Referenced Referencee Referencef Experimentg

bcc-Fe 1015 1037 1095 1060 1414 950 1343 893 1044
fcc-Co 1250 1012 1080 1645 1311 1570 1249 1388
fcc-Ni 450 430 412 510 397 350 643 537 627

aStaunton and Gyorffy (1992), DLM picture.
bHalilov, Eschrig, Perlov and Oppeneer (1998), mean-field approximation.
cUhl and Kübler (1996), spin-fluctuation approximation.
dRosengaard and Johansson (1997), Monte Carlo calculations.
ePajda et al. (2001), mean-field and RPA values given.
fThis work, mean-field and spherical approximation given.
gExperimental results, see Table 1.
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Carlo Methods, Volume 1). The Curie constants are also
obtained and found to be smaller than the experimental
values.

Finally, we emphasize that Pajda et al. (2001) determine
the exchange constants using the real-space approach obtain-
ing the spin-wave stiffness constants, and Curie temperatures
of Fe, Co, and Ni in the RPA and mean-field approximation.
Their results are shown in Table 7 in the column marked
Referencee. They are seen to basically agree with ours, given
in the column marked Referencef, although they are not
identical.

We close this subsection by briefly remarking on the
antiferromagnetic metals fcc Fe and fcc Mn. Their electronic
and magnetic structure is unusual, showing for a certain
range in the atomic volume noncollinear order, see for
instance Chapter 4 in Kübler (2000), and for more recent
results Knöpfle, Sandratskii and Kübler (2000) and references
therein. The case of fcc Fe is of particular interest because
of the possibility of epitaxially growth, which is further
discussed in Section 4.3.

Zhou, Wang and Kawazoe (1999) determined for both
fcc Fe and fcc Mn 11 pair exchange constants by means
of total energy calculations for magnetic supercells of con-
siderable size. By means of the Monte Carlo method,
they then computed the Néel temperatures obtaining for
fcc Mn a value of TN = 383 K, which should be com-
pared with a spin-fluctuation value by Uhl and Kübler
(1997) of TN = 446 K and an experimental estimate from
Mn alloys of TN = 490 K (Endoh and Ishikawa, 1971).
For fcc Fe, their results were TN = 156 K. A comparison
with an experimental value is not straight forward: neu-
tron diffraction measurements by Onodera et al. (1994) on
coherent fcc Fe precipitates in Cu yielded a value of TN =
67 ± 2 K, whereas films epitaxially grown on Cu(100) by
Qian et al. (2001) indicated a Néel temperature of about
275 K.

4 APPLICATIONS FOR MAGNETS
DESIGN

In this section, essentially, two formulas are retained, that
is, equations (60) and (61), the spherical approximation (or
RPA) and the mean-field approximation to predict the Curie
temperature of magnetic systems that might be of interest for
technological applications. We stress that all these theories
require a mapping to an effective Heisenberg model.

Without an attempt at completeness, a number of recent
papers concerned with, broadly speaking, spin-electronics (or
spintronics) are reviewed first, followed by some selected
studies on magnet films and multilayers. (See also Heusler
Alloys, Volume 4).

4.1 Half-metallic ferromagnets

Half-metallic ferromagnets possess the unusual property that
in one spin channel the electrons are metallic, in the other
they are insulating with a sizable energy gap, provided SOC
can be neglected. Thus, at least at the absolute zero, the
electrons are 100% spin polarized at the Fermi edge. In
the presence of SOC, the degree of polarization is still
nearly perfect. An early review is contained in the book
by this author (Kübler, 2000, Ch.4). A recent review article
containing a large number of original references is that by
Shirai (2004); thus, half-metallic ferromagnets may be used
as potential materials for spintronic device applications, for
example, as an electrode of a magnetic tunnel junction,
a source of spin injection into semiconductors, and newly
proposed transistors.

4.1.1 Heusler alloys

Examples of half-metallic ferromagnets are the ‘classical’
C1b-type Heusler alloys NiMnSb, PtMnsb, and so on, mag-
netite, rutile-type CrO2, the L21-type Heusler alloys, per-
ovskite manganites, double perovskites, the diluted magnetic
semiconductors, and the recently discovered zinc-blend half-
metals, for references see Shirai (2004). For any of these
compounds to be of technical use, the Curie point must be
above room temperature. Modern simulations thus not only
concentrate on the electronic and magnetic properties but also
on predictions of the Curie temperature.

To begin with, one needs to know if the techniques
described here are sufficiently accurate for meaningful pre-
dictions. Calculations by Enkovaara et al. (2003) on the L21-
type Heusler alloys Ni2MnGa and Ni2MnAl as well as by
Sasioglu, Sandratskii and Bruno (2004) on Ni2MnX (X =
Ga,In,Sn,Sb) serve this purpose quite well. Although these
compounds are not half-metallic, their finite-temperature
properties are quite revealing. Improving considerably earlier
work by Kübler, Williams and Sommers (1983), Enkovaara
et al. and Sasioglu et al. used modern calculational method
and the LSDA including the generalized gradient approxi-
mation (GGA) (Perdew and Wang, 1992) to determine the
exchange parameters in the reciprocal-space approach. The
Curie temperature is obtained in the mean-field approxima-
tion modified by considering more than one magnetic sublat-
tice. The latter improvement is similar to the diagonalization
employed for the treatment of the multi-sublattice case in
Section 3.2, except for the fact that Sasioglu, Sandratskii
and Bruno (2004) use it for the mean-field approximation.

The results of these calculations are extremely satisfying.
The experimental Curie temperatures of Ni2MnX (X =
Ga,In,Sn,Sb) are known and found in the range from 315 K
to 380 K, the theoretical values deviating in the worst
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case by only 9% of the experimental value for the case
of Ni2MnIn, where T

exp
c = 315 K compared with T calc

c =
343 K (Sasioglu, Sandratskii and Bruno, 2004).

Sasioglu, Sandratskii and Bruno (2005) in another paper
considered two further L21-type Heusler alloys, Mn2VAl and
Mn2VGe, the former of which was found by Weht and Pickett
(1999) to be a half-metallic ferrimagnet with a magnetic
moment of 2 µB/f.u. The Curie temperature for Mn2VAl
calculated in the same way as in the previous paper (Sasioglu,
Sandratskii and Bruno, 2004) comes out to be T MF

c =
638 K, underestimating the experimental value of Tc = 760 K
somewhat. For Mn2VGe, they predict a Curie point of
T MF

c = 413 K. For more recent results see Kübler (2006).
Clearly, it is of interest to calculate the Curie temperatures

of the ‘classical’ C1b-type Heusler alloys first discovered
by de Groot, Mueller, van Engen, Buschow and Jongebreur
(1983). This was done here using the augmented spherical
wave (ASW) method (Williams, Kübler and Gelatt, 1979)
in the LSDA, employing the reciprocal-space method and
the force theorem to obtain the exchange parameters. The
results for Curie temperatures in the spherical and mean-field
approximation are collected in Table 8.

For NiMnSb, the lattice constant was optimized; the results
are given in footnote a. At the smaller theoretical lattice con-
stant, NiMnSb remains half-metallic but the calculated Curie
temperature increases. We draw the attention to the drop in
the measured and calculated Curie temperatures for PtMnSn,
which is not half-metallic. Furthermore, although overesti-
mates by the mean-filed approximation are not uncommon,
it is startling to see the consistent overestimates in the cal-
culated Tcs by the spherical approximation, except for the
case of PtMnSn. Unpublished results by this author indicate
that the same discrepancy is found in the half-metallic fer-
romagnet CrO2. One could argue that estimates of Tc using
the static approximation to the spin-fluctuation theory, which
are lower by a factor of 0.6 compared with the spherical

Table 8. Calculated and experimental (van Engen, Buschow and
Jongebreur, 1983) values for the ‘classical’ half-metallic ferro-
magnets: lattice constant, a, experimental magnetic moments,
M0, calculated magnetic moments, Mcalc

0 , both in µB/f.u., exper-
imental Curie temperatures, Tc, calculated Curie temperatures:
spherical approximation (RPA) T SP

c and mean-field approxima-
tion, T MF

c .

a (Å) M0 Mcalc
0 Tc (K) T SP

c (K) T MF
c (K)

PtMnSb 6.210 3.97 4.02 582 741 991
PdMnSb 6.285 3.95 4.09 500 744 927
NiMnSba 5.920 3.85 4.00 730 1002 1305
PtMnSnb 6.264 3.42 3.84 330 188 354

aCalculated lattice constant is a = 5.725 Å with T SP
c = 1141 K.

bNot half-metallic.

approximation (compare equation (54) with equation (60)),
are more appropriate here. This can be ruled out for the
following reasons.

Capelle and Vignale (2001) as well as Eschrig and
Pickett (2001) in two recent papers drew attention to a
nonuniqueness problem in spin-density-functional theory.
Eschrig and Pickett start out with the observation that
the spin-only magnetic susceptibility is zero for a half-
metallic ferromagnet (which it manifestly is), although the
conductivity is that of a metal. Zero susceptibility, however,
implies that the ground-state spin density does not change
when an external magnetic field is changed. They prove that
two magnetic fields whose difference is constant in magnitude,
but possibly is nonunidirectional, may give rise to the same
ground state. Both papers arrive at the same conclusions
finding that the exchange-correlation energy is not always
a differentiable function of the spin density and the ground
state does not contain all information about excited states
in the presence of a magnetic field. As a consequence,
applications of the spin-density functional approximation
must be critically reexamined.

It is thus not surprising, for instance, that calculations for
the ground-state energy, where the magnetic moment is con-
strained to a given value (the constraint is achieved by a
magnetic field (Dederichs, Blügel, Zeller and Akai, 1984)),
result in a kink at the ground-state magnetization. The kink
implies that a power series expansion of the total energy in
terms of the magnetization fails precluding an expansion of
the form of equation (38). Since the kink, however, pins the
value of the magnetic moment near the ground-state value
in the wave-vector-dependent energy changes, the spherical
approximation still seems applicable. Furthermore, calcula-
tions employing the force theorem are carried out without
any constraining magnetic fields, so the information gained
in this case seems justified too. The apparent discrepancy
remains and could be due to the LSDA. Indications exist
that the GGA provides the necessary corrections.

4.1.2 Zinc-blende compounds

In the search for new materials suitable for spintronics
applications Akinaga, Manago and Shirai (2000) predicted by
LSDA calculations and subsequently grew zinc-blende CrAs
(zb-CrAs) on GaAs by molecular-beam epitaxy. It was found
to be ferromagnetic at room temperature and the calculations
revealed zb-CrAs to be half-metallic.

In fact, a large number of recent electronic structure calcu-
lations concentrated on zinc-blende compounds of transition
elements, in some cases comparing the electronic properties
in the unstable zinc-blende phase with that of the stable NiAs
crystal structure (Sanvito and Hill, 2000; Xu, Liu and Petti-
for, 2002; Sakuma, 2002). A systematic study of zinc-blende
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compounds involving transition-metal elements with N, P,
As, Sb, S, Se, and Te is that by Galanakis and Mavropou-
los (2003), who also examined the half-metallic behavior
of the transition-element-terminated surfaces. Subsequently,
there appeared calculations of the Curie temperatures, Tc, of
some of the compounds that might be of technological impor-
tance. In addition, the calculated trends in Tc were interpreted
and related with salient features of the electronic structure
(Kübler, 2003; Sanyal, Bergqvist and Eriksson. 2003).

The calculations by this author (Kübler, 2003) were based
on spin-fluctuation theory in the LSDA, which is not jus-
tified because of the nonuniqueness problem addressed in
the preceding text. However, the Landau parameter α plays
no prominent role here, therefore the results for the Curie
temperatures can easily be scaled up to the spherical approx-
imation (compare equation (54) with equation (60)) and are
given in Table 9, which also contains results obtained by
Sanyal, Bergqvist and Eriksson (2003), who used the GGA
for the determination of the underlying exchange constants.

The calculations were carried out for two lattice constants,
namely, those of GaAs (5.65 Å) and InAs (6.06 Å). For both
cases, the compounds VAs and CrAs are half-metallic ferro-
magnets, with magnetic moments of 2 µB/f.u. and 3 µB/f.u.,
respectively. The compound MnAs, however, is only half-
metallic with a moment of 4 µB/f.u. for the larger lattice
constant of InAs; for that of GaAs, the Fermi edge, EF,
moves into the conduction band (see for instance Figure 1
of Kübler (2003)) and the magnetic moment drops to 3.65
µB/f.u. Connected with this shift of EF is a large decrease
of the calculated Curie temperature, which is seen in the last
row of Table 9.

There is only rough agreement between the two sets of
numbers appearing in Table 9, the more precise values of
Sanyal et al. (second and third row) are lower throughout.
The differences in the mean-field results indicate different

Table 9. Calculated Curie temperatures for three zinc-blende mate-
rials at two different lattice constants, a, which are those of GaAs
(5.65 Å) and InAs (6.06 Å). The second and third row are calcu-
lations by Sanyal, Bergqvist and Eriksson (2003) using the GGA,
the fourth and fifth row are our own results obtained by the LSDA.
Mean-field, T MF

c -, Monte Carlo T MC
c -, and spherical approximation

T SP
c -results are given in K.

VAs VAs CrAs CrAs MnAs MnAs

a (Å) 5.65 6.06 5.65 6.06 5.65 6.06
T MF

c
a 990 610 1320 1100 640

T MC
c

a 830 490 980 790 530
T MF

c
b 1175 1367 569 1363

T SP
c

b 882 820 301 953

aCalculated by Sanyal, Bergqvist and Eriksson (2003).
bOwn calculations, obtained from Kübler (2003).

exchange constants, presumably because in one case the
GGA was employed. The Monte Carlo results are in principle
exact, given exact exchange constants.

Both sets of numbers indicate same orders of magnitude
and, in the cases of VAs and CrAs, an increase in the
calculated Curie temperatures when the lattice constant is
decreased. The same trend is observed in the half-metallic
ferromagnet NiMnSb, for which estimates of the Curie
temperature are given in Table 8.

This subsection is closed with the remark that experimental
observations confirm the theoretical results in that zb-CrAs
grown on GaAs possesses a Curie temperature above 400 K
(Akinaga, Manago and Shirai, 2000), while that of zb-MnAs
is below room temperature (Ono et al., 2002).

4.2 Diluted magnetic semiconductors

Diluted magnetic semiconductors (DMSs), like the prototypi-
cal Mn-doped GaAs, (Ga,Mn)As, and others to be discussed
in the subsequent text, are intended to be technologically
applied in devices that combine functions of semiconduc-
tors and magnetic devices. Here, methods need to be devel-
oped to manipulate and propagate the spin polarization in
order to control the spin degree of freedom of electrons
in semiconductors. These semiconductors are envisioned to
be ferromagnetic possessing Curie points above room tem-
perature, in order to realize, for instance, a spin-polarized
transistor, integrated spin-logic in a nonvolatile spin mem-
ory, and phase-coherence in a quantum computer – just to
name some of the presently much talked about key projects.

Because of the great wealth of experimental and theoretical
work on DMSs, our treatment here is necessarily incomplete.
An earlier review paper on the theoretical side is that by
König, Schliemann, Jungwirth and MacDonald (2003) and
the experimental situation was covered by Ohno (1999).

Perhaps one of the key materials fabricated is the DMS
with the formula (Ga0.947Mn0.053)As having a Curie tem-
perature of Tc = 110 K (Ku et al., 2003). However, fabrica-
tion of DMS materials possessing higher Curie temperatures
(characterized with unambiguous experimental methods like
magnetic circular dichroism) met with difficulties so far,
with perhaps one exception discussed in the subsequent text.
Numerous theoretical efforts thus concentrated on identifying
and understanding those physical mechanisms, which could
guide experimental efforts to result in optimized materials.
A small selection of these papers are reviewed here.

At present, the DMS materials discussed are (Ga,Mn)As,
(In,Mn)As, and (Ga,Mn)N of the III-V type, (Zn,Cr)Te of the
II-VI type, and Ge1−xMnx of group-IV type. The question
to be clarified theoretically concerns mainly the physical
mechanism that determines the exchange interactions over
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rather large distances. Here, one finds theories that rely on
model Hamiltonians, particularly noteworthy being that by
Dietl, Ohno and Matsukura (2001). Another approach uses
ab initio methods, like that by Akai (1998) who extracts
concepts for the exchange mechanism from his calculations.

Since we opt for describing results of ab initio methods,
we should stress that the various exchange mechanisms
appear in the calculational results in mixed form. This
is in contrast to the model Hamiltonian approach where
different perturbational treatments give different exchange
interactions, depending on the relative magnitude of the
relevant physical properties. Still, it is common to treat the
magnetism of a DMS in terms of the competition between
the antiferromagnetic superexchange and the ferromagnetic
double exchange through charge carriers (Andersen, 1963).
In the work, we want to start with (Sandratskii and Bruno,
2002, 2003a,b) the term double exchange is replaced by
kinetic exchange, since, it is argued that the term double
exchange occurs in the interpretation of mixed valence
systems, which are important in another context. The physics,
however, considered in the original definition of double
exchange (de Gennes, 1960) is the same as that considered
here under the label kinetic exchange (Sandratskii and Bruno,
2003a). This is shown by these authors, who use a simple
two-band tight-binding model and varying band occupations.

The supercell calculations have the virtue of great simplic-
ity, but they ignore the role of disorder, thus representing
simplifications that could be questioned. Still, the insight
gained by the work of Sandratskii and Bruno (2002, 2003a,b)
is quite enormous. Furthermore, refined calculations that do
consider the role of disorder ab initio support the supercell
calculations to a large extend, as shown by us in the following
text.

Sandratskii and Bruno deal with the DMSs consisting of
(Ga,Cr)As, (Ga,Mn)As, (Ga,Fe)As, and (Zn,Cr)Te containing
various concentrations of the magnetic ions. For simplicity,
we here select results for (Ga,Mn)As and (Zn,Cr)Te and show
in Figure 12 the calculated DOS for (Ga,Mn)As for the two
Mn concentrations of (i) 25% and (ii) 12.5%. In Figure 12(c),
we show the DOS of (Zn,Cr)Te with 25% Cr. They are eas-
ily reproduced with the help of a notebook computer using,
just as Sandratskii and Bruno, the ASW-method (Williams,
Kübler and Gelatt, 1979) in the LSDA. In the original work,
to which we refer for all details, one also finds the concentra-
tions 6.25% and 3.125%, obtained in the case of (Ga,Mn)As
for the lattice constant of GaAs. We here use a slightly larger
lattice constant (a = 5.87 Å instead of a = 5.65 Å) so that
the DMSs are half-metallic for all concentrations. That these
DMSs are, indeed, half-metallic, at least in supercell calcu-
lations, is one of the first results to be noticed.

In somewhat more detail, the calculations show (Figure 12
and those of Sandratskii and Bruno (2002, 2003a,b)) that the
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Figure 12. Total and partial density of states (DOS) of (a)
(Ga0.75Mn0.25)As, (b) (Ga0.875Mn0.125)As, and (c) (Zn0.75Cr0.25)Te
obtained by supercell calculations. Curves bordering shaded areas
depict d-states of Mn or Cr, respectively.

replacement of one Ga atom in the supercell of GaAs by a
Mn atom does not change the number of spin-down states
in the valence band. In the spin-up states, however, five new
hybridized energy bands related to the 3d states of Mn are
created. The situation is analogous for the case of ZnTe with
Cr. The atomic configurations of Ga being 4s24p1 and that
of Mn 4s23d5 implies that four electrons occupy the five
states, leaving one state unoccupied at the top of the valence
band, which is interpreted as a hole state. The same hole
state appears for ZnTe doped with Cr.

The important issue to be clarified by the calculations is
the role of the charge carriers in mediating the exchange
interaction. The experimental studies (Ohno, 1999) show
that the concentration of holes is lower than the concen-
tration of the Mn atoms. One of the factors leading to
the low concentration is the presence of As antisites, that
is, a small fraction of As occupies Ga sites. Sandratskii
and Bruno now succeed in demonstrating the importance
of the hole states by changing their occupation. This is
done in a rigid-band approximation for different numbers
of electrons, n, changing the charge state of Mn, each
time calculating the Curie temperature by both equations
(60) and (61), the spherical (or RPA), and the mean-field
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approximation, respectively, as a function of n self-consist-
ently. The reciprocal-space approach is used for the determi-
nation of the Curie temperatures.

For n = 0, that is, the nominal number of carriers, the
calculated Curie temperatures are given in Table 10 and
compared with experimental values. The DMS (Zn,Cr)Te was
grown with a concentration of 20% having an exceptionally
large Curie temperature of 300 K (Saito, Zayets, Yamagata
and Ando, 2003). It was studied by Sato and Katayama-
Yoshida (2001) theoretically and simulated with a supercell
containing 25% Cr by Sandratskii and Bruno (2003b), which
seems close enough to the experimental value.

For both DMS materials, a decrease in the number of holes
(n > 0) decreases the exchange interactions and thus both
estimates of the Curie temperature. For a small number of
holes, when the valence band is nearly filled, the exchange
interaction becomes antiferromagnetic, that is, the superex-
change mechanism begins to dominate over the kinetic
exchange. For an increased number of holes (n < 0), the
exchange interaction and correspondingly the Curie temper-
ature initially increases. The calculations reported by San-
dratskii and Bruno (2002, 2003a,b) cover the range −2 ≤
n ≤ 2 and show oscillatory behavior. The experimental Curie
temperatures are found to be in good agreement with the
calculations obtained for n = 0.6, indicating a hole con-
centration lower than the concentration of Mn atoms, also
agreeing with the experimental observation of Ohno (1999).
In the case of (Zn0.75Cr0.25)Te, the differences between the
two calculations cited in Table 10 is somewhat startling and
might be due to different precisions in sampling the exchange
function j (q).

The next step in theoretical refinements consists in incor-
porating disorder in the ab initio calculations. This is done
by employing the CPA, introduced briefly in Section 3.3.3.

In a short paper, Bouzerar, Kudrnovsky, Bergqvist and
Bruno (2003) focus their attention on the effects of
randomness and the compensating effects by As antisites in
the DMSs described by the formula (Ga0.95−yAsyMn0.05)As.
The CPA is used obtaining the exchange constants from
the real-space approach. Furthermore, the approximations
for the Curie temperature are examined by using the Monte
Carlo method (Landau and Binder, 2000) (See also Quan-
tum Monte Carlo Methods, Volume 1). As a result, the
general picture obtained by the supercell simulations is not
changed, although the various approximations for the Curie
temperature lead to somewhat higher values, including the
Monte Carlo estimate, which is larger by about 30 K com-
pared with the mean-field value given in Table 10. However,
a finite concentration of As antisites in both the supercell- and
the CPA-approximation leads to decreasing calculated values
resulting for y = 0.01 in the Monte Carlo approximation in
T MC

c = 117 K.

Table 10. Experimental Curie temperatures for (Ga0.95Mn0.05)As
and (Zn0.8Cr0.2)Te and results of supercell calculations in the
spherical (RPA), T SP

c , and mean-field, T MF
c , approximation.

(Ga0.95Mn0.05)As (Zn0.8Cr0.2)Te

T MF
c (K) 225a 346c 429d

T SP
c (K) 175a 369d

T
exp

c (K) 110b 300e

aCalculated by Sandratskii and Bruno (2002, 2003a).
bExperimental value (Ohno et al., 1996).
cCalculated by Sandratskii and Bruno (2003b) for (Zn0.75Cr0.25)Te.
dOwn calculation for (Zn0.75Cr0.25)Te.
eExperimental value (Saito, Zayets, Yamagata and Ando, 2003).

Sato, Dederichs, Katayama-Yoshida and Kudrnovsky
(2004) also employ the CPA to investigate the exchange
mechanism and the Curie temperature for the diluted mag-
netic semiconductors (Ga,Mn)N, (Ga,Mn)P, (Ga,Mn)As, and
(Ga,Mn)Sb. A concentration range up to 15% Mn is assumed,
for which the Curie temperature is obtained in the mean-
field approximation. The exchange constants are determined
using the total energy difference between the ferromagnetic
state and the ‘DLM’ state (see Section 3.3.3.), which can be
described with the formula (Ga(1−c)Mn↑

c/2Mn↓
c/2)X, whereas

the ferromagnetic state is denoted by (Ga(1−c)Mn↑
c )X. This

means that in the latter state the Mn impurities with con-
centration c having parallel aligned magnetic moments are
randomly distributed at Ga sites, whereas in the former
three components, Mn↑, Mn↓, and Ga are considered on the
Ga site.

The calculations by Sato, Dederichs, Katayama-Yoshida
and Kudrnovsky (2004) show that the compounds remain
half-metallic except for (GaMn)Sb. To compare with the
supercell calculations a Curie temperature of TMF

c 	 250 K
for 5% Mn in GaAs can be read from their Figure 1, which
is in acceptable agreement with the value given in Table 10.
The important thing about this paper is that the exchange
mechanism is analyzed in great detail. The concentration
dependence of the Curie temperature for small c is found
to be ∝ √

c, which is convincingly interpreted to be the
signature of kinetic exchange, called double exchange by
these authors. In contrast to this is the case of (Ga,Mn)Sb, for
which the concentration dependence is surprisingly different,
being nearly linear in c. Sato et al. argue that in this case
the magnetic moments are to be considered as localized so
that the p-d exchange model seems more suitable here. In
fact, this model was employed successfully by Jungwirth,
Atkinson, Lee and MacDonald (1999) and by Dietl, Ohno
and Matsukura (2001). The p-d-model (in other contexts
called the s-f-model) is the basis of the well-known RKKY
interaction, but the value of the p-d-exchange integral is a
disposable parameter. The transition to localized states seems
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to be a possibility here, but more experimental data are
needed to establish this firmly.

There are two further notable papers: Kudrnovsky et al.
(2004a) on (Ga,Mn)As as well as (Ge,Mn) and Kudrnovsky
et al. (2004b) on the same DMSs and (Zn,Cr)Te. They
supply important details and enlarge the scope of the paper
by Bouzerar, Kudrnovsky, Bergqvist and Bruno (2003),
supporting in all respects the exchange mechanisms exposed
in the preceding text and the role of anitsite atoms. They,
furthermore, find that due to disorder and the half-metallic
character of the systems, the pair exchange interactions are
exponentially damped with increasing distance of the Mn
atoms. They are also reduced with increasing concentrations
of the Mn atoms and the As antisites.

Eriksson et al. (2004), finally, are concerned with the
stability of the magnetic moment as a function of the As
antisite concentration. They argue that agreement between
theory and experiment is obtained only when the magnetic
atoms are randomly positioned on the Ga or Zn sites. They
suggest that the ordering of the DMS materials is heavily
influenced by magnetic percolation and that the measured
Curie temperatures should be very sensitive to details in the
sample preparation, which, indeed, they are.

4.3 Reduced-dimensional magnets

The importance of the magnetism of ultrathin films and mul-
tilayers need not really be stressed since their applications
in the magnetic storage technology are numerous, as, for
instance, the giant magnetoresistance of the multilayer sys-
tems employed in present-day read-heads. Equally (or even
more) important is the fundamental point of view on epitaxial
thin-film materials, which offer opportunities for exploring
the relationship between structure and magnetism because
new phases of matter can be stabilized on suitable growth
templates. It is only natural that the thermal properties of
these new phases, in particular, the Curie temperatures of
ferromagnets, are of great importance here. Examples are
the DMSs in Section 4.2. But the topic of this subsection are
other systems, to which we now turn.

A recent experimental study by Vollmer, van Dijken,
Schleberger and Kirschner (2000) has shown that the Curie
temperature of fcc(001)-Fe ultrathin films on a Cu(001)
substrate is modified upon coverage by a Cu-cap layer,
varying in a nonmonotonous manner as a function of the
Cu-cap layer thickness. Qian et al. (2001) noted that the
close correlation between magnetism and structure makes
this system quite unique. An oscillatory behavior of the Curie
temperature as a function of the spacer thickness was also
found by Ney et al. (1999) in fcc(001)-Co/Cu/Ni trilayers.
As Pajda et al. (2000) point out, the understanding of these

systems in the framework of itinerant-electron magnetism
is a very serious challenge. One of the problems is as
follows.

In an important paper, Mermin and Wagner (1966)
proved rigorously that the one- and two-dimensional isotropic
Heisenberg models with interactions of finite range can be
neither ferromagnetic nor antiferromagnetic at nonzero tem-
perature. This implies that the Heisenberg model, as specified
in the preceding text, cannot explain the finite-temperature
ferromagnetism observed in ultrathin films. There seem to be
(at present) two ways out.

We recall that many of the theories (but not all) require
a mapping onto an effective Heisenberg model, which is
postulated ad hoc in the cases where this applies. Thus, one
can either map onto a modified effective Heisenberg model
or avoid the mapping all together. The first possibility is quite
plausible because of SOC, which is a relativistic effect, not
included in the Heisenberg model implied by Mermin and
Wagner, and known to be more important in thin films than
in bulk materials. This line of thought is pursued by Pajda
et al. (2000), who modify the mapping by using a Heisenberg
model with the inclusion of SOC. This manifestly renders the
Mermin–Wagner theorem inoperative.

The other possibility is to abandon the Heisenberg model
for the description of itinerant-electron magnetism. Thus,
one might revisit Moriya’s unified approach (Section 3.3),
or revert to the DLM picture, which was briefly explained
in Section 3.3.3. To the best of the author’s knowledge, the
unified approach has not yet been used for two-dimensional
magnets, but the DLM picture has in papers by Razee,
Staunton, Szunyogh and Gyorffy (2002a,b).

We begin with the paper by Pajda et al. (2000) on
fcc(001)-Fe (or -Co) ultrathin films on Cu(001) covered by
a Cu-cap layer of varying thickness. In the first step, they
obtain the exchange constants, Jij , for i and j in the Fe-
or Co-film by the real-space method, subsequently doing
a two-dimensional Fourier transform, which results in the
exchange function j (q||), where q|| lies in the fcc(001)
surface Brillouin zone.

If one now rewrites equation (60) suitably adopted to the
two-dimensional case in terms of the spin-wave spectrum
obtainable from j (q||), observing that the latter has a
quadratic dispersion, one finds the Curie temperature to be
zero, just as required by the Mermin–Wagner theorem. In the
presence of SOC, however, the spin-wave spectrum develops
a gap at the zone center. Thus, one can write in the RPA or
spherical approximation

kBT RPA
c = 2M2

0

3


 1

N||

∑
q||

1

[j (q||) + �]




−1

(85)
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where N|| is the number of sites per layer, M0 is the film’s
magnetic moment, and the sum extends over the fcc(001)
surface Brillouin zone. The quantity �, except for a constant,
is the spin-wave gap, which was estimated roughly.

The calculated Curie temperatures are too large compared
with the experimental values, but qualitatively they show
the oscillatory behavior seen in the experimental data as a
function of the cap thickness, which is interpreted by Pajda
et al. (2000) as evidence of the oscillatory RKKY character
of exchange interactions in itinerant ferromagnets.

In contrast to the work by Pajda et al., the theory by
Razee, Staunton, Szunyogh and Gyorffy (2002a,b) for the
Curie temperature in reduced dimensions does not map
onto an effective Heisenberg model. It uses the concept of
DLMs above the Curie temperature in the same way as
the DLM theory for bulk systems by Gyorffy et al. (1985),
Staunton, Gyorffy, Stocks and Wadsworth (1986), as well as
Staunton and Gyorffy (1992), which was briefly described
in Section 3.3.3. Thus, the layer-dependent paramagnetic
spin susceptibility of films and multilayers above the Curie
temperature is calculated for various geometries and the
instability of the paramagnetic state is interpreted as the Curie
temperature. Unfortunately, the formal development of the
theory is too space consuming to be included here. It is of
importance, however, to notice that relativistic effects are not
incorporated. Since DLM employ the Bogoliobov–Peierls
variational principle and a rather simple trial grand potential,
just like the spin-fluctuation theory in Section 3.1 (equations
(40) and (41)), this is a mean-field theory, a point which
could invite criticism. Yet, even though a rigorous proof
for the validity of the DLM theory in lower-dimensional
systems is apparently lacking, it does not seem to be justified
to treat the DML mean field on the same footing as the
Heisenberg mean field, which erroneously gives a nonzero
Curie temperature in two (and even in one) dimensions.

Razee, Staunton, Szunyogh and Gyorffy (2002a,b) con-
sider in detail thin films of Fe and Co (1–8 layers)
on and embedded in nonmagnetic substrates, specifically
bcc Fe/W(100), fcc Fe/Cu(100), and fcc Co/Cu(100). In
uncapped Fe/W(100), they find intralayer ferromagnetic cor-
relations in all thicknesses of the iron film except in the
layer nearest the W substrate; the interlayer couplings are
ferromagnetic and short ranged. There are also ferromagnetic
intra- and interlayer couplings throughout the Co films in fcc
Co/Cu(100). In the Fe/Cu(100) system, the top two layers
are coupled ferromagnetically and the rest antiferromagnet-
ically. Cu capping is found to have a profound effect upon
the magnetic coupling in both Fe/Cu(100) and Co/Cu(100)
with the Curie temperature showing an oscillatory behavior
as a function of the cap layer thickness. As an example, we
show in Figure 13 their results for the fcc Fe/Cu(100) sys-
tem. The oscillations are clearly seen; also seen is that the
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Figure 13. The Curie temperature for 3 and 7 layers of Fe on
and embedded in Cu(100) as a function of the number of cap
monolayers. The experimental data were extracted by Razee,
Staunton, Szunyogh and Gyorffy (2002a) from Kerr data measured
by Vollmer, van Dijken, Schleberger and Kirschner (2000). This
figure was redrawn using Figure 1 of Razee, Staunton, Szunyogh
and Gyorffy (2002a) with permission of the authors.

calculated values overestimate the measured ones, although
they are much smaller than mean-field values on the basis of
an effective Heisenberg model (Pajda et al., 2000).

It is quite certain that much more work will be done on
these challenging problems in the future.

5 SUMMARY

The theory of finite-temperature magnetism of metals is
formulated within the LSDA, the salient features of which are
described briefly. However, calculational details are largely
left to the specialized literature. The essential ingredients to
the thermodynamic theory are orientational fluctuations of
the local magnetization for which an adiabatic principle is
postulated. The excitation energies of the fluctuations are
determined from frozen magnons or more general frozen
configurations, which are modeled by constrained total
energy changes or, in justified approximations, from band-
energy changes due to noncollinear spin orientations. As
a result, exchange constants are defined and determined
ab initio either in a real- or in a reciprocal-space approach.

The range to be covered to describe the magnetism of
itinerant electron metals is a wide one extending from local-
ized or nearly localized systems to the weakly ferromagnetic
metallic compounds and alloys. A guide line for this review
is Moriya’s work that supplies a general framework, even
though it does not yet give detailed algorithms for all cases.

The limit of weakly ferromagnetic metals is formulated
with special emphasis on dissipation effects, which are incor-
porated in the nonuniform, dynamical susceptibility, the latter
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being treated in a widely used approximation. The result-
ing static and dynamic approximations to the spin-fluctuation
theory are applied to and discussed for the cases of ZrZn2,
Ni3Al, MnSi, and tentatively for nickel. It is pointed out
that an ab initio theory for the dissipation constant is lack-
ing, although in some cases its order of magnitude can be
estimated from the band structure. Furthermore, it becomes
apparent that the energy governing the length changes of the
magnetic moment, usually formulated in terms of a Landau-
type expansion, needs special attention and can only be
obtained from the total energy by rescaling (renormalizing)
the latter if it is determined from constrained-moment calcu-
lation.

Moriya’s unified theory is then used to derive the spherical
approximation or RPA, which supplies a useful formula also
for those cases where a mapping onto an effective Heisenberg
model is a necessary approximation. The unified theory is
discussed further in view of the static approximation for
both the weak ferromagnetism and the opposite limit of the
ferromagnetism of iron.

The Curie temperatures of the ferromagnetic metals, Fe,
Co, and Ni have been determined by a great number of
methods; there is the DLM picture by Staunton and Gyorffy,
which is briefly introduced, and there are others that use
a mapping onto an effective Heisenberg model obtaining
estimates by the mean-field approximation, the RPA, and
the Monte Carlo technique. These results for the Curie
temperatures, as well as results for Néel temperatures of fcc
Fe and fcc Mn, are collected and discussed.

Some selected applications for magnets design, in partic-
ular, for the novel field of spintronics, are then introduced.
This includes a collection of theoretical and experimental
Curie temperatures of half-metallic ferromagnets like Heusler
alloys and Zinc-blende compounds, and the diluted magnetic
semiconductors. Here, a catalogue of exchange mechanisms
and their interpretations play an important role, which are
particularly emphasized.

Finally, the finite-temperature properties of epitaxial thin-
film materials and multilayers are addressed. The role played
by the theorem of Mermin and Wagner is stressed and two
different techniques to determine the Curie temperatures of
low-dimensional systems are compared. One is a relativistic
extension of the mapping onto an effective Heisenberg model
and the other is the DLM picture as applied to thin magnetic
films on and embedded in Cu substrates.
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Kübler, J., Höck, K-H., Sticht, J. and Williams, A.R. (1988). Density
functional theory of non-collinear magnetism. Journal of Physics
F: Metal Physics, 18, 469.
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1 INTRODUCTION

The study of phase transitions has played a central role
in many subfields of physics and related disciplines, and
research in magnetism has been crucial to progress in the
understanding of diverse types of phase transitions. This is,
in part, because simple magnetic models have time-reversal
symmetry that results in symmetries in phase diagrams that
are absent in other models in statistical mechanics. In part, it
also results from the rich diversity of experimental measure-
ments of magnetic systems that allows comparison between
theory and physical reality. Although simple approaches,
such as Landau theory (mean-field theory), provide an intu-
itive picture of magnetic phase transitions, we now know that
such approaches are generally inadequate for the provision of
a truly quantitative description. More sophisticated methods

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

of investigation have been developed and a mature frame-
work is now in place for the understanding and classification
of phase transitions based on a combination of theoretical
and numerical approaches.

In general terms, the distinguishing feature of magnetic
phase transitions is the appearance of a nonzero value of an
‘order parameter’ in the ordered phase, below some transition
temperature, Tc, which is zero in the disordered phase above
Tc. In a ferromagnet, the order parameter is simply the
normalized spontaneous magnetization

m = 1

N

∑
i

Si (1)

where Si is the spin at site i and the sum is over all N

sites in the lattice. Of course, in general the spin may have
many components; but for simplicity, here we will consider
the one-component (scalar) case. In an antiferromagnet, the
order parameter is the ‘staggered magnetization’

m+ = 1

N

∑
i

Sie
i�k·�r (2)

where �rgives the position of the spin and �k is the wave vector
that characterizes the ordered antiferromagnetic structure for
the lattice under consideration.

Other thermodynamic properties will also show disconti-
nuities or singularities at Tc, and these may be measured by a
variety of experimental methods. However, even in the disor-
dered state, a system will have microscopic regions in which
the local properties of the material are correlated and these
can be described quantitatively by a two-point correlation
function

G(r) = 〈m(0)m(r)〉 − 〈m〉2 (3)
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where r is the spatial distance at which the correlation is
being measured and m is the quantity of interest. (The corre-
lations may be both space dependent and time dependent,
but for static properties, the equal-time correlations, that
is, time-independent correlations, are adequate.) The corre-
lations will decay as a function of distance (although not
always monotonically); and the order parameter will be zero
at any temperature for which the reduced correlation, that is,
the first term in equation (3), decays to zero as the distance
goes to infinity.

At a phase transition, the thermodynamic properties may
show dramatic changes of different kinds. If the first deriva-
tives of the free energy are discontinuous, the transition is
termed first order. The size of the discontinuity is unimpor-
tant in terms of the classification of the phase transition, but
there are diverse systems with either very large or rather
small ‘jumps’. In contrast, for second-order phase transitions
the first derivatives are continuous, and transitions (critical
points) at some temperature Tc (critical temperature) and
‘field’ H (critical field) are characterized by singularities in
the second derivatives of the free energy. Properties of dif-
ferent systems can then be related by considering not the
absolute temperature but instead the reduced distance from
the transition ε = |1 − T /Tc|. (We note that the notation in
the literature has varied over time. Initially the symbol ε was
used to represent the ‘distance’ from the critical point, but
as expansion methods in renormalization group (RG) the-
ory were developed, the symbol ε took on the meaning of
the difference between the spatial dimension of the system
and the ‘upper critical dimension’ at which the transition
became mean-field-like. The symbol t was then introduced
in the place of ε. Then, however, the increased performance
of computers and algorithms made computer simulations
more important in the study of magnetic models. In sim-
ulations, the symbol t generally represented ‘time’, so it
again became common to use ε to denote the reduced dis-
tance from the transition. The reader must be careful to
determine what convention is being used in a given pub-
lication.) At a first-order phase transition, the free-energy
curves for ordered and disordered states cross with a finite
difference in slope, and both stable and metastable states may
exist for some region of temperature beyond the transition.
In contrast, at a second-order transition the two free-energy
curves meet tangentially and no metastability is seen (in the
usual sense). In the following discussion we will consider
a portion of the diversity of magnetic phase transitions that
may exist and provide estimates for important ‘characteristic’
quantities. Since first-order phase transitions do not have the
same underlying, unifying characteristics that second-order
transitions have, very little can be theoretically predicted
about them without specific knowledge of the nature and
interaction constants for a particular system. Consequently,

second-order transitions will prove to be far more interest-
ing and, thus, will consume a greater part of the presentation
in the remainder of this article, and the reader is referred
elsewhere (Binder, 1987) for a more detailed discussion of
first-order transitions.

The wealth of information provided about magnetic phase
transitions via numerous careful, high-quality experiments
has been important in helping to guide the development of
ideas about phase transitions. Nevertheless, substantial diffi-
culties remain for experiments: Sample quality is always a
problem, for example, grain boundaries, impurities, and so
on, so that the approach to the critical temperature is lim-
ited by ‘rounding’. Since the asymptotic critical region is
often restricted to very small distances from the critical point,
experiment may not always explore the asymptotic behav-
ior near Tc. Consequently, computer simulations sometimes
provide the best ‘experimental’ information. On the other
hand, a magnetic system may be so complex that appro-
priate models cannot be solved analytically. In this case,
computer simulations provide ‘theoretical’ information for
comparison with experiment. In this article we shall thus
include results from a variety of analytical and computational
approaches under the general rubric of ‘theory’, although
a more accurate view of approaches to the study of mag-
netic phase transitions can be depicted schematically by
Figure 1.

We wish to emphasize that the theory of magnetic phase
transitions is an extremely rich topic (see Fisher, 1967;
Landau, 1996 for earlier reviews), and it is impossible to
cover all relevant aspects in a limited amount of space. Some
(subjective) selection of topics must be made, and the author
apologizes at the outset to those researchers whose high-
quality work is not mentioned.

In the following section we will review some background
and general concepts that are essential for understanding the
theory of magnetic phase transitions. In Section 3 we will

Nature

Simulation

Theory Experiment

Figure 1. Schematic view of possible approaches that have been
applied to the study of magnetic phase transitions.
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describe specific theoretical and computational approaches
that are applicable to the study of phase transitions. Some
detail will be provided about these techniques to help the
reader understand the advantages and limitations of each
method. In Section 4 we will present some numerical results
for several different models and consider the general state of
our knowledge. A few final conclusions will be drawn in the
final section.

2 BACKGROUND AND GENERAL
CONCEPTS

2.1 Static critical behavior and critical exponents

As mentioned in Section 1, the behavior of thermody-
namic properties near second-order phase transitions can be
described using a formalism in which the fundamental quan-
tity is the reduced distance from the critical temperature.
Extensive experimental research has long provided a test-
ing ground for developing theories (Kadanoff et al., 1967),
and more recently computer simulations have been play-
ing an increasingly important role. Of course, experiments
are limited not only by instrumental resolution but also by
unavoidable sample imperfections; consequently, the beau-
tiful specific-heat peak for RbMnF3, shown in Figure 2, is
quite difficult to characterize for ε ≤ 10−4. Data from multi-
ple experiments as well as analytic and numerical results for
a number of exactly soluble models show that the thermody-
namic properties can be described by a set of simple power
laws in the vicinity of the critical point Tc, for example,
for a magnetic system, the order parameter m, the specific
heat C, the susceptibility χ , and the correlation length ξ vary

as (Stanley, 1971; Fisher, 1974)

m = moε
β (4a)

χ = χoε
−γ (4b)

C = Coε
−α (4c)

ξ = ξ oε
−v (4d)

where ε = |1 – T /Tc| and the powers (Greek characters)
are termed ‘critical exponents’. Note that equations (4a–d)
represent asymptotic expressions, which are valid only in
the limit as ε → 0, and more complete forms would include
additional ‘corrections to scaling’ terms, which describe the
deviations from the asymptotic behavior. Consequently, the
behavior of the susceptibility χ near a critical point is better
described by

χ = χoε
−γ (1 + aθε

θ + · · ·) (5)

where only the first correction term, characterized by the
exponent θ , is shown. (Similar corrections are present for
other quantities.) The extraction of estimates for this new
exponent, however, is notoriously difficult to accomplish.

Although the critical exponents for each thermodynamic
quantity are believed to be identical when Tc is approached
from above or below (but the singularity in the order
parameter occurs only below Tc), the prefactors, or ‘critical
amplitudes’, are usually different, and the estimation of
various amplitude ratios has been of extensive interest
(Privman, Hohenberg and Aharony, 1991). Lastly, along the
critical isotherm, that is, at T = Tc, we can define another
critical exponent using an expression which for a ferromagnet
in a uniform applied field H is

m = DH 1/δ (6)
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Figure 2. (a) Experimental data and (b) analysis of the critical behavior of the specific heat of the Heisenberg-like antiferromagnet RbMnF3.
The critical temperature is Tc. (Reproduced from Kornblit, A. and Ahlers, G. (1973), with permission from the American Physical Society.
 1973.)
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(Note that an analogous expression would apply for a
liquid–gas system at the critical temperature as a function
of the deviation from the critical pressure.) For a system in
d dimensions the two-body correlation function defined in
equation (3), G(r), should decay with distance well above
the critical temperature with the Ornstein–Zernike form

G(r) ∝ r−(d−1)/2 exp(−r/ξ), r → ∞ (7)

Instead, at Tc the decay of the correlation function is given
by a power law

G(r) = Gor
−(d−2+η), r → ∞ (8)

where η is another characteristic critical exponent. Systems
that have the same set of critical exponents are said to belong
to the same ‘universality class’.

2.2 Some systems of special interest

2.2.1 The Ising model

The critical exponents defined in the previous section are
known exactly for only a small number of magnetic mod-
els, most notably the two-dimensional Ising square lattice
(Onsager, 1944), whose exact solution shows a logarith-
mic divergence of the specific heat. The simple Ising model
(Ising, 1925; Brush, 1967), with Hamiltonian

H = −J
∑
nn

σ iσ j (9)

where σ i = ±1 has played a special ‘fruit fly’ role in the
development of our understanding of phase transitions. This
is, in part, because of its simplicity and, in part, because the
model on a square lattice is one of the few cases that can be
solved exactly. Onsager’s solution yields a critical point at
kBTc/J = 2.26159 . . . (where kB is Boltzmann’s constant),
and the critical exponents for this model are α = 0, β = 1/8,
γ = 7/4, ν = 1, and η = 1/4. (In three dimensions, however,
an exact solution is lacking even after many decades of
attempts to find one.) A simple, nearest-neighbor (nn) Ising
antiferromagnet on a bipartite lattice in a uniform magnetic
field has the same critical exponents for all field values below
Hc, the T = 0 critical field. This remarkable behavior will
become clearer when we consider the problem in the context
of RG theory.

2.2.2 The Heisenberg model

Many magnetic systems, however, cannot be described by an
Ising model. As an example, we show in Figure 2 that the

experimental data for the specific heat of RbMnF3 increases
even more slowly than a logarithm as ε → 0 implying that
α < 0, that is, the specific heat is nondivergent. In fact, a
suitable theoretical model for RbMnF3 is not the Ising model
but a 3-dim Heisenberg model with classical spins of unit
length and nn interactions

H = −J
∑
nn

(SixSjx + SiySjy + SizSjz), | �Si | = 1 (10)

which has slightly different critical exponents than the Ising
model. (The Mn2+ ions have spin S = 5/2 and can thus
be well described by classical spins.) Although no exact
solutions are available for Heisenberg models, as we shall
see later, quite precise values of the exponents are available
from field theoretic RG (Le Guillou and Zinn-Justin, 1980)
and extensive Monte Carlo simulations, at least for classical
spin version (Chen, Ferrenberg and Landau, 1993). There
are even better known magnetic systems, like body centered
cubic (bcc) iron, whose behavior also appears to be well
described by a classical Heisenberg model. Of course, many
real magnetic systems cannot be described by a classical
version of the Heisenberg model and, particularly at low
temperatures, the quantum effects can become important.
Extensive series expansions indicate, however, that near a
finite temperature phase transition the critical exponents are
independent of spin value, although the critical amplitudes
are not. For this reason, we can expect that the essential
character of phase transitions in most physical Heisenberg
spin systems can be described by classical spin models.

2.2.3 2-dim XY model

The preceding picture is still incomplete because there are
special cases that do not fit into that general scheme at all.
Most notable are 2-dimensional XY models with Hamiltonian

H = −J
∑
nn

(SixSjx + SiySjy) (11)

where �Si is a unit vector that may have either two compo-
nents (plane-rotator model) or three components (XY model).
The Mermin–Wagner theorem has shown that in 2-dim (two
spatial dimensions), at any nonzero temperature, classical
spin models are unstable against the spontaneous formation
of spin waves that destroy the long-range order. Because
of this, the 2-dim Heisenberg model shows no phase tran-
sition at any T > 0. Although the 2-dim XY model also
develops no long-range order below any nonzero transition
temperature, it does nonetheless possess topological exci-
tations termed vortices and antivortices; and below some
transition temperature, TKT , vortex–antivortex pairs become
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bound together (Kosterlitz and Thouless, 1973). Both the cor-
relation length and magnetic susceptibility for this model are
predicted to diverge exponentially fast as TKT is approached
from above, that is,

ξ ∝ exp(aε−ν) (12)

and every temperature below TKT is a critical point. Further-
more, the value of ν is predicted to be 1/2 for both quantities.
At TKT the correlation function should decay with distance,
r , as r−η with η = 1/4. For all lower temperatures, the decay
should still be a power law, but with a power that becomes
smaller with decreasing temperature. Another characteristic
of this phase transition is that the helicity modulus ϒ drops
discontinuously from ϒ = 0.636508 . . . to zero at the tran-
sition. (The helicity modulus gives the reaction of the system
to a twist.) In summary, there are a number of explicit pre-
dictions about the character of this unusual transition.

2.2.4 Blume–Capel model

As mentioned earlier, not all magnetic phase transitions are
of second order. One classic example of a real system is
UO2 which was shown, half a century ago, to possess a
first-order transition at about 30 K from a high-temperature
paramagnetic state to a low-temperature antiferromagnetic
state. Blume (1966) proposed a simple model in which
a singlet electronic ground state was separated from a
higher-lying triplet at an energy  above the ground state.
Furthermore, this triplet would be split by near-neighbor
exchange couplings, and Blume showed, using mean-field
(Landau) theory, that if  is sufficiently small, one of the
triplet components would lie below the singlet. Hence, an
ordered ground state will result. If, however,  is sufficiently
large, the transition will become first order. Lastly, if 

exceeds a certain value, the ground state is always a
singlet and no magnetic ground state results. A similar
scenario was investigated by Capel (1966), who considered
a similar Hamiltonian, but with a high-lying doublet instead
of a triplet. This latter model has become known as the
Blume–Capel model, that is,

H = −J
∑
nn

σ iσ j + D
∑

i

σ 2
i , σ i = 1, 0, −1 (13)

The Blume–Capel model has played an important role in
the development of our understanding of some multicritical
phenomena, which will be outlined in the next section.

2.2.5 Other interesting models with unusual behavior

Simple extensions of the 2-dim Ising model, for example,
with three-body couplings instead of two-body interactions,

known as the Baxter–Wu model (Baxter and Wu, 1973), or
with enhanced next-nearest-neighbor (nnn) couplings may
have critical behavior that is distinctly different from the
simple Ising model. Another ‘classic’ model is the q-
state Potts model (Potts, 1952; Wu, 1982) for which the
Hamiltonian is

H = −J
∑
nn

δσ iσ j
, σ i = 1, 2, . . . q (14)

This model may show either first-order or second-order
transitions, depending upon the number of states q. There
are many other classical spin models with suitable competing
interactions or lattice structures that may also show ‘unusual’
transitions (Landau, 1993), which, in some cases, include
different behavior of multiple order parameters at Tc. These
models are generally best studied by computer simulation,
but to a large extent will not be considered here because of
space limitations.

The preceding discussion was limited to static aspects of
phase transitions and critical phenomena. The entire question
of dynamic behavior will be treated in a later subsection
using extensions of the current formulation.

2.3 Scaling and universality

Homogeneity arguments provide a way of simplifying mathe-
matical expressions that contain thermodynamic singularities.
As an example, consider a simple Ising ferromagnet in a
small uniform magnetic field H at a temperature T that is
near Tc. A ‘scaling’ form can be used to express the singular
portion of the free energy F(T , H) as

Fs = ε2−α�±(H/ε) (15)

where  is termed the ‘gap exponent’ and is equal to
1/2(2 − α + γ ). �± is a function of the ‘scaled’ variable
(H/ε) and does not depend upon H and ε independently.
This formula has the consequence that the expressions for
various thermodynamic quantities, for example, specific heat,
susceptibility, and so on, can also be written in scaling forms.
Even the correlation function can be expressed in terms of a
scaling function but requires an extra variable, that is,

G(r, ξ, ε) = r−(d−2+η)℘ (r/ξ, H/ε) (16)

where ℘(x, y) is now a scaling function of two variables.
With a bit more mathematical development, one can show

that not all of the critical exponents defined in the preceding
text are independent. Thermodynamic arguments can be used
to derive a series of exponent relations called ‘scaling laws’,
which show that only two exponents are generally unrelated.
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For example, taking the derivative of the free energy, as
expressed in a scaling form, we find that the singular part
near a phase transition behaves as

−∂Fsin g

∂H
= M = ε2−α−�′(H/ε) (17)

where �′ is the derivative of the function �. This equation can
be compared directly with the formula for the temperature
dependence of the order parameter to show that β = 2 −
α − . Similarly, by integrating a scaling expression for the
magnetic susceptibility

χ = ε−γ χ̃(H/ε) (18)

we find

m ∝ ε−γ (19)

The combination of these relations yields the ‘Rushbrooke
equality’

α + 2β + γ = 2 (20)

and this relationship should hold regardless of what the indi-
vidual exponent values are. Another important relationship
that exists between critical exponents and the lattice dimen-
sionality d of a system is termed the ‘hyperscaling’ expres-
sion:

dv = 2 − α (21)

The physical justification of the homogeneity assumption
given in equation (15) is discussed elsewhere, for example,
Yeomans (1992); however, these scaling relations are a
prerequisite for the understanding of finite size scaling, which
is a basic tool in the analysis of simulational data near phase
transitions. Hyperscaling may sometimes be violated, for
example, the upper critical (spatial) dimension for the Ising
model is d = 4 beyond which mean-field (Landau theory)
exponents apply and hyperscaling fails. Integration of the
spin–spin correlation function over all spatial separation
yields the magnetic susceptibility

χ = ε−ν(2−η) (22)

and by comparing with the ‘definition’, cf. equation (4b), of
the critical behavior of the susceptibility we easily see that

γ = v(2 − η) (23)

Those systems that have the same set of critical exponents
are said to belong to the same ‘universality class’ (Fisher,

1974), although, some of the critical exponents in different
universality classes may be similar. Relevant properties that
determine the universality class include spatial dimensional-
ity, spin dimensionality, symmetry of the ordered state, the
presence of symmetry-breaking fields, and the range of inter-
action. Thus, nn Ising ferromagnets on different lattices of the
same dimensionality should have identical critical exponents
and belong to the same universality class, but square-lattice
and sc Ising models would be expected to have different
critical behavior.

Some models have simple symmetries that can be easily
broken. For example, an isotropic ferromagnet changes from
the Heisenberg universality class to the Ising class when
exchange anisotropy is introduced:

H = −J
∑
i,j

[(1 − λ)(SixSjx + SiySjy) + SizSjz] (24)

with λ > 0. The variation of the critical temperature is then
given by

Tc(λ) − Tc(λ = 0) ∝ λ1/φ (25)

where φ is termed the ‘crossover exponent’ (Riedel and
Wegner, 1972). If λ < 0, however, the model becomes
an easy-axis magnet and should have XY -model critical
behavior instead.

Before leaving the topic of scaling, we will introduce
an important, related approach to the understanding of the
behavior of finite system size. At a second-order phase tran-
sition, the critical behavior of a system in the thermodynamic
limit can be extracted from the size dependence of the sin-
gular part of the free energy using finite size scaling theory
(Fisher, 1971; Landau, 1976; Privman, 1990; Binder, 1992).
If we adopt a scaling ansatz similar to the scaling of the free
energy with thermodynamic variables T , H and infinite lat-
tice critical exponents α and ν, we can write the free energy
for a system of linear dimension L as

F(L, T ) = L(2−α)/v�(εL1/v) (26)

where ε = (T − Tc)/Tc. The choice of the scaling variable
x = εL1/ν is motivated by the observation that the correla-
tion length ξ attempts to diverge as ε−ν when the transition
is approached but is limited by the lattice size L. Thermody-
namic properties then also have corresponding scaling forms,
for example,

m = L−β/vMo(εL1/v) (27a)

χ = Lγ/vχo(εL1/v) (27b)

C = Lα/vCo(εL1/v) (27c)
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where Mo(x), χo(x), and Co(x) are finite size scaling func-
tions. These expressions are valuable for interpreting data
for finite systems obtained by a variety of numerical meth-
ods as well as for understanding the relationship between
experimental data on small systems and in the corresponding
thermodynamic limit. Corrections to scaling and finite size
scaling must be taken into account for yet smaller systems
and temperatures away from Tc. Because of the complexity
of the origins of these corrections, we direct the reader else-
where (Liu and Fisher, 1990; Ferrenberg and Landau, 1991)
for a detailed discussion of these corrections and techniques
for including them in the analysis of MC data.

An alternative form for finite size scaling was proposed
(Kim, 1994) in terms of the variable x = ξL/L where ξL

is the correlation length in a system of linear dimension L.
Kim, de Souza and Landau (1996) demonstrated that this
approach was surprisingly effective for the Ising model even
though the data used in the analysis were taken rather far
from the critical temperature.

Finite size scaling has revealed important ‘new’ informa-
tion about the nature of critical phenomena. In a classic
paper, Binder (1981) examined the distribution functions for
the order parameter in finite size systems and in subblocks
of such systems. In particular, he showed that in addition to
the first two moments of the distribution, that is, the order
parameter and the susceptibility, the fourth-order cumulant
also provided important information. For a system with time-
reversal symmetry, the fourth-order cumulant is defined by

UL = 1 − 〈m4〉
3〈m2〉2

(28)

although, in the general case, the full cumulant must be used
(included odd moments, which do not then vanish). However,
the ‘reduced’ form (also known as the Binder parameter)
has become a valuable tool for the determination of the
universality class of a model from simulational data.

As mentioned earlier, critical behavior depends upon the
dimensionality of the system. An interesting question then
arises: how can we understand how the critical behavior
changes as the system changes from 2-dim to 3-dim. This too
can be predicted using a slight adaptation of finite size scal-
ing. For a system of n layers, the order parameter is given by

m = n−β3/v3Mo(εn1/v3) (29)

where ν3 describes the divergence of the correlation length
in the 3-dim system. For small values of (z − zc), where
z = (εn1/v3) and zc is the value obtained using Tc(n),
the scaling function Mo(z) → (z − zc)

β2 . Thus, crossover
from 3-dim to 2-dim behavior occurs, and it shows up
in the ‘critical amplitude’ (Binder, 2003). However, as

n → ∞, Mo(x) → xβ3 so that 3-dim critical behavior is
recovered. One consequence is that the shift in critical tem-
perature is expected to be

Tc(∞) − Tc(n)

T (∞)
∝ n−φ (30)

where φ is the ‘shift exponent’. Normally, φ = 1/ν3, that is,
hyperscaling holds.

For first-order transitions, the size dependence is governed
by the system volume, that is, Ld , and the underlying
theoretical formulations for both temperature-driven phase
transitions (Challa, Landau and Binder, 1986) and field-
driven phase transitions (Binder and Landau, 1984) have
been examined via Monte Carlo simulations.

2.4 Phase diagrams and multicritical behavior

For some magnets, for example, antiferromagnets, phase
boundaries will be traced out in a multidimensional ther-
modynamic parameter when some thermodynamic field, for
example, uniform magnetic field, is varied. Perhaps the clas-
sic example of a thermodynamic phase diagram is that
of water, in which lines of first-order transitions separate
ice–water, water–steam, and ice–steam. The three first-order
transitions join at a ‘triple point’, and the water–steam phase
line ends at a ‘critical point’ where a second-order phase tran-
sition occurs. A much simpler phase diagram than that for
water occurs for the Ising ferromagnet in a magnetic field

H = −J
∑
nn

σ iσ j − H
∑

i

σ i (31)

where σ i = ±1 represents a ‘spin’ at lattice site i that inter-
acts with nearest neighbors on the lattice with interaction
constant J > 0. At low temperatures a first-order transition
occurs as H is swept through zero, and the phase bound-
ary terminates at the critical temperature Tc. Time-reversal
symmetry requires that the phase boundary must occur at
magnetic field H = 0 so that the only remaining ‘interest-
ing’ question is the location of the critical point. For J < 0,
the antiferromagnetic phase remains stable in nonzero field,
although the critical temperature is depressed. The phase
boundary for the Ising antiferromagnet has defied analytic
solution although there are several rather precise numerical
determinations of its shape. As in the case of the ferromagnet,
the phase diagram is symmetric about H = 0.

Under certain circumstances, the order of a phase transi-
tion changes as some thermodynamic parameter is modified.
At first glance such behavior appears to violate the princi-
ples of universality, but examination of the system in a larger
thermodynamic space makes the change easy to understand.
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H

H+

T

et

g

h3

Figure 3. Phase diagram for an Ising antiferromagnet with a
tricritical point in the three-dimensional thermodynamic field space,
which includes both ordering (H+) and nonordering (H ) fields.
Tricritical scaling axes are labeled εt , g, and h3.

The intersection point of multiple curves of second-order
phase transitions is known as a multicritical point. Examples
include the intersection of three such curves, known as a
tricritical point (Griffiths, 1970; Stryjewski and Giordano,
1977; Lawrie and Sarbach, 1984), which occurs in strongly
anisotropic ferromagnets. The intersection of two second-
order phase boundaries, or a bicritical point (Fisher and Nel-
son, 1974; Nelson, Kosterlitz and Fisher, 1974), appears on
the phase boundary of a moderately anisotropic Heisenberg
antiferromagnet in a uniform magnetic field. In this latter sys-
tem, at low temperature a low-field antiferromagnetic state
is separated from a ‘spin-flop’ state by a line of first-order
transitions. This line ends at a bicritical point at which the
second-order phase boundaries to the ordered high-field and
low-field states meet. The characteristic phase diagram for a
tricritical point is shown in Figure 3 in which three first-order
surfaces intersect along a line of first-order transitions and
the three second-order boundaries to the first-order surfaces
of phase transitions meet at the tricritical point. This is one of
the simplest cases of a more general set of transitions that are
known as multicritical points. One of the well-known models
that exhibits such behavior is the Ising antiferromagnet with
nn and nnn coupling

H = Jnn

∑
nn

σ iσ j − Jnnn

∑
nnn

σ iσ j − H
∑

i

σ i − H+ ∑
i

σ i

(32)

where σ i = ±1, H is the uniform magnetic field, which cou-
ples to the uniform magnetization, and H+ is the staggered
magnetic field, which couples to the order parameter (stag-
gered magnetization). The presence of a tricritical point intro-
duces a new ‘relevant’ field g, which as shown in Figure 3
makes a nonzero angle with the phase boundary, and a sec-
ond scaling field εt , which is tangential to the phase boundary
at the tricritical point. Near the tricritical point a ‘crossover’
scaling expression is valid

F(ε, H+, g) = |g|2−αε�(H+|g|−ε , ε|g|−φε ) (33)

where αε is the specific-heat exponent appropriate for a
tricritical point, ε is the corresponding ‘gap exponent’, and
φε is a new ‘crossover’ exponent that describes the separation
between the critical region near the second-order line and
the tricritical region near the tricritical point. In addition,
there are power law relations that describe the vanishing
of discontinuities as the tricritical point is approached from
below, for example, the jump in the magnetization from M−

to M+ as the first-order phase boundary is crossed for T < Tt

decreases as

M = M+ − M− ∝ |1 − T /Tt|βu (34)

The ‘u-subscripted’ exponents are related to the ‘ε-sub-
scripted’ ones by a crossover exponent,

βu = (1 − αε)/φε (35)

as will be discussed subsequently, the mean-field values of
the tricritical exponents are αε = 1/2, ε = 5/2, φε = 1/2,
and hence βu = 1. Tricritical points have been explored
using both computer simulations of model systems and by
experimental investigation of physical systems, and their
theoretical aspects have been studied in detail (Lawrie and
Sarbach, 1984).

Mean-field theory predicts that for sufficiently strong cou-
pling between spins in the same sublattice, the tricritical point
may decompose into a critical endpoint and a double critical
point with the topology shown in Figure 4. Qualitatively, the
possible occurrence of the phase diagram in Figure 4 rather
than of Figure 3 can be understood from mean-field theory,
although the quantitative predictions for the conditions for
which this should happen turn out to be incorrect.

Another kind of multicritical behavior occurs in an
anisotropic Heisenberg antiferromagnet with a uniform mag-
netic field included. The Hamiltonian is

H = −J
∑
nn

[(1 − λ)SixSjx + SiySjy + SizSjz] − H
∑

i

Siz

(36)
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H

H+

T

Figure 4. Schematic view of phase diagram for which the tricritical
point has decomposed into a critical endpoint (filled circle) and a
double critical point (filled square).

For small magnetic fields, there is an ordered antiferro-
magnetic state at low temperatures and as the temperature
is increased an Ising-like transition occurs to the param-
agnetic state. If instead, the field is increased, a first-order
transition to a ‘spin-flop’ state takes place. In this state the
z components of the spins are aligned along the field but the
x and y components are antiferromagnetically aligned. At
fields above the spin-flop field, with increasing temperature,
there is an XY transition involving the perpendicular spin
components. At the confluence of the two phase boundaries,
that is, at the end of the spin-flop phase boundary, there is
a single bicritical point with Heisenberg behavior. As the
phase boundaries approach the bicritical point, they form an
umbilicus that is completely missing in mean-field theory.
Scaling axes for the bicritical point are predicted to be skew
and have the following form

g = (H 2) − pεb (37a)

ε̃ = εb + q(H 2) (37b)

where (H 2) = H 2 − H 2
b and εb = |1 − T /Tb|. The shapes

of the upper and lower phase boundaries near the bicritical
point are predicted to be determined by the crossover scaling
form

g/ε̃φ = +w⊥, −w|| (38)

H

Spin flop

Paramagnetic

g = 0

TN (H)⊥

Bicritical point

TN (H)
||

T

Figure 5. Schematic phase diagram predicted for an anisotropic
Heisenberg antiferromagnet. The heavy solid line is a first-order
transition and the lighter solid lines are second-order transitions. For
fields below the bicritical point, the order parameter is the staggered
magnetization component that is parallel to the applied field; above
the bicritical point, the perpendicular staggered magnetization is
critical.

where w⊥, w|| are model dependent and may also dif-
fer above and below the bicritical point. This behavior
for an anisotropic Heisenberg antiferromagnet is shown
schematically in Figure 5. We conclude this section with
a comment about analysis of critical exponents when the
appropriate scaling fields are not parallel to the ‘applied’
thermodynamic fields. In such cases, ‘field mixing’ can com-
plicate the analysis, and we refer the reader elsewhere (Wild-
ing and Bruce, 1992; Wilding, 1995) for a more detailed
discussion.

2.5 Surface critical behavior

Although it had long been common to only consider phase
transitions in systems of infinite extent, several authors
realized that critical behavior that is explicitly associated
with surfaces of magnetic systems was itself of interest (for a
detailed description of surface transitions, see Binder, 1983).
Binder and Hohenberg (1972, 1974) realized that a new set
of surface critical exponents could be defined that were not
necessarily related to the exponents of the corresponding
bulk. For example, if the free energy is separated into a
bulk term fb and a surface term fs in analogy with the bulk
magnetization, defined using a bulk field H ,

mb = −
(

∂fb

∂H

)
(39)

we can define a surface layer magnetization

m1 = −
(

∂fs

∂H1

)
(40)

where H1 is a magnetic field that acts only on the surface
layer. There are also new thermodynamic response functions,
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kBT
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Figure 6. Schematic view of phase transition behavior occurring at
the surface of a semi-infinite magnetic system. Each phase is labeled
according to whether it is bulk (B) or surface (S) and ferromagnetic
(F) or antiferromagnetic (AF). Jsc denotes the coupling for the
surface–bulk multicritical point. (Reproduced from K. Binder:
‘Critical Behavior at Surface’ in C. Domb and J.L. Lebowitz (eds):
Phase Transitions and Critical Phenomena, vol. 8 (Academic Press,
1983), with permission from Elsevier.)

such as the magnetic susceptibility, that appear in addition
to the bulk ones, that is,

χb = −
(

∂2fb

∂H 2

)
(41a)

χ1 = −
(

∂2fs

∂H∂H1

)
(41b)

χ1,1 = −
(

∂2fs

∂H 2
1

)
(41c)

Binder and Hohenberg also worked out a schematic (mean
field) phase diagram, shown in Figure 6, that shows the
general features for a phase diagram for a simple model with
an exchange parameter J in the bulk and a surface interaction
constant Js , as the temperature is varied. The ‘special
transition’ is a multicritical point at which bulk and surface
fluctuations become simultaneously critical at temperature
Tcs ≡ Tcb. Separate sets of surface critical exponents should
describe the different kinds of transitions, for example,

m1 ∝ (1 − T /Tcs)
β1 (42)

The mean-field values of the surface exponents often
differ at the ordinary transition, the special transition, and
the surface transition and may also differ from the bulk
exponents:

βb = 1/2; βord = 1; βsp = 1/2; βsurf = 1/2;
γ b = 1; γ 1,ord = 1/2; γ 1,sp = 1; γ 1,surf = 1;
γ 11,ord = −1/2; γ 11,sp = 1/2; γ 11,surf = 1

There are additional thermodynamic properties that have
distinct surface behavior, but we will not discuss this topic
further. For more details see Binder (1983).

2.6 Systems with disorder

Systems with extreme disorder that produces frustration
develop spin glass order, but this behavior is beyond the
scope of this article. In this section we will only be
concerned with the introduction of modest amounts of
quenched (i.e., nonmobile) site or bond disorder that does
not change the nature of the ordered state. When the
concentration of impurities exceeds a critical level, the
magnetic bonds can no longer percolate, and no long-
range order can occur. The seminal paper on the effects of
nonmagnetic impurities by Harris (1974) predicted that if
random, quenched, nonmagnetic impurities are added to a
magnetic system, new critical exponents will be produced
only if α > 0 in the pure system. Of course, there are other
possible types of disorder and these will be discussed briefly
later in Section 4.

2.7 Dynamic critical behavior

The framework for understanding the static behavior of mag-
netic systems near phase transitions has been rather thor-
oughly developed, in part because of the ability to make
high-resolution experiments and in part because of the devel-
opment of sophisticated numerical techniques. Understanding
of the time-dependent behavior of magnetic properties of
systems near phase transitions has proved more difficult.

As a critical point Tc is approached, the large spatial
correlations that develop have long temporal correlations
associated with them as well. At Tc the characteristic time
scales diverge in a manner that is determined, in part, by the
nature of the conservation laws. This ‘critical slowing down’
has been observed in multiple physical systems by light-
scattering experiments (critical opalescence) as well as by
neutron scattering. In a classic work, Hohenberg and Halperin
(1977) laid the foundation for understanding dynamic critical
behavior by proposing the existence of a number of dynamic
universality classes on the basis of the number of degrees
of freedom of the order parameter and the lattice and spin
dimensionalities as well as any applicable conservation laws.
The characteristic feature of the framework of dynamic
critical behavior was the introduction of a new, dynamic
critical exponent z that was distinct from, and in many cases
unrelated to, the static critical exponents. One important
conclusion was that multiple classes could exist for models
with the same Hamiltonian but different conservation laws.
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Two classes were identified as having only stochastic, or
‘relaxational’, behavior:

Model A – Ising model with neither magnetization nor
energy conserved.
Model B – Ising model with conserved magnetization.

The conventional theory of critical slowing down (Van
Hove, 1954) predicts that z = 2 − η = 1.75 for model A
Ising critical relaxation, where η is the exponent describing
the decay of the static, two-point correlation function at
the critical point (equation 8). Model B should describe
the growth of magnetic domains in a system with fixed
magnetization and, according to Lifshitz–Slyozov theory
(Lifshitz and Slyozov, 1961), the characteristic length scale
L(t) of the domains should grow as t1/3.

Several other classes, however, have true dynamics, that
is, deterministic behavior governed by equations of motion,
derived from the Hamiltonian:

Model E – Planar spin model, Hz = 0
Model F – Planar spin model, Hz > 0
Model G – Antiferromagnetic Heisenberg model
Model J – Ferromagnetic Heisenberg model.

One consequence of this classification scheme is that there
may be models that are in the same static universality class
but in different dynamic classes. For example, an Ising
model with ‘spin-flip’ kinetics and the same Ising model
with ‘spin-exchange’ kinetics may be in different universality
classes. Similarly, the Heisenberg model treated by Monte
Carlo (stochastic) simulations and the same model solved
by integrating coupled equations of motion may also be in
different dynamic universality classes.

For relaxational models, such as the stochastic Ising
model, the time-dependent behavior is described by a master
equation

∂Pn(t)/∂t = −
∑
n �=m

[Pn(t)Wn→m − Pm(t)Wm→n] (43)

where Pn(t) is the probability of the system being in state
‘n’ at time t , and Wn→m is the transition rate for n → m.
The solution to the master equation is a sequence of states
developing in time, but the ‘time’ is a stochastic quantity
that is not equivalent to true time. A quantitative measure
of time correlations within equilibrium is obtained by first
defining a relaxation function ϕ(t), for example, for the
magnetization M

ϕMM(t) = 〈M(0)M(t)〉 − 〈M〉2

〈M2〉 − 〈M〉2
(44)

and a similar relaxation function can be defined for the
internal energy. When normalized as in equation (44), the

relaxation function is equal to unity at t = 0 and decays
to zero as t → ∞. The asymptotic, long-time decay of the
relaxation function is exponential, that is,

ϕ(t) → e−t/τ (45)

and the correlation time τ diverges as Tc is approached. This
dynamic (relaxational) critical behavior can be expressed in
terms of a power law as well

τ ∝ ξz ∝ ε−vz (46)

where ξ is the (divergent) correlation length, ε = |1 − T /Tc|,
and z is the dynamic critical exponent. Estimates for z

have been obtained for Ising models by ε-expansion RG
theory (Bausch, Dohm, Janssen and Zia, 1981) but numerical
estimates (Landau, Tang and Wansleben, 1988; Wansleben
and Landau, 1991; Ito, 1993) have been inconsistent and
have only recently come to reasonably consistent values.

The approach to equilibrium can be used to define another,
nonlinear relaxation function

ϕM(t) = 〈M(t) − M(∞)〉
〈M(0)〉 − 〈M(∞)〉 (47)

which also has an exponential decay at long times. According
to Fisher and Rácz (1976), however, there is only a single,
independent dynamic exponent and

z = zM
nl + β/v (48)

or, in terms of the time dependence for the internal energy,
then

z = zE
nl + (1 − α)/v (49)

At Tc the nonlinear relaxation is expected to decay at long
times as a power law

m(t) ∼ t−β/zν (50)

and a ‘local exponent’, λm, extracted from Monte Carlo data,

λm = −d log m(t)

d log t
(51)

should extrapolate to β/zν. The critical temperature can
be determined by locating the temperature at which the
nonlinear (nonequilibrium) relaxation obeys equation (50)
and with use of the static critical exponents the dynamic
exponent z can be estimated. Somewhat surprisingly, short
time dynamics can also be used to extract information about
critical dynamics and short time dynamic scaling has been
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well established (Janssen, Schaub and Schmittmann, 1989;
Zheng, 2006).

There are other systems, such as spin glasses and models
with impurities, where the decay of the relaxation function
is more complex, for example, a ‘stretched exponential’

ϕ(t) ∝ exp[−(t/τ )n], n < 1 (52)

and the correct behavior of τ may not be simple. (In such
cases, quite long observation times may be needed to measure
the asymptotic behavior of the relaxation function.) Such
systems are beyond the scope of this article and will not
be considered further.

For continuous-spin systems with true dynamics, the time-
dependent properties are determined by the dynamic structure
factor

S(�q, ω) = 1

2π

∑
�r,�r ′

ei �q·(�r−�r ′)
∫ ∞

−∞
eiωtC(�r − �r ′, t) dt (53)

The dynamic structure factor depends upon the static
correlation length ξ and thus shows characteristic behavior
as the critical temperature is approached. Near the critical
temperature a dynamic scaling hypothesis can be formulated
in terms of the behavior of the characteristic frequency ωm

in terms of the wave vector q and the correlation length ξ

ωm ∝ ξ−z�(qξ) (54)

and the dynamic structure factor can also be written in a
suitable scaling form

S(q, ω) = 2π

ωm

S(q)F

(
ω

ωm

, qξ

)
(55)

The functional form for � in equation (54) will vary with
the details of the model, but the dynamic critical exponent
z should be invariant within a given dynamic universality
class. The ‘conventional theory’ of critical dynamics (Van
Hove, 1954) predicts that the behavior of the characteristic
frequency is

ω ∝ ξ−z(qξ)2 (56)

with z = 4 − η. Mode-coupling theory and the RG were then
used to make predictions about the values of the dynamic
critical exponent z, and these generally differed from the
predictions of the conventional theory. Within the context of
the ε-expansion RG, the prediction for model A is z = 2 + cη

where c = [6ln(4/3) − 1]. The planar magnet is predicted
to have exponent z = d/2 + α′/2ν where α′ = max(α, 0).
For the isotropic Heisenberg antiferromagnet, RG theory
predicts z = d/2, whereas for the isotropic ferromagnet the

prediction is z = (d + 2 − η)/2. For a review of the theory
and applicability to real materials see Frey and Schwabl
(1994).

3 THEORETICAL APPROACHES

3.1 Landau theory

One of the fundamental approaches used to describe mag-
netic phase transitions is Landau theory, which begins with
the assumption that near the transition the free energy of a
system can be expanded in terms of the order parameter. For
a d-dimensional system the free energy, in terms of a simple
one-component order parameter m(x), is given by

F = Fo + ∫ ddx

{
1

2
rm2(x) + 1

4
um4(x) + 1

6
vm6(x)

− H

kBT
m(x) + 1

2d
[R∇m(x)]2 + . . .

}
(57)

In this equation, a factor of (kBT )−1 has been absorbed
so the coefficients r, u, and v are dimensionless. (Time-
reversal symmetry has also been used to eliminate all odd
order terms for H = 0.) For more complex systems, addi-
tional terms, for example, cubic products of components of
a multicomponent order parameter, might appear; but such
considerations are beyond the scope of our present discus-
sion. For a simple, homogeneous system with a spatially
uniform order parameter the free energy becomes (V being
the volume)

F = Fo + V

(
1

2
rm2 + 1

4
um4 + 1

6
vm6 − mH

kBT
+ . . .

)
(58)

In equilibrium, the free energy must be a minimum, and
if u > 0 the preceding equation can be truncated and the
minimization criterion ∂F/∂m = 0 can be applied to find
three possible solutions:

m1 = 0 (59a)

m2,3 = ±
√

−r/u (59b)

The first solution describes the disordered (i.e., T > Tc)

state. Expanding r in the vicinity of Tc so that r = r ′(T −
Tc), we find then for r < 0 (i.e., T < Tc),

m2,3 = ±(r ′Tc/u)1/2(1 − T /Tc)
1/2 (60)

Solutions m2,3 correspond to behavior below Tc where
the order parameter approaches zero with a characteristic
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power law (see equation 4a) with critical exponent β = 1/2.
Similarly, an analysis of the susceptibility yields γ = 1 for
the susceptibility and δ = 3 for the order parameter along
the critical isotherm. Unfortunately, Landau theory does not
correctly describe the behavior of most physical systems that
generally have values of β ≈ 1/3 (Kadanoff et al., 1967)
instead of the Landau value of β = 1/2. Lastly, the ‘fixed-
point’ (see the next section) value of the reduced fourth-
order cumulant for the Landau (mean field) model with a
one-component order parameter is U∗ ∼ 0.2705 (Brézin and
Zinn-Justin, 1985).

The appearance of tricritical points can be easily under-
stood within the context of Landau theory by retaining the
sixth-order term in equation (58). If the term in m4 is less
than 0, the solutions are as follows:

m1 = 0 (61a)

m2,3 = ±[ 1
2v

(−u + √
u2 − 4rv)]1/2 (61b)

m4,5 = ±[ 1
2v

(−u − √
u2 − 4rv)]1/2 (61c)

The first solution again describes the disordered state. For
positive values of v, there are multiple solutions showing
long-range order and the phase transition is first order. A
tricritical point appears when r = u = 0, and the tricritical
exponents that result from this analysis are

αt = 1/2 (62a)

βt = 1/4 (62b)

γ t = 1 (62c)

δt = 5 (62d)

Note that most of these tricritical exponents are quite
different than those predicted for the critical point. The
crossover exponent describing the behavior of the second-
order phase boundary in the vicinity of the tricritical point is
predicted by Landau theory to be φ = 1/2.

As mentioned earlier, the thermodynamic properties of a
system are not constant in time but fluctuate as the system
explores different regions of phase space. The relative fluctu-
ations of extensive thermodynamic variables scale inversely
with the number of sites N , so that global fluctuations vanish
in the thermodynamic limit. Nevertheless, local fluctuations
can have dramatic effects and require a separate discussion.
As long as fluctuations do not play a significant role, the
predictions of Landau theory should be correct. This can be
expressed mathematically for the fluctuations in m(x) for a
d-dimensional system over the ‘correlation volume’ ξd . If
the mean value of the order parameter is mo, fluctuations

can be ignored if

〈[m(x) − mo]2〉
m2

o
� 1 (63)

This inequality, termed the Ginsburg criterion, leads to the
expression

ξdm2
oχ

1 � const (64)

Once the appropriate power laws for critical behavior are
inserted into equation (64) the inequality becomes

ε−vd+2β+γ � const (65)

This implies that Landau exponents will be valid if

ε(d−4)/2 � const (66)

that is, the lattice dimensionality must be greater than or
equal to an upper critical dimension du = 4. Below some
lower critical dimensionality, dl , fluctuations completely
dominate and no transition will occur. Fluctuations at tricrit-
ical points can be examined if the next order term ∼vm6 in
the Landau free energy is retained. Mean-field theory (i.e.,
Landau theory) is also valid for tricritical behavior above
some upper critical dimension for the Ising model with com-
peting interactions du = 3. However, for d = 3 there are also
logarithmic corrections (Wegner and Riedel, 1973), which
complicate the verification of these predictions by numerical
means.

Improvements on Landau, that is, mean field, theory are
nontrivial to implement, particularly for systems with inho-
mogeneous interactions, for example, amorphous magnets.
However, a correlated mean-field theory (Fähnle, Herzer,
Egami and Kronmüller, 1982; Kronmüller and Fähnle, 2003)
is able to describe the experimentally observed upward cur-
vature in the inverse susceptibility for random exchange
ferromagnets.

3.2 Renormalization group theory

The concepts of scaling and universality can be given a firm
foundation through the use of RG theory. The fundamental
physical ideas underlying RG theory were introduced by
Kadanoff (1971) using a simple coarse-graining approach,
and a mathematical basis was provided by Wilson (1971a,b).
Instructional overviews of RG theory can be found in Domb
and Green (1976) and Fisher (1974). Kadanoff subdivided a
system into cells of characteristic size b (in terms of the nn
spacing a) and b < ξ , where ξ is the correlation length of the
system. The starting point is the expression of the singular
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part of the free energy in terms of cell variables instead of
the original site variables, that is,

Fcell(ε̃, H̃ ) = bdFsite(ε, H) (67)

where ε = |1 – T /Tc|, ε̃ and H̃ are cell variables, and d is
the spatial dimensionality. Homogeneity of the free energy
then implies that

F(λaT ε, λaH H) = λF(ε, H) (68)

where aT and aH are new exponents that can be related to
those already defined. Using formal RG theory, the initial
Hamiltonian is transformed, or renormalized, to produce a
new Hamiltonian. With successive repetitions, the resultant
Hamiltonians, enumerated using index n to describe the
number of times the transformation has been applied, are
related by

H(n+1) = RbH(n) (69)

Each application of the RG operator Rb reduces the
number of degrees of freedom by bd . New interaction terms
that were not present in the original Hamiltonian may appear
in the renormalized Hamiltonian, but the partition function
Z must not change since it is only being expressed in terms
of new variables. Eventually the renormalized Hamiltonian
reaches a stable, or ‘fixed point’, form H∗ and no longer
changes with further repetition, that is,

H∗ = RbH∗ (70)

Thus, the Hamiltonian of a system at its critical point
‘flows’ towards the fixed-point Hamiltonian upon successive
application of the RG transformation until it no longer
changes. For points in Hamiltonian parameter space for
which the system is not initially at a critical point, the
Hamiltonian instead ‘flows’ away from the fixed point
(Figure 7). For an Ising-type Hamiltonian above Tc there
is also a trivial fixed point corresponding to the ideal
paramagnet at T → ∞ that is eventually reached. (After a
few rescalings, the block size bn exceeds ξ and the different
blocks are then uncorrelated.) For T < Tc, the flow is to a
different, zero-temperature fixed point. The Hamiltonian is
written in the same general framework at each application of
the transformation, for example, an Ising-type Hamiltonian

H/kBT = K1

∑
i

σ i + K2

∑
〈i,j〉

σ iσ j + K3

∑
〈i,j,k〉

σ iσ jσ k

+K4

∑
〈i,j,k,�〉

σ iσ jσ kσ ell + · · · (71)

Low T

High T

1

2 3 4

Figure 7. Schematic RG flow diagram in a two-dimensional
parameter space. The heavy curve represents the critical hypersur-
face. Point 1 is the critical value for the initial Hamiltonian and the
other points labeled show the flow toward the fixed point (heavy
filled circle).

where the set of coupling constants {K1, K2, . . .} forms the
space in which the flow is considered.

As additional couplings are included in the Hamiltonian,
an entire hypersurface of critical points is produced. When-
ever the Hamiltonian begins on the critical hypersurface, it
should ‘flow’ towards the fixed point. If, instead, the sys-
tem is at a multicritical point, the Hamiltonian should flow
towards a new ‘fixed point’ and not towards the critical fixed
point. Close to the multicritical point, however, there should
be complex ‘crossover’ behavior: the system may first appear
to flow towards a critical fixed point but upon further iter-
ation of the RG transformation begin to flow towards the
‘new’ fixed point. RG theory provides insight into the prin-
ciple of universality of critical phenomena because each type
of criticality is controlled by a different ‘fixed point’ of the
RG transformation.

Near the fixed point, the problem can be linearized so that
the Hamiltonian H′ is related to the fixed point by

H′ = Rb[H∗] + hLQ = H∗ + hLQ + . . . (72)

The linear operator L has the eigenvalue equation

LQj = λjQj (73)

where λj is the eigenvalue and Qj the eigenvector. In terms
of the spatial rescaling factor b the eigenvalue is

λj = byj (74)

where yj is an ‘exponent eigenvalue’, which can be related
to the usual critical exponents. In terms of these λj , the
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transformed Hamiltonian can be expressed as

H′ = H∗ +
∑

hjλjQj + . . . (75)

and eigenvalues may be extracted from recursion relations
(h(k+1)

j ≈ λjh
(k)
j ). The free energy in terms of the original

and renormalized variables is again unchanged:

f (h1, h2, h3, . . .) ≈ b−df (bλ1h1, bλ2h2, . . .) (76)

where h1 = k1ε, h2 = k2H , and so on. Choosing b so that
bλ1ε = 1, we can rewrite this equation with k1, k2 constants

F(ε, H, h3) ≈ εd/λ1f (k1, k2H/ελ1/λ2, . . .) (77)

Scaling has then been ‘derived’ if we identify d/λ1 = 2 − α

and λ2/λ1 = .
Alternatively, one may develop a momentum space

approach to RG theory in which the coarse-graining and
rescaling is defined in k space (momentum space) so that

H(m) = 1/2 ∫ dk(k2 + ro)|m(k)|2 + . . . (78)

A cutoff momentum � is introduced, and the k values that
lie between � and �/b are integrated out so the variable
of integration is rescaled by k′ = bk. The order parameter
is then renormalized and steps are repeated. A perturbation
expansion leads to recursion relations for the effective
interaction parameters and their solution gives the ‘fixed
points’. Perturbation parameters may include the deviation
from the upper critical dimension, du, or the inverse of the
number of components of the order parameter n. For simple
magnetic systems with isotropic, short-range couplings, the
upper critical dimension is du = 4 and the leading order
estimates (Wilson and Fisher, 1972) for critical exponents
from the ε expansion are (note that the parameter ε in the
following equation has a special meaning and does not refer
to the reduced distance from the critical temperature) as
follows:

α = 4 − n

2(n + 8)
ε + · · · where ε = 4 − d (79a)

β = 1

2
− 3

2(n + 8)
ε + · · · (79b)

γ = 1 + (n + 2)

2(n + 8)
ε + · · · (79c)

Of course, for some simple models higher-order expressions
have been derived; and although these expressions do not
always vary simply with ε, rather accurate estimates for crit-
ical exponents have been extracted, see for example, Brézin,
Le Guillou, Zinn-Justin and Nickel (1973) and Le Guillou

and Zinn-Justin (1980). A reliable analysis of the expan-
sions generally requires substantial sophistication. RG theory
was also applied to tricritical points by Wegner and Riedel
(1973), who showed that Landau theory correctly predicted
tricritical exponents in 3-dim but that the critical behav-
ior is modified by the presence of logarithmic corrections.
Further, an RG analysis of bicritical and related tetracritical
points has been carried out by Nelson, Kosterlitz and Fisher
(1974). While the momentum space RG has yielded fairly
accurate results for the critical exponents of the n-vector
model, the accuracy for other problems is far more mod-
est, for example, universal scaling functions describing the
equation of state, or describing the crossover from one uni-
versality class to another, are typically available only in
low-order ε expansion. The momentum space RG, in princi-
ple, also yields information about universal properties but
not for the critical coupling constants (Tc, etc.) or criti-
cal amplitudes. Real space RG, described below, can yield
this information. Momentum space RG has been particularly
valuable in the examination of systems with dipolar coupling
(Fisher and Aharony, 1973), an addition which, of course,
has important implications for many real, physical systems.
This treatment showed that Ising models with dipolar interac-
tions have mean-field exponents (Larkin and Khmel’nitskii,
1969; Aharony, 1973; Brézin and Zinn-Justin, 1976). Ried,
Millev, Fähnle and Kronmüller (1995) extended the momen-
tum space RG to Heisenberg models with uniaxial anisotropy
and dipolar coupling. The crossover transitions between four
nontrivial fixed points (Heisenberg, Ising, uniaxial dipolar,
and isotropic dipolar) were described in terms of an effective
exponent. Their results were later confirmed by experiments
on Gadolinium (Srinath and Kaul, 1999). Of course, RG the-
ory has been discussed extensively, and the reader is directed
elsewhere for a more detailed description (e.g., Domb and
Green, 1976).

Several simple RG transformations have been used with
generally good success. For these, the space of allowed
coupling constants is low-dimensional: This is an uncon-
trolled approximation but allows rapid calculations that are
needed for the actual renormalization transformation. As an
example, the ‘block-spin’ transformation replaces a b × b

block of spins by a ‘super spin’, whose state is determined
by the state of the majority of spins in the block. (When
the number of spins in a block is even, one site in each
block is chosen as a ‘tiebreaker’.) In an nn antiferromagnet,
a (2 × 2) block spin would give zero for all block spins if
the system were in the ground state. Instead ‘block spins’
are best composed of more complex structures where each
block resides on a single sublattice. (A

√
5 × √

5 transfor-
mation rotates the lattice through an angle ϕ = π /4 so if a
second transformation then rotates the lattice through angle
−ϕ, the original orientation is recovered.) With continued
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application of the rescaling transformation, the number of
couplings {Ki} in the Hamiltonian increases; however, in
practice, as the rescaling is iterated, the space of coupling
constants has to be truncated. In an analytic approach, other
uncontrolled approximations may be necessary to relate the
new and old couplings, but with the Monte Carlo renormal-
ization group (MCRG) methods described subsequently such
problems can be avoided.

The large-cell MCRG transformation was used to study
the 2-dim Ising model with nn coupling (Friedman and Fel-
steiner, 1977). A system of size L × 2L was considered and
two block spins σ ′

1 and σ ′
2 were created from application of

the majority rule to ‘large’ cells of size L × L. The block
spins interact with Hamiltonian

H = K ′σ ′
1σ

′
2 (80)

where the magnitude of the new effective coupling constant
K ′ is determined from

〈σ ′
1σ

′
2〉 = tanh(2dK ′) (81)

where d is the spatial dimensionality. Note that this cor-
responds to a transformation with scale factor b = L.
The thermal eigenvalue yT is then determined from the
expression

dK ′

dK
= LyT (82)

where the derivative can be calculated via Monte Carlo sim-
ulation from averages, that is,

dK ′

dK
= 〈σ ′

1σ
′
2S〉 − 〈σ ′

1σ
′
2〉〈S〉 (83)

where S = ∑
σ iσ j . If L is increased with the system held

at the critical coupling the estimates for yT should converge
to the correct value of 1/ν.

Methods that require calculation of the renormalized
Hamiltonian do not work well. A very different approach
that avoids calculation of renormalized couplings is usually
more effective. For simplicity, we express the Hamiltonian
in the form

H =
∑

α

KαSα (84)

where the various Sα are sums of different products of spin
operators and the Kα are the corresponding dimensionless

coupling constants. Examples of Sα are as follows:

S1 =
∑

σ i (85a)

S2 =
∑

σ iσ j (85b)

S3 =
∑

σ iσ jσ k (85c)

Near the fixed-point Hamiltonian H∗(K∗) the linearized
transformation takes the form

K(n+1)
α − K∗

α =
∑
β

T ∗
αβ(K

(n)
β − K∗

β) (86)

where the sum is over all possible couplings. The eigenvalues
λi of T ∗

αβ are related to eigenvalue exponents by

λ = by (87)

where the y are related to the usual critical exponents, for
example, yT = ν−1. The equations are valid for all real
space RG methods, and the common challenge becomes the
determination of matrix elements T ∗

αβ at the fixed point.
Perhaps the most successful implementation of real space
RG methods has been through the use of MCRG simulations
(see Swendsen, 1982). In this approach, the elements of
the linearized transformation matrix are written in terms of
expectation values of correlation functions at different levels
of renormalization. Thus,

Tαβ = ∂K(n+1)
α

∂K
(n)
β

(88)

where the elements can be extracted from solution of the
chain rule equation

∂〈S(n+1)
γ 〉

∂K
(n)
β

=
∑{

∂K(n+1)
α

∂K
(n)
β

}{
∂〈S(n+1)

γ 〉
∂K

(n+1)
α

}
(89)

The derivatives can be obtained from correlation functions,
which can be evaluated by Monte Carlo simulation, that is,

∂〈S(n+1)
γ 〉

∂K
(n)
β

= 〈S(n+1)
γ Sβ

(n)〉 − 〈S(n+1)
γ 〉〈S(n)

β 〉 (90)

and

∂〈S(n)
γ 〉

∂K
(n)
α

= 〈S(n)
γ S(n)

α 〉 − 〈S(n)
γ 〉〈S(n)

α 〉 (91)

In practice, the Tαβ matrix is truncated and the number of
renormalizations is also limited. The estimates for eigenval-
ues need to be examined as a function of the number of
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couplings Nc used in the analysis as well as the number of
iterations Nr . Exact results are obtained only for Nr → ∞
and Nc → ∞, but convergence is often rapid. Comparisons
for different size lattices indicate whether finite lattice effects
are biasing the answers.

MCRG may be used to locate critical points by matching
correlation functions for transformed and untransformed
systems. However, finite size effects can be subtle, so,
two different lattices that differ in size by scale factor b

are needed. Near a critical point, a linear approximation
relates the difference between the original and renormalized
correlation functions to the distance to the critical point,
that is,

〈S(n)
α 〉L − 〈S(n−1)

α 〉S =
∑
β

[
∂〈S(n)

α 〉L
∂K

(0)
β

− ∂〈S(n−1)
α 〉S

∂K
(0)
β

]
δK

(0)
β (92)

The predicted ‘distance’ from the critical coupling δK
(0)
β can

be extracted by inverting equation (92) for different values
of n. Thus, an initial estimate for the critical coupling is
chosen, the above process is carried out, and the procedure
is iterated.

The methods that have just been described can also be used
to investigate multicritical behavior. This usually requires a
search in a two-dimensional parameter space; moreover there
are usually additional critical eigenvalue exponents due to the
presence of additional scaling fields.

Investigations of critical dynamics may also be performed
using RG theory and matching, time-dependent correlation
functions. A sequence of states that have been blocked at
difference levels is generated, and the correlation functions
are ‘matched’ at different blocking levels at different times.
The relationship between the blocking level and the time at
which they match gives the dynamic exponent z:

C(N, m, T2, t) = C(Nbd, m + 1, T1, bzt) (93)

where the critical temperature is T1 = T2 = Tc. Two different
size lattices must be used so that there are an identical
number of spins in the large lattice after blocking as in
the smaller lattice with one less blocking. Of course, the
matching can be carried out successfully only for sufficiently
large m for which the effect of irrelevant variables is small.
This approach was first implemented by Tobochnik, Sarker
and Cordery (1981) for simple 1- and 2-dim Ising models.
Multiple lattice sizes should be used so that finite size effects
can be determined, and the procedure should be repeated
for different times to insure that the asymptotic, long-time
behavior is being probed.

3.3 Series expansions

The method of series expansions is a well-tested approach
that has found great utility in the examination of magnetic
phase transitions for over half a decade. The challenges of
performing calculations with the series-expansion technique
can be subdivided into two types: generation of the series
and analysis of the series. Each aspect has its own subtleties
and difficulties.

The basic idea of series expansions is rather simple,
but the practical implementation of this method demands
considerable sophistication. The partition function contains
all relevant information about the static properties of a
magnetic system:

Z =
∑

i

e−H/kBT (94)

where the sum is over all states of the system. At high
temperatures, the exponential can be expanded in a power
series in T −1or in tanh(J/kBT ), and at low temperatures an

expansion in exp
(
− J

kBT

)
is possible. The individual terms

can generally be computed in terms of the permutations of
bonds to form different graphs, and computer algorithms
have been devised that allow the precise creation of quite
long expansions for simple models. (For more details on how
to develop series expansions for magnetic systems, see Domb
and Green (1974).)

A series-expansion approach can also be used for critical
dynamics. Using the master equation given in equation (43)
we can define a time evolution operator

L =
∑

k

Wk(Sk)(1 − Pk) (95)

where Wk is the spin-flip transition rate and Pk is the spin-flip
operator. The long-time behavior is described by

τ ∼
∑
i,j

〈siL−1sj 〉 (96)

and τ is estimated by expanding L−1 in a series.
Quite sophisticated methods of analysis have been derived

and each approach has its own strengths and weaknesses.
(For a more detailed review, see Guttmann (1989) and Adler
(1995).) Ratio methods and Padé approximants have long
been favorites. The radius of convergence of a series

F(z) =
∑

n

aiz
n (97)

is determined by a singularity in the complex z plane (not
to be confused with the dynamic critical exponent z), and
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the strongest singularity on the positive real axis will be
identified as the critical point. Of course, there may be other
singularities in the complex z plane, so analysis of the series
may be nontrivial. In the ratio method, the critical point
zc is estimated by examining ratios of successive prefactors
and extrapolating to n → ∞, for example, for the magnetic
susceptibility

an

an−1
= 1

zn

= 1

zc

[
1 − γ

n
+ · · ·

]
(98)

The ratio method works poorly however, when the coeffi-
cients in the series are irregular in sign and/or magnitude.
An alternative approach that has great value is that of Padé
approximants in which F(z) is approximated by the ratio of
two polynomials, that is, the [L, M] approximant is

F(z) = p0 + p1z + . . . + pLzL

q0 + q1z + . . . + qMzM
(99)

The poles and residues of the diagonal approximants are then
used to determine the critical points and exponents. If the
function F(z) has an algebraic branch cut at z = zc, a new
function G(z) can be defined

G(z) = F(z)(zc − z)γ z−γ
c (100)

and the logarithmic derivative

D(z) = d

dz
F (z) = −γ

z − zc
+ d

dz
G(z) (101)

has a simple pole at z = zc and the approximant should
converge faster for D(z) than for F(z).

Differential approximants have been used to analyze
series in terms of singularities with nonanalytic corrections
but these have not always been effective. One promising
approach has been the Roskies transform in which a change
of variables is performed

y = 1 − (1 − T /Tc)
θ (102)

so that the nonanalytic term in (T − Tc) becomes analytic
in (1 − y). The new series only has weaker nonanalytic
corrections involving a second irrelevant exponent θ2.

As the preceding discussion shows, the extraction of
critical behavior from series expansions can be subtle, and
series that are too short and unreliable analyses have led to
controversies in the past literature. Quite long series now
exist for a few, simple magnetic models on regular lattices,
and we believe that the estimates derived from these series
expansions that we shall review later are reliable.

3.4 Monte Carlo simulations

A rich diversity of importance sampling Monte Carlo meth-
ods has been used to study magnetic phase transitions (Lan-
dau and Binder, 2005). In the classic Metropolis method
(Metropolis et al., 1953), configurations are generated from
a previous state using a transition probability that depends on
the energy difference between the initial and final state. The
sequence of states produced follow a time-ordered path, but
the time in this case is really only a nondeterministic ‘Monte
Carlo time’. (From a theoretical perspective, the commuta-
tor of the Hamiltonian and a spin gives the time dependence
of that spin. For the Ising model, this is zero and there is
no deterministic behavior.) Instead, for relaxational models,
such as the (stochastic) Ising model (Kawasaki, 1972), the
time-dependent behavior is described by a master equation
(equation (43) for the probability Pn(t) that the system is in
state n at time t , and Wn→m is the transition rate for n → m.
If the system is in equilibrium, ∂Pn(t)/∂t = 0 and the two
terms on the right-hand side of equation (43) must be equal!
The resultant expression is known as ‘detailed balance’:

Pn(t)Wn→m = Pm(t)Wm→n (103)

The probability of the nth state occurring in a classical system
is given by

Pn(t) = e−En/kBT /Z (104)

where Z is the partition function. This probability is usually
not exactly known because of the denominator; however, by
generating a Markov chain of states we can avoid the need
to determine it. If we generate the nth state from the mth
state, the relative probability is the ratio of the individual
probabilities and the denominator in equation (104) cancels
out. This means that only the difference in energy between
the two states is needed, for example,

E = En − Em (105)

Any transition rate that satisfies detailed balance is accept-
able. The choice of rate initially used in simulations of
magnetic systems was the single spin-flip Metropolis form

Wm→n = τ−1
o exp(−E/kBT ), E > 0 (106a)

= τ−1
o , E < 0 (106b)

where τ o is the time required to attempt a spin flip. (Often
τ o is set equal to unity and thus not explicitly shown in
the equations.) A spin flip is accepted if a random number r ,
chosen uniformly in the interval [0,1], is less than the flipping
probability. (Of course, the random number stream must have
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a long period, and successive random numbers should be
uncorrelated. Some simulations in the literature have suffered
from poor-quality random numbers.) The ‘standard’ unit of
Monte Carlo time is the Monte Carlo step/site (MCS/site),
which corresponds to the consideration of every spin in the
system once. With this algorithm, states are generated with
the correct probability once the initial transients are past.
Then, the desired averages 〈A〉 = ∑

n PnAn of a variable A

become arithmetic averages over the entire sample of states.
Note that if an attempted spin flip is rejected, the old state is
counted again in the average.

For early times, the system relaxes towards equilibrium,
but the internal energy and magnetization may have differ-
ent characteristic time scales. At later times, the system is in
equilibrium and the properties exhibit thermodynamic fluc-
tuations; and at yet longer times global spin reversal might
occur, that is, between states of equal energy and oppositely
directed spontaneous magnetization. If sites are selected ran-
domly in a system with N sites, one MCS/site corresponds
to the consideration of N randomly chosen sites. Note that,
some spins will probably be chosen more than once and some
not at all during one MCS/site. The time development of the
system will be similar to that for sites being visited in order,
but the explicit variation and time scales will differ. Random
site selection should be used if dynamic correlation functions
of the corresponding stochastic model are to be measured and
not just static equilibrium properties.

The Metropolis flipping probability is not a unique solution
to the master equation. An alternative method, commonly
referred to as ‘Glauber dynamics’ (Glauber, 1963) uses the
single spin-flip transition rate

Wn→m = τ−1
o [1 + σ i tanh(Ei/kBT )] (107)

where σ iEi is the energy of the ith spin in state n. Unlike the
Metropolis method, the Glauber rate is antisymmetric about
0.5 for Ei → −Ei . Müller-Krumbhaar and Binder (1973)
showed that both Glauber and Metropolis algorithms are just
special cases of a more general transition rate form. Note
that at very high temperatures, the Metropolis algorithm will
flip a spin on every attempt because the transition probability
approaches 1 for E > 0; the system is then nonergodic and
merely oscillates between the two states. With the Glauber
algorithm, however, the transition probability approaches 1/2
and the process remains ergodic.

Algorithmic simplifications are possible for the Ising
model and these may modify the ‘time dependence’. For
example, for each spin there are only a small number of
different environments that are possible, for example, for a
square lattice with nn interactions, there are only five differ-
ent energy changes associated with a successful spin flip and
each flipping probability can be computed and stored in a

table. Spins are chosen randomly to be flipped and the time
that elapses between flips is determined with another random
number. Averages are thus over lifetimes of each state. This
‘event-driven’ simulation does not give the same sequence
of states as the ‘time-step-driven’ algorithms, for example,
the Metropolis method, so the ‘dynamic’ properties will be
different.

The Ising model as originally formulated and discussed in
the preceding text may be viewed as a spin-S model with
S = 1/2, but the definition can be extended to the case of
higher spin without difficulty. For example, for S = 1 there
are three possible states, 1, 0, and −1, at each site. An nn
pair can, therefore, have three possible states with different
energies and the total space of possible lattice configurations
is similarly enlarged. A spin-S Ising model can be simulated
using the method just described except that the ‘new’ state
to which a given spin attempts to flip must be chosen from
among multiple choices using another random number.

Of course, other Monte Carlo algorithms have been
developed to overcome the limitations of the Metropolis
technique. Cluster algorithms (Swendsen and Wang, 1987;
Wolff, 1989), based on the Fortuin–Kasteleyn theorem,
have been developed to overcome critical slowing down
near phase transitions. Such methods create clusters by
randomly adding bonds to a starting site with a characteristic
probability, and then entire clusters of spins are flipped.
These algorithms greatly reduce the characteristic relaxation
times of the sampling. Although the ‘dynamic’ critical
behavior is thus modified, that is, the dynamic exponent z

is reduced, the static properties remain unchanged.
A different approach was taken by Berg and Neuhaus

(1992) who proposed a new, multicanonical method. They
used a sampling probability that differed from the canonical
probability in order to increase the sampling of intermediate
states between configurations of high probability that were
separated by a region of quite low probability. This is the
situation at first-order phase transitions and leads to loss
of ergodicity. More recently, Wang and Landau (2001a,b)
described a quite different approach to Monte Carlo simu-
lations that directly estimated the density of states, that is,
rewriting the partition function as

Z =
∑

i

e−Ei/kBT ≡
∑
E

g(E)e−E/kBT (108)

The technique uses a simple ‘recipe’ to construct g(E) in
an iterative fashion. A random walk is performed in energy
space using a modified probability that does not depend upon
temperature

p(E1 → E2) = min

(
g(E1)

g(E2)
, 1

)
(109)
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Once g(E) has been estimated, the canonical probability, and
hence all thermodynamic properties, may be determined for
all temperatures, from a single simulation.

The principle of ergodicity requires that all possible
configurations of the system should be reachable. Below
a phase transition, multiple different-ordered states that are
well separated in phase space may appear. If the phase
transition from the disordered phase to the ordered phase is
associated with ‘symmetry breaking’, the different-ordered
states are related by a symmetry operation (e.g., a reversal
of the sign of the order parameter for an Ising ferromagnet).
Within the context of dynamical behavior of such systems,
symmetry breaking usually means ergodicity breaking, that
is, the system stays in one separate region in phase space.
For example, in the simulation of an Ising system that
may have all spins up or all spins down, we may wish
to keep the system from exploring all of phase space so
that only positive magnetization values are observed. For a
fully ergodic simulation algorithm, both positive and negative
values of magnetization will be sampled and the average will
be zero.

3.5 Spin dynamics simulations

We have previously mentioned that the Monte Carlo method
is fundamentally stochastic in nature, so that there is, in
general, no correlation between ‘Monte Carlo time’ and ‘real
time’, although the static averages are the same. An approach
to the investigation of true time-dependent properties is to
generate initial states, drawn from a canonical ensemble
using Monte Carlo methods and to use these as starting
points for the integration of the coupled equations of motion.
This approach, referred to as ‘spin dynamics’, has been quite
successful (Landau and Krech, 1999). In the general case, we
have a system of N spins, which interact with the general
Hamiltonian

H = −J
∑
〈i,j〉

(SixSjx + SiySjy + λSizSjz)

+D
∑

i

S2
iz + H

∑
i

Siz (110)

where the first sum is over all nn pairs, λ represents exchange
anisotropy, D is the single ion anisotropy, and H is the
external magnetic field. There are a number of real magnet
systems that are well approximated by such Hamiltonians,
although one or more of the parameters may vanish in
particular cases. For λ = 1 and D = 0, the Hamiltonian
describes the isotropic Heisenberg ferromagnet for J > 0 or
for J < 0 the Heisenberg antiferromagnet.

For models with continuous spins, equations of motion can
be derived from the quantum mechanical commutator,

∂Si

∂t
= − i

�
[Si , H] (111)

by allowing the spin value to go to infinity and normalizing
the length to unity to yield

d�Si

dt
= ∂H

∂ �Si

× �Si = −�Si × �Heff (112)

where �Heff is an ‘effective’ interaction field. For the isotropic
Heisenberg ferromagnet, �Heff = −J

∑
nn

�Sj . Through these
coupled equations of motion, a spin can be described as
precessing about an ‘effective interaction field’, which itself
changes as the other spins move. The time dependence of
each spin Si(t) can be determined by numerical integration
of these coupled equations of motion.

The simplest approach is to simply expand about the
current spin value using a small-time-step  as the expan-
sion variable in a Taylor expansion. The resulting estimate
depends upon how many terms are retained in the series.
Typical values of  that deliver reliable results to a rea-
sonable maximum integration time tmax are ∼ = 0.005. A
very simple improvement can be made by implementing a
‘leapfrog’ procedure (Gerling and Landau, 1983)

Sα
i (t + ) = Sα

i (t − ) + 2Ṡα
i (t)

+ 2

3!
3...

S
α
i (t) + · · · (113)

The local error in this integration is O(5) and allows larger
values of  to be used, hence extending the maximum
possible integration time, tmax. Several standard numerical
methods can also be applied, for example, fourth-order
predictor–corrector methods have proved quite effective
for spin dynamics simulations (local truncation error of
∼5). Note, however, that the conservation laws discussed
below will only be observed within the accuracy set by the
truncation error of the method. In practice, this limits the
time-step to ∼ = 0.01/J in d = 3 (Chen and Landau, 1994)
for the isotropic model (D = 0), where tmax ≤ 200/J .

For a typical spin dynamics study, most of the CPU time
is consumed by the numerical time integration, so a large
time step is most desirable. However, ‘standard’ methods
impose a severe restriction on the size of  for which the
conservation laws of dynamics are obeyed. Symmetries of
the Hamiltonian impose additional conservation laws, so,
for the isotropic Heisenberg model, the magnetization �m is
conserved. For an anisotropic Heisenberg model, that is, λ �=
1 or D �= 0, only the z component mz of the magnetization
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is conserved. Conservation of spin length and energy is
particularly crucial, and it would therefore also be desirable
to devise an algorithm that conserves these two quantities
exactly. In this spirit, a new, large-time-step integration
procedure, which is based on Trotter–Suzuki decompositions
of exponential operators and conserves both spin length and
energy exactly for D = 0, has been devised (Krech, Bunker
and Landau, 1998). For high order decompositions, time
steps as large as  = 0.2/J can be used so that tmax may be
greatly extended to 1000/J or more. Variants of this method
for more general models also allow the use of very large time
steps but do not necessarily conserve all quantities exactly.

4 NUMERICAL RESULTS: CURRENT
STATUS

4.1 Ising model

The simplest and most-studied magnetic system is surely
the Ising model. This model consists of spins σ i = ±1
placed at lattice sites i, and near neighbors interact. In
the simplest case, the coupling is only between nearest
neighbors, but the addition of nnn interactions and a magnetic
field can lead to a tricritical point. Although the 1-dim
model in zero field, solved in Ising’s classic paper (Ising,
1925), exhibited no phase transition, Onsager’s ‘tour de
force’ analytic solution of the 2-dim zero-field model showed
that there was only a weak divergence of the specific
heat with α = 0 (a logarithmic divergence); moreover, the
spontaneous magnetization goes to zero at Tc with exponent
β = 1/8. These exponent values are quite different from
those predicted by Landau theory and are a result of the
large fluctuations that exist in two dimensions. Since not
all properties of the 2-dim Ising model are known exactly,
Monte Carlo simulations are nonetheless of substantial value.
For example, Nicolaides and Bruce (1988) have shown that
the ‘fixed-point’ value of the reduced fourth-order cumulant
(Binder parameter) for the Ising square lattice is U∗ ∼
0.61562(90).

The spin configurations that are generated by Monte Carlo
simulations provide substantial insight into the nature of the
critical behavior. A ‘snapshot’ of the 2-dim Ising model at
the critical temperature (Figure 8) shows quite clearly that
the critical clusters that form are not compact but rather quite
ramified. At the critical temperature, clusters of all sizes are
present, but the slow ‘dynamics’ result from the slow changes
in the largest or ‘infinite’ cluster.

MCRG simulations have been used to study the proximity
of the nn Ising square lattice Hamiltonian to the fixed-point
value. The thermal eigenvalue exponent estimates for L × L

Figure 8. Snapshot generated by a Monte Carlo simulation of a
2-dim Ising model at Tc for a 256 × 256 lattice with periodic
boundary conditions. Dark and light squares represent oppositely
directed spins.

square lattices converge quickly to the asymptotic value yT

equals to 1.0 (Swendsen, 1982). As the number of iterations
increases, the exponent rapidly approaches the exact value,
but this is true only as long as at least one additional coupling
is generated. Even for only one iteration and a single nn
coupling yT = 0.912(2), and after three iterations with only
two couplings yT = 0.998(2). Finite size effects also begin
to appear slowly and become increasingly important as the
iteration number increases. Nonetheless, the conclusion that
may be drawn is that the original Hamiltonian is rather close
to the fixed point.

Experience with other models, and with the Ising model
in higher dimension, has shown that, in general, the conver-
gence of MCRG with iteration is not as rapid as for the 2-dim
Ising model, and great care must be used to insure that a suf-
ficient number of couplings and renormalizations have been
used. This also means that the lattices must be large enough
to avoid finite size effects in the renormalized systems.

Although the 2-dim Ising model has been solved analyt-
ically, the 3-dim model has defied exact solution and may
not even be solvable. Extensive numerical studies of Ising
models on different lattices have given a fairly detailed
view of the transition. Several high-quality MCRG stud-
ies attempted to deduce the critical behavior for the sim-
ple cubic (sc) lattice. In the latest of these studies, Baillie,
Gupta, Hawick and Pawley (1992) used lattices as large as
1283 with 53 even operators and 46 odd operators. They
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concluded that Kc = 0.221652(3) and ν = 0.624(2). Large
scale Monte Carlo simulations of the Ising sc model with
results analyzed using finite size scaling have given quite
precise estimates for both the critical temperature and criti-
cal exponents. Using lattices as large as 96 × 96 × 96, Fer-
renberg and Landau (1991) estimated Kc = 0.2216595(26)
and ν = 0.6289(2). A reanalysis of the data including cor-
rections to scaling found ν = 0.6294(2), and by fixing ν,
the authors found Kc = 0.2216574(18). Blöte, Luijten and
Heringa (1995) made very high statistics runs on many
smaller systems, but used more detailed corrections to finite
size scaling using correction exponents from RG theory and
found Kc = 0.2216546(10). The estimate for the fixed-point
value of the fourth-order cumulant was U∗ ∼ 0.47, a value
that is far below that of the 2-dim Ising model. Critical behav-
ior has also been estimated from the nonequilibrium time
behavior. Ito, Hukushima, Ogawa and Ozeki (2000) used
substantial Monte Carlo simulations to study the nonlinear
relaxation of the magnetization for large (405 × 405 × 406)
sc Ising lattices and found Kc = 0.2216595(15) and ν =
0.635(5). Deng and Blöte (2003) performed extensive Monte
Carlo simulations on a number of models that are believed
to be in the same universality class. By requiring consis-
tency in the estimates of universal quantities, they concluded
that for the sc lattice Kc = 0.22165455(3). This latter value
together with the earlier MCRG result and the latest series
expansion would seem to exclude the ‘exact conjecture’ by
Rosengren (1986), that is, tanh Kc = (

√
5 − 2) cos(π/8) or

Kc = 0.22165863. A good summary of results obtained from
different methods for several simple Hamiltonians, including
the Ising Hamiltonian, can be found in Pelissetto and Vicari
(2002).

The crossover from 2-dim to 3-dim critical behavior in the
Ising model was probed by Binder (1974) using Monte Carlo
simulations. The observed shift in the critical temperature
(due to crossover) is well described by equation (30) with
φ = 1/ν3 (Figure 9). Of course, the asymptotic behavior
is not reached until the number of layers has reached a
sufficiently large value. A similar situation in terms of the
appropriate variables occurs for other crossover phenomena.

Surface critical behavior in 3-dim Ising models has
also been studied using extensive Monte Carlo simulations.
Although the qualitative picture presented by mean-field the-
ory seems to be correct, the location of the special tran-
sition as well as all of the surface critical exponents are
not quantitatively correct. Monte Carlo simulations (Lan-
dau and Binder, 1990) first suggested that Jsc/J = 1.52,
but later simulations (Ruge, Dunkelmann, Wagner and Wulf,
1993) suggested that the value was slightly smaller. Instead
of the mean-field value β1 = 1 at the ordinary transition,
Monte Carlo estimates were about 0.78 or 0.80. Field the-
oretic RG theory predictions (Diehl and Dietrich, 1981;
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Figure 9. Shift of the critical temperature for Ising films of
thickness n. Crosses (x) are series expansions results and the solid
points (•) are results from Monte Carlo simulations. (Reproduced
from K. Binder: ‘Monte Carlo study of thin magnetic Ising films’,
Thin Solid Films 20, 1974, pp 367–381, copyright  1974, with
permission from Elsevier.)

Diehl and Shpot, 1998) were 0.816 and later 0.796. Critical
exponents for the special transition have also been estimated
by different numerical methods. Instead of the mean-field
value φ = 1/2, RG theory first predicted φ = 0.68 and an
improved estimate was φ = 0.539. Monte Carlo simula-
tions yielded φ = 0.56, and more recent simulations found
smaller values, 0.45 and 0.46 (Deng, Blöte and Nightin-
gale, 2005).

The determination of ‘dynamic’ critical exponents for
Ising (model A) systems has been an arduous task. For
several decades, the estimates for the dynamic exponent
in 2-dim varied from study to study and showed little
tendency to converge towards ‘accepted’ values. Finally,
a careful series-expansion analysis (Dammann and Reger,
1993, 1995) for the 2-dim Ising model yielded the estimate
z = 2.183(5), although a reanalysis of the series by Adler
(1996) gave z = 2.165(15). Using extremely large lattices
(L = 496,640), Stauffer (1997) examined the decay of the
magnetization at Tc (see equation 50) and concluded that z =
2.18. Then, a high precision Monte Carlo study (Wang and
Gan, 1998) yielded z = 2.169(3) and a variance-reducing
Monte Carlo simulation of the stochastic matrix (Nightingale
and Blöte, 1998) gave z = 2.1665(12). It thus appears as
though the model A dynamic exponent is now well known
for the 2-dim Ising model. For the 3-dim Ising model, rather
good estimates were obtained from finite size scaling of
the linear correlation time at Tc, z = 2.04(3) (Wansleben
and Landau, 1991); and from the ‘statistical dependence
time’, z = 2.030(4) (Kikuchi and Ito, 1993); and from the
nonlinear relaxation Ito, Hukushima, Ogawa and Ozeki
(2000) estimated z = 2.055(10). Therefore, it appears as
though the model A Ising dynamic exponent is smaller in
3-dim than in 2-dim but is still larger than 2.
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Rather recently, very high quality series-expansion deter-
minations of critical exponents for general spin Ising models
on the sc and bcc lattices have confirmed expectations that
the spin value was unimportant in the determination of the
static universality class (Butera and Comi, 2002). Using high-
temperature series with a large number of terms, through
T −23 and T −25 (for different quantities), they found that
γ = 1.2371(1), ν = 0.6299(2), and the leading correction to
scaling exponent is θ = 0.50 for spin values between 1/2
and ∞.

4.2 3-dim Heisenberg model

Rather long high-temperature series expansions (Butera and
Comi, 1996) have also been used to obtain rather precise
values of critical exponents for both the sc and bcc lat-
tices. Including corrections to scaling, they found Kc =
0.69305(4), ν = 0.712(10), γ = 1.40(1) for the sc lattice,
and Kc = 0.486820(4), ν = 0.714(2), γ = 1.402(3) for the
bcc lattice. These may be compared with results of high-
resolution Monte Carlo simulations (Chen, Ferrenberg and
Landau, 1993). These produced critical temperature esti-
mates Kc = 0.693035(37), ν = 0.7036(23), γ = 1.3896(70)
for the sc lattice and Kc = 0.486798(12), ν = 0.7059(37),
γ = 1.385(10) for the bcc lattice. Holm and Janke (1993)
obtained similar answers but with larger error bars. Another
Monte Carlo study (Ballesteros, Fernandez, Martı́n-Mayor
and Muñoz Sudupe, 1996) compared data from two different
size lattices and used finite size scaling to extract the values
Kc = 0.693002(12), ν = 0.7128(14), γ = 1.396(3). They
also provided the estimate U∗ = 0.6217(8). ε-expansion RG
calculations have also been performed for the 3-dim Heisen-
berg model. The estimate (Le Guillou and Zinn-Justin, 1980)
ν = 0.710(7) has been improved by a newer study (Guida
and Zinn-Justin, 1998) with smaller errors that predicts
ν = 0.7096(8). Thus, although small differences between dif-
ferent numerical estimates remain, it must be concluded that
both critical temperatures and static critical exponents are
rather well known.

The ‘dynamic’ critical behavior of the Heisenberg model
is more complex than the static behavior. For the Heisenberg
ferromagnet a finite size scaling analysis of spin dynamics
simulations data (Chen and Landau, 1994) yielded an esti-
mate for the dynamic exponent z = 2.478(27). This value
was in excellent agreement with the dynamic scaling pre-
diction (identical to ε-expansion RG theory) of z = (d +
2 − η)/2 = 2.478(28). For the Heisenberg antiferromagnet
there was a controversy about the shape of the dynamic
structure factor. Although mode-coupling theory predicted
that at Tc there would only be a spin wave peak, both
inelastic neutron-scattering experiments and spin dynamics

simulations found a central peak at Tc, that is, a maximum for
ω = 0, in addition to a spin wave peak. In addition, although
for the Heisenberg antiferromagnet the theoretical prediction
that z = 1.5 was not initially confirmed by either experi-
ment or by spin dynamics simulation, a more detailed finite
size scaling analysis (Tsai and Landau, 2003) showed that
z = 1.5 was correct for sufficiently small values of q. If,
instead, the time-dependent behavior (critical kinetics) of the
Heisenberg model is studied via Monte Carlo simulations,
that is, treating the Heisenberg model stochastically as in
model A, the dynamic exponent is z = 1.96(6) (Peczak and
Landau, 1993). Thus, although there is a single set of static
critical exponents for the classical Heisenberg model, there
are three different ‘dynamic’ exponents.

4.3 2-dim XY model

Various forms of the 2-dim XY model have been exten-
sively studied using Monte Carlo simulations. In most cases,
the plane rotator (two-component spins) has been used, but
different studies have yielded different, and sometimes con-
tradictory, results. The general feature of the predictions at
the transition, that is, the unbinding of vortex pairs has been
confirmed by early Monte Carlo simulations (see Figure 10).
The vortex-pair density goes up with increasing temper-
ature, and at TKT ∼ 0.9 J/kB the pairs begin to unbind.
Although the systems used in this simulation were relatively
small and the numerical values of transition temperature
and critical exponents were not terribly precise, this study
clearly provided insight into the underlying correctness of
the Kosterlitz–Thouless picture. The subsequent estimation
of the numerical values for the transition temperature and
critical exponents proved quite difficult as various studies
yielded different results. The difficulties were, at least in part,
due to a slow approach to the asymptotic critical region and
corrections to finite size scaling. The most recent and highest-
resolution study (Hasenbusch, 2005) has clarified a somewhat
murky situation. Hasenbusch simulated plane-rotator models
on L × L square lattices at two different temperatures, K =
1.1199 and K = 1.12091, which had been estimated as being
TKT by two different groups. A single-cluster update algo-
rithm was used with lattices as large as L = 2048 and a min-
imum of 2.5 × 106 MCSs were taken for each temperature
and lattice size. An analysis of the second moment correlation
length and the helicity modulus confirm Kc = 1.1199 as the
transition temperature. An analysis of the magnetic suscepti-
bility showed that for sufficiently large L it followed the form

χ ∝ L2−η(ln L + C)−2r (114)

with the theoretically predicted values of η = 1/2 and r =
−1/16.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Vortex-pair unbinding in the 2-dim XY model. Open circles are vortices and triangles are antivortices: (a) T = 0.80;
(b) T = 0.85; (c) T = 0.90; (d) T = 0.95; (e) T = 1.00; (f) T = 1.05, where J/kB = 1. (Reproduced from Tobochnik, J., Sarker, S. and
Cordery, R. (1981), with permission from the American Physical Society.  1981.)

4.4 Blume–Capel model: a window on tricritical
behavior

The Blume–Capel model on a face centered cubic (fcc) lat-
tice was studied by Saul, Wortis and Stauffer (1974) using
both low-temperature and high-temperature series expan-
sions. They traced out the phase diagram and found a tricrit-
ical point at kBTt/J = 3.138(84) with a tricritical coupling
ratio (see equation 13) of Dt/J = 5.659(12). The tricriti-
cal exponents were consistent with the predicted mean-field
(Landau) values (or equivalently the Riedel–Wegner Gaus-
sian fixed point). Using Monte Carlo simulations, Jain and
Landau (1980) found kBTt/J = 3.072(24) with a tricritical
coupling ratio of Dt/J = 5.652(48). A finite size scaling
analysis also yielded tricritical exponents that were consistent
with Gaussian fixed-point predictions, including logarithmic
corrections for the order parameter.

The examination of tricritical behavior in 2-dim was
perhaps more interesting and more challenging. MCRG
methods (Landau and Swendsen, 1986) were used to study
the 2-dim Blume–Capel ferromagnet as well as for the 2-dim
Ising antiferromagnet with nnn interactions in a magnetic
field. The MCRG study showed that for quite a wide range

of couplings below the predicted (mean field) critical value,
there was only an ordinary tricritical point with no indication
of the predicted decomposition into a critical endpoint and
double critical point. The numerical estimates obtained for
both the dominant and subdominant eigenvalue exponents
were also unchanged with modifications in the couplings
and agreed well with the predicted values for an ordinary
tricritical point. Kimel, Black, Carter and Wang (1987)
performed a Monte Carlo study of the antiferromagnetic
Blume–Capel model in two dimensions and found similar
results, that is, no decomposition of the tricritical point with
tricritical exponents that agreed with values extracted for
the Blume–Capel ferromagnet. Thus, fluctuations in the 2-
dim model completely destroy mean-field behavior and also
maintain simple tricritical behavior.

4.5 Bicritical behavior in the anisotropic
Heisenberg model

Monte Carlo simulations were carried out for the anisotropic
Heisenberg model in 3-dim by Landau and Binder (1978).
They found a low-field Ising-like ordered, antiferromagnetic
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Figure 11. Phase diagram of the anisotropic Heisenberg antiferro-
magnet in the H|| − T plane. The symbols are the results of Monte
Carlo simulations, the mean-field lines (-·-·-·) and bicritical tem-
perature T ∗

b are shown for comparison. The heavy solid curves
represent the asymptotic phase boundaries resulting from a fit to
equation (38). The dashed lines are theoretical scaling axes. The
triangles show the critical field data in the H⊥ − T plane. (Repro-
duced from Landau, D.P. and Binder, K. (1978), with permission
from the American Physical Society.  1978.)

state and as the field was increased, the system underwent
a first-order transition to a spin-flop state (Figure 11). The
data showed Ising-like critical behavior of the z component
of the staggered magnetization for low fields and XY -
like critical behavior of the perpendicular component of
the staggered magnetization at high fields. They found the
predicted bicritical umbilicus and showed that the behavior
of the phase boundary in the vicinity of the bicritical point
could indeed be described by the predicted nonlinear scaling
axes. The indention of the bicritical point was substantially
greater than the mean-field prediction. The phase boundary
for a perpendicular field, also shown in Figure 11, follows a
simple, quadratic dependence upon the field.

4.6 Competing interactions: surprises
and unanswered questions

The classical Heisenberg ferromagnet discussed in previous
sections has a second-order transition with critical behavior

that is now well characterized. The addition of anisotropy
can make significant modifications to the phase transition.
Mouritsen, Knak Jensen and Bak (1977) used Monte Carlo
simulations to examine variation of the Heisenberg model
in which fluctuations in the order parameter make a discon-
tinuous transition (first order) energetically favorable. Next-
nearest-neighbor couplings as well as fourth-order anisotropy
were added to the Hamiltonian. As a consequence, the fourth-
order invariants of the six components of the order parameter
of this model are the same as for UO2 or NdSn3 and all three
cases should have the same kind of phase transition. Indeed,
Monte Carlo calculations by Mouritsen, Knak Jensen and
Bak (1977) showed clear hysteresis in both the order param-
eter and the internal energy (shown in Figure 12) that was
indicative of a first-order transition. In contrast, mean-field
theory predicts a second-order transition.

The model just described is not the only case in which
competition can lead to first-order transitions. The simple
Ising model on an fcc lattice with antiferromagnetic nn
coupling shows geometric frustration because it is impossible
to produce a ground state in which all nn bonds are satisfied.
When a magnetic field is added, the system shows ‘order out
of disorder’ in which long-range order is observed. If the fcc
lattice is subdivided into four interpenetrating sc sublattices,
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for low fields a multiply degenerate antiferromagnet is
produced in which two of the sublattices are up and two
are down, and at higher fields, a ferromagnetic state appears
in which three of the four sublattices are up. Although early
Monte Carlo simulations were somewhat contradictory, more
recent simulations have shown that all phase boundaries are
then first order as shown in Figure 13. However, the ‘jumps’
along the first-order line tend to zero, so it is unclear if the
confluence of the three first-order phase boundaries is a triple
point or a multicritical point (Kämmerer, Dünweg, Binder
and d’Onorio de Meo, 1996).

Another kind of unexpected, and rather complex, behav-
ior occurs in the triangular Ising antiferromagnet with the
addition of ferromagnetic nnn interactions (Landau, 1983).
With only nn interactions, there is no phase transition in zero
magnetic field; however, when a uniform magnetic field is
added, a ferrimagnetic phase becomes stable with positive net
magnetization for positive field and negative net magnetiza-
tion for negative field. Each ferrimagnetic state is separated
from the paramagnetic state by a three-state Potts-like line
of second-order transitions, but the lines only intersect for
T = 0. When ferromagnetic nnn interactions are included,
the unusual phase diagram, depicted in Figure 14 results.
At high temperature in zero magnetic field, the system is
paramagnetic. Then, as the temperature is lowered to T1, in
zero magnetic field, a Kosterlitz–Thouless-like transition is
encountered (even though the model is an Ising model!). At a
still lower temperature, T2, the transition becomes first order.
Thus, below T2, the field-driven transition separating the
two ferrimagnetic states is discontinuous. For small magnetic
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Figure 14. Phase diagram for a triangular Ising antiferromagnet
with nnn interactions. The solid curves indicate second-order
transitions and the dashed lines indicate first-order transitions. The
region between T1 and T2 shows Kosterlitz–Thouless behavior. The
(+) are tricritical points. (Reproduced from Landau, D.P. (1983),
with permission from the American Physical Society.  1983.)

fields, the transition is second order (for both positive and
negative fields) and in the three-state Potts universality class,
and as the field increases, a three-state Potts-like tricritical
point appears on the boundaries. Thus this simple Ising model
shows no Ising behavior.

4.7 Systems with disorder

The Ising model with site impurities has been studied by
Monte Carlo simulations with contradictory results. The
relevant issues are reviewed by Selke (1993). Holey and
Fähnle (1990) carried out an MCRG study of the sc Ising
model with nonmagnetic impurities and concluded that for
20% impurities, the critical behavior was modified with
respect to the pure system. (However, for smaller impurity
concentrations the asymptotic critical behavior could not
be observed.) The estimate ν = 0.688(13) was only about
8% higher than the pure Ising value, but the error bars
clearly excluded the pure Ising estimate. Using Monte Carlo
simulations and an analysis that included corrections to
scaling, Ballesteros et al. (1998) were able to show rather
convincingly that the line of phase transitions that results
when different amounts of nonmagnetic site impurities are
added is controlled by a single impurity fixed point. Their
exponent estimates, for example, ν = 0.6837(29) agreed
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with the earlier MCRG values. An important contributory
factor to the precision of their analysis was the inclusion
of corrections to scaling in their extrapolation to infinite
lattice size. Estimates of critical exponents for the dilute
Ising model from four-loop field theoretic RG expansions
had also indicated a change in exponents but the numerical
values were slightly different than those obtained from
the high-quality Monte Carlo simulations mentioned in the
preceding text.

Matthews-Morgan, Landau and Swendsen (1984) used
MCRG to study the isotropic Baxter model (Baxter, 1972)
with nonmagnetic site impurities. In the pure system, the
critical behavior is nonuniversal and depends upon the ratio
of the four-spin and two-spin couplings. In the site dilute
case, the MCRG results suggest that the critical exponents
can be described by the pure Baxter fixed line for negative
four-spin coupling (slightly renormalized in interaction ratio)
terminating at an Ising fixed point. These results substantiate
the validity of the Harris criterion within the context of a
single model with wide-ranging critical exponents.

Another intriguing aspect of critical behavior in systems
with ‘simple’ disorder (Hui and Berker, 1989) was the
prediction that any amount of randomness in a system
with a first-order transition should lead to a vanishing of
the latent heat, that is, the transition should become first
order. This was tested for the first-order transition in the
eight-state, ferromagnetic Potts model where the magnitude
of the ferromagnetic coupling was modified for some of
the bonds. Using MCRG simulations, Chen, Ferrenberg
and Landau (1992) confirmed the prediction and found
exponents that were consistent with Ising values. Cardy
and Jesperson (1997) later reexamined this problem for the
q-state Potts model using finite size scaling and conformal
invariance. They found evidence for exponents that vary
with the number of states q, and a value of ν ≈ 1 that
varies weakly with q. For spatial dimensionality greater
than 2, they also predict that a tricritical point should
appear.

Clearly, then the effects of disorder can be surprising and
rich, and numerical techniques have only just begun to probe
these phenomena.

5 SUMMARY AND PERSPECTIVE

The theory of magnetic phase transitions is now a mature
endeavor. Although few models can be solved exactly, Lan-
dau theory provides some qualitative insight into phase tran-
sition behavior, and a variety of computational approaches
allow the precise determination of transition temperatures
and critical exponents for many models. Quite long series
expansions, however, are difficult to produce for all but the

simplest models, and RG theory is also difficult to apply for
more complex systems. Nevertheless, both methods have led
to substantial understanding of many aspects of phase transi-
tions. Computer simulations are quite flexible and can often
be applied to more complicated systems. Finite size scaling
allows the extrapolation of simulational data to the thermo-
dynamic limit, and simulations are also rapidly approaching
the point at which they can predict the behavior for magnetic
nanoparticles of sizes that can be studied in the laboratory.
Differences remain between various numerical estimates, and
it is not unusual to find that as newer studies are performed
using improved methods and computers small, systematic
differences are found with respect to older work. Nonethe-
less, the power of numerical methods is now manifest and
when used in concert with analytical theory, such techniques
can now provide quite precise results for comparison with
experiment.
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Landau, D.P., Mon, K.K. and Schüttler, H.-B. (Eds.), Springer-
Verlag: Heidelberg, pp. 18–27.

Srinath, S. and Kaul, S.N. (1999). Static universality class for
gadolinium. Physical Review B, 60, 12166–12176.

Stanley, H.E. (1971). An Introduction to Phase Transitions and
Critical Phenomena, Oxford University Press: Oxford.

Stauffer, D. (1997). Relaxation of Ising models near and away from
criticality. Physica A, 244, 344–357.

Stryjewski, E. and Giordano, N. (1977). Metamagnetism. Advances
in Physics, 26, 487–650.

Swendsen, R.H. (1982). Monte Carlo renormalization. In Real
Space Renormalization, Burkhardt, T.W. and van Leeuwen,
J.M.J. (Eds.), Springer-Verlag, Heidelberg, pp. 57–86.

Swendsen, R.H. and Wang, J.-S. (1987). Nonuniversal critical
dynamics in Monte Carlo simulations. Physical Review Letters,
58, 86–88.

Tobochnik, J. and Chester, G.V. (1979). Monte Carlo study of the
planar spin model. Physical Review B, 20, 3761–3769.

Tobochnik, J., Sarker, S. and Cordery, R. (1981). Dynamic
Monte Carlo renormalization group. Physical Review Letters, 46,
1417–1420.

Tsai, S.-H. and Landau, D.P. (2003). Critical dynamics of the
simple-cubic Heisenberg antiferromagnet RbMnF3: extrapolation
to q = 0. Physical Review B, 67, 104411–104417.

Van Hove, L. (1954). Time-dependent correlations between spins
and neutron scattering in ferromagnetic crystals. Physical Review,
95, 1374–1384.

Wang, F. and Landau, D.P. (2001a). Efficient, multiple-range ran-
dom walk algorithm to calculate the density of states. Physical
Review Letters, 86, 2050–2053.

Wang, F. and Landau, D.P. (2001b). Determining the density of
states for classical statistical models: a random walk algorithm to
produce a flat histogram. Physical Review E, 64, 056101–056117.

Wang, J.-S. and Gan, C.K. (1998). Nonequilibrium relaxation of the
two-dimensional Ising model: series-expansion and Monte Carlo
studies. Physical Review E, 57, 6548–6554.

Wansleben, S. and Landau, D.P. (1991). Monte Carlo investiga-
tion of critical dynamics in the three-dimensional Ising model.
Physical Review B, 43, 6006–6014.



Theory of magnetic phase transitions 31

Wegner, F.J. and Riedel, E.K. (1973). Logarithmic corrections to
the molecular-field behavior of critical and tricritical systems.
Physical Review B, 7, 248–256.

Wilding, N.B. (1995). Applications of finite-size-scaling techniques.
In Computer Simulation Studies in Condensed Matter Physics
VIII, Landau, D.P., Mon, K.K. and Schüttler, H.-B. (Eds.),
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1 INTRODUCTION

Why should we study magnetic systems with disorder?
Since perfect crystals are rare in nature we clearly need to
understand how disorder changes the behavior of crystals
in order to explain experiments on real materials. More
importantly, we now realize that disordered systems exhibit
new phenomena which are not present in perfect crystals,
and so are of interest in their own right.

The simplest case of disorder is substitutional disorder,
in which a ferromagnetic crystal for example, is randomly
diluted with nonmagnetic atoms, (see Figure 1 and Stinch-
combe, 1973). If the concentration of nonmagnetic atoms is
small enough, a percolating ‘network’ of spins connected by
(e.g., nearest neighbor) exchange interactions is still present

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

in the crystal, and so long-range magnetic order is main-
tained at low enough temperatures. This is the case assumed
in Figure 1 since there is a ‘cluster’ of spins spanning the
lattice from the bottom to the top. Figure 1 shows of a simple
Ising model, described by the Hamiltonian (Stanley, 1971)

HIsing = −
∑
〈i,j〉

JijSiSj −
∑

i

HiSi, (Si = ±1) (1)

where Hi is a magnetic field acting on site i (Hi = H for
a uniform field) and Jij are the exchange constants (which
depend only on the relative distance between lattice sites i

and j in an ideal crystal). Assuming that Jij = J is nonzero
only if i, j are nearest neighbors and that the concentration
variable xi is equal to 1 if site i is occupied by a magnetic
atom and zero otherwise, we have

Jij =
{

xixjJ, if i, jare nearest neighbors

0, otherwise

Hi = xiH (2)

in the case of Figure 1. An alternative to this ‘site disorder’
is the case of (nearest-neighbor) ‘bond disorder’ in which
exchange constants take values J1 with probability p and
J2 with probability 1 − p. In other words, the probability
distribution P (Jij ) has the form

P (Jij ) = pδ(Jij − J1) + (1 − p)δ(Jij − J2) (3)

Bond dilution (for which J1 = J , J2 = 0) and the ±J Ising
spin glass model (Binder and Young, 1986) (for which J1 =
J, J2 = −J ) are special cases of such disorder (which can
only be physically realized in the case of indirect exchange
between magnetic ions).
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Figure 1. Diluted ferromagnetic Ising model on the square lattice.
In the Ising model, spins can point only up or down, as indicated by
arrows. Nonmagnetic atoms are shaded. Nearest-neighbor exchange
interactions are indicated by thick lines.

Note that in this article we choose units such that the
magnetic moment per spin is incorporated in the magnetic
field in equations (1) and (2), so both exchange constants Jij

and fields Hi have a dimension of energy. In the limit of a
noninteracting Ising paramagnet, the zero-field susceptibility
per spin takes the simple form χ0 = (kBT )−1, that is, it has
the dimension of inverse energy, while the magnetization per
spin (M) is dimensionless.

We shall return to the case of spin glasses below; here
we focus on the simplest case: the phase diagram of the
bond-diluted nearest-neighbor Ising ferromagnet (Figure 2).
Disorder has only two effects: (i) a depression of the critical
temperature Tc(p) for pc < p < 1 relative to its pure value
Tc(1) and (ii) a change of the critical behavior (in the case of
Ising ferromagnets in three dimensions). More details on the
behavior of diluted ferromagnets will be given in the next
section. Particularly interesting is the case p = pc where
Tc(p) = 0. This is the concentration below which there is
no longer a ‘spanning infinite cluster’ of spins connected
by nearest-neighbor bonds extending throughout the system.
At pc, this infinite cluster (Stauffer and Aharony, 1992) is
a ‘fractal’ (see Section 3 and Meakin, 1998). For p < pc,
only finite clusters of spins connected by nearest-neighbor
bonds exist, and consequently at low temperature the system
behaves as a ‘superparamagnet’.

Of course, the assumption that the magnetic interactions
extend only to nearest neighbors is inappropriate for many
magnetic materials, and the effect of the longer range of

Para

Ferro

Percolation
transition

Thermal
transition
of the
diluted
magnet

Thermal
transition
of the
pure magnet

Tc (p)

T

T

0
0

pc p 1

Figure 2. Schematic phase diagram of a bond-diluted nearest-
neighbor ferromagnet, using temperature T and the concentration
of ferromagnetic bonds as variables. A line of critical points Tc(p)

separates the disordered paramagnetic phase (para) from the phase
with ferromagnetic long-range order (ferro). This line begins at
the critical point of the pure system {Tc(p = 1)} and ends at the
percolation threshold {Tc(p = pc) = 0}. Crossing the line Tc(p) at
T > 0 one observes a thermal transition, with critical exponents
that are believed to be universal along the whole line Tc(p) as
long as pc < p < 1 (i.e., excluding the endpoints of this critical
line), for three-dimensional Ising systems. With respect to its critical
exponents the diluted Ising ferromagnet belongs to a different
‘universality class’ than the pure model. Still different exponents
apply for the percolation transition, which is observed by varying
p at T = 0. The various phase transitions are indicated by double
arrows.

the exchange needs to be considered. If the sign of the
exchange J (r) is uniformly positive, then, irrespective of the
distance r between magnetic atoms, all that happens is that
the percolation threshold is shifted to a smaller concentration.
However, if ferromagnetic and antiferromagnetic exchange
constants (bonds) compete, the magnetic ordering does not
energetically satisfy all the bonds. This ‘frustration’ of some
of the bonds combined with the disorder leads to very
interesting effects, such as the occurrence of a ‘spin glass’
phase (Section 4).

Figure 3 qualitatively illustrates the behavior in the case of
nearest-neighbor ferromagnetic (Jnn > 0), and next-nearest-
neighbor antiferromagnetic (Jnnn < 0) exchange interactions
in one lattice plane of a simple cubic lattice. In the absence of
disorder, if R ≡ Jnnn/Jnn is greater than some critical value
Rm the ground state is still ferromagnetic, while for R < Rm

an antiferromagnetic type of order takes over. However, in
the case of quenched disorder, there are statistical fluctuations
in the concentration of ferromagnetic bonds and as a result,
for sufficiently strong dilution and low enough temperature,
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Ferromagnet

Jnnn < 0

Jnn > 0

Dilution

Spin glass

Figure 3. Schematic picture of the spin ordering in one lattice plane
of a ferromagnet with nearest-neighbor ferromagnetic exchange Jnn

(full bonds) and next-nearest-neighbor antiferromagnetic exchange
Jnnn (broken bonds), upper part. Sufficiently strong dilution (lower
part) destroys the conventional magnetic long range of the spins
and may lead to a spin glass phase. Nonmagnetic atoms are shown
as open circles.

long-range order of either ferromagnetic or antiferromagnetic
type is not the equilibrium magnetic structure, but rather
the spins ‘freeze’ into a random-looking state called a spin
glass. In Figure 3, we have assumed site disorder, since a
similar model applies to the face-centered cubic Heisenberg
ferromagnet EuS diluted with nonmagnetic Sr (Maletta and
Zinn, 1989).

Figure 4 illustrates in a rather speculative way how the
phase diagram for a diluted Ising ferromagnet on the simple
cubic lattice might look. In particular, there is a ‘multicritical
point’ at x = xm where paramagnetic, ferromagnetic, and
spin glass phases meet. Note that this phase diagram contains
several unproven assumptions. Firstly, it is assumed that, for
Rm < R < 0, the phase boundary of the ferromagnetic phase
in the (T , 1 − x) plane is ‘reentrant’, that is, for x ′′

c < x < xm

one observes a transition from paramagnet to ferromagnet
and then to a spin glass, when the temperature is lowered.
This assumption is motivated by experimental observations
for some real spin glass systems but has been difficult to
reproduce theoretically. Secondly, it is assumed that the
zero temperature phase boundary between the spin glass
state and the (super)paramagnet does not simply coincide
with the next-nearest-neighbor percolation threshold (shown
as a broken straight line in Figure 4). This assumption is
motivated by some numerical evidence for bond-diluted spin
glasses (Aharony and Binder, 1980). The resulting phase
at T = 0 for xnnn

p < x < x ′
c is thought to not exhibit long-

range spin correlations of any kind, and this is termed a
cooperative paramagnet (Binder, Kinzel and Stauffer, 1979)
in Figure 4.

·
··

· ·

· ·

(Super)paramagnet

‘Cooperative’
paramagnet

Spin
glass

Spin
glass

Paramagnet

Antiferro
magnetic
order

1 − x

Rm

Tc(x)

R

T

x ′c

0

1 − xP
nnn

1 − xP
nn

x ″c

Figure 4. Schematic phase diagram of an Ising model with nearest
(Jnn) and next-nearest (Jnnn) exchange as a function of temper-
ature T , concentration of nonmagnetic ions 1 − x, and the ratio
R = Jnnn/Jnn. Thick curves highlight phase boundaries in the planes
x = 0 and T = 0, respectively. Three phase diagrams are shown
(shaded) – for fixed R (for Rm < R < 0 a spin glass phase occurs,
for R = 0 one has the same type of phase diagram as in the case
of bond disorder (Figure 2), and for 0 < R − 1 � 1 at low T the
stability of the ferromagnetic order extends up to the next-nearest-
neighbor site percolation threshold x

p
nnn.) For further explanations

see text.

Actually, the most commonly studied spin glasses are
not diluted magnetic insulators with short-range exchange,
modeled as in Figure 3, but rather nonmagnetic noble met-
als, such as Au, Ag, Cu, or Pt, with a small concentration,
of the order of a few percent, of transition-metal magnetic
impurities such as Fe or Mn. These magnetic atoms then
interact with the indirect exchange mediated by the scat-
tering of conduction ions, the so-called RKKY interaction,
Jij (R) ∝ cos(2kFR + ϕ0)/R

3, in which kF is the Fermi wave
number and ϕ0 is a constant. In a dilute system (Figure 5), the
distances R between the spins at lattice sites i, j are random,
and so some pairs of spins will experience a ferromagnetic
and others an antiferromagnetic exchange in a random way.
Owing to the long range of this RKKY interaction we expect
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R

Jij(R)

(a) (b)

Figure 5. Schematic sketch of magnetic moments (dots with
arrows) in a nonmagnetic metallic matrix (open circles, a) and the
resulting RKKY exchange plotted as a function of distance R (b).

a random distribution of exchange constants P (Jij ) strongly
peaked at Jij = 0.

Disregarding this detailed atomistic structure underlying
the problem, Edwards and Anderson (1975) suggested a
coarse-grained model, now termed the Edwards–Anderson
model or EA model, which contains what are generally
believed to be the two essential ingredients of a spin glass:
disorder and frustration. The Hamiltonian of the EA model
is still given by equation (1) but the interactions Jij are
chosen to be independent random variables with mean J and
standard deviation J . Two common choices are the ‘±J ’
model for which

P (Jij ) = 1

2

[
δ(Jij − J ) + δ(Jij + J )

]
(4)

and the Gaussian distribution where

P (Jij ) = (
√

2πJ)−1 exp
[−(Jij − J )2/(2J 2)

]
(5)

Use of the EA model replaces the original site-disorder prob-
lem of Figure 5 by a bond-disorder problem, since the latter
is easier to treat by theoretical methods. Many chemically
different spin glass systems show qualitatively similar prop-
erties, and this supports the view that microscopic details are
unimportant and a simple model, such as the EA model, that
has disorder and frustration should capture the basic physics
of spin glasses. The simplest case, and the one usually taken,
is zero mean, J = 0, since this has no bias toward ferromag-
netism or antiferromagnetism.

The EA model, which is described by equation (1) plus the
specification of the bond distribution, is generally considered
in one of two versions: the short range version where Jij �= 0
only if i, j are nearest-neighbor sites of the lattice, and the

long-range version where every spin i in the system interacts
with every other spin j with the same (Gaussian) distribution
equation (5). However, in the latter case, to ensure a sensible
thermodynamic behavior when the number of spins N → ∞,
one assumes a scaling J ≡ J0/N, J ≡ J̃ /

√
N with J0 and

J̃ being finite. This Sherrington–Kirkpatrick (SK) model
(Sherrington and Kirkpatrick, 1975) has been considered
extensively with the motivation that mean-field theory should
become exact for infinite-range interactions. However, as
briefly discussed further in Section 4, developing a mean-
field theory of spin glasses has been a major tour de force.

Disorder as shown in Figures 3 and 5 not only prevents
the occurrence of conventional magnetic long-range order
but it is also rather plausible that the spin arrangement that
minimizes the (free) energy of the system is not unique.
Consequently, the ‘energy landscape’ (i.e., the energy of
the system as a function of ‘phase space coordinates’,
see Figure 6) contains many (more or less equivalent)
‘valleys’, separated by large (free) energy barriers. This
picture provides a qualitative interpretation of why a very
slow relaxation is observed in spin glass systems when one
approaches the transition to the spin glass phase from the
paramagnetic side. In fact, in the spin glass phase below
the transition, the spectrum of relaxation times extends from
microscopic times (10−12 s or so) up to times considerably
longer than that of the experiment. Hence a spin glass at low
temperatures is not in equilibrium. Nonequilibrium effects
have been conveniently characterized in ‘aging’ experiments
(Nordblad and Svedlindh, 1998), and give rise to surprising
and rather poorly understood phenomena such as ‘memory’
and ‘rejuvenation’ (Jonason et al., 1998; Bert et al., 2004;
Picco, Ricci-Tersenghi and Ritort, 2001).

These slow dynamical aspects of spin glass behavior are
qualitatively reminiscent of the behavior of structural glasses,

|Φj
(1)| |Φj

(2)| |Φj
(3)|

Phase space coordinate

E
ne

rg
y

Figure 6. Schematic plot of the coarse-grained free energy of a
spin glass plotted versus a phase space coordinate which measures
the projection of the considered state to a particular ordered state.
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and this is the reason why this kind of disordered magnetic
system is called a spin glass. However, in the opinion
of the authors, there is a significant difference between
structural glasses and spin glasses. As we shall see, spin
glasses in zero field have an equilibrium transition at finite
temperature where there is a divergent correlation length. To
our knowledge, no divergent equilibrium length scale has
been seen in structural glasses.

It should be noted that a complicated energy landscape
with many degenerated ground states can be obtained as
a result of only frustration without any disorder. The clas-
sic example is the nearest-neighbor Ising antiferromagnet on
the triangular lattice, which stays disordered at all nonzero
temperatures (while on the square lattice the Ising antifer-
romagnet orders at the same temperature as the Ising ferro-
magnet). Figure 7 illustrates this concept of frustration for
an isolated triangle of spins connected by antiferromagnetic
bonds of the same strength, showing that it is not possible
to find a spin configuration that is energetically optimal for
all three bonds. In the ground state there is always one bond
which is ‘dissatisfied’, that is, ‘frustrated’. However, this can
be any of the three bonds, and hence there is an enhanced
ground-state degeneracy: while a ferromagnetic triangle has
a twofold degenerate ground state (all spins up or all spins
down) the ground state of the corresponding antiferromag-
net is sixfold degenerate, see Figure 7. An infinite triangular
lattice with antiferromagnetic bonds between the Ising spins
has a nonzero entropy per spin.

Similar frustration effects are also possible on other
lattices, for example, the square lattice, when we have both
ferro–and antiferromagnetic bonds. Consider, for example,
an elementary square with three ferromagnetic and one
antiferromagnetic bonds. One finds that this ‘plaquette’ is
frustrated because again no spin configuration can be found
that is favorable for all the bonds, and the ground state is now
eightfold degenerate. Obviously, any closed loop of bonds on

Ground states
1 2

3

–J

–J–J

(a) (b)

Figure 7. Frustrated triangle of Ising spins (a) and its six ground
states (b) where the ‘dissatisfied’ bonds are shown as broken straight
lines.

the lattice is frustrated if the variable φp ≡ sign(
∏

bonds
Jij ) is

equal to −1. One can therefore construct square and simple
cubic lattices with a periodic arrangement of frustrated
plaquettes, which have very interesting magnetic properties.
In particular, for XY spins, that is, a model where magnetic
anisotropy constrains the spins to orient isotropically in a
particular plane (Stanley, 1971), or for Heisenberg spins
(a fully isotropic magnet), noncollinear spin alignments
occur. We shall briefly return to such frustrated spin systems
without disorder in Section 5.

A still different type of disorder can be obtained when
the field Hi in equation (1) is a random variable such that
it is zero on average. Again, two common choices are the
Gaussian distribution

P (Hi) = (2πh2)−1/2 exp
[−H 2

i /(2h2)
]

(6)

and a two δ function distribution,

P (Hi) = 1

2
[δ(Hi − h) + δ(Hi + h)] (7)

In both cases averages over the quenched disorder, indicated
by [· · ·]av, have the property

[Hi]av = 0, [H 2
i ]av = h2 (8)

Since such a random field couples linearly to the (local)
order parameter (the magnetization of the ferromagnet), even
very weak random fields can have drastic effects (Imry and
Ma, 1975; Nattermann, 1998). While physical realizations
of random fields in ferromagnets are not known, this type
of disorder is found in diluted antiferromagnets exposed
to a uniform magnetic field (Fishman and Aharony, 1979),
since in this way one indirectly creates a random ‘staggered
field’, which couples linearly to the ‘staggered magnetiza-
tion’, which is the order parameter of an antiferromagnet.
Consequently it has been possible to perform beautiful exper-
iments (Belanger, 1998) testing the theoretical concepts on
random fields. We shall briefly return to this problem in
Section 6.

2 WEAKLY DILUTED FERRO- AND
ANTIFERROMAGNETS

In this section, we discuss the phase transition of ferro-
magnets (or antiferromagnets in zero magnetic field) which
contain quenched disorder due to random dilution with non-
magnetic species (see Figure 2). We restrict attention to
short-range exchange forces, disregard long-range correla-
tions in the positions of the impurities, and assume that the
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phase transition of the ‘pure’ system (i.e., an ideal crystal
with no impurities) is a second-order transition (Stanley,
1971). In other words, the order parameter ψ , associated
susceptibility χ , specific heat C, and correlation length ξ

have critical behavior characterized by the following power
laws when the temperature is close to the critical temperature
Tc = Tc(p = 1):

ψ ∼ (1 − T /Tc)
β, χ ∼ |1 − T /Tc|−γ

C ∼ |1 − T /Tc |−α, ξ ∼ |1 − T /Tc|−ν (9)

The many critical exponents α, β, γ , ν, and so on, are
not independent but are related via scaling laws (Stanley,
1971; Fisher, 1974) (see also Theory of Magnetic Phase
Transitions, Volume 1) such as

2β + γ = 2 − α = dν (10)

The last of these relations, involving the dimensionality d

of the system, is an example of a ‘hyperscaling relation’.
Critical exponents are ‘universal’, that is, they do not
depend on irrelevant details (such as ratios of exchange
constants between nearest and more distant neighbors, lattice
symmetry, etc.), but only on the space dimensionality d and
the ‘spin dimensionality’ n, where n = 1 is the Ising model,
n = 2 is the XY model, and n = 3 is the Heisenberg model.
Thus, critical exponents are the same for all materials in a
given ‘universality class’, and a question of primary interest
is how they are affected when quenched disorder occurs.

A rather strong statement on this problem is the ‘Harris
criterion’ (Harris, 1974), which suggests that for pc < p<1
the critical exponents remain unchanged, that is, they are the
same as that of the pure system if the specific-heat expo-
nent of the pure system, α, is negative. This is the case
for XY and Heisenberg magnets in d = 3, and hence for
these systems quenched disorder should be irrelevant. This
means that sufficiently close to Tc(p) one should observe
the critical exponents of the pure system. Conversely, if
α > 0, the random system will have new critical exponents
αr, βr, γ r , νr . Renormalization group arguments (Stinch-
combe, 1973) imply that these new exponents are again uni-
versal, and, in particular, should not depend on p (though the
temperature range |T − Tc(p)| where they can be observed
depends on p and is often very small). Much effort, both
experimentally and theoretically, with numerical methods
(Monte Carlo simulations, extrapolation of systematic series
expansions; see Stinchcombe, 1973) has been devoted to this
problem. The asymptotic critical region is so narrow that it is
practically inaccessible, and hence in practice one observes
‘effective’ critical exponents that depend on p. However the
data is consistent with the asymptotic behavior being inde-
pendent of p.

The Harris criterion is inconclusive for the special case
α = 0, which occurs, for example, for the d = 2 Ising model
where the specific heat of the pure system has a logarithmic
singularity, C ∼ ln |1 − T /Tc(p)|. By various theoretical
methods, evidence has been accumulated (Selke, 1991) that
in this case the critical behavior is altered into an even more
subtle logarithmic form, C ∼ ln | ln |1 − T /Tc(p)||.

Finally, we mention that in the diluted system some (expo-
nentially weak) singularities already set in at Tc(p = 1),
the critical temperature of the pure system. These ‘Griffiths
singularities’ (Griffiths, 1969) come from statistical fluctu-
ations in the occupancy of the sites in a randomly diluted
system. There is always a nonzero probability to find an
arbitrarily large region with no dilution sites (though this
probability decreases exponentially with the volume of such
a region), and these regions already order at Tc. While
the effect of these anomalies occurring for Tc(p) < T <

Tc(p = 1) on static properties is hardly noticeable, they
have a bigger effect on dynamics, causing a slow stretched
exponential relaxation which is not expected in the pure
case. Related ‘Griffiths–McCoy’ singularities have more pro-
nounced effects in quantum spin glasses (Bhatt, 1998), see
Section 4.

3 PERCOLATION

Here we continue the discussion of the phase diagram in
Figure 2, but now consider the concentration, pc, where the
critical temperature vanishes, Tc(p = pc) = 0. This endpoint
of the line Tc(p) is a special multicritical point since a
different type of critical behavior is observed when p is
varied at T = 0 than when the critical line is crossed at finite
T . For simplicity we restrict our attention to nearest-neighbor
ferromagnetic exchange.

For p < pc, all spins are in finite clusters, where a cluster
is defined by the criterion that each spin of the cluster must
have at least one bond to another spin in the same cluster.
As an example, the 6 × 6 lattice of Figure 1 contains clusters
with s = 2, 4, and 10 spins. On a lattice with N sites, it is
useful to define a cluster concentration ns(p) = Ns(p)/N ,
where Ns(p) is the number of clusters with s spins. Note
that all spins inside a cluster at T = 0 are aligned parallel
with respect to each other but different clusters can orient
independently (Figure 1). Since each spin must belong to
some cluster, we have the sum rule

∞∑
s=1

sns(p) = p, (p < pc) (11)

The restriction p < pc is because, for p ≥ pc, an infinite
‘percolating’ cluster occurs in an infinite lattice, and this
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needs to be considered separately. The probability that a
given spin is part of the percolating cluster is called the
percolation probability P∞(p) and is related to the cluster
concentrations ns via

P∞(p) = 1 − (1/p)

∞∑
s=1

′sns(p), (p > pc) (12)

since spins which do not belong to the infinite cluster
must belong to finite clusters. The prime in the sum
in equation (12) indicates that the infinite cluster is not
included.

The spontaneous magnetization m is obtained by taking
the limit of an infinitesimally small field. Finite clusters
can point equally in both directions as the field tends
to zero and so contribute nothing to m. However, the
infinite cluster must point in the direction of the field as
long as the field is not strictly zero, and so P∞(p) is
the spontaneous magnetization per lattice site as T → 0.
When p → p+

c , there occurs a power law analogous to
equation (9), P∞(p) ∝ (p − pc)

βp , but the critical exponent
βp differs from β and βr.

For p < pc the spontaneous magnetization of the lattice
is zero, but we obtain a magnetization applying a magnetic
field H

M(T, h) = (1/p)

∞∑
s=1

nss tanh(sµH/kBT ), (T → 0)

(13)
µ being the magnetic moment per spin. This is equivalent to
the equilibrium magnetization of superparamagnetic particles
containing s spins and having a particle size distribution ns .
From equation (13) the zero-field susceptibility is given by

χp = (χ0/p)

∞∑
s=1

nss
2 (p < pc) (14)

where χ0 is the susceptibility of a single spin. An analogous
formula holds for p > pc, if the infinite cluster is omitted
from the sum. For p → pc one finds a power law χp ∝
|p − pc|−γ p . The free energy of the superparamagnet in the
limit of a vanishingly small field comes from the entropy
(ln 2) of each of the finite clusters. Hence

F(T , 0) = −kBT ln 2
∞∑

s=1

ns(p) (15)

which has a singular part that can be written as Fsing ∝
|p − pc|2−αp for p → pc.

Note that the spin–spin correlation function now has
the meaning of a ‘pair-connectedness function’ G(r), see
Stauffer and Aharony (1992) for more details, and one can

introduce a correlation length ξp describing the exponential
decay of G(r) with distance r , G(r) ∝ exp(−r/ξp). Again
a power law holds, ξp ∝ |p − pc|−νp , and the exponents
αp, βp, γ p, νp satisfy the same type of scaling relations as
in equation (9).

Exactly at the percolation concentration pc, G(r) decays
with a power law, G(r) ∝ r−(d−2+ηp). (There is an analogous
relation for the spin correlation function at a thermally driven
second-order phase transition.) For the percolation transition,
the geometric interpretation of this power law is particularly
interesting. Let us consider the number n of sites within a
(hyper)sphere of radius R around a site of the (incipient)
percolating cluster precisely at p = pc:

n =
∫

dr[G(r)/PR] ∝ P −1
R

R∫
0

G(r)rd−1 dr (16)

Here PR ∝ R−βp/νp is the probability that an occupied site
within the hypersphere belongs to the largest cluster (and not
to any of the many smaller clusters that are also present and
counted in G(r)). Using the power law for G(r) at p = pc

then yields

n ∝ R2−ηp+βp/νp = Rdf , where

df = 2 − ηp + βp

νp

= 1

2
(d + 2 − ηp) (17)

To get the last relation, we have used another hyperscaling
relation. For a compact object of radius R the number of
lattice sites in the object, n, is clearly proportional to Rd ,
so the exponent df in equation (17) can be interpreted as
a ‘fractal dimension’ characterizing the geometrical self-
similar structure of a noncompact object. It is intuitively
clear that df < d, and this follows because d − 2 + ηp > 0
since correlations must decrease (rather than increase) with
distance at criticality. It turns out that the structure of the spin
correlations at the critical point at thermally driven magnetic
phase transitions can also be similarly interpreted in terms
of the geometric concepts about ‘fractals’.

We also mention briefly the nature of long-wavelength
magnetic excitations (magnons) in strongly disordered Heise-
nberg magnets near the percolation threshold. One can show
that for wave number q → 0 and near the percolation thresh-
old, the dispersion relation of the characteristic frequency
ωc(q), has a ‘dynamic scaling’ structure (Hohenberg and
Halperin, 1977)

ωc(q) ∝ q2(p − pc)
µ−βp ω̃p

(
q(p − pc)

−νp
)

(p ≥ pc)

(18)
where µ is a new exponent and ω̃p a scaling function.
The relation ωc ∝ q2 is just the standard dispersion law
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for ferromagnetic spin waves, but the factor (p − pc)
µ−βp

implies that for p → pc the spin-wave frequencies van-
ish, that is, the spin waves become ‘soft modes’. Keeping
q small but fixed and taking p → p+

c , the scaling func-
tion ω̃p(ξ) must behave as ω̃p(ξ) ∝ ξ (µ−βp)/νp in order to
have a well-defined limit for p → pc, and hence the char-
acteristic frequency ωc(q) scales as ωc(q) ∝ qz, where z,
the dynamical exponent is given by z = 2 + (µ − βp)/νp.
One sometimes expresses this result in terms of a ‘spec-
tral dimension’ ds where ds = 2df /z and ds is related to
the density of energy excitations between w and ω + dω

by g(ω) ∝ ωds/2−1. Unfortunately, the precise estimate of
the dynamic exponent z (or equivalently the exponent ds) is
difficult, and also the nature of magnetic excitations in disor-
dered magnets outside the scaling regime near the percolation
threshold is a complicated problem (Kovalenko, Krasny and
Krey, 2001).

Fractals have many applications outside of magnetic sys-
tems also, such as conductivity of disordered materials con-
taining random mixtures of conducting and nonconducting
regions, flow of water or oil through porous rocks, diffusion-
limited aggregation, and other random growth phenomena
(Meakin, 1998). However these are beyond the scope of this
article.

4 SPIN GLASSES

Spin glasses are magnetic systems with competing interac-
tions and quenched disorder that is strong enough that no
conventional ferro- and antiferromagnetic order can occur,
but rather the spins are frozen in random directions. As
mentioned in Section 1, there exists a great variety of phys-
ical systems that show this behavior. A common feature is
a rather sharp cusp in the (frequency-dependent) magnetic
susceptibility, but there is no corresponding anomaly in the
specific heat. The position of the cusp is weakly dependent
on frequency ω but seems to converge toward a static transi-
tion temperature Tc, below which hysteresis effects set in.
In particular, for T < Tc, the zero-field-cooled and field-
cooled susceptibilities differ (see Figure 8 and for example,
Nagata, Keesom and Harrison, 1979) and aging phenomena
are observed (Nordblad and Svedlindh, 1998) as well.

It soon became clear that the observed behavior does not
simply come from a gradual slowing down of the dynam-
ics to timescales beyond those of experiments, but is due
to an underlying equilibrium phase transition. To illustrate
how this can lead to a cusp in the susceptibility, con-
sider, for simplicity, a symmetric distribution of bonds,
P (Jij ) = P (−Jij ), that is, J = 0 in equation (5). For this
case one can easily show that, on average, magnetic two-spin
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Figure 8. Static susceptibilities of CuMn versus temperature for
1.08 and 2.02 at% Mn. After zero-field cooling (H < 0.05 Oe),
initial susceptibilities (B) and (D) were taken for increasing
temperature in a field of H = 5.9 Oe. The susceptibilities (A) and
(C) were obtained in the field H = 5.9 Oe, which was applied above
Tc before cooling the samples. (Reprinted figure with permission
from Shoichi Nagata, P.H. Keesom and H.R. Harrison, Phys. Rev. B.
Vol. 19, 1633–1638 (1979) Copyright 1979 by the American
Physical Society.)

correlations are trivial, [〈Si · Sj 〉]av = δij . (Here we have
allowed for a vector character of the spins). Using the fluctu-
ation–dissipation relation, which expresses the susceptibility
in terms of spin pair correlations, we have, in the limit of
vanishingly small field,

kBT χ = N−1
∑
i,j

[
〈Si · Sj 〉T − 〈Si〉T · 〈 Sj 〉T

]
av

= 1 − q (19)

where the spin glass order parameter q is defined by q =
[〈Si〉2

T ]av.q becomes nonzero for T < Tc, q ∝ (1 − T /Tc)
β ,

which gives a cusp in the zero-field susceptibility.
Actually, as for other critical phenomena, one can identify

correlations that become long ranged as one approaches the
freezing transition from above, however this correlation is
not the standard spin pair correlation but is of a higher
order, gSG(r) = [〈Si · Sj 〉2

T ]av. The square is needed because
the spin–spin correlations can have either sign at random.
It is useful to sum gSG(r) over all space to get the spin
glass susceptibility, χSG = ∑

r gSG(r), since this diverges at
the spin glass transition, χSG(T ) ∝ (T /Tc − 1)−γ . Although
χSG is not directly measurable it is very closely related to
the nonlinear susceptibility, χnl, defined by

M = χ0H − χnlH
3 + · · · (20)

where M is the magnetization and H the magnetic field. In
fact, for an EA Ising spin glass with a symmetric distribution
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of interactions, the relation is

(kBT )3χnl = χSG − 2

3
(21)

Remember our choice of units, for which the magnetic
field has a dimension of energy, magnetization is dimension-
less, and hence the (linear) susceptibility has a dimension of
inverse energy, the nonlinear susceptibility has a dimension
of inverse energy to the minus third power, while the spin
glass susceptibility was defined as a dimensionless quantity.

For the case of a nonsymmetric bond distribution, this
relation is no longer true but, nonetheless, χnl and χSG still
diverge in the same way. Experiments, for example, Omari,
Préjean and Souletie (1983), suggest that a critical divergence
of χnl does occur (γ ≈ 3.25 in Omari, Préjean and Souletie
(1983)). Furthermore, one finds a scaling of the nonlinear
part of the magnetization,

1−M/(χ0H)=(1 − T /Tc)
βM̃

{
(H/T )2(1−T /Tc)

−(γ+β)
}

(22)
with β ≈ 0.75 − 0.95 (Omari, Préjean and Souletie, 1983).
Note, however, that the critical behavior of the correlation
length ξSG describing the decay of gSG(r) with distance,
ξSG ∝ (|T /Tc − 1|−ν), cannot be measured directly, and
thus can only be inferred indirectly from experimental
determinations of β and γ combined with the scaling relation
(equation (10)).

Analyzing the dynamic susceptibility near Tc, the dra-
matic increase of the relaxation time τ can be attributed
to standard critical slowing down (Hohenberg and Halperin,
1977), τ SG ∝ ξz

SG ∝ (T /Tc − 1)−νz, but with an anoma-
lously large dynamic exponent z, giving zν ≈ 7.2 ± 0.5
(Bontemps, Rajchenbach, Chamberlin and Orbach, 1984).
However, when one compares analyses of different groups,
one finds a rather large spread in the values of the suggested
critical exponents, irrespective of whether these groups ana-
lyze the same spin glass systems or different ones (see, e.g.,
Table 1 of Maletta and Zinn, 1989). Thus, it is fair to say
that there is qualitative evidence from experiment that a static
phase transition in spin glasses does exist, but the associated
critical exponents are not yet accurately known.

Turning to the theoretical work on spin glasses, the first
problem to consider is how one can carry out the averaging
[· · ·]av over the random bond distribution. To calculate
the average free energy, [F ]av = −kBT [ln Z{Jij }]av, and its
derivatives a common approach is to use the ‘replica trick’
(Edwards and Anderson, 1975)

[ln Z{Jij }]av = lim
n→0

1

n

([
Zn(Jij )

]
av

− 1
)
= lim

n→0

∂

∂n

[
Zn(Jij )

]
av

(23)

The problem of averaging ln Z is thus reduced to the problem
of averaging Zn, and, at least for positive integer n, this is a
simpler problem since one can interpret Zn as a product of n

identical replicas of the system. At the end of the calculation
one takes the limit n → 0.

For nearest-neighbor interactions with the Gaussian distri-
bution in equation (5), it is easy to ‘complete the square’ and
show that Zn ≡ [Zn{Jij }]av = T r{Sα

i
} exp[−Heff

n (Sα
i )/kBT ],

where

Heff
n

{Sα
i }

kBT
= J

kBT

∑
i �=j

n∑
α=1

Sα
i Sα

j

+ 1

2

(
J

kBT

)2 ∑
i �=j

∑
α,β

Sα
i Sα

j S
β

i S
β

j (24)

The initial problem with the Hamiltonian H{Ji,j }, which
lacks translational invariance, has now been replaced by
an equivalent problem that is translationally invariant
(equation (24)). The price of this simplification is that the
degrees of freedom Sα

i now carry an additional index α, 1 ≤
α ≤ n, the ‘replica index’, and, owing to disorder, the various
replicas of the system get coupled to each other.

In the mean-field approximation, one replaces Sα
i Sα

j by

Sα
i 〈Sα

j 〉, and Sα
i S

β

i Sα
j S

β

j by Sα
i S

β

i 〈Sα
j S

β

j 〉 and determines

self-consistently the ‘order parameters’ mα ≡ 〈Sj
α〉, qαβ =

〈Sα
j S

β

j 〉 (α �= β). More precisely, noting from equation (23)
that we need to let n → 0 and that no index α should be
singled out, one obtains for the magnetization M and the EA
order parameter q

M = lim
n→0

1

n

n∑
α=1

〈Sα
i 〉, q = lim

n→0

1

n(n − 1)

∑
α �=β

〈Sα
i S

β

i 〉 (25)

For the infinite-range case, mean-field theory can be
obtained rigorously in terms of a saddle point approximation,
as worked out by Sherrington and Kirkpatrick (1975) for
the ‘replica-symmetric’ case in which mα = M and qαβ = q

independent of the replica indices. One finds

M = 1√
2π

+∞∫
−∞

dze−z2/2 tanh

(
1

kBT

[
J̃
√

qz + J0M + H
])

(26)
and

q = 1√
2π

+∞∫
−∞

dze−z2/2 tanh2
(

1

kBT
[J̃

√
qz + J0M + H ]

)

(27)
which generalizes the well-known result for the Ising fer-
romagnet, M = tanh([J0M + H ]/kBT ). For H = J0 = 0,
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equation (27) allows a nonzero solution for q for T <

Tc = J̃ /kB, namely, q = 1 − T /Tc + (1 − T /Tc)
2/3 + · · ·,

so β = 1 in mean-field theory. The magnetic equation of
state for T > Tc becomes

M = H

kBT

{
1 − 1

3

( H

kBT

)2 T 2 + 2T 2
c

T 2 − T 2
c

+ · · ·
}

(28)

which shows that the nonlinear susceptibility does indeed
diverge (as stated in Section 1), with the mean-field exponent
γ = 1.

However, a closer look on the SK solution given by
equations (26) and (27) shows that it is not acceptable, since
at low temperatures the entropy becomes negative, and χSG

for T ≤ Tc turns out to be negative as well (de Almeida
and Thouless, 1978). The problem lies in the assumption
of replica symmetry. However, the means for breaking the
symmetry of the matrix qαβ in the limit n → 0 was not
entirely clear. Eventually, in a brilliant piece of work, Parisi
(1979) made an ansatz (which appears to be exact for the
infinite-range SK model) in which the matrix is reduced to
an order parameter function q(x). For H = J0 = 0 and T

close to Tc, Parisi finds

q(x) = x/2, (0 < x ≤ x1),

q(x) = x1/2, (x1 ≤ x ≤ 1) (29)

This order parameter function arises because, for T < Tc,
the phase space is split into many ‘valleys’ (compare
Figure 6) separated by infinitely high barriers. These valleys
or ‘ergodic components’ are not orthogonal to each other
however, but the spin configurations in different valleys have
an overlap q. It turns out (Parisi, 1983) that the derivative
of the inverse function of q(x), namely, dx/dq, is the
probability, P (q), that there is an overlap q between two
states. Note that replica calculations use statistical mechanics,
in which there is a nonzero probability of the system being
in any of the valleys. By contrast, if one followed the
dynamical evolution of the system, the system would be
trapped in a single valley, so time averages differ from
ensemble averages.

The multivalley structure of an Ising spin glass in the
mean-field limit not only exists at zero field, but over a
range of fields up to the so-called AT line (de Almeida and
Thouless, 1978), which near Tc is given by

Tc − TAT(H) ∝ H 2/3 (30)

Of course, experience from standard phase transitions is
that mean-field theory is, at best, only qualitatively correct
for real systems with short-range forces (Fisher, 1974). Only
if the spatial dimensionality d of the system exceeds the

‘upper critical dimension’, du (with du = 4 for ferromag-
nets), do the critical exponents of mean-field theory apply
to real systems. However, for dl < d < du, where dl is the
‘lower critical dimension’, the exponents take nontrivial val-
ues and depend on d and also on the spin dimensionality. For
d < dl, statistical fluctuations (that are neglected by mean-
field theory) destroy the phase transition altogether so
Tc = 0. For ferromagnets, dl = 1 for Ising systems and
dl = 2 for isotropic vector models (e.g., XY or Heisen-
berg).

For spin glasses, however, it turns out that du = 6, and
hence the physical dimensionality d = 3 is much less than
du; so drastic discrepancies between mean-field theory and
experiments should be expected. These discrepancies would
be even more dramatic if dl were greater than 3, because
then the transition predicted in mean-field theory would not
occur at all. However, at least for Ising spin glasses, it is
now well established that there is a finite-temperature spin
glass transition in three dimensions (Ballesteros et al., 2002),
though not in d = 2 (see, for example, Hartmann et al.,
2002), so dl lies between 2 and 3.

For XY and Heisenberg ferromagnets, however, the situa-
tion has been more controversial. It is known that for the pure
case, topological excitations may be important since unbind-
ing of vortex–antivortex pairs controls the phase transition
of the XY model (Kosterlitz and Thouless, 1973) in two
dimensions. For the pure case, vortices only occur through
thermal fluctuations since the ground state is collinear. How-
ever, in a model with frustration the ground state is non-
collinear, and so one has vortices quenched in even at T = 0.
It is therefore important to understand the role of vortices
(often called chiralities) in XY spin glasses (and the anal-
ogous chiralities in Heisenberg spin glasses). While for a
long time it was believed that dl = 4, so there would be
no order in isotropic spin glass systems in d = 3, it was
later (Kawamura and Tanumura, 1991) suggested that chiral
glass ordering in isotropic vector spin glasses occurs with-
out accompanying spin glass ordering. However, this was not
universally accepted, and, in particular, recent, careful Monte
Carlo simulations (Lee and Young, 2003) have shown that
isotropic spin glasses do have a nonzero spin glass transition
temperature in d = 3, and that chiral and spin glass order-
ing set in at the same temperature. Thus one can explain
the observed finite Tc in spin glasses such as CuMn and
EuxSr1−xS, which are isotropic to a good approximation,
without invoking the small anisotropy that these systems
must possess.

Even though a spin glass is not in thermal equilibrium
below Tc, it is still of theoretical interest to understand the
equilibrium state that the system is trying to reach. Two main
phenomenological descriptions have been proposed. The first
is the ‘replica symmetry breaking’ (RSB) approach in which
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it is supposed that the spin glass state in real systems is
similar to the multivalley structure found (Parisi, 1979) in
the SK model. This has (i) a nontrivial order parameter
function P (q) and (ii) a phase transition (AT line) in a
magnetic field. The other approach is the ‘droplet picture’
developed by Fisher and Huse (1986) (see also Bray and
Moore, 1986; McMillan, 1984). In this picture spin glasses
have just a single ‘pure state’ (apart from states related
by global symmetry such as spin inversion). Consequently
P (q) is trivial (just a delta function at the single order
parameter q), and there is no AT line (a field wipes out
the transition as it does in a ferromagnet). According to
numerics, there does not appear to be an AT line (Katzgraber
and Young, 2004), which favors the droplet model, although
P (q) appears to be nontrivial (Marinari, Parisi and Ruiz-
Lorenzo, 1998; Katzgraber, Palassini and Young, 2001),
which favors RSB. Hence an intermediate scenario (Krzakala
and Martin, 2000; Palassini and Young, 2000) called TNT
for trivial–nontrivial, fits the data best. However, numerics
can only be done on small systems, so it is not clear
whether TNT describes the asymptotic behavior on large
length scales.

Since a spin glass is not in full equilibrium below Tc, the
eventual goal of spin glass theory must be to explain nonequi-
librium effects, such as aging (Nordblad and Svedlindh,
1998) and memory and rejuvenation (Jonason et al., 1998;
Bert et al., 2004; Picco, Ricci-Tersenghi and Ritort, 2001),
referred to in Section 1. There has also been consider-
able interest in the nature of violations of the fluctua-
tion–dissipation theorem (Bouchaud, Cugliandolo, Kurchan
and Mézard, 1998; Crisanti and Ritort, 2003). Unfortunately
we do not have space to discuss these fascinating topics
here.

In addition, generalizations of the spin glass problem such
as the p-spin interaction models and p-state Potts spin glass
models have received a lot of attention, because these models
are possibly related to the problem of the glass transition of
undercooled fluids (Binder, 2004).

Another very interesting extension concerns spin glass
models in which quantum fluctuations rather than classical
fluctuations play a key role (Bhatt, 1998). An example
is the Ising spin glass in a transverse magnetic field at
zero temperature, where one can study a quantum phase
transition by varying the strength of this field. The diluted
dipolar Ising magnet LiHoxY1−xF4 provides an experimental
example (Wu, Bitko, Rosenbaum and Aeppli, 1993). It
is interesting to note that quantum spin glasses do have
a ‘quantum phase transition’ (i.e., a transition at T = 0)
even in d = 2 dimensions, and that rare fluctuations of the
random distribution can cause a divergence of the nonlinear
susceptibility already in the paramagnetic phase of the spin
glass (Bhatt, 1998).

5 PERIODIC FRUSTRATED SYSTEMS

Following the pioneering work of Villain (1977), there has
been interest in understanding the behavior of models with
frustration but without disorder. In addition to theoreti-
cal interest, further motivation for studying these models
comes from the existence of related experimental systems
with which one can compare theoretical predictions (Diep,
1994).

The effect of periodically distributed frustrated ‘plaque-
ttes’, that is, elementary polygons (triangles on the triangular
or face-centered cubic lattices, squares on the square or sim-
ple cubic lattices) depends crucially on whether one considers
Ising or continuous spins (e.g., XY and Heisenberg models).
As already discussed (see Figure 7), the ground state degen-
eracy in frustrated systems is enhanced relative to that of
unfrustrated systems.

Ising models in d = 2, such as the triangular antiferro-
magnet or the ‘fully frustrated’ square lattice do not order
at any temperature. In d = 3, the face-centered cubic anti-
ferromagnet in zero field has a first-order transition to the
paramagnetic state, that has been carefully studied by Monte
Carlo methods. However, the phase diagram of the fcc Ising
antiferromagnet in a magnetic field is still not fully under-
stood (Kämmerer, Dünweg, Binder and D’Onorio De Meo,
1996). Ising models on frustrated simple cubic lattices and
stacked triangular lattices presumably exhibit second-order
phase transitions, which have been studied by Monte Carlo
simulations and renormalization group methods (Plumer and
Mailhot, 1995).

Ising-like systems on the pyrochlore lattice, such as
holmium and dysprosium titanate, have aroused a lot of
recent interest (Siddharthan, Shastry and Ramirez, 2001;
Melko, den Hertog and Gingras, 2001). This lattice comprises
corner-sharing tetrahedra and on each tetrahedron, energetics
requires two of the four spins to be ‘in’ and two ‘out’,
similar to the Bernal–Fowler rules for the hydrogen bonds
in ice. In fact, there is a strong similarity between these
magnetic systems and ice, even down to the residual entropy
at T = 0 first calculated for ice by Pauling, so the name
spin ice has been given to them. The advantage of the
magnetic system over ice is that it couples to a continuously
variable parameter, the magnetic field, and so complicated
phase boundaries can be mapped out. This has been done
in detail for a related Heisenberg system (Ramirez et al.,
2002).

The behavior of frustrated XY antiferromagnets is also
of interest because the spin ordering around a frustrated
plaquette is noncollinear, and so chiralities may play a
role, as also proposed for XY spin glasses discussed in
Section 4. For the frustrated triangular XY antiferromagnet,
spins around an elementary triangle are rotated by 120◦, and
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one has left-handed and right-handed chiral states. Therefore,
the symmetry of the order parameter space is Z2 × SO(2)

instead of the continuous rotational invariance. Similarly,
there are chiral as well as spin degrees of freedom in the fully
frustrated XY model on the square lattice. The main issue is
whether spin and chiralities order at the same temperature, or
whether the chiralities order at a higher temperature. There
is some evidence (see, e.g., Lee, Lee and Kosterlitz, 1997)
for two separate transitions but the difference in transition
temperatures is very small so it is difficult to know whether
this effect is real or an artifact due to systematic corrections
to finite size scaling.

If one stacks triangular lattices to make a three-dimensional
lattice, one can have ordering at finite temperature, and
Kawamura (1988) pointed out that the transition belongs to
a new universality class, assuming it is second order. There
has been controversy, which does not seem to be settled,
as to whether the transition is really second order, in which
case the exponents are close to those expected at a tricritical
point (β = 1/4, γ = 1, ν = 1/2), or whether the transition
is weakly first order (see, e.g., Delamotte, Mouhanna and
Tissier, 2004). Unfortunately, the wide variety of experimen-
tal systems (e.g., CsMnBr3) does not give a clear picture of
the critical behavior of these systems (Plumer and Mailhot,
1995).

A variety of complex phase diagrams and multicritical
phenomena is expected when one considers frustrated XY
and Heisenberg antiferromagnets exposed to magnetic fields.
This still is an active area of research (Diep, 1994).

6 RANDOM MAGNETIC FIELDS

In this section we focus on systems where the quenched
disorder leads to a local ‘field’ coupling linearly to the
order parameter, and examine how the phase transition, for
example, to a ferromagnetic phase, is affected. The simplest
model is an n-component ferromagnet with nearest-neighbor
exchange J exposed to a random field Hi that acts on every
lattice site i and is completely uncorrelated with zero mean
and variance h2:

H = −J
∑
〈i,j〉

Si ·Sj −
∑

i

Hi · Si,

[Hi]av = 0, [Hi ·Hj ]av = h2δij (31)

A basic question is how to determine the value of the
lower critical dimension dl, below which arbitrarily weak
random fields are able to destroy uniform long-range order
by breaking the system up into domains (Imry and Ma, 1975).
In a domain of linear size L in d dimensions there will be an

excess of random fields of either sign of order Ld/2, due to
statistical fluctuations. Thus, overturning the magnetization
in this domain causes an energy gain of the order of hLd/2.
However, for T < Tc, creating a domain wall costs an energy
of the order of JLd−1 in the Ising case and JLd−2 in the
case of XY and Heisenberg. Balancing these energies, one
finds that a uniform magnetization is unstable against domain
formation in arbitrarily weak random fields for d < 2 in the
Ising case and for d < 4 in the XY and Heisenberg cases.
Thus, a phase transition is still expected to occur for the
d = 3 Ising model, but not for the d = 3 XY and Heisenberg
model where arbitrary weak random fields should lead to a
rounding of the transition. The transition is also rounded for
the d = 2 Ising model, for which a more refined analysis
shows (Binder, 1983; Moore, Stinchcombe and de Queiroz,
1996) that the domain size scales exponentially with h/J .

Understanding the phase transition of the d = 3 random
field Ising model has been controversial for a long time,
partly because random field systems, like spin glasses,
have very slow dynamics around and below Tc. Assuming
a second-order transition, one finds that the hyperscaling
relation equation (10), needs to be modified as (Nattermann,
1998)

2β + γ = 2 − α = (d − θ)ν (32)

A heuristic argument to understand equation (32) assumes
that the singular part of the free energy of a correlated
region of volume ξd scales as the energy that is neces-
sary to flip the region. At a thermal transition this is kBT ,
and hence kBT ∼ ξdξ−(2−α)/ν , which gives equation (10).
However, in the present case, thermal fluctuations are
irrelevant in comparison with the random fields, and the
energy is assumed to be hξθ rather than kBT , with a
new exponent θ , and then equation (32) readily follows.
While equation (32) appears to have three independent expo-
nents, there are strong arguments (Nattermann, 1998) that
there are actually only two, since there should exist an
additional scaling relation θ = 2 − η. Evidence from series
expansions (Gofman et al., 1996) is compatible with this
relation.

Experiments (Belanger, 1998) on random field Ising sys-
tems have given beautiful evidence for the destruction of the
transition in d = 2 and have obtained estimates for critical
exponents in d = 3. These exponent values are in reason-
able agreement with the best numerical study (Middleton and
Fisher, 2002), though there is a puzzle concerning the spe-
cific heat (Hartmann and Young, 2001). Simulations also find
that the order parameter exponent β is very close to β = 0.
A different value is found in experiments (Ye et al., 2002)
but the discrepancy is probably because the experiment is
done below Tc (the order parameter is only nonzero there),
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where the system is not fully in equilibrium (D. P. Belanger,
private communication).

Also of interest is the dynamics of domain growth (which
is probably logarithmic in time) and the suggestion that
the critical dynamics may be of a thermally activated type
(Nattermann, 1998).

7 CONCLUSIONS

Disordered and frustrated spin systems are model materials
which illuminate the interplay between nonthermal random
fluctuations (due to quenched disorder) and thermal fluctua-
tions on ordering phenomena in condensed matter. New types
of phase transitions and unconventional types of order, such
as the spin glass, are found in these systems, and important
concepts of critical phenomena and the statistical mechan-
ics of solids can be exemplified and tested. Many of the
new concepts developed first for these magnetic systems
have later been carried over to different systems, such as
the problem of the glass transition of undercooled fluids, and
orientational glass behavior found in diluted dielectric mate-
rials and randomly mixed molecular crystals. Random field
effects in magnetic systems find counterparts in the behav-
ior of binary fluids in porous media, and in the mesophase
formation of binary polymer networks or mixed ‘polymer
brushes’, and even in phase separation phenomena in bio-
logical membranes.

Just as magnetic ordering in ideal crystals has played
a key role in developing the theory of phase transitions
and critical phenomena, disordered magnets are critical for
understanding the effects of quenched disorder in condensed
matter. Furthermore, theoretical techniques for understanding
ground states of spin glasses and random field systems have
allowed important spin offs in fields outside of physics,
such as neural networks, pattern recognition, optimization
problems in computer science, and economics. Despite much
effort, there are still many interesting open questions, so we
expect that the field will stay an active area of research in
the future.
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1 INTRODUCTION

The study of quantum phase transitions has been a major
focus of theoretical and experimental work in systems of
correlated electrons and in correlated ultracold atoms in
recent years. However, some of the best-characterized and
understood examples of quantum phase transitions are found
in magnetic materials. These, therefore, serve as a valuable
laboratory for testing our understanding of real systems in
the vicinity of quantum critical points. We will review some
of the simplest model systems in the subsequent text, along
with their experimental realizations. This will be followed
by a discussion of recent theoretical advances on some
novel quantum critical points displayed by quantum magnets
that have no direct analog in the theory of classical phase
transitions at finite temperature (T ). Portions of this article
have been adapted from another recent review by the author
(Sachdev, 2005).

In all the magnetic systems considered in the subse-
quent text, there is at least one ground state in which the
symmetry of spin rotations is broken. So in this phase
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we have

〈Ŝα
j 〉 �= 0 (1)

at T = 0. Here Ŝ is the electron spin operator on site j and
α = x, y, z are the spin components. In all cases that are
considered here, the Hamiltonian has at least a symmetry
of spin inversion, and this symmetry is broken by (1).
We are quite familiar with such magnetic systems, as all
antiferromagnets, ferromagnets, or even spin glasses obey
(1) at sufficiently low temperatures.

Let us now try to access a paramagnetic phase where

〈Ŝα
j 〉 = 0 (2)

Normally, we do this by raising the temperature. The
resulting phase transition between phases characterized by
(1) and (2) is well understood and described by the well-
developed theory of classical phase transitions. This shall not
be our interest here. Rather, we are interested in moving from
a magnetic system obeying (1) to a quantum paramagnet
obeying (2), by varying a system parameter at T = 0. There
are many experimental and theoretical examples of such
transitions: at the critical point, there is a qualitative change
in the nature of the quantum wave function of the ground
state.

One crucial feature of quantum phase transitions is that
(2) is usually not sufficient to characterize the paramagnetic
phase. In the Landau–Ginzburg–Wilson (LGW) approach
to classical phase transitions, one focuses on the broken
symmetry associated with (1) and defines a correspond-
ing order parameter. A field theory of the thermal fluctu-
ations of this order parameter is then sufficient to describe
the transition to the paramagnetic phase and also to com-
pletely characterize the paramagnet. As we will discuss in
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Section 4, this procedure is not sufficient in some of the
most interesting and physically important quantum phase
transitions. The paramagnetic phase is not completely char-
acterized by (2) and typically breaks some other symme-
try of the Hamiltonian or has a more subtle ‘topological’
order. Furthermore, this additional ‘order’ of the paramagnet
plays an important role in the theory of the quantum critical
point.

We will begin Section 2 by introducing some simple
lattice models and their experimental realizations, which
exhibit quantum phase transitions. The theory of the critical
point in these models is based on a natural extension of
the LGW method, and this will be presented in Section 3.
This section will also describe the consequences of a
zero-temperature critical point on the nonzero-temperature
properties. Section 4 will consider more complex models in
which quantum interference effects play a more subtle role
and which cannot be described in the LGW framework: such
quantum critical points are likely to play a central role in the
understanding of many of the correlated electron systems of
current interest.

2 SIMPLE MODELS

2.1 Ising ferromagnet in a transverse field

This quantum phase transition is realized (Bitko, Rosenbaum
and Aeppli, 1996) in the insulator LiHoF4. The Ho ion has an
S = 1/2 Ising spin that prefers to orient itself either parallel
or antiparallel to a particular crystalline axis (say z). These
Ising spins interact via the magnetic dipolar coupling and
normally form a ferromagnetic ground state that obeys (1) for
α = z. As described in the subsequent text, upon application
of a (transverse) magnetic field in the plane perpendicular
to the z axis, quantum fluctuations of the Ising spin are
enhanced, and there is eventually a quantum phase transition
to a paramagnetic state obeying (2) for α = z.

Rather than explore the full complexity of the experi-
mentally relevant model, we will restrict our attention to
a simple one-dimensional model with nearest-neighbor cou-
plings that displays much of the same physics. The dynamics
of this quantum Ising spin chain is described by the simple
Hamiltonian

HI = −J

N−1∑
j=1

σ̂
z
j σ̂

z
j+1 − gJ

N∑
j=1

σ̂
x
j (3)

where σ̂
α
j are the Pauli matrices, which act on the Ising

spin degrees of freedom (Ŝα
j ∝ σ̂

α
j ), J > 0 is the ferromag-

netic coupling between nearest-neighbor spins, and g ≥ 0

is a dimensionless coupling constant, which determines the
strength of the transverse field. In the thermodynamic limit
(N → ∞), the ground state of HI exhibits a second-order
quantum phase transition as g is tuned across a critical value
g = gc (for the specific case of HI it is known that gc = 1),
as we will now illustrate.

First, consider the ground state of HI for g � 1. At g = 0,
there are two degenerate ferromagnetically ordered ground
states

|⇑〉 =
N∏

j=1

|↑〉j ; |⇓〉 =
N∏

j=1

|↓〉j (4)

Each of these states breaks a discrete ‘Ising’ symmetry
of the Hamiltonian – rotations of all spins by 180 ◦C about
the x axis. These states are more succinctly characterized by
defining the ferromagnetic moment N0 by

N0 = 〈⇑| σ̂ z
j |⇑〉 = − 〈⇓| σ̂ z

j |⇓〉 (5)

At g = 0, we clearly have N0 = 1. A key point is that in
the thermodynamic limit this simple picture of the ground
state survives for a finite range of small g (indeed, for
all g < gc), but with 0 < N0 < 1. The quantum tunneling
between the two ferromagnetic ground states is exponentially
small in N (and, so, can be neglected in the thermodynamic
limit), and so the ground state remains twofold degenerate,
and the discrete Ising symmetry remains broken. The change
in the wave functions of these states from equation (4) can
be easily determined by perturbation theory in g: these small
g quantum fluctuations reduce the value of N0 from unity
but do not cause the ferromagnetism to disappear.

Now consider the ground state of HI for g � 1. At g = ∞
there is a single nondegenerate ground state, which fully
preserves all symmetries of HI :

|⇒〉 = 2−N/2
N∏

j=1

(|↑〉j + |↓〉j
)

(6)

It is easy to verify that this state has no ferromagnetic
moment N0 = 〈⇒| σ̂ z

j |⇒〉 = 0. Further, perturbation theory
in 1/g shows that these features of the ground state are pre-
served for a finite range of large g values (indeed, for all
g > gc). One can visualize this ground state as one in which
strong quantum fluctuations have destroyed the ferromag-
netism, with the local magnetic moments quantum tunneling
between ‘up’ and ‘down’ on a timescale of the order �/J .

Given the very distinct signatures of the small g and large
g ground states, it is clear that the ground state cannot evolve
smoothly as a function of g. There must be at least one point
of nonanalyticity as a function of g: For HI it is known
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that there is only a single nonanalytic point, and this is at
the location of a second-order quantum phase transition at
g = gc = 1.

The character of the excitations above the ground state
also undergoes a qualitative change across the quantum
critical point. In both the g < gc and g > gc phases, these
excitations can be described in the Landau quasiparticle
scheme, that is, as superpositions of nearly independent
particle-like excitations; a single, well-isolated quasiparticle
has an infinite lifetime at low excitation energies. However,
the physical nature of the quasiparticles is very different in
the two phases. In the ferromagnetic phase, with g < gc, the
quasiparticles are domain walls between regions of opposite
magnetization:

|j, j + 1〉 =
j∏

k=1

|↑〉k
N∏

�=j+1

|↓〉� (7)

This is the exact wave function of a stationary quasiparticle
excitation between sites j and j + 1 at g = 0; for small
nonzero g, the quasiparticle acquires a ‘cloud’ of further
spin flips and also becomes mobile. However, its qualitative
interpretation as a domain wall between the two degenerate
ground states remains valid for all g < gc. In contrast, for
g > gc, there is no ferromagnetism, and the nondegenerate
paramagnetic state has a distinct quasiparticle excitation:

|j〉 = 2−N/2 (|↑〉j − |↓〉j
) ∏

k �=j

(|↑〉k + |↓〉k
)

(8)

This is a stationary ‘flipped-spin’ quasiparticle at site
j , with its wave function exactly at g = ∞. Again, this
quasiparticle is mobile and applicable for all g > gc, but
there is no smooth connection between equations (8) and (7).

2.2 Coupled dimer antiferromagnet

Now we consider a model of S = 1/2 spins that interact via
an antiferromagnetic exchange, and the Hamiltonian has full
SU(2) spin rotation invariance. Physically, the cuprates are
by far the most important realization of Hamiltonians in this
class. However, rather than facing the daunting complexity
of those compounds, it is useful to study simpler insulators in
which a quantum phase transition from an antiferromagnet to
a paramagnet can be explored. One experimentally and the-
oretically well-studied system (Tanaka et al., 2001; Oosawa
et al., 2003; Rüegg et al., 2003; Matsumoto, Normand, Rice
and Sigrist, 2002, 2004) is TlCuCl3. Here the S = 1/2 spins
reside on the Cu+ ions, which reside in a rather complicated
spatial arrangement. As in Section 2.1, we will not explore

the full complexity of the experimental magnet, but be satis-
fied with a caricature that captures the essential physics. The
most important feature of the crystal structure of TlCuCl3
(as will become clear in Section 4) is that it is naturally
dimerized, that is, there is a pairing between Cu spins that
respects all symmetries of the crystal structure. So we will
consider the simplest dimer antiferromagnet of S = 1/2 spins
that exhibits a quantum phase transition essentially equiva-
lent to that found in TlCuCl3.

The Hamiltonian of the dimer antiferromagnet is illustrated
in Figure 1 and is given by

Hd = J
∑

〈jk〉∈A

(
σ̂

x
j σ̂

x
k + σ̂

y

j σ̂
y

k + σ̂
z
j σ̂

z
k

)

+J

g

∑
〈jk〉∈B

(
σ̂

x
j σ̂

x
k + σ̂

y

j σ̂
y

k + σ̂
z
j σ̂

z
k

)
(9)

where J > 0 is the antiferromagnetic exchange constant,
g ≥ 1 is the dimensionless coupling, and the set of nearest-
neighbor links A and B are defined in Figure 1. An important
property of Hd is that it is now invariant under the full SU(2)
group of spin rotations under which the σ̂

α transform as
ordinary vectors (in contrast to the Z2 symmetry group of
HI ). In analogy with HI , we will find that Hd undergoes
a quantum phase transition from a paramagnetic phase that
preserves all symmetries of the Hamiltonian at large g to an
antiferromagnetic phase that breaks the SU(2) symmetry at
small g. This transition occurs at a critical value g = gc, and
the best current numerical estimate is (Matsumoto, Yasuda,
Todo and Takayama, 2002) 1/gc = 0.52337(3).

As in the previous subsection, we can establish the
existence of such a quantum phase transition by contrasting
the disparate physical properties at large g with those at
g ≈ 1. At g = ∞ the exact ground state of Hd is

|spin gap〉 =
∏

〈jk〉∈A

1√
2

(|↑〉j |↓〉k − |↓〉j |↑〉k
)

(10)

and is illustrated in Figure 2. This state is nondegenerate
and invariant under spin rotations and, so, is a paramagnet:
the qubits are paired into spin-singlet valence bonds across

Figure 1. The coupled dimer antiferromagnet. Qubits (i.e., S = 1/2
spins) are placed on the sites, the A links are shown as full lines,
and the B links as dashed lines.
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(= − )/ 2√

Figure 2. The paramagnetic state of Hd for g > gc. The state
illustrated is the exact ground state for g = ∞, and it is adiabatically
connected to the ground state for all g > gc.

Figure 3. The triplon excitation of the g > gc paramagnet. The
stationary triplon is an eigenstate only for g = ∞ but it becomes
mobile for finite g.

all the A links. The excitations above the ground state
are created by breaking a valence bond, so that the pair
of spins form a spin triplet with total spin S = 1 – this
is illustrated in Figure 3. It costs a large energy to create
this excitation, and at finite g the triplet can hop from link
to link, creating a gapped triplon quasiparticle excitation.
This is similar to the large g paramagnet for HI , with the
important difference that each quasiparticle is now threefold
degenerate.

At g = 1, the ground state of Hd is not known exactly.
However, at this point, Hd becomes equivalent to the
nearest-neighbor square-lattice antiferromagnet, and this is
known to have antiferromagnetic order in the ground state,
as illustrated in Figure 4. This state is similar to the
ferromagnetic ground state of HI , with the difference that
the magnetic moment now acquires a staggered pattern on
the two sublattices, rather than the uniform moment of the
ferromagnet. Thus, in this ground state,

〈AF| σ̂ α
j |AF〉 = N0ηjnα (11)

Figure 4. Schematic of the ground state with antiferromagnetic
order with g < gc.

where 0 < N0 < 1 is the antiferromagnetic (or Néel)
moment, ηj = ±1 identifies the two sublattices in Figure 4,
and nα is an arbitrary unit vector specifying the orientation
of the spontaneous magnetic moment that breaks the O (3)
spin rotation invariance of Hd . The excitations of the antifer-
romagnet are also distinct from those of the paramagnet: they
are a doublet of spin waves consisting of a spatial variation
in the local orientation nα of the antiferromagnetic order; the
energy of this excitation vanishes in the limit of long wave-
lengths, in contrast to the finite energy gap of the triplon
excitation of the paramagnet.

As with HI , we can conclude from the distinct charac-
ters of the ground states and excitations for g � 1 and
g ≈ 1 that there must be a quantum critical point at some
intermediate g = gc.

3 QUANTUM CRITICALITY

The simple considerations of Section 2 have given a rather
complete description (based on the quasiparticle picture)
of the physics for g � gc and g � gc. We turn, finally,
to the region g ≈ gc. For the specific models discussed in
Section 2, a useful description is obtained by a method that
is a generalization of the LGW method developed earlier for
thermal phase transitions. However, some aspects of the crit-
ical behavior (e.g., the general forms of equations (14–16))
will apply to the quantum critical point of Section 4 also.

Following the canonical LGW strategy, we need to iden-
tify a collective order parameter that distinguishes the two
phases. This is clearly given by the ferromagnetic moment
in equation (5) for the quantum Ising chain and the antifer-
romagnetic moment in equation (11) for the coupled dimer
antiferromagnet. We coarse-grain these moments over some
finite averaging region, and at long wavelengths this yields
a real-order parameter field φα , with the index α = 1 . . . n.
For the Ising case, we have n = 1 and φα is a measure of
the local average of N0 as defined in equation (5). For the
antiferromagnet, a extends over the three values x, y, z (so
n = 3), and the three components of φα specify the magni-
tude and orientation of the local antiferromagnetic order in
equation (11); note that the average orientation of a specific
spin at site j is ηj times the local value of φα .

The second step in the LGW approach is to write down a
general field theory for the order parameter that is consistent
with all symmetries of the underlying model. As we are
dealing with a quantum transition, the field theory has
to extend over space–time, with the temporal fluctuations
representing the sum over histories in the Feynman path
integral approach. With this reasoning, the proposed partition
function for the vicinity of the critical point takes the
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following form:

Zφ =
∫

Dφα(x, τ ) exp

[
−

∫
ddxdτ

(
1

2

(
(∂τφα)2

+c2(∇xφα)2 + sφ2
α

) + u

4!

(
φ2

α

)2
)]

(12)

Here τ is imaginary time, there is an implied summation
over the n values of the index a, c is a velocity, and s and
u > 0 are coupling constants. This is a field theory in d + 1
space–time dimensions, in which the Ising chain corresponds
to d = 1 and the dimer antiferromagnet to d = 2. The
quantum phase transition is accessed by tuning the ‘mass’
s: There is a quantum critical point at s = sc, and the
s < sc (s > sc) regions correspond to the g < gc (g > gc)
regions of the lattice models. The s < sc phase has 〈φα〉 �= 0,
and this corresponds to the spontaneous breaking of spin
rotation symmetry noted in equations (5) and (11) for the
lattice models. The s > sc phase is the paramagnet with
〈φα〉 = 0. The excitations in this phase can be understood
as small harmonic oscillations of φα about the point (in
field space) φα = 0. A glance at equation (12) shows that
there are n such oscillators for each wave vector. These
oscillators clearly constitute the g > gc quasiparticles found
earlier in equation (8) for the Ising chain (with n = 1) and
the triplon quasiparticle (with n = 3, illustrated in Figure 3)
for the dimer antiferromagnet.

We have now seen that there is a perfect correspondence
between the phases of the quantum field theory Zφ and
those of the lattice models HI and Hd . The power of
the representation in equation (12) is that it also allows us
to get a simple description of the quantum critical point.
In particular, readers may already have noticed that if we
interpret the temporal direction τ in equation (12) as another
spatial direction, then Zφ is simply the classical partition
function for a thermal phase transition in a ferromagnet in
d + 1 dimensions: this is the canonical model for which the
LGW theory was originally developed. We can now take over
standard results for this classical critical point and obtain
some useful predictions for the quantum critical point of
Zφ . It is useful to express these in terms of the dynamic
susceptibility defined by

χ(k, ω) = i

�

∫
ddx

∫ ∞

0
dt

〈[
φ̂(x, t), φ̂(0, 0)

]〉
T

e−ikx+iωt

(13)
Here φ̂ is the Heisenberg field operator corresponding

to the path integral in equation (12), the square brackets
represent a commutator, and the angular brackets an average
over the partition function at a temperature T . The structure
of χ can be deduced from the knowledge that the quantum
correlators of Zφ are related by analytic continuation in time

to the corresponding correlators of the classical statistical
mechanics problem in d + 1 dimensions. The latter are
known to diverge at the critical point as ∼ 1/p2−η where
p is the (d + 1)-dimensional momentum, η is the anomalous
dimension of the order parameter (η = 1/4 for the quantum
Ising chain). Knowing this, we can deduce the form of the
quantum correlator in equation (13) at the zero-temperature
quantum critical point

χ(k, ω) ∼ 1

(c2k2 − ω2)1−η/2
; T = 0, g = gc (14)

The most important property of equation (14) is the
absence of a quasiparticle pole in the spectral density.
Instead, Im (χ(k, ω)) is nonzero for all ω > ck, reflecting
the presence of a continuum of critical excitations. Thus the
stable quasiparticles found at low enough energies for all
g �= gc are absent at the quantum critical point.

We now briefly discuss the nature of the phase diagram
for T > 0 with g near gc. In general, the interplay between
quantum and thermal fluctuations near a quantum critical
point can be quite complicated (Sachdev, 1999), and we
cannot discuss it in any detail here. However, the physics
of the quantum Ising chain is relatively simple and also
captures many key features found in more complex situations
and is summarized in Figure 5. For all g �= gc there is a
range of low temperatures (T <∼ |g − gc|) where the long-
time dynamics can be described using a dilute gas of
thermally excited quasiparticles. Further, the dynamics of
these quasiparticles is quasiclassical, although we reiterate
that the nature of the quasiparticles is entirely distinct on
opposite sides of the quantum critical point. Most interesting,
however, is the novel quantum critical region T >∼ |g − gc|
where neither a quasiparticle picture nor a quasiclassical
description are appropriate. Instead, we have to understand

g

T

gc

0

Domain wall
quasiparticles

Quantum
critical

Flipped-spin
quasiparticles

Figure 5. Nonzero-temperature phase diagram of HI . The ferro-
magnetic order is present only at T = 0 on the shaded line with
g < gc. The dashed lines at finite T are crossovers out of the low
T quasiparticle regimes where a quasiclassical description applies.
The state sketched on the paramagnetic side used the notation
|→〉j = 2−1/2(|↑〉j + |↓〉j ) and |←〉j = 2−1/2(|↑〉j − |↓〉j ).
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the influence of temperature on the critical continuum
associated with equation (14). This is aided by scaling
arguments, which show that the only important frequency
scale that characterizes the spectrum is kBT /�, and the
crossovers near this scale are universal, that is, independent
of specific microscopic details of the lattice Hamiltonian.
Consequently, the zero-momentum dynamic susceptibility in
the quantum critical region takes the following form at small
frequencies:

χ(k = 0, ω) ∼ 1

T 2−η

1

(1 − iω/
R)
(15)

This has the structure of the response of an overdamped
oscillator, and the damping frequency 
R is given by the
universal expression


R =
(

2 tan
π

16

) kBT

�
(16)

The numerical proportionality constant in equation (16) is
specific to the quantum Ising chain; other models also obey
equation (16), but with a different numerical value for this
constant.

4 BEYOND LGW THEORY

The quantum transitions discussed so far have a critical
theory identical to that found for classical thermal transitions
in d + 1 dimensions. Over the last decade, it has become
clear that there are numerous models of key physical
importance for which such a simple classical correspondence
does not exist. In these models, quantum Berry phases are
crucial in establishing the nature of the phases and of the
critical boundaries between them. In less technical terms, a
signature of this subtlety is an important simplifying feature
that was crucial in the analyses of Section 2: both models
had a straightforward g → ∞ limit in which we were able
to write down a simple, nondegenerate, ground-state wave
function of the ‘disordered’ paramagnet. In many other
models, identification of the ‘disordered’ phase is not as
straightforward: specifying absence of a particular magnetic
order as in (2) is not enough to identify a quantum state, as
we still need to write down a suitable wave function. Often,
subtle quantum interference effects induce new types of order
in the ‘disordered’ state, and such effects are entirely absent
in the LGW theory.

An important example of a system displaying such phe-
nomena is the S = 1/2 square-lattice antiferromagnet with
additional frustrating interactions. The quantum degrees of
freedom are identical to those of the coupled dimer antifer-
romagnet, but the Hamiltonian preserves the full point-group

symmetry of the square lattice:

Hs =
∑
j<k

Jjk

(
σ̂

x
j σ̂

x
k + σ̂

y

j σ̂
y

k + σ̂
z
j σ̂

z
k

)
+ . . . (17)

Here the Jjk > 0 are short-range exchange interactions
that preserve the square-lattice symmetry and the ellipses
represent possible multiple spin terms. Now imagine tuning
all the non-nearest-neighbor terms as a function of some
generic coupling constant g. For small g, when Hs is
nearly the square-lattice antiferromagnet, the ground state
has antiferromagnetic order as in Figure 4 and equation (11).
What is the ‘disordered’ ground state for large g now? One
natural candidate is the spin-singlet paramagnet in Figure 2.
However, because all nearest-neighbor bonds of the square
lattice are now equivalent, the state in Figure 2 is degenerate
with three other states obtained by successive 90 ◦C rotations
about a lattice site. In other words, the state in Figure 2,
when transferred to the square lattice, breaks the symmetry
of lattice rotations by 90 ◦C. Consequently it has a new type
of order, often called valence-bond-solid (VBS) order. It is
now believed (Senthil et al., 2004a, b) that a large class of
models like Hs do indeed exhibit a second-order quantum
phase transition between the antiferromagnetic state and a
VBS state (Figure 6). The existence of VBS order in the
paramagnet and a second-order quantum transition are both
features that are not predicted by LGW theory: these can only
be understood by a careful study of quantum interference
effects associated with Berry phases of spin fluctuations
about the antiferromagnetic state.

We will now review the manner in which Berry phases
lead to a breakdown of LGW field theory. We begin with
the field theory Zφ in equation (12) for the coupled dimer
antiferromagnet and modify it to include Berry phases of
the spin. For each spin, the partition function acquires a

or

Antiferromagnetic
 order

VBS order

ggc

Figure 6. Phase diagram of Hs . Two possible VBS states are
shown: one that is the analog Figure 2 and the other in which
spins form singlets in a plaquette pattern. Both VBS states have
a fourfold degeneracy due to breaking of square-lattice symmetry.
So the novel critical point at g = gc (described by Zz) has the
antiferromagnetic and VBS orders vanishing as it is approached
from either side: this coincident vanishing of orders is generically
forbidden in LGW theories.
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phase factor eiA/2, where A is the area enclosed by the world
line of the spin on the unit sphere in spin space. To include
this contribution, it is necessary to rewrite equation (12) in
terms of a ‘hard-spin’ unit vector field n, rather than the
soft-spin field φα . The direction of n then represents the
local orientation of the antiferromagnetic order parameter.
Furthermore, the Berry phase contributions oscillate rapidly
from site to site, and, so, we have to write them down on
the underlying lattice and cannot directly take the continuum
limit. In this manner, we obtain from equation (12)

Zn =
∫

Dn(r, τ)δ(n2(r, τ) − 1)

× exp

[
i

2

∑
j

ηj

∫
dτAτ (n(rj , τ ))

− 1

2gc

∫
d2rdτ

(
(∂τ n)2 + c2(∇rn)2)] (18)

Excluding the first Berry phase term, this is the action
of the so-called O (3) nonlinear sigma model in three
space–time dimensions. Here, we are primarily interested in
the consequences of the Berry phases: Aτ (n(τ ))dτ is defined
as the oriented area of the spherical triangle defined by n(τ ),
n(τ + dτ ), and an arbitrary reference point n0 (which is
usually the north pole).

The theory in equation (18) can be considered as the
‘minimal model’ of quantum antiferromagnets on the square
lattice. At small g there is the conventional magnetically
ordered ‘Néel’ phase with 〈n〉 �= 0, while at large g there is
a ‘quantum-disordered’ paramagnetic phase, which preserves
spin rotation invariance with 〈n〉 = 0. We are especially
interested here in the nature of this paramagnetic state.

The key to an analysis of the large-g regime is a better
understanding of the nature of Aτ . We will see that Aτ

behaves in many respects like the time component of
a compact U(1) gauge field, and, indeed, this accounts
for the suggestive notation. All physical results should be
independent of the choice of the reference point n0, and it is
easy to see by drawing triangles on the surface of a sphere
that changes in n0 amount to gauge transformations of Aτ .
If we change n0 to n′

0, then the resulting A′
τ is related to

Aτ by

A′
τ = Aτ − ∂τφ(τ ) (19)

where φ(τ) measures the oriented area of the spherical
triangle defined by n(τ ), n0, and n′

0. Furthermore, as we
will discuss more completely in the subsequent text, the area
of any spherical triangle is uncertain modulo 4π , and this
accounts for the ‘compactness’ of the U(1) gauge theory.

We proceed with our analysis of Zn. First, we discretize
the gradient terms of the O (3) sigma model. We will limit our
considerations here to antiferromagnets on the square lattice,
but similar considerations apply to other bipartite lattices. We
also discretize the imaginary-time direction, and (by a slight
abuse of notation) use the same index j to refer to the sites
of a three-dimensional cubic lattice in space–time. On such
a lattice we can rewrite (18) as

Zn =
∫ ∏

j

dnj δ(n2
j − 1)

× exp


 1

2g

∑
j,µ

nj ·nj+µ̂ + i

2

∑
j

ηjAjτ


 (20)

where the sum over µ extends over the three space–time
directions, and Ajµ is defined to equal the oriented area of the
spherical triangle formed by nj , nj+µ, and the arbitrary (but
fixed) reference point n0. We have also dropped unimportant
factors of the lattice spacing and the spin-wave velocity
in (20).

The theory equation (20) is still cumbersome to work with
because Ajτ is a complicated function of nj . However, a
purely local formulation can be found by reexpressing nj in
terms of spinor variables. We write

njα = z∗
jaσ

α
abzjb (21)

where σα are the Pauli matrices, the zja are two-component
complex spinor fields residing on the sites of the cubic lattice,
and a is a spinor index that extends over ↑ and ↓. It is an
interesting classical result in spherical trigonometry that the
area of a spherical triangle can be expressed quite simply in
terms of the spinor coordinates of its vertices. We will not
explicitly review this analysis here, but refer the reader to a
separate review (Sachdev, 2004). Using this result, it is not
difficult to show that equation (20) is very closely related to
the following partition function on the cubic lattice

Zz =
∏
jµ

∫ 2π

0

dAjµ

2π

∏
ja

∫
dzja

∏
j

δ
(∣∣zja

∣∣2 − 1
)

× exp


1

g

∑
jµ

(
z∗
jae

−iAjµzj+µ,a + c.c.
) + i

∑
j

ηjAjτ




(22)
Note that we have introduced a new field Ajµ on

each link of the cubic lattice, which is integrated over.
This is a compact U(1) gauge field, which has replaced
Ajµ in equation (20): it can be shown (Sachdev, 2004)
that the integral over Ajµ in equation (22) is dominated
by values Ajµ ≈ Ajµ/2, and the resulting action differs
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from equation (20) only in unimportant details. The crucial
advantage of equation (22) is, of course, that there are no
constraints between the zja and the Ajµ, and we now have
to deal with a purely local lattice gauge theory.

The theory Zz now allows us to address the key questions
linked to the breakdown of LGW theory. At small g, we
have, as before, a Néel state with 〈za〉 �= 0, and hence from
equation (21) 〈n〉 �= 0. We will now describe the nature of
the large g paramagnetic phase and of the transition between
the small- and large-g phases in the subsections in the
following text.

4.1 Nature of the paramagnet

For large g, there are strong fluctuations of the zja , and it
therefore pays to integrate out the zja from Zz and obtain an
effective theory for the Ajµ. This can be done order by order
in 1/g in a ‘high-temperature’ expansion. The powers of 1/g

yield terms dependent upon gauge-invariant U(1) fluxes on
loops of all sizes residing on the links of the cubic lattice. For
our purposes, it is sufficient to retain only the simplest such
term on elementary square plaquettes, yielding the partition
function

ZA =
∏
jµ

∫ 2π

0

dAjµ

2π

× exp


 1

e2

∑
�

cos
(
εµνλ�νAjλ

) + i
∑

j

ηjAjτ



(23)

where εµνλ is the totally antisymmetric tensor in three
space–time dimensions. Here the cosine term represents the
conventional Maxwell action for a compact U(1) gauge the-
ory: it is the simplest local term which is consistent with the
gauge symmetry and periodic under Ajµ → Ajµ + 2π . The
sum over � in (23) extends over all plaquettes of the cubic
lattice, �µ is the standard discrete lattice derivative (�µfj ≡
fj+µ − fj for any fj ), and e2 is a coupling constant. We
expect the value of e to increase monotonically with g.

The properties of a pure compact U(1) theory have been
described by Polyakov (1987). Here we need to extend his
analysis to include the all-important Berry phases in ZA. The
Berry phase has the interpretation of a

∫
JµAµ coupling to

a static matter field with ‘current’ Jµ = δµτ , that is, static
charges ±1 on the two sublattices. It is this matter field that
will crucially control the nature of the paramagnet.

Polyakov showed that the quantum fluctuations of the pure
compact U(1) gauge theory were controlled by monopole
tunneling events at which the U(1) gauge flux changed by 2π .
In particular, at all values of the coupling e, the monopoles

eventually proliferate at long enough distances and lead to
confinement of ‘electric’ charges: here these electric charges
are the S = 1/2 za quanta (also known as spinons).

For our purposes, we need to understand the influence
of the Berry phase terms in ZA on the monopoles. This is
a subtle computation (Haldane, 1988; Read and Sachdev,
1990) that has been reviewed elsewhere (Sachdev, 2004).
The final result is that each monopole can also be associated
with a Berry phase factor. If m

†
j is the monopole creation at

site j , then this appears in the partition function as

m
†
j ζ j (24)

where ζ j is a fixed field taking the values 1, i, −1, −i on
the four square sublattices as shown in Figure 7.

An important consequence of these Berry phases is that
the monopole operator now transforms nontrivially under
the operations of the square-lattice space group. Indeed, the
partition function of the antiferromagnet must be invariant
under all space group operations, and, so, by demanding the
invariance of equation (24), we deduce the transformation
properties of the monopole operator. A simple analysis of
equation (24) then shows that

Tx : m → im†

Ty : m → −im†

Rdual
π/2 : m → m†

I dual
x : m → m

T : m → m (25)

Here Tx,y are translations by one lattice spacing along the
x,y axes, Rdual

π/2 is a rotation by π/2 about a site of the dual
lattice, I dual

x is reflection about the y axis of the dual lattice,
and T is time reversal.

The transformation properties in equation (25) now allow
us to relate the monopole operator to physical observables
by searching for combinations of spin operators that have

1

1 1

i

i i

i

−i

−i

−i

−i

1

−1−1

−1−1

Figure 7. The values of the fixed field ζ i that specify the Berry
phase of the monopole tunneling events. The monopoles are
assumed to be centered on the sites of the dual lattice.
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the same signature under space group operations. It turns out
that the monopole operator is connected to the VBS order
parameter (Read and Sachdev, 1990). From Figure 6, we note
that VBS order is associated with modulations in the value
of the nearest-neighbor spin-singlet correlations. So we can
define a complex order parameter, ψVBS, such that

Re
[
ψVBS

] = (−1)jx
∑
α

σ̂
α
j σ̂

α
j+x

Im
[
ψVBS

] = (−1)jy
∑
α

σ̂
α
j σ̂

α
j+y (26)

It is now easy to work out the space group transformations
of ψVBS. These lead to the important correspondence (Read
and Sachdev, 1990; Senthil et al., 2004a, b)

m ∼ e−iπ/4ψVBS (27)

We have now assembled all the ingredients necessary to
describe the interplay between the monopole dynamics and
the Berry phases in the paramagnetic phase. Using a map-
ping from the compact U(1) gauge theory to a dual effective
action for monopoles, the proliferation of monopoles can
be argued (Sachdev, 2004) to be equivalent to their ‘con-
densation’ with 〈mj 〉 �= 0. This argument also applies in
the presence of Berry phases although cancellations among
the phases now leads to a significantly smaller value of
〈mj 〉. Nevertheless, it can be shown that 〈mj 〉 is nonzero
in the paramagnetic phase. Because of the nontrivial trans-
formation properties of mj under the square-lattice space
group noted in the preceding text, it is then clear that a
nonzero 〈mj 〉 spontaneously breaks the space group sym-
metry. Indeed, the connection in equation (27) shows that
this broken symmetry is reflected in the appearance of VBS
order. The precise configuration of the VBS order depends
on the value of Arg[〈m〉]. Using equation (27) and the space
group transformations in the preceding text, the two VBS
configurations shown in Figure 6 appear for Arg[〈m〉] equal
to π/4, 3π/4, 5π/4, 7π/4 or 0, π/2, π, 3π/2.

We have now established the breakdown of LGW theory
induced by the Berry phases in Zn in equation (18). A theory
of the quantum fluctuations of the LGW antiferromagnetic
order parameter n does not lead to a featureless ‘quantum
disordered’ paramagnetic state. Rather, subtle quantum inter-
ference effects induce a new VBS order parameter and an
associated broken symmetry.

4.2 Deconfined criticality

We now turn to a brief discussion of the quantum phase
transition between the small-g Néel phase with 〈n〉 �= 0 and
〈ψVBS〉 = 0 and the large-g paramagnetic phase with 〈n〉 = 0

and 〈ψVBS〉 �= 0. The two phases are characterized by two
apparently independent order parameters, transforming very
differently under spin and lattice symmetries. Given these
order parameters, LGW theory predicts that there can be no
direct second-order phase transition between them, except
with fine tuning.

Recent work by Senthil et al. (2004a, b) has shown
that this expectation is incorrect. Central to their argument
is the demonstration that at a possible quantum critical
point the monopole Berry phases in equation (24) lead to
complete cancellation of monopole effects even at the longest
distance scales. Recall that in the g > gc paramagnetic phase,
Berry phases did lead to a partial cancellation of monopole
contributions, but a residual effect was present at the longest
scales. In contrast, the monopole suppression is complete at
the g = gc quantum critical point.

With the suppression of monopoles, the identification
of the continuum critical theory turns out to be quite
straightforward. We simply treat Ajµ as a noncompact U(1)
gauge field and take the naive continuum limit of the partition
function Zz in equation (22) while ignoring the monopoles
and their Berry phases. This leads to the field theory

Zzc =
∫

Dza(x, τ )DAµ(x, τ )

× exp

(
−

∫
d2xdτ

[
|(∂µ − iAµ)za|2 + s|za|2

+u

2
(|za |2)2 + 1

2e2
(εµνλ∂νAλ)

2
])

(28)

In comparing Zzc to the continuum theory Zφ for the
coupling dimer antiferromagnet, note that the vector order
parameter φα has been replaced by a spinor za , and these
are related by φα ∼ z∗

a σα
abzb, from equation (21). So the

order parameter has fractionalized into the za spinons. A
second novel property of Zz is the presence of a U(1) gauge
field Aµ: this gauge field emerges near the critical point,
even though the underlying model in equation (17) has only
simple two-spin interactions.

Studies of fractionalized critical theories like Zzc in other
models with spin and/or charge excitations is an exciting
avenue for further theoretical research and promises to have
significant applications in a variety of correlated electron
systems (Senthil, Sachdev and Vojta, 2005; Balents et al.,
2005).
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1 INTRODUCTION

The application of innovative experimental tools and the
desire to grow nanostructures and novel materials in a con-
trolled manner have produced an urgent need for highly
reliable, robust, and predictive theoretical models and tools to
achieve a quantitative understanding of their growth dynam-
ics and the size, shape, and process dependencies of their
physical properties. It has been recognized in many fields
of materials science that state-of-the-art ab initio electronic
structure calculations based on the density-functional theory
(DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965)
have been enormously successful, in both explaining existing

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

phenomena and, more importantly, in predicting the proper-
ties of new systems. For example, the prediction of enhanced
magnetic moments with lowered coordination numbers at
clean metal surfaces has stimulated both theoretical and
experimental explorations for new magnetic systems and
phenomena in man-made nanostructures (Freeman and Wu,
1991; Freeman, 2002). Synergistic applications of theory and
experiment, as demonstrated repeatedly in many areas of
materials science, become a ‘must’ to further advance our
understanding of magnetism in reduced dimensions.

It is known that the magnetism of ultrasmall entities is not
stable due to super paramagnetism (Mermin and Wanger,
1966). Thermal fluctuation is the major obstacle for fur-
ther size reduction of magnetic devices and has become an
urgent issue for fundamental research. Innovative strategies
to block thermal fluctuation with high magnetic anisotropy
energy (MAE) have attracted enormous attention in recent
years. Moreover, it is preferred to have the easy axis aligned
along the perpendicular direction, a stipulation for the next
generation high-density magnetic recording media (Weller
and Moser, 1999; Weller et al., 2000; Wood, 2000; Bertram
and Williams, 2000; Bertram and Shimizu, 2003). Experi-
mental studies for spin reorientation transition (SRT) in var-
ious magnetic thin films have been very fruitful (Allenspach
and Bischof, 1992; Li et al., 1994; Durr et al., 1997; Farle,
1998; Hope, Gu, Choi and Bland, 1998; Bland, Hope, Choi
and Bode, 1999; Sander, 2004). Many possible tactics have
been found to tailor magnetic anisotropies of nanostructured
magnetic materials by manipulating lattice strains, composi-
tions, capping layers, growth procedures, and surface adsor-
bates (Qiu, Pearson and Bader, 1993; Kawakami, Escorcia-
Aparicio and Qiu, 1996; O’Brien, Droubay and Tonner,
1996; Millev and Kirschner, 1996; Oepen, Speckmann,
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Millev and Kirschner, 1997; Farle et al., 1997; van Dijken,
Vollmer, Poelsema and Kirschner, 2000; Baberschke, Donath
and Nolting, 2001; Yin et al., 2006), and the underly-
ing electronic mechanism has been extensively explored
through density-functional calculations (Johnson, Bloemen,
den Broedert and de Vries, 1996; Wu and Freeman, 1999;
Weinberger and Szunyogh, 2000; Hong et al., 2004). Further-
more, the strain dependence of MAE is the origin of another
important magnetic phenomenon: magnetostriction (Gibbs,
2001; Engdahl, 2002). Anisotropic magnetostriction is gen-
erally described as the deformation of a body in response to a
change in its direction of magnetization through the applica-
tion of a magnetic field. Strongly magnetostrictive materials
are widely utilized in various MEMS, sensor, actuator, and
transducer applications. On the other hand, materials with
extremely small magnetostrictive coefficients, λ (defined as
λ ∝ �l/l, here l denotes the length of a sample), are desired
in electric transformers, motor shielding, and magnetic
recording. Innovative magnetic materials that have strong
magnetostrictive yet ductile mechanical properties attract
renewed attention for the miniaturization of operation devices
(Clark et al., 2000; Clark, Wun-Fogle, Restorff and Lograsso,
2001). Owing to its intrinsic complexity, however, magne-
tostriction in transition-metal systems has rarely been tackled
theoretically until very recently (Wu and Freeman, 1999).

In this chapter, I will review the current status of the-
oretical determination for magnetic anisotropy and magne-
tostriction of transition-metal systems. Examples used here,
mainly from our own work, will elucidate the main chal-
lenges, solutions, and prospects of these vigorous research
fields.

2 THEORETICAL BACKGROUND

Magnetic anisotropy depends on two factors: the spin-orbit
coupling (SOC, the contribution from this part is called
magnetocrystalline anisotropy, EMCA) and the magnetostatic
dipole–dipole interaction (this part of the anisotropy is called
shape anisotropy). The shape anisotropy can be evaluated
through summing up over discrete lattice

Eshape = A
∑
i �=j

[
(

⇀
mi · ⇀

mj)

|rij |3 − 3

|⇀r ij |5
(

⇀
mi · ⇀

r ij )(
⇀
mj · ⇀

r ij )

]

(1)

⇀

l · ⇀

S =




A+ + A−
2

sin θ + Lz cos θ

(
A− cos2 θ

2
− A+ sin2 θ

2
− Lz sin θ

)
e−iφ(

A+ cos2 θ

2
− A− sin2 θ

2
− Lz sin θ

)
eiφ −A+ + A−

2
sin θ − Lz cos θ


 (4)

Here A is a unit-dependent constant;
⇀
m and

⇀
r are local

magnetic moments and position vectors, respectively. The
determination of EMCA, on the other hand, was a major
challenge for theoretical calculations in the last two decades.
The reliable determination of EMCA for a given material
requires highly accurate electronic structures and proper
treatment of the weak SOC Hamiltonian. The single-particle
energy (ε) and wave function (�), the bases for predictions
of almost all physical properties of real materials, can be
obtained by solving the Kohn–Sham equation[

−1

2
∇2 + Vext + Vc + Vxc

]
� = ε� (2)

Here, Vext and Vc are the external potential and the
Coulomb potential among electrons, while Vxc is the
exchange-correlation potential that takes into account all the
complexities of many-body interactions. In practical calcula-
tions, the local spin density approximation (LSDA) and the
more advanced generalized gradient approximation (GGA)
are usually adopted for Vxc. By using different basis func-
tions, equation (2) is typically solved as a generalized matrix
diagonalization problem of H − εS = 0, where H and S are
the matrices of Hamiltonian and overlap. In the implementa-
tion of the all-electron full-potential linearized augmented
plane wave (FLAPW) method (Wimmer, Krakaur, Wein-
ert and Freeman, 1981; Weinert, Wimmer and Freeman,
1982), the space is divided into three regions, namely, the
near nucleus muffin-tin region, the vacuum region, and the
remaining interstitial region. The wave function, potential,
and charge density are expended in a ‘natural’ way without
any artificial shape approximations. The spin-orbit coupling
term is usually omitted in most of the DFT calculations
hitherto. The so-called scalar-relativistic or semirelativistic
(Koelling and Harmon, 1977) approaches significantly reduce
computational demands but still provide good results for var-
ious physical properties such as optimized geometry, spin
magnetic moment, and magnetic ordering. For the determi-
nation of EMCA and λ, the relativistic SOC is essential. To
the order of (v/c)2, the SOC Hamiltonian is expressed as

H SOC = �
2

4m2c2

∂V (r)

r∂r

⇀

l · ⇀

S = ξ(
⇀

l · ⇀

S) (3)

In practical calculations, the SOC Hamiltonian is expressed
in a matrix format in the spin space (the two states are
denoted as ↑ and ↓, respectively) as,
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Here θ and φ are for polar and azimuthal angles of mag-
netization and A+ = e−iφ(Lx + iLy) while A− = eiφ(Lx −
iLy). For 3d transition metals, it has been shown that
involvement of H SOC alters charge density, spin density, and
spin moment negligibly (Wu and Freeman, 1999). In contrast,
H SOC has to be invoked in the self-consistence loop for the
solution of the Kohn–Sham equations when heavy elements
are involved, especially in nanoentities in which 4d and 5d
elements are also magnetic.

In low dimensions, the leading term in EMCA is the
uniaxial anisotropy, EMCA = K sin2θ + O(sin4θ , sin4φ). For
the determination of K , the magnetocrystalline anisotropy
force theorem (Daalderop, Kelly and Schuurmans, 1990;
Wang, Wang, Wu and Freeman, 1996a)

EMCA ≡ E(90◦
) − E(0◦

) ≈
∑
occ′

εi(90◦
) −

∑
occ′′

εi(0
◦
) (5)

was adopted in most previous ab initio calculations. Because
the sets of occupied states, that is, {occ′} and {occ′′}, were
determined through the Fermi filling scheme, which relies
on very limited information from εi alone, a huge number
of k points (>10 000 in the two dimensional Brillouin
zone for thin films) are needed to restrain the numerical
fluctuation (Gay and Richter, 1986; Daalderop, Kelly and
Schuurmans, 1990). This hurdle was overcome in the last
decade by using various broadening techniques (Trygg,
Johansson, Eriksson and Wills, 1995; Hjortstam et al., 1997)
and the state-tracking (Wang, Wu and Freeman, 1993) and
the torque (Wang, Wang, Wu and Freeman, 1996b) schemes.
Particularly, the torque method circumvents the need to
differentiate energies. Instead, EMCA is evaluated through
the expectation values of the angular derivative of H SOC

with wave function at a magic angle � ′(θm, φm). Here the
prime indicates that the SOC is taken into account.

EMCA =
∑
i∈occ

〈� ′
i (θm, φm)|∂H SOC

∂θ
|� ′

i (θm, φm)〉 (6)

The magic angle (θm, φm) can be found from the sym-
metry, or more explicitly the form of angular dependence
of total energy. For a uniaxial system, it can be proved that
θm = 45◦ and φm = 0◦. Very stable results of uniaxial EMCA

have been obtained with a manageable number of k points,
as elucidated in examples in the subsequent text.

The determination of magnetostrictive coefficients for real
materials is another difficult problem for modern electronic
structure theory (Wu and Freeman, 1999; Fahnle, Komelj,
Wu and Guo, 2002; Komelj and Fahnle, 2006). In general,
the size of the magnetoelastic strain induced by rotation of
the magnetization depends on the directions of the measured
strain and the spin moment. For a cubic material, the

directional dependence of the fractional change in length
can be expressed in terms of the direction cosines of the
magnetization (α) and of the strain measurement (β) with
respect to the crystalline axes

�l

l0
= 3

2
λ001

[
3∑

i=1

α2
i β

2
i − 1

3

]
+ 3λ111

3∑
i �=j

αiαjβiβj (7)

If the measurement is carried out along the (001) direction,
for example, αx = αy = 0 and αz = 1, then equation (7) can
be simplified as �l/l0 = 3/2λ001[α2

z − 1/3] or further, for
systems with a single domain,

λ001 = 1

3

l0(θ = 0◦
) − l0(θ = 90◦

)

l0(θ = 0◦) + l0(θ = 90◦)
(8)

Clearly, λ001 represents the change in length along (001)
when the magnetization turns from the x, y plane to the z

direction. As a normal practice, the equilibrium lengths, l0(θ ),
can be obtained by fitting the calculated total energies in a
quadratic form

E(θ = 0◦
) = al2 + bl + c; and

E(θ = 90◦
) = al2 + bl + c + EMCA (9)

From equation (8), one can get

λ001 = −2

3

dEMCA
dl

b
(10)

Since b is negative (a and l0 are positive), λ and dEMCA
dl

should always have the same sign. Obviously, the major
challenge for first-principles calculations is the determination
of dEMCA

dl
, which is typically very small.

3 MAGNETIC ANISOTROPY OF THIN
FILMS

In most of the magnetic thin films, large uniaxial MAEs
are induced not only by the surface and interface effects
but also by lattice strains due to lattice mismatches and
the presence of step edges (Baberschke, 1996; Kawakami,
Escorcia-Aparicio and Qiu, 1996). The surface and interface
contributions sensitively depend on the atomic relaxations,
chemisorptions, and growth morphologies. Well-optimized
structures are hence prerequisites for the determination
of EMCA through DFT calculations. Fortunately, most of
the modern DFT packages can directly calculate atomic
forces to expedite the structural optimization procedures.
Nevertheless, one should note that while GGA significantly
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improves the results of atomic structures for 3d transition
metals over LSDA, it overestimates the volume of 4d and
5d elements as well as oxides. Extra care is thus needed to
handle systems with mixing building blocks.

To understand complex magnetic films, it is instructive
to first analyze the electronic origin of the EMCA for a
free-standing magnetic monolayer. The k distributions of
EMCA and the band structures of a Co monolayer, for
example, are plotted in Figure 1 along the high-symmetry
directions in the 2D Brillouin zone. Obvious correlation
between the abrupt changes in EMCA and the locations
where bands cross the Fermi level discloses simple physics.
Clearly, the large negative EMCA for the Co monolayer
(−1.34 meV/atom) mainly stems from contributions around
the M point. This can be further traced to SOC interaction(s)
between the occupied dxz,yz states (m = ±1, denoted as state
5 in Figure 1) and the unoccupied dz2 state (m = 0, denoted
as state 1 in Figure 1). Note only the pair across EF with
the same (different) magnetic quantum number(s) leads to
a positive (negative) contribution to EMCA. By knowing the
origin of EMCA of simple systems, one can tailor magnetic
anisotropy by engineering the bands of the magnetic layer.
For example, owing to the Co–Cu d-band hybridization, the
Co-dxz,yz states are lowered in energy in Co/Cu(001) and
Cu/Co/Cu(001). As a result, EMCA becomes less negative
in Co/Cu(001)and is positive in Cu/Co/Cu(001) (Gavrilenko
and Wu, 1999), in good accordance with experimental
data (Krams et al., 1992). Many calculations have been
done in the last decade to study the effects of metal
substrates or capping layers on the EMCA of ultrathin
magnetic thin films (Wu and Freeman, 1999; Weinberger
and Szunyogh, 2000). It is now well established that values
of K for magnetic films can be determined through high-
quality DFT calculations with satisfactory accuracy; some of
the calculations also give atom-resolved contributions from
different layers (Uiberacker et al., 1999).
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Figure 1. The band structure (thin solid lines, for minority spin
only) and the EMCA (bold dashed line) of the Co(001) monolayer
(a = 4.8 au) through LSDA calculations.

Interestingly, EMCA of Fe, Co, and Ni films can be
tuned by surface chemisorptions of O, CO, and H (Baek,
Lee, Kim and Vescovo, 2003; Vollmer et al., 1999; Vollmer
and Kirschner, 2000; van Dijken, Vollmer, Poelsema and
Kirschner, 2000; Matsumura et al., 2002; Sander et al.,
2004), and the underlying electronic mechanism has been
actively explored through theory and experiment interplays.
Figure 2 illustrates theoretical and experimental results of
MAEs for O/Ni/Cu(001) from different regions, namely, the
y interception of the K(1/d) line is for bulk and its slope is
for surface/interface (Hong et al., 2004). For O/Ni/Cu(001),
the bulk contribution is 27 meV/atom, primarily caused
by the tetragonal distortion in the Ni films grown on
Cu(001) (Farle et al., 1997; Wu, Chen and Freeman, 1997a;
Hjortstam et al., 1997). Contributions from the Cu/Ni and
O/Ni interfaces are −59 and −17 µeV/atom, respectively.
The dramatic decrease in magnitude at the O/Ni interface
leads to a shift of critical thickness for SRT from 10 Ni
MLs in vacuum/Ni/Cu(001) to 5 Ni MLs in O/Ni/Cu(001),
as given by the interception between the K(1/d) line with
the horizontal line of 2πM2 in Figure 2(a). This brings
the optimum record up to date for SRT in Ni/Cu(001), as
compared to cases using Cu, hydrogen, or CO. Theoretical
calculations reproduced the trend of experimental data very
well, indicating the appropriateness of models. Analyses in
electronic structures furthermore attributed the O-induced
change in EMCA to the new surface state with the dxz feature
caused by the O adlayer. O- and H-induced relaxation and
buckling in the second layer also play a role. Surprisingly, the
presence of O does not purge the magnetization in the surface
region (Hong et al., 2004). Instead, the Ni surface magnetic
moments are significantly enhanced (by more than 5% for
Ni alone), especially when the sizable spin polarization of
oxygen (mO = 0.18 µB) is included. However, the magnetic
moments of both O and Ni are significantly reduced if
the atomic structure is optimized with LDA that produces
better agreement with experimental X-ray magnetic circular
dichroism data (Sorg et al., 2006).

4 MAGNETIC ANISOTROPY OF WIRES
AND CHAINS

Ultrasmall monatomic chains, the smallest possible mag-
netic recording units (for 100–1000 TB in.−2), are grown
on vicinal substrates (Gambardella et al., 2002) or built by
Scanning Tunnelling Microscope (STM) tip manipulation
(Nilius, Wallis and Ho, 2002). Investigations of MAEs of
magnetic clusters including molecule magnets are getting
extensive attention for spintronics applications in the future
(Sessoli, Gatteschi, Caneschi and Novak, 1993; Respaud,
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Figure 2. The experimental and theoretical results of magnetic anisotropy energies for Ni/Cu(001), Cu/Ni/Cu(001), and O/Ni/Cu(001).

1998; Caneschi et al., 1999; Waldmann et al., 2001). The
bottleneck for exploitation of nanomagnets is thermal fluctu-
ation, which produces super paramagnetism at finite temper-
ature. A high MAE barrier is vital to maintain ferromagnetic
ordering or hold up the magnetic relaxation. Experimentally,
Jamet et al. studied magnetic anisotropy in a 3-nm cobalt
cluster embedded in a niobium matrix and found the dom-
inating role of atoms on the cluster surface (Barra, 1999;
Jamet et al., 2001, 2004). Gambardella et al. reported giant
MAEs of Co particles on Pt(111) (Gambardella et al., 2003,
2004). They also found that the easy axis of magnetization,
the MAE, and the coercive field oscillate as a function of
the transverse width of the Co wires on Pt(997). Rusponi
et al. (2003) attempted to separate contributions of differ-
ently coordinated atoms in Co patches deposited on Pt(111)
and concluded that the edge atoms play the dominant role in
the perpendicular uniaxial anisotropy. Pratzer et al. studied
Fe stripes on stepped W(110) and found an extremely narrow
domain wall, as thin as 6 Å, presumably due to large MAE
(Pratzer et al., 2001; Pratzer and Elmers, 2003).

Figure 3 displays magnetic phase diagram for a 10-atom
monatomic chain, obtained through classical Monte Carlo
simulations based on a classical model Hamiltonian. To
have high blocking temperature (e.g., 300 K), below which
the magnetization of each atom aligns along the easy axis
and hence forms a ferromagnetic structure, stringent con-
ditions are required, namely, J = 320–420 meV and K =
30–50 meV/atom. Such a large EMCA cannot be achieved in
nanoentities solely with 3d elements. For the free-standing
or supported Co monatomic chains, for example, the ampli-
tude of EMCA is still a few tenths meV/atom (Hong and Wu,
2003). For Co chains on Pt(111), Lazarovits, Szunyogh, and
Weinberger (2003). found that the easy axis is perpendicular
to the surface, independent of the length of the chains. Fen
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Figure 3. The phase diagram for a free-standing chain of 10 atoms,
generated through classical Monte Carlo simulations.

chains grown on Cu(001), Cu(111) as well as embedded in
the bulk Cu were also studied (Hong and Wu, 2003). Shick
et al. found that a quasi-one-dimensional Co chain at the
Pt(111) step edge has an easy axis at an odd angle of 20◦

toward the Pt step (Shick, Gornostyrev and Freeman, 1999;
Shick, Maca and Oppeneer, 2004). In addition, the spin and
orbital magnetic moments are noncollinear. The proportion-
ality between MAE and the anisotropy of the orbital moment,
a conjecture that is adopted for the measurement of EMCA

through the X-ray magnetic circular dichroism technique,
was also examined for several systems (Ederer, Komelj and
Fahnle, 2003; Hong and Wu, 2004).

Intriguingly, giant K up to 30–50 meV/atom was found
possible through our recent DFT calculations as illustrated
in Table 1. Model calculations for 3d–5d trimers, especially
FeOsFe and FeIrFe, revealed large EMCA up to 108 meV,
due to both the high spin polarization of Fe and the strong
SOC from the 5d atoms. In addition, all 5d atoms possess
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Table 1. The calculated K , spin, and orbital magnetic
moments distributed in different atoms. The easy axis for
positive (negative) EMCA is along (perpendicular to) the
chain.

System and Ms (µB) ML (µB) EMCA

magnetic ordering (meV)
3d 5d 3d 5d

FeTaFe (↑↓↑) 2.99 −1.96 −0.16 0.30 −21
FeWFe (↑↓↑) 2.93 −2.85 0.10 0.13 −31
FeReFe (↑↑↑) 3.22 2.94 −0.03 −0.04 −31
FeOsFe (↑↑↑) 3.32 3.21 0.60 0.57 −75
FeIrFe (↑↑↑) 3.36 1.58 0.00 1.53 +108
FePtFe (↑↑↑) 3.34 0.69 0.20 0.34 −27

extraordinarily large spin and in some cases also orbital
magnetic moments. In all the trimers, the Fe spin moment
is stable and remains 2.99–3.36 µB. The spin moments of
Ta and W align in an antiparallel manner to that of the
adjacent Fe. The maximum induced spin moment occurs for
Os, whereas the maximum induced orbital moment occurs
for Ir. As indicated by the resonant features in their density
of states, strong hybridization is found between Fe and 5d
elements. For the FeIr trimer, analyses suggests that the
contribution from spin-orbit interaction among the majority
spin states, EMCA(↑↑), is negligible compared to EMCA(↓↓).
Giant values of 30–60 meV/atom were also reported for
stretched Ru or Rh wires by Mokrousov, Bihlmayer, Heinze
and Blugel (2006) through FLAPW calculations.

5 MAGNETOSTRICTION OF
TRANSITION-METAL BULKS AND
ALLOYS

Despite the tremendous advances in modern electronic struc-
ture theory for studies in materials science, magnetostriction
has been rarely tackled until very recently, due to its intrinsic
complexity (Wu and Freeman, 1996; Wu, Chen and Free-
man, 1997b, 1998). Benchmark calculations for cubic bulk
Fe, Co, and Ni resulted in a good agreement when com-
pared to experiment for λ001. In contrast, the calculated λ111

(+12 × 10−6) differs in sign from the experimental data
(−23 × 10−6) (Fahnle, Komelj, Wu and Guo, 2002). This
discrepancy was attributed to the incapability of LSDA, but
the reliability of experimental data was also questioned with
possible involvement of Si impurities. Komelj and Fahnle
(2000, 2001, 2002, 2006) investigated the high-order mag-
netoelastic coefficients of bulk Fe, Co, and Ni. Burkert et al.
also found that the MAE of FeCo alloy can be exceedingly
large when the lattice is tetragonally distorted to a cer-
tain c/a ratio (Burkert, Nordstrom, Eriksson and Heinonen,

2004; Burkert et al., 2004; Andersson et al., 2006). One of
the most interesting examples is the determination of λ for
Fe1−xGax alloys. It was recently found by Clark and col-
laborators (Clark et al., 2000; Clark, Wun-Fogle, Restorff
and Lograsso, 2001; Guruswamy et al., 2000; Cullen et al.,
2001; Kellogg et al., 2002) that Ga, when substituted for
Fe in the common bcc Fe structure, increases the tetragonal
magnetostriction, λ001, over 10-fold above the magnetostric-
tion of the pure bcc bulk Fe (λ001 ≈ 20 × 10−6). As shown
in Figure 4, λ001 increases with the Ga concentration mono-
tonically when x < 0.19; decreases thereafter for 0.19 < x <

0.25; and increases again if more Ga is added. This promises
a possibility of achieving strong magnetostriction in ductile
metallic materials, instead of in brittle rare-earth metal com-
pounds (e.g., TERFENOL-D, etc.) (Engdahl, 2002). Strik-
ingly, recent experiments revealed substantial softening in
this alloy (Clark et al., 2003). The value of its tetrago-
nal shear elastic constant, c′ = (c11 − c12)/2, decreases to
6.8 GPa at x = 0.27. Meanwhile, the magnetostrictive coef-
ficients also depend on the quenching history, which indi-
cates that the large magnetostriction is likely to associate
with metastable geometries rather than the ground state one
(Clark, Wun-Fogle, Restorff and Lograsso, 2001). Nonethe-
less, the mechanism of such an extraordinary enhancement
is unclear.

While the structural phase diagram for Fe1–xGax is rather
complex, it is helpful to explore three basic simple structures
for x = 0.25, namely, DO3, B2 like (or L60), and L12. To
determine magnetostrictive coefficients, lattice strain along
the z axis (c/c0) is used as a parameter. Explicitly, the
constant-volume mode was adopted in lattice distortion for
the L12 and DO3 structures, whereas constant-area mode was
adopted for the B2-like structure. The calculated results of
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strain-dependent EMCA are plotted in Figure 5. Interestingly,
the calculated slope of EMCA is positive only for the B2-
like structure. Quantitatively, the calculated values of λ001

are −107 × 10−6, −298 × 10−6, and +380 × 10−6 for the
DO3, L12, and B2-like structures, respectively. Overall, the
magnitude of λ001 for all these three structures is much
larger than that for the pure bcc bulk Fe (20 × 10−6), due to
the stronger magnetoelastic coupling as well as the smaller
Young’s modulus. Experimentally, λ001 for Fe1−xGax is
+150 ∼ +200 × 10−6 when x is 0.25. This indicates that
the local B2-like structure plays a key role in the strong
positive magnetostriction of FeGa alloys (Wu, 2002). The
change in sign of λ001 from the DO3 structure to the B2-
like structure is very fascinating, since only the second-
neighbor arrangement is altered. The calculated magnetic
moments in the B2-like structure (2.48 µB for Fe(1) in
the mixed layer, 2.08 µB for Fe(2) in the pure layer, and
−0.08 µB for Ga) are very close to those in the DO3 structure
(2.41 µB for Fe(1), 1.96 µB for Fe(2), and −0.07 µB for
Ga). The difference originates from very subtle changes in
their band structures. In the DO3 structure, the negative
magnetostriction is associated with strain dependence of the
dz2 and dx2−y2 states in the unoccupied regime. Meanwhile,
some of the Fe(2)-dxz,yz and -dxy states become nonbonding
states and they lie around the Fermi level in the minority
spin channel. This enhances the SOC interaction between
occupied t2g states and the unoccupied eg states and leads
to large negative magnetostriction. For the B2-like structure,
the Fe(2)-dxz,yz states in the minority spin band become
nondegenerate and some of them are unoccupied because of
lower symmetry. Since they have the same magnetic quantum
numbers (m = ±1), the SOC interaction between them leads
to a positive magnetostriction.

Unfortunately, the B2-like structure in the small cell is
unstable under tetragonal distortion and one thus needs
to consider more complex geometries. Our recent calcu-
lations found that the B2-like structure can be stabilized
either by mixing with the DO3 structure or by removing
some Ga atoms from the lattice. For the latter case, large
magnetostrictive coefficient, λ001 = +188 × 10−6, is found
for the Fe0.81 Ga0.19 alloy in the B2-like structure (by sub-
stituting one Ga atom with Fe in a 16-atom unit cell). In
contrast, the DO3-like structure still contributes a negative
λ001 (−70 × 10−6). Calculations using a large unit cell for
Fe0.75Ga0.25 that combines the B2-like and DO3 structure
result in a positive magnetostriction, λ001 = +90 × 10−6.
Obviously, involvement of the B2-like geometry is very
important for attaining large positive magnetostriction. Total
energy calculations also indicate that Ga atoms tend to dis-
tribute away from each other. Furthermore, the random alloy
is less favorable in energy than those that retain pure Fe
layers adjacent to the mixed layers.

6 CONCLUSIONS

As discussed through several examples in the preceding text,
high-quality density-functional calculations can provide reli-
able results for magnetocrystalline anisotropy and magne-
tostriction in transition-metal systems. The insights revealed
through analyses of electronic structures are imperative in
guiding experimental procedures for the design of novel
nanomagnetic materials. To determine EMCA of nanostruc-
tures, a general treatment including noncollinear ordering is
necessary, as was done in several recent studies (Nordstrom
and Singh, 1996; Nakamura et al., 2004). The correlation and
orbital polarization effects on EMCA should also be exam-
ined, especially when the system has only a few atoms
(Yang, Savrasov and Kotliar, 2001; Solovyev, 2005). Fur-
thermore, ab initio treatment for spin relaxation, spin waves,
and spin transport has been developed recently to explain
experimental observations (Vomir et al., 2005; Steiauf and
Fahnle, 2005) but more efforts are needed to enhance the
capability and reliability of theoretical tools. Some of these
topics are discussed more extensively in other chapters in
this handbook.
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1 INTRODUCTION

The differences in the nature of the chemical bonding in
the d, 4f, and 5f series is illustrated by the atomic volumes
shown in Figure 1. The parabolic decrease in volumes across
the transition-metal series is mirrored by the early part of
the 5f series as each added electron changes the bonding.
The lanthanide contraction across the 4f series is relatively
small and monotonic except for the anomalous divalent
elements, Eu and Yb, and the actinide contraction of the
heavy 5f elements is similar to that of the rare-earth series
with a large expansion for the divalent element, Es. The
difference in volume between the divalent and trivalent
metals is approximately due to one extra bonding d electron
and it is evident that the f electrons are not bonding.
Most elements lose their magnetic moments in the metallic
state. The exceptions are a few transition metals, some
actinides, and most rare earths. The 3d transition metals

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

Fe, Co, Ni, and Mn order magnetically. Otherwise transition
metals are paramagnets with enhanced susceptibilities, the
enhancement being mostly due to exchange interactions
between the d electrons that are also involved in cohesion
and the determination of structure (Friedel, 1969; Pettifor,
1970; Skriver, 1985). Nearly all of the rare-earth metals
are magnetically ordered at low temperatures. The 4f shell
is chemically inert, the bonding and structure being due to
the conduction electrons (Duthie and Pettifor, 1977; Skriver,
1983). The rare-earth metals are therefore 5d transition
metals with about two 5d electrons. The origin of the
magnetism is the localized 4f shell (Jensen and Mackintosh,
1991). However, there is little in the way of direct magnetic
interaction between the 4f shells on different atoms, and
if the 4f electrons on their own were responsible for the
magnetism, the rare earths would be paramagnets down to
the lowest temperatures. Exchange interactions between 4f
and conduction electrons provide the mechanism for indirect
interaction between 4f shells that is finally responsible for
magnetic order. The actinide metals are more complex. The
light actinides are 5f transition metals, whereas the heavy
actinides are 6d transition metals since their 5f shell is
chemically inert (Skriver, 1985). The light actinide metals
are Pauli paramagnets but magnetic order is to be found in
many of their compounds, as is the case for transition metals.

The absence of magnetic order in light actinide elemental
metals has changed the way magnetism has been studied in
light actinides. Studies of magnetism in transition metals and
rare earths began with the elemental metals, and models for
their compounds were built on that basis. Fundamental studies
of magnetism in light actinides begin with their compounds.
Perhaps the most basic empirical result is that there are critical
An–An interatomic distances in actinide compounds above
which magnetic order occurs. The systematic absence of
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Figure 1. Atomic volumes of the 3d, 4d, 5d, 4f, and 5f elemental metals in the solid state.

magnetism in compounds with small An–An separation (Hill,
1970) suggests that magnetic ordering is due to the competition
between kinetic and magnetic energies as in transition metals.
However magnetic actinide compounds have, in contrast to
transition metals, large orbital magnetic moments – a property
that is normally associated with rare earths.

1.1 Free lanthanide and actinide atoms

The single electron wave functions, ψnlm, are products,
Rnl(r)Ylm, and 4f and 5f atoms have the same angular prop-
erties. The radial part of the wave functions differs, Figure 2,
because not only are the actinides larger atoms but also the
radial 5f wave functions have an extra node and are more
extended. The more extended 5f radial densities are respon-
sible for major differences in the magnetic properties of
4f and 5f metals. The densities in Figure 2 are the result
of self-consistent field atomic calculations. Exact solutions
to the Schrödinger or Dirac equations for large atoms are
not achievable but the effect of the Coulomb interactions
between electrons can be approximated by a self-consistent
field (See also Density-functional Theory of Magnetism,
Volume 1). The single electron wave equation is solved at
a given potential for each of the occupied states and the
resulting wave functions used to calculate the electron den-
sity. The density is then used to recalculate the potential
and the process repeated until the calculated electron density

differs from the electron density in the previous iteration by
less than a specified amount. The iterative procedure in self-
consistent field calculations allows the effect of screening
of the Coulomb interactions to be approximated reasonably
accurately. For example, the contraction of the f shell across
the 4f and 5f series is reproduced, due to incomplete screen-
ing of nuclear potential as each f electron is added. For free
atoms, the number of electrons is fixed and an issue occurs
for 4f and 5f atoms since the f shells are not full. In self-
consistent field calculations, the energy is minimized when
the energies of the outermost occupied orbitals are equal, and
this rarely leads to integral occupation numbers for the dif-
ferent orbitals. In practice, the occupation number of the 4f
and 5f states is fixed to its known integer value and the cal-
culation made subject to this constraint. When the f states are
truly localized, as in most of the rare earths, the constraint
may also be used in the solid state although there are other
ways to ensure that the number of f states remains approx-
imately integral (Svane and Gunnarsson, 1990; Anisimov,
Aryasetiawan and Lichtenstein, 1997) (See also Dynamical
Mean-field Theory of Itinerant Electron Magnetism, Vol-
ume 1).

The angular properties of the ground state of f shells
are obtained from the Russell–Saunders coupling scheme
in which direct Coulomb and exchange interactions are the
largest parts of the electron Hamiltonian. Since electron–
electron interactions are unchanged by simultaneous rota-
tions of all the electrons, the total spin, S, and orbital angular
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Figure 2. Calculated radial densities ( = 4πr2R2
n(r)) of the valence electrons in Gd and U.

momentum, L, are conserved. The smaller spin-orbit interac-
tion is a perturbation that couples L and S to a total angular
momentum J . It is a consequence of the strong coupling of
the electrons to first S and L, and then J , involving a high
degree of electron correlation that the matrix elements of all
operators in the ground state are proportional to those of J

O = 〈J ||O||J 〉
〈J ||J |J |〉 J (1)

where 〈|| · · · ||〉 denotes a reduced matrix element. For
example, the saturated ground state f moment, µ = L + 2S,
is a product of J with the Landé factor, gJ , that is just
the ratio of the reduced matrix elements of µ and J .
Equation (1), a consequence of the Wigner–Eckart theorem,
becomes particularly useful when the crystal field is added
to the electron Hamiltonian.

1.2 Electronic structure of 4f and 5f metals

The standard model for the rare-earth metals (Jensen and
Mackintosh, 1991) approximates the rare-earth atoms in the
solid by retaining the free atom properties of the open 4f
shell and allowing either two or three electrons to enter the
conduction (or valence) bands resulting in a solid of divalent
or trivalent ions immersed in a sea of conduction electrons.

In practice, the orbital degeneracy of the 4f ground state
is partially or fully removed in the solid by the crystalline
electric field (CEF), which has crystal point group rather
than full rotational symmetry. The CEF is therefore an origin
of magnetocrystalline anisotropy energy (MAE) for the 4f
magnetism. Anisotropic interion interactions (AII) may also
play a role. The volume and strain dependence of the CEF
and AII produce magnetoelastic effects special to the 4f
electrons. Both the CEF and conduction electron–mediated
AII depend on the electronic structure of the conduction
electrons, primarily 5d electrons. The magnetic properties
of 4f metals therefore depend on the electronic structure of
both localized and itinerant electrons and the interactions
between them.

At temperatures high enough that all crystal-field levels are
populated, the Curie–Weiss law for the paramagnetic suscep-
tibility is obeyed with an effective moment of gJ

√
J (J + 1).

The Russell–Saunders coupling scheme provides a direct
relationship between the number of 4f electrons, the mag-
nitude of the total angular momentum, J , and the para-
magnetic moment. These relationships are less reliable in
actinide compounds where, due to the more extended 5f wave
functions, the effects of the CEF are far larger or the 5f elec-
trons are even involved in chemical bonding. A thorough
knowledge of the conduction electron wave functions, usu-
ally including the 5f wave functions, is required to describe 5f
magnetism.
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While localized electrons in their ground state always have
a maximum spin moment, this is not the case for itinerant
electrons. When the energy bands spin polarize, the kinetic
energy of the occupied majority spin states increases more
rapidly than the kinetic energy of the minority spin states
decreases. As a consequence, the total kinetic energy is
increased and must be compensated by a gain in exchange
energy. The increase in kinetic energy, �Ts , is smaller for
narrow bands and vanishes in the atomic limit. The balance
is quantified by the Stoner criterion, ID(EF)/2 > 1, for
the appearance of magnetism, where I is the exchange
integral and D(EF) is the density of states at the Fermi
energy. Typically the exchange integral is about 1 and 0.5 eV
in 3d transition metals and actinide metals, respectively.
The lighter actinide metals and some actinide compounds,
for example, UC, with small lattice constants are Pauli
paramagnets, and have been found not to satisfy the Stoner
criterion (Brooks, 1984; Trygg et al., 1995).

The 4f bandwidths in the actinides (typically 3 eV) are less
than the 3d bandwidths in transition metals (typically 6 eV),
whereas the spin-orbit splitting of 0.7 eV in U is an order
of magnitude larger than in Fe where it is about 0.05 eV.
The spin-orbit interaction mixes an orbital moment into the
ground state. The mixing is from states across the energy
bands, and when the bandwidth is large compared to the
spin-orbit splitting, the mixing is small; hence the orbital
moment is almost entirely quenched in 3d transition metals.
The large spin-orbit interaction in light actinide compounds
is responsible for large orbital moments in itinerant actinide
magnets and concomitantly large MAE (Brooks and Kelly,
1983).

Hohenberg and Kohn (1964) proved that the ground state
energy of a system of interacting electrons is a functional
of the single electron density and derived a variational
principle for the ground state energy. The general theory
is known as density-functional theory (DFT ) (See also
Density-functional Theory of Magnetism, Volume 1). The
variational principle was converted to a computationally
viable form for self-consistent electron density calculations
for atoms and solids by Kohn and Sham (1965). The essence
of the Kohn and Sham (1965) procedure is to subdivide
the total energy into large contributions that are either
well-known functionals, such as the Hartree and kinetic
energies and a much smaller remainder, Exc, the exchange
and correlation energy. Approximations to Exc hopefully
produce reasonably small errors. Calculations may then be
made without adjustable parameters. A numerically tractable
formulation is provided by the Kohn and Sham (1965)
equations (

−1

2
∇2 + Veff

)
φi = εiφi (2)

with the effective potential

Veff = V (r) +
∫

dr
n(r ′)

|r − r ′| + µxc (3)

consisting of external, Hartree, and exchange-correlation
potentials. The latter is given by µxc = δExc/δn. The density
is reconstructed from solutions to these equations forming
a nonlinear system of integrodifferential equations that are
solved by iteration. Due to the complexity of the Kohn–Sham
equations, more than one stationary solution may exist, for
example, metastable magnetic states such as low and high-
spin states. The simplest approximation for Exc is the local
spin density approximation (LSDA),

ELSDA
xc [n↑, n↓] =

∫
dr n(r)εxc

(
n↑(r), n↓(r)

)
(4)

where εxc is the exchange-correlation energy per electron of
the homogeneous electron gas, and n↑(r) and n↓(r) are the
spin-up and spin-down electron densities.

2 MAGNETIC INTERACTIONS AND
MAGNETOCRYSTALLINE
ANISOTROPY ENERGY

2.1 Exchange interactions

The simplest possible exchange interaction between the
localized 4f shell and the conduction electrons at rare-earth
sites is isotropic

H4f−c = − 1

gjµ
2
B

j̃µs
4f·µc = −2j̃S4f·Sc (5)

where Sc, S4f, µc, and µs
4f are the conduction electron and

4f spin and spin moments, respectively, and gj is the 4f
g-factor. The local exchange interaction, j̃ , depends on the
local electron density in LSDA (See also Density-functional
Theory of Magnetism, Volume 1). More generally, direct
and exchange interactions between 4f shell and conduction
electrons leads to scattering of conduction electrons accom-
panied by transitions within the lowest J manifold of the
localized 4f electrons. The annihilation and creation opera-
tors for the latter transitions may be reexpressed in terms of
irreducible tensor operators, Õ

Q
K , so that the Hamiltonian is

expanded in multipoles (Teitelbaum and Levy, 1976)

H4f−c = −
∑

knLk′n′L′KQ

j̃
Q

knLk′n′L′KÕ
Q
K (Jj )c

†
k′n′L′cknL (6)
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where the c’s are conduction band creation and annihilation
operators, n labels the band, and the elements of j̃ are
constructed to make H4f−c symmetry invariant (Hirst, 1978).
Another way to view equation (5) is that the conduction
electrons interact with an effective inhomogeneous magnetic
field H i = j̃iSi/µB provided by the spin of the 4f shell. The
conduction electron moment induced by the field at a site Rj

in the crystal is given by

µj = χ ji(R)·H i (7)

where χ is the conduction electron susceptibility tensor and
R = Rj − Ri . The interaction between the induced moment
and the 4f spin at site Rj produces an effective interaction
between the f shells at the two sites

Hij = − j̃2

µ2
B

Si ·χ ij (R)·Sj (8)

If the conduction electrons were free electrons,

χ(R) = χ(R) = −4π3 kF

R2
j1(2kFR) (9)

where j is a spherical Bessel function. The Fourier transform
of χ(R) is the Lindhard function

χ(q) =
∑
k

fk − fk − q

Ek − q − Ek
(10)

where f is the Fermi–Dirac distribution function. The
wave-vector-dependent susceptibility may be calculated if
the energy band structure is known (Lindgård, Harmon and
Freeman, 1975). However it is already clear from the free
electron approximation to χ(q) that the main contributions
come from pairs of states, one filled and one empty, close
to the Fermi energy and separated by wave vector q. The
peaks in χ(q), or Kohn anomalies, correspond to Friedel
oscillations in the real space χ(R). For a real band structure
the susceptibility tensor is anisotropic.

More generally, the coupling between the 4f shells on
different sites may be expanded in multipole–multipole
interactions (Elliott and Thorpe, 1968)

Hij = −
∑
KLL′

J K
LL′(R)〈ÕK〉ÕL(J j )ÕL′(J i ) (11)

where L = (lm) and K = (kn). The ÕL are Racah operator
equivalents and the effect of the environment has been
approximated by a mean field (Jensen, Houmann and Møller,
1975). If all of the JLL′ were zero except for l = 1 then
Jmm′ = J1,0 = −J1,1 = −J1,−1 = J ,

Hij = −J
∑
m

(−)mÕ1,m(J j )Õ1,−m(J i ) = −J J j ·J j

(12)

and isotropic exchange is recovered. The origins of the
anisotropic direct and exchange interactions have been stud-
ied in detail by Kaplan and Lyons (1963), Specht (1967),
Elliott and Thorpe (1968), and Levy (1969). The conduc-
tion electron wave functions may be expanded in multi-
poles about any given site. The monopole is responsible for
the sc·S4f interaction but higher multipoles are responsible
for anisotropic exchange (Kaplan and Lyons, 1963; Specht,
1967). Kaplan and Lyons (1963) estimated a pseudodipolar
interaction of about 10% of isotropic exchange. An effective
spin Hamiltonian such as equation (11) contains the effects
of the conduction band MAE and spin-orbit interaction but it
appears as a part of the anisotropic 4f–4f interaction. Direct
electric multipole–multipole interactions between the ions
are also present, although probably small in metals due to
screening of the Coulomb interactions by conduction elec-
trons. More important are probably the multipole–multipole
interactions propagated by lattice strain.

The predominant approximation now used to compute the
electronic charge and spin densities in solids from first prin-
ciples is LSDA (See also Density-functional Theory of
Magnetism, Volume 1). Gunnarsson (1976) showed how to
extract local exchange integrals from LSDA, and the varia-
tional principle of DFT was used by Brooks and Johansson
(1983) to extract local exchange integrals for transition met-
als, rare earths, and actinide atoms. The 4f–5d and 5d–5d
exchange integrals are 94 meV and 0.5 eV, respectively, in
gadolinium. The 5f–5f, 5f–4d, and 5d–5d exchange inte-
grals are 0.44, 0.15, and 0.35 eV, respectively, for ura-
nium. Since the ions and ionic magnetic moments in a
metal move far more slowly than the conduction elec-
trons, it is a good approximation to assume that the con-
duction electrons adjust instantaneously to any given ionic
moment configuration. The spin-wave dispersion relations
in Gd metal, calculated by Lindgård, Harmon and Free-
man (1975), were in good agreement with measurements
as regards the dispersion, suggesting that the results for the
wave-vector-dependent susceptibility were good. However,
the exchange interactions were calculated using unscreened
Coulomb integrals – a method that predated LSDA – and
were too large. The exchange integrals obtained from LSDA,
if used in the analysis, would have yielded good agreement
with measurements. Indirect exchange interactions may also
be extracted from self-consistent energy band calculations
where the total energy is calculated for different spiral con-
figurations (Sandratskii, 1998; Kurz et al., 2004). It is also
possible to extract interionic exchange interactions by using
the magnetic force theorem (Liechtenstein, Katsnelson and
Gubanov, 1984; Liechtenstein, Katsnelson, Antropov and
Gubanov, 1987; Bruno, 2003).

It is evident from the foregoing that if the local exchange
interactions between the 4f shell and the conduction electrons
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can be obtained reasonably accurately from LSDA, the
remaining task is to calculate the conduction band inter-
atomic susceptibility, and various methods for doing this
have been devised (Cooke, Lynn and Davis, 1980; Call-
away, Chatterjee, Singhal and Ziegler, 1983; Savrasov, 1998;
Antropov, Katsnelson, van Schilfgaarde and Harmon, 1995).
Application has been to magnetic 3d transition metals, but
since the rare earths are 5d transition metals, the same tech-
niques should be even more effective as the 5d bands are very
broad and their magnetism is induced, reducing the problems
of electron correlation. How this may be done has been illus-
trated by Perlov, Havilov and Eschrig (2000) who have cal-
culated magnon spectra for the heavy rare-earth metals from
a Hamiltonian that contained, apart from the crystal fields,
parameters evaluated ab initio from LSDA. They also found
that the conduction electron spin density is not always nec-
essarily collinear with the 4f spin density at a rare-earth site.

Indirect exchange interactions between the rare and
transition-metal sublattices in rare-earth intermetallics were
calculated from the difference in total energy between fer-
romagnetic and ferrimagnetic alignment of the sublattices
by Liebs, Hummler and Fähnle (1992). Examples of how
the local exchange integrals may be used to determine the
indirect exchange coupling between rare earth and transition-
metal ions in rare earth–transition metal intermetallics have
been given by Brooks, Nordström and Johansson (1991).

2.2 The crystalline electric field

Although known as the crystalline electric field, or CEF, it
is the potential and the potential energy that are the subject
of calculations. The potential due to a charge distribution,
ρ(r ′), is

Vcef(r) =
∫

ρ(r ′)
|r − r ′| dr ′ =

∑
nm

Bnm(r)Cnm(r̂) (13)

where

Bnm(r) =
(

2n + 1

4π

)1/2 [
rnanm + r−n−1a′

nm

]
(14)

with

anm = 4π

2n + 1

∫ ∞

r

dr ′ρ(r ′)
(

1

r ′

)n+1

Ynm(r̂
′
)

a′
nm = 4π

2n + 1

∫ r

0
dr ′ρ(r ′)(r ′)nYnm(r̂

′
) (15)

and

Cnm(r) = Ỹnm(r) =
(

4π

2n + 1

)1/2

Ynm(r) (16)

is a tensor operator.

If the charge distribution in the solid is known, the
integrals in equation (15) may be calculated. Then the
potential is a linear combination of products of spherical
harmonics and CEF parameters. The ground state electron
density is therefore used to calculate the parameters, anm,
and the radial integrals 〈rn〉 and 〈(1/r)n+1〉.

The matrix elements of the potential for a localized
state characterized by L, S, J may be reduced by the
Wigner–Eckart theorem and evaluated. Alternatively, since
the matrix elements of the CEF are proportional to those of
operator equivalents (Stevens, 1952) written in terms of the
total angular momentum, J , the CEF Hamiltonian may be
replaced by a Hamiltonian expressed in terms of the operator
equivalents, Õnm(J ).

In the single electron basis, ilRlYlmχ = |mσ 〉 and the
N -electron state |LSJM〉 is (Judd, 1967)

|LSJM〉 = a
†
N . . . a

†
1 |0〉 (17)

where the a
†
i are electron creation operators and i =

(nlmlms). A spin-independent single electron operator, F =∑
i fi , in this basis is

F =
∑

i

fi =
∑
mm′σ

a
†
m′σ 〈m′σ |f |mσ 〉amσ (18)

where, for f (r) = Bnm(r)Cnm(r̂)

〈m′σ |f |mσ 〉 =
∫

Y ∗
lm′(r̂)Cnm(r̂)Ylm(r̂) dr̂

×
∫

r2R2
l (r)Bnm(r) dr = 〈Bnm〉〈m′|Cnm|m〉

(19)
Since the radial wave function, Rl , is the same for all

localized electrons of a given l, the 〈Bnm〉 are factorized out
and only the matrix elements of the tensor operator

Anm =
∑
mm′σ

a
†
m′σ 〈m′σ |Cnm|mσ 〉amσ (20)

in the basis |LSJM〉 are required. Then the CEF contribution
to the Hamiltonian is

Vcef =
∑
nm

〈Bnm〉Anm (21)

If the Wigner–Eckart theorem is applied to Anm

〈LSJM ′|Anm|LSJM〉 = (−1)J−M ′
(

J n J

−M ′ m M

)

× 〈LSJ ||A(n)||LSJ 〉 (22)
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where A(n) is a reduced operator. Since A(n) operates only
on the spatial variables, the reduced matrix element may be
further factored

〈LSJ ||A(k)||LSJ 〉 = (−1)L+S+J+n(2J + 1)

× 〈L||A(n)||L〉
{
J J n

L L S

}
(23)

The remaining reduced matrix element may be evaluated
by observing that in the basis |LMLSMS〉, the state |LLSS〉
is a single Slater determinant for which the matrix elements
of Amn are easy to evaluate. Then

〈L||A(n)||L〉 = (2l + 1)

(
l n l

0 0 0

)
(

L n L

−L 0 L

)

×
l∑

m=l+1−N

(−1)m
(

l n l

−m 0 m

)
(24)

The matrix elements of the crystal field are then evaluated
from equation (22) by substituting from equations (23) and
(24) for the reduced matrix elements (Colarieti-Tosti, 2004).

The matrix elements of the tensor operator equivalent,
Õnm(J ), for the manifold |JM〉 are, from the Wigner–Eckart
theorem,

〈JM ′|Õnm(J )|JM〉 = (−1)J−M ′
(

J n J

−M ′ m M

)

× 〈J ||Õ(n)||J 〉 (25)

The operator equivalents are functions purely of the oper-
ators Jz and J±, and may be obtained from the generating
function

∑
m

Õnm(J )
2nn!tm

[(n + m)!(n − m)!]1/2

= [−J+t + 2Jz + J−/t
]n

(26)

Consequently, it may be shown that the reduced matrix
element of Õnm(J ) is given by (Egami and Brooks, 1975)

〈J ||Õ(n)||J 〉 = 1

2k

[
(2J + n + 1)!

(2J − n)!

]1/2

(27)

The ratios

f n
N = 〈LSJM ′|Anm|LSJM〉

〈JM ′|Õnm(J)|JM〉

= (−1)L+S+J+n(2J + 1)

{
J J n

L L S

} 〈L||A(n)||L〉
〈J ||Õ(n)||J 〉

(28)

are the Stevens factors used to replace the crystal-field matrix
elements by operator equivalents. The matrix elements of the
crystal field may be written in terms of either set of tensor
operators

〈LSJM ′|Vcef|LSJM〉 =
∑
nm

〈Bnm〉〈LSJM ′|Cnm|LSJM〉

=
∑
nm

f n
N 〈Bnm〉〈LSJM ′|Õnm|LSJM〉

(29)
CEF excitations may be observed directly by inelastic
scattering of neutrons, and their single-ion nature is evident
from their lack of energy dispersion (See also X-ray and
Neutron Scattering by Magnetic Materials, Volume 1).

Since the self-consistent electron density used to evaluate
the CEF is obtained from energy band calculations, it is
useful to set this treatment in the context of DFT. An
expression similar to equation (13) has been derived from
LSDA by Fähnle (1995) who considered the change of
energy due to rotations of the 4f shell. The aspherical electron
density of a 4f crystal-field state may be thought of as a small
impurity charge, t (r) (which integrates to zero), added to the
electron density obtained from a self-consistent calculation.
The conduction electron density in the crystal will relax to
screen the impurity. The energy functional may be partitioned
into a part depending on the original density and a part
depending on both the original density and the test charge.
Since the original density, n, was at a variational minimum
with respect to variations in the density due to the self-
consistent nature of the original energy band calculation, the
changes in energy due to the screening density cancel to
O(δn). In addition, the change in kinetic energy of the 4f
shell is zero due to Russell–Saunders coupling, leaving a
residual energy change of

δE = E[n, t] =
∫

V (r)t (r) dr (30)

where
V (r) = VN(n) + VH (n) + µxc(n) (31)

is the total potential due to all of the charge except for the
nonspherical 4f density (Fähnle, 1995), and it includes an
exchange contribution.

2.3 Magnetocrystalline anisotropy energy

The free energy of a magnetic crystal depends on the
direction of the magnetic moment but must be invariant
under the symmetry operations of the lattice which imposes
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conditions on the MAE coefficients, κnm, in the expansion

F(θ, φ) =
∑
n,m

κnmYnm(θ, φ) =
∑
n,m

Km
n sinn θ cos mφ (32)

where θ and φ are the angles that magnetization makes with
a crystal axis and Ynm are the spherical harmonics. The set of
Km

n are MAE constants and it is straightforward to evaluate
κnm in terms of Km

n . In a general sense, the origin of MAE
is the spin-orbit interaction since there is no other interac-
tion in the electron Hamiltonian coupling the spin direction
to the crystal lattice. In 4f metals the spin-orbit interaction is
responsible for coupling L and S in the 4f shells. The orien-
tation of an aspherical 4f shell is then related to the direction
of the total magnetic moment. One source of MAE is the
interaction between the CEF and the multipole moments of
the 4f shell. Another is the classical dipole–dipole inter-
action between the magnetic moments that is particularly
important in Gd where the 4f shell is half filled. Although
the dipole–dipole interaction energy is usually far smaller
than the CEF energy it has a very long range and is respon-
sible for the demagnetization field. Indirect exchange inter-
actions – mediated by conduction electrons – between the 4f
ions are also anisotropic, due to both multipolar interaction
with the conduction bands and spin-orbit coupling in the con-
duction electron bands, and may be expanded in two-ion mul-
tipole–multipole interactions, equation (11). The Coulomb
interactions between the 4f aspherical charge clouds may
also be expanded in multipole–multipole interactions, again
leading to MAE. In addition, multipole–multipole interac-
tions between the 4f shells may be mediated by lattice strain.
Despite the multiplicity of ways that MAE can be produced,
it is believed that the CEF is the largest source in rare-earth
metals.

Similar considerations should apply to the heavy actinides
although there are no measurements available. The origin
of MAE in compounds of light actinides is more complex
and depends on whether the 5f electrons are itinerant or
localized. There is strong evidence that the light actinide
dioxides, which are semiconductors, have a localized 5f shell
and crystal-field excitations have been observed (Amoretti
et al., 1989; Fournier et al., 1991a; Kern et al., 1990). Sharp
crystal-field excitations have been observed in one metallic
compound, UPd3. In these cases multipolar interactions are
also important. In many compounds, such as the NaCl
compounds US and UN, evidence is that the 4f electrons
are itinerant, and in these cases the spin-orbit interaction
enters at the single electron level, coupling spin and orbit
in the conduction bands (Brooks and Kelly, 1983). The spin-
orbit splitting between j = l ± 1/2 states ranges from 0.7 to
0.9 eV from U to Pu compared with 0.4 eV in Ce. The MAE
is an order of magnitude larger than in 4f metals and 4 orders

of magnitude larger than in 3d transition metals (Lander
et al., 1990).

2.4 Magnetoelastic interactions

All magnetic crystals have some type of MAE and magne-
toelastic interactions. By the latter, we mean that a magnetic
field affects the elastic properties and that stress affects the
magnetic properties. In particular, anomalies in magnetic and
elastic properties are produced by structural and magnetic
phase transitions, respectively. The MAE originates in the
coupling of magnetic moments to the directional proper-
ties of the crystal lattice, and the magnetoelastic interactions
arise because the MAE always changes with changes in
the lattice. A change in magnetic state produces a change
in the (static) homogeneous strain known as magnetostric-
tion. If the MAE is expanded for small strains, the leading
term – linear in strain and magnetic variables – is respon-
sible for magnetostriction. The term quadratic in strain is
responsible for a magnetic contribution to the elastic con-
stants and thus the sound velocity. The dynamic effects of
the interaction between inhomogeneous strain and magnetic
variables include magnetoelastic waves and magnon–phonon
scattering.

When the magnetic interion interactions are large com-
pared to the ion–lattice interactions, phase transitions are
driven by the magnetic interactions and the accompanying
lattice distortion is magnetostriction. When the ionic ground
state has an unquenched orbital moment and ion–lattice
interactions are larger than the magnetic interion interac-
tions, local Jahn–Teller (JT) distortions can interact to drive
a cooperative structural phase transition known as the coop-
erative Jahn–Teller (CJT ) effect. The magnetic transition
then often occurs at a lower temperature to a phase of
lower symmetry. A CJT transition is characterized by the
softening of one or more elastic constants, whereas in a mag-
netic transition the effect of magnetostriction on the elastic
properties is relatively small (Lines, 1979). The interaction
between JT ions, T, is usually quadrupolar (Sivardière and
Blume, 1972). Large magnetic interion interactions, M, lead
to a second-order magnetic dipole transition (M 
 T) where
the quadrupolar interactions produce magnetostriction in the
ordered phase. The sound velocity remains finite. As M/T
decreases, the still magnetic transition changes to first order
with both dipolar and quadrupolar order parameters discon-
tinuous at the transition. For T 
 M, there are two transitions
with decreasing temperature, the first being either a first- or
second-order CJT transition for the latter of which an elas-
tic constant softens; the second being the magnetic transition
which occurs at a lower temperature and is first or second
order depending on its closeness to the CJT transition.
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Magnetoelastic coupling manifests itself in quite different
ways in 4f and 5f metals and compounds. In the heavy rare
earths, the large molecular fields due to the large 4f spin
moments mean that magnetic effects dominate, but MAE
and magnetostriction are very important, influencing the spin-
wave energies and producing magnon–phonon interactions.
In some compounds of light actinides, particularly small
moment antiferromagnets, JT-induced quadrupolar coupling
is large.

2.5 Anisotropy and magnetic structure

In the absence of MAE, the magnetic structure is determined
by the isotropic exchange interaction, since in the param-
agnetic phase, 1/χ(q) = 1/χ0(q) − J (q), and the magnet
will order with a Q vector corresponding to a maximum in
J (q) that will not necessarily be commensurable with the
crystal lattice. In the heavy rare earths, Q = Q‖ is parallel
to the c axis of the hcp structure. The MAE determines the
direction of the magnetic moment and also favors commen-
surable magnetic structures since the MAE is lower when
the magnetic moments lie along easy directions. The sign
of the dominant axial CEF parameter, 〈B20〉 (equation (14)),
produces an MAE that confines the magnetic moments of
Tb and Dy to the hexagonal plane of the hcp structure. This
leads to incommensurable helical magnetic structures with
the magnetic moments parallel within the hexagonal planes
but changing in direction along the c axis with wave vector
Q. The Stevens factor (equation (28)), is of opposite sign for
Tm – reversing the sign of the MAE and confining the mag-
netic moments to the c axis. The resulting incommensurable
c-axis modulated structure is described by

J‖(Ri ) = J cos(Q·Ri + φ) (33)

with the wave vector Q parallel to the c axis, whereas
the helical structure has two oscillating components in
the hexagonal plane. For larger MAE, as in Ho at low
temperature, the hexagonal plane MAE is large enough to
force the helical magnetic order to become commensurable.
Apart from these simple examples, the rich variety of
magnetic structures observed for the rare-earth metals is due
to this competition between isotropic exchange and single-
and two-ion anisotropic interactions as explained in detail by
Jensen and Mackintosh (1991).

The magnetic structure described by equation (33) is
known as a single-q structure since only a single Q vector
is involved. If, however, Q = Q⊥ is in the hexagonal plane
there are three distinct values of Q that are equivalent by
symmetry, therefore a possible multiple-Q (m > 1) magnetic

structure is

J (Ri ) =
∑
m

J mei(Qm·Ri+φm) (34)

where the set of vectors {Q} lie in the star of Q1. In Nd,
where the MAE (as a result of both CEF and anisotropic
two-ion interactions) is relatively larger than in the heavy
rare earths, the magnetic order is multi-Q (Bak and Lebech,
1978; Forgan, 1982; Walker and McEwen, 1983; McEwen
and Walker, 1986).

The Landau expansion of free energy for the set {Q} in
powers of the magnetic moment is (Jensen and Mackintosh,
1991; Rossat-Mignod, 1987)

F{
Q

} = F0 + aQ

∑
m

JQm
J−Qm

+ bQ

∑
m

J 4
Qm

+ b′
Q

∑
m=m′

J 2
Qm

J 2
Qm′ + · · · (35)

and at least fourth order terms are required to remove the
degeneracy between multiple-Q structures. Consequently,
higher order crystal-field terms or quadrupolar coupling are
important in the stabilization of multiple-Q structures.

3 RARE EARTHS

3.1 Crystalline-electric-field anisotropy

Since the CEF is the simplest and usually the principal
origin of MAE in 4f metals, we establish the relationship
between the CEF parameters (equations (13) and (29)), and
the MAE coefficients (equation (32)), in the expansion of the
free energy (Callen and Callen, 1965; Brooks and Egami,
1973; Jensen and Mackintosh, 1991). Some care should be
taken with regard to the balance between the torque from
the applied field and the torque from the MAE (Kanamori
and Minatono, 1962; Brooks and Egami, 1973), especially
when the MAE is large, but the argument is briefly as
follows. Since F = −lnZ/β where Z = T re−βH, the change
of free energy on rotation of the moments is δF = 〈δH〉. The
CEF Hamiltonian has been expressed in terms of operator
equivalents with the direction of magnetic moment (and
therefore J ) along the c axis. Each operator equivalent
becomes a linear combination of operator equivalents with
the direction of the angular momentum specified by polar
angles (θ, φ). When the CEF is small enough, the system
has cylindrical symmetry about the magnetic moment axis
and the only surviving thermal averages of Õlm(J ) are for
m = 0. Hence

〈Õlm(J ′)〉 = Ỹlm(θ, φ)〈Õl0(J )〉 (36)
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The thermal average of the crystal field, (equations (13)
and (29)) becomes

〈Vcef〉 =
∑
nm

f n
N 〈Bnm〉〈Õn0(J )〉Ỹlm(θ, φ) (37)

and comparison with equation (32) yields

κnm = f n
N 〈Bnm〉

(
4π

2n + 1

)1/2

〈Õn0〉 (38)

There have been a number of attempts to calculate CEF
parameters from first principles. Schmitt (1979a,b) calcu-
lated the crystal-field parameters from the aspherical charge
density at a rare-earth site although this work predated self-
consistent calculations of the charge density. Subsequently
LSDA was used to calculate the crystal-field parameters
from the self-consistent aspherical charge density (Steinbeck,
Richter, Nitzsche and Eschrig, 1996; Richter, Oppeneer,
Eschrig and Johansson, 1996; Hummler and Fähnle, 1996a,b;
Uebele, Hummler and Fähnle, 1996; Divis and Kuriplach,
1995). The consistency of the application of equation (30)
when a nonspherical 4f density is added to the aspherical
density of the valence electrons has been investigated by
Hummler and Fähnle (1996b) and Fähnle and Buck (1997).

The effects of valence electron screening were included
by Brooks, Eriksson, Wills and Johansson (1997) by total
energy calculations of the different crystal-field states in
PrSb and TmSb. A constrained 4f density corresponding to
a particular CEF state was added to the valence electron
density and the valence electron density calculated self-
consistently, thus allowing it to screen the 4f density. The
energies of the crystal field excitations were then obtained as
energy differences, as observed in experiments, without the
necessity to evaluate CEF parameters. The conditions under
which it is necessary to include screening in a total energy
calculation have been discussed by Fähnle and Buck (1993)
and Brooks, Eriksson, Wills and Johansson (1993).

3.2 Magnetostriction

When the lattice is strained, the magnetic interactions are
modified leading to a magnetoelastic coupling between the
strain and magnetic moments that is linear in the strain (See
also Magnetostriction and Magnetoelasticity Theory: A
Modern View, Volume 1). The elastic energy, quadratic in
the strain, is most conveniently formed from the strains that
transform according to the irreducible representations, �n

of the chemical point group of the lattice. The hcp lattice
occurs frequently for rare earths, in which case the irreducible
representations are �α(2), �γ (2), and �ε(2) in the notation

of Callen and Callen (1965). The elastic energy, invariant
under symmetry operations of the crystal, is then

He = 1

2

∑
n,m

cn
m(εn

m)2 (39)

where the cn
m are elastic constants and the εn

m are the irre-
ducible homogeneous strains and m runs over the compo-
nents of the irreducible representation n. The single-ion mag-
netoelastic contributions to the Hamiltonian are obtained by
forming invariant products of the irreducible strains with lin-
ear combinations of tensor operator equivalents transforming
according to the irreducible representation �n for the site i

Hme
i = −

∑
n,m

Mn
mεn

mOnm (40)

where the bar over O denotes the appropriate linear com-
bination. When the magnetoelastic coupling is due to the
strain dependence of the CEF it is a single site coupling.
There is a similar strain dependence of the interionic inter-
actions leading to two-ion magnetoelastic coupling. Since
Hme

i is linear in the strain, the equilibrium strains are never
zero when there is magnetic order. The equilibrium strains
are obtained by minimizing the free energy with respect to
strain. To first order one may use ∂F/∂ε = 〈∂H/∂ε〉 = 0 and
the spin Hamiltonian will therefore contain, in addition to the
contribution from the unstrained MAE, additional terms aris-
ing from equilibrium strains proportional to Mn

m〈Onm〉/cn
m.

The magnetoelastic contribution to the spin Hamiltonian can
be quite large in 4f metals. In the heavy rare-earth metals,
where the molecular field is far larger than the crystal field,
magnetic dipole order dominates. The magnetostrictive con-
tribution to the spin Hamiltonian has a significant influence
on the spin wave energies, especially if the magnetization
axis is in the hexagonal plane of the hcp structure (Jensen,
Houmann and Møller, 1975), as it is in the ferromagnets Tb
and Dy. When the easy axis lies in the hexagonal plane, the
energy of the uniform spin-wave mode (or ferromagnetic res-
onance frequency) in the absence of magnetostriction would
be simply proportional to (K1K

′
3 cos 6φ)1/2, where K1 and

K ′
3 are the axial and hexagonal plane MAE constants, and φ

is the angle in the hexagonal plane between the magnetization
direction and an easy axis. This is to be expected on phys-
ical grounds since the ferromagnetic resonance frequency is
proportional to (FθθFφφ)1/2, that is, the uniform spin-wave
mode just samples the MAE. A magnetic field applied in
the hexagonal plane could be used to cancel the hexago-
nal plane contribution, reducing the resonance frequency to
zero. The uniform (static) magnetostrictive strains in these
metals prevent the uniform mode frequency from going soft
since they add another term to the hexagonal plane con-
tribution to the resonance frequency which is independent
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of the direction of magnetic moment in the plane (Cooper,
1968; Brooks, 1970). The strain does not, however, make
the same contribution in a static MAE experiment since the
uniform strain then adjusts to the direction of magnetization.
The effective hexagonal plane MAE is therefore different in
dynamic and static experiments. Initially it was believed that
the uniform strains could sometimes follow the spin preces-
sion dynamically (Vigren and Liu, 1972) partially because
the frequency of the uniform mode in Dy was far less than
seemed to be obtained from static measurements of MAE and
magnetostriction constants. The anomaly, however, is actu-
ally due to a renormalization of the planar MAE constant in
Dy as a result of zero point fluctuations induced by ellip-
tical spin precession (Egami, 1972). A complete treatment
includes both coupled magnon and phonon excitations and
the effects of zero point motion (Chow and Keffer, 1973;
Jensen and Mackintosh, 1991).

Ab initio calculation of the giant magnetostriction in Tb
and Er has been made by Buck and Fähnle (1998) who
found that it is dominated by the single-ion 4f contribution
and obtained good agreement with experiment. The same
authors (Buck and Fähnle, 1999) calculated a large magne-
tostrictive MAE in TbFe2 arising from the intrinsic electronic
structure. A model, based on a rigid band Stoner model, has
been used successfully by Kulakowski and Moral (1994) for
Y2Fe17.

3.3 Multipole interactions in 4f Metals

The magnetoelastic interaction causes lattice distortion but
may do so in different ways. Magnetic interactions break
time reversal symmetry, and when they are larger than higher
multipole–multipole interactions, the material undergoes a
magnetic phase transition that is accompanied but not driven
by a lattice distortion due to magnetostriction. It can happen
that higher, nonmagnetic, multipole–multipole interactions
–usually quadrupole–quadrupole ones – are larger than the
magnetic interactions, even when the lattice is rigid. In
this case, multipolar ordering (which does not break time
reversal symmetry) occurs and is accompanied but not driven
by a lattice distortion – named quadrupolar striction by
Levy, Morin and Schmitt (1979) – due to magnetoelastic
coupling. If the magnetoelastic interactions are larger than the
magnetic and quadrupolar interactions, they can drive a phase
transition that is accompanied but not driven by multipolar
ordering. In this case the transition is caused by a CJT
effect. Rare-earth compounds in which quadrupolar ordering
with quadrupolar striction occurs before magnetic ordering
are TmCd and TmZn (Levy, Morin and Schmitt, 1979). In
DySb, the JT, magnetic, and quadrupolar interactions are of
comparable size (Levy, 1973).

3.4 Conduction electron magnetocrystalline
anisotropy energy in rare earths

Typical MAE energies of rare-earth metals are of the order
of millielectron volts per atom. The MAE in Gd metal is
2 orders of magnitude smaller than in other rare earths
but of the same order of magnitude as in Co, the most
anisotropic of the 3d metals. The first approximation to the
ground state of Gd is a half-filled shell with L = 0 and
zero MAE. It is possible that residual interactions would mix
enough orbital moment into the S state to explain this MAE.
Another alternative has been explored by Colarieti-Tosti
et al. (2003). Dipole–dipole interactions between the large
spins make a significant contribution (Brooks and Goodings,
1969; Jensen and Mackintosh, 1991) and they contribute an
MAE of the form K0

1 sin2θ , where θ is the angle between
the magnetic moment and the c axis with K0

1 = 10.3 µeV per
atom. However, the total MAE measured from experiment is
35.4 µeV per atom (Franse and Gersdorf, 1980), requiring
an additional contribution of 25.1 µeV per atom. The easy
direction is observed to lie at an angle of about 20◦ to the
c axis at low temperatures (Cable and Wollan, 1968), which
would not be possible without sinnθ contributions (n > 2)
to the MAE. Colarieti-Tosti et al. (2003) suggested that the
MAE in Gd is due to a combination of the dipole–dipole
interaction and the MAE of the conduction electrons. The
4f spin polarizes the conduction electrons via exchange
interaction, which transfers the MAE of the conduction
electrons to the 4f spin. They tested the hypothesis with
LSDA total energy calculations as a function of the direction
of the Gd moment between the hexagonal plane and c axis,
obtaining reasonable agreement with the measurements of
Franse and Gersdorf (1980). According to this theory, Gd
is a 5d transition metal with a large 4f spin and the MAE
calculation is very similar to those for Fe, Ni, or Co. This
mechanism for the MAE must be present in all of the
elemental rare-earth metals and the heavy actinides, but since
it is far smaller than the MAE arising from the interaction
between the CEF and the electric multipole moments of the
4f charge cloud, it is only important for S state ions. In
rare earth–transition metal compounds, the transition metal
may also make a contribution to the MAE and this would
be expected to be largest for cobalt (Steinbeck, Richter and
Eschrig, 2001).

4 ACTINIDES

The elemental light actinide metals do not order magnet-
ically. The complexity of the magnetic and magnetoelas-
tic properties of compounds of light actinides derives from
the fact that the 5f orbitals are more extended than the 4f
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orbitals in rare earths (Figure 2), but are not so extended
that the orbital magnetic moments are quenched, as in many
transition metals. The existence of a finite orbital angular
momentum is not only responsible for the MAE but it also
leads to coupling between charge degrees of freedom and
lattice vibrations. The simplest consequence of the more
extended 5f orbitals is that the effects of the CEF in actinide
compounds are larger than in the corresponding rare earths.
It is customary to say that the CEF is larger in actinides
although, of course, the electric field itself is not. How-
ever the matrix elements of the CEF between 5f states are
larger, leading to larger splitting of energy levels by the CEF.
Also, CEF excitations have been difficult to find in metallic
actinide compounds (Holland-Moritz and Lander, 1994) but
they have been unambiguously observed in UPd3 (McEwen,
Steigenberger and Martinez, 1993; McEwen, Steigenberger,
Martinez and Abell, 1990) and in actinide dioxides (Amoretti
et al., 1989; Fournier et al., 1991b; Kern et al., 1999; Kern
et al., 1990).

The closeness of the actinide 5f states to delocalization,
apart from larger CEF effects, is responsible for other dif-
ferences between anisotropic and magnetoelastic interactions
in actinides and rare earths. Firstly, interactions between
5f and conduction electrons frequently require multipole
expansions, rather than the simpler RKKY interaction, lead-
ing to indirect multipole–multipole interactions. Although
also present in some rare-earth compounds, such interac-
tions are more prevalent in actinide compounds. The larger
magnetoelastic interactions that accompany larger CEF split-
tings produce stronger phonon-mediated indirect interactions
between 5f shells, and these interactions are also multipo-
lar. An immediate and important effect of large CEF and
higher multipole–multipole interactions in actinides is that
multiple-Q structures are often the ground states. Multiple-Q
structures are stable only if terms higher than quadratic in
the magnetization are present in the Landau expansion of
free energy, equation (35), and such terms are present due
to the CEF and multipole–multipole interactions (Monachesi
and Weling, 1983; Rossat-Mignod, 1987; Sandratskii, 1998).
When the 5f states are itinerant, the MAE is due to spin-
orbit interaction in the energy bands, and the MAE can be
very large.

4.1 Light actinide compounds with localized 5f
electrons

Band structure calculations (Kelly and Brooks, 1980;
Dudarev, Nguyen-Manh and Sutton, 1997) for UO2 indicate
that, if the 5f states are treated as itinerant, the calculated
volumes are far too small, a result consistent with a wealth
of experimental evidence that the 5f electrons are localized.

A more systematic treatment for the light actinide dioxide
series (Kelly and Brooks, 1987) found that the valence band
electronic structure varies little across the series, suggesting
that the strength of magnetic interactions would also not vary
too much apart from small effects due to actinide contrac-
tion. This indicates that the strength of the CEF and exchange
interactions may therefore be scaled across the actinide oxide
series, a simplification confirmed by experiment (Amoretti
et al., 1992). Even though the actinide dioxides are CEF
compounds, their electronic structure is by no means simple,
since the CEF, exchange, quadrupolar, and magnetoelastic
interactions are all involved with equal magnitude.

The uranium ions in UO2 are tetravalent with a 5f2 config-
uration. The �1, �3, and �4 CEF states in UO2 lie between
150 and 170 meV above the �5 ground state (Amoretti
et al., 1989). UO2 undergoes a first-order antiferromag-
netic phase transition at 30.8 K (Leask, Roberts, Walter and
Wolf, 1963; Frazer, Shirane, Cox and Olsen, 1965; Faber
and Lander, 1976; Lander, Faber, Freeman and Desclaux,
1976). The correlation length increases below TN (Buyers
and Holden, 1985) without diverging and the elastic con-
stants are discontinuous at TN (Brandt and Walker, 1967),
although, within 50 Å of the surface, the magnetic scatter-
ing intensity decreases continuously as the bulk Néel tem-
perature is approached from below (Watson et al., 1996).
Allen (1968a,b) suggested that the magnetoelastic inter-
action would mediate quadrupole–quadrupole interactions,
since the CEF ground state �5 triplet may have both mag-
netic dipole and electric quadrupole moments. Resonant X-
ray scattering experiments at the uranium M4 absorption
edge have confirmed antiferroquadrupolar (AFQ) ordering
of the electric quadrupoles (Wilkins et al., 2006). Allen’s
model is consistent with a softening of the C44 elastic con-
stant, which is related to the quadrupolar susceptibility, and
neutron diffraction (Faber and Lander, 1976) confirmed the
presence of a lattice distortion, albeit not the q = 0 opti-
cal phonon postulated by Allen. Further, Allen assumed a
single-Q magnetic structure, whereas measurements (Burlet
et al., 1986) were more consistent with a triple-Q struc-
ture. Recently, Blackburn et al. (2005) have established
beyond doubt from the spin-wave polarization that the mag-
netic structure of UO2 is triple-Q. Additional efforts to
explain the magnetic structure (Siemann and Cooper, 1979;
Solt and Erdös, 1980; Giannozzi and Erdös, 1987) actu-
ally found the single-Q structure to be more stable. The
magnon–phonon interaction is observed to be strong in the
ordered phase (Cowley and Dolling, 1968) and the spin-
wave spectrum (Caciuffo et al., 1999) is roughly consistent
with theory (Giannozzi and Erdös, 1987) except that three
branches are observed over most of the Brillouin zone,
whereas only two are expected. Neutron scattering mea-
surements (Amoretti et al., 1989) showed that the excited



Theory of magnetocrystalline anisotropy and magnetoelasticity in 4f and 5f metals 13

crystal-field states are split above TN when theory suggests
that they should be degenerate in the paramagnetic phase.
However a dynamic JT effect, with proper vibronic states,
might well resolve the inconsistencies.

The Np ions in NpO2, tetravalent with a 5f3 configura-
tion, are Kramers ions with a magnetic doublet or quadru-
plet ground state. Heat capacity (Osborne and Westrum,
1953) and magnetic susceptibility measurements (Erdös
et al., 1980) indicate a phase transition in NpO2 at 25 K
but there was evidence neither for magnetic ordering nor
for lattice distortions (Caciuffo et al., 1987). Any ordering
with an order parameter even under time reversal does not
suppress a diverging magnetic susceptibility at low tempera-
ture. The absence of magnetic order in NpO2 was therefore
something of a mystery. Superlattice reflections in reso-
nant X-ray scattering at the Np M4,5 absorption edges were
observed (Mannix et al., 1999; Wilkins et al., 2004) and
attributed to longitudinal triple-Q antiferromagnetic order-
ing. It seemed that the magnetic moments (<0.1 µB) were
too small to be detectable in the neutron experiments. Fur-
ther theory (Santini and Amoretti, 2000a,b) and experi-
ments (Paixào et al., 2002) revealed quite a different picture
in which the superlattice Bragg peaks were due to long-range
triple-Q ordering of electric quadrupoles. The absence of
magnetic dipole order is consistent with the ordering of mag-
netic octupoles of �5 symmetry that removes the degeneracy
of the ground quartet, producing a singlet ground state with
no magnetic dipole moment, and drives the ordering of the
electric quadrupoles.

The Pu ions in PuO2 are tetravalent with a 5f 4 configura-
tion, and if the CEF and exchange parameters are scaled from
those of UO2 and NpO2, a �1 ground state, about 110 meV
below a �4 triplet, would be expected (Colarieti-Tosti et al.,
2002). The lowest exited CEF state detected by inelastic neu-
tron scattering (Kern et al., 1990, 1999) is at 120 meV. No
phase transition has been observed in PuO2 and the magnetic
susceptibility is temperature independent at low tempera-
ture (Raphael and Lallement, 1968). The gap between ground
(�1) and first excited (�4) CEF states required to fit the tem-
perature independent susceptibility (Raphael and Lallement,
1968) is inconsistent with that measured in the neutron scat-
tering experiments (Kern et al., 1990, 1999) by a factor of
about two. The inconsistency may be removed (Colarieti-
Tosti et al., 2002) by antiferromagnetic exchange enhance-
ment scaled from the antiferromagnetic exchange interactions
in UO2, assuming an identical electronic structure apart from
the correlated 5f states.

CEF excitations have also been observed in UPd3 (Buyers
and Holden, 1985; McEwen, Steigenberger and Martinez,
1993; McEwen, Steigenberger, Martinez and Abell, 1990).
UPd3 has a double hexagonal close-packed structure with
uranium ions at sites with local hexagonal and quasicubic

symmetry. Early experiments (Walker et al., 1994; McEwen
et al., 1988) revealed that there are at least three transitions in
UPd3. Quadrupolar order first develops at 7.8 K followed by
an AFQ transition at 6.8 K and magnetic antiferromagnetic
ordering at 4.4 K. AFQ ordering between 7.8 and 6.8 K was
observed by resonant X-ray scattering (McMorrow et al.,
2001) although below 6.8 K an unambiguous identification of
the ordered structure was not possible. Subsequently, ultra-
sound experiments (Lingg, Maurer, Müller and McEwen,
1999) confirmed that in addition to the magnetic phase tran-
sition at 4.4 K, orbital ordering occurs at 7.6 K accompanied
by a symmetry change from hexagonal to orthorhombic. The
quadrupolar transition at 6.8 K was found to split into a
second-order transition at 6.9 K and a first-order transition
at 6.70 K. McEwen, Park, Gipson and Gehring (2003) have
produced a CEF model based on all the available evidence.
The CEF at the hexagonal sites has a singlet ground state and
a first excited doublet at 15 meV as also deduced by Buyers
and Holden (1985). The CEF at the cubic sites has a ground
doublet and a first excited singlet at 4 meV with a doublet
CEF ground state and a first excited singlet at 4 meV and
antiferromagnetic exchange. The phase transition at 7.8 K is
second order with the primary order parameter Qx2−y2 . At
6.9 K there is a second-order transition to a phase with order
parameters Qx2−y2 and Qyz. Then, at 6.7 K there is a first-
order transition to a phase with order parameters Qx2−y2 ,
Qzx and Qyz. Finally, the phase below 4.4 K is AFQ with
four sublattices, order parameters Qx2−y2 and Qzx , and a
small magnetic moment.

4.2 Other light actinide compounds

The magnetism of the actinide pnictides and chalcogenides
with rock salt structure has been studied thoroughly. It has
been found that the MAE is extremely large for cubic com-
pounds (Vogt, 1980) and that multiple-Q magnetic structures
are common (Rossat-Mignod et al., 1984). Theories incor-
porating parameterized anisotropic bilinear exchange and
CEF interactions (Monachesi and Weling, 1983; Monach-
esi, 1986) are able to reproduce the multiple-Q mag-
netic ordering in the uranium pnictides and a hybridization
mediated anisotropic two-ion interaction has been derived
by Cooper and his collaborators (Thayamballi and Cooper,
1985).

The MAE in the uranium chalcogenides has been cal-
culated from self-consistent DFT calculations under the
assumption that the 5f electrons are delocalized. Early cal-
culations (Brooks, Johansson, Eriksson and Skriver, 1986)
found the difference in energy between the (100) and the
(111) directions of magnetization, �Ea to be 180 meV per
atom (for �Ea > 0, the easy axis is (111)). The comparable
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MAE for TbFe2, the most magnetically anisotropic cubic
rare-earth compound, is of the order of 10 meV per atom.
Subsequent calculations yielded lower, but still very large
MAE. The magnitude of the MAE is related to the size
of the orbital magnetic moment (Bruno, 1989). Conven-
tional LSDA treatments of orbital magnetism tend to yield
orbital magnetic moments that are too small (Brooks, 1985)
and therefore an MAE that is also too small. Such cal-
culations should therefore set a lower limit on the MAE.
Kraft (1997) obtained values for �Ea of about 9, 10 and
16meV for US, USe, and UTe, respectively, whereas Shishi-
dou and Oguchi (2000) obtained values of 14, 7, and
8 meV for the same compounds. Trygg (1995), using conven-
tional, full potential linear muffin-tin orbital (LMTO) calcula-
tions, obtained �Ea = 15 meV for US. He made additional
calculations with orbital polarization corrections (Eriksson,
Brooks and Johansson, 1990a) that produced orbital mag-
netic moments close to those deduced from the analysis
of experiments (Wedgwood, 1972) and obtained �Ea =
55 meV for US. Measurements of the MAE energy of US
are difficult since the MAE is so large that it is not pos-
sible to move the magnetic moment away from the easy
axis (Vogt, 1980). However, working at higher tempera-
tures where the MAE is smaller, and estimating the tem-
perature dependence of the MAE constants from theory,
Lander et al. (1990) estimated �Ea to be about 100 meV
per atom.

There have been a few attempts to calculate the CEF
parameters in actinides. Apart from the work on PuO2

by Colarieti-Tosti et al. (2002) in actinides, Divis, Richter,
Eschrig and Steinbeck (1996) calculated the CEF parameters
for UGa2, and from them, the anisotropy of the magnetic
susceptibility.

The MAE of the laves phase compound UFe2 (Popov,
Levitin, Zelený and Andreev, 1980) was measured to be only
a little larger than that of metallic Fe (K1 ≈ 106 ergs cm−3).
Nevertheless it was clear that something more interesting was
happening in this compound since Popov, Levitin, Zelený
and Andreev (1980) also observed a large magnetoelastic
distortion that contributed to K1, an amount equal to about
minus the measured K1. K0

1, for the unstrained lattice,
was deduced to be ≈107 ergs cm−3. Evidently, the small
value of the total MAE is due to a cancellation of far
larger unstrained and magnetoelastic contributions neither of
which would be expected to be due to the Fe alone. The
magnetic moment of uranium in UFe2 is negligible (Wulff,
Lander, Lebech and Delapalme, 1989) but that is due
to the almost complete cancellation of small spin and
orbital moments at the uranium sites (Eriksson, Brooks
and Johansson, 1990b; Brooks, 2004). The origin of the
large anisotropic magnetoelastic coupling is probably the
spin–orbit interaction in uranium and the small orbital

moment of uranium. It is quite possible that only the Fe
moment is rotated in a torque experiment and that there is
a large MAE associated with the U moment. Owing to the
cancellation of orbital and spin moments on uranium, no
anisotropy in the magnitude of the magnetic moment would
be observed. If this were the case the measured unstrained
torque would be mostly due to the coupling between Fe and
U moments. However no detailed theory has been produced
to date.

Neutron diffraction experiments on PuFe2 (Wulff et al.,
1988) determined the easy direction of magnetization to be
(100). It appeared that the magnetic moment could not be
moved away from the easy direction in achievable magnetic
fields. Since PuFe2 has a relatively high Curie temperature
of 564 K, the indications are that it has a very large MAE
for a cubic compound.
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1 INTRODUCTION: MAGNETOELASTIC
(MEL) COUPLING
AND MAGNETOSTRICTION (MS);
CRYSTAL SYMMETRY-BASED
PHENOMENOLOGICAL THEORY;
ROTATIONAL STRAINS
AND NONLINEAR MEL THEORY

Magnetostriction (MS) is the deformation (denoted by
λ = �l/l for linear distortion and ω = �V/V for vol-
ume dilatation), of a material body when it is magnetized,
either when crossing down the magnetic ordering tempera-
ture (spontaneous MS) or a magnetic field, H, is applied.
However MS is also observed in the paramagnetic (PM)
regime (parastriction, PS), and is useful when we want
to remove exchange effects, leaving only the crystal elec-
tric field (CEF) effect. MS is usually expressed in terms
of Cartesian symmetric strains εij = (1/2)(uij + uji), where
u = x − X is the point displacement of a point X for
a new position x and uij = ∂ui/∂Xj , the distortion. The
inverse MS effect (inverse Wiedemann effect (IWE)) con-
sists in the change of magnetization vector, M (by rota-
tion or |M| variation, mainly in itinerant magnets) when
a mechanical stress is applied. In the direct Wiedemann
effect (DWE) a rotational strain (RS) MS, ωij = (1/2)(uij −
uji) is produced under application of a helicoidal H to
a wire or ribbon (Hernando and Bariandarán, 1980), such
that it is antisymmetric (ωij = −ωji). However, introduc-
tion of RS is paramount in the propagation of an elastic
wave (EW) in a magnetized crystal (magnetoacoustic (MA)
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Figure 1. Decomposition of a general deformation in pure strain, ε12 and rotation, ω12 (Nye, 1976).
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Figure 2. Unequivalence of uzx and uxz shear elastic waves
propagating along Z and X axes, due to their antisymmetric
rotations, ωxz = −ωzx , added to otherwise symmetric εxz = εzx

strains (Lüthi, 1976).

wave), since then, only one distortion is singled out and
ωij is manifested, since uij = εij + ωij (Figures 1 and 2).
MS, being an ubiquitous effect in solids, has been observed
in every kind of magnetic material (del Moral, 2007). MS is
the result of an internal magnetoelastic (MEL) stress, here
denoted as Mij (≡ Bij in Kittel’s notation, see del Moral,
2007) and has its origin in the variation in volume and/or
change in shape when the atomic magnetic moment, µ is
modified, either by rotation or by |µ| variation (this latter
called paraprocess, manifested in itinerant ferromagnets
(FMs)). Effectively, when an atom or ion is magnetized
it changes its shape, so modifying the surrounding lattice
for accommodating the distortion (shape or anisotropic
magnetostriction (AMS)), or just its volume (volume or
isotropic magnetostriction (VMS)). The mechanism for AMS
(but there can also be VMS of this kind) is as sketched in
Figure 3.

1. In a free atom the spin-orbit (SO) coupling (Hamiltonian
Hso = λL · S) aligns the orbital, L and spin, S angular
momenta (AM).

2. When the atom is within the solid the highly inho-
mogeneous CEF, ECEF, aligns L with it (via Stark
coupling of energy ∝ L · ECEF), so overriding the

L

S
L

E

S
L

E

S H

Spin-orbit coupling

l L .S

Crystal field
(Stark) effect

L . E

Magnetic (Zeeman)
coupling

gmB H . S

(a) (b) (c)

Figure 3. The physical origin of CEF magnetostriction: (a) spin-
orbit (SO) coupling; (b) CEF, E overrides SO between L and S;
(c) magnetic anisotropy requires stronger H to align S. Rotation of
residual unquenched L through SO coupling causes magnetostric-
tive rotation of E (Dionne, 1979).

SO coupling. As consequence the expected 〈ψ |L|ψ〉
(|ψ〉 is the magnetic ion wave function within the
solid) is usually reduced (quenching), that is, some
SO coupling survives (except for a singlet where 〈ψ|µ
|ψ〉 = 0).

3. When H is applied, this tries to align S (via Zeeman
coupling, HZ = −µS · H, with µ = µL + µS, the total
magnetic moment), which in turn pulls L (atom/ion
charge aspherical cloud, e〈ψ |ψ〉) via SO coupling, L
which again pulls ECEF and so the ions lattice (which
create ECEF) are displaced. This AMS is called CEF-MS
(although those mechanisms can also produce VMS).
So MS is basically a relativistic (SO) and quantum-
mechanical effect.

When a magnetic-order phase transition occurs (or also H
is applied), usually an isotropic variation of the lattice cell
parameter is produced (manifested as an anomalous ther-
mal expansion (TH.E.)), so modifying the exchange coupling
constant, J (HEX = −2J (Rj − Ri )Si · Sj is the isotropic
exchange Hamiltonian between two spins at sites i, j ) and
we talk of exchange magnetostriction (EX-MS) (if exchange
is anisotropic, that is Jx �= Jy �= Jz, an AMS is instead
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4 Theory of magnetocrystalline anisotropy and magnetoelasticity

produced); quadrupolar (QP) interaction
↔
O2,i

m
↔
O2,j

m instead
manifests in PS. Therefore MS is a fundamental effect in
condensed matter physics (either in crystalline or amorphous
materials), and the order of magnitude of the associated
MEL free energy Fmel = (1/2)cλ2 (where c is an elastic
constant (EC)) amounts ≈ 1 µeV/atom in 3d metals (Fe) and
1–10 meV/ion in a rare-earth (RE) metals (e.g., Dy and Tb
metals).

Experimentally it is found that MS depends on the
direction of the magnetization, α, and that of measurement,
β with respect to the chosen crystal axes, this means that
it is a property related to crystal symmetry. Therefore the
natural way to derive the MEL free energy, Fmel is making it
invariant against the point symmetry group (PSG) operations
of the magnetic ion in the crystal. For this we define the
irreducible strains (ISs), ε

µ
i which form the bases (i is the

basis component index) for the irreducible representations
(IRs) of the PSG (
µ) and multiply them by polynomials
of the direction cosines α (αi) pertaining to the same
representation, in order to obtain products invariant against
the symmetry operations of the PSG (i.e., pertaining to the
fully symmetric representation 
α) (Callen and Callen, 1964,
1965). The ISs, ε

µ
i are of the same form for all PSG (although

with different µ denomination) and for the cubic (CUB)
PSGs are given in the second column of Table 1. The forms
of these ISs for cubic symmetry are displayed in Figure 4,
and those for hexagonal (HEX) ones are shown in Figure 5
(here assuming cylindrical symmetry for the hexagonal unit
cell). For some representations, for instance for cubic PSGs,
the µ = α, γ , and ε correspond to externally manifested
strictions, meanwhile for µ = β ′, δ′ the ISs are internal, and
can be only externally manifested if they couple to external

x

y

(a) (b)

z

(c) (d)

a

2
g

1
g

e
q

q

O

Figure 4. Irreducible strains for cubic symmetry (de Lacheisserie,
1993).

ones, as it happens for example in the cubic Laves-phase
intermetallic DyFe2 (Cullen and Clark, 1977); and H0/Lu
superlattices (del Moral, 2007). But before continuing, MS
strains can be small (infinitesimal, ε

µ
i ) or finite, Eµ

i . A kind of
finite (Brown, 1965) normal ISs are the Lagrangian strains,
ηij (Eastman, 1966), which include rotations, up to order 2,
as well as the local RSs, Rij and which are respectively of
the forms (in Cartesian strains),

ηij =
(

1

2

)
(uij + uji + �kukiukj ) = εij +

(
1

2

)

× �k(εkj + ωkj )(εki + ωki) ∼= εij +
(

1

2

)
�kεkiεkj

(1)
Rij = ωij +

(
1

2

)
�k(εjk + ωjk)(εik − ωik)

∼= ωij −
(

1

2

)
�kωkiωkj (2)

(pure RSs ωxy , ωzx , ωyz, bases of 
δ′
are internal). Last

expressions for ηij (Rij ) apply for infinitesimal ωij (εij )
strains. We will call all those strains (45 in number) as the
ISs π

µ
ij . These ISs pertain to the same IRs mentioned earlier,

where j is the basis-IS number within the basis i for 
µ IRs
(see for a systematic description del Moral, 2007 or Rouchy
and de Lacheisserie, 1979). They are of the kinds: purely
quadratic in εij (21 in number, e.g., πα

11 = (1/3)(ε2
xx + c.p.),

π
γ

11 = (
√

3/2)(ε2
zz − πα

1 ), πε
11 = εxxεyy , etc.); other in ωij

(6 in number, e.g., πα
41 = ω2

xy + c.p., π
γ

41 = (
√

3/2)(ω2
xy −

πα
14/3), πε

61 = ωzxωxy , etc.); and remainder are in products
εijωkl (e.g., πε

14 = (εyy − εzz)ωyz, π
γ

15 = (
√

3/2)(εxyωxy −
(1/3)(εxyωxy + c.p.)), etc.). According to the aforesaid we
write the MEL free energy for the normal ISs as,

Fmel = �µ,lM
µ,l

�iα
µ,l
i ε

µ
i (3)

where M
µ,l

are the irreducible MEL constants (≡ Bµ,l in
popular Kittel’s notation) and α

µ,l
i are polynomials of α

of l-degree bases of 
µ, isomorphous of ε
µ
i and given for

l = 2 in Table 1 (polynomials of higher order are possible).
The MEL free energy then adopts the forms, for cubic and
hexagonal symmetries, respectively,

F CUB
mel = ��=0,4,6,. . .M

α,�
εαKα,� + ��=2,4,6M

γ ,�

× �i=1,2ε
γ

i K
γ ,�

i + ��=2,4,6,6′M
ε,�

�i=1,2ε
ε
i K

ε,�
i

(4)
F HEX

mel = ��=0,2,4,4′,. . .�i=1,2M
α,�

i εα
i Hα,�

+ ���µ=γ ,εM
µ,�

�i=1,2ε
µ
i H

µ,�
i (5)

where K
µ,�
i (α) and H

µ,�
i (α) are cubic and hexagonal har-

monics, which are tabulated (del Moral, 2007). In order
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to obtain the equilibrium strains we have to add the elas-
tic energy, which is of the general diagonal form Fel =
(1/2)�µcµ�i(ε

µ
i )2, and minimize the full F (i.e., making

∂(Fmel + Fel)/∂ε
µ
i = 0), so obtaining the MSs, which for

example, for cubic symmetry have the expressions,

εα = −��

(
M

α,�

cα

)
Kα,�, ε

γ

i=1,2 = −��

(
M

γ ,�

cγ

)
K

γ,�

i ,

εε
i=1,2,3 = −��

(
M

ε,�

cγ

)
K

ε,�
i (6)

and similarly for other classes of symmetry, and where cµ are
the symmetry ECs. If we now define the Clark’s MS constants
as λµ,� = −(M

µ,�
/cµ) (Clark, DeSavage and Bozorth, 1965;

see Figure 5) and notice that for the β direction of MS
measurement we have to multiply by β –polynomials, β

µ,�
i ,

isomorphous to the α ones (of Table 1), we have that,

λ(α, β) = �µ=α,γ ,ε��λ
µ,��iβ

µ,�
i K

µ,�
i (7)

In the same way we can write the MEL free energy in
the Lagrangian strains, obtaining F 2nd−order

mel = �i,µ,�,j N
µ,�

π
µ
ij K

µ,�
i , for the cubic PSGs, where N

µ,�

j are the second-
order MEL constants, or morphic constants of MS, since they
linearly modify the M

µ,�
(morphic effect of MEL coupling)

ones in the ISs. Now to get the equilibrium finite strains we
have to introduce an elastic energy in the third rank (con-
tracted) ECs, Cijk and third-order finite ISs. The importance
of higher order than one in uij MEL coupling is mainly man-
ifested in EW propagation in magnetic materials where for a

la, 2

lg, 2 le, 2

ee, 1

ea, 2

eg, 1, 2

ea, 1

la, 1

(a)(b)

(c) (d)

Figure 5. Irreducible strains (down corners) and Clark’s MS con-
stants (up corners) for uniaxial symmetry (Clark, DeSavage and
Bozorth, 1965).

+ exz  = + wxz  =

uxz
ezz =    u2

xz
1
2

Figure 6. A finite shear gradient uxz is equivalent to a finite strain
Ezz. (From Bonsall and Melcher, 1976.)

plane wave impressed distortion uxz = εxz + ωxz we end up
with a finite Cartesian strain Ezz = (1/2)u2

xz (Figure 6).
To conclude with this phenomenological study of MS

sometimes it is better to work with Cartesian strains, and
for cubic symmetry we obtain (Lee, 1955),

λ
(
α, β

)= (3/)λ100

(
�iα

2
i β

2
i − 1

3

)
+ 3λ111

(
α1α2β1β2 + c.p.

)

+ λv

(
α2

1α
2
2 + c.p. − 1

3

)
(8)

and where the two Kittel’s MS constants are λ100 ≡
h1 = −(2/3)M1/(c11 − c12) and λ111 ≡ (2/3)h2 = −(1/3)

(M2/c44), which respectively are the MSs measured along
[100] for M‖[100] and along [111] for M‖[111] and λv ≡ h3

the anisotropic volume MS constant, independent of β (hi

are the classical Becker and Döring MS constants). When
the material is polycrystalline or amorphous a number of
approaches have been followed to average equation (8) over
the ‘crystallites’ (averages at constant stress, constant strain,
fluctuating MS, (Fähnle et al., 1990)). A good approxima-
tion used for cubic and amorphous materials for AMS being
λ|| − λ⊥ ≡ λt = (3/2)(cos2 θ − 1/3), where θ is the angle
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Figure 7. Isotherms of λt (H) for polycrystalline MnAs (Choud-
hury, Lee and Melville, 1974).
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(M, β) and λs the saturation MS. In fact MS adequately maps
the different magnetization processes (in fact, MS is superior
since it has a sign), that is, domain wall (DW) displace-
ment (MS appears if those are different of 180◦), rotation of
Ms, and approach to saturation. The λt (H) isotherms for the
hexagonal FM MnAs (Tc = 393 K) are portrayed in Figure 7,
where the initial decrease is due to DW displacements, the
minimum is λγ ,2 (Figure 4c), and the saturation value is λα,2

(Figure 4b), the latter two being the MSs due to Ms rotation.

2 STANDARD THEORY
OF MAGNETOELASTIC COUPLING
AND MAGNETOSTRICTION (STM):
ONE-ION AND TWO-ION MSS;
ANTIFERROMAGNETS; SPIN-WAVE
APPROACH; PARASTRICTION; MEL
PARAMETERS CALCULATION; MS OF
RE INTERMETALLICS

The phenomenological theory of MS is firmly based in
a microscopic quantum-mechanical one, called Standard
Theory of Magnetostriction (STM), mainly due to Callen
and Callen (1964, 1965), which follows the same group
theory arguments used before, for obtaining now the MEL
Hamiltonians. We will distinguish between single-ion CEF
and two-ion (bilinear and QP exchanges) MEL couplings.

2.1 Single-ion CEF-MS

MS reduces the point symmetry and therefore, with new
terms, adds or modifies the highly inhomogeneous CEF
potential, V (r) which can be expanded around the probe ion
(i) in the multipolar expansion, either in terms of Cartesian
coordinates (x, y, z) polynomials, fn,m(x, y, z) or in terms of
spherical harmonics (SH), Ym

n (θ, φ) with coefficients which
are proportional to the V (r) CEF gradients, Am

n , that is,

V (r) = �n,mAm
n rnfn,m(x, y, z) = �n,mAm

n rnYm
n (θ, φ) (9)

It is far better to work in terms of so-called Stevens AM,
J operators, Om

n (J) by application of the Wigner–Eckart
(W–E) theorem to V (r), so obtaining the equivalence
�ifn,m(xi, yi, zi) ≡ θn〈rn〉Om

n (J), where ri are the magnetic
electron coordinates, 〈rn〉 a radial average and θn the W–E
reduced matrix elements, depending on J (i.e., on the 3d, 4f,
5f ions). Therefore the CEF Hamiltonian can be written as,

HCEF = �n,mBm
n Om

n (10)

The Stevens operators (S.Op.) are tabulated (Hutchings,
1964). When the solid is distorted under MS, so it is HCEF,

HCEF = �
,�,i,j

{
B0


,� +
(

∂B
,�

∂ε

i

)
0

ε

i

+
(

1

2

)(
∂B
,�

∂π

ij

)
0

π

ij + · · ·

}
O


,�
i (11)

where HCEF is now written in an irreducible form ({i, j}
span the IR bases) and M


n,m = (∂B

n,m/∂ε


i )ε

i =0 are the

microscopic MEL parameters (first order) whose determi-
nation (theoretical or experimentally) is a paramount issue.
N
,� = (1/2)(∂B
,�/∂π


ij )π

ij =0 are the nonlinear (NL) MEL

parameters (second order), which are essential in the mag-
netoacoustic wave propagation. Now, the single-ion CEF-
MEL coupling Hamiltonian, H I

mel is formed as the MEL free
energy, just multiplying the strains and AM operators per-
taining to the same representation, and therefore the products
being invariant against the PSG operations (i.e., pertaining
to 
α). Although by the deformation the PSG is changed
(symmetry lowering by MS) in a first approximation we
neglect this effect (it cannot be like that if the strains are
finite, thus having the morphic effect of MS upon the MEL
parameters). Therefore, H I

mel adopts the general form (for
any PSG and several ions, f as the lattice point motif; note
the negative sign),

H I
mel = −�f �
,��iM


,�(f )ε

i J


,�
i (f ) (12)

where the Racah AM operators J 
,�
i (Kubic Tensor Operator,

KTO of cubic PSG, K
,�
i ) of order l, are linear combina-

tions of the spherical tensor operators, Y ±m
n (isomorphous

of the SH), of the form shown in Table 1 for second order
(however, we will use the Stevens–Buckmaster’s notation
(Buckmaster, 1966), shown at the bottom of the table, and
where the AM operators are denoted by Õ

m

n ). For finite strains
we have to add to the equation (12) the NL-MEL Hamilto-
nian, of the form H NL

mel = −�f �
,��ij N

,�(f )π


ijJ

,�
i (f ),

where N
,� are the NL-MEL parameters. For the most fre-
quent cubic and hexagonal symmetries up to l = 2 the MEL
Hamiltonians read,

H CUB
mel = −Mα,0J2εα − Mγ,2

(
ε
γ

1 Õ
0
2 +

(
1√
2

)
ε
γ

2 O
2
2

)

− Mγ ,2(εε
1iO

1
2 − εε

2iÔ
1
2 + εε

3iÔ
2
2

)
(13)

H HEX
mel = −M

α,2
1 εα

1 Õ
0
2 − M

α,2
2 ε

α,2
1 Õ

0
2 − Mγ,2(εγ

1 O
2
2

+ iε
γ

2 Ô
2
2

) − Mε,2(εε
1iÔ

1
2 + εε

2O
1
2

)
(14)

For lower symmetries the number of independent MEL
parameters just increases. To obtain the equilibrium MS
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strains, ε

i we take the thermal average 〈Hmel〉, add Fel and

minimize, obtaining for all symmetries that

ε
µ
i = (1/cµ)��M

µ,�〈J 
,�
i 〉 (15)

where 〈J 
,�
i 〉 has to be substituted by the corresponding

Stevens operators of for example, equations (13 and 14).

2.2 Thermal dependence of MS

We are now going to obtain one of the most significant char-
acteristics of MS, which is its thermal dependence, which
allows one to distinguish between CEF and EX-MSs. For this
investigation we consider the cubic symmetry (for remain-
der ones is the same) and expand 〈Kµ,�

i 〉 = ∑
m a

µ,�
i,m 〈Y m

� 〉.
Next we perform the frame rotation (x, y, z)-> (ξ, η, ζ ) so
that the axis Oζ‖Ms spontaneous magnetization (Figure 8).
Taking into account how the SH are transformed under rota-
tion and the isomorphism between Y m

l and Ym
l , it is easy to

show that 〈Y m
l 〉 = ∑

m′ 〈Ym′
l(ζ )|Ym

l 〉〈Y m′
l(ζ )〉, where Y m′

l(ζ ) refer

to the rotated frame. Now under a rotation ϕ about ζ , Y m′
l(ζ )

transforms as eim′ϕ and since the spin system (or Ms) has
cylindrical symmetry around ζ (keeping only the exchange
interaction), 〈Y m

l(ζ )〉 = 0, except for m′ = 0. Therefore we

have 〈Kµ,l
i 〉 = 〈Y 0

l(ζ )〉Kµ,l
i (ζ ) and accordingly we end up

with 〈Kµ,l
i 〉 = 〈Y 0

l(ζ )〉�ma
µ,l
i,m = Kµ,l

i (ζ )〈Y 0
l(ζ )〉, which pro-

vides for the thermal dependence of the MEL constants,
being defined as M


,� ≡ M
,�〈Y 0
�(ζ )〉T . For lowest order l =

2, Y 0
2(ζ ) ∝ O0

2(ζ ) = (
√

3/2)(3J 2
ζ − J (J + 1)) and if the tem-

perature is low enough only the two first levels of the J man-
ifold will be populated. Expressing Jζ = J − σ = J − a+a,
with σ , the deviations number operator, we obtain for the
eigenvalues σ = 0, 1 and cutting the expansion that (1 −
σ/J )3 ∼= 1 − 3/J . Therefore, we obtain 〈Y 0

2(ζ )〉 ≈ (2J −
1)J

[
1 − 3〈σ 〉/J ] ≈ (M/M0)

3 = m(T )3, which for any l

Z

Y

X

q

j

z II M

Φ

Figure 8. Cylindrical symmetry spin directions distribution around
magnetization M, at finite temperature (del Moral, 2007.)

adopts the general form

M
µ

j,l(T )
/

M
µ

j,l(0) = 〈Y 0
l (J

′)〉T
〈Y 0

l (J
′)〉0

=
(

M(T )

M(0)

)l (l+1)/2

(16)

which is the famous Akulov–Zener–Callen l(l+1)/2 power
law (AZC) of thermal variation of MS, applicable to FM
insulators. This law can be generalized considering that
the full J manifold (−J ≤ m′ ≤ J ) is populated (high
temperatures). In this case, using the density matrix technique
for getting the thermal averages, we have that

〈Y 0
l (J

′)〉 =
J∑

−J

〈m′ ∣∣Y 0
l

∣∣m′〉 exp[Xm′]∑J
−J exp [Xm′]

(17)

and taking into account that
∫ 1
−1 Y 0

l (m′) exp
[
Xm′] dm′ =

Il+1/2(X), where I�+1/2(X) is a Bessel function, and defin-
ing the reduced Bessel function as Î�+1/2(X) ≡ I�+1/2(X)

/
I1/2(X), we end up with

M



j,l(T ) = M



j,l(0)Îl+1/2(L
−1(m)) (18)

where L−1(m) is the inverse Langevin function. However
his law is quite general, including all theories based on
quasiparticle collective excitations, of which the mean-field
approximation (MFA) is a particular case and where the
variable X = ngµB〈m′〉/kBT (n is the mean-field (MF) con-
stant). Now the reduced magnetization, m(T ) along ζ , adopts
the form m(T ) = 〈cos θ ′〉 = 〈Y 0

l (J′)〉T/〈Y 0
l (J′)〉0 = Î3/2(X).

In Figure 9 are shown the reduced 〈Ỹ 0
2〉(m) versus m for

several J (= S) values and in Figure 10 the fits of λγ ,2
/

2
and −λγ ,4 thermal variation for Tb metal; also in Figure 11
is shown how the general AZC law is well accomplished for
Dy and Er metals (See also Theory of Magnetocrystalline
Anisotropy and Magnetoelasticity in 4f and 5f Metals,
Volume 1). Substituting now equation (15) (for cubic sym-
metry) into Fmel = 〈Hmel〉 we obtain again the same expres-
sion for the free energy of equation (3), and if we add Fel

and the magnetocrystalline anisotropy (MCA) energy, of the
form FK = ��κ�K

α,�, we see that a MEL contribution to the
MCA constants, κl appears (or MEL anisotropy energy), of
the form

κeff
l = κ l −

(
1

2

)
�µ�j

(
1

c
µ
µ

)
�l1,l2k

µ,l
l1l2

M
µ,l1
j M

µ,l2
j (19)

where the k numbers are tabulated (see del Moral, 2007).

2.3 Two-ion (exchange) MS

We will now consider the afore mentioned exchange inter-
action MS and consider that an exchange interaction exists
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thermal dependence for Tb metal; lines are the STM theoretical
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respectively (Rhyne and Legvold, 1965).

between the ion pairs (f , g) of the forms mentioned in
Section 1. Now the two-ion MEL Hamiltonian takes the form,

H II
me = −�(f,g)�
�jj ′D


jj ′(f, g)�iε

,j

i J 
,j ′
i (f, g) (20)
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Figure 11. The linear dependence of Clark’s MS constants λγ ,2

and λε,2 with reduced Bessel function Î5/2 (L−1 (m)) confirms the
STM equation (18) (Tsuya, Clark and Bozorth, 1964).

D

JJ ′ are the EX-MEL parameters and J 


i (f, g), two-
ion AM operators, isomorphous of the Stevens operators
(see Table 1), and where first correspond to isotropic EX-
MS (independent of Ms orientation) and the remainder to
anisotropic EX-MS. In the case of cubic and hexagonal
symmetries, H II

mel is simply obtained by substituting J 2 →
Jf · Jg and the squared components J 2

i (i = x, y, z) by
J i

f J i
g in equations (13 and 14). Now there are four MEL

parameters for 
α strains, Di1 (i = 1, 2) for the isotropic
exchange and Di2 (i = 1, 2) for the anisotropic one. In this
way we obtain three spin-correlation functions (SCFs): one-
ion longitudinal (Lf ∼ 〈S2

z − (1/3)S(S + 1)〉), and two-ion
longitudinal (Lfg(T , H) ∼ 〈Sz

f Sz
g − (1/3)S·

f Sg〉), and two-
ion isotropic (Ifg(T , H) ∼ 〈Sf · Sg〉), which provide for the
thermal dependence of the EX-MSs. In the same way as
before the MEL free energy is obtained by taking the thermal
average 〈H II

EX〉 and therefore the equilibrium MS becomes
ε

i = (c
)−1�(f,g)D


(f, g)〈J 

i (f, g)〉.

Other theories than the MFA have been developed for
explaining the thermal dependence of CEF-MS, such as the
one based on a generalization of the Brillouin function theory
(Kuz’min, 1992) and including CEF splitting (i.e., unevenly
spaced levels), well applicable to RE intermetallics, and
the one based on the spin-wave approximation (del Moral
and Brooks, 1974). Also a number of techniques have been
developed to calculate the two-ion SCFs, such as the cluster
one (Bethe–Peierls–Weiss, BPW) and the one based on



Magnetostriction and magnetoelasticity theory: a modern view 9

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1.11.2 1.31.4 1.5 1.6 1.71.8

S = 1/2

S = 1

S = 3/2

S = 5/2

S = 7/2

T /Tc

S
2

S
1

S
2

〈

〈

1

Figure 12. Thermal dependence of isotropic two-ion spin-
correlation functions (Callen and Callen, 1964).

the thermodynamic Green function technique. In Figure 12
is shown the thermal variation of Ifg(T ) for several S

values calculated according to the two-atom cluster theory,
meanwhile Lfg(T , H) changes as m2, which distinguishes
EX-MS from the CEF-MS, changing as m3 at low T .

At the Curie temperature, Tc, in FMs, MS manifests
spontaneously, giving rise to anomalies in the volume and
anisotropic TH.E.s. For example, for hexagonal symmetry
the 
α IR anomalous strictions are for volume and tetragonal
distortions respectively of the forms,

∈α,1 = �V

V
= λα

11(T , H)

+ λα
12(T , H)

(√
3

2

)(
α2

z −
(

1

3

))

∈α,2 =
(√

3

2

)(
∈zz −

(
1

3

)
∈α,1

)

= λα
21(T , H) + λα

22(T , H)

(√
3

2

)(
α2

z −
(

1

3

))
(21)

where λij (T , H) = (1/�α)�(f,g) [cα
jjD

α
ij (f, g) − cα

ij D
α
ji

(f, g)]If,g(T , H), i, j = 1, 2, meanwhile, λα
12 and λα

22
depend on both Lf and Lfg (cα

ij are symmetry ECs and
�α ≡ cα

11c
α
22 − (cα

12)
2). In Figure 13 is shown the mag-

netic TH.E., (�V/V )isotr = λ11(T ), for the cubic Laves-
phase polycrystalline GdNi2 compound, with the anomaly
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Figure 14. Forced volume MS of GdNi2 and NN and NNN spin-
correlation functions (del Moral and Ibarra, 1985).

at Tc = 75 K. Also, the volume forced magnetostriction
(FMS), ∂ω/∂H is shown to be given by (∂ω/∂H) =
(2/cα)�j(f,g)D

α
11(f, g)〈Sz

j Sf · Sg〉, with a triple SCF (solved
e.g., by decoupling 〈Sz

j 〉〈Sf · Sg〉), and in Figure 14 it
is shown ω(H) for GdNi2, together with the two-spin
cluster BPW theoretical fit. This theory, extended to
nearest-neighbours (NN) and next-nearest-neighbour (NNN),
explains well the T and H dependencies for archetypal
FMs such as EuO, EuS, and the magnetic semiconductor
EuSe (del Moral, 2007). Finally note that MS shows critical
behavior at Tc with critical exponents 2β, 2/δ (FM regime),
and −2γ (PM one), as expected (Vázquez, Hernando and
Kronmüller, 1986).
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2.4 Antiferromagnets

MS in collinear antiferromagnets (AFMs) can be obtained
just by applying the STM to each sublattice and adding the
contributions. However a phenomenological Landau–Ginz-
burg (L–G) theory, based on Dzyaloshinskii’s magnetic
symmetry group (MSG) theory arguments (Wolf and Huan,
1988a,b), is more physical and powerful. In those canted
AFMs, such as the tetragonal halides MnF2 and CoF2

(TN = 67.5, 38 K) and the cubic garnet DyAlG (TN =
2.54 K), instead of M = (2M0)m = M1 + M2 (= 0 at 0 K
and without canting), the order parameter is (2M0)η =
l = M1 − M2, or Néel AFM vector (always non-null, see
Figure 15, and where Mi are the sublattice magnetizations).
The MEL free energy must be invariant against the MSG
operations and for the simplest case of cubic symmetry
(MSG for DyAlG is Ia3d × R, where R is the time inversion
operator) the MEL plus elastic free energy is,

Fmel + Fel = D1l
2ε +

(
1

2

)
G1l

2ε2 + D2m
2ε

+ D3lmε + · · · +
(

1

2

)
c0ε

2 (22)

where terms odd in η are only allowed if η is translationally
invariant, which only happens if the AFM is commensurate.
From the minimization, ∂(Fmel + Fel)/∂ε = 0, we obtain,

ε = − (D1l
2 + D2m

2 + D3ml)

(c0 + G1l2)
(23)

Without Mi canting, m = 0 and the MS is determined by
l (also l gives rise to an MEL effect on the ‘bare’ EC
c0). In Figure 16a is shown εxy versus H⊥‖[1 1 0] for
tetragonal CoF2 (at 4.2 K), noticing a quadratic dependence,
and noticing also the dominance of l rotation within the [110]
plane (term in D1). Instead for H‖‖[1 1 0], εxy changes
linearly (Figure 16b), indicating the dominance of the l2

term, if induced canting is neglected. A similar study has
been performed for AFM MnF2 (TN = 67.3 K) (Shapira,
Yacovicht and Nelson, 1975).

M2
M1

−M2

m

Y

l

X || C2

Figure 15. Magnetization, m and Néel AFM vector, l for AFM;
C2 is a twofold axis (del Moral, 2007).
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at 4.2 K (Prokorov and Rudashevskii, 1969).

2.5 Spin-wave approximation for MS

This model is of interest because it provides the MS
field dependence in cubic FMs, AFMs, and ferrimag-
nets (for helical phases in hcp rare-earth metals (REMs)
the situation is more complicated). Transformation S±

l
∼=√

2Sa±
l (l is a lattice site) to boson creation and annihi-

lation operators, immediately yields 〈Õ0
n〉 = Q[1 − (n(n +

1)/2)(1/Mso)gµB�l〈a+
l a−

l 〉], where Q is a constant and
Mso = NgSµB, or 0 K spontaneous sublattice magnetiza-
tion. The excited magnon number, at T and applied field H

is then 〈n〉T ,H = �l〈a+
l a−

l 〉 = (gµB)−1[Mso − M(T, H)].
Calling �m = 1 − m, we obtain 〈Õ0

n〉 = Q[1 − (n(n + 1)/

2)�m] ≈ Q[1 − �m]n(n+1)2 = Qmn(n+1)2, which again con-
stitutes the AZC power law. Transforming now to magnon
operators a±

k by Fourier expansion, we obtain 〈Õ0
n〉 = Q[1 −

(n(n + 1)/2NS)�k〈nk〉], where 〈nk〉 = {exp[βE(k) − 1]}−1,
or k-magnon number. In a similar way we can calculate the
two-ion MS. Assuming a quadratic magnon dispersion E(k)
we obtain for the general full MS the expansion,

λ = λ0 + λ1(T )
√

H + λ2(T )H + λ3(T )H 3/2

+ λ4(T )H 2 + λ5(T )H 3 + · · · (24)



Magnetostriction and magnetoelasticity theory: a modern view 11

The leading term in H applies for α mode (as well as H 3/2),
being of exchange origin. For CEF γ and ε strictions the
leading CEF term is in

√
H , that is, nonanalytic (however,

exchange α mode has also a
√

H contribution). Therefore
for AMS,

√
H dependence singles out the CEF-MS origin,

as does the H dependence for exchange origin in the volume
MS, ω.

Another important aspect manifested by MS is the spin
dimensionality (Callen, 1982). The AZC law has been
derived for spatial d = 3 dimension and Heisenberg spins
(D = 3). We will consider now what happens when the
moments are constrained to a plane (d = 2, the possible
case of ultrathin films, monolayers, and interfaces (IFs) in
superlattices (SLs)) and also D = 2 (XY magnet), and in
general for any D, as we know that MFA is exact for D = 4
(for fixed |µ| the degrees of freedom (DOF) are reduced
to D − 1). Considering 2D spins, the DOF is the angle θ

of 〈S〉, formed with the MCA easy direction (ED), and we
will perform a classical calculation of MEL energy. This
will be expanded in Legendre polynomials Pl(cos θ), where
l should be even. In order to obtain 〈Pl(cos θ)〉 we write the
partition function as Z0 = ∫ π

0 ea cos θdθ , with a ≡ 〈E〉/kBT ,
where 〈E〉 is the unperturbed ionic MF energy. Noticing that
needed 〈cosn θ〉 ∼ ∂nZ0/∂an, and that for low-T θ = ε is
small we perform the expansion, Z0

∼= εea(1 − aε2/6) and
therefore we obtain m = (Z1/Z0) ∼= 1 − ε2/6, and therefore
we obtain 〈cosn θ〉 = (Zn/Z0) = 1 − n�m. Then for any l

we obtain,

M

,l

i (T )

M

,l

i (0)
= 1 − l2�m ∼= ml2 (25)

giving a quite different dependence for d = D = 2 than
for D = 3 spins, that is, an m4 dependence (or (l + 0)/1
power for DOF n = 2 − 1). In order to generalize to n

DOF, we notice that for D = 3 (n = 3 − 1 = 2) the power
is l(l + 1)/2, which by induction gives a general power
l(l + n − 1)/2. A general proof of the preceding conjecture
for all l, all symmetries, and all D does not exist, as the
corresponding mathematics does not exist. The exceptions
are uniaxial crystals in d dimensions.

2.6 Parastriction

The STM also provides a description of the PS, although
a direct calculation of the strictions, through the diago-
nalization of the full Hamiltonian (including QP exchange
interaction), and using perturbation theory has provided a
good explanation of PS in cubic-CsCl REM (M = Zn, Ag,
Cu, Sb, Cd, P, As) intermetallics, showing FM, AFM,
QP, and anti ferro-quadrupolar (AFQP) orderings, in cubic

Laves-phase REM2 (M = Al, Ni, Cu) and hexagonal RENi5
(del Moral, 2007). We have no space here to develop
such a detailed theory (Morin, Schmitt and de Lacheisserie,
1980), and we take recourse to the usual STM, where CEF
effects are disregarded (instead in CEF-PS theory we end
up, after a perturbation expansion of F , with MSs ε
 =
(M
,2/c


0 )χ

QH 2, 
 = γ (ε), where χ

γ

Q = ∂Q/∂(H)2 is the

QP-field susceptibility, for QP moment Q = 〈Õ0
2 〉 (〈O2

2〉, etc.
for χε

Q). Effectively, in PM regime (T > Tc or TN ), X =
βµ(HMF + H) is small and therefore the small m(T , H) =
Î3/2(X) = (1/3)X + · · · expansion is also allowed, as well as
Îl+1/2(X) = [1/(2l + 1)!!]Xl + · · · , X � 1. Therefore we
obtain Îl+1/2(X) ≈ 3lml(T , H)/(2l + 1)!!, m � 1, and for
order l = 2 we deduce that

M



j,2(T )

M



j,2(0)
= Î5/2(X) =

(
9

15

)
m2(T , H)

=
(

9χ2(T )

15M2
0

)
H 2, T � Tc (26)

where χ(T ) is the first-order PM (Curie) susceptibility and
M0 = M(0, 0). This H 2 dependence is the finger point for
a true paramagnet (although higher even powers appear for
T ∼= Tc). For higher order MEL constants the dependence is
as m� indeed.

Finally we have to mention that in AFM helical systems
such as hcp RE metals, MS should be in principle nonuni-
form, the lattice deforming in each crystal plane along the
local magnetization. But if we assume such a strain and
call by (ξ, η, ζ ) the local frame attached to the rotating
spin, with turn angle ψ between NN spins along c axis,
we obtain the expression for the (l, m, n) site displacement,
ulmn = ∫

A(ξ, η, ζ )ei(ξ l+ηm+ζn) dξdηdζ and also the condi-
tion cos η = 2 − cos 2ψ > 1, which means that η is imagi-
nary and therefore u is damped as moving away from the
crystal surface. This means that for instance, the εγ modes
are clamped within the lattice, and that the crystal is only
strained within a thin surface layer (few lattice constants)
(Evenson and Liu, 1969). For a bulk crystal this is insignifi-
cant but not for a very thin film (TF).

2.7 Magnetoelastic parameters calculation
and MS of RE intermetallics

MEL parameters M

,�
i are the best piece of information about

MEL coupling at a microscopic level, and therefore their
experimental determination and theoretical calculation are
paramount. The simplest way to calculate them is assuming
that the ligand ions producing the CEF are point charges, qi
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(point charge model, PCM), although PCM is so simplified
that it seldom agrees with experiment. A better way is to
use the superposition model, which assumes axial symmetry
along each bond axis, and from A0

n build the remaining CEF
parameters (Newman and Ng, 1989). The way to proceed is
by writing the undistorted CEF gradient (even if it is zero by,
e.g., cubic symmetry), and expanding it in the corresponding
strain. For instance let us calculate Mγ,2 (for orthorhombic
basal plane distortion, ε

γ

1 = (1/2)(εxx − εyy)) for hexagonal
symmetry. We start with the CEF parameter

Bγ,2 = +
(

3

4

)
Z|e|αJ 〈r2〉�iqi

(
(x2

i − y2
i )

R5
i

)
(27)

where (xi, yi, zi) are the point ligand positions (of charge
Z|e|) and Ri their distances to the probe ion. αJ ≡ θ2 is
the second-order W–E coefficient. If we now distort the
coordinates as xi → xi(1 + εxx), yi → yi(1 + εyy), zi → zi

and preserve the volume (i.e., εxx = −εyy = ε
γ

1 ) we obtain
the lattice summation S = 2ε

γ

1 �i[(x2
i + y2

i )/R
5
i ] − 5ε

γ

1
�i[(x4

i − y4
i )/R

7
i ], plus B0

2. In this form the MEL parameter
becomes,

Mγ,2 =
(

3

4

)
Z|e|αJ 〈r2〉

[
2�i

(
x2

i + y2
i

)
R5

i

−5�i

(x4
i − y4

i )

R7
i

]
(28)

We can proceed in similar way with other ISs and other
symmetries and even with more complex structures (poly-
atomic motives; the lattice summations are well known, del
Moral, 2007). The results of this model can be compared
with the measured MEL parameters, obtained from MS mea-
surements, the best way being by studying M

γ ,�
temperature

dependence. This has been performed with the RE met-
als (hcp structure), many RE intermetallics, such as REM2

(Laves phases), REM5 (hexagonal) (M is a metallic atom),
and RE impurities in nonmagnetic hosts, a good way to avoid
MS exchange contribution. Considering only NN ligands,
for the REM2 the tetragonal distortion, ε

γ

1 MEL param-
eter becomes, Mγ,2 = √

6e2αJ 〈r2〉 { 4
3

[
Z(RE)/R3(RE)

]−
(156/121)

[
Z(M)/R3(M)

]}
, where Z is the ligand charge.

We present an example to show how to proceed for
the derivation of the MEL parameter, studying the ther-
mal variation of ISs in the archetypal FM Laves-phase
REAl2, in concrete the saturation (spontaneous after DW
displacements) tetragonal ε

γ

1 (εxx = εyy = −εzz/2) distor-
tion in Pr Al2 (Tc = 33 K; 〈100〉 EDs) (Abell, del Moral,
Ibarra and Lee, 1983; see del Moral et al., 1986), for
Gd1−xTbxAl2, where exchange is tailored). The same kind
of study has been performed in dilute Y1−xREx (Pureur,
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Figure 17. Spontaneous MS ε
γ

1 (T) variation for cubic Pr Al2; line
is the theoretical fit (see text) (Abell, del Moral, Ibarra and Lee,
1983).

Creuzet and Fert, 1985) and noble metal–rare earth (NMRE)
alloys (Creuzet and Campbell, 1981). The thermal varia-
tion of the MSs difference giving ε

γ

1 is shown in Figure 17,

together with the theoretical fit by ε
γ

1 = (Mγ ,2/c
γ

0 )〈Õ0
2〉 +

(Mγ ,4/cγ )
[
〈Õ0

4〉 − (14/5)〈O4
4〉
]
, where c

γ

0 = c0
11 − c0

12 =
4.52 × 105 K/ion. The thermal averages are calculated by the
diagonalization of the unperturbed Hamiltonian H = HEX +
HCEF + HZ, expressing HEX = gµBJ · HMF within the MFA,
obtaining the Pr3+ ion energy levels and eigen functions,
those mixtures of pure |JMJ 〉 ones. From the fit we obtain
the Mγ,2 value given in Table 2, but a better fit is obtained
adding the fourth-order MEL contribution (Mγ

4 term in the
MEL Hamiltonian). In this table the MEL parameters for
other REAl2 together with PCM calculated parameters are
given. As we can see the PCM generally fails, either in mag-
nitude or sign (less). This is because of the neglecting of
the screening of the CEF by the distorted conduction band
electrons (CEs) charge density, which is very strong, since
the proximity of CE to the probe ion can produce a CEF
even stronger than the NN ions. However ratios such as
Mε,2/Mγ ,2 are dictated only by symmetry, being model inde-
pendent (e.g., −4/3 for the RE3+ diamond lattice in REM2).

There are two models to introduce screening in the MEL
parameters, both distorting the electronic charge density,
ρ(r − Ri ): one calculates the distortion of the reciprocal
space (q) and of the Lindhard’s dielectric constant of CE,
ε(q), introducing exchange and correlation between CE,
and assumes an spatial charge distribution (Gaussian) for
the ligands (del Moral, Echenique and Corrales, 1983); the
other just considers the distorted ρ(r − Ri ), after a previous
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Table 2. Magnetoelastic parameters in K/ion for REAl2. (From
Abell, del Moral, Ibarra and Lee, 1983.)

Compound M
γ

2 Mε
2 M

γ

4 Mε
4

PrAl2 –I −52 +487 – –
PrAl2 –II +132 – −12 –
PrAl2 –IV −97 +130 – –
TbAl2 –I −3.5 +20 – –
TbAl2 –III – 40 – +0.1
TbAl2 –IV −35 +46 – –
NdAl2 –I −32 +65 – –
NdAl2 –IV −82 +109 – –

I–derived from experimental data using second-order terms only.
II–derived from experimental data including fourth-order terms in ε

γ

1 .
III–derived from experimental data including fourth-order terms in εε .
IV–calculated from point-charge model–nearest-neighbor RE ions only;
zero charge on Al.

undistorted band structure calculation (Morin and Schmitt,
1981). It has been shown that the first approach is superior,
the second one failing in the sign and/or order of magnitude.
For instance in the case of NdAl2, introduction of CE
exchange is essential (positive Fermi holes introduction) and
the experimental values are well reproduced (same happens
for RE = Pr, Tb).

3 ITINERANT ELECTRON
MAGNETOSTRICTION; BAND
MODELS; HUBBARD FORCED
MAGNETOSTRICTION; STRONGLY
CORRELATED SYSTEMS
MAGNETOSTRICTION;
SPIN-FLUCTUATIONS THEORY;
ITINERANT WEAK FERROMAGNETS;
AB INITIO MS CALCULATION
METHODS

Calculation of MS and MEL effects in metals, semi-
conductors, and alloys is the most difficult task of MS
theory. Several theories have been proposed so far (del
Moral, 2007): the Stoner model of spontaneous magnetovol-
ume (MV), ωs developed below Tc, and of forced VMS,
∂ω/∂H (near saturation); the use of Hubbard model (HM);
the band models (BMs, one of which is the pioneering
Brooks–Fletcher–Katayama (BFK) one (Fletcher, 1954); see
also Tatebayashi, Ohtsuka, Ukai, and Mori (1986)), based on
MS perturbation of tight binding approximation (TBA) bands
(Mori, 1969a,b; Kondorskii and Straube, 1973; Mori, Fukuda
and Ukai, 1974; Otha and Shimizu, 1982), and a simplified

BM (band-degeneration and Brillouin zone symmetry (BD-
BZS)) of it; and the ab initio (AI) calculations (based on
first-principles calculations) will be considered. The Stoner
model is developed in many text books, and therefore we
focus on the BMs (for CEF-MS) and the HM for two-ion
MS, as well as in AI methods. In all BMs some conditions
to get MS are required: (i) the band must be orbitally degen-
erated to have 〈L〉 �= 0 and so non-null SO coupling; (ii)
k points of high symmetry (HS) within the Brillouin zone
(BZ) are the main contributors to MS (e.g., 
 point in fcc
and bcc-BZs), since only in this case moving out the HS
k point some degeneracy is retained; (iii) only bands near
EF which are partially occupied, yield 〈L〉 �= 0 and 〈S〉 �= 0;
(iv) the SO coupling finally splits the degenerate CEF levels
(centers of bands) and mixes the t2g and eg〈L〉 = 0 orbitals
(see subsequent text), in this way giving 〈L〉 �= 0.

3.1 Band-degeneration (BD) and Brillouin zone
symmetry model (BZS)

In the BD-BZS model (Kulakowski and del Moral, 1994)
one considers rigid bands within the TBA (with wave func-
tions ψk,λ(r) = �lalϕλ(r − l)ek·l), centered around the CEF
3d-electron energy levels, Eλ, with density of states (DOS)
D(E − Eλ). The bands are taken to be of elliptical or
Lorentzian shape, obtained by fitting the real DOS band cal-
culations. Also few k points near the Fermi surface (FS) are
considered. Under MS and the MF field, HMF = nM (pro-
portional to the Stoner spin-polarized band splitting), there
is a rigid band shift �Eλ(ε



i , HMF), and electron number

variation, �nλ, by transference to other 3d bands (eg : ϕλ ={
3z2 − r2, x2 − y2

}
; t2g : ϕλ = {xy,yz,zx} for cubic symme-

try). Since �λ�nλ = 0, there must be a �EF variation, such
that �nλ = Dλ(µ)�µ − Dλ(µ)�Eλ, from where �EF is
obtained under the preceding constraint. The energy variation
is therefore given by �F(Heff, ε


i ) = �λ(�F
(1)
λ + �F

(2)
λ +

�F
(3)
λ ), where �F

(1)
λ = −nλ�Eλ, or energy gain under

rigid sub-band shift; �F
(2)
λ = EFDλ(EF)�Eλ, or energy

cost to keep EF constant for the exchange polarized bands;
�F

(3)
λ = −EF�EFDλ(EF), or gain under EF modification

(H = Happ + HMF). Introducing �EF in the total �F , we
obtain the net variation, �Fm(Heff, ε


i ) = −�λnλ�Eλ, from
where for instance for α strains,

∂Fm

∂εα
i

= −�10
λ=1

(
∂Eλ

∂εα
i

)
(i = 1, 2) (29)

which allows the MS calculation, just minimizing, that is,
making ∂(Fm + Fel)/∂ε


i = 0. The free energy is calcu-
lated in itinerant FMs as Fm = �λ

∫ µ

−∞(E − Eλ)
νDλ(E −

Eλ)fFD(β(E − Eλ))dE (with ν = 1) and the band filling, n

taking ν = 0.



14 Theory of magnetocrystalline anisotropy and magnetoelasticity
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Figure 18. Fe pair atoms (4f sites) in uniaxial Y2Fe17 intermetallic
(Kulakowski and del Moral, 1995).

This model has been successfully applied to iron-rich uni-
axial intermetallics and to Ni and Fe. In the former, for
example, for the Y2Fe17 (2–17), with hexagonal structure
formed out of pairs of magnetostrictive Fe atoms (‘dumb-
bells’) (see Figure 18), a ED and with two magnetostrictive
doublets ({|xz〉, |yz〉} and

{|xy〉, |x2 − y2〉}), these produced
by the CEF splitting. The MEL Hamiltonian is equation (14).
From the preceding considerations we immediately obtain for
the spontaneous εα

i MSs (i = 1, 2) that

εα
i = �−1

α

[
cα
jj

(
−∂Fm

∂εα
i

)
− cα

12

(
−∂Fm

∂εα
j

)]

i, j = 1, 2; j �= i (30)

By applying field we rotate M‖a to M‖c, and we obtain
the rotational or CEF-MSs �εα

i = εα
i (c) − εα

i (a), where the
thermal variation of shape MS �εα

2 is shown in Figure 19,
where we notice a nonmonotonous or non-STM variation,
as a consequence of a population of the first doublet, 〈L〉
becoming quenched and MS decreasing for T < 150 K, as
the numerical calculation shows. Same happens with volume
MS �εα

1 . The fitted MEL parameters are (in 103 K/Fe atom)
M

α,2
1 = −9.0 and M

α,2
2 = −1.8, much larger than for RE

intermetallics (≈10 − 100 K/RE3+), due to the much weaker
CEF screening in 3d metals. Therefore this model gives a
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Figure 19. Irreducible εα
2 (c) thermal variation in Y2Fe17; line is

the theoretical fit (εα
2 (a) ≈ 0)(Kulakowski and del Moral, 1994).

good account of the complicated MS thermal variation (also
shown by Y2Fe14B (2–14), with Tetragonal (TETR) structure
and c ED) and has been also successful in explaining the
maximum shown by −λγ ,2 in iron, below Tc. In iron the
use of localized STM gives an AZC exponent a = 4.9,
which means a breaking of m3(T ) law (Kulakowski and de
Lacheisserie, 1989).

3.2 Hubbard forced MS

In the preceding Fe intermetallics the magnetostrictive atom
pairs are well ‘separated’ via electron hopping from the
surroundings, and so the FMS can be calculated in a rather
exact way (in fact those systems MS recall the classical pair-
atom Néel MS model). The important fact is that this simple
system shows up that FMS is a consequence of the 3d-
electron repulsion, U within the pair. The pair Hamiltonian is
the Hubbard one, Hh = �i=1,2�ρ,ρ′,σ t12(ρ, ρ′)c+

iρσ c3−iρ′σ +
Uint, where |ρ〉 and |ρ ′〉 are t2g states, i the dumbbell
sites, t12(ρ, ρ′) the hopping matrix elements (Slater–Koster
overlapping integrals, depending on the direction cosines of
the atoms bond) and Uint the intra-atomic electron coulomb
repulsion. The preceding Hamiltonian can be transformed to
one where the effective coulomb interaction depends on the
electrons’ distance, U eff

ρρ′(r), and takes the many-body form
H = U eff�i=1,2ni,σ ni,−σ (ni,σ is the occupation operator)
with a quasi-ground state (QGS) energy level EQGS = U eff

and

U eff =
(

U

2

)
1 + r

2
−
[

1 + (1 − r)2 − 16

(
ti

U

)2
]1/2




r ≡ 3J

4U
(31)

strongly reduced from the bare U value (∼=1 eV for Y2Fe17),
that is, to 0.1 and 3 meV for 2–17 and 2–14 compounds. But
this reduction is only accomplished if t12 (= 0.24 and 0.15
eV) is taken as purely imaginary, that is, the Bloch pair state
QGS is bonding. It can be shown from equation (29) that the
FMS, χ

α,i
mel = ∂εα

i /∂H has a contribution such that χ
α,i
mel =

χ
α,i
mel,0 − (1/cα

ii)(U
eff
n /4)(∂/∂εα,i

[
χhf (T )m(T )

]
)T, i = 1, 2

(del Moral, Abadia and Garcia-Landa, 2000), which allows
to derive U eff from the slopes of the plots of Figure 20 (χhf

is the paraprocess susceptibility, ∂Ms/∂H , and χ
α,i
mel,0 the

combined CEF and Fe–Fe exchange, J , FMS) (del Moral
et al., 2007).

3.3 Spin-fluctuations theory of MS

There are RE intermetallics, notably the REMn2 (including
Y) and some alloys such as ZrZn2, MnSi and Sc3In where
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Figure 20. Strain susceptibility for iron intermetallics; see text (del
Moral et al., 2007).

the Stoner and BM of MS do not work, needing the spin-
fluctuation (SF) theory of MS for weak ferromagnet (WFM)
and weak antiferromagnet (WAFM). In SF theory (Moriya,
1985) we work in the reciprocal (k, ω) space as follows.
The spin fluctuation is given by δS = S − 〈S〉T and there
will exist a correlation S(r, r′, t − t ′) = 〈δS(r, t) · δS(r′, t ′)〉,
which when adequately Fourier transformed gives rise to
a dynamical susceptibility χ(k, ω), whose imaginary part
can be measured by inelastic neutron scattering. Moreover
in spin-localized magnets SFs are spatially localized, and
therefore delocalized in reciprocal space, around k = 0 or
k = K in WAFMs (K is the magnetic structure propagation
vector). In SF systems just the opposite occurs, fluctuations
are localized around k = 0 (or K) but spatially extended.
In itinerant magnets those SFs are mainly longitudinal, due
to the up and down fluctuation of the spin-polarized sub-
bands. These SFs are therefore the very existing local aver-
age spin (local moment), whose mean-squared local ampli-
tude, S2

L(T ) must be T dependent (it is not a true moment
µ = gµBS), that is, self-sustained by thermal fluctuations
only. The main result of SF theory for PM regime is that there
exists the relationship S2

L(T ) − S2
L(Tc) = (3/5)gN2(1/χ), so

that S2
L(T ) increases with T (from 3/5 of its 0 K value; g

is a factor function of the DOS slope and curvature at EF),
(see Figure 21). With this background the TH.E. MV can
be obtained, just writing Fmel = −ω�kDk

[〈S2
k〉T − 〈S2

k〉0
]

(Moriya and Usami, 1980). Adding the elastic energy Fel =
(1/2)Bω2 (where B is the bulk modulus) and minimizing
full F we obtain

ωs(T ) = N2
(

D0

B

) [
S2

L(T ) − S2
L(0)

]
(32)

which follows the variation shown in Figure 21,
having at T +

c (or T +
N ) a discontinuity in the MV of

T

Tc
SL

2

Figure 21. Local spin for spin fluctuation weak FM and AFM
(Shiga, 1988).

ωs(Tc) = −(2/5)(D0/B)[M(0)]2, which means that the atom
volume expands when it acquires a magnetic moment, an
interesting result (we assume that the MEL constant is for
k = 0, due to the small electron kinetic energy involved).
A renormalization of the SFs, long and complicated, trans-
forms equation (32) in an interpolated expression useful for
experimental comparison and valid for T < Tc, obtaining

ωs(T ) = −
(

2

5

)(
D0

B

){
[M(0)]2 − [M(T )]2} ,

ωmel(T ) − ωmel(Tc) =
(

3D0

5Bg

)
1

χ(T )
(T > Tc) (33)

and since 1/χ(T ) increases with T at PM regime, VMS
increases. In Figure 22 is shown the volume TH.E. for the
SF Laves-phase series Y(Mn1−xNix)2, where we notice
the first-order MV jump, and how small Ni addition suppress
the WFM phase, due to the strong SF suppression of µMn.
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Figure 22. Thermal expansion of cubic Y(Mn1−xNix)2 inter-
metallics (Ibarra, Garcıa-Olza and del Moral, 1992).
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This theory also explains well the MS mentioned in the
WFMs, as we will see in the subsequent text.

3.4 Itinerant weak FM magnetostriction

Several theories have been put forward for explaining MS
in WFMs such as the archetypal ZrZn2, Sc3In, MnSi, Ni3Al,
the alloys FexNi1−x , NixAl1−x , and TiBe2−xCux , the tran-
sition metal (TM)-rich intermetallics, YnTMm(TM = Fe, Ni)
and many other alloys. Many of them show the invar effect,
consisting in the very weak temperature dependence of MV,
ωs below Tc. Others show the elinvar effect or constancy
also of B bulk modulus below Tc (and other ECs). Of those
theories we will consider the Stoner–Wohlfarth–Edwards
(SWE) one (Edwards and Wohlfarth, 1968; Mathon and
Wohlfarth, 1968) and the SFs one (Moriya, 1985), quite
similar to the preceding SF theory; the Shiga’s model
(Shiga, 1981) based on local spin-polarized bands (of
rather clear physical picture) and the field theoretic one
(Kakehashi–Liberman–Pettifor, more complex, (Kakehashi,
1981)) may be found elsewhere (del Moral, 2007). In SWE
model the free energy, F(M, ω) adopts a L–G expansion
in M , and if the material deforms (either spontaneously
or forced by H ), the coefficient A(ω) = A(ω0) − 2D

α
(ω −

ω0), and therefore,

F = F00 +
(

1

2

)
AM2 +

(
1

4

)
BM4 − HM

+
(

1

2κ

)
ω2 − D

α(
M2 − M2

0

)
ω + pω (34)

where F00 = F(0, 0), κ = 1/B is the compressibility, M =
M(T, H), M0 = M(T, 0) (spontaneous magnetization for
T < Tc), and therefore D

α
is the MV constant (p is the

applied pressure). Minimizations ∂F/∂M = ∂F/∂ω = 0, in
particular yield,

ω(H, T ) = κD
α
(M2(H, T ) − M2

0 ) − κp (35)

where the first term is the MV effect. Therefore for H = 0, a
spontaneous MV ωs = κD

α
(M(T , 0)2 − M(0, 0)2) appears

below Tc, and a minimum at Tc (see such a behavior
in Figure 23). This appears as an anomalous TH.E. in
WFMs, superposed to the lattice one. D

α
is determined

from A(Tc) = 0 in a second-order transition, that yields
∂Tc/∂ω = −2D

α
χ0Tc, where χ0 = [

∂M(H, 0)/∂H
]

is the
0 K paraprocess (high field) susceptibility at FM regime.
It can be also shown that D

α

FM = −(1/4χ2
0)(∂χ/∂ω) =

(1/2)D
α

PM. Also the forced MS becomes (∂ω/∂H)T →0 =
2κD

α
Mχ0. The calculation of D

α
is paramount in this
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Figure 23. Linear TH.E. Vs M2 for several weak FMS; see text
(Brommer and Franse, 1990).

theory, and many-body interactions influence it, through the
U enhancement of χ0, yielding at FM regime and 0 K,

D
α =

(
1

4ND(EF)µ
2
B

)(
∂ ln D(EF)

∂ ln ω
+ U

(
∂ ln U

∂ω

))
(36)

where U = UD(EF) (∼= 1 is the Stoner criterion for FM).
An important consequence from equation (36) is that D

α
is

positive and decreases with increasing T .
In SWE theory we have single-particle excitations, with-

out spin-fluctuations allowance. In fact a strong discrep-
ancy of this theory with experiment is observed, as shown
in Table 3. If SFs are taken into account, we obtain
in similar way as in the preceding SF theory ωs =
�k(Dk/B)

[〈M2
k〉 − 〈M2

k〉0
]
, which can be transformed to

ωs = (D0M
2
0 /B)(η − 1), where η = 〈M2

loc〉/M2
0 , where Mloc

and M0 are the local and uniform magnetizations respec-
tively. If we now compare with SWE theory where for
T < Tc, ηSW(T ) = (MT /M0)

2 = 1 − (T /Tc)
2 (= 0, for T >

Tc) and expand 1 − η(T ) ≈ [1 − η(Tc)] (1 − M(T )/M0), we
obtain that 〈M2

loc〉Tc = (3/5)M2
0 and therefore the impor-

tant relation ωSF
s /ωSWE

s = 2/5, in qualitative agreement
with Table 3. Moreover, for T > Tc, ωSWE

s = 0, whereas
in the SF theory ωs(T ) − ωs(Tc) = (3D0/5γ )(1/χ) > 0
increases with temperature, as observed experimentally.
When ωnm(T ) + ωs(T ) = 0, where ωnm is the lattice TH.E.,
we have the invar effect for T < Tc (see Figure 24 for the
alloys Fe65(Ni1−xMnx)35).
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Table 3. Experimental values for ωexp thermal expansion relative to ωSWE and other related magnitudes. (From Moriya and Usami, 1980.)

Tc(K) M0 (emu g−1) D0/B(emu g−1)−2 ωexp/ωSWE

Sc3In 7.5 ≈3 1− ≈ 1.6 × 10−6 0.3− ≈ 0.5
ZrZn2 18 3 5 ≈ 0.6
NixAl1−x(x = 0.755− ≈ 0.76) 59− ≈ 72 8.7− ≈ 10 0.7 ≈ 0.3
NixPt1−x(x = 0.452) 55 4.2 3.3 ≈ 0.2
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Figure 24. Spontaneous ωs (T) and invar effect in Fe65

(Ni1−xMnx)35; bar signals Tc (Hayase, Shiga and Nakamura,
1971).

3.5 Strongly correlated systems (SCS)-MS

Several models have been proposed to explain MS in strongly
correlated systems (SCS), where its main characteristic is
the instability of the ion f shell, giving rise to Kondo (K),
fluctuating valence (FV) and heavy fermion (HF) behaviors
(see also Heavy Fermions: Electrons at the Edge of Mag-
netism, Volume 1 and The Kondo Effect, Volume 1). Of
those models we will consider the interconfigurational (ICF)
one (Zieglowski, Häfner and Wohlleben, 1986), consisting in
assuming that 4fn-shell valence, ν fluctuates between 4fn ↔
4fn±1 (−:Ce,Eu; +: Yb), so that with macroscopic probes
the valence appears as intermediate. One of characteristics
of susceptibility and MS in FV materials is that they show a
broad maximum around the fluctuation temperature, Tf, and
that the H -dependence is quadratic. In the case of ω, we
assume the Vegard’s ansatz �V/V = V −1(∂V/∂ν)�ν(H),
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Figure 25. See text for meaning (Adroja et al., 1995).

where �ν(H) is consequence of the EF reduction for the
higher moment configuration. Assuming the two configu-
rations (separated by energy Eexc) with probabilities ε and
(1 –ε), and their CEF manifold levels, it is easy to obtain
the partition function, Zi(H) = ∑

k exp
[−Eik(0)/kBT ∗][

exp(−µikH/kBT ∗) + exp(µikH/kBT ∗)
]
, where T ∗ = T +

Tf, Eik are the CEF levels for i-configuration, and µik the
corresponding moments. From an expansion of Zi(H/T ∗)
and preceding considerations the VMS is given by

�V

V
≡ ω =

[
±
(

ν0(1 − ν0)

2

)(
(Vn+1 − Vn)

V

)(
µ2

z

k2
B

)]

× H 2

(T + Tf)2
(37)

This kind of dependence is well manifested in Figure 25
for ω and also λt of Ce(Ni1−xCox)Sn intermetallics and it
is also well followed at high enough field by many SCS
(Häfner, 1985).

3.6 Ab initio MS calculation methods

First-principles calculations based on the determination of
the electronic structure for the MS distorted solid provide
a very accurate MEL energy obtention, and have been used
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for MS calculation in TMs (Wu and Freeman, 1999; Wu,
Gravilenko and Freeman, 2001; Komelj and Fänhle, 2000)
and also in REMs and RE intermetallics (Buck and Fähnle
1998, 1999; Wu, 1999). They are based on the power-
ful nonrelativistic (i.e., without spin consideration) density-
functional approximation (DFA) (Hohenberg and Kohn 1964;
Kohn and Sham, 1965) and the relativistic spin-density (func-
tional) approximation (SDA) (von Barth and Hedin, 1972),
together with some added practical modifications, the local-
density approximation (LDA), local spin-density approxima-
tion (LSDA), the generalized gradient approximation (GGA),
the full potential linearized augmented plane wave (FLAPW)
(Weinert, Wimmer and Freeman, 1982), force theorem (FT)
and state tracking (ST) methods, and the very practical torque
method (TQ), required to calculate MCA and MEL energies
as tiny as respectively ≈ 0.1–1 and ≈ 0.01 µeV/atom respec-
tively in TM and alloys. Those theories take resort to k space,
in order to introduce k points of low symmetry, which are
also magnetostrictive, and because ‘Fermi energy filling’ of
levels, ε(k) can introduce some k states below EF in detri-
ment of others contributing more to MEL energy (and MCA).
However, it is tried to reduce k points to a minimum (≤103),
and therefore these methods are more accurate for calculating
MS in standing monolayers, overlayers, and very thin multi-
layers (MLs) (see Section 6). Here, we can only very briefly
treat all those approximations (see Theory of Magnetocrys-
talline Anisotropy and Magnetoelasticity in Transition-
metal Systems, Volume 1 for further details): DFA, and its
local (r dependent) LDA, consist in writing electrons nonrel-
ativistic Hamiltonian, H in second quantized field operator
form and then H = T + VCEF + EEX + U terms as integral
functionals, F [n(r)] of the electron density, n(r), the sys-
tem becoming an inhomogeneous quantum liquid of single-
particles (e.g., kinetic energy T ≡ (1/2)

∫ ∇ψ+(r)∇ψ(r)dr
in terms of field operators, ψ+, ψ , afterwards transformed
to T [n]). When H is the relativistic Dirac Hamiltonian, we
end up with the FLAPW method, where the functionals
are F [n(r), m(r)], with m(r) being the local magnetization.
In augmented plane wave APW + LSDA + FT brute force
method, introduction of HSO and HCEF allows calculation
of MCA and CEF-MEL energies in terms of the total elec-
tronic energy (≈ 1 − 10 eV) difference when Ms is rotated
from ED (1) to another hard one (2), that is,

�EMEL =
occ∑
i,k

ε0
i (m̂1, k) −

occ∑
i,k

ε0
i (m̂2, k) (38)

or FT (Daalderop, Kelly and Schuurmans, 1990) (occ. means
states occupied up to EF; i is the band index; superindex
0 means without SO coupling; m̂i , unitary vector). One
must insure that for both directions large direct-Coulomb
and intra-atomic-exchange energies are the same, because

of the very weak MEL energy compared with the band one,
therefore requiring the use of a large number of k points:
≈106 for bulk 3d metals and ≈104 for monolayers and over-
layers. Results with this method for Ni are only qualitative,
λ100 = −245 and λ111 = −107 (in 10−6), about three times
the values at 0 K, although results improve for fcc Co.

Calculation of MS much improves with the tour de force
FLAPW + LSAD + GGA + ST + TQ method, which avoids
the use of total energy and FT (Wu and Freeman, 1999).
GGA briefly consists in expanding EEX [n] as shown in
EEX[n] = ∫

n(r)εxc(n(r))dr, where εxc is the exchange
plus correlation, energy per electron, keeping only n(r) and
∇n(r), but indeed separating out up and down spins (Perdew
et al., 1992). But the core of the method is: (i) the mentioned
ST, by which the levels filling is done keeping charge
and spin densities practically constant, energy difference
of equation (38) reflecting certainly the MEL (or MCA)
energy; the name is because the initially FLAPW calculated
basis state

∣∣ψi 〉 can be ‘tracked’ when forming new basis
states due to the perturbation introduced by HSO and Hmel

(‘Fermi k filling’). The practical consequence is the large
reduction in the number of k states needed (≈0.5 − 1 × 103)
for good energy convergence. (ii) Since MEL energy is
the strain dependence of MCA energy, TQ method comes
into its calculation, in terms of MCA torque T (θ). This is
calculated using Feynman–Hellman theorem, that is, T (θ) =∑

occ〈ψ so
i,k |∂Hso/∂θ |ψ so

i,k〉, which again avoids calculation
of total energy, since SO interaction is introduced from
the beginning of the calculation. Those methods have been
developed for calculation of MS and MEL constants in 3d
metals, RE metals, and RE intermetallics, summarizing the
results in Table 4, and comparing with experiment, from
where we can realize the degrees of agreement attained,
still not quite the experimental values (see Theory of
Magnetocrystalline Anisotropy and Magnetoelasticity in
Transition-metal Systems, Volume 1 for further details).

4 MAGNETOELASTICITY DYNAMICS:
MAGNETOACOUSTIC (MA) WAVES
AND BIREFRINGENCE; ELASTIC
CONSTANTS MAGNETOELASTIC
CONTRIBUTION; SIMON EFFECT;
ROTATIONAL INVARIANCE THEORY;
FARADAY EFFECT

Another as powerful a way as MS for studying the MEL
coupling and magnetoelasticity is through the ECs or elastic
moduli (EM) (polycrystals), because the EWs in magnets are
modified by MEL energy (MA waves), giving rise to a variety
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Table 4. MS (in 10−6, except when quoted otherwise) and MEL constants for 3d metals, RE metals, and RE intermetallics. The main
step(s) in the calculation method are indicated (Wu and Freeman, 1999; Wu et al., 2001; Komelj and Fänhle, 2000; Buck and Fänhle,
1998, 1999; Wu 1999).

Material λ100 λ100 λ100 M1 (FLAPW + λ111(APW + M
γ ,2

(FLAPW+ λ
α,2
2 (APW+ λγ ,2 (ibid.)/

(LDA) (GGA) (EXP) LDA + ST) LSDA)/ LSDA/GG)/ LSDA)/EXP EXP
(meV/au) EXP EXP (MJ m−3) (in 10−2) (in 10−2)

Bcc Fe 52 29 21
Fcc Co 92 56 79
Fcc Ni −63 −56 −49
Co/Cu(111) −0.37
Co/Pd(001) +1.87
Co/Pd(111) <±0.1
Bcc-Fe film 4.9(a) 11.8 2.4 (−10.09, /−2.42)/−3.1
Tb 1.71/1.5 1.00/0.95
Er −0.41/−0.59 −0.47/−0.5
GdFe2

b 44/39
GdCo2

b −327/−1200
TbFe2 −0.14 × 103 8.3/4.4 × 103

a(LSDA).
bFLAPW + LSDA + ST + TQ.

of interesting effects, all of them of the kind of inverse MEL
effects (see del Moral, 2007). Well known are the �E and
�cij effects related to the DW magnetization process. Let
us consider the �cij -effect in cubic crystals (de Lacheisserie,
Morin and Rouchy, 1978), at the end of the DW magneti-
zation process (usually at weak H ), before the intradomain
Ms rotation toward applied H. The MCA and MEL energies
add to

Fm = κ4

(
α4

1 + α4
2 + α4

3 − 3

5

)
+ M

γ ,2
[
εxx

(
α2

1 − 1

3

)

+ εyy

(
α2

2 − 1

3

)
+ εzz

(
α2

3 − 1

3

)]
(39)

where M
γ ,2

is the tetragonal MEL constant, and min-
imizing against α, if K1 = −2κ4 + cγ (λγ ,2)2 < 0 (〈111〉
EDs), the Ms direction under strain becomes α2

i = 1/3 −
(M

γ ,2
/2κ4)(2εii − εjj − εkk)/3, i �= j �= k and bringing

them to Fm, we obtain the MEL contribution to the effective
elastic energy, �Fel = −[

(M
γ ,2

)2/6κ4
] {

(ε2
xx + ε2

yy +ε2
zz)−

(εyyεzz + εzzεxx + εxxεyy)
}
. Therefore the EC variations

are (�cij = cM
ij − c0

ij , with c0
ij the without interactions

(bare) EC),

�c11 = − (M
γ ,2

)2

3κ4
, �c12 = (M

γ ,2
)2

6κ4
(40)

and therefore cγ = c11 − c12 decreases (the material softens
for H ⊥ u, Figure 27) under magnetization, typical of the
�E effect for low applied fields (DW displacements) in soft
magnetic alloys such as FexNi1−x (Carr, 1966).

4.1 Simon effect

The Simon effect (Simon, 1958) is the modification of ECs
during the intradomain Ms rotation process, manifested in
the different EW velocity for H‖ε and H ⊥ ε, where ε

is the shear EW strain (in Voigt’s notation), as seen in
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Figure 26. Magnetoacoustic birefringence in Tb0.3Dy0.7Fe2 (a) and
Sm0.88Dy0.12Fe2 (b). The saturation sound velocity is unmodified
when magnetic field H⊥∈ (polarization), but it is strongly reduced
when H‖∈ (Cullen, 1978).
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Figure 26 for the ‘giant’ (≈1%) AMS Tb0.3Dy0.7Fe2 (Ter-
fenol) and Sm0.7Ho0.3Fe2 polycrystalline materials. We will
first consider our FM material to be isotropic (polycrystalline
or amorphous), where a shear EW (ε ⊥ k) is propagat-
ing and where H is set for the preceding two geome-
tries. It is observed that when the angle θ = ε̂, H is 0
or π/2 a single wave propagates but for intermediate θ

two waves with different velocities, vT are observed, the
faster (H ⊥ ε) with small H dispersion (except at the begin-
ning due to the DW �G effect; G is the shear modu-
lus), but with strong dependence for the slower (H‖ε), this
effect being known as MA birefringence (Figure 26). We
write Fmel = M

is
�ij εij (mimj − (1/3)δij ), where M

is
is the

isotropic MEL constant and m = M/Ms. If we set M‖H‖OZ,
k‖OY and the EW displacement u ⊥ k, the only nonzero
strains are εxz and εxy , and since mz

∼= 1, the other m com-
ponents are of the same order as the strains and therefore
only εxz couples to M, so we have Fmel = M

is
mzmxεxz.

Now mx = χ⊥H mel
x /Ms, where Hmel is the MEL anisotropy

field (defined as MsH
mel
x = −∂Fmel/∂mx = −M

is
mzεxz) and

therefore we have for the total energy, Ft = (1/2)G0(ε
2
xz +

ε2
xy) − (M

is
/Ms)

2m2
zχ⊥ε2

xz, where G0 is the zero-field (bare)
shear modulus. Therefore the EM for the two strains εxz and
εxy are different,

G = G0 − (M
is
)2(χ⊥M2

s )m2
z, G = G0 (41)

respectively, a result that embodies the Simon effect of EM,
giving rise to the waves with different velocities vT = √

G/ρ,
the slower being the MA wave. Therefore H application
breaks the isotropy of G in the isotropic medium. This result
also applies to cubic crystals within the elastically isotropic
{100} planes, since M

is = 2M2.
Extension of the preceding theory to crystals compli-

cates calculations, but not the physics. Then if M rotates
under H application against MCA field HK, we have the
experimental picture of Figure 27 for a Terfenol crystal,
for cγ = (1/2)(c11 − c12)(u

∥∥[110
]
) and cε = c44(u ‖[001] ),

with enormous softening of c44 under H rotation from ⊥u to
‖u within the elastically anisotropic [110] plane. The effect is
larger for cε than for cγ because M2 >> M1 and according
to equation (8) M2 couples shear strains εij to M (c44 mode),
meanwhile M1 does it for linear εii strains (cγ mode). The
case of c44 mode is the more difficult mathematically (del
Moral, 2007) and therefore we will consider a shear εxy ,
consisting in a wave with u ‖[100] (OX) and propagation
k ‖[010] (OY) and with H ‖OX, so that Ms is near to OX
(αx

∼= 1). Now we will consider first the strains as dependent
variables and minimize full energy F = FK + FZ + Fmel +
Fel against εij , obtaining the equilibrium strains, ε

eq
ij (or MS)

in terms of fixed α. In this case the free energy becomes
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Figure 27. Magnetoacoustic birefringence in Terfenol single crys-
tal for symmetry ECs (1/2)(c11 − c12) and c44, similarly to
Figure 26 (U ≡ ∈) (Cullen, Rinaldi and Blessing, 1978).

F = K1(α
2
xα

2
y + α2

yα
2
z + α2

zα
2
x) − HMsαx

+ M2αxαy ∈xy +
(

1

2

)
c0

44 ∈2
xy + M2(αyαz ∈eq

yz

+ αzαx ∈eq
zx) +

(
1

2

)
c0

44((∈eq
yz)

2 + (∈eq
zx)

2) + · · · (42)

Conversely if we set εij as independent (externally
impressed by a transducer) we find the equilibrium
α, by making (∂F/∂αk)ε = 0. From the equivalent
zero anisotropy torque 
z = My∂F/∂Mx − Mx∂F/∂My we
obtain α

eq
x α

eq
y = (−M2/(2K1 + MH) ∈xy , and from 
y = 0,

α
eq
z = 0. Using the constraint α2

x + α2
y

∼= 1, we obtain α
eq
x

∼=
1 − (1/2)(α

eq
y )2 = 1 − (1/2)

[
M

2
2/(2K1 + MH)2

]
∈2

xy , and
substituting αeq in equation (42) we obtain the equi-
librium energy F eq = (1/2)(c0

44 − M
2
2/(2K1 + MH)) ∈2

xy

−MsH . Therefore ceff
44 (the coefficient of (1/2)ε2

xy ) becomes
(Clark, 1980),

ceff
44 = c0

44 − M
2
2

(2K1 + MsH)
= c0

44 − M
2
2

Ms(H + HK)
(43)

where HK = 2K1/Ms is the [100] anisotropy field (in metal-
lic materials and high-frequency ultrasound the skin effect
eddy currents (within the surface [100] plane) produces
a dipolar demagnetizing field, HD = 4πMs which adds
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to H + HK). Therefore a decrease (softening) of cε is
always expected under magnetization rotation when H‖u
with respect to the unmagnetized crystal, whereas for H ⊥ u,
ceff

44
∼= c0

44 (if DW process �c44 is excluded). Also, when the
effect is larger the stronger is the MS, as for example, in
Terfenol where it is gigantic, of ≈100%. Moreover under
H increase ceff

44 increases, approaching c0
44 for H � HK, the

opposite to the low field �cij effect discussed in the pre-
ceding text. This is a way of distinguishing between the two
magnetization processes, based on magnetoelasticity.

4.2 Magnetoacoustic Faraday effect

This effect consists in the polarization rotation of an ultra-
sound wave under H rotation in FM crystals, more accused
in strongly magnetostrictive ones (Rinaldi and Cullen, 1978).
For cubic crystals an initially polarized, uT shear wave in the
elastically anisotropic [110] planes splits in two waves with
polarizations u along [100] and

[
110

]
directions, which are

the normal modes, uI and uII (Figure 28). Therefore the MEL
coupling can not fully tilt u ‖[001] parallel to M‖H, then
the normal mode uI forming an angle � with [001], which
increases with the H rotation, the material becoming magne-
toacoustically active. This angle is weak in weakly magne-
tostrictive materials, but it is large when MS is gigantic. We
will now calculate �, and for that we set the EW (Christof-
fel’s) (plane, u = u0 exp i(k · r − ωt)) and M (Larmors’s)
motion equations in the respective forms (ρ is the density),

−ρω2ui = �j

(
∂

∂xj

)(
∂F

∂εij

)
(44)

∂M
∂t

= γ

(
M ×

(
∂F

∂M

))
(45)

which are coupled via the MEL coupling (MA wave
equations). For k‖[110] and for sufficiently low frequencies
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Figure 28. Magnetoacoustic Faraday rotation geometry (Rinaldi
and Cullen, 1978).

such that Ṁ ∼= 0, the coupled equations are,

ρω2ut = k2ut

(
(c11 − c12)

2
−
(

M
2
1M

2
x

M3
s H

))

− k2uzM1M2

(
MxMz

M3
s H

)
(46)

ρω2uz = k2uz

(
c44 −

(
M

2
2M

2
z

M3
s H

))

− k2utM1M2

(
MxMz

M3
s H

)
(47)

where ut ≡ ux − uy and H = Happ + HK + 4πMs. We
notice that the equations coupling is via M1M2. Setting now
ut = u0 sin �, uz = u0 cos � and Mz/Ms = sin θ , we obtain
from equations (46 and 47) a linear system of equations
in (sin �, cos �), whose secular determinant yields (ω/k)2,
and therefore the phase velocities (v = ω/k), ρv2± = 1

2 (C ′ +
C) ±

{[ 1
2 (C ′ − C)

]2 + B2
}1/2

, where C and C ′ are con-
stants related to the problem parameters, depending on field
as 1/H , B being the coupling constant. We also obtain
the polarization angles of rotation for the two normal
modes,

tan �± = −B

{
1

2
(C − C ′) ±

[
1

2
(C ′ − C)2 + B2

]1/2
}−1

(48)
which embodies the MA Faraday effect. B ≡ M1M2(sin 2θ/

2HMs), where θ is the angle (M, [001]), introducing a
NL dependence. In Figure 29 is shown the calculated �−
versus θ for Terfenol. Another prediction is the interfer-
ence between the two normal modes, when projected into
the reception transducer axis, ûR, the maximum occur-
ring for an angle θR(H), which decreases with H , as
observed.
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0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
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Figure 29. Magnetoacoustic Faraday rotation angle, �− versus H
rotation angle, θ (Rinaldi and Cullen, 1978).
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Figure 30. Rotational invariance principle of magnetoelasticity
(del Moral, 2007).

4.3 General magnetoelasticity dynamics;
rotational invariance

A general theory of magnetoelasticity dynamics has been
developed, which includes as a central part the quantum-
mechanical rotational invariance principle (Brown, 1965;
Melcher, 1972; Dohm and Fulde, 1975; Wang and Lüthi,
1977), based on the invariance of angular momentum under
spatial rotation. In the most general form the theorem is
expressed in terms of finite strains (or Lagrangian, ηij if the
strains are small) and states that the MEL Hamiltonian for

a magnetized crystal under pure strains,
↔
E and rotational

ones,
↔
R is the same if the crystal is only

↔
E strained and the

AM J and applied H are rotated back by R−1(= Rt ) (
↔
E is

rotationally invariant) (see Figure 30). Therefore we write

Ĥ

(
Ji, Hi,

∂xi

∂Xj

)
= H(Jk

∗, Hk
∗, Ekl) (49)

where

Jk
∗ = JiRik, Hk

∗ = HiRik,

Ekl =
(

1

2

)[(
∂xi

∂Xk

)(
∂xi

∂Xl

)
− δkl

]
(50)

where ∂xi/∂Xj in Ĥ mean pure strains. If the RSs,
ω(ωyz, ωzx, ωxy) are small this theorem adopts this other
more manageable form, which also allows the derivation of
the rotational part of Hamiltonian, Hrot and where ĤSpin =
ĤCEF + Ĥstrain,

exp[−i�−1ω · J]ĤSpin(J) exp[i�−1ω · J]

= HCEF(J) + Hstrain(J) + Hrotation(J) (51)

There are some dramatic consequences of this theorem, the
most spectacular one is the inequivalence of the EWs shown
in Figure 2 when the crystal is magnetized for example,
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Figure 31. Magnetoacoustic birefringence contributions (Dohm,
1976).

along OZ‖[001] in a cubic crystal, which constitutes in fact
the birefringence at PM regime (however, it remains at FM
regime if HEX is expressed in the MFA). This result has been
applied to hcp RE metals, cubic RE intermetallics and to the
archetypal RE vanadates (REVO4) (see del Moral, 2007). Let
us study in detail the case of cubic (CsCl structure) pnictides
RESb, which show a rich variety of magnetic and QP struc-
tures, and magnetostructural transitions. From transforma-
tion of equation (51) we immediately obtain, after e±iωzxJy

expansion, Hrotation(c44) = −20B4ωxz�xz + 40B4ω
2
xzλxz +

2G3εxzωxz(J
2
x − J 2

z ), where �zx = i[HCEF, Jy], λzx =
(i/2)[�zx, Jy], plus a 2nd-order term in the strains
H

(2)
str (c44) if finite pure strains Exx, Ezz are considered

(see Figure 31). Calculating the full H energy levels,
the free energy and using the EC expression varia-
tions �cij (T , H) = (∂2F/∂u2

ij )T we obtain velocity shifts,
�vxz/v0 and �vzx/v0, different for the two modes (kz, ux)
and (kx, uz), and respectively

�v zx
xz

/
v0 =

(
N

2ρv2
0

){(
1

4

)
χ
{
G3(JxJz + JzJx)

∓ 20B4�xz

} + 20B4〈λxz〉 + G3〈J 2
x − J 2

z 〉
}
(52)

where G3 ≡ −Mε,2/2. χ{. . .} is the dynamical strain sus-
ceptibility, appearing also in the PS calculation, and cal-
culated using the thermodynamic Green function technique
(del Moral, 2007). This susceptibility is defined as χε

2 =
(1/Mε,2)(∂〈Õ0

2 〉T/∂εxz), taking into account the strain depen-
dence of the RE3+ QP moment, 〈Õ0

2 〉, and for a doublet GS
(of splitting �), χ{Ô1

2 , ω} = −(160/3)p(T )(�/(�2 − ω2)),
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Figure 32. RI breaking of cubic degeneration in TmSb (Wang and
Lüthi, 1977).

where p(T ) is the high level atom population. In Figure 31
the calculated thermal variations of the different contributions
to the velocity birefringence in cubic SmSb (1st-order strain
contribution does not appear in birefringence) are shown. In
Figure 32 the T and H 2 dependencies of the velocity shifts
for TmSb, split by the field, which breaks the cubic axes
degeneration are shown. Therefore the birefringence has a
quantum-mechanical origin.

5 MAGNETOSTRICTION OF
MAGNETICALLY DISORDERED
MAGNETS: RANDOM MAGNETIC
ANISOTROPY (RMA) AND
AMORPHOUS MATERIALS

Disordered magnets, with structural (amorphous) and/or
spin disorder (spin glasses and random magnetic anisotropy
(RMA) ones) show peculiar characteristics in their MS
behaviors and pose difficult problems to MS calculation.

5.1 RMA magnets MS

In the case of RMA (del Moral and Arnaudas, 1989)
hard magnets, the local CEF easy axis, â(r) changes
randomly through the lattice and the exchange and
CEF Hamiltonian has the form HEX+CEF = −J0�(r,r)S(r) ·
S(r′) − D0�r[â(r) · S(r)]2. An order parameter, q (of
Edwards–Anderson) is defined at each site i which takes into
account the time autocorrelation instead of the nonexistent

spatial one, of the form q = limt→∞〈〈Si(0)Si(t)〉T 〉r , where
the average r is over the structural disorder. From the use of
statistical mechanics replica technique it can be shown that

p =
∫ ∞

−∞

(
dx√
2π

)
e−x2/2〈S2

z 〉, q = p −
(

1

γ

)

×
∫ ∞

−∞

(
dx√
2π

)
xe−x2/2〈Sz〉

M =
∫ ∞

−∞

(
dx√
2π

)
e−x2/2〈Sz〉 (53)

where γ = (2/5)1/2β
√

qD0, and therefore q, p (QP moment)
and M must be solved self-consistently. The effect now
of the MEL coupling of probe ion S to its local CEF is
assumed to rearrange the local environment, modifying D0,
but keeping fixed â(r) as in crystalline FMs. If the local strain
projected along â(r) is εââ, the simplest MEL Hamiltonian
takes the form, Hme = −M2�r[â(r) · S(r)]2εââ(r), where the
MEL parameter is M2 = (∂D0/∂εââ). Under field applica-
tion H‖OZ, where OZ is the macroscopic MS strain, εzz

measurement axis and εââ = εzz cos2 θ(r), where θ(r) is the
angle formed by S(r) with OZ. Using the ‘replica trick’
where the free energy is given by F = −(kBT ) limn→0(1/n)

(T rne−βHmel − 1), where we assume an n-times replicated
spin system for taking the trace, it is possible to show from
preceding Hmel that the effective MEL Hamiltonian takes the
form,

H̃me = −
(

3M2

5

)
εzz�r�α[Sα

z (r)]2 −
(

2D0M2

105

)
εzz

× �r�α,β�i,jS
α
i (r)Sα

j (r)Sβ

i (r)Sβ

j (r) (54)

The replica trick free energy is too long to be presented here,
but from the minimization ∂(Fmel + 1

10 Ncelε
2
zz)/∂εzz = 0 it is

finally obtained that the macroscopic shape MS (Figure 33)
becomes,

λt =
(

M2

3ce

)[
p − S(S + 1)

3

]

=
(

M2

ce

)∫ ∞

−∞

(
dx√
2π

)
e−x2/2〈Õo

2〉 (55)

which takes the usual form for ordered FMs but on top of the
thermal average we have to perform the average over the spin
disorder (integral). This theory has been applied to a series of
RE metallic glasses such as a-RE40Y23Cu37, a-Tb2Fe1−xNix
and a-(Gd1−xTbx)2Cu and crystalline TbxY1−xAl2, where
in the latter Y substitutions produces the RMA (del Moral,
2007). In Figure 34 the MS thermal variation for RE = Dy
(with TSG = 23 K, D0 = 1.25 K, J0 = 0.66 K), together with
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Figure 33. Tetragonal distortion of spherical symmetry in amor-
phous material (de la Fuente, unpublished).

a−Dy40Y23Cu37

(H = 7 T)

500

400

300

200

100

0
0 25 50 75 100 125 150

10
6  

M
ag

ne
to

st
ric

tio
n 

λ t

T (K)

Figure 34. Shape MS thermal variation for a-Dy40Y23Cu37; line is
the replica model fit (del Moral and Arnaudas, 1989).

the good fit by equation (55), which yields M2/cel = 9.2 ×
10−6, is shown.

5.2 Breaking of AZC law in RMA magnets

We will consider for RMA magnets (del Moral, de la
Fuente and Arnaudas, 1996), the ferromagnetic wander-
ing axis regime, where long-range FM order is formed
along applied H, but the transverse order is limited to a
length R⊥ = (HEX/H)Ra, where Ra is the structural cor-
relation length (SCL) (Chudnovsky, Saslow and Serota,
1986). Therefore we will assume that the system M‖H
is almost saturated and therefore spin-wave excitations
are proper. Instead of only using dynamic magnon oper-
ators (αl , α+

l at site l), to diagonalize H we will use

the transformations (del Moral and Cullen, 1995) al =
(1 + ul)αl + vlα

+
l + cl and c.c., cl , c+

l being the disor-
der spin deviations (‘frozen’-in SWs) and ul , vl Fourier
transforms of the magnon scattering matrices due to RMA
disorder. Now we use the same calculation as for FMs,
but we have M(0, H)/gJµB = 1 − J−1{〈c+

l cl〉r + 〈v+
l vl〉r}

and 〈〈Y 0
2 (J)〉T〉r = 3J 2 − J (J + 1) − 3(2J − 1)〈〈a+

l al〉T〉r

+ 3〈〈a+
l a+

l alal〉T〉r, obtained from the preceding transforma-
tions, and from where we have after some easy calculations
that order l = 2 MS becomes,

λ2(T , H)

λ2(0, H)
= 1 − 3ξ(1 − m(T , H)) ∼= m(T , H)p (56)

where p = 3ξ = 3[J (2J −1) − 6Jδ + δ(1 + 4δ)]/[J (2J −1)

− 6Jδ + 3δ(1 + 2δ)], with δ = J�m(0, H), and �m(0, H)

the zero-point magnetization defect, due to the static disorder.
Therefore p exponent becomes smaller than 3, which consti-
tutes a quantum effect. In Figure 35 we show the double-log
plots of λ2(T ) versus M(T ) at H = 3T for TbxY1−xAl2
intermetallics, from the straight line slopes obtaining p,
which becomes much smaller than 3 (see inset), in agree-
ment with the model. Also p increases toward 3 with H

increasing (12 T), as expected.

5.3 Soft metallics glasses MS models

Soft (low MCA) magnetic glasses are rather important mate-
rials for technological applications, as seen in other chapters
of this Handbook (e.g. in Magnetostrictive Materials and
Magnetic Shape Memory Materials, Volume 4). For some
alloys λs(T ) shows the same single-ion CEF Îl+1/2(m)

dependence of crystalline FMs with localized moments. The
reason is that, although they are RMA materials, the mag-
netic correlation length (MCL), L ∼= 0.02(l4

ex/ l3) (where
lex = π

√
A/D0 is the DW width (A is exchange stiffness
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Figure 35. Magnetostriction of Tbx Y1−x Al2 interuetallic vs.
magnetization; see text (del Moral, de la Fuente and Arnaudas,
1996).
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Figure 36. Shape MS thermal variation for a-Fe100−xBx

(O’Handley, Narasimham and Sullivan, 1979).

constant) and l the short range SCL) is so large that the
material is quasi-FM. This is the case of the a-Fe1−xBx

alloys shown in Figure 36. However for other more com-
plex alloys λs(T ) shows broad maxima or even changes the
sign (see Figure 37). In this case two models can explain
such a behavior. In the first one (O’Handley, 1978a) a com-
petition in sign is assumed between the CEF and two-ion
MSs, in such a way that

λs(T ) =
(

M
s
(0)

cγ

)
Î5/2(X) +

(
D

s
(0)

cγ

)
m2

≡ C1Î5/2(X) + C2m
2 (57)

Since the CEF-MS evolves more rapidly (∝ m3) with tem-
perature than the exchange one, this is predominant near
Tc, and if C1 < 0 < C2 and |C1| > |C2| a sign variation
of λs is possible, as it happens for the alloys shown in
Figure 37, where the lines are the fits by equation (57). But
another explanation is found within the itinerant moment
BD-BZS model studied in Section 3, now assuming that we
have a RMA, that also explains the broad maxima shown
by λs(T ) (see Figure 38 for a pseudobinary alloy, where
the continuous line is the theory). In the calculation the
random CEF is represented by a random matrix, Rµν(c),
where c points to the CEF energy variation with the local
atom cluster tetragonal deformation, εα

2 (e.g., a Bernal poly-
hedron tetragonally deformed along OZ), and HCEF+mel =

Co70Fe10B20
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Figure 37. Shape MS thermal variation for a-(Co1−yFey)80B20

(O’Handley, 1978a).
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Figure 38. Shape MS thermal variation for a-Fe5Co71Si12B12,
experiment and itinerant theory (Kulakowski, Maksymowicz and
Magdón, 1993).

�i,µ,ν,σRµν(c)a
+
iµσ aiνσ + Mα,2εα

2 [3δµ,xy − 1], where i are
sites, µ, ν orbitals (t2g with a magnetostrictive doublet
{xz, yz} near to EF and the preceding xy singlet or
conversely) and σ = ±1/2 is the spin, HCEF giving the
d-electron scattering by the disorder. The remainder Hamil-
tonian is the same as for a crystalline material (del Moral
et al., 1998a).

5.4 Zero-λs alloys; split-band model

Some alloys of technological use, crystalline, and amor-
phous, show zero λs for certain compositions. Generally
within the 3d metals and alloys λs oscillates with band elec-
tron filling, n a property well explained using the simplified
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5CNi States
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Figure 39. Split bands for binary Fe1−xNix alloys (Berger, 1977).

Berger’s split-band model (SBM, Berger, 1977) (a Green
function theory of itinerant MS does the same, Heine, Kox
and Nex, 1984), quite suitable for alloys where a TBA or
AI MS calculation is difficult. In the SBM one assumes that
the bands DOS and their centers, Ep for the alloy partners
(e.g., crystalline (c-)FexNi1−x or a − (FexNi1−x)80B20) do
not modify on alloying, the alloy DOS being just the addi-
tion of partner DOS (see Figure 39 for c-FexNi1−x , where
EFe > ENi, because the Fe nuclear charge is smaller than Ni
one; on the left is the added DOS for down spins (↓), on
the right the spin up (↑) individual bands). Let us assume
the existence of a DOSs crossing point T and see at which
x EF traverses T , where λs = 0, as the hole number, nh

in the ↓ band is zero (strong-FM). In c-FexNi1−x , clearly
nh = 0.55 + 2CFe in the alloy (C ≡ x). Because the Fe state
number in the minority band (mB, ↓) is 5CFe, crossing occurs
when nh = 5CFe, that is, when the Ni band holes are filled
by the Fe-band electrons, giving x0 = 0.18, or concentra-
tion for zero-MS. In this case the total orbital momentum
(OM), 〈Lz〉alloy = �b〈b|Lz|b〉 must be zero at EF (b are band
states), since λs ∝ 〈Lz(EF)〉alloy. A second-order perturbation
calculation upon HSO yields

〈Lt
z〉 =

∑
〈Lz〉 =

(
1

nat

)
�i,j,m,nf

i
m

×
(

ξ
( 1

2

) |〈Lz〉ijmn|2
(Ei

m − E
j
n)

)
(58)

where i(j) are Fe and Ni bands, m(n) unperturbed ↓ Bloch
states of energy Ei

m, f i
m the Fermi–Dirac function, 〈Lz〉ijmn =

〈mi|Lz|nj〉 and nat the atom number. Passing equation (58)
to continuous DOS, the calculated 〈Lz〉alloy is shown in
Figure 40, where αNiFe is the 〈L〉 quenching parameter and z
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Figure 40. Fe1−xNix alloys, see text for meaning (points are from
different probes) (Berger, 1977).

the NN number. We see that 〈Lz〉alloy is minimum at T point
or for x0 = 0.18, as experimentally observed from different
probes. For a − (FexNi1−x)80B20 alloys, the λs = 0 condition
is 5CFe = 2.55CFe + 0.55Ni − 1.6CB with CFe + CNi = 0.8,
CB = 0.2, since there is a charge transfer of 1.6 e/B-atom to
the TM bands, yielding x0 = 0.06, that is, a strong shifting
down. For a-(FexCoyNi1−x·y)80B20 pseudoternary alloys the
λs = 0 ‘point’ transform in a λs = 0 ‘line’ when we trace
a triangular MS phase diagram (O’Handley, 1978b) (see
Magnetostrictive Materials and Magnetic Shape Memory
Materials, Volume 4).

6 SURFACE, INTERFACE,
AND MAGNETIC THIN FILMS
AND SUPERLATTICES
MAGNETOSTRICTIONS

Nanostructured materials in the form of TFs, MLs, and
SLs encounter increasing technological applications (see
Hard Magnetic Films, Volume 4, Ferromagnetic Man-
ganite Films, Volume 5). However the knowledge of MS
in those structures is also important because the reduction
to 2d (ultrathin films; see Magnetic Ultrathin Films, Vol-
ume 4) and because the existence of highly perfectioned
surfaces (SF) and IFs reveal magnetic properties different
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to the bulk. For instance depending on (l, m, n) indices, SF
crystal symmetry is reduced (see Figure 41 for bulk fcc lat-
tice) and therefore HCEF becomes modified; in SFs moment
is enhanced (to 0.73 and 2.98 µB in [100] Ni and Fe SFs
respectively); and MCA anisotropy can become perpendicu-
lar to SF. In ML or SL the mismatch, η = (am − anm)/anm

between blocks (magnetic and nonmagnetic) lattice parame-
ters gives rise to a misfit strain, which for epitaxial growth is
εmf

∼= η(tnm/(tm + tnm)), although it can be partially released
by IF dislocations. Let us first consider the surface MEL
coupling, where the MCA and MEL free energy is written
as Fmel(z) = Ks

ij δ(z)αiαj + M
∗s

ij δ(z)αiαj εij , where z is the

distance from the SF (z = 0) and M
∗
ij = Mij + Nijklεkl , intro-

ducing NL-MEL coupling due to the large εmf (O’Handley
and Sun, 1992). Adding the bulk MCA and averaging F(z)

over the crystal thickness, t we obtain

〈F 〉 =
(

1

t

)∫ t

0
F(z)dz = Kij αiαj +

(
Ks

ij

t

)
α0

i α
0
j

+ M
∗
ij αiαj εij +

(
M

∗s

ij

t

)
α0

i α
0
j ε

s,0
ij (59)

where we see that the SF MCA and MEL constants show
a 1/t dependence (consequence of converting them to bulk
like constants, Néel’s assumption). α0 is the unstrained film
Ms direction at the SF and ε

s,0
ij the SF strains (misfit and

MS). Therefore for a crystal block in a ML or SL (two
SFs), the MEL constant becomes, M

eff = M
v + 2M

∗s
/t . This

Dirac δ(z) approximation is not very realistic as the ‘sur-
face’ monolayers (ML) extend beyond z = 0. For thin blocks
and εmf ≈ 1% (εmf >> λs for 3d metals, but becomes com-
parable for RE materials), SF-MS can be comparable to
bulk (v) one, for example in Ni/Ag MLs, λv

s = −34 and
λsf

s = −35.4/t (×10−6, t in nm) (Zuberek et al., 1998). SF
MEL constants can be directly measured using the SESPA
technique.

If we now introduce crystal symmetry, the rules for
building the MEL Hamiltonian, H sf

mel are the same as
for the bulk crystal seen in the STM, but reducing the
symmetry accordingly with the SF (l, m, n) indices, and
the same applies to F sf

mel. Therefore the MEL constants
for a [110] SF (ORTH) of a BCC film have the form
M


,l

f = M

,l

v + (2/t)M

,l

s , where there are for l = 2, three
bulk MEL constants (
 = α, γ , ε), but four for the SF
(
 = α1, α2, ε, ς). We will now apply this MEL theory to
3d-metal films and RE SLs.

6.1 Cu/Ni/Cu trilayers

In this structure we have a substrate onto which the magnetic
Ni film is deposited, and it is capped with another Cu film

[110] film surface
(orthorhombic)

[111] film surface
(hexagonal)

FCC lattice

Figure 41. Surface symmetry reductions for fcc lattice (del Moral,
2007).

to avoid corrosion. The misfit strain in the Ni TF is biaxial,
that is, εxx = εyy = εmf in plane and if stress σzz = 0, εzz =
νεmf with ν = −2(c11/c12), or Poisson ratio (Figure 42).
Therefore the misfit MEL energy easily becomes,

F t
me

∼= −(M11 + M12 + M13)εmf cos2 θ (60)

which adds to the MCA energy FK = K1 cos2 θ , where θ

is the angle of Ms with the film normal OZ. Therefore the
effective MA constant takes the form,

Kefft = 2(Ks + M
s
εmf + N

s
ε2

mf)

+
(

M
v
1

(
1 + 2c11

c12

)
+ N

v
εmf

)
εmft − 2πM2

s t (61)

where NL-MEL energy is included, for volume (v) and SFs
(s) (Ni/Cu IFs), as well as the demagnetizing energy (last
term) trying to keep Ms in plane. In Figure 43 are shown
Kefft for three trilayers prepared under different conditions,
where we see that in the range t ∼= 20–135 Å, the ED is
perpendicular to plane (PMA) (‘window’ effect), a property
quite used in magnetic recording to reduce the domain size.

z

y

x

ezz

eyy

exx

Figure 42. Biaxial strain in a thin film (O’Handley, Sun and
Ballentine, 1993).
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unpublished).

The fit by equation (61) (continuous line) is attained with,
K1

∼= 0, Ks = 0.76, M
s = −1.22 (erg cm−2), N

v = −1.11 ×
1010, 2πM2

s = 1.5 × 106 (erg cm−3) and N
s = −1.97 erg

cm−1. Since Ks > 0 the spin reorientation for t > ≈20 Å is
due to the bulk NL contribution, which contributes negatively
to Keff, whereas the M

s
contribution is negligible. Assuming

that the film is tetragonally distorted, the itinerant BD-BZS
model of Section 3 yields the contributions and kind of fit
shown in Figure 44 with only Keff

2 = Kvol
2 + (2Ksf

2 /tNi) −
2πM2

s contributions (del Moral et al., unpublished). This

model also explains the t dependence of M
γ ,2

, due to
the SF 2M

γ ,2
sf /t contribution, for t < 100 Å, for above

the concourse of NL N
γ ,2

ε
γ

1,mf being needed, in order to

explain the observed ‘window’of M
γ ,2

with t (Ciria et al.,
2004).
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Figure 45. Vicinal surface [1113] terraces (Oepen et al., 1993).

The growth of a SF ‘vicinal’ to a [001] one, with nor-
mal [1113] in fcc Co/Cu ultrathin films (few ML) gives
rise to the appearing of steps (Figure 45), which allows
study of MEL coupling in one dimension, since a MEL
anisotropy is developed along the terrace line. The Néel’s
pair-atom MEL model mentioned explains well the obser-
vations, the anisotropy energy density becoming, Efilm =
Ebulk − 2Esf/t − 2Estep edge/td − 2Estep corner/td, where d

is the steps distance (an AI calculation does exist, Victora
and MacLaren, 1993).

6.2 RE superlattices

In RE/Y, RE/Lu, and RE/Sc SLs the oscillatory RKKY
exchange interaction is propagated through the NM blocks,
the ordering temperatures (TN, Tc) are strongly modified, a
finite size effect is manifested for very thin RE blocks in
the helical structure and new magnetic phases appear in the
(H , T ) diagram (Jehan et al., 1993). Since the moments are
now truly localized we can write for the orthorhombic MS
in basal plane, ε

γ

1 that thickness and T dependencies respec-
tively are,

M
γ

th = M
γ

v0 +
(

2M
γ

s

tHo

)
+ N

γ

v η

(
tLu

(αtHo + tLu)

)
(62)

M
γ

th(m) = (M
γ

v0 + N
γ

v εmf)Î5/2(L
−1(m)) +

(
2M

γ

s

tHo

)
mα (63)

In equation (63) the last term is the thermal varia-
tion for the IF-MS, which according to STM for d = D

= 2, gives α = 4 at low T (α = 2 at high T ), our case. In
Figure 46 M

γ ,2
th given by equation (62) is adequately com-

pared with the saturation (H = 12 T) and 10 K M
γ ,2
exp for

[Hon/Lu15]x50 [0001] SLs where the Ho ML number is
n = 8 − 80 (plus bulk films, o symbol), the Lu block thick-
ness being constant (Ho block in under misfit compression,
opposite to Y spacer SLs). From the fit we obtain that
M

γ ,2
v0 = −0.89, M

γ ,2
sf /(c/2) = 7, N

γ,2
v = 185 (all in GPa),

with η = −1.44%. In Figure 47 are shown the M
γ ,2

(T )
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variations together with the fits by equation (63), using the
same MEL parameters, the opposite sing IF contribution
being needed. Therefore STM is as well behaved in RE SLs
as in bulk REMs.
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Wang, P.S. and Lüthi, B. (1977). Physical Review B, 15,
2718.



Exchange Coupling in Magnetic Multilayers

David M. Edwards1 and Andrey Umerski2
1 Imperial College London, London, UK
2 Open University, Milton Keynes, UK

1 Introduction 1

2 Quantum Well States and Exchange Coupling 2

3 Calculation of the Exchange Coupling and Induced
Magnetization in a Parabolic Band Model 7

4 Calculation of IEC in Models of Real Systems 9

5 Biquadratic Exchange Coupling 12

6 Temperature Dependence of Interlayer Exchange
Coupling 16

7 Theory and Experiment 18

8 Outlook 22

Acknowledgments 22

References 22

1 INTRODUCTION

The recent intensive investigation of magnetic layered struc-
tures followed advances in molecular-beam epitaxy (MBE)
techniques for preparing samples with atomically flat inter-
faces between layers. Antiferromagnetic (AF) exchange
coupling between ferromagnetic (FM) films across a non-
ferromagnetic metallic spacer was first clearly observed
in Fe/Cr/Fe(001) structures by Grünberg et al. (1986).
About the same time, the study of exchange coupling in
rare-earth-based multilayers also began (Majkrzak et al.,
1986; Salamon et al., 1986). Work on transition metal

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

(TM)-based multilayers intensified following the discov-
ery of the giant magnetoresistance (GMR) effect in anti-
ferromagnetically coupled Fe/Cr systems (Baibich et al.,
1988; Binasch, Grünberg, Saurenbach and Zinn, 1989).
In this chapter, we confine ourselves to the discussion
of interlayer exchange coupling (IEC) in TM-based
systems.

An important early development in the study of IEC was
the discovery by Parkin, More and Roche (1990) that the
nature of the coupling oscillates between AF and FM align-
ments, as the thickness of the spacer is varied. In samples
with AF coupling, the strength of the coupling was mea-
sured by the magnetic field required to saturate the total
moment of the system. In the case of FM coupling, all the
moments are aligned parallel, and only a small field, unre-
lated to the coupling strength, is required for saturation. The
first measurements of oscillatory exchange coupling, made
on sputtered Fe/Cr/Fe and Fe/Ru/Fe multilayers, were fol-
lowed by similar ones with a wide range of 3d, 4d, and
5d TM spacers (Parkin, Bhadra and Roche, 1991). Surpris-
ingly, all samples exhibited only long-wavelength oscilla-
tions with the same period of about 10 Å, with the exception
of Cr where the observed period was about 18 Å. These
results were clearly inconsistent with the emerging Ruder-
man–Kittel–Kasuya–Yosida (RKKY) (Bruno and Chappert,
1991, 1992) and quantum well (QW) (Edwards and Mathon,
1991; Edwards, Mathon, Muniz and Phan, 1991a,b) theories.
As discussed later, in these theories, oscillation periods are
related to spanning vectors of the spacer Fermi surface and
should therefore vary from metal to metal. The source of
this discrepancy must lie in the sputtering method of prepar-
ing the multilayers. This technique is quick and relatively
inexpensive, as required for production of GMR devices,
but the resultant structure is not well known. It has been
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suggested that polycrystallinity with different grain orienta-
tions could lead to an averaging effect which might produce
Parkin’s almost universal 10 Å period. The result still remains
mysterious.

The MBE technique has several advantages over sputter-
ing, including generally sharper interfaces, with less inter-
diffusion, and epitaxial growth with known crystal orienta-
tion. The greater speed of deposition by sputtering is offset,
in studies of oscillatory exchange coupling, by the abil-
ity of MBE to produce samples with a wedged shaped
spacer layer. Measurements of the IEC can then be car-
ried out for many different spacer thicknesses on a sin-
gle sample. The wedge geometry is obtained by moving
a shutter in front of the sample during deposition of the
spacer material. The gradient of the sloping face of the
wedge can be as small as 1 monolayer (ML) per mm with
sample sizes of up to 10 mm. Local measurements of the
IEC for many different spacer thicknesses are then not
affected by the wedge geometry. The wedged-spacer tech-
nique was pioneered by Grünberg’s group using Fe/Cr/Fe
samples grown on GaAs substrates (Demokritov, Wolf and
Grüunberg, 1991), where they found only strongly damped
long-wavelength oscillations of the IEC with a period of
about 12 ML (�17 Å).

A major breakthrough in the study of IEC occurred
with the discovery of short-wavelength oscillations in
Fe/Cr/Fe(001). The NIST group (Unguris, Celotta and
Pierce, 1991; Unguris, Pierce, Celotta and Stroscio, 1993;
Pierce, Unguris and Celotta, 1994) found oscillations of
the exchange coupling with Cr thickness, with a period of
about 2 ML. In these samples, a Cr wedge was grown on
an atomically flat Fe whisker substrate at a raised temper-
ature (>250 ◦C). Measurements on samples grown at lower
substrate temperatures revealed only the long 12 ML period.
It was concluded that the IEC is the sum of two compo-
nents with long and short periods. These results demonstrate
the importance of having smooth interfaces for a complete
study of IEC. It is, of course, not surprising that local
variations in spacer thickness will wash out 2 ML period
oscillations. The NIST work made use of a scanning elec-
tron microscope with polarization analysis (SEMPA) which
detects the sign of the coupling but not its magnitude. In
later work on Fe/Au/Fe(001), the same group combined this
technique with magneto-optical Kerr effect (MOKE) mea-
surements which additionally determine the magnitude of the
coupling (Unguris, Celotta and Pierce, 1997). These measure-
ments are discussed later in Section 7.1, since they represent
one of the very few cases where a meaningful comparison
can be made between experiment and theoretical calculations
based on perfect interfaces.

We present this brief history of IEC as a background to the
theoretical work, which is the main concern of this chapter.

It is clear that one must beware of too naive a comparison
between theory and experiment.

So far, we have only considered coupling between mag-
netic layers that is either FM or AF, leading to parallel
or antiparallel orientations of the two magnetizations. In
fact, 90◦ coupling with magnetizations at right angles is
also observed. To describe this possibility, it is conventional
to introduce a phenomenological coupling energy, per unit
interfacial area, of the form

E(θ) = −J1m1.m2 − J2(m1.m2)
2

= −J1 cos θ − J2 cos2 θ (1)

where m1 and m2 are unit vectors in the directions of the
two magnetizations and θ is the angle between them. The
parameters J1 and J2 determine the type and the strength
of the coupling. If the term J1 dominates, the coupling is
FM (AF) for positive (negative) J1, respectively. If the term
J2 dominates and J2 is negative, the energy is a minimum
for θ = π/2, so that 90◦ coupling is stable. The J2 term is
called biquadratic coupling and the J1 term is sometimes
called bilinear coupling. In much of the theoretical work the
quantity calculated is E(0) − E(π) = EFM − EAF = −2J1.

It is expected that some readers of this chapter will not
wish to explore the finer details of the theory. Section 2
is therefore intended to give a broad overview of exchange
coupling between magnetic layers and its relation to the exis-
tence of QW states and resonances in the spacer region. In
Section 3, we describe a simple free-electron model which
demonstrates many important features with explicit analytic
formulas. These features include the oscillations of the bilin-
ear and intrinsic biquadratic coupling as a function of spacer
thickness, the temperature dependence of these couplings,
and the nature of the induced moment within the spacer. In
Section 4, we sketch the methods used for obtaining quantita-
tive results for the IEC in real systems. Section 5 is concerned
with intrinsic and nonintrinsic mechanisms for biquadratic
coupling, with particular reference to the role of inter-
face roughness. In Section 6, it is shown how temperature
dependence of the IEC arises from both single-particle and
spin-wave excitations. Theory and experiment are brought
together in Section 7 for systems with spacers classified as
noble metal, TM, and AF metal (particularly chromium) or
insulator. In the final section, the current status of the IEC is
summarized and the outlook for future work is discussed.

2 QUANTUM WELL STATES AND
EXCHANGE COUPLING

In this section, we discuss some of the basic theoretical
ideas behind the QW theory of the IEC. In Section 2.1,
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we apply the free-electron model to a simple QW. We
calculate the density of states for this system and observe
that this oscillates both as a function of the well width
and as a function of the electron energy relative to the
bottom of the well. Although this model is simple, it contains
many of the essential features of more sophisticated models,
and we can compare it qualitatively to results obtained
from photoemission experiments. In Section 2.2, we discuss
two methods of calculating the exchange coupling between
magnetic layers, and show how its oscillations, as a function
of spacer thickness, are related to QW states, with periods
determined by extremal points of the spacer Fermi surface.
Finally in Section 2.3, we describe a quantitative calculation
of exchange coupling in a Co/Cu/Co(001) trilayer (Mathon
et al., 1995, 1997). We interpret the results on the basis of
our findings in the earlier two subsections, and compare with
experiment.

2.1 QW states in a trilayer

Consider a simple free-electron model of an A/B/A trilayer.
The potential energy is depicted in Figure 1(a), where y is the
electron coordinate perpendicular to the layers. The thickness
of the B layer is l and the depth of the well is V . Electron
states � satisfy the Schrödinger equation

−�
2

2m
∇2� + V (y)� = E� (2)

and, owing to in-plane translational symmetry, are classified
by a Bloch wave vector k‖ = (kx, 0, kz). Thus,

� = eik‖.ru(y) (3)

where the electron position r = (x, y, z). On substituting
equation (3) in equation (2) we find that u(y) satisfies the
one-dimensional (1D) Schrödinger equation

Hu ≡ −�
2

2m

d2u

dy2
+ V (y)u = E′u (4)

A A

(a)

0

(b)

A

y
B VAC

V

0 l

V

l

y
B

Figure 1. Potential energy V (y) of an electron in (a) an A/B/A
trilayer (b) an A/B/VAC system corresponding to a B overlayer on
an A substrate.

with E′ = E − �
2k‖2/(2m). For a given k‖, we take the

zero of energy to be such that E′ = 0 corresponds to the
bottom of the well. Thus if EF is the actual Fermi energy
measured from the bottom of the well, electrons fill states
in the 1D well up to E′

F = EF − �
2k‖2/(2m). If E′

F ≤ 0,
there are no occupied states with the given k‖. Figure 1(b)
shows the potential V (y) for the system A/B/VAC, where an
overlayer B of thickness l separates the semi-infinite layer
A from the vacuum. This is the potential corresponding to
angle-resolved photoemission (ARPES) from an overlayer
in which electrons are emitted from states of definite k‖,
for example, k‖ = 0. The measurement probes the density
of states ρ(E, l) of the 1D well. For the present simple
discussion, it is sufficient to consider the symmetric well
of Figure 1(a).

In general, the eigenstates of the 1D well consist of
a number of discrete bound states with E′ < V and a
continuum of states with E′ > V . As k‖ is varied, we may
have a change in the nature of states near the effective Fermi
level from continuum for k‖ = 0 to bound states for some
finite k‖. The density of states in the region of the well is
given by

ρ(E′, l) =
∫ l

0
dy

∑
i

|ui(y)|2 δ(E′ − Ei) (5)

= − 1

π
Im

∫ l

0
dy G(y, y, E′

+) (6)

Here ui(y) and Ei are the eigenfunctions and eigenvalues of
the Hamiltonian H in equation (4) and G(y, y ′, E′+) is the
one-particle Green function

〈
y

∣∣(E′ − H)−1
∣∣ y ′〉. E′+ signifies

that E′ has an infinitesimal positive imaginary part. The
Green function is straightforward to calculate and we find
that, in the continuum region E′ > V ,

πV ρ(E′, l) = d(2ε − 1)(ε − 1)1/2

sin2(d
√

ε) + 4ε(ε − 1)
(7)

where ε = E′/V and d = l(2mV/�
2)1/2 are dimensionless

energy and well-width variables. Now

d
√

ε = l

√
2E′m

�2
= kyl (8)

where E = (�2/2m)(k‖2 + k2
y). Thus ky(k‖, E) is the ky

coordinate of a point on the constant energy surface of energy
E and with a given k‖. Clearly, from equation (7), l−1ρ(E′, l)

is a periodic function of l with period π/ky . In the later
development, this periodicity property of the density of states
turns out to be very useful, and even for nonspherical energy
surfaces, the period is found to be determined by the same
dimension ky of the constant energy surface.
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Figure 2. (a) Scaled density of states in the well region (RH side
of equation (7)), as a function of dimensionless well width d , for
reduced energies ε = 1.01 (thick line) and ε = 1.3 (thin line). (b)
Same scaled density of states as in (a), as a function of reduced
energy ε for d = 10, 12, 14, 16.

In Figure 2(a), the right-hand (RH) side of equation (7)
is plotted as a function of d, the dimensionless width of
the well, for two energies ε = 1.01 and 1.3. The first case
corresponds to an energy E′ just above the top of the well and
sharp resonances, corresponding to nearly bound states, pass
through this energy as d is varied. For ε = 1.3 the resonances
are much broader. For E′ below the top of the well (ε < 1)
the resonances would become δ-functions, corresponding to
bound states. In Figure 2(b), the RH side of equation (7) is
plotted as a function of ε (ε > 1) for various values of d.
This shows how the resonances seen in the density of states
shift in energy with changing well width.

Figure 2(a) and (b) may be compared qualitatively with
the spectral density observed by Ortega, Himpsel, Mankey
and Willis (1993), in ARPES and inverse photoemission with
k‖ = 0, from Cu overlayers on Co(001) or Fe(001). The

results of Ortega, Himpsel, Mankey and Willis (1993) shown
in Figure 3(a), corresponding to electrons emitted from the
Fermi level, are similar to the plots in Figure 2(a). This
shows that QW resonances exist in the Cu overlayer and the
relation of the oscillation period to the Cu Fermi surface is
discussed later. The simple linear increase in amplitude is not
observed since not all the photoemitted electrons originate
in the overlayer, and in any case, emission is not uniform
throughout the overlayer. The spectra shown in Figure 3(b)
may be compared with Figure 2(b) with a similar upward
shift in resonances as the Cu thickness increases.

Electrons in a ferromagnet such as Co and Fe have a
spin-dependent potential energy, the difference in energy
between that for minority and majority spin corresponding
to an exchange splitting of 1 or 2 eV. Consequently, the
QW in a nonmagnetic overlayer has a different depth for
the two spin orientations. The effect of this is seen in
the spin-resolved photoemission results of Garrison, Chang
and Johnson (1993), shown in Figure 3(c), where QW
resonances are seen clearly only for minority spins. In
general, oscillations in the spectral density of large amplitude
are associated with QW states strongly confined in the
nonmagnetic layer.

2.2 Relation of QW states to exchange coupling

There are two starting points for a quantitative calculation
of exchange coupling. The first proceeds directly from
the definition of exchange coupling between two semi-
infinite magnetic layers across a nonmagnetic spacer layer
of thickness l = Nd. Here, d is the interplane spacing and
N is the number of atomic planes in the spacer. Thus, we
define the exchange coupling as

J (l) = �↑↑ − �↑↓ (9)

where �↑↑ and �↑↓ are thermodynamic potentials of the
trilayer per unit cross-sectional area for the parallel and
antiparallel configuration of the magnetic moments of the
magnetic layers, respectively. The first method of calculating
J (l), which we use in this section, is to calculate this energy
difference directly.

A second method, which we discuss later, is the torque
method in which we consider the nonequilibrium situa-
tion where the magnetic moments of the two magnetic
layers make an arbitrary angle θ with each other. If
the corresponding thermodynamic potential is �(θ) we
define

J (l, θ) = �(0) − �(θ) =
∫ θ

0
−d�

dθ
dθ (10)
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Figure 3. (a) Quantum well resonances in Cu overlayers on Co(001) observed by Ortega, Himpsel, Mankey and Willis (1993) cf. simple
theoretical picture of Figure 2(a). (Reprinted figure Ortega, J.E., Himpsel, F.J., Mankey G.J., and Willis, R.F., (1993), Phys. Rev. B, 47,
1540–1552.  1993 by the American Physical Society.) (b) Inverse photoemission spectra for Cu overlayers of different thickness on
Co(001) (Ortega, Himpsel, Mankey and Willis, 1993) cf. simple theoretical picture of Figure 2(b). (Reprinted figure Ortega, J.E., Himpsel,
F.J., Mankey G.J., and Willis, R.F., (1993), Phys. Rev. B, 47, 1540–1552.  1993 by the American Physical Society.) (c) Spin-resolved
photoemission spectra (Garrison, Chang and Johnson, 1993) for Cu overlayers on Co(001) showing distinct QW resonances for minority
spin only. (Reprinted figure from Garrison, K., Chang Y., and Johnson, P.D., (1993), Phys. Rev. Lett., 71, 2801–2804.  1993, by the
American Physical Socirty.)

The integrand −d�/dθ is the torque exerted on one mag-
netic moment by the other and is related to the spin
current flowing across the spacer in the nonequilibrium
configuration considered. We discuss this in Section 3.
Clearly, from equations (9) and (10), J (l) = J (l, π) so
that J (l) can be calculated by integrating torque instead
of taking the energy difference. Both methods have been
used and are known to be equivalent (Umerski unpub-
lished; and see Edwards, Robinson and Mathon (1995)
for the one-band case). The torque method was first
used by Slonczewski (1989) for the case of an insulating
spacer.

To evaluate equation (9) we make two approximations.
The first is the so-called force theorem (Pettifor and Varma,
1979), which states that a good approximation to a total
energy difference between different structures (in this case,
magnetic) is obtained by comparing sums of one-electron
energies, using atomic potentials which are independent of
the magnetic configurations. The second approximation is
to neglect the dependence of the local densities of states
within the magnetic layers on the magnetic configuration.
This approximation can be checked and is found to be a
good one, at least for spacer thicknesses that are not too
small. Thus, at temperature T = 0,

J (l) =
∑
k‖

∫ µ

−∞
(E − µ)

{
[ρ↑ + ρ↓]FM

−[ρ↑ + ρ↓]AF
}

dE (11)

where µ is the chemical potential. Here ρσ = ρσ (k‖, E, l)

is the density of states within the spacer for a given wave
vector k‖ and spin σ = {↑, ↓}; these densities of states are
calculated for the FM and AF configurations as indicated.
At finite temperature T , the factor E − µ is replaced by
−kBT ln (1 + exp((µ − E)/kBT )).

Now, as pointed out in Section 2.1, l−1ρσ (k‖, E, l) is
a periodic function of l with period π/ky where ky =
ky(k‖, E) defines the bulk spacer constant energy surface
with energy E. This periodicity property has been rigorously
proved by Umerski (1997). Thus, we may introduce the
Fourier series

l−1ρσ (k‖, E, l) =
∑

n

cnσ (k‖, E)e2inlky (k‖,E) (12)

and substitute into equation (11). This is very convenient
because for large l we may use the stationary phase approx-
imation (SPA) to evaluate the integrals over k‖ and E in



6 Theory of transport and exchange phenomena in thin film systems

equation (11). The dominant contribution arises from E ∼ µ

and from points k‖ = k‖0 where the function ky(k‖, µ) is sta-
tionary. Thus oscillations in ρσ (k‖0, µ, l), which arise from
QW states passing through the Fermi level µ as spacer thick-
ness l varies, give rise to corresponding oscillations in the
exchange coupling J (l). Oscillations of large amplitude are
associated with strongly confined QW states, as pointed out
in Section 2.1, so that one of the terms in equation (11), for
example, [ρ↓]FM in the case of Co/Cu/Co(001), may be the
most significant. We discuss the Co/Cu/Co example further
in the next section.

2.3 Co/Cu/Co(001) trilayers

Figure 4 shows a sketch of a cross section of part of the Cu
Fermi surface. ky is in the (001) direction and k‖ in the (110)
direction. The dashed line is the zone boundary ky = π/d.
The two stationary points of ky(k‖, µ) are indicated: ky = kB

y

occurs at k‖ = 0 and the other ky = kN
y at a finite value

k‖0. The corresponding oscillation periods are influenced
by the discrete nature of the lattice, which we have not
considered before. Thus l = Nd where N is an integer,
and in this case d is the interplanar Cu distance, so that
exp(2inlky) = exp(2inl(ky − π/d)). When π/d − ky < ky

the observed period, considering the function of l only at
discrete points Nd, is π/(π/d − ky) rather than π/ky (this
is known as the aliasing effect). The stationary point at
k‖ = 0 therefore corresponds to a long period, in fact 5.9 ML,
which is the one seen in Figure 3(a). The other stationary
point corresponds to a shorter period of 2.6 ML (∼4.7 Å) and

ky

kB
y

kN
y

k||
0

k||

Figure 4. Sketch of a cross section of part of the Cu Fermi surface,
showing two extreme values of ky , namely, kB

y and kN
y , which occur

at k‖ = 0 and k‖ = k‖0 respectively.

contributions with both periods should occur in the exchange
coupling. Recently, the shorter period has been observed
(Kläsges et al., 1998) in ARPES from Cu overlayers on
Co(001) with k‖ ∼ k‖0.

Mathon et al. (1995, 1997) calculated the exchange cou-
pling in Co/Cu/Co(001) trilayers using a fully numerical
method, based on the torque (or ‘cleavage’) formalism, as
well as the semi-analytic SPA described above. Both methods
use a tight-binding model, with nine orbitals (3d, 4s, 4p) and
parameters fitted to first-principles calculations for the bulk
metals. Given this model, the fully numerical method relies
further only on the force theorem, and the stationary phase
method should give the same results for large l. Here, we
just discuss the results since more detail is given in Mathon
et al. (1995, 1997) and in Section 4 of this chapter.

In Figure 5, we show a comparison between the numerical
results for exchange coupling J and the SPA. As expected,
the latter is very accurate when the number N of Cu planes is
large. Clearly the oscillatory exchange coupling is dominated
by the short-period contribution. The SPA, which has the
advantage of being able to separate the two contributions,
shows that the long-period contribution is less than 1% of
the total. The reason for this is easy to understand in terms
of confinement of QW states.

Figure 6(a) shows the energy bands for bulk Co (majority
and minority spin) and for Cu, along a line in k space in the
ky direction with k‖ = k‖0 corresponding to a short-period
Fermi-surface extremum (see Figure 4). There is a good
match between the sp-like bands for Cu and Co majority
spin where they cross the Fermi level µ = EF. However,
for Co minority spin, the Fermi level falls in an almost
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Figure 5. Exchange coupling in a Co/Cu/Co(001) trilayer calcu-
lated as a function of Cu thickness, fully numerically (full line) and
using SPA (dashed line). (Reprinted figure Mathon, J. et al., 1997,
Phys. Rev. B, 56, 11797–11809.  1997 by the American Physical
Society.)
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Figure 6. (a) Energy bands for Cu and FM fcc Co along a
line in the ky direction with k‖ = k‖0 corresponding to a short-
period Fermi-surface extremum (see Figure 4). (Reprinted figure
Mathon, J. et al., 1997, Phys. Rev. B, 56, 11797–11809.  1997
by the American Physical Society.) (b) Energy bands as in (a)
but with k‖ = 0 corresponding to the long-period Fermi-surface
extremum. (Reprinted figure Mathon, J. et al., 1997, Phys. Rev. B,
56, 11797–11809.  1997 by the American Physical Society.)

complete hybridization gap. Thus, in the FM configuration
of the Co/Cu/Co trilayer, minority spin electrons at the
Fermi level are strongly confined in the Cu layer, which
therefore acts like a deep QW in the simple free-electron
picture we used in Section 2.1. However, the majority spin
electrons are hardly confined at all and will make only
a small contribution to QW oscillations in photoemission
and exchange coupling. In the AF configuration, electrons
of both spin are free to escape into one of the Co layers
and therefore contribute weakly to QW oscillations. Thus,
the short-period oscillations of Figure 5 arise largely from
the minority spin spectral density [ρ↓]FM in equation (11).
The situation is quite different for k‖ = 0, corresponding to

the long-period Fermi-surface extremum. The sp-like band
crosses EF at very similar values in both spin bands of Co and
in Cu, as shown in Figure 6(b). Thus, there are no strongly
confined QW states of either spin for k‖ = 0. Consequently,
the long-period oscillations in J are much weaker than the
short-period ones, as found in the calculations. Nevertheless,
the long-period oscillations can be seen in photoemission, at
least for minority spin electrons, as described earlier.

The experimental situation is complicated by interfacial
roughness. For an oscillation period close to 2 ML, the sign
of the exchange coupling is changed by adding a spacer
atomic layer. Thus, the presence of steps will tend to reduce
the amplitude of this component when averaged over the
sample. The short-period oscillation in Cu is clearly much
more susceptible to this effect than the long-period one.
Johnson et al. (1993) and Bloemen et al. (1993) found in
their experiments that the amplitudes of the short- and long-
period oscillations are comparable. Their value of J at the
first AF peak (0.4 mJ m−2) is about three times smaller
than that found by Mathon et al. (1997), which may well
be attributed to roughness. Kawakami et al. (1999) also
concluded that the amplitude ratio is about 1 and discuss
their results in terms of QW states observed in ARPES (see
also Qiu and Smith, 2002). Weber, Allenspach and Bischof
(1995), using a SEMPA, estimate that, in their ‘best’ samples,
the amplitude of the short-period oscillation is at least a
factor 7 larger than that of the long-period oscillation. This is
more in accord with the predictions of Mathon et al. (1997).
Unfortunately, SEMPA does not give the absolute values of
the exchange coupling.

3 CALCULATION OF THE EXCHANGE
COUPLING AND INDUCED
MAGNETIZATION IN A PARABOLIC
BAND MODEL

In this section, we consider a particularly simple free-electron
model (Hathaway and Cullen 1992; Edwards, Ward and
Mathon, 1993) of a magnetic trilayer, consisting of two FM
metallic layers separated by a nonmagnetic metallic spacer
layer. We assume infinite exchange splitting in the ferro-
magnets, so that minority spin electrons do not penetrate
them at all and assume that majority spin electrons experi-
ence the same constant potential (taken as zero) as the spin
independent potential in the spacer. The advantage of this
somewhat idealized model is that it is fully solvable, and
contains much of the physical behavior observed in more
sophisticated tight-binding or ab initio calculations of real-
istic systems (Edwards, Ward and Mathon, 1993; Mathon
et al., 2000).
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Figure 7. Schematic representation of a trilayer, showing left and
right semi-infinite ferromagnets separated by a nonmagnetic spacer
layer of width l. The magnetization in the LH ferromagnet is along
the z axis while that in the RH ferromagnet makes an angle θ with
the z axis. The growth axis is along y.

The geometry of the system is depicted in Figure 7. We
select a Cartesian system of coordinates with the x and z

axes in the plane of the layers and the y axis along the
growth direction. We suppose that the spacer has width l

and occupies the region |y| < l/2, whereas the ferromagnets
occupy the regions l/2 < |y| < L. We also assume that
the potential is infinite for |y| > L, but eventually let
L → ∞ so that the ferromagnets become semi-infinite. The
magnetizations of the left-hand (LH) and RH ferromagnets
are constrained to be in the directions shown in Figure 7,
making an angle θ with each other.

The electron eigenstates ψ are classified by a wave vector
k‖ parallel to the layers and either an energy E or a wave
vector ky in the spacer, such that E = �

2(k2
‖ + k2

y)/2m. The
spin current j (k‖, ky) carried by an electron in this state is
given by

j(k‖, ky) = i�2

4m

(
dψ†

dy
σψ − ψ†σ

dψ

dy

)
where

ψ =
(

ψ↑
ψ↓

)
(13)

and σ = (σ x, σ y, σ z) are Pauli matrices with spin quantized
with respect to the z axis. Note that if �/2σ is replaced
by the unit matrix, we recover the usual expression for the
particle current. The spin current in the spacer is independent
of position y, owing to spin conservation, and the only
nonzero component of j is the y component jy . On summing
jy(k‖, ky) over all occupied states (such that E < µ at
T = 0), one obtains the rate of transfer of the y component
of spin angular momentum across the spacer, and hence the
torque −d�/dθ which enters equation (10) for the exchange
coupling J (l, θ). The reason for the torque to be in the

y direction in the present geometry is that the constrained
RH ferromagnet, for example, is trying to precess about an
effective field in the z direction arising from the LH magnet.

The integration over θ in equation (10) is done by expand-
ing j (k‖, ky) in a Fourier series in ky . Eventually, one obtains
an exact result for the exchange coupling at T = 0 and for
spacer thickness l

J (θ) = N2dE
2
F

πk2
Fl

2

∞∑
s=1

1

s3

[
1 − cos2s

(
θ

2

)]

×
[(

1 − 3

(2skFl)2

)
sin(2skFl) + 3

2skFl
cos(2skFl)

]
(14)

Here, kF is the Fermi wave vector in the spacer, EF is the
corresponding Fermi energy, and N2d is the constant density
of states per unit area of the electron gas in two dimensions.

The s = 1 term in equation (14) gives the fundamental
oscillation in J (θ) as a function of the spacer thickness l with
period π/kF. If J is only observed at discrete thicknesses
l = Nd, a longer period of π/|kF − π/d| may be observed
owing to the ‘aliasing effect’, as described in Section 2.3.
Subsequent terms s = 2, 3, . . . give higher harmonics with
dependencies on angle θ of increasing complexity. The
angular factor may be written as (1 − cos θ)/2 for the
s = 1 term and as (3 − 2 cos θ − cos2 θ)/4 for the s = 2
term. So the biquadratic exchange first occurs in the s = 2
harmonic, and generally a coss θ term first occurs in the sth
harmonic.

It is straightforward to include Fermi factors in the sum of
the spin current over occupied states, in order to investigate
the temperature dependence of the exchange coupling. The
result in the limit of large spacer thickness l is

J (θ) = N2dEF

βπkFl

∞∑
s=1

1

s2

[
1 − cos2s

(
θ

2

)]

×
[

sin(2skFl)

sinh(sπkFl/βEF)

]
(15)

where β = (kBT )−1. Clearly, the sth harmonic is damped
exponentially for T > Ts , where kBTs = �vF/2sπl, vF being
the Fermi velocity. Thus higher harmonics, including the
biquadratic exchange, decay more rapidly than the fundamen-
tal oscillation with s = 1. Impurity scattering in the spacer
also damps the oscillations in the IEC exponentially (see
e.g., Levy, Maekawa and Bruno, 1998). The analogy between
IEC oscillations and de Haas van Alphen oscillations, where
similar damping occurs, has been pointed out by Edwards,
Mathon, Muniz and Phan (1991a). In order to make the tem-
perature dependence of the exchange coupling explicit, it is
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instructive to write equation (15) as

J (T , θ) =
∞∑

s=1

Js(T , θ) where

Js(T , θ) = Js(0, θ)
T /Ts

sinh(T /Ts)
(16)

The temperature dependence exhibited in this simple free-
electron model closely resembles the temperature depen-
dence of the exchange coupling for very general spacer band
structures which we explore in Section 6.

The nonmagnetic spacer between the two magnetic layers
acquires an induced magnetic moment due to the different
confinement conditions of up- and down-spin electrons
(Mathon et al., 2000). The wave function ψ introduced in
the preceding text can be used to calculate this spin density.
It is found that the induced magnetization P (y) is coplanar
with the magnetizations of the two magnetic layers. Thus
P (y) = P (y)(sin φ(y), 0, cos φ(y)), where the ‘twist angle’
φ(y) determines how the induced magnetization rotates about
the y axis in the spacer. The components of P (y) oscillate
with the same period π/kF as the exchange coupling.

When the magnetizations of the two FM layers are
collinear (θ = 0 or π), the twist angle φ(y) = 0, so that
the induced moment is also collinear. In the general case
when θ �= 0, Mathon et al. (2000) have shown, both for
the simple free-electron model considered here and for a
multiorbital tight-binding calculation of a Co/Cu/Co(001)
trilayer, that the induced moment rotates along a complex
three-dimensional spiral and can undergo many complete
360◦ rotations. Figure 8 displays φ(y) as a function of y

for spacers of thicknesses l = 8, 10, 14, 16, with θ = π/2.
For l = 8, the induced moment rotates straightforwardly
from 0 to π/2 with most of the rotation occurring near the
middle of the spacer. For l = 10, the behavior is already
strikingly different. Rather than a rotation from 0 to π/2,
the induced moment reaches π/2 at y = l by undergoing a
slow rotation through an angle of −3π/2. For l = 14, 16,
we now reach the typical behavior of induced moment. It
rotates through π/2 several times before finally aligning
itself with the magnetization in the right ferromagnet. Not
only does this mean that the induced moment rotates by more
than 2π but the manner of rotation is itself remarkable. The
angle φ shows almost constant plateaus, followed by sharp
variations.

Several factors probably contribute to this rather bizarre
behavior. Firstly, the induced moment is very small and,
secondly, electron–electron interactions in the spacer have
been neglected. One can imagine a different situation with
a spacer such as Pd, which is a paramagnet on the verge of
ferromagnetism owing to electron interaction. The induced
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Figure 8. Dependence of the twist angle φ(y) on the distance
from the left ferromagnet/spacer interface for spacer thicknesses
l = 8, 10, 14, 16 and θ = π/2.

moments would be larger and would possess an exchange
stiffness, which would inhibit rapid rotation. A rather uniform
simple twist might be expected as in a domain wall of a
ferromagnet. Similar behavior is discussed in Section 7.3 for
an AF spacer. The actual behavior of the induced moment in
noble metal and TM spacers deserves further consideration.

4 CALCULATION OF IEC IN MODELS
OF REAL SYSTEMS

The standard approach to realistic calculation of the ground
state properties of an electronic system makes use of density-
functional theory within the local spin-density approximation
(LSDA). For a magnetic trilayer or superlattice the total
energies of the FM and AF configurations may be calculated
and the IEC must then be obtained as the small difference
between these two large energies. The one-electron spin-
dependent potentials are determined self-consistently in each
configuration. This is a computationally slow and difficult
task, since typically 104 k-points in the in-plane Brillouin
zone must be summed over to achieve the required accuracy
(Mathon et al., 1997). So the method is usually restricted
to relatively thin spacers, where fewer k-points may be
used. A much more practical approach is to use the force
theorem or frozen potential approximation. Both of these
closely related approaches approximate the total energy
difference by the difference of sums of one-electron energies
over occupied states. In frozen potential approximation, the
local one-electron potentials are frequently taken as those
corresponding to the bulk magnetic and spacer metals.
(For further details and comparison of these methods see
Szunyogh, Újfalussy, Weinberger and Sommers, 1996.)
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One-electron energies in the given potentials are usu-
ally determined by the Korringa–Kohn–Rostocker (KKR)
method, the related tight-binding linear muffin tin orbital
(TB-LMTO) method or by a straightforward multiorbital
tight-binding method. The last method has the advantage
of conceptual simplicity and we shall use this approach to
sketch the formalism for calculating the IEC in real trilay-
ers. An explicit formula for the IEC is obtained in Section
4.2 which is exact for thick spacers and separates clearly the
various oscillatory components.

4.1 The cleavage formula for IEC

The general method is most easily described for a mul-
tiorbital tight-binding model with s, p, d orbitals whose
one-electron parameters are fitted to first-principles bulk
band structure or obtained within an ab initio LMTO-tight-
binding formulation. Within the one-electron approximation
of Section 2.2, we write the Hamiltonian for the magnetic
trilayer of Figure 7, in the form

H = H0 + HP (17)

where the one-electron hopping term H0 is given by

H0 =
∑
k‖σ

∑
mµ,nν

tmµ,nν(k‖)c†
k‖mµσ

ck‖nνσ (18)

and HP contains on-site potentials. These are independent
of spin in the spacer, but contain exchange splitting in
the ferromagnets. The spin dependence of the exchange
potentials in the two ferromagnets is chosen appropriately for
their different directions of magnetization. In equation (18),
c

†
k‖mµσ

creates an electron in a Bloch state, with in-plane

wave vector k‖ and spin σ , formed from a given atomic
orbital µ in plane m. The easiest method of deriving an
expression for the IEC within this formulation is to consider
a pair of neighboring planes in the spacer (labeled by say n

and n − 1) and to initially ‘switch off’ the hoppings between
them, so that the trilayer is ‘cleaved’ into two semi-infinite
systems. The final expression for the IEC is independent of
the position of the ‘cleavage plane’ within the spacer. Then
the Hamiltonian may be written as follows:

H(λ) = HL + HR(θ) + λHLR where

HLR =
∑
k‖σ

∑
µ,ν

tn−1µ,nν(k‖) c
†
k‖n−1µσ

ck‖nνσ (19)

and HL is the Hamiltonian for the LH semi-infinite system,
with the magnetization of the LH ferromagnet in the (0, 0, 1)

direction, and HR is the Hamiltonian for the RH semi-infinite

system, with the magnetization of the RH ferromagnet in
the (sin θ, 0, cos θ) direction (see Figure 7). The parameter
λ represents a coupling constant between the LH and RH
systems, so that H(0) corresponds to a cleaved system with
no hopping across the cleavage plane, and H(1) = H is the
original Hamiltonian.

There are a number of ways in which a formula for the
IEC can be derived. One can use a generalization of the
energy difference method given in Mathon et al. (1997) or
the torque method described in Section 3 of this chapter
(see also Edwards, 2002) or a method based on Lloyd’s
formula (Drchal, Kudrnovsky, Turek and Weinberger, 1996).
Alternatively, the coupling constant integration method may
be used (e.g., Doniach and Sondheimer, 1998). In this case,
the change in thermodynamic potential between the cleaved
and uncleaved system, obtained by turning on the coupling
constant λ, is given by δ� = ∫ 1

0 〈HLR〉λ dλ, where 〈HLR〉λ
denotes the thermal average in the grand canonical ensemble,
calculated using the Hamiltonian H(λ). The thermodynamic
potential of the cleaved system is independent of θ so that
the IEC can be written (see equation (10))

J (θ) = �(0) − �(θ) = δ�(0) − δ�(θ) (20)

which after some algebra can be expressed in the form

J (θ) = −1

π

∑
k‖

Im
∫

dEf (E − µ)

× Tr ln

(
1 − 1 − cos θ

2
M

)
(21)

where

M = 1 − (1 − g
↑
Rt†g

↑
Lt)−1(1 − g

↑
Rt†g

↓
Lt)(1 − g

↓
Rt†g

↓
Lt)−1

×(1 − g
↓
Rt†g

↑
Lt) (22)

Here, f (E − µ) is the Fermi function with chemical poten-
tial µ, and gσ

L and gσ
R are surface Green’s functions (SGF)

for the LH and RH cleaved systems with Hamiltonians HL

and HR, respectively. These are matrices with elements gµ,ν ,
where µ, ν label the orbitals, and the trace is over these
indices. The spin index σ =↑, ↓ refers to the majority and
minority spin directions of the corresponding ferromagnet.
t is a matrix with µ, ν elements tn−1µ,nν and t† is its hermi-
tian conjugate.

This form of the IEC was first given by Drchal,
Kudrnovsky, Turek and Weinberger (1996), and when θ = π

it reduces to the formula of Mathon et al. (1997). It is a par-
ticularly convenient expression, since the θ dependence is
explicit, and does not occur in the calculation of M. The
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expansion of this formula in powers of 1 − cos θ to deter-
mine the bilinear and biquadratic coupling has been discussed
by Drchal, Kudrnovsky, Turek and Weinberger (1996).

Alternative expressions for the IEC have been given
by Bruno (1995) and Stiles (1996b, 1999) in terms of
reflection and transmission coefficients at interfaces, rather
than Green’s functions. The form for the IEC, which is
usually considered in this approach is one valid in the
limit of weak confinement. This approximation amounts to
replacing a ln (1 − X) term, similar to that in equation (21),
by the leading term X in its power series expansion. The
method is not very well adapted to accurate calculation
of the IEC in real systems. Quantitative work along these
lines for a real trilayer such as Co/Cu/Co(001) is usually
restricted to calculation of reflection coefficients (Bruno,
1995), possibly followed by an uncontrolled estimate of
the IEC using the weak-confinement approximation (Stiles,
1996b).

4.2 The stationary phase approximation (SPA)

Consider the integrand F(E, k‖, θ, l) = T r ln(1 − M(1 −
cos θ)/2) of equation (21). For each value of E, k‖, θ , it can
be shown that (see Umerski, 1997; Mathon and Umerski,
2006; Edwards, 2002) this can be expanded in a Fourier
type series:

F(E, k‖, θ, l) =
∑

�s
c�seilφ�s where

φ�s ≡ 2(s1ky1 + · · · + sP kyP
) (23)

where s1, s2, . . . , sP are integers and {±ky1, ±ky2, . . . ±
kyP

} are the 2P solutions of the perpendicular wave
vector obtained from the bulk spacer dispersion relation
E(k‖, ky) = E. To simplify the present discussion, we
restrict ourselves to the case of Fermi surfaces which are
symmetric about the ky = 0 plane, but see Edwards (2002)
for the general case. When the Fermi surface has a single
sheet, there are just two solutions ±ky , and so φs ≡ 2sky . In
this case, F(E, k‖, θ, l) is a periodic function of the spacer
thickness l, with period π/ky , and the expansion is a standard
Fourier series. This case is closely related to the periodicity
of the integrand of equation (11), and the expansion corre-
sponds to that of equation (12).

For multisheet Fermi surfaces, the integrand F is said
to be a quasiperiodic function of the spacer thickness l,
with periods π/ky1, π/ky2, . . . , π/kyP

. Evaluation of the
Fourier-like coefficients in this case requires use of the
matrix Möbius transformation (Umerski, 1997), and we refer
the interested reader to the review articles of Mathon and
Umerski (2006) and Edwards (2002). Equation (23) can be

substituted into equation (21) for the IEC, and the same
argument following that of equation (12) of Section 3 can be
applied to obtain a SPA of the IEC. The result is a formula
for the exchange coupling, which is asymptotically exact in
the limit of large spacer thickness (l → ∞):

J (l) = − (2π)2kBT

2lABZ

∑
�s

∑
k0

‖�s

Re

×
(

τc�seilφ�s

| det(∂2φ�s)|1/2 sinh(πkBT [lφ′
�s + ψ ′

�s])

)∣∣∣∣
µ,k0

‖�s

(24)

Here, (∂2φ�s) is the 2 × 2 Hessian matrix (∂2φ�s)α,β ≡
∂2φ�s/∂k‖α∂k‖β , and τ = i when both eigenvalues of the Hes-
sian matrix are positive, τ = −i when they are negative,
and τ = 1 when they have opposite signs. φ′

�s ≡ dφ�s/dE, ψ ′
�s

is the derivative of the phase of c�s with respect to E, and
ABZ is the area of the in-plane Brillouin zone. All quantities
in equation (24) are evaluated at the chemical potential of
the spacer E = µ, and the sum over {k0

‖�s} is over the set
of points in the two-dimensional in-plane Brillouin zone at
which φ�s(k‖) is stationary.

In the case of a single sheet Fermi surface which is sym-
metric about the k‖ plane, these stationary points coincide
with the stationary points of the spacer Fermi surface (i.e.,
where ky(E = µ, k‖)) is stationary), and the periods are
related to the spanning vectors of the Fermi surface. In the
case of Co/Cu/Co(001), these are kB

y and kN
y depicted in

Figure 4, and equation (24) was used to determine the dashed
SPA to Figure 5. For multisheet Fermi surfaces, the station-
ary points of φ�s will include all RKKY periods derived from
the extrema of Fermi-surface spanning vectors. However,
additional periods arising from more complex linear combi-
nations of Fermi-surface wave vectors are also obtained. In
general, these are not merely harmonics of RKKY periods.
Such non-RKKY periods even occur in simple models, for
example, in a single orbital fcc (110) tight-binding model
(Ferreira, d’Albuquerque e Castro, Edwards and Mathon,
1996), as well as in more complex realistic systems such
as Fe/Mo/Fe(001) (Edwards, 2002).

It should be noted that a fundamental assumption of
the SPA is that the coefficients c�s of equation (23) are
slowly varying functions of the energy, near EF. Whereas
this is found to be true for many realistic systems, Costa,
d’Albuquerque e Castro and Muniz (1999) have found
that this is not the case for Fe/Au/Fe and Fe/Ag/Fe(001),
since electrons at the Fermi energy are very close to
deconfinement, and hence their wave functions vary rapidly
as a function of energy. As a result, the SPA only becomes an
accurate approximation in these systems for extremely thick
spacer layers.
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5 BIQUADRATIC EXCHANGE COUPLING

5.1 Measurement

Consider two coupled magnetic layers with, for simplicity,
the same thickness and magnetization M0. The magnetocrys-
talline anisotropy is assumed to have fourfold symmetry and
a magnetic field of magnitude H is applied in the plane
of the layer (zx plane) along an easy axis (z axis). The
magnetic moments of the two layers lie in plane in direc-
tions m1 = (sin θ1, 0, cos θ1) and m2 = (sin θ2, 0, cos θ2).
The total energy per unit interfacial area may be written as

Etot = −M0D(cos θ1 + cos θ2)H − KD

8
(cos 4θ1 + cos 4θ2)

−J̄1 cos(θ1 − θ2) − J̄2 cos2(θ1 − θ2) (25)

where K is the anisotropy constant, J̄1, J̄2 are the bilinear and
biquadratic couplings and D is the ferromagnet thickness.
In this section, we distinguish between the quantities J̄1,
J̄2 which enter Etot for a real, generally imperfect, sample
and the couplings J1, J2 which pertain to an ideal system
with perfect interfaces. For J̄2 < 0 the biquadratic term
favors noncollinear alignment of the magnetizations, whereas
for J̄2 > 0 it merely reinforces collinear alignment and
has essentially no influence on the magnetic properties of
the system. Consequently, only negative values of J̄2 are
measurable. Following Demokritov (1998), we assume that
anisotropy is dominant, this being a common experimental
situation. In this case, m1 and m2 cannot deviate from
the easy axes and only three ground state configurations
are possible: FM, AF, and perpendicular (90◦ coupling).
For H ≥ 0, the corresponding energies Etot are (ignoring
the constant term −KD/4) EFM = −J̄1 − J̄2 − 2M0DH ,
EAF = J̄1 − J̄2 and E90◦ = −M0DH , respectively. The most
important case is when J̄1 < J̄2 < 0 so that J̄1 − J̄2 < 0 and
−J̄1 − J̄2 > 0. The energies EFM, EAF, E90◦ for this case
are plotted schematically as functions of H in Figure 9. Here
H1 = −(J̄1 + J̄2)/M0D and H2 = −(J̄1 − J̄2)/M0D. As H

increases, transitions occur from the AF configuration to the
90◦ one at H = H2 and then to the FM configuration at H =
H1. The corresponding steps in the normalized magnetization
component M||/Ms in the direction of the field, where Ms is
the saturation value in the FM state, are shown for a real
Fe/Ag/Fe structure in Figure 10 (Schäfer et al., 1995).

The length of the plateau with M|| = Ms/2 is Hp = H1 −
H2 = −2J̄2/M0D and both J̄1 and J̄2 can be deduced from
the observed fields H1 and H2.

If J̄2 < 0, |J̄1| < −J̄2 it is easily seen that the ground state
is the 90◦ one. In this case, only one step occurs, at H = H1,
so that only the sum J̄1 + J̄2 is determined.

EFM

E90°

EAF

H

E

H1H20

−J1 − J2

 J1 − J2

Figure 9. The energies EFM, EAF, E90◦ , defined in the text,
schematically plotted as a function of the applied field H , for the
case J̄1 < J̄2 < 0.

5.2 Mechanisms

There is no general theory of biquadratic coupling, which can
be applied to all systems. We shall consider four different
mechanisms and discuss their limits of applicability.

5.2.1 The intrinsic mechanism

In Section 3, we presented an exact expression
(equation (14)) for the exchange energy of a trilayer, as a
function of the angle θ between the magnetizations of the
magnetic layers, for a simple free-electron model with per-
fect interfaces. The s = 1 term in equation (14) gives the

B
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Figure 10. A M(H) loop with hysteresis effects removed
(anhysteretic measurement), for an antiferromagnetically coupled
Fe/Ag/Fe structure with Ag thickness of 18.5 Å. (Reprinted with
permission from Schäfer et al., 1995,  1995, American Institute
of Physics.)
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fundamental oscillation of the exchange coupling as a func-
tion of the spacer thickness with period π/kF, where kF is the
Fermi wave vector in the spacer. The biquadratic exchange
first occurs in the s = 2 harmonic, and, consequently, is
much smaller than the bilinear coupling (Edwards, Ward and
Mathon, 1993). The same result is obtained in several other
model calculations (Erickson, Hathaway and Cullen, 1993;
Slonczewski 1993a; d’Albuquerque e Castro, Ferreira and
Muniz, 1994). This feature of simple models seems to be a
general property and appears in first-principles calculations
for real systems (Drchal, Kudrnovsky, Turek and Weinberger,
1996). One may conclude that for ideal multilayers with
perfect interfaces, the biquadratic coupling is an order of
magnitude smaller than the bilinear coupling. Thus observa-
tion of biquadratic coupling J̄2 with magnitude comparable
to that of the bilinear coupling J̄1 is indicative of deviations
from an ideal structure, for example, interface roughness.

In this section, we shall discuss how interface rough-
ness can result in intrinsic biquadratic coupling becoming
much more important owing to the observed bilinear cou-
pling being strongly reduced from its intrinsic value. In the
next section, we describe Slonczewski’s (1991) ‘fluctuation
mechanism’ of biquadratic coupling, which also relies on
interface roughness. The couplings, which arise from intrin-
sic and fluctuation mechanisms are considered additive. For
both mechanisms, it is important that the oscillatory intrin-
sic bilinear coupling J1(N), where N is the spacer thickness
in MLs, has a dominant short-period component, the period
being close to 2 ML. Strong biquadratic coupling is most
commonly observed in systems with Cu, Au, Ag, and Cr
spacers (Demokritov, 1998) of which all except Ag have
such a dominant short-period component. Another exception
seems to be Fe/Al/Fe which is discussed in Section 5.2.3.

Drchal, Kudrnovsky, Turek and Weinberger (1996) calcu-
lated the intrinsic bilinear and biquadratic coupling, J1(N)

and J2(N), respectively, for Co/Cu/Co(001) trilayers with Cu
thickness N ranging from 1 to 50 ML, and with Co thick-
nesses of 5 ML and infinity. We shall concentrate on the
case of thick Co layers. The bilinear coupling J1(N) is dom-
inated by a short-period (2.53 ML) oscillation, and the results
are in close agreement with those of Mathon et al. (1997).
The long-period contribution associated with the belly part
of the Cu Fermi surface is negligible for thick Co layers. The
intrinsic biquadratic coupling J2(N) is an order of magnitude
smaller that J1(N) and oscillates about zero with a period
of about 5 ML. This period is easily understood as follows.
J2(N) oscillates as an s = 2 harmonic so its period should
be 2.53/2 = 1.27 ML. However, since N is an integer,
an oscillatory term sin(2πNλ−1) = − sin(2πN(1 − λ−1)),
which corresponds to an actual period of λ/(λ − 1) = 4.7
ML for λ = 1.27. This effect of a discrete lattice on the
observed period is known as the aliasing effect, and is also

described in Section 2.3. To model the effect of interfa-
cial roughness Drchal, Kudrnovsky, Turek and Weinberger
(1996), following Kudrnovsky et al. (1996), introduced a
discrete probability distribution w(N − P ) specifying the
probability that the spacer layer is P ML thick for a nomi-
nal thickness N . Thus, the observed bilinear and biquadratic
couplings are related to the intrinsic ones by

J̄1,2(N) =
∑
P

w(N − P )J1,2(P ) (26)

Kudrnovsky et al. (1996) assumed a distribution of the form
w(0) = (1 − 2r)2 + 2r2, w(±1) = 2r(1 − 2r), w(±2) = r2

and w(m) = 0 for |m| > 2. This corresponds to each Co/Cu
interface deviating from its nominal position by ±1 ML,
each with probability r , the steps on the two interfaces being
uncorrelated. For the averaging process in equation (26) to
be valid, the terrace widths between the steps must not be
too small, certainly not less than the spacer thickness. On
the other hand, the terrace widths must not be larger than the
width of a domain wall in the Co layers (∼100 nm). If this
condition is not satisfied the Co magnetizations will adopt the
energetically favorable AF or FM configurations locally and
the concept of exchange coupling between magnetic layers
with essentially uniform magnetization breaks down.

The averaging process of equation (26) essentially washes
out the fundamental short-period oscillation of J1(P ), but
the s = 2 harmonic with period 4.7 ML is largely unaf-
fected. The same applies to J2(P ) so that J̄2(N) ≈ J2(N).
Kudrnovsky et al. (1996) calculated J̄1(N) with a reasonable
roughness parameter r = 0.25 and it is found to oscillate with
a period of about 5 ML, as expected, and with an ampli-
tude about one-fifth of the short-period amplitude in J1(N)

(actually the calculation was performed for Co thickness of
5 ML where the long-period oscillation in J1(N) is not com-
pletely negligible, as it is for thick Co layers. Thus, J̄1(N)

has a contribution from the long-period oscillation period
5.7 ML, in addition to that from the short-period harmonic).
Clearly, the effect of interface roughness is to reduce the
intrinsic bilinear coupling J1(N) by a substantial factor to
its observable value J̄1(N); J2(N) is hardly affected so that
J̄1(N) and J̄2(N) become comparable in magnitude. Drchal,
Kudrnovsky, Turek and Weinberger (1996) investigated the
total exchange energy for thick Co layers and found that
the 90◦ coupling is never the ground state configuration for
r ≤ 0.1. However, for r = 0.2 and r = 0.25, 90◦ coupling
occurs for some Cu thicknesses.

The general belief that intrinsic biquadratic coupling is
too small to account for observed values is based on results
for simple models with ideal interfaces. The calculations
of Drchal, Kudrnovsky, Turek and Weinberger (1996) for
Co/Cu/Co(001) with the effect of rough interfaces taken into
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account, show that this is not always the case. In fact it is
interesting to return to the free-electron model of Section 3,
but consider the effect of a lattice with interplanar spacing d.
Then J (θ) is only observed at discrete spacer thicknesses
l = Pd taking values J (P, θ). The fundamental period of
the bilinear coupling is π/kF, where kF is the Fermi wave
vector, and suppose that this is close to 2d so that the s = 1
term in equation (14) oscillates with a period close to 2 ML.
The s = 2 term has a long period when observed at discrete
spacer thicknesses Nd, due to the aliasing effect. Suppose
that roughness subjects J (P, θ) to an averaging of the type
specified in equation (26). The s = 1 term in J (P, θ) is thus
largely eliminated and the observed exchange energy J̄ (N, θ)

is dominated by the s = 2 term with angular dependence
(3 − 2 cos θ − cos2 θ)/4. Hence J̄1(N) = 2J̄2(N) and for
spacer thicknesses N with J̄1(N) < 0, corresponding to AF
coupling, we have J̄1(N) < J̄2(N) < 0 which leads to a
M(H) curve of the type shown in Figure 10. Further work,
both experimental and theoretical, is required on biquadratic
coupling as a function of spacer thickness.

5.2.2 The fluctuation mechanism

We once again consider a trilayer in which the intrinsic
bilinear coupling J1(N) oscillates with a dominant short
period of approximately 2 ML. At a ML step on an interface
J1 therefore changes sign taking values ±�J . Suppose that
the terrace width L between steps is considerably less than
the width of the domain wall in a magnetic layer. The
magnetization in each magnetic layer can therefore only
respond to the changing sign of the bilinear coupling by small
deviations from its average direction. Slonczewski (1991)
showed that the energy of the system is minimized when

these average directions are at right angles, that is, 90◦

coupling is favored.
Figure 11 shows a section of the trilayer where the

FM layers have thicknesses D and D′. The corresponding
magnetization vectors M and M′ are oriented in the x −
z plane at angles θ(y, z) and θ ′(y ′, z) measured from a
common axis. For simplicity a periodic structure is assumed
with ML steps on one interface of the spacer creating terraces
of constant width L. The intrinsic bilinear coupling J1(z) is
therefore a periodic step function of the form

J1(z) = �J sgn
[
sin

(πz

L

)]
≈ 4�J

π
sin

(πz

L

)
(27)

The last expression approximates J1(z) by the first term in its
Fourier expansion and only leads to a small error in the final
result (Slonczewski, 1991). The sum of the exchange energies
per unit area due to interlayer coupling and intralayer FM
stiffness may be written as

W = 1

2L

∫ 2L

0
dz

(
− J1(z) cos(θ(0, z) − θ ′(0, z)) + A

∫ D

0
dy

×(θ2
y + θ2

z) + A′
∫ D′

0
dy ′

(
θ ′2

y′ + θ ′2
z

))
(28)

where A, A′ are the Bloch wall stiffnesses of the magnetic
layers. At the outer surfaces y = D and y ′ = D′ the mag-
netizations are free so that we have boundary conditions
θy(D, z) = θ ′

y′(D′, z) = 0. Minimization of W with respect
to variations in θ(y, z), θ ′(y ′, z) leads to two-dimensional
Laplace equations for θ , θ ′ with boundary conditions relat-
ing θy(0, z), θ ′

y′(0, z) to J1(z). The boundary conditions are
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Fe

Cr

Fe
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D ′
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x

Figure 11. Section of an epitaxial magnetic trilayer, with periodic ML interface terraces. Arrows schematically indicate the fluctuations
in magnetizations M(y, z) and M′(y ′, z) in the x − z plane due to fluctuations in the exchange coupling J (z). (Reprinted figure from
Slonczewski, J.C., (1991), Phys. Rev. Lett., 67, 3172–3175.  1991, by the American Physical Society.)
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linearized by assuming that deviations of θ , θ ′ from their
average values θ̄ , θ̄ ′ are small. The result for θ(y, z) is

θ = θ − 2L�J

π2A sinh
(

πD
L

) sin
(πz

L

)
cosh

(π

L
(D − y)

)

× sin(θ − θ
′
) (29)

with a similar expression for θ ′. On introducing these
expressions into equation (28) we obtain an energy of the
biquadratic form W = J̄2[1 − cos2(θ − θ

′
)] with

J̄2 = −4(�J)2L

π3A
coth

(
πD

L

)
(30)

We have assumed here equivalent FM layers with A = A′,
D = D′. We note that J̄2 < 0 so that 90◦ coupling is always
favored by the fluctuation mechanism. It is important to stress
that �J is the amplitude of the short-period intrinsic bilinear
coupling J1 which is not observable in the presence of
the roughness responsible for the observed J̄2. Slonczewski
(1991) pointed out that measurement of J̄2 in specimens
with rough interfaces can therefore give information about
the short-period coupling in the ideal system, as long as
the terrace width L can be reasonably estimated and the
fluctuation mechanism makes the dominant contribution to
J̄2. The idea has been cleverly implemented by Heinrich and
Cochran (1993) to deduce J1(N) for bcc Fe/Cu/Fe(001) from
the observed J̄1(N), J̄2(N). In deriving equation (29) and
hence (30), it was required that θ − θ � π/2 which implies
|J̄2| � �J . Clearly until this condition breaks down, |J̄2| is
an increasing function of the terrace width L. If D � L,
|J̄2| ∝ L2 and the condition |J̄2| � �J implies L � πl

where l = π
2

√
AD/�J is the domain wall width in the

FM layer, interlayer coupling playing the role of anisotropy
(Pierce, Unguris, Celotta and Stiles, 1999). Ribas and Dieny
(1993) have carried out a numerical study of the fluctuation
mechanism, with magnetocrystalline anisotropy included in
the magnetic layers. For a model of Fe/Cr/Fe in which one
of the Fe layers is thin (D = 10 nm) they find a crossover
from 90◦ coupling of the Slonczewski type when L = 25
nm, to the appearance in this layer of domains, in which
the Fe magnetization adopts the energetically favorable AF
or FM configurations locally, for L = 125 nm. This is in
accordance with a domain wall width of about 50 nm. Moser,
Berger, Margulies and Fullerton (2003) have studied this type
of crossover experimentally. If the magnetic layers are both
thick (D � L), |J̄2| ∝ L with a condition for validity of
equation (30) of the form L � π2A/(4�J). It follows from
equation (29) that the magnetization only deviates from a
uniform direction within a distance L of the interface with
the spacer.

5.2.3 ‘Loose spin’ model

Some measurements of J̄2 in Fe/Al/Fe (Gutierrez, Krebs,
Filipkowski and Prinz, 1992) and Fe/Au/Fe (Fuss, Wolf
and Grünberg, 1992) have shown that it decreases much
more rapidly with increasing temperature than can be easily
understood within the intrinsic or fluctuation mechanisms.
In an attempt to explain this behavior Slonczewski (1993b)
proposed that the source of the biquadratic coupling was
the polarization of magnetic impurities located in the spacer.
A given impurity with spin S (‘loose spin’) has an effective
Hamiltonian (U1 + U2).S/S where U1 = U1m1, U2 = U2m2

are the exchange fields due to coupling with the magnetic
layers. m1 and m2 are unit vectors in the magnetization
directions of the magnetic layers. U1 and U2 are fields of
the RKKY type and therefore fluctuate in sign as the spatial
position of the impurity is varied. The energy levels of the
impurity are −mU(θ)/S with m = −S, −S + 1, . . . , S, and

U(θ) = |U1 + U2| = (U 2
1 + U 2

2 + 2U1U2 cos θ)1/2 (31)

where θ is the angle between m1 and m2 as usual. It follows
that the free energy of the loose spin at temperature T is

f (T , θ)=−kBT ln

(
sinh

(
[1+(2S)−1]U(θ)/(kBT )

)
sinh (U(θ)/(2SkBT ))

)
(32)

and at T = 0, f (0, θ) = −U(θ). Slonczewski does not carry
out a configurational average over impurity positions, but
assumes that each impurity experiences the same exchange
fields U1, U2. The macroscopic free energy F per unit area is
then F(T , θ) = ρf (T , θ), where ρ is the areal density of the
impurities. This may be written approximately in the usual
form

F(T , θ) = F(T , π/2) − J̄ LS
1 cos θ − J̄ LS

2 cos2 θ (33)

either by expanding in powers of cos θ , for small cos θ , or by
choosing J̄ LS

1 , J̄ LS
2 so as to reproduce F(T , 0) and F(T , π)

correctly. Either way, at T = 0, we find that the sign of J̄ LS
1

is that of U1U2, whereas J̄ LS
2 is always positive. Hence the

failure to take a configurational average is qualitatively not
so serious for J̄ LS

2 , the main object of interest. On the other
hand, J̄ LS

1 fluctuates in sign for different impurity positions
so will tend to average to zero.

Slonczewski fitted his theory to the observed temperature
dependence of J̄2 in Fe/Al/Fe and Fe/Au/Fe in two ways.
He first assumed that most of the impurities were positioned
far from the interface with |U1| ≈ |U2|. However, exchange
fields |U1,2|/kB ∼ 250 − 400 K were required, which is
unrealistically large. Slonczewski’s second type of fit is based
on the assumption that the loose spins actually comprise the
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last atomic layer of the ferromagnets. Then one exchange
field is very large and the other small. The concept of
independent loose spins at the surface of an itinerant electron
ferromagnet is of doubtful validity.

Slonczewski (1993b) pointed out that a system to which
the loose spin model would apply could be constructed by
deliberate deposition of magnetic impurities in an atomic
layer within the spacer. Following earlier work by Heinrich
and Cochran (1993) this has been achieved by Schäfer et al.
(1995) in Fe/Ag/Fe with a submonolayer of Fe in the center
of the Ag spacer. A contribution to biquadratic coupling
proportional to the Fe concentration and rapidly decreasing
in temperature was observed.

Heinrich and Cochran (1993) proposed an alternative
source of strongly temperature dependent biquadratic cou-
pling in Fe/Al/Fe. Interfaces in this structure are known to
be rough (Gutierrez, Krebs, Filipkowski and Prinz, 1992),
and, with spacer thicknesses of 6–8 ML, magnetic bridges
or pinholes are possible. If these exist the exchange cou-
pling would vary between FM through the pinholes and AF
elsewhere (the overall bilinear coupling is observed to be
AF). If the spacing between pinholes is less than a domain
wall width in an Fe layer, the Slonczewski (1991) fluctuation
mechanism for 90◦ coupling could operate. The rapid decay
of J̄2 with increasing temperature would be associated with
the decay of magnetization in the thin magnetic bridge.

5.2.4 Magnetic-dipole mechanism

The magnetic-dipole mechanism is a variant of the fluctu-
ation mechanism where the spatially fluctuating coupling
between rough magnetic layers is not due to exchange cou-
pling but due to a magnetic field. A perfect infinite magnetic
layer produces a magnetic field outside itself only within a
range of the order of the lattice constant (Heinrich et al.,
1988). However, a rough magnetic layer, with a periodic
array of terraces of width L (as in Figure 11), produces
a magnetic field which oscillates about zero with lateral
periodicity 2L and which has a range of the order of 2L

(Demokritov, Tsymbal, Grünberg and Zinn, 1994). The effect
on the magnetization of a smooth magnetic layer, separated
from the rough layer by a spacer of thickness t with t < L

is therefore similar to that of the fluctuating exchange field
in the fluctuation mechanism. Thus a positive contribution
to J̄2 is obtained which increases with L until the theory
breaks down for L of the order of a domain wall width,
just as in the fluctuation mechanism. The two mechanisms
may sometimes be difficult to distinguish in practice. Rücker
et al. (1995) claim to have shown that the magnetic-dipole
mechanism is the source of the biquadratic coupling in their
rough Fe/Au/Fe trilayers. However, they eliminate the fluctu-
ation mechanism on the grounds that the predicted J̄2 is too

small. It is now known (Unguris, Celotta and Pierce, 1997)
that the amplitude of the short-period oscillation in J1 (�J

in equation (27)) is at least five times larger than their esti-
mate, which increases their estimate of the contribution of
the fluctuation mechanism to J̄2 by a factor of 25. It is thus
of the same magnitude as their estimated magnetic-dipole
contribution.

6 TEMPERATURE DEPENDENCE OF
INTERLAYER EXCHANGE COUPLING

In earlier sections, we noted the temperature dependence of
IEC owing to single-particle excitations around the Fermi
level. The bulk spacer Fermi surface is given by E(k‖, ky) =
µ, where E(k‖, ky) defines the bulk band structure with k‖ in
the plane of the layers and ky in the perpendicular direction.
Consider the simplest case where, for a given k‖, there are
just two points ky = ±k(k‖) on the Fermi surface. In the
limit of large l, where l is the spacer thickness, the bilinear
exchange coupling is a sum of oscillatory terms with periods
determined by extremal values of ky (see equation (24)). For
each period λ there is a series of harmonics s = 1, 2, . . .. The
bilinear exchange coupling may be written as

J1(l, T ) =
∑
λ,s

J1λs(l, 0)fλsl(T ) (34)

where

fλsl(T ) = T /Tλsl

sinh(T /Tλsl)
= 1 − 1

6

(
T

Tλsl

)2

+ · · · (35)

with

kBTλsl = π−1(2lsk′
yλ + ψ ′

λs)
−1 (36)

Here k′
yλ = dky/dE = (�vFλ)

−1 where vFλ is the Fermi
velocity at the relevant extremal point of the Fermi sur-
face. The ψ ′

λs term, which is the energy derivative of the
phase of the relevant coefficient in the Fourier expansion
of the spectral density, is zero for the simple parabolic
band model with infinite exchange splitting in the ferromag-
nets, considered in Section 3 (compare equation (36) with
equation (16)). In that case there is only one period and Tλsl

is determined entirely by the spacer Fermi-surface velocity
vF. However, d’Albuquerque e Castro, Mathon, Villeret and
Umerski (1996) showed that ψ ′

λs can become large when the
condition for confinement of electrons of one spin is just sat-
isfied. They showed that this ‘confinement mechanism’ for
decreasing Tλsl , which depends on the spacer-ferromagnet
interface, operates importantly in Co/Cu/Co(001). They also
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showed that for a parabolic band model with perfect match-
ing for one spin-channel, and complete confinement for the
other spin-channel, ψ ′

λs = sψ ′
λ1, and that this relationship

is also satisfied to a good approximation in Co/Cu/Co. (In
fact it can be proved rigorously that for nonmagnetic spacers
with a single Fermi surface, this condition is exactly satis-
fied when there is exact matching between one of the spin
bands in the ferromagnet and the spacer.) Hence, even in
the presence of the confinement mechanism, Tλsl � s−1Tλ1l .
This means that an s = 2 harmonic of the oscillatory IEC
varies more rapidly with temperature than the corresponding
fundamental (s = 1). Consequently, the intrinsic biquadratic
coupling varies more strongly with temperature than the
bilinear coupling.

Combining equations (34) and (35) we find

J1(l, T ) = J1(l, 0)fe(T ) = J1(l, 0)

[
1 − 1

6
(T /Tl)

2 . . .

]
(37)

where

T −2
l =

∑
λs

T −2
λsl J1λs(l, 0)

∑
λs

J1λs(l, 0)
(38)

If the sign of the term J1λs(l, 0) varies, cancellation can
occur in the denominator of equation (38), so that T −2

l can
be much larger than any of the T −2

λsl . Hence Tl can be
much smaller than one would expect from any of the Fermi
velocities. In addition, it is possible for T −2

l , the coefficient
of T 2 in equation (37), to be negative so that the coupling
increases with temperature. This occurs in calculations by
Costa, d’Albuquerque e Castro and Muniz (1997a) for bcc
Fe/Cu/Fe(001) with l corresponding to 13 ML. In this case,
terms with three different periods and comparable amplitudes
contribute to the coupling. In the usual experimental situation
with rough interfaces Tl may differ markedly from its
value for ideal interfaces when the ideal couplings J1λs are
replaced by averages of the type given by equation (26). The
range of temperature over which an expansion like that in
equation (35) is valid can be extended by using x/ sinh x �
1 − 0.15x1.82, which is an excellent approximation for 0 <

x < 1, in the above analysis. Another discussion of the
temperature dependence of the IEC due to single-electron
excitation is given by Drchal et al. (1999).

Cullen and Hathaway (1993) first pointed out another
source of temperature dependence in IEC owing to thermal
excitation of spin waves. They considered an effective
Heisenberg model in which two FM films are coupled by
a weak nearest-neighbor IEC JI . They also considered a
superlattice case of an infinite number of coupled films,
but we shall restrict our attention here to the model of

the trilayer. Cullen and Hathaway adopted a thermodynamic
approach, involving the free energy of the system in different
magnetic configurations, and recently Schwieger and Nolting
(2004) have followed the same line. Almeida, Mills and
Teitelman (1995), using the same model, adopted a dynamic
approach involving a Hartree–Fock type of decoupling of
the equation of motion for spin waves. Here, we use the
method of coupling constant integration (e.g., Doniach and
Sondheimer, 1998) to obtain a result which we can relate to
those of Cullen and Hathaway (1993) and Almeida, Mills
and Teitelman (1995).

The model Hamiltonian is H(1) where

H(γ ) = H0 − γ JI

∑
SL·SR (39)

and the sum is over nearest-neighbor pairs with site L in the
interface plane of the LH magnet and site R in the interface
plane of the RH magnet. We suppose that the magnetizations
of the two magnetic layers are constrained to make an angle
θ with each other. The change in free energy when JI is
turned on from zero is given exactly by

δF (θ) = F(JI ) − F(JI = 0) = −JI

∑ ∫ 1

0
dγ 〈SL·SR〉γ

(40)
where the thermal average is to be calculated using the
Hamiltonian equation (39). In the case of thick mag-
netic films and JI � J , the bulk exchange parameter, the
spins SL and SR are very weakly correlated, except at
very low temperature where kBT < JI . Hence 〈SL·SR〉γ �
〈SL〉γ=0·〈SR〉γ=0 and δF (θ) = −JIS

2 cos θ mL(T )mR(T ),
where mL(T ), mR(T ) are the reduced magnetizations in the
free surface planes of the two ferromagnets, which may be
of different materials. If, as assumed by Almeida, Mills and
Teitelman (1995), the magnetic films are thick, mi(T ) =
1 − ciT

3/2 (i = L, R) and it is well known that ci = 2c′
i ,

where the bulk magnetization varies as Mi(T ) = Mi(0)(1 −
c′
iT

3/2), in the spin-wave regime (Mills and Maradudin,
1967). This simple relation between surface and bulk T

dependence breaks down if there is significant variation in the
exchange parameters within the ferromagnet near its surface
(Mathon, 1988). Thus for thick FM layers, the temperature
dependence of IEC due to spin-wave excitations is approxi-
mately given by a factor 1 − 2c̄T 3/2, where c̄ = (cL + cR)/2.
The coefficient of T 3/2 is twice that found by Almeida, Mills
and Teitelman (1995) using the equation of motion method.
It appears that the quantity appearing in the equations of
motion is different from the thermodynamical IEC, which
would be measured by saturation fields (Schwieger and Nolt-
ing, 2004). When kBT < Dπ2/t2, where D is the spin-wave
stiffness and t the thickness of a FM layer, two-dimensional
behavior appears and the T 3/2 law does not apply. Cullen
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and Hathaway (1993) consider thin FM layers where JI , and
dipolar coupling within each layer, play an important role
in stabilizing two-dimensional ferromagnetism at finite T .
Referring to equation (40) they effectively take 〈SL.SR〉γ =
〈SL.SR〉γ=1. They find that for ferromagnets with a thick-
ness of one or two ML the IEC decreases linearly with T ,
except at extremely low temperature. If a phenomenologi-
cal biquadratic coupling −JI2 (Si .Sj )

2 is introduced into the
Heisenberg model, a similar analysis yields a temperature
dependent biquadratic coupling −JI2S

4 cos2(θ) (1 − 6c̄T 3/2)

due to spin-wave excitations in thick FM layers.
Finally, we comment on how the two contributions to

the T dependence of the IEC are to be combined. Since at
low temperatures one-electron excitations and spin waves are
essentially independent we expect, as proposed by Almeida,
Mills and Teitelman (1995), that the total T dependence is
determined by a product of an electronic factor fe(T ) and a
suitable spin-wave factor.

The attribution of experimentally observed T dependence
of IEC to electronic or spin-wave factors is sometimes
confused by the fact that x/sinh x � 1.025 − 0.175x3/2 is
an excellent approximation for 0.4 < x3/2 < 2. An impor-
tant distinction is that the spin-wave factor 1 − 2c̄T 3/2

is independent of spacer thickness, whereas the elec-
tronic factor fe(T ) has, in general, a strong dependence
on l (equations (36)–(38)). Thus in work on IEC in
Ni7/CuN /Co2/Cu(001) trilayers, Lindner and Baberschke
(2003a,b) found a much more rapid temperature depen-
dence for N = 9 than for N = 5. Nevertheless, on the basis
of linear T 3/2 plots, they ascribe the main source of the
T dependence to spin-wave excitation. Actually pure T 3/2

behavior is not expected for such a thin Co layer. The
authors dismiss a reasonable fit of the (T /Tl)/ sinh(T /Tl)

type, with Tl = 120 K for N = 9, on the grounds that
Tl is much smaller than expected from Fermi veloc-
ities in Cu. A similar problem is reported by Persat
and Dinia (1997). However, we have discussed how Tl

may be strongly reduced both by the confinement mech-
anism and by cancellations in the sums of equation (38).
Such cancellation may be strongly influenced by rough-
ness which, as in the case of Co/Cu/Co(001), discussed
in Section 5.2.1, can suppress a strong contribution with
short period λ leaving a weaker s = 2 harmonic with
an intrinsically smaller characteristic temperature Tλ2l (cf.
equation (36)).

Clearly much more experimental and theoretical work
on the temperature dependence of IEC, particularly its
dependence on spacer thickness, is required for a full
understanding. A fully satisfactory theory, in which both the
single-electron and spin-wave excitations are treated within
a tight-binding model with interacting electrons, is not yet
available.

7 THEORY AND EXPERIMENT

7.1 Noble metal spacers

In general, agreement between theory and experiment is
good with regard to the periods of oscillation of IEC as a
function of spacer thickness. This is to be expected since
these periods are determined entirely by the nature of the
spacer Fermi surface. The situation regarding amplitude and
phase of the oscillations is much less satisfactory where wide
discrepancies frequently exist not only between theory and
experiment but also between different calculations. Observed
IEC is invariably smaller than that calculated and this can
be understood qualitatively to be due to interface roughness
and interfacial diffusion (Kudrnovsky et al., 1996; Costa,
d’Albuquerque e Castro and Muniz, 1997b; Inoue, 1994).
Comparison between theory and experiment is then difficult
because the exact nature of roughness and interfacial diffu-
sion in an experiment is largely unknown. Possibly, the only
system where direct comparison is possible between experi-
ment and calculations for ideal interfaces is Fe/Au/Fe(001).
Unguris, Celotta and Pierce (1997) made SEMPA and MOKE
measurements on wedge structures grown on single crystal
Fe whiskers, which provide very flat substrates. The angle
of the Au wedge is about 0.001◦ so that the Au thick-
ness increases by 1 ML over steps which are about 10 µm
apart. Owing to a dominant short-period contribution to the
coupling (�2.5 ML), these steps are signaled in SEMPA mea-
surements by a reversal of the magnetization in the top Fe
layer. The magnitude of the AF peaks in the coupling was
measured by MOKE as shown in Figure 12.

Ninety degree coupling is observed in SEMPA at the tran-
sition regions, between regions which are ferromagnetically
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Figure 12. Measured values of coupling strength on Fe/Au/Fe(100)
whiskers, as a function Au thickness (in monolayers). (Reprinted
figure from Unguris, J., Celotta, R.J., and Pierce, D.T., (1997),
Phys. Rev. Lett., 79, 2734–2737.  1997 by the American Physical
Society.)
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and antiferromagnetically coupled. These transition regions
are too wide to be merely due to Néel-type domain walls and
indicate the existence of weak, but observable biquadratic
coupling. Unfortunately, measurements of the magnetiza-
tion curve M(H) to determine its strength were not carried
out. Such measurements would be very valuable because
the biquadratic coupling in these samples with very smooth
interfaces is presumably intrinsic. One indication that this
is indeed the case is an apparent reduction in its strength,
reflected in reduced transition region widths, on capping the
top Fe layer with a Au layer. In fact, Unguris, Celotta and
Pierce (1997) tentatively ascribe this to ‘changes in boundary
conditions of the spin-dependent quantum well’. The effect
of a capping layer on bilinear coupling has been investigated
experimentally and theoretically for a Co/Cu/Co structure
by de Vries et al. (1995). Results of calculations of IEC in
Fe/Au/Fe(001) differ widely. Opitz, Zahn, Binder and Mer-
tig (2000), in LSDA calculations within the frozen potential
approximation, report couplings an order of magnitude larger
than observed by Unguris, Celotta and Pierce (1997). Hafner,
Spišák, Lorentz and Hafner (2002), in total energy LSDA cal-
culations, report results four times larger than Opitz, Zahn,
Binder and Mertig (2000) and attribute the difference to
the use of the frozen potential approximation by the lat-
ter authors. Much more reasonable results were obtained by
Costa, d’Albuquerque e Castro and Muniz (1997b) using the
tight-binding formulation described in Section 4.1. Although
J1(N) does not agree with experiment in detail, as a function
of Au thickness N , the order of magnitude is correct. Thus
a calculated AF maximum at N = 8 ML with J1 = −0.5
mJ m−2 may be compared with a measured J1 = −0.2 mJ
m−2 at the corresponding maximum of N = 7 ML. Costa,
d’Albuquerque e Castro and Muniz (1997b) show how inter-
planar distance relaxation at the Fe/Au interface could reduce
the calculated J1 by a factor of 3. These authors also find that
the short-period component of the IEC is completely dom-
inant, which agrees with the large ratio of short-period to
long-period amplitudes of 7 in experiment (Unguris, Celotta
and Pierce, 1997). Stiles (1996b) estimated the size of the two
components of J1 from calculated reflection amplitudes at
interfaces; he obtained reasonable magnitudes but an ampli-
tude ratio of 2.

Costa, d’Albuquerque e Castro and Muniz (1997b) also
calculated the IEC in Fe/Ag/Fe(001) trilayer and found
that J1(N) exhibited the expected long period of about
5.3 ML. A short period (2.4 ML) of comparable amplitude
is also present but produces no sign alternations on the
2 ML scale. The agreement with measurements of Celinski,
Heinrich and Cochran (1993) and Unguris, Celotta and Pierce
(1993) is excellent apart from theory being four times larger
than experiment. The absence of sign alternations in J1(N)

corresponding to a 2 ML period, in calculations for ideal

interfaces precludes the Slonczewski fluctuation mechanism
for biquadratic coupling. The biquadratic coupling observed
by Schäfer et al. (1995) and Unguris, Celotta and Pierce
(1993) is relatively weak (J1/J2 � 6 at low T for an Au
thickness of 1.8 nm) and is probably intrinsic, contrary to
the interpretations of Schäfer et al. These authors find that
J1 is strongly temperature dependent, as in the calculations
of Costa et al., with J2 even more so. This is as expected for
a J2 of intrinsic origin.

The case of Co/Cu/Co(001) has already been discussed in
Sections 2.3 and 5.2.1. We now briefly discuss some systems
with TM spacers.

7.2 Transition-metal spacers

TM spacers have not been studied experimentally or theoret-
ically as thoroughly as the noble metal spacers. Theoretical
analysis of the IEC is complicated by multisheet Fermi sur-
faces associated with a partially filled d band. Parkin (1991)
measured the IEC of multilayers (Co(15 Å)/ TM)16 for nearly
all TM spacers of the 3d, 4d, and 5d series. However, his
failure to observe any oscillations with spacer thickness of
period less than 10 Å suggests that the sputtered samples
suffered from considerable interface roughness and interdif-
fusion. It is therefore uncertain how much significance should
be attributed to Parkin’s remarkable observation of an expo-
nentially increasing coupling strength as one moves from left
to right along each TM series. Nevertheless Mathon, Villeret
and Edwards (1993) presented a plausible explanation of this
effect on the basis of QW theory, with variable matching
of the Co and spacer d bands as the latter band fills on
moving along the series. Stoeffler and Gautier (1990) made
more detailed calculations for Co/Ru and Fe/V superlattices.
These were based on tight-binding calculations involving d
orbitals with on-site electron interactions treated within the
unrestricted Hartree–Fock approximation. They could con-
sider only thin spacers and found large coupling strength, for
example, about 30 mJ m−2 for a bcc Fe3V2(001) superlattice.
One important result is that the effect of electron interaction
is to increase the coupling strength by only about 50% above
its value for noninteracting electrons.

Realistic calculations for Fe/Mo/Fe(001) have been carried
out by Mirbt, Niklasson, Johansson and Skriver (1996),
using the LSDA approximation, and by Umerski and Mathon
(unpublished, but see Edwards (2002)), using the method
of Section 4.1. Umerski and Mathon find a large coupling
strength, with |J1| � 5 mJ m−2 for a Mo thickness of 10 ML.
Mirbt et al. find a somewhat larger coupling, which might
be expected since electron interaction is included in the
LSDA calculations. Both groups find a dominant 2 ML
period associated with nesting of the Mo Fermi surface,
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similar to that which gives rise to antiferromagnetism in
the corresponding 3d metal Cr. Experimentally Qiu, Pearson,
Berger and Bader (1992) and Qiu, Pearson and Bader (1993)
found a coupling strength nearly 2 orders of magnitude
smaller than the theoretical one and with a period of
about 3 ML. A large discrepancy between theoretical and
experimental coupling strength is also found for the AF
spacer Cr, as discussed in the next section.

7.3 Antiferromagnetic Spacers

A huge body of experimental work exists involving trilayers
and multilayers with AF Cr as the spacer. Excellent reviews
exist on the Fe/Cr system (Pierce, Unguris, Celotta and
Stiles, 1999; Fishman, 2001) and here we have space only
for a few salient points. Antiferromagnetism in bulk bcc
Cr takes the form of a spin-density wave (SDW) which is
incommensurate (I) with the lattice, having a wave vector
q = (2π/a)(1 ± δ′)ŷ where a is the lattice constant and ŷ
is a unit vector along a cubic axis. The parameter δ′ is
temperature dependent and 0 ≤ δ′ ≤ δ where ±δ (�0.05)

corresponds to nesting wave vectors which link planar parts
of the paramagnetic Cr Fermi surface. The spin on a site with
coordinate y in the I SDW is given by

SCr(y) = (−1)2y/am̂g(T ) cos((2π/a)yδ′ + θ) (41)

where m̂ is a unit vector perpendicular or parallel to ŷ,
corresponding to transverse (T) or longitudinal (L) phases,
respectively, and θ is an arbitrary phase. Bulk Cr under-
goes a Néel transition at T bulk

N = 311 K, into a T SDW
phase which changes to a L SDW state below 123 K.
At low temperatures, the SDW amplitude g(T ) corre-
sponds to a maximum Cr moment of about 0.6 µB. Doping
with 0.2% Mn or 2.4% Fe drives δ′ to zero so that the
SDW becomes commensurate (C). Another type of SDW,
which does not occur in bulk Cr but may appear in tri-
layers and multilayers, is a noncollinear helical (H) one
with

SCr(y) = (−1)2y/ag(T )(ẑ cos((2π/a)yδ′ + θ)

±x̂ sin((2π/a)yδ′ + θ)) (42)

A simple picture of IEC in a Fe/Cr/Fe(001) trilayer combines
a strong AF coupling JiSFe.SCr at the interfaces with a C
SDW (δ′ = 0) in the Cr layer. For a Cr thickness of N ML
this clearly leads to FM coupling between the Fe layers for N

odd and to AF coupling for N even. The picture of alternating
FM and AF coupling is valid for 9 ≤ N < 24 except that the
sign is reversed in SEMPA measurements (Pierce, Unguris,
Celotta and Stiles, 1999). Freyss, Stoeffler and Dreyssé

(1997) have shown theoretically how this sign reversal may
occur because of interface diffusion. Using a tight-binding
d-band Hamiltonian, with electron interaction treated in an
unrestricted Hartree–Fock approximation, they show that a
Cr plane containing more than 20% of Fe acts as if it were
part of the FM Fe layer rather than acting as part of the
Cr spacer layer. Heinrich, Cochran, Monchevsky and Urban
(1999) point out that interfacial mixing occurs at the relevant
temperatures when Cr is deposited on Fe but is unimportant
for deposition of Fe on Cr. Consequently, interfacial mixing
occurs at only one interface, thus effectively reducing N

by 1. The work of Freyss, Stoeffler and Dreyssé (1997)
also indicates that interfacial alloying is the cause of the
delayed onset of the clear 2 ML period in IEC which is
only established for N > 8 (Pierce, Unguris, Celotta and
Stiles, 1999; Heinrich, Cochran, Monchevsky and Urban,
1999).

SEMPA measurements (Pierce, Unguris, Celotta and
Stiles, 1999) show that at room temperature the C SDW
gives way to a I SDW for N > 24. The IEC is FM for
both N = 24 and 25, so that a phase slip occurs in the
alternation between FM and AF coupling. Further phase
slips are observed at N = 44–45 and 64–65. The phase
slips move to larger N as temperature T increases, the
first phase slip occurring at N = 38–39 at 550 K. It is
remarkable that the IEC associated with the Cr SDW per-
sists far above the bulk Néel temperature. A good account
of these phenomena is afforded by a phenomenological
model based on a free energy expression which is a sum
of interfacial couplings JiSFe.SCr and a free energy cor-
responding to the bulk SDW of equation (41) (Shi and
Fishman, 1997; Fishman and Shi, 1998, 1999). The latter
energy is calculated for interacting electrons with nested
bands within the random phase approximation and the total
free energy is minimized with respect to g, δ′, and θ for
given N and T . The calculated bilinear coupling |J1| � 10
mJ m−2 at N = 10 which is about 15 times larger than
observed for good samples grown on an Fe whisker (Hein-
rich, Cochran, Monchevsky and Urban, 1999). Tight-binding
d-band calculations which include electron–electron inter-
action (Stoeffler and Gautier, 1991) give |J1| � 25 mJ m−2.
First-principles calculations based on LSDA (Mirbt, Niklas-
son, Johansson and Skriver, 1996) also give a large coupling
|J1| � 30 mJ m−2 for N = 10. Mirbt et al. simulated a Cr
spacer without exchange enhancement due to electron inter-
action and found that the Cr moments were reduced by a
factor of 20 from the interacting case while the IEC retained
a 2 ML period and was reduced only by a factor of 3 with
|J1| � 10 mJ m−2. This is only slightly larger than the value
obtained by standard methods assuming Cr to be paramag-
netic with noninteracting electrons (Costa, d’Albuquerque
e Castro and Muniz, 1999). Costa et al. investigated the
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effect of interfacial alloying on the IEC but were unable to
account for the very large discrepancy between theory and
experiment.

In samples where terrace lengths are short enough for
the 2 ML period coupling to be averaged out, a long-
period component with a period of about 12 ML is observed
(Unguris, Celotta and Pierce, 1991; Demokritov, Wolf and
Grüunberg, 1991). The origin of this long period is still
controversial. The general consensus is that it is associated
with the spanning vector of a small ellipsoidal part of the
paramagnetic Cr Fermi surface surrounding the N-point in
the Brillouin zone (Stiles, 1996a, 1999; Tsetseris, Lee and
Chan, 1997; Bürgler, Grünberg, Demokritov and Johnson,
2001). This part of the Fermi surface should not be much
disturbed by the existence of an SDW.

In the work discussed in the preceding text it is assumed
that, when the angle θ between the magnetizations of
the magnetic layers is equal to 0 or π , the Cr moments
are collinear. This is not necessarily the case, as shown
schematically for an ideal Fe/Cr10/Fe trilayer in Figure 13.

For N = 10 the Fe magnetizations are antiparallel (θ = π)
in the stable configuration. The figure illustrates the parallel
(θ = 0) configuration, which would occur in a saturating
magnetic field, and shows three possible SDW states in
the Cr layer. The C SDW is the stable one for θ = π

and is ruled out for θ = 0 in the presence of strong AF
Fe/Cr interfacial coupling. The magnitude of the IEC is
determined by the energy difference between the energy of

Fe

Cr

Fe

IHC

Figure 13. Three possible SDW states in Fe/Cr10/Fe with paral-
lel Fe magnetizations. (Reproduced from Fishman, R.S. (2001),
J. Phys.: Condens. Matter, 13, R235–R269, with permission from
IOP Publishing Ltd.  2001.)

the H SDW or I SDW – whichever is lower – and that of
the C SDW. Stoeffler and Gautier (1993a,b), using a d-band
tight-binding model which apparently favors C over I SDWs
in bulk Cr, find that the H SDW has a lower energy than
the I SDW for N ≥ 24. Allowing a nonuniform twist in
the helix stabilizes the noncollinear state for N ≥ 20. The
energy of the I SDW, relative to that of the C SDW, tends
to a positive constant as N → ∞ owing to the continuing
presence of a magnetic defect in the center of the Cr
layer where Cr moments are suppressed due to frustrated
antiferromagnetism. The energy of the H SDW relative to
that of the C SDW tends to zero as 1/N . Slonczewski
(1995) pointed out that, for N not too small, the energy of a
H SDW for general θ may be written as J+(N)(π − θ)2 for
even N , as considered above, and as J−(N)θ2 for odd N .
Here, 0 ≤ θ ≤ π and J+, J− are positive stiffness constants
such that J± ∝ N−1. Slonczewski proposed a torsion model
for Fe/Cr/Fe in which these energy expressions replace the
standard −J1 cos θ − J2 cos2 θ expression. From the work of
Stoeffler and Gautier (1993a,b) one would expect this to
be valid only for N ≥ 24 when the H SDW is stable for
all θ . But surprisingly Freyss, Stoeffler and Dreyssé (1996)
found a stable noncollinear state, with energy J+(π − θ)2

for 0 ≤ θ ≤ π , even for N = 6. However, recent, improved
tight-binding calculations by Cornea and Stoeffler (2000),
which include s, p, and d orbitals, show that for even (odd)
N the central Cr moments in a H-type SDW are suppressed
as θ → 0(π). The SDW then becomes incommensurate and
collinear and the calculated energies are fitted excellently
over the whole range 0 ≤ θ ≤ π by the standard expression,
and not by the torsion model, for the cases N = 4, 5, 10, 11
considered. For N = 10 and 11 it is found that the intrinsic
biquadratic coupling J2 � |J1|/3 in agreement with the
measurements of Heinrich, Cochran, Monchevsky and Urban
(1999) on trilayers with smooth interfaces. For interfacial
terrace lengths less than the domain wall width in Fe the
Slonczewski fluctuation mechanism comes into play with
a further tendency toward 90◦ coupling. In Fe/Cr/Fe(001)
multilayers with short terraces, Schreyer et al. (1995) found
a noncollinear orientation of the moments of Fe layers, with
a slow approach to saturation in an applied field, which they
interpret in terms of the torsion model. This interpretation
is challenged by Heinrich, Cochran, Monchevsky and Urban
(1999) and by Cornea and Stoeffler (2000).

The torsion model has been used successfully to inter-
pret IEC in systems with Mn spacers (Yan et al., 1999;
Filipkowski, Krebs, Prinz and Guttierez, 1995; Krebs, Prinz,
Filipkowski and Gutierrez, 1996). Mn is another AF metal,
which normally exhibits a C SDW. For rough interfaces, the
coupling energy for a given nominal spacer thickness takes
the form c+(π − θ)2 + c−θ2. Here c+ = p+J̄+, c− = p−J̄−
where p+, p− are the fractions of the cross-sectional area
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with, respectively, even and odd numbers of planes in the
spacer (p+ + p− = 1) and J̄+, J̄− are the relevant average
stiffness constants. The minimum energy in zero field, with
anisotropy neglected, occurs for θ = πc+/(c+ + c−) which
gives 90◦ coupling for c+ = c−. Yan et al. (1999) deduce
from M(H) curves that this is the case in Fe/Mn/Fe trilayers
with the Mn thickness in the range 1.2–2.45 nm.

7.4 IEC with insulating and semiconducting
spacers

Slonczewski (1989) introduced the torque method to calcu-
late the IEC for a free-electron model of two FM metals
separated by a potential barrier. Bruno (1995) solved the
same problem using the energy difference method. The main
result is that the IEC, which may be FM or AF, decays expo-
nentially with increasing barrier width (spacer thickness) at
a rate determined by the height of the barrier. This con-
trasts with the slowly decaying oscillatory coupling for metal
spacers. In the latter case, the amplitude of the oscillations
decreases with increasing temperature owing to smearing of
the Fermi surface (see Section 6). For the insulating barrier
case, Bruno (1995) found that the coupling strength increases
with temperature owing to the enhanced tunneling of ther-
mally occupied states above the Fermi level. The experimen-
tal situation, reviewed by Bürgler, Grünberg, Demokritov and
Johnson (2001), is quite confused. Possibly some light is shed
on the matter by the very recent theoretical work of Zhu-
ravlev, Tsymbal and Vedyayev (2005). They consider the
same free-electron barrier model used by Slonczewski and
Bruno, but with the addition of an impurity potential well
within the barrier. This creates an impurity level below the
top of the potential barrier. A strong resonant AF peak in the
IEC appears as the impurity level passes through the Fermi
level. The peak reduces slightly with increasing temperature
so that the IEC weakens. This temperature dependence con-
trasts with Bruno’s result for the pure barrier and agrees
with some experiments. However, the success of the model
depends on having a sufficient number of impurity states
close to the Fermi level of the ferromagnets.

No quantitative calculations for the IEC on real mate-
rials such as epitaxial Fe/MgO/Fe(001) have been made;
they are perfectly feasible using the same methods as for
existing calculations of tunneling magnetoresistance in this
system (Mathon and Umerski, 2001). A large AF coupling
(J1 � −0.26 mJ m−2) has been observed in this system with
a thin MgO layer of 6 Å (Faure-Vincent et al., 2002). Multi-
orbital tight-binding calculations for valence-band electrons
in all-semiconductor IV-VI magnetic/nonmagnetic super-
lattices have yielded values for the IEC (Blinowski and
Kacman, 2001). J1 has been calculated for EuS/PbS(001)

with PbS thicknesses of N = 1–8 ML; it is negative and
decreases exponentially with N . Experimental estimates of
J1 exist for N = 1, 2, 3 and the calculated values of −J1 =
0.77, 0.33, 0.18 mJ m−2, respectively, follow them closely
apart from being larger by an almost constant factor of 10.

8 OUTLOOK

The essential theoretical concepts for understanding IEC
were in place soon after its experimental discovery. Ten years
ago quantitative calculations of IEC for real systems were
already being made. At this time, the emphasis on magnetic
multilayer research changed to nonequilibrium phenomena
such as tunneling magnetoresistance and, most recently,
current-induced switching of magnetization. This has left
many issues concerning IEC unresolved. One important
issue is the order-of-magnitude discrepancy between theory
and experiment for systems with TM spacers (see Section
7.2). Another open topic is the unambiguous observation
of intrinsic biquadratic exchange, with evidence for its
oscillatory behavior as a function of spacer thickness. This
should be possible in systems such as Fe/Au/Fe and Fe/Ag/Fe
(see Section 7.1). We expect that work on these and other
issues will progress steadily and that maybe there are still
some surprises in store.
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1 INTRODUCTION

Magnetoresistance (MR) effects are known since the discov-
ery of the anisotropic magnetoresistance (AMR) in metals
in 1857 by William Thomson where the resistance depends
on the direction of the current with respect to the material’s
magnetization. A revival of the MR effect occurred in the late
1980s with the discovery of giant magnetoresistance (GMR).
GMR is related to nanofabrication technology. Artificially
layered structures, so-called magnetic multilayers, show a
drastic change of resistance as a function of relative orien-
tation of layer magnetization. The high potential of future
application was realized in the 1990s and a large effort
in basic and applied research was initiated. Thereby, two
major application areas are in the focus of commercial inter-
ests – magnetoresistive sensors and information technology.
Read heads in magnetic hard disk drives and nonvolatile
memory are expected to beat conventional systems with
respect to performance and costs.

The discovery of the GMR effect is a result of up-to-date
solid state physics at the nanometer scale. The microscopic

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

understanding of the effect is based on quantum mechanics
starting from the atomic level and combines modern concepts
of transport theory with material-specific ab initio calcula-
tions. The main idea of this chapter is to introduce the basic
components of the theoretical description and to elucidate
the macroscopic phenomenon by means of qualitative micro-
scopic pictures confirmed by quantitative ab initio electronic
structure calculations.

1.1 Limiting cases

While measuring the resistance of a sample, two regimes
have to be distinguished (see Figure 1). In the diffusive limit
the mean free path � of the electrons is much shorter than the
dimension of the sample. The mean free path is a measure of
the distance an electron travels in the sample without being
affected by the scattering processes.

In the diffusive regime the resistance R is given by Ohm’s
law and is proportional to the length L and the cross section
A of the sample assuming current and voltage measurement
in the same direction

R = ρ
L

A
(1)

A material-specific proportionality constant ρ, the resis-
tivity, is defined. In general the resistivity is a tensor ρ,
which reflects the anisotropy of the crystal in different spatial
directions.

A similar relation holds for the conductance g and the
conductivity σ

g = σ
A

L
(2)
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Conductance and resistance are related to each other by
g = R−1. As a consequence, conductivity and resistivity are
also inversely proportional σ = ρ−1 in the diffusive limit. In
general, conductivity is also a tensor σ .

In the ballistic limit, the dimensions of the sample are
shorter than the mean free path of the electrons and the
transport cannot be characterized by a material-specific
constant only. The resistance and conductance can change
in a nonmonotonic way with the length of the sample. This
is the nonohmic limit.

1.2 Magnetoresistance

Owing to the general definition the resistivity, ρ can be
expressed as a three-dimensional tensor of rank 2. For
systems with time-reversal symmetry this tensor can be
diagonalized with components ρxx , ρyy , and ρzz

ρ =

ρxx 0 0

0 ρyy 0
0 0 ρzz


 (3)

This is valid for vanishing spin-orbit coupling and without
magnetic field. In isotropic and cubic systems the material-
specific resistivity is a single scalar ρ = ρxx = ρyy = ρzz.

If one direction is preferred by a symmetry breaking
field, two components ρ‖ and ρ⊥ for the transport parallel
and perpendicular to the corresponding axis have to be
distinguished. This is, for example, the case in hexagonal
systems and causes the so-called resistivity anisotropy.

Another way of breaking the symmetry is by means
of an external magnetic field. An external magnetic field
of strength B can influence the resistivity by the acting
Lorentz force. The increase of the diagonal elements of the
resistivity caused by the Lorentz force is called longitudinal
and transversal magnetoresistance according to the relative
orientation of the current and the external magnetic field,
respectively.

The relative change in resistance (MR ratio) characterizes
the enhanced MR

�R

R
= R(B) − R(B = 0)

R(B = 0)
(4)

In the diffusive limit this is equivalent to the relative
change in resistivity

�ρ

ρ
= ρ(B) − ρ(B = 0)

ρ(B = 0)
(5)

In magnetic systems the role of an external magnetic field
is replaced by the internal magnetization. Crystal anisotropy

causes a preferred orientation of the magnetization along
the so-called easy axes. Resistances measured parallel or
perpendicular to the magnetization direction are different.
The ratio is called anisotropic magnetoresistance.

Finally, an external magnetic field can be used to change
the magnetic order in the sample which can be accompanied
by a drastic change of the resistance.

A well-known example is GMR. The effect occurs in
magnetic multilayers. Ferromagnetic layers are separated by
non(ferro)magnetic metallic layers. The relative change of
the layer magnetizations with respect to each other causes an
enormous change of the resistance at considerably small fields.
This effect is much stronger than the Lorentz force effect.

If the metallic layers are replaced by insulating layers
so-called tunneling magnetoresistance (TMR) is obtained
(Julliere, 1975; Moodera, Kinder, Wong and Meservey, 1995;
Meservey and Tedrow, 1994), (see also Theory of Spin-
dependent Tunneling, Volume 1).

In colossal magnetoresistance (CMR) systems (von Helmolt
et al., 1993) the action of the external field causes a magnetic
phase transition which is accompanied by a metal–insulator
transition. This changes the resistance by orders of magnitude
but the strength of the required fields prevent, until now,
application in sensor and information technology.

1.3 Giant magnetoresistance

1.3.1 GMR ratio

The discovery of GMR in magnetic multilayer systems
(Baibich et al., 1988; Binasch, Grünberg, Saurenbach and
Zinn, 1989) initiated a variety of experimental and theo-
retical investigations to elucidate the microscopic origin of
the phenomenon. The effect was first discovered in metal-
lic multilayers made up of magnetic layers separated by
non(ferro)magnetic layers. The effect is closely linked to the
effect of interlayer exchange coupling (IEC) which was dis-
covered some years earlier by Grünberg et al. (1986) (see
also Exchange Coupling in Magnetic Multilayers, Vol-
ume 1). In those samples a magnetic coupling of adjacent
magnetic layers occurs which is mediated by the electrons
of the nonmagnetic layer. The strength JAF and the sign of
the coupling depend on the thickness of the nonmagnetic
layer (Parkin, 1991; Bruno and Chappert, 1991).

If the layer magnetizations are antiparallel in the ground
state, the relative orientation of the layer magnetizations
can be changed by means of an external magnetic field. In
systems without an intrinsic coupling of the magnetic layers
the switching of the magnetic layers can be triggered by their
magnetic anisotropy caused by different layer thicknesses,
crystal structures, and alloying. The change of magnetic
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Figure 1. Transport measurements in the diffusive limit (a) and the coherent limit (b). The cross section of the sample is A and the length
along the current directions is L, � denotes the mean free path.
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Figure 2. First experimental GMR results obtained in Fe/Cr/Fe systems: trilayer result from Binasch, Grünberg, Saurenbach and Zinn
(1989) (a), multilayer result from Baibich et al. (1988) (b). (Reproduced from Binasch et al., 1989/Baibich et al., 1998, with permission
from the American Physical Society.  1989/1998.)

order is accompanied by a drastic change of resistance.
The first experiments were carried out at Fe/Cr multilayers
and changes up to 50% were achieved, see Figure 2. The
close link of the behavior of resistance and magnetization is
sketched in Figure 3.

To quantify the GMR effect the following ratio was
introduced

GMR = RAP − RP

RP
= ρAP − ρP

ρP
= σ P

σ AP
− 1 (6)

This definition is the so-called optimistic one, because it can
reach values much larger than 1. It will be used throughout this
chapter. Some authors prefer to use the pessimistic definition,
which is limited in cases of positive GMR (ρAP > ρP) to
values smaller than 100%, and is given by

GMR′ = ρAP − ρP

ρAP
= 1 − σAP

σ P
(7)

It was shown by several authors (Oguchi, 1993; Zahn,
Mertig, Richter and Eschrig, 1995; Schep, Kelly and Bauer,
1995; Butler, MacLaren and Zhang, 1993) that GMR in
magnetic multilayers is strongly influenced by the electronic
structure of the layered system as a function of the magnetic
configuration. That is, the differences in Fermi velocities of

the multilayers for parallel or antiparallel alignment of mag-
netic moments in adjacent magnetic layers cause GMR by
themselves. Since this effect is a result of Bragg reflection in
ideal multilayers, it might be less important in dirty samples
that still have remarkable GMR amplitude. Consequently,
spin-dependent scattering (Camley and Barnaś, 1989; Levy,
Zhang and Fert, 1990; Inoue, Oguri and Maekawa, 1991;
Hood and Falicov, 1992; Valet and Fert, 1993; Levy, 1994)
is assumed to play a crucial role for GMR. Experiments
(Parkin, Modak and Smith, 1993; Enders et al., 2001; San-
tamaria et al., 2001) and corresponding calculations (Schep
et al., 1997; Zahn et al., 1998; Zahn, Binder and Mertig,
2003) demonstrated that spin-dependent interface scattering
is especially important for the size of the effect.

The idea of the review is to present an overview of
the material-specific trends for the standard systems of
magnetoelectronics. The general trends are elucidated by
a detailed analysis of the spin-dependent scattering cross
sections in layered structures.

1.3.2 Geometry

For GMR measurements two geometrical arrangements can
be distinguished with respect to the direction of the current
relative to layer orientation. The current-in-plane (CIP)
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Figure 3. Multilayer structure, resistivity, and magnetization as a
function of the external magnetic field.

CIP

CPP

B

Figure 4. Geometries for GMR transport measurements.

geometry is characterized by a current flowing parallel to the
layers. Contrarily, in the current perpendicular to the planes
(CPP) geometry the current is driven perpendicular to the
planes, as sketched in Figure 4.

In CIP geometry trilayers and multilayers are used. In
trilayers one of the magnetic layers, the hard layer, is
pinned to a natural or artificial antiferromagnet (Nogues
and Schuller, 1999; van den Berg et al., 1999). The soft
magnetic layer is often made from an alloy to reduce the
magnetocrystalline anisotropy. In multilayers the different
coercivities of the magnetic layers are obtained by different
layer thicknesses or by exploiting the effect of magnetic IEC.

In CPP geometry, several configurations have been used
for transport measurements. Planar junctions (Gijs, Lenc-
zowski and Giesbers, 1993), sawtooth samples, which allow
measurements in CIP and CPP at one and the same sample

(Pratt et al., 1991), and multilayer pillars grown in polymer
foil holes with a large number of bilayers have been investi-
gated (Piraux, Dubois and Fert, 1996; Piraux et al., 1997).

Owing to the symmetry of crystalline layered systems
the conductivity tensor σ consists of two different diagonal
elements. If the current flows perpendicular to the layers that
is, parallel to the crystal z axis

σCPP = σ zz = σ⊥ (8)

is obtained and

σCIP = σxx = σ yy = σ ‖ (9)

is observed if the current flows in the layer direction.

2 TRANSPORT THEORY

Starting from density-functional theory (DFT), the one-
electron wave functions have to fulfill a Schrödinger equation
with an effective one-particle Hamiltonian (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965)

H(r)ψk(r) = Ekψk(r) (10)

with H(r) = −∇2
r + Veff(r) and the eigenfunctions ψk(r).

The effective potential Veff(r) contains by construction all
exchange and correlation effects. k is a shorthand notation
for Bloch vector k, band index ν and for magnetic systems
all properties are spin dependent. Throughout this section
the spin quantum number σ will, however, be omitted for
reasons of clarity. All equations are given in real-space
representation. Atomic units are used by setting � = 2m =
ε2/2 = 1.

The starting point is an unperturbed system which might be
translational invariant in certain directions and is described
by the Hamiltonian H̊ (r) = −∇2

r + V̊eff(r).
A potential perturbation �V (r) defines a new system

H(r) = −∇2
r + Veff(r) = H̊ (r) + �V (r).

Both systems can be equivalently described by means of
Green’s functions defined as

(E − H(r))G(r, r′, E) = δ(r − r′) (11)(
E − H̊ (r)

)
G̊(r, r′, E) = δ(r − r′) (12)

instead of Schrödinger equations.
The advantage of Green’s functions is that they are related

to each other by the Dyson equation

G(r, r′, E) = G̊(r, r′, E) +
∫

dr′′G̊(r, r′′, E)

× �V (r′′)G(r′′, r′, E) (13)
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Using cell-centered coordinates for the description of
the local potentials and scattering solutions this results in
a system of linear equations which can be solved very
efficiently (Zeller and Dederichs, 1979; Mertig, Mrosan and
Ziesche, 1987).

The local density of states (LDOS) is obtained from the
diagonal part of the Green’s function

n(r, E) = − 1

π
Im G(r, r, E) (14)

which can be used to calculate the charge density

n(r) =
∫ EF

−∞
dE n(r, E)

=
∑

Ek≤EF

|ψk(r)|2 (15)

and the density of states (DOS)

n(E) =
∫

dr n(r, E) (16)

with EF being the Fermi level.
It has been shown that the variational principle of DFT can

be reformulated for the case of magnetic systems by intro-
ducing the charge and magnetization density, respectively
(von Barth and Hedin, 1972)

n(r) = n↑(r) + n↓(r) (17)

m(r) = n↑(r) − n↓(r) (18)

σ =↑, ↓ denotes the spin directions ‘up’ for majority states
and ‘down’ for minority states. The total magnetization of
the system is given by

M =
∫

dr m(r) (19)

In the following V̊eff(r) describes the unperturbed system
with periodicity in certain directions and �V (r) describes
point defects or, more generally, spatially localized potential
perturbations.

2.1 Boltzmann theory

The Boltzmann theory is a quasiclassical theory and com-
bines quantum-mechanical information of the electronic
structure with a classical description of the transport. The
solution of the Boltzmann equation is a classical distribution
function fk(r, t) which determines the number of carriers in
phase-space volume characterized by k, and the position in
real space r. k is related to the wave vector k, the band index

ν, and for magnetic systems the spin σ . In the following
derivations the spin is neglected for the sake of simplicity
and an explicit dependence of the distribution function on
time and magnetic field is excluded. The real-space depen-
dence vanishes because of the restriction to homogeneous
systems. In the steady state the total rate of change has to
vanish, and from the conservation of phase-space volume a
master equation for the distribution function is derived

k̇
∂fk

∂Ek

∂Ek

∂k
− ∂fk

∂t

∣∣∣∣
scatt

= 0 (20)

with the Fermi velocity

vk = ∂Ek

∂k
(21)

The field term is determined by the external electric field E
with e the electron charge e = −|e| and k̇ = eE. The second
term in equation (20) describes the change of carriers in state
k due to scattering and is determined by the microscopic
transition probability Pkk′ via equation (22). These scattering
processes can be caused, for example, by lattice defects,
imperfections, or thermally activated quasiparticles.

The microscopic transition probability Pkk′ is given by
Fermi’s golden rule

Pkk′ = 2πcN |Tkk′ |2δ(Ek − Ek′) (22)

Tkk′ describes the scattering at one impurity. cN is the total
number of impurities in the sample where c is the relative
concentration of defects and N is the total number of atoms
in the system.

In the framework of a Korringa-Kohn-Rostoker (KKR)
Green’s function formalism the transition matrix elements
Tkk′ can be calculated without an adjustable parameter using
the self-consistently determined impurity potentials in an
otherwise perfect matrix (Mertig, Zeller and Dederichs, 1993;
Mertig et al., 1995).

Exploiting the microscopic reversibility Pkk′ = Pk′k , con-
sidering only elastic scattering processes, and introducing a
small deviation gk = fk − f̊k from the equilibrium distribu-
tion function f̊k , the change of the distribution function due
to scattering is given by

∂fk

∂t

∣∣∣∣
scatt

=
∑
k′

Pkk′(gk′ − gk) (23)

In the limit of linear response, the proportionality of gk

and the external field E is given by the vector mean free
path �k using the ansatz

gk = −e
∂f̊k

∂E
�kE (24)
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The Fermi surface average of the vector mean free path
�k is related to the mean free path � discussed in Section 1.
Using the relaxation time [τ k]−1 = ∑

k′ Pkk′ one obtains with
equations (20) and (23) the linearized Boltzmann equation

�k = τ k

[
vk +

∑
k′

Pkk′�k′

]
(25)

The first term on the rhs describes the mean free path in
the relaxation time approximation �k = τ kvk known from
textbooks. The second term on the rhs is the so-called
scattering-in term which counts the scattering events from
states k′ back to the considered state k. It causes the
vertex corrections of the mean free path. In the limit of
zero temperature, the integration of equation (25) has to
be performed for electronic states on the anisotropic Fermi
surface of the system under consideration. For magnetic
systems the spin degeneracy is lifted and the spin variable
σ has to be included explicitly. As a result equation (25)
becomes a set of integral equations for majority and minority
electrons, separately.

Introducing a diagonal matrix τ containing the Boltz-
mann relaxation times τ = {δkk’τ k} an exact solution for a
(super)vector containing the group velocities can be given

� = [1 − τP ]−1τv or (26)

�k =
∑
k′

[1 − τP ]−1
kk′τ k′vk′ (27)

The required number of k points to sample the Fermi surface
properly prevents a direct evaluation of this equation. Nev-
ertheless this formal solution clearly shows the equivalence
of the Boltzmann and Kubo formalisms in the weak scatter-
ing limit (see also Butler, 1985). To calculate the residual
resistivity, that is the resistivity at zero temperature caused
by scattering at defects only, the current density is expressed
by the deviation gk of the distribution function

j = − e

V

∑
k

vkgk (28)

The contribution of the equilibrium occupation function f̊

vanishes. In the limit of zero temperature and linear response,
the nonzero contributions of gk are restricted to the Fermi
surface and the current density can be expressed by a Fermi
surface integral, using the ansatz in equation (24)

σ ij = e2

V

∑
k

δ(Ek − EF) vk,i�k,j (29)

with i and j as the Cartesian coordinates. For ferromagnetic
systems a sum over the spin directions has to be performed
which results in a factor 2 for nonmagnetic systems.

Applying the relaxation time approximation for the evalu-
ation of the vector mean free path, the Fermi surface integral
for the conductivity contains the tensor of the Fermi veloci-
ties scaled by the state-dependent relaxation time

σ ij = e2

V

∑
k

δ(Ek − EF)vk,ivk,j τ k (30)

The Fermi surface integral contains information about
the band structure of the unperturbed system only and τ k

contains information about the scattering properties. This
approximation will be used later on to explain the origin
of intrinsic and extrinsic GMR since the band structure and
the scattering properties can be nicely separated.

2.2 Landauer theory

For mesoscopic systems where the system size plays a crucial
role for transport properties the Landauer–Büttiker theory
is an established method (Landauer, 1970; Landauer, 1988;
Büttiker, 1988; Datta, 1995). The considered device contains
a scattering region, which is connected to electron reservoirs
by ideal leads which feed the current in and take it out.
The measurement geometry is illustrated in Figure 5 and
determines the assumption to be made in the application of
the formalism. A two-terminal device is characterized by two
reservoirs and current as well as voltage are measured at the
same leads. In the case of zero temperature and within linear
response, the Landauer conductance becomes

g = e2

h

∑
kL,kR

EkL =EkR =EF

TkLkR (31)

with TkLkR the quantum-mechanical probability for a state kL

incident from the left reservoir to be transmitted into state kR

of the right-hand side reservoir. kL and kR are the quantum
numbers of the eigenstates in the left- and right-hand side
electrode, respectively, which are normalized to carry a unit
current.

I

R

T

Figure 5. Geometry for the conductance measurement in meso-
scopic systems with magnetic electrodes: a scattering region is
connected by ideal leads to electron reservoirs (bath), which deter-
mine the voltage drop at the junction.
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This formula was empirically derived for one-dimensional
systems. Fisher and Lee have later shown that equation (31)
can be extended to systems of higher dimensions using the
transmission matrix t connecting the incident flux in the
various channels kL to the outgoing flux in the channels kR

on the other side (Fisher and Lee, 1981).
For planar tunnel junctions with an in-plane translational

invariance and magnetic electrodes, kL and kR are shorthand
notations for (k‖, ν, σ ), the in-plane wave vector k‖, band
index ν, and spin σ in the left or right lead, respectively.

The transmission as introduced by Landauer can be com-
puted by means of the Green’s function of the semi-infinite
system (Baranger and Stone, 1989). The conductance g for
planar junctions with an in-plane translational invariance is
obtained by a two-dimensional integration in the surface
Brillouin zone (Mavropoulos, Papanikolaou and Dederichs,
2004)

g = e2

h

∫
d2k‖Tk‖(EF) (32)

Tk‖(E) = tr
[
JL(E)GLR(k‖, E)JR(E)GRL(k‖, E)

]
(33)

The planes L and R are situated on both sides of the barrier
in the unperturbed electrode regions. JL(E) and JR(E) are
the current operator matrices and GLR(k‖, E) are the Green’s
function elements connecting both sides of the junction. The
transmission Tk‖(E) contains as eigenvalues of the matrix the
transmission coefficients Tm of the states fed by the reservoirs
as introduced by Büttiker, Imry, Landauer and Pinhas (1985).

Transforming equation (31) for a three-dimensional elec-
tron gas and perfect transmission to a Fermi surface inte-
gral the ballistic or Sharvin conductance (Sharvin, 1965) is
obtained

g(n) = e2

h

A

4π2

1

2

∑
k

δ(Ek − EF) |n · vk| (34)

A/4π2 denotes the density of states of transverse modes
and |n · vk| is the Fermi velocity projection on the current
direction n. The factor 1/2 accounts for the electrons moving
in the direction of the current. It describes the conductance of
a narrow region with cross section A which is connected to
two electrodes. It is referred to as ballistic point contact when
the diameter of the narrow region is much smaller than the
mean free path and much larger than the electron wavelength.
In multilayer geometry the vector n perpendicular to the
planes describes the CPP geometry and n parallel to the
planes of the CIP geometry. Although in most experiments
this situation is not realized, the formalism was applied to
elucidate the microscopic origin of intrinsic GMR (Schep,
Kelly and Bauer, 1995; Gijs and Bauer, 1997).

2.3 Kubo formalism

A method of evaluating the response of a quantum mechani-
cal system to an external potential was developed by Kubo in
the 1950s, in particular, the current in response to an electric
field (Kubo, 1957). In the linear response the two are related
by a conductivity which is given in terms of the equilibrium
properties of the system, that is, in zero field. Therefore, to
calculate the conductivity it is necessary to start from the
Hamiltonian that describes the ground state of the conduc-
tion electrons. Also we are primarily interested in transport
at T = 0 K, so processes that occur at finite temperature are
omitted. Using the Kubo formalism conductivity is evalu-
ated entirely quantum mechanically by the current–current
correlation function for the ground state (Kubo, 1957). It is
a form of the fluctuation-dissipation theorem (Kubo, 1966),
relating a transport coefficient, which characterizes a dissi-
pative process, to the fluctuations at equilibrium. It gives the
transport coefficient in the linear response regime and there
are no restrictions concerning the strength of the scattering
occurring in the system.

First, the expression for the conductivity will be derived
starting from the Kubo–Greenwood formula and using the
one-particle Green’s function. Zero temperature conductivity
can be obtained from the current operator by the commonly
used expression (Kubo, 1957; Greenwood, 1958; Velický,
1969)

σ ij = π

N�
〈TrJiδ(E − H)Jj δ(E − H)〉conf

∣∣∣
E=EF

with

Ji = −2ıe
∂

∂xi

(35)

It can be considered in terms of nonlocal conductivities
connecting the external field in direction i at one site to the
induced current in direction j at another site. N denotes the
number of atoms in the sample, � is the volume per atom.
For systems with a basis it is replaced by the normalization
volume V� of the wave function. In the following the
formalism will be given for a bulk system with one atom per
unit cell. For systems with a layered structure as considered
in Weinberger et al. (1996) or bulk systems with an atomic
basis a thorough bookkeeping of the layer, unit cell, and
atomic indices has to be performed. We consider a sample
containing defects µ at random positions rµ with relative
concentrations cµ which give the number of defects per
normalization volume. H is the Hamilton operator of one
configuration of the random potential. The large brackets
〈〉conf denote the configurational average. xi is a Cartesian
coordinate of the real-space vector r = (x1, x2, x3). For
simplicity a compact operator representation is used in this
chapter. By means of the Green’s function the δ functions
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can be replaced by

δ(E − H) = − 1

π
ImG(E+)

= − 1

2πı

[
G(E+) − G(E−)

]
, with E± = E ± ı0

(36)
and the expression from equation (35) splits into four parts

σ ij = 1

4

(
σ++

ij + σ−−
ij − σ−+

ij − σ+−
ij

)
, with

σ±±
ij = − 1

πN�
〈Tr Ji G(E±)Jj G(E±)〉conf

∣∣
E=EF

(37)

To evaluate the configurational average over the Green’s
function G(E±) the coherent-potential approximation (CPA)
first proposed by Velicky and others (Velický, 1969; Gyorffy,
1972; Butler, 1985) might be used. Using the Green’s
function of the coherent medium and the transition matrices
of the single defects, the correspondence of the exact solution
of the Boltzmann equation (27) can be demonstrated and the
criteria for the applicability of the Boltzmann approach can
easily be deduced.

2.4 Magnetic systems

The basic output of a self-consistent electronic structure
calculation is the local electron density. In addition, the
energy bands Ek and eigenstates Bloch functions ψk defined
by the Kohn–Sham equation (10) are obtained (Kohn and
Sham, 1965). As before, the index k is a shorthand notation
for the wave vector k, the band index ν, and the spin index
σ . In systems with a net magnetization, the spin degeneracy
is lifted and at a given energy eigenstates of rather different
character can be found. A prominent example is the relative
shift of the spectra in both spin channels, which is obvious
for the spin-dependent DOS for Co and Fe in Figure 6.

The properties at the Fermi level are of special interest in
the following transport calculations, since they are the main
ingredients to calculate the transport coefficients within the
chosen approximation. The Fermi velocities are defined by
the derivative of the energy bands given in equation (21). The
Fermi surface contains all k points with an eigenvalue of the
energy Eσ

k equal to the Fermi level EF. Examples for Fermi
surfaces are given in Figure 6 and can be found on the web at
http://www.physik.tu-dresden.de/∼fermisur (1998) together
with the corresponding Fermi velocity distribution and at
http://www.phys.ufl.edu/fermisurface (2005).

For magnetic systems the properties of both spin channels
differ quite strongly, which is illustrated by the spin-
dependent Fermi surface of Co and the spin-dependent DOS

for Co and Fe in Figure 6. For some material combinations
the properties of one spin channel coincide to a large extent.
This is the case for the majority channels of Co and Cu,
which can be seen from the Fermi surfaces and from the
DOS in Figure 6. The similarities in the minority channel
in Cr, which is actually antiferromagnetic, and Fe can be
deduced from the comparison of the LDOS in Figure 6.

In magnetic systems with negligible spin-flip scattering,
both spin channels contribute to the current in parallel
applying Mott’s two-current model, see Figure 7 (Mott,
1964). This applies to systems with collinear magnetic
order in the nonrelativistic case. This causes spin-dependent
scattering events which change the momentum k but keep the
spin unchanged, so that the scattering probability becomes
diagonal in spin space

P σσ ′
kk′ = δσσ ′Pkk′ (38)

The neglected transition probability amplitudes P σσ
kk′ are

marked by dashed lines in Figure 8. As a consequence, the
conductivity or resistivity are split in majority and minority
contributions

σ = σ↑ + σ↓ (39)

1

ρ
= 1

ρ↑ + 1

ρ↓ (40)

A similar separation of the spin contributions holds for the
conductance or resistance in this case

g = g↑ + g↓ (41)

1

R
= 1

R↑ + 1

R↓ (42)

To quantify the contribution of the spin channels, the spin-
anisotropy ratio

α = ρ↑

ρ↓ = σ↓

σ↑ (43)

is defined. In nonmagnetic systems α equals unity and strong
deviations from one point to the dominance of one spin
channel. For a given host material, the spin anisotropy can
vary strongly with the type of defects considered. This is
discussed in Mertig (1999) for bulk systems and illustrated
in Section 4, Figure 25 for layered structures.

The anisotropy of scattering is characterized by the ratio

β = τ↑

τ↓ (44)

which gives the differences in the averaged electron momen-
tum lifetimes for both spin channels.
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Figure 6. Spin dependence of eigenvalue spectra: Fermi surfaces for Co minority electrons (contribution from the fifth band), Co majority
electrons and Cu electrons (top row from left) and spin-dependent density of states for Cr, Fe, Co, and Cu; the colors indicate the amount
of s electrons (black), p electrons (light gray), and d electrons (dark gray).

In the above discussion we neglected spin-flip scattering.
If one includes spin-flip scattering, the two spin currents are
mixed, that is, they are not independent of each other any
more. At low temperature, the primary source of spin-flip
scattering comes from impurities with spin-orbit coupling or
paramagnetic ones for which spin flip is an elastic process. As
most of the scattering encountered in magnetic multilayers at
low temperature does not flip spin as this costs energy, that is,
it is inelastic, the spin diffusion length is usually much longer

than the mean free path (Valet and Fert, 1993), so that for CIP
where transport is controlled by � the presence of spin-flip
processes and the subsequent breakdown of the two-current
model is not perceived. However for CPP, where � does not
control GMR, spin-flips limit the distance over which the two
spin currents are independent, and concomitantly reduce the
GMR in this geometry. This has been nicely demonstrated
in a series of experiments in which the amount of spin-flip
scatterers, spin-orbit coupled and paramagnetic impurities,
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k, ↓

k ′, ↑

k ′, ↓
Pkk ′

↓↓

Pkk ′
↑↓

Pkk ′
↓↑

Pkk ′

↓↓

Figure 7. Two-current model: spin-dependent resistors in parallel.

Figure 8. Spin-flip and spin-conserving transition probabilities in
magnetic systems.

has been shown to mix the two currents and significantly
reduce the GMR (Bass et al., 1994; Yang et al., 1994). At
higher temperatures inelastic spin-flip processes occur. With-
out introducing impurities, for example, electron–magnon
scattering, however, the resistivity assigned to each channel
does not increase since momentum is conserved (Fert, 1969;
Fert and Campbell, 1976; Campbell and Fert, 1982).

The basis for the simple parameterization of transport in
the two-current model is usually assigning one scattering rate
τσ to all the currents with one spin direction. While this
may have some validity for homogeneous materials it is not
correct for multilayers, except for the local limit which is
attained in magnetically layered nanowires (Piraux, Dubois
and Fert, 1996; Piraux et al., 1997; Piraux, Dubois, Fert and
Belliard, 1998). As we show in Section 4 scattering depends
on momentum as well as spin; there are as many scattering
rates as there are states in a multilayered structure. Parenthet-
ically, as transport is primarily confined to the Fermi surface,
by momentum we mean the Fermi momentum. While it is
nigh impossible for toy models to account for this, ab ini-
tio calculations are ideally suited for this task (Binder et al.,
1998; Blaas et al., 1999). Calculations which are completely
ab initio include the two-current model automatically; how-
ever, these calculations have been found to be extremely
time consuming. One compromise has been to perform ab
initio calculations of the band structure and assign different
spin-dependent scattering rates to layers and interfaces that
are independent of the electron’s momentum (Butler et al.,
1999). This provides a convenient way to include the effects
of band structure and a parameterization of the scattering in
the different regions with a reasonable number of unknown
constants that are determined by fits to experimental data.

The concern one might have is that the neglect of the depen-
dence of scattering rates on momentum yields unrealistic
scattering rates.

One final source for breakdown of the independence of the
up-and-down spin currents is the noncollinearity of the spin
structure. For noncollinear structures the eigenstates are not
pure spin states, so that when electrons undergo non-spin-flip
scattering they nonetheless mix the currents being conducted
in eigenstates. This mixing has been identified as a source
of resistivity of walls between oppositely oriented magnetic
domains (Levy and Zhang, 1997; Brataas, Bauer and Kelly,
2006).

3 MICROSCOPIC SCATTERING THEORY

This section is addressed to the properties of point defects,
including the perturbation of the electron density, the per-
turbed wave functions, and the transition matrix elements.
Defects with finite dimensions in all directions, so-called
point defects or zero-dimensional defects are considered in
the following. The unperturbed system we start from will be
a superlattice, a system with three-dimensional periodicity.
One single defect will be considered in the following neglect-
ing the interaction of defects and limiting the considerations
to the case of dilute alloys. The position of the defect in the
unperturbed system is essential for the scattering properties
and all derived quantities. For example, in layered systems
described by a large unit cell, there are quite different posi-
tions for defects, for example, inside the different layers or
with respect to the interfaces Figure 9.

The Green’s functions of the perturbed system and the
unperturbed system are connected by a Dyson equation,
see equation (13). The unperturbed system G̊ is now the
periodic system without defects and G describes the system
with one defect at a specific position µ. The difference
of the effective potential �V µ(r) describes the potential
perturbation caused by the defects. Owing to the effective

k

k ′

k

k ′

Tk
m

k ′

Tk
m

k ′

Figure 9. Source of resistance: scattering from a state k into
possible states k′ at impurities in a multilayer at different positions
µ and µ′.
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screening of the perturbation in metallic systems, the charge
and magnetization relaxation are mainly restricted to the
vicinity of several coordination spheres around the defect.
The solution of equation (13) can be restricted to a number
of neighboring sites next to the defect. Using the Green’s
function G of the perturbed system the changes in charge and
magnetization density can be calculated self-consistently.

The perturbation of the potential �V µ(r) causes scattering
processes of the unperturbed Bloch states which keep the spin
and the energy unchanged. The neglect of spin-flip processes
is justified by experimental results that in 3d transition metals
the scattering cross section for these processes is about 2
orders of magnitude smaller than that for spin-conserving
processes (Fert and Campbell, 1976). The scattering at the
potential perturbation �V µ(r) can be expressed by the
transition matrix T

T
µ

kk′ = (
ψ̊k(r)|�V µ(r)|ψk′(r)

)
=

∫
drψ̊

∗
k(r)�V µ(r)ψk′(r) (45)

which is the quantum-mechanical matrix element.
Providing that the wave functions ψ

µ

k′(r) of the perturbed
systems can be calculated from the unperturbed ones ψ̊k(r)
by a Lippman–Schwinger equation

ψ
µ

k′(r) = ψ̊k(r) +
∫

dr′G̊(r, r′, E)�V µ(r′)ψµ
k (r) (46)

the transition matrix can be expressed using only the eigen-
states of the unperturbed system and the potential perturba-
tion. By multiple scattering theory, the full perturbation series
can be included by inversion, so that the theory is restricted
to the dilute limit, which means noninteracting impurities,
but is not restricted to weak scattering (Mertig, Mrosan and
Ziesche, 1987; Mertig, 1999).

4 MICROSCOPIC THEORY OF GMR

4.1 Intrinsic GMR

The GMR ratio equation (6) calculated within the relaxation
time approximation �k = τ kvk (compare equation (25))
assuming a k-independent relaxation time becomes (Zahn,
Mertig, Richter and Eschrig, 1995)

GMR =

∑
k

δ(E
↑
k − EF) v

↑
k,i

2 +
∑

k

δ(E
↓
k − EF) v

↓
k,i

2

2
∑

k

δ(EAP
k − EF) vAP

k,i

2 − 1

(47)

where vk,i with i = (‖, ⊥) are the Cartesian components
of the velocity parallel and perpendicular to the layers.
As we have not considered the spin dependence of the
relaxation times, they cancel out, and the GMR ratio is only
determined by the intrinsic electronic structure of the system.
For concreteness, but without loss of generality, we focus
on a Co/Cu multilayered structure. A detailed analysis of the
GMR ratio depending on the spacer thickness (equation (47))
for ConCum multilayers is shown in Figure 10. The CPP-
GMR is always larger than the CIP-GMR, and the ratios
decrease with increasing Cu-layer thickness (see also Levy,
1994). For a better understanding of these results we can
approximate the GMR ratio by using the density of states
at the Fermi level nσ (EF) = ∑

k δ(Eσ
k − EF), and a Fermi

surface average of the square of the velocity components

vσ
k,i

2 =

∑
k

δ(Eσ
k − EF) vσ

k,i
2

∑
k

δ(Eσ
k − EF)

(48)

this leads to

GMR ≈ n↑(EF) v
↑
k,i

2 + n↓(EF) v
↓
k,i

2

2 nAP(EF) vAP
k,i

2
− 1 (49)

4.1.1 Electronic structure of the multilayer

The electronic structure of the majority bands of Co and Cu
are very similar (see also Figure 6). The majority d bands
are fully occupied and lie below the Fermi level. However,
since Co has two electrons less than Cu, the minority band
of Co is less occupied and the electronic structure of the
minority band at the Fermi energy is very different for both

0 2 4 6 8 10
0

1

2

3

Cu thickness (ML)

G
M

R

Figure 10. Calculated GMR ratios for Co/Cu(100) multilayers as
a function of the Cu layer thickness, CIP-GMR (filled circles) and
CPP-GMR (open circles).
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Figure 11. Spin-dependent potentials in a magnetic multilayer for the AP and P configurations for majority and minority electrons.

metals. The majority electrons of a multilayer at EF with their
moments aligned in parallel traverse easily through the sys-
tem; the reason is that the potential landscape is very flat (see
Figure 11) since the bandwidth is nearly the same in each
layer. On the contrary, minority electrons at EF experience
high potential steps and are reflected at the Co/Cu interfaces.
As a result, the Fermi velocity of the majority electrons is
much larger than the Fermi velocity of the minority electrons,
v

↑
F � v

↓
F (see also Figure 13). A multilayer with antiparallel

moments consists of a potential with a potential well in alter-
nate layers since the spin character of the electrons (majority,
minority) changes in every other layer (see Figure 11); also
both spin channels are degenerate. The velocity of the elec-
trons is mainly determined by the largest potential step. For
this reason the Fermi velocity of the electrons in an AP-
ordered multilayer is nearly the same as for the minority
electrons, v

↑
F � vAP

F ≥ v
↓
F (see also Figure 13).

The densities of states at the Fermi level for P and AP
configurations as a function of Cu-layer thickness are shown

0 2 4 6 8 10
0

50

100

150

Cu thickness (ML)

n 
(E

F
)

Figure 12. Densities of states at the Fermi energy for Co/Cu(100)
multilayers as a function of Cu-layer thickness for majority electrons
(triangle upwards) and minority electrons (triangle downwards) in
P configuration and in AP configuration (diamonds). (Reproduced
from I. Mertig, P. Zahn, M. Richter, H. Eschrig, R. Zeller & P.H.
Dederichs: ‘Ab initio calculation of residual resisistivity in dilute Fe
alloys and giant magnetoresistance in Fe/Cr multilayers’, J. Mag.
Mag. Mat. 151 (1995), copyright  1995, with permission from
Elsevier.)

in Figure 12. When one adds the majority and minority
density of states in P configuration they are quite close to
the density of states in AP configuration, so that they are
neither responsible for the positive GMR ratios nor account
for the differences between the CIP- and CPP-GMR; rather
these result from differences of the averaged velocities as a
function of the magnetic configuration (Figure 13).

If we compare the averaged velocities of the majority and
minority electrons in the parallel configuration with those in

0
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2 4 6 8 10
0
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0
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F

Figure 13. The average of the Fermi velocities in the plane of the

layers
√

v2
‖ (a) and perpendicular to the layers

√
v2

⊥ (b) for majority
(triangle upwards) and minority (triangle downwards) electrons in
P and in AP configuration (diamonds) (Zahn, Mertig, Richter and
Eschrig, 1995, 1998; Mertig et al., 1995).
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the antiparallel configuration we notice that this would lead
to a positive GMR ratio. For the components in the plane of
the layers v‖, the CIP-GMR is obtained, whereas v⊥ leads
to CPP-GMR. When we compare the in-plane components
of the velocity with the components perpendicular to the
plane (Figure 13) we can even explain the differences of the
CIP- and CPP-GMR. Similar conclusions have been drawn
by Oguchi (1993) and Butler, MacLaren and Zhang (1993,
1996).

The same result was obtained by calculating the GMR of
point contacts in the ballistic limit of transport by using the
conductance of equation (34) (Schep, Kelly and Bauer, 1995;
Gijs and Bauer, 1997).

4.1.2 Eigenstates of the multilayers

An important ingredient to the microscopic understanding
of the conductivity is the layerwise decomposed density of
states. The LDOS is calculated from the diagonal part of the
spin-dependent one-particle Green’s function of the multi-
layer system (see equation (14)). They can be resolved by
means of the spectral representation of the Green’s function
into a superposition of probability amplitudes of all eigen-
states at energy EF.

The LDOS at EF of the P configuration is shown in
Figure 14(a) and is nearly the same at all monolayers in
the majority channel. The minority electrons are character-
ized by a very inhomogeneous profile. The LDOS in Co
layers is much higher than that in Cu layers. The largest
values are obtained for the Co layers at the interface. This
is a general behavior independent of Co- or Cu-layer thick-
nesses. This profile can easily be interpreted by means of
probability amplitudes of the eigenstates. Owing to a smooth
potential profile most of the eigenstates in the majority bands
are extended with a constant probability amplitude for all
layers (Figure 14b). In contrast, the minority electrons move
in a multiwell potential with a periodicity perpendicular to
the layers (z direction). For this reason quantum well states
appear which are well localized in z direction but extended in
plane. Besides quantum well states with a localization in the
center of the Co and Cu layers (Figure 14c,d) pronounced
interface states in the Co layers are formed as shown in
Figure 14(e). The interface state can be understood in terms
of resonant scattering and compares to the virtual bound state
(VBS) of a Co impurity in a Cu matrix (Dederichs and Zeller,
1981).

4.2 Extrinsic GMR

It was shown in the last section that the GMR effect has
an intrinsic origin determined by the electronic structure of
the magnetic multilayer. Since the intrinsic effect is based
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Figure 14. Co9Cu7 in P configuration: spin-resolved local density
of states at EF in (au) (a), probability amplitude of an extended
majority state (b) and of different quantum well and interface states
in the minority band (c–e). (Reproduced from Zahn et al., 1998,
with permission from the American Physical Society.  1998.)

on the coherent electronic structure, the samples have to be
of high quality. Another rather robust mechanism is spin-
dependent scattering in magnetic multilayers. The scattering
properties of impurities in magnetic systems exhibit a spin
anisotropy (Mertig, 1999). That is, majority and minority
electrons undergo a scattering process of different strength.
As a measure, the so-called scattering anisotropy of the
resistivity (equation (43)) is used. This property, namely,
spin-dependent impurity scattering in multilayers causes the
GMR effect. The mechanism is illustrated in Figure 15. Let
us consider an impurity atom with a scattering anisotropy
α < 1. The majority electrons are weakly scattered by the
impurity in the magnetic layer and cause a small resistance
R↑ and a large current. The minority electrons, however, are
scattered strongly at the same impurities in the magnetic layer
which results in a large resistance R↓ and a small current.
The total resistance RP is small since the fast majority
channel determines the transport. In the AP configuration
both channels have the same resistance. Strong and weak
scattering alternate from layer to layer for the electrons of
both spin directions and produce a resistance RAP > RP

which corresponds to a positive MR effect.
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Figure 15. Extrinsic GMR: spin-dependent scattering in magnetic multilayers.

The qualitative picture discussed above will be manifested
in a quantitative analysis of the scattering properties of
impurities in magnetic multilayers. The results are based
on ab initio electronic structure calculations. The data
demonstrate the diversity of the considered systems, explain
obtained experimental trends, and can be understood as
instructions to tailor GMR systems of desired properties.
Combination of impurities with opposite spin anisotropy can
even cause inverse GMR.

4.2.1 Electronic structure of impurities in magnetic
multilayers

Impurities are a perturbation of the host material and cause
charge and magnetization relaxation. As a result of a self-
consistent impurity calculation, the density of states at
the impurity site includes all the necessary information.
Impurities in a multilayer show a strong dependence on their
position with respect to the interfaces. If the impurities are
situated in the center of a layer, the LDOS is similar to the
corresponding bulk system. At the interfaces the properties
are changed.

In this section the LDOS of the 3d transition-metal
impurities in Co/Cu multilayers are presented in Figure 16.
The data are for impurities in the center and at the interface
of the magnetic and of the nonmagnetic layer to demonstrate
the differences as a function of the impurity position in
the multilayer. Co in Co and Cu in Cu characterize the
corresponding host properties, that is, the LDOS in the center
and at the interface of the Co and Cu layer. Obviously,
the Co and Cu density of states in the center of the Co
layer is the same as in bulk (see also Figure 6). Co is
magnetic with a moment of 1.64 µB. The Co moment at
the interface is reduced to 1.55 µB. The Cu interface layer is
also magnetic with a very small moment parallel to the Co
moments of 0.01 µB. The central Cu layer is nonmagnetic.
The LDOS are shown from left to right corresponding to
their position in the unit cell: central Co layer, Co and Cu
interface layers, and the central Cu layer. The LDOS in the
central layers coincides with the respective properties of bulk

defects (for comparison see Stepanyuk, Zeller, Dederichs and
Mertig, 1994; Braspenning, Zeller, Lodder and Dederichs,
1984; Mertig, 1999).

In the central Cu layer all defects show a tendency to form
VBSs. Their positions shift according to the band filling and
for Co, Fe, Mn, Cr, and V a magnetic moment is formed.
This tendency is enhanced when the defects are moved closer
to the Co layer. In the Cu interface layer in close contact
to the Co layer all 3d defects possess a magnetic moment.
The orientation of the moment is opposite to the adjacent
Co moment for Cr, V, Ti, and Sc in accordance with the
less-than-half-filled 3d band. For Cr, V, and Ti an interesting
feature is obtained: two VBSs at the upper band edges of the
3d states of the adjacent Co and Cu atoms, which are below
and above the Fermi level are formed in the minority channel.
The influence on the local magnetic moment and the DOS at
the Fermi level is quite small and a smooth transition from
the Co central position to the Cu central position is obtained.

The behavior of the 3d impurities in the Co central layer
is dominated by the competition of the local electrostatic
potential at the defect site which is weaker in the beginning
of the row and larger for Ni and Cu. For Ni the reduced
moment causes a reduction of the exchange energy which
acts in the opposite direction to the Coulomb potential shift
in the majority band and in the same direction for the
minority electrons. So, the moment at the Ni impurities is
suppressed, and the same holds for Cu atoms in the Co layer.
The opposite shift, which is connected with a large local
moment, is obtained for the minority states of Fe defects.
For Mn and the earlier 3d elements the weakening of the
electrostatic potential can no longer be counterbalanced by
an increasing exchange potential, since the local moment
cannot increase sufficiently. So, at Mn a VBS is formed in the
majority channel just below the Fermi energy destabilizing
the ferromagnetic solution. For Mn, Cr, V, Ti, and Sc an
antiferromagnetic alignment of the local magnetic moment
relative to the surrounding Co sites is obtained. This tendency
is maintained for all sites in the Co layer, as can be
recognized from the LDOS of the impurities at the Co
interface position.
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Figure 16. Local partial density of states for 3d transition-metal impurities at the central and interface sites of the Co and Cu layers of a
Co9Cu7(001) multilayer in P configuration; the color code is the same as in Figure 6.
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4.2.2 Scattering anisotropy in bulk materials

The scattering properties of an impurity atom in a bulk
system are highly anisotropic, that is, the relaxation times
τσ

k vary strongly for different states. As an example, the
relaxation time anisotropy is shown for a Cu impurity in
Co bulk at the Fermi surface (Figure 17). The relaxation
times of the minority electrons (Figure 17a) are on average
shorter by 1 order of magnitude in comparison to those
of the majority electrons (Figure 17b). Shorter relaxation
times mean stronger scattering and, in principle, cause larger
resistance. The relaxation times per Fermi surface sheet vary
by a factor of 2 in bulk systems.

The scattering anisotropy in general is, however, hidden
in the microscopic scattering probability Pkk′ , which is
an enormous amount of data. An example of a magnetic
Co impurity in Cu bulk is given in Figure 18. The spin-
conserving scattering probabilities of one initial state k fixed
to (100) into all other states k′ is visualized as a function of
the scattering angle (a) or at the Fermi surface (b and c) for
majority and minority electrons separately.

Assuming that the system without and with defects is
invariant under time-reversal symmetry, one obtains

v−k = −vk and (50)

�−k = −�k (51)

where −k should denote the state with a reversed wave vector
−k but the same band index ν. Using the symmetric and
antisymmetric part of the transition probability matrix

P S
kk′ = Pkk′ + Pk−k′

2
and (52)

P A
kk′ = Pkk′ − Pk−k′

2
(53)

one can rewrite the Boltzmann equation (25) as

vk =
∑
k′

(
P S

kk′�k − P A
kk′�k′

)
(54)

From this equation it is evident that the Boltzmann relaxation
time is determined by the symmetric part of Pkk′ and the
vertex corrections in equation (25) by the antisymmetric
contribution

τ k =
[∑

k′
P S

kk′

]−1

and (55)

∑
k′

Pkk′�k′ =
∑
k′

P A
kk′�k′ (56)

To quantify these contributions, the following anisotropies
will be defined. The anisotropy αP

k of forward and backward

580 690 800

tk
↓

tk
↑

 25(a)

(b)

42.5

Co (Cu)

60

Figure 17. Anisotropic relaxation times τσ
k for Cu defects in a

magnetic Co host.

scattering is determined by the ratio of Pkk and Pk−k and is
closely related to the ratio αA

k of the antisymmetric scattering
probability to the probability of forward scattering

αP
k = Pkk

Pk−k

and (57)

αA
k = 1 − 1

αP
k

= 2
P A

kk

Pkk

(58)



Enhanced magnetoresistance 17

P↓
kk ′ P↑

kk′

−1

(a) (b) (c)

−0.5 0 0.5 1

10−5

10−4

10−3

10−2

Min.
Maj.

cos(k, k′)

P(cos(k, k′))

 .00010  0.00148  0.0220 .00001  0.00016  0.0025

Figure 18. Microscopic transition probability Pkk′ for magnetic Co defects in a Cu matrix (a); Pkk′ as a function of the angle between k
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Figure 19. Scattering asymmetry of transition probability αA
k for Cu defects in a magnetic Co matrix (a) minority electrons and (b) majority

electrons.

These quantities are state dependent and characterize in short
the anisotropy of the scattering and allow for an estimate of
the importance of the vertex corrections in equation (25).

The results for a Cu impurity in Co are shown in Figure 19.
The scattering asymmetry of the minority electrons is rather
low in comparison to the majority electrons which predicts
that the vertex corrections will be negligible for the minority
electrons but rather important for the majority electrons.
Quantitative results are discussed in Section 4.2.4.

4.2.3 Variation of relaxation times

Besides the state and spin dependence of the relaxation
times in bulk systems (see discussion above), the relaxation

times of impurity states in a multilayer are determined by
the relative position of the impurity atom with respect to
the interfaces. The interplay of the quantum size effects of
the multilayer wave functions (see Section 4.1.2) and the
properties of the impurity potential in different positions in
the multilayer (see Section 3 and Figure 20) cause variations
of the relaxation time.

All Bloch states with a finite probability amplitude at the
impurity site are strongly scattered and have a relatively short
relaxation time. On the other hand, states with a nearly zero
probability amplitude at the impurity site undergo a weak
scattering and cause extremely large relaxation times. The
state-dependent relaxation times are distributed over several
orders of magnitude. This occurs especially for defects inside
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Figure 20. Quantum confinement of eigenstates in a metallic
multilayer and characteristic defect positions: the electronic states
are described by their probability amplitude.
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Figure 21. Histogram of spin-dependent, anisotropic relaxation
times of Cu impurities in Co9Cu7 multilayers for P alignment; bulk
impurities (a) are compared with impurities in the center (b) and at
the interface (c) of the Co layer (Zahn, Binder and Mertig, 2005).
The Fermi surface average of the relaxation times is indicated by a
dark gray line. (Reproduced from Zahn et al., 2005, with permission
from the American Physical Society.  2005.)

the metallic layers (see Figure 21). This is a new effect
that does not happen in bulk systems. Figure 21 shows the
relative amount of relaxation times τ k for the states at the
Fermi level for Cu impurities in Co bulk and in the center
and at the interface of the Co layer of a Co9Cu7 multilayer.

For defects inside the magnetic layer, the maximum of
the distribution coincides with that in the bulk material.
In addition, a long tail for high values occurs caused by
states which have a small probability amplitude at the
defect position, for example, quantum well states in the
nonmagnetic layer or interface states. This fact is also

reflected by the Fermi surface average of the relaxation
times indicated by a dark grey line. The averaged relaxation
times of bulk impurities and impurities at the interface are
nearly the same since all states have a finite probability
amplitude at the interface. The averaged relaxation times
for impurities in the center of the magnetic layer, however,
are quite different. This fact should be borne in mind for
the evaluation of theoretical results calculated with constant
relaxation times. Comparing the electronic properties of bulk
impurities with impurities in a multilayer we can conclude
that the electronic structure of impurities in the center of
the layer are the same as in bulk; the scattering properties
are, however, different. Because of quantum size effects the
averaged relaxation times for impurities in the center of the
layer are much larger than for bulk impurities in contrast to
impurities at the interface, which are comparable.

The states with large relaxation times, although not numer-
ous, are highly conducting and nearly provoke a short circuit.
This is the case for Cu impurities in the Co layer of the Co/Cu
multilayer, compare Figure 21. This effect is mainly obtained
for impurities in the center of the layers and is related to
the fact that in-plane transport is mostly driven by quantum
well states (Zahn et al., 1998). This peculiar behavior is in
agreement with the results of Blaas et al. (1999) who found
higher resistivities for Co/Cu multilayers with interdiffusion
restricted to the interface layers than for alloying with Cu
atoms in the Co layers.

The multilayer modulation of the relaxation times is quite
a robust effect, which was experimentally confirmed for the
conductivity and the GMR effect (Marrows and Hickey,
2001).

4.2.4 Vertex corrections in multilayers

The influence of the vertex corrections in the solution of the
Boltzmann equation was investigated for the Co9Cu7(100)
multilayer. The resistances obtained by evaluation of the
vector mean free path by equation (25) ρ̊‖ and with �k in
relaxation time approximation ρ‖ are compared in Figure 22.

In general the vertex corrections are less important for the
minority electrons in comparison to the majority electrons.
The scattering anisotropy of the minority electrons is much
lower (see also Figure 6) than that for the majority electrons
which is related to the character of the electronic states.
Scattering of s and p states is highly anisotropic, whereas
scattering of the d state is isotropic. The largest deviations
occur in the minority channel for a Cr defect and in the
majority channel for the defects from Fe to Zn. The latter
is caused by the dominating sp scattering since the d states
are fully occupied. The large deviation for the Fe defect is
comparable to the case of Cu defects in a Co host with
large asymmetries of the scattering probability. Compare
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are treated to consider the ratio ρ̊‖/ρ‖ of CIP conductivities
calculated with and without vertex corrections, respectively.

also the bottom panel in Figure 19(b). For pure d scattering
or dominating d character of the states (minority channel)
the corrections due to the vertex term are small. Zhang
and Butler (2000) proposed a simplified scheme to treat the
vertex corrections. The main purpose was to increase the
scattering probabilities to account for the asymmetry of
the scattering, which was determined by the anisotropy of
the bulk relaxation times.

4.3 Resistivity and spin anisotropy

4.3.1 Spin anisotropy of resistivity

In the following, the trends of the residual resistivities
and the corresponding spin anisotropy of resistivity defined
in equation (43) are discussed for Co9Cu7(001) multilayers
with 3d impurities in the Cu (Figure 23) and the Co layer
(Figure 24) in the central and in the interface position in
comparison with bulk results. Besides the spin-resolved
results for the systems, the total resistivities of the P and
AP configurations are presented. The idea of this section
is to discuss some general trends that are confirmed by
the quantitative results. First, the spin-resolved and total
resistivities of the bulk systems are largest in comparison to
the multilayer results (P configuration). Second, the general
trend of the resistivities for interface impurities in multilayers
is very similar to the trend for the bulk systems. Third, the
resistivities for impurities in the central position of the Cu
or Co layer are very small which is related to the quantum
confinement of the wave functions in the multilayer and the
large relaxation times of quantum well states. The effect was
discussed in Section 4.2.3. The trend of the total resistivity
in P configuration is determined by the trend of the spin
channel with lower resistivity. The resistivities in the AP
configuration are for all systems larger than the resistivities
in the P configuration which leads to positive GMR (see
Section 4.4.1).
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Figure 23. CIP resistivities of Co9Cu7(001) multilayers with 3d
defects in the Cu layer (central and interface position) in com-
parison with bulk results, (a) spin-resolved contributions for the P
configuration and (b) total resistivities for P and AP configurations.

To understand the physics behind the trend we have to
examine the LDOS (Figure 16). The trend is determined by
resonance scattering. As soon as the VBS formed by the
impurity approaches the Fermi level resonance scattering
occurs and causes a large resistivity.

Considering the spin-anisotropy ratio α (equation (43),
Figure 25): The trend obtained for bulk impurities coincides
with the trend for the corresponding impurities at the
interfaces of the layers. A strong shift of the anisotropy to
values of α < 1 is found for impurities in the central position
of the Co layer. The spin-anisotropy ratio is decreased
because of the channeling states in the Cu layer ρ↑ << ρ↓.
Strong anisotropy is found for defects with a nuclear charge
close to the host material. Since the impurity potential is
nearly degenerated with the host potential in one of the spin
channels, the corresponding scattering cross section vanishes.
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4.3.2 Inverse GMR

On the basis of the strong differences in the spin anisotropy
it became clear that the amplitude of the GMR effect can
be tailored by the chemical composition of the multilayer
with appropriate impurity atoms. In particular the GMR
ratio could be inverted by combination of impurities with
opposite spin-anisotropy ratio (George et al., 1994). The
mechanism is illustrated in Figure 26. Two types of defects
with opposite spin-anisotropy ratio are deposited in adjacent
magnetic layers. So that the scattering for electrons with
one spin direction changes from strong to weak in the P
configuration of the magnetic multilayer. As a result the
resistivity of the two spin channels is comparable. In the
AP configuration, however, the opposite spin-anisotropy ratio
of the impurity atom is counterbalanced by the change of
the magnetization direction. As a result a channel with low
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Figure 25. Spin anisotropy α (equation (43)) of the CIP resistiv-
ities of Co9Cu7(001) multilayers with 3d defects in the Co or Cu
layer (central and interface position) in comparison with correspond-
ing bulk results.

Figure 26. Inverse GMR: spin-dependent scattering.

resistivity is created so that ρAP < ρP and the inverse GMR
effect is created.

To simulate a system with inverse GMR, impurities with
opposite spin-anisotropy ratio β (see equation (46)) are
combined.

To describe a multilayer with two types of noninteracting
impurities (A and B), we use the following ansatz for the
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microscopic transition probability per spin direction in the
parallel alignment

P σ
kk′P = xP σ

kk′ A + (1 − x)P σ
kk′B (59)

and in the antiparallel alignment

P σ
kk′ AP = xP σ

kk′A + (1 − x)P −σ
kk′

B (60)

Correspondingly, the electron lifetime becomes

1

τσ
P

= x
1

τσ
A

+ (1 − x)
1

τσ
B

(61)

in the parallel configuration and

1

τσ
AP

= x
1

τσ
A

+ (1 − x)
1

τ−σ
B

(62)

in the antiparallel configuration. The parameter x determines
the concentration of impurities A relative to B. In the limit
x = 1 the relaxation time of impurity A with an anisotropy
ratio βA and in the limit x = 0 the relaxation time of impurity
B with an anisotropy ratio βB is reached.

In our calculations A is associated with V impurities in
the Fe layers (denoted by Fe(V)) and B is either a Cu
impurity in Co layers (Co(Cu)) or a magnetic Co impurity
in Cu layers (Cu(Co)). The inverse relaxation times and the
anisotropy ratios are shown in Table 1. The spin-anisotropy
ratio of Co(Cu) and Cu(Co) is smaller than 1. Both defects
cause, in principle, the same scattering behavior of the
wave function. The anisotropy ratio of Fe(V) is opposite,
that is, in parallel configuration the majority electrons (spin
up, ↑) are strongly scattered at the V impurities in the Fe
layers and are weakly scattered at the Cu impurities in the
Co layers or in the Co-containing Cu layers whereas the
minority electrons (spin down, ↓) are weakly scattered at V
impurities in Fe layers but strongly scattered at Cu impurities
in Co or Co-containing Cu layers. For the antiparallel
configuration the scattering channels are mixed. The majority
electrons are scattered strongly in each layer and the minority
electrons are scattered weakly in each layer. Consequently,
a slow and a fast channel occur which results in a low
resistivity.

The results of the calculation as a function of impurity
concentration and Fe layer thickness are shown in Figure 27.
As expected from the simple model, the GMR ratio switches
from positive to negative values as a function of the relative
impurity concentration x.

Table 1. Anisotropy ratios β (equation (46)) and Fermi surface
average of the relaxation times per spin direction τσ in arbitrary
units for the dilute bulk alloys Co(Cu), Cu(Co), and Fe(V).

Impurity Co(Cu) Cu(Co) Fe(V)

β 0.0701 0.1413 21.55
τ↓ 2.52 0.42 38.0
τ↑ 35.9 2.95 1.76
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Figure 27. Calculated CIP-GMR of FenCu6Co2Cu6 versus Fe layer
thickness n and relative defect concentration x; (a) for V impurities
in Fe layers combined with Cu impurities in Co layers, (b) for V
impurities in Fe layers combined with magnetic Co impurities in
Cu layers.

4.4 GMR: defect dependence

4.4.1 Position dependence

The GMR ratios derived from the resistivity calculation
of Figures 23 and 24 are shown in Figure 28. The trends
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imply that the larger the spin anisotropy α (see Figure 25)
the larger the GMR ratio. Although defects in the center
of the layers cause a much smaller resistivity than defects
at the interfaces (see Figures 23 and 24), they are equally
efficient like defects at the interface to induce large GMR.
Dependence of the GMR in Co9Cu7(100) multilayers on
self defects in any of the multilayer position is presented
in Figure 29. For the calculation, δ layers of Cu impurities
in the Co layer or δ layers of Co impurities in the Cu
layer and interface scattering are taken into account with
equal weights. The thin dashed line is the GMR value
caused by interface scattering only, from Zahn, Binder and
Mertig (2003). This value would correspond to the reference
value in the experiments of Marrows and Hickey without
the δ layer (Marrows and Hickey, 2001). The thick dashed
line in Figure 29 gives the GMR value obtained with the
assumption of a constant relaxation time without any spin or
state dependence (intrinsic GMR). In comparison to this case
of isotropic scattering the insertion of an additional δ layer
increases GMR, mostly at the interfaces.

Comparing the trend of GMR an excellent agreement with
the experiment (Figure 29b) is obtained for the Co/Cu system
which is a confirmation of the microscopic picture.

The very good agreement with experimental results is not
limited to self defects. Investigations of all the 3d transition-
metal impurities deposited as δ layers in the Co/Cu spin valve
have been performed, (Marrows and Hickey, 2001) and they
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Figure 29. Dependence of the GMR in Co9Cu7(100) multilayers
on the position of Co impurities in the Cu layer and Cu impurities
in the Co layer assuming δ layer scattering and interface scattering
with equal weights. The thick dashed line indicates the intrinsic
GMR and the thin dashed line the GMR value caused by interface
scattering only, from Zahn, Binder and Mertig (2003), (b) shows the
experimental results by Marrows and Hickey (2001). (Reproduced
from Zahn et al., 2003/Marrows & Hickey 2001, with permission
from the American Physical Society.  2001/2003.)

substantiate the basic concept of spin-dependent scattering
in magnetic multilayers (see Figure 30) (Zahn, Binder and
Mertig, 2003).

We still have to mention, that the calculated values are
2 orders of magnitude larger than the experimental ones.
The reason is the restriction to substitutional point defects.
In addition to these, other scattering processes occur in
real samples. Assuming self-averaging, the results could be
corrected toward the experimental ones by an additional spin-
and state-independent relaxation time τ (thick dashed line
in Figure 29) (Zahn et al., 1998). In contrast to Zahn et al.
(1998), the present results were obtained assuming only the
impurity distribution described above and are focused on
the impurity scattering rates only. Another difference from
the experimental setup in Marrows and Hickey (2001) is
the geometry. The experimentally investigated samples have
been Co/Cu/Co spin valves grown on a buffer layer and
protected by a cap layer. As a consequence, the GMR ratios
are nearly symmetric as a function of the impurity position
in the Cu layer but asymmetric for defects in the Co layer.
The calculations are performed in supercell geometry and
this is reflected in the symmetry of the results with respect
to the defect position in both layers, Cu and Co. A possible
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influence of superlattice effects in metallic multilayers was
shown to be negligible (Erler, Zahn and Mertig, 2001).

4.5 CPP-GMR

In contrast to the CIP geometry, where the current is flow-
ing parallel to the layers, the CPP geometry is character-
ized by a current perpendicular to the layers. Owing to
the reduced device dimension in current direction micro-
fabrication or even nanofabrication technologies have to
be used to enhance the resistivity and resistivity changes.
This is necessary to allow for a reliable detection of
the effect. The effect was first measured with supercon-
ducting contacts (Pratt et al., 1991), which unfortunately
implies that the low-temperature regime is accessible only,
but allows for a simultaneous measurement of the CIP
and CPP effect on the same sample, see Figure 31. Other
setups which avoid this restriction are microstructured pil-
lars (Gijs, Lenczowski and Giesbers, 1993), a growth on
structured substrates (Ono and Shinjo, 1995; Gijs et al.,
1995), and electrodeposition of nanowires into pores of
a polymer foil (Blondel, Meier, Doudin and Ansermet,
1994; Piraux et al., 1994). Surveys about the experimen-
tal and theoretical achievements are given in (Levy, 1994;
Gijs and Bauer, 1997; Barthélémy, Fert and Petroff, 1999;
Tsymbal and Pettifor, 2001; Brataas, Bauer and Kelly,
2006).

From a theoretical point of view, the CPP-GMR effect
is less complex than the CIP equivalent, because the high
symmetry of the former reduces the effort by approximations
using model Hamiltonians.
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Figure 31. MR(H) = (R(H) − Rsatt)/Rsatt for a Ag (6 nm)/Co
(6 nm) multilayer with Nb cross strips simultaneously measured
for CPP geometry (a) and CIP geometry (b). (Figure 2 reproduced
from Pratt et al., 1991, with permission from the American Physical
Society.  1991.)

The models applied are aimed at the linear response of
the system and are based on a quasiclassical approach using
the Boltzmann equation and a fully quantum-mechanical
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description starting from the Kubo–Greenwood approach,
respectively. In the following, considerations are restricted
to calculational schemes applied to the CPP geometry. Valet
and Fert treated bulk, interface, and spin-flip scattering on
the same footing starting from the quasiclassical distribution
function (Valet and Fert, 1993). They have shown that the
correct treatment of the spin accumulation caused by the
spin-dependent bulk and interface resistivities is necessary
to describe systems with layer thicknesses of the order of
the spin diffusion length. That is the length scale at which
the currents in both spin channels are equilibrated by spin-flip
scattering processes.

For multilayer systems, the global solution of the Boltz-
mann equation is obtained by an appropriate coupling of
the piecewise solutions inside the layers analogous to the
Fuchs–Sondheimer theory (Fuchs, 1938; Sondheimer, 1952),
as was shown by Falicov and Hood for the CIP geometry
(Falicov and Hood, 1993). Zhang and Levy have demon-
strated that the interface resistance and the CPP-GMR are
very sensitive to the scattering at the interfaces and that
diffusive scattering can assist or suppress the effect depend-
ing on the interface reflectivity (Zhang and Levy, 1998).
This is illustrated in Figure 32. (1 − S) measures the dif-
fusive scattering and T characterizes the transmission. This
quasiclassical approach was later generalized by Butler and
coworkers to include the bulk and interface resistivities from
ab initio calculations (Zhang and Butler, 1995; Butler, Zhang
and MacLaren, 2000). Transmission coefficients across a
ferromagnet/nonmagnet interface which are essential ingre-
dients for CPP-GMR were first obtained by matching the
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Figure 32. Interface resistance as a function of the diffuse scat-
tering parameter S for a set of transmission coefficients T . S = 0
represents total diffuse scattering, while for S = 1 there is no diffuse
scattering. (Reproduced from Zhang & Levy 1998, with permission
from the American Physical Society.  1998.)

generalized Bloch states of the two semi-infinite crystals
(Stiles, 1996), or from a surface embedding Green’s function
technique (Schep et al., 1997).

A quasiclassical approach including the coherent scattering
by the ab initio band structure of the multilayer and the
diffuse scattering by appropriate spin-dependent relaxation
times was developed by the authors. The presented results
are, however, limited to the very special case that the mean
free path � is much larger than the unit cell. Since the CPP
geometry is characterized by an alignment of the current and
the direction of the quantum confinement effects that occur in
this limit because of coherent scattering at the interfaces, the
obtained CPP-GMR is much larger than CIP-GMR ratio, both
in theory (Zhang and Levy, 1991; Zahn, Mertig, Richter and
Eschrig, 1995; Zahn et al., 1998) and in experiment (Pratt
et al., 1991). Compare Figures 33 and 31(a,b), respectively.

To describe the transport in the linear response regime
on the basis of quantum mechanics alone the Kubo formula
is well suited and it is explained in great detail in text
books (Mahan, 1981). The correspondence of the quantum
approach starting from the Kubo formula (Kubo, 1957)
and the quasiclassical approach for the case of multilayers
was shown by Camblong and Levy (1992). Following
the description of the CIP-GMR (Levy, Zhang and Fert,
1990), it was applied to the CPP geometry by Zhang and
Levy (1991). To include typical features of the electronic
structure of the metals forming the multilayer, tight-binding
Hamiltonians were included in the consideration to elucidate
the role of defects and layer thickness on the MR effect
(Tsymbal and Pettifor, 2000; Mathon, 1996). An oscillatory
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a set of spin asymmetry of the defect scattering strength β = 0.25
(squares), β = 1.0 (triangles), β = 4.0 (circles). Dashed and full
lines are the values with a constant spin-independent relaxation
time. (Reproduced from Zahn et al., 1998, with permission from
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behavior similar to the IEC was predicted for the coherent
limit of very high quality samples (Mathon et al., 1995).
The generalization of the Kubo formula to inhomogeneous
layered systems was derived (Butler, Zhang, Nicholson and
MacLaren, 1994; Weinberger et al., 1996), but the highly
demanding vertex corrections within the CPA to describe
defects and interdiffusion prevented a numerical evaluation
of the CPP transport coefficients.

A fully ab initio level of description was reached by
Kudrnovský et al. taking advantage of a supercell approach
to model the influence of disorder and interdiffusion
(Kudrnovský and Bruno, 2000; Xia et al., 2001; Drchal et al.,
2002). This method allows for the description of specular and
diffuse scattering at the interfaces and inside the layers on an
equal footing. By this approach, the evaluation of the resistiv-
ity of a single interface between two metals was performed,
which provides parameters for a simplified resistor model of
the structure (Bauer et al., 2001).
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Barthélémy, A., Fert, A. and Petroff, F. (1999). GMR in magnetic
multilayers. In Handbook of Magnetic Materials, Buschow,
K.H.J. (Ed.), Elsevier, Vol. 12.

Bass, J., Yang, Q., Lee, S.F., et al. (1994). How to isolate effects
of spin-flip scattering on giant magnetoresistance in magnetic
multilayers. Journal of Applied Physics, 75, 6699.

Bauer, G., Nazarov, Y., Huertas-Hernando, D., et al. (2001).
Semiclassical concepts in magnetoelectronics. Materials Science
and Engineering B, 84, 31.

van den Berg, H.A.M., Altmann, J., Bar, L., et al. (1999). Magnetic
tunnel sensors with Co-Cu artificial antiferromagnetic (aaf) hard
subsystem. IEEE Transactions on Magnetics, 35, 2892–2894.

Binasch, G., Grünberg, P., Saurenbach, F. and Zinn, W. (1989).
Enhanced magnetoresistance in layered magnetic structures with
antiferromagnetic interlayer exchange. Physical Review B, 39,
R4828.

Binder, J., Zahn, P., Mertig, I., et al. (1998). Magnetic properties
of impurities and impurity pairs in magnetic multilayers. Philo-
sophical Magazine B, 78, 537.

Blaas, C., Weinberger, P., Szunyogh, L., et al. (1999). Ab initio cal-
culations of magnetotransport for magnetic multilayers. Physical
Review B, 60, 492.

Blondel, A., Meier, J.P., Doudin, B. and Ansermet, J-P. (1994).
Giant magnetoresistance of nanowires of multilayers. Applied
Physics Letters, 65, 3019.

Braspenning, P., Zeller, R., Lodder, A. and Dederichs, P. (1984).
Self-consistent cluster calculations with correct embedding for
3d, 4d and some sp impurities in copper. Physical Review B, 29,
703.

Brataas, A., Bauer, G.E.W. and Kelly, P. (2006). Non-collinear
magnetoelectronics. Physics Reports, 472, 157–255.

Bruno, P. and Chappert, C. (1991). Oscillatory coupling between
ferromagnetic layers separated by a nonmagnetic metal spacer.
Physical Review Letters, 67, 1602, 2592(E).

Butler, W. (1985). Theory of electronic transport in random
alloys: Korringa-Kohn-Rostoker coherent-potential approxima-
tion. Physical Review B, 31, 3260.

Butler, W., MacLaren, J. and Zhang, X. (1993). Giant magnetoresis-
tance calculated from first principles. Materials Research Society
Symposium Proceedings, 313, 59.

Butler, W.H., Zhang, X-G. and MacLaren, J.M. (2000). Solution
to the Boltzmann equation for layered systems for current
perpendicular to the planes. Journal of Applied Physics, 87, 5173.

Butler, W.H., Zhang, X-G., Nicholson, D.M.C. and MacLaren,
J. (1994). Theory of transport in inhomogeneous systems and
application to magnetic multilayer systems. Journal of Applied
Physics, 76, 6808.

Butler, W.H., Zhang, X-G., Nicholson, D.M.C., et al. (1996). Giant
magnetoresistance from an electron waveguide effect in cobalt-
copper multilayers. Physical Review Letters, 76, 3216.

Butler, W., Zhang, X-G., Schulthess, T., et al. (1999). First princi-
ples modelling of magnet random access memory devices. Jour-
nal of Applied Physics, 85, 5834.
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1 INTRODUCTION

In 1983, Berry made the surprising discovery that a quantum
system adiabatically transported round a closed circuit C
in the space of external parameters acquires, besides the
familiar dynamical phase, a nonintegrable phase depending
only on the geometry of the circuit C (Berry, 1984). This
Berry phase, which had been overlooked for more than
half a century, provides us a very deep insight into the
geometric structure of quantum mechanics and gives rise to
various observable effects. The concept of the Berry phase
has now become a central unifying concept in quantum

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

mechanics, with applications in fields ranging from chemistry
to condensed-matter physics (Shapere and Wilczek, 1989;
Bohm et al., 2003).

The aim of this article is to give an elementary introduction
to the Berry phase, and to discuss its various implications
in the field of magnetism, where it plays an increasingly
important role. The reader is referred to specialized textbooks
(Shapere and Wilczek, 1989; Bohm et al., 2003) for a
more comprehensive presentation of the field of geometrical
phases. Particular emphasis will be given to the discussion
of the anomalous Hall effect, the theory of which has been
considerably renewed recently, on the basis of the concept
of Berry phase.

2 PARALLEL TRANSPORT
IN GEOMETRY

The importance of the Berry phase stems from the fact
that it reveals the intimate geometrical structure underlying
quantum mechanics. It is therefore appropriate to start with
an introduction to the fundamental concept of parallel
transport in a purely geometrical context; here, we follow
the discussion given by Berry (1990).

This is best illustrated by means of a simple example.
Consider a surface � (e.g., a plane, a sphere, a cone, etc.)
and a vector constrained to lie everywhere in the plane
tangent to the surface. Next, we wish to transport the vector
on the surface, without rotating it around the axis normal
to the surface, as illustrated in Figure 1. We are interested,
in particular, in the case, in which the arrow is transported
round a closed circuit C ≡ (1 → 2 → 3 → 1). We may
encounter two different situations: (i) if the surface is flat,



2 Theory of transport and exchange phenomena in thin film systems

1

1

12 2

2

3

3

3

(a) (b) (c)

Figure 1. Sketch of parallel transport on (a) a plane, (b) a sphere,
and (c) a cone.

as in Figure 1(a), then the arrow always remains parallel
to its original orientation, and is, therefore, unchanged after
completion of the circuit C; (ii) if, however, the surface � is
curved as in Figure 1(b) and (c), the arrow, being constrained
to lie in the local tangent plane, cannot remain parallel to its
original orientation, and after completion of the circuit C, has
clearly undergone a rotation by an angle θ(C), a phenomenon
referred to as anholonomy.

Let us now formalize this procedure. The arrow is repre-
sented by a tangent unit vector e1, transported along a circuit
C ≡ {r(t)|t = 0 → T } on the surface. Defining n(r) as the
unit vector normal to the surface at point r, we define a sec-
ond tangent unit vector e2 ≡ n × e1, which is also parallel
transported on the surface along C. The three unit vectors
(n, e1, e2) form an orthonormal reference frame. As e1 and
e2 are transported, they have to rotate with an angular veloc-
ity ω (to be determined) if the surface is not flat, that is, the
equation of motion of e1 and e2 is

ėr = ω × er (r = 1, 2) (1)

where the overdot indicates the time derivative. One can
easily see that in order to fulfill the requirements that e1 and
e2 remain tangent unit vectors (i.e., er · n = 0, (r = 1, 2))
and never rotate around n (i.e., ω · n = 0), the angular
velocity has to be given by

ω = n × ṅ (2)

The law of parallel transport is therefore,

ėr = (n × ṅ) × er = −(er · ṅ)n (3)

This law can be expressed in a form more suitable for
generalization to the case of quantum mechanics, by defining
the complex unit vector,

φ ≡ e1 + ie2

√
2

(4)

with

φ� · φ = 1 (5)

The law of parallel transport now reads,

φ� · φ̇ = 0 (6)

In order to express the rotation of the unit vectors (e1, e2)

as they move around C, we need to choose a fixed local
orthonormal frame (n(r), t1(r), t2(r)) on the surface. The
normal unit vector n(r) is, of course, uniquely determined
by the surface, but we have an infinity of possible choices
for t1(r) (we simply impose that it is a smooth function of r),
which corresponds to a gauge freedom; once we have made a
choice for t1(r), then t2(r) is of course uniquely determined.
We next define the complex unit vector,

u(r) ≡ t1(r) + it2(r)√
2

(7)

with, of course,

u�(r) · u(r) = 1 (8)

The relation between the parallel transported frame and
the fixed one is expressed as

φ(t) = exp[−iθ(t)] u (r(t)) (9)

where θ(t) is the angle by which (t1, t2) must be rotated to
coincide with (e1, e2). We obtain the equation satisfied by
θ(t) by inserting the preceding definition in the equation of
parallel transport (6), and obtain

0 = φ� · φ̇ = −i θ̇u� · u + u� · u̇ (10)

Since u� · u = 1 and u� · u̇ is imaginary, we get

θ̇ = Im(u� · u̇) (11)

so that

θ(C) = Im
∮
C

u� · du (12)

= −
∮
C

t2 · dt1 (13)

If we choose a coordinate system (X1, X2) on our sur-
face � and define the vector field A(r) (usually called a
connection) on � as

Ai(X) ≡ Im

[
u�

j (X)
∂uj (X)

∂Xi

]
(14)
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where we have used Einstein’s convention of summation
over repeated indices, we get

θ(C) =
∮
C

A(X) · dX (15)

which constitutes the 1-form expression of the anholonomy
angle θ(C). The connection A(X) depends on our particular
gauge choice for t1(X): if we make a new choice t1′

(X)

which is brought in coincidence with t1(X) by a rotation of
angle µ(X), that is, if we make the gauge transformation

u(X) → u′(X) ≡ exp (−iµ(X)) u(X) (16)

we obtain a new connection

A′
i (X) ≡ Im

[
u�

j ′(X)
∂uj ′(X)

∂Xi

]
= Ai(X) − ∂µ(X)

∂Xi

(17)

However, since∮
C
∇µ(r) · dr =

∮
C

dµ(r) = 0 (18)

we can see that the expression (15) for the anholonomy angle
θ(C) is indeed gauge invariant, as it should be.

A more intuitive understanding of the anholonomy angle
may be obtained if we use Stokes’ theorem to express it
as a surface integral. In doing so, however, we should pay
attention to the possible existence of holes in the surface �.
If this is the case, � is said to be nonsimply connected. An
example is sketched in Figure 2, where the surface � has
two holes limited by the contours C1 and C2 (hatched areas
in Figure 2). Applying Stokes’ theorem, we then obtain

θ(C) =
∫∫

S
B(X)dX1 dX2 +

∑
i

Ni(C)θ(Ci ) (19)

where the surface S is the subset of the surface � that is
limited by the circuit (dotted area in Figure 2), C, Ni(C) is
the winding number of circuit C around the hole i (i.e., the

S

C

C1
C2

Σ

Figure 2. Sketch of a nonsimply connected surface �, with two
holes (hatched areas), limited by the contours C1 and C2.

difference between the number of turns in counterclockwise
and clockwise directions),

θ(Ci ) ≡
∮
Ci

A(X) · dX (20)

is the anholonomy angle of circuit Ci and

B(X) ≡
(

∂A2

∂X1
− ∂A1

∂X2

)

= Im

[
∂u�

∂X1
· ∂u
∂X2

− ∂u�

∂X2
· ∂u
∂X1

]
(21)

Equation (19) constitutes the 2-form expression of the
anholonomy angle θ(C). One can see immediately that,
unlike the connection A(X), the quantity B(X) is gauge
invariant. The geometrical meaning of B(X) stems from its
relation to the Gaussian curvature K of � at point X, that is,

B(X)dX1dX2 = KdS ≡ dS

R1(X) R2(X)
(22)

where R1(X) and R2(X) are the principal curvature radii at
point X. In the case of the sphere, this is easily checked by
explicit calculation, taking the usual spherical angles (θ, ϕ)

as variables (X1, X2). Since the Gaussian curvature is related
to the solid angle � spanned by the normal unit vector n by

B = d2�

dX1 dX2
(23)

we finally get

θ(C) −
∑

i

Ni(C)θ(Ci ) =
∫∫

S

d2�

dX1 dX2
dX1 dX2

=
∫∫

S
d2� = �(S) (24)

where �(S) is the solid angle described by the normal vector
n on the surface S. That the above results hold not only
for a sphere but also for any surface can be understood
easily from the following argument: Equation (3) shows that
the trajectory of the parallel transported tangent vectors is
entirely determined by the trajectory of the normal unit vector
n along C. We can therefore map the trajectory C on the
surface � to a trajectory C′ on the sphere of unit radius S2, by
mapping each point of � onto the point of S2 with the same
normal vector n. This implies that we can restrict ourselves
to studying the case of parallel transport on S2 and obtain
conclusions valid for parallel transport on any surface �.

Let us examine these results for the examples sketched in
Figure 1. For the case of the plane, the anholonomy of course
trivially vanishes. For the sphere, the anholonomy angle is
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given by the solid angle �(S) and is therefore a geometric
property of the circuit C; this can easily be checked through
the following experiment: take your pen in you left hand, and
raise your arm above you head, the pen pointing in front of
you; then rotate your arm until it is horizontal in front of you,
without twisting your hand; then rotate it by 90◦ to your left;
finally rotate your arm back to the vertical (pay attention
to never twist your hand in whole process); the pen is now
pointing to your left, that is, it has rotated by 4π/8 = π/2.
For the case of the cone, the Gaussian curvature vanishes
everywhere (a cone can be fabricated by rolling a sheet of
paper), so that the anholonomy angle is in fact a topological
property of the circuit C, given by the winding number of
the circuit C around the cone (multiplied by the solid angle
of the cone).

3 PARALLEL TRANSPORT
IN CLASSICAL MECHANICS:
FOUCAULT’S PENDULUM AND
THE GYROSCOPE

Let us now consider the famous experiment of Foucault’s
pendulum that demonstrated the earth’s rotation. If the pen-
dulum trajectory is originally planar (swinging oscillation),
the vertical component of the angular momentum vanishes.
Since forces exerted on the pendulum (gravity and wire ten-
sion) produce a vanishing vertical torque, the vertical com-
ponent of the angular momentum has to be conserved. The
absence of any vertical torque imposes that the swing plane
has to follow a law of parallel transport as the direction
of gravity slowly changes because of the earth’s rotation.
Therefore, within 1 day it rotates by an angle equal to the
solid angle described by the vertical 2π(1 − cos θ), where θ

is the colatitude.
The parallel transport may also affect the phase of the

periodic motion of the Foucault pendulum or the rotation
phase of a gyroscope. Let us consider a gyroscope whose
rotation axis is constrained to remain parallel to the axis n;
let us now move the rotation axis n round a closed circuit C.
The rotation angle of the gyroscope will be the sum of the
dynamic rotation angle ωt and the geometric anholonomy
angle θ(C) equal to the solid angle described by the rotation
axis. Thus if we have two synchronous gyroscopes and
perform different circuits with the rotation axes, they will
eventually be dephased with respect to each other, an effect
that could easily be observed by stroboscopy. This geometric
anholonomy angle is known as Hannay’s angle (Hannay,
1985; Berry, 1985). If the Foucault pendulum is given a
conical oscillation instead of a planar swing, then we have
exactly the same situation as described in the preceding

text for the gyroscope, and the rotation angle will have an
anholonomy excess angle given by the solid angle described
by the vertical. Thus, two identical Foucault pendula (i.e., of
same length) with circular oscillations in opposite directions
will have slightly different oscillation frequencies and will
progressively get dephased with respect to each other. The
swinging motion of the usual Foucault may be viewed as
the superposition of circular motions in opposite directions,
so that the rotation of the swinging plane may be viewed as
resulting from the previously mentioned frequency shift.

4 PARALLEL TRANSPORT IN QUANTUM
MECHANICS: THE BERRY PHASE

Let us now consider a quantum mechanical system described
by a Hamiltonian controlled by a set of external parameters
(R1, R2, . . .), which we describe collectively as a vector R
in some abstract parameter space. Physically, the external
parameters may be magnetic or electric fields, and so
on. For each value R of the external parameters, the
Hamiltonian H(R) has eigenvalues En(R) and eigenvectors
|n(R)〉 satisfying the independent Schrödinger equation,
that is,

H(R) |n(R)〉 = En(R) |n(R)〉 (25)

The eigenvectors |n(R)〉 are defined up to an arbitrary
phase, and there is a priori no particular phase relation
between eigenstates corresponding to different values of the
parameter R. We make a particular choice for the phase of
the eigenstates, simply requiring that |n(R)〉 varies smoothly
with R in the region of interest. It may happen that the
eigenstates we have chosen are not single-valued functions
of R. If this happens, special care must be given to this point.

Let us perform an adiabatic closed circuit C ≡
{R(t)|t = 0 → T } in the parameter space. The adiabatic
theorem (Messiah, 1991) tells us that if the rate of variation
of the external parameters is low enough, a system that is
initially in the nth stationary state |n〉 (assumed nondegener-
ate) of the Hamiltonian will remain continuously in the state
|n〉. The condition of adiabaticity is that the stationary state
under consideration remains nondegenerate, and the rate of
variation of the Hamiltonian is low enough to make the prob-
ability of transition to another state |m〉 vanishingly small,
that is,

�|〈m|Ḣ |n〉| 	 |Em − En|2 ∀ m �= n (26)

Then of course, if one performs a closed adiabatic circuit
C, the system has to return to its original state.
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Berry (1984) asked the following question: what will be
the phase of the state after completion of the circuit C? It
may be difficult at first sight to realize that this question
may be of any interest. Indeed, the expectation value of any
observable quantity A,

〈A〉 ≡ 〈ψ |A|ψ〉 (27)

does not depend on the phase of |ψ〉. This lack of interest is
certainly the main reason why the Berry phase was (almost)
completely overlooked for more than half a century of
quantum mechanics. One should mention here that there
has been, prior to Berry’s seminal paper (Berry, 1984),
a number of precursor works on effects related to the
Berry phase, including, notably, Pancharatnam’s work on
optical polarization (Pancharatnam, 1956), Aharonov and
Bohm’s work on the phase due to the electromagnetic
potential vector (Aharonov and Bohm, 1959), and Mead and
Truhlar’s work on the molecular Aharonov–Bohm effect
in the Born–Oppenheimer theory of molecular vibrations
(Mead and Truhlar, 1979). However, Berry (1984) was the
first to point out the geometric significance and the generality
of the adiabatic geometric phase. After the publication of
Berry’s paper, the generality and the fecundity of this new
concept has been widely recognized, soon leading to a
considerable amount of developments (Shapere and Wilczek,
1989; Bohm et al., 2003).

So, following Berry, taking

|ψ(t = 0)〉 ≡ |n(R(t = 0))〉 (28)

we express the state |ψ(t)〉 at a latter time t as

|ψ(t)〉 ≡ exp

[−i

�

∫ t

0
dt ′ En(r(t ′))

]
|φn(t)〉 (29)

that is, we introduce an auxiliary wave function |φn(t)〉 with a
zero dynamical phase. Using the time-dependent Schrödinger
equation,

i�|ψ̇(t)〉 = H(t)|ψ(t)〉 (30)

and projecting it on 〈ψ(t)|, we get

0 = 〈ψ(t)|
(

H(t) − i�
∂

∂t

)
|ψ(t)〉

= 〈φn(t)|φ̇n(t)〉 (31)

where we have used the relation

〈ψ(t)|H(t)|ψ(t)〉 = En(t) (32)

which follows from the adiabatic theorem. Equation (31)
shows that the wave function |φn(t)〉 obeys a quantum
mechanical analog of the law of parallel transport (6).

In complete analogy with the problem of parallel transport
on a surface, we now express the parallel transported state
|φn(t)〉 in terms of the fixed eigenstates |n(R)〉 as

|φn(t)〉 ≡ exp((iγ n(t)) |n(R)〉 (33)

where the phase γ n(t) plays the same role as the angle −θ(t)

for the problem of parallel transport on a surface. We then
immediately get the equation of motion of γ n(t), that is,

γ̇ n(t) = i〈n|ṅ〉 = −Im〈n(R(t))| d

dt
n(R(t))〉 (34)

which is analogous to equation (11).
Finally, the answer to the question originally asked by

Berry is

|ψ(T )〉 = exp
[
i(δn + γ n(C))

] |ψ(0)〉 (35)

where

δn ≡ −1

�

∫ T

0
En(R(t)) dt (36)

is the dynamical phase, and

γ n(C) ≡ −Im

[∮
C
〈n(R)|∂R|n(R)〉 · dR

]
− αn(C) (37)

is the Berry phase. The last term in the latter equation arises
when the states |n(R)〉 are not a single-valued function of R
in the region of interest of the parameter space and is given
by

αn(C) = i ln [〈n(R(0))|n(R(T ))〉] (38)

Note that this term was absent in Berry’s original paper
(Berry, 1984), because the basis states |n(R)〉 were assumed
to be single valued. We shall omit this term in the subsequent
text, and consider only the case of single-valued basis states.

We note the very close analogy between the results
obtained for quantum and classical systems. The dynamical
phase of a quantum system is analogous to the rotation
angle ωT in classical mechanics, whereas the Berry phase
is analogous to Hannay’s angle (they both arise from the
anholonomy of parallel transport).

Defining the connection An(R) as

An(R) ≡ −Im [〈n(R)|∂Rn(R)〉] (39)
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we reexpress the Berry phase as

γ n(C) ≡
∮
C

An(R) · dR (40)

which constitutes the 1-form expression of the Berry phase.
The latter clearly depends only on the geometry of the cir-
cuit C. The connection An(R) is not gauge invariant – if we
make a new choice for the phase of the reference state, that is,

|n(R)〉′ = exp(−iµ(R))|n(R)〉 (41)

with a single-valued function µ(R), we obtain a different
connection

An′(R) = An(R) + ∂Rµ(R) (42)

However, the Berry phase γ n(C) is gauge invariant, as it
should be.

As for the geometric parallel transport on surfaces, we may
obtain a gauge-invariant and more transparent expression by
transforming the preceding result to a surface integral using
Stokes’ theorem. Here too, we have to pay attention to the
existence of holes in the parameter space – if the parameter
space is multiply connected, and if the circuit C cannot be
continuously deformed to a point (i.e., it is not homotopic
to a point), we must take into account terms associated with
the winding of C around holes of the parameter space.

The formulation of the Berry phase as a surface integral
in a form that is independent of a particular choice of
coordinates of the parameter space generally requires the
use of mathematical formalism of differential forms (Bohm
et al., 2003), which is beyond the scope of this article. We
can nevertheless obtain a useful result without resorting to
any advanced mathematics if we make a suitable choice of
coordinates of the parameter space. Let us choose a surface
S in the parameter space which is bound by the circuit C, and
a parameterization (R1, R2) of the surface S. Using Stokes’
theorem, we then get

γ n(C) =
∫∫

S
Bn(R)dR1 dR2 +

∑
i

Ni(C)γ n(Ci ) (43)

where Ci are the circuits bounding the holes of the parameter
space and Ni , the corresponding winding numbers of the
circuit C around them, and where

Bn(R) ≡ (
∂R1A

n
2 − ∂R2A

n
1

)
= −Im

[〈∂R1 n(R)|∂R2n(R)〉 − 〈∂R2 n(R)|∂R1n(R)〉]
(44)

is the Berry curvature. In the case where the parameter space
is three-dimensional, we can use the familiar language of

vector calculus, as in electrodynamics, and Stokes’ theorem
yields

γ n(C) =
∫∫

S
Bb(R) · n dS +

∑
i

Ni(C)γ n(Ci ) (45)

Bn(R) ≡ ∇ × An(R)

= −Im [〈∇n(R)| × |∇n(R)〉] (46)

= −Im
∑
m�=n

〈∇n(R)|m(R)〉 × 〈m(R)|∇n(R)〉 (47)

Making use of the relation

〈m|∇n〉 = 〈m|∇H |n〉
En − Em

(48)

one eventually gets

Bn(R) = −Im
∑
m�=n

×〈n(R)|∇H(R)|m(R)〉 × 〈m(R)|∇H(R)|n(R)〉
(Em(R) − En(R))2 (49)

Obviously, the Berry curvature is gauge invariant. As the
notation suggests, the Berry curvature Bn plays the role of
a magnetic field in the space of parameters, whose vector
potential is the Berry connection An.

The energy denominator in equation (49) shows that if
the circuit C lies in a region of the parameter space that
is close to a point R� of twofold degeneracy involving
the two states labeled + and −, the corresponding Berry
connections B+ and B− are dominated by the term involving
the denominator (E+ − E−)2 and the contribution involving
other states can be neglected. So, to first order in R − R�,
one has

B+(R) = −B−(R) = −Im

×〈+(R)|∇H(R�)| − (R)〉 × 〈−(R)|∇H(R�)| + (R)〉
(E+(R) − E−(R))2

(50)

The general form of the Hamiltonian H(R) of a two-level
system is (without loss of generality, we may take R� = 0)

H(R) ≡ 1

2

(
Z X − iY

X + iY −Z

)
(51)

with eigenvalues

E+(R) = −E−(R) = 1

2
R (52)
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This illustrates a theorem due to von Neumann and Wigner
(1929), stating that it is necessary to adjust three independent
parameters in order to obtain a twofold degeneracy from a
Hermitian matrix. The gradient of the Hamiltonian is

∇H = 1

2
σ (53)

where σ is the vector matrix whose components are the
familiar Pauli matrices. Simple algebra then yields

B+ = −B− = − R
R3

(54)

The preceding Berry curvature B± is the magnetic field
in parameter space generated by a Dirac magnetic monopole
(Dirac, 1931) of strength ∓1/2. Thus, the Berry phase γ ±(C)

of a circuit C is given by the flux of the monopole through
the surface S subtended by the circuit C, which, by Gauss’
theorem, is nothing but ∓�(C), where �(C) is the solid angle
described by R along the circuit C.

The corresponding vector potential (or Berry connection)
A± (not calculated here) has an essential singularity along a
line (Dirac string) ending at the origin and carrying a ‘flux’
of magnitude ±2π . The position of the Dirac string can be
moved (but not removed!) by a gauge transformation, as
sketched in Figure 3. If the Dirac string happens to cross
the surface S, the Berry phase remains unchanged (modulo
2π), so that the result is indeed gauge invariant.

5 EXAMPLES OF BERRY PHASE

5.1 Spin in a magnetic field

As the first example, we consider the case of a single spin
(of magnitude S) in a magnetic field, which is both the most
immediate application of the formal theory presented in the
preceding text and one of the most frequent cases encoun-
tered in experimentally relevant situations. The Hamiltonian

Dirac
monopole

Gauge
transformation

SS CC

Dirac string

Ω Ω

Figure 3. Sketch showing the flux of the Dirac monopole through
the circuit C, and the effect of a gauge transformation.

considered is

H(b) ≡ −b · S (55)

with the magnetic field b being the external parameter. The
eigenvalues are

En(b) = −nb (56)

with 2n integer and −S ≤ n ≤ S. For b = 0, the 2S + 1
eigenstates are degenerate, so the circuit C has to avoid
the origin. The Berry connection can be calculated using
equation (49) and well-known properties of the spin opera-
tors, and one gets

Bn(b) = −n
b
b3

(57)

which is the ‘magnetic field’ (in parameter space) of a
monopole of strength −n, located at the origin. The Berry
phase is thus

γ n(C) = −n�(C) (58)

where �(C) is the solid angle described by the field b along
the circuit C. For S = 1/2, this of course reduces to the result
obtained in the preceding text for the two-level problem. Note
that the Berry phase γ n(C) depends only on the quantum
number n (projection of S on b) and not on the magnitude S

of the spin. Note also, that while H(b) is the most general
Hamiltonian for a spin S = 1/2, this is not the case for a spin
S ≥ 1; in the latter case, we restrict ourselves to a subspace
of the full parameter space. If a more general Hamiltonian
and a wider parameter space is considered, the simple result
obtained in the preceding text would not hold any more.

5.2 Aharonov–Bohm effect

Another example that is of great interest, both conceptually
and experimentally is the well-known Aharonov–Bohm
effect (Aharonov and Bohm, 1959). We follow here the
presentation of the Aharonov–Bohm effect given by Berry
(1984).

Let us consider the situation depicted in Figure 4, namely,
a magnetic field confined in a tube with flux � and a box,
located at R, in which particles of charge q are confined. The
magnetic field vanishes everywhere outside the flux tube and,
in particular, inside the box. Let A(r) be the corresponding
vector potential. The latter generally does not vanish in the
regions of vanishing field (unless the flux � is a multiple of
the flux quantum �0 ≡ h/e).
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Box

Flux tube

R

r

C

Figure 4. Sketch describing the Aharonov–Bohm effect.

Let the Hamiltonian describing the particles in the box
be H(p, r − R); the corresponding wave functions, for a
vanishing vector potential, are of the form ψn(r − R), with
energies En independent of R. When the flux is nonzero, we
can choose as basis states |n(R)〉, satisfying

H(p − qA(r), r − R)|n(R)〉 = En|n(R)〉 (59)

whose solutions are given by

〈r|n(R)〉 = exp

[
iq

�

∫ r

R
dr′ · A(r′)

]
ψn(r − R) (60)

where the integral is performed along a path contained in the
box. The energies En are independent of the vector potential,
because it is always possible to find a gauge transformation
that would make it zero in the box (but not everywhere in
space!).

The Hamiltonian depends on the position R of the box
via the vector potential. Thus, our parameter space, in this
example, is nothing but the real space, with exclusion of the
region of the flux tube. If we transport the box around a
closed circuit C, the Berry phase will be given by

γ n(C) ≡
∮
C

An(R) · dR (61)

with the Berry connection

An(R) ≡ −Im [〈n(R)|∂Rn(R)〉]

= −Im
∫∫∫

d3rψ�
n(r − R)

×
[−iq

�
A(R)ψn(r − R) + ∂Rψn(r − R)

]

= q

�
A(R) (62)

The Berry curvature Bn(R) = ∇ × An(R) = (q/�)B(R) is
just given by the magnetic field and vanishes everywhere
outside the flux tube. But because the tube region is excluded

from the allowed parameter space, the latter is multiply
connected, and the Berry phase is purely topological, given
by the winding number N(C) of the circuit C around the flux
tube, and by the flux �

γ n(C) = 2πN(C)
q

h
� (63)

The Aharonov–Bohm effect was confirmed experimen-
tally by electron holography by Tonomura et al. (1986) in
a configuration where the magnetic field truly vanishes, and
plays an outstanding role in the physics of mesoscopic sys-
tems; here, it gives rise to conductance oscillations and to
persistent currents in mesoscopic metallic rings threaded by
a magnetic flux (Olariu and Popescu, 1985; Aronov and
Sharvin, 1987; Washburn and Webb, 1992).

5.3 Thomas precession and spin-orbit coupling

In relativistic kinematics, space–time coordinates perceived
by observers in different inertial frames are related to each
other by Lorentz transformations. The latter may consist of
pure Lorentz boosts, pure rotations, or combinations of a
boost and a rotation. As is well known, Lorentz boosts with
different velocity axes do not commute with each other, and
the product of two pure Lorentz boosts with different axes
is not a pure Lorentz boost but the product of a Lorentz
boost and a rotation. This effect gives rise to the phenomenon
of Thomas precession (Thomas, 1926, 1927), which is one
of the contributions to the spin-orbit coupling (the other
contribution being the result of the Lorentz transformation
of the electric field).

Recently, it has been pointed out that the Thomas preces-
sion may be understood as an anholonomy associated with
the parallel transport on the manifold Lorentz boosts (Jor-
dan, 1988; Aravind, 1997; Rhodes and Semon, 2004). This
important result is briefly outlined here.

For simplicity, we restrict to Lorentz boosts in the xy

plane and rotations around the z axis. A Lorentz boost
of velocity v ≡ (vx, vy) can be characterized by a point
(ct, x, y) on the hyperboloid (ct)2 − (x2 + y2) = 1 (t ≥ 0),
such that (vx, vy) = (x/t, y/t). Thus a closed trajectory in
the space of Lorentz boosts is characterized by a closed loop
on the hyperboloid. One can show (Jordan, 1988; Aravind,
1997; Rhodes and Semon, 2004) that upon such a closed
loop the system does not return to the initial inertial frame
but to an inertial frame that differs from the initial one by
a rotation around the z axis, of angle θ = −A, where A

is the area enclosed by the loop on the hyperboloid. This
rotation is precisely the Thomas precession (Thomas, 1926,
1927), the geometrical nature of which appears clearly from
the present formulation. For a quantum spin, a Berry phase
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results from the Thomas precession. Another contribution
(for charged particles) arises from the Lorentz transformation
of the electric field and combines with the Thomas precession
to give the familiar spin-orbit coupling of the electron.

For velocities much smaller than the velocity of light,
the Berry phase corresponding to a closed loop C in the
(vx, vy) plane due to the spin-orbit coupling (including
both the Thomas precession contribution and the Lorentz
transformation of the electric field) is given by the simple
expression

γ σ (C) = −σ

∮
C

v × dv
4c2

= −σ
A(C)

4c2
(64)

with σ = ±1 for sz = ±1/2, respectively, and where A(C)

is the area swept in the (vx, vy) plane.
The geometric character of the spin-orbit coupling appears

clearly from the preceding expression. For an electron in a
periodic orbit, the Berry phase accumulates linearly in time,
which amounts to an additional term in the dynamical phase,
that is, to the spin-orbit coupling term of the Hamiltonian,
which is given by the following expression (for velocities
much smaller than c):

HSO = � s ·
(

v × a
2c2

)
(65)

where a is the acceleration.
The preceding formulation of the spin-orbit coupling

allows us to understand qualitatively why electrons with
group velocities much smaller than c may nevertheless have
a spin-orbit splitting, several orders of magnitude larger
than that of free electrons with equivalent velocity. In a
quasiclassical picture, the motion of electrons in a solid
may be viewed as consisting mostly of periodic orbital
motion around nuclei, combined with a hopping interatomic
motion. The hopping frequency from atom to atom, which
determines the average electron velocity, is typically much
smaller than the frequency of the intra-atomic orbital motion
around the nuclei. The Berry phase accumulated between
two successive hopping events, determined essentially by
this intra-atomic orbital motion, is considerably larger than
the one accumulated in the interatomic hopping motion, so
that the effective spin-orbit coupling of Bloch electrons in
a solid may be enhanced by a factor of the order of 104 as
compared to the spin-orbit coupling of free electrons.

5.4 Experimental observations of the Berry phase
for a single spin

Let us now discuss how the Berry phase could be detected
experimentally. As already mentioned, this is not immedi-
ately clear since the expectation value of any observable

would be independent of the phase of the system. As always,
when considering phases, some kind of interference has to
be observed. There are various ways in which this can be
done.

• Berry’s original proposal (Berry, 1984) was as follows:
A monoenergetic polarized beam of particles in the
spin state n along the magnetic field b is split into
two beams. For one of the beams, the field b is kept
constant in magnitude and direction, whereas for the
second beam, the magnitude of b is kept constant and its
direction is slowly varied along a circuit C subtending
a solid angle �. The two beams are then recombined
to interfere, and the intensity is monitored as a function
of the solid angle �. Since the dynamical phase is the
same for both beams, the phase difference between the
two beams is given purely by the Berry phase (plus
a propagation factor is determined by the phase shift
for � = 0). Although conceptually possible, it seems
unlikely that such an experiment would be feasible in
practice. In particular, it would be extremely difficult
to ensure that the difference between the dynamical
phases of the two beams is smaller than the Berry
phase one wants to detect, unless some physical principle
enforces it. This kind of experiment may be said to
be of type ‘one state – two Hamiltonians’. This kind
of experiment, being based on interferences, is truly
quantum mechanical.

• An alternative approach, more amenable to an experi-
mental test, is to prepare the system into a superposition
of two states, that is,

|ψ(t = 0)〉 = α|n(R(t = 0))〉 + β|m(R(t = 0))〉 (66)

with m = n − 1 and |α|2 + |β|2 = 1, for example, by
polarizing it along a direction perpendicular to the
field b. The orientation of the transverse component
of the spin is given by the angle θ(t = 0) ≡ arg(β) −
arg(α). The spin of course precesses at around b at the
Larmor frequency ωL = b/�. After completion of the
circuit C, the system state has evolved to

|ψ(T )〉 = α exp[i(δn + γ n(C))]|n(R(t = 0))〉
+β exp[i(δm + γ m(C))]|m(R(t = 0))〉 (67)

and the polarization angle has evolved to θ(T ) = θ(t =
0) + �θ with

�θ = �θdyn + �θB (68)

�θdyn ≡ δm − δn = ωLT (69)

�θB ≡ γ m(C)) − γ n(C)) (70)
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Here the angle �θdyn gives the polarization rotation due
to the Larmor precession (dynamic phase), while �θB

is the polarization rotation due to the Berry phase accu-
mulated along the circuit C. Thus by investigating how
the polarization varies as the circuit C is modified, the
Berry phase can be detected. Such an experiment may
be said to be of the type ‘two states – one Hamiltonian’.
Note that this type of experiment can be interpreted in
purely classical terms (Cina, 1986) (it bears a clear anal-
ogy to the rotation of the swinging plane of the Foucault
pendulum); this is related to the fact that only Berry
phase differences between two states, and not the abso-
lute Berry phase of a given state, are detected.

• A further possibility consists in repeating the circuit C in
a periodic manner. Thus, the Berry phase is accumulated
linearly in time, just as the dynamical phase, and leads
to an apparent energy shift for the state n,

�En = �

T
γ n(C) (71)

which gives rise to an observable shift of the transition
between two levels n and m. Such an experiment too is
of type ‘two states – one Hamiltonian’. It can also be
interpreted in classical terms and has close analogy to
the period shift of a Foucault pendulum with circular
oscillation.

The Berry phase has been observed for neutrons (S = 1/2)
by Bitter and Dubbers (1987), who used the experiment
shown in Figure 5. A slow (v � 500 ms−1), monochromatic
beam of neutrons polarized (P � 0.97) along an axis per-
pendicular to the beam axis z is injected in a cylinder with
a helical magnetic field with longitudinal component Bz and
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Figure 5. Measurement of Berry phase of neutrons. The inset
shows the arrangement of the coil giving a helical field; the neutron
beam is along z; length: 40 cm, diameter: 8 cm; an axial coil (not
shown) produces a field Bz. The curve shows the Berry phase (more
precisely γ −1/2 − γ 1/2) and solid angle � as a function of the ratio
Bz/B1. (Reproduced from Bitter & Dubber 1987, with permission
from the American Physical Society.  1987.)

transverse component B1 making a right-handed turn of 2π .
Depending on the values of Bz and B1, various values of the
solid angle � may be achieved.

After having traversed the cylinder, the polarization of
the beam is measured, from which the Berry phase can be
extracted. The comparison of the measured Berry phase (or
more precisely the difference of Berry phase between states
Sz = +1/2 and Sz = −1/2) and of the solid angle is shown
in Figure 5. The observation is in good agreement with the
theoretical prediction.

The Berry phase has also been confirmed for photons
(S = 1) by Tomita and Chiao (1986) using an experimen-
tal procedure proposed by Chiao and Wu (1986); for protons
(S = 1/2) by Suter, Chingas, Harris and Pines (1987) fol-
lowing a proposal of Moody, Shapere and Wilczek (1986);
and for 35Cl nuclei by Tycko (1987).

6 ANOMALOUS HALL EFFECT

The Berry phase plays an important role in the modern
understanding of the anomalous Hall effect. Therefore this
problem will be discussed here in a detailed manner.

6.1 Brief historical sketch and survey of the state
of the art

The history of the anomalous Hall effect has been quite a
turbulent one, rich in misconceptions and controversies, and
the reader approaching the corresponding literature without
a sufficient overview of the historical developments might
easily get lost in details of controversial debates. Therefore,
it appears useful to briefly sketch the main stages in the
historical development of the field.

Soon after his discovery of the Hall effect of normal metals
subject to an external magnetic field (Hall, 1880a), Erwin
H. Hall discovered that ferromagnetic metals may exhibit
a spontaneous (i.e., in the absence of an external magnetic
field) Hall effect (Hall, 1880b, 1881). Toward the end of
the nineteenth century and in the first half of the twenti-
eth century, extensive experimental and phenomenological
investigations of the anomalous Hall effect of ferromagnetic
metals and alloys were carried out (Kundt, 1893; Smith,
1910; Perrier, 1930a,b; Pugh, Rostoker and Schindler, 1950;
Smit and Volger, 1953; Pugh and Rostoker, 1953).

From these early studies, the following phenomenological
description emerged. In linear response regime, the electric
field E is linearly related to the current density j by

E = ρj (72)



The Berry phase in magnetism and the anomalous Hall effect 11

with a resistivity tensor ρ (for a magnetic field and/or
magnetization parallel to the z-axis) of the form

ρ =

 ρxx ρxy 0

−ρxy ρxx 0
0 0 ρzz


 (73)

The Hall effect is given by the antisymmetric part of the
resistivity tensor, giving rise to a voltage that is transverse
to both the current and the magnetic field (or magnetiza-
tion). In a ferromagnet, the Hall resistivity ρH = −ρxy is
experimentally found to be of the form

ρH = R0H + RSM (74)

where H is the magnetic field, M , the magnetization, R0,
the normal Hall coefficient, and RS , the anomalous Hall
coefficient (the quantity of interest here). Alternatively, the
Hall effect may be expressed in terms of the conductivity
tensor, σ ≡ ρ−1. Another important quantity measuring the
Hall effect is the Hall angle θH (the angle between the
electric field and the current) given by

tan θH ≡ −σxy

σ xx

= ρxy

ρxy

(75)

For values of the magnetic field usually available experi-
mentally, the spontaneous contribution is usually much larger
than the normal contribution in ferromagnets. In many cases,
it has been found that as the temperature varies, the anoma-
lous Hall resistivity varies as ρ2

xx , which implies that the Hall
conductivity σxy is essentially independent of the relaxation
time.

Various mechanisms contribute to the anomalous Hall
effect of homogenously magnetized systems:

• the Karplus–Luttinger mechanism (Karplus and Lut-
tinger, 1954)

• the skew-scattering mechanism (Smit, 1955)
• the side-jump mechanism (Berger, 1970).

All three mechanisms rely on the combined effect of
exchange and spin-orbit interactions. This can be eas-
ily understood from the following considerations. From
the Onsager–Casimir symmetry relations (Onsager, 1931;
Casimir, 1945), it follows that the antisymmetric part of the
resistivity (or conductivity) tensor, that is, the Hall effect,
is antisymmetric with respect to time-reversal invariance. In
ferromagnets, time-reversal invariance is spontaneously bro-
ken by the appearance of the exchange splitting of the band
structure. This fact, however, is not sufficient to explain
the existence of the Hall effect; indeed, in the absence of
spin-orbit interaction, the spin (magnetization) and orbital

(electronic motion) degrees of freedom are completely inde-
pendent of each other. This implies that all properties of the
system (including the resistivity tensor) would be invariant
under a continuous uniform rotation of the magnetization,
resulting in a vanishing Hall effect. This state changes, how-
ever, when the electron motion and spin are coupled to each
other via the spin-orbit coupling, so that the physical prop-
erties are no longer invariant under a global rotation of the
magnetization, resulting in the possibility of a nonzero spon-
taneous Hall effect.

Although sharing a common microscopic origin, the three
mechanisms mentioned in the preceding text are quite
different in the way they depend on the electronic structure
and/or on the impurities present in the ferromagnet.

The Karplus–Luttinger mechanism (Karplus and Lut-
tinger, 1954) results from a velocity correction (the anoma-
lous velocity) due to interband matrix elements of the veloc-
ity operator. It yields a Hall conductivity that is essentially
a property of the pure Ferromagnet and (for low impurity
concentration) is independent of the nature and concentra-
tion of impurities, that is, to a Hall resistivity proportional
to ρ2

xx , as observed in many cases. The original derivation
by Karplus and Luttinger is quite involved and not really
physically transparent. This, together with various other
theoretical difficulties, led to misunderstanding and contro-
versies that could be definitely lifted only quite recently,
through the reinterpretation of the Karplus–Luttinger mech-
anism in terms of the Berry phase (Chang and Niu, 1996;
Sundaram and Niu, 1999; Jungwirth, Niu and MacDonald,
2002). Interestingly, this important progress emerged from
concepts developed in the context of the quantum Hall effect
(Thouless, Kohmoto, Nightingale and den Nijs, 1982; Avron,
Seiler and Simon, 1983; Simon, 1983; Thouless, 1984, 1994;
Niu and Thouless, 1984; Niu, Thouless and Wu, 1985;
Kohmoto, 1985,1993), which allowed the interpretation of
the quantized Hall conductance as a topological invariant,
expressed as the integral of a Berry curvature over a closed
manifold.

The skew-scattering mechanism (Smit, 1955) arises from
the Mott scattering (Mott, 1929) at impurities, that is, from
the fact that, owing to spin-orbit interaction, the scattering
amplitude depends on the relative orientation of the spin
with respect to the scattering plane. An illustrative picture
of this mechanism is given in Figure 6(a) (Crépieux and
Bruno, 2001). Consider an incident plane wave characterized
by a wave vector k, which is scattered by a central potential
owing to, for example, impurity. In the presence of spin-
orbit coupling, the amplitude of the wave packet becomes
anisotropic in the sense that it depends on the relative
directions of the scattered and incident waves and the spin.
After a succession of scattering events, the average trajectory
of the electron is deflected by a spin-dependent angle,
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(a)

(b)

k

k
2d

Figure 6. Sketch of the skew-scattering (a) and side-jump (b)
mechanisms. (Reproduced from Crepieux & Bruno, 2001, with
permission from the American Physical Society.  2001.)

which is typically of the order of 10−2 rad. Because the
skew scattering yields an angular deflection of scattered
electrons, it induces a Hall angle that is independent of the
impurity density (for sufficiently low impurity density), or
in other words, a Hall resistivity that is proportional to the
longitudinal resistivity.

The side-jump mechanism (Berger, 1970) arises from the
fact that as a plane wave is scattered at an impurity, the out-
going scattered wave is generally not centered exactly at the
impurity, but may be slightly shifted away from the impurity,
as depicted in Figure 6(b) (Crépieux and Bruno, 2001). This
shift can be transverse and/or longitudinal (with respect to the
incident wave vector). The longitudinal shift is not directly
relevant to the Hall effect and will be ignored here. The trans-
verse shift (side jump) is due to the effect of the spin-orbit
coupling and changes sign as the spin component perpen-
dicular to the scattering plane is reversed. The existence of
the side jump may be easily understood by examining the
reflection of a free electron on a potential barrier under the
influence of the spin-orbit coupling (Crépieux and Bruno,
2001). For free electrons, the magnitude of the side jump is
of the order of kλC

2/4 � 10−15 m, where λC ≡ �/(mc) is the
Compton wavelength. As pointed out by Berger (1970), and
discussed in Section 5.3 in the preceding text, band-structure
considerably enhance the effective spin-orbit coupling expe-
rienced by electrons in solids, and yield an enhancement
factor of the order of 104 of the magnitude of the side jump.
The side jump contributes to the Hall current in two ways: (i)
the side jumps experienced at each collision add up to yield
a transverse current, and (ii) in the presence of an external
electric field, the side jump induces a shift of the electron dis-
tribution function away from the Dirac distribution, yielding
another contribution to the transverse current (Berger, 1970).
The two contributions can be shown to be identical. The
most important feature of the side-jump contribution is that

it yields a Hall conductivity that is independent of the impu-
rity concentration (and, at least for s-scattering, independent
of the sign and magnitude of the scattering potential). Thus,
it is essentially an intrinsic contribution to the total Hall con-
ductivity just like the Karplus–Luttinger term, and, therefore,
yields a contribution to the Hall resistivity that is proportional
to ρ2

xx (Berger, 1970).
Until recently, it was believed that spin-orbit coupling

is an essential ingredient to obtain a nonvanishing anoma-
lous Hall effect. This belief is indeed correct in uniformly
magnetized ferromagnets for the reasons explained in the
preceding text. However, the argument put forward to jus-
tify the necessity of the spin-orbit coupling does not hold
any more for magnetic systems with noncollinear magne-
tization. In fact, in general, a time-reversed magnetic con-
figuration (i.e., with all magnetic moments flipped) cannot
be obtained by a global rotation of the magnetic moments,
unless the magnetization is collinear or coplanar. There-
fore, from symmetry considerations, a nonvanishing anoma-
lous Hall effect may be expected, even without spin-orbit
coupling, in a magnetic system with a chiral spin texture.
Quite recently, it has been proposed that the chiral tex-
tured magnetic system may exhibit anomalous Hall effect
not (directly) related to the spin-orbit coupling (Ye et al.,
1999; Ohgushi, Murakami and Nagaosa, 2000; Chun et al.,
2000; Taguchi and Tokura, 2001; Taguchi et al., 2001, 2003,
2004; Lyanda-Geller et al., 2001; Shindou and Nagaosa,
2001; Yanagihara and Salamon, 2002; Tatara and Kawa-
mura, 2002; Onoda and Nagaosa, 2002, 2003a,b; Bruno,
Dugaev and Taillefumier, 2004; Onoda, Tatara and Nagaosa,
2004; Baily and Salamon, 2005; Kézsmárki et al., 2005). The
mechanism responsible for the anomalous Hall effect, in this
case, relies on the Berry phase accumulated as an electron
moves in a textured exchange field. If the exchange splitting
is large enough and the electron velocity small enough, the
electron spin must adiabatically follow the direction of the
local exchange field as it moves through the lattice. In the
reference frame where the electron is at rest, it experiences an
adiabatically moving exchange field, and the associated geo-
metrical phase in turn generates a fictitious Aharonov–Bohm
phase as the electron moves through the lattice. The elec-
tron’s orbital degree of freedom is coupled to the fictitious
field in exactly the same way as to a real magnetic field,
and therefore also responds in the same way. In particular,
it experiences a Lorentz force that can give rise to a nonva-
nishing anomalous Hall effect if a net chirality is present.

It is worth pointing out that the theory of the anomalous
Hall effect involves the Berry phase in two distinct ways:

1. In the anomalous Hall effect of homogenous ferromag-
nets, the Karplus–Luttinger contribution can be inter-
preted as a Berry phase in momentum space.
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2. In chiral textured ferromagnets, the anomalous Hall
effect arises from the Berry phase due to the exchange
field texture in real space.

In the following text, we shall discuss in more detail the
interplay of the Berry phase and anomalous Hall effect in
these two different contexts.

6.2 Berry phase and the anomalous Hall effect
in homogenous ferromagnets

From Kubo’s linear response theory, the conductivity tensor
for independent electrons is given by Luttinger (1969)

σ ij = ie2
�

�
lims→0+

×
〈∑

n,m

f (εn) − f (εm)

εm − εn

〈n| vj |m〉 〈m| vi |n〉
εn − εm + is

〉
c

(76)

In this equation, n, m label the eigenstates, the thermody-
namic limit is implied (volume � tending to infinity), and
〈. . .〉c indicates averaging over impurity configuration. For
metals, particular care is needed to perform the limit s → 0+.
Simply setting s = 0 yields the Karplus–Luttinger term. The
remaining contributions arise from the vicinity of the Fermi
level and yield the skew-scattering and side-jump contribu-
tions. Here, we are interested in the Karplus–Luttinger term.
Disorder is usually considered to be of minor importance for
the Karplus–Luttinger term and will be neglected from now
on, so that the eigenstates are labeled by the band index n

and the wave vector k in the first Brillouin zone. We thus
get

σKL
ij = −e2

�

∫
1BZ

dDk
(2π)D

∑
n �=m

(f (εn(k)) − f (εm(k)))

× Im
[〈nk| vj |mk〉 〈mk| vi |nk〉]

(εn(k) − εm(k))2 (77)

Using the fact that, for m �= n,

〈nk| H |mk〉 = 0 (78)

one obtains

〈∂k(nk)| mk〉 εm(k) + 〈nk| ∂k(mk)〉 εn(k)

+ 〈mk| ∂H(k)

∂k
|nk〉 = 0 (79)

Similarly, 〈nk| mk〉 = 0 implies that

〈∂k(nk)| mk〉 + 〈nk| ∂k(mk)〉 = 0 (80)

so that

〈nk| vj |mk〉
εn(k) − εm(k)

= 1

�

〈
∂kj

(nk)
∣∣ mk〉 (81)

Finally, we get

σKL
ij = −2e2

�

∫
1BZ

dDk
(2π)D

∑
n

f (εn(k)) Im

× [〈
∂kj

(nk)
∣∣ ∂ki

(nk)
〉]

(82)

Defining the Berry curvature in band n as

�(n) ≡ −Im (〈∂k(nk)| × |∂k(nk)〉) (83)

we finally obtain

σKL
ij = −e2

�

∫
1BZ

dDk
(2π)D

∑
n

f
(
(n)εn(k)

)
εijk�k(k) (84)

where εijk is the fully antisymmetric tensor. This result is
best understood for two-dimensional systems (D = 2), where
only σ xy and �(n)

z are of interest. There the contribution
of the band of index n to the Karplus–Luttinger term
is simply determined by the Berry phase associated with
parallel transport (with the k-plane playing the role of the
parameter space) around the Fermi surface (which is a line
in two dimensions).

The case of an insulating system is of particular inter-
est. In this case, there are no Fermi surface contributions
(skew scattering and side jump) to the Hall conductivity, and
the latter thus reduces to the Karplus–Luttinger term. The
contribution of the occupied bands is thus given by an inte-
gral over the whole first Brillouin zone (empty bands do not
contribute). Because the first Brillouin zone may be viewed
as a closed surface (torus), the conductance is topologically
quantized in multiples of the quantum of conductance, e2/h.
Since the longitudinal conductance vanishes, we obtain the
integer quantum Hall effect without an external magnetic
field. This result is completely analogous to the quantum
Hall effect obtained in the problem of the Hofstadter butterfly
(Hofstadter, 1976; Thouless, Kohmoto, Nightingale and den
Nijs, 1982; Avron, Seiler and Simon, 1983).

It is completely similar to the Bonnet theorem in differen-
tial geometry (Nakahara, 1990), which relates the integral of
the Gaussian curvature (which is a local geometrical prop-
erty) over a closed surface to its Euler index (which is a
global topological invariant).

The simplest example for the Berry phase formulation of
the Karplus–Luttinger term is given by the two-dimensional
electron gas in the presence of Rashba spin-orbit coupling
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and exchange splitting. It is described by the following
Hamiltonian:

H = �
2k2

2m∗ + α
(
σxky − σykx

) − Mσz (85)

The eigenvalues (shown in Figure 7) are

E±
k = �

2k2

2m∗ ∓ λ(k) (86)

with

λ(k) ≡
√

M2 + α2k2 (87)

The eigenstates |k, ±〉 are polarized along (resp. against)
the unit vector

n(k) ≡
(

αky

λ(k)
,
−M

λ(k)
,

αky

λ(k)

)
(88)

Thus, as one performs a closed loop around the Fermi
line, the spin quantization axis describes a cone, the solid
angle of which determines the Berry phase, and, hence, the
Karplus–Luttinger contribution to the anomalous Hall effect.
We have

σKL
xy = −e2

h

1

4π

∫
d2k

[
f (E+

k ) − f (E−
k )

]
εαβγ nα

∂nβ

∂kx

∂nγ

∂ky

(89)

E

M

−M

kF,− kF,+

Ek,−

Ek,+

k

m

Figure 7. Energy spectrum of electrons in a two-dimensional
ferromagnet with Rashba spin-orbit interaction (schematically).
(Reproduced from Dugaev et al., 2005, with permission from the
American Physical Society.  2005.)

which, for weak spin-orbit coupling (αkF 	 M), finally
yields

σKL
xy � e2

h

m∗α2

M

[
θ(M − εF )

εF + M

2M
+ θ(εF − M)

]
(90)

For more extensive discussions, the reader is referred
to original publications (Jungwirth, Niu and MacDonald,
2002; Fang et al., 2003; Culcer, MacDonald and Niu, 2003;
Yao et al., 2004; Lee et al., 2004; Haldane, 2004; Sinova,
Jungwirth and Černe, 2004; Dugaev et al., 2005; Sinitsyn,
Niu, Sinova and Nomura, 2005).

6.3 Berry phase and the anomalous Hall effect
in chiral textured ferromagnets

Let us consider here a system with the Hamiltonian

H ≡ p2

2m∗ − �(r) · σ (91)

where �(r) ≡ �(r)n(r) is a spatially varying exchange
potential. Here the quantization axis is chosen to be along z

everywhere. This choice is arbitrary, however (it is in fact
a gauge choice), and any other choice could be made. In
particular, the exchange term becomes simpler if we choose
a gauge such that the quantization axis is everywhere along
n(r), that is, if we perform the unitary transformation

H → H̃ ≡ T †HT (92)

with

T †(r) [n(r) · σ ] T (r) = σz (93)

However, we should pay attention to the fact that the
unitary operator T (r) does not commute with the momentum
operator p ≡ −i�∂/∂r. Thus, the price to pay for the
simplification of the exchange term is a more complicated
expression of the kinetic energy term, and the transformed
Hamiltonian reads

H̃ = 1

2m∗ (p + eA(r))2 − �(r)σ z (94)

where A(r) is a nonabelian (2 × 2-spinor) gauge potential
given by

Ai(r) ≡ 2iπφ0T †(r)∂iT (r) (95)

Note that in the definition of the gauge potential A(r), we
have introduced the flux quantum φ0 ≡ h/e for convenience,
in order to be able to express the gauge potential in the same
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units as a usual vector potential. It is important to realize,
however, that this is merely a convention – the electron
charge (being absent from the original Hamiltonian) plays
no role here, and we would have obtained the same result
for a neutral particle, such as the neutron.

It may seem at first sight that we have made no real
progress by changing to a new gauge – the exchange has
been simplified, but the kinetic energy has taken a more
complicated form. However, if the exchange splitting is large
enough compared to the rate of variation of n(r) (as seen in
the reference frame in which the electron is at rest), spin
flip terms due to the kinetic energy term become negligible,
and the spin has to adiabatically follow the local direction
of n(r). More precisely, the condition of adiabaticity (for an
electron at the Fermi level) reads:

α ≡ �
2kF

m∗ξ�
	 1 (96)

where ξ is the typical length on which the direction of n(r)
makes a change of the order of π . If the adiabaticity condition
is satisfied, the two-spin channels decouple and one gets:

H̃ =
(

H̃↑ 0
0 H̃↓

)
(97)

with

H̃σ ≡ 1

2m∗ (p + σea(r))2 − σ�(r) + V (r) (98)

with σ = +1 (−1) for ↑ (↓), respectively, and where the
effective vector and scalar potentials are respectively given
by

ai(r) = πφ0
nx∂iny − ny∂inx

1 + nz

(99)

and

V (r) ≡ �
2

8m∗
∑
i,µ

(
∂inµ

)2
(100)

Thus, we have mapped the original problem onto that of
spinless particles subject to spin-dependent vector and scalar
potentials. The effective magnetic field associated with the
effective vector potential is defined as usual by

b = ∇ × a (101)

and is given in terms of n(r) by

bi = φ0

8π
εijkεµνλnµ(∂jnν)(∂knλ) (102)

where Einstein’s convention of summation over repeated
dummy indices is implied. One can check that the effective
Aharonov–Bohm phase associated with a closed path in
space corresponds exactly with the Berry phase for a spin 1/2
for the corresponding path in n space, that is, ±�/2, where �

is the solid angle described by n. This observation establishes
the link between the effective magnetic field experienced by
the electron because of the exchange field texture and the
concept of the Berry phase.

The electron couples to the effective vector potential in
exactly the same way as it would couple to a real vector
potential, and therefore the same physical consequences are
expected, and obtained. These effects can be classified into
two categories:

• nonlocal effects due to quantum interferences, such as
the Aharonov–Bohm effect and associated persistent
currents; intrinsically, these effects are of quantum
mechanical nature and require phase coherence.

• local effects such as the Lorentz force and it conse-
quences like the Hall effect; these effects are not quan-
tum mechanical in essence, but classical, and do not rely
on phase coherence. An insightful paper by Aharonov
and Stern (1992) beautifully explains how the effective
Lorentz force arises in a classical description.

A good example of the anomalous Hall effect due to
a chiral texture is provided by the pyrochlore compound
Nd2Mo2O7 (Taguchi et al., 2001). The structure and mag-
netic ordering are displayed in Figure 8. The electronic trans-
port takes place on Mo sites, which adopt a chiral ‘umbrella’
spin texture owing to the exchange coupling to the Nd
moments. The hopping of an electron around any Mo tri-
angle gives rise to a Berry phase related to the solid angle
described by the magnetic moments, and hence to a chirality-
induced anomalous Hall effect. This is corroborated by the
fact that the application of a large magnetic field closes the
‘umbrella’ texture, thereby suppressing the solid angle and
the anomalous Hall effect.

7 OUTLOOK AND CONCLUSIONS

Besides the applications that have been discussed in the
preceding text, the concept of Berry phase has been of great
importance to a number of topics in solid-state physics. In the
theory of the fractional quantum Hall effect, the occurrence
of excitations with fractional charges comes naturally out of a
Berry phase argument and gives rise to the concept of anyon
(Wilczek, 1990). In quantum Hall ferromagnets, the Berry
phase gives rise to topological excitations, called skyrmions



16 Theory of transport and exchange phenomena in thin film systems

|b|
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(a) (b)

(c) (d) (e)

Figure 8. Schematic magnetic and crystal structures of pyrochlore. (a) Spin chirality, that is, the solid angle subtended by the three spins.
(b) ‘Two-in, two-out’ spin structure, in which each spin points along the line that connects the center of the tetrahedron and the vertex.
The total fictitious magnetic field is the vector sum of each fictitious magnetic flux that penetrates each plaquette. (c) The B sublattice of
pyrochlore structure A2B2O7. The A sublattice is structurally identical with this one, but is displaced by half a lattice constant. (d) Relative
position of Nd tetrahedron (gray circles) and Mo tetrahedron (black circles) in Nd2Mo2O7 pyrochlore. (e) The ‘umbrella’ structure observed
for Nd2Mo2O7 (A = Nd, B = Mo) by a neutron diffraction study. A magnetic unit cell contains four inequivalent Nd 4f moments ni and
four Mo 4d moments mi . In the umbrella structure, (mi − m) ⊥ m and (ni − n) ⊥ n for each mi and ni , where m and n are the average
moments of four mi and four ni , respectively. (Reproduced from Y. Taguchi et al: Spin chirality, Berry phase, and anomalous Hall effect
in a Frustrated Ferromagnet. Science 29, (2001) 2573–76, with permission from AAAS.)

(Girvin, 1999) with novel properties. In one- and two-
dimensional quantum spin systems, the physical properties
depend, in a crucial manner, on whether the spin is integer
or half-integer (Haldane, 1983, 1988), a phenomenon that is
best understood in terms of Berry phase considerations (Loss,
1998). In molecular magnets, the Berry phase can induce
destructive interferences of macroscopic tunneling between
classically degenerate states, giving rise to the occurrence
of diabolical points (Loss, DiVincenzo and Grinstein, 1992;
von Delft and Henley, 1992; Garg, 1993; Wernsdorfer and
Sessoli, 1999; Villain, 2003; Bruno, 2006).

The concept of the Berry phase appears as one of the most
profound and insightful concepts in quantum mechanics.
This article aimed at giving an introduction to this topic
and illustrating its importance and versatility by means of
a number of examples in the field of magnetism.
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1 INTRODUCTION

Spin is an intrinsic property of elementary particles and
participates in magnetic interactions. An electron is an
elementary particle that carries a negative electric charge
−e and a spin 1/2 corresponding to the magnetic moment
of e�/(2mc) = 9.285 × 10−24 (J T−1). We cannot separate
a spin from a charge when we deal with electrons. When
the electric current flows in a wire, both charge and spin
are carried by electrons. In contrast to the electric charge,
the spin of an electron has two directions, up or down.
In nonmagnetic conductors such as Cu, Al, and Au, spin-
dependent phenomena are not observed, since the same
number of spin-up and spin-down electrons are present.
However, in magnetic materials such as Fe, Co, and Ni, the
number of electrons with spin up is different from that with

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

spin down. Therefore, the transport properties of magnetic
materials are spin dependent. We can vary the resistance
by applying a magnetic field to change the direction of
magnetization. This phenomenon is called magnetoresistance
(MR) and is applied to magnetoresistive devices such as
hard-disk drives.

Electron tunneling is a basic phenomenon in quantum
mechanics by which electric current can pass from one elec-
trode through a thin insulating barrier layer into a second
electrode. The recent nanofabrication technology enables us
to control single-electron tunneling through a small island
called a quantum dot. Electron tunneling is one of the
key concepts in nanotechnologies and has many technolog-
ical applications: the Schottky diode is a basic element of
semiconductor heterostructures, the superconducting quan-
tum interference device (SQUID) is a high-sensitivity mag-
netic sensor, and the scanning tunneling microscope (STM) is
an atomic-resolution microscope in which an electron tunnels
through a vacuum instead of an insulating barrier. However,
all these devices utilize charge degrees of freedom – rather
than spin degrees of freedom – of electrons.

Recently, spin-dependent tunneling in magnetic tunnel
junctions has attracted enormous attention because of its
potential applications in high-density magnetic recording
devices and nonvolatile magnetic random access memory
(MRAM). Spin-dependent tunneling is also important from a
scientific point of view, since it provides much information
about the physical properties of magnetic materials. In fact,
the concept of spin-dependent tunneling has a long history
in physics. In the early 1970s, Meservey and Tedrow (1994)
developed a spin-polarized electron tunneling technique that
used special properties of the superconducting states to probe
spin-dependent features of the electron density of states
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of ferromagnets (FMs). Applying this technique to various
FMs in FM/Al2O3/Al tunnel junctions, they showed that
the tunneling electrons from FMs are spin polarized, and
obtained detailed information about the spin polarization of
the conduction electrons near the Fermi level.

The first experiment on spin-dependent tunneling in mag-
netic tunnel junctions was reported by Julliere (1975). He
measured the tunnel conductance of Fe/Ge/Co junctions and
showed that it was dependent on the relative orientation of
the magnetizations of electrodes. This effect is now called
the tunnel magnetoresistance (TMR) effect. Subsequently,
Maekawa and Gäfvart Maekawa and Gäfvert (1982) demon-
strated a strong correlation between the tunnel conductance
and magnetization process in Ni/NiO/FM junctions with Ni,
Fe, or Co as the counterelectrode. However, these pioneer-
ing works on TMR did not attract much attention until the
mid-1990s, since the measured TMR values remained very
small at room temperature.

In 1995, the first breakthrough for large TMR was brought
about by Miyazaki and Tezuka (1995) and Moodera, Kinder,
Wong and Meservey (1995), who developed superior fabri-
cation methods for magnetic tunnel junctions with an amor-
phous Al2O3barrier. In the last decade, much effort has been
devoted to improving the TMR ratio of magnetic tunnel junc-
tions with an amorphous Al2O3barrier. Currently, the record
for the largest TMR ratio of the magnetic tunnel junctions
with amorphous Al2O3is 70.4 % at room temperature (Wang
et al., 2004). The second breakthrough was the discovery of
a high TMR in epitaxial magnetic tunnel junctions with MgO
barrier (Bowen et al., 2001). In 2001, Bowen et al. fabricated
Fe(001)/MgO(20 Å)/FeCo(001) single-crystal epitaxial junc-
tions and observed a 27% TMR at 300 K, which increased to
60% at 30 K. Although the observed TMR was much smaller
than the values predicted by Butler, Zhang, Schulthess and
MacLaren (2001) and Mathon and Umerski (2001), it was
larger than that obtained on the (001)-oriented Fe/amorphous
Al2O3/FeCo junction by Yuasa et al. (2000). The predicted
values of TMR for Fe(100)/Mg(100)/Fe(100) were in excess
of 1000% (Butler, Zhang, Schulthess and MacLaren, 2001;
Mathon and Umerski, 2001). Owing to the rapid progress
in fabrication techniques, the TMR of the epitaxial magnetic
tunnel junction has increased rapidly, as shown in Figure 1.
The record for the largest TMR ratio of a magnetic tunnel
junction with an MgO barrier is 410% at room temperature
(Yuasa, 2006).

In the early studies on spin-dependent tunneling, the
theoretical interpretation was based on a simple model in
which the spin is conserved in the tunneling process and
the conductance of each spin direction is proportional to the
densities of states of that spin in each electrode. In this model,
the tunnel current is larger when the magnetizations of the
two electrodes are parallel than when they are antiparallel,

which explains the strong dependence of the tunneling
current on the relative orientation of the magnetizations of
the ferromagnetic electrodes. However, the model does not
explain the experimental results that the TMR exhibits rather
large bias and temperature dependencies.

Another approach based on the single-electron Schrödinger
equation was proposed by Slonczewski (1989). By extending
the free-electron model of tunneling in nonmagnetic tunnel
junctions (Burstein and Lundqvist, 1969) to magnetic tunnel
junctions, Slonczewski found that the polarization of tunnel-
ing electrons depends not only on the electronic density of
states of FMs but also on the potential height of the tunnel
barriers (Slonczewski, 1989). In this approach, the electrodes
and the insulating barrier are treated as a single quantum-
mechanical system and the wave functions of up and down
electrons are constructed by solving the Schrödinger equation
in the whole system. While the free-electron model cap-
tures some essential features, their predictions for TMR are
quantitatively unreliable because the lattice structure of the
electrodes and the variation of the band structure near the
insulating barrier are overlooked (Zhang and Levy, 1999).

The tight-binding model gives more realistic descriptions
for TMR (Zhang and Levy, 1999; Moodera and Mathon,
1999; Asano, Oguri and Maekawa, 1993; Mathon, 1997;
Tsymbal and Pettifor, 1998; Mathon and Umerski, 1999; Itoh
et al., 1999; Itoh, Ohsawa and Inoue, 2000). This approach
allows one to distinguish electronic structures at interfaces
from that in the bulk and to study the effect of the interface
roughness, although it contains some empirical parameters.
One can easily see that the single-band tight-binding model
reduces to the free-electron model. It is also shown that
the conductance of the tight-binding method reduces to the
usual expression for the conductance obtained in the classical
theory of tunneling when the electron hopping between the
electrodes is weak and the coherence across the barrier is
completely lost.

A nonempirical description of spin-dependent tunneling
of epitaxial magnetic tunnel junctions is provided by the
first-principles methods based on density-functional theory
within the local spin-density approximation (LSDA) for the
electronic structure and the Landauer–Büttiker formula for
the conductance (MacLaren et al., 1990; MacLaren, Zhang,
Butler and Wang, 1999; Butler, Zhang, Schulthess and
MacLaren, 2001). Butler, Zhang, Schulthess and MacLaren
(2001) studied the spin-dependent tunneling in epitaxial
Fe/MgO/Fe magnetic tunnel junctions by using the layer Kor-
ringa–Kohn–Rostoker (LKKR) method based on the first-
principles method, and predicted a TMR ratio as high as
6000%. They showed that the high TMR ratio in epitaxial
magnetic tunnel junctions with an MgO barrier is due to the
symmetry of the evanescent wave in the barrier. The sym-
metry of the current carrying state in the barrier is �1 and
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Figure 1. Evolution of the magnetoresistance of magnetic tunnel junctions with Al2O3(open circles) and MgO (filled circles) tunnel barriers
at room temperature.

the spin polarization of the �1 band in the Fe electrodes
is 100%, that is, half-metallic. Mathon and Umerski (2001)
arrived at qualitatively identical conclusions independently
by using the multiband tight-binding model.

In this chapter, we provide a review of the theories of
spin-dependent tunneling in magnetic tunnel junctions. The
chapter is organized as follows. The tunneling Hamilto-
nian model is described in Section 2. We explain the basic
ideas for dealing with the electron tunneling and derive
the expression of the tunneling current and TMR. We also
show some recent advances in the theory of spin-dependent
tunneling in a Coulomb blockade regime. In Section 3,
we provide a brief review of the free-electron model and
show that the TMR is not a monotonic function of the
barrier height. In Section 4, we review the theory of spin-
dependent tunneling based on the tight-binding model and
its application to various magnetic tunnel junctions. The
first-principles model and its applications to the epitaxial
magnetic tunnel junctions with MgO barriers are described
in Section 5.

2 TUNNEL HAMILTONIAN MODEL

Let us consider a tunnel junction where two metallic elec-
trodes are separated by a thin insulating barrier as shown in
Figure 2. In the classical mechanics picture, the electrodes
cannot exchange electrons through the barrier because the
potential of the barrier is higher than the Fermi energy of
the electrodes. However, quantum mechanics tells us that
there is a nonzero probability of charge transfer by quantum-
mechanical tunneling of electrons. The basic idea of the
tunnel Hamiltonian model is to write the Hamiltonian of the
system as

H = HL + HR + HT (1)

where HL and HR are the Hamiltonians of the left and
right electrodes, respectively, and the tunneling process is
described by the tunnel Hamiltonian HT. The tunneling
probability decreases exponentially with the thickness of
the barrier and is dependent on the characteristics of the
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Figure 2. Electron tunneling between two normal metals. The
arrow indicates the electron with spin σ transferred through the
oxide barrier.

insulating material, but these aspects are absorbed in the
phenomenological tunneling matrix elements T̂ σ

pk. Thus we
write the effective tunnel Hamiltonian in the form

HT =
∑
kpσ

T̂ σ
pka

†
pσ akσ + h.c (2)

where akσ is the annihilation operator of an electron with
wave vector k and spin σ on the left electrode, a†

pσ is the
creation operator of an electron with wave vector p and spin
σ on the right electrode, and no spin flip is assumed in the
tunneling process.

When the bias voltage V is applied to the tunnel junction,

the tunneling rate
→
�σ (V ) at which electrons with spin σ are

transferred from the left to the right electrodes is calculated
by Fermi’s golden rule as

→
�σ (V ) = 2π

�

∑
k,p,σ

|T̂ σ
pk|2f (ξ kσ )

[
1 − f (ξ pσ )

]

× δ(ξ kσ − ξ pσ + eV ) (3)

where ξ k and ξ p are one-electron energies measured from
the Fermi levels and f (ξ kσ ) = 〈a†

kσ akσ 〉 = 1/[exp(ξ kσ /kBT )

+ 1] is the Fermi distribution function.
The steady-state current through the junction is determined

by the difference between the forward and backward tunnel-
ing rates:

Iσ (V ) = e

[→
�σ (V ) − ←

�σ (V )

]
(4)

where
←
�σ (V ) is the tunneling rate at which electrons with

spin σ are transferred from the right to the left electrodes

and is related to
→
�σ (V ) by

←
�σ (V ) = →

�σ (−V ). Substituting
equation (3) into equation (4), the tunnel current Iσ for the

spin channel σ becomes

Iσ (V ) = 2πe

�
〈|T̂ σ

pk|2〉
∫ ∞

−∞
D1σ (ξ − eV )D2σ (ξ)

× [
f (ξ − eV ) − f (ξ)

]
dξ (5)

where D1σ (ξ) and D2σ (ξ) are the tunneling densities of states
with spin σ in the left and right electrodes, respectively, and
〈|T̂ σ

pk|2〉 is the averaged tunneling probability and taken to be

a constant proportional to exp(−2κd), where κ = √
2m�/�

is the decay constant of the evanescent wave in the barrier
and � is the barrier height. The total current I is given by
the sum of the currents in the up- and down-spin channels:
I = I↑ + I↓.

Electron tunneling from ferromagnetic transition metals
and alloys into a superconducting Al electrode through an
insulating Al2O3barrier is one of the most powerful tools for
studying the spin-polarized electronic states of FMs. In the
early 1970s, Meservey and Tedrow (1994) found that, in a
thin film of superconducting Al, the BCS density of states
splits into up and down states by application of a magnetic
field. This splitting originates from the Zeeman splitting in
the quasiparticle dispersion in a magnetic field H :

Ekσ = (
ξ 2

k + �2)1/2 − σµBH (6)

where � is the superconducting energy gap. In the absence
of spin-flip scattering, the spin-dependent densities of states
of quasiparticles in superconductor (SC) is given by

Di↑(E) = DBCS(E − µBH),

Di↓(E) = DBCS(E + µBH)
(7)

where i represents the index of electrodes and DBCS(E) is
the BCS density of states defined as

DBCS(E)

DN
= Re

[
|E|√

E2 − �2

]
(8)

where DN is the density of the state of SC in the normal
state. Figure 3(a) illustrates the splitting of the BCS density
of states in a magnetic field H .

The Zeeman splitting in the density of states of SC
enables one to extract the spin polarization of various
FMs using ferromagnet/insulator/superconductor (FM/I/SC)
junctions. In magnetic fields, the densities of states of the
up- and down-spin bands in FM correspond to those of the
majority and minority spin bands, D1↑ = DM and D1↓ = Dm,
respectively, while those in the SC electrode D2σ are given
by equation (7). Then, from equation (5), the conductance
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G = dI/dV of the junction is given by the sum of the
conductance for the two independent spin directions:

G(V )/GN =
(

1 + P

2

)∫ ∞

−∞

DBCS(E − µBH)/DN

cosh2 [
(E − eV )/2kBT

] dE

4kBT

+
(

1 − P

2

) ∫ ∞

−∞

DBCS(E + µBH)/DN

cosh2 [
(E − eV )/2kBT

]
× dE

4kBT
(9)

where GN = G
↑
N + G

↓
N (Gσ

N = (2πe2/�)〈|T̂ σ
pk|2〉DσDN) is

the conductance when SC is in the normal state and P

is the tunneling spin polarization defined by the relative
conductance between the spin-up and spin-down channels:

P = G
↑
N − G

↓
N

G
↑
N + G

↓
N

= DM − Dm

DM + Dm
(10)

If 〈|T̂ σ
pk|2〉 is spin independent, then P is expressed in terms

of the densities of states of FM as in the third term of
equation (10). In Figure 3(b), the conductance Gσ for each
spin direction (dashed or dotted) and the total conductance
G = G↑ + G↓ (solid curve) are shown for P = 0.5 and
T /Tc = 0.15. The most striking feature of G is its asymmetry
around V = 0. The degree of the asymmetry is directly
related to the value of P through the weighted factors
1
2 (1 + P ) and 1

2 (1 − P ) in equation (9).

−3 −2 −1 0 1 2 3

eV/∆

0

0

G
/G

N

(a)

(b)

2mBH

is
/

N

Figure 3. (a) Zeeman splitting of the BCS density of states into
spin-up (dashed) and spin-down (dotted) densities of states in
a magnetic field H , showing a splitting of 2µBH . (b) Spin-up
conductance (dashed), spin-down conductance (dotted), and total
conductance (solid curve).

In the experiments of Tedrow and Meservey, electron
tunneling between Al and ferromagnetic metals and alloys
in high magnetic fields are used to measure the tunnel
conductance. An analysis of the measured conductance based
on equation (9) yields the spin polarization P for various
FMs. In Table 1, the spin polarization P is listed for
various ferromagnetic materials (Moodera and Mathon, 1999;
Monsma and Parkin, 2000; Worledge and Geballe, 2000)
recently measured by using improved junction preparation
conditions, including samples grown by molecular-beam
epitaxy (MBE).

As seen in Table 1, the values of the tunneling spin
polarization P are positive, that is, P > 0, for all of the
3d ferromagnetic metals; the majority spin electrons are
predominant in the tunnel current in all cases. From the
tunneling experiments, it has been established that the tunnel
currents from FM into other metals through the Al2O3barrier
are dominated by majority spins for Ni, Co, Fe, and their
alloys, and the tunneling spin polarization is correlated with
the magnetic moment of the electrode. However, the positive
sign of P is surprising, especially for metals such as Co and
Ni, in which a negative polarization is expected owing to
the smaller density of states of the majority spin band at the
Fermi level, since the majority d band is below the Fermi
level.

Various theoretical explanations have been proposed to
explain the positive value of the spin polarization. Stearns
(1977) explained this tendency by observing that the ferro-
magnetic transition metal has a large fraction of d electrons
of free-electron-like character at the Fermi surface. Hertz and
Aoi argued that the s electrons are responsible for the tunnel-
ing and the tunnel currents are proportional to the density of
s states at the Fermi level, despite the much higher density
of d states in 3d ferromagnetic metals (Hertz and Aoi, 1973).
Recent first-principle band calculations support the idea that
tunneling is dominated by electrons of s or p character; for
Al2O3barriers and Co electrodes, the positive spin polariza-
tion might be explained by the strong bonding between the
d orbitals of Co and the sp orbitals of Al (or the p orbitals
of O) at the interface, which results in an almost unoccupied

Table 1. Spin polarization P for various ferromagnetic metals and
alloys.

Materials Ni Co Fe Ni80Fe20 Co50Fe50 La0.7Sr0.3MnO3

P a(%) 33 45 44 48 51 −
P b(%) 31 42 45 45 50 −
P c(%) − − − − − 72

aMoodera and Mathon (1999).
bMonsma and Parkin (2000).
cWorledge and Geballe (2000).
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minority sp density of states on Al (or the minority p den-
sity of states on O) (Nyugen-Mahn et al., 1998; Tsymbal and
Pettifor, 2000).

Now we consider the spin-dependent tunneling of mag-
netic tunnel junctions and derive the TMR ratio. In the low
bias regime, where the bias voltage V is much smaller than
the bandwidth (of order of eV ) and the density of states is
nearly constant, the conductance Gσ = dIσ /dV for each spin
channel is given from equation (5) as

Gσ(V ) ≈ 2πe2

�
〈|T̂ σ

pk|2〉D1σD2σ (11)

where D1σ and D2σ are the densities of states of the spin σ

band at the Fermi levels in the ferromagnetic electrodes.
Assuming that the magnetic moments of the electrodes

FM1 and FM2 are aligned to be ferromagnetic (F) in applied
magnetic fields, and aligned to be antiferromagnetic (A) in
zero magnetic field, the total conductance G = G↑ + G↓ in
the F alignment is given by

GF = G
↑
F + G

↓
F ∝ DM1DM2 + Dm1Dm2 (12)

and in the A alignment it is given by

GA = G
↑
A + G

↓
A ∝ DM1Dm2 + Dm1DM2 (13)

where DMi and Dmi are the densities of states for the majority
and minority spin bands in the ith electrode, respectively (see
Figure 4a and b). The TMR ratio is defined as

T MR = �R

RF
= RA − RF

RF
= GF − GA

GA

= 2P1P2

1 − P1P2

(14)

(a) (b)

FM1 FM2 FM1 FM2

Figure 4. Ferromagnet/insulator/ferromagnet (FM1/I/FM2) tunnel
junction and corresponding densities of states of FM1 and FM2
in the ferromagnetic (a) and antiferromagnetic (b) alignments of
magnetizations.

where Pi is the spin polarization of the ith electrode
defined by

Pi = DMi − Dmi

DMi + Dmi

(15)

Note that another definition, T MR = �R/RA = 2P1P2/

(1 + P1P2), is also used in the literature.
One of the advantages of the tunnel Hamiltonian model is

that the charging effect, that is, the Coulomb interaction, can
be treated easily within this model. The charging energy plays
an important role when we consider the charge transport
through a very small island. If an electron tunnels into or out
of a small island, the electrostatic charging energy changes by
e2/2C, where e is the electronic charge and C is the capaci-
tance of the island. The capacitance is proportional to the size
of the island and the charging energy e2/2C can take a high
value for a very small island. Therefore, unless the charging
energy is overcome by bias potential (eV ) or thermal energy
(kBT ), an electron is not able to propagate between the elec-
trodes. This is called the Coulomb blockade (CB). Since the
CB is caused by the charge degrees of freedom of electrons,
little attention has been paid to the spin degrees of freedom.
However, in the late 1990s, improvements in nanofabrication
technology enabled us to fabricate magnetic tunnel junctions
in which CB phenomena were observed.

Ono et al. have measured the TMR in the Ni/NiO/Co/NiO/
Co double junctions and observed Coulomb oscillations in
the Rα versus Vg curves (Ono, Shimada and Ootuka, 1997).
They found that off resonance the TMR ratio, �R/RF =
(RA − RF)/RF, is enhanced to 40%, which is larger than the
value of 17.5% expected from PCo = 0.35 and PNi = 0.23
in the absence of the CB effect. The cotunneling theory
(Takahashi and Maekawa, 1998) explains this enhancement,
since �R/RF = 4PCoPNi/(1 − PCoPNi)

2 = 0.38, that is, the
TMR is 38%. However, they found a TMR of ∼4% at
resonance, which is considerably smaller than the expected
TMR of 17.5%. A reduction in TMR at resonance may
occur in the case of a strong tunneling of Rα

T < RK, where
RK ≡ (h/e2)  25.8 
 is the quantum resistance.

Recent experiments and theories for the single electron
transistor (SET) have shown that the conductance in the
strong tunneling case significantly deviates from that in the
weak tunneling case Rα

T � RK. According to the theory of
König and Schön (1997), on resonance the bare values of the
parameters, Ec and Rs

T, are renormalized so that the conduc-
tance becomes logarithmic temperature-dependent, yielding
a TMR at low temperatures

(
�R

RF

)
on = 2P 2

(1 − P 2)

{
1 − RK

2π2R
(F)
T

[
γ E + ln

(
Ec

πT

)]}

(16)
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where γ E is Euler’s constant. Therefore, the value of TMR
at low temperatures (kBT � Ec) is considerably reduced
from that at high temperatures. If this is the case for the
Ni/NiO/Co/NiO/Co double junctions, we can explain the
small value of TMR mentioned above. In contrast, the TMR
off resonance remains unaltered (Schoeller and Schön, 1994).

3 FREE-ELECTRON MODEL

In the tunnel Hamiltonian model in the preceding section, we
assumed that the tunneling matrix elements and the spin-up
and spin-down electrons can be treated as constants. In other
words, the wave function in the barrier region is assumed
to be independent of the wave vector and spin. However,
it is not obvious that the above assumptions are justified.
In 1989, Slonczewski proposed another approach for the
spin-dependent tunneling based on the free-electron model,
where the exact wave function in the barrier region is used
(Slonczewski, 1989). He showed that TMR is determined not
only by the spin polarization of FM electrodes, P , but also
by the potential height of the insulating barrier. Introducing
the effective spin polarization of the ferromagnetic electrode,
Peff, which ranges from −P to P depending on the potential
height of the barrier, the TMR is expressed using the same
formula as that derived from the tunnel Hamiltonian model.

Before studying the spin-dependent tunneling in ferro-
magnetic tunnel junctions, it is convenient to consider the
nonmagnetic tunnel junctions and derive an approximate
form of the tunnel conductance in weak transmitting limit
(Burstein and Lundqvist, 1969). When the bias voltage V

is applied, electrons incident from the left electrode tunnel
through the insulating barrier, resulting in a tunnel current,
as shown in Figure 5(a) and (b). We assume that the sys-
tem has translational symmetry in the transverse (x and y)
direction and therefore the wave vector parallel to the bar-
rier surface k‖ = (kx, ky) is conserved during the tunneling.
We also assume that the temperature is zero. The number of
electrons incident from the left electrode per unit time with
wave vector k‖ is given by

N(k‖) = 2 × 1

2

∫ eV

0
dEvz(E, k‖)

1

π�vz(E, k‖)

= 2
eV

h
(17)

where vz(k‖) is the velocity along the z direction and
1/π�vz(k‖) is the corresponding 1D density of states for
the one spin channel. The factor 2 in equation (17) is due to
the spin-degeneracy of the energy bands in the nonmagnetic
electrode. Note that the number of incident electrons is
independent of the wave vector k‖. The tunnel current density

VB

VR
VL

d

kR
kL

z1
z2

eV

(a) (b)

Metal
Metal

Barrier

κ

Figure 5. (a) Potential energy diagram for a metal/insulator/metal
tunnel junction with the bias voltage V . The shaded area represents
the occupied states of electrons at zero temperature. Electrons are
transmitted from the occupied states in the left electrode to the
unoccupied states in the right electrode. (b) The geometry of one-
electron potential for the Hamiltonian given by equation (20). The
left and right boundaries of the insulating barrier are indicated by
z1 and z2, respectively.

is obtained by summing up the number of electrons tunneling
through the barrier:

I = e

∫ dk2
‖

(2π)2
N(k‖)T (k‖) = 2

e2V

h

∫ dk2
‖

(2π)2
T (k‖) (18)

where T (k‖) is the transmission probability defined as the
ratio between the probability current densities of incident
and transmitting waves. Here we assume the bias voltage
V is so small that we can neglect the energy dependence of
the transmission probability. The differential conductance per
unit area is written in terms of the transmission probability as

G ≡ dI

dV
= 2

e2

h

∫ dk‖2

(2π)2
T (k‖) (19)

The transmission probability T (k‖) is obtained by solving
the 1D Schrödinger equation:

− �
2

2m

∂2

∂z2
ψ(z) =

(
E − V (z) − �

2

2m
k2

‖

)
ψ(z) (20)

in the geometry shown in Figure 5(b). The general solutions
of equation (20) in the left (L) electrode, barrier (B), and
right (R) electrode are, respectively, of the forms

ψL(z) = aLeikLz + bLe−ikLz, for z ≤ z1

ψB(z) = aBeκz + bBe−κz, for z1 < z ≤ z2

ψR(z) = aReikRz + bRe−ikRz, for z > z2

(21)

where the z components of the wave numbers are defined as

kL =
√

(2m/�2)(E − VL) − k2
‖

κ =
√

k2
‖ − (2m/�2)(E − VB)

kR =
√

(2m/�2)(E − VR) − k2
‖

(22)

The scattering wave in the whole system is given by
the combination of eigen functions in equation (21). The
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coefficients aL, bL, aB, bB, aR, and bR are determined by
matching the slope and value of the wave function across
the interface (Burstein and Lundqvist, 1969). The matching
conditions at z = z1 are conveniently described as a 2 × 2
matrix R1 operating on the 2D vectors as(

aL

bL

)
= R1

(
aB

bB

)
(23)

where

R1 = 1

2kL

×
(

(kL − iκ)e(−ikL+κ)z1 (kL + iκ)e(−ikL−κ)z1

(kL + iκ)e(ikL+κ)z1 (kL − iκ)e(ikL−κ)z1

)
(24)

In the same manner, the matching conditions at z = z2 are
written as (

aB

bB

)
= R2

(
aR

bR

)
(25)

where

R2 = i

2κ

×
(

(kR − iκ)e(ikR−κ)z2 −(kR + iκ)e−(ikR+κ)z2

−(kR + iκ)e(ikR+κ)z2 (kR − iκ)e−(ikR−κ)z2

)
(26)

Since the quantity that we wish to compute is the
transmission probability for the electron incident from the
left electrode, only a transmitted wave exists in the right
electrode and bR = 0. The relation between the coefficients
aL, bL, and aR is

(
aL

bL

)
= R1R2

(
aR

0

)
(27)

Thus, the transmission probability is

T (k‖) = |aR|2kR

|aL|2kL
= kR

kL

1

|(R1R2)11|2

 16kLκ2kR

(k2
L + κ2)(k2

R + κ2)
e−2κd (28)

where d = z2 − z1 is the thickness of the barrier. In the last
equality of equation (28), we use the condition e−2κd � 1
because we are interested in the weak transmitting limit
T (k‖) � 1. Substituting equation (28) into equation (19), the
conductance is written as

G = 2
e2

h

∫ dk2
‖

(2π)2

16kLκ2kR

(k2
L + κ2)(k2

R + κ2)
e−2κd (29)

We introduce the symbols kL0, kR0 and κ0 to represent
the wave numbers with k‖ = 0. In equation (29), the value
of k‖ is limited to the range of 0 ≤ k‖ < min[kL0, kR0]. For
the high barrier, κ0 � k‖, and the wave number κ can be
expressed as

κ = κ0

[
1 + 1

2

(
k‖
κ0

)2
]

= κ0 + k2
‖

2κ0
(30)

Since we consider an elliptical energy band, it is often
convenient to use∫

d2k‖
(2π)2

=
∫

ρ‖(E‖) dE‖ (31)

where E‖ = (�2/2m)k2
‖ and the 2D density of states

ρ‖(E‖) = (m/2π�
2). Therefore, the conductance can be

written as

G = 2
e2

h
ρ‖

∫ �
2

2m
min(k2

L0,k2
R0)

0
T (E‖) dE‖ (32)

where

T (E‖) = 16e−2κ0d

(VL − VB)(VR − VB)

×
√

�2

2m
k2

L0 − E‖

√
�2

2m
k2

R0 − E‖

×
(

�
2

2m
κ2

0 + E‖
)

exp

(
− d

κ0

2m

�2
E‖

)
(33)

For large d, the important region in the integral of equation
(32) is E‖  0, and we have

G = 2
e2

h

κ0

4πd
T (0)

= 2
e2

h

4κ0

πd

kL0κ
2
0kR0

(k2
L0 + κ2

0)(k
2
R0 + κ2

0)
e−2κ0d (34)

The conductance for spin-up and spin-down electrons is
given by half of the total conductance in equation (34) as

G↑ = G↓ = e2

h

4κ0

πd

kL0κ
2
0kR0

(k2
L0 + κ2

0)(k
2
R0 + κ2

0)
e−2κ0d (35)

Next, let us consider the magnetic tunnel junctions, where
the conductance is spin-dependent. In the magnetic elec-
trodes, spin-up and spin-down electrons feel the different
exchange potentials h0 and −h0, respectively. The matching
condition depends on the relative angle between the magneti-
zation vectors of left and right electrodes. For simplicity, we
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0
h0

−h0

EF

(a) (b)

h0
0

−h0

EF

0
h0

−h0

EF

0
h0

−h0

EF

Figure 6. Densities of states for spin-up (D↑) and spin-down (D↓) electrons in the F alignment (a) and those in the A alignment (b).

consider two types of alignments of magnetization vectors,
ferromagnetic (F) and antiferromagnetic (A) alignments, as
shown in Figure 6(a) and (b). The spin quantization axis is
taken to be parallel to the magnetization vector in the left
electrode. For the F alignment, where the magnetization vec-
tors are parallel, we have two tunneling processes: electrons
incident from the left majority (minority) spin band tunnel to
the right majority (minority) spin band. Potential diagrams
for these two tunneling processes are shown in Figure 7(a)
and (b), respectively. The wave numbers of electrons in the
majority and minority spin bands are

kM =
√

(2m/�2)(E − h0) − k2
‖ (majority) (36)

km =
√

(2m/�2)(E + h0) − k2
‖ (minority) (37)

The conductance for spin-up (spin-down) electrons is
obtained from equation (35) by setting kL0 =kR0 =kM0(km0),
where kM0(km0) is the wave number for the electrons in the
majority (minority) spin band with k‖ = 0:

GF
↑ = e2

h

4κ3
0

πd

k2
m0

(k2
m0 + κ2

0)
2

e−2κ0d,

GF
↓ = e2

h

4κ3
0

πd

k2
M0

(k2
M0 + κ2

0)
2

e−2κ0d (38)

The total conductance for the F alignment takes the
form

GF = GF
↑ + GF

↓

= e2

h

4κ3
0

πd

[
k2

m0

(k2
m0 + κ2

0)
2

+ k2
M0

(k2
M0 + κ2

0)
2

]
e−2κ0d (39)

In contrast, for the A alignment where the magnetization
vectors are antiparallel, electrons incident from the left
majority (minority) spin band tunnel to the right minority
(majority) spin band. The potential diagrams for spin-up
and spin-down electrons are depicted in Figure 7(c) and
7(d), respectively. The conductance for the A alignment is
given by

GA
↑ = GA

↓ = e2

h

4κ3
0

πd

km0kM0

(k2
m0 + κ2

0)(k
2
M0 + κ2

0)
e−2κ0d

GA = GA
↑ + GA

↓

= e2

h

4κ3
0

πd

2km0kM0

(k2
m0 + κ2

0)(k
2
M0 + κ2

0)
e−2κ0d (40)

h0 h0

h0

V
km

km

km

km

EF

h0

EF

−h0 −h0

−h0 −h0

EF

EF

V
kM

kMkM

kM

V V

GF
↑

GA
↑ GA

↓

GF
↓

(a) (b)

(c) (d)

κκ

κ κ

Figure 7. Geometries of the potentials for spin-up and spin-down electrons in the F alignment are shown in panels a) and (b), and those
in the A alignment are shown in (c) and (d), respectively.
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Using equations (39) and (40), the TMR is expressed as
(Slonczewski, 1989)

T MR = GF − GA

GA

= (km0 − kM0)
2(κ2

0 − km0kM0)
2

2km0kM0(k
2
m0 + κ2

0)(k
2
M0 + κ2

0)

= 2P 2
eff

1 − P 2
eff

(41)

where Peff is the effective spin polarization defined as

Peff = κ2
0 − km0kM0

κ2
0 + km0kM0

P (42)

in which P = (kM0 − km0)/(kM0 + km0) is the spin polariza-
tion of the ferromagnetic electrode with an elliptical energy
band.

Since the wave number in the barrier region κ0 ranges
from 0 (low barrier limit) to ∞ (high barrier limit), we
have −P < Peff < P . In the high barrier limit, the TMR
is the same as that obtained by the tunneling Hamiltonian
method. One interesting result of the free-electron model is
that Peff is diminished, and therefore the TMR for values of
the barrier height (κ0 ∼ km0kM0) is diminished. This variation
of the TMR has been experimentally observed by Tezuka and
Miyazaki (1998) as shown in Figure 8.

0 1 2 3

Φ (eV)

0

10

20

30

40

∆R
/R

s 
(%

)

Fe/Al- oxide/Fe
at 4.2 K

kM0 (Å
−1)

0.9

1.1

1.3

Figure 8. Dependence of TMR on the barrier height � at 4.2 K.
The horizontal axis is the barrier height obtained by fitting the I –V

curves to Simmon’s relation (Simmons, 1963). The solid curves are
the calculated values using the free-electron model. (Reproduced
from N. Tezuka and T. Miyazaki, J. Magn. Magn. Mater. 177-181,
1998, 1283, copyright  1998, with permission from Elsevier.)

4 TIGHT-BINDING MODEL

Recently, more realistic calculation methods based on the
tight-binding Hamiltonian and the Kubo–Landauer for-
mula have been developed by several authors (Zhang and
Levy, 1999; Moodera and Mathon, 1999; Asano, Oguri
and Maekawa, 1993; Mathon, 1997; Tsymbal and Pettifor,
1998; Mathon and Umerski, 1999; Itoh et al., 1999; Itoh,
Ohsawa and Inoue, 2000). The tight-binding model is of
great use both in dealing with multiorbital systems hav-
ing a realistic band structure and in studying the effect
of the disorder and roughness of the insulating barrier on
the spin-dependent tunneling. In order to understand the
basic formalism of the conductance calculation in the tight-
binding model, we first consider the 1D chain shown in
Figure 9, which is expressed by the following 1D Hamil-
tonian:

H = −t
∑
〈n,n′〉

c†
ncn′ +

∑
n

εnc
†
ncn (43)

where t is the hopping matrix element and εn is the
on-site energy at the nth site. The spin indices are
dropped for simplicity. In the low bias regime, the con-
ductance G at zero temperature is given by the Kubo for-
mula as

G = π�

N2

∑
αβ

∣∣∣∣∣
N∑

n=1

〈α|J (n)|β〉
∣∣∣∣∣
2

× δ(EF − Eα)δ(EF − Eβ) (44)

where |α〉 and |β〉 are the eigenstates of the system with
energies Eα and Eβ , respectively, and the current operator
at site n is defined as

J (n) = ie

�

[
tc

†
n+1cn − tc†

ncn+1

]
(45)

In the stationary state of the system, the current conser-
vation requires that J (n) is independent of n, and thus the

0 N−1 N + 1

Left lead Right leadScattering region

Figure 9. Schematic of the 1D chain including the scattering
region, which is indicated by filled circles. The scattering region
is connected with the left and right ideal leads.
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conductance reduces to

G = πe2

�
t2

∑
αβ

[
〈n + 1|α〉〈α|n + 1〉〈n|β〉〈β|n〉

− 〈n|α〉〈α|n + 1〉〈n|β〉〈β|n + 1〉
− 〈n + 1|α〉〈α|n〉〈n + 1|β〉〈β|n〉
+ 〈n|α〉〈α|n〉〈n + 1|β〉〈β|n + 1〉

]
× δ(EF − Eα)δ(EF − Eβ) (46)

where |n〉 is the one-particle state created by the operator c†
n.

Let us introduce the Green function:

G̃(n, n′) = i

2

[
G+(n, n′) − G−(n, n′)

]
= π

∑
α

〈n|α〉〈α|n′〉δ(E − Eα) (47)

where G+ and G− are the retarded and advanced one-electron
Green functions expressed as

G±(n, n′) =
〈
n

∣∣∣∣ 1

E − H ± iδ

∣∣∣∣ n′
〉

(48)

Here, H is the total Hamiltonian and δ is a small positive
number. Using the Green function defined by equation (47),
the conductance can be written as

G = 4e2

h

[
t G̃(n, n)tG̃(n + 1, n + 1)

−t G̃(n, n + 1)t G̃(n, n + 1)
]

(49)

The advanced and retarded Green functions are easily
obtained by the recursion method (Thouless and Kirkpatrick,
1981; Lee and Fisher, 1981). In the matrix form, the
Hamiltonian is given by

H =




. . . −t 0 0 0
−t ε0 −t 0 0
0 −t ε1 −t 0
0 0 −t ε2 −t

0 0 0 −t . . .


 (50)

where the dimension of the matrix is infinite since we
consider an open system. Let us define the Green function
for the system in which all sites n > n0 are deleted as

GL±
n0

=
[
(E ± iη)I − HL

n0

]−1
(51)

where the Hamiltonian HL
n0

consists of sites n ≥ n0. The
Green function for the system H L

n0+1 satisfies the following

equation: [
(E ± iη)I − HL

n0+1

]
GL±

n0+1 = I (52)

(
(E ± iη)I − HL

(n0) −t

−t† E ± iη − εn0+1

)

×
(

A1 A2

A3 GL±
n0+1(n0 + 1, n0 + 1)

)
= I (53)

where t† = (0, · · · , 0, t). It follows that the Green function
GL±

n (n, n) satisfies the following recursive relation:

GL±
n0+1(n0 + 1, n0 + 1) =

[
g±(n0 + 1)−1 − tGL±

n0
(n0, n0)t

]−1

(54)
where g±(n) = (E ± iη − εn0+1)

−1 is the Green function for
the isolated site n0 + 1. Starting from the left semi-infinite
ideal lead, where the exact Green function is analytically
given, we can evaluate the Green function GL±

n (n, n) at
arbitrary site n ≥ 1.

The Green function for the whole system satisfies


(E ± iη)I − HL

n−1 −t 0
−t† E ± iη − εn −t

0 −t† (E ± iη)I − HR
n+1




×

 A1 A2 A3

A4 G±(n, n) A5

A6 A7 A8


 = I (55)

where HR
n0

is the Hamiltonian for the semi-infinite system in
which all sites n < n0 are deleted. The Green function for the
isolated right electrode is calculated by using the following
recursive relation:

GR±
n0

(n0, n0) =
[
g±(n0)

−1 − tGR±
n0+1(n0 + 1, n0 + 1)t

]−1

(56)
The diagonal element of the advanced and retarded Green
function for the whole system G±(n, n) is given by

G±(n, n) = [
g±(n)−1 − tGL±

n−1(n − 1, n − 1)t − t

× GR±
n+1(n + 1, n + 1)t

]−1
(57)

It is also easy to show that the off-diagonal element is given
by

G±(n, n + 1) = G±(n, n)tG ± R
n+1(n + 1, n + 1) (58)

Finally, the total conductance for each spin direction is
calculated by using equations (49)–(58).
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The tight-binding model described above is easily gen-
eralized to a 3D junction with a multiorbital system. The
Hamiltonian is given by

H = −
∑

〈n,n′〉,α,β,σ

tnα,n′βc†
nασ cn′βσ

+
∑
n,α,σ

εnασ c†
nασ cnασ (59)

where the lattice sites are labeled by indices n and n′,
and c†

nασ (cnασ ) is the creation (annihilation) operator of an
electron with spin σ and orbital α on the lattice site n. The
hopping energy is tnn′αβ , and the summation 〈n, n′〉 runs over
nearest-neighbor sites. The spin-dependent on-site potential
εnασ includes the exchange potential in the FM, and the
disorder and roughness of the insulating barrier are described
by the variation of the hopping tnα,n′β and on-site energy εnασ

(Itoh et al., 1999).
Mathon has studied the continuous transition from the

current-perpendicular-to-plane giant magnetoresistance
(CPP-GMR) of metallic systems to the TMR of tunnel junc-
tions with a vacuum gap and an insulating barrier (Mathon,
1997). The tunnel junction with a vacuum gap is obtained by
gradually turning off the overlap matrix elements between the
ferromagnetic electrodes. The insulating barrier is obtained
by varying the on-site potentials in the spacer so that the
Fermi level in the spacer layer moves into the band gap. It is
shown that the tunneling across the vacuum gap and through
an insulating barrier leads to the same TMR provided the
barrier is at least as high as the conduction bandwidth and
the barrier is narrow, not wider than a few atomic planes. It
is also shown that the tunneling current across the vacuum
gap is carried only by the s−p electrons in the tunneling
regime, though a significant proportion of the current in the
magnetic metal (Co) is carried by d electrons that are highly
spin polarized. The switching from d electrons to s−p elec-
trons can explain the value of the TMR ratio and the change
in the sign of spin polarization P of tunneling electrons.

The effect of disorder and roughness of the insulating
barrier on TMR has been studied by several authors (Zhang
and Levy, 1999; Mathon, 1997; Tsymbal and Pettifor, 1998;
Mathon and Umerski, 1999; Itoh et al., 1999). Figure 10
shows the TMR ratio RMR of the magnetic tunnel junctions
with and without interface roughness calculated by Itoh et al.
(1999). The interface roughness is treated with the help of
the coherent potential approximation (Soven, 1967; Velický,
1969). One can see that RMR for EF = −5t is enhanced by
the interface roughness while that for EF = 0 is suppressed.
They found that the diffusive conductance originating from
the interface roughness was highly dependent on the shape
of the Fermi surface.

The tight-binding model has also been used to study the
TMR for half-metallic systems by using the double exchange
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Figure 10. TMR ratio RMR as a function of the barrier height �

for EF = −5t (solid and open circles) and EF = 0 (solid and open
squares). Solid and open symbols denote the results without (c = 0)
and with (c = 0.5) randomness, respectively. The average barrier
thickness is taken to be 11 atomic layers. (Reproduced from H. Itoh,
A. Shibata, T. Kumazaki, J. Inoue, and S. Maekawa, J. Phys. Soc.
Jpn. 68, 1632 (1999), with permission from the Physical Society of
Japan.)

model (Itoh, Ohsawa and Inoue, 2000). It is shown that
the strong exchange coupling in the double exchange model
plays an important role in the temperature dependence of
both P and the TMR ratio; their values can be less than
the maximum values expected for half-metallic systems at
low temperatures, and the TMR ratio decreases more rapidly
than P with increasing temperature. The calculated results,
however, indicate that the TMR ratio may still be large at
high temperatures near the Curie temperature.

The TMR of an epitaxial Fe/MgO/Fe(001) junction was
calculated by Mathon and Umerski (2001) and independently
by Butler, Zhang, Schulthess and MacLaren (2001). Mathon
and Umerski used the tight-binding model with the bands
fitted to an ab initio band structure of Fe and MgO.
The calculated TMR ratio is 1200% for 20 atomic planes
of MgO. As mentioned earlier, the larger TMR ratio in
epitaxial magnetic tunnel junctions has been observed by
several groups (Bowen et al., 2001; Faure-Vincent et al.,
2003); Parkin et al., 2004; Yuasa et al., 2004; Djayaprawira
et al., 2005; Hayakawa et al., 2005; Yuasa, 2006). The most
powerful method to study the spin-dependent tunneling in
an epitaxial magnetic tunnel junction is given by the first-
principles model, as discussed in the next section.

5 FIRST-PRINCIPLES MODEL

In 1999, MacLaren, Zhang, Butler and Wang (1999) devel-
oped a calculation technique for spin-dependent tunneling
in magnetic tunnel junctions based on the LKKR method
(MacLaren et al., 1990). The LKKR method is a self-
consistent electronic structure method, based on the LSDA
or on some other approximation to density-functional theory,
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which may be used to calculate the electronic structure of a
three-dimensional solid without requiring the usual constraint
of three-dimensional translational symmetry. The LKKR cal-
culation for an interface proceeds as follows: first, a bulk cal-
culation is performed to find the self-consistent potentials for
the two leads far from the interface. Then, the whole system
with the interface is set up, and the spin-up and spin-down
potentials on atomic layers within the sample and within
the leads near the interface are allowed to relax through
the iterative procedure until electrostatic self-consistency is
achieved through the system. Since the plane-wave reflec-
tion and transmission coefficients are generated by the LKKR
method, the reflection and transmission coefficients for Bloch
waves incident on the sample from one of the leads can be
obtained easily after a few algebraic steps (MacLaren, Zhang,
Butler and Wang, 1999). Then the conductance is obtained
by using the Landauer–Büttiker formalism.

MacLaren et al. applied the LKKR-based first-principles
method to the spin-dependent tunneling in Fe/ZnSe/Fe(100)
tunnel junctions and predicted that the TMR ratio reaches
as high a value as about 2000%. However, it is difficult to
fabricate the epitaxial magnetic tunnel junction with ZnSe
showing a larger TMR ratio. Gustavsson, George, Etgens
and Eddrief (2001) fabricated an epitaxial Fe/ZnSe/FeCo
junction on ZnSe(001)-buffered GaAs(001) substrates by
MBE. The transport measurement on microfabricated tun-
nel junctions yielded up to 16% at 10 K. Butler, Zhang,
Schulthess and MacLaren (2001) studied the spin-dependent
tunneling in Fe/MgO/Fe junctions by using the LKKR-based
first-principles method (MacLaren, Zhang, Butler and Wang,
1999), and predicted a TMR ratio of as high a value as
6000%. As mentioned in the preceding section, Mathon and
Umerski (2001) arrived at qualitatively identical conclusions
by using the multiband tight-binding description for the elec-
tronic structure. Soon after the publication of these two theo-
retical papers, Bowen et al. (2001) reported that a TMR ratio
of 27% was observed at 300 K in Fe/MgO/FeCo(001) epitax-
ial junctions. Encouraged by this work, many groups (Faure-
Vincent et al., 2003); Parkin et al., 2004; Yuasa et al., 2004;
Djayaprawira et al., 2005; Hayakawa et al., 2005; Yuasa,
2006) have made substantial efforts for developing epitax-
ial magnetic tunnel junctions with an MgO barrier having a
high TMR ratio, as shown in Figure 1.

The key to understanding the origin of the high TMR ratio
observed in the MgO system is the evanescent gap state in
the MgO barrier. The decay rate of the evanescent waves
in the MgO barrier depends strongly on the symmetry of
the wave function. Figure 11 shows the dispersion k2(E) for
MgO in the vicinity of the gap along � (100) (Butler, Zhang,
Schulthess and MacLaren, 2001). There are three kinds of
evanescent waves with different symmetries within the gap,
�1, �2′ , and �5. The horizontal axis is (k�z)2, where k
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Figure 11. Dispersion k2(E) for MgO in the vicinity of the gap
along � (100). k is in the (001) direction and �z is the interplanar
spacing for MgO(001). EF is the Fermi energy. Ev is the top
of the valence band. Ec is the bottom of the conduction band.
(Reproduced from Butler et al. 2001, with permission from the
American Physical Society.  2001.)

is in the (001) direction and �z is the interplanar spacing
for MgO(001). Negative values of (k�z)2 determine the
exponential decay rates for various Bloch states. As shown
in Figure 11, the weakest decay is for the state with �1

symmetry, which implies that the evanescent wave with �1

symmetry gives the dominant contribution to the tunneling
current. The proportion of the tunneling current carried by
the �1 states increases with increasing barrier thickness.

Figure 12 shows the energy band structure of Fe(001)
calculated by the LKKR method (Nagahama, Yuasa, Tamura
and Suzuki, 2005). The majority and minority spin bans
are represented by thin and thick lines, respectively, and
the energy bands with �1 symmetry are plotted with solid
lines. One can see that the minority spin band with �1

symmetry is absent at the Fermi energy. In contrast, there
are majority spin states with �1 symmetry at the Fermi
energy. Therefore, the tunneling of electrons with majority
spin dominates the current, which yields a high TMR ratio for
sufficiently thick barriers. The situation is clearly shown by
the tunneling density of states (TDOS) plotted in Figure 12
(b). The TDOS is defined as the density of electronic states
subject to the following boundary conditions: on the left-hand
side of the interface, there is an incoming Bloch state with
unit flux and the corresponding Bloch state with unit flux and
the corresponding reflected Bloch states; on the right-hand
side are the corresponding transmitted Bloch states (Butler,
Zhang, Schulthess and MacLaren, 2001). The states with
�2, �2′ , �5 symmetry decay much faster than that with
�1 symmetry. When the magnetizations of Fe electrodes
are aligned so as to be antiparallel, only one electrode has
the state with �1 symmetry. Therefore, the current is much
suppressed than in the case with the parallel alignment, and
we have a high TMR ratio.
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The transmission electron microscope (TEM) image of a
single-crystal magnetic tunnel junction with Fe(001)/MgO
(001)(1.8 nm)/Fe(001) fabricated by Yuasa’s group (AIST)
and the observed TMR ratio are shown in Figure 13(a) and
(b), respectively (Yuasa et al., 2004). In the TEM image the
lattice dislocations are indicated by circles. The lattice of
the top Fe electrode is slightly expanded along the [110]
axis. The existence of the lattice dislocations is the clear
difference between the theoretical model and the real system,
and should be considered if we want to construct a more
accurate theoretical model of epitaxial tunnel junctions. If
we treat the effect of the lattice dislocation on the spin-
dependent tunneling in an appropriate way, the quantitative
disagreement of the TMR ratio between the theoretical
prediction and experimental results will be settled. The
predicted TMR ratio is more than 10 times larger than the
experimentally observed one. As mentioned before, as the
thickness of the MgO barrier increases, the contribution
from the states with �1 symmetry increases and therefore
the TMR ratio increases, as shown in Figure 13(b). One
surprising finding is that the TMR ratio exhibits clear
oscillatory behavior as a function of the thickness of the
MgO barrier, tMgO. The period of the oscillations (0.30 nm)
is independent of temperature and bias voltage, but the
amplitude of the oscillation decreases with increasing bias

voltage. The origin of the oscillation might be an interference
effect, since the period is inconsistent with the thickness of a
monoatomic MgO(001) layer (0.22 nm). However, this is still
an open question, and further development of the theoretical
understanding of this system is required.

6 CONCLUSION

In this chapter, we have described the theoretical models of
spin-dependent tunneling in magnetic tunnel junctions, that
is, the tunneling Hamiltonian model, free-electron model,
tight-binding model, and first principles model. Each model
has its own merits and demerits and we should choose the
right model for each system. The tunneling Hamiltonian
model is a phenomenological model that introduces a crude
approximation of constant values for the tunneling matrix
elements. However, it gives an intuitive picture of tunneling
and a quite useful expression of the TMR ratio. The free-
electron model is the simplest of the models that include the
quantum coherence. It can explain the anomalous dependence
of the TMR ratio on the barrier height, although it cannot
handle the multiorbit effect and the scattering due to the
disorder. The tight-binding model is a very powerful tool
that can treat the complex band structure of materials and
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Figure 13. (a) High-resolution TEM image of a single-crystal magnetic tunnel junction with Fe(001)/MgO(001)(1.8 nm)/Fe(001) structure.
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Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Materials 3, 868 (2004), with permission from Nature Publishing
Group.)

disorder at the interface. The model can be applied to both the
magnetic tunnel junctions with an amorphous Al2O3barrier
and those with an epitaxial MgO barrier. However, the model
has many parameters that must be determined empirically
by fitting the first-principles calculation. The first-principles
model has no empirical parameters by definition. However,
its computational cost is expensive and it requires two-
dimensional translational symmetry.

In order to develop efficient spin-electronic devices, the
materials and device designs based on the appropriate
theoretical model are required. One successful example is
the high TMR ratio realized in the epitaxial magnetic tunnel
junctions with MgO barrier, as described in Section 5. The
theoretical understanding of the physics of spin-dependent
tunneling promises further development of spin electronics
and related fields. Further improvements in our theoretical
understanding of the physics of spin-dependent tunneling will
lead to advances in spin electronics and related fields.
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1 INTRODUCTION

Many elements in the periodic table show a magnetic
moment as free atoms. However, only iron, cobalt, nickel,
and a few rare-earths and their alloys exhibit ferromagnetic
properties in bulk compounds. The evolution of the atomic
magnetic moments, their mutual coupling (which ultimately
produces macroscopic magnetism), and the appearance of
magnetic anisotropy in molecules, nanosized aggregates, and
solids are the subjects of intense investigation. Besides being
of fundamental interest, such questions bear on the design
of novel magnetic devices with one or more dimensions
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by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

reduced to the length scale of interatomic cooperative mag-
netic behavior. Understandably, we have good theoretical
models and plenty of experimental data that tell us how
magnetism works in free atoms and crystalline solids. How-
ever, as we explore the realm in between these two limits,
we face a remarkable paucity of experimental information.
The relevant length scale of the exchange interaction in most
magnetic materials is only a few atomic spacings. This is the
reason why the exploration of magnetic nanostructures has
traditionally lagged behind the semiconductor field. Whereas
in semiconductors the dimensions of the system influence
the charge carriers’ behavior already for typical lengths of
tens of nanometers, magnetic materials must be engineered
down to the Angstrom scale. It is only in the last two decades
that advances in growth and characterization methods have
allowed us to investigate and produce artificial structures
with magnetic properties controlled with nanometer preci-
sion. Such progress has given rise to a wealth of techno-
logical applications, such as magnetic sensors and hard disk
read heads making use of giant magnetoresistance effects,
spin-based electronics, and new magnetic media.

Here, we are concerned with fundamental issues that gov-
ern the magnetic behavior of nanostructured materials as
well as that of magnetic alloys down to the ultimate atomic
scale. We describe the fabrication and the magnetic prop-
erties of zero-dimensional (0D), one-dimensional (1D), and
two-dimensional (2D) nanostructures of Co and Fe, outlining
the governing principles for self-organized growth of metal-
lic nanostructures on crystalline substrates. By exploiting the
hierarchy of diffusion processes on flat and stepped metal sur-
faces, we are able to construct low-dimensional magnetic sys-
tems almost atom-by-atom, which gives us an unprecedented
view on the evolution of magnetization, magnetic anisotropy,



2 Magnetism of low dimensions

and magnetic order from atoms to solids. Starting from indi-
vidual impurities, we let ensembles of dimers, trimers, and
larger clusters self-assemble by controlling their coverage
and substrate temperature. Surfaces with regular arrays of
monatomic steps are used to induce the formation of 1D
atomic chains. With increasing coverage the chains evolve
into stripes in a row-by-row fashion, and finally into 2D
atomically thin layers. The investigation of such structures
has revealed exciting and unexpected properties. As one
important result we demonstrate how the superparamagnetic
limit – encountered in samples too small to provide sufficient
long-term stability of ferromagnetic order and a well-known
limit to the increase of the bit density in magnetic memo-
ries – can be elegantly circumvented in nanostructures. The
key is in the very large magnetic anisotropy of some of the
nanostructures, which results from their reduced atomic coor-
dination on one hand, and the electronic hybridization with
substrate atoms on the other hand. The discussed examples
demonstrate how nanoscale structures can provide practical
solutions to elude classical difficulties in the use of magnetic
materials as well as fundamental input to our understanding
of magnetic phenomena.

2 SELF-ORGANIZED GROWTH OF
METALLIC NANOSTRUCTURES

Common to all bottom-up strategies for the fabrication of
metallic nanostructures at surfaces is that they are essentially
based on growth phenomena. Atoms are deposited on the
substrate in vacuum, and nanoscale structures evolve as the
result of a multitude of atomistic processes. This is inherently
a nonequilibrium phenomenon. Any growth scenario is gov-
erned by the competition between kinetics and thermodynam-
ics. In thermodynamic equilibrium, detailed balance requires
that all atomistic processes proceed in opposite directions
at equal rate. Hence, at finite temperature, the system fluc-
tuates around equilibrium configurations and no net growth
occurs – a situation well described by statistical mechanics.
The formation of nanostructures at surfaces requires nonequi-
librium. A measure for the degree of nonequilibrium is
the supersaturation, defined as the actual adatom/admolecule
density normalized to the equilibrium adatom/admolecule
density (ρ − ρe)/ρe. The supersaturation describes to which
extent the evolving structures will be determined by the
growth kinetics or by thermodynamic parameters, such as
the surface and interface free energy. The larger the super-
saturation, the more decisive the kinetic processes.

In a growth experiment, where atoms are deposited at a
surface with a constant rate F , the diffusivity D determines
the average distance l an adatom has to travel to meet another

one to nucleate a new aggregate or to attach to an already
formed island. In the nucleation stage at very low coverage
this length decreases rapidly and eventually becomes con-
stant, typically at coverages above a few percent of a mono-
layer (Brune, Roder, Boragno and Kern, 1994). In this satu-
ration regime any further deposition will exclusively lead to
the growth of existing islands. The average diffusion length
l, and correspondingly the nucleation density at saturation,
only depends on the ratio D:F (Pimpinelli, Villain and Wolf,
1992). The ratio of deposition to diffusion rate is thus the key
quantity characterizing the growth kinetics and a measure for
the supersaturation. If the deposition is slow with respect to
the diffusivity, the supersaturation is low and growth takes
place close to equilibrium conditions; that is, adatoms or
admolecules have enough time to explore the potential energy
surface to reach a minimum energy configuration. If the
deposition is fast with respect to the diffusivity, the individ-
ual atomistic processes become increasingly important and
the growth scenario is essentially determined by kinetics.

2.1 The hierarchy of activated motion

Of particular interest within this chapter are metal nanos-
tructures on metal surfaces. At low substrate temperature,
the growth of such a system is a prototype for the kinetically
dominated growth regime. The shape and size of the nanos-
tructures are largely determined by the competition of the
active diffusion processes and can be controlled by the exter-
nal parameters temperature and deposition flux and by the
appropriate choice of the substrate symmetry (Röder et al.,
1993). The central atomic processes are surface diffusion
processes of single adatoms, comprising diffusion on ter-
races (characterized by the diffusion barrier Ed), over steps
(Es), along edges (Ee), and across corners (Ec). All these dif-
fusion processes are thermally activated, with the respective
rate depending exponentially on the potential energy barrier.
To first order, these barriers scale with the local coordina-
tion; that is, terrace diffusion has a lower barrier than edge
diffusion and corner crossing (Stumpf and Scheffler, 1994).
Edge descend is often more costly than terrace diffusion due
to an extra barrier at the edge of an island, known as the
Schwoebel–Ehrlich barrier (Ehrlich and Hudda, 1966). For a
given material system we have thus a natural hierarchy of the
relevant diffusion barriers. By selective activation/freezing
of a certain diffusion process we can shape the growing
aggregates.

As already mentioned, the terrace diffusion barrier deter-
mines the mean free path of a diffusing adatom on the
substrate surface and also on top of islands, which build
up during deposition. The barrier for crossing a step fixes
the average number of attempts necessary for an adatom
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to descend the edge. It is the interplay between these two
parameters, which determines whether an aggregate grows
2D or three-dimensionally (3D). If atoms nucleate on top
of islands without having visited their edge at all, or after
they have visited it too few times to descend, the aggregates
grow 3D. Otherwise, the downward flux of adatoms is large
enough so that no nucleation occurs on top of an island and
the aggregates grow only laterally.

If the Schwoebel–Ehrlich barrier is not too large, one can
always find growth conditions where the interlayer diffusion
is fast enough to prevent any 3D growth. The aggregates
then grow in 2D or 1D shape depending on the interplay of
the various intralayer diffusion processes. Even 1D growth
of aggregates can be easily initiated by choosing a substrate
with an intrinsic diffusion anisotropy (Röder et al., 1993;
Mo, Kleiner, Webb and Lagally 1991). The fcc(110) surface
is such a substrate. Due to the particular structure of this
surface with troughs along the [1–10] direction, diffusion is
much faster along this direction than in the orthogonal [001]
direction. This diffusion anisotropy and the fact that corner
crossing is also anisotropic can be exploited for the growth of
1D chains (Li et al., 1997) (Figure 1a). Another, particularly
intriguing way to promote the formation of 1D atomic chains
is the use of substrate steps, as will be discussed later in this
section.

On substrates with no terrace diffusion anisotropy, aggre-
gates show 2D with the shape determined by the compe-
tition between terrace and edge diffusion. On close-packed
surfaces large compact islands can only be grown at suf-
ficiently high temperature, where edge diffusion is active
and island corners can be crossed (Röder et al., 1993;
Michely and Comsa, 1991; Morgenstern, Rosenfeld and
Comsa, 1996) (Figure 1b). At low temperature, the mobil-
ity of adatoms attached to island edges is limited or frozen
and the aggregates grow in ramified island shapes (Hwang,

Schroder, Gunther and Behm, 1991; Brune, Romainczyk,
Roder and Kern, 1994) (Figure 1c). The metal aggregation
on fcc(111) surfaces at low temperature is thus a nice model
system for fractal growth in the diffusion limited aggrega-
tion scenario (Witten and Sander, 1981). The branches can
be randomly ramified or grow into crystallographic well-
determined directions. The latter is termed dendritic growth
and the dominant atomistic process here is the anisotropy
in the corner crossing (Brune et al., 1996). For square lat-
tices, on the other hand, edge and terrace diffusion are too
close in energy leading to compact island shapes even at low
temperature (Zhang, Chen and Lagally, 1994).

The size of nanostructures formed in the diffusion lim-
ited regime can be controlled directly by temperature, flux,
and coverage. Owing to the inherent stochastic nature of the
nucleation and growth process, however, the possibility of
tuning the size distribution is somewhat limited. Narrowed
size distribution can be obtained by either Ostwald ripening,
confined nucleation, or self-limiting processes. The nucle-
ation regime is ideally suited to synthesize very small clusters
comprising just a few atoms. The size distribution achieved
here is characterized by a standard deviation roughly scaling
with <n>1/2, where n is the number of atoms. Larger particle
sizes with substantially narrowed size distribution, 0.3<n>,
can be synthesized by the Ostwald ripening technique (Röder
et al., 1993). Such size distributions are, however, often suffi-
ciently narrow to explore the size dependence of the physical
and chemical properties of metallic nanostructures, such as
their magnetism.

2.2 Steering and positioning

Any application of magnetic nanostructures requires the
fabrication of ordered nanostructure arrays with individually

(a) (b) (c)

10 nm 30 nm 10 nm

Figure 1. Atomic architecture at surfaces by control of growth kinetics. (a) Formation of monatomic Cu chains on the anisotropic Pd(110)
substrate. (b) and (c) Ag nanostructures on Pt(111); size and shape are determined by controlling the kinetic growth parameters deposition
flux and temperature.
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addressable units. Moreover, uniformity in position and
spacing are important considerations because the properties
of the nanostructures may not only depend on their size
and shape but also on their mutual interactions. Thus,
growth strategies need to be developed providing nearly
monodisperse nanostructures, which are organized in regular
arrangements.

Lateral ordering of the nanostructures can be achieved
by (i) self-ordering due to mutual long-range interactions
and (ii) directed growth on patterned substrates. The lat-
ter approach turned out as particularly successful for guid-
ing nanostructure formation. The patterned surfaces serve
as nanotemplates with predefined nucleation sites or ener-
getic sinks (Brune, Giovannini, Bromann and Kern, 1998;
Nötzel, 1996; Temmyo, Kuramochi, Kamada and Tamamura,
1998). With this directed self-ordering strategy, the position
of each nanostructure is exactly defined by the template, thus
yielding nucleation sites predictable with nanometer accu-
racy. Depending on the required length scale, artificially or
naturally structured surfaces can be employed. Natural nan-
otemplates are surfaces with reconstructions (Barth, Brune,
Ertl and Behm, 1990), periodic dislocation networks (Brune,
Roder, Boragno and Kern, 1994), or regularly spaced steps
(Hahn et al., 1994; Kirakosian et al., 2001). In these systems
periodic spacings ranging from a few angstroms up to a few
nanometers are provided. If larger spacings are needed, the
usual top-down fabrication techniques can be applied for the
fabrication of prestructured substrates (Nötzel, 1996).

Important progress in the fabrication of 2D nanostructure
arrays could be made by employing substrates with dislo-
cation networks. These dislocation networks occur naturally
on some surfaces (Barth, Brune, Ertl and Behm, 1990) and
can also be produced in a controlled way in thin epitaxial
films (Brune, Roder, Boragno and Kern, 1994) or by wafer
bonding (Leroy, Eymery, Gentile and Fournel, 2002). Typi-
cal periodicities range between 2 and 20 nm. The dislocation
lines are in general found to be repulsive toward diffusing
atoms (Brune, Giovannini, Bromann and Kern, 1998; Fischer
et al., 1999), while dislocation elbows can act as sinks for
mobile atoms (Chambliss, Wilson and Chiang, 1991). For
a well-defined set of growth parameters, the adatoms are,
therefore, in the first case confined within the dislocation
network unit cells, exactly nucleating one island per unit
cell. In the second case, islands preferentially nucleate at the
attractive defects. These techniques have successfully been
applied in the growth of metal or semiconductor nanostruc-
ture arrays and even magnetic nanopillars (Fruchart, Klaua,
Barthel and Kirschner, 1999). A valuable side effect of the
nucleation and growth on such patterned substrates is the
typically enhanced size uniformity. In this case, the size
distribution becomes binominal and the size uniformity is
determined by the statistical fluctuations in the deposition

process. As the homogeneity increases with the size of the
atom collecting area, the monodispersity becomes better with
increasing island distance (Brune, Giovannini, Bromann and
Kern, 1998).

As mentioned earlier, regularly stepped surfaces can serve
as natural nanotemplates for the self-organized growth of 1D
nanoarrays. The step edges act as preferential nucleation sites
for the deposited material due to the increased coordination
with respect to the terrace sites. A row-by-row decoration
of the steps can be achieved if (i) the terrace mobility is
high enough that all adatoms can reach the steps and (ii)
the mobility of the atoms once attached to the steps is still
sufficient to ensure 1D nucleation and growth (Gambardella
et al., 2000). At appropriate deposition temperatures, the
width of the adlayer chains can be changed discretely from
monatomic to diatomic, triatomic and so on, simply by
controlling the total coverage. Perfect 1D nanotemplates are
for example, the (557) surface of Si and the (997) surface
of Pt, which had been proven to show highly ordered step
structures (Hahn et al., 1994; Kirakosian et al., 2001). As
an example, the Pt(997) surface composed of (111) oriented
terraces of 20.2 Å in width, separated by monatomic steps, is
shown in Figure 2(a). The regular step ordering is mediated
by the repulsive step–step interactions, which suppress
step meandering. As examples for nanotemplate supported
growth, arrays of 1D Co and Fe chains fabricated on Pt(997)
will be discussed within this chapter (see Figure 2b and inset
in Figure 8a).

3 MAGNETISM OF ZERO- AND
ONE-DIMENSIONAL STRUCTURES

3.1 Magnetic atoms on nonmagnetic substrates

In this chapter, we are concerned with fundamental issues
that govern the intrinsic magnetic properties of low-
dimensional metal systems fabricated by molecular beam
epitaxy on nonmagnetic substrates. We define as intrinsic
those properties that depend on atomic scale magnetism and
crystalline structure, such as the magnetic moment, the mag-
netocrystalline anisotropy, and magnetic order, as opposed to
the extrinsic properties that depend on the microstructure and
magnetostatic interactions (Kronmüller, 2003; Skomski and
Coey, 1999). The main focus will be on 0D and 1D systems,
where the influence of size and dimensionality effects on the
intrinsic magnetization parameters is largest. For a thorough
treatment of 2D systems such as magnetic thin films and
multilayers, we refer to the extensive monographs published
on the subject (Gradmann, 1993; Schneider and Kirschner,
2000; Bland and Heinrich, 2005) and to other chapters of
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(a)

(b)

Co atoms

Pt terrace

100Å

Figure 2. (a) The STM image of a Pt(997) surface shows (111)-
oriented terraces of 20 Å width, separated by monatomic steps. The
high degree of order makes this substrate an ideal nanotemplate for
nanostructure fabrication. (b) Formation of monatomic chains of Co
atoms by substrate step decoration.

this handbook (see Magnetism of Low-dimensional Sys-
tems: Theory, Volume 1 and Magnetic Ultrathin Films,
Volume 4).

The fabrication of magnetic nanostructures and thin films
by molecular beam epitaxy (MBE) methods is typically ini-
tiated by the deposition of magnetic atoms from the vapor-
phase onto a nonmagnetic substrate, as discussed in the
preceding text. A first point of fundamental and practical
interest, in this context, is the extent to which the local
magnetic moment of a transition metal impurity is modi-
fied by the interaction with the supporting substrate. The
role played by magnetic/nonmagnetic interfaces in determin-
ing the magnetization and particularly the anisotropy fields
in ultrathin films has been widely investigated in the past
(Gradmann, 1993; Sander, 2004). With the aim of control-
ling the magnetic behavior of structures with ever reducing
dimensions, however, our knowledge must progress toward
the atomic size level. Identifying and distinguishing local
substrate-impurity hybridization effects from coordination
and magnetoelastic effects in thin films, for instance, provide
useful guidelines to tailor the intrinsic magnetization param-
eters in finite-sized supported particles, optimize sensitive

interface properties that govern electron transport in magne-
toelectronic devices (Jansen and Moodera, 1998), and test
current theoretical models of low-dimensional magnetic sys-
tems (see also Magnetism of Low-dimensional Systems:
Theory, Volume 1).

Most transition metal atoms in the gas phase possess large
spin (mS) and orbital (mL) magnetic moments due to the
incomplete filling of the d-shell and the atomic correlation
effects exemplified by the Hund’s rules. In the solid state,
electron delocalization and crystal field effects compete with
intra-atomic Coulomb interactions causing a substantial or
total decrease of mS and quenching of mL. Theoretical calcu-
lations, however, predict such effects to be strongly reduced
at surfaces owing to the decreased coordination of transition
metal impurities (see also Magnetism of Low-dimensional
Systems: Theory, Volume 1; Stepanyuk et al., 1996; Nonas
et al., 2001). As a case experimental system, we consider
the magnetic properties of Co. As free atom in the ground
state d7 configuration, Co displays significant spin and
orbital magnetism with mS = mL = 3 µB, and Brillouin-like
isotropic magnetization (Figure 3a). In the bulk hexagonal
close-packed structure Co is a strong ferromagnet with mS =
1.52 and mL = 0.15 µB and exhibits a fairly large mag-
netocrystalline anisotropy energy (MCA) compared to bulk
Fe and Ni, with a uniaxial anisotropy energy constant K =
0.05 meV per atom (Bonnenberg, Hempel and Wijn, 1986).

Once deposited onto a metal surface, we expect the
magnetic moment of Co atoms to vary according to the
degree of d-orbital hybridization with the conduction electron
states of the substrate (Gambardella et al., 2002b; Song and
Bergmann, 2001). This will depend on the reduced num-
ber of neighbors around the impurity as well as on the
host band structure, similar to dilute alloys with nonmag-
netic metals (Mydosh and Nieuwenhuys, 1980). In deal-
ing with surface impurities, the experimental challenge lies
in probing extremely reduced amounts of magnetic atoms
(typically the order of 1014 atoms cm−2 or less, deposited
at cryogenic temperature to avoid cluster formation) on a
macroscopic metal surface with nonnegligible para- or dia-
magnetic response. To achieve the required element-specific
sensitivity, the method of choice is the absorption of cir-
cularly polarized light in the soft X-ray range, described in
the chapters Magnetic Spectroscopy, Volume 1 and Syn-
chrotron Radiation Techniques Based on X-ray Magnetic
Circular Dichroism, Volume 3. The lineshape of the X-ray
absorption spectra (XAS) at the L2,3 edges of 3d transition
metals (2p63dn to 2p53dn+1 excitations) contains informa-
tion about the electronic configuration of the impurities (van
der Laan and Thole, 1991). Simultaneously, as the X-ray
absorption cross-section depends on the orientation of the
spin and orbital moment of the 3d electrons relative to the
X-ray polarization direction, magnetic sensitivity is achieved
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Figure 3. (a) Spin and orbital magnetic moment of a gas phase Co atom as given by the Hund’s rules for the d7 electronic configuration.
The magnetic anisotropy energy equals zero due to the spherical symmetry of the system. The isotropic magnetization is represented by
a Brillouin function for the d7 state calculated at T = 5.5 K. (b) Spin and orbital magnetic moment and magnetic anisotropy energy of an
individual Co atom deposited on the Pt(111) surface. The anisotropic magnetization is measured at T = 5.5 K by recording the XMCD
intensity at the Co L3 edge as a function of applied field in the easy (out-of-plane, filled circles) and hard (in-plane, empty circles) direction.

by taking the difference of the XAS spectra for parallel (I+)
and antiparallel (I−) alignment of the X-ray polarization with
respect to the sample magnetization. The X-ray magnetic cir-
cular dichroism (XMCD) spectra obtained in this way allow
to identify the magnetization direction and strength of a given
element (Stöhr, 1999), and to estimate quantitatively mS and
mL by means of the so-called XMCD sum rules (Thole,
Carra, Sette and Van der Laan, 1992; Carra, Thole, Altarelli
and Wang, 1993; Chen et al., 1995).

As an example of a strongly interacting substrate we
present data obtained for the Pt(111) surface. The XAS
of isolated Co impurities deposited in ultra-high-vacuum
on Pt(111) (Figure 4a) reveals broad features typical of Co
metal (Figure 4b) that are drastically different from the XAS
calculated for the atomic d7 configuration (Figure 4c) and
observed in the vapor-phase (Martins, Godehusen, Richter
and Zimmermann, 2003). The spectrum of Co/Pt(111) differs
also from that of Co impurities deposited on free-electron
metals, such as K, where the narrow XAS multiplet structure
indicates that the Co ground state has d8 atomic-like character
(Figure 4c). In the latter case s-d charge transfer takes place,
but the Co 3d states remain essentially localized with both mS

and mL close to the integer Hund’s rule limit (Gambardella
et al., 2002b). On a transition metal surface such as Pt,
on the other hand, the electron density is much larger and
the impurity 3d-states can hybridize with both the s- and
d-states of the substrate. This leads to a strong reduction
of mS and mL compared to the vapor-phase. Owing to
its reduced coordination, the impurity magnetic moment

L3

L2X
A

S
 (

ar
bi

tr
ar

y 
un

its
)

X
M

C
D

(I+ − I−)×2

780 790 800

Photon energy (eV)

Bq = 0°

780 790 800

Photon energy (eV)

Co/Pt(111) Co bulk

X
M

C
D

hn

q = 70°

q = 70°

q = 0° Pt
Co

I+
I−
Pt bcg

I+ + I−

Co d8

Co d7

Co/Pt(111)

Co/K

X
A

S
 (

ar
bi

tr
ar

y 
un

its
)

X
A

S
 (a

rb
itr

ar
y 

un
its

)

(a) (c)

(b)

Figure 4. (a) L3,2 XAS spectra of Co impurities (0.03 ML)
deposited on Pt(111) recorded at T = 5.5 K, B = 7 T with paral-
lel (I+) and antiparallel (I−) alignment of the photon helicity with
respect to B at an angle θ = 0◦ relative to the surface normal. The
Co XAS appears superimposed on the background signal of the Pt
substrate (dotted line). The XMCD (I+−I−) is shown at the bot-
tom for θ = 0◦ and 70◦. (b) XAS and XMCD spectra of bulk Co.
(c) Comparison between the total XAS (I++I−) after background
subtraction for Co impurities on Pt(111), Co impurities on a K film,
and the calculated XAS for atomic-like d8 and d7 configurations.

is nonetheless significantly enhanced with respect to 2D
films (Tischer et al., 1995; Weller et al., 1995), supported
nanoparticles (Dürr et al., 1999; Koide et al., 2001), and 1D
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atomic chains (Gambardella et al., 2002a). According to the
XMCD sum rules, the vanishing intensity of the XMCD
at the L2 edge in Figure 4(a) compared, for example, to
Figure 4(b) indicates that the largest enhancement is that of
the orbital component of the magnetic moment, for which
we get mL = 1.1 ± 0.1 µB.

The presence of strong orbital magnetism allows unusually
large MCA through the spin-orbit interaction (Bruno, 1989;
Dürr et al., 1997). The MCA energy can be determined by
means of XMCD by measuring the magnetization of the Co
atoms in an external field applied along different directions
with respect to the substrate normal, as shown in Figures 3(b)
and 4(a). The solid lines represent fits of the data by means of
numerical integration of the equation that describes the impu-
rity magnetization in the presence of the applied field and
uniaxial anisotropy energy (Gambardella et al., 2003). For
isolated impurities we have K = 9.3 ± 1.6 meV per atom,
a remarkable value compared to typical systems with high
MCA such as SmCo5 (K = 1.8 meV per Co atom Weller and
Moser, 1999), Co/Pt and Co/Au multilayers (K = 0.3 meV,
Nakajima et al., 1998; Weller et al., 1995). Different effects
combine in establishing the giant MCA of Co atoms on the Pt
surface. The main point is the reduced atomic coordination,
which results into narrow 3d-electron bands localized at the
impurity sites with augmented spin-orbit interaction due to
the increase of the local density of states near the Fermi level
(Bruno, 1989; Dürr et al., 1997) and 3d–5d hybridization.
Further, the Pt atoms close to Co are magnetically polarized
and present an additional MCA due to the strong spin-orbit
coupling of the Pt 5d-states. Theoretical calculations indi-
cate the first effect to be dominant (Gambardella et al., 2003)
although the two contributions cannot be separated experi-
mentally because of exchange coupling between the Co and
Pt magnetic moments.

3.2 Magnetic moment and magnetic anisotropy
in finite-sized particles

It is well-known that size effects in metal particles containing
a nonnegligible ratio of surface to volume atoms influence
the saturation magnetization and MCA properties in cluster
beams (Billas, Chatelain and de Heer, 1994; Apsel, Emmert,
Deng and Bloomfield, 1996; Knickelbein, 2001) as well as in
surface-supported systems (Dürr et al., 1999; Edmonds et al.,
1999; Koide et al., 2001; Ohresser et al., 2001; Lau et al.,
2002; Rusponi et al., 2004; Bansmann et al., 2005). Such
effects become dominant as we reach down to nanometer
dimensions. In this critical size regime, key questions are:
how the MCA evolves from single atoms to finite-sized par-
ticles; how it correlates to atomic magnetic moments; and
how both depend on the details of the atomic coordination.

By exploiting the energetic hierarchy and temperature depen-
dence of surface diffusion and nucleation processes, the
bottom-up approach described in Section 2 allows us to study
the development of the magnetization and MCA in mag-
netic particles constructed on a nonmagnetic substrate start-
ing from isolated magnetic atoms and increasing the particle
size almost in an atom-by-atom fashion. Following the pre-
vious section, we consider monolayer Co particles grown
on Pt(111) as model system. While mS is expected to vary
in a fairly restricted range between 2.1 and 2.2 µB for an
individual impurity (Gambardella et al., 2003; Lazarovits,
Szunyogh, Weinberger and Újfalussy, 2003) to 1.8–1.9 µB

for a continuous 2D layer (Wu, Li and Freeman, 1991), since
the majority spin band is almost filled in all cases, mL is
shown to be much more sensitive to changes in the atomic
coordination, reflecting its closer link with the symmetry and
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Figure 5. (a) Orbital magnetic moment of monolayer Co nanopar-
ticles deposited on Pt(111) as a function of their average size mea-
sured along the easy magnetization direction (θ = 0◦). (b) Magnetic
anisotropy energy as a function of average particle size. The dashed
and dashed-dot lines indicate the magnetic anisotropy energy per
Co atom of the CoPt L10 alloy and hcp-Co, respectively. The error
bars on the horizontal scale in (a) and (b) represent the standard
deviation of the size distribution as determined by STM. The inset
shows 180 × 180 Å2 STM images of Co impurities and particles
with average size n = 1 ± 0.1 and 3 ± 1 atoms.
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relative filling of different d-orbitals. Figure 5(a) reports the
progressive quenching of mL as a function of average particle
size n. Remarkably, the largest changes of mL are observed
for the smallest particles: for n = 3 and 4 atoms, mL has
already reduced to 0.78 and 0.59 µB, respectively. The MCA
energy, due to its spin-orbit origin (Bruno, 1989; Dürr et al.,
1997), is found to be strongly correlated to the decrease of
mL (Figure 5b). Similar to mL, drastic changes of K are
observed for one-atom variations of the atomic coordination:
for n = 3 atoms, K = 3.3 meV amounts to only 30% of the
individual impurity value, while already for n > 10, K drops
below the anisotropy energy of the equi-atomic CoPt alloy.

The trend evidenced in Figure 5(b) shows that a huge gain
in MCA with respect to bulk or 2D films can be obtained
by reducing the size of magnetic particles to a few tens of
atoms or less on suitable substrates. Whereas this holds on a
per atom basis, it is obvious that the overall stability of the
particle magnetization is governed by the sum of the atomic
MCA contributions. As more atoms are assembled together
to fabricate particles with a large total magnetic moment and
total MCA strong enough to stabilize ferromagnetic behavior
against thermal fluctuations, this gain is countered by the
decrease of K with increasing n. The problem, however,
can be circumvented by noting that the atomic coordination
rather than the absolute particle size is the key parameter that
governs the magnitude of K, mL, and mS . Nanostructures
where the shape and composition are tuned so as to control
the coordination of the magnetic atoms and maximize useful
interface effects, such as in nanowires (Gambardella et al.,
2002a, 2004) and core-shell particles (Rusponi et al., 2004),
offer very interesting opportunities to exploit the effects
highlighted in this section.

3.3 Magnetic moment and magnetic anisotropy
in 1D atomic chains

The dependence of intrinsic magnetization properties on the
atomic coordination gives rise to a very diverse magnetic
behavior in metal systems that span the 1D–2D limit.
As described in Section 2, epitaxial growth on stepped
surfaces can be employed to fabricate arrays of nanowires
whose thickness and separation are independently adjusted
by controlling the coverage and vicinal angle of the substrate.
A large number of parallel nanowires are obtained using this
method, which allows to use spatially integrating techniques
with magnetic sensitivity such as Kerr magnetometry and
XMCD. This approach was first explored by Elmers et al.
(1994) and Pratzer et al. (2001) in the study of Fe monolayer
stripes grown on stepped W(110). This system presents in-
plane anisotropy, scaling of the ordering temperature of each
Fe stripe typical of a finite-sized 2D Ising lattice, and a

relaxation-free ferromagnetic phase transition due to dipolar
coupling across adjacent stripes (Hauschild, Elmers and
Gradmann, 1998). Shen et al. (1997a,b) found a pronounced
temperature- and time-dependent magnetic relaxation for
mono- and bilayer Fe stripes on stepped Cu(111) with
out-of-plane anisotropy, due to the formation of 1D Ising-
coupled spin blocks. Fe stripes on vicinal Pd(110) also
present perpendicular anisotropy (Li et al., 2001), but the
magnetization was found to be time-independent. Recently,
Co wires of monatomic thickness have been grown at the
step edges of Pt(997) (Figure 2) (Gambardella et al., 2000,
2002a) and along the close-packed atomic rows of Pd(110)
(Yan et al., 2005).

In the limit of atomically thin metal chains, ab initio
electronic calculations predict large exchange splittings and
strongly increased mS and mL relative to those of the bulk
and 2D monolayers (Weinert and Freeman, 1983; Komelj,
Ederer, Davenport and Fähnle, 2002; Ederer, Komelj and
Fähnle, 2003; Spisák and Hafner, 2002; Lazarovits, Szun-
yogh and Weinberger, 2003; Shick, Máca and Oppeneer,
2004) as well as MCA energies exceeding 1 meV per atom
(Lazarovits, Szunyogh and Weinberger, 2003; Hong and Wu,
2003, 2004; Újfalussy et al., 2004; Shick, Máca and Oppe-
neer, 2004). Similar to the case of individual impurities,
these variations are attributed to the reduced overlap between
the d-orbitals in 1D structures. Angle-resolved photoemission
experiments on Co monatomic chains grown along the step
edges of Pt(997) corroborate the prediction of large exchange
splitting of the Co 3d states (2.1 eV Dallmeyer et al., 2000)
compared to thin films (1.4–1.9 eV) and bulk Co (1.4 eV)
(Schneider et al., 1990; Clemens et al., 1992), suggesting
that mS is of the order of 2 µB (Himpsel, Ortega, Mankey
and Willis, 1998). XMCD measurements on the same system
show that mL is 0.68 µB in the monatomic chain limit, more
than twice the value found for a Co monolayer on Pt(997),
but drops already to 0.37 µB per atom in chains with biatomic
thickness (Gambardella et al., 2002a). Such values can be
rationalized within the trend framed in the previous section,
where the average coordination among Co atoms determines
large differences of mL. On the basis of Figure 5(a), for
instance, we expect mL ≈ 0.7 µB per atom for n = 3, that is,
for Co atoms with an average of two Co neighbors, which
corresponds to the Co coordination in the monatomic chains.

The sensitivity to the transverse structure of the chains
concerns also the orientation of the easy axis and the
magnitude of the MCA (Gambardella et al., 2004). In
Figure 6, we report the magnetization of Co chains with
different thickness measured in the plane perpendicular to
the chain axis. The magnetization, measured near-remanence
at angles θ with respect to the (111) direction, is typical
of a uniaxial system and presents a sinusoidal behavior
whose maximum indicates the orientation of the easy axis.
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Figure 6. Near-remanence magnetization of Co chains deposited
on Pt(997) as a function of the angle θ between the incident photon
beam and (111) direction in the plane perpendicular to the chain
axis. The data points represent the XMCD signal at the L3 Co
edge. The solid lines fit a | cos(θ − θ0)| behavior as expected for
uniaxial anisotropy. The diagrams indicate the chain thickness and
the easy axis direction given by the maximum of the | cos | function.

In the monatomic chains the easy axis is canted toward
the step-up direction due to the reduced symmetry at the
Pt step edges, an effect that has been reproduced by first
principles relativistic calculations (Újfalussy et al., 2004;
Shick, Máca and Oppeneer, 2004). With increasing chain
thickness unusual oscillations of the easy magnetization
direction are observed in the plane perpendicular to the
chains (Gambardella et al., 2004). The easy axis rotates
abruptly from θ = +46◦ in the monatomic chains to −60◦

in the biatomic chains and reverses back toward the surface
normal in the monolayer limit as shown in Figure 6. The
analysis of the easy and hard magnetization curves reported
in Figure 7 reveals further that the magnitude of the MCA
has a nonmonotonic behavior with chain thickness. In the
monatomic limit K = 2 meV per atom at T = 45 K, a value
enhanced by 1–2 orders of magnitude compared to 2D films
(Gradmann, 1993), but in line with expectations based on
theoretical calculations (Dorantes-Dávila and Pastor, 1998;
Félix-Medina, Dorantes-Dávila and Pastor, 2002; Lazarovits,
Szunyogh and Weinberger, 2003; Hong and Wu, 2003, 2004;

Újfalussy et al., 2004; Shick, Máca and Oppeneer, 2004) and
the experiments presented in the previous section. Given
that in nanoparticles K is a rapidly decreasing function
of the local coordination (Figure 5b), it is not surprising
that K reduces to 0.33 meV per atom in the biatomic
chains. In triple chains, however, K shows a significant
and unexpected increment, upto 0.45 meV per atom, before
decreasing again in the monolayer limit. These oscillations
as well as the sign inversion of the MCA represented by
the rotation of the easy axis appear to be due to thickness-
dependent changes in the electronic band structure of the
chains rather than to extrinsic (dipolar) effects (Gambardella
et al., 2004; Vindigni et al., 2006), as shown also by tight
binding calculations of both free-standing and Pd-supported
Co chains one to three atoms thick (Dorantes-Dávila and
Pastor, 1998; Félix-Medina, Dorantes-Dávila and Pastor,
2002). Reducing the dimensions of a magnetic layer down to
1D, therefore, reveals a nontrivial magnetic behavior and new
opportunities to tune the magnetization properties in metal
nanostructures. Examples include the high anisotropy of
the 1D-modulated FePt surface alloy presented in Section 4
and the emergence of magnetism in chains of 4d and 5d
metals (Bellini, Papanikolaou, Zeller and Dederichs, 2001;
Spisák and Hafner, 2003; Rodrigues, Bettini, Silva and
Ugarte, 2003).

3.4 Magnetic order in 1D atomic chains

The dimensionality of a magnetic lattice is known to affect
not only local properties such as the magnetic moments and
MCA but also its thermodynamic properties and in particu-
lar order–disorder magnetic phenomena. Ferromagnetism in
2D films is typically more sensitive to temperature-induced
fluctuations of the magnetization compared to 3D systems
due to the reduced number of atoms contributing to the
total exchange interaction (Gradmann, 1993; Schneider and
Kirschner, 2000; Poulopoulos and Baberschke, 1999). In the
well-known case of the Heisenberg and Ising models, the
thermodynamic limit of a 1D spin chain of infinite length is
characterized by the absence of long-range magnetic order at
any nonzero temperature (Ising, 1925; Mermin and Wagner,
1966; Bruno, 2001). In the past, quasi-1D insulating inor-
ganic crystals have been investigated as Heisenberg model
systems to test predictions about magnetism in 1D (De Jongh
and Miedema, 1974; Hone and Richards, 1974); typical
examples include tetramethylammonium copper and man-
ganese chloride compounds, where Cu2+ and Mn2+ ions
couple ferromagnetically or antiferromagnetically, respec-
tively, along weakly interacting linear chains separated by
intervening nonmagnetic complexes (Dingle, Lines and Holt,
1969; Landee and Willett, 1979; Dupas, Renard, Seiden
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Figure 7. Magnetization of (a) monatomic Co chains, (b) double chains, (c) triple chains, (d) 1.3 monolayers in the easy (filled squares)
and hard direction (empty circles). The data points represent the XMCD intensity at the Co L3 edge as a function of applied field. The
solid lines in the top panels are fits of the data in the superparamagnetic regime as described in Gambardella et al. (2002a).

and Cheikh-Rouhou, 1982). More recently, the synthesis of
molecular ferri- and ferromagnetic chainlike compounds con-
taining magnetically anisotropic ions has allowed to realize
1D Ising model systems where the absence of permanent
magnetic order is accompanied by the slow relaxation of the
magnetization (Caneschi et al., 2001; Bogani et al., 2004;
Clérac, Miyasaka, Yamashita and Coulon, 2002; Lescouëzec
et al., 2003) as predicted by Glauber more than 40 years
ago (Glauber, 1963). The fabrication of 1D chains of mag-
netic atoms deposited on a nonmagnetic substrate with the
methods described in Section 2 opens up the possibility of
extending the investigation of 1D magnetic behavior to metal
systems.

The magnetic response of a set of monatomic Co chains
at T = 45 K (Figure 7a) reveals zero remanent magnetiza-
tion and the absence of long-range ferromagnetic order. The
shape of the magnetization curves, however, indicates the
presence of short-range order, that is, of significant inter-
atomic exchange coupling in the chains (Gambardella et al.,
2002a; Vindigni et al., 2006). The observed behavior is
that of a 1D superparamagnetic system, that is, a system
composed by segments, or spin blocks, each containing N

exchange-coupled Co atoms, whose resultant magnetization
orientation is unstable due to thermal fluctuations. Fitting
the magnetization curves assuming uniaxial MCA and a
Boltzmann distribution of the energy states accessible by the
system (solid lines) gives the average value N = 15 atoms,
smaller than the average length of the Co chains, which
is estimated to be about 80 atoms from the extension of

the atomically straight sections of the Pt steps that act as
deposition template. A simple argument of Landau (Landau
and Lifshitz, 1959) shows that this result does not contra-
dict the predicted absence of magnetic order in 1D by spin
lattice models as long as N ≤ e2J/kT , where J represents
the exchange interaction among adjacent spins (J ≈ 15 meV
Frôta-Pessoa, Muniz and Kudrnovský, 2000; Pratzer et al.,
2001). However, by lowering the sample temperature below
15 K, we observe a transition to a ferromagnetically ordered
state with long-range order and finite remanence at zero field
(Figure 7a, bottom panel). This order transition is not domi-
nated by the exchange interaction as in 3D crystals, but rather
by the presence of large MCA energy barriers that effectively
inhibit the spin fluctuations that lead to the zero remanence
thermodynamic limit expected for 1D systems. Below the
blocking temperature the magnetization of each spin segment
aligns along the common easy axis direction and the system
becomes ferromagnetic on a macroscopic scale. Long-range
order in 1D metal chains therefore appears as a metastable
state, thanks to slow magnetic relaxation. It is interesting
to note that as the system evolves toward a 2D film and the
number of exchange-coupled Co atoms increases (Figure 5b),
we would expect a stronger tendency toward magnetic order.
Contrary to expectations, however, in the biatomic chains we
observe vanishing long-range magnetic order even at low
temperature (Figure 5b). In this case, the tendency toward
order is counteracted by the drastic reduction of the MCA
energy per Co atom. Paradoxically, therefore, the 1D char-
acter of the monatomic chains favors rather than disrupts
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ferromagnetic order owing to the minimal coordination of
the Co atoms and related enhanced MCA.

4 TOWARD TWO-DIMENSIONAL
MAGNETIC STRUCTURES

It is commonly believed that, of all 3d elements, the mag-
netism of Fe based nanostructures depends the most on
the local atomic environment and the interaction with the
underlying substrate. This is due to the fact that Fe is a
‘borderline ferromagnet’ with an exchange interaction sen-
sitively depending in magnitude and sign on the structure
at the atomic level (Pajda et al., 2000, 2001; Bruno and
Sandratskii, 2005). Being a weak ferromagnet, the pres-
ence of empty states at the Fermi energy in the minority
and majority subband results in a complex dependency of
the magnetic properties on the d-band width and occupa-
tion, which are controlled by the local atomic coordination.
As constructed from Hund’s rules, free Fe atoms in the
3d64s2 ground state possess spin- and orbital moments of
mS = mL = 2 µB. In the bulk phase the electron hybridiza-
tion quenches the orbital moment to mL = 0.1 µB (Chen
et al., 1995). Low-dimensional Fe nanostructures at surfaces
are useful to address open questions about the magnetic
anisotropy on the atomic level. Of particular interest in the
following sections are changes in the magnetism with dimen-
sionality during the crossover from 1D Fe monatomic wires
to a 2D Fe or FePt monolayer. As seen in Section 3, the
interaction with the substrate has also a decisive influence
on the magnetism and can be exploited to tune many of
the magnetic properties in low-dimensional structures. The
traits of Pt – large Stoner-enhanced susceptibility together
with the strong spin-orbit coupling of the 5d states – make it
an attractive substrate material for magnetic nanostructures.
In contact with 3d magnetic elements Pt acquires a sizable
magnetic polarization and gives an important contribution to
the magnetocrystalline anisotropy. The role of the substrate
will be discussed in the following for all investigated Fe
structures, but becomes most apparent for FePt surface alloy
layers.

4.1 Fe on Pt – from atomic chains to layered films

Since the early experiments on Fe stripes of finite width
prepared on W(110) by Elmers et al. (1994) 1D linear
Fe nanostructures have been prepared successfully also on
vicinal Au (Kawagoe, Sogabe, Kondoh and Narusawa, 1998;
Shiraki, Fujisawa, Nantoh and Kawai, 2004, 2005), Cu (Shen
et al., 1997b; Boeglin et al., 2002; Fruchart et al., 2004) or

Si substrates (Lin et al., 2001), on reconstructed Ir surfaces
(Klein, Schmidt, Hammer and Heinz, 2004), or by organic
patterning (Ma et al., 2004). Also on the vicinal Pt(997)
surface, Fe shows a strong tendency toward substrate step
decoration. Fe atoms arrange themselves to segments of
atomic chains at the step edges at growth temperatures
between 200 K and 450 K (Lee, Sarbach, Kuhnke and Kern,
2006). Extended monatomic chains of Fe are thus formed at
a coverage of �Fe = 0.13 monolayer (ML) limited in length
only by kinks at step edges or by point defects. The wire
formation is, hence, in analogy to the Co chains described
in the previous chapter. After complete step decoration, the
growth proceeds in the step flow mode until the first Fe
monolayer is completed. The layer-wise growth is promoted
by the presence of the dense array of substrate steps (Lee,
Sarbach, Kuhnke and Kern, 2006).

The evolution of the magnetic anisotropy of Fe stripes
with increasing stripe width shows distinctive differences to
the Co chains presented in the previous section. The XMCD
data in Figure 8 reveal that for a coverage corresponding
to 1 atomic row in (a) the preferred magnetization direction
is perpendicular to the wire axis, but close to the substrate
surface. With increasing coverage the magnetization axis
reorients gradually toward the out-of-plane direction. For a
coverage corresponding to 3 atomic rows in (b) no distinctive
difference between out-of-plane and in-plane magnetization
loops is visible, while for 6 rows in (c) the easy magnetiza-
tion axis points out of the surface plane. For all samples
investigated, the in-plane axis along the wire represented
the hard magnetization direction. The comparison with Co
allows for two important conclusions: (i) In both systems
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Figure 8. XMCD measurements taken at the Fe L3 absorption
edge as a function of field at 10 K of (a) 0.13 ML Fe (monatomic
Fe chain) as a function of polar angle � in a constant magnetic
field of 1 T. The solid line is a | cos(� − �0)| – fit to the data.
(b) Hysteresis loops of 0.38 ML Fe (3 atomic stripe), and (c) 0.8 ML
(6 atomic stripe). Measurements are taken along the surface
normal (o) and under a polar angle of 70◦ in the direction
perpendicular to the step edges (�). A reorientation of the preferred
magnetization axis from in-plane perpendicular to the step edges
(a) toward perpendicular to the surface (c) occurs with increasing
Fe coverage. Inset: STM image of 0.11 ML Fe/Pt(997) showing the
wire formation by step decoration.
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a preferred magnetization perpendicular to the chain axis is
found. Whereas Co chains exhibit an oscillatory reorientation
of the magnetization with increasing width, Fe chains rather
show a gradual transition from in-plane to out-of-plane mag-
netization. Complete Fe and Co monolayers have an easy
axis close to the sample normal. (ii) The MCA in Fe sin-
gle atomic chains is 0.56 meV per atom, as determined from
fits to angular dependent hysteresis loops. This value is sig-
nificantly enhanced with respect to the Fe bulk value, but
smaller compared to Co chains of equal thickness (∼2 meV
per atom, see previous section). Unlike in Co, the MCA of
monatomic Fe chains is not sufficient to stabilize remanent
magnetization at 10 K, in contrast to Co. In both systems the
enhanced MCA goes along with an increase of the orbital
moment per atom with respect to bulk, as will be discussed
later in this section.

Ab initio electron theory suggests strong similarities in the
physics of Co and Fe monatomic chains (Ederer, Komelj
and Fähnle, 2003; Shick, Máca and Oppeneer, 2005). The
observed ferromagnetic ordering and the enhanced magnetic
moments have been predicted theoretically for free and
supported atomic chains of Fe (Spisák and Hafner, 2002;
Dorantes-Dávila and Pastor, 1998; Lazarovits, Szunyogh,
Weinberger and Újfalussy, 2003; Jin, Kim and Lee, 2004).
The easy magnetization axis is found perpendicular to the
wire axis in all published calculations, as a result of strong
Fe–Fe bonds along the chains and the resulting intrachain
exchange coupling in this direction. However, the calculated
tilt angle of +30◦ to the surface normal (Shick, Máca
and Oppeneer, 2005) is in contrast to our experiment. The
calculated tendency of the magnetization to be perpendicular
to the Fe–Fe bonding direction may explain the reorientation
of the easy axis toward out-of-plane when increasing the
Fe coverage above the monochain coverage. Already for
chains of 2 atoms in width the intrawire coupling strength
perpendicular to the wire axis is of the same order of
magnitude as found along the wire (Lazarovits, Szunyogh,
Weinberger and Újfalussy, 2003). The intra- and interchain
magnetic coupling exceed the dipolar interaction by 2 orders
of magnitude and thus dominate the magnetic anisotropy
(Spisák and Hafner, 2002). The dipolar interaction would
favor ferromagnetically ordered arrays of wires with an
in-plane magnetization direction along the wires, which is
clearly not observed.

It is important to note that the interaction with the substrate
affects the MCA of the wires. This can be seen from a
comparison of the experimental data with calculations on
free wires which show preferred magnetization along the
wire axis (Dorantes-Dávila and Pastor, 1998). The role of the
substrate is to contribute its spin-orbit coupling to the whole
system, thus increasing the total MCA (Dorantes-Dávila and
Pastor, 1998), to alter the density of states at the Fermi level

(Lazarovits, Szunyogh, Weinberger and Újfalussy, 2003),
and possibly to establish interchain coupling by RKKY
interaction via intervening substrate sp-electrons (Spisák
and Hafner, 2002). The induced magnetic moment in the
substrate surface, and thus the substrate contribution to the
overlayer magnetism, is one order of magnitude larger for Pt
substrates than for Cu substrates (Ederer, Komelj and Fähnle,
2003; Lazarovits, Szunyogh and Weinberger, 2003). Details
of the film-substrate interaction will be discussed in the next
section.

Further investigation of the magnetism of Fe/Pt(997) in
the thickness range between 0.5 and 5 atomic layers shows
the evolution of the anisotropy for this system during the
transition toward 2D layers (Figure 9). The system has a
perpendicular easy magnetization axis up to a film thick-
ness of 3 ML. The reorientation of M into the film plane
occurs gradually between 2.6 and 3 ML via a canted mag-
netization state. The spin reorientation is accompanied by a
structural transition from fcc(111) to bcc(110) layers with
Kurdjumov–Sachs orientation to the substrate. Above 3 ML
coverage the easy axis is found within the plane in the direc-
tion along the substrate steps. Perpendicular to the steps only
hard axis loops with no remanence are found. The strong
in-plane anisotropy is attributed to peculiarities of the bcc
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Figure 9. Evolution of the easy magnetization axis for 2D Fe
films on Pt substrates with Fe coverage. Open and solid symbols
correspond to the saturation and remanent magnetization as obtained
from MOKE hysteresis loops at 300 K. A spin reorientation from
perpendicular to in-plane direction is observed at the critical
thickness of tcrit = 2.8 atomic layers. Above tcrit the films show
pronounced in-plane anisotropy with the easy axis along the step
edges. Inset: For films thinner than 1 atomic layer the ratio mL/mS

(from XMCD measurements) increases in favor of larger mL

values, in qualitative agreement with calculations (×, from reference
Ederer, Komelj and Fähnle, 2003).
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structure of the film in this thickness range (Repetto et al.,
2006). It is interesting to note that Fe films on Pt(100) sub-
strate, in contrast, do not show perpendicular magnetization
at any thickness (He et al., 2005). The occurrence of per-
pendicular magnetization in the monolayer thickness range
is commonly ascribed to anisotropy contributions arising at
the film’s interfaces (see recent overview articles on this
field, such as Gradmann, 1993; Shen and Kirschner, 2002;
Sander, 2004). More detailed analysis connects the perpen-
dicular magnetic anisotropy of this system with the strong
film–substrate interaction. The bonding to the substrate in
surface normal direction – which is particularly large for
Pt substrates – disturbs orbital motion of the electrons per-
pendicular to the film plane and significantly increases the
bandwidth in this direction, thus promoting perpendicular
magnetization (Wang, Wu and Freeman, 1994; Stöhr, 1999).
The choice of substrate material and the local atomic arrange-
ment within the nanostructures has decisive influence on the
magnetic anisotropy, a fact that will be illustrated more pro-
foundly in the following section.

The measurement of the ratio of orbital to spin magnetic
moment reveals an enhancement of the ratio mL:mS by a
factor of 5 when going from bulk to monatomic chains (see
inset in Figure 9). This increase is completely attributed to
mL since below 1 ML Fe coverage mS is expected to change
only slightly (Ederer, Komelj and Fähnle, 2003). In analogy
to the discussion of Co clusters in the previous chapter the
large mL is explained by the unquenching of orbital electron
motion due to decreased coordination. The latter results in
more localized d-bands, and therefore in an increased density
of states at EF and in enhanced moments of the d-electrons.
In addition, the exchange splitting between majority and
minority electrons is large not only for d-bands but also
for sp-bands (Spisák and Hafner, 2002), which may result
in sizeable additional contributions to the overall magnetic
moment. The minimum in mL:mS observed for 1 ML Fe is in
qualitative agreement with first principles calculations for Pt-
supported fcc(111) Fe monolayers which predict a minimal
mL at this coverage (Ederer, Komelj and Fähnle, 2003).

4.2 High coercivity FePt surface alloy

In Section 3, we elaborated on the importance of high mag-
netocrystalline anisotropy energy for establishing ferromag-
netism in low-dimensional systems. Indeed, nanostructured
materials with MCA beyond 108 erg cm−3 (>1 meV per
atom) are being considered for upcoming high-density stor-
age media. Thin films (Yan, Zeng Powers and Sellmyer,
2002; Kanazawa, Lauhoff and Suzuki, 2000; Okamoto et al.,
2002), multilayers (Johnson, Bloemen, den Broeder and de
Vries, 1996), and nanoparticles (Sun et al., 2000; Okamoto

et al., 2002) of intermetallic phases exhibiting the L10 struc-
ture, such as the FePt alloy, fulfill this requirement and
are currently in the focus of experimental and theoretical
research (2005). The L10 structure is obtained by alterna-
tive stacking of fcc(100) oriented layers of two different
materials, such as 3d and 5d elements. Currently, the high
anisotropy of FePt alloy is described as the result of 3D
coordination of Fe atoms with Pt neighbors. The exchange
interaction between Fe atoms across adjacent fcc(100) lay-
ers, and hence the 3D nature of the alloy, is considered to be
important for large MCA. A key role is played by the induced
magnetism in Pt which gives additional MCA contributions
due to its large spin-orbit interaction (Ravindran et al., 2001).
Tetragonal lattice distortion and chemical disorder are found
to give access not only to the magnetic anisotropy energy but
also to the Curie temperature TC, exchange interaction J, or
saturation magnetization MS. In this section, we demonstrate
on the example of 2D Fe50Pt50 surface alloys that the L10

structure is not required to obtain a large anisotropy. The
coordination of Fe with Pt atoms in monolayer thin films
increases the MCA so that values close to bulk FePt could
be measured (Honolka et al., unpublished).

Fe50Pt50 surface alloys are obtained by deposition of
0.5 atomic layers of Fe on the Pt(997) substrate at 525 K.
The thermally activated diffusion of Fe into the Pt terraces
results in the formation of monatomic chain segments of
Fe embedded in the Pt surface (Lee, Sarbach, Kuhnke
and Kern, 2006), similar to surface alloying of Fe on
Pt(111) (Schmid and Varga, 2002). The average spacing
between Fe chain segments depends on the amount of
deposited Fe and is 5.54 Å (two Pt row spacings) for the
idealized Fe50Pt50 surface alloy. The element specificity
of the XMCD is ideal for probing the magnetism of the
Fe and Pt sublattices separately. Typical XAS and XMCD
spectra at the Fe L3,2 and the Pt N7,6 absorption edges
are displayed for Fe50Pt50 in Figure 10(a). A large dichroic
signal was detected at both absorption edges. The presence
of a dichroic signal for Pt is the result of an induced
magnetic moment due to the hybridization between Fe 3d
and Pt 5d states. The existence of a magnetic moment in
Pt evidences ferromagnetic coupling between the Fe chains.
Antiferromagnetic ordering of the Fe moments would rather
result only in negligible Pt moments (Skomski, Kashyap
and Sellmyer, 2003; Skomski, Kashyap and Zhou, 2005).
The sign relationship of the XMCD signals at the Fe L3,2

and the Pt N7,6 absorption edges reveals parallel spin
alignment of the Fe and Pt sublattices (Shishidou et al.,
1997). The coupled magnetization of Fe and Pt results in
congruent M-H magnetization loops which are obtained at
each constituent’s absorption edge (Figure 10b and c). The
preferential magnetization axis is along the surface normal.
The large coercive field of HC = 0.71 T is of the same order
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Figure 10. (a) X-ray absorption and XMCD spectra at the Pt N7,6

and the Fe L3,2 absorption edges of a single, two-dimensional
Fe50Pt50 surface alloy layer. (b) and (c) The dichroic signal was
used to obtain element-specific hysteresis loops of the Fe and
Pt sublattice of the same film at 12 ± 1 K. The hysteresis loop
of the Fe sublattice is compared to the Fe L3 loop of a diluted
Fe35Pt65 monolayer.

of magnitude as the values found for the bulk FePt L10 phase
and demonstrates the presence of a considerable anisotropy
energy barrier.

From the XMCD spectrum in Figure 10(a) a total spin
moment of (2.4 ± 0.2)µB per Fe atom is determined. This
experimental value is 18% smaller than theoretically pre-
dicted Fe moments of 2.93 µB (Staunton et al., 2004a) and
2.92 µB (Kashyap et al., 2004). The determination of the Pt
moment from the N-edge dichroism provides a challenge to
theorists since the interaction between discrete-like and con-
tinuum states during the 4f → 5d dipole transition leads to a
Fano-type interference effect and have to be treated accord-
ingly (Shishidou et al., 1997). As a lower limit, a Pt moment
of >0.2 µB per Pt atom is estimated from a comparison of the
normalized XMCD signals with CoPt3 bulk samples where
the Pt moment is known (Menzinger and Paoletti, 1966). This
value is close to calculated Pt spin moments of 0.24 µB per
atom in the top layer of Pt(111) covered by one monolayer
of Fe (Ederer, Komelj and Fähnle, 2003), and of 0.29 µB

(Staunton et al., 2004a) and 0.35 µB (Kashyap et al., 2004)

in L10 ordered FePt. However, at Co/Pt interfaces an induced
spin moment as large as 0.53 µB per Pt atom has been deter-
mined from XMCD measurements at the Pt L2,3 edge (Suzuki
et al., 2005).

The MCA of the surface alloy is calculated from angu-
lar dependent XMCD measurements to K = 0.42 meV per
formula unit. Strikingly, this value for the alloyed mono-
layer is only about a factor of 2–3 smaller than 0.6–1 meV
per atom which is typically found for FePt-L10 bulk sam-
ples (Shima, Moriguchi, Mitani and Takanash, 2002; Shima,
Takanashi, Takahashi and Hono, 2002; Farrow et al., 1996).
As was mentioned already in the preceding text, the MCA
is usually related to the orbital moment anisotropy, �mL

(Bruno, 1989). For the Fe50Pt50 surface alloy we deter-
mined �malloy

L = m⊥
L − m||

L = 0.025 ± 0.004 µB per hole.
This value is close to the measured orbital anisotropy
of nonalloyed Fe adlayers on Pt(997) of similar Fe con-
tent, �mstripe

L = 0.035 ± 0.009 µB per hole. This experimen-
tal observation has important implications for the inter-
pretation of the origin of the MCA in alloys, as will be
shown in the following text. It is worth to note that both
experimental values are by a factor of 2 larger than cal-
culated values, as for instance, in Solovyev, Dederichs and
Mertig (1995).

The comparison of the hysteresis loop of Fe50Pt50 with
those of nonalloyed submonolayer Fe stripes in Figure 8
shows that the alloy has a much stronger tendency toward
magnetic ordering, together with a significantly enhanced
coercivity. A key role for the conservation of the saturation
magnetization in remanence observed for the 2D alloy,
and more importantly for the large anisotropy, is obviously
played by the magnetism of the Pt atoms. Although the
induced exchange splitting in Pt is much weaker than in bulk
Fe, its spin-orbit coupling is one order of magnitude larger
(ξPt = 0.6 eV Misemer, 1988 vs ξFe = 0.07 eV Mackintosh
and Andersen, 1980). In result, the Pt orbital moments
are expected to be comparable to those of Fe (comparable
also to induced Pt orbital moments in the vicinity of Fe
chains, mL ≈ 0.04 µB Ederer et al., 2003). In this simple
but quite instructive picture the Fe acts only as the source
of magnetization, whereas the Pt sublattice, owing to its
large spin-orbit interaction, provides the main contribution
to the large MCA. Attempts have been made to express the
MCA of binary and multicomponent systems by the sum
of the magnetic anisotropy of each constituent (Ravindran
et al., 2001; Solovyev, Dederichs and Mertig, 1995). This
means that the total MCA is made large by the spin-orbit
coupling of the Pt, while the orbital anisotropy of Fe alone
remains unchanged – something that our experimental values
in the preceding text show. Support of this viewpoint comes
from calculations, showing that suppressing the spin-orbit
interaction in the 4d/5d constituent reduces the calculated
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(a)

(b)

Figure 11. Ordered (a) and disordered (b) structure of a linear,
two-dimensional FePt surface alloy. Fe and Pt atoms are represented
by dark and bright colors. Deviations from the ideal structure result
mostly in ferromagnetic interchain bridges, which promote ferro-
magnetism in the Fe sublattice and reduce the in-plane anisotropy.

total anisotropy (Burkert et al., 2005; Daalderop, Kelly and
Schuurmans, 1990).

As has been discussed by several authors, the description
of MCA is complicated by chemical disorder (Brown et al.,
2003; Skomski, Kashyap, Zhou 2005; Okamoto et al., 2002;
Staunton et al., 2004b; Sun et al., 2000; Burkert et al., 2005),
tetragonal distortion (Ravindran et al., 2001; Brown et al.,
2003; Burkert et al., 2005), dimensionality, local atomic
coordination, and crystal field asymmetry (Ravindran et al.,
2001). For the surface alloys in this section the chemical
disorder, that is, 3d and 5d substitutions as schematically
shown in Figure 11(b), plays an important role. Fe atoms
in antisite positions bridge the Pt chains and are found to
stabilize ferromagnetic ordering of the Fe sublattice, which
is predicted to be antiferromagnetic in the ideal structure as
in Figure 11(a) (Brown et al., 2003). Such disorder can also
be assumed to reduce the in-plane magnetic anisotropy of
the alloy drastically, as was found experimentally (Honolka
et al., unpublished).

The experiments point out that the coordination of Fe
atoms with Pt, along with strong covalent 3d–5d hybridiza-
tion, is necessary to achieve large MCA. The importance of
Fe-Pt coordination is demonstrated by comparing the hystere-
sis loop of the Fe50Pt50 surface alloy with that of a Fe-poor,
diluted Fe35Pt75 surface alloy (Figure 10c). Reducing of the
Fe concentration by only 30% results in S-shaped loops with
the remanence reduced by 78% and the coercivity by 68%.
The shape of the loop is similar to the magnetization curve

of the nonalloyed Fe stripe in Figure 8(c), for which full
spin alignment has only been achieved in external fields of
H > 6 T. One can say that the increased average spacing
between Fe atoms destabilizes the magnetization. It leads on
the one hand to narrower Fe d-bands, and in consequence to
reduced hybridization and smaller anisotropy. On the other
hand, separation of Fe chains by more than one Pt covalent
radius significantly decreases the induced net moment in Pt
(Ederer, Komelj and Fähnle, 2003) and hence diminishes the
Pt’s contribution to the magnetism of the surface layer. This
is consistent with the observation that Fe-poor FePt bulk
alloys exhibit reduced stability of the ferromagnetic order
(Brown et al., 2003).

5 CONCLUSION

With the ability to control the fabrication of 0D, 1D, and
2D structures of 3d metals by self-organized growth we are
capable to study magnetic phenomena in solid-state systems
with atomic scale control over their size and crystalline
structure. Co and Fe structures of reduced dimensionality
reveal a strikingly rich magnetic behavior. Impurity atoms of
Co on Pt surfaces have extraordinarily large MCA values and
spin and orbital moments halfway between the values of free
atoms and bulk Co. The MCA is decreasing with increasing
Co coordination when forming small clusters or chains, but
still sufficiently large in monatomic Co chains to stabilize a
ferromagnetic long-range ordered state at finite temperature.
The effect of local atomic coordination on the magnetism
of Co and Fe manifests itself in the observed fluctuations
of the easy axis with increasing stripe width, as well as in
strong orbital magnetism. In all structures investigated a key
role is played by the supporting substrate. Pt is found to
contribute to the nanostructure’s MCA via strong electronic
hybridization and even dominates the magnetic anisotropy
in the FePt surface alloy. An important consequence of the
hybridization is the induced magnetization in Pt.

The basic experiments presented in this chapter contribute
to a fundamental understanding of the magnetic properties
of finite-sized particles. These results further elucidate the
interplay between local coordination, orbital magnetism, and
magnetic anisotropy. The link is provided by the electronic
structure of the d-states, which sensitively responds to
the local atomic arrangement, that is, the number and
the electronic nature of the neighboring atoms as well as
their interatomic spacing. This knowledge is not only of
importance for testing detailed theoretical models used in the
prediction and interpretation of magnetic phenomena but also
for the conceptual design of nanosized magnetic structures
that elude the superparamagnetic limit. In this context, our
data show that particles containing only about 400 Co atoms
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can behave as ferromagnets at room temperature. Besides
the geometry of the atomic arrangement, additional leverage
on the magnetic properties is obtained from the choice of
the material of the coordinating atoms. When forming a
binary alloy the overall magnetism strongly depends also
on the nonmagnetic constituent. This is particularly true for
nanostructures, such as for the FePt surface alloy, where
the low-coordinated Pt atoms acquire a sizeable magnetic
moment and contribute with their large spin-orbit coupling
to the total magnetic anisotropy.

The work presented in this chapter has only just opened the
door toward complex and functional nanostructure networks.
Expanded and highly ordered 2D and even 3D networks of
nanoscale building blocks can be fabricated by self-organized
growth, aided by functionalized molecules, biotemplates or
in combination with top-down approaches. It is expected that
magnetic nanostructures will play a key role to add function-
ality to such structures by exploiting their magnetic moments
and magnetic ordering associated with magneto-transport or
quantum effects. Future experiments may show and exploit
ferromagnetism in nanostructures of elements which are non-
magnetic in the bulk, thus opening up additional possibilities.
At the frontiers to atomic and nanometer scale structures
we will enjoy virtually unlimited avenues for research and
promising chances for applications in the near future.
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1 INTRODUCTION

We explore the magnetic ground-state properties of low-
dimensional systems to investigate which systems are mag-
netic, what is the magnetic ground-state structure, and what
is the orientation of the magnetization with respect to the
crystal lattice.

In this article we focus on the dimensional aspect of itin-
erant magnetism, in particular, of those systems including d
electrons, as relevant for the magnetic ground-state properties
of metallic interfaces, multilayers, ultrathin films, step edges,
wires or chains, or magnetic clusters deposited on surfaces.
Considering the vast number of possible systems – a num-
ber growing fast with the number of constituent atoms – the
surface or interface orientation, the chemical and structural
roughness at interfaces, and the electronic nature of the sub-
strate (metal, semiconductor, insulator), an exhaustive review
is unattainable. Instead we discuss chemical trends in order

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

to develop an intuition helpful to understand new systems or
envisage new effects that have not been investigated yet.

The simplest low-dimensional systems are isolated atoms,
whose spin moments as a function of the number of d
electrons are well described by Hund’s first rule: the spins of
all electrons are aligned in parallel up to a maximum value
of Sz = 5/2. Thus, nearly all of the 30 transition-metal atoms
have magnetic spin moments. The largest possible d moments
occur at the center of each series, that is, 5 µB for Cr and
Mn in the 3d series. On the other hand, it is well known that
only 5 of 30 transition metals remain magnetic in their bulk
crystalline phase: Co and Ni are ferromagnetic (FM), Cr is
antiferromagnetic (AFM), and Mn and Fe are FM or AFM
depending on their crystal structure (cf. Figure 1). Low-
dimensional transition metals should fall in between these
two extremes. A magnetic material that is nonmagnetic as
bulk metal but magnetic as nanostructure may be envisaged.
Although these arguments do apply, band narrowing, charge
transfer, lift of degeneracies, structural, morphological, or
thermodynamical changes mire the interpolation and it took
about 10 years to settle the ‘relatively simple’ problem
of the surface magnetism of Ni(100) (Donath, 1994). The
magnetic coupling between the moments of atoms in systems
of reduced dimensions is totally unclear, in particular if the
frustration of the magnetic interactions comes into play as
for example in exchange-bias systems.

The magnetic ground-state properties may be divided into
(i) the formation of local spin and orbital moments of dif-
ferent sizes, (ii) the interaction between the local moments
responsible for the formation of the magnetic order, the
magnetic coupling at interfaces or across spacer layers, and
(iii) the magnetic anisotropy energy (MAE), which couples
the direction of the magnetization to the lattice and deter-
mines the easy and hard axes of the magnetization. At this
point it may be useful to put the magnetic energies involved
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Figure 1. Local spin magnetic moments of isolated 3d atoms
(empty squares connected by dashed line), ferromagnetic (solid
squares connected by solid line) and antiferromagnetic (diamonds
connected by dotted line) 3d bulk metals. The magnetism of the
atom includes only the moment due to the d electrons. For the bulk
metals, the experimental spin moments are shown.

Table 1. Typical ground-state energies E

in eV/atom for 3d metal films.

E (eV/atom)

Cohesive energy 5.5
Local moment formation 1.0
Alloy formation 0.5
Magnetic order 0.2
Structural relaxation 0.05
Magnetic anisotropy 0.0001 ÷ 0.002

in (i)–(iii) into a general perspective by comparing them in
Table 1 with the structural and compositional ground-state
energies.

From the relative importance of the different energies it is
evident that the local moment formation has a considerable
influence on stability, alloy formation, atom arrangement,
and atom relaxation at the interface. Since the local moments
may change quite substantially at the interface, materials with
new and unknown phases (Blügel, 1996), crystal structures,
and magnetic structures (Kurz, Bihlmayer, Hirai and Blügel,
2001) are to be expected. Obviously, the anisotropy energy is
a rather small quantity, energetically nearly decoupled from
the rest and can therefore be treated separately. In magnetism,
tiny energies can matter. The anisotropy energy is, technolog-
ically speaking, the most important quantity in magnetism as
it determines the bimodal state of the magnetization, which
can for example be related to bit ‘0’ or ‘1’ and it is an
important quantity determining the finite temperature prop-
erties of thin films. The anisotropy energy, which depends

on all structural and electronic details of a low-dimensional
system, is the origin of the magnetostriction, but otherwise
does not have much influence on structural aspects. In this
sense the problem of the magnetic anisotropy can be tackled
after all other aspects of the low-dimensional system have
been completely determined.

There are several low-dimensional systems and phenom-
ena that are not covered in this chapter. To these belong
the magnetic nanoparticles and magnetic clusters in the
gas phase. The molecular magnets and the Kondo-effect
at surfaces are discussed in detail in Molecular Mag-
nets: Phenomenology and Theory, Volume 1 and The
Kondo Effect, Volume 1. When the growth of thin films
is repeated to form multilayers, in particular, those of thin
magnetic films separated by nonmagnetic spacer layers, an
exchange interaction between the films across the spacer
layer occurs, which is known as the interlayer exchange
coupling (see Exchange Coupling in Magnetic Multilay-
ers, Volume 1). Here, we do not include the thermodynamic
properties of low-dimensional systems, which are partly dis-
cussed in Theory of Magnetic Phase Transitions, Volume 1
and Electron Theory of Finite Temperature Magnetism,
Volume 1. The works that we present here are basically
predictions, analyses, and understanding of the magnetic
spin and orbital moment, the magnetic structure and the
magnetic orientation on the basis of the electronic struc-
ture – results obtained from the density-functional theory are
introduced in Density-functional Theory of Magnetism,
Volume 1. The experimental counterpart can be found in the
chapter Magnetism of Low-dimensional Metallic Struc-
tures, Volume 1

2 THEORY AND MODELS

In this section, the reader is reminded about the theoretical
concepts used to predict and analyze the results. The theories
have been introduced in other chapters. Further, simple
models are discussed to rationalize the results.

2.1 Density-functional theory: noncollinear
magnetism

Density-functional theory (Hohenberg and Kohn, 1964) in
the local spin-density approximation (LSDA) (von Barth
and Hedin, 1972; Kübler, 2000) or the more recent general-
ized gradient approximation (GGA) (Perdew et al., 1992) has
been the main underlying basis for the first-principles elec-
tronic structure calculations of magnetic systems in reduced
dimensions. The theory has been introduced in Density-
functional Theory of Magnetism, Volume 1. It is based on
the Hohenberg–Kohn theorem stating that the ground-state
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energy E of a many-body system is a unique functional of
the charge density n(�r) and the vector-magnetization density
�m(�r) and is minimal for the true ground-state densities.

In many applications, for example, in FM and AFM solids,
there is a common magnetization axis for all atoms. For
these collinear cases, a global z axis can be chosen along the
direction of the magnetic field. In this case, the energy and all
other physical observables become functions of the electron
density and the magnetization density m(�r) = ( �m(�r))z rather
than �m(�r), or, equivalently, of the spin-up and spin-down
electron densities n↑(�r) and n↓(�r). As an example of such
computational results we compare in Table 2 the calculated
magnetic moments of the elemental bulk ferromagnets with
the experimental ones.

This formalism also allows the calculation of complex
magnetic structures such as noncollinear magnets, in general,
or systems with incommensurate spiral spin-density waves
(SSDW) in particular. Such magnetic structures exist in a
great variety of systems. They often occur in topologically
frustrated antiferromagnets (e.g., antiferromagnets on a trian-
gular lattice or antiferromagnets in contact with ferromagnets
with atomically rough interfaces as in exchange-bias sys-
tems) or in materials with competing exchange interactions
as for example in fcc Fe or Mn.

Non collinear magnets are characterized by a set of mag-
netization axes {�̂e}, which may change from atom to atom
in order to minimize the energy functional E[n(�r), �m(�r)|{�̂e}]
and determine the magnetic structure. The spin spiral is a par-
ticular noncollinear magnetic structure with moments that are
rotated by a constant angle from atom to atom along a certain
direction of the crystal. It can be described by the propaga-
tion vector of the spin-spiral �q, the rotation axis (which, in
the absence of the spin-orbit or dipole–dipole interaction, is
not fixed with respect to the lattice) and the relative (cone-)-
angle ϑ between the local quantization axis and the rotation
axis. The rotation angle of the magnetic moment of an atom
at the position �Ri is then given by ϕ = �q· �Ri . For a rotation
around the z axis the magnetic moment of an atom at the

Table 2. Magnetic moments MLSDA in
µB/atom for Fe, Co, and Ni calculated
using the local spin-density approximation
(LSDA) (Moruzzi, Janak and Williams,
1978). Values are compared with exper-
imental data for the pure spin moment
Mspin and with the total moment Mtot

including orbital contributions.

Metal MLSDA Mspin Mtot

Fe 2.15 2.12 2.22
Co 1.56 1.57 1.71
Ni 0.59 0.55 0.61

position �Ri is given by

�Mi = M(cos(�q· �Ri) sin ϑ, sin(�q· �Ri) sin ϑ, cos ϑ) (1)

The great value of this type of noncollinear calcula-
tions rests in determining from E[n(�r), �m(�r)|{�̂e}] or
E[n(�r), �m(�r)|{�q}, {ϑ}] the magnetic ground state as well
as the exchange parameters Jij . They enter the Heisenberg
model, giving access to magnon spectra, spin-wave stiff-
ness constants, magnetic phase diagrams, finite temperature
properties, and magnetic excitations of the low-dimensional
system at hand (Sandratskii, 1998; Pajda, et al., 2001; Turek,
Kudrnovský, Drchal and Bruno, 2006).

2.2 Heisenberg model and beyond

Predicting the magnetic ground state of a low-dimensional
magnetic system can be a highly nontrivial problem. In cases,
for example, where competing exchange interactions between
neighboring atoms cannot be satisfied, exchange interactions
are frustrated giving rise to a multitude of possible spin struc-
tures. In the past, the magnetism of complex spin structures
of itinerant magnets was discussed almost exclusively within
the framework of model Hamiltonians, for example, the clas-
sical Heisenberg Hamiltonian,

H2-spin = −
∑
i,j

Jij
�Si · �Sj (2)

The spins localized on the lattice sites i, j are considered as
classical vectors �S, with the assumption that the spins on all
lattice sites have the same magnitude S:

�S2
i = S2, for all i (3)

The exchange interaction between the spins is isotropic and
is described by the pair interaction Jij . In localized spin
systems the Jij can be safely approximated by the FM
(J1 > 0) or AFM (J1 < 0) nearest-neighbor (nn) interaction,
that is, Jij = 0 for all i, j , except for Jnn = J1. Also in
itinerant magnets J1 often dominates over the rest of the more
distant pairs, however, an attempt to reproduce the Curie
temperature TC solely from J1 produces results of limited
quality. In many cases interactions between atoms as distant
as 20 sites need to be included to give reliable results.

Exchange interactions beyond the classical Heisenberg
model can be motivated from a perturbation expansion of the
Hubbard model (Takahashi, 1977). Expanding the Hubbard
model into a spin model and replacing the spin operators by
classical spin vectors, a second-order perturbation expansion
reproduces the classical Heisenberg model. The fourth-order
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perturbation treatment (the third order is zero in the absence
of spin-orbit interaction) yields two additional terms of a
different form. One is the four-spin exchange interaction:

H4-spin = −
∑
ijkl

Kijkl

[
(�Si

�Sj )(�Sk
�Sl)

+ (�Sj
�Sk)(�Sl

�Si) − (�Si
�Sk)(�Sj

�Sl)
]

(4)

The four-spin interaction arises from the hopping of electrons
over four sites, that is, the process 1 → 2 → 3 → 4 → 1.
The second term, resulting from the hopping 1 → 2 → 1 →
2 → 1, is the biquadratic exchange:

Hbiquadr = −
∑
ij

Bij (�Si · �Sj )
2 (5)

The exchange parameters Jij , Kijkl , and Bij depend on the
details of the electronic structure and it is known (Terakura,
Hamada, Oguchi and Asada, 1982) that for transition metals
the sign and magnitude are rapidly varying functions of the
d-band filling. In thin films, the nearest-neighbor exchange
constants scaled by the appropriate power of the magnetic
moment, S4K1 and S4B1, are about one order of magnitude
smaller than S2J1, which is for example for Mn/Cu(111)
about 30 meV (Kurz, Bihlmayer, Hirai and Blügel, 2002).
The higher-order spin interactions have then the effect,
depending on the sign and value, of lifting the degeneracy of
magnetic states that are degenerate in the Heisenberg model.

In itinerant magnets, the electrons that are responsible for
the formation of the magnetic state do participate in the
formation of the Fermi surface and hop across the lattice.
Thus, it is by no means clear how far a short-ranged nn
interaction or even how far the Heisenberg model, and
models beyond that, can go in giving a sufficiently good
description of the physics of itinerant magnets at surfaces and
films. We believe that the interplay of ab initio calculations
with model Hamiltonians provides a powerful approach to
investigate the magnetic structures of complex magnetic
systems such as low-dimensional magnets and to deal with
their thermodynamical properties.

For our purpose here, the value of the Heisenberg model
lies in two facts: (i) to construct a zero-temperature phase
diagram of relevant spin states as a function of the exchange
parameters Jij and (ii) that a spin-spiral state, SSDW, with
a propagation vector �q in the first Brillouin zone (BZ) is a
fundamental solution of the Heisenberg model for a Bravais
lattice. On a Bravais lattice it is convenient to write the spin
on lattice sites in terms of their discrete Fourier components
�S�q . The Heisenberg Hamiltonian can then be written in the

simple form

H2-spin = −N
∑

�q
J (�q) �S�q · �S−�q (6)

The summation goes over the reciprocal lattice vectors �q. N

denotes the number of lattice sites in the crystal.

J (�q) =
∑
i,j

Ji−j e−i �q( �Rj − �Ri)

=
∑
�0− �Ri

J�0− �Ri
e−i �q(�0− �Ri) = J (−�q) = J (�q)∗ (7)

are the Fourier transformed exchange constants and �Ri is the
real-space coordinate of lattice site i. The lowest energy

E( �Q) = −NS2J ( �Q) (8)

is found for the magnetic ground state �S �Q of the SSDW with

wave vectors ± �Q (as well as symmetry-related �Q vectors)
which are obtained by minimizing the energy equation (6)
under the condition equation (3). The corresponding spin
structures are helical spin spirals (equation (1) for ϑ = 90◦)
and �Mi = −gµB

�Si . For particular �Q vectors, for example,
�Q = ±2π/a(0, 0, 1/2), one may find the uudd state as

ground state, a collinear bilayer AFM state of FM double
layers (DLs), which couple antiferromagnetically. This state,
for example, was found in calculations for regime II of fcc-Fe
films on Cu(001) (Asada and Blügel, 1997b).

In two dimensions, �Q is typically located at high-
symmetry points (lines) of the two-dimensional (2D) Bril-
louin zone, where the energy equation (8) as function of the
�q-vector should have an extremum, a maximum, a minimum
(or a saddle point), depending on the exchange constants Jij

and the symmetry of the high-symmetry point. In principle,
one cannot rule out that the minimum of the energy will
be located at any arbitrary point along the high-symmetry
lines, representing an incommensurate spiral spin-density
wave. In practice, we perform first-principles total energy
calculations, that is, we study E

[
n(r), m(r)|{q}] of flat spin

spirals along the high-symmetry lines to gain an overview of
possible minimum energies E( �Q). The role of higher-order
spin interactions is then investigated, carrying out constraint
calculations of the total energy E[n(�r), �m(�r)|{�̂e}] for particu-
lar paths of magnetic configurations. Zero-temperature phase
diagrams in the J01 · · · J0i space are very helpful to reduce the
relevant phase space of possible spin structures. This method
is followed in Sections 3.1.2 and 3.2.2 to explore the mag-
netic ground state of thin films. The previously described
mapping of ab initio calculations to spin models relies on
the assumption that the magnetic moment does not depend
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on the relative difference of the magnetization axis between
atoms. For itinerant systems this is not necessarily guaran-
teed. The change of the moment with respect to the relative
quantization axis can be mapped on spin models introducing
higher-order spin interactions as well.

2.3 Critical temperature

It is well known that magnetic excitations in itinerant fer-
romagnets are basically of two different types, namely, the
Stoner excitations, associated with longitudinal fluctuations
of the magnetizations, and the spin waves or magnons, which
correspond to collective transverse fluctuations of the magne-
tization direction. Near the bottom of the excitation spectrum,
the density of states (DOS) of magnons is considerably larger
than that of the Stoner excitations, so that the thermodynam-
ics in the low-temperature regime is completely dominated
by magnons. Stoner excitations can be safely ignored. Thus,
it seems reasonable to extend this approximation up to the
critical temperature, TC, to neglect the Stoner excitation sys-
tematically, and to describe the transversal fluctuations by the
Heisenberg model expressed in equation (2) with exchange
parameters determined from first principles. An overview
of the current applications along this line of mapping first-
principles results on Heisenberg-type Hamiltonians to study
the thermodynamical properties of bulk and low-dimensional
magnets can be found in the paper of Turek, Kudrnovský,
Drchal and Bruno (2006).

Below the critical temperature, the so-called Curie tem-
perature TC for ferromagnets, or the Néel temperature, TN,
for magnets with more complex magnetic phases, the spon-
taneous magnetization remains finite, while it is zero above
TC. The phase transition is of second order, that is the spon-
taneous magnetization which is the order parameter charac-
terizing the phase transition, vanishes continuously at TC. A
second-order phase transition is governed by the principle
of universality, where a system close to the phase transition
does not depend on details of the system such as its mate-
rial parameters or the geometry of the sample, but rather
on the symmetry of the underlying model and the dimen-
sion of the spin, which is three for the Heisenberg model.
In this chapter we are interested in estimating the critical
temperatures as these are nonuniversal quantities and are of
great practical importance. It is certainly important to know
whether cryogenic, room temperature, or elevated tempera-
tures are required to observe particular phenomena.

A first simple estimate of the Néel temperature for a
three-dimensional system exhibiting a helical spin-spiral
ground state with wave vector �Q is given by the mean-field
approximation (MFA) to the Heisenberg Hamiltonian, which

leads to

kBT MFA
N = 2

3
S2J ( �Q) and kBT MFA

C (n.n.) = 2

3
S2NnnJ1

(9)
where kB is the Boltzmann constant. For the FM state, �Q =
(0, 0, 0), the left equation (9) gives the Curie temperature
in the MFA, T MFA

C , expressed explicitly in the equation
on the right in the nearest-neighbor approximation to the
exchange interaction. Nnn is the coordination number of
nearest neighbor atoms and J1 is the interaction strength
as introduced in Section 2.2. The MFA gives the right
proportionality of TC with respect to the number of neighbors,
but also has a few deficiencies. Besides overestimating TC

for three-dimensional systems by typically about 20%, T MFA
C

does not depend on the lattice structure or the dimensionality
of the system. These shortcomings are remedied by treating
the Heisenberg model in the random phase approximation
(RPA) (Tyablikov, 1967; Turek et al., 2003), which gives for
the critical temperatures,

1

kBT RPA
N

= 3

4

1

NS2

∑
�q

[
1

J ( �Q) − J (�q)

+ 1

J ( �Q) − 1
2J (�q + �Q) − 1

2J (�q − �Q)

]

and kBT RPA
C (n.n.) = 2

3
S2NnnJ1·




0.660 sc
0.718 bcc
0.744 fcc

(10)

The RPA gives weight to the low-energy magnon excitations
E(q) ∝ J ( �Q) − J (�q) in the summation over all modes. This
provides estimates of TC in close vicinity to the numerical
analysis using classical Monte Carlo simulations (Metropolis
et al., 1953) discussed in detail in the book of Landau and
Binder (2000).

Both approximations show that the Curie and Néel tem-
peratures depend on the number of nearest neighbors, and
one expects that the critical temperature TC decreases if the
dimensionality of the system is reduced. But both approx-
imations show a qualitatively different behavior for low-
dimensional magnets. MFA overestimates the tendency for
long-range order and predicts always a phase transition to
FM order in the Heisenberg model, regardless of whether
we have a one-, two-, or three-dimensional system, whereas
T RPA

C = 0 already for 2D systems. This is consistent with the
theorem of Mermin and Wagner (1966), which states that
in two dimensions there is no spontaneous long-range FM
order for isotropic Heisenberg models with short-range inter-
action (

∑
j Jij r

2
ij < ∞) at finite temperature. In thin films,

the long-range order at finite temperature is stabilized by the
magnetic anisotropy, which is practically always present. It
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opens a gap � in the excitation spectrum of the spin waves,
E(q) ∝ � + J ( �Q) − J (�q), and suppresses low-energy long-
wavelength fluctuations, which occur for low temperatures.
According to a renormalization group analysis by Erickson
and Mills (1991) and Mills (1994), the transition temperature
in two dimensions, T

(2D)
C , scales with the transition temper-

ature of the three-dimensional Heisenberg model which is
renormalized by a logarithmic factor,

T
(2D)

C = T
(3D)

C

2

ln

(
3π
4

kBT
(3D)
C
K

) (11)

which contains the strength of the uniaxial magnetic
anisotropy in terms of a constant K (see Section 2.6). This
result is displayed in Figure 2. TC vanishes in the isotropic
limit (K → 0) in accordance with the Mermin–Wagner
theorem. Interestingly, for finite K there is a rapid increase of
TC reaching reasonable values, of say 20% of the critical tem-
perature in three dimensional systems, for anisotropy values
of less than a percent of the FM coupling constant. Consider
for example Fe, with a shape anisotropy of 0.140 meV, which
corresponds to 1.63 K on the temperature scale. This is only
0.14% of the Curie temperature of Fe, T

(3D)
C (Fe) = 1183 K,

but already causes a Curie temperature for an Fe film of
T

(2D)
C (Fe) = 0.27·T (3D)

C (Fe) = 320 K.
Thus at any finite anisotropy, there is a critical tem-

perature, where the spin degree of freedom is frozen out
owing to the presence of the anisotropy, that is the dimen-
sion of the spin is reduced from three for the Heisen-
berg model to one – spin up and down. In terms of uni-
versality, the Heisenberg model with any finite anisotropy
value is in the universality class of the Ising model, and
the Ising model shows a phase transition in two dimen-
sions.

In one dimension even the Ising model does not show
long-range order at finite temperatures. Although for quasi-
one-dimensional magnetic chains – these are chains of finite
size – there is, strictly speaking, no remanent magnetization

T
C

(2
D

)  /
 T

C
(3

D
)

1

0.5

0.3

0 0.0001
0

0
0 0.01 0.02

K (kBTC
(3D))

0.03 0.04

Figure 2. Critical temperature of a two-dimensional magnet as a
function of the uniaxial anisotropy following equation (11). The
function starts at zero for K = 0. Note its rapid growth in the
vicinity of the origin as shown in the inset at magnified scale.

or long-range order, but there is a temperature, known as
blocking temperature, below which a finite chain seems to a
have a spontaneous and remanent magnetization, with long-
range order in the chain. In reality, this magnetic order
is accompanied by a slow relaxation (Glauber, 1963). The
relaxation rate depends on the magnetic anisotropy and can
be of macroscopic times, such that a quasi-one-dimensional
chain appears as a ferromagnet as occurs in the experiments
of Gambardella et al. (2002).

2.4 Stoner model

The occurrence of ferromagnetism can be studied on the
basis of the Stoner criterion introduced in Density-functional
Theory of Magnetism, Volume 1:

I n(EF) > 1 (12)

The Stoner criterion is an instability condition that expresses
the competition between the exchange interaction in terms
of the exchange integral I , which drives the system into
ferromagnetism for large I , and the kinetic energy in terms
of the nonmagnetic density of states (DOS), n(EF) at the
Fermi energy EF. The kinetic energy rises if the system
becomes magnetic. This effect will be most pronounced for
systems with wide bandwidth or low density of states. A big
exchange integral and a large nonmagnetic DOS at the Fermi
energy favors ferromagnetism. When ferromagnetism occurs,
the double degeneracy of the energy bands ε�k is lifted, and
majority states εk↑ and minority states εk↓ are rigidly shifted
in energy by the exchange splitting IM , where M is the
value of the local magnetic moment,

εk↑ = ε�k − 1

2
IM and εk↓ = ε�k + 1

2
IM (13)

The rigid band shift is a good model if the shift is small as in
the case of bulk ferromagnets. Deviations can be found for
thin films, as the magnetic moments and thus the exchange
splitting is large.

The Stoner criterion in equation (12) can be generalized,
describing the instability against the formation of a frozen
spin wave of wave vector �q,

I χ �q(EF) > 1 (14)

Obviously the local DOS was replaced by the �q-dependent
susceptibility χ �q , a quantity that is expressed in the Heisen-
berg model by J (�q). Within equation (14), antiferromag-
netism is just a special case. While the DOS at EF can be
easily assessed by experiment or electronic structure calcula-
tions, the static susceptibilities χ �q(EF) are more difficult to
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measure. To make use of equation (14), an approximate crite-
rion for antiferromagnetism is derived which makes explicit
use of the local DOS. Small magnetic moments with the same

magnitude M , but possibly different directions �̂Mj at differ-
ent sites j , induce in linear response theory local moments
�Mi at sites i

�Mi =
∑

j

χij (EF) M �̂Mj (15)

The staggered susceptibility describing a particular magnetic
state (M) is then expressed as

χM =
∑

i

χ0i
�̂M0· �̂Mi (16)

Particular examples of this staggered susceptibility are the
FM (χFM)

χFM = n =
∑

i

χ0i (17)

and the AFM (χAFM)

χAFM =
∑

i

(−1)(i) χ0i (18)

susceptibilities. Assuming that for 3d metals the nearest-
neighbor interaction is the most dominating one, χ0i can
be neglected for all sites beyond nearest neighbors (χ0i = 0
for i > 1), and χFM and χAFM are given approximately by

n(E) ≈ χ00(E) + χ01(E), and

χAFM(E) ≈ χ00(E) − χ01(E) (19)

where χ00(E) is the local or atomic susceptibility, respec-
tively, at the energy E. The energy dependence of χ00 is
fairly simple. It follows from atomic Hund’s rule–type argu-
ments: the maximum spin M occurs for half-band filling,
hence the atomic (local) susceptibility χ = ∂M/∂H will also

be largest. From equation (19), we can obtain an approx-
imate form for χAFM using only DOS information. This is
illustrated in Figure 3. As function of the d-band filling, from
V to Ni, the Fermi energy sweeps from the left to the right
through the DOS. If the Fermi energy is positioned at the
center of the band as for Cr, the DOS is low but the AFM sus-
ceptibility is high and antiferromagnetism is expected. If the
Fermi energy is closer to the end of the band, the AFM sus-
ceptibility is small but the DOS is large and ferromagnetism
is expected as for Fe, Co, and Ni. Mn and Fe are at the edge
of both magnetic states and, depending on circumstances,
different magnetic ground states can be found. Compare also
to the calculated DOS, Figure 9 in Section 3.1.1

2.5 Role of coordination number

As discussed in Section 2.4 the Stoner criterion for ferromag-
netism, equation (12), depends on (i) the Stoner parameter I

and (ii) the DOS n(EF) at the Fermi energy EF.
(i) The exchange integral I is an intra-atomic, element-

specific quantity, and in the simplest approximation it is
independent of the local environment, the structure, and the
site of a given atom, for example, surface atom or bulk atom.
According to Gunnarsson (1976) and Janak (1977) a global
trend

I3d > I4d > I5d (20)

was found for the exchange integrals of the 3d, 4d, and 5d
transition-metal series.

(ii) Focusing on the d electrons as relevant electrons
for itinerant magnetism, the DOS depends on both the
coordination number Nnn and the hopping matrix elements
hd between the d electrons. This can be understood as
follows: The energy integral

∫
W

n�(ε) dε = 2� + 1 over the
bandwidth, W , of the local DOS of the angular momentum
quantum number �(= 2) is normalized to 2� + 1 states. Thus,
in the simplest approximation possible (e.g., rectangle-shaped

E

n(E ) c00 (E ) c01 (E ) cAFM (E )

=

E

+

E

=>

E
EF EF

Figure 3. Graphical illustration of equation (19) for a DOS typical for transition-metal monolayers on (001)-oriented noble-metal substrates.
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DOS), one can assume that the local DOS scales inversely
proportional to the bandwidth, W ,

n(EF) ∼ 1

W
(21)

At the atomic limit, the bandwidth converges to zero,
the Stoner criterion is always fulfilled, and moments in
accordance with Hund’s first rule will be found. In general
the DOS consists of contributions from electrons in s, p,
d, and f states. For transition metals, by far the largest
contribution comes from the d electrons, and the d–d
hybridization determines the shape of the density of states.
Therefore, in the following discussion we restrict ourselves
to d electrons and write

n(EF) ≈ nd(EF) ∼ 1

Wd
(22)

The average local bandwidth Wd( �Ri) for an atom i at
position �Ri can be estimated in a nearest-neighbor tight-
binding model – applicable for the itinerant but tightly bound
d electrons of transition-metal atoms – to be

Wd ≈ Wd( �Ri) = 2
√

Nnn( �Ri)hd(Rnn) (23)

According to equation (23) the bandwidth depends on two
quantities: (i) the hopping matrix element hd of the d
electrons and (ii) the number of nearest-neighbor atoms or
coordination number Nnn.

(i) The hopping matrix element depends on the overlap of the
d wave functions. It decreases with increasing lattice constant
or distance Rnn to the nearest-neighbor atom, and for a given
lattice constant it increases with the extension of the wave
function or, equivalently, the number of nodes. In Figure 4
the bandwidths of 3d, 4d, and 5d bulk transition metals are
schematically shown, together with the bandwidths of rare
earths and actinides. In line with the arguments of increasing
number of nodes from 3d to 5d wave functions, a clear
‘macro trend’ is visible for the transition-metal series, and
it is summarized as follows:

h3d < h4d < h5d ⇒ W3d < W4d < W5d ⇒ n3d > n4d > n5d

(24)
Additionally, within each transition-metal series there exists a
‘micro trend’ due to the incomplete screening of the Coulomb
potential of the nucleus by the d electrons. The d wave
functions at the beginning of the transition-metal series are
more extensive than at the end of the series, thus the hopping
matrix element at the beginning of the series is larger than
at the end, with well-known consequences for the bandwidth
W and the DOS n(EF).

4f
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Figure 4. Schematic illustration of the bandwidth W of the
transition metals together with rare earths (4f) and actinides (5f),
all in the bulk phase. The 5f electrons of the early actinides and
the 3d electrons of transition metals from the middle to the end
of the 3d series (Cr to Ni) show itinerant magnetism, while the
magnetism of the late actinides and the rare earths is best described
as localized magnetism, and their magnetic properties can in good
approximation be explained in terms of Hund’s rule.

(ii) The smaller the coordination number Nnn the smaller
the d–d hybridization and the smaller the bandwidth. Let us
consider for example the coordination number of an atom in
the environment of an fcc crystal (Nfcc = 12), of an atom in
the (001) surface of the fcc crystal (N(001) = 8), located in a
two-dimensional (001) monolayer (ML) film (NML = 4) and
of an atom in a monatomic chain (Nchain = 2), keeping the
nearest-neighbor distance (Rnn = constant) and the bonding
strength fixed (hd = constant). Under these circumstances,
one obtains for the ratio of the bandwidths

Wd
chain:Wd

ML:W(001)
d :W fcc

d = 0.41:0.58:0.82:1

or that of the local DOS

nchain
d :nML

d :n(001)
d :nfcc

d = 2.45:1.73:1.22:1 (25)

Thus, the reduction of the coordination number leads to
less d–d hybridization, which consequently leads to band
narrowing, and in low-dimensional structures the tendency
towards magnetism is considerably boosted. Accordingly,
one can expect that transition metals, which are nonmagnetic
as bulk metals, may become magnetic at surfaces or as
ultrathin films. A nice manifestation of these arguments
was recently reported for the size and shape dependence of
the local magnetic moments in Fe clusters on the Ni(100)
surface (Mavropoulos, Lounis, Zeller and Blügel, 2006)
summarized in Section 5.2. The arguments put forward here
for the increased ferromagnetism in reduced dimensions can
be carried over directly to the increased AFM susceptibility.

The magnetic properties are expected to depend on the
surface or film orientation also, because the coordination
number Nnn (cf. Table 3) as well as the nearest-neighbor
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Table 3. Coordination number Nnn, interlayer dis-
tance d , point symmetry S, and packing density ρ

(fraction of the area of the surface unit cell, cov-
ered by atoms with an atom radius of touching bulk
atoms) for an fcc lattice. Only the three low-index
surfaces (001), (011), and (111) are considered. a is
the lattice parameter of the simple cubic unit cell.

Nnn S d/a ρ

(111) 9 C3v 0.5774 0.9068
(001) 8 C4v 0.5000 0.7854
(011) 7 C2v 0.3536 0.5554

distance R‖ between the surface atoms and R⊥ between the
surface atoms and the atoms in the next layer change along
with a change of the surface orientation. For an fcc lattice, the
(111) surface is the most densely packed one, and we expect
for it the smallest enhancement of the magnetic moments.
Among the three low-index surfaces, with the orientation
(001), (011), and (111), the (011) surface leads to the most
open surface. For the latter we expect the largest magnetic
moments. At surfaces or ultrathin films of bcc lattice type
the trend should be exactly the opposite. The most densely
packed surface is the (011) surface for which we expected
the smallest enhancements of the magnetic moments. The
(111) surface is the most open one. This surface is already
close to a stepped one.

The implication of the coordination number, discussed so
far, is an important aspect in interface magnetism but it is not
the whole story. Further important aspects, neglected so far,
have to be taken into account in order to give a qualitatively
correct description of the magnetism at interfaces.

Point symmetry: The disruption of the translational sym-
metry due to a given interface reduces, in general, the point
symmetry. Degeneracies typical for cubic bulk metals may
be lifted. One example is the threefold degenerate t2g bulk
state, which is split at a (001) surface into a twofold degener-
ate state and a singly degenerate state. This symmetry break
induces a splitting or broadening of the DOS and makes mag-
netism unfavorable. A famous victim of this scenario is Pd.
Bulk Pd has a large DOS at the Fermi energy which con-
tributes to a large exchange enhanced susceptibility. Thus,
bulk Pd is nearly FM. The band narrowing experienced at
the surface because of the reduction of the coordination num-
ber should drive the surface of Pd into the FM state. But this
is not the case. Instead, the change of the surface symme-
try splits the states at the Fermi energy, broadens the DOS,
and counteracts the band narrowing. The surface of Pd(001)
remains nonmagnetic.

Shift of the d band relative to the sp band : Compared to a
single isolated atom, the d electrons in a solid are in a state

of compression. Therefore, in a solid their energy levels are
positioned at a much higher energy than in an atom. At the
surface, the charge density of the d electrons can relax and
their energy levels move downwards. They are situated closer
to the bottom of the sp band and the number of d electrons
is increased, or the d holes are decreased. This downward
shift is often facilitated by a significant hybridization of the
d electrons with sp electrons or holes for example, of the
substrate. As depicted in Figure 5 this leads to a Lorentzian
tail of the DOS. If this tail is positioned close to the Fermi
energy, magnetism can be drastically reduced as for example,
for a single Ni monolayer on Cu(100), for which the local Ni
moment amounts to 0.33 µB as compared to the magnetic Ni
moment at the Ni(100) surface (0.72 µB). For a monolayer
Pd on Ag(100) magnetism is even absent. In both cases we
would expect an increase of the moment due to the reduction
of the coordination number by a factor 2 when compared to
the respective (100) surface. On the other hand, elements at
the beginning of the transition-metal series, such as V, profit
from this effect and magnetism is more likely to appear.

sp–d dehybridization: The main carriers of itinerant
magnetism are the d electrons. For atoms, we know that
the number of d electrons are integer numbers. In metallic
systems, this is not the case, the number of d electrons
is a noninteger number and depends on the hybridization
with the s and p electrons, besides depending on the
dominating d–d hybridization. Owing to the hybridization
of the d electrons with the sp electrons, d states below
the Fermi energy are hybridized into unoccupied sp hybrids
and the number of d electrons is reduced when compared
to the isolated atom. This so-called sp–d dehybridization
changes, as a function of the coordination number or
the nearest-neighbor distance, the fractional number of d
electrons without any topological change of the DOS. This
is illustrated in Figure 6. Surfaces and monolayers with
their smaller coordination numbers have, therefore, a higher
number of d electrons favorable for magnetism. For an
illustration, in a computer experiment we investigated the

n (E )

d

E
(a) (b) EFEF

n (E )

spd

d

E

Figure 5. Schematic illustration of the hybridization of the over-
layer d electrons with the sp electrons for example, of the substrate,
on the density of states, (a) without and (b) with hybridization.
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Figure 6. Schematic illustration of the role of the sp–d dehy-
bridization on the density of states of the d electrons nd(E). The
integrated density of d states for the surface is larger than that for
the bulk.

Table 4. Calculated magnetic moments in
units of µB for Ni(001) as an unsupported,
freestanding monolayer (coordination num-
ber Nnn = 4), as a function of the lattice
constant: aAg = 7.79 au, aPd = 7.42 au, aCu =
6.76 au, and aNi = 6.65 au. Nnn = 8 indicates
the local magnetic moment of the Ni(001) sur-
face and Nnn = 12 indicates the bulk value. The
local magnetic moment of the Ni(011) surface
(Nnn = 7) is also included.

Nnn Lattice parameter

Ag Pd Cu Ni

4 1.02 0.96 0.87 0.85
7 – – – 0.74
8 – – – 0.72
12 – – – 0.59

magnetic moment of one layer of Ni for various lattice
parameters and coordination numbers. In Table 4 one finds
that with decreasing coordination number and increasing
atom separation, the magnetic moment increases although
the Ni majority band is always completely filled.

Charge neutrality : The local charge neutrality has to
be fulfilled in order to avoid the strong Coulomb forces
that appear otherwise. It again induces a band alignment.
Band narrowing (at interfaces) automatically means that
the number of electrons must change. To avoid charged

interfaces, a realignment of the center of gravity of the bands
occurs. The d band, which moved to lower energy in order
to relax the compression, now moves upward again. Owing
to an upward shift in the energy, the minority and majority
electrons become depopulated differently, and together with
the change of the number of majority electrons due to the
sp–d dehybridization the magnetic moment increases. All
together we find a complex alignment of all the bands,
individually, for each symmetry of the electrons.

Strong and weak ferromagnets : Despite the drastic change
of the coordination number and the lattice parameter, the
Ni moment in Table 4 changes only in the range of ±20%.
This is typical for strong ferromagnets (magnets with filled
majority band). In general, one can say that the magnetism
of strong ferromagnets is rather robust against any environ-
mental changes. Weak ferromagnets (magnets with partly
occupied majority bands) are sensitive to any environmental
changes, and their moments collapse easily.

Using model Hamiltonians, these interwoven effects were
frequently neglected. However, they are readily included in
self-consistent first-principles results.

2.6 Orbital moment and magnetic anisotropy

A piece of magnetic material is typically magnetically
anisotropic. This means that besides the isotropic exchange
interaction there are additional interactions, which make the
total energy depend on the orientation of the magnetization
as measured with respect to the crystal axes and the sample
shape. This orientation-dependent energy contribution is
called the magnetic anisotropy energy (MAE), EMAE, given
in units of energy/atom throughout this article. Without this
effect of the magnetic anisotropy, magnetism would have
been hard to discover and possibly useless. In some way
or the other, almost all applications of magnetic materials
hinge on the fact that it is easier to magnetize a magnetic
material in one direction than in another. The magnetic
anisotropy is responsible for the occurrence of easy and hard
axes, stabilizes magnetic order against thermal fluctuations in
dimensions where the exchange interaction alone would not
suffice (see Section2.3), and limits the width of a magnetic
domain wall. It is, for example, responsible for the bimodal
stability of magnetic domains with uniaxial symmetry, which
allows the two possible magnetization directions in space
to be interpreted in terms of bit ‘0’ or ‘1’. This makes
magnetism very valuable for magnetic storage media. Since
the magnetic anisotropy is strongly related to the crystalline
symmetry and the shape of the samples, a general expression
of EMAE will be a complex function of the orientation of the
magnetization relative to the crystal axes. In low-dimensional
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systems twofold symmetries are the most relevant ones and
the magnetic anisotropy is then expressed as

HMAE =
∑

i

�Si · ��Ki · �Si (26)

where the tensor of single-site anisotropy constants, ��K , deter-
mines the strength of the anisotropy as well as the direction
of minimal and maximal energy, named easy and hard axes,
respectively. In perfect thin films and wires, the presence of
a surface is then responsible for a uniaxial anisotropy energy

normal to the surface, that is all components of ��Ki are zero
except Kzz

i = Kδzz for perfect films and Kxx
i = 1/2Kδxx

and K
yy

i = 1/2Kδyy for isolated wires. After expressing �Si

in the form of equation (1), the uniaxial MAE takes the angu-
lar dependence

EMAE(θ) = −K cos2 θ (27)

θ denotes the angle between the magnetization and the
film or wire normal and K = �EMAE = E

(‖)
MAE − E

(⊥)
MAE is

the uniaxial anisotropy constant also given in energy/atom.
The total MAE, E

(tot)
MAE = NAEMAE = V EMAE, of the system

depends then on the number of atoms, NA, in it. Frequently,
the MAE is also expressed in terms of an energy density
EMAE. By definition, K > 0 (K < 0) describes the case of
a preferred direction of the magnetization perpendicular,
⊥, (parallel, ‖) to the film plane or wire axis. Additional
higher symmetries in place, for example a fourfold symmetry
in a (100)-oriented film plane, corresponds to anisotropy
contributions that are smaller in energy than the uniaxial
anisotropy and are neglected here. The anisotropy constant
depends sensitively on the chemical elements involved,
structural details, details of the electronic structure, and the
dimensionality of the system.

The microscopic origins of the magnetic anisotropy are the
magnetic dipolar interaction and the spin-orbit interaction.
The dipolar interaction is of long range and senses the outer
boundaries of the sample. This results in shape anisotropy.
Discussing long-range contributions, the underlying atomistic
lattice describing the crystallinity of the system can be
neglected and the shape anisotropy is described in terms of
a continuum theory. Any contribution to the MAE, that is
due to effects beyond continuum theory and explicitly takes
the crystallinity of the system into account, is summarized
as magnetocrystalline anisotropy energy (MCA). Both the
dipolar and the spin-orbit interaction contribute to the MCA
and the total anisotropy constant K ,

K = Kshape + K
(dip)

MCA + K
(so)
MCA (28)

is just a linear superposition of the different contributions.

The shape anisotropy constant, Kshape in atomic Rydberg
units/atom of a perfectly flat film of infinite extension or an
infinitely long perfectly cylindrical wire is given by the local
magnetic moment m and the atomic volume V as

Kfilm
shape = −2π

2

c2

m2

V
and Kwire

shape = −π
2

c2

m2

V
(29)

all expressed in atomic units (au), m in µB/atom, V in
au3, and the speed of light, c, by the inverse of the fine-
structure constant α, c = 2/α. The negative sign denotes
that the shape anisotropy pulls the magnetization into the
film plane or along the wire axis. For bcc Fe, for instance,
with a bulk magnetic moment of 2.215 µB/atom and a lattice
constant of 5.42 au, Kfilm

shape is equal to −0.140 meV/atom.
The long-range interaction also senses the interface or
surface roughness that is always present in real films.
According to Bruno (1988) the roughness gives rise to an
effective perpendicular contribution to the shape anisotropy
the order of magnitude of which depends on the parameters
characterizing the roughness. Obviously Kfilm

shape and Kwire
shape

are the same for all atoms irrespective of their position
and K is thus homogeneous across the film or wire. The
same is true for any finite ellipsoidal structure, for any
other finite structure, for example, a nanopattern structure
on a surface, Kshape becomes inhomogeneous and typically
much smaller at the boundary of the structure. For bulk
samples, thick films, patterned nanostructures, and wires,
the shape anisotropy is frequently the most important of the
anisotropies.

For thin films and wires of a few atomic layers, the
assumption that the magnetization can be treated as a
continuous magnetic medium is no longer valid. Instead, the
magnetic dipole-dipole energy has to be evaluated explicitly.
In transition metals, the magnetization distribution around the
atom is almost spherical and can thus be treated to a good
approximation as a collection of discrete magnetic dipoles
that are regularly arranged on a crystalline lattice. The dipolar
energy Edip per atom experienced by a dipole at site i because
of the presence of ferromagnetically aligned dipoles on all
other sites j can then be expressed as

E
(i)
dip(θ) = K

(i)
dip cos2 θ = 2

c2

1

2

∑
j (j �=i)

mimj

R3
i,j

(
1 − 3 cos2 θij

)
(30)

θij is the angle between the direction of the magnetic
moment m of the dipoles at sites i or j given in units
of µB and the vector �Ri,j connecting atoms i and j . Ri,j

denotes the relative distance between these dipoles or atoms,
respectively. The θ dependence explicitly expresses the fact
that the dipole–dipole interaction contributes to the magnetic
anisotropy. Obviously, in thin films and wires the anisotropy
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energy depends on the position of the atom i normal to the
surface or wire axis, respectively, and as such explicitly on
the film thickness or wire diameter (in contrast to Kshape

where all atoms have the same value). For crystalline thin
wires and films, the sum in equation (30) can be evaluated
straightforwardly with fast-converging summation techniques
(Topping, 1927; Szunyogh, Újfalussy and Weinberger, 1995).
Draaisma and de Jonge (1988) have worked out in detail
the layer-dependent dipolar anisotropy K

(i)
dip. In general, the

outer atoms experience values of Kdip that are appreciably
smaller than those of the inner layers, which finally approach
Kshape. The inner atoms reach 95% of Kshape after about 15 Å
below the surface. The exact details depend on the crystal
structure and surface orientation, for example, a reduction
between 25 and 45% of Kshape was reported for a (100)-
oriented fcc or bcc monolayer, respectively. The deviation of
Kdip from Kshape gives K

(dip)

MCA in equation (28), the dipolar
contribution to the MCA which occurs here owing to the
presence of a surface or interface and is sometimes also
called the surface contribution of the dipolar anisotropy.
If the MAE is expressed in terms of energy densities E ,
this K

(dip)

MCA is expressed in terms of an areal density. The
dipolar energy contributes to the MCA of bulk systems or
thick films or wires also, if the underlying lattice structure
has a twofold symmetry. For this three-dimensional case
more sophisticated summation techniques such as the Ewald
summation method (Ewald, 1921) are required to obtain
reliable results for equation (30).

The spin-orbit interaction, treated typically by a Pauli-type
addition to the Hamiltonian as:

Hso = �σ ·( �E(�r) × �p) = �σ ·(∇V (r) × �p) (31)

provides the essential contribution to the MCA. This Pauli
approximation derives naturally from the Dirac equation
and is normally sufficient for treating relativistic effects in
transition-metal magnets. For a radially symmetric potential
we can rewrite equation (31):

Hso = 1

r

dV (r)

dr
�σ ·(�r × �p) = 1

r

dV (r)

dr
(�σ · �L) = ξ(�r)�σ · �L

(32)
where �L is the angular momentum operator. Since the radial
derivative of the potential in a crystal will be largest in
the vicinity of a nucleus, we can expect that the major
contribution to the spin-orbit interaction will come from
this region. Furthermore, since for small r the potential will
be Coulomb-like, (V = −Z

r
), the radial expectation value

of ξ(r) leads to a material-dependent spin-orbit coupling
constant ξ , which is roughly proportional to the square of the
nuclear number Z, ξ ∝ Z2. In low-dimensional systems the
MCA dominates over the shape anisotropy. The anisotropy
depends crucially on the symmetry of the system.

In a solid, where the symmetry of the states is determined
by the crystal field, spin-orbit coupling can now introduce
orbital moments and magnetocrystalline anisotropies by
coupling states that carry no orbital momentum, for example,
a dxy and a dx2−y2 orbital, such that the combination
forms an orbital moment in the z direction. In second-
order perturbation theory the expectation value of the orbital
moment operator µB

�L can be written as:

ml = µB〈 �L〉 = µB

∑
i,j

〈ψi | �L|ψj 〉〈ψj |Hso|ψi〉
εi − εj

×f (εi)
[
1 − f (εj )

]
(33)

where f is the Fermi function ensuring that the wave
function ψi is occupied and ψj is unoccupied. In a metal,
where several bands are crossing the Fermi level, EF, it is
basically the sum of all contributions from bands near EF

that determines the orbital moment. van der Laan (1998)
has shown, that in the absence of spin-flip terms (i.e.,
when the majority and minority bands are well separated by
the exchange interaction), the spin-orbit coupling changes
the total energy of a system in second-order perturbation
theory as:

δE =
∑
i,j

〈ψi |Hso|ψj 〉〈ψj |Hso|ψi〉
εi − εj

f (εi)
[
1 − f (εj )

]

≈ − ξ

4µB
m̂s·

[
�m↓

l − �m↑
l

]
(34)

where m̂s is the direction of the spin moment and �m↓
l and �m↑

l
are the orbital moment vectors of the spin-down and spin-
up bands, respectively. If the spin-up band is completely
filled, we see that energy change, δE, is proportional to
the size of the orbital moment and the MCA, that is, the
difference of δE for two different magnetization directions
will be proportional to the difference in the orbital moments.
This relation between orbital moment anisotropy and MCA
was first derived by Bruno (1989).

We have discussed that the reduced coordination number
in low-dimensional systems favors the increase of the spin
moment. But it also enables the formation of large orbital
moments, as can be seen from most atoms. Also in the case of
the orbital moment, the hybridization with some neighboring
orbitals ‘locks’ the electrons in place and quenches the orbital
moment. Imagine a Sc atom with only one d electron: as an
atom, according to Hund’s rules, the orbital moment will be
maximized and antiparallel to the spin moment. But when Sc
atoms are assembled in a square lattice, orbitals with m = −2
and m = +2 will form linear combinations to build dxy and
dx2−y2 orbitals of which the latter will be occupied. The more
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these two levels are split in energy, the more difficult it will
be for the electron to ‘circle’ around the atom and, therefore,
to form an orbital moment.

In Table 5 some representative values of spin and orbital
momentum have been collected. These calculations yield
very small orbital moments: 0.05 µB, 0.08 µB, and 0.05 µB

for bcc Fe, hcp Co, and fcc Ni, respectively (and about
twice the value if the orbital polarization (OP) proposed
by Brooks (1985) is included). It is well known that the
orbital moments are quenched in the bulk because of the
strong hybridization with neighboring atoms. Larger orbital
moments are obtained for the (111)-oriented unsupported
3d monolayers. For Fe, Co, and Ni the values are 2–3
times larger than the corresponding bulk values. Thus, in
monolayer films the quenching of the orbital moments is less
pronounced because of the reduced hybridization. However,
it is important to realize that these enhanced orbital moments
are still an order of magnitude smaller than the corresponding
free-atom values, as given by Hund’s second rule (last row in
Table 5). Consequently, we expect for atomic-scale magnetic
structures such as wires, small clusters, and adatoms strong
changes in the orbital moment and, in turn, large values
of the MCA. In practice, these films are deposited on
substrates. This will once more quench the values, especially
for the orbital moments. But the spin polarization of the
substrate can lead to additional large contributions to the
MCA in particular for substrates with large Z, such as
Pt or Ir.

Typically, first-principles calculations based on the LSDA
or GGA underestimate the orbital moments. In the literature
several methods have been discussed as to how this defi-
ciency can be overcome (Brooks, 1985; Solovyev, Liecht-
enstein and Terakura, 1988; Solovyev, 2005). For example,
the orbital moments of the bulk magnets are about twice
the value if Brooks’ OP is applied (Eriksson, Brooks and

Johansson, 1991b; Hjortstam et al., 1996). The effect of
OP is much more drastic in low dimensions (Nonas et al.,
2001). A systematic comparison of LSDA results for Pt-
supported and unsupported Fe and Co magnets in various
dimensions can be found in the works of Komelj, Ederer,
Davenport and Fähnle (2002) and Ederer, Komelj and Fähnle
(2003).

In order to interpret ab initio results on thin films we
discuss the case of an unsupported, (100)-oriented d-metal
monolayer, in terms of a simple model following Stöhr
(1999). Assume that the d band is substantially exchange split
and more than half filled, so that we only have to consider
the (partially filled) minority band. The d orbitals at each
atom site experience in the monolayer plane a crystal field
V , that leads to a splitting of these levels: if the surface
normal is assumed to be in z direction, the dxy and dx2−y2

levels will experience a stronger field than the out-of-plane
directed dzx , dyz, and dz2 orbitals. The crystal field leads to
a splitting of 2V‖ for the in-plane oriented orbitals and 2V⊥
for the out-of-plane oriented ones. In a band picture, these
splittings can be translated into bandwidths W , which will
then be twice as large (cf. Figure 7). Normally, V‖ will be
larger than V⊥, so that R = V⊥/V‖ < 1. (If, however, the
monolayer is sandwiched between two slabs of nonmagnetic
material the situation could be changed.)

Assume that – like in the case of Co – the minority band is
half filled; the dxy and dx2−y2 states will split symmetrically
by ±V‖ around the Fermi level, the (dzx , dyz) and dz2

states by ±V⊥. In a band-picture, these splittings will of
course depend on the considered �k‖ point. Now we can
use perturbation theory equation (33) to calculate the orbital
moments. The result (Stöhr, 1999)

m
‖
l = ξµB

2V‖

(
3

R
+ 2

R + 1

)
and m⊥

l = 4
ξµB

2V‖
(35)

Table 5. Local spin (ms) and orbital (ml) magnetic moments in units of µB of Fe, Co, and Ni atoms
in bulk materials (n = 3), unsupported thin films (n = 2), wires (n = 1), and as isolated atoms (n = 0).
For bulk crystals the variation of the orbital moment with direction is small, but for films and wires
the orbital moments parallel (‖) and perpendicular (⊥) to the film plane or wire axis are given. The
geometry is chosen as if the film or wire would have been grown epitaxially on a Pt(111) substrate. The
column |KMCA| indicates the order of magnitude of the MCA for different dimensions. The results were
obtained in the GGA to the density-functional theory.

Fe Co Ni |KMCA|

n ms ml ms ml ms ml (meV/atom)

‖ ⊥ ‖ ⊥ ‖ ⊥

3 2.05 0.05 1.59 0.08 0.62 0.05 0.01
2 3.07 0.07 0.10 2.09 0.20 0.19 0.94 0.18 0.14 1.00
1 3.22 0.72 0.27 2.32 0.98 0.77 1.18 0.84 0.44 10.00
0 4 2 3 3 2 3 -
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Figure 7. d-level splittings shown in (a) at a given k point due to a crystal field in a square monolayer result in a density of states, shown
in (b).

shows that only the in-plane orbital moment, m
‖
l depends

on the splitting of the out-of-plane oriented states, while the
out-of-plane orbital moment is only quenched by the in-plane
crystal field. This is intuitively clear, since m⊥

l corresponds to
an in-plane motion of the electron, that is, a hopping between
the dxy and dx2−y2 states that are separated by V‖. For the
calculation of the magnetocrystalline anisotropy energy we
can use equation (34), which gives:

KMCA = E
‖
MCA − E⊥

MCA = − ξ

4µB

(
m

‖
l − m⊥

l

)

= − ξ 2

8V‖

(
3

R
+ 2

R + 1
− 4

)
(36)

From this equation we see that, as long as R < 1, an in-
plane magnetization is obtained, while for R > 1 an out-of-
plane easy axis is possible. Indeed it is observed that Co
monolayers on a weakly interacting substrate (like Cu(001))
have an in-plane easy axis, while a Co layer sandwiched in
Pt has a perpendicular magnetization. Taking typical values
for 3d-metal monolayers, a spin-orbit coupling strength ξ ≈
75 meV and bandwidths W ‖ ≈ 3 eV and W⊥ ≈ 2 eV, one
arrives at orbital moments of m

‖
l = 0.285 µB and m⊥

l =
0.200 µB and the MCA per atom of KMCA = 1.6 meV, values
in the range of the ab initio results given in Table 5.

2.7 Dzyaloshinsky–Moriya interaction

Magnets in low dimensions frequently face a structure
inversion asymmetric environment. Consider for example a
thin magnetic film on a substrate with the vacuum potential
on one side and the potential to the substrate on the other
side. This inversion asymmetry leads to a gradient of the
potential that can be interpreted in first approximation as
an electric field normal to the film surface. In the rest
frame of moving electrons, the electric field �E appears
by Lorentz transformation as a magnetic field �B ∝ �p × �E,
which interacts then with the spin �σ of the electron, giving

rise to an additional term in the Hamiltonian, which was
already encountered in equation (31) in the context of spin-
orbit coupling. Here, instead of an orbital motion, a linear
motion of an electron with momentum �k in an electric field
oriented along �ez is considered. This can be described by a
Hamiltonian H = αR �σ ·(�k × �ez), known as the Rashba term
(Bychkov and Rashba, 1984). The strength described by the
Rashba parameter, αR , is determined for example, by the
asymmetry of the wave function due to the asymmetry of the
potential or the electric field, respectively, and the spin-orbit
interaction of the electrons involved.

The magnetic interaction between the spin �Si at lattice
site i and �Sj at lattice site j is caused by electrons
which hop from site i to site j and back. Electrons in
a magnetic film propagate in an exchange field ±1/2IM

(cf. equation (13)), the bands are exchange split, and the
time-inversion symmetry is lost. Owing to the spin-orbit
interaction caused by the Rashba term, electrons experience
a kinetic energy with an additional weak spin-dependent
potential, which depends on the propagation direction �p
of the electrons. Thus, the motion from site i to j and
the back motion from j to i is slightly different. The
same is true for the time inverse hopping process, the
electron hopping first from site j to i and then back. At
first sight, both processes look identical and indeed both
contribute equally to the isotropic Heisenberg exchange
equation (2). But owing to the presence of the spin-orbit
interaction, the inversion asymmetric environment, and the
lack of time-inversion symmetry, the interference of both
processes does not cancel out completely. Instead, it gives
rise to an additional antisymmetric exchange interaction
between these sites, known as the Dzyaloshinsky–Moriya
(DM) (Dzyaloshinsky, 1958; Moriya, 1960) interaction

HDM =
∑
i,j

�Dij ·
(

�Si × �Sj

)
(37)

where �D is a constant vector, which depends on the
symmetry of the system and on the real-space direction given
by two sites i and j . For example, for typical (100) and
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(110) low-index surfaces of metals, �D lies in the film plane
and points perpendicular to the direction (i, j ) connecting
two surface atoms, if the two surface atoms are placed
along a high-symmetry line. The DM interaction arises as
the first-order perturbation in the spin-orbit interaction, and
might for this reason be stronger than the magnetocrystalline
anisotropy. This chiral interaction tends to orient the spin
Si and Sj orthogonal to each other and to �D, destabilizing
a uniform FM or AFM order and can cause, depending on
the strength D, a canting of the magnetization at different
atoms, a helical or cycloidal spin wave. The sign of �D
defines the chirality of the canting. The DM interaction
is practically unknown in metallic bulk magnets, since
most metals crystallize in structures with centrosymmetric
symmetries. Surprisingly, after 20 years of research on low-
dimensional magnetism, the magnitude of �D has not been
established so far and there is currently active research
going on to clarify its relevance for the magnetic order in
nanomagnets.

3 ULTRATHIN FILMS

The transition-metal monolayers on noble-metal substrates
are the classical systems exhibiting two-dimensional mag-
netism. Because of the reduced coordination number of
nearest-neighbor transition-metal atoms in a monolayer film,
the d bandwidth in two dimensions is considerably smaller
and correspondingly the local density of states (LDOS) at the
Fermi energy EF is considerably larger than in the bulk situa-
tion. Thus, magnetism should occur for a much wider variety
of transition-metal elements. Following this line of argument
it is clear that the strength of the d–d hybridization between
monolayer and substrate is an additional parameter which
controls the d bandwidth of the monolayer. For instance,
a large-band-gap material, for example, MgO(100), used as

a substrate allows the formation of two-dimensional mono-
layer bands within the band gap of the substrate material.
In this case the impact on the magnetization of the mono-
layer due to the substrate is expected to be small. The same
is true for noble-metal substrates, which have d bands well
below the Fermi energy. The width of the monolayer d band
is not significantly broadened by the monolayer–substrate
d–d interaction, and magnetism is restricted to the mono-
layer. Increasing the d–d hybridization by choosing appro-
priate nonmagnetic transition-metal substrates, for example,
Pd(100) or W(110), will lead to a considerable broaden-
ing of the monolayer bands and introduce a significant spin
polarization of the substrate until we have changed from the
two-dimensional limit to the semi-infinite regime. Choosing
a magnetic substrate an additional complexity arises owing
to the competition of the magnetic coupling in the monolayer
and between monolayer and substrate.

3.1 (100)-oriented monolayers on nonmagnetic
substrates

3.1.1 Ferromagnetic monolayers

A systematic investigation of the magnetism of all possible
3d, 4d, and 5d transition-metal monolayers on Ag(001) is
collected in Figure 8 and in Table 6. One finds that all 3d-
metal monolayers (Ti, V, Cr, Mn, Fe, Co, Ni) on Ag(001)
substrate show FM solutions. Tc, Ru, and Rh are FM among
the 4d metals, and Os and Ir are FM among the 5d metals
on Ag(001). The local magnetic moments are partly very
large, not only for the 3d monolayers but surprisingly also
for the 4d and 5d ones. In the 3d series the overall trend
of the local moments follows Hund’s first rule. The largest
local moment of about 4 µB was found for Mn and from
Mn to Ni the magnetic moment decreases in steps of 1 µB.
The latter is a consequence of the strong ferromagnetism in
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Figure 8. Local magnetic moments as calculated for ferromagnetic (a) 3d-metal monolayers on Ag(100) (Blügel and Dederichs, 1989)
(dots), Pd(100) (Blügel, 1988) (squares), and Cu(001) (Blügel, 1996) (triangles), and (b) 3d, 4d (Blügel, 1992a), and 5d (Blügel, 1992b)
monolayers on Ag(001) (dots) and Ag(111) (Redinger, Blügel and Podloucky, 1995) (triangles).
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Table 6. Local magnetic moments in µB/atom for 3d transition-metal atoms as ferromagnetic (F) and antiferromagnetic
(AF) 3d monolayers on Ag(001) (Blügel and Dederichs, 1989), Pd(001) (Blügel, 1988), W(001) (Ferriani, Heinze, Bihlmayer
and Blügel, 2005), and on Cu(001) (Blügel, 1996; Asada and Blügel, 1997a); compared with results for 3d monolayers as
interlayers (IL) in Cu(001) (Blügel, 1996), unsupported (001) monolayers (UL) in the lattice constant of Cu(111), Ag(001)
(Blügel, Drittler, Zeller and Dederichs, 1989) and W(001) (Ferriani, Heinze, Bihlmayer and Blügel, 2005), and with results
for ferromagnetic 3d monolayers on Cu(111) and Ag(111) (Redinger, Blügel and Podloucky, 1995) as well as on W(110)
(Nie, Heinze, Bihlmayer and Blügel, 2007a). ‘−’ indicates that no calculation was performed for this system. ‘0’ indicates
that the calculated moment was smaller than the numerical accuracy estimated to be about 0.02 µB/atom. ‘?’ indicates a
system, for which the calculation was not finished up to self-consistency, but the result is approximately correct.

Ti V Cr Mn Fe Co Ni

Ag ML on Ag(001) F 0.34 2.09 3.78 4.04 3.01 2.03 0.65
AF 0 2.08 3.57 4.11 3.06 1.9 0

UL – Ag(001) F 1.72 2.87 4.50 4.32 3.29 2.20 1.02
AF 0 2.59 4.09 4.32 3.32 2.10 0

ML on Ag(111) F 0 1.39 3.43 3.91 2.95 1.93 0.51

Pd ML on Pd(001) F 0 0.51 3.87 4.11 3.19 2.12 0.89
AF 0 1.39 3.46 4.05 3.20 1.99 0.59

Cu ML on Cu(001) F − 0 0 2.97 2.61 1.76 0.33
AF − 0 2.52 2.92 2.35 1.3 0

IL in Cu(001) F − 0 0 2.01 2.39 1.51 0
AF − 0 1.84 2.15 − − −

ML on Cu(111) F − 0 0 3.05 2.69 − −
UL – Cu(111) F − 0 0 3.06 2.75 − −

W ML on W(110) F − 0.00 − 2.97 2.37 1.14 0.00
AF − 0.00 2.52 3.32 − − 0.00

ML on W(001) F − 1.54 2.55 3.49 2.05 0.69 0.00
AF − 0.97 1.80 3.69 2.67 1.46 0.00

UL – W(001) F − 3.00 4.19 4.33 3.31 2.23 1.03
AF − 2.78 4.10 4.37 3.32 2.24 1.02

these monolayers. The magnetic moments of Ti, V, and Cr
monolayers show a pronounced dependence on the substrate:
Ti is magnetic on Ag, but nonmagnetic on Pd; the magnetic
moment of V is reduced by more than 1.5 µB when changing
the substrate from Ag to Pd; and for Cr the magnetic moment
changes from 3.8 µB as an adlayer on Ag or Pd to zero as
an adlayer on Cu. Although not as dramatic, the reduction is
also visible for Mn. We attribute the drastic reductions of the
monolayer moments to the reduction of the lattice constants
in the sequence Ag to Pd to Cu.

When comparing the results of the local moments between
3d, 4d, and 5d monolayers on Ag(001) an interesting trend
is observed: the element with the largest magnetic moment
among each transition-metal series is shifted from Mn to
Ru (isoelectronic to Fe) and at last to Ir (isoelectronic to
Co), respectively. Following these trends we do not expect
ferromagnetism for any other 4d or 5d metal on noble-
metal (001) substrates, and indeed Mo and Re remained
nonmagnetic. The overall picture of monolayers on Ag
and Au is the same, but the different substrate interactions
cause Tc and Os on Au to be nonmagnetic and lead to
a slightly larger moment for Rh. Pd and Pt are predicted

to be nonmagnetic. With the exception of Ru, for which a
rather small magnetic moment of 0.2 µB was calculated, no
monolayer magnetism was found for 4d metals on Pd(100).
Investigations (Újfalussy, Szunyogh and Weinberger, 1995)
taking into account the spin-orbit interaction have shown that
the spin-orbit interactions significantly reduces the magnetic
spin moment of the 5d-metal monolayers, and depending
on the interlayer relaxation the spin moment might be
suppressed.

3.1.2 Antiferromagnetic monolayers

It is by no means clear whether the FM state is actually
the magnetic ground state. Looking at the LDOS of the
3d monolayers in Figure 9 and considering the analysis of
the AFM susceptibility equation (19) we expect an AFM
phase for Cr and possibly also for V and Mn monolayers.
In reality, various AFM states as well as noncollinear spin
configurations could be anticipated. Studying an Heisenberg
model equation (2) for a square lattice as formed by the
(001) monolayers up to the second-nearest-neighbor inter-
action (J1, J2) the situation becomes relatively simple. As
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long as the nearest-neighbor interaction is the dominating
one, there are only two phases to be considered: the FM
p(1 × 1) structure (J1 > 0) discussed in the previous section
and the AFM c(2 × 2) superstructure (J1 < 0, a checker-
board arrangement of up and down spins similar to the
c(2 × 2) ferrimagnetic (FI) structure in Figure 17, but with
moments of identical size on both sublattices). The c(2 × 2)
structure corresponds to the M point in the two-dimensional
Brillouin zone (2DBZ) of the square lattice. If the next-
nearest-neighbor interaction is AFM, J2 < 0, and sufficiently
strong, |J1| < 2|J2|, then the magnetic structure with a 2D
�Q‖ vector of the X point in the 2DBZ, corresponding to an

AFM p(2 × 1) or p(1 × 2) structure (FM rows of atoms along
the [100] or [010] direction coupling antiferromagnetically
from row to row) becomes the magnetic ground state.

Figure 10 shows the local moments for the FM and
c(2 × 2) AFM phase of 3d monolayers on Cu(001). It
becomes evident that, for many systems (see also Table 6)
both configurations exist with moments of similar values.
Depending on the in-plane lattice constant, differences in
the local moments for the two magnetic phases develop for
earlier transition metals, for example, for Cr on Cu(001),
for V on Pd(001), or for Ti on Ag(001). Figure 10 also
shows the energy differences �E = EAFM − EFM per atom

between the c(2 × 2) AFM and the FM configuration for 3d-
metal monolayers on Cu(001) and Ag(001). A clear trend
emerges: the Ni, Co, and Fe overlayers (�E > 0) prefer the
FM configuration and the Mn, Cr, and V ones favor the AFM
one. From the strong similarities of the monolayer trends for
these two substrates we conclude that this is a general trend:
Fe, Co, and Ni favor the p(1 × 1) ferromagnetism on the
(001) surfaces of Pd, Pt, and the noble metals Cu, Ag, and Au
(Freeman and Fu, 1987); whereas V, Cr, and Mn monolayers
prefer the c(2 × 2) AFM configuration. The same trend was
recently found for monolayers on W(110) (Nie, Heinze,
Bihlmayer and Blügel, 2007a) and is expected for Al
substrates although V and Ni might then be nonmagnetic.
Since �E ≈ 8S2J1, �E reflects basically the change of J1

as a function of the band filling (number of d electrons)
or how EF moves through the LDOS in Figure 9. For Mn
on Ag(001), where �E or J1, respectively, is relatively
small, the J ’s between more distant pairs may determine
the picture. We investigated by total-energy calculations the
stability of the possible p(2 × 1) structure and found that the
c(2 × 2) structure is indeed the magnetic ground state.

The c(2 × 2) AFM phase was first predicted by theory.
After the prediction several experiments indicated that the
c(2 × 2) state may indeed exist: no FM long-range order was
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found at low temperatures for a V monolayer on Ag(100)
(Stampanoni et al., 1988), but a local exchange splitting
was found for V, Cr, and Mn monolayers on Ag(100)
(Ortega and Himpsel, 1993). More than 10 years after the
theoretical prediction a direct proof of the c(2 × 2) AFM
state became for the first time possible by using the spin-
polarized scanning tunneling microscopy in the constant-
current mode (Heinze et al., 2000; Bode et al., 2002). The
experiments were carried out for a Mn monolayer on W(110).

3.1.3 Strongly hybridizing substrates

Strong interfacial d-band hybridization between adlayers and
transition-metal substrates can modify or even destroy the
adlayer magnetization. In the case of strong hybridization,
the electronic structure of an interface cannot be deduced

from the individual constituents, but rather the interface itself
must be considered as a new material that determines the
magnetic properties. Strongly hybridizing substrates are for
example 4d (Nb, Mo, Ru, Rh, Pd) or 5d (Ta, W, Re, Os, Ir,
Pt) metals.

As an example we present here a case study of 3d-
metal monolayers on W(001) (Ferriani, Heinze, Bihlmayer
and Blügel, 2005). The large surface energy of W leads to
experimental conditions that permit an almost perfect prepa-
ration of ideal adlayer systems that exhibit pseudomorphic
growth at the monolayer range with very little propensity
to segregation. The results are summarized in Figure 11. On
W(001), we find that the ground state is FM for V, Cr, and
Mn, while it is c(2 × 2) AFM for Fe and Co with large
energy differences between the two magnetic solutions. The
observed trend across the 3d series is rather surprising as it is
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exactly opposite to the one expected from the discussion in
Section 3.1.2. The theoretical predictions (Ferriani, Heinze,
Bihlmayer and Blügel, 2005; Wu and Freeman, 1992b; Qian
and Hübner, 2003; Sandratskii, Şaşıoğlu and Bruno, 2006)
of an AFM Fe monolayer on W(001) has recently been con-
firmed experimentally by spin-polarized scanning tunneling
microscopy (SPSTM) (Kubetzka et al., 2005).

Transition-metal monolayers without substrate, so-called
unsupported monolayers (UMLs) and those on Pd(001) have
been included for comparison. These monolayers behave as
ideal two-dimensional magnets. Their trends in the magnetic
phases are indeed inverted with respect to the W(001) sub-
strate, with energy differences of similar magnitude. The
results exhibited in Figure 11 are also surprising in compari-
son to the results of 3d-metal monolayers on W(011), show-
ing exactly the same behavior as on noble metal substrates
or Pd. This clearly gives evidence that results on W(001) are
an interface effect. In the case of strong overlayer–substrate
hybridization, the coordination number, symmetry, and inter-
layer distance is decisive in the determination of the magnetic
properties of the system.

A closer look reveals a significant difference between a
bcc substrate such as W and a fcc substrate such as Cu,
Pd, Ag, or Au. For a bcc substrate, each transition-metal
atom has four nearest W atoms at the interface, while the
surrounding transition-metal atoms in the overlayer are only
next-nearest-neighbor atoms. Considering that the 5d orbitals
of W are more extended than the 3d ones of the overlayer and
taking the additional interlayer relaxation into account, we
can conclude that here the overlayer–substrate hybridization
is more important than the 3d hybridization between the
transition metals in the monolayer plane. Thus, the nature
of the 3d–5d bond determines the physics. The chemical
trend discussed here for the W(001) substrate should also
hold for Mo(001), but the magnetic order of 3d metals on
other bcc(001) surfaces such V, Nb, Ta is not yet clear.

The strong 3d–5d hybridization also affects the magnetic
moments, displayed in Figure 11. As in previous sections the
overall trend of the spin moments across the 3d series fol-
lows Hund’s first rule. This atomic-like behavior indicates
that the magnetism is dominated by the local intra-atomic
contribution. A comparison with UMLs in the experimental
W lattice constant shows that the interaction with the sub-
strate reduces the magnetic moment of the 3d overlayer, a
consequence of the 3d–5d hybridization. The magnetism of
the overlayer also polarizes the substrate. For the FM config-
uration, W atoms at the interface are antiferromagnetically
coupled to the monolayer (apart from the case of Co) and
carry a moment that is roughly proportional to that of the
3d TM. The induced polarization decreases rapidly with dis-
tance from the interface into the bulk and is already one
order of magnitude lower at the second W layer. The sign

of the magnetization oscillates from one W layer to the next,
indicating a layered antiferromagnetic (LAF) susceptibility
of W(001). For AFM monolayers, the W moments are sup-
pressed owing to symmetry.

3.1.4 Magnetointerlayer relaxation

In order to give the reader an impression (i) how strongly
the formation of large monolayer moments may affect
the interlayer relaxation and (ii) what is the influence
of the magnetic order on the interlayer distance, total-
energy calculations as a function of the interlayer distances
are presented for two selected systems: Mn/Ag(001) and
Mn/Cu(001). Prior to these calculations we determined the
in-plane lattice constants, which are taken to be the bulk
lattice constants of the substrate; we found a value of
aCu

0 = 6.65 au for Cu and aAg
0 = 7.58 au for Ag. Clearly,

the Mn monolayers show the largest magnetic moments on
any substrate and the magnetovolume effects should be most
substantial.

Figure 12 shows the total energy as a function of the
interlayer distance for a Mn monolayer on Cu(001) and
Ag(100) for three different magnetic states: nonmagnetic,
FM, and c(2 × 2) AFM. We find, as already discussed in
Section 3.1.2 that the nonmagnetic solution is the highest
in energy and the AFM one is the lowest-energy magnetic
state. Second, we find a substantial change of the minimum-
energy interlayer distances with change of the magnetic state.
On Cu(100) the most contracted minimum-energy distance
was found for the nonmagnetic solution with �zN = 1.39%.
For the FM state a relaxation of �zF = 4.02% and for the
AFM state a relaxation of �zAF = 5.41% was determined.
We find that the effect of the long-range magnetic ground
state on the relaxation is as important as the formation of
moments itself: the formation of a magnetic moment expands
the interlayer distance by about 2.6% and the change in the
magnetic state changes the interlayer distance by 1.4%. This
coincides with the energy differences between the FM state
and the nonmagnetic state, which is comparable to the energy
difference between the AFM state and the FM one.

On Ag(001), the interlayer relaxations for the nonmag-
netic, FM, and AFM Mn monolayers are determined to
be �zN = −13.4%, �zF = −6.75%, and �zAF = −5.94%,
respectively. The lattice constant of Ag is 14% larger than
the lattice constant of Cu. Consequently the Mn atoms relax
inwards on these substrates. Owing to the large Mn moments,
around 4 µB on these substrates (recall that the moment of
Mn on Cu is slightly below 3 µB), the magnetovolume effect
is very large. The FM Mn monolayers experience a large
expansion of their minimum-energy interlayer distance of
about 7%, much larger than for Cu and the magnetic con-
figuration modifies this expansion by an other 1–2%. The
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impact of the magnetic order on the interlayer distance is
within about 2%, but the magnetovolume effect due to the
formation of large magnetic moments is much larger for Mn
on Ag than for Mn on Cu. This is in line with the arguments
based on energy differences. The energy difference between
the AFM state and the FM state is for all Mn systems in
the same range of about 300 meV/Mn atom (cf. Table 1),
while the formation energy of local moments is at large dif-
ference: about 200 meV for Mn on Cu but 1300 meV for
Mn on Ag. This explains the large difference in the mag-
netovolume effects between Mn on Cu and Mn on Ag. In
all cases the relaxations stabilize the FM and AFM phases,
respectively.

In conclusion, the atomic volume depends on the mag-
netism, mostly on the size of the moment and to a smaller
extent on the magnetic state. An extreme example of this
is the experimentally observed unusually large atomic buck-
ling of the c(2 × 2)MnCu/Cu(001) (Wuttig, Knight, Flores
and Gauthier, 1993b) and c(2 × 2)MnNi/Ni(001) (Wuttig,
Knight, Flores and Gauthier, 1993b) surface alloys. In these
alloys a buckling of the surface atoms of 0.30Å (MnCu)
(Wuttig, Knight, Flores and Gauthier, 1993b) and 0.25Å
(MnNi) (Wuttig, Knight, Flores and Gauthier, 1993b) was
found. Although the atomic radii of Pd and Au are much
larger than for Mn, the buckling of the c(2 × 2)CuPd/Cu(001)
and c(2 × 2)CuAu/Cu(001) atoms was observed to be
just 0.02 Å (Wu et al., 1988) and 0.10 Å (Wang et al.,
1987), respectively. It was shown that this buckling was a
consequence of the magnetovolume effect due to the large

moments of Mn (3.75 µB) in Cu (Wuttig, Gauthier and
Blügel, 1993a) and Ni (3.55 µB) (Rader et al., 1997).

3.2 (111)-oriented monolayers on nonmagnetic
substrates

3.2.1 Ferromagnetic monolayers

The (0001) surface of an hcp crystal and the (111) surface
of an fcc crystal establish a triangular lattice. Compared to
the (100) surface, the coordination number changes from 4
to 6 and the symmetry changes from fourfold to threefold
or sixfold, respectively. Moreover, the differences in the
magnetic properties between films on a square lattice and
on a triangular lattice give an estimate of the importance of
the pseudomorphic growth condition for the magnetism of
the films.

Figure 8 exhibits the general trend that the magnetic
moments of the sixfold coordinated monolayers on Ag(111)
are smaller in magnitude than those of the fourfold coordi-
nated ones on Ag(001). On the Ag(111) surface we found
magnetism for all 3d metals with the exception of Ti, the
magnetism of which was very small anyway. There is nearly
no difference between the monolayer moments of Mn, Fe,
Co, and Ni on the differently oriented Ag substrates. A com-
paratively larger reduction of the magnetic moments is found
at the beginning of the 3d series where the wave function
is more extended than it is at the end of the series. Thus,
changing the coordination number from 4 to 6, does not sig-
nificantly change the local moments. One consequence of this
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result is that for monolayers that do not grow pseudomorphi-
cally on any substrate but keep an average distance between
monolayer atoms similar to the pseudomorphic films, no dra-
matic difference in the formation of large local moments is
expected.

With the exception of Ru (1.23 µB) and Rh (0.67 µB)
and a tiny moment for Ir (0.05 µB) among the 5d metals,
no ferromagnetism was found for any other 4d and 5d
monolayers on Ag(111). For the 4d-metal monolayers Ru
and Rh, the moments are reduced to about 70% of the
(001) values, and for the 5d metal Ir only a tiny magnetic
moment of 0.05 µB, about 15% of the (001) value, remains.
Obviously, the degree of the reduction of the magnetic
moments due to the increase of the hybridization with the
increase of the coordination number from 4 to 6 simply
follows the increasing degree of delocalization of the d
wave function when moving from the 3d to the 4d and 5d
transition-metal wave functions.

3.2.2 Monolayers with complex spin structures

AFM interactions on a triangular lattice are the origin of
frustrated spin systems. The epitaxial growth of such ultrathin
films has been studied intensively by various experimental
techniques. In particular, pseudohexagonal c(8 × 2)Mn films
on Cu(100) (Flores, Hansen and Wuttig, 1992), Mn films
on the (111) surfaces of fcc Pd (Tian et al., 1992b); Ir
(Andrieu et al., 1996); Cu (Tian, Begley and Jona, 1992a;
Grigorov and Walker, 1997; Grigorov et al., 1998), and MgO
(Grigorov, Fitzsimmons, Siu and Walker, 1999), and on the
(0001) surface of Ru (Arrott et al., 1987) and Co (Ounadjela
et al., 1994) have been prepared and analyzed. But also other
ultrathin hexagonal films, for example, Cr and V on Pt(111)
and Ru(0001) (Zhang, Kuhn and Diebold, 1997; Albrecht

et al., 1998; Sambi and Granozzi, 1999), or Fe on Ir(111)
(von Bergmann et al., 2006) have been investigated.

To obtain an overview of all relevant spin structures we
develop first a zero-temperature phase diagram in the context
of the Heisenberg model. As discussed in Section 2.2 the
magnetic ground states are SSDWs, most likely with a
commensurate propagation vector �q‖ located at the high-
symmetry points in the first 2DBZ of a 2D Bravais lattice. For
the 2DBZ of the triangular (hexagonal) lattice, displayed in
Figure 13 (a), the high-symmetry points are the corner points
�, K, and M of the irreducible wedge of the 2DBZ (I2DBZ).
The � point corresponds to the FM solution. The K point
corresponds to a 120◦ Néel state (Figure 13c), a 2D coplanar
spin structure with three atoms in a (

√
3 × √

3) R30◦ unit
cell for which the relative angle between the spins at the
different sites is always 120◦. The M point corresponds
to a row-wise antiferromagnetic (RW-AFM) configuration
(Figure 13b), which can be described by a rectangular unit
cell with two antiferromagnetically aligned atoms. Magnetic
ground states with incommensurate �q‖ vectors are also
possible preferentially with �q‖ vectors from the connecting
high-symmetry lines M-�-K-M.

Along the line M-�-K-M we investigated the energetics
within the Heisenberg model up to the second-nearest-
neighbor interaction, that is, including the exchange constants
J1, J2. The results are summarized in Figure 14 in terms of
a zero-temperature phase diagram.

Depending on the signs and values of J1 and J2, four
kinds of possible magnetic ground states exist: FM, RW-
AFM, 120◦ Néel, and SSDW. If J2 is zero or positive
(FM) than there are only two possible magnetic ground
states, determined by the sign of J1 – the FM and the
Néel state. But small values of J2 are already sufficient to
change the magnetic ground state and an infinite number of

ky

a
a
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Γ

K

M

(a) (b) (c)

kx

Figure 13. (a) The hexagon shows the first BZ of the 2D hexagonal Bravais lattice. The gray-shaded area indicates the irreducible part.
(b) The RW-AFM structure. (c) The coplanar noncollinear Néel (120◦) structure. Indicated are the corresponding two- and three-atom unit
cells and the continuous paths, which connect the corresponding magnetic structure to the FM state.
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Figure 14. Zero-temperature phase diagram in the (J1, J2) space
for the triangular lattice indicating the regions of the four possible
magnetic states.

magnetic states becomes possible, the RW-AFM state or the
incommensurable SSDW at any possible wave vector �q‖ at
the high-symmetry line �-M. Extending the model by also
including J3, a magnetic state with a �q‖ at any high-symmetry
line can become a ground state.

Since the J ’s are rapidly varying functions of the number
of d electrons, ab initio calculations are carried out to
determine the element-specific ground states. Since the
calculations are very time consuming, the full overview
has been worked out only for unsupported, freestanding
monolayers (UMLs). Figure 15 shows for the UMLs with the
Cu lattice constant the total energy E(�q‖) and the magnetic
moments M(�q‖) calculated for a discrete set of the spin spiral
�qs‖ vectors along the high-symmetry lines. Among all the

SSDWs calculated, the high-symmetry points have the lowest
energies: the 120◦ Néel state (K point) for Cr(111), the RW-
AFM state (M point) for Mn(111), and the FM state (� point)
for Fe(111). For Fe and Mn, the M(�q‖) are nearly a constant,
but the Cr moments change drastically, as no FM solution
could be found for Cr(111). Another interesting observation
is the local minimum of E(�q‖) for Mn on the line �-K, which
is only 21 meV higher in energy than the RW-AFM state. We
expect that a small change in the d-band filling, for example,
due to alloying with Fe, may change the energetics and an
incommensurate SSDW may become the magnetic ground
state.

For Mn, the lowest-energy magnetic state found so far is
the RW-AFM state, which corresponds to the commensurate
SSDW state with one single �Q‖ vector at the M point of the
2DBZ, and the RW-AFM is also called single- �Q‖ (1Q) state.
In the 2DBZ there are three M points corresponding to the
three possible directions of the long axis of the RW-AFM unit
cell on a triangular lattice. They are equivalent in symmetry
but are different from each other with �Q‖ vectors, �Q(k)

‖ , for
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3d UMLs with the Cu(111) geometry as function of the 2D wave
vector �q‖ along the high-symmetry lines of the 2DBZ. The energy
is shown relative to the energy of the RW-AFM state.

k = 1, 2, 3. Within the Heisenberg model, the energy of each
SSDW denoted by one of the three wave vectors �Q(k)

‖ or
any SSDW being an orthogonalized linear combination of
these vectors is degenerate. Higher-order spin interactions
(equations (4) and (5)) may lift this degeneracy and a so-
called triple- �Q‖ (3Q)-state, may become lower in energy. The
3Q state is a three-dimensional noncollinear spin structure on
a 2D lattice (see Figure 16) with four chemically identical
atoms per surface unit cell, where the relative angle between
all nearest-neighbor spins is given by the tetrahedron angle
of 109.47◦. The 3Q state is formed as a linear combination of
the three RW-AFM (1Q) structures orthogonal in spin space,
each having one of the three �Q(k)

‖ vectors of the M points:

�m(�r + �Ri) = m(�r) × 1√
3

3∑
k=1

e
i �Q(k)

‖ �Ri �e(k) (38)

where the �e(k) are orthogonal unit vectors in spin space.
We see that in the nearest-neighbor approximation to the
higher-order exchange contributions, the sign of K1 and B1

determine the sign of the energy difference �E = E3Q −
E1Q = 16/3S4(2K1 + B1) and thus whether the 3Q or the
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Figure 16. An image of the magnetic 3Q structure, with spins
pointing in all three directions of the spin space. Note that, because
the spin-orbit interaction is neglected, only the relative orientation
of the moments is specified.

1Q state becomes the magnetic ground state. From the ab
initio calculations for the Mn UML in the geometry of
Cu(111) we (Kurz, Bihlmayer, Hirai and Blügel, 2001) found
that the 3Q state is 15 meV/atom lower in energy than the
1Q state.

Calculations including the Cu(111) substrate show that the
energy differences between different magnetic states change
because of the presence of the substrate, but the magnetic
ground state remains unaltered: Cr/Cu(111) exhibits the
120◦ Néel state (2.35 µB), Mn/Cu(111) the 3Q structure
(2.74 µB), which is 17 meV lower in energy than the 1Q
state (3.00 µB), and Fe/Cu(111) is FM (2.63 µB). On the
Ag(111) substrate (Heinze et al., 2002) the overall picture
is the same, but two differences were noticed: V/Ag(111)
is magnetic (2.19 µB) and exhibits as Cr/Ag(111) (3.65 µB)
the 120◦ Néel state and the magnetic ground state of
Mn/Ag(111) is the RW-AFM state (3.91 µB) and not the 3Q
state (3.88 µB). Fe/Ag(111) is FM (3.02 µB). We believe that
the complex spin structures presented here can be resolved
using the SPSTM in the constant-current mode (Wortmann
et al., 2001; Heinze et al., 2002). In fact, recent SPSTM
results (von Bergmann et al., 2006) of an Fe monolayer
on the strongly hybridizing Ir(111) substrate yielded a very
surprising and unprecedented nanometer-size spin structure
exemplifying again that the arguments on the magnetic
structure developed for weakly interacting substrates cannot
be carried over easily for strongly hybridizing substrates.
Since strongly hybridizing substrates have been investigated
only recently, great surprises on the magnetic spin structures
can be expected in the future.

3.3 Magnetic substrate: magnetic exchange
coupling of 3d metals on Fe(001)

3.3.1 Monolayers

3d-metal monolayers on Fe(001) are prototypical systems
where the in-plane magnetic interactions, described by the
exchange coupling parameter J‖, compete with the strong
magnetic interactions J⊥ between the monolayer and the
substrate. Depending on the signs and values of J‖ and J⊥,
complex spin structures as ground states can be anticipated.
Finally, total-energy calculations are required to determine
the minimum-energy magnetic state among the various
metastable solutions. We recently carried out calculations
(Handschuh and Blügel, 1998; Asada et al., 2000) which
considered three competing spin structures: the p(1 × 1) FM,
the p(1 × 1) LAF and the c(2 × 2) FI spin configurations
displayed in Figure 17.

Figure 18 summarizes the results from calculations for
structurally unrelaxed monolayers, that is, where the mono-
layer atoms are located at the ideal, bulk truncated, pseu-
domorphic Fe atom sites. For most 3d-metal overlayers (Cr,
Mn, Fe, Co) on Fe(001) all three configurations exist and
are energetically stable. Only the V and Ni monolayers were
found to couple exclusively layered antiferromagnetically or
ferromagnetically, respectively, to the Fe(001) substrate. Sur-
prisingly, the FM (M > 0), the LAF (M < 0), and the two
different magnetic moments (M1 > 0 and M2 < 0) for the FI
phase are all similar in size. The largest magnetic moment
of about 3 µB was found for Mn, and then the magnetic

Layered
antiferromagnetic

c(2 × 2)
ferrimagnetic

Ferromagnetic

Figure 17. Schematic representation of a ferromagnetic, a layered
antiferromagnetic, and a c(2 × 2) (anti)ferrimagnetic superstructure
of a monolayer film (broken line) grown as overlayer on a magnetic
substrate (full line). Upper panel shows view onto the surface, lower
panel shows side view. Arrows indicate the relative spin direction
at the positions of the atoms.
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Figure 18. (a) Local magnetic moments of unrelaxed 3d transition-metal monolayers on Fe(001). Positive (negative) sign of moments
indicates an (anti)ferromagnetic, FM (AF), spin alignment to the Fe substrate, emphasized by open filled) symbols. Shown are results
of three different spin configurations: p(1 × 1) FM (solid line), p(1 × 1) LAF (dotted line), and the c(2 × 2) FI (dashed lines) for
positive and negative moments. The figure is complemented with results for 3d monolayers on Ag(001) (© connected by dash-
dotted line). As the Ag substrate is nonmagnetic, ferro-, and antiferromagnetic spin alignment is indistinguishable and moments are
identical and are shown twice, once for positive and negative sign. (b) Total energy difference �E1 = ELAF − EFM between the
p(1 × 1) layered antiferromagnetic and the ferromagnetic coupling (squares connected by solid lines) and �E2 = EFI − EFM between
the c(2 × 2) ferrimagnetic and the p(1 × 1) ferromagnetic coupling (diamonds connect by dashed lines) of 3d transition-metal monolayers
with Fe(001). The ferromagnetic (layered antiferromagnetic or ferrimagnetic) coupling has lower energy for �E > 0 (<0) and is therefore
favored. The layered antiferromagnetic coupling is preferred over the ferrimagnetic one if �E1 < �E2. Filled squares or diamonds indicate
the magnetic ground state. For V and Ni only one magnetic state has been found.

moments drop for elements to the left and right of Mn, rem-
iniscent of the behavior on the noble-metal substrates.

In order to see the effect of the hybridization between
the substrate and the overlayer on the size of the local
moments, the local magnetic moments of 3d-metal monolay-
ers on Ag(001) (Blügel and Dederichs, 1989) are included for
comparison. Fe (a‖ = 5.33 au) and Ag (a‖ = 5.51 au) have
very similar in-plane lattice constants and thus very sim-
ilar in-plane d–d hybridizations may be expected for the
monolayer, but the d–d hybridization across the interface is
largely different. From Figure 18(a) one infers that the mag-
netic moments for the Fe, Co, and Ni monolayers are rather
independent of the substrate, but increasing deviations are
obtained for the monolayer moments in the sequence from
Mn to V. The extent of the 3d wave function increases for
chemical elements from the end of the 3d series to the begin-
ning of the series. Accordingly, the d–d hybridization within
the monolayer and between the monolayer and the Fe sub-
strate increases. As a consequence, the magnetic moments
for Mn, Cr, and V overlayers are visibly reduced.

Since the local magnetic moments of the three differ-
ent magnetic states for Cr, Mn, Fe, and Co monolayers on
Fe(001) are very similar in size, total-energy calculations

have been performed to determine the minimum-energy mag-
netic configuration. The energy difference �E1 = ELAF −
EFM between the LAF and FM configurations and �E2 =
EFI − EFM between the c(2 × 2) FI and the FM configura-
tions, ignoring again any monolayer relaxation, are shown
in Figure 18(b). For V and Ni monolayers, which show
only one magnetic solution, no data points are included. As
reported in the literature (Mirbt, Eriksson, Johansson and
Skriver, 1995; Handschuh and Blügel, 1998; Wu and Free-
man, 1995) we find with the exception of Cr, that the FM
coupling (�E1 > 0) is energetically always more favorable
than the LAF one and that for Cr and Mn the FI coupling
(E2 < 0) is energetically preferred over the FM one. For Fe,
Co, and Ni, the FM solution is the most stable one. When we
compare for Cr or Mn the energies among the three different
magnetic phases, we find that for Cr the LAF coupling is the
magnetic ground state, energetically followed by the FI and
the FM coupling, which are metastable phases. The calcu-
lated total-energy differences between FM and LAF configu-
rations and between FM and FI show some differences from
those of Handschuh et al. (Handschuh and Blügel, 1998)
mostly due to the different choice of the in-plane lattice con-
stant. Summarizing, (i) the magnetic ground-state structures
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are LAF for V and Cr, FI for Mn, FM for Fe, Co, and Ni;
(ii) for the Mn monolayer we find a second spin configuration
with an energy of about 55 meV/Mn above the ground-state
structure.

Therefore, extending the search for the magnetic ground
state of Mn to larger surface unit cells may lead to a
more complicated ground-state spin structure. Elmouhssine,
Moraı̈tis, Demangeat and Parlebas (1997) and Asada et al.
(1999) investigated the possibility of additional low-energy
Spin structures in the p(2 × 2) surface unit cell containing
four Mn surface atoms. Two additional spin structures were
included: the p(2 × 2) FM magnetic structure with three Mn
atoms out of four coupling ferromagnetically to the Fe sub-
strate and one Mn atom coupling antiferromagnetically, as
well as the p(2 × 2) AF structure, which is the LAF ver-
sion of p(2 × 2) FM, where three Mn atoms couple anti-
ferromagnetically and one atom couples ferromagnetically
to Fe. Indeed the calculations reveal that on Fe(001), the
Mn c(2 × 2) FI, and the p(2 × 2) FM are nearly degener-
ate ground states. This is obvious from Figure 19, which
displays the energies of the different configurations relative
to the c(2 × 2) FI state energy. Tight-binding linear muffin-
tin orbital calculations by Elmouhssine et al. found that the
p(2 × 2) FM superstructure is 15 meV higher in energy than
the c(2 × 2) one, while Asada et al. found by full-potential
linearized augmented planewave (FLAPW) calculations that
the total energy of the p(2 × 2) FM superstructure is slightly
lower (∼6.4 meV/Mn) than the c(2 × 2) FI structure. The
interlayer distances of relevant magnetic configurations had
been fully optimized by the use of force calculations; how-
ever this is not shown here and these relaxations do not
change this picture. The energy differences are comparable
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T.Asada et al.
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Figure 19. Relative energy E − Ec(2×2) for the five magnetic
configurations. The small energy difference between the c(2 × 2) FI
state and the p(2 × 2) FM configurations indicates that the two
solutions are nearly degenerate ground states.

to the thermal energy at room temperature. Thus, surface
roughness and thermal excitations in true experimental situ-
ations could lead to the coexistence of these two magnetic
configurations and thus the appearance of magnetic domains
within the Mn monolayer. At present one cannot exclude the
possibility of magnetic states with even lower energy that
have not been investigated yet.

3.3.2 Double layers

In order to demonstrate the complexity of the systems we
show here the results of the 3d metal bilayers on Fe(001)
as well. For the double layer systems, we have examined all
possible magnetic configurations within the c(2 × 2) unit cell.
With the exception of Mn all stable magnetic configurations
found have the magnetic p(1 × 1) structure. The magnetic
ground states are the p(1 × 1) LAF one for V, Cr, and
Mn, and the p(1 × 1) FM one for Fe, Co, and Ni bilayers
on Fe(001). For Mn we found in addition to the p(1 × 1)
LAF ground-state structure also the superstructure ([↑↓]S

↓S−1 | ↑ Fe) as a stable solution with a total energy of
43.2 meV/Mn higher than the LAF structure. The magnetic
moments for the bilayer systems are collected in Figure 20.
Please note for the case of the LAF Mn double layer the
almost vanishing magnetic moment of the subsurface atom.
Furthermore, for the Mn bilayer, in addition to those two
configurations, the ground state (↑S ↓S−1 | ↑ Fe) and the
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Fe(I)

3d (S–1)
3d (S)

Mn

Cr Fe Co Ni

V

Antiferromagnetic

Ferromagnetic

Lo
ca

l m
ag

ne
tic

 m
om

en
t (
m

B
)

3

2

1

0

−1

−2

Figure 20. Local magnetic moments (M) for the ground-state spin
configurations of unrelaxed 3d transition-metal double layers on
Fe(001). The solid line denotes the 3d surface atoms (3d(S)) aligned
parallel (M > 0) to the Fe substrate, the dotted line denotes the 3d
subsurface atoms (3d (S − 1)), whose coupling changes from LAF
(M < 0) to FM (M > 0) from early to late 3d elements. The chained
line denotes the interface Fe atoms (Fe(I)).
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superstructure stated in the preceding text, we also found
a third configuration, (↓S ↑S−1 | ↑ Fe), which is about
9 meV/Mn higher in energy than the ground state. Thus, there
exist three states within an energy range corresponding to
about 400 K. We believe that this gives already a glimpse of
the difficulties involved in dealing with thicker Mn overlayers
on Fe(001) (Pfandzelter, Igel and Winter, 1997).

For a Cr monolayer the measured magnetic moment was
found to be at most 1 µB (Hillebrecht et al., 1992; Jung-
blut, Roth, Hillebrecht and Kisker, 1991), which is less than
half of the theoretical prediction (Mirbt, Eriksson, Johans-
son and Skriver, 1995; Handschuh and Blügel, 1998). It was
also reported that the layer-by-layer growth leads to a strong
intermixing with the substrate Fe layers (Venus and Heinrich,
1996; Pfandzelter, Igel and Winter, 1996; Davies, Stroscio,
Pierce and Celotta, 1996). Mn overlayers seem to be even
more involved. There is a general experimental consensus
that for Mn around 1 ML coverage, the signals related to
the magnetization disappear. The microscopic origin for this
observation is under strong debate. One explanation sup-
ported by theory (Handschuh and Blügel, 1998; Wu and
Freeman, 1995) is a possible onset of the in-plane FI cou-
pling. On the other hand, strong interfacial alloying has been
observed (Igel, Pfandzelter and Winter, 1998), which may
lead to the same results. A third option is the possibility of a
double layer growth mode, which may also lead to the dis-
appearance of magnetic signals. The difficulty in controlling
and characterizing the morphology of the interface seems
to be intimately related to the difficulties in understanding
the interfacial magnetism of those systems. A complete pic-
ture requires additional theoretical investigations including
the possibility of interdiffusion and surface alloying.

3.4 Orbital moment and magnetic anisotropy

3.4.1 Trends in unsupported (100) monolayers

The orbital magnetic moments (ml) and the MCA are fairly
small quantities compared to spin moments and exchange
energies. This holds at least for 3d transition metals. These
quantities depend on fine details of the electronic structure
which changes with lattice constant, film thickness, choice of
substrate, and surface orientation. Although it is important to
know the actual values of the ml and the MCA for particular
systems, in this subsection we try to provide insight and
intuition into the behavior of these quantities by studying
the chemical trend of these properties across the transition-
metal series. We focus on (100)-oriented unsupported 3d, 4d,
and 5d transition-metal monolayers in the lattice constant of
Ag(100) (a0/

√
2 = 5.459 au). In order to proceed with a fine

scale analysis of these properties as function of the electronic

structure or the band filling, respectively, the relativistic
density-functional calculations are carried out for films of
hypothetical atoms with noninteger nuclear numbers. The
rationale behind this modus operandi is the idea that owing
to the required charge neutrality, the nuclear number and the
number of electrons are the same. Thus, a fine change of the
nuclear number is followed by a fine change of the number of
electrons, caused by the adjustment of the Fermi energy. This
facilitates a fine scan of ml and the MCA as a function of the
band filling across the transition-metal series. For example,
for the 3d monolayers we have varied the nuclear number Z

from the beginning to the end of the transition-metal series,
for example, from Z = 21 with NV = 3 valence electrons
till Cu, Z = 29 with NV = 11 valence electrons, in steps of
approximately �Z = 0.10 ∼ 0.15.

The results are summarized in Figure 21. For each Z, two
self-consistent relativistic ab initio calculations have been
carried out, one with the magnetization direction perpendic-
ular to the film plane, m̂ =↑, and one with the magneti-
zation parallel to the film plane along the [100] direction,
m̂ =→. The results obtained are the orientation-dependent
spin moments, ms(↑) and ms(→), orbital moments, ml(↑)

and ml(→), and electronic total energies, E(↑) and E(→).
Here we focus on the FM phase.

The magnetic spin moments exhibited in Figure 21(a),
follow the trend discussed in Section 3.1.1: The 3d mono-
layers behave according to Hund’s first rule with a maxi-
mum moment of more than 4 µB in the center of the series.
Also 4d- and 5d-metal monolayers are magnetic for ele-
ments between Mo till close to Pd and between W till close
to Pt. The magnetic moments decrease from the 3d to the
4d and 5d series and at the same time the element with
the maximum magnetic moment in each series shifts to the
right in the series. The anisotropy of the spin moments,
�ms = ms(↑) − ms(→), is very small, for example the cal-
culation of an Ir monolayer yields ms(↑) = 1.044 µB and
ms(→) = 1.012 µB and is therefore not further considered.
However, for 5d elements, relativistic calculations have an
impact on the size of the spin moments. For example, the
spin-orbit interaction reduces the magnetic moment of Ir by
0.5 µB to about 1 µB.

According to equation (30), Edip is proportional to m2
s and

inversely proportional to third power of the lattice constant,
a. Since the lattice constants of all systems are fixed to
the one of Ag, Figure 21(a) mirrors the functional behav-
ior of the dipole energy Edip with respect to the band
filling. Since the dipolar anisotropy or shape anisotropy
in the continuum limit, respectively, Kdip = �Edip = Edip

(→) − Edip(↑), always favors a magnetization in the film
plane, the shape anisotropy is strictly negative accord-
ing to our sign convention for the magnetic anisotropy.
The largest value is obtained for a film with elements
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Figure 21. Local magnetic spin moments (a) and orbital moments (b), magnetocrystalline anisotropy constant KMCA = �EMCA calculated
as energy difference between two magnetization directions, the magnetization in the film plane (→) and out of the film plane (↑), calculated
for ferromagnetic, freestanding, unsupported 3d- (squares) (c), 4d- (triangles) (d), and 5d- (diamonds) (e) metal monolayers (UML) in the
(100) surface orientation and in the lateral lattice constant of the Ag(100) substrate (Nie, Bihlmayer and Blügel, 2006). In (b) the average
orbital moments between those of the out-of-plane, ml↑, and in-plane, ml→, magnetization directions are shown. The difference of the spin
moments on the magnetization direction is difficult to distinguish on the scale of (a) and is not shown. Positive energies in (c)–(e) mean
that the out-of-plane magnetization is energetically preferred.

between Cr and Mn and the dipolar anisotropy amounts to
Kdip = −0.32 meV/atom. This is about 30% of the value of
Kshape as calculated according to equation (29) using contin-
uum theory, in good agreement with the results of Draaisma
and de Jonge (1988).

Also the orbital moments, collected in Figure 21(b) exhibit
a clear trend: the orbital moments are negative in the first
half of the transition-metal series, for example, between Sc
and Mn, and positive in the second half of the transition-
metal series. The change in sign is reminiscent of Hund’s
third rule which governs the coupling of the spin and orbital
moment. A negative (positive) sign of the orbital moment
means that the orbital moment couples opposite (parallel) to
the spin moment. The orbital moments of elements in the
second half of the transition-metal series are an order of
magnitude larger than in the first one. It is surprising that the
orbital moments in films made of the 3d, 4d, or 5d elements
in the second half of the corresponding transition-metal series

show very similar values although the spin moments are
substantially different. We recall from equation (35) that
for uniaxial symmetry as present in thin films, the orbital
moment scales as ml ∝ ξ ∝ Z2, which explains the increase
of ml for a given spin moment ms when switching from the
3d to the 4d and 5d transition-metal series. The anisotropy
of the orbital moments, �ml, has maximum values of about
±0.07 µB in each series and cannot be neglected. Therefore,
in Figure 21(b) the average moments are shown. �ml is a
rapidly varying function with respect to the band filling and
relates according the equation (36) to the corresponding rapid
oscillation of the magnetocrystalline anisotropy.

The uniaxial magnetocrystalline anisotropy constants
KMCA =�EMCA = E(→) − E(↑), calculated as total energy
differences for magnetizations in and out of the film plane
are exhibited in Figure 21(c–e). Indeed, results show a con-
tinuous and very rapidly varying behavior as function of
the band filling. We focus first on the 3d-metal monolayers
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(Figure 21c). Between Fe and Cu the MCA is negative and
the magnetization lies in the film plane. Between Mn and Fe
the magnetization normal to the film plane is energetically
most favorable. A closer look reveals several changes of sign
as a function of the band filling. The large variation of the
value of K as function of band filling from 4.75 meV for a
band filling between Co and Ni (NV = 9.5) and 0.15 meV for
V is surprising. Noninteger band filling is not only of theo-
retical interest but has a concrete meaning in the spirit of the
virtual crystal approximation. For example, we calculated an
ordered c(2 × 2) CoNi UML film, which also has a band fill-
ing of NV = 9.5 per atom. K is practically on the spot of the
curve Figure 21(c). Adding Kdip on top of KMCA one finds
that with the exception of a small interval between Mn and
Fe, where the positive KMCA exceeds the negative Kdip, the
magnetization is energetically most favorable to be in the
film plane. Thus, among the 3d-metal monolayers (integer
nuclear number) only the Fe(100) UML has a magnetization
direction out of plane.

Comparing the KMCA values of the 3d, 4d, and 5d
monolayers, remarkable results are observed. The most
spectacular results are the gigantic KMCA values for the
5d UMLs, which reach values of 12.32 meV for Os and
−13.50 meV for Ir. Although the maximum magnetic spin
moment within each transition-metal series drops from
4.6 µB in the 3d series to 2.3 µB and 1.1 µB in the 4d and
5d series, respectively, and the orbital moments are roughly
the same between the transition-metal series, KMCA varies
from −4.69 to 0.73 meV in the 3d series, and from 3.40 to
2.82 meV in the 4d series and to truly gigantic values of
−13.50 to 12.32 meV in the 5d series. One further notices
that the latter is accompanied by a rapid change of KMCA of
about 25 meV when going from Os to its chemical neighbor
Ir. One further notices that the functional characteristics of
KMCA shows a much more oscillatory behavior in the 4d and
5d series, both exhibiting two maxima and three minima, than
in the 3d one with one minimum, one maximum, and then
several small rapidly oscillating peaks.

These results can be interpreted on the basis of the cor-
responding band structures and the second-order perturba-
tion theory of the MCA as presented in Section 2.6. As
an example, the Fe monolayer in the Ag(100) lattice con-
stant is analyzed: as can be inferred from Figure 9, the
majority d band of Fe on Ag(100) is filled, so that these
states will not contribute to equation (34), where only pairs
of occupied and unoccupied states near the Fermi level
can contribute significantly. Therefore, we can focus on
the minority states, and the corresponding band structure is
shown in Figure 22. The matrix elements in equation (34)
depend on the symmetry of the states, ψ , and the spin-
orbit operator (van der Laan, 1998). The spatial part of
Hso has the symmetry of the orbital moment operator,

Γ M X Γ
−4

−3

−2

−1

0

1

2

E
ne

rg
y 

(e
V

)

−0.5

−0.25

0

0.25

M
C

A
 (

m
eV

/a
to

m
)

∆EXZ

4
3(x 2−y 2)

4

5*

5

5*

5"

5’ (yz)

1

4 (xy)

1(z 2)

1

3 3
〈5(5*)|lx|1〉

(xz)

〈5*|lz|5〉

Figure 22. Minority-spin band structure (black) and statewise
contribution to KMCA ( circles) calculated by perturbation theory
for Fe(100) UML in the lattice constant of Ag. The symmetry of the
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for example, lx or lz. Therefore it is possible to find out
which pairs of states can lead to nonzero matrix elements
in equation (34), depending of course on the magnetization
direction. For an estimate of the MCA, at each �k point
KMCA = δE(lx) − δE(lz) = �Exz can be calculated individ-
ually, as shown in Figure 22. For example, near the M

point, states of dxz, dyz(5, 5∗) symmetry are just below the
Fermi level and states of dz2(1) symmetry are above it.
These states are coupled by the lx operator, therefore the
bands in this region will contribute more to δE(lx) than
to δE(lz), favoring an in-plane magnetization. Between M
and X, a coupling of states with 5 and 5∗ symmetry favors
an out-of-plane magnetization. After summation over the
whole Brillouin zone, the latter contributions dominate and,
in accordance with Figure 21(c), Fe/Ag(100) has an out-of-
plane magnetization.

If the Fermi level is shifted to higher energies (or the
band filling increases), the band with 5∗ symmetry gets more
occupied and the coupling of the 5 and 5∗ states is no
longer possible. The contribution of the 〈5(5∗)|lx |1〉 matrix
elements near M gets stronger. Finally, KMCA changes sign
(see Figure 21c) and the Co UML is in-plane magnetized. As
can be inferred from Figure 22, the contributions to the MCA
oscillate strongly in �k space and for an accurate summation a
fine resolution in reciprocal space, that is, a fine �k-point mesh,
is necessary. It should also be noticed that the decoupling of
majority and minority bands used above can only be applied
for 3d metals. In 4d or 5d monolayers, the exchange splitting
is much smaller and both spin channels give contributions to
the MCA. Therefore, a much more complex behavior of the
anisotropy as function of the band filling can be seen in
Figure 21(d) and (e).
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These results give an excellent overview of the trends of
the uniaxial anisotropy K of magnetic monolayers. How-
ever, the substrate also plays an important role. For weakly
magnetically polarizing substrates, for example, Cu and Ag,
the same trend is expected although the actual values will
change. Substrates with large nuclear numbers and thus large
spin-orbit interactions, which have in addition a large Stoner-
enhanced susceptibility, for example, W or Pt, and can thus
be easily magnetically polarized, may in the end determine
the magnetic anisotropy of these systems. For example, in the
light of the experimental results of ultrathin Co films in con-
tact with other metal films, as sandwiches or as multilayers,
for example, Co/Pd(100) (den Broeder, Kuiper, Donkersloot
and Hoving, 1989) or Co/Pt(100) (Lin et al., 1991) the large
negative KMCA value of the unsupported Co monolayer,
which is in accordance with results of Bruno (1989) based
on perturbation theory, is a fairly surprising result. In order
to get a better understanding of the influence of the substrate
on the magnetocrystalline anisotropy, we compared the uni-
axial KMCA for a Co monolayer with and without substrate
and found, KMCA = −4.75 meV for a UML(100) in the lat-
tice constant of Ag and KMCA = −1.39 meV on Ag(100),
KMCA = −1.33 meV for an UML(100) in the lattice con-
stant of Cu, and KMCA = −0.32 meV on Cu(100). This can
be understood in the spirit of the model of Stöhr (1999),
introduced in Section 2.6, realizing that the presence of a sub-
strate quenches predominantly the in-plane orbital moment.
Therefore, we observe a clear reduction of KMCA due to the
presence of the substrate, but the general trend across the
transition-metal series will still hold. At arbitrary substrates
4d- and 5d-metal monolayers will be nonmagnetic. But thin
films show a significant Stoner-enhanced susceptibility. In
contact with 3d transition metals they may develop a mag-
netic moment, an electronic structure, and a uniaxial KMCA

comparable to the isolated monolayers. In turn, strongly spin-
polarized substrates with large nuclear number change even
the sign of the MCA from in plane to out of plane and will
be discussed in Section 3.4.3.

3.4.2 Magnetic reorientation transition: Ni/Cu(100)

If more than one or two layers of magnetic material are
deposited as thin film, the layers that are not forming an
interface (to the vacuum or the substrate) will show more
bulklike properties. It is common to separate the volume-
like contributions to the effective anisotropy constants, KV

(energy/unit volume), from the surface term KS and interface
term KI (energy unit/area). This yields for the effective
magnetic anisotropy K of a magnetic layer of thickness t

Keff = KV + (KS + KI )

t
(39)

All three anisotropy constants K contain contributions of
the dipolar and the spin-orbit-derived anisotropy. On phe-
nomenological grounds the dipolar anisotropy is also split
into a volume term, KV

shape, namely the shape anisotropy due
to the average dipolar energy as obtained by the continuum
theory and the contribution due to the reduction of the dipole
anisotropy field experienced by the atoms in the surface and
interface region, K

S (dip)

MCA + K
I (dip)

MCA . Thus, we can write for
the volume term KV = KV

shape + KV
MCA, and for the surface

term KS = K
S (dip)

MCA + K
S (so)
MCA and analogously for the inter-

face term. While for smaller thicknesses KS
MCA and KI

MCA
can dominate, for thick films the negative shape anisotropy
which has a constant value per atom and thus increases with
thickness of the film can determine the easy axis.

If these terms have different signs, a reorientation transi-
tion of the easy axis can occur. A well investigated example
is the system Ni/Cu(001) (Baberschke, 1996): For up to seven
layers Ni, an in-plane easy axis of the Ni film is found. Then a
reorientation to perpendicular magnetization sets in and only
very thick films (more than 50 ML) show again in-plane
magnetization. Here KS is negative, about −85 µeV/atom at
room temperature, while KV

MCA is positive, approximately
30 µeV/atom. So we expect a reorientation between 5 and
6 ML, but actually the shape anisotropy contributes another
−10 µeV/atom to KV (the shape anisotropy in thin films
always favors in-plane magnetization). Therefore, the transi-
tion sets in after 7 ML thicknesses as illustrated in Figure 23.
But we have to realize, that the value of KV is much larger
than the bulk value of fcc Ni. In fact, low energy elec-
tron diffraction (LEED) measurements demonstrated that Ni
grown on Cu(001) is actually strained, the in-plane lattice
constant is 1.6% larger than in fcc Ni. To compensate this
strain, the spacing between the Ni layers is smaller than in the
bulk. From the arguments put forward in the last paragraph
we would now suppose that V⊥ > V‖, therefore R > 1 and,
indeed, KV favors perpendicular magnetization (although the
band filling of Ni does not correspond to the assumptions
underlying equation (36)). In very thick films, the structure
of Ni relaxes back to fcc and the size of KV decreases until
the influence of the shape anisotropy once more brings the
easy axis back in plane.

3.4.3 Monolayers on early transition metals:
Fe/W(110)

In the previous sections trends of the magnetic anisotropy
of transition-metal layers as a function of band filling and
layer thickness were discussed. On weakly interacting, late
transition-metal substrates – like Cu or Ag – these results are
more or less transferable from one substrate to another. But
for early transition-metal substrates, also the influence of the
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shape, these values determine the in-plane/out-of-plane/in-plane transition of the easy axis for Ni films
on Cu(001).

substrate has to be taken into account, as demonstrated in
this section.

Fe films on W(110) are one the most intensively studied
systems (Przybylski and Gradmann, 1987; Hong, Freeman
and Fu, 1988; Elmers et al., 1994; Weber et al., 1997;
Sander et al., 1997; Qian and Hübner, 1999), as they exhibit
unique structural and magnetic properties. It was found
that ultrathin Fe films grow pseudomorphically and without
intermixing in a layer-by-layer growth mode up to 1.2 ML
on the flat W(110) surface and up to 1.8 ML on a vicinal
surface. Thus, it developed into a model system of two-
dimensional magnetism. The magnetic easy axis switches
from in plane for 1 ML Fe coverage to out of plane for a DL
Fe coverage, and back to in plane for films grown beyond
the pseudomorphic DL (Elmers, Hauschild and Gradmann,
1999). The sequence of the magnetic reorientation transition
as function of the film thickness between 1 and 2 ML is
rather unique and serves to illustrate the influence of the
tungsten substrate on the magnetic anisotropy.

Ab initio calculations (Galanakis, Alouani and Dreyseé,
2000) find in agreement with experiment the reorientation
transition between 1 and 2 ML: at 1 ML Fe coverage the
easy axis is in the substrate plane and for 2 ML Fe coverage
the easy axis switches to the out-of-plane direction. Irrespec-
tive of the structural relaxations, the shape anisotropy deter-
mines the magnetization direction for thicknesses beyond
2 ML Fe coverages, and the easy axis returns to an in-plane
direction.

Interestingly, an unsupported Fe (110) monolayer, with
the same lattice constants as in Fe/W(110) shows an out-
of-plane magnetization. When put on the W substrate, two
things happen: (i) the Fe–W hybridization changes the
magnetic properties of Fe (like for Fe/W(100) as discussed
in Section 3.1.3) and (ii) Fe induces a considerable spin
moment (about −0.1 µB) in the W atoms at the interface and

smaller, but finite moments in deeper substrate layers. Since
W is a rather heavy element, relativistic effects – like the
magnetocrystalline anisotropy – can be large even if the spin-
and orbital moments are small. To separate the importance
of (i) and (ii) for the MCA of Fe/W(110), a comparison to
the system Fe/Mo(110) is helpful: Since in the periodic table
Mo is just above W, the Fe–Mo hybridization should be
similar to Fe–W. But relativistic effects are much smaller in
the light Mo (Z = 42) than in the heavy W (Z = 74). Both
experimentally (Bode, Pietzsch, Kubetzka and Wiesendanger,
2004) and theoretically (Nie, Heide, Bihlmayer and Blügel,
2007b) Fe/Mo(110) was found to have an out-of-plane
magnetization. So it is likely that the (induced) magnetic
anisotropy of tungsten at the interface is decisive for the in-
plane magnetization of Fe/W(110). Layer-resolved ab initio
calculations (Nie, Heide, Bihlmayer and Blügel, 2007b),
which can separate the contribution of each layer to the total
MCA, confirm this picture. These calculations also show, that
a second Fe layer on W(110) quenches the orbital moment
of the interface W from about 0.020 µB for the monolayer
case to 0.007 µB in the double layer one (these values are
for out-of-plane magnetization, for other directions of the
magnetization they follow a similar trend). Thus, tungsten’s
influence on the MCA decreases and a double layer Fe on
W(110) has out-of-plane magnetization (the same is found
for Mo(110) covered with a double layer of iron).

Ab initio calculations show that a similar reorientation
transition can be obtained when a capping layer of Au or Ag
is put on top of the single Fe monolayer on W(110). Also
here, it is the quenching of the interface W orbital moment
that is responsible for the change of the easy magnetization
axis. Experimentally, Fe islands on W(110) covered with
Ag have been reported to have out-of-plane magnetization
(Röhlsberger et al., 2001). Although stress effects can be
important in this system and alter the MAE, it is likely that
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the Ag overlayer will also contribute to the observed easy
axis by the mechanism explained in this section.

4 WIRES AND CHAINS

Simple in their structure and seemingly easy to understand,
metallic monowires not only present a great challenge for
experimentalists, but are also an exciting playground for
theory. Particularly significant are the consequences of the
novel one-dimensional (1D) physics for magnetism in these
systems. Electrons, restricted in their dynamics to only one
dimension, compensate the lack of hopping between the near-
est neighbors by giving carte blanche to exchange. This leads
to a nonzero magnetization not only in the monowires for
most transition metals but also for sp-metals (Zabala, Puska
and Nieminen, 1998), for instance Al (Auyela, Raebiger,
Puska and Nieminen, 2002). Typically, monowires are cre-
ated on a substrate by atomic manipulation or self-assembly,
allowing the creation of stable artificial structures for further
investigations. The hopping and consequently the magnetic
properties can change significantly upon structural changes
such as dimerization, the formation of zigzag chains, or the
stretching of wires. The latter is possible by pulling chains
off the surface after a, scanning tunneling microscopy (STM)
tip was rammed into the surface and pulled out again. Fur-
ther, monowires present perhaps the most elementary bridge
between the physics of itinerant electrons and molecular
physics, and are doubtlessly a fruitful playground for test-
ing the validity and limitations of the models, characteristic
in both fields.

Starting from the early pioneering work by Weinert and
Freeman (1983) on the magnetic properties of Fe and Ni
linear chains, the variety of intriguing properties and aspects
of the magnetism in metallic monowires investigated grows
every year, spanning over the freestanding (Dorantes-Dávila
and Pastor, 1998; Spišák and Hafner, 2003; Delin and
Tosatti, 2003; Delin, Tosatti and Weht, 2004; Mokrousov,
Bihlmayer, Heinze and Blügel, 2006), as well as substrate-
deposited configurations. Among those are predominantly Fe
or Co chains on Cu(100) (Spišák and Hafner, 2002), Pd(110)
(Robles, Izquierdo and Vega, 2000), Pt(111) (Komelj, Ederer,
Davenport and Fähnle, 2002; Ederer, Komelj and Fähnle,
2003; Shick, Maca and Oppeneer, 2004; Újfalussy et al.,
2004; Baud, Bihlmayer, Blügel and Ramseyer, 2006a,b;
Komelj, Steiauf and Fähnle, 2006) and W(110) (Spišák and
Hafner, 2004) substrates, Rh (Bazhanov et al., 2000) and
other 4d metals (Bellini, Papanikolau, Zeller and Dederichs,
2001) on Ag(100) substrate and on insulating substrates
such as NaCl (Zabala, Puska and Nieminen, 1998; Auyela,
Raebiger, Puska and Nieminen, 2002; Calzolari and Nardelli,
2005), where the hybridization is particularly small.

In this respect, the latest experiments by Hirjibehedin,
Lutz and Heinrich (2006), where imaging and manipulation
capabilities of the STM were used for studying the spin exci-
tation spectra in linear chains of Mn atoms on CuN insulator,
are worth mentioning as they bring the practical realiza-
tion of spin-based computational schemes and atomic-scale
storage devices, stemming from the fascinating abilities of
low-dimensional magnetism, one step closer. It is important
to notice that the future use of this atomic-scale magnetism
in the context of spin-manipulation hinges directly on one
quantity: the MCA. In the case of the linear chains, where
each atom has only two nearest neighbors, the MCA appears
to reach values unattainable in the physics of higher dimen-
sions. The first tight-binding model calculations of the MCA
were reported for bare Co and Fe chains (Dorantes-Dávila
and Pastor, 1998) and a Co chain deposited on a Pd surface
(Robles, Izquierdo and Vega, 2000). In the following subsec-
tions, we discuss the ab initio values of the MCA and orbital
magnetic moments for Co chains deposited on Pt and report
on freestanding chains of 4d and 5d transition metals.

4.1 Co on stepped Pt(111)

In the last years, the controlled growth of stripes and wires
on step edges (Dallmeyer et al., 2000) and semiconductor
surfaces (Segovia, Purdie, Hengsberger and Baer, 1999)
allowed the investigation of 1D structures. Experimentally,
ferromagnetism was reported in Co chains deposited on
Pt(997) step-edges: Gambardella et al. (2002) found an
orbital moment for Co chains on Pt(997) of 0.68 µB, the
easy axis being tilted by 43◦ to the surface normal with an
MCA of about 2 meV/atom at 45 K. Depositing more than
one strand of Co on this surface leads to an oscillation of
the easy axis in the plane perpendicular to the wire direction
(Gambardella et al., 2004) (see also Chapter Magnetism of
Low-dimensional Metallic Structures, Volume 1

Let us first discuss the magnetic properties of a single,
infinite, unsupported FM Co chain following Weinert and
Freeman (1983). The local magnetic moment amounts to
2.33 µB. The shape anisotropy of a chain has already been
discussed in Section 2.6. For an understanding of the orbital
magnetism and the spin-orbit coupling in this system we
start from a Co dimer. The schematic energy-level diagram
is shown in Figure 24. For simplicity we only consider the
minority 3d levels and their hybridization: Assuming that the
dimer axis is in the z direction, we expect that the dz2 orbitals
will form σ bonds, the dzx and dyz orbitals will combine to
form π bonds, while the dxy and dx2−y2 orbitals will be
mainly nonbonding (since they are directed perpendicular to
the dimer axis). But since these nonbonding states are only
singly occupied, now more ‘atomic-like’ linear combinations



32 Magnetism of low dimensions

Γ ZΓ

−3

−2

−1

0

1

E
 -

 E
F
(e

V
)

ZΓ Z

−1.5

−1

−0.5

0

0.5

s

p

d

3d

4s

s∗

p∗

3d

4s

Co

(a) (b)

Co

Figure 24. (a) Schematic energy-level diagram of a Co dimer. Only the hybridization between the minority 3d levels is indicated. (b)
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right panels, where mainly the spin-orbit splitting of the minority bands can be seen.

can be formed. Remember, that the dxy and dx2−y2 orbitals
are linear combinations of the atomic m = +2 and m = −2
levels. This means, that a m = 2 orbital can be formed, and,
if occupied, an orbital moment of 2 can be obtained.

If we look now at the spin-split band structure of such
an infinite Co monowire (Figure 24b), we can more or
less identify the bands corresponding to the Co dimer
levels: Bands with strong positive dispersion correspond
to σ bonds, those with negative dispersion to π bonds.
But most prominent at the Fermi level is the very flat
minority band with small positive dispersion; this is the
equivalent of the nonbonding minority δ states. Notice
that without spin-orbit coupling (left band structure) this
band is doubly degenerate: there are no contributions in
the LSDA functional that lead to an OP. But with spin-
orbit coupling included, these bands can be seen to split:
if the spin-quantization axis is parallel to the wire direction
(middle band structure), one of the bands gets preferentially
occupied. This is the band that – if fully occupied – leads to
an orbital moment of ml = +2 µB. Actually a smaller orbital
moment of 0.9 µB is obtained. When the spin-quantization
axis is perpendicular to the chain direction, other bands
are mixing and the orbital moment is even smaller. As
we know from our previous discussion, the anisotropy in
the orbital moment is approximately proportional to the
magnetocrystalline anisotropy and, therefore, the easy axis
is parallel to the wire direction.

According to experimental findings, a Co chain on Pt(111)
has an easy axis perpendicular to the chain direction. This
seems to have its origin in the interactions with the Pt sub-
strate. Apart from its two nearest Co neighbors and the
reduction of the magnetic moment to about 2.1 µB per Co

atom, a Co atom in a chain deposited on a (997) surface
actually has five nearest Pt neighbors. Recent calculations
(Shick, Maca and Oppeneer, 2004; Újfalussy et al., 2004;
Baud, Ramseyer, Bihlmayer and Blügel, 2006b) indeed con-
firm an easy axis that has a large component perpendicular
to the surface. A detailed analysis shows that the Co atoms
magnetically polarize the Pt atoms. Consequently, they pro-
duce large orbital moments because of their large spin-orbit
interaction, which can then dominate the total magnetization
direction. The strength of the Pt polarization, and as such the
magnetization direction, depends sensitively on the structural
relaxation of the Co chain (Baud, Ramseyer, Bihlmayer and
Blügel, 2006b). For a Co monowire on a stepped Pt surface
a rather large MCA of almost 2.5 meV and an easy axis that
is tilted by θ = 51◦ were determined with respect to the sur-
face normal in the direction of the upper terrace. Both, the
experimentally observed MCA and the orbital moment are
smaller than the LSDA results for an unsupported chain,
but the orbital moment of a supported wire is severely
underestimated in LSDA (and GGA) calculations. In the lit-
erature several methods to overcome this deficiency have
been discussed (Solovyev, Liechtenstein and Terakura, 1988;
Solovyev, 2005). A systematic comparison of LSDA results
with and without OP for unsupported and Pt-supported Fe
and Co magnets in various dimensions can be found in the
papers of Komelj, Ederer, Davenport and Fähnle (2002) and
Ederer, Komelj and Fähnle (2003).

The first-principles study (Baud, Bihlmayer, Blügel and
Ramseyer, 2006a) of Co chains of different widths, n =
1, . . . , 6 strands, at the stepped Pt surface results, in accor-
dance with experimental observations, in oscillations of the
easy axis as a function of chain width around the terrace
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normal, and the MCA shows a nonmonotonic behavior. For
example, in sharp contrast to the result of the deposited Co
monowire the Co double-wire shows a much smaller mag-
netic anisotropy (0.15 meV) and an easy axis with an angle
θ = −19◦, that is, pointing away from the upper terrace. This
drop of MCA is also accompanied by a decrease of orbital
moment anisotropy, that is, the average orbital moment of the
double chain is almost constant as a function of the angle
θ . The n chains with n = 3 − 5 show again larger mag-
netic anisotropies and the direction of the easy axis varies
from −15◦ for the three-wire to −40◦ and +14◦ for the
four- and five-wires. As we increase the number of strands
beyond three, the MCA decreases again, from 0.99 meV for
the three-wire to 0.82 meV and 0.50 meV/Co atom for the
four- and five-wires, respectively. We attribute these find-
ings to the individual contributions of the Co chains to the
MCA and the total orbital moment. Depending on the posi-
tion of the Co atom in the chain (at the step edge, in the
terrace, in the innermost strand), these contributions can
be very different due to the different number of Co and
Pt neighbors, even of different sign, and can cancel each
other, resulting in this complex behavior of the magnetic
properties.

4.2 4d and 5d transition-metal monowires

A large number of metals that are nonmagnetic in the bulk
can become magnetic in an 1D arrangement. Since the spin-
orbit constant ξ (see equation (32)) increases approximately
proportional to the square of the nuclear number, the
magnetic anisotropy of unsupported, isolated 4d and 5d
transition-metal chains has been investigated in detail. The
results (Mokrousov, Bihlmayer, Heinze and Blügel, 2006)
are summarized in Figure 25. FM ground states are found
for Zr, Ru, Rh, and Pd, and AFM ones for Mo and Tc. Y
and Nb wires, being borderline cases, are nonmagnetic. This
is in agreement with the results of Spišák and Hafner (2003).

As seen in Figure 24 including the spin-orbit interaction
results in a removal of band degeneracies and orbital
moments arise (see Figure 25b). For the early 4d metals,
left part of the 4d row, the values of ml are rather small
since most occupied bands are involved in chemical bonding.
At the same time, Tc, Ru, and Rh monowires exhibit
values of 0.2–0.4 µB. This is in the range of 0.2–0.3 µB

obtained for an Fe monowire (Mokrousov, Bihlmayer and
Blügel, 2005). For the latter chains we observed a strong
dependence of the orbital moment on the magnetization
direction. Typically, the axial magnetization leads to values
ml(�z), that are significantly larger than those for the radial
magnetization, ml(�r).
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Figure 25. Magnetism in 4d transition-metal monowires at the
equilibrium interatomic distance d0 (Mokrousov, Bihlmayer, Heinze
and Blügel, 2006): (a) total (for elements with FM ground state)
and muffin-tin (for AFM ground states) magnetic moment without
and with spin-orbit interaction (for both magnetization directions),
(b) orbital magnetic moments for both magnetization directions,
(c) magnetocrystalline anisotropy energy. SR stands for the scalar-
relativistic approximation, that is, calculations without spin-orbit
interaction. The equilibrium (SR) interatomic distances d0 are given
in atomic units. (Reproduced from Mokrousov et al., 2006, with
permission from the American Physical Society.  2006.)

The MCA (Figure 25c) as a function of the nuclear number
or of the band filling, respectively, follows roughly the same
trend as the orbital moment ml(�z). The argument that the
energy induced by spin-orbit interaction can be assumed to
be proportional to the projection of the spin on the orbital
momentum −�S· �L, leading to an easy magnetization axis in
the direction of maximum orbital moment, is hardly anymore
applicable for heavier 4d transition-metal chains. Here, the
spin-orbit interaction becomes stronger and the exchange
splitting smaller than in 3d metals. Nevertheless, we observe
that in the case when ml(�z) � ml(�r) the easy magnetization
axis always points along the chain. On the other hand,
whenever the difference |ml(�z) − ml(�r)| approaches 0.1 µB,
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no predictions on the preferred magnetization direction can
be made a priori. The calculated values of the MCA at the
equilibrium interatomic distance d0 are in the range of 6-
12 meV/atom and thus much larger than those for the 3d
transition-metal monowires.

Bare infinite monowires do not exist in nature. They are
either deposited on a surface or created in a break junc-
tion or may be filled in a tubular structure. In either case,
monatomic metallic chains would have an interatomic dis-
tance, d, different from the calculated equilibrium values for
freestanding wires. In the work of Spišák and Hafner (2003)
and Mokrousov, Bihlmayer, Heinze and Blügel (2006) it was
found that Ru, Rh, and Pd monowires exhibit an FM ground
state over a large range of interatomic distances. For Ru and
Rh, already for d > 5 au, the spin moments saturate at their
atomic-like values. The orbital moments gradually rise with
d. For d > 6.3 au giant values of 1.5 µB for ml(�z) and 0.7 µB

for ml(�r) for both monowires are reached. An increase of d

leads to a narrowing of the δ-state- and π-state-derived bands
in Figure 24, and, eventually, bands with different angular
momentum, ml , become almost fully occupied or fully unoc-
cupied, giving rise to a large value of the orbital moment.
In case of Pd, for large distances, the s electron is trans-
ferred into the d shell and closes the d shell with 10 electrons,
and spin and orbital moments disappear (Delin, Tosatti and
Weht, 2004). The combination of high values for spin and
orbital moments with the large difference between ml(�r) and
ml(�z) results in giant values of the MCA (Bruno, 1989). For
example, already at d = 5.5 au, the MCA of the Rh chain
reaches −40 meV/atom and gets as large as −60 meV/atom
for d = 6.3 au.

As compared to 4d chains, the magnetism of 5d transition-
metal monowires is characterized by an even larger spin-orbit
strength but generally smaller or even suppressed magnetic
moments (Delin and Tosatti, 2003) due to the larger overlap

of the 5d wave functions. For example, among the late 5d
metals at their respective equilibrium lattice constants we
found the largest MCA value for an Os monowire reaching
only 2 meV/atom and a spin moment ms(�z) of 0.36 µB. At a
strained interatomic distance of 6.3 au, where the values of
the spin moments of FM Os, Ir, and Pt chains are already
well saturated to 3.53 µB, 2.39 µB, and 1.13 µB, respectively,
the respective MCA values of 115, −60, and 44 meV/atom
are – at least for Os – colossal in size and can exceed the
record value of the Rh chain.

5 ATOMIC-SCALE STRUCTURES

5.1 Adatoms

Single transition-metal adatoms adsorbed on (100) substrates
of Cu, Ag, Au (Lang et al., 1994; Nonas et al., 2001), Pd, and
Pt (Stepanyuk et al., 1996) have been investigated by first-
principles calculations. When the 3d overlayer and adatom
moments on Ag(100) are compared as shown in Figure 26, a
surprising similarity in the general trend and the magnitude of
the magnetic moments is found. Obviously the local moments
of monolayers follow Hund’s first rule of the adatoms.
In other words, if we decompose the DOS according to
equation (17) in terms of the local (χ00) and the interatomic
nonlocal susceptibilities (χ0i , i > 1), then for the adatoms the
nonlocal susceptibilities are basically zero, by definition, but
also for the monolayers χ00 dominates over χ0i . Fe, Co, and
Ni monolayers and adatoms have in each case about the same
maximally possible magnetic moments. This will not change
for other atomic-scale structures such as chains. For example
recent calculations of one-atomic Fe, Co, Ni wires along
the 〈111〉-type step edge of the Pt(111) surface discussed in
Section 4.1 exhibit local moments of 3.18 µB, 2.12 µB, and
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0.83 µB, respectively. From Mn to Ti, monolayer and adatom
moments deviate systematically because of the increasing
extent of 3d wave function and the respective increase of the
d–d hybridization in the monolayer.

For the 4d and 5d transition-metal adatoms the comparison
to the monolayers on Ag(100) looks radically different.
While the adatoms still follow Hund’s first rule with maximal
moments at the center of each series, the magnetism of
monolayers is obviously largely determined by the nonlocal
susceptibilities χ0i , which add an essential contribution to
χ00 necessary to fulfill the Stoner criterion, equation (12).
This is a consequence of the large extent of the 4d and 5d
wave functions. Since χ0i depends on all details of the local
environment, each atomic-scale structure of 4d and 5d metals
will have a different collection of magnetic moments. This
observation motivated the work on atomic-scale clusters.

5.2 Clusters

Small atomic clusters on surfaces constitute very interesting
subjects, as their electronic structure and subsequently their
magnetic properties depend, in addition to other factors
mentioned in the preceding text, on the individual cluster

shape and size. In order to explore the consequences of this
statement we explore the spin moment of Fe on a Ni(100)
surface (Mavropoulos, Lounis, Zeller and Blügel, 2006). The
clusters considered are shown schematically in Figure 27(a),
viewed from the top (all atoms lie on the surface). The view
is adapted to the surface geometry, meaning that it is rotated
by 45◦ with respect to the in-plane fcc cubic axes of the
underlying substrate lattice. The smallest cluster is a single
Fe adatom, while the largest consists of nine Fe atoms. On
each atom, the calculated spin moment is written, and the
average (per atom) moment of each cluster is also given.
The Fe moment is always ferromagnetically coupled to the Ni
substrate moment. Already, at a first glance it is obvious that
the average moment of the clusters depends on the cluster
size. The single adatom has manifestly the highest moment
(3.24 µB), while the nine-atom cluster shows a lower average
moment of 2.85 µB.

From what has been said in Section 2.5 this behavior is
expected on the grounds of hybridization of the atomic d
levels with the neighbors. Atoms in larger clusters have, on
the average, higher coordination, thus their d wave functions
are more hybridized; this leads to lesser localization and
lesser tendency to magnetism.
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To pursue this idea further, we tried to correlate the
local atomic spin moment to the coordination Nc of each
atom in the cluster, irrespective of the form or size of
the cluster. For instance, let us focus on all Fe atoms
which have only one first Fe neighbor, that is, Nc = 1 (the
coordination to the substrate is the same, Ns = 4, for all
Fe atoms). Such atoms appear in the clusters with size
2, 3, 4, 5, and 7; there are, in total, 10 such examples
(having excluded cases which are trivially equivalent by
symmetry). All of them have spin moments ranging in the
small interval between 3.10 and 3.13 µB. Similarly, for the
Fe atoms with two Fe neighbors the spin moment ranges
from 2.91 to 2.97 µB. Collecting all possible cases, from
Nc = 0 (single adatom) to Nc = 4, we present the results in
Figure 27(b). One finds an almost linear dependence of the
spin moment on the coordination number, M = −aNc + b,
with a = 0.17 µB and b = 3.29 µB. In accordance with the
analysis of the 3d transition-metal films, Fe has a strong intra-
atomic exchange field, arising from rather localized 3d wave
functions resulting in strong intra-atomic susceptibility. Such
a linear relation was also found for Fe clusters (Mavropoulos,
Lounis, Zeller and Blügel, 2006) on Ni(111), Cu(100), and
Cu(111) and for Co clusters on Ni(100). The local magnetic
moments of Ni atoms in clusters on Cu surfaces cannot be
described by such a simple linear relationship, because the
hybridization of the Ni d states with substrate sp electrons
enters as an additional important factor (see Figure 5).

In many cases for homo-atomic and mass-selected FM
clusters, it is very difficult to address experimentally the

magnetic properties of each individual cluster or even each
atom in a cluster. Often just the average magnetic moment
of clusters of particular sizes or the average local magnetic
moment per atom averaged over an ensemble of clusters of
the same size but different shapes can be determined. Using
this scaling behavior it is possible to estimate the magnetic
moments of clusters if the shape is known.

In light of what has been said in Section 5.1 for the
4d and 5d adatoms on surfaces, this rule will not apply
to the general case of arbitrary atoms. For example, the
magnetism of small 4d and 5d clusters on Ag(100) shows
highly nonlocal susceptibilities, resulting even in an increase
of the spin moment with coordination. This is connected
to the larger extent of the 4d states compared to the 3d of
Fe. The magnetic properties of several linear chains (C) and
plane islands (I) of 4d (Wildberger et al., 1995) and 5d atoms
have been calculated in structures as shown in Figure 28. In
particular, linear chains of two (dimers, C2), three, and four
adatoms (C3 and C4) have been considered, oriented in the
[110] direction, in addition to three compact islands with
four, five, and nine adatoms (I4, I5, and I9).

Figure 29 shows the calculated moments per adatom for
these nanostructures. Since several nonequivalent atoms exist
for the clusters C3, C4, I5, and I9, only the average moment
is given. For the linear chains quite large moments are
obtained, but the behavior with size is nonregular. While the
C2 and C4 moments are very similar, the C3 moments of
Mo and Tc are much smaller. In this context it is interesting
to compare the moments of the inner and outer chain atoms.

Figure 28. Magnetic clusters of a particular transition metal deposited on an (100)-oriented Ag substrate.
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For Mo and Tc the outer atoms of C3 and C4 have larger
moments than the inner ones. In the C4 chain, for instance,
the two inner Mo atoms have moments of 1.85 µB, while the
outer atoms carry moments of 3.00 µB. Moving to Ru and Rh
the situation changes. In the Ru chains both types of atoms
have about the same moments, whereas in the case of Rh the
inner atoms carry larger moments. In the Rh C4 chain the
inner atoms have moments of 0.96 µB but the outer ones only
0.76 µB. This is because the higher coordination of the inner
atoms tends to enhance the moments for Rh while Ru is an
intermediate case being insensitive to environmental changes.
The large moments obtained for all three chain structures
indicate that infinite chains of these atoms should also show
appreciable moments.

For the considered linear structures also AFM solutions
(not shown in Figure 29) have been obtained, which are the
most stable configurations for elements in the middle of the
transition-metal series. The local moments can be quite large.
For instance, for the Mo chains C2, C3, and C4 the local
atomic moments are larger than 3 µB.

For the compact islands (I4, I5, and I9) the hybridiza-
tion effects within the cluster are even larger. Similar to
the magnetic monolayers (Blügel, 1992a; Eriksson, Albers
and Boring, 1991a; Wu and Freeman, 1992a) discussed in
Section 3.1.1 appreciable moments are found only for the Ru
and Rh nanostructures, whereas zero or very small moments
are found for Mo and Tc. This is a consequence of the large
spatial extent of 4d wave functions being more important
for the compact islands than for the chain structures. Within
the Ru structures I5 and I9 we observe that the outer atoms
carry a larger moment than the inner ones, the same effect
as the one found earlier for the linear structure of Mo and
Tc. For Rh the situation is more complicated. For the I5
island the inner moment (1.00 µB) is larger than the outer
one (0.66 µB), in agreement with the preceding rule, while
the central atom in the I9 cluster has a very small moment
of 0.16 µB, and the outer atoms have moments of 0.62 µB

and 0.64 µB. Thus, by comparing the islands with the chain
structures, not only is the peak of the moment curve shifted
to even larger valences, that is, from Tc to Ru, but the tran-
sition from surface enhancement of the moments to surface
suppression is also shifted: for the chains this turnover occurs
at Ru, but for the more compact islands it occurs at about
Rh. The very small moment obtained for the central atom of
I9 seems to be in conflict with the results of monolayers for
a Rh overlayer on Ag(100) which should have a moment of
about 1 µB. Calculations for larger Rh islands lead for the
inner Rh atoms to considerably larger moments (0.66 µB).
Thus, we conclude from these calculations, as well as from
the strong difference obtained for the different linear chains
C2, C3, and C4, that the moments of the 4d clusters show
an unusual and oscillatory dependence on the cluster size.

Preparing clusters with constituent atoms that are sub-
ject to an AFM exchange interaction can lead to complex
noncollinear magnetism inside the cluster in order to avoid
magnetic frustrations due to competing interactions caused
by cluster shape and substrate interactions. Obvious examples
are Cr and Mn clusters with triangular shapes or those
deposited on FM substrates. The actual magnetic structure
depends, besides on the cluster shape, on the relative strength
of the intracluster exchange interaction of the Cr and Mn
atoms versus the cluster–substrate interaction, which can be
AFM for Cr and FM for Mn, depending on the substrate.
Recent first-principles calculations on Cr and Mn dimers on
Ni(100) (Lounis, Mavropoulos, Dederichs and Blügel, 2005)
verify the presence of a noncollinear ground state for nearest-
neighbor Mn dimers. We see in Figure 30(a) the antiferro-
magnetically aligned Mn moments are symmetrically tilted
under the presence of the FM exchange interaction of the
Ni substrate by ≈ ±72.6◦ with respect to the direction of
the underlying substrate moments. Also the nearest-neighbor
Ni moments are tilted by 7.4◦. The magnetic ground state
of larger Mn compact clusters on Ni(100) remains collinear
while Mn chains have a noncollinear ground state similar
to the magnetic configuration of the Mn dimer. Cr and Mn
clusters on Fe and Co substrates are subject to much larger
cluster–substrate interactions and one expects noncollinear
magnetism in Cr and Mn clusters of larger size. For example,
a Mn trimer on fcc Fe, shown in Figure 30(b) is nearly
collinear within the Mn cluster, but is not collinear with
respect to the magnetic moments of the underlying Fe sub-
strate. The two outer Mn moments are rotated by 170◦ and
have a value of 3.61 µB. The central moment is rotated by
20◦ and has a value of 3.14 µB. This leads to an uncompen-
sated total magnetic moment in the Mn cluster of −4.16 µB

in the direction parallel to the Fe moments, but with opposite
sign, and a moment of 0.18 µB normal to the Fe moments.
Figure 30(c) shows the ground-state configuration for the Mn
tetramer. All neighboring Mn moments are antiferromagnet-
ically aligned and share one plane, which is roughly per-
pendicular to the substrate magnetization. For clusters on Fe
substrates we found that fairly reliable ground-state structures
can be obtained from a nearest-neighbor Heisenberg model

(a) (b) (c)

Figure 30. Side view of the magnetic ground-state configuration
of a Mn dimer on Ni(100) (Lounis, Mavropoulos, Dederichs and
Blügel, 2005) (a), of a Mn trimer (b), and tetramer (c) on fcc
Fe(100). In (b), moments of two Mn atoms are pointing down (the
second one cannot be seen) and one moment is pointing up.
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(equation (2)) with exchange parameters obtained from ab
initio results, where the nearest-neighbor exchange constants
for the atoms in the cluster and the interaction between the
atoms in the cluster and the substrate enter. This works much
less reliably for the Ni substate, as the size of the Ni moment
changes dramatically with respect to the relative orientation
between the Ni moment and the moments in the cluster.
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clusters on Ni and Cu: size and shape dependence of the spin
moment. Applied Physics A, 82, 103–107.

Mermin, N.D. and Wagner, H. (1966). Absence of ferromagnetism
or antiferromagnetism in one- or two-dimensional isotropic
Heisenberg models. Physical Review Letters, 17, 1133–1136.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., et al.(1953).
Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21, 1087–1092.

Mills, D.L. (1994). Thermodynamic properties of ultrathin ferro-
magnetic films. In Ultrathin Magnetic Structures, Bland, J.A.C.
and Heinrich, B. (Eds.), Springer–Verlag: Berlin/Heidelberg, Vol.
I, pp. 91–122.

Mirbt, S., Eriksson, O., Johansson, B. and Skriver, H.L. (1995).
Magnetic coupling in 3d transition-metal monolayers and bilayers
on bcc (100) iron. Physical Review B, 52, 15070–15073.

Mokrousov, Y., Bihlmayer, G. and Blügel, S. (2005). Full-potential
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Újfalussy, B., Lazarovits, B., Szunyogh, L., et al. (2004). Ab initio
spin dynamics applied to nanoparticles: canted magnetism of a
finite Co chain along a Pt(111) surface step edge. Physical Review
B, 70, 100404-R-1–100404-R-4.
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1 INTRODUCTION

The field of molecular magnetism is indeed quite broad and
much has been written on many aspects of this field. Dis-
cussions, by many of the pioneers and practioners in this
field, including Kahn, Barbara, Verdaguer and others may be
found in References Kahn, 1993; 2000; Barbara and Gunther,
1999; Ferlay et al., 1995; Turnbull, Sugimot and Thomp-
son, 1996; Postnikov, Kortus and Pederson, 2006; Peder-
son, Park and Baruah, 2006. A single concise definition is
difficult and would probably not satisfy all researchers in
this field. Further, it is not possible to review all aspects
of this interdisciplinary field, especially given the diverse
set of scientific skills and expertise needed to look at all

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory. This chapter is a US Government work and is in the
public domain in the United States of America.

aspects. Before focusing the attention on the theoretical study
of one class of molecular magnets, it is useful to give a
slightly broader overview of all the molecular systems that
may be referred to as molecular magnets and give some
discussion as to how they are related and different. In gen-
eral, molecular magnetism deals with any molecular system
or collection of atoms that is finite, unreactive, and con-
tains at least one but probably two or more unpaired elec-
trons. However, there is another class of related bulk mag-
netic materials, assembled from transition-metal molecules,
that exhibit interesting magnetic and photomagnetic effects
such as the Prussian-blue analogs (Ferlay et al., 1995) and
spin crossover compounds (Gaspar et al., 2003). Although
unpaired electrons exist in both molecular magnets and radi-
cals, the distinction between these two systems is that on-site
exchange effects in a molecular magnet inhibit unpaired
electrons from forming bonds with unpaired electrons on
neighboring molecules. This unreactive behavior is generally
accomplished by intramolecular charge transfer between the
moment-carrying sites and the nominally spin-unpolarized
part of the molecule. Rather than forming covalent bonds,
the resulting sites are more likely to coordinate with an
oppositely charged closed-shell entity such as an O2− anion,
a dehydrogenated acidic molecule, or the lone pair on a
threefold coordinated nitrogen atom. Within this class of
systems, one must distinguish between purely organic sys-
tems (Palacio and Markova, 2006) and those containing
metal ions.

In the former class for which the molecular oxygen may
be the simplest example, the moments are generally more
delocalized, less likely to be centered on a single ion, and can
have distances between neighboring local moments that are
small since they are controlled by covalent bonding. These
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characteristics lead to magnetic or paramagnetic behavior
that is governed by different interactions than those that
contain metal ions. The combination of the short bond
lengths and small spin-orbit splitting leads to multiplet
structures exhibiting smaller zero-field splittings. Further,
because the spin-orbit splitting is small and the distance
(R) between moments is small, the dipolar interaction,
which scales as 1/R3, leads to an anisotropy energy that
depends on both second-order spin-orbit effects and classical
dipolar interactions. Excluding the intramolecular dipolar
interactions in these systems is expected to lead to errors in
the magnetic anisotropy. However, even with the inclusion of
these effects, it appears that the role of magnetic anisotropy
in organic molecular magnets is small and most of the
physics is related to energetics associated with changes in
spin ordering between neighboring localized spins rather than
global changes in spin projections. While the remainder of
this chapter does not directly pertain to this subclass of
molecular magnets, some of the physics associated with one
class of transition-metal-based molecular magnets coincides
with this class of molecules. There are excellent reviews on
this subject as well as many recent papers. The interested
reader is referred to these (Palacio and Markova, 2006)
references.

For the class of molecular magnets that contain transition-
metal ions, (see Fig. 1) exclusion of the intramolecular dipo-
lar interactions is at least the best starting point due to the
larger distances between neighboring moments. These sys-
tems are unreactive because they have a relatively large
energy gap between the occupied and unoccupied electronic
states. The local filling of the d electrons is determined by
relatively strong Jahn–Teller distortions of the sixfold coor-
dinated environment around a given transition-metal atom.
Under these conditions, the lowest-energy excitations in
these systems are governed by a combination of the inte-
rionic exchange interactions, which govern spin ordering,
and the spin-orbit interaction. For cases where the spin-
orbit interaction is small, the only low-energy excitations are
between different spin manifolds each of which would have
a degeneracy given by 2S + 1. The so-called V15 molecule
exemplifies this type of molecular magnet (Gatteschi et al.,
1991; Kortus, Hellberg and Pederson, 2001). The spin exci-
tations in these systems can be studied in a straightforward
manner from the perspective of Heisenberg Hamiltonians
and their extensions. Although straightforward, the com-
putational problem is indeed challenging due to the high
dimension of the matrices that need to be diagonalized. For
the purpose of discussion, we refer to these molecules as
spin systems and put forth the viewpoint that referring to
these systems as a ‘molecular magnet’ is indeed a misnomer
despite the fact that the properties of these systems are quite
interesting.

For cases where the spin-orbit interaction is large, a simple
and very interesting collective behavior emerges if the on-
molecule interionic exchange interactions are very large. For
discussion in this chapter, we refer to this class of molecular
magnets as anisotropic molecular magnets (AMMs) (Fried-
man et al., 1996; Thomas et al., 1996; Barra et al., 1996;
Sangregorio et al., 1997; Wernsdorfer and Sessoli, 1999;
Wernsdorfer et al., 1999). The Mn12-acetate molecule, syn-
thesized by Lis (1980) is the quintessential example of an
AMM. Ten years ago, two groups (Friedman et al., 1996;
Thomas et al., 1996) independently observed a phenomenon,
now known as resonant tunneling of magnetization, in this
molecule. It is this class of molecular magnets that most
of the discussion will be devoted to. The experiments on
these systems will be discussed and the phenomenological
Hamiltonian that describes their behavior will be introduced.
Then we will discuss how a first-principles theory such as
the density-functional theory (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965; Perdew et al., 1992; Perdew, Burke
and Ernzerhof, 1996) may be used to determine the phe-
nomenological Hamiltonian without any adjustable parame-
ters (Pederson and Khanna, 1999).

It should be noted that there is certainly no guarantee that
the relative energy scales associated with electronic excita-
tions, spin-ordering changes, and spin-orbit couplings will
always lead to a situation that gives rise to a simple collec-
tive behavior in an arbitrary molecular material containing
transition-metal ions. Because of this, a significant effort will
be made to fully discuss the derivations of the computa-
tional and theoretical methods that lead to the two simplified
extremes. In addition, an attempt is made to identify addi-
tional interactions that could lead to a quantitative theory
that describes more complicated molecular magnetic mate-
rials. It is possible, even likely, that simplified collective
behavior appears in these systems as well. However, the
theoretical and computational tools that need to be devel-
oped to quantify the behavior in this general range are quite
significant.

The key experiments, mentioned in the preceding text,
have motivated many new experimental and theoretical
developments. Because this chapter is being written with
some hindsight, an attempt will be made to discuss the
problem as to how it may have evolved in the most orderly
way, which necessarily means that the chronology of how the
field has actually evolved will be primarily apparent from the
references. This chapter is not aimed at experts in the field
of molecular magnetism. Rather, it is hoped that this chapter
will be useful to two audiences. First, it should serve as a
good starting point for a researcher who wishes to learn about
the fundamental questions in molecular magnets. Second,
the derivation for the first-principles determination of the
magnetic anisotropy Hamiltonian is aimed at practitioners
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Figure 1. Two types of transition-metal coordinated complexes. On the left is the Mn12-acetate molecular magnet and on the right is the
V15 spin system. The low-energy excitations in these systems are governed by magnetic anisotropy and spin excitations, respectively.

in electronic structure who are interested in improving the
theory or converting a standard electronic structure program
into one that can determine magnetic anisotropies. In the
first section, the phenomenology of a simple spin system
will be discussed. This will include consideration of the
Hamiltonians that are most relevant to the spin molecular
magnets (SMMs)- and AMMs. With regard to AMMs, we
describe the effects of longitudinal resonant tunneling of
magnetization, transverse Berry’s phase oscillations (Garg,
1993) and the suppression or complication of the latter
effect due to higher-order terms in the Hamiltonian (del
Barco et al., 2004). With regard to the SMMs, we discuss
the simplest Heisenberg Hamiltonian that can be used for
describing the spin excitations.

After reviewing the fundamental physics that comes out
of the spin Hamiltonians, we discuss the first-principles
determination of these phenomenological Hamiltonians from
a point of view of density-functional theory or other mean-
field methods. The derivation of the phenomenological
anisotropy Hamiltonian presented here includes additional
details and discussion that have not appeared in the original
or subsequent work of the NRL group. In doing so, it is hoped
that new efforts will be made to improve upon the current
computational schemes. There have been two other very
complete reviews on applications of the existing formalism
published recently. In addition to directing the reader to this
work, we briefly discuss more recent theoretical studies of
molecular magnets within density-functional theory.

2 PHENOMENOLOGY

2.1 Hamiltonian for a spin molecular magnet

The introduction of spin into electronic wave functions leads
to several different effects related to spin polarization. Owing

to the nature of fermions, the electronic wave function
must be antisymmetric. Because of this, in addition to
the repulsive coulomb interaction between electrons, an
additional attractive term, between same-spin electrons arises
and is referred to as the electronic exchange interaction. In an
open-shell system, the spin is maximized for cases containing
well-localized electronic wave functions that are orthogonal
and degenerate, usually, due to orbital symmetry. If two wave
functions are orthogonal by symmetry, there is no kinetic
energy penalty associated with placing them in parallel spin
states and the exchange term will stabilize the high-spin state
relative to the lower-spin-state exchange interaction. While
this effect is generally referred to as ferromagnetic behavior,
we emphasize here that it is only one of two necessary
conditions to achieve a magnetic state.

Another manifestation of spin polarization arises when
we consider two well-separated open-shell atoms or ions
(hereafter referred to as a center). For this case, the phe-
nomenon referred to as antiferromagnetic behavior may be
observed. On-site coulomb exchange dictates that each center
prefers to have a net moment. However, as the wave function
overlap between the two centers increases, the Pauli princi-
ple requires orthogonality between all states to be satisfied.
The system may accomplish this by choosing antiparallel
moments which are orthogonal in spin space. In the antiparal-
lel arrangement, the states associated with a given site tend to
delocalize slightly so their positive kinetic energy decreases.
This decrease in kinetic energy is partially countered by a
decrease in the on-site coulomb exchange energy. The alter-
native is to choose parallel moments derived from localized
wave functions that are orthogonal to those on neighboring
atoms. In the parallel arrangement, additional orthogonality
constraints cause an increase in the systems’ kinetic energy
since wiggles in the wave function tails are required to
achieve spatial orthogonality. The increase in kinetic energy
is partially compensated by an increase in coulomb exchange
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energy due to overlap between states on different sites. In a
mean-field picture with one fully occupied wave function
for each electron, the configuration with the lowest energy
depends on the precise characteristics of the occupied wave
functions. Often, the lowest-energy configuration leads to a
symmetry that is lower than would be expected on the basis
of the symmetry of the molecule. The parallel and antipar-
allel arrangements of neighboring sites are commonly, and
again slightly inappropriately, referred to as ferromagnetic
and antiferromagnetic spin ordering. Pictured in Figure 1 are
two systems that lead to spin-ordered states.

To systematically determine the classical spin ordering of
such systems the energy is parameterized according to:

Espin =
∑
(µ,ν)

JµνSµ · Sν (1)

where Sµ and Sν are localized spins at site ν and µ

respectively and Jµν , the exchange coupling constants, are
usually only nonnegligible for nearest-neighbor centers. To
calculate these parameters, one needs to calculate energies
as a function of different spin orderings, know the local
moments, and then invert the expression to obtain the
exchange couplings. Once the exchange coupling constants
are known, the expression may be ‘requantized’ leading to a
spin Hamiltonian of the form:

Hspin =
∑
(µ,ν)

JµνSµ · Sν (2)

By constructing all possible product states of the form
�ν |SνMν〉, and constructing a very large Hamiltonian matrix,
the ground state of the Hamiltonian may be determined.
This prescription has been carried out for both the V15 spin
system (Kortus, Hellberg and Pederson, 2001) and the Mn12-
acetate molecular magnet using the density-functional theory
described in the subsequent text. In both cases, the lowest-
energy spin configuration and low-energy spin excitations
were found to be in qualitative accord with experiment.
For example, for the case of Mn12-acetate, the wave func-
tion consisted of a sum of 108 possible configurations. The
lowest energy S = 10 configuration had 13 states that had
reasonably large coefficients (Park, Pederson and Hellberg,
2004). The ferrimagnetic configuration pictured in Figure 1
had an amplitude of 0.6. This configuration agrees quali-
tatively with the classical ordering determined experimen-
tally (Robinson et al., 2000; Mirebeau et al., 1999; Petukhov
et al., 2004).

Assuming that the spin excitations obtained from a Heisen-
berg Hamiltonian lead to a large gap between the lowest-
energy spin multiplet and the first excited spin-multiplet,
the system may behave as an AMM. For this case, each

spin manifold exhibits zero-field splittings which breaks a
2S + 1 degenerate multiplet into a set of lower-degeneracy
multiplets. Symmetry plays a significant role in determin-
ing the size of these zero-field splittings and the number
of submanifolds. An S = 10 system with uniaxial symme-
try would break into S doublets and 1 singlet. The size of
these zero-field splittings is also mandated by symmetry. For
an Oh system, the barrier would scale as 1

16c8 with c the
speed of light. For a system without symmetry or with uni-
axial symmetry the splittings would scale as 1

4c2 . Symmetry
considerations suggest that magnets with lower symmetry
should be stronger. However, there is also a scaling with
nuclear charge that could reverse this trend for centers that
are heavy enough.

2.2 Hamiltonian for an anisotropic molecular
magnet

2.2.1 The second-order Hamiltonian

To the degree that a given system behaves as a single
quantum-mechanical spin, the most general second-order
anisotropy Hamiltonian for this spin, in the presence of a
magnetic field, is given by:

H =
∑

i

B ′
iS

′
i +

∑
ij

γ ij S
′
iS

′
j (3)

(with i, j = x, y, z). Here, S′, B′ are the standard total spin
operators and externally applied magnetic-field components
with respect to an arbitrary coordinate system. In the pre-
ceding expression, γ ij is referred to as the second-order
anisotropy tensor. Here, we assume an isotropic g tensor and
absorb this term into the definition of the applied magnetic
field. Further, it should be noted that general arguments, dis-
cussed later, tell us that the phenomenological anisotropy
Hamiltonian scales as 1

4c4 where c is the speed of light.
In atomic units c = 137. The preceding Hamiltonian can
be immediately simplified by diagonalizing this tensor to
find the eigenvalues (λi) and eigenvectors which effectively
determine the principal axes of magnetization. The Hamilto-
nian is then most commonly expressed according to:

H = B · S +
∑

i

λiSiSi, (4)

= AS2 + DS2
z + E(S2

x − S2
y) + B · S (5)

with A = λx+λy+λz

3 , D = λz−(λy+λx)/2
3 , and E = λx−λy

2 . Once
the preceding Hamiltonian is adopted, the parameter A is
generally taken to be zero since it is isotropic. In the next
section, we discuss a means for calculating A, D, and E from
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the density-functional theory. The constant, AS2, is probably
very weakly dependent on spin ordering (based on results
from Baruah et al. 2004). However, some investigation into
possible shifts in spin-manifold gaps due to this constant
term should be investigated at some point. The parameters
D and E are referred to as the second-order longitudinal and
transverse anisotropy parameters, respectively. Classically,
the difference in energy, or energy barrier, for the spin
aligned along the z axis rather than the y and x axes would
be (D + E)S2 and (D − E)S2, respectively.

Several points should be made. A large barrier for an
actual molecular magnet is currently found to be approxi-
mately 60–70 K. Before continuing, it is worthwhile dis-
pelling one incorrect notion that can be concluded from
the preceding phenomenological Hamiltonian. Examination
of this Hamiltonian incorrectly suggests that such barriers
could be enhanced by simply engineering larger spin systems
and further suggests that an antiferromagnetically ordered
molecular magnet, devoid of a net spin, would observe no
energy barrier associated with spin reversal. On the con-
trary, the results of the first-principles derivation, discussed
in the subsequent text, show that the barrier scales roughly as
(Nsites × Nocc × Nvirt) where Nsites are the number of atoms
or ions with unpaired localized electrons, and Nocc and Nvirt

are characteristic numbers of unpaired states in the occupied
and unoccupied manifolds. The derivation shows a hidden
inverse square dependence of the γ tensor on the magnitude
of the local moments. Thus, an antiferromagnetically ordered
set of spins could indeed have an anisotropy and could, for
example, be useful for an exchange-biasing application when
coupled to a weak paramagnetic molecule with a net spin.
The same line of derivation shows that the phenomenologi-
cal Hamiltonian shown in the preceding text is quantitatively
valid only for a given spin manifold. While difficult to prove,
it is more likely that the D parameter for two different low-
lying spin manifolds would differ by the ratio of (S1/S2)

2

rather than a factor of unity. However, this Hamiltonian con-
tains all the physics necessary to understand the essence of
resonant tunneling of magnetization and oscillations in tun-
nel splittings. Before considering additional complexities, we
consider these two effects.

2.2.2 Resonant tunneling of magnetization

To determine the eigenvalues of the above Hamiltonian, it is
necessary to construct the (2S + 1) × (2S + 1) Hamiltonian
matrix 〈SM|H |SM ′〉. Setting A = 0 and considering the case
for E = 0 first, it is easy to verify that the eigenvalues of this
Hamiltonian, as a function of longitudinal field, are given by

E(M) = DM2 + BzM (6)

At zero field, it is readily apparent that the (2S + 1) levels
are split into S doublets (M and −M) and one singlet
(for an integer spin case). If a longitudinal field is turned
on, the S doublets split. However, S − n quasi-doublet
degeneracies are restored whenever the magnetic field is
chosen such that Bz = nD (with n = 0, 1, . . . , S − 1). With
this understanding it is possible to discuss one aspect of the
resonant tunneling of magnetization experiments (Friedman
et al., 1996; Thomas et al., 1996).

For the situation where D < 0, one may apply a large
enough magnetic field so that the spin relaxes to the state
M = S. If the field were suddenly turned off and then
replaced by an infinitesimal field in the opposite direction, the
M = −S state would be the new ground state of the system.
Classically, the time constant governing relaxation from the
M = S to M = −S state would be given by an Ahrrenius
behavior:

1

τ
= ν × e(−U/kT ) (7)

where ν is referred to as an attempt frequency and U = |D|S2

is the activation barrier at zero magnetic field. Given a lattice
of noninteracting spins, an experiment which measured
magnetization or other observables that depend on the
moment projection would allow for the determination of the
longitudinal anisotropy constant. For the classical moment,
if the antiparallel field is now slowly increased, the energy
barrier in the exponential changes continuously according to
U = (|D|S2 − |BS|) and the time constant would also be
expected to change continuously with field. However, for a
quantum-mechanical spin, the relaxation rate exhibits a much
richer dependence on the magnetic field. When the magnetic
field is chosen such that the occupied and/or virtual M state
aligns perfectly with a state of different M on the other side
of the barrier (e.g., Bz = nD for some integer n < S − 1),
the possibility of tunneling through the barrier, rather than
classically jumping over the barrier, exists as well. This leads
to a near discontinuity in the tunneling rate and describes
the underlying physics observed by Friedman et al. and
Sessoli et al. For the perfect second-order case, multiple state
alignments occur simultaneously. Thus, multiple pathways
exist for tunneling phenomena and the fastest pathway
determines the overall relaxation time. This argument shows
the magnetic fields at which tunneling will be allowed
based on the consideration of energetics. However, it neither
describes the complicated dynamics which lead to resonant
tunnelling of magnetization (RTM) nor allows us to directly
determine a blocking temperature. However, it is clear from
equation (7) that the blocking temperature will be larger
if the activation barrier, or magnetic anisotropy, can be
increased.
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2.2.3 Tunnel-splitting oscillations

If the transverse anisotropy (E) is nonzero, an additional
quantum-mechanical phenomena can occur for a single
quantum-mechanical spin interacting with a magnetic field.
This phenomenon was originally predicted by Garg (1993)
and subsequently observed by Wernsdorfer and Sessoli
(Wernsdorfer and Sessoli, 1999).

Pictured in the upper panel of Figure 2 are the energy
levels of an S = 10 molecular magnet or quantum spin
with anisotropy parameter of D = −0.25K and E = 0.05 K
respectively as a function of a magnetic field applied along
the x axis. Following Garg’s analytic formula, the units of
the magnetic field are given by Bo

x = [2E(|D| + E)]1/2. The
energy levels as a function of applied field show a series of
fascinating crossings or avoided crossing at values of (N +
1
2 )Bo

x and (NBo
x ), respectively. Also pictured in the lower

panel of Figure 2 is the logarithm of the energy difference
between the two lowest-energy states as a function of
magnetic field. There are a total of six different calculations
as a function of angle between the in-plane magnetic field
and the x axis. This picture shows that the tunnel splittings
depend strongly on perfect alignment between the x-axis and
the applied magnetic field.

2.2.4 Effects of higher-order contributions to the
anisotropy Hamiltonian

When higher-order terms are added to the Hamiltonian,
for example, terms like BS4

z + C(S4+ + S4−), several effects

occur. The S4
z term adds a perturbation to the different

M states and prevents perfect simultaneous alignments of
energy levels in the longitudinal tunneling experiments. The
transverse term breaks the perfect periodicity of the tunnel-
splitting oscillations in the transverse experiments. Also
the relative orientation between the transverse second-order
terms and the transverse fourth-order terms changes the ori-
entation of the magnetic fields required for observation of
these splittings. This provides a very useful diagnostic tool
for the symmetry around a quantum spin and these effects
have been observed experimentally and theoretically in rela-
tion to the Mn12-acetate molecule. For this case, Cornia
identified a weak symmetry-breaking term in the crystal
containing these molecules. Weak hydrogen bonds between
space-filling acetic acids of crystallization were predicted to
lead to three types of spin Hamiltonians with E = 0, 0.008,
and 0.016 (Cornia et al., 2002; Park, Baruah, Bernstein and
Pederson, 2004). Further Pederson, Bernstein and Kortus
(Pederson, Bernstein and Kortus, 2002) showed qualitatively
from calculations that Raman-active vibrations lead to inter-
actions in the Mn12-acetate which cause an additional trans-
verse term and identify the intrinsic fourth-order axis. The
misalignment between the intrinsic transverse axes and those
determined from the actual placement of the acetic acids of
crystallization provide a system where the tunnel-splitting
oscillations can be used as a probe of the local structure
around a quantum spin. This has been investigated experi-
mentally and is now quite well understood (del Barco et al.,
2004; Hill et al., 2003; Park et al., 2005).
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Figure 2. Uppermost energy levels (upper panel) and log (tunnel splittings) of two most stable states for an S = 10 quantum spin. The
Hamiltonian is field H = −DS2

z − E(S2
x + S2

y ) + BSx with D = −0.25 and E = 0.05. The physical reduced units of the transverse magnetic
field are [2|E|(|D| + |E|]1/2 as shown by Garg.
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2.3 Heisenberg Hamiltonians with anisotropy

As discussed in the subsequent text, the origin of the spin-
orbit interaction leads to anisotropy in a molecular system.
A general feature of the spin-orbit interaction is that the
expectation value of this operator is zero for any wave
function that is purely real. This is known as time-reversal
symmetry but follows immediately if we believe that the
expectation value of a physical operator, that is purely imag-
inary, must be real. Simply appending the phenomenological
Hamiltonian to a Heisenberg Hamiltonian leads to splittings
in the multiplets; however, there are two main problems with
this approximation. First, as already stated, the derivation
presented in the subsequent text shows that the anisotropy
tensor contains hidden dependencies on the spin of the sys-
tem. There is not a single phenomenological Hamiltonian that
is equally applicable to each state. Second, the operator itself
is real and at least quadratic in spin operators. The expecta-
tion value of this operator for an arbitrary real wave function
is nonzero, which indicates that such a Hamiltonian has some
basic physics missing. Alternative approaches have been to
include local anisotropy terms (e.g.,

∑
i DiS

i
zS

i
z). While these

terms describe the energetics of a localized uncoupled spin
flip correctly, it has been shown that the energy associated
with the simultaneous flipping of a collection of these spins
is not equal to the sum of the energies. This is unphysical.
Katsnelson, Dobrovitski and Harmon (1999) discuss the use
of the Dzyaloshinskii-Moriya (DM) interaction in the Mn12-
acetate molecule to build in some of the anisotropic effects.

3 DENSITY-FUNCTIONAL-BASED
DERIVATION OF ANISOTROPY
HAMILTONIANS

The purpose of this section is to show how to determine the
previously discussed phenomenological model from an all-
electron mean-field theory. The original derivation of some of
the equations here appears in Pederson and Khanna (1999). In
that paper, the discussion concentrated on how the change in
eigenvalue sum, or trace, was considered when the spin-orbit
interaction was included in a quantum-mechanical treatment.
The derivation is exact for a collection of electrons moving
in an external Hamiltonian. However, if the total energy of
the system depends self-consistently on the electronic wave
functions, it is really the change in total energy, rather than
the change in eigenvalue sum, that one should be interested
in addressing. Electric polarizabilities represent a well-known
example where a perturbative expression based on the pertur-
bation of a trace gives very different polarizabilities than the
correct self-consistent polarizabilities. More generally, in a

mean-field theory, the sum of the eigenvalues is not the total
energy due to the so-called double counting of the coulomb
and exchange interactions in the Hamiltonian. Indeed, the
electron–electron coulomb contributions to the total energy
are exactly half as large in the total energy as they are in the
eigenvalue sum. For the spin-orbit interaction, the response
of the eigenvalue sum is a very good approximation to the
response of the total energy rather than a factor of 2 overes-
timate. This point is neither immediately obvious nor general
to all possible types of perturbations. We discuss the method
carefully to show why the method works as well as it does
and to aid in identifying the regime of validity.

It should be emphasized that the phenomenological Hamil-
tonian can in principle be determined numerically using
standard self-consistent field (SCF) methods that include the
spin-orbit interaction in the energy. However, it has long been
recognized that the spin-orbit contribution is the primary
interaction leading to magnetic anisotropy. The spin-orbit
operator, in atomic units, has a 1

2c2 prefactor which leads
to lowest-order contributions to the magnetic anisotropy of
order 1

4c4 . These are small numbers which immediately raise
questions about the use of an inexact self-consistent numer-
ical treatment. For example, it is well known that the spin-
orbit interaction felt by a given electron depends on the
electric field observed by that electron. This electric field
depends on all charges in the problem including those asso-
ciated with the other electrons. In the subsequent text, using
the proper many-electron wave function and Hamiltonian,
we derive the expression for the contributions to the spin-
orbit energy due to the electronic coulomb potential. It is not
surprising that this exactly reproduces the term one expects
from the expression one would derive based on a classi-
cal electron moving through an arbitrary coulomb potential.
The complication in using this exact expression arises when
one invokes the standard variational principle to derive the
self-consistent Hamiltonian. Performing this exercise leads
to an SCF Hamiltonian that has both the intuitive spin-orbit
term and a more complicated term due to the variation of
the electric field or coulomb potential of the electronic wave
functions. Ignoring this nonlocal term, which has a 1

2c2 pref-
actor in the Hamiltonian, will introduce an error in the total
energy that scales as 1

2c4 which is the same size as the
anisotropy term.

There are two additional problems associated with using
a full numerical variational approach. The first is related to
the need for a noncollinear treatment of the electronic wave
functions because the spin-orbit interaction mixes states of
different spin projection. This means that the spin-density
matrix is not diagonal and must in principle be rediagonalized
at each point in space to construct the energy within a
density-functional approach. Noncollinear SCF methods have
been used and represent an additional important modification
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to a standard SCF procedure that must be performed to
obtain energies that are correct to the order of 1

4c4 . The
second problem in relation to the calculation of magnetic
anisotropies is that one is not only interested in minimizing
the total energy of the system with the spin-orbit interaction
turned on. Since the magnetic anisotropy of a molecular
magnet or nanoparticle is the target, one is actually interested
in minimizing the total energy subject to the constraint that
the axis of quantization, which defines the ‘z’ axis for the
spinors, is in an arbitrary but fixed position relative to the
molecular axes. Constrained minimizations are also very
difficult to do.

Although the numerical determination of magnetic aniso-
tropy is challenging, an entirely analytic approach to a com-
plicated many-electron system is probably futile. Even for
the simple triplet state of molecular oxygen, the analytic
expressions derived from the magnetic anisotropy are suf-
ficiently complicated that it is difficult to guess whether the
molecule is easy axis or easy plane by staring at the for-
mula. Because of these difficulties, we have relied on a
partially analytical and partially numerical approach. The
approach allows one to derive expressions for the mag-
netic anisotropy that are variational with respect to a single
parameter and alleviates the need for the calculation of some
of the more complex terms that would occur in the exact
self-consistent Hamiltonian. Further, it leads to a formal-
ism that is easily incorporated into standard codes based
upon density-functional theory. We discuss the general idea.
First, it is assumed that one has found the occupied and
unoccupied electronic wave functions that self-consistently
minimize a mean-field energy expression (such as that found
in density-functional theory or Hartree-Fock). Second, we
append the spin-orbit energy to this expression. Third, we
assume that we have a physically motivated means for guess-
ing the form of the wave functions that minimize the energy
with the spin-orbit interaction turned on. The starting point
for the expression of the new wave functions will corre-
spond to those determined from exact perturbation theory
using the full, but not self-consistent, coulomb contribu-
tions to the spin-orbit interaction but multiplied by a vari-
ational parameter γ . The energy of this expression as a
function of γ will then be minimized leading to a varia-
tional bound on the energy as a function of a given axis of
quantization.

Neglecting spin-orbit effects, in a mean-field theory the
part of the total energy of a system of electrons that
depends on the electronic wave functions may be written
according to:

Eelec =
∑
nσ

〈ψnσ | − 1

2
∇2 + Vnuc|ψnσ 〉 + 1

2

∫
d3r

×
∫

d3r ′ ρ(r)ρ(r′)
|r − r′| +

∫
d3rρ(r)εxc(ρσ , ρ′

σ ) (8)

ρσ (r) =
∑

n

|ψnσ (r)|2 =
∑

n

|φnσ (r)|2 (9)

ρσ (r) = ρσ (r) + ρ′
σ (r) (10)

For the purpose of simplicity, the above equation refers
specifically to the local-density approximation. The first three
terms represent the electronic kinetic energy, the coulomb
interaction of the electrons with the nuclei and the elec-
tronic coulomb energy, respectively. The last term represents
the local-density approximation to electron correlation and
exchange effects. The first three terms are common to most,
if not all, mean-field expressions while the last term changes
depending on which level of density-functional theory is
being used or if one is using exact exchange. The details of
the exchange-correlation function do not affect the formal-
ism discussed here. However, the accuracy of the results will
of course depend, albeit mildly, on how well the exchange-
correlation effects are represented. Requiring that the energy
is minimized with respect to the choice of spin orbitals leads
to the following Schroedinger-like equation, which must be
solved self-consistently.

〈δψnσ | − 1

2
∇2 + Vnuc +

∫
d3r ′ ρ(r′)

|r − r′| + µσ
xc(r)

−εnσ |ψnσ 〉 = 〈δψnσ |Ho − εnσ |ψnσ 〉 = 0 (11)

where µσ
xc is the exchange-correlation potential determined

from the functional derivative of the exchange-correlation
energy. For further details on the self-consistent field method,
density-functional theory, and other mean-field approxima-
tions, the interested reader is referred to the references. There
are many different numerical strategies for solving the pre-
ceding equations. One can expand the wave functions in
terms of many different types of basis functions includ-
ing Gaussian-type orbitals, plane waves, augmented plane
waves, or linear-muffin-tin orbitals. Discussion of the basis-
set dependent numerical details can be found in many places
and will not be repeated here. Suppose both the occupied
and unoccupied wave functions which satisfy equation (11)
have been determined. In preparation for the following per-
turbative arguments, let us assume that we define a new
set of orthonormal wave functions {ψγ

nσ } which depend
continuously upon a variational parameter γ and coincide
exactly with the solutions to equation (11) when γ = 0. An
additional constraint on this set of functions will be that
〈 dψnσ

dγ
|ψmσ 〉 = 0 for m = n. However, without loss of gen-

erality it is convenient to make this constraint true for all
pairs of occupied wave functions. The energy for this set of
orthonormal wave functions ψ

γ
nσ can be expressed in terms
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of a Taylor’s series in γ . At γ = 0, the wave functions satisfy
equation (10) so there is no first-order change in the energy.
Therefore, to second order in γ , the change in energy is
given by:

δE = γ 2

2

∑
nσ

{〈
d2ψnσ

dγ 2
|H |ψnσ

〉
+ 1

2

〈
dψnσ

dγ
|H |dψnσ

dγ

〉

+
〈

dψnσ

dγ
|dH

dγ
|ψnσ

〉}
+ c.c (12)

The right-most term in the preceding equation is not gen-
erally zero but is small for the case of current interest.
Neglecting this term, the second-order change in the mean-
field energy becomes:

δE = γ 2

2

∑
nσ

{〈
d2ψnσ

dγ 2
|H |ψnσ

〉
+ c.c

}

+
〈

dψnσ

dγ
|H |dψnσ

dγ

〉
(13)

Now, consider the energy of the γ -dependent choice
of wave functions when a very small purely imaginary
perturbation (i�) of the form,

E(i�) = E′
elec +

∑
nσ

〈ψ ′
nσ |i�|ψ ′

nσ 〉 (14)

is added. For the above energy, the task is to determine very
good approximations for the orthonormal wave functions
(ψ ′

nσ = ψnσ + δψnσ ) that minimize the above expression for
a given �.

As noted in the preceding text, the primed wave functions
that minimize equation (14) can be found by the same
variational procedure that one uses to perform standard self-
consistent field equations. However, for an arbitrary choice
of a purely imaginary perturbation operator, i�, it may be
that a standard off-the-shelf electronic structure code does
not have the necessary numerical techniques to solve the
new set of SCF equations. This is especially true when i�

becomes the exact spin-orbit interaction. In this case, the
electronic coulomb potential appears in the expression for
i� and the functional derivative of this term leads to a
term in the one-electron Hamiltonian that is cumbersome.
For the case that i� is small, such as spin orbit where it
has a prefactor of 1

2c2 , the self-consistent procedure can,
to an excellent approximation, be performed analytically
by adopting the following physically motivated and nearly
exact ansatz for the perturbation of each occupied wave

functions ψα = φmχσ .

|δψα〉 = γ
∑
β

|ψβ〉 〈ψβ |i�|ψα〉
εα − εβ

−γ 2

2
|ψα〉

∑
β

|〈ψβ |�|ψα〉|2
(εα − εα)2

(15)

where the sum over β includes only the unoccupied states.
It is easily verified that the preceding wave function remains
normalized to second order to the term that is quadratic in
γ and that the derivatives satisfy the necessary constraints
discussed in the preceding text. Note that � or the other
factor containing 1/c2 is the small parameter in the preceding
equation. For a noninteracting collection of electrons it
follows immediately that γ = 1. With respect to the energy
for the � = 0 limit, (�E) for this set of wave functions is
to order (�2) given by:

�E = δE +
∑
α

[(〈δψα|i�|ψα〉 + c.c) + 〈ψα|i�|ψα〉]

(16)
Now, if and only if the perturbing operator i� yields a
vanishing expectation value for each occupied orbital, that
is, 〈ψα|i�|ψα〉 = 0, to second order in γ , the above energy
reduces to:

�E = −γ 2
∑
αβ

|〈ψα|�|ψβ〉|2
εα − εβ

+ 2γ
∑
αβ

|〈ψα|�|ψβ〉|2
εα − εβ

(17)
Since εβ > εα for all pairs of occupied and unoccupied
states, differentiating the preceding equation with respect to
the self-consistency parameter (γ ) leads to the conclusion
that γ = 1 for this specific case. Therefore, an upper bound
to the second-order energy for a given δ is given by:

�E =
∑
αβ

|〈ψα|�|ψβ〉|2
εα − εβ

(18)

Now, to connect the preceding formalism to the determi-
nation of a phenomenological magnetic anisotropy Hamilto-
nian, we must start by deriving the spin-orbit energy of a
Slater determinant composed of a set of orthonormal single-
particle spin orbitals (ψ1σ , . . . , ψNσ σ , ψ1σ ′ , . . . , ψN ′

σ σ ′)
where Nσ and N ′

σ are the number of electrons for each spin
type. Each of these orbitals is a product of a spatial function
and a spinor according to:

|ψnσ 〉 = φn(r)|χσ 〉 (19)

〈φnσ |φmσ 〉 = δmn (20)

〈χσ |χσ ′ 〉 = δσσ ′ (21)
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Note that there is no constraint assumed about the orthonor-
mality of the spatial functions with a different spin index.
However, with the exception of the unpaired electrons, the
spatial wave functions for antiparallel spin orbitals are nearly
identical especially for the core states. Further, we have not
yet specified an axis of quantization for the spinors. For now,
this choice is assumed to be arbitrary. It is convenient and
physically useful to specify the axis of quantization of the
spinors with respect to one particular spinor-choice, or alter-
natively molecular axis, according to:

|χ1〉 = cos
θ

2
| ↑〉 + eiφ sin

θ

2
| ↓〉

|χ2〉 = −e−iφ sin
θ

2
| ↑〉 + cos

θ

2
| ↓〉 (22)

The many-electron spin-orbit operator may be written in
terms of single-particle operators, corresponding to spin-orbit
interactions between the electrons and the coulomb potential
of the nuclei and two-particle operators, corresponding to
spin-orbit interactions between an electron and the coulomb
potential of the other electrons. We discuss the two-particle
term in detail and merely give the results of the more-
commonly discussed one-electron contributions. The exact
two-electron spin-orbit operator may be written in a mani-
festly symmetric form according to:

Gls = 1

4c2

∑
i,j �=i

[
Si · ∇ i

1

rij

× pi + Sj · ∇j

1

rji

× pj

]
(23)

Gls =
∑
i,j �=i

gij (24)

Given an antisymmetrized many-electron Slater determinant
composed of the preceding single-particle orbitals, the expec-
tation value of this operator can be evaluated following stan-
dard analytic procedures outlined by Slater. The energy is
found to be:

〈�|Gls |�〉 = Cls + Els (25)

Cls =
∑
αβ

〈ψα(1)ψβ(2)|g12|ψα(1)ψβ(2)〉 (26)

Els = −
∑
αβ

〈ψα(1)ψβ(2)|g12|ψβ(1)ψα(2)〉 (27)

with Cls and Els the coulomb and exchange contributions to
the spin-orbit energy, respectively. Note that the above term
is zero if all the above wave functions are real or if there
is a set of real wave functions that are related to the above
wave functions by a unitary transformation. The constraint
of real unperturbed wave functions is important here and
in other parts of the derivation. In the preceding equation

the summation indices (α, β) include both spatial and spin
indices (e.g., α = n, σ ). The exchange contribution manifests
itself from the Pauli principle. The coulomb contribution to
the spin-orbit term reduces to

Cls = 1

2c2

∑
α

〈ψα|S · ∇�e−e(r) × p|ψα〉 (28)

where �e−e(r) is the electronic coulomb potential. Since
we are interested in determining quantities such as dCls

dγ
,

we note here that for real zeroth order wave functions it
is the explicit dependencies on ψα in preceding equation.
The coulomb potential changes but since it remains real (i.e.,
not complex), the change in electronic coulomb potential
does not contribute to the first derivative of the coulomb
contributions to the spin-orbit energy if the zeroth order wave
functions are real.

However, when the single-electron operators associated
with the spin-orbit coupling with the nuclei are included,
one finds an expression identical to that above, with �nuc,
the coulomb potential of the nuclei or other applied coulomb
field, replacing the electronic coulomb term. Thus, the spin-
orbit interaction due to the entire coulomb field � is simply

Cls = 1

2c2

∑
α

〈ψα|S · ∇�(r) × p|ψα〉 (29)

The exchange contributions will be discussed further in the
following section. In all of the previous calculations by the
NRL group and in most calculations the author is aware of
the exchange term has been neglected.

Now that the spin-orbit energy and the perturbative
expression for the anisotropy have been developed, it is
possible to discuss how these two techniques can be used
to derive the phenomenological Hamiltonians that describe
molecular magnets. We start by noting that the momentum
operator p = −i∇ and combine equations (18) and (29) to
yield a bound on the second-order spin-orbit energy for a
specific set of angles (θ, φ). We find:

�E = 1

4c4

∑
αβ

〈ψα|S · ∇� × ∇|ψβ〉〈ψβ |S · ∇� × ∇|ψα〉
εα − εβ

(30)

�E = 1

4c4

∑
ij

∑
σσ ′

〈χ ′
σ |Si |χσ 〉〈χσ |Sj |χ ′

σ 〉

×
∑
nm

〈φnσ |Vi |φmσ 〉〈φmσ |Vj |φnσ 〉
εnσ − εmσ ′

(31)

Vj = (S · ∇� × ∇)j (32)

To simplify the notation, it is useful to make the following
definition for the matrix Mσσ ′

ij and note the following
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simplification for the matrix elements 〈φm|Vi |φn〉.

Mσσ ′
ij = 1

4c4

∑
nm

〈φn|Vi |φm〉〈φm|Vj |φn〉
εnσ − εmσ ′

(33)

Sσσ ′
i = 〈χσ |Si |χ ′

σ 〉 (34)

〈φnσ |Vx |φmσ ′ 〉 =
〈

dφnσ

dz
|�|dφmσ ′

dy

〉
−

〈
dφnσ

dy
|�|dφmσ ′

dz

〉
(35)

The matrix elements Vx and Vy are determined from cyclical
permutations of the preceding equations. This equation
can be derived from the more standard expression of the
spin-orbit interaction through an integration by parts (see
(Pederson and Khanna, 1999)). With these definitions, the
anisotropy energy as a function of spin quantization axis
takes the following form

�E =
∑
ij

∑
σσ ′

Mσσ ′
ij Sσσ ′

i Sσ ′σ
j (36)

The final step in understanding magnetization in a molecu-
lar magnet is to notice that equation (37) still depends on the
angles (θ, φ) in the unitary transformation (equation (22)).
Therefore, the energy �E explicitly depends on these values
of angles. Conceptually, one would be interested in mapping
out the energy as a function of these two angles. It is worth
mentioning that with the specific parameterization of the uni-
tary transformation (equation (22)), the angles correspond to
the two rotation angles used in a spherical coordinate system.
One approach is to calculate �E(θ, φ) and find the vec-
tors/angles which find the critical points of the second-order
spin-orbit interaction. For the case of a uniaxial molecule,
this was worked out in detail by Pederson and Khanna.
However, there is a more elegant way to rewrite the preced-
ing equations in terms of the usually physically meaningful
expectation values of 〈Si〉. Following (Postnikov, Kortus and
Pederson, 2006), we note:

〈Si〉 =
∑
nσ

〈ψnσ |Si |ψnσ 〉 (37)

= [Nσ − Nσ ′]〈χσ |Si |χσ 〉 = �N〈χσ |Si |χσ 〉 (38)

= [Nσ ′ − Nσ ]〈χ ′
σ |Si |χ ′

σ 〉 = −�N〈χ ′
σ |Si |χ ′

σ 〉 (39)

where �N is the total moment of the molecule. In addition,
it can be shown, for σ �= σ ′, that:

〈χσ |Si |χ ′
σ 〉〈χ ′

σ |Sj |χσ 〉 = 〈χσ |SiSj |χσ 〉
−〈χσ |Si |χσ 〉〈χσ |Sj |χσ 〉 (40)

= δij

4
− 〈Si〉〈Sj 〉

�N2
(41)

Substituting these expressions for 〈χσ |Si |χ ′
σ 〉 in equa-

tion 37 gives the second-order spin-orbit energy as a function
of 〈Si〉. It is:

�E =
∑
ij

〈Si〉〈Sj 〉 1

�N2
[M11

ij + M22
ij − M12

ij − M21
ij ]

+1

4

∑
i

(M12
ii + M21

ii ) (42)

From this, it follows that the effective anisotropy tensor is
defined according to:

γ ij = 1

�N2
[M11

ij + M22
ij − M12

ij − M21
ij ] (43)

and we arrive at the final expression for the second-order
spin-orbit energy as a function of spin projection. It is:

�E =
∑
ij

γ ij 〈Si〉〈Sj 〉 (44)

For any vector of length |S| = �N
2 the spin-orbit energy may

be found as a function of orientation. It seems reasonable to
requantize this expression and write the phenomenological
Hamiltonian as

H =
∑
ij

γ ij SiSj (45)

By diagonalizing the anisotropy tensor, it is possible to recast
the preceding equation in the phenomenological form given
in equation (1). The division by �N2 in equation (44) is
convenient except for the case that an antiferromagnetic
system, with zero net spin, is being studied. Under this
condition, the expression for the energy as a function of
angles in the unitary transformation, or possibly Neel vector,
would be a better way of representing the physics.

4 RECENT APPLICATIONS

Two very good reviews on applications of density-functional
theory to molecular magnets are about to be published
(Postnikov, Kortus and Pederson, 2006; Pederson, Park and
Baruah, 2006). However, most of the applications discussed
in this work were published prior to 2003. In this section,
we primarily give a survey of work that has been completed
since then that does not appear in the other reviews.

The method described in the preceding text has been
implemented in the NRLMOL code (Pederson and Lin,
1987; Pederson and Jackson, 1990, 1991; Jackson and Peder-
son, 1990; Quong, Pederson and Feldman, 1993; Peder-
son, Broughton and Klein, 1988; Porezag and Pederson,
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1996, 1999; Briley et al., 1998) a few years ago. Since
then it has been used to study the anisotropy parame-
ters, local anisotropy axes, and parameters. The first cal-
culations carried out on the Mn12-acetate could correctly
predict the anisotropy parameter D within less than 1%
error. Since then several different types of molecular mag-
nets have been studied. The density-functional parameters
of the spin Hamiltonian, that is, the D and E parame-
ters in equation 5 for various molecular magnets are listed
in Table 1 and compared with the available experimental
values.

The density-functional theory (DFT) studies on Mn12,
Fe8, Mn10, Co4, and Mn4 have been discussed extensively
in previous articles (Pederson and Khanna, 1999; Kortus,
Pederson, Hellberg and Khanna, 2001; Pederson, Kortus
and Khanna, 2002; Baruah et al., 2004; Kortus, Hellberg
and Pederson, 2001; Kortus, Baruah, Bernstein and Peder-
son, 2002; Baruah and Pederson, 2002; Baruah and Ped-
erson, 2003; Kortus et al., 2003). The energy band gap
in the system plays an important role in determining the
parameters, which are obtained through a perturbative treat-
ment. However, surprisingly, in Mn12, the DFT calcula-
tion gives a very good agreement with experiment for the
D parameter. In Mn12, which has S4 symmetry, the E

parameter turns out to be zero by symmetry. However,
experiments show tunneling which violates the selection
rules applicable to S4 symmetry. The presence of a small
E contribution can possibly arise due to the presence of
symmetry-breaking ligands or presence of an extra electron.
Incorporation of these effects yields an E parameter 0.016
K (Park, Baruah, Bernstein and Pederson, 2004). The other
cases where the DFT calculations give very good agreement
with experiment are [Mn10O4(2,2′-biphenoxide)4Br12]4−,
[Mn4 O3Cl4(O2CCH3CH2)3(C5H5N)3], and Fe4 (Kortus,
Baruah, Bernstein and Pederson, 2002; Park et al., 2003;
Kortus et al., 2003). The disagreement for the Co4 molecule

is controversial in the sense that there is a lack of reli-
able experimental data (Yang et al., 2002) to compare with.
When compared to Co6 (Murrie, Teat, Stoeckli-Evans and
Güdel, 2003) which also has the same cubane structure
at the center, the calculated values of the anisotropy bar-
rier agrees well with experimental values. Among all the
tabulated systems, the most glaring discrepancy is seen
for the Fe8O2OH12(tacn)6]8+Br87(H2O) molecule. The Fe8

molecule is very well studied experimentally and the exper-
imental D parameter is −0.29 K. The Br–Fe8 molecule has
C1 symmetry but in most calculations which are done at
the all-electron level, some symmetry is enforced to make
the calculations tractable. This is not unreasonable consid-
ering the fact that the calculations are done on the core
molecule in the +2 charged state without the accompany-
ing symmetry-breaking water molecules and the bromine
ions. The calculated gap is small in the Fe8 and further
corrections due to self-interaction may be required. Another
example where theory and experiment differ is the Ni4 ana-
log of Co4. The Ni4 molecule has been synthesized with
different ligands such as CH3, CH2CH3, or (CH2)2C(CH3)3.
The measured electron paramagnetic resonance (EPR) spec-
tra yield values of D between 0.72 and 1.03 K but the
calculations found D to be between 0.25 and 0.37 K. Inter-
estingly, DFT finds the S = 0 state as the lowest-energy
state.

The organic ligands compensate the charges of the
transition-metal centers. However, the role of the ligands
does not stop there. They also produce the crystal field,
and changing the type of ligands can lead to an enhance-
ment of the effective barrier. One example of such barrier
enhancement is the Fe4(OMe)6(dpm)6 and Fe4(thme)6(dpm)6

molecules (Figure 3). The Fe4(OMe)6(dpm)6 has C2 sym-
metry and four iron atoms lie on a plane such that three of
the atoms form an isosceles triangle and the C2 axis passes
through the central iron and one of the apical ones. The

Table 1. Calculated and experimental magnetic anisotropy parameters for different molecular magnets.

Molecular magnet system Symmetry Spin S Gap D E Experiment
(eV) (K) (K) D(K), E(K)

Mn12O12(CH3COOH)164(H2O) S4 10 0.45–2.08 −0.55 0.0 −0.56, 0.0
Fe8O2OH12(tacn)6]8+Br87(H2O) I,D2 10 0.15–0.54 −0.54 to −0.72 0.05 −0.29, 0.05
Co4 (hmp)4(CH3OH)4Cl4 S4 6 0.55 −0.64 0.0 2.8 −5.6
[Mn10O4(2,2′-biphenoxide)4Br12]4− Td 13 – −0.56 0.06 −0.57, 0.05
[Mn4 O3Cl4(O2CCH3CH2)3(C5H5N)3] I 9/2 1.02–2.42 −0.55 to −0.60 −0.72 –
Fe4(OMe)6(dpm)6 C2 5 1.04–1.16 −0.071 −0.043 −0.29, 0.01
Fe4(thme)6(dpm)6 D3 5 0.81–1.13 −0.64 0.00 −0.64, 0.014
Fe4(sae)4(MeOH)4 C1 8 0.48 0.25 0.00 1.14
Fe4(sap)4(MeOH)4 S4 8 0.31 −0.10 0.004 −1.09/−0.44
Fe4 S4 5 – −0.56 0.06 −0.57, 0.05
Ni4(hmp)4(ROH)4 S4 0/4 1.47–2.18 0.25–0.37 0.0 0.72 − 1.03
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Figure 3. The molecular structures of Fe4(OMe)6(dpm)6 and
Fe4(thme)6(dpm)6.

Fe4(thme)6(dpm)6 molecule possesses D3 symmetry with
three iron atoms forming an equilateral triangle with the
fourth at the center. Both the molecules have total spin S = 5,
but the magnetic anisotropy barrier in the Fe4(thme)6(dpm)6

is 15.6 K while that of the Fe4(OMe)6(dpm)6 is 3.5 K.
The spin interaction between the iron atoms shows similar

characteristics in both the molecules – ferromagnetic inter-
action between the peripheral atoms and antiferromagnetic
interaction between the pheral and central atom. Both the
molecules are uniaxial with the easy axis coinciding with the
C2 and C3 axes of symmetry. The main structural difference
between the two systems is seen at the position of the central
atom. However, elongation of bonds or rotation of the lig-
ands pertaining to the central atom does not fully explain
the difference in magnetism between the two molecules.

The atom-projected anisotropies show that the orientation
of the projected local anisotropy axes are completely dif-
ferent in the two systems. It is the collinear alignment of
the local easy axes that leads to a global easy axis system
in Fe4(thme)6(dpm)6.

The other two Fe4 compounds are remarkable in that
both have a Fe4O4 cubane structure but the ligands are
slightly different. The (sap)−2 has a six-membered ring while
the (sae)−2 contains a five-membered ring thus leading to
different steric strains on the Fe(II) ions. The consequences
are that the one with the five-membered ring shows single-
molecule magnet behavior while the other does not. This
is another example of the ligand changing the magnetic
behavior of the molecule.

The calculations on these series of molecules are prelim-
inary, but conclusively show that the π-back donation from
the Fe(II) to the ligands allows control of the sign and magni-
tude of the D parameter. In the Fe4(sae)4(MeOH)4 the local
easy axes are nearly orthogonal (∼73◦) to the S4 symme-
try axis. In the Fe4(sap)4(MeOH)4 cluster, which has nearly
S4 symmetry, the local easy axis has more overlap on the
pseudo-S4 axis leading to a global easy axis system. Fur-
ther, switching the positions of the imine fragment and a
hydroxyl ligand can enhance the barrier by a factor of 6,
which is remarkable. This study shows that the steric strains
and the orientation of the local axes can enhance or reduce
the global SMM behavior.

5 SUMMARY

During the last eight years, the ability to perform calculations
on molecular magnets has grown due to new algorithms,
faster computers, and an increasing number of researchers
interested in this field. This chapter has discussed the basic
phenomenological Hamiltonians and a formalism for devel-
oping these Hamiltonians from a first-principles methodology
such as density-functional theory. There is now a large set of
calculated results, which are generally in qualitative accord
and often in quantitative accord with experiment. It is hoped
that additional work will be performed to further improve
computational methodologies for molecular magnets.

Future improvements in the computational methods are
likely to concentrate on several different problems. First,
pursuit of an improved description of exchange and corre-
lation within a density-functional framework should be one
area of concentration. Second, the formalisms discussed here
concentrate on two extremes in transition-metal-containing
molecules. In one case, the low-energy excitations are deter-
mined entirely from exact diagonalization of a many-spin
Hamiltonian. In the other case, it is assumed that the lead-
ing term from this exact diagonalization will provide a good
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anisotropy Hamiltonian. Discussions as to why this is some-
times the case have been recently held. However, it is most
desirable to develop a formalism that can account directly for
multiconfiguration contributions to the magnetic anisotropy.
Finally, there is still not much success in quantitatively
understanding the higher-order corrections to the magnetic
anisotropy Hamiltonian. Future efforts aimed at this problem
will be both challenging and useful. It is quite possible that
such efforts will require a self-consistent constrained solution
to the electronic Hamiltonian. This calls for strong efforts at
extending many different electronic structure methods.
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1 INTRODUCTION

The interplay of superconductivity and magnetism is a
long-standing and fascinating research subject in condensed-
matter physics (Buzdin, 2005; Golubov, Kupriyanov and
Il’ichev, 2005; Bergeret, Volkov and Efetov, 2005; Izyu-
mov, Proshin and Khusainov, 2002). It is widely recognized
that superconductivity and magnetism are mutually exclu-
sive because of their essentially different ordered states.
Superconductivity in conventional superconductors is due to
Cooper pairs of two electrons with opposite spin and momen-
tum (k ↑, −k ↓). The attractive interaction between electrons
creates Cooper pairs in a singlet state. In contrast, the ferro-
magnetic exchange interaction forces electron spins to align
in parallel and produces ferromagnetism. Therefore, when
the Zeeman energy of an electron pair in the exchange field

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

hex exceeds the condensation energy of the pair, which is
measured by the superconducting gap �, the superconduct-
ing state is destroyed. The corresponding depairing exchange
field is hex ∼ �/µB, where µB is the Bohr magneton. It was
predicted a long time ago that a spatially inhomogeneous
order parameter with Cooper pairs of nonzero-momentum
state appears near the depairing field. This state is called
the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state (Fulde
and Ferrel, 1964; Larkin and Ovchinnikov, 1965). However,
there has been no clear observation in bulk materials with
the possible exception of the heavy-fermion superconductor
CeCoIn5 (Bianchi et al., 2003; Kakuyanagi et al., 2005).

For the preceding reasons, the coexistence of supercon-
ducting order and ferromagnetic order is quite unlikely in
bulk materials. However, recent advances in nanofabrica-
tion techniques make it possible to study the interplay of
superconductivity and ferromagnetism by artificially prepar-
ing ferromagnet/superconductor (F/S) systems consisting of
ferromagnetic and superconducting layers in the form of
bilayers, trilayers, multilayers, and other structures. In these
hybrid structures, the superconducting order parameter pene-
trates into the F layer owing to the proximity effect. Numer-
ous theoretical and experimental studies on F/S structures
(Figure 1) revealed a nonmonotonic temperature dependence
of the superconducting transition temperature Tc on the thick-
ness of the ferromagnetic layer due to the proximity effect
(Radovic et al., 1991; Jiang, Davidović, Reich and Chein,
1995; Mühge et al., 1996; Aarts et al., 1997; Tagirov, 1999;
Gu et al., 2002; Krunavakarn, Sritrakool and Yoksan, 2004;
Obi, Ikebe and Fujishiro, 2005; Moraru, Pratt and Birge,
2006).

Of particular interest is a Josephson junction contain-
ing a ferromagnet, in which novel phenomena due to the
competition between ferromagnetism and superconductivity
arise. When Cooper pairs penetrate from a superconductor
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into a ferromagnet across the interface of an F/S junc-
tion, the Cooper pairs in a clean F have a finite momen-
tum q ∼ hex/vF (vF is the Fermi velocity), because of
the exchange splitting hex between the up-spin and the
down-spin bands (Bulaevskii, Kuzii and Sobyanin, 1977;
Buzdin, Bulaevskii and Panyukov, 1982; Demler, Arnold and
Beasley, 1997; Kontos, Aprili, Lesueur and Grison, 2001).
Consequently, the superconducting pair amplitude oscillates
as cos(2qz) along the direction perpendicular to the inter-
face. Recently, it has been demonstrated that such oscillation
can be induced in a weak ferromagnet sandwiched between
two superconductors, in which the current-phase relation in
the Josephson current is shifted by π compared to the con-
ventional Josephson relation (Ryazanov et al., 2001; Kon-
tos et al., 2002; Blum, Tsukernik, Karpovski and Palevski,
2002; Sellier, Baraduc, Lefloch and Calemczuk, 2003; Frolov
et al., 2004; Oboznov et al., 2006; Weides et al., 2006).
The π state offers a new route for studying the interplay
of superconductivity and magnetism and is also impor-
tant to superconducting electronics, for example, quantum
computing.

The spin injection technique offers a new type of F/S
device (spin switching) based on the interplay of super-
conductivity and spin accumulation created in S. This tech-
nique allows us to electronically control the mutual influence
between superconductivity and magnetism in hybrid struc-
tures, leading to spin electronics applications (Maekawa,
2006; Maekawa and Shinjo, 2002; Žutić, Fabian and Das

Sarma, 2004).

2 PROXIMITY EFFECT IN S/F
STRUCTURES

Let us consider the interplay of superconductivity and mag-
netism in a hybrid structure consisting of a superconduc-
tor and a ferromagnet, as shown in Figure 1, in which the
proximity effect plays a central role. For simplicity, we con-
centrate on the proximity effect near the superconducting
transition temperature Tc, and derive a basic equation for the
superconducting pair amplitude in F/S structures. The self-
consistency equation for the superconducting order parameter
�(r) near Tc is linearized in the form (de Gennes, 1966;
Takahashi and Tachiki, 1986; Ketterson and Song, 1999)

�(r) = V (r)kBT
∑
ω

∫
dr′Qω(r, r′)�(r′) (1)

where ω = (2n + 1)πkBT , with n being an integer, V (r) is
the position-dependent pairing interaction, and Qω(r, r′) is a

(a) (b) (c)

F S F S F S F S

(d)

F S F S F S F S

Figure 1. Various types of F/S structures. (a) F/S bilayer, (b) F/S/F
trilayer, (c) S/F/S trilayer, and (d) F/S multilayer.

kernel defined by

Qω(r, r′)

= 1

2

∑
σ

∑
m,n

φ∗
nσ (r′)φnσ (r)φ∗

m−σ (r′)φm−σ (r)

(iω − ξnσ )(iω + ξm−σ )
(2)

where φnσ (r) is the one-electron wave function with energy
ξnσ and spin σ in the normal state. The motion of
one-electron in a diffusive conductor is described by the one-
electron correlation function gσ (r′, r, t) satisfying

[
�

∂

∂t
− �D(r)∇2 + 2ihex(r)σ̂

σσ
z

]
gσ (r′, r, t) = 0 (3)

where D(r) is the diffusion constant and hex(r) is the
exchange potential (Zeeman energy) acting on conduction
electrons, and σ̂ z is the Pauli spin operator. For t → 0,
gσ (r′, r, t) reduces to the initial condition gσ (r′, r, 0) =
(1/2)δ(r − r′)Nσ (r), where Nσ (r) is the density of states of
the spin-σ band. The kernel Qω(r, r′) and its auxiliary kernel
Rω(r, r′) are written as (Takahashi and Tachiki, 1986)

Qω(r, r′) = 2π

∫ ∞

0
dt

[
g↑(r′, r, t) + g↓(r′, r, t)

]
e−2|ω|t

(4)

Rω(r, r′) = 2π
ω

|ω|

×
∫ ∞

0
dt

[
g↑(r′, r, t) − g↓(r′, r, t)

]
e−2|ω|t (5)

If we introduce the quantities

F (e)
ω (r) =

∫
d3r ′Qω(r, r′)�(r′),

F (o)
ω (r) =

∫
d3r ′Rω(r, r′)�(r′) (6)
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we have the coupled equations (Takahashi and Tachiki, 1986;
Usadel, 1970):[

2|ω| − �D(r)∇2]F (e)
ω (r) + 2ihω(r)F (o)

ω (r)

= πN(r)�(r) (7)

[
2|ω| − �D(r)∇2]F (o)

ω (r) + 2ihω(r)F (e)
ω (r) = 0 (8)

where hω(r) = (ω/|ω|)hex(r) and N(r) = N↑(r) + N↓(r) is
the electronic density of states [1]. Note that F (e)

ω (r) =
F (e)

−ω(r) and F (o)
ω (r) = −F (o)

−ω(r), so that F (e)
ω (r) and F (o)

ω (r)
correspond to the spin-singlet and spin-triplet components
of pair amplitudes with the even- and odd-frequency
dependence, respectively (Bergeret, Volkov and Efetov,
2005).

Since the pair function F(r) = �(r)/V (r) is written as

F(r) = kBT
∑
ω

F (e)
ω (r) (9)

equations (7)–(9) yield the self-consistent equations for
F(r). In order to solve the self-consistent equation, we
introduce the eigenfunction ψn and the eigenvalue εn, which
satisfy

−�D(r)∇2ψn(r) = εnψn(r) (10)

with the boundary conditions that F(r)/N(r) and D(r)
(n̂ · ∇)F (r), n̂ being the unit vector normal to the interface,
are continuous at the interfaces. These boundary conditions
are applicable to the case that the boundary resistance is
negligible [2]. Using the expansion F(r) = ∑

n anψn(r) in
the self-consistent equation, we derive the secular equation
that determines the superconducting transition temperature
Tc in a F/S system (Takahashi and Tachiki, 1986)

det

∣∣∣∣∣δnn′ − 2πkBT
∑
ω

∑
m

�−1
nm〈m|V N |n′〉

∣∣∣∣∣ = 0 (11)

where �−1
nm is the inverse of the matrix � with the element

�nm =
(

|ω| + 1

2
εn

)
δnm +

∑
l

〈n|hex|l〉〈l|hex|m〉
|ω| + 1

2εl

(12)

and 〈n|V N |n′〉 and 〈n|hex|n′〉 are the matrix elements defined
by

〈n|O|n′〉 =
∫

d3rψ∗
n(r)O(r)ψn(r) (13)

The superconducting transition temperature Tc of F/S
structures is determined as the highest temperature among
the solutions of equation (11).

2.1 F/S interface

We consider an F/S system where the left side is occupied
by S and the right side by F, as shown in Figure 2. In the F
region, �(z) = 0 (V (z) = 0), so that equations (7) and (8)
become ([

2|ω| − �DF∇2]2 + 4h2
ω

)
F (e)

ω (z) = 0 (14)

which has the solution F (e)
ω (z) ∝ exp(ikz) with the wave

number k,

(
2|ω| + �DFk

2)2 + 4h2
ω = 0 (15)

yielding k = ±√
(−2|ω| ∓ ihex) /�DF = ±ξ−1

F1 + iξ−1
F2 :

ξF1 = ξ 0
F

[√
1 + ω2/h2

ex − |ω|/hex

]1/2

ξF2 = ξ 0
F

[√
1 + ω2/h2

ex + |ω|/hex

]1/2

(16)

where ξ 0
F = √

�DF/hex and DF is the diffusion constant of
F. Therefore, in the F region of the F/S interface, we have

F (e)
ω (z) ∝ exp (±iz/ξF1) exp (−z/ξF2) (17)

Near Tc, one can make a lowest-frequency approximation
by replacing |ω| with πkBT , so that the pair function (9)
becomes (Ryazanov et al., 2001)

F(z) ∝ cos (z/ξF1) exp (−z/ξF2) (18)

where (ξF1, ξF2)=ξ 0
F[

√
1+(πkBT /hex)2 ∓ (πkBT /hex)]1/2.

The main consequence of the complex wave number in
the F region is that F(z) oscillates with the period of ξF1

and decays on the scale of ξF2, as depicted in Figure 2.
When F is a strong ferromagnet, that is, hex � kBT , like a
transition-metal ferromagnet (Fe, Co, Ni), both length scales
are nearly equal, ξF1 ≈ ξF2 ≈ ξ 0

F, and very short. On the
other hand, when F is a weak ferromagnet, like a diluted

F(z)

FS

z0

Figure 2. Superconducting pair function F(z) = �(z)/V (z) across
the F/S interface.
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Figure 3. (a) Josephson critical current Ic as a function of thickness dF of palladium nickel (PdNi) layer (Kontos et al., 2002). (Reproduced
from Kontos et al., 2001, with permission from the American Physical Society.  2001.) The solid curve is a theoretical fit (Kontos et al.,
2002). Ic has a zero crossing at dF ≈ 65 Å, indicating the transition between the 0 and π states. Inset shows typical I–V characteristics of
junctions with (full circles) and without (empty circles) PdNi layer. Spatial variation of the pair amplitude F(z) in the 0 state (b) and in
the π state (c).

ferromagnetic alloy (PdNi, CuNi, · · ·), in which the exchange
field and temperature are the same order of magnitude,
hex ∼ kBTc, both length scales become of the order of tens
of nanometers (nm), and, in addition, have a significant
temperature dependence.

3 FERROMAGNETIC π JUNCTION

One of the most novel phenomena caused by the interplay
of ferromagnetism and superconductivity is the ‘π state’,
which appears in S/F/S junctions and F/S multilayers. It was
predicted (Bulaevskii, Kuzii and Sobyanin, 1977; Buzdin,
Bulaevskii and Panyukov, 1982) that the Josephson coupling
energy takes a minimum at the phase difference equal to π .
This state is called the π state, and the Josephson junction
with the π state is called the π junction. In a π junction, the
phase in the current-phase relation is shifted by π from that
of a conventional Josephson junction (0 junction), so that the
Josephson current in the π junction is opposite in sign to that
in the 0 junction.

The π state in an S/F/S junction originates from the
oscillation of the superconducting pair amplitude F(z) in
the presence of the exchange field hex in F. As shown
in Figure 2, at the interface in the S/F junction, the pair
amplitude penetrates into F in an oscillatory fashion F(z) ∝
cos(z/ξF1) exp(−z/ξF2) in the direction perpendicular to the
interface. When the thickness dF of F in an S/F/S junction is

about half the period of the oscillation, that is, dF ∼ πξF1,
the pair amplitude of the left and right S’s has opposite
signs, as shown in Figure 3(c). As a result, the system is
stable with the phase difference equal to π , and the current-
phase relation is shifted by π from that of the 0 junction in
Figure 2(b).

Recent experimental observation of the π state in S/F/S
Josephson junctions has opened new research fields.
Ryazanov et al. have revealed the evidence for the π state
by measuring the temperature dependence of the Joseph-
son critical current Ic in Nb/CuNi/Nb junctions (Ryazanov
et al., 2001), in which the zero crossing of Ic takes place,
indicating the transition between the 0 and π states. Kon-
tos et al. have measured the dependence of the Josephson
current on the thickness of PdNi in a Nb/PdNi/Nb junction
as shown in Figure 3(a) (Kontos et al., 2002). The transi-
tion between the 0 and π states occurs at the zero crossing
point (dF ≈ 65 Å) of the critical current. In addition, the
π state has been observed in a superconducting quantum
interference device (SQUID)-type structure with insulating
and ferromagnetic Josephson junctions as a π shift in the
magnetic field dependence of the critical current (Guichard
et al., 2003), and in a relatively large superconducting loop
with a ferromagnet Josephson junction as a spontaneous cur-
rent flowing in the loop (Bauer et al., 2004. It has been
reported recently that, using strong ferromagnets (Co, Ni,
and Ni80Fe20), multiple 0–π transitions with a short period
occur in the thickness dependence of the critical current
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Figure 4. Superconducting transition temperature Tc of the 0 and
π states as a function of F-layer thickness dF for the exchange
field hex = 10kBTcS and TcS = 8.8 K (Kuboya and Takanaka, 1998).
The symbols are the experimental data of Nb/CuMu multilayers
(Mercaldo et al., 1996). The inset shows the spatial variation of the
absolute value of the pair amplitude |F(z)|. The shaded area is the
F layer.

(Robinson et al., 2006), and are explained in terms of clean
limit results with the oscillation period ξF1 ∼ vF/2hex and
the decay length ξF2 ∼ vF/2kBT , the length scales of which
are independent of each other (Born et al., 2006), in contrast
to the dirty limit results.

The 0–π transition has been observed in F/S multilayers
(Jiang, Davidović, Reich and Chein, 1995; Mercaldo et al.,
1996; Shelukhin et al., 2006). In an F/S multilayer system,
in addition to the boundary conditions at the interfaces, we
impose the Bloch condition ψn(z + L) = ±ψn(z), where
L = dS + dF is the period of the multilayer, and ‘+’ and ‘−’
signs correspond to the 0 state and the π state respectively.
Under these boundary conditions, equation (11) is solved
numerically (Kuboya and Takanaka, 1998). Figure 4 shows
the superconducting transition temperature Tc of the 0 and
π states as a function of dF for hex = 10kBTcS, TcS = 8.8 K,
dS/ξ

0
S = 3, and ξ 0

S = 8 nm, where ξ 0
S is the coherence length

of the bulk S at zero temperature. As dF is increased, Tc

changes from the 0 state to the π state at the thickness
dF ∼ 4 nm. The symbols are the experimental data of Tc

in Nb/CuMn multilayers with fixed Nb layer thickness
(∼250 Å) (Mercaldo et al., 1996).

4 ANDREEV REFLECTION AT F/S POINT
CONTACTS

Andreev reflection (AR) is a fundamental process that occurs
at the interface between a normal metal and a superconductor
(Andreev, 1964; Blonder, Tinkham and Klapwijk, 1982). In
the normal side of the interface, an incident electron with spin

σ takes another electron with opposite spin −σ to enter the
superconductor in the form of a Copper pair, thereby reflect-
ing a positively charged hole. This process allows the current
to flow across the N/S interface for bias voltages below the
superconducting gap �. Recently, a new technique based on
AR has been used in F/S point contacts to determine the spin
polarization of various ferromagnetic metals (Soulen et al.,
1998; Upadhyay, Palanisami, Louie and Buhrman, 1998).
Figure 5(b) shows experimental results for Andreev reflec-
tion for several ferromagnetic materials placed in contact
with a superconducting Nb (Soulen et al., 1998).

The AR at the interface of a ferromagnetic metal and
a superconductor is strongly modified because the incident
electrons and the reflected holes occupy the states of the
opposite spin bands with different values of the densities
of states in the ferromagnet (see Figure 5a). de Jong and
Beenakker (de Jong and Beenakker, 1995) have given an
intuitive and simple argument for the conductance through a
ballistic F/S point contact at zero temperature. A ferromagnet
contacts a superconductor through a small area, where
the number of up-spin channels N↑ is larger than that
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Figure 5. (a) Andreev reflection in a ferromagnet/superconductor
(F/S) junction. The up- and down-spin bands are split by the
exchange field hex. (b) Normalized conductance versus bias
voltage in normal metal/superconductor (N/S) and ferromag-
net/superconductor (F/S) point contacts. (Reproduced from fig 2
in R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T.
Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S.
Moodera, A. Barry, and J.M.D. Coey, Science 282, (1998) 85, with
permission from AAAS.)
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of down-spin channels N↓, that is, N↑ ≥ N↓. When the
superconductor is in the normal state, all scattering channels
(transverse modes in the point contact at the Fermi level) are
fully transmitted, yielding the conductance

GN = (e2/�)
(
N↑ + N↓

)
(19)

In the superconducting state, the down-spin electrons in the
N↓ channels are all reflected as the Andreev holes, making
the conductance double, since 2e is transferred at each AR.
However, only a fraction (N↓/N↑) of up-spin electrons in
the N↑ channels is allowed for the AR, because the density
of states in the down-spin band is lower than that in the
up-spin band in ferromagnets. Therefore, the conductance at
zero bias (V = 0) is

G = (e2/h)
[
2N↓ + 2(N↓/N↑)N↑

] = 4(e2/h)N↓ (20)

The ratio of equation (20) to equation (19) gives the normal-
ized conductance

G/GN = 2 (1 − Pc) (21)

where Pc is the point-contact spin polarization

Pc = (N↑ − N↓)

(N↑ + N↓)
(22)

The spin polarizations Pc of various ferromagnets can be
estimated directly from the conductance values at V = 0 by
applying equation (21) to experimental results, for example,
those of Figure 5. The measured Pc of various ferromagnets
are Pc = 42% for Co (Soulen et al., 1998), Pc = 42–46%
for Fe (Soulen et al., 1998), Pc = 43–46% for Ni (Soulen
et al., 1998), Pc = 49.5% for permalloy (Ni80Fe20) (Osofsky
et al., 2000), Pc = 85% for La0.7Sr0.3MnO3 (Braden et al.,
2003), and Pc = 96% for CrO2 (Ji et al., 2001; Parker, Watts,
Ivanov and Xiong, 2002). The role of a point contact and a
base electrode can be interchanged between F and S, which
brings about no significant difference in the measured G(V )

curves or in the estimated value of Pc.
Let us consider a pedagogical mode for the AR in a point

contact with S occupying the right half space and an F wire
of width w. The wave functions of quasiparticles (QPs)
with excitation energy E in the electrodes are calculated
from the Bogoliubov–de Gennes equation. For simplicity,
the calculation is restricted to the case where only the lowest
subband is occupied by electrons or holes in the wires. When
an electron with energy E in the majority band (symbol ‘0’
in Figure 6) is incident from the F lead into S, the wave

F

E

−kM kMkm

012

S

E

−p− p+

3 4

Figure 6. Andreev reflection process at the F/S interface. The open
and filled circles represent hole and electron respectively, and the
arrows represent the direction of the group velocity. The symbol
‘0’ denotes an incident electron, ‘1’ a reflected Andreev hole, ‘2’
a reflected electron, and ‘3’ and ‘4’ are transmitted holelike and
electron-like quasiparticles in S.

function in the lead is given by

�F(x, y) =
([

1
0

]
eikMx + ree

MM

[
0
1

]
e−ikMx

+ reh
Mm

[
0
1

]
eikmx

)
χ(y) (23)

where kM and km are the wave numbers of elec-
tron and hole in the majority and minority bands,
respectively, kα = [2mE + k2

F,α − (π/w)2]1/2 (α = M,m),
kF,α is the Fermi momentum of the α band, χ(y) =
(2/w)1/2 sin

[
(π/w) (y + w/2)

]
is the transverse wave func-

tion of the wire, and ree
MM and reh

Mm are the amplitudes of
the normal reflection (NR) and the AR, respectively. A sim-
ilar treatment is made for an incident electron from the
minority band. Since (E, �) � εF,α , we put kα ≈ kF,α[1 −
(π/kF,αw)2]1/2 in the following.

Making use of the Andreev approximation (Blonder,
Tinkham and Klapwijk, 1982), where p± in Figure 6 is
replaced by (p2

F − p2
y)

1/2, we put the wave function in S
as follows:

�S =
∫ pF

−pF

tees (py)

[
�

E − �

]
e
i

√
p2

F−p2
yx

eipyydpy

+
∫ pF

−pF

tehs (py)

[
�

E + �

]
e
−i

√
p2

F−p2
yx

eipyydpy (24)

where tees (py) and tehs (py) are the transmission coefficients

and � =
√

E2 − �2. The barrier potential at the inter-
face between the wire and S is taken into account by the
δ-function-type potential with the amplitude (�2pF/2m)Z,
Z being a dimensionless barrier-height parameter (Blonder,
Tinkham and Klapwijk, 1982). The matching conditions for
the wave functions at the interfaces are �S(0, y) = �F(0, y)

and [∂x�S(x, y) − ∂x�F(x, y)]x=0 = pFZ�F(0, y) appro-
priate for the δ(x) barrier potential. The matching technique
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to the boundary conditions (Szafer and Stone, 1989) yields
the reflection and transmission coefficients.

When the bias voltage V is applied to the wire, the
conductance G at zero temperature (T = 0) is calculated by
putting E = eV as

G(V ) = e2

h

(
1 − |ree

MM|2 + |reh
Mm|2)

+e2

h

(
1 − |ree

mm|2 + |reh
mM|2) (25)

where h is the Planck’s constant and h/e2 ≈ 25.8 k� is the
quantum resistance.

In the normal state, the transmission probability T α
N = 1 −

|ree
αα|2 (α = M,m) of the majority and minority electrons is

T α
N = 4kα

�

[(kα + �)2 + Z2]
(26)

where � = ∫ pF
0 (dq/π)

√
p2

F − q2|〈q|χ〉|2 (0 ≤ � ≤ pF) with

the overlap integral 〈q|χ〉 between eipy and χ(y): 〈q|χ〉 =√
8w/π2cos(qw/2)/

[
1 − (qw/π)2

]
. The spin polarization

of the point contact is introduced as

Pc = (T M
N − T m

N )

(T M
N + T m

N )
(27)

For the special case of T M
N = 1 (Z = 0, kM = �), the

conductance for eV < � is calculated as

G/GN = 2(1 − Pc) (28)

which is exactly the same as equation (21).
Figure 7 shows the conductance G of F/S point contact as

a function of bias voltage V for the barrier heights of Z = 0
and Z = 0.4 at T = 0. The conductance is normalized to
the normal-state value GN = G(� = 0). As can be seen in
Figure 7(a), the normalized conductance is flat inside the gap
and follows the relation equation (28) for the special case of
the perfect transmission of the majority electrons. However,
when a small interfacial barrier potential is introduced, as in
Figure 7(b), the conductance curves show the peak structure
at the gap edge for smaller Pc, while they show the dip
structure without such peaks for larger Pc. These features
in the conductance curves have been observed in F/S point-
contact experiments.

5 SUPERCONDUCTING π QUBIT

In quantum computers, information is stored in a basic
element called the qubit, which is a quantum coherent
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Figure 7. Conductance for the F/S point contacts as a function of
bias voltage at T = 0. The barrier height is taken to be Z = 0 for
panel (a) and Z = 0.4 for panel (b), for various values of the spin
polarization Pc at T = 0.

two-level system. The superposition of the two-level states
is utilized in the processing of quantum computing. For
physical realization of the qubit, various systems have
been proposed, for example, ion traps, nuclear spins, and
photons. Among them, solid-state qubits have the advantage
of large-scale integration and flexibility of layout. Recently,
several qubits based on the Josephson effect have been
proposed. One of the proposals is a charge qubit, which
uses the charging effect of excess Cooper pairs in a box
(Nakamura, Pashkin and Tsai, 1999). Another example
is a flux qubit, which uses the superconducting phase.
Mooij et al. have proposed a flux qubit, which consists
of a superconducting loop with three Josephson junctions
(Mooij et al., 1999). In the flux qubit, degenerate double
minima appear in the superconducting phase space under the
external magnetic field at which the loop flux corresponds
to half the unit magnetic flux. The bonding and antibonding
states are formed because of the tunneling between these
degenerate states, and are used as the coherent two-level
states. Experimentally, the microwave-induced transition
between the two-level states, the entanglement of the states,
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and the coupling between two qubits have been observed
(van der Wal et al., 2000; Chiorescu, Nakamura, Harmans
and Mooij, 2003; Ciuhu and Lodder, 2001; Majer et al.,
2005; Izmalkov et al., 2004; Chiorescu et al., 2004).

Recent advances in nanofabrication techniques have
brought a variety of spin-electronic devices. In F/S structures,
novel quantum phenomena, such as the π state in ferro-
magnetic Josephson junctions, arise from the interplay of
ferromagnetism and superconductivity. In this respect, recent
experimental observations of the π state in those junctions
are quite promising for the practical development of super-
conducting π-shift devices.

Here, we consider a qubit of a superconducting loop
consisting of a π junction and a 0 junction (Yamashita,
Tanikawa, Takahashi and Maekawa, 2005; Yamashita, Taka-
hashi and Maekawa, 2006). In this system, the potential
energy has double minima in the phase space without external
magnetic fields because of spontaneous magnetic flux gener-
ated by the π junction. The bonding and antibonding states
(coherent states), which are formed because of the quantum
tunneling between the two degenerate states, are used as a
bit in the qubit. A small external magnetic field is enough
to manipulate the state of the qubit. These features lead to a
smaller size of qubit that is resistant to the decoherence by
the external noise.

5.1 Two-junction π qubit

We consider a qubit of a superconducting loop with an
S/I/S Josephson junction (0 junction) and an S/F/S Josephson
junction (π junction), as shown in Figure 8. In the loop, the
0 junction has the Josephson energy

U0(θ0) = −E0
J cos θ0 (29)

where E0
J is the Josephson coupling energy and θ0 is the

phase difference in the 0 junction. The current-phase relation
is I = I0 sin θ0 with the critical current I0 = (2e/�)E0

J . On
the other hand, the S/F/S junction is a clean and metallic π

junction with negligible interface resistance, for which the
Josephson energy is well described in the form (Yamashita,
Tanikawa, Takahashi and Maekawa, 2005)

Uπ(θπ ) ≈ −Eπ
J

∣∣∣∣cos
1

2
(θπ + π)

∣∣∣∣ (30)

where Eπ
J is the Josephson coupling energy and θπ is the

phase difference in the π junction. This particular form
is realized if appropriate values are chosen for hex/εF

and kFdF, and leads to the current-phase relation I ≈
−(Iπ/2) sin

[
(θπ + π)/2

]
for 0 < θ < 2π with the critical

current Iπ = (2e/�)Eπ
J .

The total Hamiltonian of the loop is written as H =
K + U0 + Uπ + UL, where K = −4E0

c

(
∂2/∂θ2

0

)
is the elec-

trostatic energy, E0
c = e2/(2C0) is the charging energy with

the capacitance C0 of the 0 junction, and UL is the magnetic
energy stored in the loop. The electrostatic energy in the π

junction is neglected. The magnetic energy UL is given by
UL = (� − �ext)

2/(2Ls), where � is the total flux, Ls is
the self-inductance of the loop, and �ext is the external mag-
netic flux. The total flux and the phase differences satisfy the
relation

θπ + θ0 = 2π (�/�0) − 2πl (31)

where �0 = hc/2e is the unit flux and l is an integer. The
total Hamiltonian H is analogous to that describing the
motion of a particle with kinetic energy K and in a potential
U = U0 + Uπ + UL. Minimizing U with respect to θ0 and
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Figure 8. (a) Schematic diagram of a superconducting loop with an insulator and a ferromagnet. The S/I/S junction is a 0 junction (a
conventional Josephson junction), and the S/F/S junction is a metallic π junction. (b) Normalized U versus phase θ0 for β = 1 × 10−2 in
zero external magnetic field (�ext = 0). (c) Normalized U versus phase θ0 under the external magnetic fields of �ext/�0 = 0.0–0.03.
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θπ , and eliminating θπ and � from U , we obtain

U/E0
J = − cos θ0 + β

2
sin2 θ0

−α

∣∣∣∣sin

(
θ0

2
+ β

2
sin θ0 + π

�ext

�0

)∣∣∣∣ (32)

where α = Iπ/I0 and β = (2π/�0)
2I0E

0
J Ls, and �(θ0) =

�ext + (�0/2π)β sin θ0.
Figure 8(b) shows the θ0 dependence of U in zero

external magnetic field (�ext = 0) for several values of α

and β = 0.01. The value β = 0.01 corresponds to the loop
with the inductance Ls = 2 × 10−12 H with a diameter 2 µm
and I0 = 500 nA. As seen in Figure 8(b), the potential has
double minima at θ0 ≈ π/2 and 3π/2, and the barrier
height between the two degenerate states, | ↑〉 (θ0 ≈ π/2)
and | ↓〉 (θ0 ≈ 3π/2), is controlled by α. The value of α

can be adjusted by changing the thickness of the insulating
barrier or of the ferromagnet. In the | ↑〉 and | ↓〉 states, the
supercurrent flows in the clockwise and counterclockwise
directions, respectively, inducing flux � = LsI ≈ ±4.8 ×
10−4 �0.

In the loop, the bonding |0〉 ∝ | ↑〉 + | ↓〉 and the anti-
bonding |1〉 ∝ | ↑〉 − | ↓〉 states are formed via the quan-
tum tunneling between | ↑〉 and | ↓〉, yielding a two-level
quantum system. For an alumina barrier with junction area
0.1 µm2 and thickness 1 nm, E0

c ≈ 0.01 meV and E0
J /E0

c ≈
96. In this case, a numerical simulation for α = 3 gives the
energy gap �E ≈ 0.02 meV (�E/h ≈ 5 GHz) between the
ground state |0〉 and the first excited state |1〉. Microwave
absorption is used to measure this two-level quantum state.

Figure 8(c) shows the θ0 dependence of U in different
external magnetic fields and for α = 3. The degeneracy of the
states |0〉 and |1〉 is lifted by applying an external magnetic
field. In a small external magnetic field �ext = ±0.01�0,
the double-well potential becomes asymmetric, and one of
the components (| ↑〉 or | ↓〉) is lower than the other in the
ground state |0〉, and vice versa in the first excited state |1〉. In
a larger external magnetic field �ext = ±0.03�0, the double-
well potential disappears and the ground state is either | ↑〉
or | ↓〉. Therefore, the currents flow in opposite directions
for the |0〉 and |1〉 states, when an external magnetic field
is applied. As a result, the |0〉 and |1〉 states are detected
by measuring the current flowing in the loop with a SQUID
placed around the loop.

Here, we discuss the dissipation in the metallic π junc-
tion. In a small metallic π junction, the discrete Andreev
bound states are formed. When the thickness dF of F is
much less than the coherence length, only one Andreev
bound state appears in the gap � for each spin state
σ . The energy, Eσ , of the Andreev bound is gapless

(Eσ ≈ 0) at θπ = 0 and 2π , where noise due to ther-
mally excited QPs increases. However, in the π qubit dis-
cussed in the preceding text, the quantum tunneling occurs
between θ0 ≈ θπ ≈ π/2 and θ0 ≈ θπ ≈ 3π/2 (Figure 8),
for which the Andreev bound state lies near the gap
energy. This indicates that the metallic π junction is well
gapped in the relevant phase region where the quantum
tunneling occurs. Therefore, the QP tunnel dissipation is
strongly suppressed at low temperatures and low volt-
ages.

5.2 Three-junction π qubit

Let us next consider a qubit with two 0 junctions and one
π junction shown in Figure 9(a) (Yamashita, Takahashi and
Maekawa, 2006). The three-junction qubit also does not need
an external magnetic field for the formation of the coherent
two-level states and is manipulated by a small external field.
In addition, this qubit does not require a clean and metallic
S/F/S junction, as in the case of the two-junction qubit in the
previous section, and works for π junctions with a tunnel
barrier between S and F, which are underdamped tunnel π

junctions and are robust for decoherence due to thermally
excited quasiparticles (Weides et al., 2006).

In the three-junction qubit, the first and second 0 junctions
have the phase differences θ1 and θ2, and the π junction
has the phase difference θπ . The total energy of the sys-
tem consists of the electrostatic energy and the potential
energy of the junctions. The electrostatic energy K is writ-
ten as

K = 4E0
c

Eπ
c + 2E0

c

×
[(

Eπ
c + E0

c

) (
∂2

∂θ2
1

+ ∂2

∂θ2
2

)
− 2E0

c
∂2

∂θ1∂θ2

]
(33)

where E0
c = e2/(2C0) and Eπ

c = e2/(2Cπ) are the charg-
ing energies of the zero and π junctions, and C0 and Cπ

are the capacitances of those junctions. The potential energy
U is

U = −E0
J (cos θ1 + cos θ2) − Eπ

J cos(θπ + π)

+(� − �0)
2/(2Ls) (34)

where E0
J and Eπ

J are the Josephson coupling energies of the
0 and π junctions, � is the total flux in the loop, �ext is the
external flux, and Ls is the self-inductance of the loop. A
single-valuedness of the wave function along the loop gives
the relation

θ1 + θ2 + θπ = 2π(�/�0) − 2πl (35)
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Figure 9. (a) Schematic diagram of a superconducting loop with a π junction and two 0 junctions. Contour plot of the total potential
U/E0

J in the θ1–θ2 plane in zero external magnetic field (b) and in a small external magnetic field of �ext = 0.05 (c) for α = 0.8 and
β = 3.0 × 10−3. The phase dependence of U along the dashed lines in (b) and (c) in zero external magnetic flux (d) and in the external
magnetic flux �ext = 0.05�0 (e), respectively.

where �0 is the unit flux and l is an integer. Using
equation (35) in equation (34), we obtain

U = −E0
J (cos θ1 + cos θ2) − Eπ

J cos

(
2π

�

�0
− θ1 − θ2

)

+ (� − �0)
2

2Ls
(36)

Minimizing U with respect to �, we obtain the self-
consistent equation

αβ sin
[
2(�/�0) − θ1 − θ2

] = 2π(� − �ext)/�0 (37)

where α = Eπ
J /E0

J and β = 4π2E0
J Ls/�

2
0. The numerical

solution � = �(θ1, θ2) of equation (37) is used to calculate
U = U(θ1, θ2) as a function of θ1 and θ2. In the follow-
ing, we assume E0

c /E
π
c = Eπ

J /E0
J , and take α = 0.8 and

β = 3.0 × 10−3. The value of α is controllable by changing
the junction area, the barrier height, and the thickness of the
ferromagnet. The value of β is suitable for the micrometer-
size loop and the Josephson junction with several hundred
nanoamperes of the critical current.

Figure 9(b) and (d) shows the potential energy U in the
θ1–θ2 plane in zero external magnetic flux (�ext = 0). As
seen in Figure 9, U(θ1, θ2) has double minima in the phase
space. The degenerate | ↑〉 and | ↓〉 states at the minima
have the circulating supercurrents of magnitude ≈ 0.8I0

in the clockwise and anticlockwise directions, respectively,
where I0 is the critical current in the 0 junctions. Quantum
tunneling between the degenerate | ↑〉 and | ↓〉 states creates
the bonding |0〉 ∝ | ↑〉 + | ↓〉 and the antibonding |1〉 ∝ | ↑〉
− | ↓〉 states, which are used as a quantum bit. The |0〉 and |1〉
states are the states of vanishing circulating current because
of the superposition of | ↑〉 and | ↓〉 with equal weight, and
have the energy gap �E between the |0〉 and |1〉 states due to
the quantum tunneling. The gap is measured by microwave
resonance. From the numerical calculation, the resonance
frequency �E/h ≈ 4.4 GHz for E0

J /E0
c = 30.

Figure 9(c) and (e) shows the potential energy U in the
θ1–θ2 plane in the external magnetic flux �ext = 0.05�0.
As seen in the Figure 9(e), the degeneracy of the | ↑〉 and
| ↓〉 states is lifted by small external magnetic fields. In
the bonding |0〉 state, the | ↑〉 component increases and
the | ↓〉 component decreases, while in the antibonding |1〉
state the components change in a reversed way. Therefore,
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spontaneous circulating currents flow in the clockwise and
anticlockwise directions at the |0〉 and |1〉 states respectively,
producing the spontaneous magnetic flux in the loop. One can
detect the states of the qubit through the measurement of the
spontaneous flux by a SQUID placed around the loop.

The common features of the two-junction and three-
junction π qubits are the formation of the coherent two-level
states without external magnetic fields; thus, a small external
magnetic field is enough to manipulate and detect the states
as compared to the external half unit flux �0/2 required in
the proposal of Mooij et al. (1999). For example, for a small
qubit with the dimensions of several hundred nanometers,
a small magnetic field of the order of millitesla is enough
for manipulating our qubit. This feature allows us to make
qubits of smaller size, which is advantageous in large-scale
integration. This type of qubit is also resistant to external
noise and has longer decoherence time.

6 SPIN INJECTION INTO
SUPERCONDUCTORS

Johnson and Silsbee (1985) first reported that nonequilibrium
spins injected from ferromagnets diffuse into Al films over
the spin-diffusion length of the order of 1 µm. Johnson (1993)
proposed a spin injection technique in an F1/N/F2 structure
(F1 is an injector and F2 a detector). Recent experimen-
tal studies have demonstrated that the spin-polarized carriers
injected from F (NiFe, Co, CoFe,· · ·) into N (Cu, Al, Ag,· · ·)
(Jedema, Filip and van Wees, 2001; Jedema et al., 2002;
Kimura, Hamrle and Otani, 2004, 2005, 2006; Garzon, Žutić
and Webb, 2005; Godfrey and Johnson, 2006; Valenzuela
and Tinkham, 2006) and into S (Al,· · ·) (Chen et al., 2002;
Johansson, Urech, Haviland and Korenivski, 2003; Wang
and Lu, 2005; Daibou, Oogane, Ando and Miyazaki, unpub-
lished; Urech et al., 2006; Miura, Kasai, Kobayashi and Ono,
2006) create a spin accumulation in nonmagnetic metals.
Using tunnel devices consisting of a high-Tc cuprate and
a ferromagnetic manganite, strong suppression of supercon-
ductivity by spin injection has been reported (Vas’ko et al.,
1997; Dong et al., 1997; Yeh et al., 1999).

In this section, we discuss nonequilibrium spin accumula-
tion created by a spin-polarized tunnel current and its com-
petition with superconducting condensate in S sandwiched
between two ferromagnets (F1/S/F2) (Takahashi, Imamura
and Maekawa, 1999, 2000; Takahashi and Maekawa, 2003;
Johansson, Korenivski, Haviland and Brataas, 2004). A par-
ticular emphasis is placed on the spin-dependent effect, that
is, the dependence of the transport properties on the relative
orientation of the magnetizations in the F electrodes. In the
following, we describe how the spin density is accumulated

in S and suppresses the superconductivity, depending on the
relative orientation of the magnetizations.

We consider an F1/S/F2 double tunnel junction, as shown
in Figure 10(a). The left and right electrodes are made of the
same ferromagnets and the central one is a superconductor
with thickness dS. The magnetization of F1 is chosen to
point up and that of F2 is either up or down. We assume
a symmetric junction, which is characterized by the same
tunnel conductance of the tunnel barriers. In the following,
we restrict ourselves to the case that the thickness dS of S
is much smaller than the spin-diffusion length λS = √

Dτ S,
D being the diffusion constant, so that the spin density
accumulated in S is spatially uniform in S.

We calculate the tunnel current using a phenomenological
model for tunneling. If S is in the superconducting state, it is
convenient to write the electron operators akσ in S in terms
of the QP operators γ kσ using the Bogoliubov transformation
(Tinkham, 1996)

ak↑ = ukγ k↑ + v∗
kγ

†
−k↓, a

†
−k↓ = −vkγ k↑ + u∗

kγ
†
−k↓

where |uk|2 = 1 − |vk|2 = 1
2 (1 + ξk/Ek) with the QP

dispersion Ek =
√

ξ 2
k + �2 of S, ξk being the one-electron

energy relative to the chemical potential and � being the gap
parameter. Using the golden rule formula, we obtain the spin-
dependent currents Iiσ across junction 1 and 2 (Takahashi,

F S F
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(a)

(c) Superconducting state
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Figure 10. (a) Double-tunnel junction consisting of two ferromag-
nets (F) and a superconductor (S) separated by insulating barriers.
The densities of states of F’s (left and right) and S (middle) in the
antiparallel magnetizations of F’s in the normal state (b) and the
superconducting state (c). δµ denotes the chemical-potential shift
in S.
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Imamura and Maekawa, 1999):

I1↑ = (G1↑/e) (N − S) , I1↓ = (G1↓/e) (N + S) (38)

I2↑ = (G2↑/e) (N + S) , I2↓ = (G2↓/e) (N − S) (39)

where Giσ is the normal-state tunnel conductance of ith
junction for electrons with spin σ . Here, the nonequilibrium
charge imbalance (Clarke, 1972; Pethick and Smith, 1980)
is neglected because it has little effect on the spin-dependent
effect in the symmetric junction (Takahashi, Imamura and
Maekawa, 2000). The quantity N is given by (Tinkham,
1972)

N(V ) = 1

2

∫ ∞

−∞
dξk

[
f0

(
Ek − eV/2

) − f0
(
Ek + eV/2

)]
(40)

where f0(E) = 1/[exp(E/kBT ) + 1] is the Fermi distribu-
tion function and V/2 is the voltage drop at the barriers. In
the normal state, N(V ) = eV/2. The quantity S is the spin
density normalized by the normal-state density of states NS

in S, and is calculated on the basis of the semiconductor
model (Tinkham, 1996):

S = 1

2

∫ ∞

−∞
dξk

[
f0 (Ek − δµ) − f0

(
Ek + δµ

)]
(41)

where the electrochemical potentials of up and down spins
are shifted by ±δµ from equilibrium (see Figure 10).

The injected spin density is determined by balancing
the spin injection rate NS (dS/dt)inj = [(I1↑ − I1↓) − (I2↑ −
I2↓)]/2e with the spin relaxation rate NSS/τ S, where τ S is
the spin-relaxation time. The result for the parallel (P) and
the antiparallel (AP) alignment of magnetizations is

SP = 0, SAP = P

1 + �s
NAP (42)

where P = |Gi↑ − Gi↓|/(Gi↑ + Gi↓) (i = 1, 2) is the tunnel
spin polarization, �s = (τ t /τ S) is a spin relaxation param-
eter, τ t = e2NSRAdS is a characteristic dwell time of an
electron in S, A is the junction area, and R = 1/(Gi↑ + Gi↓)

is the tunnel resistance. The tunnel spin polarization ranges
around 30–40% for alumina barriers (Meservey and Tedrow,
1994), and P ∼ 85% for MgO barriers (Parkin et al., 2004).
The result (42) indicates that spins accumulate in the AP
alignment, while no spins accumulated in the P alignment in
the symmetric junction. Therefore, we expect the suppression
of superconductivity by spin accumulation in the AP align-
ment. In the normal state, SAP = PeffeV/2 with the effective
spin polarization Peff = P/(1 + �s).

The superconducting gap � in S is determined by fkσ

through the BCS gap equation (Tinkham, 1996)

1

NSVBCS
=

∫ ωD

0

dξk

2Ek

[
tanh

(
Ek − δµ

2kBT

)

+ tanh

(
Ek + δµ

2kBT

)]
(43)

where VBCS is the attractive interaction between electrons
and ωD is the Debye frequency in S.

The self-consistent equations, (42) and (43), are solved
in terms of � and δµ for the P and AP alignments. The
results are used to calculate the tunnel current I = I↑ + I↓
as a function of V for the P and AP alignments:

IP = NP(V )

eR
, IAP =

(
1 − P 2 + �s

1 + �s

) NAP(V )

eR
(44)

In the current bias, SAP is directly connected to the injection
current I

SAP = P

1 − P 2 + �s
eRI (45)

It is interesting to note that the spin current Ispin = Ii↑ − Ii↓
flows through S with IP

spin = PI in the P alignment, while
IAP

spin = 0 in the AP alignment.
A key parameter for the efficient spin injection into S is

the effective spin polarization Peff = P/(1 + �s); it depends
strongly on the spin relaxation parameter �s, which is reex-
pressed as �s = (1/2)(RA/ρNλS)(dS/λS), where RA is the
specific (area) tunnel resistance, ρN the resistivity, and λS

the spin-diffusion length. For an efficient spin injection
into S, it is crucial to make �s as small as possible by
using a junction with very small RA, a large ρNλS, and
thin dS. The parameter RA is variable in a wide range by
changing the barrier thickness, ranging from RA ∼ 1 �µm2

to 104 �µm2. For an Al with thickness dS ∼ 5 nm, ρN ∼
5 µ�cm, and λS ∼ 700 nm (Jedema et al., 2002; Valenzuela
and Tinkham, 2006), we have a condition RA < 15 �µm2

for realizing that �s is comparable to or smaller than unity
(�s < 1). This condition is fulfilled by using a thin
MgO barrier with low tunnel resistance and a CoFe-
electrode with high P (Parkin et al., 2004), so that a
CoFe/MgO/Al/MgO/CoFe structure is most suitable for
exploring the effect of spin injection on superconductivity
(Yang, H., Yang, S.-H. and Parkin, S.S.P. private communi-
cations).

Figure 11(a) shows the superconducting gap �AP in the
AP alignment as a function of voltage V for P = 0.4
(Meservey and Tedrow, 1994) and �s = 0. The quantity
�0 denotes the value of � at V = 0 and T = 0. The
gap �AP decreases with increasing V and vanishes at
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Figure 11. (a) Energy gap �AP in S as a function of voltage V for
different temperatures in the AP orientation of magnetizations. (b)
Spin accumulation SAP in S as a function of V .

the critical voltage Vc. At very low temperatures, �AP

becomes multivalued in a certain range of eV ; at T = 0,
it has three solutions: �AP = �0 and �AP = �0[1 − 2P 2 ±
2P

√
(eV/2�0)2 + P 2 − 1]1/2 for 0.92 < eV/2�0 < 1. This

suggests that a spatially inhomogeneous FFLO state appears
in the narrow range of V at T ∼ 0. Figure 11(b) shows
the voltage dependence of the spin density SAP in the AP
alignment. The dotted line indicates the value of SAP =
1
2PeV in the normal state. As T is lowered below Tc, SAP

is suppressed below Vc by opening of the energy gap. At
and near T = 0, SAP shows the S-shaped anomaly around
eVc ∼ 2�0, which corresponds to the multiplicity of �AP in
Figure 11(a). In the P alignment, �P is independent of V

and SP = 0 in the symmetric junction.
Figure 12(a) shows the voltage dependence of the differen-

tial conductance GP and GAP for the P and AP alignments at
T /Tc = 0.4 and �s = 0. The GP shows the ordinary depen-
dence on V expected for the constant gap �. In contrast,
because of the decrease in �AP with increasing voltage,
GAP increases with voltage more rapidly than GP, forming
a higher peak than GP, and then decreases steeply. At the
critical voltage Vc, GAP jumps to the conductance GN

AP in
the normal state. The TMR is calculated by the formula:
TMR = (GP/GAP) − 1. Using the values of Figure 12(a),
we obtain the V dependence of TMR shown in Figure 12(b).
At V = 0, TMR takes the same value as in the normal

0
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G
/G

N A
P
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Figure 12. (a) Tunnel conductance as a function of bias voltage.
The dashed and solid curves indicate the conductances GP and GAP

for the P and AP alignments respectively, and the long-dashed curve
indicates the superconducting gap parameter � in the AP alignment.
(b) Tunnel magnetoresistance (TMR) as a function of bias voltage.
The dotted line indicates TMR = P 2/(1 − P 2) in the normal state.

state. A deep negative dip appears at eV/2�0 ∼ 1, where
�AP steeply decreases, exhibiting an inverse TMR effect
(GAP > GP), and is followed by the discontinuous jump at
Vc above which TMR is highly enhanced compared to that
in the normal state. When the effect of spin relaxation in S is
taken into account, the TMR value is reduced roughly by the
factor 1/(1 + �s) because of the reduction of the effective
spin polarization Peff = P/(1 + �s).

The suppression of the superconducting gap � by spin
injection is detected by measuring the superconducting
critical current Ic. According to the Ginzburg–Landau theory,
Ic is proportional to �3 because Ic ∝ �2vc with the critical
superfluid velocity vc ∝ � (Tinkham, 1996). Figure 13
shows the normalized critical current (Ic/Ic0) as a function
of injection current I at T /Tc = 0.9 for P1 = 0.8, P2 = 0,
0.4, 0.8, and �s = 0. In the case of symmetric junction,
the same spin polarizations (Figure 13a), the critical current
Ic in the AP alignment steeply decreases and vanishes
at a small value of I , whereas Ic in the P alignment
shows no dependence on I . In the case of an asymmetric
junction with different spin polarizations (Figure 13b), the
critical current decreases with increasing injection current
in both alignments but in a different way; Ic decreases
more slowly in the P alignment than in the AP alignment.
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P2 of F2. The open circles indicate the critical current measured at T = 80, 84, and 87 K (Tc ∼ 89 K) by Dong et al. (1997) in a F/S/N
junction made of a high-Tc S and ferromagnetic manganite with P ∼ 100%.

If one of the ferromagnets, F2, is replaced by a normal
metal (N), we have a heterostructure F1/S/N junction with
P2 = 0 (Figure 13c). The critical current suppression by spin
injection observed in heterostructure junctions consisting of
a high-Tc cuprate and a ferromagnetic manganite with a
large spin polarization is reproduced well by the calculated
result (Vas’ko et al., 1997; Dong et al., 1997; Yeh et al.,
1999).

7 SUMMARY AND DISCUSSIONS

In this chapter, we have discussed the novel phenomena
arising from the interplay between superconductivity and
ferromagnetism in hybrid F/S structures. The most striking
consequence due to the proximity effect in the F/S structures
is a damped oscillatory behavior of the Cooper-pair wave
function in ferromagnets, leading to the formation of the
π state in S/F/S Josephson junctions and F/S multilayers.
Applications of π junctions to quantum computing devices
(qubits) open up a new possibility in the research field of
superconducting spin electronics.

AR is a spin-sensitive scattering process at the F/S
interface, which provides a powerful tool for probing the spin
polarization of various ferromagnets. This spin sensitivity of
AR is also capable of probing nonlocality of AR by using the
crossed AR between two ferromagnetic leads in contact with
a superconductor (Deutscher and Feinberg, 2000; Beckmann,
Weber and Löhneysen, 2004).

There is rapidly growing interest in the Josephson cur-
rent through strong ferromagnets, such as transition-metal
ferromagnets or oxide ferromagnets. As shown in Section 2,
the Cooper-pair wave function in the spin-singlet state is
quickly decayed in strong ferromagnets, and the penetra-
tion of singlet pairs into strong ferromagnets is at most only
∼1 nm. However, recent observation of the Josephson super-
current through a half-metallic ferromagnet CrO2 (Keizer
et al., 2006) over several hundreds of nanometers strongly

suggested that spin-triplet superconductivity is induced in
the half-metallic ferromagnet. The underlying mechanism for
occurring spin-triplet superconductivity is a conversion from
spin-singlet to spin-triplet pairs due to the spin-mixing or
spin-flip scattering at the interface (Bergeret, Volkov and Efe-
tov, 2001; Eschrig, Kopu, Cuevas and Schön, 2003 Asano,
Tanaka and Golubov, unpublished).

The dynamics of magnetization and its effect on the
proximity effect in S/F structures will offer a new research
field. In particular, the effects of spin dynamics (spin-wave
emission and absorption, and precession of magnetization) on
the proximity effect, the AR (McCann and Fal’ko, 2001), and
the Josephson effect (Zhu, Nussinov, Shnirman and Balatsky,
2004; Takahashi et al., unpublished) are important issues to
be explored in this fascinating field. The interplay between
superconductivity and magnetism provides new electronics
devices based on spin and supercurrent.

NOTES

[1] The right-hand side of equation (8) is π[N↑(r) −
N↑(r)]�, which vanishes in F/S structures with the
sharp boundaries, because N↑(r) = N↓(r) in N and
� = 0 in F.

[2] In the presence of boundary resistance, the boundary con-
ditions (Kupriyanov and Lukichev, 1988) are D(r)∂F (r)/
∂z

∣∣
r+
i

= D(r)∂F (r)/∂z
∣∣
r−
i

= (1/e2Rb)[F(r+
i )/N(r+

i ) −
F(r−

i )/N(r−
i )], where Rb is the specific (area) bound-

ary resistance and r±
i = ri ± 0 is the position of the

boundaries.
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1 INTRODUCTION

Two fundamental properties of the superconducting (SC)
state are the zero electrical resistance and the Meissner-
Ochsenfeld effect (the expulsion of the magnetic field from
the volume of a superconductor). Similarly, superconductiv-
ity can be destroyed by applying a magnetic field exceeding
some critical value. This demonstrates the antagonistic char-
acter of superconductivity and magnetism, and explains the
interest to their possible coexistence. Such a problem was
first addressed theoretically by Ginzburg (1956) in the frame-
work of the model of the electromagnetic (orbital) interaction
between superconductivity and ferromagnetism. After the

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 1: Fundamentals
and Theory.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-
02217-7.

advent of the microscopic theory of the superconductivity
by Bardeen, Cooper and Schrieffer (1957) it became clear
that the singlet superconductivity could also be destroyed
by an exchange mechanism. The exchange field in the fer-
romagnetic (FM) state tends to align spins of Cooper pairs
in the same direction, thus preventing pairing. This is the
so-called Pauli paramagnetic effect which is related with
the Zeeman energy of electron spins – the magnetic field
favors the orientation of the electron spins along the field
direction. The Cooper pair is formed with two electrons
with opposite spins (singlet superconductivity), and when
the gain of the energy due to the spin reorientation (µBH )
becomes comparable with the Cooper pair superconducting
coupling energy (which is of the order of the superconduct-
ing critical temperature Tc), the singlet superconductivity is
destroyed. Therefore we obtain the following estimate (see,
e.g., Abrikosov, 1988) for the paramagnetic limit of singlet
superconductivity existence Hp ≈ 1.24Tc/µB or, in Tesla,
1.8Tc (K). However, in usual superconductors the orbital
effect is more important for superconductivity destruction
by the magnetic field. In ferromagnetic superconductors the
situation is different. The internal magnetic induction does
not exceed several kilo-oersted which is smaller than the
typical upper critical field in type II superconductors, and
then is not harmful for superconductivity. On the other hand,
the effective internal field h (which plays the role of Zee-
man energy µBH ) acting on the electron spins due to the
exchange interaction is very high. Typically, if expressed
in the energy units h ∼ 100–1000 K, which substantially
exceed the superconducting critical temperature Tc, it makes
the exchange interaction the main mechanism of supercon-
ductivity destruction. This strong exchange interaction is at
the origin of very strong suppression of superconductivity by
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the magnetic impurities. The early experiments (Matthias,
Suhl and Corenzwit, 1958) demonstrated that even a very
small concentration (several percents) of magnetic atoms
is enough to completely destroy the superconductivity. The
influence of magnetic impurities on superconductivity was
described by the now classical Abrikosov–Gorkov theory
(Abrikosov and Gorkov, 1960).

The small allowed concentration of magnetic atoms in
superconducting alloys was not enough to produce the
FM ordering. The first regular superconducting single crys-
tals with a regular sublattice of rare earth magnetic atoms
have been discovered in 1976, which produced the real
breakthrough in studies of magnetism and superconductivity
coexistence. They are ternary rare earth (RE) compounds,
(RE)Rh4B4 and (RE)Mo6S8, (RE)Mo6Se8; for a review, see,
for example, Maple and Fisher (1982) and Fisher (1990) and
Kulić (2006). It turned out that in many of these systems
superconductivity coexists with antiferromagnetic (AF) order
with the Néel temperature TN < Tc. The peaceful coexis-
tence of superconductivity with antiferromagnetism is under-
standable because, on average, the exchange and orbital
fields are zero at distances of the order of superconduct-
ing coherence length ξ . Recently, the coexistence of super-
conductivity and antiferromagnetism was discovered in the
series of quaternary intermetallic compounds (RE)Ni2B2C.
The properties of these compounds are discussed in the
reviews (Müller and Narozhnyi, 2001) and (Bud’ko and Can-
field, 2006).

The question about FM and SC coexistence appears to
be much more fascinating. Such a situation is realized in
ErRh4B4 and HoMo6S8 compounds. In the superconducting
phase below the Curie temperature, instead of the FM
ordering, the long period modulated magnetic structure
appears. Further cooling provokes the reentrant transition into
the normal ferromagnetic phase. The nonuniform magnetic
structure in superconductors was predicted a long time ago by
Anderson and Suhl (1959), and the theory of the coexistence
phase is discussed in detail by Bulaevskii, Buzdin, Kulić and
Panjukov (1985).

The example of ErRh4B4 and HoMo6S8 shows that ferro-
magnetism does not coexist with superconductivity in these
compounds, instead it is transformed into the modulated
magnetic structure in the narrow temperature interval of mag-
netism and superconductivity coexistence. The first truly fer-
romagnetic superconductors UGe2 (Saxena et al., 2000) and
URhGe (Aoki et al., 2001) were discovered only recently,
and attracted a lot of interest. Apparently these systems
display the triplet superconductivity with parallel spin ori-
entation of electrons in Cooper pair, thus withdrawing the
paramagnetic limit. Another interesting problem is the inter-
play between superconductivity and itinerant-like magnetism
in heavy-fermion matter, in the compounds like URu2Si2,

UPd2Al3, UBe13, and so on – for the recent review see Flou-
quet et al. (2006).

The coexistence of superconductivity and ferromagnetism
may be easily achieved in artificially fabricated superconduc-
tor/ferromagnet heterostructures. Due to the proximity effect,
the Cooper pairs penetrate into the F layer and we have
the unique possibility to study the properties of supercon-
ducting electrons under the influence of the huge exchange
field. Moreover, varying in the controllable manner the thick-
nesses of the ferromagnetic and superconducting layers it is
possible to change the relative strength of two competing
ordering. The Josephson junctions with ferromagnetic layers
reveal many unusual properties quite interesting for applica-
tions, in particular, the so-called π -Josephson junction (with
the π-phase difference in the ground state) was fabricated
(Buzdin, 2005; Bergeret, Volkov and Efetov, 2005).

2 INTERACTION BETWEEN
CONDUCTING ELECTRONS
AND LOCALIZED MOMENT:
ANTIFERROMAGNETIC
SUPERCONDUCTORS

2.1 Role of magnetic scattering

The strong pair-breaking effect of magnetic impurities on
superconductivity is illustrated in Figure 1 where it is clearly
seen that the concentration more than 0.6 at% of Gd
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Figure 1. The critical temperature variation versus the concentra-
tion n of the Gd atoms in La1–xGdxAl2 alloys (Maple, 1968).
Tc0 = 3.24 K and ncr = 0.590 at % Gd. (Reprinted from Physics
Letters A, Vol 26A, 1968, Page 513, Maple, with permission from
Elsevier.)
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completely destroys the superconductivity in La1–xGdxAl2
alloys (Maple, 1968).

The exchange interaction between the spin of the magnetic
impurities and spin of electron of the Cooper pairs leads to
the spin-flip scattering destroying pair. The theory of this
phenomenon was proposed by Abrikosov and Gorkov (1960).

This Abrikosov–Gorkov theory provided an excellent
description of the properties of superconductor with magnetic
impurities.

The Hamiltonian of the interaction between RE magnetic
moments localized in the sites �ri and the electron spins is

Hint =
∫

d3r�+(�r)
{∑

i

I (�r − �ri)(gJ − 1)
⇀

J i
⇀
σ

}
�(�r) (1)

where �(�r) is the electron spinor operator, ⇀
σ= {σ x, σ y, σ z}

are the Pauli matrices, I (�r) is the exchange integral, and we
take into account that for the RE atoms the total angular

momentum
⇀

J i is quenched and gJ is the Landé g-factor for
the Hund’s rule ground state of RE. Following the A–G
theory (Abrikosov and Gorkov, 1960) the decrease of the
critical temperature Tc with the concentration n of magnetic
impurities follows the law

dTc

dn
= −π2

2
N(0)〈I 2(pF)〉(gJ − 1)2J (J + 1) (2)

where 〈I 2(pF)〉 is averaged value of the square of the Fourier
transform of the exchange interaction over the Fermi sur-
face, N(0) is the electron density of the state at the Fermi
energy. The pair-breaking strength of the magnetic scatter-
ing occurs to be proportional to the so-called De Gennes
factor dG = (gJ − 1)2J (J + 1). If all magnetic atoms sub-
stitute the nonmagnetic ones, they form a regular lattice
and their concentration reaches the same order of magni-
tude as the concentration of the electrons. The most common
mechanism of magnetic ordering in metal RE compounds
is the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
and then the magnetic transition temperature may be esti-
mated as �m ≈ dG I2

EF
. Following equation (2), the decrease

of the Tc being dTc
dx

≈ −�mx, where x is the relative concen-
tration of the magnetic atoms. Therefore, the addition of the
magnetic atoms of iron (having high Curie temperature) usu-
ally destroys superconductivity at a very small concentration
(less than 1%). The very informative approach is the com-
parative studies of the properties of ternary (RE)Rh4B4 and
(RE)Mo6S8 or quaternary (RE)Ni2B2C compounds with dif-
ferent RE atoms and with nonmagnetic RE atoms partially
substituted by the magnetic ones. Such substitution practi-
cally does not perturb the host matrix responsible for super-
conductivity but permits to vary the magnetic scattering in a
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controllable manner. An interesting example of the influence
of the magnetic scattering on Tc in the (Lu1–xDyx)Ni2B2C
series (Cho, Canfield and Johnston, 1996) is presented in
Figure 2. For low Dy concentration we have the quite
expected decrease of Tc, which vanishes at x ≈ 0.7.

For x = 1 in DyNi2B2C the Néel temperature TN = 11 K
and superconductivity appears in the antiferromagnetic phase
below Tc = 6.2 K. In the antiferromagnetic state the RE mag-
netic moments are ordered which decreases the magnetic
scattering. They may be considered as magnetic impuri-
ties only above the Néel temperature when the RE mag-
netic moments chaotically change their directions with time.
Below TN they freeze out and the magnetic scattering may
occur only via the electrons interaction with the spin waves.
On the other hand the average exchange and orbital fields in
the antiferromagnetic state are absent and superconductivity
appears at lower temperature. The decrease of Dy concentra-
tion introduces the disorder in the magnetic sublattice which
decreases TN, and at the same time increases the magnetic
scattering and decreases Tc. DyNi2B2C only superconducts
because the antiferromagnetic ordering reduces the magnetic
scattering (Cho, Canfield and Johnston, 1996).

2.2 Antiferromagnetic superconductors

Neutron scattering experiments have shown that usually in
ternary (RE)Rh4B4 (Maple, Hamaker and Woolf, 1982),
(RE)Mo6S8 and (RE)Mo6Se8 (Thomlinson, Shirane, Lynn
and Moncton, 1982), or quaternary (RE)Ni2B2C (Müller and
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Narozhnyi, 2001) compounds there is the long-range antifer-
romagnetic order that appears in the superconducting phase.
The mutual influence of superconductivity and magnetism in
antiferromagnetic superconductors occurs to be rather weak.
Indeed, in the case of antiferromagnetism, an average value
of magnetic induction and an exchange interaction (exchange
field) are practically zero on the scale of Cooper pair size. On
the other hand, the Meissner screening of the magnetic field,
oscillating on the atomic distance is vanishing. The London
penetration depth λ is the characteristic length of the mag-
netic field screening and typically λ ∼ 100–10 000 Å, and
then it is much larger than the period of antiferromagnetic
ordering, which makes its screening impossible. Then we
may conclude that the coexistence of superconductivity and
antiferromagnetism is quite peaceful – for Tc and TN of typ-
ical antiferromagnetic superconductors see Table 1.

Interestingly, the appearance of magnetic ordering below
TN is at the origin of the anomalous temperature dependence
of the upper critical Hc2 (T) in antiferromagnetic supercon-
ductors. Some typical examples of the Hc2 (T) curves mea-
sured for the TmNi2B2C and ErNi2B2C are presented in
Figure 3 (Bud’ko and Canfield, 2006). The increase of the
Hc2 below TN in ErNi2B2C may be related with the decrease
of magnetic scattering. It is interesting that the anisotropy of
the magnetic subsystem induces the anisotropy of the upper
critical field. As it may be seen from Figure 3 near Tc the
Hc2 along a and c axis is practically the same. At lower
temperature the critical fields are smaller for the orientations
corresponding to the easy magnetization directions.

For TmNi2B2C it is c axis and for ErNi2B2C it is the
ab plane. The decrease of the upper critical field comparing

Table 1. Antiferromagnetic superconductors.

Tc (K) TN (K)

NdRh4B4 5.3 1.31
SmRh4B4 2.7 0.87
TmRh4B4 9.8 0.4
GdMo6S8 1.4 0.84
TbMo6S8 2.05 1.05
DyMo6S8 2.05 0.4
ErMo6S8 2.2 0.2
GdMo6Se8 5.6 0.75
ErMo6Se8 6.0 1.1
DyNi2B2C 6.2 11
ErNi2B2C 10.5 6.8
TmNi2B2C 11 1.5
HoNi2B2C 8 5

The data for (RE)Ni2B2C compounds are taken from
the reviews (Müller and Narozhnyi, 2001) and (Bud’ko
and Canfield, 2006) and for (RE)Rh4B4 – (Maple,
Hamaker and Woolf, 1982) and (RE)Mo6S8,
(RE)Mo6Se8 – (Thomlinson, Shirane, Lynn and
Moncton, 1982).
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Figure 3. Anisotropic upper critical field Hc2(T ) in antiferromag-
netic superconductors TmNi2B2C and ErNi2B2C. (Bud’ko and Can-
field, 2006. Magnetism and superconductivity in rare earth-nickel-
borocarbides. Comptes Rendus Physique, 7, 56–67, with permission
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with its value extrapolated from the initial slope near Tc

is due to the internal exchange field h created by the

polarized magnetic atoms. This field is �h = I (gJ − 1)〈⇀

J i〉,
where 〈⇀

J i〉 is the moment induced by the applied field
which is proportional to the magnetic susceptibility of the
RE compound. Then the internal exchange field reflects
the anisotropy of magnetic susceptibility and induces the
corresponding anisotropy of the Hc2 (for more information
on the critical fields of the antiferromagnetic superconductors
see Buzdin and Bulaevskii (1986)).

2.3 Field induced superconductivity

A long time ago Jaccarino and Peter (1962) pointed out the
possibility of the compensation of Zeeman field by the inter-
nal field created by magnetic moment. The total field acting

on the electrons spin is �htot = µB
�H + I (gJ − 1)〈⇀

J i〉, and if
the sign of the exchange integral I is negative, the compensa-
tion Jaccarino–Peter effect occurs. Such behavior was indeed
observed in an extremely unusual way in the compound
Eu0.75Sn0.25Mo6S7.2Se0.8 (Meul et al., 1984)-Figure 4. The
very high orbital critical field in this compound makes it
essential to take into account the paramagnetic effect. The
presence of localized Eu magnetic moments with negative
exchange integral I leads to the possibility of the cancel-
lation of this paramagnetic effect. In a magnetic field, the
Eu moments orient along the field, which leads by virtue of
the exchange interaction with electrons to the destruction of
superconductivity. At low field, the exchange field dominates
in �htot. A further increase of the magnetic field has only a
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Figure 4. Field induced superconductivity in Eu0.75Sn0.25Mo6

S7.2Se0.8 compound (Meul et al., 1984). The unusual shape of the
(H, T ) diagram is a consequence of the Jaccarino–Peter mecha-
nism, that is, the cancellation of the paramagnetic effect by the
exchange field produced by polarized Eu atoms. (Reprinted figure
from Meul et al., Phys. Rev. Lett. Vol. 53, 497 (1984). Copyright
(1984) by the American Physical Society.)

slight effect on the exchange field of the Eu atoms, since
their moment tends toward saturation. On the other hand
the Zeeman field linearly increases with H and then finally
compensates exchange field. At low temperature the condi-
tion of superconductivity existence is |�htot| < 1.24 Tc which
leads to the restoration of superconductivity when the field
is increased. Superconductivity is destroyed again at fields
at which the orbital effect becomes important or there is the
overcompensation of the exchange field.

Note that recently the magnetic-field-induced supercon-
ductivity has been observed in the quasi-two-dimensional
organic conductor λ-(bis(ethylenedithio)tetraselenafulvalene,
BETS)2 FeCl4 (Uji et al., 2001). However at zero mag-
netic field the superconductivity in this compound is absent
due to the antiferromagnetic ordering of Fe3+ provoking
the metal–insulator transition. A magnetic field above 10 T

restores the metal phase. Further increase of the magnetic
field induces the superconductivity at H ≈ 17 T because of
the partial compensation of the exchange field of aligned
Fe3+ spins through the Jaccarino–Peter effect.

2.4 Magnetic high temperature superconductors

The question about the magnetism and superconductivity
interplay in high Tc superconductor is well beyond the
scope of this article. The mechanism of high temperature
superconductivity still remains open though many theoretical
approaches to handle this problem were proposed (see, e.g.,
Carlson, Emery, Kivelson and Orgad, 2004; Chubukov, Pines
and Schmalian, 2004; Bonn, 2006).

In the (RE)Ba2Cu3O6+x and (La2–xSrx)CuO4–δ com-
pounds the oxygen concentration is a very important param-
eter controlling the Cu ions magnetism. For small x and
δ the compounds are insulators and Cu ions order anti-
ferromagnetically with TN ∼ (300–500) K (see, e.g., Lynn,
1990). For optimally doped compounds the Cu antiferro-
magnetic transition is absent, and Tc is around 40 and
95 K for (La2–xSrx)CuO4–δ and (RE)Ba2Cu3O6+x respec-
tively. The trivalent RE have very little effect on the
superconducting properties of (RE)Ba2Cu3O6+x compounds.
The REorder antiferromagnetically at low temperature TN ∼
(0.5–2) K (Lynn, 1990). The RE are very weakly coupled
with superconducting Cu–O planes and the exchange inter-
action between RE and electrons is small (the magnetodipole
and RKKY mechanisms give comparable contribution to the
antiferromagnetic ordering energy). The condition TN � Tc

ensure quite weak interplay of magnetic and superconducting
subsystems in (RE)Ba2Cu3O6+x .

Nowadays several types of layered compounds, where
superconducting and magnetic layers alternate, are known.
For example in Sm1.85Ce0.15CuO4 (Sumarlin et al., 1992),
which reveals superconductivity at Tc = 23.5 K, the super-
conducting layers are separated by two ferromagnetic layers
with opposite orientations of the magnetic moments and
the Néel temperature is TN = 5.9 K. Several years ago, a
new class of magnetic superconductors based on the lay-
ered perovskite ruthenocuprate compound RuSr2GdCu2O8

comprising CuO2 bilayers and RuO2 monolayers has been
synthesized (McLaughlin et al., 1999), and as a recent review
see Nachtrab et al. (2006). In RuSr2GdCu2O8, the mag-
netic transition occurs at TM ∼ 130–140 K and supercon-
ductivity appears at Tc ∼ 30–50 K. Apparently, it is a weak
ferromagnetic order, which is realized in this compound.
Though the magnetization measurements give evidence of
the small ferromagnetic component, the neutron diffraction
data on RuSr2GdCu2O8 (Lynn et al., 2000) revealed the dom-
inant antiferromagnetic ordering in all three directions. Later,
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the presence of ferromagnetic in-plane component of about
(0.1–0.3)µB has been confirmed by neutron scattering on
isostructural RuSr2YCu2O8 (Tokunaga et al., 2001).

3 FERROMAGNETIC CONVENTIONAL
SUPERCONDUCTORS

As it has been already noted the antiferromagnetism and
superconductivity are not in fact incompatible and may easily
coexist. The question about ferromagnetism and supercon-
ductivity interplay appears to be much more fascinating.
Such a situation is realized in ErRh4B4 and HoMo6S8 com-
pounds, and leads to the destruction of the superconductiv-
ity. For example, in ErRh4B4 the superconductivity appears
below Tc = 8.7 K and at the Curie temperature � ≈ 0.9 K
instead of the ferromagnetic ordering the long period mod-
ulated magnetic structure appears. The appearance of this
structure has been detected by neutrons scattering exper-
iments (Sinha, Crabtree, Hinks and Mook, 1982), and its
period occurs to be around 100 Å. However, a further cool-
ing provokes at the temperature Tcr ≈ 0.7 K, a first-order
phase transition into (or to) a ferromagnetic phase with
simultaneous destruction of superconductivity. The transi-
tion at T = Tcr is called reentrant transition because the
superconductor goes back into the normal phase. The temper-
ature dependence of the resistivity in the reentrant supercon-
ductor ErRh4B4 is presented in the Figure 5 (Fertig et al.,
1977). Similarly in HoMo6S8 superconductivity appears
below Tc = 1.8 K and in the narrow temperature interval
between 0.7 and 0.64 K the nonuniform magnetic structure
coexists with superconductivity (Lynn et al., 1981). Further
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Figure 5. A.C. (alternate current) susceptibility and resistance
versus temperature in ErRh4B4. (Reprinted figure from Fertig et al.,
Phys. Rev. Lett. Vol. 38, 987, 1977. Copyright 1977 by the American
Physical Society.)

cooling provokes the destruction of the superconductivity
below Tcr ≈ 0.64 K and the transition to the ferromagnetic
state. Note that the ferromagnetic superconductors give a
very rare example of the superconductivity destruction with
lowering temperature.

The compound HoMo6Se8 is quite similar to HoMo6S8

but has a higher Tc = 5.5 K, and in the superconducting
phase also the nonuniform magnetic structure with wave
vector Q ≈ 0.09 Å

−1
appears at � ≈ 0.53 K (Lynn et al.,

1984). Unlike HoMo6S8, however, the superconductivity is
not destroyed in HoMo6Se8, and the nonuniform magnetic
structure coexists with it. At low temperature the wave vector
decreases down to Q ≈ 0.06 Å

−1
.

What is the origin of such behavior and what is the
nature of the coexistence phase in the temperature interval
between � and Tcr? Let us start first with the estimate of the
characteristic energy of magnetic interaction. In the case of
the RKKY interaction it is the electronic spin susceptibility χ

that is responsible for the magnetic ordering and the energy
of this interaction may be written as

Em = −
∑
Q

χ(Q)

2
|hQ|2 (3)

where χ(Q) and hQ are the Fourier components of the elec-
tronic spin susceptibility and exchange field respectively. It
is convenient to write h(�r) = h0S(�r), introducing the nor-
malized magnetization S(�r) = M(�r)/M0, where M0 and h0

are the saturated magnetization and the exchange field at
T = 0 K. For the ferromagnetic ordering we may easily esti-
mate from (3) the characteristic energy per one magnetic
moment (or electron as the electrons’ concentration is of the
same order of magnitude as the magnetic atoms concentra-
tion) as |Em| ∝ �ex = N(0)

2 h2
0 ∝ �, where N(0) is the elec-

tron density of state at the Fermi energy. On the other hand
the energy of the superconducting condensation (Abrikosov,
1988) Es = −N(0)

2 
2, and 
 is the superconducting gap. The
energy gain per one electron is very small |Es| ∝ Tc

Tc
EF

� Tc.
The reason is that the formation of the Cooper pairs modifies
the electronic spectrum only in the immediate vicinity near
the Fermi surface.

The factor Tc
EF

� 1 made the superconducting condensa-
tion energy very small compared to the magnetic energy.
Even in the case � < Tc we have |Es| � |Em|, and so we
must conclude that magnetism is a very robust phenomenon
compared to superconductivity. Therefore, superconductivity
cannot prevent the magnetic ordering and may only modify
it. On the contrary, ferromagnetism can easily destroy super-
conductivity.

Let us address now the question of the type of mag-
netic transition in superconducting phase. Near the Curie
temperature we may describe the magnetic transition in the
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framework of Landau functional. For ferromagnetic transi-
tion in the normal metal it reads

Fm = �̃
∑
Q

�τ |SQ|2 + Q2a2|SQ|2	 (4)

where τ = T −�
�

, the energy constant �̃ ∝ � and the constant
a is the magnetic stiffness being of the order of the
interatomic distance. The functional (4) is very general one
and its coefficients describe the entropy as well as magnetic
energy contributions. The form (4) corresponds to the case
of ferromagnetic transition because, namely, Q = 0 gives the
highest transition temperature �. This transition temperature
and the wave vector Q are readily determined from (4) as
the condition of the vanishing of the coefficient on the
|SQ|2 harmonic.

The question about the type of the magnetic ordering in
the superconducting state in the presence of the exchange
interaction was first addressed by Anderson and Suhl (1959).
In the superconducting state the electronic susceptibility
χ s(Q) changes comparing with that of normal metal χ(Q),
and to take this into account we need to add to the
functional (4) the corresponding term

F ex
int = −

∑
Q

χ s(Q) − χ(Q)

2
|hQ|2 (5)

The dispersions of the electronic spin susceptibility in nor-
mal and superconducting states are schematically presented
in Figure 6. The main difference is the vanishing of χ s(Q)

for Q = 0. For large wave vectors Qξ 0 
 1 the spin suscep-
tibilities in the superconducting and normal states practically
coincide. This explains why superconductivity has no effect

c (Q)
cs (Q)

cs (Q)

QM

Q

Figure 6. Schematic behavior of the spin susceptibility in normal
χ(Q) and superconducting χ s(Q) states.

on the appearance of antiferromagnetic ordering with wave
vectors Q ≈ a−1.

In the superconducting phase the magnetic functional (the
energy is calculated per one magnetic atom) becomes

F s
m = Fm + F ex

int

= �̃
∑
Q

[
τ + Q2a2 − χ s(Q) − χ(Q)

χ(0)

�ex

�̃

]
|SQ|2 (6)

At T = 0 and Qξ 0 
 1 following (Anderson and Suhl,
1959) χ s(Q)−χ(Q)

χ(0)
= π

2Qξ0
and we readily find from (6) the

maximum critical temperature corresponds to the nonuniform
magnetic structure with QM ≈ (a2ξ 0)

−1/3 (Anderson and
Suhl, 1959). The transition temperature �M is only slightly
smaller than the Curie temperature � in the absence of
superconductivity: �−�M

�
≈ ( a

ξ0
)2/3 � 1. Anderson and Suhl

called this magnetic structure cryptoferromagnetic.
In addition to the exchange mechanism there always exists

the electromagnetic mechanism of superconductivity and
magnetism interaction which is related with Meissner screen-
ing of the magnetic induction created by the magnetization
M(�r) = M0S(�r). This mechanism also favors the nonuni-
form magnetic structure instead of ferromagnetic one (Krey,
1973; Blount and Varma, 1979; Ferrell, Bhattacharjee and
Bagchi, 1979; Matsumoto, Umezawa and Tachiki, 1979). The
contribution to the free energy from the screening may be
readily written as

F em
int =

∑
Q

K(Q)

2
|AQ|2 (7)

where K(Q) is the electromagnetic kernel in superconductor
(see, e.g., Abrikosov, 1988), and A is the vector potential of
the magnetic induction in superconductor. Assuming QλL 

1 the vector potential satisfies i[ �Q �A �Q] = 4πnM0 �S �Q, the
energy (7) per one magnetic atom reads

F em
int = �em

∑
Q

|SQ|2
Q2λ2

L

(8)

where �em = 2πnM2
0 and the expression for the kernel

K(Q) = 1
4πλ2

L

in the local limit was used. The parameter

�em describes the strength of the magnetodipole interaction
between magnetic atoms, and does not exceed 1 K in the
ternary and quaternary magnetic superconductors. Combin-
ing (8) and (4) we find the magnetic transition occurs into

the nonuniform state with QM ≈
(

�em
�̃

)1/4
(aλL)−1/2.

The sinusoidally modulated magnetic coexistence phase
perfectly resolves an antagonism problem between super-
conductivity and ferromagnetism. Indeed, from the ‘point
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of view of superconductivity’ such a magnetic structure is
like an antiferromagnetic one as QMλL 
 1 and QMξ 0 
 1.
On the other hand, it is like a ferromagnetic one from the
‘point of view of magnetism’ as QMa � 1. Then it is really
a compromise structure. Further lowering of the tempera-
ture will favor the structure with the constant modulus of
magnetic moment, which is close to its value in the ferromag-
net. The full theoretical description of the coexistence phase
needs to take into account the magnetic anisotropy and both
mechanisms of superconductivity and magnetism interaction
(Bulaevskii, Buzdin, Kulić and Panjukov, 1985). The con-
clusion is that the sinusoidal modulation transforms into the
domain phase with the period d ≈ √

aξ 0 and the main role
in the real compounds is played by the exchange interaction.
The relative strength of electromagnetic and exchange inter-

action is controlled by the parameter r = F em
int

F ex
int

= �em
�ex

1
Q2λL2

.

Due to the large value of QλL 
 1 in all ternary ferromag-
netic superconductors, the exchange interaction dominates in
the formation of the domain coexistence phase. The super-
conductivity will be destroyed when the additional energy
associated with the domain phase will compensate the super-
conducting condensation energy. This gives the following
condition for the transition into the normal ferromagnetic
state Sc(T ) ≈ Tc

h0
(ξ 0/a)1/4. If Sc > 1 it simply means that

the domain phase will be stable till 0 K without the reen-
trant superconducting transition. This situation is realized in
HoMo6Se8 where the transition into the ferromagnetic state
is lacking.

The unambiguous experimental evidence of the existence
of the nonuniform magnetic structures were obtained in
the neutron diffraction measurements in ErRh4B4 (Sinha,
Crabtree, Hinks and Mook, 1982), HoMo6S8 (Lynn et al.,
1981), and HoMo6Se8 (Lynn et al., 1984). For example in
Figure 7 it is demonstrated that in ErRh4B4 (Sinha, Crab-
tree, Hinks and Mook, 1982) just below the Curie tem-
perature in the superconducting phase the satellite neutron
Bragg scattering appears in the narrow temperature inter-
val around (0.1–0.2) K below the magnetic transition. Fur-
ther lowering of the temperature provokes the transition into
the ferromagnetic state with the simultaneous destruction of
superconductivity.

Recently the coexistence of superconductivity and nuclear
magnetic order has been reported in AuIn2 (Rehmann,
Herrmannsdörfer and Pobell, 1997). The superconducting
critical temperature of this compound is Tc = 0.207 K and
the magnetic transition temperature � ≈ 35 µK though the
type of the nuclear magnetic order is not yet known. The
hyperfine interaction may play the same role as the exchange
interaction and in superconducting AuIn2 nonuniform nuclear
magnetic ordering could be expected (Kulić, Bulaevskii
and Buzdin, 1997). Coexistence of superconductivity with
magnetism gives an interesting opportunity for studying these
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Figure 7. Intensity of the neutron Bragg scattering and resistance
as a function of temperature in an ErRh4B4 (Sinha, Crabtree,
Hinks and Mook, 1982). The satellite position corresponds to
the wavelength of the modulated magnetic structure around 92 Å.
(Reprinted figure from Sinha et al., Phys. Rev. Lett. Vol. 48, 950,
1982. Copyright 1982 by the American Physical Society.)

phenomena when the electronic temperature could be very
different from the nuclear one.

4 UNCONVENTIONAL
SUPERCONDUCTIVITY: CASE
OF HEAVY FERMION COMPOUNDS

In the previous examples, two separated baths exist: one with
the localized magnetic centers, another with the Fermi sea.
In strongly correlated electronic systems as high Tc oxide,
organic conductor, or HFCs this separation is not justified.
The spin dynamics and the electronic motion are strongly
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coupled; the effective mass m* of the itinerant electron
depends on the proximity to instability points of the mag-
netism, the valence, or the charge. We will focus here on
HFCs, which are intermetallic compounds of 4f or 5f electron
(often cerium or uranium atoms). On cooling, the remain-
ing large magnetic entropy (S = R Log 2 for a doublet) is
transferred to the Fermi sea for the creation of heavy quasi-
particles; m* is often 2 orders of magnitude larger than the
bare electronic mass m0. The weak delocalization of the 4f
or 5f electrons from its site is produced by its hybridization
with the other light electrons of the Fermi sea. The corre-
sponding small effective Fermi temperature TF ∼ 100 K is
mainly given by the Kondo temperature TK of the single 4f
or 5f ion. For example, at high temperature (T > TK), the
4f electron of the Ce site behaves as a paramagnetic center
with a local Kondo energy. Below TK, each Ce site is no
more independent from the others; heavy quasiparticles are
formed in a strongly renormalized band (Flouquet, 2005).

The duality between the localized and itinerant character of
the 4f (or 5f) electrons leads to the competition between the
long-range magnetic order (AF or FM) and paramagnetism
(PM). In Ce HFC, as TK increases under pressure, the criti-
cal magnetic temperature TN or TCurie collapses at a critical
pressure PC. If the magnetism disappearance occurs contin-
uously through a second-order phase transition (the collapse
of TN is associated with that of the sublattice magnetiza-
tion Mo), PC is referred to as the magnetic quantum critical
point. In the vicinity of PC, the standard Fermi liquid proper-
ties such as temperature dependence of the resistivity in AT2

can only be observed below a characteristic temperature TI

which collapses right at PC (Figure 8a).

4.1 Heavy-fermion antiferromagnets
and superconductivity

In various cerium HFCs which are AF below PC, a super-
conducting dome appears between P+S − P−S tight to PC

(Figure 8b). The quasicoincidence of the pressure of max-
ima of Tc with PC suggests a magnetic origin for the pair-
ing. Early theoretical works on superconductivity mediated
by AF fluctuations can be found in Emery (1983), Hirsch
(1985), and Miyake, Schmitt-Rink and Varma (1986). Recent
reviews can be found in Moriya (2003) and Chubukov, Pines
and Schmalian (2004). Another source of pairing can orig-
inate from valence fluctuations near the pressure PV where
large fluctuations may occur in the occupation number nf

of the 4f shell (Onishi and Miyake, 2000). In Ce HFC,
the valence is equal to v = 4 − nf while TK is proportional
to 1 − nf. The evidence of this extramechanism is mainly
given by the observation of a maxima of Tc at a pressure far

T

T

TI

PC P

PP

PC

PCP*
C

P−s P+s P

AF

AF

(a)

(c)

(b)

(d)

AF

AF + S

S

S ′S

 PC

Figure 8. (a) P variation of the Néel temperature (TN) and the
temperature TI below which Fermi liquid properties are observed
without SC. (b) P variation of the superconducting critical temper-
ature Tc neglecting AF order parameter. (c) Possibility of bicritical
point if AF and SC expel each other. (d) Coexistence of AF and
SC with a tetracritical point.

higher than PC in CeCu2Si2 and CeCu2Ge2 (Holmes, Jac-
card and Miyake, 2004), and near the pressure PV where
strong valence fluctuations are expected. Quite often PC and
PV coincide as the collapse of AF corresponds to a strong
increase of TK which drives the system through PV (Flou-
quet, 2005).

4.2 Unconventional superconductivity

Due to the strong on-site repulsion among the f electrons, the
existence of a previous s-wave superconductivity with finite
amplitude of the Cooper pair on a given site is precluded.
An anisotropic pairing either a triplet like the p wave of
3He or a single d wave occurs. In this unconventional
superconductor, another symmetry other than the gauge one
is broken: point group, odd parity, or time reversal. Often,
the order parameter 
(k) vanishes on point nodes or line
nodes on the Fermi surface (Mineev and Samokhin, 1999).
That leads to low energy excitations highly sensitive to any
type of impurities and also to the Doppler shift produced by
a magnetic field. In these unconventional superconductors,
the clean limit is required, that is, the electronic mean free
path � must be higher than the superconducting coherence
length ξ . Increasing � leads to optimize Tc and Hc2(0).

The consequence of a huge m∗ is a large orbital limit, pro-
portional to the product H orb

c2
(0) ∼ m∗2Tc. If the zero compo-

nent of the spin of the Cooper pair exists, the Pauli–Zeeman
effect is efficient to break the Cooper pair. In case of equal
spin pairing (ESP) between ↑↑ and ↓↓ spins, no Pauli
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Figure 9. H, T phase diagram of CeCoIn5 with H//110 (filled
symbols) and H//100 (open symbols). The hatched domain is the
new mixed superconducting phase which may be a FFLO state.
(Reprinted figure from Bianchi et al., Phys. Rev. Lett. Vol. 91,
187004, 2003. Copyright 2003 by the American Physical Society.)

limit occurs. An interesting possibility, as discussed later,
is the appearance of a Fulde–Ferrell–Larkin–Ovchinnikov
(FFLO) phase at high magnetic and low temperature (Larkin
and Ovchinnikov, 1964; Fulde and Ferrell, 1964). This is
possible if the Pauli limit dominates the behavior of Hc2

at low temperature. Such a possibility seems realized in
CeCoIn5 (Radovan et al., 2003; Bianchi et al., 2003) as an
extra phase exists in this limit (Figure 9); however, other
mechanisms can occur as reentrant long-range magnetism. A
FFLO state was claimed for UPd2Al3 (Gloss et al., 1993),
and was also suggested for UBe13 (Glémot et al., 1999), but
with no further confirmation.

4.3 Ce heavy-fermion superconductors

After the unexpected discovery of superconductivity in
CeCu2Si2 (Steglich et al., 1979) at P = 0 (almost near the
quantum critical pressure Pc), the main steps were:

• the pressure variation of TC in CeCu2Si2 and the evi-
dence of similar phenomena in CeCu2Ge2 (see Holmes,
Jaccard and Miyake, 2004),

• the successive discovery of superconductivity in
CeRh2Si2 (Movshovich et al., 1996), CePd2Si2 and
CeIn3 (Mathur et al., 1998) close to PC,

• the boost on Tc by increasing the two dimensional
characters with the insertion of a TIn2 block (T = Co,
Rh, Ir) in the cubic structure of CeIn3; Tc jumps by 1
order of magnitude (Thompson et al., 2001),

• the possibility of SC in the noncentrosymmetric crystal
of CePt3Si (Bauer et al., 2004),

• the direct observation of long-range incommensurate
AF order on a CeCu2Si2 crystal (Stockert et al., 2004),
which suggests a spin density wave instability for
the origin of its quantum criticality (see Thalmeier
et al., 2004).

As an illustrating example let us focus on the interplay
between antiferromagnetism and superconductivity in the 1,
1, 5 compound CeRhIn5 with the possibility to tune through
the different phases by the two P and H external variables.
The increase in the two dimensional character leads to the
favorable situation of quite comparable values in the maxima
of their transition temperature Tc = 2.4 K and TN = 4 K: an
ideal example for the study of the interplay between AF and
SC (Figure 10).

A key question is the domain of the coexistence of AF and
SC. If SC will not appear, the popular view of Ce HFC is
that TN collapses almost linearly with the pressure at PC as
shown in Figure 8(a). Neglecting the AF boundary, SC will
appear between P−S and P+S with a temperature maxima Tc

near PC (Figure 8b). For the interference of both AF and SC
order parameter, the simple approach is to consider an extra
coupled term β in the Landau energy. If β > 0, superconduc-
tivity and magnetism compete. A bicritical point exists with
a first-order separation between AF and SC phases at P ∗

C
(Figure 8c). If β < 0 a tetracritical point appears and each
phase enhances the other (Figure 8d) (Flouquet et al., 2006).
Of course in this correlated system, β may depend on P .

At P = 0, CeRhIn5 is a AF with TN = 3.8 K. In this
AF state the normal state persists down to 0 K up to
0.8 GPa. Zero resistivity SC anomalies are detected between
0.8 and 1.5 GPa. Only above 1.5 GPa up to P ∗

C ∼ 2 GPa,
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Figure 10. P, T phase diagram of CeRhIn5 from specific heat (◦,
•) susceptibility (
), and resistivity (X) measurements. Below
1.5 GPa CeRhIn5 is an incommensurate AF in a normal state, the
hatched region indicates an inhomogeneous SC state, the white
one is the region (AFI + SC) where a SC specific heat anomaly is
detected below TN for P < P ∗

c . A pure SC without AF is realized
for P > P ∗

c . The inset show the extrapolation of TN to zero at PC

in absence of SC, the (♦) indicates the temperature where above
P ∗

c , TN (H) crosses Tc (H ) (Knebel et al., 2006). (Reprinted figure
from J. Flouquet et al., Phys. Rev. B Vol. 74, 020501 (2006).)
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a broadened specific heat appears below TN linked to SC,
however, its temperature maxima Tc(C) is higher than the
one detected in susceptibility Tc(χ) or in resistivity Tc(ρ)

(Knebel et al., 2004). At least, the SC phase transition is
inhomogeneous. Surprisingly, NMR experiments lead to the
conclusion of homogeneous gapless superconductivity below
Tc(P ) (Kawasaki et al., 2003). At the opposite end above
P ∗

C, only a sharp specific heat anomaly characteristic of
SC is detected on cooling for H = 0. The reason is that,
just below P ∗

C, where TN > Tc, only few parts of the Fermi
surface are involved by AF, and SC is not precluded below
TN. While, above P ∗

C, when Tc will be greater than TN, a
large part of the FS is gapped, and thus, AF cannot appear.
At first glance, AF and SC are antagonist (Figure 10) but
these qualitative arguments do not exclude the possibility of
a narrow P domain of a coexistence of SC and AF with a
tetracritical point. At least, without SC, AF will collapse at
higher pressure PC than P ∗

C defined by Tc(P
∗
C) = TN (P ∗

C).
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Figure 11. (a) At T = 0 K, expected pressure dependence of the
magnetic critical field Hm between AF and PM states and the
uppercritical field Hc2 (0). (b) At T = 0 K, the extrapolated phase
diagram of CeRhIn5 for H in the basal plane. At zero pressure,
the AF is incommensurate (AFI); above H ∗

m = 2.5 T, it becomes
commensurate (AFIII). For P > P ∗

C and H H ∗
m, SC and AF are

suspected to coexist. AFI + SC and AFIII + SC are the coexistence
regimes of AFI and AFIII with SC, respectively. SC represents
a pure superconducting phase (•) and (◦) indicates to T = 0
extrapolated values of Hc2 and H ∗

m from the experiment of Knebel
et al. (2006), respectively. (
) gives the lowest field at which the
induced transition at TM is observed (♦) is the value of Hm at
p = 0 (Takeuchi et al., 2001).

The magnetic field can modify the AF–SC boundary.
As indicated Figure 11(a), in CeRhIn5, the critical magnetic
field Hm between AF and PM domain is high: Hm ∼ 50 T
(Takeuchi et al., 2001) for H//a axis while Hc2(0) between
PC and P ∗

C is around 8 T. Furthermore, it is expected that
Hm will depend weakly on P for P < P ∗

C. Thus applying
a magnetic field can lead to recover the situation where TN

(P, H) > Tc (P, H ), and thus, of H reentrance of AF. At
first approximation between PC and P ∗

C, Tc (P, H) depends
strongly on H but weakly on P , while TN (P, H) depends
weakly on H and strongly on P :

TN(P, H)=TN(P ∗
C)

PC − P

PC − P ∗
c

Tc(P, H)∼Tc(P
∗
C)

H0 − H

H0

(9)
H reentrance of AF will appear for H1,2 equal to

H1,2 = H0 − H0
PC − P

PC − P ∗
C

(10)

Specific heat experiments have been realized recently
in Los Alamos (Park et al., 2006) and Grenoble (Knebel
et al., 2006). Outside differences in the values of P ∗

C 1.8
and 1.95 GPa respectively, both measurements show the H

emergence of another phase below a pressure around PC.
Figure 12 shows at 2.4 GPa the two phase transitions already
for H > 4 T: the first one is purely SC, the second one at
lower temperature implies presumably an order parameter
where SC and AF are coupled. Above PC, for example,
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Figure 12. Results of ac microcalorimetry experiments: (a) C/T
in arbitrary unit at 2.41 GPa (P < PC) with the appearance of
the second phase transition in the SC phase and (b) at 2.73 GPa
(P > PC) with the disappearance of the second phase transition
(Knebel et al., 2006). (Reprinted figure from J. Flouquet et al.,
Phys. Rev. B Vol. 74, 020501 (2006).)
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at 2.7 GPa, this anomaly disappears and only a unique
SC phase transition is observed. As H ∗

c is lower than
H1,2, AF may reappear in a dense vortex matter. One of
the peculiarity of the system close to PC is that, here,
superconducting (ξ 0) and magnetic coherent (ξm) lengths
have a comparable nanometer scale in contrast to previous
normal RE intermetallic compounds where ξm (T = 0 K)
corresponds to atomic distances. The Figure 11(b) shows an
extrapolation of the H, P phase diagram at H = 0 K for H in
the basal plane. Above H*m, the AF structure has switched
from incommensurate to commensurate.

At H = 0, SC precludes to reach the magnetic quantum
critical point, however, the magnetic field can restore its
vicinity. That may be the situation for CeCoIn5 with the
magnetic field applied along the c axis (Paglione et al.,
2003). For the superconductors CeIn3, CeRh2Si2, CeCu2Si2,
CePd2Si2, and CePtSi3, AF looks to collapse via a first-order
transition. Table 2 lists for different Ce HFC superconductors
the value of TN (max), Tc (max), and the corresponding
pressures PC and P (Tc (max)), as well as the estimated value

Table 2. Parameters of some Ce heavy-fermion superconductors:
TN (max) and Tc (max) in Kelvin, the temperature maxima of their
Néel and superconducting temperatures. Pc the critical pressure
where TN is suspected to collapse, P (Tc (max)) the pressure
(in GPa) where Tc reaches its maxima in pressure. The linear
T term (γ ) of the specific heat at P = 0 in mJ mol−1 K−2.
The superconducting coherence length ξ 0 is between 30 and
200 Å.

TN (max) Tc (max) PC P(Tc (max)) γ (P = 0)

CeCu2Si2 – 2.5 0 4 1000
CeCu2Ge2 4 2 10 16 –
CeIn3 10 0.2 2.5 2.4 140
CeRh2Si2 36 0.5 1.0 1.0 22
CePd2Si2 8 0.4 2.7 2.6 250
CeRhIn5 3.8 2.4 2.5 2.5 150
CeIrIn5 – 0.7 0 0 720
CeCoIn5 – 2.4 1.5 1.5 1000
CePt3Si 2.2 0.8 0.6 0 400

Table 3. The same parameters for some U heavy-fermion super-
conductors. For UGe2 and URhGe, the order is ferromagnetic, TN

is replaced by TCurie.

TN (max) or Tc (max) PC P(Tc (max)) γP = 0
TCurie (max)

UBe13 – 0.95 – 0 1000
UPt3 6 0.55 0.6 0. 457
URu2Si2 >20 1.2 >12 0 70
UPd2Al3 14 2 >40 0 140
UGe2 54 0.7 1.6 1.2 35
URhGe >10 0.3 >10 0 160

of the T linear coefficient γ of the specific heat in its normal
state at P = 0. Table 3 shows the parameter for the uranium
HFC which becomes superconductor (see Flouquet, 2005).
These observations after the discovery of SC in CeCu2Si2
have boosted the studies of SC. As excellent crystals can
be obtained, for the superconductors already at zero pressure
careful experiments have largely contributed to progress on
unconventional superconductivity.

4.4 Ferromagnetic superconductors: UGe2
and URhGe

The discovery of superconductivity in UGe2 under pres-
sure (Saxena et al., 2000), deep inside its ferromagnetic
phase, was unexpected. At P = 0, UGe2 is a ferromag-
net with TCurie = 54 K and a sublattice magnetization Mo =
1.48 µB/U atom; its γ term is 35 mJ mol−1 K−2. The 5f
electrons of the U atom are considered to be itinerant. As
reported now for many itinerant ferromagnets, FM disappears
at PC = 1.6 GPa through a first-order transition characterized
by a jump 
Mo of Mo equal to 0.8 µB/U atom. P stud-
ies show two FM phases, FM1 and FM2 (Figure 13). The
FM2 –FM1 boundary terminates at PX (T = 0) ∼ 1.2 GPa at
T = 0 K, and the first-order line (PX, TX) seems to end up at
a critical point around T c

X ∼ 15 K and P c
X ∼ 0.7 GPa (Huxley

et al., 2001). Superconductivity appears above 1.0 GPa when
TCurie is still high and Mo large (∼1 µB); Tc (max) ∼ 700 mK
for P = PX. The estimation of the exchange field (100 T)
seems to preclude a singlet component. Furthermore triplet
ESP is suspected with even the possibility of only majority
spin pairing. Flux flow experiments have supported the bulk
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Figure 13. T , P phase diagram of the ferromagnetic superconduc-
tors UGe2. The Curie temperature TCurie (•), the supplementary
temperature TX (�) which leads to first-order transition at T → 0 K
and the superconducting temperature Tc ( ) are shown. (Reprinted
figure from Huxley et al., Phys. Rev. B Vol. 63, 144519, 2001.
Copyright 2001 by the American Physical Society.)



Magnetic superconductors 13

nature of superconductivity which were confirmed by direct
specific heat measurements (Tateiwa et al., 2004). The coex-
istence of superconductivity and ferromagnetism was verified
by neutron scattering and recently by NQR measurements
on Ge sites (Harada et al., 2005). The nuclear relaxation rate
T −1

1 exhibits a peak at TCurie and a change of slope at Tc from
a Korringa law to a T 3 law compatible with unconventional
superconductivity with ESP.

Open questions are the mechanism of superconductivity
and the variation of the SC order parameter on both side
of the first-order line (TX, PX). An appealing possibility is
that a charge-density wave plays a major role (Watanabe
and Miyake, 2002). However, no extra reflections have
been detected in neutron diffraction experiments; evidence
may have been found in careful calorimetric measurements
(Lashley et al., 2006).

Applying a magnetic field along the easy axis of the
orthorhombic crystal above PX leads to jump at HX from
FM1 to FM2, and even from PM to FM1 and FM2 above
PC. The interesting feature is that just above PX for P =
1.35 GPa, the metamagnetic jump from FM1 to FM2 at
HX ∼ 1 T modifies the SC properties, Hc2 (0) jumping from
2 to 3 T: de facto it corresponds to two different Tc. A recent
spectacular example is given later with the H reentrance of
SC in URhGe.

A progress in ferromagnetic superconductors seems to be
achieved with the observation of SC already at P = 0 in
the ferromagnet URhGe with Tc ∼ 300 mK for TCurie = 10 K
and Mo = 0.4 µB/U atom (Aoki et al., 2001). SC specific
heat jump 
C

γTc
∼ 0.45 was detected on polycrystals. Under

pressure, TCurie increases linearly with P reaching 20 K at
12 GPa while P+S ∼ 4.5 GPa. The growth of small clean
crystals allows Hc2 measurements along the three a, b, c axis
of the orthorhombic crystal; the easy magnetization axis is c

(Figure 14) (Hardy and Huxley, 2005). Good fits are obtained
with only the orbital limit. Taking into account the relative
temperature variation of Ha

c2
, Hb

c2
, H c

c2
, it was proposed as an

ESP between the majority spin paired of the ka| ↑↑〉 state.
The surprise was the observation of H reentrant SC for

H//b associated with a field reorientation of the ordered
magnetization Mo from c to b axis at HR ∼ 12 T (Figure 15)
(Levy et al., 2005). In this strongly correlated system, a field
reorientation of the magnetic structure is presumably asso-
ciated with a modification of the spin fluctuation spectrum,
which may react on the pairing mechanism. The jump of
the b component of Mo is reminiscent of the metamagnetic
phenomena extensively studied in the HFC CeRu2Si2 and
URu2Si2 with the consequence on the dressing of the quasi-
particles (m*) (see Flouquet, 2005).

Progress in ferromagnetic superconductors requires a new
generation of crystals. Up to now, the attempts to dis-
cover Ce ferromagnetic SC have failed. The fast claim of
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Figure 14. In URhGe, temperature variation of the upper critical
field Hc2(T ) measured along the a, b, and c axis of a simple crystal
with residual resistivity ratio RRR = 21. The solid line show the
prediction of the polar state ka| ↑↑〉. The dotted line is the BCS
dependence for the c axis including the paramagnetic limitation
and the dashed lines the calculated BCS dependence without
paramagnetic limitation (Hardy and Huxley, 2005). (Reprinted
figure from Hardy et al., Phys. Rev. Lett. Vol. 94, 247006, 2005.
Copyright 2005 by the American Physical Society.)

superconductivity in the ZrZn2 ferromagnet appears erro-
neous (Pfleiderer et al., 2001; Flouquet, 2005).

On the theoretical side, classification of the SC order
parameter was made on general symmetry arguments (Samo-
khin and Walker, 2002; Mineev, 2002). The stabilization
of superconductivity on the FM1 side (P < PC) was dis-
cussed on the basis of a positive feedback between magnetic
moments of the Cooper pair and the magnetization density
(Walker and Samokhin, 2002; Mineev, 2002). An alternative
idea, if the magnetic anisotropy is weak, is the enhancement
of Tc due to the coupling of the magnons to the longitu-
dinal magnetic susceptibility (Kirkpatrick, Belitz, Vojta and
Narayanan, 2001). As mentioned, an interesting proposal is
that CDW are associated with FM. A phenomenological twin
peak electronic structure was also developed to explain the
maxima of Tc at PX in UGe2 (Sandeman, Lonzarich and
Schofield, 2003). Possibility of s-wave superconductivity was
pointed out by Suhl (2001) and Abrikosov (2002), but ferro-
magnetism needs to be localized. In UGe2, the 5f electrons
are considered to be itinerant and the reported preliminary
experiments favor a triplet pairing.

With a SC order parameter coupled with Mo, one may
ask if domain walls are weak links (Machida and Ohmi,
2001; Fomin, 2001), the occurrence of domain wall super-
conductivity (Buzdin and Mel’nikov, 2003), and finally the
evolution of the FM domain structure through SC (Faure and
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Figure 15. In (a) The total magnetic moment M total and the
component Mb measured for H//to the b axis. In (b), variation of the
resistance at 40 and 500 mK with the field reentrance of SC between
8 and 12 T (Levy, Sheikin, Grenier and Huxley, 2005). (From Levy
et al., SCIENCE 309: 1343 (2005). Reprinted with permission from
AAAS.)

Buzdin, 2005). A shrinkage of the domain width below Tc

is proposed with, furthermore, quite a different T behavior
between singlet and triplet pairing.

5 SUPERCONDUCTOR/FERROMAGNET
HETEROSTRUCTURES

5.1 Proximity effect in ferromagnets

The coexistence of singlet superconductivity with ferromag-
netism was not observed in bulk compounds, but it may
be easily achieved in artificially fabricated layered ferro-
magnet/superconductors (F/S) systems. Due to the proximity
effect, the Cooper pairs can penetrate into the F layer and
induce superconductivity there. This provides the unique pos-
sibility to study the properties of superconducting electrons
under the influence of a huge constant exchange field act-
ing on the electron spins. In addition, it is possible to study
the interplay between superconductivity and magnetism in a
controlled manner, since by varying the layer thicknesses
and magnetic content of F layers we change the relative
strength of two competing orderings. The behavior of the
superconducting condensate under these conditions is quite

peculiar (see as reviews Buzdin, 2005; Bergeret, Volkov and
Efetov, 2005).

Long time ago Larkin and Ovchinnikov (1964) and Fulde
and Ferrell (1964) demonstrated that in a pure superconduc-
tor at low temperature the paramagnetic effect leads to the
nonuniform superconductivity (it is the so-called FFLO or
LOFF state). The appearance of modulation of the super-
conducting order parameter in FFLO state is related to the
Zeeman’s splitting of the electron’s level under magnetic
field acting on electron spins. To demonstrate this, we may
consider the simplest case of the 1D superconductor. In the
absence of the field, a Cooper pair is formed by two electrons
with opposite momenta +kF and −kF and opposite spins
(↑) and (↓) respectively. The resulting momentum of the
Cooper pair kF + (−kF) = 0. Under a magnetic field, because
of the Zeeman’s splitting, the Fermi momentum of the elec-
tron with spin (↑) will shift from kF to k1 = kF + δkF, where
δkF = µBH /vF and vF is the Fermi velocity. Similarly, the
Fermi momentum of an electron with spin (↓) will shift from
−kF to k2 = −kF + δkF (see Figure 16). Then, the resulting
momentum of the Cooper pair will be k1 + k2 = 2δkF �= 0,
which just implies the space modulation of the superconduct-
ing order parameter with a resulting wave vector 2δkF.

Due to the incompatibility of ferromagnetism and super-
conductivity, it is not easy to verify this prediction on exper-
iment. Moreover the electron scattering on the impurities
destroys the FFLO state very quickly and its observation
is possible only in the clean limit (Aslamazov, 1968). It
happens that in a ferromagnet in contact with a superconduc-
tor the Cooper pair wave function has a damped oscillatory
behavior (Buzdin, Bulaevskii and Panjukov, 1982), which
may be considered in some sense as an analogy with the
decaying nonuniform FFLO superconducting state. Indeed,

E

k

kF−dkF

kF+dkF

Figure 16. Energy band of the 1D superconductor near the Fermi
energy. Due to Zeeman splitting, the energy of the electrons with
spin orientation along the magnetic field (↑) decreases, dotted line,
while the energy of the electrons with the opposite spin orientation
(↓) increases, dotted line. For more details see text.
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when a superconductor is in a contact with a normal metal
the Cooper pairs penetrate across the interface at some dis-
tance inside the metal. A Cooper pair in a superconductor
comprises two electrons with opposite spins and momenta.
In a ferromagnet the up spin electron (with the spin ori-
entation along the exchange field) decreases its energy by
h, while the down spin electron increases its energy by the
same value. To compensate this energy variation, the up spin
electron increases its kinetic energy, while the down spin
electron decreases it. In the result, the Cooper pair acquires
a center of mass momentum 2δkF = 2h/vF which implies the
modulation of the order parameter with the period πvF/h.
The direction of the modulation wave vector must be per-
pendicular to the interface, because only this orientation is
compatible with the uniform order parameter in the super-
conductor. This phenomenon, however, is quite general and
must be present in both the clean and dirty limits (Buzdin
and Kuprianov, 1990). It results in many interesting effects:
the spatial oscillations of the electron’s density of states, the
nonmonotonous dependence of the critical temperature of
S/F multilayers and bilayers on the ferromagnet layer thick-
ness, the realization of the Josephson ‘π ’ junctions in S/F/S
systems. The interplay between the superconductivity and
the magnetism in S/F structures occurs at the nanoscopic
range of layer thicknesses and the observation of these effects
became possible only recently due to the great progress in
the preparation of high-quality hybrid F/S systems.

Let us consider the question of the proximity effect for a
weak ferromagnet described by the decay of the supercon-
ducting correlations in a ferromagnet (x > 0) in contact with
a superconductor (x < 0). If the electron scattering mean free
path l is small (which is usually the case in S/F systems), the
most natural approach is to use the Usadel equations (Usadel,
1970) for the Green’s functions averaged over the Fermi sur-
face. The linearized Usadel equation for the anomalous Green
function Ff in the ferromagnet reads

(
|ω| + ih sgn(ω) + 1

τ s

)
Ff − Df

2

∂2Ff

∂x2
= 0 (11)

where ω = (2n + 1)πT are the Matsubara frequencies, and
Df = (1/3)vF1 is the diffusion coefficient in the ferromagnet.
The parameter 1

τ s
describes the magnetic scattering in

the ferromagnetic alloys used as F layers. Note that this
form of the Usadel equation in the ferromagnet implies
a strong magnetic uniaxial anisotropy, when the magnetic
scattering in the plane (xy) perpendicular to the anisotropy
axis is negligible (Buzdin, 2005). In the F region, we
may neglect the Matsubara frequencies compared to the
large exchange field (h 
 Tc). Also assuming first that the
magnetic scattering is weak, we readily obtain the decaying

solution for Ff

Ff(x, ω > 0) = A exp

(
−1 + i

ξ f
x

)
(12)

where ξ f = √
Df/h is the characteristic length of the super-

conducting correlations decay (with oscillations) in F layer.
Due to the condition h 
 Tc, this length is much smaller than
the superconducting coherence length ξ 0s = √

Ds/(2πTc)

(where Ds is the diffusion constant in the superconductor),
that is, ξ f � ξ 0s. In a ferromagnet, the role of the Cooper
pair wave function is played by � that decays as

� ∝
∑
ω

Ff(x, ω) ∝ 
 exp

(
− x

ξ f

)
cos

(
x

ξ f

)
(13)

The presented analysis brings in evidence of the appearance
of the oscillations of the order parameter in the presence of an
exchange field. The different behavior of the superconducting
order parameter in S/F and S/N systems is illustrated
schematically in Figure 17.

The damping oscillatory behavior of � is the fundamental
difference between the proximity effect in S/F and S/N sys-
tems, and it is at the origin of many peculiar characteristics
of S/F heterostructures. In the absence of the magnetic scat-
tering the scale for the oscillation and decay of the Cooper
pair wave function in a ferromagnet is the same. If we
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Ψ

S F

x

x

Figure 17. Schematic behavior of the superconducting order
parameter near the (a) superconductor–normal metal and
(b) superconductor–ferromagnet interfaces. The continuity of
the order parameter at the interface implies the absence of the
potential barrier. In the general case at the interface the jump of
the superconducting order parameter occurs.
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take into account the magnetic scattering, then the decay-
ing length ξf 1 becomes smaller than the oscillating length

ξf 2. Namely ξf 1 = ξf√√
1+α2+α

and ξf 2 = ξf√√
1+α2−α

, where

the parameter α = 1
τ sh

characterizes the relative strength of
the magnetic scattering. The damped oscillatory behavior of
the order parameter may lead to the electronic density of
states oscillations in a ferromagnet in contact with a super-
conductor (Buzdin, 2000). This prediction has been con-
firmed by the experiment by Kontos, Aprili, Lesueur and Gri-
son (2001), which up to now remains the only experimental
observation of the density of states oscillations in the F layer.
The magnetic scattering effect complicates this type of exper-
iment, strongly reducing the amplitude of the oscillations.

5.2 Oscillatory superconducting transition
temperature in S/F multilayers and bilayers

The damped oscillatory behavior of the superconducting
order parameter in ferromagnets may produce the commen-
surability effects between the period of the order parameter
oscillation (which is of the order of ξf 2) and the thickness of
a F layer. This results in the striking nonmonotonous super-
conducting transition temperature dependence on the F-layer
thickness in S/F multilayers and bilayers. Indeed, for a F-
layer thickness smaller than ξf 2, the pair wave function in
the F layer changes a little and the superconducting order
parameter in the adjacent S layers must be the same. The
phase difference between the superconducting order param-
eters in the S layers is absent and we call this state the ‘0’
phase. On the other hand, if the F-layer thickness becomes
of the order of ξf 2 the pair wave function may go through
zero at the center of the F layer providing the state with the
opposite sign (or shift of the phase) of the superconducting
order parameter in the adjacent S layers, the so-called ‘π ’
phase. The increase of the thickness of the F layers may
provoke the subsequent transitions from ‘0’ to ‘π ’ phases,
which superpose on the commensurability effect and results
in a very special dependence of the critical temperature on
the F-layer thickness (Buzdin and Kuprianov, 1990; Radovic
et al., 1991). The experimental observation (Jiang, Davi-
dović, Reich and Chien, 1995) of this unusual dependence in
Nb/Gd was the first strong evidence in favor of the ‘π’-phase
appearance – see Figure 18.

For the S/F bilayers, the transitions between ‘0’ and ‘π ’
phases are impossible; nevertheless, the commensurability
effect between ξf 2 and the F-layer thickness also leads
to the nonmonotonous dependence of Tc on the F-layer
thickness. Processes of the normal quasiparticle reflection
at the free F-layer boundary and Andreev reflection at SF
interface interfere and this results in Tc minima that is
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Figure 18. Oscillatory-like dependence of the critical temperature
of Nb/Gd multilayers versus thickness of Gd layer (Jiang, Davi-
dović, Reich and Chien, 1995). Dashed line in (a) is a fit using the
theory (Radovic et al., 1991). (Reprinted figure from Jiang et al.,
Phys, Rev. Lett. Vol 74, 314, 1995. Copyright 1995 by the American
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Figure 19. Critical temperature of Nb/Cu0.43Ni0.57 bilayer versus
the thickness of the ferromagnetic layer (Ryazanov et al., 2004).
(With kind permission of Springer Science and Business Media:
Journal of Low temp. Physics., v 136, 2004, 385, Ryazanov et al.,
figure 3.)

reached when the F-layer thickness is close to a quarter of
the spatial oscillation period. The dependence of the Tc of
Nb/Cu0.43Ni0.57 bilayer on the F-layer thickness (Ryazanov
et al., 2004) is presented in Figure 19.
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5.3 Superconductor-ferromagnet-superconductor
‘π’ junction

The experiments on the critical temperature of the S/F multi-
layers and bilayers attracted a lot of interest to the proximity
effect in S/F systems but their interpretations were con-
troversial due to the very small value of the characteristic
length ξf 2 (only several nanometers). The most direct proof
of the ‘π ’-phase observation would be the observation fol-
lowing the theoretical predictions (Buzdin, Bulaevskii and
Panjukov, 1982; Buzdin and Kuprianov, 1991) of the van-
ishing of the critical current at the ‘0’- to ‘π’-phase tran-
sition. The first experimental evidence of a ‘0’–‘π ’ transi-
tion in S/F/S (Nb–CuxNi1–x –Nb) Josephson junction was
obtained in Ryazanov et al. (2001) from the measurements
of the temperature dependence of the critical current. The
‘0’–‘π ’ transition was signaled by the vanishing of the crit-
ical current with the temperature decrease. Such a behavior
is observed for a F-layer thickness d close to some critical
value dc. In fact, it simply means that the critical thickness dc

slightly depends on the temperature. The temperature vari-
ation serves as fine tuning and permits one to study this
transition in detail. Later, the damped oscillations of the
critical current as a function of the F-layer thickness were
observed in Nb/Al/Al2O3/PdNi/Nb (Kontos et al., 2002) and
Nb/Cu/Ni/Cu/Nb (Blum, Tsukernik, Karpovski and Palevski,
2002) junctions. Very recent experiments (Oboznov et al.,
2006) have enabled observation of the two-node thickness
dependence of the critical current in Josephson SFS junc-
tions with a ferromagnetic interlayer, that is, both direct
transition into π state and reverse one from π into 0 state
(Figure 20).
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Figure 20. The double-reversal F-layer thickness dependence of
the critical current density for Nb/Cu0.47Ni0.53/Nb junctions at
temperature 4.2 K (Oboznov et al., 2006). The open circles
present experimental results, the dashed line shows the fit using
equation (14). (Reprinted figure from Oboznov, Buzdin et al., Phys.
Rev. Lett. Vol. 96, 197003, 2006. Copyright 2006 by the American
Physical Society.)

This revealed that the observed in Ryazanov, Oboznov,
Veretennikov and Rusanov (2001) the ‘0’ to ‘π’ transition
with the F-layer thicknesses was the second one. The first
transition occurs for F-layer thickness around 10 nm. The
temperature dependences of the critical current near the
first and the second ‘0’ to ‘π ’ transitions are presented in
Figure 21.

The complete quantitative analysis of the S/F/S junctions
is rather complicated, because the ferromagnetic layer may
strongly modify superconductivity near the S/F interface. In
addition, the boundary transparency and electron mean free
path, as well as magnetic scattering, are important parameters
affecting the critical current. In the case of small conductivity
of the F layer or small interface transparency, the ‘rigid
boundary’ conditions (Golubov, Kupriyanov and Il’ichev,
2004) are applied, and the influence of the ferromagnet on
the superconducting order parameter in the electrodes may be
neglected. This solution of (11) describes the F(x) behavior
near the critical temperature and gives the sinusoidal current-
phase dependence Is(ϕ) = Ic sin(ϕ) where ϕ is the phase
difference on the junction. The critical current Ic passes
through zero and changes its sign with the increase of the
F-layer thickness.

In the most interesting limit from the practical point of
view, when the F-layer thickness is df > ξf 1 the universal
expression for the Ic(df) dependence is (Buzdin, 2005)

Ic∞ exp

(
− df

ξf 1

)
sin

(
df

ξf 2
+ α

)
(14)

where the angle π /4 < α < π/2 depends on the magnetic
scattering amplitude and the boundary transparencies.

Bulaevskii, Kuzii and Sobyanin (1977) pointed out that
‘π’ junction incorporated into a superconducting ring would
generate a spontaneous current, and a corresponding mag-
netic flux would be half a flux quantum �0 = h/2e. The
appearance of the spontaneous current is related to the fact
that the ground state of the ‘π ’ junction corresponds to the
phase difference π and so, this phase difference will generate
a supercurrent in the ring which short circuits the junction.
Naturally the spontaneous current is generated if there is any
odd number of ‘π’ junctions in the ring. This circumstance
has been exploited in an elegant way (Ryazanov, Oboznov,
Veretennikov and Rusanov, 2001) to provide unambiguous
proof of the ‘π ’-phase transition. The observed half-period
shift of the external magnetic field dependence of the trans-
port critical current in triangular S/F/S arrays was observed
on the ‘0–π’ transition occurred with temperature variation.

The current-phase relation for Josephson junction is sinu-
soidal Is(φ) = I1 sin(φ) only near the critical temperature Tc

(Abrikosov, 1988). At low temperature the higher harmonic
terms appear. However, in the diffusive limit at df > ξf 1
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they are very small and in the usual junctions their pres-
ence is hardly to be observed. In S/F/S junctions in general
in the dirty limit I1 ∼ exp(−df/ξf 1) and the second har-
monic contribution happens to be very small and positive
∼ exp(−2df/ξf 1). The peculiarity of the situation with the
‘0’–‘π ’ transition is that in the transition region the first har-
monic term changes its sign passing through zero and then
the role of the second harmonic contribution becomes pre-
dominant! To study the scenario of the ‘0’–‘π ’ transition let
us address the general current-phase relation

j (ϕ) = I1 sin(ϕ) + I2 sin(2ϕ) (15)

which corresponds to the following phase dependent contri-
bution to energy of the Josephson junction

EJ(ϕ) = �0

2πc

[
−I1 cos(ϕ) − I2

2
cos(2ϕ)

]
(16)

If we neglect the second harmonic term, then the 0 state
occurs for I1 > 0. Near a ‘0’–‘π ’ transition I1 → 0 and
the second harmonic term becomes important. The critical

current at the transition jc = |I2| and if I2 > 0, the minimum
energy always occurs at ϕ = 0 or ϕ = π .

In the opposite case (I2 < 0) the transition from 0 to
π state is continuous, and there is region where the equi-
librium phase difference takes any value 0 < ϕ0 < π . The
characteristics of such a ‘ϕ junction’ are very peculiar but
at the moment there are no experimental evidences of its
observation.

5.4 F /S /F spin-valve sandwiches

The strong proximity effect in superconductor-metallic fer-
romagnet structures could lead to the phenomenon of spin-
orientation-dependent superconductivity in F/S/F spin-valve
sandwiches. A long time ago De Gennes (1966) considered
theoretically the system consisting of a thin superconduct-
ing layer in between two ferromagnetic insulators. He argued
that the parallel orientation of the magnetic moments is more
harmful for superconductivity because of the presence of the
nonzero averaged exchange field acting on the surface of
the superconductor. This prediction has been confirmed on
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experiment by Hauser on In film sandwiched between two
Fe3O4 films (Hauser, 1969), and on a In film between oxi-
dized FeNi and Ni layers (Deutscher and Meunier, 1969).

A similar effect has been predicted for metallic F/S/F sand-
wiches (Tagirov, 1999; Buzdin, Vedyayev and Ryzhanova,
1999) and later observed on experiment in CuNi/Nb/CuNi
(Gu et al., 2002) and Ni/Nb/Ni (Moraru et al., 2006)
systems.

In the diffusive regime the proximity effect in S/F struc-
tures with local inhomogeneity of the magnetization may
be rather special (Bergeret, Volkov and Efetov, 2005). The
varying in space magnetization generates the triplet compo-
nent of the anomalous Green’s function ∼ 〈�↑�↑〉 which
may penetrate in the ferromagnet at distances much larger
than ξ f. It is not, however, the triplet superconductivity itself
because the corresponding triplet order parameter would be
equal to zero, unlike the superfluidity in He3, for example.
In general, the triplet components of the anomalous Green’s
function always appear at the description of the singlet super-
conductivity in the presence of rotating in space exchange
field. An important finding (Bergeret, Volkov and Efetov,
2005) was the demonstration that in some sense the triplet
component is insensitive to pair breaking by the exchange
field and can generate the triplet long-range proximity effect.
The special long-range triplet proximity effect was predicted
to exist in the dirty limit. In the clean limit it disappears, the
spin-orbit and magnetic scattering also destroy this effect. Up
to know there are no reports on its experimental observation.

The proximity effect is related to the passing of electrons
across the superconductor/ferromagnet interface. In addition
to this effect if the magnetic field created by the ferromagnet
penetrates into a superconductor, it switches on the orbital
mechanism of superconductivity and magnetism interaction.
The situation when it is the only one mechanism of super-
conductivity and magnetism interaction is naturally realized
in the case, when the ferromagnet is an insulator or the
buffer oxide layer separates the superconductor and the fer-
romagnet. The ferromagnet in such a case plays the role
of the additional source of the local magnetic field. In par-
ticular the nucleation of superconductivity in the presence
of domain structure occurs near the domain walls (Buzdin
and Mel’nikov, 2003; Moshchalkov, Ducan, Gobulovic and
Mathieu, 2006). The hybrid S/F systems have been inten-
sively studied in connection with the problem of the con-
trolled flux pinning. Enhancement of the critical current has
been observed experimentally for superconducting films with
arrays of submicron magnetic dots and antidotes (as a review
on this subject see Lyuksyutov and Pokrovsky, 2005).

During the last 5 years an enormous progress in the con-
trollable fabrication of the superconductor-ferromagnet het-
erostructures has been achieved. The peculiar effects pre-
dicted earlier were observed in experiments and we have a

general understanding of the mechanism of the superconduc-
tivity and ferromagnetism interplay in S/F systems. Now this
domain of research enters into a period where design of new
types of devices becomes feasible and we may expect a lot
of interesting findings in the near future.

6 CONCLUSION AND PERSPECTIVES

The RE ternary and quaternary compounds display a
rich physics of magnetism and singlet superconductivity
coexistence. The reentrant superconductivity and the nonuni-
form magnetic structure formation in ErRh4B4 and HoMo6S8

compounds may be very well described in the framework of
the existing theoretical background. It exists a good under-
standing of the physics of the antiferromagnetic supercon-
ductors with localized magnetic moment. On the other hand,
a substantial theoretical progress is needed to attend a break-
through in the problems of the interplay between the itinerant
magnetism and superconductivity and heavy-fermion super-
conductivity.

The studies of HFC have opened the field of uncon-
ventional superconductivity. The domain which had been
in a shadow during the rush on high Tc superconduc-
tors knows again a new boost with the discovery of
new materials (the 1,1,5 cerium family, uranium ferro-
magnetic superconductors, the interplay of superconduc-
tivity with multipolar ordering), and also with the neces-
sity to make precise the role of quantum critical points
on superconductivity with fine P or H tuning (condi-
tions often easy achieved in HFC). For the general prob-
lems under debate on the unconventional superconductiv-
ity and its links with normal phase properties, HFCs are
excellent systems to observe in great detail SC interplay
with the magnetic and valence phase diagrams. Key ques-
tions are:

– the evolution of the Fermi surface in the vicinity of P ∗
C

or PC ,
– the role of impurities on the magnetic and SC bound-

aries,
– direct observation of first order transition (search for

discontinues in volume or sublattice magnetization),
– unambiguous evidence of a valence transition (progress

in the resolution of high energy spectroscopy are
promising) for the mechanism

– the development of a new generation of measurements
for the determination of the order parameter under
pressure.

Finally the artificial superconductor-ferromagnet hetero-
structures provide a possibility to study the interplay between
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superconductivity and magnetism in a controlled manner.
The oscillatory behavior of the Cooper pair wave func-
tion in ferromagnet permits fabrication of the new type of
Josephson junction – ‘π junction’ which opens an interest-
ing perspective for the potential applications of these S/F
heterostructures.
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1 INTRODUCTION

The continuum theory of micromagnetism, which was devel-
oped in the 1930s and 1940s, was intended to bridge the
gap between the phenomenological Maxwell’s theory of
electromagnetic fields and quantum theory based on atomic
backgrounds. In Maxwell’ s theory material properties are
described by global permeabilities and susceptibilities valid
for macroscopic dimensions. On the other hand quantum
theory allows a description of magnetic properties on the
atomistic level. Both theories are not suitable to describe
cooperative and interactive phenomena such as macroscopic
magnetization processes or hysteresis loops of ordered spin
structures. The requirement to bridge the gap between
Maxwell’s theory and quantum theory became very urgent
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after Barkhausen’s experiment known as Barkhausen’s jumps
(Barkhausen, 1919) and Sixtus’ and Tonks’ experiment on
the domain wall velocity (Sixtus and Tonks, 1931).

A further landmark that proved the existence of the so-
called Weiss domains (Weiss, 1907) was the Bitter experi-
ment (Bitter, 1931), where by using the dipolar interactions
between magnetic ferrofluids and the magnetic stray fields
exerting from domain walls the domain patterns were clearly
visible.

After the explanation of ferromagnetism by Heisenberg
(1928) and Dirac (1928) on the basis of exchange interac-
tions, the door was wide opened toward a mesoscopic theory
of magnetism combining Maxwell’s and quantum theory. A
first attempt to treat inhomogeneous magnetic states is due to
Bloch (1932) who showed that as a consequence of exchange
interactions the transition regions between the Weiss domains
have a finite width. Actually Bloch considered a type of
domain wall, today called Néel wall; however, Bloch neglects
the dipolar stray field energy, thus obtaining the result of the
stray field free domain wall, now called the Bloch wall. The
different type of domain walls have been outlined later by
Néel (1955a,b), who gave a first approximate calculation of
the so-called Néel wall.

The breakthrough toward a continuum theory of mag-
netism is due to Landau and Lifshitz (1935), who derived
a continuum expression for the exchange energy and gave
a first interpretation of domain patterns. In this context, the
work by Akulov (1928–1931) should be mentioned, who
derived continuum expressions for the magnetocrystalline
energy. For a further development of the mesoscopic the-
ory, the book by Becker and Döring (1939) became very
important. Here for the first time the interaction between
magnetization and the microstructure has been considered
by the derivation of the so-called magnetoelastic coupling
energy for cubic crystals.
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It was the progress made in the 1930s with respect to
microstructures, for example, the definition of dislocations
as the sources of internal strains, which inspired W. F.
Brown to publish in 1940 and 1941 two basic papers
from which the modern theory of micromagnetism emerged
(Brown, 1940, 1941). Brown in these papers for the first time
considered the effect of local perturbations of the direction
of magnetization on the law of approach to ferromagnetic
saturation in order to find an explanation for the 1/H term
usually found experimentally. There were further papers by
Kittel, Stoner–Wohlfarth, Néel, Aharoni, Strikman, Treves
and of course also Brown in the 1950s, who established the
theory of micromagnetism as an efficient tool to describe
magnetization processes and the characteristic properties of
the hysteresis loop.

Whereas in the second half of the twentieth century micro-
magnetism was applied mainly to the classical problems
of ferromagnetic materials in the twenty-first century the
problems of magnetoelectronics and spintronics became rele-
vant. Here the recent developments in computational micro-
magnetism play an important role. These techniques allow
solutions of the nonlinear micromagnetic equations, determi-
nation of spin distribution of magnetic ground states, the
determination of single-domain configurations and vortex
states as well as the investigation of the dynamics of mag-
netization processes. These theories represent the content of
different articles of Volume II.

2 MAGNETIC GIBBS FREE ENERGY

2.1 General remarks

Within the framework of micromagnetism the magnetic
state is fully described if for given temperature, applied
field, and elastic stresses the distribution of the spontaneous
polarization J s(r), or of the spontaneous magnetization,
Ms(r) are well defined by the modulation and their direction
cosines γ i(r). The spontaneous polarization

J s(r) = µ0Ms(r) = |Js(r)|
3∑

i=1

iiγ i(r) (1)

is related to the z-component of Sz, of the spin, S, of the
magnetic ion at position, r , by

J s(r) = µ0Ms(r) = gµBSz(r)/�(r) (2)

with g the Landé factor given by �2 in case of metal systems
with quenched orbital moments, µB the Bohr magneton and
�(r) the local atomic volume per magnetic ion. The local
magnetic moment being given by gµBSz(r).

Micromagnetism in general deals with the determination
of the polarization vector J s(r). Depending on the type
of problem either the direction cosines γ i(r) or spatial
average 〈γ i(r)〉r or even the spatial and the thermal averages
〈〈γ i(r)〉r〉T〉 have to be determined. The basis for these
calculations is the Gibbs free energy with the free variable
temperature T , elastic stress tensor σ , and applied magnetic
field H ext. In terms of energy densities the total Gibbs free
energy density is given by

φ′
t = U − T S − σ · ·ε − J s·H ext (3)

Here U , S, ε, and σ denote the internal energy density,
the entropy per unit volume, the strain tensor, and the
stress tensor, respectively. The free energy U − T S includes
the exchange, magnetocrystalline, dipolar and magnetoelastic
energies as well as the Ginzburg–Landau ordering energy.
The last two terms denote the elastic and magnetostatic
interaction energies. In the thermodynamic equilibrium the
total Gibbs free energy corresponds to a minimum, that is,

δφt = δ

∫
V

φ′
t dV = 0 (4)

where at constant T , σ and H ext the variation has to be
performed with respect to the internal magnetic variables of
the system. In case where only the angular distribution of
J s is of interest, the variation of φt is taken with respect
to the direction cosines γ i or the components Js,i where
| J s | or | Ms | are kept constant. Considering the magnetic
phase transition at the Curie temperature, TC, the variation is
taken with respect to the components Js,i or Ms,i leading
to the well-known results of the Landau theory (Landau
and Lifshitz, 1971), for example, the critical exponents of
the molecular field theory (Kronmüller and Fähnle, 1980;
Fähnle and Kronmüller, 1980; Herzer, Fähnle, Egami and
Kronmüller, 1980; Fähnle, 1981).

Micromagnetism is based on continuum theoretical expres-
sions for the intrinsic energy terms contained in the internal
energy U . These terms are either derived from symmetry
considerations or by a continuation of quantum theoretical
expressions by replacing, for example, localized spins Sz by
J s according to equation (2). In the following we summarize
all continuum theoretical expressions required for the theory
of micromagnetism.

2.2 Exchange energy

In order to derive the continuum expression for the exchange
energy, Landau and Lifshitz (1935) calculated the exchange
energy for small deviations of the magnetization from
a homogeneously magnetized ground state. Because only
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inhomogeneous magnetic states increase the exchange energy
the first deviations, ∇γ i of the direction cosines γ i must
occur quadratically in the energy expression. Both consid-
erations are fulfilled by the differential operators (gradJ )2,
(divJ )2 and (curlJ )2. Kittel and Herring (1951) discussed
that (gradJ s) is the correct description of the excess
exchange energy because divJ s and curlJ s would lead to
zero exchange energies in case of divJ s = 0 or curlJ s = 0
in spite of the fact that in both cases an inhomogeneous
magnetization exists.

In the case of cubic crystals or amorphous materials
accordingly the exchange energy density may be written as

φ′
ex = A

{
(∇γ 1)

2 + (∇γ 2)
2 + (∇γ 3)

2} (5)

The exchange stiffness constant A is related to the exchange
integral Ji,j , between spin Si and Sj at position r i and rj .
This relation may be derived by calculating the continuum
expression (5) from the Heisenberg exchange Hamiltonian
(Heisenberg, 1928)

Hex = −2
∑
i �=j

Jij

(
r ij

)
Si (r i ) ·Sj

(
rj

)
(6)

where Jij denotes the exchange integral between the ions of
spin Si and Sj with distance r ij = rj − r i .

2.2.1 Short-range exchange interactions

In the case of localized electrons with small changes of the
spin orientations between neighboring ions and only nearest
neighbor interactions, J0, the exchange energy density may
be written as (Figure 1)

φ′
ex = −2S2J0

1

�

nn∑
j �=i

cos ϕij (7)

where within the framework of the vector model ϕij denotes
the angle between neighboring spins. The expression (5) is

x0

y

z

rij

r j

r
i

S i
S j

gi
gj

jij
→

→

→

→ →

Figure 1. Spacial and angular coordinates of two neighboring spins
(Kronmüller and Fähnle (2003)).

obtained from equation (7) by replacing cos ϕij by cos ϕij =∑3
n=1 γ n,i(ri)γ n,j (rj ) and developing γ n,i,j into the Taylor

series. In the case of cubic lattices the summation over
nearest neighbor ions leads to

A = 2J0S
2

a
·c (8)

where the constant c is given by c = 1 for the cubic primitive
lattice, c = 2 for the bcc lattice and c = 4 for the fcc lattice.
If in the case of finite temperatures S is replaced by its
thermal average 〈S〉 and necessarily by the spontaneous
magnetization Ms(T ) the exchange constant is

A = 2J0M
2
s

N2g2µ2
Ba

·c (9)

According to equation (9) the temperature dependence of
A follows that of M2

s (T ). Since the exchange integral J0 is
related to the Curie temperature TC, within the framework
of the molecular field theory (see e.g., Morrish, 1965; Jiles,
1990) the exchange constant is given by

A = 3kBTCS·c′

2α(S + 1)
(10)

with c = 1/6, 1/4, 1/3 for sc, bcc, and fcc lattices. In the
case of uniaxial crystals as tetragonal, trigonal, or hexagonal
crystals the exchange energy is

φ′
ex = A⊥

∑
i=1,2

(∇γ i)
2 + A‖(∇γ 3)

2 (11)

where i = 1, 2 refer to the coordinates perpendicular to
the preferred trigonal, quaternary, or hexagonal axis (see
Kronmüller and Fähnle, 2003). The exchange stiffness con-
stants determined by equation (10) in general lead to some-
what small values because the molecular field theory neglects
the low-energy spin-wave extension. Therefore, values of
A either determined from the spin wave dispersion law
E = Dk2 as measured by inelastic neutron scattering or from
specific domain wall energies are more reliable. In Table 1
experimental results for A are summarized as obtained by
the latter two methods.

2.2.2 Long-range exchange interactions

The continuum expression (5) may be clarified from the
Heisenberg-type exchange interaction between nearest neigh-
bor atoms. However, in the metallic ferromagnets besides the
nearest neighbor interaction exchange interaction also the so-
called indirect exchange interaction may be important. This
type of indirect exchange interactions originally has been
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Table 1. Intrinsic magnetic material constants of transition metals, intermetallic compounds and oxides at room
temperature. Values taken from Kronmüller and Fähnle (2003). (Reproduced from H. Kronmüller and M. Fähnle:
Micromagnetization and the Microstructure of Ferromagnetic Solids (CUP, 2003), with permission from Cambridge
University Press.)

Magnet Js (T) A (pJ m−1) K1 (J m−3) K2 (J m−3) λ × 106 TC (K)

α-Fe 2.185 20.7 − 22.8 4.8 × 104 −1.0 × 104 λ100 = 22, λ111 = −21 1043
Co 1.79 30.2 − 31.4 45.3 × 104 14.5 × 104 λ11 = −45, λ12 = −45, λ33 = 110,

λ44 = −260
1403

Ni 0.62 7.2 − 8.5 −4.5 × 103 −2.5 × 103 λ100 = −55, λ111 = −23 627
Ni3Fe 1.1 7.1 1.2 × 102 − λ100 = 18, λ111 = 5 873
Nd2Fe14B 1.61 7.3 − 8.4 4.3 × 106 0.65 × 106 588
Pr2Fe14B 1.56 12 5.6 × 106 ≈ 0 565
SmCo5 1.05 12 1.7 × 107 λ11 = −762, λ12 = −181, λ33 = −47,

λ44 = 243
993

Sm2Co17 1.29 14 4.2 × 106 1070
Sm2Fe17N2 1.56 12 8.6 × 106 749
BaFe12O19 0.48 63 3.2 × 105 <0.1 × 106 λ11 = −15, λ12 = 16, λ33 = −11,

λ44 = −48
723

Fe3O4 0.60 −11 × 103 −3 × 103 λ100 = −20, λ111 = 78 585
PtFe 1.43 10 6.6 × 106 683

developed by Zener (1951a,b), Ruderman and Kittel (1954),
Kasuya (1956), and Yosida (1957) (RKKY-interaction). The
indirect exchange interaction is based on the interaction of
localized spin of d or f electrons and the sea of delocalized s
electrons. Localized spin moments induce an oscillating spin
polarization of the s electrons. Other localized spin moments
will interact with this polarization cloud. Accordingly, dis-
tant spin moments become magnetically exchange coupled
via the oscillating polarization of the s electrons. If the s–d-
or s–f interaction corresponds to a δ-function the effective
exchange integral between the localized spin moments of dis-
tance |r ij | | |rj − r i | = r according to Ruderman and Kittel
(1954) is given by

J (r) = J 2
sf

(2kFr)4
(2kFr cos 2kFr − sin 2kFr) (12)

where kF denotes the modulus of the Fermi wave vector and
Jsf the exchange integral between s- and f electrons. Due to
the long-range exchange interaction the energy density φ′

ex
is given by the following integral:

φ′
ex(r) = − 2

(gµB)2

∫
J
(| r − r ′ |)M(r)·M(r ′) d3r ′ (13)

where we have replaced S(r) by M(r) of equation (2).
Introducing Fourier transforms

J (k) =
∫

J (r)eik·rd3r

M(k) =
∫

M(r)eik·r d3r

(14)

and applying the convolution theorem we obtain

φ′
ex(r) = − 2

(2π)3(gµB)2

1

�

∫
J (k)M(k)·M(−k) d3k

(15)
where according to Ruderman and Kittel (1954) in case of
pointlike localized spins J (k) is given by

J (k) = 3�zJ 2
sd

16 EF

{
1 + 4kF − k2

4kFk
ln

2kF + k

2kF − k

}
(16)

(z = number of s electrons per atom, EF = Fermi energy),
Jsd = exchange integral between s and d electrons. Within
the framework of Ruderman–Kittel’s approximation J (r)

becomes infinite at r → 0. Since the s–d or s–f interaction
actually has a finite range, instead a constant Jsd in equation
(16) a k-dependent Jsd(k), which decreases with increasing k

should be introduced. According to Yosida (1957) a suitable
Ansatz for J (k) is

J (k) = J (0) for k ≤ 2kF

J (k) = 0 for k > 2kF

(17)

For k < kF we obtain from equation (16), J (0) − J (k)
zJ 2

sd�

32EF
k2

k2
F
. Figure 2 shows the k-dependence for the Ruderman–

Kittel and the Yosida model.

2.3 The magnetocrystalline anisotropy energy

The magnetic properties of spin-ordered crystals in general
reveal a marked anisotropy. For example, depending on the



General micromagnetic theory 5

0
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J(
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)/
J(

0)
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2)

k / 2kF
1

Figure 2. Fourier transform J (k) of the indirect exchange integral
for the model according to Yosida (1957) and according to
Ruderman and Kittel (1954) (Kronmüller and Fähnle (2003)).
(Reproduced from Ruderman & Kittel, 1954, with permisison from
Cambridge University Press.  1954.)

orientation of single crystals the saturation magnetization is
approached by small or large magnetic fields. Therefore it
is common to speak of hard and easy magnetic directions.
The magnetocrystalline energy originates from the coupling
between spin and orbital moments (L-S coupling) and the
interaction between the ions and the crystal field. In 3d
transition metals the orbital moments are nearly completely
quenched and consequently the coupling between the orbital
moments and the crystal field remains small leading to
moderate magnetocrystalline energies. In contrast, in the
case of intermetallic compounds, where rare-earth metals are
involved, the 4-f electrons are characterized by strong L-S
coupling and Hund’s rules are valid, the anisotropic charge
cloud of 4f electrons interacts strongly with the crystal field
resulting in the largest anisotropies measured so far.

The angular dependence of the magnetocrystalline energy
was derived for the first time by Akulov (1928–1931) for
cubic crystals. Because the magnetocrystalline energy must
be invariant with respect to rotations of Ms by 180◦ the
energy expression must be an even function of the direction
cosines γ i , which have to be taken with respect to the
symmetry axes of the point group of the crystal under
calculation. A general expression for the magnetocrystalline
energy density is (Birss, 1964)

φ′
k(r) = k0(r) +

∑
i �=j

kij (r)γ i(r)γ j (r)

+
∑
i,j,k,l

kijkl(r)γ i (r)γ j (r)γ h(r)γ l(r) + · · · (18)

With diagonalized property tensors kφ′
k becomes

φ′
k(r) = k0(r) +

∑
i

ki(r)γ 2
i (r) +

∑
i

k2i (r)γ 4
i (r)

+
∑
i �=j

k3ij (r)γ 2
i (r)γ 2

j (r) + · · · (19)

By specifying the property tensors k to the symmetry
requirements of the point groups of a crystal we may derive
anisotropy expressions for cubic, hexagonal, tetragonal and
orthorhombic crystals.

1. Cubic symmetry : (γ i refer to cubic axes)

φ′
k(r) = K0(r) + K1(r)

∑
i �=j

γ 2
i (r)γ 2

j (r)

+ K2(r)γ 2
1(r) · γ 2

2(r)γ 2
3(r) (20)

2. Hexagonal symmetry : Here we introduce the angle ϕ

between Ms and the hexagonal c axis (z axis) and the
angle ψ of the projection of Ms on the hexagonal plane
taken with respect to the x axis. Equation (19) now may
be rearranged as

φ′
k(r) = K0(r) + K1(r) sin2 ϕ(r)

+ K2(r) sin4 ϕ(r) + K3(r) sin6 ϕ(r)

+ K4(r) sin6 ϕ(r) cos(6ψ(r)) (21)

3. Tetragonal symmetry : With a similar definition of the
angles ϕ and ψ as in the hexagonal crystal we obtain

φ′
k(r) = K0(r) + K1(r) sin2 ϕ(r) + K2(r) sin4 ϕ(r)

+ K3(r) sin4 ϕ(r) cos(4ψ(r) + · · · (22)

4. Orthorhombic symmetry : Equation (19) describes φ′
k for

orthorhombic symmetry with the direction cosines γ i(r)

taken with respect to the three two-fold symmetry
axes.

The so-called easy directions are determined by the
extrema conditions ∂φ′

k/∂γ i = 0 and ∂2φ′
k/∂γ 2

i > 0.
Taking into account the anisotropy constants K1 and
K2 only the easy directions for cubic crystals are the
following ones:

1. 〈100〉 directions, K1 > 0, K2 > 0; K1 > − 1
9K2,

K2 < 0.
2. 〈111〉 directions, K1 < − 1

9K2; K2 < 0, K1 <

− 4
9K2; K2 > 0.

3. 〈110〉 directions, − 4
9K2〈K1 < 0; K2〉0.

For α-Fe at RT Case 1 holds and for Ni Case 2.
In the case of hexagonal uniaxial crystals also three types
of easy directions have to be distinguished:

1. 〈0001〉 - directions (±c axis): K1 > 0; K1 > −K2,

K2 < 0, K3,4 = 0
2. All directions within the basal plane, K1 < −K2,

K2 < 0; K1 < −2K2, K2 > 0; K3,4 = 0
3. All directions on the surface of a cone with angle

sin ϕ
√−K1/2K2; −2K2 < K1 < 0; K3,4 = 0.
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For Co case 1 holds for T < 520 K, case 2 for T >

605 K and case 3 for 520 K < T < 605 K. In the case
of the hard magnetic compound Nd2Fe14B the c axis
throughout is easy direction in spite of the fact that K1 <

0 holds below 125 K because always 2K2 > (−)K1

holds.
Phase diagrams of the easy directions for cubic and

uniaxial crystals as function of K1 and K2 are shown in
Figure 3.
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Figure 3. Phase diagrams of easy directions in (a) cubic and (b)
uniaxial crystals. (Reproduced with permission from Cambridge
University Press.)

2.4 Magnetostatic energies

2.4.1 External field

The magnetostatic energies are related to tow different
sources of magnetic fields: The external or applied magnetic
field, H ext, and the so-called dipolar fields, H s, resulting
from magnetization M s. The magnetostatic energy of the
external field, the so-called Zeemann energy may be written
as the sum of the interaction energies of local moments
µigµBSi(r) with the external magnetic flux density Bext

giving

φ′
h = −gµB

∑
i

Si (r)·Bext = gµBµ0

∑
i

Si (r i )·H ext

(23)
By using equation (2) the magnetostatic energy density is,

φ′
h = −µ0H ext(r)·Ms(r) = −H ext(r)·J s(r) (24)

2.4.2 Dipolar fields

The role of dipolar fields in magnetism and in particular for
the formation of domain patterns has been outlined by Lan-
dau and Lifshitz (1935) and Kittel and Galt (1956). Brown
(1962) considered the role of dipolar fields, also denoted
as stray fields, in the case of micromagnetic problems. In
particular, Brown (1962) gave an extensive description of
magnetostatic principles. Within the framework of an atom-
istic description of magnetic moments µi (r)i = gµBSi (r i )

the macroscopic stray field is determined by a sum over all
dipole fields of the magnetic moments µi(r i ).

H s(r) = 1

4π

∑
i

(
µi (r i )

R3
− 3

(
µi (r i ) · R

) · R

R5

)
(25)

with R = r − r i . In the continuum theory of micromag-
netism the calculation of stray fields starts from the Maxwell
equation

divB = 0 (26)

where in the case of H ext = 0 the magnetic flux density B

is given by

B(r) = µ0H s(r) + µ0Ms(r) = µ0H s(r) + J s(r) (27)

Since H s derives from magnetic dipoles the condition
curl H s = 0 holds, and H s derives from a scalar potential
U(r) according to

H s(r) = −∇ U(r) (28)
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Figure 4. Spacial coordinates and integration variables for the
internal potential Ui(r) and the external potential Ua(r) due to
surface charges σ(r ′) = Ms(r

′) · n.

With equation (26) U(r) derives from the Poisson equation

�U = div Ms(r) = 1

µ0
divJ s(r) = −ρ(r) (29)

where we have introduced the magnetic charge density
ρ(r) = −divMs(r). The notation stray field for H s becomes
evident from the Poisson equation, which shows that H s

exists only in cases of a spatially inhomogeneous Ms either in
orientation or in the modulus | Ms(r) |. The general solution
of Poisson’s equation is written as the sum of a volume (V0)

and a surface S integral

U(r) = 1

4π

∫
V0

ρ(r ′)
| r − r ′ |d3r ′ + 1

4π

∫
S

σ (r ′)·df ′

| r − r ′ | (30)

The first term in equation (30) takes care of the volume
charges and the second term takes into account the surface
charges σ(r)n · Ms(r

′) as shown presented in Figure 4.
The magnetostatic strayfield is related with a magnetostatic

self-energy density, also denoted as dipolar energy given by

φ′
s(r) = µ0

2
·H 2

s (r) (31)

In the case of discrete magnetic moment, µi (r i ), its interac-
tion energy with all other magnetic dipoles is given by

φ′(i)
s (ri) = −µ0µi (r i )

∑
j �=i

H (j)
s (ri) (32)

where the sum extends over all field contributions H
(j)
s at

r i of all other dipoles j . The total stray field energy now is
given by

φs = 1

2

∑
i

φ(i)
s = −1

2
µ0

∑
j �=i

µi (r i )·H (j)
s (r i ) (33)

where the factor 1/2 takes into account that the interaction
energy between two dipoles has to be counted only once

because µi (r i )H
(j)
s (r i ) = µj (rj )H

(j)
s (rj ) holds. Replacing

the magnetic moments by the continuum variables Ms by

µ(r) = Ms(r) dV (34)

equation (33) transforms into the integral

φs = −1

2

∫
V0

H s(r)·J s(r) d3r = 1

2
µ0

∫
V

H 2
s (r) d3r (35)

It is of interest to note that the first integral extends only over
the volume of the magnet and the second one over the total
space. By means of Green’s theorems equation (35) may be
transformed into a surface and a volume integral:

φs = 1

2

∫
S

U(r)J s(r) · df − 1

2

∫
V0

U(r)div J s(r) d3r (36)

= 1

2
µ0

∫
S
σ(r) · U(r) df + 1

2
µ0

∫
V0

U(r)ρ(r) d3r

In the case of a multiconnected homogeneously magnet, that
is, ρ = 0, φs is given by a double integral

φs = 1

8π

∫
s

∫
S

σ (r) · σ(r ′)
| r − r ′ | df′df (37)

where the integrals extend over the surfaces f and f ′. For
f = f ′ equation (37) describes the self-energy of surface
charges.

2.5 Magnetostrictive energy terms

2.5.1 Strain tensors in magnetic materials

Magnetostrictive interactions between elastic stresses and
the spontaneous magnetization are one of the main sources
of the influence of microstructures on magnetic proper-
ties. These interactions are the origin of the pinning of
domain walls, the arrangement of domains and deviations
from magnetic saturation. First treatments of magnetostric-
tive interactions are due to Becker (1930; 1932; 1934) and
Becker and Döring (1939). These results are one of the
basis for the micromagnetic continuum theory as devel-
oped by Brown (1940; 1941) who introduced the concept
of lattice imperfections into micromagnetism. More recent
self-consistent elasticity theories of magnetostrictive interac-
tions have been published by Brown (1966), Rieder (1959),
Kronmüller (1967), and Kléman (1980). Elasticity problems
in magnetostrictive materials in general are rather complex
because not only the intrinsic spontaneous magnetization
as described in chapter Magnetostriction and Magnetoe-
lasticity Theory: A Modern View, Volume 1 play a role
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but also rotations of volume elements that result from mag-
netic torques due to the magnetocrystalline energy in the
case of rotational magnetization processes. The role of these
rotational processes concerning induced elastic stresses in
general can be neglected (Kronmüller and Fähnle, 2003).
Therefore, in the following we neglect magnetic torques that
contribute to the asymmetric part of the strain tensors. The
symmetric part of the strain tensor is composed of four
contributions

εT = εext + εdef + εQ + εel (38)

with the following origins:

1. εext = external strain tensor of applied stresses.
2. εdef = internal strain tensor due to defects.
3. εQ = spontaneous magnetostrictive strain tensor due to

spin ordering.
4. εel = elastic strain tensor due to inhomogeneous

magnetostrictive strain εQ.
5. εm = εQ + εel = total strain tensor due to magnet-

ostriction.

2.5.2 Determination of stress tensors

The different contributions of the strain tensors to the elastic
stresses have to be determined by different methods because
the spontaneous magnetostrictive strains correspond to so-
called quasiplastic strains. Within the framework of linear
elasticity theory Hoock’s law holds:

σ = c· ·ε (39)

where c denotes the fourth rank tensor of elastic constants.
The stress tensor, σ , is determined by the mechanical
equilibrium surface conditions (n = surface normal)

Div σ + f = 0
n · σ ext |surface F surface

}
(40)

where f corresponds to the volume forces and F surface to
the surface forces. The elastic strain and stress fields εdef and
σ def of defects are well known. For example, in case of linear
dislocations the stress field components vary as 1/r and in
case of point defects as 1/r3. External stresses in general
lead to homogeneous stress states if the samples shape is
prismatic or cylindrical.

The calculation of the elastic strain fields due to inhomo-
geneous spontaneous magnetostrictions εQ, requires special
considerations because just these strains usually are omitted
in micromagnetic problems.

The spontaneous magnetostrictive strains εQ have been
derived by Becker and Döring (1939) with the components

ε
Q
ij = λijklγ kγ l (41)

where Einstein’s sum convention holds (summation from
i = 1 to 3 if a suffix appears twice). The fourth rank tensor,
λ, possesses the symmetry of the atomic structure, that
is, the crystal symmetry or short-range order in otherwise
disordered materials. For cubic crystals εQ is given by:

εQ =




3
2λ100

(
γ 2

i − 1
3

) 3
2λ111γ iγ 2

3
2λ111γ iγ 3

3
2λ111γ 1γ 2

3
2λ100

(
γ 2

2 − 1
3

) 3
2λ111γ 2γ 3

3
2λ111γ 1γ 3

3
2λ111γ 2γ 3

3
2λ100

(
γ 2

3 − 1
3

)



(42)
The magnetostriction constants λ100 and λ111 have the
following meaning: λ100 corresponds to the fractional length
change upon saturation in 〈100〉-direction and λ111 has the
same meaning for saturation in 〈111〉-direction. In the case
of hexagonal crystals we deal with four magnetostriction
constants and a magnetostriction tensor given by:

εQ =



(
λ11γ

2
i + λ12γ

2
2

)
(λ11 − λ12) γ iγ 2

1
2 λ44γ i γ 3(

λ12γ
2
1 + λ11γ

2
2

) 1
2 λ44γ 2γ 3

λ33γ
2
3




(43)
Isotropic or amorphous materials are characterized by diag-
onal components

εii = 3

2
λs

(
γ 2

i − 1

3

)
, i = 1, 2, 3 (44)

and off-diagonal components

ε
Q
ij = 3

2
λsγ iγ j , i �= j (45)

with λs the isotropic magnetostrictive constant. The elastic
stresses σm due to the elastic strains εel follow from the
condition that the total strain εmεQ + εel can be derived from
a displacement field, sm, according to

εm = Def sm (46)

where the definition of the operator Def follows from

εm
ij = 1

2

(
∂sm

i

∂xj

+ ∂sm
j

∂xi

)
(47)

and the elastic stress due to magnetostriction is given by

σ m = c · · εel (48)

σm obeys the mechanical equilibrium condition

Div σm = 0 (49)
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(a) Nonmagnetic state eQ = 0

(b) Incompatible state (eQ > 0)

s > 0 s > 0
s < 0

Easy directions

(c) Compatible state (em > 0)

T > Tc

T < Tc

T < Tc

A

A
A

A

Ms

Figure 5. Formation of elastic strains by inhomogeneous sponta-
neous magnetostrictive strains. The cutting model demonstrates the
existence of elastic strains due to the connection of the sites A.
(Reproduced with permission from Cambridge University Press.)

and since equation (47) holds

Div (c · · εel) = Div c · · Def sm) − Div (c · · εQ) = 0
(50)

The three sets of equations (50) do not allow the determi-
nation of the six components εm

ij . Since εm derives from
εmDefsm, additional relations hold for εm, which may be
written in the comprehensive form

Ink εm = ∇ × εm × ∇ = 0 (51)

Equation (51) takes into account that the total strain tensor
εm describes a compatible continuous deformation without
discontinuities. The combination of equations (51) and (50)
leads to the so-called Beltrami equations (Kröner, 1958),
which for elastic anisotropy is written as (G = shear mod-
ulus, ν = Poisson ratio, δij = 0 for i �= j , δij = 1 for i =
j, σ kk =∑3

i=1 σm
ii ):

�σi + ν

1 + ν

(∇ i ∇j σ
m
kk − �σm

kk

) = 2Gη
Q
ij (52)

where the incompatibility tensor ηQ is defined as

ηQ = (−)Ink εQ = Inkεel (53)

Equation (52) clearly shows that the sources of the elas-
tic magnetostrictive stresses are inhomogeneous spontaneous
magnetostrictions. In order to obtain a direct understanding
of the formation of elastic magnetostrictive strains the mag-
netoelastic potential is magnetized homogeneously. Starting
from a hypothetical nonmagnetic material with εQ ≡ 0 above
the Curie temperature, below the Curie temperature sponta-
neous magnetostrictive strains εQ are formed. In the case of
a homogeneously magnetized specimen with εQ = const no
elastic stresses are induced. As shown in Figure 5, in the case
of an inhomogeneous magnetization, the different parts of
the specimen suffer incompatible spontaneous deformations
which develop freely of the specimen is cut into individual
parts. According equation (46), however, the displacement
field should be continuous without any cracks. According to
Figure 5, the individual parts have to be fitted together in
order to keep up a continuous displacement field.

This fitting is performed by the application of the elastic
strains εel, which guarantee the compatible state fulfilling
the condition Ink εm = 0. This consideration gives a direct
insight into the stress-producing role of the incompatibility
tensor ηQ = −Ink εQ.

2.5.3 The magnetoelastic potential – stress tensors
in domain walls

In the following the magnetic Gibbs free energy is taken with
respect to a hypothetical nonmagnetic state, that is, εQ = 0.
Below the Curie temperature εQ and its elastic stresses εel

appear and the Gibbs free energy according to equation (3)
is given by

φt =
∫ (

φ0 + 1

2
εT · · c · · εT − σ · ·εT

)
d3 r (54)

where φ0 contains φ′
ex, φ′

k and φ′
s which are assumed to be

independent of strains, minimization of φt with respect to εT

leads to Hook’s law, σ = c · ·εT, and which allows to rewrite
φt as follows:

φt =
∫ (

φ0 − 1

2
εT · ·c · ·, εT

)
d3 r (55)

Inserting for εT equation (39) we may derive the different
types of magnetostrictive energy terms. Excluding energy
terms, which vanish after integration and taking into account
only terms of magnetic origin the magnetic elastic potential
is written as

φel = −1

2

∫ {
εQ · · c · · εQ − εel · · c · · εel} d3 r

−
∫ {

εdef + εext} · · c · · (εQ + εel) d3 r (56)
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Here the first two terms correspond to self energies of the
free spontaneous magnetostrictive strains and of the elastic
magnetostrictive strains induced by inhomogeneous sponta-
neous magnetization. The third term describes interactions
between external and defect stresses and the magnetostric-
tive strains. In order to understand this complex situation we
consider three characteristic cases:

1. Ideal homogeneously magnetized ferromagnet without
defects : In this case no elastic stresses exist, εext, εdef,

εel = 0).

φel = −1

2

∫
εQ · ·c · · εQ d3r (57)

This energy term corresponds to a contribution to the
magnetocrystalline energy φk. Inserting εQ’s for cubic
crystals gives for the elastic energy density

φ′
el =

{
9

4
(c11 − c12) λ2

100 − 9

4
c44 λ2

111

} ∑
i �=j

γ 2
i γ 3

j

(58)
where cij corresponds to the cubic elastic constants in
Voigt’s notation. φel has the symmetry of the magne-
tocrystalline energy and therefore adds to φk.

2. Inhomogeneous magnetization without defects : Inhomo-
geneous states of magnetization exist in domain walls,
in small particles and in the form of vortices and at
the edges and corners of polyhedral small particles. If
no defects and external stresses are present, the elastic
potential is given by

φel = −1

2

∫ {
εQ · · c, · · εQ − εel · ·c · · εel} d3 r

(59)
In equation (59) the elastic magnetostrictive self-energy
appears, which is of particular interest for domain
walls that otherwise would split up into two partial

domain walls (e.g., (100)–180◦-walls in α-Fe, or the
(100)–109◦-walls in Ni). For the most important domain
walls in α-Fe, Ni, and Co the strain terms εel have been
determined. Solution of the elastic equations leads for
the (001)–180◦ wall of the cubic α-Fe to the following
stress and stress components using the coordinate system
of Figure 6(a):

σm
11 = 3

2
λ100(c11 − c12) sin2 ϕ,

σm
22 = −3

2
λ100(c11 − c12 sin2 ϕ)

σm
12 = −3

2
λ111c44 sin 2ϕ

εel
11 = 3

2
λ100 sin2 ϕ; εel

22 = −3

2
λ100 sin2 ϕ,

εel
12 = −3

4
λ111 sin 2ϕ (60)

The magnetostrictive elastic self-energy density for the
(100)–180◦ wall is given by

φ′
el = −1

2
σm

ij εel
ij = 9

4
λ100 (c11 − c12) sin2 ϕ

−9

4
(λ100(c11 − c12) − 2λ111c44) sin2 ϕ cos2 ϕ (61)

In the case of an elastically and magnetically isotropic
material φ′

el is found to be

φ′
el = 9

2
G λS sin2 ϕ (62)

These results may be used to determine specific domain
wall energies in crystalline and isotropic materials.

Whereas in the case of the (100)–180◦ dw in α-Fe the
elastic strains and stresses vanish within the domains

x [100] x

y

A AB

B

180° – (001)(a) (b) 90° – (001)

j

j

z z

[0
01

]

[0
10

] y

Figure 6. Coordinate systems used for the (001)–180◦ walls and the (001)–90◦ walls in cubic α-iron.
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for ϕ = 0 and ϕ = π the situation is different for the
(001)–90◦ wall the geometry of which is shown in
Figure 6(b). The rotation of J S from A to B is described
by the direction cosines γ 1 = + cos(ϕ − π

4 ), γ 2 sin(ϕ −
π
4 ), γ 3 = 0. Strain and stress components are given by

εel
11 = −3

4
λ100 sin 2ϕ; εel

22 = 3

4
λ100 sin 2 ϕ;

ε12 = −3

4
λ111 cos 2ϕ

σm
11 = −3

4
λ100(c11 − c12) sin 2ϕ,

σm
22 = 3

4
λ100(c11 − c12) sin 2ϕ

σm
12 = −3

2
λ111c44 cos 2ϕ (63)

Within the domains at ϕ = π
4 and ϕ = 3π

4 the stress
components are

σm
11 = −3

4
λ100 (c11 − c12) = −σm

22; σm
12 = 0

σm
11 = 3

4
λ100 (c11 − c12) = −σm

22; σm
12 = 0

(64)

According to equation (64) the elastic magnetostrictive
stresses are finite within the domains. As a consequence
this type of dws = domain walls are exposed to strong
interactions with stress centers as, for example, dislo-
cations. Therefore 90◦-walls in general are less mobile
than 180◦-walls.

3. Homogeneous magnetization and external σ ext or inter-
nal, σ def, stresses: In the case of a homogeneously
magnetized ferromagnet exposed to external or internal
stresses the elastic potential is written as

φel = − 1

2

∫
εQ · ·c · ·εQ d3 r −

∫
σ · ·εQ d3 r (65)

where σ means either σ ext or σ def or the sum of both.
Here again the first term corresponds to the contribution
of the spontaneous magnetization to the magnetocrys-
talline energy and the second term describes the interac-
tion energy, εQ, with external stresses. This latter term
was originally developed by Becker and Döring (1939)
and is known as the so-called magnetoelastic coupling
energy, which for cubic crystals is given by

φ′
σ = −3

2
λ100

3∑
i=1

σ ii γ 2
i − 3

2
λ111

∑
i �=j

σ ij γ iγ j (66)

where σ and the γ i refer to the cubic coordinate system.
For isotropic materials as for example, amorphous alloys
equation (66) is

φσ = −3

2
λS




3∑
i=1

σ iiγ
2
i +
∑
i �=j

σ ij γ iγ j


 (67)

The stress tensor σ in equation (66) and equation (67)
either may correspond to external or internal stresses.
Equation (67) is the basis for investigating the influ-
ence of stresses on the arrangement of domain pat-
terns or the determination of spontaneous magnetiza-
tion in the neighborhood of stress-active defects. Some
examples of this type of interactions will be given in
chapter 5.

2.6 Summary

According to the results of Sections 2.1−2.5 the total
magnetic Gibbs free energy density is composed of five terms

φ′
t = φ′

ex + φ′
k + φ′

el + φ′
s + φ′

h (68)

Depending on the problem to be solved in many cases not
all of these energy terms have to be taken into account. For
example, for the treatment of Blochwall φ′

s and φ′
H may be

omitted whereas in the case of soft magnetic materials φk

plays only a minor role. In the treatment of internal stresses
φ′

el has to be replaced by φ′
σ . For a crystal of cubic symmetry,

the total magnetic Gibbs free energy density in this case is
written as

φ′
t = A

∑
i

(∇γ i)
2 + K1

∑
i �=j

γ 2
i γ

2
j + K2γ

2
1γ

2
2γ

2
3

− 3

2
λ100

∑
i=1

σ iiγ
2
i − 3

2
λ111

∑
i �=j

σ ij γ iγ j

− 1

2
H s · J s − H ext · J s (69)

where γ i and σ refer to the cubic coordinate system.
Each of these energy terms has a specific influence

on the distribution of the directions of the spontaneous
magnetization, which will be outlined in the following
section.

It is of interest to remember that the continuum expressions
(69) for φ′

t has a quantum theoretical analogon in the
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Hamiltonian

H = −2
∑
i �=j

Jij Si · Sj + λSO

∑
i

Li · Si

−µ0(gµB)2

4π

∑
i �=j

(
Si · Sj

R3
ij

− 3(Si · Rij )(Sj · Rij )

R5
ij

)

−gµ0µB

∑
i

Si · H ext (70)

Here the second term denotes the spin-orbit coupling energy
as one of the sources of the magnetoelastic energy is included
in equation (70) by the strain dependence of the spin-orbit
coupling constant λSO. The third term corresponds to the
dipolar stray field energy and the last term is known as the
Zeeman energy.

3 MICROMAGNETIC EQUILIBRIUM
EQUATIONS

Micromagnetic equilibrium conditions usually are derived
with respect to the orientation of the vector of spontaneous
polarization or magnetization. Accordingly, the magnetic
Gibbs free energy is mimimalized with respect to the
direction cosines γ of J s, where the modulus of J s is kept
constant, that is, the condition

3∑
i=1

γ 2
i = 1 or

3∑
i=1

J 2
s,i = J 2

s (71)

holds. Presenting the results of the following considerations
the static equilibrium equations are written as a torque
equation

L = [J s × H eff] = 0 (72)

Here, H eff denotes the so-called effective field, which is
composed of four contributions: external field, dipolar field
(stray field), magnetocrystalline field, magnetoelastic field.
A trivial solution of equation (72), of course, is Heff ≡ 0.
The torque equation for an isotropic medium also may be
interpreted as

J s = µ0(µ − 1)H eff, Ms = χ H eff

or
µ − 1 = Js

µ0|H eff| , χ = Ms

| H eff | (73)

In the general case the permeability µ and the susceptibility
χ correspond to tensors of second order. In order to derive

the micromagnetic equilibrium equations the magnetic Gibbs
free energy φt has to be minimized with respect to γ i taking
into account the constraint (71). This leads to the variational
equation

δγ i
φt = δγ i

∫ {
φ′

ex + φ′
k + φ′

el + φ′
s + φ′

H

+λ

(
3∑

i=1

γ 2
i − 1

)}
d3r = 0 (74)

The last term in equation (74) takes care of the constraint
(71) by a Lagrange parameter λ. Performing the variational
operation of equation (74) gives

δγ i
φt =

∫ {
2 A

3∑
i=1

∇γ i δ
(∇γ i

)

+
3∑

i=1

(
∂φ′

k

∂γ i

+ ∂φel

∂γ i

− JsHext,i − 2λγ i

)
δγ i

− 1

2
(H s·δJ s + J s·δH s)

}
d3 r (75)

Interchanging the operator ∂i = ∂
∂xi

and the variation δ and
applying Gauss’s theorem the variation of the exchange
energy gives

∫
2 A

3∑
i=1

∇γ i δ∇γ i d3 r

= 2 A

∫
S

∇γ i δγ i d f − 2 A

∫
V

�γ i δγ i d3 r (76)

where the first term on the right side extends over the surface
S of the magnet. Concerning the variation of the dipolar
energy according to Brown (1962) because of divB = 0 and
rot H s = 0 the relation∫

H s·δ J s d3 r =
∫

J s·δ H s d3 r (77)

holds. Inserting equations (76 and 77) into equation (75)
gives

δγ i
φt =

∫
V

{
− 2A �γ i +

(
∂φ′

k

∂γ i

+ ∂φ′
el

∂ γ i

)

−Hs,i Js − Hext,i Js + 2 λγ i

}
δγ i d3 r

+2A

∫
S

∇γ iδγ i ·d f δγ i = 0 (78)
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According to equation (78) the variations δφt vanishes if
the integrands of the volume and of the surface integrals
vanish. The differential equations obtained by this procedure
still contain the Lagrange parameter λ. Elimination of λ is
performed by multiplying the differential equation for γ i

by γ j and vice versa and subtracting the corresponding
expressions of the type Js,jHeff,i − Js,iHeff,j = 0, which
correspond to the components of the vector product of J s

and an effective field, H eff. Accordingly, the equilibrium
condition in the volume is

[J s × H eff] = 0 (79)

and
[J s × ∇nMs] = 0

on the surface. The components of the effective field are
given by

Heff,i = − 1

Js

∂φ′
t

∂γ i

= 2A

Js
�γ i + Hk,i

+Hσ,i + Hs,i + Hext,i (80)

Here we have introduced the effective fields of the anisotropy
and magnetoelastic energy

Hk,i = − 1

Js

∂ φ′
k

∂ γ i

, Hσ,i = − 1

Js

∂ φ′
el

∂ γ i

(81)

In addition to the above, micromagnetic equilibrium condi-
tions the Maxwell equation divB = 0 has to be fulfilled. This
leads to the Poisson equation inside the volume

�U(i) = div Ms(r) = −ρ(r) (82)

with H (i)
s = −∇ U(i)

and the Laplace equation

�U(0) = 0

H (0)
s = −∇ U(0) (83)

outside the volume. U(1) and U(0) have to fulfill the following
boundary conditions

U(i)(r) = U(a)(r) (84)

at the surface. Furthermore, the normal component of B at
the surface (o) has to be continuous, that is:

H
(i)
s,0 + Ms,n = H

(0)
s,0

−∇nU
(i)
0 + Ms,n = −∇nU

(0)
0

}
(85)

In the most general case also the elastic equilibrium condi-
tions has to be taken into account in the volume and at the
surface with surface forces F , respectively

Div(c · ·εel) = −Div(c · ·εQ)

n · σ = F

}
(86)

In order to formulate equilibrium equations free from the
Lagrange parameter and the condition (71) spherical angular
coordinates ϕ and θ are introduced where ϕ denotes the
azimuthal and θ the polar angle. The direction cosines γ i

are replaced by

γ 1 = sin θ cos ϕ, γ 2 = sin θ sin ϕ, γ 3 = cos θ (87)

Now the equilibrium conditions write:

2 A�θ − A sin 2θ(∇ϕ)2

− ∂

∂θ

(
φ′

k + φ′
el + φ′

s − J s · H ext
) = 0

2 A
{
sin2 θ�ϕ + sin 2θ (∇ϕ) · (∇θ)

}
− ∂

∂ ϕ

(
φ′

k + φ′
el + φ′

s − J s · H ext
) = 0

(88)

The micromagnetic equations given by equations (79)–(88)
correspond to a system of coupled differential equations
for the unknown variables γ i . Since the stray fields H s

and the elastic tensor εel in principle can be represented as
integrals (e.g., see equation (30)), it becomes obvious that the
micromagnetic equation correspond to a rather complicated
system of coupled nonlinear integro-differential equations.

Explicit solutions of the micromagnetic equations have
been obtained for a number of fundamental problems as
domain walls in bulk materials and thin films (Kronmüller
and Fähnle, 2003; Riedel and Seeger, 1971; Lilley, 1950;
Rieder, 1959) for nucleation problems (Frei, Shtrikman and
Treves, 1957; Aharoni and Shtrikman, 1958; Kronmüller,
1987) the high-field susceptibility in the approach to fer-
romagnetic saturation (Brown, 1940, 1941; Becker and
Döring, 1939; Seeger and Kronmüller, 1960; Kronmüller and
Seeger, 1961).

4 SOLUTIONS OF MICROMAGNETIC
EQUATIONS

There are only a few cases where explicit solutions of the
micromagnetic equations are available. Some of them will
be summarized in the following. Many micromagnetic prob-
lems have to be solved numerically by the recently developed
methods of computational micromagnetism that are sum-
marized in Numerical Micromagnetics: Finite Difference
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Methods, Volume 2 and Numerical Methods in Micro-
magnetics (Finite Element Method), Volume 2. Explicit
solutions have been obtained for a number of fundamental
micromagnetic problems as domain walls, nucleation prob-
lems, domain patterns, and the law of approach to ferromag-
netic saturation. Many problems dealing with the interaction
between magnetic and microstructural problems have been
solved approximately.

4.1 Domain walls

4.1.1 Bloch walls

The spin distribution in planar Bloch walls in general is
described by the spherical angles ϕ and θ , where θ is kept
as a constant and the angle of ϕ describes the rotation
of the spontaneous magnetization along the z-coordinate,
which is taken as the domain wall normal n (see Figure 7).
Bloch walls are characterized by a vanishing stray field
(div Ms = 0), that is, the component of J s with respect to
the wall normal, n, is constant

J s · n = Js cos θ = constant (89)

Owing to the vanishing stray field energy, the basic
equation for planar Bloch walls according to equation (88)
is

2 A sin2 θ
d2 ϕ

dz2
− ∂

∂ ϕ

(
φ′

B

) = 0 (90)

where φ′
B = φ′

k + φ′
el includes anisotropy energy and mag-

netoelastic energies. Integration of equation (90) leads to

A sin2 θ

(
d ϕ

d z

)2

− (φ′
B (ϕ) − φ′

B

(
ϕi

)) = 0

z =
√

A sin θ

∫ ϕ

ϕi

d ϕ(
φ′

B (ϕ) − φ′
B

(
ϕi

))1/2 (91)

where φ′
B(ϕi) denotes the value of φ′

B in the domain for
z → −∞ where ϕ = ϕi holds.

Easy directions

Z

j

dB

Figure 7. Distribution of magnetization within a 180◦ wall.

For uniaxial crystals with φ′
B = K1 sin2 ϕ and θ = π

2
(180◦-wall), the solution is

tg
ϕ

2
= e−z/δ0 or sin ϕ = 1

ch
(

z
δ0

) , cos ϕ = th

(
z

δ0

)

(92)
with

δ0 = κ−1
k =

√
A

K1
(93)

which denotes the so-called Bloch wall parameter. In spite
of the fact that a domain wall extends from z = −∞ to
z = +∞ according to Lilley (1950), Hubert and Schäfer
(1998), and Kronmüller and Fähnle (2003) a domain wall
width δB is defined by the distance between the intersections
of the tangent with the largest slope at the ϕ(z) curve with
the lines for ϕ = ϕi, ϕii (see Figure 8):

δB =
(
ϕii − ϕi

)
(d ϕ/d z)max

(94)

In the case of the 180◦-wall in uniaxial materials this gives

δB = πδ0 = π

√
A

K1
(95)

and δB = √
A/(K1 + K2) if the second anisotropy constant

is taken into account. For the specific wall energy defined as

γ B = 2
√

A sin θ

∫ ϕii

ϕi

(
φ′

B(ϕ) − φ′
B(ϕi)

)1/2
d ϕ (96)

for the 180◦ wall with ϕi = 0, ϕii = π, θ = π
2

γ B = 4
√

A K1 = 4K1δ0 (97)

j

p

j2

j1

dBxK
1
2

Type II dw

−8 0 87654321−1−2−3−4−5−6−7

Type I dw

dBxK
1
2

z xK

Figure 8. Wall width defined as the intersections of tangents at
the steepest slope of ϕ(z)-curve (Kronmüller and Fähnle (2003)).
(Reproduced with permmission from Cambridge University Press.)
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is obtained. Whereas in uniaxial crystals the dws are
characterized by a single point of inflection of the ϕ(z)

curve the situation is more complex in the case of some
180◦ walls in cubic crystals. For example, the following
walls split into two 90◦ walls if the magnetoelastic energy
term φel is neglected: α-Fe: (011)–180◦, Ni: (110)–180◦,
(001)–109,47◦. As shown in Figure (8) in this case three
points of infliction exist and the ϕ(z)-curve is described by

ctg ϕ = −A· sh
z

αδ0
+ ρ (98)

Values for A and ρ are given by Lilley (1950) and
Kronmüller and Fähnle (2003). In the special case of the
(001)–180◦ wall in α-Fe A, α and ρ are given by

A = 3

2
λ100α

√
c11 − c12

K1
,

α =
(

1 + 9λ2
111c44

2K1

)−1/2

, ρ = 0 (99)

(A = 2.94·10−2, α ≈ 1, ρ = 0).
The constricting role of the magnetoelastic energy φel

becomes obvious from equation (61) where a term ∝ sin2 ϕ

appears, whereas in φk only terms sin2 2ϕ appear that result
in a splitting of the 180◦ wall.

Another important feature of the different types of
domain walls in cubic materials is the existence of elastic
stresses. In the type I dws there exist long-range stresses
within the domains (α-Fe: (100)–90◦, (111)–90◦. Nickel:
(100)–70.53◦, (110)–70.53◦, (110)–109.47◦, (111)–109.47.
In the type II dws magnetoelastic stresses exist only within
the dws (α-Fe: (001)–180◦, (110)–180◦, (110)–90◦. Nickel:
(001)–109.47◦, (110)–180◦. Kobalt: (001)–180◦). As a con-
sequence type I dws have a strong interaction with stress
sources, whereas type II dws have a much weaker interaction
and therefore are much more mobile than type I dws.

4.1.2 Néel walls

Besides the so-called Bloch walls there exist another type of
dws, the so-called Néel walls characterized by the existence
of dipolar fields because in this case θ = θ(z) and ϕ =
const holds. Accordingly there exist volume charges ρ(z) =
−Ms div θ(z). In bulk materials in general no Néel walls
exist. It is the merit of L. Néel (1955a,b), who has shown
that in thin films the Bloch walls become instable because
of their large dipolar energy due to magnetic surface charges
(see Figure 9), which are avoided by the Néel wall type at
the expense of volume charges, which, however, lead to a
smaller dipolar stray field energy than the surface charges of
the Bloch-type wall.

n

Néel wall Bloch wall

n

Figure 9. Distribution of magnetization and stray field of Bloch
and Néel walls in thin films. (Reproduced with permmission from
Cambridge University Press.)

In order to reveal the differences between Bloch and
Néel walls in bulk materials we consider a planar 180◦

Néel wall where the polar angle θ varies from θ = π
2 to

θ = −π
2 (see Figure 9). Solution of the Poisson equation

(29) with ρ = −Ms div cos θ(z) gives Hz,s = −Ms cos θ(z)

and φs = 1
2MsJs cos2 θ(z). The differential equation of the

Néel wall is obtained from equation (88) for ϕ = 0 giving
after integration

A

(
dθ

dz

)2

= (φ′
k + φ′

s

)
(100)

and

tg

(
θ

2
+ π

4

)
= exp

[
−z

(
K1

A
+ µ0M

2
s

2A

)1/2
]

(101)

For the wall width this gives

δNé = π(
K1
A

+ µ0M2
s

2A

)1/2 (102)

and the specific wall energy is found to be

γ Né = 4 ·
√

A

(
K1 + 1

2
µ0M

2
s

)
(103)

From these results it has to be concluded that in bulk
materials the Neel wall always has a larger specific wall
energy than the Bloch wall, however, its wall width is found
to be smaller owing to the constricting role of the dipolar
stray field energy.

As mentioned above the situation is different in the case of
thin films. Here no rigorous analytical solution of the micro-
magnetic equation is possible. After the pioneering work by
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Néel (1955a,b) numerous approximate and numerical solu-
tions have been published (Dietze and Thomas, 1961; Brown
and LaBonte, 1965; Kirchner and Döring, 1968; Holz and
Hubert, 1969; Riedel and Seeger, 1971; La Bonte, 1969;
Aharoni, 1973, 1975; Aharoni and Jacubovics, 1990). In thin
films Néel walls became energetically favored because of
their smaller dipolar energy. The distribution of magneti-
zation within a one-dimensional Néel wall depends on the
so-called quality parameter Q = 2K1/MsJs and the thick-
ness of the film. The cosine of the rotation angle θ as shown
in Figure 10 follows three stages:

1. Kernel region: cos θ(z) ∝ �2
N/(�2

N + z2)

2. Logarithmic region: cos θ(z) ∝ ln(z)(D)

3. Dipolar tail: cos θ(z) ∝ 1/z2.

In stage I the magnetocrystalline energy determines cos θ

whereas in stage II the local stray field is dominant and in
stage III cos θ is governed by the long-range dipolar field
exerted from stages I and II. According to Aharoni the wall
parameter �N and γ 180◦

Né approximately are given by

�N = 2

√
(
√

2 − 1)A (K1 − J 2
s D2)

(96µ0K1)

γ 180◦
Né = 2π

√√
2 − 1

√
A K1 + π

16
Js Ms D (104)

For D → 0 γ 180◦
Né approaches the wall energy of the Bloch

wall 4 · √
A K1. As analyzed by Hubert (1974) and Hubert

and Schäfer (1998) in thin films a large multitude of different
types of dws exist, depending on the film thickness, the
wall angle and the applied field. The phase diagram shown
in Figure 11 shows the ranges where Néel, Bloch, and
intermediate wall types are stable in the case of permalloy

cos q

10−3 10410310210
z /D
110−110−2
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a: 0.000032
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Figure 10. Rotation angle θ of a one-dimensional symmetric Néel
wall for different quality parameters Q = 2K1/(MsJs) in reduced
length scale z′ = z/D (D = film thickness).
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Figure 11. Phase diagram of the main wall types in permalloy with
Q = 0.00025 according to Hubert and Schäfer (1998).

with Q = 0.00025, that is, an extremely soft magnetic
material.

4.2 Nucleation fields

Single-domain particles with uniaxial anisotropy in general
are characterized by a rectangular hysteresis loop. The critical
field under which the spontaneous magnetization reverses
spontaneously its direction is called the nucleation field,
which in case of hard magnetic materials is given by
HN = 2K1/(µ0Ms). It was W. F. Brown (Brown, 1945,
1963) who pointed out the discrepancy between theory and
experiment (Brown’s paradox) concerning the nucleation
fields, which were found to be a factor of 3 to 4 smaller than
predicted. Later on, it has been shown that demagnetization
fields and reduced anisotropies at the surface of particles
are responsible for these discrepancies (Kronmüller, 1987).
Reversal of magnetization in small particles may take place
by different types of magnetization modes: homogeneous
rotation, curling, buckling, or even more complex nucleation
processes at the surfaces. In the following the results for
homogeneous rotation and the curling mode are outlined.

4.2.1 Homogeneous rotation in cylindrical particles

The total Gibbs free energy density for homogeneous rotation
in the case of a uniaxial anisotropy with the easy axis parallel
to the cylinder axis and an applied field under an angle ψ0



General micromagnetic theory 17

with respect to the negative easy axis is given by

φ′
t = K1 sin2 ϕ + K2 sin4 ϕ + 1

2
µ0 M2

s N⊥ sin2 ϕ

+1

2
µo M2

s N‖ cos2 ϕ

+µ0HextMs cos(ψ0 + ϕ) (105)

where ϕ denotes the angle between Ms and the positive easy
axis. The conditions for a spontaneous rotation of Ms into the
opposite direction are a vanishing derivative dφt/dϕ = 0 and
a second derivative d2φt/dϕ2 ≤ 0. These conditions write

dφ′
t

dϕ
= (K1 + Kd) sin 2ϕ + 2K2 sin2 ϕ sin 2ϕ

−µ0MsHext sin(ψ0 + ϕ) = 0 (106)

and

d2φ′
t

dϕ2
= 2 (K1 + Kd) cos 2 ϕ

+4 K2
(
3 sin2 ϕ cos2 ϕ − sin4 ϕ

)
−µ0MsHext cos

(
ϕ + ψ0

) ≤ 0 (107)

Here the magnetostatic dipolar anisotropy constant

Kd = 1

2
µ0M

2
s

(
N⊥ − N‖

)
(108)

has been introduced, where N⊥ and N‖ denote the demag-
netization factors of the cylinder perpendicular and parallel
to the cylinder axis. The nucleation field for ψ0 = 0 follows
from equation (106) by linearization

[
2 (K1 + Kd) − µ0 MsHext

]
ϕ = 0 (109)

Taking care of the stability condition (107) the solutions of
(107) are ϕ = 0 for Hext ≤ HN and ϕ ≥ 0 for

Hext = HN = 2 K1

µ0 Ms
+ (N⊥ − N‖) Ms (110)

Taking care of the stability relation (107), it turns out that
for K1 + Kd ≥ 4K2 the spontaneous magnetization rotates
spontaneously into the opposite direction. However, for K1 +
Kd ≤ 4K2 the condition d2φt/dϕ2 ≥ 0 holds and therefore
at Hext = HN, Ms starts to rotate reversibly out of the c

axis. The spontaneous reversal of Ms in this case occurs at
(Herzer, Fernengel and Adler 1986; Kronmüller, 1985, 1991)
a second nucleation field

H ′
N = 4

3 · √
6

K2

µ0 Ms

[
1 + K1 + Kd

K2

]3/2

(111)

According to equation (110) the nucleation field is inde-
pendent of the particle and the second anisotropy constant
K2 and only depends on the ratio of the ellipsoidal parti-
cle axes by N⊥ and N‖. From equation (110) we obtain a
lower bound of HN for a plate with perpendicular easy axis
(N⊥ = 0, N‖ = 1)

H min
N = 2 K1

µ0 Ms

− Ms (112)

and an upper bound for an in-plane easy axis

H max
N = 2 K1

µ0Ms
+ Ms (113)

An intermediate nucleation field is obtained for a sphere
(N‖ = N⊥ = 1/3)

H
sph
N = 2K1/µ0Ms (114)

For a cylindrical particle (N⊥ = 1
2 ; N‖ = 0) equation (110)

gives

H
cyl
N = 2 K1

µ0 Ms
± 1

2
Ms (115)

where the (+) and (−) signs hold for an easy axis parallel
or perpendicular to the cylinder axis.

4.2.2 The Stoner–Wohlfarth model

For oblique applied magnetic field the basic equation (106)
and (107) have been solved by Stoner and Wohlfarth for
vanishing higher order anisotropy constants. An extension
of their results including the second anisotropy constant has
been given by Kronmüller, Durst and Martinek (1987), for
K1, K2 ≥ 0 leading to

HN(ψ0) = 2(K1 + Kd)

µ0Ms

1[
(cos ψ0)

2/3 + (sin ψ0)
2/3
]3/2

×
{

1 + 2 K2

K1 + Kd

(sin ψ0)
2/3[

(cos ψ0)
2/3 + (sin ψ0)

2/3
]
}

(116)
The angle ϕN at which a spontaneous nucleation takes place
is given by

ϕN = arctg 3
√

tgψ0 + 2

3

K2

K1 + Kd
(117)

Figure 12 shows the angular dependence of HN(ψ0) for the
material constants of Nd2Fe14B as determined by Hock and
Kronmüller (1987). It should be noted that the asymmetry of
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Figure 12. Angular dependence of the nucleation field and the
coercive field of Nd2Fe14B according to equation (116).

the HN(ψ0) curve is due to the K2-term in equation (116).
Alternative to Figure 12 the angular dependence of HN over
2π may be represented in the so-called Stoner–Wohlfarth
asteroid where HN(ψ0) is plotted as a function of the
field components parallel or perpendicular to the c axis.
Experimental results of this kind are shown in the article
by Kläui and Vaz.

4.2.3 Inhomogeneous rotation by curling

Whereas in the homogeneous rotation mode the reversal of
Ms is governed by crystal anisotropy and surface charges
the curling mode is governed by exchange energy. Volume
charges divMs and surface charges n · Ms vanish with the
exception of charges at the front sides of a finite cylinder.

In cylindrical polar coordinates the linearized micromag-
netic equations give

2A

{
d2ϕ(r)

dr2 + 1

r

∂ϕ

∂r
− 1

r2
ϕ(r)

}

− (2K1 − µ0MsHext − N‖µ0 M2
s ) ϕ(r) = 0 (118)

The solution of equation (118) corresponds to the Bessel
function of first order

ϕ(r) = ϕ0J1

[
r ·
(

µ0 Ms Hext − N‖µ0M
2
s − 2K1

2A

)1/2
]

(119)
The nucleation field follows from the boundary condition
dϕ/dr|r=R=0, which leads to

J ′
1(R) = 0 (120)

The smallest zero of J ′
1(R) gives the largest nucleation field

(Aharoni and Shtrikman, 1958; Aharoni, 1997)

HN = 2 K1

µ0Ms
− N‖Ms + 2A

µ0Ms

(
1.84

R

)2

(121)

Here the last term is due to the exchange energy. This term
exceeds the nucleation field of the homogeneous rotation at
a radius of (N⊥ = 1/2)

Rnuc
crit = 3.68

√
A

µ0M
2
s

= 2.60ls (122)

(ls = √2A/µ0M
2
s , see equation (133)). As a consequence

the nucleation fields at small radii are determined by homo-
geneous rotation and at larger radii by the curling mode.
Typical values of Rnuc

crit are 10–20 nm in the case of soft and
hard magnetic materials (like permalloy or Nd2Fe14B). At
very large radii, the nucleation field approaches the value of
the crystal field 2K1/(µ0Ms).

4.2.4 Critical diameters of small particles

Besides the critical diameter Rnuc
crit for the transition between

nucleation modes there exist two further critical diameters
related to superparamagnetism and to multidomain forma-
tion.

For the application of small particles as permanent mag-
nets or magnetic recording their thermal stability for time
intervals of decades of years is an absolute prerequisite.
At a critical diameter Dth

crit the nucleation fields as given
by equations (110) and (121) no longer govern the rever-
sal of magnetization. Reversal of magnetization is initiated
by thermal fluctuation. The thermal energy kT is large
enough to overcome the effective anisotropy energy Keff =
K1 + 1

2 (N⊥ − N‖) µ0M
2
s . The average lifetime of a particle

of volume V is given by the Arrhenius law (Néel, 1949a;
1949b, 1950)

τ = τ 0 exp
[−Keff V/(kT )

]
(123)

where the pre-exponential factor τ 0 is determined approxi-
mately by τ−1

0 = (2π)−1γHeff (γ gyromagnetic ratio, Heff =
2Keff/(µ0Ms). The lifetime τ depends sensitively on the par-
ticle volume as demonstrated by Figure 13 for a material
with Keff = 105 J m−3, τ 0 = 10−8 s, T = 300 K and a spher-
ical particle of V = π

6 D3. For a diameter of 11.5 nm the
lifetime is τ = 0.1 s, whereas for D = 14.5 nm a lifetime of
108 s is obtained. Accordingly there exists a very narrow
range of diameters where the transition from a stable con-
figuration to an unstable configuration takes place. For the
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Figure 13. Lifetime of magnetization of a spherical particle of
diameter, D, for Keff = 105 J/m−3, τ 0 = 10−8s, T = 300 K.

material parameters of Co and lifetimes of 0.1 and 1010 s the
critical diameters are 3.7 and 4.8 nm.

A further critical diameter is determined by the formation
of domains due to the increasing magnetostatic stray field
energy. For the transition from a single-domain state to a
two-domain state the critical diameter for a spherical particle
is given by

Ddo
crit = 9γ B

(1 − α)µ0M
2
s

= 36
√

AK1

(1 − α)µ0M
2
s

(124)

where α denotes the factor by which the stray field energy
of the homogeneously magnetized single-domain particle
is reduced by the formation of a two-domain state. For
a sphere, this reduction parameter is found to be α =
0.4725 (Goll, Berkowitz and Bertram, 2004), which is
very near to the approximate value of α = 0.5 as given
by Kittel (1949). Table 2 gives a summary of critical
diameters Ddo

crit. Figure 14 shows the dependence of Ddo
crit as

Table 2. Critical single-domain diameters of spherical par-
ticles according to equation (124). Values for Fe3O4, CrO2

and MnBi were taken from Kronmüller (1991).

Magnet µ0M
−2
s (MJ m−3) γ B (mJ m−2) Ddo

crit (nm)

α-Fe 3.82 2.1 9.7
Co 2.54 7.84 55.5
Ni 0.31 0.39 22.6
Fe3O4 0.29 2.0 12.4
CrO2 0.20 2.0 180
MnBi 0.45 12 480
Nd2Fe14B 2.06 24 210
SmCo5 0.88 57 1170
Sm2O17 1.33 31 420
FePt 1.44 32 340
BaFe12O19 0.183 6.3 62
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Figure 14. Critical diameters according to equation (124) as a
function of K1.

a function of the anisotropy constant. The low remanence
materials do not fit into the empirical law Ddo

crit = (K1/2.5 ×
103 J m−3)0.77 (nm). Here it is noteworthy that small critical
radii are obtained for α-Fe with Ddo

crit ≈ 10 nm and largest
diameter for Co5Sm with Ddo

crit = 1.17 µm. Single-domain
configurations also have been investigated by the methods
of computational micromagnetism. Hertel and Kronmüller
(2002) have shown that in cube particles with a quality
factor 2K1/(µ0M

2
s ) = 0.1 (permalloy) the transition from a

so-called twisted flower state to a vortex state takes place
at an edge length of 8.56

√
2A/(µ0M

2
s ) Similarly, Goll,

Schütz and Kronmüller (2003) have shown that a square of
edge length 1 µm transforms from a four domain Landau
structure into a single domain structure at a thickness of
1.5 nm in the case of permalloy and at 2.5 nm and 4 nm in the
case of α-Fe and Co, respectively. Hertel (2002) performed
similar calculations for rectangular platelets of permalloy of
aspect ratio 2:1 and determined the phase diagram of C-state,
Landau state, and diamond configurations. It should be
noted that these numerical calculations support the analytical
calculations of Aharoni (1996) who determined upper and
lower bounds for the single domain diameter.

5 LINEARIZED MICROMAGNETIC
EQUATIONS

5.1 Brown’s equations and the exchange lengths

In cases where the spontaneous magnetization deviates
only slightly from a preferred direction the micromagnetic
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equations may be linearized in γ i . This condition exists
at large applied fields Hext and large magnetocrystalline
energies. Linearization leads to differential equations of
second order with constant coefficients. In the following
we choose the y axis as the preferred direction either
corresponding to the direction of the applied field Hext,2 or
to an easy direction. Within this coordinate system denoted
as Brown’s coordinate system the direction cosines follow
the conditions

γ 1,3 � 1; γ 2 ∼ 1

γ 2 =
√

1 − γ 2
1 − γ 2

2 ∼ 1 − 1

2
(γ 2

1 + γ 2
2) (125)

With the condition γ 2 � 1 the constraint (71) is fulfilled
leading to the equilibrium condition

Heff,1 − γ 1

(
∂φ′

k

∂γ 2
+ ∂φ′

el

∂γ 2
+ Hext,2

)
= 0

Heff,3 − γ 3

(
∂φ′

k

∂γ 2
+ ∂φ′

el

∂γ 2
+ Hext,2

)
= 0 (126)

To obtain more explicit expressions we develop φ′
k and φ′

el
into Taylor series with respect to Brown’s coordinates and
retain only terms up to the second order in γ i . With

φ′
k(γ i) = gk

0 + gk
i γ i + 1

2
gk

ij γ iγ j

i, j �= 2

φ′
el(γ i = gel

0 + gel
i γ i + 1

2
gel

ij γ i γ j (127)

we obtain from equation (127) the linearized micromagnetic
equations

2A�γ i − Js(Hext + Hs,2)γ i − (gk
ii + gel

ii )γ i

−(gk
ij + gel

ij ) γ j + JsHs,i = gk
i + gel

i ; i, j = 1, 3 (128)

and the surface condition

∇nγ i = 0, i = 1, 3 (129)

Within the framework of linearized equations Poisson’ s
equation Is written as

�U = Ms

(
dγ 1

dx
+ dγ 3

dz

)
(130)

A solution of these linearized second-order differential
equations is easily obtained by introducing Fourier trans-
forms. With the Fourier transform

γ̃ i (k) = 1

(2π)3/2

∫
γ i(r)e

−ik·r d3r

γ i(r) = 1

(2π)3/2

∫
γ̃ i (k)eik·r dk
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and the corresponding ones for U(r) and g
k,el
i (r) the

solutions of equations (128) and (130) write (neglecting the
terms in gii and gij ):

γ̃ i(k) =− 1
2A

g̃i

k2+κ2
H

+ κ2
s

2A
× ki

k2+κ2
H

× g̃xkx+g̃zkz

k4+(κ2
H+κ2

s )k2−κ2
s k2

y

Ũ (k) =−Ms
k2 (ikx γ̃ 1 + ikzγ̃ 3)

H̃s(k) =−ik × Ũ(k)/(2π)3/2




(132)
In the case of long-range RKKY exchange interactions the
term Ak2 has to be replaced by (J (0) − J (k))M2

s /(gµB)2.
Equations (132) contain the so-called exchange lengths of
the external and of the dipolar fields:

lH = κ−1
H =

√
2A

JsHext
ls = κ−1 =

√
2A

JsMs
(133)

If we take into account the magnetocrystalline and the
magnetostrictive energy terms in equation (128) two further
exchange lengths may be derived. The so-called domain wall
parameter and the stress exchange length

lk = κ−1
k =

√
A

K1
, lσ = κ−1

σ =
√

2A

3λ100σ ii

(134)

The physical meaning of the exchange lengths becomes
obvious if we consider δ-function like planar perturbations of
the type gi · δ(x) and taking into account the torque exerted
by only one of the magnetic energies. In the case of a planar
perturbation in the (x, z)-plane and a preferred easy axis in
y-direction the solution of equation (128) is given by

γ i(y) = γ 0 e−|y|/li (i = 1, 3) (135)

where for li the dominant exchange length has to be inserted.
Values for exchange lengths at room temperature are given
in Table 3 together with the wall widths and energies using
the characteristic values for A, Js, Ms, Ki, λijk, δB, TC of
Table 1. According to equation (135) a local perturbation of
the spin orientation leads to an extended deviation of the
spin system governed by the exchange lengths as shown
in Figure 15. There exist rather large variations of the
exchange lengths lk because the K1-values may vary over
6 orders of magnitude, whereas ls varies only between
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Table 3. Exchange lengths, wall widths (in nm) and specific wall
energy of transition metals, intermetallic compounds, and oxides
at room temperature (lH determined for H = 1000 Oe = 106/4π

[A/m], lσ determined for σ = 10 MN/m2).

Magnet lk ls lH lσ δB γ B (10−2 J m−2)

α-Fe 21 3.3 15.6 80 220 0.21(100) − 180◦

Co 8.3 4.9 20.4 56 22.3 1.49(0001) − 180◦

Ni 42 8.7 16.1 31 0.035 (110); (112)
Ni3Fe 240 3.7 12.7 51 0.006
Nd2Fe14B 1.4 2.8 11.2 3.82 2.24
Pr2Fe14B 1.4 3.1 14.0 4.4 3.30
SmCo5 0.84 5.3 17.1 2.64 5.71
Sm2Co17 1.83 4.6 16.6 5.74 3.07
Sm2Fe17N3 1.18 4.4 14.0 3.36 4.06
BaFe12O19 4.45 8.3 18.2 13.94 0.57
PtFe 1.26 3.5 13.3 3.95 3.24

y

g

Spin deviation

Local perturbation

Hext

x
2 IH

Figure 15. Spin distribution around a local planar perturbation of
the orientation of the local magnetization. The extension of the
perturbation is determined by the leading exchange length, here lH.

3 and 10 nm because the interesting magnetic materials
have similar polarizations from 0.5 to 2 T and also similar
exchange constants between 10 and 30 pJ m−1. In general,
that exchange length dominates the spin distribution which
leads to the lowest energy state, that is, either the spin
system avoids excitation of the high energy modes and if
this is not possible owing to boundary conditions the spin
inhomogeneities become extended or constricted.

5.2 Applications of Brown’s equations

5.2.1 Nucleation processes

The determination of nucleation fields of single-domain
configurations has been one of the big successes of the
linearized micromagnetic equations. Brown (1945) raised the
problem that the coercive fields of real materials in general
is much smaller than the nucleation fields as discussed in
Section 4.2. There are many experimental efforts to solve this

so-called Brown’s paradox. Lubersky and Morelock (1964)
showed that by the use of Fe-whiskers with diameters larger
than 10 nm the nucleation field of the curling mode (see
equation (121)) may be approached. Also for Ni-wires the
curling modes have been realized by Lederman et al. (1995).
Measurements of the Stoner–Wohlfarth asteroids have been
performed for two-fold anisotropy as Co (Bonet et al.,
1999) and for four-fold anisotropy by Thirion et al. (2006).
Details of these experiments are discussed in Magnetization
Configurations and Reversal in Small Magnetic Elements,
Volume 2.

A further problem treated by Brown’s equations is the
nucleation in inhomogeneous materials where there exist
a local perturbation of the crystal anisotropy constant.
The nucleation fields for planar Gaussian perturbations
K1(z) = Ks + �K(1 − e−z2/r2

0 ) and hyperbolic perturba-
tions, K1(z) = K1(∞) − �K/ch2(z/r0). (Ks = anisotropy
at the center of the planar perturbation, K1(∞) = Ks +
�K , anisotropy constant in the unperturbed matrix) have
been determined (Kronmüller, 1987; Kronmüller and Fähnle,
2003) leading to a modified nucleation field

HN = 2K1

µ0Ms
αk − Neff Ms (136)

where the microstructural parameters αk and Neff depend on
the properties of the perturbation, that is, r0 and �K , as well
as on the geometry of the perturbation. In the special case
where �K = K1(∞), the α-parameter for inhomogeneities
of average thickness r0 > δB corresponds to

αk = δB

πr0
(137)

Experimental values for αk and Neff are discussed in
details by Kronmüller and Fähnle (2003) and in Micro-
magnetism–Microstructure Relations and the Hysteresis
Loop, Volume 2. Of course there exist further deteriorating
effects as misaligned particles or exchange coupled particles
the effects of which are taken into account by microstructural
parameters αψ and αex (see Kronmüller and Fähnle, 2003
and Micromagnetism–Microstructure Relations and the
Hysteresis Loop, Volume 2).

5.2.2 Law of approach to ferromagnetic saturation
(LAFS)

Modern theory of micromagnetism has been born by Brown’s
attempt to explain the so far unexplained 1/H term in the
law of approach to ferromagnetic saturation (LAFS) (Brown,
1940, 1941). The conventional LAFS J (H) = Js − a1/H −
a2/H

2 later on has been found to contain also broken
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exponents (Kronmüller, 1959; 1967)

J (H) = Js − a1/2

H 1/2
= a1

H
− a3/2

H 3/2
− a2

H 2
+ a3

H 3

+ αT
√

H + χpµ0H (138)

The existence of the field dependent terms in equation (138)
makes it difficult to determine the spontaneous polarization
Js for H = 0 and any temperature. Furthermore it has to
be noted that the coefficients an/2 result from intrinsic and
extrinsic properties. In particular, the term ∝ √

H results
from the field dependence of the spectrum of spin-wave
excitations (Holstein and Primakoff, 1940; Kronmüller and
Fähnle, 2003). The linear term is due to the Pauli para-
magnetism, which is described in ferromagnetic materials
by an enhanced parasusceptibility χp. Whereas these latter
two terms have to be determined on the basis of quantum
mechanics the an/2 terms are determined by the concepts
of micromagnetism. Which one of the an/2 terms dominates
depends on the material parameters and the microstructure
of the material.

1. Intrinsic effects :
(a) Uniaxial and cubic crystals: In uniaxial and cubic

crystals the LAFS is described by 1/H 2 and 1/H 3

terms if the magnetic field is misaligned with
respect to one of the main crystal axes: 〈1000〉 in
hexagonal crystals and 〈100〉, 〈110〉 and 〈111〉 in
cubic crystals. In the case of uniaxial crystals for
large fields H > 2K1/Js, the LAFS is

J (H) = Js

(
1 −

(
K1 sin 2ψ0

2K1 cos 2ψ0 + HJs

)2
)

(139)
where ψ0 corresponds to the angle between H and
the [0001] axis. By averaging over all possible easy
directions of the upper half sphere and taking into
account the second anisotropy constant the LAFS
is (Néel, Pauthenet, Rimet and Giron, 1960)

J (H) = Js

(
1 −

[
4K2

1

15J 2
s

− 64

105

K1K2

J 2
s

− 128

315

K2
2

J 2
s

]
1

H 2

)
(140)

The LAFS of cubic crystals has been treated by
Akulov (1928–1931), Gans (1932), and Becker and
Döring (1939). The latter authors have determined
the full angular dependence of the LAFS. In the
case of a polycrystal the averaging over all possible

orientations of crystal grains gives

J (H) = Js

(
1 − 8

105

K1

J 2
s

1

H 2
− 192

5005

K3
1

J 3
s

1

H 3

)

(141)
According to equations (140 and 141) from

measurements of the high-field polarization the
anisotropy constant K1 can be determined.

(b) Amorphous alloys: In amorphous alloys the intrin-
sic material parameters are fluctuating quantities as

J2(r) = 〈J2(r)〉 + δJ2(r)

gk
ij (r) = 〈gk

ij (r)〉 + δgK
ij (r)

}
(142)

where 〈J2(r)〉 = Js, 〈gk
ij 〉 = 0, 〈δJ2(r)〉 = 0.

The effect of these fluctuations has been treated
by Kronmüller and Ulner (1977) and by Fähnle
and Kronmüller (1978) under the assumption of
uncorrelated fluctuations of the material proper-
ties. Fluctuations in the polarization result in vol-
ume charges, divδJ and the exerted dipolar fields
produce further inhomogeneities of the orienta-
tion of the local magnetization. The micromagnetic
equation for the case of magnetostatic fluctuations
and a large applied field, H , parallel to the γ -
direction, are given by (i = 1, 3):

2A �γ i + 〈J2(r)〉 Hs,i(r) − 〈J2(r)〉H γ i = 0

�U = 1

µ0
div J 2(r) = 1

µ0

∂

∂y
(δJ 2(r))

(143)
For a spatially random distribution of magnetiza-
tions the fluctuations δJ 2(r) obey the following
relation

〈δJ 2(r) δJ 2(r
′)〉 = �0Js(r) · δ

(
r − r ′) (144)

where �0 denotes the atomic volume and 〈J 〉 = J s

holds. According to Kronmüller and Ulner (1977)
the solutions for γ i lead to the following LAFS:

J (H) = Js1 − �0
(2A/Js)

1/2

120π
κ4

s

×
(

1

H 1/2
− 1

2

Ms

H 3/2

)

for κ2
H > κ2

s , and

J (H) = Js
(
1 − 14 · 103 �0κ

3
s

)
(145)

for κ2
H ≥ κ2

s . The latter equation shows that the
dipolar fluctuations in the ground state at H = 0
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reduce the spontaneous polarization by 10–20%.
Taking into account magnetocrystalline fluctuations

〈gk
i2 (r) · gk

i2 (r ′)〉
= 〈(δ gk

i2(r))2〉δ(r − r ′) + 〈gi2(r)〉2 (146)

the result for the LAFS is

J (H) = Js − a1/2

H 1/2
− a2

H 2
(147)

where the a1/2 term results from short-range fluctu-
ations and the 1/H 2 term takes care of a long-range
anisotropy ki2 �= 0.

2. Extrinsic effects :
(a) Elastic stress sources in crystalline materials: Orig-

inally Brown (1940, 1941) developed the contin-
uum theory of micromagnetism in order to explain
the 1/H terms in the LAFS. The basis for this type
of calculations was the linearized micromagnetic
equation (i = 1, 3)

2A�γ i − JsHextγ i = gel
i (r),

where gel
i = ∂φ′

el

∂γ i

∣∣∣γ 2=1
γ i,1,3�1 ∝ σ kl (148)

Equation (148) has been applied to all types of
stress sources leading to characteristic field depen-
dences of the LAFS:

– Atomic spherical defects and dislocation loops
for small radii κHr0 < 1
These types of defects corresponds to elastic
dipoles:

σ ∝ 1

r3
J (H) = Js − a1/2

H 1/2

for κHr0 < 1

J (H) = J s − a1

H
− a2

H 2

for κHr0 � 0 (149)

– Straight dislocation lines:

σ ∝ 1

r
; J (H) = Js − a2

H 2
(150)

– Straight dislocation dipoles:

σ ∝ 1

r2
: J (H) = Js − a1

H
(151)
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Figure 16. High-field polarization as a function of 1/(µ0H)1/2 of
amorphous thin films of Fe60Ni20B20 for different temperatures.

(b) Spherical nonmagnetic inclusions of radius r0:

J (H) = Js − a1/2

H 1/2
for 1 < 8κHr0 < 17 + κ2

s r
2
0

J (H) = Js − a3/2

H 3/2
for 8κHr0 � 17 + κ2

s r2
0

(152)

Measurements of the LAFS have revealed the a1/2, a1, a2

terms in crystalline and amorphous materials. As on example
Figure 16 shows the a1/2-term for sputtered thin films of
amorphous Fe80B20 for different temperatures between 20 K
and 240 K (Lenge and Kronmüller, 1986). A detailed anal-
ysis of these results considering magnetocrystalline fluctua-
tions and the presence of pointlike defects have been per-
formed previously (Kronmüller, Durst and Martinek, 1987;
Kronmüller and Fähnle, 2003) showing that both contri-
butions, magnetocrystalline fluctuations as well as point-
like stress centers contribute to a1/2. The existence of the
1/H -term has been detected in as-quenched and plastically
deformed amorphous alloys of Fe40Ni40P14B6 (Grimm and
Kronml̈ler, 1980, 1983; Kronmüller et al., 1979). This 1/H -
term results from small linearly extended elastic dipoles due
to the agglomeration of vacancy type so-called free vol-
umes (Kronmüller and Fähnle, 2003; Kronmüller, Lenge and
Habermaier, 1984). The 1/H 2-term, which is the result of
long-range stresses or magnetocrystalline anisotropies, and
also induced anisotropies is the dominant term in crys-
talline materials, and, in particular, in plastically deformed
materials (Kronmüller, 1959; Köster, 1967; Grimm and
Kronmüller, 1983; Domann, Grimm and Kronmüller, 1979).
Examples of this kind are presented in contributions
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Figure 17. Analysis of the high-field susceptibility of a cyclically
deformed Ni single crystal. χH 3 measured parallel to the four
〈111〉-directions. Accumulated plastic strain apl = 50, amplitude per
cycle 0.075, flow stress 56.6 MPa (Kronmüller and Fähnle (2003)).
(Reproduced with permmission from Cambridge University Press.)

Micromagnetism–Microstructure Relations and the Hys-
teresis Loop, Volume 2. As a further example Figure 17
shows the analysis of the high-field susceptibility of a cycli-
cally deformed Ni single crystal. In this case the quantity
χH 3 follows a linear relation in H thus pointing to the pres-
ence of dislocation dipoles. The existence of dense linear
clusters of dipole bundles has been proven by transmission
electron microscopy (Kronmüller and Fähnle, 2003).

The analysis of the LAFS allows the determination of the
temperature dependence of the spontaneous magnetization
at H = 0. From the T 3/2-Bloch law the spin-wave stiffness
constant and the related exchange energy can be determined
if the 1/Hn/2- plots are extrapolated to H → 0. Furthermore
from the existence of the an/2 parameters the kind of
microstructures can be analyzed (dislocations, dislocation
dipoles, point defects, para-, and diamagnetic precipitations).

Extended reviews of this type of analysis have been
previously given (Kronmüller and Fähnle, 2003; Kronmüller,
1979, 1981; Umakoshi and Kronmüller, 1981; Grimm and
Kronml̈ler, 1980, 1983; Domann, Grimm and Kronmüller,
1979; Vasquez, Fernengel and Kronmüller, 1989; Kronmüller
et al., 1979).

6 MICROMAGNETISM OF DOMAIN
PATTERNS

6.1 Laminar domain patterns

Analytical determinations of domain patterns by solving the
integro-differential equations as derived in Section 3 so far do
not exist owing to the complexity of the nonlinear differential
equations, which are combined with the differential equations
for the long-range dipolar fields. The usual procedure to
determine the parameters of domain patterns therefore is

based on four steps in order to approximate the true magnetic
structure:

1. The existence of dws characterized by their specific wall
energy, γ B, is presupposed.

2. Assumptions are made concerning the arrangements of
dws.

3. The total Gibbs free energy of dws arrangement is
minimized with respect to the geometry of the dws
arrangements.

4. Different arrangements of dws are compared with each
other. First attempts to determine the size of Weiss
domains are due to Landau and Lifshitz (1935) and
(Kittel and Galt, 1956).

Several authors have given extended presentations of the
state-of-the-art (Hubert and Schäfer, 1998; Hubert, 1974;
Chikazumi, 1997; and Kronmüller and Fähnle, 2003). The
subdivision of ferro- or ferrimagnetic materials into domains
establishing a global demagnetized state results form the
magnetostatic energy. For example, the magnetostatic energy
of a platelet magnetized perpendicular to the surface per
unit surface area is given by 1

2µ0M
2
s · T , where T denotes

the thickness of the platelet. By means of the formation of
domains magnetized parallel or antiparallel to the easy direc-
tions this magnetostatic energy can be drastically reduced.
On the other hand, however, owing to the formation of
domains the total wall energy increases. Therefore an equi-
librium domain width exists where the total magnetic Gibbs
free energy corresponds to a minimum. In general, the mag-
netostatic stray field energy is reduced by the formation of
so-called closure domains at the surface of the specimen. The
type of closure domain is governed by the quality parameter

Q = 2K1

µ0M
2
s

(153)

For Q > 1 the closure structure of these hard magnetic
materials is governed by the stray field energy, whereas for
Q < 1 the magnetization deviates from the easy directions
and the magnetocrystalline energy determines the energy
of closure domains. Several examples of laminar domain
patterns are shown in Figure 18 where the Landau structure
for Q < 1 and the Kittel structure for Q > 1 are presented.
Of special interest are Landau-type structures with vortices as
shown in Figure 19. In the case of laminar domain patterns
the total energy per unit area is given by

φtot = γ B
T

D
+ φcl · D (154)

The first term on the right side of equation (154) corresponds
to the specific dw energy, increasing with decreasing domain
width D, and the second term corresponds to the energy per
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Figure 18. Characteristic laminar domain pattern of platelets for different Q-parameters. (a) Landau structure in 〈100〉-α-Fe platelets. (b)
Partial Landau–Kittel structure for intermediate Q values (Co). (c) Open Kittel structure for hard magnetic uniaxial crystals with Q ≥ 1
(FeNdB) (Kronmüller and Fähnle (2003)). (Reproduced with permmission from Cambridge University Press.)

unit area of the closure domains. The equilibrium domain
width is obtained from a minimization of φtot with respect
to D, giving

D =
√

γ B T

φcl
(155)

Without considering the details of the calculation of φel the
results are the following ones:

1. Landau structure of α-Fe with easy directions perpendic-
ular and in-plane. In this case, the closure domain energy
is determined exclusively by the magnetoelastic energy,
which leads to

D =
√

γ BT
9
16c11λ

2
100

(156)

2. Landau structure of a uniaxial soft magnetic materials
(Q ≤ 1) with closure domains magnetized in hard direc-
tion

D =
√

γ BT
1
2K1

(157)

3. Kittel structure in hard magnetic materials (Q ≥ 1), with
easy direction perpendicular to the platelet.

D =
√

γ BT( 1.7
4π

)
MsJs

(158)

Equations (156–158) may be used to determine relevant
magnetic parameters. For example, from equation (157) we
derive:

K1 = 64AT/D4; γ B = 32AT/D2; δB = π

8
D2/T (159)

So far we have considered domain patterns with discrete
orientation of magnetization in the bulk and in the closure
domains. In soft magnetic materials, however, the transition
from the Kittel structure to the Landau structure with
vanishing stray fields takes place continuously as discussed
by Hubert and Schäfer (1998) as well as Kronmüller and
Fähnle (2003).

In order to describe this process Williams, Bozorth and
Shokley (1949) introduced an effective permeability µ∗

that takes care of the fact that in materials Q ≤ 1 the
magnetization inclines parallel to the surface not taking care
of the easy directions in order to reduce the surface charges.
This effect may be taken into account by introducing the
effective permeability

µ∗ = 1 + J 2
s

2µ0K1
= 1 + Q−1 (160)

If equation (160) is introduced into equation (158) by
replacing µ0 by µ0µ

∗ for a rotation angle of 45◦ in this
closure domains the domain width is given by

D =
√

γ B T (1 + Q−1)
1.7
4π

MsJs
(161)

Equations (161) describes fairly well the transition from the
Kittel structure (Q ≥ 1) to the Landau structure (Q ≤ 1).

6.2 Landau structures with vortices

Domain patterns with vortex structures exist mainly in
thin films where the geometry and the distribution of easy
directions allows a reduction of the stray field energy
only by the formation of vortices at the crossing points
of the dws. Typical examples are shown in Figure 19.
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Figure 19. Typical domain patterns in rectangular platelets with
vortices in the case of low remanence configurations (Q ≤ 1)
(Kronmüller and Fähnle (2003)). (Reproduced with permmission
from Cambridge University Press.)

According to Feldtkeller and Thomas (1965), a vortex
corresponds to a region where the magnetization rotates by
360◦ around a singular point where the magnetization is

oriented perpendicular to the film. This configuration is due
to the fact that an in-plane magnetization rotating by 360◦

in the center of the configuration leads to a singularity of
the exchange energy because (∇γ i)

2 becomes infinite. To
avoid this singularity the magnetization rotates out of the
plane thus producing stray field energy, however, avoiding
the singularity of exchange energy. Figure 20 shows the four
domain Landau structures in a square platelet with the vortex
in the center and Figure 21 shows the spin distribution in the
center of the vortex. Different attempts have been made in
order to describe the distribution of magnetization within
the vortex (Feldtkeller, 1965; Usov and Peschany, 1993,
1994).

These authors use the Ritz method assuming a functional
distribution of Js and minimizing the total magnetic energy.
Feldtkeller’ s Ansatz for the angle ϑ between J s and the

(a) (b)

Figure 20. Four and two-domain Landau structures in a square platelet with vortex in the center for Permalloy (a) and Co (b) (Goll, Schütz
and Kronmüller, 2003). (Reproduced from Goll et al., 2003, with permission from the American Physical Society.  2003.)

(a) (b)

Figure 21. Distribution of magnetization in the center of a vortex. (Courtesy of S. Macke.)
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vortex axis is given by ϑ(r) ∝ cos[exp(−2β2r2)], whereas
Usov uses

sin ϑ = 2 b r

b2 + r2
, for 0 < r < b, (162)

sin ϑ = 0 for b < r < R

where R denotes the radius of the platelet. The parameters
β and b in the Feldtkeller and the Usov model have to
be determined from the minimization of the total energy.
Figure 22 shows the distribution of the reduced z-component,
Mz/Ms for the Feldkeller and the Usov model in the case
of permalloy. The vortex radius in the case of the model
Feldtkeller (1965) varies between 1.5 ls and 3 ls for film
thicknesses ranging between zero and 20 ls. Similar results
were obtained by Usov and Peschany (1993, 1994) with
variation from 2.2 to 4.5 ls.

Numerical calculations by the finite element technique
give further information on the details of the vortex structure.
In particular, it turns out that there exists a negative Mz

component for distances larger than the vortex radius (see
Figure 23). This negative component is of the order of 2%
for a platelet of thickness of 25 nm and vanishes nearly for
thicknesses < ls.

It is of interest to compare the vortex energy with
the total magnetic energy stored in a square platelet of
dimensions 250 × 250 × 25 nm−3. For permalloy with A =
13 pJ m−1, Js = 1 T, K1 = 5.0 × 102 J m−3, ls = 5.7 nm the
total magnetic energy of the platelet, composed of φex, φk

and φs is 19.83 × 10−18 J, whereas the total magnetic energy
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Figure 22. Distribution of Mz/Ms for the Feldtkeller and the Usov
Ansatz for permalloy for a film thickness of 5 nm ≈ 1.5ls. (Courtesy
of D. Goll and S. Macke.)

stored in the vortex kernel (vortex extension limited by the
radius where mz = 0) amounts only to 5.63 × 10−18 J. From
these results it becomes obvious that in macroscopic domain
patterns the energy stored in vortex arrangements remains
rather small in comparison to the dw energies of nm, µm,
and cm dimensions. Therefore vortices determine the spin
arrangement only in particles of small dimensions.

Many investigations on-line structures in domain walls
have been performed on the basis of micromagnetism such
as Néel lines, in Bloch walls and Bloch lines and Hubble
domains (Thiaville et al., 1991; Miltat, Thiaville and Trouil-
loud, 1989).
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vortex core is shown for a larger scale by the inset. (Courtesy of D. Goll and S. Macke.)
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7 MICROMAGNETISM OF DYNAMIC
MAGNETIZATION PROCESSES

7.1 The Landau–Lifshitz–Gilbert (LLG)
equation

The micromagnetic theory of dynamic magnetization pro-
cesses deals with the problems of reducing energy losses,
with small switching times in demagnetization processes of
small particles and thin films and the calculation of resonance
frequencies and spin-wave spectra. A first description of the
time-dependent motion of magnetic moments is due to Bloch
(1932) who considered uncoupled and undamped magnetic
moments. Equations for the damped motion of the magnetic
polarization at first were published by Landau and Lifshitz
(1935).

Starting from the classical mechanical equation for the
rotational motion of a rigid body, dP /dt = L, where P is the
angular momentum and L the torque acting on the body, the
equation of motion of the magnetic polarization is obtained
by using the magneto-mechanical analogue J s = γP and
inserting the magnetic torque L = [J s × H eff], which gives
for the undamped rotational motion

dJ s/dt = γ [J s × H eff] (163)

Here γ denotes the gyromagnetic ratio, γ = −g |e| /2m =
−1.1051g (sA/m)−1. Landau and Lifshitz have expanded
equation (163) by introducing a damping term according to

dJ s

dt
= γ L [J s × H eff] − αL

Js
[J s × [J s × H eff]] (164)

Dividing equation (164) by µ0 and introducing Ms the
equation of motion of the spontaneous magnetization is
obtained

dMs

dt
= γ L [Ms × H eff] − αL

Ms
[Ms × [Ms × H eff]]

(165)
The first term on the right side of equation (165) describes a
precessional rotation of Ms with frequency ω = −γHeff. The
minus sign in ω means that in the case of a positive effective
field the precessional motion takes place anticlockwise. The
second term rotates Ms toward the direction of the effective
field, that is, after some time the precessional motion of Ms

finally stops (Figure 24). Equation (165) describes a motion
of Ms, which accelerates with increasing damping parameter
αL. Gilbert (1955) pointed out that equation (165) can only
be used for small damping. In order to describe the strong
damping in thin films (Gilbert and Kelly, 1955) Gilbert

∆p

∆m

R

m

Heff

2θ

→

→

→

→

→

Figure 24. Precessional movement of magnetization around the
effective field showing the directions of precessional and damped
component.

(1955) proposed an alternative equation, which is written as

dMs

dt
= γ G [Ms × H eff] + αG

Ms

[
Ms × dMs

dt

]
(166)

The subscripts L and G in equations (165) and (166) point
to the Landau–Lifshitz (LL) and the Gilbert equation. In
order to compare the LL and the Gilbert equation the term
dMs/dt on the right side of equation (166) is replaced
by the Gilbert equation itself. This leads to the so-called
Landau–Lifshitz–Gilbert (LLG) equation:

dMs

dt
= γ G

(1 + α2
G)

[Ms × H eff]

+ αGγ G

(1 + α2
G)Ms

[Ms × [Ms × H eff]] (167)

where the following replacements have taken place

γ L → γ G

1 + α2
G

; αL → αG γ G

1 + α2
G

(168)

The LL and the LLG equation have a similar form, however,
the dependences of the precessional and of the damping terms
on the parameters γ L,G and αL,G are quite different.

This becomes obvious if we consider the dependence
of the precessional and of the damping term on the αL,G

parameters as presented in Figure 25. The precessional term
P ∝ [Ms × H eff], remains constant in the case of the LL
equation and decreases in the case of the LLG equation.
The damping term increases linearly with αL in the case
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of the LL equation and runs through a maximum for the
LLG equation. It is of interest that in the case of the LLG
equation the precession as well as the damping vanishes for
large αG values. This behavior is expected from a physical
point of view, whereas the LL equation leads to an unphysical
behavior.

7.2 Landau–Lifshitz–Gilbert equations in
Cartesian and spherical polar coordinates

7.2.1 Cartesian coordinates

For numerical and analytical calculations it is useful to for-
mulate the LLG equations in terms of reduced dimensionless
properties defined as:

τ = ωt = γHNt, heff = H eff

HN
, ms = Ms

Ms

HN = 2K1/Js, ω = γHN (169)

where H eff is given by equation (80). The motion of the
three components mx, my and mz of ms then is described by
the following differential equations:

dmi

dτ
= 1

1 + α2

[
mj | heff,k | −mkheff,j

]
− α

1 + α2

[
mj

{
miheff,j − mjheff,i

}
− mk

{
mkheff,i − miheff,k

}]
(170)

i = 1, 2, 3; j, k by cyclic transformation

The differential equation for mj and mk are obtained by
cyclic transformation. The components of the effective field
are obtained from equations (80) and are especially simple in
the case of a homogeneous precessional motion, where the
exchange field vanishes and heff,i is given by

heff,i = 1

HN

{
− 1

J

∂φ′
k

∂γ i

+ Hs,i + Hext,i

}
(171)

with H s = −

 Nxx Ms

Nyy Ms

Nzz Ms


 (172)

if we deal with a specimen of ellipsoidal shapes and
demagnetization factors Nii .

7.2.2 Spherical coordinates

In order to get rid of the constraint
∑3

i=1 γ 2
i = 1 spherical

coordinates θ and ϕ (Figure 26) according to equation (71)
are introduced. The Gilbert equation (166) then is writen as

−dθ

dt
sin θ = −γ G Heff,ϕ + αs

dϕ

dt
sin θ (173)

dϕ

dt
sin θ = γ G Heff,θ ± αG

dθ

dt

with Heff,ϕ = − 1

Js

∂φtot

∂ϕ
; Heff,θ = − 1

Js

∂φto

∂θ

(174)
Here dθ/dt described the relaxation of the magnetization into
the equilibrium state and dϕ/dt describes the precessional
rotation around the orientation of H eff.

mz
→

mx
→

ms
→

my
→

x

z

y

q

j

Figure 26. Definition of spherical coordinates θ and ϕ of the
reduced magnetization m = M/Ms.
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In the particular case of homogeneous precession in an
uniaxial spherical particle the LLG equations are given by
(heff = hk + hext).

dθ

dτ
= − αG

1 + α2
G

sin θ(cos θ + hz,ext)

dϕ

dτ
= 1

1 + α2
G

(
cos θ + hz,ext

)
(175)

Here the magnetostatic stray field exerts no torque on the
magnetization because it is always oriented antiparallel to
the magnetization.

In the case of a thin platelet, the stray field may not
be neglected. With demagnetization factors Nxx = Nyy and
Nzz, H s is written as

H s = −Ms


 Nxx sin θ cos ϕ

Nyy sin θ sin ϕ

Nzz cos θ


 (176)

and the LLG equations for a uniaxial crystal are given by

sin θ
dϕ

dτ
= 1

1 + α2
G

[F1 + αGF2]

dθ

dτ
= 1

1 + α2
G

[−F2 + αGF1] (177)

with

F1 = [−(kx + nxx) cos2 ϕ − (ky + nyy) sin2 ϕ

+ (kz + nzz)] sin θ cos θ

+(hext,x cos ϕ + hext,y sin ϕ) cos θ − hext,z sin θ

F2 = [(kx + nxx) − (ky + nyy)
]

sin θ sin ϕ cos ϕ

−hext,x sin ϕ + hext,y cos ϕ (178)

Here the vectors k are given by

k =

 1

1
0


 , k =


 0

1
1


 (179)

for in-plane and out of plane direction of H ext , respectively.
The tensor nii is related to the demagnetization tensor N by

n = 1

Q


 Nxx

Nyy

Nzz


 (180)

where Q = 2K1/(µ0M
2
s ) denotes the so-called quality

factor.

7.3 Magnetization dynamics by spin-polarized
electrical currents

In papers by Slonczewski (1996, 1999) and Berger (1996)
it has been shown that spin-polarized electrical currents
exert torques on Ms producing spin waves at microwave
frequencies. This effect is due to the indirect exchange
interaction of s electrons with d or f electrons, which are
responsible for the spin ordering in transition or rare-earth
metals. Similar to the Heisenberg model the s–d and s–f
interaction is described by the Hamiltonian

Hs,f,d = −2Js,f · s · S (181)

where s denotes the spin of the conduction electrons and S

that of the d or f electrons and Jsd corresponds to the sd or sf
exchange integral. In a continuum theoretical micromagnetic
description the current-induced phenomena are described by
an extended LLG equation (neglecting the damping term)

∂Ms

∂t
= γ [Ms × H eff] + ∝

Ms

[
Ms × dMs

dt

]

− σ j

M2
s
Ms × [Ms × (j · ∇)Ms

]
−ξ

σ j

Ms

[
Ms × (j · ∇)Ms

]
(182)

where j denotes the spin polarized current. The parameter σ j

according to Slonczewski (1996), Berger (1996) and Krüger
et al. (2007) is defined as

σ j = εµB

eMs(1 + ξ 2)
(183)

where e denotes the spin polarization efficiency (Slon-
czewski, 1996; Berger, 1996) and ξ = τ ex/τ sf the ratio of
exchange and spin-flip relaxation times. On the basis of
equation (182) a nonlinear theory of microwave generation
in magnetic nanocontacts has been developed (Slavin and
Kabos, 2005) and the role of current-induced torques for
the motion of domain walls has been considered by several
authors. There exists an increasing number of publications
on this subject dealing with theoretical (Tatara and Kono,
2004; Li and Zhang, 2004; Waintal and Viret, 2004; Thiav-
ille, Nakatami, Miltat and Vernic, 2004; Thiaville, Nakatami,
Miltat and Suzuki, 2005) and experimental investigations
(Grollier et al., 2003; Tsoi, Fontana and Parkin, 2003; Kläui
et al., 2003, 2005 Kimura, Otami, Tsukagoshi and Aoyagi,
2003; Yamaguchi et al., 2004; Vernier et al., 2004). The idea
to manipulate dws by electrical currents in order to improve
the functions of spintronic devices has been outlined by Ver-
sluijs, Bari and Coey (2001) and Allwood, Xiong, Cooke and
Locatelli (2002).
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7.4 Applications of the LLG equations

7.4.1 Effective domain wall mass

As shown in Section 4.1.1 a static 180◦ dw in a uniaxial
crystal is fully described by the rotation angle ϕ within the
dw plane with normal parallel to the z axis. In the case
of a moving dw, the spontaneous magnetization due to its
precessional rotation has to be described by the rotation angle
ϕ as well as by the angle θ with respect to the dw normal.
As shown by Doering (1948), Walker and Dillon (1963),
and Slonczewski (1972) at small velocities the wall energy
is given by

γ B = 4

√
A (K1 + 1

2
µ0M

2
s sin2 θ) (184)

From a solution of the LLG equation the angle θ is found
to increase linearly with velocity v of the dw leading to a
quadratic dependence of γ B on velocity v. Thus γ B may be
written as

γ B(v) = γ B(0) + 1

2
mwv2

with γ B(0) = 4
√

A K1 and (185)

mw = 1

2
µ0γ B(0)/

(
Aγ 2

G

) = 2πµ0

δBγ 2
G

(186)

A detailed analysis shows that the wall mass is a consequence
of the stray field energy resulting from the precessional
rotation of Ms within the dw. No simple explicit result
exists for two-dimensional dws as they exist in thin films. In
particular the role of Bloch lines in dws has been considered
by Malozemoff and Slonczewski (1979) and O’Dell (1981).

7.4.2 Switching times in spherical particles

An analytical solution of the LLG equation has been obtained
for spheres with uniaxial anisotropy and an external field
applied antiparallel to the positive easy direction, which
also is parallel to the spontaneous magnetization. In the
case of a homogeneous rotation process in a sphere the
demagnetization field is always strictly antiparallel to Ms and
therefore no torque is exerted on Ms by the demagnetization
field. The effective field in reduced units of HN is given by

heff = H eff

HN
=

 −mx

−my

Hz,ext/HN


 (187)

In terms of spherical coordinates as defined in Figure 26 the
LLG equation are given by equations (175). Kikuchi (1956)
has integrated equations (175) for hz,ext = −1 and given

the implicit solution for the time-dependent z-component
mz = cos θ :

τ = −1 + α2
G

4αG
×
[

ln

(
(mz(τ ) + 1)(m0 − 1)

(mz(τ ) − 1)(m0 + 1)

)

− 2

mz(τ ) − 1
+ 2

m0 − 1

]
(188)

where m0 corresponds to the z-component of m at τ = 0.
For m0 = 1 the torque on m vanishes and no precession
would take place. Figure 27 shows the time dependence of
mz(τ ) as determined numerically from equation (188) for
m0 = 0.99. Figure 27 shows two time ranges. In a range
I strongly dependent on m0 the magnetization mz doesn’t
change strongly. The time τR, elapsing until mz becomes
zero is given by

τR = 1 + α2
G

4αG

[
ln

1 + m0

1 − m0
− 2

m0 − 1
− 2

]
(189)

In a range II mz changes its orientation by almost 180◦. The
corresponding switching time is given by

τ s = 2
1 + α2

G

αG
(190)

Figure 28 shows the characteristic times τR and τ s as a
function of the damping constant αG. Both characteristic
times show a minimum at αG = 1, however, their absolute
values differ by a factor of 20, depending on the chosen
value of m0. According to the results τ s always is rather
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Figure 27. Time evaluation of mz of a sphere in a reversed field
Hext = −HN for α = 1 and m0 = 0.99n (Kikuchi, 1956) with
definition of τR and τ s. (Reproduced with permmission from
Cambridge University Press.)
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Figure 28. Characteristic switching times τR and τ s of a sphere as
a function of α for m0 = 0.99 and Hext = −HN (Kronmüller and
Fähnle (2003)). (Reproduced with permmission from Cambridge
University Press.)

small. To reduce the total switching time lower m0 values
and optimum α-values are required. Actually the measured
α-values are much lower than the α = 1 and are rather of
the order of 0.001–0.05.

7.4.3 Switching times in thin platelets and small
parallelepipeds

Whereas in spherical particles the magnetic stray fields play
no role, in the case of platelets the stray fields cannot be
anymore neglected. With the stray field given by equations
(27–28) the LLG equations are given by

dϕ

dτ
= 1

1 + α2
G

[{
1 − 1

Q
(N‖ − N⊥) cos2 ϕ

}
cos θ

+ kext,z − 1

Q
(N‖ − N⊥) sin ϕ cos ϕ

]

dθ

dτ
= −1

1 + α2
G

[
αG

{
1 − 1

Q
(N‖ − N⊥) cos2 ϕ

}

× sin θ cos θ + αGhext,z − sin θ

− 1

Q
(N⊥ − N‖) sin θ sin ϕ cos ϕ

]
(191)

The demagnetization factors N‖ and N⊥ of square paral-
lelepipeds are obtained from Aharoni’s results (Aharoni,
1998c). In equation (191) N‖ are the demagnetization fac-
tors parallel to the in-plane edges of the square platelet and
N⊥ corresponds to that perpendicular to the platelet plane.

Switching times haven been determined for square platelets
of edge length 12.5 nm and varying thickness with aspect
ratios 0.02:1 (cubic particles). The materials investigated
are FePt and Co at room temperature with the follow-
ing material parameters for FePt: K1 = 6.6 × 106 J m−3,
Js = 1.43 T, A = 10 pJ m−1 (Hai et al., 2003) and for Co:
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Figure 29. Dependence of the switching time on the damping
parameter α for different aspect ratios of a square platelet of Cobalt
of edge length 12.5 nm obtained by applying a magnetic field of
Hext = −1.5Hk to the remanent quasi-homogeneous equilibrium
state (flower state). (Courtesy of D. Goll and S. Macke.)

K1 = 0.4 · 106 J m−3, Js = 1.8 T, A = 13 pJ m−1. The ground
state of platelets with in-plane easy axis parallel to the edges
corresponds to the so-called butterfly state. The reversal of
magnetization therefore starts at the corners of the square
where J s reveals a slight inhomogeneity. Figure 29 shows
the dependence of the switching time as a function of the
damping parameter α for different aspect ratios p of the
square platelets. These results were obtained from a numer-
ical solution of equations (191). The inversely applied mag-
netic field of 1.5Hk is strictly parallel to the edges of the
square. With decreasing aspect ratio the minimum switch-
ing time shifts to smaller α-values, and also τ s as a whole
decreases. The increase of τ s for larger α-values, α > αmin,
is due to the strongly damped aperiodic relaxation process of
Ms. For α < αmin, the switching time again increases owing
to reversal processes, which are governed by the precessional
process with many precessions before reversal takes place
(Goll, Schütz and Kronmüller, 2006).

Figure 29 shows the switching time τ s as a function of
α for the case allowing inhomogeneous rotational processes
using the FEM = Finite Element Method method. In this case
the reversal process starts from the corners of the platelets by
the displacement of a domain wall (Néel walls in thin films)
moving to the center of the platelet.

It is of interest to note that the switching times in the case
of the flower state are larger than in the case where the field
is applied under a misalignment angle of 5◦ to an ideally
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Figure 30. Field dependence of the switching time of a square
Cobalt platelet of edge length 12.5 nm (aspect ratio 0.1 and
α = 1 and 0.01). (Reproduced from D. Goll, G. Schütz and
H. Kronmüller: ‘Analysis of switching times of inhomogenous
magnetization processes in thin platelets’, Physica B 372, 2006,
copyright  2006, with permission from Elsevier.)

homogeneous state. This result is due to the fact that the
inhomogeneities of J s at the corners are smaller than 5◦.

Another interesting feature of the switching times is their
field dependence. Figure 30 shows τ s for Co as a function
of Hext/HN for p = 0.01 and α = 0.02 and α = 1.0. As for
large applied fields Hext > 1.5HN the switching process takes
place quasi–homogeneously the LLG equation is solved
assuming homogeneous rotation of Ms. For small α-values
we may distinguish three stages of τ s. In stage I up to
Hext/HN = 2.0, τ s decreases. In stage II 2 < α < 4, τ s

increases up to a maximum value at Hext/HN ≈ 4. For larger
fields, stage III, τ s decreases monotonously over the whole
field range. Also Nd2Fe14B show a similar field dependence
of τ s. In the case of large damping parameters the switching
time decreases throughout.

The existence of the three field stages is found to be
related to the different types of ringing modes as shown
in Figure 31 for the three stages. In stage I the ringing
amplitude are rather large and therefore the configuration
with 〈Jx〉 = 0 is achieved at small times. At larger fields the
ringing amplitudes become small leading to larger τ s values.
For large α values τ s also decreases monotonously over the
whole field range.

7.4.4 Dynamic nucleation field

Within the framework of the Stoner–Wohlfarth the-
ory (Stoner and Wohlfarth, 1948) and its extension by
Kronmüller, Durst and Martinek (1987) the static field fol-
lows a hyperbolic curve described by equation (28). An
important feature of the asteroid is the rise of the nucle-
ation field for misalignment angles around 90◦. Taking into
account the precessional movement of Ms it turns out
that the nucleation field depends on the damping constant
α and the field rate dHext/dt . Numerical calculations are
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Figure 31. Time dependence of the in-plane x-component of Ms

for α = 0.02 of the three stages shown for Cobalt in Figure 30.
(Reproduced from D. Goll, G. Schütz and H. Kronmüller: ‘Analysis
of switching times of inhomogenous magnetization processes in thin
platelets’, Physica B 372, 2006, copyright  2006, with permission
from Elsevier.)

due to Leineweber and Kronmüller (1999) and Fidler et al.
(2001). Results obtained for a sphere of Nd2Fe14B with a
rather small radius of 4.2 nm (single-domain particle) with
the material parameters K1 = 4.3 × 106 J m−3, K2 = 6.5 ×
105 J/m−3, A = 7.7 pJ m−1, Js = 1.61 T, HN(0) = 5.34 ·
106 A m−1, γ = 2.21 × 105 1/sA are shown in Figure 32 for
infinite switching field rates. Owing to the precession of Ms

the nucleation field over the whole angular range, from ϕ = 0
to ψ = 90◦ is reduced and the reduction is the larger the
larger the damping constant α. In particular for angles of
ψ = 90◦ the nucleation field is reduced by nearly a factor of
2, whereas for ψ = 0◦ no reduction takes place.
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7.4.5 Thermal fluctuations and dynamics
of magnetization processes

In magnetic recording it is generally accepted that the data
stored remain in their state and can be read out repro-
ducibly over many years. Actually, however, the magnetic
configuration of a magnetic bit corresponds only to a spe-
cial minimum of many possible local minima of the Gibbs
free energy. Magnetic stability can only be achieved if ther-
mal fluctuations are too weak to overcome the energy barrier
to neighboring minima. Pioneering investigations are due to
Néel (1949) and Brown (1963, 1979) who gave a first insight
into the reversal of magnetization of small particles by ther-
mal fluctuations. According to Brown thermal effects can be
included in the LLG equation by adding a stochastically fluc-
tuating field Hf(t) to the effective field Heff. The statistical
properties of this random field are the following ones:

〈Hf,i(t)〉 = 0

〈Hf,i(t)Hf,j(t + t ′)〉 = µδij δ(t
′) (192)

Equation (192) is a consequence of the fluctuation dissipation
theorem (Brown, 1963; Chantrell, Hannany, Wongsam and
Lyberatos, 1998), which guarantees that the fluctuating
fields are uncorrelated in space and time. The parameter
µ corresponds to a temperature dependent constant, which
corresponds to the variance of the Gaussian variable H f and
is given by

µ = 2kBT α

|γ 0|MsV
(193)

where V denotes the volume of the particle or the dis-
cretization volume of finite elements (see also Mag-
netization Dynamics Including Thermal Fluctuations:
Basic Phenomenology, Fast Remagnetization Processes
and Transitions Over High-energy Barriers, Volume 2
and Magnetization Dynamics: Thermal-driven Noise
in Magnetoresistive Sensors, Volume 2). Inserting H f into
the LLG equation we obtain a Langevin-type equation for
the motion of Ms:

dMs

dt
= γ G

1+γ 2
G

[Ms×(H eff+H f)] − αGγ G

(1 + α2
G)Ms

(194)

× [ Ms × [ Ms × (H eff + H f) ] ] (195)
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Figure 32. Dynamic nucleation field of a spherical
Stoner–Wohlfarth particle of Nd2Fe14B (diameter 8.4 nm)
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N determined for infinite switching field rates as a function

of orientation ψ of Hext with respect to the easy axis (−)
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(Reproduced with permmission from Cambridge University Press.)
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Thermal excitations described by H f cause a deviation of
Ms from the local equilibrium direction determined by H eff.
The effect of H f in the damping term of equation (194)
may be neglected because its effect is of higher order than
that of the first term. Equation (194) describes of course
the gyromagnetic damped precessional motion of Ms, but
also the thermally driven spectral noise exerted in small
magnetic particles, for example, magnetic dots. Problems of
this kind are treated in Magnetization Dynamics Includ-
ing Thermal Fluctuations: Basic Phenomenology, Fast
Remagnetization Processes and Transitions Over High-
energy Barriers, Volume 2 and Magnetization Dynamics:
Thermal-driven Noise in Magnetoresistive Sensors, Vol-
ume 2. A further important effect of H f is the thermally
reduced coercive field of hard magnetic materials as well
as the reduction of the switching times by thermal fluctua-
tions (Chantrell, Hannany, Wongsam and Lyberatos, 1998;
Leineweber and Kronmüller, 1999; Kronmüller, Leineweber
and Bachmann, 2000).

As discussed in Section 7.4.2 in the case of an ideal homo-
geneously magnetized particle a precession of Ms only takes
place if the magnetic field is applied under a misalignment
angle θ . Owing to the action of H f misalignments of Ms

occur by thermally activated spin waves. At a tempera-
ture T the average misalignment for T < TC/2 is given by
〈�θ〉 = √

2(T /T0)
3/4, where T0 is the characteristic tem-

perature of Bloch’s T3/2 law (T0 ≈ TC). Figure 33 shows
switching curves for average misalignment angles 〈�θ〉
of 1◦

, 3◦, and 5◦ under ideally oriented applied fields of
Hext = −1.01HN and −1.05HN for the hard magnetic alloy
Nd2Fe14B (Kronmüller and Fähnle, 2003). These results have
been obtained by the dynamic finite element method assum-
ing a Boltzmann distribution p(�θ) ∝ exp

[−�θ/〈�θ〉]for
the probability of the local misalignment within each cell of
the FEM grid. According to Figure 33 the switching relax-
ation times are considerably reduced by thermal fluctuations.
Owing to the assumption of uncorrelated statistical fluc-
tuations switching curves determined successively show a
moderate fluctuation.
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The first two-dimensional numerical simulation of a domain
wall structure was published in 1969. In his celebrated work,
LaBonte (1969), showed that the structure of a domain wall
in an infinite magnetically soft thin film with thickness in
the 100 nm range was neither Bloch nor Néel type, but
somehow a mixture of both. Some 35 years later, numerical
micromagnetics has become ubiquitous and rather unavoid-
able a tool in the study of magnetic nanostructures. Rather
unexpectedly, LaBonte’s pioneering work remains modern
because of the immense progress made in the elaboration and
observation of magnetic nanostructures. Suffice it to say that

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

three-dimensional numerical micromagnetics unravels much
hidden complexity and yet firm underlying logics in the wall
structures and magnetization distribution within faceted iron
nanocrystals, in agreement with the most demanding exper-
iments (Hertel et al., 2005). The present chapter deals with
numerical micromagnetics using finite difference methods
and is organized as follows. Section 1 captures the essentials
of micromagnetics, a continuum theory of ferro- or ferrimag-
netic bodies, and thus provides the necessary background for
the understanding of the following sections. Sections 2 and 3
are devoted to numerical implementations of the micromag-
netic continuum theory with primacy given to the field act-
ing on the magnetization and energy, respectively. Section 4
addresses the issue of accuracy in the time domain. Lastly, on
the basis of a single but demanding example, a brief compar-
ison between the two approaches is attempted in Section 5.

1 BACKGROUND

If solely referring to the number of lattice sites in a micron-
size magnetic element with thickness in the range of a few
nanometers, it becomes immediately clear that fully ab initio
methods aimed at defining the local value of the magnetic
moment and its direction are out of reach. Micromagnetics is
a continuum theory of ferro or ferrimagnetic materials, which
allows for the computation of magnetization distributions in
samples of arbitrary shape (Brown, 1963; Aharoni, 1996;
Hubert and Schäfer, 1998). Its basic assumptions consist
in considering the magnetization modulus to remain con-
stant (M = Msm, m·m = 1) and all vector quantities (the
magnetization M, the exchange Hexch, and demagnetizing
Hd fields, especially) to vary slowly at the atomic scale.



2 Fundamentals of micromagnetism and discrete computational models

The components of m are the direction cosines of the mag-
netization M. Micromagnetics is based on the one hand
on the notion of an effective field acting on the magneti-
zation (Brown, 1963; Miltat, 1994; Aharoni, 1996; Hubert
and Schäfer, 1998; Kronmüller and Fähnle, 2003), on the
other hand on an equation depicting magnetization dynamics
known as the Landau–Lifshitz or Landau–Lifshitz–Gilbert
(LLG) equation, depending on the exact formulation of damp-
ing. According to Brown’s theory (Brown, 1963), the effec-
tive field is the functional derivative of the energy density ε,
w.r.t. magnetization:

Heff = − 1

µ0Ms

δε

δm
(1)

As shown earlier in this volume (see also General Micro-
magnetic Theory, Volume 2), the effective field usu-
ally contains contributions stemming from the exchange,
anisotropy, applied field or Zeeman, and demagnetizing
energy densities, namely

Heff = − 1

µ0Ms

δε

δm

= 2A

µ0Ms
∇2m − 1

µ0Ms

δεK

δm
+ Happ + Hd (2)

corresponding to the following micromagnetic energy:

E =
∫

V

[
A (∇m)2 + εK − µ0Ms

(
Happ·m

)

−1

2
µ0Ms (Hd·m)

]
d3r (3)

where, A is the exchange constant (units J m−1), εK the
anisotropy energy density (units J m−3), Happ and Hd the
applied and demagnetizing field (units A m−1), respectively.
As noted as early as 1949 by Kittel (1949), the exchange
energy may, by combining the constraint m2 = 1 with the
vector relation |∇f |2 = ∇· (f ∇f ) − f ∇2f , be expressed in
either of the following forms:

Eexch =
∫

V

[
A (∇m)2] d3r

= −
∫

V

[
Am·

(
∂2m
∂x2

+ ∂2m
∂y2

+ ∂2m
∂z2

)]
d3r (4)

Additional energy terms may be included in the energy,
for example, terms arising from magnetostriction, or longer
range exchange coupling across nonmagnetic spacer layers in
spin valves (Kools, Rijks, de Veirman and Coehoorn, 1995;
Wei and Bertram, 1996); such terms will not be considered
in the following.

When considering an energy density functional solely
involving exchange and magnetostatic interactions (the ide-
ally soft magnetic material limit), dimensional arguments
soon lead to the definition of a characteristic length known
as the (magnetostatic) exchange length

� =
√

2A

µ0M
2
s

(5)

a quantity labeled ls in General Micromagnetic The-
ory, Volume 2. The exchange length rarely exceeds a few
nanometers in 3d ferromagnetic materials or their alloys,
thereby imposing severe constraints on the mesh size in
numerical simulations.

The effective field (see equation (2)) exerts a torque on
the magnetization that is proportional to M × H. In full
analogy with classical mechanics, the rate of change of the
magnetization – angular momentum – is, in the absence of
damping, equal to the torque, namely

d

dt
m(t) = −γ 0 [m(t) × Heff(t)] (6)

It follows from equation (6) that as long as the torque is
zero, the angular momentum is conserved. For a free electron,
γ 0 is equal to ≈ 2.21 × 105 A−1ms−1. Still in the absence of
damping, magnetization motion reduces to a precession of
the magnetization around the effective field, with frequency:

ω0 = γ 0Heff (7)

that is, ≈28 MHz/(mT) in units of µ0Heff for a free electron
spin.

Gilbert damping (Gilbert, 1955, 1956, 2004) is most
simply introduced by adding to the effective field an Ohmic
type dissipation term, namely

Heff = Heff − α
1

γ 0Ms

dM
dt

(8)

where, α is the (dimensionless) Gilbert damping parameter.
Introducing equation (8) into equation (6) leads to the so-
called LLG equation,

dm
dt

= −γ 0 (m × Heff) + α

[
m × dm

dt

]
(9)

or its numerically more tractable and mathematically equiv-
alent form

(
1 + α2) dm

dt
= −γ 0 [m × Heff + α [m × (m × Heff)]]

(10)
Given a magnetization distribution m(r, t) = M(r, t)/Ms,

the LLG equation specifies the magnetization distribution at
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time t + dt provided due respect of boundary conditions is
maintained. Alternatively, if a sole magnetization distribution
at equilibrium is sought for, the only condition that needs to
be satisfied reads:

m × Heff = 0 (11)

Because the exchange energy involves the square of the
gradient of the magnetization components, its variation gives
rise not only to the exchange contribution to the effective
field in equation (2) but also to boundary conditions (BCs).
BCs that arise from the sole symmetry breaking of exchange
interactions at surfaces are referred to as free BCs. Their
mathematical expression in the continuum limit reads

A

(
m × ∂m

∂n

)
= 0 (12)

which is equivalent to the Neumann BC

∂m
∂n

= 0 (13)

since m2 = 1. In the presence of surface anisotropy, energy
density

εKS = KS
(
1 − (n·m)2) (14)

and interlayer exchange, energy density

εJ = J1
(
1 − m·m′) + J2

(
1 − (

m·m′)2
)

(15)

where m′ defines the exchange-bias direction at the interface
with the ferro- or ferrimagnetic body, BCs may be expressed
(Labrune and Miltat, 1995) either as

2A

(
m × ∂m

∂n

)
− 2KS (m·n) (m × n)

− J1
(
m × m′) − 2J2

(
m − m′) (

m × m′) = 0 (16)

or as

∂m
∂n

= KS

A
(m·n) (n − (m·n) m)

−
(

J1

2A
+ J2

A

(
m·m′)) ((

m·m′) m − m′) (17)

See also references Brown (1963), Rado and Weertman
(1959) and Guslienko and Slavin (2005).

Altogether, as long as the exchange parameter A is
independent of position r, a magnetization continuum owing

to micromagnetics is at zero temperature governed by the set
of equations:

m = m (r, t)

Heff = Heff(r, t)

Hd = Hd(r, t)

Heff = 2A

µ0Ms
∇2m + Happ + Hd − 1

µ0Ms

δεK

δm

∂m
∂n

= KS

A
(m·n) [n − (m·n) m]

−
[

J1

2A
+ J2

A

(
m·m′)] [(

m·m′) m − m′] (18)

augmented with the LLG equation of magnetization
motion (9) or the equilibrium condition (11).

In case the exchange constant would be position depen-
dent, an additional term would appear in the exchange com-
ponents of the effective field. In the following, the exchange
constant is assumed to remain constant, that is, a sole func-
tion of the ferro- or ferrimagnetic material composition. It
has also been implicitly assumed that the system under study
was free of surface-specific damping. On the other hand, the
saturation magnetization, the anisotropy as well as the damp-
ing constant may be modulated according to position without
introducing modifications in the set of equations (18).

This chapter considers the finite difference approach to
solving these equations, where the magnetization is sampled
on a uniform rectangular mesh at points (x0 + i	x, y0 +
j	y, z0 + k	z). The computational cell is centered about
the sample point with dimensions 	x × 	y × 	z. The main
advantages of the finite difference approach are ease of
implementation, simplicity of meshing, efficient evaluation
of the demagnetizing energy (via, e.g., fast Fourier trans-
form (FFT) methods), and the accessibility of higher-order
methods. A main disadvantage of this approach is that sam-
pling curved boundaries with a rectangular mesh results in
a ‘staircase-type’ approximation to the geometry, which can
produce significant errors in the computation. Corrections for
this artifact are possible (Parker, Cerjan and Hewett, 2000;
Porter and Donahue, 2001; Garcı́a-Cervera, Gimbutas and
Weinan E, 2003), but are not discussed in the present text.
The next two sections present two approaches to the prob-
lem of discretizing the continuous equations discussed in the
preceding text. The first, Section 2, treats equation (2) as fun-
damental, and focuses primarily on computing an accurate
value of Heff directly from m. We call this the field-based
approach. The alternative energy-based approach, presented
in Section 3, is directed first at computing the micromag-
netic energy, equation (3). The effective field Heff, which is
needed in the LLG equation (9), is computed from the energy
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via the discrete analog of equation (1). The Heff computed
in this manner is the field value averaged across the corre-
sponding discretization cell. Results using the two methods
on a sample problem are compared in Section 5.

2 FINITE DIFFERENCE
MICROMAGNETICS: FIELD-BASED
APPROACH

As stated in the preceding text, in a field-based approach
(Labrune and Miltat, 1995; Albuquerque, 2002; Toussaint
et al., 2002), one is seeking a numerical solution to the
LLG equation (18) on the basis of a direct evaluation of the
effective field components under the constraint of problem
specific BCs. In this approach, the energy (density) plays a
role only to the extent that the effective field is the gradient
of the former.

Looking at equation (18) it is immediately seen that a
number of derivatives will require evaluation, namely first-
and second-order derivatives of the magnetization compo-
nents in order to define the divergence of the magnetization
(∇·m) and the components of the exchange field (∇2m),
respectively. The magnetization components along bound-
aries also need to be evaluated in order to define surface
charges (m·n) that do contribute to the demagnetizing field.
BCs need to be incorporated in the evaluation of the effec-
tive field without loss of accuracy. Finally, solution of the
LLG equation does require both stability and accuracy. This
section is organized as follows: in a first step we describe
the various steps to be taken in order to provide a numer-
ical estimate of the demagnetizing field. In the next step,
starting with an evaluation of the exchange field in the
bulk, it is first shown how BCs may be included with-
out too heavy a cost in accuracy, at least for so-called
free BCs. The third step explains how general BCs may be
introduced. Because the problem of an accurate solution of
the LLG equation is common to both the field-based and
energy-based finite difference methods, it is treated separately
(see Section 3).

2.1 Demagnetizing field evaluation

For a magnetization continuum, the demagnetizing field,
in full similarity to electrostatics, arises from volume and
surface charges

λV = −µ0Ms (∇·m) , in the volume

σ S = +µ0Ms (m·n) , at free surfaces
(19)

V

O

P

S n

r

r ′
P ′

M(r)

M(r ′)

Hd (r)

Ha

d3r′
d2r ′

r − r ′

Figure 1. Geometry attached to equation (20).

and derives from the scalar potential expressed as follows:

Hd(r) = −∇�d(r)

�d(r) = 1

4πµ0

[∫
V

λV(r′)
|r − r′| d3r ′ +

∫
S

σ S(r′)
|r − r′| d2r ′

]
(20)

Figure 1 illustrates the geometrical relations between vectors
in equation (20).

It follows from equations (19) and (20) that the demagne-
tizing field may be directly expressed as

Hd(r) = 1

4πµ0

[ ∫
V

(
r − r′) λV(r′)

|r − r′|3 d3r ′

+
∫

S

(
r − r′) σ S(r′)

|r − r′|3 d2r ′
]

(21)

Hd derives from the energy density

εdemag = −1

2
µ0 (Hd·M) = −1

2
µ0Ms (Hd·m) (22)

where the 1/2 prefactor stems from the fact that M is the
source of Hd.

Four remarks ought to be made here. First, charges must
sum up to zero because of the fundamentally dipolar nature
of magnetism. Second, contrary to the Zeeman contribu-
tion to the total energy, the magnetostatic energy, obtained
through summation over the volume and external surface of
the element of the energy density equation (22), is necessar-
ily positive or nil. It follows that, in a soft magnetic material,
where the magnetostatic energy becomes the leading term,
energy may only be minimized by the pole avoidance prin-
ciple. This means that, whenever possible, the magnetization
will tend to be parallel to external boundaries and adopt con-
figurations satisfying ∇·m = 0 in the volume. Clearly, this
may only be achieved at the expense of exchange energy



Numerical micromagnetics: finite difference methods 5

as well as anisotropy energy when present. Third, because
of the long-range decay of magnetostatic interactions, large
errors are inevitably made when truncation of the integrals
is attempted. Last, but not least, one easily recognizes in the
integrals of equation (20) a convolution product. Therefore,
from a numerical point of view, much of the computation
load may be relieved via an extensive use of FFTs.

Decomposing the magnetic volume into cells (index i ′,
j ′, k′) with constant magnetization divergence and the outer
surface into tiles (index l′, m′, n′) with constant charge
density (see Figure 2) immediately leads to an easy and
yet accurate numerical estimate of the demagnetizing field
at location r. Equation (21) then reduces to a finite sum,
namely,

Hd(r) = 1

4πµ0

∑
i′,j ′,k′

[
λV(i ′, j ′, k′)

∫
V ′(i′,j ′,k′)

(
r − r′)

|r − r′|3 d3r ′
]

+ 1

4πµ0

∑
l′,m′,n′

[
σ S(l

′, m′, n′)
∫

S′(l′,m′,n′)

(
r−r′)

|r−r′|3 d2r ′
]

(23)
where r′ now spans either the volume of cell i ′, j ′, k′ or the
area of tile l′, m′, n′. The integrals in equation (23) therefore
reduce to purely geometrical coefficients that only need to
be computed once. Equation (23) may thus be rewritten as
follows

Hd(r) = 1

4πµ0

∑
i′,j ′,k′

λV(i ′, j ′, k′) CV(r, i ′, j ′, k′)

+ 1

4πµ0

∑
l′,m′,n′

σ S(l
′, m′, n′) CS(r, l′, m′, n′) (24)

Note that such a decomposition is achieved if the magneti-
zation is assumed to be a trilinear function of the coordinates

O

P

r

r′r′

x

yz

(l ′,m ′,n ′)

(i ′,j ′,k ′)

Figure 2. The demagnetizing field at point P(r) is built-up from
contributions arising from volume cells with constant magnetization
divergence and surface tiles with constant charge density. In this
drawing, the physical frontier consists in the top and bottom planes,
and the continuous rim boundary (in black). The numerical rim
boundary is staircase-like (light gray).

x, y, z within the magnetic volume while being constant over
the area of a tile. All interaction coefficients CV and CS are
definite integrals with kernels x−x′

|r−r′|3 , y−y′

|r−r′|3 , z−z′

|r−r′|3 for the

x, y, and z demagnetizing field components, respectively.
For instance, the x component of the demagnetizing field
arising from a volume cell is given by equation (24) with

Cx
V =

∫ x′
2

x′
1

∫ y′
2

y′
1

∫ z′
2

z′
1

x − x ′

|r − r′|3 dx ′dy ′dz′ (25)

Similarly, the z component of the demagnetizing field
arising from a tile parallel to the xy plane is given by
equation (24) with

Cz
Sxy =

∫ x′
2

x′
1

∫ y′
2

y′
1

z − z′

|r − r′|3 dx ′dy ′ (26)

For parallepipedic volume cells and rectangular surface
tiles, all interaction coefficients may be evaluated with the
help of the integrals listed in Appendix A. H 111 integrals
apply to constant divergence volume cells, whereas H 110,
H 011, and H 101 integrals apply to tiles parallel to the xy, yz,
and xz planes, respectively.

Lastly, for both a regular meshing and a regular sam-
pling of the field (volume cells centers or apexes seem
natural choices), translational invariance of the interaction
coefficients allows for the use of FFTs in the evaluation of
the demagnetizing field (Eastwood, Hockney and Lawrence,
1980; Hockney and Eastwood, 1981; Yuan and Bertram,
1992; Berkov, Ramstöck and Hubert, 1993; Ramstöck, Leibl
and Hubert, 1994). FFTs considerably reduce the computa-
tional load in numerical micromagnetics. However, because
the magnetization distribution is not usually periodic, zero-
padding techniques need to be implemented (Press, Teukol-
sky, Wetterling and Flannery, 2001). Further discussion on
the use of FFTs in numerical micromagnetics is deferred to
Section 3.4. We note in closing this section that a direct eval-
uation of the field at the apexes of the volume cells leads
to weak divergences of the demagnetizing field (Shtrick-
man and Treves, 1960). It has been shown both numerically
(Rave, Ramstöck and Hubert, 1998) and analytically (Thi-
aville, Tomáš and Miltat, 1998) that the log-type divergence
of the demagnetizing field along the edges and at the apices
of a uniformly magnetized parallelepiped are balanced via
tiny rotations of the magnetization close to boundaries that
take place over distances smaller than the exchange length.
Methods relying on the direct evaluation of the demagnetiz-
ing field therefore practically restrict the choice of the field
sampling points to cell centers.
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2.2 Derivatives evaluation

Consider a regular, differentiable one-dimensional scalar
function f (x) sampled at regular intervals, a (see Figure 3a).
Second-order Taylor expansion readily yields expressions for
the first and second central derivatives that are widely used in

numerics, namely df

dx
= fi+1−fi−1

2a
and d2f

dx2 = fi+1−2fi+fi−1
a2 ,

respectively.
However, the numerical derivation of the structure of a

simple Bloch wall using such expressions soon reveals that
second-order Taylor expansion leads to restricted accuracy.
Fourth-order expansion has actually been found to prove
much superior (Trouilloud and Miltat, 1987; Miltat, Thiaville
and Trouilloud, 1989; Berkov, Ramstöck and Hubert, 1993;
Labrune and Miltat, 1995). Taylor expansion of function
f (x) around x = xi reads as follows:

f (x) =
∞∑

k=0

(x − xi)
k

k!
f (k)(xi) =

∞∑
k=0

(x − xi)
k

k!
f

(k)
i (27)

where, f (k)(x) = f (x) if k = 0 and dkf

dxk otherwise. Applica-
tion of equation (27) to nearest and next nearest neighbors
to grid point i and truncation to the fourth order yields a set
of four equations, namely




−2a (−2a)2

2!
(−2a)3

3!
(−2a)4

4!

−a (−a)2

2!
(−a)3

3!
(−a)4

4!

+a (+a)2

2!
(+a)3

3!
(+a)4

4!

+2a (+2a)2

2!
(+2a)3

3!
(+2a)4

4!







f
(1)
i

f
(2)
i

f
(3)
i

f
(4)
i


 =




fi−2 − fi

fi−1 − fi

fi+1 − fi

fi+2 − fi




(28)

The set of linear equations (28) provide numerical estimates
for the first, second, third, and fourth derivatives of f at
grid point i. In particular, the general form of the first
and second derivative based on second nearest-neighbors
expansion reads

f
(1)
i = fi−2 − 8fi−1 + 8fi+1 − fi+2

12a

f
(2)
i = −fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2

12a2

(29)

respectively.

2.3 Boundary conditions implementation: ‘free’
boundary conditions

Expressions in the preceding text cease to be valid when the
grid point becomes closest or next-to-closest to the bound-
ary of the magnetic volume. Specific, accuracy preserving
expansions need to be worked out. The general principle in
the present approach is to replace equations that are missing
because of the lack of grid point(s) outside the magnetic
volume by equations including explicit reference to BCs,
equation (17).

Consider first a point second to closest to boundary (see
Figure 3b). Grid point i + 2 is missing for this particular
geometry. However, defining xR as the right boundary coor-
dinate along the x axis, the last equation in equation (28)
may, assuming f (1)(xR) to be known along the boundary, be

i
i − 2

i − 1

f(x) xR

x(c)

x

i

i

i − 2
i + 1

i + 2

i + 1

i − 1

i − 2
i − 1

f(x) f(x)

a

x(a) (b)

Figure 3. Mesh geometry. (a) Function of the sole scalar x. (b) Mesh points second to closest to boundary. (c) Mesh points closest to
boundary.
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replaced by

f (1)(xR) = f
(1)
i + (xR − xi)f

(2)
i

+ 1

2!
(xR − xi)

2f
(3)
i + 1

3!
(xR − xi)

3f
(4)
i (30)

which is a result stemming directly from the derivation of
Taylor’s expansion (27), namely

f (1)(x) =
∞∑

k=1

(x − xi)
k−1

(k − 1)!
f (k)(xi) (31)

For the geometry depicted in Figure 3(b), xR − xi = 3a/2
and equation (28) becomes




−2a (−2a)2

2!
(−2a)3

3!
(−2a)4

4!

−a (−a)2

2!
(−a)3

3!
(−a)4

4!

+a (+a)2

2!
(+a)3

3!
(+a)4

4!

1
(+3a

2

)
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2!
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f
(1)
i

f
(2)
i

f
(3)
i

f
(4)
i


=




fi−2 − fi

fi−1 − fi

fi+1 − fi

f (1)(xR)




(32)
Similarly, for a point closest to boundary (see Figure 3c),
grid points i + 1 and i + 2 are missing. The two first
equations of equation (28) now need to be replaced by a
single equation, while the two remaining equations need to
be truncated to the third order. For the geometry illustrated
in Figure 3(c), the minimal set of equations now reads




−2a (−2a)2

2!
(−2a)3

3!

−a (−a)2

2!
(−a)3

3!

1
(+a

2

)
(+a/2)2

2!





f

(1)
i

f
(2)
i

f
(3)
i


 =


fi−2 − fi

fi−1 − fi

f (1)(xR)


 (33)

where, xR − xi = a/2. In both cases, the first and second
derivatives are fully determined provided f (1)(xR) is known
along the boundary. The implementation of BCs is, how-
ever, not unique. For instance, equation (33) could include
four internal mesh points instead of only three. Donahue and
Porter (2004) have evaluated the accuracy of several numer-
ical schemes allowing for the evaluation of the exchange
energy equation (4) and the enclosed derivatives. Their gen-
eral conclusion is that the so-called 12-neighbors scheme,
that is, 4 neighbors along each axis of the Euclidian space, is
accuracy preserving up to order 4, at least for ‘free’ BCs. The
derivation in the preceding text belongs to the ‘12-neighbors’
class.

Equation (32) or equation (33) may be applied mutatis
mutandis to the left boundaryx = xL. Altogether, equation (28)
and equations akin to equations (32) and (33) fully spec-
ify the first, second, and third derivatives of function f (x)

within the interval ]xL, xR[, provided boundary values of
the first derivatives versus x are known. For ‘free’ BCs,

f (1)(xL) = f (1)(xR) ≡ 0, or more generally,
∂mxS
∂x

= ∂myS
∂x

=
∂mzS
∂x

= 0 for a flat boundary perpendicular to x located at posi-
tion xS. Generalization to three dimensions in the Euclidian
space proves straightforward. Even for ‘free’ BCs, however,
an evaluation of the relevant magnetization components along
boundaries is still required in order to compute the contribu-
tion of surface charges to the demagnetizing field. Referring
to Figure 3(c), Taylor expansion (equation (27)) up to, for
example, the third order yields

f (xR) = fi + (xR − xi)f
(1)
i + 1

2!
(xR − xi)

2f
(2)
i

+ 1

3!
(xR − xi)

3f
(3)
i (34)

where i here is the index of the mesh point closest to
boundary. Assuming a constant charge density for the surface
element centered on xR, the surface charge +µ0Ms (m·n)

is simply +µ0MsmxR with mx(x) = f (x) in equation (34).
Here also, generalization to three dimensions in the Euclidian
space is straightforward.

Summarizing at this point, knowing the distribution m(r)
inside a magnetic volume bounded by flat boundaries, all
necessary derivatives of the magnetization components as
well as estimates of surface charges are available through
Taylor expansion and explicit use of BCs reading ∂m

∂n = 0 in
the case of ‘free’ BCs. High accuracy (up to O(h4)) may be
preserved in this process.

As an example, the magnetization distribution within a soft
and thin rectangular platelet is displayed in Figure 4. The
initial state was uniformly magnetized along the diagonal
of the rectangle. At remanence, the magnetization becomes
essentially uniform and parallel to the element’s long edges,
thus avoiding both volume and surface charges along the
most part of the latter. Close to the extremities, however,

Figure 4. Magnetization distribution characteristic of a so-called S-
state in a thin-film element: the magnetization keeps parallel to the
long edges of the element, thus avoiding both volume and surface
charges along the most part of the latter. Close to the extremi-
ties, however, a gradual bending of the magnetization distribution
allows for a decrease of surface charges along the element short
edges at the expense of exchange and volume magnetostatic energy.
Ni80Fe20 like materials parameters (exchange constant: A = 1.3 ×
10−11 J m−1, saturation magnetization Ms = 800 kA m−1); dimen-
sions: 500 × 125 × 3 nm3; Meshing: 256 × 64 × 1 (one-layer-of-
cells type simulation).
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the magnetization distribution is bending in such a way
as to allow for a decrease of surface charges along the
element short edges at the expense of exchange and volume
magnetostatic energy. Actually, in submicron size thin soft
magnetic elements, the number of possible magnetization
states becomes discrete (Yuan, Bertram, Smyth and Schultz,
1992; Zheng and Zhu, 1997; Rave and Hubert, 2000;
Miltat, Albuquerque and Thiaville, 2001; Hertel, 2002). The
magnetization state shown in Figure 4 is called an S state.
Platelets displaying S states may be found in four variants
according to the direction of the magnetization in the main
section of the element (≈+x or ≈−x), and the magnetization
component along the element short edges (+y or −y).
Reversing the magnetization rotation direction close to one
extremity would lead to a so-called C state with, again, four
possible variants characterized by a single energy.

Although the thickness in that particular element remains
smaller than the exchange length for the material considered
(3 vs 5.68 nm), the decomposition of the element into
three layers of cells reveals interesting features of the
magnetization distribution at equilibrium. The minute splay

(a)

(b)

(c)

Figure 5. Magnetization distribution characteristic of a so-called
S state in a thin-film element owing to three-dimensional micro-
magnetics. Close to the upper left boundary, the in-plane magne-
tization is fanning-in, leading to positive volume charges; in the
top and bottom computation cell-layers (a and c respectively), the
z-component (out-of-plane) of the magnetization is positive and
negative, respectively. The fanning-out of the magnetization along
the normal to the magnetic element allows for charge compensa-
tion between the in-plane and out-of-plane magnetization distribu-
tions, leading to an overall reduction of both the exchange and
demagnetizing field energy. The magnetization distribution around
the bottom right corner behaves symmetrically (in-plane fanning-
out, out-of-plane fanning-in). Ni80Fe20 like materials parameters
(exchange constant: A = 1.3 × 10−11 J m−1, saturation magnetiza-
tion Ms = 800 kA m−1); dimensions: 500 × 125 × 3 nm3; meshing:
511 × 127 × 3.

across the thickness of the magnetization displayed in
Figure 5 actually leads to a decrease of both the exchange
and the magnetostatic energies (see the caption of Figure 5
for details). Figure 5 emphasizes the stringent need for rather
small mesh sizes (a relatively small fraction of the exchange
length) if the fine features of the magnetization distribution
are to be revealed with a satisfying accuracy.

2.4 Boundary conditions implementation:
extended boundary conditions

Additional work needs to be performed when dealing with
general boundary conditions (17). General BCs are expressed
in terms of boundary values for the magnetization. Bound-
ary magnetization values (refer to equation (34)) are func-
tions of derivatives defined at given mesh points that them-
selves depend on specific derivatives along boundaries (see
equations (32) and (33)). It ensues that for each boundary
point where an estimate of a boundary derivative is required,
an implicit equation needs to be solved. Consider again the
boundary point in Figure 3(b) or (c). The requested boundary
derivatives read as ∂mx(xR)

∂x
,

∂my(xR)

∂x
,

∂mz(xR)

∂x
. In components

form, neglecting the J2 biquadratic exchange term, extended
BCs for the right boundary (normal along +x) read as

∂mR
x

∂x
= KS

A
mR

x

[
1 − mR

x

2
]

− J1

2A

[(
mR·m′)mR

x − m′
x

]
∂mR

y

∂x
= −KS

A
mR

x

2
mR

y − J1

2A

[(
mR·m′) mR

y − m′
y

]
∂mR

z

∂x
= −KS

A
mR

x

2
mR

z − J1

2A

[(
mR·m′) mR

z − m′
z

]
(35)

where mR = m (xR). Combined with relations akin to (34)
and (32) or (33), equation (35) provides a set of nonlinear
equations (third order in the general case) in the variables
mR

x , mR
y , mR

z that may easily be solved via, for example, New-
ton’s method. A proper numerical implementation ensures
that extended BCs are strictly equivalent to ‘free’ BCs if
KS = J1 = 0.

2.5 Energy

The energy to be evaluated embodies the exchange, ani-
sotropy, Zeeman, and demagnetizing field energies that sum
up to the total energy expressed in equation (3). Addi-
tional energy terms do arise from extended BCs, namely
EKS = ∫

S
εKS dS and EJ = ∫

S
εJ dS. Owing to the numeri-

cal scheme outlined in the preceding text, both the magne-
tization and the effective field are meant to be continuous
functions of position sampled at regularly spaced volume
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mesh points. The magnetization also needs to be evaluated
at the center of surface tiles in order to satisfy to BCs and
allow for the computation of surface charge densities. When-
ever the magnetization is evaluated, its unit norm (m·m = 1)
must be enforced.

2.5.1 Zeeman, anisotropy, and exchange energy

Consider the right-hand expression of the exchange energy
in equation (4). Its discrete counterpart reads as

Eexch = −A VCell

∑
i,j,k

[
〈m〉·

(〈
∂2m
∂x2

〉
+

〈
∂2m
∂y2

〉
+

〈
∂2m
∂z2

〉)]

(36)
where, 〈V〉 is the average value of V within a given cell.
As discussed in Section 3, however, the cell-averaged value
of any variable is equal to its value at cell center, be it a
volume cell or a surface tile, to order 2, because all nearest
order corrective terms sum up to zero. Although higher-order
corrections may be worked out, such corrective actions have
almost no incidence on the numerical estimate of the relevant

energy, as exemplified in Figure 6(a). The same conclusion
holds true for the estimate of the Zeeman (applied field)
and anisotropy energies as demonstrated in Sections 3.1
and 3.2, respectively. Similar arguments also apply to energy
terms linked to specific BCs for which the energy den-
sities in the continuum limit are given by equations (14)
and (15).

2.5.2 Demagnetizing field (or magnetostatic) energy

In the present field-based scheme, quantities that are constant
per cell or tile are the magnetization divergence and the
surface charge density. It is therefore natural to seek an
expression for the energy that embodies these quantities. An
expression for the energy is readily available if assuming the
scalar potential equation (20) to be known (up to this point,
only the field has been evaluated at discrete points). If either
the magnetization divergence or the surface charge density
is piecewise constant, the scalar potential is not. Therefore,
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Figure 6. Energy per unit volume versus in-plane mesh size for the S-state magnetization distribution shown in Figure 4. (a) Exchange, (b)
magnetostatic, and (c) total energy per unit volume. Open and full symbols refer to direct and cell-averaged summation, respectively. The
magnetostatic energy is approximated by equations (41) and (38) for direct and cell-averaged summation, respectively. The fitting curves
should be viewed as mere guides to the eye. Ni80Fe20 like materials parameters (exchange constant: A = 1.3 × 10−11 J m−1, saturation
magnetization Ms = 800 kA m−1); dimensions: 500 × 125 × 3 nm3; one-layer-of-cells type simulation.
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the transcription of the continuous energy expression

Edemag = 1

2

∫
V

λV(r)�d(r) d3r + 1

2

∫
S

σ S(r)�d(r) d2r

(37)
into a discrete summation requests the evaluation of the
average value of the potential 〈�d〉 over each cell or tile
(see Section 3.4 where a similar procedure is applied to the
evaluation of the average field within a cell). Equation (37)
thus becomes

Edemag = 1

2

∑
i,j,k

[
λV(i, j, k)〈�d(i, j, k)〉]

+1

2

∑
l,m,n

[σ S(l, m, n)〈�d(l, m, n)〉] (38)

where,

4πµ0 VCell 〈�d(i, j, k)〉

=
∑

i′,j ′,k′
λV(i ′, j ′, k′)

∫
V (i,j,k)

d3r

∫
V (i′,j ′,k′)

1

|r − r′| d3r ′

+
∑

l′,m′,n′
σ S(l

′, m′, n′)
∫

V (i,j,k)

d3r

∫
S(l′,m′,n′)

1

|r − r′| d2r ′

(39)
for volume cells, and

4πµ0 STile 〈�d(l, m, n)〉

=
∑

i′,j ′,k′
λV(i ′, j ′, k′)

∫
S(l,m,n)

d2r

∫
V (i′,j ′,k′)

1

|r − r′| d3r ′

+
∑

l′,m′,n′
σ S(l

′, m′, n′)
∫

S(l,m,n)

d2r

∫
S(l′,m′,n′)

1

|r − r′| d2r ′

(40)
for surface tiles. Cell or tile average scalar potential evalua-
tion requires integrals of type F 222, F 221 plus circular per-
mutations, F 220 plus circular permutations, where F 000 = 1

r
,

F 100 = ∫
F 000dx, F 110 = ∫

F 000 dx dy, and so on, (Hubert
and Schäfer, 1998). All necessary integrals are tabulated in
Appendix B. For instance, the contribution of a tile belonging
to the (xy ≡ [110]) surface to the averaged potential within
a volume cell (≡ [111]) involves the F 221 integral, and so
on. All interaction integrals are positive definite so that inter-
actions between charges of similar sign, whether volume or
surface, contribute positively to the energy, whereas interac-
tions between opposite sign charges contribute negatively.

Although potential theory is the only approach to energy
evaluation consistent with the present field-based model, a
rough estimate of the magnetostatic energy may still be

gained from the numerical equivalent of equation (3), namely

Edemag = −1

2
µ0VCell

∑
i,j,k

(Hd(i, j, k))·(M(i, j, k)) (41)

where it is implicitly assumed that the magnetization and the
demagnetizing field are constant within each volume cell.

Results pertaining to the S state in Figure 4 are displayed
in Figure 6. The exchange energy per unit volume versus
mesh size (Figure 6a) is seen to depend very little on
the use or not of cell-averaged variables in equation (36).
Convergence of the exchange energy, on the other hand is
only attained for rather small mesh sizes. Markedly different
behaviors for the demagnetizing field energy are obtained
when using cell-averaged potential theory (equation (38)) or
the rough estimate (41) (Figure 6b). In both cases, small
mesh sizes are required in order to define the asymptotic
value of the magnetostatic energy thus following a trend
similar to that of the exchange energy. More surprising at
first sight is the fact that both estimates of the magnetostatic
energy do not converge to the same value for a vanishing
mesh size. It ought to be noted that the best agreement
between the two kinds of estimates is obtained for cubic
cells (size 3 nm, here). It may therefore be concluded that the
rough estimate (41) becomes particularly poor for cell aspect
ratios markedly departing from unity. The total energy per
unit volume versus mesh size consistent with the assumptions
of the present numerical model is shown as full symbols
in Figure 6(c). It appears relatively independent of mesh
size although this result is physically meaningless: only
the respective asymptotic values (Rave, Fabian and Hubert,
1998) of the energy contributions are representative of the
physical reality. The exchange and magnetostatic energies
actually display opposite curvature convergence behaviors,
pointing at a subtle change in the balance between exchange
and magnetostatic interactions with decreasing mesh size.

3 FINITE DIFFERENCE
MICROMAGNETICS: ENERGY-BASED
APPROACH

In an energy-based approach, the magnetic energy is given
primacy and is computed directly from the discretized mag-
netization, whereas the effective field is derived from the
resultant energy. The effective field obtained in this man-
ner is a cell-averaged field. This method is obviously con-
venient if one is interested in finding equilibrium mag-
netization patterns via direct energy minimization (using,
e.g., conjugate-gradient methods), but also has the advan-
tage that the energy, being an integral quantity, has less
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variation than the field and is therefore more easily approx-
imated. As noted in Section 2.1, the demagnetizing field
can diverge at corners of a sample, yet this logarithmic
divergence is integrable, so that the energy contained in
any discretization cell remains finite. This effect is seen
also in Figure 6(b), where the result using equation (41)
leads to an incorrect result, even in the small cell limit.
Although the discretization in this example is sufficient to
represent variations in the magnetization, it does not pick
up variations in the demagnetizing field along the film nor-
mal (Parker, Cerjan and Hewett, 2000; Donahue, Porter,
McMichael and Eicke, 2000). To correct for this one has
to either move to a multilayer simulation or use a potential
averaging approach as in equation (38) or as discussed in
this section.

3.1 Zeeman energy

As stated before, Zeeman energy is the magnetostatic energy
from the interaction of a given magnetization state with an
external field,

EZ = −µ0

∫
V

M·Happ d3r (42)

Here Happ includes fields directly applied, and also fields
resulting from currents inside the device, that is,

Hcurrent = 1

4π

∫
V

J(r′) × r − r′

|r − r′|3 d3r ′ (43)

Assuming that both M and Happ are twice differentiable,
we can write

M(r) = M(ri ) + B (r − ri ) + O(‖r − ri‖2) (44)

Happ(r) = Happ(ri ) + C (r − ri ) + O(‖r − ri‖2) (45)

where B and C are the 3 × 3 matrices corresponding to the
partial derivatives of M and Happ, respectively, and ri is
an arbitrary point suitably close to r. Consider this simple
approximation to the Zeeman energy:

EZ ≈ −µ0

∑
i

M(ri )·Happ(ri )|Vi | (46)

where the index i runs over all cells in the simulation, ri

denotes the center of the rectangular cell i, and |Vi | is the
volume of cell i. Given equations (44) and (45), we estimate

the error in equation (46) as∣∣∣∣∣EZ − (−µ0)
∑

i

M(ri )·Happ(ri )|Vi |
∣∣∣∣∣

≤ µ0

∑
i

∣∣∣∣
∫

Vi

M(r)·Happ(r) − M(ri )·Happ(ri ) d3r

∣∣∣∣ (47)

≤ µ0

∑
i

∣∣∣∣
∫

Vi

M(ri )
TC (r − ri ) + Happ(ri )

TB (r − ri )

+ O(‖r − ri‖2) d3r

∣∣∣∣ (48)

where T denotes the vector transpose. Since ri is at the center
of the rectangular cell Vi ,∫

Vi

(M(ri )
TC + Happ(ri )

TB)(r − ri ) d3r = 0 (49)

because the integrand is an odd function with respect to ri .
Thus we see that∣∣∣∣∣EZ − (−µ0)

∑
i

M(ri )·Happ(ri )|Vi |
∣∣∣∣∣

≤ µ0

∑
i

∫
Vi

O(‖r − ri‖2) d3r (50)

≤ O(	2)|V | (51)

where |V | = ∑
i |Vi | is the total volume of the space, and 	

is the maximum cell dimension.
In this approximation, all of the M(ri )·Happ(ri ) terms are

weighted equally. Higher-order methods can be obtained by
varying the weights, similar to the well-known Simpson’s
rule (Davis and Rabinowitz, 1984; Stoer and Bulirsch, 1993).

The discretized field expression derived from this approx-
imation to the energy is simply

HZ,i = Happ(ri ) (52)

3.2 Magnetocrystalline anisotropy energy

Magnetocrystalline anisotropy energy models the preferential
magnetization orientation in a material, and depends chiefly
on the crystalline structure of the material. For uniaxial
materials the energy is given by

EK,uniaxial = −
∫

V

K1(m·u)2 d3r (53)

where K1 is the material anisotropy coefficient (in J m−3), m
is the unit magnetization direction (M/Ms), and u is the (unit)
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anisotropy axis. If K1 is positive, then u is the easy axis,
while if K1 is negative then u is normal to the easy plane.
For some materials, a second term K2 sin4 φ is important,
where K2 is a second anisotropy coefficient and φ is the
angle between m and u. This equation should be modified at
material interfaces and defects (Moschel, Hyman, Zangwill
and Stiles, 1996).

For cubic materials with crystal axes oriented parallel to
the coordinate axes, the energy takes the form

EK,cubic =
∫

V

K1(m
2
xm

2
y + m2

ym
2
z + m2

zm
2
x)

+K2(m
2
xm

2
ym

2
z) d3r (54)

For a rotated crystal orientation, mx should be replaced with
the projection of m onto the first coordinate axis, my with
the projection onto the second (orthogonal) axis, and mz with
the projection onto the remaining axis.

If we assume that m, u, K1, and K2 are twice dif-
ferentiable, at least within each cell, then we can expand
the integrands in equations (53) and (54) in the manner of
equations (44) and (45) and obtain an analogous discrete
approximation for the magnetocrystalline anisotropy energy.
In the uniaxial case this is

EK,uniaxial ≈ −
∑

i

K1(ri ) (m(ri )·u(ri ))
2 |Vi | (55)

and for the cubic we have

EK,cubic ≈
∑

i

[
K1(ri )

(
m2

x(ri )m2
y(ri )

+m2
y(ri )m2

z(ri ) + m2
x(ri )m2

z(ri )
)

+K2(ri )
(
m2

x(ri )m2
y(ri )m2

z(ri )
)]|Vi | (56)

Using the same argument as in the Zeeman energy section,
these approximations are also seen to be of order 	2.

The discretized field expressions derived from the dis-
cretized energies are

HK,uniaxial,i = 2K1(ri ) (m(ri )·u(ri )) u(ri )/µ0Ms (57)

HK,cubic,i = −2 D(ri)m(ri )/µ0Ms (58)

where D is the diagonal matrix with entries

D11 = K1(ri )
(
m2

y(ri ) + m2
z(ri )

) + K2(ri )m
2
y(ri )m

2
z(ri )

(59)

D22 = K1(ri )
(
m2

x(ri ) + m2
z(ri )

) + K2(ri )m
2
x(ri )m

2
z(ri )

(60)

D33 = K1(ri )
(
m2

x(ri ) + m2
y(ri )

) + K2(ri )m
2
x(ri )m

2
y(ri )

(61)

3.3 Exchange energy

As noted in Section 1, the exchange energy may be rep-
resented using either of the expressions in equation (4). In
practice, the latter relation,

Eexch = −
∫

V

A m·
(

∂2m
∂x2

+ ∂2m
∂y2

+ ∂2m
∂z2

)
d3r (62)

is somewhat easier to work with and is the form used in the
following discussion.

The first step in providing a numerical approximation
to equation (62) is to find a discrete form for the sec-
ond derivative operator. As mentioned in Section 2.2, the
simplest approximation, which holds if m is four times
differentiable, is

∂2m
∂x2

(r) = 1

	2
x

(
m(r + 	xx̂)

−2m(r) + m(r − 	xx̂)
) + O(h2) (63)

where 	x is the discretized cell dimension along the x̂ direc-
tion. The analogous equations for ∂2m/∂y2 and ∂2m/∂z2

(involving 	y and 	z), lead to a seven point approximation
to the integrand in equation (62), involving M at the point
ri and its six closest neighbors:

Eexch ≈ −
∑

i

|Vi |A
∑

j

m(ri )·
(
m(ri + εj ) − m(ri )

)
/|εj |2

(64)
Here ri + εj , varying over j , specifies each of the six
nearest neighbors to ri in the discretized mesh. By the same
argument used in the previous two sections, this estimate
will be of O(	2). The corresponding expression for the
discretized exchange field is

Hexch = 2A

µ0Ms

∑
j

(
m(ri + εj ) − m(ri )

)
/|εj |2 (65)

One may be tempted to replace m(ri )·m(ri ) in
equation (64) with |m|2 = 1, obtaining

Eexch ≈ −
∑

i

|Vi |A
∑

j

(
m(ri )·m(ri + εj ) − 1

)
/|εj |2

(66)
or to drop the ‘−1’ altogether, which shifts Eexch by a
constant amount without affecting the exchange field. Either
way, however, leads to numerical problems because the term
m(ri )·m(ri + εj ) effectively loses significant precision in
the common case where m(ri ) and m(ri + εj ) are nearly
parallel. This can be seen by realizing that m(ri )·m(ri +
εj ) = cos θ , where θ is the angle between m(ri ) and
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m(ri + εj ), and cos θ ≈ 1 − θ2/2. The torque depends on
the component perpendicular to m(ri ), which is represented
by the θ2 term. If |θ | 
 1, then when stored with a finite
number of digits the expression 1 − θ2/2 loses a great deal
of the precision in θ2. On the other hand, if one first
subtracts m(ri ) from m(ri + εj ) as in equation (64) then
the dot product will be between two nearly perpendicular
vectors, and precision is significantly retained (Donahue,
Porter, McMichael and Eicke, 2000).

Large angles between neighboring spins m(ri ) and m(ri +
εj ) also cause problems, but of a rather different nature. Here
the problem arises because equation (64) always underesti-
mates the exchange energy, and the larger the neighboring
spin angle θ , the larger the underestimate. As a result, magne-
tization configurations with regions of high exchange energy
that are located between grid points tend to have over-
all smaller total exchange energy than otherwise identical
configurations shifted so that the points of high exchange
energy are on or near grid points. This can cause artifi-
cial, discretization-induced pinning of high exchange energy
structures such as vortices (Donahue and McMichael, 1997)
or induce a Peierl’s like friction for Bloch points motion
(Thiaville et al., 2003). Figure 7 illustrates this problem on a
small, vortex bearing thin plate. In this example, maximum
pinning is 18 mT, which occurs with an in-plane cell size of
just under 7 nm. Moreover, the pinning is found to be non-
monotonic with 	, at first worsening as 	 is decreased, only
abating after the vortex core is resolved.

A related issue can occur in undermeshed 180◦ Néel
walls (Donahue, 1998). If the angle between neighboring
spins across the center of the wall is too large, then the
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Figure 7. Discretization-induced vortex pinning fields for a
120 × 120 × 3 nm3 Ni80Fe20 (Ms = 800 kA m−1, A = 13 pJ m−1,
K = 0 J m−3) plate, as a function of in-plane discretization cell size
(one-layer-of-cells type simulations). Initial zero-field magnetiza-
tion configuration is an equilibrium-centered vortex state. Field is
applied in plane, parallel to plate edge, and gradually increased until
vortex jumps from one discretization cell to the next.

wall demagnetizing field can overwhelm the coarse mesh–
weakened exchange field and force the Néel wall to collapse
into a structure where the entire wall is squeezed between
adjacent spins, as illustrated in Figure 8(a). The problem is
fixed when a sufficiently fine mesh is used, as in Figure 8(b).

Simulations in Figures 7 and 8 were performed using the
OOMMF public code (Donahue and Porter, 1999).

3.4 Self-magnetostatic energy

Self-magnetostatic, or demagnetization energy, is the energy
associated with dipole–dipole magnetostatic interactions of
material within itself. It is described by

Edemag = −µ0

2

∫
V

M·Hd d3r (67)

where the demagnetization field Hd at position r is

Hd(r) = − 1

4π

∫
V

∇·M(r′)
r − r′

|r − r′|3 d3r ′

+ 1

4π

∫
S

n̂(r′)·M(r′)
r − r′

|r − r′|3 d2r ′ (68)

Equation (68) is identical to equation (21) and displayed here
anew for convenience. Note that Edemag involves long-range
interactions, and in terms of M requires integration over
V × V .

If we let g(r) = r/|r|3, then integration by parts allows
one to rewrite equation (68) as

Hd(r) = − 1

4π

∫
V

∇g(r − r′)M(r′) d3r ′ (69)

From this formulation it is clear that an approximation to M
of the form (44) is sufficient to produce an approximation
to Hd of second order, and moreover that at this level of

(a)

(b)

Figure 8. Néel wall in 750 × 120 × 30 nm3 Ni80Fe20 rectangle,
equilibrium states. (Same material parameters as quoted in
Figure 7.) (a) Wall collapses in coarse grid simulation (	 = 15 nm),
as compared to (b) fully resolved wall using fine grid (	 = 5 nm).
Shade indicates x-axis component of the magnetization. Multilayer
cubic cells used in both simulations.
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approximation the linear portion of M can be ignored. Thus
we have

Hd(r) = − 1

4π

∑
i

∫
Vi

∇g(r − r′)M(r′
i ) d3r ′ + O(	2)

(70)

= 1

4π

∑
i

∫
Si

n̂(r′)·M(r′
i )

r − r′

|r − r′|3 d2r ′ + O(	2)

(71)
This shows that, to second order, the demagnetization field
at point r can be computed by treating each cell in the
discretization as a uniformly magnetized block. Likewise,
second-order accuracy can be maintained in equation (67)
by replacing M in each cell with its value at the center, so
we have

Edemag ≈ − µ0

8π

∑
i,j

∫
Vi

M(ri )·
∫

Sj

M(r′
j )·n̂(r′)

r − r′

|r − r′|3 d2r ′ d3r

(72)

≈ − µ0

8π

∑
i,j

MT(ri )

(∫
Vi

∫
Sj

r − r′

|r − r′|3 n̂T(r′) d2r ′ d3r

)
M(rj )

(73)
This can be rewritten as

Edemag ≈ µ0

2

∑
i,j

|Vi | MT(ri )N(ri , rj )M(rj ) (74)

where N(ri , rj ) is the 3 × 3 matrix arising from the fivefold
integration in equation (73) divided by −4π |Vi |. The term
(µ0|Vi |/2) MT(ri )N(ri , rj )M(rj ) is seen to be the (exact)
magnetostatic energy arising between uniformly magnetized
cells at positions ri and rj . It is clear from the definition that
N depends only on the difference ri − rj , so N(ri , rj ) =
N(ri − rj ) = Ni−j .

If we compute the effective demagnetization field from
equation (74), we obtain

Hd,i = −
∑

j

Ni−j Mj (75)

Note that as elsewhere in Section 3, Hd,i is computed from
the energy expression (73) rather than the field expression
(71), so that Hd,i can be interpreted as being the average
value for the demagnetization field in cell i arising from a
cell j having uniform magnetization Mj .

We must now compute Ni . It follows from the magnetic
reciprocity theorem (Brown, 1963) that Ni must be sym-
metric. (Newell, Williams and Dunlop, 1993 also discuss
additional properties of Ni). This means that the 3 × 3 matrix

Ni holds only six independent entries,

Ni =

 Nxx,i Nxy,i Nxz,i

Nxy,i Nyy,i Nyz,i

Nxz,i Nyz,i Nzz,i


 (76)

The entries, Nxx,i , and so on, can be evaluated analytically
(Schabes and Aharoni, 1987; Newell, Williams and Dunlop,
1993; Fukushima, Nakatani and Hayashi, 1998). First, define

f (x, y, z) = 1

2
y(z2 − x2) sinh−1

(
y√

x2 + z2

)

+ 1

2
z(y2 − x2) sinh−1

(
z√

x2 + y2

)

− xyz arctan
( yz

xR

)
+ 1

6
(2x2 − y2 − z2)R

(77)

g(x, y, z) = xyz sinh−1

(
z√

x2 + y2

)

+ 1

6
y(3z2 − y2) sinh−1

(
x√

y2 + z2

)

+ 1

6
x(3z2 − x2) sinh−1

(
y√

x2 + z2

)

− 1

2
y2z arctan

(
xz

yR

)
− 1

2
x2z arctan

( yz

xR

)

− 1

6
z3 arctan

(
xy

zR

)
− xyR

3
(78)

where R =
√

x2 + y2 + z2, and sinh−1 is the inverse hyper-
bolic sine, sinh−1(x)= log(x+√

1+x2). Note that f (x, y, z)

and g(x, y, z) are identical to F 022(x, y, z) and F 112(x, y, z)

defined in Appendix B. They describe magnetostatic inter-
actions between parallel and perpendicular charged tiles,
respectively. Then

4π	x	y	zNxx,i = 8f (xi, yi, zi) − 4
∑
v∈A

f (v)

+2
∑
v∈B

f (v) −
∑
v∈C

f (v) (79)

4π	x	y	zNxy,i(x, y, z) = 8g(xi, yi, zi) − 4
∑
v∈A

g(v)

+2
∑
v∈B

g(v) −
∑
v∈C

g(v) (80)

where A is the set of ‘nearest neighbors’ to (xi, yi, zi), B is
the set of next nearest neighbors, and C is the set of corners
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of the 3 × 3 cube about (xi, yi, zi):

A = {(xi ± 	x, yi, zi), (xi, yi ± 	y, zi), (xi, yi, zi ± 	z)}
(81)

B = {(xi ± 	x, yi ± 	y, zi), (xi ± 	x, yi, zi ± 	z),

(xi, yi ± 	y, zi ± 	z)} (82)

C = {(xi ± 	x, yi ± 	y, zi ± 	z)} (83)

so that |A| = 6, |B| = 12, and |C| = 8. The other four
elements of Ni are computed analogously, by permuting x, y,
z and 	x , 	y , 	z, with Nyy,i and Nzz,i using equation (79)
and Nxz,i and Nyz,i using equation (80).

If we let φ represent the operator on f and g in the right-
hand side of equations (79) and (80), we see that φ/|V |2 is a
second-order discrete approximation to the differential oper-
ator −∂6/∂x2∂y2∂z2 (Abramowitz and Stegun, 1970). If we
define ψx/	

2
x to be the second-order discrete approximate

to −∂2/∂2x, ψx(f )(x) = −f (x − 	x, y, z) + 2f (x, y, z) −
f (x + 	x, y, z) (and likewise ψy and ψz), we see that φ

can be decomposed as ψx
◦ψy

◦ψz. This admits a relatively
efficient approach to the evaluation of Nxx for the entire
range of (x, y, z) of interest. First, evaluate f at each point
on the mesh. Then, evaluate ψz(f ) at each point on the
mesh, which can be done essentially in place. If there are
n points in the mesh, evaluating ψz(f ) requires 2n sub-
tractions. Then, evaluate ψy on the new values, and finally
ψx , for a total of 6n subtractions (as compared to 26n

additions/subtractions in a direct implementation of equation
(79)). The other five terms of Ni can be evaluated using the
same method.

As can be seen from equation (75), Hd,i is a discrete
(three dimensional) convolution of Ni with Mi , so it can
be computed efficiently using FFT techniques (Stockham,
1966). A few details of the application of the FFT in this
case bear mentioning (Donnelly and Rust, 2005a,b).

The basics of the technique are to take the FFT of the Ni

and Mi sequences, say Ñk and M̃k, multiply these together
pointwise to obtain H̃d,k , and then take the inverse FFT of
H̃d,k to obtain Hd,i . Since the FFT and inverse FFT can be
computed with operation count of O(n log n) (where n is
the size of the set {i}), the computation of the entire set
{Hd,i} can be computed in O(n log n), as opposed to O(n2)

resulting from a direct evaluation of equation (75).
However, the magnetization data in equation (75) should

be interpreted as being finite in extent but lying in an infinite
space. Since convolution by FFT produces a cyclic (periodic)
convolution, the magnetization data need to be zero-padded
to double length in each of the x, y, and z directions to
remove wraparound artifacts. Note that this results in an
eightfold increase in the number of points. The interaction
coefficient sequence Ni also needs to be extended to this size,

however, it is not zero-padded but rather is extended through
the origin into ‘negative’ territory, where, following the usual
FFT conventions, index −i = (−ix, −iy, −iz) is stored at the
index corresponding to (nx − ix, ny − iy, nz − iz).

Since the interaction coefficient sequence Ni is determined
by the geometry of the problem, the FFT of this sequence,
Ñk, can be computed once during program initialization and
saved for subsequent use. Moreover, the various symmetries
of the terms Nxx , Nxy , and so on (Newell, Williams and
Dunlop, 1993), and the fact that these sequences are real
(as opposed to complex), result in the transformed sequences
Ñxx,k , Ñxy,k , and so on, having the same symmetries and also
being purely real. As a result, only one octant of Ñk needs
to be stored and that storage can be as real (as opposed to
complex) values.

The Mi sequence is also real; this property can be used
to accelerate the FFT by almost a factor of 2 and reduce
the storage requirements for M̃k by half. (M̃k is complex
valued, but is conjugate symmetric with respect to the origin,
so only one half-space needs to be stored.) The fact that large
portions of the zero-padded Mi array are zero can also be
used to significantly speed up the FFT.

3.5 Boundary conditions

As discussed in Sections 2.3 and 2.4, at grid points where the
stencil for an expression extends beyond the boundaries of
the part being simulated, the stencil will need to be adjusted.
Typically this involves replacement of missing magnetization
values (i.e., points corresponding to stencil values outside the
part boundary) with relations involving BCs and possibly
additional points inside the part. These considerations apply
not just to part boundaries but across any interface where the
magnetization fails to fulfill the smoothness requirements for
the given expression. We consider in this subsection only the
‘free’ BCs arising in the case of no surface anisotropy. As
discussed in Sections 1 (equations (14)–(17)) and 2.4, other
constraints are possible.

In general, BCs may influence any of the energy terms.
However, for the second-order relations discussed here
(Section 3), only the exchange energy is directly affected.
Indeed, expressions (46) and (52) for the Zeeman term,
expressions (55–58) for anisotropy, and (74) and (75) for
demagnetization may be used unaltered at boundaries or in
situations where M is discontinuous across cell faces.

However, examination of equation (64) reveals that the
formula is undefined at boundaries; for example, if ri is on
the leftmost edge of the discretized mesh, then ri − 	xx̂ is
outside the mesh, so we have no value for m there.

The most common solution to this problem is to introduce
a ‘ghost’ spin at the missing location, with value the same
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as the nearest spin inside the boundary, that is define
m(ri − 	xx̂) = m(ri ). Here we implicitly assume that the
boundary runs along the discretization cell surfaces, and is
therefore exactly halfway between ri − 	xx̂ and ri . With this
definition, the interpolated magnetization m(r) satisfies the
usual Neumann BC ∂m/∂n = 0. This approach is sometimes
referred to as using ‘mirror boundary conditions’, because the
magnetization is in some sense reflected across the boundary.
It should be noted that this simple scheme for defining the
value of the ghost spin only works for the second-order
method. The relations are more complicated when higher-
order methods are involved (Donahue and Porter, 2004).
Also, the computed value for the field (65) at the edge spin
ri is only first-order accurate in 	x . However, the boundary
region has narrow width 	x , so in the energy computation
(64) a factor of 	x is introduced into the |Vi | term; therefore
the computed value for the total energy remains second order
in 	x (Donahue and Porter, 2004).

The usual artifact of applying an incorrect BC is a loss
in accuracy arising from a reduction in method order. This
effect is shown in Figure 9, where a uniform magnetization
spiral is impressed upon a one-dimensional rod. The mag-
netization pattern is not relaxed but rather held fixed while
the exchange energy is computed for different discretization
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Figure 9. One-dimensional convergence study of exchange energy
on an impressed magnetization spiral. Horizontal axis is the
(constant) angle between neighboring spins, i.e. 720◦ divided by
the number of spins. Circles represent second-order exchange
method discussed in Section 3.3, triangles are a fourth-order method
presented in Donahue and Porter (2004). Open symbols (top line)
are results using ‘free’ boundary condition, ∂m/∂n = 0; these show
only first-order convergence because the magnetization spiral does
not obey this boundary condition. Closed symbols (bottom two
lines) use the correct Dirichlet boundary conditions and recover the
quoted convergence rates, second and fourth order, respectively.
The leftmost point on the lowest curve shows the limit of numeric
accuracy imposed by round-off errors.

scales. For this reason the usual ‘free’ BCs, ∂m/∂n = 0 do
not hold. To obtain full method accuracy it is necessary to
apply the correct boundary conditions, which in this case are
of the Dirichlet type.

4 SOLVING THE LLG EQUATION

When attempting to solve the LLG equation, accuracy needs
to be preserved both in space and time. To look for time
accuracy monitoring tools that might easily be implemented
in a given code, let us first take the vector product of
the right-hand side of the LLG equation (9) with dm/dt .
One gets

heff·dm
dτ

= α

(
dm
dτ

)2

(84)

where, τ =γ 0Mst , m=M/Ms, heff =Heff/Ms. Equation (84)
is local. Alternatively, starting from the general expression of
the system’s free energy functional, its rate of change may,
provided the applied field be time independent, be written as
(Brown, 1963)

d
∫

εT

dτ
= −µ0M

2
s

∫ (
heff·dm

dτ

)
(85)

There exists no local counterpart to this expression, owing to
the nonlocal nature of magnetostatic interactions. It follows
from equations (84) and (85) that the damping parameter is
related to the rate of change of the total free energy and the
rate of change of the magnetization through

α = − 1

µ0M
2
s

[ ∫
dεT/dτ∫

(dm/dτ )2

]
(86)

As expected, the damping parameter may stay positive only if
the overall energy decreases as time elapses. Two numerical
equivalents to this important relation may be written down,
namely

〈α〉 = γ 0	t

µ0Ms

[
−∑N

i=1 	εi∑N
i=1 	m2

i

]
(87)

where i is the node index, N the total node number, and the
reduced time has been replaced by the physical time step in
the calculation, and

αMS = N
γ 0	t

µ0Ms


 −∑N

i=1 	εi(∑N
i=1 	mi

)2


 (88)
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which represents a transcription of equation (86) for the
average magnetization, that is, for the macrospin equivalent
to the magnetization distribution. Because of Schwartz’
inequality, one always finds

αMS ≥ 〈α〉 (89)

This seemingly innocuous relation contains a deep meaning:
any experiment that measures the time evolution of some
average of the magnetization distribution is bound to yield
a value larger than the true Gilbert damping parameter. On
the other hand, it turns out that equation (87) provides an
extremely sensitive tool when evaluating the accuracy of
the numerical time integration of the LLG equation (Albu-
querque, Miltat and Thiaville, 2001). Note in passing that the
variational form 	εi = −Heff,i ·	Mi provides the most accu-
rate estimate of the energy change within the time step 	t .

A typical calculation of the kind is illustrated in Figure 10
dealing with the effect of a spin-polarized current flow-
ing through a submicron size elliptical element. Momentum
transfer from the conduction electrons to the magnetization
induces magnetization motion for large enough current den-
sities and may lead to the existence of precessional states
(Slonczewski, 1996; Sun, 2000; Miltat, Albuquerque, Thiav-
ille and Vouille, 2001; Stiles, Xiao and Zangwill, 2004; Stiles
and Miltat, 2006, references therein; and see also Theory of
Spin-transfer Torque, Volume 2). Shortly after switching

the current on, magnetization motion proves undistinguish-
able whether using a semi-implicit Crank–Nicholson integra-
tion scheme or the fourth-order explicit Runge–Kutta algo-
rithm (Figure 10a). At longer times, however, magnetization
trajectories would prove somewhat different. Energy dissi-
pation, on the other hand, as monitored via equation (87),
proves distinctively different (Figure 10b) for the two time
integration schemes. The Runge–Kutta algorithm leads to a
numerical damping parameter equal to the nominal value in
this calculation to a better than 10−6 relative accuracy for
the 25 fs time step considered. Rather large fluctuations in
the numerical damping parameter 〈α〉 are seen to arise from
the implicit integration scheme in spite of its unconditional
stability. Generally speaking, 〈α〉 is seen to be significantly
depressed whenever the magnetization becomes stationary, a
result ascribed to residual numerical noise in the solution of
a large set of linear equations (sparse matrix) by means of
iterative methods. Such considerations become particularly
important when dealing with long time integrations such as
requested in spin-transfer problems.

5 COMPARING METHODS

Numerical methods outlined in Sections 2 and 3 do differ
in the order of approximations for exchange interactions and
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Figure 10. Onset of magnetization motion under the influence of a spin-polarized current flowing across a submicron size elliptical
element. The magnetization distribution at rest is stabilized by a field applied along the ellipse long axis and equal to 1.5HK , where
HK is the shape anisotropy field of the elliptical platelet. Current density: J = 0.5 A µm−2 flowing from time t = 0 on. A tiny constant
field (80 A m−1 or 1 Oe) is applied along the short ellipse axis, hence the nonzero value of the average my component prior to current
application. (a) Element-averaged magnetization components versus time along the long (mx) and short (my) elliptical axes, respectively.
Open symbols refer to the Crank–Nicholson solution with an implicit character restricted to exchange interactions; full symbols refer
to a fourth-order Runge–Kutta time integration. (b) Volume-averaged damping parameter (equation (87)) owing to the semi-implicit
Crank–Nicholson (time step 12.5 fs) or explicit fourth-order Runge–Kutta (time step 25 fs) time integration schemes. Co-like materials
parameters (exchange constant: A = 1.3 × 10−11 J m−1, saturation magnetization Ms = 1500 kA m−1, damping coefficient α = 0.006);
dimensions: 170 × 80 × 2.5 nm3; one-layer-of-cells type simulation.
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BCs. More significantly, perhaps, they differ in the evaluation
of the demagnetizing field, direct evaluation at nodes in
the first case, field averaged over the cell volume in the
second. The approach described in Section 3 uses constant
magnetization cells, that is, zero-order expansion for the
magnetization m(r). Note, however, that cell averaging, or
indeed more complex integration approaches, may equally
be applied to cells with a constant divergence (first-order
expansion for the magnetization). The real question that
arises from the different modeling options is the degree of
coherence in approximation levels. Magnetization dynamics
raises an additional issue, namely, is there a best numerical
implementation for the LLG equation? In other words,
should a mapping of the magnetization and the effective
field onto the nodes of a regular mesh be preferred to
motion involving a cell-averaged magnetization and a cell-
averaged field or vice versa? The point being that in general,
〈m(t) × Heff(t)〉 �= 〈m(t)〉 × 〈Heff(t)〉. We do not provide
general answers to these questions in the following but,
rather, analyze the convergence proper to each approach
when dealing with the reversal of a rectangular platelet under
the action of a slightly off-axis magnetic field applied at
time t = 0. The specifics of the test problem considered
here, which is the second part of µMAG Problem No. 4
(Micromagnetic Modeling Activity Group, 2005), are shown
in Figure 11. At time t = 0 a uniform field is applied in-
plane at 190◦ counterclockwise from the positive x axis.
The applied field causes the spins in the middle portion of
the sample to rotate clockwise, and the spins on either end
to rotate counterclockwise. The differing rotation directions
results from the relative angle of the applied field with respect
to the initial position of the spins in the middle of the plate in
contrast to the spins at the ends, but the origin of the motion
is perhaps not immediately obvious. The damping parameter
α is relatively small, so the spin evolution is dominated by
precessional motion. In the middle part of the sample, H × m
is directed upward (+z), so the initial motion of the spins
in the middle is up and out of the film plane. In response,
a large opposing demagnetization field is generated directed
into the film plane (−z). Precession about this demagnetizing
field results in the clockwise rotation of these spins, as seen
in Figure 11(b). At the ends, the initial spin motion is in
the −z direction, the resulting demagnetizing field points
along +z, and so the rotation of the spins at either end is
counterclockwise.

After approximately 0.16 ns, the respective rotations gen-
erate two 360◦-character domain walls, one on either end
(Figure 11c), which are gradually pushed off the sample as
the center domain expands (Figure 11d). As the walls are
forced off the ends, the confined geometry leads to very tight
magnetization structures containing vortices and cross-ties

x

y

Happ

(a)

(b)

(c)

(d)

(e)

Figure 11. Magnetization states for µMAG Problem 4b (Micro-
magnetic Modeling Activity Group, 2005). Sample is a Ni80Fe20

slab with dimensions 500 × 125 × 3 nm3, material parameters
A = 13 pJ m−1, Ms = 800 kA m−1, K = 0 J m−3, α = 0.02, γ 0 =
2.211 × 105 m A−1s−1. Dynamic simulation, starting in a zero-field
equilibrium ‘S’-state (a). At time t = 0 fs a uniform applied field,
µ0Happ = (−35.5,−6.3, 0) mT, is instantaneously applied. By 60 fs
(b), domain rotation has begun. Large angle (≈360◦) domain walls
are formed by 160 fs (c), which are slowly pushed outwards (450 fs,
(d)) and off the ends by 520 fs (e). In (b), the shade indicates the
z-component of the magnetization, which is +z (out of the page) in
the central region, and −z (into the page) at the ends. In (c–e), shade
indicates in-plane magnetization angle. These images taken from a
simulation using the energy-based method, with 255 × 63 × 1 cell
count.

(also called antivortices), which require a very fine mesh to
properly resolve (Figures 11e and 12).

These effects are reflected in the simulation results dis-
played in Figures 13 and 14. The simulations all agree fairly
well until some time after 0.4 ns, corresponding to the anni-
hilation of the 360◦ domain walls. After that, although the
features described in Figures 11 and 12 prove qualitatively
similar in all simulations, discretization effects are clearly
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(a) (b)

Figure 12. Details at left edge of simulation in Figure 11, at times
t = 500 fs (a) and t = 520 fs (b). Cross-tie (or antivortex) at top and
distorted vortex at bottom form from ends of 360◦ wall. The half-
vortex visible in the middle of the left edge in (a) is a remanent
of the 360◦ wall, which is pushed off the edge by 520 fs (b) as
the cross-tie and distorted vortex move inward. Shade indicates the
z-component of the magnetization, which is primarily out of the
page (+z).
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Figure 13. Average my versus time results for test problem from
Figure 11 using the field-based method of Section 2, with different
x/y/z cell counts as indicated. In-plane counts 127 × 31 yields
≈4 nm square cells, 167 × 41 ≈ 3 nm square cells, 255 × 63 ≈
2 nm square cells. Single-layer simulations (z cell count = 1) appear
to converge toward a different limit than the multilayer simulations
(z cell count = 3).

evident, especially in the field-based simulations shown in
Figure 13. In this figure, the single-layer simulations do not
appear to be converging toward the same limit as the three-
layer simulations, although the 127 × 31 × 1 solution proves
rather close to the converged 500 × 125 × 3 energy-based
solution (see Figure 15). Whether this result is purely coin-
cidental is hard to say. We note, however, that the most
compact set of initial 〈my〉 values including both approaches

x/y/z cell count: 127 × 31 × 1
167 × 41 × 1
255 × 63 × 1
333 × 83 × 2

500 × 125 × 3
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Figure 14. Average my versus time results for test problem from
Figure 11 using energy-based method of Section 3, with various
x/y/z cell counts as indicated. Single-layer and multilayer simula-
tions converge to same limit. Single-layer 500 × 125 × 1 results
(not shown) are indistinguishable from multilayer 500 × 125 × 3
results.

is obtained for the extreme meshing conditions, with 〈my〉 =
0.12472109 (field-based), 0.12526786 (energy-based) for the
127 × 31 × 1 discretization, and 0.12567210 (field-based)
and 0.12599484 (energy-based) for the ≈1 nm cubic mesh
size. The larger variability in initial conditions in the field
approach is undoubtedly responsible in part for the sizable
differences in time integration observed at later times and it
is not even certain that three layers suffice for full conver-
gence. In contrast, the results from the energy-based approach
shown in Figure 14 do in this test manifest only minor z-layer
discretization effects and appear to converge in a relatively
straightforward manner. As noted in the preceding text, this
is probably more due to the effect of using a cell-averaged
demagnetizing field as opposed to any intrinsic property of
the energy-based approach, and presumably indicates that
the midplane (midcell) demagnetizing field samples are not
generally truly representative of the field profile through the
thickness of the film (cell), an effect alluded to earlier.

The important point from this comparison, as seen in
Figure 15, is that both methods converge toward similar lim-
its, and either way a very small cell size is required to
approach that limit. It must be stressed that the cell size
required here, ≈1 nm, is much smaller than the exchange
length for this material, which by equation (5) is about
5.7 nm. This illustrates the importance of always check-
ing for discretization effects in micromagnetic simulations,
especially in confined geometries with small magnetic struc-
tures such as vortices and cross-ties. We note in closing
that a subtle influence of the approximation order in the
exchange interactions and BCs may not at this stage be
ruled out.
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127 × 31 × 1, energy based
500 × 125 × 3, energy based

127 × 31 × 1, field based
511 × 127 × 3, field based
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Figure 15. Test problem results comparing field-based (dark gray
curves) and energy-based (light gray curves) approaches. Cell count
500 × 125 × 3 corresponds to discretizing with 1 nm cubes.

6 CONCLUSION

This short review of finite difference methods applied to
micromagnetics provides the reader with all the necessary
ingredients to develop his or her own code. Different approx-
imations have been discussed for exchange interactions and
BCs. Ways to include general BCs have also been indicated.
The appendices provide all required integrals for the defi-
nition of magnetostatic interaction coefficients due to one’s
own choice regarding discretization. Provided care is taken
in the choice of a proper meshing and time integration step,
the field- or energy-based methods described in the preced-
ing text lead to comparable meshing sensitivity as evidenced
in Figure 15. On the whole, numerical micromagnetics rely-
ing on finite difference methods has reached a high maturity
level. As already stated, however, available data do not show
convergence toward a single 〈my〉(t) trajectory for this par-
ticular problem. Lastly, if finite difference methods prove
extremely efficient in terms of computation time due to an
extensive use of FFTs, they display excessive discretization
artifacts when dealing with curved geometries. Although that
dependence needs to be quantified more precisely, work con-
tinues on the issue and practical solutions are expected in the
near future.
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APPENDICES

A DEMAGNETIZING FIELD: USEFUL
INTEGRALS

For parallepipedic volume cells and rectangular surface
tiles, defining ρ = √

(u2 + v2 + w2), Lu = 1
2 ln(

ρ+u

ρ−u
), Pu =

arctan( vw
uρ

), and Lv, Lw, Pv , Pw through permutation in the
variables u, v, w, all interaction coefficients allowing for a
direct evaluation of the demagnetizing field at any position
in space (except corners) may be evaluated with the help of
the following integrals (Tomáš, 1999):

H 111
u =

∫ ∫ ∫
u

ρ3
dudvdw = +uPu − vLw − wLv

H 111
v =

∫ ∫ ∫
v

ρ3
dudvdw = +vPv − wLu − uLw

H 111
w =

∫ ∫ ∫
w

ρ3
dudvdw = +wPw − uLv − vLu

H 110
u =

∫ ∫
u

ρ3
dudv = −Lv

H 110
v =

∫ ∫
v

ρ3
dudv = −Lu

H 110
w =

∫ ∫
w

ρ3
dudv = +Pw

H 011
u =

∫ ∫
u

ρ3
dvdw = +Pu

H 011
v =

∫ ∫
v

ρ3
dvdw = −Lw

H 011
w =

∫ ∫
w

ρ3
dvdw = −Lv

H 101
u =

∫ ∫
u

ρ3
dudw = −Lw

H 101
v =

∫ ∫
v

ρ3
dudw = +Pv

H 101
w =

∫ ∫
w

ρ3
dudw = −Lu

(A1)

B POTENTIAL: USEFUL INTEGRALS

Defining ρ = √
(u2 + v2 + w2), Lu = 1

2 ln(
ρ+u

ρ−u
), Qu =

u arctan( vw
uρ

), and Lv, Lw, Qv, Qw through permutation in
the variables u, v, w, the necessary integrals for the com-
putation of the cell- or tile-averaged scalar potential are as
follows (Tomáš, 1999):

F 220 = 1

2
u(v2 − w2)Lu + 1

2
v(u2 − w2)Lv

−uvQw + 1

6
ρ(2w2 − u2 − v2)

F 202 = 1

2
w(u2 − v2)Lw + 1

2
u(w2 − v2)Lu

−wuQv + 1

6
ρ(2v2 − w2 − u2)

F 022 = 1

2
v(w2 − u2)Lv + 1

2
w(v2 − u2)Lw

−vwQu + 1

6
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w(3u2 − w2)Lv + 1

6
v(3u2 − v2)Lw

−1

6
u(uQu + 3vQv + 3wQw) − 1

3
ρvw

F 112 = uvwLw + 1

6
v(3w2 − v2)Lu + 1

6
u(3w2 − u2)Lv

−1

6
w(wQw + 3uQu + 3vQv) − 1

3
ρuv

F 121 = uvwLv + 1

6
u(3v2 − u2)Lw + 1

6
w(3v2 − w2)Lu

−1

6
v(vQv + 3wQw + 3uQu) − 1

3
ρwu
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F 221 = 1

6
uw(3v2 − w2)Lu + 1

6
vw(3u2 − w2)Lv

+ 1

24
(6u2v2 − u4 − v4)Lw
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6
uv(uQu + vQv + 3wQw)
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24
ρ(2w3 − 3w(u2 + v2))
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24
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6
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24
ρ(2u3 − 3u(v2 + w2))

F 222 = 1

24
u(6v2w2 − v4 − w4)Lu

+ 1

24
v(6w2u2 − w4 − u4)Lv

+ 1

24
w(6u2v2 − u4 − v4)Lw

− 1

6
uvw(uQu + vQv + wQw)

+ 1

60
ρ(u4 + v4 + w4 − 3(u2v2 + v2w2 + w2u2))

(B1)
All of these integrals are equal to their counterparts in

Hubert and Schäfer (1998). The F 200 integral in Hubert and
Schäfer (1998) proves, however, erroneous; it should read:
F 200 = uLu − ρ.
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1 INTRODUCTION

The design and development of magnetic materials and
devices requires a precise understanding of both the influence
of a material’s microstructure on the macroscopic magnetic
properties and the influence of the magnetostatic interactions
on the functional behavior of a device. A prominent example
for the former is the remanence enhancement in exchange
spring permanent magnets (Kneller, 1991), while an example
for the latter is the case of single pole write heads in
perpendicular magnetic recording (Kanai et al., 2005). In the
following we review these two examples and explain why
the finite element method (FEM) is an effective technique to
treat these systems quantitatively.

Both the calculation of the remanence and coercivity
of permanent magnets and the simulation of perpendicular
magnetic recording involve realistic physical models. The

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

calculation of the magnetic properties of permanent magnets
needs a model of the grain structure that takes into account
the grain size distribution as well as the shape of the grains.
The simulation of perpendicular magnetic recording needs
a computer model that takes into account the size, the
shape, and the relative motion of the magnetic objects in a
recording system. The FEM has been widely used to calculate
magnetic fields in magnetic circuits, electric motors, and
magnetoelectric devices (Preis et al., 1992). The strength of
the FEM is its flexibility to model complex geometries and to
refine the finite element mesh locally where higher accuracy
of the solution is needed. The FEM is a well-established tool
that has been used in science and engineering over many
decades. Finite element mesh generators that perform the
task of dividing complex objects into a computational grid
are commercially and freely available (Schneiders, 2007).

In nanocrystalline permanent magnets (Manaf, Leonow-
icz, Davies and Buckley, 1991; Goll, Seeger and Kro-
nmuller, 1998) exchange interactions between the grains
cause a strong coupling between the magnetic moments
with the effective coupling range being larger than the
grain size. Although the crystallites are randomly ori-
ented the remanence will be larger than expected from
the Stoner–Wohlfarth theory (Stoner and Wohlfarth, 1948).
When the magnet is saturated all the magnetic moments
point parallel to the saturation field. Upon decreasing the
external field, the magnetocrystalline anisotropy causes the
magnetization in the center of the grains to rotate paral-
lel to its easy axis. However, next to the grain boundaries
exchange coupling with the neighboring grain that may have
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a different anisotropy direction hinders the rotation of the
magnetic moments. In a band along the grain boundaries, the
magnetic moments remain oriented in a direction that is close
to the direction of the saturation field (Schrefl, Fischer, Fidler
and Kronmuller, 1994c). Owing to the interplay of exchange
interactions and magnetocrystalline anisotropy the magnetic
moments will deviate from their local easy axis next to
the grain boundaries, giving rise to remanence enhancement.
Remanence enhancement occurs in single-phase, nanocrys-
talline permanent magnets but can be considerably increased
in so-called exchange spring permanent magnets, where mag-
netically soft grains are strongly exchange coupled to mag-
netically hard grains. In the remanent state, the magnetization
direction in the soft magnetic grains is mostly governed by
exchange interactions with the neighboring hard magnetic
grains. This keeps the magnetization close to the direction of
the saturation field. With increasing size of the soft mag-
netic grains magnetostatic interactions become dominant,
vortices form within the soft magnetic grains, and remanence
enhancement breaks down (Schrefl and Fidler, 1998). This
example clearly shows that the macroscopic magnetic prop-
erties arise from the interplay between the intrinsic magnetic
properties and the magnet’s microstructure. Upon changing
the microstructure (grain size, grain shape), the macroscopic
properties change. The remanence and the coercivity will
have different values although there is little or no change
in the chemical composition of the magnet. This change of
the macroscopic magnetic properties arises from a differ-
ent local arrangement of the magnetic moments for different
microstructures.

The directions of the magnetic moments can be calcu-
lated numerically by minimizing the total Gibbs’ free energy
of the system (Brown, 1963a). In the physical model, the
intrinsic magnetic properties change from grain to grain.
In the mathematical model, this is reflected by coefficients
in the governing equations that vary locally in space. The
grain structure of a magnet can be modeled by a set of
polyhedra. Within a grain, the magnetic moments are not
uniform. The interplay between exchange interactions and
the magnetocrystalline anisotropy cause a nonuniform mag-
netization distribution. In order to resolve the magnetization
distribution on a subgrain level, the computational grid has
to be smaller than a grain. A polyhedral grain can be eas-
ily subdivided into tetrahedrons. Within the framework of
the FEM discrete equations can be formulated on irregular,
tetrahedral grids. The problem of finding the magnetization
distribution of the remanent state is transformed into an alge-
braic minimization problem with the help of the FEM. The
algebraic minimization problem is usually solved with an
iterative method like the Newton method or the conjugate
gradient method (Gill, Murray and Wright, 1993). These
iterative schemes start from an initial state and proceed in

steps toward a local minimum close to the initial state. A
magnet has many magnetization states that correspond to a
local minimum of the Gibbs’ free energy. Thus, in order
to compute the remanent state, a sequence of local minima
must be computed. Luckily, for the saturated state the magne-
tization configuration is known since all magnetic moments
can be assumed parallel to the external field if the external
field is high. Therefore for the first calculation, a high exter-
nal field is applied, the initial magnetization is assumed to
be parallel to the field, and the magnetization configuration
of the corresponding local minimum is calculated by solv-
ing the algebraic minimization problem. The external field
is decreased and the corresponding magnetic state is calcu-
lated. This process is repeated until the remanent state (zero
external field) is reached. According to Kinderlehrer and
Ma (1994), the successive minimization of the total Gibbs’
free energy for different external fields is a valid means
to calculate the hysteresis loop of a ferromagnetic material.
Alternatively, the Landau–Lifshitz–Gilbert (LLG) equation
of motion (Gilbert, 1955; Landau and Lifshitz, 1935) for the
magnetization can be solved for a time varying external field.
This method shows the dynamic response of the magnetiza-
tion upon application of an external field. The finite element
and a proper time discretization method resolve the magne-
tization in time and in space. Such dynamic micromagnetic
simulations are especially important for application where
the external field changes fast, as the hysteresis properties
are not only dependent on the field strength but also on the
frequency of the field (He et al., 1996). Generally, the coer-
civity increases with increasing rate of change of the external
field.

With data rates in the gigahertz regime, the rate of
change of the external field and its influence on the coercive
field play a major role in magnetic recording (Weller and
Moser, 1999). Therefore, in magnetic recording simulation
the locally acting external field as function of time has to
be taken into account. The magnetic field seen by the data
layer is created by the moving write head. In perpendicular
recording, the magnetostatic interactions among the write
pole of the head, the return pole of the head, and the
soft underlayer (SUL) lead to the write field which is
perpendicular to the recording media. The data layer itself
can be seen as being placed in the ‘air gap’ of a magnetic
circuit being composed of the write pole and the SUL. This
is in contrast to conventional longitudinal recording where
only the fringing field of the air gap can be used for writing.
Thus, the maximum write field is higher than in longitudinal
recording. The write field can switch highly coercive grains,
which in turn enables a higher bit density. In order to
optimize the field gradient, or to tilt the field angle for low
field switching according to the Stoner–Wohlfarth angular
dependence of the switching field, different soft magnetic
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shield can be placed next to the write pole (Liu et al., 2005).
The write field profile and the write field dynamics arise
from the complex interaction of different magnetic parts with
a particular shape. Again the FEM provides an easy way to
model the complex geometries of the different parts involved
in perpendicular recording systems (Scholz and Batra, 2005;
Takano, 2005). The write field as a function of time as
seen be the data layer grains is the result of magnetization
dynamics in the yoke of the write head, which is driven by the
magnetic field from the current coils and the magnetostatic
interactions between the moving write head and the hard disk
medium (Schrefl et al., 2005). A common numerical method
to treat the interactions between distinct parts is the boundary
element method (BEM) (Fetzer, Kurz and Lehner, 1997).
Hybrid FEMs/BEMs can be used to effectively simulate the
recording process taking into account the relative motion
of the head with respect to the hard disk medium (Schrefl,
Schabes, Suess and Stehno, 2004).

2 MAGNETOSTATIC FIELD
CALCULATION

The FEM is useful technique to break down a complicated
object into smaller, easily manageable parts. The basic idea
of the FEM is to build a complicated object from, or to divide
it into, smaller, simple blocks. Whereas it is impossible to
describe a physical process for the complicated object, it
can easily be done for the simple building block, the so-
called FE. The process of creating a mesh, subdividing an
object into triangles, tetrahedrons, or hexahedra, and the
reformulation of the partial differential equation is called
finite element discretization. For magnetic field problems,
we can mostly use finite element libraries as black box
solvers, however, additional input and software development
is required if we want to solve the micromagnetic equations.
In this section, we will look at the basic concept of the
FEM and review the different formulations for the calculation
of the magnetostatic field. We will also discuss various
techniques to treat the so-called open boundary problem. In
order to solve a partial differential equation uniquely, either
the solution or its derivative has to be known at the boundary
of the problem domain. This is not possible in computational
micromagnetics. If we want to calculate the magnetic field
inside a magnet, Maxwell’s equations only give a jump
condition for the magnetic scalar or magnetic vector potential
at the magnet’s boundary. Special methods are required to
take into account the regularity of the potential, the potential
vanishes proportional to r−1 as r approaches infinity. The
application of the FEM to discretize the magnetic Gibbs’
free energy will be discussed in Section 3.1.

The FEM is a numerical technique to solve partial differen-
tial equations. However, historically the FEM was developed
for solving variational problems. The approximation of a
minimization problem with a mesh of triangles goes back
the Schellbach in the year 1851 (Schellbach, 1851). He pro-
posed a finite element-like solution to the problem of finding
a surface with minimum area that is enclosed by a given
curve. Experimentally, this problem can be solved easily by
putting a wire frame in soap and looking at the resulting
‘soap bubble’. The soap wants to reduce the surface tension
and forms an area with minimal surface. Schellbach created
a mesh of triangles to interpolate the shape of the surface.
In a second step, the nodes (corners of the triangles) were
moved to minimize the surface area. An early example of
the FEM in civil engineering is the design of the roof for
Munich 1972 Olympics arena in the late 1960s (Leonhardt
and Schlaich, 1972).

2.1 Finite element discretization

A predecessor of the FEM is the Ritz method (Ritz, 1909).
Within the framework of the Ritz method a variational
problem is solved as follows:

• start from a functional f (v) which has to be minimized
(or maximized). The function u(r) is a minimizer (or
maximizer) of f (v) if

f (v) � f (u) for all v, (or f (v) � f (u) for all v) (1)

• express u(r) by a set of N unknown parameters ui . If u

is a minimizer (or maximizer) of f , we have to satisfy

∂

∂ui

f (u) = 0, i = 1, . . . , N (2)

• solving equation (2) yields an approximation for the
minimizer (or maximizer) u of f .

The Ritz method was used by Brown, in order to calculate
the magnetostatic energy for a given magnetization distri-
bution (Brown, 1962). We will discuss Brown’s method in
Section 2.2.1. Now let us continue with the discussion of
the FEM.

Within the framework of the FEMs special functions are
used to approximate u(r): The minimizer (or maximizer) u

is expanded with a set basis functions, ϕi(r),

u(r) =
N∑

i=1

uiϕi(r) (3)
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The basis functions have only local support and are defined
by the help of a mesh of FE. If ri denotes the vector from the
origin to node i, the FE basis functions have the following
properties

ϕi(rj ) = δij =
{

1 if i = j

0 if i �= j
(4)

Using equations (3) and (4), we see that the value of u at
node point i is

u(ri ) = ui (5)

It is possible to treat the problem in terms of these globally
defined basis functions. However, for practical reasons it is
helpful to treat the problem on the level of a single FE.
This makes it easy to solve the problem computationally.
The governing equations need to be implemented for one
element only. For all the other elements of the finite element
mesh, the same functions or subroutines can be called.

2.1.1 The linear tetrahedral finite element

Suppose we subdivide the problem domain V into tetrahedral
finite elements and let the total number of tetrahedrons be
E. If we refer to a particular finite element with the index
e, Ve is the volume (domain) of element e. The vertices of
a tetrahedron are numbered locally by the index α that runs
from 1 to 4. Figure 1 shows a simple finite element mesh
composed of three tetrahedrons. Then we can approximate
the solution locally, say on element e by

u(r) =
4∑

α=1

uαϕα(r) (6)

The functions ϕα(r) are called shape functions for the finite
element Ve. For the case of simplicity we can restrict
ourselves to linear basis functions that are defined as follows

ϕα(rβ) = δαβ,

4∑
α=1

ϕα(r) = 1 (7)

ϕα(x, y, z) = aα + bαx + cαy + dαz, α = 1, 2, 3, 4 (8)

where r denotes the vector to the point with the coordinates
x, y, and z. Equation (7) uniquely defines the coefficients
aα, bα, cα , and dα (Kikuchi, 1986)

a1 = 1

6Ve

∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣ (9)

b1 = − 1

6Ve

∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣ (10)

c1 = − 1

6Ve

∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣ (11)

d1 = − 1

6Ve

∣∣∣∣∣∣
x2 y2 1
x3 y3 1
x4 y4 1

∣∣∣∣∣∣ (12)

where xα , yα , and zα denote the coordinates of node α. The
other constants follow form the cyclic permutation of the

1 2

3
3

4

5

6

2

1

(a) (b)

Figure 1. (a) Finite element mesh of the grains in a recording media. Both the grains and the grain boundary phase are subdivided into
tetrahedral finite elements. (b) Numbering of nodes and elements in a tetrahedral finite element mesh.
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indices 1, 2, 3, and 4. The volume of the element, Ve, can
be calculated from

6Ve =

∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣
(13)

Equation (7) has some important consequences. We see that
the vector r can be expressed by the following sum of the
shape functions on the finite element

r =
4∑

α=1

rαϕα(r) (14)

or

x =
4∑

α=1

xαϕα(x, y, z), y =
4∑

α=1

yαϕα(x, y, z),

z =
4∑

α=1

zαϕα(x, y, z)

(15)

Given equation (6), we can easily calculate the gradient of u.
This becomes important when we will derive the magnetic
field from the magnetic potential. The derivative of u with
to x, y, and z can be written as

∂u

∂x
=

4∑
α=1

uα

∂ϕα(x, y, z)

∂x
,

∂u

∂y
=

4∑
α=1

uα

∂ϕα(x, y, z)

∂y
,

∂u

∂z
=

4∑
α=1

uα

∂ϕα(x, y, z)

∂z

(16)

or

∇u =
4∑

α=1

uα∇ϕα(r) (17)

Since the basis functions ϕα are linear functions in space
within a finite element, the derivative of u are constant within
an element. From (8) we can calculate the derivatives of the
basis functions

∂ϕα

∂x
= bα,

∂ϕα

∂y
= cα,

∂ϕα

∂z
= dα (18)

2.1.2 Approximation of the solution

We can think of f being the energy functional of a problem.
The total energy splits into a sum over all elements

f (v) =
E∑

e=1

f (e)(v) (19)

where f (e) is the contribution from element Ve to the total
energy. Now, the minimizer (or maximizer) of f is expanded
with the finite element basis functions. Substituting v in
(19) with the right-hand side of equation (3) transforms the
variational problem into an algebraic minimization problem.
The unknown coefficients ui correspond to values of the
solution at node point ri and can be determined by solving

∂

∂ui

E∑
e=1

f (e)(u1, . . . , uN) = 0, i = 1, . . . , N (20)

Interchanging the derivation and summation gives

E∑
e=1

∂f (e) (u1, . . . , uN)

∂ui

= 0, i = 1, . . . , N (21)

Equation (21) leads to a system of equations that determine
the values of u at the node points of the finite element mesh,
ui . The left-hand side of equation (21) is a sum over all
the elements of the finite element mesh. Once it is clear
how to derive the contributions of one element toward the
equations, the contributions from all the other elements can
be calculated in a similar way. Computationally this means
that the subroutine/function that computes the contribution
of an element will be called E times, one time for each
element, and the results of the function call are assembled
to the global system of equations (see Section 2.2.2). The
above-mentioned approach of splitting the total energy of a
system into a sum of contributions from each finite element is
used in finite element micromagnetic solvers. A well-known
example is the finite element solver MAGPAR (Scholz
et al., 2003) that computes equilibrium configurations of
the magnetization by energy minimization over a set of
tetrahedrons.

2.1.3 Notation

In the remainder of this chapter, we use the following con-
ventions for symbols and indices. The indices i and j refer
to a node of the finite element mesh. They run from 1 to
the total number of nodes, N . The indices l and k refer to
the Cartesian coordinates x, y, and z and thus run from 1
to 3. A spatial scalar field u(r) or a vector field m(r) can
be represented on an finite element mesh. ui is the value
of u at the node i with the coordinates ri , ui = u(ri ). The
set of all ui , with i = 1 to N , will be the vector u over
all nodes of the finite element mesh. Similarly, mi refers
to the vector m at node i of the finite element mesh. It
is the value of the vector field m(r) at point ri . The l-th
component of the vector m at node i is given by mil . The
vector m has 3N components and is the collection of all
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mil, m = (m11, m12, m13, . . . , mil, . . . , mN3). The Greek
indices α and β denote the nodes of a given finite element
with index e. In tetrahedral finite elements, α and β run from
1 to 4. The finite element basis functions are denoted by ϕi .
There are N finite element basis functions, one for each node.
The basis function with a Greek subindex, ϕα, is an abbrevia-
tion for the basis function at node α of element e, ϕα = ϕ(e)

α .
We use the superscript (e) to denote a quantity given on
finite element e. For example, M

(e)
s is the local value of the

spontaneous magnetization within finite element e. Matrices
are given by uppercase bold-face letters. The transpose of a
matrix is denoted by the superscript T. Local matrices, the
so-called element matrices, will have the superscript (e). For
example, the element stiffness matrix, K(e), is a 4 × 4 matrix
with the matrix elements K

(e)
αβ , α, β = 1, . . . , 4.

2.2 The magnetostatic boundary value problem

First, let us consider a ferromagnetic body with spontaneous
magnetization, Ms, and a given magnetization distribution

M(r) = Msm(r), with |m| = 1 (22)

The magnetostatic energy (stray field energy) of the ferro-
magnetic body with volume V is

�s = −µ0

2

∫
V

M · Hs dV (23)

where µ0 is the permeability of vacuum. The self-demag-
netizing field (stray field), Hs, may be directly calculated
from Maxwell’s equations. We split the total magnetic field
into a three parts

H = Hs + Hcurrent + Heddy (24)

The stray field, Hs, is created by the magnetic volume charge
density,

ρm = −∇ · M (25)

and the magnetic surface charge density,

σ m = M · n (26)

where n denotes the surface normal at the boundary of V .
These virtual charges are useful for the calculation of the
stray field from a given magnetization distribution. Hcurrent

is the magnetic field created by a given current distribution.
Examples are the current through the driving coil of the write

head or the current through the sensing element of a read
head. It can be calculated by Bio–Savart’s law

Hcurrent(r) = 1

4π

∫
V

j × r − r′

|r − r′|3 dV ′ (27)

where the integral is over the conductor with a current
density j. Finally, in conducting magnets we also may want
to include a field, Heddy, generated by the eddy currents.
Equation (24) splits the magnetic field into its nonrotational
part, Hs, and into its solenoidal part, Hcurrent + Heddy, which
can be written as

∇ × Hs = 0 (28)

∇ · (Hcurrent + Heddy) = 0 (29)

The magnetic induction, B, and the magnetic field are
related by

B = µ0 (H + M) (30)

Using (28) we can write the stray field as gradient of a
magnetic scalar potential

Hs = −∇U (31)

Building the divergence of equation (30) and using
∇ · B = 0, we obtain ∇ · H = −∇ · M, which can be rewrit-
ten with the help of equations (24), (29), and (31) as

∇2U = −ρm (32)

Outside the magnet M = 0 we have

∇2U = 0 (33)

At the magnet’s boundary the following interface conditions
hold

U(in) = U(out) (34)

(∇U(in) − ∇U(out)) · n = σm (35)

Equations (34) and (35) follow from the requirement that at
the boundary of the magnet the component of H parallel
to the surface and the component of B perpendicular to
the surface are continuous, respectively. Assuming that the
magnetic potential is regular at infinity,

U(r) → 1

|r| for |r| → ∞ (36)
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the solution of equations (32–35) is

U(r) = 1

4π

(∫
V

ρm(r′)
|r − r′| dV ′ +

∮
∂V

σ m(r′)
|r − r′| dS ′

)
(37)

Numerically, the direct calculation of the magnetic scalar
potential (37) on a grid of N grid points leads to a
computational effort proportional to N2. This is undesirable,
especially when the computation of the magnetic potential is
part of an iterative procedure to determine the magnetization
distribution M(r) and many evaluations of the integrals in
equation (37) are required. This is the case in numerical
micromagnetics. In energy minimization methods, variants
of the Newton method or the conjugate gradient method
are used. These are iterative techniques and the magnetic
potential has to be evaluated at every iteration step, in order
to calculate the magnetostatic energy or its gradient. In
dynamic micromagnetics, the magnetostatic field has to be
evaluated at least once per time step. Therefore, methods
are required that scale better than N2. Traditionally, fast
Fourier transform methods are applied in micromagnetics
to evaluate the integral (37) (Mansuripur and Giles, 1988).
However, Fourier transform techniques require a regular grid.
Alternatively, equations (32–36) can be solved with the FEM
that reduces the computational effort since special linear
solvers for multiple right-hand sides can be used to solve
the discretized equations.

In Sections 2.2.1 and 2.2.2, we show how the mag-
netic scalar potential can be computed using the FEM.
As mentioned earlier, the FEM is the most suitable
method for solving variational problems. In Section 2.2.1,
we derive a variational problem that is equivalent to the
equations (32–36). The finite element discretization of the
variational problem leads to a system of linear equations
for the magnetic scalar potential at the nodes of the finite
element mesh. In Section 2.2.2, we discuss how this sys-
tem of equations can be easily found by first formulating
the equation for a single finite element and then assembling
the contributions of all elements. The efficient implementa-
tion in a computer code using matrix–vector multiplication
is discussed in Section 2.2.3.

2.2.1 Magnetic scalar potential formulation

A convenient way to find the finite element equations for
the numerical solution of equations (32)–(36) is to derive an
equivalent variational problem. For a given magnetization
distribution M(r), the magnetostatic energy can be evaluated
by maximizing the functional (Brown, 1962)

�s,H = −µ0

2

∫
h2dV − µ0

∫
V

M · h dV (38)

with respect to the vector function h, which is required
to be regular at infinity and nonrotational everywhere. In
equation (38) the first integral is over the entire space and
the second integral is over the volume of the ferromagnet.
In order to achieve the irrationality, we can derive h from
a potential u, which is a continuous function in space:
h = −∇u. We now express u in terms of the finite element
basis functions as in equation (3). Maximizing �s,H with
respect to the coefficients ui will give the finite element
approximation to the stray field energy. With increasing
numbers of basis functions in the expansion (3) �s,H comes
closer to the stray field energy. In the limit of large N , �s,H

will be equal to the stray field energy, �s, and u will be
equal to the magnetic scalar potential U .

In order to compute the system of equations (2) for ui , let
us first consider a single finite element. Substituting the finite
element ansatz (6) into equation (38) and using equation (17)
to express the gradient will give the energy function for the
finite element Ve

�
(e)
s,H = −µ0

2

∫
Ve

(
4∑

α=1

uα∇ϕα

)2

dV

+ µ0

∫
Ve

M ·
(

4∑
α=1

uα∇ϕα

)
dV (39)

In order to maximize �
(e)
s,Hwith respect to uα , we have to

solve

∂�
(e)
s,H

∂uβ

= 0 for β = 1, . . . , 4 (40)

Applying the chain rule to the first integral on the right-hand
side of equation (39) gives

∂�
(e)
s,H

∂uβ

= −µ0

∫
Ve

(
4∑

α=1

uα∇ϕα

)
· ∇ϕβdV

+ µ0

∫
Ve

M · ∇ϕβ dV (41)

which gives a linear system of equations for uα

K(e)u = g(e) (42)

where K(e) is a 4 × 4 matrix, the so-called element stiffness
matrix, with the matrix elements

K
(e)
αβ =

∫
Ve

∇ϕα · ∇ϕβ dV

α = 1, . . . , 4 and β = 1, . . . , 4 (43)
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and g(e) is a column vector, the so-called element load vector,
with the entries

g
(e)
β =

∫
Ve

M · ∇ϕβ dV β = 1, . . . , 4 (44)

In order to compute the element stiffness matrix and the
load vector, the integrals in equations (43) and (44) can be
evaluated exactly. Since the basis function is linear on the
finite element, the integrand in equation (43) is constant and
we obtain for the matrix elements of the element stiffness
matrix

K
(e)
αβ = (∇ϕα · ∇ϕβ

)
Ve

α = 1, . . . , 4 and β = 1, . . . , 4 (45)

For evaluating the element load vector in a micromagnetic
simulation, we also interpolate the magnetization vector
linearly in each tetrahedron. For element Ve we obtain

M(r) = M(e)
s

4∑
α=1

mαϕα(r) (46)

In composite magnetic material the spontaneous magnetiza-
tion, Ms, may vary in space. There we allow Ms to change
from element to element and denote the local spontaneous
magnetization with M

(e)
s . The integrand in equation (44)

varies linearly in space and thus can be evaluated exactly
with the midpoint rule

g
(e)
β = M(e)

s Ve

(
1

4

4∑
α=1

mα

)
· ∇ϕβ β = 1, . . . , 4 (47)

2.2.2 Assembling

Once we have computed the stiffness matrix and the load
vector for all finite elements, we can assemble them to
the global system of equations for values of the magnetic
potential at the nodes of the finite element mesh, ui .
Neighboring finite elements share common nodes. In order
to form the global system of equations, we have to add the
local contributions associated with these common nodes. For
example, in Figure 1, element 2 and element 3 share the
nodes with the node numbers 2, 3, and 4. We add entries of
the element stiffness matrix to the global system matrix and
we add entries of the element load vector to the right-hand
side of the equation.

If we give numbers to each node of the tetrahedral mesh,
each finite element Ve is uniquely defined by the numbers of
its four vertices. Element 2 consists of the four vertices 2, 3,
4, and 5. If we know the coordinates of the four vertices of
an element the geometry of the element is defined and we

can compute the shape functions, the derivatives of the shape
functions, and the element stiffness matrices. These quantities
depend on the geometry only and need to be computed only
once at the beginning of the simulations.

The element connectivity of an element is the sequence
consisting of its four node numbers. The element connectivity
defines a mapping (e, α) → i from the local node α of
element e to the global node i. The assembly process can
be defined with the help of the connectivity matrix

C
(e)
iα =




1 if the global node i corresponds to the

local node α on element e

0 otherwise

(48)

The entries of the right-hand side vector of the global system
of equations can be formally written as

gi =
E∑

e=1

4∑
α=1

C
(e)
iα g(e)

α (49)

The matrix elements of the stiffness matrix can be formally
written as

Kij =
E∑

e=1

4∑
α,β=1

C
(e)
iα K

(e)
αβ C

(e)
jβ (50)

The stiffness matrix is a sparse matrix. Its sparsity pattern
reflects the structure of the finite element mesh. Kij is
nonzero only if node i and node j are connected with
an edge.

In the following equation, we denote vectors that gather
nodal values by underlining the symbol. Then, the system of
equations to calculate the magnetic potential at the nodes of
the finite element mesh is

Ku = g (51)

where u is a vector containing all the nodal values ui of
the magnetic scalar potential. The energy function given by
equation (38) forms the basis for the derivation of the linear
system of equations for the potential values. The first integral
on the right-hand side of equation (38) is in integral over the
entire space. Therefore, we have to mesh the ferromagnet
and a large region in the exterior of the ferromagnet. In
principle, the finite element mesh has to be extended over a
wide region outside the ferromagnet, which will increase the
total number of equations and complicates the finite element
mesh generation. In Section 2.2.4, we will discuss methods
to overcome this problem.
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2.2.3 Divergence and gradient operators

The linear system of equations (51) is the discrete form
of Poisson equation for the magnetic scalar potential. The
matrix–vector product of the left-hand side represents the
Laplace operator on the irregular finite element grid, whereas
the right-hand side represents the divergence of the magne-
tization. For ease of computation, it will be convenient to
compute the right-hand side of equation (51) by a simple
matrix–vector multiplication. Similarly, once we have solved
the system of linear equation, it will be helpful to calculate
the magnetic field on all nodes of the finite element mesh
by the multiplication of a matrix with the vector u. From
equations (25) and (32) we see that the right-hand side of
(51) corresponds to the divergence of the magnetization. In
order to compute the magnetic field, we need the gradient of
the magnetic potential. Therefore, let us have a look how we
can represent the divergence of a vector field and the gradient
of a scalar field on a finite element mesh by matrix–vector
multiplications.

Before we derive a matrix–vector representation for
the divergence of the magnetization vector on the finite
element grid, ∇ · M(r), we have to define the representation
of the vector field M(r) on the finite element mesh. In
micromagnetics we assume that the magnitude of M(r) is
a function of temperature, T , only and does not change with
the magnetic field

|M(r)| = Ms(T , r) (52)

However, the spontaneous magnetization Ms may change
with space. For example, this is the case in composite
magnets (Kneller, 1991; Schrefl, Fidler and Kronmüller,
1994a,b; Fischer and Kronmuller, 1996; Fischer, Leineweber
and Kronmuller, 1998; Suess et al., 2005; Victora and Shen,
2005) where magnetically hard and soft phases are combined.
After the generation of the finite element mesh we assign
Ms(T , r) to the different finite elements according to the
distribution of the different phases. Therefore, it is sufficient
to store the unit vector m(r). Similar to u, we define a vector
m of length 3N that contains the unit magnetization vectors
mi at the nodal points of the mesh. If the index l denotes the
Cartesian component of mi , m can be explicitly written as

m = (m11, m12, m13, . . . , mil, . . . , mN3)
T (53)

Here and in the remainder of the chapter, we denote the
transpose of a matrix with the superscript T. Using this
definition we can rewrite the equation for the element load
vector (47)

g
(e)
β =

4∑
α=1

3∑
l=1

D
(e)
βαlmαl β = 1, . . . , 4 (54)

The matrix elements of the matrix are

D
(e)
βαl = M

(e)
s Ve

4

∂ϕβ

∂xl

for

α = 1, . . . , 4 and β = 1, . . . , 4 (55)

Similar to the stiffness matrix we can assemble the element
contributions and obtain

g = Dm (56)

The above product of the N × 3N matrix D with the unit
magnetization vector over the mesh represents the divergence
of the magnetization distribution, ∇ · M(r). Here, N is the
number of nodes within the ferromagnet.

Similarly, we can derive a product of a 3N × N matrix
with the magnetic scalar potential over the mesh that will
give the magnetic field on each node of the finite element
mesh. The solution of (51) gives the magnetic potential at
the nodes of the finite element mesh. Using equation (17)
we can calculate the gradient of the potential in every finite
element and calculate the magnetic field in every element.
Since we used a linear interpolation for the magnetic scalar
potential within a tetrahedron, the magnetic field will be
constant within a particular finite element and discontinuous
at element boundaries. A common practice is to smooth the
field to the nodes of the finite element mesh (Zienkiewicz,
Lyness and Owen, 1977). In order to extrapolate the magnetic
field to the nodes of the mesh, we look at the stray field
energy of the system. First we define a magnetic moment
at each node of the finite element mesh that is evaluated by
spatial averaging

µi =
(

1

4

E∑
e=1

4∑
α=1

C
(e)
iα M(e)

s Ve

)
mi (57)

The vector mi is the unit vector parallel to the magnetization
at node point i and the combined terms in brackets have the
dimensions of a magnetic moment. The product M

(e)
s Ve is the

magnitude of the magnetic moment of element e. We assign
one quarter of a tetrahedron’s magnetic moment to node i, if
one vertex of the tetrahedron has the global number i. With
this definition of the magnetic moment on each node of the
finite element mesh, the magnetostatic energy (23) can be
rewritten as

�s = −µ0

2
µTIHs (58)

where I is the identity matrix, µ and Hsare vectors over the
finite element mesh that contain the magnetic moments and
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the stray field at the node points, respectively. Alternatively,
we can write

�s = −µ0

2
mTLHs (59)

with the N × N matrix L defined as

Lij = δij

∣∣µi

∣∣ (60)

The matrix L is a diagonal matrix with the moduli of the
magnetic moment at the nodes of the finite element mesh as
matrix entries.

In order to derive a matrix–vector equation for Hs, we
compare equation (59) with the usual formulation of the
magnetostatic energy which is given by the sum of the
magnetostatic energy contributions from each finite element

�s =
E∑

e=1

�(e)
s , with �(e)

s = −µ0

2

∫
Ve

(M · Hs) dV

= µ0

2

∫
Ve

(M · ∇u) dV (61)

Within each element we use the magnetic potential to
evaluate the stray field, Hs.

Using the finite element expansion for M and u, we obtain

�(e)
s = µ0

2

∫
Ve

M(e)
s

(
4∑

α=1

mαϕa

)
·

 4∑

β=1

uβ∇ϕβ


 dV

= µ0

2

3∑
l=1

4∑
α,β=1

mαlG
(e)
αlβuβ (62)

Using the midpoint rule for the integration of over the
element Ve we obtain

G
(e)
αlβ = M

(e)
s Ve

4

∂ϕβ

∂xl

for α = 1, . . . , 4 and β = 1, . . . , 4

(63)
for the matrix elements. After summation over all finite
elements, equation (62) will have the same structure as
equation (59). By comparison we get LHs = −Gu or

Hs = −L−1Gu (64)

The 3N × N matrix G, which is computed by assembling the
element contributions in equation (63), relates the potential
values with the stray field values at the nodes of the finite
element mesh.

The matrix to compute the right-hand side of the linear
system of equations (divergence operator), the system matrix
itself (stiffness matrix), and the matrix to compute the

stray field from the potential (gradient operator) are all
sparse. Using sparse matrix storage techniques and sparse
matrix algebra (Saad, 2003), the stray field can be computed
efficiently. The matrices depend only on the geometry of
the finite element mesh and thus have to be computed
only once at the beginning of the simulation. The linear
system of equations can be solved by sparse Gaussian
elimination with partial pivoting. The matrix factorization
needs to be done only once. Special reordering schemes
(Amestoy, Davis and Duff, 2004) reduce the number of
nonzeros in the factorization and thus lead to fast direct
linear equation solvers (Davis, 2005; Schenk and Gärtner,
2004). For successive field computations on an irregular
grid, the stray field can be computed faster and with less
computational effort by the use of the FEM than by direct
evaluation of equation (37).

2.2.4 The open boundary problem

In order to impose the regularity of the magnetic potential,
equation (36), the finite element mesh has to be extended
over a large region outside the magnetic particles. As a
rule of thumb the distance between the boundary of the
external mesh and the particle should be at least five times the
extension of the particle (Chen and Konrad, 1997). Various
other techniques have been proposed to reduce the size of
the external mesh or to avoid a discretization of the exterior
space. Here we review those methods for open boundary
problems that have been successfully used in finite element
micromagnetics and discuss the implementation of a hybrid
FEM/BEM (Fredkin and Koehler, 1990) to calculate the
magnetostatic interactions between distinct magnetic bodies.

The use of asymptotic boundary conditions (Yang and
Fredkin, 1998) reduces the size of the external mesh com-
pared to truncation. At the external boundary Robbin con-
ditions are applied, which are derived from a series expan-
sion of the solution of the Laplace equation for U outside
the magnet and give the decay rate of the potential at a
certain distance from the sample (Khebir, Kouki and Mit-
tra, 1990). A similar technique that considerably reduces
the size of the external mesh is the use of space trans-
formations to evaluate the integral over the exterior space
in equation (38). Among the various transformations pro-
posed to treat the open boundary problem, the parallelepi-
pedic shell transformation (Brunotte, Meunier and Imhoff,
1992), which maps the external space into shells enclos-
ing the parallelepipedic interior domain, has proved to be
the most suitable in micromagnetic calculations. The method
can be easily incorporated into standard finite element pro-
grams transforming the derivatives of the nodal basis func-
tions. This method was applied in static three-dimensional
micromagnetic simulations of the magnetic properties of
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nanocrystalline permanent magnets (Schrefl, Fischer, Fidler
and Kronmuller, 1994c; Fischer and Kronmuller, 1996).

An alternative approach for treating the so-called open
boundary problem is a hybrid FEM/BEM (Koehler, 1997;
Fredkin and Koehler, 1990). The basic concept of this
method is to split the magnetic scalar potential into two parts
U = U1 + U2, where the potential U1 is assumed to solve a
closed boundary value problem. Then the equations for U2

can be derived from equations (32–35), which hold for the
total potential U = U1 + U2. The potential U1 accounts for
the divergence of the magnetization and U2 is required to
meet the boundary conditions at the surface of the particle.
The latter also carries the magnetostatic interactions between
distinct magnetic particles. The potential U1 is defined to
solve Poisson’s equation inside the ferromagnetic regions and
is set to zero in the exterior space

∇2U1 (r) = ∇ · M(r) for r ∈ V (65)

U1 = 0 for r /∈ V (66)

with V being the volume of the ferromagnetic regions. At
the surface of the magnets, natural boundary conditions hold
for U1

∇U1 · n = M · n for r ∈ ∂V (67)

Since the total potential U = U1 + U2 must fulfill
equations (32–36) and, U2 must satisfy the Laplace equation

∇2U2(r) = 0 (68)

everywhere in space and fulfill the boundary conditions(
∇U

(in)

2 − ∇U
(out)

2

)
· n = 0 (69)

and

U
(in)

2 − U
(out)

2 = U
(in)

1 (70)

A standard FEM may be used to solve equations (65) and
(67). Fortunately, equations (68–70) describe the magnetic
scalar potential of a dipole layer with moment U1 at the
surface ∂V . The scalar potential of such a dipole layer is
known and is given by the double layer integral

U2(r) = 1

4π

∮
∂V

U1(r′)∇′ 1

|r − r′| · n′dS ′ (71)

over the dipole density times the derivative of the Green’s
function (Jackson, 1999). In principle, U2 can be evaluated
everywhere within the magnetic bodies using (71). However,

instead of the direct computation of U2 discretizing (71),
we evaluate U2 at the boundary and then we solve (68)
within V using the known boundary values of U2 as Dirichlet
conditions. To compute U2 on ∂V , we have to take the limit
r → ∂V of the surface integral from inside V

U2(r) = 1

4π

∮
∂V

U1(r′)∇′ 1

|r − r′| · n′ dS ′

+
(


(r)
4π

− 1

)
U1(r) (72)

where 
(r) is the solid angle subtended by ∂V at point r. We
discretize (72) using piecewise linear functions to interpolate
U1 on a triangular surface mesh. The values of U2 on the
surfaces of the magnets follow from a matrix–vector product

U 2 = BU 1 (73)

The boundary element matrix, B, depends only on the
geometry of the problem and has to be computed only once
for a given finite element mesh. B is a fully populated
M × M matrix that relates the M boundary nodes with each
other. In order to evaluate the matrix elements of B, let us
construct a surface mesh with F triangles and M nodes. The
dipole density U1 is expanded with linear basis function.
Within the triangle Se the expansion is

u1(r) =
3∑

α=1

u1αϕα(r) (74)

with ϕα being linear basis functions on a triangle (Kikuchi,
1986), which can be defined similar to the tetrahedral basis
functions in equation (7). First, let us evaluate the integral
on the right-hand side of (72) for each node point ri of the
surface mesh. The integral splits into a sum of integrals over
triangles

I (ri ) =
F∑

e=1

I (e)(ri ) (75)

The contribution of triangle Se to the integral is

I (e)(ri ) = 1

4π

∮
Se

(
3∑

α=1

u1αϕα(r′)

)
∇′

× 1

|ri − r′| · n′dS ′ (76)

Interchanging the summation and integration, we obtain

I (e) (ri ) =
3∑

α=1

B
(e)
iα u1α (77)
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B
(e)
iα is the contribution of the local node α of triangle Se to

the matrix element Bij of the boundary matrix.

B
(e)
iα = 1

4π

∮
Se

ϕα(r′)∇′ 1

|ri − r′| · n′dS ′ (78)

Using the element connectivities of the triangular mesh, we
can define a mapping from the triangle number and the
local node number (e, α) → j to the global numbers of the
finite element mesh. Similar to the assembly process for the
element stiffness matrix (see Section 2.2.2) we can assemble
the boundary matrix

Bij =
F∑

e=1

3∑
α=1

C
(e)
jα B

(e)
iα +

(

(ri )

4π
− 1

)
δij (79)

Here C
(e)
jα is the connectivity matrix as defined in

equation (48) and 
(ri ) is the solid angle subtended by the
surface of the mesh at the node ri . Lindholm (1984) gives
analytic formulae for the evaluation of the integrals in (78).

Since the hybrid FEM/BEM does not introduce any
approximations, the method is accurate and effective. The
use of the BEM easily treats the magnetostatic interactions
between distinct magnetic particles and requires no mesh
outside the magnetic particles. Süß and coworkers (1999)
applied the hybrid FEM/BEM, in order to simulate the effect
of magnetostatic interactions on the reversal dynamics of
magnetic nanoelements. This was also successfully used for
the computation of the magnetostatic interactions between
the write head, the SUL, and the data layer in perpendicular
magnetic recording (Schrefl et al., 2005).

In summary, we have to perform the following proce-
dure to compute the demagnetizing field. Prior to the time
integration of the LLG equation we assemble the system
matrices K, D, and G, and compute the Cholesky factor-
ization of the finite element stiffness matrix K. This setup
phase also involves the computation of the boundary matrix
B. This matrix is fully populated. Therefore, we apply one of
the matrix compression techniques introduced in Section 2.3
to sparsify the matrix. Generally, we are interested on the
dynamic response of a system over a time span which is
about two orders of magnitude larger than intrinsic preces-
sion time. Thus, the CPU time of the setup phase is only a
small fraction of the total CPU time. At each iteration step
during the time integration, we have to perform the following
steps to update the magnetostatic field:

1. Compute the right-hand side of equation (65) (diver-
gence of the magnetization) by matrix–vector multipli-
cation (equation (56)).

2. Solve the linear system for U1 using the Cholesky factors
of the system matrix.

3. Compute the matrix–vector product to obtain U2 at the
boundary of the magnetic bodies (equation (73)).

4. Solve the linear system for U2 in the interior of the
magnets using the Cholesky factors of the system matrix.

5. Sum U1 and U2 and build the gradient of the mag-
netic potential by the matrix–vector multiplication
(equation (64)).

All operations in the above-mentioned algorithm are of
linear complexity. Thus, the hybrid FEM/BEM provides
a means to compute the magnetostatic field of irregularly
shaped, spatially distinct magnets efficiently. In Section 4.1,
we will discuss how this method can be extended for
problems involving the relative motion of ferromagnets while
keeping almost optimal scaling of the algorithm.

Long and coworkers (2006) compared the accuracy of
the hybrid FE/BE algorithm with the direct computation of
the magnetic potential from its surface charges and volume
charges (equation (37)). The comparison was done for a
granular magnetic recording media, whereby each grain was
subdivided into about 148 tetrahedral finite elements. With
this mesh density the error of the finite element solution was
less than 0.3% when compared with the direct evaluation of
the magnetic scalar potential.

One drawback of the above-mentioned scheme is that the
linear system of equations that gives U1 is indefinite. Thus
special linear solvers suitable for indefinite systems (Davis,
2005) have to be applied to solve for U1. An alternative
hybrid FEM/BEM was proposed by Garcia-Cervera and
Roma (2006). In their method, the potential U1 is defined by
a closed Dirichlet problem. U1 solves the Poisson equation
within the magnet with the boundary condition U1 = 0 at the
magnet’s surface. Again the Laplace equation holds for the
potential U2 in the entire space. U2 will be continuous at the
magnet’s surface, but its normal derivative will show a jump.
Then U2 is given by the single layer integral over the surface
of the magnet. The integral is over the product of a virtual
charge density times the free space Green’s function. The
virtual charge density is the normal derivative of U1 minus
the magnetic surface charge. This method has been applied
in combination with an adaptive grid refinement technique
for the simulation of the magnetic domain configuration in
NiFe nanoelements (Garcia-Cervera and Roma, 2006).

2.2.5 Magnetic vector potential formulation

In the previous sections, we discussed the calculation of
the stray field by using a magnetic scalar potential. We
started from a variational problem stated by Brown (1962)
that gives the scalar potential by maximizing a function that
approximates the magnetostatic energy. This formulation and
its finite element implementation are most useful in dynamic
micromagnetic simulations where the magnetostatic field has
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to be evaluated at each time step. In static micromagnetics,
we want to find the magnetization distribution that minimizes
the total Gibbs’ free energy of a magnetic system. For energy
minimization, we do not necessarily need to know the stray
field but we need the total energy and its gradient at each
iteration step. For this purpose, it is useful to reformulate
the magnetostatic boundary value problem as a minimization
problem.

The magnetostatic boundary value problem can be refor-
mulated as a minimization problem using a magnetic vector
potential. For a given magnetization distribution M(r), the
magnetostatic energy can be evaluated by minimizing the
functional (Brown, 1962)

�s,B = 1

2µ0

∫
b2dV −

∫
V

M · b dV + µ0

2

∫
V

M2 dV (80)

with respect to a vector field b, that is required to be regular
at infinity and solenoidal. If minimized with respect to b, the
functional �s,B becomes equal to the magnetostatic energy,
�s, and b becomes equal to the magnetic induction B. In
order to impose the constraint that b is solenoidal, we express
b in terms of a magnetic vector potential b = ∇ × A′. The
unknown vector function A′ can now be expanded with the
finite element basis functions defined in (7)

A′(r) =
N∑

i=1

A′
iϕi(r) (81)

Now the magnetic vector potential is computed by an alge-
braic minimization problem. If minimized with respect to
the 3N coefficients, Axi, Ayi, and Azi, �s,B reduces to the
stray field energy and A′ becomes equal to the magnetic
vector potential A, B = ∇ × A. Numerical techniques simi-
lar to those discussed in the previous sections can be applied
for the finite element computation of the magnetic vector
potential. Brown’s method in combination with the linear
nodal tetrahedral elements for the Cartesian components of
the magnetic vector potential leads to the same algebraic sys-
tem of equations as the standard finite element discretization
(Demerdash, Nehl and Fouad, 1980) of the corresponding
partial differential

∇ × ∇ × A = ∇ × M (82)

The vector potential formulation for the solution of the mag-
netostatic boundary value problem is especially useful in
static micromagnetic simulations (Asselin and Thiele, 1986).
Then the functional �s,B is used to represent the magneto-
static energy. We simply add �s,B to the other micromagnetic
energy terms. Now we can expand both the magnetic vector
potential and the magnetization with the FE bases functions

that will give an algebraic minimization problem for the equi-
librium configuration of the magnetization and the magnetic
vector potential that corresponds to the stray field of the equi-
librium state. The total energy will be minimized with respect
to both magnetization and magnetic vector potential, in order
to compute the equilibrium magnetic states. This method has
been applied for the calculation of remanence and coerciv-
ity in nanocomposite permanent magnets (Schrefl, Fidler and
Kronmüller, 1994b).

2.3 Matrix compression techniques

The application of the FEM/BEM as explained in
Section 2.2.4 has many advantages. Only the magnetic bod-
ies of the considered domains need to be discretized, open
boundary problems pose no additional difficulties, and prob-
lems including motion can be treated in a nice way (Kurz,
Fetzer, Lehner and Rucker, 1999; Schrefl, Schabes, Suess and
Stehno, 2004). However, the application of the FEM/BEM
leads to dense matrices. The storage requirements and com-
putational costs for matrix–vector multiplication are of
O(M2), where M is the number of unknowns, respectively
the number of boundary nodes. Clearly we will run into
problems if we increase the size of the model, because of
limitations regarding computational power. One has optimal
efficiency if the computational amount of work is O(M).
For many situations characterized by a sparse system matrix,
one knows optimal solution algorithms. Examples are multi-
grid or algebraic multigrid methods (Kaltenbacher et al.,
2001; Sun and Monk, 2006). In this chapter, we discuss
method to obtain nearly optimal efficiency for the compu-
tation of the boundary element matrix and the evaluation of
the matrix–vector product (73).

Different methods were used to sparsify matrices from
boundary element discretization and to achieve an efficiency
close to the optimum in BEMs. Among the various methods
are multipole expansion schemes, panel clustering methods,
wavelet transforms, and methods based on the singular value
decomposition of blocks of the interaction matrix. Originally,
fast BEMs were introduced for the fast evaluation of capac-
ities and electrostatic forces in interconnects. An overview
on the history of the different acceleration schemes is given
in Ramaswamy, Ye, Wang, and White (1999). In micro-
magnetics fast integration methods are traditionally used for
modeling granular recording media (Miles and Middleton,
1991) or the fast evaluation of dipole fields (Koehler, 2005).
Most of these methods (Blue and Scheinfein, 1991; Brown,
Schulthess, Apalkov and Visscher, 2004) aim at the direct
calculation of the magnetic field or magnetic potential from
its volume and surface charges (see equation (37)). Here,
we focus on fast methods to evaluate boundary integrals for
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Figure 2. (a) Finite element surface mesh of three interaction NiFe nanoelements. (b) Computed demagnetization curves for the center
element for different magnetization configurations of its neighbors. The solid curves use the exact boundary element matrix, the dashed
curves use a wavelet compression of the boundary element matrix. In A, the magnetostatic interaction field stabilizes the center element,
in B, the magnetostatic interaction field decreases the switching field.

use in hybrid FEM/BEM. All of these methods use the con-
cept of grouping neighboring surface triangles into clusters
as proposed originally by Hackbusch and Nowak (1989).

2.3.1 Wavelet transform

In numerical methods for partial differential equations,
wavelet bases may be used to expand the unknown function
such as the magnetization or the magnetic potential. An
example for this approach in micromagnetics is the work
of Hines, Ridley, and Roberts (2003) and Ridley, Spargo,
Hines, and Roberts (2003). Here, we follow a different
approach as applied in the computation of capacitance of
high speed interconnects (Zheng, Li and Qian, 1999). Rather
than expanding the potential with a wavelet basis we first
compute the full interaction matrix. Treating the matrix like
a two-dimensional discrete image, it is possible to sparsify
the matrix applying a wavelet transform (Press, Teukolsky,
Vetterling and Flannery, 1997). The matrix–vector product
(73) can be evaluated in the wavelet basis. A sparse matrix
is obtained after setting small elements of the transformed
matrix to zero. Only about 15% nonzero entries remain,
which significantly reduces the storage requirements and
computation time for the evaluation of the surface integral.

This method was applied to calculate the magnetiza-
tion reversal mechanisms in magnetic nanoelements (Schrefl,
Scholz, Suss and Fidler, 2001). In situ observations of mag-
netization reversal using transmission electron microscopy
predict a spread in the switching field due to magneto-
static interactions (Kirk, Chapman and Wilkinson, 1997).
Figure 2 shows the surface mesh for three NiFe elements
that are 200 nm wide, 3500 nm long and 26 nm thick. The
center-to-center spacing is 250 nm. The original boundary
element matrix of the system consists of 1.1 × 107 elements.
After transformation and thresholding the matrix contains

1.9 × 106 nonzero entries, giving a sparsity of 83%. The
demagnetization curve of the center element was calculated
for a pair of switched or unswitched neighbors. The magne-
tization of the neighboring elements was fixed assuming a
small uniaxial anisotropy parallel to the long axis. Figure 2
compares the numerically calculated demagnetization curves
obtained with the conventional BEM and with wavelet-based
matrix compression. In configuration A, the magnetostatic
interaction field of the switched neighbors stabilizes the cen-
ter element. In configuration B, the interaction field of the
neighbors favors the reversal of the center element. This com-
parison shows that the wavelet-based matrix compression
method provides accurate results. The spread in the switching
field of 8 kA m−1 agree well with experimental data obtained
on the very same magnetic nanostructures (Kirk, Chapman
and Wilkinson, 1997).

2.3.2 The Barnes and Hut tree code

Tree codes are algorithms to calculate forces between a large
number of particles. They arrange the particles in a hierarchy
of clusters, and compute the interaction at a given point
by summing over multipole expansions of these groups. In
this way the computational requirements can be reduced to
a O(M log M)-scaling. A famous implementation of this
method is the so-called Barnes and Hut (1986) tree code
for the gravitational interaction between stars and galaxies.
The domain, which surrounds all particles, is hierarchically
partitioned into a sequence of cubes, where each cube
contains eight siblings, each with half the side length of
the parent cube. These cubes form the nodes of an oct-tree
structure. The tree is constructed such that each cube contains
either exactly one particle, or is parent to further cubes, in
which case the parent cube carries the total mass of all the
particles that lie inside this cube. The computation of the
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forces at a point r proceeds by walking through the tree, and
summing up appropriate contributions to the force from the
tree elements. The gravitational force of a cell is added if
the distance between r and the center of mass of the cell is
larger than a certain threshold. If a cell fulfills this criterion,
the tree walk along this branch can be terminated. Otherwise
it is ‘opened’, and the walk is continued with all its siblings.
We can use the same idea to speed up the computation of
the surface integral in the hybrid FEM/BEM. The first term
of the right-hand side of equation (72) is the potential of
a dipole sheet with the dipole density p = U1n (Jackson,
1999). Instead of mass and gravitational potential, we have
dipole strength and magnetic potential. After triangulation of
the surface into a set of triangles, the surface integral over
the surface ∂V can be approximated by a sum over dipoles.
There is one dipole per triangle and the dipole strength is U1

times the triangle area. Using the Barnes and Hut algorithm
(Barnes and Hut, 1986), we group the dipoles to clusters
and build a tree structure. Then the surface integral can be
evaluated by walking through the tree. Dipoles far away from
the field point will be grouped together and represented by a
larger dipole in the center of the cluster. If the field point is
very close to a triangle, the integral over the triangle will be
evaluated analytically. As opposed to the wavelet method of
Section 2.3.1, the tree code requires only a short setup phase.
The matrix–vector product (73) can be evaluated without
building the full matrix.
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Figure 3. (a) The nodes are renumbered and grouped together
so that the nodes with consecutive numbers are located next to
each other and form a cluster. (b) Corresponding block structure
of the interaction matrix. The large off-diagonal blocks can be
approximated by low-rank matrices. (Reproduced from S. Kurz,
O. Rain & S. Rjasanow: ‘The Adaptive Cross-Approximation Tech-
nique for the 3-D Element Method’, IEEE Transactions on Magnet-
ics, 38, (2002) copyright  IEEE 2002, with permisison of the
IEEE.)

2.3.3 Hierarchical matrices

The idea of clustering the triangles of the surface mesh
allows the storage of the boundary matrix in compressed
form. The compressed matrix is sparse in a sense that only
few data are needed for its representation. The matrix–vector
multiplication is of almost linear complexity (Grasedyck and
Hackbusch, 2003). Originally, the discretization of boundary
integral leads to a large dense matrix that has no explicit
structure. However, by suitable renumbering and permuting
the boundary nodes, the dense matrix can be written in a
block structure so that each block describes the interaction
between two clusters of boundary nodes. If the two clusters
are far apart, then the corresponding block matrix can
be approximated by low-rank matrices. The corresponding
two clusters are called admissible. If the n × m matrix
A is a block matrix that describes the interaction of two
admissible clusters, then it can be approximated by the
product of two smaller matrices with the dimensions n × k

and k × m

Anm =
k∑

i=1

BnkCkm (83)

For admissible clusters, k will be much smaller than n

and much smaller than m. Therefore both, the storage
for the block matrix and CPU time evaluating the prod-
uct of the block matrix–vector with a vector is only
O(k(n + m)) instead of O(nm). The renumbering of the
nodes is done by geometrical criterions. Consecutive bound-
ary node numbers will be assigned to nodes located close
to each other. These nodes are combined in a cluster.
Each cluster pair corresponds to a block in the renum-
bered boundary matrix. Two admissible clusters appear-
ing as a large off-diagonal block matrix can be approx-
imated by a product of two smaller matrices. The off-
diagonal blocks represent the far field interactions between
nodes.

Figure 3 gives an example for the panel clustering and the
block structure for a set of 10 nodes. The cluster with the
nodes (8,9,10) and the cluster with the node (1,2,3,4,5) form
a pair of admissible clusters. The corresponding block matrix
appears in the lower left corner of the boundary matrix.

As with the tree code, there is no need to compute
the full matrix in order to evaluate the matrix–vector
product (73). First, the boundary nodes are renumbered and
arranged into a cluster tree. Then, low-rank approximation
of the off-diagonal block matrices can be computed using
adaptive cross approximation (Kurz, Rain and Rjasanow,
2002; Grasedyck, 2005; Bebendorf and Grzhibovskis, 2006).
This iterative algorithm computes the factorization (83) of
the block matrix into two smaller matrices with a complexity
of O(k2(n + m)).
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We compared the CPU time required for the setup phase
and for the evaluation of the boundary integral using the tree
code and the hierarchical matrices for matrix compression.
The tree code requires the least memory and has the
shortest setup phase. The calculation of the tree takes only
a quarter of the CPU time that is required to the build
the hierarchical matrix. However, the evaluation of the
matrix–vector product by walking the tree takes considerable
more time than the multiplication of the hierarchical matrix
with a vector.

Figure 4 compares the CPU time for matrix–vector multi-
plication. The CPU time for multiplying the full matrix with
a vector scales like M2, where M is the number of bound-
ary nodes. Whereas both the tree code hierarchical matrix
method show an almost linear increase of the CPU time
with increasing M , the hierarchical matrix method clearly
outperforms the tree code in terms of the slope of the curve.
Thus for computationally intensive problems such as mag-
netic recording simulations that take into account the mutual
interactions between the recording head and the data layer,
the hierarchical matrix method is the method of choice for
matrix sparsification.

2.3.4 Multipole expansion

Traditionally, also multipole methods are used to accelerate
the BEM. Again this method was originally introduced to
speed up the boundary element solution of three-dimensional
electrostatic problems (Buchau, Huber, Rieger and Rucker,
2000; Bachthold, Korvink and Baltes, 1996; Nabros and
White, 1991). Again we start from a suitable hierarchical
clustering of the surface triangles of the boundary mesh.
In order to evaluate the surface integral for group of
triangles that is located at a large distance, we replace the
charge distribution on those triangles by carefully chosen
multipoles in the center of a sphere that encloses the
triangle cluster. Outside the sphere the multipoles create
the same potential field as the original charge distribution.
Conventional integration is applied in the near-field of
the triangle. Multipole expansion was successfully used
to accelerate the evaluation of the surface integral in the
hybrid FEM/BEM for micromagnetics (Liu et al., 2006).
In this work, almost linear efficiency was achieved with
the multipole accelerated hybrid FEM/BEM for simulating
the write processes in perpendicular magnetic recording
media.

Buchau and coworkers (2003) compared the different
boundary acceleration techniques in combination with a
hybrid FEM/BEM for nonlinear magnetostatic problems. As
compared to the hierarchical matrices, the use of multipole
expansion leads to a higher compression rate of the boundary
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Figure 4. CPU time for the matrix–vector multiplication for dif-
ferent representations of the boundary element matrix.

element matrix at the same accuracy. However, the compu-
tation of the matrix–vector product was about one order of
magnitude faster using a hierarchical matrix.

3 FINITE ELEMENT MICROMAGNETICS

The basic objectives of micromagnetic simulations are the
calculation of bulk magnetic properties or the simulation
of dynamic magnetization processes. For the optimization
and characterization of hard or soft magnetic materials,
micromagnetic calculations help understand the correlation
between the physical/chemical microstructure and the mag-
netic properties. In magnetic recording, the simulation of
magnetization reversal gives insight into the data rate and
area density limits of hard disk storage. Both static micro-
magnetic calculations and dynamic micromagnetic simula-
tions start from the total Gibbs’ free energy of the magnetic
system. For the calculation of static hysteresis properties,
the total Gibbs’ free energy is minimized with respect to
the direction cosines of the magnetization for subsequently
changing external field. For the simulation of dynamic mag-
netization processes, the equation of motion is solved for the
magnetization vector. The leading term in the equation of
motion is the torque term, given by the cross product of the
magnetization with the effective field. The effective field is
the variational derivative of the total Gibbs’ free energy den-
sity. A detailed discussion of the micromagnetic energy con-
tributions and the associated effective field terms is given by
H. Kronmüller in General Micromagnetic Theory Chapter 1
of Volume II of this Handbook (Kronmüller, 2007). In the
following sections, we first discuss the micromagnetic energy
contributions and the competitive effects of the different
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energy terms on the magnetization configuration upon mini-
mization. Then we introduce the finite element discretization
of the energy terms, which leads to a matrix–vector repre-
sentation of the total Gibbs’ free energy and of the effective
field. Finally, we briefly discuss time integration techniques
for the LLG equation of motion.

3.1 Static hysteresis properties

The minimization of the total Gibbs’ free energy of a fer-
romagnet gives an equilibrium configuration of the magneti-
zation M(r). Starting from a well defined initial state, initial
magnetization curves, hysteresis loops, or recoil curves can
be computed by the subsequent calculation of equilibrium
states for varying external field. Let us consider the magne-
tization in a configuration that is a local minimum of the
total Gibbs’ free energy. A small change in the external
field leads to a shift in the position of the local minimum.
The total energy can decrease if the magnetization moves
toward a new local minimum, which will be attained in the
subsequent minimization step. This process is related with
a reversible change in the magnetization. The local mini-
mum of the current magnetization state is separated by an
energy barrier from any other possible minimum of the sys-
tem. The barrier height decreases with increasing opposing
external field. An irreversible switching event occurs when
the energy barrier vanishes. Then the magnetization config-
uration can relax toward another minimum of the system.
This relation of the energy landscape with the quasi-static
hysteresis loop obtained in micromagnetic simulations was
originally addressed by Schabes (1991).

3.1.1 Total magnetic Gibbs’ free energy

Energy minimization methods start from the total Gibbs’ free
energy

�t = �A + �K + �S + �H (84)

which is the sum of the exchange energy, the magnetocrys-
talline anisotropy energy, the stray field energy, and the
Zeeman energy. The energy contributions depend on the
magnetization M(r). Within the framework of micromagnet-
ics, we assume that |M(r)| = Ms is a function of temper-
ature only and does not depend on the magnetic field H.
Therefore we write the magnetization contributions in terms
of the unit vector of the magnetization, m(r). Any search
for a local minimum of the energy with respect to m(r)
has to fulfill the constraint |m(r)| = 1. Upon minimization,
the different energy contributions have different effects on

the magnetization. The minimization of the ferromagnetic
exchange energy

�A =
∫

V

(
A

(
(∇mx)

2 + (∇my

)2 + (∇mz)
2
))

dV

=
∫

V

A

3∑
l=1

(∇ml)
2dV (85)

keeps neighboring magnetic moments parallel to each other.
Here mx, my , and mz are the Cartesian components of m(r)
and A is the ferromagnetic exchange constant. The minimiza-
tion of the magnetocrystalline anisotropy energy aligns the
magnetization along certain crystallographic directions. In
uniaxial materials, the magnetocrystalline anisotropy energy
is given by

�K,uniaxial =
∫

V

(
K1

(
1 − (m · k)2)

+K2
(
1 − (m · k)2)2

)
dV (86)

whereas in cubic materials

�K,cubic =
∫

V

(
K1

(
γ 2

1γ
2
2 + γ 2

1γ
2
3 + γ 2

2γ
2
3

)
+K2γ

2
1γ

2
2γ

2
3

)
dV (87)

In equations (86) and (87), K1 and K2 are the magnetocrys-
talline anistropy constants, k is the unit vector parallel to
the magnetocrystalline easy axis, and γ l is the projection of
the magnetization vector on the cubic axis l. In a minimiza-
tion problem, we may safely neglect terms in the total energy
that do not depend on the magnetization. Thus, in the case of
vanishing K2 we may rewrite the first term on the right-hand
side of equation (86)

�′
K,uniaxial = −

∫
V

K1 (m · k)2 dV (88)

The minimization of the stray field energy

�s = −µ0

2

∫
V

Ms (Hs · m) dV (89)

causes the formation of magnetic domains. The minimization
of the Zeeman energy rotates the magnetization parallel to
the magnetic field, which might be created by an impressed
current in a coil or wire,

�H = −µ0

∫
V

Ms (Hcurrent · m) dV (90)
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3.1.2 Algebraic minimization

In order to compute the hysteresis loop, we have to minimize
the total Gibbs’ free energy for different values of the applied
field. To accomplish this task, we first discretize the total
Gibbs’ free energy using the FEM. When the unit vector of
the magnetization is expanded with the finite element basis
functions

m(r) =
N∑

i=1

miϕ(r) (91)

the energy functional �t = �t (M(r)) reduces to an energy
function with the nodal values of the unit magnetization
vector as unknowns

�t = �t(m1, m2, . . . , mN)

= �t(m11, m12, m13, . . . , mil, . . . , mN3) (92)

where N is the total number of nodes in the finite element
mesh of the magnetic region and l denotes the Cartesian
component of m. The minimization of equation (92) with
respect to the 3N variables, mil , subject to the constraint

|mi | =
√

m2
i1 + m2

i2 + m2
i3 = 1 for i = 1, . . . , N (93)

gives an equilibrium distribution of the magnetization. To
satisfy the constraint, equation (93), polar coordinate θi, φi

for the unit vector of the magnetization at node i can be
introduced such that

mi1 = sin θ i cos φi, mi2 = sin θ i sin φi, mi3 = cos θi (94)

An alternative approach (Koehler, 1997; Chen, Fredkin and
Koehler, 1993) to fulfill the constraint (93) is to normalize
the unit magnetization vector in the discrete energy function,
equation (92), by replacing mil with mil/ |mi |. In both cases,
resulting algebraic minimization problem can be solved using
a conjugate gradient method (Gill, Murray and Wright, 1993).
Conjugate gradient-based minimization techniques require
computation of the gradient of the energy, in order to select
the search directions. Using polar coordinates, the gradient
of the energy can be expressed as

∂�t

∂θi

=
3∑

l=1

∂�t

∂ml

∂ml

∂θi

,

∂�t

∂φi

=
3∑

l=1

∂�t

∂ml

∂ml

∂φi

for i = 1, . . . , N

(95)

After finite element discretization, the total energy of the
system in case of uniaxial anistropy may be written in
matrix–vector notation

(�A + �′
K,uniaxial) + �s + �H = 1

2
mTFAKm + 1

2
mTFsm

− FT
H · m (96)

where m is the vector containing the nodal values of the unit
vector of the magnetization, as introduced in equation (53).
The matrix FAK takes into account the exchange energy, �A,
and the uniaxial magnetocrystalline anisotropy, �′

K,uniaxial.
The matrix FAK is sparse, as both energy terms depend only
locally on the magnetization. It makes sense to combine both
the exchange energy and the magnetocrystalline anisotropy
energy into a single term, because the matrix FAK is a
function of the finite element basis functions and needs to
be computed only once at the beginning of the simulation.
The stray field depends on the magnetization distribution
over the entire magnetic system. Using equations (31), (37),
and (89), the stray field energy can be written as two-
fold volume integral over the magnetic particles. As a
consequence the demagnetization matrix, Fs, becomes fully
populated. Del Vecchio, Hebbert and Schwee (1989) used
equations (95) and (96) to calculate magnetization processes
in thin films.

Now we derive the entries of the matrix FAK, which
is used for the calculation of the sum of the exchange
energy and magnetocrystalline anisotropy energy. We use
the same approach that is applied to calculate the finite
element stiffness matrix in Section 2.2.2. We first com-
pute the energies of one tetrahedron and then sum up the
contributions of all finite elements. The exchange energy
and the magnetocrystalline anisotropy energy depend only
locally on the magnetization. The energies can be com-
puted by summation of the contributions from the finite
elements. On the finite element Ve, the exchange energy is
given by

�
(e)
A =

∫
Ve

A

3∑
l=1

(
4∑
α

mαl∇ϕα

)

×

 4∑

β=1

mβl∇ϕβ


 dV (97)

or in matrix–vector notation

�
(e)
A = 1

2

3∑
k,l=1

4∑
α,β=1

mαlF
(e)
A,αkβlmβl (98)
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with the 12 × 12 matrix

F
(e)
A,αkβl = 2A(e)

(∫
Ve

∇ϕα · ∇ϕβdV

)
δkl

= 2A(e)K
(e)
αβ δkl (99)

A(e) is the local exchange constant in element Ve and K
(e)
αβ are

the elements of the element stiffness matrix, equation (45).
The indices α and β are over the vertices of the tetrahedron
and the indices l and k are over the Cartesian coordinates.
The uniaxial anisotropy energy of the finite element Ve is
given by

�′(e)
K,uniaxial = −K

(e)
1

∫
Ve

(
4∑

α=1

mαϕαk

)2

dV

= −K
(e)
1

∫
Ve

4∑
α,β=1

3∑
k,l=1

(
mαlϕαk

(e)
l

)

×
(
mβkϕβk

(e)
k

)
dV (100)

Where K
(e)
1 is the local magnetocrystalline anisotropy con-

stant in element Ve and k
(e)
l is the l-th Cartesian component

of the uniaxial anisotropy direction within the finite element.
In matrix–vector form equation (100) can be written

�
′(e)
K,uniaxial = 1

2

3∑
k,l=1

4∑
α,β=1

mαlF
(e)
K,αkβlmβl (101)

with the 12 × 12 matrix

F
(e)
K,αkβl = −2K

(e)
1 k

(e)
l k

(e)
k

∫
Ve

ϕαϕβdV (102)

The integral in equation (102) can be evaluated analytically
(Chen, Fredkin and Koehler, 1993)∫

Ve

ϕαϕβdV = (1 + δαβ)
Ve

20
(103)

In a finite element simulation program, the global matrix
FAK takes into account all local energies. It can be obtained
by assembling its finite element contributions F(e)

AK = F(e)
A +

F(e)
K .
The Zeeman energy can be written by the dot product,

�H = −FT
H · m. The vector FHcontains the magnetic field

generated by imposed currents at the nodes of the finite ele-
ment mesh multiplied by the modulus of the local magnetic
moment at the nodes

(FH)ik = |µi |Hcurrent,ik (104)

Here the index i runs over all nodes of the finite element
mesh, and the index k denotes the Cartesian component of the
magnetic field produced by imposed currents. An example is
the field exerted on the yoke of the write head created by the
write current through the coils during magnetic recording
(Schrefl, Schabes, Suess and Stehno, 2004).

The use of the matrix–vector formulation, which is given
by equation (96), to compute the total magnetic Gibbs’
free energy helps to program micromagnetic solvers. The
parallelization of the solver is easy, as the parallelization of
matrix–vector operations is straightforward using scientific
programming environments (Scholz et al., 2003).

3.2 Dynamics micromagnetics

In Section 3.1, we have shown how the micromag-
netic energy contributions can be computed by simple
matrix–vector products once a magnetic particle has been
discretized by the FEM. The problem of computing the equi-
librium states of a magnetic structure then reduces to an alge-
braic minimization problem. Here, we show how the partial
differential equation that describes the magnetization dynam-
ics can be transformed into a system of ordinary differential
equations. Only sparse matrices are required to compute the
right-hand side of the equations.

The time evolution of the magnetization M(r) in a
ferromagnetic body is given by the LLG equation (Brown,
1963b)

∂M
∂t

= − |γ |
1 + α2

M × Heff

− α

Ms

|γ |
1 + α2

M × (M × Heff) (105)

where γ is the gyromagnetic ratio, α is the Gilbert damping
constant, and Heff is the effective field. The effective field
is defined as the negative variational derivative of the
total Gibbs’ free energy density, Et, with respect to the
magnetization

Heff(r) = − 1

µ0

δEt

δM(r)
(106)

with the total Gibbs free energy being the integral of Et over
the ferromagnetic body

�t =
∫

V

Et dV (107)

Similar to the total energy the effective field splits into the
exchange field HA, the anisotropy field HK, the stray field
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Hs, and an applied magnetic field Hcurrent. The exchange field
is given by

µ0HA = 2A

M2
s
�M (108)

and the anisotropy field is given by

µ0HK = 2K1

Ms
(m · k)k (109)

where A is the exchange constant, K1 is the uniaxial
anistropy constant, and k is the anisotropy direction. The
total effective field is

Heff = HA + HK + Hs + Hcurrent (110)

It is the sum of the exchange field, the anisotropy field, the
stray field, and the applied field created by imposed currents.
Here we assume small ferromagnetic bodies so that the eddy
currents and the magnetic fields created by eddy currents,
Heddy, can be neglected (Kanai, Matsubara, Muraoka and
Nakamura, 2001). The components of the exchange field
are proportional to the Laplacian of the magnetization. Thus
equation (105) has a spatial derivation on its right-hand side
and is a partial differential equation. It has to be solved
together with an equation that gives the stray field for a
certain magnetization distribution. In order to solve the time
evolution of the magnetization, we have to solve a system of
integro-differential equations.

In the previous sections, we already discussed discretiza-
tion methods for the effective computation of the stray field.
Now we will show how we can discretize the partial dif-
ferential equation (105). Before going into much detail, let
us see how we will proceed for the numerical computation
of magnetization dynamics. The main steps are illustrated
in Figure 5. First, we discretize the LLG equation and the
magnetostatic boundary value problem for a magnetic scalar
potential using a hybrid FEM/BEM. This leads to a system of
ordinary differential equations. The system of ordinary dif-
ferential equations describes the dynamics of the magnetic
moments at the nodes of the finite element mesh. There are
three equations per nodes for the Cartesian components of the
magnetic moment. The motion of the magnetic moments is
coupled by the exchange field and by the stray field. Together
with the anisotropy field and an applied field these files give
the total effective field. Similar to the magnetic moments we
can define the effective field at the nodes of the finite ele-
ment mesh. The system of ordinary differential equations is
nonlinear. Because the system is stiff (Nakatani, Uesaka and
Hayashi, 1989) we need a backward differentiation method
for its discretization. This leads to a nonlinear system of
equation that has to be solved at each time step. A proper

System of ODEs

Nonlinear system
of equations

Linear system of
equations

Linear solver 
Krylow subspace method
with preconditioning

Space discretizaton
Hybrid FEM/BEM

Time discretizaton
Backward differences

Nonlinear solver
Newton method

Figure 5. Space and time discretization of the LLG equation.
The space discretization transforms the problem into a system
of ordinary differential equations. At each time step, a nonlinear
system of equations has to be solved which is solved by the
Newton–Rapson method. Each Newton step requires the solution
of a linear system of equations which is done by a Krylow subspace
method (Saad, 2003).

method to solve the nonlinear system is the Newton method
that in turn gives a linear system of equation that has to be
solved at each Newton step. For the solution of the linear
system of equations matrix-free Krylov subspace methods
are most appropriate.

In the following text, we will discuss two different
methods to evaluate the effective field numerically. The first
method uses a physical interpretation of the finite element
discretization of the total Gibbs free energy. We assume
that a magnetic moment is associated with each node of the
finite element mesh as discussed in the paragraph following
equation (57). Following the same reasoning, it is possible
to define the effective field at the nodes of the finite element
mesh. The second method is purely mathematical and uses
the concept of mass lumping (Vacus and Monk, 2001) that
is commonly used in finite element simulation.

The magnetization M(r) is a continuous vector field in
space. To represent the magnetization distribution, we can
subdivide the ferromagnetic body into N distinct control
volumes Vi with magnetization Mi . The control volumes
have the following properties

V =
N∑

i=1

Vi and Vi ∩ Vj = 0 (111)

Then the effective field at point ri can be approximated by

µ0Heff(ri ) = µ0Heff,i ≈ − 1

Vi

∂�t

∂Mi

(112)
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In equation (112), Vi is the volume surrounding point ri .
In limit of large N , the size each control volume goes to
zero and the above equation is exact (Gardiner, 1996). There
is also a physical interpretation of this result. Multiplying
Vi with Mi gives the magnetic moment at point ri . So the
effective field can also be written as

µ0Heff,i = −∂�t

∂µi

= − 1∣∣µi

∣∣ ∂�t

∂mi

(113)

where µi is the magnetic moment at point ri and mi is
the unit vector of the magnetization at point ri . Now let us
consider the finite element discretization of the unit vector
of the magnetization m(r) with linear basis function on a
tetrahedral mesh as introduced in Section 2.1 and let the
nodes of the finite element mesh coincide with the points ri .
Then equation (113) defines the effective field at the nodes
of the finite element mesh. Making use of the matrix–vector
notation for the micromagnetic energy (96) we can write the
effective field as matrix–vector products

µ0Heff = −L−1FAKm − µ0L−1Gu + µ0Hcurrent (114)

where the vector Heff is a vector over all nodes of the FE
mesh whose definition is similar to the definition of m in
equation (53). Here we used equation (64) for the calculation
of the stray field Hs.

Now we will show how to derive the effective field
using the FEM. The effective field can be derived using
a procedure called mass lumping (Vacus and Monk, 2001).
The exchange field is given by equation (108). In order
to calculate the components of the exchange field, we use
the Galerkin method. First, we multiply equation (108) with
the saturation magnetization Ms. Secondly, we multiply the
resulting equation with test functions ϕi and integrate over
the problem domain. This gives a set of 3N equations for
HA,il where the index i denotes the node number and the
index l denotes the Cartesian component of the exchange
field. Starting with

∫
V

Msϕiµ0HAdV =
∫

V

ϕi2A�m dV i = 1, . . . , N (115)

where the integral is over the ferromagnetic body, we now
expand both the exchange field with the finite element basis
functions (see equation (4)). Within the framework of the
Galerkin method the test functions of (115) are identical with
the basis functions. On the right-hand side we can reduce the
second derivative in space to a first derivative in space using

an integration by parts. Then we obtain

∫
V

Msϕi


 N∑

j=1

µ0HA,j lϕj


 dV

= −2
∫

V

A∇ϕi∇ml dV + 2
∮

∂V

ϕiA
∂ml

∂n
dS (116)

The index i denotes the node number and runs from 1
to N , the index l denotes the Cartesian component of the
exchange field and runs from 1 to 3. The second term on the
right-hand side of (116) vanishes as the normal derivative of
the magnetization components ∂ml/∂n vanish according to
Brown (1963a). The left-hand side can be written as sum of
contributions over the finite elements

∫
V

Msϕi


 N∑

j=1

µ0HA,j lϕj


 dV

=
E∑

e=1

∫
Ve

M (e)
s ϕα


 4∑

β=1

µ0HA,βlϕβ


 dV (117)

The expansion coefficients HA,βl are the nodal values of the
Cartesian components of the exchange field at the nodes of
the tetrahedron. Thus we can write

∫
V

Msϕi


 N∑

j=1

µ0HA,j lϕj


 dV

=
E∑

e=1

4∑
β=1

[
M(e)

s

∫
Ve

ϕαϕβdV

]
µ0HA,βl (118)

where we assume that the saturation magnetization, M
(e)
s , is

constant on each element e. The element matrix

M
(e)
αβ =

∫
Ve

ϕαϕβ dV (119)

is called mass matrix. Unfortunately, the matrix contains off-
diagonal terms that would require the solution of a linear
system of equations to evaluate the exchange field. However,
we can compute the value of the exchange field at the nodes
of the finite element mesh directly from the right-hand side of
equation (116) using mass-lumping technique that is widely
used in finite element computation. The matrix elements of
M

(e)
αβ are given by equation (103). We now approximate M

(e)
αβ

with a diagonal matrix

M̃(e)
αγ = δαγ

4∑
β=1

M
(e)
αβ (120)
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The diagonal elements of M̃(e)
αα are the sum of the corres-

ponding rows of the mass matrix. Using (103) we obtain

M̃(e)
αa = Ve

20

4∑
β=1

(1 + δαβ) =Ve

20
(2 + 1 + 1 + 1) = Ve

4
(121)

With mass lumping, equation (116) can be written as follows

E∑
e=1

4∑
β=1

[
M(e)

s
Ve

4

]
δαβµ0HA,βl

= −2
E∑

e=1

A(e)

∫
Ve

∇ϕα

4∑
β=1

∇ϕβmβl dV (122)

Here we expanded the direction cosine of the magnetization,
ml , on the right-hand side of with the finite element basis
function and we replaced the integral over the problem
domain V with a sum over the integrals over the finite
elements Ve. A(e) denotes the local exchange constant within
element e. Using the element matrix F

(e)
A , which was

introduced in equation (99) when we calculated the exchange
energy, we obtain

E∑
e=1

4∑
β=1

[
M(e)

s
Ve

4

]
δαβµ0HA,βk = −F

(e)
Aαkβlmβl (123)

The term in brackets on the left-hand side gives the magnetic
moments at the nodes of the finite element mesh. Using the
diagonal matrix L, which contains the moduli of the magnetic
moments at the nodes (see equation (60)) we obtain

µ0LHA = −FAm (124)

through assembling the finite element contributions. Thus we
can write the exchange field at the finite element mesh as

µ0HA = −L−1FAm (125)

The last equation has the very same structure as
equation (114).

In the last paragraph, we demonstrated the derivation of the
exchange field using mass lumping. This method is especially
useful when we want to calculate the exchange field in
exchange spring magnets or in exchange spring recording
media (Suess et al., 2005). These magnets are composed of
exchange coupled magnetically hard and soft phases. Let us
assume that the total volume of the magnet V splits into
two exchange-coupled volumes V1 and V2 with V = V1 ∪ V2.
Further, we denote the saturation magnetization and the
exchange constant in V1 with Ms1 and A1 and in volume
V2 with Ms2 and A2. Then the volume integral on the

right-hand side of equation (116) splits into two integrals
over the volumes V1 and V2, and the surface integral split
into a surface integral over the common interface of the
two subvolumes, ∂V12, and the two surface integrals on the
outer boundaries of the two subvolumes, ∂V1 and ∂V2. If n12

denotes the normal vector at the interface pointing from V1

into V2 we obtain

∫
V

Msϕi


 N∑

j=1

µ0HA,j lϕj


 dV = −2

∫
V1

A1∇ϕi∇ml dV

− 2
∫

V2

A2∇ϕi∇ml dV + 2
∮

∂V1

Aϕi

∂ml

∂n
dS

+ 2
∮

∂V2

Aϕi

∂ml

∂n
dS + 2

∮
∂V12

ϕi

(
A1

∂ml

∂n12
− A2

∂ml

∂n12

)
dS

(126)
Now we make use of the boundary conditions and the
interface conditions, in order to evaluate the surface integrals
in equation (126). Using variational calculus, Brown (1963a)
showed that ∂ml/∂n = 0 holds on the surface of a magnet.
Similarly, Kronmüller and coworkers (1976) showed that at a
materials interface the product of the normal derivative with
the exchange constant is continuous. Therefore the interface
condition

A1
∂ml

∂n12
− A2

∂ml

∂n12
= 0 on ∂V12 (127)

holds. Using the boundary conditions and the interface
conditions the surface integrals in equation (126) vanish.
Therefore, the exchange field in composite magnets can be
derived similar to the exchange field in single-phase magnets
by using equations (122–125). In particular, equation (125),
which gives the exchange field at the nodes of the finite
element mesh, is also valid for composite magnets.

Using the arguments in the preceding text, we can think
of individual magnetic moments sitting on the nodes of the
finite element mesh. Similarly, we have the vector of the
effective field at each node point. We transformed the partial
differential equation (105) in a system of ordinary differential
equations

∂µi

∂t
= − |γ |

1 + α2
µi × Heff,i − α∣∣µi

∣∣ |γ |
1 + α2

µi

× (µi × Heff,i ) for i = 1, . . . , N (128)

However, we do not store the magnetic moment µ at the
node, but interpolate the unit vector of the magnetization m
on the finite element grid. In order to arrive at an equation
that is more suitable for computation, we multiply both sides
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of equation (128) by the factor µ0/(|γ ||µi |)
∂mi

∂t ′
= − 1

1 + α2
mi × heff,i − α

1 + α2
mi

× (mi × heff,i ) for i = 1, . . . , N (129)

The index i runs from 1 to the total number of nodes in the
finite element mesh. In equation (129), we also introduced
the reduced effective field heff = µ0Heff. As a consequence,
all terms in equation (129) are in the order of O(1) which
facilitates the numerical solution.

Here we introduced a reduced time

t ′ = |γ |
µ0

t (130)

which leads to time steps in the order of �t ′ = 10−2 in
the numerical solution scheme. Instead of using the fully
populated matrix Fs to compute the stray field, we can apply
the FEM. First, the magnetostatic boundary value problem
for the magnetic scalar potential (equations (32–35)) is
solved. Secondly, the stray field is computed from the
potential using sparse matrix operators on the finite element
grid (see equation (64)).

Standard library methods for the solution of stiff ordinary
differential equations can be used to solve (129). An example
is the backward differentiation scheme as implemented in
the CVODE package (Cohen and Hindmarsh, 1996). The
package solves an initial value problem for a system of
ordinary differential equation given in the following form

dyi

dt
= fi(y1, y2, . . . , yL, t), i = 1, . . . , L (131)

Here yi are the components of the vector m (the collection
of the unit vectors of the magnetization vector over all nodes
of the finite element mesh, see equation (53). The functions
fi are the components of the right-hand side of the LLG
equation as given in (129). The total number of unknowns,
L, is three times the number of nodes in the finite element
mesh. The user needs to provide an initial state, yi for i = 1
to L at time t = 0, and a subroutine for the evaluation of the
right-hand side fi . The computation of the right-hand side
involves several steps. Every time the user supplied function
for the evaluation of the right-hand side is called, the yi are
treated as components of unit magnetization vectors. Then
corresponding effective field is computed using (114) and
the right-hand side of (129) is evaluated.

Figure 5 summarizes schematically the approach for the
numerical solution of the LLG equation (129). Such an
equation cannot be solved directly. However, applying a
hierarchy of numerical methods, the problem can be broken
down to the solution of a system of linear equations. All but

the first task of the following list is done within the time
integration package CVODE.

Most of the computation time in finite element programs
is spent in solving linear equations. A good choice of the
numerical method can shorten the time to solution drasti-
cally. The special structure of the system matrices arising
from finite element discretization can be used to speed up
the simulations. It is used for preconditioning the linear
system that has to be solved at each Newton step during
time integration (Cohen and Hindmarsh, 1996). We can pro-
vide an approximate Jacobian matrix that contains all the
short-range interactions (exchange interactions, magnetocrys-
talline anisotropy, external field) but neglects the long-range
magnetostatic interactions. This method speeds up the time
integration by orders of magnitude (Suess et al., 2002).

4 EXAMPLES

4.1 Write field dynamics in perpendicular
recording

Multiscale finite element simulation of the write process in
perpendicular media span a length scale of three orders of
magnitude (Schrefl et al., 2005). The coupled system or par-
tial differential equations for magnetization dynamics (129)
is solved simultaneously for the head, the data layer, and
the SUL during the motion of the head. All magnetostatic
interactions between head, data layer, and SUL are con-
currently taken into account. Finite element micromagnetics
is combined with fast boundary element techniques to cal-
culate the magnetostatic interactions between the recording
head, the data layer, and the SUL in perpendicular magnetic
recording. The FEM is highly suitable to model the physical
microstructure of the media such as realistic grain shapes and
intergranular phases. The fast boundary method provides an
efficient and accurate means to simulate the mutual interac-
tions between the moving magnetic parts.

A common approach to include moving parts into electro-
magnetic finite element simulations is the use of sliding grids
and Mortar elements (Buffa, Maday and Rapetti, 2001). An
alternative approach is the use of hybrid FEM/BEM tech-
niques (Kurz, Fetzer, Lehner and Rucker, 1999). For mag-
netic recording simulations, FEMs/BEMs have the advantage
that no mesh is needed between the different magnetic parts.
In order to avoid the recomputation of the matrix elements
of the matrix B at each time step due to the movement
of the head, the superposition principle for the magnetic
field is used. The finite element mesh of the entire record-
ing system is split according to the real-world objects. For
each object (head, data layer, SUL) its self-demagnetizing
field is calculated using the hybrid FEM/BEM (Fredkin
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and Koehler, 1990). The magnetic field is the sum of the
self-demagnetizing field and the interaction field from other
objects. In order to illustrate the computation of the interac-
tion field, let us list the steps required to compute the head
field:

1. We compute the magnetic scalar potential created by the
head magnetization at the surface of a virtual box, which
encloses the data layer. This so-called field box moves
together with the head. Therefore the corresponding
interaction matrix has to be computed only once.

2. A fast Poisson solver (Swartzentrauber and Sweet, 1979)
is used to evaluate the potential within the field box at
high spatial resolution on a regular grid.

3. Numerical derivation gives the head field within the field
box which is then interpolated at the nodes of the mesh
of the data layer.

The above-mentioned procedure, illustrated in Figure 6, is
applied for all mutual magnetostatic interactions between the
head, data layer, and SUL.

In perpendicular recording, the total write field acting on
the data layer is the sum of the field created by the magnetic
surface and volume charges in the pole tip of the head and
the field created by magnetic surface and volume charges

Fast BEM
Sources→
potential
at surfaces

Low-rank approximation
of interaction matrices

Finite elements

Finite differences
Field evaluation

Boundary elements

Magnetization
dynamics

Magnetostatic
interactions

Field box moves with the head
Calculate interaction matrix only once

Figure 6. In magnetic recording simulation different numerical
methods are combined, in order to achieve optimal performance.
The finite element method is used to calculate the magnetization
dynamics within the head and within the data layer. A boundary
integration technique is used to calculate the magnetostatic interac-
tions between the different parts. Large blocks of the interaction
matrix are represented by low-rank approximations, in order to
reduce the storage requirements and to speed up the matrix–vector
multiplication. Instead of evaluating the potential from the head
directly on the nodes of the data layer, the potential is evaluated at
the surface of a field box that moves together with the head. Then,
a fast Poisson solver is used to evaluate the magnetic scalar poten-
tial within the field box. The interaction field is interpolated from
the regular grid of the field box onto to nodes of the finite element
mesh of the data layer and added to the self-demagnetizing field of
the layer.
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Figure 7. (a) Magnetization distribution in the pole tip of a single
pole head. (b) Contour plots of the perpendicular write field. The
write field is the sum of the magnetic field created by the pole tip
magnetization and the magnetic field created by the soft underlayer
magnetization. The magnetization configuration in the square pole
tip (top) is a twisted flower state. In the tapered pole tip (bottom)
is more uniform than in the square pole tip which in turn increases
the perpendicular write field component.

in the SUL. Figure 7 compares the write field contributions
for a write head with a square pole tip and a write head
with a tapered pole tip. In the square pole tip the interplay of
magnetostatic and exchange interaction lead to the formation
of a twisted flower state (Hertel and Kronmuller, 2002)
at maximum write current. A significant component of the
magnetization is parallel to the air bearing surface (ABS)
forming a vortex-like state with the center located off axis. In
the tapered pole tip, the magnetization aligns almost parallel
at an angle of 90◦ to the ABS at maximum current. For the
tapered pole tip the magnetic surface charge density, σm =
M · n, is higher than for the square pole tip. As a consequence
both the perpendicular write field component and the field
gradient are higher for the tapered pole tip. Figure 7(b) gives
the total write field as sum of the pole tip field and the SUL
field. The results show that the tapered pole tip improves both
the gradient of the pole tip field and the gradient of the SUL
field. The head field gradient is smaller for the SUL field than
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for the pole tip field. This result underlines the fundamental
differences between the SUL and pole contributions to the
total write flux. While the contributions from the pole are
generated by a lithographically defined object, the gradients
for the SUL contributions are created along a moving domain
boundary in the SUL.

A fundamental limit of the data rate in magnetic recording
is given by the intrinsic reversal time of the magnetization
in head. The reversal speed of the magnetization in pole tip
determines the head field rise time. Figure 8(a) compares
the write current and the write field as a function of time.
The delay between zero crossing of the current and reaching
the maximum write field is about 0.8 ns. The time profile of
the write field is governed by two characteristic timescales:
(i) reversal of the pole tip by vortex motion and (ii) saturation
of the pole tip and alignment of the SUL magnetization.
Figure 8(b) shows the pole tip magnetization (top) and the
corresponding write field (bottom) 0.3, 0.65, and 0.8 ns after
zero crossing of the current. The pole tip reversal occurs
by vortex motion. After annihilation of the vortex an end
domain, which reduces the surface charges, remains for
about 0.2 ns. Finally, the pole tip becomes saturated and the
maximum write field of 1.2 T is reached.
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Figure 8. Write field dynamics. (a) Total write field as a function of
time at a distance of 6 nm below the ABS. (b) Pole tip magnetization
and total write field (color coded) as a function of time. The color
code in the pole tip maps the magnetization component parallel
to the down track direction (long axis parallel to the ABS). The
color code for the write field maps the perpendicular write field
component.

4.2 Recording on exchange spring media

The area density of magnetic recording is limited by
the so-called superparamagnetic effect (Charap, Lu and
He, 1997). With decreasing particle size the particle may
switch spontaneously. An increase of the magnetocrystalline
anisotropy leads to particles that cannot be switched with the
write field. A soft magnetic layer exchange coupled with the
hard magnetic grains reduces the switching field with hardly
any effect on the thermal stability (Suess et al., 2005; Victora
and Shen, 2005). Exchange spring media opens the possibil-
ity to reach area densities up to 1 Tbit in.–2 with conventional
perpendicular recording.

Exchange spring media for magnetic recording makes
use of the exchange coupling between different mag-
netic phases at the nanoscale. Similar to nanocomposite
permanent magnets, the exchange interactions between a
magnetically hard phase and a magnetically soft phase
lead to novel magnetic properties that can be tuned by
changing the intrinsic magnetic properties of the differ-
ent phases (Schrefl and Fidler, 1999), by changing the
volume fraction of the different phases (Schrefl, Fis-
cher, Fidler and Kronmuller, 1994c), and by changing the
strength of the exchange interaction between the differ-
ent phases (Fukunaga, Kuma and Kanai, 1999). Whereas
in permanent magnets we want to increase the rema-
nence while keeping a high coercive field, in record-
ing media we want to reduce the switching field, while
keeping a high energy barrier. In permanent magnets,
the soft phase increases the remanence and the exchange
interactions with the hard phase provides a high coer-
cive field. In domain wall–assisted recording (Dobin and
Richter, 2006) the soft magnetic helps to nucleate a
reversed domain, the exchange interactions help propa-
gate the reversed domain into the hard magnetic phase,
and the hard magnetic phase provides a high thermal
stability.

Finite element micromagnetic simulations show that the
reversal mode induced by the external write field significantly
differs from uniform rotation. A nucleus with oblique mag-
netization is formed within the soft magnetic part of the grain
that helps the reversal of the hard magnetic layer. The switch-
ing field is given by the critical value of the external field
that is required to expand the nucleus into the hard magnetic
phase. In the limit of a thick soft magnetic layer, the switch-
ing field of a composite grain corresponds to the domain wall
propagation field. Whereas the domain wall propagation field
is proportional to the change (gradient) of the domain wall
energy, the energy barrier for thermal switching is given by
the domain wall energy in the hard phase. Thus, the bilayers
can be optimized in order to achieve a high thermal stability
without an increase of coercive field. In grains with identical
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Figure 9. Evolution of the bit pattern during recording on exchange spring media. (a) Write current profile and data layer magnetization
0.4 ns after zero crossing of the current. (b) Top view of the data layer as function of time. (c) Magnetization in a slice through the data
layer. The color code maps the perpendicular component of the magnetization. The total layer thickness is 14 nm. The thickness of the soft
layer (on top the hard layer) is 5.3 nm, the average magnetic polarization is 0.5 T.

size and coercivity, an optimized bilayer reaches an energy
barrier exceeding those of optimized single-phase media by
more than a factor of two.

Figure 9 shows the formation of a bit pattern during
recording on an exchange spring media. The hard magnetic
layer with a thickness of 8.7 nm is perfectly exchange
coupled to a soft magnetic layer with a thickness of 5.3 nm.
The cross-sectional view clearly shows that switching of the
individual grains is nonuniform. If the write field exceeds
the critical field for the expansion of the nucleus into the
hard phase, the media grains below the pole tip become fully
reversed.

4.3 Thermal stability of exchange spring media

In order to estimate the thermal stability of exchange spring
media, we have to calculate the energy barrier of composite
grain. A micromagnetic system will be close to a local
minimum of the total magnetic Gibbs’ free energy. Thermal
fluctuations of the magnetization cause the magnetization

to wander around this minimum. Occasionally, the system
will reach a region next to a saddle point. The system
may cross the energy barrier and move into the basin of
attraction of a different energy minimum. A small single-
phase grain reverses by uniform rotation. The energy barrier
for uniform rotation is Eb = KV , where K is a uniaxial
anisotropy constant that includes the contributions of the
magnetocrystalline anisotropy and the shape anisotropy and
V is the volume of the grain. The relaxation time is the
inverse of probability per unit time for crossing the barrier
Eb. It can be approximated using the Néel-Brown theory
(Brown, 1963b; Neel, 1949) to

τ = f −1
0 eEb/kbT (132)

The attempt frequency, f0, depends on material param-
eters, like anisotropy, particle shape, and damping
(Braun, 1994). Its value, which ranges from f0 = 109

to f0 = 1012 Hz, sets the timescale for thermally assisted
magnetization reversal. The Boltzmann constant is kB =
1.3806505(24) × 10−23 J K−1, and T is the temperature.
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Connect two minima with a rope
Initial guess

Path finding
Rope slides down the hill

Optimal path
Energy gradient is parallel to
the path at any point of the path

Figure 10. Elastic band method for the computation of the optimal
path between two local minima. The left-hand side shows energy
landscape of two interacting magnetic particles (Chen, Zhang and
Bertram, 1992). The initial path connects the initial state (both
particles magnetized up in the center of the graph) with the state
final state (both particle magnetized down in the front corner of the
graph). This path is changed iteratively until the energy gradient is
parallel to the path at any point of the path. This is an optimal path
connecting the initial state and the final state via a saddle point.
(Reproduced from W. Chen., S. Zhang & H.N. Bertram: ‘Energy
barriers for thermal reversal of interacting single domain particles’.
Journal of Applied Physics, 71, (1992), copyright  1992 American
Institute of Physics, with permission from the AIP.)

In a composite grain of similar size, the magnetiza-
tion reversal process is nonuniform. Numerical methods are
required to calculate the energy barrier. In order to illus-
trate how the barrier can be obtained numerically, let us start
with a simplified system. Figure 10 shows the energy land-
scape for two interacting magnetic particles (Chen, Zhang
and Bertram, 1992). Thermal fluctuations drive the micro-
magnetic system from the stable region in the center (both
particles magnetized up) to another stable region at the corner
(both particles magnetized down). The path with the small-
est energy barrier is chosen since the population probability
decreases exponentially with the energy of the system. To
calculate the crossing point with the lowest energy, one needs
to find the relevant saddle points between the two stable
regions. Starting from an initial guess for the path that con-
nects two local minima of the system, a highly probable path
is found by moving the points along the path according to
an algorithm that resembles tensioning an elastic band across
a mountain. Variants of elastic band methods are commonly
used to calculate transition rates in chemical physics (Henkel-
man and Jonsson, 2000). These so-called string or elastic
band methods have been successfully applied for calculat-
ing micromagnetic energy barriers by E, Ren and Vanden-
Eijnden (2002) and Dittrich et al. (2002). Once the energy
barrier is calculated, the Neel-Brown theory can be used to
calculate the transition probability for energy barrier cross-
ing. Whereas the Neel–Brown theory is commonly used in
magnetic recording (Sharrock, 1994), it is interesting to note
that in some micromagnetic systems the transition probabil-
ity follows a Weibull distribution (Kronmüller, Leineweber
and Hertel, 2000).

The path connecting the initial state of the system with
its final state is represented by a set of images, which are
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Figure 11. Energy along the minimum energy path for thermally
activated switching of a composite grain. The grain is exposed to
the mean interaction field of the recording layer that is composed
of the demagnetizing field and the intergrain exchange interaction
field. Therefore, the energy of the initial state is higher than the
energy of the final state. The magnetization configuration of the
saddle point configuration is nonuniform.

a small subset of all the magnetic states along the path.
The magnetization configuration of an image is represented
by the vector m, see equation (53), on the finite element
grid. A sequence of magnetic states can be constructed in
such a way as to form a discrete representation of a path
from the initial magnetization state to the final magnetization
state. The simplest case of the initial path is a straight-line
interpolation in the configuration space between the initial
state and the final state (see Figure 10). An optimization
algorithm is then applied until at any point along the path the
gradient of the energy is only pointing along the path. This
path is called minimum energy path and means that the energy
is stationary for any degree of freedom perpendicular to the
path. The set of images along the minimum energy path will
be visited during thermally activated reversal of the system.

The elastic band method was applied to calculate the
minimum energy path for thermally activated reversal of a
composite grain from an exchange spring medium. The inter-
action field acting in the grain is taken into account using a
mean-field approach (Suess et al., 2005). It is the sum of
the exchange field between the neighboring grains and the
demagnetizing field of the film. The comparison of the mag-
netization configuration of the saddle point (Figure 11) and
the intermediate states during recording (Figure 9) shows that
the magnetization reversal is nonuniform for both thermally
induced switching and field induced switching.
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1 DETERMINISTIC LLG EQUATION AND
TREATMENT OF THE ENERGY
DISSIPATION IN MICROMAGNETICS

1.1 Origin and limitations of the standard
LLG equation

An equation of motion for the magnetization of a ferromag-
net, known as the Landau–Lifshitz equation

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

dM
dt

= −γ 0·[M × Heff] − γ 0·
λ

MS
· [M × [M × Heff]] (1)

has been introduced 1935 by L.D. Landau and E.M. Lifshitz
in their pioneering work (Landau and Lifshitz, 1935) devoted
to the phenomenological evaluation of the permeability
tensor of ferromagnets.

The first term in (1) describes the magnetization precession
of the total effective field and can be derived in frames
of a general phenomenological theory which is based on
the assumption that for low temperatures and slowly (in
space in time) varying magnetization the magnitude of
the magnetization vector M = MS is conserved. The latter
statement, in turn, follows from the assumption that the
equilibrium value of MS is fixed by the exchange interaction,
which is assumed to be the strongest interaction in a
ferromagnet, which is definitely the case for all ‘normal’
ferromagnetic materials. Comparison of the equation (1) with
the precession equation for a ‘free’ magnetic moment in
the small damping limit provides the value γ 0 = g|e|/2mec

which is the so-called gyromagnetic ratio. The g-factor in
this definition, being g = 2 for a free electron, may slightly
vary around this value dependent on the concrete material.
Usually at least the combination γ 0MS may be measured
with a high accuracy using FMR, so that the treatment of the
first term in (1) is quite straightforward.

In contrast to the precession term, the handling of the
energy dissipation processes in ferromagnets turned out to
be a highly complicated issue. The double vector product
term in (1) was chosen in the original paper (Landau
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and Lifshitz, 1935) basing on the purely phenomenological
reason that energy dissipation processes (i) should drive the
magnetization toward the effective field direction (in the
minimal energy state the magnetization is directed along
Heff), but (ii) the magnetization magnitude MS should still
remain constant. The second term in (1) obviously satisfies
these both conditions, being directed toward the effective
field and perpendicular to the magnetization.

It was pointed already by the authors of (Landau and
Lifshitz, 1935) themselves that the damping form suggested
by (1) is by neither the only possible nor the most general
one. First of all, it can be seen by a sole inspection of
this equation that if we understand the coefficient before the
damping term λ in a usual way, that is, as a parameter whose
value is proportional to the intensity of the energy dissipation
processes in our system, then (1) cannot be used to describe
the magnetization motion for moderate and large damping.
The reason for this limitation can be seen immediately if we
consider the overdamped regime (λ ≥ 1) where the magnetic
moment motion is dominated by the dissipation term. In this
case, the basic equation (1) predicts that the magnetization
relaxation is getting faster when the damping value increases
which is in a strong contradiction with a physical picture of
damping.

This circumstance was realized already by Landau and
Lifshitz themselves, who have pointed out that their equation
may be used in the precession-dominated regime (λ � 1)
only. The first phenomenological equation which qualita-
tively, reasonably describes the magnetization motion in the
whole dissipation range was suggested by Gilbert (1955):

dM
dt

= −γ 0

[
M ×

(
Heff − α

MS
·dM

dt

)]
(2)

Gilbert has derived this equation starting with the equation
of the undamped magnetization precession rewritten in the
Lagrangian formalism. In this formalism, the damping can be
rigorously added to the system using the so-called Rayleigh
dissipation function (Landau Lifshitz, 1981). Transforming
the resulting equation back to the force-torque form, Gilbert
arrived at the equation (2), where the damping is represented
by the second term in the round parenthesis with α being the
damping constant.

The dissipation term form introduced in the Gilbert
formulation of the magnetization dynamics can also be
understood in the following way. First, the energy damping
is supposed to slow down the precession of the magnetic
moment, so the term describing the energy dissipation can
be added directly to the effective field which is responsible
for the moment precession and defines its frequency via
ω = γ 0H

eff. Second, the magnitude of this term should
be proportional to the relaxation speed, analogously to

a standard (e.g., hydrodynamical) viscous damping. And
finally, the added damping term should still conserve the
magnetization magnitude. All these three conditions are
satisfied by the dissipation term (2), which is called the
Gilbert damping. It is straightforward to show (Kikuchi,
1956) that this formulation leads to the intuitively expected
dependence of the switching time (relaxation speed) on the
damping α, where the switching time is large both for
small damping (precession-dominated regime, the moment
performs many precession cycles before switching) and large
damping (magnetic moment does not precess, but moves
slowly owing to a large α value).

The Gilbert equation in its native form (2) is highly
inconvenient to use, because it contains the time derivative of
the magnetization on both sides. Fortunately, it can be easily
cast into an explicit form (dM/dt on the left-hand side only)
by multiplying both sides by the vector M, transforming
the double vector products using the standard vector algebra
rule and utilizing the conservation of the magnetic moment
magnitude as (M·M) = M2

S. The final result

dM
dt

= − γ 0

1 + α2
·[M × Heff] − γ 0

MS
· α

1 + α2

· [M × [M × Heff]] (3)

has the form of the Landau–Lifshitz equation (1) if we
replace the gyromagnetic ratio γ 0 by γ 0/(1 + α2) and put
α = λ. It is also evident that in the small damping limit both
equations coincide if α = λ, as it should be.

Summarizing, we point out that the two most widely
used equations for the description of the damped magneti-
zation motion are formally equivalent. However, the physics
involved in the definition of the damping coefficient is quite
different: Whereas in the Gilbert form (2) the value of the
damping parameter α can be assumed to be proportional to
the intensity of the energy dissipation processes which slow
down the magnetic moment motion, for the Landau–Lifshitz
form it is true only in the small damping limit. Although this
issue has been discussed in the past several times (see in addi-
tion to the original papers of Landau et al. and Gilbert, e.g.,
also comments in Kikuchi (1956) and Mallinson (1987)),
everybody who is familiar with the contemporary literature
will surely agree that recalling them once more will at least
not harm. The difference mentioned in the preceding text
tends to be forgotten simply because for the overwhelming
majority of applications (including, but limited to the mag-
netic random access memory (MRAM) technology and high
density storage media) the case of the small damping is of
major interest. However, this circumstance detracts no way
from the importance of the physical meaning of the param-
eters entering into these equations.
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We conclude this subsection with the following important
remark. As soon as we have introduced the restriction
M = MS, the magnetization is allowed only to rotate so
that any magnetization change �M should be perpendicu-
lar to M itself. Hence, one can gain the impression, that
the equation (1) (or its equivalent forms) is the most gen-
eral form of the equation of motion in this situation: from
a purely mathematical point of view (1) can be consid-
ered as an expansion of the magnetization time derivative
(which should lie in the plane perpendicular to the magne-
tization) over the two vectors [M × H] and [M × [M × H]]
which form an orthogonal basis in this plane. Coefficients
γ and λ can then be viewed simply as the expansion
coefficients of an arbitrary allowed magnetization change
in this basis. However, from the physical point of view
the equation (1) and its analogues contain a much stronger
assumption than the trivial statement about the existence of
such an expansion. Namely, the form (1) means that the
expansion coefficients are time-independent scalar variables,
so that the magnetization motion including damping can
be described on a phenomenological level with two scalar
parameters whose values do not depend on the instanta-
neous magnetization configuration. As we shall see in the
subsequent text, this is not necessarily true. However, in
many cases the combined Landau–Lifshitz–Gilbert (LLG)
equation (3) provides a convenient and at least semiquanti-
tatively adequate description of the damped magnetization
precession.

Concluding this subsection, we would like to briefly men-
tion possible extensions of the standard LLG-equation (3)
to the case, when the magnetization magnitude is not con-
served, which may be particularly interesting for tempera-
tures not very far from the Curie point. One of the possi-
bilities to account for a change of the magnetization value
on the mesoscopic level is the insertion into the LLG
equation of the longitudinal relaxation term. This question
was discussed already by Aharoni in the 1980s. For the
recent development, including a more detailed discussion
of possible forms of such an additional term, other physi-
cal problems concerning this topic (e.g., calculation of the
corresponding relaxation time) and some simulation results
obtained with such a generalized LLG equation, we refer
the reader to the publications (Garanin, 1997; Smith, 2002;
Grinstein and Koch, 2003; Garanin and Chubykalo-Fesenko,
2004).

1.2 To the possibility of alternative forms
of the damping term

Rigorous evaluation of the damping constant entering the
LLG equation is one of the most complicated problems

of the modern solid-state magnetism not only due to a
large variety of the damping mechanisms in ferromag-
nets, but also because in most cases it is really difficult
to separate the contributions of these mechanisms to the
energy dissipation rate measured experimentally (e.g., using
FMR). To the mechanisms mentioned in the preceding text
belong the spin-lattice relaxation (magnon-phonon interac-
tion), two-and many-magnon processes, magnon-impurity
interactions, magnon scattering on the surface and interface
defects and so on, we refer the interested reader to the con-
tributions in the Volume 1 of this Handbook.

For this reason, aphenomenological approach which could
provide nontrivial conclusions about the form of the damping
term and supply methods for the evaluation of the damp-
ing value beyond the simplest LLG phenomenology, but still
valid for a relatively broad class of the energy dissipation
processes is in principle highly desirable. However, a devel-
opment of such an approach is a delicate matter, requiring
careful analysis of each step of a corresponding ‘general’
procedure.

As an example of a such an attempt we would like to
analyze a recently developed and meanwhile widely cited
approach of Safonov and Bertram (2003) and references
therein, who suggested to use the normal mode analysis
of a magnetic system coupled to a thermal bath. Up to
a certain level such an analysis can be performed with-
out specifying the concrete energy dissipation mechanism,
but merely employing general assumptions concerning the
Hamilton function, which describes the interaction between
the magnetization and thermal reservoir.

In the simplest case of a uniformly magnetized ferromag-
netic particle, the normal mode analysis starts with the Taylor
expansion of the magnetic energy density E/V over small
magnetization variations Mx and My

E

V
= H0x

2MS
M2

x + H0y

2MS
M2

y (4)

near the equilibrium moment orientation M0, whereby the 0z-
axis is directed along M0. Dimensionless coefficients before
the squares of magnetization components Mx(y) in (4) can
be written in the form H0x(y)/MS, where parameters H0x(y)

(which describe the curvature of the energy surface for the
equilibrium magnetization state) have the dimension of a
field [1].

Any equation of motion which describes the magne-
tization precession in terms of components Mx and My

leads to the coupling of their time-dependencies and is
thus unsuitable for the identification of the system nor-
mal modes. For this reason, Safonov and Bertram pro-
ceed by introducing the (complex-valued) functions a(t) ∼
Mx + iMy and a∗(t) ∼ Mx − iMy . These functions are fully
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analogous to the corresponding quantum-mechanical oper-
ators which increase/reduce the z projection of the angu-
lar momentum, but the formalism developed by Safonov
and Bertram is a purely classical one. The functions a(t)

are required to describe the interaction of a magnetic
system with a thermal bath, because they appear in the cor-
responding interaction term of a Hamiltonian; this is the rea-
son why this intermediate transformation should be explic-
itly introduced. The second transformation a(t) ∼ uc(t) +
vc∗(t) and a∗(t) ∼ uc∗(t) + vc(t) diagonalizes the Hamilton
function, which becomes H : ω0c

∗c, with ω0 = γ
√

H0xH0y

being the FMR frequency of our system. Equation of motion
for these new ‘coordinates’ are uncoupled, that is, ċ(t) =
−iω0c(t) and ċ∗(t) = iω0c

∗(t).
At the next step the interaction between the normal modes

of the magnetization oscillations and a thermal bath described
as a set of harmonic oscillators is introduced via the insertion
of a linear coupling between functions a(t) and the thermal
bath normal modes bk into the system Hamiltonian (see
Safonov and Bertram, 2003 for details):

H ∼ Emag + Ebath +
∑

k

[
Gk(ab∗

k + a∗bk)

+Fk(abk + a∗b∗
k )

]
(5)

where Emag and Ebath are the energies of a magnetic system
and thermal bath only.

Transformation of the interaction term to the variables c(t)

and c∗(t), solution of the resulting dynamic equations for the
thermal bath modes bk and substitution of the expression for
bk into the dynamic equations for c(t) leads to the equation

dc

dt
= −i(ω0 + �ω)c − ηc + f (t) (6)

which describes a damped harmonic oscillator under the
influence of a random force (noise) f (t). The damping
constant η in this formalism

η = π

∣∣∣G̃k

∣∣∣2
D(ω0) (7)

is proportional to (i) the squared interaction coefficient G̃k =
uGk + vFk of a magnetic system with the bath normal mode
having the same frequency ω0 as the undisturbed magnetic
system and (ii) the density of states D(ω0) of a thermal bath
at this frequency.

An important conclusion which can be drawn from the
consideration in the preceding text is that in this phe-
nomenological model the magnetization damping present in
the Gilbert or Landau–Lifshitz equation of motion for the

components of the system magnetization M(t)

dM
dt

= −γ 0

[
M ×

(
Heff − α̂

MS
·dM

dt

)]
(8)

cannot be reduced anymore to a scalar variable, but is a
tensor

α̂ = η

ω2
0


H0x 0 0

0 H0y 0
0 0 0


 (9)

where the diagonal components of this tensor are propor-
tional to the parameters H0x(y) characterizing the energy
surface curvature near the equilibrium magnetization state
(expression (9) may be verified by rewriting Mx and
My via the functions c(t) and c ∗ (t) and substituting
the resulting expressions into (8), thus arriving at the
equation (6)). This tensor reduces to a scalar only for
a symmetric energy minimum with H0x = H0y , which is
rather an exception.

The formalism outlined in the preceding text can be
extended to magnetic systems with arbitrarily nonhomo-
geneous equilibrium magnetization configuration (Bertram,
Safonov and Jin, 2002). After the discretization of a fer-
romagnetic body into N finite elements the eigenmodes
of its magnetization state can be identified using the
equation of motion without damping Ṁi = −γ [Mi × Heff

i ].
Expanding the system state magnetization vector T =
(M1, . . . , Mi , . . . , MN) the near the equilibrium state one
obtains a set of coupled equations Ṫ = −γ Ĥ·T where ten-
sor Ĥ consists of corresponding effective field compo-
nents. Diagonalization of this tensor provides the eigen-
vectors ci , which give the spatial distribution of the i-th
eigenmode and eigenvalues, which are proportional to the
mode oscillation frequencies ωi . Further analysis proceeds
then as in the simplest case discussed in the preceding
text.

However, the procedure sketched in the preceding text,
which leads to the conclusion that the damping in the
LLG equation should be a tensor, is incorrect, as shown
by Smith (2002). Taking into account that the ques-
tion about the form of the phenomenological damping
term is crucially important for micromagnetic calcula-
tions, we shall briefly reproduce here the argumentation
of Smith, replacing his simple illustrative example by an
even simpler one.

To find out where is the flaw in the argumentation of
Bertram and Safonov, we consider the simplest possible
mechanical system with more than one eigenmode, that is,
two particles of equal masses m, each of which is attached
to a wall via a spring with the stiffness constant k. Particles
are placed in the isolated reservoirs filled with a fluid with
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different viscosities (this is the only difference between
the particles) and coupled via a spring with the stiffness
kc. If particle coordinates x1 and x2 in the mechanical
equilibrium are set to zero, the corresponding equations of
motion are

mẍ1 = −η1ẋ1 − kx1 + kc(x2 − x1) + FL
1 (10)

mẍ2 = −η2ẋ2 − kx2 − kc(x2 − x1) + FL
2 (11)

Here, the friction coefficients η1 and η2 are different
owing to different fluid viscosities. Random thermal forces
F L responsible for the Brownian motion of the particles
are obviously uncorrelated (because the reservoirs with the
particles are isolated from each other), δ correlated in time
and their mean-square values are proportional to the system
temperature T .

The determination of the system normal modes should
be performed in a standard way, using the equations (10)
and (11) without dissipative and fluctuation forces. In this
very simple case, it is enough to add and subtract these
equations in order to find out that the normal modes are
xn+ = (x1 + x2)/

√
2 and xn− = (x1 − x2)/

√
2, so that the

transformation matrix U between the vector of the particle
coordinates x and the normal modes of our system xn (i.e.,
x = U ·xn) is

U = 1√
2

[
1 1
1 −1

]
(12)

Next, we apply this transformation to the initial equations
of motion system, (10) and (11), written in the matrix
form

M ẍ = −Hẋ + Kx + F L (13)

where the mass and friction matrices are diagonal
(M = diag(m, m), H = diag(η1, η2)), and the stiffness mat-
rix K has both diagonal K11 = K22 = −(k + kc) and off-
diagonal elements K12 = K21 = kc. The transformation to
the normal modes proceeds in the usual way: we insert the
unit matrix in the form I = U ·UT into the matrix-vector
products into the equation (13) and multiply it by the matrix
UT from the left. Using the relation UTx = xn and per-
forming the matrix multiplications M̃ = UTMU = M, H̃ =
UTHU, K̃ = UTKU , we arrive at the equations of motion
for the normal modes:

[
m 0
0 m

]
·
[

ẍn+
ẍn−

]
= −1

2

[
η1 + η2 η1 − η2

η1 − η2 η1 + η2

]

·
[

ẋn+
ẋn−

]
+

[−k 0
0 −(k + 2kc)

]

·
[

xn+
xn−

]
+

[
F

n,L
+

F
n,L
−

]
(14)

where the vector of fluctuation forces Fn,L = UT·FL now
contains the corresponding forces for the normal modes
defined as F

n,L
+ = (F L

1 + F L
2 )/

√
2, F

n,L
− = (F L

1 − F L
2 )/

√
2.

It can be immediately seen from equation (14) that the
equations of motion for the normal modes which include
the damping term are correlated owing to the non-diagonal
character of the transformed damping matrix H̃ = UTHU .
This means that the simple phenomenological addition of
the uncoupled damping terms like the term −η·c in (6) is
incorrect. This term in (6) results from writing the equations
of motion for the coupled system ‘magnetic body + thermal
bath’ directly in terms of the normal modes (see (5)), which
hence turns out to be incorrect at least when the coupling
of these modes and correlation properties of corresponding
random (fluctuation) forces are important. The conclusion
(9) about the obligatory tensor form of the damping in the
LLG equation, being a direct consequence of the uncoupled
damping of normal modes, is for this reason erroneous.
A detailed extension of this discussion to the case of
micromagnetic equations can be found in (Smith, 2002).

Another very important point is that the addition of
uncoupled fluctuation forces into the equations of motion for
the normal modes (instead of using corresponding equations
for real particles) as it is done in equation (6) is also
physically incorrect. Namely, if thermal forces acting on
the normal modes would be indeed uncorrelated, then the
corresponding forces acting on real particles (obtained via
the backward transformation as FL = U ·Fn,L) would be
correlated, which is completely unphysical. This is evident
at least in the case considered in the preceding text where
particles are placed into separate isolated reservoirs. Taking
into account that the random (Brownian) forces are caused
by the chaotic motion of the fluid molecules, any correlations
between these forces in two separate isolated fluid volumes
are obviously absent.

The discussion in the preceding text should remind the
reader, that although normal modes of the system are
doubtlessly a very useful physical concept, one should not
forget that initially dynamical equations must be written
for real particles (magnetic moments) where the physical
meaning of various terms in such equations can be directly
examined.

The last comment in order is that the argumentation line
presented here does not mean that the tensor form of the
damping term is forbidden. As already mentioned by Smith
(2002), this only means that any conclusion about the specific
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form of the damping should be based on the consideration
of the corresponding physical mechanism responsible for the
energy dissipation.

2 STOCHASTIC LLG EQUATION:
CHOICE OF THE STOCHASTIC
CALCULUS

2.1 General introduction to the solution of SDEs

Equation-of-motion simulations of the remagnetization dyna-
mics including thermal fluctuations require, in contrast to the
case T = 0, the solution of stochastic differential equations
(SDE), which is by far more difficult. A simple example of
such stochastic (Langevin) equations arising in the theory of
stochastic processes is the equation of motion for a particle in
a viscous medium under the influence of a deterministic force
Fdet and thermal fluctuations represented via the random (or
Langevin) force ξL(η denotes the friction coefficient)

ẋ = 1

η
Fdet(t) + a(x, t)·ξL(t) (15)

ξL(t) is usually assumed to be a random Gaussian variable,
δ correlated in time:

〈ξ(t)〉 = 0, 〈ξ(0)·ξ(t)〉 = 2D·δ(t) (16)

with the noise power D ∼ T . The ‘good’ function a(x, t)

contains the coordinate- and time-dependencies of the noise
characteristics.

The problem with the equations of this kind is that
they can by no means be interpreted as the ‘usual’ dif-
ferential equations (DE). Namely, any attempt to integrate
equation (15) as an ordinary DE leads to the integral

W(t) =
t∫

0

ξ(t ′)·dt ′ (17)

which obviously represents a random process, because
its integrand is a random variable. From the correlation
properties (16) it follows that W(t) is the standard Wiener
process (Brownian motion) Gardiner (1997). This pro-
cess is not differentiable – the ratio (W(t + �t) − W(t))/�t

diverges in the limit �t → 0 almost surely. Because the
derivative dW/dt = ξ(t) does not exist, in the usual sense
the equation (16) including this derivative does not exist also
and hence cannot be interpreted as a ‘normal’ ordinary DE.

The proper way to assign a mathematically correct mean-
ing to the equations like (15) is to introduce the differential

of the Wiener process dW (which is usually viewed by a
physicist as a replacement of the product ξ(t)dt) and to
define the corresponding integral

I =
∫

a(x, t)·dW(t) (18)

analogously to the standard Riemann–Stieltjes integrals as
the limit of partial sums

I = lim
n→∞

n∑
i=1

a(x(τ i), τ i)·�W(�ti)

= lim
n→∞

n∑
i=1

a(x(τ i), τ i)·[W(ti) − W(ti−1)] (19)

with the points τ i where the integrand values are evaluated
lie inside the interval [ti−1, ti].

This limit, being understood in the mean-square sense (see
any handbook on stochastic calculus) is convenient enough
to develop the complete analysis of such stochastic integrals.
The real problem is that (in a heavy contrast to the standard
analysis) this limit itself – and not just the values of partial
sums in (19) – depends on the choice of the intermediate
points τ i (see Chapter 3 in Gardiner (1997) for a simple
but impressive example).

The only way to cope with this problem is to introduce
some standard choices of the intermediate points and to
find the best choice from the physical point of view. The
two standard choices – (i) τ i = ti−1 coincide with the left
points of the intervals (Ito stochastic calculus) and (ii) τ i =
(ti−1 + ti )/2 are in the middle of the intervals (Stratonovich
interpretation) – lead to different solutions if the noise in
a stochastic equation is multiplicative – that is, the random
term is multiplied by some function of the system variables.
In this case, usually the Stratonovich interpretation provides
physically correct results, recovering, for example, some
important properties of physical random processes obtained
using more general methods (Gardiner, 1997).

In micromagnetics, the most common way to include ther-
mal fluctuation effects into the consideration is the addition
of the so-called ‘fluctuation field’ to the deterministic effec-
tive field in equation (LLG). This leads to the stochastic LLG
equation (Brown, 1963b) for the magnetic moment motion.

dM
dt

= −γ ·[M × (Hdet + Hfl)] − λ· γ

MS

· [M × [M × (Hdet + Hfl)]] (20)

Here, the deterministic effective field Hdet acting on the
magnetization includes all the standard micromagnetic con-
tributions (external, anisotropy, exchange and magnetodipo-
lar interaction field). Analogous to the random force in
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the mechanical equation (15), Cartesian components of the
fluctuation field Hfl

i are usually assumed to be δ correlated
in space and time (Brown, 1963b)

〈H fl
ξ,i〉 = 0 〈H fl

ξ,i (0)·H fl
ψ,j (t)〉 = 2D·δ(t)·δij ·δξψ (21)

where i, j are the discretization cell (magnetic moment)
indices and ξ, ψ = x, y, z. The noise power D evaluated
using the fluctuation-dissipation theorem (see subsequent
text for a detailed discussion) is proportional to the system
temperature T and depends on γ and the damping constant λ:

D = λ

1 + λ2 · kT

γMS�V
(22)

We note in passing that the fluctuation field Hfl in the
dissipation term of (20) can be omitted by rescaling
correspondingly the noise power D (Garcia-Palacios and
Lazaro, 1998; Braun, 2000). We shall use this possibility
below by comparing the Ito and Stratonovich interpretations
of the LLG equations.

The noise in the Langevin equations 20 is multiplicative,
because in the vector products the random field projections
are multiplied by the magnetic moment projections. This
fact was pointed out already in the pioneering paper of
Brown (1963b), who suggested to use for this reason the
Stratonovich interpretation of the equation.

Analytic solution of (20) is possible only in a few
simplest cases, so that really interesting magnetic systems
can be studied only numerically. For such simulations, the
choice of the stochastic calculus is, in principle, of primary
importance, because different numerical integration schemes
converge to different stochastic integrals: The Euler and
the simple implicit methods converge to the Ito solution,
Heun and Milstein schemes – to the Stratonovich limit
(McShane, 1974) and Runge-Kutta methods can converge
to both types of the stochastic integrals (including the in-
between cases) depending on their coefficients (Rümelin,
1982). Most authors (see, e.g., Garcia-Palacios and Lazaro,
1998; Scholz, Schrefl and Fidler, 2001; Berkov, Gorn and
Görnert, 2002) and commercial micromagnetic packages
(advanced recording model (ARM), LLG, MicroMagus) use
the Heun, Runge-Kutta or modified Bulirsch–Stoer methods
converging to the Stratonovich solution, but several groups
employ the Ito-converging Euler (Zhang and Fredkin, 2000;
Lyberatos and Chantrell, 1993) method and implicit schemes
(Nakatani, Uesaka, Hayashi and Fukushima, 1997). These
last papers were criticized in Garcia-Palacios and Lazaro
(1998) where it has been claimed that only the Stratonovich
interpretation ensures the physically correct solution of (20).

Fortunately, we could show that for standard micro-
magnetic models (where |M| = MS = Const) both Ito and

Stratonovich stochastic calculi provide identical results, so
that the only criterion by the choice of the integration method
is its efficiency by the solution of the LLG stochastic equation
for the particular system under study. In the next subsec-
tion, we address this question in more detail because of its
methodical importance.

2.2 Equivalence of Ito and Stratonovich stochastic
calculus for standard micromagnetic models

In this subsection, we shall prove that for the system in which
the dynamics is described by the stochastic equation (20)
the Ito and Stratonovich versions of the stochastic calculus
are equivalent if the magnetization magnitude (or the mag-
nitude of the discretization cell/single particle) is assumed to
be constant [2]. This is true for many magnetic system mod-
els including the classical Heisenberg and related models,
spin glasses, fine magnetic particle systems (Dotsenko, 1993;
Hansen and Morup, 1998), and in standard micromagnetics
(Brown, 1963a).

First, we repeat that the fluctuation field in the dissipation
term of (20) that can be omitted by rescaling correspondingly
the noise power D (Garcia-Palacios and Lazaro, 1998; Braun,
2000). Thus we can restrict ourselves to the study of a simpler
equation

dmi

dτ
= −

[
mi × (heff

i + hfl
i )

]
− λ·

[
mi ×

[
mi × heff

i

]]
(23)

To proceed, we recall that by the transition between the Ito
and Stratonovich forms of a stochastic differential equation
the additional drift term appears: if one adds to a SDE system

dxi

dt
= Ai(x, t) +

∑
k

Bikξ k (24)

the deterministic drift D
∑

jk Bjk(∂Bik/∂xj ), then the Ito
solution of this new system

dxi

dt
= Ai(x, t) + D

∑
jk

Bjk

∂Bik

∂xj

+
∑

k

Bikξ k (25)

is equivalent to the Stratonovich solution of the initial system
(24) (Kloeden and Platen, 1995).

For the LLG equation written in Cartesian coordinates the
matrix B is Bik = ∑

j εijkmj , and the additional drift term
reduces to dmi /dτ = −2Dmi . This drift is directed along
the magnetic moment mi trying to change its magnitude,
which is forbidden by the model. Hence, this term must
be discarded, which leads to the equivalence of the Ito and
Stratonovich schemes.
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The same result can be obtained (and understood) in a
much simpler way rewriting the LLG equation using spheri-
cal coordinates (θ, φ) of the moment unit vector m (Cartesian
coordinates of magnetic moments are not independent: owing
to the conservation of a moment magnitude they are subject
to the restriction m2

x,i + m2
y,i + m2

z,i = 1). In spherical coor-
dinates the part containing the fluctuation (stochastic) field
part of (23) which is of interest for us reads (Brown, 1963b;
Braun, 2000).

dθ

dτ
= hfl

ϕ ,
dϕ

dτ
= − 1

sin θ
hfl

θ (26)

so that the matrix B responsible for the drift mentioned in
the preceding text is

B =
(

Bθθ Bθϕ

Bθϕ Bϕϕ

)
=

(
0 1

−1/ sin θ 0

)
(27)

and this drift is exactly zero:D
∑

jk Bjk(∂Bik/∂xj ) = 0
(i, j, k = 1, 2 and x1 = θ, x2 = φ). Hence, we arrive at the
same result that Stratonovich and Ito stochastic integrals
are equivalent in this case, which means that for stochas-
tic dynamics of models with rigid dipoles (dipoles with con-
stant magnitudes) there is no difference between the Ito and
Stratonovich solutions of corresponding stochastic differen-
tial equations (Berkov and Gorn, 2002).

It is interesting to see why the opposite statement made
in Garcia-Palacios and Lazaro (1998) is incorrect. Using the
Fokker–Planck equation (FPE) which describes the evolution
of the probability distribution of the magnetization orien-
tation P (m, t), the authors of Garcia-Palacios and Lazaro
(1998) have shown that an additional drift term ∂(mP )/∂m
appears in the FPE derived from the Ito interpretation of
the Langevin equation. But this term should be excluded
from the FPE because it leads to the probability density
drift along the magnetization vector which would change
the moment magnitude (this can be most easily seen in
spherical coordinates (m, θ, φ) where this term reduces to
∂(mP )/∂m).

To support our conclusion about the equivalence of the
Ito and Stratonovich integrals for models with constant
magnetic moment magnitudes, we have performed numerical
experiments simulating equilibrium (density of states) and
nonequilibrium (time dependent magnetization relaxation)
properties of a disordered system of magnetic dipoles. We
have solved the stochastic LLG equation (20) using methods
converging either to its Ito (Euler scheme) or Stratonovich
(drift-modified Euler and Heun schemes) solutions. Results
obtained by all these methods coincide within the statistical
accuracy, confirming that Ito and Stratonovich calculi lead,
for these systems, to the same physical results despite that
the noise in the stochastic LLG equation is multiplicative.

However, we point out that the proof in the preceding text
heavily relies on the conservation of the moment magnitude.
Hence for models where this is not the case – for example,
by simulations of the heat assisted magnetic recording
(HAMR) or for models attempting to relax the local restric-
tion M = MS = Const (see preceding text) – one should pay
close attention to the choice of a numerical method used to
solve equation (20).

3 STOCHASTIC LLG EQUATION:
THERMAL NOISE CORRELATIONS

3.1 Thermal fluctuations for a single magnetic
moment

3.1.1 Introduction

As it was stated in Section 2, the ‘standard’ way to take
into account the thermal fluctuations of the magnetization in
micromagnetic simulations is the inclusion of the ‘fluctuation
field’ Hfl into the basic equation (20), which we write out
here for a single magnetic moment µ once more to have it
at hand:

dµ

dt
= −γ ·[µ × (Hdet + Hfl)

]
− λ·γ

µ
·[µ × [

µ × (Hdet + Hfl)
]]

(28)

Components of the this field Hfl
i are supposed to have δ

correlation in space and time

〈H fl
ξ,i〉 = 0 〈H fl

ξ,i (0)·H fl
ψ,j (t)〉 = 2C·δ(t)·δij ·δξψ (29)

where i, j are the discretization cell (or magnetic moment)
indices and ξ, ψ = x, y, z. The proportionality coefficient
before the δ functions in (29) is the noise power C, which
can be evaluated as (when the random field is present in both
terms on the right-hand side of (20))

C = λ

1 + λ2 · kT

γµ
= λ

1 + λ2 · kT

γMSVp
(30)

In the last equality we have used the relation µ =
MSVp between the particle magnetic moment µ, saturation
magnetization of the particle material MS and the particle
volume Vp.

The question of main interest is whether the properties
(29) and (30), introduced by Brown (1963b) for a single-
domain particle – actually for a single magnetic moment
surrounded by a thermal bath – would survive for a typ-
ical micromagnetic system, where complicate interactions
between the magnetic moments of the finite elements used
to discretize a continuous problem are present.
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We start the discussion of this principal problem with the
statement that it actually contains two separate question:

1. Whether the correlations between random field compo-
nents can be really treated as δ -functional ones and

2. Whether the noise power can be evaluated using the
universal expression like (30) which contains only the
system temperature T , the gyromagnetic ratio γ , the
damping constant λ and the magnitude of the cell
magnetic moment µ = MS�V , and thus does not depend
on any interaction details and other features of the
concrete system under study.

To answer these questions for a micromagnetic system, we
first recall how the δ correlations (29) of the random noise
are introduced for a single magnetic particle, how the power
of this noise (30) can be obtained for this simplest case, and
discuss a physical sense of the expression (30).

First of all, in case of a single particle (single magnetic
moment) we are not interested in spatial correlation proper-
ties of the noise. The statement that temporal correlations of
the random field components are δ functional is an assump-
tion based explicitly on the properties of that physical compo-
nent of a thermal bath which is responsible for the appearance
of thermal fluctuations. The most common point of view is
that thermal fluctuations are mainly due to the interactions
with phonons. In this case, we are interested in the correla-
tion time associated with typical phonons, which contribute
to thermal bath fluctuations. If we study the properties of
our system at room temperature, which is of the same order
of magnitude as the Debye temperature of typical materials,
then we are speaking about phonons with the wavelength
about several interatomic distances; typical life time of such
room-temperature phonons is about a picosecond or less, so
for remagnetization processes on time scales much larger
than that we can safely accept the temporal correlation func-
tion δ(t) in (29). We note in passing that for the description of
the magnetization dynamics on a much shorter time scales
the phenomenology (20) is not valid anyway, because the
equilibrium between various subsystems of a magnetic body
(electrons, phonons, magnons etc.) cannot be reached. We
also point out that the logic presented above to justify the
δ-functional character of temporal noise correlations fails for
systems at low temperatures, where the decay time of the
characteristic (long-wave) phonons may be more than several
nanoseconds, especially in pure materials.

3.1.2 Derivation of the relation between the noise
power and system properties for a mechanical
Brownian motion

Let us now examine the derivation of the relation (30).
Usually it is quoted as a consequence of a so-called

fluctuation-dissipation theorem (see subsequent text), but in
many cases it can be obtained in a much simpler way, which
also make the physical sense of this relation more trans-
parent. To illustrate this point, we start with the mechanical
Brownian motion of a ‘normal’ free particle described by the
Langevin equation

m
d2x

dt2
= −η

dx

dt
+ F fl(t) (31)

where the first term on the right is the friction force
and the second term represents the Langevin (fluctuating)
force, which has by the assumptions outlined above zero-
mean value and the correlation properties 〈F fl(0)·F fl(t)〉 =
2C·δ(t). Introducing the particle velocity v = dx/dt , we
obtain for v from the equation above a simple first-order
differential equation

dv

dt
+ η

m
v = 1

m
F fl(t) (32)

which explicit solution

v(t) = v(0)e−ηt/m + 1

m

∫ t

0
e−η(t−t ′)/mF fl(t ′) dt ′ (33)

allows the straightforward evaluation of the mean-square
velocity: writing the velocities for two different time
moments v(t1) and v(t2) using (33), multiplying these quanti-
ties and taking the thermal average, we obtain the expression
for the product 〈v(t1)v(t2)〉 which contains only the cor-
relation function 〈F fl(t1)·F fl(t2)〉 = 2C·δ(t1 − t2) (all other
terms are zero because the velocity values are not correlated
with the values of the random force). Putting t1 = t2 and
using the basic property of the δ function, we finally obtain
the desired result 〈v2〉 = C/2η m. On the other hand, in the
thermal equilibrium the average kinetic energy of the particle
is 〈EK〉 = m〈v2〉/2 = kT /2, so that 〈v2〉 = kT /m. Equating
these two expressions for the mean square of the particle
velocity, we obtain the desired result

C = η·kT (34)

which connects the noise power C with the friction coeffi-
cient η and system temperature T . Note that by derivation
of this relation we have used only the fact that the system
(particle) is in a thermodynamical equilibrium with the sur-
rounding thermal bath.

For a particle which moves in an external potential and
hence possesses the energy V (x) the situation is more
complicate, because no general analytical solution of the
corresponding Langevin equation

η
dx

dt
= −∇V (x) + F fl(t) (35)
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is available in (35) we have neglected the inertial term for
simplicity, which means that we are interested in times much
larger than the velocity equilibration time tp = m/η. In this
situation, the relation between the noise power C and the
system features can be established using another principal
equation of the theory of stochastic processes – the FPE.

The FPE describes the temporal and spatial evolution
of the probability density w(x, t) which gives the proba-
bility w(x, t)·dx·dt to find the particle inside the region
[x; x + dx] during the time interval [t; t + dt]. This equation
can be derived in many ways; the most transparent gen-
eral method to obtain the FPE starts from the so-called
Chapman–Kolmogorov (also called Smoluchovski) equation.
From a physical point of view, this latter equation simply
states that the conditional probability P (x1, t1|x3, t3) to find
the particle at x1 at the time t1, if its position at the time t3
was x3, can be obtained by integrating the product of condi-
tional probabilities for the transitions (x1, t1) → (x2, t2) and
(x2, t2) → (x3, t3) over all intermediate particle positions x2.
The derivation of the FPE from the Chapman–Kolmogorov
equation is conceptually very simple (see, e.g., Gardiner,
1997) and assumes only the existence of the limits

A(x, t) = lim
�t→0

〈x(t + �t) − x(t)〉
�t

B(x, t) = 1

2
lim

�t→0

〈(x(t + �t) − x(t))2〉
�t

(36)

The resulting FPE reads in a general case

∂w(x, t)

∂t
= − ∂

∂x
[A(x, t)·w(x, t)]

+ ∂2

∂x2
[B(x, t)·w(x, t)] (37)

Here, the first term on the right describes the systematic
particle drift due to the potential force Fpot(x) = −∇V (x)

and the second term is responsible for the particle diffu-
sion due to thermal fluctuations. For each concrete system
the limits (36) can be evaluated from the corresponding
Langevin equation (Coffey, Kalmykov and Waldron, 2004) in
conceptually the same manner as the mean square of the par-
ticle velocity was derived from (32). For the simple system
described by the equation (35) the result is

A = −∇V (x)/η, B(x) = Const = C/η2 (38)

(C is the noise power from the correlation function
〈F fl(t1)·F fl(t2)〉 = 2C·δ(t1 − t2) of the random force) so that
the FPE (37) has the form of a standard diffusion equation

∂w(x, t)

∂t
= ∂

∂x

[
1

η

∂V

∂x
·w(x, t)

]
+ C

η2
·∂

2w(x, t)

∂x2
(39)

which means that the noise power C is equal to the diffusion
coefficient.

To establish now the required relation between the noise
power and other system properties, we use the statement
that in the equilibrium state (where the time derivative
∂w/∂t = 0 the probability distribution function should be
given by the (normalized) Boltzmann exponent w(x) =
N exp(−V (x)/kT ). Substitution of this expression into the
right-hand side of the FPE (39) gives the equation, which is
worth to be explicitly written out:

d2V

dx2

(
η − C

kT

)
− 1

kT
·
(

dV

dx

)2 (
η − C

kT

)
= 0 (40)

The equation (40) should be satisfied for an arbitrary
potential V (x) which leads exactly to the same relation
C = η·kT between the random noise power and system
parameters as the result (34) for a free particle. Now we
have proved that this relation does not depend on the
concrete potential V (x), and thus represent a very general
statement. Again, the only physical assumption used to
derive this formula was the statement that the system is
in a thermodynamical equilibrium, so that the Boltzmann
distribution for the probability density w(x, t) could be used.

3.1.3 FPE and noise power evaluation for a single
magnetic moment

The FPE can be derived for a single magnetic moment in
the same way as in the preceding text for a mechanical
particle. The resulting equation is, however, much more com-
plicate due to the following reasons: (i) we deal here with
a rotational diffusion and (ii) the precession term (which
is the counterpart of the inertial term in mechanics) in the
corresponding Langevin equation (20) cannot be neglected,
because this would lead to a qualitatively incorrect descrip-
tion of the magnetization dynamics for the overwhelming
majority of physically interesting systems.

The first derivation of the corresponding FPE was pre-
sented (up to our knowledge) by Brown (1963b), who used
the ‘physical’ or ‘intuitive’ method, employing the continuity
equation for the distribution density w(θ, φ) of the magnetic
moment directions. This equation relates the time deriva-
tive of w(θ, φ) and its flux on the (θ, φ) sphere, whereby
the diffusion term is added to the flux in a phenomenolog-
ical way using the similarity with the equation describing
the mechanical rotational diffusion. The rigorous derivation
of this FPE, which uses the functional analysis methods
can be found in the Appendix of Garanin (1997). Another
derivation of the same FPE from the Langevin equation (20)
which employs the relations (known from the general rules of
stochastic calculus) between the coefficients of the Langevin
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equation and corresponding terms from FPE is contained
in Garcia-Palacios and Lazaro (1998). The structure of the
resulting equation

∂w(m, t)

∂t
= −∇m

{
γ [m × Heff]w

− γ ·λ·[m × [m × Heff]]w

+ Drot[m × [m × ∇m]]w
}

(41)

is obviously inherited from the Langevin equation in the LLG
form (20) which the FPE (41) has been derived from: the
first term in the curved parenthesis describes the drift of
the probability density due to the precession term in (20),
the second term corresponds to the drift due to the damping
torque and the third (diffusion) term also has the structure
of the damping term in the original LLG. The operator ∇m

acting on the vectors on the right-hand side of (41) means the
divergence over the components of the vector m, so that, for
example, in Cartesian coordinates ∇ma ≡ ∑

i ∂ai/∂mi(i =
x, y, z). The coefficient before the rotational diffusion term,
expressed in terms of the quantities entering into the LLG
equation (20), is

Drot = γ 2(1 + λ2)·C (42)

where C is the noise power of the fluctuating field Hfl.
The procedure for the calculation of the noise power

using this FPE is fully analogous to that described in the
preceding text for the mechanical translational diffusion.
Namely, we substitute the equilibrium probability density
w(x) = N exp(−V (θ, ϕ)/kT ) into the equation (41) with
zero left-hand side (∂w/∂t = 0). Taking into account the
effective field definition Heff = −∂V/∂m we arrive after
a very tedious, but straightforward differentiation at the
relation similar to (40), which in this case can be satisfied
only if

Drot = kT ·γ λ

µ
(43)

Equating the two expression (42) and (43) for Drot, we
arrive at the final result which establish the relation (30)
between the noise power C and the system parameters:

C = λ

1 + λ2 · kT

γµ
= λ

1 + λ2 · kT

γMSVp
(44)

As in the corresponding relation (34) for the mechanical
translational Brownian motion, the noise power is propor-
tional to the system temperature kT and to the friction con-
stant λ. Also, fully analogous to the mechanical noise power
(34), the value of C in (44) does not depend on the concrete

potential V (θ, φ) acting on the magnetic moment, which
can be understood as a first hint that this result will remain
unchanged for a system of interacting magnetic moments
also. The appearance of the gyromagnetic ratio γ in the
denominator is due to its presence as a common factor for
both drift terms in the initial FPE (41), so that after the
substitution of an equilibrium Boltzmann probability density
and differentiation it appears in the equality (43). The factor
(1 + λ2) in the denominator reflects the special structure of
the LLG (28), where the fluctuating field Hfl has been added
both to the precession and dissipation terms. It is also pos-
sible to use an alternative form of this equation – with Hfl

added to the precession term only, in which case the factor
(1 + λ2) in the relation (45) is absent (Garcia-Palacios and
Lazaro, 1998).

One aspects of this relation deserve a special discussion,
namely, the inverse proportionality of the noise power C

to the total particle magnetic moment µ, or – taking into
account that the saturation magnetization of the particle
material MS is constant – to the particle volume Vp. In other
words, the noise power, or the dispersion of the fluctuation
field σ 2

fl = 〈(Hfl)2〉decreases linearly with the increasing
particle volume. This dependence can be understood on
an intuitive level in the following way. Let us consider a
small magnetic particle consisting of N atoms with magnetic
moments µi . For each atomic magnetic moment the equation
of motion (we neglect damping to simplify the discussion)
can be written as

dµi

dt
= −γ ·[µi × (Hdet + Hfl

i )
]

(45)

Here, we have assumed that the particle is so small
deterministic effective fields are approximately equal for all
elementary moments. Thermal fluctuation field Hfl

i randomly
varies from one atom to another. To obtain the equation
of motion for the total particle magnetic moment µtot =∑N

i=1 µi , we have to sum the equations (45) over all particle
atoms:

∑
i

dµi

dt
= dµtot

dt
= −γ ·

∑
i

[
µi × Hdet]

− γ ·
∑

i

[
µi × Hfl

i

]
(46)

Taking into account the independence of Hdet on the
elementary moment index, the first sum on right-hand side
immediately transforms to [µtot × Hdet]. Situation with the
second (random field) term is more complicate, because Hfl

i

is a random quantity. Using again the assumption that the
particle is small enough to ensure that due to the exchange
interaction atomic magnetic moments are nearly parallel, we
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can write the elementary moment on the second sum as
µi = µtot/N and factor the i-independent total moment out
of the sum. Then the equation (46) takes the desired form of
the Langevin equation for the total moment

dµtot

dt
= −γ · [µtot × Hdet] − γ ·

[
µtot

N
×

∑
i

Hfl
i

]

= −γ · [µtot × (Hdet + Hfl
tot)

]
(47)

if we define the fluctuation field Hfl
tot acting on the total

moment as

Hfl
tot = 1

N

N∑
i=1

Hfl
i (48)

The relation (48) between the total and elementary thermal
fields means that the dispersion of the total fluctuation field
σ 2

tot can be evaluated as

σ 2
tot = 1

N2
·

N∑
i=1

σ 2
i = 1

N2
·Nσ 2

at = 1

N
·σ 2

at (49)

where we have used the assumption that all fluctuation fields
are random independent variables with equal dispersions
σ 2

i = σ 2
at∀i = 1, . . . , N . The dispersion of the fluctuating

field on a single atom σ 2
at does not depend on the system

volume, so the equality (49) explains why the dispersion
of the total fluctuation field Hfl

tot which appears in the LLG
equation (28) is inversely proportional to the number of
elementary magnetic moments in the system, that is, to the
system volume.

The relation (30) can also be understood as the statement
that with increasing particle volume the importance of
thermal fluctuation decreases, in accordance with an intuitive
picture of Brownian motion.

Already here we would like to point out, that the increase
of the noise power (30) with the decreasing particle vol-
ume just discussed has serious consequences for numerical
micromagnetic simulations. The random field Hfl present in
the LLG equation of motion is the main factor, which limits
the simulation time step when an algorithm with the built-
in adaptive step-size control is used (which should always
be the case). The reason is quite simple: fluctuation field,
being a random process, is not a smooth function of time
and space, which naturally strongly diminishes the efficiency
of any numerical integrator. It can be even shown that the
order of a numerical integration scheme applied to a stochas-
tic equation is usually a square root of the order of the same
scheme applied to an ordinary differential equation (Kloeden
and Platen, 1995). Hence, the growth of the mean fluctuation
field amplitude with the decreasing discretization cell volume

(entering into (30) instead of the particle volume) enforced
by the relation (30) leads to the decrease of the integration
time step in micromagnetic simulations on finer grids, which
should be always kept in mind by estimating simulation time
basing on the data obtained on coarser grids.

3.2 Noise correlations for an interacting system:
general theory

The most interesting question concerning the random field
concept used to simulate magnetization dynamics under the
influence of thermal fluctuations is the following: can the
random field components on different spatial locations (dif-
ferent discretization cells) still be considered as independent
(uncorrelated) random variables, despite the strong interac-
tions between magnetic moments? The hand-waving argu-
ment that this interaction should not influence the correlation
properties of random fields, because all the interaction kinds
are already included in the deterministic part of the effec-
tive field Hdet cannot be considered as fully satisfactory.
For example, in a system of interacting particles moving in
a viscous media, random forces acting on different parti-
cles should be treated as correlated ones to ensure correct
statistical properties of such systems (see, e.g., Ermak and
McCammon, 1978). For this reason, we have to resort to a
general theory which allows to evaluate noise correlations in
interacting many-particle systems in a rigorous way.

This theory operates with the so-called thermodynamically
conjugate variables (Landau and Lifshitz, 1980) (which
should not be confused with the conjugate variables known
from quantum mechanics) and we repeat here briefly the
major points of this concept to make this review self-
contained. In short, we consider a system which state is fully
characterized by a set of N variables {x = x1, x2, . . . , xN }
chosen so that their values at equilibrium are zero: x0 = 0. If
the system fluctuates, that is, the values of system variables
deviate from these equilibrium values and change with
time, then the time derivatives dxi/dt can be expressed as
functions of instantaneous values of x(t) as ẋi = fi(x). If the
deviations from the equilibrium are small, we can expand the
functions fi around x = 0 and maintain only the first order
terms in small quantities xi (at equilibrium in the absence of
thermal fluctuations ẋi = 0), obtaining a system of first-order
differential equations describing the relaxation of the system
variables to their equilibrium values as

dxi

dt
=

∑
k

�ikxk, where �ik = ∂fi

∂xk

(50)

To account for thermal fluctuations, we introduce into (50)
random forces ξ i(t) which are assumed to be responsible for
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the fluctuations of the system variables:

dxi(t)

dt
=

∑
k

�ikxk(t) + ξ i(t) (51)

Assuming that the correlation times of these forces are
much less than all characteristic system relaxation times,
we can write the correlation functions Kik(t) of the random
forces as 〈ξ i(0)ξk(t)〉 = 2Cik·δ(t). The problem is to calcu-
late the correlation coefficients Cik in order to obtain from
the system (51) correct statistical properties of the system
fluctuations.

It turns out that the correlation matrix Cik can be
expressed in the simplest way when the system (51) is
rewritten in terms of thermodynamically conjugate variables
{X = X1, X2, . . . , XN } defined as derivatives of the system
entropy S over the ‘initial’ variables x: Xi = −∂S/∂xi . Near
the equilibrium the difference between the system entropy S

and its maximum (equilibrium) value Smax can be expanded
over small deviations xi : S − Smax = − 1

2

∑
i,k βikxixk , so

that thermodynamically conjugate variables Xi are linear
functions of {x}:

Xi = − ∂S

∂xi

= βikxk, or X = β̂x (52)

where β̂ = {βik}. Substituting x = β̂
−1

X into the sum on the
right-hand side of (51), we obtain the stochastic equations for
thermal fluctuations of our system near its equilibrium state
in the form

dx
dt

= −�̂x + ξ = −(�̂·β̂−1
)X + ξ

= −�̂·X + ξ , or (53)

dxi

dt
= −

∑
k

�ikXk + ξ i (54)

with the matrix �̂ = {�ik} defined as �̂ = �̂β̂
−1

.
The usefulness of these transformations becomes apparent

when we express the correlation coefficients of the random
forces Cik in terms of matrices �̂, �̂, and β̂. Corresponding
derivation for the many-variable case is quite tedious, so
we restrict ourselves to the system characterized by a single
variable x and its conjugate X = −∂S/∂x = βx. Such a
system is described by the relaxation equation

dx

dt
= −�x(t) + ξ(t) (55)

The temporal correlation function of x defined as ϕ(t −
t ′) = 〈x(t)x(t ′)〉 may depend on the difference t − t ′ only

(stationary fluctuations) and can be easily found multiply-
ing (55) by x(t ′), performing statistical averaging 〈· · ·〉
and taking into account that the values of x(t ′) and ξ(t)

are uncorrelated. The result is ϕ(t) = 〈x2〉 exp(−λ|t |) =
(1/β) exp(−�|t |), where the mean square of x was evaluated
from its probability distribution w(x) exp{S(x)} using the
above mentioned quadratic expansion S − Smax = −(β/2)x2

near its maximum.
Denoting the Fourier transform (FT) of x(t) as x̃(ω), we

rewrite the definition of φ(t) as

ϕ(t − t ′) = 〈x(t)x(t ′)〉

= 1

(2π)2

∫∫
〈x̃(ω)x̃(ω′)〉e−i(ωt+ω′t ′)dωdω′ (56)

The statement that the CF ϕ(t − t ′) may depend on the
time difference only (see above) requires that the FT prod-
uct in (56) has the form 〈x̃(ω)x̃(ω′)〉 = 2π ·Px(ω)·δ(ω +
ω′). Here Px(ω) is the spectral power of x(t) and is,
according to (56), the Fourier transform of its correla-
tion function ϕ(t) = 〈x(t)x(0)〉 (Wiener–Khinchin theorem).
For ϕ(t) = (1/β) exp(−�|t |) the simple integration gives
Px(ω) = 2�/β(ω2 + �2).

Now we apply the same method to calculate the correlation
function of the random force. Expressing ξ(t) via its FT
ξ̃ (ω), (due to (55) we have ξ̃ (ω) = (� − iω)x̃(ω)), and using
the definition K(t − t ′) = 〈ξ(t)ξ(t ′)〉, we obtain

Kξ(t − t ′) = 1

(2π)2

∫∫
〈ξ̃ (ω)ξ̃ (ω′)〉e−i(ωt+ω′t ′)dωdω′

= 1

(2π)2

∫∫
(λ − iω)(λ − iω′)〈x̃(ω)

× x̃(ω′)〉e−i(ωt+ω′t ′)dωdω′

= 1

2π

∫
(λ2 + ω2)Px(ω)e−iωtdω (57)

where by the last transformation the property 〈x̃(ω)x̃(ω′)〉 =
2π ·Px(ω)·δ(ω + ω′) was used. Equation (57) means that the
spectral power of the random noise fluctuations Pξ (ω) is
related to the spectral power Px(ω) of the x-fluctuations via
Pξ(ω) = (ω2 + �2)Px(ω). Hence the random force spectrum
Pξ(ω) = 2�/β is frequency independent, as it should be for
the quantity with the CF K(t) = 〈ξ(t)ξ(0)〉 = (2λ/β)·δ(t).

In terms of the conjugate variable the relaxation equation
for a single-variable system reads dx/dt = −�·X(t) + ξ(t),
so that ξ̃ (ω) = �·X̃(ω) − iωx̃(ω). The procedure identical
to (57) results in the relation Pξ(ω) = ω2Px(ω) + �2PX(ω)

between the spectral powers of the random noise, x(t) and its
conjugate X(t). The spectrum PX(ω) = 2β�/(ω2 + �2) can
be found from the equation dX/dt = −�X(t) + ξ(t)/β for
X(t) (it follows from (55) and X = βx). Combining Px(ω)
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and PX(ω) into the noise spectrum Pξ (ω) and using the

relation � = �/β (analogue of matrix relation �̂ = �̂β̂
−1

),
we obtain Pξ(ω) = 2�, so that 〈ξ(t)ξ(0)〉 = 2�·δ(t).

The whole exercise presented in the preceding text makes
real sense only for the many-variable case (random noise
correlations as a function of � can be obtained for a single-
variable system immediately from the equation dx/dt =
−�x(t) + ξ(t) and the relation � = �/β). For a system
described by many variables, however, we need a set of
CF’s ϕik(t) = 〈xi(t)xk(0)〉 and their FT’s P

(x)
ik (ω). The sys-

tem of differential equations for these CF’s dϕik(t)/dt =∑
l λilϕik(t) is transformed into the system of linear alge-

braic equations for P
(x)
ik (ω). Solving this and analogous sys-

tem for spectral powers P
(X)
ik (ω) of the conjugates, using of

the relations between the FT’s of noise components, initial
and conjugate variables ξ̃ i (ω) = ∑

k �ikX̃k(ω) − iωx̃i(ω)

(which follows from dxi/dt = − ∑
k �ikXk(t) + ξ i(t)) we

obtain the result P
(ξ)
ik (ω) = �ik + �ki . Hence the required

correlation properties of the random noise components are

〈ξ i(t)ξ k(0)〉 = (�ik + �ki)·δ(t) (58)

which is a direct generalization of the single-variable relation
〈ξ(t)ξ(0)〉 = 2�·δ(t).

The simplicity of the relation (58) which gives the
correlation coefficients of the random noise matrix directly
in terms of the elements of �̂-matrix is the reason to
use equation (54) where the stochastic motion of a system
near its equilibrium state is described using the conjugate
variables {X}.

The relation (58) can be used to derive correlation prop-
erties of the random noise in a very important particular
case, which includes also micromagnetic models. To do this,
we begin with the important remark that our starting point,
namely the relaxation equations (50) for the system variables
are not the equation of motion derived from some physical
formalism (like Newton laws or Lagrange mechanics), but
are merely a direct consequence of the mathematical assump-
tion that the relaxation rates dxi/dt of the system variables
near its equilibrium state can be expanded in terms of small
deviations {x} from their equilibrium values. Equations (50)
maintain only the first-order terms of this expansion.

For many physical system the expansion coefficients
�ik may be given in a more specific form, which allows
further progress by evaluating the correlation matrix 〈ξ iξ k〉 =
(�ik + �ki). First we note, that the entropy change by the
system deviation from its equilibrium state may be expressed
via the minimal work Amin required to transfer the system
from equilibrium into the state with the entropy S as S −
Smax = −Amin/kT (see, e.g., Landau and Lifshitz, 1980).
This allows us to calculate conjugate variables as derivatives
of this work: Xi = −∂S/∂xi = (1/kT )·(∂Amin/∂xi).

Further, for a wide class of physical systems this minimal
work Amin is equal to the energy difference E − E0 between
the system energy in the equilibrium state E0 and in the given
state E, which can be also expanded near the equilibrium
state as

E − E0 = 1

2
+

∑
i.k

aikxixk (59)

so that

Xi = 1

kT

∂Amin

∂xi

= 1

kT

∂E

∂xi

= 1

kT

∑
k

aikxk (60)

which means that the matrix {βik} from the definition (52)
in this case is β̂ = â/kT .

If the deterministic motion of the system can be described
by the Newtonian equations with the inertial term neglected,
that is, in the form ηi ·dxi/dt = Fi , then, evaluating the forces
as Fi = −∂E/∂xi = − ∑

k aikxk , introducing particle mobil-
ities as inverses of the corresponding friction coefficients
κi = 1/ηi , and adding random forces to the right-hand side
of the equation of motions, we obtain these equations in the
form

dxi

dt
= −κi

∑
k

aikxk + ξ i (61)

where the random forces ξ i are related to the forces Fi

used in (35) via ξ i = Fi/κi . Comparing this system to the
relaxation equations (51), we find that in this case �̂ =
κ̂diagâ, where the diagonal matrix κ̂diag contains mobilities κi

on its main diagonal. Substituting �̂ = κ̂diagâ and β̂ = â/kT

into the definition of the matrix �̂ = �̂β̂
−1

, we arrive at the
important result

�̂ = kT ·κ̂diag (62)

This means that for a system where (i) the minimal work
required to bring it out of the equilibrium is equal to
the corresponding energy change and (ii) the relaxation of
the system coordinates can be expressed via the damped
equations of motion, the correlation matrix of random forces
acting on different variables

〈ξ i(t)ξ k(0)〉 = (�ik + �ki)·δ(t)
= 2κi ·kT ·δik·δ(t) (63)

is diagonal. This property is independent on the specific
expression of the interaction energy E{x} between the
particles, which means that for such a system random noise
components are uncorrelated despite the presence of an
interparticle interaction.
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3.3 Noise correlations for an interacting system:
application to micromagnetic simulations

Using the formalism developed above, we shall rigorously
demonstrate in this subsection that physical correlations
between the random fields on different cells or between the
random field components on one and the same cell are absent.

The formalism from the previous subsection may be
applied directly to micromagnetic Langevin dynamics sim-
ulations of magnetization fluctuations in a thermodynamic
equilibrium. Although the situation in micromagnetics is
slightly more complicate than for systems discussed in
Section 3.2 (due to the presence of a precessional term),
a complete description of random field correlation properties
is nevertheless possible.

For a micromagnetic system the variables {x}, which deter-
mine its state are the magnetization projection. Here we
consider a system which is already discretized into finite ele-
ments (cells) and denote the projections of the magnetization
inside the i-th cell as Mα

i , α = x, y, z. The most important
step now is the establishing of the corresponding conjugate
variables. Comparing the definition of the deterministic effec-
tive field

Hdet
i = − 1

�Vi

∂E

∂Mi

, or

H det
i,α = − 1

�Vi

∂E

∂Mα
i

(α = x, y, z) (64)

appearing in the LLG equation for a discretized system

dMi

dt
= −γ ·

[
Mi × (Hdet

i + Hfl
i )

]
− λ· γ

MS
·
[
Mi ×

[
Mi × (Hdet

i + Hfl
i )

]]
(65)

with the definition (60) of the conjugate variables Xi =
(1/kT )(∂E/∂xi), we immediately see that the variable Xα

i

conjugate to the projection Mα
i is simply proportional to the

corresponding effective field projection:

Xα
i = −�Vi

kT
·H det

i,α (66)

The direct consequence of this proportionality is the
absence of correlations between the random field projection
on different discretization cells, because in the LLG equation
of motion for the magnetization of the i-th cell only the effec-
tive field projections for the same cell (and hence – conjugate
variables with the same index i) do appear. This means that
the matrix elements �

αβ

ik from the system (54) with differ-
ent cell indices i �= k are automatically zero, ensuring the
absence of intercell correlations according to (58).

To find out, whether any correlations between the random
field components on one and the same cell do exist, some
technical work should be done. To simplify the treatment, we
assign to each cell its own coordinate system with the 0z-
axis parallel to the equilibrium direction of the cell moment.
The quadratic energy expansion around the equilibrium
magnetization state

E − E0 = 1

2

∑
i,j

∑
α,β=x,y

aik ·�Mα
i �M

β

j (67)

will then include small deviations �Mα
i � Mz

i ≈ MS (from
zero) of the x and y magnetization components only,
because the magnitude of the cell magnetic moment should
be conserved. The deterministic effective field evaluated
according to (64) will have on each cell also only x and y

components H
x(y)

i which will be of same order of magnitude
as �Mα

i . Writing the LLG equations of motion (65) for
�Mx

i and �M
y

i , neglecting the terms �M
x(y)

i ·H fl
i,z which

are small compared to Mz
i ·H fl

i,x(y) (because �Mα
i � Mz

i )

and linearizing the resulted equations with respect to small
deviations �Mx

i ≡ Mx
i and �M

y

i ≡ M
y

i , we obtain the
system

1

γMS

dMx
i

dt
= +(H

y

i,det + H
y

i,fl) + λ(Hx
i,det + Hx

i,fl) (68)

1

γMS

dM
y

i

dt
= −(Hx

i,det + Hx
i,fl) + λ(H

y

i,det + H
y

i,fl) (69)

It is evident from these equations that the coefficients �
αβ

ik

for α �= β obey the relation �
xy

ii = −�
yx

ii , so that the cross-
correlation coefficients of the fluctuation field projections
on the given cell are identically zero: C

xy

ii = C
yx

ii ∼ (�
xy

ii +
�

yx

ii ) = 0. This property, being obtained in our specific
coordinate system, should remain the same in any other
coordinates due to the space isotropy. Hence there are no
physical correlations neither between the random fields on
different cells nor between the random field components on
one and the same cell. This result was obtained also in
Chubykalo et al. (2003) with a somewhat more complicated
method.

Note that this statement does not apply to artificial (having
nonphysical nature) correlations between the random fields
on different cells that appear due to the finite-element
discretization of an initially continuous problem. This topic
is discussed in the next subsection.

∗ ∗ ∗

A very interesting theme is the discussion of the correlation
properties of the random thermal fields in micromagnetics
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from a point of view of the fluctuation-dissipation theorem
(FDT). Due to the space limitations we preferred not to
include this topic into the current review, because it requires a
careful and detailed discussion supplemented by a substantial
amount of the readers theoretical knowledge. A very trans-
parent and clear discussion of this topic at a high scientific
level can be found in Smith (2001).

4 DISCRETIZATION EFFECTS IN
DYNAMIC MICROMAGNETIC
SIMULATION

4.1 Discretization effects for T = 0

In this subsection, we discuss the influence of a finite-element
representation of the continuous micromagnetic problem
(discretization) on the magnetization dynamics observed in
numerical simulations performed without taking into account
thermal fluctuations, that is, for T = 0.

To demonstrate the importance of the discretization effects
we have chosen the following problem: we study the switch-
ing dynamics of a nanoelement with lateral sizes Lx × Lz =
400 × 600 nm, thickness h = 5 nm (our 0xz-plane coincides
with the element plane), MS = 1000 G and exchange stiff-
ness A = 10−6 erg cm−1. To simplify our task, we have
set the magnetocrystalline anisotropy to zero. The switch-
ing of this element is simulated integrating the LLG
equation (1) using an optimized Bulirsch–Stoer algorithm
with the adaptive step-size control. We start from the
S-type remanent state applying at t = 0 the external field
H = Hzez with Hz = −200 Oe; this field is well beyond

the corresponding quasistatic switching field Hsw ≈ −80 Oe.
To study the discretization effects simulations were done
for five sequentially refined grids (Nx × Nz = 40 × 60, 60 ×
90, 80 × 120, 120 × 180, 200 × 300) with the same (1:1)
aspect ratio of the grid cell.

The switching process for the most interesting low
damping case λ = 0.01 is shown in Figure 1(a) (grid Nx ×
Nz = 120 × 180): it starts with the reversal of closure
domains near the short element borders, proceeds via the
reversal of the central domain and is completed by the ‘flip’
of narrow domains near the long sides.

To emphasize the importance of the discretization effects
we have compared results for several grids listed above. In
Figure 1(b) we present corresponding mx(t) dependencies,
because in our geometry the influence of the discretization
effects can be most clearly seen on this projection. It can be
clearly seen that the remagnetization curves do not converge
to any limiting curve up to the finest grid Nx × Nz = 200 ×
300. The effect is even qualitative, as it can be seen from the
comparison of final states (mx-gray-scale maps on the right
in Figure 1(b)) for all discretizations Nx × Nz ≤ 120 × 180
and for Nx × Nz = 200 × 300.

This discrepancy can not be attributed to an insufficient
discretization of the interaction (energy) terms, because
already for a moderate grid Nx × Nz = 80 × 120 the cell
sizes �x = �z = 5 nm are smaller than our characteristic
micromagnetic length ldem = (A/M2

S)1/2 = 10 nm. We have
also verified starting from the grid Nx × Nz = 60 × 90
quasistatic hysteresis loops did not change when the grid
was refined further.

The reason for a significant modification of the switch-
ing process by the grid refinement is a strong influence

t
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Figure 1. Switching of a thin ‘soft’ magnetic element (400 × 600 × 5 nm) with a low damping (λ = 0.01) in a field Hz = −200 Oe starting
from the S-type remanent state: (a) time-dependencies of all magnetization projections for the discretization Nx × Nz = 120 × 180(mz-
grey-scale maps for several times τ = tγMS are shown). (b) mx time dependencies simulated using various grids as shown in the legend.
(Reproduced from D.V. Berkov et al., 2002.  2002 with permission from IEEE.)
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of magnetic excitations with a short wavelength. For the
static case, it is sufficient to discretize the system using
the mesh size somewhat smaller than the characteristic
(exchange or demagnetizing) magnetic length of the mate-
rial. For dynamics it is, generally speaking, not true. Even
if the mesh is fine enough to represent all the features
of the starting magnetization state, during the remagnetiza-
tion process magnons with the wavelengths shorter than the
grid cell size may play an important role, so that magnons
with decreasing wavelengths appear when the remagneti-
zation proceeds. As soon as the grid is unable to sup-
port these magnons, simulations became inadequate (Berkov,
2002a). This means that in such situations dynamical sim-
ulations on a given lattice are valid up to some maxi-
mal time duration.

The problem emphasized in this subsection requires
further thorough investigation, because recently the so-
called spin-injection driven magnetization dynamics was
predicted theoretically and discovered experimentally (see
the review of Miltat, Albuquerque and Thiaville, 2001
in this Volume). It has been shown that when the mag-
netization dynamics is excited by a spin polarized cur-
rent, both (i) large deviations of the magnetization from
its equilibrium position and (ii) quasichaotic magnetization
dynamics (where spatial variations of the magnetization are
very fast) are possible and even represent quite common
features of corresponding remagnetization processes. This
rapidly developing topic with potentially very rich appli-
cations makes the study of numerical artifacts due to the
interplay of the discretization grid with short-wavelength
magnons really important.

For systems with larger dissipation the effect demonstrated
above may be absent due to a much smaller decay times
of the short-wave magnons (so that they do not play any
significant role by switching).

4.2 Influence of the discretization on the random
field correlations

We proceed with the consideration of discretization effects on
the magnetization dynamics simulated at finite temperatures,
that is, with the fluctuation field Hfl(r, t) included into the
LLG equation. The standard assumption (29) that this field
is δ correlated in space and time may become invalid due
to the following effect: as pointed above, by discretizing a
continuous magnetic film we exclude all magnons with the
wavelength smaller than the grid cell size � = min(�x, �z).
However, these magnons can still have a mean free path
much larger than the grid cell size, thus causing substantial
correlations especially of the exchange fields on neighboring
cells. Although these excitations cannot be included into
simulations on the given grid explicitly, it is possible to
take them into account as an additional contribution to
the fluctuation field Hfl with the corresponding correlation
properties.

To compute the correlation function (CF) of the effective
field produced by such short-wave magnons, we have first
performed simulations (with the white noise only) solving
LLG equations at the grid which was finer than the ‘actual’
grid intended to be used for final simulations. Then from the
total effective field produced at this fine grid all contributions
with the wavelength larger than the cell sizes of the ‘actual’
grid � were cut out, so that only magnons with short
wavelengths λmag ≤ � remained. Afterwards magnetic field
generated by these short-wave magnons was calculated and
averaged over all subcells inside the given cell of the actual
simulation grid. Finally, the correlation properties of this
averaged field were evaluated (Berkov and Gorn, 2004).

The resulting CF has a quite complicated form both in
space (Figure2a) and time (Figure 2b) and can be roughly
described as exponentially decaying oscillations. Both the
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Figure 2. Correlation functions (CF) of the x component of the random field Hfl resulting from the short-wave magnons. (a) 2D spatial
CF, (b) Temporal CF on one and the same cell for various dissipation constants λ. (Reproduced from Berkov et al., 2004, with permission
from Elsevier.  2004.)
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time and space oscillation periods are determined by the
corresponding properties of the magnons with the short-
est wavelength available for the ‘actual’ grid. The space
decay length depends mainly on the ‘quasistatic’ magnetic
system parameters like the saturation magnetization and
exchange constant, whereas the decay time is determined by
the damping λ.

To take into account the influence of the short-wave
magnons which are cut off by the given grid, one should,
strictly speaking, perform simulations on this grid by solving
the SDE system (20) with both the standard white noise term
and an additional colored noise with correlations imposed by
the field of these short-wave magnons. For this purpose it is
necessary to implement an algorithm, which could generate a
Gaussian random noise with any given correlation function.

Several methods for generation of such a noise are
available. Matrix methods (James, 1980) can generate ran-
dom sequences with arbitrary given CF, but are very time
and storage consuming. Linear Langevin equation (Garcia-
Ojalvo and Sancho, 1994) or the so-called ‘physical’ meth-
ods (simulation of a simplified system without long-range
interactions) are fast, but can generate only noise with
monotonously or regularly oscillating exponentially decreas-
ing CFs. These methods may be in principle applied to
micromagnetic systems, because correlations caused by the
short-wave magnons are mostly oscillating and exponentially
decreasing.

However, correlation functions like those shown above
still exhibit significant irregularities, which cannot be repro-
duced by ‘physical’ method. In this case, some version of
a spectral method (Romero and Sancho, 1999) should be
used, because this method can generate arbitrarily correlated
random numbers. The method is based on the usage of the
temporal and spatial FT of the required correlation function

which after the multiplication with the so-called anticor-
related (in the Fourier space) random numbers gives the
Fourier image of the random number field with requested
correlations. Their inverse FT provides the requested ran-
dom numbers themselves (Romero and Sancho, 1999). The
important disadvantage of the method is that the com-
plete correlation matrix should be stored (for a spatially
2D system our the dimension of the this matrix would be
Nx × Nz × Lt , where Lt is the number of time steps), requir-
ing large memory resources. For this reason, in most cases the
usage of so-called ‘external storage’ of the Fourier transform
is unavoidable (Press, Teukolsky, Vetterling and Flannery,
1992).

4.3 Discretization and the density of magnon
states

Finite-element discretization of a micromagnetic system
qualitatively affects the spectral power its thermal excitations,
so this question should be addressed here in detail. To present
the main point as transparent as possible, we consider a
simplest model: a square region of an extended thin film
(periodic boundary conditions are assumed) in an external
field perpendicular to the film plane and neglect anisotropy
and magnetodipolar interactions.

A spectrum of equilibrium thermal magnetic excitations
can be efficiently computed using the Langevin dynamics
(Berkov and Gorn, 2005). Starting from the saturated state
along the external field we integrate the SDEs (20) till
the total energy does not change systematically with time
(equilibrium is reached). From this time moment we save the
trajectories of every cell magnetization during a sufficiently
long time (which depends on the desired accuracy and
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Figure 3. (a) Power spectrum of mx-oscillations for various discretizations. Cusps are the manifestations of the magnon DoS singularity
(right panel). The dashed rectangle represents the spectrum expected in the limit of very fine discretization for a low frequency region
available for the 40 × 40 discretization; (b) density of magnon states for the model (70). The cusp by ωc = ωmin + ωmax)/2 is the van Hove
singularity common for all 2D models with the cosine like ω(k) dependence. (Reproduced from Berkov et al., 2005, with permission from
Elsevier.  2005.)
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frequency resolution of the spectral power finally obtained).
Finally we perform the temporal FT of these trajectories and
averaging over several thermal noise realizations.

Corresponding results for a thin-film region with lateral
sizes 400 × 400 nm, thickness h = 5 nm, MS = 1000 G, A =
10–6 erg cm−1 placed in an external field Hext = 100 Oe are
presented in Figure 3(a), where oscillation power spectra
of mx projection at T = 10 K are shown for two different
discretizations. The most striking features of these spectra
are (i) sharp cusps in the middle and (ii) a shift of this cusp
towards higher frequencies when the grid is refined.

This result can be easily understood as follows. After the
in-plane discretization of the film into Nx × Ny cells with
the sizes �x and �y and volumes �V the system energy
E = Eext + Eexch is converted into the sum over cells i, j

E = −µ

Nx(y)∑
i,j=1

mij Hext
ij − 1

2
Jµ2

∑
〈i,j〉

(mimj ) (70)

where µ is the cell magnetic moment. The exchange constant
J in (70) depends on the exchange stiffness A and the grid
cell parameters as

J = A

M2
S ·�V

(
1

�x2
+ 1

�y2

)
(71)

As usual, the total oscillation power for the given fre-
quency ω in a thermal equilibrium is directly proportional
to the number of modes contributing to this frequency, that
is, to the magnon density of states ρ(ω). For a typical lat-
tice model described by the energy (70) this density of
states is well known. Namely, the quadratic expansion of
(70) over small magnetization deviations from the ground
state (small temperature or large external field limit) leads
to the eigenfrequencies ωpq = γ ·(Hext + µJ ·fpq) depend-
ing on the eigenmodes wave vector indices p and q via
the sum of cos functions as fpq = 2·(2 − cos(2πp/Nx) −
cos(2πq/Nz)), which is common for all 2D lattice mod-
els with the nearest-neighbors harmonic interaction. If the
eigenfrequencies depend on the wave vectors in a cosine like
manner, then the density of states (Figure 3b) contains the
famous van Hove singularity in its middle, which is clearly
visible in both spectra in Figure 3(a) as a cusp. The spec-
trum shift toward higher frequencies when the discretization
is refined follows simply from the fact that the eigenfre-
quencies ωpq = γ ·Hext + µJ ·fpq), being proportional to the
exchange constant J , increase according to (71) as an inverse
square of a cell size when a mesh is refined.

The actual excitation spectrum of a real system (which we
attempt to simulate) also contains such a cusp (a real system
is discrete at the atomic level) but for frequencies determined
by the interatomic distances and thus absolutely unavailable

for simulations. This means that the correct spectrum of the
continuous thin film model in the frequency region available
for micromagnetic simulations is nearly flat as shown by the
dashed rectangle in Figure 3(a). Hence, in order to obtain
adequate results for equilibrium system properties using such
simulations, one should either work in the frequency region
where the spectrum is still approximately flat (ω � ωc) or
use a colored noise to correct the excitation spectrum of the
corresponding lattice model.

5 MAGNETIZATION RELAXATION OVER
HIGH ENERGY BARRIERS

For system with high energy barriers �E � kT direct
simulation of the magnetic moment trajectories using the
Langevin dynamics is fairly impossible. Such simulations
simply mimic the time-dependent system behavior so that
the simulation time necessary to overcome the barrier
exponentially growths with its height following the Arrhe-
nius–Van’t Hoff law (probability to overcome the barrier is
p ∼ exp(−�E/T ))–exactly as for real systems.

Nevertheless, methods for numerical simulations allowing
to study transitions over large barriers are highly desirable
from the practical point of view: they are the only way
to predict the long-time stability of the information storage
devices. To evaluate the transition probability p over such
barriers we must in the first place find the lowest saddle point
between the two metastable state of interest. Its height gives
us the corresponding energy barrier �E between these states,
allowing to estimate p from the Arrhenius–Van’t Hoff law.
Analytical methods for the saddle-point search exist only
for relatively simple magnetic systems (Braun, 1994, 2000;
Klik and Gunther, 1990). In principle, such a saddle point
can be found by solving a system of nonlinear equations
∂E/∂xi = 0 (where xi denote the variables of a system
configuration space), because at a saddle point all energy
derivatives ∂E/∂xi should be zero, but neither an energy
maximum nor a minimum should be achieved. However,
general methods for the solution of such systems are not
available, and there exist even arguments that there will never
be any (Press, Teukolsky, Vetterling and Flannery, 1992). For
this reasons numerical methods based on other principles are
required.

5.1 Time-temperature scaling method

The time-temperature scaling method (Xue and Victora,
2000) quantifies the rough idea that in some cases simu-
lations of the transition over high energy barriers involving
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macroscopically long waiting times at low temperatures can
be replaced by simulations over the same energy barrier,
but at a much higher temperature so that the transition time
(and hence – the simulation time) is much smaller and is
accessible for simulations.

To make this idea applicable in numerical simulations,
we need the quantitative relation between the time and
temperature scales. To establish such a relation, we start
from the simplest version of the Arrhenius–Van’t Hoff law
which states that the average transition time τ av depends on
the energy barrier height �E and the system temperature T

mainly exponentially via their ratio as

τ av = 1

ν0
exp

(
�E

kT

)
(72)

where the prefactor is defined using the so-called ‘attempt
frequency’ ν0. If the temperature dependence of this fre-
quency is weak compared to the exponent exp(−�E/kT )

then the product kT·log(τ av•ν0) remains constant for the tran-
sition over this barrier. This means that if a transition over
some barrier takes on average a long time τ long at a (low)
temperature Tlong, then in order to observe the same transi-
tion during a desired short time τ short we need to increase
the temperature up to the value Ts/l which is related to the
quantities introduce above via

Ts/l log(ν0τ short) = Tlong log(ν0τ long) (73)

To calculate from this equation, the scaled temperature Ts/l

which we should use in simulations if we would like to
reduce our simulation time from the inaccessible value τ long

down to τ short, we need to determine the attempt frequency
ν0 for the system under study. Analytical formulae for ν0

are available only for the simplest systems like a single-
domain particle (Brown, 1963b). For this reason Xue and
Victora (2000) have proposed the following trick. They have
introduced a new time τ ref which is much larger than the
short time τ short (which we would like to use for final
simulations), but still small enough so that simulations during
this time are possible and the desired transition occurs during
the time τ ref at some intermediate temperature Tref. The
first step for the determination of the attempt frequency ν0

(and hence – the temperature Ts/l) is the simulation of a
system at the temperature Tref during the time τ ref, whereby
some physical property of the system is determined or some
dynamical process in the system is recorded. Then one should
perform several simulation runs at different temperatures
during the short time τ short and find the temperature Ts/r

for which the process recorded at Tref during the time τ ref

proceeds as similar as possible to the process observed during
the short time τ short. This means, that the corresponding times

and temperatures are connected via the same relation as (73),
namely

Ts/r log(ν0τ short) = Tref log(ν0τ ref) (74)

This latter relation can be used to extract the attempt
frequency ν0, because all other quantities here are known.
Determination of ν0 from (74) and its substitution into
(73) leads to the following expression for the required high
simulation temperature Ts/l:

Ts/l = Tlong + (Ts/r − Tref)·Tlong log(τ long/τ short)

Tref log(τ ref/τ short)
(75)

Simulations at this temperature during the time τ short should
now reproduce the behavior of the system under study at
the low temperature Tlong during the time τ long which is
exponentially larger than τ short due to the relation (73).

Xue and Victora have applied their algorithm to the simu-
lations of the hysteresis loops at various field sweep rates R

(which served as inverse time scales τ short etc.). A remark-
able agreement between the two numerically calculated loops
for the sweep rates 0.5 and 50 Oe nsec−1 was obtained and
the loop measured experimentally at R = 50 Oe sec−1 (i.e.,
nine orders of magnitude slower) could be successfully pre-
dicted (Xue and Victora, 2000). They have also simulated the
process of a bit decay in magnetic recording media (Xue and
Victora, 2001) over a macroscopically long time scale, which
is highly interesting for the development of high-density
magnetic storage.

Concluding this subsection, we note that the method
outlined above probably is not able to reproduce correctly the
magnetization dynamics for a system with low dissipation,
when the precession term in the LLG equation is really
important (results of Xue and Victora were obtained on
systems with moderate damping). The reason is that actual
simulations in this method are performed at temperatures
much higher that the actual system temperature, so that
the relation between the random (fluctuation) field and
the deterministic field is wrong. Another limitation of this
formalism is the usage of the relation (72), which is
valid only when the entropic contribution to the transition
probability (curvature of the energy landscape in the vicinity
of a saddle point and energy minima) can be neglected.

5.2 Rigorous evaluation methods for the energy
barrier height

In this subsection, we describe general numerical methods
for the evaluation of the energy barrier height between the
two metastable states. All methods aim to evaluate some
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kind of an optimal trajectory between these states and the
required energy barrier can then be calculated as the barrier
along this trajectory. The transition probability between the
energy minima in question can then be evaluated using
the general transition-rate theory (Hoenggi, Talkner and
Borkovec, 1990), whereby the features of the energy surface
near critical points may be also taken into account.

5.2.1 Minimization of a thermodynamical action
(Onsager–Machlup functional)

General idea
This method is based on the search for the most probable
transition path between the two energy minima by mini-
mizing the corresponding thermodynamical action derived
from the path-integral formulation of the problem. The
underlying idea (Onsager and Machlup, 1953) can be
explained considering a system of N particles with coordi-
nates xi(i = 1, . . . , N) and the interaction energy V (x)(x =
(x1, . . . , xN)) in a viscous fluid. Langevin equations for this
system are

ẋi = −∂V (x)

∂xi

+ ξ i(t), i = 1, . . . , N (76)

where we have neglected the inertial term for simplicity and
absorbed the friction constant into the time scaling. Langevin
forces ξ i are again assumed to be independent Gaussian
δ-correlated random variables: 〈ξ i(0)ξj (t)〉 = 2Dδij δ(t).

Due to these simple correlation properties the probability
of some particular noise realization {ξ i(t)}, i = 1, . . . , N

for the time period [0, tf] is (Onsager and Machlup, 1953);
(Bray and McKane, 1989)

P [ξ(t)] = A exp


− 1

4D

tf∫
0

∑
i

ξ 2
i (t)dt


 (77)

Rewriting the system (76) as ξ i(t) = dxi/dt + ∂V (x)/∂xi

and introducing the Jacobian J [x(t)] of the transformation
x → ξ , we immediately obtain that the probability to observe
a given trajectory x(t) for the transition A → B during the
time tf (xA(0) → xB(tf)) is

P [x(t)] ∼ J [x] exp

[
−S(x(t), tf)

4D

]
(78)

where the thermodynamical action S(x(t)) is defined as

S(x(t), tf) =
∫ tf

0
dt

∑
i

(
dxi

dt
+ ∂V (x)

∂xi

)2

(79)

It is obvious that the trajectory which minimizes the action
S(x(t)) provides the most probable (optimal) transition tra-
jectory xopt(t), along which the energy barrier for this tran-
sition can be found: �E(A → B) = Emax(xopt) − EA. The
minimization of the functional S(x(t)) can be performed
using various numerical methods which employ the dis-
cretization of the transition path x(t) thus reducing the task
of minimizing (79) to the problem of the minimization of a
many-variable function (see Berkov, 1998 for detail).

Unfortunately, the minimization of the functional (79) by
itself, being technically quite complicate, does not represent
a main problem when searching for an optimal physical
transition path. The main problem is the presence of many
‘false’ local minima of the functional (79), that is, the
existence of many trajectories between the states A and B

which minimize (79) but do not provide any information about
the corresponding energy barriers.

To explain why this is almost always the case we note that
for any path for which the conditions dxi/dt = ±∂V (x)/∂xi

are fulfilled (the plus/minus sign correspond to the down-
hill/uphill trajectory parts) provides an extremum to the
action (79) (Bray and McKane, 1989). This means that the
extremal trajectories for the action functional (79) go along
the gradient lines of the energy surface.

On a very simple 2D energy landscape shown in
Figure 4(a) both the solid line M1 → M2 and the dashed
line M1 → P2 → M2 deliver local extrema to the action for
the transition M1 → M2, because both paths proceed along
the gradient lines of the energy surface. Moreover, these
both extrema are local minima of the action; in fact, they
were obtained by minimizing (79) with the potential shown
in Figure 4 as a gray-scale map simply starting from dif-
ferent initial trajectories. However, the solid line trajectory
passes through the saddle point, giving the correct energy
barrier height (the ‘true’ optimal trajectory), whereas the
dashed line M1 → P2 → M2 goes via the energy maximum
supplying no useful information whatsoever (‘false’ optimal
trajectory). The next example shown in Figure 4(b) demon-
strates that even the value of the action (given by the sum of
heights which an optimal trajectory has to climb over) along
the ‘false’ optimal path (M1 → P2 → M2) may be smaller
than the corresponding value along the ‘true’ optimal trajec-
tory. Hence without a reliable algorithm able to distinguish
between these two kinds of optimal paths the whole method
is absolutely useless, because the number of ‘false’ opti-
mal trajectories exponentially growth with the complexity
of system.

An apparently straightforward possibility to discriminate
between these two cases is the analysis of the curvature ten-
sor of the energy surface at the points where the energy along
the optimal trajectory has local maxima: if the correspond-
ing matrix of the second energy derivatives has exactly one
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Figure 4. (a) ‘True’ (solid line) and ‘false’ (dashed line) optimal trajectories for a simple energy landscape. (b) An example of an
energy landscape, where the action (79) along the ‘false’ optimal path M1 → P2 → M2 may be even smaller than along the ‘true’ path
M1 → M3 → M2 (see text for details). (Reproduced from Berkov et al., 1998, with permission from Elsevier.  1998.)

negative eigenvalue, then this point indeed corresponds to a
transition saddle. This method, however, is not sufficiently
reliable due to a discrete representation of the continuous tra-
jectory and a finite accuracy by the determination of an ‘opti-
mal’ path. An alternative algorithm based on small ‘jumps’
away from the trajectory point with the highest energy in a
random direction and subsequent minimization of the system
energy starting from this new position, is described in detail
in (Berkov, 1998).

Another problem arises due to the presence of the tran-
sition time tf in the action (79) as the upper integral limit,
which should be known in advance to set the time step and/or
the number of time slices in the discretized action version;
this transition time is of course not known. Fortunately, the
barrier height determined from the discretized action turned
out to depend on the tf-value only slightly. For this reason
sufficiently accurate results could be obtained by minimizing
the discretized action using the small constant time step and
simply doubling the number of time slices until the relative
difference between the two barriers heights obtained for the
subsequent action minimizations becomes less than a certain
small threshold.

Implementation for magnetic systems
To apply this method to systems of interacting magnetic
moments we have to start with the magnetic counterpart
to the Langevin equation (76), namely, with the stochastic
Landau–Lifshitz–Gilbert equation of motion for magnetic
moments (20). The precession term in this equation affects, of
course, the optimal transition trajectory, but does not change
the system energy and hence it is reasonable to assume that
it does not change the barrier height for this transition (see
also our discussion of the string method below). For this
reason we neglect the precession term in (20) and obtain the

equation of motion for the magnetization unit vectors mi

dmi

dt
= −

[
mi ×

[
mi × (hdet

i + hfl
i )

]]
= −mi ·(mi ·htot

i ) + htot
i (80)

where all constants are again absorbed in the time unit, the
total field is htot = hdet + hfl and the normalization mi = 1
was used by the last transformation.

The conservation of the magnetic moment magnitude
enforces the transition to spherical coordinates (θ, φ) of m,
because only the random field components perpendicular to
m should be taken into account. Transforming all vectors
to the new coordinates with the z’-axis along m and the
x’-axis in the meridian plane of the initial spherical coor-
dinates (so that in the initial system mx = sinθ cosϕ, my =
sinθsinϕ, mz = cosθ), we obtain equations of motion for the
magnetization angles

∂θ i

∂t
= −∂E{�}

∂θ i

+ hfl
i,x′ ,

sin θi ·∂φi

∂t
= − 1

sin θi

·∂E{�}
∂φi

+ hfl
i,y′ (81)

where hfl
x′ and hfl

y′ are Cartesian components of the fluctuation

field hfl in the new coordinate system. Deterministic effective
field hdet is already contained in corresponding angular
derivatives of the magnetic energy E{�} (where {�} denotes
the set of all angles (θ i, ϕi)), which may include also
the interaction energy of any kind (i.e., exchange, dipolar,
RKKY, etc.).

The system (81) is fully analogous to (76) so that
under the same assumptions (Langevin field components
are independent Gaussian δ-correlated random variables) the
magnetization path in the � space which minimizes the
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thermodynamical action S for a magnetic system

S[�(t)] =
tf∫

0

dt
∑

i

[(
dθi

dt
+ ∂E{�}

∂θ i

)2

+
(

sin θ i ·dφi

dt
+ 1

sin θ i

·∂E{�}
∂φi

)2
]

(82)

provides the information about the energy barrier separating
the states �A and �B.

Application for magnetic nanocomposites
With this method we have calculated the distribution of
the energy barriers in a system of single-domain magnetic
particles (embedded in a nonmagnetic matrix) with the
uniaxial anisotropy and magnetodipolar interaction between
the particles. The most intriguing question for this system
is the influence of the magnetodipolar interaction on the
distribution density of the energy barriers ρ(E) (Hansen and
Morup, 1998; Dormann, Fiorani and Tronc, 1999), which
controls both the reversible and irreversible thermodynamics
of the system. To solve this question, we have computed
ρ(E) for various volume concentrations of the magnetic
phase, thus varying the interaction strength.

Calculations were performed for systems with high (β =
2 K/M2

S = 2.0), moderate (β = 0.5) and low (β = 0.2)
single-particle anisotropies. The energy barrier distributions
were accumulated from Nconf = 8 realizations of the particle
disorder; for each configurations about Ntrans = 200 transi-
tions between metastable states were analyzed. Correspond-
ing results are shown in Figure 5 were the distribution of the
reduced energy barriers ε = E/M2

S V are presented.
First of all, it can be seen that for low particle concen-

trations (≤ 1%)ρ(ε) consists of the relatively narrow peak
positioned at the value corresponding to the energy barrier
εsp = β/2 for a single particle moment flip, as it should be
for a weakly interacting system. The position of this single-
particle flip barrier is shown both in Figure 5 with the dashed
line. As expected, with increasing concentration the energy
barrier density broadens, but for the systems with the low
and high anisotropy this broadening occurs in a qualitatively
different ways. For the high-anisotropy case (Figure 5, right
column) the broadening of ρ(ε) with increasing concentra-
tion is accompanied by its shift toward lower energy barriers,
so that already for moderate particle concentration (≥ 4%)
almost all barriers lie below the value for a single particle.

For the system of particles with the low anisotropy
(Figure 5, left column) barriers both higher and lower
than a single particle barrier arise. However, the overall
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energy barrier spectrum clearly shifts toward higher energies
with increasing particle concentration. Detailed physical
explanation of this behavior can be found in Berkov (2002b).

It is also important to keep in mind that different transi-
tions cause different moment changes. The key question is
whether the magnitude of the moment changes is correlated
with the height of the corresponding energy barrier. If, for
example, the moment change tends to zero when the energy
barrier height for this particular transition decreases, small
energy barriers would not play any significant role in the
system thermodynamics, because corresponding magnetiza-
tion changes would be nearly undetectable. For this reason
we need a 2D mutual distribution of the energy barriers and
moment changes ρ(E,�m). Corresponding contour plots for
a system with the low anisotropy β = 0.2 and two different
concentrations are shown in Figure 6. For the low concen-
tration c = 0.01 the density ρ(E, �m) consists of a single
sharp peak positioned near the point (ε = 0.1, �m = 2.0),
which corresponds to a single-particle flip. From ρ(E, �m)

for the high concentration c = 0.16 it can be seen that,
although the moment changes for the low barriers are con-
centrated at somewhat smaller values than �m for the higher
ones, they do not tend to zero. Hence all transitions pro-
vide approximately equivalent contributions to the system
thermodynamics.

5.2.2 The string method

General idea
To explain the main idea of the string method (Ren and
Vanden-Eijnden, 2002), we start with the same basic equation

ẋi = −∇V (x) + ξ i(t), i = 1, . . . , N (83)

as for the action minimization method. It is intuitively clear,
that for a system which time evolution is described by this
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Figure 6. Mutual 2D distribution density ρ(E,�m) of the energy
barriers and moment changes for dilute (c = 0.01, left panel) and
concentrated (c = 0.16, right panel) system of magnetic particles
with β = 0.2. (Reproduced from D.V. Berkov et al., 2002.  2002
with permission from IEEE.)

equation, the path φopt (x) which connects the two given
metastable states A and B of the potential V (x) and goes
via a saddle point with the minimal energy barrier, satisfies
the condition

(∇V )⊥(φopt) = 0 (84)

In this notation (∇V )⊥(φ)denotes the component of
the energy gradient, which is perpendicular to a curve φ.
The physical sense of the statement (84) is that at any point
of the optimal transition path the energy gradient is perpen-
dicular to this path, with other words, the transition path
proceeds along the energy gradient lines (see also our dis-
cussion of the action minimization method given above). A
rigorous proof of this statement can be found in (Freidlin and
Wentzell, 1998).

Although the equation (84) is only the necessary, but
by no means the sufficient condition that the path φ goes
through the lowest energy barrier between A and B (see,
e.g., Figure 4a, where for the dashed line curve the condition
(∇V )⊥(φ) = 0 is also fulfilled everywhere), this equation
provides a useful hint how to find φopt starting from some
arbitrary path φ: one can simply ‘move’ this path with the
‘velocity’u = (∇V )⊥(φ)which is normal to the path curve,
until the stationary state of the system (given by the condition
u = 0) is reached.

To implement this idea, it is necessary to introduce some
parameterization of a path φ, so that the coordinates of a
point along the curve φ (in the N -dimensional configuration
space of our system) are represented as functions of some
parameter α: x1 = x1(α), . . . , xN = xN(α). Then, treating
the evolution of φ with the velocity u = (∇V )⊥(φ) as a
‘motion’ in a fictitious time t , so that the instantaneous
position of the path is given by the functions φ(α, t) =
(x1(α, t), . . . , xN(α, t)), we can write the corresponding
‘dynamical’ equation for φ(α, t) as (Ren and Vanden-
Eijnden, 2002)

∂φ(α, t)

∂t
= −(∇V )⊥(φ) = −[∇V (φ) − (∇V, eτ )eτ ] (85)

where the vector eτ is the unit tangent vector φ and thus its
components at the curve point characterized by the parameter
value α are

e(l)
τ = 1

‖xα‖ ·∂x(l)(α, t)

∂α
, ‖xα‖ =

√√√√ N∑
l=1

(
∂x(l)

∂α

)2

(86)

so that the expression in the square brackets on the right-
hand side of (85) is, as required, the component of the energy
gradient vector normal to φ.
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Numerical solution of (85) requires the discretization of
the path φ using some concrete parametrization. A significant
advantage of the string method is that this parametrization
can be chosen arbitrarily basing on the considerations of
either simplicity, or stability of a numerical method used
to integrate (86), or required accuracy for the energy barrier
value etc. The simplest choice is the ‘natural’ parametrization
of a curve using the parameter α equal to its normalized
arclength. In this case for a path starting at the point
A with the coordinates (x

(1)
A , . . . , x

(N)
A ) and ending at

B(x
(1)
B , . . . , x

(N)
B ) we have α(A) = 0 and α(B) = 1. Starting

from some smooth curve between A and B, we discretize it
into K+1 points equally spaced along the curve (for this
kind of parametrization!) where the k-th point along the
curve with coordinates xk is characterized by the parameter
value αk = k/K(k = 0, . . . , K). Calculating the derivatives
of the coordinates as functions of α by some finite-difference
approximation method, we compute the components of the
unit tangent vector (86) for the given position of a string
(at the given ‘time’ t) and make a ‘time’ step integrating
numerically equations (85).

Application to micromagnetic systems
By implementation of this formalism for a micromagnetic
system we encounter the same question as in the action min-
imization method: the dissipation term in the stochastic LLG-
equation indeed represents the gradient of the micromagnetic
energy (or, to be more precise, projection of this gradient into
the hyperplane normal to all magnetic moment vectors), but
the precession term does not. In their paper (Ren and Vanden-
Eijnden, 2003) devoted to the usage of the string method in
micromagnetism E et al. mention that they could prove that
the local minima and saddle points remain the same after
neglecting the precession term (unfortunately, this result is
cited in (Ren and Vanden-Eijnden, 2003) as ‘unpublished’).

E et al. have demonstrated the applicability of the string
method to micromagnetism in the papers (Ren and Vanden-
Eijnden, 2002, 2003), where they have studied the remagneti-
zation of a thin Permalloy nanoelement (200 × 200 × 10 nm3

nanoelement, discretized in-plane only) choosing the two
remanent S states with opposite magnetization orientations
as initial and final states of the transition over a barrier (an
external field was assumed to be absent). They could show
that there exist at least two possible paths for this transition.
The first path correspond to the magnetization switching via
the intermediate S states (rotated by 90◦ relative to the ini-
tial and final S states) flower state, flower states (which were
identified as saddle points) and the C state which was the
lowest energy minimum visited during the transition process.
The second transition path corresponded to the formation of
the two vortices, which propagation through the nanoele-
ment governed the switching process. The energy barriers

for this second path were found to be significantly higher
than for the first one. Another example briefly considered
in (Ren and Vanden-Eijnden, 2003) deals with the remagne-
tization of a rectangular prism with a square cross-section
(200 × 50 × 50 nm3, discretized in 3D), where also two pos-
sible transition paths for the switching between the two states
with the magnetization oriented (on average) along the two
opposite directions of the long prism axis have been found.

From the methodical point of view, the string method
has two significant advantages compared to the action
minimization. First, a thermodynamical action itself already
contains the first derivatives of the system energy (forces or
torques). Hence its minimization with any method employing
the derivatives of the function to be minimized (and only
such methods provide a reasonable convergence speed)
requires the evaluation of second derivatives of the system
energy, that is, its Hessian matrix. By the string method
which is based on the ‘equation of motion’ like (85), only
the first energy derivatives are required, so that computational
cost should be lower and the stability of the method higher
than for the action minimization. The second important issue
is the appearance of many undesired local maxima of the
action, as discussed in the previous subsection. In the string
method these maxima will probably play no significant role,
because each point of the string is moved according to the
equation (85) in the direction toward lower values of the
system energy, so that it is highly unlikely that the string
gets stuck at some ‘false’ metastable state like that shown in
Figure 4, because such a ‘false’ path always goes through at
least one energy maximum.

5.2.3 The elastic band method

Description of the method
The elastic band method, belonging to the so-called ‘chain-
of-states’ method for searching the saddle points in compli-
cate energy landscapes, is closely related to the string method
discussed above. The main initial idea (exactly as in the
discretized version of a string method) was to represent the
continuous path in the configuration space of a system under
study as a number of discrete states {Sk}(kd = 0, . . . , K)

and to build up an ‘object function’ of a type

Q =
K∑

k=1

V {Sk} + κ

K−1∑
k=1

(Sk − Sk−1)
2 (87)

Keeping the initial (k = 0) and final (k = K) states fixed
and minimizing this function with respect to the set of states
{Sk|k = 1, . . . , K − 1} should, on the one hand, lead to the
decrease of the energies of the states involved (given by the
terms V {Sk } in the first sum). On the other hand, the second
sum should prevent the neighboring states (along the path) to
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‘run away’ from each other (because the terms (Sk − Sk−1)
2

give the distances between the states in the configuration
space), thus keeping the discretized path reasonably smooth.
Together these two tendencies should provide the sequence of
closely positioned states (second sum) with the energy being
as low as possible (first sum), which from the qualitative
point of view obviously corresponds to the path over a saddle
point between the fixed initial and final states. The method
was named an ‘elastic band’ method, because the second term
in (87) exactly corresponds to the energy of elastic bands
(springs) with zero natural length and elastic constant κ ‘built
in between’ the neighboring states of the chain {Sk}.

In practice, this idea does not work really well: if the
elastic constant κ is chosen too large (elastic term dominates)
then the chain of states tends to ‘round the corners’ of the
energy landscape, trying to reduce the length of the chain
(distances between the neighboring states) on the cost of
increasing the potential energy of the chain states. If κ is
too small, then the elastic term is not able to prevent the
states from sliding into the potential minima (initial and
final states), so that the saddle point can be located with
a reasonable accuracy. The region of intermediate κ values
where the saddle point position of a continuous transition
path is reproduced by the chain (87) well enough, is usually
very narrow or may even not exist (see an excellent review
contained in Jónsson, Mills and Jacobsen, 1998). For this
reason the elastic band method, introduced in the middle of
the 1980th, was considered as unreliable a decade long.

The solution of both problems was suggested by Mills
and Jonsson (1994) (see Jónsson, Mills and Jacobsen, 1998
for a detailed explanation), who noted that both effects were
due to the ‘too physical’ understanding of the model (87).
Namely, by the minimization of the object function (87) both
the potential (due to the first sum) and elastic (second sum)
forces were fully taken into account using the straightforward
differentiation of the object function Q. By its constructed
Q fully mimics the energy of a set of ‘particles’ (states)
connected via springs with elastic constants κ and moving
in a potential landscape V . But the actual purpose of
this function is quite different from simply imitating the
behavior of the physical system just described: Q should be
constructed so that the chain of ‘particles’ (states) reproduces
as good as possible the optimal continuous path between the
two given energy minima, which goes from the starting to
the final state along the gradient lines of the potential V {x}.
Hence, Q fulfills its purpose well enough if (i) the first term
would move the states perpendicular to the gradient lines
(grad(V ) is normal to the optimal path, see above) and (ii)
the second term would produce only the force parallel to
the path (to ensure that the states stay close to each other,
it is sufficient to apply a force along the line connecting the
states). For this reason we can separate the effects of the

first (potential) and the second (elastic) terms by taking into
account (i) only that projection of the potential force which
is perpendicular to the path and (ii) only that projection of
the elastic force which is parallel to the path.

This leads to the ‘nudged elastic band’(NEB) model with
the ‘equation of motion’ for the state i in the form similar
to that of (85)

∂Sk

∂t
= −[∇V − (∇V, eτ )eτ ]Sk

+ (Fel
k , eτ )eτ (88)

where the first term in square brackets is fully analogous
to the corresponding term in equation (85) thus ‘moving’
each state in the direction normal to the transition path and
the second term represents the tangential projection of the
elastic force Fel (derivative of the second sum in (87)) which
takes care that the states remain close to each other in the
configuration space. During to the fact that the two terms on
the right-hand side of (88) are perpendicular to each other,
that is, fully decoupled, there exist now a wide range of the
elastic constants κ where the position of the saddle point
along the transition path can be reproduced with a nearly
arbitrary accuracy just by increasing the number of states
used to discretize a path.

Finally, we note that the quality of decoupling of the
two force contributions in (88) and thus – the quality of the
saddle point determination and the stability of the method
as a whole – crucially depend on the calculation accuracy of
the tangent vector direction eτ . For this reason large effort
has been devoted to the development of improved method
for the tangent determination for discretized curves (Jonsson
and Henkelmaan, 2000).

Micromagnetic simulations using the elastic band method
Up to our knowledge, first application of the NEB method
to micromagnetic simulations is due to Dittrich et al.,
(2002,2003a,b), Dittrich, 2003 and Dittrich, Thiaville, Mil-
tat and Schrefl (2003). In their first paper, Dietrich et al.
(Dittrich et al., 2002) describe their concrete implementation
of the general NEB algorithm for micromagnetics, which
involves a transition to the spherical coordinates of magnetic
moment (as really independent variables, see the discussion
above) and a proper finite-difference approximation of the
tangent vector for the discretized transition path.

In this first study Dittrich et al. (2002) noted that for
some simple systems the method works well even without
the spring force, that is, without the second term in (88).
This means that one can sometimes obtain a good approx-
imation to a saddle-point path simply by moving the states
of the discretized initial guess for the transition path along
the energy gradient projection perpendicular to the instan-
taneous trajectory configuration (we note in passing that
this simplified method has nothing to do anymore with the
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‘NEB’). In particular, in Dittrich et al. (2002) the energy
barriers calculated numerically for the system of two interact-
ing single-domain particles with uniaxial anisotropies were
found to agree well with the analytical results available for
this system. The ability of the method to find energy barriers
for (i) a coherent switching of a small (5 × 5 × 1 nm3) rect-
angular nanoelement, (ii) a switching of an elongated slab
(typical cross-section size 13 nm, length 70 nm) via the
domain wall motion, and (iii) magnetization reversal of a
piece of a granular magnetic media was also demonstrated.

Later Dittrich et al. have implemented also a complete
elastic band method (Dittrich et al., 2003a), including the
second (elastic) term into their ‘equation of motion’ for the
states in the chain. As expected, they have observed that
for every concrete problem there exist a broad range of the
elastic constant values where the height and position of a
saddle point is reproduced with a sufficiently high accuracy,
although for each new problem this region must be found
afresh. With this improved algorithm Dittrich et al. could
rigorously evaluate energy barriers arising due to the shape
anisotropy in triangular and square nanoplatelets, investigate
the increase of the energy barrier in a ferromagnetic grain
coupled to an antiferromagnet (a promising candidate for a
high-density recording media with improved thermal stabil-
ity) and identify several possible reversal modes in a MRAM
cell (Dittrich et al.,2003a,b; Dittrich, Thiaville, Miltat and
Schrefl, 2003).

More details about micromagnetic simulations performed
with this method can be found in the contribution Numerical
Methods in Micromagnetics (Finite Element Method),
Volume 2 of T. Schrefl to this volume.

An interesting topic which has been pursued by several
research groups in the last few years is the applicability of
the Monte-Carlo (MC) methods (Binder, 1986) for dynamic
micromagnetic simulations at finite temperatures. The major
advantage of modern MC schemes when applied to the
magnetization transition between various metastable states
is evident: The corresponding computation time does not
depend exponentially on the height of the energy barrier
separating these states, as it is the case for the Langevin
dynamics. However, there exist also several principal prob-
lems by the dynamical application of the MC methods. The
two most serious of them are: (i) the difficulty to establish
a relation between a MC step and a physical time and (ii)
proper inclusion of the magnetization precession, which is
also a highly nontrivial task, because the precession does not
lead to the change of the system energy and hence does not
affect the probability to accept a MC step. Recent methodi-
cal progress on this area can be found in Nowak, Chantrell
and Kennedy (2000), Chubykalo et al. (2003), and Cheng,
Jalil, Lee and Okabe (2005, 2006) and is reviewed in the
contribution of U. Nowak to this volume.

NOTES

[1] Note however, that the effective field itself Heff =
(1/V )·∂E/∂M is of course zero at equilibrium – up to
the component along the magnetization vector which
can be neglected because the magnetization magnitude
is assumed to be constant

[2] The deterministic Landau–Lifshitz–Gilbert equation
conserves the moment magnitude anyway. However this
is not automatically the case for its stochastic analogue.
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1 INTRODUCTION

The theoretical study of magnetization dynamics has been
the focus of considerable research for many years (Lan-
dau and Lifshitz, 1935; Gilbert, 1955, 2004; Kikuchi, 1956;
Callen, 1958; Mallinson, 1987; Wigen, 1994). Tradition-
ally, this study has been driven by the ferromagnetic
resonance problems (Damon, 1953; Suhl, 1957; Walker,
1957; Skrotskii and Alimov, 1959a) in which the main
part of magnetization is pinned by a strong constant
magnetic field, whereas only a small transverse compo-
nent of magnetization executes resonance motions caused
by radiofrequency (rf) fields. These small magnetization

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

motions are studied by linearizing the magnetization dynam-
ics equation and, for this reason, the literature on mag-
netization dynamics has been mostly concerned with the
linear magnetization dynamics studies. Recently, new direc-
tions of research have emerged that deal with large motions
of magnetization and require the analysis of the nonlinear
dynamics magnetization. These new directions are mainly
connected to the recent advance in magnetic storage tech-
nologies. The enormous increase in data storage density
and transfer rate has required the design and the realiza-
tion of magnetic devices in the nanoscale spatial range. In
these devices, the magnetization dynamics modes are usu-
ally approximately spatially uniform but undergo motions
which appreciably deviate from equilibrium. The study of
nonlinear quasi-coherent magnetization motion is particu-
larly relevant in such research as fast precessional switch-
ing (Acremann et al., 2000; Bauer, Fassbender, Hillebrands
and Stamps, 2000; Crawford, Kabos and Silva, 2000; Schu-
macher et al., 2003) of magnetization in thin films and mag-
netization dynamics induced by spin-polarized current injec-
tion (Berger, 1996; Slonczewski, 1996; Sun, 2000; Grollier
et al., 2001; Kiselev et al., 2003; Rippard et al., 2004), and
ferromagnetic resonance in nanomagnets and ultrathin mag-
netic films.

In this chapter, we will systematically apply and review
the methods and concepts of nonlinear dynamical system the-
ory relevant to the analysis of large magnetization motions
governed by the commonly used magnetization evolution
equation: Landau–Lifshitz equation. Precessional and damp-
ing switchings of magnetization and nonlinear ferromagnetic
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dynamics driven rf field are treated as very important applica-
tions. However, many results obtained for those applications
are of considerable interest in their own right. The chapter is
organized as follows.

Sections 2 and 3 deal with the theoretical aspects
of Landau–Lifshitz dynamics. First, the Landau–Lifshitz
equation is introduced as dynamical generalization of micro-
magnetic Brown’s equation and its general property are con-
sidered. Then, Landau–Lifshitz dynamics is treated as a non-
linear dynamical system defined on a sphere and the problem
of equilibria and geometric representation of dynamics is dis-
cussed. Special attention is paid to the conservative Landau–
Lifshitz dynamics and analytical expressions are derived for
this dynamics in terms of elliptic-type integrals.

Sections 4 deals with precessional and damping mag-
netization switchings. Analytical treatment of the damping
switching and the precessional switching for uniaxial mag-
netic particle is illustrated in details and a comparison of the
two switching techniques is presented in terms of switch-
ing speed. Then, a novel approach, based on the averag-
ing technique, to the analysis of magnetization relaxation to
equilibrium is presented. This approach is and results in a
differential equation for the free energy.

In Section 5, we will address the problem of the existence
of spatially uniform magnetization modes under far-from-
equilibrium conditions driven from an external rf field. In the
case of systems with uniaxial rotational symmetry subject
to a circularly polarized rf, remarkable conclusions can be
drawn (Skrotskii and Alimov, 1959a,b; Khapikov, 1992;
Träxler, Just and Sauermann, 1996). Indeed, the presence of
rotational symmetry has far-reaching consequences because
the equivalent dynamical system on the unit sphere is reduced
to autonomous form and the basic physical aspects of the
dynamics can be recast into corresponding topological and
geometric properties of the phase portraits of the Landau–
Lifshitz equation (Bertotti, Serpico and Mayergoyz, 2001).
The phase portraits of the dynamics and the associated
bifurcation diagrams exhibit an extremely rich and interesting
structure, and provide some nontrivial predictions concerning
periodic and quasiperiodic types of dynamical response as
well as nonlinear ferromagnetic resonance mechanisms.

2 MICROMAGNETICS AND
LANDAU–LIFSHITZ EQUATION

2.1 Fundamental equations

2.1.1 Brown’s equations and their dynamical
generalization

The study of magnetization dynamics in ferromagnetic
media is based micromagnetic Brown’s equations and their

dynamical generalizations (Brown, 1962, 1963; Aharoni,
1996; Bertotti, 1998; Hubert and Schäefer, 1998; Kron-
mueller and Faehnle, 2003; Landau and Lifshitz, 1984). This
material has been broadly discussed in another chapter (Gen-
eral Micromagnetic Theory, Volume 2) of this handbook
and here we shall limit ourselves to a brief introduction of
the main equations.

Micromagnetics is an highly nonlinear continuum theory
which takes into account effects on rather different spatial
scales: short-range exchange forces and long-range magneto-
static effects. The state of the ferromagnetic body is described
by the magnetization vector field M(r) which, for tempera-
ture considerably below the Curie temperature, satisfies the
following condition

|M(r)| = Ms(T ) (1)

which means that the magnitude of M(r) is spatially uni-
form and equal to the saturation magnetization Ms(T ) at the
given temperature T . The constraint expressed in equation
(1) reflects the fact that, at the smallest spatial scale com-
patible with the continuum hypothesis, the strong exchange
interaction prevails over all other types of force.

The direction of M(r) is in general nonuniform and, at
equilibrium, is determined by minimizing an appropriate
Gibbs–Landau free energy functional GL(M(.); Ha) (Brown,
1962, Brown, 1963; Aharoni, 1996; Landau and Lifshitz,
1984). The minimization of GL(M(.); Ha) under the con-
straint given by equation (1), leads to the Brown’s equations:

M × Heff = 0 (2)

where the effective field Heff is defined as (minus) the varia-
tional derivative of the free energy functional with respect to
the magnetization vector field: Heff = −δGL/δM. The effec-
tive field Heff takes into account all the information about the
geometry and the magnetic properties of the system. When
magnetoelastic effects are neglected, it is given by:

Heff = Ha(t) + HS + HEX + HK (3)

where Ha(t) is the applied field, HS is the magnetostatic
(demagnetizing) field produced by the magnetization M(r),
HEX = (2A/µ0M

2
s )∇2M is the exchange field (A is the

exchange stiffness constant and µ0 is the vacuum permeabil-
ity) (Bertotti, 1998), which describes exchange forces which
tend to oppose magnetization nonuniformities, and HK is the
crystal anisotropy field, a purely local term which depends on
the magnetization vector at the point considered and on some
constants characterizing the local anisotropy. In the case of
uniaxial materials, it has the following form

HK (M) = HK(eK · M/Ms)eK (4)
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where HK is an anisotropy parameter, and eK is the unit
vector along the easy axis direction.

The minimization of GL(M(.); Ha) also leads to boundary
conditions on M(r) which, in the simplest case, are

∂M
∂n

= 0 (5)

at the body surface (n denotes the surface normal unit vector).
This condition is expected when no surface anisotropy is
present which is the case we shall treat here.

It is also important to underline two additional assumptions
implicitly contained in the equation in the preceding text.
First, the use of magnetostatic field HS implies that we are
in fact neglecting any propagation effect, which means that
the electromagnetic wavelength must be much larger than
the linear dimensions of the body under study. Second, eddy
currents have been neglected and thus no eddy currents term
has been included in Heff.

When M × Heff �= 0, the system is not at equilibrium and
evolves according to some appropriate dynamic equation.
The most used dynamic equation is the Landau–Lifshitz
equation (Landau and Lifshitz, 1935) based on the idea that
in a ferromagnetic body the effective field Heff induces a
precession of the local magnetization M(r, t) of the form

∂M
∂t

= −γ M × Heff (6)

where γ > 0 is the absolute value of the gyromagnetic
ratio. Equation (6) gives rise to magnetization dynamics in
which the value of the saturation magnetization Ms = |M| is
locally preserved, because ∂|M|2/∂t = 2M·∂M/∂t = 0. In
this respect, equation (6) is consistent with the fundamental
micromagnetic constraint (1). However, this equation can-
not describe any approach to equilibrium, because dGL/dt =
−Heff ·∂M/∂t = 0, which means that the dynamics is nondis-
sipative.

Energy relaxation mechanisms can be taken into account
by additional phenomenological terms, chosen through
heuristic considerations. In their original paper, Landau and
Lifshitz (1935) introduced an equation of the following form

∂M
∂t

= −γ LM × Heff − αLγ L

Ms
M × (M × Heff) (7)

where γ L is a gyromagnetic-type constant and αL is a
dimensionless damping parameter. The value of αL is always
very small, of the order of 10−4/10−3. The parameter γ L is
usually assumed to be equal to the gyromagnetic ratio γ . In
addition to the Landau–Lifshitz equation, another equation
broadly used in the description of magnetization dynamics is

the one proposed by Gilbert (1955, 2004):

∂M
∂t

= −γ GM ×
(

Heff − αG

γ GMs

∂M
∂t

)
(8)

where again γ G is a gyromagnetic constant and αG a dimen-
sionless damping constant. The Gilbert form is equivalent
to subtracting from the effective field a viscouslike term
proportional to the time derivative of magnetization and
this type of dissipative terms can be introduced by using
the method Rayleigh dissipation function in the framework
of Lagrangian dynamics (Gantmacher, 1975; Gilbert, 1955,
2004).

By using appropriate algebraic manipulations (Aharoni,
1996), equation (8) can be transformed in the following form:

∂M
∂t

= − γ G

1 + α2
G

M × Heff

− αGγ G

(1 + α2
G)Ms

M × (M × Heff) (9)

from which it is clear that equations (7) and (8) are
mathematically equivalent to provided that:

αG = αL = α, γ G = γ L(1 + α2) (10)

The above relations shows that the two gyromagnetic con-
stants γ L and γ G cannot be simultaneously equal to the
gyromagnetic ratio γ . In addition, while in equation (7) the
damping term is proportional to αL, the damping term in
equation (9) is a nonmonotonic function of αG which, after
reaching a maximum at αG = 1, monotonically decreases.
This is the behavior physically expected for large damping
parameters.

These facts suggest that equations (7) and (8) are not
physically equivalent, and this raises the interesting question
of which is the most appropriate magnetization dynamics
equation. This issue acquires particular relevance whenever
α is expected to be a nontrivial function of the state of
the system. In fact, this issue is part of the more general
and relatively open problem of what are the limits under
which the phenomenological introduction of damping is
acceptable and is in agreement with microscopic models
of spin dynamics (Callen, 1958; Suhl, 1998). It is also
important to notice that the difference between equations (7)
and (8) are of second order in the damping parameters and
accordingly, for typical values of αG and αL, are expected
to be quantitatively not very relevant. In the rest of this
chapter, we describe magnetization dynamics by means of
equation (8). We take γ G = γ and we will denote αG simply
as α. We refer to this equation as the Landau–Lifshitz–Gilbert
(LLG) equation.
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2.1.2 Spatially uniform solutions

In this chapter, we investigate magnetization dynamics
in nanomagnets in which the magnetization is expected
to be, with good approximation, spatially uniform. LLG
equation admits indeed spatially uniform solutions under
the following conditions: (i) the ferromagnetic body is of
ellipsoidal shape; (ii) no surface anisotropy is present, so
equation (5) is valid at the body surface; (iii) the parameters
(e.g., anisotropy constants, anisotropy axis direction) which
characterize the local anisotropy field HK are spatially
uniform; (iv) the applied field Ha is spatially uniform; (v)
the initial distribution of magnetization is spatially uniform.

The first condition guarantees that internal demagnetizing
fields is spatially uniform. Indeed, HS inside uniformly
magnetized ellipsoidal bodies is spatially uniform and can be
expressed in terms of the demagnetizing factors. By choosing
a system of unit vectors (ex , ey , ez) along the principal axes
of the ellipsoid, one obtains:

HS(M) = −NxMxex − NyMyey − NzMzez (11)

where Nx , Ny , Nz are the demagnetizing factors and Nx +
Ny + Nz = 1 (Osborne, 1945). The second condition is
necessary because the presence of surface anisotropy could
produce pinning of magnetization at the body surface, which
could induce spatial magnetization nonuniformities. The third
condition guarantees that the anisotropy field HK is spatially
uniform when M is spatially uniform.

Under these conditions, the effective field associated with
a spatially uniform magnetization state is itself spatially
uniform and can be written as:

Heff(M, t) = Ha(t) + HK (M) − NxMxex

−NyMyey − NzMzez (12)

This result is tantamount of the fact that the LLG equation
admits spatially uniform solutions. Indeed, consider the
initial-value problem for equation (8) under the condition
of spatially uniform initial distribution: M(r, t = 0) = M0.
It can be readily verified that a spatially uniform vector field
M(t) is the unique solution of LLG equation (8), provided
that it is the solution of the ordinary differential equation:

dM
dt

= −γ M ×
(

Heff(M, t) − α

γMs

dM
dt

)
(13)

with the initial condition M(t = 0) = M0.
Once we have recognized this important property of LLG

magnetization dynamics in ellipsoidal particles, the issue of
stability of spatially uniform modes naturally arises. The
question is whether small nonuniform perturbations of the

initial uniform magnetization distribution would increase
during the time evolution or would remain small. The quanti-
tative theory for studying this issue has not been completely
established yet. The problem has been investigated in detail
for certain particular cases such as nucleation theory, magne-
tostatic mode analysis and spin-wave analysis (Brown, 1963;
Aharoni, 1996; Suhl, 1956, 1957; Walker, 1957). In quali-
tative terms, the smaller the magnetic body the more stable
the spatially uniform solutions are expected to be. In this
respect, in the remaining part of this article, we assume that
the dimensions of the body are small enough that magneti-
zation state can be considered as, with good approximation,
spatially uniform. As a final remark, we also observe that
the analysis presented can be also applied to nonspheroidal
nanomagnets (as thin films or cubes) if one can assume a
priori that the magnetization is spatially uniform within the
magnetic body (and this again is physically reasonable for
very small bodies). In this case, one can prove that equations
(11) and (12) are still valid, provided that the left-hand
sides of these two equations are interpreted as the spatial
averaged (over the magnetic body) magnetostatic field and
effective field, respectively (Aharoni, 1996). In conclusion,
one can write the LLG equation in uniformly magnetized
nonspheroidal bodies equation as the ordinary differential
equation (13).

2.1.3 LLG equation in dimensionless form

It is useful to rewrite the LLG equation in dimension-
less form to reveal the natural scales in the problem. In
this respect, fields and magnetization are naturally mea-
sured in units of Ms. Accordingly, we introduce the dimen-
sionless vectors m = M/Ms and heff = Heff/Ms. In addi-
tion, a natural timescale is provided by (γMs)

−1 and
thus we normalize the time as t → γMst (in permalloy,
with γ = 2.2 × 105 A−1 m s−1 and Ms = 8 × 105 A m−1, one
finds γMs = 176 GHz, that is, (γMs)

−1 � 6 ps). By using
these normalizations equation (13) can be written as fol-
lows:

dm
dt

= −m ×
(

heff(m, t) − α
dm
dt

)
(14)

where heff(m, t)=Heff/Ms =ha(t)+hS(m)+hK (m), ha(t)=
Ha(t)/Ms, hS(m) = HS(M)/Ms, and hK (m) = HK (M)/Ms.
According to equation (11) one has that

hS(m) = −Nxmxex − Nymyey − Nzmzez (15)

Regarding the anisotropy field, we assume that it has the
form as in equation (4) and thus we have

hK (m) = κ(eK ·m)eK (16)
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where κ = HK/Ms is the normalized anisotropy constant
(if K1 is the physical anisotropy constant κ = 2K1/µ0M

2
s ,

this dimensionless constant is often denoted by Q and it
is referred to as quality factor (Kronmueller and Faehnle,
2003; Hubert and Schäefer, 1998)). If we further assume
that eK is along one of Cartesian unit vectors, the normal-
ized effective field can be written in the following simple
form:

heff = −Dxmxex − Dymyey − Dzmzez + ha(t) (17)

where the parameters Dx , Dy , Dz include the effects of both
demagnetizing fields and crystal anisotropy fields. In the case
that eK = ex , they are given by:

Dx = Nx − κ, Dy = Ny, Dz = Nz (18)

In the sequel, except when otherwise specified, we assume
that the parameters Dx , Dy , Dz are ordered as fol-
lows:

Dx ≤ Dy ≤ Dz (19)

which can be always achieved by an appropriate permu-
tation of the Cartesian axes. When inequality (19) is ful-
filled then the axis ex is the easy axis of the magnetic
particle.

The free energy associated with the magnetic body is
expressed in normalized form as:

gL(m; ha) = GL(M; Ha)

µ0M
2
s V

= 1

2
Dxm

2
x + 1

2
Dym

2
y + 1

2
Dzm

2
z −ha(t)·m (20)

where V is the volume of the body and GL(M; Ha) is the
micromagnetic free energy. The effective field is related to
the energy through the expression:

heff = − ∂

∂m
gL(m; ha) (21)

where ∂/∂m denotes the gradient with respect to m. Equation
(14) can be transformed in the following equivalent form

dm
dt

= − 1

1 + α2
m × heff(m, t)

− α

1 + α2
m × (m × heff(m, t)) (22)

which is the normalized version of equation (9).

2.2 General aspect of LLG dynamics

2.2.1 Conservation of magnetization amplitude

It can be readily seen, by dot multiplication of both sides of
equation (14) by m, that the quadratic form m2

x + m2
y + m2

z

is an integral of motion of LLG dynamics. By taking
into account equation (1) and the normalization introduced
in the previous section, one can conclude that under all
circumstances

m2
x + m2

y + m2
z = 1 (23)

which means that equation (14) defines a dynamical system
evolving on the surface of the unit sphere. The evolution of
this dynamical system proceeds along the lines of the vector
field:

v(m, α, t) = − 1

1 + α2
m × heff(m, t)

− α

1 + α2
m × (m × heff(m, t)) (24)

given by the right-hand side of equation (22). These lines are
tangential to the unit sphere for all m, α and t .

In the interesting particular case where the applied field
is constant (dha/dt = 0), the dynamical system defined by
equation (14) or (22) is autonomous, since the effective field
does not depend explicitly on time anymore. Accordingly,
the vector field in equation (24) is stationary: v = v(m, α).
The fact that the evolution of magnetization is driven by a
stationary vector field tangential to the unit sphere has some
remarkable consequences of a topological nature:

• There must exist equilibrium states for the system (points
where v = 0), because a stationary vector field on the
sphere necessarily has singular points (Perko, 1996). In
general, singular points of a vector field can be either
zeros or poles where the magnitude of the vector field
tends to infinity. However, the LLG vector field v is
continuous and, consequently, it cannot have poles.

• The number of equilibria is at least two and is even
under all circumstances. This conclusion is derived from
Poincaré index theorem (Perko, 1996), which asserts
that the number of nodes, foci, and centers minus the
number of saddles of any autonomous dynamics on the
sphere is equal to two. The distinctive qualitative fea-
tures of saddles, nodes, foci, and centers are shown in
Figures 1(a–d) (see Perko, 1996; Wiggins, 1990; Hub-
bard and West, 1995 for more details on the classifica-
tions of equilibria in nonlinear dynamical systems).

• Chaos is precluded, because the phase space is two
dimensional (Wiggins, 1990; Hubbard and West, 1995).
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Figure 1. Qualitative sketches of magnetization dynamics on small
portions of the unit sphere in neighborhoods of equilibrium points of
different nature. (a) Saddle equilibrium; (b) stable node (the sketch
for the unstable node can be obtained by inverting the arrows);
(c) stable focus (the sketch for the unstable focus can be obtained
by inverting the arrows); (d) center (this kind of equilibrium is
generally present only in conservative (undamped) systems).

This is the consequence of the generalized version of the
Poincaré-Bendixson theorem, which states that on two-
dimensional manifolds the only possible steady states
are either stationary states associated with equilibria or
self-oscillations (periodic steady states) associated with
limit cycles of the dynamics. The distinctive features of
limit cycles are shown in Figure 14.

2.2.2 Energy balance in LLG dynamics

The equation describing the time evolution of the free energy
can be readily obtained from the LLG equation written in the
form (14). Dot multiplication of both sides of the equation by
heff(m, t) − αdm/dt yields (heff(m, t)−αdm/dt)·dm/dt =
0. Then, by using the fact that heff = −∂gL/∂m, one arrives
at the energy balance equation:

d

dt
gL(m; ha) = −α

∣∣∣∣dm
dt

∣∣∣∣
2

− m· dha

dt
(25)

The two terms on the right-hand side respectively represent
the power dissipated because of intrinsic damping and
the power supplied through the action of the time-varying
applied field.

When the applied field is constant, the energy balance
equation is reduced to the simpler form:

dgL

dt
= −α

∣∣∣∣dm
dt

∣∣∣∣
2

(26)

which has the following important consequences:

• The dynamics of the system is such that the free energy
gL(m(t); ha) is always a decreasing function of time.

• The time derivative of gL(m(t); ha) is zero only when
dm/dt = 0, namely, when the system reaches equi-
librium points. Since equilibrium points are stationary
points for the energy, the dynamics is directed away from
energy maxima and toward energy minima.

• No self-oscillations (periodic solutions) are admissible.
Indeed, the necessary condition for the existence of
a nonconstant periodic solution is that gL(m(t); ha)

is a periodic (nonmonotone) function of time. This
requirement is in contradiction with the monotone time
decrease implied by equation (26).

The considerations in the preceding text also apply to the
case when ha(t) has only a transient variation and, after a
finite interval of time, becomes a constant vector (this is the
typical case in magnetization switching under pulsed field).
When the applied field becomes constant the energy balance
expressed by equation (26) precludes the appearance of self-
oscillations in the system dynamics: the magnetization will
always evolve toward one of the stable equilibria. In the
case of coexisting stable equilibria, which will be the final
equilibrium state is determined by the applied field history
and by the initial magnetization state.

On the other hand, when the vector field v(m, α, t) is not
stationary, LLG dynamics becomes much more complicated,
and quasiperiodic or chaotic solutions may appear (Wigen,
1994; Alvarez, Pla and Chubykalo, 2000).

We should mention here that there is a special case of
nontransient and periodic variation of the applied field in
which magnetization dynamics can, nevertheless, be reduced
to autonomous form. This is the case when the magnetic
body has uniaxial symmetry and the applied field is time
harmonic and circularly polarized. By taking advantage of
the symmetry of the problem, one can introduce a reference
frame in which the applied field is constant and the dynamics
is reduced to an autonomous dynamical system on the unit
sphere (Bertotti, Serpico and Mayergoyz, 2001; Bertotti,
Mayergoyz and Serpico, 2006b). This case is treated in
details in Section 5.

3 MAGNETIZATION DYNAMICS ON THE
UNIT SPHERE

3.1 Equilibria

3.1.1 The general problem

The first step in the analysis of magnetization dynamics is
the determination of the equilibrium points and the study of
their stability. We will focus our attention on the study of
equilibria in the case of constant applied field. Equilibrium
states are found by solving the equation:

m × heff = 0 (27)
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under the constraint |m| = 1. Notice that due to the viscous-
like nature of damping in LLG dynamics (damping propor-
tional to dm/dt), the equilibrium states are not affected by
the value of α and thus the problem of finding equilibria
can be formulated in terms of the free energy only. If we
take into account the constraint |m| = 1, equation (27) can
be rewritten in spherical coordinates as two scalar equations:

∂gL

∂θ
= 0,

∂gL

∂φ
= 0 (28)

which means that LLG equilibria are always critical points
of the free energy gL(m; ha) with m restricted to vary on
the unit sphere. In this respect, equilibria can be classified
as energy maxima (which will be indicated with the label
‘u’), energy minima (indicated by the letter ‘s’) and energy
saddles (indicated by the letter ‘d’). If the magnetic body is
invariant with respect to the angle φ, the second equation in
equation (28) can be ignored. This is the case corresponding
to the Stoner–Wohlfarth model (Stoner and Wohlfarth, 1948)
reviewed briefly below. For more general magnetic systems,
it is necessary to consider some appropriate extension of
the Stoner–Wohlfarth theory. In this respect, a rather general
approach is to solve the following system of equations:

heff(m) = λm, |m|2 = 1 (29)

which is equivalent to four scalar equations for the four
unknowns represented by λ and the three components of
m. This approach was proposed in Donahue and Porter
(2002) and leads to the determination of two, four, or
six equilibrium points, depending on the value and the
orientation of the applied field. This treatment is, however,
based on the assumption of uniaxial crystalline anisotropy. A
comprehensive treatment of equilibrium magnetization states
in uniformly magnetized particles for an arbitrary crystalline
anisotropy can be found in Thiaville (2000).

The classification of equilibria in terms of the free energy
is also instrumental for the understanding of their stability
properties under constant applied field. In this case, accord-
ing to equation (26), if the system is not at equilibrium,
magnetization motion is such that the free energy decreases
in time for α > 0 and remains constant for α = 0. Thus, for
α > 0, the dynamics will always bring magnetization away
from energy maxima and toward energy minima. On the other
hand, for α = 0 the magnetization will keep on precessing
around an energy minimum or maximum if it is initially
close to it. We conclude that for α > 0 energy maxima are
unstable nodes or foci and energy minima are stable nodes
or foci of the dynamics (see Figure 1b and c, respectively).
Conversely, for α = 0 energy maxima and minima are all
centers of the dynamics (see Figure 1d). The energy saddles

are also unstable. Indeed, in any neighbor of a saddle there
are magnetization states with energy lower than the energy
of the saddle. Thus, in the case α > 0, magnetization will be
directed away from the saddle. In the case α = 0 the mag-
netization trajectories follow Constant-energy lines and since
the dynamics around the saddle is like the one depicted in
Figure 1(a), almost all trajectories tend to go away from the
saddle.

3.1.2 Stoner–Wohlfarth model

The Stoner–Wohlfarth theory applies to spheroidal particles
with rotational symmetry. We assume that the symmetry axis
and the magnetocrystalline easy axis are both along the x

axis. This implies that Ny = Nz and eK = ex , and parameters
Dx, Dy, Dz are given by:

Dx = Nx − κ, Dy = Dz = D⊥ (30)

where the notation ‘⊥’ indicates the direction perpendicular
to ex . By using the latter equations and the condition
|m|2 = 1, the free energy of the particle (20) can be easily
recast in the following form:

gL(m; ha) = −1

2
(D⊥ − Dx)m

2
x + 1

2
D⊥ − ha · m (31)

where D⊥ − Dx is a positive quantity. We observe that, for
symmetry reasons, at equilibrium, the magnetization lies in
the plane defined by the easy axis ex and the applied field ha.
By introducing the spherical angle θ between m and ex , one
has mx = cos θ and equation (31) can be transformed into:

gL(θ; ha) = 1

2
Dx + 1

2
κeff sin2 θ

−hax cos θ − ha⊥ sin θ (32)

where

κeff = D⊥ − Dx (33)

is the effective anisotropy constant, hax and ha⊥ are the
components of the applied field parallel and perpendicular
to the x–axis, respectively. The equilibria can be found
by means of the first of equation (28) which, after simple
algebraic manipulations, becomes

ha⊥
sin θ0

− hax

cos θ0
= κeff (34)

For given values of hax and ha⊥, equation (34) returns the
angles θ0 such that the free energy has an extremum. It is
interesting to notice that equation (34) can be transformed
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into a polynomial equation. Indeed, after appropriate alge-
braic manipulations, one readily derives the following quartic
equation in mx = cos θ :

h2
a⊥m2

x = (hax + κeffmx)
2(1 − m2

x) (35)

which admits either two real solutions or four real solutions
depending on the values of the parameters hax, ha⊥, κeff.
Each of these solutions corresponds to a stable or unstable
equilibrium.

Qualitatively speaking, one can easily see from equation
(32) that for small values of the applied field (e.g., con-
sider the case hax = 0, ha⊥ = 0) the anisotropy energy pre-
vails and the free energy has two minima (near the states
m = ±ex) while, for sufficiently strong applied fields, the
linear term −ha · m prevails and the free energy has only one
minima characterized by a magnetization direction approx-
imately aligned with the applied field. Thus, there exists a
region around the origin of the control plane (hax, ha⊥) in
which there are two minima of the free energy whereas, out-
side this region, there is only one minimum.

A more systematic study of energy maxima and minima
can be carried out by computing ∂2gL/∂θ2 at the equilibria,
that is, at values θ0 which are solutions of equation (34).
This is given by:

∂2gL

∂θ2

∣∣∣∣
θ0

= κeff cos3 θ0 + hax

cos θ0
= ha⊥ − κeff sin3 θ0

sin θ0
(36)

The boundary between the region with two minima and
region with one minima is a bifurcation line which can be

found by searching equilibria with ∂2gL/∂θ2 = 0, that is,
inflection points. These points correspond to the critical con-
dition expected when a minima disappears (this process cor-
respond to the so-called saddle-node bifurcation (Kuznetsov,
1995)). By using this condition in equation (36), one arrives
to the parametric representation of the bifurcation line which
is referred to as the Stoner–Wohlfarth astroid :

{
hax = −κeff cos3 θ0

ha⊥ = κeff sin3 θ0
(37)

which can be expressed in implicit form by the following
equation:

h2/3
ax + h

2/3
a⊥ = κ

2/3
eff (38)

The Stoner–Wohlfarth asteroid is the curve labeled as Asw in
Figure 2.

The Stoner–Wohlfarth asteroid has remarkable geometri-
cal properties which permit one to graphically derive the
directions of admissible magnetization equilibria. To discuss
these proprieties, we first notice that the equation (34), which
gives magnetization equilibria, can be interpreted in the fol-
lowing way: given an equilibrium state m, that is, assigned
the value θ0, this equation gives the set of excitation condi-
tions (hax, ha⊥) which produce such m. Since (34) is linear
in (hax, ha⊥), this set is a straight line in the (hax, ha⊥)

plane, and it has slope tgθ0. This line touches the Stoner–
Wohlfarth asteroid in the point of the (hax, hay) plane given
by equation (37). One can easily check that the tangent to
the asteroid, at the point given by the angle θ0, is given by

(a) (b) (c)

keff

keff

ASW

ha⊥

hax

keff

mh

keff
keff

ASW

ha⊥

hax ha

1

2

3

1

2

0

3

qh = 30° qh = 0°

qh = 30°
qh = 90°

qh = 70°

+1

−1

1

2

Figure 2. Illustration of Stoner–Wohlfarth tangent construction and hysteresis loops of mh versus ha . (a) Points 1, 2, 3 in the control plane
and associated tangent lines to the Stoner–Wohlfarth asteroid. Black arrows and white arrows along the tangent lines represent stable and
unstable equilibria, respectively. (b) The applied field point (hax, ha⊥) moves along the straight line, with slope θh = 30◦, going through
points 0, 1, 2, 3. This line represents applied fields hax = ha cos θh, ha⊥ = ha sin θh with decreasing amplitude ha and fixed direction. The
evolution of magnetization is given by the black arrows (stable equilibrium) which are obtained by the tangent construction. Notice that
when the field point is inside the asteroid, there is a second stable equilibrium, which is represented with a gray arrow. At the point 2
(where all equilibria are represented), the equilibrium represented by the black arrow annihilates with an unstable equilibria (white arrow)
and the magnetization ‘jumps’ toward the remaining stable equilibrium. (c) Hysteresis loop in the plane (mh, ha) for different values of θh;
mh is the component of m along the direction of ha. The points 1 and 2 correspond to the points 1, 2 in (b). Jumps of magnetization are
represented by dashed lines.
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dha⊥/dhax = (dha⊥/dθ)(dθ/dhax) = tgθ0. This means that
the straight line (34), for θ = θ0, is a tangent at the point
of the Stoner–Wohlfarth asteroid which corresponds to θ0.
This geometrical property suggests the following construc-
tion: given a point in the control plane we can draw the
tangent lines to the asteroid emanating from this point. The
slope of each of these lines identifies a possible magnetiza-
tion equilibrium. According to equation (37), the upper half
of the asteroid corresponds to 0 < θ0 < π , while the lower
half corresponds to −π < θ0 < 0. Thus, tangent lines to the
upper half correspond to magnetization equilibrium direc-
tions pointing upward, while tangent lines to the lower half
correspond to magnetization equilibrium directions pointing
downward (see Figure 2a). One also can see that, while only
two tangent lines can be drawn from points external to the
asteroids (see points 2, 3 in Figure 2a), four tangents can be
drawn from points inside it (see points 1 in Figure 2a). Each
of these tangents may identify either a stable or an unsta-
ble state and the stability can be discussed using equation
(36). Let us use the last expression in this equation. One
can see that when a tangent to the asteroid drawn from
the point (hax, ha⊥) touches the upper half of the asteroid
(0 < θ0 < π , sin θ0 > 0) the corresponding equilibrium is an
energy minimum (∂2gL/∂θ2|θ0 > 0) or an energy maximum
(∂2gL/∂θ2|θ0 < 0) depending on if ha⊥ > κeff sin3 θ0 (i.e.,
(hax, ha⊥) is above the tangency point) or ha⊥ < κeff sin3 θ0

(i.e., (hax, ha⊥) is below that the tangency point), respec-
tively. On the other hand, when the tangent line touches the
lower half of the asteroid (−π < θ0 < 0, sin θ0 < 0), the
opposite occurs, and the equilibrium is an energy minimum
or an energy maximum depending if ha⊥ < κeff sin3 θ0 or
ha⊥ > κeff sin3 θ0, respectively. According to this rule, only
one stable equilibrium exists when the applied field point
(hax, ha⊥) is outside the asteroid. Conversely, two stable
equilibria exist when (hax, ha⊥) is inside the asteroid (see
Figures 2a and b).

The asteroid properties discussed in the preceding text
are the basis for the analysis of magnetization process
taking place when the applied field is slowly varied over
time. This variation has to occur on a time scale much
larger than the timescale of the transient necessary to
let magnetization relax to a stable equilibrium state. This
condition corresponds to static hysteresis processes. Let
us consider the case when ha oscillates between opposite
values along a fixed direction. The m orientation at each
point is obtained by the tangent construction discussed in
the preceding text. Inside the asteroid two orientation are
possible, and the one which is actually realized depends
on past history (see Figure 2b). If the field oscillation were
all contained inside the asteroid, the magnetization would
reversibly oscillate around the orientation initially occupied.
A qualitatively different behavior occurs when the field

amplitude is large enough to cross the asteroid boundary.
The state occupied by the system may lose stability when the
field point (hax, ha⊥) exits the asteroid and the magnetization
jumps discontinuously to a new equilibrium state (see point
2 in Figure 2b). This irreversible jumps are also referred
to as Barkhausen jumps. In Figure 2(b) it is shown the
magnetization half cycle where the field intensity decrease
from positive to negative values. The process related to the
increasing-field half cycle can be easily derived by symmetry.
The hysteresis process can be clearly shown by representing
the component mh = cos(θ0 − θh) of m along the applied
field direction (θh is the angle between ha and ex). By using
different values of θh, one obtains static hysteresis loops as
drawn in Figure 2(c). Note, in particular, that no loop at all
is obtained when the field is exactly perpendicular to the
anisotropy axis (θh = 90◦).

3.1.3 Equilibria when one component of the applied
field is zero

In many cases relevant to applications, one can assume that
the applied field ha lies in one of the coordinate planes,
namely, that one of the Cartesian components of ha is zero. In
this situation, the analysis of equilibria can be substantially
simplified. In the following, we will assume that haz = 0,
but the theory can be extended to the other cases by an
appropriate reorientation of the Cartesian axes. In the case
haz = 0, by using the fact that m2

z = 1 − m2
x − m2

y , mz can be
eliminated from the expression of the free energy, equation
(20). This leads to the following formula:

gL(m; ha) = −Dz − Dx

2

×
[
(mx − ax)

2 + k2 (
my − ay

)2 − p2
0

]
(39)

where:

ax = − hax

Dz − Dx

, ay = − hay

Dz − Dy

, k2 = Dz − Dy

Dz − Dx

(40)

p2
0 = a2

x + a2
y + Dz

Dz − Dx

(41)

Equation (39) is written in a particularly simple form because
it already includes the constraint |m|2 = 1. This form permits
one to readily recognize the nature of equilibria, namely,
whether they are energy maxima, minima, or saddles.

Let us start our discussion by writing the equation for
equilibria. By using the constants defined in equation (40)
and (41), the components of equation (27) along the three
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Cartesian axes can be written as

(
Dz − Dy

)
mz

(
my − ay

) = 0 (42)

− (Dz − Dx)mz (mx − ax) = 0 (43)

(Dz − Dx) my (mx − ax)

− (
Dz − Dy

)
mx

(
my − ay

) = 0 (44)

Due to the form of equations (42–44), it is convenient to
divide equilibria in two families: equilibria with mz �= 0 and
equilibria with mz = 0.

• Equilibrium points with mz �= 0
In this case, equations (42–43) immediately lead to
mx = ax and my = ay . The value of mz can be then
determined from the constraint |m| = 1. This leads to
two equilibrium points:

mx = ax, my = ay, mz = ±
√

1 − a2
x − a2

y (45)

which are symmetric with respect to the (mx, my) plane.
Notice that solutions of this type are possible only when
the field lies inside the region confined by:

a2
x + a2

y = 1 (46)

that is:

h2
ax

(Dz − Dx)
2

+ h2
ay(

Dz − Dy

)2
= 1 (47)

The expression (39) of the free energy shows that these
equilibria are always energy maxima.

• Equilibrium points with mz = 0
This class of equilibria is characterized by the condition
m2

x + m2
y = 1. Thus, their positions on the unit circle

of the (mx, my) plane can be described by the angle
coordinate φ0: mx = cos φ0, my = sin φ0. The angle φ0

associated with the equilibrium points is obtained by
solving equation (44) rewritten in the form:

(
Dy − Dx

)
sin φ0 cos φ0

+hax sin φ0 − hay cos φ0 = 0 (48)

In order to interpret the meaning of equation (48), it is
useful to express the system free energy gL(m; ha) (see
equation (20)) for mz = 0 in terms of the angle φ0:

gL
(
mz =0, φ0; ha

) = 1

2
Dx+ 1

2

(
Dy −Dx

)
sin2 φ0

−hax cos φ0 − hay sin φ0 (49)

This energy expression is identical to equation (32)
considered in the Stoner–Wohlfarth model, with (Dy −
Dx), hay , and φ0 playing the role of κeff, ha⊥ and θ0,
respectively. Equation (48) coincides with the equation
∂gL/∂φ0 = 0. It can be inferred from this fact that all
the results known for the Stoner–Wohlfarth model can
be extended to the equilibrium points characterized by
mz = 0. In particular, one immediately concludes that
there will be either four equilibrium points, two of which
will be energy minima, or two equilibrium points, one
of which will be an energy minimum. The bifurcation
line where the number of energy minima changes from
one to two or vice versa is given by the asteroid curve
in the (hax, hay) control plane shown in Figure 3:

h2/3
ax + h2/3

ay = (Dy − Dx)
2/3 (50)

In conclusion, there are four qualitative different situations,
separated by the two bifurcation lines given by equations (47)
and (50) (see Figure 3).

(a) (b)

2 min
1 max
1 saddle

hax hax

hayhay

1 min

1 saddle

B2

B1

[

B1

1 min
1 maxC [ Asw

Asw
Dy − Dx

Dy − Dx

Dz − Dy

Dz − Dx

Dz − Dy

Dy − Dx

Dz − Dx

1 min
2 max
1 saddle[

1 min
1 maxC [

2 min
2 max
2 saddles[A

2 min
2 max
2 saddles[A2 max[

Figure 3. Bifurcation lines in the (hax, hay) control plane. (a) Dz − Dy < Dy − Dx ; (b) Dz − Dy > Dy − Dx . The label Asw indicates
Stoner–Wohlfarth asteroid.
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• Region A, 6 equilibrium points: 2 minima, 2 maxima, 2
saddles

• Region B1, 4 equilibrium points: 1 minimum, 2 maxima,
1 saddle

• Region B2, 4 equilibrium points: 2 minima, 1 maximum,
1 saddle

• Region C, 2 equilibrium points: 1 minimum, 1 maxi-
mum.

In this classification, the number of saddles has been
indirectly determined on the basis of Poincaré index theorem:
the number of maxima and minima minus the number of
saddles must be equal to two. Let us notice that for certain
values of the parameters Dx , Dy and Dz the region B2 may
not exist (see Figure 3b). The condition for the existence of
region B2 is that Dy − Dx > Dz − Dy .

3.2 Geometrical and analytical descriptions of
conservative LLG dynamics

3.2.1 Unit-circle representation

As we have already discussed in a previous section (see
Section 3.1.3), due to the viscouslike nature of the damp-
ing, equilibria of the system are given by critical points of
the free energy gL(m; ha). In addition, since the damping
constant α is usually a small quantity, on short timescales,
LLG dynamics is approximately conservative. In this respect,
detailed information of the nature of dynamics can be
obtained from the configuration of constant-energy lines, that
is, the lines given by gL(m; ha) = g0 on the unit sphere. It
turns out that, in the case when one of the components of
the applied field is zero (in the following we will assume
haz = 0), it is possible to give a two-dimensional representa-
tion of constant-energy lines. Indeed, by taking into account
equation (39) and setting the energy equal to g0 we end up
with the equation:

(mx − ax)
2 + k2 (

my − ay

)2 = p2 (51)

where:

p2 = a2
x + k2a2

y + Dz − 2g0

Dz − Dx

(52)

Equation (51) shows that the projection of magnetization
trajectories on the (mx, my) plane is described by a family
of self-similar elliptic curves with aspect ratio k (which,
according to equation (40), depends only on the anisotropy
factors), all centered at the point (ax, ay). The family of
ellipses is generated by varying the free energy value g0

within an appropriate interval. Indeed, for a given value of

ha, the constant g0 controls the size of the ellipses through
equation (52). It must be underlined that the only admissible
portions of the ellipses are obtained by taking those parts
of equation (51) which lie inside the circle m2

x + m2
y ≤ 1.

Although this representation involves only two components
of magnetization, information on the third component mz

can be immediately obtained by using that m2
z = 1 − (m2

x +
m2

y). For example, mz = ±1 when (mx, my) = (0, 0) while
mz = 0 when (mx, my) lies on the unit circle. The unit-
circle representation can be interpreted as a top view of
the unit sphere. In this sense, only the upper hemisphere
mz > 0 is immediately represented. However, when the
applied field lies in the (x,y) plane, the free energy has a
mirror symmetry with respect to the (mx, my) plane and
this implies that constant-energy lines (or parts of the same
constant-energy line) with given energy g0, belonging to
different hemispheres, are projected into the same ellipse (or
portion of ellipse) in the (mx, my) plane. In other terms, the
unit circles representation consists of lines, each of which
represents two constant-energy (conservative) trajectories
or two parts of the same trajectory with opposite values
of mz. The ellipses originating from the energy saddles
(bold lines passing through the point indicated with d) are
either homoclinic trajectories, that is, trajectories starting and
ending on a saddle equilibrium, or heteroclinic trajectory, that
is, trajectories starting from a saddle equilibrium and ending
at a different saddle equilibrium. Trajectories, homoclinic,
and heteroclinic, passing through saddles are also referred
to as separatrices because they create a natural partition of
the phase portrait into different ‘central regions’ (regions
spanned by a continuum of nested closed lines on the unit
sphere). Examples of unit-circle representation are reported
in Figure 4(a–c). The three figures correspond to zero applied
field, field applied along x axis, and field applied along y

axis, respectively.

3.2.2 Integrability of conservative dynamical
equations

We already mentioned in Section 3.2.1 that the family of
trajectories with constant energy gives important information
about LLG dynamics on short timescale owing to the fact
that the damping constant is normally a small parameter. In
this section, we show that conservative LLG dynamics can
be studied analytically. The starting point for the analytical
solution of the conservative dynamics is equation (51), which
shows that the projection of the magnetization trajectory onto
the (mx, my) plane is an arc of the ellipse. Therefore, the
trajectory can be expressed in the parametric form:

mx = ax − p cos u, my = ay + p

k
sin u (53)
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Figure 4. Sketches of the unit-circle representation for three different values of ha: (a) ha = 0, (b) ha = haxex , (c) ha = hayey .
Magnetization trajectories are obtained from the intersection of the ellipses given by equation (51) with the unit circle m2

x + m2
y ≤ 1.

The following notation is used to indicate equilibrium points: ‘s’ denotes energy minima, ‘u’ denotes energy maxima, and ‘d’ denotes
energy saddles. The thicker lines (indicated by 
) denote separatrices (homoclinic and heteroclinic trajectories). Letters H, L, I are used to
label ‘central regions’: H denotes ‘high-energy regions’, L denotes ‘low-energy regions’, and I denotes ‘intermediate energy regions’.

where the connection between the parametric variable u and
time is to be determined. Equation (53) implies that the
remaining magnetization component mz will be given by:

mz = ±
√

1 − (ax − p cos u)2 − (ay + (p/k) sin u)2 (54)

By inserting equation (53) into the x component of equation
(14) with α = 0, one finds:

du

dt
= k (Dz − Dx)mz (55)

Since mz depends on u only, one obtains the desired equation
for u(t) by using the method of separation of variables:

du√
1 − (ax − p cos u)2 − (

ay + (p/k) sin u
)2

= k (Dz − Dx) dt (56)

where the ‘±’ signs are no longer indicated because the last
equation is to be interpreted as an equation for multibranch
analytical functions in the complex plane.

Equation (56) is solvable in terms of elliptic integrals. This
can be shown by carrying out the substitution w = tan(u/2),
which transforms equation (56) into the equation:

dw√
P (w)

= k

2
(Dz − Dx) dt (57)

where P (w) represents the fourth-order polynomial:

P (w) = (
1 + w2)2 − [

ax(1 + w2) − p(1 − w2)
]2

− [
ay(1 + w2) + (2p/k)w

]2
(58)

Equation (57) is precisely of the form permitting integration
in terms of elliptic integrals and elliptic functions (Hancock,
1958; Smirnov, 1989). However, the integration is based on
the knowledge of the roots of the polynomial P (w), which
are generally given by rather complicated formulas.

3.2.3 Solution under zero field

The study of equation (56) in all its complexity is carried
out in Bertotti, Mayergoyz and Serpico (2006a), here we
limit ourselves to the case of zero applied field, which
gives some first insight into the properties of conservative
magnetization dynamics. This case is simple enough to be
solved without excessive technical complications. Under zero
field, conservative LLG equation (see equation (14) with
α = 0, and equation (17) with ha = 0) becomes formally
identical to Euler equation for the angular momentum of
a rigid body (Landau and Lifshitz, 1976). The unit-circle
representation of conservative magnetization trajectories is,
in this case, the one in Figure 4(a): the unit sphere is
partitioned into four central regions, two symmetric high-
energy regions (indicated by H and projected into the
same region of the unit circle) and two symmetric low-
energy energy regions (indicated by L). The magnetization
components (equations (53) and (54)) can be expressed as
functions of w = sin u only, since ax = ay = 0 (see equation
(40)) and one finds that:

mx = ∓p
√

1 − w2, my = p

k
w,

mz = ±k′p
k

√
w2

0 − w2 (59)

where:

w0 = k

k′p

√
1 − p2 (60)
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k′2 = 1 − k2, and p2 is linearly related to the system energy
through equation (52), which for zero field is reduced to:

p2 = Dz − 2g0

Dz − Dx

(61)

By making the change of variable w = sin u in equation (56),
one obtains the following equation:

dw√(
1 − w2

) (
1 − k2

H w2
) = �H dt (62)

where:

kH = 1

w0
= k′p

k

1√
1 − p2

(63)

�H = k
√

1 − p2 (Dz − Dx) (64)

The solution of equation (62) is the Jacobi ‘sin-type’ elliptic
function (Hancock, 1958):

w = sn (�H t, kH ) (65)

By inserting equation (65) into equation (59) and by using
Jacobi elliptic function transformation rules one obtains the
magnetization components:

mx = ∓p cn (�H t, kH ) (66)

my = p

k
sn (�H t, kH ) (67)

mz = ±
√

1 − p2dn (�H t, kH ) (68)

One finds two sets of solutions, depending on the choice
made for the sign of mz. The corresponding sign of mx

is determined by using LLG equation. Equations (66)–(68)
depend on the energy g0 of the conservative motion through
the parameter p defined by equation (61). The parameter p

has an intuitive geometrical meaning. As shown by equation
(51), it measures the size of the ellipse along which the
magnetization motion takes place. The energy of the system
takes values in the interval (see equation (39)):

Dx

2
≤ g0 ≤ Dz

2
(69)

that is, 0 ≤ p2 ≤ 1. When g0 is varied in this interval, the
first two equations in equation (59) generate the unit-circle
representation of the conservative phase portrait shown in
Figure 4(a). The energy maxima (‘u1’, ‘u2’ in in Figure 4a)
correspond to p = 0, where the constant-energy ellipse given

by equation (51) is reduced to a point, whereas p = 1
represents the energy minima (‘s1’, ‘s2’ in Figure 4a), where
the ellipse is tangent to the unit circle from outside. The
heteroclinic separatrix trajectories (bold lines 
 connecting
the two saddles ‘d1’, ‘d2’ in Figure 4a) divide the portrait
into the high-energy (H ) and low-energy (L) regions.

• Region H : This region actually consists of two separate
regions symmetric with respect to the (mx, my) plane.
The system energy varies in the interval Dy/2 ≤ g0 ≤
Dz/2, that is:

0 ≤ p2 ≤ k2 (70)

According to equation (63), 0 ≤ kH ≤ 1 in this region,
so one immediately concludes from equations (66)–
(68) that the magnetization motion is a precessional
motion about the hard z axis. By taking into account
the properties of Jacobi elliptic functions, one obtains
for the precession period:

Tg0 = 4K(kH )

�H

(71)

where K(kH ) represents the complete elliptic integral of
the first kind (Hancock, 1958; Smirnov, 1989).

• Region L: This region consists of two regions symmetric
with respect to the (my, mz) plane, in which the energy
varies in the interval Dx/2 ≤ g0 ≤ Dy/2. Therefore:

k2 ≤ p2 ≤ 1 (72)

which implies 1 ≤ kH ≤ ∞. The nature of the cor-
responding magnetization motions is made clear by
observing that the role of cn and dn Jacobi functions
is exchanged when their modulus exceeds 1. By using
known transformation rules for Jacobi functions one can
write equations (66)–(68) in the equivalent form:

mx = ∓pdn (�Lt, kL) (73)

my = 1

k′
√

1 − p2sn (�Lt, kL) (74)

mz = ±
√

1 − p2cn (�Lt, kL) (75)

where:

�L = kH�H = k′p (Dz − Dx) (76)

kL = 1

kH

= k

k′p

√
1 − p2 (77)
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It can be verified that 0 ≤ kL ≤ 1, so equations (73)–
(75) describe a precessional motion about the x axis.
The precession period is:

Tg0 = 4K(kL)

�L

(78)

In the following two sections, we discuss in some detail
the solution of equation (56) under a nonzero field in two
cases of particular physical interest, namely, when the field
is perpendicular or parallel to the easy axis of the system.

4 NONLINEAR MAGNETIZATION
DYNAMICS UNDER CONSTANT
AND PULSED APPLIED FIELDS

The problem of nonlinear magnetization dynamics under
constant and pulsed applied fields arises especially in magne-
tization switching of magnetic particles and thin films. This
topic has received considerable attention in connection with
the enormous advances in the magnetic storage technologies
and spintronics (Bauer, Fassbender, Hillebrands and Stamps,
2000; Mallinson, 2000).

Traditionally, the study of magnetization reversal has been
carried out by using the classical Stoner–Wohlfarth model
(Stoner and Wohlfarth, 1948). As we have discussed in
Section 3.1.2, this model is static in nature and does not take
into account any magnetization dynamics. However, in the
frequency range relevant to magnetic storage applications,
magnetization precession has a crucial influence on magneti-
zation dynamics and therefore has to be appropriately taken
into account. Despite the nonlinear nature of the dynamics it
is possible to develop a systematic and rigorous analysis of
the LLG equation by using the methods of nonlinear dynami-
cal system theory. These techniques have been outlined in the
previous sections of this article and turn out very effective in
the analysis of magnetization switching. In particular, these
techniques yield detailed information about the parameters
which enter in the design of devices (e.g., critical fields for
switching, pulse duration, frequency of precessional motion,
relaxation time in ‘ringing’ processes).

4.1 Switching under rectangular field pulses

4.1.1 Damping switching in uniaxial magnetic body

The traditional mode of switching in uniaxial particles
(damping switching; Mallinson, 2000) is shown in
Figure 5(a). The switching is realized by applying a field
opposite to the initial magnetization orientation. If the field

(a) (b)
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m m
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ey

ez ez

ha

ha

ex

Figure 5. (a) Damping switching mode of operation. the applied
field is opposite to the initial magnetization; (b) Precessional
switching mode of operation: the applied field is orthogonal to the
initial magnetization.

is strong enough, the initial state becomes unstable and the
magnetization relaxes toward the energy minimum in the
direction of the applied field. We analyze this mechanism
by using the LLG equation in the Landau–Lifshitz form (see
equation (22)):

dm
dt

= − 1

1 + α2
m × heff − α

1 + α2
m × (m × heff) (79)

Exact analytical solutions of this equation can be obtained
in the special case where the magnetic body exhibits uniaxial
symmetry and the external field is applied exactly along
the symmetry axis, which we choose as the x axis (see
Figure 5a). Under these assumptions, the effective field is
given by the formula:

heff = −D⊥(myey + mzez) − Dxmxex + haxex (80)

where D⊥ = Dy = Dz and hax is assumed to be constant
during the pulse duration. Kikuchi (1956) considered a
similar problem for an isotropic ferromagnetic sphere, where
the effective field is defined by the formula:

heff = −m/3 + haxex (81)

The difference in the mathematical forms of equations (80)
and (81) leads to a profound difference in the physics of
magnetization switching. In the case of equation (81), there
exists an infinite set of equilibrium states for hax = 0 and
no critical field is required to switch from one equilibrium
state to another. In contrast, in the case of equation (80)
there are only two equilibrium states for hax = 0, namely,
mx = ±1, and the switching from one equilibrium state to
the other is only possible if the applied field hax exceeds
some critical field. The problem when the effective field
is given by equation (80) has been treated in Mallinson
(2000), and Leineweber and Kronmueller (1999) where the
analysis is based on the solution of the LLG equation



Nonlinear magnetization dynamics in nanomagnets 15

in spherical coordinates. Our approach will exploit the
rotational symmetry of the problem (the treatment below
closely follows the one in Bertotti, Mayergoyz, Serpico and
Dimian (2003)).

When the effective field is given by equation (80), the
LLG equation becomes invariant with respect to rotations of
coordinate axes y and z around the x axis. As a result of this
rotational symmetry, it is expected that dmx/dt depends only
on the x component of m. Indeed, by using simple algebra,
one finds that:

(m × heff)·ex = 0,

[m × (m × heff)]·ex = −κeff

(
mx+hax

κeff

)
(1 − m2

x) (82)

where κeff = D⊥ − Dx (as in equation (33) of the Stoner–
Wohlfarth theory). From equation (22) and the first of
equation (82), we derive the following equation:

1

κeff

dmx

dt
= α

1 + α2

(
mx + hax

κeff

) (
1 − m2

x

)
(83)

Equation (83) shows that the magnetization switching from
the state mx = 1 to the state mx = −1 (or vice versa) is
driven exclusively by damping: in the conservative case
(α = 0) the x component of magnetization simply remains
constant. In this sense, this switching can be regarded as
‘damping’ switching. On the other hand, the equation shows
that anisotropy affects the switching only in the form of
scale factors for field and time. Indeed, if one expresses
equation (83) in terms of the rescaled time κefft and rescaled
field hax/κeff, anisotropy disappears completely from the
description. This means that damping switching will follow
a law of correspondent states when represented in terms of
these rescaled variables.

It seems from equation (83) that no switching is possible if
the magnetization is initially in the equilibrium state mx = 1.
However, owing to thermal effects, the vector m slightly
fluctuates around the above equilibrium state. As a result, the
value of mx at the instant when the applied field is turned on
will be slightly different from 1 and the switching process is
initiated. This argument justifies the solution of equation (83)
with the initial condition:

mx(t = 0) = mx0 (84)

where mx0 is close to 1. It is apparent from equation (83)
that if hax < −κeff, then dmx/dt < 0 and the switching to the
equilibrium state mx = −1 will proceed for any mx0. On the
other hand, if hax ≥ −κeff, then, for mx0 sufficiently close
to 1, dmx/dt > 0 and no switching is possible. This clearly
reveals that κeff plays the role of critical switching field. In
the sequel, it is assumed that hax < −κeff.

By separating variables in equation (83), we obtain:

∫ mx

mx0

dmx

(1 − m2
x)(mx − |hax |/κeff)

= ακeff

1 + α2
t (85)

and, after integration:

t = 1 + α2

2α(κeff − |hax |) ln
1 − mx0

1 − mx

+ 1

2(κeff + |hax |)

× ln
1 + mx0

1 + mx

+ κeff

κ2
eff − h2

ax

ln
|hax | − κeffmx

|hax | − κeffmx0
(86)

By using the last equation, the minimal pulse time needed
for switching can be found. Indeed, if the duration of the
field pulse is such that a negative value of mx is reached,
then the magnetization will be in the basin of attraction
of the reversed state mx = −1, and the switching will be
achieved. Thus, the minimal pulse duration Tds (ds stands
for damping switching) can be found by substituting mx = 0
in equation (86):

Tds = 1 + α2

α

[
ln(1 − cos φ0)

2(κeff − |hax |) + ln(1 + cos φ0)

2(κeff + |hax |)

+ κeff

κ2
eff − h2

ax

ln
|hax |

|hax | − κeff cos φ0

]
(87)

where φ0 is the angle formed by the initial magnetization
with the x axis. For the typical case of small φ0, the
minimal pulse time Tds given by equation (87) is very close
to the actual switching time at which mx reaches a value
almost equal to −1. Indeed, equation (83) shows that mx

decreases much faster when it is close to zero than when it
is close to its initial equilibrium value. This conclusion is
supported by the calculations shown in Figure 6, made by
using equation (86). It is interesting to notice that Tds tends
to infinity both for α → 0 and α → ∞. Indeed, for α → 0,
we have conservative dynamics and the system oscillates
around the initial state. While for α → ∞, as a result of the
viscous nature of Gilbert damping, dynamics become slower
and slower. In addition, one can easily see that the minimum
of Tds as function of α, is obtained for α = 1, which is
the optimum value of damping to achieve fast damping
switching. However, most materials used in applications have
a damping constant appreciably smaller than 1.

Figure 7 presents the field dependence of the inverse pulse
time 1/Tds calculated from equation (87). The curves are
approximately linearly dependent on the field except for field
values very close to the critical field κeff. Indeed, for small
values of the initial angle φ0, the first term in the right-hand
side of equation (87) is dominant. By neglecting the two
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Figure 6. Evolution of mx with time (measured in s) calculated
from equation (86), with mx0 = cos φ0. Continuous line: φ0 = 1◦;
dashed line: φ0 = 0.3◦; dash-dotted line: φ0 = 0.1◦. Parameter
values: α = 0.01, κeff = 0.25, hax = −1.2κeff, (γMs)

−1 = 6 ps
(permalloy).

other terms, one obtains the approximate law:

1

Tds
� α

(1 + α2) ln(
√

2/φ0)
(|hax | − κeff) (88)

which is indeed linear in the field. Equation (88) shows that
the dynamic (short-time) coercivity appreciably exceeds the
static coercivity κeff. This behavior is similar to that observed
in Thornley (1975), Doyle and He (1993), and Rizzo, Silva
and Kos (2000).

The switching time given by equations (87) and (88)
depends on the value of the initial angle φ0. The expected
value of this angle can be evaluated by using statistical
mechanics arguments. If the fluctuations are so weak that no
thermally induced switching can occur within the timescale
of observation of φ0, then, one can approximate the behavior
of gL(m; ha = 0) around φ0 = 0 by a parabolic potential
well. This leads to the following distribution function:

ρ(φ0) ≈ cφ0 exp

[
µ0M

2
s κeffV

2kBT
φ2

0

]
(89)

where kB is Boltzmann constant, T is the temperature,
c is an appropriate normalization constant, µ0 is vacuum
permeability, and V is the volume of the magnetic body. For
a permalloy film with dimensions 0.1 µm, 0.1 µm, 10 nm at
room temperature (T = 300◦

K), the expected value of φ0 is
in the order of

√
kBT /(µ0M

2
s κeffV ) ≈ 0.8◦.

4.1.2 Precessional switching in uniaxial magnetic
body and comparison with damping switching

In this section, we will present an alternative technique to
obtain the switching of a nanomagnet which is commonly
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Figure 7. Inverse of minimum pulse duration 1/Tds (measured
in s−1) versus ratio between applied field and critical switching
field κeff, calculated from equation (87)) for damping switching
(α = 0.01, (γMs)

−1 = 6 ps (permalloy)). (a) 1/Tds versus hax/κeff

for φ0 = 1◦ and different values of κeff: ‘�’: κeff = 0.125; ‘◦’:
κeff = 0.25; ‘∗’: κeff = 0.5. (b) 1/Tds versus hax/κeff for κeff = 0.25
and different values of φ0: continuous line: φ0 = 1◦; dashed line:
φ0 = 0.3◦; dash-dotted line: φ0 = 0.1◦.

referred to as precessional switching. The mode of operation
of precessional switching is depicted in Figure 5(b). The
magnetization is initially along the easy axis and a field
approximately orthogonal to the easy axis is applied on
the magnetic body. The field produces a torque which tilts
the magnetization from its initial position and drives a
precessional oscillation. Magnetization reversal is realized
by switching the field off when the magnetization is close to
its reversed orientation.

We notice that, while in damping switching the role of
dissipation is crucial, precessional switching is accomplished
by controlling the magnetization precession within a time
interval which is usually so short that the role of dissipation
is negligible. This type of switching can be considerably
faster and it may require lower applied fields in comparison
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with traditional switching. However, the switching is realized
only if the field pulse duration is accurately controlled in
such a way that the field is switched off precisely when the
magnetization is close to its reversed orientation.

For the sake of comparison with damping switching we
will consider precessional switching in a spheroidal particle
rotationally symmetric with respect to the anisotropy easy
axis ex (Mayergoyz, Dimian, Bertotti and Serpico, 2005).
The case of generic ellipsoidal particle can be treated
by means of appropriate generalization of the following
derivation (Bertotti, Mayergoyz and Serpico, 2006a). Owing
to the uniaxial symmetry of the system, the effective field
(17) can be written in the following form:

heff = −D⊥(mxex + myey) − Dxmxex + haxex + hayey

(90)
where D⊥ = Dy = Dz. It is interesting to notice that the
expression (90) can be written as heff = (D⊥ − Dx)mxex +
haxex + hayey − D⊥m, and the last term D⊥m is propor-
tional to m and thus has no effect on the torque m × heff.
For this reason, in the case of uniaxial particles, one can
assume the following alternative expression of the effective
field

heff = κeffmxex + haxex + hayey (91)

where, as in the previous section, κeff = D⊥ − Dx (see
equation (33)). The magnetic free energy corresponding to
the above effective field has the form:

gL(m; ha) = −κeff

2
m2

x − haxmx − haymy (92)

It can be easily observed that in the case of zero applied
field there are two stable equilibria m = ±ex surrounded
by two energy wells separated by the boundary mx = 0
(the circle corresponding to mx = 0 on the unit sphere has
the role of the separatrix between the two energy well).
Since the dissipation results in the decrease in magnetic
free energy, it can be concluded that the time evolution of
magnetization within each energy well inevitably leads to
the stable equilibrium inside this well. Thus, the essence of
the precessional switching is to move the magnetization by
the applied pulsed magnetic field from one energy well to
another. As soon as the target potential well is reached, the
applied field can be switched off and magnetization will relax
to a new equilibrium as a result of damping.

In the following, we analyze the dynamics in the time
interval when the field is applied. In this interval, we assume
that the effect of damping is negligible and thus we solve
conservative LLG equation.

By using conservation of the free energy (92) and
m2

x + m2
y + m2

z = 1, one can easily prove that magnetization
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Figure 8. Unit-circle representation of trajectories for precessional
switching in uniaxial particle.

trajectories in the (mx, my) plane, starting from the point
(mx = 1, my = 0) (point (‘0’ in Figure 8), are described by
the following equation

−κeff

2
m2

x − haxmx − haymy = −κeff

2
− hax (93)

Thus, on the (mx, my) plane, the precessional magnetization
motion occurs along the parabola (93) that is confined within
the unit disk m2

x + m2
y ≤ 1. The fact that, in the present

case, we do not have arcs of ellipses (as it is generally
the case according to the discussion in Section 3.2.1), is
a consequence of the rotational symmetry of the magnetic
body.

Several examples of parabolic magnetization trajectories
on (mx, my) plane are shown in Figure 8.

Next, we want to investigate the different types of
parabolic trajectories that can be generated by (93) in a func-
tion of the values of hax and hay . Our purpose is to find the
region in the (hax, hay) control plane which corresponds to
trajectories of the family (93) which, starting from the point
(mx = 1, my = 0) and remaining inside the unit circle

m2
x + m2

y = 1 (94)

eventually enters in the mx < 0 half circle (e.g., trajectory
‘0-7-1’ in Figure 8) . A necessary condition for this is that
the trajectories admit an intersection with the line mx = 0
with |my ≤ 1|. By substituting mx = 0 in (93) we arrive to
the following equation:

my = (hax + κeff/2)

hay

(95)

From the last equation one obtains that the intersection of
the parabola (93) with the line mx = 0 occurs inside the unit
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circle (my ≤ 1) under the following condition∣∣∣hax + κeff

2

∣∣∣ ≤ ∣∣hay

∣∣ (96)

The region in the (hax, hay) control plane corresponding to
the inequality (96) is represented in gray in Figure 9(a).

Next, we have to analyze the conditions on (hax, hay)

to rule out situations like the one corresponding to the
trajectory 0-4-5-6 sketched in Figure 8 in which the parabola
passing through the point (mx = 1, my = 0) (point ‘0’ in the
figure) corresponds to two disjoint pieces of magnetization
trajectories (0-4 and 5-6). In this condition, there can be
no precessional switching since the magnetization evolution
starting from ex remains trapped in the half plane mx > 0
(between the points 0 and 4 in Figure 8). The family of
parabolas similar to 0-7-1 and the family of parabolas similar
to 0-4-5-6 are separated by the critical trajectories 0-2-3
which is tangent to the mx > 0 portion of the unit circle.
This case corresponds to values of (hax, hay) for which there
is a saddle point in 2 and the initial state ex is on the
corresponding homoclinic trajectory 0-2-3. Small deviations
from this critical condition lead to trajectories consisting
of one piece of parabola (for instance, trajectory 0-7-1 in
Figure 8) or to trajectories consisting of two disjoint pieces
of the same parabola (for instance, trajectory 0-4 and 5-6 in
Figure 8). Let us investigate the conditions under which we
have the critical case.

By imposing the condition of tangency of the curves rep-
resented by equations (94) and (93), one arrives at the fol-
lowing relation:

κeffmxmy + haxmy − haymx = 0 (97)

At point 2 (Figure 8), three equations (94), (93), and (97) are
satisfied. These three equations define the curve hay versus
hax that separates the values of hax and hay which correspond
to the first and second classes of parabolic trajectories,
respectively. This hay versus hax curve can be easily found in
parametric form by introducing the polar angle φ0 such that:

mx = cos φ0, my = sin φ0 (98)

By substituting (98) into (93) and (97) and solving these
equations with respect to hax and hay , we arrive at the fol-
lowing parametric equation for the ‘separating’ curve:

hax = −κeff cos φ0 cos2(φ0/2),

hay = κeff sin φ0 sin2(φ0/2) (99)

(similar formulas were derived by using different reasoning
in Porter, 1998). We observe that, by varying the param-
eter φ0 in equation (99) in the interval [−π/2, π/2], we

(a) (b)
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hax
−keff /2 −keff /2

keff /2 keff /2
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keff
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Figure 9. Regions in the (hax, hay) control plane related to
the conditions for precessional switching. The curves labeled by
Asw and Aps correspond to the Stoner–Wohlfarth model asteroid
(see equation (37)) and to equation (99), respectively. (a) The
shaded region correspond to equation (96)). (b) The shaded region
correspond to the condition of precessional switching.

generate two arcs of the asteroid (curve Aps in Figures 9a
and b) which are inside the Stoner–Wohlfarth asteroid (curve
Asw in Figures 9a and b). These two arcs of the aster-
oid along with the vertical segment, defined by conditions
hax = 0 and −κeff/2 ≤ hay ≤ κeff/2, define the boundary of
a closed region in the control plane (hax, hay) completely
inside the Stoner–Wohlfarth asteroid. When the applied field
is inside this region, according to the discussion in the pre-
ceding text, there is an intersection of the parabolic trajectory
(93) with mx > 0 portion of the unit circle and the trajectory
starting from ex remains trapped in the mx > 0 half plane
(like trajectory 0 − 4 in Figure 8b). By removing the above
region from the gray region corresponding to condition (96)
(see Figure 9a), one obtains the switching region for preces-
sional switching in Stoner–Wohlfarth particles depicted in
Figure 9(b).

Now we will focus on the duration of the applied field
pulse which guarantees successful switching. In this respect,
we will assume that magnetization evolves on a trajectory
similar to trajectory ‘0-7-1’ in Figure 8. To find the evolution
of magnetization, one can consider that the x component of
LLG equation, in this case, reads

dmx

dt
= haymz (100)

By using (93) and the condition m2
z = 1 − m2

x − m2
y , one can

expressed m2
z as a fourth-order polynomial in mx . Thus in

this case, by using equation (100), the time windows for
switching the field off is t7 < t < t1, where:

t7 = −
∫ 0

1

dmx

|haymz(mx)| (101)

and

t1 − t7 = −2
∫ mx2

0

dmx

|haymz(mx)| (102)
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and mx = 1, mx = 0 and mx = mx2 correspond to points
0, 7, and 1 in Figure 8, respectively. The value of mx2 can
be found by solving simultaneous equations (94) and (93).

Let us determine the duration of the field pulse necessary
to switching in the case of applied field along the y axis
(ha = hayey). In the case of Stoner–Wohlfarth particle it can
be shown that, after appropriate integration of equation (56),
my can be expressed in the following form:

my(t) = D

2hay

sn2(hayt, ks) (103)

where sn(u, k) is the ‘sin-type’ Jacobi elliptic function of
argument u and modulus k, and ks = D/(2hay). It can be
readily inferred that mx will reach the value −1 after one
period of the function sn2(hayt, ks) (which is half of the
period of the function sn(hayt, ks)). This period can be
expressed, in physical units, as

Tps = 1

γMs

2K(ks)

hay

(104)

where K(k) is the complete elliptic integral of the first kind
of modulus k.

It has been previously discussed that in the case of
precessional switching the field pulse duration must be
tuned with attention, in the sense that complete switching
is achieved only if the field is switched off in a certain time
window. No such timing is required for damping switching,
because any field pulse of duration exceeding the minimum
time Tds will lead to switching. Precessional switching is
thus more difficult to realize. On the other hand, it has
clear advantages with respect to damping switching, because
the critical field is lower and the switching time is much
shorter. In fact, it is instructive to compare switching times
for precessional and damping switching for the same value of
the ratio rc between applied fields and corresponding critical
fields, that is, hay/κeff for damping switching and 2hay/κeff

for precessional switching. For Tps, we will use the formulas
for Stoner–Wohlfarth particles, since they were obtained for
the same symmetry assumed for damping switching, namely,
uniaxial symmetry around the ex direction. One can express
the ratio Tps/Tds in the form:

Tps

Tds
= α

1 + α2
F (rc) (105)

where the function F(rc) is obtained from equations (87) and
(104). The graph of the function F(rc) is shown in Figure 10
for different values of the angle φ0 involved in damping
switching. It is clear from this figure and equation (105)
that precessional switching is (for α � 1) approximately 1/α

times faster than damping switching. For applied fields close
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Figure 10. Comparison between precessional and damping switch-
ing times. Plot of the function F(rc) = Tps/Tds versus the ratio
rc between applied field and corresponding critical field, that is,
hay/κeff for damping switching and 2hay/κeff for precessional
switching. The function is plotted for different values of the ini-
tial angle φ0 characterizing damping switching. Continuous line:
φ0 = 1◦; dashed line: φ0 = 0.3◦; dash-dotted line: φ0 = 0.1◦.

to their respective critical fields (i.e., rc close to 1), this
difference is even more pronounced.

4.2 Relaxation to equilibrium

The analysis of magnetization relaxation to equilibrium is
instrumental for the interpretation of the ‘ringing’ phenomena
(Back et al., 1998, 1999; Schumacher et al., 2003; Kaka and
Russek, 2002) that occur in precessional switching whenever
the magnetization is not exactly in the desired equilibrium
state at the moment the external field is switched off. The
relaxation process exhibits two distinct timescales: the fast
timescale of precessional dynamics and the relatively slow
timescale of relaxation dynamics controlled by the damping
constant α. The free energy gL varies significantly only
on the slow timescale. In other words, the free energy
is a ‘slow’ variable whose dynamics is not obscured by
‘ringing’ and thus reveals the actual rate of relaxation to
equilibrium. For this reason, it is desirable to derive the
differential equation for the free energy and use it for
relaxation studies instead of the Landau–Lifshitz equation.
It turns out that this equation can be derived by using the
averaging technique. This technique is conceptually related
to the Poincaré–Melnikov method presented in Section 5.2.3
in the description of magnetization dynamics driven by time-
harmonic fields.

Our starting point for the analysis of relaxation toward
equilibrium is equation (26), discussed in Section 2.2.2:

dgL

dt
= −α

∣∣∣∣dm
dt

∣∣∣∣
2

(106)
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This equation shows that the magnetization dynamics
under constant applied field is such that the free energy
is monotonically decreasing until some equilibrium state is
reached. Since the damping constant is a small quantity,
α � 1, the magnetization dynamics during one period of the
precessional motion closely mimics the conservative dynam-
ics corresponding to α = 0. The free energy is decreased
appreciably only over many precession periods and remains
practically constant during one period. For this reason, no
essential information on relaxation is lost if equation (26)
is averaged over one precession period and the conservative
solution is used for dm/dt . By denoting the averaged energy
as gL, we have:

dgL

dt
= − α

TgL

∫ TgL

0

∣∣∣∣dmgL

dt

∣∣∣∣
2

dt (107)

where mgL(t) corresponds to the conservative dynamics
with energy gL and TgL is the associated precession period.
Explicit expressions for these quantities have been derived in
Section 3.2. Each precession trajectory is fully determined by
the value of its free energy, so the right-hand side of equation
(107) is a function of energy only and equation (107) can be
solved by the method of separation of variables.

Let us apply this approach to the description of ‘ringing’
phenomena. The derivations in the sequel are valid for
arbitrary values of Dx , Dy , Dz and uniaxial symmetry is
not assumed. We denote by goff the energy of the system
immediately after the external field has been switched off.
We assume that the field pulse is such that magnetization
switching is guaranteed. This means that after the field is
switched off the system is inside the energy region around
the final equilibrium state of interest (see Figure 8). In terms
of energy, this means that Dx/2 < goff < Dy/2. This energy
value represents the initial condition for the integration of
equation (107). The solution is obtained once the right-
hand side of equation (107) is explicitly calculated. This
can be done by introducing the variable w (see equation
(59)) and by taking advantage of the fact that |dm/dt |2 =
|dm/dw|2|dw/dt |2. By using equation (59) one finds:

∣∣∣∣dm
dw

∣∣∣∣
2

= p2

1 − w2
+ k′2

k2

w2
0p

2

w2
0 − w2

(108)

where w0 and p2 are respectively given by equations (60) and
(61), with gL in the place of g0. It can be verified that w2

0 < 1
in the zero-field energy region under study. The derivative
dw/dt is obtained from equations (62)–(64):

dw

dt
= ±k′p (Dz − Dx)

√(
1 − w2

) (
w2

0 − w2
)

(109)

Therefore:

∣∣∣∣dm
dt

∣∣∣∣
2

dt =k′p3w2
0 (Dz − Dx)

×


√

1−w2/w2
0

1 − w2
+ k′2

k2

√
1−w2

1 − w2/w2
0


 dw

w0
(110)

By inserting equation (110) into equation (107), the integral
in the latter equation can be reduced to canonical elliptic
integrals of the first and second kind. By taking into account
that the variable w spans the interval (0, w0) four times in
one precession period and by using equation (78) for TgL ,
one obtains the desired equation for the energy:

dgL

dt
= −α

(
Dz − 2gL

) [ (
2gL − Dx

) + (
Dy − Dx

)

×E(kL(gL)) − K(kL(gL))

K(kL(gL))

]
(111)

where K and E respectively represent the complete elliptic
integrals of the first and second kind, while:

k2
L = w2

0 = Dz − Dy

Dy − Dx

2gL − Dx

Dz − 2gL
(112)

Equation (111) is a first-order separable differential equation
that can be solved numerically. However, a useful approx-
imate analytical solution can be obtained by observing that
k2

L < 1 during the entire relaxation. Hence, the elliptic inte-
grals K and E can be expressed in simpler form by using the
expansions:

K(kL) = π

2

(
1 + k2

L

4

)
+ O(k4

L) (113)

E(kL) = π

2

(
1 − k2

L

4

)
+ O(k4

L) (114)

As a result, equation (111) is reduced to:

dgL

dt
= −α

(
2gL − Dx

) (
Dyz − 2gL

)
(115)

where Dyz = (Dy + Dz)/2. Equation (115) can be easily
integrated by the method of separation of variables. The
result is:

gL(t)= Dx

2
+

(
Dyz − Dx

)
(goff−Dx/2)

(2goff−Dx)+
(
Dyz−2goff

)
exp

[
2α

(
Dyz−Dx

)
t
]

(116)



Nonlinear magnetization dynamics in nanomagnets 21

0

(a) (b)

0. 6 1 . 2 1.8 2.4
−1

−0.5

0

0 . 5

1

mz
my

mx

t (s) t (s)×10−9 ×10−9

−1

−0.5

0

0.5

1

0 0.6 1.2 1.8 2.4

Figure 11. Magnetization components versus time obtained by numerical integration of LLG equation. Parameters: α = 0.01, Dx = −0.05,
Dy = 0, Dz = 1, goff = −0.005, (γMs)

−1 = 6 ps.

Figure 11 shows an example of magnetization relaxation to
equilibrium, computed by direct numerical integration of the
LLG equation (equations (14) and (17). The system is a
thin film with in-plane anisotropy along the x axis (Dx =
−0.05, Dy = 0, Dz = 1). The magnetization is initially
inside the central energy region around mx = −1. The
energy varies in this region from gL = Dy/2 = 0 (energy
of heteroclinic trajectories) down to gL = Dx/2 = −0.025
(energy minimum at mx = −1). The initial energy is goff =
−0.005, relatively close to the upper boundary of the
region. By inserting the numerically computed magnetization
components in the equation for the free energy (equation
(20)), one obtains the time behavior of the instantaneous
energy gL(t). The result is shown by the continuous line
in Figure 12. The wavy behavior of the energy reflects the
precessional magnetization dynamics taking place on the fast
timescale. The dashed line represents the averaged energy
gL(t) obtained by numerical integration of equation (111).
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Figure 12. Comparison between numerically and analytically
computed energy relaxation to equilibrium. Continuous line: numer-
ical integration of LLG equation; dashed line (omitted in the main
diagram for the sake of clarity but shown in the inset): numerical
integration of equation (111); dotted line: equation (116). Param-
eters: α = 0.01, Dx = −0.05, Dy = 0, Dz = 1, goff = −0.005,
(γMs)

−1 = 6 ps.

Finally, the dotted line represents the approximate analytical
solution given by equation (116). It is apparent that the
description of the relaxation in terms of the averaged
energy gL(t) leads to quite accurate results. The analytical
approximation is quite satisfactory as well, if one takes into
account that the initial value of the elliptic-integral modulus
kL is as large as kL � 0.89.

We remark in conclusion that the averaging technique
discussed in this section is general and can be applied to
relaxation phenomena under nonzero field as well, provided
that one has sufficient information about the solution mg0(t)

of the conservative dynamics for the field considered.

5 NONLINEAR MAGNETIZATION
DYNAMICS UNDER CIRCULARLY
POLARIZED FIELD

5.1 LLG dynamics in rotationally invariant
systems

In nanometer-scale magnetic bodies, appropriately applied
microwave fields can drive spatially uniform magnetization
motions very far from static equilibrium conditions. In this
situation, it is not possible to treat the problem through lin-
earization of the equations of motion around a reference
static equilibrium state and one has to study the magneti-
zation dynamics taking fully into account nonlinear effects
such as nonlinear resonance, bifurcations, quasiperiodic, or
even chaotic dynamics. In this section, we consider nano-
magnets with uniaxial anisotropy and subject to circularly
polarized microwave applied fields. The problem is rotation-
ally invariant around the disk axis and this permits one to
analytically determine all admissible single-domain dynam-
ical regimes (Bertotti, Serpico and Mayergoyz, 2001). The
possibility of deriving exact solutions of the nonlinear prob-
lem is very important since give the possibility to treat, by
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perturbation techniques, magnetization dynamics in far-from-
equilibrium conditions (Bertotti, Mayergoyz and Serpico,
2001a). In this respect, it is appropriate here to mention that
in recent times there has been increasing interest in situa-
tions (e.g., precessional switching; Kaka and Russek, 2002 or
spin-transfer-driven magnetization dynamics; Kiselev et al.,
2003, and Rippard et al., 2004) where the magnetization of
nanomagnetic elements is forced to execute large motions.

5.1.1 LLG equation in the rotating frame

We consider here a spheroidal particle with symmetry axis
along the z axis. In this section, we do not assume that
inequality (19) is necessarily valid. By subscript ‘⊥’ we will
denote components of vectors in the plane orthogonal to the
z axis. The magnetostatic field hS is given by

hS = −Nzmz − N⊥m⊥ (117)

where the Nx = Ny = N⊥ (Nz + 2N⊥ = 1). As we have
done previously, we also assume that the crystal anisotropy
is uniaxial, with the anisotropy axis along the z direction:

hK = κmzez (118)

The external field consists of the constant component hazez

directed along the symmetry axis and the circularly polar-
ized rf component ha⊥(t) in the perpendicular plane (see
Figure 13), that is,

ha(t) = ha⊥(t) + hazez (119)

where

ha⊥(t) = ha⊥
(
cos ωtex + sin ωtey

)
(120)

ey

ex

ez

haz

d

D ha⊥

Figure 13. Sketch of uniaxial nanomagnet subject to circularly
polarized microwave fields.

The free energy of the system is

gL (m; ha) = 1

2

(
Nzm

2
z + N⊥m2

⊥
) − 1

2
κm2

z − ha ·m (121)

and the effective field can be written as

heff = −∂gL

∂m
= ha⊥ + (haz + κeffmz) ez − N⊥m (122)

where:

κeff = κ + N⊥ − Nz (123)

Under these conditions, we want to study LLG equation,
which is reported below for the reader’s commodity:

dm
dt

− αm × dm
dt

= −m × heff (124)

The system under study is characterized by the parameters
(α, κeff), whereas the excitation conditions are described by
the control parameters (ω, haz, ha⊥).

The dynamical system on the unit sphere described by
equation (124) is nonautonomous, because heff explicitly
depends on time through the external field ha⊥(t). However,
the nontrivial complications usually encountered in the
analysis of nonautonomous systems can be circumvented by
taking advantage of the rotational symmetry of the problem.
This becomes evident when one considers the form of
equation (124) in the rotating frame of reference in which the
external field is stationary. In this frame, which is rotated at
the angular frequency ω around the ez axis, the magnetization
derivative is transformed as follows:[

dm
dt

]
lab frame

=
[

dm
dt

]
rot frame

− ωm × ez (125)

Therefore, in the rotating-frame equation (151) takes the
form:

dm
dt

− αm × dm
dt

= −m × (heff − ωez + αωm × ez)

(126)
The field heff is still given by equation (122), but ha⊥ is now
time independent by construction. On the other hand, no new
time dependence appears as a result of the transformation
to the rotating frame, as all the parameters of the problem
are invariant with respect to rotations about the symmetry
axis. Thus, no explicit time dependence is present anymore
in the right-hand side of equation (126). In other words, the
transformation to the rotating frame brings the dynamics to
autonomous form.
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In equation (126), the role of ‘effective’ energy is played
in by the quantity:

g̃L (m; ha) = gL (m; ha) + ωmz (127)

This can be shown by introducing the associated effective
field

h̃eff ≡ −∂g̃L

∂m
= heff − ωez (128)

and by writing equation (126) in the form:

dm
dt

= −m × h̃eff + αm ×
(

dm
dt

− ωm × ez

)
(129)

where all the contributions proportional to the damping
parameter have been collected into a single term. Whenever
damping is negligible one has that h̃eff ·dm/dt = 0, that is,
g̃L is conserved.

When α is nonzero, the effective energy g̃L is no longer
constant along the magnetization trajectories. One obtains
from equation (129) that g̃L changes at the rate:

dg̃L

dt
≡ −h̃eff · dm

dt
= −α

(
dm
dt

− ωm × ez

)
· dm

dt
(130)

The right-hand side of equation (189) can be negative and
positive, depending on the orientation of m. This means that
the dynamics in the rotating frame is not a mere relaxation
toward minima of the effective free energy, and one cannot
exclude (as it was discussed in the case of constant applied
field) that the presence of periodic steady states (limit cycles)
in which the energy has a periodic variation in time (see
Figure 14). This latter kind of steady state in the rotating
frame corresponds to quasiperiodic solution in the lab frame.

Let us also underline that the term in equation (129)
proportional to α can be often treated as a perturbation to
the undamped dynamics controlled by the effective energy
g̃L, owing to the fact that α � 1 for all systems of physical

(a) (b)

u

a

s

r

Figure 14. Schematic representation of limit cycles. (a) Stable
limit cycle (a, i.e., attractive) surrounding unstable focus; (b)
unstable limit cycle (r , i.e., repulsive) surrounding stable focus.

interest. This perturbative approach is particularly useful in
the study of limit cycles.

The study of LLG dynamics in the rotating frame of
reference can be conveniently carried out by introducing the
spherical-angle state variables (θ, φ), representing the angle
of m with respect to ez (0 ≤ θ ≤ π) and the lag angle of m⊥
with respect to ha⊥ (−π ≤ φ ≤ π ), respectively. In other
words, we express the magnetization as:

m = ma⊥ea + mb⊥eb + mzez

= sin θ cos φea − sin θ sin φeb + cos θez (131)

where (ea, eb, ez) is a right-handed Cartesian set of unit
vectors for the rotating frame, of which ea is directed along
ha⊥. The minus sign in the expression for mb⊥ is due to the
fact that φ represents the angle by which the magnetization
lags the field. Equation (129) in spherical coordinates reads

dθ

dt
− α sin θ

dφ

dt
= 1

sin θ

∂g̃L

∂φ
− αω sin θ

= ha⊥ sin φ − αω sin θ (132)

α
dθ

dt
+ sin θ

dφ

dt
= ∂g̃L

∂θ
= ha⊥ cos φ cos θ

− (haz − ω + κeff cos θ) sin θ (133)

where g̃L(θ, φ) is the effective free energy expressed in
spherical coordinates.

Spherical coordinates are quite a natural reference system
to represent magnetization evolution on the sphere and they
are very convenient to derive analytical formulas. However,
the ensuing description of magnetization dynamics is not
always completely transparent in the vicinity of the sphere
poles where the angle φ is undefined. For this reason,
especially in phase portraits where limit cycles are present,
it is useful to introduce the stereographic projection of the
unit sphere on the plane. The stereographic coordinates wx

and wy are connected to the Cartesian coordinates by the
following relations:

wx = mx

1 + mz

wy = my

1 + mz

(134)

where w = wxex + wyey . The main properties of this trans-
formation are the following: angles between intersecting
lines are preserved (conformal transformation) Schwerdt-
feger, 2001; m = +ez is projected into the origin of the
plane; the north hemisphere (mz > 0) is projected inside the
unit circle; the south hemisphere (mz < 0) is projected out-
side the unit circle; m = −ez is projected into infinity. In
order to have a complete picture of the phase portrait, we
also consider the stereographic projection which projects the
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Figure 15. Examples of phase portraits of LLG dynamics in the rotating frame of reference. Each phase portrait is represented in terms of
joint stereographic projections of mz > 0 and mz < 0 hemispheres onto the unit circle. The point of contact of the mz > 0 and mz < 0 circles
corresponds to ma⊥ = 1, that is, magnetization fully aligned along the rf field ha⊥. s: stable node; u: unstable node; d: saddle; a: stable limit
cycle; r: unstable limit cycle. System parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5. Upper portrait: haz = −0.2, ha⊥ = 0.08.
Lower portrait: haz = 0.8, ha⊥ = 0.08. Simplified graphical representation of phase portraits is given on the right.

south hemisphere into the unit circle and the north hemi-
sphere outside the unit circle. This is simply given by the
transformation: wx = mx/(1 − mz) and wy = my/(1 − mz).
Two examples of phase portraits represented by means of
stereographic projection are reported in Figure 15.

5.1.2 Topological aspects

Equation (126) (LLG equation in the rotating frame of refer-
ence) describes an autonomous dynamical system evolving
on the surface of the unit sphere |m|2 = 1. For this reason the
topological aspects discussed in Section 2.2.1. By using the
rotating frame of reference and the consequent autonomous
character of the dynamics permits one to study its proper-
ties in geometric terms, through the phase portrait (Wig-
gins, 1990; Hubbard and West, 1995; Perko, 1996; Hale and
Kocak, 1991) of the equation (see Figure 15 for an example).
In particular we can arrive to the following conclusions:

• Existence of fixed points: The phase portrait on the sphere
must necessarily contain a nonzero number of fixed

points for which dm/dt = 0 (Perko, 1996). These fixed
points occur in the rotating frame of reference. In the lab-
oratory frame, each of them results in a magnetization
mode in which the magnetization precesses about the
symmetry axis in synchronism with the external field.
These rotating modes will be termed P modes. There-
fore, one reaches the remarkable conclusion that a certain
number of P modes must necessarily exist for any value
of the control parameters

(
ω, ha‖, ha⊥

)
. Interestingly,

in a P mode the system response to a time-harmonic
excitation (see equation (120)) is itself time harmonic,
with no generation of higher-order harmonics, despite
the inherent strongly nonlinear character of the dynam-
ics. These P modes can be also seen as magnetization
modes that are frequency and phase locked to the exter-
nal microwave field.

• Number of fixed points: By using the Poincaré index
theorem (Perko, 1996) (see also Section 2.2.1). one can
infer that the number of P modes is at least two and
is even under all circumstances. Following this result,
one can classify LLG phase portraits for rotationally
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invariant systems according to the number and nature
of their fixed points as follows:
– phase portraits with two fixed points: two nodes or

foci;
– phase portraits with four fixed points: three nodes or

foci + 1 saddle;
– . . .

The nature of a fixed point (node, focus, or saddle) can
be determined through the analysis of its stability. This
aspect will be discussed in Section 5.2.2.

• Presence of limit cycles: The fact that the effective
energy is not always decreasing as a function of time (see
equation (189)) gives rise to the possibility of existence
of periodic steady state (limit cycles, see Figure 14 for a
sketch). Limit cycles in the rotating frame correspond to
quasiperiodic solutions in the laboratory frame, named
Q modes, which results from the combination of the
frequency of the limit cycle (generated by the system
itself) and the frequency of the external field. These Q
modes can be also seen as magnetization modes that are
not frequency or phase locked to the external microwave
field.

• Nonexistence of chaos: Chaos is precluded, because
the phase space is two dimensional (Wiggins, 1990).
The onset of chaotic phenomena is not compatible
with the simultaneous presence of rotational symmetry
and uniform magnetization. Only when one or both
of these requirements are relaxed, chaotic phenomena
may appear (Wigen, 1994; Alvarez, Pla and Chubykalo,
2000).

5.2 P modes, Q modes, and ferromagnetic
resonance

5.2.1 Periodic modes (P modes)

By setting dθ/dt = dφ/dt = 0 in equations (132) and (133)
one obtains the equations for the fixed points of the dynamics
in the rotating frame:

ha⊥ sin φ0 = αω sin θ0 (135)

ha⊥ cos φ0 cos θ0 = (haz − ω + κeff cos θ0) sin θ0 (136)

By taking the ratio of the corresponding sides of equations
(135) and (136), one obtains:

αω cot φ0 = haz − ω

cos θ0
+ κeff (137)

Then, by dividing both sides of equation (136) by cos θ0 and
summing the square of the two sides of the equation with

the squares of the corresponding sides of (135), one obtains

h2
a⊥

sin2 θ0
=

(
haz − ω

cos θ0
+ κeff

)2

+ (αω)2 (138)

For later use it is convenient to introduce the quantity:

ν0 = αω cot φ0 (139)

By using ν0 equations (137) and (138) can be rewritten as

ν0 = haz − ω

cos θ0
+ κeff (140)

ν2
0 = h2

a⊥
sin2 θ0

− α2ω2 (141)

The convenience in using ν0 comes from the following
considerations. The angle φ0 is in one-to-one correspondence
with ν0 because 0 ≤ φ0 ≤ π under all circumstances. In fact,
equation (135) shows that sin φ0 ≥ 0 for all P modes, because
ha⊥, α, ω, and sin θ0 are all positive quantities by definition.
In other words, in a P mode the magnetization always lags
the field. The plane (cos θ0, ν0) is the natural plane for
the representation of P modes. A generic P mode will be
located in the region −1 ≤ cos θ0 ≤ 1, −∞ < ν0 < ∞, that
is, 0 ≤ θ0 ≤ π , 0 ≤ φ0 ≤ π .

By solving equations (140) and (141), one obtains the
values of (cos θ0, ν0) for the various P modes existing under
given excitation conditions (ω, haz, ha⊥). In practise this can
be done by solving equation (138) which can be seen as the
following fourth order equation in mz:

h2
a⊥

1 − m2
z

=
(

haz − ω

mz

+ κeff

)2

+ (αω)2 (142)

which, after simple manipulation can be written as

(1 + �2)m4
z + 2bzm

3
z + [b2

⊥ + b2
z − (1 + �2)]m2

z

−2bzmz − b2
z = 0 (143)

where

� = αω

κeff
, bz = haz − ω

κeff
, b⊥ = ha⊥

κeff
(144)

Equation (143) will admit either two or four real roots which
correspond to the coexistence of two or four periodic solution
of original LLG equation. It is interesting to notice that
equation (143) reduces to equation (35) obtained for the
Stoner–Wohlfarth model, by considering the limit ω → 0,
and replacing mx with mz. This is consistent with the view
that the P mode theory is a special dynamical generalization
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of the Stoner–Wohlfarth model (Magni, Bertotti, Serpico and
Mayergoyz, 2001).

In order to find the excitation conditions corresponding to
a given P mode (cos θ0, ν0) one can use the same equations
(140) and (141), written in the form

haz = (ν0 − κeff) cos θ0 + ω (145)

ha⊥ =
√(

1 − cos2 θ0
) (

ν2
0 + α2ω2

)
(146)

Given a particular P mode solution of equations (140) and
(141), its rotating-frame components defined by equation
(131) can be expressed in terms of cos θ0 only, by using
equations (135) and (136) to eliminate φ0:

ma⊥ =
(

haz − ω

cos θ0
+ κeff

)
sin2 θ0

ha⊥
(147)

mb⊥ = −αω sin2 θ0

ha⊥
(148)

mz = cos θ0 (149)

It important to stress that P mode solutions correspond
to spatial uniform periodic solutions of the original LLG
equation. If we denote a P mode in the lab frame with m0(t),
we immediately have that

dm0

dt
= ωez × m0(t) (150)

which comes from the fact that m0(t) is uniformly rotating
unit vector around the z axis with angular frequency ω. If
we substitute (150) into the original LLG equation:

dm0

dt
− αm0 × dm0

dt
= −m0 × heff0 (151)

we end up with the following condition

m0(t) × (heff0(t) − ωez + αωm0(t) × ez) = 0 (152)

where heff0(t) is the effective field associated to m0(t).
Equation (152) implies that the following condition is
verified at each time instant[

heff0(t) − ωez + αωm0(t) × ez

] = λ0m0(t) (153)

where λ0 is a constant depending on (cos θ0, ν0). If we pass
now to the rotating reference frame and express m through
equations (147–149), one can prove that λ0 has the following
simple expression:

λ0 = ν0 − N⊥ (154)

Equation (153) is particularly useful in the discussion of
stability of P mode.

5.2.2 P mode stability

The results obtained in the previous section do not say
anything about the fact that a given P mode may or may not
be physically realizable. Only the modes that are dynamically
stable will survive for long times and will be experimentally
observable. Dynamical stability can be studied by perturbing
the P mode solution and by analyzing the ensuing time
behavior of the perturbation. To be completely general,
this analysis should be carried out for arbitrary space-
time dependent perturbations compatible with the boundary
conditions of the problem. In the present section, this analysis
is limited to spatially uniform perturbations only. Physically
this means that we are going to consider magnetic particles so
small that exchange forces rule out the appearance of space
nonuniformities, however, small. The problem of stability of
P modes against spatially nonuniform perturbations is treated
in details in Bertotti, Mayergoyz and Serpico (2001a, 2006b).

Under the assumption of space uniformity, a given P mode
will be dynamically stable if the corresponding fixed point
of the rotating-frame dynamics is stable. Stability is studied
by standard methods (Hubbard and West, 1995; Kuznetsov,
1995), by linearizing equation (126) around the P mode fixed
point. Nevertheless, it is instructive to start our analysis in the
lab frame. Let us denote a P mode in the lab frame by m0(t)

(which is periodic with period 2π/ω). We want to study the
dynamics of m(t) in the vicinity of the periodic solution
m0(t). In other terms, we consider magnetization states

m(t) = m0(t) + �m(t) (155)

with

|�m(r, t)| � |m0(t)| = 1 (156)

If we substitute equation (155) into LLG equation (124), and
neglect all terms which are second or higher order in the
components of the vector �m, we arrive to the following
linearized LLG equation.

∂

∂t
�m − αm0 × ∂

∂t
�m − α�m × d

dt
m0

= −�m × heff0 − m0 × �heff (157)

where

�heff = Dx�mxex + Dy�myey + Dz�mzez (158)

Equation (157) can be put in the following simpler form:

∂

∂t
�m − αm0 × ∂

∂t
�m = −�m ×

(
heff0 − α

d

dt
m0

)
+ m0 × �heff (159)
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Now by using equations (150) and (152), we can write
equation (159) as

∂

∂t
�m − αm0 × ∂

∂t
�m = −�m × (λ0m0 + ωez)

+ m0 × �heff (160)

From this last equation and equation (150) one immediately
derive that

m0(t)· ∂

∂t
�m = +�m·m0(t) × ωez = −�m · d

dt
m0 (161)

which implies that

∂

∂t
[�m(t)·m0(t)] = 0 (162)

namely, that, at each instant of time the components of per-
turbation in the direction of m0(t) are constant. This means
that, as far as small perturbations around periodic solution
are concerned, we can limit ourselves to the components of
�m(t) orthogonal to m0(t). In this respect, it is convenient
to introduce in the plane perpendicular to m0 the following
uniformly rotating unit vectors:

e1 ∝ (ez × m0) × m0 (163)

e2 ∝ ez × m0 (164)

where the symbol ‘∝’ has the meaning of ‘being directed
along’.

Let us express �m as

�m(t) = �m1(t)e1(t) + �m2(t)e2(t) (165)

We observe that studying magnetization dynamics in the
reference frame (m0, e1, e2) is tantamount of studying
the dynamics in the rotating reference frame previously
introduced.

Let us now substitute equation (165) into (160), and take
into account that

de1(t)

dt
= ωez × e1(t),

de2(t)

dt
= ωez × e1(t) (166)

after appropriate manipulation one arrives to the following
equation

d

dt

(
�m1

�m2

)
+

(
0 α

−α 0

)(
�m1

�m2

)
=

( −αω cos θ0 −(ν0 − N⊥)

(ν0 − N⊥) −αω cos θ0

)(
�m1

�m2

)

+
(

0 1
−1 0

) (
�heff1

�heff2

)
(167)

where �heff1 and �heff2 are the projections of �heff (see
equation (158)) along the two directions e1(t) and e2(t).
Let us now analyze the form of this two components. The
anisotropy part of �heff, it is given by

�heff,AN = e1(t)(e1(t)·ez)κ�mz (168)

and by taking into account that

e1(t)·ez = sin θ0, �mz = �m1 sin θ0 (169)

one obtains that

(�heff,AN)1,2 =
(

κ sin2 θ0 0
0 0

)
·
(

�m1

�m2

)
(170)

It is interesting to notice that, due to the symmetry and
despite the time-varying nature of the basis (e1, e2), the part
of �heff related to anisotropy is time independent.

The magnetostatic part of �heff is given by

�hM = −N⊥�m⊥ − Nz�mzez

= −N⊥�m + (N⊥ − Nz) �mzez (171)

thus,

�hM1 = −N⊥�m1 + (N⊥ − Nz) sin2 θ0�m1,

�hM2 = −N⊥�m2 (172)

By using these results one finds that equation (174) is simply
reduced to(

1 α

−α 1

)
∂

∂t

(
�m1

�m2

)

=
( −αω cos θ0 −ν0

ν0 − κeff sin2 θ0 −αω cos θ0

) (
�m1

�m2

)
(173)

which coincides with the equation that would be obtained by
linearizing LLG equation in the rotating reference frame in
spherical coordinates (see equations (132 and 133)) around
a given P mode and making the following correspondence
�θ = �m1, sin θ0�φ = �m2.

Equation (172) can be put in the following explicit form

d

dt

(
�m1

�m2

)
= A0

(
�m1

�m2

)
(174)

where:

A0 = 1

1 + α2

(
1 −α

α 1

) ( −αω cos θ0 −ν0

ν0 − κeff sin2 θ0 −αω cos θ0

)
(175)
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and the pair (cos θ0, ν0) identifies the particular P mode
considered. Stability is controlled by the eigenvalues of the
matrix A0. More precisely, let us calculate the determinant
of A0:

detA0 = 1

1 + α2

(
ν2

0 − κeff sin2 θ0ν0 + α2ω2 cos2 θ0
)

(176)

its trace:

trA0 = − 2α

1 + α2

(
ν0 − κeff sin2 θ0

2
+ ω cos θ0

)
(177)

and the characteristic frequency ω2
0 = detA0 − (trA0)

2 /4:

ω2
0 = 1(

1 + α2
)2

[(
ν0 − κeff sin2 θ0

2
− α2ω cos θ0

)2

− (
1 + α2) κ2

eff sin4 θ0

4

]
(178)

Then, P mode stability can be classified as follows
(Hubbard and West, 1995).

• detA0 < 0. Saddle-type fixed point.
• detA0 > 0 and ω2

0 < 0. Node-type fixed point:
– trA0 < 0: stable node;
– trA0 > 0: unstable node.

• detA0 > 0 and ω2
0 > 0. Focus-type fixed point:

– trA0 < 0: stable focus;
– trA0 > 0: unstable focus.

The difference between a node and a focus is not relevant
to the rest of our analysis: we will use the term node in
a generic sense, to denote either of them. The symbols (s),
(u), and (d) will be used to denote stable nodes, unstable
nodes, and saddles, respectively. A given P mode represents
a physically realizable mode only when it is of (s) type
(detA0 > 0 and trA0 < 0).

Stability results acquire a transparent form in the (cos θ0,

ν0) P mode plane. Stability is controlled by the equations
detA0 = 0 and (trA0 = 0, detA0 > 0), where detA0 and trA0

are given by equations (176) and (177), respectively. These
equations can be solved in order to obtain ν0 as a function
of cos θ0. The results are as follows.

• detA0 = 0:

ν0 = κeff sin2 θ0

2
±

√
κ2

eff sin4 θ0

4
− α2ω2 cos2 θ0 (179)

The above two values are real in the interval:

cos2 θ0 ≤
(√

1 + α2ω2

κ2
eff

−
∣∣∣∣ αω

κeff

∣∣∣∣
)2

(180)

• (trA0 = 0, detA0 > 0):

ν0 = κeff sin2 θ0

2
− ω cos θ0 (181)

By inserting equation (181) into equation (176) one finds
that detA0 ≥ 0 for

cos2 θ0 ≥
(√

1 + ω2
(
1 + α2

)
κ2

eff

−
∣∣∣∣∣ω

√
1 + α2

κeff

∣∣∣∣∣
)2

(182)

Figure 16 shows the lines detA0 = 0 and (trA0 = 0,

detA0 > 0) calculated from equations (179) and (181) for
a thin film with negligible crystal anisotropy. These lines
divide the P mode plane into three regions associated with
stable nodes (S), unstable nodes (U), and saddles (D).
Physically realizable modes are only those located in the
region S.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

cos q0

S

D

U

n0
s

d

u

u

detA0 = 0

trA0 = 0 

Figure 16. Representation of P modes in (cos θ0, ν0) plane.
Continuous lines: detA0 = 0 and (trA0 = 0, detA0 > 0). P modes
lying inside region D are saddles of the rotating-frame dynamics,
while those outside D are stable nodes (region S) or unstable nodes
(region U). Broken lines: equation (140) for ha‖ = 0.8 and equation
(141) for ha⊥ = 0.08. Solid points: intersection points representing
the four P modes associated with ha‖ = 0.8, ha⊥ = 0.08 (see
bottom phase portrait in Figure 15). System parameters: α = 0.1,
κeff = −1. Field frequency: ω = 0.5.
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These results take a more complex form in the field control
plane

(
ha‖, ha⊥

)
. Because there are two or four P modes

associated with any given point of this plane, the functions
detA0 and trA0 will take the form of twofolded or fourfolded
sheets when represented in this plane. According to Poincaré
index theorem, when four P modes are present one of
them is necessarily a saddle characterized by detA0 < 0.
Therefore, the control plane region admitting four P modes
coincides with the region where detA0 < 0 for one of the
P modes. By substituting equation (179) into equations
(145) and (146), one obtains a parametric representation
of the boundary (detA0 = 0) between the two and four P
mode regions, with cos θ0 as the independent variable (see
Figure 17). By similar considerations, one can determine the
line (trA0 = 0, detA0 > 0) (broken line in Figure 17) by
substituting equation (181) into equations (145) and (146).
The detA0 < 0 region can be construed as the dynamic
generalization of Stoner–Wohlfarth asteroid region (Stoner
and Wohlfarth, 1948; Bertotti, 1998). Indeed, it can be
verified that this region coincides with the usual asteroid
region in the limit ω → 0.

Equations (140) and (141) are invariant under the transfor-
mation: cos θ0 → − cos θ0, ν0 → −ν0, κeff → −κeff. Given
a P mode solution of the original equations, this trans-
formation gives a corresponding P mode solution for the
case where the effective anisotropy takes the opposite value.
Equations (176) and (177) show that trA0 → −trA0 and
detA0 → detA0 as a result of the above transformation. This
means that when the sign of anisotropy is reversed stable
P modes are changed into unstable ones and vice versa
while the detA0 = 0 and trA0 = 0 lines remain unaltered.
These rules permit one to extend known results to sys-
tems with effective anisotropy of opposite sign. In addition,
equation (176) shows that detA0 > 0 whenever ν0 and κeff

have opposite signs. Therefore the saddle point can exist

−1 −0.5 0 0.5 1 1.5
0

0.5

1

trA0 = 0

detA0 = 0

ha⊥

haz

Figure 17. Representation of detA0 = 0 line and (trA0 = 0,

detA0 > 0) line in
(
ha‖, ha⊥

)
control plane. System parameters:

α = 0.1, κeff = −1. Field frequency: ω = 0.5. Small empty circles
represent location of the two phase portraits shown in Figure 15.

only provided ν0 and κeff have identical sign. This means that
for the saddle points we have 0 ≤ φ0 < π/2 when κeff > 0
and π/2 < φ0 ≤ π when κeff < 0.

It is worth remarking that the mentioned connection
between fixed-point stability and anisotropy sign reflects a
more general property of LLG dynamics (equations (132) and
(133)), namely, the fact that reversing the sign of the effective
anisotropy is essentially equivalent to reversing the direction
of time. Indeed, equations (132) and (133) are invariant under
the transformation: θ → π − θ , φ → π − φ, κeff → −κeff,
t → −t , from which the P mode symmetries just discussed
can be derived as a particular case.

5.2.3 Quasiperiodic modes (Q modes)

In order to be physically realizable, a P mode must be a stable
node of the rotating-frame dynamics. When no P mode is
stable, there will exist (at least) one attracting limit cycle in
the dynamics (Poincaré-Bendixson theorem) (Perko, 1996).
A limit cycle represents a periodic magnetization motion
along a closed path on the unit sphere. This conclusion holds
in the rotating reference frame. In the laboratory frame, the
periodic motion along the limit cycle has to be combined
with the rotation of the reference frame and this results in a
quasiperiodic magnetization mode (Q mode) (see Figure 18).
The quasiperiodicity arises because the external field and the
limit-cycle periods are usually not commensurable.

The following argument proves that Q modes are neces-
sarily present under appropriate conditions. Let us consider
the case of small rotating field amplitudes, ha⊥ → 0, where
sin θ0 → 0 and cos θ0 → ±1. By making use of equations
(140) and (141), one can write equations (176) and (177) in
the approximate form:

detA0 � 1

1 + α2

(
ν2

0 + α2ω2) (183)

trA0 � − 2α

1 + α2

(
κeff ± ha‖

)
(184)

Only two P modes are possible, because detA0 > 0.
Furthermore, the sign of trA0 is opposite to that of κeff

for both modes in the interval
∣∣ha‖

∣∣ < |κeff|. Therefore, in
this interval both P modes are unstable for any system with
negative effective anisotropy and a Q mode will necessarily
appear.

This formal result has an intuitive physical interpretation.
Let us assume that κeff < 0 and that initially only the constant
positive field ha‖ < |κeff| is applied, that is, ha⊥ = 0. In
this case, no time-dependent driving field is present. In the
laboratory frame, there exists a continuous set of static,
marginally stable equilibrium states characterized by fixed



30 Fundamentals of micromagnetism and discrete computational models

−1

1

m
z

−0.5

0

0.5

1

−1

−0.5

0

0.5

(a) (b)

1

−1

my −0.5

0.5
0

mx
−0.5

0
0.5

1

mx

−0.5

0

0.5

1

my

m
z

−1 −1

0

0.5

1

−0.5

−1

Figure 18. Representation on unit sphere of quasiperiodic motion (Q mode) in the rotating reference frame (a) and in the laboratory
reference frame (b). In the rotating reference frame the Q mode appear as a limit cycle. System parameters: α = 0.1, κeff = −1. Field
frequency: ω = 0.5. Field amplitude: ha‖ = 0.8, ha⊥ = 0.08.

cos θ and arbitrary φ. In fact, by expressing the energy of
the system (equation (121)) in terms of θ and φ one finds:

gL
(
θ, φ; ha‖, ha⊥

) = N⊥
2

− κeff

2
cos2 θ − ha‖ cos θ

−ha⊥ sin θ cos φ (185)

When κeff < 0 and ha⊥ = 0 the energy is independent of
φ and assumes its minimum value for cos θ = ha‖/ |κeff|. In
the rotating frame, this continuous set of states results in a
limit cycle of period 2π/ω. When the small rotating field
ha⊥ is applied, the set of equivalent static states is changed
into a quasiperiodic motion. In fact, the rotating field is not
strong enough to force the magnetization into synchronous
rotation. The magnetization follows the field only for a
small part of each rotation period and then periodically falls
off synchronism. The result is a Q mode characterized by
a slow average m precession around the symmetry axis,
accompanied by a notation of frequency ω. Only when ha⊥
exceeds a certain threshold, m gets locked to the field and
the Q mode is destroyed in favor of a stable P mode.

In general, one expects that both stable (denoted by (a),
i.e., attracting) and unstable (denoted by (r), i.e., repelling)
limit cycles may be present in the dynamics (see Figure 15).
The problem of theoretically predicting the number and
the location of limit cycles for a given dynamical system
is of extraordinary mathematical difficulty. However, when
dissipation is small (that is, α � 1 in equation (129))
some insight can be obtained (Serpico, d’Aquino, Bertotti

and Mayergoyz, 2004) by a perturbative approach known
as the Poincaré–Melnikov method for slightly dissipative
systems (Perko, 1996; Guckenheimer and Holmes, 1997)
(this method is discussed in detail in Bertotti, Mayergoyz
and Serpico (2006a) where it is applied to spin-torque driven
magnetization dynamics). Here, we simply present the key
elements permitting one to apply the method to rotationally
invariant LLG dynamics.

The starting point of our discussion is the equation
for the undamped dynamics obtained by taking α = 0 in
equation (129):

dm
dt

= −m × h̃eff (186)

This equation shows that the effective energy g̃L defined by
equation (127) is an integral of motion for the undamped
dynamics, because h̃eff ·dm/dt = 0. Thus the magnetization
trajectories coincide with the closed level curves of the g̃L

function. From equations (121) and (127) one finds that
g̃L (m; ha) can be expressed as:

g̃L (m; ha) = 1

2
N⊥ − 1

2
κeffm

2
z

−(haz − ω)mz − ha⊥ma⊥ (187)

Therefore, the line C (g̃0) of constant energy g̃0 is described
by the equation:

κeffm
2
z + 2 (haz − ω) mz + 2ha⊥ma⊥ = N⊥ − 2g̃0 (188)
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When α is nonzero, the effective energy g̃L is no longer
constant along the magnetization trajectories. One obtains
from equation (129) that g̃L changes at the rate:

dg̃L

dt
≡ −h̃eff · dm

dt
= −α

(
dm
dt

− ωm × ez

)
· dm

dt
(189)

Thus, whenever α � 1 the energy g̃L will be a slowly
varying function of time and magnetization trajectories will
be only slightly distorted with respect to the undamped ones.
Let us now consider a limit cycle of the dissipative dynamics.
According to the previous reasoning, the corresponding
closed trajectory will be close to a certain trajectory C(g̃0)

of the undamped dynamics. By definition, the limit cycle
represents a periodic motion, so the energy of the system
will also be periodic when calculated along the limit cycle.
This means that the time integral of the right-hand side of
equation (189) along the limit cycle will be zero. Since the
limit cycle is very close to the undamped trajectory C(g̃0)

we can calculate this integral along the undamped trajectory
without making an appreciable error. By also taking into
account that equation (186) holds for the undamped motion
and that h̃eff = heff − ωez, we conclude that the integral of
the right-hand side of equation (189) along the limit cycle
will be approximately equal to −αM(g̃0), where:

M(g̃0) = −
∮

C(g̃0)

(m × heff)·dm (190)

Therefore, it is expected that M(g̃0) � 0 for a limit cycle.
This heuristic reasoning can be given a rigorous mathe-
matical formulation by invoking Poincaré–Melnikov method
(Perko, 1996; Guckenheimer and Holmes, 1997). In partic-
ular, one can prove that in the limit of small damping the
equation M(g̃0) = 0 represents the necessary and sufficient
condition for the existence of a limit cycle. The limit cycle is
stable or unstable depending on whether dM/dg̃0 is respec-
tively positive or negative at the point where M(g̃0) = 0.
Therefore, the knowledge of the undamped dynamics is suf-
ficient to predict the number and location of limit cycles,
provided the damping constant α is sufficiently small.

The Melnikov function M(g̃0) can be studied by analyt-
ical or numerical methods under quite general conditions
because heff (equation (122)) and g̃L (equation (127)) are
all known functions of m. There is no need to determine the
precise time dependence m(t) for the undamped magnetiza-
tion motion in order to calculate the Melnikov function: it
is enough to know the geometrical shape of the unperturbed
trajectories, that is, the constant g̃L lines given by equation
(188). Figure 19 illustrates the example where this method
is applied to the thin film with negligible crystal anisotropy
considered in Figure 15. The Melnikov function is calcu-
lated from equations (122), (127), and (190) for all energies

d
s

a

mz > 0 mz < 0

u u

Figure 19. Phase portrait for nondissipative system. Trajectories
are given by lines of constant effective energy g̃L (m; ha) = g̃0 (see
equations (121) and (127)). s: g̃L minimum; u: g̃L maxima; d: g̃L

saddle. System parameters: α = 0, κeff = −1. Field frequency: ω =
0.5. Field amplitude: ha‖ = 0.8, ha⊥ = 0.08. Trajectory labeled by
a is stable limit cycle present in dissipative dynamics in the limit of
small damping α, as predicted by Melnikov theory (compare with
bottom phase portrait in Figure 15).

in the interval g̃d ≤ g̃0 ≤ g̃u, where g̃d and g̃u represent the
energies of the d and u stationary points in the mz > 0 hemi-
sphere in Figure 19. One finds that: M(g̃d) < 0; M(g̃u) = 0
(indeed, the Melnikov function is zero by definition for every
energy extremum); dM/dg̃0|g̃0=g̃u

< 0 (this means that the
energy maximum is going to be an unstable focus of the
dissipative dynamics). These boundary properties imply that
there must exist at least one additional M(g̃0) zero inside
the interval g̃d < g̃0 < g̃u. In fact, one finds just one addi-
tional zero. The corresponding trajectory is labeled by a in
Figure 19. This trajectory is going to be a stable limit cycle
of the dissipative dynamics for sufficiently small α. The com-
parison with Figure 15 shows that this limit cycle is indeed
present in the dynamics even when α is as large as 0.1.

5.2.4 Nonlinear ferromagnetic resonance

The field region close to the right-hand corner of the region
detA0 < 0 in Figure 17 is where ferromagnetic resonance
phenomena occur (Wigen, 1994; Gurevich and Melkov,
1996). In typical ferromagnetic resonance experiments, the
large dc field haz > 0 is initially applied to the system. The
ensuing P mode coincides with the saturation state along
the positive ez axis. Then the microwave field of amplitude
ha⊥ and angular frequency ω is switched on. The resonance
experiment is carried out by slowly decreasing the field
haz while keeping ha⊥ and ω constant. Resonance occurs
when the Larmor frequency associated with the effective
field becomes equal to the rotating field frequency ω. In
dimensionless notation, this means that haz + κeff � ω.

The resonance becomes manifest when one considers the
power p absorbed by the P mode under fixed ha⊥ and
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variable haz. By using equations (148) and (141) one obtains:

p ≡ ha⊥· dm⊥
dt

= αω2 sin2 θ0 = αω2h2
a⊥

ν2
0 + α2ω2

(191)

When the microwave field is small, the angle θ0 is small as
well and one can use equation (140) under the approximation
cos θ0 � 1 to express ν0 in terms of haz. Under this
approximation, equation (191) yields:

p = αω2h2
a⊥

(haz + κeff − ω)2 + α2ω2
(192)

We obtain the lorentzian line shape typical of linear resonant
behavior. The absorbed power is maximum for haz+κeff =ω,
as previously anticipated, and the linewidth is αω. When
progressively larger microwave field amplitudes are consid-
ered, large precessional motions set in and the approximation
cos θ0 � 1 is no longer acceptable. To deal with this nonlin-
ear regime, we can make use of equations (140)–(141) to
express haz as a function of cos θ0 for the P mode under
consideration. One finds:

haz = ω − κeff cos θ0 ± cos θ0

√
h2

a⊥
sin2 θ0

− α2ω2 (193)

Equations (191) and (193) give the parametric represen-
tation of the absorbed power p(haz) under nonlinear condi-
tions, with cos θ0 as the independent variable. An example is
shown in Figure 20 for the case of a thin-film disk with neg-
ligible crystal anisotropy (κeff = −1). The initial condition,
where cos θ0 � 1 and haz is very large, corresponds to choos-
ing the branch with the positive sign in equation (193). This
is the correct branch to consider when cos θ0 is decreased
from cos θ0 = 1 down to sin2 θ0 = h2

a⊥/α2ω2, where the
square root in equation (193) vanishes. This is where the
absorbed power is maximum. From here, the branch with
the negative sign in equation (193) must be considered for
cos θ0 increasing from the minimum resonance value back
to cos θ0 = 1. As shown in Figure 20, the absorbed power
profile gets increasingly distorted under increasing rf field
amplitude. According to equation (191), the state of maxi-
mum absorbed power always corresponds to ν0 = 0. From
equations (140) and (141) one finds that this condition is
described by the equation:

ha⊥ = αω

|κeff|
√

κ2
eff − (haz − ω)2 (194)

which is the curved dashed line shown in Figure 20.
When κeff is negative and large enough, the distortion of

the absorbed power profile can become so important that
the system becomes unstable and hysteretic jumps appear in

0(a)

(b)
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p
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Figure 20. (a) Magnified view of right-hand corner of detA0 < 0
region for the thin-film disk shown in Figure 17. Horizontal
dashed lines: field history for resonance experiments under rf
field amplitudes ha⊥ = 0.01, 0.02, 0.03. Curved dashed line: ν0 = 0
nonlinear resonance condition (equation (194)). A and B: saddle-
node bifurcation points where instability in system response may
occur. (b) Absorbed power (equations (191) and (193)) for ha⊥ =
0.01, 0.02, 0.03 with representation of foldover jumps taking place
for the highest rf field amplitude at points A and B. System
parameters: α = 0.1, κeff = −1. Field frequency: ω = 0.5.

the absorbed power. This phenomenon has been observed
indeed and is known in the literature as ‘foldover’ (Seagle,
Charap and Artman, 1985; Fetisov, Patton and Sygonach,
1999). Foldover effects are properly understood by using
the bifurcation analysis presented in Section 5.2.2. Let us
consider the representation of P modes in the (haz, ha⊥)

field control plane. During the resonance experiment, the P
mode under study moves from right to left along a horizontal
line in the control plane, as shown in Figure 20. If this
line crosses the boundary of the detA0 < 0 region (point
A in Figure 20), a saddle-node pair of additional P modes
is created. The P mode motion executed by the system is
destroyed at point B in Figure 20 by a second saddle-node
bifurcation involving the saddle previously created at point
A. Consequently, the system becomes unstable and jumps to
a different P mode motion of definitely smaller amplitude.
If the field haz is now increased, the newly attained P mode
evolves under the action of the field until it is destroyed by
the saddle-node bifurcation at point A in Figure 20 where the
system jumps back to the original P mode. It is clear from
this analysis that the ha⊥ threshold beyond which foldover
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becomes possible coincides with the ordinate of the lower
right-hand tip of the detA0 < 0 region. That is the point
where the two roots of the equation detA0 = 0 coincide. This
means that κeff sin2 θ0 = 2αω cos θ0 (see equation (176)),
which yields:

cos θ0 =
√

1 + α2ω2

κ2
eff

− αω

|κeff| , ν0 = αω cos θ0 (195)

Substitution of this result into equation (141) leads to the
following expression for the threshold for foldover:

h2
a⊥ = 4 (αω)3

|κeff|

√
1 + α2ω2

κ2
eff(

αω
|κeff| +

√
1 + α2ω2

κ2
eff

)2 (196)

This exact result is the generalization of the estimate
h2

a⊥ � 3.08(αω)3/ |κeff| obtained for the thin-film geometry
by Anderson and Suhl (1955) through an approximate linear
analysis.
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1 INTRODUCTION

Classical spin models bridge the gap between a full electronic
description of a magnetic material and conventional micro-
magnetism where magnetic properties are calculated on the
basis of a continuum theory for the energy of a system. While
quantum effects are obviously neglected, classical spin mod-
els take into account the discrete nature of matter, so that
they allow for an investigation of magnetic particles in the
nanometer regime where a continuum theory would fail. The
fact that magnetic structures are described on an atomic level
makes it possible to investigate ferromagnets (FMs) as well
as antiferromagnets (AFMs) or even heterostructures com-
posed of both of them. Methods exist for the calculation
of thermal equilibrium properties and, to some extent, also
for nonequilibrium properties. Classical spin models are thus
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netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

particularly suited to the study of thermal effects. On the
other hand, numerical calculations with an atomic resolution
are restricted to system sizes of the order of 107 spins so that
only systems sizes of the order of some 10 nm can be treated
numerically (at the moment). However, magnetic materials
are controllable down to the nanometer scale, leading to a
fundamental interest in the understanding of the magnetism
of small ferromagnetic particles or heterostructures (Schnei-
der and Blügel, 2005). This interest is even amplified by the
broad variety of industrial applications in pure magnetic as
well as spin electronic devices. For theoretical investigations
numerical methods are thus desirable, especially methods
that are capable of treating realistic magnetic model sys-
tems including heterostructures and the effects of thermal
activation.

This chapter focuses on classical spin models, phys-
ical principles as well as numerical methods. Section 2
deals with the basics of classical spin Hamiltonians, ther-
mal averages, and the equation of motion – the Lan-
dau–Lifshitz–Gilbert (LLG) equation. In Section 3 the two
most established numerical methods in this context are dis-
cussed, namely Monte Carlo methods (Binder and Heer-
mann, 1997) and Langevin dynamics simulations (Lyber-
atos and Chantrell, 1993). Special emphasis is laid on the
relation between these different methods, which leads to
time-quantified Monte Carlo methods (Nowak, Chantrell
and Kennedy, 2000). Sections 4 and 5 are an introduc-
tion to two topics which are typical for a modeling
within the framework of classical spin models, namely
thermally activated switching in nanoparticles (Nowak,
2001) and exchange bias (EB) (Nogués and Schuller,
1999), an effect arising in compound systems of ferro-
and antiferromagnetic materials. Section 6 concludes this
article.
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2 THEORETICAL CONCEPTS

2.1 Classical spin models

A classical spin model is the classical limit of a quantum
mechanical, localized spin model – the Heisenberg model
(Heisenberg, 1928) (see Steevens, 1963; Anderson, 1963;
Levy, 2000, for the theoretical background). The Hamiltonian
of a classical spin model describing a magnetic system may
contain contributions from exchange interactions, crystalline
anisotropies, the external magnetic field, and dipole–dipole
interactions. There might also be other contributions (e.g., a
magnetovolume coupling) which, for the sake of simplicity,
will not be considered in the following. An appropriate
Hamiltonian may then be written in the form

H = Hexc + Hanis + Hfield + Hdipol (1)

Within the framework of the classical Heisenberg model the
exchange energy is expressed as

Hexc = −
∑
〈ij〉

Jij Si ·Sj (2)

where the Si = µi/µs are three-dimensional magnetic
moments reduced to unit length. This part represents the
exchange of the magnetic moments and it is often (but not
necessarily) restricted two nearest-neighbor interactions with
a unique exchange coupling constant J . For J > 0 this part
of the Hamiltonian leads to ferromagnetic order while for
J < 0 it can lead to antiferromagnetic order if the lattice
structure allows for antiferromagnetic order without frustra-
tion effects.

The simplest example for a crystalline anisotropy is

Hanis = −dz

∑
i

S2
iz (3)

which is a uniaxial anisotropy favoring the z axis as easy axis
of the system for positive anisotropy constant dz. Of course,
other anisotropy terms describing any crystalline, stress, or
surface anisotropies could also be considered.

The Zeeman energy is

Hfield = −b·
∑

i

Si (4)

describing the coupling of the moments to an external
magnetic field with b = µsB. Here, µs is the absolute value
of the magnetic moment which for an atomic moment is of
the order of a Bohr magneton.

The dipole–dipole coupling of the magnetic moments
leads to an energy

Hdipole = −w
∑
i<j

3(Si ·eij )(eij ·Sj ) − Si ·Sj

r3
ij

(5)

with w = µ2
sµ0/4πa3 when the spins are on a regular lattice

with spacing a. The atomic magnetic moments are handled
in a point dipole approximation. The rij are the normalized
distances between moments i and j and the eij are unit
vectors in the direction of rij . Since the dipole–dipole
interaction of two moments depends on their distance vector,
the dipolar energy contribution will depend on the shape of
the sample. Dipoles try to be aligned, minimizing free surface
charges, which leads to shape anisotropy and to the fact that
domain structures may minimize the energy of the system.
Hence, dipole–dipole coupling is the microscopic origin of
the magnetostatic stray field energy.

Classical spin models are in some sense ‘between’ a full
quantum mechanical first-principles description and a micro-
magnetic continuum approach. But they can also be inter-
preted as the discretized version of a micromagnetic contin-
uum model, where the charge distribution for a single cell
of the discretized lattice is approximated by a point dipole
(Berkov, Ramstöck and Hubert, 1993; Hubert and Schäfer,
1998). Also, for certain magnetic systems their description in
terms of a lattice of magnetic moments is based on the meso-
scopic structure of the material, especially when a particulate
medium is described (Chantrell, Lyberatos and Wohlfarth,
1986; Nowak, Rüdiger, Fumagalli and Güntherodt, 1996;
Nowak, 1997; Nowak, Heimel, Kleinefeld and Weller, 1997;
Chantrell, Walmsley, Gore and Maylin, 2000; Verdes et al.,
2002). In this case it is assumed that one grain or particle
can be described by a single magnetic moment. Therefore,
the size of the particles and the temperature must be small
enough so that internal degrees of freedom are not relevant
for the special problem under consideration.

When compared, the use of classical spin models for the
description of magnetic materials has advantages as well
as disadvantages. The main disadvantage is that owing to
the atomic resolution the system size is clearly restricted
to a nanoscale (at the moment to the order of, say, 107

spins, steadily increasing with computational power). But the
advantages are (i) realistic lattice structures and interactions
can be taken into account without assuming a continuous
magnetization (Vedmedenko et al., 2004), (ii) finite tempera-
tures can be taken into account without cutting the spin-wave
spectra because of the discretization (Berkov, 2007), (iii) the
form and the parameters of the Hamiltonian can be derived
from first-principles calculations (see e.g., Mryasov, Nowak,
Guslienko and Chantrell, 2005), and (iv) the modeling of
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para-, ferri-, ferro- or antiferromagnets, and even heterostruc-
tures composed of several of these different materials is
straightforward.

Hence typical magnetic systems for a description using
classical spin models are nanostructures or systems with very
narrow domain walls (Garanin, 1991; Kazantseva, Wieser
and Nowak, 2005), especially when thermal excitations are
relevant (Garanin, 1997; Nowak, 2001), and magnetic het-
erostructures including antiferromagnetic components (Mal-
ozemoff, 1987; Nowak et al., 2002b).

2.2 Thermodynamics and the equation of motion

In order to calculate thermodynamic equilibrium proper-
ties one has to calculate thermal averages for the proper-
ties of interest. For instance, in a canonical ensemble the
temperature-dependent reduced magnetization becomes

m(T ) = 1

N

〈∑
i

Si

〉
= 1

N
Tr

1

Z
e−H/kBT

∑
i

Si (6)

where 〈. . .〉 denotes a thermal average and Z = Tr e−H/kBT

is the canonical partition function (see, e.g., Reif, 1965).
For N classical spins the calculation of the trace would
involve an integral over phase space, that is, integrals over
N unit spheres. This high-dimensional integral can usually
not be calculated exactly for realistic magnetic systems.
Instead either approximations have to be used, the most
famous one being the mean-field approximation (Wagner,
1972; Levy, 2000) or numerical techniques like Monte Carlo
methods.

Moreover, one often is interested in nonequilibrium prop-
erties. Then, the basic equation of motion for magnetic
moments coupled to a heat bath is the LLG equation (Lan-
dau and Lifshitz, 1935; Gilbert, 1955; Brown, 1963a) with
Langevin dynamics. For electronic magnetic moments it can
be written in the form

Ṡi = − γ

(1 + α2)µs

Si ×
(

Hi (t) + α Si × Hi (t)
)

(7)

where γ = 1.76 × 1011(T s)−1 is the absolute value of the
gyromagnetic ratio and Hi (t) = ζ i (t) − ∂H/∂Si . The ther-
mal noise ζ i (t) obeys

〈ζ i (t)〉 = 0 (8)

〈ζ iη(t)ζ jθ (t
′)〉 = δi,j δη,θ δ(t − t ′)2αkBT µs/γ (9)

i and j denote once again the sites of the lattice and η and
θ the Cartesian components. The first part of equation (7)
describes the spin precession, which can be derived from

Heisenberg’s equation of motion in the classical limit, while
the second part includes the relaxation of the moments. α is a
dimensionless parameter describing phenomenologically the
strength of the coupling to the heat bath. Note, that this
microscopic coupling parameter is not necessarily identical
with the usual macroscopic damping parameter (Chubykalo,
Nowak, Chantrell and Garanin, 2006) but we will, never-
theless, refer to α as damping parameter in the following.
As a consequence of the fluctuation dissipation theorem, α

governs the relaxation aspect of the coupling to the heat
bath as well as the fluctuations via the strength of the ther-
mal noise (Lyberatos and Chantrell, 1993; Chubykalo et al.,
2003b; Berkov, 2007). The assumption of uncorrelated noise
on an atomic level is a simplification reflecting the lack
of knowledge regarding the fundamental physical mecha-
nisms involved in the coupling between spins and heat bath.
The microscopic understanding of damping is an outstand-
ing challenge for current research (Smith and Arnett, 2001;
Safonov and Bertram, 2002; Rebei and Parker, 2003). How-
ever, the strength of the noise in equation (9) ensures correct
thermal averages.

One can solve the LLG equation easily for an isolated
spin coupled to an external field B, neglecting the thermal
fluctuations. Then the first term in equation (7) leads to a spin
precession with the precession time τp = 2π(1 + α2)/(γB).
The second part describes a relaxation of the spin from an
initial state into local equilibrium on the relaxation timescale
τ r = τp/α. In other words, α sets the relation between the
timescales of precession and relaxation. In the high damping
limit, which in the following will turn out to be important in
connection with Monte Carlo simulations, mainly the second
term of the LLG equation is relevant and the time can be
rescaled by the factor (1 + α2)µs/(αγ ). Hence, this factor
should completely describe the α and γ dependence of any
timescale in the high damping limit.

The LLG equation is a stochastic equation of motion.
Starting repeatedly from identical initial conditions will
lead to different trajectories in phase space because of the
influence of noise. Hence, averages have to be taken in
order to describe the system appropriately. The basis for the
statistical description of an ensemble of systems where each
one is described by a Langevin equation is the corresponding
Fokker–Planck (FP) equation. This is a differential equation
for the time evolution of the probability distribution in phase
space (Coffey, 1996). In his pioneering work Brown (1963b)
developed a formalism for the description of thermally
activated magnetization reversal on the basis of the FP
equation which led to a low-temperature asymptotic formula
for the escape rates in simple magnetic systems (for an
overview see Coffey, 1996). The solution of the FP equation
will converge to equilibrium properties, that is to the same
values defined by equation (6).
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However, realistic calculations for systems with many
degrees of freedom need computational approaches. The two
basic methods for the simulation of classical spin systems
are Langevin dynamics and Monte Carlo methods. The
following section is devoted to these methods, especially to
their relation which will lead to time-quantified Monte Carlo
methods.

3 NUMERICAL METHODS

3.1 Langevin dynamics simulations

The basic numerical approach for the description of thermally
activated spin dynamics is the direct numerical integration
of equation (7). Instead of solving the corresponding FP
equation, one calculates trajectories in phase space following
the underlying equation of motion. In order to obtain results
in the sense of a thermodynamic average one has to calculate
many of these trajectories starting with the same initial
conditions, taking an average over these trajectories for the
quantities of interest. This method is referred to as Langevin
dynamics simulation (Lyberatos and Chantrell, 1993).

The LLG equation with Langevin dynamics is a stochastic
differential equation with multiplicative noise. For this kind
of differential equation a problem arises which is called the
Itô–Stratonovich dilemma (Greiner, Strittmatter and Hon-
erkamp, 1988). As a consequence, different time discretiza-
tion schemes may with decreasing time step converge to
different results (see Wolf, 1998, for a discussion of the
different discretization schemes from a physical point of
view). As was pointed out by Garcı́a-Palacios and Lázaro
(1998) the multiplicative noise in the Langevin equation was
treated in Brown’s original work – and also in subsequent
publications – by means of the Stratonovich interpretation.
Hence, in order to obtain numerical results that are compa-
rable to these approaches via the FP equation one has to
use adequate methods. Note, that the simplest method for
the integration of first-order differential equations, the Euler
method, converges to an Itô interpretation of the Langevin
equation. The simplest appropriate discretization scheme
leading to a Stratonovich interpretation is the Heun method
(Greiner, Strittmatter and Honerkamp, 1988; Wolf, 1998;
Garcı́a-Palacios and Lázaro, 1998; Nowak, 2001) which is
described in the following [1].

For simplicity, the Heun discretization scheme is intro-
duced here for a one-dimensional problem. We consider a
first-order differential equation with multiplicative noise,

ẋ(t) = f
(
x(t), t

)
+ g

(
x(t), t

)
ζ (t) (10)

where ζ (t) represents a noise with a distribution of moments
〈ζ (t)〉 = 0 and 〈ζ (t)ζ (t ′)〉 = Dδ(t − t ′). The time variable is
discretized in intervals 
t so that tn = n
t and xn = x(tn).
Then, owing to Heun’s method equation (7) becomes

xn+1 = xn + 1

2

(
f (xn, tn) + f (xn+1, tn+1)

)

t (11)

+ 1

2

(
g(xn, tn) + g(xn+1, tn+1)

)
ζ̃ n

This method is a predictor–corrector method where the pre-
dictor xn+1 is calculated from an Euler integration scheme,

xn+1 = xn + f (xn, tn)
t + g(xn, tn)ζ̃ n

ζ̃ n are random numbers with a distribution characterized
by the two first moments 〈ζ̃ n〉 = 0 and 〈ζ̃ nζ̃ m〉 = D
tδn,m,
which can be achieved by use of random numbers with
a Gaussian distribution, p(ζ ) ∼ exp(−ζ 2/2σ), with width
σ = D
t . The generalization of the scheme in the preceding
text to equation (7) is straightforward.

3.2 Monte Carlo methods

Monte Carlo methods are well established in the context of
equilibrium thermodynamics, where mainly Ising-type mod-
els have been investigated because of the broad variety of
applications of this class of models in statistical physics
(Stauffer, Hehl, Winkelmann and Zabolitzky, 1993; Binder
and Heermann, 1997). However, in the context of mag-
netic materials the use of Ising models is restricted to the
modeling of materials with a very large uniaxial anisotropy
(Kirby, Shen, Hardy and Sellmyer, 1994; Lyberatos, Earl
and Chantrell, 1996; Nowak, Heimel, Kleinefeld and Weller,
1997), while more realistic models have to include finite
anisotropies.

Within a Monte Carlo approach trajectories in phase space
are calculated following a master equation (Reif, 1965) for
the time development of the probability distribution Ps(t) in
phase space,

dPs

dt
=

∑
s′

(Ps′ws′→s − Psws→s′) (12)

Here, s and s ′ denote different states of the system and the w

are the transition rates from one state to another one which
have to fulfill the condition (Reif, 1965)

ws→s′

ws′→s

= exp

(
E(S) − E(S ′)

kBT

)
(13)
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The master equation describes exclusively the coupling of
the system to the heat bath. Hence, only the irreversible part
of the dynamics of the system is considered including the
relaxation and the fluctuations, but not the energy conserving
part of the equation of motion – the precession. Instead, only
a random-walk-like motion due to the coupling to the heat
bath can appear. We will discuss the connection to Langevin
dynamics later and continue with a general description of
Monte Carlo algorithms for vector spin models, as far as
they are different from algorithms for Ising models due to
their continuum degrees of freedom.

Even though for Ising systems (Swendsen and Wang,
1987) as well as for Heisenberg systems (Wolff, 1989) cluster
algorithms exist, which – depending on the details of the
problem – can equilibrate a system much faster, we restrict
ourselves to the simple case of single-spin-flip dynamics
since here, the connection to a realistic dynamical behavior
of the system is more straightforward. For the Ising model
there exists no equation of motion and the master equation in
connection with a single-spin-flip dynamics governs the so-
called Glauber dynamics (Glauber, 1963), which is thought
to describe a qualitatively realistic dynamic behavior. For
a system of classical magnetic moments the situation is
different due to the existence of an equation of motion – the
LLG equation.

A single-spin-flip algorithm is performed in the following
way: at the beginning one single spin from the lattice is
chosen either randomly or in some systematic order and a
trial step of this selected spin is made (possible choices for
trial steps will be described in detail in the subsequent text).
Then the change of the energy of the system is computed
according to equation (1). Finally the trial step is accepted,
for instance with the heat bath probability,

ws→s′ = w0

1 + exp
(

E(S′)−E(S)
kBT

) (14)

which is one possible choice among others satisfying the
condition in equation (13) for any arbitrary constant w0.
Scanning the lattice and performing the procedure explained
in the preceding text once per spin (on average) is called
one Monte Carlo step (MCS). It defines a quasitime scale of
the simulation. The connection to real time will be discussed
later on.

The way the trial step is chosen is of importance for
the validity and efficiency of the algorithm as well as for
the physical interpretation of the dynamic behavior of the
algorithm (Hinzke and Nowak, 1999). For an Ising system
the trial step is naturally a spin flip. For a Heisenberg spin
there are many choices. One possible trial step is a small
deviation from the former state. For a spin this could be
a random movement of the spin with uniform probability

distribution within a given opening angle around the former
spin direction. Here, each spin can only move by a limited
step size and hence, in a model with a uniaxial anisotropy,
it has to overcome the anisotropy energy barrier for a
complete reversal. This might be a realistic choice for many
model systems. But if one is, for instance, interested in
the crossover from Heisenberg to Ising-like behavior with
increasing anisotropy, one has to allow also for larger steps
which are able to overcome a given anisotropy energy barrier.
Otherwise the dynamics of the system would freeze and in
a system with very large anisotropy (Ising limit) no spin flip
would occur at all (Hinzke and Nowak, 1999).

Another possible trial step that circumvents this problem is
a step with a uniform distribution in the entire phase space.
Here, an arbitrary spin direction that does not depend on
the initial direction of the spin is chosen at random. This
step samples the whole phase space efficiently and a single
spin is not forced to overcome the anisotropy energy barrier.
Instead it is allowed to change from one direction to any other
one instantaneously. Both of these trail steps are allowed
choices in the sense that the corresponding algorithms lead to
correct equilibrium properties since they fulfill two necessary
conditions: they are ergodic and symmetric.

Ergodicity requires that the whole phase space can be
sampled by an algorithm. An example for an nonergodic
algorithm is one that performs only Ising-like trial steps,
Sz → −Sz, in a Heisenberg model. Here, starting from some
initial direction the spin can only reach two positions out
of the whole phase space which would be a unit sphere for
a Heisenberg spin. Nevertheless, one is allowed to perform
such reflection steps as long as one uses also other trial steps
that guarantee ergodicity. These ideas lead to combinational
algorithms which – depending on the problem – can be very
efficient (Hucht, Moschel and Usadel, 1995; Hinzke and
Nowak, 1999).

The second condition that has to be fulfilled by any
algorithm is a symmetry condition: for the probability to
do a certain trial step it must be pt (s → s ′) = pt (s

′ → s).
Otherwise equation (13) is not fulfilled since the probabilities
to perform certain trial steps contribute to the transition
rates. The symmetry condition would for instance be violated
in a Heisenberg system if one chooses new trial spin
directions by simply generating three random numbers as
Sx , Sy , and Sz coordinates within a cube and normalizing
the resultant vector to unit length. Then before normalization
the random vectors are homogeneously distributed within the
cube and after the normalization they have some nonuniform
probability distribution on the unit sphere which is higher
along the diagonal directions of the cube. Hence, trial steps
from any other direction into the diagonal direction are
more probable then vice versa and the algorithm yields
wrong results. A description, how to choose unit vectors
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with random directions and a constant probability distribution
correctly can be found in the book of Vesely (1993).

3.3 Time-quantified Monte Carlo simulations

In general, Monte Carlo methods do not allow for an
interpretation of the results in terms of a realistic dynamics.
Only recently, a time-quantified Monte Carlo method was
introduced (Nowak, Chantrell and Kennedy, 2000; Smirnov-
Rueda et al., 2000; Chubykalo et al., 2003a; Cheng, Jalil,
Lee and Okabe, 2006) and it was shown that at least
the dynamics of a high damping scenario can indeed be
simulated by a Monte Carlo simulation since here the
exact knowledge of the precessive motion of the spins
is not necessary. The main idea of time-quantified Monte
Carlo methods is to compare the fluctuations that are
established in the Monte Carlo simulation within one MCS
with the fluctuations that are established within a given
timescale associated with the linearized stochastic LLG
equation (Ettelaie and Moore, 1984; Smirnov-Rueda et al.,
1999).

Following the original work (Nowak, Chantrell and
Kennedy, 2000), we start with a calculation of the magneti-
zation fluctuations in the Langevin equation. Close to a local
energy minimum one can expand the energy of a system
given that first-order terms vanish as

E ≈ E0 + 1

2

∑
i,j

AijSiSj (15)

where Si are now variables representing small deviations
from equilibrium. Let us consider a single spin only with a
uniaxial anisotropy (anisotropy constant dz, see equation (3))
and a field b = ±bzẑ, which is also aligned with the easy axis
(a more general calculation can be found in Chubykalo et al.,
2003b). In this system, we find equilibrium along the z axis,
leading to variables Sx and Sy describing small deviations
from the equilibrium position S = ±ẑ. The energy increase

E associated with fluctuation in Sx and Sy is then simply


E ≈ 1

2

(
AxxS

2
x + AyyS

2
y

)
(16)

with Axx = Ayy = 2dz + bz. Rewriting the LLG equation in
the linearized form without the thermal fluctuations,

Ṡx = LxxSx + LxySy (17)

Ṡy = LyxSx + LyySy

we can identify the matrix elements

Lxx = Lyy = − αγ

(1 + α2)µs

(2dz + bz)

Lxy = −Lyx = γ

(1 + α2)µs

(2dz + bz)

As shown in Lyberatos, Berkov and Chantrell (1993) the cor-
relation function for the variables describing small deviations
from equilibrium can be expressed in the form

〈Si(t)Sj (t
′)〉 = µij δij δ(t − t ′) (18)

Here, i and j denote the Cartesian components and Dirac’s
δ function is an approximation for exponentially decaying
correlations on timescales t − t ′ that are larger than the
timescale of the exponential decay τ r . The covariance matrix
µij can be calculated from the system matrices Aij and Lij

as (Lyberatos, Berkov and Chantrell, 1993)

µij = −kBT
(
LikA

−1
kj + LjkA

−1
ki

)
For our problem this yields

µxx = µyy = 2kBT
αγ

(1 + α2)µs

(19)

µxy = µyx = 0

Integrating the fluctuating quantities Sx(t) and Sy(t) over a
finite time interval 
t , equations (18) and (19) yield

〈S2
x〉 = 〈S2

y〉 = 2kBT
αγ

(1 + α2)µs


t (20)

representing the fluctuations of Sx(t) and Sy(t) respectively,
averaged over a time interval 
t .

For comparison, we now calculate the fluctuations 〈S2
x 〉

which are established within one MCS of a Monte Carlo
simulation (Nowak, Chantrell and Kennedy, 2000). We
select an algorithm where the trial step of the Monte Carlo
algorithm is a random deviation of the magnetic moment
from its former direction up to a certain maximum opening
angle. In order to achieve this efficiently one first constructs
a random vector with constant probability distribution within
a sphere of radius R by use of the rejection method (Vesely,
1993). This random vector is then added to the initial moment
and subsequently the resulting vector is again normalized.
Note that the probability distribution following from this
trial step is nonuniform but isotropic, so that the symmetry
condition mentioned in the previous subsection is guaranteed.

For this algorithm the probability distribution for trial

steps of size r =
√

S2
x + S2

y is pt = 3
√

R2 − r2/(2πR3) for

0 < r < R. The acceptance probability using a heat bath
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algorithm is w(r) = 1/(1 + exp(
E(r2)/kBT )). Assuming
that the spin is close to its (local) equilibrium position, as
before, 
E(r2) for small r can be taken from equation (16).
In order to calculate the fluctuations within one MCS we
have to integrate over that part of the phase space that can
be reached within one MCS,

〈S2
x 〉 =

∫ 2π

0
dϕ

∫ R

0
r dr

r2

2
w(r)pt (r)

= R2

10
− O

(
(2dz + bz)R

4

kBT

)
(21)

where the last line is an expansion for small R leading to the
validity condition

R � kBT

(2dz + bz)
(22)

By equalizing the fluctuations within a time interval 
t of
the LLG equation and one MCS we find the relation

R2 = 20kBT αγ

(1 + α2)µs


t (23)

for the trial step width R (Nowak, Chantrell and Kennedy,
2000). Equation (23) now relates one MCS, performed using
an algorithm as explained before, with a real time interval of
the Langevin equation. In this equation (αγ /(1 + α2)µs)
t

is simply the reduced time of the LLG equation, rescaled
in the high damping limit where only the second part
of equation (7) is relevant. The more interesting result of
equation (23) is the temperature dependence since it turns
out that there is no trivial assignment of one MCS to a fixed
time interval. Instead, the larger the temperature, the larger
the trial steps of the Monte Carlo algorithm in order to allow
for the appropriate fluctuations.

In principle, equation (23) gives the possibility to choose
the trial step width for a Monte Carlo simulation in such
a way that one MCS corresponds to some microscopic
time interval, but there are of course restrictions for pos-
sible values of the trial step width and also for the valid-
ity of the algorithm: R must be small enough so that the
truncated expansion in equation (21) is a good approxi-
mation. On the other hand R should not be too small
since otherwise the Monte Carlo algorithm needs too much
computation time to sample the phase space. Therefore,
either one chooses such a value for 
t so that R takes
on reasonable values or one chooses a reasonable constant
value for R and uses equation (23) to calculate 
t as the
real time interval associated with one MCS. Furthermore,
effects from spin precession are neglected so that in gen-
eral only the high damping limit with a purely diffusive

spin motion can be simulated. Also, since the derivation
in the preceding text started from a linearized equation
of motion (equation (17)) and since the energy expression
(equation (15)) is an expansion, equation (23) can only be
valid close to equilibrium.

For any numerical method, analytically solvable models
are important as test tools for the evaluation of the numerical
techniques. Originally, (Nowak, Chantrell and Kennedy,
2000) the goal was a comparison of characteristic timescales
for the thermally activated reversal obtained numerically
with those following from an analytical treatment of isolated
Stoner–Wohlfarth particles with a uniaxial anisotropy and
a field at an oblique angle to the easy axis (Coffey et al.,
1998c). The results are shown in Figure 1.

Here, an ensemble of isolated single-domain particles is
considered where each particle is represented by a magnetic
moment with energy

E(S) = −dzS
2
z − µsB·S (24)

The material parameters are those for a 20-nm Co particle.
Both of the simulations, Monte Carlo as well as Langevin
dynamics, start with the magnetic moments in positive
z direction. The magnetic field which is well below the
Stoner–Wohlfarth limit for athermal reversal has a negative
z component so that the magnetization will reverse after
some time. The time that is needed for the z component
of the magnetization to change its sign averaged over a
large number of runs (N = 1000) is the numerically obtained
characteristic time τ . During a simulation for temperatures
which are low as compared to the energy barrier, the system
is in the metastable, initial state for a very long time,
while the time needed for the magnetization reversal itself is

IHD asymptote
Monte Carlo

Langevin

∆E/(kBT)

t 
(s

)

1086420

1e − 06

1e − 07

1e − 08

1e − 09

1e − 10

1e − 11

1e − 05

Figure 1. Characteristic times versus inverse temperature. Com-
parison of the intermediate to high damping asymptote with results
from Langevin dynamics and Monte Carlo simulations with time
quantification. (Reprinted figure with permission from Physical
Review Letters, 84, 1, 163, 2000. Copyright 2000 by the American
Physical Society.)
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rather short. In this case the characteristic time τ should be
comparable to the escape time following from an analytical
calculation via the FP equation.

The time-quantified Monte Carlo simulations in Figure 1
were done with an algorithm using a trial step according
to equation (23) with 
t ≈ 6 × 10−12 s and α = 1. The
magnetic field is |B| = 0.2 T with an angle of 27◦ to the
easy axis. The results for τ (T ) are compared with results
from Langevin dynamics simulations using the Heun method
as described before and with analytical results obtained in
the intermediate to high damping (IHD) limit (Coffey et al.,
1998a,b,c). This asymptote has the general form of a thermal
activation law, namely

τ = τ 0e

E/kBT (25)

The explicit expressions for τ 0 and 
E were derived in
Coffey et al. (1998a,b,c). The validity condition for the IHD
formula is α
E/kBT 
 1 which has been satisfied in the
case presented here.

From Figure 1 it is clear that the Langevin dynamics
data agree very well with the analytical asymptote in the
preceding text. For higher temperatures, kBT > 
E, the
asymptote is no longer appropriate. Here, the numerical
data for τ tend to zero for T → ∞ as one expects.
The Monte Carlo data deviate slightly but the agreement
is remarkable – especially taking into account the simple
form of equation (23) underlying this algorithm and also
considering the fact that there is no adjustable parameter in
all our simulations and formulae.

Figure 2 shows how the time-quantified Monte Carlo
methods converges in the high damping limit. The data
were obtained for the same parameter values as before
and 
E/kBT = 3.3. The figure shows that for increasing

IHD asymptote
Monte Carlo

Langevin

t 
(s

)

101

1e – 08

1e – 09

a

Figure 2. Characteristic time versus damping constant: compari-
son of the intermediate to high damping asymptote with Langevin
dynamics and Monte Carlo simulations. (Reprinted figure with per-
mission from Physical Review Letters, 84, 1, 163, 2000. Copyright
2000 by the American Physical Society.)

damping constant α the Monte Carlo data converge to
the IHD formula and to the data from Langevin dynamics
simulation for large α.

Even though the Monte Carlo time step quantification by
equation (23) was derived originally only for the simple
system which we considered here (Nowak, Chantrell and
Kennedy, 2000), it turned out to be successfully applicable
to more complicated, interacting spin systems also (Hinzke
and Nowak, 2000a,b; Chubykalo et al., 2003a,b; Cheng,
Jalil, Lee and Okabe, 2006). However, one should note
that the method rests on a comparison with Langevin
dynamics. Here, the coupling to the heat bath is added
phenomenologically to the equation of motion leading to a
damping constant α, the microscopic evaluation of which is
still missing.

4 THERMALLY ACTIVATED
MAGNETIZATION REVERSAL

4.1 Introduction

The understanding of thermally activated spin dynamics is
a major challenge for the knowledge of magnetic systems
and devices. The pioneering work of Brown (1963b) repre-
sents the basis for the understanding of thermally activated
dynamic processes in isolated single-domain particles. The
basic idea is that the energy barrier 
E separating two
(meta)stable magnetic states of a nanoparticle can be over-
come by thermal activation on a certain timescale which can
be calculated within the framework of Langevin dynamics.
In the limit of low temperatures the escape time τ follows a
thermal activation law (see equation (25)), where the prefac-
tor as well as the energy barrier depend on the mechanism
of the reversal. As a solvable example, Brown considered
an ensemble of isolated magnetic moments with a uniaxial
anisotropy. Each single particle of the ensemble is described
as one superspin of constant length. The superspin is thought
to represent the magnetic moment of a whole particle since
it was assumed that if the particle is sufficiently small it
is always homogeneously magnetized and its microscopic,
internal degrees of freedom can be neglected. After the orig-
inal work of Brown, extensive calculations were performed
in order to calculate the energy barrier as well as the pref-
actor asymptotically for various model systems (Aharoni,
1969; Braun, 1993; Coffey et al., 1998a; Garcı́a-Palacios
and Svedlindh, 2000; Chantrell, Walmsley, Gore and Maylin,
2000).

Experiments on isolated, magnetic particles have con-
firmed this approach. Wernsdorfer et al. measured the switch-
ing time of isolated nanometer-sized particles (Wernsdorfer
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et al., 1996b, 1997b), and wires (Wernsdorfer et al., 1996a,
1997a). For sufficiently small particles (Wernsdorfer et al.,
1997b) agreement was found with the theoretical predic-
tions of Brown (1963b). For larger particles (Wernsdorfer
et al., 1996b) and wires (Wernsdorfer et al., 1996a, 1997a)
activation volumes were found which were much smaller
than the corresponding particle and wire volumes. Obviously,
different reversal mechanisms can dominate the thermally
activated switching behavior of nanoparticles depending on
their geometry and size, such as coherent rotation, nucleation,
and curling.

These modes may appear in different limits of a cylindrical
geometry. Coherent rotation and nucleation can be modeled
in the one-dimensional limit by a simple spin chain – a
model which is very useful since it was treated analytically
and asymptotic results for the energy barriers as well as
for the escape rates are available (Braun, 1993; 1994a,b).
We will discuss this model in the following text. A three-
dimensional model for an extended nanowire is discussed in
the last subsection in connection with curling.

Let us start with a chain of magnetic moments of length
L (number of spins) with periodical boundary conditions
defined by the Hamiltonian

H =
∑

i

[
− JSi ·Si+1 − dz(S

z
i )

2 + dx(S
x
i )2 − µsBSz

i

]
(26)

This is a discretized version of the one-dimensional model
for a magnetic nanowire considered by Braun (1993). For
dz, dx > 0 the z axis is the easy axis and the x axis the
hard axis of the system. These anisotropy terms may contain
contributions from shape anisotropy as well as crystalline
anisotropies (Braun, 1994a). In the interpretation as shape
anisotropy, this single-ion anisotropy is assumed to imitate
the influence of a dipolar interaction of strength w = dz/π

(Braun, 1993). Nevertheless, an exact numerical treatment
of the dipolar interactions is possible (Hinzke and Nowak,
2000b; Nowak, 2001; Nowak et al., 2005; Wieser, Usadel
and Nowak, 2006).

4.2 Coherent rotation

In the case of small chain length the magnetic moments
rotate coherently, minimizing the exchange energy while
overcoming the energy barrier due to the anisotropy of the
system. Owing to the hard-axis anisotropy the rotation is
mainly in the yz plane. As long as all spins are mostly
parallel, they can be described as one effective magnetic
moment which behaves like the one-spin model described
before. The corresponding energy barrier 
E is the same
as that of a Stoner–Wohlfarth particle since the additional

hard axis does not change the energy of the optimal path in
phase space from one minimum to the other. The escape time
was calculated from the FP equation in the large damping
limit (Braun, 1994b). The results is a thermal activation law
(equation (25)) where the energy barrier is now proportional
to the system size L,


Ecr = Ldz(1 − h)2 (27)

while the explicit form of the prefactor transformed into the
units used here is

τ cr = 2π(1 + α2)

αγBc

×
√

d(1 + h)/(1 − h + d)

1 − h2 − d +
√

(1 − h2 + d)2 + 4d(1 − h2)/α2

(28)
We introduced the coercive field Bc = 2dz/µs and the

reduced quantities h = µsB/(2dz) and d = dx/dz. The first
term in equation (28) is the microscopic relaxation time
of one spin in the field Bc (see Section 2.1), while the
second term includes corrections following from the details
of the model. The equation in the preceding text should
hold for low temperatures kBT � 
Ecr and obviously for
B < Bc since otherwise the energy barrier is zero, leading
to a spontaneous reversal without thermal activation. Note,
however, that recently deviations were found for increasing
system size, suggesting that even for a coherent rotation the
internal degrees of freedom lead to longitudinal fluctuations
which are not contained in a single-spin description (Hinzke
and Nowak, 2000a; Nowak et al., 2005; Chubykalo, Nowak,
Chantrell and Garanin, 2006).

4.3 Soliton–antisoliton nucleation

With increasing system size nucleation must become energet-
ically favorable since here the energy barrier is a constant,
while it is proportional to the system size in the case of
coherent rotation. For the spin chain under consideration,
switching by soliton–antisoliton nucleation was proposed
(Braun, 1994a) for sufficiently large system size. Here, the
nucleation process initiates a pair of domain walls which
splits the system into domains with opposite directions of
magnetization parallel to the easy axis (for graphical rep-
resentations see Hinzke, Nowak and Usadel, 2000; Nowak,
2001). These two domain walls pass the system in the sub-
sequent reversal process. Owing to the hard-axis anisotropy
the spin rotation is once again mainly in the yz plane. Since
these two domain walls necessarily have opposite helicities
within this easy plane they were called a soliton–antisoliton
pair.
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The energy barrier 
Enu which has to be overcome during
this nucleation process is


Enu = 4
√

2Jdz

(
tanhR − hR

)
(29)

with R = arccosh(
√

1/h) (Braun, 1994a). For vanishing
magnetic field this energy barrier has the form 
Enu(h=
0) = 4

√
2Jdz which represents the well-known energy of

two Bloch walls (Hubert and Schäfer, 1998). As usual, the
corresponding escape time obeys a thermal activation law,
where the prefactor has been calculated for various limits
(Braun, 1994a). The prefactor obtained in the overdamped
limit (equation (5.4) in Braun, 1994a) in our units is

τ nu = 2π(1 + α2)

αγBc

(πkBT )1/2(2J )1/4

16L d
3/4
z |E0(R)| tanh R3/2 sinh R

(30)

As in equation (28) the left part is the microscopic relaxation
time of a spin in the coercive field Bc. The eigenvalue
E0(R) has been calculated numerically (Braun, 1994a). In
the limit h → 1 it is |E0(R)| ≈ 3R2. The 1/L dependence of
the prefactor reflects the size dependence of the probability
of nucleation. The larger the system the more probable is
the nucleation process and the smaller is the timescale of
the relaxation. Furthermore, the prefactor has a remarkable√

kBT dependence.
We should note that all the results in the preceding text

are for systems with periodic boundary conditions (or rings),
which restricts the applicability to finite nanowires where
nucleation processes may start at the ends of the sample.
Therefore, the case of open boundaries was also considered,
analytically (Braun, 1999, 2000) as well as numerically
(Hinzke and Nowak, 2000b). Even though the prefactor of
the thermal activation law could not be obtained up to now,
it was shown (Braun, 1999) that the energy barrier is just
halved in that case, due to the fact that in systems with open
boundaries the nucleation can set in at only one end. Hence,
solitons and antisolitons do not necessarily emerge pairwise.
In the case of two solitons (or two antisolitons) nucleating
simultaneously at both ends, these cannot annihilate easily
in the later stage of the reversal process due to their
identical helicity. Instead a 360◦ domain wall remains in the
system.

Let us now investigate the intermediate temperature range.
Owing to the larger thermal fluctuations as compared to
the sole soliton–antisoliton nucleation several nuclei may
grow simultaneously, also depending on system size. Obvi-
ously, depending on the nucleation probability many nuclei
may arise during the time period of the reversal process
(for graphical representations see again Hinzke, Nowak and
Usadel, 2000; Nowak, 2001). This multiple nucleation pro-
cess was investigated mainly in the context of Ising models

where it is called multidroplet nucleation (a review is given
by Rikvold and Gorman, 1994).

The characteristic time τmn for the multidroplet nucleation
can be estimated with respect to the escape time for a single
nucleation process with the aid of the classical nucleation
theory (Becker and Döring, 1935). Here, the following
scenario is assumed: in the first stage many nuclei of critical
size arise within the same time interval. Later these nuclei
expand with a certain domain wall velocity v and join each
other. This leads to a change of magnetization


M(t) =
∫ t

0

(2vt ′)D

τ nu
dt ′ (31)

after a time t in D dimensions. The characteristic time
when half of the system (LD/2) is reversed is then given
by (Rikvold and Gorman, 1994; Hinzke and Nowak, 2000a)

τmn =
(

L

2v

) D
D+1 (

(D + 1)τ ∗
nu

) 1
D+1

exp

Enu

(D + 1)kBT
(32)

The domain-wall velocity in a spin chain following the LLG
equation for small fields is (Wieser, Nowak and Usadel,
2004)

v = γB

α
(33)

Hence for the one-dimensional system under consideration
the characteristic time is given by

τmn =
√

αLτ nu

γB
exp


Enu

2kBT
(34)

This means that the (effective) energy barrier for the mul-
tidroplet nucleation is reduced by a factor 1/2, and the char-
acteristic time no longer depends on the system size since τ ∗

nu
for the soliton–antisoliton nucleation has a 1/L dependence
(see equation (30)).

All the different reversal mechanisms mentioned in the
previous sections can occur within the same model sys-
tem – the spin chain – depending on the system size among
other parameters. The crossover from coherent rotation to
soliton–antisoliton nucleation was studied in Braun (2000)
for a periodic system. Here, the value Lc of the chain length
below which only uniform solutions of the Euler–Lagrange
equations of the problem exist (coherent rotation) was cal-
culated to be

Lc = π

√
2J

dz(1 − h2)
(35)
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For vanishing magnetic field this crossover length scale is
Lc = π

√
2J/dz, a value that is clearly related to the Bloch

wall width δ = √
J/2d (Hubert and Schäfer, 1998), because

of the fact that two domains walls have to fit into the
system during the nucleation process. For a chain with open
boundary conditions the crossover length scale is halved
since here only one domain wall has to fit into the system
(Braun, 2000). One can understand this result from a slightly
different point of view also, namely by comparing the energy
barrier of soliton–antisoliton nucleation (equation (29)) with
that of coherent rotation (equation (27)). This results in
a very similar condition for the crossover from coherent
rotation to nucleation (Hinzke and Nowak, 2000a), which
can also be generalized to higher dimensions (Hinzke and
Nowak, 1998).

For even larger system size, multiple nucleation becomes
probable. Comparing the escape time for soliton–antisoliton
nucleation with the characteristic time for multiple nucle-
ation, one gets for the intersection of these two times the
crossover condition (Hinzke and Nowak, 2000a)

Lsm =
√

γBτ nuLsm

α
exp


Enu

2kBT
(36)

The corresponding time Lsm/v is the time that a domain
wall needs to cross the system. In other words, as long as
the time needed for the nucleation event itself is large as
compared to the time needed for the subsequent reversal
by domain-wall motion, one single nucleus determines the
characteristic time. In the opposite case many nuclei will
appear during the time needed for the first soliton–antisoliton
pair to cross the system, resulting in multidroplet nucleation.
These considerations are comparable to calculations in Ising
models (Rikvold, Tomita, Miyashita and Sides, 1994).

Figure 3 summarizes the system size dependence of the
reduced characteristic time (Hinzke and Nowak, 2000a).
Results from Monte Carlo simulations are shown as well as
the appropriate asymptotes described in the preceding text
for two different temperatures. For small system sizes the
spins rotate coherently. Here the energy barrier (equation
(27)) is proportional to the system size leading to an expo-
nential increase of τ with system size. Following equation
(28) the prefactor of the thermal activation law should not
depend on L but, as already mentioned in the preceding
text, numerically one finds slight deviations from the asymp-
totic expressions due to longitudinal magnetization fluctua-
tions (Nowak et al., 2005; Chubykalo, Nowak, Chantrell and
Garanin, 2006). In the region of soliton–antisoliton nucle-
ation the energy barrier does not depend on the system
size but the prefactor varies as 1/L (see equations (29) and
(30)). Interestingly, this leads to a decrease of the charac-
teristic time with increasing system size. Therefore, there
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Figure 3. Reduced characteristic time versus system size for
kBT = 0.024J (triangles) and kBT = 0.016J (circles). h = 0.75.
Solid lines are piecewise the appropriate asymptotes and the data
are from Monte Carlo simulations. (Reprinted from Phys. Rev. B.,
Vol. 61, 6734, 2000. Copyright 2000 by the American Physical
Society.)

is a maximal characteristic time – the maximum of the sta-
bility of the particle – close to that system size where the
crossover from coherent rotation to nucleation occurs. This
decrease ends where multidroplet nucleation sets in, follow-
ing equation (36). For still larger systems the characteristic
time has a constant value which is given by equation (34).
Qualitatively the same behavior can be found in the par-
ticle size dependence of the dynamic coercivity which is
the coercive field one observes during hysteresis on a given
timescale τ : solving the equation describing the thermal acti-
vation in the three regimes explained in the preceding text
for h(L) at constant τ one finds an increase of the dynamic
coercivity in the coherent rotation regime, a decrease in the
nucleation regime, and at the end a constant value for multi-
ple nucleation. These findings are qualitatively in agreement
with measurements of the size dependence for the dynamic
coercivity of barium ferrite recording particles (Chang, Zhu
and Judy, 1993).

4.4 Curling

In the previous subsections we considered a model which
even though it is one-dimensional shows properties that are
far from being trivial since different switching mechanisms
can occur. Many of the findings obtained from this model
are relevant for real magnetic nanowires, as long as those are
thin enough to be effectively one-dimensional. Nevertheless,
for a realistic description of magnetic nanoparticles one
needs three-dimensional models and one has to consider the
dipole–dipole interaction. In the following we will discuss
the degree to which the physics of the switching process
changes when one considers a three-dimensional model
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including dipole–dipole interaction. Only few numerical
results exist so far, some of them we discuss in the following.

Considering the mathematical form of the dipole–dipole
interaction in equation (5) one notes that dipoles tend to
align, with that trying to build up closed loops or vortices.
On the other hand, a loop has an enhanced exchange energy.
Therefore to calculate the spin structure of an extended
magnetic system is a complicated optimization problem.
Even a sufficiently small magnetic nanostructure which, in
equilibrium, is in a single-domain state, could reverse its
magnetization by more complicated modes than coherent
rotation or nucleation. A characteristic length scale below
which it is energetically unfavorable for the system to break
the long-range order and split into domains is the so-called
exchange length δx (Hubert and Schäfer, 1998). Like the
Bloch wall width δ = √

J/2d mentioned earlier, it is a
characteristic length scale for a given material. For a spin
model it can be derived in the following way: a twist of the
direction of the spins by an angle of π over a length scale l

(number of spins) costs an exchange energy of


Ex = −J

l∑
i=1

(1 − Si ·Si+1)

≈ −J

l∑
i=1

(θ i − θi+1)
2

2
≈ Jπ2

2l
(37)

assuming constant changes of the angle θ from one spin to
the next one (which can also be shown to be the wall profile
with the minimum energy by a solution of the corresponding
Euler–Lagrange equations). The dipolar field energy of
a chain of parallel-oriented dipoles can be expressed via
Riemann’s ζ function using

ζ (3) =
∞∑
i=1

1

i3
≈ 1.202 (38)

Hence, the gain of dipolar energy of a chain of l spins can
roughly be estimated to be at most 3wlζ (3), where w =
µ2

sµ0/4πa3 is the strength of the dipole–dipole coupling (see
equation (5) and also (Hucht, Moschel and Usadel, 1995) for
a similar calculation in two dimensions). A comparison of the
energies yields the exchange length (measured as number of
atoms)

δx = π

√
J

6ζ (3)w
(39)

Note that in a continuum theory the dipolar energy is esti-
mated from formulae for the magnetostatic energy of ellip-
soids (Hubert and Schäfer, 1998). The results deviate slightly

since the factor 3ζ (3) is replaced by π . We prefer the expres-
sion in the preceding text derived directly for a spin model.

Let us now consider a nanowire, that is either a cylindrical
system or an extremely elongated ellipsoid. As long as
the thickness of the particle is smaller than the exchange
length, the magnetization will be homogeneous in the planes
perpendicular to the long axis so that the system behaves
effectively one-dimensionally (Braun, 1999). For thicknesses
larger than the exchange length, reversal modes may occur
where the magnetization is nonuniform in the perpendicular
planes, for example curling (Aharoni, 1996) (for graphical
representations see Nowak, 2001).

The existence of the crossover from nucleation to curl-
ing was investigated by simulations of cylindrical systems
(Hinzke and Nowak, 2000b; Nowak, 2001). Here, for the
first time fast Fourier transformation (FFT) methods for the
calculation of the dipolar fields were combined with Monte
Carlo simulations with quantified time step. These methods
allowed for a statistical investigation of particle sizes of up
to 32 768 spins in three dimensions. A systematic numeri-
cal determination of the corresponding energy barriers and
characteristic times is nevertheless still missing.

5 SIMULATION OF
ANTIFERROMAGNETS:
EXCHANGE BIAS

For compound materials consisting of an FM in contact with
an AFM a shift of the hysteresis loop along the magnetic
field axis can occur, which is called exchange bias (EB).
Often, this shift is observed after cooling the entire system
in an external magnetic field below the Néel temperature
TN of the AFM. For reviews on EB the reader is referred
to the articles by Nogués and Schuller (1999) and Stamps
(2000). Although EB has been well known since many years
(Meiklejohn and Bean, 1956, 1957) its microscopic origin is
still discussed controversially.

A detailed understanding of EB can only be achieved
by an understanding of the antiferromagnetic spin structure
so that classical spin models are the common starting
point for microscopic models of EB. In an early approach
by Malozemoff (1987, 1988a,b), EB is attributed to the
formation of domain walls in the AFM, perpendicular to the
FM/AFM interface due to interface roughness. These domain
walls are supposed to occur during cooling in the presence
of the magnetized FM and to carry a small net magnetization
at the FM/AFM interface (see Figure 4a). This interface
magnetization is furthermore supposed to be stable during
the reversal of the FM, consequently shifting the hysteresis
loop. However, the formation of domain walls in the AFM
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(a) (b)

FM

AFM

Figure 4. (a) Sketch of the model after Malozemoff (1987,
1988a,b) which shows the FM on top of the AFM in a domain
configuration. (b) Sketch of the model Mauri, Siegmann, Bagus
and Kay (1987). During reversal of the FM a spring is wound up
in the AFM. (Reprinted from Journal of Magnetism and Magnetic
Materials, Vol 240, 2002, Pages 243–247. Copyright 2002, with
permission from Elsevier.)

only due to interface roughness is energetically unfavorable
and its occurrence and stability have never been proved.

Alternative approaches have been developed. In a model
introduced by Mauri, Siegmann, Bagus and Kay (1987) EB is
obtained through a mechanism in which a domain-wall forms
in the AFM parallel to the interface while the magnetization
of the FM rotates (see Figure 4b). In contrast to experimen-
tal findings this mechanism works only for uncompensated
interfaces where the interface layer of the AFM is such that
is carries a net magnetization. Furthermore the interface is
assumed to be perfectly flat since otherwise it would be effec-
tively compensated by roughness. An extension by Koon
(1998) for compensated interfaces where the model of Mauri
was combined with a spin-flop coupling was later on proved
to show no EB (Schulthess and Butler, 1998, 1999). To obtain
EB Schulthess and Butler had to assume uncompensated
AFM spins at the interface. However, their occurrence and
stability during a magnetic hysteresis loop was not explained.

In a recent experiment Miltényi et al. (2000) showed that
it is possible to strongly influence EB in Co/CoO bilayers
by diluting the antiferromagnetic CoO layer, that is by
inserting nonmagnetic substitutions (Co1−xMgxO) or defects
(Co1−yO) not at the FM/AFM interface but rather throughout
the volume part of the AFM. In the same letter in was
shown that a corresponding theoretical model, the domain-
state (DS) model, investigated by Monte Carlo simulations
shows a behavior very similar to the experimental results. It
was argued that EB has its origin in a DS in the AFM which
triggers the spin arrangement and the FM/AFM exchange
interaction at the interface. Later it was shown that a variety
of experimental facts associated with EB can be explained
within this DS model (Nowak, Misra and Usadel, 2001, 2002;
Nowak et al., 2002b; Keller et al., 2002; Misra, Nowak and
Usadel, 2003, 2004; Beckmann, Nowak and Usadel, 2003,
2006; Scholten, Usadel and Nowak, 2005; Spray and Nowak,
2006). The importance of defects for the EB effect was also

confirmed by experiments on FexZn1−xF2/Co bilayers (Shi,
Lederman and Fullerton, 2002) and by experiments (Mewes
et al., 2000; Mougin et al., 2001) where it was shown that
it is possible to modify EB by means of irradiating an
FeNi/FeMn system by He ions in presence of a magnetic
field. Depending on the dose of the irradiation and the
magnetic field present at the time of irradiation, it was
possible to manipulate both the magnitude and even the
direction of the EB field. Further support for the relevance
of domains in EB systems is given by a direct spectroscopic
observation of AFM domains (Nolting et al., 2000; Ohldag
et al., 2001). In the following we focus on the DS model.

5.1 Domain-state model

The DS model for EB (Miltényi et al., 2000) consists of tFM

monolayers of FM and tAFM monolayers of diluted AFM.
The FM is exchange coupled to the topmost layer of the
AFM. The geometry of the model is sketched in Figure 5.

The system is described by a classical Heisenberg model
with nearest-neighbor exchange on a simple cubic lattice
with exchange constants JFM and JAFM for the FM and
the AFM respectively, while JINT stands for the exchange
constant between FM and AFM. For simplicity we assume
that the values of the magnetic moments of FM and AFM
are identical (included in the magnetic field energy B). The
Hamiltonian of the system is then

H = −JFM

∑
〈i,j〉

S i ·S j −
∑

i

(
dzS

2
iz + dxS

2
ix + S i ·B

)

−JAFM

∑
〈i,j〉

εiεjσ i ·σ j −
∑

i

εi

(
kzσ

2
iz + σ i ·B

)

−JINT

∑
〈i,j〉

εj S i ·σ j (40)

where Si denote normalized spins at sites of the FM layer
and σ i denote normalized spins at sites of the AFM.

AFM

x

z

y

FM

Figure 5. Sketch of the DS model with one FM layer and three
diluted AFM layers. The dots mark defects. The easy axis of both
FM and AFM is the z axis.
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The first line of the Hamiltonian describes the energy
of the FM with the z axis as its easy axis (anisotropy
constant dz > 0). The dipolar interaction is approximated
in the model by an additional anisotropy term (anisotropy
constant dx = −0.1JFM in the present case) which includes
the shape anisotropy, leading to a magnetization which is
preferentially in the y –z plane. The second line is the
contribution from the AFM also having its easy axis along
z direction. The AFM is diluted, that is a fraction p of sites
is left without a magnetic moment (εi = 0) while the other
sites carry a moment (εi = 1). The last term describes the
interaction of the FM with the interface AFM monolayer.

Equation (40) suggests a simple ground state argument for
the strength of the bias field. Assuming that all spins in the
FM remain parallel during field reversal and that some net
magnetization of the interface layer of the AFM remains
constant during the reversal of the FM a simple calculation
gives the usual estimate for the bias field,

tFMBEB = JINTmINT (41)

where mINT is the stable part of the interface magnetization
of the AFM (per spin) which is responsible for the EB. For an
ideal uncompensated and totally stable interface one would
expect mINT = 1. As is well known, this estimate leads to
a much too high bias field, while for an ideal compensated
interface, on the other hand, one would expect mINT = 0
and, hence, BEB = 0. Experimentally, however, often there
is on the one hand no big difference between compensated
and uncompensated interfaces and on the other hand, it is
found that BEB is much smaller than JINT/tFM, rather of the
order of a few percent of it. The solution of this puzzle is
that mINT is neither constant during field reversal nor is it
a simple known quantity (Keller et al., 2002; Nowak et al.,
2002b) and we discuss this quantity in the following.

5.2 Results from Monte Carlo simulation

Apart from the mean-field work by Scholten, Usadel and
Nowak (2005) mainly Monte Carlo methods were used to
investigate the DS model. Some of them focused on the Ising
limit for the AFM (Nowak, Misra and Usadel, 2001; Nowak
et al., 2002b; Beckmann, Nowak and Usadel, 2003, 2006;
Spray and Nowak, 2006) while others used the full Heisen-
berg Hamiltonian of the previous subsection (Nowak, Misra
and Usadel, 2002; Misra, Nowak and Usadel, 2003). In the
latter case a heat bath algorithm with single-spin-flip dynam-
ics was used where the trial step of the spin update consisted
of two steps: firstly a small variation within a cone around
the former spin direction, followed, secondly, by a total spin
flip. This twofold spin update is ergodic and symmetric and
can take care of a broad range of anisotropies, from very

soft spins up to the high anisotropy (Ising) limit. To observe
the domain structure of the AFM one has to guarantee that
typical length scales of the domain structure fit into the sys-
tem and typical system sizes were a lateral extension of
128 × 128 and a thickness of tFM = 1 and tAFM ranging from
3 to 9. Periodical boundary conditions were used within the
film plane and open boundary conditions perpendicular to it.

The main quantities monitored were the thermal averages
of the z component of the magnetic moment for each
individual monolayer normalized to the magnetic moment
of the saturated monolayer. In simulations the system is first
cooled from above to below the ordering temperature of the
AFM. During cooling the FM is initially magnetized along
the easy z axis resulting in a nearly constant exchange field
for the AFM monolayer at the interface. Also, the system
is cooled in the presence of an external magnetic field, the
cooling field. In addition to the exchange field from the
ordered FM this field acts on the AFM also. When the desired
final temperature is reached, a magnetic field along the easy
axis is applied and reduced in small steps down to a certain
minimum value and afterward raised again up to the initial
value. This corresponds to one cycle of the hysteresis loop.
A hysteresis loop obtained as described in the preceding text
is depicted in Figure 6. Results for the magnetization of the
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Figure 6. Simulated hysteresis loops of the DS model as explained
in the text. Dilution p = 0.4, kBT = 0.1JFM, positive interface
coupling, JINT = |JAFM|. AFM anisotropy kz = JFM/2. The cooling
field was Bc = 0.25JINT. The magnetic moment of the FM (a)
and the interface monolayer of the AFM (b) normalized to its
saturation value is shown. (Reprinted from Journal of Magnetism
and Magnetic Materials, Vol 240, 2002, Pages 243–247. Copyright
2002, with permission from Elsevier.)
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FM (a) as well as that of the AFM interface monolayer (b)
are shown. Exchange biasing is clearly observed.

An analysis of the magnetization curve of the interface
layer gives an interesting insight into the nature of EB.
After the field cooling procedure the AFM interface carries
a magnetization. A part of this AFM interface magnetization
is stable during hysteresis and leads to the fact that the
magnetization curve of the interface layer of the AFM
is shifted upward. This irreversible part of the interface
magnetization of the AFM acts as an additional effective
field on the FM, resulting in EB. Note that the interface
magnetization of the AFM also displays hysteresis as a result
of the exchange coupling to the FM. This means that the
whole interface magnetization of the AFM consists of a
reversible part leading to an enhanced coercivity and an
irreversible part leading to EB.

In experiments, usually the magnetization of the whole
FM/AFM bilayer is measured. The corresponding sample
magnetization loop might not only be shifted horizontally
but also vertically. The vertical shift contains contributions
from the volume part of the AFM as well as from its
interface. The volume magnetization of the AFM is induced
by the cooling field and hence not shifted when the cooling
field is zero and shifted upward when it is finite. The
interface contribution depends on the sign of the interface
coupling and may be positive, as in our calculation or
even negative for negative interface coupling (Nogués,

Leighton and Schuller, 2000; Keller et al., 2002; Nowak
et al., 2002b).

With the following two sketches we wish to illustrate on a
more microscopic basis where the interface magnetization of
the AFM comes from, including its partitioning in reversible
and irreversible parts. Figure 7(a) shows spin configurations
in a small portion of the interface monolayer of the AFM
after field cooling. The simulated system size is 64 × 64 × 10
with only one FM monolayer. For simplicity, this simulation
was performed in the Ising limit for the AFM (kz → ∞).
The dilution p of the AFM is 50%, nevertheless the spins
are much more connected than it appears from the sketch via
the third dimension.

Obviously, the AFM is in a DS, where a domain is
defined as a region of undisturbed antiferromagnetic order.
The reason for the domain formation and, consequently, for
the lack of long-range order is the interface magnetization
which couples to the exchange field coming from the FM
and the external field (both pointing up) lowering the energy
of the system. The interface magnetization follows from
two contributions. Examples for both are indicated via the
circles. One contribution comes from parallel spin pairs in
the domain walls (domain-wall magnetization), all pointing
up in our example (Figure 7a), that is, into the direction
of the exchange field of the FM and the external field.
A second contribution comes from an imbalance of the
number of defects of the two antiferromagnetic sublattices

(a) (b)

Figure 7. Snapshots of spin configurations in a small portion of the interface monolayer of the AFM after field cooling with the external
field and the FM magnetization pointing upward (a) and after reversal of the FM (b). The interface coupling is assumed to be positive.
The gray shading distinguishes different AFM domains. The circles mark sources of magnetization, wall magnetization as well as volume
magnetization.
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(volume magnetization). The imbalance of the number of
defects of the two antiferromagnetic sublattices also leads
to a net magnetization within a domain which couples to the
exchange field of the FM and the external field. The reason
for the imbalance is that the domain structure is not random.
Rather, it is an optimized structure arising during the initial
cooling procedure with as much magnetization as possible
coupling to the exchange field of the FM and the external
field, following the energy minimization principle.

However, an AFM interface magnetization alone cannot
lead to EB. Only the irreversible part of it (during hysteresis)
may lead to EB. Figure 7(b) shows, for comparison, spin
configurations in the same portion of the interface monolayer
of the AFM after reversal of the FM. Clearly, the major
part of the domain structure did not change during reversal
of the FM. However, there are rearrangements on smaller
length scales, leading mainly to the fact that the domain-
wall magnetization changes its sign. In Figure 7(b) all of the
spin pairs within domain walls are pointing down following
the reversed FM and the external field.

However, the volume magnetization coming from the
defects remains frozen. The stability of the domain structure
stems from the fact that the domain walls are pinned at
defects sites as well as between pairs of spins which are
aligned with the field. Hence, during a movement of the
domain-wall energy barriers may have to be overcome by
thermal activation. This explains why a large domain in
general will stay in a metastable state on exponentially long
timescales, while rearrangements on a shorter length scale
are possible, of course depending on the temperature and the
material parameters of the AFM.

Many of the essential properties of diluted AFMs, the
occurrence of DSs, metastability, remnant magnetization, and
slow relaxation, among others, have been investigated before,
even though not in the context of EB (for reviews on diluted
AFMs see Kleemann, 1993; Belanger, 1998, for a detailed
discussion of the connection between diluted AFMs and EB
systems see Nowak et al., 2002b).

Important features of EB systems found experimentally
(Keller et al., 2002) have their counterpart in the simulations
(Nowak et al., 2002b), such as the order of magnitude of EB
fields, the shape of hysteresis curves, the dilution dependence
of EB, its temperature dependence, the training effect, and the
occurrence of positive EB. Other properties of EB systems,
which were successfully investigated within the framework
of the DS model are the dependence of EB on thickness of the
AFM (Nowak, Misra and Usadel, 2001; Ali et al., 2003), the
dependence on the anisotropy of the AFM in Nowak, Misra
and Usadel (2002), the influence of ion irradiation (Misra,
Nowak and Usadel, 2003) asymmetric reversal modes (Beck-
mann, Nowak and Usadel, 2003), properties of the AFM
domain structures (Misra, Nowak and Usadel, 2004), the

enhanced coercivity (Scholten, Usadel and Nowak, 2005),
the cooling field dependence (Beckmann, Nowak and Usadel,
2003), and the influence of interface roughness (Spray and
Nowak, 2006). However, finally one should note that most of
the AFMs used in EB systems have a polycrystalline struc-
ture (Stiles and McMichael, 1999; Suess et al., 2003), which
so far was not taken into account by the DS model. Work
following these lines is still missing and would certainly con-
tribute to the further understanding of EB.

6 CONCLUSIONS AND OUTLOOK

Within the framework of classical spin models it is possible
to investigate magnetic properties of a variety of different
materials, as for example, ferri-, ferro-, or antiferromag-
nets, and even heterostructures composed of several different
materials. Simulation techniques for the investigation of ther-
mal equilibrium properties exist and – to some extent – also
for nonequilibrium situations.

However, classical spin models neglect quantum effects
and, furthermore, one expects certain limits for the validity
of the stochastic LLG equation regarding its short-time
spin dynamics as well as the form of the damping which
still suffers from a lack of microscopic understanding. A
mathematical formulation of damping (Smith and Arnett,
2001; Safonov and Bertram, 2002; Rebei and Parker, 2003)
as well as a systematic construction and parameterization
of classical spin model Hamiltonians (Mryasov, Nowak,
Guslienko and Chantrell, 2005) for certain given materials
on the basis of first-principles calculation remain a challenge
for current research.

NOTE

[1] The fact that the noise is multiplicative in the LLG
equation has been questioned, since the parameter space
is the unit sphere, so that the relevant random-field term
(giving rise to a torque) and the magnetization derivative
are restricted to the tangent plane. The use of a Heun
scheme might thus not be mandatory.
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Nolting, F., Scholl, A., Stöhr, J., et al. (2000). Direct observation of
the alignment of ferromagnetic spins by antiferromagnetic spins.
Nature, 405, 767.

Nowak, U. (1997). Micromagnetic simulation of nanoscale films
with perpendicular anisotropy. Journal of Applied Physics, 81,
5579.

Nowak, U. (2001). Thermally activated reversal in magnetic nanos-
tructures. In Annual Reviews of Computational Physics IX, Stauf-
fer, D. (Ed.), World Scientific: Singapore, p. 105.

Nowak, U., Chantrell, R.W. and Kennedy, E.C. (2000). Monte Carlo
simulation with time step quantification in terms of Langevin
dynamics. Physical Review Letters, 84, 163.

Nowak, U., Heimel, J., Kleinefeld, T. and Weller, D. (1997).
Domain dynamics of magnetic films with perpendicular aniso-
tropy. Physical Review B, 56, 8143.

Nowak, U., Misra, A. and Usadel, K.D. (2001). Domain state model
for exchange bias. Journal of Applied Physics, 89, 7269.

Nowak, U., Misra, A. and Usadel, K.D. (2002). Modeling exchange
bias microscopically. Journal of Magnetism and Magnetic Mate-
rials, 240, 243.

Nowak, U., Mryasov, O.N., Wieser, R., et al. (2005). Spin dynamics
of magnetic nanoparticles: beyond Brown’s theory. Physical
Review B, 72, 172410.

Nowak, U., Rüdiger, U., Fumagalli, P. and Güntherodt, G. (1996).
Dependence of magnetization reversal on the crystallite size in



Classical spin models 19

MnBi thin films: experiment, theory, and computer simulation.
Physical Review B, 54, 13017.
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1 INTRODUCTION

The recent surge of interest in the magnetism of small ele-
ments stems from a combination of three factors: firstly,
the continuous development in the techniques for deposi-
tion of thin metal films and, in particular, molecular-beam
epitaxy, which allows for the growth of metal structures vir-
tually free of impurities and with controllable crystallinity;
secondly, the development of electron beam lithography in
the context of semiconductor technology, which has been
subsequently co-opted for the structuring of metal elements,
either by direct lithography or by metal deposition through a
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netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

lithographically defined mask; and finally, the simultaneous
development of magnetic characterization techniques, which
have become ever more sensitive and are able to operate on
shorter timescales and with greater spatial resolution. The
happy confluence of these three trends has created the ideal
conditions for a fruitful and rapid exploration of the mag-
netism of small magnetic structures, in particular, of their
equilibrium and dynamic properties. A constant motivation
throughout has been the potential for device applications that
fit in with the current trend of miniaturization in magneto-
and microelectronic technology.

It is in this context that we attempt here to review some of the
aspects of the magnetism of small elements; this would seem
a thankless task given the large body of work devoted to this
subject, but we hope that, by focusing on the equilibrium static
properties and quasiequilibrium dynamics of small elements,
a broad picture of the recent achievements in this area may
be uncovered, and also that a general understanding of the
physics governing the magnetic properties of systems in the
nano- and mesoscale, for which the shape of the element
plays a critical role, may be exposed. With this purpose in
mind, we propose to discuss the magnetism of small elements
based on soft magnetic materials (3d transition ferromagnets
and alloys), and we shall also limit ourselves largely to
in-plane magnetized elements, that is, those for which the
magnetic anisotropies are relatively small. The present chapter
is organized as follows. In Section 2, we mention briefly
some of the experimental techniques which have been used
for the magnetic characterization of the magnetic structures
mentioned in later sections. In Section 3, we consider the
different magnetic energy terms which govern the magnetic
behavior of materials on a macroscopic scale and which
are implemented in micromagnetic simulators. In the next
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sections, we introduce single domain systems (Section 4)
and then move to the magnetism of mesoscopic elements
(Section 5), characterized by magnetic states of nonuniform
magnetization and which we distinguish from the multidomain
states that one encounters in large elements (discussed briefly
in Section 6). From the magnetostatics, we move to the
magnetodynamics and discuss next the magnetization reversal
of small elements (Section 7). In Section 8, we provide a brief
summary of our overview.

2 CHARACTERIZATION TECHNIQUES

An impressive array of experimental techniques has been
developed recently that aim at the detection and mea-
surement of magnetic signals in small structures and thin
films. This is particularly true of imaging techniques, whose
increased spatial and time resolutions have made possi-
ble the study of both the detailed static spin configura-
tion and the dynamic properties (down to the picosecond
range) of small elements. Here, we only introduce the exper-
imental techniques, which can give information about the
magnetic configuration of small structures or thin films.
While the available experimental techniques can be classi-
fied in many ways, we distinguish here between imaging and
magnetometric techniques, which allow respectively a more
direct or indirect access to the spin structure of magnetic
systems.

Imaging techniques directly return information about the
spatial magnetization distribution. These include, in order
of increasing spatial resolution, scanning Kerr microscopy
(SKM), based on the magneto-optic Kerr effect (MOKE),
which has been used for the imaging of both continuous
magnetic films and of small structures (Heidkamp and Erskine,
2000). Although the spatial resolution is limited to a few
micrometers (in some cases extended to the submicrometer
range (Stotz and Freeman, 1997)), when associated with
stroboscopic techniques, it allows for time resolutions down
to the sub-nanosecond (Ballentine, Hiebert, Stankiewicz and
Freeman, 2000; Acremann et al., 2001; Hicken et al., 2002;
Choi and Freeman, 2005). Scanning Hall effect microscopy
(Bekaert et al., 2002) can achieve similar spatial resolutions,
and is based on the Hall voltage generated by a miniaturized
Hall probe that measures the stray field originating from the
sample. Magnetic force microscopy (MFM) is based on the
interaction of a magnetic tip with the stray field and magnetic
charges issuing from the sample (Grütter, Mamin and Rugar,
1992; Hubert, Rave and Tomlinson, 1997). As such, it has
the disadvantage that tip-sample interaction may disturb the
magnetic pattern of soft magnetic materials (Memmert, Müller
and Hartmann, 2000, 2001; Garcı́a, Thiaville and Miltat,
2002), and, in some instances, it is even known to assist

in the switching of the magnetization (Ohkubo, Kishigami,
Yanagisawa and Kaneko, 1991; Manalis et al., 1995; Li et al.,
2002). An additional complication is the fact that the stray field
is not uniquely defined (Vellekoop, Abelmann, Porthun and
Lodder, 1998). The spatial resolution of MFM is of the order
of 50 nm, but it is a very slow technique (scanning times of
the order of minutes). Better spatial resolution is provided by
magnetic transmission X-ray microscopy (MTXM) (Fischer
et al., 2001; Kang et al., 2005) and photoemission electron
microscopy (PEEM) (Schneider et al., 1997; Schönhense,
1999; Locatelli et al., 2002; Scholl et al., 2002; Hopster and
Oepen, 2005), with spatial resolution (currently) of ∼30 nm;
its acquisition times are of the order of a few minutes, but
ultrafast PEEM in conjunction with stroboscopic techniques
have time resolutions in the sub-nanosecond range (Kuksov
et al., 2004). Scanning electron microscopy with polarization
analysis (Spin-SEM or SEMPA) (Scheinfein et al., 1989;
Unguris, Scheinfein, Celotta and Pierce, 1990; Allenspach,
1994) has a spatial resolution of the order of 20 nm, and
techniques with even higher spatial resolutions (≤10 nm)
include Lorentz microscopy (Chapman, 1984) and electron
holography (Dunin-Borkowski et al., 2000). The ultimate
imaging technique, as far as spatial resolution is concerned, is
spin-polarized scanning tunneling microscopy (Wulfhekel and
Kirschner, 1999; Bode, Pietzsch, Kubetzka and Wiesendanger,
2001), with subatomic resolution, but acquisition times tend
to be long.

In magnetometric techniques, we include those techniques
which give information about the magnetization structure, but
which cannot determine unequivocally what such configura-
tion may be. In order of increasing sensitivity, VSM (vibrat-
ing sample magnetometer), AGFM (alternating gradient mag-
netometer), and SQUID (superconducting quantum interfer-
ence device), allow the measurement of M-H characteristics
over arrays of small elements, but usually they are encum-
bered by the presence of the large diamagnetic contribution of
the substrate. MOKE (Bader, 1991; Qiu and Bader, 1998) and
its variants (Vavassori et al., 1999; Guedes et al., 2000) are
surface-sensitive techniques (with probing depth of the order
of the skin depth of the material under study, around 20 nm
for most metals) and have been extensively used for the mag-
netic characterization of thin films and arrays of structures; it
combines high sensitivities with fairly simple setups and typ-
ical spot sizes are of the order of 100 µm. Other techniques
that require arrays of elements for sufficient signal-to-noise
ratios include (polarized) neutron scattering (Fitzsimmons
et al., 2004), ferromagnetic resonance (FMR) (Goglio et al.,
1999; Giesen et al., 2005; Martyanov et al., 2005), and Bril-
louin light scattering (BLS) (Demokritov, Hillebrands and
Slavin, 2001; Gubbiotti et al., 2002), the latter two probing
directly the spin-wave spectra of the small structures. Recent
developments include a microfocus BLS setup, with spatial
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resolution of the order of 300 nm (Demidov et al., 2004). Hall
effect magnetometry (Oral, Bending and Henini, 1996; Rahm
et al., 2001; Schuh et al., 2001; Wunderlich et al., 2001;
Steiner and Nitta, 2004) has also been employed, where indi-
vidual microscopic elements are measured by placing them
directly onto the Hall probe, allowing therefore a spatial
discrimination of the order of or better than 1 µm; magnetore-
sistance (MR) is also a very powerful technique, which has
the advantage that the signal does not decrease with decreas-
ing size of the element and which is usually based on the
anisotropic MR effect (Hong and Giordano, 1995; Aumen-
tado and Chandrasekhar, 1999; Wegrowe et al., 1999); it has
been used, for example, to probe the magnetization structure
in nanometer-sized constrictions (Kläui et al., 2003b, 2004d)
and also for studies of atomic contacts (Garcı́a, Muñoz and
Zhao, 1999; Gabureac, Viret, Ott and Fermon, 2004; Montero
et al., 2004). Extraordinary Hall effect has been employed
in perpendicularly magnetized structures as a very sensitive
technique for the study of the magnetic configurations and
magnetization dynamics in small structures, offering good
time resolution but rather involved data analysis (Webb,
1990; Ravelosona et al., 2002; Belmeguenai, Devolder and
Chappert, 2005). Micro-SQUID probes were developed by
Mailly, Chapelier and Benoit (1993) and Wernsdorfer (2001)
to probe the switching properties of nanometer-sized parti-
cles, and also rely on the placement of the nanoparticle onto
the micro-SQUID junction; it combines high spatial discrim-
ination with the extreme sensitivity of SQUID junctions.
In general terms, these techniques allow the study of both
static and dynamic properties, such as coercivities, magnetic
anisotropies, magnetic moment, and spin-wave dynamics,
and as such provide information that is critical for a complete
characterization of the system. This is important because, for
thin films and small structures, we may expect changes in the
magnetic properties with respect to the bulk material, and
also because the effect of interaction between elements or
the effect of the physical shape of the element also strongly
affects the magnetic properties of the system.

A more detailed description of these techniques can be
found in volume 3 of this series.

3 MAGNETIC ENERGY TERMS
IN MICROMAGNETISM

In small elements, as in bulk materials and thin films, the
static and dynamic magnetic properties are determined by the
relative contribution of the different magnetic energy terms
to the free energy, namely, exchange, magnetostatic, mag-
netic anisotropy, and the Zeeman energy (if an external field
is present). However, the sensitivity of the magnetic dipolar

energy to the shape of the element changes dramatically the
relative importance of the different energy terms in small
structures, where boundaries constitute a significant portion
of the whole system. In fact, while the magnetostatic energy
term favors states of magnetic flux closure, and therefore
multidomain states or states of nonuniform magnetization,
such states come at a significant cost in exchange energy,
since now regions of nonuniform magnetization (such as
domain walls) occupy a large portion of the overall system.
As the size of the element is reduced, the exchange energy
becomes dominant, and, below a critical dimension, the sin-
gle domain state is the lowest in energy. We can therefore
speak of three magnetic regimes characterized by different
types of equilibrium states (Vaz et al., 2006): the multido-
main state regime, for elements with dimensions typically
above ∼2 µm, which exhibit equilibrium states with mag-
netic domains of uniform magnetization; the nonuniform
magnetic state regime, for sizes in the range ∼0.2–2 µm,
where the states of lowest energy correspond to complicated
magnetic configurations which are a result of a delicate bal-
ance between the different energy terms and which cannot be
described by individual magnetic domains (Vaz et al., 2005);
and the quasiuniform regime, for sizes below ∼200 nm,
which is characterized by magnetic states that closely resem-
ble the uniform state (Barbara, 2005). These boundaries are
not rigid, however, and depend strongly on the strength of
the magnetic anisotropy, among other factors, but our view
is that they are qualitatively correct for most 3d cubic and
polycrystalline magnetic materials.

While the sensitivity of the magnetic energy to the shape
of the element opens an endless range of possibilities for the
study of small structures, in practice, we may expect that sim-
ple magnetic states may be more stable in highly symmetric
structures, such as circles, squares, rings, ellipses, or wires.
These structures have in fact received the bulk of the atten-
tion in this research area, partly because of their potential
for technological applications, where simple and reproducible
magnetic states with fast magnetic switching are key.

3.1 Exchange energy

This is the energy term which is at the origin of ferromag-
netic order. Its microscopic origin is related to a combination
of the Pauli exclusion principle and the Coulomb repul-
sive interaction between ions. Depending on the particular
atomic arrangement, it may lead to several magnetic spin
arrangements, such as ferromagnetism (Fe, Co, Ni, Gd, Dy,
CrO2, etc.), antiferromagnetism (Cr, FeO, CoO, NiO, FeMn,
etc.), ferrimagnetism (γ -Fe2O3, Fe3O4, Y3Fe5O12, etc.), heli-
coidal magnetism (Ho, Er), and so on. (Keffer, 1966; Gautier,
1982; Hurd, 1982; Pierre, 1982). Here we shall consider
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only ferromagnetic materials, but ferrimagnets are suscep-
tible to an identical analysis; the case of antiferromagnetism
requires a special treatment, since these materials exhibit
properties that are quite different from those of ferromagnets
(Nagamiya, Yosida and Kubo, 1955; Fawcett, 1988; Fawcett
et al., 1994; Aeppli, 2004).

The exchange energy is minimum when all spins are
aligned parallel to each other, and, therefore, as far as this
energy term is concerned, states of uniform magnetization are
the lowest in energy. Although the strength of the exchange
interaction is very high (of the order of kBTc, where Tc is the
Curie temperature) it is, however, a short range interaction,
such that, over large samples, other magnetic energy terms
may be comparable or larger. This marks the transition from
a state of uniform to a state of nonuniform magnetization; this
transition has received particular attention over the years due
to its practical implications for the manufacture of permanent
magnets and particulate recording media. In fact, one could
say that nanomagnetism is a field that dates from the early
1930s, when Frenkel and Dorfman (1930) first estimated the
critical size for a single domain particle.

It is worth noting that, although the 3d transition metals are
itinerant systems due to the high electron hopping frequency,
the orbital bands responsible for the magnetic order (the
3d bands) are fairly localized such that the description of
the exchange energy by the Heisenberg Hamiltonian is a
good approximation. In fact, it has been suggested that the
band structure of ferromagnets remains largely unaltered
at temperatures above the Curie temperature, suggesting
that the paramagnetic phase is not a result of the collapse
of the band exchange spliting, but is rather due to spin
disorder introduced by thermal agitations (Korenman, 1983).
A unified description of localized and itinerant magnetism
has been provided in the context of the generalized spin-
fluctuation picture developed by Moriya (1985).

Although magnetic order arises ultimately from the elec-
tron spin (of the 3d bands in the case of the 3d transition
metals and from the 4f orbitals in the case of the 4f transi-
tion metals), it is usually sufficient to consider a continuum
approximation when the size of the magnetic system is much
larger that the atomic dimensions; in this case, the Heisenberg
Hamiltonian gives for the excess exchange energy for cubic
or isotropic materials due to inhomogeneous spin configura-
tions (Landau and Lifshitz, 1935; Carr, 1966; Kittel, 1987)
(See also General Micromagnetic Theory, Volume 2):

Eex = A

∫
�

(∇ m)2 dv (1)

where A is the exchange constant, m = M/Ms is the magne-
tization unit vector (Ms is the saturation magnetization) and
� is the volume.

3.2 Magnetostatic self-energy

This is the classical interaction energy between magnetic
dipoles. It is a long-range term and the source of most com-
plications as far as magnetic configurations are concerned.
There are several ways in which this term can be repre-
sented; perhaps the most common is to note that, in the
absence of electric currents and in the static case, Maxwell’s
equations give ∇ × H = 0, that is, H is irrotational and there-
fore can be written as the gradient of a potential φ whose
source is given by the fictitious magnetic charge distribu-
tion ∇2φ = −∇ · H = ∇ · M (Jackson, 1975; Brown, 1962).
Although a solution for φ can be written explicitly, its cal-
culation is often very difficult:

φ(r) = − 1

4π

∫
�

∇ · M(r′)
|r − r′| dv + 1

4π

∫
∂�

n · M(r′)
|r − r′| ds (2)

where n is the unit vector perpendicular to the volume surface
∂�. The field Hd = −∇φ is called the magnetic dipolar field
and it tends to oppose the direction of magnetization (inside
the magnetized body); the magnetostatic energy is given by

EMS = µ0

2

∫
�

Hd · M dv (3)

This is the energy term that is responsible for the existence
of magnetic domains: it favors states of closed flux magne-
tization and therefore competes directly with the exchange
energy term. Only in simple cases it is possible to express
the magnetostatic energy analytically: in single domain par-
ticles with very regular geometries, thin films, and infi-
nite wires. Since it is a global term, it is the most diffi-
cult and lengthy energy term to calculate in micromagnetic
simulations.

3.2.1 Demagnetizing factor

The calculation of the magnetostatic energy is significantly
simplified in the case of uniform magnetized states, for which
the first term of (2) is zero. It is often easier to calculate the
magnetostatic energy than the dipolar field explicitly, and
we call the ratio between this energy and the factor µ0M

2
s /2

the magnetometric demagnetizing factor, or demagnetizing
factor for short. The usefulness of these expressions is that
we may compare the energy of the uniform state with
that of other nonuniform configurations and determine the
phase diagram separating the regions of stability for each
of the magnetic states. This requires, however, that energy
expressions for the other states are available and also a
knowledge of what other magnetic states may be stable.
Good guesses are based on the symmetry of the element, but
more accurate knowledge can be obtained from the results
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of micromagnetic simulations. While the demagnetizing
factors for ellipsoids have been made available for a long
time (Maxwell, 1891), a useful presentation of the results
have been provided by Osborn (1945) and Stoner (1945)
along the revolution axes and for a range of particular
cases. The case of cylinders and disks has also been
considered extensively (Joseph, 1966; Kaczér and Klem,
1976; Hegedus, Kadar and Torre, 1979; Aharoni, 1981;
Chen, Brug and Goldfarb, 1991; Goode and Rowlands, 2003;
Beleggia et al., 2005), including approximate expressions for
the limiting cases of wires and disks (Joseph, 1966, 1976).
The case of a flat square prism has also been considered
by Joseph (1976), while the demagnetizing factor for rings
have been studied by several authors (Kaczér and Klem,
1976; Hegedus, Kadar and Torre, 1979; Chen, Brug and
Goldfarb, 1991; Vaz, Athanasiou, Bland and Rowlands,
2006).

3.3 Magnetic anisotropy

Magnetic anisotropy refers to variations in the magnetic
energy with the spatial orientation of the magnetization.
From a microscopic perspective, several terms can be distin-
guished, such as the intrinsic magnetocrystalline anisotropy,
the magnetoelastic anisotropy, surface anisotropy, field-
induced anisotropy (all of which originate microscopically
from the spin-orbit coupling), growth-induced (morphology
related) anisotropy, exchange anisotropy, and so forth. How-
ever, from a macroscopic perspective, we may collect all
the energy contributions with a given symmetry into a sin-
gle effective anisotropy when discussing its effect on the
equilibrium or dynamic behavior of the magnetization con-
figuration. This is useful on many counts. For example, one
often deals with polycrystalline materials, which consist of
small crystallites randomly oriented with respect to each
other such that no anisotropy is present, that is, the mate-
rial behaves as an isotropic material. In weakly anisotropic
materials, this is a good description if the crystallite size is of
the order of the exchange length of the material or smaller,
but for larger crystallite sizes local deviations of the mag-
netization may occur; in the other extreme, for very small
elements composed of a small number of crystallites, it may
be possible that the magnetic anisotropy no longer averages
to zero, and an effective magnetocrystalline anisotropy may
remain, which needs to be taken into account (New, Pease
and White, 1996; Ross et al., 2000; Spargo, Ridley, Roberts
and Chantrell, 2002).

Phenomenologically, one can write the magnetic
anisotropy energy in terms of the direction cosines of the
magnetization consistent with the magnetic symmetry of the
system. For a cubic system, the general expression is of

the form:

Ecub =
∫

�


K1

∑
i>j

α2
i α

2
j + K2α

2
1α

2
2α

2
3

+K3

∑
i>j

(α2
i α

2
j )

2 + . . .


 dv (4)

where K1, K2, and so on are the effective anisotropy
constants.

3.4 Zeeman energy

This energy term corresponds to the dipole interaction with
an external magnetic field. For a uniform field, its effect is
that of exerting a torque on the dipole moment when this is
aligned along directions different from that of the external
field. The expression for this energy term is given by

EZeeman = −µ0

∫
�

H0 · M dv (5)

3.5 Lengthscales in magnetism

The preceding expressions for the magnetic energy terms
allows one, in principle, to calculate the equilibrium states
that minimize the Landau free energy of the system, given by

G(H, T ) = U − T S − µ0

∫
�

H0 · M dv (6)

where S is the entropy, T the temperature, and U the internal
energy of the system (which includes the previously men-
tioned magnetic energy terms and is a functional of the
magnetization configuration); the last term is the Zeeman
energy term. Such a calculation is, in general, very compli-
cated, and here we shall consider only the equilibrium state
at zero temperature. This approximation is justified if the
energy barriers that have to be overcome during switching
are much higher than the thermal energy (i.e., temperature) of
the system. In this case, it is possible to calculate numerically
the magnetic equilibrium state as a function of applied fields
in the continuum approximation (micromagnetism (Brown,
1963; Aharoni, 1996)); while in principle the equilibrium
configurations can be calculated analytically from Brown’s
equation (Brown, 1963); in practice such calculations can
only be carried out in some special cases. When the atomic
structure of the system cannot be neglected, the spins have
to be treated individually and quantum effects have to be
taken into account (Hilzinger and Kronmüller, 1972, 1973;
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Wernsdorfer, 2001). We consider here systems where micro-
magnetics should still hold (See also General Micromag-
netic Theory, Volume 2), and we shall limit ourselves to
quasistatic equilibrium processes, that is, we assume that the
applied magnetic field changes slowly compared to the mag-
netization dynamics.

A case that can be solved analytically is that of a sys-
tem that acts like a macrospin, that is, a system with uni-
formly aligned magnetization (single domain particle). As
discussed in the preceding text, this state is favored by
the exchange interaction but comes at a cost of magne-
tostatic energy. We can obtain an estimate of the dimen-
sions of a magnetic particle below which it is a single
domain by comparing the order of magnitude of the exchange
energy (∼ Al) and magnetostatic energy (∼ µ0M

2
s l3/2); this

gives the characteristic exchange length ls = (2A/µ0M
2
s )1/2,

below which twisting of the magnetization is energeti-
cally unfavorable; this also follows from the scaling of the
energy terms (Schabes and Bertram, 1988; Hertel, 2004).
For larger particles, another characteristic lengthscale which
is of importance is the domain wall width, lk = (A/K)1/2,
which gives an indication of the strength of the anisotropy
energy with respect to the exchange energy (and there-
fore determines the width of the domain wall separating
magnetic domains in multidomain states). In this context,
it is worth mentioning a third parameter corresponding to
the ratio between the magnetic anisotropy constant and the
magnetostatic energy, Q = 2K/µ0M

2
s , called the quality

factor. This is an important parameter in perpendicularly
magnetized films (See also Alternative Patterning Tech-
niques: Magnetic Interactions in Nanomagnet Arrays,
Volume 3).

4 SINGLE DOMAIN SYSTEMS WITH
UNIFORM MAGNETIZATION

When analyzing a magnetic system, we are firstly interested
in the stable equilibrium magnetization configurations, that
is, the directions of the spins in the system for a given set of
external parameters. From this information, key properties,
such as the switching fields, can be deduced. In general,
due to the large number of degrees of freedom, such an
analysis has to be carried out using numerical techniques. A
more easily accessible case is a single domain system, where
the magnetization configuration can be described by a single
angle of a macrospin. We start with the description of such a
system, where instructive analytical calculations are possible,
to illustrate how the different energy terms discussed in the
preceding text govern the magnetic behavior.

4.1 Theory of single domain systems: the
Stoner–Wohlfarth model

If a system is in a single domain state in equilibrium
and the spins rotate uniformly during reversal, then it can
be described by a macrospin model. While single domain
systems may reverse by inhomogeneous modes, such as
curling (Aharoni, 1996; Frei, Shtrikman and Treves, 1957;
Kronmüller and Fähnle, 2003) (see Section 7.3), we start here
with a system with a uniform magnetization at all times.

The simplest classical model describing single domain
systems with coherent rotation was developed by Stoner and
Wohlfarth (1948), and Néel (1947) and is commonly referred
to as the Stoner–Wohlfarth model. The aim of this model
is to analytically calculate the equilibrium directions of the
magnetization for a given anisotropy and a given applied
field (and field history). Further, for a magnetic field applied
along a given direction, one can calculate the field value at
which the magnetization reverses.

Since spatial variations do not have to be taken into
account in this model, the exchange energy does not play a
role and the magnetic switching is governed by the interplay
between the Zeeman energy and the effective anisotropy.
In line with the original calculations (Stoner and Wohlfarth,
1948), we restrict ourselves here to the two-dimensional case,
which is easier to understand intuitively (many experimental
thin film systems can be described to a first approximation by
the two-dimensional mode). The theory has, however, been
extended to three dimensions by Thiaville (Thiaville, 1998,
2000) to deal with systems such as clusters (Jamet et al.,
2001).

Well below the Curie temperature, the magnetization
vector can be assumed to be of constant length, so that the
problem of finding the magnetization direction angle θ that
minimizes the energy for a given applied field H with the
direction φ can be mathematically formulated as follows:

E(h) = min[F(m(θ)) − 2h · m(θ)] (7)

Here m = M/Ms is the normalized magnetization direction
vector, F(m) is the anisotropy energy density divided by the
anisotropy constant K and h = µ0HMs/2K is the reduced
applied field. In polar coordinates, m = (cos θ, sin θ) and the
orthogonal vector is e = (− sin θ, cos θ). In equilibrium

dE

dθ
= dF

dθ
− 2h · e = 0 (8)

and whether the position is a stable minimum or not can be
determined by the second derivative:

d2E

dθ2 = d2F

dθ2 + 2h · m (9)
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This determines the equilibrium magnetization direction
for a given field. Now, one is interested in the critical field
where the solution becomes unstable, that is, when the second
derivative is zero (saddle point). Using both equations to
solve for the x and y components of the critical field hc one
obtains

hc = 1

2

(
dF

dθ
e − d2F

dθ2 m
)

(10)

For a twofold anisotropy F = Kt sin2 θ this gives

hc,x(θ) = cos3 θ (11)

hc,y(θ) = sin3 θ (12)

For a given magnetization direction defined by θ , one
obtains a critical field strength and field direction where
the energy of the system has a saddle point. Hence, if a
field larger than the critical field is applied, there is only
one stable direction for the magnetization. If one considers,
M-H hysteresis loop measurements, the magnetization exhi-
bits an irreversible jump at the critical field. For the twofold
anisotropy, a polar plot of hc (Stoner–Wohlfarth asteroid) is
shown in Figure 1. The aim, which was to express the critical
field as a function of the applied field direction hc(φ), has
not been reached yet as only hc(θ) has been determined. The

y

x

1

−1

−1 1

Figure 1. Plot of the critical fields (solid line) for a twofold
anisotropy.

relationship between the two angles is given by

φ = arctan(hc,y(θ)/hc,x(θ)) (13)

In the case of twofold anisotropy, this can be solved
follows: θ = arctan(tan1/3 φ). θ(φ) can then be introduced
into equations (11) and (12) and the well-known formula for
the dependence of the switching field on the angle of the
applied field is obtained (Kronmüller and Fähnle, 2003):

hc(φ) = (sin2/3 φ + cos2/3 φ)−3/2 (14)

While there is an explicit formula for the switching
fields, the hysteresis loops in general have to be calculated
numerically. For the case of twofold anisotropy, the result
is shown in Figure 2. Further information and explanations
can be found in Slonczewski (1956), Wernsdorfer (2001),
Kronmüller and Fähnle (2003).

Now we consider the case of a fourfold anisotropy, where
a general analytical expression for the switching field hc as a
function of the angle of the applied field cannot be calculated
(even though analytical expressions for fields applied close
to the hard and easy axes can be derived (Kläui, 2003)).
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Figure 2. Longitudinal M-H hysteresis loops for 0 (innermost line
through the origin, hard axis), 5, 10, 30, 45, 60, 85, and 90
(outermost square loop, easy axis) degrees away from the hard axis
for the case of a twofold anisotropy.
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In the case of the fourfold anisotropy, F = K1 sin2 2θ , and
inserting this expression into equation (10), we obtain

hc,x(θ) = −5

4
cos 3θ − 3

4
cos 5θ (15)

hc,y(θ) = 5

4
sin 3θ − 3

4
sin 5θ (16)

Again, M-H measurements along the easy or hard axis
show jumps at the critical field. For other angles, more com-
plicated multistep switching occurs corresponding to transi-
tions between different local energy minima, which are due
to the presence of two easy axes in the fourfold anisotropy
case (Wernsdorfer, 2001). The angular dependence of the
switching fields is presented in Figure 3.

Owing to the additional energy minima, the interpretation
of these graphs is not as straightforward as in the case
of a twofold anisotropy (an in-depth description on how
to interpret them can be found in Thiaville (1998), and
Wernsdorfer (2001)).

The preceding results provide a framework with which to
interpret experimental data. Firstly, if a system exhibits a
simple uniaxial (twofold) or cubic (effectively, a fourfold
anisotropy in two dimensions) anisotropy and we know
the saturation magnetization, we can deduce the anisotropy
constants. In general, however, more than one anisotropy
term is present in real systems and the anisotropy energy
terms can be expanded in a power series of ma

xm
b
ym

c
z with

y

1

−1

−1 1

x

Figure 3. Plot of the critical fields (solid line) for a fourfold
anisotropy.

a + b + c = 2, 4, 6 etc. Calculations of the switching fields
for different anisotropies indicate, in fact, that there is not
necessarily a simple map between the switching fields and
the anisotropies, meaning that the switching fields can be
calculated from the anisotropies, but not necessarily vice
versa, which is usually the desired case.

4.2 Experimental observations of single domain
systems

Structures which reverse via coherent rotation are promis-
ing for applications (Prinz, 1999, 1998) as this switching
process can occur on very short timescales (Schumacher
et al., 2003). Coherent rotation is predominantly found in
small particles where the exchange energy dominates. For
the fabrication of small magnetic elements, top-down and
bottom-up approaches have been put forward (Martı́n et al.,
2003; Terris and Thomson, 2005). Top-down patterning using
standard lithographic methods allows us to fabricate struc-
tures easily down to lateral sizes of around 50 nm (Martı́n
et al., 2003). For these sizes, one can simply engineer the
shape anisotropy by varying the element geometry, but such
top-down fabricated structures often do not exhibit the prop-
erties expected of single domain particles that reverse via
coherent rotation. In particular, the angular dependence of
the switching fields fits the Stoner–Wohlfarth behavior only
for angles close to the hard axis, where the effects of
defects, domain formation, and, in general, twisting of the
spins away from the single domain configurations are not
very significant (Wernsdorfer et al., 1995a,b). Even though
some structures show an angular dependence of the switch-
ing fields, which is, for some directions, similar to the
Stoner–Wohlfarth asteroids magnetic, relaxation experiments
revealed a nucleation volume that is much smaller than the
physical volume (Fruchart et al., 1999; Wernsdorfer et al.,
1995a,b) and most of the larger elements display complicated
domain structures (Section 6). The bottom-up technique has
been shown to be more fruitful for the fabrication of single
domain particles. In particular, clusters fabricated by laser
ablation or in dedicated cluster sources have been shown
to be uniform in size with up to some 1000 atoms and with
diameters of a few nanometers (Jamet et al., 2001), and these
exhibit well-defined anisotropies. Although small, these clus-
ters are essentially three-dimensional in shape, whereas the
thin film elements discussed earlier are flat.

It should be mentioned that measurements on such small
structures are extremely challenging. In particular, since the
anisotropies of these elements can be randomly oriented,
individual structures need to be measured with extremely
high magnetic sensitivity. A powerful technique that is well
suited for such measurements is the µ-SQUID technique
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pioneered by Mailly, Chapelier and Benoit (1993) and
Wernsdorfer (2001), which is capable of determining the
angular dependence of the switching fields for comparison
with calculated Stoner–Wohlfarth asteroids.

The first systems for which clear coherent rotation was
observed with this technique were BaFeO nanoparticles with
a pronounced twofold anisotropy (Wernsdorfer et al., 1997a)
and Co nanoparticles (Bonet et al., 1999; Jamet et al., 2001),
which were fabricated in a matrix using a laser vaporization
and inert gas condensation source. An example of the
angular dependence of the switching field distribution of
such a particle with twofold anisotropy is shown in Figure 4.
The measured asteroid follows very closely the theoretical
asteroid (Figure 1). While we do not discuss thermal effects
here, it should be pointed out that they have been studied
and lead to a reduction in the switching fields with increasing
temperature (Wernsdorfer, 2001).

Alternatively, nanodisks have been fabricated by deposit-
ing magnetic material on top of prepatterned nanopil-
lars (Kläui et al., 2002a). In this approach for the fabri-
cation of small circular elements with diameters down to
a few nanometers, Au colloids with diameters down to
5 nm are used as etch masks (Lewis and Ahmed, 1999).
After patterning of the semiconductor substrate into nanopil-
lars, the metal nanodisk layers are grown with molecular-
beam epitaxy (Kläui et al., 2002a). A scanning electron
microscopy (SEM) image and a scanning transmission elec-
tron microscopy (STEM) image of such fabricated structures
are shown in Figure 5. In the STEM image, a clear contrast

−400

0

400

−400 0 400

Figure 4. Stoner–Wohlfarth asteroid for a Co particle with a
twofold anisotropy: comparison between experiment (crosses) and
theory (solid line). Both scales are in mT (1 mT ≈ 800 Am−1).
(Reprinted figure with permission from Bonet et al., Phys. Rev.
Lett. 83, 4188 (1999). Copyright 1999 by the American Physical
Society.)

between the silicon pillar, the cobalt, and the gold-capping
layer is visible.

In Figure 6, three examples of measurements of the
angular switching field dependence are shown (cold-mode
measurement, for details see Wernsdorfer (2001)). These
were taken on three individual 30-nm wide pillars with
a 15-nm-thick Co nanodisk on top (Thirion et al., 2006).
Figure 6 (a) shows an example of a dominant twofold
anisotropy, which is very similar to the previously discussed
case of a pure twofold anisotropy (see Figure 1).

The fit in Figure 6(a) (solid line) was obtained by rotat-
ing the twofold anisotropy term and invoking a three-
dimensional model to account for a tilting between the
µ-SQUID and the plane of the nanodisk. In (b), a parti-
cle with a dominant fourfold anisotropy is shown, which
exhibits an asteroid that is very similar to that of a pure
fourfold anisotropy (Figure 3). The particles are round, so
no in-plane shape anisotropy is expected, and the magne-
tocrystalline anisotropy of fcc Co is cubic, so a perfect crys-
tal should have a purely cubic anisotropy (in Jamet et al.
(2001) high-resolution images revealed small Co elements
in the fcc phase). For a thin film system, the anisotropy
is then reduced to a fourfold anisotropy in the plane. In
nanoclusters and other small particles, this cubic magne-
tocrystalline anisotropy had always been superseded by sur-
face or defect-induced strong uniaxial (twofold) anisotropy
terms (Wernsdorfer, 2001; Jamet et al., 2001). As seen in
Figure 6(b), there are nanodisks that exhibit a nearly perfect
fourfold anisotropy, meaning that, in some of these nan-
odisks, the anisotropy is governed by the magnetocrystalline
anisotropy with an extracted anisotropy constant that is very
similar to what has been measured on fcc Co films (Krams
et al., 1992). Thus, in these structures, defects (in the mag-
netic film such as stacking faults, local oxidation etc., and
shape deviations from a perfectly round disk) are less impor-
tant. When defects are artificially introduced, for instance,
by letting the sample oxidize in air, the twofold anisotropies
start to dominate and all nanodisks exhibit asteroids such as
the one in Figure 6(a). Thus, by measuring the anisotropies,
the quality of the nanodisks can be judged and conse-
quently the relation between fourfold magnetocrystalline and
defect-induced twofold anisotropy can be used as a quality-
gauge tool.

For the case of a mixed cubic and uniaxial anisotropy,
as shown in Figure 6(c), the simulated asteroid does not
reproduce the measured asteroid very well, which points to
the already mentioned difficulty that there is no easy way
to extract the anisotropy constants for an arbitrary measured
asteroid. Since we have restricted ourselves to a combination
of fourfold and twofold anisotropies, neglecting any other
anisotropies and higher-order terms, the discrepancy is not
surprising.
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Figure 5. (a) SEM image of Si pillars after etching and removal of the 30-nm large gold colloids but before the metal deposition shows a
nanopillar with a round top. (b) Bright field STEM image of a single 30-nm wide nanopillar with Au(6 nm)/Cu(2 nm)/Co(15 nm) deposited
on top, showing a clear contrast between the different layers (the materials were identified using electron energy loss spectroscopy, EELS:
A, silicon; B, C, cobalt, and D, gold). (Reprinted from Fabrication & Magnetic properties of patterned epitaxical nanodots. Microelectron.
Eng., 61, 593. M. Kläui et al.)
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Figure 6. Stoner–Wohlfarth asteroids measured for different nanodisks of the same sample (30-nm-wide dots with 15-nm thick Co on Si
pillars). (a) Measured (circles) and simulated (full line) asteroid with a dominant twofold anisotropy. (b) Measured and simulated asteroid
with a dominating fourfold anisotropy. (c) Asteroid corresponding to a mixed fourfold and twofold anisotropy with different strengths
and different easy and hard axis directions. (C. Thirion, W. Wernsdorfer, M. Klaui, C.A.F. Vaz, P. Lewis, H. Ahmed, J.A.C. Bland and
D. Mailly in Nanotechnology 17, 1960–1963 (2006) IOP Publishing Ltd.)

Thus, we see that while the basics of the Stoner–Wohlfarth
model are easy to grasp, the calculations even for the two
simplest cases of a twofold and a fourfold anisotropy are
already difficult and not always analytically solvable. Com-
parison to experimental observations shows good agreement
for some systems, but the limitations of the model become
already apparent for slightly more complicated systems.

5 NONUNIFORM STATES

For particle sizes above a critical dimension, one expects
the uniform state to become energetically unfavorable due

to the contribution of the magnetostatic energy term; mag-
netic configurations that lower the latter energy tend to be
states that minimize magnetic flux leakage from the sam-
ple, while simultaneously conforming with the topology of
the element (Tchernyshyov and Chern, 2005). Such states
have been studied theoretically for many decades in the con-
text of the critical size for single domain particles (Aharoni,
1996), but the recent development of imaging techniques has
allowed the direct probing of the magnetic configuration of
small elements, particularly those fabricated from thin films,
since most techniques are only sensitive to the surface spin
distribution. In this case, one often assumes that the magne-
tization does not vary with thickness (ultrathin film regime),
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which in thin films is valid when the film thickness is smaller
or comparable to the exchange length. In small elements,
one expects this to be valid, but the presence of perpen-
dicular interface anisotropies or large surface roughness, for
instance, may lead to nonuniform distributions of the mag-
netization along the out-of-plane direction.

In this section, we are interested in describing the different
magnetic states that occur in small elements in the size
range from around 200 nm up to around 2 µm, where
multidomain states have not yet set in. These states are
characterized by relatively complicated spin configurations
where the magnetization tends to vary over the whole
element and does not lend to a simple analytical description,
except in some cases. This complexity is a result of the
fine balance between the different energy terms, exchange,
magnetostatic, and anisotropy, and is intimately connected
with the physical shape of the element (via the magnetostatic
energy contribution). Often, several magnetic states are
local minima of the total energy and in principle can be
stabilized and observed if the energy barrier separating
the different minima is higher than the thermal or other
excitations.

Of the geometries that have been most studied, disks and
cylinders, prisms, ellipses, and wires are among the most
widespread. The advantage of such geometries is that they
are simple enough to have cylindrical or Cartesian symme-
try (and therefore one expects relatively simple equilibrium
magnetic states) while still containing just enough complex-
ity to make them ideal choices for the study of the mag-
netism of small elements. Next, we consider each of these
geometries separately, with particular focus on the equilib-
rium properties. However, we shall also include some dis-
cussion of the steady-state magnetization dynamics, such as
spin-wave modes (See also Magnetic Modes in Circular
Thin Film Elements, Experiment and Theory, Volume 2,
Spin Waves: History and a Summary of Recent Develop-
ments, Volume 1, Spin Structures and Spin Wave Exci-
tations, Volume 3, and Investigation of Spin Waves and
Spin Dynamics by Optical Techniques, Volume 3 for a
more detailed discussion).

5.1 Disks

The disk geometry is the simplest of the planar geometries
described here, but this simplicity can be misleading. While
to first order it can be approximated by a very flat ellipsoid,
it turns out that such an approximation is not a very
accurate one, as far as the magnetostatic energy density is
concerned (it is underestimated) (Pardavi-Horvath, 1999).
Topologically, the edges of the disk introduce singularities in
the magnetic potential, and theoretically the ground state of

such elements is not the uniform state (Usov, 1993), although
for small enough structures the deviations from the uniform
state are negligible (Brown, 1969; Aharoni, 1996). As the
size of the disk increases, the magnetostatic energy density
contribution also increases (linearly with thickness for in-
plane magnetized elements) up to a point where the uniform
state is no longer the lowest in energy. The theoretical
determination of such nonuniform equilibrium states is not
possible, since the Brown equation for such a general case is
too difficult to be solved analytically; the states we know are
the result of either good guesses (such as the vortex state),
or the result of micromagnetic simulations and experimental
observation.

Stable magnetic nonuniform states at remanence for
in-plane magnetized disks with low anisotropy include the
vortex state (Cowburn et al., 1999; Schneider, Hoffmann and
Zweck, 2000; Zhu and Zheng, 2002; Vaz et al., 2003), the
C-state (Guslienko et al., 2002; Ha, Hertel and Kirschner,
2003; Wei et al., 2003), the S-state (Guslienko et al., 2002;
Ha, Hertel and Kirschner, 2003), the triangle state (Zhu and
Zheng, 2002; Guslienko et al., 2002; Vaz et al., 2005), and
the diamond state (Prejbeaunu et al., 2002; Zhu and Zheng,
2002; Vaz et al., 2005) (see Figure 7). The C, S, and triangle
states have a relatively large remanence and can be seen as
deviations from the uniform state in order to accommodate
the larger contribution of the magnetostatic energy. The C
and S states have been predicted to be stable for small diam-
eters and are therefore difficult to resolve experimentally (and
it is likely that the uniform state ascribed to high remanence
states in disks may be in fact often either of these states);
effectively, only for the C-state we are aware of experimen-
tal observation in submicrometer Ni80Fe20 circular elements
(Heumann, Uhlig and Zweck, 2005; Acremann et al., 2006).
At larger diameters (0.4–2 µm), the triangle state has been
predicted from micromagnetic simulations (Zhu and Zheng,
2002; Guslienko et al., 2002) and observed experimentally in
Co polycrystalline disks 2 µm in diameter (Vaz et al., 2005)
(see Figure 7c). This is a metastable state which is stabilized
by energy barriers separating it from states lower in energy
(Vaz et al., 2005, 2006). It is characterized by a buckling of
the magnetization, and, like the previous two states, by the
presence of two ‘edge vortices’ where a strong stray field
is present. The diamond and the vortex state are states of
almost zero remanence; the vortex state consists of a cir-
cular distribution of the magnetization and is characterized
by the presence of a vortex core in the middle of the disk.
The diamond state consists of two vortices that resemble a
seven-domain configuration in square elements (Figure 7b);
however, the magnetization is not uniform in any region
except in the inner part of the disk, which is, in any case, not
bounded by sharp domain walls (this inner domain resembles
a rhombus). Again, the diamond state is not that of lowest
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(a) (b) (c)

Figure 7. Experimental observation of magnetic states in disk elements and comparison with the results of micromagnetic simulations:
(a) Vortex state, showing the out-of-plane magnetization component at the vortex core (MFM, Ni80Fe20, 1 µm diameter, 50 nm thick
(Reprinted figure with permission from Science AAAS, T. Shinjo, Science 289:930, 2000. Copyright 2000 AAAS.); (b) Diamond state
(PEEM, fcc Co, 1.65 µm diameter, 29 nm thick (Vaz et al., 2005); (c) triangle state (PEEM, polycrystalline Co, 1.65 µm diameter, 19 nm
thick (Vaz et al., 2005)). In (b) and (c), the magnetic contrast is along the horizontal direction.

energy, but may be stabilized by the presence of energy bar-
riers separating it from the vortex state (Vaz et al., 2005,
2006), and may be nucleated in the process of the magneti-
zation relaxation from the saturated state (Mattheis, Berkov
and Gorn, 1999; Prejbeaunu et al., 2002).

The vortex state has attracted much attention since it is
the ground state of disk elements over a wide range of diam-
eters and thicknesses; the phase boundary for the ground
state between the vortex and the uniform state has been
well studied theoretically (Jubert and Allenspach, 2004; Vaz,
Athanasiou, Bland and Rowlands, 2006) and experimental
results also give an idea of the relative stability range (Cow-
burn et al., 1999; Prejbeaunu et al., 2002); also, schemes
devised to control the circulation of the magnetization have
been suggested (Schneider, Hoffmann and Zweck, 2001;
Taniuchi, Oshima, Akinaga and Ono, 2005). An interesting
aspect of the vortex state is the core at its center, where
the large exchange energy cost due to the large twisting
of the spins leads to a configuration where the magneti-
zation points along the out-of-plane direction, at a cost of
magnetostatic energy. The balance between these two con-
tributions determines the size of the vortex core, which is of
the order of the exchange length of the material (Feldtkeller
and Thomas, 1965; Usov and Kurkina, 2002; Jubert and

Allenspach, 2004; Vaz, Athanasiou, Bland and Rowlands,
2006). The very small out-of-plane component of the mag-
netization has been observed experimentally (Shinjo et al.,
2000; Raabe et al., 2000; Wachowiak et al., 2002; Okuno
et al., 2002) (see Figure 7a). This is indeed another striking
example of the manifestation of the fine balance between
these two energy contributions.

The magnetization dynamics of disk elements has also
been addressed in the literature; here we mention the steady-
state spin-wave dynamics, which has been probed by FMR
(Buess et al., 2004; Raabe et al., 2005; Novosad et al.,
2005) and BLS (Demokritov, Hillebrands and Slavin, 2001;
Novosad et al., 2002; Gubbiotti et al., 2002; Gubbiotti et al.,
2006). These experimental results give information about the
spectral and spatial components of the spin wave modes and
show the existence of both azimuthally and radially excited
modes, which are determined largely by the topology of the
element (Buess et al., 2004; Raabe et al., 2005). Other modes
of excitation, which occur at much lower frequencies, cor-
respond to the resonant displacement of the vortex core of
the disk in the vortex state (Novosad et al., 2005), or the
gyrotropic mode corresponding to a spiral motion of the
magnetization at the vortex core as it approaches the equilib-
rium position (Park et al., 2003). Similar type of excitations
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are observed by means of electric current driven excitations,
such as the resonant excitation of a vortex wall in nanowires
reported by Saitoh, Miyajima, Yamaoka and Tatara (2004).

It is also important to mention the effect of magnetocrys-
talline anisotropy on the magnetic configuration of disk ele-
ments. For in-plane magnetized elements, its effect for low
values of the anisotropy is that of distorting the magnetic con-
figuration that is observed in the isotropic case. For example,
for fcc Co disk elements, the ground state consists of a
hybrid between the vortex state and the quadrant, or Lan-
dau–Lifshitz, state: it resembles the vortex state close to the
periphery of the disk (in order to minimize the stray field),
while close to the center the magnetization becomes uniform
along the four directions of easy magnetization, separated
by sharp domain walls (Vaz et al., 2003, 2004b), again an
instructive example of the balance between the three energy
terms, anisotropy, exchange, and magnetostatic. This is also
apparent when plotting the domain wall width as a function
of the radial coordinate, which shows a plateau at small val-
ues (corresponding to a value close to the expected domain
wall width) and reverts to the geometrical limit (as in the
vortex state) for values close to the disk radius; this has
been called a geometrically constrained domain wall, in anal-
ogy with identical geometrical constraints in other magnetic
structures (Bruno, 1999; Jubert, Allenspach and Bischof,
2004; Kläui et al., 2003b, 2005a). An identical type of dis-
tortion on the vortex state due to the presence of a small
uniaxial anisotropy has been studied numerically by (Jubert
and Allenspach, 2004). It is worth pointing out that the pres-
ence of anisotropy tends to favor the uniform state over the
vortex state (Jubert and Allenspach, 2004; Vaz, Athanasiou,
Bland and Rowlands, 2006). Another state which is favored
in disks with strong uniaxial anisotropy is the bidomain state,
as observed in 34-nm Fe(110)/GaAs(110) epitaxial elements
1–4 µm in diameter (Pulwey, Zölfl, Bayreuther and Weiss,
2002) (in the same study, a Landau–Lifshitz state for Fe(100)
disks with cubic anisotropy is reported, but the details of the
domain wall cannot not be resolved from the MFM images
obtained). Another situation occurs when a perpendicular
magnetic anisotropy is present; in this case, the magneti-
zation may no longer be confined to the plane of the element
and other magnetic states may occur. The relative importance
of the perpendicular magnetic anisotropy is measured by the
quality factor Q (see Section 3.5). For quality factors close
to or larger than one, perpendicular states of the magneti-
zation are favored; this can be a simple uniform state, but
other low-energy states are possible, such as the bubble state,
bidomain states, or other more complex configurations (Hehn
et al., 1997; Ohno, Miyajima, Shigeto and Shinjo, 1999;
Eames and Dahlberg, 2002; Skidmore, Kunz, Campbell and
Dan Dahlberg, 2004; Komineas, Vaz, Bland and Papanico-
laou, 2005; Kageyama and Suzuki, 2006). A review covering

perpendicularly magnetized elements is given in Alternative
Patterning Techniques: Magnetic Interactions in Nano-
magnet Arrays, Volume 3.

5.2 Rings

A geometry that has received much attention recently is the
ring geometry. It differs from the disk geometry in that
it has a lower energy vortex state due to the absence of
the energetically costly vortex core (Zhu, Zheng and Prinz,
2000; Rothman et al., 2001); one consequence of this is
that the vortex state is more stable compared to the uni-
form state (in addition, the presence of extra surfaces in
the inner hole also results in an increase in the magneto-
static energy of the uniform state (Vaz, Athanasiou, Bland
and Rowlands, 2006)). However, it was observed experimen-
tally that such structures are able to attain a high remanence
state, called the onion state (Rothman et al., 2001; Li et al.,
2001; Kläui et al., 2003a), in which the magnetization in
each half of the ring has an opposite sense of circulation.
This is a metastable equilibrium state, made more stable by
energy barriers introduced by defects and irregularities (such
as edge roughness) and in fact the switching field from the
onion to the vortex state can be quite high (Rothman et al.,
2001). Such magnetic states have been observed experimen-
tally with SEMPA and PEEM (Kläui, Vaz, Lopez-Diaz and
Bland, 2003, Kläui et al., 2003a) (see Figure 8a). While the
vortex state in these structures is quite simple, the details of
the onion state are more subtle (Figures 8b and c). The region
separating the two oppositely magnetized halves constitutes
a domain wall, which is either a vortex or a transverse wall
(Kläui et al., 2003a), in accordance with what is predicted
for wires (McMichael and Donahue, 1997; Nakatani, Thiav-
ille and Miltat, 2005). The presence of one or the other type
of wall is determined by the interplay between the magne-
tostatic and exchange energy; for thick and wide rings, the
magnetostatic energy dominates and vortex walls are favored
(these lead to a nearly complete flux closure of the magneti-
zation), while for thin and narrow rings the exchange energy
dominates and transverse walls are favored (in such case, the
energy gain in reducing the stray field would not compensate
for the increase in exchange energy due to a large twisting
of the spins in a narrow region). Phase diagrams separating
the regions of stability for the domain wall type in the onion
state have been reported for polycrystalline Co (Kläui et al.,
2004b) and Ni80Fe20 (Laufenberg et al., 2006) ring elements.
In the limit of very wide rings, we recover the disk geome-
try and magnetic configurations that are characteristic of disk
elements (Kläui et al., 2006).

In some instances, the observation of 360◦ domain walls
has been reported in rings with diameters from 360 to 520 nm
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(a) (b) (c)

Figure 8. (a) PEEM images of rings in the vortex state (top) and in the onion state (bottom, exhibiting vortex walls). The rings are 30-
nm-thick Ni80Fe20, 2.7 µm outer diameter, 530 nm wide, and the magnetic contrast is approximately along the vertical direction. (b) Detail
of vortex wall in a polycrystalline Co ring (34 nm thick, 350 nm wide, 1.65 µm outer diameter) and (c) of a transverse wall (10 nm thick,
260 nm wide, 1.65 µm outer diameter) imaged by PEEM and compared with the results of micromagnetic simulations (Kläui et al., 2004b).

and widths from 30 to 200 nm, and such states have been
termed twisted states (Zhu and Zhu, 2003; Castaño et al.,
2003; Castaño et al., 2004). These occur at the transition
from onion to vortex state when two transverse walls with
opposite senses of rotation, although attracted to each other
due to dipolar coupling, are prevented from annihilating by
the exchange energy associated with the required large spin
twisting involved in this proess. (Castaño et al., 2003); it
turns out that such walls are fairly stable against a wide range
of applied external fields (Castaño et al., 2004). In addition,
other more complicated states were also observed in such
ring structures, such as states consisting of two 360◦ domain
walls (Castaño et al., 2003) and double-vortex walls in very
thick rings (Park et al., 2006).

The effect of magnetic anisotropy on the properties of ring
elements has been less studied; in part, this is because the
magnetic behavior is dominated by the exchange and magne-
tostatic energies (shape), while other magnetic anisotropies
are expected to introduce only small perturbations to the
isotropic case. This happens to be the case for narrow rings
and for small anisotropies; for instance, for 34-nm-thick fcc
Co(001) rings with 1.7 µm outer diameter, it is observed that
the magnetic state of 250-nm-wide rings is not affected by the
magnetic anisotropy, while 400-nm-wide rings in the onion
state show the presence of local domains pointing along
directions of easy magnetization (Kläui et al., 2003a). From
the magnetic switching behavior of fcc Co rings (16–29 nm
thick, 1.65 µm outer diameter), it is observed that the mag-
netic easy axis of fcc Co becomes a direction of ‘hard’
magnetization for the ring structure; this is a consequence
of the fact that in rings in the onion state the magne-
tization close to the end-wall point along the hard axis,
making this magnetic direction easier to switch than when
the onion state points along the hard axis direction (Vaz

et al., 2004a); this behavior is in agreement with the results
of micromagnetic simulations (Lopez-Diaz, Rothman, Kläui
and Bland, 2001b).

The spin dynamics of ring elements have also been
probed with FMR (Giesen et al., 2005; Neudecker et al.,
2006), time-resolved MOKE (Neudecker et al., 2006), and
BLS (Schultheiss et al., 2006). For the ring widths studied,
azimuthal modes in the onion state are evident, along with
other excitation modes that are associated with the head-
to-head walls. Micro-BLS results (Schultheiss et al., 2006)
suggest that, at the transverse wall of the onion state, the spin
quantization is predominantly caused by the inhomogeneities
of the local internal field, similar to what is observed in
transversally magnetized stripes (Jorzick et al., 1999).

In addition to circular rings, other toroidal structures were
also investigated, such as elliptical rings (Castaño, Ross and
Eilez, 2003; Jung et al., 2004), and ‘window-frame’-type
structures (Vavassori et al., 2003; Zhu, Grütter, Metlushko
and Ilic, 2003; Wei et al., 2004; Libál et al., 2005; Adeyeye,
Singh and Goolaup, 2005). The motivation using elliptical
rings is that of creating easy direction of magnetization
(shape anisotropy) and therefore to constrain the onion state
to point along one direction (Castaño, Ross and Eilez, 2003).
It is found that, upon saturation along the long axis, twisted
states are not easily formed, while, upon saturation along
the short axis, such metastable states are often observed
(Castaño, Ross and Eilez, 2003). In the case of ‘window-
frame’-type of structures, the magnetic states resemble those
observed for ring structures, except for the presence of two
additional states at remanence when the field is applied along
the side of the square, one close to saturation (with two
transverse walls at those sides perpendicular to the direction
of the applied magnetic field) and a horseshoe type of state,
with one head-to-head and one tail-to-tail wall on one side of
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the square (Vavassori et al., 2003; Zhu, Grütter, Metlushko
and Ilic, 2003).

Besides thin magnetic films, other types of structures, such
as spin valves and pseudo-spin valves (the former have an
antiferromagnetic pinning layer to set a unidirectional easy
axis, while the latter do not) have been investigated with a
view to using each element as a memory bit, which could be
read by electrical means using the giant MR effect (Castaño,
Morecroft, Jung and Ross, 2005; Morecroft, Castaño, Jung
and Ross, 2006).

5.3 Square and rectangle (bar) elements

Again, the equilibrium magnetic states observed in these
types of structures reflect the Cartesian symmetry of this
geometry and are also determined by the size and partic-
ular aspect ratio of the element. For square elements, and
bars with lengths comparable to the width, with dimensions
below ∼100 nm, we expect equilibrium states such as the
flower and the leaf states (magnetization parallel or diago-
nal to the edge direction, respectively), which correspond to
small deviations from the uniform state (Usov and Peschany,
1994a; Cowburn and Welland, 1998; Goode and Rowlands,
2005); micromagnetic studies show that the flower state is
expected to be the equilibrium state at larger thicknesses,
while the leaf state is the equilibrium state at small thick-
nesses (Cowburn and Welland, 1998). For more elongated
structures, the equilibrium state is expected to be a mixture
of the flower and the leaf state, and resembles the S-state
found in larger elements (Tartakovskaya, Tucker and Ivanov,
2001; Goode and Rowlands, 2005).

For larger elements, for which the magnetostatic energy
term becomes dominant, we find, in addition to the high
remanence S- and C-states, the flux closure quadrant (Lan-
dau–Lifshitz) or the seven-domain states (Kirk, Chapman
and Wilkinson, 1997; Dunin-Borkowski, McCartney, Kar-
dynal and Smith, 1998; Gomez et al., 1999a; Schneider
et al., 2004) (see Figure 9). These zero remanence states are
characterized by the presence of uniform magnetic domains
separated by 90◦ Néel domain walls; as a consequence,
such states could be classified as multidomain states, but
given the critical role played by the shape of the element
in small square and bar elements in determining the equi-
librium state, we prefer to see it as another example of
a nonuniform magnetic state, determined by the fine bal-
ance between the magnetostatic and exchange energy terms.
We note that, besides the cost in exchange energy, there is
also some magnetostatic energy associated with these Néel
walls. The high remanence states such as the S- and the
C-state have been studied numerically (Gadbois and Zhu,
1995; Zheng and Zhu, 1997; Fidler et al., 2004; Kronmüller,

Goll, Hertel and Schütz, 2004) and experimentally (Chap-
man et al., 1998; Dunin-Borkowski, McCartney, Kardynal
and Smith, 1998; Dunin-Borkowski et al., 2000; Kirk et al.,
2001; Garcı́a, Thiaville and Miltat, 2002; Shi, Li and Tehrani,
2002; Liu, Chapman, McVitie and Wilkinson, 2004a). These
states are in fact quite similar and they correspond to a cen-
tral uniform spin configuration, which is terminated by end
domains, where the magnetization runs parallel to the edge;
the C-state corresponds to the case when both edge domains
point in different directions, while the S-state corresponds
to the case when they point along the same direction (see
Figure 9). Another type of edge domain, which is observed in
elongated rectangles after saturation in an applied field, con-
sists of a ‘squeezed’ vortex which sits toward one corner of
the element with the largest domain pointing in the direction
of the average magnetization (Kirk, Chapman and Wilkinson,
1997; Dunin-Borkowski, McCartney, Kardynal and Smith,
1998; Gomez et al., 1999a; Shi et al., 1999; Kirk et al.,
2001); also, cross-tie domain walls are observed in thick
Ni80Fe20 elements (Gomez et al., 1999a,b; Shigeto et al.,
2002). For larger elements (typically above 5 µm), multido-
main configurations set in (Seynaeve et al., 2001; Hirohata
et al., 2002). These elongated elements have received much
attention because they constitute an obvious choice for mem-
ory elements; the shape asymmetry introduces an effective
(shape) magnetic anisotropy and therefore an increase in ther-
mal stability; however, the presence of such edge domains
has been shown to cause irreproducibilities in the magnetic
switching (Zheng and Zhu, 1997), which is detrimental for
applications; in fact, modifications in the edge structure, such
as pointed ends, have been suggested in order to make the
switching process more reproducible (Schrefl, Fidler, Kirk
and Chapman, 1997; Yu et al., 1999; Herrmann, McVitie
and Chapman, 2000; Liu, Chapman, McVitie and Wilkinson,
2004a).

The spin dynamics of square and rectangular elements
have also been studied numerically (Fidler et al., 2004) and
experimentally by BLS (Chérif, Dugautier, Hennequin and
Moch, 1997; Gubbiotti et al., 2000; Chérif, Roussigné and
Moch, 2002; Jorzick et al., 2002) and time-resolved MOKE
(Park et al., 2003; Perzlmeier et al., 2005). The experimental
BLS studies mentioned were performed under an applied
magnetic field and show that the spin wave frequencies,
determined mostly by the dipolar field, are sensitive to the
lateral confinement imposed by the element (in a similar
fashion as observed in wire structures); Jorzick et al. (2002),
in particular, have shown that spatially localized spin waves
arise in square elements as a consequence of the potential
well created by the inhomogeneous internal magnetic field
within the element. The numerical study of Fidler et al.
(2004), on the other hand, has shown that the spin-wave
spectrum for the S-state in square elements is distinct from



16 Magnetic configurations in small elements, magnetization processes and hysteretic properties
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Figure 9. Magnetic images of remanent states of square and rectangular elements; (a) Lorentz image (Foucault mode) of a 2 × 4 µm2

NiFe(8 nm)/Cu(2.5 nm)/NiFe(6 nm) element in the S-state (Reprinted with permission from Institute of Physics, Direct Observation of
Magnetization . . . , Journal of Applied Physics, 83, 5321. Copyright 1998, American Institute of Physics.); (b) from left to right: electron
holography image of a 60 × 200 nm2 Co(10 nm)/Au(5 nm)/Ni(10 nm) element in the C-state; micromagnetic simulations for the Co and Ni
magnetization; simulations of the holographic phase contours for the composite Co/Au/Ni structure (Reproduced by permission of Blackwell
Publishing from R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, S.S.P. Parkin, M.R. Scheinfein and D.J. Smith, (2000). Off-axis
electron holography of patterned magnetic nanostructures, J. Microsc. 200, 187.); (c) Lorentz microscopy image (Foucault mode) of a
1 × 1 µm2 and 2 × 1 µm2 NiFe(20 nm) elements in the quadrant, and seven-domain state, respectively, and (d) Lorentz microscopy image
(Foucault mode) of a 4 × 1 µm2 NiFe(26 nm) showing a state of high remanence with vortex end walls. (Reproduced by permission of
Taylor and Francis Ltd. (http://www.tandf.co.uk/journals) from K.J. Kirk, (2000). Nanomagnets for sensors and data storage, Contemporary
Physics, 41, 61.)
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that of the C-state: as a consequence of the larger effective
fields present in the C-state, the eigenfrequencies for this
state are shifted to higher frequencies. Park et al. (2003)
have studied the spin dynamics of square elements in the
quadrant (Landau–Lifshitz) state,which was found to exhibit
two types of excitations, one corresponding to the precession
of the magnetization about the local demagnetizing field in
each quadrant and the other localized in the domain walls.

5.4 Ellipses

The motivation behind the study of elliptical elements lies
in the introduction of magnetic (shape) anisotropy, while
avoiding the formation of edge domains and their negative
influence on the reproducibility of the magnetic switching
(Liu, Chapman, McVitie and Wilkinson, 2004a). Hybrids
between bars and ellipses, such as bars with tapered ends,
have also been studied with the same goal in mind (see
previous paragraph). Understandably, most studies on ellip-
tical elements focus on ellipses with large aspect ratios, and
the magnetic states found in micrometer and submicrometer
size ellipses depend on the applied magnetic field direction:
after saturation along the long axis, they tend to remain in
the uniform state, while when the field is applied along the
short axis, a larger variety of magnetic states are observed,
including the vortex state, the diamond state, the triangle
state, and the uniform state magnetized along the long axis
(Bedrossian, Gibbons and Cerjan, 1997; Fernandez, Gibbons,
Wall and Cerjan, 1998; Usov, Chang and Wei, 2001; Liu,
Chapman, McVitie and Wilkinson, 2004a; Liu, Chapman,
McVitie and Wilkinson, 2004b; Felton et al., 2004; Buchanan
et al., 2005). The spin dynamics of the diamond state in ellip-
tical NiFe dots has been studied recently by Buchanan et al.
(2005) and by Gubbiotti et al. (2005) using BLS and it is
observed that the frequency modes depend strongly on the
dot eccentricity and direction of the magnetic field.

5.5 Wires

These consist of structures where the length is much larger
than the width, and therefore the relevant geometrical param-
eters are the width and thickness. A large body of work has
been devoted to the study of wire structures and a number of
fabrication techniques have allowed the fabrication of mag-
netic wires with widths ranging from a few nanometers to
several micrometers. Depending on the fabrication process,
planar wires, or wires with circular cross section can be fabri-
cated (namely, by electrodeposition using porous membranes
as templates (Whitney, Jiang, Searson and Chien, 1993; Led-
erman, O’Barr and Schultz, 1995; Ferré et al., 1997)). Here we

cite some studies as a way of illustrating the distinctive mag-
netic properties exhibited by wire structures (see also Domain
Wall Propagation in Magnetic Wires, Volume 2).

The study of monolayer thick bcc Fe wires grown on
W(110) has provided much insight into the magnetism of
two-dimensional structures (Pratzer et al., 2001; Pratzer and
Elmers, 2003; Kubetzka, Pietzsch, Bode and Wiesendanger,
2003). Such two-dimensional Fe wires have a very strong
uniaxial anisotropy along the direction perpendicular to
the wire axis (due to the Fe/W(110) lattice mismatch),
and are observed to form magnetic domains along the
direction orthogonal to the wire length (Pratzer et al., 2001;
Pratzer and Elmers, 2003; Kubetzka, Pietzsch, Bode and
Wiesendanger, 2003). Spin-polarized STM studies of such
domains allowed the determination of the wall width down
to the subatomic resolution; for a 1-ML Fe wire, 17 nm
wide, the domain wall width was determined to be 0.6 ±
0.2 nm, while for a 2-ML Fe/W(110) stripe, 8.5 nm wide,
it was found to be 3.8 ± 0.2 nm. Such sharp domain walls
for the monolayer wire are energetically more favorable
than extended domain walls since, for such thicknesses,
the exchange and anisotropy energies dominate over the
magnetostatic energy (Braun, 1994). In general, one expects
that, in comparison to bulk materials, atomically thin narrow
nanowires may present new and exciting properties, such as
effects due to quantum confinement and strongly modified
electronic properties (Himpsel, 1995).

Arrays of wider Ni wires, 70–130 nm wide, have been
grown on grooved InP(001) substrates (Jorritsma and Mydosh,
1998) by deposition at non-normal angles; this method
explores the etching anisotropy of InP(001) with respect to
specific etchants (Jorritsma, Gijs, Kerkhof and Stienen, 1996).
Jorritsma and Mydosh (1998) have found that the Ni wires
thus fabricated change the magnetization easy axis from lon-
gitudinal to transverse to the wire direction with decreasing
temperature, an effect they attribute to the stress due to thermal
expansion mismatch between Ni and InP.

The term nanowires is virtually a synonym for electrode-
posited structures; they can vary in width from tens to a few
hundreds of nanometers (Whitney, Jiang, Searson and Chien,
1993; Lederman, O’Barr and Schultz, 1995; Ferré et al.,
1997). A number of seminal experiments have measured
individual nanowires using highly sensitive micro-SQUID
junctions (Wernsdorfer et al., 1996a); they have also been
used to study domain wall MR effects, an effect which seems
to be particularly large in Co and Ni nanowires and attributed
to the spin accumulation effect (Ebels et al., 2000).

More conventionally, arrays of wires have been fabricated
by standard lithography techniques, with widths varying from
∼100 nm to tens of µm (Adeyeye et al., 1996, 1997a,b).
The coercivity is found to decrease with increasing wire
width (Adeyeye et al., 1996); this is explained by a buckling



18 Magnetic configurations in small elements, magnetization processes and hysteretic properties

of the magnetization perpendicular to the length of the wire,
creating perpendicular domains that do not move and block
the reverse domain from propagating during magnetization
reversal (Kryder et al., 1980), an effect that becomes more
pronounced with decreasing wire width (see also Sections 7.3
and 7.4). The effect of magnetic interaction between microm-
eter wide wires has also been addressed, and shows that
magnetic interactions between wires become unimportant for
distances above the wire width (Adeyeye et al., 1997a); this
behavior is characteristic of small elements and a critical
factor as far as the design of high density storage media is
concerned (Kläui, Vaz, Bland and Heyderman, 2005). In this
context, the small stray field provided by flux closure states
is very advantageous.

The magnetic states sustained by wire elements do not
consist only of the uniform state, with the magnetization
along the wire axis (in the absence of strong transverse
anisotropies). Effectively, either as a consequence of applied
transverse magnetic fields, or of fields applied in the direc-
tion opposite to the wire magnetization, reverse domains can
be sustained along the wire. This has been observed in Co
nanowires (Ebels et al., 2000; Garcı́a, Thiaville and Mil-
tat, 2002). In flat wires, the region separating such opposite
domains constitute 180◦ domain walls, and their character
can be either transverse or vortex, as already mentioned
(McMichael and Donahue, 1997; Nakatani, Thiaville and
Miltat, 2005); experimental observation of such wall struc-
tures in straight wires has been reported in the literature
(Yamaguchi et al., 2004; Kläui et al., 2005b). Under applied
fields close to the ‘hard axis’ of the wire, edge domains con-
sisting of Néel walls parallel to the wire were observed in
Ni80Fe20 wires 2–10 µm wide and 10–30 nm thick, giving
rise to hysteretic behavior in rotational hysteresis measure-
ments (Mattheis, Ramstöck and McCord, 1997); this is a
result of the stray field at the wire edges when the mag-
netization points away from the wire axis. For wires with
strong transverse anisotropies, the ground state is either the
transverse uniform state or an open-stripe domain structure,
depending on the wire thickness and width (Prejbeaunu et al.,
2001).

5.6 Pillars

By pillars, we refer to structures whose aspect ratio (thick-
ness/lateral size) is of the order of unity. The magnetic states in
these structures can be quite complex, since now the magneti-
zation will vary along the three spatial directions; in the case of
cylindrical elements, some states preserve the cylindrical sym-
metry but have a radial magnetization distribution that varies
across the element thickness. We lose the simplicity character-
istic of thin elements, but it may be possible that the additional

complexity results in properties that can be harnessed for
applications or other studies. Since three-dimensional imag-
ing is not possible as yet (see however, (Hertel et al., 2005)),
these magnetic states may be deduced either from their M-H
characteristics or from their surface signature when imaged
by the usual imaging techniques; these results can also be
confirmed by the results of micromagnetic simulations. Equi-
librium magnetic states depend on the element geometry, but
they tend to form states such as the flower, vortex, uniform,
bidomain, and bubble states (Rave, Fabian and Hubert, 1998;
Maicas et al., 2002; Hertel and Kronmüller, 2002; Ross et al.,
2002; Kronmüller, Goll, Hertel and Schütz, 2004; Usov and
Peschany, 1994b; Komineas, Vaz, Bland and Papanicolaou,
2005; Moutafis et al., 2006). For example, the uniform and
flower states are states of high magnetic moment, character-
ized by an almost uniform magnetization; in the flower state,
local deviations of the magnetization are a result of the inho-
mogeneous dipolar field (the uniform state is likely to occur in
systems with strong magnetic anisotropies or in systems with
high aspect ratios (Huang et al., 2000)). The vortex, bidomain,
and bubble states are states of small total magnetic moment,
and in which the magnetization varies strongly along all direc-
tions in space; for example, the vortex state resembles the
center of a vortex state of a disk, where the vortex core con-
stitutes a large portion of the magnetic state, and therefore a
sizeable remanence may be expected for this magnetic state.
Bubble states are expected to occur in systems with a large
quality factor and consist of two circular domains pointing in
opposite directions and also, in this case, the magnetization
varies along the out-of-plane direction (Komineas, Vaz, Bland
and Papanicolaou, 2005; Moutafis et al., 2006) such states are
stable under no applied magnetic field (as opposed to bubble
states in continuous films) and have been observed experimen-
tally in cylindrical Ni dots (Skidmore, Kunz, Campbell and
Dan Dahlberg, 2004), Co dots (Hehn et al., 1997; Kageyama
and Suzuki, 2006), and Ni80Fe20 dots (Eames and Dahlberg,
2002).

6 MULTIDOMAIN STATES

As usually defined, multidomain states are magnetic states
characterized by the presence of more than one region where
the magnetization is uniform. The driving force behind the
splitting into domains is the long-range magnetic dipolar
interaction, which acts to minimize magnetic ‘pole charges’
at the sample surface. Strictly speaking, in an ideal crystal
one would expect, if not an absolute energy minimum, at
least a small number of magnetic configurations with similar
energies separated by intrinsic energy barriers such that the
system may fall into one such state and remain there in the
absence of disturbances. As the size of the system is reduced,
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we would expect such energy degeneracy to be lifted, and
the resulting energy differences to be sufficient to drive the
system into the ground state, through energy gradients or
thermal excitations. It is this distinction that has led us to
consider magnetic states such as the quadrant state in small
elements as a nonuniform state rather than a multidomain
state; for larger elements, other multidomain states are stable
other than the quadrant state. A large body of work has been
built up over several decades specifically dedicated to the
understanding of equilibrium magnetic domain structures in
samples larger than those discussed in this chapter; the most
extensive discussion of such work to date is that of Hubert
and Schäfer (1998) and will not be discussed here (a shorter
overview can be found in Kleman (1982)).

One major complication in studying magnetic configura-
tions in real samples is the presence of imperfections that act
as extrinsic pinning sites for the magnetization and that tend
to stabilize nonequilibrium magnetic configurations (Kleman,
1982). If the energy barrier separating these states is much
larger than that of external excitations, such states may be
considered as metastable equilibrium states, otherwise they
give rise to thermal relaxation effects; in particular, the sta-
bility of such states depends strongly on the temperature.
Another effect of these pinning sites is to give rise to mag-
netic configurations that are much more complicated than
those expected for perfect crystals due partly to the ran-
domness associated with defects. Since the incorporation of
pinning in micromagnetism is difficult, there are very few
studies of extrinsic contributions to the magnetic configu-
rations. We give a couple of examples to drive this point
home. In Figure 10(a), we show an MFM image at rema-
nence of an array of 25-nm-thick NiFe square elements
obtained by Gubbiotti et al. (2000); we see that, while we
expect the ground state to be the quadrant state, many ele-
ments exhibit more complicated domain structures that may
be metastable (and vanish under small applied fields) but,
nevertheless, are accessible after saturation or other field his-
tories (Uhlig, Li, Han and Shi, 2002; Liou et al., 2001); this
is an important consideration for practical applications that
require well-defined domain configurations for reliable oper-
ation. Another example is shown in Figure 10(b) for 15-nm-
thick bcc Fe(001) elements imaged by Lorentz microscopy
(at remanence after saturation along the easy axis) by Gu
et al. (1997); here, the puzzling behavior is the breaking into
magnetic domains as the size of the element decreases, which
at first sight seems counterintuitive. However, the size of
the elements is fairly large, and, for the larger square, edge
domains are observed, which presumably arise from edge
imperfections, and these may help stabilize this large single
domain.

In general, since the range of magnetic configurations
increases with the size of the element, it follows that a vast

number of complex spin arrangements is possible for larger
systems (Hubert and Schäfer, 1998). One practical advantage
of smaller elements is that the accessible magnetic states are
much more limited.

7 SWITCHING

So far, we have discussed the stable equilibrium magnetiza-
tion configurations that are found in small magnetic struc-
tures. The next step is the dynamic description of how such
state a magnetic system approaches equilibrium. The equilib-
rium is given by a local energy minimum of the correspond-
ing thermodynamic potential (e.g., the Landau Free Energy,
equation (6) (Bertotti, 1998)). Here, We take the case where
the equilibrium condition is changed by varying the applied
field (Zeeman energy). But, changes of other energy terms
can also occur, such as changes in the magnetic anisotropies
when the temperature is varied.

We limit ourselves here to quasistatic reversal, which
means that the field is ramped much more slowly than the
dynamics of the magnetization. Depending on the materials
and systems considered, the rates of change where the rever-
sal can be described as quasistatic vary. For the materials
considered here, this means slew rates of less than approx-
imately 80 kAm−1 s−1. In the quasistatic case, the magnetic
system is thus always in equilibrium as the external condi-
tions change (e.g., the field is ramped). Dynamic switching,
where the field changes are on a timescale that is compa-
rable to the magnetization dynamics, is treated in Magnetic
Modes in Circular Thin Film Elements, Experiment and
Theory, Volume 2. We limit our discussion to magnetic
field-induced switching, but other reversal schemes, such
as those based on current-induced magnetic switching have
been proposed (Katine et al., 2000; Grollier et al., 2002;
Wegrowe et al., 2002; Kläui et al., 2005c) and are dis-
cussed in detail in Theory of Spin-transfer Torque, Vol-
ume 2, Microwave Generation in Magnetic Multilayers
and Nanostructures, Volume 2, Spin Angular Momentum
Transfer in Magnetoresistive Nanojunctions, Volume 5,
and Current Induced Domain-wall Motion in Magnetic
Nanowires, Volume 2.

7.1 Theoretical treatment of dynamical behavior

To determine the magnetization dynamics, we start with
the quantum mechanical Heisenberg equation for the time
evolution of the spin operator

i�
d

dt
〈Ŝ(t)〉 = 〈[Ŝ(t), Ĥ(Ŝ(t))]〉 (17)
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Figure 10. (a) MFM image of an array of 25-nm NiFe squares, 2 µm in size, at remanence. (Reprinted with permission from American
Institute of Physics, Finite size effects in patterened magnetic permalloy films. Journal of Applied Phys. 87, 5633. Copyright 2000, American
Institute of Physics.) (b) Lorentz microscopy image (Fresnel mode) of 15-nm bcc Fe(001) squares (55, 30, 12 µm in size), at remanence.
(Reprinted figure with permission from American Physical Society, Phys Rev. Lett. 78, 1158 (1997) E. Gu et al. Copyright 1997 by the
American Physical Society.)

with Ŝ the spin operator and Ĥ the Hamiltonian, which
is here proportional to Ŝ · Ĥeff with Ĥeff the effective
magnetic field (Nalwa, 2002). Magnetic moments behave
like angular momenta, since they observe the quantum
mechanical bracket relations [Sx, Sy] = i�Sz, etc. For an
electron spin, the former is related to the latter by

mspin = γ �S = (�qe/me)S (18)

with qe and me the electron mass. Evaluating equation (17)
using the bracket relations and the Ehrenfest theorem to
transform to the classical magnetization yields for the time
evolution (Nalwa, 2002)

∂m
∂t

≡ ṁ = γ m × Heff (19)

The change in angular momentum is given by the torque
� = m × Heff exerted on it by the field Heff and this
describes the gyroscopic precession. From equation (5) with
H0 now replace by Heff, it follows that dE/dt = 0, i.e., the
energy is conserved. Hence, equation (19) cannot describe
a system which is changing its energy such as a system
approaching equilibrium. To introduce energy dissipation,
Brown (1963) used the analogy to classical mechanics,
where the force responsible for energy dissipation (friction)

is proportional to the generalized velocities. In this case,
the generalized coordinates are the Cartesian components
of the magnetization m and the general forces are the
components of Heff. Introducing this into equation (19)
yields

ṁ = m × (γ Heff − αṁ) (20)

where α is the phenomenological dimensionless proportion-
ality factor for the damping. This equation is known as
Gilbert’s equation. Another formulation of this equation was
given by Landau and Lifshitz :

ṁ = γ LLm × Heff − αLLm × (m × Heff) (21)

It should be noted that γ LL and γ from equation (20)
are different (Bertotti, 1998; Heinrich, 2005). To a first
approximation, all dissipation processes can be assumed to
be included in the phenomenological damping factor α. In
general, α is not very well known, and intensive research
is being carried out to understand its microscopic ori-
gins (Buess, Haug, Scheinfein and Back, 2005; Heinrich,
2005).
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7.2 Uniform reversal of single domain systems
by coherent rotation

Equations (20) and (21) are directly applicable for sin-
gle domain particles where the spins stay aligned during
the reversal, which is called reversal by coherent rota-
tion (Section 4.1). Here, we can simply evaluate these
equations for a single (macro)spin. Analytical solutions have
long been available (Gilette and Oshima, 1958; Kikuchi,
1956) and, more recently, numerical studies have been
performed (Serpico, Mayergoyz and Bertotti, 2003; Fidler
and Schrefl, 2000). These studies were also extended to
include the response of single domain particles to short field
pulses (Bauer, Fassbender, Hillebrands and Stamps, 2000).
The results of two (macro)spin calculations are shown in
Figure 11. In Figure 11(a), it can be seen that the magneti-
zation direction starts to rotate toward the −y direction, since
the acting field component is in the −z direction. It then turns
toward +z and continues to precess around the field direc-
tion and spirals due to the damping toward the field direction.
Whereas in Figure 11(a) the damping constant is 0.2, it has
a more realistic smaller value of 0.02 in Figure 11(b). This
reduced damping leads to many more precessions of the
magnetization around the field direction, before the magneti-
zation has spiraled toward its equilibrium direction along the
field direction. Experimentally, such switching trajectories
have been observed for pulsed reversal (Schumacher et al.,
2003).

7.3 Nonuniform reversal of single domain
systems

As pointed out before, there are geometries for which the
remanent magnetization configuration is a single domain
state, but where the reversal does not take place via coherent
rotation, such as larger ellipsoidal elements with a constant
demagnetization factor. In general, coherent rotation is only
one possible reversal mode (Aharoni, 1996; Frei, Shtrikman
and Treves, 1957; Kronmüller and Fähnle, 2003) and occurs
only if the critical switching field for this mode is lower
than for any other reversal mode. We consider now another
possible reversal mode, which, for certain geometries, leads
to a lower critical switching field than that attained by
coherent rotation.

An example is a long cylinder, where the shape anisotropy
favors the magnetization to lie along the cylinder axis to form
a single domain state. If the radius of the cylinder is larger
than the exchange length ls , then a reversal via the so-called
curling mode is favorable (Lederman, O’Barr and Schultz,
1995). The curling mode is strictly only applicable to ellip-
soids of revolution (Aharoni, 1996; Kronmüller and Fähnle,
2003), but has been extended to describe approximately the
reversal in other regularly shaped elements (Aharoni, 1999).
In this mode, the magnetization reverses by forming a vor-
tex structure where the magnetization lies parallel to the
cylinder wall forming concentric circles around the cylinder
axis. Analytically, the angular dependence of the switching
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Figure 11. The trajectory (spin directions) of single domain permalloy (Ni80Fe20) systems are shown during the reversal from mx = 1
(spin pointing along the positive x-direction) to the field direction (5◦ away the −x direction toward −z as visible in the final direction of
the spin) for a damping of α = 0.2 (a) and α = 0.02 (b). The anisotropies are equivalent to those of a particle with aspect ratio 10:10:1
(x:y:z) and the field strength is x-component −63.8 kAm−1; z-component −5.6 kAm−1.
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fields can be calculated for ellipsoids of revolution for a field
applied along the direction of the long axis of the ellipsoid
and is then given by Aharoni (1997):

Hcurl = Ms

2

axaz√
a2

z sin2θ + a2
xcos2θ

(22)

with θ the angle between the applied field and the long axis of
the ellipsoid, ax,z = 2Nx,z − k/S2, Nx,z the demagnetization
factors, S = R/ls, and R the minor semiaxes of the ellipsoid.
The parameter k is a monotonically decreasing function
of the aspect ratio of the ellipsoid with values ranging
from k = 1.079 for an infinite cylinder to k = 1.379 for
a sphere (Aharoni, 1986). As an example, the switching
fields for a long cylinder for various values of S are shown
in Figure 12. For S<1 the switching field for coherent
rotation reversal is lower and switching occurs by coherent
rotation. It should be pointed out that, in contrast to the
mode of coherent rotation, the curling mode is limited
to these geometries and cannot be analytically extended
to cope with any three-dimensional anisotropy functions,
but approximate calculations have been proposed (Aharoni,
2000; Ishii, 1991).

In addition to reversal by the curling mode, some
authors (Kronmüller and Fähnle, 2003) consider the buck-
ling mode, while for others the existence of further modes
is more contentious (Aharoni, 1996). The buckling mode is
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Figure 12. Angular dependence of the switching fields of the
curling mode calculated according to equation (22) for an infinite
cylinder. (Reproduced by permission of Wiley-Interscience from
W. Wernsdorfer, (2001). Classical and quantum magnetization
reversal studied in nanometer-sized particles and clusters. Adv.
Chem. Phys., 118, 99.)

obtained by starting from the uniform mode and modulat-
ing the magnetization direction in sinusoidal fashion along
the cylinder axis. The extra exchange energy is then com-
pensated by the reduced stray field energy due to alternating
surface charges. Only for a small geometry range can this
mode have a lower critical switching field (Aharoni, 1996;
Kronmüller and Fähnle, 2003). Such a reversal mode has
also been reported to occur in wire structure (Adeyeye et al.,
1996, Kryder et al., 1980) (see also Section 5.5).

7.4 Experimental evidence for nonuniform
reversal modes

As theoretically discussed in Sections 4 and 7.3, reversal via
coherent rotation is reserved for a limited set of systems.
Most magnetic structures exhibit more complicated reversal
modes. One of these modes is reversal by curling as
theoretically treated in the previous section. This reversal
mode was predicted to prevail in long wire structures, where
the wire radius is larger than the exchange length. The
calculated dependence of the switching fields is compared
with measured values for Ni wires with different radii in
Figure 13.
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Figure 13. Angular dependence of the experimentally measured
switching fields of two Ni wires with diameters of 45 and 92 nm
corresponding to S = 1.4 and S = 2.4 (squares) and theoretical
values (dotted line). The switching fields are normalized by 124 mT
(99 kAm−1) and 280 mT (224 kAm−1) respectively. (Reproduced
by permission of Wiley-Interscience from W. Wernsdorfer, (2001).
Classical and quantum magnetization reversal studied in nanometer-
sized particles and clusters. Adv. Chem. Phys., 118, 99.)
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It should be pointed out that the curling mode as developed
theoretically (Aharoni, 1996) does not describe the complete
reversal. It rather describes points of instability where
the reversal sets in, from which the angular dependence
of the switching fields can be predicted, for example.
Dynamic measurements on wires have often yielded a
nucleation volume that is much smaller than the wire
volume (Wernsdorfer et al., 1996a,b, 1997b). This points to
a more inhomogeneous reversal that starts in part of the wire
and then propagates along the wire to completely reverse it
and not to a reversal taking place uniformly along the wire.
This picture is also supported by theoretical calculations and
micromagnetic simulations (Ferré et al., 1997; Braun, 1999).
This already points to the limits of the applicability of the
reversal modes discussed above.

7.5 Size range for magnetization reversal by
coherent rotation, curling, and buckling

Now that the main different reversal modes in single domain
systems have been discussed, a brief review of the applica-
bility of the theory is appropriate (Schmidts, Martinek and
Kronmüller, 1992).

An experimental example of a measurement where the lim-
its of the applicability of the single domain theory becomes
clear was already carried out by Kneller and Luborsky (1963)
who measured the coercivity and remanence of Fe parti-
cles as a function of size. This result is shown schemati-
cally in Figure 14. A maximum switching field is observed
for particle size between dth and dcrit, while below dth the
coercivity is reduced due to thermal excitations (superpara-
magnetism (Aharoni, 1996; Bean, 1955; Bean and Living-
stone, 1959)) (and we may also expect that the classical 0 K
theory discussed here is not applicable for very small sys-
tems, where quantum effects play a significant role, as for
example, in molecular magnets (Hilzinger and Kronmüller,
1972; Hilzinger and Kronmüller, 1973; Wernsdorfer, 2001)).

In the region where the coercivity is maximum, the switch-
ing fields usually agree with the theories of coherent rotation
for single domain systems presented in Section 4.1 (Aharoni,
1986). The switching field for coherent (homogeneous)
rotation of an ellipsoidal particle, HN = 2K1/Ms + (N⊥ −
N‖)Ms , is due to the superposition of the material anisotropy
K1 (e.g., magnetocrystalline) and the shape anisotropy, repre-
sented by the demagnetizing factors N⊥ and N‖ (Kronmüller
and Fähnle, 2003).

At dcrit, the transition from reversal by coherent rotation
to curling and buckling occurs (see Kronmüller and Fähnle
(2003); Frei, Shtrikman and Treves (1957) for details). Dcrit

is the diameter above which domain formation sets in, which
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Figure 14. Schematic of switching fields of the different reversal
modes as a function of particle diameter. The type of magnetic
configuration is also shown in the bottom axis (single domain
or multidomain, which includes nonuniform configurations here).
(Helmut Kronmüller, Manfred Fähnle, Micromagnetism and the
Microstructure of Ferromagnetic Solids, (2003), Figure 6.12. Cam-
bridge University Press.)

is of the order of lk (Section 3.5). Such magnetization con-
figurations then experience a very inhomogeneous reversal.
Next, we will expand on such nonhomogeneous reversal
modes including the reversal of structures that also exhibit
nonhomogeneous magnetization configurations, such as those
discussed in Sections 5 and 6.

7.6 Inhomogeneous reversal

For inhomogeneous magnetization configurations such as
nonuniform and multidomain magnetization configurations,
the reversal can be expected to be inhomogeneous. We
discuss here transitions between some of the nonuniform
magnetization configurations presented in Sections 5 and 6.

The details of the actual switching processes shown
here were obtained from micromagnetic simulations (see
also Numerical Micromagnetics: Finite Difference Meth-
ods, Volume 2 and Numerical Methods in Micromagnet-
ics (Finite Element Method), Volume 2), since they allow
direct access to the magnetization configurations, which are
more instructive than M-H curves for example. Furthermore,
single shot nanometer and picosecond scale space- and time-
resolved measurements are very difficult. While there are
some measurements of the dynamical switching processes,
these have been primarily measured for larger structures
using fast-pulsed fields and not for the quasistatic reversal
we treat here This is because most dynamic measurements
are pump probe (Schumacher et al., 2003; Beach et al., 2005)
which are more suited to repeatable dynamic reversal than
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to quasistatic reversal that can contain stochastic features.
Where both simulations and experiments have been carried
out, micromagnetic simulations have been shown to give a
good indication of the dynamics of the reversal process, and
this is in particular true when the original and final mag-
netic state as well as the switching fields agree with the
experimental results.

Since in larger elements the effective field is inhomo-
geneous, the magnetic states as well as the reversal are
inhomogeneous. We have seen that we can categorize the
magnetic states into two broad categories, nonuniform and
multidomain states containing domain walls. Since the rever-
sal depends on the initial and the final magnetization config-
uration, there are a large number of combinations that lead to
a large number of different reversals. Thus, it is not possible
here to discuss the details of all the different reversal modes
for all geometries. But, similar to the categorization of the
states, we can categorize the reversal according to the funda-
mental processes that occur most frequently: (i) rotation of
spins (coherent or noncoherent), (ii) nucleation of domains
and domain walls, (iii) propagation of domain walls, and (iv)
annihilation of domain walls. We emphasize, however, that
the boundaries between these categories are not strict.

We start with a case where the initial and final states are
simple and do not deviate much from the single domain state,
such as the S-state (see Figure 9) and for which we expect
a rather simple reversal. When an opposite field is applied
to this S-state, the magnetization switches to the opposite
S-state at a critical switching field. For a certain geometry
(500 × 125 × 3 nm3 NiFe), this is the micromagnetic standard
problem #4, which is a test case for micromagnetic calcula-
tions but also relevant for applications, where elements of this
size are often considered. Solutions have been variously cal-
culated (Kronmüller, Fischer, Hertel and Leineweber, 1997;
Kronmüller and Hertel, 2000; Albuquerque, Miltat and Thi-
aville, 2001; McMichael, Donahue, Porter and Eicke, 2001;
Tsiantos, Suess, Schrefl and Fidler, 2001) and can involve
intermediate states that are more inhomogeneous than the ini-
tial and final S-state. The magnetization configurations during
such a reversal are shown in Figure 15. We see that first the
area at the edges of the bar reverses, since there the torque on
the magnetization by a reverse field is largest. In the center, the
magnetization is still pointing in the original direction. The area
where the spins have reversed then expands to cover the whole
sample and the opposite S-state is attained. Depending on the
size of the element, this reversal can involve very inhomoge-
neous states in larger elements, but, as the size decreases, the
reversal becomes more homogeneous until the coherent rota-
tion process is obtained for single domain particles. In larger
elements, such as the one discussed in the preceding text,
intermediate states occur that resemble multidomain states,
even though the domains are transient features where the size
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(e)
90°
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Figure 15. Magnetization configurations during the transition from
the S-state to the opposite S-state in a 500 × 125 nm2 NiFe element
with 3 nm thickness. A field of 250 Oe (≈ 20 kA m−1) is applied
along 170◦. (a) S-state at remanence; (b) after the field is applied,
first the areas at the borders start to reverse; (c), (d) during the
switching, different inhomogeneous states are attained; (e) the
opposite S-state.

and the angle between them changes very quickly. These have
also been observed experimentally (Choi et al., 2001; Hiebert,
Lagae and De Boeck, 2003).

For the more complicated processes involving domain
walls, we can concentrate on one geometry, which exhibits
transitions involving all the processes mentioned above.
A suitable choice is the ring geometry, since it exhibits
well-defined and well-understood states with and without
domain walls that have been discussed in Section 5.2. We
recall briefly the magnetic states, observed in rings: (i) the
flux closure vortex state, which does not contain domain
walls; (ii) the onion state, characterized by the presence of
a head-to-head and a tail-to-tail wall (see Figure 8). The
M-H hysteresis loop of such a ring exhibits a double
switching (open circles in Figure 16).
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Figure 16. Dotted line with a single jump: Calculated hysteresis loops of a symmetric ring (outer diameter Dext = 1625 nm, width
W = 170 nm, thickness t = 34 nm fcc Co); Solid line with a double jump: Calculated hysteresis loops of an asymmetric ring (outer
diameter Dext = 1625–1750 nm, width W = 170–220 nm, thickness t = 34 nm fcc Co); open circles: Experimental data for an array of
such rings (from Rothman et al., 2001). The calculated magnetization configurations for the onion-to-vortex transition are shown in insets
(a)–(f) (color code as in Figure 17). (g) Shows the reverse onion state. It is found that the symmetric ring switches directly from the onion
to the reverse onion configuration (insets α − δ). (Reprinted figure with permission from Rothman et al., Phys. Rev. Lett. 86, 1098 (2001).
Copyright 2001 by the American Physical Society.)

Here, we detail the physical processes occurring during
the reversals. A double switching is observed in the exper-
iment and, if asymmetries are present in the ring, as in all
experiments, the simulations also yield a double switching
(solid line) (Rothman et al., 2001). Let us concentrate on the
first transition from a state containing domain walls to one
without. After relaxing the field from positive saturation, the
onion state is formed (first with a transverse domain wall
Figure 16(a) and then, as the field is relaxed to zero, with a
vortex domain wall (b), depending on the geometry (Kläui
et al., 2004b, 2004d)). After reversing the field, both walls
feel a force with a direction that depends on the wall posi-
tion with respect to the field direction (Kläui et al., 2002c).
Since one wall is, in general, more strongly pinned than
the other, a transition into a vortex state takes place when
the other wall has de-pinned (in the direction of the black
arrow in Figure 16b) and has moved toward the pinned wall
(Figure 16c–e), resulting in the annihilation of both walls
(Figure 16f). The simulated switching field for the onion-to-
vortex transition, HC1 = 350 Oe (≈ 28 kA m−1), falls well
within the distribution of the experimental values (Rothman
et al., 2001).

There is direct evidence for this reversal mechanism since
in some rings the domain walls were pinned during their
propagation somewhere around the perimeter of the ring and
such states (similar to Figure 16d) have been observed (Welp
et al., 2003; Zhu, 2002). Furthermore, by using a notch to
selectively pin one of the domain walls, we have been able
to make use of this switching process in order to control the
domain wall propagation and thereby select the circulation
direction of the resulting vortex state (Kläui et al., 2002c).

This transition from a state with domain walls (onion state)
to one without (vortex state) exhibits the typical features of
transitions characterized by the propagation and annihilation
of domain walls. Here, two domain walls annihilate each other,
while in other cases domain walls can also be annihilated by
simply being pushed outside the magnetic element. Examples
are the transition from a multidomain Landau state (Figure 9)
to a quasiuniform S-state when a field is applied to a rectangular
bar (Garcı́a et al., 2002; Chapman et al., 1998), or transitions
from more complicated multidomain states to quasiuniform
states in rectangles and squares (Gomez et al., 1999a; Gu et al.,
1998). In discs, the transition from the vortex to the S-state or
C-state takes place via the displacement and the annihilation
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of the vortex core, which is annihilated (expelled) at one of the
edges. In wide rings, where the ‘vortexcore’ state (Kläui et al.,
2003a) is present, the reversal from the vortexcore state to the
onion state takes place by a similar expulsion of the vortex
core (Kläui et al., 2004a; Kläui, Vaz, Lopez-Diaz and Bland,
2003).

In simulations, an asymmetry had to be introduced into
the ring (variation of the ring width) to reproduce the
onion-to-vortex transition. In the M-H loop of a perfectly
symmetric ring (dotted line in Figure 16), only one transition
is observed: the ring switches directly from one state
containing domain walls (onion state) to the opposite onion
state that contains the same number of domain walls, without
falling into the vortex state. The switching mechanism in
this case is surprisingly simple and close to domain wall
motion. The two walls start to move simultaneously in the
same rotational direction so that they chase each other around
the perimeter of the ring as seen in the insets α − δ of
Figure 16. The onion state is completely switched when
the walls have reached the opposite side. Even though this
transition is not easily observed with a quasistatic field, it can
be induced using pulsed fields (Lopez-Diaz, Kläui, Rothman
and Bland, 2001a), varying size and geometry (Zhu et al.,
2006) or by using fields that are not exactly applied opposite
the wall positions (Uhlig and Zweck, 2004). This transition
from a state containing domain walls (onion state) to another
containing domain walls (reversed onion state) is one of the
simplest cases of such a reversal containing domain wall
propagation, since here no domain walls have to be nucleated
or annihilated. Of course, in such transitions, the number of
domain walls does not have to be constant and may in fact
involve the nucleation and/or annihilation of domain walls
in addition to domain wall motion.

The process we discuss next is that of domain wall nucle-
ation. An example where this occurs is the second transition
in Figure 16 (solid line), from the vortex state (Figure 16f)
with no domain walls to the onion state (Figure 16g)
that contains two domain walls (Kläui et al., 2002b). In
Figure 17, the magnetization configurations during the rever-
sal are shown as well as the configuration before and after
the switching: Figure 17(a) shows the ring in the vortex state
at zero field. As the applied field is increased, the spins
rotate slightly but the ring remains in the vortex state as
seen in Figure 17(b). At the critical field, a reverse domain
is nucleated at the edge of the ring (indicated by the black
arrow in Figure 17c). This domain then grows in size and
the walls gradually propagate along the perimeter of the ring
and outwards (Figures 17d–e) until the onion state is attained
(Figure 17f). The calculated switching field HC2 at around
1000 Oe (≈ 80 kAm−1) (solid line in Figure 16) again falls
within the observed switching field distribution (open circles
in Figure 16). Other reversals that contain such processes

(b)

(d)

(a)

(c)

(e) (f)

H

Figure 17. Magnetization configurations during the vortex-to-
onion transition. (a) Vortex state at remanence; (b) just before
switching; (c), (d), (e) during the switching; (f) onion state. Figures
(a), (b), and (f) are equilibrium states, whereas (c), (d), and (e)
are snapshots of the dynamics of the reversal. The direction of
the applied field is indicated by arrows and the color code for the
magnetization directions is presented.

are, for example, the formation of the Landau states and other
multidomain states in rectangular bars: when an applied field
is reduced from saturation, and an opposite field is applied,
domain walls are nucleated at the edges (Garcı́a et al., 2002;
Gu et al., 1998). Such a nucleation also occurs in other tran-
sitions, such as the transition in a disc from the S-state to the
vortex state, which occurs by the nucleation of a vortex core
at the edge. The core then moves to the center and thereby
reverses half of the disc to form the vortex state (Cowburn
et al., 1999; Wernsdorfer, 2001; Fernandez, Gibbons, Wall
and Cerjan, 1998).

A combination of domain wall nucleation, propagation,
and annihilation can be found in wires with diameters above
the range where reversal by coherent rotation or curling takes
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place. The reversal then occurs by the nucleation of a domain
wall at one end, the propagation of the domain wall along
the wire, which thereby reverses the complete wire, and the
final annihilation of the domain wall when it has reached the
opposite end (Fidler et al., 2002; Ono et al., 2001). Wires
are discussed in more detail in Domain Wall Propagation
in Magnetic Wires, Volume 2.

It should be pointed out that, for example, in the case
of strong wall pinning (where the field for domain wall
propagation is higher than that for domain nucleation), the
reversal can be dominated by the nucleation of a large
number of reverse domains with only little wall propagation
rather than by the nucleation and propagation of a single
domain wall (Rosenbusch, Lee, Lauhoff and Bland, 1997). In
general, the fields at which a certain process sets in governs
the type of reversal.

In summary, the inhomogeneous reversal can be charac-
terized by the interplay of different processes, which can be
seen as the building blocks of the actual reversal: (i) rotation
of spins, (ii) nucleation of domains, domain walls/vortices,
(iii) propagation of domain walls/vortices, and (iv) annihi-
lation of domain walls/vortices. One consequence of these
different kinds of processes is that the different switching
fields have different temperature dependences (Kläui et al.,
2004c). For example, the nucleation field of a reverse domain
is much less temperature dependent than the domain wall
propagation field (Kläui et al., 2004c). Furthermore, the dif-
ferent processes also depend differently on defects, such
as edge irregularities. This leads, for instance, to a larger
switching field distribution for the domain wall depinning
and propagation field than for the nucleation of a reverse
domain field (Kläui et al., 2004c).

There are innumerable reversal routes for small magnetic
elements, many of which can be very intricate. But the
reversal is most often composed of the processes that we
discussed, with each process being individually influenced
by intrinsic as well as extrinsic factors.

8 CONCLUSIONS

We have attempted in this chapter to present the general types
of magnetization configurations and the reversal processes in
small magnetic elements. While it is not possible to give an
exhaustive overview of such a vast and fast moving field, we
hope that we have nonetheless discussed the most important
aspects and provided instructive examples, from which an
extrapolation to other systems may be possible.

Theoretically, the systems considered here can be modeled
within the micromagnetics framework. This means that
the magnetic properties can be described using a classical
continuum approximation, which limits us to systems that are

large enough so that quantum effects do not play a significant
role and small enough so that computational cost is not
prohibitive. This size regime between a few nanometers and
a few micrometers is extremely relevant for applications. At
the same time, such systems exhibit novel physical properties
that are distinctly different from the bulk magnetic properties,
due to their reduced dimensions (2-D films, 1-D wires, 0-D
dots), and because an appreciable fraction of the atoms is
located at surfaces or interfaces.

The different energy terms that are relevant in determining
the magnetization configurations have been discussed:

(1) For very small systems, the exchange energy dominates,
favoring single domain states, which can be described by
a macrospin. Such systems are described theoretically by
the analytical Stoner–Wohlfarth theory. At zero field, the
equilibrium magnetization directions are governed by the
anisotropy energy due to the electronic structure, strain, or
other symmetry-breaking effects. Experimental examples of
systems that exhibit a range of anisotropies and behave as
single domain structures have been presented.

(2) For larger structures, the stray field becomes important
and the magnetostatic self-energy governs the magnetization
configurations. To minimize the stray field, the spins align
themselves with the periphery of the element and thus the
shape strongly influences the magnetic states. Elements tend
to exhibit magnetization configurations that are commensu-
rate with the geometry, such as the vortex state in a disc
or a ring and Landau states in rectangular elements. Adding
anisotropies yields states that are governed by the interplay
between the three energy terms, such as the combination of
the vortex and the quadrant state in a disc with a fourfold
anisotropy.

(3) When external fields are applied, the Zeeman energy
starts to play a role by trying to align the magnetization with
the field direction. This leads to the concept of magnetic
reversal, when elements change their magnetization configu-
ration in response to the field. Theoretically, the reversal can
be described within the micromagnetics theory by the Lan-
dau–Lifshitz–Gilbert equation, which describes the preces-
sion of the magnetization around the applied field direction
and includes a phenomenological damping term that accounts
for energy dissipation and which forces the magnetization
to align with the applied field direction. For single domain
systems, these two terms manifest themselves in a super-
position of precession and damping that leads to a spiral
motion of the spin direction toward the equilibrium position.
For more complicated magnetization configurations, inhomo-
geneous reversal occurs. While the reversal routes can be
intricate, they can be broken down into elementary processes
for which we give a number of examples.
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It is the intricate interplay between these different micro-
magnetic energy terms that leads to the rich magnetostatic
and magnetodynamic behavior observed in small magnetic
structures.
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Hubert, A. and Schäfer, R. (1998). Magnetic Domains, Springer-
Verlag: Berlin.

Hubert, A., Rave, W. and Tomlinson, S.L. (1997). Imaging mag-
netic charges with magnetic force microscopy. Physica Status
Solidi B, 204, 817.

Hurd, C.M. (1982). Varieties of magnetic order in solids. Contem-
porary Physics, 23, P469.

Ishii, Y. (1991). Magnetization curling in an infinite cylinder with
a uniaxial magnetocrystalline anisotropy. Journal of Applied
Physics, 70, 3765.

Jackson, J.D. (1975). Classical Electrodynamics, Second Edition ,
John Wiley & Sons: New York.

Jamet, M., Wernsdorfer, W., Thirion, C., et al. (2001). Magnetic
anisotropy of a single cobalt nanocluster. Physical Review Letters,
86, 4676.

Jorritsma, J., Gijs, M.A.M., Kerkhof, J.M. and Stienen, J.G.H.
(1996). General technique for fabricating large arrays of nano-
wires. Nanotechnology, 7, 263.

Jorritsma, J. and Mydosh, J.A. (1998). Temperature-dependent
magnetic anisotropy in Ni nanowires. Journal of Applied Physics,
84, 901.

Jorzick, J., Demokritov, S.O., Hillebrands, B., et al. (2002). Spin
wave wells in nonellipsoidal micrometer size magnetic elements.
Physical Review Letters, 88, 047204.

Jorzick, J., Demokritov, S.O., Mathieu, C., et al. (1999). Brillouin
light scattering from quantized spin waves in micron-size mag-
netic wires. Physical Review B, 60, 15194.

Joseph, R.I. (1966). Ballistic demagnetising factor in uniformly
magnetized cylinders. Journal of Applied Physics, 37, 4639.

Joseph, R.I. (1976). Demagnetising factor in nonellipsiodal sam-
ples – a review. Geophysics, 41, 1052.

Jubert, P-O. and Allenspach, R. (2004). Analytical approach to
the single-domain-to-vortex transition in small magnetic disks.
Physical Review B, 70, 144402.

Jubert, P-O., Allenspach, R. and Bischof, A. (2004). Magnetic
domain walls in constrained geometries. Physical Review B, 69,
220410.

Jung, W., Castaño, F.J., Ross, C.A., et al. (2004). Elliptical-ring
magnetic arrays fabricated using zone-plate-array lithography.
Journal of Vacuum Science and Technology B, 22, 3335.

Kaczér, J. and Klem, Z. (1976). The magnetostatic energy of
coaxial cylinders and coils. Physical Status Solidi B, 35, 235.

Kageyama, Y. and Suzuki, T. (2006). Temperature dependence of
magnetic domain structures of single-crystal Co thin films and
particles. Journal of Applied Physics, 99, 8Q506.

Kang, B-S., Kim, D-H., Anderson, E., et al. (2005). Polarization-
modulated magnetic soft-x-ray transmission microscopy. Journal
of Applied Physics, 98, 093907.

Katine, J.A., Albert, F.J., Buhrman, R.A., et al. (2000). Current-
driven magnetization reversal and spin-wave excitations in
Co/Cu/Co pillars. Physical Review Letters, 84, 3149.

Keffer, F. (1966). Spin waves. In Encyclopedia of Physics,
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Kläui, M., Vaz, C.A.F., Bland, J.A.C., et al. (2002c). Controlled
magnetic switching in single narrow rings probed by magnetore-
sistance measurements. Applied Physics Letters, 81, 108.
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1 Introduction 1

2 Phases and Phase Transitions 2

3 Size Dependence of Domain Patterns 7

4 Confined Domain Walls 10

Acknowledgments 16

References 16

1 INTRODUCTION

To a large extent, size and geometry govern magnetic domain
patterns in large ferromagnetic specimens: it is the long-
range magnetic dipolar interaction that is responsible for
the occurrence of magnetic domains, and this interaction
is determined by an integration over the entire volume of
the sample. In this chapter, small objects rather than bulk
ferromagnets will be discussed. The topic is closely related
to the chapter by Kläui and Vaz (2007). Their chapter
covers the range from very small nanometer-sized particles
to micrometer-sized objects, with an extensive discussion of
the underlying energy terms relevant for a micromagnetic
understanding, with a description of the single-domain (SD)
particle and its magnetization reversal, and a brief overview
on multidomain (MD) states in larger geometries.

In this chapter, a different route is taken. The focus is
on well-defined magnetic elements mainly of micrometer
size, specifically on their domain structures and their domain

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

walls. In particular, the effects that are related to the pres-
ence of boundaries, edges, and constrictions are described,
and how they are influenced by geometry of the system is
studied. An important aspect is the presence of anisotropy.
So far most studies, both experimental and theoretical, have
been done in systems in which anisotropy is essentially negli-
gible. In this chapter, emphasis is given to a system in which
anisotropy is a key factor in determining domain patterns.
We are interested in the size-dependent properties of these
domain patterns, and illustrate them in phase diagrams span-
ning a wide range of length scales and thicknesses. Even
though magnetization reversal is closely linked to domain
patterns, it is not discussed here – for the sake of brevity.
The approach taken is the one of an experimentalist: we
concentrate on experimental findings and use micromag-
netic simulations to elucidate the physics underlying the
observations.

Size effects not only determine domain patterns, but also
affect domain walls. The finite, small size of a magnetic
element confines the domain wall to a narrow environment,
and thereby modifies domain-wall profiles and types in a
controlled way. This geometrical tunability is a new aspect
of domain walls that is starting to be exploited in alternative
schemes to move domain walls, such as in spin-transfer
torque devices, as described in the chapters by Ono (2007)
and Thomas and Parkin (2007).

In both of these topics, ‘low dimensional’ is synonymous
to ‘small in size’. Magnetism in low-dimensional systems,
however, has an additional important aspect that extends
beyond a mere comparison of simulated micromagnetic pat-
terns with their experimental counterparts. ‘Low dimen-
sional’ has a specific thermodynamic meaning: effects that
require a description in a three-dimensional framework are
excluded. Typical properties in ferromagnets relating to this
type of dimensionality are phase transitions. As cooperative
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phenomena, they are described by order parameters and crit-
ical exponents. It is not intended to provide a comprehensive
report of the physics of phase transitions in low-dimensional
ferromagnets. Instead, phase transitions are approached from
a microscopic viewpoint by classifying the phases and their
transitions according to domain patterns and their origin. This
specific topic thus embraces two seemingly disparate fields
of condensed matter physics: micromagnetism and critical
phenomena.

Even by limiting this chapter to these three topics, it
would be a hopeless task to aim for an all-embracing review.
The theme of low-dimensional ferromagnets is therefore
presented by means of examples: Three specific systems
illustrate low-dimensional phase transitions, domain patterns,
and domain walls. Section 2 is devoted to ultrathin, per-
pendicularly magnetized Fe/Cu films. Their rich variety of
stripe-domain phases provide new insight into the micro-
scopic aspects of phase transitions in two dimensions. Small
elements of a ferromagnet with in-plane magnetization and
tunable anisotropy are discussed in Section 3. The Co/Cu
system exhibits a wide range of different domain patterns
that distinctly depend on the lateral size and thickness of
the elements. Finally, in Section 4, geometric confinement is
extended from domains to domain walls. Domain walls in
small Fe20Ni80 elements exhibit complex spin arrangements
that strongly deviate from the wall types commonly encoun-
tered in magnetic thin films, and they can be modified and
tuned by changing the size of the element and by introducing
constrictions.

2 PHASES AND PHASE TRANSITIONS

This section deals with dimensionality in a thermodynamic
sense: effects in ferromagnets that are two-dimensional (2D)
rather than three-dimensional (3D) are considered. Hence
aspects in magnetic films that relate magnetic properties
to cooperative phenomena and their phase transitions are
discussed. Phase transitions are characterized by a specific
set of parameters, such as order parameters and critical
exponents. Note that by restricting ourselves to 2D effects,
we do not necessarily limit the system size: the important
quantity is the correlation length. For a system to be regarded
as 2D, the only requirement is that the correlation length has
to be bigger than one of the system extensions.

The prototypical system for the investigation of 2D phase
transitions is a magnetic film. In fact, the development
of many theories describing phase transitions was inspired
by ferromagnetic model systems. The nature of the phase
transition and many of its properties are determined by
magnetic anisotropies. For vanishing anisotropy, the isotropic
Heisenberg model describes reality best, whereas for large

uniaxial anisotropy, it is the Ising model. Both these limiting
cases (and also intermediate ones) have been investigated in
detail in a variety of magnetic films. In almost all studies,
the goal was to deduce the critical exponent that describes
the approach of the magnetization to Curie temperature, TC.
Experimentally, the critical exponents vary widely, covering
the entire range from the mean-field-approximation value
to the exponent characteristic of the Ising model. A few
model systems exist that seem to be magnetically simple
enough to exhibit unequivocal behavior. A prominent one
is an ultrathin Fe film, only one or two monolayers (MLs)
thick, grown on W(110) (Elmers, Hauschild and Gradmann,
1996). This system, with its uniaxial in-plane anisotropy,
essentially behaves as a 2D Ising system. Critical exponents
are very close to those expected for the Ising system, and the
universality hypothesis has been experimentally confirmed
with high accuracy, even with a magnetic field applied (Back
et al., 1995).

Although such studies test and confirm very fundamen-
tal assumptions in theories of cooperative phenomena, they
do not provide insight into the microscopic aspects of
phase transitions. Length scales, in particular, enter only
through the scaling hypothesis, and the order parame-
ter – magnetization – is a macroscopic quantity. The inves-
tigation of microscopic aspects of phase transitions is exper-
imentally demanding. At TC, the spontaneous magnetization
vanishes, and temporal fluctuations may become relevant.
On the theoretical side, the situation is of similar complex-
ity. For instance, even for the simplest model – the 2D Ising
system – no exact solution for the transition in an external
field is known.

In the past few years, however, remarkable progress has
been made in the understanding of the microscopic aspects
of these phases and their transitions. Most of the progress
comes from the investigation of Ising systems, realized
in perpendicularly magnetized ferromagnetic films. These
films exhibit two characteristics that make a microscopic
investigation rewarding: the existence of a specific domain
state, a regular array of stripe domains, and the occurrence
of a spin-reorientation transition, in which the magnetiza-
tion changes direction. Theoretically, the challenge comes
from the fact that a strong short-range interaction – the
exchange – competes with a weak long-range interaction,
the dipole–dipole interaction. 2D systems with short-range
attraction and long-range repulsion are widespread and
include – besides the ferromagnets – for instance, polymers,
gels, self-assembled MLs, and ferrofluidics. In the following
text, some recent investigations of the microscopic prop-
erties of phases and phase transitions in perpendicularly
magnetized ferromagnets are summarized; but the implica-
tions might eventually go beyond this class of materials. In
these investigations micromagnetism is relevant, but equally



Magnetic properties of systems of low dimensions 3

important is an understanding of the topology and critical
phenomena.

2.1 Perpendicular magnetization and the
spin-reorientation transition

Domain patterns in perpendicularly magnetized films have
been investigated theoretically almost since the first realistic
micromagnetic approaches appeared. Kittel (1946) consid-
ered the case in which the thickness of the ferromagnet is
much larger than the domain size, so that the magnetostatic
interaction of the two surfaces could be safely neglected. He
concluded that the domain width in a regular array of stripe
domains increases with the square root of the film thickness,
provided that the relevant material constants, such as mag-
netization and anisotropy, remain the same. This result was
extended to films for which the thickness is comparable with
the domain width (Málek and Kamberský, 1958), and later
on, the influence of an applied magnetic field was also con-
sidered (Kooy and Enz, 1960). All these approaches were
essentially based on analytical micromagnetic models, com-
plemented where necessary by partial solving of the problems
numerically.

Garel and Doniach (1982) looked at the domain pat-
tern from a different perspective. They realized that stripe
domains and their transformation in a magnetic field could
be described as a phase transition. A 2D Ginzburg–Landau
model was applied, and a first-order transition to a hexagonal
bubble phase was predicted, followed by a further transition
to the uniform, saturated state. Close to the critical tempera-
ture, stripe or bubble melting was predicted to occur. Here,
dimensionality embraced micromagnetism: it was explicitly
mentioned that because of the long-range character of mag-
netic dipolar forces the dimensionality becomes relevant.

The formation of the stripe-domain phase results from
a competition between a short-range interaction – the
exchange that tends to align neighboring spins – and the

long-range dipolar interaction favoring antiparallel align-
ment between distant spins. By application of a magnetic
field, the stripe pattern can be transformed into various
domain arrangements, such as bubbles, mazes, chevrons,
or labyrinths (Molho et al., 1987). The extrapolation of
these thick films to the ultrathin limit is not straightfor-
ward, and the analogy to smectic liquid crystals was pointed
out (Sornette, 1987). In their pioneering paper, Yafet and
Gyorgy (1988) finally calculated that a stripe-domain con-
figuration is also the ground state in zero magnetic field in
the ultrathin limit, provided that the ratio of anisotropy and
magnetostatic energy is close to 1. Numerical simulations
(Kaplan and Gehring, 1993) confirmed that the stripe-domain
phase is very close to but slightly lower in energy than
the checkerboard configuration (Czech and Villain, 1989)
and suggested that an irregular domain pattern as observed
in ultrathin Co/Au(111) films (Allenspach, Stampanoni and
Bischof, 1990) is consistent with this model. Whereas, origi-
nally, the magnetization in the walls between the stripes was
assumed to vary like a cosine function (Yafet and Gyorgy,
1988), it was recently stated that this profile is modified by
the long-range dipolar interaction, and hence the magneti-
zation modulation depends on the stripe width (Kisielewski,
Maziewski, Polyakova and Zablotskii, 2004).

Ultrathin film systems with stripe domains often exhibit
an additional interesting characteristic: a spin-reorientation
transition. In films with perpendicular magnetization, a reori-
entation of the spin is the natural consequence of the shape
anisotropy winning over surface anisotropy at large thickness
or at high temperature. The easy magnetization axis changes
and the spins reorient, as shown in Figure 1. Only if the Curie
temperature happens to be below the reorientation tempera-
ture, does the perpendicular magnetization exist up to the
paramagnetic phase. Both cases exist and will be illustrated.

Figure 1 illustrates the microscopic features of a spin reori-
entation in a 5.3-ML fcc-Fe/Cu(001) film (1 ML = 0.18 nm)
with increasing temperature (Allenspach and Bischof, 1992),

20 µm

[100]

T (K)

230 248 258 266 280 285 295

(a)

(b)

Figure 1. Evolution of the domain pattern in 5.3-ML fcc Fe on Cu(001) with temperature. (a) Out-of-plane magnetization component,
(b) in-plane magnetization component. Stripe domains are formed and stripe narrowing occurs with increasing temperature before the
magnetization reorients into the plane. (Reproduced from Allenspach and Bischof, 1992, with permission from the American Physical
Society.  1992.)
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determined experimentally by spin-polarized scanning elec-
tron microscopy (spin-SEM) (Allenspach, 2000). Below T =
230 K, the film is perpendicularly magnetized and in an
SD state. With increasing temperature, irregularly shaped,
reversed domains nucleate, growing in number as the tem-
perature increases further. These domains elongate and start
to form a stripe-domain pattern, with stripes running along
the crystallographic [100] direction. At even higher tempera-
tures, the distance between stripes narrows. Finally, the mag-
netization reorients into the plane, and an irregular domain
pattern forms.

The observation of a stripe pattern qualitatively confirmed
the predictions by Yafet and Gyorgy (1988). The stripe
period, however, remained unexplained: it should only be
accessible to the experiment if the perpendicular anisotropy
and the magnetostatic energy (or shape anisotropy) nearly
cancel each other. Otherwise, the stripe period should grow
beyond typical sample sizes and hence an SD state should
be observed. Moreover, the observation of stripe narrowing
with temperature contradicted theory (Seul and Wolfe, 1992).
However, if finite-temperature spin fluctuations are taken into
account (Kashuba and Pokrovsky, 1993; Abanov, Kalatsky,
Pokrovsky and Saslow, 1995), the stripe phase is much more
abundant and becomes the preferred ground state as long
as exchange exceeds a certain value (MacIsaac, Whitehead,
Robinson and De’Bell, 1995). Moreover, with increasing
temperature, disorder should occur, and the phase transforms
from a 2D smectic crystal phase to a nematic phase, and
eventually to a fourfold symmetric phase called a tetrago-
nal liquid (Abanov, Kalatsky, Pokrovsky and Saslow, 1995).
This transition is a distinct feature of a 2D melting process
and is absent in thick magnetic films (Vaterlaus et al., 2000).
Monte Carlo simulations (Booth, MacIsaac, Whitehead and
De’Bell, 1995) arrive at essentially the same conclusion.
However, whether the intermediate nematic phase exists or
a first-order phase transition occurs remains elusive.

A detailed experimental investigation of the evolution of
the striped phase going beyond Allenspach and Bischof

(1992) has been recently performed, again in the fcc-
Fe/Cu(001) system (Portmann, Vaterlaus and Pescia, 2003).
By choosing a smaller thickness of the ferromagnet, the
Curie temperature TC drops below the reorientation temper-
ature and hence the stripe phase can be followed up to the
paramagnetic phase (see Figure 2). Far below TC, stripes are
observed to be meandering around a preferential orientation
and to exhibit specific defects. Experimentally, four differ-
ent types of dislocations have been identified, which are in
agreement with the topological defect classification (Abanov,
Kalatsky, Pokrovsky and Saslow, 1995). At higher temper-
ature, orientational melting occurs, and the domain phase
transforms into a more symmetric labyrinth phase in which
the stripes terminate preferentially in square corners, confirm-
ing the prediction of the tetragonal liquid phase. This fourfold
symmetry is not unexpected as it reflects the crystalline sym-
metry of the Fe/Cu(001) system. It is still a matter of debate
whether the transition from the stripe phase to the tetrago-
nal phase is a continuous transition going through a nematic
phase or a first-order phase transition. The most recent Monte
Carlo simulations and analytical modeling favor a weak first-
order transition, based on the calculated scaling of the spe-
cific heat (Cannas, Stariolo and Tamarit, 2004). Strikingly,
at even higher temperature, the tetragonal order is lost again,
and a lower symmetry phase reoccurs with reduced stripe
width before the paramagnetic phase is reached (Portmann,
Vaterlaus and Pescia, 2003).

The microscopic mechanisms of both the melting and
the inverse melting process are quite intricate. In the melt-
ing process, the stripes emit fingers and branches orthog-
onal to the stripe direction, that is, a transverse instabil-
ity (Molho et al., 1987) promotes the loss of orientational
ordering. A similar evolution of disorder has been observed
in thick garnet films (Seul and Wolfe, 1992). There, the
stripe phase transformed through a sequence of highly reg-
ular patterns, such as undulations and chevrons, into a
phase characterized by disclination defects. The labyrinthine
phase in garnets, on the other hand, displays hexagonal

10 µm 10 µm 10 µm 10 µm(a) (b) (c) (d)

Figure 2. The four domain phases in perpendicularly magnetized ultrathin fcc-Fe/Cu(001) films upon approaching the paramagnetic phase,
measured by spin-SEM. The film thickness is 1.89 ML. (a) Stripe phase at T = 210 K; (b) labyrinth tetragonal liquid phase at T = 268 K;
(c) reentrant stripe phase at T = 283 K; (d) paramagnetic phase at T = 313 K. Note that the image size varies as indicated by the scale
bars. (Reproduced from Portmann, Vaterlaus and Pescia, 2003, with permission from Nature Publishing Group.)



Magnetic properties of systems of low dimensions 5

rather than tetragonal symmetry, controlled by the crys-
talline orientation, and is reached by a dynamic relaxation
that is nonexponential and compatible with the expectations
for a glassy state (Reimann, Richter and Rehberg, 2002).
The inverse melting process in Fe/Cu(001) goes through
repetitive steps of detaching short stripe-domain segments
from knee-bend domains to arrive at smooth and straight
stripe domains. Here – as in the transition from the stripe
phase to the tetragonal liquid phase – the strength of the
long-range dipolar interaction might play an important role.
This interaction effectively leads to a transverse compres-
sive force on the stripes and, depending on its strength,
a crossover from defect-mediated stripe melting (or freez-
ing) to spin disorder is predicted to occur (Stoycheva and
Singer, 2000).

Very recently, it was shown that the approach to the para-
magnetic phase contains a dynamic component (Portmann,
Vaterlaus and Pescia, 2006): the stripe domains become
mobile in a narrow temperature interval of a few Kelvin
around TC (see Figure 3). Stripe sections have been observed
to displace on a timescale of seconds, locally keeping a
high degree of orientational order. This stripe mobility exists
upon both annealing and cooling through TC. These obser-
vations are in marked contrast to the phase transition in

Figure 3. Transition from the paramagnetic to the stripe-domain
phase observed by spin-SEM in a fcc-Fe/Cu(001) film of 1.96-
ML thickness. The temperature is around room temperature and
decreases by 3 K while successive line scans are taken from top
to bottom. Image width: 18 µm. The contrast of some of the areas
that indicate stripe mobility has been enhanced. (Reproduced from
Portmann, Vaterlaus and Pescia, 2006, with permission from the
American Physical Society.  2006.)

an in-plane-magnetized thin-film system (Kerkmann, Pescia
and Allenspach, 1992), and it has been argued that they are
related to a dynamical singularity associated with the liquid-
to-glass transition in stripes (Portmann, Vaterlaus and Pescia,
2006). First hints of the existence of a dynamic domainlike
behavior near or even above the Curie temperature in perpen-
dicularly magnetized ultrathin Fe/Ni(111) films were already
drawn from susceptibility measurements in a detailed inves-
tigation of the spin-reorientation transition (Arnold, Pappas
and Venus, 1999). The real-space observation of the dynamic
aspects of this phase transition goes a step further: it pro-
vides new experimental insight into the microscopic nature
of 2D phase transitions, against which theories and models
can be tested.

2.2 The stripe-domain width

The geometrical and topological classification presented
previously describes phase transitions in a rather qualita-
tive manner. Phase transitions, however, are characterized
by experimentally verifiable quantitative parameters, such
as the scaling lengths and critical exponents. One impor-
tant parameter of the stripe-domain phase is the average
width D of the stripes. In the past decade, several exper-
imental studies were performed to determine the domain
width upon approaching the spin reorientation or the ferro-
to paramagnetic phase transition. The first determination
of the domain size during spin reorientation was done
in Co/Au(111) films (Allenspach and Stampanoni, 1992),
followed soon after by a systematic study of the evo-
lution of the domain width with the film thickness on
a wedge-type sample (Speckmann, Oepen and Kirschner,
1995). It was found that at constant temperature the domain
size decreases exponentially upon approaching the spin-
reorientation thickness (see Figure 4a). Close to the spin-
reorientation thickness, this observation was in line with
the prediction (Kaplan and Gehring, 1993) that the domain
width D depends on film thickness t according to the
functional dependence D = 0.955 t exp(σw/(4 M2

s t)), where
σw is the domain-wall energy and Ms is the saturation
magnetization.

In the Fe/Ni/Cu(001) system, both the thickness and the
temperature dependence of D are experimentally accessi-
ble. In both cases, D exhibits an exponential dependence
(Won et al., 2005; see Figure 4b). The Fe/Ni system is
particularly attractive because – for appropriate Fe and Ni
thicknesses – anisotropies and demagnetization energies can
be balanced in such a way that the spin-reorientation tem-
perature, TR, is below or above TC (Zhao et al., 2004).
Interestingly, if TC < TR, the exponential dependence of
the domain width on temperature is preserved up to an
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Figure 4. Domain width upon approaching the phase transition.
(a) Width versus Co film thickness in the Co/Au(111) system.
The reorientation transition takes place at tR ≈ 4.9 ML (1 ML =
0.2 nm). The exponential fit follows the model of Kaplan and
Gehring (1993), with the only fit parameter being the inter-
face anisotropy. From Speckmann, Oepen and Kirschner (1995).
(b) Width versus temperature in the Fe/Ni/Cu(001) system, with
2.7 ML Fe and 5.4 ML Ni (1 ML = 0.18 nm). In this system, TC <

TR, with TC ≈ 380 K and TR ≈ 395 K. The exponential fit extrapo-
lates through TC up to TR. From Won et al. (2005). (c) Width versus
temperature in Fe on Cu(001), with a Fe thickness of 1.95 ML
(1 ML = 0.18 nm). At this thickness, no reorientation transition
takes place. TC is estimated to be 325.7 K. From Portmann, Vater-
laus and Pescia (2006). The solid line gives a quadratic power-law
fit, the dashed line the best exponential fit for comparison.

extrapolated TR, which means that the domain width at TC

remains finite. Similarly, an exponential behavior has also
been found in exchange-coupled layers if the anisotropy
and interlayer coupling are taken into account (Wu et al.,
2004). In the Fe/Cu(001) system, the stripe-domain width

has been fitted by a power-law dependence upon approach-
ing TC, D ∼ DC + (TC − T )2, keeping a finite width DC

at the transition temperature (Portmann, Vaterlaus and Pes-
cia, 2006; see Figure 4c). The differences to an exponential
dependence, however, are minute, and future experiments
will have to show whether this is significant. Conceptu-
ally, such a phase transition can always be described by a
power-law series, and at zero temperature reality is accu-
rately described by an exponential dependence. Hence both
approaches tackle the problem from a different perspec-
tive: micromagnetics in the case of the exponential depen-
dence and critical phenomena in the case of the power-law
dependence.

In summary, the stripe-domain phase is a commonly
observed domain pattern in perpendicularly magnetized fer-
romagnets, in the entire range from ultrathin to thick films.
The prerequisite for their existence in micrometer-thick
specimens is that the anisotropy is so large that closure
domains are energetically avoided. From a purist’s point
of view, all these systems are strictly low dimensional: for
an infinitely extended film, any finite width is sufficient to
describe the system as being 2D. Many of the phenom-
ena described occur in specimens of any thickness. It is
the competition between attractive short-range and repul-
sive long-range interactions that leads to the stripe phase
and to even more complex modulated phases and the for-
mation of structures on mesoscopic length scales. Neverthe-
less, significant differences are observed between an ultra-
thin and a thick film. The reentrant behavior of the stripe
phase and its mobility close to the Curie temperature have
only been observed in ultrathin films of Fe/Cu(001). It
remains a matter for future work to clarify, both theoreti-
cally and experimentally, whether these effects are specific
to this system or a general feature of ultrathin ferromag-
nets. The most prominent difference between ultrathin and
thick films is the width of the stripe domains. Only in
ultrathin films, a strong dependence of the stripe width on
the temperature – even far away from the phase-transition
temperature – has been observed. This observation is not
limited to the Fe/Cu(001) system and has also been theoret-
ically described. In thick films, stripe narrowing is explicitly
excluded (Seul and Wolfe, 1992) or considered to be neg-
ligible as long as the temperature is not too close to TC

(Molho et al., 1987). Only very close to TC is the stripe
width not frozen and can adjust with temperature. In ultra-
thin films, fluctuations are much more prominent and extend
the critical temperature range. In this respect, the situation
is similar to in-plane-magnetized ultrathin films (Kerkmann,
Pescia and Allenspach, 1992). The investigation of phase
transitions using microscopic imaging has led to new insight
into such very fundamental, truly low-dimensional magnetic
properties.
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3 SIZE DEPENDENCE OF DOMAIN
PATTERNS

In this section, effects related to the geometrical dimensions
of a ferromagnet are considered. In this respect, ‘low dimen-
sional’ can be regarded as being synonymous to ‘small in
size’. Size aspects govern magnetic domain patterns. Hence
magnetic domain patterns and their variations with chang-
ing size are discussed here. While the exchange interaction
tends to keep all spins aligned and thus favors a uniform
SD state, the long-range magnetostatic interaction tries to
avoid stray fields emanating from the ferromagnetic element.
The balance of these two energies is responsible for the
existence of an inhomogeneous magnetization distribution:
domains and domain walls, or – alternatively – rapidly vary-
ing magnetization distributions such as vortices. This balance
depends on the size and the geometry. If the sample size
becomes smaller than the width of a typical domain wall,
this state is replaced by a more uniform magnetization distri-
bution. The transition from a uniform to a nonuniform state
is thus determined by the exchange and the magnetostatic
energy. The magnetic patterns observed in the nonuniform
state, however, are largely governed by magnetic anisotropy.
Although this holds for systems with arbitrary anisotropy
axis, we restrict ourselves here to systems with in-plane
magnetization. The domain patterns in ferromagnets with
perpendicular magnetization direction have been discussed
in the preceding section, in the context of the stripe-domain
phase.

A wealth of studies have been performed to investi-
gate domain patterns in small in-plane-magnetized elements,
with the vast majority of the work having been done in
NiFe alloys with negligible magnetocrystalline anisotropy
(Cowburn et al., 1999; Gomez et al., 1999; Hubert and
Rührig, 1991; Barthelmess, Pels, Thieme and Meier, 2004).
Of particular interest, is the transition from the nearly SD
state to the nonuniform state with increasing thickness and
lateral size of the element. In small disks, domain patterns
with well-defined walls are absent because anisotropy is
negligible. The nonuniform magnetization distribution corre-
sponds to a circular magnetization arrangement with a cen-
tered, narrow core having perpendicular magnetization, the
vortex state (Shinjo et al., 2000). If the shape of the element
deviates from a disk, deviations from both SD and vortex
states occur. For the SD state, the geometrical dependencies
lead to an effective configurational anisotropy (Schabes and
Bertram, 1988), which can stabilize alternative patterns such
as leaf states (Cowburn and Welland, 1998a), flower states
(Schabes and Bertram, 1988), or even more complex twisted
flower states (Hertel and Kronmüller, 2002).

This section discusses domain patterns in a system with
nonvanishing magnetocrystalline in-plane anisotropy. We

restrict ourselves to one particular model system, namely,
epitaxial fcc Co/Cu, rather than providing a comprehen-
sive review of domain formation in such systems. We will
vary the thickness t and lateral size L of the elements
in a wide range to obtain a complete phase diagram of
domain patterns in the (t, L) space. Some regions of this
phase diagram have been investigated before, with a focus
on small t (Stamm et al., 1998) and on the magnetization
reversal after an SD state has been set (Oepen, Lutzke and
Kirschner, 2002). Epitaxial Co on MgO was also studied,
with the emphasis on domain states in elements having
small L and large t (Kazakova, Hanson, Blomquist and
Wäppling, 2001). Similar patterns are encountered in other
epitaxial systems that exhibit nonnegligible magnetocrys-
talline anisotropy, such as bcc Fe/GaAs(001) (Pulwey, Zölfl,
Bayreuther and Weiss, 2003).

Epitaxial Co films grown on stepped Cu(001) substrates
exhibit a complex magnetocrystalline anisotropy: because the
substrate is miscut from the (001) direction, a uniaxial step
anisotropy is superimposed on the cubic anisotropy required
by the fourfold symmetry of the Cu(001) substrate (Berger,
Linke and Oepen, 1992). The ratio of uniaxial anisotropy
Ku to fourfold cubic anisotropy K1 can be adjusted by the
film thickness or the miscut angle, which is equivalent to
changing the average step distance. For typical miscut angles
of a few degrees, Ku is not larger than a few percent of K1.
Nevertheless it can be accurately determined by analyzing
the shape of the hysteresis loop (Weber, Allenspach and
Bischof, 1997), and it is responsible for the occurrence of
quantum size oscillations in magnetic anisotropy (Weber
et al., 1996b). Here, we will consider Co/Cu elements miscut
by 1◦ with respect to the (001) direction. The step-edge
direction runs along [110], leading to a vicinal Co(1 1 81)
system with an average step distance of 10 nm. The thickness
dependence of Ku and K1 has been determined on continuous
films (Weber et al., 1996a). At small thickness, the easy
magnetization axis is parallel to the step-edge direction.
At a thickness of 3.1 nm, the uniaxial anisotropy changes
sign. This leads to a switching of the easy magnetization
direction by 90◦ from the [110] to the [110] direction.
Correspondingly, the intermediate axis switches from [110]
to [110]. The evolution of the anisotropy constants Ku

and K1 as a function of thickness is shown at the top of
Figure 5.

Patterning of the elements can be done in various ways.
The approach taken most often is fabrication by lithographic
means (either optical or electron beam), which requires the
use of photoresists and lift-off techniques (For a review of
techniques used to deposit magnetic materials, see Ross,
2001). In ultrathin films, that is, films of a few atomic
layers, this technique is applicable only if the films are
protected against the ambient atmosphere. Moreover, it is
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Figure 5. Phase diagram of the lowest-energy configurations in stepped Co/Cu(001) elements. At the top, the evolution of uniaxial (Ku,
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domain patterns were determined by spin-SEM; the arrows point to the thicknesses t and lengths L of the elements. The micromagnetic
simulations have been performed on a narrow grid of (t, L) parameters. Two simulations are shown next to the experimental patterns with
the same (t, L) parameters. The contour lines plot 〈M2

x 〉 = ∫
(Mx/Ms)

2 dV as a measure of the deviations from the perfectly symmetric
vortex state. States are classified as single-domain (SD), vortex (V), and multidomain (MD) states. A true, uniform SD state with 〈M2

x 〉 = 0
(for t < 3.1 nm) exists in the region labeled SD. The region labeled V exhibits 〈M2

x 〉 values between 0.5 and 0.98 (see bar at the right). A
gradual transition from a perfect V to an almost uniform state labeled “SD” (with 〈M2

x 〉 close to 1) is observed for large L (>6 µm) near
t ≈ 5 nm.

often observed that the edges of lithographically produced
elements exhibit altered magnetic properties. Hard pinning
centers responsible for incomplete magnetization reversal
are frequently ascribed to such material issues. To study
the intrinsic magnetic properties of ultrathin uncovered
structures, a different approach is used here: the patterns are
produced by a nanostencil deposition technique in which the
elements are fabricated by evaporation through thin Si-nitride
shadow masks (Zahl, Bammerlin, Meyer and Schlittler,
2005), thus avoiding the use of lithographic steps during
fabrication. Square elements, having variable edge lengths
between 500 nm and 10 µm and thicknesses between 0.5
and 20 nm, were epitaxially grown using standard deposition
parameters (Weber, Allenspach and Bischof, 1997) and
in field-free environment. For smaller elements (250 to
<500 nm), stencil masks produced by optical interference

lithography have been employed, restricting the shape to
circular or elliptical disks.

The experimental work is compared with micromagnetic
simulations carried out with the OOMMF code (Donahue
and Porter, 1999). A new module was added to the 3D
solver package to take the complex anisotropy term relevant
for stepped Co films into account. The material parame-
ters used in the simulations were the literature values of
fcc Co, with a saturation magnetization Ms = 1424 kAm−1

and an exchange constant A = 30 × 10−12 Jm−1. For each
thickness, the anisotropy constants Ku and K1 as given at
the top of Figure 5 were used. A wide range of parameters
for the thickness and lateral size was simulated to arrive at
a full phase diagram of the minimum energy domain state
versus the thickness and lateral size of the element. Differ-
ent starting configurations for the simulations often resulted
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in different converged final states. Therefore, for each set of
parameters, a variety of domain states were calculated. Com-
parison of converged states always included the uniform SD
state and the flux-closed vortex state as starting configura-
tions. At small lateral sizes, flower, leaf, and buckle states
were included, whereas at large sizes, diamond states were
tested.

As with all micromagnetic simulations, it cannot be
guaranteed that the global energy minimum has been reached.
The same problem is faced in experiments: it is unclear to
what extent the as-grown, the remanent, or the demagnetized
state should be considered for such studies. All elements
have been demagnetized by an alternating field of sufficient
strength to overcome the anisotropy barriers. Although there
is no proof for either the simulations or the experiment that
the lowest-energy configuration has indeed been attained, we
are confident that the trend is correctly reproduced.

Figure 5 shows a representative selection of magnetic
configurations obtained experimentally. Different patterns are
observed depending on the thickness and lateral size: an SD
state, vortex (V) states gradually approaching a flux-closed
Landau state, and MD states. To facilitate a comparison of
this wide variety of states with the simulation results, each
simulated pattern is characterized by the averaged square of
the magnetization component along the easy magnetization
axis for the ultrathin Co film (the [110] direction), 〈M2

x 〉 =∫
(Mx/Ms)

2 dV . Accordingly, an SD state is described by
〈M2

x 〉 = 0 or 〈M2
x 〉 = 1 depending on the easy axis direction,

whereas a perfect V state has 〈M2
x 〉 = 0.5. The details of the

phase diagram are discussed next.
For elements with small lateral size L (typically below

500 nm), a transition from an SD to a V state is observed with
increasing thickness. This SD-to-V transition is characterized
by the balance of magnetostatic energy in the SD state with
the sum of the exchange and anisotropy energy in the V
state. The thinner the element, the smaller its demagnetizing
energy, and, correspondingly, the transition is shifted to
larger L. This SD-to-V transition has been investigated
before in Fe20Ni80 with negligible anisotropy. Qualitatively
the experimentally observed trend with size and thickness
was reproduced by numerical simulations even though the
simulations predict the transition to occur at smaller L

than what was experimentally observed (Cowburn et al.,
1999). The authors remarked, however, that the calculation
should be considered as a lower limit rather than an actual
representation of the boundary. This discrepancy is not
caused by numerical instabilities or inaccuracies of the finite-
difference method used in the simulation, as proved by
studies that compared the numerical simulations with an
analytical description of the SD-to-V transition (Jubert and
Allenspach, 2004; Vaz, Athanasiou, Bland and Rowlands,
2006). The analytical description and the simulations agreed,

but the discrepancy with the experiment remained and could
also not be attributed to a possible weak anisotropy. A likely
explanation is that roughness at the element edges could
be responsible for the discrepancy (Jubert and Allenspach,
2004). Including this roughness will indeed shift the SD-to-V
transition, albeit not sufficiently (Vaz, Athanasiou, Bland and
Rowlands, 2006).

For very small square elements, additional stable config-
urations exist, which are characterized by small deviations
from the SD state (Cowburn and Welland, 1998b; Pulwey,
Zölfl, Bayreuther and Weiss, 2003). They allow the demag-
netization energy to be reduced significantly by letting the
spins align themselves parallel to the element edges, with-
out introducing a complete vortex with its prohibitively large
exchange and anisotropy energy. In our stepped Co/Cu sys-
tem, the buckle or C state is the lowest-energy state for a
narrow band of parameters near the SD-to-V boundary for
L < 200 nm. No leaf state (Cowburn and Welland, 1998b)
exists because the configurational anisotropy is too small to
keep a diagonal magnetization against Ku and K1. Experi-
mentally, this region is not accessible: the smallest elements
investigated have a length L = 250 nm and a circular shape,
which suppresses the occurrence of these states.

At very small thicknesses, the magnetostatic energy is
small. Flux closure is not required and the SD state pre-
vails irrespective of the lateral size (Stamm et al., 1998).
As Ku is large, deviations from the uniform state are vir-
tually absent. A first phase transition occurs at t ≈ 3 nm, at
which the cost in demagnetization energy for the SD state
becomes larger than the exchange and anisotropy energy for
the V state. The observed configuration is strongly influ-
enced by anisotropy. Although the pattern is still derived
from a V configuration, it is more reminiscent of a two-
domain state with triangular closure domains at the edges.
Compared with a fully symmetric vortex, the two triangular
domains in which the magnetization points along the inter-
mediate axis are shrunk, and 〈M2

x 〉 is increased from 0.5
for a perfect vortex to ≈0.8. This leads to an appreciable
reduction of the anisotropy energy and overcompensates the
energy cost of the newly formed 180◦ domain wall. Only
at t = 3.1 nm, where Ku vanishes, a perfect fourfold sym-
metry of the vortex is regained, and hence 〈M2

x 〉 = 0.5. At
larger thickness, Ku changes sign, interchanging the role of
the easy and the intermediate magnetization axes. A second
phase transformation back to a more uniform state occurs,
rotated by 90◦ with respect to the direction at small thick-
ness. As the magnetostatic energy of this SD state increases
with increasing t , a distortion towards a V state occurs. The
deviations from the fourfold symmetry are less pronounced
than at small t . This argument is somewhat oversimplified,
because in reality the demagnetization energy scales with t/L

rather than with t . As a result, the demagnetization energy
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of the SD configuration increases with decreasing L. Corre-
spondingly, the SD state at t ≈ 4.5 nm becomes increasingly
less stable for smaller L and eventually disappears.

Squares with very large lateral size (L ≈ 10 µm) exhibit
additional phase transitions with increasing thickness (see
Figure 5): Starting from an SD state, a crossover to a V-type
configuration takes place, which reverts to an almost uniform
SD state before reaching – via some V component as char-
acterized by a reduction in 〈M2

x 〉 – a MD configuration. The
cost of the additional domain-wall energy is compensated by
the gain in magnetostatic energy, while anisotropy plays only
a minor role at this transition. Correspondingly, the V-to-MD
transition was also observed in low-anisotropy permalloy ele-
ments (Gomez et al., 1999). However, in various magnetic
force microscopy studies, it remained a matter of debate
whether the observed patterns have to be interpreted as sig-
natures of MD or of V states (Fernandez, Gibbons, Wall and
Cerjan, 1998; Van Bael, Temst, Moshchalkov and Bruynser-
aede, 1999; Kazakova, Hanson, Blomquist and Wäppling,
2001). In the Co elements considered here, the MD state is
experimentally already attained for thicknesses well below
those calculated. These irregularly shaped domain patterns
are reminiscent of the irregular domains observed in extended
in-plane films after demagnetization (Oepen et al., 1990).
Only in thicker elements straight domain walls are observed,
finally approaching the 3D world of micromagnetics. It is
worth mentioning that at even larger L, a further transition
has been reported in a system with fourfold anisotropy. In
15-nm-thick Fe(001) elements on GaAs, a transition from
the MD state to an essentially SD state is observed upon
increasing L to ≈50 µm (Gu et al., 1997). This transition was
ascribed to the competition of in-plane dipolar and anisotropy
energies, and in essence marks the transition to the uniformly
magnetized infinitely extended film, containing a few irreg-
ular closure domains at the element edges.

In summary, a very rich phase diagram of domain states in
stepped Co/Cu(001) elements exists: with varying lateral size
and thickness of the element, distinct configurations are iden-
tified, in particular SD, V, and MD patterns. This complex
behavior is caused by the complex anisotropy and its thick-
ness dependence. It results from the competition between
the uniaxial step-induced anisotropy, the cubic anisotropy,
and the magnetostatic stray-field energy. Anisotropy favors
a uniform magnetization pattern, whereas a reduction of
magnetostatic energy requires a flux-closure pattern. Micro-
magnetic simulations and experimental observations largely
agree. Simulations find marginal deviations from the per-
fectly uniform magnetization distribution in the region of
the phase diagram labeled as SD. The SD-to-V boundary at
small lateral size is, as in earlier studies, qualitatively repro-
duced by simulations or by an analytical approach, whereas
the V-to-MD transition at large lateral size is shifted to

reduced thicknesses. Apart from these minor discrepancies,
Figure 5 proves that micromagnetic simulations have become
an essential tool to calculate magnetization patterns in large
elements, extending well into the micrometer length scale,
thanks to the amazing increase in computing power in the
past few years.

The Co/Cu model system shows that anisotropy is crucial
for the type of domain patterns observed. As uniaxial
anisotropy is determined by the miscut or the step distance
of the substrate, these crystallographic aspects determine the
domain pattern in an adjustable and tunable manner. The
conclusion that the SD state prevails regardless of size, shape,
and magnetic history (Stamm et al., 1998) is only valid in the
narrow parameter space of the phase diagram in which the
thickness vanishes. However, it is remarkable that thanks to
the tunability of anisotropy stable SD configurations can be
induced and V states avoided at much larger thicknesses,
as is required for certain technological applications such as
magnetic random-access memories.

This discussion completely ignores thermal effects. Ultra-
thin films, however, in general show a pronounced tempera-
ture dependence of their magnetic properties, as for instance,
described in Section 2: fluctuations of domain patterns have
been observed near the Curie temperature. Moreover, if SD
particles become small enough, superparamagnetic behav-
ior is observed (Bean and Livingston, 1959): the anisotropy
energy is so small that thermal fluctuations can overcome
this barrier and reverse the magnetization spontaneously. In
Co/Cu(001) elements, we have observed ferromagnetic insta-
bilities. The magnetization in 300-nm dots that are only a
few ML thick begins to fluctuate on the timescale of the
spin-SEM experiment (see Figure 6). Hence, even though
ultrasmall elements are in an SD state at low temperature,
this state is prone to time-dependent magnetization switch-
ing. This precludes an application of these dots as magnetic
bits for ‘nanorecording’, as was suggested earlier (Stamm
et al., 1998).

4 CONFINED DOMAIN WALLS

4.1 Domain walls in small elements

The concept of a magnetic domain wall is a direct conse-
quence of the theory of magnetic domains proposed 100
years ago by Weiss (1907). On the typical length scale
encountered in a ferromagnet, this transition is a continuous
rotation from the magnetization direction in one domain to
the direction in the adjacent one, because it extends over
many lattice constants. Soon after Bloch (1932) realized
this fact, Landau and Lifshitz (1935) introduced a varia-
tional approach to calculate the first domain-wall width and
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Figure 6. Magnetization fluctuations in 300-nm Co dots on slightly miscut Cu(001), measured by spin-SEM. The four images from left to
right were taken consecutively. No magnetic field was applied. The in-plane magnetization component My along the page is shown, coded
as white for magnetization along +y and black along −y; magnetization along ±x appears gray. All dots except the one at the lower left
corner switch within the timescale of the experiment (about 4 h). The top left dot, for instance, switched from −y to ±x and to +y. The
abrupt gray scale change along the x direction within a dot indicates a magnetization switching from one line scan to the next.

wall profile. Only two material parameters are involved,
the exchange constant A and the anisotropy energy K . The
magnetization then varies as tanh(x/w0), with w0 being a
convenient definition of the wall width, w0 = √

(A/K).
This prototypical one-dimensional (1D) Bloch wall is

rarely observed because it requires an infinite sample or very
large anisotropy energy, as otherwise the dipolar magnetic
energy cannot be neglected. In a finite system, boundaries
such as edges and surfaces are important, and dipolar con-
tributions need to be taken into account. In a thin film with
in-plane anisotropy, for instance, the magnetization within a
Bloch wall would point out of plane, adding an appreciable
amount of surface demagnetizing energy to the total wall
energy. Néel (1955) proposed an alternative domain-wall
type, for which the magnetization rotates entirely within the
plane. This wall has an internal magnetostatic energy but no
surface energy, and is energetically favored in thin films. A
detailed analytical description of the Néel wall profile is com-
plex. Its main features are a narrow core, in which the magne-
tization rotates rapidly, and a long tail of several micrometers
in length, which is characterized by a gradual change of the
magnetization direction. The core width depends on the uni-
axial anisotropy and the shape anisotropy energy 1/2 µ0 M2

s ,
with wcore = c

√
(A/(K + 1/2 µ0 M2

s )), where c is a propor-
tionality constant of the order of 1 (Riedel and Seeger, 1971).

But even for this more complex case, the width of
a domain wall is solely determined by intrinsic material
parameters. Only very recently, it has become clear that
the width of a wall could depend on the dimensions of the
sample. In particular, very narrow domain walls could exist
in nanoscopic elements. A first experimental observation
of a wall width of a few nanometers was explained by a
pronounced increase of the exchange or by the breakdown of
the micromagnetic continuum approach on the atomic scale
(Pratzer et al., 2001). On the other hand, it was suggested
that a domain wall can be much narrower than w0 if the
angle of rotation across the wall is small (Ding, Wulfhekel
and Kirschner, 2002). However, the domain-wall width is
reduced in small dimensions even if both these arguments

are not applicable. An example of such a confined magnetic
domain wall is shown in Figure 7 for an epitaxial Co element
of 300-nm diameter and 10-nm thickness. On these length
scales, continuum micromagnetics still perfectly describes
the physics. The wall is a 180◦ Néel wall, that is, the
magnetization rotates by a large angle. A line profile across
the wall gives a wall width of about 50 nm. Compared
with an extended film, this value is roughly a factor of 4
smaller than the width of the unconstrained wall (Berger
and Oepen, 1992). Because the material parameters such
as magnetization, anisotropy, and exchange are largely the
same, the wall width is reduced for geometrical reasons: it
decreases when the lateral size of the element shrinks. This
reduction is caused by a modification of the magnetic dipolar
energy contribution at the element edges, as discussed in the
next paragraph in more detail.

A systematic study of the geometry dependence of the
Néel wall width has been done in lithographically fabricated
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Figure 7. (a) In-plane magnetization image of an individual epitax-
ial 300-nm-diameter Co dot on Cu(001), with a thickness of 10 nm,
fabricated using the nanostencil method (Zahl, Bammerlin, Meyer
and Schlittler, 2005) and measured in situ by spin-SEM. The dot
decays into a multidomain state containing two antiparallel regions
with a 180◦ domain wall in between. (b) Line scan across the wall
taken along the horizontal axis. The wall width is about 50 nm.
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micrometer-sized structures. In 20-nm-thick Fe20Ni80 rectan-
gular elements, a 180◦ Néel wall has been pinned at the cen-
ter by a narrow notch. The width of the element has been sys-
tematically varied between 1 and 4 µm, and the domain-wall
profile has been measured (Jubert, Allenspach and Bischof,
2004). Without notch, a well-defined two-domain state would
not be the lowest-energy state of the element. The dimen-
sions of the notch, however, can be chosen such that the wall
width is not affected by the presence of the notch. Figure 8
shows that the finite width of the element leads to wall con-
finement. The domain-wall width decreases with shrinking
element size, on length scales larger than a micrometer. The
limiting value in the infinitely extended 10-nm-thick film
could not be determined experimentally because it was not
possible to stabilize a 180◦ Néel wall after demagnetization in
an alternating field. In somewhat thicker films, long tails with
an extension of several micrometers were reported (Suzuki,
Wilts and Patton, 1968; Wong and Laughlin, 1996). In a small
element, these tails are limited by the element width, leading
to a modified profile and a reduced width of the Néel wall
core. Micromagnetic simulations confirm the experimentally
observed trend, but quantitative deviations remain. Similar
discrepancies have been found in studies of small disks (Vaz
et al., 2003). Their origin remains unclear. It has been pro-
posed that exchange is underestimated in the simulations
(Jubert, Allenspach and Bischof, 2004). The observed wall-
width reduction originates in the tails of the wall: they are
cut at the element edges. Hence, the magnetostatic charges
that are present in the tails need to be redistributed within
the entire Néel wall. This rearrangement of charges is rather
intricate and not fully understood theoretically (Holz and
Hubert, 1969). Such a wall-width reduction on a micrometer
scale is only expected to occur in Néel walls. Bloch walls

Element lateral size (µm)
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Figure 8. Domain-wall width versus element width for rectangular
Fe20Ni80 elements with a thickness of 20 nm, for a 180◦ Néel
wall. The experimental results (empty circles) are obtained from
spin-SEM; the simulations (filled circles) are calculated with
the OOMMF code. (Reproduced from Jubert, Allenspach and
Bischof, 2004, with permission from the American Physical Society.
 2004.)

are uncharged: wall tails are absent, and hence no energy is
gained by confining the wall on these length scales.

At length scales smaller than the exchange length, the
continuum micromagnetic approximation is no longer appro-
priate. The discreteness of the atomic lattice and hence of
the spin distribution becomes important. This was recog-
nized a long time ago (Hilzinger and Kronmüller, 1973).
For narrow domain walls, it was calculated that the coer-
cive field should depend on the exact position of the wall
with respect to the atomic positions in the crystal lattice, but
the effect should be on the order of a few percent only. In a
recent study, a drastic influence of the orientation of magnetic
domain walls in Fe nanowires was observed (Vedmedenko
et al., 2004). Regardless of the wire orientation, the domain
walls are oriented along two crystallographic directions (see
Figure 9). Most walls run along the [111] direction, and in
some cases a [331] direction is observed. Neither orientation

111

110

331

331

(a) (b) (c) (d)

111

111

110

111

Figure 9. Domain walls in a Fe/W(110) nanowire section, with a
thickness of 2 ML and a width of 20 nm. (a) Image taken by spin-
polarized scanning tunneling microscopy; the domain walls appear
dark, with orientations along the [110] and the [331] directions.
(b) Micromagnetic continuum simulation with isotropic exchange.
The domain walls (bright) run perpendicular to the nanowire
direction to minimize the wall length. (c–d) Monte Carlo simulation
on a discrete lattice; in (c) the exchange was taken to be identical
along all nearest neighbors, while in (d), lattice relaxation was
taken into account, with the largest exchange coupling taken along
the [110] direction. (Reproduced from Vedmedenko, Kubetzka and
Bergmann, 2004, with permission from the American Physical
Society.  2004.)
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can be reconciled with a micromagnetic simulation in which
a uniform exchange constant is assumed. Monte Carlo simu-
lations on the discrete lattice, however, are able to reproduce
the experimental result. The wall orientation is determined
by the atomic lattice and the strength of the exchange con-
stant between neighboring atoms along different directions.
In contrast to what is expected in continuum micromagnet-
ics, magnetic anisotropy and magnetostatic energy play only
a minor role in the wall orientation.

4.2 Domain walls at constrictions

The examples shown in Figures 7 and 8 illustrate that scaling
of the element size down to (sub)micrometer dimensions
leads to appreciable effects on the domain-wall width.
Micromagnetically, this is a straightforward extension of
what happens when going from a bulk ferromagnet to a thin
film. The existence of magnetic dipolar energy contributions
at the surface favors the transition from a Bloch to a Néel
wall, and, similarly, the existence of boundaries at which
the tail of the Néel wall is cut off leads to a redistribution
of magnetic charges across the entire domain wall. A
further rearrangement is expected if additional geometrical
changes are introduced, such as notches or protrusions.
Interestingly, this more complex geometry recently gained
more attention by theoreticians than the simpler case of a
small element.

Using a 1D analytical approach, Bruno predicted that
Bloch walls shrink in constrictions that are smaller in
size than the width of the unconstrained wall (Bruno,
1999). He suggested that this geometrically constrained wall
should be considered as a new wall type, different from
both a Bloch and a Néel wall. This work was inspired
by the intriguing result that the magnetoresistance in Ni
nanocontacts reached values of 280%, and it was specu-
lated that the domain-wall width depends on the contact
size (Garcı́a, Muñoz and Zhao, 1999). Shortly afterwards,
world record magnetoresistance values have been announced
(Chopra and Hua, 2002; Hua and Chopra, 2003), but a crit-
ical evaluation came to the conclusion that artifacts due
to magnetostrictive, magnetostatic, and magnetomechani-
cal effects can mimic ballistic magnetoresistance (Egelhoff
et al., 2004).

In the limit of very small constrictions, Bruno calculated
that the wall width is determined solely by geometry and not
by the material parameters. The wall width can be as small as
the constriction diameter. Such a narrow wall costs exchange
energy density. The total wall energy, however, can yet be
lowered with a larger energy density, because the wall is con-
fined to a smaller volume. Dipolar effects are neglected in
this model and it is assumed that the wall remains planar and

of Bloch type even within the constriction. However, clas-
sical Monte Carlo simulations and micromagnetic modeling
have shown that the Bloch wall is only stable at large con-
striction. When the constriction is made smaller, a crossover
to a vortex wall takes place before finally a Néel configu-
ration is energetically preferred at very small constrictions
(Labaye, Berger and Coey, 2002). Micromagnetic model-
ing showed that the domain walls are not straight but rather
2D (Jubert and Allenspach, 2005) or even 3D (Molyneux,
Osipov and Ponizovskaya, 2002) configurations which bend
outside the constriction area. Thus, while the phenomenon
of a geometrically constrained domain wall is well described
by the analytical model, the restriction to 1D fails to predict
the wall-width reduction quantitatively. A direct compari-
son of the analytical model to micromagnetic simulations
is given in Figure 10. In contrast to the analytical model,
the simulations do not show scaling: it is the constriction
size and not the ratio of constriction to element size that
matters (Jubert and Allenspach, 2005). The origin of this dis-
crepancy stems from the assumption of the analytical model
that the wall remains planar, thus having a length extending
throughout the element if the wall is positioned outside the
constriction.

Experimentally, Bloch walls with decreased width have
been observed by spin-polarized scanning tunneling micros-
copy (STM) in epitaxial Fe stripes which self-organize on
W(110) substrates: the unconstrained wall width is 6 nm,
the wall pinned at the constriction of about 1 nm in size
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Figure 10. (a) Schematic description of a thin rectangular magnetic
element with width 2d1 and length 2S1 containing a constriction
characterized by its width 2d0 and its length 2S0. (b) Evolution
of the domain-wall width versus constriction dimension d0 for
various values of S0 and S1 as given in the inset, calculated by
micromagnetic simulations with the OOMMF code. Both axes
are normalized with the unconstrained Bloch wall width, w0 =√

(A/K). The lines give the wall-width variations calculated with
Bruno’s analytical model for three ratios of S1/S0. (Reproduced
from Jubert and Allenspach, 2005  2005, with permission from
Elsevier.)
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is reduced to 2 nm (Pietzsch, Kubetzka, Bode and Wiesen-
danger, 2000). Pinning of an in-plane domain wall at a litho-
graphically fabricated NiFe constriction has been observed
by magnetic force microscopy in a search for increased mag-
netoresistance effects (Miyake et al., 2002). Even though
the wall width was found to be reduced, no evidence of a
substantial ballistic magnetoresistance was observed. Com-
parison with simulations is difficult in this case because the
wall is a head-to-head domain wall. A systematic study to
correlate the constriction geometry to the wall width has
been performed on 180o Néel walls (Jubert, Allenspach
and Bischof, 2004). These walls were stabilized in thin
Ni80Fe20 elements containing a constriction by employ-
ing a rectangular shape, which favors an antiparallel two-
domain state. This configuration with a 180◦ Néel wall
positioned in the constriction is obtained after demagneti-
zation by an alternating magnetic field. Without constriction,
an SD prevails. The 2D magnetization pattern (and hence
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Figure 11. Fe20Ni80 rectangle 10 µm × 4 µm in size containing a
constriction with d0 = 225 nm and S0 = 500 nm; thickness 7.5 nm.
(a) Topographic image and (b) magnetization configuration after
demagnetization as determined by spin-SEM. The arrows indicate
the magnetization direction. (c) Micromagnetic simulation for an
element having the same dimensions. (d) Schematic defining the
element and constriction parameters. (e) Domain-wall profile across
the constriction. The experimental profile is compared with the sim-
ulation (dash-dotted line) and a hyperbolic tangent function (dashed
line). (Reproduced from Jubert, Allenspach and Bischof, 2004, with
permission from the American Physical Society.  2004.)

the domain-wall profile) in the constriction was determined
by spin-SEM and compared with micromagnetic simulations
(see Figure 11).

The profile across the wall is shown in Figure 11(e).
The agreement with the calculated profile is excellent. A
symmetric Néel wall with its two distinct features can be
identified: a core region with a rapid magnetization rotation,
which can be approximated by a hyperbolic tangent function,
and long tails extending over large distances.

The wall is somewhat more complex, though. A close-
up of the constriction region illustrates that it is 2D and
asymmetric (see Figure 12). The magnetization rotates by
180◦ at the constriction, but for topological reasons differ-
ently at the two constriction edges. Exchange forces the
spins to remain as closely aligned as possible with each
other, and hence the rotation occurs over a longer distance
in the outer part of the turn. The small intermediate domain
nucleated at one constriction edge results from the fact that
low-angle Néel walls are energetically favored over large-
angle walls, and thus energy can be gained by replacing
a 180◦ domain wall by two 90◦ walls (Holz and Hubert,
1969). A micromagnetic simulation successfully reproduces
all these features (see Figure 12). The same energy argu-
ment also applies to a Bloch wall. Hence, a Bloch wall
is also, in general, a 2D object. However, it remains sym-
metric at the constriction edges because the magnetization
rotates in planes perpendicular to the film surface (Jubert
and Allenspach, 2005).
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Figure 12. Magnetization configuration in a 7.5-nm-thick Fe20Ni80

rectangular element containing a constriction, measured by spin-
SEM. Only the center part of the 10 µm × 4 µm rectangle is shown,
exhibiting a two-domain state with magnetization along +y (to
the left of the constriction) and −y (to the right). The gray scale
represents the magnetization component Mx , the arrows give the
in-plane magnetization direction as determined from the measured
Mx and My components. The wall configuration is asymmetric
with respect to the top and bottom edges, with a wider wall
exhibiting a triangular domain with magnetization along +x at the
top constriction. The constriction dimensions are d0 = 225 nm and
S0 = 500 nm, as defined in Figure 11(d). (Adapted from Allenspach
and Jubert, 2006.)



Magnetic properties of systems of low dimensions 15

10
0

100

200

300

400

100

d0 (nm)

w
 (

nm
)

x
y

Figure 13. Domain-wall width w versus constriction dimension
d0 in Fe20Ni80 with S0 = 100 nm (triangles, dotted line), 250 nm
(circles, dashed line), and 500 nm (squares, solid line). Dots are
experimental values and lines are micromagnetic simulations. The
element is 7.5-nm thick, with a lateral size of 10 µm × 4 µm. Two
simulated domain walls with fixed d0 but varying S0 show the
outward bending of the wall. (Reproduced from Jubert, Allenspach
and Bischof, 2004, with permission from the American Physical
Society.  2004.)

By varying the constriction dimensions, the wall width
can be modified continuously over a wide range. Figure 13
presents the evolution of the wall width as a function of
the constriction width d0, with the constriction length S0

as a parameter. For small d0, the domain-wall width w is
almost constant. As d0 becomes larger than about 100 nm, w

increases strongly with d0. The minimum value of w attained
at small d0 depends on S0, with w being smaller for smaller
S0. The increase of w for larger d0 is steeper for smaller
S0. The domain-wall widths determined from the simulated
micromagnetic patterns reproduce the experimental trend
very well. The 2D nature of the patterns helped us understand
the observed wall-width variations in a quantitative way.

Far from the constriction edges, the 180◦ Néel wall
width is determined by the material parameters and the
extension of the element, as discussed in Section 4.1. The
width of this wall is defined to be w0. If the wall is
located in a constriction, however, it is affected by the
constriction parameters. The magnetization is forced to lie
parallel to the constriction edges, because the dipolar energy
can be minimized in this way. Hence, the wall width locally
corresponds to d0. Such a small wall width cannot be
maintained throughout the constriction if 2d0 < w0 because
the cost in exchange energy is too large. Hence, the wall
deforms in the constriction, adopting a 2D shape with
outward deformation (see lower inset in Figure 13). The
situation is completely analogous to the case of the Bloch
wall presented in Figure 10. For large S0, the wall profile

in the constriction center is unaffected as the deformation
is restricted to the region near the edges. In this case, the
measured wall width is almost constant, w ≈ w0 (see upper
inset in Figure 13). For small S0, on the other hand, the
wall width at the center is reduced, w < w0. Keeping it at
a width w0 would require a very rapid wall variation along
the constriction and hence cost excessive exchange energy.
Accordingly, a reduction of w is observed below a threshold
value of S0 ≈ 250 nm.

The opposite limit of 2d0 > w0 can be understood along
the same lines. Again, the wall attains a 2D shape, but bends
inward instead of outwards. For small S0, the wall at the
center becomes wider rather than narrower, w > w0. For
large S0, the confinement is again limited to the constriction
edges, and correspondingly the increase of w is shifted to
larger d0. In the limit of d0 approaching S0, the domain-
wall-type changes completely: the domain formed at the
constriction edge visible in Figure 12 expands toward the
center of the constriction, leading to a splitting of the
180◦ Néel wall into two 90◦ Néel walls, as was observed
experimentally (Jubert, Allenspach and Bischof, 2004).

These experiments demonstrate that domain-wall dimen-
sions and profiles can be tailored by constriction geometry.
For the same material properties, the wall width can be varied
in a wide range. It is strongly confined in small and narrow
constrictions, but stretched for wide constrictions owing to
significant dipolar energy contributions at the constriction
edges. For specific constriction geometries, even the wall
type can be changed. These observations are not limited to
the prototypical 180◦ Néel walls considered here. 90◦ Néel
walls in T-shaped junctions exhibit the same behavior: the
wall width pinned at the contact region strongly depends on
the contact dimensions (Haug et al., 2005).

In conclusion, magnetic domain walls in small elements
can be strongly affected by two geometrical approaches, by
the lateral dimensions of the element, and by constrictions.
Lateral confinement causes Néel walls to shrink because of
a redistribution of demagnetization versus exchange energy,
while Bloch walls are not affected. Constrictions influence
both Néel and Bloch walls: wall profiles can be reduced
or expanded in width and attain a complex 2D topology,
and wall types can be modified. This geometrical tunability
offers an additional handle on a domain wall. It is possi-
ble to tailor domain walls without resorting to changing the
material parameters. This might become important for future
applications in which logical bits are represented as individ-
ual domain walls (Allwood et al., 2002; Parkin, 2004). In
such concepts, geometrical effects are also successfully used
to inject domain walls (Thomas et al., 2005) or to favor a
propagation direction, because the pinning and de-pinning
of a domain wall depends on the geometry (Hirohata et al.,
2000; Allwood, Xiong and Cowburn, 2004; Himeno, Kasai
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and Ono, 2005). The examples presented demonstrate that
experiments, micromagnetic simulation and – where avail-
able – analytical models agree reasonably well. Some dis-
crepancies remain and are not yet resolved, even on length
scales at which continuum micromagnetics is still applica-
ble. Theoretically, also the thermal effects are still largely
unexplored. A recent study predicts an interesting change
in wall profile because of thermal activation (Kazantseva,
Wieser and Nowak, 2005).
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1 DOMAIN WALL PROPAGATION BY AN
EXTERNAL MAGNETIC FIELD

1.1 Detection of domain wall propagation using
GMR effect

Recent developments in nanolithography techniques have
made it possible to prepare well-defined dots and wires; mag-
netism in mesoscopic systems has become an updated topic
from both the scientific and technological points of view. The
process of magnetization reversal in a single-domain ferro-
magnetic structure is fundamental in magnetism, and it has
been of considerable interest to theorists and experimental-
ists since the pioneering work of Néel. An understanding
of this problem is of fundamental importance for the mag-
netization reversal in complex systems, such as assemblies
of fine particles, thin films, and bulk materials. The process
of magnetization reversal is also very important in practical
applications such as hard disk drive (HDD) magnetoresistive
random access memory (MRAM) and so on.

Nucleation and propagation of a magnetic domain wall
are two important processes in magnetization reversal. These

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

processes can be clearly seen in the magnetic wire with
submicron width. As shown in Figure 1(a), in very narrow
ferromagnetic wires, the magnetization is restricted to be
directed parallel to the wire axis due to the magnetic shape
anisotropy. When the external magnetic field is applied
against the magnetization, a magnetic domain wall nucleates
at the end of the wire and the magnetization reversal proceeds
by the propagation of this domain wall through the wire
(Figure 1b and 1c). However, it is very difficult to detect
the propagation of the domain wall, because the change in
magnetic moments in this process is very small due to the
small volume of the magnetic wire.

Here, the principle of how to detect the domain wall
propagation in magnetic wires using the magnetoresistance
gaint magnetoresistance (GMR) effect is described. The
GMR effect is the change in electrical resistance caused by
the change of the magnetic structure in magnetic multilayers
(Baibich et al., 1988). This means that the magnetic structure
of the system can be detected by resistance measurements.
Consider the GMR system shown in Figure 2, which is
composed of magnetic, nonmagnetic, and magnetic layers.
The resistance is largest for the antiparallel magnetization
configuration (Figure 2a), and it is smallest for the parallel
configuration (Figure 2d). During the magnetization reversal
of one of the two magnetizations (Figure 2b and 2c), the
total resistance of the system is given by the sum of
the resistances of the parallel magnetization part and the
antiparallel magnetization part. Thus, the resistance of this
system, R, is given by

R = x

L
R↑↑ + L − x

L
R↑↓ (1)

where x is the position of the domain wall, L is the length of
the wire, R↑↑ is the resistance for parallel configuration, and
R↑↓ is the resistance for antiparallel configuration. Therefore,



2 Magnetic configurations in small elements, magnetization processes and hysteretic properties

Domain wall

(a)

(b)

(c)

H

Figure 1. Schematic illustration of the magnetization reversal pro-
cess in a magnetic wire.

the position of the domain wall can be determined by the
resistance measurements.

The above idea has been demonstrated experimentally
(Ono, Miyajima, Shigeto and Shinjo, 1998). The samples
were prepared using lift-off techniques. Ni81Fe19(20 nm)/
Cu(10 nm)/Ni81Fe19(5 nm) trilayer film was deposited on the
patterned mask by electron-beam evaporation in a vacuum
of 1 × 10−8 Torr. The wire with trilayered structure was

(a)

(b)

(c)

(d)

Rmin

Rmax

Time

Figure 2. Schematic explanation for the detection of the domain
wall propagation in magnetic wires using the magnetoresistance
effect.

obtained after the resist mask was removed. Owing to the
large Cu-layer thickness, the interlayer exchange coupling
between the thin and thick NiFe layers is negligible. The
magnetoresistance measurements were performed at 300 K.
The magnetic field was applied along the axis of the wires.
Resistance was determined using a four-point dc technique.
As seen in Figure 3, the samples have four current–voltage
terminals where the voltage is probed over a distance of
20 µm. Furthermore, the samples have an artificial neck
(0.35-µm width) introduced at one-third of the distance from
one voltage probe in order to monitor the magnetic domain
wall propagation.

Figure 4 shows the resistance of the trilayer system as
a function of the external magnetic field. Prior to the
measurement, a magnetic field of 100 Oe was applied in
order to achieve magnetization alignment in one direction.
Then, the resistance was measured in steps of 1 Oe as the
field was swept toward the counter direction. The result of
the magnetoresistance measurement displays essentially four
very sharp leaps. The first and second leaps correspond to
the magnetization reversal of the thin NiFe layer, whereas
the third and fourth leaps correspond to the magnetization
reversal of the thick NiFe layer.

The magnetization reversal takes place in the sample as
follows: As long as the counter field is smaller than the critical
field, the magnetizations of both thin and thick NiFe layers
align parallel, and the resistance shows the lowest value.
As the applied magnetic field exceeds 5 Oe, the resistance
abruptly jumps and maintains a constant value up to 10 Oe.
Then, exceeding 10 Oe, the resistance abruptly jumps again
and maintains the largest value up to 22 Oe. The result indicates

20 µm

0.5 µm 0.5 µm

21

V

I
I

V

Neck

0.35 µm

20 µm

0.5 µm

−V V

I I

Figure 3. SEM image and schematic illustration of the sam-
ple. The sample consists of a Ni81Fe19(20 nm)/Cu(10 nm)/
Ni81Fe19(5 nm). (Reproduced from Ono et al., 1998, with permis-
sion from the American Physical Society.  1998.)
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Figure 4. Resistance as a function of the external magnetic field at
300 K. The magnetic domain structures inferred from the resistance
measurement and the direction of the external field are schematically
shown. (Reproduced from Ono et al., 1998, with permission from
the American Physical Society.  1998.)

that the antiparallel magnetization alignment is realized at an
external field between 11 and 22 Oe, where the resistance shows
the largest value. The ratio of the resistance changes at the first
and second leaps is 1:2. This means that one-third of the total
magnetization of the thin NiFe layer changes its direction at
the first leap in Figure 4, since the GMR change is directly
proportional to the switching layer magnetization. The ratio,
1:3, corresponds to the ratio of the length between one voltage
probe and the neck to the overall length of the wire between the
voltage probes. Therefore, in this case, a magnetic domain wall
nucleates in the shorter part of the wire (left side of the scanning
electron microscopy (SEM) image in Figure 3) and propagates
to the neck, where it is pinned up to 10 Oe. The second leap,
upon exceeding 10 Oe, corresponds either to de-pinning of
the magnetic domain wall from the neck or to nucleation and
propagation of another magnetic domain wall on the other side
of the neck (right side of the SEM image in Figure 3). These
two possibilities cannot be distinguished from the result shown
in Figure 4. Since the ratio of the resistance changes at the third
and fourth leaps is also 1:2, the magnetization reversal of the
thick NiFe layer takes place in the same manner as in the thin
NiFe layer described in the preceding text.

It was shown that a magnetic domain wall can be trapped
by the artificial structure introduced into the wire. This is an
example of the control of the magnetization reversal process
by controlling the shape of mesoscopic magnets. Though

the nucleation position of the domain wall could not be
determined in the above experiments, it has been reported
that one can inject a domain wall from one end of a wire
by breaking its symmetry (Shigeto, Shinjo and Ono, 1999).
It should be noted that the GMR method corresponds to a
very highly sensitive magnetization measurement. For the
sample investigated in the preceding text, the sensitivity is
as high as 10−13 emu (107 spins). The method, in principle,
can be applied to smaller samples as long as the resistance
of the samples can be measured and the relative sensitivity
increases with decreasing sample volume.

1.2 Domain wall velocity measurements

Sixtus and Tonks (1931) first measured the domain wall
velocity in bulk magnetic wires. Figure 5 shows a schematic
diagram of the circuit for velocity measurements. Under a
homogeneous magnetic field, a magnetic domain wall is
nucleated by adding a local magnetic field, which is produced
by an adding coil. The domain wall traveling along the
wire from left to right produces successive voltage surges
in two search coils, which are placed around the wire at a
known separation. The velocity of the domain wall can be
calculated from the time interval of the voltage surges and the
separation of the coils. The domain wall velocity, obtained
experimentally, was discussed in terms of the dissipation of
the magnetic energy by eddy currents.

The GMR detection method described in Section 1.1 has
an advantage in dynamic measurements because of its sim-
plicity. Here, velocity measurements of a single-domain wall
propagating in a magnetic nanowire are presented (Ono et al.,
1999). Because the GMR detection method provides informa-
tion on the domain wall position, as shown in equation (1),

Ballistic galvanometre

Time
meas.

Search coil
circuit I Search coil

circuit II

Thyr.Thyr.

Ampl. Ampl.

10 t.
Adding

coil
Search

coil
Wire under

strain

I II
5000 t. 5000 t.

Main coil (1200 t.)

Figure 5. Schematic diagram of the circuit for velocity measure-
ments by Sixtus and Tonks (1931). (Reproduced from Sixtus &
Tonks 1931, with permission from the American Physical Society.
 1931.)
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the domain wall velocity, v = dx/dt , can be determined by
the time-domain measurements, and v is given by

v = dx

dt
= L

R↑↓ − R↑↑
dR

dt
(2)

Thus, the GMR method can offer the time variation of veloc-
ity. This is an advantage over the experiments on bulk mag-
netic wires by Sixtus and Tonks, where only the average
velocity of a domain wall can be obtained during the prop-
agation in bulky scale (Sixtus and Tonks, 1931).

The samples for the domain wall velocity measure-
ments have trilayer structures of Ni81Fe19(40 nm)/Cu(20 nm)/
Ni81Fe19(5 nm). The width of the wire is 0.5 µm and the sam-
ple has four current–voltage terminals where the voltage is
probed over a distance of 2 mm. The magnetic field was
applied along the wire axis. The resistance was determined
using a four-point dc technique. An electrical current flowing
in a sample was supplied by a battery (1.5 V) to minimize
the noise from a current source. The magnitude of the elec-
trical current was adjusted by using a proper resistance in the
circuit. The typical current was 100 µA. The voltage across
two voltage probes was monitored by a differential pream-
plifier and a digital oscilloscope. The current passing through
the electromagnet was also monitored by the digital oscillo-
scope, so as to obtain both resistance and applied magnetic
field during the magnetization reversal, simultaneously.

Figure 6 shows the resistance change of the trilayer system
at 77 K as a function of the applied magnetic field. Prior to
the measurement, a magnetic field of 500 Oe was applied in
order to align the magnetization in one direction. Then, the
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Figure 6. Resistance as a function of the external magnetic field
at 77 K. The resistance was measured at 10 ms intervals while
sweeping the field toward the counter direction at the sweeping
rate of 20 Oe s−1. The magnetic domain structures inferred from
the resistance measurement are schematically shown. (Reproduced
from T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, and
T. Shinjo, Science, 284 (1999), with permission from AAAS.)

resistance was measured at 10 ms intervals with the sweeping
field toward the counter direction at the sweeping rate of
20 Oe s−1. Provided that the counter field is smaller than a
critical field (70 Oe), both magnetizations in two NiFe layers
are aligned in parallel, and the resistance takes the smallest
value. When the applied magnetic field exceeds 70 Oe, the
resistance increases and remains at the largest value until
the field reaches 120 Oe, and then the resistance abruptly
decreases to the smallest value. The result indicates that the
antiparallel magnetization alignment is realized in the field
range between 80 and 120 Oe, where the resistance shows
the largest value. The change in resistance at 80 and 120 Oe
is attributed to the magnetization reversals of the 5-nm-thick
NiFe and 40-nm-thick NiFe layers, respectively. Since we did
not find any measured point during the magnetization reversal
of the 40-nm-thick NiFe in Figure 6, it is concluded that the
magnetization reversal of the 40-nm-thick NiFe is completed
within 10 ms. On the other hand, the magnetization reversal
of the 5-nm-thick NiFe proceeds gradually with increasing
applied magnetic field. This indicates that the magnetization
reversal of the 5-nm-thick NiFe takes place by the pinning and
de-pinning of the magnetic domain wall. Hereafter, we focus
on the magnetization reversal of the 40-nm-thick NiFe.

Figure 7 shows an experimental result on the time vari-
ation of the resistance during the magnetization reversal
of the 40-nm-thick NiFe layer. The data were collected at
40-ns intervals. The linear variation of resistance with time
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Figure 7. Time variation of the resistance during the magnetization
reversal of the 40-nm-thick NiFe layer at 77 K, which was col-
lected at 40 ns intervals. The applied magnetic field simultaneously
monitored by digital oscilloscope was 121 Oe. As the sweeping
rate of the applied magnetic field was 20 Oe s−1, the variation of
the applied magnetic field during magnetization reversal is less
than 2 × 10−5 Oe, that is, the applied magnetic field is regarded
as constant during the measurements. (Reproduced from T. Ono,
H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, and T. Shinjo, Sci-
ence, 284 (1999), with permission from AAAS.)
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in Figure 7 indicates that the propagation velocity of the
magnetic domain wall is constant during the magnetization
reversal of the 40-nm-thick NiFe layer. The propagation
velocity of the magnetic domain wall at the applied field
of 121 Oe is estimated to be 182 m s−1, which is calculated
from the separation (2 mm) of the two voltage probes and the
time (11 µs) the wall traveled across it. Since the sweeping
rate of the applied magnetic field was 20 Oe s−1, the variation
of the applied magnetic field during magnetization reversal
is less than 2 × 10−5 Oe, that is, the applied field is regarded
as constant during the measurements.

Since the reversal field of the 40-nm-thick NiFe varied
in every measurement, ranging from 90 to 140 Oe, the
wall velocities at various magnetic fields were obtained by
repeating the measurements. The result at 100 K is shown in
Figure 8. The wall velocity depends linearly on the applied
magnetic field, and it is described as v = µ(H –H0), where v

is the wall velocity, H the applied magnetic field, µ so-called
wall mobility, and it was obtained that µ = 2.6 (m s−1 Oe−1)

and H0 = 38 (Oe). Here, we utilized the statistical nature
of the magnetization reversal field to obtain the external
magnetic field dependence of the domain wall velocity. A
similar but more sophisticated experiment was performed
by Himeno et al. (2004). They set two Cu wires to cross
the magnetic wire at the ends of the wire, which produced
a pulsed local magnetic field by a flow of pulsed electric
current. This pulsed local magnetic field can nucleate a
domain wall at the end of the magnetic wire under a given
external magnetic field. This enables us to determine the
domain wall velocity as a function of the external magnetic
field in a controlled manner.
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Figure 8. Dependence of domain wall velocity v on amplitude
H of the applied magnetic field at 100 K. The wall velocity
depends linearly on the applied magnetic field and is described as
v = µ(H − H0), where µ = 2.6 (m s−1 Oe−1) and H0 = 38 (Oe).
(Reproduced from T. Ono, H. Miyajima, K. Shigeto, K. Mibu,
N. Hosoito, and T. Shinjo, Science, 284 (1999), with permission
from AAAS.)

Magneto-optic Kerr effect magnetometer in micron-scale
spatial resolution, together with the pulsed magnetic field,
offers another approach to measure a domain wall velocity.
It has been reported that very high domain wall velocity
over 1000 m s−1 was realized for a single-layer 5-nm-thick
Ni80Fe20 wire with 200 nm in width (Atkinson et al., 2003).
The result has been reproduced well by the micromagnetics
simulation by considering the corrugation of the magnetic
wire (Nakatani, Thiaville and Miltat, 2003).

2 DOMAIN WALL PROPAGATION BY AN
ELECTRIC CURRENT

Figure 9(a) illustrates a domain wall between two domains
in a magnetic wire; the arrows show the direction of mag-
netic moments. The magnetic domain wall is a transition
region of the magnetic moments between domains, and the
direction of moments gradually changes in the domain wall.
What will happen if an electric current flows through a
domain wall? Suppose a conduction electron passes though
the domain wall from left to right. During this travel, the spin
of conduction electron follows the direction of local magnetic

DW

(a)

(b)

(c)

Figure 9. Schematic illustration of current-driven domain wall
motion; (a) a domain wall between two domains in a magnetic wire.
The arrows show the direction of magnetic moments. The magnetic
domain wall is a transition region of the magnetic moments between
domains, and the direction of moments gradually changes in the
domain wall. (b) The spin of conduction electron follows the
direction of local magnetic moments because of the s–d interaction.
(c) As a reaction, the local magnetic moments rotate in the reverse
direction, and in consequence, the electric current displaces the
domain wall.
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moments because of the s–d interaction (Figure 9b). As a
reaction, the local magnetic moments rotate in the reverse
direction (Figure 9c), and, in consequence, the electric cur-
rent can displace the domain wall (Berger, 1984, 1992). This
current-driven domain wall motion provides a new strategy
to manipulate a magnetic configuration without the assis-
tance of a magnetic field, and will improve drastically the
performance and functions of recently proposed spintronic
devices, whose operation is based on the motion of a mag-
netic domain wall (Allwood et al., 2002; Versluijs, Bari and
Coey, 2001). Reports on this subject have been increasing
in recent years from both theoretical (Tatara and Kohno,
2004; Li and Zhang, 2004; Zhang and Li, 2004; Waintal and
Viret, 2004; Thiaville, Nakatani, Miltat and Vernie, 2004;
Thiaville, Nakatani, Miltat and Suzuki, 2005) and experi-
mental (Grollier et al., 2003; Tsoi, Fontana and Parkin, 2003;
Klaui et al., 2003; Kimura, Otani, Tsukagoshi and Aoy-
agi, 2003; Yamaguchi et al., 2004; Lim et al., 2004; Vernier
et al., 2004; Yamanouchi, Chiba, Matsukura and Ohno, 2004;
Saitoh, Miyajima, Yamaoka and Tatara, 2004; Klaui et al.,
2005) points of view because of its scientific and techno-
logical importance. However, many important results can-
not be reviewed here owing to limitations of space. In this
section, only the result of direct observation of the current-
driven domain wall motion in a microfabricated magnetic
wire is presented (Yamaguchi et al., 2004). Magnetic force
microscopy (MFM) is used to show that a single-domain wall
can be displaced back and forth by positive and negative
pulsed currents.

An L-shaped magnetic wire with a round corner, as
schematically illustrated in Figure 10, was prepared for the
experiments. One end of the L-shaped magnetic wire is
connected to a diamond-shaped pad, which acts as a domain
wall injector (Shigeto, Shinjo and Ono, 1999), and the other
end is sharply pointed to prevent a nucleation of a domain
wall from this end (Schrefl, Fidler, Kirk and Chapman,
1997). L-shaped magnetic wires of 10-nm-thick Ni81Fe19

were fabricated onto thermally oxidized Si substrates by
means of an e-beam lithography and a lift-off method. The
width of the wire is 240 nm.

In order to introduce a domain wall positioned in the
vicinity of the corner, the direction of the external magnetic
field was tilted from the wire axis in the substrate plane as
shown in Figure 10. In the initial stage, a magnetic field
of +1 kOe was applied in order to align the magnetization
in one direction along the wire. Then, a single-domain wall
was introduced by applying a magnetic field of −175 Oe.
After that, the MFM observations were carried out in the
absence of a magnetic field. The existence of the single-
domain wall in the vicinity of the corner was confirmed as
shown in Figure 11(a). The domain wall is imaged as a bright
contrast, which corresponds to the stray field from positive

10 µm

10 µm

0.5 µm

R3 µm

240 nm MFM scanning area

26°
+H

Figure 10. Schematic illustration of a top view of the sample. One
end of the L-shaped wire is connected to a diamond-shaped pad,
which acts as a domain wall injector, and the other end is sharply
pointed to prevent a nucleation of a domain wall from this end.
The wire has four electrodes made of Cu. MFM observations were
performed for the hatched area at room temperature. (Reproduced
from Yamaguchi et al., 2004, with permission from the American
Physical Society.  2004.)

magnetic charge. In this case, a head-to-head domain wall
is realized as illustrated schematically in Figure 11(d). The
position and the shape of the domain wall were unchanged
after several MFM scans, indicating that the domain wall was
pinned by a local structural defect, and that a stray field from
the probe was too small to change the magnetic structure and
position of the domain wall.

After the observation of Figure 11(a), a pulsed current
was applied through the wire in the absence of a magnetic
field. The current density and the pulse duration were
7.0 × 1011 A m−2 and 5 µs, respectively (The values of the
current density here are different from those in Yamaguchi
et al., (2004). In Yamaguchi et al., (2004), the current density
has been calculated using the pulsed voltage applied to
the sample with the sample resistance at room temperature.
However, it was found in the following study that the sample
resistance, when the current-driven domain wall motion
occurred, was much higher than the sample resistance at
room temperature. Thus, the values of the current density
in Yamaguchi et al., (2004) were inaccurate. The current
density presented here was calculated using the value of the
pulsed current, which was directly measured). Figure 11(b)
shows the MFM image after an application of the pulsed
current from left to right. The domain wall, which had been
in the vicinity of the corner (Figure 11a), was displaced from
right to left by the application of the pulsed current. Thus,
the direction of the domain wall motion is opposite to the
current direction. Furthermore, the direction of the domain
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Figure 11. (a) MFM image after the introduction of a head-to-
head domain wall. The domain wall is imaged as a bright contrast,
which corresponds to the stray field from positive magnetic charge.
(b) MFM image after an application of a pulsed current from left to
right. The current density and pulse duration are 7.0 × 1011 A m−2

and 5 µs, respectively. DW is displaced from right to left by the
pulsed current. (c) MFM image after an application of a pulsed
current from right to left. The current density and pulse duration
are 7.0 × 1011 A m−2 and 5 µs, respectively. The domain wall is
displaced from left to right by the pulsed current. (d) Schematic
illustration of a magnetic domain structure inferred from the MFM
image. The domain wall has a head-to-head structure.

wall motion can be reversed by switching the current polarity
as shown in Figure 11(c). These results are consistent with
the spin transfer mechanism (Berger, 1984, 1992).

The same experiments for a domain wall with different
polarities, a tail-to-tail domain wall, were performed to
examine the effect of a magnetic field generated by the
current (Oersted field). The tail-to-tail domain wall was
generated by the following procedure. A magnetic field of
−1 kOe was applied in order to align the magnetization in the
direction opposite to that in the previous experiment. Then,
a tail-to-tail domain wall (DW) was introduced by applying
a magnetic field of +175 Oe. The introduced DW is imaged
as a dark contrast in Figure 12(a), which indicates that a tail-
to-tail domain wall is formed as schematically illustrated in
Figure 12(d). Figure 12(a–c) show that the direction of the
tail-to-tail DW displacement is also opposite to the current
direction. The fact that both head-to-head and tail-to-tail
domain walls are displaced opposite to the current direction
indicates clearly that the domain wall motion is not caused
by the Oersted field.

Figure 13(a–k) are successive MFM images with one
pulsed current applied between each consecutive image. The
current density and the pulse duration were 7.0 × 1011 A m−2

and 0.5 µs, respectively. Each pulse displaced the domain

1 µm

DW

Current

Current

(a)

(b)

(c)

(d)

Figure 12. (a) MFM image after the introduction of a tail-to-tail
domain wall. The domain wall is imaged as a dark contrast,
which corresponds to the stray field from negative magnetic charge.
(b) MFM image after an application of a pulsed current from left to
right. The current density and pulse duration are 7.0 × 1011 A m−2

and 5 µs, respectively. DW is displaced from right to left by the
pulsed current. (c) MFM image after an application of a pulsed
current from right to left. The current density and pulse duration
are 7.0 × 1011 A m−2 and 5 µs, respectively. The domain wall is
displaced from left to right by the pulsed current. (d) Schematic
illustration of a magnetic domain structure inferred from the MFM
image. The domain wall has a tail-to-tail structure.

wall opposite to the direction of the current. The difference in
the displacement for each pulse is possibly due to the pinning
by randomly located defects. The average displacement
per pulse did not depend on the polarity of the pulsed
current. The average domain wall displacement per pulse as a
function of the pulse duration under the condition of constant
current density of 7.0 × 1011 A m−2 is shown in Figure 14.
The average domain wall displacement is proportional to the
pulse duration, which indicates that the domain wall has a
constant velocity of 3.0 m s−1. It was also confirmed that the
domain wall velocity increases with the current density.

It was shown that the domain wall position in the wire
can be controlled by tuning the intensity, the duration and
the polarity of the pulsed current, and thus the current-
driven domain wall motion has the potential for the spintronic
device application. However, there are several issues posed
to its practical applications. The most important of these
issues is the reduction of the high current density required for
the current-driven domain wall motion. Recent experiments
indicated that, in some cases, the high current density
results in the considerable Joule heating of the sample
(Yamaguchi et al., 2005). Though the lower threshold current
density of 109 A m−2 has been reported for ferromagnetic
semiconductor (Ga, Mn)As, the Curie temperature of this
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Figure 13. Successive MFM images with one pulse applied
between each consecutive image. The current density and the pulse
duration were 7.0 × 1011 A m−2 and 0.5 µs, respectively. Note that
a tail-to-tail domain wall is introduced, which is imaged as a dark
contrast. (Reproduced from Yamaguchi et al., 2004, with permission
from the American Physical Society.  2004.)
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Figure 14. Average domain wall displacement per pulse as a
function of the pulse duration under a condition of constant
current density of 7.0 × 1011 A m−2. (Reproduced from Yamaguchi
et al., 2004, with permission from the American Physical Society.
 2004.)

material is below room temperature (Yamanouchi, Chiba,
Matsukura and Ohno, 2004). Thus, it is indispensable to
explore a way to reduce the threshold current density
for ferromagnetic metals from the viewpoint of practical
applications.
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1 INTRODUCTION

Over the past several years, there has been renewed interest in
understanding the interaction between spin-polarized current
and magnetic domain walls (DWs), a phenomenon that was
first studied more than 20 years ago in macroscopic magnetic
thin films. Although there are several possible ways in
which current can interact with domain walls, perhaps the
most interesting interaction is that in which spin angular
momentum from spin-polarized current can result in motion
of the domain wall. Current passing through almost any
magnetic material readily becomes spin polarized through
spin-dependent electron scattering processes. Since motion
of a domain wall requires reversal of magnetic moments,
and, since spin angular momentum is conserved, the transfer
of spin angular momentum from the current to the magnetic
system can result in domain-wall excitation or movement,
both precessional and translational.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Advances in lithographic techniques now allow the study
of domain walls in confined magnetic nanostructures with
lateral dimensions as small as a few tens of nanometers.
Moreover, the magnetic configurations of such structures
can be engineered by properly shaping them. Thus, whereas
earlier studies involved complex patterns of several domain
walls, it is now possible to study the current-induced
motion of a single domain wall by injecting a wall into a
nanopatterned magnetic device.

In this chapter, we review recent theoretical developments
and experiments related to the current-driven motion of
domain walls in magnetic nanowires. This is a challenging
task, since this field of research is still in its infancy and
yet the field is developing at a rapid pace. Note that several
aspects of the current-induced motion of domain walls from
spin momentum transfer are closely related to that of the
current-induced excitation and switching of magnetization
in spin-valve and magnetic tunnel junction structures. These
latter phenomena are reviewed extensively elsewhere in this
encyclopedia.

In the first part of this chapter, we briefly review the
structure of DWs in magnetic nanowires. We then discuss
theoretical models, which have been developed to describe
the interaction of spin-polarized current with such DWs, and
discuss some of the consequences and predictions of these
models.

The second part of this chapter is devoted to firstly, a
review of various experimental procedures and techniques,
including the fabrication of magnetic nanodevices and useful
DW detection techniques. Secondly, the manipulation of
DWs using magnetic fields is discussed in some detail
since this is very helpful in appreciating the significantly
different consequences of their manipulation by current.
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Finally, we review experiments on the current-driven motion
of DWs.

In the final part of this chapter, we briefly discuss possible
applications of the phenomena described in this chapter to
potential magnetic memory and logic devices.

2 THEORY AND SIMULATIONS

2.1 Domain walls in nanowires

Magnetic DWs have been studied in bulk samples and
thin films for nearly a century. DWs have structures which
range from the simplest Bloch wall, which can be described
analytically by a one-dimensional model, to complex two-
and three-dimensional structures. There are several excellent
reviews of this topic including, for example, Hubert and
Schafer’s comprehensive textbook (Hubert and Schäfer,
2000). In this section, we discuss the most common DW
structures found in soft magnetic nanowires, the so-called
head-to-head (or tail-to-tail) DWs. We also describe Bloch
walls, which can be found in nanowires formed from
materials with large perpendicular magnetic anisotropy.

2.1.1 Head-to-head domain walls in soft magnetic
nanowires

Macroscopic magnetic structures will typically form flux-
closed magnetic domain structures, which lower their energy.
In sufficiently narrow nanowires made from soft mag-
netic materials, for example, submicron-wide permalloy
(Ni81Fe19) wires, flux-closed domain structures are no longer
energetically favored. Rather, owing to the nanowire’s mag-
netic shape anisotropy, magnetic domains are aligned along
the nanowire’s length, with magnetizations pointing toward
(or away) from each another. These domains are separated
by head-to-head (or tail-to-tail) DWs.

The structure of head-to-head DWs was first studied
using micromagnetic simulations by McMichael and Don-
ahue (1997). They found two distinct DW structures: the
transverse (T) wall and the vortex (V) wall. Simulated mag-
netization maps for these two wall structures are shown in
Figure 1(g) and (h). Which of these two DWs has the low-
est energy depends on the width w and thickness t of the
wire: the (w, t) boundary between these two states was found
numerically to be given by:

t · w = Cδ2

where the exchange length δ is given by δ2 = A

µ0M2
s

(1)

For permalloy (Ms = 800 emu cm−3, A = 1.3 × 10−6 erg
cm−1), the exchange length is very short at about δ = 4 nm

and the numerical constant C was determined to be 128. This
phase diagram has been refined recently by Nakatani, Thiav-
ille and Miltat (2005), who have identified an intermediate
magnetic state between the T and V walls, as an asymmetric
transverse wall.

Note that the relative stability of T and V walls was also
studied by calculating the energy of the V wall as a function
of the position of the vortex core with respect to the center
of the nanowire (Youk et al., 2006). When the V wall is the
lowest energy state, its energy is minimized when its core
is at the center of the wire, whereas when the T wall has
the lower energy, the V wall’s energy is minimized when its
core is at one edge of the nanowire. Interestingly, the authors
also identified metastable configurations in which the vortex
core is offset from the center of the wire.

The DW width is a critical parameter for both field and
current-driven DW motion. However, this quantity is not well
defined, since the magnetization of both T and V walls varies
significantly across the width of a nanowire, as shown in
Figure 1. In Nakatani, Thiaville and Miltat (2005), the DW
width parameter � was estimated by fitting the DW magneti-
zation profile with that derived for a 1D Bloch wall, namely:

θ(x) = 2 arctan[ex/�]

mx = cos[θ(x)] = tanh
x

�
(2)

my = sin[θ(x)] = 1

cosh x
�

where mx,y are the two in-plane components of the magneti-
zation normalized to the saturation value, and θ is the angle
between the local magnetization direction and the nanowire’s
long axis x (i.e., the easy magnetization direction). This
profile describes the transverse wall form quite well, pro-
viding that � is allowed to vary across the nanowire’s
width (i.e., the direction y), as shown by the solid lines
in Figure 1(a)–(c). By contrast, these expressions do not
account for the V wall’s profile. Nakatani, Thiaville and Mil-
tat (2005) extracted a width for the V wall by fitting the
profile of the longitudinal magnetization averaged across the
width of the nanowire (Figure 1c and f). For both V and
T walls, the DW width parameter � was found to depend
only weakly on the wire thickness, but to scale with the wire
width w, according to the approximate relations (Nakatani,
Thiaville and Miltat, 2005):

�TW = w

π
�VW = 3w

4
(3)

The V wall is significantly wider than the T wall. Note that
the actual length scale over which most of the magnetization
change occurs is π�, which is much larger than that given
by equation (3) (Malozemoff and Slonczewski, 1979).
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Figure 1. Calculated structures of transverse (T) and vortex (V) head-to-head DWs derived from micromagnetic simulations. Profiles of
the longitudinal (dark gray) and transverse (medium gray) magnetizations along the nanowire’s length are shown at different positions
across the nanowire’s width: T wall: top and bottom edges; V wall: topside and center. The profiles of the magnetization averaged over the
width of the nanowire for both the T and V walls are also shown. Fits to the analytical 1D Bloch wall, equation (2), are shown in all cases
for the T wall, but only for the averaged longitudinal magnetization for the V wall. For the T wall, the magnetization profile has roughly
the same form across the width of the wire, although the DW width varies significantly. By contrast, the magnetization profiles are quite
different for the V wall at the edges and at the center of the wire.

The DW width can be deduced in several other ways. For
example, as discussed in Section 3.4.3, the DW velocity is
proportional to � in small magnetic fields. The dynamical
DW width derived in this way is in good agreement with
that obtained from the 1D DW expression of equation (2) for

the transverse wall, but this is not the case for the V wall.
Indeed, since the V wall moves more slowly than the T wall,
the dynamical DW width is actually smaller for the V than
for the T wall. As shown by Nakatani, Thiaville and Miltat
(2005), a better agreement with the dynamical DW width is
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(a)
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Figure 2. (a) Magnetization distribution of a two-vortex wall
calculated from micromagnetic simulations of a permalloy nanowire
(200 nm wide, 40 nm thick). The middle map (b) shows the
divergence of the magnetization for comparison with the MFM
image (c) of such a two-vortex wall measured in a 40-nm-thick,
300-nm-wide permalloy nanowire. The dotted lines show the edges
of the nanowires as determined by AFM.

found by using a definition of the DW width proposed by
Thiele (1973a), in which the inverse DW width is given by:

�−1 = 1

2wtM2
s

∫
V

(
∂ �M
∂x

)2

dV (4)

Another experimental method of estimating the DW width,
which is relevant to many of the experimental results dis-
cussed in this chapter, is from the anisotropic magnetoresis-
tance (AMR) of the DW (see Section 3.3.1).

More complex head-to-head DW structures than either the
T or the V DW can also be found in magnetic nanowires,
depending on their size and the aspect ratio of their cross
section. Figure 2 shows an example of a DW found in
sufficiently thick nanowires. Flux-closed domain structures,
which can be seen in the figure at the upper edge of the
nanowire, form so as to reduce the magnetostatic energy of
the DW. Two-vortex DWs of opposite chirality can be seen
in the figure. We have observed this wall structure using
magnetic force microscopy (MFM) imaging in permalloy
nanowires more than 20 nm thick. Florez, Krafft and Gomez
(2005) have reported similar structures in permalloy wires,
40 nm thick.

In narrow wires with circular or square cross sections, a
vortex wall can also appear, with the vortex core parallel to
the long axis of the wire. This structure has been described
by Thiaville and Nakatani as a Bloch-point wall (Thiaville
and Nakatani, 2006).

An interesting methodology for categorizing these differ-
ent DW structures was proposed recently by Youk et al.

(2006), Tchernyshyov and Chern (2005), and Chern, Youk
and Tchernyshyov (2006). They describe the DWs as
composite objects built from a certain number of topolog-
ical defects characterized by a winding number n. Vor-
tices in the bulk of the wire have n = 1 and antivortices,
n = −1, whereas edge defects present in the transverse wall
have winding numbers n = ±1/2. The vortex DW wall is
built from one bulk defect (the vortex itself) and two edge
defects n = −1/2, and the transverse wall from two edge
defects n = ±1/2. For any DW structure, the total topolog-
ical charge, including both edge and bulk defects, must be
zero. The authors propose that the DW dynamics can be
described by the creation, propagation, and annihilation of
these topological defects.

As an illustration, magnetic domain structures in U-shaped
nanowires of various widths, formed from 10- and 20-
nm-thick CoFe films are shown in Figure 3. These images
are measured in zero magnetic field by photoemission
electron microscopy (PEEM). The gray scale reflects the
projection of the nanowire’s in-plane magnetization along the
vertical axis of the image (see Section 3.3 for more details).
The nanowire’s magnetization is first saturated along this
direction with a large magnetic field (1 kOe). After this field
is reduced to zero, the magnetization is aligned along the
arms of the U-shaped structure so that a DW is nucleated in
the curved portion of the U. In the narrowest wires (200 nm
wide), the DWs have a T structure, clearly identified by the
single black triangle-shaped region. For intermediate widths,
the PEEM images clearly show an asymmetric transverse
wall structure (see, e.g., the 400-nm-wide/20-nm-thick or
the 600-nm-wide/10-nm-thick nanowires). When the wide
width is increased, V walls can clearly be identified by the
alternating black/white regions (e.g., the 600-nm-wide/20-
nm-thick wire). Note that for the same 600 nm width,
the 10-nm-thick wire still exhibits an asymmetric T wall
structure, whereas the 20-nm-thick wire already shows the V
structure, following the trend shown by the phase boundary
of equation (1). The 800-nm-wide wires show more complex
domain patterns, with ripples starting to appear along the
arms of the wire.

Similar experiments have been reported by Klaui et al.
(2004) who used PEEM microscopy to study the DW
structure in cobalt rings, whose thicknesses were varied
between 2 and 38 nm, and whose widths were varied from
100 to 730 nm. A clear phase boundary between T and V
walls was observed as a function of the ring dimensions.
However, this transition did not agree with that anticipated
by equation (1). The T wall was observed for dimensions
where the V wall should be more stable. This discrepancy is
a consequence of the metastability of the two wall structures.
Even though the V has lower energy, an energy barrier
prevents the transformation of the T wall into the V wall.
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Figure 3. PEEM images of the magnetic domain structure of U-shaped CoFe nanowires with different widths and a thickness of 10 nm
(upper) or 20 nm (lower). The samples were first saturated along the direction indicated by the arrow, and the images were taken in
remanence.

It turns out that the T wall is favored by the DW injection
process (using a large transverse field), so T walls are
observed for a wide range of ring sizes.

2.1.2 Other types of walls

Head-to-head DWs are only stable in nanowires with
strong shape anisotropy and/or uniaxial anisotropy along the
nanowire’s direction. In the presence of significant crys-
talline anisotropy in the in-plane transverse or out-of-plane
directions, other domain patterns can be observed even for
submicron wires. For example, Schrefl, Fidler, Kirk and
Chapman (1997) have reported flux-closed domain patterns
in NiFe elements as narrow as 200 nm in which the domains’
magnetization is aligned transverse to the nanowire’s direc-
tion. This was unexpected in nominally soft NiFe, but was
explained by a strong stress-induced anisotropy. For mate-
rials such as Pt/Co/Pt trilayers with strong perpendicular
anisotropy (∼107 erg cm−3), the domains’ magnetization is
oriented along the out-of-plane anisotropy direction. In such
nanowires, the DWs are nearly ideal Bloch walls (Wunder-
lich et al., 2001; Cayssol et al., 2004), with widths as small
as 5 nm. In the case of (Ga,Mn)As epilayers, in-plane cubic
anisotropy has been reported (Tang, Kawakami, Awschalom
and Roukes, 2003), giving rise to 90◦ DWs (Holleitner et al.,
2004; Honolka et al., 2005; Tang et al., 2004; Tang and
Roukes, 2004) albeit in large structures (100 µm wide).

2.2 Theoretical models of current-driven
domain-wall motion

2.2.1 Early work

The interplay between magnetization and charge carriers in
metallic ferromagnets has been studied for several decades.
The first reported interaction of current on DWs in such
materials was due to eddy-current losses (Williams, Shockley

and Kittel, 1950). The DW mobility in macroscopic samples
at low fields was found to be almost two orders of magnitude
smaller than that expected from calculations by Landau and
Lifshitz, which took into account magnetic relaxation.

The influence of an electric current flowing within a
ferromagnet, or in the vicinity of it, was first studied in
the 1970s by Carr (1974a,b), Emtage (1974), and Charap
(1974), and independently by Berger (1974), Partin, Karne-
zos, deMenezes and Berger (1974). These authors found that
in materials for which the current flow is sensitive to the
magnetization, for example, because of the Hall effect or
magnetoresistance, the presence of a DW would, in turn,
affect the current distribution. For example, in the case of
a 180◦ DW, the reversal of the magnetization is associated
with reversal of the Hall electric field. The nonuniform cur-
rent distribution can be modeled by a uniform current on
which an eddy-current loop concentric with the center of
the DW is superimposed. This current loop thus creates a
magnetic field, which exerts a net force on the DW in the
direction of the drift velocity of the carriers and, thereby, can
lead to DW motion. This mechanism was called self-induced
DW drag or hydromagnetic domain drag. The force on the
DW can be written, following Berger’s notation, as:

Fx = 2Msµ
−1
e (R1J − vw) µe = π3ρ

8.4tMs
(5)

where J is the current density perpendicular to the wall, R1

is the anomalous Hall constant, vw is the wall velocity, µe

is the wall mobility, as limited by eddy currents, (which is
different from the intrinsic wall mobility, which is related to
damping), and t is the film thickness. Since the net force on
the DW increases with the sample thickness it vanishes for
very thin wires.

Because magnetic fields extend over fairly long distances,
the DW drag mechanism can also occur if the current does
not flow directly through the DW, but rather through a



6 Magnetic configurations in small elements, magnetization processes and hysteretic properties

neighboring over or underlayer, such as a semiconducting
(Carr, 1974b; Charap, 1974) or a permalloy (Carr, 1974a;
Emtage, 1974) layer. This is particularly applied to the
motion of DWs in magnetic bubble materials, which were
made of high-resistivity oxides, and which were the subject
of much of this early work.

Note that all these theories describe 180◦ DWs, for which
the current is perpendicular to the magnetization direction
both in the domains and in the DW. In this case, the Hall
electric field reverses across the DW, irrespective of the
DW structure. This is not the case for head-to-head DWs,
for which current and magnetization are parallel everywhere
except within the DW.

This first mechanism derives solely from electromagnetic
effects. The influence of the carrier spins was recognized
a few years later by Berger (1978). He proposed that the
s–d exchange interaction between the conduction electrons
and the localized magnetic moments could influence the
DW dynamics in two different ways. The first contribution,
which Berger called s –d exchange drag (Berger, 1984), is a
viscous force on the DW which is proportional to the current.
This term arises from the difference between the spin-
dependent reflection coefficients of the conduction electrons
at the DW. The second contribution is an ‘exchange torque’
related to the transfer of spin angular momentum from
the s conduction electrons to the localized magnetization
(Berger, 1978, 1986). This mechanism is analogous to the
spin-transfer torque proposed by Slonczewski in magnetic
heterostructures in which magnetic layers are separated by
thin metal or insulating layers (Slonczewski, 1996).

2.2.2 Recent results: two types of torques

In the past few years, new experimental results on the inter-
action between electric current and magnetic DWs have
triggered a flurry of theoretical studies (Shibata, Tatara and
Kohno, 2005; Bazaliy, Jones and Zhang, 1998; Tatara and
Kohno, 2004; Tatara et al., 2006; Zhang and Li, 2004; Li
and Zhang, 2004a,b; He, Li and Zhang, 2005; Barnes and
Maekawa, 2005; Thiaville, Nakatani, Miltat and Vernier,
2004; Thiaville, Nakatani, Miltat and Suzuki, 2005; Waintal
and Viret, 2004; Xiao, Zangwill and Stiles, 2006; Dugaev
et al., 2006; Tserkovnyak, Skadsem, Brataas and Bauer,
2006; Tatara, Vernier and Ferre, 2005; Ohe and Kramer,
2006). In most cases, theorists follow a two-step approach.
First, they calculate the current-induced torque on the mag-
netization from the spin-polarized s conduction electrons in
the limit of static magnetic moments, since the magnetization
dynamics are slow compared to those of the electrons. Sec-
ond, the influence of the current-related torque on the DW
dynamics is studied by solving the Landau–Lifshitz–Gilbert

(LLG) equation of motion, usually by approximating the DW
structure, so as to obtain analytical expressions.

The influence of the current on the magnetization dynam-
ics is often treated by including two spin-torque terms pro-
portional to the gradient of the magnetization in the LLG
equation. In the case of homogeneous magnetic material, and
assuming the current is flowing in the x direction, the LLG
equation can be written as (Thiaville, Nakatani, Miltat and
Suzuki, 2005):

∂ �m
∂t

= −γ �m × �H + α �m × ∂ �m
∂t

− u
∂ �m
∂x

+ βu �m × ∂ �m
∂x

(6)

where m is the magnetization normalized to the saturation
value, H is the micromagnetic effective field, γ is the
gyromagnetic factor, and α is the Gilbert damping constant.
For permalloy films, α is of the order of 0.01 (Nibarger,
Lopusnik and Silva, 2003; Nibarger, Lopusnik, Celinski and
Silva, 2003)

The first two terms on the right-hand side of equation (6)
are the usual precessional and damping terms, respectively,
and the last two terms describe the interaction with the
current.

The first current contribution is derived in the adiabatic
limit. In the adiabatic limit, which, a priori, is justified
for sufficiently wide DWs, the conduction electrons spin
orientation follows the local magnetization direction. The
magnitude of the adiabatic spin torque, which can be derived
directly from the conservation of spin angular momentum, is
given by:

u = gµBJP

2eMs
(7)

where g is the Lande factor (∼2), J is the current den-
sity, P is the spin polarization of the current, µB =
0.927 × 10−20 emu, the Bohr magnetron, and e = 1.6 ×
10−19 C, the electron charge. For permalloy, for which Ms =
800 emu cm−3, and assuming P = 0.4, u = 1 m s−1 when
J = 3.5 × 106 A cm−2. Note that the polarization is some-
times replaced by the Slonczewski function (Slonczewski,
1996) g(P ).

The second contribution of the current is often dubbed
the nonadiabatic spin-torque or β term. As shown by
equation (6), it behaves as a spatially varying magnetic field
which is proportional to the gradient of the magnetization.
The magnitude of the nonadiabatic term is given by the
dimensionless constant β, which is of the order of the
damping constant α. Both the origin and the magnitude of
the ‘β term’ is under much debate.

Zhang and Li (2004) have proposed a model in which there
is a slight mistracking between the electron spin and the local
magnetization direction. This generates a nonequilibrium
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spin accumulation across the DW, which relaxes by spin-flip
scattering toward the magnetization direction. This model
leads to both adiabatic and nonadiabatic spin-torque terms
(there are also two small terms proportional to the time
derivative of the magnetization, which slightly modify the
gyromagnetic ratio and the damping constant). The mag-
nitude of the nonadiabatic term is written as β = τ ex/τ sf,
where τ ex is the relaxation time associated with the s–d
exchange energy Jex(τ ex = �/SJex) and τ sf is the spin-flip
relaxation time. Numerical estimates are obtained by assum-
ing that Jex ∼ 1 eV, S = 2, and τ sf ∼ 1 ps, giving β ∼ 0.01.
Note that this model assumes the DW width to be much
larger than the length scale of the transverse spin accumu-
lation (only a few nanometers), such that the nonadiabatic
contribution does not vanish even for very wide DWs.

Xiao, Zangwill and Stiles (2006) cast doubt on the
existence of this nonadiabatic contribution. They find that
although there is a transverse spin accumulation across the
DW, the spin current follows the magnetization adiabatically
unless the DW width is extremely small. In the narrow wall
limit, the nonadiabatic spin torque is nonlocal and oscillatory
in space.

Tatara and Kohno (2004) have also calculated the two
current interaction terms shown in equation (2), in both the
narrow and wide DW limits. In their model, the relevant
length scale is the Fermi wavelength (a few angstrom). In
the wide DW limit, they obtain a spin-transfer-torque term
dubbed spin transfer with the same form as that shown in
equations (6) and (7). In the narrow DW limit, they derive a
forcelike term called momentum transfer, which plays the
same role as the β term integrated over the DW. This
momentum transfer is very similar to the s–d exchange
drag proposed by Berger (1984) and is a function of the
DW resistance RDW. The momentum transfer per unit cross-
sectional area of the DW is written as:

Fel = neRDWJ (tw) = RDW

R0
J (tw) = ρDW

R0
J� (8)

where J is the current density, t and w are the wire
thickness and width, respectively, n is the electron density,
R0 is the ordinary Hall coefficient (1/R0 = ne), and ρDW =
RDWtw/�, is the DW resistivity, where � is the DW width.

The linak between the nonadiabatic spin torque and DW
resistance is also mentioned by Zhang and Li (2004).
Although they do not explicitly discuss this relationship, it is
interesting to consider the relationship between the momen-
tum transfer force (8) and the β term. It can be seen from the
LLG equation (6) (and more obviously from the integrated
form (13)) that the β term indeed plays the same role as the
magnetic field force term. It follows that the β-term-related

force (per unit cross-sectional area) can be written as:

Fβ = 2Ms

γ�
βu (9)

By equating this with equation (8), it follows that

β = γ�2e

gµBP

ρDW

R0
(10)

Interestingly, if the DW resistivity decreases as 1/�2, as
predicted by the Levy–Zhang model on DW magnetoresis-
tance (Levy and Zhang, 1997), β will be roughly constant,
independent of the DW width. In order to obtain a numer-
ical estimate, we consider the DW resonance experiments
of Saitoh, Miyajima, Yamaoka and Tatara (2004), which
will be discussed later in this chapter. The sample is a
permalloy nanowire, with a thickness t = 45 nm and a width
w = 70 nm. The DW has a transverse structure such that the
DW width can be estimated as � ∼ 22 nm (as discussed in
Section 2.1). We assume a spin polarization P ∼ 0.5, and
a Hall resistance R0 ∼ 1.3 × 10−10 C m−3 for permalloy (as
measured, e.g., by Freitas and Berger (1985)). The DW resis-
tance is reported to be RDW = 0.26 m�, such that the DW
resistivity is about 3.7 × 10−11 �m. From equation (10), this
leads to β ∼ 0.4.

In a recent paper, Berger has developed the relationship
between nonadiabatic spin torque (exchange drag in his
terminology) and DW resistance further so as to describe in a
single scaling plot experimental results for DW velocity, DW
resistance, and critical current for DW depinning (Berger,
2006).

In both Tatara and Kohno and Zhang and Li’s models,
in the absence of the β term, there is an intrinsic threshold
current for irreversible DW motion, even in an ideal wire
without any DW pinning sites. Below this threshold value,
the DW only moves short distances while the current is
applied, but moves back to its original position after the
current is turned off (note that this is not the case if there
is an irreversible deformation of the DW’s structure or if
DW pinning is taken into account). Barnes and Maekawa
(2005) argue that this intrinsic pinning does not exist (Barnes,
2006; Tatara Takayama and Kohno, 2006). In their model,
the ground state in the presence of current corresponds
to the DW moving at a constant velocity u, without any
tilt or distortion. This corresponds to massless motion and
in the ideal case (no roughness), there is no threshold
current for DW motion: the DW starts moving, albeit very
slowly, as soon as the current is nonzero. The discrepancy
arises from the means of introducing damping into the

LLG equation. Whereas, both the Gilbert
(
α �m × ∂ �m

∂t

)
and

the Landau–Lifshitz
(

αγ

1+α2 �m × �m × �H
)

formulations are
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equivalent in the absence of current, this is no longer the case
when the current interaction terms are included. When the
adiabatic spin-torque term is added to the LLG equation in
its Gilbert or Landau–Lifshitz forms, the resulting equation
differs by a term αu �m × ∂ �m

∂x
. In other words, in the second

case, the adiabatic spin torque includes a β term, with β = α.
In a recent extension of their work, Tatara et al. (2006)

have made a distinction between the nonadiabatic spin torque
(i.e., momentum transfer) defined by equation (8) and the β

term. The implication of both the adiabatic and nonadiabatic
spin torques on the DW dynamics will be discussed in more
detail in Section 2.2.3, in the framework of the semianalytical
one-dimensional model.

Several recent papers cast doubts about the previous
description and find that the current-induced torques cannot
be written as a simple function of the magnetization gradient.
Xiao, Zangwill and Stiles (2006) find that in the very narrow
DW limit, the nonadiabatic torque oscillates across the DW,
and extends over a length scale much larger than the DW
width. Other authors find that the nonadiabaticity of the
conduction electrons lead to the precession of their spins
(Waintal and Viret, 2004), in turn generating spin waves
which influence the DW motion (Ohe and Kramer, 2006). A
recent study focused on GaMnAs also shows that the spin-
orbit coupling increases the reflection of the carriers (holes
in this case) at the DW, leading to spin accumulation and
the enhancement of the nonadiabatic spin torque (Nguyen,
Skadsem and Brataas, 2007).

Although thermal effects are not included in most theories,
a few authors have addressed thermally assisted processes.
Tatara, Vernier and Ferre (2005) find that in a rigid wall
approximation, thermally activated wall motion occurs below
the zero-temperature threshold value, and the DW velocity
varies exponentially with the spin current. They also find
that the velocity exhibits a ‘universal behavior’ in the sense
that it does not depend on the pinning potential or the
material parameters. In their model, thermal fluctuations
are simply introduced as the transition rate over an energy
barrier, which is derived from the transverse anisotropy.
Recently, Duine, Nunez and Mac Donald (2007) have
developed a more complete description of thermally activated
processes by deriving the Langevin equations of the nonzero
temperature motion of a rigid DW. They find that at nonzero
temperatures, the DW velocity varies linearly with current,
even without a β term.

2.2.3 Analytical descriptions: one-dimensional model
and vortex model

Although DWs are complex three-dimensional objects, it is
very useful to develop models that allow for an analytical
or semianalytical description of the DW dynamics. The most

widely used approach is the so-called one-dimensional (1D)
model, which was developed in the 1970s and has been
described in detail by Malozemoff and Slonczewski in their
comprehensive book about magnetic bubbles (Malozemoff
and Slonczewski, 1979). The model assumes that the DW
has the 1D profile given by equation (2), such that the
magnetization varies only in the direction perpendicular to
the DW (here the x direction). It is also assumed that the
static profile is essentially preserved during the DW motion,
although the DW width is allowed to change. The dynamical
DW structure is described by (in spherical coordinates):

θ(x, t) = ±2 arctan
(

e
x−q(t)

�

)
ψ(x, t) = (t) (11)

where q is the position of the DW center,  is the tilt angle
of the DW magnetization away from its equilibrium position
(see Figure 4), and � is the DW width parameter. The latter
is written as:

�0 =
√

A

K0
� = �0√

1 + K
K0

sin2()
(12)

where A is the exchange constant (erg cm−1). K0 is
the magnitude of the uniaxial anisotropy that defines the
magnetization direction in the magnetic domains, and K

is the magnitude of the uniaxial transverse anisotropy. In
the head-to-head configuration, the transverse anisotropy is
that within the plane perpendicular to the wire’s long axis.
The magnitude of the transverse anisotropy can also be
written as an anisotropy field Hk = 2K/Ms, where Ms is
the saturation magnetization of the material. This profile
was originally derived for the 1D Bloch wall. It also
gives a good description of the Néel wall and the head-
to-head transverse wall, provided that the axes are properly
defined (see Figure 4 for the T wall). Qualitative agreement
with experiments is also obtained for more complex wall
structures such as the head-to-head vortex wall (Thomas
et al., 2006).

z

y

x

q

ψ

Figure 4. Transverse DW showing the definition of the variables
of the 1D model: q (position of the center of mass of the DW) and
 (tilt angle of the DW’s magnetization out of the plane of the
nanowire).
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In this model, the LLG equation (6) can be integrated
over the static DW profile and the dynamics are described
by two time-dependent variables q (DW position) and 

(domain distortion). The DW width � depends on  such
that it is also time dependent unless K0 � K . For simplicity,
we assume that � is not time dependent in the following
discussion.

The LLG equation including the current-related terms can
be rewritten as:

(1+α2)̇ = − γ

2Ms

(
∂σ

∂q

)
− γα

2
Hk sin(2)+ (β−α)u

�

(1+α2)q̇ = −αγ�

2Ms

(
∂σ

∂q

)
+ γ�

2
Hk sin(2)+(1+αβ)u

(13)
The DW potential energy σ(q) includes the contributions
from an external field and from position-dependent energy
terms arising, for example, from defects in the nanowire.
The field term is simply written as σ(q) = −2MsHq. The
influence of roughness or pinning may be approximated by
potential wells or barriers, which depend only on q.

It was pointed out long ago (Malozemoff and Slonczewski,
1979) that equation (13) resembles Hamilton’s equations of
motion for two canonical conjugate variables q and 2Ms/γ ,
that is the position and its conjugate momentum. Following
this analogy, the DW mass (Döring mass) can be defined as:

mD = 2Ms

γ 2�Hk
S (14)

S is the cross section of the nanowire. These equations
can be solved analytically in many cases, yielding useful
expressions for both the critical current and the DW veloc-
ity. As discussed earlier, the physics of the current-driven
DW motion depend strongly upon the presence or absence
of the β contribution. Without the β term and in zero mag-
netic field (∂σ/∂q = 0), there is an intrinsic critical current,
below which the DW only moves transiently. This critical
current is readily calculated by finding stationary solutions
of equation (13). The stationary solution, such that ̇ = 0
and q̇ = v = 0, only exists if u is smaller than a critical
value, given by:

uc = γ�Hk

2
(15)

Note that uc depends only on the magnetic material
parameters, unless there is extremely large pinning (Tatara
and Kohno, 2004). In permalloy nanowires (or other soft
materials where crystalline anisotropy can be neglected),
the transverse anisotropy field Hk is proportional to the
shape anisotropy in the plane perpendicular to the long
axis of the wire. Note that this anisotropy field is also the

key parameter in models of field-driven DW motion. For
example, the Walker breakdown field is directly proportional
to Hk (Malozemoff and Slonczewski, 1979). If the current is
smaller than this critical value, the velocity decreases rapidly
(over a few nanoseconds) and the DW stops. However, when
the current is reduced to zero (for example, at the end of a
current pulse), the DW moves back to its initial position.
On the contrary, for currents higher than this critical value,
the wall can move irreversibly over long distances. In this
regime, the instantaneous velocity oscillates strongly in time,
in a way reminiscent of the field-driven DW motion above
the Walker limit. The average velocity can be written as:

v =
√

u2 − u2
c

1 + α2
(16)

The situation is very different when the β term is taken
into account. Indeed, for an ideal wire without pinning,
irreversible DW motion occurs as soon as the current is
nonzero, and the terminal velocity is simply v = βu/α.
Therefore, in this case, the critical current becomes extrinsic,
and is dependent on the magnitude of any pinning (i.e., will
be related to roughness and defects).

The two key parameters of the model are the DW width
� and the transverse anisotropy field Hk. It is essential to
estimate realistic values in order to attempt a quantitative
(or even qualitative) description of experiments or simula-
tions. The DW width is readily defined for a head-to-head
transverse wall, as described in Section 2.1.1. Its definition
becomes slightly more ambiguous for a vortex wall, where
the ‘physical’ DW width, largely dominated by the tails of
the DW does not account for the field-driven DW dynam-
ics. Much better agreement is obtained using the so-called
dynamical DW width defined by Thiele (see Section 2.1.1),
in which the (small) vortex core has larger ‘weight’ than the
(large) tails of the DW. The transverse anisotropy Hk, which
prevents the rotation of the DW’s magnetization out of the
plane of the wire, is somewhat more delicate. In permalloy
nanowires with head-to-head transverse walls, the transverse
anisotropy is directly related to the shape anisotropy of the
cross section of the wire. For small values of  (only small
out-of-plane rotation of the wall’s magnetization), calculating
Hk from the shape anisotropy appears reasonable. However,
for large values of , the DW’s magnetization does not
rotate coherently out of plane. Lower energy paths are pos-
sible, which involve deformations of the wall structure, for
example, by nucleation of an antivortex. In such a case, the
effective value of Hk is smaller than that calculated from the
shape anisotropy. Thus, if the dynamics involves high  val-
ues, the value of Hk obtained from the shape anisotropy does
not provide a good quantitative description. For example, the
Walker breakdown field, which is directly proportional to Hk
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in the 1D model, is significantly overestimated. Another strat-
egy is to find other methods to estimate Hk, for example,
from the value of the Walker breakdown field found from
micromagnetic simulations. However, a contrario, this value
might not account for the low  dynamics. The definition of
Hk becomes even more problematic in the case of a vortex
wall, for which the 1D approximation is certainly not cor-
rect. However, we have shown (Thomas et al., 2006) that the
1D model can still be useful in describing the DW dynam-
ics, provided that Hk can be estimated from micromagnetic
simulations.

Examples of DW trajectories obtained by numerical inte-
gration of equation (13) are shown in Figure 5. We chose val-
ues of the parameters to match the properties of the nanowire
described in the following paragraph using micromagnetic
simulations (� = 48 nm, Hk = 1600 Oe). The damping con-
stant is α = 0.01. The first two panels show the time evolu-
tion of the variables q and  for a constant current corre-
sponding to u = 100 m s−1, calculated for different values
of the β term. Since u is smaller than the critical value
uc = 675.8 m s−1 given by equation (15), the DW motion
stops after a transient time for β = 0. Similarly,  satu-
rates to a constant value given by sin(2) = −2u/(γ�Hk)

(stationary solution of equation (13)). If β �= 0, the DW
moves at a constant velocity after a transient time, the
terminal velocity is given by βu/α and  saturates at a value
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Figure 6. Averaged DW velocity calculated within the 1D model
for the same set of parameters as in Figure 4, for different values
of the ratio β/α.

sin(2) = −2u(1 − β/α)/(γ�Hk). Figure 5 shows the time
evolution of q and  for β = 0 and different values of u. For
values smaller than the critical current, the behavior is that
described in the preceding text. Above the critical value (see
curve for u = 800 m s−1), the DW keeps moving continu-
ously and its motion becomes precessional, in a fashion sim-
ilar to the field-driven motion mechanism above the Walker
breakdown field. The angle  increases as the DW magneti-
zation rotates continuously form one in-plane direction to the
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Figure 7. Final DW position after a current or field pulse, calculated using the same parameters as in Figure 4, for β = 0.

other, and the DW velocity oscillates accordingly. Note that
the DW velocity is a maximum when the DW magnetization
rotates across the out-of-plane direction ( = ±π/2), con-
trary to the field case, for which the velocity drops (and even
reverses). Time-averaged terminal velocity curves are shown
in Figure 6 as a function of u, for different ratios of β/α.

An interesting feature of the current-driven motion for
zero-β is that for u > uc, the DW displacement after current
pulses appears to be quantized. The DW moves only by
multiples of π�/α. This peculiar property follows from
the DW’s relaxation toward its equilibrium state,  = 0,
after the current is turned off. The same DW relaxation also
occurs at the end of a field pulse, leading to a discontinuity
of the DW position as a function of the pulse length
rather than a quantized position. This can be understood
from equation (13). Let us assume that the DW moves in
the stationary regime with either field (q̇ = v = γ�H/α,
sin(2) = 2H/(αHk)) or current (q̇ = v = 0, sin(2) =
−2u/(γ�Hk)). After the field and current are turned off, the
equations of motion are the same. The DW velocity is simply
proportional to sin(2). Therefore, in the field case, since 

is positive, the DW velocity remains positive and decreases to
zero. On the contrary, in the current case, sin(2) is negative,
such that the velocity become negative when the current is
turned off, and the DW moves back to its original position.
If u is larger than the critical current uc, the relaxation after
the pulse will be either backward (if  < π/2 (mod π )) or
forward (if  > π/2 (mod π)). The DW’s final position is
shown in Figure 7 as a function of the length of a current or
field pulse, for the same parameters used previously.

Note that because of this relaxation mechanism, the critical
current given by equation (15) is only correct for dc currents.
For current pulses, irreversible DW motion only occurs if the
pulse is long enough for  to exceed π/2. If not, the DW
goes back to its original position even if u > uc. As a result,
the critical current varies as the inverse of the pulse length.

The addition of a magnetic field and/or pinning poten-
tial to equation (13) yields many interesting results. For
example, the depinning from a potential well is very different

depending on the depth of the pinning potential, the value
of the β term and the external magnetic field. This leads to
different expressions for the depinning current in different
regimes, as described by Tatara et al. (2006).

Thiaville and Nakatani (2006) have studied in detail
the comparison between the 1D model and micromagnetic
simulations for the case of field-driven DW dynamics.
To paraphrase their conclusions, ‘it is very helpful for a
qualitative understanding, and it becomes quantitative at
really small sizes, a few exchange lengths.’

A different approach is clearly needed to describe complex
wall structures such as the head-to-head vortex wall. A
more general description of the steady state DW motion
has been proposed by (Thiele, 1973a,b) and extended by
Thiaville, Nakatani, Miltat and Suzuki (2005) to include both
contributions from the current. Thiele’s approach has been
used successfully to describe quantitatively the dynamics
of a vortex located in a small elliptical disk, driven either
by magnetic field (see, e.g., the recent papers Novosad
et al., 2005; Buchanan et al., 2005) or spin-polarized current
(Shibata et al., 2006). However, a quantitative description
of a moving DW using this framework is still lacking,
although first attempts have been published recently (He, Li
and Zhang, 2006a).

2.2.4 Micromagnetic simulations

Micromagnetic simulations are extremely useful to explore
DW dynamics because realistic DW structures can be studied
without limitations, and in particular, transformations of
the DW structure can be described without approximation.
Moreover, nonuniform fields (such as the Oersted field
from the current) or nonuniform current distributions can be
readily included. In addition, roughness and pinning can be
easily introduced.

Several authors have published results of micromagnetic
simulations of current-driven DW motion for both vortex
and transverse DW structures (Thiaville, Nakatani, Miltat and
Vernier, 2004; Thiaville, Nakatani, Miltat and Suzuki, 2005;
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Figure 8. Micromagnetic simulations of the motion of a transverse DW in a permalloy nanowire, 150 nm wide, and 5 nm thick, for I = 3
and 12 mA. Top panels, from left to right: magnetization maps for I = 3 mA, β = α (a, left), I = 12 mA, β = α (b), I = 3 mA, β = 0 (c)
and I = 12 mA, β = 0 (d, right). Bottom panels: Time dependence of the DW position (e) and the out of plane magnetization (f) in all
four cases.

He, Li and Zhang, 2006a,b). There are also a few recent
reports of the field-driven DW motion in similar structures
(Thiaville and Nakatani, 2006; Nakatani, Hayashi, Ono and
Miyajima, 2001; Nakatani, Thiaville and Miltat, 2003; Porter
and Donahue, 2004).

Examples of micromagnetic simulations of the current-
driven propagation of DWs for different nanowires (5 and
20 nm thick, 150 nm wide, 4 µm long) are shown in Figures 8
and 9. These calculations were performed using the LLG
micromagnetic simulator code developed and commercial-
ized by Mike Scheinfein. Standard parameters for permalloy
are used, and the Gilbert damping constant is set at α = 0.01.
The cell size is 5 × 5 × 5 and 5 × 5 × 10 nm3 for 5- and 20-
nm-thick wires, respectively. Fixed boundary conditions are
applied at both ends of the nanowire to pin the magnetization
along the wire axis. Note that the Oersted field is included
in the simulations.

The first example (Figure 8) shows the time evolution of
a transverse wall (the most stable structure for a nanowire of
these dimensions), for two different current values (3 and
12 mA), and for the cases β = 0 (adiabatic torque only,
b) and β = α (a). Note that the current is turned on
instantaneously at time zero. In the latter case (β = α), as
discussed earlier in the framework of the 1D model, the DW
propagates without distortion, at a constant velocity, directly
proportional to the current.

On the contrary, when β = 0, there is an intrinsic threshold
current (whose value is given by equation (15)). Below this
value, at I = 3 mA, the DW only moves during the first
nanosecond after the current is turned on. The DW velocity
is a maximum at t = 0 and then drops progressively to
zero as an out-of-plane magnetization component develops
(proportional to  in the one-dimensional model) as shown
in the bottom panel of Figure 8. The DW displacement
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Figure 9. Micromagnetic simulations of the motion of a vortex DW in permalloy nanowires (a and b) width 150 nm, thickness 5 nm,
current 3 mA, β = α and β = 0, respectively (c) width 150 nm, thickness 20 nm, current 9 mA, β = 0.

is completely reversible: if the current is turned off, the
DW moves back to its initial position (not shown). On the
contrary, for I = 12 mA (above the threshold current), the
DW motion is irreversible. The first stage of the motion
is qualitatively similar to the low-current case: the DW
starts moving at its maximum velocity and then slows down.
However, the displacement is much larger than in the low-
current case. More importantly, the out-of-plane component
is also larger, and the DW is not in dynamical equilibrium:
an antivortex is nucleated at the right side of the wire, and its
propagation across the width of the nanowire is associated
with a strong increase of the DW velocity (note that just
above the threshold current, the nucleation of the antivortex
is extremely slow, on the order of tens of nanoseconds).
Once the antivortex is expelled at the left side of the wire,
the DW recovers the same structure as its initial state, except
its magnetization has been rotated by 180◦. If the current is
maintained then the DW motion is periodic, and the DW
structures oscillates between T walls with left- and right-
handed orientations, and the DW velocity oscillates between
high and low values as antivortices penetrate and are expelled
from the nanowire. If the current is turned off, the DW
will relax to an equilibrium state without current, namely
an undistorted left or right-handed T wall, such that it can
move either forward or backward after the current is turned
off, depending upon its state at this time. Note that the current
density needed to reach this regime is very high, on the order
of 1.6 × 109 A cm−2.

The second example (Figure 9) shows the case of a vortex
wall for I = 3 mA, and for β = α (a) and β = 0 (b). Results
are very similar to the T wall case. In the first case (β = α),

the DW moves at roughly constant velocity. Contrary to the
field-driven motion, the DW velocity is not related to the DW
structure, and the V and T walls move at the same velocity
v = βu/α. In the second case (β = 0), the DW structure is
distorted as the vortex core is progressively pushed to the
side and finally expelled from the nanowire. Note that for
smaller currents, a dynamical equilibrium would be reached,
in which the V wall would stop moving, as described below
for the 20-nm-thick wire case. However, in the case shown
here, the current is larger than the threshold for the V wall,
but smaller than that for the T wall; therefore, the V wall is
transformed into a T wall and then follows the same behavior
as that described before. Since the V wall is very unstable for
these dimensions (see equation (1)), this transformation can
occur at very low current (<1 mA, about 1.3 × 108 A cm−2).
Similar results have been described by He et al. for a 128-
nm-wide, 8-nm-thick nanowire (He, Li and Zhang, 2006a,b).
They concluded that the V wall has a smaller critical current
that the T wall.

For wire dimensions such that the V wall is the stable
structure, the threshold current of the V wall increases, and
may even exceed that of the T wall. As shown in Figure 9(c)
for a 20-nm-thick wire (with β = 0), at 9 mA (current density
of 3 × 108 A cm−2) a dynamical equilibrium is reached and
the DW stops moving. Larger current (∼15 mA) are required
to overcome this dynamical equilibrium and achieve irre-
versible motion. Interestingly, if the initial state is a T wall,
a current of 9 mA is sufficient to drive the T wall ∼2 µm,
before it is transformed into a V wall and eventually stops
(not shown). Note that the timescale is much slower for this
larger structure.
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Note that the details of the propagation mechanism above
the threshold current depend on both the size of the structure
and the magnitude of the current, in the same way as the
DW propagation mechanism for fields larger than the Walker
breakdown field. When the current (or similarly the magnetic
the field) increases, higher energy routes become possible. In
the example shown in Figure 8, an antivortex is nucleated.
For larger structures, more complex scenarios can occur
(reversal of the vortex core magnetization, nucleation, and
annihilation of one or more vortices, etc.).

3 EXPERIMENTS

3.1 Device fabrication

3.1.1 Lithography techniques

Submicron-sized magnetic wires can be fabricated by various
lithography techniques, such as focused ion beam (FIB),
optical lithography, and electron-beam lithography. Other
methods, which are not discussed here include nanoimprint
and interference lithography.

FIB lithography is essentially a one-step process: the
nanostructure is drawn from a plain film by milling the mag-
netic material locally with a high-energy ion beam (typically,
Ga+ ions accelerated at ∼30 keV). The ion current can be
tuned to achieve high resolution (Xiong, Allwood, Cooke
and Cowburn, 2001). Large currents (a few nanoamperes)
are used to mill wide areas, whereas much smaller currents
(a few picoamperes) are used to define finer features of the
structure. This multistep approach ensures that critical cuts
are made in as short a time as possible, thus reducing blurring
due to stage drift. Resolutions down to about 20 nm can be
achieved. Fairly complex structures can be fabricated, such
as tracks for DW logic (Allwood et al., 2002b). However, it
is not simple to make electric contacts to the nanostructure
without adding an additional electron-beam lithography step.
One method is to use the magnetic material itself as a contact,
by leaving small bridges between the nanostructures them-
selves and a larger outer structure. In the example shown in
Figure 10(a), a large area permalloy element (10 × 0.1 mm2)
was first fabricated by magnetron sputter deposition through
a metal shadow mask. The nanowire was then patterned using
a multistep FIB milling process. A 6.6 nA beam was used to
cut two 5-µm-wide trenches perpendicular to the wire’s long
axis (see inset of Figure 10a). Much lower current beams (11
and 4 pA) were then used to precisely shape the nanowire.
This method has a major disadvantage for studies of DW
propagation. Since the nanowires are connected at both ends
by magnetic material, it is difficult to control the nucleation
and injection of a single DW. To solve this problem, the

(a)

(b)

(c)

Figure 10. Examples of nanowires fabricated by FIB (a and b) and
electron-beam lithography (c). (Courtesy of Charles Rettner.)

magnetic nanowire can be isolated completely form the outer
structure during milling, both electrically and magnetically.
The ends of the nanowires can be shaped to favor or sup-
press DW nucleation. Electrical connections can be restored
by using the FIB to deposit a metal locally by reduction of an
organometallic vapor (Thomas et al., 2005). In the example
shown in Figure 10(b), small Pt contacts were deposited at
both ends of the wire.

FIB lithography allows the fabrication of only one device
at a time, and thus it is not practical for systematic studies
of nanowires with different sizes and shapes. It is also worth
noticing that FIB lithography is not suitable for all materials.
For example, the giant magnetoresistance (GMR) of spin-
valve structures patterned by FIB is strongly reduced, which
is likely related to damage at the edges of the device (Katine,
Ho, Ju and Rettner, 2003).

Conventional optical and electron-beam lithography tech-
niques are more convenient to fabricate nanowires and their
electric contacts in successive lithographic steps. Both liftoff
and ion milling methods have been successfully used to
fabricate magnetic nanowires. An example of a nanowire
fabricated by electron-beam lithography and ion milling is
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shown in Figure 10(c). The nanowire was first patterned from
an extended film. Its ends were tapered to favor the nucle-
ation and propagation of a DW from one end of the device.
The nonmagnetic metallic contacts at either end were added
in a second step.

These film-based methods usually produce ‘flat’ nanowires
whose widths are much larger than their thicknesses. The
layout in the sample plane can be changed easily, and
complex structures have been fabricated. Nanowire shapes
are most often designed to accommodate constraints such
as the measurement technique (Hall crosses for Hall-effect
detection), the control of the DW injection and pinning (L-
or U-shaped structures, rings, etc.).

3.1.2 Nanoporous templates – electroplating

Electroplating is also a powerful (and inexpensive) technique
to fabricate nanowires. In this approach, the first step is
the fabrication of a template with pores of appropriate
diameter. These templates can be track-etched polycarbonate
membranes, anodized alumina films (Whitney, Jiang, Searson
and Chien, 1993) or photoresist patterned by electron-beam
lithography techniques (Duvail et al., 1998). The pores in
the template are then filled by electrodeposition. This leads
to an array of nanowires that can be studied in the template
or after dissolution of the template. Several methods have
been reported to make electric contacts to a single nanowire,
either in the template or after dissolution. These methods
include monitoring the resistance during the deposition so
as to stop after only one nanowire becomes electrically
connected (Wegrowe et al., 1998) and depositing contacts in
a later step using electron-beam or optical lithography (Vila,
Piraux, George and Faini, 2002).

Nanowires prepared by electrodeposition are usually cylin-
ders, with a roughly circular cross section and potentially
very high aspect ratios (length/diameter up to ∼1000). Bent
nanowires have also been fabricated by centrifugation, after
dissolution of the membrane and suspension in a liquid
(Tanase, Silevitch, Chien and Reich, 2003).

Although nanowires fabricated by electrodeposition have
been used to study DW magnetoresistance (Ebels et al.,
2000) or magnetization reversal (Wernsdorfer et al., 1996),
there are no reports as yet of current-driven DW motion
in such samples. However, multilayered nanopillars made
by electrodeposition have been used to study current-driven
magnetization reversal (Wegrowe et al., 2004, 1999).

3.2 Materials

The list of materials used for current-driven DW motion
studies is surprisingly short. The majority of experiments

use permalloy (Fe81Ni19). There are also a few reports on
other soft magnetic materials (CoFe and Ni), on hard mag-
netic materials with perpendicular magnetization (epitax-
ial Pt/Co/Pt multilayers), on diluted magnetic semiconduc-
tors (epitaxial GaMnAs) as well as one or two studies on
nanowires formed from spin-valve structures.

There are several requirements for materials suitable for
the study of current-driven DW motion in nanowires. First,
their magnetic properties must be well behaved, so as to
allow for well-defined DWs on the submicron scale. Soft
magnetic materials are well suited, since long exchange
lengths and large wall widths make them less sensitive to
local structural defects. The crystalline quality becomes more
important for harder materials. Second, the resistivity must
be small to limit losses and Joule heating. Third, the spin
polarization must be high so as to enhance spin-transfer
efficiency. Fourth, in order to detect the DW motion by
electrical means, materials with significant magnetoresistance
(AMR, GMR, or anomalous Hall resistance) are most useful.

These constraints have so far precluded the exploration of
very many materials. This means that the detailed influence
of material parameters, such as the saturation magnetization
and the magnetic anisotropy, have not yet been studied in
detail.

3.3 Detection of domain walls in nanowires

In this section, we describe some of the experimental tech-
niques that have been used to probe DWs in nanowires.
General principles and technical details can be found else-
where. Here we emphasize the main aspects of these different
measurement techniques in the specific context of probing
DWs in nanowires, and address some of their advantages
and drawbacks. It is important to note that different tech-
niques are useful for measuring different DW properties. For
example, some measurement methods such as the magneto-
optical Kerr effect (MOKE) and GMR (Parkin and Wessels,
1995) are sensitive to the magnetization of the magnetic
domains, from which the presence of DWs and their loca-
tion can be inferred. By contrast, other methods, such as the
AMR probe the presence of the DW itself but lack sensitiv-
ity to its position. Therefore, depending on the characteristics
and the sensitivity of the measurement technique, modifica-
tions of the DW structure or motion over small distances can
be detected or be completely overlooked. This can result in
significant ambiguities, for example, in the definition of the
critical current for DW motion.

Another key aspect of the measurement method is the
capability to acquire enough statistics to account for stochas-
tic variations in the motion of the DW. For example, many
microscopy techniques are slow. Thus, even though these
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techniques have sufficient spatial resolution to access the
static DW structure before and after its motion, the lim-
ited number of experiments which can be performed in a
reasonable time may not allow for the measurement of all
possible configurations. On the other hand, techniques such
as time-resolved MOKE require a large number of repetitions
of nominally the same DW motion to achieve adequate signal
to noise, and so can lead to misleading results if fluctuations
in this motion are important.

3.3.1 Electrical measurements

Magnetoresistance measurements are very convenient to
detect DWs in nanowires. The AMR and GMR effects are
most commonly used (Parkin and Wessels, 1995). There
are also several experimental studies based on the ordi-
nary and anomalous Hall effects (HE). These techniques,
which are based on electrical measurements, are fast, allow-
ing for extensive and systematic studies of current-driven
DW motion.

Anisotropic magnetoresistance (AMR)
The resistivity of ferromagnetic metals typically exhibits
AMR, whereby it depends on the angle θ between the
magnetization and the electric current direction in the mate-
rial, according to the relation:

ρ(θ) = ρ⊥ + δρ cos2(θ) with δρ = ρ‖ − ρ⊥ (17)

The normalized AMR ratio is defined as δρ/ρav =
δρ/(ρ‖/3 + 2ρ⊥/3). This effect, which arises from spin-
orbit coupling, can exceed 5% for some Ni–Fe and Co–Ni
alloys at room temperature (and can be much larger at lower
temperatures). The AMR values of many 3d transition-metal
alloys are listed in the review paper of McGuire and Potter
(1975).

The presence of a DW in a nanowire, which exhibits AMR,
changes the nanowire’s resistance because the magnetization
within the DW deviates from the wire’s long axis and thus
from the current direction. In order to estimate the magnitude
of the signal, consider the case of two head-to-head domains
separated by a DW of width � with a magnetization profile
following the 1D Bloch wall of equation (2). When no DW is
present, and the magnetization lies parallel to the nanowire’s
long axis, the resistance is simply:

Rsat = ρ‖L
wt

(18)

where L, w, and t are the length, width and thickness of
the wire, respectively. When a DW is present within the

nanowire, its resistance becomes:

RDW =
∫ L/2

−L/2
ρ[θ(x)]

dx

wt
(19)

Thus, the contribution of the DW to the nanowire’s resis-
tance, in the limit L � � is:

RDW − Rsat = −δρ2�

wt
(20)

The signal from the DW is directly proportional to the AMR
ratio and the DW width. In permalloy, to a first approx-
imation, the DW width scales with the nanowire’s width
� ∝ w (see Section 2.1.1). Therefore, the DW contribution
to the resistance is of the order of δρ/t and is independent of
the wire width. Note that since the AMR signal arises from
the DW itself, its relative contribution to the total nanowire
resistance decreases as 1/L, and can become quite small in
long wires. It can also be easily washed out by drifts in the
nanowire resistance over time (e.g., owing to small changes
in temperature).

An important characteristic of the AMR signal is that it
does not depend on the position of the DW (in uniform,
homogeneous nanowires). Thus, the AMR signal detects the
presence, or absence, of a DW between the electrical contacts
used to probe the nanowire’s resistance.

An example of the magnetoresistance (MR) hysteresis
loop of a straight NiFe nanowire, 300 nm wide and 10 nm
thick, is shown in Figure 11(a). The distance between the
electrical contacts is 4 µm. One end of the nanowire has a
tapered tip, to prevent DW nucleation, and the other end
is attached to a large nucleation pad to assist DW injection
(see Section 3.4.1). Note that these pads have very different
shapes in Figure 11(a) and (b). A triangular notch is patterned
on one side of the wire, which acts as a pinning center for the
DW. A magnetic field H is applied parallel to the nanowire’s
long axis. When the magnetization is saturated along this
axis, so that it is parallel to the current flow, the resistance
is highest. When the field is decreased to H = −25 Oe a
DW is injected into the nanowire and is trapped at the
pinning site. This results in a sharp drop of resistance by
∼0.2 �. The resistance level decreases further by ∼30% as
the field becomes more negative. This may be because the
DW is moved further into the notch or because the DW
becomes wider as it is stretched away from the notch. This
will depend on the detailed structure of the DW (whether
V or T and its chirality). When the field exceeds ∼−25 Oe,
the DW is driven from the pinning site to the other end of
the nanowire outside the region between the contacts and
the resistance reverts back to the saturation value. Note that
since the AMR is only sensitive to the presence of the DW
between the contacts, no signal is detected in these quasistatic
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Figure 11. Examples of magnetoresistance curves obtained when the propagation of a DW along the nanowire is probed by AMR in a
NiFe nanowire (a) or GMR in a spin-valve nanowire, which has the basic structure of NiFe/Cu/CoFe/Ru/CoFe/IrMn (b).
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Figure 12. (a) DW resistance, for three different DW structures, in a permalloy nanowire of width 20 nm, as a function of the nanowire
thickness t , calculated from micromagnetic simulations. (b) Ratio of the DW widths, obtained from equation (20), to the nanowire width
(symbols), and comparison with values obtained from fits of the magnetization profile to the 1D Bloch wall model profile.

measurements if the DW is not trapped between the contacts
after injection but rather propagates directly to the end of
the wire.

Although the signal is rather small, the AMR is highly sen-
sitive to details of the DW structure. For example, since the
AMR signal depends on the DW width, V and T walls can
be distinguished. The AMR signals calculated from micro-
magnetic simulations for three different DW structures in
100-nm-wide NiFe wires are shown in Figure 12, as a func-
tion of the wire thickness. Values of resistivity of 30 µ�cm
and an AMR ratio of 1% are used. Interestingly, the V wall
exhibits a signal about 30% larger than the T wall and the
double-V wall shows an even larger signal. The calculated
values vary inversely with nanowire thickness, as expected
from equation (20). The DW widths can be estimated from
this same equation (Figure 12b). Interestingly, the ratio of
the DW width to the nanowire width (�/w) is nearly inde-
pendent of thickness for the V and T walls. For the T wall,
�/w is ∼ 1/π , as proposed by Nakatani, Thiaville and Mil-
tat (2005). However, for the V wall, �/w is ∼0.4, which is

much smaller than that obtained by fitting the magnetization
profile to the 1D Bloch wall profile, that is, 3/4.

Experimentally, we find that the AMR signal does not
depend much on the wire width, in good agreement with
equation (20). The comparison between nanowires with dif-
ferent thicknesses is less conclusive since both the nanowire
resistivity and the AMR ratio vary with thickness. How-
ever, different wall structures can be well resolved (Hayashi
et al., 2006b). The AMR signatures of four different DWs
trapped at a notch in a 300-nm-wide, 10-nm-thick permalloy
nanowire are shown in Figure 13.

In summary, AMR is a powerful technique to probe
the presence of DWs in magnetic nanowires. The main
drawbacks of AMR measurements are the small output
signal, the lack of sensitivity to DW displacement, and the
limited choice of magnetic materials with large enough AMR
ratios.

Note that AMR is not the only contribution to the
resistance of the DW. Spin-dependent scattering across
the DW can also contribute to its resistance (Levy and
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Figure 13. Histogram of measurements of the resistance of a
permalloy nanowire (10 nm thick and 300 nm wide) after injection
of a DW in a series of repeated experiments. The four peaks in
the histogram correspond to four different DW structures. The DW
structure, corresponding to each resistance value, was determined
by MFM imaging and reproduced by micromagnetic simulations.
For all four DW structures are shown the MFM image (top), the
corresponding magnetization map from micromagnetic simulation
(bottom) and the map of the divergence of the magnetization
(middle). (Reproduced from Masamitsu Hayashi, Luc Thomas,
Charles Rettner, Rai Moriya, Xin Jiang, and Stuart S.P. Parkin,
Phys. Rev. Lett. 97, 207205 (2006), copyright  by the American
Physical Society, with permission from APS.)

Zhang, 1997). This latter effect is often termed the intrinsic
DW resistance. Although the resistance of DWs has been
extensively studied in the past decade (Marrows, 2005), the
intrinsic contribution is usually smaller than the AMR in 3d
transition-metal nanowires (∼0.1 to 1% of the resistivity).
Indeed, in permalloy nanowires, we find that the AMR can
largely account for the DW resistance in wires wider than
∼100 nm. Large intrinsic DW effects have been reported
in nanoconstrictions in permalloy nanowires although it is
difficult to rule out contributions from magnetoelastic effects.
Intrinsic contributions to the DW resistance in GaMnAs
wires have also been reported (Ruster et al., 2003).

Giant magnetoresistance
GMR is observed in multilayered structures in which two or
more ferromagnetic layers are separated by thin nonmagnetic
metallic spacer layers (Parkin and Wessels, 1995; Parkin,
1994). The current can flow either parallel or perpendicular
to these layers. These geometries are often termed current-
in-plane (CIP) and current perpendicular to plane (CPP),

respectively. Few GMR measurements of DW motion have
been reported although both the CIP (Ono, Miyajima, Shigeto
and Shinjo, 1998; Ono et al., 1999a; Grollier et al., 2002,
2003, 2004; Lim et al., 2004.) and CPP (Zambano and Pratt,
2004) geometries have been used, typically with a spin-valve
structure (Parkin and Wessels, 1995; Parkin et al., 2003). One
magnetic layer, nominally in a single domain state, acts as a
reference layer, and the DW motion is observed in a second
magnetic layer, the free layer, where the two layers are
separated by a thin Cu layer (Parkin, 1994). Although GMR
values of more than 70% are found in Co/Cu multilayers
at room temperature (Parkin, Li and Smith, 1991), typical
GMR effects in spin-valve structures useful for DW studies
are much smaller (∼1–5%). However, the GMR signals are
much larger than the AMR signal from a DW in a permalloy
nanowire, since the GMR arises from the magnetic domains
and not from the DW alone. This also means that the GMR
signal is sensitive to the precise position and thus the motion
of a DW along a nanowire.

A typical example is illustrated in Figure 11(b), in which
the resistance hysteresis loops of a 200-nm-wide spin-
valve nanowire formed from a NiFe/Cu/CoFe/Ru/CoFe/IrMn
structure are shown. In the field range shown, only the
magnetization of the free layer (a 20-nm-thick NiFe layer)
reverses. When the free layer’s moment is completely
switched from being parallel to antiparallel to the reference
layer (an NiFe layer exchange biased by an antiferromagnetic
IrMn layer) the resistance of the device changes by ∼12 �,
which is nearly 100 times larger than the AMR signal (0.2 �)
for a permalloy nanowire device with similar resistance.
In the example shown in Figure 11(b) the nanowire was
fabricated with three notches of different depths along one
side of the nanowire (as shown in the scanning electron
micrograph (SEM) in Figure 11b) so that the DW is trapped
successively at these pinning sites. This accounts for the
resistance plateaus in the figure.

While GMR appears well suited to the study of the motion
of DWs in nanowires, the necessary use of additional mag-
netic and nonmagnetic layers causes severe problems. In
particular, the shunting of current through the nonmagnetic
spacer layer, which is typically much more conducting than
the other layers in the stack, results in an inhomogeneous
current distribution through the stack. This may lead to Oer-
sted fields from the current within the magnetic layer in
which the DWs move. A second, perhaps even more impor-
tant problem, is the interaction of the fringing fields from
the DWs with the reference layer moment through magnetic
dipolar interactions (Gider, Runge, Marley and Parkin, 1998;
Thomas, Samant and Parkin, 2000; Thomas et al., 2000).
Moreover, any inhomogeneities in the reference layer (either
magnetic or structural) will likely lead to pinning centers for
the DWs in the free layer, again through dipolar fields. A
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third significant problem is that the current densities needed
to move DWs in transition-metal ferromagnetic materials are
often so high that the device becomes significantly heated,
so that the exchange bias is weakened (typical blocking tem-
peratures are ∼500 K) and the reference layer moment is no
longer magnetically stabilized. Notwithstanding these prob-
lems, GMR has a particular advantage in that, since the
GMR effect derives largely from spin-dependent interface
scattering (Parkin, 1992, 1993), many different free layer
ferromagnetic materials can be studied by inserting ultrathin
layers at the interface with the Cu spacer layer which give
high GMR (Parkin, 1993).

Hall effect
The Hall effect is also a powerful technique to study DW
motion. For materials with magnetization perpendicular to
the sample plane, for example, CoPt alloys or multilayers
and GaMnAs, the anomalous hall effect (AHE) provides a
direct measurement of the DW position (Wunderlich et al.,
2001; Yamanouchi, Chiba, Matsukura and Ohno, 2004).
Indeed, just as for GMR, the AHE is proportional to the net
magnetization (within the Hall cross), although the signal can
be even larger. For example, in epitaxial GaMnAs nanowires,
a change in resistance of more than 400 � has been reported
(although at low temperatures) (Wunderlich et al., 2001).
This large signal allows the detection of DWs moving over
distances as short as 10 nm (Ravelosona et al., 2005).

The Hall effect is also observed for samples magnetized
in plane when the magnetization is not exactly parallel to
the current, as a consequence of the AMR. Although the
effect is quite small in metallic samples (Berger, 1991a;
Sato et al., 2000; Gopalaswamy and Berger, 1991), a giant
planar Hall effect has been reported in GaMnAs films
magnetized in plane (Tang, Kawakami, Awschalom and
Roukes, 2003) and this effect has been used to detect
a single DW (Honolka et al., 2005; Tang et al., 2004;
Tang, Masmanidis and Kawakami, 2004). Hall-effect-based
measurements require the device to be patterned in a Hall-
cross geometry, thus limiting the flexibility of the device
structure. Moreover, DWs can be strongly pinned at the cross,
as shown by Wunderlich et al. (2001).

3.3.2 Optical measurements

The magneto-optical Kerr effect (MOKE) has been used
to probe DW motion (Lee et al., 2000; Cowburn, All-
wood, Xiong and Cooke, 2002; Allwood et al., 2002a;
Atkinson et al., 2003; Vernier et al., 2004; Beach et al.,
2005, 2006; Yamanouchi, Chiba, Matsukura and Ohno,
2004; Yamanouchi et al., 2006). However, using conven-
tional optics, the spatial resolution of MOKE is limited by
the wavelength of the light used, typically to about 0.5 µm.

This makes it difficult to detect DWs directly. However, it
is possible to detect the magnetization of magnetic domains,
and thereby detect the presence and position of a DW in
nanowires even as narrow as 120 nm (Vernier et al., 2004).
Even though the size of the light source is diffraction lim-
ited, the motion of DWs can be detected over much shorter
distances, that is, within the light spot, when the signal to
noise ratio of the Kerr detection scheme is high enough,
for example, by using pump-probe MOKE experiments. The
main advantages of MOKE detection are its application to a
wide range of magnetic materials and, perhaps most impor-
tantly, the fact that it does not perturb the magnetic structure.

3.3.3 Magnetic microscopy techniques

High-resolution magnetic microscopy is extremely useful to
unambiguously measure a DW’s structure. As discussed in
paragraph 3.3.1, resistance measurements can be very sensi-
tive to the DW structure, but can only be fully interpreted
in conjunction with magnetic microscopy images. The Kerr
effect can be used to image magnetic structures, either by
scanning a beam of light across the sample or by using an
optical microscope. The latter has been used to study injec-
tion and pinning of DWs in permalloy nanowires, as narrow
as 500 nm wide (Yokoyama et al., 2000).

MFM is an elegant and simple technique, with a resolution
of ∼25 nm, which is good enough to well resolve the
structure of many DWs. However, it has very serious
drawbacks. First, by contrast with the MOKE effect, MFM
probes not the magnetization but rather the dipole fields
generated by inhomogeneities in the magnetization. For
samples magnetized in plane these fields are approximately
proportional to the divergence of the magnetization. This
means that it can be difficult to resolve the structure of
complex DW structures from an MFM image without the aid
of micromagnetic simulations. Second and more important
is the interaction between the MFM magnetic tip and the
sample, which is often large enough to perturb the magnetic
structure of the sample. The field from the tip can both distort
and cause transformations in the structure of DWs (Lacour
et al., 2004) and can also drag DWs along a nanowire
even if the DWs are trapped at pinning centers. Clearly,
it is preferable to use MFM magnetic tips with the lowest
possible magnetic moments, as discussed in several studies
(Saitoh, Miyajima, Yamaoka and Tatara, 2004; Yamaguchi
et al., 2004). Examples of MFM images of T and V DWs
trapped at a notch are shown in Figure 13. Also shown are
maps of the divergence of the magnetization computed for
these DW structures using micromagnetic simulations, which
are in good agreement with the experimental measurements.
Another example is shown in Figure 2 in which the MFM
image of a double-V structure is compared with the simulated
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Figure 14. MFM images of a vortex DW in 40-nm-thick FeCoNi
nanowires with widths of 400, 500, and 600 nm.

structure. Figure 14 shows MFM images of V walls located
in curved nanowires with different widths. In these cases the
nanowires are relatively thick (40 nm), so that the vortex core
polarity can be resolved even though the core dimensions
(∼5 nm radius) are much smaller than the experimental
resolution. Note that the core appears as the white signal
in the middle of the V wall.

In homogeneous nanowires with smooth edges and sur-
faces DWs can be moved in fields of just a few oersteds so
that even low moment MFM tips can destabilize such DWs.
Even though a DW may appear stable in consecutive MFM
images, the structure observed may have been modified by
the proximity of the tip even before the first image was taken.
Moreover, the signal measured with low moment MFM tips
is quite small, particularly for thin magnetic layers (<10 nm).
MFM provides the most useful results for strongly pinned
DWs or DWs in nanowires with large propagation fields.

Scanning tunneling microscopy (STM) has atomic lateral
resolution and does not perturb the magnetic structure. STM
has been used successfully to image the vortex core in Fe
islands (Wachowiak et al., 2002) and has potential for the
study of DW motion.

Other magnetic imaging techniques include PEEM and
various X-ray microscopy techniques, which are typically
most useful when carried out at a synchrotron, which can pro-
vide energy resolved photon fluxes of high intensity. PEEM
is sensitive to the projection of the magnetization in the X-ray
incidence plane, and has a spatial resolution below 100 nm.
Examples of PEEM images of magnetic domain structures
are shown in Figures 3 and 15. V and T wall structures
can readily be identified. A particular advantage of PEEM
is its elemental selectivity, which can be used to detect the
magnetization of individual layers in multilayered structures.
Other advantages are that PEEM is nonperturbative, and it
is suitable for time-resolved measurements of magnetization
dynamics in submicron structures (Choe et al., 2004). PEEM
can be used to study samples grown on any substrate, pro-
vided the capping layer is thin enough. However, PEEM
is sensitive only to the surface of the sample (∼10–20 Å),
which can be both good and bad. For example, PEEM can
measure very thin samples but, on the other hand, sur-
face contamination can significantly affect the measurement.
Since PEEM is an electron microscopy technique, imaging

in the presence of magnetic fields is not possible. Moreover,
large voltages (15 to 20 kV) are required which risks elec-
trical discharges, which can damage the sample. This means
that it is also difficult to apply electric currents to the samples
in situ.

Transmission X-ray microscopy and scanning transmission
X-ray microscopy (STXM) can also be used for imaging
magnetic nanostructures both in the time and spatial domains
(Puzic et al., 2005; Van Waeyenberge et al., 2006). The
spatial resolution is higher than that of PEEM and it is
much easier to apply magnetic fields and electric current
to the sample. However, these techniques require special
samples grown on thin transparent membranes. This can be
an issue for current-driven DW motion studies, for which the
dissipation of heat through the substrate from Joule heating
of the wire may be important.

Electron microscopy techniques are also suitable for imag-
ing DWs in nanowires with high spatial resolution. Transmis-
sion electron microscopy in the Lorentz mode has been used
successfully to study magnetization processes in permalloy
and Co nanowires with widths as small as 100 nm (Schrefl,
Fidler, Kirk and Chapman, 1997). Spin-resolved scanning
electron microscopy (spin-SEM, or SEMPA) is also non-
perturbative and has very high lateral resolution (∼20 nm).
This technique has been used successfully to image the
DW structure in nanoconstrictions (Jubert, Allenspach, and
Bischof, 2004) and the DW displacement induced by current
pulses in nanowires (Klaui et al., 2005b, Jubert et al., 2006).
By combining high-resolution images of the two in-plane
components of the magnetization, Klaui et al. (Klaui et al.,
2005b) have shown the progressive distortion of a vortex
wall and its eventual transformation into a transverse wall
as a result of the injection of several current pulses. Note
that spin-SEM has the same drawbacks as other electron
microscopy based techniques such as PEEM, for example the
surface sensitivity (such that capping layers cannot be used or
need to be removed in-situ) and the difficulty of using mag-
netic fields while imaging. Recently, high-resolution electron
holography was used to study the structure of DWs trapped
in constrictions (Klaui et al., 2005a).

3.3.4 Time-resolved experiments

Time-resolved measurements are extremely useful to study
the dynamics of DW propagation. Measurements using the
Kerr effect (Atkinson et al., 2003; Beach et al., 2005), GMR
(Ono et al., 1999a,b), and AMR (Hayashi et al., 2006a)
have been reported. In all cases reported so far, reasonable
signal to noise ratios could only be achieved by signal
averaging over very many repeated measurements. However,
with improved detection sensitivity all of these techniques
have the potential for single-shot detection. Other techniques
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offer the potential for time-resolved measurements of current-
driven DW motion, for example, PEEM (Choe et al., 2004),
STXM (Puzic et al., 2005), or inductive measurements
(Silva, Lee, Crawford and Rogers, 1999). However, all these
methods rely upon a pump-probe approach, which is rather
inconvenient for the measurement of irreversible processes
such as DW motion. Indeed, the sample must be reset to
an identical initial state before each measurement, and the
motion must be reasonably reproducible in order to obtain
useful results. An important technical point is that the sample
reset must be relatively fast to collect data in a reasonable
amount of time. This can be difficult if even modest fields
are required for this process.

3.4 Field-driven domain-wall motion in magnetic
nanowires

Understanding and controlling the field-driven motion of
DWs in nanowires is an important preliminary step to
studying their current-driven dynamics.

The simplest way to create a DW in a magnetic nanowire
is to first saturate its magnetization along its long axis and
then in a second step to apply a smaller magnetic field in
the opposite direction. The magnetization reversal process
has been studied both experimentally (Schrefl, Fidler, Kirk
and Chapman, 1997) and numerically (Nakatani, Hayashi,
Ono and Miyajima, 2001) in nanowires with square ends. In
these cases the magnetization reversal originates from closure
domains at the ends of the nanowire, which expand as the
magnetization rotates rotate toward the applied field. The
field associated with the nucleation of the reversed domain
can be large, since it must overcome the shape anisotropy of
the wire. This field decreases as the inverse of the wire width
and can reach several hundred oersteds in submicron-wide
permalloy or Co nanowires (Shigeto et al., 2000).

Since the field required to nucleate a DW in a nanowire
is generally much larger than the field needed to propagate
a DW along the wire, once a DW is created it will be
swept along the length of the wire. Different schemes can
be used to circumvent this problem and generate a single
DW in a nanowire whose field- and current-driven motion
can subsequently be studied. All these schemes enable the
independent control of the three critical steps of field-driven
DW motion (i) DW nucleation, (ii) DW injection into the
nanowire, and (iii) DW propagation along the nanowire.
These will be discussed in the following paragraphs.

3.4.1 Nucleation and injection of domain walls

Three methods have been proposed to nucleate DWs in soft
magnetic nanowires.

Nucleation pad
Shigeto, Shinjo and Ono (1999) first introduced the technique
of using a nucleation pad attached to one end of a nanowire
to generate a DW in the wire. The pad’s lateral dimensions
are much larger than the wire width, typically of the order
of or larger than 1 µm. Various pad shapes have been used
including squares, diamonds, and ellipses. Owing to the pad’s
size and shape, the field required to nucleate a DW inside
the pad is smaller than that needed to nucleate a DW within
the nanowire itself. If the shape of the pad favors a flux-
closed structure, a DW may reside in the pad at remanence.
Cowburn et al. (Cowburn, Allwood, Xiong and Cooke, 2002)
studied a 1-µm-sized square pad attached to a 100-nm-wide,
5-nm-thick permalloy wire. DW propagation was probed
by MOKE at different positions along the nanowire. The
reversal field of the nanowire alone, when terminated with
square ends, exhibits a reversal field of ∼180 Oe. When the
nucleation pad is attached to the nanowire, the reversal field
is reduced significantly to ∼40 Oe. The same principle means
that by shaping the end of the nanowire, for example to
a point, so as to increase the local shape anisotropy, the
nucleation field for a DW can be significantly increased
(Schrefl, Fidler, Kirk and Chapman, 1997).

The nucleation of a DW in the pad does not guarantee that
it can be injected into the nanowire. The junction between
the wire and the pad is a local energy minimum, and a
magnetic field is required to move the DW into the wire. This
injection field depends on the dimensions and shape of the
nucleation pad and the nanowire. The injection field typically
decreases for wider wires. However, it can be quite large
for wire widths below 500 nm. For example, in experiments
reported by Yokoyama et al. (2000), the injection field with
a diamond-shaped nucleation pad is ∼60 Oe for a 500-nm-
wide, 20-nm-thick permalloy wire. Without the nucleation
pad, the injection field is slightly higher (about 85 Oe). For
2-µm-wide nanowires, these fields are reduced to ∼25 and
∼35 Oe, respectively.

The relatively high value of the injection field makes it dif-
ficult to inject a DW into a nanowire without the DW moving
along the length of the nanowire. The DW will move along
the nanowire when the field exceeds a critical propagation
field, which is determined by any defects in the nanowire,
such as edge or surface roughness. For smooth wires, the
propagation field may be as small as a few oersteds, which
is much smaller than the injection field in most cases. There-
fore, nucleation pads do not solve the problem of the con-
trolled injection of a DW into the nanowire, unless there is
significant pinning along the nanowire. One way to solve this
problem is to fabricate an artificial pinning center within the
nanowire. The distinction between nucleation, injection, and
propagation fields is illustrated in Figure 15, in which PEEM
imaging was used to study field-driven DW injection in a
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Remanence

H > nucleation field

H > injection field

H > propagation field

Figure 15. PEEM images of the domain structure of a 20-nm-thick,
250-nm-wide permalloy nanowire, measured at remanence after
application of magnetic fields of various amplitudes (Thomas et al.,
2005). The elliptical pad is ∼1.7 µm long, 1 µm wide. (Reproduced
from L. Thomas, C. Rettner, M. Hayashi, M.G. Samant, S.S.P.
Parkin, A. Doran, and A. Scholl: ‘Observation of injection and
pinning of domain walls in magnetic nanowires using photoemission
electron microscopy’, Applied Physics Letters 87, (2005) copyright
 2006 American Institute of Physics, with permission from the
AIOP.)

permalloy nanowire (Thomas et al., 2005). Note that DWs
can also be injected from a nucleation pad into a nanowire
without an artificial pinning site if sufficiently short field
pulses are used, such that the DW does not have time to fully
propagate along the nanowire (Beach et al., 2005). This is
only possible if the applied field can be changed on a short
timescale determined by the DW propagation speed.

Nonlinear nanowire shape
The second scheme for DW nucleation uses a shaped
nanowire whose remanent state after saturation along a par-
ticular orientation of an external magnetic field exhibits
one or several DWs. Numerous shapes are possible includ-
ing U- or L-shaped wires (Thomas et al., 2006; Yam-
aguchi et al., 2004, 2006a), zig-zag wires (Klaui et al.,
2005b; Taniyama, Nakatani, Namikawa and Yamazaki, 1999;
Taniyama, Nakatani, Yakabe and Yamazaki, 2000), and rings
(Rothman et al., 2001; Klaui et al., 2005b; Laufenberg et al.,
2006b). An example of DW nucleation is shown in Figure 16
for an L-shaped wire. In this case a saturation field, high
enough to overcome the nanowire’s shape anisotropy, is
applied at ∼45◦ to the two straight legs of the nanowire. The
magnetization in both legs of the nanowire rotates toward the
field to reach an angle defined by the ratio of the external
field and the shape anisotropy field. When the field is reduced
to zero, the magnetization rotates back toward the wire’s axis
(the easy direction of the shape anisotropy), so nucleating a
DW near the bend. This method is attractive because it gen-
erates a DW highly reproducibly, even in smooth nanowires
without any pinning centers. However, its main drawback is
that it requires a large external field, big enough to overcome
the wire’s shape anisotropy.

(a)

(b)

Figure 16. Schematic of the field-induced injection of a DW into
the bend of a L-shaped nanowire by applying an external field at
∼45◦ to the two straight legs of the nanowire. MFM measurements
at remanence after the injection of a DW into 20-nm-thick permalloy
nanowires with widths of (a) 300 and (b) 100 nm, respectively.
Magnified images of the DWs are shown in the inset.

Nucleation line
The third technique to nucleate a DW in nanowire uses a sep-
arate conducting wire situated above or below and approx-
imately perpendicular to the magnetic nanowire (Hayashi
et al., 2006a,b; Himeno, Kasai and Ono, 2005; Himeno et al.,
2005). A current is passed through this wire, which generates
a localized Oersted field which is used to reverse the magne-
tization of a section of the nanowire immediately adjacent to
the conducting wire (see Figure 17). Thus two DWs are cre-
ated. The Oersted field will cause the DWs to move along the
nanowire away from the conducting wire a short distance till
the Oersted field is decreased below the propagation field of
the nanowire. This method is very attractive because it allows
the local application of significant local fields of several hun-
dred oersteds on the nanosecond timescale at a very high
repetition rate compared to an external electromagnet. On the
other hand the current needed to nucleate the DW may be
quite high, particularly for thick nanowires with square aspect
ratios, so that heating or electromigration may be an issue.

3.4.2 Domain-wall pinning and depinning from local
pinning sites

Once a DW is nucleated and injected into a nanowire, it will
move along the wire if an applied magnetic field exceeds
the propagation field. The propagation field arises from
local pinning centers associated, for example, with roughness
or defects in the nanowire. For permalloy, it is strongly
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Figure 17. A schematic diagram showing DW injection using a local Oersted field generated in a nearby current lead. (Courtesy of
Masamitsu Hayashi.)

dependent on the quality of the samples, and can take
values from a few (Faulkner et al., 2004) to tens of oersteds
(Yamaguchi et al., 2004). Note that the propagation field
typically depends on the DW position along the nanowire.
This means that the observed propagation field for motion of
the DW over a given length will depend both on the initial
DW position and this length.

Artificial pinning sites can be provided by fabricating
appropriately shaped local modifications of the nanowire.
In soft nanowires, quite a variety of designs can be used
to successfully pin DWs. These include notches, humps,
constrictions, or crosses, which lead to potential wells
(attractive) or potential barriers (repulsive) of various widths
and depths. Pinning centers can also be provided by creating
local modifications of the nanowire using, for example, ion
bombardment (Holleitner et al., 2004) or possibly localized
oxidation, localized thermal annealing treatments or by using
atomic force microscopes to physically or chemically modify
the nanowire (Schumacher et al., 2001). It is also possible
to use magnetic materials deposited under, on, or near the
nanowire to change the magnetic properties of the nanowire
in localized regions. One example is the use of magnetically
hard CoSm pads on permalloy nanowires (Nagahama, Mibu
and Shinjo, 2000). DW pinning has been carried out by
varying the thickness of GaMnAs nanowires (Yamanouchi,
Chiba, Matsukura and Ohno, 2004) and by using a Hall-
cross geometry (Pt/Co/Pt layers by Wunderlich et al. 2001)
for perpendicularly magnetized nanowires.

The depinning field from a symmetric V-shaped notch
is roughly proportional to the notch depth (Yokoyama
et al., 2000; Himeno et al., 2003; Faulkner et al., 2004;
Klaui et al., 2005a). For permalloy wires, depinning fields
can reach several hundred oersteds. Values as high as
∼1 kOe have been reported at low temperature in permalloy
nanorings (Klaui et al., 2003a) and in CoFe nanowires at
room temperature (Tsoi, Fontana and Parkin, 2003).

A very important point is that the depth of a pinning
potential depends on details of the DW’s structure and may,
for example, be quite different for T and V walls and even
for the same wall if it is of clockwise or counterclockwise
chirality. Moreover, since the structure of a DW may evolve
with time, for example, because of forces on the DW from
current or field, the pinning potential itself may change
with time and even during the transit time of a DW across
the potential. This makes the notion of DW pinning very
complex!

Another point is that the depinning field of a DW from
a notch (or protuberance) may depend on the direction
of motion of a DW. For example, the propagation field
of DWs in nanowires with highly asymmetrically shaped
protuberances (Himeno, Kasai and Ono, 2005; Allwood,
Xiong and Cowburn, 2004) was found to differ by a factor
of two depending on the direction of DW motion. However,
even if the pinning site is symmetric, for example a V-shaped
notch, the DW depinning fields to either side of the notch
may be quite different. This can be because the DW may not
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Figure 18. Micromagnetic simulations of the energy landscape of a DW pinned at a notch.

reside in the center of the notch but rather to one side, as
discussed later in more detail.

Micromagnetic calculations are very helpful in understand-
ing the pinning of DWs in pinning sites such as notches (see,
e.g., a symmetric notch in Figure 18). The pinning potential
is determined as follows. First, a stable DW structure is pre-
pared at a specific location, either inside or outside the notch.
This state is relaxed in zero field until equilibrium is reached.
This equilibrium state is in general a metastable state. Sec-
ond, a magnetic field is applied so that the DW moves along
the nanowire, either away from or across the notch. The
magnitude of the field is chosen to be large enough to over-
come the pinning potential but is as small as possible so as
to ensure that the DW follows the lowest energy trajectory.
The latter is encouraged by using a large damping constant
(e.g., α = 1). The potential energy landscape for the DW is
then obtained from the total energy of the system minus the
Zeeman energy. The DW position is then calculated from
the net longitudinal magnetization of the nanowire. In gen-
eral, boundary conditions are used to fix the direction of the
magnetization of the nanowire at either end along the long
axis of the nanowire. Thus the DW energy will be modified
when too close to the ends of the nanowire. For the example
shown in Figure 18 the nanowire has a width and thickness
of 100 and 5 nm, respectively, so that the stable state of the
DW in the nanowire is a T wall. There are two minima in
the pinning potential at either side of the notch. By consid-
ering the contributions of the exchange and magnetostatic
energies to the total potential, it is clear that the DW pinning
is associated with two main factors (i) the reduction of the
DW volume within the notch (i.e., due to the reduced width
of the nanowire) and (ii) the reduction of the DW energy
when the nanowire’s edges are not parallel to the nanowire’s
long axis. The exchange energy is minimized when the DW
volume is reduced. However, the magnetostatic energy plays

the more dominant role and, in particular, accounts for the
energy minima when the DW sits within either of the two
wedged portions of the nanowire, which define the edges of
the notch. It should be emphasized that the magnetostatic
energy is the dominant contribution to the energy for both V
and T head-to-head DWs, accounting for ∼80–90% of the
wall’s energy (McMichael and Donahue, 1997). Thus, the
pinning potential is dominated by magnetostatic rather than
volumetric effects in the head-to-head DW case, in contrast
to the theoretical prediction for a Bloch wall trapped at a
nanconstriction (Bruno, 1999).

The pinning potential becomes more complex for thicker
wires, as illustrated in Figure 19. The nanowire width and
notch shape are the same as before, except that the nanowire
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Figure 19. Micromagnetic calculations of the energies of a V
(medium gray) and a T (dark gray) DW pinned at a notch of the
same form as that shown in Figure 18. The black curve shows the
energy of the DW when it transforms from a V to a T wall as it
enters the notch.
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thickness is increased from 5 to 20 nm. In this case, the stable
state outside the notch is a V wall. In these simulations, the
initial state was either a V or a T wall centered in the notch
and the DW was moved away from the notch to the left
or right with magnetic fields to calculate the potential. The
pinning potential exhibits the same features as for the thinner
wire, with two minima at either side of the notch, for both the
V and T DWs. However, there is an additional shallow local
minimum in the middle of the notch for the V wall. This
example is interesting because the structure of the DW with
the lower energy is different within (T wall) and outside the
notch (V wall). This leads to a change of the wall structure
when the V wall moves across the notch, as illustrated by
the black curve in Figure 19. The energy barrier for this
transformation is indeed smaller than that needed to move
the vortex wall across the notch.

It is quite typical that there are significant variations
in the DW pinning and depinning processes in repeated
experiments, leading to, for example, variations in depinning
fields. As discussed earlier, one reason is that there may
be several metastable structures of a DW trapped at a
notch, each with a different pinning potential (Hayashi
et al., 2006b). A particularly interesting example is shown
in Figure 20 for the case of a DW injected and trapped at an
artificial pinning site in a permalloy nanowire, 10 nm thick
and 300 nm wide. Four distinct DW states are found, whose

structures, as determined from MFM images, correspond to
two V walls and two T walls, one of each with a clockwise
and the other with a counterclockwise chirality. Note that
the DWs are pinned at the left side of the notch in the
images because they were injected from the left side. Each of
these DWs is a metastable state with a corresponding pinning
potential and associated depinning fields, which can be well
reproduced by micromagnetic calculations. Interestingly,
even though the notch is symmetric, the pinning potential
is quite asymmetric for one chirality of the T and V DW.
Similar results have been reported by Miyake et al. (2005)
for a nanocontact much narrower (∼15 nm) than the example
shown in Figure 20.

3.4.3 Time-resolved experiments

Field-driven DW dynamics were studied in detail in the
1970s with regard to magnetic bubble memory applications,
as extensively reviewed by Malozemoff and Slonczewski
(1979). As mentioned in paragraph 2.2.3, a 1D theory of
DW motion was developed to account for Bloch-like DWs.
Many of the results of this theory, however, also apply to
more complex DW structures.

In an ideal situation without pinning, the motion of a
DW along a magnetic nanowire has distinct characteristics
depending on the strength of the applied field. The motion
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nanowire. Also shown are the corresponding energy landscapes calculated from micromagnetic simulations. (Reproduced from Masamitsu
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can be described analytically within the 1D model. In a first
regime, at low fields, the DW velocity increases at short times
to attain a steady value. In this stationary regime, the velocity
increases linearly with field, according to the relation:

v(H) = γ�

α
H (21)

When the field exceeds a certain threshold value, the so-
called Walker breakdown field, the average DW velocity
drops sharply. Above this field, the DW moves in a complex
manner, and its velocity oscillates in time. When the field is
increased further, the average velocity is again proportional
to the field, although the wall mobility is strongly reduced
compared to the low-field value. The velocity in this second
regime depends on field according to the relation:

v(H) = γ�

α + α−1
H (22)

When pinning is included, the DW only moves along
the nanowire when the field exceeds a critical value Hc.
Depending on the nature of the potential (whether it is
conservative or nonconservative), the DW velocity can be
written (Malozemoff and Slonczewski, 1979; Baldwin and
Culler, 1969), for |H | > Hc, as:

v(H) ∝ (H 2 − H 2
c )

H

or v(H) ∝ H − Hc respectively (23)

Only a few experimental studies have explored the time-
resolved motion of DWs in nanowires. Ono et al. (1999b)
have used GMR measurements to probe the propagation of a
DW in a trilayer structure NiFe (40 nm)/Cu (20 nm)/NiFe
(5 nm). The nanowire was 500 nm wide and extremely
long (2 mm). The DW motion in the 40-nm-thick layer
was probed on the microsecond timescale, for magnetic
fields between 100 and 150 Oe. The DW velocity was
found to increase linearly with field above a threshold field
(∼35–40 Oe). The wall velocity v was between 150 and
250 m s−1, corresponding to wall mobilities v/H of about
2.6 m s−1 Oe−1. Atkinson et al. (2003) performed a similar
study on a single layer permalloy nanowire (5 nm thick,
200 nm wide) using time-resolved MOKE experiments. The
wire was much shorter (about 50 µm) than that used in the
study of Ono et al. and the DW motion was probed on much
shorter timescales (20–500 ns). These authors also found
that the DW velocity increased linearly with field for fields
above ∼25 Oe. However, the DW mobility was more than
10 times higher (∼38 m s−1 Oe−1). These two experiments
were performed in relatively high fields, compared to the
expected Walker breakdown fields. Moreover, in both cases

the propagation fields were large. Nevertheless, these authors
interpreted their data using the theory in the low-field regime,
(equation (21)) in which the velocity is proportional to field.
They deduced extraordinarily high values of the Gilbert
damping constant, namely, α = 0.63 (Ono et al., 1999b) and
α = 0.053 (Atkinson et al., 2003), in both cases much higher
values than those found in thin permalloy films (0.01–0.02)
(Nibarger, Lopusnik and Silva, 2003; Nibarger, Lopusnik,
Celinski and Silva, 2003).

Recent experiments by Beach et al. (2005) and our work
(Hayashi et al., 2006a) suggest that these surprisingly high
damping constants (i.e., small DW mobilities) more likely
indicate DW motion in the high-field regime above the
Walker threshold field, in which equation (21) is not valid.
Indeed, in the high-field regime, the velocity also increases
linearly with field, but is lowered by a factor α2 compared
to the low-field regime (see equations (21) and (22)).
Clear evidence of the Walker breakdown was observed in
the work of both Beach et al. (2005) and Hayashi et al.
(2006a), with a field dependence of the velocity following the
textbook behavior (as shown, e.g., in Figure 22). The Walker
breakdown field was found to be only a few oersteds, and
the data are consistent with reasonable values of the Gilbert
damping constant. Note that we have recently reported the
experimental observation of periodic oscillations of the DW
structure, as predicted above the Walker breakdown (Hayashi
et al., 2007b).

The experiments discussed above address the ballistic
(or viscous) regime for DW motion, for which the DW
dynamics can be described by the Landau–Lifshitz–Gilbert
equation at zero temperature. Thermally activated processes
allow for DW motion below the critical field Hc. This
has been observed in nanowires made with thin Pt/Co/Pt
trilayers and two regimes have been identified. The thermally
activated regime is characterized by a wall velocity written
as (Wunderlich et al., 2001; Ravelosona et al., 2005):

v(H, T ) = v0 exp

(−2MsV (Hc − H)

kBT

)
(24)

where kB is the Boltzmann constant and T the temperature,
H and Hc are the applied and propagation fields, respec-
tively, and V is the activation volume. In the creep regime,
the DW velocity is written as (Cayssol et al., 2004):

v(H, T ) = v0 exp

(−Uc(Hc/H)1/4

kBT

)
(25)

with Uc and Hc are the scaling energy and the critical field,
respectively. In this creep regime, the wall velocity was
found to vary as the inverse of the wire width, and to decrease
for larger wire roughness (Cayssol et al., 2004). Both regimes
are characterized by very small DW velocities (	1 m s−1).
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3.5 Current-induced domain-wall motion

3.5.1 Experimental considerations

The first studies of current-driven DW motion were per-
formed by Berger et al. in extended permalloy films. In these
studies (and also in the more recent work of Gan et al.
(2000)), the DWs have 180◦ Bloch, Néel, or cross-tie DW
structures, the current flows in the direction perpendicular
both to the wall and the magnetization within the domains,
and there is no pinning besides the local defects responsi-
ble for the film’s coercivity. Several DWs are probed at the
same time, in contrast to recent experiments on magnetic
nanowires, which probe single DWs. For nanowire samples
with perpendicular anisotropy, the current is also perpen-
dicular to both the wall and to the domain magnetization
direction, as in extended films. However, for head-to-head
DWs in nanowires, the current is perpendicular to the wall
but parallel to the magnetization in the domains. These dif-
ferent geometries must be taken into account in experiments,
which probe the current-induced motion of DWs since, for
example, the role of the self-field (Oersted field) and the
hydromagnetic domain drag are different.

Current-induced DW experimental studies can be sepa-
rated into two broad categories, current-induced DW propa-
gation and current-induced DW depinning. In the first cate-
gory, the position of the DW in a nanowire is probed before
and after the application of the current. Thus, the critical
current for DW motion and the DW displacement direction
and distance can be inferred. When current pulses are used,
the DW velocity can also be determined. In the second cate-
gory, the field to depin DW is measured as a function of the
applied current.

3.5.2 Current-induced domain-wall motion in zero
field

From an experimental viewpoint, current-induced DW motion
occurs above a critical current density Jc. As mentioned
earlier, this is an important parameter both for comparing
experiment with theory and for potential technological appli-
cations. It is unfortunate that the magnitude of Jc is often
ambiguous, making comparison between data and theory dif-
ficult.

1. Uncertainties with regard to the definition of the critical
current
(a) What is the experimental definition of the critical

current?
The experimental definition of the critical current
depends on the type of measurement and the sen-
sitivity of the experimental technique. Indeed, the
critical current for DW motion over micron-sized

distances can be quite different from that needed to
change the DW structure within a notch or move
a DW over very short distances between neighbor-
ing pinning sites. For example, in the early work by
Salhi and Berger (1994), wall motion was detected
by Kerr microscopy, such that ‘the critical current
density is determined by finding the smallest value
for which a sequence of 600 pulses produces a
detectable wall displacement’. Given the resolution
of the setup, this corresponds to an overall displace-
ment of about 12 µm (or 20 nm/pulse, assuming all
pulses induce the same DW displacement, which is
far from certain). By contrast, in a recent report by
Ravelosona et al. (2005), DW motion over a few
tens of nanometers can be detected directly in a
Hall cross, owing to the high sensitivity of the AHE
effect. In summary, the experimental definition of
the critical current is as vague as ‘the minimum
current for some measurable change to take place’.

(b) Joule heating
The current densities used in most experiments are
large (see Table 1) and Joule heating is significant.
This temperature increase can play a significant role
in current-induced DW dynamics, as discussed later.
Here we only address experimental consequences
of the heating of the nanowire. In particular, cur-
rent pulse generators often deliver constant voltage
pulses rather than constant current pulses so that
the current delivered depends on the load resis-
tance. While, for dc or long current pulses this is
easily corrected by directly measuring the actual
current delivered to the nanowire, this correction
becomes more difficult for short current pulses. The
temperature of a nanowire can increase by many
hundreds of degrees on the nanosecond timescale
depending on the amount of Joule heating. This is
obviously more significant the larger the current and
the higher the resistivity of the nanowire (and the
electrical contacts to the nanowire). Thus, the resis-
tivity of permalloy nanowires, for example, can
easily increase by a factor of 2 or 3 in 1 or 2 ns,
and similarly decrease on very short timescales so
that these temperature changes cannot be detected
by dc measurements after the current pulses are
applied. Thus, it is very important to carry out time-
resolved resistance measurements. The change in
the nanowire resistance due to heating can lead to
incorrect values of critical currents for DW motion,
if it is not properly taken into account. For example,
this effect accounts for a reduction of the critical
current density by a factor of 2 between the values
published by Yamaguchi et al. (2004, 2005).
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Table 1. Compilation of values of the critical current density for DW motion in various nanowires. Note that some experiments are
performed at low temperature.

Thickness Width Wall type Current Type of Critical current
Material (nm) (nm) (dc or pulse length) experiment Jc(107 A cm−2) References

NiFe 28–45 3.5 mm 180 NW <2 µs P 1–1.4 (nc) Freitas and Berger (1985)
NiFe 14 < t< 86 3 mm 180 1 µs P 2.3–360 (nc) Hung and Berger (1988)
NiFe 120 <t < 740 3.5 mm 180 50–300 ns P 0.01–1 (nc) Salhi and Berger (1994)
NiFe 102–161 20 µm 180 BW 10 ns (rt) P 2.5–4.3 (nc) Gan et al. (2000)
NiFe 40 200 HH dc S 1 (with field) Kimura et al. (2003)
NiFe 34 400 HH dc S 7 (with field) Klaui et al. (2003b)
NiFe 5 120 HH dc S 7 Vernier et al. (2004)
NiFe 30 <1 µm HH dc S 1.1 Lepadatu and Xu (2004)
Ni 30 2.2
NiFe 10 240 HH 0.3–1 µs P 11 (nc) Yamaguchi et al. (2004)

6.7 (c) Yamaguchi et al. (2006b)
NiFe 40 300 HH 20 ns (rt) P 7.5 (nc) Florez, Krafft and Gomez

(2005)
NiFe 5–35 200 HH 20 µs S 05–13 (nc) Klaui et al. (2005c)
NiFe 10 500 HH 10 µs P 22 (nc) Klaui et al. (2005b)
CoFe 10 100 HH dc S 1 (with field) Tsoi, Fontana and Parkin

(2003)
NiFe 10–113 110–275 HH 5 µs P 3.9–7.7 (c) Yamaguchi et al. (2006a)
NiFe 35 110 HH 10 µs S 27.5 (c) Laufenberg et al. (2006b)
NiFe 10 300 HH 10–100 ns P 10 (c) Hayashi et al. (2007a)
NiFe 10 300 HH 4 ns S 30 (c) Hayashi et al. (2006b)
SV 1000 HH dc P–S 2.6 Grollier et al. (2002)
SV 10 300 HH dc P–S <0.8 Grollier et al. (2003)
SV 5 300 HH 0.4–2 ns P–S <0.8 (full sw) Lim et al. (2004)

<0.27 (2 µm)
MnGaAs 17–25 20 000 180 BW 100 ms P 0.008 Yamanouchi, Chiba, Mat-

sukura and Ohno (2004)
Pt/Co/Pt 0.5 200 180 BW dc P <1 Ravelosona et al. (2005)

P: DW propagation experiment; S: switching experiment; dc: dc current; rt: rise time of the current pulse for exponentially shaped pulses; c/nc: values
corrected/ not corrected for resistance change induced by Joule heating.

There is another more subtle consequence of the
resistance increase during the application of cur-
rent pulses to a nanowire. Indeed, both the rate
of change and the magnitude of the temperature
rise from Joule heating depend strongly on the
thermal conductivity of the nanowire to the sub-
strate. The timescale of the resistance increase can
vary by 1 or 2 orders of magnitude depending
on the thermal conductivity of the seed layers on
which the nanowire is prepared, the quality of
the nanowire/seed layer interface and the substrate
material. For short pulses compared to this ther-
mal timescale, the current becomes time dependent.
Therefore, the actual value of the critical current for
DW motion can depend on the relative timescales
of heating and that of the DW dynamics.

(c) Inhomogeneous current flow
For nanowires with varying width or for multilay-
ered structures, such as spin valves, the definition
of the current density is ambiguous. In the case of

nanowires with notches, the current density reaches
its maximum value in the narrowest part of the wire.
However, in many cases, the DW is not trapped in
the middle of the notch, but rather to one side of
the notch, so that it is not clear which nanowire
width should be used to calculate the critical cur-
rent density. For the case of spin-valve stacks, a
large fraction of the current flows in the nonmag-
netic spacer. The structure studied by Grollier et al.
is one example (Grollier et al., 2003). The spin-
valve stack used was composed of CoO (3)/Co
(7)/Cu (10)/NiFe (5)/Au (3), where the thicknesses
are given in nanometers and DW motion was stud-
ied in the NiFe layer. If the current density is
assumed to be uniform throughout all the layers
then the critical current density reported by Grollier
et al. in zero field was ∼8 × 106 A cm−2. On the
other hand, if one assumes reasonable values of the
conductivity of each layer, the critical current den-
sity in the NiFe layer is only ∼1.8 × 106 A cm−2,
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which is nearly five times smaller! It is interesting
to note that, in either case these critical current den-
sities are surprisingly low compared to other studies
of current-induced DW motion. Similarly, when a
magnetic nanowire is prepared on a seed layer (e.g.,
for improved film quality) or with a cap layer (e.g.,
to prevent oxidation or to aid in the fabrication of
nanowire devices), some of the current may flow
through these layers and affect the determination
of the critical current density in the magnetic layer
itself.

(d) Parasitic magnetic fields and self-field
The field dependence of the critical current for
DW motion will be discussed in more detail in
Section 3.5.4. However, for weakly pinned DWs
and nanowires with small propagation fields,
parasitic magnetic fields such as the remanent field
of an electromagnet, or the self-field from current
passing through the electrical leads to the sample
can easily influence critical current measurements.
The self-field from the current passing through the
magnetic nanowire itself can also play a significant
role. For straight nanowires, its influence is often
neglected because there is no net field along the
nanowire direction, assuming uniform current flow.
However, there will be strong highly nonuniform
components of the currents self-field in directions
transverse to the nanowire. Even though the average
value should be zero in the ideal case, it is diffi-
cult to rule out ‘wall streaming’ effects, which were
described by Berger in several publications (Salhi
and Berger, 1994; Berger, 1992): the local inhomo-
geneous fields associated with a current pulse can
shake the DW significantly and assist its motion by
effectively reducing the local pinning. In any case,
for inhomogeneous current flows, for example, in
spin-valve stacks, as mentioned above, there will
be a net nonzero contribution of the Oersted field in
the direction transverse to the nanowire within the
magnetic layer in which the DW is moved.

2. Critical current density in zero field
Values of the critical current density measured in zero
fields for various magnetic nanowires are complied in
Table 1. Most of these data were obtained for permalloy
nanowires. Very few experimental results have been
reported for other materials. It is interesting that much
smaller current densities have been reported in nanowires
formed from GaMnAs, Pt/Co/Pt and spin-valve-based
structures than for permalloy nanowires, although all of
these experiments are subject to detailed interpretation.
Results reported for permalloy nanowires by differ-
ent groups vary significantly, perhaps not surprising
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Figure 21. Critical current for DW motion in permalloy structures
reported in the literature as listed in Table 1, plotted as a function
of the sample thickness.

considering the wide variety of techniques and geome-
tries used in these studies and the uncertainty in the
measurement of Jc. Some general conclusions can be
drawn from these data, which are plotted in Figure 21
as a function of the sample thickness:
(a) Shorter current pulses allow the use of higher cur-

rent densities before breakdown of the nanowire.
The dependence of the critical current density
on pulse length has been investigated by several
groups. Pulse lengths between 50 and 300 ns were
explored in Salhi and Berger (1994) and between
0.4 and 2 ns in Lim et al. (2004). In both cases, no
significant variation in Jc was found.

(b) The wire width does not seem to play a significant
role. In particular, 180◦ DWs in large structures
and head-to-head walls in narrow wires exhibit very
similar critical current densities. However, in all
these experiments, the aspect ratio of the nanowire’s
cross section is about the same, the width always
being much larger than the thickness.

(c) The wire thickness seems to play a more important
role. For films thicker than about 50 nm, Salhi and
Berger (1994) have observed that Jc decreases as
1/t2 (in the 120–740 nm range). This dependence
is explained by current-induced distortions of the
Bloch wall. For wires thinner than about 40 nm, Jc

is between 5 and 30 × 107 A cm−2, if the current
is corrected for the resistance increase during the
pulse. There is no clear dependence of Jc in this
thickness range when considering all the available
experimental data. However, Klaui et al. (2005c)
have reported a significant increase, from 5.0 ×
107 A cm−2 for 5-nm-thick to 1.3 × 108 A cm−2 for
35-nm-thick permalloy nanowires. Note that these
experiments were performed at low temperature.



30 Magnetic configurations in small elements, magnetization processes and hysteretic properties

(d) There is no clear correlation between Jc and the wall
structure. In particular, head-to-head DWs in narrow
wires and 180◦ DWs in large structures exhibit very
similar values.

(e) Surprisingly, the magnitude of the DW pinning does
not appear to play any significant role on the crit-
ical current density. Data summarized in Figure 21
show results for both strongly pinned DWs (with
depinning fields up to 200 Oe) and extended films,
with propagation fields of a few oersteds. Different
theories of DW motion arrive at different conclu-
sions as to whether Jc is intrinsic or extrinsic. To
date experimental results seem rather inconclusive.
Indeed, there have been two apparently contradic-
tory attempts to find a scaling rule for different
magnetic nanowire samples. In the first case (Yam-
aguchi et al., 2006a), Ono’s group plot Jc versus
the transverse anisotropy times the DW width Hk�

for permalloy nanowires. A roughly linear varia-
tion is observed, as given by equation (15) which
describes an intrinsic critical current, in the pres-
ence of adiabatic spin torque, without a β term.
By contrast, Berger presents a different scaling law
(Berger, 2006), in which the DW mobility is plotted
versus the aspect ratio of the wire (itself a function
of the DW width) and includes different magnetic
materials. His conclusion is that exchange drag (i.e.,
momentum transfer or nonadiabatic spin torque) can
largely account for the various results, which means
that the critical current is in fact extrinsic (i.e., only
related to coercivity or pinning).

3. DW propagation direction and distance
Experimental results for samples made with 3d metals
(NiFe, CoFe, Ni, Pt/Co/Pt) show consistently that DWs
move along the electron flow (or opposite to the current
direction) at zero or low fields, in agreement with the
spin-torque model. The direction of DW motion is also
opposite to the current direction for GaMnAs, even
though the carriers in this system are holes (Yamanouchi,
Chiba, Matsukura and Ohno, 2004). Two other important
experimental findings agree with spin-torque models.
First, the DW motion direction reverses with the current
polarity. Second, head-to-head and tail-to-tail DWs move
in the same direction with current, so that simple field-
driven mechanisms can be ruled out.

Even though the overall propagation is along the elec-
tron flow, the propagation distance can vary significantly,
both for a single wall over repeated experiments and for
several walls during the same current excitation. This was
first reported by Berger, who observed that only a sub-
set of walls in the field of view of a Kerr microscope
moved during a current pulse (Freitas and Berger, 1985).

This behavior was explained by local variations of the
coercivity and/or the presence of a parasitic field. Gan
et al. (2000) also observed significant variations of wall
motion in large structures (20 µm wide). The distribution
of the DW propagation distance was significantly differ-
ent, and in some cases, DWs moved backwards (opposite
to the electron flow). Moreover, portions of the same wall
sometimes moved in opposite directions.

Experiments on current-induced DW motion in nano-
wires exhibit similarly strong variations. For example,
Yamaguchi et al. (2004) report that five identical current
pulses applied to a V wall result in motion of the DW
of 2.2, 0.9, 0, 1.9, and 1.1 µm, respectively. In our
own experiments we have also observed wide variations
in DW motion direction and distance in many cases.
Occasionally, DWs are found to move opposite to the
electron flow, particularly when DWs are depinned from
a notch.

These fluctuations could be related to local variations
of the DW pinning strength, as was invoked for larger
structures. However, DWs can be moved repeatedly
across exactly the same position in a nanowire and thus,
it should be possible to correlate the DW displacement
induced by a current pulse with position in the nanowire.
There is no evidence of such an effect in Yamaguchi’s
paper. Another possibility is that the DW structure may
evolve during motion, as was observed in experiments
by (Klaui et al., 2005b; Jubert et al., 2006), who report
a gradual decrease of the displacement of a V DW
when consecutive pulses are injected across it. The
DW eventually stops after a few pulses. High-resolution
imaging with SEMPA revealed that the DW structure was
modified by the current pulses, which caused the DW to
evolve from a V to a T wall structure. Such a systematic
variation of the DW displacement with successive pulses
has not been observed in other studies (Yamaguchi et al.,
2004; Gan et al., 2000).

Many other results are not fully understood. For
example, Lim et al. (2004) have observed a reversal of
the DW propagation direction when the current increases
above some threshold value.

3.5.3 Domain-wall velocity

The first measurements of current-driven DW velocity were
obtained by simply dividing the observed DW displacement
after the current pulsed had been applied by the current pulse
length, for microsecond long current pulses. However as
discussed in the preceding text, the DW displacement often
exhibits significant fluctuations over repeated experiments. It
is unclear whether such estimates of the DW velocity are
meaningful.
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In several reports, it was shown that the DW displace-
ment scales approximately with the pulse length (Yamaguchi
et al., 2004; Klaui et al., 2005b; Jubert et al., 2006) giving
a more reliable measurement of the wall velocity. In both
studies, the current density was slightly higher than Jc and
long pulses were used, between 0.3 and 1 µs in Yamaguchi
et al. (2004), and 1 order of magnitude larger (10 µs) in Yam-
aguchi et al. (2004) and Klaui et al. (2005b). The measured
velocities were very small, of the order of 3–5 m s−1 and
0.1–0.5 m s−1, respectively.

Interestingly, DW velocities estimated by dividing the
DW displacement by the current pulse length are much
higher when short pulses (nanoseconds long) are used. For
example, Lim et al. (2004) reported switching a spin-valve
nanowire in zero field with pulses as short as 0.4 ns and
concluded that the DW moves >20 µm in less than 1 ns. The
corresponding DW velocity of about 20 km s−1 seems much
too high to be meaningful. It may suggest a more complex
mechanism of DW motion, perhaps involving DW motion
long after the end of the current pulse. Such overshooting
and a DW inertia effect have been observed in the context
of field-driven motion of magnetic bubbles (Malozemoff and
Slonczewski, 1979). We have also performed experiments
using pulse lengths between 0.5 and 100 ns. In some cases,
we have observed DW displacements of ∼1 µm for current
pulse lengths of 1 ns, with an associated ‘velocity’ of up to
1000 m s−1. Importantly, we do not observe any clear linear
scaling of the DW displacement with the pulse length for
these long pulses (note that the data vary widely). This also
suggests that the mechanism of DW motion is more complex
for short excitations.

Recently, the DW velocity in permalloy nanowires has
been measured more accurately by time-resolved measure-
ments, in the presence of a combination of field and current
(Hayashi et al., 2006a; Beach et al., 2006) as well as cur-
rent alone (Hayashi et al., 2007a). Both measurements were
’time-of-flight’ experiments, in which the velocity is obtained
by dividing a distance traveled by the DW by the time the
DW takes to move between two points along the nanowire.
In both cases, data were averaged over a large number of rep-
etitions. The distance was between different positions of the
laser spot in the Kerr measurements by Beach et al. (2006)
and between two electrical contacts in the AMR studies by
Hayashi et al. (2006a, 2007a).

In the presence of field and current, the DW velocity is
affected differently depending on the relative magnitude of
the field and current and the current polarity (Hayashi et al.,
2006a) (see Figure 22). When the electron flow is along
the direction of the field-driven motion, the DW velocity
is enhanced by up to ∼100 m s−1. The Walker breakdown
field is not significantly affected, at least not for the current
densities investigated. By contrast, when the electron flow
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Figure 22. DW velocity determined by time-resolved AMR mea-
surements in a 10-nm-thick, 200-nm-wide permalloy nanowire, in
the presence of current flowing in both directions. The current
density is ∼1.4 × 108 A cm−2. (Reproduced from figure 2(c) in
M. Hayashi, L. Thomas, C. Rettner, R. Moriya, and S.S.P. Parkin,
‘Direct observation of the coherent precession of magnetic domain
walls propagating along permalloy nanowires’, Nature Physics 3,
21 (2007).)

is opposite to the direction of field-driven motion, the DW
velocity is reduced. The DW motion can even be stopped (or
slowed below the experimental detection limit) – when the
field is smaller than ∼25 Oe (2.5 times the Walker breakdown
field). Note that in the case of a moving DW, there does not
seem to be a critical current: the velocity varies continuously
with the current density, and even small currents influence
the DW velocity.

DW motion driven by current only was also reported. In
this case, the DW motion was only detected for current
densities higher than ∼7–10 × 107 A cm−2. Motion was
along the electron flow. The DW velocity increases with
the current, from ∼80 m s−1 at the threshold current up to
about 150 m s−1. Note that the DW velocity saturates for
the highest current densities investigated, although the origin
of this effect is not clear. Interestingly, such high velocities
(more than 2 orders of magnitude larger than those reported
by Yamaguchi and Klaui) approach and may even exceed
the rate of spin angular momentum transfer given by the
parameter u (equation (15)) (Hayashi et al., 2007b).

Finally, we briefly mention experiments performed on the
current-induced motion of DWs in GaMnAs nanowire struc-
tures by Ohno’s group (Yamanouchi, Chiba, Matsukura and
Ohno, 2004; Yamanouchi et al., 2006) (similar data were
also published recently by Tang, Kawakami, Awschalom and
Roukes, 2006) but only in combination with a magnetic
field). Ohno et al. report DW motion, driven by current only,
with DW velocities spanning more than 5 orders of magni-
tude up to 22 m s−1. Two different regimes are observed: the
DW velocity increases roughly linearly with the current den-
sity for currents above a threshold current (between 3.5 and
5.5 × 105 A cm−2 depending upon the temperature). The data
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are consistent with the spin-transfer efficiency expected from
equation (15) (albeit slightly larger), once the temperature
dependence of the magnetization and the spin polarization
are taken into account. A second subthreshold regime is
observed, in which the DW velocities are between 10−5 and
1 m s−1, which is interpreted as DW creep.

3.5.4 Field dependence of the critical current

The field dependence of the critical current has been studied
by several groups. In most of these experiments, the DW is
first pinned at either a defect (Thomas et al., 2006; Laufen-
berg et al., 2006b; Grollier et al., 2004; Lim et al., 2004),
or a notch (Florez, Krafft and Gomez, 2005; Hayashi et al.,
2006b; Klaui et al., 2005c) or at a cross (Ravelosona et al.,
2005). In one report (Vernier et al., 2004), a quite different
experimental method was used: the propagation field along
a nanowire is measured while dc currents of both polarities
are applied. All these studies show some consistent trends:

• The critical current for DW depinning decreases when
the field is increased.

• DW motion occurs along the field direction, except for
very small fields.

• The polarity dependence of the depinning current is
weak. The strongest effect of the current is a reduction of
the depinning field independent of the current polarity.

• Both linear and nonlinear field dependences of the
critical current have been reported.

We have studied the field dependence of the critical
current for depinning a DW from a notched pinning site,
with widely varying pinning strengths, in NiFe wires with
various different dimensions (see e.g., Hayashi et al., 2006b).
Our results show very little dependence on the current
polarity, in agreement with other studies. In most cases,
the critical current exhibits a strongly nonlinear variation
with field. We observe two distinct regimes. In a low-field
regime, the critical current depends only weakly on the notch
pinning strength (as measured by the depinning field) and the
magnetic field. By contrast, in a high-field regime, the field
dependence is much stronger. An illustration of these two
regimes is shown in Figure 23, for permalloy nanowires with
different notches. Note that for these experiments, two DWs
were nucleated on either side of the wire. Current-driven
depinning most likely causes annihilation of these two DWs.

3.5.5 Subcritical domain-wall transformations and
metastability

The role of metastable DW states was first noted by Berger
(1992). He pointed out that in some thickness range, Bloch
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Figure 23. Field dependence of the critical dc current for depinning
DWs in 18-nm-thick, 315-nm-wide, permalloy nanowires.
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Figure 24. DW transformations measured by MFM in 20-nm-thick,
300-nm-wide permalloy nanowires upon successive application of
current pulses.

and Neel walls are nearly degenerate. Thus, only a small
torque is needed to rotate the wall’s magnetization from one
DW state to the other, resulting in a reduced critical current.

Current-driven DW changes can take place below the
critical value or depinning. For example, in the work of
Florez, Krafft and Gomez (2005), it was observed that
the wall structure was modified even though the DW was
still trapped within the notched pinning site. We have
also observed this behavior, both using MFM and AMR
experiments. Examples of the modification of the DW
structure upon application of current pulses are shown in
Figure 24. The NiFe nanowire is 300 nm wide and 20 nm
thick. In the first set of experiments (a), the DW retains its
V structure, but the V chirality is reversed. In the second
set of images (b), the original V DW is transformed into
a T wall, which remains stable for a few pulses before
transforming back to into a V wall (with a reversed chirality).
The detailed mechanisms responsible for this behavior are
not fully understood. However, these experiments suggest
that the electric current allows the magnetic system to access
metastable states, even if the energy barriers separating these
states are often very high (for example, ∼6 × 10−11 erg in the
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example of Figure 19). Thermally activated transformations
are also possible if the energy barrier is smaller. For example,
transformation from a T to a V DW was observed at ∼550 K
by Laufenberg et al. (2006a) in 7-nm-thick, 730-nm-wide
permalloy nanorings. This corresponds to an energy barrier
of ∼ 8.0 × 10−14 erg.

Current-driven depinning also exhibits significant stochas-
tic variations, particularly in low fields. In repeated experi-
ments, the probability for DW depinning varies significantly.
In other words, the critical current at a given field can vary
widely. This can partly be related to the multiple metastable
DW states at a notch.

3.5.6 Dynamical effects

Most experiments published so far have used dc currents
or long pulses (microseconds). Little is known on possible
dynamical effects driven by shorter pulses or alternating
current. Until recently, there were only a few experimental
reports on the influence of the pulse length for nanosecond-
long current pulses. Salhi and Berger (1994) studied the
influence of a series of square pulses with lengths between
50 and 300 ns on the critical current, and they did not observe
any dependence. The same insensitivity to pulse length has
been reported by Lim et al. (2004) for a spin-valve nanowire,
for much shorter pulses (between 0.4 and 2 ns).

However, Berger has proposed several interesting dynam-
ical effects related to current pulses or ac currents. For
example, in the case of pulses with fast rise-times and slow
fall-times, he proposed a ‘wall streaming’ mechanism in
which the DW can escape a pinning potential on the trailing
edge of the pulse (Salhi and Berger, 1994; Berger, 1992).
He also proposed several other notions such as the exis-
tence of a ‘Ferro–Josephson’ effect (Berger, 1986) where
the precession of the DW driven by the current generates
a dc voltage across the DW, following a mechanism quite
similar to the Josephson effect in superconducting junctions.
In a further development, he showed that the combination
of a hard-axis, high-frequency field and a dc current could
lead to the locking of the DW precession frequency with the
ac field. This would give rise to steps in the current depen-
dence of this induced voltage, similar to Shapiro steps in
Josephson junctions (Berger, 1991b). Finally, he also showed
that ac currents could generate oscillations of a DW, with a
resonance frequency of ∼10–100 MHz (Berger, 1996).

In a recent experiment, the influence of a small ac excita-
tion has been studied by Saitoh et al. in a U-shaped permalloy
nanowire (Saitoh, Miyajima, Yamaoka and Tatara, 2004).
The authors observed a peak in the device resistance as a
function of the frequency of the ac current in the MHz range.
The peak frequency could be tuned between ∼5 and 25 MHz
by varying the applied magnetic field. Interestingly, the

peak was observed even though the excitation is extremely
small (about two orders of magnitude smaller than the dc
critical current). These data are understood in terms of a
current-driven resonance of the DW in the parabolic potential
created by the applied field. This interpretation is supported
by a model by Tatara, Saitoh, Ichimura and Kohno (2005).
The authors propose that this behavior results from momen-
tum transfer (or nonadiabatic spin torque) rather than spin
transfer. Even though the momentum transfer (proportional
to the DW resistance in Tatara’s model) is very small, it is
amplified at resonance and becomes dominant. The authors
also suggest that the amplitude of the DW displacement is
very large (∼10 µm), although there is no direct evidence to
support this claim.

We have reported recently that the current-driven motion
from a local pinning potential is indeed very sensitive to the
pulse length (Thomas et al., 2006). We have shown that the
probability of depinning a DW from a local pinning site oscil-
lates with the length of the current pulse, with a period of
a few nanoseconds (see Figure 25). Importantly, both head-
to-head and tail-to-tail DWs exhibited the same behavior.
These oscillations of depinning probability lead to strong
oscillations in the critical current. We have shown that this
behavior is related to the current-induced precession of the
DW trapped in a pinning potential. When the pulse length is
close to a multiple of half the precession period, the ampli-
tude of the DW oscillation is amplified after the end of the
current pulse, in turn leading to DW depinning. Importantly,
this is a subthreshold behavior, which occurs for currents
smaller than the dc critical current. Moreover, in this depin-
ning regime, we showed that the DW displacement is against
the electron flow, opposite to the propagation direction above
threshold. This behavior can be accounted for within the
framework of the 1D model described in Section 2.2.3. Even
though the DW in the experiment was a vortex wall, we
were able to achieve a good qualitative description of the
experimental results Yamanouchi et al., (2006).

3.5.7 Thermal effects: current-induced heating and
nucleation of domain walls

As already emphasized, the high critical current density
required to achieve current-induced DW motion in most
samples induces significant Joule heating. The effect of tem-
perature on the current/ DW interaction is not fully under-
stood. One obvious effect is the decrease of magnetiza-
tion and anisotropy of the magnetic material. According to
equation (15), this should help to reduce the intrinsic crit-
ical current, since Jc is proportional to MsHk, and Hk is
an anisotropy field which is itself proportional to Ms. How-
ever, the polarization of the current should also be reduced,
which should compensate at least partially the gain from
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Figure 25. Oscillatory depinning of a DW as a function of the current pulse length. Experiments (a), calculations (b), and schematic
explanation of the mechanism (c). (From Thomas et al. (2006).)

the reduction of Ms. Moreover, spin-wave excitations can be
amplified by the spin torque and lead to chaotic behavior,
thus preventing DW motion.

In a recent report on permalloy nanorings, Laufenberg
et al. (2006b) observed a slight increase of the critical
current with temperature between 4 and 300 K, from ∼2 to
2.8 × 108 A cm−2. This variation is opposite to that of the
DW depinning field, which decreases with temperature. The
authors conclude that the spin-transfer efficiency decreases
with temperature, although the origin of such a variation
is not clear. In this temperature range, far below the
Curie temperature for permalloy, the magnetic properties
exhibit little variation. The authors propose to explain this
decrease in efficiency by thermally excited spin waves,
which couple with the current flow, effectively absorbing

some spin angular momentum. Results are opposite for
GaMnAs structures for which the critical current decreases
by ∼50% when the temperature increases between 100
and 107 K, as the spin-torque efficiency increases owing to
the temperature dependence of the magnetization and spin
polarization (Yamanouchi et al., 2006).

Temperature effects were also addressed by Yamaguchi
et al. (2005) in a much higher temperature range. It was
shown that spontaneous DW nucleation occurs in permal-
loy nanowires when the current density exceeds 7.5 ×
107 A cm−2. The authors suggest that this phenomenon
occurs because the temperature exceeds the Curie temper-
ature for NiFe during the pulse, thus leading to the break-
down of the nanowire into a multidomain state. We have
observed similar effects in many nanowires. Interestingly
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Figure 26. MFM images measured from a 10-nm-thick, 300-nm-
wide permalloy nanowire, upon successive application of 3-ns-long
current pulses, with a current density of ∼7 × 108 A cm−2 (value
not corrected for resistance increase due to heating).

in the example shown in Figure 26, DWs are nucleated,
whereas preexisting DWs are essentially unaffected by the
current pulse. This suggests that DW generation can occur
below the Curie temperature, for example, because of the
reversal of the magnetization in one or several portions of
the nanowire, thereby generating pairs of DWs. In the many
cases where we have observed this behavior, the ends of the
nanowires are not reversed, and the DWs always appear in
pairs, thus supporting this interpretation. Micromagnetic sim-
ulations that include thermal effects also suggest that the spin
torque amplifies magnetization fluctuations and can thereby
eventually lead to the complete reversal of parts a nanowire.

Interestingly, Shibata et al. find by theoretical calculations
that, above a current threshold, the ground state of a fer-
romagnet becomes a multidomain state with several DWs
(Shibata, Tatara and Kohno, 2005). The threshold for nucle-
ation is given by (using the notation of Section 2.2.3):

unuc = γ�Hk0

(
1 +

√
Hk

Hk0

)
(26)

where Hk0 and Hk are the longitudinal and transverse
anisotropy fields, respectively. If unuc < uc (uc the intrinsic
critical current given by equation (13)), that is if Hk > 8Hk0,
the multidomain state is stable, and this could appear as the
spontaneous nucleation of multiple DWs in a nanowire, as
observed experimentally. An estimate of the current density
required to reach this nucleation regime is found to be
∼3 × 109 A cm−2 for Co. For permalloy, this value could
be lower, particularly since Joule heating would contribute
to a reduction of the magnetization, since permalloy has a
lower Curie temperature than Co.

4 OUTLOOK

The observation that current can induce motion in DWs has a
long history dating back more than 25 years. Indeed, it was
appreciated long ago that there are several ways in which
current can interact with DWs, including the notion that the
transfer of spin angular momentum from current to DWs can
perturb a DW. However, there were few experiments on this
important interaction perhaps because it is only dominant in
magnetic structures on the nanoscale, and is thus is obscured
by other effects in larger structures. As the capability to make
ever smaller high quality structures has evolved over the past
years it has become possible to fabricate structures in which
single DWs can be controllably injected and whose motion
can be probed following or even during the application of
nanosecond-long current and field pulses. These experimental
studies have clearly demonstrated that spin-polarized current
does result in the motion of DWs along magnetic nanowires.
Moreover, short current pulses, whose length is matched with
the precessional frequency of a DW, can resonantly excite
the precession of the DW. While there are a number of
open questions, as discussed briefly at the end of the last
section, the notion of moving DWs with current is not only
of considerable scientific interest, but suggests a number of
interesting technological applications.

More than a quarter of a century ago there was consid-
erable interest in the possibility of building magnetic mem-
ory devices by storing information in the form of magnetic
domains or bubbles in single-crystalline garnet thin films.
In this original planar magnetic memory the bubbles were
defined and moved by magnetic fields created on chip. Much
creative and imaginative work was expended to develop inge-
nious structures to reliably manipulate magnetic domains in
these materials, as discussed in several review articles and
papers (see, e.g., Malozemoff and Slonczewski, 1979; de
Leeuw, Van Den Doel and Enz, 1980; Bar’yakhtar, Ivanov
and Chetkin, 1985; Schneider, 1975; Pugh, Critchlow, Henle
and Russell, 1981; Eschenfelder, 1980). In this chapter we
focused the discussion on the motion of head-to-head DWs
in magnetic nanowires. One problem with manipulating such
types of DWs by magnetic fields is that head-to-head and
their counterpart tail-to-tail walls move in opposite direc-
tion in the presence of a magnetic field. This problem can
be solved by using spin momentum transfer from current to
move DWs since the current becomes repolarized over very
short distances (e.g., the spin relaxation length can be as short
as ∼5 nm in permalloy (Bass and Pratt, 2007)). Thus current
moves head-to-head and tail-to-tail DWs in permalloy and
other transition metals in the same direction. This distinctive
feature of current-induced DW motion allows the possibility
of interesting new device technologies not previously pos-
sible with field manipulation. One of the more interesting
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Figure 27. Schematic of the magnetic racetrack memory device.

of these devices is the magnetic racetrack memory (MRM)
(Parkin, 2004).

The magnetic racetrack memory promises a nonvolatile
solid-state data-storage device that combines the very low
cost of conventional magnetic hard-disk drives with the high
reliability and high performance of nonvolatile solid-state
memory. The MRM concept is that of a magnetic shift
register in which individual spintronic reading and writ-
ing elements, formed using conventional CMOS technology,
are married to magnetic ‘racetracks’ in which 10 to 100
nanoscale bits are stored as magnetic domains (schematically
shown in Figure 27). The racetracks are vertical columns of
magnetic material, formed in the third dimension, perpendic-
ular to a plane of CMOS logic elements and devices formed
on a silicon substrate. Each of these columns is addressed
by a single read and write element whereby the magnetic
domains in the racetrack are moved, by nanosecond-long
current pulses using current-induced motion of DWs, to the
read and write devices. Since the racetracks are formed in the
third dimension the footprint of each racetrack in the CMOS
logic plane is very small and therefore the cost should be
low. Indeed the goal of the MRM is to store ∼100 data bits
in the same area of a silicon wafer that one data bit in con-
ventional solid-state memories would occupy. Since the cost
of a CMOS memory or logic device is largely determined
by the area of the silicon wafer the proposed magnetic shift
memory has the potential to be ∼100 times cheaper per bit
than conventional solid-state memory and so comparable in
cost to a HDD. At the same time the proposed solid-state
memory will have the reliability and integrity of conventional
solid-state memories. Thus, the proposed spintronic magnetic
shift memory will have a previously unrealized combination
of extremely low cost, high reliability, and excellent perfor-
mance as compared to flash drives and HDDs.

The magnetic racetrack is just one example of a possible
new technology which takes advantage of the new physics
of current-driven DW motion, which has just begun to be
fully appreciated and understood in the past few years. As
discussed throughout this chapter, however, many aspects
of current-driven DW motion remain unanswered. The most
fundamental question is the detailed theoretical description of
the current-magnetization interaction. Of particular interest is
the understanding of the role of nonadiabatic contributions to
the current–magnetization interaction. There is considerable
debate over the existence and nature of this contribution,
and, consequently whether there is an intrinsic threshold
current for DW motion in uniform, homogeneous magnetic
nanowires.

Another important question is the maximum possible
speed of DWs driven by current alone. Many experimen-
tal studies, mostly in permalloy but also in GaMnAs, have
indicated extremely low current-driven DW velocities. These
velocities are so small that they are difficult to rationalize
within today’s theoretical models. Clearly, further exper-
imental and theoretical studies are called for. Systematic
studies of the relationship between the critical current needed
to move a DW as well as the DW velocity and the intrinsic
material parameters of the magnetic material (e.g., magneti-
zation, anisotropy, and spin polarization of the current) will
likely lead to a much improved understanding of the basic
mechanisms involved in the current–DW interaction.

A particularly interesting question is the magnitude of
the current required to sustain the motion of a DW along
a nanowire and whether this is largely determined by the
spin polarization of the current and the magnetization of
the magnetic domains or whether other factors may play a
significant role. The answer to this important question will
determine how useful current-induced DW motion will be
for technological applications. From both a technological
and a scientific perspective, the understanding and control
of the DW structure and the interaction between DWs is
both challenging and interesting.

The renewed interest in DW dynamics in magnetic nanos-
tructures has already revealed new physical phenomena and
the considerable activity in this field promises exciting future
discoveries.
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1 INTRODUCTION

Spintronics describes the concept of attempting to use both
the charge and the spin on the electron in microelectronic
devices (Prinz, 1998; Wolf et al., 2001). One of the most
highly sought after functionalities in microelectronics is non-
volatility, that is, the ability to retain memory even when
power is removed. This is particularly true as the popularity
of mobile electronic communication and computing devices
grows. In principle, ferromagnetic materials could provide
this functionality because of the hysteresis, and hence mem-
ory, that accompanies most ferromagnets. Unfortunately,
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by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

no suitable room-temperature ferromagnetic semiconductor
material has yet been identified (Dietl et al., 2000); the most
common ferromagnetic materials are metals. The aim of this
research has been to see how far we can push the proper-
ties of basic ferromagnetic metallic alloys, which are usually
considered to have relatively simple magnetic and electri-
cal properties, toward highly functional devices that mimic
and complement the digital logic functions of semiconduc-
tor microelectronics. Obtaining complex functionality from
these simple materials will only be possible in nanoscale
devices: in the bulk, the magnetic response of the alloy con-
sidered here would be purely linear. This work in many ways
exemplifies the principle of nanotechnology: not simply a
more miniature version of what we could already do, but
rather making use of the unique behavior that develops when
dimensions are reduced to the nanometer scale in order to
make devices that have no larger-scale equivalent.

2 DOMAIN-WALL PROPAGATION
AND NUCLEATION

All of the devices described in this chapter are based
upon magnetic nanowires made from the common ferromag-
netic alloy permalloy (Ni80Fe20). Magnetic nanowires are
nanometer-sized magnetic structures, which are artificially
fabricated using laboratory-scale versions of the lithographic
techniques commonly used in microchip manufacture. In par-
ticular, the work in this chapter uses either electron beam
lithography (EBL) or focused ion beam (FIB) milling (Xiong,
Allwood, Cooke and Cowburn, 2001). A typical process will
involve the deposition of a thin magnetic film, either using
thermal evaporation or sputter deposition, followed by the
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exposure of a computer-generated pattern. The pattern is
exposed by rastering either a focused electron beam or a
focused gallium beam. A development and pattern-transfer
step then transfers the exposed image onto the deposited
magnetic metal. The ability to create high-definition shapes
of precisely the designer’s choosing is extremely impor-
tant, since the underlying principle at work throughout this
research is that magnetic properties may be artificially modi-
fied by changing the shape and size of the nanostructure. This
principle is not commonly seen on the macroscopic scale:
the coercivity and anisotropy of a bulk material are usually
intrinsic properties, which do not depend strongly on the
shape of the sample. On the nanometer scale, however, the
local demagnetizing fields are of comparable strength to the
exchange fields (the quantum mechanical interaction respon-
sible for ferromagnetism). A rich interplay results, which
leads to magnetic properties being strongly dependent on
shape and size.

Magnetic properties throughout this chapter are measured
using a high-sensitivity laser probe (Cowburn, Koltsov,
Adeyeye and Welland, 1998) based on the magneto-optical
Kerr effect (MOKE) (Hubert and Schaeffer, 1998). The
Kerr effect causes the polarization state of light to be
slightly modified when it is reflected from a magnetic surface
by an amount that is proportional to the component of
magnetization in a given direction. Although the polarization
rotations are small (typically 1◦ if all of the light is focused
onto magnetic material, and proportionately less if the
nanostructure is smaller than the focused beam size), MOKE
is an excellent highly localized magnetometry.

Figure 1 shows two typical nanowires used in this chapter
(see Cowburn, Allwood, Xiong and Cooke, 2002 for exper-
imental details and Ono et al., 1999 for further examples of
domain-wall nucleation and propagation). Shown are local-
ized hysteresis loop measurements made at different posi-
tions along the length of the wire. One sees a coercivity of
around 200 Oe in the case of Figure 1(a) and a coercivity of
around 40 Oe in the case of Figure 1(b). What is striking is
that the only difference between these two cases is that in
Figure 1(b) the end of the nanowire has been formed into a
large island area, known as an injection pad. The reason that
their coercivities differ by a factor of 5 is because the mag-
netization reversal mechanism is altered by the presence or
absence of the injection pad. In the structure without a pad,
magnetization reversal occurs by the nucleation of a new
reverse domain, probably close to the end of the nanowire
where the demagnetizing fields are strongest, followed by
a rapid propagation of the domain wall associated with the
newly nucleated domain along the length of the nanowire.
The limiting step for this process is the nucleation of the
reverse domain, a highly energetic process. The strength of
the reversed magnetic field required to force this nucleation

is therefore quite high (200 Oe). In the structure with a pad,
however, the new domain can easily nucleate inside the large
pad because its thickness-to-width ratio (which determines
the shape anisotropy) is lower. Once the reverse domain has
been nucleated, the associated domain wall is free to move
from the pad into the nanowire and propagate along it, effect-
ing reversal of the complete wire. Domain-wall propagation
in such nanowires is a very low energy process and so can
still occur even at the much lower field at which the nucle-
ation process occurred.

We assign the name nucleation field (Hn) to the coercivity
reported in Figure 1(a) (200 Oe), that is, the field that must be
applied to induce magnetization reversal if no domain wall is
introduced artificially from any other source. We also define
the term propagation field (Hp), which is the field that must
be applied to move an existing domain wall along a nanowire.
We might be tempted to say from Figure 1(b) that Hp is
40 Oe for this nanowire. In fact, however, even Figure 1(b)
is still nucleation limited, albeit at a lower value inside the
large pad. Figure 2 shows a different means of accessing Hn

and Hp in a nanowire. In this case, we apply a magnetic field
which is oriented along the wire axis for most of its sweep,
but which rotates to 45◦ toward the extrema of the loop. This
guarantees the starting magnetization state in both arms of the
L-shaped nanowire as the applied field sweeps back toward
zero. We generate such an applied field sequence by control-
ling the current in two pairs of coils, which apply fields in the
X (nanowire axis) and Y (transverse) directions. If we choose
the relative signs of the X and Y fields such that the 45◦

pulse is tangential to the corner of the L-shaped nanowire,
then no domain wall exists in the wire and so the coerciv-
ity corresponds to a nucleation-limited reversal. In this case
we measure Hn as 205 Oe, virtually identical to the case of
Figure 1. If we now reverse the sign of the Y field, the 45◦

pulse becomes perpendicular to the corner, resulting in a sin-
gle domain wall being created there. The coercivity now cor-
responds to the propagation field, since reversal in the main
length of the wire is achieved simply by pushing that already-
created domain wall around the corner and along the wire.
Remarkably, we find a value of just 3 Oe for Hp. The coer-
civity of the nanowire has been modified by a factor of 65
simply by the presence or absence of a single domain wall.

3 DOMAIN-WALL CONDUITS

When the ratio between Hp and Hn is substantial, we describe
the magnetic nanowires as domain-wall conduits. This is
because if one applies a magnetic field H in the range
Hp < H < Hn, then the nanowire will accept any domain
wall introduced to it and propagate it along the wire, but
will not reverse if no domain wall is given. For the nanowires
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Figure 1. MOKE measurements of two 100-nm-wide 5-nm-thick permalloy nanowires. The ellipses shows approximately the averaging
volume of the MOKE measurements. (Reused with permission from R.P. Cowburn, D.A. Allwood, G. Xiong and M.D. Cooke, Applied
Physics Letters, 91, 6949 (2002)  2002, American Institute of Physics.)

shown here, this range is very large (any field between 3 and
205 Oe in the case of Figure 2 will result in domain-wall-
conduit behavior). There is thus a parallel between electrical
conductors and domain-wall conduits: an electrical conductor
transports the electrical potential applied at one end to the
other by a flow of electrons; a domain-wall conduit transports
the magnetization direction applied at one end to the other
by the flow of a single domain wall. Interestingly, electrical

conduction results in losses due to the resistance of the
conductor; the potential at the far end will always be slightly
different from the potential at the near end. Although there
are also losses in the transport of a domain wall through spin-
wave emission by the wall as it moves, these energy losses
are exactly compensated by the energy absorbed from the
externally applied magnetic field H . The externally applied
magnetic field therefore has a parallel to a power supply,
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Figure 2. Domain nucleation and domain-wall propagation in a 120-nm-wide, 8-nm-thick permalloy nanowire.

and the domain-wall conduit should be considered as being
an active component that can draw on that power supply,
rather than the simpler, passive two-terminal component that
is an electrical conductor. The propagation field is loosely
analogous to a contact potential: it is the offset field that
must be overcome before domain-wall conduction will occur.
The nucleation field is loosely analogous to breakdown: it is
the strength of field at which the magnetization state of the
domain-wall conduit no longer relates to the input, but is
overridden by the externally applied magnetic field or power
supply.

Domain-wall conduits allow us to propagate magnetization
states from one place to another, and so for spintronic

applications it is natural to assign those magnetization states
to Boolean states, allowing us to move information. We
define a Boolean ‘1’ as being when the magnetization
direction is parallel to the direction in which information
flows, and a Boolean ‘0’ as being when the magnetization
direction is antiparallel to the direction in which information
flows. This may seem a little complex and the question may
be asked: why not simply use ‘right is 1, left is 0’. The
answer is because of the possibility of using the nanowires
in more complex geometries than simple straight lines. What
will happen if we turn a corner, or, moreover, turn two
90◦ corners? The U-turn would have introduced a data
inversion if we had used a simple fixed-space definition of
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Boolean state. Clearly this would be undesirable. By using
the direction of flow of information as the basis direction we
can turn corners without affecting the data.

There is an additional complexity in propagating infor-
mation through nanowire domain-wall conduits, caused by
the vector nature of magnetization. Figure 3 demonstrates
the problem. Suppose we wish to propagate a data sequence
made up of 1s and 0s. Domain walls in nanowires carry
a magnetic charge, due to the divergence of magnetization
in the wall. Walls that lie between the two heads of the
magnetization arrows are called head-to-head domain walls
and carry a positive magnetic charge (since the magnetiza-
tion has a positive divergence in the vicinity of the wall).
Conversely, walls that lie between the two tails of the magne-
tization arrows are called tail-to-tail domain walls and carry
a negative magnetic charge. When a magnetic field is applied
to the domain wall, positive walls move in the direction of
the field, but negative walls move against the direction of the
field. Consequently, any data pattern that is more complex
than simply all 1s will not propagate correctly, rather, the 1s
will expand and annihilate the 0s.

A new approach to solving this problem is the use of
spin-momentum transfer, in which a spin-polarized electri-
cal current is used to drive the domain walls through the
nanowire (Berger, 1984; Vernier et al., 2004; Lim et al.,
2004; Yamaguchi et al., 2004). Spin-momentum transfer
through a domain wall does not depend on the sign of the
charge carried by the wall, and so all walls move in the same
direction. However, this phenomenon is relatively weak and
is not yet well understood. While it may provide an interest-
ing solution in the future, at this stage we continue to use
externally applied magnetic fields to propagate information.

The solution is to use a magnetic field that rotates in the
plane of the nanowire and to impose a minimum spacing on
the domain walls. If we require that positive and negative
walls are always separated by at least two 90◦ corners, then
although they will move in opposite directions for a given
applied field, both of these directions will be the correct
direction of information flow. Moreover, once separated by
this degree, they will always remain so and will not catch up
and annihilate. The only other constraint is that nanowires
should only turn corners in one sense: the same as the sense

+  
+  

−
− 

+  
+

H

M M MM

Figure 3. The problem of propagating a data pattern in a nanowire
under an externally applied magnetic field, H . The white arrows
show the direction of motion of the different domain walls.

of rotation of the applied magnetic field. So if the field is
rotating in an anticlockwise direction, then all corners should
turn left, as viewed from the direction of propagation of
the domain walls. If the network requires a right-hand turn,
then it is simply necessary to perform three left-hand turns
instead. Once these constraints are obeyed, it is possible to
build an arbitrary network of nanowires and to propagate
information reliably through it. It is interesting to note that
the combination of a fixed rotating field sense (or chirality)
combined with having only a single sense of corner defines
a propagation direction around the network. In electronic
systems, it is usually necessary to have a semiconductor
element such as a diode or transistor before inputs can
be isolated from outputs. This result is the first indication
that we are achieving a higher level of functionality from
the magnetic nanowires than a simple metal would suggest
was possible. It is also of enormous practical importance,
since one of the frequent failures that one observes in new-
concept nanoelectronic devices is the inability to achieve
input–output isolation and hence to define an information
flow direction through a network.

A consequence of using a rotating field to propagate
domain walls of both signs is that the domain-wall con-
duits become synchronous. Rising edges always propagate
half a rotating field cycle before falling edges, and every
90◦ corner introduces a 90◦ phase shift into the signal. This
presents both challenges and opportunities for the design of
spintronic circuits based on domain-wall-carrying nanowires.
The greatest challenge is that conventional microelectronic
design tools assume that signals propagate through intercon-
nect asynchronously and at a fraction of the speed of light.
It will be difficult to use these tools in this new world where
entire clock cycles of delay can be introduced simply by the
choice of interconnect routing. On the positive side, the syn-
chronous delay associated with each corner means that there
is a large amount of embedded memory automatically dis-
tributed around the network. New architectural concepts will
be required to exploit this memory, but it is noteworthy that
one of the challenges facing microelectronics in the future
is how to reduce the separation and resulting bottleneck
between logic and memory. A further benefit, which will be
expanded in more detail toward the end of this chapter, is that
shift registers are extremely simple to realize in domain-wall
logic – they are largely just lengths of interconnect.

4 LOGIC ELEMENTS

Now that we have interconnect for magnetic logic signals
which can be used in near-arbitrary networks and hence
move information to wherever we choose, the next step
is to find ways of acting on that information in order to
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perform computations. Any Boolean logic function can be
realized once a two-input function (e.g., AND, OR) and
an inverter (NOT) are available, simply by combinations of
these basic functions. In addition, two architectural elements
are required, namely, a fan-out structure, which creates
two identical copies of a single signal without any loss in
signal strength, and a crossover junction, which allows two
perpendicular signal paths to cross without interference. In
principle, once these four basic elements are available in
domain-wall logic, any other circuit can be constructed.

4.1 The NOT gate

Figure 4 shows the design we have adopted for the NOT gate.
See Allwood et al. (2002) for experimental detail. Since data
are encoded by the direction of magnetization, the inverter
function (which maps a 1 to a 0 and a 0 to a 1) is implemented
by forcing a 180◦ rotation on the magnetization. The simplest
way to achieve this is through a cusp structure. As the
nanowire turns through the first quarter cycle of the cusp, the
magnetization attempts to remain parallel to the nearest edge
in order to minimize its potential energy. The magnetization
therefore rotates with the cusp. During the second quarter
cycle of the cusp, the magnetization continues rotating, with
the result that the magnetization on the input side of the
cusp is rotated 180◦ with respect to that on the output side.

What makes this structure so useful is that it not only works
statically, as described here, but also dynamically. That is
to say that if a domain wall is incident upon the input side,
corresponding to a transition edge in the data, the first half of
the cusp looks like an anticlockwise corner and so the domain
wall is carried into it by the external rotating magnetic field.
Once in the central stub section, the domain wall finds that
the second half of the cusp also looks like an anticlockwise
corner and, so, is also pushed around it by the next quarter
cycle of the rotating field, emerging on the other side of the
cusp. It is a defining topological feature of a cusp that as
one moves through it, both halves appear to have the same
chirality.

The simplest way to test a NOT gate is by connecting its
output to its input and thus forming a ring oscillator, as shown
experimentally in Figure 4. While in microelectronics this
would result in a high-frequency oscillation, the frequency
of which would be determined by the propagation delay on
the gate, the synchronous nature of domain-wall logic leads
to a slightly different result. Figure 5 shows the equivalent
electronic circuit. The half-cycle synchronous delay associ-
ated with propagating the domain wall through the cusp (or,
put another way, because 1s and 0s propagate half a clock
cycle apart in this architecture, the output of the NOT func-
tion must change half a cycle after its input) is shown as a
T /2 delay, where T is the period of the rotating field. Addi-
tionally, there is a further delay of T due to the synchronous
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T
D

T/2

Figure 5. The equivalent electronic circuit for the synchronous ring
oscillator shown in Figure 4. The square blocks are delay elements;
T is the periodic time of the rotating magnetic field.

way in which the domain walls will move through the loop
connecting the output to the input. The total loop time is
therefore 3T /2, which simple analysis shows will lead to a
self-sustained oscillation with a periodicity of 3T .

Figure 4 shows the result of measuring the magnetization
on firstly the input arm I, and then the output arm II of
the NOT gate while the entire chip is bathed in a rotating
magnetic field. All of the expected features are visible. There
is a half clock-cycle delay between the rising edge on the
input of the gate and the corresponding falling edge on the
output of the gate. The periodicity of the result is also seen
to be three times the rotating field frequency, as expected.
Although in this experiment we do not see the domain wall
directly, the response periodicity of 3T is the sign that
everything is functioning correctly. See Zhu et al. (2005)
for direct magnetic force microscopy images of the domain
wall moving around the loop and through the gate.

This simple circuit can be used to demonstrate how the chi-
rality of the rotating field imposes an information propagation

direction on the data. Figure 6 shows similar data to those
shown in Figure 4, except that the applied field was stopped
half way through the experiment and its sense of rotation
reversed. It can be seen that when the applied field was rotat-
ing anticlockwise, the signal at the left-hand side of the NOT
gate was leading the signal at the right-hand side by half
a cycle, meaning that data were flowing from left to right
through the NOT gate. Once the applied field was switched
to clockwise rotation, the signal at the left-hand side of the
NOT gate lagged that at the right-hand side by half a cycle,
showing that data were flowing from right to left. The mirror
symmetry of the cusp shape means that, in principle, either
end can act as input, but a definite direction is, nevertheless,
imposed by the sense of rotation of the applied field.

Once simple nanowires are formed into more complex
shapes such as NOT gates, the ideality of the conduit begins
to fail. For example, as the domain wall passes from the
first quarter turn of the cusp to the second quarter turn,
there is an instant when the wall cannot be considered to
be in a well-defined conduit, and a complex micromagnetic
pattern emerges. Consequently, the propagation field is aug-
mented by the structural discontinuities in the logic gate. It is
important to assess whether this increase in Hp is sufficiently
large to reduce the available margin between Hp and Hn in
which conduit behavior occurs. We do this by measuring the
two-dimensional operating margin plot shown in Figure 7.
The rotating field is expressed as an arbitrary ellipse with
principle axes aligned along the X and Y directions, and
measurements are made for different sizes and shapes of the
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Figure 6. A NOT gate in a closed loop operated under two different senses of rotating field. The signal traces are made by MOKE at
points I and II.
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field locus as to whether the circuit functions or not. One
sees in Figure 7 a well-defined enclosed operating area. Out-
side the top right of the operating area, the applied field is
too strong and nucleation occurs in the NOT gate. This is
observed experimentally by the periodicity of the response
changing from 3T to T , as the gate begins switching in step
with the applied field, regardless of the incoming data value.
Outside the bottom left of the operating area, the applied
field is too weak and domain walls are unable to propagate
through the structural discontinuities of the cusp. Close to
the boundary one sees occasional dephasing of the response,
meaning that the device skipped a cycle as a domain wall
became trapped; further away from the boundary (closer to
the origin), there is no response at all, since domain walls
are unable to move. See Allwood et al. (2004) for further
discussion on NOT-gate operating margins and optimization
of the shape of NOT gates.

The size of the operating margin (i.e., the area within
the operating area) is important for two reasons. Firstly, it
defines the fabricational fault tolerance of the gate, since
small changes to the gate shape will most likely shift the
operating area: we assume that the larger the margin was to
start with, the more it can be shifted without device failure.
Secondly, when we come to combine different types of gate,
it is necessary to overlay their different operating areas and
limit the applied field to areas that are common to all devices.
This process is usually easier if the individual margins are
large to start with.

4.2 The AND/OR gate

Figure 8 shows the structure used to perform either the AND
or the OR function. See Faulkner et al. (2003) for further

experimental details. Two nanowires are brought together
through a shallow angle to a nodal point. A small amount of
tapering is applied to the wire width immediately before the
nodal point. The principle of operation is that for a domain
wall to pass from one of the input arms to the output arm
it must reverse a volume of spins in the node; if there is a
domain wall coming down each arm at that instant, together
they can reverse the center far more easily than a single
wall could. Thus, there are two propagation fields for the
device: Hp1 that is the field required to propagate a single
domain wall down an input arm and through to the output,
and Hp2 that is the field required to propagate a domain
wall down both inputs arms and through to the output. We
can set up these two conditions (plus a control experiment
of no domain walls, which leads to the nucleation field
for the gate being measured) by making different structures
with different numbers of injection pads (Figure 8 shows
one example where a single domain wall is injected). As in
the case of the NOT gate, we measure the two-dimensional
operating area phase diagram (see Figure 8). It is clear from
this figure that Hp2 < Hp1 < Hn. Just as there was a certain
field range H such that Hp < H < Hn in which a magnetic
nanowire could be considered to be a domain-wall conduit,
similarly there is a certain field range in which the two-input
nanowire junction can be considered to be a logic gate. If we
limit the applied field to the range Hp2 < H < Hp1 then we
describe the junction as being AND-like. This means that the
applied field is strong enough to switch the output if each
input supplies a domain wall, but not strong enough if only
one input (or no inputs) supplies a domain wall. We use
the term AND in the description of this gate because, like
the true AND gate, it requires both inputs to act before the
output will change. We say ‘like’, because this condition is
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Figure 8. An AND gate and its operating margin phase diagram. Externally applied field strengths lying within the 2 DW region can only
reverse the gate if two domain walls are injected into it. The 1 DW region can reverse if either one or two domain walls are injected. The
0 DW region can reverse even without artificial injection of domain walls (nucleation).

111

Previous state01

Previous state10

000

OutputInput BInput A

111

001

010

000

OutputInput BInput A

AND-like AND

111 111

Oscillates01

Oscillates10

000

OutputInput BInput A

111

101

110

000

OutputInput BInput A

OR-like OR

Figure 9. The Boolean truth tables for AND-like, OR-like, AND,
and OR functions.

not enough to fully implement the Boolean AND function.
Figure 9 shows the truth tables for the AND-like gate and
compares it with the true AND function. The problem occurs
for the case where the output is high and one of the inputs
goes low. In a true AND gate, this would be enough to take
the output low; in the AND-like gate, the output remains in
its existing state. There is thus an undesirable hysteresis in
the AND-like gate, although this may have some application
in an alternative architecture which can take advantage of
the memory associated with that hysteresis.

Similarly, if we limit the applied field to the range Hp2 <

Hp1 < H < Hn then we describe the junction as being OR
like. This means that the applied field is strong enough to
switch the output if either (or both) input supplies a domain
wall. As with the AND-like gate, this is close but not exactly
the same as the true Boolean OR function. In this case, the
failure occurs when one input is high and the other is low.
A true OR gate would have a high output in this case; in the

OR-like gate the output actually oscillates freely with the
applied field (see Figure 9).

The OR-like and AND-like gates can be converted into
a true Boolean function simply by adding a bias to the
applied rotating field. Assuming the gates are oriented along
the X direction, we simply shift the ellipse of the locus
of the rotating field by −�Hx . This means that the X

component of the rotating field now sweeps between Hx −
�Hx at its positive extreme and −Hx − �Hx at its negative
extreme. We then arrange that Hp2 < (Hx − �Hx) < Hp1

and Hp1 < (Hx + �Hx) < Hn, that is, the gate is AND-like
in positive fields and OR-like in negative fields. Together
these conditions make a true AND gate. What is attractive
about this scheme is that if the gate is simply reflected about
its Y axis, the effective sign of �Hx is reversed, and the gate
becomes OR-like in positive fields and AND-like in negative
fields, which is the same as a true OR gate. Thus, by simply
adding a single global bias to the rotating field, we can have
both AND gates and OR gates in the same circuit, without
having to localize the bias to the gate in question. AND gates
result when the gate is oriented such that information flows
in the opposite direction to the bias, and OR gates result
when oriented such that information flows in the direction of
the bias. A working experimental demonstration of the true
AND gate will be given later in this chapter.

4.3 Fan-out gate

Figure 10 shows the structure used to perform the fan-out
operation. It is essentially the AND/OR gate reversed such that
domain walls flow into the single terminal and out through the
two terminals. When the incoming domain wall meets the nodal
junction it splits into two walls, each being half the original
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Figure 10. The fan-out gate with its operating margin phase diagram.

length. As these two walls pass along the tapered output arms,
their length increases gradually until the full length has been
restored. The energy of a domain wall is proportional to its
length, and so work must be done to achieve this expansion.
This energy is taken from the applied field and is manifested
as a small increase in propagation field during the expansion.
Figure 10 shows the operating margin diagram for the fan-
out gate. It is a relatively robust gate, with large margins.
Interestingly, the symmetry of the operating space follows
the symmetry of the device: Y -axis fields have very little
influence on its operation, since both the magnetization and
the information flow directions are along the X axis.

That a fan-out gate is possible demonstrates the fact
that domain walls are actually kink solitons (Bar’yakhter,
Chetkin, Ivanov and Gadetskii, 1994). There is no equivalent
to ‘half-strength’ domain walls and so there is no dilution
of signal when it is split into two copies, as would be the
case in a simple linear system. Rather, the extra energy that
is needed is absorbed from the applied field and two full-
strength signals emerge. From an electronic systems point
of view, this shows that domain-wall logic possesses the
equivalent of gain, since the domain-wall solitons are able to
absorb from the applied field power supply whatever energy
is required firstly to overcome losses and secondly to amplify
the signal level through the fan-out gate. Gain is usually only
associated with active semiconductor devices, once again
demonstrating the high level of functionality present in the
magnetic nanowire system.

4.4 Crossover gate

When two signal paths need to cross without interference
in conventional microelectronics, a via is used to route one

signal up to a higher level. A similar system could be
envisaged in domain-wall logic, although the via would have
to be a sloped ramp rather than a straight column to ensure
that the domain wall could propagate under the action of
an in-plane rotating field. It is possible, however, to cross
two signal paths in domain-wall logic in the same plane,
without any magnetic separation of the two, by using the
crossover gate. If the via is analogous to a motorway flyover,
then the crossover gate parallels a traffic-light-controlled
crossroad. Figure 11 shows the structure used. A small taper
is applied to each nanowire before contacting the central
node to minimize the size of the central area where the
domain-wall conduit is badly defined. The domain wall will
experience a certain pinning force at this point due to its
momentary loss of sidewalls; there will thus again be an
operating area phase diagram for the device. There should
never be a collision between two domain walls, providing the
two signal paths approach each other at right angles, ensuring
that domain walls in one arm always arrive one-quarter of a
rotating field cycle before the other arm.

To date, the crossover gate is the structure with the smallest
operating margin, largely due to the high propagation field
created by the central node. It is hoped that in future
developments the margin can be increased.

5 NANOCIRCUITS CONTAINING
MULTIPLE GATES

As explained earlier in this chapter, the challenge in moving
from single gates to different gates operating in the same
nanocircuit is that there can only be one applied rotating
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Figure 11. The crossover gate with its operating margin phase diagram.

field locus (since the field is applied globally to the entire
chip) and this must lie within the operating margins of all
the different types of gates in the circuit. At present, there
is a common overlap area to the four types of gates, but it
is very small. Future development will focus on increasing
the size of the common overlap. Nevertheless, the overlap is
currently large enough to allow a variety of combinations of
gates to be demonstrated.

Figure 12 demonstrates the ability to concatenate multiple
gates of the same function. Eleven NOT gates are formed
into a loop (Allwood et al., 2002). The measured circuit
response shows a periodicity of 13T (T is the periodicity of
the rotating field). This is exactly what would be expected:
there is a loop delay time of 11/2T due to the T /2 delay
introduced by each of the 11 NOT gates, and then there is an
extra T delay for the closed loop, making a total loop delay
of 13/2T , and hence an oscillating periodicity of 13T . It is
noteworthy that in order to obtain a good signal-to-noise

ratio from the MOKE measurements, we usually average
many cycles (just like a cathode-ray oscilloscope). The
response shown in Figure 12 was averaged approximately
100 000 times. This means that the single domain wall in the
nanocircuit performed over 1 000 000 transits through a NOT
gate. The fact that the transitions in the response remained
sharp despite extensive signal averaging shows that there was
no dephasing of the response at all during that time. In other
words, it is highly probable that all 1 000 000 NOT operations
were achieved successfully. Once again, we see the solitonic
nature of the domain wall: unless the domain wall has a
mechanism for compensating energy losses, it would not be
possible for the same single wall to undergo this many logic
operations.

Figure 13 shows the first combination of two different
types of gate within the same circuit: a NOT gate is combined
with a crossover gate by putting an extra twist into the
feedback loop. The measured response is seen to be an
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Figure 13. A NOT gate and a crossover gate combined in the same nanocircuit and operating under the same externally applied magnetic
field. One component of the rotating magnetic field is shown, along with the signal response within the loop, as measured by MOKE.

oscillation with a periodicity of 5T . Recall that in Figure 4,
a single NOT gate in a closed loop usually gives a response
periodicity of only 3T . The change in periodicity is the
sign that the domain wall is executing the crossover junction
correctly, and is not taking a short cut at the crossover gate
by turning right or left when it should be going straight on.
By going straight on, it incurs an extra full minor loop on top
of the existing major loop and hence the total delay due to
the full closed loop increases from T to 2T . When added to
the T /2 delay due to the NOT gate itself, the loop delay time
becomes 5/2T , and hence the expected response periodicity
is 5T , as observed.

Figure 14 shows another combination of two different
types of gate within the same circuit, except this time it is a
NOT gate combined with several fan-out gates. A simple 3T

ring oscillator is formed around the NOT gate, but a fan-out
gate is inserted into the loop in order to extract a copy of the
response. This signal is then split into two copies, and each
of those is split again to make four copies of the original ring
oscillator signal. MOKE measurements localized to each of

the four outputs show that, indeed, the 3T signature can be
seen on each. Multiple fan-out operations are one way of
amplifying the total volume of magnetic material switching
to make final detection easier, as well as being an integral
part of any logic circuit.

There is an additional way to fan-out signals, and that
is to use the central stub of the NOT gate, which carries
a copy of the input signal. This signal is accessed simply
by extending the length of the stub into a full nanowire.
Figure 15 shows an example of a ring oscillator connected
to a serial-in, parallel-out shift register formed from a chain
of NOT gates with accessible stubs. The ring oscillator in this
case is simply providing a convenient signal to trace through
the shift register. The shift in the MOKE signal as we move
the laser probe from one nanowire to the next shows the
correct operation.

The twists on the end of the nanowires perform an
important role by preventing domain walls from reflecting
and reentering the system. Depending on the precise shape
of the end of a nanowire, a domain wall may or may not

Figure 14. A NOT gate combined with four fan-out gates. MOKE measurements show four identical copies of the signal expected inside
the NOT-gate ring oscillator.
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Figure 15. A nanocircuit which uses the central stub of the NOT gate to replicate the input signal. (Reused with permission from D.A.
Allwood, Applied Physics Letters, 89, 10254 (2006).  2006. American Institute of Physics.)

annihilate. If it does not annihilate, it will be backpropagated
half a clock cycle later and may interfere with the correct
operation of the logic gates. If annihilation at the end
of the conduit cannot be guaranteed, the conduit can be
correctly terminated by ensuring that there are two 90◦

corners between its end and the final logic element. The
180◦ turn forms what we refer to as a domain-wall black
hole: should a domain wall enter into it and not annihilate
at the end, the rotating field will be unable to backpropagate
it through the double corner, since these corners are of the
wrong chirality. In the rotating field scheme, whatever goes
into a black hole never reemerges.

We now move to the next level of integration and begin
to combine three different types of gate within a single
nanocircuit. Figure 16 shows the combination of NOT gates,
fan-out gates, and a single AND gate. We know it is an AND
gate and not an OR gate because of the sign of the bias that
was applied to the rotating field. The bottom-left NOT gate
forms a ring oscillator in order to generate a local signal,
which can be traced through the circuit. A fan-out gate copies
that signal out of the closed loop and then a second fan-out
forms two identical copies. One of these copies is routed
directly into the AND gate, while the second copy is inverted
in a NOT gate. The primary function of this is to generate two
dephased signals, which will cycle the AND gate through the
four states of its truth table. We have sketched in Figure 16
the expected signals incident upon the AND gate. We then
move the laser probe to the output of the AND gate and make
an experimental measurement of its output. Figure 16 shows

a 3T period signal, but with a nonsymmetrical mark–space
ratio. This is exactly what would be expected from an AND
gate being cycled through its truth table. Three of the four
possible input states involve at least one 0, and so the output
remains low for these three states. Only in the fourth state,
when both inputs go to 1 would we expect to see the output
go high. The three-element circuit thus functions correctly,
and has also provided a useful test bed for cycling the AND
gate through all of its states.

The final step is then to replace the second NOT gate in
this circuit with a crossover gate, as shown in Figure 17, in
order to form a nanocircuit that contains at least one example
of each of the four basic gates. See Allwood et al. (2005) for
experimental details. In this case we test the ring oscillator
and the two fan-outs first by making a measurement in the
bottom right-hand corner, work out what the signals should
now be at the input to the AND gate, and then measure
its output. The only difference in the operation of these
circuits is that there is a longer phase delay between the two
signals entering the AND gate: in Figure 16 the second NOT
gate introduces a half clock–cycle delay, while in Figure 17
the minor loop with crossover introduces a one clock–cycle
delay.

In principle, now that the four basic elements have all
been demonstrated to work together in the same nanocircuit,
domain-wall logic could be used to construct any digital
logic circuit of arbitrary complexity. In practice, further
work needs to be done to augment the size of the operating
margin of the complete circuit in order to reintroduce the



14 Magnetic configurations in small elements, magnetization processes and hysteretic properties

Figure 16. A nanocircuit containing three different types of gate: NOT gates, fan-out gates and an AND gate. The two signal incident upon
the AND gate are shown schematically, along with an experimental measurement of the output of the AND gate as it is cycled through its
four states.

Figure 17. A nanocircuit containing the four basic gates: NOT, AND, crossover, and fan-out.

fabricational fault tolerance that is already present in the
large margins of the individual gates. Further understanding
is also required about the precise influence of synchronous
interconnect on large circuits.

6 DATA INPUT–OUTPUT

The recently developed technology of magnetic random
access memory (MRAM) (Engel et al., 2005) has already
solved most of the engineering issues involved in interfacing
between a soft ferromagnetic layer and an underlying CMOS
system. Specifically, in MRAM, data writing is achieved by
passing an electrical current through a conductor placed close

to the magnetic element, allowing the magnetic field gen-
erated around the current to nucleate a reverse domain in
the magnetic nanostructure. Data reading is achieved by the
use of a magnetic tunnel junction (MTJ) (Moodera et al.,
1995) in which the electrical resistance of two magnetic lay-
ers separated by a thin film of insulator is found to depend
strongly on the relative magnetization directions. By fixing
the magnetization direction of one layer, it becomes a refer-
ence against which the magnetization direction of the other
layer may be measured. Signal levels large enough to inter-
face directly with CMOS transistors are achieved by this
method. We intend to piggyback off these developments for
interfacing signals between the magnetic system and conven-
tional electronics. Domain-wall logic can be considered as an
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extension to MRAM. In MRAM, the data storing magnetic
layer is very simple and is only used to store a single bit
of information. The concepts developed in magnetic logic
can be used to extend the functionality of that storage layer,
allowing data to be processed as well as stored.

We have developed an alternative data input method,
which may be important if three-dimensional structures
are implemented in domain-wall logic. One of the major
limitations to creating ultrahigh-density three-dimensional
microelectronic circuits is the cost of making connections
to the multiple layers. A useful strategy for realizing the
ultrahigh data density of three-dimensional structures without
increasing the cost is to attempt to find a way in which
the input and output to the three-dimensional structure is
maintained in two dimensions. Figure 18 shows a device
we have developed which allows this to be done with
domain-wall logic. See Allwood et al. (2005) for further
experimental details. The figure shows a chain of eight NOT
gates, where one gate has had its central stub enlarged.
This reduces the shape anisotropy in that stub and hence
reduces its nucleation field a little. Consequently, if the
globally applied rotating magnetic field is modulated in
amplitude slightly, it is possible to cause nucleation in the
NOT gate with the elongated pad, thus forcing its data
state to the direction of the global field. Importantly, the
strength of modulation needed to achieve this is not so
strong as to lie outside the operating margin of all the
other gates in the chain, and so they continue to work
normally. Thus, by modulating the global field, we can
write data directly into the serial shift register and then
shift that same data throughout the rest of the shift register.
In this case, the globally applied rotating magnetic field

is not only serving as a power supply and clock, as it
does in all other domain-wall circuits, but it is also acting
as a serial input data channel. Figure 18 shows a working
demonstration of this experiment, where we have written the
data sequence 11010 into the shift register by modulating
the rotating field. This writing sequence is applied only
once. An hour later, we then begin cycling the rotating
field without modulation and use the MOKE laser probe to
read the serial data circulating around the shift register. We
see the sequence 11010 repeatedly, as it goes around the
circular shift register. We have thus succeeded in injecting
data into the nanoscale storage ring, although the source of
field modulation was 1 cm away from the chip itself. As a
control experiment, we show also in Figure 18 a straight
trace, obtained during reading when the 11010 sequence
had not been previously written. The reason that we do
not see a 10T periodic signal as might be expected based
on earlier results is that there is an even number of NOT
gates in this loop, which prevents it from acting as a ring
oscillator.

This result is significant because it demonstrates the ability
to write data into nanoscale storage rings from a distance.
This immediately opens up the possibility of a three-
dimensional data storage cube, in which all magnetic field
generation and sensing is performed on the bottom CMOS
layer, but where data can be remotely targeted to specific
parts of the three-dimensional volume simply according to
where one places the NOT gate with the enlarged stub.
Such a device would have the storage density of a three-
dimensional device but the fabricational cost structure of a
two-dimensional device. This idea is explored further later
in this chapter.
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7 DOMAIN-WALL SPEED

Modern microprocessors run at clock frequencies in excess
of 1 GHz and it is important to understand how domain logic
compares against this target. All of the results presented
so far in this chapter have been at very low frequencies.
This is not a fundamental limit, but rather reflects the
convenience of using a large iron-cored electromagnet during
laboratory testing. There are two speed limitations inherent
in domain-wall logic. Firstly, domain walls propagate by
the precession of the spins in the center of the wall around
the local effective magnetic field. The speed of propagation
is thus ultimately limited by the gyromagnetic precession
frequency. However, the speed will also depend upon the
degree to which precession is damped through energy losses,
which can be both material and geometry dependent. In
particular, at the beginning of this work, it was not clear
to what degree nanoscale confinement in the nanowire
would increase damping. It is important that the domain-
wall propagation speed should be fast enough to maintain
the synchronous nature of the system: a domain wall must
have had time to propagate as far as it needs to within a
given quadrant of the rotating field phase.

The second limitation comes from how quickly the exter-
nally applied magnetic field can be rotated. If it were gen-
erated from a microwave strip line, then tens of gigahertz
would be possible. However, this would require the line to
terminate in a 50 � load, which would dissipate very large
amounts of power, making the power dissipation from the
chip uncompetitive. The alternative method for generating
the rotating field is to use microfabricated coils. These can be
highly efficient if made thick enough (the power dissipation
could be as low as 1 W cm−2, 100 times lower than the dissi-
pation limit of silicon). However, the inductance of such coils
limits their frequency. It would not be possible to generate
rotating field frequencies much higher than 10 MHz across

an extended area, although very high frequencies could be
achieved if only covering a few square millimeters.

Thus, different constraints apply depending on the size of
the chip. Small chips can operate quickly if the domain-wall
propagation speed is high enough. Large chips will always
be limited by the generation of the rotating field, and so
domain-wall speed (unless very slow) is less important.

Figure 19 summarizes the experiments we have performed
to measure the domain-wall propagation speed through a
simple nanowire. See Atkinson et al. (2003) for further
experimental details. The nanowires are fabricated directly
onto the top of a microwave strip line, through which we can
launch current pulses with sub-nanosecond rise times. These
current pulses lead to a magnetic field pulse across the width
of the strip line, which is used to accelerate a domain wall
from one end of a nanowire of known length to the other.
The domain wall is introduced to the starting end of the
straight ‘racetrack’ by a perpendicular wire, and the MOKE
laser probe is placed at the other end of the nanowire in order
to detect the arrival of the domain wall. We assume that the
domain wall has very little inertia and will stop propagating
virtually as soon as the applied field pulse terminates. We
continually test this assumption by repeating experiments
with two pulses of half the original width to see if the results
remain unchanged. In most magnetic systems this assumption
is found to hold. Equally importantly, we also test that we
are indeed measuring domain-wall propagation and are not
nucleating a reversal by the pulsed field by changing the
bias field applied to the injecting arm to prevent it from
injecting a domain wall. When we do this, all switching
in the racetrack is also seen to stop, proving that it was
indeed the injected domain wall that was responsible for
the reversal. We measure speed by applying different widths
of pulse and finding the probability of switching at the far
end of the nanowire as a function of pulse width. From the
50% probability point, we can determine the average time

Figure 19. A measurement of the domain-wall propagation speed in a magnetic nanowire fabricated on the back of a microwave strip line.
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required for the domain wall to cover the racetrack, and
since we know its length, we can calculate its speed. We
repeat this process for different amplitudes of pulsed field,
and hence can measure the domain-wall speed as a function
of the field strength (Figure 19). The domain wall is found
to move with speeds of up to 1000 m s−1 for fields of the
strength that would be applied in logic devices. Importantly,
we note slight differences in result at the highest speeds,
depending on whether we place the laser probe at the end
of the race track or a little further down a perpendicular
extension to the race track. This indicates that there is some
dynamic ‘bouncing’ of the wall as it attempts to navigate the
corner. One thousand meters per second is 1 µm ns−1 and
most logic gates are 1 µm or less in length and so transit
times of around 1 ns could be expected. This is reasonably
competitive with microelectronic speeds, although not with
the very fastest. Across-chip clock frequencies of up to
200 MHz could probably be made to work, which would not
be fast enough for the very fastest applications, but would
certainly be fast enough for some applications.

Alternative experimental methods for obtaining domain-
wall velocities in nanowires have been described by Ono
et al. (1999), in which a giant magneto resistance trilayer
is formed from the nanowire under test and two other
layers, allowing the resistance of the trilayered nanowire to
serve as a probe of the fraction of the nanowire that has
magnetically reversed and hence the position of the domain
wall. (See also Domain Wall Propagation in Magnetic
Wires, Volume 2.)

8 SCALABILITY

The successful uptake of any new microelectronic technology
often depends upon its scaling properties. The capital costs
of deploying new technologies are so high that a financial
return can only be made if the technology continues to be
used for several years. During that time, the definition of
lithography will continue to improve and so the technology
must be capable of continuing to operate as its dimensions
are reduced. The way in which magnetic devices sometimes
struggle with scaling is that thermal fluctuations usually
depend upon the product KV, where K is the magnetic
anisotropy and V is the volume of magnetic material
corresponding to a single data bit. As lithographic feature
sizes are reduced, V falls and so to restabilize the device
it is necessary to increase K . This is usually possible,
either by a change of magnetic material, or in the case of
domain-wall device simply by changing the thickness-to-
width ratio of the nanowires, leading to an increase in the
shape anisotropy. However, the strength of magnetic field,
which must be applied to operate the device usually scales

with K , and so the result is a device which is stable but
which requires a stronger magnetic field to operate it. In
some technologies (e.g., hard disk drives and MRAM) it can
be difficult to achieve those increased levels of magnetic
field, either because of magnetic saturation or because of
power dissipation.

We have analyzed the scaling limitations in domain-wall
logic. We have addressed two specific questions, namely:
(i) how should the thickness of the nanowire be scaled as the
width is reduced; (ii) will the domain wall always be a small
object, or will it become so extended in small nanowires that
we can no longer make useful logic gates?

Regarding the first of these, we have identified two dif-
ferent scaling regimes. In the first instance, where structures
are being scaled from the current 200-nm-width downwards,
the thickness should be scaled with F as the width of the
wire is also scaled with F (F is the minimum feature size
of the lithography). This keeps the thickness-to-width ratio
of the nanowires constant, and so the shape anisotropy field
also remains constant. Consequently, the strength of applied
rotating field required to operate the device should remain
unchanged. During this first scaling regime, the power-delay
product (see the next section for a definition) will reduce with
F 3, since it is proportional only to the volume if the applied
field amplitude remains constant. The limit of this scaling
regime comes when the power-delay product becomes com-
parable to a few tens of kBT , where kB is Boltzmann’s
constant and T is room temperature. At this point, thermal
fluctuations begin to disrupt the data, and so it is necessary
during further scaling to avoid any extra reduction in the
power-delay product. We do this by switching to the second
scaling regime in which the thickness of the nanowires is
scaled with F−1/2 while the width continues to scale with
F , that is, the thickness rises as the width of the nanowire
falls. The power-delay product should then remain roughly
unchanged with this scaling law, while the strength of field
needed to drive the device rises. Since the applied magnetic
field does not have to be localized to a small volume, it is
possible to generate relatively large fields without excessive
current densities. Generating magnetic fields over extended
areas is much more energy efficient than generating them in
localized areas, since in the former case the thickness of the
conductors can be increased almost arbitrarily without loss
of contribution of the magnetic flux. We therefore do not
anticipate a premature limit to scaling caused by this rise in
driving field.

Regarding the domain-wall width (i.e., measured along the
long axis of the nanowire), we have used micromagnetic
simulations (Web: math.nist.gov/oommf/) to calculate the
domain-wall profile in a nanowire as a function of the size
of the nanowire. Figure 20 shows the result. At the current
width of 200 nm, the plot shows that the domain wall should
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Figure 20. Domain-wall width (measured along the long axis of
the nanowire) as a function of nanowire width for the two scaling
regimes.

be approximately 200 nm wide, that is, it can be considered
to be a square object. During the first scaling regime, the
domain-wall width shrinks less rapidly than the width of
the nanowire, and so the domain wall becomes slightly
rectangular, but not excessively so: at the limit of the first
scaling regime at (70-nm-wide nanowires), the domain wall
is only 110 nm wide. During the second scaling regime,
the increase in shape anisotropy causes the domain wall to
become shorter again and the growth in elongation ceases.
By the time the nanowire is 32 nm wide, the domain wall
is 50 nm, meaning that it remains roughly a rectangle with
an aspect ratio of 1.5 throughout the entire second scaling
regime.

9 POTENTIAL APPLICATIONS
OF DOMAIN-WALL LOGIC

Domain-wall logic is not a contender for a wholesale
replacement of CMOS microelectronics. CMOS is a highly
mature technology with many advantages, and still has
many years of scaling available to it. However, a strong
trend in microelectronics, which is expected to apply to
the relationship between CMOS and many other areas
of nanotechnology in the future, is to combine multiple
technologies on a single platform: the system on chip (SoC).
Mature economies usually break into a large number of
specialists each doing what he or she does best. The same
principle applies to complex microelectronic devices. In this
context, domain-wall logic brings another item to the menu
of available technologies. So what does domain-wall logic
do well?

• It gives high level of functionality to relatively simple
structures. To implement an AND gate in CMOS would

take six transistors; domain-wall logic achieves it simply
by bringing two nanowires together. Similarly, the other
high-level properties that have been highlighted in this
chapter, such as input–output isolation and signal/power
gain are all intrinsic to the nanowire and do not have to
be explicitly created.

• The power dissipation per logic gate is extremely low.
Microelectronic engineers usually measure dissipation
from a gate by the power-delay product, that is to say the
product of how much power is dissipated multiplied by
how long the gate takes to process a single function.
The units of this quantity are energy, corresponding
to the energy dissipated during the evaluation of the
function performed by the gate. CMOS power-delay
product depends on the size of the devices. To compare
like with like, we therefore take the 200-nm minimum
feature size CMOS value of 10−2 pJ (Waser, 2003). On
very general magnetic grounds, we can say that an upper
bound for the power-delay product for domain-wall logic
is 2MsV H , where Ms is the saturation magnetization
of the magnetic material, V is the volume of magnetic
material in a gate and H is the amplitude of the applied
field. Applying the parameters for a typical 200-nm
domain-wall logic gate gives 10−5 pJ, that is, 1000 times
lower than the equivalent CMOS device. Because of the
inefficiencies inherent in the generation of high-speed
magnetic fields (see the preceding text), this does not
necessarily mean that domain-wall logic chips will not
consume much power. What it does mean, however, is
that the waste heat will be generated from the global field
generator and not from the logic devices themselves.
This is of particular relevance if one comes to stack the
devices into three-dimensional neural-like circuits. The
two key technical difficulties to doing this in CMOS are
(i) distributing the power and clock to everywhere inside
the volume of network and (ii) extracting the waste heat
from the center of the network so that the device does not
melt. We believe that domain-wall logic is an excellent
choice of primitive for three-dimensional architectures.

• Nonvolatility comes as standard. In a world of mobile
computing and portable (or even wearable) devices,
the concept of ‘instant on’ is becoming increasingly
important. Users accept that devices cannot be expected
to operate when there is no power. However, as soon
as power becomes available, users want the device
to be ready, and not have to undergo a long boot
process, or to have forgotten what it was doing when
the power last failed. Since there are currently very few
nonvolatile memory technologies available which can be
embedded directly into CMOS, a data transfer process is
usually required between a high-speed, volatile memory
register in the heart of the CMOS logic and an off-chip
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low-speed, nonvolatile store where the state variables of
the system are stored. With domain-wall logic, all of this
becomes redundant. Providing that the rotating field is
properly controlled so that it stops gracefully as power
fails and does not apply intermediate levels of field
leading to data corruption, the domain-wall logic circuit
should simply stop and retain all of its state variables.
As soon as the power returns, the logic continues from
where it left off.

• Domain-wall logic can make use of redundant space on
top of CMOS. Because no complex heterostructures are
required, the logic elements can sit in a single layer
fabricated as a back end of line process after the CMOS
has been laid down. This can improve the efficiency
of the underlying CMOS by farming out some space-
consuming task to the domain-wall logic on top. Since
this space was never accessible to CMOS itself anyway,
it all counts as a gain.

• Being metals, the basic computational elements of
domain-wall logic are automatically radiation hard, and
so are suitable for use in space or in military applications.

• Domain-wall logic is very good at forming high-density
shift registers. These could be used as nonvolatile serial
memory. Serial memory is used for storing entire files,
and so does not require high-speed random access.
The hard disk drive and NAND flash devices (e.g.,
as used to store the photographs in a digital camera)
are examples of nonvolatile serial memory. Both of
these devices are currently two-dimensional in form.
Shift registers made from domain-wall logic elements
have the potential to be stacked into three dimensions
without incurring extra wiring complexity, since data
and power can be transmitted remotely through magnetic
fields, as demonstrated earlier in this chapter. In a hard
disk drive the data are stored as rows of magnetic
domains, and this would remain the same in a domain-
wall logic serial memory. What would differ is that in
a hard disk the domains are mechanically rotated on
their disk underneath a static sensor, while in domain-
wall logic the domains themselves would move under
the action of an externally applied magnetic field along
static domain-wall conduits, potentially stacked into an
ultrahigh-density three-dimensional array.

The weaknesses of domain-wall logic have already been
described throughout this chapter, but are in summary
(i) limited operational speed and (ii) unconventional syn-
chronous interconnect. Whether the latter should be regarded
as an advantage or a disadvantage is open to debate, since
it is the same property that makes domain-wall logic so
suitable for high-density serial memory. Nevertheless, inter-
facing with conventional design tools remains a challenge.

10 CONCLUSION

While bulk magnetic alloys usually exhibit very simple
linear properties, structuring on the nanoscale introduces
more complex, nonlinear behavior that can be used for
a new generation of spintronic devices. In particular, the
coercivity of the magnetic material, which is usually an
intrinsic property in the bulk, becomes very dependent on
whether the magnetization reversal mechanism is limited by
domain nucleation or by domain-wall propagation. We have
demonstrated modifications to the coercivity of as much as a
factor of 65 simply by whether a domain wall is artificially
injected or not. The huge ratio between the domain-wall
propagation field and domain nucleation field that exists
in magnetic nanowires has allowed us to introduce the
concept of the domain-wall conduit, in which the nanowire
can be considered to be a highly efficient conductor for
domain walls. If information is encoded by the domains, then
domain-wall conduits allow that information to be moved
around an arbitrary network, and the possibility of building
computational devices emerges. Furthermore, we have shown
that by precisely modifying the shape of the nanowire, we
can exert topological control over the information and hence
implement Boolean NOT gates, AND gates, fan-out gates,
and crossover gates. These four basic elements can then
be interconnected to form fully functioning nanoscale logic
circuits. We have demonstrated, among others, a functioning
circuit that contains at least one example of each of these
basic gates all operating together in the same circuit. From
here, in principle, any digital logic circuit could now be
implemented without transistors.

We have discussed the strengths and weaknesses of
domain-wall logic as compared to other mainstream digital
technologies and concluded that, like most nanoscale devices,
domain-wall logic is not a one-stop replacement for all areas
of digital logic, but rather should be used selectively to
perform the functions that it does best. We have highlighted,
in particular, the benefits of forming three-dimensional shift
registers from domain-wall logic elements for the purpose of
ultrahigh-density data storage.
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1 INTRODUCTION

Considering the breathtaking progress in nanomagnetism
over the last decades, it is remarkable that the role assigned to
magnetic elements in technological applications has hardly
evolved away from the mere storage of information. This
also holds for modern magnetoelectronic devices such as the
nonvolatile magnetic random access memory (MRAM) (Wolf
et al., 2001). There, ferromagnetic patterned elements act as
bistable systems to store a unit of information, that is, ‘1’ or
‘0’, depending on their magnetization state. Once the mag-
netically stored information is read (e.g., using the tunnel-
magnetoresistance effect), it is elaborated by other means,
like integrated electronic circuits. One of the purposes of this
chapter is to present a concept that allows to read, transmit,
and elaborate magnetically stored information in a purely fer-
romagnetic system. This could be achieved with spin waves

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

propagating along wave guides and, in particular, by using
the phase of the spin waves. In fact, it is demonstrated that
the phase of propagating spin waves can be manipulated by
introducing magnetic domain walls in the wave guides. If the
presence or absence of a domain wall in a magnetic strip is
used as an elementary unit to store information, the phase-
shift effect induced by the domain walls gives the possibility
of using propagating spin waves to read this information. By
exploiting constructive and destructive interference effects,
logical operations can be performed with spin waves. The
concept of spin-wave logics proposed in this chapter could
be the first step toward the development of a new generation
of programmable logic devices that may be able to both store
information and perform logical operations.

The chapter is structured as follows. First, in Section 2,
the basics of the theory of micromagnetism and of the
numerical method are presented. In Section 3, the possibility
of splitting and merging spin waves is discussed. The effect
of a domain wall on a propagating spin wave is described in
Section 4. It is shown that the phase of a spin wave changes
when it runs through a domain wall. In Section 5, how
spin-wave-based logical devices could be realized by using
the effects presented in the previous sections is discussed.
Spin-wave guides can be combined in a simple way in
order to obtain programmable devices that can perform basic
logical operations such as AND, OR, NOT, NXOR. Finally,
Section 6 briefly discusses Berry-phase effects of magnons in
a ferromagnetic ring. Such Berry-phase effects have recently
been related to the effect of the domain-wall-induced phase
shift in propagating spin waves described in this chapter.

1.1 Magnetic ringing

The field-driven magnetization reversal of a magnetic
thin-film element is connected with the release of energy.
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The Zeeman energy depends on the relative orientation of
the sample’s magnetization and the direction of the exter-
nal field. In the simple case of a homogeneously magnetized
nanostructure with volume V and saturation magnetization
Ms , the energy difference between the magnetization state
oriented antiparallel to an external magnetic field H and the
one oriented parallel to the field, that is, between the initial
and the final state, is �E = 2µ0HMsV .

On its path from the initial, antiparallel state toward
the final equilibrium state with homogeneous magnetization
parallel to the external field, the magnetic system dissipates
this energy difference.

Phenomenologically, the dissipation of energy occurring
during the dynamic magnetization process is described by the
damping constant α in the Landau–Lifshitz–Gilbert (LLG)
equation. However, this intrinsic damping is generally not
sufficient to dissipate the entire amount of energy within
the typical time of a magnetization reversal process, which
for submicron-sized thin-film elements is usually on the
subnanosecond time scale. Therefore, immediately after the
reversal, a magnetic thin-film element remains in an ener-
getically excited state, which decays relatively slowly to its
equilibrium state, typically within a few nanoseconds. In
thin-film elements, the residual energy is converted into mag-
netostatic spin waves (Choi, Belov, Ballentine and Freeman,
2001). These spin waves are known as magnetic ringing. The
magnetic ringing may persist for several nanoseconds after

the magnetization reversal (Acremann et al., 2001; Koch,
Deak and Abraham, 1998). An example of such a dynamical
magnetization reversal process and the magnetic ringing
occurring after the magnetic switching is shown in Figure 1.
Some snapshots of the simulated magnetic reversal process
in a Permalloy thin-film element exposed to an external in-
plane magnetic field are shown in Figure 1(a)–(d). As can
be seen in Figure 1(e), the x component of the magnetization
switches almost completely into the field direction after only
300 ps, but the y component displays pronounced oscilla-
tions that decay only after about 2 ns. The occurrence of spin
waves can be seen in the out-of-plane magnetization compo-
nent (cf. Figure 1(f)–(h)), which displays a noisy modulation
of the magnetic structure. These spin waves contain a con-
siderable amount of exchange energy and stray field energy.
The specifications of this example are chosen according to
the µMAG Standard Problem No. 4 (McMichael, 2000) and
are described in the sketch in Figure 1. As far as the material
properties are concerned, the saturation polarization is Js =
µ0Ms = 1 T, the exchange constant is A = 1.3 · 10−11 Jm−1,
and the damping constant is α = 0.02.

1.2 Using spin waves

Obviously, the magnetic ringing is undesirable from a tech-
nological point of view. The long-lasting perturbation of the
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Figure 1. Simulated magnetization reversal in a thin-film element (Permalloy, 500 nm × 125 nm × 3 nm). (a)–(d) Snapshots of the reversal
process at different times after applying the field; (a) 0 ps, (b) 145 ps, (c) 402 ps, and (d) 1170 ps. The gray scale represents the x component
of the magnetization. (f)–(h) Out-of-plane component of the magnetization (magnified) at (f) 402 ps, (g) 1170 ps, (h) 1577 ps. (e) Volume-
averaged components of the normalized magnetization as a function of time. The initial magnetization state and the applied external field
are sketched on top of frame (e).



Guided spin waves 3

magnetization after the reversal represents a disturbing noise,
which should be avoided if a magnetic thin-film element is
to be used as a switch to store information. For applica-
tion purposes, the ideal magnetic thin-film element should
switch as quickly as possible from a ‘1’ to a ‘0’ without any
noise and perturbation. In order to suppress the spin waves
(i.e., the ringing), the intrinsic damping of the material can
be increased (Bailey, Kabos, Mancoff and Russek, 2001),
thereby dissipating the Zeeman energy difference directly
into heat. However, a damping that is too large would lead to
a slower, ‘viscous’ magnetization reversal (Kikuchi, 1956).
Therefore, considerable effort has been made to find alter-
native ways to switch the magnetization, particularly with
a technique known as precessional switching (Gerrits et al.,
2002), with which a fast magnetization reversal and sup-
pression of spin waves can be achieved. This precessional
switching process is, however, difficult to realize. Magnetic
field pulses have to be applied in the film plane perpendicular
to the magnetization direction. The shape of these field pulses
must be chosen carefully within small margins to ensure a
well-defined reversal process. A detailed discussion of the
precessional switching mechanism goes beyond the scope of
this chapter. Rather than presenting advanced concepts of
magnetization switching, the central question of the concept
discussed in this chapter is the following: ‘Can spin waves be
used instead of considering them as a disturbing, collateral
effect that occurs when a magnetic nanostructure switches’?
An appealing aspect of this idea is that spin waves occur
in a natural way in ferromagnetic thin films, as can obvi-
ously be recognized by the fact that it is difficult to suppress
them. It has recently been suggested (Hertel, Wulfhekel and
Kirschner, 2004) that spin waves may be used as carriers
of information, and, in particular, that it should be possible
to evaluate this information by exploiting the phase of spin
waves.

This work is entirely based on micromagnetic computer
simulations. Although the accuracy and the predictive power
of modern micromagnetic algorithms has recently evolved to
a point where such simulations can be regarded as reliable
computer experiments, a real experimental verification of the
new effects reported in this chapter would be desirable to
confirm these predictions.

2 MICROMAGNETISM AND
NUMERICAL METHOD

The theoretical, analytic study of spin waves in ferromagnetic
materials is a vast subject of research (Hillebrands and
Ounadjela, 2002; Akhiezer, Baryachtar and Peletminsky,
1968; Damon and Eshbach, 1961; Hurben and Patton, 1996).

By using simplifying assumptions and by linearizing the
dynamic equations, numerous modes have been studied
analytically. In the nonlinear regime, the occurrence of soli-
tons has been reported (Slavin, Demokritov and Hillebrands,
2002) and studied analytically.

Although the analytic theory of spin waves provides
important information and helps in understanding the qualita-
tive behavior of spin waves, it frequently suffers from serious
limitations. These limitations are due to the simplifications
required to make the problem analytically treatable, includ-
ing, for example, the assumption of infinite extension of the
material or other simplifying approximations, the validity of
which is often doubtful. Particularly in the case of nanos-
tructured materials, where finite-size effects are known to
have a decisive impact on the magnetic properties, some of
these approximations are questionable. In fact, even the cal-
culation of realistic static magnetization structures in nano-
structured ferromagnets – which certainly represent a sim-
pler case compared to the treatment of the magnetization
dynamics of spin waves – can generally only be obtained by
means of numerical simulations.

Computational micromagnetism gives the possibility of
investigating dynamic magnetization processes in nanos-
tructured materials on time and length scales that are
difficult to access experimentally. Micromagnetic simula-
tions provide detailed information on the dynamics of the
whole three-dimensional magnetization field in the sam-
ple. In the simulations, a patterned element of a given
material, size, and shape can be exposed, for example,
to an external field pulse and the response of the mag-
netization can be modeled by integrating the equation of
motion. The correctness of such calculations has been firmly
ensured in the last years by cross checking the results
obtained with different codes and by directly comparing
experimental observations with micromagnetic simulations.
The fundamental equation that is used in micromagnetic
simulations to describe the magnetization dynamics is the
Landau–Lifshitz–Gilbert equation.

2.1 The Landau–Lifshitz–Gilbert equation

In the theory of micromagnetism, magnetization is repre-
sented as a continuous, directional field M (r, t) with constant
magnitude, |M | = Ms. The task of dynamic micromagnetic
simulation consists in the calculation of the spatiotemporal
evolution of the magnetization field M (r, t) in a ferromagnet.
The Gilbert equation

dM
dt

= −γ (M × H eff) + α

Ms

(
M × dM

dt

)
(1)
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is the equation of motion of the magnetization M (r, t),
where H eff is the effective field, γ is the gyromagnetic
ratio, and α is a phenomenological damping constant. The
effective field is generally a complicated function of the
magnetization distribution of the sample. This is discussed
in more detail in the next paragraphs. The Gilbert equation
can be rewritten into an explicit form, which is known as the
Landau–Lifshitz–Gilbert (LLG) equation

dM
dt

= − γ

1 + α2
(M × H eff)

− αγ

Ms(1 + α2)
[M × (M × H eff)] (2)

Analytic solutions of the Gilbert equation are usually only
possible in the macro-spin approximation (Kikuchi, 1956),
where the magnetic structure of the sample is assumed to
be homogeneous throughout the reversal process. Usually,
the macro-spin approximation is only valid for special
cases or for very small magnetic particles of up to about
10 nm size (Wernsdorfer, Orozco and Hasselbach, 1997). The
macro-spin approximation is, in any case, not suitable for
describing magnetization waves. To calculate the dynamics
of the inhomogeneous, three-dimensional vector field of the
magnetization, numerical methods are required, with which
the LLG equation is integrated in time.

2.2 Effective field terms

The energy of a ferromagnet depends on its magnetic struc-
ture (Brown, 1963). In a static equilibrium state, the magne-
tization field M (r) arranges in such a way as to minimize the
total energy. This minimum can either be a local or a global
one, depending on the magnetic history of the sample.

The most important contributions to the total energy
are usually the ferromagnetic exchange energy, the dipolar
or magnetostatic energy, the magnetocrystalline anisotropy
energy and the Zeeman energy in an external magnetic
field. These energy terms are briefly described in the next
paragraphs. A more detailed discussion of the micromag-
netic energy terms and of the LLG equation can be found
in textbooks on micromagnetism (Brown, 1963; Hubert
and Schäfer, 1998; Aharoni, 1996; Kronmüller and Fähnle,
2003).

The effective field H eff is defined as the negative varia-
tional derivative of the micromagnetic energy density e with
respect to the magnetization,

µ0H eff = − ∂e

∂M
(3)

It is therefore sufficient to introduce the energy terms that
contribute to the total micromagnetic energy density, from

which the effective field can then be derived according to
equation (3). In most cases, a discussion of the energy terms
is also more instructive than a derivation of the various
effective field terms.

2.2.1 Exchange energy

The characteristic property of ferromagnetic materials is their
tendency to keep neighboring magnetic moments parallel to
each other. The short-range exchange interaction prevents
strong inhomogeneities of the magnetization on small length
scales. In other words, any increase in inhomogeneity of
the magnetization field increases the exchange energy. The
simplest and, in most cases, perfectly sufficient representation
of the exchange energy density is given by

eexc =
∑

i=x,y,z

A · (∇mi)
2 (4)

where A is the exchange constant and m = M /Ms is the
reduced or normalized magnetization (Aharoni, 1996). This
expression can also be derived from a Taylor expansion of the
Heisenberg term assuming small-angle deviations between
neighboring moments (Kronmüller and Fähnle, 2003).

2.2.2 Magnetostatic energy

Each magnetic moment in a ferromagnetic sample represents
a magnetic dipole and therefore contributes to a total
magnetic field H s inside the sample. The energy connected
with this field is known as the stray field energy or the
magnetostatic energy. The local stray field energy density
depends on the orientation of the magnetic moments with
respect to this field,

est = −µ0

2
H s · M (5)

In the literature, different terms are used for the field H s.
It is called the magnetic stray field, the dipolar field, the
demagnetizing field, or the magnetostatic field. The factor
1/2 in equation (5) is required for self-energy terms. This
energy contribution arises from the long-range magnetostatic
interaction between the magnetic moments in the sample. It
can be shown that the total stray field energy, which results
from a volume integration of equation (5), is always positive
definite (Brown, 1962; Aharoni, 1996). The consideration
of the stray field energy therefore always increases the
total energy of the system, for any arrangement of the
magnetization. In order to minimize the stray field energy
of a ferromagnet, the sources of the field H s have to
be minimized. This is known as Brown’s pole avoidance
principle (Brown, 1962).
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The stray field H s(r) at one point r results, in principle,
from a summation of the form

H s(r) = 1

4π

(∑
i

µi

|r − r i |3
− 3 ·

(
µi · r

) · r

|r − r i |5
)

(6)

which extends over all the magnetic moments inside the
sample.

The magnetic dipole moments µi can be assumed to be
localized on an atomic length scale. It is not practicable
to perform a calculation of the stray field in mesoscopic
particles by means of the summation over these point
dipoles. In the framework of micromagnetism, such dipolar
sums are therefore not considered. A possible approximation
consists in locating ‘effective’ dipoles at the (more or
less arbitrarily chosen) sites of discretization points, and
performing the summation only over these points. However,
this approximation can be problematic because it implicitly
assigns a physical meaning to a numerical entity, and this
could result in large numerical errors. It has been shown
that these errors can be reduced by using multipoles rather
than dipoles at the discretization points (Blue and Scheinfein,
1991). However, these multipoles have to be extended to
quite high orders to achieve accurate results, as was shown by
applying the fast multipole method (FMM) to micromagnetic
problems (Seberino and Bertram, 2001). The micromagnetic
calculation of demagnetizing fields involves a transition from
the discrete sum (equation (6)) to a continuum integration.
By converting the sum (equation (6)) over the individual
magnetic dipoles into an integral over the sample volume
(Brown, 1963), the stray field can be obtained from

H s(r) = − 1

4π

∫
(r − r ′)ρ(r ′)∣∣r − r ′∣∣3

dV ′

+ 1

4π

∮
(r − r ′)σ (r ′)∣∣r − r ′∣∣3 dS ′ (7)

where n is the surface normal vector. The magnetic charges
ρ = −∇ · M and σ = M · n are the sources of the demag-
netizing field.

2.2.3 Magnetocrystalline anisotropy

The magnetocrystalline anisotropy energy results from the
crystalline structure of a ferromagnet. According to the crys-
tal symmetry, the direction of the magnetization favors ener-
getically an alignment toward certain axes. In the simplest
case of a uniaxial magnetocrystalline anisotropy, the energy
density connected with this term is to the first nonvanishing
order given by

ean = Ku
[
1 − (m · k)2] (8)

where Ku is the uniaxial anisotropy constant and k is a unit
vector parallel to the easy axis. The easy axis represents the
preferential orientation of the magnetization in the crystal.

In the present study, only ideally soft-magnetic materials
are considered, that is, ferromagnets with vanishing magne-
tocrystalline anisotropy.

2.2.4 Further energy terms

If a ferromagnet is exposed to an externally applied magnetic
field H ext, its energy obviously depends on the orientation
of the magnetization with respect to the field. The Zeeman
energy of the system is simply

eext = −µ0H ext · M (9)

Further energy terms that may be relevant in certain cases are
the surface anisotropy and the energy connected with magne-
toelastic effects. These energy terms are discussed in detail
elsewhere (Brown, 1963; Hubert and Schäfer, 1998; Aharoni,
1996; Kronmüller and Fähnle, 2003). Magnetoelastic effects
can be ignored in most practical cases. The consideration
of the latter would require the solution of additional differ-
ential equations, thus remarkably complicating the overall
calculation.

2.3 Finite-element micromagnetics

The numerical integration of the Landau–Lifshitz–Gilbert
equation (2) requires the calculation of the effective field
H eff. The effective field results from the local energy
densities described in the preceding text. In this study,
the numerical calculation of the effective fields and of
the magnetic structure is performed with the finite-element
method (FEM).

A relatively extended description of the finite-element
formulation is given in the next few paragraphs. The readers
who are not interested in these numerical details are invited
to skip these paragraphs and proceed with Section 3, where
propagating spin waves in thin magnetic strips are discussed.

Although the basic concepts required for the development
of a micromagnetic finite-element algorithm have been pub-
lished in a number of papers (Schrefl, 1999a,b; Yang and
Fredkin, 1996, 1998; Chen, Fredkin and Koehler, 1993;
Koehler and Fredkin, 1992; Hertel, 2001), it seems that
they are generally not well known, unlike the better-known
finite difference (FD) method (Berkov, Ramstöck and Hubert,
1993). Obviously, a complete description of the mathemat-
ics and the numerics of the FEM and the boundary element
method (BEM) cannot be covered in a single article. There-
fore, only the most essential ingredients of a micromagnetic
FEM–BEM formulation are presented.
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2.3.1 Discretization

An important property of the FEM is given by its spatial
discretization scheme, which differs significantly from the
simpler and more frequently used FD scheme. The latter
uses a regular grid of cubic or prism-shaped discretization
cells. In the FEM, the sample’s volume is subdivided into
tetrahedral elements of irregular size, shape, and orientation.
This allows the approximation of the shape of magnetic
elements of general geometry, for example, with curved
boundaries, in a more precise way compared to FD schemes,
where a staircase approximation (Garcia-Cervera, Gimbutas
and Weinan, 2003) is required (cf. Figure 2). In this chapter,
the propagation of spin waves in a ring-shaped magnetic
thin-film element is discussed. For the modeling of ring
shapes, the geometrical flexibility connected with the FEM
is of major importance in order to rule out numerical errors
and spurious effects as they may arise from a ‘staircase’
approximation.

The vertex points of the finite elements, that is, the nodes
(cf. Figure 3), are the set of discretization points at which all
the required values are calculated, like the effective fields,
the magnetization, and the magnetic scalar potential. The
discretization points are connected to each other by means
of linear interpolation functions within each element.

The shape functions η
(n)
i (r) are part of the FEM discretiza-

tion scheme. They are linear functions of the form

η
(n)
i (r) = ai + bix + ciy + diz (10)

where the coefficients are defined for each node i of an
element (n) so that

η
(n)
i (rj ) = δij (11)

Finite element discretization Finite difference discretization

(a) (b)

Figure 2. Schematic representation of the smoother approximation
of the boundaries with finite elements (a) and a coarser staircase
approximation with a regular grid (b). In practice, a finer grid
of cubic cells would be used to reduce the errors resulting from
the staircase approximation. However, even if the stair steps are
infinitely small, the approximation with finite differences leads to a
systematic error since the length of the boundary is not considered
correctly.

i = 2

i = 3

i = 4

i = 1

Figure 3. Tetrahedral finite elements are used as discretization
cells. In these elements, the discretization points are located at
the nodes, that is, the corner points of the elements. Linear shape
functions η

(n)
i (r) are defined for each node i of each element n.

The name ‘shape functions’ indicates that the values of the
coefficients only depend on the shape of the finite element.
In equation (11), rj is the position of the node j of the
element and δij is the Kronecker symbol. If r is outside
the element n, the shape functions η

(n)
i (r) are zero. By using

these shape functions, a piecewise linear representation of the
discretized functions is achieved in the whole computational
region. Inside the element n, which contains a point x , a
piecewise linear representation f̃ of a function f can be
written as

f (x) � f̃ (x) =
4∑

i=1

η
(n)
i (x)αi (12)

where αi = f (x i ) and x i are the positions of the nodes of
the vertices i.

2.3.2 Calculation of the demagnetizing field

While the numerical calculation of most of the contributions
of the effective field is quite straightforward, a complicated
task consists in solving the long-range magnetostatic inter-
action. Instead of evaluating the integral (7) for each dis-
cretization point in the sample in order to calculate H s(r), an
equivalent way of calculating the stray field consists in intro-
ducing a scalar potential U that solves Poisson’s equation
�U = ∇ · M . From this potential, the demagnetizing field
(or stray field) is obtained as the gradient field H s = −∇U .
The stray field H s can usually be obtained much faster by
solving Poisson’s equation than by performing the integra-
tion according to equation (7). A combination of the FEM
and the BEM is applied to calculate the potential U . This
hybrid FEM–BEM scheme (Fredkin and Koehler, 1990) is
an elegant and precise Greens function method.

In the first step, the potential U is split in two parts
U = U1 + U2. Outside the sample, U2 is zero. With ordinary
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finite-element techniques (i.e., the Galerkin method), it is
relatively easy to solve Poisson’s equation

�U1 = −ρ (13)

with the Neumann boundary condition

∂U1

∂n

∣∣∣∣
in

− ∂U1

∂n

∣∣∣∣
out

= σ (14)

However, the solution of this problem is not unique. Any
potential U3 with continuous derivatives at the boundary
that satisfies Laplace’s equation �U3 = 0 could be added
to U1 and the result would still represent a solution of the
Poisson equation with Neumann boundary conditions. To
obtain a unique solution for the potential U = U1 + U2, one
has to solve the Laplace equation �U2 = 0 for U2 with
the correct Dirichlet boundary conditions. These Dirichlet
boundary conditions for U2 are unique once the values of
U1 are known at the boundary. Solving Laplace’s equation
for U2 is numerically as unproblematic as solving Poisson’s
equation for U1. The difficulty lies rather in finding the
correct Dirichlet boundary conditions that make U2 and
finally U the unique solution. Assuming that a solution for U1

with correct Neumann boundary conditions has been found,
the next task consists in calculating the values of U2 at the
boundary of the sample.

Introducing the Greens function

G = 1∣∣r − r ′∣∣ (15)

the scalar potential U for a given magnetization vector M
fulfills the equation

U =
∫

M · (∇G) dV (16)

A further relationship that is required is

�G = −4πδ(r − r ′) (17)

where δ(r) is the Dirac δ-function. Integrating equation (13)
and equation (17) over the sample volume V and applying
Greens’ theorem yields

−
∮

U1
∂G

∂n
dS = 4π

∫
U1δ(r) dV

−4π

∫
M · (∇G) dV (18)

Here, the Neumann boundary condition (14) has been used.
Insertion of equation (16) results in

−
∮

U1
∂G

∂n
dS = 4π

∫
U1δ(r) dV − 4π(U1 + U2) (19)

If r is inside the integration volume, the integral over the
δ-function is, by definition,∫

U1δ(r − r ′) dV ′ = U1(r) (20)

In the case that the point r is located at the boundary, the
solid angle 
 subtended at that point is important. Outside
the magnetic region, U1 is equal to zero, while inside it has
a finite value. Hence, if r is at the surface of the integration
volume, the integration over the δ-function is weighted with
a factor 
/4π . ∫

U1δ(r) dV = 


4π
U1 (21)

For any point r located at the boundary, this finally yields

U2(r) = 1

4π

∮
U1(r

′)
∂G

∂n
dS ′ +

(



4π
− 1

)
U1(r) (22)

Hence, the values U2 at the boundary can be calculated
from the values U1 at the boundary by integrating over
the sample surface (Lindholm, 1984). Having obtained the
Dirichlet boundary values of U2 from the surface integration
performed with the BEM, the Laplace equation �U2 = 0 can
be solved with the FEM. This hybrid FEM–BEM scheme
yields accurate solutions for U = U1 + U2, and hence for
the stray field H s = −∇U .

The somewhat lengthy equations of this section may create
the impression that this method to calculate H s is compli-
cated and time-consuming. But, in fact, the numerical calcu-
lation can be performed quickly and precisely. The numerical
implementation of this hybrid FEM–BEM scheme is, on the
other hand, quite an ambitious undertaking compared to the
implementation of the fast Fourier transform method (FFT)
used in FD schemes.

2.3.3 Calculation of the exchange field

Besides the calculation of the stray field H s, determining
the effective field of the ferromagnetic exchange H exc also
represents a nontrivial task in finite-element micromagnetic
simulations. The three Cartesian components Hx

exc of the
exchange field can be calculated from

H(i)
exc = 2A

µ0Ms
�mi (23)

where i = x, y, z. For the calculation of H
(i)
exc, the Galerkin

method is used to convert the Laplace operator on the right-
hand side of equation (23) into a set of linear equations, as
explained below. A very similar procedure is also applied for
solving the Poisson equation for the potential U , but here the
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situation is simpler, mainly because the BEM is not required
for the calculation of the exchange field. Equation (23) has
to be solved in the whole ferromagnet, that is, for every
discretization point. The Galerkin method makes use of test
functions w in the sense that the problem is reformulated as
follows: If ∫

w · Hx dV =
∫

w · 2A

µ0Ms
�mx dV (24)

holds for any test function w, then H
(i)
exc is a solution

of equation (23). This is known as the weak form of
equation (23). In equation (24), the x component has been
chosen for i without loss of generality, and the subscript
‘exc’ has been dropped.

Integrating by parts yields

∫



w · Hx dV = − 2A

µ0Ms

∫



∇w · ∇mx dV

+ 2A

µ0Ms

∮
∂


w · ∇mx dS (25)

= − 2A

µ0Ms

∫



∇w · ∇mx dV (26)

where the Brown condition ∂mx/∂n|∂
 = 0 for the deriva-
tives of the magnetization at the particle boundary ∂
 has
been used (Brown, 1940), 
 is the particle volume and n is
the surface normal vector. The integration over the volume

 can be transformed into a sum of integrations over the N

finite elements:

N∑
n=1

∫

n

w · Hx dV =
N∑

n=1

− 2A

µ0Ms

∫

n

∇w · ∇mx dV (27)

In each element n, the test functions w, the exchange field
Hx and the magnetization components mi can be represented
using the set of aforementioned shape functions according
to equation (12). Inserting this expansion into equation (24)
leads to an enormous sum:

N∑
n=1

4∑
k=1

4∑
l=1

wkh
l
x

∫

n

η
(n)
k η

(n)
l dV

=
N∑

n=1

4∑
k=1

4∑
j=1

− 2A

µ0Ms
wkm

j
x

∫

n

∇η
(n)
k ∇η

(n)
j dV (28)

In this equation, {wk} are the values of the test functions at
the nodes k, {hl

x} are the values of the x component of the
exchange field at the nodes l, and {mj

x} are the x component
of the normalized magnetization at the nodes j . Since
equation (28) must be valid for any arbitrary test function w,

a comparison of coefficients wk can be performed. This
transforms this huge sum into a large set of linear equations.
The matrix A of this set of linear equations is very sparse,
meaning that by far most of the elements of this matrix are
zero. By using special indexing methods (Press, Flannery,
Teukolsky and Vetterling, 1986), it is possible to store only
the nonvanishing elements of the matrix, thus saving a large
amount of computer memory. The fact that the matrix of this
set of linear equations is very sparse allows to efficiently
solve the set of equations iteratively by using the conjugate
gradient method. Note that for such large, sparse systems of
linear equations, iterative solutions are always much faster
and more accurate than any result that could be achieved
by trying to calculate the inverse matrix A−1. In fact, an
inversion of A is not possible in practical cases because the
inverse matrix A would generally not be a sparse matrix any
more and could therefore not even be stored if the typical
rank n is in the order of several tens of thousands. The
integrals containing the shape functions η in equation (28)
need to be performed only once at the beginning of the
calculation.

Compared to the exchange field, the remaining contribu-
tions to the effective field, that is, the effective fields of the
magnetocrystalline anisotropy and the Zeeman field are much
simpler to calculate.

2.3.4 Integration of the Landau–Lifshitz equation

For the algorithm to be fast, it is imperative that the
procedures to calculate the effective fields are programmed
in an efficient way, since these calculations have to be
performed several thousands of times during the simulation
of a realistic dynamic magnetization process. In every time
step, the contributions to the effective fields are calculated
according to the current magnetization distribution M (r, t),
and the total effective field H eff is updated at each nodal
point of the finite-element mesh. These values of H eff then
enter the LLG equation, which is used to determine the next
configuration of the magnetization M (r, t). In the numerical
form, the time derivative of the magnetization is replaced by
a difference quotient,

dM
dt

−→ �M
�t

(29)

so that the magnetization after a time step �t reads

M (t + �t) = M (t) + �M

= M (t) − �t ·
[

γ

1 + α2
M × H eff

+ αγ

Ms(1 + α2)
M × (M × H eff)

]
(30)
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The numerical integration of equation (30) can be quite
problematic. Purely explicit integration schemes that only use
the previously calculated values at the time t to determine
�M show poor stability properties. To improve the stabil-
ity of the integration of the differential equation, implicit
schemes can be applied, which also use the values of the
effective fields at the time (t + �t). However, these meth-
ods require the calculation of a large Jacobian matrix. For
the code used in this study, the best results for the time
integration have been obtained with a semi-implicit Adams
backward difference (BDF) scheme (Hindmarsh, 1983). In
this scheme, the size of the time steps is calculated adaptively
and is typically in the subpicosecond range.

With this general purpose micromagnetic algorithm, the
dynamics of the magnetization can be simulated for virtually
arbitrary shapes. In the study reported in this chapter, the
code has been applied to investigate the propagation of spin
waves in submicron-sized ferromagnetic strips.

3 PROPAGATING SPIN WAVES

The first point that has to be addressed in order to study
whether spin waves can be used to carry and to manipulate
information consists in ensuring a controlled propagation
of spin waves. The spin waves occurring after a magnetic
switching process as shown in Figure 1 consist of a large
number of spin-wave modes with different propagation
direction, wave number, phase, and amplitude. These spin
waves may be reflected several times at the boundary, thus
leading to an incoherent noise.

The simplest idea for a controlled propagation of spin
waves is to use a thin and narrow ferromagnetic strip as
a waveguide (Slavin, Demokritov and Hillebrands, 2002).
In this geometry, the spin waves enter on one side of the
strip and propagate along the strip line until they reach the
opposite end. The geometric confinement enforces a one-
dimensional propagation of spin waves. Figure 4 illustrates
such a simple case of a flat magnetic strip (Permalloy,

360 nm × 36 nm × 6 nm) that acts as a waveguide for
spin waves. The equilibrium magnetic structure of this thin
platelet at zero field is simple: in order to minimize the mag-
netostatic energy, the magnetization aligns along the strip
axis, owing to the element’s shape anisotropy. The sam-
ple is homogeneously magnetized, apart from some small
deviations (known as flower state, Schabes and Bertram,
1988) at the particle’s end (cf. Figure 4a), which are unim-
portant for the present study. To generate propagating spin
waves in this strip, a percussional perturbation is applied
at one end of the sample. In an experiment, such a sud-
den and localized perturbation of the equilibrium structure
could be achieved, for example, by applying a short and
strong electric current pulse in a small region, running per-
pendicularly through the strip. When an electric current
flows through a ferromagnet, it is spin-polarized. Owing to
the spin-transfer-torque effect (Berger, 1996; Slonczewski,
1996), a sufficiently strong spin-polarized electric current can
exert a considerable torque on the magnetization, thus lead-
ing to the generation of spin waves. In these simulations,
the procedure is simpler. By lifting the magnetization by 10◦

out of the plane in a small region at one end of the slab,
the demagnetizing energy and the exchange energy is locally
increased.

When the system is released, spin waves are emitted from
the perturbed region. The spin waves propagate through the
strip and reach the opposite end after some time. In our
example, after about 100 ps. Contrary to the magnetic ringing
in the previous case, these spin waves have a well-defined
propagation direction along the film strip. Instead of a noisy
perturbation resulting from the superposition of several spin
waves, plane waves are now propagating along the strip.
Although, as in the case of magnetization ringing, several
spin-wave modes with frequencies in the range of several
gigahertz are generated, the wave vector of these spin waves
is now parallel to the magnetic strip and the spin waves have
a well-defined phase. To detect the arrival of the spin waves
at the opposite end of the strip, a ‘seismographic’ record
can be plotted that displays the out-of-plane component of

(a) (b) (c) (d)

0.005

–0.005

0

mz

Figure 4. Wave propagation in a magnetic nano-strip. The gray scale displays the out-of-plane component. (a) Initial, zero field state. The
arrow depicts the in-plane magnetization. (b) The initial state is perturbed by locally lifting the magnetization out of the film plane (black
region on the left). (c) and (d) Snapshots of the spin-wave propagation in zero field at t = 27 ps (c) and t = 298 ps (d) after the system is
released.
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the magnetization as a function of time at a selected point on
the strip (cf. Figure 5). Experimentally, the spin waves could
be detected using the giant-magnetoresistance effect (Baibich
et al., 1988; Binasch, Grünberg, Saurenbach and Zinn, 1989).
The spectrum of spin waves that is generated immediately
after the release of the system contains a broad range of
frequencies. Owing to dispersion, the short-wavelength, high-
frequency oscillations propagate faster than spin waves of
lower frequencies. The first signal in the seismograph is
a series of small spikes, indicating the onset of small,
high-frequency oscillations. These spikes are followed by a
stronger signal that displays an almost harmonic oscillation.

Besides transmitting spin waves in a controlled fashion
with such waveguides, it is also possible to split the signal
transported by a spin wave. The propagation of spin waves in
a Y-shaped magnetic thin-film element is a simple example
for this. At zero field, the magnetization in the magnetic

‘nano-tuning fork’ shown in Figure 6 is aligned parallel to
the branches. When the system is perturbed at the broader end
of the sample in the same way as was done before, spin waves
are generated that propagate toward the junction, where
they split symmetrically into the two branches. Similarly,
spin waves arriving from two branches can be merged into
one strip. This can lead to different interference effects,
depending on the phase of the spin waves. In order to use spin
waves for logical operations, such a splitting and merging of
the signal is essential.

4 DOMAIN-WALL-INDUCED PHASE
SHIFTS

The mere propagation of spin waves only allows to guide
a signal along a magnetic strip. However, if the phase of a
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Figure 5. Spin waves generated at one end of a magnetic strip can be recorded with a magnetic ‘seismograph’ displaying the out-of-plane
magnetization component as a function of time at one point on the opposite end.

(a)

(c)

(b)

(d) (e)

Figure 6. Four images of a Permalloy ‘tuning fork’ with propagating spin waves. The frames (a)–(d) are at 0, 40, 100, and 215 ps after the
release, respectively. A part of the finite-element mesh is shown in frame (e) to illustrate the smooth approximation of the curved boundary.
The length of the nanomagnetic tuning fork is 353 nm and its film thickness is 6 nm.
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spin wave can be modified in a controlled way, it becomes
feasible to perform logical operations with propagating spin
waves. The principle of such logical devices is discussed in
more detail in the next section. In the following text, it is
shown that a spin wave changes its phase when it passes
through a magnetic domain wall.

To study the influence of a domain wall on propagating
spin waves, the numerical experiment on the propagation
of spin waves in a magnetic strip shown in Figure 4 is
repeated with different initial conditions. Instead of the
homogeneously magnetized magnetic ground state, a bi-
domain state with a 180◦ head-to-head wall in the middle
is used as the static magnetic configuration in the nano-strip
before generating the spin waves. In the case of a head-
to-head domain configuration in magnetic strips, transverse
domain walls occur if the sample is sufficiently narrow
and thin (McMichael and Donahue, 1997; Kläui, Vaz et al.,
2004a). In larger strips, the transverse wall is replaced by a
vortex-type domain wall (McMichael and Donahue, 1997).
In the micromagnetic simulation, the transverse domain wall
develops automatically if appropriate initial conditions are
chosen. The position of the domain wall in the strip can
be pinned by introducing small notches at the boundary,
which attract the transverse domain walls (Kläui, Vaz and
Wernsdorfer, 2004b). In the example shown in Figure 7(a),
the strip does not contain such notches and the domain-wall
position is not stable. In fact, the strip is a single-domain
particle in the strict sense that the only stable magnetization
state is the homogeneous one. Therefore, the 180◦ head-to-
head domain wall eventually propagates toward one end of
the sample and dissolves. The motion of the domain wall is

very slow compared to the speed of the spin waves. In this
example, it takes about 10 ns until the domain wall exits the
sample. Hence, the magnetization state with a 180◦ domain
wall can be regarded as stable on the timescale connected
with the propagation of spin waves.

By lifting the magnetization slightly out of the plane at
one end of the slab again and letting the system relax, spin
waves are generated that run along the strip. When they meet
the domain wall, no reflection is visible. Plane wave fronts
are restored after the spin wave has run through the domain
wall. The spin wave seems to pass unhindered through the
domain wall (cf. Figure 7(c and d)).

As in the previous case, a ‘seismograph’ of the z com-
ponent at a point at the opposite end of the slab can be
recorded to display the arrival of the spin waves. The char-
acteristics of the oscillation of the z component as a function
of time are very similar to the case of a homogeneously
magnetized slab. A comparison of the seismographs obtained
in the two cases, however, reveals an interesting difference
concerning the low-frequency oscillations. If the spin wave
has run through the domain wall, the phase of these oscil-
lations is shifted by about π/2 with respect to the case of
homogeneous magnetization (Figure 8a). The main signal,
that is, the envelope of the oscillation, arrives after the same
time as in the homogeneous case and is therefore not slowed
down by the domain wall. According to the simulations, the
domain wall is transparent for spin waves, but the presence
of a domain wall changes the phase of spin waves. This
phase shift depends strongly on the wavelength. The short,
high-frequency oscillations appear to be unaffected by the
domain wall, while the low-frequency oscillations with larger
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Figure 7. Wave propagation in a strip with a 180◦ domain wall (a–d) and with a 360◦ domain wall (e–h). The gray scale in frames (a)
and (e) shows the in-plane magnetization along the strip, the other frames display the out-of-plane components like those in Figure 5. The
snapshots are taken at t = 0 ps (b) and (f); 27 ps (c) and (g); and 298 ps (d) and (h).
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Figure 8. Magnetic seismographs recorded at the opposite end of the strip in the case of a 180◦ wall (a) and a 360◦ wall (b). The oscillations
are compared with the signal obtained without domain wall, as shown in Figure 5(b).

wavelength that carry the main signal are phase shifted by
�� � π/2. In addition to the wavelength, simulations on
other strip geometries show that the film thickness also has
a strong influence on the value of the phase shift. This is
probably related to the sensitive dependence of the domain-
wall width on the film thickness. However, more detailed
studies are required to systematically investigate the correla-
tion between the phase shift and quantities like domain-wall
width, magnetocrystalline anisotropy, film thickness, lateral
width of the strip, and so on. Simulations with different val-
ues of the Gilbert damping parameter indicate that the phase
shift effect is not sensitive to α.

The surprising phase-shift effect can also be probed with
a 360◦ domain wall (cf. Figure 7(e–h)). This leads to a
doubling of the phase shift and the main oscillations now
shift by �� � π with respect to the homogeneous strip
(cf. Figure 8b). While in the simulations a 360◦ domain wall
can be prepared relatively easily by choosing suitable initial
conditions for the calculation, such a magnetic structure is
more difficult to obtain experimentally. Interestingly, 360◦

domain walls in thin magnetic nanorings have recently been
observed by means of magnetic force microscopy, and it
seems to be possible to generate and to remove 360◦ domain
walls experimentally in a controlled way by means of an
external magnetic field (Castano, Ross and Frandsen, 2003).

The phase shift induced by a magnetic domain wall
in propagating spin waves has recently been calculated
analytically for the case of a 180◦ Bloch wall (Bayer,
Schultheiss, Hillebrands and Stamps, 2005). This study was
stimulated by the micromagnetic simulations discussed in
the preceding text, which predicted such an effect (Hertel,
Wulfhekel and Kirschner, 2004). Similar to the present
study, Bayer, Schultheiss, Hillebrands and Stamps (2005)
find that a Bloch wall does not lead to the reflection or

absorption of a spin wave and that a phase shift is obtained,
depending on the wave vector of the spin wave. It can be
assumed that the present case of a Néel wall is comparable to
the situation with a Bloch wall studied by Bayer, Schultheiss,
Hillebrands and Stamps (2005).

The possibility of manipulating the phase of spin waves,
demonstrated here by means of magnetic domain walls, in
combination with the ability to split and to merge spin
waves propagating along thin magnetic strips, paves the
way to interference experiments with spin waves. These
interference effects could represent the working principle
of programmable devices performing logical operations with
spin waves, which is discussed in the next section.

5 SPIN-WAVE LOGICS

Phase differences of spin waves can be studied with magnetic
ring structures, with which spin waves can be split into
two branches. If the spin waves propagating in the branches
acquire a phase difference with respect to each other, the
phase shift should lead to characteristic interference effects
when the waves are merged on the opposite side of the ring.
The concept to split a wave on a ring and to use interference
effects to probe the phase is similar to the Aharonov–Bohm
effect (Aharonov and Bohm, 1959). A model for a spin-wave
interferometer is an elongated ring with two small plates on
opposite sides, as shown in Figure 9. One of the outer plates
is used to excite spin waves and the other to measure the
signal after the spin waves have traveled through the ring.

In a first example, the static magnetic structure in the
ring is the so-called onion state (Rothman, Kläui and Lopez-
Diaz, 2001). This is an almost homogeneous structure
with the magnetization locally aligned parallel to the strip
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and to the branches in order to reduce magnetic surface
charges (cf. Figure 9(a and b)). In this configuration, the
magnetization direction is essentially parallel to the direction
of propagation of the spin waves.

If spin waves are generated on one of the outer platelets,
the spin waves propagate toward the junction, where they
are split symmetrically on the two branches and eventu-
ally merge on the opposite side. This process is shown
in Figure 10(a)–(d). In this ring geometry, some high-
frequency, edge-localized spin-wave modes are observed,
which did not occur in the case of a straight bar. These
modes, which are apparently connected with the curvature of
the branches, dissipate very quickly so that they are almost
completely attenuated before they reach the opposite side of
the ring. Apart from these additional modes at the edge, the

excitation spectrum consists of almost plane waves. When the
branches meet again, the wave fronts merge with the same
phase. The arrival of the spin waves at the opposite end can
again be displayed with a ‘seismograph’. The spectrum is
similar to the previous case of a single strip.

To study the influence of a domain wall on the phase of
the spin waves, a 360◦ domain wall is inserted in one of the
branches, and the simulation is repeated with this structure.
The result is shown in Figure 10(e)–(h). The spectrum of
the signal that arrives on the opposite side is significantly
different from the previous case with a homogeneously
magnetized ring (cf. Figure 11a). While the fast excitations
of short wavelength are essentially the same as before,
the central low-frequency oscillation is much more strongly
damped in the case with a 360◦ domain wall. This strong
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(a) (b) (c) (d)

Figure 9. Two magnetization states in a flat, elongated ring structure. (a) and (b) Quasihomogeneous ‘onion state’. The magnetization is
oriented in the x-direction, with some small deviations in the ring branches. (c) and (d) Inhomogeneous state with a 360◦ wall in one
branch of the ring.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Propagating spin waves in a ring-shaped element. Top row, onion state; bottom row, ring with 360◦ wall. The gray scale shows
the out-of-plane component, like in the previous examples. The arrows in frames (a) and (e) depict the in-plane magnetization structure.
Snapshots of the dynamic relaxation process are taken at 0 ps (a) and (e); 27 ps (b) and (f); 67 ps (g); 90 ps (c); 298 ps (d) and (h). The
white point in the frames (d) and (h) indicates the region where the seismograph of Figure 11(a) is recorded.
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Figure 11. (a) Seismographs of the spin waves arriving at the opposite end of the ring in the case of the onion state and in the inhomogeneous
state with a 360◦ wall. (b) Fourier transforms of the signals from frame (a). (c) Ratio of the Fourier amplitudes from frame (b). (d) Ratio
of Fourier transforms as shown in frame (c) in the case of lower damping (α = 0.01).

attenuation results from destructive interference when the
spin waves merge (Figure 10h).

Since the phase shift depends on the frequency, there is a
small range of frequencies in the spectrum of the excitations
that matches the condition of opposite phase almost exactly.
This can best be seen by analyzing the Fourier spectra of
the magnetic seismographs for both cases. The arrow in
Figure 11(b) points at the frequency that is most strongly
damped by the presence of the domain wall. This results
in a peak at about 14 GHz when the ratio of the Fourier
components of these two cases is plotted, cf. Figure 11(c).
This data refers to the case shown in the simulation, where
a relatively large damping constant α = 0.05 was used. A
lower value of α (0.01) leads to a reduction of the line
width of the Fourier components. In this case, the ratio of the
Fourier components displays a much sharper peak at 14 GHz
(Figure 11d). The spin waves with this frequency are almost
completely filtered out by the ring with a 360◦ domain wall.

Therefore, the spin interferometer can also be considered as a
spin-wave filter for one characteristic frequency. If the signal
is carried with this frequency, the ratio of the signal without
a domain wall to the one with a 360◦ domain wall is very
large, in our case of the order of 80.

If we assume that a 360◦ domain wall can be inserted
and removed in the branches, this magnetic ring can be
regarded as a spin-wave-based logical device that performs
a disjunctive exclusive OR (NXOR) operation. This is
illustrated in Figure 12. The input signal consists in placing
domain walls acting as phase-shifting units into the branches,
and the probing is obtained by letting a spin wave of suitable
frequency run through the ring, which is either transmitted
or blocked by the device.

This NXOR switch is the most simple type of a spin-
wave-based logical device. Other logical operations can be
achieved by combining such rings, as sketched in Figure 13.
In the switches, phase shifters are inserted or removed,
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Figure 12. The property of the ring to block the propagation of spin waves of a certain frequency depending on the presence or absence
of domain walls in the ring branches can – in principle – be used for logical operations. In this example, the ring acts like a disjunctive,
exclusive OR switch (NXOR).

NOT AND OR

1
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2

Figure 13. Other logical operations based on spin-wave propagation can be performed by combining rings. The switches 1 and 2 in these
schematics are regions where a 360◦ wall is inserted or removed. The larger dots in the AND and in the OR sketch represent fixed
phase-shifting units (360◦ walls).

according to the signal that is to be probed, in the same
way as was done in the NXOR switch when a domain wall
was inserted or removed in one branch.

6 BERRY-PHASE EFFECTS
IN FERROMAGNETIC RINGS

Because of the similarity of the effects, it may be suspected
that the domain-wall-induced phase shift in spin waves
occurring in an elongated magnetic ring has a similar origin
as the Berry phase (Berry, 1984, 1985) that an electron
wave acquires due to the magnetic vector potential in the
Aharonov–Bohm effect.

Effects connected with a Berry phase or a Hannay
angle (Hannay, 1985) in propagating spin waves are related
to the precessional motion of the magnetization around the
effective field (Braun and Loss, 1996). This is illustrated in
an example for a Berry-phase effect in a thin ferromagnetic
ring with vortex magnetization in the plane (cf. Figure 14b).
In this case, the dispersion relation of spin waves propagating
along the ring does not depend on the sense of propagation
being parallel (k 1, ω1) or antiparallel (k 2, ω2) = (−k1, ω1)
to the local magnetization direction. Micromagnetic simula-
tions confirm the occurrence of standing spin-wave patterns
in such a case, which can be decomposed in sets of identical
spin waves with opposite sense of propagation.

If the magnetization is lifted out of the plane by means
of an external field applied perpendicular to the ring plane
(cf. Figure 14c), the degeneracy is lifted (Ivanov and Zaspel,
2005). The quasistanding spin waves resulting in this case
display a slow and constant motion of the nodal points
of the oscillations; either clockwise or counterclockwise,
depending on the sign of the external field. To understand
this effect, it is important to note that – according to the LLG
equation – the precession of the magnetization in an effective
field always has the same sense of rotation (Figure 14a). If
spin waves propagate parallel to the direction of the effective
field, this precession is perpendicular to the propagation
direction. By lifting the effective field out of the ring
plane, the precessional motion of the magnetization obtains
a component along the propagation direction, which is either
in the same or in the opposite sense, thereby lifting the
degeneracy of clockwise and counterclockwise propagation.
A mechanical analogy for this is Foucault’s pendulum:
The oscillation of the pendulum can be decomposed in
two circular components with opposite sense of rotation.
During one day, the pendulum is adiabatically transported
on a circular orbit due to the rotation of the earth. If the
pendulum is at the equator, the rotation axis of the earth is
perpendicular to the rotation axis. In this case, the clockwise
and the counterclockwise oscillations are degenerate. This
corresponds in our case to the effective field lying in the
film plane. A chirality of the system is imposed in both cases:
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Figure 14. (a) Schematics of the magnetization dynamics described by the LLG equation. (b) Thin magnetic ring with vortex configuration.
Spin waves propagating parallel (k 1) or antiparallel (k2) to the magnetization direction are degenerate. (c) The degeneracy can be lifted by
tilting the magnetization out of the ring plane with an external magnetic field.

the sense of rotation of the earth is constant, as is the sense
of rotation of the magnetization in the precessional motion
around the effective field. If Foucault’s pendulum is located
at a latitude away from the equator, the earth’s slow rotation
is superimposed on the circular components of the swinging
pendulum, and the degeneracy of these oscillations is lifted.
Hence, the plane of oscillation slowly rotates with respect to
the surface. In the case of spin waves, this would correspond
to the situation when the precession axis has a component
perpendicular to the propagation direction, that is, when the
average magnetization is lifted out of the ring plane.

Apart from this simple example, which only serves to
present the basic idea of Berry phases in magnons, thor-
ough analytical studies on this topic have been reported very
recently by Bruno (2004) and Dugaev, Bruno, Canals and
Lacroix (2005). These studies confirm the effect of a phase
shift of a spin wave running through a domain wall, as pre-
dicted by the simulations. They provide an explanation for
the phase shift in terms of a Berry-phase effect. The study
of Berry phases in magnons is a new topic in magnetism,
which has been elaborated analytically to a good extent. Fur-
ther numerical and possibly experimental work is required
to establish a more comprehensive picture of such effects in
magnetism.

7 CONCLUSION

Thin ferromagnetic strips can serve as waveguides for propa-
gating spin waves. Micromagnetic finite-element simulations
show that such waveguides can be used to split and merge
spin waves coherently. If a propagating spin wave meets a
180◦ head-to-head or a 360◦ domain wall, it runs through it
without being scattered. However, the domain-wall changes
the phase of the spin wave. By manipulating the phase of the
spin waves, constructive and destructive interferences can be
generated. This could be the working principle of a new type

of programmable logical devices based on spin-wave propa-
gation. Of course, the technical applicability of such devices
is questionable, and it is doubtful whether this new concept
for logical devices could ever compete with the advanced
electronic technology that has been developed in the last
decades. Compared to the recently proposed concept of mag-
netic logics based on domain-wall motion (Allwood et al.,
2002), however, the spin-wave-based logics presented here
would have the advantage of a nondestructive read-out pro-
cess and a faster signal propagation. Probably more important
than these technical issues is the fact that an interesting
and fundamental effect in magnetism has been revealed by
micromagnetic simulations, that is, the interaction of spin
waves with domain walls. This has stimulated a number of
interesting analytical studies, including Berry-phase effects in
magnons, and will hopefully also trigger experimental inves-
tigations on this effect.
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1 INTRODUCTION

Magnetic materials are widely used in many (modern) appli-
cation fields ranging from electrical engineering, car indus-
try, and energy technique to sensor systems, high-density
recording, and applications in medicine and biology. For
technological progress in these fields and for an application-
oriented magnet design, the characteristic magnetic proper-
ties of the hysteresis loop are of great importance. Their
steady improvement brings about, in particular, a contin-
uous miniaturization of magnetic devices (hard magnetic

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

materials) and a continuous reduction of energy losses dur-
ing energy transmission (soft magnetic materials) leading to
innovations in many new application fields and consequently
to a rapid growth of the worldwide market.

Modern high-quality magnets are based on both optimized
microstructures (including defect structures) and compounds
with outstanding intrinsic material parameters, such as the
spontaneous polarization Js = µ0Ms (spontaneous magneti-
zation Ms, vacuum permeability µ0 = 4π × 10−7 Vs Am−1),
the magnetocrystalline anisotropy constants K1 and K2, and
the magnetostriction λ. Optimized microstructures are com-
posed of amorphous regions and/or ensembles of small mag-
netic grains with length scales varying from nanometer to
centimeter. These extrinsic magnetic properties can be con-
trolled by the choice of the alloy composition from the phase
diagram (including small amounts of additives) and by the
processing route as, for example, sintering, rapid quench-
ing, sputtering, or molecular beam epitaxy (including ther-
mal and mechanical treatments). The detailed analysis of
microstructure–magnetic property relationships by means of
different high-resolution electron microscopy techniques and
magnetic hysteresis loop measurements in combination with
the theory of micromagnetism allows a quantitative interpre-
tation of magnetization processes responsible for magnetic
softening/hardening. This provides general rules for a suc-
cessful specific tailoring of optimized characteristic magnetic
properties of the hysteresis loop in the whole ferromagnetic
(or ferrimagnetic) temperature range.

In the following text, the micromagnetism–microstructure
correlation and its influence on the characteristic magnetic
properties of the hysteresis loop is reviewed. The following
three sections give a survey of the basic characteristics of the
hysteresis loop (Section 2), microstructure (Section 3), and



2 Magnetization processes and the microstructure

micromagnetism and magnetization processes (Section 4).
In Sections 5 and 6 the micromagnetism–microstructure
relations are discussed for hard and soft magnetic materials.
In Section 7, the micromagnetism–microstructure relations
are investigated in the approach to saturation. In Section 8,
it is demonstrated how the detailed knowledge of the
micromagnetism–microstructure correlation can be used for
a systematic design of high-performance magnets.

2 HYSTERESIS LOOP

The macroscopic magnetic properties of a ferromagnet are
characterized by the hysteresis loop and determine the
suitability of magnetic materials for a given application.
The hysteresis loop is obtained by applying a magnetic
field µ0H to the specimen and measuring the ensuing
change of the magnetic polarization J in field direction.
Starting from the initial demagnetized state (J = µ0H =
0 T) the polarization increases with increasing field and
finally reaches the saturation polarization (J = J sat). When
the magnetizing field is reduced to zero from the saturated
state the sample remains magnetized. This polarization at
zero field is called remanence Jr. It can be returned to
zero by applying a reverse magnetic field of strength µ0Hc

known as the coercive field which is, therefore, the measure
for the magnet’s resistance against demagnetizing fields.
Further increase of the reversed applied field magnetizes
the sample to saturation in the opposite direction (J =
−J sat). A large spontaneous polarization Js is a prerequisite
for high Jr values, whereas a large magnetocrystalline
anisotropy constant may result in large coercivities. In
principle, ferromagnetic substances can be classified into soft
and hard magnetic materials depending on how easily the
material can be (de)magnetized as illustrated in Figure 1.

Hard magnets provide stable permanent magnetic fields
(after exposure to a magnetic field) and create surface poles
without continuous expenditure of electrical energy. They
are characterized by high coercivity (µ0Hc ≈ 0.1–4 T, Hc ≈
80–3200 kA m−1), high remanence, and a high maximum
energy product ((BH)max ≈ 10–500 kJ m−3). The maximum
energy product represents the magnetic energy per unit vol-
ume which can be maximally stored by a hard magnet, thereby
specifying the performance or strength of a permanent mag-
net. (BH)max is defined as the maximum rectangular area
within the B(H) = µ0H + J hysteresis loop in the second
quadrant. The theoretical upper limit of (BH)max is given by
(BH)theo

max ≈ J 2
r /(4µ0) as long as the condition µ0Hc > 0.5Jr is

fulfilled. Typical hard magnetic materials are based on RE-TM
compounds, hard ferrites, AlNiCo, and CoPt/FePt.

Soft magnetic materials enable amplification of the flux pro-
duced by an electrical current considerably, therefore being

(a)

(b)

Hc

J
Jr

Soft magnet

Hard magnet

H

B

(BH )max H

Figure 1. Characteristic magnetic properties: (a) J (H) hysteresis
loop with coercivity Hc and remanence Jr for typical soft and hard
magnetic materials. (b) B(H) hysteresis loop with the maximum
energy product, that is, the maximum rectangular area within the
loop in the second quadrant.

important in any application involving a change in magnetic
induction. They are characterized by low coercivity (µ0Hc ≈
0.2 µT–1.25 mT, Hc ≈ 0.16–1000 A m−1), high (initial) per-
meability µi = dB/d(µ0H) or (initial) susceptibility χ0 =
dM/dH = µi − 1 (µi ≈ χ0 ≈ 105 –106 for H → 0) which
describe the response of magnetic materials to a small magnetic
field, therefore indicating how much magnetic induction B is
generated by the material in a given magnetic field strength H

and low high-frequency losses. The characteristics usually go
along with low conductivity and small magnetostriction which
describes the change of the shape of a ferromagnetic specimen
during the magnetization process. Soft magnets are based on
Fe, Fe–Si, Fe–Ni (permalloy), Fe–Co ((su)permendur), soft
ferrites, and metallic glasses.

In addition to hard and soft magnetic materials, there
exists a number of sophisticated magnetic materials with
unusual properties like giant magnetostriction (see also
Magnetostrictive Materials and Magnetic Shape Memory
Materials, Volume 4), giant magnetoresistance, and giant
magnetoimpedance.
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3 MICROSTRUCTURE

Depending on whether the atoms of a magnet are arranged
spatial periodically in crystal lattices or randomly, the mag-
netic material is crystalline or amorphous. Whereas in the
former case, the distances between nearest neighbors are con-
stant (short-range atomic order) and a base lattice is regularly
repeated (long-range atomic order), in the latter case only
short-range ordering occurs. Therefore, the interference pat-
tern of crystalline magnets resulting from X-ray, electron, or
neutron diffraction is sharp and reflects the symmetry of the
crystal lattice. In contrast, only diffuse interference patterns are
observed for amorphous magnets for small diffraction angles.
In general, all solids are of a finite extension and show unavoid-
able disordering in the volume. These deviations from the
ideal crystalline or amorphous structure (ideal microstructure)
are called defect structures (real microstructure) and result in
inhomogeneities of the intrinsic material parameters which
influence the magnetic properties of the material decisively.

3.1 Crystalline magnets

A crystalline magnet whose crystal lattice shows perfect
translational periodicity is called a single crystal. Corre-
spondingly, a polycrystal consists of many single crystalline
grains of different orientations. Depending on whether the
grain size is on the micrometer or nanometer scale the
polycrystalline magnets are microcrystalline or nanocrys-
talline, respectively. The defect structures in crystalline mag-
nets are classified according to their geometrical exten-
sions into point defects (zero dimensional), dislocations (one
dimensional), planar defects (two dimensional), and volume
defects (three dimensional). Single crystalline magnets con-
tain only point defects and dislocations; in polycrystalline
magnets planar defects may additionally occur. Volume

defects such as pores or cracks are macroscopic defects and
will not be taken into account in this article.

Point defects (Figure 2a) are atomic defects such as
vacancies, self-interstitials, impurity interstitials, substitu-
tional impurity atoms, or atomic disorder in ordered alloys
resulting in lattice distortions.

Dislocations mostly appear as edge and screw dislocations
or as a mixture of both. An edge dislocation (Figure 2b) is
characterized by an additional net plane which ends within
the bulk of the crystal. The line direction l of the inner
edge of this half-plane is perpendicular to the Burgers vector
b described by the distance between net planes. A screw
dislocation (Figure 2c) corresponds to a shear deformation
where one part of the crystal is displaced by a nearest neighbor
distance with respect to the other part. The line direction l and
the Burgers vector b are parallel to each other. The stress fields
of dislocations are of long-range type and vary as 1/r .

Planar defects may appear abruptly as it is the case
for phase boundaries and twin boundaries or are of one
or several atomic widths as it is the case for stacking
faults, antiphase boundaries in intermetallics, and grain
boundaries. At a phase boundary (Figure 3a) between two
different phases the intrinsic material parameters change
abruptly. When the lattices between the two phases match
perfectly the phase boundary is called coherent, otherwise
incoherent. Two phase boundaries may form precipitations
as in Sm2(Co,Cu,Fe,Zr)17 permanent magnets (Figure 3c)
where a three-phase precipitation nanostructure develops
in a self-organized process during a complex annealing
procedure and consists of Fe-rich cells, Cu-rich cell walls,
and Zr-rich lamellae. At a twin boundary (Figure 3b) two
grains are grown together at a common interface and the
lattice periodicity is interrupted at the interface without
displacement of the lattice atoms. Stacking faults (Figure 4a)
occur when in close-packed lattices the stacking sequence is
disturbed, for example, ABCACABC instead of ABCABCA.
When the stacking fault is not extended over the whole grain

1
2

3

4

I

I

b

b

(a) (b) (c)

Figure 2. Schematic models of point defects and dislocations: (a) Point defects (1: vacancy, 2: self-interstitial, 3: impurity interstitial,
4: substitutional impurity atom), (b) edge dislocation (l ⊥ b), and (c) screw dislocation (l‖b).
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(a)

(c)(b)

Phase
A

B

4 nm

c 100 nm

C

Precipitation

Figure 3. Abrupt planar defects: (a) Atomic configuration of a phase boundary. (b) Atomic configuration of a twin boundary. (c) Phase
boundaries leading to precipitations in Sm2(Co,Cu,Fe,Zr)17 micrometer-scaled hard magnetic grains (A: Fe-rich 2:17 cells, B: Cu-rich 1:5
cell walls, C: Zr-rich lamellae). (Reproduced from D. Goll, H. Kronmüller, and H.H. Stadelmaier: Micromagnetism and the microstructure
of high-temperature permanent magnets, J Applied Physics, 96 (2004), copyright  2004 American Institute of Physics, with permission
from the AIP.)

but ends along a line, the limiting line corresponds to an
incomplete dislocation where the length of the Burgers vector
is smaller than the distance between net planes. Antiphase
boundaries (Figure 4b) are characterized by an abrupt change
in the lattice of multiatomic alloys so that atoms of the same
kind become neighbored.

For grain boundaries between single crystalline grains of
different orientations there exists a variety of atomic structures.
For a small twist angle θ between the orientations of two
neighboring grains the interface is a low-angle grain boundary
based on a regular dislocation structure. In the easiest case, a
linear array of edge dislocations of distance d compensates
the twist angle θ (b/d = 2 sin θ/2 ≈ θ ) as illustrated in
Figure 5(a). An array of screw dislocations or mixed arrays
result in more complex low-angle grain boundaries. For larger
misorientation angles (θ > 15◦), high-angle grain boundaries
occur where the regular arrangement of dislocations is missing
and the boundary region of about 2 nm in size is strongly
disturbed. In the case of complete disorder the structure of
the grain boundary becomes amorphous (Figure 5b). This
intergranular film is independent of the orientation of the
grains and can be regarded as a cement that holds the grains
together. In the case of thermal equilibrium, high-angle grain
boundaries may show some kind of periodicity in the strongly
disturbed boundary region (Figure 5c). As an example for grain

(a)

C
B
A
C
A
C
B
A (b)

Type 1 Type 2

Figure 4. Extended planar defects: (a) Stacking fault (intrinsic,
when one plane is missing; extrinsic, when one plane is added). (b)
Two types of antiphase boundaries of hexagonal SmCo5 showing
the changes of nearest neighbor interactions.

boundaries, in Figure 6 three different kinds of nanostructures
are shown for RE2Fe14B (RE = Nd, Pr) based permanent
magnets where grain boundaries between grains of different
orientations and different phases.

3.2 Amorphous magnets

Amorphous magnets are also called glassy or noncrystalline
magnets. The ideal amorphous state and also the liquid state
of the melt are characterized by statistical intrinsic fluctua-
tions of the mass density, known as free or antifree volumes
(Cohen and Turnbull, 1959; Egami, Maeda and Vitek, 1980),
and therefore by intrinsic fluctuations of the intrinsic material
parameters, especially of the exchange energy and the local
magnetic anisotropy. The free volumes result from vacant
spaces between topologically disordered atoms. The intrinsic
fluctuations lead to inhomogeneities in the orientation of the
spontaneous polarization. All deviations from this are con-
sidered as defect structures in the amorphous material. The
defect structures in amorphous magnets result from atomic
rearrangements during the quenching process which lead to
a chemical short-range order, to magnetic aftereffects, or to
agglomerations of the free or antifree volumes providing
internal stress sources therefore being restricted to magne-
torestrictive amorphous materials. The quenched-in defect
structures are the reason for the metastable character of the
amorphous state. They can be classified into intrinsic defects
which are stable below the crystallization temperature and
extrinsic defects which recover during an annealing treatment
below the crystallization temperature.

Especially the formation of chemical short-range order
without loss of the topological amorphous state has its origin
in magnetic annealing effects and the tendency for crys-
tallization of the amorphous metastable state. Within small
clusters of chemically ordered regions atomic metal–metal
pairs of different metal atoms (e.g., Ni–Fe) may exist
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(a) (b) (c)

Figure 5. Grain boundaries: (a) Low-angle grain boundary of parallel edge dislocations with constant distances d compensating the twist
angle θ between two grains misoriented relative to each other. (b) High-angle grain boundary (amorphous case). (c) High-angle grain
boundary (thermal equilibrium).

(Nd, Pr)2Fe14B + (Nd, Pr) (Nd, Pr)2Fe14B + Fe(Nd, Pr)2Fe14B (Φ)

Fe

Fe

Nd/Pr
rich

5 nm 20 nm 10 nm 10 nm

Figure 6. Grain boundaries between grains of different orientations and different phases exemplary for nanocrystalline RE2Fe14B
(RE = Nd,Pr) based permanent magnets. RE2Fe14B+(Nd,Pr) (high-coercivity magnet): Decoupled magnet where the hard magnetic
RE2Fe14B grains are magnetically isolated by the overstoichiometric RE which forms an amorphous paramagnetic interlayer that holds the
grains together. RE2Fe14B (high-coercivity, high-remanence magnet): Stoichiometric magnet where the hard magnetic RE2Fe14B grains
are in direct contact with each other. The exchange interaction in between induces a magnetic texture. RE2Fe14B+Fe (high-remanence
magnet): Composite magnet with overstoichiometric Fe resulting in additional soft magnetic Fe grains which are exchange coupled to the
hard magnetic RE2Fe14B grains (exchange hardening) (Goll, Seeger and Kronmüller, 1998; Goll and Kronmüller, 2000).

which are aligned parallel to the spontaneous polarization,
thus, giving rise to an induced magnetocrystalline anisotropy
(Luborsky and Walter, 1977; Fujimori, Obi, Masumoto and
Saito, 1976).

On the other hand, agglomerations of free or antifree vol-
umes created during rapid quenching of the melt are rather
stable with respect to annealing treatments and therefore can-
not be removed completely from the material (Kronmüller,
1981b). They have their origin in the partial instability of
the free volumes below the melting point. Relaxations of
the dispersed free volumes by themselves result in quasi-
point defects with short-range elastic stress fields varying as

1/r3 (Figure 7a). By a relaxation of the atomic network,
the vacancy clusters may collapse locally and therefore
generate planar defects which are equivalent to dislocation
dipoles exerting short-range elastic stress fields varying as
1/r2 (Figure 7b). If the arrangement of the quasidislocation
dipoles is correlated with a gradient in density along one
direction, then uncompensated poles exist over large dis-
tances and also generate long-range elastic stress fields vary-
ing as 1/r (Figure 7c).

Local structural relaxation effects may result in magnetic
aftereffects which are thermally activated processes. As
shown in Figure 8(a), by a small displacement of the free
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Figure 7. Agglomerations of free or antifree volumes: (a) Vacancy type defect in the unrelaxed and relaxed network model. (b) Two-
dimensional model of a quasidislocation dipole formed by agglomerated free volumes. (c) Long-range stresses due to an inhomogeneous
arrangement of dislocation dipoles.
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Figure 8. (a) Structural reorientation of the atom pair a–b by
means of the free volume. (b) Amorphous ribbon with fluctuating
thickness T (y, z) showing a large surface roughness on the contact
surface (wavelength λ ≈ 10 µm) and a weak surface roughness on
the free surface (wavelength λ ≈ 100 µm).

volume the atom-pair axes are reoriented. Such reorientations
lead to a decrease of the magnetic energy depending on the
orientation of the spontaneous polarization and the atom-pair
axes.

The surface irregularities due to the natural surface
roughness of rapidly quenched amorphous magnets can be
regarded as macroscopic defect structures. The thickness
fluctuations of the ribbons are due to the uneven surface of
the roller as well as inhomogeneous solidification processes
on the free surface (Becker, 1981; Wang and Kronmüller,
1982). Whereas the contact surface between the ribbon and
the roller according to Figure 8(b) reveals a large surface
roughness, on the free surface only a weak surface roughness
is observed.

4 MICROMAGNETISM AND
MAGNETIZATION PROCESSES

The theory of micromagnetism (see also General Micro-
magnetic Theory, Volume 2) developed by Landau and
Lifshitz (1935) and Brown (1940) is a rather effective tool
for the description of magnetization processes (including
magnetic domain patterns) (see also Magnetization Config-
urations and Reversal in Small Magnetic Elements, Vol-
ume 2) and characteristic properties of the hysteresis loop of
ferromagnetic materials. The validity of this continuum the-
ory ranges on a length scale which is large compared to typi-
cal atomic distances but small in comparison to macroscopic
sample dimensions. With the theory of micromagnetism, the
orientation of the spontaneous polarization Js can be deter-
mined as a function of position r and external field Hext

by minimizing Gibbs total energy and solving the resulting
micromagnetic equations.

4.1 Single-domain particles

Single-domain particles are homogeneously magnetized par-
ticles. The hysteresis loop of a single-domain particle corre-
sponds to a rectangular loop (Figure 9a) when the magnetic
field is applied parallel to the easy axis. For a certain opposite
field, the nucleation field HN, the magnetization of the parti-
cle switches spontaneous irreversibly into the opposite direc-
tion. The nucleation field depends on the type of nucleation
mode that initiates the reversal of the magnetization. The
three most important nucleation modes are coherent rotation,
curling, and buckling. They are represented in Figure 9(c–e)
for an infinite cylinder. The coherent rotation mode corre-
sponds to homogeneous rotation of the magnetization and
is characterized by vanishing exchange energy but magnetic
stray field components. The curling mode corresponds to a
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Figure 9. Hysteresis loop of a single-domain particle with easy axis parallel to the applied field: (a) 4 |K2| < |K1| and (b) 4 |K2| > |K1|.
Nucleation modes of an infinite cylinder (Frei, Shtrikman and Treves, 1957): (c) homogeneous rotation, (d) curling, and (e) buckling.

magnetization orientation perpendicular to the radial vector,
that is, there exists no radial component of the magnetization
anywhere in the particle, and is characterized by a vanishing
stray field energy but nonvanishing exchange energy. The
buckling mode corresponds approximately to homogeneous
rotation for each cross section with sinusoidal variation of
the amplitude along the cylinder axis where the alternating
surface charges lead to an increase of the exchange energy
which, however, is overcompensated by the gain in stray field
energy.

The reversal process is governed by the nucleation mode
with the smallest nucleation field. Therefore, the buckling
mode is not important in practice.

For a single-domain particle of rotational-ellipsoidal shape
and demagnetization factors N|| and N⊥ parallel and perpen-
dicular to the easy axis the nucleation field HN is obtained as
eigenvalue of the linearized micromagnetic equations (with
constant material parameters Js, K1, and A) (Aharoni and
Shtrikman, 1958; Brown, 1963; Frei, Shtrikman and Treves,
1957):

H coherent
N = 2K1

Js
− (N|| − N⊥)

Js

µ0

H
curling
N = 2K1

Js
− N||

Js

µ0
+ 2πk

A

R2Js
(1)

with k = 1.08 for an infinite cylinder and k = 1.38 for a
sphere. In other words, whereas the coherent rotation mode
is independent of the particle size R, the nucleation field in
the case of the curling mode decreases with increasing par-
ticle size. This means that for small single-domain particles,
nucleation takes place by the coherent rotation process and
for larger single-domain particles by the curling process. The
critical particle diameter Dcrit for which the nucleation field

of both processes becomes equal is given by

Dcrit = 2
√

πk

√
2µ0A

N⊥J 2
s

(2)

A completely different reversal behavior occurs when the
anisotropy constant K2 gains in influence (4 |K2| > |K1|)
(Figure 9b). Then the magnetization rotates reversibly out of
the easy axis at H I

N = H coherent
N and the instability field for

irreversible demagnetization is (Kronmüller, 1985; Herzer,
Fernengel and Adler, 1986)

H II
N = 8K2

3
√

3Js

(
1 + K1 + J 2

s (N⊥ − N||)/µ0

2K2

)3/2

(3)

4.2 Multidomain particles

A multidomain particle is subdivided into homogeneously
magnetized domains, in which the magnetization is oriented
along an easy axis. The transition region between two dom-
ains, which ranges over several lattice planes, is called
domain wall. Domain formation reduces the stray field
energy, whereby the gain in stray field energy is larger
than the exchange energy and magnetocrystalline anisotropy
energy needed for domain wall formation, because the mag-
netic moments in the walls are oriented neither parallel to
each other nor along an easy axis. The resulting domain con-
figuration always corresponds to a minimum total magnetic
energy.

In the case of 180◦ domain walls separating two domains
with magnetization direction oriented antiparallel to each
other, two different types of domain walls may occur – Bloch
walls producing surface charges and Néel walls producing
volume charges (Figure 10a). The energy of the two wall
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Figure 10. (a) Magnetization distribution in a Néel wall and
a Bloch wall. (b) Two types of magnetization processes (wall
displacements and rotations of the magnetization) due to the
application of an external magnetic field.

types depend decisively on the particle dimensions. In the
case of a macroscopic sample (sample dimension � domain
wall thickness), the Bloch wall is stray field free as its surface
charges can be neglected. In the case of a thin film (sample
dimension � domain wall thickness), the Néel wall is stray
field free as its volume charges can be neglected. According
to the theory of micromagnetism the wall energy γ and the
wall thickness δ are for the stray field free wall given by

γ = 4
√

AK1 and δ = π
√

A/K1 (4)

In general, the wall of the smallest stray field energy
is energetically preferred. The critical particle dimension
for which the Bloch and Néel wall become energetically
equal is given by Dcrit = 0.14

√
A/K1 (Hubert, 1974) where

the exchange length lK = √
A/K1 is a measure for the

distance over which a inhomogeneity in a homogeneous
magnetization distribution is lowered to 1/e.

By applying an external magnetic field a multidomain
particle can be magnetized by two types of magnetization
processes, wall displacements and rotations (Figure 10b). In
the case of wall displacements, the applied field leads to a

force on the domain wall so that domains which are oriented
in field direction start growing at the expense of the other
domains. In the case of rotations, the applied field leads to a
torque Js × H on the magnetization resulting in a magnetiza-
tion rotation into field direction. When the magnetic field is
applied perpendicular (parallel) to a lamellar domain struc-
ture, rotations (wall displacements) are dominating resulting
in flat-type (more rectangular-shaped) hysteresis loops with
small (large) Jr/Js ratios.

4.3 Critical particle sizes for single domain
behavior

As long as the gain in stray field energy is smaller than the
wall energy needed, domain formation does not occur and
the single-domain state is energetically favored. This is the
case for particle sizes smaller than a critical diameter Dcrit

(Kittel, 1946). For middle-hard and hard magnetic materials,
the magnetic energies of the single-domain state (stray field
energy) and the two-domain state (stray field energy and wall
energy) become equal at Dsd

crit so that the single-domain state
becomes unstable and transforms into the two-domain state.
For a particle of ellipsoidal shape, from the energy balance of
the two states at Dsd

crit (a, b: short, long axis of an ellipsoid)

1

2µ0
N||J 2

s
4π

3
a2b = πabγ B + α

1

2µ0
N||J 2

s
4π

3
a2b (5)

the critical particle diameter follows as

Dsd
crit = 2a = 3γ Bµ0

N||(1 − α)J 2
s

(6)

The parameter α denotes a factor by which the stray field
energy of the two-domain state is reduced compared to the
single-domain state. For a spherical particle where N|| = 1/3
and α = 0.47 ≈ 1/2 (Goll, Berkowitz and Bertram, 2004)
the critical particle diameter is given by Dsd

crit = 18γ Bµ0/J
2
s .

For platelets with N|| ≈ 1, Dcrit turns out to be a factor of 3
smaller than for spherical particles. For needle-type particles
with N|| � 1 the critical particle diameter becomes largest
which makes them important for magnetic recording systems.
For hollow spherical particles characterized by an inner and
an outer particle diameter (ε = Di/Do) the critical particle
diameter also increases for increasing ε ratios. For soft
magnetic materials at Dcrit the single-domain state transforms
into a vortex state.

To guarantee thermal stability of single-domain particles
for time intervals of decades the particle size must be larger
than the critical diameter Dtheor

crit . Otherwise, reversion of
the polarization Js is induced by the thermal fluctuation
energy kT of the thermally excited spin system. According to
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Néel (1950) the lifetime of a ferromagnetic particle of vol-
ume V follows an Arrhenius law τ = τ 0 exp(KeffV/(kT ))

where Keff = K1 + 1/(2µ0)(N⊥ − N||)J 2
s is the effective

anisotropy constant of an ellipsoidal particle and τ 0 denotes
the resonance relaxation time of the spin system which is
approximately given by τ−1

0 = γHeff/(2π) (γ : gyromag-
netic ratio, Heff = 2Keff/Js). For a hard magnetic parti-
cle as FePt (Keff = 6.6 × 106 J m−3, τ 0 = 3.1 × 10−12 s) the
lifetime amounts to τ = 0.1 s for D = 3 nm and to τ =
1010 s for D = 3.9 nm. For a soft magnetic particle as Fe
(Keff = 4.6 × 104 J m−3, τ 0 = 6.7 × 10−10 s) the lifetime is
given by τ = 0.1 s for D = 14.8 nm and by τ = 1010 s for
D = 19.6 nm. In any case, there exists a very narrow range
of diameters where the transition from a thermally unstable
to a thermally stable state takes place.

5 HARD MAGNETIC MATERIALS:
MICROMAGNETISM AND
MICROSTRUCTURE

The RE-TM intermetallics (RE–Fe–B: Nd2Fe14B, Pr2Fe14B;
Sm–Co: SmCo5, Sm2(Co,Cu,Fe,Zr)17; Sm–Fe: Sm2Fe17N3,
Sm2Fe15Ga2C2) (see also Rare-earth Nanocrystalline and
Nanostructured Magnets, Volume 4; Dilute Magnetic
Oxides and Nitrides, Volume 4) are the most promising
hard magnetic materials at present where the high spon-
taneous polarization Js and Curie temperature TC of the
transition metals (TM = Fe, Co) are combined with high
magnetocrystalline anisotropy K1 of the rare-earth met-
als (RE = Nd, Pr, Sm) resulting in exceptional intrin-
sic magnetic properties (Js > 1.2 T, TC > 250 ◦C, K1 >

106 J m−3). The highest (BH)max values are currently sup-
plied by the ternary intermetallics RE2Fe14B (RE = Nd,
Pr) ((BH)max = 450 kJ m−3) at room temperature and by
the quinary intermetallic Sm2(Co,Cu,Fe,Zr)17 ((BH)max =
100 kJ m−3 at 400 ◦C) at elevated temperatures. Hard fer-
rites of the type (Ba/Sr)Fe12O19 (Kojima, 1982) are con-
sidered as ceramic hard magnets with a low crystal sym-
metry which results in a high (uniaxial) magnetocrystalline
anisotropy (K1 = 0.3 MJ m−3, Js = 0.47 T, TC = 450 ◦C,
(BH)max = 23 kJ m−3). AlNiCo magnets (Mc Currie, 1982)
owe their hard magnetic properties to the shape anisotropy
of small elongated ferromagnetic FeCo particles precipi-
tated in a weakly magnetic AlNi matrix (K1 = 0.04 MJ m−3,
Js = 1.2 T, TC = 860 ◦C, (BH)max = 45 kJ m−3). FePt and
CoPt based permanent magnets (Buschow, 1997) ((BH)max =
200 kJ m−3) reveal their high (uniaxial) magnetocrystalline
anisotropies (6.6 MJ m−3 and 4.9 MJ m−3, respectively) from
an ordered face-centered tetragonal phase (L10 phase) which
develops at lower temperatures from a disordered face-
centered cubic phase.

Hard magnets are manufactured by two principle pro-
cessing routes – sintering (see also Rare-earth Transition-
metal Magnets, Volume 4) and melt spinning (see also
Rare-earth Nanocrystalline and Nanostructured Magnets,
Volume 4) (instead of spinning sometimes mechanical alloy-
ing or HDDR (hydrogenation, disproportionation, desorption,
and recombination) are used). Sintering leads to anisotropic
(textured) microcrystalline magnets with multidomain parti-
cles of size 1–20 µm whose easy axes are oriented along one
direction. Sintered magnets have to be after-treated by sawing
or grinding. Melt spinning results in isotropic nanocrystalline
magnets with single-domain particles of size 10–200 nm
whose easy axes are isotropically distributed. The nanocrys-
talline ribbons can be powderized and bonded with epoxy to
form isotropic polymer bonded magnets of any final shape
without expensive after-treatments. For nanocrystalline per-
manent magnets three different types of nanostructures can
be distinguished: high-coercivity magnets where the grains
are magnetically decoupled by a paramagnetic intergranu-
lar film; high-remanence–high-coercivity magnets where the
hard magnetic grains are magnetically coupled by exchange
interactions which induce a magnetic texture; and high-
remanence magnets with a mixture of hard and soft magnetic
grains where in addition to the effect of exchange cou-
pling between the grains the large polarization of the soft
magnetic grains also enhances the remanence by exchange
hardening. All three types of nanostructures can be realized
for (Nd,Pr)2Fe14B based magnets by a suitable choice of
the chemical composition from the phase diagram as shown
in Figure 6 ((Nd,Pr)2Fe14B + (Nd,Pr): decoupled magnets,
(Nd,Pr)2Fe14B: stoichiometric magnets, (Nd,Pr)2Fe14B + Fe:
composite magnets). Another type of nanostructure devel-
ops in a self-organized process during a complex anneal-
ing procedure in Sm2(Co,Cu,Fe,Zr)17 which is illustrated in
Figure 3(c) with the cell walls providing effective planar pin-
ning sites for domain walls which may result in exceptional
coercivity values up to elevated temperatures.

Owing to economic aspects, hard ferrites account for half
the value of all permanent magnets worldwide. The other half
of the market is mostly for RE magnets with their maximum
energy products up to 15 times larger than for ferrites. Until
now, sintering has been the commercially most important
process. However, melt spinning combined with polymer
bonding is gaining in importance, especially in the case of
RE2Fe14B (RE = Nd, Pr).

5.1 Coercivity

The large coercive fields of permanent magnets and, there-
fore, the magnetic hardening are alternatively accomplished
by two basic mechanisms – reversal of the magnetization
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by nucleation of reversed domains (nucleation mechanism)
or reversal of the magnetization by displacement of pinned
domain walls (pinning mechanism). For both hardening
mechanisms the coercivity can be well described in the
framework of the theory of micromagnetism by the univer-
sal relation (Kronmüller, 1987; Sagawa und Hirosawa, 1987;
Kronmüller and Fähnle, 2003)

µ0Hc = µ0α
2K1

Js
− NeffJs (7)

where the parameters α and Neff which may in turn depend
on the intrinsic material parameters include the influence
of the microstructure on the coercivity. The microstructure
is the reason for Brown’s paradox (Brown, 1945), that
is, the experimentally realized coercivities as shown in
Figure 11(a) in general amount a factor of 3 − 5 smaller
than the ideal nucleation field µ0HN = 2K1/Js of a spherical
single-domain particle whose magnetization is reversed by an
irreversible homogeneous rotation process (α = 1, Neff = 0
in equation (7)).

Depending on the particle size the effect of the microstruc-
ture on the coercivity can be quite different (Figure 11b).
Whereas in the case of nucleation hardening (single-domain
range) crystal imperfections reduce the coercivity, in the
case of pinning hardening (multidomain range) imperfec-
tions increase the coercivity due to the pinning effect of
the domain walls. It is nowadays generally accepted that
in (Nd,Pr)2Fe14B, SmCo5 and conventional ferrite magnets
the nucleation mechanism governs the coercivity, whereas
in Sm2(Co,Cu,Fe,Zr)17 type magnets domain wall pinning
processes are dominant.

For both hardening mechanisms, the demagnetization
factor Neff is due to the locally enhanced stray fields
occurring at edges and corners of the grains which cannot
be described by the demagnetizing factors N⊥ and N|| any
more.

5.1.1 Nucleation

Nucleation is initiated in inhomogeneous boundary regions
and occurs only for magnets consisting of single-domain
nanoparticles or of micrometer-scaled multidomain particles
with a small defect density. The latter particles behave (once
saturated) like single-domain particles until reaching the
coercivity as their nucleation field is much larger than the
macroscopic demagnetizing field. In the case of nucleation
hardening the microstructural parameter α = αKαψαex can
be subdivided into three parameters.

a Nucleation in magnetically inhomogeneous regions
(parameter αK): The crystal structure of the hard magnetic
grains is not perfect throughout the grains. There exist surface
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Figure 11. (a) Brown’s paradox: The experimentally realized coer-
civities amount to a factor of 3 − 5 smaller than the ideal nucleation
field. (b) Schematic representation of the coercive field as a func-
tion of the particle size D ( ideal magnet with perfect particles,
- - - - real magnet with imperfect particles).

regions where the atomic lattice is distorted by stresses and/or
the stoichiometry has changed due to diffusion processes,
especially when different phases are neighbored. As a con-
sequence, the crystal anisotropy is locally reduced in the
surface regions leading to a reduction of the nucleation field
by a factor αK (as the inhomogeneous regions influence K1

much stronger than Js or A, the two latter parameters can
be regarded as constants). For the one-dimensional model
potential

K1(z) = K1(∞) − �K

cosh2(z/r0)
(8)

which is illustrated in Figure 12(a–b) for a planar grain
boundary, the microstructural parameter αK has been
calculated analytically by Kronmüller (1987) from the
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micromagnetic equations

αK = 1 − δ2
B

4π2r2
0

(
1 −

√
1 + 4π2r2

0

δ
′2
B

)2

=




1 − π2 δ2
B

δ
′4
B

r2
0 for r0 � δB

1

π

δ2
B

δ
′
B

1

r0
+ K1 − �K

K1
for 2πr0 ≥ δB

K1 − �K

K1
for r0 � δB

(9)

where K1 = K1(∞) is the anisotropy constant inside the
grain, �K denotes the relative reduction at the grain sur-
face, 2r0 describes the extension of the magnetic defect,
δB = π

√
A/K1(∞) is the wall width of the perfect crystal

and δ′
B = π

√
A/�K corresponds to a fictitious wall width of

a material with anisotropy �K . For �K ≈ K1 the three lim-
iting cases are given by αK = 1 − π2r2

0/δ2
B, αK = δB/(πr0),

and αK = 0.
The nucleation field in the first limit corresponds approx-

imately to the ideal nucleation field and in the third limit
to the nucleation field of the inhomogeneous (soft magnetic
region). For the second limit the nucleation field writes

HN = 2K1

Js

δB

πr0
− NeffJs

µ0
= γ B

2Js

1

r0
− 1

µ0
NeffJs (10)

where γ B = 4
√

AK1 describes the wall energy per unit area.
In Figure 12(c), αK is presented as a function of r0/δB and
for �K as a parameter.

b Nucleation field of misaligned grains (parameter αψ ): If
the magnetic field is applied under an angle ψ0 with respect
to the negative c axis of a uniaxial single-domain particle
the nucleation field is reduced by a factor αψ . Owing to the
misalignment the hysteresis loop shows deviations from the

ideal rectangular shape as shown in Figure 13(a). The spon-
taneous polarization starts immediately to rotate reversibly
until the rotation angle reaches the critical angle θN (Stoner
and Wohlfarth, 1948; Kronmüller, Durst and Martinek, 1987)

θN = arctan 3
√

tan ψ0 + 2

3

K2

K1 + (N|| − N⊥)J 2
s /(2µ0)

(11)

where the spontaneous polarization rotates irreversibly into
a direction near to the direction of the applied field.
The microstructural parameter αψ has been determined by
Stoner–Wohlfarth for K2 = 0 (Stoner and Wohlfarth, 1948)
and by Kronmüller for |K1| > 4 |K2| (Kronmüller, Durst and
Martinek, 1987) and is given by

αψ = HN(ψ0)

HN(0)
= 1{

(cos ψ0)
2/3 + (sin ψ0)

2/3
}3/2

×
[

1 + 2K2

K1 + (N|| − N⊥)J 2
s /(2µ0)

(tan ψ0)
2/3

1 + (tan ψ0)
2/3

]
(12)

The condition |K1| > 4 |K2| is fulfilled for Nd2Fe14B,
SmCo5, and Sm2Co17 for T < TC. The angular dependence
of the microstructural parameter αψ is shown in Figure 13(b)
for a spherical Nd2Fe14B particle at room temperature.
Accordingly, the nucleation field shows a minimum for a
misorientation angle ψ0 ≈ 45◦. This minimum nucleation
field H min

N has been derived explicitly by Martinek and
Kronmüller (1990)

H min
N = 1

2
√

2Js

[
K1 + K2

4

(
W − K1

K2
+ 3

)]

×
√

W

(
K1

K2
+ 1

)
−

(
K1

K2

)2

− 2K1

K2
+ 3

(13)
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the coercive field of a Nd2Fe14B sphere in reduced units (αψ = HN/HN(0)).

with

W = ±
√(

K1

K2
+ 1

)2

+ 8 (14)

where the + sign holds for K2 > 0 and K1 > −2K2 and
the − sign for K2 < 0 and K1 > 0. For small |K2| values
(|K2| < 0.25 |K1|) the minimum nucleation field of a spher-
ical particle is approximately given by

H min
N ≈ K1 + K2

Js
(15)

Also presented in Figure 13(b) is the corresponding angu-
lar dependence of the coercive field Hc/HN(0) which coin-
cides with the angular dependence of the nucleation field
only for ψ0 < π/4, but decreases for ψ0 > π/4 according
to Hc = K1/Js sin(2ψ0) as then nucleation takes place in the
third quadrant.

In the case of isotropic (decoupled) magnets with an
isotropic distribution of easy axes, the average of all mis-
alignment angles ψ0 has to be taken for αψ . As 〈αψ 〉 is of
the order of 0.53 in the range 30◦

< ψ0 < 60◦ which corre-
sponds approximately to the minimum value αmin

ψ ≈ 0.5 at
ψ0 = π/4 in equation (7), αψ can be replaced by αmin

ψ =
(K1 + K2)/(2K1) ≈ 0.5 or αψ(2K1/Js) by H min

N .

c Nucleation field of exchange-coupled grains (parame-
ter αex): In the case of exchange coupling between the
grains, the coercivity is further reduced as compared to
exchange-decoupled grains. Possible sources contributing to
this decrease of Hc are the random-anisotropy effect and
strongly misaligned grains. The random-anisotropy effect
(see Section 6.1) results in a reduction of the effective
anisotropy constant. This effect becomes important if the

grain size D is smaller than the domain wall width δB =
π(A/K1)

1/2. However, as in the case of hard magnetic
materials the condition D < δB is not fulfilled (δB < 5 nm,
D ≈ 10–20 nm) so far, the random-anisotropy effect can-
not become effective. In the case of strongly misaligned
grains (π/4 ≤ ψ0 ≤ π/2) the coercivity decreases to zero
with increasing misalignment angle ψ0 (Figure 13b) and
magnetization reversal of those grains takes place mainly
by reversible rotations. Due to the exchange coupling the
strongly misaligned grains induce a rotation of the spon-
taneous polarization Js within the neighboring grains so
that the magnetization reversal is enhanced even in well-
oriented grains since the critical angle θN is reached already
for smaller fields. The reversal process in exchange-coupled
grains, therefore, is a collective process where a cluster of
grains becomes demagnetized by the grain of largest mis-
alignment. As the average coercive field of strongly mis-
aligned grains is of the order of 0.25(2K1/Js) the microstruc-
tural parameter αex is approximately given by 0.5.

d Micromagnetic analysis of nucleation processes : The
micromagnetic analysis of nucleation processes and of
the temperature dependence of the coercivity starts from
equation (7). In general, the grains with the smallest Hc val-
ues, that is, the grains characterized by αmin

ψ , with H min
N =

αmin
ψ HN equation (7) can be rewritten as

µ0Hc = αKαexµ0H
min
N − NeffJs (16)

Consequently, if the dominant process for the magnetiza-
tion reversal is the nucleation of reversed domains, plotting
the temperature dependent µ0Hc(T )/Js(T ) values versus
the temperature dependent µ0H

min
N (T )/Js(T ) values yields

a straight line. The slope and axis intersection of the straight
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line correspond to the microstructural parameters αKαex

and Neff, respectively, in the case of temperature indepen-
dent microstructural parameters. Hereby, µ0Hc(T )/Js(T )

results from hysteresis loop measurements at different tem-
peratures in the ferromagnetic temperature range, whereas
µ0H

min
N (T )/Js(T ) is determined by the intrinsic material

parameters Js, K1, and K2 well known from single crystals.
The validity of the nucleation model has been demon-

strated for a large number of different permanent magnets.
Figure 14 shows exemplarily the µ0Hc/Js versus µ0H

min
N /Js

plots for sintered SmCo5 and BaFe12Fe19 (Figure 14a–b)
and for different types of nanocrystalline Pr2Fe14B based
magnets (Figure 14c) (Goll, Seeger and Kronmüller, 1998;
Goll and Kronmüller, 2003; Kronmüller and Fähnle, 2003).
In all cases a linear relationship is obtained. With the
assumption αex = 1 for sintered and decoupled magnets and
αex ≤ 1/2 for exchange-coupled magnets, αK values between
0.3 and 0.8 are received from the measured αKαex values
which correspond to a width of the inhomogeneity region
of 0.3δB < 2r0 < δB. For example, in the case of SmCo5

with αK = 0.33 and αex = 1, 2r0 approximately amounts to
1 nm. In the case of nanocrystalline Pr2Fe14B based perma-
nent magnets, there exists a large range of the values for
αKαex. For decoupled Pr2Fe14B + Pr with overstoichiomet-
ric Pr for which αex = 1 can be assumed, αK values of 0.8
are obtained, whereas the exchange-coupled stoichiometric
Pr2Fe14B magnets and composite Pr2Fe14B+Fe magnets with
overstoichiometric Fe show αKαex values between 0.06 and
0.32. The reduced values of αKαex reflect a reduction in coer-
civity and may be attributed to the small anisotropy constant
of α-Fe and to the parameter αex which reduces the αKαex

values by at least 50% due to exchange coupling between
the grains inducing collective demagnetization processes of
clusters of grains. Concerning the Neff values large values

of Neff ≥ 1 are obtained for sintered magnets, whereas the
values of nanocrystalline permanent magnets range from 0
to 0.2 for exchange-coupled magnets up to 0.8 for decoupled
magnets. The reasons for small Neff values are both a more
spherical grain shape and the fact that the locally enhanced
stray fields are drastically reduced owing to the smoothing
effect of the exchange interaction at the grain boundaries.
It is noteworthy that for the bonded magnets nearly the
same microstructural parameters are observed as for their
fully dense counterpart. The validity of the nucleation model
was also successfully tested for Nd2Fe14B, Sm2Fe17Nx and
Sm2+δFe14Ga2C2-based permanent magnets (Bauer, Seeger,
Zern and Kronmüller, 1996; Kronmüller and Fähnle, 2003).

5.1.2 Pinning

Pinning is connected with the existence of magnetic inho-
mogeneities inside the grains acting as pinning centers for
domain wall motion. The pinning centers are most effective
when the whole wall area is involved as is the case for pla-
nar defects or precipitations. Such defects are called repulsive
(attractive) for domain walls when their wall energy is larger
(smaller) than the wall energy of the surrounding matrix. In
the case of pinning, hardening the microstructural parame-
ter α = αK,pinαψ,pin is a measure for the pinning strength
and can be subdivided into two parameters. The parameter
αψ,pin denotes the misorientation of the grains and is given
by αψ,pin = 1/ cos ψ0 (Kronmüller, Durst and Sagawa, 1988)
where ψ0 is again the angle between the applied field and
the negative c axis.

a Pinning by phase boundaries : At the phase boundary
z = z0, the intrinsic material parameters Js, K1, and A

change abruptly from the parameters of the magnetic softer
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phase I to the parameters of the magnetic harder phase II.
A domain wall characterized by the azimuthal angle ϕ0 of
Js at z0 is pushed by an applied magnetic field against
the phase boundary and moves spontaneously from phase I
into phase II when the coercivity is reached (Figure 15).
Minimizing the total energy of this domain wall configuration
results in the coercivity (Kronmüller and Goll, 2002)

µ0Hc = µ0
2K II

1

J II
s

1 − εKεA

(1 + √
εAεJ)2

(17)

cos ϕcrit
0 =

√
εAεJ − 1√
εAεJ + 1

(18)

with the ratios εA = AI/AII, εK = K I
1/K

II
1 , and εJ = J I

s /J
II
s .

The coercive field vanishes for εKεA = 1 and particularly for
εA = εK = 1, that is, if phase I and phase II are equivalent
with respect to K1 and A. For εJεA = 1 the critical angle
becomes ϕcrit

0 = π/2, that is, equal parts of the 180◦ domain
wall are located in phase I and phase II. If phase I corre-
sponds to a soft magnetic phase (εK = 0), Hc is given by

µ0Hc = µ0
2K II

1

J II
s

1

(1 + √
εAεJ)2

(19)

In hard magnetic materials large spontaneous polarizations
and Curie temperatures guarantee large energy products and
excellent temperature stability. The suitable condition there-
fore is εJ = εA = 1 for which the coercive field writes

µ0Hc = µ0
2K II

1

J II
s

(1 − εK) (20)

and becomes maximum for εK = 0, then corresponding to
one-quarter of the ideal nucleation field.

b Pinning by narrow planar defects : A narrow planar
defect is composed of N individual crystal planes of distance
d. Its extension r0 = N d is smaller than the domain wall
width and each plane is characterized by a local anisotropy
constant K i

1 and a local exchange constant Ai,i+1. For cal-
culating the coercive field the domain wall is divided into
three regions as illustrated in Figure 15(b). Then the unper-
turbed regions I and III (anisotropy constant K1, exchange
constant A) can be treated by the continuum theory of micro-
magnetism (Kronmüller, 1973; Friedberg and Paul, 1975),
whereas in region II which contains the defect, the individual
crystal planes are treated by the discrete Heisenberg model
(Hilzinger and Kronmüller, 1975; Hilzinger, 1977). Minimiz-
ing the total energy of this planar configuration leads to the
following coercivity

µ0Hc = µ0
π

3
√

3

2K1

Js
αψ,pin

d

δB

∣∣∣∣∣
N−1∑
i=1

(
A

Ai,i+1
− Ki

1

K1

)∣∣∣∣∣
−NeffJs = µ0αψ,pinαK,pin

2K1

Js
− NeffJs (21)

If the material parameters of all perturbed layers are identical
(Ki

1 = K∗
1 , Ai,i+1 = A∗) equation (21) results in

µ0Hc = µ0
π

3
√

3
αψ,pin

Nd

δB

∣∣∣∣ A

A∗ − K∗
1

K1

∣∣∣∣ 2K1

Js
− NeffJs (22)

and the parameter αK,pin increases linearly with increasing
r0/δB (Figure 17).

PΙ,ΙΙ

z0

z
Hext

JΙ

JΙΙ

z

Phase Ι 

Phase
boundary

Phase ΙΙ

JΙ, KΙ, AΙ

K1,AK1,A

i = N i = 1

JΙΙ, KΙΙ, AΙΙ

ΙΙ

(a) (b)

Ι
ϕ

ϕ0 D

ϕN

ϕi

ϕ1

ϕ
p

Ι

ϕi+1

d

ΙΙ ΙΙΙ

K i
1,Ai,i+1
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planes.
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c Pinning by extended planar defects : If the extension of
the planar defect r0 is larger than the domain wall width δB

the coercive field is given by

µ0Hc = µ0
1

2Js
αψ,pin

d γ B(z)

d z

∣∣∣∣
max

− NeffJs (23)

where d γ B(z)/d z
∣∣
max describes the maximum slope of the

wall energy γ B(z) = 4
√

AK1(z). For a linear change of
γ B(z) between two phases I and II d γ B(z)/d z

∣∣
max is given

by
∣∣γ II − γ I

∣∣ /r0. For the model potential of equation (8) the
coercivity given by equation (23) results in

µ0Hc = µ0
2K1(∞)

Js

2δB

3πr0
αψ,pin − NeffJs

= µ0
γ B

3Js

1

r0
αψ,pin − NeffJs (24)

with αK,pin = 2δB/(3πr0), that is, with increasing r0/δB,
the parameter αK,pin decreases according to a 1/r0 law
(Figure 17).

d Domain wall bowing : If a planar defect is interrupted,
domain walls can bow and pass the inhomogeneity when
the applied field reaches a critical value. According to
Kronmüller and Hilzinger (1976) in the case of an interrup-
tion length dil and one-dimensional bowing processes, the
coercivity is given by

µ0Hc = µ0
π√

2J defect
s

γ matrix 1

dil
(25)

e Micromagnetic analysis of pinning processes : In the case
of high-temperature Sm2(Co,Cu,Fe,Zr)17 hard magnets, the
temperature dependence of Hc is narrowly connected to the
magnetic material parameters of the cell 2:17 and the cell
wall 1:5 phases. Information about these material parameters
is obtained from the analysis of the distribution of the five ele-
ments Co, Sm, Fe, Cu, Zr within the cells and the cell walls
which has been performed by high-resolution energy disper-
sive X-ray (EDX) measurements (Goll, Kleinschroth, Sigle and
Kronmüller, 2000; Goll, Kronmüller and Stadelmaier, 2004).

A quantitative description of Hc(T ) starts from equa-
tion (17). With the temperature dependencies of the intrinsic
material parameters Js, K1, and A for the cell 2:17 (index I)
and the cell wall 1:5 (index II)

J I,II
s (T ) = c

I,II
J (1 − T /T

I,II
C )β;

K
I,II
1 (T ) = c

I,II
K (1 − T /T

I,II
C )3β;

AI,II(T ) = c
I,II
A (1 − T /T

I,II
C )2β (26)

where β denotes the critical exponent (β = 0.5: molecu-
lar field theory, β = 0.365: Heisenberg model) and cI,II

x is

0

(b)

0

0.5

1

1.5

200

Cu-poor
Cu-rich

Analytical

Experimental

400 600

T (K)

800 1000

m
0H

c 
(T

)

(a)

Repulsive
pinning

Nucleation
2:17

Attractive
pinning

T >TC(1:5)

Hc

γB
1:5 > γB

2:17

γB
1:5 = γB

2:17

γB
1:5 < γB

2:17

TC(1:5) TC(2:17) T

Figure 16. (a) Schematic temperature dependence Hc(T ) accord-
ing to equation (27) showing the three ranges of repulsive and
attractive pinning as well as the high-temperature nucleation range.
(b) Conventional (Cu-rich cell walls) and anomalous (Cu-poor cell
walls) Hc(T ) behavior of Sm2(Co,Cu,Fe,Zr)17 magnets.

related to the material constants at T = 0, the coercivity can
be rewritten as (Kronmüller and Goll, 2003)

µ0Hc(T ) = µ0
2cII

K

cII
J

(
1 − T

T II
C

)2β

×
1 − εKA

(
1−T/T I

C
1−T/T II

C

)5β


1 +

{
εAJ

(
1−T/T I

C
1−T/T II

C

)3β
}1/2




2 (27)

with the parameters εKA = cI
KcI

A/cII
KcII

A and εAJ = cI
AcI

J/c
II
AcII

J .
The expression allows a quantitative discussion of the tem-
perature dependence of Hc (Figure 16a) As in general
εKA < 1, εAJ > 1 and T I

C > T II
C holds, two crossover temper-

atures exist. At low temperatures (εAεK < 1, εAεJ ≈ 1) Hc

is determined by repulsive pinning at the cell walls leading
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to a monotonous decrease of Hc with increasing tempera-
ture. At intermediate temperatures repulsive pinning changes
into attractive pinning in the cell walls at εKA < 1, εAJ = 1
with K II

1 becoming smaller than K I
1 because T I

C > T II
C holds.

In this temperature range, the indices I and II have to
be exchanged in equations (26) and (27) and Hc(T ) may
increase up to a maximum value at T = T I

C. At the Curie
temperature of the cell wall phase, the matrix pyramids
become single-domain particles being magnetically isolated
by thin paramagnetic cell walls. Accordingly, for higher
temperatures the coercive field is determined by the nucle-
ation field (2K2:17

1 /J 2:17
s )α of the 2:17 cells and therefore

decreases.
In Figure 16(b) by the superposition of the three Hc(T )

curves for varying parameters εKA and εAJ and aver-
age Curie temperatures the experimental result of a pos-
itive and a negative temperature gradient dHc/dT could
be nicely explained (Goll, Kronmüller and Stadelmaier,
2004).

5.1.3 Comparison of the hardening mechanisms

The type of hardening mechanism can be determined in
principle from the temperature dependence of the coerciv-
ity. In Figure 17, the microstructural parameters αK and αψ

are compared with each other for the nucleation and pin-
ning mechanism. Whereas for αK > 0.3 nucleation is the
only reversal mechanism which may occur, for αK < 0.3
nucleation and pinning may take place. Consequently, the
maximum coercivity of pinning-hardened magnets amounts
to 30% of the ideal nucleation field. In the case of the
microstructural parameter αψ , with increasing misorientation
angle αψ increases for pinning-hardened magnets and shows

a minimum at ψ0 = 45◦ for nucleation hardened magnets.
Another distinguishing feature is the initial magnetization
curve. Whereas for pinning-hardened magnets the magneti-
zation increases rather slowly for small applied fields due
to the pinning of domain walls, the magnetization increases
rapidly for nucleation hardened magnets consisting of mul-
tidomain particles in the thermally demagnetized state. As a
consequence, in the latter case the saturation is achieved for
smaller fields.

5.1.4 Others

In the phenomenological nucleus expansion model (‘global
model’) (Givord and Rossignol, 1996) a preformed nucleus
of reversed polarization expands due to thermal activation
within the lifetime of the reversed nucleus which follows
an Arrhenius equation τ = τ 0 exp(−�E/kT ) where τ 0 is of
the order of 10−11 s and �E(t) = kT ln(t/τ 0) ≈ 25 kT (t ≈
1–103 s) corresponds to the activation enthalpy necessary
for the spontaneous expansion of the nucleus by overcoming
the magnetic enthalpy. If the nucleus is characterized by its
surface area s, its volume v, and its domain wall energy
γ ′

B, at the coercive field Hc the energy balance between
�E and the magnetic enthalpy consisting of domain wall
energy, magnetostatic energy of the external field at Hc and
the demagnetization energy is given by

sγ ′
B − JsHcv − 1

µ0
NeffJ

2
s v = 25kT (28)

As the nucleus forms in perturbed regions the specific wall
energy γ ′

B of the nucleus can be related to the ideal wall
energy γ B of the perfect crystal by γ ′

B = αBγ B = 4
√

AK1αB

with the microstructural parameter αB < 1. Similarly, the
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nucleus surface can be related to the nucleus volume by
s = αsv

2/3 where αs corresponds to a geometrical factor
given by αs = (36π)1/3 = 4.84 for a sphere and by αs =
(π cot θ)1/3/ cos θ for a cone with apex angle θ . With these
substitutions the following expression can be derived from
equation (28) for the coercivity

µ0Hc = µ0
αsαBγ B

Jsv1/3
− JsNeff − µ0

25kT

vJs
(29)

As the nucleus volume is related to the wall width δB =
π

√
AK1 as v = α3

vδ
3
B equation (29) can be rewritten as

µ0Hc = µ0
αsαB

αv

1

Js

γ B

δB
− JsNeff − µ0

25kT

vJs

= µ0
2K1

Js

2αsαB

παv
− JsNeff − µ0Hf (30)

with the thermal fluctuation field µ0Hf = µ025kT /(vJs)

which corresponds to 5–10% of the coercive field. The
microstructural parameters αs and αB can be obtained from
plotting µ0(Hc + Hf)/Js versus µ0γ B/(J 2

s v1/3) where Hc,
v, and Hf are received experimentally and Js and γ B are
given by the intrinsic material parameters. In Figure 18(a)
(Becher, Seeger and Bauer, 1998) the temperature depen-
dence of the activation volume of different types of mag-
nets is shown. Figure 18(b) (Becher, et al. 1998) shows the
plots from which the microstructural parameters αsαB and
Neff can be derived. From equation (30) it becomes obvi-
ous that the coercivity due to nucleus expansion is described
by the same type of equation as in the case of nucleation.
The only difference between the two models seems to be
that the nucleation model is based on the micromagnetic
equations, whereas the nucleus expansion model starts from
an empirical energetic approach which corresponds just to
the integrated micromagnetic equations. Although the param-
eters αs, αB, and αv can be identified with the parameters
αK and αex as 4αsαB/παB ≡ αKαex it has to be noted that
the nucleus expansion model turns out to be incompatible
with the real microstructure. As the measured activation
volumes v are of the order of 300 nm3 the grain bound-
aries would extend over a width of 5δB ≈ 20 nm. In con-
trast, according to the nucleation model the reversal of the
polarization starts in regions of width 0.5–2 nm which is in
excellent agreement with the real microstructure. Further-
more, the microstructural parameters αs, αB, and αv are
less defined. In particular, their temperature dependence is
unknown and can only be quantified by further assump-
tions on the nucleus shape (González et al., 1994). Natu-
rally, the thermal fluctuation field can also be introduced
into the nucleation model as a further term which reduces
the nucleation field. However, normally the thermal fluctua-
tion field can be neglected as it corresponds only to 5–10%
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Figure 18. (a) Temperature dependence of the activation volume of
three different types of Nd2Fe14B based magnets. The inset illus-
trates the spike-type nucleus of volume v, surface area s, and wall
energy γ ′

B (Becher, Seeger and Bauer, 1998). (b) Corresponding
plots to determine αsαB and Neff according to the global model
(Becher, Seeger and Bauer, 1998).

of the coercivity and the micromagnetic energy terms are
dominating.

5.2 Remanence and (BH )max

Depending on the degree of the texture the remanence
varies between Jr ≈ Js in the case of a perfect orientation
of the easy axes along one direction and Jr = 0.5Js in
the case of an isotropic orientation of the easy axes and
magnetically decoupled grains. In the case of exchange-
coupled grains, a magnetic texture is induced within a region
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Figure 19. (a) Remanence enhancement in nanocrystalline stoichiometric and composite Pr2Fe14B + α-Fe isotropic magnets compared
to a nanocrystalline decoupled Pr2Fe14B + Pr isotropic magnet (Goll, Seeger and Kronmüller, 1998). The corresponding nanostructures
are shown in Figure 6. (b) Grain-size dependence of the reduced remanence of Nd2Fe14B according to equation (31) in comparison with
numerical (�, ◦: directly contacted grains; diamond : Agb = A/10 (width of grain boundaries: 3 nm) and experimental results. (Reproduced
from D. Goll: ‘Micromagneticism and microstructure – tailoring of high performance magnets’, Z Metallkunde 93, (2002) 1009–1017, with
permission of Carl Hanser Verlag.)

of δB = π(A/K1)
0.5 = πlK at the grain boundaries with the

texture axis parallel to the direction of the applied field
involving a significant remanence enhancement compared
to decoupled magnets (Figure 19a). The influence of the
exchange coupling on the remanence can be expressed
analytically by using a simple micromagnetic model which
describes the exchange coupling between two neighboring
grains in analogy to a Bloch wall. From minimizing the
total magnetic Gibbs energy the remanence of stoichiometric
magnets is obtained as

Jr ≈ 1

2
Js + 1.5

Js

D
lK (31)

Here, the first term (Stoner–Wohlfarth term) denotes the
decoupled contribution to the remanence, whereas the sec-
ond one describes the remanence enhancement effect due to
exchange coupling at the grain boundaries. Accordingly, Jr of
an exchange-coupled single-phase magnet is determined by
the average grain size D and the intrinsic material parameters
Js, K1, and A of the grains. For a given material, the rema-
nence enhancement increases with decreasing grain sizes. In
Figure 19(b) (Goll, 2002), the grain-size dependence of the
reduced remanence according to equation (31) is compared
for Nd2Fe14B to that calculated numerically for a three-
dimensional ensemble of hard magnetic exchange coupled
grains as well as to the experimental data obtained by Manaf,
Buckley, Davies and Leonowicz (1991). Consequently, for
an efficient remanence (and therefore (BH)max) enhancing
effect, the grain size should be smaller than 20 nm. In com-
posite magnets the remanence (and therefore (BH)max) is fur-
ther increased as the large spontaneous polarization of α-Fe
(Js = 2.15 T) significantly intensifies the magnetic texturing
effect (Figure 19a). For a complete exchange hardening of
the soft magnetic grains, it is imperative that the grain size

of the soft magnetic grains is of the order of twice the Bloch
wall width δB of the hard magnetic phase.

6 SOFT MAGNETIC MATERIALS:
MICROMAGNETISM AND
MICROSTRUCTURE

Crystalline soft magnetic materials (see also Advanced
Soft Magnetic Materials for Power Applications, Vol-
ume 4) as permalloy, sendust, Fe–Si-transformer steel and
MnZn ferrites are characterized by a low magnetocrystalline
anisotropy and a low magnetostriction (at least for a certain
temperature). In order to achieve large initial susceptibili-
ties (or initial permeabilities) and small coercivities in these
materials, defect structures should be reduced as much as
possible. As some of these materials have a low critical shear
stress, plastic deformations are serious sources for deterio-
rating the soft magnetic properties.

Amorphous soft magnetic materials (see also Amorphous
Alloys, Volume 4; Soft Magnetic Bulk Glassy and Bulk
Nanocrystalline Alloys, Volume 4) are mainly based on
transition metal–metalloids with compositions near (Fe, Co,
Ni)80(B, Si, C)20 and are commonly divided into two major
groups: iron-based and Co-based alloys. The Fe-based amor-
phous alloys (e.g., Fe67Co18B14Si) are based on inexpen-
sive raw materials, have a high saturation polarization (Js =
1.1–1.8 T), but their magnetostriction (λs ≈ 30 × 10−6) is
large which limits their soft magnetic behavior. By adding
Ni, for example, Fe40Ni40P14B6 or Fe40Ni40B20, the satu-
ration polarization and at the same time the magnetostric-
tion become smaller. The Co-based amorphous alloys, for
example, Co71Fe1Mo1Mn4Si14B9 reveal nearly zero mag-
netostriction (λs < 3 × 10−7), therefore offering a superior
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soft magnetic behavior, but their saturation polarization is
by a factor of 2 lower than that of the Fe-based materials.
Amorphous alloys are produced mainly by rapid quenching
(∼106 K s−1) from the melt or by either sputtering or evap-
oration. They allow a wide range of property variation, for
example, the initial permeability can be varied continuously
from µi ≈ 1000 to µi ≈ 300 000. Disadvantages of all amor-
phous alloys are their thermal instability and a low Curie
temperature.

Nanocrystalline soft magnetic materials (see also Soft
Magnetic Materials – Nanocrystalline Alloys, Volume 4)
consist of ultrafine grains with an average size of ∼5–15 nm
which are embedded in an amorphous matrix. They are
prepared by crystallization of amorphous melt-spun ribbons
(with the addition of Cu and Nb) during annealing. The vol-
ume ratio of the nanocrystalline phase can be controlled by
the annealing temperature and ranges between 50 and 80%.
The most widely investigated alloy is Fe73.5Cu1Nb3Si13.5B9

(Yoshizawa, Oguma and Yamauchi, 1988; Herzer, 1996)
which combines the highest achievable permeabilities (µi ≈
200 000) with the simultaneously highest saturation polar-
izations (Js ≈ 1.2–1.3 T) and which is also characterized
by vanishing anisotropy (due to exchange softening) and a
near zero magnetostriction (λs < 1 × 10−7). Nanocrystalline
soft magnets are more stable above room temperature and
have a larger remanence as compared to amorphous Co-
based soft magnets, whereas the large electrical resistivity
(ρ = 100–130 µ�cm) and the low losses are of the same
order. The only drawback of nanocrystalline soft magnets is
the severe embrittlement upon crystallization.

In Figure 20(a) the typical initial permeabilities and satu-
ration polarizations are presented for amorphous, nanocrys-
talline, and crystalline soft magnetic alloys with nonzero
magnetostriction.

6.1 Coercivity and permeability

In soft magnetic materials the domain walls interact with
a large number of (statistically distributed) defects, for
example, for a dislocation density of 1010 cm−2 there are 104

dislocations within a domain wall of cross section 10−6 cm2,
and the interaction force has to be determined by statistical
methods. The quantities which have to be determined by
statistics are coercive field Hc and the initial susceptibility
χ0 (or initial permeability µi) and the Rayleigh constant
αR of the Rayleigh (1887) law J = χ0µ0H + αR(µ0H)2

which describes the reversible (first term) and the irreversible
(second term) part of magnetization at small fields. Initial
permeability and coercivity obey a reciprocal relationship so
that materials with low coercivity necessarily have a high
initial permeability and vice versa.

In soft magnetic materials the coercivity sensitivity
depends on the grain size D. According to Figure 20(b),
good soft magnetic properties are received for amorphous
magnets for nanocrystalline magnets with grain sizes smaller
than 20 nm and for (micro)crystalline magnets with very large
grain sizes D > 100 µm.

6.1.1 Models

The models of the statistical pinning potential (Kronmüller,
1970; Kronmüller and Fähnle, 2003) and of the random
anisotropy (Alben, Becker and Chi, 1978; Herzer, 1990)
are effective tools to describe the hysteresis loops of soft
magnetic materials.

a Statistical pinning potential : The defects in soft magnetic
materials cause a statistically fluctuating Bloch-wall potential
or field of force as shown in Figure 21(a) which is the rea-
son for irreversible domain wall movements and therefore for
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the hysteresis loop. By applying a magnetic field a domain
wall is reversibly displaced in its potential valley and reaches
a force maximum at a certain field value, then performing
a spontaneous irreversible Barkhausen jump (Barkhausen,
1919) to the next higher force maximum, and so on. Accord-
ing to Figure 21(b), four characteristic regions of magneti-
zation processes can be distinguished as a function of the
applied magnetic field. In region I (0 < H < HR, HR <

0.1Hc) magnetization occurs by displacements of domain
walls which can be described by Rayleigh’s law. In region II
(0.1Hc < H < Hc) magnetization takes place by large irre-
versible Barkhausen jumps and the permeability reaches its
maximum value. In region III (Hc < H < 2Keff/Js) narrow
domain regions as closure domains are magnetized parallel
to the applied field by domain wall displacements and by
rotational processes. In region IV (H > 2Keff/Js) magneti-
zation approaches to saturation and occurs by microscopic
reversible rotations in regions of inhomogeneous spin states
around defect structures. Similarly, the coercivity can be
regarded as the field strength for which demagnetization via
large Bloch wall jumps over force maxima become possible.

In a quantitative description, the total force acting on a
rigid domain wall is given by the sum extending over all
defects

P (z) =
∑

j

p(z − zj ) (32)

where p(z − zj ) describes the individual force of a defect
at position zj acting on a domain wall at position z and
z is the coordinate parallel to the domain wall normal.

According to Figure 21(a) the statistical field of force P (z) is
characterized by the averages of the wavelength 2L0 which
is defined as twice the distance between neighboring zero
positions of P (z) and which is independent of the defect
density, of the maximum Pmax and of the reciprocal slopes
1/R = 1/(dP/dz) at P (z) = 0. When the total force P (z)

obeys a Gaussian distribution function f , the probability of
finding an interaction force between P and P + d P or a
slope R = d P/d z between R and R + d R is given by

f (P ) = 1√
2πB0

exp

(
− P 2

2B0

)
;

f (R) = 1√
2πB1

exp

(
− R2

2B1

)
(33)

where B0 and B1 are the correlation functions which are
related to the individual interaction forces as follows:

B0 = FBN

L3

∫ L3/2

−L3/2

[
p2(z) − 〈p(z)〉2] d z;

B1 = FBN

L3

∫ L3/2

−L3/2

{[
d p(z)

d z

]2

−
〈

d p(z)

d z

〉2
}

d z (34)

with FB the domain wall area, L3 the domain wall distance,
and N the defect density. In this case, the characteristic
parameters of the statistical potential are correlated with the
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correlation functions in the following way:

2L0 = 2π

√
B0

B1
; 1

R
=

√
π

2B1
; P max =

√
B0

2π
(35)

and the relationship of the coercive field Hc as well as of
the initial susceptibility χ0 and the Rayleigh constant αR to
these parameters is obtained as

µ0Hc = µ0
√

π

JsFB
∣∣cos ϕ0

∣∣P max

√
ln L3

2L0
;

χ0 = (2Js cos ϕ0)
2FB

µ0L3

1

R
; αR =

∣∣2Js cos ϕ0

∣∣3
F 2

B

(2µ0π)2

L0

L3

1

(P max)3

(36)
where ϕ0 is the angle between the applied field and Js

within the domains. The combination of equation (35) with
equation (36) leads to the following relations between Hc,
χ0, and αR

χ0Hc

Js
=

√
π

2µ0

∣∣cos ϕ0

∣∣ L0

L3

(
ln

L3

2L0

)1/2

;

µ0
αRHc

χ0
= 8

3
√

π

(
ln

L3

2L0

)1/2

;

χ2
0

JsαR
= 3π
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L0

L3

∣∣cos ϕ0

∣∣ (37)

where the average wavelength is approximately given by
2L0 ≈ 2δB. From equations (34, 35, 36) the dependence

of Hc, χ0, and αR on the defect density is predicted as
Hc ∝ N1/2, χ0 ∝ 1/N1/2, and αR ∝ 1/N which has been
tested successfully for plastically deformed Ni single crystals
as shown in Figure 22(a) where the interaction force is pro-
portional to the magnetoelastic stresses of the domain wall.

b Random anisotropy : In an ensemble of exchange-coupled
grains (size D, volume fraction v) with a random distribu-
tion of the easy directions the polarization cannot abruptly
follow the changes of the easy direction. Within a range of
the exchange length lK = √

A/K1 the polarization rotates
into the direction of the easy axis. For lK > D the polar-
ization is not able to follow the easy axes of the individ-
ual grains, but is increasingly forced to align parallel by
exchange interaction. Consequently, for lK > D an averaging
over the N = v(lK/D)3 grains lying within the volume (lK)3

takes place and the resulting effective anisotropy constant
〈K〉 and effective exchange length leff

K are given by

〈K〉 ≈ v
K1√
N

= √
vK1

(
D

leff
K

)3/2

= v2 K4
1

A3
D6

= v2K1

(
D

δB

)6

π6; leff
K =

√
A

〈K〉 (38)

For example, for grain sizes D ≈ lK/3 ≈ 10–15 nm the
magnetocrystalline anisotropy K1 is reduced by 3 orders
of magnititude to a few joule per cubic meter and the
effective exchange length leff

K becomes 2 orders of mag-
nititude larger than the exchange length lK. In nanocrys-
talline Fe73.5Cu1Nb3Si13.5B indeed wide domain widths of
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approximately 2 µm could be observed by high-resolution
Kerr effect studies (Schäfer, Hubert and Herzer, 1991). If
additionally a significant macroscopic anisotropy Ku exists
resulting from shape anisotropy, induced anisotropy, or mag-
netoelastic anisotropy the total averaged anisotropy can be
written as (Herzer and Varga, 2000)

〈K〉 = Ku + 1

2
v
√

KuK1

(
D

leff
K

)3

(39)

The expressions for the random anisotropy, which are
valid for uniaxial and cubic crystals, can be used to
determine χ0 and Hc of nanocrystalline soft magnetic
materials.

6.1.2 Application to (single-)crystalline materials

In (single-)crystalline soft magnetic materials dislocations,
dislocation dipoles and point defects or impurity atoms act
as pinning centers for domain walls. Dislocations have a
magnetostrictive interaction with domain walls due to the
elastic interaction energy of the magnetostrictive elastic
stresses of the domain wall and the longer-range elastic
stresses of the dislocations. In many cases, the dislocation
structure of plastically deformed materials is composed
of dislocation dipoles which may be formed by cyclic
deformation or by agglomerations of vacancies or interstitial
atoms.

For dislocations, dislocation dipoles, and point defects
the temperature dependence of Hc and χ0 is determined
by the intrinsic material parameters Js, K1, A, and the
magnetostriction λs. In the case of individual disloca-
tions the temperature dependence of Hc and χ0 is given
by

Hc(T ) ∝ λs

Js

(
A

K1

)1/4 √
N ∝ δ

1/2
B ;

χ0(T ) ∝ J 2
s

λs

(
A

K1

)1/4 1√
N

∝ δ
1/2
B (40)

with the same dependence of Hc and χ0 on δB, that is,
the pinning effect decreases with decreasing wall width δB.
However, with increasing magnetostriction λs and disloca-
tion density N , χ0 decreases, whereas Hc increases. The
Rayleigh constant αR is independent of δB and its temper-
ature dependence on the magnetic material parameters is
given by αR ∝ J 3

s /(λ2
sN). As according to equation (36) αR

is inversely proportional to L3, with increasing domain wall
density αR increases. In the case of dislocation dipoles (and
point defects), the temperature dependence of Hc follows

the law

Hc(T ) ∝ λs

Js

(
K1

A

)1/4 √
N ∝ δ

−1/2
B (41)

and the interaction force increases with decreasing wall width
δB. The initial susceptibility χ0 decreases according to a δ

3/2
B

law with decreasing wall width δB.
For Ni single crystals the δ

1/2
B and the δ

−1/2
B dependence

of Hc has been measured as illustrated in Figure 22(b). The
temperature dependence of Hc in as-grown single crystals
is owing to dislocations as main pinning centers and to
dislocation dipoles after heavy neutron irradiation. As K1

increases with decreasing temperature, Hc decreases in the
case of dislocations and increases in the case of dislocation
dipoles with decreasing temperature.

6.1.3 Application to nanocrystalline materials

In nanocrystalline soft magnetic materials, the macroscopic
magnetocrystalline anisotropy reveals very small or virtually
zero due to the random-anisotropy effect. For grains with
diameters smaller than the wall width, the hysteresis loops
typically show an enhanced remanence (Jr/Js > 0.90) and
the coercivity Hc and the initial susceptibility χ0 are closely
related to 〈K〉 by

Hc = Pc
〈K〉
Js

∝ D6; χ0 = Pχ

J 2
s

µ0〈K〉 ∝ D−6 (42)

with the parameters Pc = 0.96 and Pχ = 0.33 for uniaxial
grains and Pc = 0.94 and Pχ = 0.33 for cubic grains and
K1 > 0. For the Rayleigh constant αR a D−12 law holds
due to equations (37). In Figure 23 the D6, D−6 and D−12-
law for Hc, χ0, and αR have been tested for different
nanocrystalline iron-based alloys (Herzer, 1997).

In nanocrystalline magnets, the magnetization process
takes place by domain wall displacements for D < leff

K and
by rotational processes for D > leff

K : The selfconsistency
conditions for domain wall displacements and rotational
processes respectively are given by

χ0Hcµ0

Js
=

√
π

2
v

δB

L3

(
ln

L3

2δB

)1/2

;

χ0µ0Hc

Js
= PcPχ ≈ 0.32 (43)

where in the first relation v corresponds to the relative
volume and the domain walls are oriented parallel to the
applied field and the second relation holds for uniax-
ial and cubic symmetry. By plotting χ0Hcµ0/Js the type
of magnetization processes can be analyzed as shown in
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Figure 24(a) for nanocrystalline Fe73.5Si13.5Nb3Cu1B6 (Hof-
mann, Reininger and Kronmüller, 1992). For annealing tem-
peratures TA < 850 K (D < leff

K ) domain wall displacements
occur, whereas for Ta > 900 K (D > leff

K ) rotational processes
take place.

For grains with diameters significantly larger than the wall
width (D � leff

K , D > 100 nm) domains can be formed within
the grains and Hc and χ0 are given by Kronmüller and
Hilzinger (1976)

Hc = 2γ B

Js cos ϕ0

1

D
; χ0 = 2

3

J 2
s cos ϕ0D

2

4πµ0γ BL3
(44)

where ϕ0 is the angle between the applied field and the
polarization within the domains. Then the magnetization
process takes place by the bowing of domain walls at grain
boundaries. In Figure 23 for large D the 1/D and D2 law for
Hc and χ0 have been obtained for different nanocrystalline
iron-based alloys.

In the case of an appreciable macroscopic-induced aniso-
tropy, according to equation (39), Hc obeys a D3 law which
has been experimentally confirmed by Murillo and González
(2000) and by Suzuki, Herzer and Cadogan (1998) as shown
in Figure 24(b).

6.1.4 Application to amorphous materials

In amorphous alloys at least five pinning effects for domain
walls may contribute to the total coercivity (Kronmüller,
1981a; Kronmüller and Fähnle, 2003). These contribu-
tions are intrinsic fluctuations (H i

c) which give rise to a
lower limit of the coercivity, short-range-ordered effects
(H cl

c ) and relaxation effects (H rel
c ) both of which may

be minimized by a suitable annealing treatment, surface
effects (H surf

c ) which can be minimized by extremely
smooth surfaces and internal stress sources (Hσ

c ) interact-
ing with domain walls which can only be reduced sig-
nificantly by using nonmagnetostrictive alloys. Within the
framework of the statistical potential theory the contri-
butions due to statistically distributed types of pinning
centers add quadratically whereas the effect of relax-
ation processes has to be added linearly because each
domain wall is submitted to a stabilization energy with
wavelength 2L0. Thus, the total coercivity is given by
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Kronmüller (1981a)

H total
c = [

(Hσ
c )2 + (H surf

c )2 + (H cl
c )2 + (H i

c)
2]1/2 + H rel

c
(45)

In the special case where the contribution of the pinning due
to surface irregularities is larger than all other contributions,
the different terms add linearly as the wavelength of the
surface pinning is much larger (≈10 µm) than that of the
intrinsic fluctuations (<0.5 µm). In the following text, the five
contributions are ordered with increasing influence on Hc.

a Intrinsic fluctuations : The intrinsic fluctuations of ex-
change interactions and local anisotropies due to the non-
periodic atomic arrangement may act as pinning centers for
domain walls. In general, the statistical fluctuations of an
intrinsic material parameter P (r) is the sum of the vol-
ume average 〈P (r)〉 and the fluctuating part δP (r) of the
parameter

P (r) = 〈P (r)〉 + δP (r) (46)

If a domain wall is exposed to fluctuations of the local
anisotropy energy δK(r) and of the exchange energy δA(r)

the resulting intrinsic coercive field is given by Kronmüller
(1981b)

µ0H
i
c =

√
π

Ms

√
ρM〈�〉√
2FBδB

×
(

8

15
〈δK2〉 + 11

15
〈δA2〉π

4

δ4
B

)1/2 (
ln

L3

2L0

)1/2

(47)
where ρM corresponds to the density of magnetic ions
and 〈�〉 to the average atomic volume. For statistical
independent fluctuations 〈δK2〉 and 〈δA2〉 may be replaced
by 〈K2〉 and 〈A2〉. Depending on the material parameters
µ0H

i
c of amorphous soft magnetic materials amounts to

10−7 –10−4 mT (e.g., Fe: µ0H
i
c = 3.2 × 10−5 mT).

b Clusters of chemical short-range-ordered regions : The
formation of chemical short-range-ordered clusters which are
characterized by the number ncl of atoms per cluster results
in an enhancement of the intrinsic coercive field by a factor√

ncl (Kronmüller, 1981a)

µ0H
cl
c = µ0H

i
c
√

ncl (48)

Depending on the material parameters µ0H
cl
c is smaller than

10−4 mT.

c Surface irregularities : The natural surface roughness of
amorphous ribbons may also influence the coercivity. A planar
domain wall of lateral extension L2 in y direction (Figure 8b)
moving through a ribbon of thickness T (z) therefore changes

its domain wall area as a function of position z. Its total energy
and the force exerted on it may be written as

φγ (z) = γ BL2〈T (z)〉;

P surf(z) = −γ BL2
d

dz
〈T (z)〉 (49)

where 〈T (z)〉 corresponds to the statistical average of T

in y direction and γ B is the specific wall energy. For a
sinusoidal z dependence 〈T (z)〉 = 〈T 〉 + �T sin(2πz/λ) (λ:
wavelength of the surface irregularities, �T : amplitude of
the surface irregularities) the surface coercive field is given
by Kronmüller (1981a)

µ0H
surf
c = π

Ms

�T

〈T 〉 γ B
√

ρs

√
L2

2λ
ln

(
L3

2L0

)
∝ 1

〈T 〉 (50)

where ρs ≤ λ2 denotes the number of surface pinning centers
per unit area. The increase of H surf

c with decreasing 〈T 〉 after
several surface pretreatments is shown in Figure 25(a). The
increase is largest for grinding with glasspaper and smallest
for electropolished samples. µ0H

surf
c normally amounts to

10−4 –10−3 mT.

d Relaxation effects : Domain wall mobility is furthermore
affected by the magnetic aftereffects. As the relaxations
are thermally activated, the mobility of the domain walls
becomes time dependent. The reorientation of atom-pair axes
within the domain wall into energetically more favorable
orientations results in a stabilization of the domain wall.
The additional field required to overcome this statistical
force field is the time-dependent coercive field of relaxation
(Kronmüller, 1981a)

µ0H
rel
c (t) = const

ε2
pρp

kT
(1 − e−t/τ ) (51)

where ρp is the atom-pair density reorienting with a relax-
ation time τ and εp is the interaction energy of atom pairs
with the spontaneous polarization. If the displacement of
domain walls can be described by the statistical potential
theory H rel

c can be derived from the fundamental relation

χ0(t)Hc(t) ≈ JsδB

L3
(52)

Accordingly, a relaxation �χ of the initial susceptibility χ0

is related to an increase �Hc of the coercive field as given by

H rel
c (t) = �Hc(t) = −�χ(t)

χ0
Hc(0) (53)

where Hc(0) is the unrelaxed coercivity. As experimentally
the relative relaxation �χ/χ0 was found to vary from 0.05 to
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(b) Temperature dependence of Hc for magnetostrictive Fe–Ni-
based alloys in the temperature range 100–310 K. (Reproduced
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 1981.)

1.0 (Allia, Mazzetti and Vinai, 1980; Moser and Kronmüller,
1980) H rel

c may contribute significantly to the total coercive
field (µ0H

rel
c = 10−5 –10−3 mT).

e Internal stresses : In magnetostrictive materials elastic
stress sources are the dominant pinning centers, therefore,
governing the coercive field. With increasing magnetostric-
tion λs the coercivity Hc increases and χ0 decreases. For
quasidislocation dipoles, which are the main sources of elas-
tic stresses, the coercive field is given by

µ0H
σ
c ∝ λs

Js

(
K1

A

)1/4

(54)

This relation has been tested in Figure 25(b) for various
nickel–iron based amorphous alloys showing the predicted
temperature dependence of Hc (Gröger and Kronmüller,
1981). It has been shown (Kronmüller, Lenge and Haber-
meier, 1984) that elastic dipoles of extensions 1–10 nm are
present in amorphous alloys with a high density of 1018 m−3.
Depending on the material parameters and the defect density
µ0H

σ
c amounts to 10−3 –10−2 mT.

6.2 High-frequency behavior and losses

When a soft magnetic material is subjected to a time-varying
magnetic field H(t) various energy dissipation mechanisms
occur so that part of the energy injected into the system by
the external field is irrevocably transformed into heat. In a
cyclic field of frequency f the loss per cycle, that is, the
energy per unit volume converted into heat, is given by

W =
∫

H
dB

dt
dt (55)

The loss per unit time is called power loss P = f × W

[W m−3]. The total power loss P at frequency f is the sum
of the (static) hysteresis loss Ph due to defect structures
interacting with domain walls, the classical (eddy current)
loss Pcl due to the specimen geometry and the excess (eddy
current) loss Pexc (formerly called anomalous loss) due to the
existence of magnetic domains. The frequency dependence
of the three contributions to the total power loss per cycle are
shown in Figure 26(a). When the material is (de)magnetized
under sinusoidal induction rate, the total power loss P is
given by Bertotti (1998) and Bertotti (2006)

P = Ph + Pcl + Pexc; Ph = 4khystB
βf ;

Pcl = π2σd2

6
(Bf )2; Pexc = kexc

√
σ(Bf )3/2 (56)

where σ is the electrical conductivity of the material and
B the amplitude of magnetic induction. khyst and β include
the structural aspects which affect domain wall pinning and
magnetization reversal, kexc includes microstructural effects
as grain-size fluctuations or wavelengths of stresses. The
eddy current losses give rise to changes in the shapes of
the hysteresis loops as shown in Figure 26(a).

The hysteresis loss is the power loss obtained when the
field is cycled slowly under quasistatic conditions. It is
(like the coercivity) directly related to structural disorder
in the material which provides sources for domain wall
pinning. The hysteresis loss is a consequence of the fact
that magnetization proceeds through Barkhausen jumps of
domain walls which are unpinned from defects by the
pressure of the external field. Each wall jump results in an
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induction change which induces local eddy currents which
in turn dissipate a finite amount of energy as heat. The sum
over all jumps results in the hysteresis loss. The amount
of energy which is dissipated during individual wall jumps
is determined by the height of the energy barrier created
by the pinning obstacle. As a general rule, the smaller
the coercivity, the smaller is the hysteresis loss. According
to equation (56) the hysteresis loss is independent of the
electrical conductivity σ and of the sample thickness d

when pinning effects are volume effects (however, when
the surface of the sample acts as relevant pinning source,
the hysteresis loss increases with decreasing thickness of the
sample). The hysteresis loss per cycle (Wh = Ph/f ), which is
equivalent to the area enclosed by the quasistatic hysteresis
loop, is furthermore independent of the frequency f .

The classical loss is always present in metallic soft
magnetic materials. It is obtained from solving Maxwell’s
equations for a homogeneous conducting medium with
no structural inhomogeneities and no magnetic domains
(Bozorth, 1993). The boundary conditions which are given
by the system geometry determine the distribution of eddy
currents in the specimen and the ensuing heat dissipation.
The classical loss can be minimized by reducing both the
electrical conductivity σ and the specimen thickness d.
Therefore, magnetic cores of devices are never made of bulk
soft magnetic materials.

The excess loss results from the large-scale motion of
domain walls in the specimen. Around the moving domain
walls eddy currents tend to concentrate. The influence of
excess losses significantly depends on the size and arrange-
ment of magnetic domains. For a regular arrangement of
longitudinal domains the expression for the excess loss in
equation (56) simplifies to Pexc = 1.63(2L/d)Pcl (d: spec-
imen thickness, L: average domain width) (Bishop, 1976).

The finer the domain structure, the smaller is the excess
loss. The excess loss can be neglected when the domain
width is much smaller than the specimen thickness or when
magnetization changes homogeneously by rotation as is the
case for flat-type hysteresis loops with small Jr/Js ratios (for
hysteresis loops with large Jr/Js ratios where the magnetiza-
tion process takes place by domain wall displacements excess
eddy current losses do occur).

The initial permeability µi is independent of the fre-
quency for low frequencies, whereas for high frequencies
µi approaches unity (Figure 26b) The frequency at which µi

starts to decrease depends on the magnetic material and has
its origin in the occurence of resonance effects, for example,
dimensional resonance due to the sample geometry, magnetic
resonance due to the rotation of the magnetization against the
action of the anisotropy field or due to the resonant oscillation
of domain walls.

Especially amorphous and nanocrystalline alloys reveal
low losses and a high permeability even at elevated frequen-
cies which is essentially related to the facts that they are
produced as thin ribbons and that their electrical resistivity
is high, both reducing eddy current losses.

7 APPROACH TO SATURATION:
MICROMAGNETISM AND
MICROSTRUCTURE

The approach to saturation of a ferromagnetic hysteresis loop
is known as the region of quasisaturation where the angle
between the spontaneous polarization Js and the applied field
H is very small. In this region the hysteresis loop can be
regarded as fully reversible and the field dependence of the



Micromagnetism–microstructure relations and the hysteresis loop 27

polarization can be generally written as (Kronmüller, 1959;
Kronmüller and Fähnle, 2003)

J (H, T ) = Js −
6∑

i=1

ai/2

Hi/2
+ �JSW + χpµ0H (57)

that is the approach to saturation is determined by intrinsic
and extrinsic properties.

Intrinsic properties are magnetocrystalline anisotropies,
spin waves, and the Pauli paramagnetic susceptibility χp. In
(nano) crystalline magnets the magnetocrystalline anisotropy
results in a a2/H

2 term and a a3/H
3 term. For uni-

axial anisotropy, Danan (1958) derived for the coeffi-
cients a2 = 4K2

1 /(15J 2
s ) and a3 = 16K3

1 /(105J 3
s ). For cubic

anisotropy, Akulov (1931), Gans (1932), and Becker and
Döring (1939) found for the coefficients a2 = 8K2

1 /(105J 2
s )

and a3 = 192K3
1 /(5005J 3

s ). In amorphous magnets, local
fluctuations of the magnetocrystalline anisotropy give rise
to a a1/2/H

1/2 term at small fields and a a2/H
2 term

at large fields. The spin-wave contribution �JSW for a
quadratic dispersion law of the spin-wave energy spec-
trum can be derived according to Holstein and Primakoff
(1940) as

�JSW = −Js

(
T

T0

)3/2

+ �Jpara

= −Js

(
T

T0

)3/2

+ C(T )fHP (58)

where the first term corresponds to the well-known Bloch’s
T 3/2 law and the second term takes care of the spin-wave
paraeffect which results from the reduction of the number
of magnons by an applied magnetic field. The characteris-
tic temperature T0 and the function C(T ) are related to the
spin-wave stiffness constant Dsp of the magnon energy spec-
trum εk = Dspk

2 (k: spin-wave wave vector) and fHP is the

Holstein–Primakoff function

kBT0 = Dsp

(
Js(0)

0.117µB

)2/3

;

C(T ) =
(

µ
3/2
B kB

2π

)
µ0

(2Dsp)3/2
T ;

fHP = 3
√

µ0H +
√

Js(0)
µ0H + Js(0)

Js(0)
sin−1

×
(

Js(0)

µ0H + Js(0)

)1/2

(59)

with kB Boltzmann’s constant and Js(0) the spontaneous
polarization at T → 0. The enhanced Pauli paramagnetism
of the band structure gives rise to the linear term χpµ0H .

Extrinsic properties are due to magnetoelastic stress
sources which produce inhomogeneous spin states. The cor-
responding deviations from saturation are determined by the
geometry of the defect, the range of the spin inhomogeneity,
and the interaction between defects. Typical spin distributions
around point defects, dislocations, and dislocation dipoles are
shown in Figure 27. Point defects with stress fields varying
as σ ∝ 1/r3 give rise to a a1/2/H

1/2 term. Straight disloca-
tion dipoles with stress fields σ ∝ 1/r2 lead to a a1/H term
as long as the distance D between the two dislocations is
smaller than the exchange length lH = √

2A/(JsH). Other-
wise, the two dislocations act as two single straight (opposite)
dislocations exhibiting a σ ∝ 1/r dependence of the stress
field which gives rise to a a2/H

2 term. Nonmagnetic spher-
ical inclusions of radius r0 result in a a1/2/H

1/2 term for
r0 < lH and in a a3/2/H

3/2 term for r0 > lH.
In general, in the high-field region the paraeffect becomes

important whereas in the lower field region the microstruc-
tural effects are prevailing. For hard magnetic materi-
als the influence of the microstructural effects can be
neglected compared to the influence of the magnetocrys-
talline anisotropy.
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Figure 27. Spin distribution around (a) a vacancy type defect, (b) an isolated quasidislocation, and (c) a quasidislocation dipole.
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The law of approach to saturation can be used to ana-
lyze the defect structures in (nano)crystalline magnets and
especially in amorphous magnets where conventional tech-
niques as X-ray or neutron diffraction or transmission elec-
tron microscopy fail due to the nonperiodic structure. The
analysis of the field dependence also opens the possibility
to determine the temperature dependence of the spontaneous
polarization Js(T , 0) = Js[1 − (T /T0)

3/2] at zero magnetic
field after separation of the microstructural effects and the
paraeffect.

In order to determine the microstructural terms, J (T , H)

has to be plotted as a function of 1/Hn/2. Figure 28 shows
the result of such plots for amorphous Fe40Ni40P14B6 and
Fe40Ni40B20. In the case of Fe40Ni40P14B6 the approach to
saturation is described by a a1/H term for µ0H < 0.2 T.
In contrast, Fe40Ni40B20 follows a a1/H law in the field
range 0.01 ≤ µ0H ≤ 0.03 T and obeys a a2/H

2 law for
0.03 T ≤ µ0H ≤ 0.2 T. The steep increase in the J (H, T )

versus 1/Hn/2 diagrams for µ0H > 0.2 T for both materi-
als is due to the spin-wave term. For an analysis of this
region the spin-wave contribution to J (H, T ) can be elim-
inated by extrapolating the microstructural effects to higher
fields (1/Hn → 0). In Figure 29(a) the paraeffect �Jpara is
represented as a function of the Holstein–Primakoff function
fHP for Fe40Ni40P14B6. It follows from this that the paraeffect
depends linearly on fHP. From the slopes of the straight lines

the functions C(T ) given in equation (59) are obtained. The
magnetoelastic origin of the inhomogeneity terms becomes
obvious in Figure 29(b) where in rapidly quenched or plas-
tically deformed materials the 1/H term is predominant
proving the presence of quasidislocation dipoles, whereas in
nearly nonmagnetostrictive alloys as Co58Ni10Fe5Si11B16 the
1/H term is rather small.

It should be noted that perfect single crystals can be
saturated completely when the magnetic field is applied
parallel to an easy or heavy direction of the crystal. In the
case of orientation parallel to an easy axis the field strength
necessary to reach ferromagnetic saturation is rather small
as the movement of the domain walls is not impeded. In the
case of orientation parallel to a heavy axis ferromagnetic
saturation is reached for µ0H = 2µ0K1/Js by reversible
rotations.

8 TAILOR-MADE HIGH-PERFORMANCE
MAGNETS

According to Sections 5 and 6, both hard and soft magnetic
materials are strongly dependent not only on intrinsic mate-
rial parameters but also on the special types of microstruc-
tures. Actually the deviations from the ideal lattice in many
cases are responsible for certain outstanding properties. The
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function fHP. (Reproduced from Kronmüller et al., 1979, with permission from Elsevier.  1979.) (b) Polarization J (H) as a function of
1/(µ0H) for different amorphous alloys (Grimm and Kronmüller, 1983). (Reproduced from H. Grimm & H. Kronmüller, Phys. Stat. Sol
(b), 117 (1983), with permission from Wiley VCH.)

detailed knowledge of the micromagnetism–microstructure
correlation can be used for a systematic design of high-
performance magnets. In particular, nanocrystalline and
nanostructured magnets allow a wide variation of microstruc-
tures and therefore offer a new opportunity for tailor-
ing extremely hard and extremely soft magnetic mate-
rials. Using suitable additives the grain sizes as well
as the magnetic properties and the chemical composition
of the grain boundaries can be tailored on an atomic
scale.

8.1 Optimization of hard and soft magnets

With nanocrystalline hard magnets based on RE2Fe14B,
magnets with definite properties of the hysteresis loop can
be designed due to the fact that small deviations from
the stoichiometry and small amounts of certain additives
may lead to drastic changes in the magnetic properties.
In Figure 30(a) it is illustrated how the room temperature
magnetic properties change with increasing Fe content for
melt-spun Pr2Fe14B magnets. The increasing Fe content not
only results in an enhancement of the remanence but also
in a decrease of the coercivity. However, as long as the
condition µ0Hc > 0.5Jr is fulfilled, (BH)max increases. Oth-
erwise, (BH)max is limited by irreversible demagnetization
processes.

With nanocrystalline soft magnets based on
Fe73.5Cu1Nb3Si13.5B9 the magnetic properties of the
hysteresis loop can be controlled only in part by the grain-
size effect. If the grain size is small enough, the composition
and the volume fraction of the individual phases take over
the control of the soft magnetic properties. Soft magnetic
applications require not only highest permeability but also

lowest coercivity. A well defined shape of the hysteresis
loop with a well defined level of permeability adjusted
to the particular application is equally important. A wide
spectrum of properties can be tailored by magnetic field
annealing which induces a uniaxial anisotropy with easy
axis parallel to the direction of the magnetic field applied
during the heat treatment. As an example, Figure 30(b)
shows the hysteresis loops after different heat treatments
with and without magnetic field. Accordingly, almost perfect
rectangular (flat shaped) hysteresis loops are obtained for
magnetic fields along (tranverse) to the magnetic path in the
application, whereas a more round shaped hysteresis loop
is obtained by conventional annealing without a magnetic
field. Field induced anisotropies Ku are due to atomic pair
ordering which minimizes the spin-orbit coupling energy. Ku

directly controls the soft magnetic properties, for example,
after tranverse field annealing the permeability is constant
up to saturation and is given by µ = J 2

s /(2µ0Ku) and
after longitudinal field annealing low induced anisotropies
facilitate domain refinement resulting in reduced excess
losses.

A further important aspect many applications look for is
a small temperature coefficient of the magnetic properties
over a large temperature range. Especially, for nanostruc-
tured Sm2(Co,Cu,Fe,Zr)17 hard magnets depending on the
compostion and on the annealing parameters the tempera-
ture dependence of the coercivity Hc can be easily changed
according to Section 5.1.2 from the conventional monotonic
to the recently developed nonmonotonic behavior showing
coercivities up to 1 T even at 400 ◦C. For nanocrstalline soft
magnets a very temperature stable behavior of the permeabil-
ity is guaranteed as the averaging out of the magnetocrys-
talline anisotropy by exchange interaction is effective over a
large temperature range.
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Figure 30. (a) Magnetic properties of nanocrystalline composite Pr2Fe14B permanent magnets as a function of excess α-Fe. For an iron
excess of 30.4 vol%, Jr amounts to 1.17 T, that is, an increase of 51% as compared to the decoupled value of 0.78 T and (BH)max is measured
to be 180.7 kJ m−3. (Reproduced from Goll et al., 1998, with permission from Elsevier.  1998.) (b) Hysteresis loops of nanocrystalline
Fe73.5Cu1Nb3Si13.5B9 soft magnets annealed without (R) and with a magnetic field applied parallel (Z) and tranverse (F2) (Ku ≈ 20 J m−3,
µ ≈ 30 × 103) to the magnetic path. Sample F1 (Ku ≈ 6 J m−3, µ ≈ 100 × 103) was first crystallized and then annealed in a transverse
field. (Reproduced from Herzer, 1996, with permission from Elsevier.  1996.)

8.2 Computational micromagnetism

A rather successful tool for a quantitative and also predictive
treatment of the complex microstructure–property relation-
ship are numerical micromagnetic finite-element simulations
(see also Numerical Methods in Micromagnetics (Finite
Element Method), Volume 2) which may provide general
rules for the design of optimized magnets. Simulations of
magnetization processes of ensembles of grains are obtained
from a minimization of the magnetic free enthalpy G with
respect to the orientation of the spontaneous polarization Js:

δG = δ

∫
(φA + φK + φS + φH) dV = 0 (60)

where G is composed of four contributions: exchange
energy φA = A(∇ϕ)2, crystal anisotropy φK = K1 sin2 ϕ +
K2 sin4 ϕ, stray field energy φS = −1/2HsJs and magne-
tostatic energy φH = −HextJs (ϕ: angle between easy axis
and Js, Hs: stray field which follows from a scalar poten-
tial U by Hs = −∇U and U obeys Poisson’s equation
�U = (1/µ0) divJs). The minimization is usually performed
by using the finite-element technique (FEM). For three-
dimensional numerical simulations a cubic model particle
composed of polyhedral regular or irregular grains is taken
into consideration. In the model particle, the average grain
size and the magnetic material parameters of the grains and
grain boundaries can be modified which enables a systematic
study of the main influences on the characteristic properties
of the hysteresis loop.

As an example, Figure 31 shows the orientation of the
spontaneous polarization Js of the remanent state for a model
composite permanent magnet composed of 35 irregular

grains with an average grain diameter of 10 nm and with
easy axes distributed isotropically. Fifty-one percent of the
grains are soft magnetic α-Fe grains which are embedded
in 49% hard magnetic grains of Nd2Fe14B (Fischer, Schrefl,
Kronmüller and Fidler, 1995). At the grain boundaries the
orientation of Js changes smoothly within a region of
width δB from one easy direction to another one. Under
the assumption of a perfect exchange coupling between
the grains, Figure 32(a) illustrates the dependence of Jr

and µ0Hc on the grain size D. Both quantities decrease
with increasing grain size and Jr and Hc can be fitted
empirically by the following logarithmic laws (Fischer,
Schrefl, Kronmüller and Fidler, 1996)

Jr = Jsat

(
0.84–0.085 ln

D

δhard
B

)
;

Hc = H
(0)
N

(
0.22–0.041 ln

D

δhard
B

)
(61)

with H
(0)
N = 2Khard

1 /Js and Jsat = J hard
s vhard + J soft

s vsoft

where the upper indices refer to the saturation polarizations
and volume fractions of the hard and soft magnetic phases. It
turns out that for grain sizes of 20 nm (5δhard

B ) the coercivity
amounts to Hc ≈ 0.15H

(0)
N and the remanence is considerably

larger than the isotropic value of 0.5Js. Figure 32(b) shows
the numerical results for Jr, Hc, and (BH)max as a function
of the α-Fe content in comparison with experimental data.
Whereas for Jr a fairly well agreement is obtained, the theo-
retical predictions for Hc and (BH)max are appreciably larger
than the experimental values. In the case of (BH)max this is
due to the fact that for the experimental results the condition
µ0Hc > 0.5Jr is only valid for α-Fe concentrations smaller
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Figure 31. Configurations of the easy axes and of the remanent polarization of 35 irregular grains of average diameter 10 nm within a
cube with a volume fraction of 51% α-Fe (dark ) and 49% Nd2Fe14B (light ). (Reproduced from Fischer et al., 1995, with permission from
Elsevier.  1995.)
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α-Fe content in comparison with experimental results. (Reproduced from Fischer et al., 1996, with permission from Elsevier.  1996.)

than 30%, whereas the numerical results fulfill this condition
up to 50%. The observed discrepancy between numerical
and experimental results can be explained by modifying the
intrinsic material parameters within the grain boundaries.
Owing to the atomic disorder within grain boundaries it can

be assumed that especially A and K1 have reduced values
within the grain boundaries. Figure 33(a) shows the influence
of the reduction of these two parameters on the demagneti-
zation curve for a cube of 64 grains of average diameter
20 nm (Fischer and Kronmüller, 1998). For the simulation
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reduced anisotropy and exchange constant (thickness 3 nm). (Reproduced from Fischer & Kronmüller 1998, with permission from Elsevier.
 1998.) (b) Coercive field as a function of the mean grain diameter 〈D〉 and grain boundaries of width 3 nm and reduced material
parameters in comparison with experimental results (Fischer and Kronmüller, 1998).

3 nm grain boundaries are assumed where A and K1 suffer
a steplike reduction. With decreasing A and K1 within the
grain boundaries µ0Hc and Jr also decrease. If the parameter
f = Agb/A = K

gb
1 /K1 (gb: grain boundary) is introduced,

µ0Hc and Jr obey the following relations

Hc

H
(0)
N

= 0.304 + 0.098f ; Jr

Jsat
= 0.646 + 0.036f (62)

A further interesting property is the dependence of
the coercive field on the average grain diameter 〈D〉
(Figure 33b). Here it turns out that the experimental results
obtained by Manaf, Buckley, Davies and Leonowicz (1991)
for nanocrystalline Nd13.2Fe79.6B6Si1.2 can only be received
in numerical simulations by modifying A and K1 within the
grain boundaries. Figure 34 shows the corresponding mag-
netization reversal process for an individual grain separated

from neighboring grains by grain boundaries with reduced
values of A and K1 (Fischer and Kronmüller, 1998). Obvi-
ously, magnetization reversal primarily nucleates within the
grain boundaries, whereas in the grain the polarization starts
to rotate reversibly into the direction of the applied field.

8.3 Future visions and limits

Further progress in the fields of extremely hard and extremely
soft magnetic materials is possible if one succeeds to develop
materials with optimal property spectra where magnetic,
electrical, mechanical, corrosive, and thermal properties are
optimized simultaneously. The development of outstanding
multiproperty materials requires interdisciplinary research
activities where the development of intrinsic properties as
well as investigations of the microstructure and of local
chemical compositions are carried out.

Nd2Fe14B

Boundary

Figure 34. Magnetization distribution at the remanent state and at the overcritical state (field to the right, µ0H = 0.6 T) just before
magnetization reversal. The strong arrows indicate the magnetic moments within the bulk of the grains. (Reproduced from Fisher &
Kronmüller 1998, with permission from Elsevier.  1998.)
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Figure 35. (a) Progress in improving (BH)max of hard magnetic materials over the last century. The shaded region covers hypothetical
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High-coercivity materials are currently based on the inter-
metallic compounds Nd2Fe14B, SmCo5, and Sm2Co17. Defi-
ciencies of these compounds are the low Curie temperature of
Nd2Fe14B (TC = 312 ◦C) and the low spontaneous polariza-
tion of SmCo5 (1.05 T) and Sm2Co17 (1.25 T). This allows
applications only up to 100 ◦C for the Nd2Fe14B systems
and the maximum energy products of the SmCo systems
are a factor of 2–3 smaller at room temperature than that
of Nd2Fe14B. To achieve Curie temperatures of the order
of 450 ◦C far more additives have to be investigated in the
Nd2Fe14B system. Figure 35(a) presents the development of
the maximum energy product (BH)max during the last cen-
tury. The shaded region shows the progress, which could be
still achieved if a FeCo-based magnet with a large sponta-
neous polarization of 2.45 T could be realized by introducing
strong planar pinning centers.

High-permeability materials require large spontaneous
polarization, vanishing magnetocrystalline anisotropy, and
vanishing magnetostriction. A further breakthrough for these
materials could be achieved if nanocrystalline alloys with a
larger spontaneous polarization; however, still a low magne-
tostriction could be found. The spontaneous polarization of
the presently used Finemet of 1.25 T could be raised to 1.5 T
by using a FeZrB alloy. Also the Curie temperature would
be improved and could be further raised by adding Co. The
upper and lower bounds for χ0 and Hc of soft magnetic
materials can be derived from the self-consistence relation-
ship of equation (37) which can be approximately written

as χ0 ≈ MsδB/(HcL3) as the square root of the logarithm√
ln(L3/2L0) does not depend sensitively on L3/(2L0) and

is of the order of 2 (L3 ≈ 100δB − 1000δB). For ratios δB/L3

varying between 10−3 and 10−1 and Ms = 105 A m−1 the
bounds are given by 100 A m−1 < MsδB/L3 < 104 A m−1.
According to Figure 35(b) the CoFe- and NiFe-based amor-
phous and crystalline alloys lie between these two limits,
whereas nanocrystalline FeSiNbCuB alloys are located at
MsδB/L3 = 100 kA m−1 due to the random-anisotropy effect
resulting in domain wall widths of a factor of 5–10 larger
than in amorphous alloys. The fine shaded region shows the
future possible improvement by using optimized nanocrys-
talline soft magnets. The absolute lower and upper limits of
Hc and χ0, respectively, are expected for ideal amorphous
materials with K1 → 0 and λs → 0.
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1 INTRODUCTION

Material properties, including magnetic properties, depend on
a number of factors operating on different length scales so
that often the situation is beyond a description based on sim-
ple theories with one or two equations. Even though progress
is still being made to make computer-aided design simulators
for materials more realistic, much more is still needed before
a material with the desired performance can be designed

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

from first principles. Reliable accurate theoretical models are
needed which can provide enough predictive accuracy. For
magnetic materials, a model accurately describing hystere-
sis loops should be the foundation of such computer-aided
design tools. Many magnetic properties such as coercivity,
remanence, susceptibility, and energy loss can then be deter-
mined from the modeled hysteresis loop.

There were many attempts in the past to develop ana-
lytical models that accurately describe actual experimental
magnetization data. Models have been suggested to describe
the magnetization of ferromagnetic materials. However, only
some of these have had prolonged success. These include
the Preisach model (Preisach, 1935), the Stoner–Wohlfarth
model (Stoner and Wohlfarth, 1948, 1991), the Globus model
(Globus, 1962, 1975), and the Jiles–Atherton model (Jiles
and Atherton, 1986). A detailed review on these models has
been given by Liorzou, Phelps and Atherton (2000). Before
these models can be used in a meaningful way, one has to be
aware of the strengths and weaknesses of each model, since
none of these is capable of giving a truly comprehensive
description of the many magnetic processes that take place
in a magnetic material.

2 DEVELOPMENT OF HYSTERESIS
THEORIES AND CONCEPTS

The phenomenon of hysteresis arises most often as a result
of cooperative behavior of a large number of identical inter-
acting elements (Vicsek, 2001). The most familiar examples
occur in ferromagnetism, but similar behavior occurs in
ferroelectrics (Chen and Montgomery, 1980), ferroelastics
(Tuszynski, Mroz, Kiefte and Clouter, 1988), and mechanics,
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particularly fatigue. For a long time, theory and modeling of
hysteresis in magnetic materials was a subject for the spe-
cialist investigator. However, in recent years, the widespread
accessibility and increasing capability of computers has made
modeling available to a much wider range of investigators,
so that this area of study has become of much broader
interest.

In order to improve materials on a systematic basis, it
is necessary to have an understanding of the underlying
physics of the magnetization process and, in particular,
the relationship between structure and properties of mag-
netic materials. This understanding can then be used to
direct research along directions that are likely to be suc-
cessful in identifying materials with the desired properties.
Another reason for modeling the magnetic properties is in
the design of devices, using computer-aided design methods,
whereby the performance of materials with different prop-
erties can be assessed and compared. These techniques can
be used to identify suitable materials properties for partic-
ular applications and can show how devices are likely to
perform. This approach means that much of the expense
in designing and constructing devices could be eliminated
through the use of computer-aided modeling techniques so
that design changes and optimization are performed on a
computer and the final construction is then based on the
ideal design including an accurate description of the mag-
netic properties.

The magnetic modeling methods that are in use today are
quite diverse and the choice of model depends crucially
on the length scale of interest. Ultimately these models
depend on the presence of magnetization (magnetic moment
per unit volume) in certain localized volumes of materials.
This magnetic moment per unit volume can be represented
in terms of a net magnetic moment per atom, although in
many cases, the magnetic moment is not actually localized
on the atomic/ionic cores, but instead, is caused by itinerant
electrons. The models that we will consider here range from
first principles calculations at the level of discrete magnetic
moments, such as those of Landau, Lifshitz, and Gilbert,
to methods that can be used to model whole magnetic
components of devices on the macroscopic scale such as the
Preisach model.

3 MODELING OF NONLINEAR
MAGNETISM AT THE DISCRETE
LEVEL

From the time of ampere and oersted, it was known that on
the macroscopic scale, a magnetic dipole moment of fixed
magnitude m would rotate under a magnetic field H with

torque � according to the equation

� = µ0m × H (1)

This same concept, the general torque equation, can be
applied at the atomistic scale, or at the level of discrete mag-
netic moments of fixed magnitude, but variable orientation.
This approach can be used to describe the behavior of an indi-
vidual magnetic moment. The behavior of the entire material
can then be determined by integrating the same process over
the entire solid. The rate of change of magnetization M with
time depends on the torque

∂M

∂t
= −γ� (2)

where γ is the gyromagnetic ratio. In the absence of damping
a magnetic moment that is not initially aligned with the total
field will precess around the field direction with a resonance
frequency ω0, which depends on the strength of the field and
the magnitude of the moment

ω0 = γ µ0 H (3)

In the complete absence of damping, this precession
will continue for infinite time as shown in Figure 1(a).
In practice, there is always some damping in solids and
therefore for light damping (long time constant) there will
be some precessional motion, and some rotational motion
toward the field direction as shown in Figure 1(b). The
time taken to do this will depend on the damping coef-
ficient. At high levels of damping (short time constant),
the precessional component of the motion is suppressed
because the moment reaches its final equilibrium orien-
tation before precession has taken place, as shown in
Figure 1(c).

H

z

H

z

H(a) (b) (c)

z

qi

Figure 1. The motion of magnetic moment under the action of
a magnetic field depends crucially on the level of damping.
(a) No damping results in precession, (b) light damping results in
a spiraling motion of the magnetic moment into the field direction,
and (c) heavy damping results in a rotation of the moment into the
field direction with no precession.
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3.1 The Landau–Lifschitz–Gilbert model

The preceding equations describe the behavior of magnetic
moments in isolation. In a magnetic material, there are
interactions between the moments, so that magnetism in
solids is a cooperative process. Therefore, the preceding
equation must be modified when dealing with moments in
a solid to take into account these interactions. Landau and
Lifshitz (1935) and Landau (1967) suggested the following
modification

∂M

∂t
= −γ � − 4πλd

M2
(M × M × H) (4)

where λd is the damping coefficient and the second term on
the right-hand side of the equation is the damping term which
restrains, effectively slows down, the rotation of the moments
under the action of a field. There is no direct experimental
verification of the damping term, but the existence of such
a term in bulk materials is reasonable from a theoretical
standpoint.

A crucial question arises over the exact form of the
magnetic field H that should be used in this equation. For an
isolated magnetic moment in free space, this will be just the
classical magnetic field obtained from Maxwell’s equations.
However, in view of the magnetic interactions that exist
within a material, this total field must also include any other
interactions that give rise to a turning force on a dipole. An
obvious and well-known example of this is the exchange
interaction, which is not included in the classical description
of the magnetic field under Maxwell’s equations.

The damping coefficient in the model equation is treated as
an adjustable parameter, since there appears to be no obvious
way to determine this from first principles. A value is used
that is consistent with experimental data and this is then used
to determine the behavior of an array consisting of a large
number of individual magnetic moments under the action
of an applied field. The model does not explicitly include
temperature in the calculations, although one can argue that
the damping coefficient is temperature dependent. However,
this provides only one rather arbitrary way of including
temperature effects in the model.

Subsequently Gilbert considered the problem from a
continuum perspective, and developed a modified form of
the equation (Gilbert, 1955, 2004). The Gilbert form of the
equation, as shown in the following text, is now used more
often than the Landau–Lifshitz form of the equation:

∂M

∂t
= −γ µ0 M × H + α

M

(
M × ∂M

∂t

)
(5)

where α is damping parameter.

In principle, the Landau–Lifshitz–Gilbert (LLG) model
can be used either at the atomistic scale or at the ‘micromag-
netic’ continuum scale with the unit cells being much smaller
than a single domain. The model is really directed toward
volumes smaller than a single domain. Practical applications
of the model are made at length scales much greater than the
atomistic. Individual ‘moments’ are defined for the purposes
of the model at the level of typically 50 nm and each of these
moments is treated as an indivisible unit. This can be justified
if there is coherent rotation of the atomic moments occurring
over the volume occupied by these moments. The model is
suitable for time-dependent calculations of the reorientation
of magnetic moments under the action of a field. It has the
advantage over other models of not requiring the moments
within a domain to be parallel, in fact as shown in Figure 2
it calculates the optimum orientations of moments, which in
general are not necessarily parallel.

The results of calculations based on the LLG model can
be averaged to provide hysteresis curves of materials as
shown in Figure 3. The model can be extended beyond the
range of the single domain into simulations of multidomain
specimens through the use of finite element methods. This
approach, known as computational micromagnetics, enables
both micro- and macroscale calculations to be incorporated
into a single model simulation (Kronmuller, Fischer, Hertel
and Leineweber, 1997; Fidler and Schrefl, 2000). This allows
microstructure of a material to be included in the simulation
and in this way it is possible to combine the advantage of
exact theoretical equations developed for a small number of
interacting magnetic moments with applications to practical
materials.

4 MODELING OF NONLINEAR
MAGNETISM BY DOMAIN ROTATION

Some aspects of hysteresis can be described in terms of a
model of the rotation of magnetization. This takes no account
of the details of the individual moments below the single
domain in scale and therefore unlike the LLG model, it
does not try to account for the differences in orientations
of individual magnetic moments within the domain.

Within domains, the model considers the competing effects
of anisotropy and magnetic field on the orientation of
moments as shown in Figure 4. The domains themselves can
have random alignments or they can be textured (meaning
preferred orientation) or they can be even completely aligned
in certain directions, although this would be a relatively
trivial case requiring nothing more than a calculation of
moment orientations within one single-domain particle.
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my

mx

(a)

(b)

Figure 2. Solution of the Landau–Lifshitz–Gilbert equation for an array of magnetic moments representing a thin film of permalloy of
dimensions 2 µm by 0.5 µm. (After R.D. McMichael, http://www.ctcms.nist.gov/∼rdm/mumag.org.html.) For the purposes of calculation,
each individual magnetic moment occupies an area of 0.05 µm ×0.05 µm. The solution shows the remanent state after the magnetization
had been saturated along the long axis (a) and after the magnetization had been saturated along the short axis (b). (With special thanks to
Dr Robert D McMichael.)

4.1 The Stoner–Wohlfarth model

The Stoner–Wohlfarth model takes as its basis an array of
single-domain particles that can reorient their magnetization
by coherent rotation of all moments within the domain.
The model considers a dispersion of single-domain magnetic
particles in some other unspecified matrix material. The
model in its original formulation assumed that there were no
magnetic interactions between the particles. In other words,
the distribution of the particles was so dilute that each particle
was effectively isolated and could not be influenced by
the orientation of any other particles. This assumption can
be changed, and in fact, it has been changed by others,
although including such interactions adds greatly to the
computational complexity of the model. The model in its
original formulation also assumed axial anisotropy. This is
the simplest type of anisotropic calculation to make. Other

forms of anisotropy such as cubic can be included (Lee and
Bishop, 1966).

The basic idea of the model is to consider the reorienta-
tion of a magnetic moment within a single-domain particle
in which the applied field is at some arbitrary angle to
the anisotropic easy axis. In the case of the uniaxial easy
axis along the field direction (Figure 5), this results in a
bimodal switching behavior with resultant coercive fields in
the forward and reverse directions. In the other extreme case,
where the magnetic field is applied along the anisotropic hard
axis, this results in a magnetization curve with no coercivity
(Figure 6). In general, the domains will be oriented at an arbi-
trary angle relative to the field and such domains will have
properties that lie between these two extremes (Figure 7).
A material may be considered to consist of an assembly
of domains, each at different angles to the field direction
(Figure 8). The overall magnetization of the multidomain
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Figure 3. Calculated magnetization curve for the 2 mm ×0.5 mm
permalloy film shown in Figure 2. ‘my’ shows the component of
magnetization along the long axis.
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Figure 4. Rotation of magnetization MS of an isolated single
domain under the competing effects of magnetic field H and
anisotropy HK.

HK
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H

MS
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Figure 5. (a) Rotation of the direction of magnetization MS of a
single-domain particle with uniaxial anisotropy, oriented with its
easy axis HK along the direction of the applied field H , and (b) its
corresponding magnetization curve.

sample is then the vector sum of all of the magnetic moments
of the domains divided by the total volume as shown in
Figure 9.

The turning force on a magnetic moment due to the applied
field depends on the vector product of magnetic moment
with magnetic field. The turning force on the magnetic

HK H

(a) (b)

MS

M
HK

tk

fq
tH

H

MS

Figure 6. (a) Rotation of the direction of magnetization MS of a
single domain particle with uniaxial anisotropy, oriented with its
easy axis HK perpendicular to the direction of the applied field
H , and (b) its corresponding magnetization curve (note absence of
hysteresis).

HK
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H

(a) (b)

MS

K/MS

M

Figure 7. (a) Rotation of the direction of magnetization MS of a
single domain particle with uniaxial anisotropy, oriented with its
easy axis HK at an arbitrary angle to the direction of the applied
field H , and (b) its corresponding magnetization curve.

moment due to anisotropy is the derivative of the energy with
respect to angle. The Stoner–Wohlfath model determines the
equilibrium orientation of magnetization by equating these
terms. For a particle with uniaxial anisotropy, the equilibrium
orientation is given by

µ0 H MS sin φ − 2K1 sin θ cos θ − 4K2 sin3 θ cos θ = 0 (6)

where φ is the angle of the magnetization MS relative to
the field H, K1 and K2 are the first and second anisotropy
coefficients, respectively, and θ is the angle of the mag-
netization relative to the magnetic easy axis. From the
Stoner–Wohlfarth model, it is possible to calculate the sat-
uration field HS needed to rotate the magnetization of the
most difficult domain oriented at 90◦ to the field direction,

HS = 2K1 + 4K2

µ0 MS
(7)

It is also possible to calculate the coercivity of the domains
based on the switching field needed to reorient the domain
aligned antiparallel to the field,

HC = 2K1

µ0 MS
(8)
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to a field strength of K/(µ0MS), where K is the anisotropy coefficient and MS is saturation magnetization. The magnetization axis shows
the component of magnetization along the field direction, normalized relative to the saturation magnetization MS.
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Figure 9. A composite hysteresis curve obtained by summing
the elementary magnetization curves for a randomly distributed
orientation of easy axes.

The model has been widely used for describing the
dependence of magnetic properties of materials on anisotropy
and texture. In addition, many of the original ideas behind
the model have been developed and extended and have found
applications in fine particle systems (Spratt, Bissell, Chantrell
and Wohlfarth, 1988; Chantrell, 1997).

5 MODELING OF NONLINEAR
MAGNETISM BY DOMAIN BOUNDARY
MOVEMENT

In multidomain samples, much of the magnetization change
occurs in the domain boundary regions and therefore it is
of great interest to know and understand what changes are
occurring at the boundary in order to describe and predict
the properties of such materials. The importance of domain
boundary motion has been recognized by many investigators
including (Becker, 1932; Kersten, 1943, 1956; Neel, 1944,
1959; Globus, 1962, 1975; Globus and Duplex, 1966, 1969;
Globus, Duplex and Guyot, 1971; Globus and Guyot, 1972;

Guyot and Globus, 1973; Escobar, Valenzuela and Magana,
1983; Escobar, Magana and Valenzuela, 1985) and more
recently by Bertotti (1988). The main idea in the treatment of
domain boundary motion is to separate the motion into two
components: reversible and irreversible. In most respects,
this separation is somewhat artificial, since both processes
take place together in multidomain materials. However, the
physics of the situation can be more easily analyzed if these
processes are separated. Irreversible processes necessarily
cause energy dissipation and lead to coercivity and hysteresis
while reversible processes do not.

The motion of domain walls can further be divided into
two types: flexible wall motion and rigid wall motion. The
higher the surface energy of the domain walls, the greater
the tendency to move in planar fashion, particularly if the
pinning sites that restrain the domain wall are weaker. On
the other hand, domain walls with lower surface energy will
tend to bend first, particularly if the pinning sites are stronger.
In practice, components of both types of movement occur
together.

5.1 The Becker–Doring model

In the case of planar wall motion, much of the early modeling
was developed by Becker, who was particularly concerned
with the movement of domain walls interacting with regions
of inhomogeneous strain, such as dislocations. Simplifying
assumptions need to be made in order that an analytical
solution can be obtained. Assuming a simplified periodically
varying internal potential through which the domain walls
move, an expression for the initial susceptibility χ in for a
material of a volume V composed of 180◦ domain walls of
thickness δ can be derived in terms of the amplitude and
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wavelength of the periodic potential,

χ in = 2 A l2 µ0 M2
S cos2 θ

3π2 λS σ 0 V δ
(9)

where θ is the angle of the domain magnetization relative to
the applied magnetic field, A is the cross-sectional area of
the wall, l is the periodicity of the internal potential with
amplitude Emax = 3 λS σ 0/2 due to periodically varying
stress of amplitude σ 0 in a material of magnetostriction λS.
The critical field, or local coercivity, occurs when the domain
wall moves over one of the local maxima in the slope of the
potential and is therefore given by

HC = π Emax δ

l µ0 MS cos θ
(10)

5.2 The Kersten–Néel model

Models have been developed by Néel and Kersten in the
case of domain wall bending as shown in Figure 10. Kersten,
in particular, was concerned with the movement of domain
walls that were pinned by ‘inclusions’, which meant simply
inhomogeneous volumes within the material. In this case,
equations can be derived for the initial susceptibility for small
deformations of the domain wall

χ in = µ0M
2
S l3h(cos θ1 − cos θ2)

2

3γ πV

= µ0M
2
S l2h(cos θ1 − cos θ2)

2

3γ πL
(11)

where l is the spacing between the pinning sites, L is the
length of the domain, γ π is the domain wall energy per unit
area, V is a volume of a material, and h is the length of the
section of domain wall as shown. For the local coercivity

2L

MS
MS

S

h

H

q

r
I

Figure 10. Deformation of a domain wall under the action of an
applied magnetic field.

or critical field HC above which the domain wall will break
away from the pining site

HC = γ π cos φcrit

µ0 MS l (cos θ1 − cos θ2)
(12)

where θ1 and θ2 are the angles of the magnetization relative
to the magnetic field on either side of the domain wall.

5.3 The Globus–Guyot model

In the case of ferrites in which the defects are mostly
confined to grain boundaries, the domain walls will be pinned
principally at the grain boundaries and therefore the behavior
can be modeled assuming that the domain walls move
simply by bending like an elastic membrane as described
by Globus (1962). The Globus model depends on equations
for deformation of the domain walls similar to those of
Kersten. For the purposes of modeling, an approximation is
made in which the grains are assumed to be spherical. Most
applications of ferrites are for higher frequency magnetic
field and therefore the domain walls can be considered to
vibrate under the action of a time-dependent field.

Under the action of a ‘weak’ applied magnetic field,
the domain walls deform but remain fixed on the grain
boundaries. From this it was predicted that the permeability
depended linearly on the grain diameter. Comparison with
experiment yielded good agreement (Globus and Duplex,
1966). Further studies showed that wall motion components
dominate in ferrites, while rotational processes, which are
dependent on anisotropy but not grain size, are of secondary
importance in these materials (Globus and Duplex, 1969).
The equation governing the deformation of the magnetic
domain walls are described by Globus, Duplex, and Guyot
(1971). Although the model was developed originally to
describe the properties of ferrites, it was later shown to be
valid for spinels and garnets. Dissipative processes resulting
from translation of the domain walls at higher field strengths
were added to the model subsequently by Guyot (Globus and
Guyot, 1972; Guyot and Globus, 1973).

The most comprehensive treatment of the underlying
theory of this model, including most of the equations, has
been given by Escobar, Valenzuela and Magana (1983) and
Escobar, Magana and Valenzuela (1985). Accordingly, the
initial susceptibility due to domain wall bending is

χ in = µ0 M2
S D

γ π

(13)

where MS is saturation magnetization, γ π is the domain wall
surface energy, and D is the grain diameter. The value of the
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critical field for the unpinning of domain walls is

HC = 2 f

µ0 MS D
(14)

where f is the pinning force per unit length on the domain
wall along the grain boundary, which is assumed to be
independent of the applied field.

5.4 The statistical pinning theory model

If the force f (z − zJ ) between a defect at position zJ in a
ferromagnetic material and a domain wall at position z mov-
ing perpendicular to z is introduced, the total force F(z) =∑N

J=1 f (z − zJ ) of all defects N interacting with the domain
wall could be taken into account using statistical methods.
Such model was elaborated by Kronmuller and others (Kro-
nmuller, 1992), and allowed computing the properties of the
initial magnetization curve and the parameters of the hys-
teresis loop in the Rayleigh region M = χ in H + αR µ0 H 2:

HC = 1

µ0MSA|cos φ|
(

B0

2

)1/2 (
ln

L3

2L0

)1/2

χ in = µ0A(2MS cos φ)2

L3

(
π

2B1

)1/2

(15)

αR = µ0A
2|2MS cos φ|3

2π

L0

L3

1

B0

where L0 is the distance between two adjacent defects, L3

and A are the domain wall length and area, respectively, φ is
the angle between the applied field and magnetization. B0 and
B1 are correlation functions, which are directly proportional
to the number of defects N and are related to the individual
interaction force f (z − zJ ) of a defect.

5.5 The stochastic process model

Domain wall modeling concepts can be through the use
of domain wall eddy current dissipation (Bertotti, 1988)
and stochastic process models, in which the domain wall
moves through a randomly fluctuating potential (Alessandro,
Beatrice, Bertotti and Montorsi, 1990; Bertotti, Mayergoyz,
Basso and Magni, 1999). The randomness of the potential
seen by the domain walls can be quantified using two
independent parameters, which represent mathematically the
physical properties of the potential in terms of an average
amplitude and an average fluctuation wavelength.

If HC is a randomly fluctuating function of position, then
it will also be a randomly fluctuating function of the flux .
Local maxima in HC represent pinning sites in the material,

and for large displacements of domain walls, there will be a
correlation length ζ which represents the range of interaction
of domain walls with pinning sites. These effects can be
described if it is assumed that the local coercivity HC obeys
a Langevin equation of the form

dHC

d
+ HC − 〈HC〉

ζ
= dW

d
(16)

where now the ‘flux’  is the measure of displacement of
domain walls, instead of the position, W() is a randomly
fluctuating (‘white noise’) function whose average value will
be zero, and ζ is the interaction length, or correlation length,
for domain walls with pinning sites. Eventually with some
additional limiting assumptions the equation reduces to

ḋ

dt
+ 1

τ
(̇ − µ0 A Ṁ) = − 1

σ G

dHC

dt
(17)

where A is cross-sectional area of the domain wall, G is a
dimensionless parameter, τ is a characteristic relaxation time,
and σ is the electrical conductivity.

The motion of domain walls through the internal randomly
fluctuating potential, leads to discontinuous changes in mag-
netization. These discontinuous processes are manifested as
Barkhausen noise (Schlesinger, 2001), which is closely con-
nected with the existence of hysteresis. Hysteresis is found
to be a direct result of discontinuous, dissipative processes
occurring over small volumes which when summed together
produce the familiar hysteresis over larger volumes. The
Barkhausen emissions are fractal in nature, which means
that the structure of the Barkhausen emissions is indepen-
dent of the scale. A review of the theory behind domain wall
dynamics and the Barkhausen effect has been given by Jiles
(2000).

The domain boundary models are best applied to mul-
tidomain materials in which the movement of magnetic
domain boundaries is the principal magnetization mecha-
nism. This means mostly bulk soft magnetic materials with
low anisotropy and with large density of inhomogeneities
either in the form of strains (dislocations) or inclusions (par-
ticles of a second phase).

6 MODELING OF NONLINEAR
MAGNETISM BY SWITCHING
MECHANISMS

A model for description of hysteresis based on switching
mechanisms such as the Barkhausen effect was proposed
by Preisach (1935). This assumes that a material is com-
posed of an assembly of elemental volumes that each have
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Figure 11. (a) Magnetization curve for an elementary hysteresis loop and (b) its energetic representation as an elementary metastable two-
level subsystem, where the two states m = ±1 (represented by local minima) are divided by a barrier. Differences between extrema and
energy level 0 are shown in units of magnetic field. (c) An example of a 3D plot of a Preisach function P(hA, hB) and its corresponding
contour plot.

a characteristic pair of switching fields (forward and reverse
coercivities) from which the local magnetization curve of the
elemental volume can be represented by a rectangular hys-
teresis loop. The following possibilities are allowed: (i) the
width of the elementary loops have a certain distribution
function, whereby loops with zero width can occur; (ii) the
elementary local hysteresis loops can have their midpoints
offset from zero field, which is known as a bias field. It is
evident that the magnetic state of such local regions will be
field-history dependent. All of the above considerations will
therefore result in magnetic hysteresis.

6.1 The classical Preisach model

The classical Preisach model (CPM), (Preisach, 1935; May-
ergoyz, 1986, 1991) is based on the assumption that a fer-
romagnetic material consists of a large number of elemental
switching volumes. Each fragment is described by an ele-
mentary rectangular hysteresis loop, which has two field
parameters, the critical or the coercive field of the free frag-
ment hC, and the bias field, or offset field, hI. It is useful

and convenient to introduce the switching field parameters
hA and hB (Figure 11(a)):

hA = hI + hC, hB = hI − hC (18)

The meaning of the switching fields is the following: if
the external magnetic field is increased to H1, all elemental
switching volumes whose switching field hA was lower
or equal to the external field hA ≤ H1 would switch their
magnetization up; if the magnetic field is decreased to
H2, all elemental switching volumes whose switching field
hB was higher or equal to the external field hB ≥ H2

would be switched down. The magnetization of all other
elemental switching volumes will depend on previous history
of changes of the external magnetic field.

Introducing the plane defined by the switching fields
hA, hB. Each elemental switching volume has its own point
on that plane and that point is unique for each volume. It
is possible to assume, from the physical point of view, that
hC may be nonnegative only hC ≥ 0, that is, the half of
the plane, hA ≥ hB, will be meaningful only. A probability
distribution function of the elemental switching volumes with
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the switching fields hA, hB or Preisach function P (hA, hB)

may be defined in the plane of the Preisach variables hA, hB.
It is necessary to stress that by definition and from the
physical meaning of the probability distribution function, the
values of the Preisach function P (hA, hB) are nonnegative
on the whole plane hA ≥ hB (Figure 11(c)):

P (hA, hB) ≥ 0 (19)

It is possible to show (Mayergoyz, 1991) that the half of
the plane hA ≥ hB is always divided into two parts, S(+)

and S(−), by a staircase line L(t) (where t is time), which
represents the history of the changes of the external magnetic
field (Figure 12). All elemental switching volumes in the
part S(+) are switched up and have the magnetization ‘+1’,
all elemental switching volumes in the part S(−) have the
magnetization ‘−1’.

Introducing a simple hysteresis operator γ (hA, hB) defined
on the plane hA, hB:

γ (hA, hB)H(t) = Q(hA, hB) =
{+1, if (hA, hB) ∈ S(+)

−1, if (hA, hB) ∈ S(−)

(20)
According to the CPM, the total magnetization of the

system with hysteresis can be written in the form:

M(t) = MS

∫∫
hA≥hB

P (hA, hB)γ (hA, hB)H(t) dhA dhB

= MS

∫∫
hA≥hB

P (hA, hB) Q(hA, hB) dhA dhB

= MS

∫∫
S(+)

P (hA, hB) dhA dhB − MS

×
∫∫

S(−)

P (hA, hB) dhA dhB (21)

H(t)

L(t)

S(−)

S(+)

t

(a) (b)

hB

hA

HS

HS

−HS

−HS

Figure 12. (a) A history of changes of the external magnetic field
and (b) its representation by a staircase line L(t) in the plane of the
switching fields hA, hB. The staircase line L(t) divides the Preisach
plain into two areas S(+) and S(−). HS is magnetic field at which
magnetic saturation of sample is achieved.

where MS represents saturation magnetization of the
specimen.

The magnetization always reaches a saturation point,
which means that any increase of the external magnetic
field H after some field HS will not influence the total
magnetization of the system any further. This means, taking
into account equations (19) and (21), that in such regions
where hA ≥ HS or hB ≤ −HS, the Preisach function is
strictly equal to zero P (hA, hB) = 0. For the geometric
interpretation of the CPM, it is possible to look only at
the Preisach triangle which is defined by these inequalities:
−HS ≤ hA ≤ HS, −HS ≤ hB ≤ HS, hA ≥ hB.

Starting from the demagnetized state, which assumes
equality of numbers of the switched up and switched down
elemental volumes, together with the symmetry of the
P (hA, hB) function along the hA = −hB line, the Preisach
triangle will be divided as shown in Figure 13(a).

Increase of the external magnetic field now results in the
initial magnetization curve or virgin curve (Figure 13(b)).
After the saturation field HS is achieved, all elemental
volumes will be switched up and the system will be saturated.
Next gradual decrease of the external magnetic field to
the negative value of the saturation magnetic field −HS

gives first the remanent magnetization MR (Figure 13(c)),
then the coercive field HC, and finally a negative saturation
state.

The basic properties of the CPM and the fundamental
representation theorem will be mentioned here briefly. A
detailed description of the properties and the proof of the
theorem may be found in Mayergoyz (1986, 1991).

Staircase line L(t), the prehistory of the material : The
interface L(t) between the regions S(+) and S(−) has
a staircase shape. Moreover, past extreme values of the
external magnetic field may be found on this line as hA, hB

coordinates of the vertices of each ‘step’.
Wiping-out property : Each local input maximum wipes

out the vertices of L(t) whose hA coordinates are below this
maximum, and each local minimum wipes out the vertices
whose hB coordinates are above this minimum. It is worth
noting that the wiping-out property is usually fulfilled in real
magnetic materials.

Congruency property : All minor hysteresis loops corre-
sponding to back-and-forth variations of the external mag-
netic field between the same two consecutive extreme values
are congruent. Unlike the wiping-out property, the congru-
ency property is not fulfilled very often for real magnetic
materials.

Symmetry of the CPM : The symmetry property may be
written as

P (hA, hB) = P (−hB, −hA) (22)
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Figure 13. The Preisach triangle in the plane of the switching fields (a) at the demagnetized state, (b) for the initial curve, and (c) at the
remanent magnetization. (d) Hysteresis curve corresponding to the (a)–(c) paths.

Representation theorem: The wiping-out property and the
congruency property constitute the necessary and sufficient
conditions for a hysteresis nonlinearity to be represented
by the CPM on a set of monotonically increasing field
amplitudes.

To use the CPM one needs first to check the wiping-out
and congruency properties and then to define the Preisach
function P (hA, hB). It is difficult to determine the analyti-
cal form of the P (hA, hB) even in cases where it is possible
to describe the system by the CPM. However, the numer-
ical form, in a matrix formulation, of P (hA, hB) may be
found without any difficulties. For this purpose, the dis-
cretization of the external magnetic field is employed in
which, the coordinates hA and hB describe a mesh over
the Preisach triangle. Assuming that the Preisach function
is a constant over any single cell (meaning the average
value for the cell) and finding the variation of the magne-
tization connected with this cell, one may find the average
value of P (hA, hB) for the cell. Such changes in magne-
tization can be determined if a set of symmetric minor
loops or a set of first-order transition (reversal) curves is
used.

Starting from the demagnetized state, the two nearest
symmetric minor loops were measured (Figure 14); the loop

H

−HI+1 −HI

HJ+1HJ

M
HI+1 = HI + Hstep

HJ+1 = HJ + Hstep

Figure 14. Two neighboring measured symmetrical minor loops
used for experimental identification of the Preisach function.

with the larger amplitude of the external magnetic field is
measured after the loop with the smaller amplitude. Let us
consider the ascending branches of both loops. The maximum
fields HI and HI+1 = HI + Hstep are the hB coordinates for
the loops; during the measurement of each loop, the hA

coordinate is varied only.
The integrated or local coercive field distribution function

P (hC) (Basso, Bertotti, Infortuna and Pasquale, 1995) may
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be constructed from the Preisach function P (hA, hB):

P (hC) =
∫ HS

0
P (hC, hI) dhI (23)

This function gives the probability of finding all elemental
volumes whose coercive field is equal to hC.

Knowing the probability distribution function P (hA, hB),
it is possible to follow magnetization M as a function of
the external magnetic field H by using equation (21) if the
system is describable by the CPM. This procedure is known
as backward transformation.

6.2 Variations of the Preisach model

The moving Preisach model, presented by Della Torre (1966),
is the extension of the CPM when the Preisach function is
modified to have magnetization dependence:

M(t) = MS

∫∫
hA≥hB

P (hA + αM, hB + αM)

×γ (hA, hB)H(t) dhA dhB (24)

where α is a mean field parameter that is material depen-
dent. The moving model obeys congruency and wiping-out
properties; however, congruency in this case is substituted
by skew-congruency, where loops are congruent if they are
bounded by the two skewed lines with H + αM = const.
The identification procedure for the moving Preisach model
requires detection of α first and then finding the Preisach
function in a standard way (Della Torre, 1991). The com-
plete moving hysteresis model is a further extension of the
moving Preisach model where, instead of a single square ele-
mentary magnetic hysteresis loop for each elemental volume,
a more complicated elementary magnetic hysteresis loop with
a parameter squareness S was introduced and this elementary
loop was divided into fully irreversible and fully reversible
components. This allowed both the locally reversible and
irreversible components of the magnetization to be com-
puted even for asymmetrical magnetizing processes (Vajda,
Della Torre and Pardavi-Horvath, 1992; Vajda and Della
Torre, 1993).

Another modification of the CPM with the Preisach func-
tion having magnetization dependence is called the product
model (Kadar, 1987), which can be presented in the form:

dM

dH
= R(M)

[
β +

∫
Q(hA, hB)dhA

]
(25)

where β represents a reversible component (reversible sus-
ceptibility when M = 0), Q(hA, hB) is the residual Preisach
function with the symmetrical properties of the classical
Preisach function, and R(M) is a noncongruency function,

1.0

H

M1.0

−1.0

−1.0

Figure 15. Nonlinear congruency property for the product model.
In the classical Preisach model, the ‘heights’ of the minor loops
�M , which are bounded by two vertical lines H = const, are equal.
In case of product model, these ‘heights’ follow a nonlinear func-
tion. (Reproduced from from G. Kadar and E. Della Torre: ‘Hystere-
sis modelling: I. Noncongruency’, IEEE Transactions on Magnetics
23 (1987),  IEEE 1987, with permission from the IEEE.)

which has to be an even function of M , should have a max-
imum at M = 0 and should approach zero as M approaches
saturation ±MS, such as R(M) = 1 − (MMS)

2. The prod-
uct model obeys wiping-out property (see Figure 15); how-
ever, congruency becomes nonlinear such that the ‘height’
of the minor loops �M which are bounded by two vertical
lines H = const is a nonlinear function (Kadar and Della
Torre, 1987).

The wiping-out property is equivalent to the immediate
formation of a stable hysteresis loop after only one cycle of
field variation back and forth (see Figure 16). But in real-
ity, accommodation occurs often in ferromagnetic materials.
Accommodation, which is a gradual drifting of the minor
hysteresis loop toward an equilibrium loop when the mag-
netic field is cycled between two limiting values, can be
described by the modified Preisach models as was shown by
Kadar and Della Torre (Della Torre and Kadar, 1987; Della
Torre, 1994). In a Preisach model for accommodation, it is

M

H

Figure 16. Accommodation, a gradual drifting of the minor hys-
teresis loop, which is cycled between two fields toward an equilib-
rium loop, as described by the Preisach model for accommodation .
(Reproduced from E. Della Torre: ‘A Preisach model for accommo-
dation’, IEEE Transactions on Magnetics 30 (1994),  IEEE 1994,
with permission from the IEEE.)
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assumed that the interaction field hI of a hysteron can be
changed, or equivalently that the elementary hysteresis loops
can be ‘moved’. It is also assumed that when a hysteron
moves, its magnetization may either remain the same as it
was or it may reverse into the opposite state. If it remains
in the same magnetized state, it dilutes the neighboring hys-
terons. This situation is modeled by assuming that Q(hA, hB)

from equation (20) can be a constant value different from ±1.
Introducing the replacement factor ξ, 0 ≤ ξ<1, it is possible
to take into account the accommodation of the minor loop.

6.3 The time-dependent Preisach model

In order to describe the dynamic hysteresis loops by the
Preisach model, an elementary hysteresis loop Q(hA, hB)

from equation (20) was modified to include time Q(hA, hB;
t), so its time rate of change is proportional to the difference
between the actual external field and the switching fields
according to

∂Q(hA, hB; t)

∂t
=

{
k [H(t) − hA], when H(t) > hA

k [H(t) − hB], when H(t) < hB

(26)
where k is an additional model parameter (Bertotti, 1992a;

Bertotti and Pasquale, 1992b). This rate-dependent Preisach
model allowed computing dynamic hysteresis loops and suc-
cessfully interpreting dynamic losses per cycle per unit mass
as a function of magnetizing frequency for soft magnetic
materials, such as, for example, nonoriented SiFe steel. The
similar idea of modifying an elementary hysteresis loop
was also realized in Lu et al. (2003). For faster compu-
tations, keeping in mind engineering applications, another
rate-dependent model, called the external dynamic Preisach
model, was proposed in Fuzi (1999), where magnetization
was computed by the CPM with modified input field, delayed
with respect to the actual field strength. An example of the
dynamic hysteresis loop computed by the external dynamic
Preisach model is presented in Figure 17.

Krasnoselskii and Pokrovskii (1983) separated the basis
of the model from its physical meaning and developed a
general mathematical tool for description of hysteresis, be it
magnetic, electric, mechanical, or any other general type of
hysteretic phenomenon. Since then, a number of extensions
of this model have been tried and applied for different
purposes, but all of these are still derivatives of the original
classical Preisach magnetic model.

6.4 The temperature-dependent Preisach model

Static energetic representation of a hysteron in which two
minima and a barrier between them exist (see Figure 11(b)),

2.0

1.6

1.2

0.8

0.4

−0.4

−0.8

−1.2

−1.6

−2.0−150 150−75 750

0.0

Magnetic field (A m−1)

M
ag

ne
tic

 in
du

ct
io

n 
(T

)

EC

Measured
Compared

Static

Figure 17. Static, eddy current and dynamic magnetizing loops
computed by the external dynamic Preisach model and compared
with the measured dynamic loop for the grain-oriented silicon iron
steel sheet magnetized in rolling direction under field-control condi-
tion with frequency 250 Hz. (Reproduced from Janos Fuzi: ‘Com-
putationally efficient rate dependent hysteresis model’, COMPEL
18:3 (1999), with permission from Emerald Group Publishing.)

can be expanded if temperature T and time t are introduced
(Mitchler, Dan Dahlberg, Wesseling and Roshko, 1996).

Without temperature if a hysteron is in a local minimum,
the energy barrier will prevent the magnetization switching
into the state with a global minimum energy. With finite
temperature, jump into the global minimum can occur
spontaneously by thermal activation, with the characteristic
time

τ = τ 0 exp

(
W

kB T

)
(27)

where τ−1
0 is a microscopic attempt frequency and W repre-

sents the height of the barrier, which will lead to the evolu-
tion of Q(hA, hB), from equation (20) with time and to the
appearance of the superparamagnetic state. As an example, a
graphical representation of field cooling (FC) magnetic mea-
surement is shown in Figure 18(a) and zero field cooling
(ZFC) in Figure 18(b) (Song and Roshko, 2000).

Successful application of the proposed model, that is,
the construction of the FC and ZFC curves, isothermal-
remanent moment (IRM), thermo-remanent moment (TRM),
and hysteresis loops at various temperatures, was done for
ferromagnetic perovskites, such as La0.95Mg0.05MnO3 and
La0.5Sr0.5CoO3 (Zhao et al., 2001) and SrRuO3 (Roshko
and Huo, 2001), for ferromagnetic nanoparticles embedded
in a nonmagnetic matrix, such as Fe nanoparticles in alu-
mina (Roshko, Viddal, Ge and Gao, 2004), and in others.
In these studies, the Preisach function for particulate fer-
romagnetic materials can be decomposed into two distri-
butions of the hC and hI fields, such as, for example, in
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Figure 18. (a) Subsystem states at temperature T after cooling in an applied field happ (FC). (b) Subsystem states at temperature T in an
applied field happ after cooling in zero field (ZFC). (The shaded region is superparamagnetic and arrows show boundary evolution of this
region with time). (c) Temperature dependence of the field-cooled (FC) and zero field-cooled (ZFC) moment. (Reproduced from T. Song
and R.M. Roshko: ‘A Preisach model for systems with magnetic order’, Physica B, 275 (2000), copyright  Elsevier 2000, with permission
of Elsevier.)

Zhao et al. (2001):

P (hC, hI) = 1

2πσ Cσ IhC
exp

[
− (log(hC/hCM))2

2σ 2
C

− h2
I

2σ 2
I

]

(28)
All parameters in this Preisach function are functions of

temperature and are proportional to (1 − T /T C)� with Curie
temperature TC and critical exponent �.

7 MODELING OF NONLINEAR
MAGNETISM BY ENERGY
DISSIPATION

Theoretical description of bulk magnetic properties such
as coercivity, remanence, permeability, and hysteresis loss,
encounters other problems that make it difficult, if not impos-
sible, to simply scale up the predictions of models that
are based on consideration of one or two domains. There-
fore, a more general approach is needed in order to develop

equations that represent the average behavior of the materi-
als. These models necessarily use statistical thermodynamic
principles to describe the resulting magnetization behavior
of a very large number of magnetic domains. The earli-
est thermodynamic approaches were developed for the sim-
plest systems, specifically paramagnets. Paramagnets have
the simplicity of being magnetically homogeneous, unlike
ferromagnets. Later models were developed for ferromagnets
without including hysteresis, and finally hysteresis models
were developed. The classical model for magnetism on this
scale is the Langevin–Weiss model which considers an array
of magnetic moments in thermal equilibrium at a particular
temperature.

7.1 The Jiles–Atherton model

The Langevin–Weiss approach was used as the basis for
developing a model of hysteresis (Jiles and Atherton, 1986).
The model of hysteresis that was developed in this way
depends on statistical mechanics and is most relevant on
the mesoscopic scale. It works well for materials with low
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anisotropy for which the main mechanism is domain bound-
ary movement. It can be used for simple anisotropies such
as axial and planar anisotropies with minor modifications.
For highly anisotropic materials it can still be used with the
understanding that a simple analytic anhysteretic equation
cannot in general be developed for anisotropic materials and
therefore the mathematical approximations become less real-
istic, the greater the anisotropy and the larger the number of
magnetic easy directions.

The orientations of the magnetic moments are distributed
statistically and integrating the distribution of moments over
all possible orientations leads to an equation for the bulk
magnetization. The form of this equation depends on the
restrictions imposed by anisotropy, so, for example, different
solutions are obtained depending on whether the magnetic
moments experience axial anisotropy, planar anisotropy, or
are in a completely isotropic environment (Jiles, Lee, Kenkel
and Metlov, 2000).

The extension of the Langevin–Weiss theory used to
describe ferromagnetic materials incorporates a coupling
among magnetic moments acting as a strong magnetic field
to align the magnetic moments in a domain parallel to each
other. To quantify this coupling, a mean field is invoked,
which is proportional to the bulk magnetization M , so that the
effective field is H̃ = H + α M . This mean field approach
to describing the interactions needs to be applied with some
caution, but recent work by Chamberlin (2000) has shown
that the mean field approach is viable for clusters of spins
on the nanoscopic scale.

7.2 Description of the anhysteretic magnetization

In the absence of energy dissipation, all energy supplied to
the material is equal to the change in magnetostatic energy in
the material. This is the anhysteretic magnetization. Instead
of considering details of the coupling between each individ-
ual magnetic moment, a mean field approximation is used to
represent the interdomain coupling. By replacing the classical
magnetic field H with the effective magnetic field H + α M ,
which includes coupling to the magnetization, an equation for
the anhysteretic magnetization of a ferromagnetic material
can be obtained as follows:

M = MSL

(
µ0 m (H + α M)

kBT

)
(29)

where L(x) is the anhysteretic function, x = µ0 m H̃

kB T
, and

H̃ = H + α M is the effective field which includes both the
applied field and the self-coupling field. The exact form of the
function L(x) depends on the anisotropy of the material: for

isotropic materials the anhysteretic function is the Langevin
function:

M = MS {coth(x) − 1/x} (30)

for materials exhibiting axial anisotropy the anhysteretic
function is a hyperbolic tangent,

M = MS tanh(x) (31)

and for materials exhibiting planar anisotropy

M = kB T

µ0

d

dH̃
log Z = MS

I ′
0(x)

I0(x)
(32)

where Z is the statistical partition function and

I0(x) =
∞∑

s=0

1

(s!)2

(x

2

)2s

(33)

and

I ′
0(x) =

∞∑
s=1

s

(s!)2

(x

2

)2s−1
(34)

An extension to cover other more complicated anisotropies
was made (Ramesh, Jiles and Roderick, 1996), in which the
energy of a magnetic moment with anisotropic perturbation
was calculated in three dimensions and therefore different
kinds of anisotropic materials could be described. This
allows an increasing range of magnetic materials in which
anisotropy and texture play a significant role to be modeled,
for example, hard magnetic materials.

Following the development of the generalized anhysteretic
function (Jiles, Ramesh, Shi and Fang, 1997; Fang et al.,
1998a,b)

Maniso = MS

∑
all moments

e−E/kBT cos θ

∑
all moments

e−E/kBT
(35)

where θ is the angle between the direction of the magneti-
zation M and the direction of the applied field, and E is the
energy of the magnetic moment m

E = µ0 〈m〉 (H + α M) + Eaniso (36)

where Eaniso is the anisotropic component of energy which
depends on the structure of the material. For example, in the
case of cubic anisotropy,

Eaniso = K1

3∑
i 
=j

cos2 θ i cos2 θj (37)
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with the normal convention on symbols. In this description,
only the first anisotropy coefficient K1 was used since
this approximation in most cases provides a sufficiently
accurate description of the different magnetization curves
along different directions. A texture coefficient ftext, which is
a statistical evaluation of the volume fraction of the textured
portion of a material, was also introduced. The anhysteretic
magnetization Man can then be given as

Man = ftext Maniso + (1 − ftext) Miso (38)

where Maniso is the anisotropic anhysteretic magnetization
contribution, and Miso is the isotropic anhysteretic magneti-
zation contribution. For more complicated textured materials,
there may be several different texture orientations such that
each particular direction has a proportion of the grains ori-
ented along it. The anisotropic contribution of each part must
be calculated separately and the net anisotropic portion of
the anhysteretic magnetization is the weighted sum of the
components of magnetization of these orientations along the
direction of the applied field.

From this description of the thermodynamic anhys-
teretic magnetization, it is possible to develop a descrip-
tion of hysteresis through consideration of energy dissipation
mechanisms. The irreversible and reversible components of
magnetization can be described separately in the mathemat-
ical formulation, although physically they are not separate.
The two components of magnetization can then be combined
to give an equation for the total magnetization.

7.3 Extension to hysteresis

In the case of hysteresis, the energy supplied to the material
appears either as magnetostatic energy or hysteresis loss. The
magnetostatic energy in the material is the energy difference
between input energy and the energy loss due to processes
such as domain wall pinning. One of the assumptions of
the model is that the energy loss is proportional to the
change in magnetization. Although this was derived from
the domain wall motion under the action of a magnetic field,
it is not limited to magnetization by domain wall motion
and therefore the model applies to any situation in which the
energy loss is proportional to the change in magnetization as
could occur also under domain rotation.

An equation for the irreversible change in magnetization
is obtained,

dMirr

dH
= Man − Mirr

δ k − α(Man − Mirr)
(39)

where the directional parameter δ takes +1 when H increases
in the positive direction (dH/dt > 0), and −1 when H

increases in the negative direction (dH/dt < 0), ensuring
that the pinning always opposes the change in magnetization.

During magnetization, there is also a reversible component
of magnetization that can result from reversible domain
wall bowing, reversible translation of domain walls, or
reversible domain rotation. For the purposes of modeling, the
reversible component Mrev of magnetization was assumed to
be proportional to the difference between the anhysteretic
magnetization Man and irreversible magnetization Mirr, with
a constant of proportionality, the reversibility coefficient c,
which represents the fraction of magnetization change that is
reversible. Hence, the total magnetization M is the sum of
reversible magnetization and irreversible magnetization:

M = Mirr + Mrev = (1 − c) Mirr + c Man (40)

where the constant coefficient c ranges from 0 (completely
irreversible magnetization) to 1 (completely reversible mag-
netization). The model equation for the total magnetization,
which includes both irreversible and reversible magnetiza-
tion, is then

dM

dH
= (1 − c)

(Man − M)

δk − α(Man − M)
+ c

dMan

dH
(41)

Solutions of this equation with a suitable anhysteretic
function give a typical sigmoid-shaped hysteresis loop as
shown in Figure 19. By changing the values of the hysteresis
parameters, this model is able to predict the magnetization
of both soft and hard magnetic materials.

The anhysteretic and hysteresis equations represent the
component of magnetization along the field direction. There-
fore, the calculated resultant magnetization M is the compo-
nent of magnetization parallel to the direction of the applied
field. As a result, although the model equation for hysteresis
remains basically the same, there is a significant difference in
the modeled magnetic properties along different field direc-
tions due to the differences in the anhysteretic magnetization
along different directions.

7.4 Extension to describe the effects of stress

The effects of stress on magnetization of materials can also
produce very significant changes. The incorporation of these
effects into a more general model, which includes magnetic
field and temperature, has been achieved. The key to this
is to provide a description under which both magnetic field
and stress can be treated as similar. An equation for the stress
equivalent field has been identified (Sablik, Kwun, Burkhardt



Modeling of nonlinear behavior and hysteresis in magnetic materials 17

0.6

−0.6
−1.0 −0.5 0.0 0.5 1.0

0.3

0.0

−0.3

N
or

m
al

iz
ed

 m
ag

ne
tiz

at
io

n 
M

/M
S

0.6

−0.6

0.3

0.0

−0.3

N
or

m
al

iz
ed

 m
ag

ne
tiz

at
io

n 
M

/M
S

Normalized magnetic field H/HM 

−1.0 −0.5 0.0 0.5 1.0

Normalized magnetic field H/HM 

40 MPa
80 MPa

0 MPa

40 MPa
80 MPa

0 MPa

(a)

(b)

Figure 19. (a) Hysteresis measurements and (b) Jiles–Atherton
model simulations of an amorphous Co77B23 ribbon, at different lev-
els of applied tensile stress. (Hauser et al., 2005.) (Reproduced from
H. Hauser, D.C. Jiles, Y. Melikhov, L. Li, and R. Grossinger: ‘An
approach to modeling the dependence of magnetization on magnetic
field in the high field regime’, Journal of Magnetism and Magnetic
Materials, 2005, copyright  Elsevier 2005, with permission from
Elsevier.)

and Jiles, 1987; Sablik and Jiles, 1988),

Hσ = 3

2

σ

µ0

(
∂λ

∂M

)
T

(42)

Hσ(θ) = 3

2

σ

µ0
(cos2 θ − ν sin2 θ)

(
∂λ

∂M

)
T

(43)

where λ is magnetostriction, ν is Poisson ratio, and θ is angle
between stress and measured magnetic field.

Variable stress also has effects that go beyond those that
are described by the above equation. In fact, the application
of stress causes unpinning of domain walls, and this effect
can be described by a law of approach to the anhysteretic
(Jiles, 1995; Jiles and Devine, 1995). This is given by the
following equation for the change in irreversible component
of magnetization Mirr with elastic energy W

dMirr

dW
= 1

ξ
(Man − Mirr) (44)

where ξ is a coefficient with dimensions of energy per unit
volume, and adding on the reversible component gives the

0

Stress (MPa)

100

0.2

∆B/Bs

−100

Figure 20. The calculated variation of magnetic induction with
stress at fields of 26, 80, and 132 A m−1. The specimen was
demagnetized and then subjected to an applied stress of up to
100 MPa, either in tension of compression. (After D. Jiles: Theory
of the Magnetomechanical effect, Journal of Physics D: Applied
Physics 28, 1995, with permission from IOP Publishing Ltd.)

change in the total magnetization,

dM

dW
= 1

ξ
(Man − M) + c

dMan

dW
(45)

The anhysteretic is itself stress dependent because of the con-
tribution of Hσ to the effective field, so the law of approach
really contains two components: a reversible component that
represents the change in the anhysteretic with stress, and an
irreversible component which represents the change in the
displacement of the magnetization from the prevailing stress
dependent anhysteretic as shown in Figure 20.

7.5 Extension to describe time dependence

The effects of the frequency of the magnetic field on magne-
tization can also be included in this model (Jiles, 1994). In
this case, the effects of eddy currents add to the dissipation
and so result in higher coercivity and hysteresis loss.

(
µ0d2

2ρβ

dH

dt

) (
dM

dH

)2

+
(

Gdwµ0H0

ρ

)1/2 (
dH

dt

)1/2 (
dM

dH

)3/2

+
[
kδ − α

(
Man(H) − M(H) + kδc

dMan

dHe

)](
dM

dH

)

−
[
Man(H) − M(H) + kδc

dMan

dHe

]
= 0 (46)

Other approaches to the frequency dependence of mag-
netization are needed for insulating materials, in which
eddy currents do not play a major role. This has been
described previously for the case of high-frequency ferrites
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(Jiles, 1993). The differential equation governing the magne-
tization in this case is

d2

dt2
M(t) + 2η

d

dt
M(t) + ω2

nM(t) = ω2
nM∞(H) (47)

The extension to the basic model as given in the above
equations, describes magnetic properties in terms of a mul-
tidomain structure that makes it widely applicable. The phys-
ical basis of this model is adjustable to cover the case of
anisotropic and textured structures. This eliminates the need
for the isotropic approximation and expands the applicability
of this model to more complicated situations.

The differential magnetic susceptibility depends on the
displacement of the prevailing magnetization from the anhys-
teretic magnetization. The anhysteretic magnetization is a
function of the energy of the moments within a domain.
To include anisotropic effects into the model, the anisotropy
energy must be incorporated into the total energy of the
moments.

The general equation for hysteresis can be solved with
the incorporation of the appropriate anisotropic, textured,
or stress-dependent anhysteretic magnetization, Man. This
gives the magnetization curves along particular directions.
An advantage of this model is that the basic hysteresis
equation remains the same, as do the hysteresis coefficients,
so that the only change has been the incorporation of different
forms of anisotropy into the equation for the anhysteretic.

8 SUMMARY

This paper has described the underlying basis for hysteresis
models that can be used to describe the magnetic proper-
ties of materials. These provide a diverse range of modeling
capabilities that span length scales from the discrete atomistic
scale through nanoscopic and continuum/microscopic up to
the macroscopic everyday scale of devices and components.
Effects of anisotropy, stress, frequency of excitation, com-
pacting processing, chemical composition, and heat treatment
have been incorporated in these models. Experimental results
and simulation data have shown that these effects have an
impact on the magnetic properties and that these effects can
be described and understood through the various hysteresis
models.

LIST OF SYMBOLS

A Cross-sectional area
a Domain density parameter – Jiles–Atherton

model
B0, B1 Correlation functions

c Reversibility coefficient – Jiles–Atherton
model

D Diameter of grains/crystallites – Globus
model

d Dimensional parameter (diameter) – eddy
current model

E Energy
Eaniso Anisotropy energy
Emax Amplitude of internal potential
F(z) Total force of all defects interacting with a

domain wall
f Pinning force per unit length – Globus

model
ftext Texture parameter – Jiles–Atherton

model
f (z − zJ ) Individual interaction force of a defect
G Dimensionless eddy current parameter –

Bertotti model
H Magnetic field
H̃ Effective magnetic field
H0 Internal effective field due to potential
HC Coercive field
HK Anisotropy field
HS Saturating field
Hσ Stress equivalent field
h Length along domain wall perpendicular to

direction of bending
hA Switching field – Preisach model
hB Switching field – Preisach model
hC Critical or the coercive field of the free

fragment – Preisach model
hI Offset field, or bias field, for elemental

switching volumes in Preisach model
I (x) Bessel function series
K, K1, K2 Anisotropy coefficient
k Pinning parameter (or dissipation

parameter) – Jiles–Atherton model
k Rate proportionality parameter – Preisach

model
kB Boltzmann’s constant
L Length
L0 Distance between two adjacent defects
L3 Domain wall length

L(x) anhysteretic function with x = µ0mH̃

kBT
and

H̃ = H + αM – Jiles–Atherton model
L(t) Staircase line which divides areas S(+) and

S(−) – Preisach model
l Length between domain wall pinning sites
M Magnetization
MR Remanent magnetization
MS Saturation magnetization
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Man Anhysteretic magnetization
Maniso Anisotropic anhysteretic magnetization –

Jiles–Atherton model
Mirr Irreversible component of magnetization
Miso Isotropic anhysteretic

magnetization – Jiles–Atherton model
Mrev Reversible component of magnetization
M∞ Quasi static or equilibrium magnetization
m Magnetic moment
N Number of defects
P (hA, hB) Preisach distribution function – Preisach

model
P (hC, hI) Preisach distribution function – Preisach

model
P (hC) Integrated or local coercive field distribution

function – Preisach model
Q(hA, hB) Elementary hysteresis loop – Preisach model
Q(hA, hB; t) Modified elementary hysteresis loop –

Preisach model
R(M) Noncongruency function – Preisach model
S Squareness of the hysteresis loop
S(+) and S(−) Areas in the Preisach plain – Preisach model
T Temperature
TC Curie temperature
t Time
V Volume
W() White noise function
W Dimensional parameter (width) – eddy

current model
W Energetic barrier value – Preisach model
W Elastic energy – Jiles–Atherton model
Z Thermodynamic partition function
α Damping parameter – Landau–Lifshitz–

Gilbert model
α Mean field coupling coefficient
αR Rayleigh constant
β Shape parameter
β Reversible component – Preisach model
χ Susceptibility
χ in Initial susceptibility
δ Domain wall thickness
δ Directional parameter (±1)
 Magnetic flux
φ Angle
� Critical power
γ Gyromagnetic ratio
γ π Domain wall energy per unit area
γ (hA, hB) Hysteresis operator – Preisach model
η Damping coefficient for harmonic motion
� Torque
λ Magnetostriction
λS Saturation magnetostriction

λd Damping coefficient – Landau–Lifshitz–
Gilbert model

µ0 Permeability of free space
ν Poisson’s ratio
θ Angle
ρ Resistivity
σ Stress
σ 0 Stress amplitude
σC Standard deviation of coercive field

distribution – Preisach model
σ I Standard deviation of interaction field

distribution – Preisach model
ζ Correlation (or interaction) length – Bertotti

model
τ Time constant
ω0 Resonance frequency
ωn Natural resonance frequency for harmonic

motion
ξ Decay coefficient – Law of approach
ξ Replacement factor – Preisach model
ξ Magnetization-elastic stress

coefficient – Jiles–Atherton model
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1 INTRODUCTION

Since the discovery of giant magnetoresistance (GMR) effect
in Fe/Cr multilayers (Baibich et al., 1988), various magne-
toresistive flux sensor-based thin-film multilayer structures
have rapidly been developed into a variety of commercial
applications. One of the most significant applications is the
read heads for hard disk drives (HDDs), which has directly
enabled the rapid growth of disk drive capacities over the
last 10 years (Zhu, 2003). The large magnetoresistance in
either the metallic magnetoresistive multilayer structures or
the magnetic tunnel junctions can provide a high read back
signal level, quickly replacing conventional anisotropic mag-
netoresistive (AMR) read heads, which had replaced induc-
tive read heads earlier. The large magnetoresistive ratio has
substantially enhanced the signal-to-electronic noise ratio of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

the read head, enabled the use of very low magnetic moment
media in the longitudinal recording configuration, and facil-
itated the rapid area-density increase for HDDs in the past
decade.

In all the magnetoresistive field sensors, magnetization
rotation in the multilayer sensing stack driven by the mag-
netic flux produces a change in the resistance of the stack
via magnetoresistive effect. In HDDs, the lateral dimension
of the read sensor in a head has been rapidly decreasing and
is below 100 nm at present. Thermally excited fluctuation of
magnetization rotation in the sensor stack gives rise to volt-
age noise via the same magnetoresistive effect. If the head
noise is dominated by this thermal magnetic noise, known
as mag-noise, increasing the magnetoresistive effect will not
enhance the signal-to-noise ratio (SNR) of the head. There-
fore, understanding the mag-noise becomes critical since it
could be the ultimate limit of the SNR in magnetoresistive
sensors (Zhu, 2003).

In this chapter, we shall discuss a mechanism that results
in stochastic oscillation of the magnetization orientation in
magnetoresistive sensors, especially in magnetoresistive read
heads used in HDD applications.

2 MAGNETORESISTIVE HEADS

Figure 1 shows a typical, magnetoresistive head design
currently used in a HDD for data retrieval. The sensor stack
is either a spin valve sensing current flowing in the plane
(CIP) or a magnetic tunnel junction sensing current flowing
perpendicular to the plane (CPP). In the CIP spin valve
head, the sensing stack is a magnetic multilayer structure
that consists of a free layer, an interlayer of normal metal
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Pinned layer
(SAF)

Ref. layer
AFM layer

Tunnel barrier

Free layer

Permanent magnet layer

Perpendicular thin film medium

Permanent
magnet layer
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− +
V bias

Figure 1. Schematic drawing of a typical tunneling magnetoresis-
tive head with abutted permanent magnets for domain stabilization.

(Cu is always used), a synthetic antiferromagnetic trilayer,
and an antiferromagnetic layer. The magnetic moment in the
free layer rotates in response to the magnetic field arising
from the recorded transitions in a disk medium, performing
the function of sensing. The synthetic antiferromagnetic
trilayer is a pair of ferromagnetic layers sandwiching a thin
metallic layer, usually Co90Fe10/Ru/Co90Fe10. The magnetic
moments of the two Co90Fe10 layers are coupled by a strong
antiparallel, interlayer exchange coupling and are forced to
orient perpendicular to the air-bearing surface (ABS) by
the exchange bias field arising from the interface with the
antiferromagnetic layer. The free layer, the normal metal
interlayer, and the adjacent Co90Fe10 layer form a giant
magnetoresistive trilayer, whose resistance depends on the
relative orientation of the magnetic moments of the layers.
In a magnetic tunnel junction head, often referred to as a
tunneling magnetoresistive (TMR) head, the normal metal
interlayer is replaced by an insulative tunnel barrier that
is so thin that spin-dependent electron tunneling occurs.
A pair of thin-film permanent magnets is abutted to the
sensor stack in the horizontal direction to ensure a single
domain configuration in the free layer. The width of the
spin valve sensor stack is about 100 nm in present HDDs
with similar dimension in height. The free layer is usually a
Co90Fe10/Ni81Fe19 composite layer with a typical thickness
of 1/3 nm, respectively.

3 MAG-NOISE AND ITS POWER
SPECTRAL DENSITY

Owing to the small volumetric dimension of the free layer,
its magnetization rotation can be excited by thermal energy.
Figure 2 shows an experimentally measured voltage noise
power spectral density (NPSD) of a typical TMR head in
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Figure 2. Measured power spectral density of a tunneling magne-
toresistive head with a nominal resistance of 48 �. The physical
track width of the head is 120 nm, with similar stripe height. The
measurement was performed at 1-mA sensing current and no exter-
nal magnetic field was applied. The electronic noise power spectral
density, obtained by saturating the magnetic free layer with a large
magnetic field along the magnetization direction of the permanent
magnet, has been subtracted.

its quiescent state (the state with no external field present).
This phenomenon was first reported by Smith and Arnett by
measuring the noise power of a CIP spin valve head and
they referred to this type of noise as mag-noise (Smith and
Arnett, 2001, 2002; Smith et al., 2003).

The NPSD shown in Figure 2 arises from the dynamics
of the magnetization in the free layer, excited by thermal
fluctuations (Bertram, Jin and Safonov, 2002; Zhu, 2002;
Zhou, Roesler and Zhu, 2002; Zhang and Lederman, 2002;
Brown, 1978). In the absence of both an external magnetic
field and thermal excitation, the magnetization is locally
aligned with the effective magnetic field. Thermal excita-
tion causes the magnetization to deviate away from the local
equilibrium direction. When the deviation occurs, magneti-
zation gyrates around the local equilibrium direction while
the deviation angle decreases, a motion referred to as damp-
ing. Both gyromotions can be described by the Landau-
Lifshitz-Gilbert equation (Bertram and Zhu, 1992; Gilbert,
1956):

dm̂

dt
= −γ m̂ × �h + α

dm̂

dt
× m̂ (1)

where m̂ is magnetization unit vector, �h is total effec-
tive magnetic field, and γ is the gyromagnetic ratio. The
first term in the equation describes the gyromotion of
the magnetization vector, and the second term the damp-
ing motion. This particular vector form of the damping
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x

z

y

h0

m̂

Figure 3. Magnetization gyromotion around its equilibrium direc-
tion, z axis, with �h0 representing the stabilization field provided by
the permanent-magnet layers abutted at the side edges of the free
layer.

motion was first proposed by Gilbert (1956) and α is
known as the Gilbert damping constant. In the follow-
ing discussion, we shall basically follow the derivation
given by Smith (2001), though, in a much more simplified
manner.

Assuming that the magnetization in the free layer is uni-
form and that the thermally excited magnetization deviation
from the equilibrium direction is small, the magnetization
unit vector can be written as below following the coordinates
given by Figure 3.

m̂ = mxêx + myêy + mzêz

≈ mxêx + myêy + 1 · êz (2)

and the field can be written as

�h = hxêx + hyêy + hzêz

= (
hT,x − Dxmx

)
êx + (

hT,y − Dymy

)
êy + h0êz (3)

where hT,x and hT,y are the effective random thermal
fields along x and y directions, respectively; Dx and Dy

are the effective demagnetizing factors along x and y

directions, respectively; and h0 is the stabilization field. Thus,
equation (1) becomes

[
1 α

−α 1

] [
ṁx

ṁy

]

=
[

0 −γ
(
h0 + Dy

)
γ (h0 + Dx) 0

] [
mx

my

]
+ γ

[
hT,y

−hT,x

]

(4)

Assume that the reference layer magnetization is ‘fixed’
along the x axis, through the strong interlayer exchange
coupling between the pinned and the reference layers and the
strong exchange bias field provided by the antiferromagnetic
layer. The magnetoresistance is, then, only a function of mx ;
eliminating mx and ṁy in the above equations, we have

m̈x + ηṁx + ω2
0mx

= γ

1 + α2

(√
1 + α2 ωyhT,x + αḣT,x + ḣT,y

)
(5)

where the resonance frequency is

ω0 = √
ωxωy (6)

and

ωx = γ (h0 + Dx)√
1 + α2

(7)

ωy = γ
(
h0 + Dy

)
√

1 + α2
(8)

and

η = α
(
ωx + ωy

)
√

1 + α2
(9)

Equation (5) has the form of a damped harmonic oscillator.
The following statistic properties of the random thermal
fields on the right-hand side can be derived using the
fluctuation-dissipation theorem (Brown, 1963; Kubo, 1966;
Smith, 2002; Zheng, Bertram and Dakroub, 2002):

lim
τ0→∞

1

2τ 0

∫ τ0

−τ0

hT,x(τ )hT,x(τ − t) dτ = 2kBT α

MsV γ
δ(t) (10)

lim
τ0→∞

1

2τ 0

∫ τ0

−τ0

hT,y(τ )hT,y(τ − t) dτ = 2kBT α

MsV γ
δ(t) (11)

and

lim
τ0→∞

1

2τ 0

∫ τ0

−τ0

hT,x(τ )hT,y(τ − t) dτ = 0 (12)

where kB is the Boltzmann constant, T is the absolute
temperature, and V and Ms are the volume and the saturation
magnetization of the free layer, respectively. Since the power
spectral density (PSD) for mx is defined as

PSDmx (ω)

=
∫ +∞

−∞

(
lim

τ0→∞
1

2τ 0

∫ τ0

−τ0

mx(τ)mx(τ − t) dτ

)
e−jωt dt

(13)
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one obtains

PSDmx (ω) = 2kBT αγ

MsV
(
1 + α2

)
(

ω2
y + ω2(

ω2
0 − ω2

)2 + η2 ω2

)
(14)

The above expression can also be rewritten as follows:

PSDmx (ω)≈PSDmx (0) ·

 ω4

0(
ω2

0−ω2
)2+ PSDmx (0)

PSDmx (ω0)
ω2

0 ω2




(15)
where ωy � ω0, true for all magnetoresistive read heads, has
been assumed. The measured PSD is then:

PSDVx (ω) = PSDmxx
(ω) × I 2

bias�R2 (16)

where �R is the full amplitude of the magnetoresistance
change of the read sensor stack.

Figure 4 shows a voltage spectral comparison between an
experimentally measured NPSD of a CIP spin valve read
head and the analytical expression given by equations (14)
and (16) assuming α = 0.0185. Such agreement has been
found for a variety of spin valve and TMR heads without any
exception, and the assumed values of α are all in the vicinity
of α = 0.019. This fact validates that the Gilbert damping
form in equation (1) does indeed give a correct description
of the dynamic damping motion of the magnetization vector,
at least in metallic magnetic thin films.
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Figure 4. Comparison between an experimentally measured volt-
age spectral density of a CIP spin valve head (black) and the
analytical expression of equations (14) and (16) (gray), assuming
the Gilbert damping constant α = 0.0185. The excellent agreement
indicates the validity of the Gilbert damping form in metallic mag-
netic thin films.

4 MICROMAGNETIC MODELING AND
SIMULATION ANALYSIS

Micromagnetic models have been developed to simulate
the thermally activated magnetization processes in small-
dimension magnetic devices, including the spin valve read
heads (Zhu, 2002; Zheng, Bertram and Dakroub, 2002;
Heinonen and Cho, 2004; Akimoto et al., 2005). Here, a
rather comprehensive method developed for modeling spin
valve read heads is described. Although the model is for
specific spin valve sensors, it is quite representative for
all types of applications involving small thin-film magnetic
devices.

In this model, each of the three magnetic layers in the
sensor stack is discretized into a layer of square mesh cells as
shown in Figure 5. Within each mesh cell, the magnetization
is assumed to be uniform. The volumetric energy density
of each mesh cell, E, is calculated by summing up the
following energy contributions: the local magnetic anisotropy
energy, Ea, including magnetocrystalline anisotropy energy
and anisotropy induced because of deposition in a magnetic
field; the ferromagnetic exchange energy within the layer,
Eex; the magnetostatic energy, Em, including interlayer
interactions; the interlayer exchange energy, Eint-ex; the
interfacial exchange pinning energy between the pinned layer
and the antiferromagnetic layer, Epin; and the Zeeman energy
due to the field external to the sensor stack, EZ. The effective
magnetic field within each mesh cell, �H , is then calculated by
taking a negative gradient of the energy density with respect
to the local magnetization, �M (Brown, 1978; Bertram and
Zhu, 1992).

�H = − ∂E

∂ �M = −
(

∂E

∂Mx

êx + ∂E

∂My

êy + ∂E

∂Mz

êz

)
(17)

where

E = Ea + Eex + Em + Eint-ex + Epin + EZ (18)

Figure 5. Schematic drawing of the modeling mesh of a magne-
toresistive read head structure. Each of the three magnetic layers is
discretized into a two-dimensional mesh of cells. The magnetization
within each cell is assumed to be uniform and its orientation at any
instant follows the Landau-Lifshitz-Gilbert equation (equation (1)).
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The orientation of the magnetization in each mesh cell
is assumed to follow the Landau-Lifshitz-Gilbert equation,
equation (1) (Brown, 1978; Bertram and Zhu, 1992). If N

is the total number of mesh cells in the stack, there are
3N coupled, nonlinear first-order differential equations. The
thermal excitation is modeled by adding a random thermal
field, �hT, to the effective field �H , for each mesh cell. The
thermal field is completely random in orientation from cell
to cell. The magnitude of the random thermal fields follows
a Gaussian distribution with the variance determined by
the fluctuation-dissipation theorem (Brown, 1979; Lyberatos,
Berkov and Chantrell, 1993; Koch, Woods, Kirtley and
Sun, 2001).

h2
T = 2kBT α

γMs�V �t
(19)

where �V is the volume of each mesh cell and �t is the
time duration over which the chosen random fields are kept
unchanged. A different set of random fields is chosen every
�t period. The value of �t is chosen to be in the range of
20–100 ps. The simulation results are insensitive to any value
chosen within this region for modeling metallic magnetic thin
films. The simulation time step for integrating the coupled
differential equations needs to be significantly smaller than
the random field duration, �t .

Figures 6(a–c) show a set of simulation results for a CIP
spin valve head. Figure 6(a) shows a snap shot of the ther-
mally excited gyromagnetic motion of the magnetization in
the free layer (the angle has been amplified by a factor of 10).
Figure 6(b) shows the time domain waveform of the voltage
signal and Figure 6(c) shows the corresponding noise volt-
age spectral density. The spatially nonuniform magnetization
gyromotion in the free layer due to the nonuniform magnet
fields, including both the magnetic field from the side-abutted
permanent magnets and the demagnetization field from the
edges, gives rise to multiple peaks, which have also been
observed experimentally. In other words, the smaller peak
at a higher frequency in the calculated spectrum is due to a
nonzero, higher-order magnetostatic mode in the thermally
excited spin wave (usually, ferromagnetic resonance only
refers to the uniform rotation mode).

Micromagnetic modeling of thermal-driven noise in mag-
netoresistive sensors can also provide very useful insights
on various characteristics of magnetoresistive heads. Here
is one example. Figure 7 shows a calculated magnetization
configuration at the quiescent state for both the free layer
and the abutted permanent magnetic layer via micromag-
netic simulation. The permanent-magnet film, consisting of
closely packed CoPt magnetic grains, is also modeled. In
the permanent-magnet layer, each magnetic grain has a rel-
atively strong uniaxial magnetocrystalline anisotropy, with a
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Figure 6. (a) A snap shot of magnetization rotation by thermal
excitation in the free layer. The magnetization angles are exagger-
ated by a factor of 10 in this plot for visualization. The temperature
in the free layer is assumed to be 60◦C. (b) The angle of magne-
tization rotation, averaged over the entire free layer, is plotted as
a function of time. The thicker curve in the center is the result of
passing through a 2-GHz bandwidth low-pass filter. (c) The corre-
sponding voltage spectral density of the modeled spin valve head.

single easy axis, the c axis of the hcp crystalline structure,
lying in the film plane. However, the easy axes are ori-
ented randomly from grain to grain, resulting in a rip-
pling magnetization configuration, often referred to as
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Figure 7. Calculated microscopic magnetization configurations in the free layer and abutted permanent-magnet (PM) layer for a CIP spin
valve head. A CoPt film with a thickness of 30 nm has been assumed for the PM layer with a grain size of 10 nm. The physical track width
of the free layer is assumed to be w = 300 nm and stripe height h = 240 nm.

magnetization ripples, as shown in the figure. The magneti-
zation ripple results in microscale variations of the magnetic
field provided by the permanent-magnet layer at the abut-
ted junctions. This microscale bias field variation could be
responsible for the often-observed head-to-head variation of
various performance characteristics, such as read-track width
variation, even for heads produced from the same wafer.
The microscale variation of the field can also yield spatial
variation of thermally excited magnetization oscillation in
the free layer. Figure 8 shows the simulated magnetization

oscillations at three different locations using the permanent-
magnet magnetization configuration shown in Figure 7 and
the color scale shows the rms value of the vertical magne-
tization component in the spatial map of the free layer. A
locally weak field from the permanent magnetic layer at the
right edge results in a significantly larger oscillation ampli-
tude in the nearby region than elsewhere in the free layer.
The calculated PSDs in the three corresponding locations
show that the resonance frequency corresponding to the weak
biased region at the right edge is significantly lower than that
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Figure 8. Simulated thermally excited magnetization oscillations at three different locations of the free layer with the permanent-magnet
layer magnetization configuration shown in Figure 7. The color scale in the spatial color map (upper right) shows the rms amplitude of the
oscillation.
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Figure 9. Calculated power spectral density of the magnetization oscillation at the three locations indicated in Figure 8. The weak biased
region at the right edge of the free layer results in a significantly lower resonance frequency than the single resonance frequency elsewhere.
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Figure 10. Calculated output voltage spectral density (au) from
the micromagnetic simulation of the spin valve head presented in
Figures 6–8.

elsewhere in the free layer, as shown in Figure 9. The head
output voltage PSD is shown in Figure 10, clearly showing
two distinctive resonance peaks. The lower-frequency peak
results in a relatively high noise level in the frequency region
below 1 GHz.

The predicted phenomenon has actually been often
observed for spin valve heads, especially the ones with rel-
atively large stripe heights. Figure 11 shows the measured
NPSD of a spin valve head that exhibits the same features as
the calculated one shown in Figure 10. The two heads have
the same track width, stripe height, and magnetic layers.
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Figure 11. Experimentally measured power spectral density of a
CIP spin valve head with abutted permanent-magnet stabilization.
The higher peak at the lower frequency yields a high mag-noise
level below 1 GHz.

5 THERMAL EXCITATION OF
REFERENCE LAYER

The excellent predictability of micromagnetic simulation has
provided many insights on the mag-noise characteristics of
various types of magnetoresistive read heads (Zhou, Zhu
and Kim, 2003), including the effect of thermally excited
magnetization rotation in the reference/pinned synthetic



8 Magnetization dynamics, solitons, modes and thermal excitations

2.0

1.5

1.0

0.5

0.0
1 2 3 4 5 6 7 80

Frequency f (GHz)

N
or

m
al

is
ed

 (
P

S
D

)1/
2

Reference layer

Free layer

A

Free

Reference Reference

Free

A

B

B

C

C

D

D

E

E

H H

A: E:

Applied field: magnet current (A)

H
ea

d 
re

si
st

an
ce

 (
Ω

)

–8
–4

–3

–2

–1

0

1

2

3

4

–6 –4 –2 0 2 4 6 8

Ibias = I mA

Figure 12. Experimentally measured power spectral densities of a magnetic tunnel junction head with abutted permanent-magnet
stabilization at various fields applied perpendicular to the air-bearing surface, as indicated by the accompanying transfer curve. The
baselines of the spectra were shifted vertically for visualization. The slight rising of the spectra below 2 GHz is magnetic in nature and is
likely due to the acoustic mode of the ferromagnetic resonance of the synthetic antiferromagnet reference layer structure (Morrish, 2001).

antiferromagnet structure at insufficient exchange pinning
fields (Heinonen and Cho, 2004; Akimoto, Mukouyama,
Kanai and Uehara, 2006). Since the magnetization in the
reference layer is usually at a 90◦ angle with respect to that
in the free layer, the magnetoresistive output voltage can be
written as

V ≈ Ibias · �R · (
mx,free + mz,ref

)
(20)

where mx,free and mz,ref are essentially the magnetization
rotation angles away from equilibrium orientation in the
free and reference layers, respectively. Assuming negligible
coupling between the free and reference layers and small
fluctuation angles, the variance of the output voltage can be
written as

V 2 ≈ I 2
bias · �R2 ·

(
m2

x,free + m2
z,ref + 2 · mx,free · mz,ref

)
= I 2

bias · �R2 ·
(
m2

x,free + m2
z,ref

)
(21)

Thus, the PSD of the output voltage can be written as the
following:

PSDV (ω) = I 2
bias · �R2 · (

PSDmx,free(ω) + PSDmz,ref(ω)
)

(22)

where PSDmx,free(ω) and PSDmz,ref(ω) are the PSDs of
magnetization components in the free and reference layers,
respectively.

Figure 12 shows a series of measured PSD curves for a
magnetic tunnel junction head at a series of magnetic field
values as indicated by the accompanied transfer curve. The
field is applied perpendicular to the ABS of the head. As
shown in the figure, the satellite peak to the right of the main
peak in the voltage spectral densities shifts toward higher
frequencies while increasing its magnitude when the applied
field changes from the same direction as the reference layer
magnetization to the opposite direction. The reference layer
is a part of the exchange-biased synthetic antiferromagnet tri-
layer. The fact that the opposite frequency shifts for the two
resonant peaks under the applied field indicates that the two
peaks arise from separate magnetic layers. The satellite peak
off the main resonance peak is, therefore, likely due to the
thermally excited ferromagnetic resonance of the reference
trilayer structure.

6 SUMMARY

Thermally excited magnetization precession results in mag-
netization oscillation in the magnetic layer(s) of magnetore-
sistive read heads in HDDs. The magnetization oscillation
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behaves like a random-force-driven damped oscillator. Exper-
imentally measured PSDs show excellent agreement with the
formulation derived from the gyromagnetic equation with the
Gilbert damping. The measured damping constant has been
found to be around α = 0.019 for the Ni81Fe19/Co90Fe10

composite free layer in all measured CIP spin valve heads.
Micromagnetic modeling has become an excellent tool in the
study of various noise spectral characteristics in spin valve
heads. Combining micromagnetic modeling with spectral
measurements of the read heads, many microscale “defects”
in the heads could be diagnosed and understood.
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1 INTRODUCTION

In the last several years high-frequency-confined spin-wave
eigenmodes of micrometer-sized magnetic elements have
been systematically studied for the straightforward case of
elements possessing an almost mono domain state (Hiebert
et al., 1997; Demokritov and Hillebrands, 2002; Jorzick
et al., 1999; Wu et al., 2002; Gubbiotti et al., 2003; Novosad
et al., 2002). Only in recent years, the experimental analy-
sis of modes confined to inhomogeneous magnetized ferro-
magnetic elements has been tackled. The excitations exhibit
added complexity when the ground-state magnetization con-
figuration is the flux-closed magnetic vortex whose inner
core supports perpendicular magnetization components on
a nanometer length scale (Shinjo et al., 2000; Raabe et al.,
2000; Wachowiak et al., 2002).

Let us consider applying a short magnetic field pulse to
a magnetic element. At the positions where the field is not

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

aligned with the ground-state magnetization direction, there
will be a torque and M will start a precessional motion,
according to the Landau–Lifshitz–Gilbert (LLG) equation.
However, dynamics are strongly affected by the finite size of
the element and the existence of boundaries. This results in
various eigenmodes whose spatial distribution and frequency
depend on the shape and size of the element. A connection
to acoustic eigenmodes of macroscopic plates can be drawn
and the similarities and differences will be discussed.

2 EXPERIMENTAL TECHNIQUE

Time-resolved Kerr microscopy is a frequently used method
to study the spin dynamics of thin-film systems in the time
domain. It combines high temporal resolution of 150 fs with
a spatial resolution of 300 nm for the setup used in the
experiments described in the following text. To observe the
precessional response of a spin system in the time domain,
the magnetization has to be tipped off the equilibrium
position. This has been done by laser-induced unpinning
in ferromagnetic/antiferromagnetic system (Ganping et al.,
1999), by using the temperature dependence of the anisotropy
(van Kampen et al., 2002) or by optical current generation
at a Schottky barrier (Acremann et al., 2001). We use
the magnetic field generated in a lithographically produced
microcoil. A Ti-sapphire laser operating at a repetition
rate of 80 MHz triggers the current pulse by an optical
switch (Hiebert et al., 1997). The excitation of the motion
is monitored by a probe pulse aimed at measuring the
perpendicular component of the magnetization M . The probe
pulse is frequency doubled to enhance the optical resolution
and focused onto the sample. The detector analyzes the
polarization of the reflected laser spot. A Wollaston prism
splits the beam into two orthogonal linear polarization
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Figure 1. Diagram of the experimental setup using a microcoil. The probe pulse triggers an electric pulse by a photo switch that produces
a magnetic field pulse in the microcoil, where the sample is located. The sample can be scanned under the lens of the microscopy by a
piezo stage.

components whose intensity is detected in photodiodes.
The polar magneto-optic Kerr effect induces a rotation
of the plane of polarized light due to the perpendicular
magnetization component. The time position is defined by
the delay time between the field pulse and the measurement
pulse. This is achieved by an optical delay line that changes
the length of the pump beam path. The pump beam is
mechanically chopped at kilohertz frequency and lock-in
technique is used for detection of the small Kerr rotation.
A piezo scanning stage moves the sample with respect to the
microscope laterally and the vertical positioning is used to
control and adjust the working distance (focus) of the lens.
Figure 1 shows a diagram of the setup.

3 RADIAL EXCITATION FOR A
CIRCULAR VORTEX-STATE PLATELET

The idealized magnetic element is a thin circular platelet
with small aspect ratio d/R. Its ground state is the closed
flux vortex state which can be best described in circular
coordinates: M0(r, ϕ, z) = Ms · (0, 1, 0)

We consider the Landau–Lifshitz equation of motion

∂M

∂t
= γM × δE[M]

δM(r)
(1)

where the negative derivative of the energy functional E[M]
represents the effective field acting onto M . In a ‘back of
the envelope’ model we consider exclusively the external
pulse field and the dipolar interaction inside the sample.
For the circularly symmetric sample, no anisotropies are
introduced. Generally, exchange interaction tends to align
neighboring spins and establishes long-range ferromagnetic
order. Here, the circulating flux configuration is the ground
state for the sample and can be explained by dipolar inter-
action alone. In addition, micromagnetic simulations have
been conducted to explore this limit and show that the
exchange interaction will become relevant for smaller sam-
ples and higher modes. In the size regime we examined,
no deviations of the modal frequencies from the dipolar
dominated model are observed. Therefore, exchange inter-
action can be neglected [1] for the size range of our
platelets, which is much bigger than the exchange length
and the optical resolution of the experiment. As a conse-
quence, the central region with the vortex core pointing
out of plane will not be modeled. More detailed theories
have been established using more general boundary con-
ditions and a description of the core region ((Ivanov and
Zaspel, 2005; Zivieri and Nizzoli, 2005) and references
therein) but are not needed here to explain our experimental
data.
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The dipolar energy is expressed by the magnetic charge
density.

Ed = µ0

8π

∫ ∫
ρM(r) ρM(r ′)

|r − r ′| dr dr ′ (2)

We estimate the deviation from the ground-state configu-
ration to be smaller than 5%, so that the component of M

along ϕ is assumed to remain equal to the ground-state value
M0ϕ = Ms for all times and the derivatives in ϕ direction are
neglected to lowest order. The energy functional describing
the total dipolar energy now reads

Ed[M] = µ0

8π

∫ ∫
∂ r
zMz(r)∂ r′

z Mz(r
′)

|r − r ′| dr dr ′

+ µ0

8π

∫ ∫ ∇r
‖ ·M‖(r)∇r′

‖ ·M‖(r ′)
|r − r ′| dr dr ′ (3)

where ‖ indicates the vector components parallel to the plane
and z is the coordinate perpendicular to it. We use the identity

(
∂ r
z ∂ r′

z + ∇r
‖ ·∇ r′

‖
) 1

|r − r ′| = 4πδ(r − r ′) (4)

and homogeneous M along the z-direction to write

Ed[M] = µ0 d

2

∫
disk

M2
z (r) dr

+µ0 d2

8π

∫
disk

∫
disk

∇rM r(r)∇rM r(r
′)

|r − r ′| dr dr ′ (5)

where ∇rM r = 1
r

∂
∂r

(rMr(r)). Equation (5) contains only
integrals over the disk area and is a perturbative expression.
The first term is the energy arising from Mz appearing during
the motion. It is of order d R2 and contributes an effective
field of the order d R2/(d R2) ≈ 1. The next term in Mz

would contribute a field of the order d/R and is neglected
because, as d � R, it would only provide a minor correction.
Thus, the field acting on M by virtue of the lowest-order term
in Mz amounts to the standard demagnetizing field −Mz

pointing in the direction opposite to Mz. This is the field
of a perpendicularly magnetized plate with infinite radius.
The finite radius introduces corrections of the order d/R

which are neglected here. The second term is due to a
radial component appearing during the motion. Its functional
derivative is the radial field Hr[Mr]

Hr[Mr] = d

4π

∂

∂r

∫
disk

1

|r − r ′|
1

r ′
∂

∂r ′ (r
′Mr′) dr ′ (6)

which is a linear functional of Mr. Notice that it is of
the order d/R. However, if neglected, no precessional

motion develops, in contrast to the experiment. Thus, within
this perturbative approach, it makes sense to neglect the
contribution of order d/R of the effective field along z, but it
makes no sense to neglect the contribution of the same order
d/R to the radial field. With all relevant fields specified, we
obtain the system of coupled linear equations

∂Mr

∂t
= −γ 0Ms(Hext − Mz) (7)

∂Mϕ

∂t
= 0 (8)

∂Mz

∂t
= +γ 0MsHr[Mr] (9)

Generally, the Landau–Lifshitz (LL) equations couple
different components. By taking the second derivative of 7
and inserting into 9, the LL equations can be decoupled to

∂2Mr

∂t2
= −γ 0Ms

∂Hext

∂t
+ (γ 0Ms)

2Hr[Mr] (10)

Mz(r, t) = 1

γ 0Ms

∑
i

ċi (t)M
i
r (r) + Hext(r, t) (11)

Equation (10) shows explicitly that the problem cannot be
reduced to a standard wave equation. Equation (11) allows
Mz to be straightforwardly calculated once Mr is known. We
seek a solution of equation (10) with the separation ansatz
Mr(r, t) = ∑

i ci(t)M
i
r (r). The radial functions Mi

r (r) are the
solutions of the eigenvalue equation

Hr[M
i
r ] = −Ni

r M
i
r (12)

Inserting the separation ansatz in equation (10) leads to
a set of decoupled ordinary differential equations for the
coefficients ci

c̈i + ω2
i ci = −γ 0Ms

(
Hext(r), Mi

r (r)
)
Ḣext(t) (13)

where the eigenfrequencies ωi are related to the sought for
eigenvalues Ni

r by the relation

Ni
r = ω2

i

γ 2
0M

2
s

(14)

We use the scalar product (a, b) = ∫ R

0 a(r)b(r)2πr dr

and the external field pulse is written as Hext(t)Hext(r).
As equation (13) is the equation of motion of a classical
undamped forced harmonic oscillator, it can be solved
exactly, provided eigenmodes and eigenvalues are known,
so that the coefficients ci and thus Mz(r, t) can be calculated
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analytically:

ci = −γ 0Ms

(
Hext(r), Mi

r (r)
)∫ ∞

−∞
Hext(τ ) G(t, τ) dτ (15)

with the Greens function G(t, τ ) = 1
ωi

sin(ωi(t − τ )). The
ideal case of Hext(t) ∝ δ(t) can be solved at a glance and
produces a solution equivalent to imposing a finite value
to Mr at t = 0. The key elements of this problem are the
eigenmodes Mi

r (r). To determine them, we first notice that
the integral in equation (6) diverges for r = 0 unless Mr|r=0

is zero. This establishes the first boundary condition: the
radial component of the magnetization must vanish in the
center of the disk. Next, we notice that the exact solution of
the eigenvalue equation for a disk with infinite radius is (see
(Buess et al., 2005))

Nr = 1

2
dkr (16)

and Mr ∝ J1(krr), J1 being the first-order Bessel function
and kr being the in-plane radial wave vector labeling the low
energy excitations with frequency ω ∝ √

kr. When the disk
has a finite radius, Hr[Mr] contains a contribution arising
from the magnetic charge ρM building up at r = R in virtue
of abrupt change of Mr from Mr(R) to zero. This contribution
diverges the unless Mr|R=0 = 0. This establishes the second
boundary condition [2]. Thus, within our two dimensional
model, the appearance, during the motion, of a finite radial
component Mr at the center of the disk or at the boundary
r = R is associated with an infinite magnetostatic energy,
so that pinning Mr|0,R = 0 must be introduced to avoid this
divergence. By virtue of the vanishing of Mr at r = R, the
operator Hr[Mr] defined on a disk with finite radius becomes
a hermitic one. In the spirit of the Ritz variational principle,
J1(kr) are ‘good’ eigenfunctions for finite R as well, provided
kr is chosen to fulfill the boundary condition J1(kr)|r=R = 0.
This produces a discrete set of eigenvalues Ni

r and a complete
orthonormal basis set Mi

r on the disk. In this approximation,
the frequencies ωi of the eigenmodes can be calculated as

ω2
i = 1

2
γ 2

0M
2
s dkr = 1

2
γ 2

0M
2
s

d

R
x1i (17)

where x1i is the i-th zero of the J1 Bessel function. In the
next section, this relation is put to the test by comparing with
the experimental data.

4 FOURIER TRANSFORM IMAGING
OF THE EIGENMODES

In this section, the multimode excitation spectrum measured
by time-resolved Kerr microscopy is analyzed.

The samples are single 15-nm thick ferromagnetic permal-
loy disks with diameters of 3 µm, 4 µm, and 6 µm and are
produced by e-beam evaporation. The details are described
in (Buess et al., 2004). A Cu microcoil was prepared that
surrounds the sample with an inner diameter of 8 µm and
an outer diameter of 12 µm. In the ground state the mag-
netic elements exhibit a flux-closure vortex configuration
(Raabe et al., 2000). This state is perturbed by a short mag-
netic field pulse perpendicular to the sample plane, that
is used to tip M off the equilibrium direction. This mag-
netic field pulse exerts a torque onto the local magneti-
zation vector that launches the precessional motion of the
magnetization.

4.1 Time-domain measurement

A current pulse of about 100 ps rise time launched into
the microcoil provides the perpendicularly oriented mag-
netic tipping field pulse exciting the spin precessional motion
(Hiebert et al., 1997; Acremann et al., 2000; Buess et al.,
2003) of the ferromagnetic microstructures under exami-
nation. The magnetic response of the individual disks is
examined by recording a time-resolved movie with a high
spatial resolution of 300 nm. The maximum strength of the
field pulse is less than ≈4000 A m−1 (50 Oe) and is estimated
by the current through the microcoil. This leads to a small
deviation from the ground state. Figure 2 shows a strobo-
scopic sequence of polar Kerr microscopy images obtained
during and after the application of the field pulse for a disk
with 3 µm radius. The time interval between each image is
30 ps. The image contrast is produced by the z-component of
the magnetization vector undergoing a spatially nonuniform
motion. Notice that our experiment measures changes of Mz

with respect to the ground state configuration. Therefore, the
image of the initial state (the first image) shows no contrast.
Despite the complexity of the sequence, one recognizes an
overall periodicity of the motion with maxima (bright) and
minima (dark) of Mz recurring after a characteristic time
of the order of 350 ps. The modal structure of the motion
is not immediately apparent from Figure 2 but will emerge
from the Fourier transformation (FT) analysis. Note that in
this regime of small deviations from the ground state, the in-
plane tangential component of the magnetization vector is, to
first order, unaffected by the motion. The radial component
Mr (not measured in the present experiment) is connected to
Mz(t) by the relation Ṁr ∝ Mz and has a phase difference
of π/2, so that the magnetization vector performs an ellip-
tical precessional path as shown in (Acremann et al., 2000).
Thus, in this linear limit, it is sufficient to consider only one
component in order to have the full knowledge of the modal
structure. We have measured here only the component that
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Figure 2. Temporal evolution of the precessional motion. Mz(t) − Mz(t = 0) – that is, the difference between the value of the z-component
of the magnetization vector before application of the pulse and after application of the pulse – is imaged as a function of the time elapsed
after the magnetic field pulse. Notice that some images show a central spot, which is clearly distinguishable from the surroundings. This
feature will be discussed in connection with Figure 10. From such a sequence one may extract an overall periodicity corresponding to
the strongest excited mode. The spin motion, however, is not uniform, but is the superposition of a number of modes. (Reprinted with
permission from M. Buess et al., Phys. Rev. Lett., 93, 077207 (2004).)
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Figure 3. Spatially averaged signal (left) and Fourier transform amplitude (on the right). The insets show the same frequency domain data
enlarged, to depict the small peaks at higher frequency more clearly. (a) Data from 6-µm disk (b) from 4-µm disk. The labeling of the
maxima is explained later in Section 4.6.
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could be detected with the greatest precision, namely, the
one perpendicular to the disk (Mz).

4.2 Spatially averaged signal

The information of the spatio-temporal data presented in the
last section cannot be understood at first view. In the first
approach, we spatially average the signal over each frame in
the data of Figure 3 and plot it as a function of delay time.
This is the same result that we would get by using a laser
spot of the size of the element. The oscillating signal of the
6 µm-diameter disk is shown in Figure 3(a) (left) with its FT
amplitude (on the right). The dominant peak at 2.9 GHz is
easily identified in the FT amplitude and recognized as the
(almost uniform) precessional motion of the magnetization.
No clear indication of other modes can be seen. For a
different sample, a 4-µm-diameter disk, the averaged signal
is shown in Figure 3(b) in the time domain (on the left) and
the frequency domain (on the right). The principal peak for
this smaller disk is found at a higher frequency of 3.4 GHz
in agreement with Section 3 where the frequency is found
to be proportional to the square root of the wave vector. A
smaller peak at 2.5 GHz is also prominent.

4.3 Mode images by local Fourier transform

One of the difficulties in identifying the dynamical eigen-
modes is that the excitation by, for example, a short magnetic
field pulse results in a complicated spin motion where several
modes are superposed in an intricate way. This difficulty is
circumvented by using a phase-sensitive FT technique. Fre-
quency domain analysis of the time sequenced images reveals
resonances corresponding to the eigenmodes defined by the
lithographically produced elements.

A detailed view of the various eigenmodes driving the
spin motion in Figure 2 is obtained by Fourier transforming
the time-domain signal recorded at each location into the
frequency domain. This is referred to as the local FT. Of
each FT, not only the amplitude – as in Ref. (Park et al.,
2003; Hicken et al., 2003) – is retained but also the phase.
The location of the maximum of these resonances can be
determined with an accuracy of 0.2 GHz (corresponding to
the separation of data points in the FT). The typical width
of the resonance curves is 0.5–1.0 GHz. The values of
the resonance frequencies have been accurately reproduced
by an analytical calculation based on Ref. (Buess et al.,
2003) and by a micromagnetic simulation (see Section 5,
(LLG)).

Images of the amplitude (top) and the phase (bottom) at
resonance of various eigenmodes are displayed in Figure 4.

One recognizes two types of modes: some are organized
into concentric rings with circular nodes having the spectral
weight and phase distribution Figure 4(a–c) obeying the
axial symmetry of the ground state as Ms = 860 kA m−1.
The modes in Figure 4(d) and (e) instead, have one and two
diametric nodes, respectively, and break the axial symmetry.
The various nodal lines are easily identified because at their
spatial location the spectral weight is small and the phase
jumps by π .

4.4 Axially symmetric (radial) modes

Fourier amplitude (left) and -phase (right) images of the
three low-lying axially symmetric modes are displayed in
Figure 4(a–c). The left-hand side of each image shows the
result of the micromagnetic calculation, the right hand side
is amplitude (or phase) of the FT of the experimental time-
domain images. The modes can be classified according to
the number of nodes: the fundamental and highest-amplitude
mode has a node only in the center of the disk and at its
border (n = 1: 4a). The phase is uniform over the disk.
The next mode has a node at approximately half distance
between the core and the boundary (n = 2: 4b). Going across
the node the temporal phase changes by π , just as in any
standing wave. Finally, we observe a third mode with two
nodes within the disk (n = 3: 4c) and with π phase jump
across each node. This modal structure is well described
by the first-order Bessel function J1(knr), where kn assumes
discrete values determined by the boundary conditions and
r is the radius. Such modes are natural basis functions in a
circular membrane (Sparks, 1970). The frequencies can be
calculated by an analytical model described in Sections 3
and 4.9.

4.5 Nonaxially symmetric (azimuthal) modes

Only axially symmetric modes are expected if the tipping
pulse is uniform over the disk and all geometries are per-
fectly axially symmetric. Symmetry breaking modes, instead,
require a nonuniform tipping pulse or a deviation of the sam-
ple from a perfect cylindrical shape. Our computation of the
field configuration arising from the single turn coil reveals
that the tipping pulse has a sizable gradient in the plane
of the vortex, owing to the coil opening toward the leads.
The maximum difference in tipping field amplitude reaches
30%. As revealed by our micromagnetic simulation (LLG),
this asymmetry is capable of exciting nonaxially symmet-
ric modes. Figure 4(d) shows Fourier amplitude (top) and
Fourier phase (bottom) of a single-node, nonaxially symmet-
ric mode at 2.08 GHz. The lowest lying nonaxially symmet-
ric mode is imaged in Figure 4(e) (top: amplitude, bottom:
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1.69 GHz

(a) (b) (c)  (d) (e)

Max0 0° 90° 180° 270° 0°

f = 2.80 GHz 3.91 GHz 4.48 GHz 2.08 GHz

Figure 4. Images of the eigenmodes for a disk with radius R = 3 µm. FT of Figure 2 at each location results in a spectrum with five
resonances. The top row shows the absolute value of the Fourier amplitude at resonance and the bottom row shows the phase. The modal
maps are composed from two half-images: the left from the micromagnetic simulation, the right from the experiment. (a–c) Axially
symmetric modes showing concentric nodes (n = 1, 2, 3, m = 0). Mode (a) has the largest spectral weight, that is, it is dominating the
motion and is responsible for the overall periodicity apparent from Figure 2(b) and (c) are higher modes with regions exhibiting different
phases. (d–e) These modes have nodal lines going across the image. (d) exhibits one azimuthal node (1,1) and (e) two azimuthal nodes
(1,2). This mode consists of four regions, oscillating in pairs in phase. Note that across the nodal lines the phase changes by 180◦. A
Hamming cutoff window was used to obtain the fast Fourier transform (FFT) data from the 3.33 ns long scans. The half-images from
the time-domain micromagnetic simulation data (see Section 5) were obtained using the same procedure. (Reprinted with permission from
M. Buess et al., Phys. Rev. B, 71, 104415 (2005).)

phase). This mode has two mutually orthogonal radial nodal
lines (top). While passing through each node, the phase
changes by π (bottom). We observe, for the single-node
nonaxial mode, a systematic striking behavior, illustrated in
Figure 5 for a 6 µm (top) and 3 µm-diameter disk (bottom).
The Fourier amplitude is shown on the left of Figure 5(a)
and (c), the Fourier phase on the right, and the reconstructed
time sequences in Figure 5(b) and (d). The phase changes
in both cases – in particular in Figure 5(c) – almost contin-
uously along a circular path surrounding the center are in
contrast to Figure 5(a). Correspondingly, the time-domain
sequences in Figure 5(b) and (d) reveal that this mode is
traveling along a circular trajectory surrounding the core.
We explain this motion by noticing that the symmetry of
this problem allows the existence of two mutually orthog-
onal degenerate single-node modes which can be simul-
taneously excited, their relative weight depending on the
actual geometry of the tipping pulse. Superposition of such
modes can produce the observed ‘circularly polarized’ eigen-
mode – just as, by analogy, linearly polarized light can be
superposed to yield circular polarization. In this specific sam-
ple, the optical micrographs reveal that the 3 µm disk is
rather displaced from the coil center whereas the 6 µm-disk
is not: this explains why the ‘circularly polarized’ mode is
more pronounced in Figure 5(c) and (d) than in Figure 5(a)
and (b).

4.6 Wave vectors and boundary conditions

We first relate the nodal structure of the modes to a k-vector
and construct experimental dispersion relations. The modal
structure observed in Figure 4 requires the introduction of
polar coordinates r, ϕ in the plane of the disk. We define
the wave vector k = (kr, kϕ) of a spin excitation by intro-
ducing an orthogonal set of basis functions suitable for the
two-dimensional vortexlike spin configuration. mr(r, ϕ) ∼
J1(krr) exp(ikϕϕ). It can be shown that the radial part is
an exact solution for infinite radius (Buess et al., 2005).
These functions are the analog for circular geometries of
plane waves in Cartesian geometries. The 2π periodicity
in ϕ requires km

ϕ = 0, ±1, ±2, . . ., with the index m =
0, ±1, ±2, . . . counting the number of diametric nodes.

The boundary conditions at r = 0 and at r = R (Kakazei
et al., 2004; Buess et al., 2003) establish a set of possible
values for kr: kn

r = xn

R
, xn indicating the zeroes of the Bessel

functions J1; n ∈ N counts the number of circular antin-
odes. n = 1 corresponds to the state with nodes at r = R and
r = 0. From Figure 4 – counting the nodes and their loca-
tion – one can read out the mode numbers (n, m) of the mea-
sured modes. We can now construct the experimental disper-
sion relations f versus (n, m = 0) (radial modes, Figure 6a)
and f versus (n = 1, m) (azimuthal modes, Figure 6b). We
observe a positive dispersion (monotonically increasing) for
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Figure 5. Single-node symmetric mode (n = 1, m = 1). (a) On the
left the amplitude and on the right the phase of the mode from the
6 µm-diameter disk at 1.9 GHz are displayed. This corresponds to
the sample show in the rightmost illustration. The mode consists of
two regions divided by a node and oscillating with equal Fourier
amplitude, but roughly opposite phase. Three images of the temporal
evolution of this mode by back transformation are given in (b).
Time interval between the middle (right) image and the left image:
120 (270) ps. (c) The single-node nonaxially symmetric mode in a
3 µm disk occurs at 2.8 GHz. The node is barely visible (left) and
the phase (right) changes gradually along a trajectory surrounding
the core center. Correspondingly, the temporal sequence obtained
by back transformation – given in (d) after a time interval of 125
and 250 ps consists of a bright dark doublet rotating around the
disk center. The respective illustration on the right indicates that
the magnetic sample (bright) is off centered, which may explain
the difference in the excitation of the two samples.

the axially symmetric modes m = 0 and negative dispersion
(monotonically decreasing) for the modes with m �= 0.

4.7 Negative dispersion

For the time being, we notice that the classification has
revealed the surprising result of negative dispersion for
the azimuthal quantization direction. The frequency of the
two-node eigenmode (1,2) is lower than the one of the
single-node eigenmode (1,1) which in turn is lower than
the fundamental (1,0) mode. The energy and the frequency

decrease as the number of nodes increase. Micromagnetic
simulations (LLG; OOMMF) reproduce both values and
sequence very accurately. In a simple view, one might
consider the dynamic magnetostatic stray field produced
by the precessing magnetization. When increasing the node
number along the azimuthal direction this stray field and
thus the total effective field is reduced, leading to decreasing
frequency with increasing node number. This explanation
works until the exchange interaction dominates and the
frequency starts to increase again. Thus, the observed modes
are analogous to magnetostatic backward volume modes
which can show negative dispersion, albeit in a circular
structure. A more detailed theory is presented in Section 4.9.

An important result is the existence of two distinct types of
dynamical modes, one with positive dispersion and one with
negative dispersion. Negative dispersion – the lowering of
the frequency with increasing wave vector – is occasionally
measured in light optics for negative index media (Pendry
and Smith, 2004; Pendry and Smith, 2003), special photonics
crystals (Parimi et al., 2004; Kosaka et al., 1998), and
media with inverted population (Chiao, 1993). The references
(Damon and Eshbach, 1960; Fletscher and Kittel, 1960;
Sparks, 1970; Dillon, 1960; Gubbiotti et al., 2003; Park
et al., 2002; Bayer et al., 2004; Demokritov et al., 2001;
Kakazei et al., 2004; Perzlmaier et al., 2005) quoted here (the
list is by no means exhaustive) indicate that this should be a
quite general phenomenon, not limited to the geometry and
size investigated in the present chapter, when the excitation
spectrum is dominated by magnetostatic modes. As suggested
by Fletcher and Kittel more than 40 years ago (Fletscher
and Kittel, 1960), a possible way to qualitatively explain
this phenomenon is to consider the magnetostatic energy
associated with the excited modes. In Buess et al. (2005),
it is shown that the magnetostatic energy, which Fletcher
and Kittel refer to, are the diagonal elements of our matrix.
These diagonal elements are exactly the Coulomb energy
of the effective magnetic charge 1

r
∂
∂r

rψn,m(r, ϕ). They are
also indicated in Figure 6 and are clearly quite close to the
‘true’ eigenfrequencies, confirming the qualitative suggestion
by Fletcher and Kittel. The negative dispersion means that
when the magnetic charge distribution is partitioned by
introducing diametric nodes, the Coulomb energy (and thus
the frequency) decreases.

4.8 Comparison with acoustic membranes

An analogy can be drawn with eigenmodes of acoustic
membranes which resonate in such a way that adding a
circular or a diametric node inevitably produces an increase
of the vibrational frequency. Chladni’s law for sound in a
circular membrane (Rayleigh, 1945; Rossing, 1982) states
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Figure 6. Dispersion relations. (a) The frequency for modes of the type (n,m = 0) as a function of the radial mode number n: R = 1 µm;
◦, 1.5 µm; , 2 µm; �, 3 µm; � are displayed as open symbols. The error bars are ± df

2 . (b) the frequency for modes of the type (n = 1,m)

as a function of the azimuthal mode number m. The corresponding data points of the micromagnetic simulation based on the LLG code
LLG, are diagramed as full symbols. Results from the variational model as discussed in the Section 4.9 are represented as solid and the
dotted lines. The dotted line is calculated by the diagonal elements and the solid line from the full matrix eigenvalues. (Reprinted with
permission from M. Buess et al., Phys. Rev. B, 71, 104415 (2005).)

that f ∝ (m + 2n)2. This phenomenon is a consequence of
the positive dispersion of ordinary waves. It has been shown
by imaging the modes and analyzing their corresponding
frequencies in Section 4 that Chladni’s law is violated by
spin excitations in small circular ferromagnetic disks with a
vortexlike ground-state configuration. This violation is due
to the particular laws governing spin dynamics: in ordinary
standing waves residing on a membrane, the change of
frequency due to diametric modes is related to the matrix
elements of the angular part of the Laplace operator, which
scales with the square of the angular momentum, m2. The
relevant operator for spin systems contains the Coulomb
interaction, which behaves quite differently with m, as
discussed in the preceding text.

4.9 Advanced variational theory

We expand our analytical model from Section 3 to include
modes containing diametric nodal lines in order to construct
a more thorough theoretical model that also comprises the
azimuthal dependence (ϕ) of the magnetization m(r, ϕ).

In the following text, we suggest a quantitative model
that essentially accounts for all the experimental dispersion
curves measured, including the lowering of the frequency
f with m and the size dependence. We point out that for
moderate field pulse excitations and large magnetic elements
(e.g., several tens of microns) the highly degenerate excita-
tion spectrum is dominated by magnetostatic modes (Tamaru
et al., 2002). When the size of the elements is reduced
or higher-order modes are excited, the exchange interac-
tions can, in general, no longer be ignored and the dynamic

response gradually changes from a purely magnetostatic to
an exchange dominated one (Jorzick et al., 2002; Park et al.,
2003; Demokritov et al., 2001).

As shown previously in Section 3 the relevant operator
governing the dipolar modes is the dimensionless in-plane
radial field given by hr[mr]. The eigenfrequencies of the
various modes are related to the eigenvalues Nr of the
equation hr[mr] = −Nrmr by the relation ω2 = (γMs)

2Nr.
These results were already used to calculate modes with cir-
cular nodal lines in a 6 µm Cobalt disk (Buess et al., 2003).
Here, they are generalized to include modes with diamet-
ric nodes as well. The matrix [h]nn′,m = 〈ψn,m, hr ψn′,m〉 is
evaluated within the trial space consisting of the orthonormal
basis functions

ψn,m = 1√
πR J2(x1n)

J1(knr) eimϕ (18)

on the disk with radius R (Jackson, 1999). The variational
approach comprises a mixing of several radial basis func-
tions J1(knr) by keeping the azimuthal dependence eimϕ (the
symmetry) fixed. Using a set of 15 basis functions n, n′ =
1, . . . 15 within each sector m was found to give good con-
vergence. The details of this calculation are provided in
(Buess et al., 2005). The m = 0 sector provides the eigen-
values for the modes with circular nodes. The m = 1, 2, . . .

sectors provide the eigenvalues for modes with 1, 2, . . . dia-
metric nodes. The frequencies resulting from the matrix diag-
onalization are plotted as dotted lines in Figure 6. The agree-
ment with the experimental data is remarkable, taking into
account that the calculation is a fully analytical one with no
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adjustable parameters. In particular, the negative dispersion
for the modes with diametric nodes is also well reproduced.

4.10 Size dependence

The time evolution of individual micron-sized permalloy
disks with vortex structure has been recorded at time intervals
of 25–40 ps and the excitation spectrum has been extracted
as described in the preceding text for each magnetic element.
In this section, the size dependence of the modal frequencies
is analyzed.

The frequencies f ∗ corresponding to the maxima of the
resonance peaks are used for constructing the experimental
dispersion curves in Figure 6. The corresponding frequency
data (local FT) was used to identify the mode numbers (n, m)

and to justify the peak positions f ∗ where the amplitude was
weak (see average spectra in Figure 3). Figure 6 shows all
obtained experimental and simulated mode frequencies for
different sample sizes together with calculated values.

4.11 Scaling

Our analytical calculations (see equation 17 and (Buess
et al., 2005)) suggest a simple scaling law that should be
obeyed by all modes, provided they are of magnetostatic
origin: all frequencies for different radii should fall onto
one single function when f (n, m)

(
R
d

)1/2
is plotted as a

function of n at fixed m (radial modes) or m at fixed n

(azimuthal modes), this function being only dependent on
the number of diametric and circular nodes. The agreement
is excellent (see Figure 6). The largest deviations from this
scaling law are observed for small radii, where the exchange
interaction is expected to become more important. We recall
that the frequency depends only on a symmetry function

s(n, m) and the aspect ratio of the disk (f ∼
√

d
R

s(n, m))

for both kind of modes. This is quite a universal behavior
for these idealized magnetostatic thin-film vortex structures.
The symmetry function reads

s(n, m) = γ 0Ms

2π

(
Nn,m

)1/2
(19)

and uses the eigenvalues of N
(15)
n,m = −{spec([h](15)

ññ′,m)}n in
(Buess et al., 2005).

4.12 Variational eigenmodes

In Section 4.9 and (Buess et al., 2005) the demagnetizing
factors Nr have been calculated by a variational theory
where the matrix representation of the radial dipolar operator

ĥr has been calculated for a given basis system. To each
m = 0, 1, 2 . . . belongs a 15 × 15 matrix [h]nn′,m with

[h]nn′,m =
〈
ψn,m, ĥr ψn′,m

〉
(20)

The diagonalized matrix [d] = [s−1][h][s] provides the
eigenvalues −N

eig
r (n, m) and with (2πf )2 = (γ 0Ms)

2Nr we
obtain the solid lines in Figures 6 and 7. In addition, the
transformation matrix [s] contains the coordinates of the
optimized eigenfunctions that belong to the eigenvalues.
Consequently, we have not only obtained the demagnetizing
factors and the resulting frequencies but also an optimized
radial part for the eigenmodes. The most striking fact is
that the difference between the shape of the basis functions
and the optimized functions increases for higher m. This is
in correspondence with the deviations of the frequencies in
Figure 7 (dotted and solid lines).

To compare the radial dependence of the experimental data
with the results of the theory, the frequency domain data
(Figure 4) is displayed as line scans of the FT amplitude as
a function of distance to the disk center. Figure 9(a) shows
this for the experimental data of the 6 µm-diameter disk and
Figure 9(b) for a micromagnetic simulation (see Section 5).
The FT amplitudes of the modes (n,m) = (1, 1), (1,0), (2,0),
(3,0) are normalized to unity and plotted. In general, the
agreement with the simulation and the theory (Figure 9)
is good. It can be seen that the shape of the (1,1) mode
differs from the one of the (1,0) mode. The more simple
approach (diagonal values of [h]nn′,m) use the same radial
functions J1 for both modes, but when the optimized radial
parts (belonging to the eigenvalues of [h]nn′,m) are compared
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Figure 7. Scaling. When f (n, m)
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)1/2 .= f̃ is plotted versus m

at fixed n or versus n at fixed m, all data points for different radii
fall onto one single dispersion curve f̃ (m) and f̃ (n). The symbol
and line attributes are the same as in Figure 6. (Reprinted with
permission from M. Buess et al., Phys. Rev. B, 71, 104415 (2005).)
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with the data, they clearly show the same trend: the amplitude
is shifted toward the center for m > 0.

The curve from the micromagnetic simulation for the mode
(1,1) deviates clearly from the experimental one. The reasons
are the following: Theoretical considerations ((Ivanov and
Zaspel, 2005; Zivieri and Nizzoli, 2005) and references
therein) and some experimental data show that the azimuthal
mode consists of two modes: one is traveling clockwise and
the other anticlockwise around the center. With a real vortex
core pointing out of the axis of the film, the frequencies of
the two modes are slightly different. The effect grows for
smaller disks and its analysis is beyond the scope of this
chapter. In fact one of the two modes has high and the other
a low amplitude in the center. Note, the limited resolution in
the experiment of 300 nm.

4.13 Motion of the vortex core

We now proceed to the motion of the well-defined, circular
element seen in some of the images of Figure 2 to reside in
the vicinity of the center of the disk. From line scans across
the image, this circular element appears as a clear peak (see
insets in the bottom part of Figure 10) with a width of the
order of the spatial resolution. The location of its maximum
can be determined with an accuracy of about 0.2 µm and
is seen to move with time (Figure 10a). Furthermore, its z-
magnetization is oscillating with time (Figure 10b, circles).
Most strikingly, at some times, the ‘core’ assumes negative
Mz values, that is, it is oppositely magnetized with respect to
the immediate surroundings (Figure 10b, triangles). Notice
that the eigenmodes in this dipolar dominated regime are
expected to have zero amplitude at the center of the disk
(see Section 3). Thus, we do not have an immediate explana-
tion for the negative Mz magnetization at the center, except
that it indicates ‘core’ switching at some instances. In the
ground state, the core of perpendicular magnetization extends
over some 10 nm (Shinjo et al., 2000; Raabe et al., 2000;
Wachowiak et al., 2002). As our experiment measures devia-
tions from the ground state, the initial state is contrastless but
a core dynamics would give rise to a contrast in the Mz com-
ponent. However, our experiment collects the signal within
a spot of 300 nm diameter, and it is not obvious that we can
indeed observe the much smaller core. On the other side,
our experiment is sensitive to minute (<2◦) deviations from
the ground state. Thus, a reversal of the core magnetization
would result in a 30 times stronger Kerr signal and would
appear as a strong contrast even with our ‘poor’ spatial res-
olution. Notice that our micromagnetic simulations, which
include the excitation of nonradially symmetric modes by
a nonuniform pulse, appear to reveal this most remarkable
process as well. The presence of eigenmodes breaking the
axial symmetry of the ground state is thought to be essential

for the operation of core switching (Gaididei et al., 2003). In
fact, we have observed that the central region of the vortex
changes its sign with time, suggesting that core switching
have taken place.

A more detailed understanding of the generation of
azimuthal modes may lead to a concept for controlled ultra-
fast switching of the vortex core.

5 MICROMAGNETIC SIMULATIONS

In principle, micromagnetic computer simulations solve the
Landau–Lifshitz–Gilbert equations (e.g., in the form of
equation 21) for each cell of a two- or three-dimensional grid.
The effective fields comprise all required interactions acting
on the individual cells that also depend on the magnetization
M(r ′, t) of the other cells.

To support our data two different programs were used:
LLG (LLG) and OOMMF (OOMMF). The LLG micromag-
netics simulator is a three-dimensional simulation tool that
integrates the Landau–Lifshitz–Gilbert (LLG) equations.
Sample geometries and material parameters, temporally and
spatially varying parameters like external fields can be set.
The revolution in computer technology has enabled enough
calculational power to achieve the relevant cell sizes and
time steps for realistic results. There are many publica-
tions (Park et al., 2002; Hiebert et al., 1997; Buess et al.,
2004) that demonstrate the excellent predictive abilities of
the LLG equations of motion in the picosecond time regime
for describing magnetization dynamics. The advantage of
employing micromagnetic simulations is that all global or
position-dependent parameters of the modeled system can
be set and the magnetization and energies can be monitored.
Unwanted artifacts of the experiment (noise, deviations from
ideal system, resolution etc.) are not present. Comparison
of the experiment with simulations can justify the proposed
bottom lines or yield new results.

Figure 11 is an overview of results for a 4-µm-sized
circular platelet with of 15-nm thickness. For the micromag-
netic simulation, the sample was divided into 10.6 nm ×
10.6 nm × 15.0 nm pixels in a 375 × 375 array. The
saturation magnetization, exchange stiffness, gyromag-
netic frequency, and damping constant are 860 kA m−1

(860 emu cm3), 13·10−12 J m−1 (1.3 micro-erg cm−1),
176 GHz T−1 (17.6 MHz Oe−1), and 0.008, respectively. The
equations of motion were integrated in 0.4 ps steps from
t = 0 to t = 20 ns. The data were stored for the entire array
and for the average value of each magnetization component.
The black line with squares in Figure 11 is the amplitude
spectrum of the Mz component averaged over the disk
region Sft av. FT was performed by taking the first 6.2 ns
of the data and using a Hamming windowing filter. The
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fundamental mode (1,1) is dominant and the higher radial
modes (2,1), (3,1) . . . are clearly visible. A broad peak is
visible below the fundamental mode that is composed of
the azimuthal modes m = 1, 2, 4 belonging to order n = 1.
The corresponding local FT modal images (amplitude and
phase) are displayed for all peak positions and allow the
classification of radial and azimuthal numbers (n,m).

In addition to the average amplitude spectra Sft av =
abs(FT(av(data))) where the data was spatially averaged
before FT, we can also consider the spatial averaging after
FT Sav ft = av(abs(FT(data))). This is most effective for
modes that have regions of different sign because Sft av is
compensated fully or partially, though Sft av shows a clear
peak. Generally 0 ≤ Sft av ≤ Sav ft. The dark gray line with
circles in Figure 12 is the spatially averaged data after FT
Sav ft.

Notice that Sft av and Sav ft are identical for the funda-
mental modes, as the phase is uniform over the disk in
contrast to the other modes. In particular, three modes in

the broad low-frequency part are resolved. Moreover, addi-
tional modes (n,1) – which show a change of sign across
the central line – appear just between the radially symmetric
modes (n,0) and (n − 1,0).

In summary, we have studied the excitation spectrum of
simple magnetic vortex-state structures with high accuracy
and have identified several eigenmodes of the system.
The spatial distribution and the frequency of the measured
eigenmodes can be accounted for by a linear model based
purely on dipolar interactions. Micromagnetic simulations
show excellent agreement with our experimental findings.
The argument developed in the preceding text shows that
introducing spatial nodes does not necessarily mean that the
frequency increases as expected not only for a large class of
phenomena, such as ordinary waves, but also for quantum-
mechanical systems, like the hydrogen atom or the harmonic
oscillator. In smaller magnetic disks, the exchange interaction
should become more important, and it is expected to change
the sign of the dispersion (Fletscher and Kittel, 1960) for
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Figure 11. Overview of data obtained by a micromagnetic simulation.

higher m. We can envisage the realization of a new type
of junction between elements having opposite dispersion,
in analogy to the boundary between left-handed and right-
handed photonic crystals (Pendry and Smith, 2004; Pendry
and Smith, 2003).

Recall that a spatial asymmetry in the field pulse is needed
in order to obtain modes with lower-than-radial symmetry.
The low-frequency azimuthal peak in the average amplitude
spectra should not be visible at all if the modes had perfect
symmetry eimϕ . However, the asymmetry introduced by the
field pulse slightly shapes the modes resulting in a nonzero
amplitude for these frequencies. The next section uses this
data and focuses on the temporal evolution of the modes and
compares with the results on the experimental data of the
4 µm platelet.

6 MICROMAGNETIC DISSIPATION,
DISPERSION, AND MODE
CONVERSION

In the preceding sections of this chapter, the first term of the
LLG equation (21), the precessional motion, was investigated

by a series of time-resolved Kerr measurements of thin
permalloy circular platelets. The focus was on the frequency
and the spatial distribution of Fourier amplitude and phase
of the observed eigenmodes.

∂M

∂t
= γM × δE[M]

δM(r)
+ α

M
M × ∂M

∂t
(21)

In contrast, the succeeding part deals with the second term
of equation (21) that accounts for the energy dissipation, an
empirical term added to account for the tendency of the
system to turn toward an equilibrium state.

6.1 Earlier work

In the precessional regime, optical (Hiebert et al., 1997;
Acremann et al., 2000; Buess et al., 2004; Barman et al.,
2003; Park et al., 2002) and soft X-ray (Choe et al., 2004;
Stoll et al., 2004) pump-probe experiments were employed
to examine magnetization dynamics excited by short mag-
netic field pulses, typically triggered by a laser pulse. Time-
dependent measurements are nearly ideal for determining the
modal frequencies, the mode structure (Buess et al., 2004;



Magnetic modes in circular thin film elements, experiment and theory 15

K
er

r 
si

gn
al

F
F

T
 a

m
pl

itu
de

Fit start

−1
0
1

−1

0

1

(a)

(b)

(c)

(d)

(e)

−1
−2

0

0.1

−0.1

−1

0

3
2
1
0

Time (ns) Frequency (GHz)

0 0.5 1 1.5 2 2.5

1
2

2
3

10
8
6
4
2
0

0

1

(1,0)

(2,0)(3,0)

(1,1)
(1,2)

4

0

0 1 2 3 4 5 6 7

1

0

1

0

1

∆f

∆f

Figure 12. Fourier filtering: Experimental data. (a) shows the average perpendicular magnetization component on the left and its Fourier
transform on the right. (b)–(d) By applying the filters on the right before back transformation into the time domain, the temporal evolution
(circles) for different modes can be extracted. The solid lines show the fits with Mi(t) = sin(2πfit + ϕi) exp(−t/τ i) (see text). �f is the
width of the filter. (e) The low-frequency parts up to 2 GHz belong to the transient response on the pulse. (Reprinted with permission from
Buess et al., Phys. Rev. Lett., 94, 127205 (2005).)

Hiebert et al., 1997; Park et al., 2002) and the phenomeno-
logical damping parameter (Hiebert et al., 2003; Back et al.,
1999; Tudosa et al., 2004; Barman et al., 2003) which
can be directly compared to measurements using ferromag-
netic resonance (FMR) (Celinski and Heinrich, 1991; Ebels
et al., 2002). When measurements of the damping parameter
extracted from quasilinear time-domain measurements do not
agree with FMR measurements (Back et al., 1999; Tudosa
et al., 2004; Dobin and Victora, 2004), explanations typi-
cally invoke sample and field inhomogeneities (Dobin and
Victora, 2004; Belov et al., 2004) and higher-order magnon
scattering.

In order to probe damping mechanisms typical of the
intrinsically nonlinear LLG regime, the modes excited in
micron scale permalloy circular platelets presented in the
previous sections are examined. Micron-sized disks are ideal
systems to study mode excitation, mode conversion, and
damping since the small size of the disks provides many well-
defined excitations (Buess et al., 2004; Gubbiotti et al., 2003;
Guslienko and Slavin, 2000; Buess et al., 2005) within the
frequency range easily characterized by stroboscopic time-
resolved scanning Kerr microscopy – typically 0–10 GHz

(Hiebert et al., 1997; Acremann et al., 2000; Buess et al.,
2004; Barman et al., 2003; Park et al., 2002).

6.2 Eigenmodes of the system

The spin-wave spectrum described in the previous sections
was obtained by the resonances of the averaged spectrum and
the frequency domain analysis of time sequenced images.
Here, we examine mode dispersion and energy channeling
between modes which lead to an apparent increase in
damping for certain modes.

Our experimental analysis is performed based on the data
of a single 4-µm-diameter, 15 nm thick, permalloy disk
exhibiting a vortex ground state. Following excitation using
a perpendicular magnetic tipping pulse, polar Kerr data are
recorded at 40 ps intervals. These data are images encom-
passing a field of view of 6.5 µm square. A typical trace of
the polar Kerr signal as a function of time averaged over
the whole element is shown in Figure 12(a) (left frame). Its
FT is shown in Figure 12(a) (right frame), and the observed
peaks are used to identify the modes. The excited modes
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are labeled (n,m) as in the preceding text; n counts the
number of axially symmetric nodes and m counts the num-
ber of azimuthal nodes. We identify the fundamental ((1,0),
3.5 GHz), the second ((2,0), 4.7 GHz), and the third ((3,0),
5.6 GHz) radial modes possessing zero, one, and two addi-
tional radial nodes, respectively. We can also identify the
dipolar ((1,1), 2.5 GHz) and quadrupolar ((1,2), 2.2 GHZ)
azimuthal modes which possess one and two nodes along
the equilibrium direction of M , respectively. The higher-
order azimuthal modes decrease in energy for m = 0, 1, 2,
consistent with backward volume mode excitations where
the k-vector is parallel to the magnetization M (Damon
and Eshbach, 1960; Buess et al., 2004; Buess et al., 2005),
whereas for the radial modes the opposite is true; k is per-
pendicular to M . The Fourier spectrum does not consist of
discrete sharp peaks at the modal frequencies, but of peaks
with a finite width (up to 0.7 GHz FWHM). We previously
identified these excitations as eigenmodes based upon the
linearized LLG equation and the scalar magnetic potential
in Section 4.9. The peaks observed in the frequency spec-
trum as well as those computed from the full LLG equations
are not delta functions in frequency due to the presence of
dispersion, suggesting that perhaps our earlier terminology
might have been misleading. Owing to the finite sampling
length and the resulting need of windowing, simple analy-
sis in the frequency domain is not sufficient to illuminate
the decay rates and mode conversion. The entire (dispersed)
peak contains information about the time evolution of a
given mode.

6.3 Linearized equation of motion including
damping

We will recall briefly the relevant equations for the pre-
cession frequency for this geometry and a decay constant
based on a linear, single-α approach: Mr = Msmr; Mϕ =
Ms(1 − O(m2

ϕ)); Mz = Msmz where mr and mz are the
direction cosines of the magnetization perturbations, and,
mr � 1 and mz � 1. We consider thin micron-sized disks
with a ground-state circulating flux-closure configuration
(mr = 0, mϕ = 1, mz = 0), subject to the linearized Lan-
dau–Lifshitz–Gilbert equation:

ṁr = γ 0mzNzMs + αṁz

ṁz = −γ 0mrNrMs − α ṁr (22)

Here, Ms is the saturation magnetization, γ 0 is the absolute
value of the gyromagnetic ratio multiplied by µ0. Nz = 1
is the demagnetizing factor for thin film shape and Nr

is defined for a given mode, as defined in Sections 3

and 4.9. Nr is proportional to the averaged effective field
for that mode. Inserting oscillatory solutions ∼eiωt leads
to the result for the decay time τ and the precession
frequency f :

τ = 2(1 + α2)

αγ 0Ms(Nr + Nz)
(23)

2π f ∼= γ 0Ms

√
NrNz

(1 + α2)
(24)

With Nz = 1 and in the limit α � 1 we obtain τ =
2

αγ 0Ms(Nr+1)
and 2π f = γ 0MsN

1
2

r . Thus to evaluate our exper-
imental data, we need to extract the experimental frequencies
f and the decay times τ .

6.4 Fourier filtering

In our implementation, the spatially averaged Kerr signal
K(t) is used to compute the complex Fourier spectra
S(f ) as

S(fn) = 1

N

N−1∑
m=1

K(tm)H(tm)e−2πimn/N (25)

where N is the number of data points of the tempo-
ral signal which when acquired over a fixed time inter-
val �t determines the maximum Fourier frequency in
the spectrum and the resolution in the frequency domain
and H(t) is the Hamming window function. Window-
ing is used to reduce the artifacts from the finite sam-
pling length. It is better to extract the damping parame-
ter in the time domain as shown in Figure 14 rather than
from the width of the transformed peak, in contrast to
FMR, where the time signals are essentially of infinite
duration.

We can now back-transform a modal peak after applying
a band-pass filter F(f ) to the Fourier spectra S(f ) since the
data are ordered in frequency and the modes are obviously
well separated. To compare with the original temporal data,
the inverse FT has to be normalized by H(t) in the time
domain as

Mk(tm) = 1

H(tm)
�

N−1∑
n=1

S(fn)Fk(fn) e2πimn/N (26)

allowing different modal components Mk(t) of K(t) in the
time domain to be analyzed. If modal damping were to obey
an exponential decay, an effective decay time, τ for each
mode can be defined.
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6.5 Time-dependent Fourier transform

An alternative method to the Fourier filtering (FF) described
in the last section is presented here. Time-dependent Fourier
transform (TDF) aims at displaying time and frequency
information in the same two-dimensional plot. This is
achieved by analyzing only a small section of the time-
domain data, a window of length twin. This window is shifted
over the whole data and as a function of time displacement
�t , slice by slice of a two-dimensional spectrum is generated
by FT. The result is a map of the Fourier amplitude (or phase)
as a function of frequency and time displacement �t . The
principle is well known and used for signal processing of
audio signals (this is also what a spectrum analyzer of a
hi-fi system does: it produces a momentary spectrum of the
amplitude of different frequency bands).

TDF should therefore be useful for analyzing the evo-
lution of different frequency components (eigenmodes) in
the data of excited ferromagnetic permalloy platelets. It
can be described by a formula which is very similar to
equation (25):

S(fn, �t) = 1

N

N−1∑
m=1

K(tm)H̃twin(tm − �t) e−2πimn/N (27)

For the window function H̃twin a Hanning window of length
twin is used (H̃twin(t) = 0 for t ≤ 0 or t ≥ twin). Hence,
the FT of K(t) is merely applied in the range �t ≤ t ≤
�t + twin. The parameter twin is very critical: by construction
of S, the frequency resolution is determined by the length
twin of the examined signal as �f = 1/twin. In addition,
a value S(fn, �t) corresponds to a range twin within the
time domain and therefore determines the time resolution
twin of S(fn, �t). Obviously there is a trade-off between
frequency and temporal resolution. The higher the frequency
resolution, the smaller the temporal resolution and vice versa.
This is important for interpreting the spectra. Figure 13
shows this method applied to the averaged Mz data of the
micromagnetic simulation. A window length twin of 2.8 ns
was used for the data of 20 ns total length. The Fourier
amplitude S(fn, �t) is plotted on a logarithmic scale. Notice
that the amplitude changes by 12 orders of magnitude. The
amplitude of the modal peaks above 3 ns drops exponentially
and shows an almost perfect linear fit in Figure 13(c). The
decay times have been evaluated as τ (1,0) = 1.30 ns, τ (2,0) =
1.29 ns and τ (3,0) = 1.30 ns with errors 0.01 ns. These values
are discussed in the subsequent text.

What about the azimuthal modes visible in the spectra
of Figure 5 at a frequency below 3 ns? This peak decays
much faster and the evaluated decay time is of the order
of the time resolution �t = 0.36 ns, therefore limited by

the TDF window length twin. When twin is decreased, the
modes are no longer separated well by the reduced frequency
resolution. However, the time evolution of these modes can
be analyzed with the FF method as described in the next
section. This shows that the TDF method is complementary
to FF: a different aspect is that it does not matter for TDF that
the higher radial modes are 3 orders of magnitude smaller
in amplitude than the fundamental one. The peaks are well
separated in frequency and there is no mixing of different
frequency components. However, in FF, the small amplitude
of the higher modes leads to bigger errors for these modes.
Hence TDF is used for the evaluation of the radial modes
only when we have analysed the whole spectrum with (FF)
as shown in the next section.

6.6 Results and discussion

Figure 12(a) shows the averaged Kerr data K(t) (left) and its
Fourier transform amplitude S(f ) (right). The right side of
Figure 12(b)–(e) show the filters F(f )k used in equation
(2) to obtain the modes (1,0), (2,0), the azimuthal mode
and the low-frequency residuals corresponding to the modal
magnetization curves Mk(t) (left), respectively. Fits to our
data using an exponentially decaying sine function (solid
lines in Figure 12(b)–(e), left frame) lead to the decay times
τfit

exp displayed in Table 1. For the nonradially symmetric
azimuthal modes, there are some peculiarities: from the fre-
quency domain data, the peak positions for the (1,1)- and
(1,2)-modes are known and a superposition of these modes
is seen in the Fourier spectrum from 2 to 2.8 GHz; this is
referred to as the azimuthal peak. Note that the amplitude of
the two components is determined by the spatial and tem-
poral shape of the field pulse. The resulting value obtained
by mode filtering and damped-oscillation fit is displayed as
τfit

exp. This demonstrates the significant result that the symme-
try breaking azimuthal modes (τ azim = 0.37 ns) decay three
times faster than the fundamental mode (τ (1,0) = 1.1 ns) for
windows whose widths �f/f0 are as good as constant (0.31
versus 0.37 for the azimuthal and fundamental peak, respec-
tively). This is a surprising result, because the calculated
τ calc

α=0.008 for all modes is constant within the experimen-
tal errors, as the decay constant depends weakly on Nr in
Nz + Nr = 1 + Nr

∼= 1 [3]. Thus, additional mode damping
due to energy transfer or mode conversion must occur. Fur-
thermore, despite the large error bar, we observed a signif-
icant difference for the decay of the modes (1,0) and (2,0).
It is fortuitous to note that the higher radial modes have
very small amplitude. Consequently, the decay times of the
filtered signals have bigger error for the modes (2,0). The
decay time for the mode (3,0) cannot be determined accu-
rately. The error bar was obtained by analyzing the resulting
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Figure 13. Time-dependent Fourier transform for the 4 µm data of the micromagnetic simulation (see Section 5). (a) Illustration of time-
dependent windowing. The spatially averaged Mz is multiplied by the window function H with time displacement �t before Fourier
transformation. (b) The Fourier amplitude as a function of frequency and time displacement �t is displayed on a logarithmic scale. (c) The
time evolution of the modes is analyzed by plotting the amplitude at peak position of the first three radial modes. The decay times of the
exponentially decaying values are evaluated as 1.30, 1.29, and 1.30 ns.

decay time by varying the parameters of the filtering process.
Unfortunately, experimentally, we cannot separate the effect
of the damping of each independent mode from energy that
is coupled (nonlinearly) between the modes. However, there
are many publications (Buess et al., 2004; Park et al., 2002;

Hiebert et al., 1997) that demonstrate the excellent predictive
abilities of the LLG equations of motion in the picosec-
ond time regime for describing magnetization dynamics. The
advantage of employing micromagnetic simulations is that
energies can be monitored and global or position-dependent



Magnetic modes in circular thin film elements, experiment and theory 19

K
er

r 
si

gn
al

F
F

T
 a

m
pl

itu
de

Fit start

−2

−2

−1

0

−1

1

0

1

2

0

(a)

(b)

(c)

(d)

(e)

2

4

6

0

10

20

30

40

−0.03

0.03

0

−2

2
4
6

0

0 1 2 3

Time (ns)

0

0

1

0

1

0

1

0

1

1 2 3 4 5 6 7

Frequency (GHz)

(1,0)

(2,0) (3,0)
(1,2) (1,1)

Figure 14. Fourier filtering: Micromagnetic simulation. The same modes are extracted from the computed average Mz component as in
Figure 1. The good qualitative agreement with the simulation supports the findings in Figure 1. (Reprinted with permission from M. Buess
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Table 1. Compilation of all relevant parameters for each of the eigenmodes (m,n). The peak frequencies
fexp and fsim are obtained from the absolute-FT spectra of the 4-µm disk data and from the micromagnetic
simulation, respectively. Nr,sim is calculated from fsim and leads to the values τ calc

α=0.008 (see text). The
decay times τ fit

exp and τ fit
sim are derived by the Fourier filtering (FF) method presented in this section. The

decay times τTDF
sim are obtained by Time-dependent Fourier transform (TDF).

Mode fexp fsim Nr,sim τ calc
α=0.008 τ fit

exp τ fit
sim τTDF

sim
(m,n) [GHz] [GHz] [ns] [ns] [ns] [ns]

(1,2) 2.2±0.1 2.21±0.05 0.0053 1.308
0.37±0.1 0.31±0.1

0.45±0.1
(1,1) 2.5±0.1 2.58±0.05 0.0068 1.306 0.44±0.1

(1,0) 3.4±0.1 3.41±0.05 0.013 1.299 1.1±0.2 1.3±0.1 1.30±0.01
(2,0) 4.7±0.1 4.71±0.05 0.024 1.283 0.6±0.4 1.4±0.3 1.29±0.01
(3,0) 5.6±0.1 5.67±0.05 0.035 1.270 1.0±0.3 1.30±0.01

parameters can be set. We have reproduced the details of the
modal structure including the nonradially symmetric modal
response for excitations in circular platelets of permalloy.
Shown in Figure 14(a) are the computed LLG (LLG) aver-
aged Mz data (left) and its Fourier amplitude S(f ) (right).

Figures 14(b)–(d) show the filters F(f )k used in equation
(2) (right frame) to obtain the modes (1,0), (2,0) and the
azimuthal modes peak, corresponding to the modal magneti-
zation curves Mk(t) (left frame), respectively. At first glance
one observes that in Figure 14 the position of the resonances
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as well as their relative strength is very similar to the data in
Figure 12. We also observe that the decay times of the indi-
vidual modes show the same trend as in Figure 12: fits to our
data (see Table 1) demonstrate good agreement in the decay
times with the experimental values. Also included in the table
are the Nr,sim calculated by equation (24) from the values fsim

and the resulting τ calc
α=0.008 by equation (23). Again, the sym-

metry breaking azimuthal modes decay much faster than the
fundamental mode. Finally, in the simulation it was possi-
ble to separate the azimuthal peak into the two modes. For
this purpose, the average amplitude over the local FT of the
magnetic movie was used to determine the separation fre-
quency of 2.35 GHz between the two modes. In Figure 15
the two different filtered and back-transformed components
are displayed. The resulting τ fit of 0.44 and 0.45 ns are cor-
rected values and are 45% bigger than the decay time for
the total azimuthal peak. However, it quantifies the effect of
increased decay rate by superposition of the two overlapping
peaks. This is still quite a small correction when compared
to the longer decay times of the radial modes. And again we
see the same trend on the modes (2,0) and (3,0) as in the
experiment, which differ from the calculated values τ calc

α=0.008
(equation 23) only within the uncertainty. Since the LLG sim-
ulations use a single phenomenological damping parameter
we can immediately rule out different damping of one mode
over another as the cause for the extra observed damping
in the low-frequency modes. Rather, we can see that since
energy is conserved and the global energy loss is governed by
α, that mode–mode coupling must channel energy from the
low-frequency modes toward the higher frequency modes.
Scattering must be consistent with solutions to the nonlin-
ear wave equation and energy conservation (i.e., scattering

to higher frequency modes must also reduce the amplitude if
the scattering is in one direction in k space).

We conclude that we have presented a method to extract
the decay rates for different modes from a single aver-
age precession component. For the low-frequency modes
we find an increased damping whose possible origin lies in
mode conversion. For the radial modes, we find a behavior
as expected from the linearized LLG equation. These two
important features are closely reproduced in the micromag-
netic simulation where the phenomenological Gilbert damp-
ing model is implemented with a single α. This demonstrates
that for confined single-material ferromagnetic structures no
additional theory of dissipation is necessary for exact repro-
duction of such intricate experimental results: The single α

straightforward LLG is all that is required to understand and
explain the physics. These measurements are the first clear
demonstration that mode–mode coupling plays a significant
role in magnetization dynamics, and the data demonstrate
how mode conversion could be construed as damping.

NOTES

[1] For modes smaller than 1 µm and higher mode numbers,
the stronger effect of exchange interaction leads to devi-
ations between theory and micromagnetic simulation.

[2] Of course, magnetic fields are, strictly speaking, only
singular at boundaries in the two-dimensional limit which
we have adopted here. In practice, boundaries have a
finite thickness and although the fields might become
large they remain finite at two-dimensional surfaces. In
the present case, Hr |z=0,r→R−→ −2πMr(R)).
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[3] In principle, the sum of the demagnetizing factors adds
up to exactly one. However, in our approximation we
directly set Nz = 1 for a thin-film disk and calculate Nr.
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1 INTRODUCTION

The concept of small-amplitude, lowest-lying dynamic eigen-
modes of magnetic media called spin waves was introduced
by Bloch (1930). Early experimental evidence for the exis-
tence of spin waves came from measurements of thermody-
namic properties, but the first direct observation was made
through ferromagnetic resonance (FMR) (Griffiths, 1946) and
then through light scattering (Fleury, Porto, Cheesmman and
Guggenheim, 1966). In the quantum-mechanical approach

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

the spin-wave quanta (magnons) are similar to the quanta of
light (photons) or those of acoustic waves (phonons).

Spin waves provide the basis for describing the spatial
and temporal evolution of the magnetization distribution
in a magnetic sample under the general assumption that
locally the length of the magnetization vector is constant.
The length of the magnetization vector is conserved, if, first,
the system is in a thermodynamic equilibrium described
by a temperature far below the Curie temperature and,
second, if no topological anomalies, like vortices, are present.
The latter is fulfilled for samples in a single-domain state,
that is, samples that are magnetized to saturation by an
external applied magnetic field. Then the dynamics of the
magnetization vector is described by the Landau–Lifshitz
torque equation (Landau and Lifshitz, 1935)

d �M
dt

= −|γ | �M × �Heff (1)

where �M = �M0 + �m(�r, t) is the total magnetization, �M0 and
�m(�r, t) are the vectors of saturation and variable magnetiza-
tion, correspondingly, |γ | is the modulus of the gyromagnetic
ratio for the electron spin (|γ |/2π = 2.8 MHz Oe−1), and
�Heff = −δW/δ �M is the effective magnetic field calculated

as a variational derivative of the energy function W , where
all the relevant interactions in the magnetic substance have
been taken into account (see, e.g., Lvov, 1994; Wigen, 1994;
Cottam, 1994). If the amplitude of the variable magnetiza-
tion �m(�r, t) is small compared to the saturation magnetiza-
tion �M0, that is, if the angle of magnetization precession is
small, one can develop a solution for the variable magneti-
zation in a series of plane waves of magnetization (having a
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three-dimensional wave vector �k) or spin waves,

�m(�r, t) =
∑

k

�mk(t) exp(i�k�r) (2)

Thus, spin waves can be obtained as a solution of
equation (1), if the nonlinearity is neglected. Theoretical
estimations and experiment show that it can be done if the
mean amplitude of the precession is less than 1◦.

However, both �M and �Heff are time dependent, and since
one has the product of these quantities on the right-hand side
of equation (1), this equation is intrinsically nonlinear. This
nonlinearity should be taken into account if higher values of
the angle of magnetization precession are allowed. From the
quantum-mechanic point of view, the nonlinearity describes
the interaction between the magnons.

Depending on the particular properties of the described
phenomena, the interaction can be either attractive or repul-
sive. In the framework of a crude but very useful approxi-
mation, the nonlinearity can be taken into account by con-
sidering the properties of spin waves that are dependent on
their amplitude, as is shown in the following sections.

There are several methods of spin-wave excitation in
magnetic films. First, spin waves of the frequency ωk can
be excited linearly (ωk = ωs) by a microwave magnetic
field of a strip-line antenna when an input microwave
electromagnetic signal of the frequency ωs is supplied to the
antenna. A strip-line antenna of the width w and aperture
(or length) l can effectively excite spin waves having the
wave number component in the direction perpendicular to
the antenna aperture in the interval 0 < k < 2π/w, while
the range of propagation directions (or the interval of the
wave number components parallel to the antenna aperture)
is determined by the antenna length l. The magnitude of the
wave number of the linearly excited spin wave is determined
by the frequency of the input electromagnetic signal ωs and
by the spin-wave dispersion relation ωk(k) in a magnetic
film.

Second, pairs of contrapropagating spin waves can be
excited (or amplified) parametrically by a weakly localized
electromagnetic pumping (effective wave number of the
pumping kp � 0) having frequency ωp twice as large as the
frequency of the excited spin waves. This process obeys
the conservation laws ωp = 2ωk , kp � 0 = k + (−k). The
magnitude of the wave number of the excited spin-wave
pair is determined by the k dependence of the threshold
of parametric excitation in a magnetic film (see chapter
10 of Gurevich and Melkov (1996) for details). If a spin-
wave packet with a definite carrier wave number k is
excited linearly by a strip-line antenna and experiences
parametric interaction with the microwave field of double-
frequency pumping, this wave packet is amplified and a

contrapropagating wave packet with a carrier wave number
−k is parametrically excited. This situation is discussed in
detail in Section 5.

Third, recently, it has been discovered theoretically (Slon-
czewski, 1996; Berger, 1996; Slonczewski, 1999) and con-
firmed experimentally (Tsoi et al., 1998; Kiselev et al., 2003)
that there is yet another method of spin-wave excitation
in metallic magnetic films due to transfer of the angular
momentum of spin-polarized charge carriers. This method
of spin-wave excitation is very efficient and leads to very
large amplitudes of the excited spin waves, and the nonlin-
ear properties of spin waves play a very important role in
this new excitation mechanism. The nature and properties
of the spin-wave modes excited by spin-polarized current in
metallic ferromagnetic films are discussed in the last section
of this chapter.

Finally, very recently an optical approach for spin-wave
excitation based on the spin–momentum transfer effect has
been developed. It takes advantage of circularly polarized,
short laser pulses. A direct transfer of the photon angular
momentum to spins in solid states can be used for coher-
ent excitation and absorption of spin waves with frequencies
about 100 GHz (Kimel et al., 2004; Hansteen, Kimel, Kiri-
lyuk and Rasing, 2005).

Spin waves in magnetic samples comprise an excellent
testing ground to study general properties of nonlinear waves.
In many aspects, nonlinear phenomena in magnetic systems
supporting spin waves are more easily accessible compared
to nonlinear processes in, for example, optics or plasma
physics.

First, the nonlinearity in magnetic systems is rather large
compared to optical nonlinearities, and this makes the
generation of nonlinear waves and wave packets rather easy
in experiment. Second, spin waves with velocities in the
range of a few kilometers per second are relatively slow
compared to the electromagnetic waves in optics or plasma.
Therefore, the observation of propagating waves puts less
demand on the time resolution of the experimental setup.
All these properties of spin waves in bulk magnetic samples
were successfully used in early experiments on nonlinear
spin-wave dynamics (see, e.g., Lvov, 1994).

Spin waves at microwave frequencies propagating in
monocrystalline ferrite films and, in particular, in yttrium
iron garnet (Y3Fe5O12, YIG) films with very low losses,
characterized by a very narrow FMR linewidth of 2�HK =
0.4 Oe at 10 GHz, provide an especially good opportunity to
study the general properties of nonlinear wave phenomena.
An important advantage of ferrite films as a medium for
experimental investigations of nonlinear wave dynamics is
the fact that the wave process in the film is directly accessible
from the surface for characterization by either inductive
probes or magneto-optical methods. For example, using
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the recently developed space- and time-resolved Brillouin
light-scattering (BLS) technique in YIG films one can
visualize and study linear and nonlinear processes involving
slow waves (spin waves) by scattering fast waves (light)
on slow waves as on a quasistationary diffraction grating.
This experimental approach allows us to perform such unique
experiments, as direct observation of wave tunneling through
a potential barrier created by a local inhomogeneity in the
bias magnetic field with the appropriate spatial and temporal
resolution (Demokritov et al., 2004).

An additional advantage of ferrite films as a medium
for experimental investigation of nonlinear waves is the
fact that the nonlinear and dispersive characteristics of spin
waves in ferrite films can be controlled by changing the
magnitude and orientation of the bias magnetic field. Figure 1
shows a typology for different orientations between the in-
plane wave vector �k and the magnetization �M0 (Damon and
Eshbach, 1961). Three different geometries are shown. If �k
and �M0 are both in the film plane and if �k is perpendicular
to �M0, the so-called magnetostatic surface wave (MSSW)
exists. If �k and �M0 are collinear in the film plane, a mode
with negative dispersion, the so-called backward-volume
magnetostatic spin-wave (BVMSW) mode exists with the
group velocity antiparallel to the wave vector. Finally, if the
magnetization is perpendicular to the film plane, the existing
modes are the so-called forward-volume magnetostatic spin-
wave (FVMSW) modes.

A wide variety of nonlinear wave phenomena, like
parametric and kinetic instabilities of spin waves, auto-
oscillations, chaotic dynamics, strange attractors, formation,
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Figure 1. Typology of magnetostatic spin-wave modes for different
directions of the magnetization, �M0, and the in-plane wave vector,
�k. MSSW: magnetostatic surface spin waves; FVMSW: forward-
volume magnetostatic spin waves; BVMSW: backward-volume
magnetostatic spin waves.

propagation, and collision of ‘bright’ and ‘dark’ spin-wave
envelope solitons, nonlinear diffraction, self-focusing of spin-
wave packets, and tunneling of these packets through poten-
tial barriers can be observed in ferrite films at moderate input
microwave power levels of less than 1 W (see, e.g., Wigen,
1994; Cottam, 1994; Büttner et al., 2000; Demokritov, Hille-
brands and Slavin, 2001).

Here we present a review of the experimental investiga-
tions of nonlinear spin waves in magnetic films, performed
using the novel magneto-optical method of space- and time-
resolved BLS (Büttner et al., 2000).

The outline of the review is as follows. After this introduc-
tion (Section 1), in Section 2 we give a theoretical descrip-
tion of nonlinear spin-wave dynamics in magnetic films using
the classical Hamiltonian formalism for spin waves in an
unbounded ferromagnet (Lvov, 1994), in combination with
the dipole-exchange theory of the spin-wave spectrum in
magnetic films (see Slavin, 1994, and Chapter 2 in Cottam,
1994) and the elements of the spin-torque theory of spin-
wave excitation (Slavin and Kabos, 2005).

Section 3 describes the space- and time-resolved BLS
technique – an important tool for the investigation of mag-
netic dynamics – and compares it with the other techniques
for experimental investigation of spin waves.

The following sections describe experiments on the exci-
tation of nonlinear spin-wave modes in magnetic films per-
formed by different experimental methods.

Section 4 is devoted to the experimental study of nonlinear
spin-wave excitations generated by an external microwave
signal. Here the advantages of the BLS experimental tech-
nique are clearly demonstrated by the observation of a
two-dimensional counterpart of spin-wave envelope soli-
tons – spin-wave bullets. It is interesting to note that for-
mation of wave bullets was predicted in optics (Sil-
berberg, 1990), but the first experimental observation of
this effect has been reported for the system of spin
waves using the BLS experimental technique (Bauer et al.,
1998).

Section 5 describes the experimental study of nonlinear
spin-wave excitations, either self-generated from noise in
active rings containing ferrite-film delay line and external
amplifier or parametrically generated or/and amplified by
a weakly localized double-frequency microwave pumping.
The experiments described in this section prove that one-
dimensional spin-wave solitons and two-dimensional spin-
wave bullets are the intrinsic nonlinear excitations of a
finite-width spin-wave waveguide and an infinite in-plane
magnetic film, respectively. The experiments also show
that the combination of an active ring with parametric
pumping allows us to observe novel nonlinear symmetry-
breaking spin-wave excitations having a rather unusual
Möbius topology.
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Section 6 demonstrates that the general ideas about non-
linear spin waves formulated in the theoretical Section 2 and
illustrated experimentally for spin waves in ferrite films in
Sections 3–5 remain in force even in the case when spin-
wave modes are excited by the spin torque created by spin-
polarized direct current in a very thin magnetic film made
of a ferromagnetic metal. It turns out that a large-amplitude,
standing spin-wave mode excited by spin-polarized current
in an in-plane magnetized metallic film is a two-dimensional
standing spin-wave bullet, similar to the propagating spin-
wave bullets studied in Sections 3–5.

The conclusions are given in Section 7.

2 THEORETICAL DESCRIPTION
OF SPIN WAVES IN MAGNETIC FILMS

It this section we give a brief outline of the general theory
of nonlinear spin waves in magnetic films. We consider both
the situation when a spin wave or a spin-wave packet prop-
agating in a dielectric ferromagnetic film is linearly excited
by a microwave magnetic field �hs(�r, t) = �hs(�r) exp(iωst)

and then interacts parametrically with the double-frequency
(ωp = 2ωs) microwave pumping �hp(�r, t) = �hp(�r) exp(iωpt)

(see Bagada, Melkov, Serga and Slavin, 1997; Melkov et al.,
2000; Serga et al., 2005; Melkov et al., 2001), and the
recently discovered effect of microwave spin-wave excitation
in a metallic ferromagnetic film by a spin-polarized direct
current traversing the film (Slavin and Kabos, 2005; Slavin
and Tiberkevich, 2005).

To describe magnetization dynamics in the presence of
a spin-polarized current, the equation of motion for the
magnetization �M in a magnetic film (equation (1)) can be
written in the form that includes the spin-transfer torque �TI

(Slonczewski, 1996; Berger, 1996; Slonczewski, 1999):

d �M
dt

= −|γ | �M × �Heff + �TI (3)

where |γ | = gµB/� is the modulus of the gyromagnetic
ratio for the electron spin; g is the spectroscopic Lande
factor; µB = e�/2me is the Bohr magneton; e and me are
the modulus of the electron charge and the electron mass,
respectively; and � = h/2π , where h is the Planck constant.

The first term on the right-hand side of equation (3) rep-
resents the traditional torque, with �Heff = −δW/δ �M being
the effective magnetic field in the magnetic film. The
free energy W includes, first of all, the Zeeman energy
of magnetization interaction with the external magnetic
field he, which consists of the external bias magnetic
field �He and the microwave fields of the input signal �hs

and microwave pumping �hp. It also includes the energies

of the dipole–dipole interaction, exchange interaction, and
crystallographic anisotropy, together with the Zeeman energy
of interaction with the inhomogeneous Oersted field �HI(�r)
created by the spin-polarized current. The explicit expression
for the energy W in a magnetic film of a finite thickness L

is given in Slavin (1994); Wigen (1994). For simplicity, we
will not consider anisotropy and interaction with the field
�HI(�r), which have only a limited influence on the generation

of the spin waves.
The second term on the right-hand side of equation (3)

�TI = αI

M
�M × [ �M × �p] (4)

represents the Slonczewski–Berger torque (Slonczewski,
1996; Berger, 1996; Slonczewski, 1999) of polarized current
exerted on the magnetization �M of the magnetic film, where
�p is a unit vector in the direction of spin polarization of the
direct current traversing the magnetic film, while:

αI = σScJ = σI (5)

is a linear function of the current density J and the area
Sc of the contact or a linear function of the magnitude of
spin-polarized current I . We would like to stress that the last
term in equation (3) is nonconservative and depending on the
direction (sign) of the current can contribute to either positive
or negative magnetic dissipation in the magnetic film. The
modulus of the quantity σ is defined in Slonczewski (1996)
as

σ = ε
gµB

2eMScL
(6)

where ε is the spin-polarization efficiency defined in Slon-
czewski (1996), µ0 is the magnetic permeability of free
space, and L is the magnetic film thickness.

We shall consider solution of equation (3) in the coordinate
system where axis z is parallel to the direction of the static
saturation magnetization �M0 (�ez|| �M0) in the magnetic film.
We shall represent vectors �M and �p in equations (3) and (4)
as sums of components perpendicular and parallel to the unit
vector �ez:

�M = �m⊥ + Mz�ez; �m⊥ = mx �ex + my �ey;
M2

z = M2
0 − | �m⊥|2 (7)

�p = �p⊥ + pz�ez; �p⊥ = px �ex + py �ey (8)

To consider approximate dynamic solutions of equation (3)
in the magnetic film we first find the equilibrium orientation
θ of the internal bias magnetic field �H (and the static
magnetization �M0) in this layer (relative to the plane of
the layer) in the absence of current (αI = 0) from the usual
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electrodynamic boundary conditions for a single magnetic
layer:

He cos θ e = H cos θ;
He sin θ e = (H + 4πMz) sin θ (9)

for given magnitude He and orientation θe of the external
bias magnetic field.

In the following equation we also assume that p⊥ � pz

and m⊥ � Mz. In this case, the expression for the spin-
transfer torque equation (4) can be substantially simplified
to give

�TI = αI

M
[ �M( �p �M) − �pM2] ∼= αI

M
pzMz �m⊥ − αIM �p⊥ (10)

If p⊥ � pz the influence of the second term in
equation (10) on the magnetization dynamics is not very sig-
nificant. For large enough values of current, this term can
change only the equilibrium orientation of �M0, while the
first term in equation (10) describes either negative or pos-
itive current-dependent dissipation, with sign depending on
the current direction. Thus, when describing excitation of
spin waves by spin-polarized current, we neglect the sec-
ond term in equation (10) and write the expression for the
spin-transfer torque �TI of equation (3) in the simple form

�TI
∼= αI

M
pzMz �m⊥ (11)

At first we shall consider a spatially uniform problem,
that is, we will neglect spatial localization of the microwave
field of parametric pumping and of the spin-polarized current.
In this spatially uniform case, it is natural to represent the
magnetization as a sum of plane waves propagating in the
magnetic film:

�m⊥(�r) =
∑

�mk⊥ exp(−i�k�r) (12)

where �r is the coordinate vector in the plane of the film and
�k is the wave vector of the excited spin-wave mode directed
in the plane of the film at the angle ϕ to the projection of
the bias magnetic field.

Using all these assumptions, we perform in the equation of
motion equation (3) the usual series of Holstein–Primakoff
and Bogolyubov transformations. First, we introduce the
circularly polarized variables ak:

m+
k = (m−

k )∗ = mkx + imky

=
√

2|γ |M0


ak − |γ |

4M0

∑
k1,k2

a∗
k1

ak2ak+k1−k2


 (13)

Mz = M0 − |γ |
∑
k1,k2

a∗
k1

ak2 (14)

Next, we introduce the elliptically polarized dimensionless
variables bk :

ak =
√

M0ωk

|γ |Ak

(ukbk + vkb
∗
−k) (15)

(for details see Wigen (1994) p. 215–216). The coefficients
of the last u − v transformation for the case of spin waves
in a magnetic film magnetized at an arbitrary internal angle
θ have the form (Wigen, 1994)

uk =
√

Ak + ωk

2ωk

,

vk = Bk

|Bk|

√
Ak − ωk

2ωk

(16)

where

2Ak = 2�k + ωM cos2 θ

+ωMP(kL)[1 − cos2 θ(1 + cos2 ϕ)] (17)

Bk = Ak − �k − ωMP(kL) sin2 ϕ

+i(ωM/2)P (kL) sin θ sin 2ϕ (18)

ω2
k = A2

k − |Bk|2 = �k[�k + ωMF(kL)] (19)

�k = ωH + (2γA/M0)k
2 (20)

F(kL) = (1 − P (kL) cos2 ϕ) cos2 θ + P (kL)

×
[

sin2 θ + ωM

�k

(1 − P (kL)) cos2 θ sin2 ϕ

]
(21)

P (kL) = 1 − 1 − exp(−kL)

kL
(22)

where ωM = |γ |Mz, ωH = |γ |H , and H and θ are the mag-
nitude and direction of the internal bias field �H , respectively,
found from the boundary conditions (equation (9)), ϕ is the
angle of wave propagation in the film plane; and A is the
exchange constant.

In this chapter we will not discuss in detail the process of
linear excitation of spin waves by the microwave magnetic
field �hs(�r, t) of a strip-line antenna, which is extensively
described in literature (see e.g., Chapter 5 in Stancil, 1993),
and will only discuss either the spin waves that are excited by
parametric pumping or spin-polarized direct current, or the
waves propagating in a magnetic film sufficiently far from
the input strip-line antenna.
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The resulting equation for the amplitude of the spin wave
written in the wave number space has the form:

dbk

dt
= −iωkbk − iVk,−khpb

∗
−k − i

∑
k+k1=k2+k3

Tk,k1,k2,k3b
∗
k1

× bk2bk3 − �kbk + σI
∑
k1

Mk1z

M0
bk−k1 (23)

where ωk is the linear spin-wave frequency given by
equation (19), Vk,−k is the coupling coefficient between the
parametrically excited contrapropagating spin waves bk , b∗

−k ,
and the microwave pumping defined by equation (7) in
Melkov et al. (2001), hp is the amplitude of the quasiuni-
form parametric pumping field, Tk,k1,k2,k3 is the coefficient of
four-wave interaction between spin waves defined in Lvov
(1994), Slavin (1994), and �k is the phenomenologically
introduced dissipation parameter of spin waves. In the fol-
lowing text we shall consider several particular cases of the
general equation (23).

First of all we shall consider excitation of the spin-wave
mode in a very thin layer of a ferromagnetic metal by spin-
torque �TI defined by equation (11). The spin-polarized direct
current creating this torque is localized in the circular contact
having the radius Rc in the film plane. This situation is
realized in the recent experiments conducted by Kiselev et al.
(2003, 2004); Rippard et al. (2004a,b). In these experiments,
the thickness L of the magnetic film (“free” layer) is
rather small, usually smaller than the exchange length

lex =
√

2A/M2
0 in the ferromagnetic metal, while the in-

plane radius of the current-carrying region (nanocontact),
Rc, is substantially larger than both the layer thickness and
the exchange length Rc > lex > L. In such a situation the
nanocontact plays the role of an antenna and excites a
spectrally narrow packet of spin waves localized near �k = 0
and having a spectral width in the k space of the order of
�k ∼ 2π/Rc � 2π/L. Although this wave packet can be
considered spectrally narrow compared to the characteristic
wave number kL ∼ 2π/L, the absolute values of spin-wave
wave numbers in the packet k ∼ 2π/Rc are sufficiently large,
so the exchange interaction creates a dominant contribution
to the spin-wave spectrum. At the same time, the in-plane
anisotropy of the spin-wave spectrum, equation (19) caused
by the dynamic dipole–dipole terms (of the order of kL ∼
L/Rc) could be ignored, and only the static demagnetization
and exchange interaction should be taken into account in the
spin-wave dispersion equation. This leads to the following
simple approximate expression for the spin-wave dispersion
law:

ωk = ω0 + Dk2 (24)

where ω2
0 = ωH (ωH + ωM cos2 θ) is the spin-wave fre-

quency and spin-wave dispersion D = ∂2ωk/∂k2 = (A/M0)

(∂ω0/∂H) calculated at k = 0. Since the excited packet of
spin waves is spectrally narrow we can also replace the four-
wave coupling coefficient Tk,k1,k2,k3 and the damping rate
�k in equation (23) by their values at k = 0: N ≡ T0,0,0,0,
� = �0.

Using the above simplifications and performing the
inverse Fourier transformation in equation (23) one derives
the Ginzburg–Landau equation for the amplitude of the
excited spin-wave mode in the coordinate space b(�r, t) =∑

�k bk(t) exp(i�k�r):

∂b

∂t
= −i[ω0b − D�b + N |b|2b] − �b

+f (r/Rc)σ Ib − f (r/Rc)σI |b|2b (25)

where r is the two-dimensional position vector in the film
plane, � is radial part of the Laplace operator written in
cylindrical coordinate system, and f (r/Rc) is a dimension-
less function that describes distribution of the current across
the nanocontact area.

Second, we shall consider the case when a spectrally
narrow (�k � k0) spin-wave packet is linearly excited by
an external signal �hs(�r, t) exp(iωst) created by a microwave
pulse having the carrier frequency ωs and the duration
τ and supplied to a strip-line antenna of width w in a
rather thick ferromagnetic film w ≥ L 
 lex. In this case the
characteristic carrier wave number k0 ≤ 2π/w of the excited
spin-wave packet is determined by the carrier frequency ωs

of the input signal, while the spectral width �k of the excited
spin-wave packet is determined by the input pulse duration
τ . In the case of a thick ferrite film, the contribution of the
exchange interaction to the spin-wave dispersion could be
ignored, and the spin-wave spectrum can be described by
equation (19) with the exchange constant A = 0.

Using the spectral narrowness (�k � k0) of the spin-
wave packet, we can again assume that the coupling and
damping coefficients in equation (23) do not depend on
k, Tk,k1,k2,k3 → N ≡ Tk0,k0,k0,k0, �k → � ≡ �k0 and approxi-
mate the nonexchange spin-wave dispersion law
equation (19) by its Taylor expansion near the point �k =
�k0 = k0�z:

ωk = ωs + vg�kz + 1

2
D�k2

z + 1

2
S�k2

y (26)

where vg = ∂ω/∂kz|k0z
is the group velocity, D = ∂2ω/

∂k2
z |k0z

and S = ∂2ω/∂k2
y |k0z

are the dispersion and diffrac-
tion coefficients. For simplicity, we assumed that the central
wave vector �k0 lies along one of the ‘principal directions’
of the dispersion law (i.e., either parallel or perpendicular to
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the direction of the in-plane bias magnetic field �H ), so the
cross term ∂2ω/∂kz∂ky |k0z

vanishes. It should be stressed
that, in contrast with equation (24), the approximate dis-
persion equation (26) contains the term with group velocity
(linear in �k), because the Taylor expansion is performed
near a nonzero central (or carrier) wave vector. Introduc-
ing a dimensionless slow-varying amplitude of the spin-wave
packet envelope:

U(y, z, t) =
∑

|��k|�k0

b�k0+��k(t) exp(i��k�r + iω0t) (27)

and performing the inverse Fourier transformation in
equation (23), we can obtain the so-called (2+1)-dimensional
nonlinear Schrödinger equation (NSE) for the spin-wave
packet envelope U (see e.g., Lvov, 1994; Slavin, 1994):

i

(
∂U

∂t
+ vg

∂U

∂z

)
+ 1

2
D

∂2U

∂z2
+ 1

2
S

∂2U

∂y2

−N |U |2U = −i�U (28)

The coefficients vg, D, S, and N in equation (28) have
been calculated for different directions of spin-wave propa-
gation in Chapter 9 of Wigen (1994). A more rigorous cal-
culation of the nonlinear coefficient N is reported in Wigen,
1994 using a classical Hamiltonian formalism for spin waves
in magnetic films.

Finally, we shall consider the case when a spectrally
narrow spin-wave packet, linearly excited by a strip-line
antenna in a ferrite film and propagating far from the
antenna, interacts with a quasiuniform magnetic field �hp

of a double-frequency (ωp = 2ωs) microwave pumping. As
a result of such parametric interaction, an additional idle
spin-wave packet with opposite wave vectors −�k0 ± ��k
will be generated, that is, in this case the spin waves are
localized near two points ±�k0 of the k space. Therefore,
one can introduce two slow-varying envelopes U1,2 for the
description of partial spin-wave packets:

U1,2(y, z, t) =
∑

|��k|�k0

b±�k0+��k(t) exp(i��k�r + iω0t) (29)

The inverse Fourier transformation of equation (23) gives
the following system of equations for the spin-wave packet
envelopes U1,2:

i

(
∂U1

∂t
+ vg

∂U1

∂z
+ ωrU1

)
+ D

2

∂2U1

∂z2
+ S

2

∂2U1

∂y2

−N
(|U1|2 + 2|U2|2

)
U1 = iV hp (z, t) U∗

2 (30)

−i

(
∂U∗

2

∂t
− vg

∂U∗
2

∂z
+ ωrU

∗
2

)
+ D

2

∂2U∗
2

∂z2
+ S

2

∂2U∗
2

∂y2

−N
(|U2|2 + 2|U1|2

)
U∗

2 = −iV ∗ h∗
p (z, t) U1 (31)

where the coefficients of nonlinear self-modulation inside
the packets Tk0k0,k0k0 and T−k0−k0,−k0−k0 , as well as the
coefficient of nonlinear cross-modulation between the pack-
ets T−k0k0,−k0k0 were assumed to be equal to each other
N = Tk0k0,k0k0 = T−k0−k0,−k0−k0 = T−k0k0,−k0k0 .

The system of equations (30) and (31) gives a good
description of the process of interaction of two-dimensional
nonlinear spin-wave packets propagating in a magnetic film
with a quasiuniform microwave magnetic field hp of a
double-frequency parametric pumping.

3 EXPERIMENTAL TECHNIQUES FOR
INVESTIGATION OF SPIN-WAVE
EXCITATIONS

There are several experimental approaches for the inves-
tigation of linear and nonlinear spin-wave processes. The
classical approach of microwave spectroscopy has the impor-
tant advantage of its simplicity. The input microwave sig-
nal is supplied to the input antenna, which converts it in
a spin-wave packet in the sample. After some propagation
time, the packet is detected by the output antenna placed
on the sample several millimeters apart from the input one.
The characteristics of the output microwave signal (dura-
tion, delay time, shape, phase, frequency spectrum etc.) can
then be measured and analyzed. The duration of the detected
signal, for example, can be brought into connection with
the length of the packet along its propagation direction.
Using an additional antenna or an open resonator placed
between the input and output antennae, one can manipu-
late the wave packets in the magnetic medium and study
their amplification. The disadvantage of the described tech-
nique is lack of spatial resolution. One can study the wave
packet only at the position of the output antenna. The propa-
gation and development of the packet between the antennae,
which is of particular importance for nonlinear phenom-
ena, cannot be studied by means of this technique. Similar
problems arise if one tries to investigate two-dimensional
effects. Since the antenna integrates the detected signal over
its length, important information about the transverse length
of the packet is being lost. An inductive scanning probe
based on a small wire loop sensitive to the magnetic field
caused by the spin waves during their propagation (Vlannes,
1987) brought limited success. Recent attempts to overcome
this drawback made Scott, Kostylev, Kalinikos and Pat-
ton (2005) raise a hope that the inductive probe approach
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would establish a competitive technique for time- and space-
resolved observation of spin-wave modes. Direct observa-
tion of spin precession is possible by optical probing using
the magneto-optical Faraday or Kerr effects (Geisau, Net-
zelmann, Rezende and Pelzl, 1990; Hiebert, Stankiewicz
and Freeman, 1997). By applying a stroboscopic technique,
one can measure the time dependence of different compo-
nents of the magnetization. However, since the measure-
ments are performed in the time domain, the upper fre-
quency limit of such techniques is 3–7 GHz (Perzlmaier
et al., 2005).

BLS is an optical spectroscopic method for investigation
of excitations with frequencies in the GHz regime. From the
point of view of classical electrodynamics, the BLS process
can be understood as follows: Owing to magneto-optical
effects a moving phase grating is created in the medium by
a spin wave; this grating propagates with the phase velocity
of the spin wave. Light is Bragg-reflected from the phase
grating with its frequency Doppler-shifted by the spin-wave
frequency.

The quantum-mechanic understanding of the BLS process
is illustrated in Figure 2. A photon of energy �ωI and
momentum ��qI interacts with the elementary quantum of
spin waves (�ω, ��q), which is the magnon. The scattered
photon gains an increase in energy and momentum:

�ωS = �(ωI + ω) (32)

��qS = �(�qI + �q) (33)

if a magnon is absorbed as a result of the scattering process.
From equation (33) it is evident, that the wave vector �qS −
�qI , transferred in the scattering process, is equal to the wave
vector �q of the spin wave. It can be chosen in the experiment
by variation of the scattering angle. If spin waves with
wave vectors much smaller than the wave vector of the light
are under investigation, the small-angle scattering geometry
should be used. On the contrary, the backscattering geometry
corresponds to the maximum transferred wave vector, 2|�qI |.
A magnon can also be created by energy and momentum

hqI, hwI
→

hqs, hws
→

hq, hw
→

Figure 2. Brillouin light-scattering process from spin waves
(magnons). The wave vectors of the incident and the scattered pho-
tons as well as that of the magnon are shown. The array of arrows
schematically illustrates the orientation of magnetic moments in a
spin wave.

transfer from the photon, which in the scattered state has
the energy �(ωI − ω) and momentum �(�qI − �q). For finite
temperatures (T 
 �ω/kB ≈ 1K) both processes have about
the same probability.

However, since for a spin-wave mode propagating in a
film the conservation conditions are fulfilled only for the
two in-plane components of the wave vector, �q‖. The third
component perpendicular to the film, qx , is not well defined
by the conservation law because of a finite width of the
film, which results in an essential uncertainty in the wave
vector due to the uncertainty principle. Furthermore, if the
excitation is not an infinitive plane wave, but a bound,
localized state comprising many magnons (soliton or bullet;
see the following sections), the in-plane components of the
wave vector do not conserve as well. The uncertainty in qx is,
apparently, inversely proportional to the size of the excitation
ξ , δq‖ ≈ 2π/ξ . Thus, it should be taken into account, if
(�qS − �qI )‖ξ ≈ 2π . This effect is of particular importance if
excitations in nanocontacts are under investigation.

During the last decades, BLS has developed to a very ver-
satile tool to investigate spin waves in magnetic films with
the wave vector in the interval of 0–106 cm−1, both thermally
driven and excited using an external source (Demokritov,
Hillebrands and Slavin, 2001). The tandem Fabry–Pérot
interferometer designed by Sandercock is currently widely
used as a fairly standard solution (Sandercock, 1978) for
the BLS studies. The frequency resolution of the tech-
nique of about 200 MHz is usually determined by the flat-
ness of the mirrors of the interferometer, which should be
of the highest quality, and their alignment. For example,
a typical flatness of the mirrors over the diameter of
50–70 mm is specified as 25–30 nm. For the alignment,
an active stabilization procedure continuously analyzing the
shape and the measured frequency position of the refer-
ence laser beam is obligatory (Hillebrands, 1999). As a
result of such a resolution, the detection of waves with
frequencies below 1 GHz is questionable. The upper fre-
quency limit of the waves accessible for the BLS technique
is determined by the free spectral range of the interfer-
ometer, which can hardly be made above 300 GHz, since
the distance between mirrors in this case should be below
0.5 mm.

The advantages of the BLS as a technique for investigation
of spin waves are (i) high-frequency resolution in the GHz
regime and the potential to investigate spin waves with
different absolute values and orientations of their wave
vectors; (ii) a wide dynamic range, that is, the possibility of
detecting both low-amplitude thermal spin waves and high-
amplitude spin waves, excited by an external source; and
(iii) high spatial resolution defined by the size of the laser
beam, which can be focused down to 300 nm in diameter
(Perzlmaier et al., 2005).
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Figure 3. Schematic layout of the Brillouin light-scattering setup in the forward-scattering geometry with space and time resolution. (For
a discussion of the components see the main text).

To investigate magnetic excitations simultaneously with
spatial and temporal resolutions, an experimental technique
based on a standard BLS setup has been developed. It is
schematically shown in Figure 3. Similar to the microwave
technique, spin waves are generated by an input antenna
attached to the sample. The spatial distribution of the wave
intensity is measured by scanning the laser beam across the
sample, which is performed by a motorized sample mount.
Spin waves are effectively excited in a wave vector interval
|�q| < 300 rad/cm, with the upper bound imposed by the
width of the antenna. Thus the light scattered into the forward
direction is usually detected to achieve a high sensitivity in
this low-wave-vector regime.

Temporal resolution is added by using a time-correlated
single-photon counting method similar to time-of-flight mea-
surements in, for example, mass spectroscopy. A pulse gen-
erator generates pulses of typically 10–30 ns duration with
a repetition rate of typically 1 MHz. The pulse is sent to a
microwave switching device to create a pulsed microwave
field and to generate a spin-wave pulse. The same pulse is
also used to start a 24-bit reference counter counting the
output pulses of a 4 GHz time base. If the spin-wave pulse
crosses the laser spot, light is inelastically scattered. The scat-
tered light passes through the interferometer and is detected

by a single-photon detector. The output signal of the detec-
tor is used to stop the reference counter. The counter content
is now a measure of the elapsed time between the launch
of the spin-wave pulse and the arrival at the position of the
laser spot. A cell of a memory array addressed by the content
of the counter is incremented by one and the procedure is
repeated. After accumulating a large number of events, the
content of the memory array represents the temporal variation
of the light-scattering cross section (which is proportional to
the spin-wave intensity) at the current position of the laser
spot. By repeating the procedure for different positions of the
laser spot on the sample, two-dimensional maps of the spin-
wave intensity are constructed for different values of delay
time. The data is arranged in a digital video animation with
each frame representing the spatial distribution of the spin-
wave intensity for a given delay time. The entire system is
built on the basis of a digital signal processing device, which
is placed on a PCI computer board. The device can handle
up to 2 × 107 events per second continuously. A lower limit
of about 1–2 ns on the time resolution is imposed to keep
the obtained frequency uncertainty of the at a reasonable
level. Typical accumulation times are 5 s per position of the
laser spot. A complete measurement of a two-dimensional
spin-wave intensity pattern in a film with a sampling area of
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2 × 6 mm2 and a mesh size of 0.1 mm takes a little more than
2 h including dead times caused by sample positioning. Using
a similar approach, spin waves of different frequencies can
be detected simultaneously with a time and space resolution.

The experiments described in the following text usually
combine the microwave technique with the BLS one. To
investigate nonlinear excitations, high-amplitude spin pre-
cession is excited by an external microwave source. To
minimize the applied microwave power, media with low
damping constants are usually used. As mentioned in the
preceding text, rare-earth garnets demonstrate an extremely
low damping, YIG (Y3Fe5O12) having the lowest damp-
ing. Excitations with a precession angle of several degrees
can be excited in YIG films. Bismuth-substituted-iron garnet
(Lu0.96Bi2.04Fe5O12, BIG) films are also an attractive mag-
netic media for nonlinear studies. Although the dissipation
parameter is larger in BIG, this material generates a much
higher BLS signal due to its higher magneto-optical activity
for green light, commonly used for BLS experiments.

4 NONLINEAR SPIN-WAVE MODES
EXCITED BY EXTERNAL MICROWAVE
SIGNAL

It has been shown in Section 2 that an intrinsically nonlinear
equation of motion for the magnetization Landau and Lif-
shitz (1935) in the limit of weak nonlinearity can be reduced
to the NSE equation (28) describing the evolution of spec-
trally narrow nonlinear spin-wave packets. The stable or qua-
sistable solutions of this equation describe natural nonlinear
spin-wave excitations existing in a magnetic film, and these
excitations form a new nonlinear basis for the description of
microwave dynamics of magnetization in magnetic films.

The most well known of those solutions is a one-
dimensional temporal envelope soliton solution, which can be
interpreted as a bound state of a large number of linear spin
waves (or magnons) (Kosevich, Ivanov and Kovalev, 1988).
In contrast to linear wave packets, which spread while propa-
gating in a dispersive medium, the temporal soliton is stable:
it preserves its shape during propagation. Moreover, the the-
ory predicts that two solitons can undergo a head-to-head
collision without destroying each other (Büttner et al., 1999).
One distinguishes bright and dark solitons. An envelope dark
soliton can be understood as a stable propagating dip in a
carrier wave of otherwise constant amplitude in a nonlin-
ear medium. In real experiments, one-dimensional spin-wave
envelope solitons can be observed either in the quasi-one-
dimensional geometry of a spin-wave waveguide – a narrow
strip of a YIG film having a width that is smaller than the
characteristic wavelength of transverse modulational instabil-
ity in the medium (see Demokritov, Hillebrands and Slavin,

2001 for details) – or in the two-dimensional geometry of a
wide YIG film where the Lighthill criterion (Lighthill, 1965)
of modulational instability in the transverse direction is not
fulfilled (e.g., the case of a perpendicularly magnetized YIG
film (see Chapter 9 in Wigen (1994)).

In a two-dimensional geometry when the Lighthill crite-
rion is fulfilled in both in-plane directions, it is possible to
observe the formation of quasistable two-dimensional self-
focused spin-wave packets – wave bullets – that are two-
dimensional spatio-temporal analogs of solitons. We would
like to stress that bullets existing in a two-dimensional case
are only quasistable and do not survive collisions with other
bullets (see Demokritov, Hillebrands and Slavin, 2001); nev-
ertheless, they play a very important role in the nonlinear
spin-wave dynamics of magnetic films. In fact, bullets give
us a convincing example of the general importance of mag-
netic systems for nonlinear physics. The possibility of ‘light
bullets’, that is, stable optical wave pulses strongly localized
in space and time by self-focusing, which is stabilized by
saturation of nonlinearity at high wave amplitudes, has been
suggested by Silberberg (1990). There exists, however, no
clear experimental evidence for this effect in optics, likely
because in optical fibers diffraction is much stronger than
dispersion and, therefore, both effects cannot be observed
simultaneously. On the contrary, the first experimental obser-
vation of bullets has been performed in magnetic films (Bauer
et al., 1998; Büttner et al., 1999). The success is mainly
based on the fact that the dispersion law of spin waves can
be easily manipulated in experiment by changing the magni-
tude and direction of the bias magnetic field applied to the
magnetic film.

The most interesting geometry to study nonlinear spin-
wave processes in magnetic films is the case of an in-
plane magnetized ferrite (YIG) film. While the exchange-
dominated spin-wave spectrum (24) of a very thin metallic
film is approximately isotropic in the film plane, in the
case of a relatively thick YIG film, the spin-wave dispersion
equation (26) is strongly anisotropic in the film plane.

For backward-volume magnetostatic (nonexchange) waves
(BVMSW) propagating along the direction of the bias mag-
netic field in a thick ferrite film, the nonlinear coefficient N

is negative, while the coefficients D and S describing dis-
persion and diffraction are both positive (see Chapter 9 in
Wigen (1994)). Thus the Lighthill criterion (Lighthill, 1965)
for modulational instability is fulfilled in both in-plane direc-
tions (SN < 0, DN < 0), and the BVMSW are susceptible
to both self-modulation in the direction of propagation (z)
and self-focusing in the transverse direction (y).

In the case of a sinusoidal input signal supplied to a rel-
atively short input antenna situated on a wide ferrite-film
sample, the excited dipolar spin waves are monochromatic,
and they propagate in a relatively wide angle in the transverse
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(y) direction. These monochromatic waves are not affected
by dispersion, but owing to the presence of different direc-
tions of wave vectors in the excited beam they are strongly
affected by diffraction. Owing to the competition between
diffraction and nonlinearity, transverse modulational insta-
bility develops, and this leads to stationary self-focusing of
the wave beam and to the formation of spatial spin-wave
envelope solitons (Boyle et al., 1996; Bauer et al., 1997;
Büttner et al., 2000). This effect can be described by a
one-dimensional reduction of the NSE equation (28) with
∂U/∂t = 0 and D = 0.

In the opposite case, when a wave packet propagates
in a narrow strip of a ferrite film (spin-wave waveguide),
where the strip width is smaller than the wavelength of
the transverse modulational instability (see equations (28)
and (29) in Demokritov, Hillebrands and Slavin (2001) for
details), the packet is not affected by diffraction, but, owing
to the presence of many different spectral components in the
packet, it is strongly affected by dispersion. The competition
between dispersion and nonlinearity leads to a longitudinal
self-modulation of the wave packet and to the formation
of ‘bright’ temporal spin-wave envelope solitons (see, e.g.,
Kalinikos, Kovshikov and Slavin, 1983; Chen, Tsankov,
Nash and Patton, 1994 and references therein).

The properties of MSSW propagating perpendicular to the
direction of the bias magnetic field are very different. MSSW
modes are modulationally stable and can only form ‘dark’
spin-wave solitons (Chen, Tsankov, Nash and Patton, 1993).
Formation of ‘bright’ and ‘dark’ temporal envelope solitons
can also be described by a one-dimensional reduction of the
NSE equation (28); only in this case we should assume that
S = 0.

The effects of longitudinal and transverse self-modulation
can be observed simultaneously if a pulsed input signal
excites a two-dimensional wave packet of BVMSW modes in
a wide YIG film sample. In this case, modulational instability
takes place in both in-plane directions and leads to a spatio-
temporal self-focusing of the wave packet and to initial
stages of the wave collapse, when the whole energy of the
packet is concentrated in a small spatial region (Bauer et al.,
1998). The full (2 + 1)-dimensional NSE is necessary for the
theoretical description of this effect.

Finally, when a two-dimensional linear or nonlinear spin-
wave packet propagates in a ferrite film and interacts with
a weakly spatially localized field of microwave pumping
(Bagada, Melkov, Serga and Slavin, 1997; Melkov et al.,
2000; Serga et al., 2005) the full system of equations (30)
and (31) (or its one-dimensional reduction) are needed to
describe this interesting and complicated nonlinear wave
process.

In this section we shall describe experiments where one-
and two-dimensional nonlinear spin-wave packets – solitons

and bullets – were excited by an external input microwave
pulse launched in the film by a strip-line antenna.

4.1 Bright temporal and spatial solitons

Observation of bright temporal spin-wave envelope solitons
in magnetic films using the microwave technique has been
reported in Kalinikos, Kovshikov and Slavin (1983) and
Kalinikos, Kovshikov and Slavin (1988, 1994) for different
orientations of the static magnetization, corresponding to
different spin-wave modes. These works have shown that
it is in fact possible to create in YIG films nonlinear wave
packets, possessing many properties intrinsic to solitons. For
example, after some formation time, spin-wave envelope
solitons propagate with a constant width. Moreover, it was
also shown that the measured phase profile inside the wave
packet is flat and corresponds to that of a theoretical soliton
solution of equation (28) with S = 0.

The first attempt to observe bright spatial solitons of
dipolar spin waves in magnetic films was undertaken by
Boyle et al. (1996). This paper reports the BLS study of the
stationary self-channeling of dipolar spin waves in rear-earth
garnet films, although the indication of the initial stages of
self-focusing was also present in the reported data.

A clear evidence of nonlinear self-focusing of dipolar
spin-wave beams and creation of spatial solitons was pre-
sented in Bauer et al. (1997), where BVMSW beams in
a Lu2.04Bi0.96Fe5O12 (BIG) waveguide (width 2 mm) were
studied. One of the results was the appearance of a snakelike
structure in the beam propagation path, which is caused by
the interaction of transverse waveguide modes (Büttner et al.,
1998). Different width modes of the waveguide, excited by
the microwave antenna, propagate with different phase veloc-
ities. They interfere with each other creating a snakelike
pattern in the spin-wave intensity in the waveguide.

To exclude the effect of self-focusing on measurements,
a wide BIG sample (width 18 mm) was used (Büttner
et al., 2000). The input power in this experiment was
varied from Pin = 10 mW (linear case) up to Pin = 600 mW
(nonlinear case). In Figure 4(a) and (b), the measured spin-
wave intensity distribution is shown for different values
of the input power. The intensity maps are corrected for
attenuation, and the data is normalized to the maximum
intensity in each map.

In the linear case, as displayed in Figure 4(a), the spin-
wave amplitude changes slightly due to the effect of
the diffraction, which causes a beam divergence during
propagation, so that the spin-wave intensity is distributed
over a wider range with increasing distance from the antenna.

In the nonlinear case, the propagation of the spin waves is
very different (Figure 4b). The beam no longer diverges. It
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Figure 4. Stationary self-focusing of BVMSW beams in a wide BIG sample. (a) and (b) Experimental distributions of the spin-wave
normalized intensity in the film plane for the linear (Pin = 10 mW) and nonlinear (Pin = 600 mW) regime, respectively. A clear self-
focusing maximum is seen at the point (z = 2.5 mm, y = 3 mm) in the nonlinear regime. (c) and (d) Results of numerical calculations.
(From Büttner et al., 2000.)

converges to a small diameter while the spin-wave amplitude
increases and a clear focus of spin-wave intensity is observed
at the point z = 2 mm, y = 2 mm. This is the result of the
competition between diffraction and nonlinearity, and it can
be qualitatively interpreted as the formation of a spatial
soliton of a higher order (Agrawal, 1994). In the nonlinear
regime, the formation of a narrow wave channel of constant
amplitude parallel to the propagation direction z was not
observed in these experiments, probably because of the fact
that the spatial attenuation in the film is large, and it can
play a significant role in the beam-shaping process. Since the
spin-wave beam loses energy because of dissipation during
propagation, the beam finally diverges when its amplitude
becomes so small that the diffraction effect dominates as is
the case for z > 2.6 mm in Figure 4(b).

4.2 Dark temporal and spatial solitons

As already mentioned, an envelope dark soliton is a stable
dip in a carrier wave of otherwise constant amplitude.
The dispersion broadening of such a dip is stopped by
the influence of nonlinearity, and the actual profile of
the completely formed dark soliton, as well as the phase
modulation of the carrier wave across the soliton, is a
result of a fine dynamic balance between the influences of
nonlinearity and dispersion. The characteristic feature of such
a dark soliton is a nonzero jump in the phase of its carrier
wave as one crosses the dip (Remoissenet, 1999; Slavin,
1995). In the case of a black soliton, if the maximum depth

of its dip is equal to the amplitude of the carrier wave,
this phase shift is exactly equal to 180◦. Thus, to obtain
a single dark soliton from an initial wave profile, the phase
modulation of the carrier wave should be performed before
it enters the nonlinear medium. Without such a modulation,
one or several couples of dark solitons can be created (Chen,
Tsankov, Nash and Patton, 1993; Nash, Kabos, Patton and
Staudinger, 1996; Slavin, Kivshar, Ostrovskaya and Benner,
1999). In this case, the phase jumps of successive solitons
are added, and the net phase shift across the entire output
signal is equal to an integer multiple of 360◦.

To create an appropriate phase modulation of the wave,
the experimental setup schematically shown in Figure 5 was
applied (Serga et al., 2004). A similar experimental technique
was used in a more-detailed study of dark spin-wave solitons
presented in Bischof, Slavin, Benner and Kivshar (2005). Its
main difference from a standard setup for investigation of, for
example, bright solitons is that the input signal is composed
of two coherent rectangular microwave pulses with con-
trolled mutual phase shift in the range (0, 2π). The combined
pulse is amplified by a power amplifier with controlled gain
and is sent to a short-circuited microstrip antenna attached to
a strip of a single-crystal YIG film. The input peak power of
the microwave signal Pin was varied in the range from 0.2 up
to 50 mW. The second antenna is used for the detection of the
spin-wave packets after their propagation along the YIG film.
As shown in Figure 5, the antennae are situated transverse to
the long side of the YIG sample and are separated by 8 mm.
The sample was magnetized by a static magnetic field of
H0 = 1745 Oe applied in the film plane and transverse to the



Nonlinear multidimensional spin-wave excitations in magnetic films 13

MW
source

Oscilloscope

In

Out

YIG film
delay line

H0

MW
switch

MW
switch

Power
amplifier

Phase
shifter

Low noise
amplifier

Phase
shifter

Figure 5. Experimental setup for creation of dark temporal soli-
tons. The YIG film is shown by a shaded rectangule (from Serga
et al., 2004). (For a discussion of the rest of the components see
the main text).

long edge of the strip. In this geometry, MSSW were excited.
Such waves have a monotonic dispersion curve ω(k) with
negative dispersion, D < 0, and nonlinearity, N < 0. The
positive product ND > 0 (Lighthill, 1965) allows MSSW
wave packets to form dark envelope solitons while travel-
ing between the antennae. To analyze the phase jump inside
the output signal, the interference between the output signal
and a reference signal from the same microwave source was
recorded.

Owing to the spin-wave dispersion in the film, the output
pulse is broadened and the two initially rectangular pulses
forming it acquire bell-like profiles. The width of the
central dip decreases with increasing power, providing clear
evidence of the dark-soliton formation. However, the dip
does not reach the zero level: the intensity at the dip is
increasing with increasing power. It means that a ‘gray’
soliton is created at the initial phase modulation of 180◦.
This effect is connected with the excitation-induced nonlinear
phase modulation (Slavin, Kivshar, Ostrovskaya and Benner,
1999). To obtain a fully ‘black’ soliton having zero amplitude
at the center of the dip, the excitation-introduced phase shift
is compensated by the external phase shifter. The envelope
shape of the output signal for this case is shown in Figure 6.
Thus, an artificial precompensation of the nonlinear phase
shift enables one to observe the generation of a single,
fundamental black spin-wave envelope soliton having a 180◦

phase jump.
A similar technique combining two microwave pulses with

a phase shift can be used for the formation of dark spatial
solitons. Instead of mixing two microwave pulses at one
antenna, as was done for the preceding studies of temporal
dark solitons, the formation of a spatial dark soliton has been
realized by using two axially aligned microstrip antennae
(shown by the vertical stripes in Figure 7) attached to the
surface of a wide YIG film. Two long (300 ns) coherent
microwave pulses with a 180◦ phase shift between them
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Figure 6. Normalized output signal formed from a nonlinear input
rectangular pulse with a dip, demonstrating the formation of a black
soliton (solid line). To obtain the black soliton, a phase adjustment
between two parts of the initial pulse by 50◦ was introduced to
compensate for the induced nonlinear phase shift. The dashed line
shows the result of interference of the black soliton signal with a
monochromatic reference signal, illustrating the 180◦ phase shift
over the soliton. (From Serga et al., 2004.)

were supplied to the antennae. Two-dimensional propagating
spin waves have been studied using the space-resolved BLS
technique. As seen in Figure 7 the antennae excite two
almost-parallel beams of MSSW. As a result of a destructive
interference of the beams an initial gap is created between
them even in the linear case (Figure 7a). This gap plays the
role of a soliton seed. Increasing the beam power leads to a
sharpening of the gap (see Figure 7b) between them. At the
same time, the depth of the gap remains at a constant value.
Remarkably and contrary to the linear case, the nonlinear gap
preserves its shape for a long propagation distance, as seen
in Figure 7(b).

4.3 Spatio-temporal self-focusing: spin-wave
bullets

In the experiments discussed in the preceding text, either
narrow YIG films were used or stationary effects of the spin-
wave propagation were studied. For the investigation of two-
dimensional spatio-temporal self-focusing, the propagation
of relatively short spin-wave packets in a large YIG film
(thickness 7 µm, width 18 mm, length 26 mm) has been
studied (Bauer et al., 1998). The static magnetic field H =
2098 Oe was applied parallel to the propagation direction.
Thus, the BVMSW geometry was realized. The carrier
frequency was chosen to be ωs/2π = 7970 MHz, which
results in a carrier wave vector k0z = 50 cm−1.

Figure 8 shows the distribution of the spin-wave intensities
for the preceding parameters and for two different input
powers: Pin = 10 mW in the linear (Figure 8a) and Pin =
460 mW in the nonlinear regime (Figure 8b). The data are
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Figure 7. Formation of the dark spatial soliton in a wide YIG
sample. Frames (a) and (b) show the normalized two-dimensional
distributions of the intensity of spin waves measured in the linear
and nonlinear cases, respectively. The orientation of the magnetic
field corresponds to the MSSW geometry (Serga, Demokritov and
Hillebrands, unpublished).

shown in the false-color presentation. In the linear case,
diffraction and dispersion cause a broadening of the initial
wave packet both perpendicular to and along the propagation
direction, while its amplitude decreases due to dissipation.
The propagation of the wave packets in the nonlinear case
is quite different. Here the initial high-amplitude wave
packet starts to converge, and its amplitude is increasing.
Theory predicts that in the two-dimensional case a stable
equilibrium between dispersion, diffraction, and nonlinearity
is not possible, and nonlinear self-focusing of the wave
packets with high-enough initial energy should lead to a
wave collapse, that is, all the energy of the packet will
be concentrated at one spatial point. In a real medium
with dissipation, the complete wave collapse is, of course,
avoided, as the wave packet loses its energy. Therefore, in a
certain interval of propagation distances, nonlinear collapse is
stabilized by dissipation, and a quasistable, strongly localized
two-dimensional wave packet, a spin-wave bullet , is formed,
as predicted in Silberberg (1990).

The effect of bullet formation is further illustrated in
Figure 9, where the width of the packet perpendicular to

t = 50 ns

(a)

(b)

t = 160 nst = 100 nst = 80 ns

Figure 8. Nonstationary self-focusing of a two-dimensional
BVMSW packet. The figure shows the spin-wave intensity distribu-
tion in the film created by the propagating pulse of duration 29 ns
in a false-color presentation for linear (Pin = 10 mW, (a)) and non-
linear (Pin = 460 mW, (b)) regimes. Four panels correspond to four
successive moments after the moment of a pulse launch from the
antenna, as indicated in the figure. Spatio-temporal self focusing is
clearly seen for T = 80 ns in the nonlinear regime. (Adapted from
Bauer et al., 1998.)

(Ly) and along (Lz) the propagation direction and the
peak amplitude of the nonlinear wave packet are shown as
functions of the propagation time. For 25 ns < t < 40 ns the
packet enters the range of measurement. After the packet
enters the measurement region, Ly and Lz rapidly decrease
(40 ns < t < 50 ns), while simultaneously the peak intensity
Ppeak increases with a minimum in width and a maximum in
intensity at t = 70 ns, where a spin-wave bullet is formed.
For t > 70 ns the amplitude of the bullet decays because of
the dissipation while Ly and Lz stay constant. At t > 100 ns
the amplitude is so small that the spatio-temporal focusing
effect vanishes and the bullet starts to broaden.

Figure 10 shows the evolution of the spin-wave bullet
sizes with increasing input power. It is clear that both in-
plane sizes of the bullet decrease with increasing power and
become closer to each other. This is a typical behavior of a
two-dimensional wave packet approaching the collapse point
(see, e.g., Berge, 1998).

5 SELF-GENERATION AND
PARAMETRIC EXCITATION
OF NONLINEAR SPIN-WAVE MODES

In Section 4 it was shown that spin-wave solitons and bullets
are formed from different input microwave signals supplied
to the magnetic film from an external source. We would
like to stress that the profiles of the formed solitons and
bullets are determined by the amplitude of the input signal
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in the nonlinear regime. The symbols show the result of the experi-
ment, the straight line shows the result of a simulation based on the
numerical solution of the two-dimensional nonlinear Schrödinger
equation. (From Bauer et al., 1998.)

and the nonlinear, dispersive, and diffractive parameters
of the film and are not closely related to the shape of
the excitation signal. In other words, solitons and bullets
are the natural intrinsic nonlinear excitation of a nonlinear
dispersive medium, and any initial condition of a sufficiently
high-amplitude will be reduced to these intrinsic nonlinear
excitations in the the process of its evolution in such a
medium.

In this section we present an additional experimental con-
firmation of this fact and demonstrate that spin-wave solitons
and bullets can be generated without any external signal,
directly from the internal noise existing in an active ring.
We also demonstrate that spin-wave bullets can be generated
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Figure 10. Widths Ly and Lz of the dipolar spin-wave packet of
half-maximum power measured at the focal point (point of the
maximum peak power) shown as functions of the input power
Pin. Symbols: experiment, lines: numerical simulation based on the
solution of the nonlinear Schrödinger equation. (From Bauer et al.,
1998.)

and amplified parametrically, if a microwave pumping of a
double frequency is supplied to the magnetic film.

The experiments on self-generation of spin-wave bullets in
active rings and their amplification by parametric pumping
are of particular importance. As mentioned in the preceding
text, the two-dimensional spin-wave bullets, formed as a
result of the competition between the effects of nonlinearity,
dispersion, diffraction, and linear dissipation are, in contrast
with one-dimensional solitons, only quasistable and do not
survive collisions with other bullets (Büttner et al., 1999).
Therefore, it is very interesting to compare the properties
of solitons and bullets generated from external input pulses
(Section 4) with properties of self-generated solitons and
bullets (discussed in the following text).

5.1 Self-generation of quasi-one-dimensional
solitons

A magnetic ring for soliton self-generation is usually based
on a ferromagnetic film connected to an external amplifier
that closes the self-generation ring and provides the energy
to compensate the losses in the ring. The amplifier operates
in the linear regime and has a wide frequency band of
amplification. Therefore, the magnetic film is the only source
of nonlinear effects in the ring. As discussed in the previous
sections, changing the mutual orientation of the applied field
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and the wave vector of the spin wave, one can realize the
BVMSW or MSSW geometry. BVMSW, having a positive
dispersion coefficient D and a negative nonlinear coefficient
N , supports the formation of bright solitons. MSSW, with
negative D and N , supports the formation of dark solitons.
The self-generation of both bright and dark solitons will be
discussed in this subsection.

An active ring consisting of just a magnetic film and an
amplifier cannot create solitons, since the self-generation in
such a system tends to become chaotic. To stabilize the self-
generation of spin-wave solitons, the time-gating Kalinikos,
Kovshikov and Patton (1998b, 1998a) and frequency-filtering
(Kalinikos, Scott and Patton, 2000; Scott, Kalinikos and
Patton, 2001) techniques have been proposed.

The first approach takes advantage of a microwave pulse
switch, introduced between the film and the amplifier. The
switch periodically closes the ring for a certain period,
thus, providing conditions for circulation of a microwave
packet of a finite width. If the period of switching is equal
to a round-trip circulation time, the frequency spectrum
of the wide-band signal allowed by the amplifier and the
magnetic film only becomes narrower due to survival of
the resonant ring harmonics, which can propagate in the
ring only in that particular time window. With successive
circulation, the amount of these harmonics is decreased
owing to the dispersion effect. Finally, at a given signal
amplitude the competition between the dispersion and the
four-wave nonlinear interaction results in the longitudinal
modulational instability, which is responsible for the energy
transition from one frequency mode to neighboring resonant
modes and the soliton formation.

The self-generation of magnetic bright solitons was first
performed using the time-gating technique in Kalinikos,
Kovshikov and Patton (1998b). The ring based on the YIG
film in the BVMSW geometry (the applied field is paral-
lel to the wave vector) has a round-trip time Ts = 100 ns.
By adjusting the switching period to match Ts and increas-
ing the gain of the amplifier, the self-generation of a series
of narrow wave packets was achieved. By measuring the
waveform of the packets and the phase profile inside each
packet, the self-generation of bright solitons due to nonlinear
interaction of the propagating resonant BVMSW modes was
confirmed. From the theoretical point of view, this nonlin-
ear process causes soliton formation if the frequency spacing
between neighboring resonance modes, �f , determined by
Ts : �f = 1/Ts = 10 MHz, is smaller than twice the modu-
lational instability frequency fm of the waves, �f < 2fm.
The latter can be estimated from the NSE (28) with S =
0 (see also Remoissenet, 1999) : fm = Uvg

√
(|N/D|)/π ,

where U is, as usual, the dimensionless amplitude of the
spin-wave packet envelope. For the experimental condi-
tions given in Kalinikos, Kovshikov and Patton (1998b)

fm = 43 MHz. Thus, the preceding condition is in fact
fulfilled.

As already mentioned, the self-generation of dark spin-
wave solitons can be achieved through MSSW geometry
(Kalinikos, Kovshikov and Patton, 1998a). Another key
difference from the above described case of bright-soliton
generation is that the active ring was periodically broken for
a short period of time (switched off) by the switcher. One
expects that the dark-soliton pulses will be formed from the
dips created by the interruption of the wave circulation. By
adjusting the experimental conditions, the circulation time
and the frequency spacing between the modes were chosen
to be the same as for the experiments with the bright solitons:
Ts = 100 ns, �f = 1/Ts = 10 MHz. In order to obtain the
self-generation, the gain of the amplifier was tuned to
compensate the losses and to achieve continuous microwave
self-generation. Second, the period of the interruption was
adjusted to coincide with Ts. Finally, the soliton duration was
varied to obtain the waveform packets and the phase profile
inside each packet that correspond to dark solitons. The
measured phase characteristic demonstrates two 180◦ jumps
of the phase within each dark wave packet. As discussed in
the previous section, this is unambiguous evidence that dark
solitons were formed as a pair. This experimental observation
is corroborated by theory, predicting the generation of a
pair of dark solitons from a dip created by the amplitude
modulation only (see, e.g., Kivshar and Luther-Davies,
1998).

5.2 Self-generation of spin-wave bullets

In this subsection, the self-generation of spin-wave bullets
from thermal noise in a wide YIG film will be discussed.
Characteristics of the self-generated bullets will be compared
with those of spin-wave bullets formed from coherent input
wave packets.

The realization of the active ring structure for bullet
self-generation (Serga, Demokritov, Hillebrands and Slavin,
2004) is similar to that for soliton self-generation with time
gating (Kalinikos, Kovshikov and Patton, 1998b, 1998a). As
the medium for propagation of the wave packets, a relatively
wide YIG film (lateral dimensions 26 × 18 mm, thickness
d = 7 µm) is chosen. A standard delay-line structure consist-
ing of two parallel strip-line antennae is placed on the sample.
As is usually the case for bullet studies, the lateral dimen-
sions of the sample are intentionally chosen to be much larger
than the length of the input antenna and the distance between
the antennae, thus creating the conditions for the existence of
a two-dimensional (unrestricted in plane) spin-wave process.
The applied field H0 = 1735 Oe is applied parallel to the
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propagation direction. Thus, the BVMSW geometry is real-
ized. The two antennae are connected through a microwave
switch and a high-gain, wide-band microwave amplifier. The
signal from the spin-wave packet is collected at Antenna
2 and, after amplification, brought back into the film by
Antenna 1, closing the ring. The microwave switch is used
as a mode selector, for details see the following text.

As described in the previous sections, the propagation
of two-dimensional spin-wave packets is described by the
two-dimensional NSE (28): One should, however, consider
� as the combined relaxation parameter, comprising the
damping in the film, losses in the antennae, and the parameter
characterizing the gain of the amplifier (�a < 0). Let us
emphasize again that dissipation plays an important role in
the formation of spin-wave bullets. Without dissipation the
ongoing self-focusing effect would result in a collapse of
the self-focusing packet Sulem and Sulem, 1999. However,
the presence of even a weak linear dissipation in the medium
stops the self-focusing and results in the formation of a
quasistable spin-wave bullet (or bullet of BVMSW) (Bauer
et al., 1998). On the other hand, the dissipation should
be small enough to allow for a sufficient time span for
developing the nonlinear two-dimensional instability.

The YIG film with the strip-line antennae forms a trans-
mission line for two-dimensional BVMSW wave packets, but
no external coherent input signal was applied to the antennae.
Instead, the transmission line is connected to a microwave
switch and a wide-band microwave amplifier, closing the
active ring. This transmission line plays the role of a res-
onator in a feedback loop of a standard microwave generator
(Tuan and Parekh, 1985). The resonance frequencies of a
ring are determined by the phase matching condition

knz(ω)l + φ = 2πn (34)

where n is an integer, l is a distance between the anten-
nae, and φ is the additional phase shift associated with the
electronic part of the ring. The main qualitative difference
between the the soliton-generation experiment and the exper-
iment with a wide film is due to the fact that the wide YIG
film sample allows for the generation of substantially two-
dimensional BVMSW packets that are affected not only by
dispersion, but also by diffraction. To achieve the stable gen-
eration of a train of spin-wave packets, it is necessary to
fulfill several conditions similar to those necessary for soliton
generation (Kalinikos, Kovshikov and Patton, 1998b; Scott,
Kalinikos and Patton, 2001). The only additional condition
is that �f should be smaller than the doubled instabil-
ity frequencies corresponding to the both longitudinal and
transverse instabilities. Besides, in two dimensions there
exists an additional mechanism of self-limitation associated

with diffraction and the partial collapse of the strongly self-
focused bullet that manifests itself for large, necessary values
of the external amplification gain coefficient.

The time-gating technique described in the preceding text
was applied to reach a stable generation of two-dimensional
nonlinear wave packets. The switch is opened once during
each propagation period of the packet over the ring (T0 =
190 ns) for a time (about τ b = 20 ns), which is larger than
the expected duration of the generated bullet. For small
amplification gains, the synchronization of the switch is
crucial: a variation of the modulation period, T0, by more
than ±3 ns leads to a breakdown of the self-generation
process.

The described experimental microwave setup allows one
to generate a train of short (about 20 ns duration) two-
dimensional spin-wave packets and to measure their carrier
frequency, duration, and propagation time by monitoring
the microwave signals at the input and output antennae of
the transmission line. To monitor the propagation of the
nonlinear wave packets, the space- and time-resolved BLS
technique in the forward geometry is used. As described in
the previous sections the BLS technique provides the two-
dimensional distribution of the spin-wave intensity I (y, z)

(proportional to the squared amplitude of the local dynamic
magnetization in the film, |U |2) of the propagating wave
packet with a spatial resolution of 0.1 mm and a temporal
resolution of 2 ns.

Two series of intensity distributions corresponding to two
different values of the external amplification gain at different
propagating times as indicated are shown in Figure 11. The
first series of profiles (Figure 11a) corresponds to a relatively
low value of the amplification gain, yielding a peak power of
the generated wave packet at the Antenna 1 of about P1 =
1 mW. This power is not sufficient to cause a pronounced
transverse nonlinear self-focusing of the generated wave
packet, and a spin-wave bullet is not formed. Nevertheless,
the propagating wave packet is almost stationary along
most of its propagation path. Here the regime of nonlinear
compensation of the dispersive and diffractive spread of
the wave packet is achieved. Such a propagation regime
was not observed for the coherent excitation of BVMSW
packets (Bauer et al., 1998) where the propagating packet
was either self-focusing or exhibited a relatively strong
diffraction spreading. The multiple-pass circulation of the
packet in the ring is responsible for the observed stabilization
of the wave packet size in this weakly nonlinear regime.

The second series of profiles (Figure 11b) corresponds
to a relatively high value of the amplification gain yield-
ing a peak power of the generated wave packet at the input
antenna of P1 = 220 mW. Here the generated wave packet is
clearly self-focusing in both in-plane directions, and a bul-
let is formed. The experimentally measured parameters of
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Figure 11. Spatio-temporal self-focusing of two-dimensional self-
generated BVMSW packets. The upper part of the panels shows
the spin-wave intensity distributions of the packet at successive
instants of time, as indicated, after the launch of the packet. The
lower part presents the cross sections of the propagating pulse at
half-maximum power. Panels (a) and (b) correspond to quasilinear
(P1 = 1 mW) and strongly nonlinear (P1 = 220 mW) spin-wave
packets, respectively. The black stripe in the lower part of the panels
indicates the position of the antenna. (From Serga, Demokritov,
Hillebrands and Slavin, 2004.)

this bullet (width, length, peak power) are very close to the
parameters of a BVMSW bullet formed under coherent exci-
tation by an external input microwave pulse. For example,
the minimal transverse size of the bullet observed in Bauer
et al. (1998) is 0.6 mm, while the minimum transverse size
of the bullet observed in the self-generation experiment is
0.65 mm, as it show in Figure 12.

5.3 Amplification and parametric generation
of spin-wave bullets

The preceding results demonstrate that spin-wave bullets
can be self-generated from noise. This proves that, similar
to solitons in quasi-one-dimensional systems, wave bullets
are intrinsic multidimensional excitations of the nonlinear
medium with dispersion, diffraction, and dissipation. It is
known (Bagada, Melkov, Serga and Slavin, 1997; Kolodin

et al., 1998; Melkov et al., 2000) that, in a quasi-one-
dimensional spin-wave waveguide, parametric interaction of
the spin-wave packet with an external pumping may result in
a substantial amplification of the initial packet and, in some
cases, the parametric generation of a phase-conjugated wave
packet propagating in the opposite direction. Therefore, it is
important to study parametric interaction of two-dimensional
linear and nonlinear spin-wave packets (Serga et al., 2005).

Advantages and disadvantages of magnetic films as a
medium for nonlinear wave studies, with respect to, for
example, optical media, were already discussed in this
review. An additional advantage of the magnetic films is
the fact that it is possible to realize an effective parametric
interaction of a propagating wave packet (having a carrier
wave vector k and frequency ω) with nonstationary (pulsed)
electromagnetic pumping (Melkov et al., 1999). The conser-
vation laws for such a parametric interaction process have
the form

ω + ω′ = ωp, k + k′ = kp (35)

where ωp, ω, ω′ and kp, k, k′ are the carrier angular
frequencies and carrier wave numbers of the electromagnetic
pumping pulse, initial spin-wave packet, and the ‘idle’ spin-
wave packet formed in the interaction process, respectively.

We will see in the following text that from the point
of view of parametric amplification the properties of two-
dimensional bullets are very similar to those of one-
dimensional solitons. In fact, the parametric interaction of
a two-dimensional linear spin-wave packet with paramet-
ric pumping leads to the formation of pronounced two-
dimensional spin-wave bullets from both amplified, forward-
propagating and reversed, phase-conjugated packets. These
results might be surprising, taking into account the finite
width of the studied wave packets in wave vector space and
the strong anisotropy of the spin-wave spectrum in a tangen-
tially magnetized magnetic film (see Büttner et al., 2000 for
details).

The setup for spin-wave amplification experiments is
shown in Figure 13. Spin waves were excited in a single-
crystal YIG film of 5 µm thickness, 4.1 × 30 mm2, using
a microstrip antenna of 25 µm width and 2 mm length.
The lateral dimensions of the film (4.1 × 30 mm2) were
chosen much larger than the characteristic size of a spin-
wave bullet (0.2–0.8 mm). The magnetic field H0 was
applied in the film plane along the long side of the film
(z axis in Figure 13). As discussed in the preceding text,
this geometry corresponds to the excitation of BVMSW.
The input BVMSW packets were excited by rectangular
electromagnetic pulses of duration 30 ns supplied by a
rectangular dielectric resonator with an opening in the
middle. The film went through the opening, and the resonator
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Figure 12. Evolution of the transverse width of the spin-wave
packet, Ly , with propagation time t at different amplification gains
illustrating the bullet self-generation. (From Serga, Demokritov,
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Figure 13. Experimental setup for parametric amplification of spin-
wave bullets. Leads feeding the antenna and the resonator are not
shown. (From Serga, Demokritov, Hillebrands and Slavin, 2004.)

was placed at a distance of 2.5 mm from the antenna (see
Figure 13). The pumping microwave field was parallel to
the applied magnetic field. The pumping pulse was supplied
to the dielectric resonator at the time when the propagating
wave packet was close to the center of the resonator. As a
result of the parametric interaction, the forward-propagating
amplified and the backward-propagating amplified, reversed,
and phase-conjugated spin-wave packets were formed.

A series of maps, showing the two-dimensional distri-
bution of the spin-wave intensities I (z, y) is shown in
Figure 14. Figure 14(a) demonstrates the evolution of a two-
dimensional wave packet of duration τ = 30 ns after it has
been launched from the antenna and until it reaches the
pumping area. As seen in Figure 14, the packet spreads along
the transverse (y) direction during propagation because of the
strong diffraction in the film. The spreading of the packet is
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Figure 14. The spatial distributions of the spin-wave intensity
captured at successive moments of time both for incident (a) and
for reversed (b) spin-wave packets. Pin = 146 mW, measured by
means of time- and space-resolved BLS. (From Serga, Demokritov,
Hillebrands and Slavin, 2004.)

illustrated in Figure 15(a), showing its width versus the prop-
agation distance. The three curves correspond to different
values of the input power.

Figure 14(b) demonstrates the propagation and evolution
of the reversed (k′ = −k) wave packet formed as a result
of the parametric interaction. It is clear that the reversed
packet experiences a strong nonlinear two-dimensional self-
focusing, which leads to the formation of a pronounced
spin-wave bullet (see frames corresponding to 191, 200, and
208 ns). The evolution of the bullet width Ly in this reverse
propagation is shown by curve (2) in Figure 15(c).

One can see from Figure 14 that the reversed packet
undergoes a wave-front reversal (phase conjugation). In fact,
frames corresponding to 69 and 78 ns illustrate that the wave
packet has a concave front. On the other hand, the reversed
packet (165 and 174 ns) has a convex front. Note the reversal
of the propagation direction between Figure 14(a) and (b).
As seen from Figure 15(d) the front-reversal process due to
phase conjugation is more profound for linear, low-power
input packet.

Figure 15(b) demonstrates that spin-wave bullet formation
also takes place in the forward-propagating amplified wave
packet after its interaction with the pumping. However, the
bullet formation in the forward-propagating spin-wave packet
takes place at a larger distance from the pumping resonator
than in the case of the reversed wave packet (1.5 mm
compared to 1.0 mm) and the width of the formed bullet Ly

is larger (0.3–0.4 mm compared to 0.22–0.25 mm). These
differences are connected with the fact that two mechanisms
contribute to bullet formation from the reversed packet.
The first mechanism is the nonlinear self-focusing effect,
characteristic for the four-wave nonlinearity in a focusing
medium and responsible for bullet self-formation. The second
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Figure 15. Frames (a) and (b) demonstrate the evolution of the
transverse width Ly of the spin-wave packet before its interaction
with pumping and after its parametric amplification, respectively.
Frame (c) shows the evolution of the width, Ly , of the reversed
spin-wave packet. Curves (1), (2), and (3) correspond to the input
powers Pin of 226 mW (strongly nonlinear), 146 mW (nonlinear),
and 22 mW (linear), respectively. Frame (d) illustrates the two-
dimensional phase conjugation and front-reversal process of a linear
(22 mW) wave packet due to interaction with the pumping. (From
Serga, Demokritov, Hillebrands and Slavin, 2004.)

mechanism is the linear self-focusing effect, characteristic for
the process of two-dimensional phase conjugation and wave-
front reversal (Zeldovich, Pilipetskii and Shkunov, 1985).
This linear focusing effect can be observed separately if
the power of the input signal is low enough (see curve (3)
for Pin = 22 mW in Figure 15c). It is clear that curve (3)
demonstrating the linear focusing effect has a substantially
smaller slope than curves (1) and (2), demonstrating the
formation of nonlinear bullets. Thus, owing to the combined
action of linear and nonlinear effects the focusing and
compression of the reversed wave packet is more pronounced
than that of the forward-propagating amplified wave packet,
although the amplitude of the forward packet is larger.

As discussed in the previous sections, for description of
the parametric interaction of a two-dimensional spin-wave
packet with pumping, one needs to use a system of two cou-
pled NLS equations for the envelopes of forward-propagating
and reversed wave packets (see equations (30) and (31)).
The above described processes of spin-wave packet propaga-
tion and interaction with parametric pumping were modeled
numerically using those equations. It was assumed that the

input linear wave packet has the following profile:

U 2
1 (y, z, t = 0) = U 2

0 cosh−2
[

2(z − z0)

Lz0

]
cos2

[
π(y − y0)

Ly0

]
(36)

where Ly0 and Lz0 were the same as in the experiment
(Figure 15). The initial amplitude of the input pulse U0 was
chosen to be smaller than the minimum threshold of four-
wave nonlinearity Uth = √

ωr/N (see Slavin and Benner,
2003) to guarantee the linear regime of the input wave packet
propagation before interaction with pumping. The pumping
field of hp = 60 Oe was assumed to be uniform in space and
was acting for 40 ns starting at the time when the maximum
of the input propagating pulse was at a distance of 3 mm
from the antenna.

The two-dimensional distributions of the normalized spin-
wave intensity |U(y, z)/U0|2 calculated for three different
times (before, immediately after, and 30 ns after the end
of the pumping pulse) are shown in Figure 16(a–c), cor-
respondingly. The numerical model correctly reproduces all
the qualitative features of the observed parametric interac-
tion process: Immediately after the interaction with pump-
ing, two counterpropagating wave packets (Figure 16b) are
formed from the initial linear wave packet (Figure 16a). This
is followed by the formation of bullets in both forward-
propagating and reversed wave packets (Figure 16c). Note
that the numerical results corroborate the experimental obser-
vation that self-focusing of the reversed spin-wave bullet
is stronger than self-focusing of the forward-propagating
packet.

Thus, the results presented in this section confirm the
fact that spin-wave bullets are two-dimensional intrinsic
excitations of a nonlinear diffractive and dispersive medium
with dissipation. Bullets demonstrate their self-generation
from the thermal noise. Besides they can be generated
parametrically in magnetic films from linear input wave
packets. They are formed from both the forward-propagating
and reversed wave packets, and their properties are similar
to the properties of wave bullets generated by an external
coherent microwave pulse, described in the previous section.

5.4 Self-generation of symmetry-breaking
nonlinear spin-wave excitations

In the previous section, solitons and bullets self-generated
in active rings have been discussed. The phase matching
condition equation (34) was considered as a fundamental
condition for the existence of an excitation in a ring. For
linear excitations that fill the entire ring, the phase matching
condition is the consequence of the unambiguous definition
of the wave phase in each particular point of the ring.
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Figure 16. Numerical modeling of bullet formation by parametri-
cally amplified and conjugated spin-wave packets. Frame (a) shows
the initial spin-wave packet. Frame (b) shows the amplified and
conjugated spin-wave packets just after their parametric interaction
with an electromagnetic pumping. In frame (c) a pronounced two-
dimensional compression of both spin-wave packets is seen. (From
Serga, Demokritov, Hillebrands and Slavin, 2004.)

For nonlinear, localized excitations, the phase matching
condition can be broken, since at a given instant of time
the phase of such an excitation is defined in the interval
of its localization. Thus, the phase matching should be
considered as an additional symmetry, which can be broken
for some excitations. Although the preceding considerations
seem to be very simple, the symmetry-breaking spin-wave
excitations have been discovered theoretically (Carr, Clark
and Reinhardt, 2000) and experimentally (Demokritov et al.,
2003) only very recently.

In their pioneering work, Carr, Clark and Reinhardt (2000)
have analyzed the solutions of a nonlinear wave equation
with attractive nonlinearity in a box with infinitely high walls
and, equivalently, in a ring. It was found that the general
solution can be described by multisoliton modes, and the
modes can be classified by the number of solitons comprising
a particular mode. There are, however, two classes of such
modes if one takes into account the symmetry connected with
the phases of the particular solitons building those modes.
The first class covers the nonlinear modes having one-to-one
correspondence with the linear solutions. In fact, there is a
direct connection between the mode number of a linear mode
and its mirror symmetry with respect to the center of the
box: odd and even modes are symmetric and antisymmetric,

respectively. The standing wave with two half wavelengths
fitting the box is antisymmetric with respect to the box cen-
ter. This linear mode corresponds to a two-soliton nonlinear
mode. The nonlinear mode belonging to the first class is
also antisymmetric, that is, the phases of the two solitons
are opposite. The second class covers the nonlinear modes,
having no one-to-one correspondence to linear modes. These
modes are called symmetry-breaking modes. For example,
contrary to the discussed linear mode, there exists a nonlin-
ear mode consisting of two solitons with the same phase,
which is symmetric with respect to the box center.

The preceding approach can be adapted for envelope
solitons. One needs, however, to define the phase of soliton-
like wave packets. In fact, let us consider a one-dimensional
spin-wave packet propagating in an unconfined magnetic
medium. The dynamic magnetization m(x, t) describing the
packet can be written as m(x, t) = f (x − vgt) exp(iϕ(x, t))

with ϕ(x, t) = 2πνt − kx − ϕa(x), where f is the envelope
function and ϕa(x) is an additional phase chirp due to
nonlinear effects. One can characterize a propagating soliton
by its phase as a whole, for example, at the maximum point of
the envelope function: ϕ(t) = ϕ(x, t) for x = vgt . Since the
group velocity of a wave can differ from the phase velocity
(this is usually the case for spin waves) the defined phase
is time dependent, that is, it changes constantly while the
soliton is propagating.

As a model system for experimental study of the
symmetry-breaking modes, an active nonlinear ring based
on spin-wave propagation in a narrow magnetic YIG film
waveguide was constructed (see Figure 17). A magnetic field
of 1870 Oe is applied parallel to the direction of the spin-
wave propagation, realizing the BVMSW geometry corre-
sponding to the waves with an attractive nonlinearity. There-
fore, one can expect that the nonlinear eigenmode spectrum
of the ring consists of sets of soliton-like wave packets (Carr,
Clark and Reinhardt, 2000). A YIG film of 7 µm thickness,
1.5-mm width, and 40-mm length, forms a waveguide. Two
short-circuited microstrip antennae for the excitation and
detection of spin waves are attached to the film at a dis-
tance l = 8 mm apart from each other. A linear electronic
amplifier, which connects the output and input antennae,
compensates the damping of the waves and maintains uni-
directionality of the ring, its gain is chosen in such a way
that the system is below the self-generation threshold if the
phase-sensitive amplifier discussed in the following text is
disabled. In the linear regime, that is, for low gains, the ring
shows a series of resonant eigenmodes with frequencies in
the interval 7.25–7.30 GHz, spaced by �ν = 3.2 MHz, and
wave vectors k = 100–150 cm−1. The exact frequencies of
the modes are determined by the phase matching condition:
kl = 2πn with integer n. The time for a full circuit around
the ring is T0 = 310 ns.
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Figure 17. Schematic layout of the active ring for observation of
nonlinear symmetry-breaking modes. The ring consists of the film,
two antennae, and the linear microwave amplifier (A). Nonlinear
modes of the ring are filtered using parametric pumping at double
frequency at the position of the center antenna (as described in the
text). The ring and the microwave components working at frequency
ν are shown in red. The components working at frequency 2ν are
shown in blue. The directional coupler, the phase shifter, and the
mixer with detector are used for phase-sensitive detection of the
modes by mixing them with a continuous wave (CW) reference
signal. (From Demokritov et al., 2003.)

For the investigation of nonlinear eigenmodes of the ring,
it is necessary to have a selection mechanism to individually
address each eigenmode. One widely employed approach is
the use of a critical threshold mechanism: only the mode
with the largest amplification gain is generated at the expense
of all others (Agrawal, 1994). Another approach is the use
of phase-selective amplifiers, which allows only the modes
having a well-defined preset phase at the location of the
amplifier in the ring to exist in the active ring. To achieve
phase-selective amplification, the technique of parametric
parallel pumping is used. A sufficiently strong microwave
field with frequency 2ν can parametrically amplify a spin-
wave packet of frequency ν (Bagada, Melkov, Serga and
Slavin, 1997; Kolodin et al., 1998). The pumping microwave
field is sent to a microstrip resonator attached to the film
centered between the two antennae as shown in Figure 17.
For a narrow pumping area, that is, if kδ � 2π , where δ

is the width of the pumping area, the amplification gain is
phase sensitive (Melkov et al., 2001). Figure 18 illustrates
the phase dependence of such an amplification: waves having
phases π/4 + nπ with respect to the pumping field are
amplified most efficiently. Using this amplification, one
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Figure 18. Amplification coefficient of the parametric amplifier as
a function of the difference between the phase of the spin wave and
the pumping field.

needs to compensate the losses in the ring as shown in
the figure by the horizontal dash line. Only the modes
having their phases close to the maxima of the amplification
coefficient will survive in the ring.

In the experiment, the amplification of the electronic
amplifier is chosen in such a way that no nonlinear modes are
observed without parametric pumping. Then, the pumping
is applied as a single microwave pulse with the duration
τ = 15–35 ns. Such a pumping results in the creation of
a single soliton-shaped microwave packet circulating in the
ring. Figure 19 showing the signal detected by the output
antenna illustrates the development of the packet in the ring.
The packet circulates in the ring with the period T0, and
its amplitude is slowly decreasing. As seen in Figure 19,
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Figure 19. Waveform of a nonlinear wave packet created in the
ring by a single pumping pulse. The decay of the packet intensity is
due to damping in the magnetic film, which is partially compensated
by the electronic amplifier. The soliton nature of the packet is
confirmed by a smaller decay time (τ 1) of the packet amplitude
with respect to that (τ 2) of the linear packets. (Demokritov, Serga
and Hillebrands, unpublished.)
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the decay of the amplitude during the first rounds is much
faster than that for the small amplitude, confirming the
soliton nature of the pulse. More exact analysis of Figure 19
also shows that the wave packet increases its width while
decreasing its intensity as one expects from the soliton
theory (Remoissenet, 1999). Thus, based on the preceding
discussion, one can conclude that the created wave packet
has soliton properties, at least during the first two rotations
over the ring when the intensity of the wave packet is large
enough. By applying pumping pulses periodically, one can
keep the intensity of the packet in the soliton regime constant.

Figure 20 illustrates the waveforms of the detected eigen-
modes with the curve (a) showing the waveform of the
pumping field as a reference. By sweeping the frequency in
a narrow interval of 20 MHz, several nonlinear eigenmodes
are subsequently observed. Without phase analysis, all modes
detected at different frequencies are undistinguishable and
consist of a series of soliton-like pulses spaced in time by
the time interval T0 (curve b). The phase-detection tech-
nique reveals, however, two different types of single-soliton
modes. First, there are soliton modes that keep their phase
after traveling around the ring, as demonstrated by the curve
(c). They are labeled ‘N’ for ‘normal solitons’, since they do

M
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(b)

(c)

(d)

(e)
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Figure 20. Waveforms of the one-soliton modes observed in the
ring, Tp = T0; (a) waveform of the pumping field, (b) waveform
of a nonlinear mode obtained without phase-sensitive detection, (c)
and (d) waveforms of normal and Möbius modes detected using
phase sensitive detection, respectively, (e) is the same as (d) with
the phase of the reference wave shifted by π . (From Demokritov
et al., 2003.)

not break the phase matching condition. Second, there are
soliton modes with the phase difference of π between the
two subsequent detections of the soliton, as demonstrated by
the curve (d). These modes need to travel twice about the
ring to meet the initial phase condition. Since they remind
one of the well-known Möbius strip, they are labeled ‘M’
for ‘Möbius mode’. The waveform of the M mode can be
reversed by changing the continuous wave (CW) reference
phase as shown by the curve (e). Both normal and Möbius
modes are observed alternatively at different carrier frequen-
cies, νN and νM, with νN − νM = 1.6 MHz, that is, �ν/2.
The physical nature of the N modes is easily understood:
a soliton is propagating about the ring with the closed-loop
phase shift of 2πn. Each of these normal soliton modes has a
counterpart among the linear excitations. In a Möbius mode
the soliton acquires a phase shift of 2π(n + 1/2) per loop,
that is it breaks the phase matching condition. For this reason
it cannot have a counterpart among the linear modes.

The possible existence of Möbius modes, that is, eigen-
modes with a phase shift per loop that is different from
an integer multiple of 2π has not been considered by Carr,
Clark and Reinhardt (2000). Instead, soliton modes compris-
ing several solitons and the mutual phase relations between
those solitons are discussed in Carr, Clark and Reinhardt
(2000). Eigenmodes consisting of several soliton-like wave
packets can be also found in the experiment. This happens if
the repetition period of the pumping pulses, Tp is a fraction
of T0. Figures 21 and 22 illustrate the cases Tp = T0/2 and
Tp = T0/3, that is, a mode with two/three equally spaced soli-
tons rotating in the loop. Similar to Figure 20, the top curves
demonstrate the pumping waveforms, while the other curves
are the measured waveforms of the different modes detected
by phase analysis. The numbers adjacent to the curves in
Figure 21 numerate the corresponding values of the mode
frequencies in units of GHz. The two vertical dashed lines
indicate the time interval T0, which each of the solitons needs
to complete the loop. For Tp = T0/2 one observes two nor-
mal modes and one Möbius mode. Although the two normal
modes are not completely degenerate, their frequency sepa-
ration is much smaller than δν. The difference between the
Möbius mode and both the normal modes, νN − νM, is close
to �ν/2 = 1.6 MHz. By sweeping the frequency, alternating
normal and Möbius modes appear, as demonstrated by the
curve at 7.2687 GHz, which, with respect to the observed
signal, is identical to the curve at 7.2855 GHz, but separated
from the latter in frequency by the amount �ν. As seen in
Figure 22, two normal modes and two Möbius modes are
found for Tp = T0/3. Again, alternating normal and Möbius
modes are observed with the same frequency interval. To
summarize these findings: The phase sensitivity of the para-
metric pumping process constitutes a phase selection rule
for the allowed eigenmodes of the ring. The modes with



24 Magnetization dynamics, solitons, modes and thermal excitations

Time (ns)

0 300 600 900

(00)N
7.2687

(00)N
7.2655

(0π)N
7.2657

(00)M
7.2672

(a)

(b)

(c)

(d)

(e)

Figure 21. Waveforms of the two-soliton modes observed in the
ring, Tp = T0/2; (a) waveform of the pumping field, (b), (c), (d),
and (e) waveforms of different modes with the numbers being the
frequency of each mode in units of GHz (from Demokritov et al.,
2003). (The mode nomenclature is explained in the text).

phase shifts per loop of 2πn and π + 2πn can survive in
the ring.

In order to classify the multisoliton modes found, the
soliton phase relative to the phase of an arbitrary chosen
soliton, which we set to zero without loss of generality, is
quoted. A soliton having the same phase will be indicated by
‘0’, one with a phase difference of π , by ‘π ’. The suffixes ‘N’
and ‘M’ for normal and Möbius modes are added. For Tp =
T0 only two one-soliton modes exist, a normal mode, (0)N,
and a Möbius mode, (0)M. In the case of two-soliton modes
one finds, using combinatorics, four possible combinations:
(00)N, (0π )N, (00)M, and (0π )M. However, the last two
modes are physically identical, as they can be transferred
into each other by shifting the origin of the timescale by
T0/2. According to Carr, Clark and Reinhardt (2000) some
of the N eigenmodes are expected to have broken symmetry,
since they cannot evolve monotonously from their linear
counterparts. It is found that the (00)N mode has a linear
counterpart, while the (0 π)N mode has the predicted broken
symmetry. A similar analysis for Tp = T0/3 predicts the
existence of four nonequivalent three-soliton modes: (000)N,
(0π0)N, (000)M, and (0π0)M. All these modes are observed
in the experiment, as demonstrated in Figure 22.

As a conclusion to this section, one should point out
that the observation of the symmetry-breaking nonlinear
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Figure 22. Waveforms of the three-soliton modes observed in
the ring, Tp = T0/3; waveforms of the pumping field and of
the observed modes (from Demokritov et al., 2003). (The mode
nomenclature is explained in the text).

modes is of fundamental importance for nonlinear physics.
It opens a new way to create nonlinear objects with new
symmetry properties forbidden for linear excitations. As a
generalization of the observed Möbius solitons, one can
imagine fractal solitons, acquiring the phase shift per loop
of π/3, 2π/3, and so on.

6 STANDING SPIN-WAVE BULLET
GENERATED BY SPIN-POLARIZED
CURRENT

In the previous sections we discussed nonlinear dynamics
of one- and two-dimensional spin-wave packets that were
linearly excited by a microwave input signal or self-generated
in an active ring containing ferrite (YIG) film, or paramet-
rically excited by the microwave field of double-frequency
pumping.

In this section we demonstrate that the nonlinear proper-
ties of two-dimensional spin-wave bullets play a critically
important role in the process of spin-wave excitation by a
spin torque created by spin-polarized current traversing a thin
in-plane magnetized film made of a ferromagnetic metal.

It was theoretically predicted (Slonczewski, 1996; Berger,
1996) and experimentally observed (Tsoi et al., 1998; Rip-
pard, Pufall and Silva, 2003; Rippard et al., 2004a,b; Kiselev
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et al., 2003) that spin-polarized current passing through a
thin magnetic film (‘free’ layer of a magnetic layered struc-
ture) can excite microwave magnetization oscillations in this
layer. A spatially uniform nonlinear theory explaining many
experimentally observed features of this phenomenon was
developed in a series of theoretical papers (Slonczewski,
1999; Rezende, de Aguiar and Azevedo, 2005; Slavin and
Kabos, 2005; Bertotti et al., 2005). Although it was clear
from experiments that the excitation of microwave oscil-
lations has a threshold character (i.e., it is observed for
sufficiently large currents I > Ith), and that the frequency
of the excited spin-wave mode is close to the natural FMR
frequency of the system, the exact nature of the dynamic
mode excited at the threshold in a magnetic nanocontact
was not determined in Slonczewski (1999), Rezende, de
Aguiar and Azevedo (2005), Slavin and Kabos (2005),
Bertotti et al. (2005). This is especially true in the case
of current-driven nanocontacts (Tsoi et al., 1998; Rippard,
Pufall and Silva, 2003; Rippard et al., 2004a,b) where mag-
netic layers are not bound in plane, and there are no lateral
reflective boundaries that could create an effective mag-
netic resonator (like in the case of nanopillars, Kiselev et al.
(2004)).

The most complete theoretical analysis of the nature of
the spin-wave eigenmode excited by spin-polarized current
in a nanocontact geometry was performed by Slonczewski
(1999). He developed a spatially nonuniform linear theory of
spin-wave excitations in a nanocontact, where the ‘free’ fer-
romagnetic layer is infinite in plane, while the spin-polarized
current traversing this layer has a finite cross section, S =
πR2

c , where Rc is the contact radius. Considering a per-
pendicularly magnetized nanocontact and using a linearized
Landau–Lifshitz equation, Slonczewski was able to show
that in the linear case the lowest threshold of excitation by
spin-polarized current is achieved for an exchange-dominated
cylindrical spin-wave mode having frequency determined by
equation (24) with wave number k = k0 � 1.2/Rc and trav-
eling out of the region of current localization Slonczewski,
1999. Here ω0 is the FMR frequency and D is the spin-wave
dispersion coefficient determined by the exchange interaction
and dependent on the direction of the bias magnetic field (see
equation (26)).

It was also shown that the threshold current Ith in such a
geometry consists of two additive terms: the first one arises
from the radiative loss of energy carried by the propagating
spin wave out of the region of current localization, while the
second one is caused by the usual energy dissipation in the
current-carrying region:

I lin
th � 1.86

D

σR2
c

+ �(H)

σ
(37)

Here, the spin-polarization efficiency σ is given by
equation (6) and �(H) is the spin-wave damping, dependent
on the bias magnetic field H . We note that the preceding
results of the linear analysis are valid for an arbitrary mag-
netization orientation if one uses the appropriate expressions
for the frequency ω0 and spin-wave dispersion coefficient D.

For a typical nanocontact of radius Rc ∼ 20–30 nm, the
radiative losses are about 1 order of magnitude larger than
the direct energy dissipation and should make the main con-
tribution to the threshold current. This result, however, con-
tradicts experimental observations (see, e.g., Rippard, Pufall
and Silva, 2003): the experimentally measured magnitude of
the threshold current in an in-plane magnetized nanocontact
is much smaller than the value predicted by equation (37),
although the dependence of this current on the magnetic field
H is satisfactory described by this equation.

In this section, following Slavin and Tiberkevich (2005),
it is shown that in an in-plane magnetized magnetic film
the competition between the nonlinearity and exchange-
related dispersion leads to the formation of a stationary
two-dimensional self-localized nonpropagating spin-wave
mode – standing spin-wave bullet. This bullet is very simi-
lar in its structure to the propagating self-localized spin-wave
bullets observed on YIG films and discussed in detail in the
previous sections of this chapter. The frequency of this stand-
ing spin-wave ‘bullet’ is shifted below the spectrum of linear
spin waves by the nonlinearity and, therefore, this nonlinear
mode has an evanescent character with vanishing radiative
losses, which leads to a substantial decrease of its threshold
current Ith in comparison with the linear propagating mode
(equation (37)).

It was demonstrated in Section 2 that the equation describ-
ing the amplitude b(r, t) of a spin-wave mode excited by
spin-polarized current I in a free layer on an in-plane mag-
netized magnetic nanocontact can be written in the form
of equation (25), where ω0 ≡ √

ωH (ωH + ωM) is the lin-
ear FMR frequency (ωH ≡ γH , ωM ≡ 4πγM0, and γ is
the gyromagnetic ratio), D = (2γA/M0)(ωH + ωM/2)/ω0

is the dispersion coefficient for spin waves (A is the
exchange stiffness), � is the two-dimensional Laplace opera-
tor in the film plane, N = −ωHωM(ωH + ωM/4)/ω0(ωH +
ωM/2) is the coefficient describing nonlinear frequency shift,
and � ≡ αG(ωH + ωM/2) is the spin-wave damping rate
(αG is the dimensionless Gilbert damping parameter). The
dimensionless function f (x) describes the spatial distribu-
tion of the spin-polarized current. The dimensionless spin-
wave amplitude b is connected with the z component of
the magnetization by the equation |b|2 = (M0 − Mz)/2M0.
Equation (25) differs from equation (9) in Slonczewski
(1999) (which resulted in the solution (37)) by the presence
of two additional nonlinear terms: the term containing the
coefficient N and describing a nonlinear frequency shift of
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the excited mode, and the last term describing the current-
induced positive nonlinear damping that stops the increase
of the amplitude of the excited mode at relatively large cur-
rents. Also, since the equation (25) was obtained as a Taylor
expansion, it is literally correct only for sufficiently small
spin-wave amplitudes |b| < 1.

Without damping and current terms (� = 0, I = 0)
equation (25) coincides with the well-known (2 + 1)-dimen-
sional NSE (see Akhmediev and Ankiewicz (1997) and
equation (28)) written in a cylindrical coordinate system
where dispersion and diffraction coefficients are equal to each
other, S = D, because of the axially symmetric character of
the exchange-dominated spin-wave spectrum of a very thin
magnetic ‘free’ layer. In the considered case of an in-plane
magnetized film, the nonlinear coefficient N is negative,
and the nonlinearity and dispersion satisfy the well-known
Lighthill criterion ND < 0 (Lighthill, 1965), and the NSE
has a nonlinear self-localized radially symmetric standing
solitonic solution (or the solution in the form of a standing
spin-wave bullet)

b(t, r) = B0ψ(r/�)e−iωt (38)

where the dimensionless function ψ(x), having maximum
value of 2.2 at x = 0, describes the profile of the bullet. This
function is the localized solution of the equation

ψ ′′ + 1

x
ψ ′ + ψ3 − ψ = 0 (39)

which has to be found numerically (see e.g., Chiao, Garmire
and Townes, 1964; Silberberg, 1990).

In equation (38), B0, �, and ω are the characteristic
amplitude, characteristic size, and frequency of the bullet,
respectively. Among these three parameters only one is
independent. Taking the amplitude B0 as an independent
parameter, we can express the two other parameters as

ω = ω0 + NB2
0 , � =

√|D/N |
B0

(40)

We would like to stress that the frequency of the spin-
wave bullet lies below the linear frequency ω0 of the FMR
(see equation (40), and note that N < 0), that is, outside the
spectrum of linear spin waves. This is the main reason for the
self-localization of the spin-wave bullet, as the effective wave
number of the spin-wave mode with the frequency given
in equation (40) is purely imaginary. It also follows from
equation (38) and the Taylor expansion condition |b| < 1,
that the maximum magnitude of B0 for which the perturbative
approach is still correct is B0 = 0.46.

It is well known (Akhmediev and Ankiewicz, 1997)
that the bulletlike solutions of (2 + 1)-dimensional NSE

are unstable with respect to the small perturbations: the
wave packets having the bullet shape (38) but amplitudes
smaller than B0 decay because of the dispersion spreading,
while the wave packets having amplitudes higher than B0

collapse because of the nonlinearity. At the same time,
equation (25) with both Gilbert dissipation � and current
I is a two-dimensional analog of a Ginzburg–Landau
equation that is known to have stable localized solutions
Aranson and Kramer, 2002. In the particular case of an in-
plane magnetized nanocontact, the current-induced terms in
equation (25) might stabilize spin-wave bullets and might
prevent them from both dispersion spreading and nonlinear
collapse. One can assume that for a small damping rate �

and current I the full nonconservative equation (25) can have
a bulletlike solution, only slightly different from the exact
solution, equation (38), of the conservative NSE equation.

In was shown in Slavin and Tiberkevich (2005) that
equation (25), indeed, has a stable bullet solution if the bullet
amplitude B0 satisfies the following equation

σI

�
= 1.86

η2(qB0) − B2
0η4(qB0)

(41)

where

q ≡
√∣∣∣∣ N

D/R2
c

∣∣∣∣ (42)

is the parameter describing the strength of nonlinearity rel-
ative to exchange-originated dispersion for the nanocontact
of radius Rc, and the function ηn(qB0) is defined as

ηn(qB0) ≡
∫ ∞

0
f (x/qB0)ψ

n(x)xdx (43)

This equation implicitly defines the amplitude B0 (and,
therefore, frequency ω and size �) of the stationary bullet as
a function of the system parameters (σI/� and q). On the
other hand, equation (41) can be interpreted as an equation
that defines a current magnitude, I , which is necessary to
support a stationary spin-wave bullet of amplitude B0.

The dependence of the normalized bias current ζ (B0) =
I (B0)/Imin (where Imin ≡ �/σ ) for two values of the nonlin-
earity factor q is shown in Figure 23 for the case of a steplike
current distribution (f (x) = 1 if x < 1 and f (x) = 0 other-
wise). This dependence has a clear minimum corresponding
to the amplitude B0 = Bth of a bullet formed at the thresh-
old of microwave generation by spin-polarized current. Note
that the normalized current ζ (B0) shown in Figure 23 was
denoted as ‘supercriticality’ ζ in the spatially uniform theory
(Slavin and Kabos, 2005). Note, also, that all the presented
formalisms are technically not applicable in the shaded area
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Figure 23. Dependence (41) of the normalized current ζ = σI/�

on the bullet amplitude B0 for two values of the nonlinearity
factor q: solid line −q = 5, dashed line −q = 3. Dash-dotted lines
indicate the threshold current Ith, threshold bullet amplitude Bth,
and low (B∗

min) and high (B∗
max) bullet amplitudes for a certain

supercritical current I ∗ > Ith. The shaded area to the right of the
vertical line B0 = 0.46 indicates the region where our perturbative
approach is not valid.

in the right part of Figure 23 where the Taylor expansion
condition b < 1 is violated.

The analytical result, equation (41), is heavily based on
the assumption that the profile of the spin-wave mode
generated at the threshold is approximately the same as
the profile of a stationary bullet, equation (38). To check
the validity of this assumption, equation (25) was solved
numerically. The results of comparison of the spin-wave
excitation profiles at the threshold obtained for a typical set
of experimental parameters (Rippard, Pufall and Silva, 2003)
from the analytical solution equation (38) (solid line) and
numerical solution of equation (25) (black dots) are shown
in Figure 24.

One clearly sees that the numerical profile of the non-
linear eigenmode is practically indistinguishable from the
approximate ‘bulletlike’ profile, so the ‘bullet’ model works
exceptionally well in this case. For comparison, the spatial
profile of the Slonczewski-like (Slonczewski, 1999) linear
spin-wave mode is also presented in Figure 24 (dashed line).
The amplitude of this linear mode at the threshold is vanish-
ingly small, |b(r)|2 → 0.

The inset of Figure 24 demonstrates the dependence of
the threshold current on the applied magnetic field. One can
see that the bullet model gives quantitative description of
the threshold current experimentally measured in Rippard,
Pufall and Silva (2003) and agrees with experiment much
better than the linear threshold equation (37).

Figure 25 demonstrates the comparison of the predictions
of the ‘bullet’ model with the results of the experiment (see
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Figure 2a in Rippard et al. (2004a)) for the magnitude of the
spin-wave frequency generated at the threshold as a function
of the applied magnetic field. It is again clear that the ‘bullet’
model gives a quantitative description of the experiment.

We need to mention that the stable bullet solution
described above was obtained for the case of the in-plane-
magnetized magnetic nanocontact. Similar results can be
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obtained for the nanocontacts magnetized at such angles to
their plane that the nonlinear frequency shift coefficient N

is still negative and the Lighthill criterion ND < 0 is satis-
fied (see Figure 8 in Slavin and Kabos (2005) showing the
angular dependence of the nonlinear frequency shift coeffi-
cient N ).

In the case of larger magnetization angles, when N > 0
and the Lighthill criterion is not fulfilled, the mechanism
of spin-wave self-localization and standing bullet formation
described above does not work, and the spin-wave mode
excited at the threshold is, most likely, a propagating
exchange-dominated nonlinear spin wave similar to the one
described by the linear solution for a normally magnetized
‘free’ layer (Slonczewski, 1999). We note, however, that the
experiments (Rippard, Pufall and Silva, 2003) show that the
measured threshold currents for normally magnetized films,
for which ND > 0 and no standing spin-wave bullets are
possible, are also somewhat lower than the values predicted
by the linear model (Slonczewski, 1999).

An attempt to create a spatially nonuniform nonlinear
model of spin-wave excitation by spin-polarized current in a
normally magnetized magnetic nanocontact was undertaken
in Hoefer et al. (2005). Unfortunately, the theoretical results
obtained in Hoefer et al. (2005) failed to give a quantitative
description of the experiments (Rippard et al., 2004a,b) for
practically reasonable values of the polarization efficiency
ε = 0.2–0.3. A qualitative agreement with experiments was
obtained in Hoefer et al. (2005) for two different and rather
unrealistic values of ε : ε = 0.8 in Figure 3 and ε = 0.5 in
Figure 4 of Hoefer et al. (2005). Thus, the nature of the
spin-wave mode excited by spin-polarized direct current in a
normally magnetized magnetic nanocontact remains an open
question that requires additional investigation.

7 CONCLUSION

In conclusion, stable one-dimensional spin-wave envelope
solitons and quasistable two-dimensional spin-wave bullets
are, indeed, the natural, intrinsic nonlinear excitations of
the dynamic magnetization in magnetic films. The shape
and properties of these nonlinear spin-wave modes are
practically independent of the method of their excitation and
are determined by the dispersive, diffractive, and nonlinear
properties of the film. Spin-wave bullets, being unstable
in a lossless medium, can be temporarily stabilized by
linear dissipation and can propagate for significant distances
of several millimeters without substantially changing their
shape. Propagating spin-wave solitons and bullets can be
self-generated from noise in active rings containing ferrite
films and can be parametrically generated and amplified.

The detailed study of the properties of these self-generated
nonlinear modes performed using the BLS technique led
to experimental discovery of the novel type of symmetry-
breaking nonlinear wave excitations – Möbius solitons.

Finally, we demonstrated theoretically that the lowest
threshold of spin-wave excitation in an in-plane magne-
tized magnetic nanocontact driven by spin-polarized current
is achieved for a two-dimensional nonlinear self-localized
spin wave mode – standing spin-wave bullet , stabilized by
the combined influence of the natural and current-induced
nonlinear dissipation.

Thus, the two-dimensional nonlinear self-localization of
spin-wave packets, discovered in our previous work for spin
waves propagating in ferrite films, turned out to be very
important in the process of excitation of nonpropagating
evanescent spin-wave modes by spin-polarized current in
ultrathin metallic ferromagnetic films.

We believe that the summarized results demonstrate the
general nature of multidimensional nonlinear wave excita-
tions described by the NSE (28) and the Ginzburg–Landau
equation (25) and will be interesting and important for the
investigation of nonlinear wave dynamics in other (e.g., opti-
cal) physical systems.
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Büttner, O., Bauer, M., Demokritov, S.O., et al. (1999). Collisions
of spin wave envelope solitons and self-focused spin wave
packets in magnetic films. Physical Review Letters, 82(21),
4320–4323.
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1 INTRODUCTION

The observation of giant magnetoresistance (Baibich et al.,
1988; Binasch, Grünberg, Saurenbach and Zinn, 1989) in
multilayers of magnetic metals separated by nonmagnetic
metals established that electric current in these magnetic
multilayers is spin polarized. Eight years later, Slonczewski
(1996) and Berger (1996) showed that the angular momentum
carried by the spin-polarized current between the magnetic
layers exerts torques on the magnetizations. They predicted
that when the current is large enough, these spin-transfer
torques can cause reversal and precession of the magneti-
zation. This prediction has been confirmed in a number of
laboratories and in a number of different sample geometries
including mechanical point contacts (Tsoi et al., 1998; Ji,
Chien and Stiles, 2003), lithographically defined point con-
tacts (Myers et al., 1999; Rippard, Pufall and Silva, 2003),
electrochemically grown nanowires (Wegrowe et al., 1999),
manganite junctions (Sun, 1999), lithographically defined

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism. This chapter is a US Government work and is in the public
domain in the United States of America.

nanopillars (Katine et al., 2000; Grollier et al., 2001; Man-
coff and Russek, 2002; Urazhdin, Birge, Pratt and Bass,
2003; Özyilmaz et al., 2003; Lee et al., 2004b; Hayakawa
et al., 2004; Covington et al., 2004; Jiang et al., 2004),
tunnel junctions (Liu, Zhang, Freitas and Martins, 2003; Huai
et al., 2004; Fuchs et al., 2004; Deac et al., 2004), and semi-
conductor structures (Moriya, Hamaya, Oiwa and Munekata,
2004).

There has been a great deal of research both exploring
the variety of behaviors exhibited by these systems and
testing the possible explanations that have been offered.
Some of these efforts are described in Spin Angular
Momentum Transfer in Magnetoresistive Nanojunctions,
Volume 5, Microwave Excitations in Spin Momentum
Transfer Devices, Volume 5, and Spin-transfer in High
Magnetic Fields and Single Magnetic Layer Nanopillars,
Volume 5. Spin-transfer torques are not only interesting
scientifically but are also potentially important in some
commercial applications. In existing implementations of
magnetic random access memory (MRAM), bits are switched
by the magnetic fields caused by current pulses. This method
of switching severely constrains the fabrication of the bits
because the magnetic fields are not well localized. The
possibility that the bits could be directly addressed and
switched by a polarized current is one promising application
of spin-transfer torques. Another possible application is based
on using the rapid precession observed in these multilayers
under suitable conditions. The high frequency oscillating
resistance suggests the use of these systems as current
controlled high-frequency oscillators (see also Microwave
Generation in Magnetic Multilayers and Nanostructures,
Volume 2 for more details). On the other hand, in read
heads with perpendicular current flow, precession interferes
with the operation of the heads by creating an unwanted
noise source. Thus, for some applications, it is desirable to
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understand how to optimize these effects and for others how
to minimize them.

Giant magnetoresistance is the dependence of the resistance
of a magnetic multilayer on the orientation of the magnetiza-
tions in neighboring ferromagnetic layers (see also Enhanced
Magnetoresistance, Volume 1). Thus, it provides a mecha-
nism for inferring the relative orientations of the magnetiza-
tions in a multilayer simply by measuring the resistance. When
spin transfer torques change the magnetic configuration of the
structure, the resistance of the structure changes as well. To
detect these torques, typically one layer, called the free layer,
responds to the spin-transfer torques, and the other, called the
fixed layer, is constructed in a way so that it does not. Thus,
when the current rotates the magnetization of the free layer, the
resistance of the multilayer changes. In the precessing state, a
constant input current gives a rapidly varying voltage owing
to the time variation in the resistance.

All of the devices studied share some common geometrical
attributes, starting with the fact that the current flows
perpendicularly to the magnetic layers. Spin-transfer torques
are interfacial (see subsequent text) so the free layer is kept
thin, usually 3–6 nm thick, because the current necessary to
move the magnetization from its ground state is proportional
to this thickness. Typically, the fixed layer is much thicker
than the free layer so it responds less strongly to the current-
induced torques. Cross-sectional dimensions are commonly
on the order of 100 nm because of the high current density
necessary to move the magnetization. There are two reasons.
First, the heating generated by this current density needs to
be tied to a relatively large heat sink. Second, the torques due
to the current-induced magnetic field become less important
as the cross-sectional area decreases.

Tsoi et al. observed spin-transfer torques using a point
contact to a magnetic multilayer in a high applied mag-
netic field (Tsoi et al., 1998). The signature of a spin-transfer
torque in their measurement was the observation of peaks
in the differential resistance, peaks that appeared only for
one direction of current flow. These peaks were interpreted
as evidence of a precessing state. Shortly thereafter, mea-
surements on lithographically defined samples, point con-
tacts by Myers et al. (1999) and nanopillars by Katine et al.
(2000), showed both a similar peak, asymmetric in the cur-
rent, in high applied magnetic fields, and hysteretic switch-
ing between parallel and antiparallel states at lower fields.
The crossover field between these behaviors is roughly the
zero-current coercive field. The switching was attributed to
spin-transfer torques because the behavior was asymmetric.
For large currents of electrons flowing from the fixed layer to
the free layer, the parallel state was stable, whereas for large
currents in the opposite direction, the antiparallel state was
stable. If the current-induced switching were due to the mag-
netic fields produced by the current, the stable state in high

currents would be independent of the direction of current
flow.

High-frequency measurements of resistance provided more
data to interpret the origin of the peak in the differential
resistivity at high fields and currents. Urazhdin, Birge, Pratt
and Bass (2003) showed that rapid fluctuations between two
states with different resistances give rise to peaks in the dif-
ferential resistance. The dwell times in each state depended
strongly on current, so that with increasing current there was
a rapid transition from spending most of the time in the
low-resistance state to spending most of the time in the high-
resistance state. This rapid and reversible rise in the resis-
tance leads to a peak in the differential resistance. Shortly
thereafter, measurements at still higher frequencies by Kise-
lev et al. (2003) and Rippard et al. (2004a) demonstrated
the existence of precession for currents and fields close to
the peak, but not clearly associated with it. They observed
sharp peaks in the power spectrum density, a measure of the
frequency dependent resistance in the devices, characteristic
of precession. In some cases, these peaks were extremely
sharp, with dimensionless quality factors, Q ≈ 18 000 (Rip-
pard et al., 2004b). Krivorotov et al. (2004) observed the
precession through real-time measurements of the resistance
and even measured the few precession periods the system
undergoes on the way to reversal in lower applied fields.

Finite sample temperatures add additional complications.
For low applied fields, the hysteretic switching depends on
the measurement time, or the rate at which the field or
current is swept (Myers et al., 2002). The observed two-
level switching is also strongly temperature dependent. There
have been a number of studies of this and the associated
low frequency noise (Tsoi et al., 1998; Myers et al., 2002;
Urazhdin, Birge, Pratt and Bass, 2003; Fabian et al., 2003;
Pufall et al., 2004). Sometimes the power spectrum density
has the Lorentzian form expected for two-level switching, but
frequently the low frequency noise has a more general form.

A number of experiments have tested qualitative and quanti-
tative predictions of the models used to describe these systems.
The dependence of the switching currents on the thicknesses
of the layers confirm that the spin-transfer torque is interfacial
(Albert et al., 2002). The dependence of the switching current
on the angle of the applied field relative to the easy axis of the
free layer shows the expected increases as the field becomes
perpendicular (Mancoff et al., 2003). Comparisons between
calculated and measured ‘phase diagrams’ (Katine et al., 2000;
Kiselev et al., 2004; Koch, Katine and Sun, 2004) in which the
behavior of the system is measured as a function of current and
applied field show that the models qualitatively reproduce the
measurements. For devices that are symmetric, the asymmet-
ric behavior that typically is a signature of the spin-transfer
torque becomes symmetric in current, as expected (Tsoi, Sun
and Parkin, 2004). Studies of the material dependence show
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the expected reduction of switching currents with decreasing
saturation magnetization (Pufall, Rippard and Silva, 2003).
By choosing appropriate and different materials for each mag-
netic layer, it is possible to make a device in which the state
with antiparallel magnetizations has the lowest resistance, the
so called inverse giant magnetoresistance. Studies of spin-
transfer torques using these material systems (AlHajDarwish
et al., 2004) show that the stability of the parallel and antipar-
allel states depends mainly on the properties of the fixed layer,
and only weakly on those of the free layer. Again, this result
is consistent with the theoretical models described in the sub-
sequent text.

The rest of the chapter describes the theoretical develop-
ments put forth to predict and explain the observed behavior.
Section 2, reviews spin transport in systems with collinear
magnetizations. These calculations show how the current in
the nonmagnetic layers becomes spin polarized and what
determines how large the polarization is in different devices.
However, the magnetizations must be noncollinear for spin-
transfer torques to play a role. To understand these torques,
it is necessary to calculate the behavior of individual elec-
trons scattering from interfaces with their spin noncollinear
with the magnetization, as described in Section 3. Section 4
combines the transport calculations and the scattering calcu-
lations to give calculations of the torque as a function of the
device geometry and the orientations of the magnetization.
The consequences of these torques on the dynamics is briefly
discussed in Section 5.

2 COLLINEAR TRANSPORT

The theory of spin transport near interfaces started with
Aronov (1976). A macroscopic theory was described by
Johnson and Silsbee (1987) and van Son, van Kempen and
Wyder (1987) and derived from the Boltzmann equation by
Valet and Fert (1993). The history of these developments
is discussed in a review article by Žutić, Fabian and Das
Sarma (2004). This section discusses charge and spin trans-
port in magnetic multilayers with collinear magnetizations,
starting with a single interface between a ferromagnet and a
nonmagnet. The results for single interfaces combine to give
results for more complicated structures, including the struc-
ture of principle interest in this chapter, two ferromagnetic
layer separated by a nonmagnetic layer embedded in a non-
magnetic host. The differences in the transport for parallel
and antiparallel magnetizations of the two layers gives the
giant magnetoresistance.

The negative charge of the electron is a potential source
of confusion. For example, charge currents move oppositely
to number (and spin) currents. Additionally, the electron’s
magnetic moment is opposite to its spin, leading to several

more possibilities for confusion (Jonker, Hanbicki, Pierce and
Stiles, 2004). In this chapter, these issues are addressed by
avoiding charge and magnetization and working instead with
number densities and currents and spin densities and currents.
Multiplying the number current by −e gives the charge current;
e is positive by convention. Similarly, multiplying the spin
density by gµB/� gives the magnetization density. For free
electrons, ge ≈ −2.002319. In transition-metal ferromagnets,
in which the orbital moment is largely quenched, the g-values
are close to −2. In the examples discussed in the subsequent
text, one of the magnetic layers has its magnetization in the −ẑ
direction, so that the spin density is in the ẑ direction. Majority
electrons, referred to as ‘spin up’, have their spins aligned
parallel to the spin density and minority electrons, referred
to as ‘spin down’, antiparallel. The symbols ↑ and ↓ refer to
majority and minority electrons, respectively.

The main quantities of interest in this section are the spin
accumulation and the spin current. The spin accumulation
is the excess spin density above the equilibrium amount
for each material. For the nonmagnetic material, this is just
the spin density itself. The spin current is the net flow of
spins. Consider an isolated interface between a nonmagnet
and a ferromagnet with a constant and uniform current
consisting of electrons flowing from the nonmagnetic layer
perpendicularly to the interface into the ferromagnetic layer.
Figure 1 shows the behavior of the spin accumulation and
the spin current. Far from the interface, both behave as
they would in bulk materials. There is no spin accumulation
in either material and the spin current is zero in the
nonmagnetic material. In the ferromagnet on the other hand,
the conductivity for majority electrons, σ ↑ is greater than
that for minority electrons, so the current density is spin
polarized. More current is carried by majority electrons
compared to minority electrons, j↑ > j↓. The difference
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Figure 1. Spin accumulation (δns) and spin current (js) for electron
flow from a nonmagnet into a ferromagnet (a) and vice versa (b).
γ p is the polarization of the current in the ferromagnet far from any
interfaces. The magnetization in the ferromagnet, M, is along the
−ẑ direction so that the ferromagnetic spin density s is along the ẑ
direction.
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in the spin dependence of the bulk conductivities between
the ferromagnet and nonmagnet means that more majority
electrons are extracted from the interface region into the
ferromagnet than are delivered to it from the nonmagnet.
Thus, a deficit of majority electrons builds up near the
interface. Similarly, there is an accumulation of minority
electrons near the interface because fewer are extracted into
the ferromagnet than are delivered from the nonmagnet.

When the density of spins varies spatially, as it does here,
with an excess of minority spins and a deficit of majority
spins accumulating near the interface, the spins diffuse in a
direction to reduce this variation. Thus, majority electron
diffuse into the interface region and minority electrons
diffuse away from it. The diffusion of these spins gives
rise to the spatially varying parts of the spin current seen in
Figure 1. In each material, the spin current for the majority
electrons is given by

j↑ = (σ ↑/e)E − D↑∇δn↑ (1)

where δn↑ is the excess density of majority electrons, and
D↑ is the spin-dependent diffusion constant, which, like
the conductivity σ↑, is different in each material. The
diffusion constants and the conductivities are related through
the Einstein relation e2σ↑ = D↑N ↑ where N↑ is the spin-
dependent density of states. The density of states also relates
the accumulation of each spin to a spin-dependent chemical
potential δn↑ = N↑µ↑.

The transport equations for majority and minority spins
can be combined into an equation describing the net spin
current and spin accumulation. The screening length in
metals is on the atomic scale, so there is no charge
accumulation in the interior of a conductor. This justifies
setting δn↓ = −δn↑ except across interfaces where dipole
layers are possible. Summing the transport equations for
majority, equation (1), and minority spins, solving for the
electric field E in terms of the current j, and inserting the
result into the difference of the two transport equations gives

js = γ pj − Ds∇δns (2)

where js = j↑ − j↓ and δns = δn↑ − δn↓. The first term
on the right-hand side of equation (2) is zero in non-
magnets, and gives the current polarization in the bulk
of the ferromagnet with γ p = (σ ↑ − σ ↓)/(σ↑ + σ↓). The
second term describes the net diffusion of spins with
Ds =(D↑σ ↑+D↓σ ↓)/(σ↑+σ↓).

The system reaches the steady state shown in Figure 1
because spin-flip scattering, which reduces the number of
excess spins by coupling their angular momentum with
the lattice, cuts off a limitless increase. The net spin
accumulation δns decays with a characteristic spin-flip

scattering time τ sf

dδns

dt
= −∇·js − δns

τ sf
(3)

The first term on the right-hand side describes the net
flow of spins into and out of a region and the second
describes the reduction in the spin density due to spin-flip
scattering. In steady state, the left-hand side vanishes so that
equations (2) and (3) can be combined to give a diffusion
equation for spins. The spin diffusion length lsf = √

Dsτ sf

is the characteristic length scale in this diffusion equation, it
varies from several nanometers in alloys such as Ni80Fe20 to
around 500 nm in Cu. In Figure 1, the spin accumulation in
both materials decays exponentially away from the interface
with the spin diffusion length appropriate for each material.

Spin-flip scattering provides an important source of angu-
lar momentum for the current carrying electrons. As noted in
the preceding text, the current flowing in from the nonmagnet
does not carry angular momentum toward the interface, but
the current flowing in the ferromagnet does carry angular
momentum away from the interface. The angular momen-
tum coupled from the lattice through spin-flip scattering is
the source of the difference between the angular momentum
flowing in the two leads.

Equations (2) and (3) describe all of the results in Figure 1
except the discontinuity in the spin accumulation at the
interface. This discontinuity arises because the interface has
a spin-dependent resistance, Rσ associated with it (Schep
et al., 1998; Stiles and Penn, 2000; Xia et al., 2001; Bauer,
Schep, Xia and Kelly, 2002). For each spin, the current across
the interface is related to a discontinuity in the spin chemical
potential, described in the preceding text, across the interface

R↑ j↑·n̂ = µNM
↑ − µFM

↑ (4)

As there is a ‘natural’ polarization to the bulk current given
by γ p, so is there a natural polarization to the spin current
through the interface given by γ I = (R↓ − R↑)/(R↓ + R↑).
The apparent sign reversal comes from the definition in
terms of resistances rather than conductances. Whenever the
polarization of the current, js/j , in the bulk of a material
is different from the polarization of the conductivity γ P,
there must be a spatially varying spin density to generate
a diffusive contribution to the spin density to compensate.
Similarly, whenever the polarization of the current crossing
an interface differs from the polarization of the interface
conductance, γ I, there must be a discontinuity in the spin
chemical potential across the interface.

Figure 1(b) shows that when the current direction changes,
the spin accumulation and spin currents both change signs. In
this case, more majority and fewer minority electrons enter
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Figure 2. Spin accumulation (δns ) and spin current (js) for electron
flow through two ferromagnetic layers embedded in a nonmagnetic
host and separated by a thin nonmagnetic spacer layer. The
magnetizations of the two layers are parallel along the ẑ direction
on the left side and antiparallel on the right. γ p is the polarization
of the current in the bulk ferromagnet far from any interfaces.

the interface region than leave it. Hence, there is a positive
spin accumulation and a net diffusion of majority electrons
away from the interface and minority spins into it.

These ideas describing spin transport through and near
interfaces provide the basis for understanding more compli-
cated structures. For example, consider the case of two finite
ferromagnetic layers separated by a nonmagnetic spacer layer
and embedded in a nonmagnetic host as depicted in Figure 2.
Far from the layers, there is no spin current or spin accumu-
lation in the nonmagnetic host. For parallel magnetizations,
as depicted to the left, there are more majority electrons flow-
ing through the layers than minority electrons. This flow of
electrons leads to minority electrons accumulating to the left
of the layers and diffusing to the left and majority electrons
accumulating to the right and diffusing to the right. The result
is a positive spin current in both cases. The polarization of
the current is less than the polarization of the interface con-
ductance, so there are substantial discontinuities in the spin
accumulation across the interfaces.

On the other hand, when the two magnetizations are
antiparallel, the current flowing through the layers is largely
unpolarized, provided the layers are thin compared to the
appropriate spin diffusion lengths. The unpolarized current
flowing through the ferromagnetic layers requires substantial
gradients in the spin accumulation to provide the diffusive
spin currents to compensate the bulk-like spin currents. Also,
since the current is much less polarized than the interface
conductances, there are substantial discontinuities in the spin
accumulation as well. This situation leads to an interesting
result. In the case of parallel magnetizations, the current
flowing through the spacer layer is highly polarized, but the
spin accumulation is close to zero. On the other hand, for
antiparallel alignment, the spin current in the spacer layer is
close to zero but there is substantial spin accumulation.

Figure 2 provides an explanation (Baibich et al., 1988)
for giant magnetoresistance. When the magnetizations are

parallel, the current carrying electrons are polarized so that
more of them flow through the low-resistance majority
channel. This polarization of the current lowers the average
resistance of the structure and provides a short circuit as
compared to the antiparallel case. In the antiparallel case, the
current remains largely unpolarized so that close to half of
the electrons are forced to flow through the higher resistance
minority channel in each layer.

It should be clear from Figure 2 that the spin current
depends on the sample geometry, including the leads. In
most samples, the leads only have the same cross-sectional
area as the rest of the sample for a length much shorter
than the spin diffusion length. Then, the structure widens
out quickly. In one-dimensional drift–diffusion calculations,
this widening is typically modeled by asserting that the spin
accumulation goes to zero at the widening point, but the spin
current is finite there. This approximation is motivated by the
large density of states in the wide part of the sample. Three-
dimensional calculations of the transport (Berger, 2004;
Hamrle, Kimura, Yang and Otani, 2005) bear out this picture
qualitatively, but quantitative differences remain.

There are several key points from this discussion that
are important for understanding spin-transfer torques. Spin-
dependent conductivities in ferromagnetic layers and spin-
dependent conductances at interfaces with ferromagnetic
layers lead to spin-polarized current flowing through the
nonmagnetic layers in these structures. Spin-flip scattering
couples angular momentum from the lattice into the electron
system, allowing for apparent nonconservation of angular
momentum within the electron system itself. Finally, the spin
polarization of the current at particular points in the structure
is not a local property. It depends on everything upstream
and downstream within a few spin diffusion lengths. It also
depends strongly on the alignment of the magnetizations in
close-by layers.

3 SPIN-DEPENDENT INTERFACIAL
SCATTERING

3.1 Spin currents for noncollinear magnetizations

The last section describes transport in devices with collinear
magnetizations, but torques only occur when the magnetiza-
tions are noncollinear. Treating the noncollinear case requires
understanding the behavior of spins currents at interfaces
when the spins are not collinear with the magnetization
of the ferromagnet. This section splits the discussion of
this behavior into three subsections. The present subsection,
Section 3.1, defines spin current in a noncollinear system and
describes its equation of motion. Section 3.2 describes the
scattering of individual electrons at interfaces as a function
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of their spin direction. The result is a torque on the elec-
tron spin and a reaction torque on the magnetization. Finally,
Section 3.3 describes the behavior of the collection of elec-
trons carrying current. The sum of the reaction torques from
the electron spins gives the spin transfer torque for the chosen
spin current. These descriptions provide boundary conditions
that can be used to generalize the results of the previous
section to the case of noncollinear magnetizations. This gen-
eralization is taken up Section 4.

When the magnetizations are collinear it is possible to
treat the spin accumulation as a scalar and the spin current
as a vector. In the presence of noncollinear magnetizations,
it is necessary to treat the spin accumulation as a vector to
account for variations in the direction of the spins and the
spin current as a tensor to account for both the direction of
the spins and the direction they are moving. Classically the
spin current carried by an individual electron is the outer
product of its spin and velocity (�/2)ŝ ⊗ v as illustrated in
Figure 3(a). More generally, these quantities are given by the
expectation values of the spin operator S and the velocity
operator v̂

s(r) =
∑
iσσ ′

ψ∗
iσ (r) Sσ ,σ ′ ψiσ ′(r)

Q(r) =
∑
iσσ ′

Re
[
ψ∗

iσ (r) Sσ,σ ′ ⊗ v̂ ψiσ ′(r)
]

(5)

In these sums, the index i refers to occupied states, and the
index σ to the spinor components of the states. In general,
the total spin current need not factor into an outer product
of a spin direction and a vector current, but in systems like
those considered in the previous section, it does

Q = (�/2) ŝ ⊗ js = (�/2)P ŝ ⊗ j (6)

where ŝ is a unit vector in the direction of the spin density.
The last form in equation (6) writes the difference of currents
carried by each spin as a polarization P times the number
current.

The equation of motion for the spin density can be derived
in the same way as the familiar continuity equation for the
number density

∂n

∂t
= −∇·j (7)

which is derived from the commutator of the operator for the
number density with the Hamiltonian. The number operator
commutes with all terms except the kinetic energy, which
gives the right-hand side. The expression shows that the time
rate of change of the number of electrons in a volume is given
by the net rate of flow of electrons into the volume. For the
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Figure 3. (a) An electron moving in one direction with its spin
in another illustrating a tensor spin current. (b) A pillbox around
interface for computing the interfacial torque.

spin density this procedure gives

∂s
∂t

= −∇·Q + next − αŝ × ∂s
∂t

− ŝ
δs

τ sf
(8)

where ∇·Q = ∂kQik , summing over the repeated index k.
The first term on the right-hand side is similar to the right-
hand side of equation (7). It is a contribution to the time rate
of change of the spin density given by the net flow of spin
into that volume. Unlike the case for the number density,
there are other terms that can change the spin density.
The second term on the right-hand side of equation (8)
comes from the terms in the Hamiltonian in which the
energy depends on the orientation of the spin density,
terms like the Zeeman interaction with an external field,
the magnetocrystalline anisotropy, and the magnetostatic
interaction between the magnetizations at different points.
These terms tend to cause precession of the spin density
around its equilibrium direction and are combined into the
effective torque; the last two terms are phenomenological
representations of more complicated interactions. The first
of these is the damping that tends to reduce the magnitude
of the precession and the second is the spin-flip scattering
described in equation (3). With just the second and third
terms on the right-hand side, equation (8) is the familiar
Landau–Lifshitz–Gilbert equation written in terms of the
spin density instead of the magnetization. The last term is an
addition for cases in which the magnitude of the spin density
is allowed to vary owing to flowing current. The first term
is the spin-transfer torque of interest in this chapter.

There are two contributions to the spin-transfer term in
equation (8), as there are two contributions to the spin
current. One contribution to the spin current is carried by
all of the electrons and exists whenever the spin density (or
magnetization) varies spatially even if there is no current
flow. The gradient of this contribution to the spin current
gives the micromagnetic exchange interaction discussed
in chapter General Micromagnetic Theory, Volume 2.
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The second contribution is carried by nonequilibrium carriers
near the Fermi energy. It only exists in the presence of a
current and is the contribution of interest in this chapter. The
rest of the chapter deals only with the spin current carried
by the nonequilibrium electrons close to the Fermi energy;
the contribution from the spin current due to the spatially
varying magnetization is included in the torque, next, as is
generally done in micromagnetics.

The remainder of the −∇·Q term in equation (8) is the
spin-transfer torque and has two important manifestations.
The manifestation of principle interest in this chapter is an
interfacial contribution in multilayers that is discussed in
the subsequent text. There is an additional contribution for
spatially varying spin densities in bulk materials originally
studied by Berger (1978, 1979). When the spin-density
direction varies spatially it exerts a torque on the spins
carried along with the current as they move through the
variation. These spins tend to rotate to stay aligned with
the magnetization. If they stayed perfectly aligned, the spin
current would have the form (�/2)P û(r) ⊗ j, where û(r) is
the local direction of the spin density. Then, the reaction
torque on the spin density is −(�/2)P (j · ∇)û(r) (Berger,
1984, 1986; Bazaliy, Jones and Zhang, 1998; Ansermet,
2004) for a constant current. If the spins carried by the
current do not adiabatically follow the direction of the
magnetization, there can be an additional torque of the form
ξ(�/2)P û(r) × (j · ∇)û(r) (Waintal and Viret, 2004; Zhang
and Li, 2004; Thiaville, Nakatani, Miltat and Suzuki, 2005).
However, calculations of this latter quantity are still in a
preliminary state.

The rest of this chapter focuses on the interfacial spin-
transfer torque of importance in magnetic multilayers (Slon-
czewski, 1996; Waintal, Myers, Brouwer and Ralph, 2000;
Xia et al., 2002; Stiles and Zangwill, 2002a). To under-
stand the origin of this torque, it is useful to integrate the
spin-transfer torque −∇ · Q over the volume of a pillbox
surrounding the interface between a nonmagnetic metal and
a ferromagnetic metal, as illustrated in Figure 3(b). The vol-
ume integral gets converted into the difference in the flux
between the two surfaces. For a spin-current incident from
the nonmagnetic metal, the net flux can be written as a torque
on the enclosed magnetization

Nc = (Qin − Qtr + Qref) · Ax̂ ≈ Qin
⊥ · Ax̂ (9)

where ‘in’, ‘tr’, and ‘ref’ refer to the incident, transmitted
and reflected spin currents, respectively. The equality in this
equation is the difference in the fluxes through the two
interfaces and is an exact result. The approximate result,
which states that the transverse component of the incident
spin current is absorbed by the ferromagnet at the interface,
is developed in the rest of this section.

3.2 Torque due to individual electrons

The behavior of individual electron spins in magnetic multi-
layers is determined by their interaction with the spin polar-
ized electronic structure of the ferromagnetic metals. Mod-
eling the details of the spin transport requires a model for
this electronic structure, which is complicated (Fulde, 1995;
Held and Vollhardt, 1998; Yang, Savrasov and Kotliar, 2001)
because it is a balance of intra-atomic exchange and correla-
tion effects with interatomic hybridization. In isolated atoms,
electrons occupy states in partially filled levels in such a way
so as to maximize the total spin (Hund’s first rule). Maxi-
mizing the spin reduces the Coulomb repulsion between the
electrons because parallel spins are naturally kept away from
each other by the Pauli exclusion principle. Within partially
filled atomic levels, the orbital energies of the different states
are the same so there is no penalty for developing this polar-
ization. In solids, the atomic levels hybridize with levels on
neighboring atoms forming bands and removing the degen-
eracy of the states within a level. Since the degeneracy is
lifted, there is now a cost for developing a spin polariza-
tion as each flipped spin has to be put into a higher energy
state. Typically, the Coulomb energy gain from developing a
spin polarization is less than that cost, so most solids remain
unpolarized. However, in Fe, Co, and Ni, among others, the
energy gain is sufficient for ferromagnetism to develop.

Two approaches are commonly used to describe the elec-
tronic structure of ferromagnets in the context of magnetic
multilayers. One is based on models used to describe mag-
netic impurities in nonmagnetic hosts (Langreth and Wilkins,
1972). In these models, the d levels on the impurity are
treated as localized states that form a local moment. This
model ignores the hybridization of the levels forming the
moment. In the most common treatment of this model, the
local moment becomes a well-defined object in its own right.
The moment is then weakly coupled to the moment of the
conduction electron spins. This model is referred to as the
‘s-d’ model or the local moment model.

The other approach, adopted in this chapter, is based
on the local spin-density approximation (LSDA) (Kohn
and Sham, 1965; von Barth and Hedin, 1972; Gunnarsson
and Lundqvist, 1976; Jones and Gunnarsson, 1989). This
approach was developed for computing the total electronic
energy of systems. In metallic solids, it works very well
for calculations of properties such as cohesive energies,
equilibrium lattice constants, and the magnetic moments
(Moruzzi, Janak and Williams, 1978). Alternatively, this
method can be thought of as an approximation for the
electronic structure in which the interatomic hybridization is
treated exactly, but the interactions between the electrons are
treated in mean-field theory. This approach does a reasonable
job describing the Fermi surfaces of the transition metals.
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Figure 4. The band structures and Fermi surfaces of face-centered cubic Co. The solid (dotted) curves give the majority (minority) bands
along two high symmetry directions through the Brillouin zone center, 	. The thin dashed curve shows the s-p band if it were not hybridized
with the d bands. The bars to the right of the bands show the width of the d bands and the exchange splitting between the majority and
minority bands. The arrows in the band structure plots give the width of the gap caused by the hybridization between the s-p and d bands of
the same symmetry. The Fermi surfaces are by permission from Choy et al. (1995). (Fermi surfaces reproduced from Choy, T.-S., Naset, J.,
Chen, J., Hershfield, S., and Stanton, C.J. The Fermi Surface Database, 1995, http://www.phys.ufl.edu/fermisurface/.)

Since the transport behavior is dominated by the properties of
the electrons at the Fermi energy, this approach is adopted in
the rest of this chapter. Calculated band structures and Fermi
surfaces for majority and minority electrons in face-centered
cubic Co are shown in Figure 4. The fact that the bandwidth
of the d-derived states as well as the s-d hybridization are
larger than the exchange splitting highlight the importance
of treating the hybridization of the d states.

Either approach can describe much of the physics of
these systems, largely because so much is unknown about
the details of the systems. For example, the spin-dependent
conductivity would be difficult to calculate directly even if
the details of all of the defects causing the scattering were
known. Since these details are not known, the conductivities
are usually taken from experiment, allowing either model
to correctly describe that aspect of the behavior. However,
there are some processes where the details of the Fermi
surfaces matter and the two models give different results.
As discussed below, the spin-transfer process is an example
where this difference is important. Figure 4 shows that when
the hybridization of the d-electrons is taken into account,
the Fermi surfaces of the majority and minority electrons
are quite different. In local moment models, the two Fermi
surfaces are almost identical.

Two different aspects of the exchange interaction are
discussed in this chapter, the exchange interaction that gives
rise to the moments and the micromagnetic exchange. The
latter aspect is the additional energy that arises when the
direction of the moment varies in space. In this chapter,
the magnetization of the layers is generally assumed to

be uniform, so references to the exchange interaction refer
to the aspect giving rise to the moment. References to
micromagnetic exchange refer to the spatially varying aspect.

When electrons scatter from interfaces between a non-
magnetic metal and a ferromagnetic metal, the exchange
interaction in the ferromagnet leads to scattering that depends
on the spin of the electron. For electrons with moments par-
allel to the magnetization in the ferromagnet, the reflection
amplitude, R↑, is different from the reflection amplitude for
electrons with moments antiparallel, R↓. For multilayers with
collinear magnetizations, spin-dependent reflection leads to a
spin-dependent interface resistance (Schep et al., 1998; Stiles
and Penn, 2000; Xia et al., 2001; Bauer, Schep, Xia and
Kelly, 2002). The transmission amplitudes, T↑ and T↓ are
similarly spin dependent.

The reflection amplitudes for electrons with moments mis-
aligned with respect to the magnetization can be computed
directly from the reflection amplitudes for collinear moments.
As discussed in the preceding text, the magnetization is
assumed to be in the −ẑ-direction so that the ferromagnetic
spin density is in the ẑ-direction. Then, the spin state of
an electron spin pointing in the direction specified by the
polar angle θ and azimuthal angle φ is given by a coherent
superposition of majority- and minority-spin states

|θ, φ〉 = cos(θ/2) e−iφ/2 |↑〉 + sin(θ/2) eiφ/2 |↓〉 (10)

So, an electron in the nonmagnet with a spin pointing in the
θ , φ direction with wave vector k can be described by the
wave function eikx |θ, φ〉. Since quantum mechanics is linear,
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Figure 5. Mechanisms contributing to absorption of incident transverse spin current. Electrons incident from the nonmagnet (lower left)
are distributed over states represented here by three different incident directions. All of these electrons are in the same spin state, which
is transverse to the ferromagnetic spin density. The reflected electron spins have predominantly minority character and their transverse
components are distributed over many directions (random spin rotation) because of the variation over the Fermi surface of the phases of
the reflection amplitudes. The transmitted electron spins precess as they go into the ferromagnet because the wave vectors for the majority
and minority components are different. Electrons with different initial conditions precess at different rates, leading to classical dephasing
(differential precession).

the majority, and minority components of the wave function
reflect as they would in the absence of any coherence. The
reflected wave function is thus

e−ikx
[
R↑ cos(θ/2) e−iφ/2 |↑〉 + R↓ sin(θ/2) eiφ/2 |↓〉] (11)

The reflected spin is rotated with respect to its incident
direction and is pointing in the direction specified by
tan(θ ′/2) = |R↓/R↑| tan(θ/2) and φ′ = φ + Im[ln(R∗

↑R↓)].
Such rotations are sketched in Figure 5.

Physically, the reflected electron spin precesses during
its interaction with the exchange field present in the ferro-
magnet. Similar effects occur for transmitted electrons with
one additional complication. When the electrons go through
the ferromagnet they continue to interact with the exchange
field and precess around it. This precession manifests itself
through the different wave vectors for the two components
of the wave function

e−ik↑xT↑ cos(θ/2) e−iφ/2 |↑〉
+e−ik↓xT↓ sin(θ/2) eiφ/2 |↓〉 (12)

As for the reflected wave function, there is rotation owing
to the relative amplitudes and phases of T↑ and T↓. In addi-
tion, the different components accumulate additional relative
phase from the factor exp[i(k↑ − k↓)x] as they propagate.
This phase factor describes the precession around the mag-
netization as the spin propagates through the ferromagnet.
There is no such precession for the reflected wave function.
In a local moment model, the spatial frequency of the pre-
cession is much slower than it is when more realistic Fermi

surfaces are considered. Realistic Fermi surfaces give spatial
precession periods on the order of several lattice constants.

When the interaction of the spin with the magnetization
causes the spin to precess, there is a reaction torque from the
spin on the magnetization. This reaction torque is the current-
induced torque described in equation (9). The second part
of that equation expresses an approximate numerical result
for the size of the torque. One of the mechanisms for this
result is seen from the following simple argument based on a
particular limit (Waintal, Myers, Brouwer and Ralph, 2000),
in which the reflection probability for majority electrons is
zero and for minority electrons is one. Although this simple
behavior is not general, it does occur for some electrons
(Stiles, 1996). For a ferromagnetic spin density along −ẑ and
an interface normal in the x̂ direction, consider an incident
electron with its spin in the x̂ direction. The spin currents on
the faces of the pillbox of Figure 3 as in equation (9) are

Qin = �

2
x̂ ⊗ vx̂

Qrefl = �

4
(−ẑ) ⊗ (−vx̂)

Qtrans = �

4
ẑ ⊗ vx̂ (13)

This combination gives a current-induced torque of Nc =
x̂Av�/2. There are two features of this result. First, there is
no torque along the direction of the magnetization. This is a
general result and simply reflects the fact that the component
of the spin along the magnetization is conserved during the
scattering process. The second feature is that the component
of the spin transverse to the magnetization is absorbed by the
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magnetization. The mechanism for the torque in this simple
model is the spatial separation of the majority and minority
components of the wave function. The transverse component
of the spin current arises from the interference of these two
components of the wave function. When they cease overlap-
ping, the transverse component of the spin current vanishes.
The two components of the wave function are separated
by the exchange interaction, the ultimate cause for the spin
dependence of the reflection amplitudes and hence the torque.

The result that the transverse spin current is absorbed at
the interface is exact only for this special limit of complete
spatial separation. However, it holds approximately for many
transition metal interfaces. Explaining this approximate result
requires a discussion of the distribution of electrons that carry
a current.

3.3 Torque due to an ensemble of electrons

Collinear transport is described in Section 2 using the lan-
guage of the drift-diffusion approximation in terms of den-
sities and currents, ignoring the behavior of individual
electrons. Determining the boundary conditions at the inter-
faces between different materials requires summing over the
behavior of the individual electrons. The electrons carrying
the current are spread over the entire Fermi surface and have
different properties.

Equation (11) shows that the electron spins rotate when
they reflect. First-principles calculations (Xia et al., 2002;
Stiles and Zangwill, 2002a; Zwierzycki et al., 2005) show
that these rotations vary rapidly over the Fermi surface.
A schematic of this distribution of rotations is shown in
Figure 5. For most interfaces that have been studied, there is
a tendency for a polarization to develop along the direction
of the magnetization; either majority or minority reflection
is greater on average. However, in all cases, the transverse
component of the reflected spin current sums to a value close
to zero. Thus, Qref in equation (9) has only a small transverse
component.

These same calculations show a similar, but not as com-
plete cancellation of the transmitted transverse spin current.
However, the transmitted electrons are rapidly precessing due
to the evolving phase difference exp[i(k↑ − k↓)x] for the
two spin components of the wave function for each elec-
tron. The difference in wave vector varies rapidly over the
Fermi surface. Thus, there is an increase in the dephasing
and concomitant decrease in the transverse component as a
function of penetration into the ferromagnet. This precession
is illustrated schematically in Figure 5 and the net preces-
sion and decay of the spin current is illustrated in Figure 6.
If the spin current is considered several layers into the ferro-
magnet, the transmitted current has only a small transverse
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Figure 6. Decay of transverse transmitted spin current as a function
of distance from the interface for two orientations of Co/Cu. For a
unit incident transverse polarization, the solid curve in each panel is
Qxx(x). The dotted curve in each panel is Qyx(x). Asymptotically,
the spin current shows decaying oscillatory behavior. The oscillation
is due to the precession (see equation (12)) and the decay is due to
increasing cancellation of the precession from different parts of the
Fermi surface. The amplitude of the asymptotic behavior is smaller
for the (100) case than for the (111) case due to the details of the
Fermi surface of Co.

component. The small transverse part of the transmitted and
reflected spin currents means that the transverse part of the
incident spin current is largely transferred to the ferromag-
netic magnetization. This result is the approximate second
half of equation (9).

Quantitative calculations like those in Figure 6 require
keeping track of the distributions of electrons on either side
of the interface. One approach is a fully coherent calcula-
tion (Zwierzycki et al., 2005; Edwards, Federici, Mathon
and Umerski, 2005). Such calculations have the drawback
that including all of the coherent multiple scattering between
interfaces involves significant computational effort. These
coherent effects are not observed experimentally, presumably
because disorder in the samples averages them out. An alter-
nate approach, adopted in this chapter, is a generalization of
the Boltzmann equation. The Boltzmann equation describes
the evolution of the distribution function for electrons when
the spatial variations in the system are slow enough that the
electrons in a small region can be described as if they were
in an infinite bulk region with similar material properties.
Coherence between electrons at different wave vectors or
positions is ignored. In magnetic multilayers, this approxi-
mation can only be valid away from interfaces. However,
distributions in two regions away from the interfaces can
be joined together through boundary conditions calculated
quantum mechanically.

In the ferromagnet, the distribution function fs(r, k),
depends on position r, wave vector k, and band index
(not indicated). The magnetization provides the natural
quantization direction and there is a separate function for
each spin s =↑, ↓. Any spin component transverse to this
direction tends to rapidly vanish due to dephasing effects
similar to those discussed in the preceding text for spin
currents injected into a ferromagnet.

In the nonmagnetic layers on the other hand, there
is neither a natural quantization direction, nor the rapid
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dephasing that is present in ferromagnets. In this case, it
is necessary to generalize the Boltzmann equation to keep
track of the coherence between electrons in different spin
states on each part of the Fermi surface. This can be
done by generalizing the two distribution functions to 2 × 2
distribution matrices

fs,s′(r, k, t) = f (r, k, t)δs,s′

+
∑

α=x,y,z

fα(r, k, t)[σα]s,s′ (14)

where σα , are Pauli spin matrices (α = x, y, z). This con-
struction allows the electron spins to point in arbitrary direc-
tions. The four functions that characterize the distribution
matrices give the densities and currents

n0 + δn =
∑

k

f (k) jβ =
∑

k

f (k)vβ(k)

sα = �

2

∑
k

fα(k) Qαβ = �

2

∑
k

fα(k)vβ(k) (15)

where vβ is a component of the velocity of the state at k,
and n0 is the equilibrium density. Moments of the Boltzmann
equation give the drift-diffusion equations in the nonmagnet
as shown for the collinear case by Valet and Fert (1993).

The construction in equation (14) is based on including
the coherence between majority- and minority-spin states, but
only for states at the same point on the Fermi surface. Thus,
the possibility of such a construction in ferromagnets depends
on the model for the electronic structure of the ferromagnet.
Calculations based on local moment models (Heide, 2001;
Heide, Zilberman and Elliott, 2001; Zhang, Levy and Fert,
2002; Shpiro, Levy and Zhang, 2003; Hitchon, Chantrell and
Rebei, 2004), typically include coherence between majority
and minority states because there is little difference between
the Fermi surfaces of the majority and minority transport
electrons. On the other hand, for realistic models of the
electronic structure, such a construction is not possible
because states with the same energy do not generally have
the same wave vector. Thus Boltzmann equation and drift-
diffusion calculations based on realistic band structures do
not allow for transverse spins in ferromagnets. It is possible
to extend the Boltzmann equation so as to include the
coherence that is left out of the Boltzmann equation; this is
done in the first-principles calculations (Stiles and Zangwill,
2002a; Zwierzycki et al., 2005). However, it is difficult to
include scattering in calculations with coherence between
non-overlapping Fermi surfaces.

In the Boltzmann equation, the boundary conditions for each
electronic state are determined by the spin-dependent reflec-
tion and transmission amplitudes shown in equations (11) and

(12). The boundary conditions for reflection can be expressed
in terms of four real reflection parameters

R↑ = |R↑|2 R⊥ = Re[R∗
↓R↑]

R↓ = |R↓|2 R× = Im[R∗
↓R↑]

(16)

The two parameters on the left are the reflection probabilities
for the majority and minority components, respectively. They
determine the reflected number current and the reflected
longitudinal spin current. The two quantities on the right,
which are not probabilities as they can be negative, determine
the reflected transverse spin current. R⊥ describes reflection
of a spin along the same azimuthal axis as the incident state.
A negative value implies rotation by 180◦. R× describes
reflection along an axis rotated by ±90◦. The boundary
conditions for transmission are described by the transmission
probabilities for majority and minority electrons. Since these
models do not include transverse spins in the ferromagnet,
any such spins that are transmitted are assumed to be
absorbed by the magnetization at the interface. Similarly,
the incident electrons from the ferromagnet are assumed
to be collinear with the magnetization, so those process
are described the majority and minority transmission and
reflection probabilities alone.

The transformation from the Boltzmann equation to the
drift-diffusion equation requires appropriate averages over
these reflection parameters. The result that the incident trans-
verse spin current is absorbed at the interface is equivalent
to stating that R⊥ and R× average to zero. Then, the bound-
ary conditions for transport in multilayers with noncollinear
magnetizations are that the transverse spin current and accu-
mulation in the ferromagnet are both zero and the transverse
spin accumulation and current in the nonmagnet are propor-
tional to each other

Q⊥ · n̂ = Bs⊥ (17)

The ⊥ subscript indicates the transverse component. The
constant of proportionality is a constant with units of velocity
B = AFS/(8π3

�N ), where AFS is the Fermi surface area
of the nonmagnetic material projected onto a plane in the
interface direction.

The spin-transfer torque described here is due to the
spin current carried by nonequilibrium carriers at the Fermi
energy. Although the spin-transfer torque is interfacial, it
is typically treated as spread uniformly throughout the free
layer because the free layer is thin enough that the micro-
magnetic exchange interaction tends to keep the magne-
tization aligned. It is interesting to see how this comes
about in detail. The interfacial spin-transfer torque needs
to be balanced by another interfacial torque so as to pre-
vent a diverging response. This balancing torque comes from
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the micromagnetic exchange. Normally, the micromagnetic
exchange has the boundary condition that the normal gradient
of the magnetization vanishes (n̂ · ∇)s(r) = 0. This condition
is simply the requirement that the interfacial torque vanish.
In the presence of an interfacial spin-transfer torque, the gra-
dient is nonzero at the interface. Since the magnetization is
differentiable, a finite derivative at the interface gives a finite
derivative into the layer. This rotation of the magnetization
effectively ‘spreads’ the interfacial spin-transfer torque over
the thin layer. As mentioned after equation (8), the micro-
magnetic exchange torque can be understood as the gradient
of a spin current carried by all of the electrons in the Fermi
sea. A finite normal gradient corresponds to a discontinuous
spin current. At the interface, both the transport spin cur-
rent and the micromagnetic spin current are discontinuous.
In fact, the total spin current is continuous. At the interface,
the incident spin current carried by the nonequilibrium carri-
ers at the Fermi energy is converted into a ‘quasiequilibrium’
spin current carried by all of the electrons. This conversion
is what effectively spreads the interfacial spin-transfer torque
over the thickness of the film.

4 NONCOLLINEAR TRANSPORT AND
TORQUE

With the boundary condition derived in the previous section,
it is now possible to compute the transport for multilay-
ers with noncollinear magnetizations. Such calculations have
been undertaken with a variety of different approaches,
including the Keldysh formalism (Edwards, Federici, Mathon
and Umerski, 2005), the Boltzmann equation (Stiles and
Zangwill, 2002b; Shpiro, Levy and Zhang, 2003), the drift-
diffusion approximation (Berger, 1998; Grollier et al., 2003;
Fert et al., 2004; Stiles, Xiao and Zangwill, 2004; Bar-
nas et al., 2005), random matrix theory (Waintal, Myers,
Brouwer and Ralph, 2000), and circuit theory (Brataas,
Nazarov and Bauer, 2000; Brataas, Bauer and Kelly, 2006).
Although the calculations differ in detail, they all find quali-
tatively similar results. Here, we describe the physics in the
language of the drift-diffusion approach.

A calculation of the spin current and spin accumulation
in a magnetic multilayer with perpendicular magnetizations
is shown in Figure 7. The behavior is closely related to that
shown in Figure 2. Consider the component of spin along ẑ,
aligned with the spin density in the left layer. Far to the left
of the sample, the spin current is unpolarized, but it becomes
polarized due to the spin-dependent conductivity of the
ferromagnetic layer as described in Section 2. More majority
electrons go through the left layer leading to backward
diffusion of minority spins in the left lead and a positive spin
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Figure 7. Spin accumulation (δsα) and spin current (Qαx) for
electron flow through two ferromagnetic layers embedded in a
nonmagnetic host and separated by a thin nonmagnetic spacer layer.
The magnetizations of the two layers are perpendicular to each
other, for purposes of illustration both are in the plane of the figure.
On the left side, the current flows in the x̂ direction and on the right
in the −x̂ direction. Qb is the magnitude of the spin current in the
bulk ferromagnet far from any interfaces. The transverse component
of the spin current is discontinuous at each interior interface giving
rise to torques on the magnetizations of each layer. The directions
of the torques are indicated for each of the interfaces. The bottom
panel gives a cartoon of the spin current in the spacer layer.

current. This spin current continues unchanged through the
thin spacer layer but goes to zero at the left interface of the
right ferromagnet. At this interface, the spins are transverse
to the spin density in that layer and the transverse spin current
is absorbed as described in Section 3. The abrupt change in
the spin current gives a current-induced torque on the right
ferromagnet at its left interface.

When the component of the spin along ẑ goes to zero
at this interface, components along x̂ are generated by
the spin-dependent reflection. The reflected electrons are
predominantly antiparallel to the spin density in the right
ferromagnetic layer and move away from the interface
toward the left ferromagnet. When they hit the right interface
of the left ferromagnet, they are again transverse to the spin
density and that component of the spin density gets absorbed
at that interface. Again, this discontinuity in the spin current
give rise to a current-induced torque.

An interesting result of this calculation is that the torques
tend to make the two magnetizations pinwheel after each
other, apparently violating conservation of angular momen-
tum. This apparent violation is resolved by the role of spin-
flip scattering, which couples angular momentum from the
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lattice into the electron system, which is then absorbed by
the magnetization. Another interesting feature of this figure
is that in the spacer layer, the spin-current direction is not
aligned with the spin accumulation, but rather is almost per-
pendicular. Such a result is not entirely unexpected because
the spin current is related to the gradient of the spin accu-
mulation rather than the accumulation itself.

The calculation shown in Figure 7 gives the torque and the
resistance of the multilayer for a particular magnetic config-
uration. Similar calculations give the torque and magnetore-
sistance as a function of angle, see Figure 8. Related calcu-
lations done by a number of authors (Vedyayev et al., 1997;
Slonczewski, 2002; Stiles and Zangwill, 2002b; Huertas-
Hernando, Bauer and Nazarov, 2002; Kovalev, Brataas and
Bauer, 2002; Bauer, Tserkovnyak, Huertas-Hernando and
Brataas, 2003; Manschot, Brataas and Bauer, 2004a,b; Xiao,
Zangwill and Stiles, 2004) give similar results. If the spin-
current incident on the free layer were independent of the
relative orientation of the magnetizations of the two layers
and given by (�/2)P ŝ0 ⊗ j, then the torque would be

Nc

A
= �

2
(j · x̂) P

[
ŝ0 − (ŝ0 · ŝ)ŝ

]
(18)

where ŝ is the directions of the ferromagnetic spin density for
the free layer. The last factor is simply the transverse part of
the spin current. It is more frequently written in terms of the
equivalent triple product form, ŝ × (ŝ0 × ŝ). The magnitude
of this vector is sin θ , where θ is the relative angle between
the magnetization ŝ and the direction of the spin current ŝ0.
This form of the torque is frequently used in simulations of
the magnetic dynamics.

However, calculations show that the spin current does
depend on the relative angle of the magnetizations, but the
changes to equation (18) are simple. The direction of the
torque remains the same if ŝ0 is taken to be the direction
of the fixed layer magnetization. This replacement works
because the direction of spin current is generally some
combination of ŝ and ŝ0. Since ŝ does not have a component
that is transverse to itself, only the contribution along ŝ0

remains. After that replacement, the rest of the changes in
the behavior found in these calculations are captured simply
by letting the polarization P be a function of the relative
angle θ between the two magnetizations see Figure 8.

For multilayers with equivalent magnetic layers, Slon-
czewski (2002) derived an analytic formula for P by com-
bining a density matrix description of the spacer layer with
a circuit theory (Brataas, Nazarov and Bauer, 2000). Exten-
sions of the formula for arbitrary magnetic layers

P(θ) =
[

q+
B0 + B1 cos θ

+ q−
B0 − B1 cos θ

]
(19)

have been described by a number of authors (Kovalev,
Brataas and Bauer, 2002; Xiao, Zangwill and Stiles, 2004;
Fert et al., 2004; Manschot, Brataas and Bauer, 2004a).
The four parameters (B0, B1, q+, and q−) in this expres-
sion can be written in terms of layer thicknesses, resistiv-
ities, spin diffusion lengths, and so on. The ratio q−/q+
depends on the asymmetry between the free layer and the
fixed layer and goes to zero for symmetric systems (Slon-
czewski, 2002). The ratio B1/B0 goes to zero when the
polarization of the current is independent of the relative
angle between the magnetizations. Calculations show that
this behavior only occurs in unphysical limits. Xiao, Zang-
will and Stiles (2004) have compared solutions of a Boltz-
mann equation with equation (19) and found very good
agreement.

It is difficult to directly compare the form of the torque
in equation (19) with experiment because the torque is not
directly measurable in the experiment; the only experimental
observable is the time-dependent resistance. It is possible to
use equation (19) to predict the dynamics, and then to predict
the time-dependent resistance to compare with experiment,
such simulations are described briefly in Section 5. However,
such a comparison requires correctly knowing and treating
all of the other factors that contribute to the dynamics.
More direct comparisons can be made between the measured
and calculated resistances as a function of the relative
angle between the magnetizations (Pratt, W.P. Jr. Private
Communication), (Urazhdin, Loloee and Pratt, 2005). The
measurements show clear deviation from simple sin2(θ/2)

behavior. However, the deviations tend to be smaller than
those calculated (Manschot, Brataas and Bauer, 2004a) with
the models that give results like equation (19).

The torque in equations (18) and (19) is zero for parallel
and antiparallel alignments of the magnetization. The exis-
tence of transitions out of these configurations is then due
to instabilities developing in the configurations as the cur-
rent is varied, see Sun (2000); Bazaliy, Jones and Zhang
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Figure 8. The angular dependence of the torque and magnetore-
sistance as a function of the relative angle of the two magnetiza-
tions. The dashed curves show the simple forms frequently used in
micromagnetic simulations, sin2(θ/2) and P sin θ for the relative
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Figure 9. Spin-transfer torque due to lateral diffusion. Each panel shows an electron diffusing in a nonmagnet and reflecting twice from
the interface with a ferromagnet. After it scatters, it is oriented on average either parallel or antiparallel to the magnetization depending
on the direction of the electron flow, see Figure 1. In (a), the ferromagnetic magnetization is uniform laterally so that when the electron
scatters the second time, it is aligned with the magnetization and there is no reorientation of either. The electron flow is from the nonmagnet
into the ferromagnet, so the accumulated spins are minority spins. In (b), there is a nonuniform magnetization, and the diffusing minority
spin is not aligned with the magnetization the second time it scatters. The magnetization exerts a torque on it and it exerts a torque on the
magnetization which tends to amplify the spin wave. In (c), the electron flow is in the opposite direction so the diffusing spins are majority
spins. In this case, the torque in the second scattering event tends to reduce the amplitude of the nonuniform spin wave.

(2004). For appropriate directions of current flow, the spin-
transfer torque tends to amplify small deviations away from
the collinear configuration and damping tends to diminish
them. For large enough currents, the spin-transfer torque
dominates and the system becomes unstable.

A different origin of the instability has been proposed by
Berger and studied by a number of authors (Berger, 1996,
1997, 1999, 2002; Tsoi and Tsoi, 2001; Heide, 2001; Tsoi
et al., 2004). Here, the longitudinal spin accumulation in the
ferromagnet drives the instability rather than the transverse
spin current. As the current through the structure increases,
the spin accumulation eventually becomes large enough that
it is possible to flip a spin from minority to majority and
excite a magnon. This process is most clearly seen when the
spin accumulation is described in terms of a spin-dependent
chemical potential. In Berger’s model, a particular magnon
mode, possibly the uniform mode, gets macroscopically pop-
ulated through stimulated emission. This instability then
gives rise to reversal with a particular critical current density.
Tserkovnyak, Brataas and Bauer (2003) have shown that a
model without direct magnon excitation but including spin
pumping (see below) can give the same critical current den-
sity.

When the magnetization varies in space, there are addi-
tional considerations. If the magnetization varies along the
direction of the current flow, there are torques on the magne-
tization as the spins in the current precess around the varying
magnetizations, as mentioned in Section 3. If the magneti-
zation varies in the plane of the interface, lateral diffusion
of spins can tend to increase or decrease these variations
depending on the direction of the current flow. If the net elec-
tron flow is from a nonmagnet into a ferromagnet, the spins
that accumulate in the nonmagnet are, on average, antiparal-
lel to the spin density in the ferromagnet. If the spin density

is not uniform, locally, the spins tend to align opposite to the
local spin density. These electrons are diffusing, so there is
a good chance that some of them diffuse laterally and scatter
again from the interface at some different point. If the direc-
tion of the spin density at the point is different, the electron,
on average, exerts a torque on the magnetization at that point.
When the electron flow is from the nonmagnet into the fer-
romagnet, more minority spins are diffusing, and the torque
tends to amplify the variations away from the average, see
Figure 9. On the other hand, for electron flow from the fer-
romagnet into the nonmagnet, more of the diffusing spins are
aligned with the spin density, and the resulting torque tends
to reduce variations away from the average.

These torques due to lateral diffusion have been discussed
(Polianski and Brouwer, 2004; Stiles, Xiao and Zangwill,
2004) in the context of instabilities in single ferromagnetic
films and (Brataas, Tserkovnyak and Bauer, 2006) in the con-
text of trilayers. For single films, these calculations show that
for the current densities studied experimentally in these sys-
tems, nonuniform modes can become unstable. Instabilities
have been observed in point contact experiments with sin-
gle films (Ji, Chien and Stiles, 2003; Chen, Ji, Chien and
Stiles, 2004) and also in lithographically defined single films
(Özyilmaz et al., 2004). The critical currents are close to
those found in the calculations and the field dependence of
the critical currents is also similar. However, there are still
details of the experimental results that are not explained by
the calculations.

Finally, before discussing the dynamics that result from
the spin transfer torque, there is a correction to the boundary
condition, equation (17), when the magnetization is time
dependent

Q⊥ · n̂ = Bs⊥ + B ′û × ˙̂u (20)
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where û is the direction of the magnetization and ˙̂u is its time
derivative. This additional term describes the phenomenon
called spin pumping, an effect originally proposed by Berger
(1996, 2001), developed by Tserkovnyak, Brataas and Bauer
(2002, 2005) and computed in a number of different mod-
els (Tserkovnyak, Brataas and Bauer, 2002; Mills, 2003;
Šimánek and Heinrich, 2003; Šimánek, 2003). The two terms
in equation (20) are closely related. The first term describes
the spin current discontinuity that gives rise to a torque and
causes the magnetization to move and the second is the spin
current that results from a moving magnetization. Both phe-
nomena are controlled by related parameters

B ′ = AFS

(2π)3

�

2
= �

2

2
NB (21)

where AFS is projected area of the Fermi surface in the
nonmagnet.

Equation (20) shows that even in the absence of a current,
a moving magnetization drives a spin current in the nonmag-
netic material. When this spin current is absorbed through
spin-flip scattering or scattering from another ferromagnetic
layer, the spin-pumping process acts like a form of interfa-
cial damping. These effects have been observed in line-width
measurements in ferromagnetic resonance (Urban, Wolters-
dorf and Heinrich, 2001; Mizukami, Ando and Miyazaki,
2002; Ingvarsson et al., 2002; Lubitz, Cheng and Rachford,
2003; Heinrich et al., 2003; Lenz et al., 2004).

5 DISCUSSION

This chapter describes the physics that leads to spin-transfer
torques in magnetic multilayers. When the magnetizations of
the layers are not collinear with each other, the spin-polarized
currents transfer angular momentum to the magnetizations
near the interfaces, giving rise to spin-transfer torques. These
torques can be computed using a combination of quantum-
mechanical calculations of the behavior of spins at interfaces
and semiclassical transport calculations to describe the flow
of spins in the multilayers.

Quantum-mechanical calculations of spins at interfaces
show that a combination of spatial separation of spin
components coupled with classical dephasing leads to the
approximate absorption of the transverse spin current at
the interfaces. This result means that independent of their
orientation when approaching the interface, the spins are on
average collinear with the magnetization when they leave
the interface. In effect, any component of the incoming
spins that is transverse to the magnetization is transfered
to the magnetization. The angular momentum along the
magnetization direction is conserved.

The results of the quantum-mechanical calculations are
inserted into semiclassical transport calculations as boundary
conditions. These calculations determine the degree of the
spin polarization at the interfaces. They show that currents
become spin polarized through the combination of spin-
dependent conductivities and interface conductances together
with spin-flip scattering. Spin-flip scattering couples angular
momentum between the electron system and the lattice. The
spin-transfer torque couples angular momentum between the
electron system and the magnetization.

The transport calculations are done for fixed magnetiza-
tions, even when the magnetizations are time dependent.
This approximation is justified by a separation of timescales.
A typical precession period for the magnetization is about
10−9 s and the transit time for a ballistic Fermi surface elec-
tron to go through the device (about 100 nm) is about 10−13 s.
Even though the transport is not ballistic, this difference
in timescales argues that treating the electrons as moving
through a fixed magnetization should be a good first approx-
imation.

The result of the semiclassical transport calculations is
an expression for the spin-transfer torque as a function of
the angle between the two magnetizations, equations (18)
and (19). These equations summarize the results of the
calculations described in this chapter. It is difficult to
directly compare this result with experiment. Experimen-
tally, it is the consequences of the torque that are read-
ily measured, for example, the critical currents for switch-
ing between parallel and antiparallel configurations. To
compare with such experiments, the calculated torque is
inserted into the equation of motion for the magnetization,
the Landau–Lifshitz–Gilbert equation, and used to com-
pute the dynamics. There are several approaches to such
computations.

The simplest approach is to assume that the magnetization
of each layer is separately uniform. The model based on this
assumption is called the macrospin model. The simplicity
of the resulting equation of motion lends itself to analytic
determination of critical currents (Bazaliy, Jones and Zhang,
2001, 2004; Xi and Shi, 2004) and detailed exploration of
behavior as a function of field and current (Katine et al.,
2000; Kiselev et al., 2004; Koch, Katine and Sun, 2004;
Xiao, Zangwill and Stiles, 2005). However, the assumption
of a uniform magnetization is not always justified. Relaxing
this approximation gives a full micromagnetic model. Such
calculations (Miltat, Albuquerque, Thiaville and Vouille,
2001; Li and Zhang, 2003; Zhu and Zhu, 2004; Lee et al.,
2004a,b; Zhu, Zhu and White, 2004; Berkov and Gorn,
2005a,b; Montigny and Miltat, 2005) treat the detailed spatial
variation of the magnetization, but the results are sensitive
to many of the details of the samples. Since many of these
details, like grain sizes, local anisotropies, the detailed shape,
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and so on are not measured, it is hard to make definitive
comparisons between these calculations and measurements.

A final complication of the comparison between theory
and experiment is that experiments are typically done at finite
temperature and calculations are most simply done at zero
temperature. Under the influence of temperature, transitions
between different configurations become statistical rather
than deterministic. Several different approaches have been
used to analyze the statistics of the switching events (Myers
et al., 2002; Koch, Katine and Sun, 2004; Li and Zhang,
2004; Apalkov and Visscher, 2005). The most straightfor-
ward approach to including thermal effects is to include
a fluctuating field in macrospin simulations (Russek et al.,
2005; Xiao, Zangwill and Stiles, 2005). Such simulations
give a reasonably good account of the effects of temperature
if allowance is made for the difference in the timescales used
in experiments and those achievable in the simulations.

Comparisons between theory and experiment generally
give qualitative, but not quantitative agreement. One of
the most straightforward predictions of the torque in
equations (18) and (19) when inserted into the macrospin
model is that the critical currents for the transitions between
parallel and antiparallel alignment are determined by the
slopes of the torque as a function of angle for 0◦ and
180◦ relative angles. Since transport calculations generally
give a very different polarization of the current for the two
alignments, the critical current for the parallel to antipar-
allel transition is expected to be larger in magnitude than
that for the reverse transition. Although there is wide varia-
tion seen experimentally, the trend is that this difference is
smaller than what is expected from theory. It is not clear
whether this disagreement points to errors in the calcula-
tion of the torque or deviations of the reversal process from
that expected for a macrospin. Other disagreements between
macrospin calculations and experiment appear to explainable
by micromagnetic calculations. These are discussed in more
detail in other chapters in the volume.
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1 INTRODUCTION

The states of magnetic devices are typically controlled and
manipulated through applied magnetic fields. The magnetiza-
tion states of the magnetic elements can be controlled through
quasistatic fields, as in the case of magnetic switching, or
through time-varying applied fields, as is done in precessional
switching (Kaka and Russek, 2002; Gerrits et al., 2002) and
ferromagnetic resonance (FMR) (Sparks, 1964). In 1996,
it was predicted that the magnetization states of thin-film
magnetic elements could be similarly controlled through the
use of a spin-polarized dc current through the spin-transfer
effect (Slonczewski, 1996; Berger, 1996). At that time, typ-
ical device dimensions were large enough so that the spin-
transfer torque (STT) was much smaller than the torques
resulting from applied fields and device anisotropy fields.
Hence, the STT did not appreciably alter device performance.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 2: Micromag-
netism. This chapter is a US Government work and is in the public
domain in the United States of America.

However, as device dimensions shrink to below ≈100 nm,
the STT can be of similar strength to those associated with
magnetic fields, and the spin-transfer effects can drastically
alter the behavior of the magnetic devices. More specifically,
spin-transfer effects have been shown to lead to quasistatic
hysteretic switching (Myers et al., 1999; Katine et al., 2000),
high-frequency telegraph switching (Urazhdin, Birge, Pratt
and Bass, 2003; Pufall et al., 2004), and coherent preces-
sional dynamic excitations (Kiselev et al., 2003; Rippard
et al., 2004a,b). These new effects may find applications
in terms of current-induced switching in future generation
magnetic random access memory (MRAM) elements and
magnetic recording technologies and may enable magnetic
nanostructures to be used as active circuit elements: for
example, high-frequency nanoscale oscillators, mixers, and
detectors. However, these same effects may also prove to be
problematic in terms of decreasing stability and increasing
noise in nanoscale magnetic sensors such as hard-disk read
heads (Smith, 2004).

Many of the initial spin-transfer research efforts have
focused on characterizing and understanding spin torque–in-
duced switching behaviors of a patterned magnetic element
in fields on the order of the device’s coercive field. In the
case of larger applied fields, these same devices showed
anomalies in their transport properties (peaks in the dif-
ferential resistance of the device for certain values of the
dc current Idc), which were often taken as evidence of
the onset of spin-transfer-induced dynamics in these struc-
tures (Katine et al., 2000). Analogous high-field measure-
ments were also performed with mechanical point contacts,
which showed similar transport anomalies at high current
densities. Although there was one early measurement that
showed a relationship between the transport through the
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devices and externally applied microwave signals (Tsoi et al.,
2000), the evidence that the spin torque effect led to coher-
ent microwave precession in these devices remained only
indirect until relatively recently (Kiselev et al., 2003; Rip-
pard et al., 2004a).

Here, we give an overview of the work performed at
the National Institute of Standards and Technology (NIST)
in studying these coherent precessional dynamics induced
in magnetic nanostructures and compare these dynamics in
lithographically patterned nanopillar devices and nanocon-
tact devices. In general, the precessional frequency of the
magnetic oscillators can be tuned over a range of several
gigahertz by varying the dc current applied to the device.
The oscillation frequencies also depend on the applied mag-
netic field, resulting in a nanoscale oscillator that can be
tuned from a few gigahertz to greater than 40 GHz. For
nanocontact devices, the linewidths of these excitations
can be as narrow as a few megahertz. This gives qual-
ity factors for the excitations of more than 18 000 at the
highest frequencies. As the direction of the field applied
to the devices is changed from parallel to perpendicular
to the film plane, the power output from the structures
increases by several orders of magnitude. For nearly out-
of-plane fields, the high-frequency voltage output from the
device can be a significant fraction of the maximum volt-
age expected from the giant magnetoresistance (GMR) effect.
The nanoscale oscillators also display a number of attributes
that make them attractive for potential technological appli-
cations. These include the ability to frequency modulate the
devices, phase lock them to external reference signals, and
electronically control their phase relative to that of an input
signal.

2 SPIN-TRANSFER DYNAMICS

The fundamental concept behind the spin-transfer effect is the
transfer of angular momentum from spin-polarized current
carrying electrons to the magnetization of a ferromagnetic
film. The result of this transfer of angular momentum is that
the polarized electron current exerts a torque on the magneti-
zation of the ferromagnetic film, generally referred to as the
spin-transfer torque. The STT can either add to the intrinsic
damping, thereby stiffening the system, or can counteract
the dampening in the system, leading to current-induced
switching or coherent steady-state precessional dynamics.
Here, we will concentrate on the spin-transfer-induced pre-
cessional dynamics and generally compare the measured
behaviors to those initially predicted by Slonczewski (1999),
who described the dynamic behavior of the free layer mag-
netization �mfree by

d �mfree

dt
= −µ0γ �mfree × �Heff − µ0γα �mfree × ( �mfree × �Heff)

+εJinj�

elz2

γ

Ms1
�mfree × ( �mfree × ⇀

mfixed) (1)

where ⇀
mfixed is the magnetization of the fixed layer, γ is

the gyromagnetic ratio, α is the phenomenological damping
term, Jinj is the current density through the device, and
lz is the thickness of the free layer. The first term in
equation (1) describes typical Larmor precession of the
magnetization about the total effective field; the second is
the phenomenological damping term which acts to return the
magnetization to lie parallel with the total effective field;
and the third describes spin-transfer-induced torque, the sign
of which is determined by the direction of current flow
through the device and can be either positive or negative.
By comparing the functional forms of the second and third
terms we can see that, for the correct sign of current flow, the
STT can counteract that associated with intrinsic damping in
the system. For certain ranges of current and applied field,
this leads to coherent steady-state precessional motion of the
free layer magnetization.

The magnitude of the STT is proportional to the cur-
rent density passed through the device and, in order for
the spin-transfer effects to become significant, high current
densities are required. Typical critical currents associated
with switching and precessional dynamics are on the order
of 106 –107 A cm−2, depending on the device geometry and
materials under study. Devices generally have critical dimen-
sions of about 100 nm, so that such high current densities can
be achieved with only moderate applied currents of a few
milliamperes. Such small dimensions are also required to
ensure that the spin-transfer effects dominate over the oer-
sted fields generated by the applied current itself (Katine,
Albert and Buhrman, 2000). Experiments have been per-
formed with patterned magnetic pillar structures (Katine
et al., 2000; Koch, Sun and Katine, 2004; Deac et al., 2005;
Mancoff et al., 2003; Ozyilmaz et al., 2003; Urazhdin, Birge,
Pratt and Bass, 2003; Kaka et al., 2005a; Sun et al., 2002;
Tulapurkar et al., 2004), nanowires (Fabian et al., 2003),
small electrical contacts made either to or between macro-
scopic magnetic layers (Rippard et al., 2004a; Myers et al.,
1999), mechanical point contacts (Tsoi et al., 2000; Ji, Chien
and Stiles, 2003; Pufall, Rippard and Silva, 2003), and pat-
terned magnetic tunnel junctions (Huai et al., 2004; Fuchs
et al., 2005). There is now very good evidence that the spin-
transfer effect can be used to induce both switching and
precessional motion of the magnetization in the devices in
all cases, although the details may vary between the different
device geometries.

Cross-sectional views of the typical nanopillar and nano-
contact devices we discuss here are shown in Figure 1, along
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Figure 1. (a) Cross-sectional schematics of both the nanopillar and
nanocontact device geometries. (b) Measurement schematic. The
bias tee defines the high- and low-frequency legs of the circuit. A
spectrum analyzer or a sampling oscilloscope measures the device
output. In many measurements, an amplifier is located between the
spectrum analyzer and the bias tee.

with a schematic of the measurement geometry. For either
device geometry a spin-valve stack such as Ta (5 nm)/Cu
(50 nm)/FM1 (20 nm)/Cu (3.5 nm)/FM2 (5 nm)/Cu (1.2 nm)/
Au (2.5 nm), where FM is a ferromagnetic material, is
first sputter deposited onto an oxidized Si substrate. The
thick bottom Cu layer acts as a current shunt to reduce
local heating in the active area of the device. To fabricate
nanopillar devices, this mesa is then patterned and ion
milled to form a pillar structure typically having either an
elliptical or elongated hexagonal shape with dimensions of
roughly 100 nm (Katine, Albert and Buhrman, 2000). A thick
Au layer is used to make electrical contact to the device.
Alternatively, a nanocontact device is fabricated by simply
making a roughly 50-nm-diameter electrical contact to the
top of the spin-valve mesa, which is roughly 8 µm × 24 µm
on a side. In both cases, the top contact is lithographically
patterned into a coplanar waveguide structure and contacted
with high-frequency 50 � probes. The thicker FM1 layer is
typically Co90Fe10 while the thinner FM2 layer is typically
Ni80Fe20. Hence, in these devices the thicker FM1 (‘fixed’)
layer will have a critical current roughly eight times that
of the thinner FM2 (‘free’) layer because of its increased
thickness and larger saturation magnetization.

For both device structures the device resistance can range
from less than 5 � to greater than 30 � depending on
the materials in use and the lateral dimensions of the

structure. The maximum resistance change associated with
the GMR effect is typically about 200 m�. The structures
are contacted with microwave probes and a dc current Idc

is passed through the device, along with about a 10 µA ac
current, so that both the dc and differential resistances of
the device can be simultaneously measured. We use the
convention that positive currents correspond to electrons
flowing from the free layer into the fixed layer. The devices
are current biased so that changes in the relative alignment
between FM1 and FM2 result in a voltage across the device
through the GMR effect. The output from the device is
measured through the high-frequency leg of the measurement
circuit by use of either a spectrum analyzer or sampling
oscilloscope (Figure 1b). Typically the signal from the device
is amplified by 30 dB before measurement. In all cases this
is divided out of the presented data. The losses associated
with the impedance mismatch between the low resistance
device and the 50 � load (measurement circuitry) are not
taken into account but are expected to be substantial.
The measurement circuit has a bandwidth of 0.1 GHz to
≈35 GHz. All measurements discussed here were performed
at room temperature. Owing to ohmic heating the device
temperature is slightly higher (≈10 ◦C) than the system
temperature (Krivorotov et al., 2004).

2.1 Nanopillar devices

Explicit measurements of coherent spin torque–induced
dynamics were first performed in nanopillar devices by a
group at Cornell University (Kiselev et al., 2003) and soon
afterwards in nanocontact devices by the group at NIST
(Rippard et al., 2004a). The evolution of the magnetization
dynamics in a typical nanopillar device as a function of cur-
rent for three different fields applied in the plane of the film is
shown in Figure 2(a–c). The individual plots show the cur-
rent dependence of the microwave precessional frequency f

for a given applied field with the power associated, with the
precession shown in a linear color scale. Individual spec-
tral traces from the three different fields are shown in the
line traces below the two-dimensional plots. The particular
device shown here is a nanopillar structure with an elon-
gated hexagonal shape (see Figure 2c) having dimensions of
120 nm × 60 nm, where both FM1 and FM2 are Co films.

As seen in Figure 2(a), precessional dynamics begin to
occur in the device at Idc = 6.5 mA. The spectral measure-
ments indicate that the device response is composed of a
number of harmonically related excitation frequencies and a
low-frequency broadband response. Simulations suggest that
the precessional magnetization trajectories in this geometry
are elliptical in shape and that a number of harmonics will
be present. In this case four harmonics can be observed. For
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Figure 2. (a–c) Plots showing the spectral output of a nanopillar device as a function of Idc for three different applied fields. The amplitude
of the power spectral density is shown in a linear color scale from 0 to 7 nV2 Hz−1. The corresponding dV/dIdc curve is plotted for the
data in (a). A plan view micrograph of the elongated hexagonal (60 nm × 120 nm) ion mill mask used to laterally pattern the nanopillar is
shown in the inset of (c). The overlay in (a) shows the differential resistance curve of the device as a function of Idc, and has maximum
and minimum values of 17.7 and 16.2 �, respectively. (d–e) Spectral traces corresponding to individual current bias point in plots (a–c)
showing various harmonically related signals along with the broadband low-frequency output as discussed in the text. In (d) the plots are
offset for clarity.

precessional motion of the free layer which is perfectly sym-
metric about the easy axis of the device, only even-harmonic
signals should be observed owing to the signal being gener-
ated through the GMR effect, which creates a signal roughly
proportional to the cosine of the angle between the fixed
and free layer magnetization directions. In most cases, how-
ever, odd harmonics are measured as well, indicating that
there is some misalignment between the time-averaged mag-
netization directions of the two ferromagnetic layers. This
is perhaps due to a slight misalignment between the applied
field direction and the easy axis of the device but could also
result from a relative splaying of the layers owing to either
the oersted fields generated by the current or the spin-transfer
effect itself.

As the current through the device increases, the frequency
of oscillation decreases (red shifts) and the linewidth of the
oscillations also increases. (The excitation linewidth is taken
as the full-width-at-half-maximum (FWHM) of the spectral
peak, as determined from a Lorentzian fit to the power
spectral density.) The red shift in frequency with Idc agrees

well with theoretical expectations based on single-domain
simulations of the Slonczewski model, as discussed in the
previous sections of this volume and elsewhere (Russek
et al., 2005; Kiselev et al., 2003; Xiao, Zangwill and Stiles,
2005; Berkov and Gorn, 2005; Lee et al., 2004; Bertotti
et al., 2005). The increase in linewidth indicates that, in
this geometry, the excitations become less coherent with
increasing current. At currents above Idc = 8.5 mA for a
120 mT applied field, the linewidths of the spectral peaks
become roughly equal to the oscillation frequency and it is
no longer possible to clearly identify a distinct oscillation
frequency. At still higher currents, the various harmonic
signals merge and only a low-frequency broadband response
is measured. Above Idc = 14 mA, no significant microwave
output from the device is measured.

Both the onset and cessation of the precessional dynamics
are correlated with features in the differential resistance curve
which overlays the plot in Figure 2(a). The largest peaks
in these curves are typically correlated with the onset or
cessation of the large low-frequency broadband background,
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as is the case here. These peaks in the differential resistance
curve indicate that the device goes through abrupt and
reversible changes in resistance at particular values of Idc.
The details of the heights and widths of these peaks in
dV/dIdc vary from device to device and can typically be
taken as indicating only that the state of the device has been
significantly changed at these current values. The overall
quasiparabolic shape of the differential resistance curve is
due to a combination of ohmic heating in the structure
and a change in the average projection of the free layer
magnetization onto that of the fixed layer.

As the applied field is increased the frequency of oscilla-
tion increases and the even-power harmonics become more
pronounced than the odd harmonic signals, indicating that
precession of the free layer is more symmetric with respect to
the direction of the fixed layer (Figure 2b and d). The preces-
sional oscillations again begin for Idc = 6.5 mA and red shift
with increasing current. At high-enough currents the spec-
tral signals again become indistinct and only a broad low-
frequency signal is measured. As the field is further increased
to µ0H = 0.3 T (Figure 2c), no distinct spectral frequency
can be observed at any current and only the broadband
low-frequency signals are measured. This same qualitative
behavior is reported in the initial work at Cornell University
(Kiselev et al., 2003), although the details vary slightly.

The evolution of the coherent spectral signals generally
agrees with single-domain simulations based on the the-
ory of Slonczewski (1996), although significant discrep-
ancies between the experimental data and the model also
exist (Russek et al., 2005; Kiselev et al., 2003; Xiao, Zang-
will and Stiles, 2005; Berkov and Gorn, 2005; Lee et al.,
2004; Bertotti et al., 2005). Perhaps the most manifest dif-
ference is that the single-domain simulations suggest that
the precessional motion should neither simply cease nor
evolve into a low-frequency broadband signal as the cur-
rent through the device increases. Instead, numerical inte-
gration of equation (1) shows that the precessional modes
change from in-plane precession to trajectories in which
the time-averaged magnetization 〈Mfree〉 has a component
along the direction perpendicular to the plane of the film.
In this regime, the frequency of precession is predicted to
increase with increasing Idc (blue shift) with current. Typi-
cally, this blue-shifting mode is not observed experimentally,
but instead a broadband low-frequency output is measured.

The cause of this broadband signal can be understood by
measuring the device output in the time domain. An example
of this is shown in Figure 3. The time traces show that this
broadband microwave signal results from the device under-
going random telegraph switching. As seen in the figure, the
dwell times the device spends in the particular states are func-
tions of current, resulting in a spectral signature that changes
with Idc, as seen in Figure 2. Initial studies indicated that the
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Figure 3. Time-domain measurements showing random telegraph
noise occurring in a nanopillar device for several different current
values (the curves are offset for clarity). For low currents the device
has large dwell times in the low resistance state, whereas for high
current values the device has large dwell time in the high resistance
state. This switching behavior yields the broadband low-frequency
signals discussed in the preceding text. The functional forms of the
spectra are expected to be either Lorentzian or f −1, depending on
the details of the switching characteristics. (Reproduced from Pufall
et al., 2004, with permission from the American Physical Society.
 2004.)

switching was between full parallel and antiparallel align-
ment and that the switching rates ranged between roughly
1 kHz and 1 MHz and the authors proposed an effective tem-
perature model to explain their results (Urazhdin, Birge, Pratt
and Bass, 2003; Fabian et al., 2003; Wegrowe, 2003). Fur-
ther investigations found that the states between which the
magnetization of the device switches are more complicated
and do not necessarily correspond to parallel and antiparallel
alignment. Instead, the states can correspond to only partial
alignment and the switching rates can exceed 1 GHz (Pufall
et al., 2004). Switching between numerous states can even
occur, depending on the strength and direction of the applied
field (Covington et al., 2004). The details of the switching
behavior are determined largely by whether the applied field
is greater than or less than the coercive field of the device
under study. We note that this switching behavior can occur
even in fields larger than the coercive field of the device.
This means that, in the absence of the spin-transfer effect,
there exists only one stable energy state for the device – the
state having the magnetization pointing in the direction of
the applied field. Evidently, the STT allows the device to
access states that would not be stable in its absence.

At present, we do not have a full understanding of
the states between which the device is switching. It has
been suggested that the devices are switching between a
static or switched state and a precessional state, or two
different precessional states (Li and Zhang, 2003). This is
certainly possible. However, spectral measurements show no
evidence of a precessional state. This indicates that either the
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frequency of any precessional motion, if present, has to be
low enough to be overwhelmed by the low-frequency signal
associated with the telegraph noise or that the amplitude of
the precession is small enough to be below the noise floor
of the measurements. Neither of these possibilities seems
particularly suitable to explain the observed results. More
recent simulations suggest that the two states are associated
with the creation and annihilation of vortex states in the
devices (Lee et al., 2004; Berkov and Gorn, 2005). More
detailed comparisons with the experimental observations are
still needed in order to verify this possibility. Here, we
give an overview of the coherent precessional excitations
induced by the spin-transfer effect and we will not discuss
this switching behavior in any detail. We instead refer the
interested reader to the references just mentioned.

2.2 Nanocontact devices

Throughout much of the remaining part of the chapter,
we will concentrate on the precessional dynamics induced
in nanocontact devices (see Figure 1b) in which a small
(≈50 nm) electrical contact is made to a larger (about
10 µm × 20 µm) magnetic spin-valve structure. The devices
discussed will be composed of spin valves having FM1 as
Co90Fe10 and FM2 as Ni80Fe20. In this device geometry, the
current is not as well confined to the active area underneath
the electrical contact, as in nanopillar devices. Hence, the
current densities required to induce a dynamical response are
expected to be slightly higher, as the continuous film will act
as a slight current shunt away from the device area. However,
there are several advantages to this device geometry: the edge
defects associated with the patterning of the devices will be
mitigated; there is no parasitic dipole coupling between the
layers; the device area will be free from oxides that will be
present on the sides of the patterned magnetic devices; and
the devices are easier to fabricate (particularly for integrated
arrays). These topics will be discussed in more detail in the
following text.

One potentially important difference between the two
device configurations is that in the nanocontact geometry
the area undergoing magnetic precession is directly coupled
to the surrounding magnetic film through the exchange
interaction. As was pointed out by Slonczewski (1999), this
naturally leads to spin-wave radiation away from the contact
area into the surrounding film. Hence, the nanopillar and
nanocontact device geometries have very different boundary
conditions, which may play an important role in the nature
of the dynamic excitations. An example of a simulated
excitation in a nanocontact device, which was obtained using
the object oriented micromagnetic framework (OOMMF)
program (Donahue and Porter, 2005), is shown in Figure 4.

Figure 4. Micromagnetic modeling of the nanocontact geometry.
The simulation assumes a dc current of 5 mA injected into a 50-nm
area at the center of a 1-µm NiFe disk. The plot shows the local
value of mx in the excited region directly underneath the contact
as well as spin waves radiating away from the contact area. The
vertical axis is in arbitrary units.

The simulation here assumes a localized current source
(40-nm diameter contact) into a 1-µm NiFe/Cu/CoFe disk
with an out-of-plane applied magnetic field (1.1 T). As seen
in the figure, even though the current is locally injected,
the induced excitations have an effectively extended nature
and may result in dynamical excitations that are significantly
different from those excited in nanopillar devices. More
recent theoretical work has even suggested that the exchange
coupling between the region directly excited by the STT and
the surrounding film in the nanocontact geometry can lead
to excitations having fairly complicated mode profiles even
directly underneath the contact area (Hoefer et al., 2005).
The differences between the measured behaviors of the spin-
transfer-induced excitations in the two device geometries will
be discussed in more detail in the following text.

2.2.1 In-plane fields

We will first discuss the dynamics for fields applied in the
plane of the film (the same field geometry described in the
preceding text for the nanopillar devices). In Figure 5(a) we
show the differential resistance of the device as a function
of Idc. The curve is similar to those observed for nanopillar
devices. There is a quasiparabolic background, on top of
which is a small peak in the curve, which occurs here at
Idc = 4 mA. The spectral output of the device is shown for
several values of Idc as indicated in Figure 5(b). For low
currents no spectral peaks are observed. At Idc = 4 mA,
a spectral peak emerges at a frequency of f = 7.9 GHz.
As seen in the figure, the oscillation frequency red shifts
with increasing current, as was observed in the nanopillar
devices. The power in the peak initially increases with Idc.
However, at higher currents the power output continually
decreases until no spectral peaks are observed, as shown by
the Idc = 9 mA data.
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 2004.)

The oscillation frequency, determined by fitting Lorentzian
functions to the spectra, depends linearly on the injected cur-
rent, as shown in Figure 5(b) (inset). The strength of this red
shift depends on the magnitude of the applied field and varies
from approximately 0.2 GHz mA−1 at low fields (≈50 mT) to
approximately 1 GHz mA−1 at higher fields of ≈0.8 T. For
this field geometry, devices can typically be tuned over a
range of several gigahertz by varying the current through the
device for a fixed field magnitude. As shown in Figure 6(a),
both first and second harmonic signals are often observed
in these devices, as was the case with the nanopillar struc-
tures. Here, the existence of a first-harmonic signal cannot
be attributed to a misalignment between the layers being
induced by the applied field, as the fields are much larger
than the film coercivities of a few millitesla. Instead, the mis-
alignment is more likely caused by the applied current either
through the generated oersted fields or the spin torque itself.

The frequency of oscillation can also be controlled by the
strength of the applied field, as shown in Figure 6(b). The
data plotted correspond to the highest precession frequency
(lowest current) for a given applied field (see Figure 5(b)).
As seen in the figure, the precessional frequency can be
tuned from a few gigahertz to greater than 35 GHz by
varying the applied field from 50 mT to 1 T, giving an
average field tunability of roughly 26 GHz T−1. A very
similar variation of the oscillation frequency with the applied
field is found for nanopillar devices (Kiselev et al., 2003).
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Figure 6. (a) High-frequency spectra for currents from 5 to 9 mA
taken in 0.5 mA steps with µoH = 0.06 T showing the fundamental
response and another at twice that frequency (inset). Amplitude
ratios of the peaks as a function of Idc for two different fields.
(b) Measured frequency at onset as a function of µ0H along
with fit (solid line). The dashed line corresponds to the excitation
frequencies predicted by Slonczewski (1999) using the deflated
value of g = 1.8. Error bars (FWHM) are smaller than the data
points. (Reproduced from Rippard et al., 2004a, with permission
from the American Physical Society.  2004.)

No spectral peaks are measured above µ0H > 1 T (f =
35 GHz). However, this does not necessarily indicate the
cessation of precessional dynamics. Measurement of dynamic
excitations above 35 GHz is beyond the bandwidth of our
present measurement system. The drop in signal strength
at these highest frequencies occurs in all measurement
geometries and is due to the bandwidth limitation of the
measurement system. Furthermore, the signals in Figure 5
correspond to first-harmonic peaks and the strength of the
second harmonic signal quite probably increases at high
applied fields, as precession becomes more symmetric about
the field direction (i.e., the direction of the fixed layer). In
fact, output from the devices above 100 GHz is quite possible
in the present measurements.

Determination of the precessional mode being excited is
clearly of interest. The nanopillar devices are typically small
enough to behave largely as single-domain particles and
the precessional frequencies at the onset of oscillations are
reasonably well described by the standard Kittel equation
for FMR (Kittel, 1986). Both of these point to the uniform
precession of the free layer in the nanopillar devices, at least
at the onset of precession. Recent micromagnetic modeling



8 Micromagnetics of spin angular momentum transfer

results suggest that this single-domain behavior breaks down
for currents slightly above the critical current (Lee et al.,
2004; Montigny and Miltat, 2006, private communication;
Berkov and Gorn, 2005). In the nanocontact devices, the
mode or the wavelength of the excitation is less clear.
Slonczewski (1999) initially predicted that the excitation
wavelength would be set by the localized nature of the
current passing through the layers and that the device size
would roughly equal half of the wavelength of the excited
mode.

In order to investigate the excitation wavelength, we fit the
data shown in Figure 6(b) to the Kittel equation for in-plane
spin-wave generation excluding dipole effects:

f (H) = (
gµBµ0/h

)
((H + Hsw + Hk + Meff)

× (H + Hsw + Hk))
1/2 (2)

where Hsw = Dk2/(gµBµ0), D is the exchange stiffness, g

is the Landé factor, k is the magnon wave number, Meff

is the effective magnetization, Hk is the anisotropy field,
µ0 is the permeability of free space, h is Planck’s constant,
and µB is the Bohr magneton (Kittel, 1986). Equation (2) is
strictly valid only in the limit of small-amplitude precession,
a limit that is likely not met in the present experiments. We
include this fitting procedure as a comparison to the behavior
predicted by Slonczewski (1999) and as a beginning point
for a discussion of the modes excited in the nanocontact
structures.

In fitting the data, k and g are treated as free parameters
while fixed values of µ0Meff = 0.8 T and µ0Hk = 0.4 mT
are used, as determined from magnetometry measurements.
The fit yields g = 1.78 ± 0.01 and a magnon wavelength
of λ = 390 ± 80 nm. From both the above fit and the
linear portion of the data for µ0H > 0.4 T we determine
g = 1.78 ± 0.01, which is smaller than the accepted value
of g = 2. This discrepancy is not unexpected. Numerical
simulations of the Landau–Lifshitz–Gilbert (LLG) equation
show that fitting equation (2) to data corresponding to large-
angle precession will give an apparently suppressed value
of g. As we will discuss in more detail in the following
text, the precessional angles in these devices can be quite
large.

The wavelength determined from the fit is much larger than
the contact diameter, in contrast to the initial predictions.
Although given the above considerations the wavelength
determined from the fit can be taken only as a guide, the
data do indicate that the excitations approximate the uniform
precessional mode, that is, the uniform FMR mode, and
that the excitation frequency is not dominated by the spin-
wave exchange energy Hsw. For comparison, assuming a
40-nm electrical contact, an excitation wavelength predicted

by Slonczewski would yield a value of about µ0Hsw =
0.14 mT, making the predicted frequencies (shown as the
dashed line in Figure 6b) clearly higher than those observed
experimentally. Similar values for g and λ were measured
for devices having CoFe as the free layer, although the
oscillation frequencies were higher, in accordance with the
larger value of the CoFe saturation magnetization.

2.2.2 Out-of-plane fields

The dynamics excited by the spin-transfer effect change dra-
matically with the direction of the applied field. First, we
will discuss the dynamics when the field is applied per-
pendicular to the plane of the films. In this geometry, the
applied field will pull the magnetizations of both ferromag-
netic layers at least partially out of the plane of the film.
The calculated canting angles for both CoFe and NiFe for
several different field strengths and angles are shown in
Figure 7. This figure shows that over the field range of inter-
est (0.5–1 T) the NiFe layer is canted at a significantly larger
angle than the CoFe, particularly for applied values on the
order of 1 T.

An example of the evolution of the precessional dynamics
as a function of current for an out-of-plane field of µ0H =
0.9 T is shown in Figure 8(a). As can be seen in the
figure, the oscillation frequencies increase (blue shift) with
increasing Idc for this geometry and field range. More
complicated behavior is also observed; for example, there
are discrete jumps in the precessional frequency with current.
These jumps are not typically hysteretic in the current or
applied field, although some devices do show hysteretic
characteristics at this extreme field angle. The cause of the
discontinuous evolution of frequency with current is not
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certain, although simulations suggest that it might be caused
by an abrupt reorientation of the ‘fixed’ layer, which will be
discussed in more detail in the following text.

In Figure 8(b), we plot the excitation frequency as a
function of the applied field strength. For clarity, we again
plot only the highest measured precession frequency for each
given applied field value. The precession frequency is found
to vary linearly with a slope of roughly 32 GHz T−1. The
data are fit with the Kittel equation for circular magnetization
precession about the axis perpendicular to the plane of the
film, which correspond to the trajectories predicted by the
single-domain simulations

f (H) = (
gµBµ0/h

)
(H − Meff cos(φ)) (3)

where φ is the angle of precession with respect to the
field direction, θH . The data are fit using g and φ as free
parameters to match the slope and intercept of the data,
respectively. From the fit we find g = 2.1 ± 0.01 and a

precession angle φ = 80◦, indicating that these are large-
angle precessional modes. For comparison, the dashed line
in the figure represents the corresponding small-angle modes
typically observed in FMR experiments. The origin of the
significant offset between the two curves is the greatly
reduced demagnetization factor (Meff cos(φ)) associated with
the large-angle precessional modes. This results in relatively
large total applied effective fields as compared to those
associated with small precessional angles. As was the case of
in-plane applied fields, these precessional excitations can be
considered as very large-angle versions of FMR excitations
(Bertotti et al., 2005), although such modes cannot be
accessed through the application of time-varying fields used
in FMR experiments (Suhl, 1958).

2.2.3 Intermediate field angles

There are clear differences between the precessional dynam-
ics in the two geometries discussed in the preceding text.
For the in-plane case, the precessional frequencies linearly
decrease with the current through the device, and the fre-
quency of precession evolves in a continuous manner. In the
out-of-plane geometry the evolution of the dynamics with
current is more complicated. Overall, the excitation frequen-
cies increase with increasing Idc, and there are discontinuous
jumps in the excitation frequency as the current through the
device is changed. In the following text, we investigate the
evolution of the precessional motion as a function of both
Idc and µ0H as the direction of the applied field is changed
from in-plane to out-of-plane.

In Figure 9, we show the device oscillation frequencies as
a function of Idc for several field angles θH , given relative
to the film plane, for a constant field µ0H = 0.8 T. For in-
plane fields, the frequency output linearly red shifts with
current, as is generally observed in these devices for in-plane
fields, as discussed in the preceding text. As the angle of the
applied field is increased, the excitations typically appear
over a wider range of currents, and the dependence of the
frequency f on Idc becomes more complicated. For the data
at θH = 35◦ a linear red shift is found for low currents.
However, at Idc = 5 mA the slope of the curve df/dIdc

changes sharply and, although the current-induced red shift
persists, f deviates significantly from a linear dependence
on current. As the angle is increased, this initial sharp
change in slope becomes an abrupt jump in the excitation
frequency, as shown by the data for θH = 45◦, defining two
distinct frequency branches in the f versus Idc curve. For
θH = 55◦ the precession frequency initially decreases but
then blue shifts with current for Idc > 5 mA. At this angle,
as Idc reaches 6.625 mA the excited mode becomes poorly
defined (the excitation linewidth is several gigahertz wide
and the amplitude strongly decreases), and we were not
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able to uniquely determine f for 6.75 mA < Idc < 7.25 mA.
However, as the current increases further the mode again
becomes well defined and blue shifts with current.

As the field angle is increased, we again see abrupt jumps
in the frequency of the oscillations with increasing current,
although the jumps in f are now to higher frequencies
instead of to lower frequencies. For instance, for θH = 65◦

the oscillation frequency red shifts for currents below 6 mA,
whereas for higher currents the oscillations abruptly shift
to a higher frequency and show a blue shift with increasing
current. At higher angles similar multiple jumps in f with Idc

are still seen but with the frequency now showing an overall
blue shift on each of the individual branches of the curves
(see θH = 75◦). However, the frequency does not typically
vary linearly, or even monotonically, with Idc over the entire
range of the individual branches of these curves. For instance,
for the middle branch of the θH = 75◦ data, f shows a blue
shift at low current but a red shift for Idc > 6.75 mA. This
same discontinuous evolution of frequency with Idc described
in the preceding text occur over the range of fields studied
(0.5–1.1 T) although the particular current and angle at which
two frequency branches are delineated, as well as the detailed
dependence of f on Idc over a particular branch, vary with
H . For a given angle, f can be tuned, on average, over a
range of several gigahertz by varying Idc.

As shown in Figure 9 for θH = 65◦ and Idc ≈ 5.75 mA,
the frequency output of the device at fixed current and field
can be multivalued. This is not hysteretic behavior with f

depending on the direction of current sweep. Rather multiple
nonharmonically related peaks are observed in the spectral
output of the device at this particular current and field. Indi-
vidual time-sequenced spectra typically show that the powers
in the individual peaks change significantly from scan to
scan with the power associated with one of the frequencies
increasing or decreasing at the expense or benefit of the other.

We attribute this to the device hopping between distinct pre-
cessional trajectories with different oscillation frequencies.
Often each individual peak in a multipeak spectrum has a
linewidth less than 50 MHz, indicating that the individual
modes are still well defined. In some cases, this hopping
behavior is not explicitly observed and is likely due to our
≈100 ms spectral acquisition time that limits direct detection
of this switching behavior to situations in which one of the
precessional states has a dwell time of that order or longer.

The reason for the discontinuous evolution of the preces-
sional frequency with current is not clear, but simulations
suggest that it may result from the ‘fixed’ layer undergo-
ing a reorientation. As no additional precessional modes are
observed, it appears that the ‘fixed’ layer is not entering a
precessional state at these frequency jumps. However, other
measurements do indicate that there may be precessional
motion occurring in the ‘fixed’ layer over small ranges of
µ0H and θH . This is shown in Figure 10. In this case, three
nonharmonically related spectral peaks occur over a wide
range of current. In addition to the main spectral peak there
are also peaks symmetrically located at 500 MHz above and
below the main peak. The upper and lower sideband peaks
are not symmetric in power and only the lower sideband
appears in the two-dimensional plot on this color scale. How-
ever, both are visible in the line trace in Figure 10(b). This
is very reminiscent of a spectral peak undergoing frequency
modulation, in which sideband signals appear at frequencies
different from that of the main signal (this will be discussed
in more detail in the following text). However, in this case,
no modulation source is applied, and the two sidebands are
symmetric in frequency but not in power. The cause of these
sideband signals is not certain, although it possibly results
from excitation or reorientation of the ‘fixed’ layer. The fre-
quency of the modulation signal is quite low and does not
correspond to the difference in the precessional excitation
frequencies of the two layers induced by the spin-transfer
effect, at least according to single-domain modeling using
equation (1). However, this may result from a ‘scissoring’
mode between the two layers. This ‘self-modulation’ behav-
ior typically occurs for fields of about 0.5–0.6 T applied
approximately 60◦ to the film plane.

2.2.4 Oscillator output power

Up to this point, we have focused largely on the dependence
of the precession frequency on the strength and direction of
the applied field. We will now focus on the power associated
with the different mode structures and the linewidths of the
excitations. In general, we find that the linewidths of the
devices are quite narrow having FWHM values of a few
megahertz to a few tens of megahertz. For certain field
geometries we have found that the measured voltage output
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Figure 10. (a) Plot showing the spectral output from a device with µ0H = 0.5 T applied at 60◦ away from the film plane. The main peak
has both an upper and lower sideband, reminiscent of frequency modulation. (b) Spectral trace for Idc = 11 mA along with a fit (solid line).

associated with the precessional dynamics can be as much as
one-third of the maximum voltage obtainable from the GMR
effect.

For a particular field strength and angle the device output
power can be a strong function of Idc, Figure 11(a). The
power output does not generally scale as I 2 as it would for a
constant precession angle and a constant average orientation
between M free and M fixed. Instead, the output power depends
more strongly on the particular frequency branch of the
excitation, consistent with the relative directions of the
fixed and free layers significantly changing when a jump in
frequency occurs. Shown in Figure 11(b) is the maximum
integrated power output of a device versus applied field
angle. In general, the current yielding the maximum power
output varies with µ0H and θH . For this device this current
varies between Idc = 5 and 7 mA over the range of fields and
angles studied. Hence, normalizing the data by I 2 does not
significantly affect the trend in the plot. The maximum power
output of the device varies by roughly 2 orders of magnitude,
from about 1 pW to 0.1 nW, as the field is changed from in-
plane to out-of-plane. This general trend is in accordance
with the device output power resulting from the GMR
effect, in which the instantaneous resistance of the device is
proportional to M free · M fixed. When the two magnetization
directions are parallel, the change in the projection of M free

onto M fixed during one precessional cycle is relatively small
when compared to when they are nearly perpendicular, for a
given angle of precession (see Figure 11c). Hence for fields
applied perpendicular to the film plane, which will tend to
splay M free relative to M fixed, a larger change 	R is expected
for a given precessional angle, which will in turn lead to a
larger output signal from the device.

For simple circular precession, the GMR signal should
follow 	R = 	Rmax sin(γ ) sin(φ) where 	Rmax is the
maximum GMR signal, γ is the angle between the time-
averaged values of 〈M fixed〉 and 〈M free〉 (generally different
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et al., 2004b, with permission from the American Physical Society.
 2004.)
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from θH , Figure 12b), and φ is the precession angle (inset
Figure 12a). Hence, for a constant precession angle the
device power output should increase with θH and roughly
scale as sin(γ ) at fixed current, over the range of fields and
angles studied here. While the measured power output does
increase with θH , its dependence on angle at fixed H does
not follow such a simple relation (solid line in Figure 11b).
For instance, the power output generally does not simply
increase with H at a given applied field angle, indicating
that the excited trajectories are more complicated functions
of H and Idc.

The largest power outputs measured are significant frac-
tions of the maximum possible through the GMR effect. In
Figure 13, we show the output from a device with µ0H =
0.65 T applied 80◦ out of the film plane and Idc = 10 mA.
For this particular geometry the integrated output power in
the out-of-plane geometry is roughly 1 nW, corresponding to
a peak-to-peak voltage of 0.8 mV. This is about 30% of the
maximum voltage obtainable through the GMR effect in this
device, which has a 	Rmax = 230 m�. The voltage measured
by the spectrum analyzer represents only a fraction of the sig-
nal being generated at the device itself owing to the finite
resistance of the device structure and imperfect microwave
coupling between the device and the off-chip measurement
circuitry. A simple circuit analysis shows that the voltage
measured at the spectrum analyzer is

Vspectrum analyzer = Vdevice

(
Zload

Zdevice + Zload

)
(4)

where Zdevice is the device impedance and Zload is the
impedance of the load circuit (Johnk, 1988). For the 15 �
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Figure 13. Plot showing the particularly strong output power from
a device with µ0H = 0.6 T, applied 80◦ away from the film plane,
along with a Lorentzian fit. The integrated power in the peak
converts to 0.8 mV peak-to-peak signal.

device discussed here this indicates that only roughly three-
fourths of the actual device output is measured by the spec-
trum analyzer, assuming that the high-frequency impedance
of the device is equal to its dc value. Taking this into account,
the peak in Figure 13 corresponds to approximately half of
the total possible output from the device, that is, precessional
angles of approximately 60◦. The additional, and possibly
significant, losses due to imperfect coupling between the on-
chip and off-chip transmission lines are not included in this
model.

2.2.5 Comparison between linewidth, power,
and frequency evolution

A more complete comparison between the linewidth, power,
and their dependencies on current and field are discussed in
the following text. In Figure 14, we show the detailed evo-
lution of the precessional frequency, as functions of both
Idc and magnetic field strength, for θH = 75◦. As seen in
Figure 14 the precession frequency does not have a simple
dependence on either of these parameters. Overall, the pre-
cessional frequencies vary from roughly 11 to 24 GHz as
the applied field is swept from 0.5 to 1.1 T. The evolution of
the dynamics with current is more complicated. However, we
can easily observe that the precession red shifts with increas-
ing current at low applied fields and that the oscillations
change to blue shifting with increasing Idc as the applied
field is increased. The most striking features in the sur-
face plot are the well-defined places where the precessional
frequency evolves in a discontinuous manner with either cur-
rent, applied field, or both, as indicated by the solid lines in
the figure. The positions of the steps vary fairly continuously
with both field and current, forming a surface consisting of
several plateaus separated by steps (when multiple spectral
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Figure 14. Surface plot showing the evolution of the precession
frequency with both current and applied field for an applied
field angle of 75◦. At the lowest currents and applied fields no
precessional dynamics are measured, which appears as the vertical
sidewall in the plot. The surface includes data from both increasing
and decreasing current scans. The lines discussed in the text are
shown only on the increasing current scan for clarity and serve
only as visual guides.

peaks are present, see Figure 9, only the peak with the largest
integrated power is included in the plot). Within these indi-
vidual plateaus the evolution of the precessional frequency
with current and field is typically very smooth and continu-
ous. However, there are also regions in which the oscillation
frequency goes through more rapid changes in one of these
variables, as indicated by the dashed lines in the plot. These
features, although not as dramatic as the steplike features
described in the preceding text, are still distinct from the
typical evolution of the dynamics. At the lowest fields and
currents no spectral signals are measured for this angle of
applied field. For the purposes of this surface plot, the fre-
quency of precession is taken to be zero when no spectral
peak is measured, which results in the artificial appearance
of a large step where the precessional dynamics first appear.

The overall behavior of the dynamics generally agrees
with numerical simulations of equation (1). Simulations of
this measurement geometry indicate a red-shifting behavior
at low fields and a blue-shifting behavior at higher fields.
However, the discontinuous jumps have not been observed in
the simulations, nor have the smaller ridges. The jumps may
result from the ‘fixed’ layer undergoing a reorientation or
precessional oscillations itself, as discussed in the preceding
text. They may also result from the free layer precession
changing from a quasiuniform mode to some other normal

mode, although the change in frequency associated with the
jump are smaller than one would expect for this behavior
(McMichael and Stiles, 2005). Other somewhat complicated
behavior is also found in the measurements. For instance,
for µ0H = 0.70 T the oscillations show complex behaviors
as Idc is swept from about 7.5 to 8.5 mA. After the
discontinuous jump with current, the precession frequency
increases, and then decreases, before increasing once again.
Such a complicated frequency dependence on current has
not been found from numerical integration of equation (1),
assuming a constant damping value (Russek et al., 2005;
Xiao, Zangwill and Stiles, 2005).

As shown by the plots in Figure 15(a–b), the device output
power and the oscillation linewidth vary a great deal over
the range of currents and fields studied here. The oscillation
linewidth varies from below 5 MHz to greater than 100 MHz
while the output power varies from the picowatt to nanowatt
range. As seen in the two plots, the parameters giving the
higher output power are not simply correlated with the
oscillations having larger linewidths. For instance, for fields
between 0.6 and 0.8 T the highest powers are found for
currents between Idc = 7.5–8.5 mA, while the oscillations
over this region have linewidths of only a few megahertz.

Clear correlations exist between the excitation linewidth
and the frequency surface plot. Most notably, a large gradient
in the frequency surface (i.e., f varies strongly with either
current of applied field) is generally correlated with a
corresponding increase in the measured linewidth. This is
expected with any tunable oscillator. Noise in any parameter
that changes the oscillation frequency will also cause the
oscillation linewidth to broaden. Treating fluctuations in the
applied field and Idc as independent sources of noise, the
simplest description of the noise contribution to the excitation
linewidths is

	f =
((

∂f

∂H

)2

(	H)2 +
(

∂f

∂Idc

)2

(	Idc)
2

)1/2

(5)

where 	H is the fluctuation of the magnetic field during
the measurement interval ≈10 s and 	Idc is the noise in
the current through the device due to Johnson noise, shot
noise, and noise in the current source itself. We measure
	(µ0H) = 0.05 mT and estimate 	Idc = 1 µA. For a typical
value of df/dH = γ = 26 GHz T−1, the field-noise-induced
linewidth amounts to 1.3 MHz, which is approximately equal
to the narrowest peaks that we regularly measure. This
indicates that the linewidths are limited by the noise in
the measurement system and that the linewidths of the
oscillations themselves could be substantially narrower than
their measured values.
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To directly compare the measured linewidths to the model
outlined in the preceding text we have numerically dif-
ferentiated the surface plot and constructed the resulting
calculated noise-induced linewidths in Figure 15(c) using
equation (5). Over most of the surface the differentiation pro-
cess is well defined. However, at the discontinuous jumps in
frequency this is not the case and the resulting values for
the linewidths will be too large. Hence, at these locations
the measured linewidths and calculated ‘noise linewidth’ can
be compared only qualitatively. There are several clear cor-
relations between regions having high measured linewidths
and regions having large calculated linewidths. The corre-
lation is particularly strong when there is a discontinuous
jump in the oscillation frequency in either current or applied
field where the gradient of the frequency surface is strongest.
These locations are shown as dashed lines in the figures.
Similarly, strong correlation occurs between regions having
measured linewidths on the order of a few megahertz, and
regions having narrow linewidths in the calculation. These
measurements indicate that the largest linewidths result at
least partially from a very strong variation of the precession
frequency with either current or field and noise fluctuations
in these two variables. Similarly, the narrowest measured
linewidths are seemingly also limited by systematic noise
and may not reflect the actual linewidth of the oscillations
themselves.

However, the correlation between the calculated and
measured linewidths is not complete. For instance, the
calculations give a region of very narrow linewidth for
Idc = 8–8.5 mA and an applied field of 0.9–1 T, whereas the
measured linewidths over this region are actually fairly large.
This is also somewhat the case at the lowest fields and current
values between 6 and 7 mA. This indicates that the linewidths

are not always dominated by the noise characteristics of the
current and field but can also perhaps result from instabilities
of the magnetization trajectories. Of course, thermal effects
will, in general, prevent the magnetization from following a
perfectly exact and closed trajectory, which will act to give a
finite linewidth to the spectral peaks. However, the data here
suggest that, at least for the narrowest peaks, thermal effects
are not the dominant source of linewidth broadening in the
nanocontact devices.

2.2.6 Linewidth comparison in nanopillars
and nanocontacts

It is interesting to compare the linewidths in typical nanopil-
lar devices to those of nanocontact devices. At first glance
one might expect the nanocontact devices to have broader
spectral signals. The region undergoing precession is attached
to a continuous ferromagnetic film, which will result in spin
waves being shed away from the contact area. This is a loss
mechanism and could lead to a broadening of the excitation
linewidth. However, as shown in the preceding text, the oscil-
lations associated with the nanocontact devices are typically
significantly narrower than those associated with the nanopil-
lar geometry. The room-temperature oscillation linewidths of
nanopillar devices typically range from a few hundred mega-
hertz up to several gigahertz, whereas the nanocontact oscil-
lations have linewidths typically ranging from a few mega-
hertz to a several tens of megahertz (see Figures 2 and 15).

The cause of this discrepancy is not presently clear, but
there are a number of possibilities. In the pillar structures, the
edges of the device structure are formed by lithographically
defining a mask in the shape of the desired structure and
then ion milling through the magnetic layers to form a pillar.
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As with any lithographic process, this will naturally lead to
shape defects in the edge of the device. Further processing
will also oxidize the sides of the pillar structures. Each of
these is expected to broaden the oscillation linewidths. This
edge roughness will naturally lead to local variations in the
demagnetizing fields. Thus, the magnetization at the edges
of a laterally patterned structure will tend to oscillate at
slightly different frequencies than the magnetization in the
middle of the structure and cause linewidth broadening. This
is further exacerbated by defects and perhaps nonuniform
oxidation along the device sides. These effects result in the
nonuniform precession of the magnetization throughout the
device structure and the excitation of incoherent spin waves
leading to broadened linewidths (Lee et al., 2004; Berkov
and Gorn, 2005). In the nanocontact devices there is no
patterning of the ferromagnetic film close to the device area,
and so the problems associated with devices edges will be
lessened, if not resolved. Of course the contact itself will
have some edge defects, but these local defects will tend to
be washed out by the diffusive nature of the current flowing
through the device.

However, it is difficult to attribute the narrow linewidths
in the nanocontact geometry solely to the lack of edge
defects and oxidation. Single-domain simulations of pil-
lar devices innately lack any of the issues associated with
edge defects and preclude the possibility of spin-wave
excitations and nonuniform precession. However, thermal
effects can be included in the simulations through the use
of a fluctuating thermal field term that is proportional to
(T /V )1/2, where T is temperature and V is the device vol-
ume (Brown, 1963; Zhu, 2002). The effect of the thermal
field is to perturb the precessional trajectories from being
perfectly repeating, which will act to broaden the spectral
linewidths. The strength of the thermal field is inversely
proportional to the device volume and broadens the oscil-
lation linewidths as the device dimensions are decreased,
as shown in Figure 16 (Russek et al., 2005). Simulations
of devices having dimensions of 50 nm × 50 nm, the nom-
inal size of the nanocontacts discussed here, give linewidths
on the order of 1 GHz for room-temperature precession.
Hence, in the nanocontact geometry the precessional motion
appears to be stabilized against these thermal effects, as
compared to the pillar structure. Recent experimental work
shows that the linewidths in nanopillar devices are signif-
icantly narrowed by reduced temperatures, indicating that
thermal effects are at least partially responsible for their com-
paratively increased linewidths (Sankey et al., 2005). This
stabilization in nanocontact devices possibly results from the
exchange interaction between the precessing magnetization
and the surrounding film. It is also possible that the effec-
tive volume of the precessing magnetization in the nanocon-
tact geometry is much larger than the contact size, as was
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Figure 16. Plot showing the simulated linewidth vs device size
for a set of 5-nm-thick Ni80Fe20 rectangular devices at room
temperature. A 2:1 aspect ratio is used in all simulations. The
line is an exponential fit, which gives an 82-nm decay length.
(Reproduced from Russek et al., 2005, with permission from the
American Physical Society.  2005.)

discussed in Figure 6, rendering the oscillations more stable
against thermal effects. Resolving this question will signif-
icantly increase our understanding of the similarities and
differences between the two device geometries.

In the preceding text, we have largely concentrated on
the present understanding and experimental results of the
spin-transfer-induced excitations in terms of their frequen-
cies, linewidths, and output powers. Although there are still
a number of unresolved issues, the excitation frequencies
can generally be understood as very large-angle preces-
sional motion approximating the uniform (FMR) mode. The
linewidths in the oscillations depend on the device geome-
try and vary with the particular field and current applied to
the device. For the nanocontact devices, the linewidths are
typically a few tens of megahertz but can be larger, partic-
ularly when the oscillation frequency strongly depends on
current or field. The narrowest linewidths are a few mega-
hertz, which appears not to represent the intrinsic linewidth
of the devices but instead reflects noise in the measure-
ment system. The device output can be tuned by several
orders of magnitude by controlling the geometry between
the fixed and free layers, as expected from the GMR effect.
At present, the output from the devices is still relatively
low for microwave applications, although the device out-
put power is a very significant fraction of that available
through the GMR effect. The maximum signals to date are
about 1 mV peak to peak. Of course, efforts to increase
the 	Rmax in these devices are underway, either through
the TMR effect, through materials engineering, or alter-
native device geometries such as coherent arrays (Kaka
et al., 2005b; Mancoff, Rizzo, Engel and Tehrani, 2005).
Impedance matching the devices to the measurement cir-
cuitry is also expected to significantly increase the measured
output power.
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2.3 Modulation effects

These spin-transfer-based nanoscale oscillators have several
features making them attractive for potential applications.
The devices are back-end CMOS compatible, they have
nanoscale ‘footprints’, the devices are frequency agile, and
they do not rely on any particular substrate material. The
most obvious potential application for these devices would be
as high-frequency clock oscillators or as microwave sources
for on-chip signals. However, these devices would have a
greater number of potential applications if the oscillation
frequencies can be modulated allowing for transmission and
reception of information and spectral analysis of microwave
signals. In addition, many applications would also require
the devices to be phase locked or referenced to either other
devices or an external reference signal, such as is done in
phase-locked loops and radio communications applications.
In the following sections, we discuss recent work investigat-
ing these behaviors in the spin-transfer-based oscillators.

2.3.1 Frequency modulation

The measurement setup for the following modulation and
phase-locking experiments is shown in Figure 17. The sys-
tem consists of high- and low-frequency branches defined
by the bias tee. A power splitter is inserted into the high-
frequency branch and a tunable microwave source is coupled
into one leg of the power splitter. This will modulate the
current through the device so that

I = Idc + 	Iac cos
(
2π fmodt

)
(6)

where fmod is the frequency of the injected current. Since
our devices are not matched to the 50 � impedance of
the measurement circuitry, we must in general calculate the

magnitude 	Iac using the voltage output from the microwave
source and a simple microwave circuit analysis (Johnk,
1988). In this measurement, part of the signal from the
microwave source is also parasitically input directly into the
spectrum analyzer/oscilloscope. Hence, the signal measured
by the spectrum analyzer or oscilloscope will be composed
of a signal from the microwave source along with the output
from the spin-transfer oscillator. These two different signals
are easily distinguished as long as the input frequency is far
from the device oscillation frequency, but care needs to be
taken with the frequencies that are close to one another or
identical.

The spectral output from a typical device when biased only
with a dc current is shown in Figure 18 for µ0H = 0.7 T
and θH = 80◦. The frequency increases roughly linearly from
Idc = 6–8 mA, and then increases at a more gradual rate up
to Idc = 9.5 mA. To examine the effects of an ac current on
the resonance, the device is first biased to a fixed current and
an additional 40 MHz ac current is applied through the power
splitter, generating a time-varying resonance frequency, that
is, frequency modulation (FM). In Figure 19(a), the spectral
outputs at Idc = 8.5 mA are shown for two input ac current
amplitudes. The spectra generally show that, with increasing
modulation current amplitude 	Iac, more power is driven
into sidebands positioned at f = fcenter ± n40 MHz (the
sideband order n = 1, 2, . . .), with the specific sideband
magnitudes depending on the variation of the precession
frequency with current. For example, at a bias point in
the linear region of the f versus Idc curve, such as Idc =
7.5 mA, the upper and lower sidebands of a given order
have approximately the same amplitude. However, when the
device is biased at Idc = 8.5 mA, where the frequency does
not have simple linear dependence on current (Figure 18),
the upper and lower sidebands have significantly different
magnitudes and vary differently with 	Iac.

Spectrum
analyzer/
sampling
oscilloscope

Microwave
source

Power
   splitter Bias tee

RF
  probe

Device

Top lead Bottom
leadsDC current

AC current
Lock-in amplifier

Trigger for
  oscilloscope

Figure 17. Schematic diagram showing the measurement setup used to allow high-frequency modulation of the current through the device.
When a sampling oscilloscope is used in the measurements, the oscilloscope is referenced to a 10 MHz signal from the microwave generator
to which the high-frequency output from the generator is phase locked. The arrows show the parallel paths, the signal from the generator
follows.
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Multiple Lorentzian functions were simultaneously fit to
the spectra for Idc = 8.5 mA to determine the spectral peak
positions and amplitudes for different magnitudes of the
modulation current 	Iac (see Figure 19(b–d)). The upper
and lower sideband amplitudes of a given order vary in
markedly different ways as a function of 	Iac. For example,
for the first-order sidebands (f = f0 ± 40 MHz, Figure 19c),
the upper sideband is larger in magnitude at a given 	Iac

and peaks at a higher 	Iac than the lower sideband. In
contrast, for the second-order sidebands (f = f0 ± 80 MHz,
Figure 19d), the lower sideband is larger in magnitude
for low 	Iac, with the upper sideband becoming larger
for 	Iac > 0.75 mA. Finally, the central peak (the ‘carrier’
frequency f0, see Figure 19b) red shifts significantly with
	Iac. As will be shown, these effects are due to the nonlinear
shape of the f versus Idc transfer curve in the neighborhood
of 8.5 mA.

The general form for the output signal from an oscillator is

V (I, t) = Re(V0 exp(iθ(I, t))) (7)

where the phase angle is defined as

θ (I, t) = 2π

∫ t

0
f

(
I

(
t ′
))

dt ′ (8)

When f (I) = constant = f0, the phase angle is simply
2π f0t = ω0t , and the oscillator output spectrum is a single
peak at f0. For typical frequency-modulation systems, the
frequency varies linearly with the modulation parameter.
With such a linear f versus Idc characteristic of slope b, the

current will have the form I (t) = Idc,0 + 	Iac cos(2π fmodt)

and the phase angle becomes

θ(I, t) = ω0t + β sin(ωmodt) (9)

in which ω0 = 2π f(Idc,0), ωmod = 2π fmod, and the mod-
ulation factor β ≡ fdev/fmod ≡ b	Iac/fmod. The resulting
expression for V (I, t) can be expanded in a Bessel series
given by

V (I, t) = V0ei(ω0t+β sin(ωmodt)) = V0eiω0t

∞∑
l=−∞

Jl (β) eilωmodt

(10)
This expression shows the familiar result that the output
spectrum has peaks at f0, f0 ± fmod, f0 ± 2fmod, . . . , f0 ±
lfmod, and that the amplitude of the lth sideband is propor-
tional to Jl(β) for linear FM. The calculated FM spectrum
and a function of drive amplitude is shown in Figure 20,
showing that as the modulation amplitude is increased more
power is taken from the peak at the center or carrier fre-
quency f0, and driven into the modulation sidebands (Couch,
2001).

For many values of field and field angle, the precession
frequency of the spin-transfer oscillators does not linearly
depend on Idc but instead follows a higher-order polynomial
in current near the bias point, as is the case for Idc = 8.5 mA
in Figure 18. This function f (I) can be expanded as a Taylor
series of order n:

f (I, Idc,0) =
∑

n

1

n!

∂nf

∂In

∣∣∣∣
I=Idc,0

(
I − Idc,0

)n
(11)

With this form for f (I), a sinusoidal input current of
the form I (t) = Idc,0 + 	Iac cos(2π fmodt) results in a power
series in 	Iac cos(ωmodt):

f (Idc,0, 	Iac, t) = f (Idc,0) +
∞∑

n=1

1

n!

∂nf

∂In

∣∣∣∣
I=Idc,0

× (	Iac cos(ωt))n (12)

This results in several modifications to the linear FM
expression (equation 10). First, each factor cosk(ωmodt) can
be expanded as a series in cos(mωmodt)(m ≤ k):

cosn(ωt) = 1

2n

(
n

n/2

)
+ 1

2n−1

n/2−1∑
k=0

(
n

k

)

× cos [(n − 2k) ωt] ; n even (13)

= 1

2n−1

n−1/2∑
k=0

(
n

k

)

× cos [(n − 2k) ωt] ; n odd
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Upon substitution of this expansion into the expres-
sion for θ(t) (equation (8)), one finds that a series in
sin(mωmodt)(m ≤ n, the order of the polynomial) now
replaces the single sinusoidal term in equation (10). In addi-
tion, each even power in the cosine power series also con-
tributes a term linear in t . These terms collectively are the
source of the shift of the carrier (center) frequency, reflecting

the fact that a sinusoidal drive shifts the average frequency
of the device away from f (Idc,0) when the frequency depen-
dence on current is not symmetric about the bias point.

Each harmonic of ωmod can be individually rewritten as
a Bessel series, as in equation (10). The expression for
V (I0, 	I, t) is then a product of Bessel functions with the
number of factors set by the order of the polynomial. For
example, the third-order expression is

V (I0, 	I, t) = Re

{
V0eiA0t

∞∑
l=−∞

∞∑
m=−∞

∞∑
p=−∞

× Jl (A1) Jm (A2) Jp (A3) ei(l+2m+3p)ωmodt

}

(14)
in which the An are linear combinations of the Taylor coef-
ficients, and A0 is a sum of ω0 = 2π f(I0) with contribu-
tions from even powers in the Taylor expansion. The Ai

are, in general, functions of Idc,0, 	I , and ωmod, and are
generalizations of the modulation factor β = fdev/fmod in
linear FM in equation (10). This sum has terms proportional
to sin(A0t), sin(A0t ± ωmodt), sin(A0t ± 2ωmodt), sin(A0t ±
3ωmodt), . . . describing a carrier at a (shifted) frequency
A0/2π , plus sidebands at integer harmonics of fmod. The
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amplitude of a given sideband is a sum of terms such that
the sum of the indices l + 2m + 3p is equal to the order of
the sideband, that is, ±1, ±2, and so on. Since the indices l,
m, p can be either positive or negative, a large number of
terms contribute to the amplitude of a given order. Further-
more, Bessel functions with negative indices can themselves
be negative (since Jm(x) = (−1)mJm(x)), and so can pro-
duce an amplitude asymmetry between the upper and lower
sidebands of a given order.

The computed center frequency shift and sideband ampli-
tudes as functions of drive amplitude are shown as solid
lines in Figure 19(b–d), determined using a fifth-order Taylor
series expansion about Idc,0 = 8.5 mA. As seen in the figure,
the above expressions accurately describe both the red shift
of the center frequency and also the relative variations of
the sideband amplitudes with the modulation current, up to a
constant amplitude factor. The model describes the amplitude
difference between the upper and lower sidebands of a given
order and also the crossover in their relative magnitudes (for
linear FM, the magnitudes of the upper and lower sidebands
of a given order are equal). The overall magnitudes of the
calculated sidebands (but not the carrier frequency ampli-
tude) are too large by a factor of 1.5, a factor that varies
with bias point. This possibly results from nonlinearities in
the current–voltage transport characteristics of the device,
or from nonlinear amplitude modulation effects not included
in the model. The amplitude of the output signal is not con-
stant with current (Figure 18 inset), and on average decreases
away from Idc,0, which acts to decrease the amplitudes of the
sidebands.

Note that these observed FM effects are not simply elec-
trical, that is, the result of signal mixing due to a nonlinear
current–voltage relation, but rather correspond to periodic
variations in the precessional trajectory of the free layer
magnetization. Simulated trajectories of a 100 nm × 100 nm
device for both zero and nonzero modulation amplitudes over
one-half period of the modulation are shown in Figure 21 for
an applied field µ0H = 0.7 T at 80◦ to the film plane. In this
configuration, the simulations predict a roughly linear depen-
dence of frequency on current. The trajectory for nonzero
modulation has a larger width in the z direction (perpendicu-
lar to the film plane). The modulation drives the magnetiza-
tion periodically more into and out of the plane, expanding
and contracting the cone of precession. This decreases and
increases the demagnetizing field, which in turn modulates
the net effective field and the precession frequency. The pro-
jection onto the y–z plane shows that the average value of
the magnetization perpendicular to the plane oscillates at the
modulation frequency.

These results show that the spin-transfer-based oscilla-
tors can be frequency modulated by modulating the current
through the device. The spectral output from the devices can
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Figure 21. Plot of computed single-domain magnetization trajec-
tory with (grayscale symbols) and without (light gray line) injected
ac current modulation, over one modulation period. Color scale on
trajectory denotes phase of ac modulation, from gray (ac current at
minimum) to black (ac current at maximum). Axes are in units of
the saturation magnetization. Trajectories also projected onto y –z

plane to show spreading of the orbit in the z direction with drive.
Simulations shown are at T = 0 K, to more easily show the tra-
jectory. AC current values differ from measured values owing to a
different slope of calculated f versus Idc curve and uncertainties in
the absolute scaling of Idc in the model. Inset: Fourier transforms
of x component of trajectories showing frequency sidebands gener-
ated during modulation. (Reproduced from Pufall et al., 2005, with
permission from the American Physical Society.  2005.)

largely be understood by the standard frequency-modulation
analysis that includes a nonlinear dependence of frequency
on Idc. The data indicate that the large-angle precessional
modes of the magnetization induced by spin transfer are
stable and tolerant of significant (current-induced) perturba-
tions. Further measurements have shown that the devices
can be modulated at frequencies approaching that of the
current-induced precession. This indicates that the preces-
sional dynamics are not only robust to a large bandwidth of
modulation inputs, but that the devices are able to respond
to very rapid changes in current. These results indicate that
the oscillators may be amenable to high-bandwidth, on-chip
transmission and reception applications as well as rapid on-
chip spectral analysis of a wide range of frequencies.

2.3.2 Injection locking

As mentioned in the preceding text, in many electronics
applications oscillators must be phase referenced to a sec-
ondary signal. Most modern circuits accomplish this through
the use of phase-locked loops. We investigate the ability of
these spin-transfer oscillators to phase lock to an external
signal using the simpler method of injection locking. In this
synchronization scheme, the current through the device is
modulated at a frequency close to, but distinct from, the
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natural oscillation frequency of the oscillator, inducing the
device to sympathetically oscillate at the drive frequency.
This general feature of nonlinear oscillators is exploited in
many modern technologies such as wireless communica-
tions, the American power grid, various power combining
architectures, and phased array antennae networks (Strogatz,
2003). We find that the spin-transfer-based oscillators stud-
ied here can similarly be injection locked to signals up to
several hundred megahertz away from their natural oscilla-
tion frequencies and, over this locking range, the phase of the
oscillator can be electronically tuned over a range of roughly
±90◦ relative to the injected signal.

The output of a nanocontact device as a function of
Idc is shown in Figure 22(a) along with the corresponding
differential resistance curve (Figure 22b). The small feature
in the dV/dIdc curve at 6.25 mA corresponds to the onset
of oscillations in the f versus Idc response. The power
associated with the oscillations is shown in Figure 22(c) and
is represented in a linear color scale in the top part of the
figure. In Figure 22(d) and (e), we show the analogous data
when an ac current I

(rms)
ac = 410 µA at 10.86 GHz (fdrive) is

added to Idc. In our measurement, part of this ac signal is
parasitically shunted to the spectrum analyzer used to acquire
the data, and produces a background signal at 10.86 GHz
in Figure 22(d). We have found that in this configuration
the spectrum analyzer lacks sufficient dynamic range to
repeatably subtract this parasitic background, and so we
are unable to directly measure the device output at this
particular frequency using this method. At low currents
the oscillation frequency is slightly pulled toward the drive

frequency fdrive. As Idc is increased the deviation between
the driven and nondriven frequencies increases as the spin-
transfer oscillations are pulled closer to the drive frequency.
At Idc = 7.4 mA the device locks to the drive frequency, as
we will explicitly show below, and remains so until Idc =
7.8 mA. At larger currents the device oscillation frequency
is distinct from the drive frequency but is again pulled
toward fdrive. Over the locking range of the oscillator a dc-
rectified voltage Vrect is measured (see Figure 22(f)). This
gives indirect evidence of injection locking of the oscillator
to the input signal (Tsoi et al., 2000).

When locked, the oscillator is expected to take on the
noise characteristics of the injected signal (Razavi, 2004).
A frequency stability of f/	f > 109 is expected in the
present case as determined by the microwave source, allow-
ing measurement of the signal using stroboscopic sampling
techniques. Direct measurement of the oscillator synchro-
nization is done in the time domain using a sampling oscil-
loscope instead of the spectrum analyzer (see Figure 17). The
oscilloscope is triggered from a 10 MHz signal that is phase
referenced to the microwave generator. The signal measured
by the oscilloscope is again composed of both a background
signal from the microwave generator and the output from
the spin-transfer device. To determine the device output, the
background signal is first measured with no current running
through the device. A second measurement is then taken with
Idc through the device and the background signal is sub-
tracted, leaving the device output. Typically about 1000 aver-
ages are acquired for each time trace. In principle, this mea-
surement is equivalent to the one using a spectrum analyzer.
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However, the dynamic range of the sampling oscilloscope is
larger (1:215) than that of the spectrum analyzer, permitting
repeatable subtraction of the background signal. Such a stro-
boscopic measurement technique gives a null result unless
the output from the device is phase synchronous with the
injected microwave signal (i.e., the trigger signal) throughout
the entire measurement interval of several minutes.

As indicated in Figure 22(d), the oscillator is locked to the
injected signal for Idc = 7.6 mA. A time trace corresponding
to this locked state is shown in Figure 23(a) along with a
sinusoidal fit. The fact that we are able to measure the signal
in the time domain explicitly shows that the oscillator is
phase locked to the injected signal. A fit to the data yields
an oscillation frequency of 10.86 GHz and a peak voltage
of 44 µV. A spectral measurement of the device output
without an ac bias for Idc = 7.6 mA is shown in Figure 23(b).
The spectral signal is equivalent to a peak voltage of
51 µV, in good agreement with the time-domain signal.
Spectral measurements indicate that no significant power is
generated at other frequencies (0–40 GHz). The deviation of
the signal from a sinusoid is likely the result of imperfect
synchronization between the trigger and the injected signal,
as similar deviations from a sinusoid are obtained when the
microwave generator output is directly measured.

The effect of varying the dc current through the locking
range is shown in Figure 24(a). The device is locked to an
ac current of I rms

ac = 410 µA at 10.86 GHz and the time-
domain signal is measured as Idc is varied from 7.2 to
7.8 mA. As seen in the figure, the phase of the spin-
transfer oscillator varies relative to that of the injected signal,
allowing electronic phase control of the devices. Over the
locking range the phase of the device varies by roughly
±90◦, as shown in Figure 24(b). No time-domain signals
are observed outside this range, indicating that the signal is
no longer phase coherent with the injected signal, as shown
by the Idc = 7.85 mA data.

We compare our results to the model of Adler (1973),
which treats the oscillator as an active nonlinear circuit

element coupled to an RLC circuit. Although simple, this
analysis has been found to describe the locking characteris-
tics of a range of oscillator circuits such as those based on
diodes, transistors, and klystrons, to name a few (York, 1998
and references therein). The basic result of the analysis is

fdrive − fo = 	flock sin(φ); 	flock = 	f

2

Vinj

Vosc
(15)

where 	flock defines the locking range of the device, 	f

is the free-running oscillation linewidth, fo is the free-
running oscillation frequency, Vinj is the injected ac voltage
across the device, Vosc is the oscillator voltage output,
and φ is the phase difference between the oscillator and
injected signal. Equation (15) has a solution for fdrive =
fo ± 	flock, and over that range the phase of the oscillator
relative to the injected signal varies from −90◦

< φ < 90◦,
in agreement with the data in Figure 24. This result is
derived under the limit that the addition of the injected
signal does not significantly alter the output amplitude of
the oscillator. In our devices, this criterion is met as long
as the oscillator output (amplitude and linewidth) does not
depend too strongly on the dc bias current over the locking
range. This is often the case, as it is for the data presented
here (see Figure 22c). In other cases, significant deviations
from the 180◦ phase shift and the simple linear dependence
of the locking range on the injected signal strength are found,
as expected when significant power variation is included in
the model (Fukumoto, Nakajima and Nakajima, 1983).

The dependence of the oscillation frequency on dc cur-
rent for several different ac injection amplitudes is shown
in Figure 25(a). 	Iac is estimated using standard microwave
circuit analysis and taking the RF device resistance as equiv-
alent to its dc value with no complex components (Johnk,
1988). As was seen in Figure 22, when the device is biased
outside of the locking range, the spectral measurements
indicate that the oscillation frequency is pulled toward the
injected ac signal. The measured frequency is pulled only
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slightly from its nondriven value far from the locking region.
However, when the device is just outside of the locking
range, the effect of the frequency pulling is much more sig-
nificant, with the measured frequency continuously approach-
ing the injection frequency.

This is not a frequency-modulation effect. In modulation
schemes, the frequency of the mixed signal is independent of
the amplitude of the modulation signal, at least for a linear
f versus Idc relationship, as discussed in the preceding text.
As seen in Figure 25(a) this is not the case. Instead, the
measurements are consistent with the oscillator quasilocking
to the injection signal. When the oscillator is close to but
outside the locking range, the device undergoes periods of
being locked to the injected signal, punctuated by periods
when the oscillator undergoes rapid phase slips and oscillates
at frequencies different from fdrive (Razavi, 2004). The closer
the oscillator is to the locking range, the longer the time
between these periods of rapid phase change. The result is
that the device oscillates not at a single frequency but over
a range of frequencies, which appears as the pulling effect
shown in Figure 25(a).

In Figure 25(b), the full locking range (2	flock) is shown
more explicitly as a function of the drive amplitude. The
locking range is taken as the difference between the non-
driven device oscillation frequencies at the minimum and
maximum dc currents at which the device locks to the
injected signal. The device is taken to be locked to the
injected signal when more than 90% of the oscillator sig-
nal is at the injection frequency. The locking range varies
approximately linearly with drive amplitude with a slope of
16 MHz mV−1. From equation (15), the full locking range
is expected to be linear with a slope of 	f/Vosc and inter-
sect the origin. The predicted slope can only be estimated
since the quantity depends explicitly upon the device out-
put. Whereas the cabling and other component insertion
losses can be measured, the coupling coefficient between

our low impedance devices and a 50 � microwave line
must be calculated. For the device investigated here having
	f = 7 MHz we estimate that equation (15) predicts a slope
of 42 MHz mV−1. The remaining discrepancy is possibly
accounted for by a difference between the dc device resis-
tance used in our estimate and the actual device impedance
at 10.86 GHz.

The quantitative difference between the slope predicted
by equation (15) and the measured value is not constant
but instead varies with the device studied and the mea-
surement geometry. To date, the values have always been
within a factor of 5. For other devices in the same mea-
surement geometry and a given injection amplitude, devices
having larger linewidths and lower output powers lock
over a wider range of frequencies in accordance with
equation (15). In general, the devices can be locked to
signals up to several hundred megahertz away from their
natural oscillation frequency. The fit to the data indicates
that a drive of finite amplitude, 1 ± 0.2 mV, is required
to lock the device. This is in contrast to the predic-
tions of equation (15). We have not yet determined the
cause of the nonzero intercept, but it may reflect addi-
tional intrinsic losses in the nanocontact devices due to
magnon radiation away from the device area (Slonczewski,
1999).

Close to the locking range, spectral measurements
of the oscillations are predicted to yield f = fdrive ±
((fo –fdrive)

2 –	f 2
lock)

0.5 (Razavi, 2004). The line in
Figure 25(a) shows this dependence for the data with I rms

ac =
330 µA. As seen in the figure, this qualitatively describes
the data close to the locking region. However, as the device
frequency gets farther away from the locking regime, the
measured frequency pulling is significantly larger than that
predicted by the simple model used here. This discrepancy
likely results from the amplitude effects that are not taken
into account in the simple oscillator model (see Figure 22c).
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3 SUMMARY
As we have shown, the spin-transfer effect can result in
a variety of coherent precessional dynamics in magnetic
nanostructures. The precessional frequencies depend on both
the current and magnetic field and can be tuned over
a wide range of frequencies. Present measurements have
demonstrated output frequencies up to about 40 GHz, but
we expect to be able to generate even higher frequencies.
The frequency dependence on magnetic field can be largely
understood in terms of large-angle FMR precessional modes.
The frequency dependence on the applied current is generally
in agreement with the predictions of Slonczewski, although
there are significant discrepancies between the theory and
experiment. The device output power can be tuned over
several orders of magnitude by varying the direction and
strength of the applied field. The largest powers occur
for nearly out-of-plane applied fields, which is consistent
with the predicted magnetization trajectories and the GMR
effect. The largest powers can be significant fractions of
the maximum available through the GMR effect, and with
improved impedance matching, the signals are expected to
be nearly equivalent to the maximum values. The linewidths
of the excitations can be quite narrow, leading to quality
factors commonly in excess of 104. The narrowest linewidths
are about 2 MHz and are presently limited by the fluctuations
in the applied magnetic field and current noise.

The devices show attributes that are promising for poten-
tial applications. The spin-transfer oscillators can be fre-
quency modulated at rates approaching the natural oscillation
frequency of the device. This potentially allows the devices
to be used in localized wireless communication architectures
as well as in on-chip high-speed spectral analysis. The oscil-
lators can be injection locked to an external reference signal
up to several hundred megahertz away from their natural
oscillation frequencies. Over the locking range, the phase of

the device can be tuned relative to that of the injection signal
by approximately ±90◦. These measurements demonstrate
the potential for spin-transfer-based oscillators in practical
microwave circuits that require synchronization of multi-
ple oscillators (such as in timing circuits, signal tracking
and reception, and signal demodulation) and phase control
of multiple oscillators (such as directional beam steering,
phased array detection, and localized coherent manipulation
of quantum states).
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1 INTRODUCTION AND OUTLINE

Technological progress of recent years clearly brings to the
forefront the ever-increasing importance of magnetism and
magnetic materials in the everyday life. Detailed understand-
ing of microscopic atomic structure and origins of magnetic
phenomena now appears as key to further advances in diverse
fields of science and technology. Although studies of mag-
netic structures and excitations form a rapidly expanding area
of modern science offering new discoveries and surprises
without an end in sight, a large body of experimental material
and theoretical work accumulated over the past half a century
can be understood in the framework of a simple microscopic
description based on semiclassical treatment of systems of
localized spins of magnetic ions. This article presents a
brief survey of common types of spin structures and exci-
tations found in magnetic crystals that can be described in
the framework of such a semiclassical spin-wave approach.
Experimental examples of neutron scattering studies, as best

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

known to the author, are presented for each type, and dis-
cussed in the context of an up-to-date presentation of the
linear spin-wave theory, perhaps, at the undergraduate level.

The article is organized as follows. The introductory
second section outlines the fundamental connection between
magnetism and the electronic spins from which it arises, spin
interactions that are at the origin of cooperative magnetic
phenomena are discussed in the third section, the fourth and
the fifth sections present survey of different spin structures
and spin-wave excitations, respectively, and the last section
gives a brief summary.

2 MAGNETISM AND SPIN

Magnetism of many-electron condensed matter systems is a
cooperative macroscopic quantum phenomenon originating
from the fundamental relationship between the magnetic
moment M and the angular momentum J ,

M = γ J (1)

where, γ is the so-called gyromagnetic ratio (Einstein and De
Haas, 1915; Barnett, 1935). This expression is a counterpart
of the famous equivalence relation between the magnetic
field H acting on the electron and the rotation with angular
velocity �L = |e|

2mec
H known as Larmor’s theorem, where,

e and me are the electron’s charge and mass and c is the
velocity of light in vacuum. If a system interacts with an
anisotropic environment, such as an atom in crystal’s electric
field, M and J might be not co-aligned and the gyromagnetic
ratio becomes a tensor quantity, γ αβ .

The magnetic moment associated with the Ampere’s
molecular electric current produced by an electron moving in
an atomic orbit can already be derived semiclassically from
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the Biot–Savart law,

µle = −µB

�

[
re × pe

] = −µB

�
le = − |e|

2mec
le (2)

This establishes the gyromagnetic ratio for the orbital
motion, γ l = − |e|

2mec
. This ratio is negative, so the electron’s

orbital magnetic moment is opposite to its orbital angu-
lar momentum. The magnetism of moving electric charges,
however, is grossly insufficient for explaining magnetic prop-
erties of matter, such as magnetism of the lodestone (mag-
netite) known since ancient times, which is why it was one
of the longest-standing problems in the history of science
(Mattis, 1965). Magnetic fields produced by orbital Ampere
currents, like artificial magnetic fields from electromagnets,
are of electrodynamic origin. They are caused by nonrel-
ativistic motion of electric charges and therefore contain
a relativistically small factor, ∼α ≈ 1/137. The energy of
magnetic interaction between two magnetic dipoles asso-
ciated with Ampere orbital currents of two electrons at
a distance r = 1 Å, each carrying 1 Bohr magneton, µB =
|e|�/(2mec) = 0.927·10−20 erg/Gs,

V (r) = −
{

8π

3
(µ1·µ2) δ (r) − (µ1·µ2)

r3
+ 3 (µ1·r) (µ2·r)

r5

}
(3)

is only ∼ µ2
B/(kBr3) ≈ 0.6 K. This is way too small com-

pared with the entropy contribution to the free energy to
explain the existence of magnetism at room temperature and
above. In addition, a simple theorem, established indepen-
dently by N. Bohr and J. H. van Leeuwen, in fact prohibits
magnetism in a system of classical electrons in thermal equi-
librium (Mattis, 1965).

Therefore, fundamentally, room temperature magnetism
could not be described by classical electrodymanics and was
only explained with the devise of quantum mechanics in the
early twentieth century. It is a consequence of the existence
of an additional quantum degree of freedom of an electron,
its spin (Compton, 1921; Uhlenbeck and Goudsmith, 1925).
In quantum mechanics the electron at rest still possesses
a quantum of ‘internal’ angular momentum, �se (� is the
Planck’s constant), described by the spin angular momentum
operator se of magnitude se = 1/2,

s2
e = se(se + 1) = 3

2
,
[
sx
e , sy

e

] = isz
e , etc (4)

There is also a magnetic moment of magnitude µse =
µB (1 + α/2π − · · ·) ≈ 1.001µB associated with the elec-
tron’s spin (Abragam and Bleaney, 1986). It is aligned
opposite to spin angular momentum,

µse = −gsµBse = γ s ·
(

1

2
�se

)
, γ s = −gs

|e|
2mec

(5)

where gs ≈ 2.002 is Lande g factor and γ s is spin gyromag-
netic ratio for the free electron which, like γ l , is also neg-
ative. Neglecting a ≈ 0.1% relativistic correction, γ s = 2γ l .
In addition to the orbital angular momentum L, magnetic
moment of a many-electron atom is determined by its total
spin,

S =
∑

e

se (6)

where the summation can be restricted only to 2S unpaired
electrons. Magnetism of condensed matter systems is usually
described in terms of interactions between these atomic spins
and resulting spin structures and excitations. Within the spin-
S ground-state (GS) multiplet of a Hund’s atom, electronic
spins in the incomplete shell can be expressed as se = ± 1

2S
S,

with plus sign for the majority and minus for the minority
electrons.

For an atomic system with total angular momentum
J = L + S, atomic gyromagnetic ratio in equation (1) is
a combination of γ s and γ l and in many cases can be
calculated using simple Lande-type formulae (Abragam and
Bleaney, 1986). Larmor’s equivalence between magnetic
field and rotation can be seen in that additional term in the
free energy resulting from magnetic field H and the term
arising from Larmor rotation with frequency �L = γ ·H are
exactly equal,

FM = −M·H = −γ J·�L

γ
= −J·�L (7)

and can be interchanged as a matter of convenience. This fun-
damental equivalence immediately leads to the Lagrangian of
spin rotations,

L = 1

2
χ

(
�

γ
− H

)2

(8)

which is at the origin of the powerful macroscopic descrip-
tion of long-wavelength, low-energy excitations in magnetic
systems with finite magnetic susceptibility χ and in the pres-
ence of a magnetic field, in the framework of spin hydrody-
namics (Andreev, 1978).

3 SPIN INTERACTIONS AND SPIN
HAMILTONIAN

Strong interaction between electronic spins leading to mag-
netism in condensed matter results from a combination of
the electrostatic Coulomb repulsion between electrons and
a quantum-mechanical coupling between electron spin and
coordinate wave functions established by the Pauli principle
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which prohibits electrons with the same orbital wave func-
tion from also having parallel spins. Hence, a many-electron
wave function minimizing the Coulomb energy corresponds
to a particular mutual spin alignment of interacting electrons.
As was first established by Heisenberg and Dirac (Dirac,
1926; Heisenberg, 1926, 1928) within the first-order approx-
imation of the perturbation theory the electrostatic Coulomb
interaction in the many-electron system can be expressed in
the form of a spin Hamiltonian,

H =
∑
e,e′

Jee′

(
se·se′ + 1

4

)
(9)

which became known as the Heisenberg exchange interac-
tion. Expression in brackets, up to a sign, is just a permutation
operator for two electrons, tagged e and e′, expressed through
their spins. The strength of such direct exchange interaction
between two electrons occupying orbital states with wave
functions ψ1 and ψ2 is given by the overlap integral,

Jee′ = −
∫

ψ1
∗ (re) ψ2

∗ (re′)

× e2

ree′
ψ1 (re′) ψ2 (re) d3re d3re′ (10)

which measures the frequency with which two electrons
exchange their orbital states (Bethe and Jackiw, 1997).
For the localized orthogonal orbitals the integral is always
positive (Bethe and Jackiw, 1997; Yosida, 1998) and the
direct exchange coupling is negative, Jee′ < 0, favoring
parallel, ferromagnetic alignment of electronic spins. This
type of interaction is at the origin of the Hund’s rule requiring
that electrons in an unfilled atomic shell maximize their
total spin, and is also involved in the ferromagnetism of 3d
metals (Fe, Ni, Co) and other materials. In very few cases,
though, straightforward direct exchange is the leading cause
of ferromagnetism. In fact, contribution of electron–nuclei
Coulomb interaction to the direct electron exchange coupling
between two atoms can actually make this coupling positive
(e.g., when electron’s wave functions have large overlap
close to the nuclei), favoring antiparallel, antiferromagnetic
spin alignment (Van Vleck, 1945).

In addition to direct exchange, there are a number of indi-
rect exchange mechanisms contributing to coupling between
atomic spins in condensed matter systems. The leading
cause of the antiferromagnetism in magnetic insulators is
the superexchange interaction resulting from the hybridiza-
tion of wave functions of magnetic 3d ions with those of
the intervening nonmagnetic anions (Kramers, 1934; Ander-
son, 1959). In the second-order perturbation theory, virtual
electron hopping between the anion and the cation orbitals
lowers the energy of the localized electrons. Depending on

the electronic and orbital configuration and the resulting hop-
ping matrix elements, direct exchange on the anion site may
either lead to antiferromagnetic, or ferromagnetic superex-
change (Kanamori, 1959). While in insulators with localized
electrons superexchange interaction is short-range, typically
acting only between the nearest cations bonded by an anion,
in semiconductors where anion states form band superex-
changes interaction can be long range, extending to distant
neighbors (White, 1983). In addition to superexchange, elec-
tron hopping through anion site between 3d cations with two
degenerate states, such as in Mn3+/Mn4+ mixed valence sys-
tems, can facilitate ferromagnetic coupling, which is known
as double exchange (Zener, 1951, 1959). Finally, in metals,
direct exchange between the localized 3d electrons and itiner-
ant conduction electrons leads to a long-range indirect RKKY
interaction whose sign depends on the distance between 3d
sites and on the density of delocalized itinerant electrons
(Kasuya, 1956; Yosida, 1957).

In view of the fact that spin of each unpaired electron of
a Hund’s atom is (within the ground-state multiplet) propor-
tional to the total spin S , in most cases spin Hamiltonian
of a system of magnetic atoms in a crystal can, to a good
approximation, be written as,

H =
∑
j �=j ′

Jjj ′Sj ·Sj ′ +
∑

j

D
(
Sz

j

)2

−
∑
j,β

γ βHβS
β

j ≡ HE + HA + HZ (11)

The first term here is the Heisenberg exchange including all
direct and indirect exchange interactions, the second term
describes the simplest, second-order uniaxial spin anisotropy
resulting from electron interaction with the crystal electric
field, ∼A(Lz)2, and mediated by the relativistic spin-orbit
coupling, ∼λ(LS), and the third term is Zeeman energy in
magnetic field H. The sum is over all atoms tagged by an
index j .

While isotropic Heisenberg exchange does select the
mutual spin alignment in the GS spin structure, it has a full
O(3) spherical symmetry with respect to spin rotations and
therefore does not establish any particular spin orientation
with respect to positions of atoms (on the lattice) in the
coordinate space. Continuum of GS spin configurations that
are related by simultaneous rotation of all spins is allowed.
Symmetry of the order parameter in the exchange structure
can be understood by moving every spin to a single point
without changing its direction. As a result, there might be
just one spin group with coinciding spin directions as in the
ferromagnet, two groups corresponding to two sublattices
with opposite spins, this occurs in antiferromagnets and
ferrimagnets, a star of n groups of similar spins with Cn
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rotational symmetry corresponding to n sublattices in a
commensurate spiral magnet, a circle (or ellipse) filled with
continuum of spin directions, such as in the incommensurate
spin spiral, and so on, see Figures 4 and 5. A complete
classification of exchange spin structures was given in
Andreev and Marchenko (1980).

Anisotropic interactions sensitive to spin direction with
respect to atomic positions arise from several sources. First
and perhaps most important is the electron spin interaction
with crystal electric field mediated by spin-orbit coupling
which was mentioned above. Although spin-orbit interaction
is a relativistic, electrodynamic effect, it is an intra-atomic
interaction and is only small on an atomic energy scale.
With λ ∼100–1000 K and more, it is still very significant
on the energy scale of condensed matter systems. Crystal-
field effects are most pronounced in rare earths and in
systems where the atom’s orbital moment is unquenched and
contributes significantly to the atomic magnetization. In rare
earths strong spin-orbit coupling leads to the fine structure
of atomic multiplets where total angular momentum J is a
good quantum number and magnetism exists in the ground-
state J multiplet. In most cases, magnetic moment of an
atom can still be described by an effective spin and using
equation (1), perhaps with anisotropic gyromagnetic tensor
γ αβ . Anisotropic spin interaction with crystal electric field
on the same site can be described by a single-ion spin
Hamiltonian, which is usually expressed in terms of Stevens
operators Om

l (S) (Abragam and Bleaney, 1986; Jensen and
Mackintosh, 1991),

HA =
∑
l≤S

2l∑
m=0

Bm
2lO

m
2l (S) (12)

of which only O0
2 (S) = 3 (Sz)2 − S (S + 1) was included in

equation (11). Bm
2l are the crystal-field parameters, which, in

principle, can be obtained from an ab initio calculation of
charge distribution in the crystal. These parameters determine
spin orientations with respect to the crystal axes and magnetic
field. In the absence of magnetic field and for the uniaxial
anisotropy of equation (11), spins can minimize their energy
by aligning parallel to z axis when the anisotropy constant
is negative, D < 0, (easy-axis anisotropy) and by being
perpendicular to the z axis when D is positive (easy-plane
anisotropy).

Electron hopping (i.e., the orbital hybridization) between
the cation and surrounding anions can lead to a transferred
spin anisotropy, which is determined by the electric field at
the anion site. In addition, an account for spin-orbit inter-
action may add anisotropic part to the exchange interac-
tion, resulting in two-spin anisotropy, HA = ∑

α,β D
αβ

jj ′Sα
j S

β

j ′ ,
α, β = x, y, z. Another small source of anisotropic two-spin

coupling is the magnetic dipole interaction, equation (3). The
structure of the diagonal part of anisotropic exchange is simi-
lar to equation (3) and is often called the pseudodipole inter-
action. The off-diagonal part is the antisymmetric exchange
of Dzyaloshinskii (1958)–Moriya (1960) and is usually writ-
ten in the form,

HDM = Djj ′ ·�Sj × Sj ′ 	 (13)

This interaction is at the origin of weak ferromagnetism
of antiferromagnets, Figure 2(b), and incommensurate spi-
ral spin structures such as shown in Figure 4. An expres-
sion for vector D can be derived in the perturbation theory
and depends on the matrix elements of the orbital angular
momentum of the interacting atoms. Its direction in the crys-
tal can often be determined from the symmetry of atomic
orbitals with respect to the line segment connecting spins j

and j ′. If there is inversion symmetry with respect to the cen-
ter of this bond, D vanishes. For S = 1/2 ions such as Cu2+,
single-ion spin Hamiltonian resulting from the crystal field is
just a constant and only two-ion spin anisotropy is possible.

In metals and systems with itinerant electrons, the
anisotropy of indirect exchange mediated by these electrons
can arise not only from their spin-orbital coupling to the crys-
tal field, but also from the spin and wave vector dependent
electron scattering due to Fermi surface anomalies, which is
sensitive to the spin polarization of electron bands.

4 SPIN STRUCTURES

While spin Hamiltonian of equation (11) is clearly over-
simplified, for example, it assumes localized spins and
only includes uniaxial single-ion spin anisotropy, it prop-
erly describes a great variety of important cases, some of
which are discussed in the subsequent text. It also appears
that with some notable exceptions, such as often found in
one-dimensional (1D) and two-dimensional (2D) and/or frus-
trated spin systems where the GS is disordered (Mermin and
Wagner, 1966a,b; Haldane, 1983; Chandra and Doucot,
1988), spin structures and excitations of this Hamiltonian can
be correctly predicted by adopting a semiclassical descrip-
tion of spin based on 1/S expansion. This approach, which
is justified for large spins, is known as the spin-wave theory
(Anderson, 1952; Nagamiya, 1967; Nagamiya, Nagata and
Kitano, 1962).

The starting point for spin-wave calculation is finding the
GS spin configuration that has the lowest energy, EGS, for
classical spins, that is, treating spin operators in equation (11)
as classical vector variables. This neglects all fluctuations and
is essentially a mean-field approximation. For a system of N

identical spins S on a Bravais crystal lattice and without
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anisotropy and magnetic field (D = H = 0), the general
solution for the classical GS of equation (11) is a coplanar
spin spiral (Yoshimori, 1959; Villain, 1959; Kaplan, 1959,
1961),

Sj = SQeiQ·rj + S∗
Q e−iQ·rj (14)

GS spin configuration is thus specified by the order
parameter SQ, which is simply a Fourier transform of
spin structure. This includes ferromagnetic (Q = 0 and all
spins are parallel) and antiferromagnetic (there are two spin
positions in the lattice, with Qrj = 0 and Qrj = π , i.e.,
there are two sublattices with antiparallel spins) collinear
spin structures, see Figure 1. In a collinear structure SQ

in (14) is a real vector of length S/2. In a noncollinear spiral
spin structure, SQ is a complex vector satisfying conditions

S2
Q = 0 and 2

(
SQ·S∗

Q

)
= S2 that ensure that all spins have

equal length S. Consequently, its real and imaginary parts
are two mutually perpendicular vectors of length S/

√
2. They

define the plane to which all spins are confined. Spins follow
circularly polarized rotation in this plane, which propagates
in the direction of wave vector Q and with the rotation angle
given by Qrj . All spins in a plane perpendicular to Q are co-
aligned. Unlike circularly polarized electromagnetic wave,
which is transverse, in the absence of anisotropic interactions
spin plane in the exchange spin spiral may have arbitrary
orientation with respect to the propagation vector Q (and the
crystal lattice).

If spin ordering wave vector Q is commensurate with
some reciprocal lattice vector τ , that is, there exists a
whole number n such that nQ = τ , then only n different
values of spin rotation angle (mod 2π) are possible on the
lattice and the spin structure is the commensurate spiral
with finite repeat period. In this case there are only n

different spin orientations in the crystal and one can divide
the spin system into n sublattices with co-aligned spins and
define a superlattice with a larger unit cell which contains
all differently aligned spins. A simple example is spin
structure in a 2D antiferromagnet on triangular lattice. It
is a commensurate spin spiral with propagation vector Q =
(1/3, 1/3) consisting of three sublattices directed at 120◦ to
each other, see Figure 5(c). While sublattice description is
straightforward, it entails significant complications for spin-
wave calculations and for understanding the structure and
behavior of spin order parameter and excitations. Existence
of n spin species requires n equations of motion; an enlarged
unit cell corresponds to a proportionally smaller Brillouin
zone into which dispersion of all excitations existing in
the system have to be folded. It also implies a number of
extinction rules for nuclear Bragg peak intensities prohibiting
unphysical peaks, which would be at fractional positions in

the real lattice. Finally, sublattice description is not possible
for incommensurate spirals.

While in some cases introducing spin sublattices is
unavoidable, in many situations spin structure is a weakly
distorted exchange spiral (14) and can be best described in
terms of the nuclear lattice on which the spin Hamiltonian,
for example (11), is defined. In this description all spins in
the ordered structure are treated equally, without subdividing
them into sublattices. The lattice unit cell is not increased to
incorporate translational symmetry breaking by spin order.
The corresponding folding of the nuclear Brillouin zone is
also avoided. Instead, additional (magnetic) Bragg peaks cor-
responding to spin superlattices are indexed in the paramag-
netic (nuclear) Brillouin zone. For a Bravais lattice there is a
single branch of spin-wave excitations, whose properties are
determined by spin structure.

A general procedure for finding the GS structure of classi-
cal spin Hamiltonian (11) on a simple Bravais lattice was
developed in Nagamiya (1967), Nagamiya, Nagata, and
Kitano (1962), Yoshimori (1959), Villain (1959), and Kaplan
(1959, 1961) and recently discussed in Zaliznyak and Zhito-
mirsky (1995a,b), Zaliznyak (2003), and Zhitomirsky and
Zaliznyak (1996). One has to minimize a function of N

classical vector variables Sj , subject to N constraints of
equal length, S2

j = S2. Employing Lagrange multipliers and
switching to Fourier representation, which takes advantage
of lattice translational symmetry, the following system of
equations for spin configuration, minimizing spin Hamilto-
nian (11) under the equal-spin constraint is obtained,

NJqSq + ezDSz
q −

∑
q′

λq′Sq−q′ = γ

2
Hδq,0,

∑
q′

Sq′ ·Sq−q′ = S2δq,0 (15)

Here ez is the unit vector along z axis, δq,q′ is a 3D Kronekker
symbol, and Sq, λq and Jq are the lattice Fourier transforms
of spin Sj , Lagrange multiplier λj and exchange coupling
Jjj ′ lattice fields, for example,

Jq =
∑
rjj ′

Jjj ′e−i q·rjj ′ = J−q, Jjj ′ = 1

N

∑
q

Jqei q·rjj ′ (16)

Result (14) follows immediately from equations (15). In the
absence of anisotropy and magnetic field, the GS energy
per spin is EGS/N = JQS2, so the ordering wave vector
Q corresponds to the minimum of the Fourier transform of
exchange interaction, JQ = min{Jq}. When magnetic field H
is turned on in the absence of spin anisotropy (D = 0), spins
simply tilt toward field, forming a cone. SQ and the plane of
spin spiral component align perpendicular to the field, and
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the net magnetization, γ S0 = χH, is parallel to it. The same
simple structure is realized when there is uniaxial anisotropy
but the magnetic field is parallel to its axis, although for
easy-axis spin anisotropy (D < 0) it occurs only for fields
above spin-flop transition field, H > Hsf ∼ S

√|D|J . The
balance between exchange and Zeeman energy determines
spin-canting (cone) angle α, sin α = H/Hs, which is valid
up to the saturation field, Hs = 2S(J0 + JQ + D). Above Hs,
sin α = 1 and spins are aligned parallel to the magnetic field.

In the general case, when both anisotropy and magnetic
field are present, the situation is significantly more com-
plicated. In addition to straightforward spin canting toward
magnetic field as in the simple cases mentioned above, a
noncollinear classical spin spiral also becomes distorted.
This distortion, known as ‘bunching’, is described by the
appearance of Fourier harmonics at integer multiples, nQ, of
the spin structure ordering wave vector Q, that is, at S2Q,
S3Q, and so on, in addition to SQ. When such distortion is
weak, for example, for small D and H , it can be calculated
using perturbative harmonic expansion, λq = ∑

n λnδq,nQ,

Sq = ∑
n SnQδq,nQ, where λn �=0 ∼ O

(√
D
J
,

γH

J

)
·λ|n|−1 and∣∣SnQ

∣∣ ∼ O
(
λ|n|−1

)
(Zaliznyak, 2003). Alternatively, it can

be obtained by considering perturbative corrections to spi-
ral winding angle in the real-space spin structure, δθj =∑

n αn cos
(
nQrj

) + βn sin
(
nQrj

)
, where the coefficients

αn and βn are of the order ∼O
((

D
J

) n
2 ,

(
γH

J

)n
)

(Zaliznyak
and Zhitomirsky, 1995a,b).

Squares of the absolute value of Fourier components of
spin density, |SQ|2, |S2Q|2, and so on, are proportional to the
intensity of magnetic Bragg reflections associated with spin
order at the corresponding wave vectors, Q, 2Q, and so on,
which are measured in experiment, for example, by magnetic
neutron diffraction (Izyumov and Ozerov, 1970; Zaliznyak
and Lee, 2005; see also X-ray and Neutron Scattering by
Magnetic Materials, Volume 1). For spin structures on a
simple Bravais lattice discussed above, where there is only
one spin in the crystal unit cell, SQ is simply given by the
magnitude of that spin S. Higher harmonics, which result
from distortion of exchange spin structure, for small distor-
tions can be calculated following the procedure described
in the preceding text, see for example Zaliznyak and Zhit-
omirsky (1995a,b) and Zheludev et al. (1998, 1999). For
non-Bravais crystal lattices with several spins in the unit
cell, SQ is the Fourier transform of the spin density of
the entire unit cell. When there is more than one atom in
the unit cell of the crystal, the above procedure of find-
ing spin GS has to be modified by introducing several spin
species. While this situation is actually more common in
real materials, it leads to some computational complications,
resulting in a system of linear equations for the order param-
eters of different spin species (Izyumov and Ozerov, 1970).

Nevertheless, the result in principle is not much different
from that for Bravais lattice. In fact, spin structures can often
be easily understood by simply considering bond energies
contributing to the Hamiltonian (11).

Some examples of spin structures found in different mate-
rials are shown in Figure 1 through Figure 4. The simplest,
ferromagnetic structure, most commonly occurs in metals,
such as 3d metals of the iron group, Figure 1(a). While elec-
tron states in metals form bands and applicability of the
localized spin description is questionable, experiments do
indicate existence of localized magnetic moments in metals
of the iron group and their alloys, persisting well above the
Curie temperature (Schurer, Sawatzky and van der Woude,
1971; Brown et al., 1982; Lynn, 1975, 1984). This can be
visualized by adopting a simple approximate picture called
the s–d model, where electrons of the incomplete d shell are
localized, while valence s electrons are involved in metal-
lic cohesion and are collectivized and described by Bloch
wave functions (Zener, 1959, 1951). They provide long-range
indirect exchange between the localized d electrons. First-
principle local spin density functional calculations (Liechten-
stein, Katsnelson, Antropov and Gubanov, 1986) indicate that
effective Heisenberg localized spin Hamiltonian can indeed
be used for describing 3d metals, and give effective exchange
parameters for iron and nickel which agree well with exper-
imental values. However, experimentally determined mag-
netic moments in ferromagnetic 3d metals, µFe ≈ 2.2, µCo ≈
1.7, µNi ≈ 0.6, are noticeably smaller than corresponding
expected free-atom values arising from spin of unpaired 3d
electrons, SFe = 2, SCo = 3/2, SNi = 1, which shows that
simplistic s–d model is at best a very coarse approximation.

(a) (b)

Figure 1. (a) Ferromagnetic spin alignment on the body-centered
cubic (bcc) lattice found in simple metals (Fe, Ni, Co, . . .). (b)
Antiferromagnetic spin structure on the NaCl-type face-centered
cubic (fcc) lattice found in metal monoxides such as FeO, NiO,
CoO, MnO. Small darker spheres with arrows show metal ions
and their spins, larger spheres are oxygen anions. Structure consists
of ferromagnetic sheets perpendicular to (111) diagonal of the
cubic unit cell (shown semitransparent in the figure), staggered
antiferromagnetically.
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Transition-metal monoxides with simple fcc crystal lattice
adopt antiferromagnetic spin structure shown in Figure 1(b)
(Shull, Strauser and Wollan, 1951). It is driven by strong anti-
ferromagnetic superexchange through 180◦ M–O–M (M =
Fe, Ni, Co, Mn) bond. Propagation vector of such structure
is Q = (1/2, 1/2, 1/2), in reciprocal lattice units of the cubic
lattice shown in the figure. Spin alignment, however, is dif-
ferent in different oxides, although except for CoO spins tend
to be confined to [111] planes. Antiferromagnetic order at TN

is usually accompanied by a slight trigonal distortion arising
from magnetostriction associated with anisotropic spin inter-
actions, which makes the symmetry of the crystal consistent
with that of the spin structure, (Kugel, Hennion and Cara-
batos, 1978; Tomiyasu, Inami and Ikeda, 2004; Barbier et al.,
2004; Goodwin, Tucker, Dove and Keen, 2006). NiO has
the highest Neel temperature in the series, T(NiO)

N ≈ 524 K,
T(CoO)

N ≈ 298 K, T(FeO)
N ≈ 198 K, T(MnO)

N ≈ 118 K.
Apart from simple ferro- and antiferromagnetism shown in

Figure 1, there are collinear spin structures where both par-
allel and antiparallel spin alignments coexist, giving rise to
an uncompensated net ferromagnetic, or more precisely fer-
rimagnetic moment. This can result from existence of atoms
with different spins within the unit cell, such as Fe3+ and
Fe2+, which do not compensate each other when aligned
antiferromagnetically, or from the combination of ferro- and
antiferromagnetic spin alignment in the spin structure. In fact,
both possibilities are realized in magnetite, Fe3O4, which is
a prototypical ferrimagnet known as lodestone since ancient
times, Figure 2(a). At room temperature the unit cell of

magnetite contains three Fe3O4 formula units and 24 spins in
total, which are unequally distributed between 8 tetrahedrally
coordinated A sites (populated by Fe3+, S = 2) and 16 octa-
hedrally coordinated B sites (equally populated by 8 Fe3+,
S = 2 and 8 Fe2+, S = 5/2). Antiferromagnetic superex-
change JAB between A and B sites passing through ≈125◦

A–O–B bond leads to the antiparallel alignment of A and
B spins within the unit cell. Unequal population of A and
B sites results in the ferrimagnetic structure. Already large
unit cell is not further increased by spin structure, and mag-
netic Bragg reflections appear on top of nuclear Bragg peaks
(Shull, Wollan and Koehler, 1951). Despite small value of the
superexchange coupling, JAB ≈ 2.35 meV ≈ 27 K (Alperin,
Steinsvoll, Nathans and Shirane, 1951), magnetite orders at
very high temperature, TC ≈ 858 K. This can be expected
for large Fe2+/Fe3+ spins and is consistent with spin-wave
calculations (Mills, Kenan and Milford, 1966).

In the rhombohedral structure of hematite, Fe2O3, (and
escolaite, Cr2O3) there are four Fe3+ (S = 2) ions in the unit
cell and two types of bonds between them. In the antiferro-
magnetic structure below TN ≈ 950 K spins coupled by the
superexchange passing through oxygen anions align antifer-
romagnetically, while those coupled directly are co-aligned,
Figure 2(b). Once again spin order does not break lattice
translational symmetry and magnetic and nuclear Bragg
peaks overlap (Nathans, Pickart, Alperin and Brown, 1964).
Superexchange bond, which couples spins from different
sublattices, passes through two oxygen triangles that are
rotated by 60◦ with respect to each other and thus lacks

(a) (b)

Figure 2. (a) Ferrimagnetic spin structure of magnetite, Fe3O4. The unit cell contains 32 O2− anions (larger light-shaded spheres) and 24
Fe cations (smaller dark spheres). 8 Fe3+ ions (S = 2) with co-aligned magnetic moments ≈4 µB occupy tetrahedrally coordinated sites
(down arrows), while 16 octahedrally coordinated sites are occupied by an equal mixture of 8 Fe3+ and 8 Fe2+ (S = 5/2, µ ≈ 5 µB)

ions aligned in the opposite direction (up arrows), resulting in net ferromagnetic moment ≈4 µB per unit cell, or ≈1/6 µB per iron.
(b) Weak ferromagnetism in hematite, Fe2O3. Nearly antiferromagnetic spins are shown slightly tilted in the basal plane, resulting in small
ferromagnetic moment. Both hexagonal and the rhombohedral unit cell with four Fe3+ ions and oxygens bridging them are shown.
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(a) (b)

Figure 3. Triangular spin ordering in quasi-one-dimensional ABX3 hexagonal perovskites; magnetic ordering wave vector is Q =
(1/3, 1/3, 1). Dark spheres with arrows show 3d metal ions and their spin. Anions (X) bridging 3d ions (B) in the chains at the corners
one unit cell (dashed lines) and providing the exchange coupling are also shown (larger light spheres). (a) Easy-plane anisotropy does
not distort 120◦ spin structure, simply forcing the plane of spin spiral to lie in the a–b basal plane. (b) Easy-axis anisotropy || c axis not
only forces spin plane to be perpendicular to the basal plane, but also distorts perfect 120◦ triangular ordering (e.g., in CsNiCl3 the angle
between the spin direction in the neighbor chains is ≈119◦).

inversion symmetry. This allows DM anisotropic contribu-
tion to superexchange, with D vector parallel to the threefold
rotation axis (z axis). As a result, spins from different sub-
lattices can lower their energy by slightly canting toward
each other and producing a weak ferromagnetic component
in the basal plane, perpendicular to z axis. The same weak
ferromagnetism is also found in many other materials, for
example, MnCO3 and CoCO3 (Borovik-Romanov, 1959).

Perhaps, the simplest noncollinear exchange spin structure
is a 120◦ triangular spin ordering occurring in an antiferro-
magnet on the two-dimensional triangular lattice. It is also
an example of the commensurate spin spiral with propa-
gation vector Q = (1/3, 1/3). Such spin ordering is found
in many magnetically quasi-one-dimensional perovskites
of ABX3 family (A = Cs, Rb, K, . . .; B = Ni, Mn, V, . . .;
X = Cl, Br, I, . . .) with hexagonal crystal structure. In these
compounds antiferromagnetic spin chains consisting of 3d
metal sites and running along the hexagonal C6 axis are
arranged on the triangular lattice in the basal plane and
form a 120◦ triangular spin structure in this plane, Figure 3.
Easy-plane anisotropy found, for example, in CsMnBr3 and
CsVBr3 does not distort 120◦ exchange structure, simply
forcing all spins into the basal plane (Eibshutz, Sherwood,
Hsu and Cox, 1972; Inami et al., 1995). In the case of
easy-axis anisotropy (e.g., in CsNiCl3, RbNiCl3, CsMnI3),
spins lie in a plane containing the z axis. Triangular spin
ordering of ideal spiral structure is distorted and spin open-
ing angle is less than 120◦ (Yelon and Cox, 1972, 1973).
In CsMnI3, where it is only 100◦, magnetic Bragg peak
corresponding to third order harmonics of spin spiral struc-
ture, 3Q = (1, 1, 1), is readily observed (Harrison, Collins,
Abu-Dayyeh and Stager, 1991).

An example of the incommensurate spiral spin struc-
ture resulting from Dzyaloshinskii–Moriya interaction is
found in quasi-2D S = 1/2 antiferromagnet Ba2CuGe2O7

shown in Figure 4 (Zheludev et al., 1996, 1998, 1999).
Absence of the inversion symmetry of the antiferromag-
netic bond between nearest-neighbor spins on the centered
square lattice in the basal plane allows uniform antisymmet-
ric DM exchange with vector D perpendicular to (001) z axis.
The spin interaction energy is minimized when all spins are
perpendicular to D, in which case exchange energy per bond
is 2J cos ϕ + D sin = √

4J 2 + D2 cos (ϕ − α), where J is
the antiferromagnetic isotropic Heisenberg superexchange,

[100][010]

Figure 4. Spiral spin structure in quasi-2D antiferromagnet
Ba2CuGe2O7. Cu2+ ions (dark spheres) with S = 1/2 spins (arrows)
form ideal square lattice in the a–b plane. Larger, light-shaded
spheres show oxygens in one unit cell. Noncentrosymmetric tetrag-
onal crystal structure (space group P421m) gives rise to Dzyaloshin-
skii–Moriya interaction which favors spiral spin arrangement with
spins confined in [1,−1, 0] xz plane (x axis is directed along
the diagonal of the square) and magnetic propagation vector
(1 + ς, ς, 0) with ς ≈ 0.0273. This means that interacting nearest-
neighbor spins along the diagonal of the square unit cell rotate
by α = 360◦·ς ≈ 9.8◦ in xz plane with respect to their antiparallel
alignment in the simple collinear antiferromagnetic structure with
Q = (1, 0, 0).
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α = − arctan (D/J ) and ϕ is the angle between the spins.
The energy is a minimum for ϕ = π + α and the GS spin
structure is an incommensurate spin spiral with propagation
vector Q = (1 + ς, ς, 0), ς = α/(2π), shown in Figure 4. In
this case not only spin alignment, but also spiral propagation
vector are both determined by weak anisotropic interactions,
and therefore both are equally strongly sensitive to magnetic
field (Zheludev et al., 1997).

5 SPIN-WAVE EXCITATIONS

Spin waves are usually understood in the framework of semi-
classical description and can be visualized as small oscilla-
tions of classical spin vectors around their equilibrium posi-
tions in the GS spin structure, as shown in Figure 5. Their
wavelike spatial composition results from the translational
symmetry of the system. Frequencies of spin-wave oscilla-
tions can be calculated from spin Hamiltonian, for example,
equation (11), by writing torque equations of motion for clas-
sical spins (Mattis, 1965). Such an approach relies entirely
on classical mechanics and can be most generally pursued
employing Poisson brackets formalism (Dzyaloshinskii and
Volovick, 1979). Spin waves are normal modes of the lin-
earized equations of motion. They involve small spin devi-
ations that are perpendicular to the equilibrium spin direc-
tion. Hence, spin waves are transversely polarized, with two
mutually orthogonal linear polarizations of spin oscillations
possible. A circular spin precession around its equilibrium
position can have two possible directions, clockwise and
counterclockwise; one is shown in Figure 5(a) for a spin
wave in ferromagnetic structure.

In an antiferromagnetic spin structure, precession of two
sublattices can have the same, Figure 5(b), or the opposite
sense, Figure 5(c). In the sublattice description, where the
magnetic superlattice contains two spin species, these cor-
respond to two distinct, in-phase and antiphase, spin-wave
modes. In the extended, paramagnetic Brillouin zone (BZ)
description, where there is only one spin-wave branch for
spins on a Bravais lattice, these two modes correspond to spin
waves having different wave vectors, q and q ± Q, where Q
is the antiferromagnetic ordering wave vector. For a three-
sublattice antiferromagnetic spin structure on a triangular
lattice there are two possible choices of sublattice(s) rotat-
ing in the ‘wrong’ sense. Hence, there are three spin-wave
modes, Figure 5(d). In general, the total number of spin-
wave modes in the sublattice description equals the number
of sublattices. For a Bravais nuclear lattice, multiple modes
arise from folding of the dispersion surface of a single mode
defined in the large nuclear Brillouin zone into a small BZ of
magnetic superlattice. Hence, their number is equally given
by the volume ratio of these BZ.

(a)

(b)

(c)

1

32

1

32

1

32

(d)

Figure 5. Spin waves in different spin structures. Each spin under-
goes precession about its equilibrium direction sweeping out the
surface of a cone over a period 2π /ω(q), where ω(q) is frequency
of spin wave and q is the wave vector. (a) Ferromagnet, (b) in
phase, and (c) antiphase mode in two-sublattice antiferromagnet, (d)
in phase and two antiphase (left to right) modes in three-sublattice
antiferromagnet on triangular lattice. A half-period of spin-wave
oscillation spanning six spins is shown in (a) and (b, c), correspond-
ing to spin wave with wave vector equal to 1/12 of reciprocal lattice
unit in the direction of propagation. Antiphase mode in (c) corre-
sponds to wave vector 7/12 in the extended paramagnetic Brillouin
zone description.

In quantum-mechanical description of spins, elementary
quanta of spin excitation in spin systems, which by virtue
of equation (1) are also elementary magnetic excitations,
are known as magnons. In quantum mechanics, states of an
isolated spin system on a lattice are specified by the total spin
of the system, Stot, its z component, Sz

tot, and wave vector q,
which determines the eigenvalue of the lattice translation
operator, Tr,

Tr
∣∣q, Stot, Sz

tot

〉 = eiq·r ∣∣q, Stot, Sz
tot

〉
(17)

A GS for an isotropic saturated ferromagnet is∣∣0, NS, Sz
tot

〉
, −NS < Sz

tot < NS. For an antiferromagnet it is
|0, 0, 0〉 (this implies sublattice description; ordered GS is
doubly degenerate). In many cases this set of quantum
numbers is sufficient for describing low-energy states of the
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Figure 6. Cuts of the spin-wave dispersion surface in a ferromagnet, Ja = Jb = Jc = J < 0, (a), (b) and an antiferromagnet, Ja = Jb =
Jc = J > 0, (c), (d) on a three-dimensional (3D) Bravais cubic lattice by an (h,k,l0) reciprocal lattice plane with l0 = 0 (a and c) and l0 = 0.5
(b and d). Wave vector is measured in reciprocal lattice units (rlu), qa = h, qb = l. (a) Spin structure of a ferromagnet has propagation
vector Q = (0, 0, 0) and magnetic Bragg peak positions coincide with nuclear structure Bragg peaks at the corners of the Brillouin zone.
A cosine-like dispersion is quadratic in q around these points. (b) Dispersion for Q = (h, k, 0.5) does not pass through Q = 0 magnetic
ordering vector and has a gap. (c) Dispersion in Q = (h, k, 0) zone does not pass through Q = (1/2, 1/2, 1/2) magnetic ordering vector of
an antiferromagnet but still softens for the uniform mode at Q = 0 and has no gap. (d) Dispersion in Q = (h, k, 1/2) zone cuts through the
Goldstone mode with sine-like dispersion linear in the vicinity of magnetic ordering vector Q = (1/2, 1/2, 1/2).
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Figure 7. (a, b) Spin-wave dispersion in an antiferromagnet on the 3D cubic Bravais lattice with Ja = −Jb = −Jc = J > 0, that is
ferromagnetic layers in b–c plane stacked antiferromagnetically along a. (a) cut by a (h,k,0) reciprocal lattice plane showing a Goldstone
mode with sine-like dispersion along a arising from magnetic ordering vector Q = (0.5, 0, 0). (b) cut by a (h,k,0.5) plane containing neither
Q = 0 nor Q = (0.5, 0, 0) and therefore no soft modes. (c) Spin-wave dispersion in a 2D antiferromagnet on a square lattice. There are two
soft modes, at Q = 0 and at the magnetic ordering vector Q = (1/2, 1/2). (c) Spin waves in a triangular lattice antiferromagnet. In addition
to soft mode at Q = 0, there are two Goldstone modes at two equivalent spin ordering wave vectors, Q = (1/3, 1/3) and Q = (2/3, 2/3).
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system, which can differ from the GS by having a nonzero q
and by the value of the total spin, that is, Sz

tot = 0, ±1.
Therefore, quantum magnons describing these states are
specified by wave vector, q, and spin, S = 1, Sz = 0, ±1,
quantum numbers. Clearly, there are three magnon polariza-
tions in quantum theory, as opposed to only two for trans-
verse spin waves in classical description. However, in sys-
tems where semiclassical description is valid, for example,
for S >> 1, and spin order is well developed, only two
magnons corresponding to semiclassical spin waves are
relevant.

Except for few specific important cases, full quantum-
mechanical treatment of spin Hamiltonian presents insur-
mountable difficulties (Mattis, 1965; see also Magnetism
of Low-dimensional Systems: Theory, Volume 1, Spin
Waves: History and a Summary of Recent Developments,
Volume 1). The most successful approximate approach to
treating quantum spins is the spin-wave theory, which starts
from a semiclassical approximation and is based on a pertur-
bative expansion in 1/S. Semiclassical magnons obtained in
the leading, first-order perturbation of spin-wave theory are
just classical spin waves.

In spin-wave theory spins are quantized by expanding
deviations from their equilibrium directions in the classi-
cal spin structure in a series of Bose creation–annihilation
operators, using for example, Holstein–Primakoff transfor-
mations (Holstein and Primakoff, 1940). Energies of spin
excitations and quantum corrections to spin structure can
then be calculated using perturbation theory for a system of
interacting bosons. A rather complete nonlinear spin-wave
theory accounting for second and higher order perturbation
corrections has been developed for the isotropic Heisenberg
Hamiltonian; some examples are found in Dyson (1956),
Chubukov (1984), Rastelli, Reatto, and Tassi (1985), Ohyama
and Shiba (1993, 1994), and Veillette, James and Essler
(2005), (see also Spin Waves: History and a Summary
of Recent Developments, Volume 1).

Spin-wave calculations proceed by transforming every
spin operator to its own coordinate system with z axis point-
ing along the spin direction in the classical GS spin structure.
For a coplanar exchange spiral (14), such coordinate transfor-
mation is achieved by a rotation through an angle Qrj . Then,
in order to obtain the first 1/S correction to classical approx-
imation, in the standard perturbation scheme spin operators
are expressed through boson operators, a+, a, by employing
the truncated Holstein-Primakoff transformation, Sz

j = S −
a+a, S+

j ≈ a
√

2S, S−
j ≈ a+√

2S. The first-order corrections
in such a linear, or harmonic spin-wave theory appear in the
form of quadratic boson Hamiltonian describing a system of
quantum oscillators, which correspond to quantized classical
spin waves. Applying this procedure to Hamiltonian (11) for
spin spiral without harmonic distortions, the following boson

equivalent is obtained, (Zhitomirsky and Zaliznyak, 1996),

H =
∑

q

{(
Aq + Cq

)
a+

q aq + 1

2
Bq

(
aqa−q + a+

q a+
−q

)}

(18)
where

Aq = −2SJQ + S cos2 α
(
Jq + D

)
+S

(
1 + sin2 α

) Jq+Q + Jq−Q

2

Bq = −S cos2 α

(
Jq + D − Jq+Q + Jq−Q

2

)
,

Cq = S sin α
(
Jq+Q − Jq−Q

)
Aq and Bq are even, while Cq is an odd function of q.
Equation (18) is diagonalized by the standard Bogolyubov
transformation (which leaves odd-q terms unchanged), result-
ing in the Hamiltonian of uncoupled harmonic oscil-

lators, H = ∑
q

{
ε (q)

(
a+

q aq + 1
2

)
− 1

2Aq

}
. The constant

term
∑

q
1
2

(
ε (q) − Aq

)
gives 1/S quantum correction to the

classical GS energy. The energy of semiclassical magnons is

ε (q) =
√

A2
q − B2

q + Cq, or,

ε (q) = 2S

(√(
Jq+Q + Jq−Q

2
− JQ

)

×
√(

Jq+Q + Jq−Q

2
sin2 α+(

D+Jq
)

cos2 α−JQ

) )

(19)
According to Goldstone’s theorem, breaking of the contin-
uous symmetry of the Hamiltonian in the GS must entail a
zero energy mode(s) in the excitation spectrum. Such modes
appear in the spin-wave dispersion of equation (19) at q = 0
and at q = Q, the latter only has zero energy in the absence
of anisotropy and magnetic field.

Dispersion of spin-wave excitations in different spin struc-
tures on simple Bravais lattices calculated using
equation (19) for H = D = 0 and for nearest-neighbor spin
interaction are shown in Figures 6 and 7. Fourier trans-
formed exchange is obtained by summing over the neighbor
bonds, Jq = ∑

d 2Jd cos (q·d), which for a simple cubic lat-
tice is just Ja cos 2πqa + Jb cos 2πqb + Jc cos 2πqc. For a
ferromagnet, where Q = 0, this expression simply has to be
shifted upwards by J0 = Ja + Jb + Jc to obtain the spin-
wave spectrum shown in Figure 6(a,b). There is a Goldstone
mode with quadratic dispersion at q = 0.

Inelastic neutron scattering provides a direct way of
studying spin waves in most magnetic materials. Magnetic
neutron scattering cross-section is directly proportional to
the dynamic spin susceptibility and exhibits sharp, delta
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Figure 8. Dispersion of spin waves in Fe with 12 at% of Si at
several temperatures, measured by J. W. Lynn using unpolarized
inelastic neutron scattering (Lynn, 1975, 1984). With increasing
temperature, spin-wave energy somewhat softens, but, outside a
small hydrodynamic region, spin-waves neither disappear nor their
dispersion renormalizes to zero as T → TC, indicating existence of
localized spins. (Reprinted figure from permission from J.W. Wynn
et al., 1975 with permission from the American Physical Society.
 1975.)

function-like peaks at spin-wave energies (Izyumov and
Ozerov, 1970; Zaliznyak and Lee, 2005; see also X-ray and
Neutron Scattering by Magnetic Materials, Volume 1).
Quadratic spin-wave dispersion measured by J. W. Lynn
in ferromagnetic iron is shown in Figure 8. Spin waves
persisting at elevated temperatures, up to and above the Curie
temperature, indicate existence of localized spins. Quadratic
in q dispersion is, in fact, a very general consequence of the
existence of net ferromagnetic moment in the spin system,
and therefore it is also observed in ferrimagnets (Alperin,
Steinsvoll, Nathans and Shirane 1951).

In antiferromagnets and helimagnets (spin spirals) spin-
wave dispersion of Goldstone modes is linear. For an anti-
ferromagnet on a Bravais cubic lattice, cuts of the dis-
persion surface by planes perpendicular to [001] direction
intercept only one Goldstone mode at a time, Figure 6(c,d).
The situation is different in ferro-antiferromagnet, which
is made of ferromagnetic sheets in b–c plane coupled

antiferromagnetically along a, Figure 7(a,b). The antiferro-
magnetic, sine-like dispersion is pronounced along a axis,
while ferromagnetic dispersion in b–c plane is only modi-
fied to produce linear spectrum of a Goldstone mode in the
vicinity of the ordering wave vector, Q = (1/2, 0, 0).

A sine-like dispersion of spin waves in the prototypical
antiferromagnet NiO measured by Hutchings and Samuelsen
(1972) is shown in Figure 9. Data in the figure is indexed in
the reduced Brillouin zone of magnetic superlattice, which
contains a number of modes whose dispersions coincide.

Spin-wave dispersion in a 2D antiferromagnet on square
lattice is shown in Figure 7(c). Such system attracted
considerable attention after antiferromagnetism was discov-
ered in the undoped parent materials of high-temperature
superconducting cuprates, La2CuO4 (Vaknin et al., 1987)
and Y2BaCu3O6+x , (Tranquada et al., 1988) where weakly
coupled layers of Cu2+ ions form square lattice in the basal
a–b plane of the tetragonal crystal structure. Exchange cou-
pling through 180◦ Cu–O–Cu bond is extremely strong,
reaching ∼0.23 meV in chain cuprates (Zaliznyak et al.,
2004). Hence, spin excitations are the most energetic eigen-
modes and are crucial to understanding properties of cuprate
materials. Recent advent of high-power pulsed spallation
neutron sources utilizing time-of-flight spectroscopy enabled
direct experimental observation of such excitations. Spectac-
ular data on spin excitations in La2CuO4 reported in Coldea
et al. (2001) was successfully described by spin waves, using
effective localized spin Hamiltonian with superexchange and
additional cyclic exchange induced by electron itinerancy.
Similar measurements of high-energy excitations in super-
conducting Y2BaCu3O6+x reported in Stock et al. (2005)
can also be reasonably well interpreted within the spin-wave
framework. These finding are quite surprising in view of
the quantum nature of Cu2+ spins (S = 1/2) and the low-
dimensional (2D) character of these systems, undermining
the mean-field approach.

Spin-wave dispersion in a 2D antiferromagnet on trian-
gular lattice is shown in Figure 7(d). In addition to q = 0
and q = Q = (1/3, 1/3), there is also a Goldstone mode
at τ − Q = (2/3, 2/3) = 2Q, τ = (1, 1) is a reciprocal lat-
tice vector. This coincidence (up to τ ) between Q and 2Q
makes purely 2D triangular lattice a singular case. For one,
harmonic expansion reduces to a single relation and can-
not be used to describe bunching of triangular spin struc-
ture in magnetic field. Second, spin-wave calculations up
to a second order in 1/S reveal dramatic modification of
spin-wave spectrum (Starykh, Chubukov and Abanov, 2006).
These complications are absent in quasi-1D hexagonal ABX3

antiferromagnets with nearly triangular 120◦ spin structures,
(Eibshutz, Sherwood, Hsu and Cox, 1972; Inami et al., 1995;
Yelon and Cox, 1972, 1973) where leading interaction is the
in-chain exchange perpendicular to triangular lattice and the
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Figure 9. Dispersion of spin waves in antiferromagnetic NiO at
T = 78 K, (a) along (110) and (b) along (111) reciprocal lattice
directions, measured by Hutchings and Samuelsen (1972). Wave
vector is indexed in small Brillouin zone of magnetic superlattice
with 4 × times enlarged unit cell, such that magnetic ordering
wave vector is Q = (1, 1, 1). Different curves marked A, B, C,
and D show spin-wave calculation for different magnetic domains
corresponding to four possible symmetrically equivalent directions
of Q in the cubic lattice. (Reprinted figure from M.T. Hutchings
et al., 1972 with permission from the American Physical Society.
 1972.)

ordering wave vector is essentially 3D, Q = (1/3, 1/3, 1) �=
2Q = (2/3, 2/3, 0). Numerous neutron scattering studies of
spin excitations in these materials indicate that for spin S > 1
they are reasonably well described by linear spin-wave the-
ory. Some experimental examples presented in Inami et al.
(1995) are reproduced in Figure 10. Resemblance of the data
with dispersion of equation (19) shown in Figure 7(d) is
clearly identifiable.
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Perhaps, the most spectacular success of applying spin-
wave description to excitations in a spin system is presented
in Figure 11. It reproduces spin-wave spectrum in
Dzyaloshinskii–Moriya spiral magnet Ba2CuGe2O7, whose
structure is shown in Figure 4 and was discussed above,
measured by Zheludev et al. (1998, 1999). Antisymmetric
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Figure 11. Dispersion of spin waves in Dzyaloshinskii–Moriya
spiral spin structure found in Ba2CuGe2O7 in zero magnetic field,
measured at T = 0.35 K by Zheludev et al. (1998, 1999). The
filled circles on the abscissa axis show positions of the observed
magnetic Bragg peaks at Q and 3Q. The solid curves are parameter-
free theoretical curves resulting from spin-wave theory calculation.
(Reprinted figure with permission from A. Zheludev et al., Phys.
Rev. B Vol 59, 11432.  1999 by the American Physical Society.)

DM exchange in this material is accompanied by a two-ion
anisotropy, and the resulting spin GS is an incommensu-
rate bunched spiral, with clearly observable magnetic Bragg
peaks corresponding to third harmonics, 3Q, of the ordering
wave vector Q. Distortion of spin spiral results in appear-
ance of discontinuities in the spin-wave dispersion at wave
vectors nQ, which are clearly observed in experiment.

6 SUMMARY

Although magnetism is rooted in the quantum-mechanical
nature of electron’s spin, spin structures and excitations in a
great variety of magnetic materials can be successfully under-
stood and often accurately described on the basis of semiclas-
sical treatment of a localized spin Hamiltonian. Dispersion
of spin excitations predicted by spin-wave theory agrees sur-
prisingly well with neutron scattering experiment even for
ordered spin systems with S = 1/2, where 1/S expansion is
clearly not a good approximation. The fundamental reason

for this is perhaps simply the fact that while the mapping
of spin operators to bosons employed in different flavors
of spin-wave theory might not be entirely correct, the fun-
damental nature of spin excitations as coupled oscillators
on a lattice is captured correctly. The resulting equations of
motion and corresponding boson Hamiltonian are therefore
also correct. However, they may involve effective interac-
tion parameters which can differ significantly from those in
the original spin Hamiltonian and which are prescribed by
the spin-wave approximation. Therefore, while reasons for
the success of semiclassical spin-wave description might be
superficial, similar to the Weiss theory of ferromagnetism, it
provides a very useful parameterization for describing spin
structures and excitations in magnetic materials, for example,
in the form of equation (18).
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1 INTRODUCTION

One of the most significant contributions to the understanding
of condensed matter made by neutron scattering has been the
determination of the magnetic structure of materials. Neutron
interaction with matter consists of a ‘nuclear’ term, resulting
from the interaction between the neutron and the each of
the nuclei of the atoms, and a magnetic term, due to the
interaction between neutron magnetic moment or spin and
the magnetic moments in the solids. For a magnetic material
like iron, the two interactions have comparable size. The
interaction length is also very small, being comparable to
the radius of the nucleus, which is smaller by a factor of
10−4 than the size of the atom. This means that neutrons may
penetrate deeply in matter, sampling a large, and statistically
significant volume or area of the material. On the other hand
most of the information obtained, in the form of a diffraction
or scattering pattern, may require a substantial amount of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

material because the weakness of interaction is compounded
with the limited neutron fluxes emitted from present day
sources.

Typical neutron wavelengths are of the order of a few
angstroms, comparable to the distance between atoms in a
crystalline structure. This explains why neutron diffraction
has been a primary tool to determine magnetic structures
of single crystals or even polycrystalline samples. Consider
for simplicity a ferromagnetic single crystal in which only
one magnetic domain is present. In this case, the magnetic
structure is identical to the crystalline structure; the intensity
of each diffraction peak is composed of a term due to
the neutron–nucleus interaction and a magnetic term of
the crystalline unit cell. The magnetic intensities diffracted
in a given Bragg reflection depend on the angle between
the direction of the magnetization and the direction of
the momentum transfer of that Bragg reflection. From the
diffracted intensities, the collective direction of the magnetic
moments aligned in the domain can be obtained. Further
information can be obtained if, in addition, the spin of
the neutron is known both before and after scattering. For
instance, if the polarization axis of the incident neutron beam
is parallel to the magnetization, the scattered neutron has the
original spin state; but if the two axes are perpendicular, the
scattered neutron can have a reversed spin state.

In the case of an antiferromagnetic structure the net mag-
netization is zero, but still magnetic Bragg reflections are
observable, since the crystal may be thought of as being
divided in magnetic sublattices, each with its own orientation.
For an antiferromagnet, diffraction lines of solely magnetic
origin may appear, giving a detailed account of the antifer-
romagnetic structure. These diffraction lines correspond to
lattice planes that in fact have a net magnetization. Even
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for antiferromagnets, selection rules for intensity and polar-
ization permit, with few exceptions, the determination of the
direction of the moments in each sublattice (Bacon, 1975; see
also X-ray and Neutron Scattering by Magnetic Materi-
als, Volume 1).

Domains are quite common in various physical or chem-
ical systems. They are generally stabilized by competing
interactions on different length scales, which in the mag-
netic case are generally exchange (short-range) and magne-
tostatic (long-range) interactions (Seul and Andelman, 1995).
Within this review we will focus our discussion on magnetic
domains, that is, magnetically ordered regions with differ-
ent orientations of the magnetization. We would also like to
note that the techniques discussed in this chapter are also
useful to investigate different domain structures, such as the
ones occurring due to phase separation in complex oxides,
where regions with different magnetic order (i.e., ferromag-
netic metallic and antiferromagnetic insulating) coexist. An
in depth discussion of these types of domains is beyond the
scope of this chapter and the interested reader is referred to
a recent review by Dagotto, Hotta and Moreo (2001).

Figure 1 shows how a ferromagnetic material may break
down into domains, when the material is in a magnetic
field that is weaker than the saturating field. Each domain
is characterized by a different orientation of the magneti-
zation. When no magnetic field is applied, in each domain
the magnetization is aligned along one of the directions of
easy magnetization allowed by the symmetry of the crystal
(Birss, 1964). From the intensities of the Bragg reflections
it is then possible to reconstruct statistics of the domains,
that is, the fraction of the volume of the sample occupied by
domains with each allowed magnetization direction. This is
one of the earliest information provided by neutron scatter-
ing (Bacon, 1975). Another information that can be obtained
from the width of the Bragg reflections is the average size
of the domains. This is because the width of a magnetic
Bragg reflection is inversely proportional to the domain size.
To be practically detectable in conventional diffraction, the
domain size should not exceed 100 nm. Besides the sim-
ple relationships between domains and scattered neutrons,
one can ask the question if it is possible to obtain further
information about domains from neutron scattering experi-
ments? Since in conventional diffraction neutrons determine
the pair correlation of atomic moments as a function of
their distance, it is natural to ask if they could also be
used to measure the pair correlation of the magnetization
in adjacent magnetic domains. Unfortunately in general this
type of information is difficult to obtain; and some of the
reasons will be outlined here. However, such difficulties
can be more easily surmounted for samples consisting of
very well ordered magnetic nanostructures, or with systems
of reduced dimensionality. We note that investigations of

Figure 1. Simple example of a flux-closure domain pattern (‘Lan-
dau pattern’). Depicted are three different neutron trajectories illus-
trating the effects of polarized neutron refraction and precession.

nanomagnetic systems with X rays and neutrons have been
recently reviewed by Kortright et al. (1999) and Fitzsimmons
et al. (2004), respectively.

1.1 Refraction and scattering

So far we discussed that neutrons can give information about
domains via scattering. As we will see in detail later, neutron
refraction can also play an important role in the investigation
of magnetic domains. Early on it was discovered that a well-
collimated beam of thermal neutrons diverges when it is
passed through finely divided material. This is attributed to
scattering and refraction occurring at each individual particle
(Weiss, 1951). Until now we have only considered scattering.
In the forward direction, scattering does not depend on the
detailed crystalline nature of the material, but only on the
size of the grains. The grains scatter the neutrons in a cone
with an angular width of ∼λ/d, where d is the particle’s size.
The difference between refraction and scattering depends on
the difference between the phase change in traversing the
particle diameter and the phase change in traversing the same
path length in vacuum. A neutron that passes through a slab
of material is not scattered by it, but its wavelength inside
it is changed by a small amount, which is proportional to
the refractive index. If along the flight path the difference in
phase is appreciably less than one wavelength, the scattering
theory has to be applied, otherwise we apply the refraction
theory. For instance in a diamond slab neutrons of 4 Å
wavelength experience a lag of one period, with respect to
vacuum, after 9 µm. Thus the question as to how the neutron
is modified after crossing a slab of material arises. In order
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to measure the difference of phase change in the flight path
within the medium versus that in vacuum, an interferometric
measurement is required. The primary beam needs to be split
in two components, the first traveling in vacuum and the
second in the medium. Then the phase shift of the neutron in
the medium appears as a shift of the interference pattern after
the two beams are recombined (Werner and Klein, 1987).

The trajectory of a neutron through an assembly of fer-
romagnetic domains can be described in a similar way.
However, it is much easier to verify magnetic – rather than
material – refraction effects. Let us assume that the neutron
beam is initially polarized in a certain direction (Figure 1).
Within each magnetic domain in which the magnetic induc-
tion �B is not parallel to the initial polarization, the neutron
spin precesses around �B. Upon exiting the domain, the spin
of the outgoing neutron is rotated by a phase defined by the
size of �B and by the time spent in the domain. This phase
shift is equal to the phase shift described above for the neu-
tron passing through a material particle. However, in the
magnetic case there is no need for interferometry or a refer-
ence beam, because the polarization of the incoming beam is
defined by a neutron polarizer and the polarization of the out-
going beam is sorted out by a neutron polarization analyzer.

Are refraction effects important in assessing sizes and
orientations of domains? A full rotation of the neutron
spin takes place, for an ordinary ferromagnetic material,
over a length of a few micrometers. Domains of that
size scatter neutrons of wavelength of a few angstroms at
angles too small for an easy identification of the scattered
neutrons, versus those that are simply transmitted through
the sample. Separation between the scattered and transmitted
components becomes appreciable for domains below 100 nm:
here, refractive effects may be considered in the first instance
as unimportant, and the intensity of the neutrons that have
interacted with the sample may be treated on the basis
of the scattering processes. Conversely, for micrometer-
size domains, scattering processes have been neglected and
information on the domains has been obtained on the basis of
the polarization of the neutrons exiting the sample. The need
of reconciling these two points of view has arisen recently
in the study of domains in nanostructured materials.

This chapter is organized as follows. In Section 2 we dis-
cuss in detail different neutron scattering techniques, such as
diffraction, depolarization, and grazing incidence reflectiv-
ity, from which information about domain structures can be
obtained. Following this we will present in Section 3 several
science issues involving magnetic domains, which are suit-
able to neutron investigations. First we discuss basic domain
structures in homogeneous materials, and then we show
how modified magnetic domain behavior can come about
through confinement or coupling between dissimilar materi-
als. Finally, Section 4 gives a brief summary of this chapter.

2 TECHNIQUES

2.1 Diffraction

In classic magnetostatics the Zeeman interaction energy
between a magnetic moment �µ and a magnetic field �B is
fully described by the Hamiltonian:

E = �µ· �B (1)

Starting from this term allows determining both the rotation
and translation forces, which the field exerts on the mag-
netic moment. Thus the torque, −(∂E/∂ζ ), where ζ is the
angle between �µ and �B, leads to the well-known Larmor
precession of the magnetic moment around �B in the limit
of constant �B. This relation remains valid for the interaction
of the magnetic moment of the neutron inside a magnetic
material, provided that the neutron is treated as a quantum
particle, µNσ̂ , where µN is the neutron magnetic moment and
σ̂ are the Pauli’s matrices. Thus in principle this equation
can be used directly to study magnetic materials; the neu-
trons probe the distribution of �B inside the sample and one
could subsequently find appropriate models to reproduce the
observed �B configuration. However, since it is most cus-
tomary to describe magnetism in terms of atomic magnetic
moments, it is preferable to express �B(�r) by the distribution
of the magnetic moment density �M(�r). The Fourier transfor-
mation of the magnetostatic expression reduces to:

�B(�q) = 4π �M⊥(�q) (2)

where �M⊥ is the component of the magnetic moment density
perpendicular to the neutron momentum transfer ��q of the
neutrons, where the absolute value of the scattered wave
vector �q is given by

|�q| = 4π sin θ

λ
(3)

Here θ is the half of the scattering angle and λ the neutron
wavelength. The vectors �q considered here are only those
corresponding to a Bragg reflection of the crystalline and
magnetic crystal. The term magnetic crystal is used for any
magnetically ordered crystal. In ferromagnetic crystals the
magnetic moments of all equivalent magnetic atoms in the
crystalline cell are equal and point in the same direction.
These restrictions do not apply for the much wider choice of
ferri- or antiferromagnetic configurations (Opechowski and
Guccione, 1965). From a crystallographic point of view, a
ferromagnetic crystal is distinct from an antiferromagnetic
one because only the former allows the (000) reflection, or
the scattering in the forward direction. In all cases, the ori-
entation of the magnetic moments (in absence of an external
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Figure 2. Antiferromagnetic structure of MnO. (Reprinted figure
from Phys. Rev. Vol. 83, 333 (1951),  1951 by the American
Physical Society.)

magnetic field, which would distort the symmetry) is quite
restricted, because certain symmetry operations do not have
the result of turning a spin onto itself. In addition, the sym-
metry of the magnetic crystal is often lower than that of
the crystal structure on which it resides; however, the mag-
netoelastic forces are often too weak to create a detectable
distortion of the crystalline lattice. As a result of these effects,
in the same single crystal, more than one magnetic domain
is possible. By examining the Bragg reflections it is possible
to establish what is the population of different domains. A
typical example is indicated in Figure 2, illustrating the mag-
netic structure of the face-centered-cubic oxides of transition
elements (Shull, Strauser and Wollan, 1951). The magnetic
cell, represented here as a cube with twice the size of the
crystalline cell, is distinguished by a propagation axis along
the [111] direction. Since the cubic crystal has four equiva-
lent [111] directions, four types of domains are possible (T
domains). In addition, we have to consider the direction of
the magnetic moments, that in Figure 2 are represented as
collinear and parallel to the [001] axis. For each of the [111]
propagation axis, we can choose three [001] equivalent direc-
tions (S domains). In total, a single crystal of MnO can split
into 4 × 3 = 12 magnetic domains. The study of antiferro-
magnetic domain structures and symmetries remained largely
of academic interest until the 1980s, when their importance
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Incident rotator

Magnetic shield
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q, jout

Figure 3. Simple schematic of a neutron scattering experiment with
full polarization analysis. Schematic based on the description in
Brown, Forsyth and Tasset (1993). (Reproduced from Brown et al.,
1993, with permission from The Royal Society, London.  1993.)

in affecting the magnetism of adjacent ferromagnets was rec-
ognized (Mauri, Siegmann, Bagus and Kay, 1987).

The most complete diffraction equipment hitherto con-
structed to study the domain population in zero applied field
includes a device, named Cryopad, and hitherto has been lim-
ited to antiferromagnets (Brown, Forsyth and Tasset, 1993).
This device is set in a conventional diffractometer such as
schematically represented in Figure 3, and allows spheri-
cal polarimetry to be carried out in a neutron scattering
experiment. The incoming monochromatic neutron beam is
polarized axially, in the direction parallel to its propagation
direction. At the entrance of the Cryopad region, the orienta-
tion of the neutron spin is turned in a direction characterized
by the angular coordinates θ , ϕin. After this is accomplished,
the neutron enters a region of zero magnetic field. In this
region, the orientation of the neutron spin remains unaltered,
except during the process of being diffracted by the sample.
The sample, at the center of the gray area of Figure 3, con-
sists of a single crystal oriented to reflect neutrons with a
certain momentum transfer �q. Along the flight path of the
diffracted neutrons, at the exit of the zero-field chamber,
magnetic circuits can be tuned to bring the polarization of the
diffracted beam in the direction of its propagation: the tun-
ing is tested by a polarization analyzer. This technique has
been called spherical polarimetry because the polarization
axis of the incident and diffracted beams are uniquely and
separately determined. In contrast, in conventional uniaxial
polarimetry (Moon, Riste and Koehler, 1969) the polariza-
tion of the incident and the diffracted radiation are analyzed
with respect to a fixed and common axis. The technique
is being now used extensively to determine the magnetic
structure of complex antiferromagnets (see, for instance,
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Zaharko et al., 2003) because antiferromagnets are systems
for which it is difficult to alter the domain population.

The equations that relate the scattered polarization to the
incident polarization and to the physics of the scattering pro-
cess have been developed by Blume (1963). The polarization
Ps of the neutrons scattered by a Bragg reflection with scat-
tering vector �k from an ordered magnetic structure may be
written in terms of the magnetic interaction vector �M⊥ as:

�PsI = �PiNN∗ + �M⊥N∗ + �M∗
⊥ N + I [ �Pi × �M∗

⊥ N

− �Pi × �M⊥N∗ ] + �M⊥[ �Pi· �M∗
⊥ ] + �M∗

⊥ [ �Pi· �M⊥]

− �Pi[ �M⊥· �M∗
⊥ ] + i[ �M⊥ × �M∗

⊥ ] (4)

In equation (4), I is proportional to the scattered intensity

I = NN∗ + N �Pi· �M∗
⊥ + N∗ �Pi· �M⊥

+ �M⊥· �M∗
⊥ + �Pi· �M⊥ × �M∗

⊥ (5)

Pi is the incident polarization, N is the nuclear structure fac-
tor, and �M⊥ the magnetic structure factor of the crystalline
cell. Equations (4) and (5) may seem quite complicated.
However, each term identifies separate and well-defined fea-
tures of the magnetic structure. For instance, the last terms in
equations (4) and (5) are present only if the magnetic struc-
ture is noncollinear. For collinear structures, equations (4)
and (5) greatly simplify when �P || �M⊥. The last terms become
important for spiral structures, because they define the direc-
tion of propagation of the spiral and its chirality.

Real depolarization of the scattered beam is an indication
that a mixed state consisting of more than one magnetic
domain is present (see Section 2.2). The ability to distinguish
such depolarization from rotation of the polarization away
from the unique axis of the conventional technique is one of
the features that make zero-field polarimetry very powerful.
The different types of antiferromagnetic domains that can
occur in antiferromagnetic structures may be classified into
configuration domains, 180◦ and chirality domains, and
orientation domains. The type and number of domains that
occur depend on the relative symmetries of the paramagnetic
and the ordered magnetic phases. In general, if the order
of the paramagnetic space group is p and that of the
magnetic group is m, the number of different domains is
p/m. In a multidomain sample, the quantity PsI is given
by the vector sum of the contributions from the individual
domains weighted by their domain fractions. In general, it
is easy to distinguish the domain population in the case
of 180◦ and chiral domains. For more complex structures
the intensities usually suffice to give the indication of the
domain population, if the structures are collinear. A similar
approach to diffraction may be possible using resonant X-ray
scattering. In general, X-ray magnetic scattering is relatively
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Figure 4. Diffraction of antiferromagnetic α-Fe2O3 particles. The
(003) and (101) are purely magnetic; the relative sharpness of (003)
indicates the presence of magnetic correlations along the [001]
direction. (Reprinted figure from Phys. Rev. B. Vol. 72, 214406
(2003).  2003 by the American Physical Society.)

weak in comparison to charge scattering, becoming sizable
only in the proximity of electronic resonances. As a matter of
fact, by tuning the wavelength of the X rays it is possible to
use element specific resonant scattering, which enables one to
obtain magnetic information related to a specific element. For
more information about resonant X-ray techniques the reader
is referred to Synchrotron Radiation Techniques Based on
X-ray Magnetic Circular Dichroism, Volume 3.

Information on the size of domains can be obtained
from the width of the diffraction lines. A representative
example of an experiment in this direction is presented
in Figure 4, which represents the diffraction pattern from
an assembly of α-Fe2O3 nanoparticles of 10 nm diameter
(Frandsen et al., 2005). Each particle is antiferromagnetic
and the spins are confined to lie in the low-anisotropy
(001) plane. The selective broadening of the (003) and (101)
reflections indicates an exchange coupling between particles
in the [001] direction. This preferential coupling occurs for
assemblies freshly prepared by a solgel method; it disappears
by regrinding the sample.

For an assembly of ferromagnetic domains a special
‘diffraction’ line is broadened, the (000) reflection; that
is to say that small-angle scattering takes place around
the transmitted beam. Small-angle scattering from domains
is easy to detect: Figure 5 shows its earliest observation
(Hughes, Burgy, Heller and Wallace, 1949). The beam
transmitted through a block of saturated iron has the same
shape as the beam without sample. When no magnetic
field is applied to iron, the transmitted beam appears much
broader. It is tempting to derive, from the increase of the
width, the average domain size. Actually, the interpretation
of the small-angle scattering is conceptually simpler than
the analysis of the broadening of Bragg reflections at finite
�q, because it does not depend on the detailed crystalline
structure of the sample, that is, as in the case of strain
broadening of the Bragg reflection. However, there are
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Figure 5. Small-angle scattering of thermal neutrons (wavelength
2.2 ± 0.5 Å) from a block of unmagnetized iron. (Reprinted figure
from Phys. Rev. Vol. 75, 565 (1949)  1949 by the American
Physical Society.)

genuine difficulties. In its simplest treatment, scattering is
assumed to be a minor perturbation of the incident beam;
in other words, most of the beam is transmitted through the
sample as if no interaction had taken place. This condition is
definitely not fulfilled here, since in the scattering pattern of
unmagnetized iron no features are recognizable as belonging
to the transmitted beam. Multiple scattering then must have
taken place, and the broadening is much larger than that
due for the single scattering event. Correspondingly, the
domain size uncritically inferred from patterns like that
presented in Figure 5 is much smaller than the real one.
Of course Figure 5 presents the first qualitative observation
of magnetic domains; later experiments performed under
more exacting conditions were able to provide quantitative
information (see, for instance, Löffler, Braun and Wagner,
2000). An inherent difficulty in small-angle scattering is the
unambiguous separation of the transmitted from the scattered
radiation; a task that becomes progressively more difficult
the larger the diameters of the domains are. For domains
larger than 100-nm small-angle scattering becomes too hard
to detect and alternative techniques have been proposed.

2.2 Neutron beam depolarization

Three-dimensional neutron depolarization is a technique
for determining magnetic domain structures in the bulk
of magnetic materials for which the typical domain size
is in the micrometer range. An experiment consists in
determining the change in the polarization of a neutron
beam after transmission through a specimen. The polarization
change of the neutron beam is related to the micromagnetic
state of the medium. The mean magnetic induction results

M P R
S

R A
D

Figure 6. A schematic description of the three-dimensional neutron
depolarization system as described by Rekveldt (1973) viewing
a continuous wave neutron source. The instrument consists of a
monochromator M, a polarizer P, polarization rotators R, a sample
S, a polarization analyzer A, and a detector D.

in a net precession of the polarization vector around the
mean magnetic induction, while variations in the local
magnetic induction result in an effective shortening of the
polarization vector, which is called depolarization. The
neutron depolarization technique in general yields the mean
magnetic induction �B, its mean local fluctuation 	 �B, and
the size of the domain (along the neutron’s path) over which
this fluctuation takes place. This technique has been used to
study a variety of topics such as magnetic particulate media
and magnetic recording materials (Rekveldt, 1973; Rosman
and Rekveldt, 1991; Mitsuda and Endoh, 1985).

A schematic view of a three-dimensional depolarization
equipment is given in Figure 6. Most of the instruments have
been placed at reactors. A monochromatic beam, of a few
angstrom long wavelength, is polarized passing through a
polarization cavity. Polarization rotators are placed before
and after the sample chamber in order to polarize and ana-
lyze the polarization of the beam along three different axes.
Each polarization rotator consists of two coils to produce
magnetic fields in two directions perpendicular to the trans-
mission direction of the neutron beam. Through the com-
bination of the magnetic fields produced by the coils, the
polarization direction can be changed at will. In the sam-
ple changer a magnetic field is set on the sample, again in
an arbitrary direction. In its handling of the polarization of
the neutron, the instrument is quite similar to the Cryopad
discussed in Section 2.1. However, here the main difference
is that the flight path after the sample is just in transmis-
sion geometry. All neutrons have the same flight path at the
entrance – before interacting with the sample – as well as at
the exit, making polarimetry possible even in the presence
of an applied magnetic field.

In a three-dimensional neutron depolarization experiment
the polarization vector �P of a polarized neutron beam is
analyzed after transmission through a magnetic sample in
all three spatial directions as in spherical polarimetry. The
change in �P , caused by Larmor precession of the neutron
spin about local magnetic inductions, after passage through
a magnetic material can be written in matrix form

�P = D̂ �P0 (6)



Domain states determined by neutron refraction and scattering 7

In equation (6) �P0 and �P are the initial and final polarization
vectors respectively, and D̂ is the (3 × 3) depolarization
matrix. The elements of D̂ are determined experimentally
from the measured neutron intensities Iij , where j = x, y,
z represents the direction in which the original beam is
polarized and i = x, y, z represents the spin direction in
which the beam is analyzed:

Dij = 1 − Iij

Is
(7)

In equation (7) Is is the intensity of the fully depolarized
beam. The polarization direction transmitted by the analyzer
is chosen opposite to that of the polarizer. Therefore, the
intensity at the detector is minimal when the polarization
direction remains unchanged resulting, under condition of no
depolarization, in Dii = 1. If the polarization vector rotates
π radians, the intensity becomes maximal. The experiment
has the beauty and the simplicity of a transport measurement.
What remains to be seen is how the matrix D̂ can be directly
be related to the magnetic structure of the sample in the
micrometer range.

In the Larmor approach, the interaction of the polarization
vector with a local magnetic induction �B is described by the
equation:

d �P (t)

dt
= γ

[
�P (t) × �B(t)

]
(8)

where γ is the gyromagnetic factor of the neutron. The
time variable t can be transformed using t = x/v where
x is the position variable in the neutron propagation path
and v the neutron’s velocity. The local magnetic induction
can be separated into the mean magnetic induction 〈 �B〉 and
its local fluctuations as experienced by the neutron passing
though the material. The mean magnetic induction results in
rotation of the polarization vector after transmission through
the entire sample. The local fluctuations are responsible for
depolarizing the transmitted beam. It is possible to write a
correlation function:

αij = 1

W

∫
W

d3�r
x∫

0

dx ′	Bi(x, y, z)	Bj (x
′, y, z) (9)

In equation (9), W is a representative subvolume of the
medium with size d along the propagation direction of
the beam. 〈d〉, the mean domain size, is supposed to be
sufficiently small so that the polarization change in W

is small. Within W the magnetization is correlated. In
principle, equation (9) also contains terms correlating the
magnetization of different domains as seen by the neutron
along its path in the x direction. However, a number of

assumptions are usually made to permit the evaluation of
some physical quantities, such as the mean domain size
〈d〉. If there is no correlation in the magnetization of
different domains, the depolarization matrix element Dzz for
a magnetic field applied along the z axis becomes:

Dzz ≈ 1 − cL 〈d〉
〈(

Bs − B
)2

〉
λ2 (10)

In equation (10), c is a constant, λ is the neutron wavelength,
L is the total thickness of the sample, and 〈d〉 = 3

√
W . This

quantity can be derived from the depolarization matrix, if
the saturation magnetization and also the magnetization at
the field used in the course of the measurements are known.
More complex expressions need to be written for systems
that are either chemically or magnetically nonhomogeneous.

Neutron depolarization has been used for solving a variety
of problems where magnetic domain sizes are of crucial
importance. For instance, the compound UGe2 is both
ferromagnetic and superconducting at low temperatures.
These two states of matter are considered incompatible
with each other. In order to explain the finding, it was
suggested that the size of the ferromagnetic domains was
less than the coherence length of the superconductor. The
latter was estimated to be 20 nm. In a 3D depolarization
experiment (Sakarya, van Dijk and Brück, 2005) the average
magnetic domain size was found to be of the order of a few
micrometers, ruling out that interpretation.

A second example is the investigation of the evolution of
the composite structure of iron during the cooling process
of carbon steel (Offerman et al., 2002). At high tempera-
tures (above 820 ◦C) the dominant phase is austenite, which
has a face-centered-cubic structure and is nonmagnetic. At
lower temperatures there is the formation of ferrite, which is
body centered and magnetic. This transformation – not only
of scientific interest but also of obvious technological impor-
tance – has been long studied by neutron depolarization to
obtain density and size of the magnetic ferrite particles in the
course of the cooling process (te Velthuis et al., 2001). How-
ever, the advent of microbeams at synchrotron light sources
permitted a more direct way of observing separately the num-
ber and the size of the crystallites. The illuminated volume of
material was so small that the diffraction pattern of each crys-
talline component consisted not of uniform Debye–Sherrer
rings but of sequence of spots on the locus of the rings. The
number of spots was considered proportional to the density
of crystallites in the sample; their intensity proportional to
their size. The information that was obtained is presented in
Figure 7. The same information in principle could have been
obtained by three-dimensional neutron depolarization if the
intensity of the source had allowed collimation of the beam to
the proper area. Since more powerful neutron sources will be
available in the near future, the basic theoretical background
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Figure 7. Number of grains of ferrite (α) during cooling of carbon
steel. A comparison is made with the classical nucleation theory
(CNT). (Reprinted figure with permission from Offerman et al.,
2002, Science 298:1003–1005.  2002.)

has been developed in order to evolve neutron depolarization
into a tomographic technique (Toperverg, 2002; Badurek,
Buchelt, Leeb and Szeywerth, 2003).

2.3 Reflectivity

For the purpose of studying interfaces and surfaces, the
neutron-matter interaction and the resulting scattering power
may be thought to be in general too weak. This weakness
can be overcome by sending the neutron beam at grazing
incidence to the surface, in a geometry where the Fresnel
reflectivity from the surface cannot be neglected (Werner and
Klein, 1987).

In a homogeneous material the neutron–matter interaction
may be represented by a smooth pseudopotential whose

magnitude is related simply to the scattering density as

V ± = 2πh2

m
bN + �µ· �B (11)

if the neutron spin is aligned parallel (+) or opposite (−) to
�B. In equation (11) N is the density of atoms occupying
a unit volume, m the neutron mass, and h the reduced
Planck constant. In free space (V = 0) the component of the
incident neutron wave vector normal to the surface is kz =
2π(sin θi/λ) and kx , ky are the components in the surface’s
plane. θ i is the angle of incidence and λ is the neutron
wavelength. In the medium the perpendicular component
of the neutron momentum kzi is modified by the optical
potential, such that:

k±
zi =

√
k2
z0 − 2m

h2
V ± (12)

Particle and flux conservation at the surface determine the
reflectance r and transmittance t . The observable reflectivity
R takes the form:

R = |r|2 =
∣∣∣∣∣kz0 − k±

zi

kz0 + k±
zi

∣∣∣∣∣
2

(13)

For values of k2
z0 <

(
2m/h2

)
V ±, the neutron wave vector

becomes imaginary: the neutron wave decays exponentially
in the material and the neutrons are totally reflected. These
angles are very small (for 5 Å neutrons the critical angle
is less than half a degree). However, at these angles of
grazing incidence, surface effects become important. In a
neutron reflectivity experiment, the intensity of the neutrons
reflected from the surface is measured as a function of the
neutron momentum component, which is perpendicular to the
surface, qz = 2kz0. Above the critical angle, the reflectivity
from a semi-infinite body of homogeneous material decreases
as q−4

z (Fresnel reflectivity). Since qz is a conjugate variable
of the depth z from the film surface, a scan over a suitable
range of qz provides excellent information on the chemical
and magnetic depth profile V ±(z) of the film (Lekner, 1987).
For instance, if the material is composed of several layers
that are periodically repeated, the q−4 dependence of the
reflectivity is strongly perturbed and maxima occur at the
values of qzi = 2π/d, where d is the repeat distance of
the layers. The reflectivity of a periodic multilayer may
be easily understood in terms of conventional diffraction:
When normalized to the Fresnel reflectivity, the measured
reflectivity reduces to a series of peaks whose intensity at
large qz is nearly the square of the scattering length density
of the single period. This treatment assumes that the material
is chemically and magnetically homogeneous in each plane
parallel to the surface.



Domain states determined by neutron refraction and scattering 9

+

+

+

+

3

2

1

R200 K

R15 K

+ 〉
R15 K

− 〉

0.01

−3

−2

−1

0

0.02

qz (Å
−1)

0.03 0.04 0.05 0.06 0.07

lo
g 1

0 
[R

(q
z)

]

|

|

Figure 8. Specular reflectivity of a superlattice composed of a
bilayer (LCMO (16 nm)/YBCO (16 nm)) repeated six times: in
the paramagnetic region (T = 200 K) the indexed diffraction peaks
modulating the q−4 decay of the reflectivity are well visible. At low
temperature, below both TC ∼ 165 K and Tsc ∼ 75 K, the reflectivity
becomes strongly spin dependent and can be analyzed in terms of a
detailed magnetic profile. (Reprinted figure from Phys. Rev. B. Vol.
71, 140509 (2005).  2005 by the American Physical Society.)

For a material with B �= 0, the critical angle is spin
dependent; in other words, for neutrons, a ferromagnet is
birefringent. Figure 8 presents the reflectivity pattern of a
film, composed of the periodic repetition of pairs of layers. At
low temperature, one of these is ferromagnetic, the second is
a superconductor. In this experiment, the polarization of the
incident beam was parallel (R+) or antiparallel (R−) to the
magnetic field �H applied to the sample. �H was in the plane
of the sample and was sufficiently high to saturate it. Thus the
magnetic induction �B in the sample was parallel to �H , and
no neutron spin flip was expected. This is not generally true
in experiments designed to study the magnetization reversal
process.

In neutron reflectivity, only uniaxial (and not spherical)
polarimetry has been applied. According to this, when the
incident neutrons are polarized along an applied magnetic
field �H and the polarization after reflection is analyzed
along the same axis, four reflectivities are recorded: R++,
R+−, R−+, R−−. The first (second) sign refers to the
incident (reflected) neutron polarization with respect to �H .
For films thinner than the domain-wall thickness, only two-
dimensional arrays of domains are possible. In addition, for
a majority of magnetic systems shape anisotropy constrains
the magnetization to the surface’s plane. Specular scattering
can give information about the distribution of magnetization
directions in lateral domains (Lee et al., 2002). For a
single domain, simple and transparent relations link the
magnetization to the spin-dependent specular reflectivity.

When the direction of magnetization and the applied field
are in the film’s plane, and �M is at an angle ϕ with �H , then:

R++(ϕ) − R−−(ϕ)

R++
s (0◦) − R−−

s (0◦)
= cos ϕ (14)

and:

R−+(ϕ)

R−+
s (90◦)

= sin2 ϕ (15)

provided that the direction of �M is constant along the
thickness of the film. The normalizing quantities, Rs(0

◦) and
Rs(90◦), refer to reflectivities measured with �M saturated and
aligned parallel and perpendicular to the neutron polarization,
respectively. These relations are valid at all values of qz

above the critical edge for total reflection.
When a film breaks down into lateral domains, the effect

on the specular reflectivity depends on the size of the
domains. For domains larger than the coherence length
the intensities reflected from different domains superimpose
incoherently in the specular beam. In this case the terms
dependent on ϕ of equations (14) and (15) can be interpreted
as averages across the sample plane. While the term 〈cos ϕ〉
may be measured as well by conventional magnetometry,
〈sin2 ϕ〉 provides new information leading to the mean
square dispersion of the domain orientations χ2 = 〈

cos2 ϕ
〉 −

〈cos ϕ〉2. The information on surface magnetic domains as
obtained in specular reflectivity is similar to that obtained
by observing the magnetic intensities of Bragg reflections
from a magnetically ordered solid and consists in providing
the statistical distribution of domains. On the other hand, the
size of the domains can be determined only if off-specular
scattering is detectable.

Any imperfection in the layers parallel to the sur-
face – including domains in the plane of the film – causes
some scattering away from the specularly reflected beam,
with the geometry illustrated in Figure 9. The scattering may
take place in the plane of reflection (defined by the angle of
incidence θ i and reflection θf ) or else at an angle 	ϕ out
of the reflection plane. Inhomogeneities in the plane of the
film can be represented by a vector τ with planar projections
τx and τ y , where x is chosen in the reflection plane, and y

perpendicular to it. When τ is small in comparison with the
incoming wave vector, the laws of conservation of energy
and momentum in the plane reduce to:

τ x = 2π

λ
sin θ ·	θ; τ y = 2π

λ
·	φ (16)

where 	θ and 	φ are the observed angles. At grazing
incidence fluctuations of τ , which are isotropic in the plane of
the film (τ x = τ y), can give scattering at detectable 	θ even
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Figure 9. Geometry for scattering at grazing incidence from mag-
netic stripe domains in a perpendicularly magnetized thin magnetic
film. Scattering along τy can be observed only because of the
large anisotropy of the surface corrugation lengths along x and y.
(Reprinted figure from Physica B: Condensed Matter, Vol 267–268,
Fermon et al.,  1999 with permission from Elsevier.)

when 	φ is negligibly small. Reversing the argument, the
maximum size of the objects that give rise to lateral scattering
(finite 	φ is the same as in transmission geometry and is
of the order of a few nanometers). The lateral fluctuations
that give rise to a comparable 	θ are instead of the order
of a micrometer. The accepted nomenclature is to call
the scattering with 	θ �= 0 off-specular reflectivity, while
the scattering with 	φ �= 0 is called scattering at grazing
incidence (Pannetier, Ott, Fermon and Samson, 2003). Most
of the experiments carried out on magnetic domains were
geared to measure the off-specular reflectivity, integrating
the signal along τ y .

Sizable off-specular reflectivity has been almost univer-
sally observed in sputtered samples of magnetic multilay-
ers in the antiferromagnetic state (see also Section 3.3).
However, spin-dependent off-specular reflectivity can be
observed even in simple systems. Figure 10(a) shows the
hysteresis curve of a thin film of ferromagnetic Co cov-
ered with CoO. The film has been cooled in a magnetic
field through the characteristic temperature at which CoO

becomes antiferomagnetic: the effect of field cooling is a
displaced hysteresis loop. In addition, a training effect (Hoff-
mann, 2004) is visible in the repeated hysteresis cycles at low
temperature (te Velthuis et al., 2000). Except for saturation, a
sizable off-specular scattering is observed at all points of the
hysteresis cycle. For instance Figure 10(b) shows the spin-
dependent intensities of the off-specular scattering obtained
at H = 30 Oe for the ascending branch of the first hystere-
sis loop. All the experimental results are well reproduced
by calculations based on a simple distribution of the two-
dimensional ferromagnetic domains of Co during magnetiza-
tion reversal (te Velthuis et al., 2006). Recently, benchmark
neutron experiments have been started on well-defined arrays
of nanostructured materials that have been also studied with
concurrent techniques such as Kerr microscopy (Lee et al.,
2003; Theis-Bröhl et al., 2005). For these systems it ought
to be possible to establish how well the complex scattering
patterns obtained by neutron scattering can be interpreted
in terms of a statistical ensemble of domains and of their
evolution in the presence of a magnetic field.

3 SCIENCE ISSUES

3.1 Homogeneous materials

In order to explain effects, such as different remanent states in
ferromagnets, domains were first proposed by Weiss (1907).
Subsequently these domains were observed for the first time
using a decoration technique by Bitter (1931) and Landau
and Lifshitz (1935) were the first to provide a satisfactory
explanation. The formation of domains occurs because of
the interplay between various energies, such as exchange,
anisotropy, magnetostatic, and magnetoelastic energies. In
particular magnetostatic energies are important for the under-
standing of domains in ferromagnets. A magnetization with
a component perpendicular to the surface of a ferromagnet,
generates magnetic poles and magnetic fields outside of the
magnetic material. In general, avoiding these magnetic poles
and the concomitant magnetic fields minimizes magnetostatic
energies. As shown in Figure 1 the magnetostatic energies
can be reduced by the formation of opposite domains and
can vanish altogether by the formation of so-called closure
domains. It is immediately clear that size and shape, as well
as crystalline orientation of the surfaces will influence the
domain structures considerably. Some of the basic relation-
ships will be demonstrated below and a much more detailed
overview of the properties of ferromagnetic domains can be
found in Hubert and Schäfer (1998).

The experimental detection of domains in ferromagnets is
based on the fact that each domain has a net nonzero magneti-
zation. This is either measured by detecting the magnetization
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Figure 10. (a) Low-temperature hysteresis loop of a Co/CoO thin film. Cooling in a magnetic field through the ordering temperature of
antiferromagnetic CoO causes an exchange bias. A training effect (Hoffmann, 2004) is also visible. (Adapted from te Velthuis et al., 2000.)
(b) Off-specular neutron reflectivity gives detailed information about size and distribution of the magnetic domains for each point of the
hysteresis cycle. Left: Measured spin-dependent reflectivities of the same Co/CoO sample as in (a). The data were collected at H = 30 Oe on
the ascending curve, marked by a solid dot in (a). Pi = 2π sin θ i , Pf = 2π sin θf . The diagonal line represents the specular scattering. The
observed off-specular scattering indicates the presence of finite domains. The spin-flip intensity (I+−, I−+) of the off-specular scattering
indicates that the magnetization of these domains is not collinear with the applied magnetic field. Right: simulated off-specular reflectivity
based on a simple model for the magnetic domains (te Velthuis et al., 2006).

directly or by the stray fields, which occur at the boundaries
between domains. The former approach is typically used for
scattering (see Section 2) or spectroscopy techniques, while
the later is more typical for real space imaging techniques,
such as decoration techniques or magnetic force microscopy.

As mentioned in the preceding text, domains form in a fer-
romagnetic material to balance the different magnetic inter-
actions. From this follows a critical minimum size, below
which a magnetic material is single domain since the rela-
tively high increase of exchange energy for a inhomogeneous
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Figure 11. Schematics of Bloch (a) and Néel (b) domain walls.
For the Bloch wall the magnetic charges build up at the surface of
sample, while for the Néel wall the magnetic charges are contained
within the sample.

magnetization state in a small particle is too high (Kittel,
1949). Assuming spherical particles one can determine the
following critical radius for low anisotropy

rc =
√

9A

µ0M
2
s

[
ln

(
2rc

a

)
− 1

]
(17)

and for high (cubic or uniaxial) anisotropy

rc = 9
√

AK

µ0M
2
s

(18)

Here A is the exchange stiffness, Ms is the saturation
magnetization, a is the lattice constant, and K is the
anisotropy constant. The exchange stiffness is given by
A = JS2/a, with J being the exchange integral and S the
ferromagnetic spin. Typical values for A are 10−11 J m−1.
In the case of low-anisotropy materials the magnetization
forms a so-called vortex state above rc, while in the case of
high anisotropy materials one obtains above rc well-defined
domains with walls separating them.

In general, one can distinguish several types of domain
walls in ferromagnetic systems with domains. The two main
types of domain walls are Bloch and Néel walls, which are
depicted schematically in Figure 11. For a Bloch domain wall
the magnetization rotates continuously in the plane of the
domain wall. The wall width dw for the case of opposing
domains can be determined from balancing exchange and
anisotropy energies (Bloch, 1932):

dw = π

√
A

K
(19)

One should notice that if the magnetization does not rotate
a full 180◦, then the domain-wall thickness might also be
much less. For example at Co(0001) surfaces, domains have
been observed where the relative difference in magnetization
direction is about 20◦ and the domain walls separating these
domains are only 1.1 ± 0.3 nm wide (Ding, Wulfhekel and
Kirschner, 2002).

When the ferromagnetic material becomes very thin, then
the magnetic charges associated with the Bloch walls at the
surfaces (see Figure 11) create an energetically unfavorable
stray field. In this case it may become energetically more
favorable to have the magnetization rotate continuously
perpendicular to the plane of the domain wall, which is
then called a Néel wall. Again the width of this wall can be
easily determined by balancing exchange and, in this case,
magnetostatic energies and in the thin-film limit (O’Handley,
2000) is given by:

dw = π

√
2A

µ0M
2
s

(20)

Interestingly, since Néel walls have a chirality associated
with the sense of magnetization rotation, it is possible for
two colliding Néel walls to form a metastable 360◦ wall,
if the individual walls had opposite chirality (Portier and
Petford-Long, 2000; Castaño et al., 2003).

In general, domain walls are not necessarily just simple
Bloch or Néel walls, but the walls can combine aspects of
both. For example even films with Bloch walls, may still have
Néel caps at their surface. In fact, for films with intermediate
thickness one can observe a mixture of Bloch and Néel walls,
which is the so-called cross-tie wall (Middlehoek, 1963).

In the following we discuss a few of the typical domain
structures that are particularly relevant for thin magnetic
films. Magnetic thin films with an anisotropy perpendicular
to the film plane tend to form so-called stripe domains in
order to minimize magnetostatic energies (see Figure 12a).
For the case where the width of the film is much larger
than its thickness, the width of the stripe domains can be
calculated as (Kittel, 1949):

dd ≈
√

t
√

KA

µ0M
2
s

(21)

where t is the film thickness. Similarly stripes can also be
observed for patterned films with in-plane anisotropy, that is,
for wires with an anisotropy perpendicular to the wire axis,
but in the film plane. In this case the width of the stripes is
(O’Handley, 2000):

dd ≈ L

√ √
KA

µ0M
2
s t

(22)

where L is the width of the wire.
Again in reality the situation can be more complex. The

above equations describe the lowest-energy configurations.
However, it is also possible that the precise stripe spacing
is determined by metastable configurations, which depend
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Figure 12. Schematics of stripe (a) and bubble (b) domains.
(Reprinted figure from Phys. Rev. B. Vol. 26, 325 (1982)  1982
by the American Physical Society.)

on the magnetic history of the samples (Leaf et al., 2006).
Furthermore the amount of anisotropy may depend on the
film thickness. For example many thin-film systems have a
so-called spin reorientation transition, where the anisotropy
direction changes as a function of film thickness (Allenspach,
1994). The reason for this is that surface anisotropies can
compete with bulk anisotropies and magnetostatic constrains.
Therefore, stripe domains close to such a reorientation
transition can occur with a complicated wrinkle pattern
(Duden and Bauer, 1996). In this case thickness fluctuations
can give rise to regions with in-plane and out-of-plane
anisotropies, such that the magnetization prefers to be at an
intermediate tilt angle with respect to the surface normal. As
a consequence the out-of-plane and in-plane magnetization
component can set up domain patterns with different length
scales, that is, a short-length-scale domain pattern for out
of plane (similar to the stripes discussed in the preceding
text), while the in-plane component sets up a long-length-
scale domain pattern.

Another commonly observed domain pattern is closure
domains, which were first suggested by Landau and Lifshitz
(1935). Closure domains are more easily obtained in cubic
than in uniaxial systems. However, magnetostriction can give
rise to strain, which can further complicate the domain struc-
ture and actually stabilize stripe domains with reduced elastic
strains. In general, closure domains require a minimum sam-
ple size and are favored by large magnetization, large sample
thickness, small anisotropy, and small wall energy.

Ferromagnetic layers with very high perpendicular aniso-
tropy can develop, in addition to strip domains, so-
called bubble domains, which are shown schematically in
Figure 12(b) (Malozemoff and Slonczewski, 1979). As the
applied field is raised above a critical value there is a tran-
sition from stripe to bubble domains (Garel and Doniach,
1982). One interesting consequence of such bubble domains
are that small (<100 nm) bubble domains can persist to very
high field beyond the apparent saturation field obtained from
standard magnetometry measurements (Davies et al., 2004).
Such residual domains can change the magnetization reversal
considerably if they are not completely annihilated.

Magnetization reversal can be governed by domain nucle-
ation, domain-wall motion, and magnetization rotation in

each domain. In general the reversal can be a complex super-
position of all of these mechanisms. Small patterned systems
allow looking at simplified model systems, where the rever-
sal is dominated only by a few factors. But even for large
samples the field dependence of the hysteresis raises inter-
esting question about the evolution of magnetic domains.
For example it is often observed that the value of the mag-
netization at a given field is reproduced, even if a minor
hysteresis loop is applied during the major loop. This obser-
vation is referred to as return-point memory. One obvious
question is whether this macroscopic return-point memory
also corresponds to an identical configuration of magnetic
domains. This question was studied by Pierce et al. (2003)
in Co/Pt thin films with different microstructures using X-ray
speckle metrology. They observed that for films with smooth
interfaces the nucleation and domain evolution is random
and uncorrelated for subsequent hysteresis loops in spite of
perfect macroscopic return-point memory. However, for the
rougher films the domains show a high degree of correlation
during the nucleation, and the correlation becomes reduced
further along during the magnetization reversal. This indi-
cates that if there are enough defects present in the magnetic
system the nucleation of reversed domains occurs at identi-
cal defects, but the motion of domain walls is more random
thereafter.

Until now we discussed mainly domains in ferromagnetic
systems. While there are also domains possible in antiferro-
magnetic systems, their behavior tends to be less studied and
at the same time very different from ferromagnetic systems.
Unlike in ferromagnets, magnetostatic energies are vanish-
ingly small in antiferromagnets and therefore they are not a
driving force for domain formation. Furthermore, any gain in
configurational entropy is typically not sufficient to overcome
the domain-wall energy. Therefore domains in antiferro-
magnets are generally metastable. However, magnetoelastic
interaction, such as piezomagnetism in fluorides (Borovik-
Romanov, 1960), may be the dominating energy for domain
formation in antiferromagnets. In many cases domains in
antiferromagnets may simply originate from random nucle-
ation of long-range order. Applying an external magnetic
field during the ordering may influence this domain forma-
tion, that is, in MnF2 fields larger than 150 Oe result in a
single-domain state, while smaller fields give rise to multiple
domains (Baruchel, Schlenker and Barbara, 1980). In con-
trast, a field close to that of the spin-flop transition (94 kOe) is
required in order to form a single domain at low temperature
(Felcher and Kleb, 1996). On the other hand, random defects
may also be responsible for establishing a multiple-domain
state (Kleemann, 1993). In general, the connection between
domains in the antiferromagnet and their macroscopic prop-
erties has not been extensively studied. However, domains
in antiferromagnets have received increased attention lately
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because of their potential role in exchange bias as discussed
in more detail subsequently (see Section 3.3).

Owing to the lack of net magnetization for an antiferro-
magnetically ordered material, the first experimental indica-
tions of domains were rather indirect. In a uniaxial antiferro-
magnet the magnetic susceptibility parallel and perpendicular
to the antiferromagnetic anisotropy axis is very different.
As a consequence uniaxial antiferromagnets have a spin-flop
transition, where the spins suddenly rotate perpendicular to
the applied field with a slight canting toward the field in
the case where it is applied along the anisotropy axis (Néel,
1936; Foner, 1963). The spin-flop field at which this transi-
tion occurs is given by Tanner (1979):

Hf =
√

2K

µ0(χ⊥ − χ ||)
(23)

where K is the anisotropy constant and χ⊥ and χ || are the
susceptibilities perpendicular and parallel to the anisotropy
axis, respectively. This spin-flop transition gives rise to a
sudden increase in magnetization. In contrast, for cubic
antiferromagnets there is no sudden spin-flop transition
(Tanner, 1979). In a cubic antiferromagnet one expects a
mixture of domains with spins parallel and perpendicular to
the applied field and therefore applying an external field will
just result in a spin-flop process via gradual domain-wall
motion between these domains (Néel, 1954).

Some antiferromagnetic materials may also have a spin-
flip transition as a function of temperature, which typi-
cally reflects the temperature evolution of the anisotropy.
Examples are Hematite (α-Fe2O3), which has the so-called
Morin transition at approximately 260 K (Morin, 1950),
and chromium, where the direction of the antiferromagnetic
spins changes from transverse to longitudinal with respect
to the antiferromagnetic ordering vector at 123 K (Werner,
Arrott and Kendrick, 1967). As in the case for the field-
induced spin-flop discussed in the preceding text, domains
in the chromium make this spin-flip transition rather grad-
ual, instead of being first order. Using X-ray microdiffrac-
tion it has been recently shown that spin-flipped longitudinal
domains nucleate at the domain wall between different trans-
verse domains and subsequently grow gradually until the
transverse domains are completely replaced (Evans et al.,
2002).

Unlike in the case of ferromagnets, the net zero magnetiza-
tion makes a direct detection of domains in antiferromagnets
relatively difficult, which is one of the main reasons they
are less studied. However, there are several approaches to
directly detect and image antiferromagnetic domains. For
example, it is possible that magnetostriction can give rise
to strain domains, which are identical to the antiferromag-
netic domains (Roth, 1960). In this case, X-ray topography

can be used to map out strain domains (Tanner, 1976). It
should be noted, however, that the imaging of antiferromag-
netic domains via their accompanying strain is only possible
in single crystals.

Other possibilities for directly detecting domains are either
by utilizing an antiferromagnetic Bragg reflection (reflect-
ing the increased unit cell superstructure) or spectroscopic
signatures (i.e., dichroism). Bragg reflections have been
used for domain imaging with either polarized neutron
diffraction tomography (Schlenker and Baruchel, 1978) or
X-ray diffraction microscopy (Evans et al., 2002). Examples
of imaging with spectroscopic signatures are optical (Ere-
menko, Kharchenko and Beliy, 1979) or X-ray linear dichro-
ism–based detection (Scholl et al., 2000).

Domain structures in antiferromagnets can be much more
complex than in ferromagnets, since one can distinguish
between domains with different orientations of the ordering
vector (T domains, i.e., four different T domains in NiO,
which order along (111), see also Section 2.1) and different
orientations of the spins along different anisotropy axes (S
domains, i.e., for each T domain there are three different S
domains, since the anisotropy axes in NiO are the equivalent
(112) directions, see also Section 2.1). The nomenclature
arises from the fact that T domains are equivalent to
different crystallographic twins, while S domains are due
to different spin directions. Distinguishing between these
different domains may require different approaches. For
example, when using neutron scattering T domains can be
differentiated by their different Bragg reflections, while S
domains can only be detected through polarization selection
rules (see Section 2.1).

For completeness we finish the section on homogeneous
materials with domains by mentioning that some materials
(Tb, Dy, Tb50Ho50, Gd60Y40, MnP) have a spiral magnetic
order. In this case it is also possible to have domains with
different chiralities (Palmer, 1975).

3.2 Confined systems

As discussed in the previous section it is clear that geomet-
rical confinement can significantly affect magnetic domain
structures. In the following we discuss two types of con-
fined systems, namely, granular systems and well-defined
patterned systems, that is, systems obtained via lithography.

Granular systems consist of grains, which are typically
sufficiently small to be single domain. In this case the overall
magnetic domain behavior is governed by the interactions
of the grains. It turns out that at least in the case for
ferromagnetic grains as their sizes are reduced, they can
start to act collectively, meaning that the domain sizes
become bigger than the individual grain sizes. This has
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Figure 13. Magnetic correlation length L versus grain size D as
determined from small-angle neutron scattering of nanostructured
Fe. The inset shows the corresponding coercivity data. (Reprinted
figure from Phys. Rev. Lett. Vol. 85, 1990 (2000).  2000 by the
American Physical Society.)

been observed by determining magnetic correlations lengths
from small-angle neutron scattering (see Figure 13) (Löffler,
Braun and Wagner, 2000). The magnetic correlation length
is indicative of an average domain size. For large grains
the correlation size scales with the grain size, but for very
small grains the correlation length increases again. One
of the consequences is that in materials with very small
grains the crystal anisotropy will be replaced by an effective
anisotropy from the superposition of the anisotropies of the
magnetically correlated grains. If these grains are randomly
oriented, this effective anisotropy can be very small, which
makes granular materials very attractive for soft-magnetic
applications (Yoshizawa, Oguma and Yamauchi, 1988).

At the same time granular systems can also be used prepare
extremely hard magnets. As seen in Section 3.1 there is
a critical size below which the magnetization in a grain
becomes single domain (see equations (17) and (18)). This
also means that the mode of magnetization reversal may
change from a domain nucleation and domain-wall motion
to either coherent or incoherent rotation. This can give rise
to a significant coercivity increase for small grain systems
with high crystalline magnetic anisotropy. For example, it has
been shown that the coercivity can exceed 10 T for FePt films
with grain sizes of 20–30 nm (Shima, Takanashi, Takahashi
and Hono, 2004).

Most patterned systems have typical length scales much
larger than granular systems. As a consequence, the magne-
tization of an individual element is often not just a simple
single domain. However the limited size often can give rise
to very simple domain structures, which tend to ‘close the
flux’ and minimize magnetic strayfields. One of the simplest
systems is circular dots, which give rise to a so-called

magnetic vortex (Cowburn et al., 1999). Similar flux-closure
domain configurations can also be observed in other struc-
tures, such as rings (Rothman et al., 2001; Li et al., 2001),
rectangular particles (Hubert and Schäfer, 1998), or films
with holes. Interestingly, when these systems have a broken
in-plane symmetry, that is, either due to shape or magne-
tocrystalline anisotropy or due to exchange coupling, then
the precise remanent domain state may depend on the mag-
netic history, such as magnitude and direction of previously
applied magnetic fields. Examples of such broken symmetries
are rectangular patterns (Thomas et al., 2000b), elliptical pat-
terns (Vavassori et al., 2004), and exchange-biased systems
(Sort et al., 2005, 2006a).

All the aforementioned examples are systems based on
patterned thin films. However ‘flux-closure’ domain struc-
tures can also be observed in other nanopatterned systems.
For example flux-closure structures have also been observed
for cylindrical Co nanowires with sufficiently large diameter
(>50 nm) (Henry et al., 2001).

So far there has been only very limited use of scatter-
ing techniques for investigating the magnetization behavior
in patterned systems. Temst, Van Bael, and Fritzsche (2001)
showed that off-specular polarized neutron reflectometry can
be used to investigate the field dependence of the mag-
netization in patterned structures. However, so far there is
no detailed information about inhomogeneous magnetization
states. In contrast Lee et al. (2003) used off-specular neutron
scattering to determine the domain structures for magnetic
antidot arrays, which have also been suggested for high-
density data storage (Cowburn, Adeyeye and Bland, 1997).

In the case of systems with predominantly in-plane
anisotropy, flux-closure domain structures, such as a vor-
tex, are stable over a wide range of sizes. But the situation
can be markedly different in systems with perpendicular
anisotropy, which tend to form stripe domains as discussed
in Section 3.1. As long as the lateral size of the pattern is
comparable to the stripe width (see equations (21) and (22)),
only a few, very simple, well-defined domain patterns are
stable consisting of either concentric rings or parallel stripe
patterns (Skidmore, Kunz, Campbell and Dahlberg, 2004).
But as soon as the lateral dimension of the system becomes
larger than 1.5dd the stripe domain patterns become complex
and randomly oriented. However, the stripe domains still pre-
fer to be either perpendicular or parallel to the edges of the
patterned system.

Aside from confining the possible different domain states,
nanostructuring also offers different ways of manipulating
domain structures. In bulk systems one generally only
investigates how the domain structure is changed by varying
external parameters such as applied field and/or temperature.
In patterned materials there is also a possibility to change
the domain structure through the application of electrical
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Figure 14. Magneto-optic Kerr microscopy images and deduced domain patterns for FeCoSiB films in which the anisotropies were laterally
modified through He-ion irradiation. (Reproduced from J. McCord et al., 2005, with permission from American Institute of Physics.)

currents (Gan et al., 2000). This current-induced domain-
wall motion is either due to spin torque (thin films) (Berger,
1984) and domain drag (thicker films) (Berger, 1978) or due
to linear momentum transfer (narrow domain wall) (Tatara
and Kohno, 2004).

Recently there have been also approaches using lat-
eral variations of anisotropy to modifying domain patterns
besides confining the actual physical size of magnetic sys-
tems. The local magnetic anisotropy can be controlled by
thickness modulation (Costa-Krämer et al., 2003), selective
epitaxy (Li et al., 2002), or by local ion irradiation (Fass-
bender, Ravelosona and Samson, 2004). Using a substrate
with laterally modulated crystallinity at the surface, Li et al.
(2002) prepared Ni films with laterally alternating out-of-
plane and in-plane anisotropy, which was reflected in a cor-
responding domain structure. Similarly, Swerts et al. (2003)
established well-defined domain structures by laterally vary-
ing the roughness of the films through regional use of silver

buffer layers. Ion irradiation allows changing the microstruc-
ture locally (Fassbender, Ravelosona and Samson, 2004),
which can be used to tailor both the magnitude of the
anisotropy (Chappert et al., 1998), as well as the direction
(McCord et al., 2005). Especially the later possibility of lat-
erally modifying the anisotropy direction allows for the gen-
eration of very complex well-defined domain patterns (see
Figure 14).

Aside from the static domain patterns in confined mag-
netic structures, there is an increasing interest in the dynamic
behavior of domain patterns and their role for magnetization
reversal processes. The dynamic behavior can be compli-
cated, since the magnetization in each domain might show
precessional motion, while the domain walls themselves can
have excitations analogous to oscillating strings, and intersec-
tions of domain walls, such as vortex cores can perform trans-
lational motion (Park et al., 2003; Perzlmaier et al., 2005;
Raabe et al., 2005; Guslienko et al., 2006). Interestingly,
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systems with a vortex core (circular disks or squares), may
have left or right handedness due to the chirality of the
domain pattern and the orientation of the vortex-core magne-
tization. While in most cases this handedness is unimportant
for the static domain patterns, it becomes very important for
the dynamic behavior of these systems (Choe et al., 2004;
Buchanan et al., 2005).

3.3 Coupled systems

3.3.1 Antiferromagnetically coupled multilayers

Until now we discussed mainly homogeneous, one-
component systems. It is clear that interactions between
different magnetic materials can also modify the balance
between the different magnetic energies and therefore influ-
ence the domain formation considerably. In particular mag-
netic multilayers were studied extensively in this respect.
The interest in magnetic multilayers increased dramatically
with the discovery by Grünberg et al. (1986) that nonmag-
netic layers sandwiched between two ferromagnetic layers
can give rise to oscillating ferromagnetic or antiferromag-
netic coupling between the ferromagnetic layers depending
on the thickness of the nonmagnetic layer (Grünberg et al.,
1986). Especially the antiferromagnetically coupled multi-
layers were studied extensively because of the observation
of giant magnetoresistance (Baibich et al., 1988), which in
the meantime has become a key ingredient for many mag-
netotransport applications (Daugthon, Pohm, Fayfield and
Smith, 1999). At the same time antiferromagnetically cou-
pled multilayers are of great basic science interest, since they
can be used as model systems for understanding antiferro-
magnetic behavior in general (Wang et al., 1994). Domains
in these synthetic antiferromagnetic systems are important
for technology driven as well as fundamental science, since
the domains may give rise to noise in applications (Hard-
ner, Weissman and Parkin, 1995) and at the same time
domains in antiferromagnetic systems have been less studied,
as discussed in Section 3.1. Nevertheless, antiferromagnetic
coupling may also have beneficial effects for applications,
since it can be used for reducing the switching field rela-
tive to the thermal stability in antiferromagnetically coupled
magnetic recording media (McFayden, Fullerton and Carey,
2006).

Note that in these coupled multilayer systems, there are
other possible coupling mechanisms, besides the interlayer
exchange coupling. Both structural and magnetic inhomo-
geneities can result in interlayer coupling. Stray fields due
to interface roughness can result in so-called orange peel
coupling (Néel, 1962). Similarly stray fields from domains
walls can couple the magnetization structure in different

ferromagnetic layers (Fuller and Sullivan, 1962; Thomas
et al., 2000a; Lew et al., 2003).

Both polarized neutron (Huang, Felcher and Parkin, 1991;
Hahn et al., 1994; Borchers et al., 1996, 1999; Langridge
et al., 2000; Nagy et al., 2002) as well as X-ray resonant
scattering (Idzerda, Chakarian and Freeland, 1999; Spezziani
et al., 2002; Nefedov et al., 2005) have contributed consid-
erably to the present understanding of domains in synthetic
antiferromagnetic systems. By analyzing diffuse reflectivity
around either the chemical superlattice Bragg reflection or
the half-order (antiferromagnetic) Bragg reflections it is pos-
sible to obtain information about the ferromagnetically and
antiferromagnetically coupled domains respectively (see also
Section 2.3).

The first observation of domains in antiferromagnetically
coupled multilayers with polarized neutron reflectometry
was by Huang, Felcher and Parkin (1991) who studied the
Co/Ru system and determined the average domain size to
Lx ≈ 4 µm. Similarly the domain structure was also investi-
gated in Co/Cu (Borchers et al., 1999; Langridge et al., 2000;
Spezziani et al., 2002), Fe/Cr (Hahn et al., 1994; Nagy et al.,
2002; Nefedov et al., 2005), and Ni80Fe20/Ag (Borchers
et al., 1996) multilayers. In the Co/Cu system it was observed
that for the as-prepared samples the domain structures in indi-
vidual ferromagnetic layers are correlated. However, after
subsequent magnetization reversal the domains are uncorre-
lated (Borchers et al., 1999; Langridge et al., 2000). This
explains directly an experimentally observed decrease of
magnetoresistance between the virgin and other remnant con-
figurations. In general, the domain structure in these artificial
antiferromagnetic systems is very sensitive to the magnetic
history (Hardner, Weissman and Parkin, 1995; Nagy et al.,
2002). When the domains nucleate after saturation their for-
mation is mostly governed by the competition between Zee-
man energy and antiferromagnetic interlayer coupling. This
competition can give rise to very small domains (<1 µm). On
the other hand, during the bulk spin flop, the magnetocrys-
talline anisotropy becomes very important, resulting in much
larger domains (>10 µm) (Nagy et al., 2002).

Not only the domain structures, but also the domain
walls in antiferromagnetically coupled multilayers offer rich
research opportunities. This was demonstrated by Hellwig,
Berger, and Fullerton (2003) in antiferromagnetically cou-
pled multilayers with perpendicular anisotropy, such that the
magnetization is preferentially perpendicular to the inter-
faces. In this case dipolar interactions also become important
and their relative strength with respect to the antiferromag-
netic interlayer coupling can be tuned by varying the ferro-
magnetic layer thickness. Interestingly as long as the anti-
ferromagnetic coupling clearly dominated, the domain walls
always had no net magnetization. But when the dipolar cou-
pling became large enough then the domain wall developed a
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Figure 15. Magnetization direction of each Fe layer in an anti-
ferromagnetically coupled Fe/Cr superlattice as determined with
polarized neutron reflectometry. The compass needles indicate the
relative direction of the magnetizations in each ferromagnetic layer
of the superlattice. The applied fields indicated on the left are nor-
malized by the bulk spin-flop field. (Reprinted figure from Phys.
Rev. Lett. Vol. 89, 127203 (2002).  2002 by the American Physical
Society.)

striped pattern, by having the domain wall shifted in each fer-
romagnetic layer. Whether such complex domain walls occur
in real antiferromagnets is still an interesting open question.

Besides domain walls, there is another interesting inhomo-
geneous magnetization structure in synthetic antiferromag-
nets related to the so-called surface spin flop. As mention
in Section 3.1, antiferromagnetic materials can react to an
external applied field with a spin-flop transition, where the
spins rotate mostly perpendicular to the anisotropy axis. It
was realized early on that this transition can be modified at
the surface of an antiferromagnet (Mills, 1968; Keffer and
Chow, 1973). The experimental verification of this effect was
possible only through the use of antiferromagnetically cou-
pled multilayers as model systems for finite antiferromagnets
(Wang et al., 1994). The actual depth profile of the surface
spin flop as a function of applied field has been shown with
polarized neutron reflectometry (te Velthuis, Jiang, Bader and
Felcher, 2002). Specifically at the surface spin flop, the mag-
netization of the topmost layers reverses, which gives rise to
two antiphase domains as a function of depth into the mul-
tilayer. This domain wall moves with increasing field into
the center of the superlattice and acts as a nucleation site for
the subsequent bulk spin-flop transition (see Figure 15). Fur-
thermore lateral domains can complicate the surface spin-flop
effect (Lauter-Pasyuk et al., 2002).

The example of the surface spin flop shows that complex
noncollinear magnetization structures can occur in multilay-
ers consisting of ferromagnetic layers separated by nonmag-
netic spacers because of the intricate balance between dif-
ferent interactions. It should also be noted that noncollinear

magnetization structures can be established intentionally dur-
ing the fabrication of these multilayers. For example, Felcher
et al. (1998) showed that a helical magnetization structure
can be imprinted if the superlattice structure is grown in a
continuously rotating field.

3.3.2 Exchange bias

Another extensively studied type of coupled magnetic
heterostructures are exchange bias systems (Nogués and
Schuller, 1999; Nogués et al., 2005). Exchange bias systems
were first discovered by Meiklejohn and Bean (1956) and
consist of antiferro- and ferromagnetic materials where the
coupling between the two gives rise to a symmetry-breaking
unidirectional anisotropy resulting in hysteresis loops, which
are asymmetrically shifted with respect to the field axis
(Meiklejohn and Bean, 1956). This hysteresis loop can be
understood intuitively by assuming that the ferromagnet cou-
ples only to one sublattice of the antiferromagnet, which
remains essentially unaffected by an external field because
of the vanishing net magnetization of the antiferromagnet.
While this naive model works quantitatively for model sys-
tems, which mimic this situation (Jiang et al., 2000), it
fails to capture many details quantitatively for most real
exchange bias systems. In particular the observed loop shift
is often several orders of magnitude smaller than theoreti-
cally expected (Tsang, Heiman and Lee, 1981). At the same
time, exchange bias is observed in systems where the nom-
inal interface of the antiferromagnet is being compensated
(Nogués and Schuller, 1999). In this case one would expect
that the ferromagnet couples equally to all antiferromagnetic
sublattices and thus there should be no net coupling and
thus no symmetry breaking. Both observations, the relatively
small hysteresis loop shift and the observed bias for compen-
sated antiferromagnetic surfaces, can be possibly reconciled
by assuming domains in the antiferromagnet. Domains in the
antiferromagnet would reduce the net moment at an uncom-
pensated surface, and at the same time they could generate
a net moment at a nominally compensated surface. In either
case the bias shift is generally believed to result from a net
magnetic moment in the antiferromagnet at the interface. In
fact such net magnetizations have been observed recently
with polarized neutron reflectometry (Hoffmann et al., 2002;
Roy et al., 2005) and X-ray resonant scattering (Roy et al.,
2005). Furthermore it has been shown there is a direct cor-
relation between exchange bias and uncompensated spins in
the antiferromagnet (Takano et al., 1997).

One of the first quantitative theoretical models investigat-
ing the role of lateral domains in the antiferromagnet was
proposed by Malozemoff (1987). In his model the finite size
of the antiferromagnetic domains results in a net moment
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simply from a statistical imbalance between the two sublat-
tices. This statistical argument suggests that smaller antifer-
romagnetic domains give rise to a larger net magnetization
per interface area. However, there is so far no direct experi-
mental confirmation of a correlation between exchange bias
magnitude and sizes of antiferromagnetic domains.

Another possibility for inhomogeneous magnetization
structures in the antiferromagnet of exchange bias struc-
tures are domain walls parallel to the interface of the fer-
romagnet (Mauri, Siegmann, Bagus and Kay, 1987; Stiles
and McMichael, 1999), which is very similar to the behav-
ior observed in exchange spring systems discussed fur-
ther below. Indeed, recent measurements with resonant
X-ray reflectivity and polarized neutron reflectivity detected
directly such a domain wall parallel to the interface in the
uncompensated magnetization of a strained FeF2 antiferro-
magnet (Roy et al., 2005). However, in this case the domain
wall does not necessarily originate from the reversal of the
ferromagnetic magnetization, but from different response to
external fields of uncompensated moments in the bulk and
at the interface of the antiferromagnet. Similarly, Borchers
et al. (2000) have shown that in Fe3O4/NiO the domains in
the antiferromagnet depend sensitively on the cooling field,
which furthermore underscores the importance of domains in
exchange bias systems.

Besides the aforementioned direct observation of domains
and domain walls in the antiferromagnet of exchange
bias systems, there is also additional indirect evidence of
the importance of antiferromagnetic domains. Keller et al.
(2002) investigated exchange bias as a function of nonmag-
netic impurities in the antiferromagnet. They observed that
the exchange bias can increase for a moderate concentration
of impurities, which could stabilize smaller domains, hence
resulting in a larger net moment that couples to the ferro-
magnet (Nowak et al., 2002). However, the situation is more
complex, since the precise interfacial microstructure is also
very important for determining the influence of impurities in
the antiferromagnet on the experimentally observed exchange
bias (Shi et al., 2003).

Aside from the magnitude of the exchange bias shift, the
domain structure in the antiferromagnet may also influence
the direction of the shift. Normally the exchange bias
shift has the opposite sign of the applied field during
field cooling (Nogués and Schuller, 1999). However, a
few selected exchange bias systems can exhibit a positive
exchange bias shift upon field cooling in very large magnetic
fields (Nogués, Lederman, Moran and Schuller, 1996). This
crossover from negative to positive exchange bias has
been investigated by Kirk, Hellwig, and Fullerton (2002)
in model structures based on coupled Co/Pt multilayers,
where one of the multilayers was exchange biased by a
CoO layer. Interestingly the transition from conventional

negative exchange bias to positive exchange bias depends
sensitively of the domain structure in the layer responsible
for the exchange bias. If the domains in the biasing layer
are smaller than those in the biased layer the exchange bias
shift changes continuously from negative to positive values.
However, if the domains in the biasing layer are larger than
typical domains in the biased layer, then the hysteresis loop
can become bifurcated with part of the hysteresis loop being
biased positively, while the other part is biased negatively.
A similar behavior has also recently been observed in a real
exchange bias system (Roshchin et al., 2005).

Aside from domains in the antiferromagnet, domains in the
ferromagnet can also play an important role for exchange bias
systems. Some of the unusual aspects of exchange bias sys-
tems, such as asymmetries in the magnetization reversal and
training effects, can be connected to ferromagnetic domain
formation. Using polarized neutron reflectometry Fitzsim-
mons et al. have shown that the magnetization reversal on
either side of the hysteresis loops for Fe/Mn2F (Fitzsimmons
et al., 2000, 2001) and Fe/Fe2F (Fitzsimmons et al., 2002)
can be different, such that with decreasing field the reversal
is mostly via a coherent rotation of the magnetization, while
for increasing fields the reversal proceeds via domain nucle-
ation and domain-wall motion. More recently it has been
shown that this asymmetry in magnetization reversal is a
more general consequence due to the competition between
different anisotropies in exchange bias systems (Camarero
et al., 2005). Another unusual property of many exchange
bias systems is that after the initial field cooling procedure
subsequent hysteresis loops may differ from each other with
successively decreasing exchange bias (Hoffmann, 2004). It
has been observed that the change in hysteretic behavior is
also correlated with domain formation in the ferromagnetic
layer (Lee et al., 2002; Gierlings et al., 2002; Radu et al.,
2003). For example, Lee et al. (2002) observed that domains
are differently oriented during different reversals and Radu
et al. (2003) suggest that after the first reversal interfacial
domains form, which remain unchanged during the subse-
quent reversals. It also should be noted that locally varying
exchange coupling can give rise to complex domain struc-
tures (Gogol, Chapman, Gilles and Vanhelmont, 2002).

So far we discussed the naturally occurring domains in
the ferromagnet. Another aspect of exchange bias systems
is that the ferromagnetic layer can be prepared in a well-
defined domain configuration in the unbiased state (typically
at high temperature), which can be subsequently imprinted
into the antiferromagnetic layer. If there are only domains
with opposite magnetization orientations, then this can result
in two separately shifted subloops (Chien et al., 2003). A
similar situation exists, when the antiferromagnet owing
to its crystalline orientation projects out laterally different
field components (Roshchin et al., 2005). This idea of
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Figure 16. Twist of the magnetization in exchange spring system consisting of a hard magnetic FePt layer (up to the third line from the
bottom) and a soft magnetic NiFe layer (upper layers). (Reprinted figure from Phys. Rev. Lett. Vol. 88, 067201 (2002).  2002 by the
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imprinting magnetization structures can also be utilized to
fine tune the shapes of hysteresis loops (Brück et al., 2005).
More recently, it has also shown that other inhomogeneous
magnetization states, such as magnetic vortex states, can
be faithfully imprinted into the antiferromagnet (Sort et al.,
2006a,b).

3.3.3 Exchange spring

Another system of coupled magnetic heterostructures with
potential technological applications are exchange spring
systems, consisting of coupled hard and soft ferromagnetic
materials (Kneller and Hawig, 1991; Fullerton, Jiang and
Bader, 1999). For permanent magnet applications the figure
of merit is typically the energy product (BH)max, which
generally increases with increasing coercivity and increasing
saturation magnetization. However, in general, hard magnetic
materials have a high anisotropy (thus large coercivity), but
relatively low saturation magnetization. At the same time
soft-magnetic materials can have a very large saturation
magnetization, but typically have a rather low anisotropy.
Using hard–soft coupled systems offer the promise of
combining the best features of both materials, leading to more
powerful permanent magnets.

The limit for improving the energy product in exchange
spring systems is determined by how much the interfa-
cial coupling dominates the magnetization behavior of the
soft-magnetic component. Once the soft-magnetic layers are
thicker than the exchange layer (typically ≈10 nm) they
can develop a twisted magnetization structure, where the

magnetization at the interface is closely aligned with the
hard-layer magnetization but away from the interface the
magnetization rotates continuously toward the applied mag-
netic field. Such a twist has been directly observed with
polarized neutron reflectometry for Fe55Pt45/Ni80F20 bilayer
(see Figure 16) (O’Donovan et al., 2002). In this particu-
lar measurement, the magnetization structure was obtained
with high accuracy by combining reflectivity spectra from
the front- and backside of the sample, which adds additional
constraints to the possible models for fitting the data. Notice
that the domain wall extends actually both into the soft and
hard magnetic layer.

While the basic behavior of exchange springs can be
understood within simple models describing inhomoge-
neous magnetizations perpendicular to the hard/soft interface,
lateral domains may influence the detailed magnetization
behavior. For example, in general one would expect only
ferromagnetic coupling between the two ferromagnetic con-
stituents of an exchange spring system. However, Vlasko-
Vlasov et al. (2001) showed that exchange spring systems
can also have a biquadratic coupling, meaning that the mag-
netization in the soft-magnetic layer has a preferred orien-
tation perpendicular to the easy axis of the hard magnetic
layer. This effect originates from domains in the hard mag-
netic layer. In the case of a uniaxial hard magnetic system a
partial magnetization reversal of the hard-layer magnetization
results in domains with opposite magnetizations. Owing to
the high anisotropy, the domains in the hard magnetic layer
are in general much smaller than the domains in the soft-
magnetic layer. Thus one single soft domain may couple to
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multiple hard domains with opposite magnetization. This sit-
uation gives rise to a frustration of the interfacial interactions,
which then results in the observed biquadratic coupling.

More recent developments show various different inter-
esting aspects of exchange spring systems. For example,
contrary to common intuition, a sharp interface between
the hard and soft materials does not result in the highest
possible energy product. Jiang et al. (2004) showed that an
intentionally interdiffused (i.e., graded) interface can enhance
the energy product, since the field range of reversible mag-
netization change is significantly extended. Another recent
development is an increased interest in lateral exchange
spring structures, where the interfacial domain walls change
from the Bloch to the Néel type (see also Section 3.1 and
Figure 11). The different magnetostatic energies can modify
the behavior significantly and depending on the competition
between the different interactions there can be the formation
of opposite domains or a more coherent magnetization rever-
sal (Fraile Rodrı́guez et al., 2006). Lastly, exchange springs
also generated interest for applications beyond the hard mag-
netic materials, for which they were initially investigated.
One new application idea is to use exchange springs, which
contain a component with a metamagnetic transition, as pos-
sible magnetic recording media, where the switching field
can be dramatically reduced by heating past the metamag-
netic transition (Thiele, Maat and Fullerton, 2003; Guslienko
et al., 2004).

3.3.4 Ferromagnet/superconductor hybrids

The last coupled systems to be discussed are ferromag-
netic/superconducting hybrids. The interaction between fer-
romagnets and superconductors has generated a lot of
research interest over the years, since the two types of mag-
netic order are generally mutually exclusive (for a recent
review see Lyuksyutov and Pokorovsky, 2005). Their inter-
play can generate a variety of interesting effects, such as
strong vortex pinning (Otani, Pannetier, Nozières and Givord,
1993; Martı́n, Vélez, Nogués and Schuller, 1997; Morgan
and Ketterson, 1998; Van Bael, Temst, Moshchalkov and
Bruynseraede, 1999; Martı́n et al., 1999; Hoffmann, Pri-
eto and Schuller, 2000), π phase (Radovic et al., 1991;
Ryazanov et al., 2001), and triplet (Volkov, Bergeret and
Efetov, 2003) superconductivity, variations in the supercon-
ducting transition temperature (Jiang, Davidovic, Reich and
Chien, 1995; Gu et al., 2002), and giant magnetoresistance
(Peña et al., 2005). Most studies ignore the influence of
magnetic domain structures or specifically prepare systems
with single-domain magnetizations. Nevertheless, there are
a few investigations, which specifically target the influence
of magnetic domain structures on the superconducting prop-
erties of superconducting/ferromagnetic hybrids. Van Bael,

Temst, Moshchalkov and Bruynseraede (1999) showed that
vortex pinning is stronger for patterned ferromagnetic par-
ticles with in-plane single-domain state versus flux-closure
state, indicating that the stray field is important. The sit-
uation is different for systems where the magnetization of
the ferromagnet is perpendicular to the layer, and thus per-
pendicular to the interface with the superconductor. In this
case the formation of a domain state increases the magnetic
fields penetrating the superconductor and thus can give rise to
increased vortex pinning (Lange, Van Bael, Moshchalkov and
Bruynseraede, 2002). However, at the same time the stray
field from the magnetic domains can also significantly reduce
the superconducting transition temperature (Lange, Van Bael
and Moshchalkov, 2003). More recent investigations of Nb
thin films grown on ferromagnetic BaFe12O19 substrates indi-
cate that the interplay between ferromagnetic domains and
superconductivity can be even more complex, resulting in
nonmonotonic variations of the superconducting transition
temperature as a function of applied magnetic fields (Yang
et al., 2004). This behavior has been interpreted as evidence
for theoretically predicted nucleation of superconductivity at
the ferromagnetic domain walls (Aladyshkin et al., 2003).
Interestingly, so far there has been less investigation into the
question how the proximity of a superconductor influences
magnetic domain formation. In principle one could expect
a strong influence, since the presence of a superconductor
changes considerably the magnetostatic energies, which are
ultimately often the driving force for domain formation.

4 SUMMARY

From the very beginning of neutron scattering investigations,
magnetic materials have been one of the main subjects stud-
ied, since neutron scattering is uniquely suited for obtaining
atomic-scale magnetic structure. In this chapter we provided
an overview about how neutron scattering can also be uti-
lized to obtain information about larger-scale magnetic struc-
tures, in particular, magnetic domains. Information about the
size, orientation, and population of domains can be deter-
mined by neutron diffraction, depolarization, or refraction.
Furthermore, neutron scattering can also in principle pro-
vide insight about the correlations between domains, similar
to its use for studying atomic-scale correlations. However,
studies of domain correlations are still in its infancy, but
are poised to become more important with the advent of the
next generation neutron sources in the near future. Besides
introducing the various techniques we also provided a brief
overview about different current scientific issues, where mag-
netic domains play a central role and which lend themselves
to neutron investigations. Such a selection of scientific prob-
lems from a broad field of research as magnetism has to
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be naturally subjective and incomplete; thus we apologize
for any oversights. Nevertheless, the examples shown in this
chapter should illustrate the role of neutron refraction and
scattering in determining magnetic domain states. We are
quite confident that based on the solid foundation of the past
work, neutrons will continue to play a major role in unrav-
eling magnetic domain structures.
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Martı́n, J.I., Vélez, M., Nogués, J. and Schuller, I.K. (1997).
Flux pinning in a superconductor by an array of submicrometer
magnetic dots. Physical Review Letters, 79, 1929–1932.

Mauri, D., Siegmann, H.C., Bagus, P.S. and Kay, E. (1987).
Simple model for thin ferromagnetic films exchange coupled to
an antiferromagnetic substrate. Journal of Applied Physics, 62,
3047–3049.

McCord, J., Gemming, T., Schultz, L., et al. (2005). Magnetic
anisotropy and domain patterning of amorphous films by He-ion
irradiation. Applied Physics Letters, 86, 162502.

McFayden, I.R., Fullerton, E.E. and Carey, M.J. (2006). State-of-
the-art magnetic hard disk drives. MRS Bulletin, 31, 379–383.

Meiklejohn, W.H. and Bean, C.P. (1956). New magnetic anisotropy.
Physical Review, 102, 1413–1414.

Middlehoek, S. (1963). Domain walls in thin Ni-Fe films. Journal
of Applied Physics, 34, 1054–1059.

Mills, D.L. (1968). Surface spin-flop state in a simple antiferromag-
net. Physical Review Letters, 20, 18–21.

Mitsuda, S. and Endoh, Y. (1985). Neutron depolarization studies on
magnetization process using pulsed polarized neutrons. Journal
of the Physical Society of Japan, 54, 1570–1580.

Moon, R.M., Riste, T. and Koehler, W.C. (1969). Polarization
analysis of thermal-neutron scattering. Physical Review, 181,
920–931.

Morgan, D.J. and Ketterson, J.B. (1998). Asymmetric flux pinning
in a regular array of magnetic dipoles. Physical Review Letters,
80, 3614–3617.

Morin, F.J. (1950). Magnetic susceptibility of α Fe2O3 and α Fe2O3

with added titanium. Physical Review, 78, 819–820.

Nagy, D.L., Bottyán, L., Croonenborghs, B., et al. (2002). Coars-
ening of antiferromagnetic domains in multilayers: the key role



Domain states determined by neutron refraction and scattering 25

of magnetocrystalline anisotropy. Physical Review Letters, 88,
1572002.
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1 INTRODUCTION

Artificial magnetic nanostructures are being intensively
investigated because of their intriguing magnetic properties
and their specific device applications. By reducing the size
in one or more directions new magnetic properties have
been observed which are not present in the bulk and which
are highly usable for device application. With perpendicular
stacked magnetic layers a reduction of size in the out-of-
plane direction is accomplished. They allow the investigation
of collinear and noncollinear exchange coupling between
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ferromagnetic (F) layers, exchange bias (EB) between
F- and antiferromagnetic (AF) layers, confinement and scal-
ing effects of spin-density wave magnetism, and proximity
effects between F and superconducting layers. Reducing the
size in the lateral direction results in a plethora of different
shapes for F nanostructures such as stripes, dots, antidots,
rings, squares, rectangles, triangles, and different ellipsoids.
The fabrication of these shapes usually requires lithographic
processes or, alternatively, self assembly of magnetic nanos-
tructures. The main interest in magnetic nanostructures is the
understanding of the domain structure in the ground state,
the reversal mechanism in the space and time domain, and
the dipolar interaction between these elements. Here we will
review magnetic films and heterostructures, magnetic super-
lattices, and lateral magnetic nanostructures as they have
mainly been investigated via polarized neutron scattering and
neutron reflectivity (NR).

During the past 10 years polarized NR has played an
increasingly important role for the exploration of magneto-
and spintronic nanostructures. Well-known systems exten-
sively studied include exchange-coupled magnetic super-
lattices, exchange spring valves between soft and hard
magnetic films, EB systems between F and AF films,
magnetic semiconductors and half-metallic ferromagnets. In
addition to studies of layered systems, laterally patterned
magnetic systems such as stripes and islands on the sub-
micrometer scale are now being intensively analyzed by
neutron scattering.

Although neutron scattering is generally known as a
bulk probe particularly sensitive to magnetic moments and
magnetic excitations by virtue of the chargeless but magnetic
particle properties, it is the interface sensitivity which turned
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out to be most useful in studies of magnetic thin films,
multilayers, and lateral magnetic nanotructures. Although
the wavelength of cold neutrons can be 1–3 orders of
magnitude smaller than the thickness of thin films, the
sensitivity is due to the distortion of the neutron wave
field near surfaces when potential steps are encountered.
The interface sensitivity is exploited in specular NR and
off-specular neutron scattering. Often it is advantageous
to first fix the neutron polarization vector, that is the
neutron magnetic moment with respect to the scattering
plane, and to analyze the polarization state of the exit
beam before the detector. This variant of neutron reflectivity
is called polarized neutron reflectivity (PNR) and is used
mainly for the investigation of magnetic thin films, magnetic
superlattices, or any other kind of magnetic heterostructure.
Responding to the upsurge of interest in PNR a number
of neutron reflectometers for magnetic studies have become
available at all major steady-state and pulsed neutron sources
around the globe.

A variety of powerful methods are available for the anal-
ysis of magnetic nanostructures. In this concert of compet-
ing methods, neutron studies have to justify themselves by
unique answers to specific questions. Those include:

• magnetic correlation lengths in films and superlattices;
• depth profiles of the magnetization vector;
• quantitative magnetic roughness parameters of buried

interfaces;
• magnetic fluctuations and correlations of domain distri-

butions;
• magnetic hysteresis in the presence of superconductivity;
• sensitivity to magnetic induction;
• distinction between different magnetic reversal mecha-

nisms.

In the past PNR was also used for absolute moment deter-
mination. This is indeed an important application of PNR,
as the cross sections are well known and independent of
model assumptions. However, if moments of ultrathin layers
are determined other aspects start to play a dominating role,
such as growth morphologies, surface roughness, interdiffu-
sion, and so on. In this case, specular and off-specular diffuse
scattering has to be analyzed for reliable data analysis and
PNR has to be combined with surface science methods. This
topic may be revisited in the future when higher intensities
and in situ growth capabilities at neutron beam lines become
available.

A number of excellent review articles have been pub-
lished in recent years either focusing on the method of
polarized neutron reflectivity (Fermon and Menelle, 1999;
Ankner and Felcher, 1999; Majkrzak, 1996; Majkrzak and

Donovan, 2006) or on the magnetic film systems (Fitzsim-
mons et al., 2004; Zabel and Theis-Bröhl, 2003; Bland and
Vaz, 2005). Here we describe in some detail the method
of polarized neutron reflectivity with particular emphasis on
the description of perpendicular and lateral micro- anuctures
and review recent applications. The distorted wave Born
approximation (DWBA) for the description of off-specular
diffuse scattering from magnetic domains and nanostruc-
tures is described in some detail here for the first time. The
outline is as follows. After providing the theoretical frame-
work for PNR, off-specular, and Bragg scattering, experi-
mental considerations for the scattering technique will be
discussed. This is followed by a review of NR studies
of thin magnetic films, superlattices, and lateral magnetic
patterns.

2 METHOD OF POLARIZED NEUTRON
REFLECTIVITY

2.1 Unpolarized neutron reflectivity

In the following, we consider first an elastic reflection exper-
iment of unpolarized monochromatic neutrons. Furthermore,
we assume that a collimated neutron beam impinges at a
glancing angle αi onto a flat and extended surface sepa-
rating vacuum (air) and medium (Figure 1). The reflected
beam leaves the surface under a glancing angle αf . In case
of specular reflection, the incident and exit angles are iden-
tical: αi = αf . For this reason, we may drop the indices
i, f for the moment, but use them again when discussing
off-specular scattering. The scattering vector Qz has the
length Qz = 2k sin α and points along the z-direction par-
allel to the surface normal, where k = 2π/λ is the mag-
nitude of the incident (and/or scattered) wave vector k,
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Figure 1. Scattering geometry for polarized neutron reflectivity
studies. Neutrons are initially polarized along the y axis. Non-
spin-flip reflection is due to the By = |B| cos γ projection of the
magnetic inductance vector B, while Bx = |B| sin γ causes spin-
flip reflectivity.
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and λ is the neutron wavelength. In vacuum the part of
neutron energy corresponding to its propagation in the
z-direction is

Ez = �
2Q2

z

8m
(1)

where m is the neutron mass. At the interface between vac-
uum and medium the neutrons experience a potential step of
height

V = 2π�
2

m
Nb (2)

Here N is the atomic number density and b is the coherent
scattering length of the neutrons. The product Nb is usu-
ally referred to as the scattering length density (SLD). Total
reflection occurs for Ez ≤ V . Thus from equations (1) and
(2) one obtains for Ez = V the critical scattering vector for
total reflection

Qc =
√

16πNb (3)

Note that total reflection occurs only if the coherent
scattering length b is positive, that is if V > 0. Then,
for Q < Qc the neutron wave in the medium is expo-
nentially damped within the medium, and for Q > Qc

a Fresnel reflectivity is observed, which drops off with
Q−4. In case of thin films, Kiessig fringes are super-
imposed on the general Fresnel reflectivity due to the
constructive (or destructive) interference of the neutron
waves reflected from inner and outer interfaces. For mul-
tilayers with a chemical periodicity � parallel to the
z-direction, satellite (Bragg) reflections are observed at
positions

Ql ≈
√

Q2
c +

(
l
2π

�

)2

(4)

where l is the order of the satellite reflection, and Qc ≤
(2πl/�).

So far unpolarized NR and non-resonant X-ray reflectivity
provide essentially the same results. Differences occur due to
the fact that the coherent scattering cross section for neutrons
is not a smooth function of the atomic number as it is for
X rays, and that even different isotopes of the same element
can be distinguished. The main difference, however, occurs
when investigating magnetic films and multilayers either with
PNR or with X-ray resonant magnetic scattering (XRMS).
Here we will discuss only PNR, and compare with XRMS
later on.

2.2 Basic features of specular polarized
neutron reflectivity

Neutrons carry a magnetic moment µ, whose operator

µ̂ = γ n µN σ̂ (5)

is proportional to the Pauli spin operator σ̂ acting in a
two-dimensional spin space and being represented by a
set of 2 × 2 matrices: σ̂ = {σ̂ x, σ̂ y, σ̂ z}. Here γ n = −1.913
is the gyromagnetic ratio of neutron and µN = e�/2mpc

is the nuclear magneton. µ interacts with the magnetic
induction B providing a magnetic (Zeeman) potential for the
neutrons. The corresponding operator of magnetic potential
energy

V̂m = −(µ̂ · B) (6)

is represented by a 2 × 2 matrix. In general, the magnetic
induction B in a magnetic film consists of an external field
B0 and a sample magnetization M vectors

B = B0 + µ0M (7)

where µ0 is the permeability of free space.
Usually, the magnetic field is applied parallel to the sample

surface, and due to the strong shape anisotropy the mag-
netization vector M is displayed within the magnetic film
plane. Then the first term, B0, is identical inside and out-
side of the sample and does not contribute to the contrast in
the reflection potential. Therefore, it can safely be neglected
in the subsequent consideration. This can also be done in
the more general case when the vector B0 has an arbitrary
direction and the magnetization vector has also a component
normal to the surface. The latter contributes to the inductance
Bext outside of the sample. However, the component of the
inductance vector Bz normal to the surface is continuous and
hence does not make a contrast for magnetic reflection. As
a result, considering specular reflection one should neglect
the first term in equation (7) and only take into account the
neutron interaction with the lateral component ML of mag-
netization vector. Below the superscript L will be silently
anticipated.

Let us assume that in the z direction a half-infinite
sample with a flat surface is in a F, single-domain state.
Furthermore, we assume that the incoming monochromatic
neutron beam can ideally be polarized collinear with the
y axis, as indicated in the schematic outline of the scat-
tering geometry in Figure 1. If the sample is also homo-
geneously magnetized along the y axis, then the potential
energies of the neutron-sample interaction for alternative
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polarization directions are the eigenvalues of the interac-
tion operator in equation (6) and they are determined by
the equation

V± = Vn ± Vm = 2π�
2

m
N(bn ± bm) (8)

where Vn is the neutron – nuclei interaction potential, bn

is the nuclear and bm is the magnetic scattering length,
the (+) sign stands for the spin up, that is for neutrons
polarized along, and the (−) sign for the spin-down state,
that is for the neutrons polarized opposite to the (small)
ambient field guiding the polarization directed along the
y-axis. If, however, the magnetization makes an angle γ

against the y-axis then the matrix of magnetic interac-
tion V̂m is not diagonal and the 3D Schrödinger equation
reads:

{
− �

2

2m
� + V̂ (z) − E

}
|�(r)〉 = 0 (9)

where the energy E = �
2k2/2m is conserved for elastic

scattering. Owing to the fact that V̂ (z) depends only on
the transverse coordinate z the lateral projection κ of the
wave vector k is also conserved and the two component
wave function |�(r)〉 is factorized into the product |�(r)〉 =
exp {i(κρ)} |�(z)〉, where ρ is the lateral projection of the
radius-vector r . The 2D vector of spin states |�(z)〉 is rep-
resented by a column

|�(z)〉 =
(

�+(z)

�−(z)

)
(10)

with 2 elements �± which denote probability amplitudes
to find a neutron with positive, or correspondingly, neg-
ative spin projection onto the y-axis. Both spin states
of the neutron are partially populated if the interaction
matrix

(
V++ V+−
V−+ V−−

)

= 2π�
2

m
N

[(
bn 0
0 bn

)
+

(
by bx

bx −by

)]
(11)

has non-diagonal elements V± ∓ ∝ bx = bm sin γ , propor-
tional to the component of magnetic induction perpen-
dicular to the polarization axis. The diagonal elements
V±± ∝ (bn ± by) depend on by = bm cos γ , that is on
the inductance component parallel to the y-axis. Using
equations (10) and (11) the Schrödinger equation in matrix
form equation (9) can be explicitly written as a system of

two coupled equations

∂2

∂z2
�+(z) +

[
p2

0 − 2m

�2
V++(z)

]
�+(z)

−2m

�2
V+−(z)�−(z) = 0 (12)

∂2

∂z2
�−(z) +

[
p2

0 − 2m

�2
V−−(z)

]
�−(z)

−2m

�2
V−+(z)�+(z) = 0 (13)

where p0 = Qz/2 = k sin α is the component of the neu-
tron wave vector normal to the field boundary, and p2

0 =
k2 − κ2 due to the conservation of energy at elastic
reflection.

This couple of linear differential equations can readily be
solved, but the following first conclusions can be drawn
before we present their formal solution in explicit form.
When Vij with i �= j are zero, a set of equations (12) and
(13) are decoupled and only non-spin-flip (NSF) scattering
occurs, that is the neutrons maintain their spin state upon
interaction with the sample.

For NSF scattering, the magnetization vector M has to be
oriented along the y axis. Alternatively, if Vij with i = j

are zero, the V+− and V−+ potentials flip the neutron spin
from up to down and vice versa with equal efficiency. The
spin-flip (SF) scattering is caused by a magnetization vector
M projection Mx onto the x-axis. Thus, by distinguishing
between NSF and SF scattering, a quantitative analysis
of PNR data yields the x- and y components of M ,
which combine to the magnitude and orientation of the
magnetization vector M in the sample plane.

Note that in the configuration shown in Figure 1 only
the absolute value of Mx , the magnetization projection,
but not its sign, can be determined. In other words, from
PNR data one cannot distinguish whether the magneti-
zation is turned to the right or to the left with respect
to the polarization analysis axis. This is due to the fact,
that in equations (12) and (13) enter only the equal non-
diagonal elements V+− = V−+. We shall see later that in
the more general kinematic case, for example, via a 3D
or vector PNR analysis, other matrix elements appear, for
example Vz± and V±z, allowing a complete projection of the
vector M .
There are several important points to be noted here

• the effective potentials V++ and V−− for the y-compo-
nent contain nuclear and magnetic contributions;

• the potentials V+− and V−+ are solely of magnetic
origin;

• PNR is not sensitive to any magnetization component
parallel to the scattering vector;
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• spin and orbital parts, which contribute to the total
magnetization of the sample, cannot be distinguished.

Solutions of equations (12) and (13) have been pro-
vided by several authors (Felcher et al., 1987; Majkrzak,
1989, 1991), and here we just briefly indicate the main
steps leading to the explicit expression for PNR in the
simplest case of reflection from a semi-infinite homoge-
neous film.

For the interaction matrix Vij (z) = Vij constant within
the magnetic media the general solution of equations (12)
and (13) should, as usual, be written in the form of the
superposition of plane waves eipz and e−ipz with the wave
numbers p and the amplitudes to be found. Substitution of
this superposition into equations (12) and (13) results in
a couple of linear homogeneous algebraic equations with
respect to �+ and �−

[p2 − p2
0 + (p2

n + p2
y)]�+(z) + p2

x�−(z) = 0 (14)

p2
x�+(z) + [p2 − p2

0 + (p2
n − p2

y)]�−(z) = 0 (15)

where p2
n = 4πNbn, p2

x = 4πNbx , and p2
y = 4πNby . The

couple of equations (14) and (15) may have a nontrivial
solution only if its determinant is zero:

[(p2 − p2
0 + p2

n) + p2
y][(p2 − p2

0 + p2
n) − p2

y] − p4
x = 0

(16)
This biquadratic equation has two pairs of solutions, p = p±
and p = −p±, where

p± =
√

p2
0 − [p2

n ± p2
m] (17)

The first pair with p = p± corresponds to the wave propaga-
tion into the medium, while the second one, with p = −p±,
refers to their propagation in the opposite direction. Ampli-
tudes of these waves will be found from boundary conditions,
but now it is important to stress that despite the fact that each
of equations (12) and (13) depends on the angle γ , they are

only compatible if p2
m =

√
p4

x + p4
y = 4πNbm and the wave

numbers in equation (17) are independent of the tilt angle γ .
This is the inherent property of the spin 1/2 operator which
has only two eigenvalues ±1/2.

Equation (17) has a transparent physical meaning. Indeed,
the neutron wave with the initial wave number p0 expe-
riences inside the magnetic medium a refraction effect
such that the degeneracy with respect to the spin states
is lifted. This effect is in analogy with the well-known
birefringence in optically active media. For neutrons mag-
netic media are active due to the Zeeman effect, and
spin components of the neutron wave in a magnetic field
have different phase velocities v± = �k±/m, where k± =

√
κ2 + p2±, and therefore different refractive indices. Corre-

spondingly, there exist two critical wave numbers of the total
reflection

pc± =
√

p2
n ± p2

m (18)

and two critical angles αc±:

pc± = k sin αc± =
√

4πN(bn ± bm) (19)

one for the positive and one for the negative spin projection
onto the magnetic inductance direction in the medium. The
wave number in and outside the medium and are illustrated
in Figure 2.

In contrast to the refraction indices and the wave numbers
p±, the amplitudes of plane waves inside the magnetic
medium vary with the tilt angle γ . Indeed, the general
solution for the spin components of the wave function is
written as a superposition

�+(z) = t++eip+z + t+−eip−z + r++e−ip+z + r+−e−ip−z

(20)

�−(z) = t−+eip+z + t−−eip−z + r−+e−ip+z + r−−e−ip−z

(21)
of two couples of plane waves with wave numbers sat-
isfying equations (12) and (13) and propagating for z ≥ 0
with two different phase velocities. The eight ampli-
tudes t±±, t±∓, r±±, and r±∓ in this equations are
to be determined from boundary conditions and hence
depend on the initial spin state, which is dictated, in
particular, by the angle γ . Owing to equations (14) and
(15) not all wave amplitudes are independent, but linked
by pairs t−+ = t++ tan(γ /2), t+− = −t−− tan(γ /2), r−+ =
r++ tan(γ /2), and r+− = −r−− tan(γ /2). The first two terms
in equations (20) and (21) correspond to the propagation of
the (transmitted) waves from the front surface into the depth
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Figure 2. Kinematics of polarized neutron reflection. Owing to the
invariance with respect to the lateral shift κf = κ i = κ , pf = pi =
p0, and αf = αi = α. The wave vector component normal to the
surface is split in magnetic medium due to the Zeeman effect.
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of the medium. The second couple describes the propagation
in the opposite direction, for example, waves reflected from
the substrate in the case of the film with finite thickness.
For semi-infinite media the latter waves are absent and one
should set r±± = r±∓ = 0. Then each of the transmitted spin-
wave components has to be matched with the corresponding
one in free space. For neutrons initially polarized as shown
in Figure 1 the spin component with positive spin projection
is due to NSF reflection, while those with negative projection
may appear due to SF reflection, and for z ≤ 0 one has:

�+(z) = eip0z + r++e−ip0z (22)

�−(z) = r−+e−ip0z (23)

If neutrons are initially polarized opposite to the guiding
field, then

�+(z) = r+−e−ip0z (24)

�−(z) = eip0z + r−−e−ip0z (25)

Matching at z = 0 the spin components of the wave function
from equations (20) and (21) and their derivatives with
the corresponding quantities from either equations (22)
and (23), or from equations (24) and (25) one readily
obtains a set of equations for the transmission and reflection
amplitudes:

t++ − t−− tan
γ

2
= 1 + r++ (26)

t++ tan
γ

2
+ t−− = r−+ (27)

p+t++ − p−t−− tan
γ

2
= p0(1 − r++) (28)

p+t++ tan
γ

2
+ p−t−− = −p0r−+ (29)

Solution of these equations immediately delivers expressions
for the transmission amplitudes. They can be combined
into the matrix so that for positive initial polarization one
obtains:(

t++ t+−
t−+ t−−

)
=

(
T+ cos2 γ

2 T− sin γ

2 cos γ

2
T+ sin2 γ

2 −T− sin γ

2 cos γ

2

)
(30)

where T± are the Fresnel transmission amplitudes

T± = 2p0

p0 + p±
= 2p0

p0 +
√

p2
0 − p2

n ∓ p2
m

(31)

For alternative initial polarization one should match the
wave function spin component in equations (20) and (21)
with the corresponding ones in equations (24) and (25).

This results in a set of another four equations similar to
equations (26–29)

t++ − t−− tan
γ

2
= r+− (32)

t++ tan
γ

2
+ t−− = 1 + r−− (33)

p+t++ − p−t−− tan
γ

2
= −p0r+− (34)

p+t++ tan
γ

2
+ p−t−− = p0(1 − r−−) (35)

Their solutions can also be collected into a matrix

(
t++ t+−
t−+ t−−

)
=

(
T+ sin γ

2 cos γ

2 −T− sin γ

2 cos γ

2
T+ sin2 γ

2 T− cos2 γ

2

)
(36)

similar to that in equation (30).
Finally, using the equations in the preceding text one

obtains a set of explicit expressions for the SF and NSF
reflection amplitudes completing a reflectance matrix R̂

(
r++ r+−
r−+ r−−

)

=
(

R+ cos2 γ

2 + R− sin2 γ

2 (R+ − R−) cos γ

2 sin γ

2
(R+ − R−) cos γ

2 sin γ

2 R+ sin2 γ

2 + R− cos2 γ

2

)

(37)
In this equation, the amplitudes R± are just eigenvalues
of the matrix R̂ which is diagonal at γ = 0, π . Owing to
equations (26–29) and equations (32–35) R± = RF± , where

RF
± = p0 − p±

p0 + p±
=

p0 −
√

p2
0 − p2

c±

p0 +
√

p2
0 − p2

c±
(38)

are the Fresnel amplitudes of reflection for neutrons ideally
polarized along with, or opposite to the magnetic in-plane
induction in the medium, and the critical wave numbers pc±
are given in equation (19). From equation (38) it immedi-
ately follows that if p0 ≤ pc+ then |R+| = 1 and neutrons
with positive projection of their spins onto the direction
of the sample inductance experience the total reflection. If
p0 ≤ pc− ≤ pc+ then |R−| = |R+| = 1 and neutrons with
alternative spin projection are also totally reflected.

With PNR it is possible to measure independently
the NSF reflectivities R++ = |r++|2, R−− = |r−−|2 and
the SF reflectivities R+− = R−+ = |r±∓|2 which due to
equation (37) are explicitly written as

R++ = 1

4
|R+(1 + cos γ ) + R−(1 − cos γ )|2 (39)
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R−− = 1

4
|R+(1 − cos γ ) + R−(1 + cos γ )|2 (40)

R+− = R−+ = 1

4
|R+ − R−|2 sin2 γ (41)

Often a simplified version of PNR is used which does
not require an analysis of the final spin states of reflected
neutrons. Then the measured quantities are:

R+ = R++ + R+− = |R+|2 cos2 γ

2
+ |R−|2 sin2 γ

2
(42)

R− = R−− + R−+ = |R+|2 sin2 γ

2
+ |R−|2 cos2 γ

2
(43)

while one half of their sum,

1

2
{R+ + R−} = 1

2
{|R+|2 + |R−|2} = R0 (44)

determines the reflectivity R0 of unpolarized neutrons.
From the latter equation it is clearly seen that nuclear and
magnetic reflection potentials can, in principle, be deter-
mined without polarized neutrons. Indeed, the reflectiv-
ity curve R(p0) should show two plateaus. The one at
pc− ≤ p0 ≤ pc+, where one half of unpolarized neutrons are
reflected. The other half is totally reflected at p0 ≤ pc− where
R0 = 1.

In that sense, polarization does not add new insight but
allows an independent determination of |R+| and |R−|. In a
particular case γ = 0, that is when the neutron polarization
is collinear with the magnetization direction,

R++ = R+ = |R+|2, and R−− = R− = |R−|2 (45)

while R+− = R−+ = 0.
PNR also allows to determine the orientation of the in-

plane magnetic induction vector with respect to the neutron
polarization axis fixed in the laboratory coordinate system.
Indeed, owing to equations (42) and (43) the weights of the
positive and negative spin components contributing to the
reflectivities R± is controlled by the angle γ , as illustrated
in the next section.

2.3 Quantum spin state of neutrons

Here we stress again that there exist only two wave
numbers pc+ and pc− of the total reflection indepen-
dent of the angle γ and determined by equation (19).
At low angles of incidence α PNR may show two
plateaus, at which the reflected intensity does not vary
with the wave vector transfer projection Qz = 2p0. At the
first plateau, in accordance with equations (42–43) and
equation (38), the values of R± are determined by the

angle γ , while at the second one R± = 1. Such a behav-
ior is a direct consequence of the splitting of the neutron
quantum spin states in a magnetic field of the reflecting
medium.

In a recent paper, Radu et al. (2005b) have carried out an
experiment which provides direct and unambiguous evidence
that, indeed, two critical angles αc± for the total reflection
exist, corresponding to the R+ and to the R− reflectivity,
respectively:

Q±
c = 2pc± =

√
Vn ± 2m

�2
|µ‖Bs | (46)

The goal was to find a system where the angle between
the neutron polarization and direction of the magnetization
inside of the film can be fixed and controlled. Then the R+

and R− reflectivities were measured to determine whether
the position of the critical edges changes as a function
of the angle γ , or whether the critical edges stay fixed,
and only intensity redistributes between reflections R+ and
R− with change of γ . The easiest way to control the
angle is to rotate the magnetic film and therefore the
magnetization direction with respect to the neutron spin
polarization, which remains fixed in space outside of the
sample. This requires that the film should have a high
remanent magnetization.

As magnetic film, a 100-nm thick Fe layer on a Si
substrate was chosen. The results are shown in Figure 3.
Two characteristics of the reflectivities are observed: first,
the critical edges are fixed and independent of the in-plane
rotation angle of the magnetization vector, and second the
R− intensity continuously increases at the expense of the R+

intensity as a function of the γ angle. The plain experimental
results as well as a detailed fit unambiguously show that the
critical edges Q+

c and Q−
c for total reflection of the two spin

states are fixed and are independent of the orientation of the
magnetization vector in the film, confirming that the neutron
quantum spin states inside of the sample are referred to the
quantization axis parallel or antiparallel to the magnetization
vector.

The fact that the intensities at the first plateaus in Figure 3
depend on γ in accordance with equations (42) and (43)
allows to determine the angle γ , if it is not known in
advance. For that purpose it is convenient to use the
difference,

R+ − R− = {|R+|2 − |R−|2} cos γ (47)

which is directly proportional to cos γ . For the same purpose
one can also use the so-called spin asymmetry:

SA = R+ − R−

R+ + R− = |R+|2 − |R−|2
|R+|2 + |R−|2 cos γ (48)
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Figure 3. Experimental results of reflectivity curves R+ and R− from a 100-nm-thick Fe film on a Si substrate. The reflectivities are
plotted on a linear scale. The two sets of R+ (solid black symbols) and R− (open black symbols) reflectivity curves were measured for four
different angles γ (χ in author’s (Radu et al., 2005b) notations) between the neutron polarization and the film magnetization vector (i.e.,
the magnetic induction B in the sample plane). The dark gray and light gray lines are the simulated R+ and R− reflectivities, respectively.
In panels on the right side, the experimental geometry is shown. The experiment demonstrate that, indeed, the critical edges Q+

c and Q−
c

do not depend on the tilt angle. (Reprinted figure with permission from F. Radu et al., Phys Rev. B Vol. 71, 214423, 2005.  2005 by the
American Physical Society.)

2.4 Phase shift and PNR with total polarization
analysis

One can admit that equations (42) and (43) corresponding to
the reduced version of PNR, as well as the equation for unpo-
larized reflectivity equation (44), contain only absolute val-
ues |R±| of reflectance amplitudes. On the other hand, below
the total reflection edges the wave numbers p± and the ampli-
tudes R± given in equation (38) are complex quantities. The
latter ones can be presented as R± = |R±| exp(iχ±), where
χ± are phases missing in equations (42–44). They, how-
ever, enter the more general equations (39–41) providing at
γ �= 0 an access to interesting phenomena of the interference
between spin states inside a magnetic media.

In order to demonstrate the role of the phases, let us
consider the case when the polarization axis is normal to the
vector of inductance, that is γ = ±π/2. Then R++ = R−−,
R+− = R−+, and reflectivities

R±± = 1

4
|R+ + R−|2

= 1

4
{|R+|2 + |R−|2 + 2|R+||R−| cos χ+−} (49)

R±∓ = 1

4
|R+ − R−|2

= 1

4
{|R+|2 + |R−|2 − 2|R+||R−| cos χ+−} (50)

contain the term, proportional to cos χ+−, where χ+− =
χ+ − χ−. The evolution of the phases χ± and their

difference is sketched in Figure 4(a). For a semi-infinite
magnetic media with purely real nuclear SLD, each of the
phases turns to zero above the corresponding critical edges,
while they reach the maximum value χ± = π at p0 = 0.
As a result, within the window pc− ≤ p0 ≤ pc+ the differ-
ence χ+− = χ+(p0) increases when p0 decreases. In this
range the SF reflectivity, R±∓, also increases and reaches
maximum [1] at p0 = pc−, while the NSF reflectivity, R±±,
decreases, but in a way that their sums R± = R±± + R±∓

stay almost constant at the level of 0.5, as seen in Figure 4(b).
Within the range p0 ≤ pc− ≤ pc+ one has

R±± = cos2 χ+−
2

, and R±∓ = sin2 χ+−
2

(51)

This means that due to the constructive interference between
spin states, NSF reflectivities at p0 → 0 increase and tend
to one, while SF reflectivities vanish because of destructive
interference.

The term containing the phase difference can be separated
from other contributions to PNR just by subtraction:

R±± − R±∓ = |R+||R−| cos χ+− (52)

Therefore, in order to determine both the absolute values
and the phase shift one needs to carry out additional
measurements with different angles between the polarization
axis and the inductance direction.

If neither the angle γ , nor nuclear and magnetic potentials
(for instance, in the case of alloys, or complex compounds)
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Figure 4. (a): Evolution of phases χ+(Qz), χ−(Qz) of reflection
amplitudes R± = |R±| exp(iχ±) and the phase difference χ+− =
χ+ − χ− calculated for reflection from iron. At Qz → 0 the
phases χ± → π . (b): Non-spin-flip (dashed) and spin-flip (dotted)
reflectivities calculated for iron with magnetization turned at 90◦

with respect to the polarization axis. The continuous line shows the
sum R+ = R− = R++ + R+− (middle line in Figure 3). Note the
sharp maximum of spin-flip reflectivities at Qz = Q−

c .

are a priory known, then the parameters can be found via the
fitting of data to the theoretical model. For the semi-infinite
homogeneous sample the nonlinear fitting routine may be
rather stable providing a set of parameters even if only two
reflectivities R± are available. In this case, the phases vary in
a restricted range 0 ≤ χ± ≤ π and are uniquely determined
via, for example, the nuclear and magnetic SLDs.

However, this is not the case for more complicated mag-
netic SLD profiles of interest or even for a single magnetic
film of a thickness d placed onto a non-magnetic substrate. In
the latter case, all the considerations in the preceding text are

valid, and one can easily find the reflection amplitudes R±
just by matching the spin components of the wave functions
at the outer surface and at the interface with the substrate.
This will result in the explicit equation for the reflectances

R± = RF± + RF
s±e2iϕ±

1 + RF±RF
s±e2iϕ±

(53)

Here ϕ± = p±d, RF± are the reflection amplitudes from the
front face of the sample are given in equation (38), and RF

s±
are the Fresnel amplitudes for the neutron wave reflected
from the interface between the film and the substrate

RF
s± = p± − ps

p± + ps

(54)

These equations are similar to equation (38), in which the
incoming wave number in the vacuum p0 is substituted by

p± in the magnetic film, and ps =
√

p2
0 − p2

c is the wave
number of the neutron propagation in the substrate with the
SLD (Nb)c = p2

c /4π .
Traveling through the film from the surface to the substrate

each of the neutron spin-wave components now gains the
phase factor ϕ± = p±d. This leads to interference phenom-
ena manifested in the oscillation of the reflection coefficients
(so-called Kiessig fringes). Such oscillations above the total
reflection region can be recognized in Figure 3 and are due
to the finite thickness of the iron film deposited on a silicon
substrate.

Interestingly such oscillations can be observed (te Velthuis,
Felcher, Blomquist and Wäppling, 2001; Toperverg, Lauter
and Lauter-Pasyuk, 2005a) also in the range pc− ≤ p0 ≤
pc+, if the magnetization is not collinear with the polarization
axis. In this case, they are due to the interference between
different spin components of the neutron wave transmitted
into the film and reflected from the substrate. An example
of such oscillations is given in Figure 5, where SF and
NSF reflectivities are plotted against the wave vector trans-
fer. The experiment (Toperverg, Lauter and Lauter-Pasyuk,
2005a) was carried out on a sample consisting of 57Fe film
deposited on a sapphire substrate with the critical wave num-
ber pc = 8.46 × 10−3Å

−1
. The isotope of iron is chosen due

to the fact, that the nominal value for pc+ = 9.35 × 10−3Å
−1

is close to the value of pc for the substrate, while for the neg-
ative spin projection pc− = i6.13 × 10−3Å

−1
is imaginary.

Hence, the positive spin component can totally be reflected
from the front face of the sample with almost no account
of the interface with the substrate. In contrast, total external
reflection of the negative spin component can only be due to
the substrate optical potential. But this means that at p0 ≤ pc

the negative spin component acquires an additional phase
shift with respect to the positive one. In the particular case
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Figure 5. Pseudoprecession oscillations in SF (triangles) and NSF
(circles) reflectivities recorded from a 57Fe film magnetized per-
pendicular to the neutron polarization vector. (Reproduced from
Toperverg et al., 2005, with permission from Elsevier  2005.)

of complete compensation, that is if pc = pc+ and pc− = 0,
the wave number p− = p0 and p+ = ps . Then, owing to
equation (38) and equation (54) RF− = RF

s+ = 0, while RF+ =
RF

s− = |RF
s−| exp(iχs). Below the total reflection in accor-

dance with equation (53) this yields R+ = exp(iχs) and
R− = exp(2iϕ0 + iχs), where ϕ0 is the phase shift due to
the film, χs is the phase shift due to the substrate, and in
equation (51) χ+− = −2ϕ0 = −2p0d.

In Toperverg, Lauter and Lauter-Pasyuk (2005a) the
authors argue that at such a reflection the vector of the neu-
tron polarization P rotates around the film inductance B

direction for an angle 2ϕ0. This phenomenon is called the
Larmor pseudo-precession.

2.5 Theoretical framework of polarized neutron
reflection from multilayers

From the reflected intensities the potential profile along
the sample normal can be retrieved and hence PNR pro-
vides a tool for layer-by-layer magnetometry (Rücker et al.,
2002). From general symmetry arguments it follows that
equations (39–43) are also valid in the case of any layered
structure with collinearly magnetized layers. In this case,
each amplitude R+ and R− in equations (39–43) can be
calculated with a standard Parratt recursion routine (Par-
rat, 1954), or via the matrix formalism (Born and Wolf,
1975). The net magnetization may certainly make any angle
γ with the direction of polarization analysis. Interface rough-
ness, as it occurs in all realistic samples, is best taken into
account by a large number of infinitely thin slabs of a gradu-
ally varying potential across an interface (Ankner, Majkrzak
and Satija, 1993; Schreyer, 1994), or by assuming a specific

interface profile, as in the Névot-Croce model (Névot and
Croce, 1980).

If, however, the magnetization direction varies as a func-
tion of the z coordinate, for example from layer to layer, then
equations (39–43) are not valid anymore. This is due to the
fact that the reflectivity cannot be characterized by simply
a single angle between magnetization and neutron polariza-
tion vectors (Toperverg, Rühm, Donner and Dosch, 1999)
because of the PNR signal carries an information not only
on the total magnetization direction, but also on its vectorial
depth profile. This can be illustrated by a simple example of
a bilayer with equal layers but with layer inductions B1 and
B2 which make a certain angle γ against each other. Then,
if |B1| = |B2| the net inductance vector B = B1 + B2 is
just the sum of two vectors. However, it is intuitively clear
that the reflectivity is sensitive not only to the direction of
the vector B but also to the order of B = B1 and B2 in a
sequence. Indeed, if for instance, layers are sufficiently thick,
so that neutrons can be totally reflected just from the top
layer, then namely, the top layer magnetization, but not the
net magnetization direction, will determine the reflectivities
at the total reflection range. Well above the total reflection,
the neutron wave penetrates deep into the system and the role
of the bottom-layer magnetization gradually increases for an
elevated angle of incidence. This consideration shows that
for noncollinear structures the angle γ between the polariza-
tion direction and the vector B does not solely determine the
behavior of the reflected intensity. Formally, there also exists
a direction given by the direct product [B1 × B2]. This vec-
tor alters its direction if the layers are interchanged and thus it
is sensitive to the order of the induction vectors in a sequence.

If the direction of the vector B(z) depends on the
z-coordinate, then the way of solving of equations (12) and
(13) given in the preceding text has to be reconsidered.
In the past, several methods were developed to treat this
problem. The earliest matrix formalism was provided by
Blundell and Bland (1992), a generalized matrix represen-
tation has been described by Radu and Ignatovich (1999)
and Rühm, Toperverg and Dosch (1999) have implemented
a so-called Supermatrix formalism (Toperverg, Rühm, Don-
ner and Dosch, 1999), and a comprehensive overview of the
theoretical treatment of PNR has been provided by Fermon
and Menelle (1999).

Usually, in order to analyze experimental data for thin
films and multilayers, theoretical reflectivities have to be
calculated assuming a potential well structure Vij (z) com-
posed of slabs of constant potential with sharp interfaces.
Then a Parratt-type recursion formalism determines all trans-
mitted and reflected amplitudes at each interface. Here
we briefly sketch the Parratt routine adjusted for polar-
ized neutron reflection from a sequence of layers with
arbitrary arrangement of layer magnetization vectors. This,
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so-called superiterative algorithm (Toperverg, 2002a,b) is
better suited for numerical calculations (Kentzinger, Toper-
verg and Rücker, 2003), than those referred to above (Radu
and Ignatovich, 1999; Rühm, Toperverg and Dosch, 1999;
Fermon and Menelle, 1999).

Following the standard procedure let us divide the slab, as
in the preceding text, into slices according to

V̂ (z) =
N∑

l=1

{V̂nl + V̂ml} (55)

where, V̂nl = 1̂Vnl for zl−1 ≤ z < zl and Vnl is the nuclear
optical potential (if the interaction with the nuclear spin is
neglected) of the lth slice, and 1̂ is the unit matrix in the
spin space [2]. The magnetic part of the interaction operator
V̂ml = −µ̂Bl is defined as in the preceding text.

Let us first note, that one can avoid writing down
the Schödinger equation (9) in a particular (laboratory)
coordinate system as a couple of equations (12) and (13),
but instead, represent the solution of equation (9) just above
the surface in the following general form

|ψ0(z)〉 = {eip0z + e−ip0zR̂}|�i
0〉 (56)

where |�i
0〉 is the initial vector of neutron spin states at the

surface, R̂ is the 2 × 2 reflectance matrix transforming spin
components of the incoming wave function |�i

0〉 into the
components of the reflected wave |ψR(0)〉 = R̂|�i

0〉.
In the laboratory coordinate system, an explicit expression

for the elements r±± and r±∓ of the reflectance matrix R̂

and assuming a semi-infinite magnetic sample is given in
equation (37).

The boundary conditions at the interfaces between layers
can be written in a compact form, if one keeps the interaction
potential operator V̂ (z) in equation (9) in the vector form
of equation (55) independent of the coordinate system and
if one applies the algebraic rules of the Pauli operators.
To do so, one should just notice that the vector of states
|ψl(z)〉 inside any layer l can be written via the vector of
initial states |�i(0)〉 in the same way as in equation (56)
|ψl(z)〉 = Ŝl (z)|�i

0〉, where

Ŝl (z) = {eiϕ̂l (z)t̂l + e−iϕ̂l (z)r̂l} (57)

and the matrices t̂l and r̂l take into account the transformation
of the neutron spin-wave components at refraction through
and reflection from the interfaces. Here ϕ̂l(z) = p̂l(z − zl−1)

are the phase matrices, and z0 = 0. The wave number

matrix p̂l =
√

p2
0 − p̂2

cl is diagonal if the quantization axis
is chosen parallel to the vector B l . Then its eigenvalues

pl± =
√

p2
0 − p2

cl± are determined by the critical wave

numbers p2
cl± = 4π(nbnl ∓ nbml), where nbnl and nbml are

the nuclear and magnetic scattering length densities within
the lth layer. The exponents in equation (57) are generally
represented as (Landau and Lifshits, 1977)

e±iϕ̂l (z) = 1

2
{[e±iϕl+(z) + e±iϕl−(z)]

+ (σ̂ bl)[e
±iϕl+(z) − e±iϕl−(z)]} (58)

where bl = B l/|B l| and ϕl± = pl±(z − zl−1). These expo-
nents are also diagonal along with the matrix p̂l .

The transmittance, t̂l , and reflectance, r̂l matrices are,
however, diagonal in the same representation as the matrix p̂l

only for a collinear magnetization arrangement. In general,
the components of those matrices are to be found via the
continuity conditions for the wave function spin components
and their first derivative at subsequent interfaces

|ψl+1(zl+1)〉 = |ψl(zl+1)〉 (59)

|ψ ′
l+1(zl+1)〉 = |ψ ′

l(zl+1)〉 (60)

These conditions together with equation (57) immediately
deliver the following couple of matrix equations

t̂l+1 + r̂l+1 = eiϕ̂l t̂l + e−iϕ̂l r̂l (61)

p̂l+1{t̂l+1 − r̂l+1} = p̂l{eiϕ̂l t̂l − e−iϕ̂l r̂l} (62)

where ϕ̂l = p̂ldl is the matrix of the phase shift gained
over the layer thickness dl . The sequence of these coupled
equations should, as usual, be completed by adding two
more boundary conditions: one for the front interface (usually
vacuum) and a second one for the back interface N (usually
the substrate):

1̂ + R̂ = t̂1 + r̂1 (63)

p0(1̂ − R̂) = p̂1(t̂1 − r̂1) (64)

T̂ = eiϕ̂N t̂N + e−iϕ̂N r̂N (65)

p̂s T̂ = p̂N (eiϕ̂N t̂N − e−iϕ̂N r̂N ) (66)

where the wave number operator in the substrate is denoted
as p̂s .

The set of equations (61–66) look exactly the same as
those (Parrat, 1954) for spinless particles and the only
difference is that each equation is written as a 2 × 2 matrix,
which actually represents four equations for the matrix
elements. However, one may not write them explicitly but
rather use general rules of matrix algebra and directly
solve the system of equations (61–66) for the reflectance
r̂l matrices and transmittance t̂l matrices, including R̂ and T̂ .
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One of the ways to find a final solution is to apply a cus-
tomarily used matrix formalism (Born and Wolf, 1975) and
express each couple of equations (61–62) as one supermatrix
(SM) equation. Then multiplication of supermatrices deter-
mined for each layer results in a global supermatrix, linking
together R̂ and T̂ matrices in equations (63–66). This allows
to express the elements of R̂ and T̂ via the elements of the
global supermatrix.

Despite of a certain elegancy and transparency for the
theoretical analysis, the SM approach is ‘ill-conditioned’
and may cause numerical problems for a large number
and/or large thicknesses of the layers. The source of the
problems is indicated in (Toperverg, 2002a) where instead
of SM formalism a generalization of the Parratt formalism
(Parrat, 1954) was proposed. Such a generalization is based
on the same principles, as the SM routine, although it uses
another algorithm for calculations. The trick is that the matrix
equations (61) and (62) can be immediately solved with
respect to the ratio R̂l = (r̂l t̂

−1
l ) written as

R̂l = eiϕ̂l {(1̂ − p̂−1
l p̂l+1) + (1̂ + p̂−1

l p̂l+1)R̂l+1}
× {(1̂ + p̂−1

l p̂l+1) + (1̂ − p̂−1
l p̂l+1)R̂l+1}−1eiϕ̂l (67)

These equations can easily be solved via recursion proce-
dures, beginning from the values R̂N+1 = 0 and ending by
finally computing the reflectance matrix R̂ = R̂0.

Additionally, one can calculate, if necessary, the transmit-
tance matrices via the recursive solution of the following set
of equations

t̂l+1 = {1̂ + R̂}−1{1̂ + eiϕ̂l R̂le
iϕ̂l }eiϕ̂l t̂l (68)

In this case, the recursion begins with t̂0 = 1̂ and ends
with t̂N+1 = T̂ . Finally, the reflectance matrices r̂l = R̂l t̂l
can also be found via computing the reflectance matrix R̂l

and t̂l . In analogy to the SM approach, this method may
be called Super-Recursion (SR), or Matrix–Recursion (MR)
formalism, because it uses recursion routines for solution
of coupled matrix equations. The SR formalism allows
to compute spin components of the reflectance matrix for
arbitrary orientations between magnetization directions in
subsequent layers.

In the collinear case, all partial reflectance matrices R̂l

can simultaneously be diagonalized along with the total
reflectance matrix R̂ via choosing the quantization axis par-
allel to the sample inductance vector. Then equation (67)
reduces to two unlinked sets of equations: one set for
eigenvalues Rl+ and the other for Rl− of the reflectance
matrices R̂l . Solving these sets of equations one can
express the eigenvalues R± of the reflectance matrix R̂

via the Fresnel reflectance amplitudes RF
l± as given in

equation (38) and phases ϕl± for positive and negative spin
projections onto the inductance direction. An example of
solutions of equation (67) for eigenvalues R± is presented
in equation (53).

2.6 Vector polarization analysis

In an arbitrary coordinate system the reflectance matrix R̂

contains all four elements r±± and r±∓ which are expressed
via the eigenvalues R± and the angle γ as given in
equation (37). As soon as those elements are found, one
can easily compute the NSF and the SF reflection coef-
ficients: R±± = |r±±|2 and R±∓ = |r±∓|2 as it has been
demonstrated in the preceding text in equations (39–41) and
in equations (49) and (50) for a single film. However, as
it was already pointed out, the reflectivity for the system
with noncollinear magnetization arrangement is no longer
characterized solely by the angle γ between the net magne-
tization of the system and the polarization analysis direction.
In particular, a SF signal may occur even at γ = 0 carrying
a signature of noncollinearity.

The kinematics depicted in Figure 1 does not exhaust all
the capabilities of PNR. Indeed, the classical 3D vector of
the neutron polarization P is generally defined as mean value
P = 1

2 〈σ̂ 〉 of the neutron spin operator over spin states in the
neutron beam. In an arbitrary coordinate system, this vector
may have all three Cartesian projections Px , Py and Pz being

nonzero with |P | =
√

P 2
x + P 2

y + P 2
z ≤ 1. In the particular

case sketched in Figure 1, the polarization vector is initially
set along the y axis, and only the projection Py of the final
polarization vector P is assumed to be probed. Two other
undetermined components Pz and Px are, nonetheless, quite
important even in the case of reflection from semi-infinite
media, or a single magnetic film.

This becomes clear if one admits that the polarization
vector of neutrons may not only change its length, but also
change direction precessing around a field direction.

The 1D analysis of the polarization vector, which probes
neutron spin states along only one direction, cannot unam-
biguously distinguish between those processes. Then the
missing information does not allow to uniquely determine
the direction of the vectors B l in complicated noncollinear
structures. In the simplest case covered by equation (37), it
is, for example, not possible to discriminate the tilt angle
γ from γ + π . This can already be seen from the fact, that
equation (37) contains only sin2 γ

2 and cos2 γ

2 , but not sin γ .
The latter determines whether the magnetization vector in
Figure 1 is tilted to the left, or to the right with respect to
the y-axis.

The method of 3D vector polarization analysis has been
invented by Rekveldt (1971) and Drabkin, Okorokov and



Polarized neutron reflectivity and scattering from magnetic nanostructures and spintronic materials 13

Runov (1972) for spin analysis of neutron spin states in the
beam passing through F materials. Later on, the method was
extended to small angle by Okorokov and Runov (2001)
and inelastic neutron scattering by Tasset (2001), while
its application in PNR studies was proposed in Toperverg,
Nikonov, Lauter-Passyuk and Lauter (2001).

Here, we consider the general principles of 3D PNR
analysis which allows to evaluate all three projections of
the outgoing polarization vector by arbitrarily setting the
initial polarization vector. The corresponding consideration
is based on equations for PNR which can be written down
in the tensor form independent of a particular choice of the
coordinate system. Such an opportunity is already provided
by equation (56), where the reflectance matrix R̂ transforms
the spin components of the incoming neutron |�i

0〉 into
the components of reflected wave |ψR(0)〉 = R̂|�i

0〉 in the
immediate vicinity of the surface. In this range, |�i

0〉 is
determined by the spin state of the incident polarized
neutrons and field conditions on its path to the sample.
Observable quantities, for example, spin components of the
neutron flux density, are meant as statistical averages over
the initial polarized neutron states and over the neutron traces
to the sample. Correspondingly, neutrons reflected from the
sample propagate trough the analyzing system to the detector.
The result of this propagation, analysis, and detection is
described by the projection 〈�f

0 |ψR(0)〉 of the reflected
vector of neutron states |ψR(0)〉 onto the vector of states
〈�f

0 | possible due to the analyzing system. The latter is
also a statistical device, and the reflected flux density has
to be considered as a result of statistical averaging of the
probability |〈�f

0 |ψR(0)〉|2 over the states of the analyzing
system and the flight passes taken by the outgoing neutrons.
After all averaging, the measurable reflectivity R is given by
the expectation value

R = |〈�f

0 |R̂|�i
0〉|

2 = Tr{ρ̂f
R̂ρ̂

i
R̂+} (69)

where ρ̂
i and ρ̂

f are the spin-density matrices of incoming
and outgoing neutron states at the sample surface

ρ̂
i = |�i(0)〉〈�i(0)| = 1

2

{
1 + (P i σ̂ )

}
(70)

ρ̂
f = |�f (0)〉〈�f (0)| = 1

2

{
1 + (P f σ̂ )

}
(71)

Here the 2 × 2 density matrices are expanded over a set of
matrices which includes the unit matrix and three orthogonal
Pauli matrices which complete the vector σ̂ . Such the
expansion provides a parameterization of the density matrix
with the incoming 3D polarization vector, P i = bi |P i |, and
the 3D vector P f = bf P f of polarization efficiency. The
unit vectors bi and bf set the directions in which the neutrons

are polarized and analyzed, while the absolute values |P i | ≤
1 and |P f | ≤ 1 show the degree of the incident neutron
beam polarization and efficiency of the analyzing device in
corresponding directions.

Parameterizing the 2 × 2 reflectance matrix R̂ = R(σ̂ ) in
the same manner as in equations (70) and (71) yields an
invariant representation:

R̂ = R + (Rσ̂ ) (72)

via the complex scalar R = 1
2 Tr{R̂}, and the vector R =

1
2 Tr{R̂σ̂ } with three, generally nonzero, complex Cartesian
projections Rx , Ry and Rz. These projections, as well as
the scalar R, can readily be expressed via the (complex)
eigenvalues R± of the matrix R̂ and components of the
(complex) unit vector r = R/

√
R2. The latter determines the

coordinate system in which the matrix

R̂ = 1

2
[(R+ + R−) + (rσ )(R+ − R−)] (73)

is diagonal. One can also recognize that the scalar R and
the length of the vector R are independent of the choice of
the coordinate. They are expressed via the matrix invariants:
the trace (R+ + R−) = 2R and determinant R2 − R2 =
R+R−/4 of the matrix R̂ so, that R2 = (R+ − R−)2/4.

Note that in a collinear magnetization arrangement the
direction of the vector R coincides with that of the induc-
tance. In a more general case, it has all three projections,
for example, normal to the surface, and depends on the
wave vector transfer. Therefore, the reflectance matrix cannot
be diagonalized in any fixed coordinate system independent
of Qz.

One of the advantages of the representation in equation
(73) is that it is invariant with respect to the choice of
the coordinate system. The other is that one can apply
the rules of the Pauli matrix algebra and after substitution
of equations (70–72) into equation (69) and calculating the
traces, one readily obtains (Toperverg, Rühm, Donner and
Dosch, 1999) the following equation for the reflectivity
R = R(P i , P f ) in the invariant tensor form:

R = R(P i
µ, P f

ν ) = R0 + Ri
µP i

µ + Rf
µP f

µ + RµνP
i
µP f

ν

(74)
where summation over repeating indices µ and ν is assumed.
These indices enumerate the Cartesian projections x, y, and
z of the vectors P i , P f , Ri , and Rf as well as of the tensor
Rµν . Equation (74), together with the procedure for the cal-
culation of the four components of the reflectance matrix R̂

(four complex functions R, Rx , Ry , and Rz), totally solves the
problem to compute all NSF, R±± = R(±P i , ±P f ), and
SF, R±∓ = R(±P i , ∓P f ) reflectivities for an arbitrary ori-
entation between the initial polarization and the polarization
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analysis directions, and at any distribution of the magneti-
zation directions across the multilayer stack. Equation (74)
is exact and general. It is also valid for the transmission
coefficient, if one just substitutes the reflectance, R̂, for the
transmittance, T̂ , matrices.

The first term in equation (74) is independent of either
incoming and outgoing polarization and describes the reflec-
tion of unpolarized neutrons. The next two terms are linear
with respect to each of the polarization vectors P i and P f .
Together with the first term they determine the reflectivity
in the cases when either the neutrons are initially polarized
(P i �= 0), but no analysis (at P f = 0) is assumed, or alterna-
tively, polarization due to reflection of initially unpolarized
(P i = 0) neutrons is analyzed. The last term in equation (74)
is bilinear with respect to the vectors P i and P f . It describes
that the contribution of the reflection with the evolution of
the initial polarization vector caused by magnetic interaction.

The form of equation (74) follows from the basic prop-
erties of spin 1/2 particles and can immediately be writ-
ten down without any preknowledge about a magnetization
arrangement in the reflecting system. It uses only the fact
that any scalar function of the spin 1/2 operator, for example,
R̂ = R(σ̂ ) in equation (72), is reduced to a linear function
(Landau and Lifshits, 1977) of σ̂ .

An explicit expression for the coefficients R0, Ri , Rf ,
and Rµν in equation (72) are as follows:

R0 = 1

2
{|R|2 + |R|2} (75)

Ri
µ = �{R∗Rµ} + 1

2
�{[R∗ × R]µ} (76)

Ri
µ = �{R∗Rµ} − 1

2
�{[R∗ × R]µ} (77)

Rµν = 1

2
{|R|2 − |R|2}δµν + �{R∗

µRν}

−1

2
�{R∗Rλ}εµνλ (78)

where δµν is the Kronecker symbol, and εµνλ is the
Levi–Civita tensor. This tensor is totally antisymmetric with
respect to its spatial indices. At first sight the last terms
in equations (76–78) violate the reciprocity principle which
requires the total invariance of the scattering cross sections
with respect to interchange between initial and final states,
that is inversion of the scattering process. Owing to this
requirement it is expected that R+− = R−+. In particular,
one expects no difference placing the spin analyzer in front,
or behind the sample when measuring R±. However, due to
the last terms in equations (76) and (77), which may exist
for noncollinear structures, the first version of the reduced
polarization analysis measures reflectivities R0±, while the
second version provides R±0 �= R0±. From equations (78)

and (74) it is also evident that R+− �= R−+ if P i is not
collinear with P f and with the sample magnetization.

Here it is important to recall that polarization and magne-
tization are pseudovectors which are odd in time, changing
sign at time reversal as well as at inversion of the coor-
dinate system. Therefore, the reciprocity principle includes
alternation of the magnetization directions in all layers if
the initial and final neutron states (including spin states) are
interchanged.

The role of the last two terms in equations (76) and
(77) can be illustrated by the simplest example of 1D
polarization analysis with P i and P f parallel with the y-axis,
as considered in the preceding text. In this case, the set of
equations (74) and (78) reduces to the following form

R = 1

4
{|R + Ry |2(1 + P i

y)(1 + P f
y )

+|R − Ry |2(1 − P i
y)(1 − P f

y )

+|Rx − iRz|2(1 + P i
y)(1 − P f

y )

+|Rx + iRz|2(1 − P i
y)(1 + P f

y )} (79)

From this equation it follows that at ideal polarization, that
is at P i

y = ±1 and P
f
y = ±1 the difference between R+−

and R+− is solely due to the term Rz which appears due to
noncollinearity in the layer magnetization arrangement.

In the collinear case, the set of equations (75–78) is
substantially simplified. In particular, the two last terms
in equations (76) and (77) vanish, which distinguish the
chirality in the sequence of the layer magnetization vectors.
Finally the set of equations (75–78) can be represented via
the eigenvalues R± of the reflectance matrix

R0 = 1

4
{|R+|2 + |R−|2} (80)

Ri
µ = Rf

µ = bµ

4
{|R+|2 − |R−|2} (81)

Rµν = 1

4
{(|R+|2 + |R−|2)bµbν + 2�(R∗

+R−)(δµν − bµbν)

+2�(R∗
+R−)εµνλbλ} (82)

and the projections of the unit vector b pointing in the
direction of the net inductance. The first two contributions
to the reflectivity, which are due to equations (80) and (81),
are symmetric with respect to the interchange of P i and
P f . The tensor Rµν in equation (82) is decomposed into
three orthogonal tensors of different symmetry. The first two
terms are symmetric with respect to the interchange of P i and
P f and acting on the projections of the polarization vectors
parallel to b (the first term) and perpendicular (the second
term) to b. The components of the last tensor in equation (82)
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are also perpendicular to b, but this tensor is antisymmetric. It
contributes to the reflectivity only if all three vectors P i , P f

and b are noncollinear. In contrast to all other contributions,
it is sensitive to the sign of b. If for example, the vector
P i has the only component P i

y , while P f is directed normal

to the surface and has the component P
f
z , then this term

is proportional to the product bxP
i
yP

f
z and is sensitive to

the sign of the magnetization projection bx . This allows to
determine whether the magnetization vector in Figure 1 is
tilted to the left, or to the right with respect to the y axis.

The role of chirality is illustrated in Figure 6 where PNR
curves have been calculated for a semi-infinite sample of iron
with the magnetization being tilted by γ = +45◦ (Figure 6a)
and γ = −45◦ (Figure 6b) with respect to the initial polar-
ization directed along the y axis. The final polarization is
analyzed along the z axis normal to the surface. One can
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Figure 6. NSF (solid lines) and SF (dashed lines) reflectivities
from iron with the magnetization tilted by the angle γ = 45◦ (a)
and by the angle γ = −45◦ (b) with respect to the y axis. The
initial polarization oriented parallel to the y axis, while the final
polarization analyzed is along the z axis.

clearly see the interchange between the different components
of the PNR matrix as the angle γ changes sign.

2.7 Kinematics of off-specular scattering

In the consideration in the preceding text, it was assumed
that the surface is laterally infinite and homogeneous. More-
over, we have intentionally ignored the atomic structure
of the magnetic media and introduced the optical potential
expressed via the SLD, the quantity averaged over a scale
much greater than an atomic scale. It is intuitively clear that
those approximations are quite reasonable in the range of
shallow angles of incidence, αi � 1 and reflection αf � 1.
At these conditions the projection Qz = (2π/λ)(sin αi +
sin αf ) ≈ 2π(αi + αf )/λ of the wave vector transfer Q is
much smaller than the reciprocal interatomic spacings. This
justifies the continuous medium approximation in the trans-
verse direction, while a crystalline structure can, if necessary,
be taken into account via subdividing the medium into a set
of atomic scale layers and calculating the reflection coeffi-
cient as described in the preceding text.

If at shallow incidence the lateral projection QL = κf −
κi of the vector Q matches a reciprocal vector τL of the
crystalline structure, then one may observe so-called grazing
incidence neutron Bragg diffraction (GIND) which can, in
principle, deliver valuable information (Dosch, 1993) on the
atomic and magnetic order in the near surface vicinity. We
shall not go into further details of this phenomenon and only
mention that it can be described within the framework of the
DWBA discussed in the subsequent text. DWBA accounts
for optical effects, and in particular, for birefringence of the
incident and diffracted neutron waves inside the magnetic
medium, while small effects due to lateral crystallinity are
treated as a perturbation (Günther, Donner, Toperverg and
Dosch, 1998; Toperverg, Rühm, Donner and Dosch, 1999;
Toperverg, Lauter-Pasyuk and Lauter, 2005b).

Usually the lateral projection λL ≈ λ of the neutron
wavelength λ is comparable to the interatomic spacing, and
GIND occurs at relatively large angles ϑy = ϑB (Figure 7),
where ϑB is the angle determined by the Bragg equations
(4π/λ) sin(ϑB/2) = τ y and (4π/λ) cos(ϑB/2) = τ x via the
projections τ y and τ x of the 2D reciprocal lattice vectors τL.
Zeroth order diffraction at τL = 0 corresponds to specular
reflection, which can be calculated exactly as described in
the preceding text where atomic structure was ignored.

Taking into account specular and Bragg reflections, as well
as scattering from that lateral heterogeneities of SLD, the
cross section of neutron scattering at grazing incidence is
conveniently written as a sum of three terms

dσ

d�
=

(
dσ

d�

)
spec

+
(

dσ

d�

)
off−spec

+
(

dσ

d�

)
diffuse

(83)



16 X-Ray and neutron diffraction techniques

X

−Z

Y

pi

pf

ki

kf

ki

ky

kx

ai af

qy

Figure 7. 3D scattering kinematics.

(
dσ

d�

)
spec

= SR

Q2
z

4
R(Qz)δ(Qx)δ(Qy) (84)

(
dσ

d�

)
off−spec

= SR

∑
τ �=0

F(pi
0, p

f

0 ; τL)δ(Qx − τx)

× δ(Qy − τ y) (85)

Here the first term is the cross section of the specu-
lar reflection expressed via the reflection coefficient R =
R(Qz; P i , P f ), the second term corresponds to off-specular
Bragg diffraction and contains a combination F(pi

0, p
f

0 ; τL)

of structure factors and form-factors. In the Born approxima-
tion it depends on the wave vector transfer Qz = p

f

0 − pi
0,

while in DWBA it is a function of two separate variables
pi

0 = k sin αi and p
f

0 = k sin αf . The last term in equation
(84) stands for off-specular diffuse scattering which is due
to random domains, roughness and so on, and will be thor-
oughly discussed later.

The normalization factors in equation (84) can be checked
via the sum rule: the integral over the solid angle has to be
equal to the sample area SR illuminated by the neutron beam.
In accordance with the previous consideration, below the
critical angle of incidence R = 1 and all neutrons impinging
onto the sample should be specularly reflected [3].

We shall here not further calculate the second term in
equation (83) for diffraction from atomic structures (Günther,
Donner, Toperverg and Dosch, 1998; Toperverg, Rühm,
Donner and Dosch, 1999; Toperverg, Lauter-Pasyuk and
Lauter, 2005b), but instead consider GIND from laterally
nano-patterned layered systems (Toperverg et al., 2000). In
this case, the lateral spacing is assumed to be much larger
than the interatomic distances [4] and GIND contributes to
the range of angles ϑy � 1. Then, at αi � 1 and αf � 1
the Cartesian projections of the the wave vector transfer can
be approximated as follows

Qx ≈ π

λ
(α2

i − α2
f − ϑ2

y) (86)

Qy ≈ 2π

λ
ϑy (87)

Qz ≈ 2π

λ
(αf + αi) (88)

From this equation it follows that at αi ∼ αf ∼ ϑy � 1 the
projection Qx � Qy ∼ Qz.

In the low angle approximation the δ−functions, which
determine the Bragg peak positions in equation (85), read

δ(Qy − τ y) = λ

2π
δ(ϑy − ϑB) (89)

δ(Qx − τ x) = λ

2παB

{δ(αf − αB) + δ(αf + αB)} (90)

ϑB = ±λτy/2π (91)

αB =
√

α2
i − ϑ2

B ± λτx/π (92)

where the first term in equation (90) corresponds to reflection
into the upper hemisphere, while the second one describes
reflection below the horizon. Equation (92) determines two
branches of GIND, which can exist at α2

i ≥ ϑ2
B ± λτx/π .

In a particular case τ y = 0 these branches can be observed
at low angles αf ∼ αi � 1 only for the systems with very
large spacing a ∼ λ/α2

i , typically from micrometer up to
submillimeter range. For such huge spacings the term ϑ2

B

in equation (92) does not play a role and can safely be
neglected, except for the case when the period in the y direc-
tion is by 3–4 orders of magnitude smaller than that along
the x axis. In fact, Bragg reflection can also be observed at
low αB if neither one of the two periods is large enough to
be detected. This is achieved (Toperverg et al., 2000; Theis-
Bröhl, Schmitte, Leiner and Zabel, 2003; Theis-Bröhl et al.,
2003) by turning the 2D lattice around the sample normal
so that the projection τx of the reciprocal vector τ becomes
sufficient to fit the position of the Bragg peak at αf = αB

into the accessible window of detected angles.

2.8 Coherence volume and resolution

It is worth to note that both specular and Bragg reflection
are essentially coherent phenomena. They both result from
the constructive interference of neutron waves scattered at
different points of the sample in either specular, or Bragg
directions. Scattering in all other directions is suppressed
by destructive interference. Such a description assumes that
scattered waves are due to the incident monochromatic plane
wave which determines their phase relationship. On the other
hand, the neutron source is an incoherent device randomly
emitting polychromatic neutron waves diverging from dif-
ferent points in the source volume at uncorrelated moments
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in time. Observables, for example, scattered flux density,
polarization, and so on, are the result of the statistical
averaging of the corresponding quantum-mechanical quan-
tities over neutron emittance events. Further devices of the
experimental set up, for example, monochromatization and
collimation systems select those events with close phases of
emittance so that statistical averaging does not totally elim-
inate the interference phenomena. Such a filtering reduces
the statistical source volume to the so-called source coher-
ence volume. It can be considered as a fraction of the source
emitting neutron waves with approximately fixed phase rela-
tionship. The coherence volume is relatively small so that
fronts of irradiated divergent spherical waves at some dis-
tance are almost flat. All this justifies the plane wave approx-
imation used in the theoretical consideration in the preceding
text. It is constrained by residual dephasing which is taken
into account via the resolution function.

An intimate relation between resolution effects and
coherency of the neutron radiation (Sinha, Tolan and Gibaud,
1998) can be illustrated by the following examples. The first
one considers GIND from periodically patterned systems,
while the second one concerns PNR from a multidomain
F film.

If the periods of a lateral pattern in the x and the
y directions are not dramatically different, then due to
resolution effects the low angle kinematics generally does not
render possible to observe diffraction peaks simultaneously
for both angles ϑy and αf . Instead, Bragg angles can
be resolved only for the x direction, while in the other
direction the Bragg condition is obscured by resolution
effects. The uncertainty �Qy ∼ (2π/λ)�ϑy is mainly due to
the angular divergence �ϑy in the y direction, where rather
relaxed collimation of the beam is usually provided. The
uncertainty �Qx is mostly due to the finite collimation �αi

and finite resolution in detection �αf . It can roughly be
estimated as

�Qx ∼ π

λ

√
(αi�αi)2 + (αf �αf )2 � �Qy (93)

A strong asymmetry in the lateral resolution implies a strong
anisotropy of the area from which a coherent scattering
can be observed. This coherence area [5] is substantially
extended along the x-axis for a distance lx ∼ 1/�Qx , while
it is relatively short in y-direction in which it is estimated
as ly ∼ 1/�Qy � lx . If the period of the lateral structure
a � lx , then the coherence area may comprise a number
of unit cells along x axis, but very few, or even none
along the y axis, if ly ∼ a. Interference of neutron waves
will then result in strong Bragg reflections only at αf = αB

and a smooth line shape along ϑy . The latter is determined
by the incident beam collimation in the corresponding
direction.

Usually the coherence area covers only a small fraction of
the sample surface illuminated by the neutron beam. There-
fore, an experimentally recorded (specular and off-specular)
Bragg reflection is actually an incoherent sum of intensities
coherently reflected from different small areas of the sample.
It is often silently assumed that the sample is homogeneous
over its total surface so that the reflection coefficients from
different parts of the sample, alias different coherence areas,
are identical. Then incoherent summation over these areas
results in the sample area SR in equations (84) and (85).
This, however, is not always the case, as can be seen from
examples depicted in Figure 8. The first illustration shows
two orientations of a lateral stripe array. If the stripes are
running along the y axis, then one can observe both: specular
reflection, and off-specular Bragg peaks. Rotating the sam-
ple around its normal efficiently increases the lateral spacing
and the Bragg peaks approach the position at the origin. They
finally become unresolvable from the specular reflection. At
this point, the coherence area may comprise only one stripe,
and each of them as well as the interstripe spaces contribute
independently to solely specular reflection.

Another typical situation refers to reflection from a con-
tinuous magnetic film broken into a multidomain state as
illustrated in Figure 9. If the domains are larger than lx � ly ,
as assumed in Figure 9(a), then each of the domains reflects
independently. The reflectivity has to be calculated for differ-
ent magnetic domains with different magnetization vectors
and finally averaged over all possible domain orientations.
Such averaging would not affect the intensity of unpolarized
neutron reflection, while only PNR delivers an information
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Figure 8. Illustration of the coherence anisotropy. Bragg diffrac-
tion can be detected if the coherence ellipse covers a number of
stripes (a). Alternatively, each stripe and interstripe spacing con-
tributes to specular reflection and respective intensities are added
incoherently (b).
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Figure 9. Sketch of lateral magnetic domains with magnetization
directions indicated by arrows. In (a) the two large domains are
bigger than the coherence area. In most cases, the coherence ellipses
are displayed within only one domain, in a few cases the ellipse
may cross a common boundary between two of them. In (b) each
coherence ellipse covers several domains.

on the magnetization distribution over the reflected sur-
face. Hence, averaging equation (48) one obtains an equation
which can be used to find the mean value 〈cos γ 〉 from
measurements of the spin asymmetry. This mean value is
proportional to the mean magnetization projection onto the
polarization analysis axis but it does not allow to discrimi-
nate between coherent rotation of the net magnetization for
the angle γ and the magnetization reduction due to random
domains. For example, SA cannot distinguish between totally
demagnetized state and rotation of magnetization perpen-
dicular to the polarization direction, because in both cases
〈cos γ 〉 = 0. More certainty can be gained via full 1D-PNR,
that is measuring NSF and SF reflectivities. Indeed, averag-
ing of equations (39–41) gives access not only to the mean
value 〈cos γ 〉, but also to the mean square 〈sin2 γ 〉. The lat-
ter is proportional to the mean square of the magnetization
vector projections onto the x−axis. Correspondingly, one
can determine 〈cos2 γ 〉 = 1 − 〈sin2 γ 〉. In case of a random
distribution of domain magnetization directions the disper-
sion � = 〈cos2 γ 〉 − 〈cos γ 〉2 �= 0 is essentially positive. It
reaches a maximum value �max for the totally demagnetized
state. In contrast, coherent rotation of the magnetization vec-
tor yields � = 0. If at the same time 〈cos γ 〉 = 0 than sample
is in a single-domain state, but with magnetization turned
perpendicular to the polarization axis.

As mentioned previously, the 1D polarization analysis can-
not distinguish between right and left tilt of the magnetization
vector and it is not possible to unambiguously discriminate
between rotation of the net magnetization by an angle γ and

a multidomain state in which the domain magnetization is
equally turned by the angles ±γ . This uncertainty is cured
by the vector polarization analysis. Owing to the tensorial
form of equation (74), corresponding averaging over domain
magnetization can easily be performed. Then the limitation
of equation (74) is only related to the ratio between charac-
teristic domain sizes and the coherence length. If domains
are smaller than the coherence lx , but still much larger than
ly � lx as sketched in Figure 9(b) then the neutron wave is
not only reflected from and transmitted through the mean
optical potential, but also scattered in off-specular directions
αf �= αi . This scattering may be either coherent, as in the
case of periodic domain structure, artificial regular patterns
and so on, or diffuse, if the domains are randomly distributed
over the surface. In all cases, if such scattering is experi-
mentally detected, it serves as a direct evidence in favor of
inhomogeneities smaller than lx . On the other hand, such
inhomogeneities, either periodic, or random, also affect the
specular reflection reducing the mean value of the reflection
potential.

2.9 Cross section of polarized neutron scattering

At shallow incidence angles off-specular scattering, either
coherent Bragg reflections or diffuse scattering from lateral
inhomogeneities, is usually a much weaker effect than spec-
ular reflection. Therefore, it is usually considered within the
framework of the perturbation theory as a small correction to
the exact solution of the Schrödinger equation for the mean
optical potential derived in the preceding text. In most cases,
it is sufficient to truncate the perturbation series for the scat-
tering amplitude and take into account only the linear term
with respect to the perturbation potential. Such truncation is
accomplished either in the Born approximation (BA) or in the
DWBA, thoroughly discussed in the next subsections. Here
we, however, firstly concentrate on general and independent
approximations of the equations for off-specular scattering
cross sections of polarized neutrons.

Considering a layered systems with a sequence of N layers
stacked in the z direction which, in addition, exhibits some
lateral inhomogeneity such as a periodic stripe or random
domain pattern we decompose the interaction potential in
each layer l into two parts

V̂ (ρ) =
N∑

l=1

{V̂l + �V̂l(ρ)} (94)

Here the main term, V̂l = 〈V̂l(ρ)〉coh, is independent of the
lateral coordinate vector ρ, homogeneous across each layer
and contributes only to specular reflection and transmission.
The choice of the reference potentials V̂l is constrained
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by the condition that after lateral averaging 〈�V̂l(ρ)〉coh =
〈V̂l(ρ) − V̂l〉coh = 0. A benefit of such a choice is that it
allows to eliminate a contribution to the cross section of
specular reflection of the terms linear with respect to �V̂l(ρ).
This contribution may cause rather undesirable corrections
to the reflectivity which has already been calculated in the
preceding text exactly. The terms proportional to �V̂l(ρ) =
�V̂ N

l (ρ) + �V̂ M
l (ρ), where �V̂ N

l (ρ) and �V̂ M
l (ρ) refer to

deviations in nuclear and magnetic potentials, are regarded
as perturbations to the main potential V̂l = 〈V̂ N

l (ρ)〉coh +
〈V̂ M

l (ρ)〉coh and cause scattering into off-specular directions.
Magnetic off-specular scattering, which is due to the

potential deviations �V̂ M
l (ρ) = −µ̂�B l (ρ), may change the

spin state of the incident neutrons, while nuclear scattering
leaves them unchanged. Hence the scattering amplitude F =
F(ki , kf ) is represented by the matrix element

F(ki , kf ) = 〈�i
0|F̂ (ki , kf ; σ̂ )|�f

0 〉 (95)

of the 2 × 2 amplitude matrix F̂ = F̂ (ki , kf ; σ̂ ).
This matrix, as any 2 × 2 matrix, can formally be decom-

posed over the orthogonal set of Pauli matrices so that

F̂ = F0 + (σ̂F ) (96)

Explicit expressions for the scalar, F0, and the vector, F ,
components of the scattering amplitude in BA and DWBA
are given in corresponding sections in the subsequent text.
Here we just mention, that in BA F0 is due to the nuclear
scattering amplitude, while F corresponds to the magnetic
scattering amplitude. In DWBA such clear separation of
nuclear and magnetic contributions does not hold anymore.

The expansion in equation (96) allows to readily perform
an averaging over spin states of the scattering cross section
determined by the equation

dσ

d�
= Tr{ρ̂f

F̂ ρ̂
i
F̂+} (97)

which is similar to equation (69).
Substitution of equation (96) and equations (70) and (71)

for the density matrices ρ̂
i and ρ̂

f into this equation immedi-
ately results in the expression for the scattering cross section,(

dσ

d�

)
= �0 + �i

µP i
µ + �f

µP f
µ + �µνP

i
µP f

ν (98)

with the tensor structure being identical to that of
equation (74) for the reflection coefficient, if one substitutes
the scalar R0 by �0, the vectors Ri,f in this equation by �i,f

and the tensor Rµν by tensor �µν of scattering cross section.
These quantities can be expressed via bilinear combinations
of the scalar amplitude F0 and projections of the amplitude

vector F in the same way as R0, Ri,f and Rµν are expressed
in equations (75–78) via bilinear combinations of the scalar
R and projection of the vector R. Resulting equations can be
used to describe (Toperverg, Nikonov, Lauter-Passyuk and
Lauter, 2001) off-specular scattering for arbitrary orienta-
tion between directions of incident polarization vector P i

and the vector of polarization analysis P f . These equations
are absolutely general and exact. They do not assume any
approximations and only exploit the fact that the neutron
magnetic moment is associated with its spin 1/2. In par-
ticular, they apply either for BA and DWBA providing in
the following sections explicit expressions for four complex
amplitudes F0, Fx , Fy , and Fz.

In the most common particular case of a 1D polarization
configuration, that is when the incident polarization vector P i

is directed along the y axis and the only projection P
f
y of the

outgoing neutron polarization onto the same axis is analyzed,
the equation for scattering cross section boils down to the
following set of equations for SF and NSF cross sections:

(
dσ

d�

)++

yy

= �0 + �i
y |P i

y |

+ �f
y |P f

y | + �yy |P i
y ||P f

y | (99)(
dσ

d�

)−−

yy

= �0 − �i
y |P i

y | − �f
y |P f

y |

+ �yy |P i
y ||P f

y | (100)(
dσ

d�

)+−

yy

= �0 + �i
y |P i

y |

− �f
y |P f

y | − �yy |P i
y ||P f

y | (101)(
dσ

d�

)−+

yy

= �0 − �i
y |P i

y | + �f
y |P f

y |

− �yy |P i
y ||P f

y | (102)

Four cross sections �0, �i
y , �

f
y , and �yy in this set of

equations are expressed via various products of four com-
ponents of the scattering amplitude matrix F̂ parameterized
in equation (96):

�0 = 1

2
{〈|F0|2 + |Fy |2 + |Fx |2 + |Fz|2〉} (103)

�i
y = �〈F ∗

0 Fy〉 + 1

2
〈[F ∗

z Fx − F ∗
x Fz]〉 (104)

�f
y = �〈F ∗

0 Fy〉 − 1

2
〈[F ∗

z Fx − F ∗
x Fz]〉 (105)

�yy = 1

2
{〈|F0|2 + |Fy |2 − |Fx |2 − |Fz|2〉} (106)
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The set of equations (99–102) solves the problem of aver-
aging over spin states separating quantities characterizing a
scattering system from instrumental parameters, that is the
polarization efficiencies. Indeed, the system of four linear
equations (99–102) can easily be solved providing expres-
sions for �0, �i

y , �
f
y and �yy via combinations of four

experimentally measured quantities: two NSF and two SF
scattering cross sections. Furthermore, the set of equations
(103–106) links together scattering amplitudes calculated
below in BA and DWBA for various physical models with
experimentally measured cross sections.

On the other hand, the set of equations (103–106) for
1D polarization analysis does not provide all the scope of
information which can be gained with polarized neutron off-
specular scattering. This is already seen from the fact that
equations (103–106) contain seven, generally independent,
products of different complex functions F0, Fx , Fy , and Fz

averaged over beam divergency, as well as over possible
disorder (domains, roughness, etc.) in the sample. The
missing information is, however, available with the complete
3D vector polarization arrangement. Such arrangement would
allow to measure all 36, instead of four cross sections in
equations (103–106). Aligning P i and P f collinear with
either x or the z axis one can measure eight additional
NSF and SF cross sections diagonal with respect to the
Cartesian indices. Another 24 cross section, non-diagonal
with respect to x, y and z indices can be measured by
setting polarization analysis axis perpendicular to the initial
ones. The latter cross sections are not independent and linked
via the reciprocity principle. Finally 20 measurable cross
sections are, in principle, available altogether to recover all
16 cross sections in equation (98), for example, the scalar
�0, six components of two 3D vectors �i

µ and �
f
µ, as well

as nine components of 3D tensor �µν of the second rank.
These quantities determined as functions of the incoming
and outgoing wave vectors contain all physical information
which can be extracted from 3D vector polarization analysis.
In the following sections we, however, mainly restrict our
consideration to 1D polarization analysis as being well in
use in the last decade.

2.10 Off-specular scattering in the Born
approximation

In this subsection we, for introductory purpose, concentrate
on the most simple approach, that is BA, often used for the
description of off-specular scattering of polarized neutrons.
In BA optical effects, for example refraction into the mean
potential and birefringence due to magnetic interaction are
completely ignored. Hence BA is supposed to be valid only
far away from the total reflection condition for the incident

and scattered neutron waves. Therefore, in case of PNR, BA
misses some important polarization effects and may even
lead to confusions in the data interpretation. On the other
hand, BA allows a simpler discussion of many issues which
are common for both BA and DWBA. One of those issues
is the general dependency of scattering cross sections on
polarization vectors as discussed in the previous section.

In BA the amplitude matrix F̂ (ki , kf )=FN(Q)+F̂M(Q)

in equations (95–97) is a sum of the unit matrix of nuclear,
FN(Q), and the matrix of magnetic, F̂M(Q), scattering.
These amplitude matrices in BA depend on the wave vector
transfer Q = kf − ki and taking into account equation (94)
are written as follows:

F̂ N,M(Q) = − m

2π�2

∑
l

∫ zl

zl−1

dz eiQzz

×
∫

dx dy ei(Qxx+Qyy)�V̂
N,M
l (ρ) (107)

where Q has the lateral, Qx and Qy , and transverse, Qz =
pi

0 + p
f

0 , components, pi
0 = (2π/λ) sin αi is the incoming,

while p
f

0 = (2π/λ) sin αf is the scattered wave vector
projection into the normal to the surface.

In BA the first term, F0 = FN(Q), in equation (96) refers
to the nuclear scattering amplitude, while F = bFM(Q)

is associated with the magnetic scattering amplitude, and
b = �B(Q)/|�B(Q)| is the unit vector. The scattering
amplitude vector F is almost totally displayed within the
surface plane. This is due to the fact that in accordance
with the Maxwell equations B(Q) ⊥ Q and the vector Q

at glancing angles of incidence and scattering is pointing
nearly perpendicular to the surface.

The first terms in equation (103) and equation (106) are
responsible for purely nuclear scattering. The three other
terms in these equations, as well as the last terms in
equation (104) and equation (105) correspond to purely mag-
netic scattering, while the first terms in the latter equations
describe interference between magnetic and nuclear scat-
tering. In BA, Fz ≈ 0 and therefore the last terms in
equations (103–106) can be neglected. Note, this is not the
case in DWBA where they may play a role.

The angular brackets in equations (103–106) denote the
averaging over the resolution function and hence account
for the coherence properties of the neutron radiation. These
properties reveal such a strong anisotropy (see, Figures 8
and 9) that even in the case of a pinhole collimation,
off-specular scattering in x direction probes lateral length
scales exceeding those accessible in the y direction by
several orders of magnitude. Moreover, PNR experiments
usually use slit-like collimation in z direction, providing
simultaneously fine resolution in the Qx component of the
wave vector transfer. On the other hand, almost all neutrons
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scattered from large-scale lateral inhomogeneities in the y

direction are scattered under unresolved angles. Therefore
equation (98) for the scattering cross sections should be
integrated over ϑy and each term in equations (103–106)
is then expressed via the following correlator of the Born
partial amplitudes:

〈F ∗
µFν〉 = λ

∫
dyF ∗

µ(Qz, Qx; y)Fν(Qz, Qx; y) (108)

Here µ and ν stand for x, y, z, or 0, and

Fµ(Qz, Qx; y) =
∑

l

1

2π

∫
dQyeiQyyF

µ
l (Q) (109)

is the Fourier transform of the corresponding component of
the scattering amplitude averaged over Qy .

Deviations �V̂ N
l (x, y) in the nuclear scattering poten-

tial in equation (107) are determined by deviations
�(Nb)Nl (x, y) in nuclear SLDs (Nb)Nl (x, y) from its mean

value (Nb)Nl . Decomposition of the SLD into the mean
value and deviations is sketched in Figure 10 for the case
of a single patterned layer deposited onto a substrate, as
depicted in Figure 8. An explicit equations for the amplitude
of nuclear scattering from periodic gratings are given in
Appendix A. In a more general case of a 2D lateral structure,
one can consider the SLD profile in Figure 10 as taken for
a fixed y coordinate, bearing in mind that the size of the
structural elements along the y axis is much greater than
the corresponding width of the coherence ellipsoid [6] in
Figure 8.

The particular form of equation (108) is essentially based
on the incomparability of coherence ranges in the x and y

Nb (x)

Qx = 0

Qx = 2π/a

〈 Nb (x) 〉

∆Nb (x)

Z

Z

Z

X

X

X

a1 a2
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=

+
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Figure 10. Decomposition of the SLD lateral pattern into a mean
layer SLD 〈Nb〉 (contributing to specular reflection) and SLD
deviations �Nb(x), responsible for off-specular diffraction.

direction. In fact, the coherence length in the y direction
is totally ignored, while in the x direction it is assumed to
be very large. If the latter goes to infinity, in the case of
nuclear scattering from grating with a period a (see Appendix
A) one has the following equations for the first terms in
equations (103–106)

〈F ∗
0 F0〉 = λ

∫
dyNxF(Qz, Qx; y)

2π

a

∑
τ

δ(Qx − τ )

(110)
Here Nx = Nx(y) is the number of structural elements and
τ = 2π/a in the x direction at fixed y coordinate, while

F(Qz, Qx; y) =
∣∣∣∣∣
∑

l

F z
l (Qz, y)FL

l (Qx, y)

∣∣∣∣∣
2

(111)

with explicit equations for the transverse, Fz
l (Qz, y), and

lateral, FL
l (Qx, y), components of the stripe form-factor

given in Appendix A.
In the example of the periodic stripe array sketched in

Figure 8 all the functions are independent of the y coordinate
and the integral in equation (110) is equal to the length Ly of
the sample in the y direction, while the product LxLy = S
yields the area factor S in equation (85), where Lx = Nxa

is the length of the sample in the x-direction. Owing to the
choice of the scattering potential �V N the contribution of
the term with τ = 0 in the sum in equation (110) vanishes.
Convolution with the resolution function replaces the δ−
by that describes either the line shape of off-specular and
specular Bragg reflections.

Note, that starting from the configuration in Figure 8(a)
and turning the sample around the normal to the surface by
the angle � increases efficiently the spacing a = a0/ cos �,
where a0 = a1 + a2, and decreases τ , that is the distance
between Bragg peaks positioned at Qx = τ . Finally, at � →
π/2 the Bragg peaks merge the specular reflection at Qx = 0.
This effect (Toperverg et al., 2000) will be illustrated in
the subsequent text with experimental results (Theis-Bröhl,
Schmitte, Leiner and Zabel, 2003; Theis-Bröhl et al., 2003;
Theis-Bröhl, 2003). The consideration in the preceding text,
however, does not cover a crossover to the limit when
the corresponding coherence length becomes comparable
with the size of a single structural element as it happens
if � → π/2. Finally, the specular reflectivity is accounted
for as incoherent sum of reflected signals from different
stripes and from interstripe spaces. It is a very difficult
task to accurately pass the crossover from one regime of
averaging to another, while one can match two limiting cases
via a weight function controlling respective contributions of
coherent and incoherent processes into the measured signal.
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Clear discrimination between coherent and incoherent
procedures of averaging is especially important for magnetic
systems. Magnetic off-specular scattering is due to the
potential �V̂ M

l (ρ) = −(µ̂�B l) of neutron interaction with
deviations �B l (ρ) = B l (ρ) − B l of magnetic inductance
B l = B l (ρ) from its mean value B l = 〈B l(ρ)〉coh averaged
over the coherence range. These deviations have to be
classified taking into account the choice of the reference
magnetic potential, that is the absolute value and direction of
the vector B l pointing along the unit vector b

‖
l = B l/|B l |.

An example of such a classification is shown in Figure 11
for the ‘cartoon model’ of magnetization distribution over a
stripe array in the demagnetized state. The reason for this
sort of distribution may be due to the competition between
shape anisotropy of the stripes and the sample. This is
discussed in the subsequent text in more detail, while for
now we concentrate on basic principles of the theoretical
description of specular and off-specular PNR from domain
patterns such as those shown in Figures 9(b) and 11(c). In
the latter figure the stripe magnetization is arranged into two
large domains comprising a number of stripes and separated
by a domain wall (DW) running across the stripes. In one
of the domains the vector B = Bj in each stripe is tilted to
the right by the angle γ j different for even and odd values
of the superscript j enumerating the stripes. In the other
domain the magnetization is tilted to the left with respect
to the shape induced anisotropy directed along the y axis.
The mean inductance B and, correspondingly, the vector b‖

is also tilted to the right in one domain and to the left in
the other domain by the angles γ ≈ ±π/2 as presented in
the middle panel. The net inductance of two domains (in
the particular example it is zero) may be directed along the
y axis, while the alternating vectors of deviations �Bj (x)

are directed along and opposite to the stripes, so that the
angle βj = γ j − γ between directions of vectors Bj and
B alters sign in neighboring stripes, and in Figure 11(c)
βj ≈ (−1)jπ/2. In such a configuration of domains the SF
specular reflections are accompanied by NSF off-specular
Bragg diffraction [7] if the polarization analysis direction
is set along the y-axis. At the same time, the deviation
angles γ j decrease the mean value of the magnetic LSD
(Nb)

M = (Nb)|cos γ j | and the magnetic contribution to the
specular reflection is reduced in favor of the off-specular
Bragg scattering. If, in particular, γ j = ±π , then magnetic
scattering does not contribute to specular reflection at all.

Often the angles βj experience random fluctuations around
the mean values βj by the angles �βj(x, y). Such fluctu-
ations may be caused by defects, structural roughness, or
may develop in a range of parameters where the magnetic
structure becomes unstable and tends to rearrange in a more
stable domain configuration. These fluctuations reduce both
specular and Bragg reflections. By definition the mean value

x

B

B
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Figure 11. Magnetic domains in striped pattern. Arrows in (a)
indicate directions of local inductance B(x, y) within the coherence
ellipsoids. In each stripe it is tilted by an angle γ (x, y) against the y

axis. The wall between two domains is shown by a double dashed
line. Thick arrows in (b) represent the mean domain inductance
B(y) with the tilt angles γ (y). The lateral distribution over stripe
deviations �B(x, y) = B(x, y) − B(y) is displayed in (c).

�βj = 0. However, (�βj )2 �= 0, while fluctuations �βj

may be correlated so that the mean value 〈�βj�βj ′ 〉 �= 0 for
a certain number of neighboring structural elements indexed
by j �= j ′. If these elements are comprised within the coher-
ence length in the x direction, then such fluctuations cause SF
and NSF diffuse off-specular scattering concentrated around
each Bragg peak including the one of zeroth order, that is
specular reflection.

In the counterexample shown in Figure 9 the domain mag-
netization is randomly distributed over the layer plane. Then
diffuse off-specular scattering is centered around Qx = 0 and
its spread over Qx is determined by their mean size. Both,
specular reflection and diffuse scattering may contain NSF
and SF components. It is worth to note that random domains
with dimensions smaller than the coherence length reduce
the mean value (Nb)

M = (Nb)Mcos βj of the magnetic SLD
and the magnetic contribution to the specular and the Bragg
reflections. In particular, the magnetic contribution may van-
ish if cos βj = 0. In this case, random domains mainly scatter
in the off-specular directions.

In layered systems the vector b
‖
l may vary from layer

to layer, hence being not necessarily collinear with the
direction of the polarization analysis, tilted against this
direction by an angle γ l and varying also from one coherence
spot to another along the layer plane. Within each of such
spots the unit vector b

‖
l together with two other orthogonal

unite vectors: b⊥
l ⊥ b

‖
l , chosen within the layer plane, and

b�l = [b⊥
l × b

‖
l ], normal to the surface, determines the local

Cartesian coordinate system. The vector of the inductance
deviations �B l = �B l (x, y) can naturally be expanded over
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the triad of unit vectors so that,

�B l = �B
‖
l b

‖
l + �B⊥

l b⊥
l + �B�

l b�l (112)

where �B
‖
l = (b

‖
l B l ) − (B lb

‖
l ) describes the deviation of the

inductance projection parallel to b
‖
l , while two other terms in

the expansion equation (112) correspond to deviations in the
local induction directions with respect to its mean orientation
within the coherence range. Correspondingly, the scattering
amplitude vector of magnetic scattering in equation (96) can
be decomposed into three components

F (Q) =
∑

l

{F ‖
l b

‖
l + F⊥

l b⊥
l + F �

l b�l } (113)

Here the first term, F
‖
l = (F lb

‖
l ), is due to longitudinal

deviations �B
‖
l . This term, as well as the scalar scattering

amplitude represented as a sum

F0(Q) =
∑

l

F 0
l (114)

of partial scalar amplitudes F 0
l = F 0

l (Q), do not mix neutron
spin states if the quantization axis is chosen along b

‖
l . Hence,

in BA the longitudinal components F
‖
l = F

‖
l (Q), together

with F 0
l = FN

l , which is due to deviations in the nuclear
SLD, is responsible for NSF off-specular scattering if the
polarization analysis direction is set collinear with the vector
b

‖
l . The next two terms in this case mix spin states and create

off-specular SF scattering.
Generally, in magnetically inhomogeneous media the

inductance vector B l = B l(x, y) changes either its direc-
tion and its absolute value in accordance with the Maxwell
equations. However, in many cases of practical importance
the magnetization, and consequently the inductance, are
rather homogeneously distributed over relatively large areas,
as indicated in Figure 11, while changing their values across
relatively narrow regions between those areas. This particu-
larly occurs in continuous films in which narrow DWs sepa-
rate homogeneously magnetized domains (Figure 9). Each
of the latter occupies a substantial volume and, if it is
smaller than the coherence ellipsoid, creates quite powerful
off-specular scattering. Certainly, DWs also scatter neutrons
in off-specular directions. However, this scattering is by sev-
eral orders of magnitude weaker just due to a very small
volume of the sample they occupy. That is why in the first
approximation one can safely neglect the DW thickness, set
|B l| = const and equal in each domain to its nominal value,
and regard continuity conditions for the magnetic flux com-
ponents normal to the wall faces. Note, that owing to the
continuity conditions across the interfaces between layers the
last terms in equations (112) and (113) vanish.

Assuming that the domain magnetization is displayed in
the layer plane one concludes that �B

‖
l = |B l |(cos β

j

l −
cos βl ), while �B⊥

l = |B l | sin β
j

l , and β
j

l = β
j

l (x, y)

describe deviations β
j

l = γ
j

l − γ l in angles γ
j

l = γ
j

l (x, y)

of the domain magnetization from the mean value γ l(y)

averaged over domains within the coherence area. Setting
γ l = γ l(y) as a function of only one, for example, the
y-coordinate, we, actually, apply the same approximation as
in the consideration of nuclear off-specular scattering. This
is valid under the assumption that the long axis of the coher-
ence ellipsoid crosses many domains along the x axis, while
the short ellipsoid axis is smaller than the domain size in
y direction.

Then the amplitudes of magnetic scattering from longitu-
dinal and transverse deviations in BA can be written down
explicitly in a form

F
‖,⊥
l (Qz, Qx; y) = Fz

l (Qz, y)
∑

j

eiQxxj F̃
‖,⊥
lj (Qx, y)

(115)
similar to that of equation (A1), in which the transverse
form-factor Fz

l (Qz, y) is determined by equation (A2) in the
Appendix A.

The lateral distribution of magnetic inhomogeneities is
determined by the functions F̃

‖
lj (Qx, y) and F̃⊥

lj (Qx, y)

which can be represented as Fourier transforms

F̃
‖,⊥
lj (Qx, y) =

∫ aj

0
dx eiQxx�(Nb)

‖,⊥
l (x, y) (116)

of the longitudinal, �(Nb)
‖
l (x, y) = (Nb)Ml (cos βl −

cos βl), and transverse, �(Nb)⊥l (x, y) = (Nb)Ml sin βl

deviation in magnetic SLD. This equation has exactly the
same shape as equation (A3) for the lateral form-factor
FL

lj (Qx, y) of nuclear scattering (see in Appendix A), if one

notices that �(Nb)
‖,⊥
l (x, y) = (Nb)

‖,⊥
l (x, y) − (Nb)

‖,⊥
l (y)

with (Nb)
‖
l (x, y) = (Nb)Ml cos βl(x, y), (Nb)⊥l (x, y) =

(Nb)Ml sin βl(x, y), (Nb)
‖
l (y) = (Nb)Ml cos β(y), and

(Nb)⊥l (y) = 0. Therefore integration in equation (116)
results in equations for F

‖,⊥
l (Qx, y) which immediately

follow from equation (A4) if �(Nb)ml in this equation is
substituted by �(Nb)

m‖,⊥
l , where the index m enumerates

magnetic structural elements in the unit cell along the
x axis.

The magnetic unit cells may be different for longitudi-
nal and transverse deviations and either of them may not
coincide with the nuclear one. In the example sketched
in Figure 11 the integral in equation (116) covers two
stripes, where �(Nb)⊥ = ±(Nb)M | sin βj |, and two inter-
stripe spaces where �(Nb)⊥ = 0, and the unit cell is doubled
with respect to the nuclear one. Longitudinal deviations in
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this case are suppressed due to the flux continuity conditions
and �(Nb)‖ = 0. For random domains drawn in Figure 9 the
structural element coincides with a single domain and both
types of deviations are present.

After the coefficients F
‖
l and F⊥

l in equation (113) are
found one can return to the laboratory coordinate system
and write down explicitly equations

Fx =
∑

l

(F
‖
l cos γ l + F⊥

l sin γ l) (117)

Fy =
∑

l

(F
‖
l sin γ l + F⊥

l cos γ l) (118)

for Fx and Fy , which together with equation (109) and
equation (A1) given in Appendix A for F0 determine cor-
relators 〈F ∗

µFν〉 in equation (108) and finally the scattering
cross section in equation (98).

For the case of a single magnetic layer, the first term in
equation (98) corresponding to the scattering cross section of
unpolarized neutrons is simply a sum,

�0 = 1

2
〈|F 0|2 + |F ‖|2 + |F⊥|2 + |F �|2〉 (119)

of nuclear and all three possible cross sections of mag-
netic scattering. In BA the last term here vanishes, while
the cross sections of scattering on longitudinal and trans-
verse magnetization deviations are given by the equations
which follow from equation (110) for 〈|F0|2〉 if one sub-
stitutes F(Qz, Qx; y) in this equation for F‖(Qz, Qx; y),
or correspondingly, for F⊥(Qz, Qx; y). Equations for
the latter quantities can immediately be obtained from
equation (111) by substitution the respective magnetic form-
factors F

‖,⊥
l (Qx, y), given in equation (116), instead of the

nuclear one FL
l (Qx, y) presented in the Appendix A. The

result can be used to evaluate the part of the scattering cross
section bilinear with respect to polarizations. In accordance
with equation (106) the corresponding equation takes the fol-
lowing shape

�yy = �0 − 〈|Fx |2 + |Fz|2〉 (120)

where the last term in BA is neglected.
In contrast to �0, the term �yy explicitly depends on

the angle γ (y). In principle, this angle can also be deter-
mined by means of a reduced version of PNR, when either
P i �= 0, but P f = 0, that is incident neutrons are polar-
ized, but no analysis of the final spin state is available,
or vice versa, when P i = 0, but P f �= 0. In both cases,
the linear term with respect to P i , or P f in equation (98)
changes sign if the polarization is flipped. Hence interfer-
ence between magnetic and nuclear scattering can readily
be separated from other contributions. Such interference

may contribute into off-specular diffraction if, in accor-
dance to equations (104) and (105), deviations in magnetic
and nuclear SLDs are properly correlated. This, unfortu-
nately, is not the case for the example sketched in Figure 11.
Correlations, indeed take place for components of mag-
netic inductance perpendicular to B. However, according to
equation (A4) presented in Appendix A, the nuclear structure
factor vanishes at the position of the magnetic superstructure
Bragg reflection.

On the other hand, the magnetic structure factor vanishes at
the position where the nuclear structure shows a Bragg peak.
As a result, the interference term, which is proportional to
the real part of the product 〈F⊥(Qx, y)FL(Qx, y)〉, does
not contribute to the Bragg diffraction, as can be seen
in Figure 12(a) and (c). In this figure, the results of the
calculation in BA are represented in the form of maps
of the scattered intensity distribution over the plane with
coordinates pi

0 versus p
f

0 . For the stripe pattern shown
in Figure 11 there are no longitudinal deviations of the
magnetization and the magnetic-nuclear interference term
affects only the specular SF reflectivity seen as a ridge
running along the diagonal in Figure 12(a). The intensity
variation along this ridge is calculated exactly, including all
interference terms, and together with the NSF reflectivity
ridge (Figure 12c) it, in principle, allows the determination
of the angle γ . Other parameters of the model and in
particular, the magnetization distribution over the stripe
array, can be deduced from a quantitative analysis of the
intensity distribution between different Bragg diffraction
bands seen as curved lines in the maps. There is, however,
an appreciable difference between the intensity distributions
as calculated in BA (Figure 12a and c) as compared to
calculations in DWBA (Figure 12b and d). The differences
are visible over a significant area in the maps and are most
pronounced for small pi

0 and p
f

0 . Only at high values of
pi

0 and p
f

0 the results of DWBA collapse to those obtained
in BA. In this range, the scattered intensity is already
reduced due to lateral and transverse form-factors, while
superstructure diffraction bands merge with the specular
ridge. In conclusion, while BA has an applicability range
at high values of pi

0 and p
f

0 , it can hardly be used
for any quantitative evaluation of data taken with PNR.
Moreover, BA may often be misleading even for a qualitative
interpretation of experimental results of specular and off-
specular scattering from magnetization distributions in thin
films and multilayers.

2.11 Distorted wave Born approximation

All general equations which have already been derived
in the preceding text for the polarization analysis (e.g.,
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Figure 12. SF (a and b) and NSF (c and d) scattering intensity distribution over incoming, pi
0 versus outgoing, p

f

0 wave vector components
normal to the surface. Calculations are performed in BA (a and c) and in DWBA (b and d) for the model of a Co/Fe stripe array on a
silicon wafer, as depicted in Figure 11. The stripes have a width of 4.75 µm and a height of 270 Å. They are separated by empty space of
0.25 µm. All panels show SF and NSF specular reflection ridges running along diagonals of the maps at pi

0 = p
f

0 . Sets of Bragg diffraction
bands are seen as bent lines in all panels except for the first one. They approach the specular ridge and decay at elevated values of pi

0

and p
f

0 where BA becomes valid. High intensity bands correspond to magnetic superstructure due to the antiparallel or antiferromagnetic
orientation of the stripe magnetization. Low intensity bands are due to nuclear scattering from the period of the stripe array. Intensity
modulation superposed on the specular ridges and the diffraction bands is due to the height of the stripes. Differences in the period of this
modulation, as well as absence of SF diffraction in (a) is due to the fact that BA ignores refraction in the mean optical potential. This effect
is accounted for in DWBA, as explained in the main text.

equations (98–106)), as well as the discussion concerning
the lateral components of structure- and form-factors (lat-
eral averaging, etc.) remain valid and apply also at shallow
incidence when the optical effects become important. How-
ever, in order to provide a quantitative description of the
experimental situation, the equations for the transverse form-
factors have substantially to be modified. This will, in par-
ticular, result in new polarization effects which are ignored
in BA.

DWBA (Mott and Massey, 1965; Sinha, Sirota, Garoff
and Stanley, 1988) is also based on the decomposition of
the optical potential (equation (94)) into two parts, the aver-
aged optical potential and deviations from the mean. The
deviations from the average optical potential are treated
as perturbations which cause off-specular scattering. How-
ever, the 1D Schödinger equation (9) for the mean potential

averaged over those deviations V̂ (z) = 〈V̂ (r)〉coh, is solved
exactly. The solution |�(r)〉 for layered systems was
found in equations (56–58) in the factorized form |�(r)〉 =
exp(iκxx + iκyy)|ψ(z)〉, where

|ψ(z)〉 =
∑

l

Ŝl (z)|�0〉 (121)

κx = κ
i,f
x and κy = κ

i,f
x are lateral projections of the incom-

ing and scattered wave vectors ki,f and the Ŝl (z) = Ŝ i,f

l (z)

matrices describe the neutron wave propagation inside the lth

layer before and after the scattering event on the deviation
�V̂l of the interaction potential.

The Ŝ matrices exactly account for refraction and reflec-
tion effects in the mean layer potentials, and instead of the
equation for the Born amplitude matrix in equation (107)
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one has to use the DWBA amplitude matrix in the following
form

F̂ (ki , kf ) = − m

2π�2

∑
l

∫ zl

zl−1

dz

∫
dρei(Qxx+Qyy)

× Ŝ i
l (z)�V̂l(x, y)Ŝf

l (z) (122)

Here F̂ (ki , kf ) = F̂ (pi
0, p

f

0 ; Qx, Qy), in contrast to the
BA expression in equation (107) depends not only on the
transverse wave vector transfer Qz = pi

0 − p
f

0 . Owing to
the Ŝ matrices, it depends also on the incoming, pi

0,
and scattered, p

f

0 , wave vector projection normal to the
surface.

The substitution of equation (121) into equation (122)
results in an expression of the DWBA scattering amplitude
matrix,

F̂ (pi
0, p

f

0 ; Qx, Qy) =
∑

l

{F̂ tt
l + F̂ tr

l + F̂ rt
l + F̂ rr

l } (123)

via the sum of four terms corresponding to all possible par-
tial amplitude matrices F̂

τρ
l describing transitions between

neutron wave spin components transmitted into and reflected
from the layer mean potential. These amplitude matrices are
written explicitly as

F̂
τρ
l = − m

2π�2

∫ zl

zl−1

dz âiτ
l eiϕ̂iτ

l (z)�V̂l(Qx, Qy)e
iϕ̂

f ρ
l

(z)â
f ρ

l

(124)
where the indices τ , ρ = t, r enumerate transmission and
reflection matrices so that âit

l = t̂ il , â
f t

l = t̂
f

l are trans-
mittance matrices for incoming and scattered waves,
âir

l = r̂ i
l , â

f r

l = r̂
f

l are corresponding reflectance matri-
ces, ϕ̂

it
l (z) = p̂i

l (z − zl−1), ϕ̂
f t

l (z) = p̂
f

l (z − zl−1), ϕ̂
ir
l (z) =

−ϕ̂
it
l (z) and ϕ̂

f r

l (z) = −ϕ̂
f t

l (z) are phase matrices intro-

duced in equation (57), with p̂i
l =

√
(pi

0)
2 − p̂2

cl and p̂
f

l =√
(p

f

0 )2 − p̂2
cl . In fact, owing to equations (123) and (124)

F̂ τρ is a supermatrix whose elements are composed of 2 × 2
spin matrices.

The DWBA scattering amplitude matrix given in equation
(123), as well as each element of the supermatrix in
equation (124) can be represented in the same manner as was
done in equation (96) for the amplitude matrix in BA. Then
substitution of the result into equation (97) yields a set of
equations for the scattering cross section in DWBA identical
with equations (98–106). In the next step one can use the
expansion of the DWBA amplitude vectors F l over unit
vectors, as it has been done in equation (113) for the case of
BA, and take into account that either transmission–reflection
and phase matrices are diagonal in the representation with the
quantization axis parallel to b

‖
l .

This allows to express the scalars, F 0
l , in equation (114)

and the corresponding components of the DWBA amplitude
vectors F l in equation (113) in the following compact form
(Toperverg, Rühm, Donner and Dosch, 1999; Toperverg,
Nikonov, Lauter-Passyuk and Lauter, 2001)

F 0
l = 1

2
(F++

l + F−−
l ) (125)

F
‖
l = 1

2
(F++

l − F−−
l ) (126)

F⊥
l = 1

2
(F+−

l + F−+
l ) (127)

F �
l = i

2
(F+−

l − F−+
l ) (128)

In these equations the amplitudes

F++
l = F̃ N

l++ + F̃M
l++ (129)

F−−
l = F̃ N

l−− − F̃M
l−− (130)

correspond to nuclear scattering, F̃ N
l±±, and magnetic scatter-

ing, F̃M
l±±, which maintain the neutron spin states after split-

ting in the mean magnetic field in the layer l. The amplitudes
F̃+−

l = F̃M
l+− and F̃−+

l = F̃M
l−+ describe scattering processes,

which mix those states.
Owing to equations (123) and (124) each amplitude F̃

N,M
lµν ,

with µ = ±, ν = ±, is represented by the linear combina-
tion [8]

F̃
N,M
lµν = 1

2

∑
τ ,ρ

af τ
µ F

N,M
lµν (Qτρ

µν, Qx, Qy)a
iρ
ν (131)

of the Born amplitudes F
N,M
lµν (Q

τρ
µν, Qx, Qy). The latter

ones depend on a number of different effective transverse
wave vector transfers Qtt

µν = pi
lµ + p

f

lν = −Qrr
µν , Qtr

µν =
pi

lµ − p
f

lν = −Qrt
µν , relevant to the various matrix ele-

ments between transmitted (τ , ρ = t) and reflected (τ , ρ =
r) waves with, or without intermixing of the spin states.
To shorten the notation for all these wave vector trans-
fers they can be combined in a unique supermatrix Q̂z =
Q

τρ
µν . In equation (131) the amplitudes F

N,M
lµν (Q̂z, Qx, Qy)

are decorated by the corresponding amplitudes of transmis-
sion, ait± = t i± and a

f t
± = t

f
± , into the layer through its front

face, or reflection air± = ri± and a
f r
± = r

f
±, from its back

interface.
The matrix elements FN

l±± describe nuclear off-specular
scattering of either positive or negative spin components
of the neutron wave. They are proportional to the nuclear
SLD contrast fluctuations �(Nb)Nl = (Nb)Nl − (Nb)Nl with

respect to its mean value (Nb)Nl and are mostly due to
the interfacial roughness, or due to artificial patterning. It
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is important to note that FN
l++ �= FN

l−− even though SLD
and the Born amplitude FN

l of nuclear scattering given in
Appendix A are independent of the spin state. This is a direct
consequence of DWBA which describes scattering of neutron
waves whose spin states are split due to the Zeeman effect
in the mean optical potential. Hence their wave numbers
are different. Nuclear scattering, certainly, does not mix
those states.

The amplitudes FM
l±± correspond to off-specular scattering

from longitudinal deviations �(Nb)
‖
l = (Nb)Ml (b

‖
l − 〈b‖

l 〉)
of the projection b

‖
l = (blb

‖
l ) = cos βl of the local vector

bl = bl (x, y) onto the direction of b
‖
l from its mean value

〈b‖
l 〉 = 〈(blb

‖
l )〉 = 〈cos βl〉 averaged over domains within the

coherence range. Scattering from longitudinal magnetic fluc-
tuations also maintains the neutron spin state. Two ampli-
tudes, Fl±∓ = FM

l±∓, are due to fluctuations �(Nb)±l =
(Nb)Ml [(blb

⊥
l ) ∓ i(blb

�
l )] of the field components perpen-

dicular to b
‖
l and correspond to magnetic scattering which

mix the spin states.
Consequently, the calculation in DWBA is reduced to

simply a substitution of the Born amplitudes

F
N,M
lµν (Q̂z, Qx, Qy) =

∫
dr ei(Q̂zz+Qxx+Qyy)�(Nb)N,M

µν

(132)
into equation (131), taking into account that �(Nb)N±± =
�(Nb)Nl , �(Nb)M±± = �(Nb)

‖
l , while �(Nb)M±∓ = �(Nb)±l .

If (blb
�
l ) = 0 then �(Nb)M±∓ = �(Nb)⊥l .

After the DWBA amplitudes have been determined, the
lateral averaging can be accomplished in exactly the same
way as was done for the BA cross sections in the preceding
text. In particular, similar to equation (109) one can define
the Fourier transform of equation (132),

Fλ
lµν(Q̂z, Qx; y) = 1

2π

∫
dQye−iQyyF λ

lµν(Q̂z, Qx, Qy)

(133)
for each of the three amplitudes indexed by the superscript
λ, denoting N , ‖, or ⊥. Then instead of equation (115) and
equation (A1) in Appendix A one has the following set of
equations:

FN
l (Q̂z, Qx; y) = Fz

l (Q̂z, y)
∑

j

eiQxxj FL
lj (Qx, y) (134)

F
‖,⊥
l (Q̂z, Qx; y) = Fz

l (Q̂z, y)
∑

j

eiQxxj F̃
‖,⊥
lj (Qx, y)

(135)
These equations differ from the former ones just by the
argument of the BA transverse form-factor Fz

l (Qz), pro-
vided in equation (A2) of Appendix A and depending

on the transverse projection of the wave vector trans-
fer Qz. In DWBA Qz has to be substituted for one of
the 16 components of the supermatrix Q̂z = Q

τρ
µν . Then

the corresponding results are to be inserted into the
sum equation (131) used to calculate the amplitude com-
ponents determined in equations (125–128), and then in
equations (117–118). The latter finally give access to the
terms of the cross sections determined in equation (98).

The sketched procedure to determine the scattering ampli-
tudes in DWBA appears cumbersome while comprising all
processes of NSF and SF nuclear and magnetic scattering
of neutron waves refracted in and reflected from the mean
optical potential. However, being well structured the proce-
dure can easily be programmed and, as we shall see, allows
to analyze rather complex multilayered systems providing a
wealth of information hardly accessible by other means. The
effects of each step in DWBA (reflection and transmission
amplitudes, birefringence, etc.) can perfectly be classified so
that a qualitative interpretation of prominent features detected
in properly presented raw data can serve as a solid basis for
choosing an adequate theoretical model. The latter, being
further refined via, for example, a least square fit routine,
would then quantify the information contained in the scat-
tering pattern. Some of those distinct features are illustrated
for a few benchmark examples discussed further in the sub-
sequent text.

Before doing so, let us turn back to Figure 12 demon-
strating the role of transmission–reflection factors in
equation (131) for a simple example of a single periodically
patterned film of Co, as sketched in Figure 11. Calcula-
tion carried out in BA (Figure 12a and c) and in DWBA
(Figure 12b and d) for the same pattern and collected in
the maps in Figure 12 show that in BA some essential
features are missing. In particular, DWBA calculations for
NSF scattering (Figure 12d) reveal noticeable difference as
compared to BA results (Figure 12c). Thus, in contrast to
BA, the oscillations along diffraction bands in the DWBA
map are perfectly in phase with those on the specular
ridge, as they should. This improvement of the BA out-
come is due to the fact that the transverse form-factor in
DWBA depends on the wave numbers pi± and p

f
± corrected

for refraction effects, instead of those in the vacuum used
by BA.

However, the most striking result of DWBA is that it
provides SF Bragg diffraction. The latter is manifested via
strong SF diffraction bands seen in Figure 12(b), which are
absent in BA shown in Figure 12(a). This effect is mainly
due to the transmission, t

i,f
± and reflection, r

i,f
± amplitudes

in equation (131). These amplitudes take into account that
the mean magnetic field of the effective layer (sketched
in Figure 10b) oriented in accordance with Figure 11(b)
not collinear with the polarization analysis axis. In such a
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configuration both states with spin projections along and
opposite to the mean magnetic field of the neutron wave
inside the effective layer are populated. Then each of both
spin components is scattered at local (periodic) deviations
from the magnetic and nuclear SLD. In short, this example
demonstrates that if the mean magnetic field in the layer
is noncollinear with the initial polarization, SF off-specular
scattering may occur due to longitudinal magnetic and even
nuclear inhomogeneities. Local field projections perpendic-
ular to the direction of the mean magnetic field mix spin
states, while those parallel to this direction maintain the
neutron spin states, which are split in the mean magnetic
field. If the latter is directed perpendicular to the polar-
ization analysis axis, as in Figure 11, then spin states are
equally populated and SF scattering intensities I+− = I−+.
More generally, as we shall see subsequent text for another
example, I+− �= I−+, and contribution of magnetic scat-
tering can be separated that arising due to the nuclear
scattering.

The role of transmission–reflection amplitudes is not
restricted to the mixing of initial neutron spin states in
case of noncollinearity between magnetization and polar-
ization directions discussed in the preceding text. These
amplitudes may also be responsible for another peculiar

and often confusing features observed even for such a sim-
ple system as a single F film in a multidomain state. An
example of NSF and SF scattering maps from domains
in a 200 Å thick Co film on a Si substrate is displayed
in a set of maps [9] in Figure 13. In the model system,
it was assumed that the domain size is on the average
50 µm, and the domain magnetization is randomly tilted
by an angle �γ with respect to the mean value averaged
over the coherence volume. This mean magnetization itself
may vary as a function of the y coordinate yielding an
angle γ (y), as sketched in Figure 9. Short range magneti-
zation fluctuations due to domains reduce the mean mag-
netic optical potential by a factor cos(�γ ). In the sim-
ulation this value is set to ≈0.3. The second effect of
these fluctuations is off-specular diffuse scattering, which
is due to either magnetization projections perpendicular to
the mean magnetization, or due to longitudinal fluctuations.
Perpendicular fluctuations are characterized by the mean
value sin2(�γ ), which here was chosen to be 0.75. For
such a choice both perpendicular and longitudinal fluctu-
ations contribute to off-specular scattering. As was men-
tioned in the preceding text, the contribution of the latter
ones is proportional to the dispersion [10] �̃ = cos2(�γ ) −
cos(�γ )

2 = 0.16.
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Figure 13. NSF (a) and (c) and SF (b) and (d) off-specular scattering intensity distribution calculated for a ferromagnetic 200 Å thick Co
film deposited onto a Si substrate. It is assumed that the Co film is decomposed into a set of random domains with the mean size of 50 µm.
The distribution of angles �γ between magnetization directions and the y axis is characterized by two parameters: 〈cos(�γ )〉 = 0.30 and
〈sin2(�γ )〉 = 0.75. The mean magnetization averaged over the coherence length along the x axis is assumed to be independent of the y

coordinate and to be collinear with the polarization analysis direction set along the y axis. Specular reflection ridges are eliminated for
clarity.
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Figure 13(a) and (c) present intensity distributions of NSF
diffuse scattering. The dramatic difference between the scat-
tering intensity I++ with positive spin projection (a), and
I−− for negative spin projection (c) demonstrate the sensi-
tivity of the diffuse scattering to the residual magnetization.
In the model calculations, the mean magnetization averaged
over the coherence range is reduced down to only 30% of
its nominal value.

The off-specular diffuse NSF scattering reaches its max-
imum value at higher angles for neutrons polarized parallel
to the mean magnetic magnetization (Figure 13a and b) than
for neutrons polarized opposite to it (Figure 13c and d). Such
a location of diffuse scattering on the maps is the direct
consequence of the particular dependencies of the transmis-
sion and reflection amplitudes in equation (131) plotted in
Figure 14. There one can clearly recognize a few prominent
features. First of all, transmission and reflection amplitudes
reveal noticeable singularities at points of the total reflec-
tion for this or the other spin components. These singu-
larities substantially enhance the diffuse scattering (up to
a factor 16 for a single film). Such enhancement is well
known as the Yoneda effect (Yoneda, 1963) firstly observed
for X-ray scattering from rough surfaces. In the case of
off-specular scattering from domains, the neutron field is
enhanced in the magnetic film at the critical edges pc± and at
the critical wave number for the substrate. For our example
the neutron field for positive spin projection is enhanced
at p0 = pc+ ≈ 6.7 × 10−3 Å−1, while for both of them at
p0 = ps ≈ 5.1 × 10−3 Å−1, that is at the critical wave num-
ber for the silicon substrate.

The singularity related to the substrate is quite weak in
Figure 14, but it is well expressed in Figure 13(c). This is
due to the influence of the transverse form-factor discussed
in the subsequent text for a Co film on a sapphire substrate
where the effect is even more dramatic. For Co material the
nominal magnetic optical potential is almost twice as big
as the nuclear one [11]. Therefore, the critical wave number
pc− for saturated Co is imaginary and for the negative spin
component there is no critical angle for total reflection. Then
the first singularity in Figure 14 has to be absent. If, how-
ever, the Co film is partially demagnetized due to domains
smaller than the coherence range then the mean magnetiza-
tion may be reduced so that the mean magnetic SLD becomes
lower than the nuclear one. Assuming a residual 30% of
the nominal magnetization, the critical wave number for the
state with negative spin projection is pc− ≈ 3.6 × 10−3 Å−1

and corresponding singularity is well presented in Figure 14.
This figure, certainly, does not provide a full impression on
the behavior of the transmission and reflection amplitudes,
which are complex quantities. Nonetheless, Figure 14 can
qualitatively explain the peculiarities of the diffuse intensity
distribution over the maps plotted in Figure 13. For instance,
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Figure 14. Transmission, |t±|, and reflection, |r±| amplitudes of the
neutron wave field in the mean optical potentials of the effective
ferromagnetic 200 Å thick Co film on a Si substrate.

one can see that the reflection and transmission amplitudes
at the critical edges are equal and just this fact doubles the
neutron wave field which can be scattered in corresponding
off-specular direction. Solely this fact provides an enhance-
ment factor of 16 for the DWBA scattering cross section over
the result obtained within BA. In reality, such enhancement
factors may reach up to a few orders of magnitude depending
on the particular design of the multilayer stack. At the wave
numbers smaller than critical edges for the total reflection
transmission and reflection amplitudes rapidly decay. This
leads to a strong reduction of the scattered intensity when the
neutron waves do not penetrate deep into the mean optical
potential.

The transmission–reflection amplitudes also explain the
substantial asymmetry in the SF scattered intensity distribu-
tion as seen in Figure 13. Indeed, SF scattering accounts for
the fact that the spin states in the incoming and outgoing
neutron waves are inversely populated. As mentioned before
we consider here for clarity the case that the mean magne-
tization is collinear with the neutron polarization axis. Then
Figure 13(d) refers to an incoming beam polarized oppo-
site to the magnetization direction (spin-down state) and the
corresponding amplitudes t i and ri are enhanced only at
pi

0 = ps and at pi
0 = pc−. Therefore, each cut of this map

at fixed outgoing p
f

0 , that is along the abscissa, shows an
enhancement of the incoming wave field at pi

0 = pc− and
at p0 = ps (these two singularities are not well resolved
in the maps). If at the same time the outgoing neutron is
flipped into the up state then the corresponding amplitudes
tf and rf provide the scattered wave field enhancement at
p

f

0 = pc+ and p
f

0 = ps . As a result at fixed incoming wave
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number pi
0 the scattering intensity reaches a maximum value

at p
f

0 = pc+ and p
f

0 = ps . For the I+− in Figure 13(b) the
situation is just reversed: the incoming wave reflected from
and transmitted into higher optical potential, than its scattered
counterpart. Owing to the reciprocity principle both maps
in Figure 13(b) and (d) are interchangeable by switching
the magnetic field direction. If the magnetic layer is totally
demagnetized via formation of small domains so that the
mean field becomes zero, then I++ = I−−, I+− = I+−, and
all maps are perfectly symmetric with respect to interchange
pi

0 and p
f

0 .
The crucial role of distortions of the incoming and scat-

tered waves is demonstrated in Figure 15. These plots show
off-specular scattering maps [12] calculated for a multido-
main state of a 200 Å thick cobalt film, deposited onto a
sapphire substrate covered with a 2000 Å thick sublayer of
titanium. The maps also contain specular reflection ridges
running along diagonals of the maps. They were omitted in
the previous example for clarity. Specular ridges in the SF
channels appear if the mean magnetization averaged over
the coherence spot depends on its position on the sample
surface. As was mentioned before this is quite a common
case due to the strong anisotropy of the coherence ellip-
soid whose long axis may cross several domains, while
the short one is much smaller than the size of domains.
In this case, one can expect quite appreciable fluctuations

in angles γ (y). These fluctuations are characterized by two
parameters set-in calculations of the maps in Figure 15 as

follows: cos γ = 0.866 and sin2 γ = 0.125. Fluctuations on
smaller scale cause off-specular scattering, the intensity of
which is determined by the domain size (set-in calcula-
tions to 5 µm), and by fluctuations �γ in angles between
domain magnetic moment directions and the magnetization
direction of the coherence spot. Calculations in Figure 15
were carried out for cos(�γ ) = 0.866 and sin2(�γ ) =
0.125.

The maps in Figure 15 display rather rich intensity details,
although they possess the same general symmetry properties
as the maps plotted in Figure 13. Most of the details are
related to the transmission and reflection amplitudes because
the film form-factor is kept the same as in the preceding text.
The amplitude dependencies plotted in Figure 16, manifest,
in contrast to Figure 14, a number of interesting features,
which are related to the fact that the Ti nuclear SLD is nega-
tive and forms a wide (but shallow) potential well, while the
SLD of the sapphire substrate is higher than the SLD of Co
for the positive spin projection. Such a SLD profile is respon-
sible for the oscillations of the transmission and reflection
amplitudes either above and below the total reflection edge
of sapphire. The situation is similar to that discussed above in
view of pseudo-precession. Destructive interference of waves
passed over the titanium potential well to and reflected from

0.02

0.01

0
0 0.01 0.02

0.02

0.01

0
0 0.01 0.02

0.02

0.01

0
0 0.01 0.02

0.02

0.01

0
0 0.01 0.02

p 0
f  (

A
−1

)
p 0

f  (
A

−1
)

p0
i (A−1) p0

i (A−1)

I + +

I + −

I − −

I − +

0.1000

0.04676

0.02187

0.01023

0.004782

0.002236

0.001046

4.89E−4

2.287E−4

1.069E−4

(a)

(b)

(c)

(d)

200-nm Ti /20-nm Co film/Al2O3

Figure 15. The same as in Figure 13, but for a 200 Å thick multidomain Co layer deposited onto the sapphire substrate covered with a 2000 Å

thick titanium sublayer. Maps are calculated for the following set of parameters: cos γ = cos(�γ ) = 0.866, sin2 γ = sin2(�γ ) = 0.125.
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Figure 16. The same as in Figure 14, but for a 200 Å thick Co
layer deposited onto a sapphire substrate covered with a 2000 Å
thick titanium film with the same set of domain parameters as in
Figure 15.

the substrate is expressed in narrow dips in the absolute val-
ues |t+| of the transmission amplitude and antiphase maxima
in |r+| dependence on the wave number pi

0. Those dips and
maxima may exactly compensate each other. However, in
equation (131) this compensation is destroyed due to the dif-
ference in phases of transmitted and reflected waves, as well
as due to the transverse form-factor FM(Q̂z) of the magnetic
layer. As a result, the Yoneda wings in the maps of Figure 13
are cut by a set of narrow valleys running either parallel to
pi

0 axis or parallel to p
f

0 in Figure 15.
In accordance with equation (A2) the transverse form-

factor of the film is an oscillating function of the transverse
wave vector transfer Qz with the period matched with the
film thickness d. Corresponding oscillations lead to a mod-
ulation of scattered intensity along diffraction lines, as was
demonstrated in Figure 12. Such a modulation is also present
in the maps of Figure 13 where the first minimum in the
form-factor FM(Q

τρ
µν) is manifested as valleys running across

the main diagonal of the maps. Taking a closer look at the
maps in the upper row one notices that the locations of the
valleys are slightly shifted up in the left and down in the
right maps. This shift is due to the difference in refraction
effects for neutron waves with positive and negative spin
projections. The refraction effects are even better seen in the
bottom panels where corresponding valleys are asymmetric.
The scattered intensity I++ in DWBA is not a function of
the unique transverse wave number Qz, but is rather a bilin-
ear combination of four transverse form-factors FM(Qtt++),
FM(Qtr++), FM(Qrt++) and FM(Qtt++). Hence, positions of
one set of interference minima for I++ and, in particular, for

one seen as a valley in Figure 13(a), are determined by the
conditions:

Qtt
++ = −Qrr

++ = p
f
+ + pi

+ = n
π

d
(136)

if n is an odd number. If n is an even number then the
corresponding equations determine the position of the max-
imum values for matrix elements responsible for transitions
between two transmitted or two reflected waves with either
the same or different spin states. For the map represented in
Figure 13 the scattered intensity I−− the valleys run for odd
n along the line determined by the equations

Qtt
−− = −Qrr

−− = p
f
− + pi

− = n
π

d
(137)

while in the maps for I+− and I−+ valleys are traced by the
equation

Qtt
+− = −Qrr

−+ = p
f
+ + pi

− = n
π

d
(138)

The scattering processes discussed in the preceding text
account for only half of possible transitions described by
16 amplitudes in equation (132). The other half is due to
processes which account for transitions between transmitted
and reflected waves and depend on off-diagonal components
of the wave vector transfers supermatrix Q

τ �=ρ
µν . Transverse

form-factors relevant to these processes at odd n show min-
ima if the anomalous wave vector transfers

Qtr
++ = −Qrt

++ = p
f
+ − pi

+ = n
π

d
(139)

Qtr
−− = −Qrt

−− = p
f
− − pi

− = n
π

d
(140)

for spin state conserving transitions. If the spin states are
changed, then those minima are determined by the equations

Qtr
+− = −Qrt

+− = Qrt
−+ = −Qtr

−+ = p
f
+ − pi

− = n
π

d
(141)

Related features are not seen in Figure 13. In this case, they
are rather week and beyond the range displayed in this figure.
Therefore, we will discuss next an example of a thick Co
film, where anomalous scattering processes dominate [13],
as in Figure 17.

In simulations, the mean magnetization was set again along
the polarization analysis axis, but in contrast to the previous
examples the sample is supposed to be in a multidomain
state with a remanence half of the saturation magnetization
value. The average size of the domains is set to 50 µm and the
magnetic moments of different domains within the coherence

volume are randomly tilted so that sin2 �γ = 0.75.
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Figure 17. NSF (a and c) and SF (b and d) scattering intensity maps for random magnetic domains in a 2500 Å thick Co film on a Si

substrate. Calculations are carried out for the sample in the state relatively close to saturation so that cos �γ = 0.5, and sin2 �γ = 0.75.
The mean magnetization is assumed to be perfectly collinear with the polarization analysis axis, while traces of off-specular scattering in
the top and specular signal in the bottom panels are due to incomplete polarization efficiency which is set to 99%.
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Figure 18. The same as in Figure 16, but for a 2500 Å thick film
on Si substrate.

The behavior of the transmission and reflection amplitudes
for this case are illustrated in Figure 18 where one can
recognize singularities similar to those in Figure 14 and fast
total thickness oscillations as in Figure 16. These oscillations

in Figure 18 are due to the thick Co layer itself, but not
caused by the thick sublayer as in the former case.

Large shifts of the critical edges due to a high magne-
tization value within a domain provides strong asymmetry
in off-specular SF scattering intensity distribution as seen in
Figure 17. However, its particular ‘banana-like’ shape is due
to the fact that scattering is mostly contributed by an anoma-
lous process with the wave vector transfers determined by
equation (141). This equation for n = 0 has the following
solutions:

p
f

0 =
√

(pi
0)

2 − 2p2
cm (142)

pi
0 =

√
(p

f

0 )2 − 2p2
cm (143)

where p2
cm = 4π(Nb)mcos �γ is the critical wave number

for the mean magnetic potential and (Nb)m is the nominal
magnetic SLD. The first equation here corresponds to the left,
while the second one to the right map in Figure 17. Owing
to the large thickness of the film the transverse form-factor
at these values has a rather sharp maximum, while the side
maxima at pi+ − p

f
− = 2πn are suppressed.

In the preceding discussion, we intentionally concentrated
on a few simple examples of single magnetic films in
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Figure 19. NSF (a) and (c) and SF (b) and (d) scattering intensity maps for magnetic domains in the antiferromagnetically coupled
[57Fe(67)Cr(9)]×12 multilayer on sapphire substrate. Calculations are carried out for the model of column-like domains with lateral size
of 5 µm and domain magnetization tilted in the neighboring layers to the left and to the right by ∼45◦ with respect to the polarization
analysis axis. Alternation of the domain magnetization projection perpendicular to this axis result in SF superstructural Bragg sheets in
the bottom panels. The mean layer magnetization is assumed to be reduced by the factor cos �γ = 0.5, so that alternation of the domain
magnetization projections onto the y axis causes NSF structural Bragg sheets as seen in the top panels running across the Bragg peak on
the specular reflection ridge. The net magnetization is assumed to be perfectly collinear with the polarization and this ridge is only present
in NSF channels.

a domain state or with a periodic lateral pattern. These
examples show that DWBA provides a deep understanding
of the rich details in the NSF and SF scattering maps.
Furthermore, DWBA provides a solid framework for correct
and quantitative analysis of experimental data, yielding
information on the lateral magnetization distribution over
the film plane. However, the main advantage of PNR
and, in particular, of off-specular scattering is attributed
to its sensitivity to the depth profile of the magnetization
distribution.

This can already be seen comparing the last three examples
for films of different thickness. One more example is still
needed to illustrate the case of DWBA for laterally structured
periodic multilayers. The magnetization distribution in such
system is of a special practical importance, while off-
specular scattering of polarized neutrons is a powerful tool
to study it in great detail. On the other hand, owing to
the transverse periodicity off-specular scattering maps from
multilayer structures contain qualitatively new features which
need to be discussed separately.

Figure 19 shows an example of a DWBA calculation car-
ried out for a multidomain state of a [57Fe(67)Cr(9)]×12
multilayer deposited onto a sapphire substrate. In this system,
atomic spins in neighboring F layers of iron are antiferromag-
netically exchange coupled through the metallic chromium
spacer layers. Very often, however, F layers are not homo-
geneously magnetized, but rather fall into a set of lateral
domains. Then owing to the exchange coupling the mul-
tilayer stack appears to be broken up into lateral domains
where magnetic moments are arranged antiferromagnetically
across the multilayer. In an applied magnetic field the mag-
netization of the Fe layers is forced toward the field direction
and the system may undergo a transition into the spin-flop
phase, as discussed in the subsequent text (Lauter-Pasyuk
et al., 2002). In this state the sublayer magnetization, for
example, the magnetization in each of the lateral domains,
is tiled to the left and to the right with respect to the
applied field direction. The net magnetization is directed
along the field, while in the sublayers it has alternating
projections onto the perpendicular direction to the field.
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In Figure 19(a) and (c) we present NSF scattering inten-
sity distributions, which show ridges of specular reflections.
Along these ridges one can see the ranges of total reflec-
tion at low wave numbers, Kiessig fringes, and Bragg peaks
due to the periodicity in the mean optical potential variation
across the multilayer stack. Note that in Figure 19(c), corre-
sponding to I−−, this peak is stronger than in Figure 19(a),
corresponding to I++. This is due to the fact that the nuclear
SLD of 57Fe is lower than the magnetic SLD, providing
highest optical contrast for reflection of neutrons with neg-
ative spin projections onto the field direction. All maps in
Figure 19 reveal off-specular scattering justifying that the
lateral size of the domains (set to 5 µm) are smaller than
the coherence length. Off-specular scattering in the NSF
maps may be caused by conformal interfacial roughness
and/or deviations from the magnetization projections par-
allel to the net magnetization. The latter is set along the
polarization analysis axis. NSF off-specular scattering is sub-
stantially enhanced at the critical edge of the total reflection
(Yoneda scattering), and its line shape depends on the spin
state of the scattered neutrons. In particular, for I++ it is
enhanced at pi

0 ≈ pc+, or p
f

0 ≈ pc+, where pc+ is the crit-
ical wave number of the total reflection from SLD of 57Fe
for neutrons with positive spin projection. For negative pro-
jection the critical edge is absent and an enhancement of
I−− occurs along a set of sheets (Kiessig sheets) deter-
mined by equations (140) and (139) with d correspond-
ing to the total thickness of the multilayer. These sheets
have similar origin to those in the case of thick Co films
discussed in the preceding text. Off-specular scattering is
also enhanced along the lines crossing the position of the
Bragg peak on the reflectivity ridge. There it forms so-called
Bragg sheets along which, in accordance with equations
(136) and (137) Qz ≈ 2π/d, where d is the multilayer
period. The extension of the Bragg sheets is mostly deter-
mined by the domain size, while their intensity is due to
the amplitude of deviations from the mean optical potential
and the degree of their conformity through the multilayer
stack.

Figure 19(b) and (d) show SF scattering maps In contrast
to the NSF maps they do not contain specular ridges. This
means that in the model there is no mean magnetization
projection onto the direction perpendicular to the polariza-
tion analysis axis. But instead, one can see in those maps
extensive Bragg (and also Kiessig) sheets running along the
lines determined by equation (138) with n = 1 and n = 3.
SF Bragg sheets manifest AF ordering of domain magneti-
zation projections perpendicular to the mean magnetization.
Such an ordering doubles the unit cell with respect to the
structural cell across the multilayer stack. Owing to nonzero
magnetization the intensity distribution I+− and I−+ are
asymmetric with respect to main diagonal. In particular, one

can see strong distortions of the superstructural Bragg sheet
when angles of incidence of the incoming or exit beams
approach the sample horizon. Close to the critical edges the
anomalous scattering becomes very strong resulting in an
anomalous Bragg sheet running along the lines determined
by equation (141), as was discussed in the example of the
thick Co films in the preceding text. In the subsequent text,
we present experimental results which use above considera-
tions to interpret data collected from various magnetic films,
multilayers, and laterally structured magnetic arrays.

3 EXPERIMENTAL CONSIDERATIONS

As discussed in the preceding text, any y component of a
magnetic field distribution or a sample magnetization leads
to two critical angles for total neutron reflection with respect
to the two possible neutron spin polarizations. If the incident
beam is unpolarized, for scattering vectors Q−

c ≤ Q ≤ Q+
c ,

neutrons with polarization parallel to the magnetization are
reflected and neutrons with the opposite polarization are
transmitted. This property is exploited in supermirrors for
polarizing neutron beams, where either the reflected or the
transmitted beam can be used for polarizing the incident
neutron beam for PNR experiments (Krist et al., 1995; Böni,
1997). For practical reasons, it is advantageous to use the
transmitted beam and to accept the small absorption. The
same scheme is used for the scattered beam if a two-
dimensional polarization analysis of the magnetization vector
is required.

PNR studies are carried out either in a wavelength or in
an angle dispersive mode. In the angle dispersive mode,
a monochromator in the incident beam selects a narrow
wavelength band of �λ/λ = 0.5 to 5% depending on the
resolution required. Instead of a monochromator also a Fermi
velocity selector with a continuously tunable wavelength can
be placed in the incident beam. However, this requires that
an end position for the instrument is available.

In the wavelength dispersive mode the time-of-flight start
time is defined by the first chopper, while the second
chopper serves for pulse shaping and for eliminating frame
overlap problems. In both set-ups supermirrors (SM) and
π-spin flip coils (SF1 and SF2) are used in the incident and
reflected beam for polarizing the beam before the sample
and for analyzing the polarization state after the scattering
event.

Supermirrors and spin flippers can be integrated into one
device if the remanent magnetization of the supermirror is
high enough and if its magnetization can be switched from
one orientation to the opposite with a pulsed field (Böni,
1997; Böni, Clemens, Senthil Kumar and Pappas, 1999).
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The main advantage of the wavelength dispersive mode is
a fixed glancing angle to the sample surface. On the other
hand, the angle dispersive mode has the advantage of a
constant efficiency for the supermirrors and spin flippers,
optimized for the particular wavelength used. At steady-
state neutron sources both modes of operation are being
used, while at pulsed neutron sources only the wavelength
dispersive mode is suitable.

A typical setup for a polarized neutron reflectometer
is shown in Figure 20. The supermirrors are used in the
transmission mode, and in the chosen example the front
flipper is turned ‘on’ to provide a spin-up state, while
the back flipper is turned ‘off’, thus measuring the (+ −)

cross section in transmission mode of the back analyzer
and the (+ +) cross section in reflection mode. Using
two detectors, the (+ +) and (+ −) cross sections can be

measured simultaneously. In case of an angle dispersive
reflectometer between the source and the first polarizer a
monochromater has to be placed, while for wavelength
dispersive detection the monochromator is substituted by a
chopper system. In Figure 21, the angle dispersive ADAM
reflectometer at the Instiut Laue–Langevin is shown in a cut
away view.

Instead of taking radial scans in the Qz direction, that is
parallel to the specular ridge, it is often necessary to map
out the off-specular diffuse intensity, by using a position-
sensitive detector (PSD). The PSD covers the specular
reflection as well as collects off-specular intensity.

The simultaneous polarization analysis of the specular and
off-specular exit beam requires the use of a wide angle
polarization analyzer. Two types of wide angle analyzers
are presently being used, either a stack of supermirrors
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Figure 20. Schematic outline of an angle dispersive neutron reflectometer with polarization analysis. The incident monochromatic and
unpolarized beam is polarized by the first supermirror in transmission mode. Spin flippers before and after the sample can change the
neutron polarization from up to down and vice versa. The back supermirror analyzes the polarization state of the neutrons after the sample.
In the shown configuration with the front spin flipper turned on and the back spin flipper turned off, the SF R+,− reflectivity is measured
(Siebrecht, 2001).

Monochromator

Be-filter

Beamport
shutter

Slit Slit

Evacuated flight tube

Polarizer Sample
Analyzer

Collimation
slit

Spin
flipper

Detector
housing

Beam
stop

Sample
goniometer

2q arm

Figure 21. Cut away view of the angle dispersive neutron reflectometer ADAM at the Institut Laue–Langevin, Grenoble.
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Figure 22. Schematic outline of a scattering experiment using a
spin filter for analyzing the polarization of the exit beam and
detection with a position-sensitive detector. (Reproduced from
M. Wolff et al., 2006, with permission from Taylor and Francis.
 2006.)

(Krist, Fritzsche and Mezei, 2002; Syromyatnikov et al.,
2001) or a polarized 3He transmission spin filter in the exit
beam (Zimmer et al., 2000; Nickel, Rühm et al., 2001). A
schematic outline of the scattering geometry with a spin
filter analyzer is shown in Figure 22. In recent years, huge
progress has been made with respect to lifetime and quality
factor of 3He spin filters (Radu, 2005; Wolff et al., 2006).
While in the past there was some hesitation to use spin
filters as a standard tool, recent developments seem to
favor the use of spin filters over solid state analyzers. The
main advantages being that with polarized 3He spin filters
(i) highly divergent beams can be analyzed; and (ii) the
analyzing efficiency is homogeneous and predictable with
negligible small-angle scattering from the 3He cell. The use
of 3He spin filters requires a sophisticated infrastructure for
polarizing 3He by optical pumping, which is available at
the Institut Laue–Langevin (Grenoble, France) and at the
NIST Center for Neutron Research (Gaithersburg, USA), and
becomes also available at other neutron sources in the near
future. Supermirror stacks are, in contrast, maintenance free,
but may cause additional small-angle scattering. Supermirror
stacks in reflection mode (Syromyatnikov et al., 2001) appear
to be operating better than those in transmission mode (Krist,
Fritzsche and Mezei, 2002; Syromyatnikov et al., 2001).

By designing a neutron reflectometer, three main decisions
have to be taken:

• horizontal or vertical scattering plane;
• angle dispersive or wavelength dispersive scattering

mode;
• with or without polarization analysis.

For the investigation of magnetic samples, polarization
analysis is mandatory. The other two decisions are a question
of convenience, floor space available, and investment cost.

Historically, three generations of polarized neutron reflec-
tometers can be distinguished. The first generation of neu-
tron reflectometers were built in the late 1980s, using a
polarized beam without polarization analysis (Felcher et al.,
1987). The second generation of instruments built in the early
1990s included supermirrors for the spin polarization and
for spin analysis (Majkrzak, 2001; Siebrecht et al., 1997).
The third generation starting with the early twenty-first cen-
tury is equipped with wide angle polarization analyzers,
PSD detectors, and an option for grazing incidence small-
angle scattering of magnetic in-plane structures (GISANS)
(Rücker et al., 2001; Pannetiera, Ott, Fermon and Samson,
2003). A fourth generation can be foreseen and develop-
ments are taking shape at several places for spin-echo type
reflectometers, which accept divergent incident beams (Major
et al., 2003; Pynn et al., 2003). Table 1 provides a non-
comprehensive list of typical reflectometers at different neu-
tron sources. Worldwide the total number of polarized and
unpolarized neutron reflectometers operational at steady-state
and pulsed neutron sources is about 30, and this number
is steadily increasing (see http://material.fysik.uu.se/group
members/adrian/reflect.htm for an up-to-date list).

4 PNR INVESTIGATIONS OF MAGNETIC
FILMS, HETEROSTRUCTURES, AND
SUPERLATTICES

Different magnetic heterostructures are conceivable, such as
simple magnetic films on substrates, bilayers, trilayers, or
multilayers. These structures are referred to as perpendicular

Table 1. Representative neutron reflectometers with different options are listed.

Name Affiliation SP DM PA Reference

ADAM ILL Horizontal a SM, 3He, PSD (Siebrecht et al., 1997)
AMOR PSI Vertical w SM (Clemens et al., 2000)
CRISP ISIS Vertical w SM, PSD (Felici et al., 1988)
D17 ILL Horizontal a and w SM,3He, PSD (Cubitt and Fragnetto, 2002)
NG7REFL NIST Horizontal a SM, PSD (Majkrzak, 2001)
POSY I IPNS Horizontal w SM, PSD (Felcher et al., 1987)

SP: scattering plane; DM: diffraction mode (wavelength (w) and angle (a)); PA: polarization analysis; PSD:
position-sensitive detector; SM: supermirror; 3He: spin filter.
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heterostructures as their extension within the plane is ‘infi-
nite’, but in the perpendicular direction the layer thicknesses
can range from a few monatomic layers up to a few hun-
dred nanometers. In contrast, lateral heterostructures usually
require some top–down lithographic processing or, alterna-
tively, some bottom up self assembly.

In Figure 23, some typical magnetic heterostructures are
sketched. PNR investigations of magnetic heterostructures
include the magnetization profile within single magnetic
films and in multilayers (Figure 23a); magnetic states and
phase transitions in films of magnetic alloys, compounds,
and dilute magnetic semiconductor (Figure 23b); magnetiza-
tion reversal mechanism and domain formation in exchange-
biased systems (Figure 23d); twisting effects of the magne-
tization vector in spring magnets (Figure 23e); and domain
states and stripes (Figure 23c). The theoretical framework
for the analysis of these magnetic heterostructures is pro-
vided in Section 2.5. Experimental results are discussed in
the following sections.

PNR has developed into an essential tool for the analysis
of artificial magnetic heterostructures with main emphasis on
vector magnetization profiles, magnetic domain distributions
and fluctuations, magnetization reversal mechanisms, and on
correlation effects. Although the competition with XRMS
has increased in recent years (Kortright et al., 2003), there
are some advantages PNR offers that are hard to challenge.
Those include the data analysis using the BA or the DWBA,
the well-known cross sections, and the purely magnetic SF
scattering that has no counterpart in XRMS.
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Figure 23. Selection of magnetic nanostructures investigated by
polarized neutron reflectivity experiments. (a) Exchange-coupled
superlattice with antiferromagnetic order; (b) dilute magnetic semi-
conductor as spin-aligner in semiconductor heterostructures; (c)
laterally patterned magnetic films; (d) bilayer of a ferromagnetic
film on an antiferromagnetic substrate with exchange bias at the
common interface; (e) spring magnetic consisting of a top soft mag-
netic layer on a hard magnetic layer, where twisting occurs only in
the soft layer and in an opposing external magnetic field.

Thin F films are important objects in many device appli-
cations. They are characterized by a certain thickness, inter-
facial roughness, domain state within the film plane, and
magnetization profile normal to the film surface. Further-
more, magnetic films are characterized by their magnetic
hysteresis, including coercivity, remanence, saturation, and
magnetic anisotropy. A thin film is never standing alone but
is supported by a substrate or is sandwiched between other
layers. Even in the case of a self supported thin film, the mag-
netic film will acquire an oxide cover, unless protected by a
cap layer. Whether a thin film is investigated on a substrate or
as a film embedded in a multilayer depends on the question
asked and on the physics to be analyzed. If at all possible,
multilayers are preferable over thin films, not only because
they increase the probing volume but mainly because they
give rise to Bragg reflections due to the artificial periodicity.
Bragg reflections represent the Fourier transform of the real
structure and are much more sensitive to small perturbations
than reflectivity from single films is.

We will discuss recent experimental developments in the
analysis of thin magnetic films, magnetic heterostructures,
multilayers, and patterned magnetic films. We will not
discuss ultrathin magnetic films, as this topic has recently
been reviewed by Bland and Vaz (2005). The following
sections are not intended to provide a review on the physics
of thin magnetic films, heterostructures, and superlattices, but
to discuss PNR applications to these systems.

4.1 Thin ferromagnetic films

4.1.1 Magnetic heterostructures

We start our discussion with a PNR study of a thin F
layer on a non-magnetic substrate. Figure 24 shows polarized
reflectivity scans from a single 2-nm-thick Fe(110) film on
top of a 150-nm-thick Nb(110) film grown on a sapphire
substrate. The Fe film is protected by a 5-nm-thick Nb
capping layer. The measurements were carried out at the
ADAM instrument of the Institut Laue–Langevin, Grenoble,
in an angle dispersive mode (Zabel and Theis-Bröhl, 2003).

The Fe film is in a F state and the magnetization vector
is aligned parallel to the y axis. Two types of oscillations
can be observed. The rapid oscillation is due to the total
film thickness including all three layers, the wider oscillation
originates from the top Nb protecting layer, while the
complete oscillation from the 2-nm-thick Fe film is not
visible due to the limited Q-range of the scan. Nevertheless,
the special sandwich design for the F film provides a very
high sensitivity for neutron scattering. The R+ + and R− −

intensities are strongly split, with a negligible amount of
SF scattering, indicative first for the F state of the sample,
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Figure 24. (a) Polarized neutron reflectivities are shown for a
ferromagnetic 2-nm thick Fe layer on a non-magnetic Nb film. The
intensity splitting between the R+ + and R− − reflectivities is a
clear sign for the ferromagnetic state of the thin Fe layer. Shown in
the lower part of the figure is also the R+ − spin-flip scattering.
This scattering is featureless, indicating that any component of
the magnetization vector parallel to the x axis is negligible. (b)
Nuclear and magnetic profiles for the up and down neutron spin
polarization resulting from a fit to the reflectivity curves according
to the generalized matrix method. (Reproduced from F. Radu et al.,
1999, with permission from Elsevier.  1999.)

and second for the orientation of the magnetization vector
being parallel to the y axis. Figure 24(b) shows the nuclear
and magnetic density profile resulting from a fit to the
R+ + and R− − reflectivities, using the generalized matrix
method for describing the polarized reflectivity (Radu and
Ignatovich, 1999). The profile not only confirms the F
state of the Fe layer with a magnetic moment identical to
the Fe bulk moment and little interdiffusion at the Fe/Nb
interfaces, but also shows that an oxide layer exists at
the surface with a slightly enhanced SLD. The solid and
dashed lines are the reflectivity profiles for the parallel and
antiparallel polarization of the neutrons in relation to the
layer magnetization. The antiparallel alignment results in
little contrast to the Nb layers, as already recognized by
the missing oscillations in the R− − reflectivity curve. The
astounding conclusion of this measurement is the very high
sensitivity of PNR to thin F layers, corresponding in the
present case to only 10−3 emu. Obviously this is not the

limit and even thinner samples have been investigated in
the past (Blundell and Bland, 1992). This is an important
result, since PNR provides valuable magnetic information
on ultrathin buried films together with structural information
as concerns the film thickness, the magnetization profile, and
the interfacial roughness.

A number of similar PNR experiments have been per-
formed in the past on magnetic films, in most cases in order
to learn about the magnetization profile in buried layers,
whenever ‘dead’ layers are suspected from interdiffusion or
interfacial roughness. For instance, Vaz et al. (2005) have
investigated the magnetization profile of a 5-nm-thick epitax-
ial Fe layer grown on GaAs(100) with a 1.3-nm-thick AlOx

tunnel barrier and capped with 25 nm Au layer. From the
PNR results they conclude that at the interfaces no interdiffu-
sion occurred and that the Fe magnetic moment corresponds
to the bulk value in spite of the non-ideal growth properties
on the amorphous AlOx tunnel barrier. Thus, in this case a
‘dead’ layer does not form at the interface and the full polar-
ization of the Fe layer can be used for spin tunneling into
GaAs. The question of a ‘dead’ layer at the Fe/GaAs interface
can also be answered by Mössbauer spectroscopy experi-
ments, using a probing 57Fe layer at the interface (Doi et al.,
2002). The advantage of PNR over Mössbauer spectroscopy
is that no special isotopes are needed nor particular growth
conditions to avoid interdiffusion of 57Fe and natural Fe.

Zhengdong et al. (2004) have studied the growth of Ni
on MgO. When growing metals on oxide surfaces, it can
be suspected that an oxide layer forms at the interface.
NiO is AF below TN = 500 K and causes an EB when in
contact with Ni. This scenario could indeed be observed for
Ni grown on MgO(001) after annealing at 573 K. Neutron
reflectivity studies have confirmed the existence of a non-
magnetic layer at the interface between Ni and MgO with a
SLD that matches NiO rather well.

Magnetite (Fe3O4) is a highly interesting ferromagnetic
oxide with a complex spinel structure. Because of the high
moment and half-metallicity it is considered as a suitable
material for spintronic applications (Coey and Chien, 2003).
Significant values of spin polarization have already been
observed in bulk Fe3O4 (Bratkovsky, 1998; Kozlowski et al.,
1993). However, several studies of (001) oriented thin films,
usually grown on MgO(001), have exhibited very small
magneto-resistive (MR) ratios. These reduced MR values
have been attributed to complex magnetic and structural
properties at their interfaces. To clarify the magnetic moment
of magnetite in thin films grown on MgO, Morall et al.
(2003) have performed PNR measurements at room tempera-
ture, which is far below the Curie temperature of 860 K. For
a 5.3-nm-thick film an average magnetic moment of 2.8 µB

was determined, much less than the expected value of 4 µB.
The authors could not explain the discrepancy but refer to a
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rather high layer roughness of 2.3 nm and a possible reduced
Curie temperature. It should be pointed out that for roughness
parameters on the order of the film thickness the determina-
tion of magnetic moments with the PNR method becomes
unreliable.

So far we have discussed F thin films in saturation.
The main emphasis of these studies is the depth dependent
magnetization profile, which is determined by two reflection
coefficients R+ + = R+ and R− − = R−. Off-specular and
SF scattering is not expected in this case and therefore does
not need to be analyzed. The situation is different for F films
either in remanence or at the coercive field. If the remanence
is less than 100%, magnetic domains are expected which will
give rise to new effects thoroughly discussed in the Section
2.11: first the magnetic domains will cause diffuse scattering
in case that the domains are smaller than the longitudinal
coherence length of the neutron beam, and second the canting
of the domain magnetization vectors will cause SF scattering.
This effect has recently been studied in some detail by Radu
et al. (2005a). For this experiment a 2500 Å thick Co film
was used, grown by rf-sputtering on a SiO2 substrate. Growth
conditions and substrate choice provided a polycrystalline
Co film. A Kerr image taken at a field of 10 Oe, which is
comparable to the neutron experimental condition, showed

a small-angle ripple domain structure, which is due to the
polycrystalline nature of the film combined with the intrinsic
magnetocrystalline anisotropy of Co. The magnetization
within the ripple domains is partly tilted by the angle �γ to
the left and to the right with respect to the applied magnetic
field (partial spin-flop orientation). The ripple domains are
responsible for the reduced remanence observed in the
magnetic hysteresis. The neutron intensity maps for all four
cross sections from the Co film on Si are shown in Figure 25.

The general features of these maps are well reproduced
by DWBA simulations plotted in Figure 17. Off-specular SF
scattering is mostly concentrated along the lines determined
by equations (141–143), which account for birefringence
in the magnetic part of the mean optical potential. These
equations allow to experimentally find the mean value
cos(�γ ) averaged over the coherence length. Figure 17
demonstrates that DWBA is able to describe not only
the location, but also the absolute intensity of diffuse
scattering. The latter is proportional to the mean value
sin2(�γ ) and fitting the data to the theoretical model one

can determine the dispersion �̃ = cos2(�γ ) − cos(�γ )
2
,

quantifying the domain reversal mechanism, as discussed
in the next subsection. On the other hand, some important
conclusions on the lateral magnetization distribution in the
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Figure 25. Intensity maps taken from a 2500-Å-thick polycrystalline Co film on a Si substrate. The maps were recorded close to remanence
(≈10 Oe). The left column shows intensity maps for the non-spin-flip cross sections R+ + (a) and R− − (b), the right column for the spin-flip
cross sections R+ − (c) and R− + (d). The intensities are plotted in terms of exit angles (vertical axis) versus incident angle (horizontal
axis). For a discussion of the maps, see main text. (Reproduced from Radu et al., with permission from IOP Publishing Ltd, .)



40 X-Ray and neutron diffraction techniques

domains can already be made even before carrying out a
quantitative analysis of the data in Figure 25. First of all
one may admit that the intensity distribution in Figure 25(c)
and (d) is strongly asymmetric such that (c) becomes
identical to (d) if angles of incidence and of scattering
are interchanged. Second, almost no off-specular non-spin-
flip scattering (Figure 25a and b) is detected. This means
that, as explained in the Section 2.11, the ripple domains
do not cause any appreciable fluctuations of magnetization
projection onto the direction of the mean inductance (e.g.,
along y axis). This is only possible if the moments in
the magnetic domains are tiled to the left and to the right
from y axis by about the same angles ±�γ , and �̃ ≈ 0.
The other conclusion immediately follows from the SF
maps in Figure 25, if one accepts that the intensity along
the specular SF reflection ridge (displayed along diagonals)
is mainly due to a non-perfect polarization analysis. If
corrections for the SF efficiency are applied, the specular
SF intensity should vanish and only NSF specular reflection
would be left. This means that there is no tilt of the
mean magnetization averaged over the coherence length, and
γ = 0. At the same time deviations �γ due to the ripple
domains are not correlated over distances more than the
coherence length.

The example in the preceding text shows that investi-
gations of magnetic thin films by PNR provides rich and
quantitative statistical information on domain distributions
and magnetization fluctuations. An additional twist is gained
when studying by PNR the magnetization reversal as a func-
tion of applied field. From specular and off-specular scat-
tering the type of reversal (coherent or incoherent) can be
distinguished. This has been particularly useful for function-
alized thin magnetic films, which are in contact with different
F or AF films for the investigation of exchange springs or
EB heterostructures, respectively, to be discussed in the next
paragraphs.

Exchange springs are magnetic heterostructures consist-
ing of a magnetically soft material in contact with a
magnetically hard layer. When the magnetization of the
soft layer is reversed in an external field, the spins close
to the interface are pinned to the hard magnetic layer,
whereas spins further away may be twisted under the
action of the external field to form a magnetic spiral,
as schematically shown in Figure 23(e). The concept of
exchange springs is based on a seminal paper by (Kneller
and Hawig, 1991) and has been reviewed in Fullerton,
Jiang and Bader (1999). A review of NR studies on
exchange-spring heterostructures is provided by Felcher
and Hoffmann in this volume (see also Domain States
Determined by Neutron Refraction and Scattering, Vol-
ume 3) and therefore will not be discussed here any
further.

4.1.2 Exchange bias

The EB effect refers to a shift of the F hysteresis to negative
values when a F system is in contact with an AF system via a
common interface and cooled in a positive applied magnetic
field through the Néel temperature of the AF system. The
EB phenomenon is associated with the interfacial exchange
coupling between F and AF spin structures, resulting in a
unidirectional magnetic anisotropy (Meiklejohn and Bean,
1956, 1957; Meiklejohn, 1962). The EB effect is essential
for the development of magnetoelectronic switching devices
(spin valves) and for random access magnetic storage units.
Therefore, there is a large interest not only to understand its
basic physical mechanism but also to design interfaces with
controllable and robust unidirectional anisotropies.

Extensive data have been collected on the EB field HEB

and the coercivity field Hc for a large number of bilayer
systems, which are reviewed in Berkowitz and Takano
(1999), Nogués and Schuller (1999), Stamps (2000a,b), and
Kiwi (2001). Because of the asymmetry, the coercivities
Hc1 and Hc2 for the descending and ascending branches
of the hysteresis, respectively, are different. Then (Hc1 +
Hc2)/2 = HEB is the EB field and |Hc1 − Hc2| = Hc is the
coercive field. The details of the EB effect depend crucially
on the AF/F combination chosen and on the structure
and thickness of the films. However, some characteristic
features apply to most systems: (i) HEB and Hc increase
as the system is cooled in an applied magnetic field below
the blocking temperature TB ≤ TN of the AF layer, where
TN is the Néel temperature of the AF layer; (ii) the
magnetization reversal can be different for the ascending
and descending part of the hysteresis loop (Fitzsimmons
et al., 2000; Radu et al., 2002b; Gierlings et al., 2002; Lee
et al., 2002; Radu et al., 2003a); (iii) thermal relaxation
effects of HEB and Hc indicate that a stable magnetic
state is reached only at very low temperatures (Geoghegan,
McCormick and Street, 1998; Goodmanet al., 2000; Radu
et al., 2002a).

PNR has been instrumental in unraveling the details
of the magnetization reversal in EB systems. Using PNR
methods statistical information can be gained on the mean
magnetization vector, the mean square dispersion of the
magnetization in domains, and the reversal mechanism either
by rotation or domain wall (DW) motion. This is in contrast
to vector magneto-optical Kerr effect (MOKE), which allows
to determine the average x and y components of the
magnetization vector 〈Mx〉 and 〈My〉, but not the dispersion
� = 〈cos2 γ 〉 − 〈cos γ 〉2 (see Section 2.8), where γ denotes
the tilt angle of local magnetization averaged over distances
greater than the coherence length. Because of this and the
possibility to investigate domain formation by off-specular
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Table 2. Polarized neutron reflectivity investigations of AF/F bilayers and multilayers
which exhibit an exchange bias effect.

EB system (AF/F) References

CoO/Co Radu et al., 2002a,b; Radu et al., 2003a
CoO/Co te Velthuis et al., 2000
CoO/Co Lee et al., 2002
CoO/Co Gierlings et al., 2002
Fe/Cr(211) te Velthuis, Jiang and Felcher, 2000; Jiang et al., 2000
Ru/Co Steadman et al., 2002
MnF2/Fe Fitzsimmons et al., 2001
MnF2/Fe Leighton et al., 2001, 2002
FeF2/Fe Fitzsimmons et al., 2002
LaFeO3/Co Hoffmann et al., 2002
IrMn/CoFe Paul et al., 2004, 2005; Paul, Kentzinger, Rücker and Brückel, 2006
TbFe/GdFe Hauet et al., 2006
FeMn/FeNi Solina et al., 2005
MnPd/Fe Blomqvist, Krishnana, Srinath and te Velthuis, 2004

diffuse scattering, PNR has been applied to a number of EB
systems, which are listed in Table 2.

Two types of EB systems have been studied in the past.
The first type consists of F layers in contact with natu-
ral antiferromagnets such as oxides (CoO, NiO), fluorides
(MnF2, FeF2) or itinerant antiferromagnets (FeMn, CoMn,
IrMn, etc.). The second type consists of F layers in contact
with artificial antiferromagnets, such as AF coupled Fe/Cr or
Co/Ru multilayers. In the former case with PNR only the F
layer can be investigated but not the pinning AF layer, as
the reciprocal lattice vector for the AF superstructure is by
far bigger than the scattering vectors usually probed in PNR
experiments. However, in the latter case with PNR both, the
F layer and the antiferromagnetically coupled (AFC) multi-
layer can be investigated in the same reflectivity experiment,
allowing a correlation between the reversal of magnetization
in the F layer and the reaction of the pinning AF coupled
multilayer. This resembles the situation of the spring mag-
nets where also both, the soft and hard magnetic films are
investigated simultaneously by PNR.

The following paragraphs are not intended to provide a
comprehensive overview on EB systems studied with PNR,
but to discuss a few illustrative examples to demonstrate the
capability of the method. Here we will confine the discussion
to CoO/Co, which is the original system for which the EB
effect was discovered (Meiklejohn and Bean, 1956) and
which has been intensively investigated in the past by PNR
methods [14].

In order to enhance the signal, Gierlings et al. (2002)
have grown a multilayer consisting of CoO/Co bilayers
separated by Au spacer layers which magnetically isolate
neighboring CoO/Co bilayers and at the same time provide
Bragg reflections, which can conveniently be analyzed. The
neutron data are shown in Figure 26. They have compared

the reversal in the unbiased state above the Néel temperature
of CoO (TN = 280 K) and in the field cooled biased state
at 10 K. In the unbiased state they find a magnetization
reversal via coherent rotation in the descending as well as
in the ascending field direction. However, in the biased
state, the reversal in descending fields is clearly characterized
by nucleation and DW motion, whereas the reversal in the
ascending field remains unaffected. Thus it appears that the
EB only affects the magnetization reversal in the direction
opposite to the bias field direction. This behavior appears to
be typical for the CoO/Co system and has also been observed
by other groups (Radu et al., 2002b; Radu et al., 2003a; Lee
et al., 2002), and may be different for other systems.

The mean magnetization direction characterized by 〈cos γ 〉
and the dispersion � = 〈cos2 γ 〉 − 〈cos γ 〉2 [15] was used by
Lee et al. (2002) for the analysis of the reversal mechanism
of a CoO/Co bilayer grown on a sapphire substrate. The
dispersion offers a powerful tool for analysis of the domain
state of magnetic films without requiring a full analysis of
the specular reflectivity profile, provided that the diffuse
scattering is negligible and that the magnetic domains are
larger than the coherence length of the neutrons such that an
incoherent averaging over the magnetic domains is allowed.
At the coercivity the magnetization component My = 0. This
can be either the result of a coherent rotation, a domain state
with equally populated My and −My domains, or due to a
random distribution of magnetic domains. In the first case
� = 0, in the second case � = 1, and for the third case
≤ � ≤ 1. Thus a finite value of � indicates an angular spread
of domains. The magnetic hysteresis and the corresponding
� values are reproduced in Figure 27 (� = χ2 in the authors
notations). At temperatures above the blocking temperature
the magnetic hysteresis is symmetric and HEB = 0. In this
case, the � ≡ χ2 values are close to one for all scattering
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Figure 26. Reflectivity measurements from a CoO/Co/Au multi-
layer. (a) NSF and SF reflectivities are shown for the sample in
saturation. The position of the first Bragg peak is shifted for the
(+ +) and (−−) reflectivities due to the different optical potentials.
This would also be expressed in different critical scattering vectors,
which is, however, here obscured due to the higher potential of the
Al2O3 substrate for the (++) reflectivity; (b) reflectivities taken in
a descending field close to coercivity. The split peaks in both, (++)

and (− −) reflectivities and the low SF intensity indicates a domain
state with parallel and antiparallel domains with respect to the field
direction equally populated; (c) reflectivities taken in an ascending
field close to the coercive field. All cross section exhibit roughly
the same peak position, indicative for a coherent rotation of the
magnetization direction into the x direction. (Reprinted figure with
permission from M. Gierlings et al., Phys Rev. B Vol 65, 092407
(2002).  2002 by the American Physical Society.)

vectors probed, as can be seen in the top right panel of
Figure 27. This indicates that for T > TB the magnetization
reversal is characterized by domain nucleation and wall
motion. The same behavior is also seen after field cooling
below TB for the first reversal in a descending field. However,
after increasing the magnetic field again from negative to
positive values, � ≡ χ2 has clearly dropped below one for all
subsequent coercivities in ascending and descending fields.
Thus it can be inferred that after the first magnetization
reversal of the virgin and field cooled sample, a domain
state is created at the CoO/Co interface. This domain state
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For temperatures above the blocking temperature, χ2 is essentially
one. After field cooling to 10 K the χ2 value remains one for the
untrained magnetization reversal, but assumes values smaller than
one in the trained state, indicative for the development of a angular
distribution of domains. (Reprinted figure with permission from
W.-T. Lee et al., Phys. Rev. Vol. 65, 224417 (2002).  2002 by
the American Physical Society.)

obviously changes the shape of the hysteresis and lowers the
EB field.

Radu et al. have carried out similar PNR experiments of
the magnetization reversal of CoO/Co bilayers, studying not
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only the specular reflectivity (Lee et al., 2002), but also the
off-specular diffuse scattering (Radu et al., 2003a). From the
spin asymmetry of the specular reflectivity they have evalu-
ated the magnetic hysteresis and compared the neutron results
with MOKE measurements. Both hystereses are practically
identical (see Figure 28a), neglecting slightly different Hc1

values due to different temperatures during the MOKE and
PNR measurements. Furthermore Radu et al. have analyzed
the spin flip scattering during the first untrained reversal
and during subsequent trained reversals. Similar to Gierlings
et al. (2002) and Lee et al. (2002) they conclude that the
first untrained reversal is characterized by nucleation and
DW motion. However, all subsequent reversals exhibit some
partial coherent rotation. Radu et al. emphasize that during
the first reversal of the virgin bilayer the CoO/Co interface
becomes irreversibly altered, which is manifested mainly in
a dramatically enhanced off-specular diffuse scattering in the
SF cross sections that cannot be removed even in high mag-
netic fields. The spin disorder, created during the first reversal
can be recognized by the off-specular diffuse SF scattering
in Figures 28(d) and (e) and more impressively by the maps
shown in Figure 29 for all four cross sections R− −, R+ −,
R− +, R+ + taken at characteristic points of the hysteresis
before and after reversal.

The scattered intensity distribution seen in the maps of
Figure 29 can be described in terms of DWBA (Section 2.11).
In particular, the asymmetry of the SF off-specular scattering,
which is due to a birefringence effect, alters the R+ − and
R− + maps in the descending and ascending branch of the
hysteresis, as it should be in accordance with the reciprocity
principle discussed above. The maps in Figure 29 differ from
those in Figure 25 in many details [16]. Some of them, for
example, the streaks running parallel to the coordinate axis,
are not relevant to the physics of the EB system, but are just
due to the choice of the sapphire substrate with high optical
potential, as explained in the Section 2.11. Those details of
the scattered intensity distribution are well reproduced [17]
in the maps of Figure 15 calculated in DWBA for the
model of F domains. The latter is similar to the one used
for the single Co film on the Si substrate. However, the
other features carry information which are specific for the
EB bilayer system. This is, in particular, the specular SF
reflection, which in Figure 29 is much stronger than the off-
specular scattering, in contrast to Figure 25.

The presence of specular spin-flip intensity may be
attributed to the fact that in the trained sample the mag-
netization within the domains is correlated over distances
bigger than the lateral projection of the coherence length.
Such long-range correlation lengths occur only because of
the interfacial exchange coupling of the F moments to
the rigid and frozen-in domains in the AF counterlayer.
Without the interfacial exchange coupling the specular SF

scattering is expected to be much weaker. The additional
and intrinsic disorder is expressed in off-specular scattering
and hence in the residual fluctuations of the magnetiza-
tion vector which persists even in the nominally saturated
state.

The restoration of the interface state is only possible by
refreshing the field cooling procedure. With PNR the change
of the interface is quite obvious. Using the element specificity
of the XRMS technique for the investigation of the similar
CoO/Fe EB system, it could be shown that the proximity of
the F layer induces a small but finite magnetic moment in
the AF layer (Radu et al., 2006). Furthermore, the F moment
in the CoO layer appears to have two components: one is
frozen-in and does not follow the applied magnetic field,
while the other one follows in phase the F magnetization of
the F layer. The ‘loose’ F component is responsible for the
EB field and the shape of the hysteresis after the first reversal
has taken place.

4.1.3 Spin valves

Spin valves are functional heterostructures in giant magneto
resistance (GMR) and magneto-tunneling resistance (TMR)
devices. Two F layers are separated by a non-magnetic layer,
one of them being pinned by exchange coupling to an AF
layer and the other one is comparatively easy to rotate in
an externally applied field. Spin valves play an essential role
in GMR heads, in MRAM devices, and in novel AFC hard
disks. Analyzing the layer resolved switching is therefore of
paramount importance.

Choi et al. (2000) have performed a layer selective
vector magnetometry study with PNR for analyzing the
magnetic configuration of the following layer sequence:
Cu/Co/Cu/FeNi/Cu/Co/Cu. The magnetically soft FeNi layer
in the middle is exchange coupled to the outer Co lay-
ers, acting as a double spin valve system. Instead of one
step in the magnetic hysteresis for a single spin valve, two
steps are observed. At the first plateau the center FeNi layer
reverses by applying a reversing field, then the lower Co
layer switches, and saturation is reached when also the upper
Co layer is switched. Neutron reflectivity has been used for
analyzing the magnetization vectors of the different layers
in more detail. The data show that in the plateau region a
perfect antiparallel alignment between the Co and the FeNi
layers cannot be reached, but that there is always some cant-
ing. Layer resolved vector magnetometry provides a much
more detailed picture of the reversal mechanism than it is
possible with an layer averaging method such as SQUID
or VSM.

Toney et al. have recently investigated the switching of an
AFC trilayer (Toney et al., 2005). The upper magnetic layer
was a 12-nm-thick Co63Pt11Cr18B8 alloy, while the lower
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magnetic layer was a 3-nm-thick Co86Cr14 alloy separated
by a 0.7-nm-thick Ru layer providing a strong AF coupling
of the upper and lower layer. The alloy grains in the
polycrystalline F layers are supposed to be magnetically
decoupled. Magnetization measurements confirm that at
large applied fields, the AF coupling is overcome and the
magnetization in the F layers is parallel to the field. As
the field is reduced, the thinner lower layer first reverses
at H = Hex to become antiparallel to the thick upper layer.
As the field is further reversed, the upper layer switches

and both layers are again parallel to the field. While this
explanation of the magnetic reversal is basically correct, the
details are revealed by PNR measurements, as shown in
the Figure 30. In particular, the PNR measurements provide
information about the depth dependence of the magnetization
at the different field values and therefore give a more
detailed understanding of the reversal process. Detailed
analysis shows that the field dependence of the upper layer
magnetization during reversal of the lower layer does not
follow simple expectations for a layer with magnetically
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decoupled grains and high anisotropy that is AFC to the
lower layer. Near the reversal field for the lower layer
at Hex ≤ 500 Oe, the magnetization of the upper layer
abruptly drops from the saturation value of 400 emu cm−3 to
approximately 300 emu cm−3, and then gradually decreases
as the field is decreased to −3000 Oe. This sudden drop
was unexpected from SQUID data and is only revealed
by the PNR measurements. The authors conclude that the
coupling of the upper and lower layers during reversal may
be more complex than previously assumed and may include
interactions from DWs in the lower layer. These results
have a direct impact on the future design of AFC hard
disks.

4.2 Magnetic multilayers

Magnetic multilayers and magnetic superlattices are the most
rewarding playground for PNR measurements as short and
long-range F- and AF correlation effects can easily be
revealed, as well as conformal and non-conformal interface
roughnesses and layer resolved reversal processes. In this
respect, the PNR method is essentially unrivaled. Resonant
magnetic X-ray scattering has become a serious competition
in recent years. However, the deeper penetration depth
of neutrons and the well-known cross sections remain to
be strongholds of PNR. Because of this, a large number
of magnetic multilayers have been investigated by PNR
since the early 1980s, representative examples are listed
in Table 3.

The archetypal magnetic superlattices for which interlayer
exchange coupling (IEC) was intensely investigated in the
past are Fe/Cr and Co/Cu superlattices. In Fe/Cr superlattices
the spin density wave (SDW) magnetism of the Cr spacer
layer supports the IEC. At the same time, the SDW mag-
netism interferes with IEC in case of interfacial defects. The
interplay between the ferromagnetism of the Fe layers and
the SDW order of the Cr spacer layers adds to the complexity
of Fe/Cr superlattices. Co/Cu superlattices are comparatively
easy objects as the Cu spacer layer does, at first glance, not
inflict further complications. Therefore Co/Cu superlattices
with [100], [110], and [111] orientations served as testbeds
for studies of the oriental dependence of the period and the
strength of the IEC. Although the magnetic and electronic
properties of Co/Cu superlattices are straightforward, growth
problems have inhibited the observation of an oscillatory IEC
in the [111] growth direction.

4.2.1 Co/Cu multilayers

Co/Cu multilayers continue to serve as model systems for
exchange coupling, domain states, and interfacial magnetic
roughness. In the [111] growth direction, however, Cu
antiphase domains develop on the Co(111) surface, giving
rise to magnetic pinholes. For a long time the oscillatory
IEC was obscured in Co/Cu(111) superlattices due to its
inherent weakness and due to the fact that domain wall
pinning at structural defects inhibit AF alignment of the
F layers. Schreyer et al. have finally verified with PNR
methods the oscillatory character of the IEC for carefully
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Table 3. Representative examples for polarized neutron investigations of magnetic multilayers.

Multilayer Main scientific focus References

Co/Cu(111) IEC Schreyer et al., 1993a,b
Co/Cu MR Borchers et al., 1999
Co/Cu MR Langridge et al., 2000
Co/Cu MR Toyoshima et al., 1999
Fe/Cr(001) IEC Schreyer et al., 1995a; Schreyer et al., 1997
Fe/Cr(001) IEC Ankner et al., 1997
Fe/Cr IEC Pechan et al., 1994
Fe/Cr IEC Loewenhaupt et al., 1993
Fe/Cr(001) IEC, SDW Fullerton et al., 1996; Fullerton, Bader and Robertson, 1996
Fe/Cr IEC Adenwalla, Felcher, Fullerton and Bader, 1996
Fe/Cr(001) DS Lauter-Pasyuk et al., 2001, 2002
FeCr/Cr(001) IEC Siebrecht et al., 1999
Fe/Cr(211) EB Jiang et al., 2000
Fe/Si IEC Ankner, Majkrzak and Homma, 1993
Fe/Pd IEC Cheng et al., 2004
Co/Pd IEC Borchers et al., 1994
Co0.80Fe0.20/Al2O3 RM, DS, PT Bedanta et al., 2005
Co/Re SFT Charlton, Lederman, Yusuf and Felcher, 1999
Py/Ag IEC Borchers et al., 1996
Py/Cu IEC Borchers et al., 1997
Py/Ru IEC Su et al., 2005
FeCoV/TiZr MR Van De Kruijs et al., 2001
U/Fe IEC Brown et al., 2003; Beesley et al., 2004
UAs/Co IEC Mannix et al., 1997
Fe/Ce(H) IEC Lohstroh et al., 2000
Fe/La(H) IEC Lohstroh et al., 2001
Fe/V(H)(001) IEC Hjörvarsson et al., 1997
Fe/V(H)(001) IEC, PT Leiner et al., 2003
Fe/Nb(H) IEC Klose et al., 1997
Ho/Y(H)(00.1) IEC, PT Leiner, Ay and Zabel, 2004
Gd/W IEC Yi Li et al., 1997
Co2MnGe/V IEC, DS Bergmann et al., 2005
GaMnAs/GaAs IEC, DS Kepa et al., 2001
GaMnAs/MnAs MM Diwekar et al., 2004

IEC: interlayer exchange coupling; RM: reversal mechanism; DS: domain structure; MR: magnetic roughness; SDW:
spin-density wave; PT: phase transition; MM: magnetic moment; EB: exchange bias; SFT: spin-flop transition.

grown epitaxial Co/Cu(111) (Schreyer et al., 1993a). They
could clearly identify a half order, albeit weak, Bragg peak
signaling AF correlation at the first (Cu thickness 1 nm) and
second maximum (Cu thickness 2 nm) of the AF interlayer
exchange coupling.

The magnetic arrangement of Co/Cu polycrystalline multi-
layers has been analyzed by Borchers et al. (1999), shown in
Figure 31. The Cu spacer was chosen rather thick as to pro-
vide only a weak exchange coupling between the adjacent Co
layers. The NSF reflectivity curve measured from the Co/Cu
multilayer in the as prepared state of the sample shows a half-
order AF peak along with a first-order Bragg reflection. The
observation of a half-order superstructure reflection provides
direct evidence for AF coupling in neighboring layers. Weak
SF reflectivity enhanced at the position of the half-order AF
periodicity and first order chemical periodicity indicates that

the magnetization of the Co layers may not be exactly parallel
to the field guiding neutron polarization. Diffuse scattering
measured slightly away from the specular ridge indicates that
the magnetization is not homogeneous in the lateral direc-
tion, but rather is decomposed into a set of F domains. In
the domains the magnetic moments keep the antiparallel ori-
entation across the multilayer stack. This alternation appears
to be quite perfect as no diffuse scattering contribution at the
first-order Bragg peak was detected. In contrast, the inten-
sity of the specular and off-specular half-order superstructure
peak is of the same magnitude. From this it can be inferred
that the AF order is spread out in the lateral direction over a
distance bigger than the coherence length. Indeed, via rock-
ing scans across the half-order AF Bragg position, that is
varying Qx at fixed value of Qz = QBragg, it was found that
the diffuse scattering forms Bragg sheets, similar to those
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Figure 31. PNR scan from a weakly antiferromagnetically coupled
Co/Cu multilayer. Both, specular (solid symbols) and slightly off-
specular (open symbols) are shown for all four cross sections.
(a) The reflectivity for the as prepared sample. (b) The reflectivity
after the sample has been saturated in a high magnetic field and then
reduced to the coercive field of 54 Oe, defined by the maximum
in the magneto resistance. (Reprinted figure with permission from
J.A. Borchers et al., Phys. Rev. Lett. Vol. 82, 2796 (1999).  1999
by the American Physical Society.)

depicted in Figure 19 [18]. The lateral size of domains was
estimated by the evaluation of the Qx extension of Bragg
sheets within the framework of the BA (Section 2.10).

After applying a magnetic field, the AF coupling is
removed and the diffuse scattering is now spread over
larger parts of the reciprocal space. Two types of magnetic
diffuse scattering can therefore be recognized. One is due
to correlated domains giving rise to the Bragg sheets. The
other originates from uncorrelated domains. The correlated
AF domains yield a diffuse peak in the transverse direction at
the half-order position, whose width is inversely proportional
to the average lateral domain size. The featureless diffuse
scattering is due to uncorrelated magnetic domains and likely
from spin disorder at the interfaces.

Langridge et al. (2000) have also investigated the magnetic
roughness in Co/Cu multilayers. In remanence the half-order
peak is widely spread out, indicating an AF domain structure,
which is vertically correlated throughout the multilayer. After

applying a magnetic field, the AF coupling is removed and
the diffuse scattering is now spread over larger parts of the
reciprocal space. Two types of magnetic diffuse scattering
can therefore be recognized. One is due to correlated
domains giving rise to the Bragg sheet. The other one
originates from uncorrelated spins at the interfaces. These
two parts have been analyzed and quantified in detail
in Langridge et al. (2000) in the kinematic approximation.
The magnetic roughness and how it reveals itself in X-ray
and neutron scattering experiments is presently of high
interest to experimentalist as well as theorists.

4.2.2 Fe/Cr multilayers

As already mentioned, Fe/Cr superlattices are more com-
plex than other exchange-coupled superlattices owing to the
spin-density wave magnetism of the Cr spacer layer. The
competition between the interlayer coupling and the antifer-
romagnetism of Cr often results in a noncollinear coupling,
that is the magnetization vectors in adjacent magnetic lay-
ers may deviate considerably from F (coupling angle 0◦) or
AF (coupling angle 180◦) alignment. Early studies of Fe/Cr
superlattices therefore have concentrated on the exploration
of the coupling angle. Adding a biquadratic coupling term to
the bilinear exchange coupling predicts under certain condi-
tions a coupling angle of 90◦.

However, extensive PNR work has convincingly demon-
strated that the coupling angles are neither collinear nor
biquadratic but take values in-between. This finding favored
Slonczewski′s proximity magnetism model (Slonczweski,
1995), which includes both, the interlayer exchange cou-
pling between the Fe layers and the topological antiferro-
magnetism of the Cr spacer layer together with long-range
lateral thickness fluctuations. With this model any angle
between 0◦ and 180◦ can be realized depending on the rel-
ative strength of the F and AF coupling terms J+ and J−,
respectively (Slonczweski, 1995):

E(φ) = J+
(

φ

π

)2

+ J−
(

π − φ

π

)2

(144)

Figure 32 shows a typical result from an exchange coupled
[Fe(5.7 nm)/Cr(1.7 nm)]×9 superlattice grown in [001] direc-
tion. A magnetic half-order peak can be recognized in the
NSF as well as in the SF cross sections. Furthermore, a F
component can be discerned at the first-order Bragg peak by
the intensity splitting of the R+ + and R− − reflectivities. This
unusual reflection pattern, which contains signatures of a F-
and an AF orientation of the Fe layers, can be best explained
by Fe layer magnetization vectors enclosing an angle of
about 50◦ between adjacent planes, as shown schematically
in the lower left corner (Schreyer et al., 1995a,b). Nontrivial
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Figure 32. Polarized neutron measurements from a 10 bilayer
Fe/Cr superlattice. In all four cross sections a half order Bragg
peak can be recognized indicating an antiferromagnetic doubling
of the magnetic periodicity, as well as a ferromagnetic splitting
of the first-order Bragg peak in the NSF cross sections. From the
coexistence of half-order antiferromagnetic peaks and ferromagnetic
splitting of the integer Bragg peaks, a noncollinear coupling angle
of the magnetization vectors in adjacent Fe layers was discerned.
(Reprinted figure with permission from Schreyer et al., Phys Rev. B
Vol 52, 16066 (1995).  1995 by the American Physical Society.)

coupling angles were later confirmed by Abbe et al. (2004)
with nuclear resonant scattering using circular polarized syn-
chrotron radiation.

The interplay between exchange coupling, SDW order, and
interface roughness was further investigated for thicker Cr
spacer layers. For an ideally flat Fe/Cr interface an antin-
ode of the transverse and incommensurate SDW order is
expected to be placed next to the interface. Then the AF
Fe–Cr interface coupling is strong and the phase information
controlling parallel or antiparallel alignment of successive Fe
layers is transmitted through the Cr spacer (Fullerton, Bader
and Robertson, 1996). By decreasing the Cr layer thickness
below a critical value, the incommensurate SDW order col-
lapses and is replaced by a commensurate AF order with an
enhanced Néel temperature (Fullerton et al., 1995; Schmitte
et al., 1999). In Figure 33 polarized neutron data are repro-
duced for a Fe/Cr superlattice with a Cr thickness of 42
Å (Schreyer et al., 1997). The low angle reflectivity mea-
surements again reveal a noncollinearly coupled superlattice,
while the high angle data confirm that for this thickness the
Cr spin structure is in a commensurate state with AF order.
In addition, the superlattice periodicity is imprinted not only
on the structure factor of the Fe layers but also on the Cr
layers. Thus both, the F and AF layers are modulated by
the same superlattice periodicity. Together with the reflec-
tivity data this implies that the Fe as well as the Cr spin
structure must be twisted, providing a noncollinear exchange
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Figure 33. Polarized neutron measurements from Fe/Cr superlat-
tice revealing the correspondence between a twisted Fe magneti-
zation and twisted Cr spin structure. The sample studied is a 200
repeat Fe19/Cr42(001) superlattice. The left inset shows PNR results
of all four cross sections. The splitting of the first order Bragg peak
together with the presence of a half-order peak in the NSF and SF
reflectivities indicates a noncollinear (NC) coupling of the Fe layers
with a period twice the superlattice period: �Fe,NC = 2�SL. The
main part shows a scan through the high angle (010) peak in the
[00l] direction. The bcc forbidden (010) peak is a fingerprint of the
commensurate AF Cr spin structure. This peak is surrounded by
satellite peaks, which indicate the same doubling of the superlattice
period as observed in the PNR measurement at low angles, however,
here �Cr,AF = 2�SL. Thus the AF Cr structure is modulated by the
same period as the Fe backbone. The right inset shows a schematic
of the Fe and Cr magnetic structures as deduced from the scattering
data fulfilling the condition �Cr,AF = �Fe,NC = 2�SL. The empty
and filled small arrows indicate an opposing sense of rotation of
the Cr moments between the NC coupled Fe layers (large arrows).
(Reprinted figure with permission from Schreyer et al., Phys Rev.
Lett. Vol. 79, 4914 (1997).  1997 by the American Physical
Society.)

coupling between the Fe layer magnetization vectors. This at
first glance surprising noncollinear spin arrangement can be
best explained within the frame of the proximity exchange
model introduced by Slonczweski (1995), described already
above. Assuming that thin Cr layers are in a commensurate
SDW state, lateral thickness fluctuations of monatomic high
steps require the Cr spin structure to twist counterclockwise
on either side of a step in order to couple to a homogeneous
Fe layer magnetization. The combination of left and right
turning Cr spin springs, representing the spin stiffness of the
Cr layer, mediates a noncollinear Fe magnetization.

Further progress on the understanding of Fe/Cr superlat-
tices has been achieved by mapping out the off-specular
diffuse scattering in addition to the specular polarized neutron
reflectivity (Lauter-Pasyuk et al., 2001, 2002). Figure 34
shows the reciprocal-space map [19] taken from a
[Fe(6.7 nm)/Cr (0.9 nm)]×12 superlattice in an applied field
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Figure 34. Left panel: (a) Experimental 2D map of the intensity scattered from the Fe/Cr(001) superlattice as a function of the momentum
transfer Qz = (pi + pf ) versus (pi − pf ), where pi and pf are the components of the incoming and the outgoing wave vector perpendicular
to the sample surface, respectively, defined in Figure 2. The logarithmic intensity color scale is shown on the side. The incoming neutrons
are in the (−) state. No polarization analysis of the outgoing beam is applied. (b) 2D model fit to the experimental data in (a) using the
distorted wave Born approximation. (c) Same map as in (a), however, now recorded with a (−) analyzer turn-on within the region marked
by vertical dashed lines. Right panel: (a) Configuration of the magnetization vectors in the Fe layers of the Fe/Cr superlattice in the external
field H applied in plane along one of the easy axes; dashed lines mark the hard axes. Only Fe layers are shown. The only possible two
types of domains (left and right) are depicted. Brackets A and B indicate the two transverse antiphase parts of one lateral domain. The
canting angles φn between Mn and H are shown on the right-hand side. (b) Magnetic parts of the layer resolved neutron scattering length
density for the parallel and perpendicular projection of the magnetization with respect to the magnetic field Nb

‖
m (left) and Nb⊥

m (right),
respectively. The dashed line indicates the average value for Nb

‖
m parallel to the field direction. For more details see text. (Reprinted figure

with permission from Lauter-Pasyuk et al., Phys. Rev. Lett. Vol. 89, 167203 (2002)  2002 by the American Physical Society.)

of 19.5 mT. The specular ridge running vertically is crossed
by an extensive Bragg sheet at the position of the AF half-
order Bragg peak, while no appreciable off-specular scatter-
ing is seen around the first-order Bragg peak. Polarization
analysis has shown that the specular reflectivity is of com-
pletely non-spin-flip nature, while the SF Bragg sheet is pro-
duced by in-plane domains with magnetization components

normal to the net magnetization and perfect AF correlation
across neighboring magnetic layers. The most prominent fea-
ture of the NSF reflectivity is the fact that it shows a dip
instead of a peak at the position of the half-order AF Bragg
peak. The origin of the dip is a stacking fault defect in the
mean magnetization distribution over layers as discussed in
the subsequent text.
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The maps in Figure 34 demonstrate a number of remark-
able features due to the optical effects accounted for in
DWBA as described in the Section 2.11. One of those effects
is the appreciable asymmetry of the maps with respect to an
interchange of the incident and scattered wave vectors, as is
clearly seen in Figure 34. This effect can be explained as fol-
lows: neutrons with the incident momentum enter the sample
with one spin state, then undergo a SF process in the sample
and leave with a different spin state. Accordingly, the opti-
cal potentials and the critical angles for the neutrons entering
and exiting the sample are different. From this asymmetry,
the mean magnetization averaged over the coherence length
can be determined. The intensity of the SF Bragg sheet is,
on the other hand, proportional to the mean square fluctu-
ation of the magnetization projection perpendicular to the
polarization analysis axis.

This example shows that the off-specular diffuse magnetic
and SF scattering is very rich in information, allowing a
complete analysis of domain structures and coupling angles
in magnetic multilayers. Figure 34(b) shows a calculation
of the intensity map, taking into account not only the
layer structure of the superlattice but also the magnetic
domain structure, displayed in the panel to the right. The
calculated map reproduces very well the recorded intensity
map, showing that the Fe/Cr superlattice contains a twisted
domain state [20]. The canting of the magnetization vectors
in each of two possible lateral domains is nonuniform across
the multilayer stack. The canting angles are maximal in the
end layers due to missing neighbors and therefore weaker
exchange coupling. The canting angles progressively relax
toward the middle of the multilayer from both sides. The
magnetization vectors in the top and bottom layers are
tilted in an antiphase fashion, which creates an unavoidable
stacking fault in the middle. This is a specific feature
of multilayers with an even number of bilayers and by
symmetry reasons cannot be avoided in a canted state. The
stacking fault causes a dip in the half-order Bragg peak at
the specular position due to destructive interference between
the neutron waves reflected from the sequence of layers on
either side of the stacking fault.

4.2.3 Heusler multilayers

Heusler compounds have attracted recent interest as elec-
trodes in spintronic devices (Hillebrands and Felser, 2006).
Due to a half-metallic splitting of the d band at the Fermi
level, the spin polarization is predicted to be 100%. The full
Heusler compounds have a composition of the type X2YZ,
(X = Co,Ni; Y = Mn, Z = Si,Ge) and a L21 structure, which
consists of 4 interpenetrating fcc lattices. Only compounds
with long-range structural order exhibit a F order parame-
ter. Site disorder has detrimental effects on the polarization,

the average magnetic moment, and the Curie temperature.
Film growth of ordered Heusler alloys and proper epitaxy to
adjacent metal or semiconductor layers is still a challenge.
Often a cluster type ferromagnetism is observed below a
blocking temperature. Neutron reflectometry has been used
to investigate the magnetization profile in the Heusler layers
and interlayer coupling effects across non-magnetic inter-
layers. In particular Bergmann et al. have studied the struc-
tural and magnetic properties of a series of sputter-deposited
[Co2MnGe/V] multilayers (Bergmann et al., 2005). Those
measurements have revealed a magnetic phase transition at
a Néel temperature TN that is characterized by an onset of
simultaneous F intralayer order in the Co2MnGe layers and
AF interlayer order between adjacent Co2MnGe layers. In
Figure 35 the experimental results obtained by specular PNR
and reciprocal-space maps are shown, together with a struc-
tural model, which applies to the low temperature coupled
state. Above TN the magnetic layers are in a superparamag-
netic state. The observed AF interlayer ordering is attributed
to magnetic stray fields arising from the granular Heusler
layers. The interlayer dipolar interactions cause a reversible
magnetic phase transition of the magnetic clusters with weak
AF order between the layers and for thin enough V spacer
spacers. For V thicknesses more than 3 nm, the AF coupling
vanishes.

The remanent state of the [Co2MnGe(3 nm)/V(3 nm)]
multilayer is particularly interesting as the PNR results
reproduced in Figure 35(c) cannot be described by a single-
domain state. The half-order AF Bragg peak is seen in the
NSF and SF reflectivities, indicating that the AF coupled
domains are canted with respect to the polarization axis. At
the same time there is a F component clearly visible at the
first-order Bragg peak. This requires the AF domains to have
a F projection onto the y-axis parallel to the guiding field
direction. The specular PNR data can well be simulated using
a model, which assumes a coherent AF coupling through
the multilayer stack, the AF sublattice having the magnetic
moments m1 and −m2 with |m1| = |−m2|, respectively.
In order to provide both SF and NSF reflections at the
AF peak position, the model assumes that the sublattice
magnetizations have projections parallel and perpendicular
to the applied field.

However, the results of the PNR simulations are based on
the hypothesis that the layers are homogeneously magnetized
over the neutron coherence area: specular reflectivity does
not provide any direct information on the lateral length scales
of the film, completely ignoring their crystalline structure
and possible large-scale inhomogeneities. A transverse scan
of the AF peak in zero field at 15 K as well as the 2D
map in Figure 35(a) reveal the presence of magnetic off-
specular scattering. In fact, the transverse scan through the
half-order AF peak has no resolution-limited Gaussian profile
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angles as defined in Figure 1. The top panel (a) shows the experimental results at remanence and at 15 K and without polarization analysis,
the lower panel (b) is a simulation of the scattering pattern with a superiterative-based version of the Distorted Wave Born Approximation
as explained in the Section 2.10. In this simulation the domain state shown in panel (d) was assumed, which obviously can reproduce the
data very well. There is a clear AF coupling in this multilayer, expressed by the half-order peak, which also exhibits some streaking due
to the breakdown of the magnetic layers in domains. The half order peak is also observed in the specular reflectivity scans shown in panel
(c). The AF peak is entirely diffuse, indicating that the domains are smaller than the longitudinal projection of the neutron lateral coherence
length. The estimated domain size according to the simulation in (b) is 2.1 µm. (Reprinted figure with permission from A. Bergmann et al.,
Phys. Rev. B, Vol. 72, 214403 (2005).  2005 by the American Physical Society.)

and can well be described by a Lorentzian line shape. This
gives a strong hint that the AF peak seen in the specular
reflectivity is mainly due to a contribution of off-specular
scattering to the specular reflection within the range of their
overlap. The presence of magnetic off-specular scattering
indicates that the magnetization in the single layers is broken
up into domains, the size of which being smaller than
the longitudinal projection of the neutron coherence length
L‖ = L/ sin α, where the neutron coherence length L is given
by L = 1/�Q, and �Q is the uncertainty in the wave vector
transfer due to experimental resolution. The longitudinal
projection of the lateral coherence length is estimated to
be about 60 µm. Hence, simulating the specular data only
leads to false results for this sample. A complete simulation
of both, the specular and off-specular intensity using the
superiterative-based version of the distorted wave Born
approximation, presented in the Section 2.11, can account for
all features of the scattering map. The results are shown in
Figure 35(b). In the fit it was assumed that the magnetic films
break up into a Landau type of pattern with four possible
types of domains with perfect AF coupling and an average
lateral size of 2.1 µm with magnetic moments of the layers
set to 50% of the bulk value. The model is sketched in
Figure 35(d).

The domain state of the Heusler alloy multilayer is
particular illustrative for the analysis of PNR data from
magnetic multilayers. It clearly shows that a correct picture

on the state of the sample can only be gained by recording
both, specular and off-specular intensity. For all present and
future PNR experiments this has now become a standard.

4.2.4 Tuning of exchange coupling with hydrogen

Usually the IEC is explored by varying the thickness of the
mediating paramagnetic layer. A new twist is added if the
IEC can be varied solely by changing the electronic prop-
erties of the interlayer without changing its thickness. This
can be achieved in various ways via alloying, temperature
change, photoconductance, and so on, but most effectively,
reversibly and nondestructively by loading the interlayer with
hydrogen. Hydrogen in metals adds an electron and creates
new states at the Fermi level, thereby changing the quantum
well states drastically. Change of the interlayer exchange
coupling with hydrogen has been demonstrated for Fe/Nb
(Klose et al., 1997) and Fe/V superlattices (Hjörvarsson
et al., 1997), and a change from ferro- to AF coupling has
been observed by the development of a half-order peak as
a function of hydrogen concentration. The development of
the half order AF peak as a function of hydrogen concentra-
tion is illustrated in Figure 36 for Fe/Nb (Klose et al., 1997)
and in Figure 37 for Fe/V (Hjörvarsson et al., 1997). Inter-
stitial hydrogen in the metal matrix also expands the host
lattice. However, the observed IEC effects are more dras-
tic than can be explained by a comparatively small lattice
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expansion. In the work of Leiner et al. (2003) the concept
of IEC was combined with issues of intra- (J‖) and inter-
layer (J⊥) exchange coupling. By fine tuning the hydro-
gen concentration, J⊥ changes the sign from positive or F
exchange coupling to negative or AF exchange coupling. At
the crossover point the quasitwo- dimensional magnetic lay-
ers are not coupled in the perpendicular direction. With zero
coupling, there is no interaction between the magnetic sheets
and each layer becomes an isolated two-dimensional magnet.
Griffiths (1970) presented the properties of this system as a
‘phase diagram’ plotting the Curie temperature and the Néel
temperature as a function of varying interlayer exchange cou-
pling J⊥ (inset of Figure 38). This reveals that as adjacent
layers decouple, the critical temperature also drops toward
a minimum value at zero coupling. Therefore, according to
Griffiths for J⊥ = 0 the system should display a strongly
reduced but finite ordering temperature. This phase diagram
could largely be confirmed by Leiner et al. (2003) using
hydrogen in Fe/V superlattices to effectively decouple the
Fe layers. With decreasing J⊥ one expects an increasing in-
plane fluctuation of the magnetization. This could, however,
not yet been observed and remains a challenge for the future.

A significant change of the interlayer exchange cou-
pling was also found in Fe/LaHx multilayers with varying

hydrogen concentration (Lohstroh et al., 2001). Even small
amounts of additional hydrogen atoms dissolved in metal-
lic LaHx may invert the sign of the coupling, similar to
Fe/V(H), asserting that the main effect is due to a change
of the electronic structure of the host lattice. In contrast,
in Fe/Ce multilayers the Fe layers are magnetically decou-
pled, but become weakly coupled when Cerium is hydro-
genated. The weak AF coupling can only be discerned by
the half-order peak in NR experiments (Lohstroh et al.,
2000).

Hydrogen in Ho/Y superlattices penetrates preferentially
into the Y layers and breaks the coupling between the
Ho magnetic spirals from one layer to the next. Without
hydrogen and for Y layer thicknesses below 5 nm, the Ho
spin spiral penetrates through the Y layer with a fixed
phase relationship from one Ho layer to the next. With
hydrogen in the Y spacer layer, the Y polarization and the
exchange coupling is interrupted. This is because between the
compositions of YH2 and YH3 a metal insulator transition
takes place (Huiberts et al., 1996).

With neutron reflectometry at small angles the (000 + τ )

peak was measured as a function of temperature and hydro-
gen concentration (Leiner, Ay and Zabel, 2004). The inte-
grated intensity of the peak yields the order parameter,
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whereas the width contains the information on the coher-
ence length of the spin spiral in Ho. Figure 39 reproduces
maps of the (000 + τ ) peak before hydrogen loading and
as a function of temperature. The peak is split into sev-
eral satellite peaks due to the folding of the (000 + τ ) peak
with the superlattice reflections. In Figure 40 a radial scan
through the τ peak clearly shows that the original split-
ting of the τ peak into several side peaks diminishes with
increasing hydrogen content in the Y spacer layers and a
broad τ peak remains, representative for a short Ho spi-
ral in a single layer. Once this state is reached, the Néel
temperature for the Ho layer drops dramatically. This is
more pronounced for thinner Ho layers. Thus for a Ho(11
ML)/Y(23 ML) superlattice the Néel temperature drops from
initially 93 to 75 K with increasing hydrogen concentra-
tion. This Néel temperature is identical to the one measured
for a single Ho film of the same layer thickness, which is
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reduced compared to the bulk value of 131 K due to finite
size effects.

4.2.5 Dilute magnetic semiconductors

Dilute magnetic semiconductors (DMS) are of tremendous
present interest for spintronic applications. They usually
consist of II-VI or III-V compounds doped with magnetic
ions. The prototype DMS is Ga1−xMnxAs, which exhibits
ferromagnetism for Mn concentrations up to x ≈ 7% and a
Curie temperature as high as 170 K (Matsukuraa, Ohnoa and
Dietl, 2002). Kepa et al. (2001) have studied a superlattice
of alternating GaAs and Ga1−xMnxAs layers by PNR to
investigate the magnetic ordering with a Mn concentration
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Figure 39. Reciprocal-space maps around the position of the magnetic (000 + τ ) peak of a (Ho(27 ML)/Y(17 ML)) superlattice before
hydrogen uptake in the Y spacer layer and for different temperature up to the Neel temperature of 91 K. (Reprinted figure with permission
from V. Leiner et al., Phys Rev. B Vol. 70, 104429 (2004).  2004 by the American Physical Society.)

of 6% in the magnetic layers. Below the Curie temperature
of about 30 K the NSF reflectivities R++ and R−− split at
the first-order Bragg reflection, clearly indicating F ordering
Figure 41. This ordering persist even in essentially zero field,
which is a clear sign for a single-domain state throughout
the superlattice. As the single-domain state occurs by zero
field cooling, Kepa et al. suggest that a long-range interlayer
exchange interaction must be responsible for the perfect F
alignment of all GaMnAs layers in the superlattice. Modeling
of the reflectivities confirm that all Mn atoms contribute to
the F single domain state and that Mn is in S = 5/2 state.

In contrast to Kepa et al. (2001), Kirby et al. (2004)
have studied single Ga1−xMnxAs layers by PNR in the
as deposited state and after annealing. The main interest
in this work was to analyze the magnetization profile
in the GaMnAs layer, which is a direct measure of the
Mn-concentration distribution in the z direction. GaMnAs
layers are used for spin injection into GaAs and therefore
the magnetization or the polarization should be high at
the GaMnAs/GaAs interface. Indeed, before annealing the
magnetization profile is rather asymmetric with a low Mn
concentration at the interface and a high concentration
close to the surface. After annealing at 280 ◦C for 1 h the

concentration distribution and magnetization increased and
the profile becomes much more homogeneous. Annealing
therefore has not only the effect of Mn redistribution in the
z direction but also to change the occupancy from interstitial
to substitutional sites. PNR yields an amazingly rich insight
in the magnetization distribution even for thin alloy films and
low concentrations.

Primus et al. (2005) have recently studied the magneti-
zation reversal mechanism of Ga1−xMnxAs layers on GaAs
substrates with PNR methods. A SF peak at the coercive
field is observed for one sample, while for a second sample
no SF peak is observed. Therefore it is concluded that in
the second sample the reversal takes place via 180◦ domain
wall nucleation and propagation, while in the first sample the
magnetization reversal may proceed by an incoherent rotation
mechanism through 90◦ domains. Both samples differ in their
growth temperature and show different in-plane anisotropies.
The first sample exhibits an in-plane biaxial anisotropy, while
the second sample has an in-plane uniaxial anisotropy. Thus,
magnetic anisotropy and reversal mechanism are intimately
related.

A very interesting PNR study has recently been performed
by (Diwekar et al., 2004) on GaAs films. During MBE
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growth the GaAs layers were interlaced with partially filled
MnAs layers in discrete and periodic distances, forming a
digital ferromagnetic heterostructure (DFH). Owing to the
alignment of the Mn moments even in a weak external field,
the superlattice shows F Bragg peaks below the ordering
temperature of about 40 K (see Figure 42). In contrast to the
studies by Kepa et al. (2001), the DFH exhibits a sizable
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Figure 41. Polarized neutron reflectivity from a GaMnAs/GaAs
superlattice. The first-order Bragg peak exhibits the same R++ and
R−− splitting after zero field cooling (a) and field cooling (b),
showing that the GaMnAs layers are in a ferromagnetic state at low
temperatures and that the magnetization vectors in all layers are
parallel aligned. The SF reflectivity is negligible. Such a behavior
is usually only observed in case of interlayer exchange coupling,
which is also invoked here to explain the reflectivity results. In
(c) the reflectivity is shown for temperatures above the ordering
temperature, where no splitting of the NSF Bragg peak is observed.
(Reprinted figure with permission from H. Kepa et al., Phys Rev. B
Vol. 64, 121302 (2001).  2001 by the American Physical Society.)

difference for the saturation and remanent magnetization,
which becomes even more pronounced when comparing
PNR and SQUID data. The PNR data from the F Bragg
peak focus on those magnetic moments which follow the
DFH periodicity, while the SQUID data take an average
over all moments. This difference indicates that in the
superlattices magnetic clusters must be present, which align
in the external field even at temperatures far above the
spontaneous ordering temperature. Diwekar et al. have made
another interesting observation. Below 100 K, magnetic
moments within each MnAs layer first order locally, but long-
range order is developed along the growth direction only
below Tc = 40 < 100 K. This two-step ordering mechanism
can be attributed to fluctuations in the interlayer exchange
interactions.
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5 LATERALLY PATTERNED MAGNETIC
ARRAYS

Laterally patterned and periodic magnetic arrays have
recently attracted much scientific interest because the inter-
play between exchange and shape anisotropy allows to con-
trol the magnetic domain state within the magnetic elements
in remanence such as dipoles and vortices, and their spa-
tial separation controls the dipolar interaction and correla-
tion during reversal. A number of experimental techniques
has been employed to characterize the domain state and the
magnetization reversal of these new lateral nanostructures.
Among those PNR may not be the obvious experimental

tool because of a combination of low intensity and diminish-
ing scattering volume. Nevertheless, in recent years PNR has
been shown to be a rather powerful method for the investi-
gation of some of their fundamental properties. In contrast
to imaging methods, such as Kerr microscopy and magnetic
force microscopy, neutrons simultaneously probe the whole
magnetic array and hence are sensitive to cooperative effects
within the array. On the other hand, being a depth sensi-
tive probe, PNR measurements disclose information hidden
in buried magnetic layers and interfaces. This may become
especially important in the near future when for the infor-
mation storage in magnetic media the third dimension will
be used, for example, via the layer-by-layer patterning in
multilayered systems.

Quantitative evaluation of PNR data allows to recover the
vectorial magnetization profile and also to receive rather
detailed information on magnetization vector fluctuations
and correlations within the magnetic array. However, it
should be kept in mind that the lateral resolution element,
that is the area from which a coherent scattering can be
observed, is highly anisotropic and covers only a small
fraction of the sample surface illuminated by the neutron
beam. The effect of coherent and incoherent summation of
the scattering signal from lateral stripe arrays is discussed
in Section 2.8 and can be used to obtain information that is
complementary to methods which use a different averaging
method such as MOKE. Similar to the case of continuous
thin magnetic films the complementarity of PNR and MOKE
can effectively be used for characterizing the magnetization
reversal mechanisms and for discriminating between rotation
and domain nucleation.

There are three possible sources of information on the
magnetic state in a periodic array as can be seen from a model
simulation of a magnetic stripe array in Figure 43: specular
neutron reflectivity, Bragg diffraction from the lateral period
and off-specular diffuse scattering from domains smaller than
the coherence range. The simulations were carried out by
use of the DWBA routine described in the Section 2.11
and highlight some particular features not accounted for in
Figure 12. The simulations shown in Figure 43 have been
performed for an 80-nm-thick Co stripe array (stripe width
3 µm and periodicity 4 µm). The stripes are oriented per-
pendicular to the scattering plane and parallel to the y-axis.
The mean magnetization within the stripes is assumed to be
tilted by 25◦ away from y-axis (i.e., the neutron polarization
axis). Furthermore fluctuations are allowed around the mean
magnetization orientation. The specular reflection ridge runs
along the diagonal, where αi = αf . In Figure 43 the split-
ting of the NSF reflectivities R++ and R−− is well visible
due to the assumption of a high sample magnetization. SF
reflectivities R+− and R−+ are due to the orientation of the
mean magnetization away from the polarization axis of the
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Figure 43. Model simulation of intensity maps of all four cross
sections for an 80-nm thick Co stripe array with a stripe width of
3 µm and a periodicity of 4 µm. The mean magnetization is assumed
to be oriented about 25◦ away from the neutron polarization axis
which is equivalent to the orientation of the ridge of the stripes. It
is further assumed that the stripes are not in a single-domain state
but exhibit fluctuations around the mean magnetization within the
coherence area.

neutrons. The other two features occur in the intensity maps
at αi �= αf . The first one is the intensity of Bragg diffraction
concentrated along curved lines cos αi − cos αf ≈ n(λ/�),
where n denotes the order of diffraction and � is the period.
It is caused by the periodic variation of nuclear and magnetic
potentials across the striped pattern. Equivalent to the spec-
ular reflection splitting occurs between the NSF diffraction
lines. SF Bragg diffraction in the off-specular scattering range
can be observed due to rotation of the stripe magnetization
away from the stripe ridge which is assumed to be parallel
to the polarization axis of the neutrons. The second feature
is a well-structured diffuse intensity observed at low angles
of incidence αi and/or scattering angles αf . This intensity
distribution is asymmetric with respect to the main diago-
nal in the bottom panels of Figure 43. The I+− off-specular
intensity is mostly disposed at αf < αi , while the I−+ off-
specular intensity is concentrated at αf > αi such that the
left image becomes identical to the right one if αi and αf are
interchanged. Correspondingly, there is also an antisymme-
try between the off-specular scattering intensities in the same
SF maps if simulated for fields below and above the coer-
cive field. The asymmetry is a direct consequence of optical
effects accounted for in DWBA (Section 2.11). NSF diffuse
scattering is, in contrast, symmetric. SF and NSF scattering
together are sensitive to magnetization fluctuations of both

longitudinal and transverse components. Both features are
due to the lateral magnetization variation on a scale smaller
than the coherence range.

For a complete determination of the magnetization state
of a lateral magnetic array it is important to simultaneously
evaluate the specular reflectivities, the off-specular Bragg
diffractions, and the diffuse scattering. This is due to the fact
that the information these different scattering contributions
contain are not independent but rather are interrelated.
Sometimes, due to a lack of magnetic material in the
patterned sample or due to other reasons, it may even be the
case that no splitting of the NSF reflectivities can be observed
while splitting still occurs along the Bragg diffraction lines
in the off-specular scattering range.

Such a case is described by Temst, Van-Bael and Fritzsche
(2001) where 20-nm-thick circular Co disks with a diameter
of 4 µm are arranged in a 2 × 2 cm large square lattice with
a 10 µm period as seen in Figure 44(a). The authors could
not observe a splitting at the specular reflectivity but were
able to extract qualitative magnetic information from field
dependent intensity measurements of all four cross sections
at the Bragg positions. From missing SF Bragg diffraction
they concluded that the disks pass through a multidomain
state during magnetization reversal.

In Figure 45 similar measurements of Temst et al. and
Fritzsche et al. using rectangular bars are shown (Temst
et al., 2003a,b; Fritzsche, Van Bael and Temst, 2003). In both
cases the bars were saturated in a negative field parallel to the
long side of the bars and parallel to the NSF direction [21].
For the PNR experiment, a magnetic field H was applied
along the positive NSF axis (x direction in Figure 44b), that
is, opposite to the direction of the remanent magnetization.

20 µm 10 µm

(10) (11)

(01)

(a) (b)

y

x

Figure 44. (a) Optical microscopy picture of a periodic array of
Co disks on a square lattice with a 10 µm period (Temst, Van-
Bael and Fritzsche, 2001). The length of the white bar corresponds
to 20 µm. The inset (upper left corner) shows an AFM image of
a single disk. In the lower right corner the in-plane directions
are defined. (Reproduced from K. Temst et al., with permission
from the American Institute of Physics.  2001.) (b) SEM picture
of an array of Co bars (Temst et al., 2003a). The white marker
corresponds to 20 µm. (Reproduced from K. Temst et al., 2003,
with permission from Elsevier.  2003.)
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Figure 45. Intensity of the first-order off-specular Bragg peak as a
function of decreasing field H applied along the easy axis (a) and
along the hard axis of rectangular Co bars (b) (Figure 44b). Prior
to this experiment, the bars were saturated along the negative x

direction, that is along the easy axis. (Reproduced from K. Temst
et al., 2003, with permission from Elsevier.  2003.)

Figure 45(a) shows the intensity of the off-specular first-
order Bragg peak as a function of magnetic field. The
SF contribution is very small, indicating that there are
negligible magnetization components perpendicular to the
neutron polarization axis. Figure 45(b) reproduces the NSF
and SF Bragg intensities as a function of magnetic field after
the sample has been saturated along the easy axis and rotated
by 90◦, such that the easy axis magnetization is parallel to
the SF axis. In this case, a strong SF signal can be observed,
since the remanent magnetization is now perpendicular to the
neutron polarization. As the field is increased parallel to the
hard axis, that is the short side of the bars, the SF signal
fades away and the NSF intensities increase.

PNR studies were also performed on a Co/CoO stripe
array of about 1 µm width and with a periodicity of 15 µm
exhibiting the EB effect (Temst et al., 2005a). Similarly
Temst et al. studied Co/CoO bars with a length of 4 µm

and a width of 1 µm placed on a square lattice with a
periodicity of 10 µm. (Temst et al., 2005b). For the stripes
Temst et al. present specular PNR measurements with full
polarization analysis. The measurements were performed
at the two different coercive fields characteristic for EB
systems and with the stripes aligned either parallel or
perpendicular to the neutron polarization axis (i.e., the
applied magnetic field direction). Information was gained
from the SF specular reflectivity. In case of the parallel
orientation the authors did not observe SF specular intensity
during both reversals, whereas in case of perpendicular
orientation a specular SF signal was observed at one of
the coercive fields. In accordance with the measurements
by Radu et al. (2003a) on continuous and exchange-biased
Co/CoO bilayers, the absence of SF specular reflectivity
is explained by nucleation of domains smaller than the
coherence length of the neutron beam, while enhanced SF
specular reflectivity during magnetization reversal is a sign
for magnetization reversal through rotation.

The magnetization state of the Co/CoO bars (Temst et al.,
2005b) again was determined by field dependent intensity
measurements at the off-specular first-order Bragg peak. Sim-
ilar to the Co/CoO stripe array, for the Co/CoO rectangular
bars SF scattering could not be observed when the field
was applied along the long side of the bars, indicating a
reversal by domain wall nucleation and motion. The polar-
ized neutron scattering (PNS) measurements were supported
by micromagnetic simulations using the object orientated
micromagnetic framework (OOMMF) of the Division of the
Information Technology Laboratory at the National Institute
of Standards and Technology (Donahue and Porter, 1999).

y (µm)

0

(a)

90

z 
(n

m
)

20
10

0
0

20

10

x (
µm)

y (µm)

0

90

z 
(n

m
)

20
10

0
0

20

10

x (
µm)

(b)

Figure 46. Surface topography of arrays of Co0.7Fe0.3 stripes
obtained with an atomic force microscope shown in a 3D surface
view. The displayed area is 20 × 20 µm2. (a) Narrow stripes with a
width of 1.2 µm and (b) wide stripes with a width of 2.4 µm.
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From these simulations NSF intensities were calculated and
compared to the experimentally observed field dependent
intensities from the Bragg peak.

Theis-Bröhl and coworkers have studied the magnetization
reversal of various stripe arrays with main emphasis on the
analysis of the scattering contributions from specular and
off-specular intensities and from Bragg peaks (Theis-Bröhl,
Schmitte, Leiner and Zabel, 2003; Theis-Bröhl et al., 2003;
Theis-Bröhl, 2003). In (Theis-Bröhl et al., 2003) an array of
90-nm thick and 1.2 µm wide CoFe stripes with a periodicity
of 3 µm (Figure 46a) has been analyzed. A splitting of the
specular R++ and R−− reflectivity was not observed. Instead
information could be gained from the intensity of the first-
order Bragg peak as a function of applied magnetic field. The
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Figure 47. Magnetization reversal measurements performed at the
first-order Bragg peak for three different cross sections (left column)
and calculated magnetization curves from the polarized neutron
measurements (right column). The neutron spin asymmetry (open
square) is compared to longitudinal MOKE hysteresis loops (solid
and dotted lines). The top row depicts measurements at a sample
rotation of χ = 0◦, the middle row measurements at a sample
rotation of χ = 45◦ and the bottom row measurements at a sample
rotation of χ = 63◦. (Reprinted figure from K. Theis-Bröhl et al.,
Phys Rev. B. Vol 67, 184415 (2003).  2003 by the American
Physical Society.)

Bragg intensities were converted into spin asymmetry (SA)
curves and compared to longitudinal MOKE hysteresis loops
as shown in Figure 47.

It should be noted here that reciprocal lattice spots from
lateral stripe arrays occur along the x-axis when the stripes
are oriented parallel to the y-axis (see sample geometry in
Figure 48). Rotating the stripes by an angle χ causes a rota-
tion of the reciprocal lattice points from the x-axis to the x–y
plane by the same angle. Due to a poor resolution in the wave
vector transfer projection qy , as compared to a high resolution
in the projection qx , Bragg reflections still can be observed at
qx ≈ n(2π/d) cos χ ; where n is an integer and d is the lattice
spacing (Toperverg et al., 2000; Dorner and Wildes, 2003).
This fact was used in (Theis-Bröhl, Schmitte, Leiner and
Zabel, 2003; Theis-Bröhl et al., 2003; Theis-Bröhl, 2003)
for analyzing the magnetization state of stripe pattern as a
function of sample rotation. The stripe array displayed in
Figure 46(a) and discussed above showed a relatively simple
remagnetization process dominated by a single-domain state
with domain nucleation and wall movement restricted to a
small field range around the coercive field. The case χ = 0 is
the easy axis configuration without rotation of magnetization
and reversal purely takes place through domain nucleation
and DW movement at the coercive field. In all other cases
with χ �= 0 rotation of the magnetization within a single-
domain state occurs for fields H �= Hc while the reversal
through domain nucleation and DW movement is restricted
to fields H ≈ Hc. The comparison between MOKE and PNR
showed a good agreement between both methods revealing
that this simple qualitative method can be applied in case
that a single-domain magnetic state predominates over most
of the field range.

Comprehensive data analysis was performed on a pattern
with CoFe stripes having a larger width of 2.4 µm (Figure
46) (Theis-Bröhl et al., 2005; Theis-Bröhl, McCord, Zabel
and Toperverg, 2005). Between H = 0 and the H = Hc the
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ai af

Figure 48. Sketch of the neutron scattering geometry. χ is the
angle of the sample rotation with respect to the applied field
(same definition as in Figure 1). The magnetic field �H is applied
perpendicular to the scattering plane. αi and αf refer to the incident
and exit angles of the neutrons to the sample surface.
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(a)
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(b) (c)

10 µm

Figure 49. Kerr microscopy images taken below Hc (a), at Hc (b), and above Hc (c) with the magnetic field aligned parallel to the stripes.
The plane of incidence results in a top–down magneto-optical sensitivity axis perpendicular to the stripes. The curly arrows indicate the
mean magnetization direction as well as the presence of ripple domains. (Reprinted figure from K. Theis-Bröhl et al., Phys Rev. B. Vol 71,
020403  (2005)  2005 by the American Physical Society.)

wide stripes decompose into a multidomain state as can
be seen from Kerr microscopy measurements in Figure 49.
Polarized neutron measurements without polarization analy-
sis in the off-specular scattering range and respective sim-
ulations of the intensity maps are shown in Figure 50. The
maps contain all three features described above. The spec-
ular reflectivity reveals oscillations due to the thickness of
the stripes and splitting between R+ and R−. In the off-
specular scattering range Bragg diffraction occurs and asym-
metric diffuse scattering is seen indicative for a multidomain
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Figure 50. Experimental maps of the polarized neutron intensity
on a logarithmic scale from a periodic stripe array measured at a
magnetic field of 43 Oe and plotted as a function of the angles of
incidence αi , and the scattering angles αf (a) and (b). Calculated
intensity maps (c) and (d). (a) and (c) correspond to the incident
neutron polarization parallel to the stripes and parallel to the external
field, while in (b) and (d) the polarization and the field directions
are antiparallel. (Reprinted figure from K. Theis-Bröhl et al., Phys
Rev. B. Vol 71, 020403  (2005)  2005 by the American Physical
Society.)

state. Simulations of polarized intensity maps and specular
reflectivity with full polarization analysis were performed by
using a routine on the basis of DWBA. With this compre-
hensive study including all features occurring in the intensity
maps it was shown that polarized specular and off-specular
neutron scattering provide a detailed picture of the mean
domain magnetization vectors in a magnetic stripe array,
including longitudinal and transverse fluctuations about the
mean magnetization direction and correlation effects between
magnetic domains across different stripes. As a result of the
quantitative analysis it was found that the domain magneti-
zation vectors are heavily correlated not only parallel to the
stripe direction, but also over a large perpendicular distance
between them. This correlation creates an inherent instability
of the system with respect to the formation of large domains
as observed during the magnetization reversal.

Lateral magnetic structures were also measured by Lee
et al. using time-of-flight polarized neutron reflectometry
(Lee, Klose, Yin and Toperverg, 2003). The sample studied
was an array of permalloy (Ni80Fe20) bars, with dimensions
10-nm thick, 2 µm wide, 10 µm long, and separated by
2 µm. As displayed in Figure 51 the authors present spin-up
and spin-down intensity maps containing specular reflection,
off-specular Bragg reflections and diffuse scattering. They
explain the observed features qualitatively on the basis of
DWBA and discuss how to obtain the F domain dispersion
from polarized neutron data.

An attempt to exit into the third dimension via lateral
structuring the top iron layer of an antiferromagnetically
coupled Fe/Cr multilayer is illustrated by the study of
Ziegenhagen et al. (2003). The top two-dimensional pattern
consists of 15-nm-thick Fe stripes with a period of 1 µm.
The array was examined by specular reflection and off-
specular scattering using polarized neutrons. A schematic
outline of the stripe pattern and the experimental results
are shown in Figure 52. The measurements were performed
with a magnetic field parallel to the Fe stripes and at a
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Figure 51. Log-scale intensity map for (a) spin-up and (b) spin-
down incident neutrons scattered from an array of micron-sized
magnetic elements on a silicon surface. The solid line at 1.08◦ is the
horizon. The dotted lines are calculated locations of: (1) specular
reflection; (2,3) off-specular reflections; and (4) diffraction. The
dashed lines are the critical edges (from the horizon to higher/lower
angles): the silicon edge (above the horizon only) and the permalloy
edges corresponding to SLD Nbc+ and Nbc−. (Reprodeuced from
T. Lee et al., 2003 with permission from Elsevier.  2003.)

level below the exchange coupling of the Fe layers in
order to maintain the AF state of the Fe/Cr superlattice.
The intensity maps are rather complex as they contain
Bragg peaks from the chemical and magnetic perpendicular
periodicity of the Fe/Cr superlattice superimposed on the
intensity from the lateral stripe pattern. In detail, the maps
contain specular reflectivity with half- and full-order peaks
due to the perpendicular magnetic and the structural periods
of the multilayer, respectively. Furthermore, intense off-
specular diffuse scattering together with Bragg sheets at the
half-order positions can be recognized, indicating domain
formation with a strong AF correlation across the multilayer
stack. Furthermore, first-order lateral Bragg diffraction peaks
are visible at positions where the intensity becomes enhanced
due to the AF Bragg sheet. This can be attributed to the fact

that the top layer lateral magnetic structure is replicated into
the inner layers.

A lateral magnetic array does not necessarily require a pat-
terned structure by itself. Using an ion based method, such
as ion bombardment induced magnetic patterning (IBMP) or
focused ion-beam treatment, magnetic properties of thin mag-
netic films can locally be altered without changing the struc-
tural properties. Such methods are interesting with respect
applications because of their high surface smoothness com-
pared to lithographically patterned structures. Theis-Bröhl
et al. (2006) investigated the magnetization arrangement of
a smooth and continuous layer with a purely magnetic in-
plane stripe pattern created by alternating EB to an AF
substrate. The stripe pattern was produced by IBMP using
He+ ions, which locally changed the EB direction at the fer-
romagnet/antiferromagnet interface, but not the magnetic or
AF properties of the Co70Fe30 and Mn83Ir17 layers, respec-
tively. For the analysis of the magnetic domain structure
evolution along the hysteresis loop a combination of experi-
mental techniques, for example, magneto-optical Kerr effect,
Kerr microscopy, polarized neutron reflectometry, and off-
specular scattering of polarized neutrons with polarization
analysis, was used.

For the demagnetized state antiparallel alignment of mag-
netization in neighboring stripes would be an ideal case.
But due to the competition between EB, exchange inter-
action between neighboring F regions, and anisotropy, the
perfect antiparallel alignment can be found only in the case
that the EB dominates the others effects. For the model
system studied in Theis-Bröhl et al. (2006) it was found
that for magnetic fields parallel to the stripes and below
saturation the magnetization in neighboring stripes is peri-
odically canted with respect to the stripe axis so that the
net magnetization of the F film turns almost perpendicu-
lar to the stripes. At the same time the projection of the
magnetization vector onto the stripe axis has a periodi-
cally alternating sign. All this information was gained on
a quantitative basis. Specular reflectivities were fitted by
using an originally developed least-squares software pack-
age, which allows simultaneous evaluation of all four mea-
sured reflectivities in one cycle (Figure 53b) and simulations
of intensity maps measured with full polarization analysis
were performed on the basis of DWBA. The longitudinal
Kerr-hysteresis loop in Figure 53(a) shows steps on both
branches corresponding to the ‘antiparallel’ orientation of
magnetization in neighboring regions. PNR measurements
were performed at different fields along the hysteresis loop.
Three representative cases on both branches are represented
in Figure 53(b): one measured around the first coercive field
Hc,1 (top row), one measured at the step of the hysteresis loop
in the ‘antiparallel’ state (middle row) and one measured in
saturation (bottom row).
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Figure 52. Specular reflection and off-specular scattering from a Fe/Cr superlattice. The top Fe layer has been lithographically structured
into stripes with a 1 µm lateral period. The specular ridge contains half and full-order peaks from the perpendicular chemical and magnetic
superlattice period. Patterning creates off-specular Bragg peaks and diffuse scattering forming Bragg sheets. The latter cross the specular
ridge at the AF superstructure peaks on the reflectivity ridge. Diffraction signal from the lateral structure is only seen in regions of the
reciprocal space where the intensity is enhanced due to the Bragg sheet scattering. (Reproduced from N. Ziegenhagen et al., 2003. With
permission from Elsevier.  2003.)

Telling et al. used IBMP for magnetic patterning of a
Co/Pt multilayer and for rotating the easy axis magnetiza-
tion direction in certain sample regions from out-of-plane
to in-plane (Telling et al., 2003). The sample was irradiated
through a grid stencil with a period of 13 µm assuming the
sample properties do not change underneath the stencil. Spec-
ular polarized neutron reflectivity measurements performed
in remanence and at saturation yield the magnetization state
of the in-plane moments. Out-of-plane magnetization is not
accessible to PNR. Off-specular intensity was measured as a
function of qz and the off-specular scattering angle. At rema-
nence the authors observe Bragg diffraction peaks around the
specular reflection from which the lateral long-range mag-
netic order in the sample can be inferred. Similar peaks
cannot be observed at saturation when all domains of the
sample are magnetized in-plane. Off-specular diffuse scatter-
ing was found to be small due to the smooth and uncorrelated
interfaces of the sample.

In conclusion, up to now only in a few cases PNR has
been applied to laterally patterned magnetic arrays. PNR and
PNS was either used to qualitatively describe the remagne-
tization process and to discriminate between magnetization
rotation on the one hand and domain nucleation and DW

movement on the other hand, or for a quantitative analysis
of the magnetization reversal process. Unlike PNR studies
of magnetic thin films, in PNR studies of lateral patterns
often no splitting between specular NSF reflectivities can
be observed but qualitative information can still be gained
from off-specular Bragg diffraction. Quantitative data anal-
ysis successfully can be performed within the framework of
DWBA. In order to apply DWBA, the magnetization dis-
tribution within the coherence volume is decomposed into
several components as discussed in Section 2.11. For lateral
structures these are three components: the mean value of the
magnetization, periodic perturbation of the mean magnetiza-
tion due to periodic alterations of the longitudinal magneti-
zation projection in the lateral array of magnetic elements,
and random fluctuations in the magnetization due domains
smaller than the coherence length. The basic features in
polarized intensity maps from lateral arrays (specular NR,
Bragg diffraction from the lateral period and off-specular
diffuse scattering) can very well be described within this
model. With this tool comprehensive PNR studies can be
performed for a complete quantitative description of the mag-
netization state including correlations between the magnetic
elements.
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Figure 53. (a) Longitudinal MOKE hysteresis loop (line) and
results of fits to the specular PNR data (symbols) of a sample
magnetically patterned into stripes by ion bombardment induced
magnetic patterning and measured with the field applied along
the EB axis. (b) Polarized neutron reflectivity measurements per-
formed at different applied magnetic fields. The symbols present
measurements of non-spin-flip reflectivities R+ + and R− − and
one spin-flip reflectivity R+ −. The lines represent fits to the data
points. (Reprinted figure from K. Theis-Bröhl et al., Phys. Rev. B
Vol. 73, 174408 (2006)  2006 by the American Physical Society.)

6 SUMMARY AND CONCLUSIONS

PNR is a new method in solid state physics and materials
research for the analysis of magnetic thin films, magnetic
heterostructures, magnetic superlattices, and lateral magnetic
structures available for only some 15 years. During this
time not only the magnetic systems to be studied have
steadily been improved and have become more complex,
also the PNR method has been appreciably developed
from analyzing specular reflectivity only to a complete
analysis of the specular and off-specular scattering using the
distorted wave Born approximation (DWBA). Furthermore,
the PNR method is now being employed at many different

neutron sources using increasingly sophisticated neutron
optics, neutron detectors, and sample environments. All
this helps making PNR a very powerful method to meet
the future challenges. Those lie in even more complex
systems and smaller samples with less magnetic material.
Furthermore, the time domain will likely to be explored
in more detail in the future. Aside from the nano- to
picosecond region investigated by time-resolved light and
synchrotron experiment, there are rich physical phenomena
in the subsecond to minute region which are amenable to
the PNR method, such as training effects in exchange bias
systems, magnetic viscosity, and spin glass relaxations.

The benefits of PNR and scattering for the investigation
of magnetic nano- and heterostructures can be summarized
as:

• Direct probe of atomic moments and magnetic induction;
• Cross section is known accurately;
• Both F and AF structures can be studied easily;
• Sensitivity to spin disorder and spin fluctuations;
• Magnetic correlation lengths can be probed on different

length scales and in different depth below the surface.

The competition with other methods for the investiga-
tion of magnetic heterostructures is strong, in particular,
with other scattering techniques such as X-ray resonant
magnetic scattering (Kortright et al., 2003) and diffraction
MOKE (Bragg-MOKE) (Grimsditch and Vavassori, 2004;
Westphalen et al., 2006). The use of PNR can only be jus-
tified if the sample in question is already thoroughly char-
acterized by other methods and if PNR can add information
not available otherwise. This is indeed the case whenever the
complete magnetization state including correlations between
the magnetic elements need to be analyzed even in deeply
buried layers.

NOTES

[1] NSF reflectivity must turn to zero along with the phase
difference χ+− at either p0 = 0 and at p0 ≥ pc+ just
due to the fact that in the first limit χ+ = χ− = π ,
while in the second one χ+ = χ− = 0. Therefore NSF
reflectivity cannot be a monotonous function of p0

and should show at least one maximum in the range
pc− ≤ p0 ≤ pc+.

[2] In the following the unit matrix will be omitted and
the quantities without ‘hat’ are be assumed to be
proportional to 1̂.

[3] This consideration does not take into account that
actually the identity R ≡ 1 is achieved only in the
limit αi → 0. Otherwise some intensity lost from the
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specular reflection channel due to off-specular scattering
has to be recovered via the optical theorem (Toperverg,
Schärpf and Anderson, 2000; Toperverg, 2003). This
loss is, however, negligible far below the total reflection
edge, where the neutron wave does not penetrate deep
into the matter.

[4] To the best of our knowledge such kind of GIND was
observed for the first time by Ioffe, Turkevitch and
Drabkin (1981) from Ni grating with the lateral period
of a = 21 µm.

[5] Generally speaking, the coherence area is the lateral
cross section of the 3D coherence volume (Sinha, Tolan
and Gibaud, 1998) which also includes the uncertainty
�Qz ∼ (2π/λ)

√
(�αi)2 + (�αf )2. The latter smears

out the interference of waves reflected from different
interfaces. The resolution function also includes the
spread �λ over the neutron wavelengths λ, which may
affect the resolution in Qy and Qz, but is not important for
the coherence volume anisotropy discussed here. In real
PNR experiments the collimation in ϑy is quite relaxed
so that an uncertainty �ϑy is by 1–2 orders of magnitude
higher than that in αi and αf . This is responsible for the
anisotropy of the coherence volume in all three direction
and also increases the anisotropy of the coherence area.

[6] Strictly speaking, the long axis of the coherence ellip-
soid is usually smaller than the sample size. Therefore
Nb, in principle, depends on both, the y and the x

coordinates. However, if the long axis crosses many
structural elements then relative deviations in their num-
ber within different ellipsoids shifted along the x-axis
are small and can be neglected.

[7] This result of BA is incorrect. In the more consistent
DWBA approach Bragg diffraction contains both: SF
and NSF contribution

[8] This linear combination serves instead of well-known
equation for the scattering amplitude written as a
product T f S(Q)T i , where T f and T f are transmit-
tances of incoming and scattered wave and S(Q) is
the scattering function. This equation is often used to
describe off-specular scattering from roughness (Sinha,
Sirota, Garoff and Stanley, 1988) and surface diffrac-
tion (Dosch, 1993) in the case of semi-infinite systems.
However, it does not properly take into account refrac-
tion effects and ignores scattering of waves reflected
from the mean potential. Both types of effects are of
the crucial importance in the case of neutron scattering
from patterned magnetic films and multilayers.

[9] Similar experimental maps have recently been obtained
by (te Velthuis et al., 2006) on the Co/CoO system
exhibiting EB effect (see also Domain States Deter-
mined by Neutron Refraction and Scattering, Vol-
ume 3).

[10] Let us to remind that the dispersion signifies fluctuations
of the angle of domain magnetization rotation. In the
case of a binary distribution of these angles, that is, if for
instance, the domain magnetization is randomly turned
for only angles ±�γ , then the dispersion equals zero.

[11] The negative SLD of the Co layer forms a potential
well in front of the positive barrier of the substrate.
The neutron wave passing through the well interferes
with that reflected from the substrate. As a result, such
a potential profile condenses the neutron wave field in
the film if the corresponding wave number matches the
width of the well. This brings new features (Seregin,
1977; Kentzinger, 2003; Feygenson et al., 2004) into
the off-specular intensity distribution. However, the res-
onance levels are usually very narrow and quite difficult
to observe with PNR.

[12] Similar maps were obtained experimentally (Radu
et al., 2003b) for a slightly more complicated stack of
layers.

[13] Features similar to those displayed in Figure 17 were
recently observed experimentally (Radu et al., 2005a)

[14] A more complete review on the general aspects of
EB systems can be found in this Handbook, and more
PNR work on EB systems is covered by Felcher and
Hoffmann, Domain States Determined by Neutron
Refraction and Scattering, Volume 3.

[15] In the paper of Lee et al. (2002) the notation is γ = ϕ

and � = χ2.
[16] In both systems the main scattering features are due to

the Co layer before (Figure 25) and after (Figure 29)
EB with the AF CoO layer.

[17] The aim of Figure 15 was not to reproduce exactly the
experimental results in Figure 29, but rather to illustrate
different contributions of the magnetic scattering from
domains. In particular, off-specular SF scattering in the
upper maps can easily be eliminated via suppression of
the domain magnetization fluctuations in the direction
parallel to net magnetization.

[18] In Figure 19 the scattering intensity maps are presented
in the coordinates pi versus pf . Then the specular
ridge runs parallel to pi = pf , which is the diagonal of
the map. The Bragg sheets are perpendicular oriented
and cross the specular ridge at normal angle. In the
case of rocking scans the natural coordinates are Qx ≈
1
2 (αf − αf )Qz versus Qz = pi + pf . These coordi-
nates are nonlinear with respect to the angles of inci-
dence and scattering, but they are especially conve-
nient if the Born (kinematic) approximation holds, for
example, if optical effects are not important.

[19] These maps are plotted in the rectangular coordinate
system with the axis pi + pf = Qz versus pi − pf .
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This system is just turned by 45◦ with respect to that
in Figure 19.

[20] Noncollinear magnetization arrangement was already
noticed by Schreyer et al. (1997) as discussed above
in view of the nonlinear interlayer coupling. Here the
effect of magnetization canting is different in origin.
It occurs only in an applied field and does not require
nonlinear exchange coupling. The former conclusions of
Schreyer et al. (1997) are based on the analysis of solely
specular reflectivity assuming sublayer magnetization
homogeneous over the range greater than the coherence
length. This assumption holds if off-specular scattering
is negligible and SF specular reflection is ascribed to
the canting of mean magnetization. The same assump-
tion was also made for other superlattices, such as in
Co/Cr(001) (Zeidler et al., 1995) and in Fe/Cr(211) (te
Velthuis et al., 2002) superlattices. In theses studies it
was, however, suggested that the tilt angle of magneti-
zation varies from layer to layer due to the surface spin-
flop transition. With increasing field a DW formed first
at the surface and then penetrated into the superlattice,
thus splitting the SL into two antiphase, AF domains.

[21] In Figure 44(b) the x corresponds to the NSF y-axis.
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APPENDIX

A AMPLITUDE OF NUCLEAR
SCATTERING FROM
A GRATING

In BA, F 0
l (Q) = FN

l (Q) and for the case of patterned layers
the function F 0

l (Qz, Qx; y) is given by the equation

F 0
l (Qz, Qx; y) = Fz

l (Qz, y)
∑

j

eiQxxj FL
lj (Qx, y) (A1)

where xj = xj (y) are coordinates of the lateral structure
elements. The function Fz

l (Qz, y) is simply a form-factor
of the lth layer

Fz
l (Qz, y) = eiQzzl−1

eiQzdl − 1

iQz

(A2)

and dl = dl(y) is the height of the structural element at
a fixed coordinate y. As shown in the bottom panel of
Figure 8, it may be happened that for some choice of y

that d(y) = 0, while d(y) = d for the other value of y. The
function FL

lj (Qx, y) in equation (A1),

FL
lj (Qx, y) =

∫ aj

0
dx eiQxx�(Nb)Nl (x, y) (A3)

is the Fourier transform of the lateral SLD deviations profile
FL

lj (x, y) of a single structural element j along the x-axis
at fixed coordinate y. In the case of a regular pattern,
aj = a(y) is the structural period in the lateral direction
parallel to the x-axis. If each of the lateral periods contains
nx elements in a unit cell, then from equation (A3) it follows
that FL

lj (Qx, y) = FL
l (Qx, y), and

FL
l (Qx, y)

=
nx∑

m=1

�(Nb)
(m)
l eiQxx

(m−1)
l

eiQxa
(m)
l − 1

iQx

(A4)

where �(Nb)
(m)
l = (Nb)

(m)
l − (Nb)

N

l , (Nb)
(m)
l is the nuclear

SLD, while a
(m)
l = x

(m)
l − x

(m−1)
l is the width of the mth ele-

ment in the lth layer, and x
(0)
l = 0. Due to fact that

Nb
N

l =
n∑

m=1

a
(m)
l

al

(Nb)
(m)
l (A5)

FL
l (Qx, y) = 0 at Qx = 0 and does not contribute

to specular reflection. For the stripe array the SLD
in Figure 10 (Nb)

N = (a(1)/a)(Nb)N , where a = a(1) +
a(2), and �(Nb)(1) = (a(2)/a)(Nb)N at 0 ≤ x < a(1), and
�(Nb)(2) = −Nb

N
if a(1) ≤ x < a.
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1 INTRODUCTION

The use of X-rays in the investigation of matter started with
Röntgen’s discovery in 1895. The very first application was
the imaging of density distributions of human bodies and
solids. The observation of the element-specific absorption
edges has provided an effective method to measure the
density of a certain atomic species, so a new tool for
material analysis was born. With the support of commercially
available intense X-ray tubes and effective monochromators,
it was possible to resolve details of the absorption edges
(Stumm von Bordwehr, 1989). In a range of several electron
volts close to the absorption edge, the observed structures in
the absorption coefficient could be related to the density of
the unoccupied states at the absorbing atom site. This gives
a new opportunity to get insight into the electronic structure

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

of the absorbing media. A breakthrough for the interpretation
of oscillatory features, observed up to several 100 eV above
the transition threshold, has been achieved by Sayers, Lytle
and Stern (1970) and Sayers, Stern and Lytle (1971) by a
Fourier analysis technique. This provides direct information
of the short-range order close to the absorbing atom.

With the advent of synchrotron X-ray sources in the 1980s,
highly intense and collimated X rays of variable well-defined
polarization became available. This caused the development
of new powerful techniques as well as a significant improve-
ment of the conventional ones. In the early 1980s first anoma-
lous reflectivity studies were reported as a means to study the
structure of buried interfaces and, more generally, nontrans-
parent samples (Bremer, Kaihola and Keski-Kuha, 1980).
The development of X-ray microscopy on the basis of Fres-
nel optics started at HASYLAB/DESY by pioneering work
led by Schmahl et al. (1996).

Since the first experimental proof of the existence of
X-ray magnetic circular dichroism (XMCD) by Schütz et al.
(1987) at HASYLAB a new field was opened to study the
magnetic characteristic of solids by various spectroscopic
X-ray methods. As initially expected, these effects occur
for energies close to an inner-shell absorption edge and
are intimately related to the polarization of the symmetry-
selected empty density of states (DOS). The subsequent
theoretical development of sum rules results in a quan-
titative determination of local magnetic spin and orbital
moments in an element-specific manner. Owing to large mag-
netic contributions to the absorption and scattering cross
sections – up to 50% at the transition metal L2,3 edges and
the rare-earth (RE) M4,5 edges – a magnetic moment below
10−5 µB can be detected. In this contribution the basis of
the experimental aspects and the underlying physics are pre-
sented and discussed. Selected, X-ray-related technologies
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such as magnetic extended absorption fine structures (MEX-
AFS), magnetic reflection, and time-resolved scanning X-ray
microscopy are introduced in more detail.

2 EXPERIMENTAL ASPECTS

2.1 Synchrotron radiation

2.1.1 Circular polarized X rays from bending
magnets and helical undulators

Since the discovery of X rays by Röntgen at the end of the
nineteenth century, Bremsstrahlung of electrons accelerated
by high voltage to several kiloelectron volts is used in X-ray
tubes and later for higher energies in particle accelerators.
With the advent of modern electron storage rings in the
1970s, these new powerful X-ray sources have initiated a
breakthrough in the application of X rays in a wide field of
science and technology. The synchrotron radiation is emitted
by highly relativistic electrons with energies in the gigaelec-
tron volt range, that is, E/mec

2 > 1000, which are radially
accelerated when bended onto a circular motion. The spec-
trum of the emitted radiation is a very broad continuum of
highly collimated X rays with extremely large intensity sev-
eral orders higher compared to the best X-ray tubes. The radi-
ation has well-defined polarization, as sketched in Figure 1,
for the radiation emitted from a simple bending magnet
device (Schwinger, 1949). The radiation emitted in the plane
of the electron orbit is linearly polarized, while viewing from
above and below the center of the beam the intensity drops
significantly off, but the degree of circular polarization PC

of the radiation increases drastically. Taking into account a
decrease of about a factor 5, one can achieve a large value of
PC > 90%.

To overcome the intensity reduction by the inclined view
methods today, insertion devices such as helical wigglers

and undulators are used, where an additional oscillating
motion of the electrons is induced inside the special mag-
net structure arrangement (Sasaki, 1994). Thus, additional
synchrotron radiation is emitted in the case of undulators
with coherent overlap of each motion period. The polariza-
tion is adjustable by the relative horizontal position of the
upper and lower magnet structure (Figure 2) (Bahrdt et al.,
2001). In Figure 3, the brilliance of various X-ray sources is
shown as a function of energy (Thompson et al., 2001). Typi-
cal values for bending magnets, undulators, and wigglers (the
less coherent version of an undulator) are given for 1.7 GeV
(like BESSY II in Berlin) and 7 GeV (like Spring 8 in Japan)
electron storage rings.

2.1.2 Quarter-wave plates for fast polarization
switching

In the case of visible optics, quarter-wave plates are usually
used to provide circular polarized light. Typically the light
beam with linear polarized E-vector is oriented at 45◦ to
the two principal axes of the single crystal which provides
birefringence. The E-vector is then split 50:50 along two
different principal axes. For the correct crystal thickness one
half is delayed in phase by 90◦ with respect to the other half,
giving perfectly circular polarized light. For hard X rays, this
is realized by a dynamical scattering approach and is excel-
lently suited to provide switchable polarizations (Giles et al.,
1994a,b; 1995; Justen, 2000; Leitenberger, 1997; Pizzini
et al., 1998; Richter, 1992). For the generation of circular
polarized X rays, the Bragg transmission mode is typically
used. Such an arrangement is shown in Figure 4(a), where
the quarter-wave plate is placed in the monochromatic beam
just before the sample. In a simple consideration close to a
Bragg condition, the interaction of the light is enhanced due
to standing waves phenomena resulting in a reduction of the
phase propagation, which is different for electrical polariza-
tion directions in the scattering plane and perpendicular. If
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Figure 1. Synchrotron radiation emitted from a bending magnet and its polarization characteristics. Owing to the filling of the electron
storage ring with electron packages this synchrotron radiation has a defined and adjustable time structure in the picosecond range.
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Figure 2. Magnet structure and emission characteristics of a helical
undulator. The polarization can be varied by a horizontal shift of the
arrangement of the permanent magnets. (Reproduced from Wende
et al. (2004) Reports on Progress in Physics 67, 2105–2181.)

the scattering plane is tilted by 45◦ respective to the electrical
field vector, a similar condition is present as for conventional
quarter-wave plates as sketched in Figure 4(b). The electri-
cal field vector is oriented parallel to the bisector between
π and σ polarization [1]. The phase difference �� between
the π and σ and polarizations can be expressed analytically
(Justen, 2000) by

��(�θ) = kχ �hχ−�h sin(2θ)

4
· 1

�θ
· d

sin(θ)
(1)

where the dielectric susceptibility

χ �h =
(

reλ
2

πVEZ

)2

F�h (2)

describes the scattering strength at a Bragg reflex �h as a func-
tion of the wavelength z and Vθ2. F�h is the corresponding
structure factor, normalized to the volume of the unit cell
F�h. �θ is the difference angle to the corresponding Bragg
condition, and d is the effective crystal thickness as shown
in Figure 4(b).

As shown in Figure 4(c) �θ diverges at the Bragg condi-
tion and is proportional to the thickness d. �θ determines the
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Figure 3. Brilliance in photons/s/mm2/0.1% bandwidth for various
X-ray sources in the soft X-ray range below approximately 2 keV
and hard X-ray range above 2 keV. (Reproduced from Thompson
et al. (2001) X-ray data booklet. LBNL.)

degree of circular polarization PC. The calculated values for
equal π and σ intensities are presented in the center part of
Figure 4(c). Close to the Bragg condition the circular polar-
ization shows strong oscillations which, in reality, is smeared
out due to the finite beam divergence as shown in the lower
part of Figure 4(c) in combination with a measurement of
the circular polarization [2]. It should be noticed that no free
parameters have been used for the simulation.

To optimize the quarter-wave plate, a balance has to be
found for minimal absorption realized by very thin crys-
tal and the polarization increasing with the thickness. A
careful simulation is required to determine the parameters
of the set of crystals appropriate for the different energy
ranges. Usually the Bragg condition will be roughly tuned
by a goniometer, to the appropriate Bragg condition. The
sign of �� for off-center conditions and thus the sign of
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Figure 4. (a) Principle of a quarter-wave plate for the hard X-ray range. Linear polarized X rays, which are monochromatized at the Si(111)-
double-crystal monochromator. The quarter-wave arrangement is positioned just before the XMCD (XRMS) experiment. (b) Principle of
the function of a X-ray quarter-wave plate creating circularly polarized X-ray owing to dynamical scattering. (c) Polarization characteristics
in dependence of the deviation of the Bragg angle.

the circular polarization can be changed by a fast switch-
ing piezo driver, where frequencies of 100 Hz and higher
can be realized providing the opportunity to measure the
XMCD effect by a lock-in technique. If the scattered Bragg
intensity is also measured simultaneously [3], the exact
Bragg angle could also be used to permanently retune the
angle to its optimal center position. This is absolutely nec-
essary for energy dependent measurements (Justen, 2000;
Weigand, 2003) due to dynamical scattering dependent vari-
ations of the quarter-wave plate X-ray absorption (abnormal

absorption (Borrmann, 1951, Borrmann, Hildebrandt and
Wagner, 1955)).

2.2 XAS and XMCD: experimental aspects

2.2.1 General aspects

The interaction of photons with matter exhibits several
interaction channels whose contributions vary strongly with
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energy. This is demonstrated in Figure 5, where the interac-
tion cross sections of photons with matter from the 10 eV
(VUV–range) to 100 GeV (extremely hard X rays) for the
light element carbon and the heavy element lead is illustrated
(Hubbell, Gimm and Overbo, 1980). For X rays in the energy
range below 100 keV down to 0.1 keV, the photoeffect related
absorption τ is the prominent interaction channel. In the soft
X-ray range the photoeffect exceeds the Thomson scattering
cross section by more than two orders of magnitude and τ

drops with E−7/2 to the credit of an increasingly inelastic
scattering cross section (Bransden and Joachain, 1983).

In general, the absorption cross section σ τ exhibits
element-specific absorption edges which originate from an
additional absorption possibility, if the X-ray energy reaches
the element-specific binding energy of an inner atomic elec-
tron level. The off-resonant absorption edge heights are well-
known tabulated values (Henke, Gullikson and Davis, 1993,

2002). The measured step feature in an absorption spectrum
marks the optical density of an atomic species in a sam-
ple, and absorption spectroscopy can be used as an effective
method to identify optical density of the different compo-
nents of each element in a sample separately. The edges
are defined as K, L, and M edges with respect to the initial
atomic shell, that is, the 1s (K), 2s and 2p (L), and 3s, 3p, and
3d (M) states. In addition, the spin-orbit quantum number j

is labeled, that is, 2p1/2 for the L2 edge, 2p3/2 for the L3

edge, 3d3/2 for the M4 edge, and 3d5/2 for the M5 edge. As
seen in Figure 5, the photo cross section contributes only for
nonrelativistic energies. Here it is set in advance to the theo-
retical considerations in Section 3 that in this case the dipole
approximation is valid and the orbital quantum number l of
final states f are changed by lf = li ± 1.

The formulation for the description of circular magnetic
dichroism or magnetic absorption in analogy to the corre-
sponding effects is well known for spin-dependent Compton
scattering which is introduced by an additive dichroic or
magnetic part of the cross section in the Klein–Nishina for-
mula σ τ → σ τ ± �στ . In a real experiment, the degree of
circular polarization PC is smaller than 1 and the sample
magnetization M not fully aligned along the photon propa-
gation direction and the experimentally determined magnetic
cross section scales with the scalar product P · M resulting
in σ τ → σ τ ± P · M · �στ .

2.2.2 Transmission method for hard X rays

Following Lambert–Beer’s law

I (E)/I0(E) = e−µ(E)·x (3)

the absorption coefficient

µ(E) =
∑

i

NA

Ai

· σ tot,i, (E) · ρi (4)

which is correlated to the inverse penetration depth, can be
related to the ratio between incident I0(E) and transmitted
intensity I (E) through a sample with thickness x as sketched
in Figure 5(a). For a real target it is a summation over all
elements i with atomic weight A and density ρ (g cm−3),
and directly correlated to the energy dependent absorption
cross section as drawn in Figure 5.

Hard X rays can penetrate samples of thicknesses of typi-
cal several µm, where the mean free path strongly decreases
with the atomic number by Z5. Appropriate samples are free-
standing polycrystalline foils, possibly covered with evap-
orated thin target films, or powder targets fixed on tapes
consisting of soft matter such as Kapton or hard Si3N4.
To take a circular dichroic spectrum, which requires in a
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Figure 6. (a) Principle of the measurement of XMCD in the transmission mode for hard X rays. (b) Experimental realization of (a) for
hard X rays emitted from a bending magnet by the inclined view method. Formed by a proper deposited slit and monochromatized by a
crystal monochromator (Si111/Si311/Ge111) the incident and transmitted intensity is monitored by ionization chambers. The magnetization
of the sample mounted inside an electromagnet is periodically reversed.

simplest way the reverse of the sample magnetization, the
radiation is monochromatized by a crystal monochromator
and the incident and transmitted intensity I is monitored by
ionization chambers as a function of the photon energy. The
magnetic sample can be mounted inside a solenoid, provid-
ing a reversible magnetic external field. In the case of a thin
polycrystalline foil, where in general, the magnetization lies
in plane, the sample has to be tilted with respect to the pho-
ton beam direction resulting in a nonvanishing projection of
the magnetization along the photon beam direction. A typi-
cal arrangement is shown in Figure 6(b), where a magnetic
multilayered sample has an easy direction perpendicular to
the plane.

2.2.3 Soft X rays

In the case of soft X rays the absorption is stronger by 1
to 2 orders of magnitude and the corresponding exponential
penetration depth decreases down to the nanometer range.
Therefore, a conventional transmission experiment is very
hard to accomplish. For this type of conventional absorption
measurement it is necessary to prepare thin-film samples,
quite similar to the techniques known from transmission
electron microscopy. In the case of thin-film systems it
is an established method to prepare samples on extreme
window-like thinned substrates, typically made of SiN.
Owing to this relative complex sample preparation, the
absorption coefficient is usually measured indirectly by two
secondary processes called total electron yield (TEY) and
total fluorescence yield (TFY). In the case of TEY the

basic physical process is the excitation of Auger electrons,
which thermalize by creating a large number of secondary
electrons by inelastic e–e scattering processes. For TFY
the characteristic fluorescence light emitted by the de-
excitation of the core hole is detected. These intensities are
proportional to the number of absorption events per volume
and therefore proportional to the absorption process itself.
This proportionality is quite good in terms of TEY and less
reasonable in cases of TFY. A sketch of the experimental
setup is shown in Figure 7(a).

Total electron yield (TEY)
Owing to the very short escape length of the Auger elec-
trons the secondary electrons of lower energies are the
dominant fraction of the total electron current and as seen
in Figure 7(b) the escape depth increases from 50 eV to
lower energy (Zangwill, 1988). Only Auger electrons close
to the surface (a few angstroms) have the possibility to
leave the sample without being involved in an inelastic elec-
tron–electron scattering process. The scattered electrons will
excite many other electrons resulting in a shower of low-
energy electrons, so-called secondary electrons, where a large
fraction will migrate from a region of a few nanometers to
the surface. Electrons with an energy above the electron work
function, that is, the energy needed to leave the surface, have
the possibility to escape into the vacuum (Figure 7c). The
circular polarized synchrotron radiation hits the sample and
excites electrons inside the sample. The total electron drain
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current (TEY signal) is measured by a very sensitive elec-
trometer connected to the ground or by an external electron
detector like channeltrons, channelplates, or similar detectors.
For magnetic absorption measurements, the sample should be
magnetized preferentially parallel and antiparallel along the
photon beam direction by using a switchable magnet (per-
manent or current driven).

As quantitatively discussed in the appendix, the electron
current is in good approximation proportional to the absorp-
tion coefficients

Ie−(x) = k · Iphot(0) · µ(E)

cos α
ξ (5)

where ξ is an effective exponential decay length of the
secondary electrons, α is the angle respective to the surface

normal, µ(E) is the energy dependent absorption, and
Iphot(0) is the photon beam intensity at the surface. The effec-
tive exponential decay length ξ is in a first approximation
an energy average over the electron scattering length curve
as shown in Figure 7(b), and well known in photoemission
spectroscopy.

Nevertheless, for a very short photon absorption
length – compared to the electron escape length – the res-
onant absorption is damped by the so-called saturation or
self-absorption effect. A detailed discussion is also given in
the Appendix.

In reality the electrons will perform spiral-like traces in
an applied magnetic field, where some of the electrons can
even be redirected to the sample, reducing the total measured
electron current. To reduce this effect, the sample is usually
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set to a negative bias voltage by a nearly noise-free DC
power supply. This reduces the backscattering probability
and enhances the overall performance, especially when
measuring the difference between opposite field directions
to measure XMCD.

Total fluorescence yield (TFY)
In the case of TFY, the core-hole excitation is monitored by
the emitted fluorescence photons. The strength of this decay
channel is determined by the fluorescence yield, strongly
increasing with the atomic number and is less than 1% for K
edge at oxygen and L edges at 3d elements and 20% for 3d K
edges and L edges. This small number of events dramatically
modifies the statistical quality of the X-ray absorption spectra
(XAS) (XMCD) data especially in the soft X-ray range.
Therefore, it is typically necessary to probe a significant
number of absorption processes using TFY, which could
be realized by intensive undulator radiation from second
generation synchrotron sources like ESRF and BESSY II.
On the other hand, fluorescence photons have much higher
decay lengths compared to the secondary electrons in the
TEY, providing less surface sensitivity and more reliable
bulk information. TFY is therefore more appropriate for
systems with buried layers compared to the electron escape
length, or systems where the main interest is related to probe
the bulk properties, whereas TEY provides more surface-
sensitive information on intrinsic-like surface variations or
chemical or structural modifications.

Nevertheless, for a quantitative XAS and XMCD analy-
sis TFY is quite problematic due to the strongly enhanced
self-absorption processes. In principle, this could be han-
dled numerically similar to the above described TEY self-
absorption correction, but the typical systematic error is much
higher. In this case the mathematical procedure needs the
attenuation lengths for both photon types, the primary beam
and the fluorescence. The latter could be quite problematic,
especially when the energy distribution of all TFY decay
channels is not simple or even known, for example, if the
TFY photons have a main distribution in the X-ray region and
an additional contribution in the UV region [4]. In this case,
two different escape length scales are present, preventing the
simple analysis.

2.3 Circular magnetic X-ray dichroism spectra

2.3.1 History

As theoretically outlined in Section 3 in the vicinity of
the absorption edges the occurrence of X-ray magnetic
circular dichroism is expected as a universal effect and
experimentally verified. XMCD was initially measured as

the difference of the absorption coefficient for circularly
polarized X rays for reversed magnetization of the absorber.
The circular dichroic or magnetic absorption profile µC(E)

or �µ(E) are related to the measured differences for
projection of the saturation magnetization parallel (µ+)
and antiparallel (µ−) onto propagation direction of the
circularly polarized photon beam by µ+(E) − µ−(E) = PC ·
M (T )/M (0) · µC (E). These values are deduced from the
experimental data by a rescaling of the difference, taking
into account the incomplete circular polarization, the sample
magnetization alignment with respect to the photon beam and
the achieved degree of saturation magnetization at the finite
temperature.

First evidence of the existence of XMCD or magnetic
absorption was found in the hard X-ray range at the K edge
of iron metal (Schütz et al., 1987). The effect is smaller than
1% as sketched in Figure 8 where the original data provides
an experimental accuracy of 10−4. This was high enough to
manifest the occurrence of the effect in the near edge and
the extended absorption X-ray fine structure (Schütz et al.,
1987). Also in the hard X-ray range it has been found that
at the Gd and Tb metal L2,3 edges (Schütz et al., 1988,
1989) and subsequently at the corresponding absorption in
5d impurities much stronger XMCD signals up to more than
20% have been measured as shown again by the original
data (see original data from Schütz et al. (1988, 1989) in
Figure 9). One year later the corresponding experiments were
performed at the L2,3 edges in the 3d transition metals (TMs)
(Chen, Sette, Ma and Modesti, 1990) as shown in Figure 10.

In the meantime, XMCD studies for a large number
of elements in various systems have been performed and
the method is established as an important tool to address
element-specific magnetic structures and a large variety of
phenomena and aspects in magnetism.

2.3.2 Systematics of XAS and XMCD at the L edges
in 3d metal systems

The XMCD spectra at the L2,3 edge of the 3d TMs are the
most important phenomena studied as can be understood
by the theoretical consideration in Section 3. The energy
region, in which these edges occur, is located in the soft
X-ray energy range between 400 and 1000 eV. To give an
overview a typical 3d metal series of the L2,3 edge XAS and
XMCD spectra are shown in Figure 11. The visible XMCD
effect is strong and pronounced and could achieve about
50% of the white line intensity, reflecting the strong and
intensive magnetic cross sections. General trends in the 3d
metal series could be observed. For the nonmagnetic XAS,
the observed total linewidth is increasing for the light TMs.
This is in contrast to the behavior of the lifetime broadening
(Fuggle and Alvarado, 1980), but reflecting the increase in
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the number of unoccupied states. So, for the heavy TM the
3d shell is nearly filled up and only a fraction of typical
eg character is available for resonant core level excitations.
For the light TM the major part of the 3d shell is empty,
providing a large number of possible excitation channels and
broader XAS structures, according to the broader unoccupied
fraction of the DOS. General trends are also observable for
the XMCD spectra. For the heavy TM the XMCD spectra
reveal a simple structure, with a ‘down peak’ at the L3 edge
and an ‘up peak’ at the L2 edge. For the light TM, the shape
of the XMCD spectra becomes more complicated.

Without discussing all the details of the spectra, which
are based on complicated band structure details, two pre-
dominant features could be identified. The simple ‘up–down
structure’ is now superimposed by a peak derivative-like
structure, and at the threshold of the transition another rela-
tive sharp feature appears. The first mentioned derivative-like
structure has been identified by an increase in the number of
unoccupied states, providing a related ground-state moment
feature with peak derivative-like structures (van der Laan,
1997a,c,d), while the second feature represents the partial
empty t2g states.

2.3.3 XAS and XMCD in rare-earth metals

The RE elements, that is the lanthanide series, also play
an important role in the field of magnetism. This is related
to the unusual properties of the 4f shell electrons. Owing
to the fact that the 4fn state is of atomic character the
4f electrons exhibit well-known magnetic states following
Hund’s rules. Relatively large effects at the L2,3 edges, found

in the hard energy range between 5 and 10 keV, are shown in
Figure 9. They can be observed in any RE metals system as
demonstrated by a systematic study of the RE2Co17-system
(Fischer, Schütz and Wiesinger, 1990). The absorption edge
itself, which is energetically split by several 100 eV, is a
clear step function superimposed by the so-called white line
feature. In its vicinity, the XMCD signals in the order of
percent are found. Especially at the low-energy side of the
L2,3 edges, except for Ce and Gd, pronounced negative
contributions are visible (see Figure 12).

In contrast to the L edge of the RE metals, in which
a photoelectron transition 2p → 5d is involved, the M4,5

edge absorption, located in the soft-energy range, probe
the magnetic 4f state which is highly polarized. Both spin-
orbit states are separated by 20–50 eV and the strong
absorption lines, which exhibit a pronounced fine structure,
are superimposed on a very small step function. The XMCD
signal also shows sharp derivative-like features. Typical
spectra of the Gd and Sm M4,5 edges are shown in Figure 13.

3 THEORETICAL MODELS AND NEW
INSIGHTS INTO MAGNETISM

3.1 XANES and its relation to local electronic
structures

Following Fermi’s golden rule, the one electron absorption
cross section is described by Bransden and Joachain (1983)
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and Cowan (1981)

µ(�ω) ∝
∑

f

∣∣∣〈ψ f

∣∣∣ �p · �A
∣∣∣ψ i

〉∣∣∣2
δ(Ef − Ei − �ω)

= |Mfi(E)|2 · ρ(E) (6)

Thus, the absorption coefficient is directly proportional to
the square of the dipole transition matrix element times the
density of the final states. The dipole selection rules �l = ±1
allows only transitions from initial s to a final p state. Thus,
the K-edge absorption near edge structure represents the
density of the unoccupied p states with an energy spread of
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several electron volts. For atoms with a large nuclear charge,
the information of the fine structure is smeared out by the
strong lifetime broadening effects, due to the fast decay of
the core hole (Krause and Oliver, 1979). It is about 1 eV at
the K edge of 3d transition elements with energies between 5
and 9 keV due to the fast decay of the created core hole. After
excitation of a 2p1/2 and 2p3/2 electron, corresponding to the
L2,3 edges, final s and d states are populated, whereby the
strengths of the matrix elements is, for the p → s transition,
weaker by a factor 100 and often neglected [5]. At the 3d
L edges of 3d transition element with energies in the soft
X-ray range between 400 and 1000 eV the lifetime widths are
smaller. Owing to the stronger radial overlap of the 2p level
with the final more localized d states, the matrix element has
a resonance-like character resulting in prominent white line
features and for the 3d elements very fine details of the final
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of the L3 edge. All spectra have been extracted from (Scherz, 2003),
except the Mn spectra are from (O’Brien and Tonner, 1994).

state density are measured and splitting is directly observable.
For 4d and 5d L edges this broadening is of the order of 5 eV.
This is demonstrated in Figure 14 showing a comparison of
the final p and d projected DOS to the corresponding K and L
X-ray absorption near edge spectroscopy (XANES) spectra.

Owing to fast decay, via Koster–Kronig radiationless
transitions, the p levels of M and N states are too broad
and not suitable for XANES analysis.

The final state structure for the M4,5 edges of the RE
elements is not related to band structure-like features, due
to the small Coulomb interaction of the 4f electrons and
the valence band, where the 4f energy could be considered
as atomically sharp. Therefore, the transition from the 3d
shell to the 4f shell could be treated in an atomic multiplet
calculation, where on-site 4f correlations and 3d–4f hole
interactions are relevant for the shape of the spectra.
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3.2 The two-step model for XMCD

Step 1: The origin of the occurrence of XMCD as a universal
effect is simply explained by basic quantum-mechanical
vector coupling rules. When a circularly polarized photon
beam is absorbed, an additional constrain is that the magnetic
orbital quantum number has to be changed by �m = +1 or
−1 for right or left-handed photons [6]. The consequence
for an absorption of a right circular polarized photon beam
in an initial p1/2 state is illustrated in Figure 15(a), where the
initial level is separated for the different m components of

the j = 1/2 and their statistical weight. Taking into account
that the Clebsch–Gordon coefficients for the coupling of an
initial electron state photon beam to the initial and final d
state, prefer strongly the mi = 1 to the mf = 2 state transition
to the credit of the transition mil = −1 to the mfl = 0. This
shows that the spin character of the photoelectron in the final
state is negative. The polarization of its angular momentum
is, on the other hand, strongly positive since ml = +1 and
m final states are populated. The expectation values of the
spin and orbital polarization with respect to the quantization
axis z, that is, the photon K vector, are 〈σz〉 = −1/2 and
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〈lz〉 = +3/4. The analogous calculation for an initial p3/2

level results in opposite spin but identical orbital polarization
〈σz〉 = +1/4 and 〈lz〉 = +3/4.

In the transition s → p for a right circularly polarized
photon the only transition possible is the transition mi = 0
to mf = +1 creating a final photoelectron with 〈σz〉 = 0
and 〈lz〉 = 1. This implies that in the absorption process
of a circularly polarized photon beam, only an orbital
polarized photoelectron without spin polarization is created.
The corresponding values can be seen in Figure 15(b).

This phenomenon of the creation of spin-polarized elec-
trons is only a result of simple quantum-mechanical vector
coupling rules where magnetic states play no role at all.
On the basis of the same effect, the excitation of a selected
p3/2 occupied band state close to the Fermi level in GaAs

photocathode (Pierce and Meier, 1976) to a s1/2 vacuum level
by a circular polarized 1.42 eV light is commonly used as an
effective source for spin-polarized electrons.

Step 2: The magnetism in this model is introduced by
the fact that, in the vicinity of an absorption edge in a
magnetic material, the final state DOS is spin split in a simple
band structure model. Therefore, the excitation probability
of polarized excited electrons depends on the spin-polarized
DOS of the final state atom, and the strength of the absorption
depends on the polarization of the empty states available in
the absorption process following Pauli’s exclusion principle
[7]. This results in a difference in the absorption coefficients
for flipping the light helicity of the photon beam with respect
to the sample magnetization. For spin-only systems this fact
can be simply implemented into Fermi’s golden rule
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Figure 15. (a) Transition probabilities from the different mj =
±1/2 configuration (energetically identical) of the p1/2 spin–orbit
coupled level separated into the two possible mlms configurations
to a final d state in an L–S coupling scheme of initial and final
states. The numbers before the sets indicate their statistical weights
corresponding to the square of the Clebsch–Gordon coefficients. (b)
Spin and orbital polarization of the photon in an initial 1s1/2, 2p1/2,
and 2p3/2 atomic level corresponding to a K, L2, and L3 absorption.

µ±(E) = µ0(E) ± µC(E) ∝
∑
|f〉|i〉

|〈f| W(E) |i〉|2

× (
ρ |f〉(E) ± 〈σ z〉 · �ρ |f〉(E)

)
(7)

or simplified to

µC(E)

µ0(E)
= 〈σz〉 · �ρspin(E)

ρ(E)
(8)

Thus, the measured signal in this simple model is directly
correlated to the spin density difference of the unoccupied
states.

To illustrate how the information on the spin density dif-
ference is related to the local magnetic spin moment, see
Figure 16, a simple model of the formation of local mag-
netic d moments in the band structure picture is drawn. The
magnetic d moment corresponds to the spin density differ-
ence of the occupied part moccupied(µB) = ∫ 0

−10 eV �ρ(E)dE

integrated from the lower band edge at about −10 eV edge
to the Fermi level E = 0, which is nonzero due to the energy
shift of the majority and minority contribution with respect
to the Fermi level. It is assumed that the complete d band,

EF = 0

−10

+5

ms/mB (r+−ρ−) (E) dE = −ms/mB=
~5 eV

0

unoccupied occupied

ms/mB
(r+−ρ−) (E) dE =

~−10 eV

0

r+ r−

3d band

Figure 16. Correlation of the integrated density of the unoccupied
state to the local moment carried by the occupied spin-split 3d
states.

consisting of the occupied part and the unoccupied part, con-
tains five up and five down electrons. An integral covering
the whole d band has to vanish

mtotal(µB) =
∫ +5 eV

−10 eV
�ρ(E) dE = 0 (9)

Thus, the ‘hole’ moment carried by the spin density dif-
ference of the unoccupied part is given by munoccupied(µB) =∫ +5 eV

0 �ρ(E) dE = −moccupied(µB). On the basis of this
simple picture one can find a simple relation of the integrated
XMCD signal to the local magnetic spin moment following
equation (9)

moccupied(µB) = −
∫ +5 eV

0
�ρ(E) dE

= − 〈σz〉
∫

µC(E) dE∫
µ0(E) dE

·
∫

ρ(E) dE (10)

where
∫

ρ(E) dE is the ‘number’ of holes.
If an orbital polarization has to be taken into account one

can show that, on the basis of the L–S coupling scheme of
initial and final state, an additive contribution occurs

µC(E)

µ0(E)
= 〈σ z〉 · �ρspin

ρ
+ 〈lz〉 · �ρorbit

ρ
(11)

with mspin(µB) = − ∫
�ρspin(E) dE and morbit(µB) =

− ∫
�ρorbit(E) dE.

Since the sensitivity on the spin moment has a different
sign at both edges, but the sensitivity to the orbital moment
is identical, a comparison of the dichroic profiles at L2 and
L3 XMCD by a proper addition/subtraction is able to cancel
either spin or orbital moment sensitivity. This is the basis
of the sum rules developed in a more complex theoretical
framework, which are discussed in the following chapter,
but resulting in the same final formulae for cubic symmetry.
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3.3 Sum rules

3.3.1 General formulation

The phenomenon of XMCD has been described by a more
sophisticated theory, resulting in the ‘sum rules’, providing a
separation of the spin and orbital contributions to the absorp-
tion difference. This has been derived by the pioneering work
of Carra, Thole, Altarelli and Wang (1993) and Thole, Carra,
Sette and van der Laan (1992), who investigated theoretically
the transition probabilities of the core electrons depending
on different ground-state properties of the sample, provid-
ing spin orbital and magnetic dipole term projections. One
key issue was the elimination of the radial matrix elements
using the ratio of magnetic and nonmagnetic absorption pro-
files. The first experimental verification of the sum rules have
been done for the L2,3 edges in the work of Chen et al.
(1995). This was the starting point, where the number of
papers using XMCD sum rules exploded during the follow-
ing years. In this correct description an important new aspect
in magnetism has to be taken into account: the aspheric spin
contribution, described by the so-called magnetic dipole term
Tz, which might occur in noncubic systems. Similar to the
simple two-step model, described above, to deduce the spin
and orbital momentum and the Tz term, the areas of the non-
magnetic absorption spectra (XAS) and the corresponding
magnetic difference (XMCD) have to be analyzed.

Here too, the ground-state number of the unoccupied states
of the final state shell has to be known.

The expressions as developed by Thole and Carra are
given here:

− ∫
j++j−

(
µ+(E) − µ−(E)

) · dE∫
j++j−

(
µ+(E) + µ−(E) + µ0(E)

) · dE
= a · 〈Lz〉

nh

−
(∫

j+

(
µ+(E) − µ−(E)

) · dE

−b ·
∫

j−

(
µ+(E) − µ−(E)

) · dE

)
∫
j++j−

(
µ+(E) + µ−(E) + µ0(E)

) · dE

= c · 〈Sz〉 + d · 〈Tz〉
nh

(12)

Here, nh = 4lf + 2 − n is the number of holes present in
the final state shell.

lf and li are the orbital angular momentum quantum
numbers of the final and initial states, which are connected
to each other by the dipole selection rule as lf = li ± 1. 〈Sz〉,
〈Tz〉, and 〈Lz〉 are the expectation values of the spin, dipole
term, and orbital moment projection along the z (photon
beam) direction. The values for the prefactors a–d are shown
in Table 1.

Table 1. Sum-rule related prefactors.

li lf a b c d

s:0 p:1 1 – – –
p:1 d:2 1/2 2 2/3 7/3
d:2 f:3 1/3 3/2 2/3 2

It is important to mention that for s-shell absorption
(li = 0) without spin-orbit splitting (SOC) in the initial state,
no spin and no dipole term contributions are observable with
XMCD. On the other hand, the spin moment could not be
extracted without the contribution of the dipole term 〈Tz〉,
which will be discussed later.

Usually, the absorption is just measured for the left
and right circular polarized light, and the absorption of
z-polarized light is not known. This part is approximated
by the average of the two circular polarized absorption coef-
ficients. Therefore, the integral in the denominator reduces to

µ+(E) +µ−(E) + µ0(E) ≈ µ+(E) + µ−(E) + (
µ+(E)

+ µ−(E)
)
/2 = 3/2

(
µ+(E) + µ−(E)

)
(13)

This approximation is valid for systems with cubic symme-
try and powder samples, but even for reduced symmetry the
approximated integral is not differing significantly from the
measured sum over all three different polarization vectors.

The situation for Fe metal is shown in Figure 17 illus-
trating the magnetic Fe L2,3 absorption, measured in trans-
mission mode, for parallel and antiparallel aligned sample
magnetization with respect to the photon beam helicity. The
energy is located at the resonant absorption profile of the
Fe 2p → 3d excitation. In all spectra, the backgrounds of
the less bound electrons have been subtracted by the same
straight line for both magnetization (helicity) directions. A
clear and pronounced difference is observable. The differ-
ence, which is the XMCD signal, is plotted in Figure 17,
where the dark shaded curve is related to the L3-edge absorp-
tion (2p shell: j = 3/2) and the light shaded curve to the
L2-edge absorption (2p shell: j = 1/2). The magnetic effect
is quite dramatic.

According to the sum rules of Thole and Carra we have
to gather three different integrals, that is the XAS, dark
shaded, and light shaded areas. In the case of the XAS signal
(Figure 17c) a background must be subtracted, which results
from an excitation into higher unoccupied d states (as 4d,
5d, etc.), which are typically nonmagnetic, less localized
and broader in energy. The step height for the background
approximation is 2/3 of the full edge jump at the L3 edge
and 1/3 at the L2 edge, according to the degeneracy of the
spin-orbit split 2p shell initial states (L3: mj = −3/2; −1/2;
1/2; 3/2 and L2: mj = −1/2; 1/2).
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Using the coefficients given in Table 1, we can give the
corresponding sum rule expressions

〈Lz〉 = −nh · 2

∫
j++j−

(
µ+(E) − µ−(E)

) · dE

3
2 · ∫

j++j− (µ+(E) + µ−(E)) · dE

= −nh · 4

3
· dark gray + light gray

XAS

2

3
〈Sz〉 + 7

3
〈Tz〉

= −2 ·

∫
j+ (µ+(E)−µ−(E))·dE−2·∫

j−(µ+(E)−µ−(E))·dE∫
j++j−

(
µ+(E) + µ−(E) + µ0(E)

) · dE
· nh

= −nh · 2 · dark gray − 2 · light gray

XAS
(14)

For the magnetic moments, one gets one Bohr magnetron
for each projected orbital moment [8] and two for each spin
value, due to the g factors.

As a consequence the 2p → 3d XMCD sum rule is as
follows:

〈ml〉 = −2

∫
j++j−

(
µ+(E) − µ−(E)

) · dE

3
2 · ∫

j++j− (µ+(E) + µ−(E)) · dE
· nh · µB

= −4

3
· dark gray + light gray

XAS
· nh · µB 〈ms〉 + 7 〈Tz〉

= −2 ·

∫
j+ (µ+(E)−µ−(E))·dE−2·∫

j−(µ+(E)−µ−(E))·dE∫
j++j− (µ+(E) + µ−(E)) · dE

· nh · µB

= −2 · dark gray − 2 · light gray

XAS
· nh · µB (15)

The left part 〈ms〉 + 7 〈Tz〉 is called the effective XMCD
spin. The sign of the integrals must be carefully taken into
account. Negative XMCD signals provide negative integrals
and positive signals positive integrals.

One very important point is the necessity to know the
number of holes in the final state shell before the excitation of
the 2p electron. The nominator provides a magnetic XMCD
signal and the denominator the nonmagnetic part, both are
proportional to the number of 3d holes. While for the XAS
part the resonant intensity is directly proportional to the
number of unoccupied states, the ratio is proportional to the
magnetism per 3d hole. To get the full magnetic moment, the
number of 3d holes which can usually be deduced from local
density band structure calculations (LDA) must be known
and are usually not critical. If not known, simple chemical
estimates of typical electron configurations provide a first
approximation. In addition, sum rules contain only integral
information. An additional insight into the magnetic character
of different unoccupied parts of the 3d shell could be deduced
from the fine structure present in the XMCD spectra.

Note that the two-step model, as well as the sum rules,
implies some important premises for the application, given
as follows:

1. The absorption into final states with reduced orbital
moments, like 2p → 4s, must be negligible as compared
to the absorption for increased orbital moments, as
2p → 3d.

2. The radial matrix elements should not be varying as a
function of the energy of the final state. This happens if
final state electrons are less bound and more delocalized
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compared to final state excitations close to the absorption
threshold.

3. Relativistic corrections to the radial matrix elements
should be negligible. Or, in other words, the radial matrix
element should not be different for the li + 1/2 and the
li − 1/2 excitations.

4. The dipole approximation should be a good approxima-
tion, or higher terms in the expansion, like the quadrupo-
lar transition, should have spectral weight less than the
error bar.

5. For the effective spin sum rule the li + 1/2 and the li −
1/2 excitations, for example. The L2 and L3 resonances,
must be separable in terms of energy. This includes
spectral overlap and quantum-mechanical mixing, that
is a mixture of li + 1/2 and li − 1/2 excitations of the
same energy induced by an additional interaction, for
example, 2p–3d Coulomb interaction.

3.3.2 Atomic multiplet description for M4,5 edges

In RE metals the 4f electrons carrying large magnetic
moments, which are well localized and the small Coulomb
interaction of the 4f electrons with all outer electrons, can
be treated in a perturbative atomic model (de Groot, Fuggle,
Thole and Sawatzky, 1990). The XAS and XMCD at the M4,5

edges can be successfully calculated in a so-called atomic
multiplet approach taking into account all dipole allowed
transition strengths and the variety of all possible final states.
The final 4fn+1 and the 3d9 states consist of a large number
of possible electron configurations and related symmetries.
Owing to the 3d–4f Coulomb interaction, these final states
usually have a different energy, which could be excited
preferentially, if the corresponding photon energy is applied
in the absorption process. It is beyond the scope of this
chapter to explain all the theoretical details about multiplet
theory, but it has been demonstrated that this many-particle
approach is able to provide theoretical spectra, which are in
nearly perfect agreement with available experimental data as
shown for the nonmagnetic M4,5 spectra of the whole series
(Thole et al., 1985) and for linear and circular magnetic
dichroism. As shown in Figure 19, Goedkoop et al. (1988a,b)
have successfully described the experimental Gd M4,5-edge
spectra from Peters et al. (2004) and the Sm M4,5 spectrum
(Suga and Imada, 1996). The origin of the XMCD effect
is also shown in Figure 18(b), where all atomic transitions
from different mj are shown, including the strength of the
corresponding transition.

The excellent agreement between the experimental curves
and theoretical spectra is obvious. Usually the 4f spectra
are not significantly altered in different chemical environ-
ments. The determination of orbital and spin moments via

sum rules is not essential, because Hund’s rule values are
usually a good estimate. Nevertheless, XMCD provides the
unique opportunity to give sublattice magnetizations in com-
plex systems containing many different magnetic elements,
for example, in the RE–Iron–Garnets (Goering, Gold and
Schütz, 2001; Knülle, Ahlers and Schütz, 1995; Rudolf et al.,
1991, 1992).

One additional aspect in the M4,5 edges arises for some 4f
systems with mixed valent 4f states. On the other hand, it is
possible to have the same valency with different 4f J states
present, which are not strict Hund’s rule J values. Those
systems could be nicely probed by XAS and XMCD.

Figure 19 shows experimental XAS and XMCD results
of ultra thin layers of α-Ce at the M4,5 edges and the
corresponding multiplet calculations for Ce3+ in 4f 1

J=5/2

and 4f 1
J=7/2 (Finazzi et al., 1995). Similar to the results of

the M4,5 edges shown earlier, a clear fingerprint structure
for different J states of Ce is observable, which is well
reproduced by a weighted superposition of the two 4f 1

J=5/2

and 4f 1
J=7/2 related spectra giving the ratio of the spectral

weights between J = 7
2 and J = 5

2 of 0.12 ± 0.03 (Finazzi
et al., 1995).

3.3.3 The quadrupolar spin density described by the
Tz term

The magnetic dipole term Tz, which was not addressed in
magnetism prior to the development of the sum rules, is a
quadrupolar spin distribution resulting from lower than non-
cubic symmetry of the surrounding charge density. The left
side of Figure 20 shows an absorber atom (light gray center)
with its surrounding atoms (dark gray) in noncubic symme-
try with a fourfold symmetry. If this environment is now
uniaxially squeezed [9], as indicated by the vertical arrows
on the left side, the charge distributions will be modified
and rearranged, as schematically sketched on the right. The
atoms on the left and right side will move away from the
central atom. Thus the charge density is higher above and
below the central atom, and reduced at the left and right
side. Without symmetry breaking, the total charge distribu-
tion at the central atom is predominantly characterized by
a radially dependent monopolar charge distribution. With
symmetry breaking, an additional quadrupolar charge distri-
bution is necessary to describe the whole charge distribution
correctly. If the sample is fully magnetically saturated, the
spin expectation value is always aligned along the external
field. Owing to the fact that each electron provides a spin,
a quadrupolar charge distribution directly corresponds to a
quadrupolar spin distribution, which is exactly the Tz term.
As shown in Figure 20, the increased charge along the z

direction is exactly the part which is reduced along the x

and y directions. Mathematically this could be described by
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the magnetic dipole term T = S − 3r̂ · (r̂ · S), as known for
a dipole field in electrostatics. If the spin is aligned along
the axis α, Tz could be expanded in terms of the mentioned
quadrupolar charge tensor Qαβ (Stöhr and König, 1995; van
der Laan, 1998b) [10].

Tα =
∑
β

QαβSβ (16)

Measuring with a high field aligned parallel to the photon
beam direction provides full sample saturation and a constant
isotropic spin related XMCD signal. Measuring along the x

and y axis provides a Tz projection, which is half of the
value measured along the z direction and of opposite sign,
corresponding to the charge distribution. Thus, an angular
averaging XMCD measurement provides the full cancella-
tion of crystallographic Tz moment contributions formulated
as the sum rule

∑
α

〈Tα〉 ≈ 0, where the ‘approximate’ sym-

bol is related to the part of the Tz term induced by the

spin-orbit interaction of the final state shell (Stöhr and König,
1995).

As discussed above, a uniaxial force will introduce a
magnetic dipole term. If this is purely related to the crystal
structure itself, the average over all three crystallographic
directions will provide the pure spin moment, where all
dipole term contributions are canceled. Another possible
‘uniaxial force’ is related to the spin moment itself, aligned
along one preferred direction. In this case, the charge
distribution is altered by the spin-orbit interaction in the
magnetic shell, and the uniaxial symmetry breaking is
oriented along the direction of the sample magnetization. The
related Tz term will not cancel since it aligns along the spin
moment direction. Rotating the spin along different directions
will also rotate the Tz contribution, and the absolute value
of the effective spin moment always includes the spin-
orbit induced dipole term contribution. Stöhr and König
have discussed this influence and they found only minor
contributions (Stöhr and König, 1995). Nevertheless, with
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Figure 18. (a) Comparison of the Gd and Sm M4,5 spectra, already shown in Figure 13, with the oscillator strength derived by atomic
multiplet theory. The left side shows the nonmagnetic and the magnetic absorption spectra (black line) at the Gd M4,5 edges of a GdFe
thin-film system, while the gray curves are the related multiplet theory based oscillator strength reproduced from Peters et al. (2004).
The right side shows the corresponding spectra of a Sm4As3 sample (from Suga and Imada, 1996) and the theoretical curves extracted
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Figure 18. Continued.

increased spin-orbit interaction this part of the Tz term could
not be separated from the spin moment consequently. Usually
the absolute error in spin moment determination is in the
range of 10% or slightly above, while relative errors are
much smaller, for example, angular dependencies. Therefore,
for 3d metal systems the spin-orbit induced Tz contribution
should be in the error bar of the absolute value.

3.3.4 Moment analysis

A recent approach to go beyond the sum rules is provided
by the moment analysis generally based on the findings of
Gerrit van der Laan. The general shape modifications, found
for the 3d TM series shown in Figure 21 could be understood
by a single particle approach, which takes into account the
important 2p–3d Coulomb and exchange interaction (van

der Laan, 1997b,c,d, 1999a,b). The spectral XMCD shape
of the heavy 3d TM as Fe, Co, and Ni consist roughly
of simple down and up structures at the L3 and L2 edges
respectively, as shown in Figure 11. This shape changes
to a more peak derivative-like shape while going to light
TMs. This has been explained in terms of a change in band
filling, nearly empty for the light 3d TM as Ti and V, and
nearly filled for the heavy ones such as Fe, Co, and Ni.
Different ground-state expectation values provide different
spectral shapes as shown in Figure 21. In the spectral analysis
the complex XMCD profile is treated as a superposition
of these spectral shapes, where the relevant intensity is
proportional to various ground-state expectation values of
tensor operators 〈wxyz〉. The underscore describes that the
ground-state moment is related to the unoccupied part of the
d shell. So, Figure 21 shows the dominating spectral shapes
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Figure 19. (a) Multiplet calculations of Ce for two different configurations 4f 1
J=5/2 and 4f 1

J=7/2. (b) The corresponding XMCD spectra.

(c) Measured M4,5 result for the measured α-Ce and a weighted sum of the two 4f 1
J=5/2 and 4f 1

J=7/2 configurations shown in (a) to provide
the best agreement to the experimental data. (d) Shows the XMCD comparison corresponding to (c). (Reproduced from Finazzi et al. (1995)
Physical Review Letters 75, 4654–4657.)
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Figure 20. Schematic explanation of the charge and spin distribu-
tion, providing a nonvanishing Tz term.

present at the p → d excitation with a given (SOC) of the
2p shell. The following physical expectation values of the
unoccupied part of the 3d shell are represented: 〈w000〉 is
proportional to the number of holes nh, 〈w110〉 to the spin-
orbit coupling, 〈w101〉 to the orbital moment, 〈w011〉 to the
spin, and 〈w211〉 to the magnetic dipole term Tz (van der
Laan, 1997c,b).

The spectral shapes in Figure 21 are a sum of Lorentzian
broadened line intensities, indicated as vertical lines below
the spectra, originating from an energy splitting of various
mj states of the 2p core hole, related to the 2p–3d exchange
energy. So, the 2j + 1 degenerated core-hole states will split
in energy into four (L3:2p3/2) and two (L2:2p1/2) channels.
The energy splitting respective to the excitation center of
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gravity is

Ejm = Hsmj

j (j + 1) + s(s + 1) − l(l + 1)

2j (j + 1)
(17)

where j is the total angular momentum of the p hole, mj

is the z component of j , s, and l are the spin and orbital
moments of the p hole and Hs is equal to the effective
pd exchange (van der Laan, 1997c,b). This expansion is
a direct consequence of the Coulomb interaction between
the core hole and the 3d final states and tries to take the
dominating parts quantitatively into account. Different 3d
final state configurations and possible different final state
energies are not covered by this method. For a detailed
understanding of this method, the reader is asked to refer
to the literature (Goering et al., 1999, 2002c; Goering, Gold
and Schütz, 2001; Goering, Bayer, Gold and Schütz, 2002;
Goering, Gold and Bayer, 2004; van der Laan, 1997a,b,c,d;
van der Laan and Thole, 1996).

Although introduced as a phenomenological model to
describe complex 3d TM XMCD spectra, the validity was

just checked for consistency, but it has recently been proved
by theory to be also a correct description, demonstrating a
more general character with extended validity (Dörfler and
Fähnle, 2006).

The XMCD in Holmium iron garnets formula unit
Ho3Fe5O12 has been analyzed, where two different types
of antiferromagnetic coupled Fe3+ sublattices, slightly sep-
arated in energy because of different chemical coordination,
(three tetrahedral and two octahedral Fe ions) are present
(Bloch, Chaisse and Pauthenet, 1967; Guillot and Pau-
thenet, 1967; Pauthenet, 1958). Figure 22 shows the room-
temperature (RT) Fe L2,3 XMCD spectrum of HoIG, which
is much more structured compared to the pure Fe metal spec-
trum (see Figures 11 and 17). The most evident difference is
the strong positive peak at the L3 edge, directly suggesting an
antiparallel ordered Fe sublattice magnetization. Dunaevsky
et al. have calculated the DOS by a recursive calculation
method for YIG, which has a similar 5d hybridization to
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Fe 3d compared to the other rare elements like Ho. We have
reproduced at the top of Figure 22 the DOS from Dunaevskii
and Savel’ev (1989). The white shaded part corresponds to
the octahedral (A) and the black shaded part to the tetrahe-
dral (B) oxygen coordinated Fe ions. A clear energy shift
between the two Fe sublattices is directly observable. The
gray shaded part corresponds to the RE (Y) 5d DOS (C),
which is important for the magnetic interaction between the
RE and the Fe ions.

For the approximation of the XMCD spectrum, three sets
of ground-state moments are generated and located at the
three mentioned DOS related energy positions. The fit result
and the room-temperature XMCD spectrum are shown in
the middle part of Figure 21. The corresponding moment
analysis contributions are shown below. All spectral shapes
in the XMCD spectrum are nearly perfectly reproduced by
the fit. As suggested above, the antiparallel coupling of the
Fe sublattices is clearly observable. The extracted ratio of
the spin moments A and B is 2.39, which should be 1.5
according to sublattice estimates from the literature (Geller
et al., 1963), denoting a slightly higher magnetic moment for
the Fe3+ at tetrahedral sites (B) compared to octahedral sites
(A) which has also been predicted by theory (Dunaevskii
and Savel’ev, 1989). It should be mentioned that the used
linewidth to broaden the line spectra from the ground-state
moments is large and dominated by the band structure.

3.4 Magnetic anisotropy and microscopic orbital
moments

3.4.1 General aspects

One of the most important and technical relevant issues
in magnetism of crystalline solids is the magnetocrystalline
anisotropy energy (MAE). This energy provides the con-
trollability of preferred easy axis behavior and influences
magnetic switching and the coercivity. Owing to the fact
that the spin itself does not interact with the electric crys-
tal, an orbital moment must be present to couple the spin
to the crystal lattice by spin-orbit field interaction. In the
case of the 3d TM, the orbital moment is usually quenched
and quite small compared to the spin moment and could
not be addressed properly in the past by experiment [11].
Since XMCD now provides the separate determination of the
spin and orbital magnetic moment projections in different
crystallographic directions, understanding a new profound
anisotropic behavior of 3d metal compounds in a micro-
scopic, element specific, and quantitative way is possible
especially in order to prove microscopic models. P. Bruno
has formulated a perturbative approach of the MAE to reach
a quantitative description for TM systems, which has the

favorable effect of being intuitive: On the basis of 3d spin-
orbit coupling, an enhanced orbital moment along the easy
axis of a uniaxial anisotropic magnetic material is postu-
lated. In such a system, the spin-orbit energy tries to align
the spin moment along the direction with enhanced orbital
projections. So the anisotropy is microscopically reflected in
anisotropic magnetic moment projections (Bruno, 1989), and
described quantitatively by ES.O. = ξ

4 � 〈L〉. This is sketched
in Figure 23. While this model has been derived for systems
with fully occupied majority spin band, Gerrit van der Laan
extended it to include a higher term in perturbation theory
of the spin-orbit energy, which includes the magnetic dipole
term Tz

�E ≈ −ξ

4
· Ŝ · [〈

L↓〉 − 〈
L↑〉]

+ ξ 2

�Eex

[
21

2
· Ŝ · 〈T 〉 + 2

〈
(LξSξ )

2〉]

= E
↓
L + E

↑
L + ET + ELS (18)

With reduced symmetry the dipole operator term can play
an important part. Owing to the fact that the absolute value
of the spin moment also changes with chemical and crystal-
lographic environments, the small orbital moment of 3d TM
systems could not simply be separated quantitatively from
the spin moment. Therefore, understanding their anisotropy
was difficult up to now since XMCD gives the integral pro-
jected orbital moments. Regarding the formula of van der
Laan shown above, the full orbital moment anisotropy could
be a mixture of majority and minority orbital anisotropies
with opposite signs. Thus, the total orbital anisotropy could
be very small due to cancellation of large anisotropies of the
minority and the majority band. Quantitative experimental
verification of these models needs the presence of either a
completely filled majority or an empty minority band. Com-
pletely filled or empty sub-bands do not provide an orbital
moment and therefore the full anisotropy is only due to
the remaining partially filled band as identified by XMCD
measurement.

SL

Magnetic easy axis

x3d

Figure 23. Bruno model of the magneto crystalline anisotropy in
relation to spin and orbital moments.
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Three examples will be shown which clearly demonstrate
the unique possibilities of XMCD providing a deep, clear and
unambiguous understanding of the anisotropy in 3d metal
compounds.

3.4.2 The Au/Co/Au reorientation transition

One important phenomenon to be addressed is the transition
between in-plane and out-of-plane magnetization behavior
for ultra thin ferromagnetic films, like Co covered by Au.
For thick films the shape anisotropy dominates the whole
scenario, while for ultrathin films, just by adding some
monolayers of Co, the axis direction is easily flipped from
in plane to out of plane. The basic idea behind this phe-
nomenon is the increased influence of the surface: Its symme-
try breaking results in enhanced Co orbital magnetic moment
projections along the surface normal, and a correspond-
ing spin-orbit energy. The enhanced surface orbital moment
interacts with the spin, trying to align the sample magne-
tization along the surface normal, via 3d shell spin-orbit
coupling. It overcomes the shape energy and reduces with
thickness; the magnetization rotates to the normal direc-
tion.

D. Weller and coworkers have investigated this transi-
tion and measured the Co orbital moment projections using
XMCD at the Co L2,3 edges, as shown in Figure 24 along
the surface normal and at more grazing incidence geometry.
Despite the fact that they had to face self-absorption phe-
nomena (see above), they found clear thickness dependent
orbital- and Tz moment variations at a Co wedge covered
in Au. This observation clearly reflects the increased influ-
ence of the orbital moment at the surface layer, verifying the
ideas of P. Bruno. As mentioned, the self-absorption problem
in these studies has prevented reliable quantitative compar-
isons between the microscopic moment projections given by
XMCD and the macroscopic magnetization behavior medi-
ated by the Bruno model.

3.4.3 Co on Pt steps: the reduction of symmetry

An illustrative example of the potential of XMCD has been
shown by the studies of Co atom chains and monolayers
decorated on Pt(997) surface by Gambardella et al. (2003,
2004). While the spin sum rule application is hindered by
the large dipole term Tz, the orbital moment can be directly
deduced and is listed in Table 2 for different Co systems
of reduced symmetry. The Lz values are compared with the
magnetocrystalline anisotropy K1.

The XMCD spectra shown in Figure 25, illustrates a
comparison of Co nanoparticles going from the bulk to
the atomic chains, monoatomic layers, and bulk Co. The
increasing L3-XMCD effect directly indicates a significant

Table 2. Orbital moment projections and its corre-
spondence to uniaxial anisotropy.

System 〈Lz〉 (µB) K1(meV/atom)

Co metal (hcp) 0.14 0.053
Co/Pt(997) ML 0.31 0.14 ± 0.01
Co/Pt(111) ML 0.29
Co/Pt(997) chain 0.68 ± 0.05 2.0 ± 0.2
Co/Pt(111) adatom 1.1 ± 0.1 9.3 ± 1.6

increase of an angular momentum, oriented parallel to the
spin moment.

3.4.4 The magnetic anisotropy of CrO2

CrO2 is a classical ferromagnetic oxide, important for
magnetism and of significant technological relevance. During
recent years its half-metallicity with nearly 100% spin
polarization at the Fermi level has attracted the interest
of this chalcogenide as a candidate for injection of highly
spin-polarized electrons and applications in spintronics, (Das
Sarma, Fabian, Hu and Zutic, 2000; Wolf et al., 2001).
CrO2 crystallizes in the Rutile structure with a ratio of
lattice constants of a/c = 1.51 (Porta, Marezio, Reimeika
and Dernier, 1972; Swoboda, Arthur and Cox, 1961; Thamer,
Douglass and Staritzky, 1957). Magnetometry reveals a
magnetic moment of 2 µB/fut (Kubota, 1960), which is
consistent with two different theoretical approaches: The
description of local magnetic moments of Cr4+ ions in a
3d2 configuration gives the same correct magnetic moment
as band structure calculations on the basis of an itinerant
picture (Korotin, Anisimov, Khomskii and Sawatzky, 1998;
Lewis, Allen and Sasaki, 1997; Mazin, Singh and Ambrosch-
Draxl, 1999; Schwarz, 1986). CrO2 is difficult to access
experimentally due to its reconfiguration into the more
stable Cr2O3 phase. Recently a chemical-vapor-deposition
technique has been established, which provides epitaxial
single-phase thin films, grown on TiO2 substrates (Li, Gupta
and Xiao, 1999; Spinu et al., 2000, 2001) achieving spin
polarization close to 100% measured by Andreev reflection
(DeSisto et al., 2000; Ji et al., 2001; Ji, Strijkers, Yang and
Chien, 2001; Soulen et al., 1998, 1999) and spin-polarized
photoemission (Dedkov et al., 2002). Using these samples,
2p XAS and XMCD spectra for CrO2 grown with its
rutile c axis in plane have been studied for parallel and
antiparallel aligned magnetization as shown in Figure 26(b)
for ϑ = 7◦, 40◦, 86◦ and φ = 60◦. The angle ϑ = 40◦

represents an intermediate angle between a- and c-axis
projection. The angle of incidence φ = 60◦ has been chosen
as a good compromise for a significant amount of in-plane
sensitivity [12] and reduced self-absorption. The dichroic
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spectra exhibit many structures with very strong unusual
azimuthal variations. For c-axis enhanced projection (ϑ =
86◦), a direct observable change of sign at 587 eV is
present. This negative XMCD intensity suggests a strong
increase in a projected orbital moment along the c axis (see
Section 3.3.4 moment analysis: 〈Lz〉 ∝ −w101 exhibit only
negative contributions) in contradiction to the nearly constant
XAS. Owing to the spectral overlap of both L edges, the
conventional sum rule analysis cannot be addressed to Cr
3d spin moments. A detailed analysis of the experimental
data is based on the spin-up and spin-down DOS for Cr 3d
and O 2p states, derived by LSDA +U calculation (shown
in Figure 25d (Korotin, Anisimov, Khomskii and Sawatzky,
1998)). Two prominent features are directly observable, a
narrow (1-eV wide) fully spin-polarized unoccupied majority
t2g band at 0.5 eV and a broader mixture of eg-majority and
t2g/eg-minority states (Stagarescu et al., 2000) at 3 eV. Two
sets on a basis of the DOS (at E1 and E2) and one set
according to the MEXAFS signal at E3 (see also Section 4.1)
are taken into account in the fitting procedure to separate the
spectral overlap of L3 and L2 edges (Goering et al., 2002a).

The original XMCD spectrum and the moment-analysis-
fit result for an intermediate azimuthal angle are shown
in Figure 25(c) (E1 = 577.0 eV (dotted), E2 = 580.5 eV
(dashed), and E3 = 587.0 eV (dot dash)). The two mentioned
dominating parts E1 and E2 are shaded in light and dark gray.
To reduce the number of free parameters, the sum over all
orbital contributions has been set to the sum rule determined
integral value. Peak width and broadening have been held
fixed for all fitted XMCD spectra.

All spectral features could be reproduced nearly perfectly
by this fitting procedure. The extracted three effective spin
and two orbital [13] contributions for the areas E1, E2, and
E3 are shown in Figure 26(e, f, and g), indicating a very
strong anisotropy. The azimuthal spin anisotropy is clearly
related to the strong anisotropic Tz; that is, the quadrupo-
lar spin distribution at the Cr site (Stöhr and König, 1995),
which (van der Laan, 1998b) is extremely high compared
to previously published experiments (Weller et al., 1995)
and theoretical predictions (Crocombette, Thole and Jollet,
1996). Applying the Tz sum rule the total isotropic spin
of 1.2 µB has been determined and separated from the Tz
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part. Figure 26(f) shows the corresponding orbital moment
projections, where for E1 a positive orbital (along the c axis)
moment with a strong azimuthal variation, and for the broad
part at E2 a negative contribution with a reduced azimuthal
variation are observed. The total orbital moment is negative
and maximum along the a axis and a minimum along the
c axis.

According to Hund’s rules an antiparallel coupling of spin
and orbital moments is expected (Ashcroft and Mermin,
1976; Kittel, 1976), which is consistent to the total observed
orbital moment, but the total orbital moment has its maxi-
mum along the hard axis direction, which is in contradiction
to the simple Bruno model. As we have shown, a large Tz

term is present for CrO2 which is included in the MAE model
of van der Laan (1998a).

The microscopic moments can be used to test the
anisotropy formula of van der Laan. The total orbital change
by a rotation of 90◦ is � 〈Lz〉 = (0.065 ± 0.005) µB, a total
dipole term part of 〈7Tz〉 = −3 and a spin moment of
〈Sz〉 = 2.4 [14]. From the LSDA +U calculation (Korotin,
Anisimov, Khomskii and Sawatzky, 1998), an averaged
exchange energy of 3 eV is extracted. From the in situ
XMCD- and superconducting quantum interference device
(SQUID)-derived hysteresis curves, a uniaxial anisotropy
energy K1 = (5.8 ± 0.5) · 104J m−3 has been derived.

If we neglect the squared diagonal spin-orbit interac-
tion and take into account the completely empty minority
band, the van der Laan formula reduces to δE ≈ ξ

4 · Ŝ ·〈
L↑〉 + ξ2

�Eex

21
2 · Ŝ · 〈T〉. With the above values the correct

correspondence between the macroscopic anisotropy energy
K1 and the microscopic formula is obtained using a spin-orbit
coupling energy of ξ = 14meV [15].

The orbital term favors an a–a plane easy axis behav-
ior, directly observable from the enhanced orbital moment
projection, while the dipole term Tz favors the c axis.
Both MAE contributions nearly cancel each other, but the
dipole term dominates. This is a possible explanation for the
observed reorientation transition for ultra thin CrO2 films (Li,
Gupta and Xiao, 1999), which could be interpreted by lattice
mismatch-induced changes in the delicate balance between
orbital projections and the magnetic dipole term.

3.5 K-edge XMCD

In the K-edge absorption process the initial 1s1/2 photoelec-
tron populates a final p-like state, which plays a minor role
in magnetism in 3d elements. Following the sum rule it
is expected that the XMCD effect is only sensitive to the
p-projected orbital polarization, which, on the other hand, is
generally rather small due to the quenching mechanism. Thus

the fascinating possibilities arising from the direct applica-
tion of sum rules on L2,3-XMCD spectra of 3d-transition
elements will not be touched by K-XMCD.

From an experimental point of view, the K edges of the 3d
elements are energetically located in the hard X-ray range.
Thus a large variety of bulk systems and related magnetic
problems can be addressed, where soft XMCD studies suffer
from the strong surface sensitivity. For example, important
classes of materials in magnetism are 3d RE compounds,
which exhibit strong surface oxide contamination and can
often hardly be addressed by soft XMCD at the 3d L
edges or 4f M4.5 edges, 3d K edges. Using hard X rays
for these systems parallel measurements of the 3d K edges
in combination with RE L2,3 edges can give interesting
complementary information. The simple sample handling
and high penetration depth in combination with the highly
achievable accuracy allows, in some cases, to monitor
changes in the local magnetic properties with external sample
conditions such as temperature, external fields, and pressure.
Thus, the K-edge XMCD signal can provide information
on even small changes in the magnetic orientation of the
absorbing atom.

Furthermore, although no direct relation of the K-XMCD
and its strength to the local magnetic moment is easily acces-
sible, (Stähler, Schütz and Ebert, 1993) the fine structure
which often provides significantly more pronounced char-
acteristics compared to the broad near-edge profile itself,
can play the role of a fingerprint of the chemical state.
As an example, studies of the Fe K-edge profile in Tb/Fe
multilayers are shown in Figure 27 in comparison with the
corresponding signal in the pure metal and the binary com-
pound TbFe2. The multilayer XMCD profiles can easily
be explained by a mixture of both components (Attenkofer
et al., 1993) giving interesting insight into the chemical state
of the interfaces. An accuracy of 10−5 can be achieved and a
large number of K-edge XMCD studies have been reported
in a variety of 3d TM systems.

Recently, the corresponding signals at the oxygen K edge
have gained considerable interest since, at the moment, no
other method is able to address the problem of oxygen polar-
ization. As observed in CrO2 (Goering et al., 2002b) large
dichroic oxygen K-edge contributions, with a strength up to
several percent (Figure 28), are observed, where oxygen has
been normally considered to be a nonmagnetic component.
Although the understanding of this phenomenon and its quan-
titative relation to the local magnetic moment is still compli-
cated, it is expected to serve as proof of a significant magnetic
polarization at the oxygen site. Systematic comparison of the
oxygen K-XMCD signal in different systems might provide
some information about the existence of oxygen polarization.
A unique possibility arises by studying the hysteresis loop at
the oxygen site as shown in the insert of Figure 28. Often
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the oxygen K-edge XMCD and the deduced orbital moments
are too large compared to the theoretical expected value,
a phenomenon which has not yet been understood. Very
recently oxygen K-XMCD studies have been addressed to
oxide interlayer (Bowen et al., 2006). Owing to the absence
of a corresponding signal in Co/Al2O3/Co and Fe/MgO/Fe
tunnel magneto resistance systems with an upper limit of
0.05 µB have been deduced by comparison with the results in
La0.7Sr0.3MnO3, where a dichroic O–K edge signal of 1.6%
has been associated with a calculated moment of 0.08 µB

(Pellegrin et al., 1997). This finding is in striking contra-
diction to the predicted value ranging from 0.07 to 0.2 µB.
(Bowen et al., 2006) since a significant spin moment is
present in systems with vanishing or nearly quenched orbital
polarization as in cubic systems. In general, the integration
of the oxygen XMCD in terms of local moment is doubtful.

3.6 Limits of the sum rules for L2,3 edges in
rare-earth metals

As demonstrated in Figures 9, 12, and 29 at the L2,3 edges in
RE metals significant XMCD signals can also be observed.
For example in Gd metal, as drawn in Figure 29, the L2,3-
edges XMCD ratio is −0.87 and close to the value of −1
for spin-only systems, as expected from the sum rules. The
deviation suggests the presence of a small orbital contri-
bution in the 5d states, which couple antiparallel to the
spin. If one compares the L2,3 XMCD signal of Gd metal

with the corresponding dichroic profile in iron metal, as
shown in Figure 29(b) an opposite sign can be found for
both edges. This is in striking contradiction to the exper-
imental macroscopic measurements and theoretical expec-
tations indicating and predicting for Gd a spin moment
of 0.47 µB and only a small negative orbital contribution
of −0.05 µB (Sticht and Kübler, 1985). This manifests the
‘positive’ breakdown of the sum rules for the L2,3 edges
in RE metals. But on the basis of various ab initio the-
ories, it is possible to provide a satisfying description of
the XMCD spectra. Theoretical ab initio investigations are
based either on linearized band structure methods (Carra
et al., 1991) or on multiple scattering theory (Ankudinov
and Rehr, 1995; Ebert, Schütz and Temmerman, 1990) and
achieved a good qualitative and quantitative agreement with
the experimental findings. The theoretical spectra presented
here have been obtained, analogous to those in Ebert (2000b)
using a spin-polarized fully relativistic implementation of the
Korringa–Kohn–Rostoker Green’s function method (Ebert,
2000b). Another complication arises in the case of the
RE metals where the 2p → 5d transition can be superim-
posed by quadrupolar 2p → 4f transitions. In Figure 30, the
experimental Tb and theoretical L2,3-XMCD spectra are
shown, proving that these E2 transitions can also be treated
properly on a theoretical basis (Wende et al., 2002). Details
of the calculations illuminate furthermore that the spin
dependence of the radial matrix elements in these elements
accounts for the failure of the sum rules. It has been demon-
strated that a proper generalization of the sum rules, taking
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Figure 29. (a) X-ray Absorption and XMCD in an energy range of 7 to 8.5 keV covering all L edges of Gd metal. (b) Comparison of the
Fe metal L2,3 XMCD with the corresponding profiles at the Gd L2,3-edges in comparison with the theoretical calculation of V. Popescu
(2006) Private Communication.
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Figure 30. Experimental Tb L2,3-XMCD spectra in comparison
with theoretical profiles for E1 and E2 transitions. (Reproduced
from Wende et al. (2004) Reports on Progress in Physics 67,
2105–2181.)

this phenomenon into account, allows their application with-
out a change of the sum rules in form or nature (Wende et al.,
2002).

4 XMCD-RELATED TECHNIQUES

4.1 Magnetic EXAFS

4.1.1 Experimental aspects

In an energy range of approximately 30 eV to 2 keV above an
absorption edge in solid materials, the absorption coefficient
exhibits an oscillating contribution. These oscillating struc-
tures, called extended absorption fine structures (EXAFS),
show a decaying amplitude as a function of distance to the
absorption edge and provide a strength of roughly 10% to
the absorption jump height.

The oscillations χ (E) = µ(E)−µ0(E)

�µ0
are extracted from the

absorption µ(E) by the subtraction of the atomic-like smooth
background µo(E) and normalization to the absorption jump
�µ0. This oscillating absorption is discussed here as a func-
tion of the photoelectron wave vector k = 1

�

√
2m(E − E0),

where E0 denotes the absorption threshold energy and m

the electron mass. Viewing Figure 29, the energy range from
about 7 to 8.5 keV covering all three Gd metal L absorption
edges, it is evident that also an extended X-ray fine structure
circular magnetic dichroic contribution is present. In contrast,
the conventional corresponding MEXAFS can be detected
directly by the circular magnetic absorption difference for
reversed sample magnetization, χ (E) = µ+(E) − µ−(E)

similar to the XMCD effect. In Figure 31, these magnetic

2 L3

(−1)L2

Magnetic multielectron
excitations

0.5

0
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∆m
 %

Energy (eV) above threshold

Figure 31. Magnetic EXAFS oscillations at the L2 and L3 edges
in Gd metal as shown already in Figure 28 rescaled by a factor 2
and – 1 for the L2- and L3-signal, respectively.

oscillations are compared with Gd metal L2,3 edges renor-
malized to each other by a factor 2. These structures appear
to be nearly identical, except in the region of about 150 eV,
that is, the range where multielectron effects are involved
and significant differences from this relation are observed.
These contributions result from the complex excitation from
an additional 4d → 4f electron excitation channel, which
is relatively weak but exhibits a large spin dependence since
the fully polarized 4f-final state is involved in these magnetic
multielectron excitations (MMEE) (Dartyge et al., 1992).

In the meantime, it has been manifested by several
MEXAFS studies that their occurrence is a universal
effect, which exists even for absorbing atoms with van-
ishing magnetic moments. In Figure 32, the La L3 edge
in the ferromagnetic perovskite La0.7Ca0.3MnO3 is shown
(from Weigand, 2003). Here, the near-edge XMCD can
be interpreted in terms of sum rules indicating the exis-
tence of a nearly vanishing spin and orbital moment of
mS ∼ +0.043 µB and mL ∼ +0.003 µB of the La compo-
nent, which is two orders smaller than the Mn moments of
3.4 µB. Taking into account the scaling factor 2, the com-
parison of the corresponding MEXAFS L2,3 edges proves
that they are nearly identical within the statistical accu-
racy achievable today for the MEXAFS investigations in
the hard X-ray range. It is evident that for the absorbing
La atoms without a 4f occupation, as expected, no MMEE
occurs.

As already observed in the first observation of the
XMCD at the Fe K edges an extension of the mag-
netic effects toward the EXAFS range has also been indi-
cated as seen in Figure 8 which is nearly of the same
amplitude as the magnetic XANES. Another example for
K-edge MEXAFS is given for Co metal in Figure 33 and is
more than one order of magnitude smaller than the MEX-
AFS at L2,3 edges. The magnetic part contributes only by
less than 1% to the spin-averaged oscillation. Also, here
MMEE contributions disturb the oscillating behavior in the
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Figure 32. (a) Absorption and XMCD signal taken at the La L3 edge in the ferromagnetic perovskite La0.7 Ca0.3MnO3,(b) La L-EXAFS
oscillation χ0(k) and corresponding magnetic contributions χ c(k) as function of the photoelectron k-number. By rescaling the L3 MEXAFS
by a factor −2 the MEXAFS at both edges are identical.
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Figure 33. EXAFS (a) and MEXAFS (b) at the Co K edge in fcc
Co metal. The shaded area corresponds to the expected energetical
position of the 1s3p–4p3d multielectron excitations.

energy range of the 3p binding energy 60 eV, which indi-
cates the occurrence of a strongly spin-dependent additional
3p–3d transition. As generally observed in K-edge MEX-
AFS a high-frequency fine structure seems to be superim-
posed to the broader oscillation correlated with conventional
EXAFS.
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Figure 34. EXAFS and MEXAFS at the Fe metal L edges.
(Reproduced from Lemke et al. (1998) J. of Physics: Condensed
Matter 10, 1917–1930.)

Following the scenario described above one would expect
much stronger MEXAFS at the L2,3 edges of the 3d transition
elements. However, serious complications result from the
L2 –L3-edge overlap of only 10–20 eV spin-orbit split edges,
which is just in the order of a typical next neighbor distance-
related (0.2–0.4 nm) half-wavelength. Figure 34 shows the
experimental results of MEXAFS studies at the L2,3 edges in
a 30 ML Fe film on Cu(001) taken from Lemke et al. (1998),
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where the MEXAFS oscillation can be clearly monitored
with a relative amplitude of about 3% owing to a partially
constructive overlap.

4.1.2 Theoretical description and data analysis

As already suggested by Kronig in 1932, who related the
EXAFS to an influence of the next neighbors, and since
the breakthrough by Sayers, Lytle and Stern (1970) and
Sayers, Stern and Lytle (1971) the EXAFS are a powerful
structural tool to study short-range order in an element-
specific manner. The EXAFS have been described as an
interfering sum of backscattered electron contributions from
the next coordination shells j with Nj atoms at the distance
rj , which are smeared locally out by the Debye–Waller
factor exp(2σ j(k)k2). These three parameters depend on
the local structure of the system. The influence of the
emitting atom itself is taken into account by the factor
Si(k)

χ(k) = −
∑

j

NjSi(k)Fj (k) e−2σ 2
j (k)k2

e−2rj /λj (k)

× sin
(
2krj + �ij (k)

)
kr2

j

(19)

The electron–electron interaction is introduced by the
elastic backscattering amplitude Fj(k), the inelastic mean free
path λj(k) and the phase shifts �ij acting on the electron
waves.

Following the explanation of the XMCD in the XANES
by the simple two-step model in the case of a right (left)
circular polarized photon the outgoing photoelectron wave
is spin polarized; therefore, one has to distinguish between
‘singlet’ and ‘triplet’ scattering indicated in Figure 35. A
dependence of the interaction parameter on the relative spin
orientation of the magnetic electrons of a neighboring atom
polarized in photon beam direction can be introduced in a
most simple manner by F±(k) = F0(k) ± σzFC(k) for the
elastic backscattering amplitude and

�± (k) = �0 (k) ± σz�C (k)for the phase shifts, while the
inelastic scattering of the spin-dependent effects are of minor

E1 E1

Singlet-scattering Triplet-scattering

Figure 35. Two-step model of the magnetic EXAFS.

importance and can be neglected. Hereby – similar to the
description of the spin-dependent Compton scattering – an
additive spin-dependent part has been introduced which
scales with the photoelectron polarization. Although this
picture is very simple, it easily explains the ratio of 2 of
the MEXAFS amplitude, which is observed at the L3 and L2

edges in magnetic systems.
Another similar approach is the ansatz with an energy shift

(Wende, 2004). More sophisticated theoretical treatments
based on ab initio theories have been developed to describe
successfully the MEXAFS (Ebert, 2000a).

Following the simple two-step model it is expected
that only neighboring atoms account for the occurrence of
dichroic signals in the EXAFS oscillations. This can be
proved straightforwardly by an analysis of the MEXAFS by
a Fourier transform (FT) of the conventional spin-averaged
oscillations.

Taking the example shown in Figure 32 into consideration
and following the EXAFS formula, the FT of χ(k) at the
La L2,3 edges will predominantly appear at distances given
by the next neighbor coordination shell, which is slightly
modified by the presence of the corresponding phase shift.
The strengths of the lines are proportional to the number of
atoms at these distances. As a typical result the FT(χ(k))

of the example given above is shown in the left panel of
Figure 36 where the next neighboring oxygen, manganese,
and La/Ca neighbors are clearly visible. In the FT of the
corresponding χC(k) spectrum only the line of the next
magnetic Mn atoms appears, proving unambiguously that the
spin-dependent contribution results only from backscattering
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Figure 36. Fourier Transform FT(χ0(k)) (a) and FT(χ0(k)) of the
La L2- edges (black) and L3-edges rescaled by a factor 2 (gray) in
comparison with the theoretical spectra calculated with the FEEF8.2
program modified following the equation.
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Figure 37. Fourier Transform FT(χ0(k)) (a) and FT(χ0(k)) of the
EXAFS and MEXAFS shown in Figure 32.

from the magnetic neighbors. This proves that the MEXAFS
is an appropriate method to probe the magnetic short-
range order even for nonmagnetic absorbing atoms as the
La component in this perovskite. It has been verified in
ferrimagnetic iron garnets that the phases in the FT help
to distinguish between ferro- and antiferromagnetic coupling
of the corresponding sublattices.

On all the sample studies up to now, we found an inter-
esting correlation of the relative strength of the MEXAFS:
A rescaling of the ratio maxFT(χC(k) )/maxFT(χ(k)) by the
spin polarization of the outgoing photoelectron wave and the
magnetic spin moment of the next nearest neighbor in units
of Bohr magnetrons seems to be a constant value, indicating
a spin-dependent contribution to the backscattering amplitude
of 2–3% per spin-polarized electron in the atomic shells of
the next neighbors (Figure 37).

Significant effects at the K edge are observed in the MEX-
AFS as shown in Figure 8 and also at the Co K edge in
Figure 33, as expected from the sum rules only the orbital
polarization can be addressed. The FT for this pure metal
provides the same local information in the spin-averaged
and spin-dependent case, but a significant enhancement of
the multiple scattering paths is observed. This might be cor-
related to an increase of the spin polarization of the outgoing
photoelectron wave due to the presence of the spin-dependent
elastic scattering if the electron is scattered several times.
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Figure 38. Fourier Transform FT(χ0(k)) (a) and FT(χ0(k)) of
the EXAFS and MEXAFS shown in Figure 34. (Reproduced
from Lemke et al. (1998) J. of Physics: Condensed Matter 10,
1917–1930.)

This phenomenon is prominent at the K edges, where the
starting spin polarization is expected to be induced by spin-
orbit effects and in the order of only 1%. A more detailed
systematic investigation of the MEXAFS may well provide
a new direct possibility to study spin–spin interaction of hot
electrons with kinetic energies up to several 100 eV. Simi-
lar behavior is indicated in the FT of the MEXAFS at the
Fe L2,3 edges of metallic Fe (Figure 38). Besides the influ-
ence of multiple scattering paths, the overlap of the L2 and
L3 MEXAFS result in additional, obviously unphysical, line
features. This demonstrates the general difficulty in analyzing
3d L-MEXAFS in terms of investigating short-range magnet
orders.

4.2 Magnetic reflectometry

4.2.1 General aspects

Since the discoveries of Max von Laue and Luis Néel,
the use of X-ray scattering for the structural analysis of
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condensed matter is well known and highly established.
Hereby the momentum transfer in the scattering process
provides structural information along its direction.

One special case of structural determination is the investi-
gation of ultrathin films in the thickness range of several
monolayers of atoms at relative small momentum trans-
fer ranges by reflectometry, providing information of film
thickness and interfacial properties like roughness. For the
X-ray scattering processes resulting in the presence of the
cross section σ coh drawn in Figure 5 the basic interaction
is described by the scattering amplitude f0 by σ coh (E) =∫ |f0(E, θ)|2 d�, where θ is the scattering angle as intro-
duced in Figure 4(b).

In the vicinity of an absorption edge additional dispersive
(f ′) and absorptive (f ′′) scattering factors occur to the
elastic scattering amplitude f (E) = f0 + f ′ + f ′′, which are
related to each other by Kramers–Kronig relations (Hoyt,
Warburton and de Fontaine, 1984; Neumann et al., 1998).

f ′(E) = 2E0

π

∮
f ′′(E)

E2
0 − E2

dE (20)

Following the optical theorem, the absorptive scattering
amplitude is directly correlated to the absorption cross
section by µabs(E) = ρa2r0λf ′′(E). This close relationship
is explained in Figure 39 where the left part illustrates the
absorption process and the right part symbolizes the resonant
scattering process into a single intermediate state and results
in the emission of an elastically scattered photon with the
same energy.

At a circular dichroic active absorption edge – in analogy
to the XMCD contributions – a magnetic scattering factor
has to be taken into account as expressed in the pioneering
work of Hannon, Trammell, Blume and Gibbs (1988)

f (q, E) = − (�e∗
f · �ei

) · [
f0 + f ′(E) + f ′′ (E)

]
︸ ︷︷ ︸

Nonmagnetic Colomb Part

+ i
(�e∗

f × �ei

) · �b · [
m′ (E) + im′′ (E)

]
︸ ︷︷ ︸

Magnetic Part

+ · · · (21)

where q is the scattering vector, �ei and �ef are the complex
polarization vectors of the incident and scattered beam, �b is
the unit vector of the magnetization. The residual resonant
scattering amplitude is separated in a charge and magnetic
term with different dependencies of the polarization vectors.
The complex amplitude of the magnetic term with dispersive
part m′ and absorptive part m′′ changes its sign by reversal of
the external magnetic field. The absorptive contribution to the
magnetic scattering amplitude is usually derived by XMCD
experiments, similar to the dispersive time-even part f ′(E)

and time-odd part m′(E) of the scattering factor, which are
deduced by Kramers–Kronig relations equal to equation (20)

m′ (E) = 2E0

π

∮
m′′ (E)

E2
0 − E2

dE (22)

To give an example of this procedure, the charge and
magnetic scattering factors at the Pt L3 edge of a Pt20Fe80

Iabs e−ik ⋅ r
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Figure 39. Physical process of the excitation of an inner shell 2p3/2 electron to a 5d unoccupied conduction band (left side) in comparison
with the resonant scattering event.
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Figure 40. (a) Dispersive f ′ and imaginary part f ′′ in the vicinity
of the Pt L3 edge in a Pt20Fe80 alloy and (b) the corresponding
magnetic contribution m′ and m′′. (Reproduced from Geissler et al.
(2002) Zeitschrift für Metallkunde 93, 946–952.)

and the Co L2,3 edges of Co metal sample are shown in
Figures 40 and 41, respectively.

4.2.2 The description by the complex index of
reflection

In grazing incidence conditions the momentum transfer qz =
2k0 sin θ along the surface normal is small compared to
reciprocal lattice vectors and the granular atomic structure
of the material can be neglected, providing a description in a
continuum approach. The interaction with electromagnetic
waves is handled by a complex index of refraction n =
1 − δ + iβ, where the energy dependent optical constants δ

and β are related to the complex scattering amplitude fj of
each site by the well-known optical theorem (Compton and
Allison, 1935)

n = 1 − δ + iβ = 1 − r0

2π
λ2

∑
njfj (23)

where nj is the number of atoms per unit volume, r0 is
the classical electron radius and λ is the wavelength of the
incoming electromagnetic wave. Concerning the imaginary
contributions a simple relation between β and the absorption
coefficient is found by β(E) = µ(E)

4π
λ. The reflectivity Ri of

each single interface is calculated by the well-known Fresnel
equations (Jackson, 1975) for reflection of s- and p-polarized
electromagnetic plane waves. This is schematically shown in
Figure 42 for a multilayer system. These angular dependent
reflectivity spectra are evaluated by the well-known Parratt
algorithm (Parratt, 1954), which could be handled even for
structures consisting of a sequence of layered media with
different indices of refraction

Ri = Rt,i + Rb,i exp(2iϕ)

1 + Rt,iRb,i exp(2iϕ)
(24)

Hereby Rt, i and Rb, i are the Fresnel reflection amplitudes
at the top and bottom surface of the layer i. For rough inter-
faces, these coefficients must be modified by an exponential
damping factor (Névot and Croce, 1980; Holy et al., 1993;
Holý, Pietsch and Baumbach, 1999; Sinha, Sirota, Garoff and
Stanley, 1988),

R
rough
i→j = Rflat

i→j e
−qz,iqz,i+1σ 2

(25)

where Ri→j means the Fresnel coefficient for reflection from
the interface and the related transition of light from medium
i to j . qz,i and qz,i+1 are the components of the complex
wave vectors in medium i and i + 1 perpendicular to the
interface.

The phase difference ϕ = 2π/diniλ sin θ i is responsible
for the interference patterns in the reflectivity curves, con-
taining the thickness di and the index of refraction ni . In an
angle dispersive setup, the intensity maxima appear when-
ever exp(2iϕ) = 1, which is analogous to the Bragg equation
modified by the influence of refraction. All scattered light
intensities and phase differences are taken into account,
which are essential for a high qualitative and quantitative
simulation of experimental data.

Surface imperfections yield to a decrease in reflectivity
and an increase of diffuse scattered light. Stearns (1989) has
shown that in the case of a smooth or nonabrupt change
in the index of refraction, which can be described by an
interface profile function p(z), the resultant loss in specula
reflectance can be approximated by a simple multiplication
of the Fresnel coefficients by the FT w̃ (qz) of the function
w(z) = dp/dz. Assuming a Gaussian distribution of the
atoms of two layers at the interface, corresponding to an
error function as p(z), the mean vertical roughness or
interdiffusion or a combination of the two cases can be
described by the quantity σ , the root mean square (rms)
roughness.

Reflectometry at thin layered systems yields to informa-
tion about layer thickness and interface roughness due to
the above mentioned interference phenomena of the reflected
intensity at each interface (Holy et al., 1993; Sinha, Sirota,
Garoff and Stanley, 1988). Hereby the maxima and minima
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Figure 42. Schematic X-ray reflection in a multilayer structure.
(Reproduced from Geissler et al. (2002) Zeitschrift für Metallkunde
93, 946–952.)

in the reflectivity curve are caused by the interference of
the waves reflected from the upper and lower interfaces of a
thin film.

4.2.3 Magnetic reflectometry in multilayers

Multilayer systems provide Bragg peaks related to the super-
structure of the multilayer (Ferrer et al., 1997) containing
information of layer-averaged properties, for example, depth
profiles of one component of the whole multilayer sys-
tem (Jaouen et al., 2000; Seve et al., 1999; Tonnerre et al.,
1995). Figure 43 shows the experimental nonmagnetic reso-
nant reflectivity curves of a Ce/Fe multilayer system repro-
duced from Seve et al. (1999), in combination with the
simulated reflectance for a multilayer system. The Bragg
reflections of the multilayer superstructure of the multilayers
are directly observable.

The magnetization induced changes in the reflectivity are
measured by the weighted reflectivity difference for reversed
sample magnetization

A = R+ − R−

R+ + R− (26)

The magnetic asymmetry ratios are also plotted as a
function of photon energy (Figure 44), where the scattering
angle has been chosen to be at various superstructure
Bragg peaks, indicated by the diffraction order. Without
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Figure 43. Resonant nonmagnetic reflection curves of a Ce–Fe
multilayer system. Clear superstructure Bragg reflections are vis-
ible. The shift of the superstructure peaks reflects different the
variation of the photon wavelength from the Fe K edge to the Ce
L2 edge. (Reproduced from Seve et al. (1999) Physical Review B
60, 9662–9674.)

going into details of the analysis, the chemical profile has
been extracted from the nonmagnetic spectra, and mag-
netic counterpart from the magnetic asymmetry. Multi-
layer systems provide the unique opportunity to extract
nonmagnetic and magnetic multilayer information in an
analytical way (Seve et al., 1999; Tonnerre, 1997). Thus
variations and their dependence on the distance of an indi-
vidual layer from the substrate, important for components
with large lattice mismatch, can hardly be addressed. Further-
more, diffuse X-ray resonant magnetic scattering (XRMS) in
the soft X-ray region can be applied to investigate correla-
tions between chemical and magnetic roughness in thin films
and multilayers (MacKay, Teichert, Savage and Lagally,
1996; Osgood et al., 1999). Magnetic resonant reflectiv-
ity measurements in the soft X-ray region were performed
(Kao et al., 1990, 1994; Sacchi and Mirone, 1998; Ton-
nerre et al., 1995, 1998) to measure the energy depen-
dence of the reflected intensity for parallel and antiparallel
alignment of the photon helicity and the direction of the
magnetization.

4.2.4 Resonant magnetic reflectometry at single
layers

Hard X rays
The experimental setup of the magnetic reflectivity experi-
ment in specular geometry, where the incident and reflected
intensity has been detected by ionization chambers, is
shown in Figure 45. To simplify the analysis the energy
of the scattering experiment has been adjusted to the Pt
L3 maximum of the absorptive part m′′ where the dis-
persive part m′ nearly vanishes, as shown in Figure 40
(marked with E0). f ′′ and m′′ were derived from the non-
magnetic and magnetic absorption profiles respectively, mea-
sured in a separate transmission experiment (Ruegg, Schütz,
Fischer and Wienke, 1991). The structural profile infor-
mation, that is, layer thickness and roughness, is derived
by a nonresonant Cu Kα experiment by conventional Par-
ratt simulation (Figure 45). Figure 46(a) shows the mag-
netic asymmetry and the result of simulations based on
a technique called multislicing (Geissler et al., 2001): The
reflectance of a rough interface was initially modeled by
the reflectance of a sharp interface, damped by an expo-
nential damping factor, and then approximated by a series
of many virtual slices with no roughness in between, pro-
viding the same smooth distribution of the correspond-
ing optical constants, which reflects the same optical and
chemical profile. For the magnetic profile simulation the
magnetic scattering part is added (subtracted) to the opti-
cal profile (determined by the chemical profile), providing
two different reflectivities R+ and R−. Figure 46 shows
the simulated magneto-optical profile and the correspond-
ing magnetization per Pt atom. The magnetization per atom
has been deduced from the normalization of the magneto-
optical profile to the chemical profile, as shown in the inset
of Figure 46(b) (Geissler et al., 2001; Geissler, Goering,
Weigand and Schütz, 2002).

Since for hard X rays the typical scattering angle range is
below 4◦, the dipole scattering formula can be reduced by
the small angle approximation to [16]

fres,θ≈0 (E) = −r0
[(

f0 + f ′ (E) − if ′′ (E)
)

+ PC
(
m′ (E) − im′′ (E)

)]
(27)

This provides a strongly reduced numerical effort, neces-
sary for the reflectivity simulations. Since the magnetic effect
is in the order of 4%, it does not provide a strong impact
to the total reflectance. This conserves the general momen-
tum transfer and the related interference conditions, and the
magnetic asymmetry can be considered proportional to the
magnetic moment.
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Figure 44. (a) The energy dependent asymmetry ratio measurement (circles) and simulation (line). (b) The upper curve shows the chemical
profile, estimated from the nonmagnetic simulation shown in the previous figure. The lower part represents the Ce magnetic polarization,
extracted from the asymmetry fit. (Reproduced from Seve et al. (1999) Physical Review B 60, 9662–9674.)

Soft X rays
In this energy range, two major difficulties arise owing to
the larger scattering range of about to 40–50◦ and very
strong resonant nonmagnetic and magnetic absorption lines.
The whole geometry of the magnetic scattering scenario,
which is discussed here, is sketched in Figure 47. A typical
experimental asymmetry, measured at the Co L3 edge for the
same PtCo sample, is shown in Figure 48 in comparison with
the simulations, which provide a very good representation of
the experimental data. The principle calculation method is
quite comparable to the Pt spectra shown above, but owing
to the large range of scattering angles a full treatment of
the scalar and cross products of the incoming and scattered
polarization vectors separated into σ and π channels is
necessary

fE1,σ =−r0

(
f0+f ′−if ′′) ± K ·cos θ ·M ·(m′−im′′)(

1+K2
)1/2 (28)

fE1,π =−r0
K ·cos 2θ · (

f0+f ′−if ′′)±cos θ ·M ·(m′−im′′)(
1+K2

)1/2

(29)
The degree of circular polarization is described as PC =

2K/(1 + K2)1/2, and the magnetic part of the scattering
amplitude varies with the cosine of the angle of incidence.
For the calculation of the asymmetry ratio the intensities of
the σ and π components have been added in a kinematic
approximation. This approximation breaks down at very
small scattering angles owing to the enhanced influence
of multiscattering processes. Nevertheless, for systems with
a nonmagnetic protective top layer, the asymmetries are
usually small at graving incidence conditions, where the
interface of the nonmagnetic protective top layer to the
vacuum dominates the reflection.

After determination of the resonant optical properties, as
shown for the Co L2,3 edges in Figure 41, the magnetic
profile could be determined by the same general procedure
used above, where the interface is artificially sliced into ultra
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thin layers. The nonmagnetic optical profile corresponds to
the roughness determined chemical profile, convoluted with
the optical constants as shown in Figure 49. The lighter
gray part shows the resonant nonmagnetic absorption profile,
clearly reflecting the increase inside the Co layer. For
the magnetic simulation the darker gray part is added (as
shown) and subtracted from the lighter gray curve, giving
two magnetic reflectivity curves and the asymmetry. As for
Pt, the element-specific Co magnetization profile could be
extracted as shown in Figure 50, which compared to bulk
Co is enhanced at the Pt site by a factor of 1.25 and
reduced at the Cu site by a factor of 0.7. These results
are in very good quantitative agreement with complementary
experimental results for Co/Pt layers (Canedy, Li and Xiao,
2000; Nakajima et al., 1998) and Co/Cu (Bland, Daboo,
Patel and Fujimoto, 1998; Ney, Poulopoulos and Baberschke,
2001).

4.2.5 Restrictions and limits

• Since XRMS is a conventional scattering method
and – in contrast to holography – the absolute phase
information is lost, the result is not unambiguous. Thus,
it is absolutely necessary to restrict the shape of the
magnetization to intentionally reasonable and meaning-
ful profiles.

• The determination of the optical constants and the
corresponding energy calibration must be done very
carefully. The best way is a simultaneous determination
of the absorption coefficient at the same experimental
station.

• Measurements at the energy of the maximum XMCD
effect provide, in most cases, the opportunity for the
magnetic dispersive part to nearly vanish (see Figure 41
for the optical Co profile). This reduces a possible error
source from the determination of the dispersive part.

• The determination of the magnetic moment per atom
needs the knowledge of the thickness dependent vari-
ation in the absorption which must be monitored by
XAS/XMCD experiments. Auxiliary sources of infor-
mation are usually theoretical investigations.

• As demonstrated for Magnetite (Goering, Gold, Lafkioti
and Schuetz, 2006). Self-absorption, careful background
approximation, long energy range measurements and
calibration to the efficiency of the I0 detector are all
necessary to provide good estimates of the absolute
resonant absorption coefficients.

4.3 Magnetic X-ray microscopy

4.3.1 General aspects

During the 1980s the availability of high-brilliance syn-
chrotron sources and the fast development in nanotechnology
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led to new powerful concepts using X rays for imaging of
submicron structures by photoemission electron microscopy
(PEEM), (Tonner and Harp, 1988) and Fresnel lens-based
X-ray transmission microscopes (Attwood, 1999). More
recently lensless coherent imaging techniques (Eisebitt et al.,
2004) were established.

The basic experimental set ups are sketched in Fig-
ure 51(a–d). Using XMCD as a magnetic contrast, all four
types of methods can be used to image magnetic structures.
Owing to the smaller wavelength of the X rays and the huge
magnetic cross sections, especially for prominent absorption
edges of the magnetically relevant elements, as shown
in Section 2, these magnetic X-ray imaging techniques
overcome the commonly used Kerr microscopes (Hubert
and Schäfer, 1998) concerning image contrast and lateral
resolution. These X-ray imaging techniques cannot provide
atomic resolution in contrast to the spin-polarized scanning
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tunneling microscope (SP-STM) (Bode, 2003; Wachowiak
et al., 2002) and the magnetic force microscope (Martin and
Wickramasinghe, 1987; Koblischka and Hartmann, 2003).
However, the element specificity of magnetic X-ray imaging
techniques and the direct correlation of the contrast to local
magnetic spin and orbital moments make them unique tools
for investigating magnetism of micro- and nanostructures.
These systems are important subjects in solid state and
material sciences as well as in data storage and sensor
technologies.

The PEEM is sketched in Figure 51(a). Secondary elec-
trons, which are commonly emitted after irradiation with
monochromatic X rays from an undulator, are imaged by
an electron microscope. The lateral resolution is determined
by the electron optics and for magnetic applications is in
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the order of 50–100 nm. Similar to the TEY detection mode
for XMCD studies for soft X rays, described in Section 2,
this method is inherently strong surface-sensitive to a few
atomic layers with the advantage that nontransparent sam-
ples and very thin layers can be studied. Since low-energy
electrons are involved in this photon-in/electron-out tech-
nique, the application of an external magnetic field in the
XMCD/PEEM and the high voltage present at the sample,
introduce experimental difficulties.

In X-ray microscopy techniques where only photons
are involved, Fresnel zone plates (Attwood, 1999) are

used as optical elements and the magnetic field is not
modifying the image. Both types of microscopes operate
in the transmission mode: a full-field X-ray microscope
(Figure 51b) and a scanning transmission X-ray microscope
(STXM, Figure 51c). The lateral resolution is determined
by the width of the outermost ring of the zone plate
and is in the order of about 25 nm (record 15 nm (Chao
et al., 2005)) limited by current electron-beam lithography
techniques. Both types of microscopes image the structures
of samples with thicknesses in the order of some 100 nm
deposited on transparent substrates as Si3N4 or on grids as
used for transmission electron microscopy. Since the focal
length of the Fresnel lenses is proportional to the photon
energy for full-field microscopy, the first condenser lens
can work as a monochromator with an energy resolution
E/�E of 200–1000 by focusing a polychromatic beam from
a bending magnet onto a sample spot with a diameter of
several micrometers. The micro zone plate images the sample
onto an X-ray-sensitive CCD camera. In contrast to this, the
STXM uses one micro zone plate to focus the beam onto
the sample mounted on a scanning stage and the transmitted
intensity is monitored by a typical photomultiplier tube or an
avalanche photodiode. More sophisticated detector schemes
allow simultaneous imaging in four ways; bright-field and
darkfield imaging, as well as differential phase contrast in
the x and y direction (Kirz et al., 2004).

New paths are treated by lensless imaging with coherent
X-ray scattering where, as sketched in Figure 51(d), the
images are reconstructed in real space either by iterative
phase retrieval schemes using over-sampling techniques.
Miao, Charalambous, Kirz and Sayre (1999) or by FT
holography. The latter technique has also been applied for
imaging magnetic nanostructures (Eisebitt et al., 2004) where
a resolution of about 50 nm was obtained.

All of these methods have been extended to explore
magnetic nanostructures using the XMCD effect. Up to now
soft X rays have been used for covering the L edges of 3d
elements and M edges for RE elements.

4.3.2 Time-resolved imaging

As an example for third generation synchrotrons, the inherent
time structure of the Advanced Light Source (ALS) at Berke-
ley, CA, is outlined in Figure 52, with its sub-100-ps wide
X-ray flashes. This forms the basis for the implementation
of stroboscopic pump and probe measurements with sub-
nanosecond time resolution (Stoll et al., 2004; Choe et al.,
2004). In addition to the standard multibunch operation of
the synchrotron, a two-bunch mode is provided but this spe-
cial operation mode is only available for about 10% of an
annual beam time. The time structure in a two-bunch mode
operation allows 328-ns time-intervals between the magnetic
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Figure 51. (a) Scheme of the X-ray photoemission electron microscope (X-PEEM). The incident X rays excite secondary electrons in
an area of 1–50 µm, which are imaged by an arrangement of electrostatic and magnetic lenses onto a phosphor screen. (b) Scheme of a
full-field transmission X-ray microscope. A polychromatic photon beam is focused by a condenser zone plate onto a field of the transparent
sample of about 10 µm. The magnified image, generated by a micro zone plate, is thrown onto an X-ray-sensitive CCD camera. (c) Scheme
of a scanning transmission X-ray microscope (STXM). A monochromatic photon beam is focused by a Fresnel micro zone plate onto the
sample mounted on a piezo driven stage. The transmitted radiation is measured by an X-ray detector as a function of the sample position.
(d) Set up for lensless imaging with coherent X rays. Monochromatized undulator radiation is directed to a pinhole. Coherent scattering at
the sample causes a fine structure known as ‘speckle’ in the diffraction pattern which allows reconstruction of the real space image of the
sample by an iterative phase retrieval scheme.

excitation pulses of the sample and therefore enables the
sample’s magnetization to relax and to reach its equilibrium
state again, in contrast to the 2-ns interval between succes-
sive X-ray flashes in a multibunch mode operation, which
is too frequent for most magnetic experiments. A sophisti-
cated data acquisition scheme was built up which overcomes
this drawback and allows us to perform time-resolved STXM
measurements in multibunch mode with variable relaxation
times. A pump pulse is followed by n successive X-ray
flashes routed in separate image storage areas (for example,
n = 4: ‘pump’ (magnetic excitation) pulses show up every
8 ns, and all X-ray ‘probe’ flashes in between are used for
data acquisition). A similar set up was incorporated for the
‘sine-excitation’ experiments described later. In this way,
by taking advantage of the higher photon flux in multi-
bunch mode compared to the two-bunch mode operation, data

acquisition for time-resolved magnetic STXM experiments is
speeded up by a factor of about 10.

In order to generate the magnetic field as the pump pulse,
an electric current is sent through a Cu wire as sketched
in Figure 53(a), which provides a magnetic field parallel to
the plane of the micrometer-sized platelet prepared directly
on the Cu strip line. A magnetic pulse perpendicular to the
sample can be applied by a Cu microcoil, which surrounds
the sample on the Si3N4 membrane as shown by the scanning
electron microscope (SEM) image in Figure 53(b).

For the time-dependent measurements several complemen-
tary stroboscopic techniques have been used:

1. ‘Time-domain’ pump and probe excitation, Figure 54(a)
(Stoll et al., 2004), where current pulses through the
microcoil or strip line, synchronized with the storage
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ring, generate magnetic pulses which act as a ‘pump’ and
the subsequent X-ray flashes, delayed properly, serve as
‘probe’.

2. ‘Frequency-domain’ sine excitation or spatially resolved
ferromagnetic resonance technique, implemented to
time-resolved X-ray microscopy by Puzic et al. (2005)
(Figure 54b), where the sample is excited by a contin-
uous alternating field and the response of the sample’s
magnetization is determined dependent of the phase of
the excitation. Generally speaking, pump and probe per-
forms a broadband excitation of all magnetic modes
involved, whereas the sine excitation allows excitation of
distinct magnetic eigenmodes by choosing the excitation
frequency close to their eigen frequencies.

3. A combination of both techniques above is called a
burst mode excitation and is sketched in Figure 54(c).
The sample is excited by one or several periods of
an alternation magnetic field, and although this is a
‘resonant’ excitation, the sample is excited from its
ground state.

4. In addition, an oscillating field with small amplitude
can be superimposed to the burst excitation as shown
in Figure 54(d).

4.3.3 Investigation of magnetic vortex dynamics by
the STXM

It is well known that micrometer- or submicrometer-sized
magnetic patterns can minimize their stray field energy
by an inhomogeneous magnetization like the formation of
domains separated by domain walls. In square-shaped ferro-
magnetic structures, the competition of the exchange inter-
action between nearest-neighbor spins and the long-range
dipole–dipole energies can result in a vortex structure, or so-
called Landau pattern (Hubert and Schäfer, 1998). Uniform
magnetized domains form an in-plane flux closure around its
center (Figure 55), where the magnetization goes out of the
plane because of the short-range exchange interaction form-
ing the vortex core, which is extended over about 20 nm. The
direction of the out-of-plane component of the magnetization
(up or down, see Figure 55) is defined as the polarization
of the vortex core. The stability in an external static mag-
netic field (Wachowiak et al., 2002) has already been inves-
tigated and is well understood (Shinjo et al., 2000; Cowburn,
Koltsov, Adeyeye and Welland, 1999; Novosad et al., 2002a;
Guslienko et al., 2001; Shibata and Otani, 2004). Its dynam-
ics have gained strong interest by magneto-optical techniques
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through this strip line generates an oscillating magnetic field parallel to the sample plane. To image the Landau structure, the whole sample
arrangement is tilted by 60◦ with respect to the incident photon beam, creating a net component of the ‘in-plane’ sample magnetization onto
the photon propagation direction. The sample has to be mounted perpendicular to the beam, for imaging the ‘out-of-plane’ magnetization
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(Park et al., 2003; Cowburn, Koltsov, Adeyeye and Welland,
1999; Novosad et al., 2002b), a translational mode in the sub-
gigahertz range corresponding to a gyrotropic motion of the
vortex core around the structure center (Argyle, Terrenzio
and Slonczewski, 1984) was observed. Since lateral dimen-
sions of the vortex structure are in the submicrometer range
and its timescales relevant in the subnanosecond range, it is
an ideal subject to be addressed by time-dependent mag-
netic microscopy studies. Hereby, details in the dynamic

response of a vortex structure to externally applied magnetic
fields as pulsed or sine excitation were gained with time-
resolved transmission X-ray microscopy (Puzic et al., 2005)
and PEEM (Choe et al., 2004).

Up to now, very high external magnetic fields of about
half a tesla (Okuno et al., 2002; Thiaville et al., 2003) were
required to reverse the vortex core owing to the high stability
typical for vortex structures. Recently, vortex-core switch-
ing with short bursts of an alternating magnetic field as low
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as 1.5 mT was discovered by time-resolved imaging at a
scanning transmission X-ray microscope (Van Waeyenberge
et al., 2006). This dynamic low-field vortex-core reversal
scheme is sketched in Figure 56. The sample was excited
by a small alternating magnetic field (250 MHz, amplitude:
0.1 mT) parallel to the surface. The sense of gyration of
the vortex structure could be reversed by a single period
magnetic burst field (amplitude: 1.5 mT, see Figure 56). As
the sense of the gyrotropic vortex motion only depends
on the polarization of the vortex core (up or down), mag-
netic vortex-core reversal by excitation with short bursts
of an alternating field (1.5 mT) was discovered this way
(Van Waeyenberge et al., 2006). The Permalloy (Ni80Fe20)

platelet, prepared on a strip line, was tilted by 60◦ with
respect to the incoming photon beam, which resulted in a
net magnetization projection onto the quantization axis (see
Figure 53a).

A vortex-core switching mechanism derived from micro-
magnetic simulations (Van Waeyenberge et al., 2006), which
was unknown so far, explains this reversal by low alternating
fields as a result of the creation of a vortex-antivortex pair
as sketched in Figure 57(a). This dynamic switching encoun-
ters is illustrated in Figure 57(b) and describes the following
steps: (i – iii) excitation of the sample with an external in-
plane alternating field generates an increasing out-of-plane
polarization opposite to the original vortex, resulting in (iv)
the creation a vortex–antivortex pair both with opposite
polarization compared to the original vortex which results
in (v) the annihilation of the antivortex with the original
vortex and at the end (vi) a vortex with opposite polarization
remains.

4.3.4 Dynamic imaging of the out-of-plane
vortex core

As shown recently, owing to the high magnetic contrast at
the dichroic active absorption edge, it is possible to resolve
even directly a magnetic vortex core for a sample mounted
with its plane perpendicular to the photon beam. Typical
contrast images for reversed polarization of the X-ray beam
before and after switching the vortex core by an appropriate
burst are presented in Figure 58(a). A differential image of
optimum statistical accuracy is taken by a proper subtraction
of the dichroic images for reversed vortex-core orientation,
and is plotted in a 3D image in Figure 58(b). As shown
in Figure 58(c) it exhibits a slightly asymmetric shape with
a maximum contrast of about 2% and a full width at half
maximum (FWHM) in the order of 50 nm. The extension

~20 nm

~ µm

Figure 55. In a Landau pattern, the uniform magnetized domains form an in-plane flux closure around its center. In the center, because
of the short-range exchange interaction, the magnetization goes out of the plane creating the vortex core. The direction of the out-of-plane
component of the magnetization is defined as the polarization of the vortex core (up or down). Both states are energetically degenerate.
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Figure 56. STXM images of the response of the Landau structure on the excitation by an alternating in-plane field (amplitude: 0.1 mT)
and an additional alternating field pulse (one period with 1.5 mT amplitude). Since the sense of rotation only depends on the polarization
of the vortex core, it is proven that the vortex-core polarization has been switched by the field pulse.
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Figure 57. (a) A sketch of a vortex structure compared to an antivortex structure. (b) Details of the switching of the vortex core simulated
by the OOMMF (Donahue and Porter, 1999) program showing the formation of a halo with opposite polarization splitting in a vortex and
antivortex pair. Finally, the antivortex annihilates with the original vortex by emission of spin waves.
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Figure 58. (a) Shows the static configuration of a vortex structure (500 × 500 nm2, 40 nm thick) with a vortex core pointing up (left
column) and pointing down (right column). In the first row images were taken for negative polarization of the photons (I−), while images
with opposite polarization (I+) are shown in the second row. The ‘dichroic image’ is depicted in the third row. A white or black spot can
be observed, corresponding to a vortex-core pointing up or down respectively. The jitter around the vortex structure is an artifact caused
by mechanical vibrations. Both ‘dichroic images’ were subtracted from one another and a 3d image is given in (b) (200 × 200 nm2 cut).
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Figure 59. Dynamic response of a vortex structure (sample A: 500 × 500 nm2, 40 nm thick) due to an in-plane alternating magnetic field
(f = 437.5 MHz, H0 = 710 A m−1) with a vortex core pointing up (upper row) and down (lower row). (a) Shows the out-of-plane magnetic
contrast of the Landau structure at different phases of the external field (uneven phases are not shown). The images are cuts (300 × 300 nm2)
from the complete structure. The position at the different phases is depicted in (b) (150 × 150 nm2), and (c) is a 3D representation of the
vortex structure (300 × 300 nm2) at phase 270◦ (upper row) and phase 135◦ (lower row).
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of the vortex core (about 20 nm) and a maximum value of
the XMCD effect at the Ni L3 edge of about 26%, give
exactly the expected magnetic absorption effect owing to
the experimentally smeared-out perpendicular magnetization
component of the vortex core.

In Figure 59(a), the gyrotropic motion of the vortex core is
shown for a 500 × 500 nm2 large Permalloy platelet mounted
with its normal parallel to the photon beam inside the
scanning X-ray microscope. This motion has been studied
for the two polarization states of the vortex core, indicating
a large difference in the amplitude of the gyrotropic vortex
motion for the two cases (Figure 59b). This asymmetry may
be attributed to local imperfections in the thin film causing
nonuniform magnetization distributions over the sample
which have an influence on the motion. The speed of the
vortex-core motion was also deduced from the trajectories.
For the vortex-core pointing up, a speed of 140 m s−1 was
calculated, while a much smaller speed of ≈80 m s−1 was
found when the vortex-core is pointing down.

The 3D representations in Figure 59(c) indicate the occur-
rence of a broad contribution of opposite sign at one side of
the vortex core. The procedure used during the data analysis
can introduce such a negative contribution as an artifact. On
the other hand, it was recently discovered that a vortex core
deforms with a similar halo prior to the switching of the vor-
tex core by creation and annihilation of a vortex–antivortex
pair (Novosad et al., 2005). Today it cannot be excluded that
the dynamical vortex deformation, which could up to now
not be proved experimentally, is partly responsible for the
negative contributions in Figure 59(c). This has to be clar-
ified by future experimental magnetic STXM studies with
a significantly enhanced accuracy, especially a better lateral
resolution.

NOTES

[1] To be more precise, the Borrmann effect has to be taken
into account, which gives different absorption for the
two field components. To provide the same intensity for
both interfering field components, the angle of incidence
must be chosen slightly different from the 45◦ condition
to give 100% circular polarized light.

[2] This has been done by the XMCD effect. So the
energy is tuned to the maximum XMCD effect of a
magnetized sample. Then the absorption is measured as
a function of the Bragg angle, which directly reflects the
circular polarization. Other dynamical effects, like the
Borrmann, 1951, Borrmann, Hildebrandt and Wagner,
1955) effect have to be cancelled by averaging over
different sample magnetizations.

[3] This could be done by measuring the intensity of the
scattered beam by an additional ionization chamber.

[4] This could be a problem if the sample provides a band
gap, large enough to be transparent for a secondary UV
channel.

[5] This is related to the much weaker radial matrix element
due to the oscillating radial wave function of the higher
s electrons in the radial distribution of the excited core
electron.

[6] This is a direct consequence of the dipole approximation
in Fermi’s golden rule (Bransden and Joachain, 1983).

[7] This assumes forbidden spin flip processes!
[8] In units of µB∇.
[9] This could be realized by external or internal forces.

[10] The description given here, is close to the discussion of
Stöhr and König (1995).

[11] Orbital moments could also be investigated by precise
g-factor measurements in ferromagnetic resonance.

[12] As explained in the previous chapters, XMCD is
sensitive to the projection of the magnetization along
the circular polarized photon beam K vector.

[13] The MEXAFS part has been approximated by pure
effective spin contributions!

[14] Dipole term and spin moments have been renormalized
owing to the j3/2 –j1/2 mixing, present for reduced spin-
orbit splitting of the 2p excitation (Goering, 2005).

[15] This value is smaller than the pure atomic values,
reflecting the delocalization and the band character of
the 3d electrons in CrO2.

[16] The polarization dependent prefactors will reduce in
small angle approximation for circular polarized light

to
(
ε

′† · ε
)

= ε · ε = 1 und
(
ε

′† × ε
)

= iqPC, where
q is the wave vector of the photon beam and PC is
the degree of circular polarization.
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Editor: Höhler, G. (Ed.) Springer Tracts in Modern Physics,
Springer: Karlsruhe, Vol. 149. ISSN: 0081–3869.

Hoyt, J.J., Warburton, W.K. and de Fontaine, D. (1984). Determina-
tion of the anomalous scattering factors for Cu, Ni and Ti using
the dispersion relation. Journal of Applied Crystallography, 17,
344–351.

Hubbell, J.C., Gimm, H.A. and Overbo, I. (1980). Pair, triplet, and
total atomic cross sections (and mass attenuation coefficients) for
1 MeV-100 GeV photons in elements Z = 1 to 100. Journal of
Physical and Chemical Reference Data, 9, 1023–1047.
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de quelques verres silicates. Revue de Physique Appliquée, 15,
761–779.

Ney, A., Poulopoulos, P. and Baberschke, K. (2001). Surface and
interface magnetic moments of Co/Cu(001). Europhysics Letters,
54, 820–825.

Novosad, V., Fradin, F.Y., Roy, P.E., et al. (2005). Magnetic vortex
resonance in patterned ferromagnetic dots. Physical Review B,
72(2), 024455-1–024455-5.

Novosad, V., Guslienko, K.Yu., Shima, H., et al. (2002a). Effect
of interdot magnetostatic interaction on magnetization reversal in
circular dot arrays. Physical Review B, 65, 060402-1–060402-4.

Novosad, V., Grimsditch, M., Guslienko, K.Yu., et al. (2002b).
Spin excitations of magnetic vortices in ferromagnetic nanodots.
Physical Review B, 65(2), 052407-1–052407-4.



Synchrotron radiation techniques based on X-ray magnetic circular dichroism 51

O’Brien, W.L. and Tonner, B.P. (1994). Surface-enhanced magnetic
moments and ferromagnetic ordering of Mn ultrathin films on fcc
Co(001). Physical Review B, 50, 2963–2969.

Okuno, T., Shigeto, K., Ono, T., et al. (2002). MFM study of
magnetic vortex cores in circular permalloy dots: behavior in
external field. Journal of Magnetism and Magnetic Materials,
240, 1–6.

Osgood, R.M., Sinha, S.K., Freeland, J.W., et al. (1999). X-ray
scattering from magnetic, rough surfaces. Journal of Applied
Physics, 85, 4619–4621.

Park, J.P., Eames, P., Engebretson, D.M., et al. (2003). Imaging of
spin dynamics in closure domain and vortex structures. Physical
Review B, 67(2), 020403(R)-1–020403(R)-4.

Parratt, L.G. (1954). Surface studies of solids by total reflection of
X-rays. Physical Review, 95, 359–369.

Pauthenet, R. (1958). Spontaneous magnetization of some garnet
ferrites and the aluminum substituted garnet ferrites. Journal of
Applied Physics, 29, 253–255.

Pellegrin, E., Tjeng, L.H., de Groot, F.M.F., et al. (1997). Soft
X-ray magnetic circular dichroism study of the colossal mag-
netoresistance compound La1-xSrxMnO3. Journal de Physique
IV, 7, 405–408.

Peters, J.F., Miguel, J., de Vries, M.A., et al. (2004). Soft x-ray
resonant magneto-optical constants at teh Gd M4, 5 and Fe L2,
3 edges. Physical Review B, 70, 224417-1–224417-10.

Pierce, D.T. and Meier, F. (1976). Photoemission of spin-polarized
electrons from GAAS. Physical Review B, 13, 5484–5500.

Pizzini, S., Bonfim, M., Baudelet, F., et al. (1998). Quarter-wave
plates and X-ray magnetic circular dichroism on ID24 at the
ESRF. Journal of Synchrotron Radiation, 5, 1298–1303.

Porta, P., Marezio, M., Reimeika, J.P. and Dernier, P.D. (1972).
Chromium dioxide: high pressure synthesis and bond lengths.
Materials Research Bulletin, 7, 157–762.

Puzic, A., van Waeyenberge, B., Chou, K.W., et al. (2005).
Spatially resolved ferromagnetic resonance: imaging of fer-
romagnetic eigenmodes. Journal of Applied Physics, 97(10),
10E704-1–10E704-3.

Richter, D., (1992). Dynamische Theorie der Beugung. Synchtro-
tronstrahlung zur Erforschung kondensierter Materie, Vorlesungs-
manuskripte des 23. IFF-Ferienkurses, Forschungszentrum Jülich
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mikroskopie. Naturwissenschaften, 83, 61–70.
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Stöhr, J. and König, H. (1995). Determination of spin- and orbital-
moment anisotropies in transition metals by angle-dependent x-
ray magnetic circular dichroism. Physical Review Letters, 75,
3748–3751.

Stoll, H., Puzic, A., van Waeyenberge, B., et al. (2004). High-
resolution imaging of fast magnetization dynamics in magnetic
nanostructures. Applied Physics Letters, 84, 3328–3330.

Stumm von Bordwehr, R. (1989). A history of X-ray absorption
fine structure. Annales de Physique Fr., 14, 377–466.

Suga, S. and Imada, S. (1996). Magnetic circular dichroism of
transition metal-and rare earth-compounds. Journal of Electron
Spectroscopy and Related Phenomena, 78, 231–236.

Swoboda, T.J., Arthur, P., Cox, N.L. Jr., et al. (1961). Oxides: syn-
thesis and properties of ferromagnetic chromium oxide. Journal
of Applied Physics, 32, 5374–5375.

Thamer, B.J., Douglass, R.M. and Staritzky, E. (1957). The thermal
decomposition of aqueous chromic acid and some properties of
the resulting solid phases. Journal of the American Chemical
Society, 79, 547–550.

Thiaville, A., Garcia, J.M., Dittrich, R., et al. (2003). Micromag-
netic study of Bloch-point-mediated vortex core reversal. Physi-
cal Review B, 67, 094410-1–094410-12.

Thole, B.T., Carra, P., Sette, F. and van der Laan, G. (1992). X-ray
circular dichroism as a probe of orbital magnetization. Physical
Review Letters, 68, 1943–1946.

Thole, B.T., van der Laan, G., Fuggle, J.C., et al. (1985). 3d x-ray-
absorption line and the 3d94fn+1 multiplets of the lanthanides.
Physical Review B, 32, 5107–5118.

Thompson, A., Attwood, D., Gullikson, E.M., et al. (2001). X-Ray
Data Booklet, Lawrence Berkeley National Laboratory.

Tonner, B.P. and Harp, G.R. (1988). Photoelectron microscopy with
synchrotron radiation. The Review of Scientific Instruments, 59(6),
853–858.

Tonnerre, J.M. (1997). Magnetism and Synchrotron Radiation,
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Filmen auf GaAs(001), Diplom Thesis, Universität Würzburg.

Weigand, F. (2003). XANES und MEXAFS an Magnetischen
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APPENDIX

Owing to the absorption coefficient µ(E), which is a function
of the photon energy E, the intensity will be reduced as
a function of the effective path length s(x) = x/ cos α,
according to the Lambert–Beer’s Law

Iphot(x) = Iphot(0) · exp

[
−µ(E) · x

cos α

]
(A1)

The number of excited electrons per volume fraction is
now proportional to the local and depth- dependent intensity

of the photon beam and to the absorption coefficient itself,
taking into account the local excitation probability. To
quantify this we estimate the number of produced electrons,
including all secondary electrons, to be proportional to the
photon beam intensity. Despite the fact that the generation
of the secondary electrons is different as a function of
distance to the absorption site, we assume further that the
exited electron density, which is able to leave the sample, is
exponentially damped by secondary processes. The number
of electrons exited at the depth x at photon energy E is
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n(x, E) = k · Iphot(0) · exp

[
−µ(E)

cos α

]
· µ(E)

cos α
(A2)

The 1/cos at the right side is related to the intensity per
surface area present at depth x.

So the total number of electrons leaving could be now
determined by a simple integration over n(x, E) by a given
sample of thickness d

Ie−(x) =
∫ d

0
n(x, E) · dx = k · Iphot(0) · µ(E)

cos α

×
∫ d

0
exp

[−µ(E) · x

cos α

]
· exp

[−x

ξ

]
· dx (A3)

After integration this reduces to

Ie−(x) = k · Iphot(0) ·
µ(E)
cos α

µ(E)
cos α

+ 1
ξ

×
(

1 − exp

[
−

(
µ(E)

cos α
+ 1

ξ

)
· d

])
(A4)

Assuming a thick sample d >> 1/µ(E) this reduces to

Ie−(x) = k · Iphot(0) ·
µ(E)
cos α

µ(E)
cos α

+ 1
ξ

(A5)

If the photon absorption length is much larger compared
to the effective electron escape length, or, in other words,
µ(E)/ cos α << 1/ξ , then the description of the TEY current
reduces to

Ie−(x) = k · Iphot(0) · µ(E)

cos α
ξ (A6)

clearly demonstrating the nice proportionality between the
absorption and the observed TEY current. Now we want
to discuss what happens if the absorption of light is very
strong or the angle of incidence is more grazing. This is
mathematically reflected by the condition µ(E)/ cos α �
1/ξ . In this case the current reduces to

Ie−(x) = k · Iphot(0) ·
µ(E)

cos α

µ(E)

cos α

= k · Iphot(0) (A7)

This shows quite a dramatic effect which could be under-
stood in the following way. If the angle of incidence is quite
grazing, all the photons will be absorbed in a very thin top
layer close to the surface, because the effective way of trav-
eling through the sample is very large. If this effective length
is much longer compared to the absorption length, all pho-
tons will be absorbed at the top, no matter what exact energy
dependence is given by the absorption length. Therefore, the
energy dependent current signal is more or less a straight line.

In the range between those two extremes the measured TEY
signal exhibits damped high absorption lines, for example,
as present at the 2p absorption lines for the 3d TMs.

This resonance damping or saturation effect in the TEY
signal is enhanced for high absorption, as present at the 2p
(L2,3) or 3d (M4,5) absorption resonance lines, and for large
atomic density, as for pure 3d TM samples and/or at grazing
incidence. In contrast a reduced number of atoms per vol-
ume, for example, as present for the minority part in alloys
or in chalcogenides, give only small self-absorption effects.

Now we discuss the influence of self-absorption for
films with reduced thickness d. In this case, we can
expand the equation for the thickness dependent TEY signal
(equation (A4)) for small thickness d.

Ie−(x) = k · Iphot(0) ·
µ(E)

cos α

µ(E)

cos α
+ 1

ξ

×
(

1 − exp

[
−

(
µ(E)

cos α
+ 1

ξ

)
· d

])

= k · Iphot(0)

µ(E)

cos α
+ 1

ξ

· µ(E)

cos α

×
(

1 − 1 +
(

µ(E)

cos α
+ 1

ξ

)
· d + · · ·

)

= k · Iphot(0)

cos α
· µ(E) · d (A8)

This expansion is valid in the case of extreme thin
layers, where d << ξ and d << cos α/µ(E). It also reflects
the intuitive experimental result. The number of produced
electrons increases as more photons are absorbed in a thin
layer close to the surface and not in the substrate below.

To correct the saturation effect of reduced resonance line
absorption profiles, it is necessary to know the relevant
parameters, as the effective electron escape length ξ and the
energy dependent photon absorption profile µ(E). Unfortu-
nately, both parameters are not known, especially the absorp-
tion coefficient is unknown until the correction has been
performed.

An example of a corrected absorption profile, deduced
from the TEY signal by adapting the current profile before
and after the resonances to well-known absorption coeffi-
cients, is being shown later in Figure 50. In this case, the
measured absorption profile has been used to determine the
self-absorption corrected signal in an iterative way. This
could be done in the case of smooth and polished samples,
where the electron escape length can be determined by a
self-consistent saturation correction as the function of the
angle of incidence or film thickness (Goering, Gold, Lafkioti
and Schuetz, 2006; Gold, 2006; Hunter-Dunn et al., 1995;
Nakajima, Stöhr and Idzerda, 1999; Weber, 1998).
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1 INTRODUCTION

The dynamic behavior of magnetic systems with a nonuni-
form magnetization distribution is a complex issue. Individ-
ual magnetic structures, such as domains, domain walls, vor-
tices, and other noncollinear configurations each contribute
with their specific dynamic response to the overall picture.
This is particularly true in the ultrafast regime, that is, on
the nanosecond timescale and below. In order to disentangle
these contributions, suitable laterally resolving approaches
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by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

must be employed. Time-resolved photoemission microscopy
(TR-PEEM) has been developed into a versatile tool to probe
the dynamic response of magnetic systems with high spatial
resolution. Two complementary avenues are currently pur-
sued, each probing specific aspects. Soft X-ray pulses are
employed to address element-selective aspects of magnetiza-
tion dynamics down to the picosecond timescale. Photoex-
citation with ultrashort laser pulses provides access to the
spin dynamics even in the subpicosecond regime. With free-
electron laser (FEL) light sources coming on line in the near
future, these avenues may converge into a unique approach to
magnetodynamic phenomena, combining element and chem-
ical selectivity with a high lateral (∼10 nm) and time reso-
lution (∼100 fs).

1.1 Magnetism and photoemission microscopy

Magnetic thin films and nanostructures play a central role
for many areas in information technology. First of all, they
provide highly specialized functionalities in various elements
of a magnetic mass storage device, such as a hard disk. These
are still the first choice, if it comes to fast, high-capacity
random access memory (Lodder, 1998; Wang, 2005). With
the discovery of large magnetoresistive effects (Baibich
et al., 1988; Binasch, Grünberg, Saurenbach and Zinn, 1989;
Meservey and Tedrow, 1994; Moodera, Kinder, Wong and
Meservey, 1995) in thin-film systems at room temperature,
not only novel applications but also an entire new research
field emerged – spinelectronics or spintronics (Prinz, 1998;
Wolf et al., 2001). Spintronics operates at a crossover of
electronics and magnetism by treating the charge and the spin
degrees of freedom of electrons in transport processes on an
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equal footing. In this way one can hope to combine the best
of two worlds, such as the well-established charge control
in semiconductors with the nonvolatility of magnetic bits.
The first realization of such a spintronics device may be a
hybrid, the so-called magnetic random access memory, which
is currently in the test phase in many major microelectronics
companies (Freescale, 2006).

The breathtaking development in thin film and nanomag-
netism has been fostered significantly by the improvement
of analytical methods and approaches. In this context, syn-
chrotron radiation adopted a key role (see also Synchrotron
Radiation Techniques Based on X-ray Magnetic Circu-
lar Dichroism, Volume 3). It paved the path for detailed
spectroscopic studies of magnetic materials, which largely
shaped our understanding of the electronic foundation of
magnetism. Milestones along this way were the discov-
eries of X-ray magnetic dichroism with linearly (van der
Laan et al., 1986) and circularly polarized light (Schütz
et al., 1987) (Chen, Sette, Ma and Modesti, 1990). Mag-
netic x-ray linear (MXLD) and circular dichroism (MXCD)
provide a unique combination of magnetic sensitivity and ele-
ment selectivity, and they laid the foundation to the field of
x-ray magneto-optics. Sum rules enabled a quantitative deter-
mination of spin and orbital magnetic moments on the basis
of spectroscopic investigations (Thole, Carra, Sette and van
der Laan, 1992; Carra, Thole, Altarelli and Wang, 1993;
Thole and van der Laan, 1993) – at least within certain
limits.

Moreover, the access to synchrotron radiation and the
discovery of magnetic dichroism, in particular, led to the
revival of a very interesting full-field imaging technique –
photoelectron emission microscopy (PEEM) – unleashing its
full power. Originally invented by Brüche (1933, 1934),
photoemission microscopy remained for a long time a
specialized technique in surface science, despite some major
achievements in the electron-optical concept, such as the low-
energy electron microscope and its spin-polarized version
introduced by Bauer and Telieps (1988) and Altman et al.
(1991). With the increasing availability of brilliant soft X-ray
sources, however, PEEM was recognized as a technique
enabling a high lateral resolution mapping of surfaces
with chemical information. Imaging of magnetic domains
with threshold PEEM was performed as early as 1957
(Spivak, Dombrovskaia and Sedov, 1957) exploiting the
stray field emanating from a ferromagnet’s surface as a
contrast mechanism. Its enormous potential for magnetic
studies with synchrotron radiation was demonstrated by Stöhr
et al. (1993), Schneider et al. (1993), when first domain
imaging experiments of magnetic surfaces and thin films
were successfully performed. Since then, PEEM has matured
into a valuable tool to unravel the magnetic microstructure
in complex thin-film systems. Its unique features arise from

the fact that the choice of the light polarization permits
the study of ferro- and antiferromagnetic components of
a system (Stöhr et al., 1999; Nolting et al., 2000). In this
way, in-depth studies of antiferromagnetic systems and their
domain structures became available for the first time (Ohldag
et al., 2001).

1.2 Dynamical aspects of magnetism

Recently, the dynamical aspects of magnetism moved into
the focus of interest. From a technical viewpoint, the main
topic is the switching speed, that is, the time it takes to flip the
magnetization vector from one given orientation to another.
This speed issue is at the heart of magnetic data storage,
spintronics, and other areas involving high-frequency modu-
lations of a magnetic system. The faster a magnetic system
switches, the faster can be the data transfer rate in a memory
or the clock speed of a spintronic device. From a more funda-
mental point of view, however, one would like to understand
the physical processes and limitations governing the magne-
tization reversal, the origin of the damping mechanisms, and
the nature and types of the magnetic excitations appearing
in a given system. For these reasons, the recent years have
witnessed an increasing interest in fast and ultrafast dynamic
processes in magnetic systems (Hillebrands and Ounadjela,
2001, 2003, 2006). The relevant timescales dealt with in the
experimental studies range from a few nanoseconds down to
less than 100 fs, depending on the type of interaction trigger-
ing the dynamic response of the magnetic system. In addi-
tion to the ‘traditional’ way of controlling the magnetization
reversal by an external magnetic field, spin-polarized currents
(Myers et al., 1999) or even photons (Kimel et al., 2005)
have been successfully employed for this purpose recently.

In order to access the microscopic mechanisms and
processes, which determine the magnetization dynamics,
time-resolving magnetic imaging techniques are mandatory.
Most of our knowledge until now was obtained from Kerr
microscopy (Freeman and Hiebert, 2001), employing pulsed-
laser sources as a ‘clock’ to provide a time resolution in the
nanosecond and subnanosecond regime. Synchrotron radia-
tion also has a well-defined intrinsic time structure due to the
very way it is created (Wiedemann, 2003). The width of these
light pulses is usually in the picosecond range, whereas their
spacing can be adjusted to any value between 1 ns and 1 µs,
depending on the storage ring operation mode and filling
pattern. This provides an extremely versatile time-resolved
access to magnetization dynamics, both laterally integrated
and resolved, as has been demonstrated recently (Krasyuk
et al., 2003; Vogel et al., 2003). They allow access to phe-
nomena such as domain nucleation, magnetization rotation,
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or precessional switching, which may be described in con-
tinuum models, for example, in the Landau–Lifshitz–Gilbert
(LLG) framework.

With laser irradiation even shorter light pulses are avail-
able, providing a convenient probing of processes on the
100 fs timescale. Usually the wavelength of these light pulses
lies in the near infrared region and can be easily transposed
into the visible or ultraviolet regime by means of frequency
doubling or tripling schemes. This already allows the study
of the influence of electronic excitations on the magnetic
properties as well as the interactions between spin and elec-
tron systems and the lattice, that is, to probe the transfer of
energy and angular momentum (Rhie, Dürr and Eberhardt,
2003). An X-ray counterpart is expected to become avail-
able soon through new synchrotron radiation sources, the
so-called free-electron lasers (DESY, 2006). The perspective
for the future will thus be a combination of element selec-
tivity with femtosecond time resolution and the high lateral
resolution provided by PEEM.

This chapter addresses the new developments and achieve-
ments in magnetization and spin dynamics obtained with
the method of photoemission microscopy using picosecond
soft X-ray and femtosecond optical laser pulses. We are
well aware of the fact that there are many other interest-
ing imaging approaches to magnetization dynamics, such
as various types of Kerr microscopy or the techniques
of X-ray transmission microscopy, which became available
recently (for details see Synchrotron Radiation Techniques
Based on X-ray Magnetic Circular Dichroism, Volume 3).
Other methods, such as magnetic X-ray holography (Eisebitt
et al., 2004) are currently extended into the time regime.
These techniques are addressed in other parts of this book.
Here we focus onto a particular subset of experiments per-
formed with photoemission microscopy, in order to illustrate
the virtues and future potential of probing magnetization
dynamics with lateral resolution down to the nanometer
regime.

This contribution is organized as follows. In Section 2
we briefly review the various important timescales playing a
role in magnetism. In Section 3 we give a short account of
the technical details of time-resolving PEEM experiments.
Sections 4 and 5 are devoted to the experimental results
obtained on the picosecond and femtosecond timescales,
respectively and their discussion. In Section 6 we outline
the future development of the PEEM technique with respect
to time-resolved studies in and outside of magnetism.

2 TIMESCALES IN MAGNETISM

In the quasistatic limit, each magnetic system assumes a
spatial distribution of the magnetization, which is determined

by energy minimization principles. In very small particles,
that is, far below a size of 1 µm, one often finds a single
domain state, where the magnetization is uniformly oriented
along one direction throughout the entire particle, creating a
sizable magnetic stray field outside the particle. If the particle
becomes larger, the stray field increases up to the point
where the total energy of the system may be reduced at the
expense of exchange energy by the spontaneous formation
of domains, domain walls, and noncollinear magnetization
distributions (buckling, curling, etc.). The details of the
magnetic microstructure depend sensitively on the shape of
the magnetic particle and the material parameters, and so
does the transition from a single- to a multidomain state as a
function of particle size. As a result, one observes a large zoo
of magnetic domain structures in the quasistatic case (Hubert
and Schäfer, 1998) already. Understanding the formation
of these domain structures and their dynamic response to
external magnetic fields is at the heart of the technological
exploitation of magnetism. The experimental visualization
of magnetic structures and magnetization reversal processes
provides a major key to this understanding.

It is important to note that the relevant timescales in mag-
netism cover an extremely wide range of more than 20 orders
of magnitude (Figure 1) – determined by both applications
and fundamental processes. On the one end of the scale,
we find the retention time in magnetic data storage. As the
stored information consists essentially of a sequence of well-
defined magnetic domains, these magnetic domains have to
be extremely stable against thermal fluctuations. Therefore,
a value of 10–15 years (108 s) is usually considered desir-
able as retention time. On the other end of the timescale,
we are confronted with ultrafast energy and angular momen-
tum transfer processes in magnetic systems on a timescale of
10−14 s. These processes are related to nonequilibrium elec-
tron distributions and are held responsible for an extremely
fast decay of the magnetic order, for example, in the wake
of a highly energetic laser pulse. In the intermediate time
regime between 10−3 and 10−12 s we find a wealth of differ-
ent dynamical processes. These range from relatively slow
phenomena, such as magnetization creep and aftereffects, to
fast mechanisms, which determine the technological limits of
magnetization reversal such as domain nucleation, domain
wall propagation, and coherent rotation. It is often over-
looked that the ongoing increase in storage density is accom-
panied by a corresponding increase in the data transfer rates,
that is, the read/write speeds, slowly approaching the giga-
hertz regime. A similar development takes place in the field
of magnetic random access memories, where a duty cycle
of about 20 ns has already been demonstrated (Freescale,
2006).

The dynamic aspects of a magnetic system are often
described as magnetization dynamics or spin dynamics. It
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Figure 1. Timescales in magnetism and the associated microscopic processes determining the dynamic behavior of a magnetic system.

should be stated that this terminology contains more than
just a semantic difference, but is unfortunately not unambigu-
ous in use. In our view, the term magnetization dynamics
refers to the response of a magnetic continuum system,
that is, the spins or magnetic moments of the system are
strongly coupled by the exchange interaction, to a low-
energy excitation, for example, a magnetic field pulse or
a spin-polarized current pulse. From a theory point of
view, this situation can be rather successfully described in
small particles by means of macrospin models within the
LLG formalism (Miltat, Albuquerque and Thiaville, 2003).
This approach works also – with increased computational
efforts – for nonuniform magnetization distributions, such
as domains and domain walls. One of the main restric-
tions of this approach is that locally only the direction of
the magnetization �M is changing, but not its magnitude.
In other words, the absolute value of �M is always pre-
served in this continuum theory. This continuum picture
represents one limiting case and is capable of describing
the response of a magnetic system down to the picosecond
regime.

The other extreme situation is encountered when an exci-
tation acts directly on the electronic system first. In fact,
this can be readily achieved by strong laser pulses, which
lead to electronic transitions on the electronvolt scale. The
consequence is an electron distribution in strong nonequilib-
rium – at least on a timescale of several 10 fs. This nonequi-
librium state represents a formidable problem for the theoret-
ical treatment and strong efforts are currently devoted to its
solution. The physical mechanisms in this temporal regime

rather act on the individual electron and, in this way, on the
individual spin for that matter. It is thus justified to describe
this regime as ultrafast spin dynamics [1]. In subsequent
steps, the energy and angular momentum associated with the
electronic excitation is then transferred to the magnetic and
lattice subsystems. Most of these processes are already termi-
nated during the first few picoseconds. On a longer timescale,
however, the system still responds by means of precessional
motion of the magnetization. A first interesting attempt has
been made recently to connect the processes on the elec-
tronic timescale with the magnetodynamic timescale in the
100 ps regime (Koopmans, Ruigrok, Longa and de Jonge,
2005).

In Sections 4 and 5 we discuss results obtained for both
regimes.

3 PHOTOEMISSION ELECTRON
MICROSCOPY

3.1 Electron-optical layout

The electron-optical system of a standard photoemission
electron microscope allows a wide-field imaging of a surface
with electrons emitted from this surface. Its basic concept is
very similar to that of an optical immersion lens microscope
(Bauer and Telieps, 1988; Schönhense, 1999; Bauer, 2001a).
The PEEM consists of three main parts: (i) the objective
lens, (ii) contrast aperture, and (iii) projective lens system
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(Figure 2). The objective lens system is designed to col-
lect the emitted electrons up to large starting angles with
respect to the surface normal. For this purpose, a large elec-
trostatic extraction field (≈10 kV mm−2) of axial symmetry
�Eex(r, θ, z) is applied between the sample and the objective
lenses. This approach makes the sample an inherent part of
the electron-optical system giving rise to a variety of non-
magnetic contrast mechanisms, induced by the topography,
chemical or crystalline heterogeneity of a surface (Bauer
et al., 1996). As the distance between sample and immer-
sion lens objective is only about 2–3 mm, the light reaches
the sample surface usually at a flat angle of 15–25◦. A con-
trast aperture (size of 20–50 µm) in the backfocal plane of
the objective lens serves to select the proper trajectories and
thus to reduce the influence of lens aberrations. The smaller
the contrast aperture, the better the contrast and the lateral
resolution that can be obtained. The projective lens system
is used to magnify the image onto the image detector, con-
sisting of a multichannel plate and a phosphor screen, which
converts the image, so that it can be acquired by a CCD cam-
era. More sophisticated electron-optical configurations may
also involve electromagnetic instead of electrostatic lenses,
or they may include electrostatic energy filters to further
select the electron trajectories and improve the image quality
(Bauer, 2001b).

3.2 Magnetic contrast in PEEM

The information about the magnetic state of the sample is
contained in the spin polarization and the intensity distri-
butions of the electrons emitted from the sample. It can be
extracted by various magnetic contrast mechanisms, which
fall into two classes. The first class involves a direct analysis
of the electron spin polarization vector �P . The second class
exploits a difference in the intensity distributions �I – a
magnetic dichroism – for different geometrical configura-
tions of the spin quantization axes describing the system. The
physical mechanism underlying magnetic dichroism involves
the excitation of spin-polarized photoelectrons due to optical
orientation (Meier and Zakharchenya, 1984) into exchange
split, that is, spin-polarized final states. The magnitude of
the transition matrix element thus depends on the spin char-
acter of both photoelectron and final state. As a consequence,
the final state effectively serves as an internal spin detector,
translating the magnetic information carried by the spin into
an intensity signal.

The most prominent magnetic contrast mechanisms in
X-ray photoemission electron microscopy (XPEEM) exploit
soft X-ray magnetodichroic phenomena with circularly or lin-
early polarized soft X rays in the electron yield mode (Stöhr
and Anders, 2000 Schneider and Schönhense, 2002). This
holds for the imaging of both static and dynamic magneti-
zation configurations. With circularly polarized light (X-ray
magnetic circular dichroism, XMCD), the ferromagnetically
ordered state may be probed (Schütz et al., 1987), whereas
linearly polarized light gives access to the antiferromagneti-
cally ordered state via magnetic linear dichroism (X-ray mag-
netic linear dichroism, XMLD) (van der Laan et al., 1986).
This unique feature of XPEEM permits the investigation of
composite magnetic systems, comprising ferro- and antifer-
romagnetic components (Nolting et al., 2000; Kuch et al.,
2006).

Although X-ray magnetic dichroism is sometimes referred
to as the X-ray counterpart of the Kerr effect, there are
important differences. First, the magnetic dichroism directly
results in an intensity change, whereas the polar and lon-
gitudinal Kerr effects lead to polarization changes in the
reflected light. In addition, the X-ray dichroic signal may
be rather large (e.g., ∼20% intensity change at the Fe L3

absorption with XMCD). Thus the magnetic microstructure
may give rise to a contrast comparable with topographically
induced contrast levels. In order to enhance the magnetic
contrast, often two images taken at opposite light helicity
are subtracted, thereby eliminating the nonmagnetic contrast.
The XPEEM approach allows also microspectroscopy stud-
ies and thus gives access to quantitative magnetic parameters,
such as the spin and orbital magnetic moments via XMCD
sum rules (Thole, Carra, Sette and van der Laan, 1992;



6 Time and space resolved magnetization dynamics

Carra, Thole, Altarelli and Wang, 1993; Thole and van der
Laan, 1993; Goering, 2005; Goering et al., 2005), or the
magnetocrystalline anisotropy energy via XMLD analyses
(van der Laan, 1999; Dhesi, van der Laan, Dudzik and Shick,
2001). In metallic systems the information depth is about
2–3 nm. The lateral resolution of the present instruments with
respect to soft X-ray-based magnetic imaging is of the order
of 50 nm and basically limited by the rather large energy
spread of the photoelectrons entering the PEEM. A much
more narrow energy spread can be obtained in threshold
photoemission, pushing the lateral resolution down to less
than 20 nm. Also for threshold photoemission conditions
a magnetodichroic contrast mechanism has been reported
(Marx, Elmers and Schönhense, 2000), but has not yet found
widespread use.

A certain complication arises from the fact that the PEEM
operates with electrons, which can easily be deflected in
external magnetic fields because of the Lorentz force. On the
one hand, this circumstance severely limits the application
of a photoemission microscope for the investigation of mag-
netic structures in an applied magnetic field, as the imaging
capabilities are impaired. On the other hand, the sensitiv-
ity to magnetic fields can be turned into a virtue. A careful
analysis of the electron trajectory changes can yield detailed
information about the magnetic field distribution around and
above the sample. This can be used, for example, to quanti-
tatively determine the stray fields at the edges of microstruc-
tured magnetic elements (Nepijko, Sedov and Schönhense,
2000). In certain cases of hard magnetic materials or per-
manent magnets with their large stray fields, this Lorentz
force deflection can even be used to image the magnetic
domain distribution of the surface (Mundschau et al., 1996),
although only with moderate lateral resolution. We should
also recall that the Lorentz force-related contrast formed the
basis for the first ever observation of magnetic domains in a
photoelectron emission microscope (Spivak, Dombrovskaia
and Sedov, 1957).

When the photoelectrons are excited by ultrashort pulses
of a Ti:sapphire laser system operating typically at a photon
energy of 1.5 or 3.1 eV, frequency multiplication schemes or
multiphoton excitation processes must be involved to over-
come the work function. In this case, the magnetic sensitivity
is achieved by explicitly analyzing the photoelectron spin
polarization �P . The spin polarization analysis can be imple-
mented into a PEEM as shown schematically in Figure 3
(Dürr, Kronast and Eberhardt, 2001). In addition to imaging
the lateral photoelectron distribution, the photoelectron beam
can be deflected into a spin detector, where its spin polariza-
tion is quantified via spin-dependent scattering of low-energy
electrons from a W(100) single crystal surface (Kirschner,
1985). The normalized intensity difference between conju-
gate diffraction beams (marked ‘1’ and ‘2’ in Figure 3) – the
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Figure 3. Schematic diagram of the spin-polarized photoemission
electron microscope.

scattering asymmetry – is a direct measure of the magnitude
of the component of �P perpendicular to the plane connecting
the diffracted beams. Thus, the perpendicular component and
one in-plane component of the spin polarization vector with
respect to the sample surface can be measured simultane-
ously. To retain lateral resolution in spin-resolved measure-
ments an adjustable iris aperture mounted in the first image
plane of the PEEM is used to define the width of the transmit-
ted photoelectron beam, that is, only photoelectrons emitted
from a selected sample area are transmitted into the spin
detector, thereby carrying local spin polarization information.

3.3 Time resolution in microscopy experiments

Time-resolved studies – or more specifically time-resolved
magnetic imaging – may adopt one of the following two
procedures. In the one-shot approach the entire image is
acquired during a single pulse-wise illumination of the sam-
ple. The result represents the momentary magnetic state of
the sample and is also capable of capturing nonperiodic
and stochastic events, such as fluctuations in the vicinity
of phase transitions, statistical switching events, or traveling
spin waves. In order to be able to perform a one-shot imag-
ing, however, one needs a very bright illumination source
(photons or electrons) and a very fast and sensitive image
detector. This combination is currently not yet available, and
high hopes are set on the upcoming FELs and the associated
instrument development.

At present, most of the time-resolved magnetic imag-
ing experiments follow a stroboscopic imaging scheme. In
this case, one repeatedly records images of the magnetic
system – typically 106 –108 cycles – and adds them up until
a sufficient signal-to-noise ratio is achieved. It is obvious
that this procedure allows one to only observe the repeatable
events in the magnetization reversal process, that is, those
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processes that occur during each cycle at the same location
of the sample. Fluctuations and statistical switching events
will be averaged out. In practice, this requires the magnetic
system to be always in the same state when the data are
taken. In other words, one needs to carefully control the
momentary magnetic configuration of the sample of interest
during the experiment by an external magnetic field or by
other means. These considerations hold for experiments in
the nano-, pico-, and femtosecond regimes.

A photoemission microscopy experiment dedicated to the
investigation of time-resolved magnetic processes must thus
include two further major ingredients: (i) a time-dependent
excitation of the magnetic system and (ii) a time-resolved
data acquisition scheme. The first one is usually achieved by
short magnetic field pulses or laser light pulses, whereas the
second one involves sophisticated synchronization schemes
and/or time-resolving imaging detectors.

3.4 Short magnetic field pulses

In order to map the time evolution of the magnetization, the
magnetic system is most conveniently ‘excited’ by an exter-
nal magnetic field – sometimes called Oersted field – with a
well-defined time structure. In most cases this time structure
is either smoothly periodic (sine wave excitation) or con-
sists of a periodic sequence of short pulses (pulse excitation)
provided by a signal generator. Well up into the megahertz
regime, these time-dependent magnetic fields can be gener-
ated by means of coil/yoke systems similar to the write heads
used in present hard disk drives. However, the inductivity of
these system limits the rise time of the magnetic field to a
few 10 ns.

For faster rise times of the magnetic field pulse one has
to resort to alternative approaches. An appropriate way to
overcome the inductivity problem is the use of planar thin-
film structures as high-frequency transfer lines. These are
prepared on insulating substrates and can be appropriately
designed for high-frequency applications. The structures are
usually defined by optical or electron beam lithography
and etching or lift-off procedures in Cu or Au films.
The key to a proper control of the time dependence of
the magnetic field, that is, avoiding unwanted reflections
or damping of the current signal, is a proper impedance
matching of the thin-film structure to the current source.
Two principal geometries of these thin-film structures are
most often used: microcoils and microstrip lines. The choice
determines the direction of the magnetic field �H with respect
to the sample. If the thin-film structure and the transfer
lines are properly designed taking into account geometry
and material parameters, the limiting factor of the rise
time of the magnetic field is the pulse generator. In many

applications conventional electronic circuits are used to
create short current pulses. Commercial pulse generators may
provide current pulses with a minimum of about 500 ps
pulse width and less than 100 ps rise time. The use of
these microcoil or -strip lines requires some lithographic
efforts and the structures must be adapted to the specific
environment in a photoemission microscope. At present,
however, this has proved to be a very successful approach,
yielding many interesting results on the magnetodynamics
in the nanosecond and subnanosecond regime (Schönhense,
Elmers, Nepijko and Schneider, 2006).

If still faster current pulses are required, one has to resort
to other means, for example, to photoconductive switches,
for example, Auston switches (Keil, Gerritsen, Haverkort
and Wolter, 1995) or Schottky barrier approaches (Acremann
et al., 2001). In these cases, the excitation involves a very
short laser pulse (e.g., from a Ti:sapphire laser) and enables
rise times of the order of a few picoseconds. A detailed
control of the pulse shape may be achieved by combining
two Auston switch circuits with opposite current polarities,
one of which is illuminated with a short time delay with
respect to the other (Gerrits et al., 2001). Because of the
longer recombination time of the charge carriers, the falling
edges of the two current pulses are rather similar on the
timescale and very closely compensate each other. In this
way, even subpicosecond-width electrical pulses may be
generated (Keil, Gerritsen, Haverkort and Wolter, 1995).

3.5 Pulsed light sources

In the visible range of light, lasers are the instruments of
choice to generate short light pulses. Most widely employed
are solid-state lasers, such as Nd-YAG systems, which
deliver pulses in the 10 ps range. Also fast pulsed-laser
diodes may reach into this regime. The repetition frequencies
are of the order of several 10 MHz. These light sources
are used in Kerr microscopy (Chumakov et al., 2005) or
to trigger optical switches in PEEM (Raabe et al., 2005).
Still shorter pulses of the order of 30–100 fs are obtained,
if these picosecond pulses are used to pump a mode-
locked Ti:sapphire oscillator. The resulting femtosecond
pulses are emitted with a wavelength of about 800 nm at
a repetition frequency of typically around 80 MHz. The
majority of the ultrafast time-resolved experiments in the
laboratory are carried out with these light sources. The
ongoing development of laser sources, however, has already
demonstrated the feasibility of creating pulses of several
hundred attoseconds width, even at photon energies as high
as hν = 100 eV (Hentschel et al., 2001).

For studies with chemical selectivity, the soft X-ray
range (hν = 50–1500 eV) is of particular interest. In third
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generation synchrotron radiation laboratories, highly brilliant
beams of this light are generated by means of insertion
devices, so-called undulators. Depending on the undulator
type, the radiation may be linearly or elliptically polarized
(Wiedemann, 2003). The emission of synchrotron radiation
dissipates energy from the electrons in the storage ring.
In order to compensate this energy loss the electrons are
accelerated after each cycle in a microwave cavity. As a
consequence, the electrons are not distributed evenly along
the orbit, but are grouped into packets (bunches), with a
separation determined by the microwave frequency. Since
synchrotron radiation is generated only at the moment when
an electron bunch passes through a bending magnet or
undulator, the bunch structure results in a natural time
structure of the synchrotron radiation. Depending on the
operation mode of the storage ring, that is, the bunch pattern
in the ring, the light pulse width ranges between �t =
1–100 ps, at repetition frequencies from �T = 2 ns–1 µs
(Table 1).

Synchrotron radiation with an even shorter pulse width
in the 100 fs range may become available soon in a novel
type of facility, the FEL (DESY, 2006). The FEL comprises
a linear accelerator, which feeds the relativistic electrons
into a long undulator. At both ends of the undulator,
optical mirrors are placed to form an optical resonator
on the undulator axis. The synchrotron radiation generated
in the undulator is reflected between the mirrors and can
thus more efficiently interact with the electron bunches
passing through the undulator. This interaction has two
consequences. First, energy is directly transferred from the
electrons into the electromagnetic wave field in the resonator.
Second, the interaction also modulates the electron density
in a bunch along its direction of motion, that is, the bunch
will be segmented into short microbunches, each of which
generates radiation with a pulse width in the subpicosecond
regime. A more advanced concept omits the optical resonator
and instead employs two undulators – a radiator and an
amplifier. The light created in the radiator is fed into
the amplifier to enhance the interaction between light and

Table 1. Pulse train characteristics of various synchrotron and
laser light sources.

Light source Pulse width (ps) Repetition time (ns)

BESSY multibunch 30 2
BESSY single bunch 100 805
BESSY low alpha 3 2 or 805
ESRF multibunch 20 2.8
ESRF 16 bunch 60 176
YAG laser 15 44
Ti:Sapphire 0.01–0.1 12
FEL 0.1 xx

electrons. This approach is called self-amplified spontaneous
emission and yields a much better control of the light pulse
width. Pulses as short as 50 fs have already been generated
in this mode of operation (Ayvazyan et al., 2006).

The combination of variable photon energy and light
polarization, high brilliance, and well-defined time structure
renders synchrotron radiation a unique tool to study static
and dynamic aspects of magnetism. It thus forms the basis
of the experiments described in Section 3.

3.6 Time-resolving image detection

In the operation modes described in the preceding text, the
time resolution in the PEEM is essentially determined by the
width of the photon pulse. Moreover, the repetition rate in the
experiment also is determined by the timing characteristics
of the light source, as each light pulse will contribute to the
measured signal. In order to allow for more flexible timing
schemes without having to change the bunch pattern in the
ring, it is advantageous to introduce some time-resolution
capability in the PEEM itself. This can be achieved, for
example, by using gated-detector schemes. In some cases,
gating the PEEM image detector can be necessary to improve
the signal-to-noise ratio and to select the proper events. In
the so-called camshaft mode operation provided by several
synchrotron radiation facilities, the bunch pattern consists of
a multibunch sequence covering, say, about three quarters of
the ring circumference. The fourth quarter which can cover a
time window of up to 200 ns is empty, except for a singular
highly filled bunch (‘cam’) placed somewhere in the center
of this empty region. By ramping the operating voltage of
the PEEM image converter (multichannel plate) up only in
the vicinity of the cam pulse, the image detector will capture
information solely related to the cam pulse, that is, the PEEM
is operated in an effectively single-bunch mode (Raabe et al.,
2005).

A complementary approach involves image detectors with
intrinsic time resolution, such as, for example, a delay line
detector (DLD) (Oelsner et al., 2001). The DLD measures
the position of individual counting events in the image plane
by means of a crossed-wire system with a time resolution
of about 50 ps. This feature can be used to establish a
particular ‘interleave’ operating mode of the PEEM, meaning
that only every nth light pulse is used to trigger the
magnetic excitation (e.g., field pulse), but a time sequence
of n − 1 images is recorded after each excitation, mapping
the response of the system at regular time intervals given
by the detector. In this way, the detection efficiency during
the time-resolved experiments can be considerably enhanced.
At present, however, the maximum counting rates of these
DLD systems are still limited to a few megahertz, rendering
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them appropriate only for very specialized applications. More
on the implementation and use of time-resolving imaging
detectors in PEEM, in particular, with respect to time-of-
flight applications may be found in a recent review article
(Schönhense, Elmers, Nepijko and Schneider, 2006).

3.7 Ultrafast timing configurations

The achievable temporal resolution in stroboscopic time-
resolved imaging experiments is given by the duration
of pump and probe pulses as well as by the temporal
jitter between them. Aiming for picosecond resolution, it is
possible to electronically synchronize the sources for pump
and probe pulses. The resulting jitter may be of the order of a
few up to 10 ps. However, when utilizing subpicosecond laser
pulses down to a few femtoseconds, eliminating the jitter is
imperative. This is conveniently achieved by generating both
pump and probe pulses from the same source, which is then
usually a femtosecond laser system. Using this approach,
even experiments involving magnetic field pulses generated
via an Auston switch can easily reach a temporal resolution
of less than 100 fs (Gerrits et al., 2001).

A schematic overview of a typical full-optical pump-probe
setup is displayed in Figure 4 (Link, Dürr and Eberhardt,
2001). After the first frequency conversion stage, a beam

splitter generates two pulses. The reflected part, which
contains 70% of the beam intensity is again frequency
converted producing UV photons of around 4.5 or 6 eV
and serves as the pump pulse. The transmitted part runs
through an optical delay stage (retroreflector) and serves as
probe pulse. Both pulses are focused onto the sample and
are brought into spatial overlap. By physically moving the
retroreflector, both pulses can be delayed in time with respect
to each other. A retroreflector shift of 1 µm corresponds to a
delay of 6.7 fs, so that precise time-resolved measurements
are possible. In such a setup each pump pulse is inherently
synchronized to a probe pulse. Consequently the time-
resolved signal detection requires no special adjustment of
the PEEM data acquisition compared to the time averaging
mode.

4 MAGNETIZATION DYNAMICS
INDUCED BY SHORT MAGNETIC
FIELD PULSES

In the following, we will discuss some selected results from
recent spatiotemporal investigations of the magnetization
reversal and magnetodynamics in microstructured elements.
These results illustrate that the detailed dynamic behavior of
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Figure 4. Schematic diagram of a femtosecond laser pump-probe setup (Link, Dürr and Eberhardt, 2001). The infrared femtosecond laser
radiation is frequency doubled and split into two parts. The reflected light is again frequency converted while the other part could be
delayed in time using a retroreflector. Both beams are focused onto the same spot of the sample mounted in a PEEM. (Reproduced from
Link et al., 2001, with permission from IOP Publishing Ltd.  2001.)
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the magnetization depends in a complicated manner not only
on the magnetic field conditions but also on the geometri-
cal (shape and thickness) and intrinsic magnetic properties
(anisotropy and damping) of the elements. Moreover, in the
ground state these elements usually exhibit an inhomoge-
neous magnetization distribution, which may be described
by a set of micromagnetic entities of different topology and
dimensionality, such as domains, domain walls, vortices,
Bloch lines, and so on. Each of these magnetic structures
contributes with its individual response on a characteristic
timescale to the overall magnetodynamic response. A more
extensive description of these phenomena may be found in
Schönhense, Elmers, Nepijko and Schneider (2006).

For educational purposes it may be useful to distinguish
between small-angle excitations, which are related to spin
waves and dynamic magnetization modes, and large-angle
motions (θ > 90◦) of the local magnetization vector, which
are related to magnetization reversal events. By a proper
choice of the experimental conditions, a certain type of
excitations can be specifically prepared for studies. It should
be kept in mind, however, that in a general experimental
situation, both small- and large-angle excitations of the
magnetization are present and will be interacting in a
complex pattern.

4.1 Incoherent versus coherent magnetization
rotation

In this section we deal with the most prominent configuration
in a magnetodynamic XPEEM experiment. The magnetic
field pulse Hp(t) is applied within the plane of a film with
in-plane magnetization. If the field pulse is strong enough,
it can initiate large-angle precessions leading to a partial or
complete magnetization reversal. Of particular importance
for the dynamic behavior is the initial state of the magnetic
system, that is, whether the system starts from a magnetically
saturated or a domain state. In the following, we will
concentrate on experiments starting from an initial state with
a well-defined domain configuration. This approach differs
from most magneto-optic studies, in which the initial state is
usually magnetically saturated (Chumakov et al., 2005).

We consider a set of relatively large rectangular elements
(size 20 × 80 µm2 and 80 × 80 µm2) of 30-nm-thick permal-
loy. These elements are placed on a coplanar waveguide
similar to the one discussed in Section 3.4. The ground state
magnetic configuration (minimal magnetic stray field) takes
a characteristic Landau domain pattern (Hubert and Schäfer,
1998), consisting of a geometrical arrangement of triangular
and diamond-shaped domains, which closes the magnetic flux
within the structure. The domains are separated by 90◦ Néel
walls at this film thickness. At the intersection of two domain

walls in the inner part of the sample we find magnetic vor-
tices, which will be discussed in more detail in Section 4.4.
This domain pattern is also observed in the leftmost image
in Figure 5), corresponding to a time �t = −1.5 ns, that is,
before the onset of the field pulse. The magnetic contrast in
these domain images arises from MXCD at the Ni L3 absorp-
tion edges. The arrows in the image mark the direction of
the local magnetization �M , as reconstructed from the gray
level in the domain on the basis of the angular dependence
of the MXCD effect. As the geometry of the experiment is
fixed, we are most sensitive to the magnetization directions
pointing to the right and to the left, which result in a bright
and dark contrast level, respectively.

The image sequence in Figure 5 displays time slices of the
response of the magnetic system during a field pulse of 10 ns
width, the time profile of which is given in the figure. The
time resolution in this experiment is mainly determined by
the width of light pulse, that is, δt � 60 ps (see Table 1). The
time slices have been recorded at intervals of �t = 125 ps
being essentially determined by the minimum increment of
the delay generator. The synchronization between magnetic
field pulse and synchrotron radiation pulse was achieved by
means of a clock signal derived from the frequency of the
microwaves used to accelerate the electrons in the storage
ring. The solid line in Figure 5 maps the pulse profile at
the output of a commercial pulse generator used to drive
the coplanar waveguide. The second profile (circles) reflects
the pulse shape directly on the waveguide and has been
extracted by means of a PEEM-specific procedure making
use of the fact that the current pulse on the waveguide is
accompanied by an electric-field pulse �Ep(t) (for details, see
Krasyuk et al., 2003). As we can see, both the rising and
the falling edge of the pulse are somewhat broadened as
compared to the generator output, but the field pulse still has
a well-defined plateau. It takes about 2 ns to reach this plateau
value, the limiting factor basically being the capacitance of
the waveguide.

Two important aspects must be considered. First, the
XPEEM experiment does not involve external magnetic
guiding fields, in contrast to what is customary in optical
techniques (Freeman, Hiebert and Stankiewicz, 1998). This
means that the initial Landau domain pattern can only be
restored by the intrinsic anisotropies (dipolar and magne-
tocrystalline anisotropy) in the microstructure. Second, the
measurements have been carried out at a repetition rate of
5.7 MHz, giving the system 176 ns time to relax in between
magnetic field pulses. In this stroboscopic experiment, each
image is formed by averaging over about 108 individual
pulse events. The sharpness of the features in the image
proves the Landau pattern to be a stable initial state, into
which the domain structure reproducibly relaxes back after
each field pulse. This reproducibility is a crucial requirement
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Figure 5. Time evolution of the magnetic domains in a set of rectangular permalloy microstructures (smaller one 20 × 80 µm2) at the
rising edge (left, I), plateau region (top, II), and falling edge of a magnetic field pulse (right, III). Pulse profiles (center) measured at the
pulser output (- - - - ) and on the coplanar waveguide (◦). The time stamps refer to the onset of the pulse and arrows give the direction of
the local magnetization vector �M and the pulse field �Hp. (Taken from Schneider et al., 2006.)

in these time-resolved XPEEM experiments. Otherwise, a
sampling of different magnetic configurations in subsequent
pulse cycles would wash out the information in the averaged
image.

During the magnetic field pulse, the transient magnetic
field �Hp(t) is oriented upwards in the images in Figure 5.
When the pulse sets in (region I) we start to see the first
changes in the magnetization distribution – the formation
of a network of fine stripes in those domains, where �M
in the initial state is oriented opposite to the pulse field
�Hp. Interestingly, this is a configuration in which no or

little torque τ ∼ �M × �Hp(t) on the magnetization is exerted.
These stripes become more pronounced with increasing �Hp

(�t = 0.25 ns) up to the pulse plateau (region II). From the
dark/bright contrast in the stripes we can directly conclude
that they must have large components of �M perpendicular
to the field �Hp, which are pointing either to the left or the
right. This behavior is known to be due to an incoherent
magnetization rotation (Freeman, Hiebert and Stankiewicz,
1998; Hiebert et al., 2002). This implies that the initial
domain breaks up into smaller regions, each of which
rotates incoherently in the external field, thereby forming
this transient stripe pattern. The reason for the incoherent
rotation is a limited domain wall velocity (typically several
100 ms−1), prohibiting a response of the domain structure
to the fast pulse by simple domain wall motion. It is
remarkable, that these fine stripes are apparently formed
always at the same location on the sample, otherwise they

would not show up as sharp features in the images. This
already suggests that the formation mechanism may involve
a network of nucleation sites provided, for example, by
magnetic inhomogeneities such as magnetization ripple. In
the latter case, the local magnetization changes its direction
slightly from point to point because of laterally varying
magnetic anisotropies. We note that the other domains are
not yet affected significantly. In particular, those domains
with �M ‖ �Hp(t) do not exhibit the stripe pattern.

In region II we can discern further details of the remag-
netization process. The previously sharp boundaries between
the triangular domains with �M ‖ �Hp and �M ⊥ �Hp appear to
gradually wash out when moving from the corner of the sam-
ple toward the vortex position (�t = 1 ns). This can be seen
more clearly in Figure 6(b), which displays the upper end of
the narrow rectangle in Figure 5 imaged with higher magnifi-
cation. The reconstructed magnetization distribution is given
in Figure 6(e–h), the arrows marking the in-plane direction
of the local magnetization vector. From there we can see
that the entire area that was initially magnetized opposite to
the pulse field is subject to incoherent rotation processes. In
particular, the vortices remain at the same positions.

The transient domain walls bounding the incoherently
rotated areas resemble to some extent so-called cross-tie
walls. This has been noticed in comparable Kerr effect
experiments also (Neudert et al., 2005). However, there is
a distinct difference from the static cross-tie walls, which
are well known for thin-film elements Hubert and Schäfer
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Figure 6. Time evolution of the magnetic domains at the upper end
of the rectangular 20 × 80 µ2m permalloy microstructure at �t =
0 ns (a), �t = 1.75 ns (b), �t = 7.875 ns (c), and �t = 10.875 ns
(d). The panels (e–h) display the reconstructed magnetization
distribution, reflecting the evolution of the triangular domain with
‘up’ magnetization into a ‘W’-shaped structure via magnetization
rotation and formation of vortices (gray circles). (Reproduced from
Schneider et al., 2004, with permission from the American Physical
Society.  2004.)

(1998) and Kronmüller and Hertel (2000). In the static case,
the 90◦ walls, which intersect a classic 180◦ Néel wall to
form the cross-tie configuration extend to both sides of the
180◦ wall, that is, the configuration is somehow symmetric
with respect to the 180◦ wall. In the dynamic case described
in Figures 5 and 6, the situation is much more asymmetric.
The two 90◦ Néel walls separate the coherently rotated region
of the left-hand side from the incoherently rotated region on
the right-hand side. Therefore, a direct comparison of these
wall types in the static and dynamic cases should be made
with great care.

The gradual contrast change in the transition regions
between �M ‖ �Hp and �M ⊥ �Hp can be understood as a
coherent rotation of �M . This behavior is due to the fact
that for the situation �M ⊥ �Hp the torque acting on the
magnetization is highest, and the system can easily respond
by simply rotating �M into the direction of the external
field. As a consequence, the triangular domains with �M ‖ �Hp

grow on the expense of the neighboring ones with �M ⊥ �Hp

(�t = 2 ns). Further studies show that the coherent rotation
process starts with the onset of the field pulse and is thus – as
expected – faster than the incoherent rotation events. As
a consequence, the domain wall, which is still clearly
visible, is displaced at very high speeds of up to 1000 ms−1

(Schönhense, Elmers, Nepijko and Schneider, 2006). We also
note that these coherently rotated regions narrow down, if we
move from the position of the central vortex to the edge of the

microstructure, giving rise to a triangular shape of this region
(Figure 6b). This is due to the fact that the domain wall is
more strongly pinned in the corner of the microstructure. As
a general feature of this multidomain state, the response is
obviously determined by a competition between coherent and
incoherent rotation processes, depending on the orientation
of the local magnetization with respect to the pulse field �Hp.

It is instructive to compare the experimental findings up to
this point to the known response of the Landau pattern to a
slowly varying field. In this case, the magnetization reversal
takes place via domain wall displacement. Upon applying
the field, the domain with �M ‖ �H grows on the expense of
the other domains (Figure 6i). In particular, the position of
the vortex moves, in the given example toward the right
edge of the sample. As a result the domain in which �M
is oriented antiparallel to the applied field shrinks. This
behavior is in clear contrast to our observations and thus
cannot describe the highly dynamic situation created by a
fast field pulse.

The interplay between coherently and incoherently rotated
regions also has another interesting consequence. As the field
strength increases, the central vortex retains its position, but
the locations where the domain walls meet the incoherently
rotated area shift away from the central vortex (�t = 4 ns in
Figure 5), thereby creating two new vortices. In this course,
the domains with �M ‖ �Hp take the shape of a ‘W’ lying on its
side, with the new vortices moving along the long legs of the
‘W’. Again, this is seen more clearly in the magnified image
in Figure 6(c) and the corresponding graphical reconstruction
(Figure 6g). The position of the vortices is marked by the
grey circles in Figure 6(e–g).

The microscopic mechanisms determining the magnetiza-
tion dynamics can also be sensitively influenced by static
fields. XPEEM experiments to this issue are still missing.
However, Kerr microscopy studies on comparable samples
have demonstrated that even a small additional magnetic
field – in the transverse direction in this case – may sig-
nificantly modify the response of the system (Choi et al.,
2001a,b).

4.2 Blocked relaxation

Finally, in region III of Figure 5 the pulse field drops
again and the magnetic system is allowed to relax. This
relaxation, however, also exhibits a peculiar behavior. First,
we note that the stripe pattern almost instantaneously expands
into the domains with �M ‖ �Hp as soon as the field drops
(�t = 8 ns). Although it may be tempting to invoke domain
wall motion as the driving mechanism, this hypothesis must
be dismissed because of the limited domain wall velocity.
A faster mechanism must involve rotational processes and
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can be understood in the following way. On the rather
long plateau of the field pulse, the magnetic system has
sufficient time to assume a new quasiequilibrium state, which
is determined by an effective field Heff including the pulse
field. On the trailing edge of the pulse, Heff is reduced
and this change �Heff acts onto the system like a field
pulse into the opposite direction. For the ‘W’-shaped area,
in particular, this means �Heff is directed opposite to the
local magnetization direction. As a consequence, incoherent
rotation events start to take place and can form a stripelike
domain structure containing small- and large-angle domain
walls in this region. It is thus a local magnetization rotation
rather than a domain wall motion that leads to the ‘expansion’
of the stripe pattern.

After this fast initial change, however, the magnetization
configuration remains rather stable. Only marginal changes
appear in the images between �t = 8 and 15 ns. This means
that the relaxation of the ‘excited’ magnetic state, that is, the
decay of the stripelike phase, takes place on a significantly
longer timescale (>10 ns) than its buildup (�1 ns). Even
after �t = 20 ns we did not observe a full relaxation of the
system. The stability of the stripe domain phase is another
consequence of the limited domain wall velocity. In this
context, we would like to recall that in the absence of the
pulse field, the restoring force that drives the system back
to the initial state results only from the demagnetizing field
and the anisotropy. Apparently, this restoring force is not
strong enough to initiate rotation processes to resolve the
domain walls locally. Instead, the walls are removed from the
system via domain wall displacement. If there is a pulse field
acting in the opposite direction, however, the incoherently
rotated regions may be restored much faster. This has been
observed in experiments with bipolar pulses (Schneider et al.,
2004).

4.3 Transient stray fields

The PEEM is also ideally suited to investigate the issue of
transient magnetic stray fields. As stated above, the Landau
domain pattern forming the initial state in the experiment
(Figure 5) is a consequence of energy minimization. If we
inspect the incoherently rotated regions close to the sample
edge, we note, however, that this magnetization distribution
causes many magnetic poles at the sample edge. This can be
seen more clearly at the right-hand side of the structure in
Figure 6(h), which displays the graphical reconstruction of
the magnetization distribution at �t ≈ 11 ns after the field
pulse onset. These magnetic poles should generate a sizable
stray field outside the permalloy microstructure. Considering
the fact that the XPEEM image is built up by low-energy
electrons, a question arises as to whether this stray field

has some influence on the image. Recalling our discussion
of the Lorentz force-related contrast in Section 3.2, we can
use similar arguments in the present case. Let us assume
the sample edge to be ideally straight (Figure 7a). In the
absence of a magnetic stray field, the image of the edge will
also show a straight line. In the presence of a stray field, the
electron trajectories starting in the vicinity of the sample edge
and passing through the stray field region will be changed
by the Lorentz force, and the image of a straight edge will
appear rather as a ‘jagged’ line. In a realistic sample, this
interaction will thus lead to a stray field-induced distortion
in the image of the object. Knowing the imaging parameters
of the microscope and the exact shape of the object, we
can quantitatively determine the stray field (Nepijko, Sedov
and Schönhense, 2000). As an example, we take the image
recorded at �t ≈ 11 ns (Figure 7b). In order to visualize the
distortion of the sample edge in the image, we have magnified
the sample edge in the horizontal direction. The straight edge
is imaged into the wavy line A �−→ B. From this line we can
extract a quantitative value of the trajectory deflection Sy(x)

(Figure 7c), which serves as an input for the calculation of
the stray field component Bx(x) along the sample edge. As
can be seen in Figure 7(d), the stray field at the edge can
easily reach values of Bx > 100 mT. This result confirms
the expectation that the energy minimization may be violated
on nanosecond timescales, because it is less important than
torque arguments.

4.4 Vortex-core rotation

A particularly interesting structure that occurs in thin films
is a magnetic vortex. A vortex is an almost singular point
in the magnetization distribution. It can be most clearly
observed in microstructured systems with an in-plane magne-
tization. The geometrical shape of the microstructure gives
rise to a demagnetizing field, which forces the magnetiza-
tion into a closed path around the center of the structure.
In the center of this magnetization swirl or vortex, how-
ever, the magnetization vector turns out of the film plane
despite the in-plane magnetic anisotropy in order to meet the
constraint | �M| = const. and avoid magnetic frustration. This
vortex-core structure and particularly the out-of-plane mag-
netization �Mz have been experimentally confirmed first by
magnetic force microscopy studies (Shinjo et al., 2000). Fur-
ther details on the internal magnetic structure of the vortex
region were revealed by spin-polarized scanning tunnelling
microscopy (STM) (Wachowiak et al., 2002). With respect to
the film plane, for a given sense of rotation of the vortex, two
energetically equivalent configurations are possible, with �Mz

pointing away from or toward the surface. These two config-
urations differ only by their ‘handedness’. This handedness
will be of importance for the dynamical behavior.
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Figure 7. Image distortion due to magnetic stray fields at the sample edge. (a) Change of the electron trajectories due to the Lorentz force.
(b) Magnetization configuration at �t = 10.875 ns and horizontally magnified (×5) edge region. (c) Quantitative evaluation of the edge
shift Sy(x) along the path A �−→ B. (d) and resulting magnetic stray field component Bx(x). (Reproduced from Schneider et al., 2004, with
permission from the American Physical Society.  2004.)

The question of how such a three-dimensional mag-
netic object like a vortex behaves dynamically was first
addressed by time-resolved Kerr effect investigations on
submicrometer-size permalloy disks (Park et al., 2003).
These experiments probed the polar Kerr effect close to the
center of the disk and observed a distinct periodic variation
of the polar Kerr signal, when the system was magnetically
excited by a short in-plane field pulse. Since most of the
polar Kerr signal should originate from the �Mz component
in the vortex core, the periodic signal variation was explained
by a motion of the vortex core in and out of the laser spot.
The entire vortex core was proposed to undergo a gyrotropic
motion, that is, to rotate around the geometrical center of
the disk. Owing to the small size of the disk, however, a
direct imaging was beyond the lateral resolution of Kerr
microscopy.

The issue of the gyrotropic motion of the vortex core was
also addressed with the better lateral resolution provided
by XPEEM (Choe et al., 2004). The samples consisted of
microstructured elements of a CoFe alloy film of 15 nm
thickness, placed on a coplanar waveguide. The current pulse
was launched by means of an Auston switch and had a width
of around 300 ps full width half maximum (FWHM) at a
maximum amplitude of Bmax ∼ 15 mT. The repetition rate
of the field pulse was around 125 MHz, giving the magnetic
system about 8 ns to relax into the ground state.

We first compare domain image ‘snapshots’ taken at
two different time delays �t after the exciting field
pulse (Figure 8) for rectangles with increasing aspect ratio:
(I) 1 × 1 µm2, (II) and (III) 1.5 × 1 µm2, and (IV) 2 × 1 µm2.
All rectangles exhibit the simple Landau pattern with two

diagonal 90◦ domain walls and a central vortex. In each
image sequence, however, the position of the vortex in
the center region shifts more or less strongly between the
first and the second image. The most pronounced difference
occurs in the rectangle with the largest aspect ratio (IV). In
the image taken at �t = 3.3 ns the vortex core is shifted
from the center to the left by around 400 nm, whereas at
�t = 7.7 ns the core position is located at around 400 nm to
the right of the geometrical center. Recalling the fact that
the magnetic field pulse has a width of less than 1 ns, it
apparently has initiated a motion of the vortex core, which
continues beyond the field pulse duration.

I II III IV

2.7 ns

4.7 ns 4.5 ns 4.5 ns

2.1 ns 2.1 ns 3.3 ns

7.7 ns
1 µm

100 nm8 nsTime0 ns

10
0 
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Figure 8. XPEEM domain images of various rectangular CoFe
elements (XMCD signal at the Co L2,3 edges) with increasing
aspect ratio (denoted as I–IV) as a function of the specified time
elapsed after the magnetic field pulse. The bottom panels map the
respective trajectories of the vortex in 100 ps steps. The progression
in time is indicated by the dot greyscale. Hands illustrate the vortex
handedness and the direction of the out-of-plane core magnetization.
(Taken from Choe et al., 2004.)
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In order to map this behavior in more detail, the vortex-
core position has been determined from subsequent images
acquired in time increments of 100ps for the maximum
timeline of 8ns. The resulting trajectories of the core move-
ment (bottom part of Figure 8) can be decomposed into two
phases. During the field pulse, the vortex core responds by a
linear accelerated motion along the direction indicated by the
gray arrows. After the field pulse it follows the curved path
marked by the black line. Whereas for the quadratic struc-
ture (I) this curved trajectory closely approaches a circle, it
is strongly elliptical for the 2 × 1 µm2 element. These curved
trajectories directly reflect the gyroscopic motion of the vor-
tex cores, which is driven by the magnetostatic field of the
moving vortex. A closer inspection of the data in Figure 8,
however, reveals two peculiarities. First, there seems to be
no common sense of rotation (indicated by the black arrow)
or direction of the linear motion. In other words, for two ele-
ments with a similar in-plane domain pattern, opposite senses
of rotation can occur, for example, clockwise for element
(III) and counterclockwise for element (II). As will be
discussed below, this difference is related to the chirality
of the vortex. Second, the initial linear motion is directed
mainly along the axis of the pulse field, not perpendicular
to it.

For reasons of simplicity, we assume an ideal vortex
structure on a square (Figure 9). Together with the in-plane
magnetic configuration, the out-of-plane component Mz of
the vortex (arrow at the center of the squares in Figure 9a)
defines a chirality of the system, being left handed (right
handed) for the structure on the left (right) side of the
figure. From the results discussed in Section 4.1 we know
already, that a nanosecond field pulse may not simply cause
a simple domain wall motion resulting in a motion of the
vortex perpendicular to the applied field (Figure 6i). If the
pulse field Hp(t) is even shorter, the precessional motion of
�M becomes important. Hp(t) generates a torque (indicated

by the blue arrows) on those magnetization components
with Mi ⊥ Hp. On the subnanosecond timescale, the initial
motion is a precession of the magnetic moment around
Hp, which is stronger than the damping along the field
direction (Choe et al., 2004). If we consider the left-hand

(a) (b) (c)
Hp

Figure 9. (a) Spin structure of a left-handed vortex structure
(vortex core indicated by the vertical arrow). (b) Initial sideways
motion of the vortex core due to the magnetization torque exerted by
the pulse field. (c) Subsequent trajectory of the vortex core projected
onto the surface (spiral line). (After Choe et al., 2004.)

case in Figure 9(a), the magnetization in domain 3 precesses
toward the core magnetization, that is, develops an out-of-
plane component, whereas the core magnetization precesses
toward domain 1, that is, develops an in-plane component.
If we define the position of the vortex core by the maximum
Mz component, this concerted precessional motion of the
magnetization distribution results in an effective movement
of the vortex core antiparallel to the applied field. The same
arguments explain the initial movement of the right-handed
vortex parallel to Hp(t).

This initial linear displacement of the vortex core by Hp(t)

is the key process, which starts the subsequent gyrotropic
rotation of the core. The displacement is accompanied by
an imbalance of the in-plane magnetization components,
which in turn causes a magnetostatic field perpendicular to
this displacement, trying to restore a balanced configuration.
This situation sends the vortex core onto a counterclockwise
(Figure 9b) or clockwise spiraling trajectory (Figure 9c). The
trajectories plotted in Figure 9(b) and (c) are the result of a
micromagnetic simulation, covering the first 3 ns after the
field pulse. The magnetic damping in the system causes the
trajectory of this gyrotropic motion to spiral inwards again,
until the balance of the in-plane magnetization components
is restored.

Raabe et al. (2005) report a similar experiment with
a repetition time of the field pulse of 16 ns. In contrast
to a gyrotropic motion, however, they find only a linear
displacement of the vortex perpendicular to the applied
field. The shorter relaxation period in the experiment of
Choe et al. (2004) is proposed as a possible explanation
for this discrepancy. According to the findings by Raabe
et al.’s findings, the vortex is still moving with a speed
of ∼100 m s−1 by the time the next field pulse arrives in
Choe et al. experiment. Another difference between these
experiments, however, which has not been noted so far, is
found in the rise times and peak values of the field pulse.
According to the reported values in both publications, the
field sweep rate δH/δt is at least a factor of 5 higher in
the approach by Choe et al. This difference could also have
a significant impact on the dynamic response by virtue of
exciting modes in a broader frequency range. These examples
demonstrate that the dynamic response of a magnetic system
in the subnanosecond regime depends not only on the initial
state but also significantly on the details of the experimental
procedure.

A vortex is a very stable structure and a high field of the
order of H ∼ 0.5 T is required to reverse the direction of
the vortex core. In this case, the field is applied opposite
to the vortex-core direction. In the fast dynamic case, the
situation may be significantly different. It has been shown
that a continuous excitation of the vortex by a small periodic
in-plane field causes the vortex core to precess on a stable
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orbit (Chou et al., 2006). Taking this precessional motion
as a dynamic ground state of the system, a pioneering
experiment by Stoll et al. showed a small burstlike increase
of the field amplitude by a few millitesla to be sufficient
to switch the vortex core (van Waeyenberge et al., 2006).
Detailed micromagnetic simulations revealed a complex
microscopic mechanism, which involves a complex sequence
of vortex–antivortex creation and annihilation steps (Hertel
and Schneider, 2006).

5 QUASIRESONANT EXCITATIONS

In this section, we discuss the results of an experiment
involving a periodic magnetic field excitation (Krasyuk et al.,
2005). As already demonstrated in Section 4.2, the relaxation
of the transient magnetization configuration induced by a
field pulse may take several nanoseconds to several tens
of nanoseconds, depending on the configuration. On the
other hand, it is well known from several studies that the
precessional motion in permalloy involves frequencies down
to the low gigahertz regime (Choi et al., 2001; Park et al.,
2003; Raabe et al., 2005; Neudert et al., 2005). If we take
a 10–nm-thick rectangular element of 16 × 32 µm2 size,
micromagnetic simulation predicts a precessional mode with
a frequency of 1.25 GHz (Krasyuk et al., 2005). The question
is thus, whether the XPEEM imaging is able to pick up the
response of such a particular mode.

In the respective experiment, the element was excited
with a pulse train at a repetition rate of 500 MHz. As
this corresponds to the regular multibunch operation of the
storage ring, each field pulse is followed by a soft X-ray pulse
for imaging. The sample was adjusted such that the light
impinged perpendicular to the magnetization of the long
domains with the magnetization vector pointing up and down,
respectively (Figure 10). In the static image, the contrast
arises thus mainly from the top and bottom closure domains
of the Landau pattern. In addition, there is a line contrast
from the 180◦ domain wall in the center of the structure.
This contrast arises from the fact that in a Néel wall the
magnetization vector rotates within the film plane and thus
has a component along the direction of light incidence �q in
the center portion of the wall. This wall contrast will become
important in the second part of this section.

In the chosen geometry the magnetic contrast in the
vertically magnetized domains vanishes in the static case,
because of �M ⊥ �q. Therefore, this arrangement is very
sensitive to small changes in the magnetization direction in
these domains, as any component of �M along �q will give rise
to a change in the contrast level. This property is exploited in
the dynamic experiment, where one observes a clear change
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Figure 10. Response of a permalloy microelement to a periodic
excitation. (Top) Selected XMCD domain images recorded at the
temporal positions indicated. The leftmost sketch depicts schemati-
cally the transient domain configuration during the experiment, the
shaded area marking the integration area for quantitative contrast
evaluation. (Bottom) Experimentally determined field pulse shape
H(t) and rotation of the magnetization vector ϕ(t) as calculated
from the contrast change in the shaded area. (Taken from Schneider
et al., 2006.)

of the magnetic contrast in these areas as soon as the field
pulse acts on the element (Figure 10).

The pulse field in this experiment is directed in plane
and perpendicular to the magnetization direction in the
long domains, thus exerting the maximum torque in these
domains. We note that the change in contrast is the same
in both domains, although the magnetization direction in
the long domains is opposite. This contrast change is due
to an additional in-plane component of �M , which arises
because of the precessional motion started by the field pulse.
Initially, the torque acting on the magnetization pulls it out
of the film plane in opposite directions for the left and the
right domain. This motion is counteracted by the increase in
demagnetizing energy and leads to a precessional trajectory
with an opposite sense of rotation with a large in-plane
magnetization component Mx along �q. The initial part of the
precession is basically in phase for both domains, therefore
the in-plane components Mx yield a comparable magnetic
contrast. The damped precessional nature of the motion is
clearly visible by the alternating magnetic contrast levels in
selected images of a longer sequence.

From the XMCD signals in the image sequence, one can
quantitatively determine the magnitude of Mx and thus the
angle ϕ, by which the magnetization vector �M is rotated
out of the equilibrium position (bottom part of Figure 10).
Comparing the results for ϕ(t) to the field pulse shape reveals
the damped oscillatory character of the motion of �M . The
maximum deflection is reached slightly after the maximum
of the field pulse and the period of this oscillation is about
800 ns, being in agreement with the prediction of 1.25 MHz
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from the simulation. Therefore, only about two periods are
visible, before the next field pulse excites the system again.
The numerical values of ϕ(t) prove that the motion involves
in fact a large-angle precession of the magnetization within
the individual domains.

A closer inspection of the domain images reproduced
in Figure 10 reveals another interesting finding, namely, a
distinct displacement of the domain wall away from the
center of the structure, as compared to the field-free ground
state. We verified that this displacement is indeed a transient
effect and occurs as a response to the periodic magnetic
excitation of the system. In particular, the displacement
increases with increasing field pulse amplitude and thus
growing precession amplitude (Figure 11). Above a certain
critical amplitude, the wall is essentially driven out of the
system. In passing, we note that the 180◦ wall seen in
Figure 11 contains a Bloch line across which the sense of
the in-plane rotation of the magnetization within the wall
changes. Therefore, the upper part of the wall appears bright,
whereas the bottom part appears dark.

The reason for the unidirectional shift �x of the domain
wall is a specific resonance phenomenon. A Fourier analy-
sis of the magnetic field pulse sequence reveals significant
contributions of higher harmonics of the fundamental fre-
quency of 500 MHz, that is, at 1 and 1.5 GHz. The second
and third harmonic components are the most important ones,
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Figure 11. Quasistatic displacement of a domain wall due to
resonant excitation. The images (b), (c), and (d) show the transient
domain configuration at �t = 600 ps for increasing field pulse
amplitudes, (a) gives a sketch of the domain structure. (e) Relative
domain wall displacement ε as a function of precessional amplitude
(represented here by the maximum magnetization component mx

occurring during precession). (Taken from Krasyuk et al., 2005.)

as the eigenfrequency of the precessional mode is around
1.25 GHz. This means that the magnetic system is driven
close to resonance. The system can absorb more energy from
the excitation and increase its entropy by moving its eigen-
frequency closer to the component of exciting frequency
spectrum which has the higher power. In our case this is
the 1 GHz component. By increasing the size of the already
larger domain, its precessional frequency is lowered and thus
moves a little closer to the second harmonic component. This
process is counteracted by an increase of the demagnetizing
energy, establishing a new quasistationary domain configura-
tion. An increase of the precessional amplitude via the field
pulse amplitude thus leads to a further increase of the domain
area and shift of the wall. This situation can be modeled more
quantitatively (for details, see Krasyuk et al., 2005), with the
result for the displacement �x as a function of the precession
amplitude being shown by the line in Figure 11(e). The data
points I, II, and III correspond to the experimental situation
depicted by the images (b–d). The delayed onset is due to
domain wall pinning. This example demonstrates that high-
frequency excitations may lead to both a high-frequency and
a quasistatic response in the same experiment.

6 ULTRAFAST EXPERIMENTS

Femtosecond pump-probe studies are of increasing impor-
tance for many new research areas such as femtochemistry
(Bonn et al., 1999), ultrafast magnetization dynamics (Koop-
mans, van Kampen, Kohlhepp and de Jonge, 2000), ultrafast
surface melting (Rousse et al., 2001), and coherent excitation
of phonons (Sokolowski-Tinten et al., 2003), or magnons
(Melnikov et al., 2003). In such studies the electronic system
is excited by the absorption of a femtosecond laser pump
pulse. The energy transfer to other degrees of freedom is
then measured stroboscopically in real time by a subsequent
femtosecond laser probe pulse. Pump-probe studies offer
the opportunity to observe changes in the electronic system
while the nuclei are practically at rest. Also the influence of
other quasiparticles such as spin excitations can be separated
since the timescales of these processes is usually different.
In all of these cases the optical excitation represents a sig-
nificant disturbance to the electronic system. For instance
in pump-probe investigations of the femtosecond magne-
tization dynamics on average one electron–hole excitation
takes place for about every 10th atom throughout the mate-
rial (Koopmans, van Kampen, Kohlhepp and de Jonge, 2000;
Rhie, Dürr and Eberhardt, 2003). Comparable excitation den-
sities are expected for other applications (Bonn et al., 1999;
Rousse et al., 2001; Sokolowski-Tinten et al., 2003; Mel-
nikov et al., 2003). The evolution of electronic and magnetic
excitations in this regime is a very active research field
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(see also Time-resolved Kerr-effect and Spin Dynamics
in Itinerant Ferromagnets, Volume 3) which will become
even more interesting with the availability of X-ray FEL
sources in the future.

In addition to femtosecond temporal resolution, probing
the system on the nanometer scale is important since elec-
tronic and spin excitations typically travel only submicrom-
eter distances on such timescales. It is well known that a
dielectric medium can be used to manipulate the proper-
ties of light pulses even leading to the trapping of light
inside photonic crystals (Mok and Eggleton, 2005). For
metals the dielectric material’s response to light is mainly
determined by the plasmon resonance, that is, by collective
oscillation of the electrons. This is utilized in the emerging
field of plasmonics for manipulating optical radiation at sub-
wavelength dimensions by metallic nanostructures (Ozbay,
2006). The use of pulsed-laser radiation offers the excit-
ing prospect of tailoring the pulse structure (length, polar-
ization intensity, etc.) by coherent control to optimize the
nanoscale system response (Brixner, de Abajo, Schneider
and Pfeiffer, 2005). Ultimately it should be possible to
use femtosecond pump-probe spectroscopy with optimally
shaped laser pulses for exciting one quantum system and
observe in real time the nonlocal information transfer to
another system (Brixner, de Abajo, Schneider and Pfeiffer,
2005).

In this chapter we review recent attempts to achieve
nanometer spatial and femtosecond temporal resolution on
magnetic nanostructures. This approach is based on the
plasmonic enhancement of the photoemission yield from
nanostructures.

6.1 Imaging plasmonic near fields of
nanostructures

Surface plasmon enhanced optical fields at microscopi-
cally rough surfaces were employed early to explain the
chemical sensitivity enhancement in various optical spectro-
scopies (Wokaun, Gordon and Liao, 1982). Similar plasmon
enhancement effects were used in two-photon photoemission
spectroscopy to specifically probe laser-induced electronic
excitations in Ag nanoparticles although without any lateral
resolution (Lehmann et al., 2000). The plasmon enhanced
optical near fields at the boundaries of Ag nanostructures
have been directly imaged using PEEM (Cinchetti et al.,
2005). The spatial and temporal plasmon propagation was
determined in real time using pump-probe PEEM spectromi-
croscopy (Kubo et al., 2005).

Near field enhancements occur also for transition met-
als which do not display strong plasmon resonances. An
example is shown in the following text. Utilizing the

light polarization dependent dielectric response of ferromag-
netic CoPt nanodots energy is pumped into electron–hole
excitations. Femtosecond pump-probe spectroscopy is then
employed (see the next section) to probe the real-time energy
transfer into spin excitations leading to a reduction of the
ferromagnetic spin alignment in the nanodots.

The experimental setup is shown schematically in Figure 3.
The sample consisted of 200 × 200-nm2 wide magnetic
structures separated from each other by 100-nm-wide and
100-nm-deep troughs (see Figure 12a) (Dürr, Kronast and
Eberhardt, 2001). A multilayer with Pt(1.8 nm)[Co(0.5 nm)
Pt(1.8 nm)]4 was sputter deposited on top of a patterned Si
substrate. The multilayer structure of the nanodots induces an
equilibrium spin alignment along the surface normal owing to
a large perpendicular magnetic anisotropy at the CoPt inter-
faces (Dürr, Kronast and Eberhardt, 2001).

Figure 12 shows typical PEEM images of this sample.
The sample was illuminated from the left by 3.1 eV (b) and
6.2 eV photons (c) with s- and p-polarization, respectively.
Although the dot structure is resolved in both images
there are clear differences. The image taken with 3.1 eV
photons shows much better lateral contrast due to the more
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Figure 12. (a) A schematic view of the sample. In all images the
light is incident from the left at an angle of 25◦ to the sample
surface. (b) and (c) PEEM images of the same sample area taken
with laser excitation at 3.1 eV photon energy for s-polarized (gray
double arrows) and 6.2 eV photons for p-polarized (black double
arrows) light, respectively. Note that one nanodot is missing near
the center of the images. In (d) the linescans over a single nanodot
(indicated by the white lines in (b) and (c) illustrate the different
emission characteristics for 3.1 eV s- and 6.2 eV p-polarized light
as gray and black lines, respectively. Data in (d) have been scaled
to equal intensity and are offset for clarity. (Reproduced from Dürr
et al., 2001, with permission from Springer-Verlag GmnH.  2001.)
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pronounced edges of the dots. This can also be seen in
the linescans shown in Figure 12(d). For 3.1 eV photons,
the photoemission intensity is concentrated at the edge
of the dots while for 6.2 eV emission takes place mainly
in the dot center. The images in Figure 12 were normalized
to maximum/minimum contrast. In the raw data there are
additional differences visible. While for 3.1 eV photons there
is almost no photoemission intensity detectable coming out
of the troughs, there is a significant contribution from these
areas at 6.2 eV.

The photon energy dependence of the PEEM images
in Figure 12 is an indication that the nanodot dielectric
response modifies the laser field amplitude at the sample
surface (Dürr, Kronast and Eberhardt, 2001). This process
can be modeled approximating the CoPt nanodots or by
ellipsoidal particles with lateral and vertical dimensions of
200 and 10 nm, respectively. Neglecting interactions between
the nanodots and using bulk optical constants for Co and Pt
the electric-field enhancement, f (hν), at the tips of the long
and short axis of ellipsoidal nanodots can be calculated for
s- and p-polarized light (see Figure 13) (Wokaun, Gordon
and Liao, 1982). The curves are dominated by a Mie-
plasmon resonance broadened by interband transitions. The
resonances depend on the particle shape and are red shifted
for plasma oscillations along the long axis of the spheroid
(excited by s-polarized light) and blue shifted for oscillations
along the short axis (excited by p-polarized light).

This polarization dependence in Figure 3 implies different
emission directions for photoelectrons. In photoemission the
maximum intensity usually occurs when the light electric-
field vector is aligned along the surface normal. This can
easily be seen considering the dipole transition matrix ele-
ment between initial |i > and final |f > states which is

2 4 6
0

200

400

×50

hv (eV)

f (
hv

)2

Figure 13. Calculated dielectric response of spheroidal (10 ×
200 nm2) Pt particles (schematically shown as insets) as a func-
tion of photon energy. (Reproduced from Dürr et al., 2001, with
permission from Springer-Verlag GmnH.  2001.)

< i|∇V |f > · A, where A is the electric-field vector poten-
tial and ∇V is the surface potential gradient along the sample
normal. Consequently mainly horizontal photoelectron tra-
jectories starting from the nanodot edges are expected with
s-polarized light. Such trajectories are indeed observed in
Figure 14(a) and (b) when the contrast aperture in the objec-
tive lens backfocal plane (see Figure 2) is moved off center.
The resulting PEEM images show photoemission only from
the upper (lower) nanodot edges when electron trajectories
starting upward (downward) are selected in Figure 12(a,b).
These structures contribute to the double peaks of the lines-
can with s-polarized light in Figure 12(a). Their width is
determined from Figure 14(a,b) to typically 60 nm (Heitkamp
et al., 2006).

6.2 Femtosecond electron and spin dynamics of
nanostructures

A microscopic description of the processes following the
absorption of a femtosecond laser pulse can proceed in
terms of energy relaxation between different reservoirs of
quasiparticles such as electrons, spins, and phonons. Initially
laser heating of the electron system creates a nonequilibrium
electron distribution of the available energy levels. This
exited state decays and after typical relaxation times the
energy is transferred to the other quasiparticle systems
such as spin excitations until it is finally dissipated via
phonons to an external heat sink. Observing these processes
in real time for magnetic materials is presently a very
active research field. Although there is agreement on the
subpicosecond timescale for energy transfer between electron
and spin systems (Beaurepaire, Merle, Daunois and Bigot,
1996; Scholl, Baumgarten, Jacquemin and Eberhardt, 1997;
Güdde et al., 1999; Koopmans, van Kampen, Kohlhepp and
de Jonge, 2000) the microscopic mechanism is still under
debate. It has been suggested theoretically that spin-orbit
coupling alone may be too weak and that it is rather an
interplay between spin-orbit forces and a strong laser field

(a) (b)

Figure 14. (a) and (b) Images with opposite off-center positions
of the contrast aperture in the objective lens backfocal plane (see
Figure 2). The white frame indicates the position of the same
nanodot in both images.
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that leads to an ultrafast sample demagnetization (Zhang and
Hübner, 2000). Very recently it was suggested that laser
heating might open a very efficient channel for transfer of
spin angular momentum to the lattice (Koopmans, Ruigrok,
Longa and de Jonge, 2005).

In the following we concentrate on showing that the locally
enhanced laser field for s-polarized light described in the last
section can induce a transient demagnetization of the nan-
odots, that is, that it is possible to probe the magnetization
dynamics with subwavelength spatial resolution. To investi-
gate the spin dynamics in a pump-probe experiment an area
of 5 × 5 uniformly magnetized nanodots from Figure 12(a)
was selected. Time resolution was achieved by splitting each
laser pulse in two and introducing a variable time delay, �t,
between them. The work function of the topmost Pt layer was
about 5.9 eV. Thus, two 3.1 eV photons have to be absorbed
to generate one photoelectron. In a first photoabsorption pro-
cess, electronic states up to 3.1 eV above the Fermi level
become partially populated. A subsequent photoemission
process using a second 3.1 eV photon then probes the popu-
lation of states confined to an energy interval of 2.9–3.1 eV
above the Fermi level. For this two-photon photoemission
event the absorption of two photons has to occur almost
simultaneously since the lifetime of the intermediate states is
only a few femtoseconds (Aeschlimann et al., 1997;Knorren,
Bennemann, Burgermeister and Aeschlimann, 2000).

Typical spectra are shown in Figure 15(b) and (c) where
the time delay, �t, between the two laser pulses was varied
(Heitkamp et al., 2006). When the laser pulses overlap in
time they can interfere. The alternating pattern of high
and low two-photon photoemission intensity indicated by
the shaded area in Figure 15(b) corresponds to constructive
and destructive interference, respectively. From the width
of this interference region the laser pulse length can be
deduced (Lehmann et al., 2000) to 150 fs for the present
example.

In Figure 15(c) the relative photoelectron spin polariza-
tion signal is shown as a function of �t (Heitkamp et al.,
2006), interference near zero time delay also leads in this
case to fluctuations in the spin polarization (shaded area
in Figure 15c). However, in the adjacent region the two
laser pulses are in close enough temporal proximity so that
each pulse probes the transient sample demagnetization gen-
erated by the other pulse. This pattern is clearly apparent
in Figure 15(c) through the transient reduction of the pho-
toelectron spin polarization nearly symmetric around time
zero. The photoemission yield, N, measured in a one-color
experiment is the sum of that for the indistinguishable indi-
vidual laser pulses, that is, N = N1 + N2. The reduction of
the spin polarization during the first laser pulse is S1. That
during the second pulse is S2 if it arrives after the transient
demagnetization of the first pulse (red curves in Figure 15a).
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Figure 15. (a) Schematic diagram of the two-photon photoemission
intensity (top panel) for two laser pulses P1 and P2 with different
intensities (black lines). The gray line shows the laser pulse P2
arriving at a different time delay, �t , after P1. The lower panel
shows the transient change of photoelectron spin polarization due to
sample demagnetization. (b) Measured two-photon photoemission
intensity versus �t . (c) Measured photoelectron spin polarization
versus �t .

The reduction in spin polarization during the laser pulses is
then given by S = A(N1S1 + N2S2)/N . The scaling param-
eter A describes the initial sample demagnetization. If the
second laser pulse (black P2 in Figure 15a) arrives within
the transient demagnetization of the first pulse the spin polar-
ization is given by S ′ = [AN1S1 + N2(AS2 + S1e

−�t/τ )]/N
with τ being the time constant for remagnetizing the
sample. The spin polarization measured in Figure 15(c) is
�S = S ′ − S = S1e

−�t/τN2/N , which depends only on the
relative photoemission yield of the second and the initial
reduction of the spin polarization for the first pulse as
well as the exponential remagnetization term. This expres-
sion is independent of A since τ is much larger than the
initial demagnetization time. The asymmetry in the spin
polarization observed in Figure 15(c) for negative and pos-
itive time delays, respectively, is due to an intensity differ-
ence of 23% for the two laser pulses, that is, for negative
time delay the more intense pulse arrives first. This experi-
ment demonstrates that femtosecond laser-induced demag-
netization can indeed be probed with nanometer spatial
resolution.
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7 CONCLUSION AND OUTLOOK

We gave an overview how dynamical magnetic phe-
nomena that evolve on the picosecond and femtosecond
timescales can be probed with nanometer spatial resolu-
tion. The emphasis of this review was on the application
of photoemission microscopy, which has evolved into a
state-of-the-art imaging technique. Other techniques such
as optical and X-ray microscopy can give similar or com-
plementary insight and are described in other parts of this
book.

Section 4 reviewed recent experiments on the picosecond
magnetization dynamics which were induced by ultrafast
magnetic field pulses. Relevant devices such as magnetic
sensors, magnetic random access memory, or spintronic
applications demand simultaneous access to high spatial
and temporal resolution. We showed for several examples
that these requirements can be fulfilled by photoemission
microscopy with synchrotron radiation. Parallel magnetic
imaging becomes possible due to the strong magneto-optical
effects in the X-ray range. This results in a large magnetic
contrast for studying dynamical effects such as domain nucle-
ation, domain wall movements, magnetization precession,
and vortex-core rotation.

An even faster timescale is assessed in Section 5. The
use of femtosecond laser pulses allows heating magnetic
elements above their Curie temperature on a subpicosec-
ond timescale. This is of applied interest for magneto-
optical storage media where the information is erased
by laser heating. The sample magnetization is probed in
this regime by analyzing the photoelectron spin. In this
case photoemission microscopy is used as a scanning
probe technique with typically micrometer spatial resolution.
We showed that spatial resolution can be dramatically
enhanced by utilizing the dielectric response of nanostruc-
tures. This allows focusing optical radiation to subwave-
length dimensions and is of interest for the emerging field of
plasmonics.

The versatility and the wide range of different magnetic
contrast mechanisms enable photoemission microscopy to
exploit the full potential of complementary radiation sources
such as picosecond synchrotron and femtosecond laser. The
availability of FELs in the not too distant future is expected
to revolutionize the field of ultrafast magnetization dynam-
ics. When X-ray pulses of femtosecond duration as well as
variable photon energy and polarization will become avail-
able, parallel magnetic imaging with nanometer resolution
presently only feasible with picosecond synchrotron radia-
tion will become possible on the femtosecond timescale. The
proven versatility of photoemission microscopy is expected
to play a central role also for these light sources also
(BESSY, 2004).

NOTE

[1] The term spin dynamics is also often used in the context
of spin waves.
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Chumakov, D., McCord, J., Schäfer, R., et al. (2005). Nanosecond
time-scale switching of permalloy thin film elements studied by
wide-field time-resolved Kerr microscopy. Physical Review B,
71(1), 014410.

Cinchetti, M., Gloskovskii, A., Nepjiko, S.A., et al. (2005). Pho-
toemission electron microscopy as a tool for the investigation of
optical near fields. Physical Review Letters, 95(4), 047601.

DESY. (2006). See, for example, the websites http://www-
hasylab.desy.de/facility/fel/main.htm.

Dhesi, S.S., van der Laan, G., Dudzik, E. and Shick, A.B.
(2001). Anisotropic spin-orbit coupling and magnetocrystalline
anisotropy in vicinal Co films. Physical Review Letters, 87(6),
067201.
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1 INTRODUCTION

Until the availability of electron microscopes the imaging of
magnetic domain structures was limited to the use of optical
methods.

For the Bitter decoration technique (Hámos and Thiessen,
1931; Bitter, 1931, 1932; Hubert and Schäfer, 1998), one
used fine magnetic grains, which were suspended in a
solvent, to visualize areas where a high gradient of the
magnetic induction was present at the specimen’s surface.
After application of the Bitter fluid one had to wait a short
period of time until the fluid was dried up fully, leaving the
magnetic grains bunched around areas where the gradient
was largest. For a sufficiently large concentration of the

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

grains, these agglomerates could be seen rather easily by
a simple light-optical microscope. It is needless to say that
the resolution achievable by this technique was ultimately
limited by the optical resolution of the microscope, while
the grains can in principle be finer than a light microscope’s
resolution. There have been some attempts later to embed
the agglomerates into thin, electron transparent carbonaceous
films which could then be transferred into an electron
microscope to make use of its better resolution.

Another technique of visualization of magnetic surface
structures was to employ the magneto-optical Kerr effect
(Kerr, 1877), which is based on the rotation of the polar-
ization plane of linearly polarized light when it is reflected
from magnetic surfaces. The detection of this effect can be
done simply by using a correctly aligned analyzer which will
darken areas where due to reflection the polarization plane
was rotated, leaving other areas, where no or opposite rota-
tion occurred, relatively bright. Thus, a gray scale image can
be observed, where regions of different magnetic orientation
show up in different shades of gray. Obviously this tech-
nique is also limited basically by the optical resolution of
the microscope used and can be as good as 0.15 µm when
blue illumination is used.

However, only after the electron microscope was invented
in 1934 by Ernst Ruska and his coworker Knoll (Ruska,
1934) further progress in magnetic microstructural obser-
vation was possible. From that date it lasted still another
25 years until the first reports of successful attempts to
directly visualize the micromagnetic structures which can
be found in magnetic materials (Hale, Fuller and Rubin-
stein, 1959; Boersch and Raith, 1959; Boersch, Raith and
Wohlleben, 1960). Shortly thereafter, the new technique
was already used to characterize and measure properties of
magnetic materials (Fuller and Hale, 1960; Fuchs, 1961;
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Puchalska and Spain, 1962; Cohen, 1965; Grundy and Teb-
ble, 1968; Wade, 1968; Petrov, Spivak and Pavlyuchenko,
1972a,b). So far, the technique in use was the rather simple-
to-use defocused (or Fresnel) imaging, which is highly
nonlinear in contrast. Thus, the newly found technique
was frequently used to qualitatively characterize micro-
magnetic structures, but in general lacked the ability to
allow quantitative measurements, except for some favor-
able cases. First measurements of magnetic domain wall
widths were performed by Wade (1962), based on a pure
geometrical optics approach, improved wave optical calcu-
lations allowed a quantum mechanical description as given
by (Boersch, Hamisch, Wohlleben and Grollmann, 1960;
Boersch, Hamisch, Grohmann and Wohlleben, 1962; Reimer,
1997; Chapman, McFadyen and McVitie, 1997; Hirsch et al.,
1965).

Electron microscopy can visualize the magnetic induction
�B, as there is an interaction between the electrons of charge
q = −e and velocity �v and the magnetic induction, the
Lorentz force �FL,

�FL = q · �v × �B (1)

Equation (1) also emphasizes, that due to the vector
product there is no Lorentz force connected with components
of the magnetic induction, which are parallel or antiparallel
to the electron beam’s direction (which coincides with
the direction of �v). Therefore, Lorentz microscopy is not
sensitive to the out-of-plane component of a specimen’s
induction. For most cases, this is not a severe constraint,
as in thin films, which are mainly under investigation
in the transmission electron microscope (TEM), the large
demagnetizing fields prevent a perpendicular magnetization
anyway.

The theoretical treatments which are given in the subse-
quent text can only give an impression of the theory involved.
Although not false, they are often strongly simplified and
contain only the parameters necessary for our purposes. Thus
they should not be considered as complete, further interested
readers may consult the literature provided in the correspond-
ing section.

2 SPECIMENS SUITABLE FOR
INVESTIGATION

2.1 Thin films

Thin magnetic films have been the first magnetic specimens
looked at in the TEM by Lorentz microscopy. They are
created by means of evaporation, sputtering or similar
vacuum deposition techniques. The main advantage of having

a thin film lies in the fact that it is already electron
transparent. The only preparation step, which is generally
rather simple, consists in a liftoff of the film from the
substrate onto which it was deposited. This may be achieved
by dissolving the substrate in various chemical etchants
(which usually have also a tendency to affect the specimen
itself) or by using glue or polymers to tear the film off the
substrate, before they in turn are dissolved in an agent, which
in general is not harmful for the specimen itself. The last step
involved is then the deposition of the freely floating specimen
onto a metallic grid which then allows the observation in the
TEM.

The main advantage of continuous thin films is that
there are no boundary or edge effects, provided that the
lateral extension of the films is large compared to any
micromagnetic structures involved. Thus, thin magnetic films
have been extensively studied with respect to their domain
configuration, remagnetization behavior, domain structure,
and so on.

2.2 Patterned thin films on transparent
membranes

The technical ability to decrease the dimensionality of a
magnetic specimen has led to a vast field of new and exciting
phenomena in the last few years. The size of the specimen
has become a very important parameter having a major
impact on the magnetic configurations and their switching
behavior.

Various methods allow the patterning of thin film, and
thus the restriction of the magnetization to a very small
volume. Typical dimensions accessible for patterning are
laterally from 30 nm upward, with specimen thicknesses from
a few monolayers up to more than 100 nm. However, for
transmission electron microscopy the substrate has to be
considered carefully. As the direction of the electron beam is
generally normal to the specimen’s plane, it has to be chosen
transparent for electrons. This restriction limits the substrate
thickness to a few tens of nanometers, which in turn makes
these membranes mechanically very sensitive. Widely spread
is the use of silicon nitride (Si3N4) membranes, which will
briefly be introduced in the subsequent text.

The patterning itself is mostly done by electron lithogra-
phy, less frequently by optical lithography with several pos-
sibilities to use lift-off processes. However, recently focused
ion beam (FIB) systems became available for the patterning
process. This novel possibility, often in combination with
‘conventional’ techniques allows a very accurate fabrication
of structures down to the 10-nm scale.
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2.3 Silicon nitride membrane substrates

Membranes for TEM purposes are commercially available,
so that most groups abandoned fabricating them themselves.
A broad range of different types is offered in the meantime,
with membranes of several mm2 area and thickness down to
20 nm.

Basically, they are prepared by the deposition of Si3N4 on
both faces of a silicon wafer. On one side of the wafer, the
nitride is removed, usually in the shape of a square. Then
the wafer is brought into a wet etchant (such as hot KOH
or NaOH) which starts a preferential etching process where
the etching proceeds much faster (depending on the etchant
and crystal orientation) into the wafer rather than in lateral
direction. Thus, while the initial square window is hardly
widened, an etch pit evolves in the shape of an inverted
pyramid. When the top of this pyramid touches the Si3N4

layer on the opposite face of the wafer, the vertical etch
process is effectively stopped, since this material is removed
slower by orders of magnitude. When the wafer is kept in the
etchant, only a lateral etching takes place, therefore widening
the pyramid’s body in lateral dimension. This finally leads
to the formation of a truncated pyramid hollow, which at its
top is covered by the remaining Si3N4 membrane, typically
100 × 100 µm2 wide. A free-standing membrane has formed,
which can be used as an electron transparent substrate for
transmission electron microscopy experiments.

2.4 Electron lithography

A standard method to pattern magnetic structures on support-
ing membranes is electron lithography. Different variations

of subsequent steps are possible, depending on the respec-
tive demands. We describe one of the easiest ways to achieve
high quality patterned specimens.

Onto a silicon nitride membrane (Figure 1a) two layers of
resists (i.e., polymethylmethacrylate, PMMA) with different
molecular weights and thus various sensitivities are spun.
The more sensitive resist is deposited first and is capped by
the less sensitive resist (Figure 1b).

After that, the structures are transferred to the resist by
electron lithography (Figure 1c). For this purpose, a scanning
electron microscope in combination with suitable software
package is used. In most cases, it is desirable to use a dou-
ble layer of resist which forms a distinct ‘undercut’ profile
(Figure 1d). This means that the lower layer of resist forms
a wider mask than the upper layer. When the material is then
deposited into the pattern (by any method of thin film deposi-
tion, such as – for example – evaporation or sputtering) the
upper (narrower) mask defines the overall dimensions of the
structure deposited. Since the underlying mask is hardly in
contact with the deposited patterned material, the subsequent
lift-off process of the resist is largely facilitated. As many
ferromagnetic materials suffer from oxidation it is in general
necessary to cap the magnetic structures with a protective
layer. Commonly used elements for this purpose are Al or Ti
(Figure 1e). After the lift-off process, which dissolves and
thereby removes both the resist and the residual deposited
material, the patterned structure, supported by the membrane
is ready for investigation (Figure 1f).

A critical point in specimen preparation for TEM or scan-
ning transmission electron microscopy (STEM) investiga-
tions are charge effects. If the specimen is not conductive,
the electron beam charges the specimen during observation.
This causes deflections and/or instabilities of the electron

Si3N4 membrane
Resist (2 molecular

weights)

Magnetic material
with protection
layer

(a)

(d) (e)

(b)

(f)

(c)

Figure 1. Procedure used to create patterned magnetic structures on electron transparent membranes by electron beam lithography. (See
text for details (a–f).)
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beam and can in severe cases prevent a proper investigation
of the specimen.

To avoid this, it is useful to coat the entire sample,
including the membrane, with a thin layer of conductive
material like aluminium or carbon.

2.5 Focused ion beam (FIB)

Another technique to prepare patterned specimens of very
high quality is given by the FIB technique. FIB Equipment
is presently available from basically all manufacturers of
electron beam related equipment or electron microscopes.
Here, a finely focused beam of Ga ions is scanned across
the specimen in the same way as in a scanning electron
microscope. The Ga ions, however, sputter away the exposed
parts of the specimen, and using a mask generator – usually
driven by a computer – it is possible to safely remove
unwanted parts of the specimen, leaving behind a patterned
layer. Beam diameters down to 10 nm have been achieved
and therefore patterning on this level is possible. However,
the sputtering process tends to amorphize the vicinity of the
irradiated area, and Ga may be implanted into the remaining
areas. Especially in the case of very small structures one
has to be aware of the creation of magnetically dead
layers from the patterning process. On the other hand,
the destructive action of ion beams has been shown to
be useful for patterning when the material separating the
structures is made non-magnetic by irradiation with an ion
beam (see, for example, Bernas et al., 1999; Terris et al.,
1999; Toporov, Langford and Petford-Long, 2000a). This is
especially useful for Lorentz microscopy since the Fresnel
diffraction effects from patterned specimens can be avoided
or at least significantly reduced, since the magnetic structures
are embedded into a thin film of equal thickness, however
nonmagnetic material. Therefore, the electron beam does not
experience differences in the electron optic refractive index
which would in turn cause Fresnel diffraction, blurring the
image at the particle’s edges.

2.6 Bulk material, preparation problems

Nowadays it is rather uncommon to use bulk materials,
which have to be thinned down to electron transparency
prior to investigation, since most areas of interest deal
with continuous thin films or particulate materials of very
small dimensions which are already electron transparent.
There are, however, various thinning techniques, which
are well-established in the electron microscopy community
(Schimmel and Vogell, 1981; Reimer, 1959; Williams, 1984)
which can be used to prepare TEM specimens from bulk

samples. In any case, two things have to be kept in mind.
Firstly, care has to be taken not to change the magnetic
properties by the process of thinning, and secondly it is
important to consider the fact that the specimen is sometimes
subjected to magnetic fields of typically 1–2 T in the
objective lens in standard imaging mode. Although this
is of no significance for thin film specimens, for thicker
specimens the resulting forces may well lift the specimen
out of the specimen holder, leaving the specimen to stick on
the microscope’s pole pieces.

Electron microscopy has established itself as a very pow-
erful research tool in solid-state physics and instruments
of various kinds are wide-spread. Thus, some fundamen-
tal facts about these techniques belong meanwhile to the
basics of physics. Nevertheless the understanding of Lorentz
microscopy, the difficulties and possibilities connected with
it demands a fundamental knowledge on how transmission
electron microscopy works. Prior to the description of the
various techniques of Lorentz microscopy, a short introduc-
tion in electron optics and the instrument itself should be
given. We restrict this description on the facts necessary to
understand what follows.

Then, we introduce the magnetic specimen as a (strong)
phase object, before we start to treat the main techniques of
Lorentz microscopy, Fresnel and Foucault imaging, differen-
tial phase contrast (DPC) microscopy and electron hologra-
phy in more detail.

3 BASIC IMAGING TECHNIQUES OF
LORENTZ MICROSCOPY

3.1 Introduction to electron microscopy

In the subsequent text, a short introduction to an electron
microscope is provided. Further information about practical
aspects can be found in the textbook of Williams and
Carter (1996), the theoretical background is comprehensively
treated by Reimer (1997).

3.1.1 Conventional and scanning transmission
electron microscopes (CTEM and STEM)

There are two different modes to record an image with a
transmission electron microscope.

Similar to a light optical microscope, an image can
be generated by illuminating the object and recording the
magnified image. In a certain sense, this can be considered
as ‘parallel’ recording and is usually termed as conventional
transmission electron microscopy (CTEM).

However, it is also possible to record the image serially.
To achieve this, a focused electron probe is scanned across
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the specimen, the electron beam passes through the sample
and for every point of the sample, the signal of a detector
in the subsequent text the specimen is used to characterize
the respective point. If the registered signals are plotted
according to the current position of the electron probe on
the specimen, an image of the sample is generated. This
method is termed STEM. It is important to point out that
there exists a variety of detectors which are sensitive for
different electron-matter interactions. In the subsequent text,
a description will be given which detector is suitable to
record the local magnetic properties of the specimen and
therefore to visualize and measure quantitatively magnetic
properties.

It has been shown (Cowley, 1969) that CTEM and
STEM have a close relationship and can considered as
complementary techniques. It depends on the task to decide,
which technique should be chosen.

3.1.2 Components of a TEM

The electrons are provided by an electron gun (see Figure 2).
Presently, both thermal and field emission emitters are in use.
In a thermal emitter, the filament consists of a tungsten or
a LaB6 crystal, which is electrically heated and accordingly
emits electrons. The electrons in a field emission gun (FEG),
however, are extracted from an extremely pointed cathode by
an electric field. The sharp tip causes a strong electric field
at its very end, as the field is inversely proportional to the
radius of the tip’s curvature. Therefore, electrons are emitted
from a very limited area which in turn provides an excellent
spatial coherence of the electron wave, a crucial requirement
for electron holography.

The emitted electrons are accelerated in a multistage
process to reach their final highly relativistic energy of
several hundred keV, depending on the microscope. A higher
acceleration voltage causes a smaller de-Broglie wavelength
λ of the electrons, typically in the pm range (≈1.97 pm
for 300 keV electrons). The influence of the wavelength on
the resolution of the TEM is not crucial, as it is limited
by the lens aberrations rather than by the wavelength. The
high energy, however, ensures sufficient penetration power
to penetrate thin metallic films with typical thicknesses
of ≈100 nm. A disadvantage of high energy electrons is
the higher beam ‘stiffness’ compared to electrons of less
energy. This can be seen easily from equation (12), where
the Lorentz angle of deflection is directly related to the
de Broglie wavelength of the electron.

Leaving the gun area, a condenser lens system consisting
of at least two lenses and an aperture forms the electron
beam. These lenses define the illuminated area on the
specimen.

DPC detector

Viewing screen

Projector lenses

Intermediate lenses

Diffraction lens

SA aperture

Image coils

Lower TWIN lens

Upper TWIN lens

Lorentz lens

Specimen

Minicondensor
lens (C3)

Gun

Dynodes

Gun coils
Probe forming
system

Imaging
system

C1 lens

C2 lens
C1 aperture

C2 aperture
Beam coils

Objective aperture

Figure 2. Typical components of a commercial TEM, equipped
with a Lorentz lens and a DPC detector.

In CTEM mode, a beam as parallel as possible is of
advantage to gain high coherence. In most cases, however, a
compromise between high coherence (parallel illumination)
and the brightness of the illuminated region (convergent
illumination) has to be chosen.

In the STEM case, the condenser system provides an
electron beam focused to a point-like electron probe on
the specimen. Here, the condenser aperture is of crucial
importance, as it defines the illuminated area on the STEM
detector.

The specimen itself is inserted into the electron microscope
with a specimen holder (Williams and Carter, 1996), which
restricts the dimensions of the sample to approximately
2 mm.

In a modern microscope, the sample sits right inside the
objective lens, which often acts as a combination of a further
condenser lens and an imaging lens. The magnetic field in the
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fully excited objective lens exceeds 1 T and would severely
influence the micromagnetic configuration of the specimen.
Therefore, the objective lens cannot be used for magnetic
imaging techniques.

However, a low magnification mode is usually imple-
mented in all microscopes, which operates with the objective
lens turned off. Its action is performed by an other lens
(called intermediate or diffraction lens) which is located at a
larger distance from the specimen. This requires a long focal
length lens, which yields only a very moderate magnifica-
tion (in the order of 103) and at the same time causes only
a negligible magnetic field at the specimen’s location.

A different approach uses a special Lorentz lens (Zweck
and Bormans, 1992), which serves as an objective lens. This
Lorentz lens is located at a larger distance from the sample
than the objective lens but still closer than the lenses usually
in use.

The Lorentz lens allows investigations with virtually zero
magnetic field in the sample’s region, whereas the optical
quality of that lens is worse than the standard objective
lens, but better than what can be achieved without it. The
magnification is in the 105 range, the resolution can reach
2 nm.

Several lenses follow, which magnify the CTEM (and
Lorentz TEM) image further.

A fluorescent screen allows the direct observation of the
image. It can be recorded with a conventional plate camera,
although in the meantime most microscopes are equipped
with a CCD camera, which allows a digital acquisition of
the image for simple further processing.

A growing number of microscopes has also the ability to
generate energy filtered images. This, in terms of Lorentz
microscopy, has the advantage to exclude inelastically scat-
tered electrons from the image, which in turn allows to
reduce the ‘background noise’ and opens the opportunity to
investigate thicker specimens or samples with weak magnetic
inductions.

The energy filter is expected to enable the implementation
of a new magnetic imaging technique as well, which is
currently under investigation and based on chiral dichroitic
effects (Hébért and Schattschneider, 2003; Schattschneider
et al., 2006).

In the STEM mode the electron beam propagates after
the specimen along a certain distance, the camera length,
to the detector plane. As the distance between detector and
specimen plane is a fixed distance, given by the geometry
of the microscope, the imaging lenses are used to generate
a ‘virtual’ camera length from the mm to the several 100 m
regime.

In most cases, the STEM signal is recorded subsequently
by a solid-state detector, the whose shape determines the
imaging conditions, as will be shown in the subsequent text.

3.1.3 Theoretical description

In standard TEM mode the specimen is illuminated with
a beam, which is ideally parallel. This ideal case shall for
simplicity be treated in the following description. Therefore,
the illuminating plane electron wave can be considered to
have a uniform (normalized) intensity equal to 1 everywhere
in the sample’s plane.

In a theoretical treatment (i.e., Cowley, 1995) a specimen’s
transmission function T (�r) is described by its absorption
U(�r) and its phase shift ϕ(�r) , both depending on the local
properties of the specimen at position �r,

T (�r) = U(�r) · eiϕ(�r) (2)

The observable image is obtained by a convolution of the
specimen function with the point spread function (PSF) C(�r),
which is the Fourier transform of the so-called phase contrast
transfer function (CTF) c(�k), given in reciprocal space as

c(�k) = p(�k) · eiχ(�k) (3)

Here, p(�k) describes an aperture in the back focal plane
and is in fact a pupil function (p(�k) = 1 for |�k| � k0,
p(�k) = 0 for |�k| > k0), while χ(�k) comprises the defocus
term −π · �z · λ · k2 with the electron wavelength λ and
the defocus �z and other terms of higher order describing
spherical aberrations. For simplicity, these terms and also
damping terms according to chromatic aberrations and beam
convergence have been omitted. Please note that in this
treatment we assumed the magnification to be equal to 1 to
keep the equations as simple as possible.

The convolution with the PSF is equivalent to a multipli-
cation of the CTF with the Fourier transform of the specimen
function

t (�k) = FT [T (�r)] (4)

followed by a transformation back to real space. The image
intensity is readily obtained from the square modulus of the
resulting function

I (�r) =
∣∣∣FT −1[t (�k) · c(�k)]

∣∣∣2
(5)

A similar approach is possible when dealing with STEM.
Here, the specimen is illuminated with a convergent electron
beam. Thus, the STEM image is generated serial rather
than in parallel. Having that in mind, the specimen’s exit
wave function, that is the wave leaving the specimen after
transmission, can also be described by a convolution, in this
case between the shapes of the convergent probe formed by
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the condenser lenses and the specimen function. Since STEM
is a scanning technique, this convolution has to be performed
on every spot of the specimen which is illuminated by the
beam. This can conveniently be described by a laterally
shifted δ function. Thus the wave �(�r) emerging from the
sample can be described by

�(�r) = T (�r) · [C(�r) ⊗ δ(�r − �r0)] (6)

where �r0 is the position of the electron probe on the specimen
and C(�r) is again the PSF, this time of the probe forming
condenser lens (and the condenser aperture).

The propagation to the detector plane is again the mathe-
matical equivalent of a Fourier transform, which leads to

�det (�k) = t (�k) ⊗ c(�k) · e−2πi�k�r0 (7)

where we used the Fourier theorems of multiplication and
convolution which state that a convolution in real space is
equal to a multiplication in Fourier space and vice versa.

The measured signal S(�r0) is then the wave intensity
integrated over the detector area D and weighted with a
detector function d(�k),

S(�r0) =
∫

D

∣∣∣�det (�k)

∣∣∣2 · d(�k) · d�k (8)

Thus, the detector function determines the measured
properties in a crucial way and has to be considered carefully
when dealing with DPC microscopy in the subsequent text.

For both, CTEM and STEM we would like to emphasize,
that the recording media is only able to record the intensity
of the incoming wave. The phase of a wave front which hits
the detector can in general not be recorded, except when
a holographic technique is used, where the phase can be
reconstructed from an interference pattern. Unfortunately,
magnetic information is phase information of the wave
leaving the specimen, as will be shown in the subsequent
text. Thus – with the exception of electron holography – the
techniques of Lorentz microscopy which are described in the
subsequent text aim on converting the phase information of
the exit wave into an intensity information of the detected
wave front.

3.2 The magnetic specimen as phase object

In geometrical optics it is straightforward to calculate the
deflection of the electron beam caused by the Lorentz
force according to equation (12) in the subsequent text.
This very descriptive treatment allows a first approach to
the various methods of Lorentz microscopy. However, this
description is usually not sufficient to completely understand

the image formation process and the interpretation of image
intensities. Therefore another more theoretical formulation is
necessary.

3.2.1 Magnetic phase shift

It has been shown by Aharonov and Bohm (1959), that the
vector potential �A(�r) generated by a magnetic induction
distribution �B(�r) manifests itself in a phase shift of a
bypassing electromagnetic wave.

The phase shift ϕ between two different paths γ a and γ b

which share the same starting and end point can be calculated
to be

ϕ = e

�

(∫
γ b

�A · d�s −
∫

γ a

�A · d�s
)

= e

�

(∫
γ b−γ a

�A · d�s
)

(∗)= e

�

∫
	

∇ × �A · d �f (∗∗)= e

�

∫
	

�B · d �f (9)

where at (∗) Stokes rule is applied, leading to an integral
over the area 	 limited by γ a and γ b. Furthermore at (∗∗)

the identity

�B = ∇ × �A (10)

was used. This is illustrated in Figure 3 where the location
where the two different paths enter the specimen are denoted
by ‘a’ and ‘b’.

Equation (9) connects the phase shift ϕ with the mag-
netic flux that penetrates the area 	 enclosed between the
two paths. As a transmission technique measures physi-
cal values only integrated along the beam trajectory (z
direction), a further modification of equation (9) makes
sense,

ϕ = e

�

∫
	

�B · d �f = e

�

∫∫
B⊥ · dz · dx (11)

where
∫

B⊥ · dz can be attributed to the collected phase
shift along the electron trajectories. This notation also
emphasizes that only the component of B⊥ perpendicu-
lar to the electron beam’s trajectory contributes to ϕ. For
a simple treatment, one can assume that the fields out-
side the ferromagnetic specimens are negligible, which is
often the case for thin and longitudinally extended films.
In a further assumption, the induction is considered to
be constant over the thickness z of the specimen. Then,
it is easily understood that equation (11) describes the
total flux contained within a rectangular section of the
specimen dx · dz which leads to the observable phase
shift ϕ.

This redraft of equation (9) shows, that the integrated
magnetic induction which is accessible in the experiment
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Figure 3. Demonstration of the interrelationship between beam
deflections due to the Lorentz force and the corresponding phase
shift. (a) Specimen with in-plane induction. (b) Phase shift of
electron wave after the magnetic specimen that can also be
interpreted as tilting the incoming beam by the Lorentz angle βL.
(c) Course of the signal detected by a DPC detector.

is directly connected with the spatial derivative of the phase
(dϕ/dx) rather than with the phase ϕ itself. A fundamental
principle, which can be derived from equation (11) is also,
that in electron microscopy, as in most measurements, it
is the magnetic induction which is detected rather than the
magnetization �M itself. Even though �B ∼ �M , if stray (and
internal demagnetizing) fields are neglected for simplicity
this is important to keep in mind.

Furthermore, the Lorentz angle for a magnetic induction
B0 can be derived from equation (11), if the x direction is
thought to be perpendicular to the B field.

The phase shift ϕ is connected with a wave propagation of
ϕ

2π
· λ for the electron wavelength λ (≈ 1.97 pm for 300 keV

electrons), which leads in a geometrical optic approach to
the Lorentz angle

βL = λe

2π�

∫
B0 · dz (12)

Assuming realistic values the Lorentz angle βL is in the
microradian range, which is small compared to typical Bragg
angles of 1–10 mrad for diffraction from crystalline lattice
planes.

As a tilt of a parallel beam with respect to the optic
axis converts in the back focal plane of a lens into a focal
point not centered on the optic axis, in reciprocal space

(which is equivalent to the back focal plane of a lens)
the beam deflection can be expressed as a distinct point
located at

δ

(
�k − e

2π�

∫
B · dz · k̂x

)
(13)

where k̂x is the unit vector in kx direction within the coor-
dinate system assumed in the preceding text. For a com-
mon magnetic specimen that point is located very close to
the central beam, because the deflection is usually rather
small.

In the case of thin magnetic samples, the specimen’s
absorption is often neglected, since the effect of magnetism
is a pure phase shift, as explained in the preceding text.
The specimen’s transmission function in equation (2) then
simplifies to

T (�r) = eiϕ(�r) (14)

3.2.2 Electrostatic phase shift

In the previous section the phase shift of the electron
wave due to magnetic induction was treated, which is the
fundamental mechanism for Lorentz microscopy.

However, there exists also a phase shift due to (inner)
electrostatic fields. This phase shift occurs in ‘real’ samples,
which have a finite material thickness and thus modify the
refractive index for electrons. The effect shall be briefly
discussed in the subsequent text.

For Lorentz microscopy it is especially important to
distinguish between magnetic and electrostatic phase shifts.
Here we will describe several possibilities.

In the absence of external electric fields, the electrostatic
phase shift ϕel from a specimen is given by

ϕel = 2π

λ
· E + E0

E(E + 2E0)
·
∫

V · dz (15)

where V is the mean inner potential of the sample, E and
E0 are, respectively, the kinetic energy and the rest energy
of the electrons (Reimer, 1997).

Comparing equation (15) with the magnetic phase shift
(equation (11)) shows a way to separate the magnetic phase
shift from the electrostatic phase shift.

The first method uses the fact that due to the vectorial
character of the integration in equation (11) the phase from
the magnetic signal will be inverted after a rotation of the
specimen around a horizontal axis by 180◦, while this is
not the case for pure electrostatic phase shifts. Obviously,
if two images are taken with the specimen rotated by 0◦

and 180◦, the magnetic and the electrostatic phase shifts can
be separated by addition or subtraction of the two images.
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An addition of the images (possibly after an inversion and
realignment of the images by means of image processing
techniques) renders purely the electrostatic phase shift, while
from a subtraction one obtains purely magnetic phase shifts.
It is important to note for quantitative measurements that
the obtained phases are multiplied by a factor of 2 since
the corresponding phases add up, while the unwanted ones
cancel to zero. These experiments can be performed using
a special specimen holder which allows the specimen to
be rotated by 180◦ as in Huhle, Goldberg and Lichte
(2000).

Another possibility is the separation by magnetic sat-
uration. This method was proposed by Dunin-Borkowski,
McCartney and Smith (1998) and utilizes the fact that a mag-
netic particle saturated in two antiparallel directions reverses
its magnetic contribution to the phase shift. Thus, the electric
phase shift can be extracted from two images in antiparallel
saturation simply by adding both phases, while the magnetic
phases simply cancel out. Once the electric phase is known, it
can be subtracted from images of the same particle recorded
at arbitrary external field values.

3.3 Fresnel imaging

3.3.1 Introduction

As pure phase objects magnetic specimens do not produce
an in-focus contrast which can be related to the internal
magnetic structure of the sample. This can easily be seen in
the case of an ideal imaging condition, where one assumes
a δ-shaped PSF and also the CTF c(�k) ≡ 1. This yields
I (�r) = |eiϕ(vecr)|2 = 1 without any spatial information about
the object.

The easiest way to obtain images of micromagnetic
structures is to defocus the imaging lens by values of
micrometers to centimeters, depending on the thickness and
induction strength of the specimen, which leads to out-of-
focus Fresnel images. In terms of geometric optics this is
visualized in Figure 4.

Owing to the Lorentz force the electrons exit from the
specimen at certain angles, depending on the direction and
strength of the magnetic induction within the specimen. This
leads at each domain wall to two neighboring beams, which
are convergent or divergent below the sample. If now the lens
is not focused on the specimen’s exit surface, but on a plane
slightly below, a higher (or lower) intensity is recorded owing
to the converging (or diverging) beams. Thus, in Fresnel
imaging it is the change of the magnetic induction which is
imaged rather than the induction itself. Domain walls appear
as bright or dark lines, depending on the relative alteration
of the magnetization in the two adjacent domains.

Underfocus

Overfocus

Figure 4. Schematic representation of Fresnel imaging. The elec-
tron beam, deflected by the Lorentz force leads to convergent and
divergent beams below the specimen (overfocus) which lead to
increased or decreased electron intensity in the corresponding areas.
In converging areas, interference of the coherent partial waves can
be observed, while in divergent areas only a decrease in intensity
is observable. If a plane above the specimen is imaged (overfocus),
the contrast changes sign.

This defocusing works both ways, both for the imaging
of a plane below and also above the specimen, leaving
the location of the visible domain walls unaltered, but
changing the contrast from white walls to black walls and
vice versa. This is because the deflected electron beams can
be considered also to come already tilted by βL from the
area above the specimen, as can be seen in Figure 4 and for
a practical example in square-shaped magnetic particles in
Figure 5.

The description of the Fresnel mode in terms of wave
optics shall be only briefly sketched, as a complete treatment
is rather demanding. As shown in equation (13), an area with
a certain constant magnetic induction B0 can be attributed to

(a) Overfocus (∆f = +108 mm)

1 µm

(c) Orientation of magnetic
     induction

(b) Underfocus (∆f = −83 mm)

Figure 5. Experimental Fresnel images of square shaped magnetic
particles (Ni80Fe20), taken in overfocus (a) and underfocus (b)
condition. (c) Gives a schematic representation of the specimen’s
induction (arrows).
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a distinct point in the Fourier space of the back focal plane.
Defocusing the microscope results in a shift of the phase
in the back focal plane due to the multiplication with the
phase factor e−iπλ·�z·k2

in equation (3). This phase factor in
reciprocal space in turn causes a spatial shift of the image of
the corresponding domain in real space by eλ

2π�
· �z· ∫ B0 dz

and thus an overlap or separation of the images of individual
domains. In the region of overlap, one has higher intensity
(a bright wall), in regions of separated domains due to the
shift the intensity is reduced (a dark wall).

It should be noted here, however, that due to the necessary
defocusing to be able to see contrast, one does unavoidable
get Fresnel fringes, especially at the borders of the specimen.
This is mainly due to electrostatic phase shifts, but also at any
region boundary, where the refractive index, that is the phase
shifting property of the specimen changes abruptly, one will
observe Fresnel fringes. Thus, also black domain walls are
usually lined with Fresnel fringes. The same holds for white
domain walls. However, in addition to Fresnel fringes one
also obtains biprism interferences due to the coherent overlap
of partial electron wave fields which have been deflected
toward each other below the specimen.

3.3.2 Pros and cons

Fresnel imaging is easy and cheap. On an existing TEM it
is not a problem to do magnetic observation using Fresnel
imaging, provided the objective lens field does not influence
the sample. This can be achieved in most commercial
microscopes by switching to the ‘low magnification’ mode,
where the objective lens is usually turned off, and a long focal
length intermediate or diffraction lens is used for imaging.
However, the interpretation of the images in terms of
magnetic induction maps is not straightforward and requires
some knowledge, as only induction variations are recorded.
Even for experts it is often not possible to reconstruct the
magnetization of a sample because continuous rotation of
the magnetization causes no detectable contrast.

Furthermore for the defocus value a compromise has
to be found. A small defocus causes only small mag-
netic contrast in the image, while a strong defocus of
the microscope – giving bright and clearly visible domain
images – results in a large area covered with Fresnel fringes,
blurring the details within the specimen. This is equivalent to
a decrease of the maximum achievable resolution. Therefore,
for structures with lateral extensions smaller than 300 nm it
becomes increasingly difficult to gain useful magnetic infor-
mation.

In the last few years, a new trend in Fresnel microscopy
has appeared. As described in Section 5.1, Fresnel images of
different defoci are used to reconstruct the exit wave function

and thus allow a detailed insight into the interior magnetic
structure of the specimen.

3.3.3 Example

As a typical example, Figure 5 shows Fresnel images
obtained from a patterned polycrystalline Ni80Fe20 alloy. The
squares hava a lateral dimension of 1 µm and 30 nm thickness
and are supported by an electron transparent Si3N4 mem-
brane. Figure 5(a) and (b) show the contrast reversal when
changing the defocus from overfocus Figure (a) to underfo-
cus Figure (b). Figure 5(c) schematically shows the induction
distribution which is the same for images Figure 5(a) and (b).
The domain wall contrast (bright or dark with respect to
the specimen’s average brightness) shown corresponds to an
overfocus condition. It is obvious that for a given defocus
it is possible to determine the direction of rotation of the
specimen’s induction from the wall contrast. It is also worth
to note that the bright and dark perimeter of the squares in
Figure 5(c) also changes with both the direction of rotation
of the induction and with the defocus. In the experimental
images, this contrast at the specimen’s perimeter is masked
by the always present contrast due to Fresnel fringes. Nev-
ertheless, it can be recognized since the appearance of the
fringe at the specimen’s perimeter is different in gray shade
and width for the two different cases.

3.4 Foucault imaging

3.4.1 Standard Foucault imaging

Introduction
In principle not difficult to understand, Foucault imaging
needs some experimental skill to yield interpretable results
and often suffers from experimental deficiencies.

As pointed out in the preceding text, every Lorentz
angle (equation (12)) forms a distinct point in reciprocal
space, according to equation (13). Thus, the back focal plane
of the imaging lens comprises, in spatial separation, the
various magnetic inductions which exist within the specimen.
Therefore, if an aperture is introduced into the diffraction
plane of the imaging lens, it will allow the selection of
particular magnetic inductions by selecting the corresponding
focal points to be transmitted through or blocked by the
aperture. In this sense, it may be considered to be a
‘directional induction filter’ (see Figure 6).

An image which is obtained with an aperture in the
back focal plane shows dark areas, if the corresponding
magnetic induction is blocked by the aperture, otherwise the
domains appear bright, with gradual shades in the boundary
regions (see Figure 7). It should be noted here that there
are bright (upper right corners) and dark (top of particles
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Lens

Aperture in back focal plane

Foucault image

Figure 6. Contrast formation in Foucault imaging mode. The incoming parallel electron beam becomes deflected by the specimen’s
induction. Differently deflected beams are focused into different spots in the back focal plane of the lens. A semiinfinite aperture can be
used to block certain spots to contribute to the final image, that is, certain areas of the specimen which are magnetized in the same direction
become dark.

(a)

700 nm

(b)

Figure 7. Comparison of (a) a Fresnel image and (b) a Foucault
image taken from the same specimen. Whereas in (a) the domain
walls are visible as bright and dark features, in (b) areas of sequal
induction direction are shown in equal gray shades. The induction
direction selected by the aperture position is indicated by an arrow.
Please note that stray fields emerging from the specimen can be
seen as bright and dark shades surrounding the specimen.

and right lower corner of right particle) shades outside the
specimen which are effects of stray fields which emerge
locally from the specimens. Although the explanation of
contrast formation given in the preceding text was based
strictly on geometrical optics it shall be noted that in terms of
wave mechanics it is straightforward to modify the aperture
function p(�k) in equation (3) in order to build a ‘directional
induction filter function’.

Pros and cons
Similar to the Fresnel technique, the Foucault mode princi-
pally does not need any special equipment, provided the spec-
imen area is magnetic field free. In addition, it is an in-focus
technique, which avoids the Fresnel fringes which tend to
blur the magnetic information, especially for large defoci and
small particle dimensions (i.e., smaller than approximately

300 nm). The crucial point in this case is the aperture – and
at the same time the largest problem which in most cases pre-
vents the technique to be used practically. As pointed out in
Section 3.4.1, the angles between the magnetically deflected
beams and the central beam are very small which in turn
means that in the back focal plane of the imaging lens the
central beam and the Lorentz deflected beams are very close
to each other. This makes the lateral positioning of the aper-
ture a very tedious task, especially as the apertures usually
are not confined by smooth boundaries, but are in general
rather jagged and rough, which makes it extremely diffi-
cult to determine which parts of the Lorentz deflected beams
have been blocked by the aperture. In addition to that, the
aperture usually is contaminated by more or less insulating
debris, which causes intolerable phase shifts due to electro-
static charging. In total, these technical problems presently
prevent the Foucault technique from being widely used.

3.4.2 Coherent Foucault imaging

Coherent Foucault imaging is also a Foucault imaging tech-
nique as in 3.4.1. In this case, the contrast is not achieved
by an absorbing semi-infinite aperture placed in the diffrac-
tion plane, but rather by a phase shifting electron transparent
membrane. For these operation conditions, areas of equal
phase shift, that is equal magnetic flux can be made visible
(Chapman et al., 1994; Chapman, Johnston and Heyderman,
1994). The technique requires coherent illumination, that is
a field emission electron gun and suffers from contamina-
tion problems of the phase shifting membranes. Nevertheless,
under optimum experimental conditions, meaningful results
have been obtained in the past (Johnston and Chapman, 1995;
Chapman et al., 1994).
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M = 0

(a) (b) (c)

M = 0 M = 0

Figure 8. Schematic representation of the beam tilt and corresponding shift of the electron beam cone leaving the specimen in the detector’s
plane. (a) For a non-magnetic specimen, the beam is not deflected, the segmented detector does not measure any deflection. (b), (c) Owing
to a nonzero induction within the specimen, the beam becomes tilted, causing different segments of the detector to record intensity. Thus,
the direction of deflection indicates the direction of the induction in the probed spot. The direction and amplitude of deflection can be
measured by a four-segment position sensitive device.

3.5 Differential phase contrast (DPC)

3.5.1 Introduction

One of the more advanced and also more demanding tech-
niques of Lorentz microscopy is DPC microscopy. Unlike
the previous methods, DPC utilizes a scanning transmission
microscope (STEM) and needs a special detector configu-
ration as described in the subsequent text. It should, how-
ever, be noted here that it has been shown by McCartney,
Kruit, Buist and Scheinfein (1996) that it is also possible to
obtain DPC in a modified TEM, when an electron biprism is
mounted on a condensor aperture.

For STEM-based DPC, a focused electron beam with a
certain convergence semi-angle αin is scanned across the
specimen (see Figure 8). The electrons leave the sample in a
cone-shaped beam, which causes a disk shaped illumination
on a detector located a certain distance from the sample,
termed the camera length. The Lorentz force causes a tilt of
the cone due to beam deflection from the specimen which
is usually in the range of 10−5 − 10−7 rad. This results in
a shift of the illuminating disk in the detector plane, which
is – depending on the camera length used – typically in the
µm to mm range. If now the detector has the ability to record
the shift with respect to both direction and strength, it is
possible to derive information on the magnetic induction of
the area which is illuminated by the electron probe.

DPC was first proposed by Dekkers and de Lang (1974).
They discovered that an asymmetric detector function in
equation (8) can detect the spatial derivative of the phase
shift along a particular direction.

Since in the STEM mode only a small area of the specimen
around �r0 is illuminated by the beam, the phase shift acting
on the beam from this area can be linearly approximated by

ϕ(�r) ≈ ϕ(�r0) + (�r − �r0) · ∇�r−�r0ϕ(�r0) (16)

This modifies the specimen function (equation (2)) to

T (�r) ≈ eiϕ(�r0)−i�r0·∇ϕ(�r0) · ei�r ·∇ϕ(�r0) (17)

For the action of this linearly approximated phase shift in
the detector plane (which again is in reciprocal space) on the
intensity distribution of the probe beam one obtains

∣∣∣�det (�k)

∣∣∣2 ≈
∣∣∣c(�k) ⊗ eiϕ(�r0)−i�r0·∇ϕ(�r0)−2πi�k�r0

·δ
(

�k − 1

2π
∇ϕ(�r0)

)∣∣∣∣
2

= p

(
�k − 1

2π
∇ϕ(�r0)

)
(18)

where �det stands for the Fourier transform of the speci-
men function (17) convoluted with the probe’s point spread

function c(�k). When the observable intensity
∣∣∣�det (�k)

∣∣∣2
is

calculated one obtains the microscope’s aperture function
p(�k), however shifted by − 1

2π
∇ϕ(�r0). This can be inter-

preted as a shift of the electron beam on the detector by
a distance which is proportional to the local phase gradient
∇ϕ(�r0).

These considerations explain the name of this particular
method and also show its limits. If the variation of ϕ occurs
at a length scale comparable or smaller than the probe
diameter, this simplified treatment is no longer valid. Modern
microscopes, however, are capable to form probe diameters
of 5–10 nm even without an excited objective lens, when
equipped with a field emitter. Therefore, at present this does
not impose severe limitations on the method.

3.5.2 Signal detection, four quadrant detector

Various detector configurations have been considered, such as
the four quadrant detector (Rose, 1977) and the annular four
quadrant detector (Chapman, McFadyen and McVitie, 1997).
The latter is superior concerning both the signal to noise ratio
and the separation of the magnetic phase shift from other
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effects which can also modify the measured intensity, which
might falsely be interpreted as an additional magnetic phase
(Chapman, McFadyen and McVitie, 1997).

As these position sensitive detectors are not part of the
standard detectors delivered with common electron micro-
scopes, the usual commercial bright-/dark-field detector used
in a regular STEM has to be replaced by a custom-made four
quadrant detector with amplifiers.

To record a DPC image, the specimen is scanned with the
electron probe and for every beam position the difference
values of two opposite detector segments are recorded, as
shown in Figure 9. Here, for simplicity a line scan across a
180◦ domain wall is chosen for demonstration (a).

The beam position on the detector is shown in (c) as a
shaded area for two scanning positions r1 and r2. Taking the
difference values of two opposite detector segments leads to
two recorded values shown in (b) for the complete line scan.
For real imaging, not only line scans are recorded. Instead,
a two-dimensional scan is performed which leads to a set
of two-dimensional arrays of image data. In general, these
sets are represented in a gray or color encoded image rather
than a graph. Thus, a DPC data set consists of two images
representing the x and the y component of the magnetic
induction in the specimen plane. A double arrow is shown
in the image pairs (Figure 10) to indicate both the mapping
direction and the sign and amplitude of the local induction
component as indicated by the gray scale given.

In Figure 10(c) an alternative variant of illustration is used.
The two measured (gray) values at each scan point (x,y)
are combined to locally construct a vector, which gives the
direction and amplitude of �B(x, y). Doing so for every image

(a)

(b)

(c)
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Figure 9. Interrelation of specimen’s local induction, beam shift on
the detector segments and measurable signal. (a) An electron probe
is scanned across a magnetic specimen. The two locations indicated
by r1 and r2 lead to the beam displacement on the detector segments
shown in (c). If the signals of opposing segment are subtracted,
positive and negative signals are obtained, indicating the Bx and By

components at the probe’s location.

(a) (b) (c)

500 nm

Figure 10. DPC image pair with (a) horizontal and (b) vertical
induction component recorded. The double-headed arrow indicated
the mapping direction and with its gray scale also the strength of the
local induction in that direction. From the individual image points
a local induction vector map can be reconstructed as shown in (c)
for this example.

point, one is able to reconstruct a vector field, which reflects
the magnetic induction. It turns out to be useful to use a
threshold value to suppress noise contributions from outside
the particle or from the particle’s edges. This illustrates the
problems of this type of representation. Even contrasts due
to edge effects will lead to the creation of local ‘induction
vectors’, which are, however, not meaningful. A misinter-
pretation can usually be avoided by simple comparison of
contrasts in the component images with the reconstructed
induction vector map.

As a DPC instrumentation is up to now commercially not
available, only custom-made solutions are in use. Though
analog recording systems have delivered excellent results,
a fully digitized system facilitates the operation (Uhlig and
Zweck, 2002). For this purpose, a fast AD/DA (analog-to-
digital/digital-to analog) converter is necessary to read out
the detectors. The synchronization of the scanning with the
detector read out timing is of crucial importance, so it can
be advantageous not to use the scan signal generated by
the STEM software of the microscope. A good solution is
to provide an external scan signal, which is driven by the
same computer which also triggers the detector read out.
This can be achieved by a corresponding software package
which provides the recording functions and image processing
routines for vector fields as well. It is of great use if there is
also the ability to control further microscope functions with
the same software.

3.5.3 Pros and cons

As in every scanning technique, the achievable spatial reso-
lution depends mainly on the diameter of the electron probe.
Although in regular STEM imaging probe diameters in the
0.1 nm regime can be achieved (Crewe, 1970), this is not pos-
sible for DPC imaging. Since the specimen region is required
to be magnetic field free, the probe forming objective lens
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(a) (b) (c)

(d) (e) (f)

1 µm

1 µm

Figure 11. DPC image pairs (a), (b) and (d), (e) for double ring systems which show two different micromagnetic configurations. These
configurations are shown in (c) and (f). In (c) the two rings show opposite sense of induction circulation, while in (f) the circulation is in
both rings counterclockwise. Obviously, the specimen areas which are common to both rings exhibit a different micromagnetic situation.
In (c) the common area is homogenous, while in (f) a vortex is formed in this region.

cannot be used like in standard STEM. A compromise can,
however, be made if the probe forming condenser lenses
are used in combination with a FEG to form a probe as
small as possible. An achievable resolution of 5 nm has been
demonstrated.

A disadvantage of DPC – at least for lithographically
structured specimens as described in the preceding text – is
the comparably high contamination rate of the specimen.
Especially after subsequent scans over the same area con-
siderable amounts of contamination are deposited onto the
sample rendering it useless in the worst case. This effect
is probably due to the impossibility of thoroughly cleaning
the specimens after structuring, since the electron transpar-
ent membrane would be destroyed by standard procedures.
Therefore, residual resist from the e-beam lithography pro-
cess is the main source for contamination.

3.5.4 Examples

DPC microscopy is capable to image the internal magnetic
structure of specimens, even if the change of the induction’s
direction is not as strong as necessary to create a reasonable
contrast in the Fresnel mode. This is demonstrated in
magnetic ring structures, as shown in Figure 11.

The double ring system presented in Figure 11 has inner
diameters of 1 µm and the outer diameters are 2 µm. The two
rings overlap in such a way that in the region of overlap the
ring width is identical to the width of each individual ring,
that is, the overlap is 100%. The material used is Permal-
loy (Ni80Fe20) with a thickness of 20 nm. The structure,
resembling the number ‘8’, shows two different magnetic
configurations in remanence. In (a) and (b) the DPC image
pair shows a state with different directions of magnetization
rotation in the two rings, (c) provides a sketch of the mag-
netization. The continuous rotation can be seen especially
in (b) by the continuous change of the gray scale along the
circumference, except in the immediate vicinity of the over-
lap region of both rings. This intersection area is clearly
bordered by a distinct contrast and is of constant color. Dif-
ferently from the continuous rotation in the rest of the ring,
one finds a constant magnetization direction inside that area.

In contrary, Figure (d) and (f) show the same sense of
magnetization rotation in both rings. This causes a 180◦

change in the magnetization direction in the intersection
region. Here a vortex-like structure as described in Raabe
et al. (2000) has formed.

DPC also enables a deeper insight in the internal struc-
ture of magnetic configurations. In Figure 12, a Permal-
loy ring of inner/outer diameters of 2.5/3 µm, respectively
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(a) (b)

Figure 12. Detailed structure of domain walls in magnetic ring
structures. (a) Induction vector map of a transverse wall which con-
sists of two 90◦walls, forming a triangular structure. (b) Induction
vector map of a vortex domain wall, where a vortex mediates the
change of induction between the two opposing parts of the head-
to-head wall. Below the induction maps the corresponding DPC
component image pairs are displayed.

and a thickness of 20 nm is shown for an external field of
7.9 kA m−1 applied in the vertical image direction. The so-
called onion state (Rothman et al., 2001) which appears here
comprises two 180◦ domain walls, which according to the-
ory can be of two domain wall types, the transverse and the
vortex domain wall (McMichael and Donahue, 1997).

In Figure 12(a) a transverse domain wall is imaged by
DPC. The region of the wall is shown as a gray scale image
pair (bottom) and also as a vector field reconstruction (top).
Owing to limitations in hardware, the individual arrows,
indicating the local induction direction are hardly distinctly
visible. Larger arrows are used to indicate the averaged
induction direction in different areas of the structure. The
typical theoretically predicted triangular structure is visible,
where inside the triangle the magnetization is perpendicular
to the structure’s edge and also to the magnetization outside
the triangular region.

Figure 12(b) visualizes the vortex domain wall type, where
the 180◦ change in magnetization direction is accomplished
via a vortex generation.

For the vector field reconstruction threshold values have
been used to omit vectors with too small or too large absolute
values, which can attributed to structural properties.

3.6 Holography

3.6.1 Introduction

Another technique, capable to give information on mag-
netic structures, is electron holography (Bromwich et al.,
2005; Lau and Pozzi, 1978; Tonomura, 1983; Tonomura
et al., 1980; Dunin-Borkowski, McCartney and Smith, 1998;
Lichte, 2002; Lehmann and Lichte, 2002), which was
invented by Dennis Gabor in 1948 (Gabor, 1948).
Holography was initially proposed as a method to reconstruct

the wave field which exits from a specimen both in amplitude
and phase. Since, after Aharanov and Bohm (1959), the vec-
tor potential of a magnetic specimen influences the phase of
an electron wave, it is obvious that the phase shifting action
of a magnetic specimen on an initially plane wave can be
measured by electron holography.

To record the phase of a wave, an interference experiment
has to be carried out. If the electron wave after transmission
through the specimen interferes with a coherent reference
wave and the corresponding interference pattern is recorded,
the phase shift can be recovered by mathematical procedures.

This procedure of two interfering wave fronts, whose
wave vectors form an angle α(�k1,

�k2) 
= 0 is termed off-axis
holography. Is has the advantage that in the reconstruction
process the image and its conjugate (twin image) are spatially
separated, that is, a mutual influence between the two images
can be excluded (Leith and Upatnieks, 1962).

In practice, the region of interest of the sample is placed
in one half of the illuminating electron beam, while the
second half of the beam is ideally unaffected by the specimen
and therefore can act as a reference wave (Figure 13). A
positively charged wire with a diameter in the sub-µm
range is used as a Möllenstedt biprism (Möllenstedt and
Düker, 1956) to tilt the two partial beams toward each other,
producing an interference pattern in the recording plane.

In a strongly simplified mathematical model in which
the influence of the microscope itself is omitted, the object
wave �Obj (�r), that is the primary wave modulated by the
specimen’s transmission function according to equation (2)
can be written as �Obj (�r) = U(�r) · ei(�k0�r+ϕ(�r)), while the
reference wave would be written as �Ref (�r) = ei�k0�r . If both
waves are tilted toward the optic axis by ±�k′, the resulting
two waves can be written as

�Obj (�r) = U(�r) · ei((�k0−�k′)�r+ϕ(�r)) and

�Ref (�r) = ei((�k0+�k′)�r) (19)

Then, in the plane of observation the intensity is given by

I (�r) = ∣∣�Obj (�r) + �Ref (�r)
∣∣2 =

(
U(�r) · ei(�k0−�k′)�r+iϕ(�r)

+ ei(�k0+�k′)�r
)

·
(
U(�r) · e−i(�k0−�k′)�r−iϕ(�r) + e−i(�k0+�k′)�r

)
= U 2(�r) + 1 + U(�r) ·

(
e−i(2�k′�r−ϕ(�r)) + ei(2�k′�r−ϕ(�r))

)
= U 2(�r) + 1 + 2U(�r) cos(2�k′�r − ϕ(�r)) (20)

As is obvious in equation (20), the phase information ϕ(�r)
of the magnetic specimen is contained in the interference
cosine term. It can, however, be extracted in Fourier space.
For this purpose, first the recorded image (i.e., I (�r)) is
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Figure 13. Typical setup for off-axis holography. The specimen is
illuminated by one half of the incoming electron beam, the second
half acts as the reference wave. The two partial waves are then
brought to interference by the electron biprism, a positively charged
wire. After further magnification, the hologram can be recorded in
the image plane.

Fourier transformed, leading to

FT
[
I (�r)] = FT

[
U 2(�r)] + FT [1] +

∫
U(�r)

(
e−i2 �k′�r+iϕ(�r)

+ ei2 �k′�r−iϕ(�r)
)

· e2πi�k�rd�r = FT
[
U 2(�r)]

+ δ(�k) +
∫

U(�r)
(
e−i2 �k′�r+iϕ(�r)+2πi�k�r

)
d�r

+
∫

U(�r)
(
ei2 �k′�r−iϕ(�r)+2πi�k�r

)
d�r = FT

[
U 2(�r)]

+δ(�k) +
∫

U(�r)
(
eiϕ(�r) · e−i2 �k′�r

)
e2πi�k�rd�r

+
∫

U(�r)
(
e−iϕ(�r) · e−i2 �k′�r

)
· e2πi�k�rd�r

= FT
[
U 2(�r)] + δ(�k) + FT

[
U(�r) · eiϕ(�r)

]
⊗

∫ (
e2πi�k�r−i2 �k′�r

)
d�r + FT

[
U(�r) · e−iϕ(�r)

]
⊗

∫ (
ei2 �k′�r+2πi�k�r

)
d�r = FT

[
U 2(�r)] + δ(�k)

+ FT
[
U(�r) · eiϕ(�r)

]
⊗ δ

(
�k −

�k′

π

)

+ FT
[
U(�r) · e−iϕ(�r)

]
⊗ δ

(
�k +

�k′

π

)
(21)

The first term describes the Fourier transform of the
transmission function of the specimen. For all practical cases,
the specimen’s dimensions are larger than the resolution of
the technique by at least a factor of 10, which leads to
Fourier coefficients which are located very close to the center
of the Fourier spectrum, compared to the extension of the
complete Fourier spectrum out to its resolution limits. The
second term also contributes explicitly to the center of the
Fourier spectrum. The latter two terms are shifted by ± �k′

π

and contain the specimen’s amplitude and phase information
and the corresponding complex conjugate.

Since, obviously, the terms FT
[
U(�r) · e±iϕ(�r)], which

make up the so-called side bands, contain all information
about the specimen, one simply has to cut out the part of the
Fourier transform and undo the shift by ± �k′

π
before inversely

transforming the partial spectrum. This back transformation
yields then both the amplitude and phase function, that is, the
exit wave function of the specimen under investigation. To
prevent artifacts, care has to be taken to ensure that the side
band information does not overlap with the central band’s
information content. This can conveniently be achieved by
changing �k′ to the desired value by tuning the biprism’s
voltage.

As the specimen is not the only source of phase shifts
in the electron microscope, these other sources have to be
eliminated to reveal the specimen’s phase shift only.

For this purpose, the specimen holder is removed from
the microscope without changing the imaging conditions
after every acquisition and a reference hologram is recorded.
This hologram now contains only the parasitic phase shifts
caused by the microscope, due to lens aberrations, charging
effects, and so on. After identical treatment of this refer-
ence hologram, one obtains a reference wave function and
consequently the specimen’s exit wave function can be cal-
culated by simply taking the difference of the disturbed and
reference wave functions (Rau, Lichte, Völkl and Weierstall,
1991; Franke, Herrmann and Lichte, 1988; Lehmann, Völkl
and Lenz, 1994).

The mathematical procedures described in the preceding
text are commercially available in the meantime, that is
the software package HoloWorks (Völkl, Allard and Frost,
1995).

Without going into any details it seems helpful to men-
tion here that for electron holography a highly coher-
ent and bright illumination is essential. Sufficient bright-
ness gives reasonably short exposure times during which
typical experimental artifacts such as drift or contamina-
tion play no or only a negligible role. For the coher-
ence required, a FEG is required. To further optimize the
imaging conditions, the use of a so-called elliptical illu-
mination is common. Detailed experimental procedures are
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given in the literature (Speidel and Kurz, 1977; Düker, 1955;
Lehmann and Lichte, 2002; Völkl, Allard and Joy, 1999).

4 BASIC EXPERIMENTAL TECHNIQUES

4.1 Application of magnetic fields

To observe not only the remanent state of magnetic samples
but also investigate magnetization processes makes it neces-
sary to generate a well-defined magnetic field in the specimen
area. As the samples are thin films, especially magnetic in-
plane fields are of interest. To generate these fields is possible
in some different ways, which are described in more detail
in the subsequent text.

4.1.1 Tilting method

The electromagnetic lenses in the TEM generate a vertical
magnetic field in the specimen region. Usually one tries to
minimize these fields by using a special low-field Lorentz
lens, as explained in the preceding text. However, moderate
vertical fields and a tilted specimen can be used to generate
the magnetic in-plane fields needed in the specimen plane.
For this method a fixed vertical field is applied and the
strength of the specimen’s in-plane field is regulated by the
tilting angle. Although simple to use, this method suffers
from some disadvantages.

The worst effect is, that in order to create an in-plane
field one always has to accept the presence of an even
stronger magnetic out-of-plane field. The effect of this field
in experiments is difficult to estimate, but a biasing effect
on switching processes is probable, especially when areas of
perpendicular magnetization are present (i.e., a vortex core
structure) in the sample.

A second disadvantage is that the rate of change of the
magnetic field is limited by the tilt speed of the holder which
means generally a few seconds for a full field sweep from +B
to −B. Experiments with fast magnetic pulses are in general
not possible. Another possible problem can arise from the
different tilt speeds for orthogonal axes in regular double
tilt holders, which have to be taken into account if during a
change of field strength and direction precise control over the
external field at any time rather than simply at the beginning
and the end of the process is required.

4.1.2 Special specimen holder

Another solution which was pursued in the last years is
to implement small electromagnetic coils on the specimen
holder to generate pure magnetic in-plane fields (i.e., Uhlig,
Heumann and Zweck, 2003). These coils can be controlled

Figure 14. Explosion view of the special holder for magnetic in-
plane fields. The specimen sits in the center of two orthogonal
magnetic fields, generated by electromagnets. The magnets can
be controlled in their strength by an external computer, which
allows perfect control over the direction of the local field. The field
strength, however, is very limited. (Drawing and construction by
Stephan Otto, University of Regensburg.)

by an external computer device connected to a DA converter
(see Figure 14).

The solution with coils on the specimen holder suffers
from different problems. Primarily, space on the specimen
holder is very limited. Only small coils can be implemented
which in turn limits the maximal achievable magnetic field.
For example, in an FEI microscope (Tecnai F30) even with a
sophisticated coil design effective fields of only about 0.02 T
were achieved due to the small specimen holder size. For
many magnetization experiments such a holder can only
be used in a reasonable way in combination with the tilt
technique, but tilting is often not possible because of space
restrictions.

Instead of using electromagnetic coils, it is also possible
to utilize the magnetic Biot–Savart fields which surround
a current carrying wire. To get a reasonable magnetic field
strength the specimen must be placed very close to the wires,
resulting in another specialized specimen holder (Yi et al.,
2004). A big advantage of this design is the predictability of
the generated magnetic fields, as the geometry is simple and
no magnetic material with hysteretic properties is involved.
Furthermore, it was shown, that the tilting of the electron
beam due to the horizontal magnetic field is cancelled out by
an opposite field of the same strength beneath the sample.
However, the problem of limited field amplitudes remains.
The fields are only applicable in one in-plane direction.

Both designs have in common the problem of heating of
the specimen holder. If a current through the wires is applied,
the coils (or wires) heat up (in most cases the devices are
operated at their very limit in order to generate sufficient
magnetic fields) and thus also the specimen holder itself.



18 Electron microscopy and electron holography

Since this heating causes thermal expansion of the holder,
investigations in the µm and nm range may suffer from
specimen drift.

Furthermore, the combination with other ways of speci-
men manipulation is very limited. Cooling or defined heating
experiments, tilting (in order to orient the specimen to a spe-
cial crystallographic direction) or other in situ measurements,
which require a different specimen holder are not possible
with these holders.

4.2 Variation of temperature, in situ experiments

It shall be only briefly mentioned that with the availability
of various specimen holder which allow the specimen to be
at low (LHe, LN2) temperatures or high temperatures up to
1200 ◦C, the experimentator has a wide range of experimental
possibilities which will be useful for future investigations
on magnetic materials. It is also possible to use specimen
holders with integrated electrical leads which can serve to
contact the specimen and to drive currents through it while
under observation.

4.3 Imaging of stray fields, elimination of inner
potentials

As was described in the preceding text, especially for pat-
terned magnetic materials it is often a problem that the
electron wave’s phase shift due to the electrostatic inner
potential is generally much stronger than the magnetically
caused phase shift. Ways to separate the two effects have
been described in the preceding text. In Figure 15(a), two
reconstructed holograms are shown. The specimen is in a
remanent magnetization state after having been saturated in
the direction indicated by the arrows. For further processing,
it is necessary to be sure that the remanent states represent
as good as possible the state of saturation, because other-
wise local deviations from the purely saturated state will
lead to artifacts in the final image which can be easily mis-
interpreted. Equal colors represent equal phase shifts and
may, for a simple interpretation, be associated with ‘mag-
netic field lines’. However, the signal is rather noisy, and
it is difficult to derive a reasonable micromagnetic pattern
from these images. After image processing according to
(Dunin-Borkowski, McCartney and Smith, 1998), the images
in Figure 15(b) are obtained. The phase shifts caused by the
inner electrostatic potential of the specimen (which is due to
thickness variations, if a homogeneous composition may be
safely assumed) have been removed and the pure magnetic
phase shift is visible. In the same way, the pure electrostatic
phase shift can be derived, as shown in Figure 15(c), left

image. The gray scale variations can be regarded to repre-
sent the specimen’s thickness fluctuations. The Figure 15(c)
right image finally shows equal phase shift contour lines,
superimposed by a shadow image of the specimens bound-
ary. The contour lines may be interpreted to be ‘magnetic
field lines’, which also extend outside the specimen.

4.4 Hysteresis loops

In order to determine hysteresis loops from individual
particles, the experimenter has to have the ability to control
the magnetic field experienced by the specimen under
investigation and to measure a quantity which is proportional
to the specimen’s magnetization or induction. As was shown
in Section 4.1, the application of magnetic fields in the
microscope is possible by various methods. In the case of
DPC it was shown that the signal is given by

I ∼ �∇ϕ(�r) = �∇(B⊥ · A) (22)

where ϕ = B⊥ · A is the magnetic flux through a specimen
cross section A. If the induction is considered to be constant
over the specimen’s thickness, equation (22) becomes

I ∼
∣∣∣∣ d

d(x, y)
(B⊥ · L(x, y) · t)

∣∣∣∣ (23)

where L(x, y) is a distance along the specimen’s plane
and t is the specimen’s thickness, giving in combination
L(x, y) · t = A. For the given situation of a position sensitive
detector, one is able to decompose the signal strength into
two partial signals which correspond to two orthogonal
directions

Ix(�r) ∝ d

dx
(B⊥ · L(x, y) · t) ∝ d

dx
(B⊥ · A)∝ d

dx
(φ(�r)) and

Iy(�r) ∝ d

dy
(B⊥ · L(x, y) · t) ∝ d

dy
(B⊥ · A) ∝ d

dy
(φ(�r))

(24)
Electron holography records the electron wave’s phase

shift due to the flux enclosed between two partial waves a
distance L(x, y) apart. Thus, using equations (22) or (24) one
can simply calculate the vector components Ix(�r) and Iy(�r)
which allow a direct calculation of local induction vectors.
Obviously, both DPC and electron holography are techniques
capable to reconstruct quantitatively induction maps of
micromagnetic configurations within specimens with a lateral
resolution down to presently 5 nm.

A state-of-the-art electron microscope with its ability to
control the most important functions via a script language
allows automatization of time consuming processes. This
opens the possibility to generate hysteresis curves of single
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(a)

(b)

(c)

100 nm

Figure 15. Separation of electrostatic and magnetic phase shifts. (a) Two reconstructed holograms taken in remanent conditions with
specimens oppositely magnetized. (b) Pure magnetic phase shifts after subtraction of the electrostatic component. (c) Gray scale image of
the electrostatic phase shift (= thickness contours, left image) and magnetic field lines (= lines of equal magnetic phase shift, right image),
superimposed with a shade image of the specimen’s contour.

particles in the µm- and sub-µm range (Uhlig and Zweck,
2004).

Only a few techniques have the ability to generate true
single particle hysteresis curves. An electron microscopy
based method can additionally provide the magnetic con-
figuration within the specimen at every point of the
loop, which makes it superior to other comparable tech-
niques.

The hysteresis loop in Figure 16 of a 1.5/0.75 µm
outer/inner diameter ring structure made of 20-nm thick
Permalloy was recorded automatically in approximately 18 h
with a fully digitized DPC device attached to a FEI Tecnai
F30. The data series consists of 209 images, which were
recorded with different external field values by tilting the

specimen in the vertical objective lens field. Before each
image was recorded, some alignment procedures were done
automatically. The images were aligned with respect to each
other using a cross correlation procedure. The software then
calculates the average magnetic induction inside the speci-
men in every image and plots its value versus the external
field value.

The jumps in the hysteresis loop indicate a switching pro-
cess, when the initial onion state changes into a flux closure
state at a field value of 6.1 kA m−1 and into the reversed
onion state at 11.6 kA m−1. The magnetic field sweep in the
opposite direction first provides a switching into the flux clo-
sure state at −2.3 kA m−1 and back into the original onion
state at −12.6 kA m−1. The fact that the loop is not closed
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Figure 16. Hysteresis loop of a single magnetic ring. As is obvious from the DPC images, (a), (b) and (c), together with the schematic
drawings besides them, the ring switches from an upwards oriented ‘onion state’ (a) into a ‘vortex state’ (b) and then into a ‘reversed
onion state’ (c). Each change of magnetic configuration is accompanied by distinct features in the hysteresis loop. The loop is not closed
completely, which is due to instrument instabilities and contamination problems during the experiment.

at the left side is due to the fact, that during the long record-
ing time of 18 h contamination of the specimen occurs which
changes the experimental conditions slightly.

In Figure 17, a complete hysteresis loop, derived from
electron holograms made on a Ni80Fe20 specimen is shown.
Figure 17(a) shows the geometric shape of the particle inves-
tigated, while images (b) through (l) give induction dis-
tributions for various stages of the loop. As can be seen
clearly, for this specimen the remagnetization starts from a
saturated state, until the specimen relaxes into a so-called
vortex state (Raabe et al., 2000; Shinjo et al., 2000). With
increasing, however reversed field direction, the vortex core
becomes shifted toward the specimen’s edge until a new,
inversely magnetized saturated state is reached. If the field
is now decreased again, first a so-called ‘C’-state forms
(Figure 17h) as an intermediate state which is then followed
by the creation of a vortex with subsequent shift and satura-
tion as before. This series illustrates nicely the tremendous
advantage of micromagnetic imaging. For each stage of the
hysteresis loop of one single individual particle the micro-
magnetic configuration is known precisely, the mechanisms
involved in magnetization reversal become obvious.

Even more impressive is the loop shown in Figure 18 of a
6-nm thick Permalloy ellipse with short and long axis lengths
of 155 and 170 nm, respectively. The data for this image
were recorded with electron holography (Heumann, Uhlig
and Zweck, 2005).

After differentiation of the reconstructed holograms accor-
ding to equation (24), the local induction vectors can be
reconstructed and the average induction of the specimen can
readily be calculated for each external field value.

The particle in Figure 18 shows a single domain switch-
ing behavior. The switching occurs between 0.24 and
0.32 kA m−1, and does not show any intermediate states as
would be expected if there was a nucleation of domain walls
or other micromagnetic configurations which might form dur-
ing the magnetization reversal. The switching can also be
seen from the inversion of the grayscale superimposed on
the particle’s images below the hysteresis loop shown. The
gray scale indicates the slope of the electron wave which
was generated by the specimen’s vector potential acting on
the initially plane wave. The induction is directed perpen-
dicular to the gray scale’s slope, pointing left or right. Lines
of equal phase shift are also displayed which indicate the
magnetic field lines within and outside the specimen.

5 IMAGE PROCESSING AND
SIMULATIONS

5.1 Transport-of-intensity equation (TIE)

A comparably new approach is the reconstruction of
the exit wave phase by using several images with
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Figure 17. Complete hysteresis cycle derived from electron holograms as described in the preceding text. The experimental images represent
the phase shift caused by the magnetic particle on the electron beam for each step of the hysteresis loop. Above and below the experimental
images, a schematic view of the induction’s course is given.

different focus conditions. Of course this technique is also
applicable for magnetic imaging (Volkov and Zhu, 2004;
Bajt et al., 2000). To illustrate the background of this
method, we follow the calculations of (Allen and Oxley,
2001).

If the wave function of the electrons is considered as a
plane wave eikz , which propagates along the z direction and
is perturbed by ξ(�r⊥, z),

�(�r⊥, z) = eikz · ξ(�r⊥, z) (25)

where �r⊥ is a vector in the x-y plane.

The Schrödinger equation for wave propagation in free
space

(∇2 + k2)�(�r) = 0 (26)

leads with the paraxial approximation, that is when the
second derivative of ξ(�r⊥, z) with respect to z is small(

∂2

∂z2 ξ(�r⊥, z) ≈ 0
)

, to

(
∇2

⊥ + 2ik
∂

∂z

)
ξ(�r⊥, z) (27)

with ∇⊥ operating in the x-y plane.
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Figure 18. Hysteresis loop of a Ni80Fe20 particle with approximately 160-nm diameter. The hysteresis loop has been determined from
holograms taken at various applied fields and shows single domain behavior of the specimen, that is, a switching between two magnetic
states without any intermediate stages. The micrographs below the hysteresis loop show (left to right) a shadow image of the specimen
used to determine the geometrical shape and holographic phase reconstructions of the induction distribution within the specimen vor the
applied fields as indicated. Between 0.24 and 0.32 kA m−1 a switching occurs as can be seen from the inverted gray scale contrast.

If now the perturbation term is replaced by

ξ(�r⊥, z) =
√

I (�r⊥, z) · eiϕ(�r⊥,z) (28)

which separates the intensity from the phase of the wave, it is
possible to obtain the following expression which is termed
the transport of intensity equation (TIE),

∇⊥ · [
I (�r⊥, 0) · ∇⊥ϕ(�r⊥, z)

] = −k
∂z=0

∂z
I (�r⊥, z) (29)

As I (�r⊥, 0) is known as the intensity of the in-focus image
and ∂z=0

∂z
I (�r⊥, z) can be calculated from slightly defocused

images, the phase can be extracted by mathematical proce-
dures. Principally, this method measures the second spatial
derivative of the phase and thus the first derivative of the
magnetic induction.

Mathematical methods (Allen and Oxley, 2001) are used
to extract the phase information from a series of images taken
at various focus distances.

It is obvious from Figure 19 that the TIE technique is
capable to generate induction maps similar to those obtained
from differential phase contrast and electron holography. One
obvious limitation, however, seems to be the same as for
regular Fresnel imaging. For thin or weakly magnetic speci-
mens the defocus distance �z has to be chosen rather large
in order to generate sufficient contrast. Especially for pat-
terned materials, the large defocus will in combination with
the electrostatic contribution cause strong Fresnel fringes at
the perimeter of the specimen. If the specimen is small, that is

in the dimension of 300 nm or below, and thin, this will dete-
riorate the useful signal. Also, owing to a large defocus, the
PSF will blur the image and reduce lateral resolution. How-
ever, since the TIE technique is still rather new, it will be
interesting to observe what new possibilities and advanced
data processing techniques will be developed in the future
(Belaggia, Schofield, Volkov and Zhu, 2004; de Graef and
Zhu, 2001).

5.2 Image simulation from induction distributions

Fresnel images only display the magnetic induction in an
indirect way since the contrast shows only the rate of change
of the induction (see equations (9) and (11)). Experienced
Lorentz microscopists can rather easily deduce a micromag-
netic configuration which explains qualitatively the contrasts
observed, but sometimes the simple models fail to explain
details of the experimental images. To understand all fea-
tures of an experimental image in detail, it is therefore often
necessary to perform image simulations from a given micro-
magnetic configuration, which precisely take all imaging
parameters into account. To do these simulations, a realis-
tic model of the configuration under investigation is needed
for a start. Fortunately, there are various computer programs
available which are able to calculate the energetically stable
arrangement of local magnetic moments, usually by solv-
ing the Landau-Lifshitz-Gilbert equation, such as MicroMa-
gus, OOMMF, LLG or by the code written by Hertel and
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Figure 19. Induction map reconstruction from Fresnel images using the transport-of-intensity-equation (TIE) approach. Three micrographs
(a), taken at different defoci, are used as input for the TIE computation and render a Phase map (b) and – after differentiation – an induction
vector map. (Images courtesy of Kohn, Petford-Long and Anthony, 2005.)

Kronmüller (1999), which uses a finite element-like mesh
and is less susceptible to artifacts which arise from the dis-
cretization of edges with square elements. Even for DPC
images, which are by far more directly interpretable, and
for reconstructed electron holograms these simulations turn
out extremely useful, as from the micromagnetic simulations
one can calculate not only the phase shift which the electron
wave suffers from within the specimen but also due to stray
fields which extend outside the specimen. This is especially
important for patterned materials, where stray fields become
important. The simulations also allow to take into account the
stray fields above and below the specimen which are usually
simply neglected because they are difficult to deal with.

Once a micromagnetic configuration is available – usually
in the form of a three-dimensional matrix of induction
vectors – the phase shifting action on an electron wave has to
be calculated. This can be done using an algorithm proposed
by Mansuripur (1991) which allows a fast calculation.
The result is a so-called ‘phase plate’ which in detail
incorporates the local variations of phase shifts which a
certain micromagnetic configuration will imprint on an
electron wave upon transmission. Using standard electron
optical treatment, the phase distribution can then easily be
converted to either Fresnel images, DPC image pairs or
reconstructed holograms. This task is done by a software
package (Haug, Otto, Schneider and Zweck, 2003) which
also allows the specimen to be tilted with respect to the
electron beam. This is an important feature, since it allows
the investigation of specimens which have strong out-of-
plane components. These will be observable only if the
specimen is tilted to partially project the induction into
the plane of observation, that is, create a sufficiently large

induction B⊥ which is perpendicular to the electron beam
(Köhler et al., 2000).

Figures 20 and 21 give an example of the usefulness of
these image simulations. Figure 20 shows an experimental
image of a Landau structure (a, left) and a so-called

1 µm

(a)

(b)

Figure 20. Comparison of experimental Fresnel images (a) with
schematic representations of the internal induction distribution (b).
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seven-domain structure (a, right), together with simple mod-
els (b) for the micromagnetic situation. Although on first
glance the model seems to describe all features satisfactorily,
on closer inspection it does not. Although the contrast of the
walls (white or dark walls) would be correctly deduced from
the model, another detail remains unexplained. When look-
ing at the white walls of the 7-domain structure (a, right)
only, they appear in the shape of a double fork, which is
slightly tilted with respect to the specimen’s outer edges.
Also, the two forks are different. Whereas in the upper fork
the legs join smoothly into the vertical white wall, the lower
one forms a rather sharp junction with a bright spot at the
center of this junction. The same is observable for the dark
walls, but with reversed order. Obviously, the simple model
cannot explain these differences.

A micromagnetic simulation gives a more detailed picture
of the situation, as shown in Figure 21(a). The two forks
show different micromagnetic properties, as on one fork a
vortex structure is formed while the other, smoother side is
generated by a more gradual change of the direction of the
induction. Even the slight tilt with respect to the specimen’s
edges is reproduced. In Figure 21(b) the phase shifting

(a) (b)

(c) (d)

Figure 21. Comparison of an experimental Fresnel image of a so-
called 7-domain structure (d) with the result of micromagnetic
simulations (a). (b) The phase contour map of the structure in
consideration, (c) is the simulated Fresnel image, which reflects
all-important features of the true image. Note that two dark spots in
(d) stem from dirt particles. Simulation parameters are: FEI Tecnai
F30 characteristics, 300 kV, CS = 8 m (Lorentz lens), CC = 41 mm,
θc = 1.6 × 10−6 rad, size = 2 × 2 µm, thickness = 20 nm. (Images
courtesy of T. Haug.)

action of the specimen is shown. Within the specimen,
contour lines of equal phase shift are visible, which can
be interpreted in terms of magnetic field lines. Outside of
the specimen’s boundary, white and dark shades indicate
the phase shifting action of stray fields which are generated
from this configuration. Please note that between subsequent
transitions from black to white a phase shift of 2π is
included. Figure 21(c) and (d) finally show a comparison of
the simulated and the experimental Fresnel images in perfect
agreement. (Please note that the two dark spots beneath
the walls which appear in the experimental image only
are artifacts caused by dirt particles and have no magnetic
origin.)

6 APPLIED LORENTZ MICROSCOPY

In this chapter, it is intended to present an overview of recent
published work, which used magnetic imaging by electron
microscopy either as the main tool of investigation or as a
complementary tool to cross-check results gained from other
sources. As it is beyond the scope of this contribution to
discuss in detail what has been found by various groups this
will be hardly more than a commented list of references
which may serve as a first start for a more detailed reading.
The intention is to demonstrate that Lorentz microscopy has
already been applied to a broad field of problems not only
of model specimens but in contrary on many specimens
which are of immediate interest both to basic research and
industrial applications. Since domain wall movements are the
most important process for magnetization reversal processes
in extended specimens, it is an obvious task to study the
properties of domain walls in various materials (Young and
Chapman, 1993; Ploessl et al., 1993; McVitie and Chapman,
1990; Gong and Chapman, 1987; Chapman and Morrison,
1983; Chapman, Batson, Waddell and Ferrier, 1978; Akhter
et al., 1998; Petford-Long, Doole and Donovan, 1993; de
Graef, Kishi, Zhu and Wuttig, 2003; Zhu, Volkov and de
Graef, 2001; de Graef, Willard, McHenry and Zhu, 2001;
Dooley, de Graef and McHenry, 1998; Dooley and de Graef,
1997; Dooley et al., 1995; McVitie, 1995; Chapman, McVitie
and McFadyen, 1987; Chapman et al., 1977; Zweck et al.,
2001). Since the domain walls can – while moving during
a remagnetization process – get pinned at so-called pinning
sites, which contributes partially to the hysteretic properties,
investigations of these pinning sites or ‘domain wall traps’
have been conducted by Brownlie, McVitie, Chapman and
Wilkinson (2006), Ozkaya, Langford, Chan and Petford-Long
(2002) and McVitie, Brownlie, Chapman and Wilkinson
(2005). When not only slow, quasi-static magnetization
processes have to be considered, the domains exhibit inertia
or some sort of viscous properties (Rose et al., 1998;
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Goodman et al., 2000). As domain walls contain energy
which is due to increased exchange energy caused by the
spatially close location of directionally varying spins within
the wall, nature shows a tendency to reduce the domain
wall energy by either transforming into a ‘single domain
state’, which is preferred for small particles (Heumann, Uhlig
and Zweck, 2005) or by forming a vortex state (Gillies,
Chapman and Kools, 1996; Raabe et al., 2000; Shinjo et al.,
2000; Schneider, Hoffmann and Zweck, 2000, 2001, 2003;
Schneider et al., 2002, 2003; Rahm et al., 2001, 2003).

Patterned magnetic elements show under certain condi-
tions properties, which differ from those of bulk material,
simply due to the reduction in length scale. These changes
may be dipolar interaction (Kundrotaite, Rahman, Aitchison
and Chapman, 2001; Ridley et al., 2000; Kirk et al., 2000;
Bromwich et al., 2005, 2006), or plainly the formation and
behavior of magnetic domains in these patterned media (Liu,
Chapman, McVitie and Wilkinson, 2004; Lim et al., 2003;
Kirk et al., 1999, 2000, 2001; Kirk, McVitie, Chapman and
Wilkinson, 2001; Kirk et al., 2001; McVitie and Chapman,
1997; Kirk, Chapman and Wilkinson, 1999; Gomez et al.,
1999a,b; Aitchison et al., 1998; Gu et al., 1998; Kirk, Chap-
man and Wilkinson, 1997; McVitie, Chapman, Hefferman
and Nicolson, 1988; Ross et al., 2006; Bromwich, Petford-
Long, Castano and Ross, 2006; Petford-Long et al., 2006;
Bromwich et al., 2004; Owen, Hang-Yan and Petford-Long,
2002; Ozkaya, Langford, Chan and Petford-Long, 2002;
Hu, Wang, McCartney and Smith, 2005; Dunin-Borkowski
et al., 2000, 2001; Hefferman, Chapman and McVitie, 1990;
McVitie, Chapman, Hefferman and Nicolson, 1988; McVi-
tie and Chapman, 1988). In this context, it is also important
to study anisotropy effects (Gentils, Chapman, Xiong and
Cowburn, 2005) and to be able to apply in situ magnetic
fields in order to study the intermediate processes during
magnetization reversal (Hefferman, Chapman and McVitie,
1991; McVitie et al., 2003; Yu et al., 2002; Yu, Petford-
Long and Miyazaki, 2001; Shang, Hogwood, Petford-Long
and Anthony, 2001; Yu, Petford-Long and Jakubovics, 1999;
Hu, Wang, McCartney and Smith, 2005; Yi et al., 2004; Kirk
et al., 2001; McVitie and Chapman, 1997; Uhlig and Zweck,
2002).

In patterned magnetic media, it was found that the edge
roughness, rounding of corners of patterned particles and,
in general, the geometric shape does significantly contribute
to the magnetic behavior, mostly due to increased shape
anisotropies or because irregularities at the perimeter of a
particle act either as pinning sites or facilitate the formation
of domain walls or vortices (Langridge et al., 2006; Yi
et al., 2002; Crawford et al., 2002; Herrmann, McVitie and
Chapman, 2000).

The broad interest of industry in micromagnetic proper-
ties (mostly of patterned media) stems from the possibilities,

which arise for technology and production of new devices.
Some of these new devices could be patterned hard disks,
magnetic memory devices such as the frequently mentioned
MRAM (magnetic random access memory), which would
be a nonvolatile, but fast, small and energy-efficient com-
puter memory. Other devices are already in use, either as
read heads in hard disks, as so-called spin valves for sensor
applications (Lim et al., 2002a,b, Lim et al., 2004; Mar-
rows et al., 2001; Murdoch et al., 2000; King, Chapman,
Kools and Gillies, 1999; King, Chapman and Kools, 1998;
Chapman et al., 1998; Petford-Long et al., 1998, 1999; de
Morais and Petford-Long, 2000; Portier and Petford-Long,
1999, 2000; Portier, Petford-Long, Anthony and Brug, 1998,
1999b; Portier et al., 1997a,b, 1998; Kasama et al., 2005;
Ardhuin et al., 2000; Warot, Petford-Long and Anthony,
2003; Shang, Hogwood, Anthony and Petford-Long, 2001;
Shang, Petford-Long and Anthony, 2002). These sensors
always rely on one magnetic layer to be fixed (‘hard mag-
netic’) while another layer (‘soft magnetic’), which acts as
the sensing layer, is free to align its magnetic moment with
an externally applied field. To fix the hard layer, it is usually
exchange biased to an antiferromagnet underneath. During
switching, local stray fields can deteriorate the fixed layer
by creation of domain walls, reducing the desired effect
(Rickart et al., 2005; Gogol, Chapman, Gillies and Vanhel-
mont, 2002; Fassbender et al., 2002; King, Chapman, Gillies
and Kools, 2001; Rijks et al., 1997; Choi, Petford-Long and
Ward, 2003; Wang, Petford-Long and Kief, 2001; Wang
and Petford-Long, 2002; O’Grady et al., 2001; Portier et al.,
2000). This is also relevant for magnetic tunnel junctions
(Cardoso et al., 2006; Shang, Hogwood, Petford-Long and
Anthony, 2001; Portier et al., 1998; Portier, Petford-Long,
Anthony and Brug, 1999a).

Interesting and rather easily experimentally accessible are
magnetic media, which have been patterned by ion irra-
diation. In this case, the ion bombardment and implan-
tation renders the exposed areas nonmagnetic. Thus it is
rather simple to obtain patterned magnetic media which
during Lorentz imaging do not suffer from the effects of
inner electrostatic potentials, since the magnetic and non-
magnetic areas consist of the same material (McGrouther,
Nicholson, Chapman and McVitie, 2005; McGrouther and
Chapman, 2005; McGrouther, Chapman and Vanhelmont,
2004; Hyndman et al., 2001, 2002; Fassbender et al.,
2002; Warin et al., 2001; Owen and Petford-Long, 2003).
For patterned magnetic materials in the µm and sub-µm
regime, theoreticians perform micromagnetic calculations
both for static and dynamic behavior (http://math.nist.gov/
oommf/; http://llgmicro.home.mindspring.com/; Hertel and
Kronmüller, 1999; http://www.micromagus.de/) which then
may be compared to the behavior of real materials (Kirschner
et al., 2003; Schrefl, Fidler, Chapman and Kirk, 2001;
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Suss, Schrefl, Fidler and Chapman, 1999; Schrefl, Fidler,
Kirk and Chapman, 1997a,b, 1999; de Graef et al., 2006;
Saxena et al., 2004; de Graef, Nuhfer and McCartney, 1999).
Comparisons have also been made between the results from
magnetic force microscopy (MFM) and Lorentz imaging of
patterned materials (McVitie et al., 2001). Patterned mag-
netic media considerably smaller than approximately 100 nm
are expected to reach the superparamagnetic limit, where
thermal excitations are sufficient to temporarily overcome the
exchange energy. If this happens, the material will in tempo-
ral average appear paramagnetic. Therefore, it is important
to be able to study thermal effects in magnetic materials in
nanometer dimensions (Wang et al., 2002; Portier, Petford-
Long, Anthony and Brug, 1999a).

Lots of investigations have also been devoted to mul-
tilayered thin films and their magnetic properties. Lorentz
microscopy proved here also to be of immediate value, since
it was possible to directly observe the magnetic configu-
rations and processes (Chapman et al., 1999; Weir et al.,
1999; Aitchison, Chapman, Jardine and Evetts, 1997; Hey-
derman, Chapman and Parkin, 1994; Hosomi, Petford-Long
and Doole, 1999; Ormston, Petford-Long and Teer, 1999;
Zimmermann, Zweck and Hoffmann, 1995a,b; Zweck, Zim-
mermann and Schuhrke, 1997). Lorentz microscopy is even
of use when magnetic thin films with a soft magnetic axis
perpendicular to the specimen’s plane are of interest (Aitchi-
son et al., 2001).

As has been shown in the preceding text, Foucault imaging
is – just as DPC and holography – capable to image external
stray fields leaking from a specimen (Daykin and Petford-
Long, 1995; Doole, Petford-Long and Jakubovics, 1993; te
Lintelo, Lodder, McVitie and Chapman, 1994). This has
been used to characterize the magnetic configuration which
one can find in MFM tips (Ruhrig et al., 1996; Zhou,
McVitie and Chapman, 1995; te Lintelo, Lodder, McVitie
and Chapman, 1994). A similar task was attempted with
magnetic read/write heads used in data storage technology by
DPC in combination with a tomographic 3D reconstruction
of the magnetic fields emerging from the gap region (Ferrier,
McVitie and Nicholson, 1990; Petri et al., 1996).

Electron holography has successfully been applied to study
the magnetic crystals which can be found in magnetotactic
bacteria (de Graef and Zhu, 2001; Dunin-Borkowski et al.,
1998).

Extensive research was also conducted on the effect of
crystallography and morphology on the magnetic properties
of materials (Marrows et al., 1999; Thompson, Gutfleisch,
Chapman and Harris, 1998, 1999; Thompson et al., 1998;
Chapman et al., 1995; Wong, Chapman, McVitie and Heffer-
man, 1992; Youhui, Shindo and Petford-Long, 2003; Jack-
son et al., 2000; Kim et al., 1994; Kim, Petford-Long and
Jakubovics, 1994; Petford-Long et al., 1993; Portier et al.,

1999), which is also of enormous importance in the case of
hard magnets (Craig et al., 2006)

Certainly it is not surprising that a number of publications
deal with the various imaging techniques and their develop-
ment and interpretation. An overview of the frequently used
imaging modes is given in Chapman and Scheinfein (1999),
Chapman (1984) and Chapman, Waddell, Batson and Ferrier
(1979). Coherent imaging is treated in McVitie and Chapman
(1995), Johnston and Chapman (1995), McVitie et al. (1995),
Chapman, Gillies and Freitas (1996), Chapman, Johnston
and Heyderman (1994) and Chapman et al. (1977), DPC
in Chapman, Ploessl and Donnet (1992), Donnet, Chapman,
van Kesteren and Zeper (1992), Zweck, Chapman, McVi-
tie and Hoffmann (1992), Chapman, McVitie and Hefferman
(1991), Chapman, McFadyen and McVitie (1990), McVi-
tie and Chapman (1990), Chapman and Morrison (1983),
McCartney, Kruit, Buist and Scheinfein (1996) and Ferrier,
Morrison and Chapman (1984) .

Further developments imply STEM holography (Mankos
et al., 1995) of magnetic materials and Fresnel STEM
(Chapman, Waddell, Batson and Ferrier, 1979). A new
interpretation of the micromagnetic features in terms of
amperian currents was given by McVitie and White (2004).

7 FUTURE TRENDS

It is certainly difficult to predict future developments in
Lorentz microscopy. Nevertheless, we will try to give an
idea of what seems possible in near future in the field of
magnetic imaging.

One rather obvious field of research, which already became
started, deals with ferromagnetic semiconductors. These
materials in general consist of a conventional semiconductor
material, where a certain species of atoms has been partially
replaced by atoms with a non-vanishing magnetic moment, as
for example in (Ga,Mn)As. At present, the Curie temperature
is still well below room temperature, and the average
magnetic moment per unit volume is rather low. This calls for
magnetic imaging techniques which utilize low temperature
cooling holders, to go below TC and lead to an optimum
magnetic ordering, yielding a higher detectable induction.

Another possibility for future applications will be dynamic
imaging of magnetic Eigen modes. Using stroboscopic illu-
mination and/or a gateable camera will allow the exper-
imentator to repeatedly excite the magnetic modes and
then – similar as it is done in magneto-optic pump-probe
experiments – record an image at a given instant of time
after a defined delay. Early experiments have been done
by Bostanjoglo (Bostanjoglo and Rosin, 1981a,b). The tech-
niques developed by him have been recently extended and
modernized for biological research (Meurig, 2005; Baum
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and Zewail, 2006). Thus, time resolution in the regime of
nanoseconds seems to be at reach for magnetic imaging.

The current development of lens correctors for high resolu-
tion electron microscopes and their commercial availability
leads to the question, what magnetic imaging might profit
from them. Especially for STEM imaging modes such as
DPC imaging it seems reasonable to expect smaller probe
sizes at even higher probe current and in turn higher reso-
lution when a corrected condenser lens is used to focus the
beam onto the specimen.

In recent publications (Hébért and Schattschneider, 2003;
Schattschneider et al., 2004, 2006) it was shown that it is
possible to detect a dichroic behavior of magnetic materials
with electrons which can be considered to be the electron
analog on for X-ray magnetic circular dichroism (XMCD)
(Schneider, 1996; Ebert, 1996). This effect is presently
investigated and may in the future lead to a new, element
specific technique to image the magnetic moment distribution
within a specimen. In analogy to XMCD, even a separation
of orbital and spin magnetic moments seems possible, in
principle.

Finally, as electron microscopic tomography has become
a commercially available tool it may make sense to think
about magnetic tomography in more detail, where one would
be able to reconstruct the three-dimensional magnetic vector
fields inside and around magnetic specimens of specific
shapes. Pioneering work on this topic has been done in
the past (Ferrier, Liu, Martin and Arnoldussen, 1995; Petri
et al., 1996) and is continued nowadays (Paganin, Lade and
Morgan, 2005; Stolojan, Dunin-Borkowski, Weyland and
Midgley, 2001). With the availability of better and faster
program code as well as much faster computers this seems
to be a feasible task.
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of magnetic circular dichroism using a transmission electron
microscope. Nature, 441, 486–488.

Schimmel, G. and Vogell, W. (1981). Methodensammlung der
Elektronenmikroskopie, Wissenschaftliche Verlagsgesellschaft:
Stuttgart.

Schneider, C.M. (1996). Spin-orbit influenced spectroscopies of
magnetic solids, In Proceedings Imaging Magnetic Microstruc-
tures with Elemental Selectivity: Application of Magnetic Dichro-
isms, Ebert, H. and Schuetz, G. (Eds.), Springer: Berlin, pp.
179–196.

Schneider, M., Hoffmann, H., Otto, S., et al. (2002). Stability of
magnetic vortices in flat submicron permalloy cylinders. Journal
of Applied Physics, 92, 1466.

Schneider, M., Hoffmann, H. and Zweck, J. (2000). Lorentz
microscopy of circular ferromagnetic permalloy nanodisks.
Applied Physics Letters, 77, 2909–2911.

Schneider, M., Hoffmann, H. and Zweck, J. (2001). Magnetic
switching of single vortex permalloy elements. Applied Physics
Letters, 79(19), 3113–31151.

Schneider, M., Hoffmann, H. and Zweck, J. (2003). Magnetisation
reversal of thin submicron elliptical Permalloy elements. Journal
of Magnetism and Magnetic Materials, 257, 1–10.



34 Electron microscopy and electron holography

Schneider, M., Liszkowski, J., Rahm, M., et al. (2003). Magne-
tization configurations and hysteresis loops of small permal-
loy ellipses. Journal of Physics D: Applied Physics, 36(18),
2239–2243.

Schrefl, T., Fidler, J., Chapman, J.N. and Kirk, K.J. (2001).
Micromagnetic simulation of domain structures in patterned
magnetic tunnel junctions. Journal of Applied Physics, 89(11),
7000–7002.

Schrefl, T., Fidler, J., Kirk, K.J. and Chapman, J.N. (1997a).
Domain structures and switching mechanisms in patterned mag-
netic elements. Journal of Magnetism and Magnetic Materials,
175(1–2), 193–204.

Schrefl, T., Fidler, J., Kirk, K.J. and Chapman, J.N. (1997b). A
higher order FEM-BEM method for the calculation of domain
processes in magnetic nano-elements. IEEE Transactions on
Magnetics, 33(5), 4182–4184.

Schrefl, T., Fidler, J., Kirk, K.J. and Chapman, J.N. (1999).
Simulation of magnetization reversal in polycrystalline patterned
Co elements. Journal of Applied Physics, 85(8), 6169–6171.

Shang, P., Hogwood, A., Anthony, T.C. and Petford-Long, A.
(2001). Lorentz microscopy study of spin tunnel junction ele-
ments. In Electron Microscopy and Analysis 2001, Proceedings,
Aindow, M. and Kiely, C.J. (Eds.), IOP Publishing: Bristol, UK,
pp. 461–464.

Shang, P., Hogwood, A., Petford-Long, A.K. and Anthony, T.C.
(2001). Lorentz microscopy study of magnetization reversal
mechanism in magnetic tunnel junction elements. Journal of
Applied Physics, 89(11), 7368–7370.

Shang, P., Petford-Long, A.K. and Anthony, T.C. (2002). Effects of
two in-plane fields on the magnetization reversal mechanism in
magnetic tunnel junction elements. Journal of Applied Physics,
91(10), 7703–7705.

Shinjo, T., Okuno, T., Hassdorf, R., et al. (2000). Magnetic vortex
core observation in circular dots of Permalloy. Science, 289, 930.

Speidel, R. and Kurz, D. (1977). Measurement of the brightness of
a field emission electron gun. Optik, 49, 173.

Stolojan, V., Dunin-Borkowski, R.E., Weyland, M. and Midgley,
P.A. (2001). Three-dimensional magnetic fields of nanoscale
elements determined by electron-holographic tomography. In
Electron Microscopy and Analysis 2001, Proceedings, Aindow,
M. and Kiely, C.J. (Eds.), IOP Publishing: Bristol, UK, pp.
243–246.

Suss, D., Schrefl, T., Fidler, J. and Chapman, J.N. (1999). Micro-
magnetic simulation of the long-range interaction between NiFe
nano-elements using the BE-method. Journal of Magnetism and
Magnetic Materials, 196–197, 617–619.

Thompson, P., Gutfleisch, O., Chapman, J.N., et al. (1998). A
magnetic and compositional study of the disproportionated stage
of the solid-HDDR process in NdFeB-type materials. Journal of
Alloys and Compounds, 281(1), 12–16.

Thompson, P., Gutfleisch, O., Chapman, J.N. and Harris, I.R.
(1998). Domain studies in thin sections of HDDR-processed Nd-
Fe-B-type magnets by TEM. Journal of Magnetism and Magnetic
Materials, 177–181, 978–979.

Thompson, P., Gutfleisch, O., Chapman, J.N. and Harris, I.R.
(1999). A comparison of the micromagnetic and microstructural
properties of four NdFeB-type materials processed by the HDDR

route. Journal of Magnetism and Magnetic Materials, 202(1),
53–61.

Terris, B.D., Folks, L., Weller, D., et al. (1999). Ion-beam patterning
of magnetic films using stencil masks. Applied Physics Letters,
75(3), 403–405.

Tonomura, A. (1983). Observation of magnetic domain struc-
ture in thin ferromagnetic films by electron holography.
Journal of Magnetism and Magnetic Materials, 31–34(pt. 2),
963–969.

Tonomura, A., Matsuda, T., Endo, J., et al. (1980). Direct obser-
vation of fine structure of magnetic domain walls by electron
holography. Physical Review Letters, 44(21), 1430–1433.

Toporov, A.Yu., Langford, R.M. and Petford-Long, A.K. (2000a).
Lorentz transmission electron microscopy of focused ion beam
patterned magnetic antidot arrays. Applied Physics Letters,
77(19), 3063–3065.

Uhlig, T., Heumann, M. and Zweck, J. (2003). Development of a
specimen holder for in situ generation of pure in-plane magnetic
fields in a transmission electron microscope. Ultramicroscopy,
94, 193–196.

Uhlig, T.and Zweck, J. (2002). The performance of a fully digitized
DPC device, S23. Proceedings of the 15th International Congress
on Electron Microscopy (ICEM XV), S23 Durban, 1–6 September
2002.

Uhlig, T. and Zweck, J. (2004). Recording of single-particle
hysteresis loops with differential phase contrast microscopy.
Ultramicroscopy, 99, 137–142.

Völkl, E., Allard, L.F. and Frost, B. (1995). A software package for
the processing and reconstruction of electron holograms. Journal
of microscopy, 180, 39–50.

Völkl, E., Allard, L.F. and Joy, C. (1999). Introduction to Electron
Holography, Kluwer-Verlag: New York.

Volkov, V.V. and Zhu, Y. (2004). Lorentz phase microscopy of
magnetic materials. Ultramicroscopy, 98, 271–281.

Wade, R.H. (1962). The determination of domain wall thickness
in ferromagnetic films. Proceedings of the Physical Society of
London, 79, 1237.

Wade, R.H. (1968). Transmission electron microscope observations
of ferromagnetic domain structures. Journal de Physique, Col-
loque C2, 29, 95–109.

Wang, Y.G. and Petford-Long, A.K. (2002). Magnetization reversal
of the ferromagnetic layer in IrMn/CoFe bilayers. Journal of
Applied Physics, 92(11), 6699–6707.

Wang, Y.G., Petford-Long, A.K. and Kief, M.T. (2001). Lorentz
electron microscopy study of magnetisation reversal mechanism
in exchange-coupled bilayers. In Electron Microscopy and Anal-
ysis 2001, Proceedings, Aindow, M. and Kiely, C.J. (Eds.), IOP
Publishing: Bristol, UK, pp. 453–456.

Wang, Y.G., Petford-Long, A.K., Laidler, H., et al. (2002). Ther-
mally activated reversal in exchange-coupled structures. IEEE
Transactions on Magnetics, 38(5), 2773–2775.

Warin, P., Hyndman, R., Glerak, J., et al. (2001). Modification of
Co/Pt multilayers by gallium irradiation-Part 2: The effect of
patterning using a highly focused ion beam. Journal of Applied
Physics, 90(8), 3850–3855.



Lorentz microscopy of thin-film systems 35

Warot, B., Petford-Long, A.K. and Anthony, T.C. (2003). Magnetic
properties of patterned tunnel junctions. Journal of Applied
Physics, 93(10), 7287–7289.

Weir, I.S., Chapman, J.N., Molchanov, I.S., et al. (1999). Obser-
vation and modelling of magnetization reversal in multilayers
supporting perpendicular magnetization. Journal of Physics D:
Applied Physics, 32(4), 395–403.

Williams, D.B. (1984). Practical Analytical Electron Microscopy in
Materials Science, Verlag Chemie International: Deerfield Beach,
ISBN/ISSN 3-527-26224-5.

Williams, D.B. and Carter, C.B. (1996). Transmission Electron
Microscopy, Plenum Press: New York, pp. 1–4.

Wong, H.Y., Chapman, J.N., McVitie, S. and Hefferman, S.J.
(1992). The influence of evaporation rate on the domain structures
of Permalloy and cobalt small magnetic particles. Journal of
Magnetism and Magnetic Materials, 104–107, 329–330.

Yi, G., Aitchison, P.R., Doyle, W.D., et al. (2002). Influence of end
shape, temperature, and time on the switching of small magnetic
elements. Journal of Applied Physics, 92(10), 6087–6093.

Yi, G., Nicholson, W.A.P., Lim, C.K., et al. (2004). A new design
of specimen stage for in situ magnetising experiments in the
transmission electron microscope. Ultramicroscopy, 99, 65–72.

Youhui, Gao., Shindo, D. and Petford-Long, A.K. (2003). Nonuni-
form magnetic structure in Nd/sub 2/Fe/sub 14/B/Fe/sub 3/B
nanocomposite materials. Journal of Applied Physics, 93(10),
8119–8121.

Young, S. and Chapman, J.N. (1993). An investigation of domains
and walls in two NdFeB alloys by transmission electron
microscopy. IEEE Transactions on Magnetics, 29(6), 2779–2781.

Yu, A.C.C., Lo, C.C.H., Petford-Long, A.K., et al. (2002). Lorentz
transmission electron microscopy and magnetic force microscopy
characterization of NiFe/Al-oxide/Co films. Journal of Applied
Physics, 91(2), 780–784.

Yu, C.C., Petford-Long, A.K. and Jakubovics, J.P. (1999). Direct
observation of domains and magnetization switching processes
in NiFe/alumina/Co trilayer junctions. Journal of Magnetism and
Magnetic Materials, 198–199, 503–505.

Yu, A.C.C., Petford-Long, A. and Miyazaki, T. (2001). Direct
observation of domain structure and magnetization reversal
of magnetic thin films using Lorentz transmission electron
microscopy. Japanese Journal of Applied Physics, Part 1 Regular
Papers, Short Notes and Review Papers, 40(8), 4891–4896.

Zhou, L., McVitie, S. and Chapman, J.N. (1995). Magnetic imaging
of magnetic force microscope tips. Journal of Magnetism and
Magnetic Materials, 148(1–2), 237–238.

Zhu, Y., Volkov, V.V. and de Graef, M. (2001). Understanding
magnetic structures in permanent magnets via in situ Lorentz
microscopy, interferometric and non-interferometric phase-
reconstructions. Journal of Electron Microscopy, 50(6), 447–455.

Zimmermann, T., Zweck, J. and Hoffmann, H. (1995a). Quantifi-
cation of Lorentz microscopy images of Co/Cu multilayer sys-
tems. Journal of Magnetism and Magnetic Materials, 148(1–2),
239–240.

Zimmermann, T., Zweck, J. and Hoffmann, H. (1995b). Magnetic
coupling of Co layers through a Cu spacer layer. Journal of
Magnetism and Magnetic Materials, 149, 409–417.

Zweck, J. and Bormans, B. (1992). The CM 30 Lorentz Lens.
Philips Electron Optics Bulletin, 132, 1–8.

Zweck, J., Chapman, J.N., McVitie, S. and Hoffmann, H. (1992).
Reconstruction of induction distributions in thin films from DPC
images. Journal of Magnetism and Magnetic Materials, 104–107,
315–316.

Zweck, J., Schneider, M., Sessner, M., et al. (2001). Lorentz Elec-
tron Microscopic Observation of Micromagnetic Configurations
in Nanostructured Materials. In Advances in Solid State Physics,
Kramer (Hrsg.), B. (Ed.), Vieweg Verlag, pp. 533–545, Vol. 41,
ISBN: 3-540-42000-2.

Zweck, J., Zimmermann, T. and Schuhrke, T. (1997). TEM imaging
and evaluation of magnetic structures in Co/Cu multilayers.
Ultramicroscopy, 67, 153–162.

FURTHER READING

Chapman, J.N., Ferrier, R.P., Heyderman, L.J., et al. (1993).
Micromagnetics, microstructure and microscopy. In Electron
Microscopy and Analysis 1993, Proceedings of the Institute of
Physics Electron and Analysis Group Conference, Craven, A.J.
(Ed.), IOP Publishing: Bristol UK, pp. 1–8.

Chapman, J.N., Rogers, D.J. and Bernards, J.P.C. (1988). Analysis
of magnetic domain structures in CoCr sputtered films using dif-
ferential phase contrast electron microscopy. Journal de Physique
Colloque, 49(C-8), 1965–1966.

Chapman, J.N. (1984). The investigation of magnetic domain
structures in thin foils by electron microscopy. Journal of Physics
D: Applied Physics, 17, 623–647.

Harscher, A. and Lichte, H. (1996). Experimental study of ampli-
tude and phase detection limits in electron holography. Ultrami-
croscopy, 64, 57–66.

Lichte, H. (1986). Electron holography approaching atomic resolu-
tion. Ultramicroscopy, 20, 293–304.

Petri, I., Zimmermann, T., Zweck, J., et al. (1996). Investigations
on the stray-fields of magnetic read/write heads and their struc-
tural reasons. IEEE Transactions on Magnetics, 32(5, pt. 1),
4141–4143.

Tonomura, A. (1998). Electron Holography, 2nd Edition , Springer.



Electron Holography of Ferromagnetic Materials

Martha R. McCartney and David J. Smith
Arizona State University, Tempe, AZ, USA

1 Introduction 1

2 Off-axis Electron Holography 2

3 Applications to Magnetic Materials 5

4 Future Prospects 13

Acknowledgments 14

References 14

Further Reading 16

1 INTRODUCTION

The transmission electron microscope (TEM) has long been
considered to be an indispensable tool for characterizing
microstructure. Applications of the TEM span across many
scientific disciplines and many different types of material.
However, information about magnetic induction cannot eas-
ily be obtained. Under normal operating conditions, the mag-
netic field of the objective lens used for imaging is in the
order of 1.5–2.0 T, which would fully saturate most mag-
netic materials in the vertical direction. Studies of inherent
remanent states or magnetization reversal behavior are auto-
matically precluded. The microscopist must either remove
the magnetic sample from the normal imaging plane out of
the strong lens field or switch off the objective lens cur-
rent and rely on an auxiliary lens for imaging purposes. The
latter approach is nowadays most commonly used for TEM
examination of magnetic materials.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Several TEM techniques suitable for studying magnetic
materials have been developed over the years. The well-
known Lorentz microscopy takes advantage of the sideways
deflection of the incident electrons by the magnetic field
within the sample (Chapman, 1984; McVitie and Chapman,
1997). For the in-focus imaging condition, there is no dis-
tinct magnetic contrast, but black and white lines become
visible, corresponding to the positions of magnetic domain
walls, when the lens is defocused. Drawbacks of Lorentz
microscopy are that long-range magnetic fields are difficult to
visualize, the resolution is somewhat limited except for spe-
cial variants that are available with a scanning microscope,
and absolute quantification of field strengths can be diffi-
cult to achieve. Nevertheless, a major attraction of Lorentz
microscopy is that domain-wall nucleation, as well as motion,
can be observed in real time during magnetization reversal.

Off-axis electron holography is an alternative electron
microscopy technique that has proved ideal for studying the
magnetic state and response of ferromagnetic materials at
length scales approaching the nanometer level (Lichte, 1986,
1991; Tonomura, 1993). By measuring the phase change
of the electron wave that has traveled through the sample
relative to an unperturbed reference wave, a quantitative mea-
sure of the local magnetic field can be obtained. Important
micromagnetic properties such as coercivity, magnetization
reversal behavior, and remanent states can be extracted fol-
lowing hologram analysis.

There are at least 20 different forms of electron holography
(Cowley, 1992), but the off-axis or sideband variant is
almost invariably used because it is relatively straightforward
to implement in modern TEMs. This particular technique
relies on the interference between two coherent electron
waves, as illustrated in Figure 1. The field emission electron
gun (FEG) provides the essential beam coherence, and the
electrostatic biprism, normally located in the selected-area
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FEG
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Biprism

Hologram

Lorentz
lens

+

Figure 1. Schematic ray diagram illustrating experimental geom-
etry used for off-axis electron holography in the TEM. Essential
components are the field emission electron gun (FEG) used to
provide coherent illumination, and the electrostatic biprism, which
causes overlap of object and (vacuum) reference waves. Lorentz
mini-lens enables field-free observation of specimen at moderate
magnification (∼70 000×) and resolution (∼1.4 nm).

aperture plane, is used to overlap the wave scattered by
the object with the reference vacuum wave. The resulting
interference pattern is then processed in order to retrieve
the electron phase, in turn allowing access to the desired
information about the magnetic field of the sample. In the
next section, the basic theory and experimental practice
of off-axis electron holography are outlined. Representative
examples that illustrate applications of the technique to
magnetic materials, including hard magnets, thin films, and
nanostructures, are then described. Finally, future prospects
are briefly discussed.

2 OFF-AXIS ELECTRON HOLOGRAPHY

The technique of off-axis electron holography has attracted
much recent attention because it enables magnetic materials
to be studied at high spatial resolution and sensitivity. One
attractive feature relative to other magnetic imaging tech-
niques is that unwanted effects arising from local variations
in sample thickness and composition are normally removed

relatively easily so that much smaller regions of the sample
can be analyzed. The technique can in principle achieve a
spatial resolution of better than 1 nm for magnetic materials
although there are practical limitations associated primar-
ily with the signal-to-noise ratio available during hologram
recording and processing (Harscher and Lichte, 1996). More-
over, the specimen thickness must be restricted to a maxi-
mum of perhaps 400 nm, and preferably considerably less, so
that elastic and inelastic scattering effects do not adversely
affect the hologram quality.

2.1 Basic theory

Off-axis electron holography relies on having a high-
brightness electron source to emit a highly coherent beam
of electrons onto the sample region of interest. The phase
across the electron wave front emerging from the sample
will vary according to the local composition and density
(i.e., mean inner potential, MIP) in addition to the mag-
netic field component. Making an assumption of negligible
dynamical diffraction, which would impact the phase for
crystalline materials that are close to a strongly diffracting
condition (Gajdardziska-Josifovska et al., 1993), the relative
phase change of the object (or scattered) wave compared with
the reference (or vacuum) wave can be expressed as

φ(x) = CE

∫
V (x, z) dz − e

�

∫∫
B⊥(x, z) dx dz (1)

where z represents the incident beam direction, x is a direc-
tion in the sample plane, V is the MIP, and B⊥is the magnetic
induction component that is perpendicular to both x and z

(Reimer, 1989). The constant CE is given by the expression

CE = 2π

λE

E + E0

E + 2E0
(2)

where λ is the electron wavelength, and E and E0 are the
kinetic and rest mass energies, respectively, of the incident
electron.

When neither V nor B vary along the beam direction
within the sample thickness t , and assuming that the electric
field as well as magnetic fringing fields outside the sample
can be neglected, this expression for the phase can be
simplified as

φ(x) = CEV (x)t (x) − e

�

∫
B⊥(x)t (x) dx (3)

This latter expression means that the strength of the magnetic
signal, as given by the second term, depends on both the
thickness and the lateral width of the particular magnetic
material(s) present.
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Differentiation with respect to x then leads to

dφ(x)

dx
= CE

d

dx
{V (x)t (x)} − e

�
B⊥(x)t (x) (4)

The first term in this expression will be zero in the event that
the sample has uniform thickness and composition. Thus,
the gradient of the phase is directly interpretable in terms
of the in-plane magnetic induction. Equiphase contours are
easily added to a phase image, and their relative separation
provides a convenient way to ‘visualize’ any local variations
in field strength. Indeed, the in-plane field can be quantified
on an absolute basis. Extra complications will arise when
the sample thickness and/or composition are not uniform:
as described later, further processing is necessary before
quantitative information can be reliably extracted.

When the object and reference waves are overlapped by
the electrostatic biprism to produce an interference pattern or
hologram, then the intensity can be written in the form

I (x, y) = |�1(x, y)|2 + |�2(x, y)|2 + |�1(x, y)| |�2(x, y)|
×(ei(φ1−φ2) + e−i(φ1−φ2)) (5)

or it can be rewritten in the simpler form

I (x, y) = A2
1 + A2

2 + 2A1A2 cos(�φ) (6)

where � is the electron wave function, �φ is the relative
electron phase change, and the subscripts refer to the refer-
ence and object waves. This expression can be interpreted
as the normal TEM image in addition to a superimposed
cosine function, which represents the interference fringes of
the hologram. Shifts in the positions of these interference
fringes are caused by local changes in the electrostatic and/or
magnetic fields of the sample.

For better comprehension of this technique, the steps
involved in hologram recording and processing are illustrated
in Figure 2. An electron hologram from part of a chain of
magnetic nanocrystals from a magnetotactic bacterial cell,
supported on a holey carbon film, is shown in Figure 2(a).
Note how the spacings and directions of the fringes change
as they cross the crystallites. The hologram is then Fourier
transformed to produce a two-dimensional frequency map,
as shown in Figure 2(b). The strong side spots correspond
to the basic cosine interference, and their separation depends
primarily on the biprism voltage. The variations of intensity
that are visible in the vicinity of these spots originate from
the phase shifts caused by the sample. These sidebands
contain the desired phase information about the image wave,
which cannot be obtained from the central ‘autocorrelation’
function. Reconstruction of the complex image wave then
utilizes one of these sidebands.

(a)

(c) (d)

(b) Sideband

100 nm

Figure 2. (a) Off-axis electron hologram showing part of a chain
of magnetite nanocrystals; (b) Fourier transform of (a) indicating
sideband used in phase reconstruction; (c) reconstructed phase
image; (d) reconstructed amplitude image.

The actual reconstruction process involves extraction and
recentering of one of the sidebands, followed by calculation
of its inverse Fourier transform to retrieve the complex image
wave function. The phase and amplitude of the complex
image are then given by

φ = arctan(i/r)

A = sqrt(r2 + i2) (7)

where ‘r’ and ‘i’ refer to the real and imaginary parts of the
wave function, respectively.

This reconstruction process was applied to the hologram
shown in Figure 2(a) and the corresponding phase and
amplitude, respectively, are shown in Figure 2(c) and (d).
Note that the phase is normally calculated modulo 2π

so that phase shifts which exceed this amount will cause
2π phase discontinuities at positions in the phase image
that are unlikely to be related in any meaningful way
to specific specimen features. Thus, the phase should be
carefully unwrapped to make sure that the image features
are interpreted correctly. In this regard, it is helpful when
the hologram is recorded digitally, since this recording mode
facilitates the subsequent reconstruction process.

2.2 Experimental geometry

The geometry for carrying out off-axis electron hologra-
phy studies in the electron microscope has been illustrated
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schematically in Figure 1. The FEG provides the defocused
illumination onto the sample, which is located in such a way
that it covers roughly half the field of view. The electrostatic
biprism is used to achieve overlap between the object (scat-
tered) wave and the vacuum (reference) wave. The biprism
usually consists of a thin (<1 µm) metallic wire or quartz
fiber coated with gold or platinum. Application of an electric
potential from a dc power supply or battery results in forma-
tion of the interference pattern or hologram. Typical biprism
voltages for the medium-resolution studies considered here
are between 50 and 200 V. Higher voltages are, however,
necessary in order to achieve the subangstrom fringe spacings
that are required for high-resolution applications (Orchowski,
Rau and Lichte, 1995). Finally, note that a rotatable biprism
is highly useful in practice since the direction of the inter-
ference fringes should often be aligned preferentially with
particular features of the sample.

The usual location for the biprism is in the plane of
the selected-area aperture holder, often replacing one of the
selected-area apertures. For this geometry, the first image
plane must be shifted electron-optically to slightly below the
selected-area plane by increasing the excitation of the diffrac-
tion or intermediate lens. The spacing of the interference
fringes and the amount of fringe overlap will be determined
by the voltage on the biprism as well as by the specific
lens-specimen geometry (Smith and McCartney, 1999).

Several geometries have been used by electron micro-
scopists to ensure that a magnetic sample is located in
a field-free region for observation. By simply turning off
the normal objective lens, a low-magnification image and
a large field of view can be obtained. The image resolu-
tion is relatively poor although a postcolumn image filter, if
available, could be used to obtain additional image magni-
fication. Another alternative is to use a weak imaging lens
below the normal objective lens. For example, the Philips
CM200 FEG-TEM has a special mini-lens, which permits
an overall image magnification of up to 70 000×, although
the reconstructed phase image has a spatial resolution that is
limited by the lens aberrations to about 1.4 nm (McCartney,
Smith, Farrow and Marks, 1997). Many of the holography
results described later originated from a microscope of this
type. Yet another approach is to use a modified specimen
holder, whereby the sample is located just outside the field
of the immersion objective lens. A far-out-of-focus image is
obtained, so that extra phase shifts caused by the lens defocus
must be corrected (Mankos, Higgs, Scheinfein and Cowley,
1995). This geometry, unfortunately, is not available with
most commercial instruments.

The attachment of a slow-scan charge-coupled-device
(CCD) camera at the base of the lens column permits
digital recording of electron holograms (de Ruijter, 1995),
greatly expediting the reconstruction process (de Ruijter

and Weiss, 1993; Smith and McCartney, 1999). The CCD
camera is a sensitive electron detector, with linear output
versus input over a wide dynamic range. Thus, the nonlinear
optical density of the conventional photographic plate is no
longer a problem. Subsequent computer processing is also
facilitated by the digital hologram acquisition (de Ruijter
and Weiss, 1993). Holograms recorded using a CCD camera
enable phase shifts to be measured with high accuracy and
sensitivity once due correction for phase distortions has been
made using the reference hologram.

2.3 Practical factors

The spatial coherence of the incident electron beam is crucial
for practical electron holography. It is necessary to minimize
the beam convergence angle since poor interference-fringe
contrast will otherwise result and weak phase detail will
then be lost from the reconstructed hologram. It has become
common in off-axis electron holography to use highly
elliptical illumination. The condenser lens stigmator settings
are adjusted to achieve high illumination aspect ratios: 100:1
is not uncommon (Smith and McCartney, 1999). Note also
that the major axis of the elliptical illumination patch must
be aligned so that it is perpendicular to the biprism wire
direction. The beam coherence, and hence the fringe contrast,
will then be maximized (Völkl and Lehmann, 1999).

The reconstruction process is impacted by several addi-
tional factors. Smaller fringe spacings are needed for small
object dimensions and/or wider regions of fringe overlap,
and this in turn necessitates higher biprism voltages. How-
ever, the fringe contrast usually drops when the biprism
voltage is increased. Moreover, the magnification must be
increased to ensure sufficient sampling of the finely spaced
interference fringes. Four recording pixels per hologram
fringe is commonly considered as the minimum accept-
able sampling (Joy et al., 1993), but even greater sampling
is recommended when sensitive phase measurements are
being made (Smith and McCartney, 1999). Lens aberra-
tions do not usually limit the spatial resolution of the final
reconstructed phase image for magnetic materials, which
depends instead mainly on the effective size of the side-
band selected during hologram reconstruction. The resolu-
tion will be limited by the available signal strength and the
required phase sensitivity (i.e., the signal-to-noise ratio in
the phase image). Phase sensitivities of perhaps 2π /100 can
be achieved routinely during holographic studies (de Ruij-
ter and Weiss, 1993), making it possible to detect details
in thin magnetic films on a scale of about 5 nm (Harscher
and Lichte, 1996). The resolution of smaller features nor-
mally requires longer acquisition times or stronger magnetic
induction within the sample.
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It is usual practice to record reference holograms with the
sample removed from the field of view so that any artifacts
associated with local imperfections or irregularities of the
imaging and recording system can be excluded. Otherwise,
phase distortions occur that will limit the accuracy and
integrity of the hologram reconstruction process. Finally,
note that accurate registration of sample and reference
holograms is conveniently achieved when digital recording
is used, which is unlike the situation for conventional
photographic recording.

2.4 Magnetization reversal and phase
contributions

Under normal conditions for off-axis electron holography,
the magnetic sample must be located in a field-free environ-
ment, which enables its inherent magnetization, or ‘remanent
state’, to be determined. Knowledge of magnetization rever-
sal mechanisms is, however, important for many practical
applications. One straightforward way for these processes to
be studied via electron holography is to slightly excite the
current in the objective lens coil, and then in-plane magnetic
fields, as determined by prior calibration, can be applied by
tilting the sample by fixed amounts (Dunin-Borkowski et al.,
2000). Thus, the magnetization reversal behavior can be fully
documented over an entire hysteresis cycle by recording
holograms throughout the tilting process.

An additional benefit of carrying out in situ magnetization
reversal is that the MIP and magnetic contributions to the
phase, as described in equations (3) and (4), can be conve-
niently separated. Thus, pairs of holograms that differ only
in the magnetization direction during recording can be added
to give the MIP term, while subtraction yields the magnetic
term. The MIP term can then be subtracted from all of the
other phase images recorded during the cycle to retrieve the
magnetic signal. An alternative approach, but not really a
practical option in many cases, would be to turn the sample
upside down, thereby changing the sign of the magnetic con-
tribution. This separation of phase contributions also means
that the magnetic fields can then be quantified on an abso-
lute basis. For example, phase contours can be easily added
to the reconstructed phase image, where phase differences of
2π correspond to the quantity (h/e) = 4 × 10−15 Wb.

3 APPLICATIONS TO MAGNETIC
MATERIALS

Electron holography was originally proposed by (Gabor,
1949) as a means of correcting electron microscope lens

aberrations. This goal was not realized for many years due to
various factors – especially the poor coherence of the elec-
tron sources available then. Using FEG electron sources,
conventional microscope resolution limits were finally sur-
passed for electron holography with both optical reconstruc-
tion methods (Tonomura, Matsuda and Endo, 1979) and dig-
ital reconstruction (e.g., Orchowski, Rau and Lichte, 1995;
Rau and Lichte, 1999). Off-axis electron holography has
since been successfully used in a wide variety of applications.
The examination of ferroelectric and electrostatic fields has
been attracting increasing attention in recent years. However,
such topics are beyond the scope of this review, and the inter-
ested reader is referred elsewhere to a recent comprehensive
review for further details (Dunin-Borkowski, McCartney and
Smith, 2004a).

3.1 Early studies

Historically, the early studies of magnetic materials using
electron holography were limited by poor spatial resolution
(considerably worse than 10 nm), caused mainly by the need
to locate the sample in a region of very low magnetic field.
Imaging was restricted to the diffraction/projector system
of lenses below the sample with the strong objective lens
switched off. The total magnification was only in the order
of a few thousand times, and reconstruction of the hologram
was done optically because photographic film had been used
for recording the holograms. Notable results included con-
firmation of the Aharonov–Bohm effect in superconducting
Nb at low temperature (Tonomura et al., 1986) and studies
of quantized vortex ‘lattices’ in a superconducting Nb thin
film (Bonevich et al., 1993). Another interesting example
involved examination of a thin magnetized Co film, used
for high-density recording media applications: in this partic-
ular study, fringing fields were clearly visualized leaking out
from the edge of the thin film (Osakabe et al., 1983).

3.2 Hard magnets and magnetic domains

Permanent magnets with large remanence and high coerciv-
ity have many practical applications so that any information
about magnetic microstructure that can be provided by elec-
tron holography should be highly useful. Ternary alloys based
on Nd–Fe–B (McCartney and Zhu, 1998a; Park and Shindo,
2002) and related nanocomposite materials (Park, Shindo,
Kanekiyo and Hirosawa, 2004) have received considerable
recent attention. Figure 3 shows some results from a study of
magnetic domain structure in sintered Nd2Fe14B (McCartney
and Zhu, 1998b). A pair of overfocus and underfocus Lorentz
images are shown in Figure 3(a) and (b): note the contrast
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(c)

100 nm 100 nm

(d)

Figure 3. (a, b) Overfocus and underfocus Lorentz micrographs
showing domain walls (arrows in a) in sample of Nd2Fe14B;
(c) reconstructed phase image from region outlined in (b), contoured
at 0.5π radian intervals; (d) induction map derived from phase
gradients showing 90◦ and 180◦ domain walls. (Reproduced from
McCartney & Zhu 1998, with permission from the American
Institute of Physics.  1998.)

inversion at the domain walls (arrows). The contoured phase
image in Figure 3(c) was reconstructed from an off-axis
electron hologram of the region indicated in Figure 3(b).
Those regions with equispaced phase contours indicate uni-
form magnetization giving rise to a constant phase plane,
whereas the ridges and valleys correspond to the domain-
wall positions visible in the Lorentz images. Phase gradient
maps are easily calculated, and by combining two perpen-
dicular gradient images it is possible to produce a vector
map, which is a direct image of the magnetic domain struc-
ture of the sample. The vector map, shown in Figure 3(d),
is divided into 10 × 10 nm2 squares. Three distinct domains
are visible, with the magnetic induction in the top and mid-
dle domains oriented at approximately 90◦ and oriented
at roughly 180◦ in the middle and lower domains. More-
over, by measuring the distance over which the slope of the
phase abruptly changes, estimates of the domain-wall width
can be extracted. Figure 4 shows corresponding phase pro-
files from the 90◦ and 180◦ domain walls of Figure 3, and
measurements indicate maximum wall widths of 6.7 ± 1.4
and 9.2 ± 1.4 nm, respectively. Finally, it is interesting that,
based on estimates for the foil thickness derived from the
mean free path for inelastic electron scattering (McCartney
and Gajdardziska-Josifovska, 1994), the vector lengths can
be used to calculate the corresponding magnetizations of
4πMs = B = 0.8, 1.2, and 0.5 T for the top, middle, and
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Figure 4. Profile of phase across 90◦ and 180◦ domain walls in
Nd2Fe14B. Maximum wall widths of 6.7 and 9.2 nm, respectively.
(Reproduced from McCartney & Zhu 1998, with permission from
the American Institute of Physics.  1998.)

bottom domains, respectively. The differences may come
from undetermined fringing fields immediately above and
below the sample surface, or because the technique is insen-
sitive to any out-of-plane components.

The rearrangement of magnetic domains in ferromagnetic
shape memory alloys (FMSAs) is an important aspect of
developing practical applications. Alloys with stoichiome-
try close to Ni2MnGa are of particular interest because of
the large shape deformation (∼6%) induced by an applied
field (Ullakko et al., 1996), which has been attributed to rear-
rangement of twin-related plates of the martensitic material.
Electron holography and Lorentz microscopy have been used
in recent studies of magnetic domain structure of FMSA
Ni2MnGa, both in thin-film form prepared by sputtering
(Murakami et al., 2003, 2004), and in spherical particles pre-
pared by spark erosion and annealed to achieve the marten-
sitic phase (Solomon et al., 2005). The results shown in
Figure 5 are taken from this latter study. The stripes visi-
ble in Figure 5(a) correspond to the twin-related martensitic
variants, and out-of-focus Lorentz microscopy showed that
the twin boundaries corresponded to the positions of the
magnetic domain walls. Figure 5(b) shows the reconstructed
phase image after electron holography from the area indi-
cated in Figure 5(a), while Figure 5(c) shows the x-phase
gradient which is proportional to the in-plane magnetization
component. The vector map derived from the phase gradi-
ent images is shown in Figure 5(d). Careful measurement
reveals that the in-plane projections of the magnetization
across the domains are oriented at roughly 60◦, correspond-
ing closely to the value expected when the c axes of the twin-
related variants are projected onto the sample plane. Finally,
Figure 5(e) shows the line profile across the domain indicated
in Figure 5(b), and the domain-wall width is measured to be
about 17 nm (Solomon et al., 2005), consistent with theoret-
ical estimates. These studies of magnetic domains in giant
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Figure 5. (a) In-focus Lorentz electron micrograph showing
martensitic twin boundaries in a Ni51Mn29Ga20 particle grown by
spark erosion; (b) reconstructed phase image from hologram of
region shown in (a); (c) x-phase gradient proportional to magne-
tization component; (d) vector map obtained from phase gradient
images showing changes of magnetization direction across domain
walls; (e) line profile across the domain wall indicated by line in (b).
(Reproduced from Solomon et al., 2005, with permission from the
American Physical Society.  2005.)

magnetorestrictive materials indicate that electron hologra-
phy should play a valuable role toward developing a better
understanding of other FMSA materials in future studies.

3.3 Thin films

An important consideration with hard magnets, especially
when thinned down to an electron-transparent foil from the
bulk form of the material, is the likelihood that magnetic
fringing fields will emerge from the top and bottom surfaces.
Off-axis electron holography (and Lorentz microscopy) is
not sensitive to these out-of-plane field components so that
the true three-dimensional nature of the magnetic vector

field in and surrounding a magnetic sample may not always
be fully determined. Moreover, the magnetic properties
could be altered by the actual thinning process. Such
issues are obviously less troublesome for the nanostructures
that are the topic of the following section. For several
reasons, continuous films can be challenging materials for
examination by off-axis electron holography. The presence
of a hole or edge in the field of view, or at least access to
a continuous uniform background, is essential for provision
of the requisite vacuum or reference wave. Removal of the
substrate, or at least perforation by back-side ion-milling,
is likely to cause stress and/or local bending in the film,
especially around the edges, which could possibly mask the
intrinsic magnetic structure. Our experience is that rapid
thickness variations around edges and small holes can make
holograms from such areas difficult, or even impossible in
some cases, to interpret reliably.

Thin films of ordered Co-Pt and Fe-Pt alloys have the L10

crystal structure, leading to potentially useful applications for
magnetic recording because of the pronounced magnetocrys-
talline anisotropy. Depending on the substrate used for thin
film deposition, the tetragonal c axis will be primarily either
in plane or out of plane. Figure 6(a) shows the hologram for
a cross-sectional sample of an epitaxial Fe0.5Pt0.5 ordered
alloy film (thickness ∼100 nm) deposited onto an MgO(110)
substrate (McCartney, Smith, Farrow and Marks, 1997). The
(001) easy axis of the ordered alloy is parallel to the film
normal for this growth direction. Magnetic fringing fields
are visible outside the material in the reconstructed phase
image shown in Figure 6(b), and corresponding induction
maps confirmed that adjacent domains within the Fe-Pt film
had the expected opposite polarity. Note here that Lorentz
imaging was not particularly useful in these studies because
of the coarse Fresnel fringes that occurred at the large defocus
values that were necessary to achieve appreciable magnetic
contrast.

In this application of electron holography to Fe–Pt ordered
alloys described in the previous paragraph, no attempt was
made, nor was it felt to be necessary, to quantify the strength
or extent of the fields within or emerging from the sample.
Such a task is quite challenging for multilayered thin films
in cross-sectional geometry because of the often rapid and
unknown variations in thickness and contrast, which can
easily overwhelm any changes in the magnetic signal. Careful
consideration of equations (3) and (4) shows, however,
that by combining phase profiles and phase gradients for
holograms with reversed magnetization directions, it is
possible to remove the specimen thickness and composition
profiles and thus finally determine the magnetization with
some reasonable level of confidence and respectable accuracy
(Dunin-Borkowski, McCartney, Smith and Parkin, 1998a).
Conversely, failure to properly account for thickness and
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Figure 6. (a) Off-axis electron hologram obtained from epitax-
ial Fe-Pt/MgO with (001) easy axis parallel to film normal;
(b) contoured phase image showing magnetic flux extending into
vacuum. (Reproduced from McCartney et al., 1997, with permis-
sion from the American Institute of Physics.  1997.)

composition variations will most likely cause erroneous
interpretation when studying complex layered structures such
as magnetic tunnel junctions in cross section.

3.4 Nanostructures

Interest in magnetic nanostructures is increasing in recent
times both for scientific reasons and because of possible
applications for magnetic recording. However, a micromag-
netic structure becomes increasingly difficult if not impos-
sible to characterize by most imaging techniques as lat-
eral dimensions are reduced. Another concern is that shape
irregularities in small magnetic elements are likely to play a
more prominent role during magnetization reversal. Domain
walls are obviously less likely because of energy consid-
erations to be found in the remanent state of magnetic
nanostructures. However, extensive simulations may still be
required before quantitative analysis of magnetization can
be achieved, especially since interactions between closely
spaced adjacent particles can sometimes lead to interesting
and unexpected results.

Off-axis electron holography represents a powerful method
for probing the magnetic response of individual nanostruc-
tures, especially for elements having one or more dimensions
on the scale of 100 nm or below. Analysis by holography
does, however, become more challenging because the cor-
responding magnetic phase changes that are produced will
decrease with the element width, which is unlike the MIP
term that has no such length dependence. Close attention
must be given to experimental parameters such as the total
signal acquired before reconstruction to compensate for the
loss of interference-fringe contrast which, as we noted earlier,
decreases with smaller fringe spacing. Some local smooth-
ing of noise fluctuations can be helpful in clarifying any
significant features of the reconstructed phase images.

3.4.1 Spheres, rings, and chains

Spherical nanoparticles represent an interesting model system
but they are challenging to study because of rapid variations
in the projected thickness. Analytical expressions have been
derived for the magnetic and electrostatic phase expected
for an electron wave passing through uniformly magnetized
spherical particles (de Graef, Nuhfer and McCartney, 1999).
Figure 7(a) shows an electron hologram from a chain
of carbon-coated Co nanospheres and the reconstructed
phase image is shown in Figure 7(b). The corresponding
phase profile across the center of a 33-nm-diameter particle
is shown in Figure 7(c), together with a least-squares-
fitted profile generated by varying the particle diameter,
the saturation induction, and the MIP. The fitted values of
1.7 T and 26 V for the latter two parameters are in good
agreement with expected results, thus establishing confidence
that quantitative measurements can be achieved even at the
nanoscale using electron holography.

Chains of spherical Fe–Ni nanoparticles have received
further attention (Hÿtch et al., 2003; Dunin-Borkowski et al.,
2004b). Perhaps the most interesting result emerging from
this study was confirmation that magnetic vortices rather
than single domains could be supported in particles above a
certain critical size for vortex formation. Moreover, as shown
by the examples reproduced in Figure 8, vortex axes could be
either parallel or perpendicular to the chain axis. It was also
found that flux channeling and vortex formation depended
on the Fe–Ni alloy concentration, as well as being strongly
influenced by the size and proximity of other particles
in the chain. Finally, it is worth noting here that careful
comparisons with the results of micromagnetic simulations
were essential to a full interpretation and explanation of the
experimental contours in these studies.

The flux closure associated with vortex formation is an
interesting and potentially useful property for high-density
information storage, and several examples will be mentioned
in Section 3.4.3. A recent study showed that stable flux
closure states could also be achieved at room temperature
with self-assembled Co rings formed by nanoparticles with
sizes in the range of 27 ± 4 nm and ring diameters of
∼100 nm (Tripp, Dunin-Borkowski and Wei, 2003).

3.4.2 Rods and wires

Magnetic rods and nanowires should have a unidirectional
remanent state, and their well-defined geometry enables mag-
netostatic effects to be easily separated from thickness and
electrostatic effects. Early holography studies of Co and Ni
nanowires indicated that wires of small radius (20–35 nm)
behaved like tiny magnetic dipoles with uniform magnetiza-
tion close to the expected saturation value (Beeli, Doudin,
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Figure 7. (a) Electron hologram showing chain of Co nanospheres supported over a hole in carbon support film; (b) reconstructed phase
image after phase unwrapping; (c) experimental and fitted phase profile for linear trace across spherical Co nanoparticle (de Graef et al.,
1999). (Reproduced from de Graef et al., 1999, with permission from Blackwell Publishing.  1999.)
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71
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Figure 8. (a, b) Experimental magnetic phase contours for chains
of Fe0.56Ni0.44 nanoparticles showing strength of local magnetic
induction (integrated in beam direction); (c, d) schematic illustration
showing magnetic microstructure within chains. Note magnetic
vortices spinning about chain axis in (c) and (d), and vortex spinning
perpendicular to axis in (d). (Reproduced from Hÿtch et al., 2003,
with permission from the American Physical Society.  2003.)

Ansermet and Stadelmann, 1996). In contrast, wires with
larger radii showed increasing amounts of nonuniform mag-
netization, and multidomain wires were sometimes observed.

Later studies have focused on magnetic nanowires of smaller
diameter. For example, Fe-Pt nanorods with diameters of
∼26 nm were grown in situ by electron-beam-induced depo-
sition and developed randomly oriented crystallites of the
ordered L10 magnetic phase after annealing at 600 ◦C (Che
et al., 2005). Single crystal Co nanowires, with diameters as
small as 4 nm, were shown to be fully magnetized, assum-
ing bulk values for Co MIP and magnetization (Snoeck
et al., 2003). It was also reported in this last study that the
phase contrast contours along the wire axes were not always
straight, but further work is needed to fully understand this
result.

3.4.3 Patterned shapes

Nanostructured shapes enable micromagnetic behavior,
especially during hysteresis cycling, to be conveniently
investigated in a controlled fashion, both as a function of
particle geometry as well as proximity to other particles.
Elements with a wide range of shapes, sizes, and sepa-
rations have been prepared by electron-beam evaporation
onto self-supporting 55-nm-thick silicon nitride membranes
using standard electron-beam lithography and lift-off pro-
cesses (Dunin-Borkowski, McCartney, Kardynal and Smith,
1998b). Figure 9 is a low-magnification bright-field image
showing part of a typical array of such patterned elements.
Some loss of interference-fringe contrast occurs because of
the underlying silicon nitride support, but off-axis electron
holography can still be successfully carried out using the
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2 µm

Figure 9. Low-magnification, bright-field image showing typical
array of lithographically patterned magnetic elements supported on
55-nm-thick silicon nitride membrane.

Lorentz mini-lens configuration described earlier. Samples
are tilted in situ within the microscope using the normal
objective lens slightly excited to obtain the desired in-plane
field. The hysteresis behavior and remanent states of individ-
ual elements can then be determined. The featureless silicon
nitride regions nearby are used for acquisition of the refer-
ence holograms that are needed to remove phase distortions
associated with the imaging/recording system.

Our initial studies involved rectangular 30-nm-thick Co
elements (Dunin-Borkowski, McCartney, Kardynal and
Smith, 1998b), where removal of the MIP phase contribu-
tion was accomplished by the aforementioned method of
fully reversing the magnetization and then halving the differ-
ence between the corresponding pair of holograms. Micro-
magnetic simulations based on the Landau–Lifshitz–Gilbert
equations were also carried out (Dunin-Borkowski et al.,
1999). Reasonable agreement with the experimental results
was obtained, but some important differences were also
revealed. For example, simulations showed that the strength
and direction of the applied field had a marked impact on the
observed domain structure. It was also shown that the mag-
netization behavior of the adjacent Co elements was affected
by their close proximity and interaction, with fringing fields
extending between the elements when fully magnetized. This
result thus emphasized the need to consider intercell coupling
when designing high-density storage devices. The character-
istic flux closure associated with a vortex state was invari-
ably seen during hysteresis cycling, while other new and
unexpected domain configurations were sometimes observed
during investigation of remanent states from different stages
of the magnetization cycle (Dunin-Borkowski et al., 2000).

Trilayered spin-valve (SV) structures consisting of two fer-
romagnetic layers separated by a thin metallic spacer layer
have recently received much attention because of the large

differences in resistance when the magnetization directions
of the magnetic layers are aligned parallel or antiparal-
lel – the so-called giant magnetoresistance (GMR) effect.
We have studied patterned SV structures based on submi-
cron Co (10 nm)/Au (5 nm)/Ni (10 nm) combinations shaped
as rectangles, diamonds, ellipses, and bars and with lateral
dimensions on the 100-nm scale (Smith et al., 2000; Dunin-
Borkowski et al., 2000). Figure 10 shows some representa-
tive results from a complete hysteresis cycle for elliptical
and bar-shaped elements. The arrows within each element
indicate the field direction, and the in-plane component of
the applied field is aligned along the long axis of each
element. The occurrence of two different contour spacings
within each element at different applied fields, with cor-
responding steps in the hysteresis loops was a significant
observation of these SV studies. Micromagnetic simulations,
described elsewhere (Smith et al., 2000), indicated that anti-
ferromagnetic coupling between the Co and Ni layers, due
to the strong demagnetization field of the closely adjacent
and more magnetically massive Co layer, was the reason for
this behavior. Vortex states were not observed in any of the
remanent states in further studies of rectangular SV elements,
unlike magnetization states sometimes observed during hys-
teresis cycling. This difference in behavior can presumably
again be attributed to the presence of the strong coupling
between the Co and Ni layers following removal of the
external field. Similar coupling between layers was reported
in a more recent study of Co/Cu/NiFe thin-film elements
(Kasama et al., 2005). The observed variability in switching
fields in this case was attributed to slight variations in the
shape and size of the elements, as well as microstructural
variability.

More recent studies of the remanent states of nanopat-
terned Co elements have concentrated on thinner elements
(Hu, Wang, McCartney and Smith, 2005, 2006; Wang, Hu,
McCartney and Smith, 2006). The remanent states of 10-nm-
thick triangles, squares, pentagons, and hexagons were found
to have a ‘twisted’ configuration, whereas those of rectan-
gles, ellipses, and ‘dumbbells’ were basically linear (Wang,
Hu, McCartney and Smith, 2006). In contrast, the remanent
states of disk- and ring-shaped elements were primarily cir-
cular, whereas slotted disks and rings had modified circular
states that were highly reproducible and had minimal fring-
ing fields. This latter characteristic is very unlike what is
observed for linear shapes such as rectangles and ellipses,
which typically display considerable stray fields near their
ends. Figure 11 shows some representative examples for sets
of slotted disks and rings illustrating the interesting remanent
states of these modified circular elements. When the applied
field was parallel or nearly parallel to the slot curves, the
remanent states appeared to be stable single domains (Wang,
Hu, McCartney and Smith, 2006).
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Figure 10. Magnetic contributions to phase for elliptical and bar-shaped Co (10 nm)/Au (5 nm)/Ni (10 nm) spin-valve elements over
complete hysteresis cycle. Phase contours of 0.064π rad. Field applied in vertical direction. Loop should be followed counterclockwise.
Average out-of-plane field of 3600 Oe directed into the page.

The circular magnetization state of disk- and ring-shaped
elements clearly avoids any edge-domain problems, while the
flux closure helps to minimize any interelement interactions.
Two stable magnetization states have been identified in
submicron magnetic ring elements: the so-called onion state
with domain walls on opposite sides of the ring, and
the vortex state, which has fully enclosed flux (Rothman
et al., 2001). Electron holography has allowed us to study
magnetization reversal processes for nanoscale Co rings
into the deep-submicron regime (Hu, Wang, McCartney and
Smith, 2005). The most important finding was that the
ratio of the outer to the inner diameter of the rings played
the major role in determining the actual switching process.
Figure 12 shows an example of coherent rotation of domain
walls for a ring of 150 nm inner diameter and 400 nm outer
diameter.

Our most recent study has involved slotted disks and
rings (Hu, Wang, McCartney and Smith, 2006). It was found
that both of these shapes had very stable and well-defined

remanent states, unlike complete disks and rings of sim-
ilar dimensions. Representative examples are shown in
Figure 13. In the case of slotted disks (‘pacman shape’),
vortex states were invariably observed during the switching
process, whereas rapid switching without vortex formation
was the behavior mostly shown by the slotted rings. Because
of this nonvortex switching mode for slotted rings, the field
at which the magnetization reversed direction was very well
defined, typically to within ∼40 Oe. Thus, this modified
geometry should be particularly attractive for information
storage applications based on circular elements rather than
linear elements (Zhu, Zheng and Prinz, 2000).

3.5 Rocks, minerals, and bacteria

Ferromagnetic materials abound in nature but the use
of electron holography to study these materials is vir-
tually unexplored. A wealth of valuable information is
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200 nm

Figure 11. Reconstructed phase images showing remanent states
for sets of three identical 10-nm-thick Co elements. (a) 400-nm
slotted disk with 120◦ slot angle (curve perpendicular to magnetic
field direction); (b) 400-nm slotted disk with 120◦ slot angle (curve
parallel to magnetic field direction); (c) 300-nm slotted disk with
90◦ slot angle; (d) 300-nm slotted ring with 180◦ slot angle; (e)
300-nm slotted ring with 90◦ slot angle. (Reproduced from Wang
et al., 2006, with permission from Elsevier.  2006.)

seemingly waiting to be discovered. In the field of geol-
ogy, planar arrays of magnetite nanoparticles from titano-
magnetite minerals have received recent attention (Harrison,
Dunin-Borkowski and Putnis, 2002; Dunin-Borkowski et al.,
2004b). Unlike the well-controlled geometries of lithograph-
ically patterned nanostructures, the roughly equidimensional
magnetite nanocrystals display considerable variability in
their sizes and spacings. This feature makes for a fasci-
nating case study of nanomagnetism. Some small, closely
spaced crystals couple together to form flux closure domains
much like the Co rings described earlier, whereas other larger
blocks appear to form vortex states with flux closure. The

(a) (b)
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0

Figure 12. Amplified (8×) phase images showing reversal behav-
ior of 400/150-nm ring during half of hysteresis cycle (in-plane
fields indicated under each image: units of Oe). Note two domain
walls rotating coherently around the ring. (Reproduced from Hu
et al., 2005, with permission from the American Institute of Physics.
 2005.)

observed abundance of single-domain states, rather than vor-
tex states prevailing in isolated cubes, was attributed to strong
particle interactions based on demagnetizing fields for the
local crystal environments.

Ferromagnetic nanomaterials occur naturally in many bio-
genic systems. Interesting examples are the magnetosomes,
composed of magnetite or greigite crystals, found in magne-
totactic bacteria. In these organisms, the magnetite crystals
are invariably found in chains, as shown in Figure 14(a),
which provide an internal navigation aide. Off-axis electron
holography has been used extensively to study the individ-
ual and collective micromagnetic behavior of these magnetite
nanocrystal chains (Dunin-Borkowski et al., 1998c; McCart-
ney et al., 2001). Figure 14(b) shows the corresponding holo-
gram taken from the area indicated in Figure 14(a). After
magnetization reversal and phase addition, the electrostatic
phase contribution can be extracted, and the nanocrystallites
are revealed to be cubo-octahedral in shape. The magnetic
phase contribution is shown in Figure 14(c), where the phase
contours have been overlaid onto the MIP contribution so that
the positions of the crystals and the magnetic contours can be
correlated. Thus, the distribution of magnetic flux within and
between the crystallites can be observed. Interestingly, the
contour lines do not lie entirely on a continuous curve along
the chain axis but rather display slight misalignment from
nanocrystal to nanocrystal. It was also found that individ-
ual crystals were fully magnetized into single-domain states
even though many were below the critical size for super-
paramagnetism at room temperature. Finally, note that it was
possible to determine the total dipole moments of the par-
ticle chains (Dunin-Borkowski et al., 2001). Further studies
of other bacterial strains, and more information about differ-
ences in domain structure and magnetic properties of these
intriguing nanocrystal ensembles can be found elsewhere
(Dunin-Borkowski et al., 2001; McCartney et al., 2001).
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Figure 13. Phase images from 400-nm slotted disks and slotted
rings during switching: (a–d) 60◦ slotted disk. Note the presence
of a vortex state; (e–h) 60◦ slotted ring. Switching occurs rapidly
between (f) and (g); (i–l) 90◦ slotted ring; (m–p) 120◦ slotted ring;
(q–t) 150◦ slotted ring. Single-domain state illustrated at bottom left
of each image; (u–x) vortex switching process in 400/50-nm ring.
U-shaped state visible in (v), vortex state visible in (w), with onion
states visible in (u) and (x). (Reproduced from Hu et al., 2006, with
permission from the American Physical Society.  2006.)

4 FUTURE PROSPECTS

This chapter has introduced the technique of off-axis elec-
tron holography and described its development as a tool
for characterizing ferromagnets at the nanometer scale.

(c)

(b)

(a)

100 nm

[111]

Figure 14. (a) Electron hologram for chain of magnetite crystal
in magnetotactic bacterium; (b) mean inner potential contribu-
tion to phase. Thickness contours indicate cubo-octahedral shape;
(c) magnetic contributions to phase.

The representative examples described should have clearly
demonstrated that off-axis electron holography is already
playing a valuable role in understanding the response of mag-
netic nanostructures. And it can be expected that electron
holography will become a more widely used tool for future
micromagnetic characterization studies.

Despite this optimistic outlook, there are several chal-
lenges that need to be faced. A major problem is that
visualization of dynamic effects caused by changes of an
applied magnetic field, considered to be necessary for a
complete understanding of micromagnetic behavior, is not
easily implemented. In our experiments, we have changed
the in-plane field component by tilting the sample in situ
within the field of the weakly excited objective lens, but
this process clearly does not allow for real-time observa-
tions. Moreover, it has been shown that the out-of-plane
component of the applied field imposes switching asym-
metries during hysteresis cycling (Dunin-Borkowski et al.,
1999). The development of a specimen holder with in-built
coils capable of applying a horizontal field has been reported
(Yi et al., 2004). However, the maximum field that can so
far be applied is insufficient for many important applica-
tions. An alternative approach is to change the applied field
of the objective lens, but the electron trajectories through
the objective lens will then be affected. This problem could
be solved by provision of three sets of auxiliary coils, with
one set to apply the field close to the level of the sam-
ple, and the subsequent sets to steer the beam back onto
the optic axis (Bonevich, Pozzi and Tonomura, 1999). This
possibility is tedious to implement in practice and is not
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yet generally available. Another problem is that off-axis
electron holography is not suited for real-time observations
because the recorded holograms are usually processed off-
line. As faster computers and better CCD cameras become
available, then real-time viewing of reconstructed phase
images might just become possible. A third issue relates to
the three-dimensional nature of the magnetic vector field,
which was not considered for many of the applications
described here. This omission is not so serious for objects
such as thin films and nanostructures when the fields are
constrained by the sample geometry to lie primarily in the
plane, although subtle changes during the reversal cycle
of the nanopatterned SV shapes were attributable to some
out-of-plane rotation effects (Smith et al., 2000). For more
massive three-dimensional objects such as probes for mag-
netic force microscopes, the out-of-plane field components
must be taken properly into account (Streblechenko, Schein-
fein, Mankos and Babcock, 1996; Matteucci, Frost and Med-
ina, 2004).
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1 INTRODUCTION

Magnetic properties of surfaces, ultrathin films, and nanos-
tructures are of great interest. A vital precondition for their
investigation is an experimental method that is sensitive
enough to probe magnetic order in structures consisting of
a limited number of atoms and even time-resolved inves-
tigation of magnetization dynamics in them. On the other
hand, diffraction of low-energy electrons (low-energy elec-
tron diffraction, LEED) is one of the most often used versatile
methods in surface science for the investigation of structural
properties of nanostructures. In the usual energy range up to
a few hundred electronvolts, the mean free path of electrons
in a solid is of the order of atomic distances. Therefore, the
information depth is of this order and the diffracted electrons
provide exclusive information on the surface, in contrast, for
example, to X-ray or neutron diffraction methods. With com-
paratively low experimental effort the crystal structure of
surfaces can be determined. By providing a polarized inci-
dent electron beam and/or a polarization analysis of diffracted

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

electrons, magnetic surface properties can be analyzed. The
combination of elastic electron diffraction and polarization
analysis, usually called spin-polarized low-energy electron
diffraction (SPLEED), is the aim of the present review.

The first experimental approach to spin-polarized electron
diffraction was attempted by Davisson and Germer (1929)
soon after their pioneering discovery of electron diffraction;
however, they found no effect. It took half a century
until the first convincing SPLEED data were reported by
Celotta et al. (1979). Feder (1977, 1985) undertook the first
rigorous calculations in order to predict magnetically induced
asymmetries for the scattering of spin-polarized electrons at
magnetic surfaces. The development of efficient sources for
a polarized electron beam (Kirschner, 1985a) immediately
boosted the number of experiments using SPLEED. The
first path breaking SPLEED experiments were reviewed by
Gradmann and Alvarado (1985).

Since then, the development of computational power has
stimulated extensive effort in this field. Further develop-
ment of experimental techniques including a higher spin
polarization of the sources (Maruyama et al., 1991), a free
manipulation of the spin direction (Duden and Bauer, 1995),
and imaging with diffracted electrons (spin-polarized low-
energy electron emission microscopy, SPLEEM) (Altman
et al., 1991; Bauer, Duden and Zdyb, 2002) allowed a wide
range of applications (Spin-polarized Low Energy Electron
Microscopy, Volume 3).

Most of the experiments using elastic SPLEED pursue
three main aims. The first aim is a quantitative analysis
of space-dependent spin densities from quantitative com-
parison of relativistic dynamical scattering calculations with
SPLEED experiments. Secondly, the comparatively large
magnetic SPLEED asymmetries are used to detect and ana-
lyze magnetic order in nanostructures with a small magnitude
of magnetization, particularly in the vicinity of the magnetic
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phase transition. The third group of experiments addresses
the improvement of electron polarization detectors, that still
have an efficiency far lower than optical devices.

It is the aim of the present chapter to give a review of
physical principles and experimental results, emphasizing the
experimental point of view. Section 2 outlines the basic prin-
ciples of SPLEED, a short discussion of inelastic scattering
and comments comprehensive references that are relevant for
understanding the theoretical calculations. The experimental
methods used for SPLEED are described in Section 3 with a
focus on new developments. Section 4 describes applications
of SPLEED to the experimental determination of magnetic
and structural properties of surfaces and ferromagnetic mono-
layer (ML) structures. Valence band structure properties of
ultrathin films providing a path to more efficient spin detec-
tors are inferred from SPLEED at kinetic electron energies
below 10 eV.

2 PRINCIPLES OF SPLEED

2.1 Spin polarization of an electron beam

The spin of an electron is described as an operator (s =
sx, sy, sz) satisfying the permutation relation [sx, sy] = −i�sz

(and cyclic permutations). In the limit of nonrelativistic
interactions, which may be assumed for low-energy electrons,
the spin operator is proportional to the operator of the angular
momentum:

s = �

2
σ (1)

σx =
(

0 1
1 0

)
σy =

(
0 −i

i 0

)
σ x =

(
1 0
0 −1

)
(2)

with σ i being Pauli’s spin matrices. For a pure spin state all
electrons in the beam obtain the same spin function

χ = a1

(
1
0

)
+ a2

(
0
1

)
=

(
a1

a2

)
(3)

where

(
1
0

)
and

(
0
1

)
are the eigenfunctions of the operator

σ z. At a measurement of the spin component sz one finds
a value of either +�/2 or −�/2 with the probability |a1|2
and |a2|2. Because the components of the angular momen-
tum operator are noncommutative, only one component of
the spin of absolute value |s| = √

3/4� can be measured
simultaneously. The polarization P is a vector, given by the
expectation value of the spin operator:

P = 〈χ |σ |χ〉
〈χ |χ〉 (4)

The degree of polarization parallel to the quantization axis z

is a scalar:

Pz = 〈χ |σ z|χ〉
〈χ |χ〉 = |a1|2 − |a2|2

|a1|2 + |a2|2 = N↑ − N↓

N↑ + N↓ (5)

with −1 ≤ Pz ≤ 1. N↑ (N↓) denotes the number of electrons
with spin parallel (antiparallel) to the quantization axis. A
mixed spin state can be described by a sum over pure spin
states with appropriate coefficients. Pz can then be calculated
in a similar way as for pure spin states (Kessler, 1976).

2.2 Spin-orbit coupling

For a calculation of electron scattering, one considers as a
first step the scattering by a radially symmetric potential
V (r). In the vicinity of the atomic nucleus, electrons
acquire relativistic velocities. Therefore, the relativistic Dirac
equation has to be solved. As a direct consequence, the spin
of the electron is always coupled to its orbital momentum. In
a nonrelativistic approximation, this spin-orbit interaction can
be described by an additional spin-orbit interaction potential
(Kessler, 1976)

Vso = 1

2m2c2

1

r

dV

dr
(s · l) (6)

with s being the spin and l the orbital moment operator. The
sign of this additional spin-orbit potential depends on the
path of the electron, that is, whether it passes the nucleus
left-hand or right-hand wise, and on the spin direction.

A classical interpretation would be based on the fact that in
the system of the electron, the positive charge of the nucleus
forming the scattering potential passes by and generates
a magnetic field that in turn interacts with the magnetic
moment of the electron.

We consider the electron traveling along the x axis,
transversally polarized parallel to the z axis and scattered
in the x − y plane at a scattering angle θ (thus the orbital
moment is parallel to the spin). The spin-orbit interaction
results in different differential scattering cross sections for
spin-up and spin-down electrons σ↑(E, θ) and σ↓(E, θ). The
contribution of the spin-orbit coupling to the total scattering
potential is weak. Exclusively for minima of the differential
cross sections, a significant difference depending on the spin
can be observed. The scattering asymmetry is defined as:

Aso(θ) = σ ↑(θ) − σ↓(θ)

σ ↑(θ) + σ↓(θ)
(7)

Since the number of scattered electrons N is proportional
to the scattering cross section, an unpolarized electron beam
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will be polarized after the scattering according to:

P = Aso(θ) = N↑(θ) − N↓(θ)

N↑(θ) + N↓(θ)
(8)

with the polarizing power P (Kessler, 1976). If the scattering
potential shows a mirror symmetry with respect to the scat-
tering plane, change of sign of the orbital momentum will be
equivalent to a change of sign of the polarization: σ ↑(−θ) =
σ↓(θ) and consequently Aso(θ) = −Aso(−θ). This relation
is exploited for a polarization analysis in a Mott detector,
where intensities are measured at complementary scattering
angles. Considering a totally polarized electron beam one
will measure an asymmetry A according to:

A = N↑(θ) − N↑(−θ)

N↑(θ) + N↑(−θ)
= σ↑(θ) − σ ↓(θ)

σ↑(θ) + σ ↓(θ)
= P (9)

that is, the polarization generated by the scattering of
an unpolarized electron beam because of the spin-orbit
interaction is identical to the scattering asymmetry generated
by a totally polarized electron beam (analyzing power equals
polarizing power) (Feder, 1981).

2.3 Exchange coupling

Exchange coupling is a quantum-mechanical effect without
any classical analogon. Its origin is the Pauli principle
demanding for a spin-1/2 particle a wave function that is
antisymmetric with respect to the exchange of two particles.
As a direct consequence of this principle, the differential
scattering cross section depends on the relative orientation
between the spin of the incoming electron and the spin of
the target (e.g., a polarized atom). Note that this is not a direct
spin–spin dipole interaction, which can be neglected for the
energy range of interest here, but a Coulomb interaction
(Kessler, 1976).

Let us consider the scattering of polarized electrons e↑↓ at
polarized atoms A↑↓ with a neglection of spin-orbit coupling.
Then we have the following scattering channels:

e↓ + A↑ −→ e↓ + A↑ (|f |2) (10a)

e↓ + A↑ −→ e↑ + A↓ (|g|2) (10b)

e↑ + A↑ −→ e↑ + A↑ (|f − g|2) (10c)

In the case of (a) the electron is directly scattered without
exchange (scattering amplitude f ), case (b) denotes the
exchange scattering with amplitude g, and in the case of
(c) the electrons cannot be distinguished and one may have
exchange or direct scattering.

In a complete experiment where one knows the polariza-
tion of electron and atom before and after the scattering, the
scattering cross sections can be determined directly. When
unpolarized electrons are scattered at a polarized target, the
scattered electrons are polarized according to:

Aex(θ) = |g|2 + |f − g|2 − |f |2
|f |2 + |g|2 + |f − g|2 = P (θ) (11)

In all cases when electrons are scattered at a polarized
target, the exchange scattering provides contributions to the
total scattering cross section. This is true even in cases
where unpolarized electrons are scattered and no polarization
analysis is performed. The total cross section for scattering
at a spin-up polarized atom A↑ is then given by

σ 0(θ) = 1

2
(|f |2 + |g|2 + |f − g|2) (12)

Since the cross section depends only on the relative orien-
tation of electron spin and target spin, one obtains the same
cross section for a spin-down polarized target A↓. Therefore,
a magnetization reversal does not change the intensity of
the scattered electron beam along direction θ . The scattered
intensity also remains constant when the polarization of an
incident polarized beam on an unpolarized target is reversed.

The scattered intensity changes, however, when the inci-
dent beam and the target are polarized and the polarization
of either the target or the incident beam is reversed. The
cross sections for parallel and antiparallel orientations of the
incident electron beam and the target is given by:

e↑ −→ A↑ σ
↑↑
0 (θ) = |f − g|2 (13a)

e↓ −→ A↑ σ
↑↓
0 (θ) = |f |2 + |g|2 (13b)

Obviously, the exchange scattering amplitude g causes a
change of the scattered intensity depending on the relative
orientation of target and electron spin. One thus obtains
information on the exchange scattering mechanism without
analyzing the polarization of the scattered electrons. The
scattering cross sections do not depend on the scattering
angle. In contrast to the case of spin-orbit scattering (see
Section 2.2) there is, in particular, no left–right asymmetry
for the case of exchange scattering:

Aex(θ) = Aex(−θ) (14)

2.4 Diffraction of spin-polarized electrons
at surfaces

In the two preceding subsections, spin-orbit and exchange
scattering were treated separately. However, in general both
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effects are present simultaneously. An unpolarized electron
beam might become polarized via the spin-orbit coupling in
the vicinity of a nucleus and then responds to the exchange
interaction with conduction electrons far away from the
nucleus. Scattering at a solid-state surface may add multiple-
scattering and inelastic processes.

Let us consider the scattering of electrons at a solid-
state surface in the kinematic approximation. While the total
intensity of scattered (unpolarized) electrons is determined
mainly by the translational symmetry of the surface (LEED
spots), the polarization of the scattered electrons depends
only on the atomic scattering amplitudes (Kirschner, 1985b)
and not on the lattice periodicity. This can be easily seen
considering that the polarization is given by

P = I↑↑ − I↑↓

I↑↑ + I↑↓ (15)

and the lattice factor is a common factor for both intensities.
Within the kinematic approximation, the polarization car-

ries no information on the crystallographic structure of the
surface. As a consequence of the fact that intensity and
polarization are decoupled, it should be possible to find scat-
tering conditions with simultaneously high intensity and high
polarization. This is in contrast to scattering at atoms where
high polarization always occurs at intensity minima (Kessler,
1976) and might be important for the construction of polar-
ization detectors (see Section 3.2). The polarization is also
independent of the temperature because the Debye–Waller
factor is a common factor for the intensities, too.

The exchange asymmetry observed for scattering at a
ferromagnetic surface should depend only on the effective
magnetic moment per atom, averaged over the information
depth of the low-energy electrons, when only the kinematic
approximation is considered.

Kirschner and Feder (1979) showed, however, that the
kinematic approximation cannot be used to describe the scat-
tering of low-energy electrons. For constant energy and con-
stant incident angle they measured the polarization of the
(00) spot after reflection at a W(100) surface as a function
of the azimuthal angle. The scattering vector (k − k′) remains
constant and therefore intensity and polarization should not
vary according to the kinematic approximation. Instead, a
strong variation was found for both intensity and polariza-
tion, depending on the azimuthal angle. The experimental
observation could be simulated by a dynamic LEED theory
considering multiple-scattering events.

Because of the inherent interconnection of spin-orbit cou-
pling and exchange coupling, special scattering geometries
have to be chosen to separate these two effects. In the
longitudinal geometry the electron polarization is in the
scattering plane. According to equation (6) the spin-orbit

asymmetry vanishes. The scattering asymmetry is then exclu-
sively caused by the exchange coupling and measures the
magnetization component parallel to the incident spin direc-
tion. In the transversal geometry, the electron spin is per-
pendicular to the scattering plane. The scattering plane is
adjusted to a mirror plane of the scattering surface. Then the
electron spin is parallel to the normal 	n of the scattering plane
after the scattering event, too Feder, 1981. The exchange
asymmetry measures the magnetization component parallel
to 	n. In this case, the scattering can be described by four
independent problems using the scalar scattering potentials:

V µ
σ (	r) = V0(	r) + σµVex(	r) + Vso(	r) (16)

(Alvarado et al., 1982) with σ = +(−) for spin parallel
(antiparallel) to 	n and µ = +(−) for magnetization antipar-
allel (parallel) to 	n. In the experiment, one determines four
scattering intensities I

µ
σ from which one calculates the scat-

tering asymmetries:

Aso = (I+
+ + I−

+ ) − (I+
− + I−

− )

(I+
+ + I−

+ ) + (I+
− + I−

− )
(17)

Aex = (I+
+ + I−

− ) − (I−
+ + I+

− )

(I+
+ + I−

− ) + (I−
+ + I+

− )
(18)

Au = (I+
+ + I+

− ) − (I−
+ + I−

− )

(I+
+ + I+

− ) + (I−
+ + I−

− )
(19)

The latter asymmetry Au is obtained as the difference
between the two magnetization directions after averaging
over two spin directions and therefore describes the asymme-
try one obtains for unpolarized electrons. It is a direct con-
sequence of the coupling between spin-orbit and exchange
interaction. Au can be neglected in the case of 3d elements
as was first shown by Tamura, Ackermann and Feder (1984)
numerically using a scheme of simultaneous calculation of
spin-orbit and exchange asymmetry (Ackermann and Feder,
1984; Feder, Rosicky and Ackermann, 1983). Contrarily,
in the case of rare-earth elements Au has to be considered
(Weller et al., 1985).

The magnetic information depth depends on the mean free
path λe of the electrons (see Section 2.5) and the angle of
incidence θ according to de = λe cos θ . At the surface of a
bulk crystal or a thick film the magnetization deviates from
the core of the material. Assuming that the deviation can
be described by an exponential behavior with a coherence
length ξ⊥ perpendicular to the surface, the contribution ns

of the scattering asymmetry evoked by the topmost layer to
the total scattering asymmetry is given by

ns = ξ⊥
ξ⊥ + de

(20)



Spin-polarized low energy electron diffraction 5

The temperature dependence of the coherence length ξ⊥
diverges at the Curie temperature TC according to

ξ⊥(T ) = ξ 0
⊥

(
TC

TC − T

)ν

(21)

Close to TC the exchange asymmetry Aex thus measures
the magnetization of the topmost layer (ns = 1). This fact
was used to determine the critical behavior of the surface
magnetization of Ni (Alvarado, Hopster and Campagna,
1982). For T � TC the critical lengths ξ⊥ and de are of the
same order of magnitude and therefore Aex is determined
only to some extent by the topmost layer. A detailed
comparison of theory and experiment is needed in this case
to determine the surface magnetization.

2.5 Inelastic interactions of electrons at surfaces

Inelastic processes to be considered in the low-energy regime
are given by plasmon scattering, photoemission from valence
states, photoemission of core level states and finally phonon
and magnon scattering processes.

Scattering processes with phonons or magnons result in
very small energy losses (<100 meV). Without using high
resolution electron analyzers these electrons cannot be dis-
tinguished from elastically reflected electrons and there-
fore potentially cause erroneous intensity signals. Phonon
scattering does not result in a significant amount of spin-
flip processes, that is, the spin of the scattered electron is
conserved. However, the momentum is changed and there-
fore the intensity in an off-specular direction is increased
while the intensity in the specular direction is smaller than
expected. Inelastic processes including excitation and anni-
hilation of magnons are particularly interesting because they
change the electron polarization. These processes have been
intensively investigated by Vollmer et al. (2003) using spin-
polarized electron energy loss spectroscopy (SPEELS). An
additional scattered intensity attributed to magnon losses can
only be observed for spin parallel to the magnetization of
the sample at energy losses up to a few hundred millielec-
tronvolts. The cross section for spin-wave excitation depends
very strongly on the energy Ei of the incident electrons. Only
below Ei ≈ 10 eV can the spin wave be observed as a peak
in the intensity spectrum for spin parallel to the magnetiza-
tion. For higher incident electron energy, the contribution to
elastically reflected electrons can be neglected.

Contrary to the collective spin-wave excitations, Stoner
excitations that are the main contributions for higher inci-
dent energy above 25 eV (Kaemper, Abraham and Hopster,
1992) can be described in a single-particle picture: A Stoner
excitation consists of an electron above the Fermi energy EF

coupled to a hole below EF with opposite spin. They can

be excited very efficiently by electron scattering, and their
properties have been investigated extensively by SPEELS
(Venus and Kirschner, 1988). Stoner excitations of majority-
hole minority-electron character are much more likely than
those of minority-hole majority-electron character with a pro-
nounced maximum at an energy loss of 1–2 eV (Kaemper,
Abraham and Hopster, 1992). By a Stoner excitation the
spin of the scattered electron is apparently reversed. These
spin-flip events were found to be very important in the off-
specular, impact scattering regime, where they comprise up
to one-third of the total electron–hole excitations and are
responsible for the great majority of the observed intensity
asymmetry. They are also detected under specular and near
specular scattering conditions, but their relative importance
decreases compared to strong dipole scattering (Venus and
Kirschner, 1988).

Below 50 eV electron–hole excitations of valence elec-
trons dominate all loss processes (Quinn, 1962). Since the
momentum space for these processes becomes increasingly
smaller with decreasing energy, the mean free path of elec-
trons increases significantly at low energies. Above 50 eV
electron–hole excitations are overbalanced by plasmon exci-
tations. At higher energy the excitation of core level states
becomes possible, too, although the cross section for these
processes is negligibly small. The cross section for both
processes, plasmon excitation and electron–hole excitations,
decreases with increasing energy since the available time for
a scattering process gets smaller.

The mean free path has been determined for a large
number of materials (Seah and Dench, 1979; Woodruff and
Delchar, 1986). Although individual values may vary by
nearly an order of magnitude, the general trend following
theoretical considerations (Quinn, 1962) is described by a
minimum of the mean free path between 10 and 300 eV.
The absolute value of the mean free path in this energy
range is of the order of 1 nm. The interaction of low-energy
electrons is therefore restricted to a few atomic layers at the
surface, which makes electron diffraction an ideal tool for
investigating the properties of surfaces and ultrathin films.
Below 10 eV the mean free path increases considerably for
many materials, particularly for noble metals. Surprisingly,
this applies less to transition metals where the mean free
path is related to the number of d-holes (Schoenhense and
Siegmann, 1993).

2.6 Theory of SPLEED

Unpolarized LEED intensity calculations for various sur-
faces reproduce experimental data with impressive accuracy
(Tong, 1994). A similar calculation concept considering the
diffraction of spin-up and spin-down electrons separately has
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been developed by Feder (1981, 1985). As explained below
in more detail, calculation schemes for electron reflectivities
may use as an input self-consistently calculated ground-state
potential functions provided by separate program packages
(Density-functional Theory of Magnetism, Volume 1).

For electron energies of several tens of electronvolts the
muffin-tin (MT) approach for calculating the electron reflec-
tivities proves very adequate. Within the core region, one
may use spherically symmetric potentials, and bulk poten-
tials generated from ab initio electronic-structure calculations
are sufficiently accurate to describe electron scattering from
atoms in the surface. At sufficiently high beam energy, the
electron is scattered by the core region of the potential, and
is influenced rather modestly by the details of the potential
in the outer portion of the unit cell. Thus, for many materials
the approach of using less time-consuming bulk calculations
to approximate scattering potential at surfaces is sufficiently
accurate. The crystal is divided into nonoverlapping spheres
centered at each atomic site. Outside the spheres, the so-
called inner potential is assumed to be constant. All inelastic
processes are described by an imaginary part of the inner
potential Vi which simulates the inelastic mean free path
(IMFP). The inner potential Vi can be chosen in such a way
that the mean free path fits the experimentally observed uni-
versal curve and is of the order of 4 eV, slightly changing
with energy.

Inside the MT spheres, the portion of the ion-core potential
in the electron energy range of typical LEED energies is to
a large extent determined by the nuclear charge and tightly
bound core-state electrons, which are not easily polarizable
and retain their atomic character in the solid environment.
Therefore, this portion of the potential changes only little
as the atom is placed in the surface environment and is, to
a good approximation, spherically symmetric. On the other
hand, the outer parts of the atom, the valence and conduction
electrons, are affected by the neighboring atoms and the
surface. These distortions break the spherical symmetry of
the ion-core potential. The distortions are important at very
low energy (<30 eV) but play a minor role for electron
energies >50 eV. Therefore, one may use only the spherical
part of bulk potentials which in turn can be generated by
ab initio electronic-structure calculations.

Electronic-structure calculations can be carried out on dif-
ferent levels of sophistication depending on the particular
system and required accuracy. Ordered compounds can be
calculated by means of full potential methods. A coherent
potential approximation (CPA) may be used to determine
the properties of doped compounds and randomly disordered
alloys. The most time-consuming and most accurate calcula-
tions are given by the fully relativistic calculations.

Several calculation schemes are available and can be
run on a personal computer. Self-consistent band structure

calculations are useful for well ordered structures using the
full potential linearized augmented plane-wave (FLAPW)
method provided by Blaha, Schwarz, Sorantin and Tricky
(1990) and Schwarz, Blaha and Madsen (2002) (Wien2k 04).
In this method, only core states are treated relativistically.
The exchange-correlation functional can be taken within the
generalized gradient approximation (GGA) in the parameter-
ization of Perdew et al. (1992). For comparison, calculations
can also be performed using the linear muffin-tin orbital
(LMTO) method provided by Savrasov (1996) (LMTART
6.5) on different levels of sophistication from simple atomic
sphere approximation (ASA) to full potential plane-wave rep-
resentation (FP-LMTO-PLW).

For less ordered structures, that is, random alloys, it is
appropriate to carry out self-consistent band structure calcu-
lations using the Korringa–Kohn–Rostocker (KKR) method
provided by Akai (1998) and Kotani and Akai (1996). The
random alloys were calculated within the CPA. The pro-
gram allows to use various types of the exchange-correlation
functional, that are, for example, Barth and Hedin (1972),
Moruzzi, Janak and Williams (1978), Vosko, Wilk and Nus-
sair (1980) (VWN), and Vosko and Wilk (1980), or the
GGA in the parameterization of Perdew and Yue (1986) and
Perdew et al. (1992), or Engel and Vosko (1993). The pro-
gram allows also to work in both approximations, MT and
ASA.

The ion-core potentials are then used to calculate the
various individual atomic t matrices (Feder, 1985). For
SPLEED, it is convenient to assemble the atoms into layers
and view the crystal as an infinite array of such layers parallel
to the surface. Layer diffraction matrices τ i = ti (1 − Gti)

−1

are then constructed that describe multiple scattering within
the layer i. G is the intralayer single-particle propagator
with complex self-energy. The atomic t matrix and the layer
diffraction matrices are calculated usually in the angular
momentum representation. The number of partial waves
required for a reliable calculation depends on the number of
nuclear charges of the contributing atoms. For 3d transition
metals partial waves of up to l = 4 are sufficient while for
5d transition metals partial waves up to l = 7 are required
(Plihal, Mills, Elmers and Gradmann, 1995).

The reflected electron intensity is then expressed by the
full crystal T matrix. The exact calculation of the T matrix
requires matrices too large to be handled conveniently. There
are two major methods to deal with the T matrix in an appro-
priate way, the renormalized forward scattering (RFS) and
the layer doubling method. In the RFS scheme, forward inter-
layer scattering events are iteratively accumulated and back
interlayer events are summed sequentially. The summation
over successive orders of backscattering events is stopped
if numerical convergence to a desired accuracy is reached.
Thus, wherever there is convergence of the power-series
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expansion of backscattering matrices, the RFS method is fast
and can be rapidly carried to a high degree of numerical accu-
racy. The layer doubling method, on the other hand, induces
a larger set of scattering events than RFS. It generates the
exact solutions of forward and backward-scattering matrices
in the reciprocal space representation for two layers. The pro-
cedure is then repeated to scattering matrices for 2n layers.
This process converges in typically three to four iterations.
The RFS method is a pertubative expansion and has there-
fore the virtue of being faster than both the exact T matrix
calculation and the layer doubling method; however, it is less
stable and diverges for small layer spacings.

3 EXPERIMENTAL METHODS

3.1 Sources

Various sources for spin-polarized electrons have been
described in the literature (Kirschner, 1985a, 1985b; Maru-
yama et al., 1991). The most often used GaAs source was
first introduced by Pierce and Meier (1976). The principle of
the GaAs source is based on spin-polarized photoelectrons
emitted from a GaAs surface, that are excited by circular
polarized light. At the � point, the valence band which
has a preferential p character is splitted by the spin-orbit
coupling in fourfold degenerated p3/2 states and twofold
degenerated p1/2 states. The conduction band possesses a
preferential s character. Absorption of a photon with the gap
energy (GaAs, 1.52 eV) induces an efficient dipole-allowed
electron transition. For a right (left) circular polarized pho-
ton, the z component of the total angular momentum is
changed by +1(−1). If only electrons from the p3/2 states are
excited, right circular polarized light induces the transitions
mj = −3/2 → mj = −1/2 and mj = −1/2 → mj = +1/2
with different transition probabilities (3:1). Therefore the
expected polarization is P = 50%. Using strained layers
grown on substrates with slightly larger lattice constants, the
degeneracy of the p3/2 states is lifted and an even higher
polarization is possible (Maruyama et al., 1991).

In order to extract the excited electrons from the conduc-
tion band one needs a trick. Using heavily p-doped GaAs
charge redistribution in the surface region (10 nm) leads to
a band bending toward lower energy. A capping of the sur-
face with a combination of Cs and O pushes the conduction
band finally below the vacuum level. Then, the electrons can
escape without paying the work function energy (negative
electron affinity, NEA). For NEA, the photon energy has to
be adjusted to the band gap energy in order to avoid excita-
tion of p1/2 states. In this case, the polarization is independent
of the level of the vacuum energy, which is easily changed
by contamination. Alternatively, one may use photons with

higher energy in the visible spectral region. In this case, the
vacuum level has to be adjusted higher such that electrons
excited from the p1/2 states cannot escape (positive electron
affinity, PEA).

After escaping the semiconductor surface the electrons are
polarized longitudinally. Using electrostatic and/or magnetic
deflectors, the polarization can be adjusted in any direction
(Duden and Bauer, 1995).

Aulenbacher et al. (2002) investigated the limiting factors
for the pulse length of electron bunches escaping a GaAs
photocathode under the conditions of highly polarized beam
production. For GaAs cathodes with layer thickness d that
is large in comparison to the optical absorption length the
photoemission time response of GaAs was explained by a
diffusion model (Hartmann et al., 1999), typical response
times being about 50–100 ps. For a highly polarized elec-
tron source, however, uniaxially strained GaAs or GaAsP
cathodes are used. In these cathodes, the active layer thick-
ness is limited to a value of d = 125 ± 25 nm, which is only
a fraction of the absorption length of the exciting laser radia-
tion. In addition, the available heavy hole–light hole splitting
of the valence band of the strained samples requires that the
photoexcitation energy does not exceed the semiconductor
band gap by more than 30–60 meV.

Using NEA-GaAs photocathodes, the pulse response of
active layers with d = 200–1000 nm has been measured to
depend quadratically on the layer thickness (Aulenbacher
et al., 2002). For a thickness below 200 nm, the pulse length
decreases to below 2 ps. The response time of a strained layer
photocathode with 150 nm active layer thickness and mini-
mized doping concentration in the active region is therefore
at least a factor 25 faster than the bulk depolarization time.
Therefore, the strained layer photocathodes with their inher-
ent thickness limit of about 150 nm are relatively free from
depolarization effects in the bulk of their active region. Thus,
strained layer photocathodes offer ultrafast response and high
spin polarization which may not only be useful in fundamen-
tal science but also for possible optospintronic devices.

3.2 Detectors

The low efficiency of spin detection is a severe experimen-
tal obstacle that impedes experimental progress. In terms
of spin-detector development, a quantity of great interest is
defined as the figure of merit (FOM) and is proportional
to the inverse square of the statistical error in an electron
counting experiment to measure the polarization of an inci-
dent beam (Kessler, 1976). The FOM can be calculated
from the square of the total scattering asymmetry multiplied
by the reflection coefficient. Conventional spin polarimeters
(mini-Mott detectors) have a FOM below 2 × 10−4 (Pierce,
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Celotta, Kelley and Unguris, 1988). Detailed investigations
of the Fe(110) surface have shown that FOM of the order
of 8 × 10−3 can be achieved (Fahsold, Hammond and
Kirschner, 1992; Hammond, Fahsold and Kirschner, 1992).
Along this direction, different surfaces have been investi-
gated to increase the FOM, the lifetime, and the reproducibil-
ity (Hillebrecht et al., 2002; Jungblut, Roth, Hillebrecht and
Kisker, 1992). Recently, FOM up to 6 × 10−3 have been
achieved with a robust system, Fe(001)-p(1 × 1)O (Bertacco
and Ciccacci, 1999; Bertacco, Merano and Ciccacci, 1998).
A different approach suggested even higher FOM of up to
5 × 10−2 using high-quality ultrathin Co or Fe films on
W(110) (Zdyb and Bauer, 2002a, 2002b). For Co/W(110)
thin film, it has been shown that a FOM as high as 2 × 10−2

could be obtained for films grown at room temperature and
that it is possible to reverse aging effects by moderate anneal-
ing (Graf et al., 2005).

3.3 SPLEED spectrometers

The standard setup of a SPLEED spectrometer consists of
a source of spin-polarized electrons, the sample, and, in the
simplest version, a Faraday cup as an electron detector. For
the experiments described here (Waller and Gradmann, 1982;
Elmers, 1995), the spin-polarized electrons were taken from
a GaAs source, irradiated by circularly polarized light from
a laser diode with a photon energy of hν = 1.4 eV (λ =
830 nm). The electrons were electrostatically deflected by 90◦

resulting in a transversely polarized electron beam. Electron
energies E with respect to the Fermi level of the target
are given by E = eU + hν, where eU denotes the energy
difference between the Fermi levels of the GaAs source and
the target, respectively. The axis of electron polarization
	P0 is parallel to the normal 	n of the scattering plane,

coinciding with the measured magnetization component.
The magnitude of 	P0 can be calibrated by a comparison
of scattering asymmetries obtained from a clean W(100)
surface with previous studies, resulting in typical values
P0 = 20 ± 2%. Aex can be determined for constant energy
E as a function of the incident angle θ with respect to
the target normal or, alternatively for constant angle as a
function of E. The finite width of the electron beam and
of the detector results in an averaging of A(θ) over a finite
angle. Therefore, asymmetries are usually underestimated in
sharp extrema.

Present day electron spectrometers offer energy resolutions
of less than 1 meV (Ibach, 1991). Progress in instrumenta-
tion became possible through the development of efficient
numerical methods to calculate electron optical properties
of energy dispersive devices beyond the limitations of the
classical cylindrical and spherical deflectors, and of lens

systems which are not radial symmetric. The performance
of spectrometers is ultimately determined by the brightness
of the available electron sources.

In order to probe spin-flip events in electron energy loss
spectroscopy (EELS) sources of spin-polarized electrons as
described in the preceding text are used. The orientation of
the spin is then longitudinal to the initial electron trajec-
tory of the electrons. For the purpose of measuring the spin
asymmetry of surface excitations, the spin should be oriented
perpendicular to the scattering plane and therefore transverse
to the electron trajectory at the sample position. This requires
a deflection of the electron trajectory of 90◦ between the
point of electron emission from the GaAs cathode and the
sample. Unfortunately, a 90◦ deflection is incompatible with
the standard deflecting energy dispersive elements such as
the cylindrical or spherical deflector which feature 127◦ and
180◦ deflection, in the absence of fringe field corrections. Ini-
tial approaches to the problem (Kirschner, Rebensdorff and
Ibach, 1984), therefore, introduced an additional deflector
between the photocathode and electron monochromator on
the expense of a current reduction. An optimum design for
a spectrometer combines a 90◦ deflection in the energy dis-
persive elements with stigmatic imaging of the entrance slit
of the first monochromator onto the exit slit of the last ana-
lyzer of the entire spectrometer. A realization of this concept
was reported by Ibach et al. (2003) comprising a two-stage
monochromator, the first stage being a 90◦ deflector which
is followed by a 180◦ deflector. The combination of both
deflectors provides a nearly stigmatic image of the entrance
slit onto the exit slit in the presence of space charge. The
overall performance of this concept was demonstrated by
the determination of spin-wave dispersion curves (Vollmer
et al., 2003).

3.4 SPLEED by SPLEEM

For a direct investigation of band structure properties, it
is necessary to reflect electrons at very low energies, that
is, below 20 eV. In electron spectrometers, as described
above, the sample area is usually well shielded from external
magnetic fields and electron diffraction can be studied
at kinetic energies of a few electronvolts. An alternative
approach is given by the use of a SPLEEM (Altman et al.,
1991; Zdyb and Bauer, 2002b). In the diffraction mode the
microscope allows at normal incidence the observation of
the specular reflected beam. An important advantage of this
instrument is the simultaneous control of the sample surface
properties and the possibility to restrict the area of interest
to any sample area thus avoiding an averaging over, for
example, inhomogeneous film thicknesses or magnetization
structures.
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As demonstrated by Zdyb and Bauer (2002b) SPLEEM
can be applied to SPLEED, provided that a nearly parallel
beam of slow electrons with normal incidence on the sample
is produced by focusing a spin-polarized 15 keV electron
beam into the back focal plane of a cathode lens. In this
lens, the electrons are decelerated to the desired energy at
the sample, reaccelerated again after reflection, and used for
imaging the surface. This high magnification is necessary in
order to measure the intensity reflected from microcrystals.
The electron beam was produced by a GaAs source as
described in the preceding text.

4 APPLICATIONS

4.1 SPLEED at nonmagnetic surfaces

The 5d element W is not ferromagnetic and therefore one
obtains Aex = 0. Because of the large atomic number of
W its surface exhibits large values of Aso. In a famous
double scattering experiment Kirschner (1985a) showed how
absolute values for Aso could be determined without any
assumption on the polarization detector or on the electron
source.

An unpolarized incident electron beam perpendicular to
a W(100) surface (polarizer) generates four (2,0) spots of
equal intensity. The two complementary diffracted beams in
one of the two scattering planes are oppositely polarized,
perpendicular to the corresponding scattering plane. The
relations between counting rates N

↑
1 , N

↓
1 of up- and down-

polarized electrons and polarization P are given by(
N

↑
1

N
↓
1

)
(2,0)

= 1 − P

1 + P

(
N

↑
1

N
↓
1

)
(2,0)

= 1 + P

1 − P
(22)

The (2,0) spot is then diffracted at a second W(100) surface
(analyzer) and generates again a (2,0) and (2, 0) spot which
now have different intensities in addition to their different
polarizations:

(
N

↑
2

N
↓
2

)
(2,0)

= (1 − P )(1 − A)

(1 + P )(1 + A)(
N

↑
2

N
↓
2

)
(2,0)

= (1 − P )(1 + A)

(1 + P )(1 − A)
(23)

with the asymmetry A of the second surface. From the
different intensities one obtains:

R = I(2,0) − I(2,0)

I(2,0) + I(2,0)

= A · P (24)

Because the scattering plane being a mirror plane of the
two W(100) surfaces the asymmetries are equal, A = P , and
the asymmetry can be determined from P = √

R (Kirschner,
1985b).

Because of the fact that W(100) can be easily cleaned
in a ultrahigh vacuum by flashing and because it provides
comparatively large values of P , the W(100) surface is used
as a spin detector (SPLEED detector) (compare Section 3.2).
Here, P depends strongly on the incident energy and the
scattering energy has to be well defined for the application as
a spin detector. A commercialized version using four electron
counters allows simultaneous detection of two polarization
components (Focus-GmbH, 2005).

The usefulness of spin-polarization analysis in LEED for
the structure determination of nonmagnetic surfaces and of
ordered layers adsorbed at single-crystal surfaces has been
successfully demonstrated by experimental and theoretical
analysis of SPLEED data (Potthoff et al., 1995; Hilgers,
Potthoff, Mueller and Heinzmann, 1995; Venus, 1993),
where adsorbate structures and structural parameters could
be determined.

Zasada (2002) proposed the interesting idea of measuring
the spin-dependent diffuse LEED intensity. He considered
the resulting incoherent scattering asymmetries from a single-
crystal surface Pt(111) partially covered with CO molecules
and calculated values for different parameters characterizing
the adsorbate/substrate system. The parameters considered
were geometrical parameters related to the local arrangement
of molecules near chemisorption sites and order parame-
ters related to the statistical distribution of the occupied
chemisorption sites. The impressive sensitivity of the inco-
herent scattering asymmetries to geometry and local order
examined for the CO/Pt(111) system demonstrated the prac-
tical use of the theory and implies a challenge to experimental
work in this field.

4.2 Surface magnetization of bulk ferromagnets

4.2.1 Critical behavior

In the following, we concentrate on the critical behav-
ior of the magnetization near the Curie temperature TC.
SPLEED will be a convenient experimental tool to analyze
the critical behavior, if Aex is proportional to the magne-
tization with respect to its temperature dependence. This
appears reasonable near TC, as the magnetic coherence length
ξ diverges with the reduced temperature t = (T − TC)/TC

going to zero, and so ξ becomes large in comparison with
the information depth of the low-energy electrons. Feder
and Pleyer (1982) theoretically confirmed a similar tem-
perature dependence of Aex and magnetization. Consider-
ing the finite coherence length, an experimental analysis
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using Aex ∝ M should be restricted to t < 0.1, and the
results should be checked by comparing Aex(T ) for various
energies.

Pioneering work was done by Palmberg, de Wames and
Vredevoe (1968) on antiferromagnetic NiO surfaces, using
the temperature dependence of half-order LEED spots which
are caused by the antiferromagnetic order and therefore
disappear at the Néel-temperature. The critical exponent for
the surface magnetization was found close to 1, in contrast to
β ≈ 1/3 for the bulk. Note that, in this case, no spin analysis
is needed and an unpolarized beam can be used, although the
effect is caused by the exchange asymmetry.

An experimental study using SPLEED of the critical
behavior of Ni(110) and Ni(100) surfaces was given by
Alvarado, Campagna, Ciccacci and Hopster (1982) and
Alvarado, Campagna and Hopster (1982). They found a
critical power law Aex ∝ tβ with a critical temperature
identical with the bulk value and determined a critical
exponent β = 0.8 ± 0.02 for both Ni(100) and Ni(110)
differing dramatically from the bulk value β = 1/3. The
value found for the Ni surfaces is in agreement with
theoretical models considering local moments and short-
range interaction (Heisenberg model).

An interesting case investigated by SPLEED is the inferred
existence of a remanent magnetization at the Gd(0001) sur-
face while the bulk magnetization has vanished for tem-
peratures above TC. The existence of surface magnetic
ordering above the bulk Curie temperature for Gd(0001)
thin films grown epitaxially on W(110) was first mea-
sured by Weller et al. (1985) using temperature dependent
SPLEED. From theoretical considerations, a pure surface
transition can occur if the exchange coupling is enhanced
at the surface (Binder, 1985). A spin-polarized energy-
resolved photoemission study of Gd(0001) (Weller et al.,
1985) revealed an antiferromagnetic coupling of the top-
most layer to the underlying magnetic layers. The experi-
mental result reported in (Weller et al., 1985) provoked a
heavy debate in the scientific community because of con-
flicting experimental results denying a pure surface transition
((Arnold and Pappas, 2000) and references therein). Recently
published articles in favor (Denecke et al., 2002) or disfavor
(Melnikov et al., 2004) of an enhanced Curie temperature
at the surface suggest that the topic has not been clari-
fied, yet.

4.2.2 Magnitude of surface magnetization at low
temperatures

The advantages of probing simultaneous Aex and Aso in
order to evaluate the magnitude of the magnetization at
surfaces was first demonstrated in an investigation of the
Ni(001) surface (Feder, Alvarado, Tamura and Kisker, 1983).

The comparison of experimental and calculated Aso values
confirmed the adequacy of the used exchange-correlation
potential and the topmost atomic layer spacing as bulk
like. Experimentally obtained Aex values were compared
with different model assumptions for the surface magnetiza-
tion. Two independent theoretical analyses (Feder, Alvarado,
Tamura and Kisker, 1983; Freeman, 1983) concluded on a
slightly enhanced surface moment (+5 m%) for the Ni(001)
surface.

In the following, we discuss extensively the case of the
Fe(110) surface as an example for the determination of
magnetization near the surface of well defined systems.

In the work of Waller and Gradmann (1982) and Waller
(1986), the total scattered intensity (spin-up plus spin-down
current) is measured, for the specular (00) beam and for the
(11) beam. They have studied a remarkably wide range of
energies. The polarization of the incident beam is parallel to
the surface and perpendicular to the scattering plane defined
as the plane that contains the incident beam and the normal
to the surface. The magnetization of the substrate is also
parallel to the surface, and to the [001] direction, which is an
easy axis. The scattering plane is perpendicular to the [001]
direction in the surface, so in all measurements the incident
beam polarization is parallel to or antiparallel to the substrate
magnetization. The geometry corresponds to the transversal
geometry described in Section 2.4.

In conventional LEED analyses, in comparison between
theory and experiment one does not compare the absolute
intensity given by theory with the data. Indeed, it is difficult
to extract the absolute intensity from the data. One typically
adjusts the theoretical intensity to fit experiment at one point,
and then compares the two as a function of angle at fixed
energy, or energy at fixed incident angle. The exchange and
spin-orbit asymmetries are intensity ratios, and the absolute
values of these quantities are not affected by the difficulty of
extracting a single absolute intensity from data influenced by
geometric corrections, spectrometer sensitivities, and so on.
Thus, a comparison between theory and experiment provides
a severe test of the quality of the potentials used in the
theoretical work.

Figure 1(a–c) shows a comparison between calculated
and measured total intensity, spin-orbit asymmetry and
exchange asymmetry for the specular beam scattered at a
Fe(110) surface. The experimental data were first published
in Tamura, Feder, Waller and Gradmann (1990). The cal-
culations have been performed using the multiple-scattering
theory described in Ormeci, Hall and Mills (1990, 1991).
For the analysis ab initio self-consistent potentials calcu-
lated by Fu and Freeman (1987) for the Fe(110) surface
were employed. The enhanced surface moments were sim-
ulated by simply scaling up the spin-dependent portion

V (	r) = V ↑(	r) − V ↓(	r) of the self consistent potential by
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Figure 1. SPLEED from Fe(110). Comparison between theory (full lines) and experimental data (dashed lines in (a) and (b), squares in
(c)) for total intensity (a), spin-orbit asymmetry (b), and exchange asymmetry (c) for the (00) spot of a Fe(110) surface at 62 eV beam
energy. The measured exchange asymmetry Aex (squares) is compared with theoretical results based on three different assumptions for the
surface magnetic moments at the Fe(110) surface: (i) calculations based on the picture of Freeman and Fu (solid line); (ii) calculations
based on the model of Tamura, Feder, Waller and Gradmann, 1990; (dashed line); (iii) calculations based on the assumption that the Fe
moments assume their bulk value everywhere (dotted line). (Reproduced from A. Ormeci et al., 1990, with permission from American
Physical Society  1990.)

an appropriate scale factor. This is the only adjustment that
was made to the potential; no adjustment was made to the
overall strength of the exchange potential.

The overall agreement between theory and experiment
is remarkably good. A certain discrepancy between theory
and experiment remains at large angles as was pointed
out in Tamura, Feder, Waller and Gradmann (1990) and
Ormeci, Hall and Mills (1990). The agreement between
theory and experiment for the spin-orbit asymmetry, shown
in Figure 1(b), confirms the assumption for the polarization
of the incident electron beam (P = 0.3), because it is very
insensitive to the magnetic-moment profile. The features
of the experimental data are reproduced nicely, though
the magnitude of the negative dip in Aso above 40◦ is
overestimated.

The exchange asymmetry (Figure 1c) at an incident beam
energy of 62 eV comprises a considerable sensitivity to
the magnitude of the near-surface moments. The solid line
denotes calculations for the model of Fu and Freeman
(1987), that is, 19.4% enhancement of moment in the surface
layer, 6.8% in the second layer, 2.7% in the third layer,
and 1.4% in the fourth. The dashed line is the prediction
calculated for the model proposed in (Tamura, Feder, Waller
and Gradmann, 1990), which has the surface-layer moment
enhanced by 35%, and the second-layer moment diminished
by 15%. All other moments assume their bulk values. The
dotted line shows the exchange asymmetry calculated for a

picture which takes the moments equal to their bulk value
everywhere.

The prominent peak in Aex near θ = 40◦ is quite sen-
sitive to the magnitude of the moments near the surface.
The peak in the data has Aex = 0.17, extremely close
to the value provided by the model of Fu and Freeman
(1987). The model of (Tamura, Feder, Waller and Grad-
mann, 1990) gives a maximum value of Aex = 0.21, while
the assumption of bulk moments everywhere gives Aex =
0.14. The best overall account of the data is provided by
the model of (Fu and Freeman, 1987). The finding of an
enhanced surface moment at the free Fe(110) surface has
been quantitatively confirmed by torsion oscillation mag-
netometry (TOM) (Wagner, Weber, Elmers and Gradmann,
1997).

As pointed out in Ormeci, Hall and Mills (1990), devia-
tions between theory and experiment may occur particularly
at the intensity minima. The minimum in the experimental
data may be less deep than that in theory, because defects on
the surface may destroy the long-range order needed for the
destructive interference between scattered waves generated
from various layers of the samples to produce a near zero in
the total intensity. This may be a difficulty, even for sam-
ples with very high-quality surfaces. In addition, the defects
produce an incoherent background of elastically scattered
electrons which are collected along with those that contribute
to the coherently reflected beam.
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4.3 Ferromagnetic monolayer structures

4.3.1 Monolayer Fe(110) on W(110) – critical
behavior

As pointed out in the preceding text, SPLEED can be used
to analyze the critical behavior of ultrathin films, if Aex is
proportional to the magnetization with respect to its temper-
ature dependence. SPLEED is advantageous because of its
surface sensitivity, especially if the magnetization is concen-
trated in an ultrathin film on top of a nonmagnetic substrate
(Venus and Cool, 1999). For ultrathin Fe(110)/W(110) films
Aex exhibits peak values of polarization up to 40 % for spe-
cific scattering conditions (Venus and Cool, 1999).

For ultrathin films, Aex ∝ M was used for the interpre-
tation of the data over a large range of temperatures Duerr
et al. (1989). However, deviations from the proportionality
for t > 0.1 (t = (T − TC)/TC) were discussed in detail for
surfaces (Kirschner, 1984) and ultrathin films (Elmers and
Hauschild, 1994). In (Elmers and Hauschild, 1994), strictly
speaking a deviation from the proportionality has not been
confirmed, because M has not been measured. But the tem-
perature dependence of Aex, at lower temperatures, deviates
so strongly from everything we know about M(T ) that this
confirms the loss of proportionality at low temperatures.
Aex ∝ M in the critical range t < 0.1 rests on the careful
discussion in this chapter.

For a comparison of theoretical models with experi-
ment it is crucial to prepare samples as close as pos-
sible to the structures considered by theories. The sys-
tem Fe on W(110) serves as a favorable model system
since it is possible to grow extended monolayers to a high
degree of perfection (Przybylski, Kaufmann and Gradmann,
1989). The monolayer Fe(110)/W(110) develops a huge uni-
axial magnetic anisotropy favoring an in-plane magnetic
easy axis along the [110] direction (Gradmann, Korecki
and Waller, 1986; Gradmann, Przybylski, Elmers and Liu,
1989; Elmers and Gradmann, 1990; Fritzsche, Elmers and
Gradmann, 1994; Elmers et al., 1994; Pratzer et al., 2001).
According to theoretical models, one expects therefore a
critical behavior close to the two-dimensional (2d)-Ising
model.

2d-Ising behavior can be expected only in a narrow crit-
ical temperature region 
T below and above TC. As a
result of the scaling theory (Pfeuty and Toulouse, 1977)

T/TC is for a 3d system with anisotropy constant K of
the order K/kbTC ≈ 10−3, which would make the critical
behavior practically impossible to observe. In 2d systems,
however, large regions of correlated spins occur even far
from the phase transition (Demokritov, Kreines, Kudinov
and Petrov, 1989), effectively broadening the critical region
by a factor J/K ≈ 102. For an investigation of the critical

region, we therefore concentrate on the temperature region

TC/TC < 0.1.

For uncovered Fe monolayers, the magnetic order
M(H, T ) was determined via the exchange asymmetry,
Aex(H, T ), of reflected spin-polarized electrons (Elmers,
1995). The incident angle and energy of the spin-polarized
electrons were chosen such that Aex was maximized. In this
experiment, a small field could be applied via the Oerstedt
field of a current running through the substrate crystal, thus
allowing to determine not only the magnetization but also the
magnetic susceptibility. For fields below 2 Oe, the deflection
of electrons due to the Lorentz force could be neglected.
The result for the temperature dependence of the sponta-
neous magnetization M0(T ) ∝ Aex(T ) and of the magnetic
susceptibility χ(T ) is shown in Figure 2.

A careful evaluation of Aex(H, T ) for very low fields H ≤
2 Oe (Elmers, Hauschild and Gradmann, 1995a, 1995b) ver-
ified that M0(T ) equals the remanent magnetization M(H =
0, T ), which was originally determined in the experiment.
Figure 2 shows a steep decrease of M0(T ) near T = 222 K,
followed by an inflection point at Tinfl = 222.5 K and a final
vanishing at T ∗ = 223.4 K. This typical tail is frequently
observed for ultrathin films and often associated with finite
size effects (Duerr et al., 1989). Note, however, that the
extension of the tail, in our case, is of the order of just
0.5% of TC. We find a satisfying explanation for the tail
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Figure 2. Exchange asymmetry P0Aex (•) in the remanent state
of 0.8-ML Fe on W(110), deposited at 660 K, as a function of
temperature. Susceptibility χ/χ0 (◦) versus T for the same sample.
Full lines represent power laws Aex ∝ (T ′

C − T )β
′

and χ ∝ (T −
T ′

C)−γ ′
, with values for the critical temperature T ′

C = 222.1 K and
for exponents β ′ = 0.124 and γ ′ = 3.2. T ∗

C = 222.6 K defines the
maximum of χ . (Reproduced from H.J. Elmers et al., 1995, with
permission from World Scientific.  1995.)
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shown in Figure 2 assuming a small distribution of Curie
temperatures in our sample. In fact, the sample consists of
monolayer stripes formed adjacent to terrace steps on the
substrate. The distribution of the terrace width results in a
variation of the stripe widths and consequently of TC. In this
picture, every individual magnetic stripe, as formed in the
step flow growth mode, shows a second-order phase tran-
sition (no tail) but with slightly different TC. The averaging
over the distribution results in the tail. Even for a single stripe
of uniform width a tail has been predicted by Landau (1976)
who demonstrated by MC simulations that long-range order
in the 2d-Ising model on a finite sized quadratic square lattice
shows similar tails above TC. This minor effect, however, can
be neglected in the experiment described here.

For a determination of the critical exponent, Aex(T ) was
fitted numerically to a power law Aex(T ) ∝ (T − T ′

C)β
′
in the

region 0.9 < T/TC < 0.996, thus avoiding the temperature
region affected by the tail. The fit results in a critical
temperature T ′

C = 222.1(1) K, which can be appointed to the
Curie temperature of the system, and in the critical exponent
β ′ = 0.124(1), which is in agreement with the theoretical
value β = 1/8 of the 2d-Ising model. The accuracy of the fit
can be estimated from a double logarithmic plot (Figure 3).

As was shown by a more thorough study of the critical
behavior (see Elmers, Hauschild and Gradmann (1996)), the
magnetization tail above TC can be interpreted as a result
of convolution of the critical power law with the monolayer
stripe width distribution. Using an appropriate deconvolution
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Figure 3. Double logarithmic plot of susceptibility χ (◦) and
exchange asymmetry Aex (•) versus reduced temperatures (data
from Figure 2). Exponents resulting from the slope are β ′ = 0.124
and γ ′ = 3.2. (Reproduced from H.J. Elmers et al., 1995, with
permission from World Scientific.  1995.)

scheme, critical power laws could be established for both
magnetization and susceptibility with critical exponents β =
(0.134 ± 0.003) and γ = (2.8 ± 0.2). These values form a
small but definite deviation from the 2d-Ising model. The
enhanced value of γ can be explained from the fact that
the anisotropy energies per atom are smaller than exchange
coupling energies. The enhanced value of β is indicative of
long-range interactions.

The magnetic susceptibility was determined from the
initial increase of Aex with increasing external fields. As
shown in Figure 2, χ(T ) exhibits a maximum value χ0 at a
temperature T ∗

C = 222.65 K well above T ′
C (T ∗

C = (1 + 2.5 ×
10−3)T ′

C). The deviation of the maximum of the susceptibility
from the Curie temperature can be understood from the
following argument. It is well known (Essam and Fisher,
1963) that χ(T ) rises much faster when approaching TC from
T < TC than from T > TC. The rise is limited at T − (for
T < TC) and at T + (for T > TC) because of the limited size
of the sample (magnetic islands). Now, T − is much closer to
TC than T +, and consequently, the maximum will show up
at some mean value in between T − and T +, which should
be above TC.

A rough estimate of the absolute value of χ0, assuming
bulk magnetization at T = 0 K and a proportionality M ∝
Aex even for T � T ′

C, results in χ0 ≈ 103 (SI units), which
is somewhat smaller than previous observations for Fe on
W(110) (Back, Wuersch, Kerkmann and Pescia, 1994). As
was pointed out by Farle et al. (1993), the maximum value
of χ observable in an experiment is limited by the in-plane
demagnetization factor 1/N‖, which is roughly given by
1/N‖ = ρ/t for islands of diameter ρ and thickness t . In turn,
the large susceptibility we observed for the Fe(110)/W(110)
monolayer, corresponds to magnetic islands with an effective
diameter of ρ = 5 µm.

At temperatures below the maximum value of the suscep-
tibility, χ(T ) can be approximated by a power law, χ(T ) ∝
(T ′

C − T )−γ ′
. A double logarithmic plot (Figure 3) reveals a

linear behavior, resulting in an exponent γ ′ = 3.2(2), which
is definitely above the 2d-Ising value γ = 7/4. Note that
we used T ′

C for the logarithmic plot. We find that, in con-
trast to the case of β ′, the exponent γ ′ strongly depends
on the choice of the critical temperature (without affecting
the linear behavior in the double logarithmic plot). If we
took, for example, T ∗

C as the Curie temperature of the sys-
tem, the corresponding power-law fit would result in a crit-
ical exponent γ ′ = 1.75(10), surprisingly close to the Ising
value.

4.3.2 Submonolayer Fe(110) on W(110):
ferromagnetic monolayer stripes

Fe grows pseudomorphically from the steps of the W sub-
strate (step flow growth) in continuous stripes of monoatomic



14 Electron microscopy and electron holography

height Elmers et al. (1994). The second layer starts only after
the completion of the first layer. The width b = w of the Fe
stripes can be controlled by the Fe coverage  with w being
the width of the W terrace. Certainly, the W substrate will
show an arbitrary distribution of terrace widths. Employing
mean values for b and w, one may reinterpret  in terms of
an average stripe width. The mean width of the W terraces
in the experiment reported here was w = 40 nm.

Figure 4 shows P0Aex(T ) ∝ M0(T ) for Fe films with
decreasing coverage, down to a coverage of only  = 0.1.
The remarkably high signal-to-noise ratio emphasizes the
sensitivity of the SPLEED probe. The magnetic phase transi-
tion, which is sharp for  close to the complete monolayer,
smears out for decreasing , that is, for decreasing stripe
width. The Curie temperature TC() was determined opera-
tionally from the point of inflection in the M0(T ) curves. The
increase of TC() as a function of  is shown in Figure 5.
It can be interpreted as an increase of TC(b) as a function of
the stripe width b, as explained in the caption.

The dispersion of stripe widths can be estimated from
M(H) in the vicinity of TC. Assuming a Gaussian distribu-
tion of the terrace width w with a full width at half maximum
of 
w and a mean value w = 40 nm, the distribution of the
stripe width then results via TC(b) (see Figure 5) in a dis-
tribution of Curie temperatures with the mean value given
by TC(w). In this model, the phase transition of a single
stripe follows the ideal power law; however, the averag-
ing causes a tail in the M0(T ) relation with a width 
T

roughly increasing with 
w dTC/db. A comparison of this
simple model with the experimentally observed tails results
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Figure 4. P0Aex(T ) ∝ M0(T ) versus T for electron reflection from
Fe(110) films prepared at 660 K on W(110) with total coverage .
The spin polarization P0 of the incident electron beam is roughly
20%. (Reproduced from H.J. Elmers et al., 1994, with permission
from American Physical Society.  1994.)
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the distribution of Fe stripe widths. The power-law fit as indicated
in the figure (full line) results in ν = 0.97(14), TC(∞) = 230 K,
and b0 = 0.8 nm. (Reproduced from H.J Elmers et al., 1995, with
permission from World Scientific.  1995.)

in a value 
w/w = 0.1, independently of the coverage. An
excellent agreement of the model and the experimental data
was found for all coverages 0.05 ≤ (ML) ≤ 0.8.

The decreasing values of TC for increasing  > 0.8
are presumably related to an interaction appearing when
the separated stripes are closing in. The finite size scal-
ing for the two-dimensional stripes results in the power
law, 1 − TC(b)/TC(∞) = (b/b0)

−1/ν2 , with TC(∞) denot-
ing the Curie temperature of the extended monolayer. A
three-parameter fit to the experimental data (see Figure 5)
results in TC(∞) = TC(ML) = 230 K, b0 = 0.8 nm and ν2 =
0.97 ± 0.14. The critical exponent of the two-dimensional
correlation length ν2 is close to the value ν2 = 1 predicted
for the 2d-Ising model. The stripe width b0 marks the onset
of ferromagnetic order, corresponding to four atomic chains
in the stripe.

4.3.3 Bilayer Fe(100) on W(100) – critical behavior
of the 2d-XY model

Despite the lack of a full theoretical understanding, sponta-
neous magnetization was found experimentally in ultrathin
films without uniaxial anisotropy (Elmers, 1995). Without
uniaxial anisotropy, the spontaneous magnetization M0 lies
in the film plane. In most cases, the anisotropy was not deter-
mined explicitly, but can be deduced from the symmetry of
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the film. For films of cubic symmetry in the (100) plane, the
most significant contribution to the anisotropy energy will be
of fourfold symmetry resulting in a biaxial anisotropy which
is weak in comparison to the uniaxial anisotropy discussed
in the preceding text.

The critical behavior of 2d systems where the magneti-
zation can rotate freely in the film plane (2d-XY model)
was discussed in Bramwell and Holdsworth (1993a) with the
result of quasispontaneous magnetization and a critical expo-
nent of β = 1/4. Instead of the power-law behavior regularly
found in magnetic systems, the magnetic susceptibility was
predicted to increase exponentially (Kosterlitz, 1974) in a
2d-XY model.

Magnetic properties were investigated (Elmers and
Hauschild, 1994) for Fe layers on W(100). It was confirmed
experimentally that Fe/W(100) films even up to a cover-
age  = 2 ML are thermodynamically stable (Elmers and
Hauschild, 1994). Moreover, Fe grows pseudomorphically on
the W(100) substrate (Elmers and Hauschild, 1994) with an
expansion of 9.4% due to the lattice mismatch, thus forming
a promising epitaxial system for studying 2d magnetism.

Using SPLEED, the exchange asymmetry, Aex, was mea-
sured as a function of temperature and external field H for an
annealed (Ta = 550 K) Fe(100)/W(100) film. The thickness
well below the bilayer ( = 1.6 ML) guarantees the absence
of effects evoked by triple layer islands.

Figure 6 shows the temperature dependence of the sponta-
neous magnetization M0(T ) and the magnetic susceptibility
χ(T ) just in the critical regime. Imperfectnesses of the two-
dimensional sample, like finite sized islands or a distribution
of island sizes, cause the tail of M0(T ) just above TC. The
tail covers only a small temperature region of 
T ≈ 1 K
(0.005 TC). This might be taken as a hint for the good qual-
ity of the sample. The power law M0(T ) ∝ (T ′

C − T )β
′

fits
the experimental data Aex(T ) ∝ M0(T ), resulting in the crit-
ical temperature T ′

C = 207.8(2) K (the Curie temperature for
this special film) and in an effective exponent β ′ = 0.217(5).
The double logarithmic plot (Figure 7) reveals the result
β = 0.22(1) of the fit. This value is consistent with the the-
oretical value for the 2d-XY model, β = 3π2/128 ≈ 0.23
(Bramwell and Holdsworth, 1993b).

Here χ was derived from the difference 
M =
M(H1, T ) − M(0, T ), of the magnetization in an exter-
nal field H = 0.6 Oe compared with the magnetization
in the remanent state. In the limited temperature interval
(0.98 T ′

C, 1.02 T ′
C) around T ′

C, 
M(H) showed a nonlin-
ear increase (with decreasing slope) as a function of H , thus
providing only a lower limit for χ , only.

For T < 0.98 T ′
C and T > 1.02 T ′

C, 
M turned out to
increase linearly with H , thus allowing for a determination
of χ(T ). Figure 7 shows a double logarithmic plot of χ(T >

T ′
C) using the critical temperature T ′

C determined from the
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Figure 6. Exchange asymmetry P0Aex (•) in the remanent state
of 1.6-ML Fe on W(100), deposited at 300 K and subsequently
annealed at T = 550 K, as a function of temperature. Increase

P0Aex = P0[Aex(H1, T ) − Aex(0, T )] of exchange asymmetry
with an external field H1 = 0.63 Oe as a function of temperature
(◦). The solid lines represent a power law Aex ∝ (T ′

C − T )β
′

and
an exponential law 
P0Aex ∝ exp(b/

√
(T /T ′

C − 1)), respectively,
with values for the critical temperature T ′

C = 207.8 K and for expo-
nents β ′ = 0.22 and b = 1.6. (Reproduced from H.J. Elmers et al.,
1995, with permission from World Scientific.  1995.)

fit of M0(T ) (Figure 6). A fit using the exponential law,
χ ∝ exp(b/

√
T /T ′

C − 1), agrees well with the experimental
data. The fit results in a parameter b = 1.6(1), which is of the
order of magnitude predicted for the pure 2d-XY model with
nearest-neighbor interaction, b(2d − XY) = 2.6 (Kosterlitz,
1974).

4.3.4 Bilayer Fe(100) on W(100) – magnitude
of magnetization

In this section, an example is given about how magnetic
and structural information can be gained by a comparison of
experimental and theoretical data of SPLEED data (Plihal,
Mills, Elmers and Gradmann, 1995). For this purpose, a
ferromagnetic bilayer of very high quality is chosen, that
is, the pseudomorphic Fe bilayer Fe(100)/W(100) (Elmers
and Hauschild, 1994). Another advantage is that this bilayer
has been studied theoretically by ab initio calculations (Wu
and Freeman, 1992).

In order to obtain information on the angular variation of
the specular reflectivity, the SPLEED intensities are mea-
sured at various energies. Both the spin-orbit asymmetry Aso

and the exchange asymmetry Aex is evaluated. For com-
parison with theoretical data, relativistic multiple-scattering
theory has been applied according to the scheme outlined in
Section 2.6.
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The Fe bilayer was magnetized by field pulses of 2 Oe
along the [001] axis in the film plane. Asymmetries A+ and
A− for both magnetization directions were then determined
in the remanent state at T = 115 K which is below the

Curie temperature TC = 225 K of this system. Spin-orbit
and exchange asymmetries were separated as described in
Section 2.4 neglecting a weak interference correction Au.
In this geometry, Aex is sensitive to the magnetization
component parallel to [001]. Plihal, Mills, Elmers and
Gradmann (1995) assumed that [001] is the easy axis of
this system following previous magnetic studies (Venus
and Johnston, 1994; Jones and Venus, 1994; Elmers and
Hauschild, 1994). Later, a magnetic easy axis along [011] as
reported already in (Mulhollan, Fink, Erskine and Walters,
1991) was confirmed by Wulfhekel et al. (2003) using spin-
polarized scanning tunneling microscopy (Wulfhekel et al.,
2003). They observed a switch of the magnetic easy axis from
[011] toward [100] with increasing thickness. Therefore, the
remanent magnetization assumes in the geometry used for
the SPLEED experiment only a value of 0.7.

In order to determine the geometrical structure of the film,
experimental and theoretical curves were compared for the
spin-orbit asymmetry. In Figure 10, the angular variation of
the data (solid circles) are compared with theoretical calcula-
tions (solid lines) for various overlayer geometries. Here, a1

is the distance between the outermost plane of the tungsten
nuclei and the first layer of Fe nuclei, and a2 is the spacing
between the two Fe layers. Note that the spin-orbit asym-
metries are much larger than those realized on the Fe(110)
surface (Waller and Gradmann, 1982). The large values of
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Aso shown in Figure 10 have their origin in the penetration
of the electron wave into the W substrate. The values of Aso

are smaller than found in pure W, because the electron wave
is attenuated by the Fe.

The structural sensitivity of Aso is apparent upon scan-
ning the various geometries included in Figure 8. Substantial
changes in the angular variations of Aso result from dis-
placements of the Fe layers by ±0.1 Å. In LEED analyses,
optimum geometries usually are deduced by minimizing the
R factor. Because absolute values are compared for Aso, it is
useful to simply employ the mean-square deviation between
theory and experiment as a measure of goodness of the fit
here. In Figure 9, we show contour plots of the mean-square
deviation, in the a1 − a2 plane. There is a clear minimum
at the values a2 = 1.20 Å and a1 = 1.32 Å. The remaining
extrema in the figure are maxima, though there is another
minimum near a2 = 0.97 Å and a1 = 1.24 Å. From similar
plots for various energies one finds the latter minimum not
significant and the most likely values for the lattice distances
of a2 = 1.20 Å and a1 = 1.35 Å. The spacing between the

two outermost Fe layers a1 is in very good agreement with
theoretical values found in Wu and Freeman (1992), while
for a2 a much smaller value of 1.09 Å was found. A recent
ab initio calculation (Qian and Huebner, 2003) considering
the W-5p states correctly found a distance of a2 = 1.25 Å
for the first monolayer Fe on W(100), thus confirming the
SPLEED analysis well.

The exchange asymmetry Aex is analyzed in Figure 10
where a comparison between theory and experiment is
shown. Here, µ2 is the moment in the outermost layer and
µ1 is the moment in the innermost layer and µFe = 2.2 µB

denotes the bulk moment. The chosen moments represent the
best fits out of a larger variety of calculated spectra (Plihal,
Mills, Elmers and Gradmann, 1995), although the calculated
spectra appear not dramatically sensitive to the choice of
magnetic moments. Although the theory clearly reproduces
the experimental trends, the agreement is less good than
found for the spin-orbit asymmetry. Part of the problem may
reside in the use of bulk Fe forms for the exchange potential.
This may be a problem, particularly for the innermost Fe
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layer, where 3d electrons will hybridize with the W 5d
electrons. Indeed, Wu and Freeman (1992) found a very small
moment at the outermost W layer in their calculations.

The magnetic moments of µ1 = 1.3 µB and µ2 = 1.8 µB

(Plihal, Mills, Elmers and Gradmann, 1995) found here
are smaller than magnetic moments predicted theoretically.
Wu and Freeman (1992) calculated µ1 = 1.68 µB and µ2 =
2.43 µB. Qian and Huebner (2003) found a value of µ1 =
2.1 µB for only 1 ML Fe/W(100). Part of this discrepancy
can be attributed to the fact that the experimental asym-
metries were presumably measured at a remanent value of
0.7 of the saturation value. Moreover, the measurement was
performed at a temperature of 0.5 TC, which might reduce
magnetic moments further (Elmers, 1995). Thus, the agree-
ment between theory and experiment is acceptable. The trend
of a lower moment at the W interface is correctly reproduced.

4.4 Band structure analysis – toward efficient
spin detectors

The mean free path of electrons increases below ca 20 eV in
many materials (Seah and Dench, 1979). Moreover, since

the only remaining diffraction spot is the (00) spot, the
reflected intensity increases considerably. These facts make
the regime of very low kinetic energy particularly interesting
for application in spin detectors (see Section 3.2) and for the
investigation of buried layers. Since spurious magnetic fields
easily deflect the electrons of low energy, special diffraction
geometries are necessary. In most cases, an immersion lens as
part of an electron emission microscope retards the electrons
just before the sample surface (Altman et al., 1991) as
discussed in Section 3.

As an example (Graf et al., 2005) Figure 11(c) and (d)
show the average reflectivity for Co and Fe in a gray-scale
plot versus electron energy and film thickness, respectively.
The energy dependence of reflectivity for films of different
thickness seems to have at least two periodic components.
The authors assume (Graf et al., 2005) that the energy
independent component visible at low thicknesses (white
arrows in Figure 11d) is due to the varying density of steps
during deposition. The reflectivity minima (dark) coincide
with half completed monolayers (higher surface step density)
and the maxima (bright) occur with the completion of
each monolayer slow surface step density. These growth
oscillations are most clear at small film thickness and are
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used to calibrate the film deposition rate. The component of
interest is energy dependent and looks like hyperbolic shaped
maxima (bright) and minima (dark) in the reflectivity plots.
This is a bulk and intrinsic effect known as the quantum size
effect (QSE) (Zdyb and Bauer, 2002a, 2002b; Scheunemann
et al., 1997). More specifically, a ferromagnetic slab acts like
a resonant cavity and induces interference patterns. The QSE
is more pronounced for Co/W(110) than for Fe/W(110) films.
This might be attributed as suggested in Graf et al. (2005)
to kinetic roughening during room-temperature growth of
Fe/W(110) (Albrecht, Fritzsche and Gradmann, 1993).

The spin asymmetry (Aex) versus kinetic energy and
film thickness is shown in Figure 11(e) and (f). For the
calculation of Aex a polarization of P = 0.2 of the incident
electron beam was assumed. The white dashed lines at 2 ML
film thickness in Figure 11(e) and (f) clearly separate a
uniform black region from a modulated red and blue region.
The featureless black region indicates Aex = 0 for both Fe
and Co films. This can be explained by noting that the
Curie temperature TC of Fe/W(110) films is above room
temperature only for film thicknesses greater than 2 ML
(Elmers et al., 1995). A similar decrease of TC was observed
for thin Co films. The measurement above TC shows a
qualitatively similar hyperbolic behavior of the oscillating
asymmetry. Figure 12(a) shows energy scans of the spin-
dependent reflectivity for different Co film thicknesses. The
reflectivity for the antiparallel spin shows a red shift with

respect to the case of parallel spin. The reflectivity oscillation
in the case of spin parallel are damped with respect to the
antiparallel spin.

These observations suggest that two mechanisms con-
tribute to the total spin asymmetry. The spectra for film
thickness larger than 5–6 ML are mainly dominated by
the damping mechanism. The damping was attributed (Graf
et al., 2005) to different mean free paths for spin parallel or
antiparallel to the majority spin. Indeed it is known that the
so-called universal curve (Seah and Dench, 1979) predicts
a very large value of the IMFP for transition metals at low
energy. Spin-dependent values of the IMFP of the order of
a few monolayers have been reported at very low energies
(Pappas et al., 1991; Passek, Donath and Ertl, 1996; Get-
zlaff, Bansmann and Schoenhense, 1993). A red shift of the
antiparallel spin reflectivity spectra can be clearly observed
in Figure 12(b) for the spin-dependent reflectivity for a 4-ML
thick Co/W(110) film. The large gradients of the reflectiv-
ity induced by the quantum well states (QWS) are slightly
shifted for electrons of opposite spin owing to the exchange
splitting of the band structure. The minima and the maxima
of the reflectivity indicated with the light and dark arrows
are shifted by 0.3 and 0.15 eV, respectively. It is the com-
bination of this energy shift with the large gradients in the
reflectivity that causes a significant enhancement or reduc-
tion of the magnetic asymmetry (Figure 12c). This seems to
be the dominant mechanism at small film thickness even in
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the presence of some inelastic damping. Figure 12(d) shows
a band structure calculation along the perpendicular direction
for a 4-ML Co/W(110) thin film (Scheunemann et al., 1997).
The first maxima at 2.6 eV of the spin asymmetry may have
a contribution from the exchange-split band gap. But there is
no band gap at the second maxima at 4.7 eV which is caused
by the finite size effects at small film thicknesses. This obser-
vation emphasizes that the interference of the electron wave
function due to the reflection at both interfaces dominates
and the film thus acts as an effective spin-selective interfer-
ometer (Zdyb and Bauer, 2002b; Egger, Back, Krewer and
Pescia, 1999; Scheunemann et al., 1997).

While the example described above concerns the interfer-
ence of an electron wave in the ferromagnetic film, similar
spin-dependent interference patterns can also be observed
in a nonmagnetic film if at least one interface is ferromag-
netic. For Cu thin films grown on fcc Co/Cu(100), the elec-
tron reflectivity from the Cu thin film exhibits Fabry–Pérot
type interference (Wu et al., 2005). When the Cu thickness
increases, the energies of the interference peaks decrease (or
increase) for k vector greater (or less) than half of the Bril-
louin zone (BZ) vector. This interference effect results in a
spin asymmetry of the electron reflectivity from the Cu film.

Since in a nonmagnetic overlayer the electron wave func-
tion is independent of the spin, the spin-dependent reflectivity
is only determined by the interfaces. If the complex reflec-
tivities of the electron wave in Cu at the Cu/vacuum and
Cu/Co interfaces are rB exp(iφB) and rC exp(iφC), respec-
tively, where r and φ denote the magnitude and phase gain
of the electron reflection at the corresponding interface, the
total electron reflectivity is given by satisfying the continuity

boundary conditions at the two Cu interfaces:

R = r2
B + r2

C + 2rBrC cos(2kdCu + φB + φC)

1 + r2
B + r2

C + 2rBrC cos(2kdCu + φB + φC)
(25)

Here, dCu is the Cu overlayer thickness and k is the
electron momentum vector in the Cu film. Equation 25
describes a classical Fabry–Pérot interferometer. The reflec-
tion phases for hot electrons at the upper and lower inter-
face of the Cu film are calculated as φB = 0 and φC =
π − 2 arcsin

√
(E − EL)/EU − EL, where EU = 9.6 eV and

EL = 2.5 eV are the upper and lower edges of the Co energy
gap (Mankey, Willis and Himpsel, 1993; van Gelderen,
Crampin and Inglesfield, 1996).

The maximum electron reflectivity takes place at the
interference condition of 2kdCu + φB + φC = 2πn, with an
integer n. This is exactly the result of the phase accumulation
model (Smith, Brookes, Chang and Johnson, 1994) for QWS
below the vacuum level. Therefore, the phase accumulation
model describes both the confined QWS below the vacuum
level and the interference condition above the vacuum level.
In a solid, an electron also experiences the lattice periodic
potential which generates an envelope function for the
electron Bloch wave (Qiu and Smith, 2002). This condition
for constructive interference should be valid as well for
k < kBZ/2 (kBZ is the Brillouin zone wave vector) as for k >

kBZ/2. In the latter case, the condition describes the electron
envelope function arising from a beating effect between the
electron wave and the periodic lattice potential at k > kBZ/2.
The different interpretation of the maximum condition leads
to an opposite energy versus thickness dispersion for QWS
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at k < kBZ/2 and k > kBZ/2 with a crossover occurring at
k = kBZ/2 (Egger, Back, Krewer and Pescia, 1999; Wu et al.,
2005). In the energy range of 8–26 eV above EF, there is
one relevant energy band along the (001) direction (�X) 
1

symmetry, in which the energy decreases with increasing k

and crosses the kBZ/2 point at 19 eV (Mankey, Willis and
Himpsel, 1993). The corresponding dispersion curves with
the crossover at 19 eV were confirmed quantitatively (Wu
et al., 2005) in the experiment.

For a polarized incident electron beam one has to consider
a spin-dependent complex reflectivity (ri

C, φi
C) at the Cu/Co

interface. Figure 13(a) shows representative spin-resolved
electron reflectivity measurements for a 5-ML Co film on
Cu(001) capped with a thin Cu layer as a function of the
Cu capping film thickness at two incident electron ener-
gies, indicating that the electron reflectivity of the Cu film
is clearly spin dependent. A spin-dependent reflectivity of a
nonmagnetic film was first observed in (Scheunemann et al.,
1997) and attributed to a spin-dependent phase φi

C, which can
account for the peak position, only. As emphasized in (Wu
et al., 2005) both the positions and the magnitudes of the
reflectivity peaks depend on the incident electron spin direc-
tion, indicating that the ferromagnetic Co also causes a spin

dependence of ri
C. The asymmetry of the electron reflectivity,

(R↑↑ − R↑↓)/(R↑↑ + R↑↓) is shown in Figure 13(b). The
spin-dependent reflectivity at the Cu/Co interface results in
a spin-dependent Fabry–Pérot interference from the Cu film
with the asymmetry oscillating as a function of both the elec-
tron energy and the Cu film thickness. The electron reflection
asymmetry in Co/Cu(001) as a function of Co film thickness
and electron energy, as shown in Figure 13(c), shows a sim-
ilar behavior as discussed above for Co/W(110). For Co
thinner than 1.6 ML, the asymmetry is zero because the
Co/Cu(001) film is paramagnetic at room temperature. For
Co thicker than 1.6 ML, the reflection asymmetry exhibits a
weak interference effect. The asymmetry oscillation ampli-
tude of Cu/Co(5 ML)/Cu(001) is an order of magnitude
greater than that of Co/Cu(001), thus clearly indicating that
the interference shown in Figure 13(b) is dominated by the
Cu film. The asymmetry does not depend significantly on
the Co film (Figure 13d). The sign of the asymmetry for
Cu/Co(5 ML)/Cu(001) alternates between positive and nega-
tive, while the sign of the asymmetry for Co/Cu(001) remains
unchanged.

The asymmetry oscillation is damped when dCu is
increased. The damping is due to the electrons retaining
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their coherence only up to a finite depth because of inelastic
scattering. If dCu becomes larger than this depth, interfer-
ence between electrons reflected at the Cu/vacuum boundary
and electrons reflected at the Cu/Co boundary is no longer
possible.

The spin-dependent complex electron reflectivity at the
Cu/Co interface results in a spin-dependent Fabry–Peŕot
interference in the Cu film, making it possible to detect
magnetic information in the Co underlayer. This observation
could be quite interesting for preparing spin detectors that
are insensitive to ambient conditions.

5 CONCLUSION AND OUTLOOK

A review was given on our present knowledge of SPLEED,
with a main emphasis on experimental findings. We hand-
picked some experimental examples which are discussed in
more detail to illustrate the kind of knowledge that can be
gained from SPLEED.

With respect to a theoretical explanation of the observed
scattering asymmetries, the calculations show that ground-
state potentials generated by common numerical ab initio
methods provide a very good account of the spin depen-
dencies of the electron-scattering intensities from metallic
surfaces, with the use of an inner potential whose real and
imaginary parts are comparable with earlier LEED analy-
ses. It turns out that spin-orbit asymmetries can be repro-
duced quite well by calculations. They respond sensitively
to changes in the lattice structure. A comparison of theory
and experiment can efficiently be used to determine lattice
structures to a high degree of accuracy.

Less good agreement is achieved for the exchange asym-
metry, and the extraction of quantitative data on surface
magnetization still remains a challenge. The determination of
magnetic moments in the surface as inferred from SPLEED
rests on the sensitivity to surface moment exhibited by par-
ticular prominent regions of scattering parameter. Unfortu-
nately, these regions are often associated with minima in
the total intensity and these minima observed on scatter-
ing from solid surfaces may be sensitive to the presence of
defects.

Definitely, the largest merit of SPLEED is given by its
high sensitivity to magnetization in the topmost layers. In
particular, close to the magnetic phase transition the critical
behavior of the magnetization can be studied in great detail.
Using special experimental setups it is even possible to apply
small external fields. Fundamental thermodynamic theories
could thus be confirmed. The high asymmetry signal can
be further exploited to perform magnetic sensitive imaging
using SPLEEM.

At very low energies (<10 eV) the scattering probabil-
ity of electrons shrinks allowing to probe buried interfaces.
Because of the lower scattering rate at very low energies
multiple scattering effects are less dominant and a theoret-
ical description appears more easy. Interferometric effects
similar to the physics of an optical Fabry–Pérot setup
were demonstrated. These observations might provide a way
to considerably improve present polarization detectors for
electrons.

A very interesting future application of SPLEED is pro-
vided by the development of an electron source which is
capable to produce ultrashort electron bunches of a few
picoseconds (Aulenbacher et al., 2002). A pulsed electron
beam allows a time-resolved investigation of periodic
motions via stroboscopic imaging. This can be applied
favorably to the investigation of magnetization dynamics
at surfaces and in ultrathin films and nanostructures. Ultra-
fast magnetization reversal processes are presently attracting
much attention. Technologically, fast magnetic recording,
advanced magnetic memory elements, and spin electronics
call for an in-depth understanding and control of fast mag-
netization reversal processes on the nano- and subnanosec-
ond scale. More fundamental questions are associated with
magnetic excitations (eigenmodes) and damping processes
in confined magnetic structures. The fundamental timescales
for magnetization reversal processes range down to a few
femtoseconds, whereas present technologically interesting
timescales are on the order of sub-nanoseconds. The time res-
olution in a stroboscopic experiment is limited by the pulse
length of the incident electron beam. The ultrashort pulse
lengths of spin-polarized electron bunches already achieved
prove to be sufficient for the study of magnetization dynam-
ics and can compete with the shortest X-ray pulses avail-
able at a synchrotron. Only optical light pulses from pulsed
laser sources are shorter, however, on the expense of surface
sensitivity.

The author thanks U. Gradmann and G. Schönhense for
stimulating discussions and U. Gradmann for careful reading
of the manuscript.
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1 INTRODUCTION

In many applications thin ferromagnetic films are deposited
on substrates that are too thick for transmission electron
microscopy, so techniques such as Lorentz microscopy or
holography cannot be used for imaging of the magnetic
properties. Suitable imaging methods are then magnetic
force microscopy (MFM), spin-polarized scanning tunnel-
ing microscopy (spin-STM), X-ray magnetic circular dichro-
ism photo emission electron microscopy (XMCDPEEM),
scanning electron microscopy with polarization analysis
(SEMPA), spin-polarized low-energy electron microscopy
(SPLEEM) and magneto-optical microscopies. These meth-
ods are to certain extent complementary because they
give method-specific information and differ frequently in

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

application range. This chapter tries to illustrate where
SPLEEM stands among the various magnetic imaging meth-
ods. In brief, SPLEEM, SEMPA, and XMCDPEEM have
in common that the electrons, which are used for imag-
ing, are very slow. This limits the information depth from
several tenths of a nanometer up to several nanometers,
depending upon the material and upon the electron energy,
which can range from 0 to about 20 eV. In SPLEEM and
XMCDPEEM magnetic information is obtained via the spin
of the incident particles, and in SEMPA via the spin of
the emitted particles. Though differing strongly in the way
the magnetic information is obtained, SPLEEM and XMCD-
PEEM are similar in that they are full-field imaging methods
with parallel image acquisition while SEMPA is a scan-
ning method with sequential image acquisition. The feature
that XMCDPEEM and SEMPA have in common is that
they use secondary electrons for imaging while SPLEEM
uses elastically scattered electrons. SPLEEM is a laboratory
method while XMCDPEEM requires a synchrotron radiation
source with high brilliance. Despite the high brilliance of
third-generation synchrotron radiation sources image acqui-
sition times in XMCDPEEM are significantly longer than
in SPLEEM. However, XMCDPEEM is generally applica-
ble to surfaces that are not too rough, while SPLEEM is
useful mainly for single crystals, epitaxial layers, and highly
oriented films.

In order to understand the possibilities and limitations of
SPLEEM it is first necessary to understand the elastic and
inelastic interactions of very slow electrons with ferromag-
netic and nonmagnetic materials. These will be discussed in
Section 2. Aspects of the image formation are treated in the
experimental part (Section 3). Applications are illustrated by
a number of examples in Section 4, which is followed by a
brief summary and outlook.
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2 INTERACTION OF VERY SLOW
ELECTRONS WITH MATTER

2.1 Elastic scattering

Two aspects of the interaction of very slow electrons with
matter are important in the image formation process: the
intensity and the magnetic contrast. We consider first the
intensity, which determines the image acquisition time and
the ability to focus. As will become clear in the experimental
section (Section 3), SPLEEM uses electrons that are scattered
into a narrow cone around the backward direction. The more
concentrated the angular distribution is around θ = 180◦, the
higher the image intensity and the shorter the image acqui-
sition time. Therefore, single crystalline or highly oriented
surfaces are desirable because in these samples the scattered
electrons are focused into diffraction beams, in particular
into the specular reflected beam ((00) beam in surface crys-
tallography nomenclature). Although the angular distribution
of very slow electrons elastically scattered by free atoms
has been studied extensively, little is know about the angu-
lar distribution in scattering from atoms in polycrystalline
samples. Therefore, most information comes from calcula-
tions, which are not very accurate at low energies because
the energy-dependent exchange and correlation contributions
to the effective scattering potential are highly simplified or
neglected. Results of these types of calculations indicate that
at very low energies the backscattering cross sections of light
atoms, for example Cu, can be higher than those of heavy
atoms, for example Ag. The nonmonotonic dependence of
the backscattering cross section is also true for energies in
the LEED range (usually 30 eV to several hundred electron-
volts) (Bauer, 1994, 1998, 2006), but at the very low energies
this effect is particularly strong. In Cu, the backscattering
cross section increases rapidly with decreasing energy near
0 eV and the same is true for the neighboring atoms Ni, Co,
and Fe.

Reliable experimental data are available only for single
crystal surfaces. As an example, Figure 1 shows the specular
reflectivity of the W(110) surface at normal incidence,
together with the electronic band structure along the surface
normal, which gives a qualitative understanding of the
reflectivity. Quantitative understanding requires taking into
account the surface barrier (Herlt, Feder, Meister and Bauer,
1981). The reflectivity decreases rapidly with increasing
energy as expected from the atomic backscattering cross
section but the decrease is modulated by the band structure.
In the energy gap between 1 and 6 eV the reflectivity is
high because there are no allowed states in this energy
range in the crystal. Similarly, in the energy range where
the bands are steep (around 15 eV) so that the density of
states is small, the reflectivity is enhanced. Fortunately,
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Figure 1. Specular reflectivity of a W(110) surface and comparison
with the band structure along the [110] direction. (Reproduced from
Herlt et al., 1981, with permission from Elsevier.  1981.)

for the interpretation of most SPLEEM images, a detailed
understanding of the backscattering is not necessary. It is
important only in energy regions with strong backscattering.
In these regions the information depth is dominated by the
elastic attenuation of the incident beam, which is determined
by elastic backscattering: the incident wave is then an
evanescent wave, and the sample is a reactive medium. In
all other cases, the information depth in determined mainly
by inelastic scattering, which will be discussed below.

The second aspect of importance for image formation is
the contrast. In SPLEEM the contrast mechanisms known
from LEEM are spin dependent because of the exchange
interaction in which electrons with opposite spin experience a
different potential. The interaction of spin-polarized electrons
with matter is well described in SPLEED chapter (See
also Spin-polarized Low Energy Electron Diffraction,
Volume 3), so that only the features specific for very slow
electrons need to be discussed here. First of all it has to
be mentioned that in 180◦ scattering, which is a special
case of the specular scattering described in the SPLEED
chapter, only exchange scattering occurs. Because of the



Spin-polarized low energy electron microscopy 3

Pauli principle, incident electrons with spin parallel to that of
the electrons in the material experience a different potential,
sometimes described by the Slater hole, than electrons with
antiparallel spin. This exchange potential depends upon
the density of the electrons with the same spin and is
energy dependent. In crystals it manifests itself in the spin
dependence of the energy-dependent band structure. In the
free electron gas with electron density ρ, it is given by

Vx(η) = −4

[(
3

8π

)
ρ

] 1
3

F(η) (1)

where

F(η) = 1

2
+

[
(1 − η2)

4η

]
ln

[
(1 + η)

(1 − η)

]
(2)

and η = kF/ki = (EF/Ei)
2. Here Ei is the energy of the

incident electron and kF, EF are the somewhat modified
Fermi momentum and energy. Figure 2 shows the energy
dependence of F(Ei/EF). Although the 3d metals are far
from being free electron–like, this dependence allows an
estimate of how rapid the spin dependence caused by the
exchange potential decreases with energy. With the Fermi
energies of Fe, Co and Ni of 10.2, 9.5, and 8.7 eV, and the
corresponding work functions of their most densely packed
surfaces, the (110), (0001), and (111) surfaces, of 5.1, 5.45,
and 5.45 eV, respectively, approximate F(η) values for these
metals at 1, 10, 20, and 50 eV above the vacuum level of 0.23,
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Figure 2. Energy dependence of the exchange energy of the free
electron gas. The approximate values of F(Ei/EF) of 0.23, 0.13,
and 0.09 at 1, 10, and 20 eV above the vacuum level for Fe, Co,
and Ni, respectively, are indicated.

0.13, 0.09, and 0.05, respectively, are obtained. Thus, the
exchange potential, on which the spin selectivity of SPLEEM
is based, decreases significantly with energy. This, together
with the decrease of the reflectivity with increasing energy
and with the decreasing spin dependence of the inelastic
mean free path (IMFP) with increasing energy, is the reason
for using very slow electrons in SPLEEM.

2.2 Inelastic and quasi-elastic scattering

The sampling depth of SPLEEM is determined by the
loss of electrons, which are elastically and quasi-elastically
backscattered into a narrow cone around the direction of
incidence. Both quasi-elastic scattering via phonon and
magnon excitation and inelastic scattering via electron–hole
pair creation cause this loss. The influence of these processes
on SPLEEM intensity and magnetic contrast is determined
by the momentum and energy transfer associated with them
on the one hand and by the angular aperture and chromatic
aberrations of the imaging system on the other. In SPLEEM
only a small fraction of the momentum space around the
backward direction is used for imaging and the accepted
energy range below the elastic peak depends upon the
dispersion of the magnetic fields used for separation of the
reflected beam from the incident beam. Small energy losses
such as those encountered in phonon and magnon excitation
are accepted in all cases, but they can nevertheless contribute
noticeably to the intensity attenuation because the small
angular aperture cuts out only a small part of the momentum
distribution. In addition, magnon excitation is spin selective
and can influence the magnetic contrast. Little is known at
present about the magnitude of these effects. Electron–hole
pair creation causes larger energy losses of the order of 1 eV
and higher. The resulting inelastically scattered electrons are
at least partially eliminated by the chromatic aberration of
the beam separation system unless it has been corrected.
Hong and Mills (2000) have calculated the probability of
the various electron–hole pair creation mechanisms and
have found that the process shown in Figure 3a is about
twice as probable as that shown in Figure 3b. In the first
mechanism, the Stoner excitation, a spin-down electron
excites a spin-up electron, causing an apparent spin flip of
the reflected electron. In the second mechanism, the direct
excitation, the spin of the reflected electron is preserved.
Although the probability of Stoner excitations decreases with
decreasing momentum transfer, they are still noticeable at
zero momentum transfer to the crystal electron (Plihal and
Mills, 1998). If the resulting inelastically scattered electrons
are accepted by the SPLEEM electron optics, then they cause
an increase of the reflection asymmetry due to the exchange
potential mentioned above.
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Figure 3. Schematic of electron excitations in a ferromagnet.
(a) Stoner (‘spin-flip’) excitation, (b) direct (‘nonspin-flip’) exci-
tation. Only the transition for incident spin-down electrons which
are more likely than those of spin-up electrons are shown.

These considerations, which take into account instrumen-
tal aspects, have to be kept in mind in the discussion of the
experimental and theoretical IMFPs, which ultimately deter-
mine the sampling depth of the electrons. The experimental
data of the energy dependence of the spin-averaged IMFPs
and their spin dependence are very limited and ‘differ’ con-
siderably from author to author. A critical compilation has
been given by Hopster (1999). Therefore, only theoretical
data will be given here. Siegmann (1994) proposed the fol-
lowing relation for the spin dependence of the inelastic cross
sections σ↑, σ ↓ of spin-up and spin-down electrons, which
determine their IMFP:

σ ↑↓ = σ 0 + σ d(5 − n↑↓) (3)

Here σ d is the cross section for scattering into an unoc-
cupied d orbital, σ 0 that for scattering into a non–d orbital,
and n↑↓ are the numbers of occupied majority and minority
spin states, respectively. For example, for n↑ = 4, n↓ = 2
and σ d � σ 0 one gets σ↑/σ↓ ≈ 1/3, so that the IMFPs of
electrons with opposite spins differ by a factor of 3. Detailed
accurate calculations of the energy dependence of the spin-up
and spin-down IMFPs in Fe and Ni (Hong and Mills, 2000)
give the results shown in Figure 4. In Fe the spin-up IMFP is
larger than the spin-down IMFP by a factor of 4.3, 2.0, and
1.4 at 0, 5, and 10 eV, respectively, in Ni only by a factor of
1.4 at 0 eV and it decreases rapidly to the spin-down value.
Accordingly, the magnetic contrast is significantly smaller in
Ni than in Fe. Important are also the low absolute values
of the IMFPs, for example, 0.2 and 0.55 nm in Fe or 0.5
and 0.7 nm in Ni at 2 eV for spin-down and spin-up IMFPs,
respectively. These low values make SPLEEM an ideal tool
for the study of surface magnetism.

Summarizing this section, elastic backscattering cross
section, elastic exchange asymmetry, and IMFP difference
between spin-up and spin-down electrons decrease rapidly
with increasing energy. Therefore, optimum conditions for
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Figure 4. Inelastic mean free paths of spin-up and spin-down
electrons in Fe and Ni as a function of energy obtained from explicit
calculations. The zero of the energy is the vacuum level. (adapted
from Hong and Mills, 2000.)

reflected intensity and magnetic contrast are obtained at
the lowest energies. Exceptions to this rule occur around
exchange-split band edges and in the presence of quantum
size effects (QSEs), which will be discussed in Section 4.2.2.

3 SPLEEM INSTRUMENTATION

3.1 Overview

A SPLEEM instrument consists of the electron source, the
spin manipulator, the beam separator, which separates inci-
dent and reflected electrons, the objective lens, the electron-
optical systems on the illumination side and on the imaging
side of the separator and finally the channel plate image
intensifier–fluorescent screen from which the SPLEEM
image or SPLEED pattern is recorded by a CCD camera.
The electron-optical system on the illumination side has to
produce a demagnified image of the source in the back focal
plane of the objective lens; the electron-optical system on the
imaging side has to produce a magnified SPLEEM image or
SPLEED pattern on the channel plate image intensifier. These
goals can be achieved with a variety of designs. Those of the
presently operating SPLEEM systems are shown in Figures 5
and 6. In Figure 5 the electron source, which is at −15 kV, is
seen on the far left, together with the spin-polarization manip-
ulator, followed by the transfer optics. In the center is the
beam separator, which deflects the electron beam 60◦ upward
into the objective lens. In this lens, which includes the sam-
ple, the incident electrons are decelerated to the desired low
energy and reaccelerated after reflection from the sample.
The lens produces the SPLEED pattern in its back focal plane
and the first SPLEEM image in the center of the separator.
Both the first SPLEEM image and the SPLEED pattern are
then magnified by the lens combinations in the imaging sys-
tem, consisting of a transfer lens, an intermediate lens, and a



Spin-polarized low energy electron microscopy 5

Spin
manipulator

Beam
separator

Specimen
chamber

Preparation
chamber

Imaging
column

Figure 5. Spin-polarized low-energy electron microscope with 60◦

beam separator.

projective lens. The transfer lens transfers the first SPLEED
pattern into the position of the angle-limiting aperture before
the intermediate lens, the intermediate lens images either
this plane or the SPLEEM image in front of the projective
lens, which produces the final magnification. These lenses
can be moved mechanically for rough beam alignment. Fine
alignment is achieved with deflectors. An objective stigmator
corrects the astigmatism of the objective lens and stigmators
before and after the beam separator correct the astigmatism
of the beam separator. An aperture in the illumination system
limits the size of the illuminated area on the sample and also
eliminates stray electrons. The sample manipulator on top
allows not only three translations but also tilt so that the sam-
ple normal can be brought into coincidence with the optical
axis of the objective lens. The sample is at a voltage close to
that of the electron source (−15 kV). The voltage difference
determines the energy of the incident electrons. The specimen
chamber, which also contains the objective lens, has several
ports for accessories such as evaporators, a UV light source,
gas inlets, and so on, for in situ experiments. A small prepa-
ration chamber and airlock on the upper right side allow easy
sample transfer and precleaning by sputtering, heating, and
gas exposure. The whole system is pumped by sputter ion
pumps and getter pumps, supported by additional pumps. The
critical parts of the instrument (electron source, spin manip-
ulator, objective lens, etc) will be discussed below in detail.

While the SPLEEM instrument shown in Figure 5 uses
magnetic lenses except for the objective lens and has the
specimen at high voltage, the one shown schematically in
Figure 6 uses only electrostatic lenses and has the speci-
men near ground potential. Illumination and imaging section
are parallel, which is achieved with three magnetic deflec-
tors schematically indicated by circles. Focusing in the
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Figure 6. Schematic of a small spin-polarized low-energy electron
microscope, which can be mounted on a 6′ diameter flange. The
spin-polarized electron gun with spin manipulator at the left bottom
is not shown. (Reused with permission from K. Grzelakowski and E.
Bauer, Review of Scientific Instruments, 67, 742 (1996). Copyright
1996, American Institute of Physics.)

nonfocusing plane of the magnetic deflectors is achieved
by electrostatic cylinder lenses on both sides of the deflec-
tors. The electron optics is floating at −5 kV except for the
first electrode of the objective lens, which can be operated
up to −15 kV. For details refer Grzelakowski and Bauer
(1996).

As most SPLEEM work is done in situ the facilities
in the sample chamber are important. Many films are
grown on refractory substrates that require cleaning at high
temperatures; in many SPLEEM studies the temperature
must be changed during film growth or during the SPLEEM
measurements. The low Curie temperatures of ultrathin films
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make cooling very desirable, which has been achieved till
now down to 115 K (Tober, Witte and Poppa, 2000). The
study of the influence of magnetic fields on the magnetization
distribution in the sample is complicated because of the
deflection of the electron beam. In-plane fields can in
principle be applied with window frame sample holders but
to date only perpendicular fields have been used, albeit with
some difficulty because the field must be aligned exactly on
axis (Poppa, Tober and Schmid, 2002).

3.2 The electron source

The physical basis of photoelectron emission from negative
electron affinity GaAs and related surfaces has already
been described in the chapter on SPLEED (See also Spin-
polarized Low Energy Electron Diffraction, Volume 3).
There is extensive literature on this subject of which only
a few overview papers can be cited (Pierce et al., 1980;
Pierce, 1995). These give a detailed description of the
cleaning of the cathode surface, of the activation procedure
for obtaining a high quantum yield and high polarization,
of the lifetime of the emission, and of the gun design, as
well as ample references to earlier work. Here only more
recent studies, in particular those which are important for
the source operation in a spin-polarized electron microscope,
will be discussed. As far as surface cleaning is concerned,
cleaning with atomic hydrogen, long used for oxide removal
from GaAs, has become popular (Maruyama et al., 2003)
but also controversial (Baylac et al., 2005). It removes
not only the oxide but also carbon-related contaminants,
the main detrimental impurities (Petit and Houzay, 1994).
Conventional cleaning by heating to about 600–620 ◦C has
to be done very carefully in order to avoid loss of As resulting
in Ga droplet formation that inactivates the surface. Atomic
hydrogen cleaning, on the other hand, can be done at as low
as at 300 ◦C but is usually done at 400–450 ◦C. No GaAs
decomposition can occur at these temperatures. However,
care has to be taken to avoid overdosing with hydrogen,
which causes its incorporation into the crystal where it is
believed to create yield-reducing defects and to deactivate
the high p-doping used for the band bending necessary to
achieve negative electron affinity.

The parameters that are important for the operation in
SPLEEM are quantum efficiency, degree of spin polarization
P , brightness B, and lifetime τ . Energy width �E is also of
interest but small enough to be not resolution limiting. High
polarization requires lifting of the degeneracy of the P3/2

band at the � point. The band splitting into mj = ±3/2 and
mj = ±1/2 (heavy and light hole) bands that can be achieved
by strain or superlattices is usually small so that only a small
photon energy range above the P3/2 excitation threshold can

be used. P values of about 85% and quantum yields of 1.7%
have been reported (Maruyama et al., 2004). Because of the
small photon energy range (<100 meV) the quantum effi-
ciency is small and such cathodes have not been used till
now in SPLEEM. Increasing the photon energy above the
P1/2 threshold causes a further decrease to the P values of
20–30% obtained also with conventional degenerate cath-
odes whose quantum yields are a factor of 10 or higher.
Because high brightness B is needed in imaging, unstrained
(nondegenerate) cathodes are, therefore, used in general. The
brightness of the cathode is defined by B = j /π α2, where
j is the emitted current density and α is the half-angle of
the emission cone. For a given cathode j can be increased
by focusing the photon beam into a finer spot and increasing
the photon flux up to the space charge limit, α is deter-
mined by the ratio of transverse to longitudinal energy. A fine
spot is needed in any case because it determines the ultimate
diameter of the electron beam in the back focal plane of the
objective lens. The diameter of this spot determines the diver-
gence of the beam at the sample. The mean longitudinal and
transverse energies (El and Et, respectively) depend on the
extraction voltage, upon the energy difference between the
photon energy and the band gap, the roughness of the surface
and other parameters. El may be as large as several 100 meV,
Et can be as small as 25 meV at room temperature (Pastuszka
et al., 2000). This gives a lower limit of α of about 0.1. Thus,
B depends upon many parameters and varies from source
to source. Values as high as 1 × 105 A/cm2-sr have been
reported in a scanning electron microscope (Pierce, 1995). In
the SPLEEM instruments, B has not been determined. The
instrument shown in Figure 5 operates typically with 1 µA
emission current at an extraction voltage of 1 kV. Imaging is
still possible with several hundred nanoamperes. The lifetime
τ is important not only for convenience of operation but in
particular for longer experiments. It depends strongly on the
pressure in the gun chamber and ranges from several hours
at high pressures (10−10 mbar (10−8 Pa) range) to hundreds
of hours at low pressures (10−12 mbar (10−10 Pa) range) and
with continuous slow Cs supply during operation. While it is
widely believed that the short lifetime in the absence of Cs
supply during operation is caused by desorption of Cs, the
pressure influence on the lifetime has been attributed to slow
oxygen uptake. Because of the complexity of the phenom-
ena involved, good spin-polarized electron sources are still
a work of art and experience, which has to be collected for
each individual case.

3.3 The polarization manipulator

In order to obtain magnetic contrast between regions with
different directions of the magnetization M one must be able
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Figure 7. Principle of the spin manipulator used in the SPLEEM
instruments shown in Figures 5 and 6 (Grzelakowski, Duden,
Bauer et al., 1994). (Reprinted from Surface Review and Letters, 5
(1998) 12/3. Copyright 1998 with permission from World Scientific
Publishing Co. Pte. Ltd, Singapore.)

to rotate the spin-polarization vector P of the spin-polarized
electron beam, best in any direction in space. Maximum
magnetic sensitivity is obtained when the spin of the incident
electron is parallel or antiparallel to the spin of the electron in
the sample, that is when P // ± M. In general the sensitivity
is proportional to P·M. An unrestricted rotation of P is
achieved with a spin manipulator as schematically shown
in Figure 7 (Duden and Bauer, 1995; Bauer, 1997). The
manipulator consists of a combined electrostatic/magnetic
90◦ deflector and a rotator lens. The cathode is illuminated
at normal incidence through the deflector with circular
polarized light from a diode laser and emits electrons with
P parallel or antiparallel to the surface normal, depending
upon the handedness of the helicity. Purely electrostatic
deflection leaves P unchanged, purely magnetic deflection
rotates P by 90◦. By combining the two fields in the proper
ratio any direction in the x –z plane in Figure 7 can be
reached. Out-of-plane directions are achieved by rotating
P around the axis of the magnetic lens. While optimum
magnetic contrast can be obtained by rotating P parallel and
antiparallel to M, it is usual to select one or two preferred in-
plane directions (magnetic easy or hard axis) and the surface
normal. By vectorial addition of the three signal components
the direction of M can be determined. In order to minimize
the voltage and currents in the sector and rotator lens these
components float close to the cathode potential, typically
1 kV relative to it, and the final acceleration to the full energy

(15 or 5 kV, respectively, in the two instruments discussed
in Section 3.1) occurs after the rotator lens.

3.4 The objective lens

The objective lens is the third crucial element of a SPLEEM
instrument. In this lens the fast electrons are decelerated to
the desired energy at the sample (‘cathode’), which is part
of the lens. For this reason the objective lens is also called a
cathode lens. Cathode lenses, whether electrostatic, magnetic,
or mixed electrostatic/magnetic, have large chromatic and
spherical aberrations, which determine the limiting resolution
of the instrument. The chromatic and spherical aberrations
depend upon the angular aperture α as the first and third
power of α, respectively, and make it necessary to limit α

by a small angle-limiting (‘contrast’) aperture in the back
focal plane (or in an image plane of it). This produces
a diffraction disc of confusion whose radius is inversely
proportional to sin α. The resolution can be optimized by
choosing an aperture radius, which produces the smallest
disc of confusion. Figure 8 shows the three contributions (b,
c, d) to the resolution and the resulting overall resolution
(a), together with the optimum radius (r) for the presently
most frequently used cathode lenses (Chmelik, Veneklasen
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Figure 8. Radii of the resolution-limiting discs of confusion (b,
c, d), resulting resolution (a) and optimal aperture radius (r) of
cathode lenses. The electrostatic tetrode objective lens is used in
the instruments shown in Figures 5 and 6 (Chmelik, Veneklasen
and Marx, 1989). (Reprinted from OPTIK, Vol 83, 1989, Page 155,
Copyright 1989 with permission from Elsevier.)
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and Marx, 1989). Although the calculations are for a higher
energy and larger energy width, they indicate that the limiting
resolution of these instruments should be less than 10 nm
between 2 and 10 eV energy at the sample. This resolution
has not been achieved till now in SPLEEM for a number
of reasons such as nonoptimal aperture, vibrations, voltage
and current instabilities, insufficient shielding of ac fields,
sample drift, increased energy width due to inelastically
scattered electrons that are accepted by the aperture, and so
on. Another important reason is the low signal/noise ratio
because of the low P value. This will be discussed below.
Presently a resolution of several 10 nm can be obtained
routinely, under optimum conditions about 20 nm.

Ideally the image of the source in the back focal plane
should be a point. Under these conditions the surface is
illuminated perfectly perpendicular to the surface. In practice,
the image of the source in the back focal plane has a
finite extension leading to a corresponding nonperpendicular
illumination of the surface. This reduces contrast and to some
degree also resolution. The illumination aperture that cuts out
far-off axis electrons in the illuminating beam reduces this
problem.

3.5 The image acquisition/processing system

As mentioned earlier, the magnetic contribution to the
backscattering caused by the exchange potential is small
compared to the nonmagnetic part. As a result, the image
intensity I may be written as I = Ist+ c P·M, where Ist is the
structure-sensitive part seen in ordinary (nonspin-polarized)
LEEM and c is a small proportionality constant. In a sample
with high magnetic contrast the magnetic contribution is
typically less than 10% of the total intensity; with low
magnetic contrast it is 1% or less for P ≈ 25%. In order
to eliminate the structural contrast two images with opposite
P have to be taken (Figures 9a and 9b) and subtracted
pixel by pixel (Figure 9c). Strong magnetic contrast allows
image acquisition times of fractions of a second for each
helicity image, which can be immediately subtracted from the
opposite helicity image with present processing speeds; weak
magnetic contrast as observed near the Curie temperature
may require seconds per helicity image. The processing
software calculates also the sum image in which the magnetic
contrast is cancelled and can divide the difference image by
the sum image, resulting in the so-called asymmetry image
A = (I↑–I↓)/(I↑ + I↓). This is usually displayed. Image
drifts, for example during studies of temperature-dependent
phenomena, have to be corrected off-line. The asymmetry
image frequently has low contrast, and is therefore contrast-
enhanced, sometimes by more than a factor of 10. In

(a) (b)

M

(c) (d)
− −

P

Figure 9. Magnetic contrast in a sample with strong uniaxial in-
plane magnetization (6 Co ML on W(110)). (a) and (b) are images
taken with P parallel and antiparallel to the easy axis, (c) is the
contrast-enhanced difference image, and (d) the contrast-enhanced
difference image of two images taken with opposite P perpendicular
to the easy axis. Electron energy 2 eV, field of view 13 µm (Bauer,
Duden, Pinkvos et al., 1996). (Reprinted from Journal of Magnetism
and Magnetic Materials, Vol 156, 1991. Copyright 1991 with
permission from Elsevier.)

such cases, the signal/noise ratio is the main resolution-
limiting factor (Duden and Bauer, 1998). When the magnetic
contribution to the signal is large, for example, 10%, then
noise limits the resolution to about 20 nm, provided that many
difference images are summed.

4 APPLICATIONS

4.1 Surfaces of bulk crystals

Bulk crystals have hardly been studied because the low
sampling depth of SPLEEM predestines it for the study
of ultrathin films. However, SPLEEM is also suited for
the study of the surface magnetism of bulk crystals. This
is illustrated in Figure 10 (Altman et al., 1991), which
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1 µm

Figure 10. SPLEEM image of a Co(0001) surface. Electron energy
2 eV, field of view 12 µm (Altman, Pinkvos, Hurst et al., 1991).
(MRS Symposium Proceedings, 232, (1991) 125.)

shows the magnetic domain structure of a Co(0001) surface
after sputter cleaning and annealing. It was taken in the
early phase of SPLEEM to demonstrate the capability of
this technique by comparison with SEMPA images of the
Co(0001) surface in which this ‘flower’ domain pattern was
discovered (Unguris, Scheinfein, Celotta and Pierce, 1989).
It shows the sixfold symmetry of in-plane closure domains,
terminating the domains in the bulk whose magnetization is
perpendicular to the surface. Subsequent work concentrated
on ultrathin films for reasons mentioned above.

4.2 Ultrathin films

4.2.1 Single layers, underlayers, and overlayers

Spin order in a thin film decreases rapidly with decreas-
ing film thickness so that in monolayer films the Curie
temperature TC is in general below room temperature. In
some cases, TC is above room temperature so that the tem-
perature dependence of the magnetization can be studied
conveniently. An example is the Fe monolayer on a Au
double layer on W(110). It shows weak ferromagnetic con-
trast at room temperature, which can be increased signifi-
cantly by capping with Au. Figure 11 shows some SPLEEM
images taken near TC (Zdyb and Bauer, 2007). It is clearly
seen that near the phase transition ferromagnetic (dark and
white) and paramagnetic (gray) regions coexist. The local
phase transition temperature decreases with decreasing step
distance. In regions with large step distances, which are on
large terraces, strong fluctuations of the magnetization direc-
tion occur before the transition into the paramagnetic state.
These phenomena are averaged out in laterally averaging
studies of the phase transition, leading to incorrect criti-
cal parameters for thin films on surfaces with varying step
density.

In contrast to the Fe monolayer on a Au double layer
on W(110), TC of the Fe monolayer on a thick Au layer
on W(110) is below room temperature as it is also on
the (111) surface of a bulk Au crystal. The same is true
for most other ferromagnetic film–nonmagnetic substrate
combinations. In most of these films, the direction of the
magnetization changes with thickness, a phenomenon called

50.9 57.5 58.9 59.9

60.6 61 61.4 61.8

Figure 11. SPLEEM images of a Au-capped Fe monolayer on a Au double layer on W(110) at the temperatures (in ◦C) indicated in the
images. On the large terraces the magnetization disappears at 62.0 ◦C. Electron energy 2 eV, field of view 14 µm (Zdyb and Bauer, 2007).
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spin reorientation transition (SRT), which has been studied
in considerable detail by SPLEEM. At the same time another
phenomenon, the QSE, evolves with increasing thickness and
this will be discussed before the SRT will be addressed.

Fe on W(110) and Au(111) produces strong magnetic
contrast, because the surface of these films is flat. This
is not the case on other substrates due to the different
growth modes. For example, Co grows on the W(100)
surface not with the equilibrium plane (0001) but with the
(11–20) plane parallel to the substrate. The large anisotropic
misfit causes growth of rectangular crystals with large
aspect ratio and tilted surfaces. As a consequence, the
(00) beams are reflected off-axis and there is insufficient
intensity on axis at the low energies suitable for SPLEEM.
The observed magnetic contrast is more or less buried in
the noise (Duden, Zdyb, Altman and Bauer, 2001). On
the W(111) surface the large atomic roughness supports
metastable pseudomorphic Co growth at room temperature
and somewhat higher temperature over a wide thickness
range. At 380 K the layer becomes ferromagnetic with
in-plane magnetization at 7.6 monolayers (ML). Domain
structure and magnetization direction are strongly influenced
by surface steps, which indicates that the in-plane anisotropy
is weak (Man et al., 2003).

While Fe and Co and their alloys have large magnetic
moments and, therefore, produce strong magnetic contrast, at
least far away from the Curie temperature, Ni with its small
magnetic moment is more difficult to study. Nevertheless,
some results have also been obtained for Ni layers on
Cu(100), for example, the domain wall width (Ramchal,
Schmid, Farle and Poppa, 2004a).

Nonmagnetic underlayers are frequently used to vary the
anisotropy of the substrate. The case of Au underlayers for
the growth on bcc(110) surfaces that have twofold symmetry
is a good example. As shown at the beginning of this
section a Au double layer on W(110) induces enough uniaxial
anisotropy so that an Fe monolayer is ferromagnetic at room
temperature. When the Au underlayer is thicker, for example

10 ML thick, then the Fe monolayer is not ferromagnetic
at room temperature and develops initially out-of-plane
magnetization with a preferred domain wall orientation. The
in-plane magnetization that occurs in thicker Fe films again
shows uniaxial anisotropy, just like the monolayer on the Au
double layer.

Another example is Co on Au on W(110). Up to 4
Au ML the magnetization of the Co layer is in plane
at all thicknesses. Above an Au thickness of 4 ML the
magnetization of the Co layer is perpendicular to the surface
below a critical Co thickness that ranges from 3.3 ML at a
Au thickness of 5 to 4.3 ML at a Au thickness of 10 ML.
The domain structure changes from a striped phase with
domain walls parallel to the W[001] direction to a more
isotropic phase as shown in Figure 12. Above the critical
Co thickness the films again have uniaxial anisotropy. The
influence of underlayers has been attributed to changes in the
magnetoelastic anisotropy caused by the misfit strain, but step
anisotropy caused by anisotropic growth cannot be excluded,
in particular as the films are grown at relative large angles
of incidence.

Nonmagnetic overlayers can have a dramatic influence on
the magnetization of ferromagnetic layers, as already seen
above in the case of the Fe monolayer. Laterally averag-
ing magneto-optical and magnetometric measurements fre-
quently show a considerable enhancement of the magnetic
anisotropy. Examples are Au, Ag, Cu, and Pd overlayers
on Co layers, which enhance the perpendicular anisotropy
strongly, with a peak at around 1 ML. This phenomenon
was studied with SPLEEM, using 3–8-ML-thick epitax-
ial Co films on W(110) (Duden and Bauer, 1999a). As
will be discussed in Section 4.2.3, in these layers, M is
slightly tilted away from in-plane. For Au, the increase of
the perpendicular anisotropy with overlayer coverage was
largest (from 25 to 70◦) for the thinnest film and smallest
(from 10 to 25◦) for the thickest film, with only a weekly
pronounced maximum at 2 ML. In the case of Cu over-
layers, a deposition temperature-dependent maximum was

(a) (b) (c) (d)

Figure 12. Out-of-plane SPLEEM images of the influence of the thickness of a Au layer on W(110) on the domain configuration of Co
layers grown on top of it. Au layer thickness is 5, 6, 8, and 10 ML in a, b, c, and d, respectively. The corresponding Co thicknesses are
2.8, 3.0, 3.3, and 4.0 ML. Electron energy 1.2 eV, field of view 10 µm (from Ph.D. thesis Duden, 1996).
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found, which could be connected to a structural effect using
LEEM imaging: only the double layer increased the per-
pendicular anisotropy, which was attributed to strain effects,
while the monolayer and triple layer had no noticeable
effect. The temperature-dependent coexistence of monolayer
and double layer regions seen in the LEEM images then
causes temperature-dependent location of the maximum. This
is a good example of the power of the combination of
SPLEEM and LEEM imaging using difference and sum
images.

4.2.2 Spin-dependent quantum size effects

A thin film bounded by parallel surfaces acts for the inci-
dent electron wave similar to the Fabry-Perót etalon in light
optics: the reflectivity shows maxima and minima as a func-
tion of wavelength or film thickness due to constructive and
destructive interference between the waves reflected at the
two boundaries. The condition for constructive interference
is nλ/2 = t + ϕ, where λ is the wavelength, t the thickness
of the film, and ϕ represents the finite penetration depth of
the wave beyond the boundaries. This is the standing wave
condition and corresponds to a quantization of the electron
wave, therefore the name quantum size effect (QSE). In the
bulk of crystals only electron states determined by the band
structure E(k) are allowed, which in the case of ferromag-
netic materials is exchange split as illustrated in Figure 13.
As a consequence, at a given thickness t the QSE con-
dition nλ/2 = t + ϕ is fulfilled for spin-up and spin-down
electrons at different energies E(k) because of k = 2π /λ as
indicated in Figure 13 for k = 0.12. Therefore, not only the
reflectivity but also the asymmetry A = (I↑ − I↓)/(I↑ + I↓)

should change in an oscillatory manner with increasing thick-
ness and energy. This was first observed in SPLEEM stud-
ies of Co layers on W(110) (Scheunemann et al., 1997).
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Figure 14. Reflectivity and asymmetry of the reflectivity of a
6 ML thick Co film on W(110) as a function of energy. The
true asymmetry is by a factor of about 4–5 higher because of
P ≈ 0.2–0.25. (From M.S. thesis of Wurm, 1994). (Reprinted from
Journal of Magnetism and Magnetic Materials, Vol 156, 1991.
Copyright 1991 with permission from Elsevier.)

The largest asymmetry A was observed at 6 ML of Co
(Figure 14).

From Figure 13 it is obvious that by measuring the reflec-
tivity as a function of thickness and energy the exchange-split
band structure above the vacuum level can be determined.
Early attempts were not successful because the films con-
sisted of small regions differing in thickness resulting in
a smearing out of the thickness dependence. With proper
growth conditions films with large regions with constant
thickness on large substrate terraces can be prepared as illus-
trated in Figure 15 for Fe films on W(110) (Zdyb and Bauer,
2002a). The images in the top row show the reflectivity at
several energies, while those in the lower row show the
corresponding asymmetry images in which the contrast is
enhanced. Large regions, 6, 7, and 8 ML thick can be seen.
Such films have areas large enough for intensity measure-
ments with good signal/noise ratio from which the band
structure along the surface normal can be determined with
high accuracy (Zdyb and Bauer, 2002b). This technique has
been applied more recently to Co films on W(110) also
(Graf et al., 2005). In addition to the determination of the
unoccupied band structure perpendicular to the surface the
QSE has also another promising application: as a spin ana-
lyzer or polarizer. The large asymmetry values A that can be
achieved when the QSE condition is fulfilled, together with
the high reflected current I = RI0, give a large figure of
merit Q = IA2 for such devices. In the first measurements
on Co films consisting of regions with somewhat different
thickness a Q value of about 2 × 10−2 was achieved, while
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6 ML
7 ML

8 ML

5.2 eV 6.4 eV 9.6 eV 11.4 eV

Figure 15. SPLEEM (top) and asymmetry images (bottom) of an Fe layer with large regions of constant thickness on a W(110) surface
with large terraces, taken at several energies. When plotted in color, the asymmetry images show the magnitude of the asymmetry and
direction of the magnetization. Electron energy 11.4 eV, field of view 9 µm (Zdyb and Bauer, 2002b).

with the constant thickness Fe layers a Q of about 5 × 10−2

(Zdyb and Bauer, 2002a) was achieved. This value can still
be enhanced by Au capping, which at the same time reduces
the deterioration of Q over time, which was studied in some
detail in the more recent study (Graf et al., 2005).

Nonmagnetic overlayers have a significant influence on the
spin-dependent QSE. This was actually observed before the
SPLEEM QSE measurements on Co layers in a study of the
influence of Cu overlayers on a Co layer on Cu(100) (Kerk-
mann, Pescia, Krewer and Vescovo, 1991). In a SPLEEM
study (Poppa, Pinkvos, Wurm and Bauer, 1993) a strong
modulation of the asymmetry was observed as a function
of Cu overlayer thickness on epitaxial Co layers of fixed
thickness on W(110). This effect was studied recently in
more detail for Cu overlayers on fcc Co(001) on Cu(001)
and attributed to the spin-dependent reflectivity of the Cu/Co
interface (Wu et al., 2005). Overlayers also have additional
effects as seen in the Au monolayer (Section 4.2.1), which
will be discussed below.

4.2.3 Spin reorientation transitions

With increasing thickness the Curie temperature increases in
ultrathin films according to

TC(n)

TC(∞)
= (n − 1)

2N0
(4)

where n is the number of monolayers and N0 the range of
the spin-spin coupling. Above N0 the finite size scaling law

TC(n)

TC(∞)
= 1 −

[
2n

(N0 + 1)

]−1/υ

(5)

applies, where υ is the critical exponent for the correla-
tion length for the three-dimensional system (Zhang and
Willis, 2001). For Ni, for example, N0 ≈ 5 ML and υ ≈ 1.
Thus, at small thickness TC increases rapidly with thick-
ness and accordingly also magnetization and, therefore, the
magnetic contrast. At the same time the influence of the
electronic interactions with the substrate, which determines
the magnetic anisotropy of the monolayer, decreases and
magnetocrystalline and shape anisotropy play an increasing
role. In addition, the mismatch between film and substrate
introduces magnetoelastic effects, which are particularly evi-
dent when the mismatch is anisotropic because it usu-
ally produces a well-pronounced easy and hard axis. Steps
can also induce magnetic anisotropy, which changes with
coverage.

Thus, with increasing thickness not only the magnitude
of the magnetization but also its direction changes. This
leads to a large variety of so-called SRTs. The first SPLEEM
observation of a change of the direction of M with coverage
was made on Co layers on W(110) (Duden and Bauer,
1996). M was not in plane in the thinnest layers as deduced
previously from magnetometric measurements but tilted
considerably out of plane and tilted into the plane in an
apparently oscillatory manner with increasing thickness. The
out-of-plane component changed its direction within the large
in-plane component domains, preferentially at atomic steps,
causing a ‘wrinkled’ magnetization in the layer.

The most-studied SRT is probably that in Co layers on
Au(111) which has been the subject of several SEMPA stud-
ies with partially contradicting results. These layers have
perpendicular M below about 4 ML and in-plane M above
5 ML. The SPLEEM study of this SRT, which was not made
on a Au single crystal but on epitaxial Au layers of vari-
ous thickness on W(110), brought additional contradictions
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(Duden and Bauer, 1997). Instead of the continuous tilt-
ing of M into the plane (without or with breakup of the
original in-plane domains) that had been deduced from the
SEMPA studies, the SRT started with a broadening of the
Bloch domain walls, before large in-plane domains devel-
oped. This result was later confirmed by laterally averag-
ing magneto-optical measurements (Ding, Pütter, Oepen and
Kirschner, 2001). A general theoretical analysis of the SRT
(Vedmedenko, Oepen and Kirschner, 2002) finally revealed
that both modes of transition, continuous tilt or coexistence
of in-plane and out-of-plane regions during the transition,
can occur, depending upon the relative magnitude of the
various anisotropies involved. Apparently, differences in the
substrate topography, in the growth process, and Au segre-
gation to the surface of the Co layer can cause the necessary
changes of the relevant anisotropies to produce different SRT
modes.

While in the SRT of Co on Au(111) no major structural
phase transition occurs with increasing thickness, except
possibly a change between fcc and hcp stacking, that of
Fe on Au(111) is accompanied by a massive change in
structure from a quasi-pseudomorphic fcc layer to an initially
distorted bcc (110) layer at about 3 ML (Bulou et al., 2004;
Dekadjevi et al., 2005). Before this structural transition M
has out-of-plane orientation, after it is in-plane oriented.
This transition was studied in detail in Fe1−xCox alloy films

with x � 0.3, which have bcc structure with nearly the
same lattice constant as pure Fe (Zdyb and Bauer, 2003).
Contrary to the Fe monolayer on the Au double layer on
W(110) discussed in Section 4.2.1 these films were grown
on 10 ML thick Au films on W(110) which have already
relaxed considerably to the bulk structure but still transfer
some of the twofold symmetry of the substrate onto the Fe
film. As a consequence, the (110)-oriented bcc films have
uniaxial anisotropy with an easy axis in the [001] direction.
As seen in Figure 16 below the SRT the magnetization points
predominantly out of plane and the domain size increases
initially with increasing thickness as usual. A quantitative
analysis of the out-of-plane and in-plane contrast shows that
M is tilted about 15◦ against the surface normal already
from the very beginning. Upon the onset of the SRT the tilt
increases and the domain size decreases continuously until M
abruptly tilts to about 60◦, forming large domains when the
structural phase transition occurs. With increasing thickness,
M rotates completely into the plane. Thus, this system shows
an SRT, in which the magnetization continuously rotates
into the plane, but whose completion is pre-emptied by the
structural phase transition. The deposition was made at a
grazing angle of incidence so that the SRT occurs earlier on
uphill slopes and later on downhill slopes on the terraced
surface than on the flat regions. The tilted magnetization
even below the onset of the SRT was subsequently also

1.22 1.47 1.72 1.96 2.20 2.32

3.202.942.772.652.542.47

Figure 16. SPLEEM images of the spin reorientation transition (SRT) in an Fe0.7Co0.3 layer on 10 ML of Au with (111) orientation on
W(110). The top row shows the out-of-plane images, the bottom row the in-plane images. The thickness is given in monolayers. The last
out-of-plane image is replaced by a LEEM image to illustrate the topography of the surface. The deposition direction is indicated. Electron
energy 2.5 eV, field of view 10 µm (Zdyb and Bauer, 2003).
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observed in Fe films with laterally averaging magneto-optical
measurements (Toulemonde, Petrov, Naid Abdi and Bucher,
2004).

Several other interesting SRTs have been studied with
SPLEEM. One of them is the much studied and controversial
out-of-plane to in-plane transition of Fe on Cu(100) which
occurs via an apparently nonmagnetic state (Man, Altman
and Poppa, 2001a; Man et al., 2001b). In this complicated
system particular attention was paid to the connection with
the film structure and the influence of H2 on the growth,
structure, and magnetic properties of the films and the study
was combined with laterally averaging magneto-optical mea-
surements. The magnetization and the domain size decreased
with increasing thickness without change of the magnetiza-
tion direction. This was attributed to the decrease of the Curie
temperature from above room temperature at 3 ML to 285 K
at about 4 ML. An attempt was made to explain the results in
terms of finite size scaling but other explanations are possible
too (Bauer, 2005a) in the light of more recent structural STM
studies (Biedermann, Tscheliessnig, Schmid and Varga, 2001,
2004). The second part of the SRT, that is the appearance of
the in-plane magnetization, was not studied.

SRTs in coupled ferromagnetic layers are of particular
interest because they have frequently different anisotropies,
which compete with each other. Examples are Fe layers
on Ni layers on Cu(100) (Ramchal, Schmid, Farle and
Poppa, 2004b). This was studied for 7.2 and 11 ML thick Ni
layers, which have perpendicular and canted magnetization,
respectively. Up to 2.5 Fe ML the magnetization in the Fe
and Ni layers is parallel, but between 2.5 and 2.9 Fe ML the
magnetization in the Fe layer rotates in a spiral-like motion
into the plane with simultaneous breakup of the originally
large domains into stripes with decreasing widths, similar to
that seen in Figure 15, before large in-plane domains appear.

4.2.4 Multilayers

The antiferromagnetic and ferromagnetic coupling between
ferromagnetic layers through nonmagnetic interlayers plays
an important role in magnetoresistive devices. Early unpub-
lished SPLEEM studies of multilayers revealed that no useful
additional information could be gained by going beyond a tri-
layer (sandwich) because with increasing number of layers
the surface becomes increasingly rougher. This decreases the
intensity and sharpness of the (00) spot and accordingly the
signal/noise ratio of the SPLEEM images. Therefore, later
trilayers were studied, with emphasis on the influence of
interface roughness and of the biquadratic exchange coupling
between the layers, which is expressed by the biquadratic
coupling ‘constant’ J2 in the expression for the interlayer

exchange energy

E = J1(1 − cos φ) + J2(1 − cos2 φ) (6)

where J1 is the bilinear coupling ‘constant’ and φ the
angle between the magnetization directions in the two layers.
Biquadratic coupling is explained in terms of various inter-
face roughness models. Co/Au/Co and Co/Cu/Co trilayers
were chosen (Duden and Bauer, 1999b,c). In these studies
the short IMFP in Co and the large IMFP in Au and Cu play
an important role because the magnetic signal is dominated
by the top layer, and a wide thickness range of the nonmag-
netic layer can be studied. These studies revealed a complex
dependence of the interlayer coupling upon the interlayer
thickness as well as upon the top layer thickness.

In films grown at about 300 K, antiferromagnetic coupling
occurs at 5 and 4.5 ML of Au and Cu, respectively, indepen-
dent of the thickness of the top layer, however, nearly always
with a strong biquadratic contribution. Bilinear coupling is
dominating at 3 Cu ML, at 8 Cu ML the coupling is nearly
completely bilinear. While in trilayers with a Cu spacer layer
the top layer magnetization is always in-plane, in trilayers
with a Au spacer layer the SRT described in Section 4.2.3
occurs in the top Co layer, with antiferromagnetic coupling
at 5 Au ML. How the antiferromagnetic coupling changes
with the thickness of the top layer is indicated for a few
thicknesses in Figure 17; (a) and (b) show images of the
Au-covered bottom Co layer which has predominantly in-
plane magnetization (b), taken before the deposition of the
top Co layer. Image (a) shows, however, that there is also
still some out-of-plane M component present. (c)–(f) are
images of the top Co layer. When it is 3 ML thick (c),
M is mostly out of plane with antiferromagnetic coupling

(a) (b) (c)

(d) (e) (f)

Figure 17. SPLEEM images of antiferromagnetically coupled
Co/Au/Co trilayers on W(110). Electron energy 1.2 eV, field of view
6 × 6 µm2. For explanation see text (Duden and Bauer, 1994b).
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to the out-of-plane regions in the bottom layer (a). At 4
top Co layers, out-of-plane (d) and in-plane coupling are
of comparable strength and at 6 top Co layers M is basi-
cally only in-plane (e) with some 90◦ component (f). The
strong 90◦ component in the in-plane magnetization after
the SRT is seen also in the ferromagnetic coupling case
in the strong domain pattern on the right side of the mid-
dle row of Figure 18 where P is perpendicular to the easy
axis in the bottom layer. In the third row of this figure, M
is purely out of plane and ferromagnetically coupled to the
out-of-plane component in the bottom layer. A quantitative
analysis of many SPLEEM images shows that the ratio of
J2/J1 increases from 4 to 7 Au ML. On the other hand,
with the Cu spacers the biquadratic coupling is strongest in
the thinner Cu layers and decreases with increasing spacer
thickness. These differences between Au and Cu indicate
that the interface roughness, which causes biquadratic cou-
pling, decreases in Au spacers with increasing thickness,
while it decreases in Cu spacers, probably due to the dif-
ferent growth modes of these layers. Interface roughness
is important because with increasing deposition tempera-
ture, that is increasing roughness, the correlation between
the domain structure in the top and bottom layers rapidly
decreases.

Noncollinear coupling, which converts into collinear cou-
pling with increasing spacer thickness, was also observed

[110] [110] [110] [110]

[110][110][110][110]

[001] [001] [001] [001]

Figure 18. SPLEEM images of ferromagnetically coupled
Co/Au/Co trilayers on W(110). The images in the top row are
taken with P parallel to ±M in the bottom layer (W[110] direction),
those in the middle row 90◦ with P rotated (W[001] direction)
and those in the bottom row with P perpendicular to the layer
(W[110] direction). The columns show from the left to the right
the following layer combinations: the bottom Co layer (7 Co),
the Au-covered bottom Co layer (6 Au/7 Co) and the complete
sandwiches 3 Co/6 Au/7 Co and 7 Co/6 Au/7 Co, where the
numbers give the number of monolayers. Electron energy 1.2 eV,
field of view 6 × 6 µm2 (Duden and Bauer, 1994b).

in a completely different system: in an Fe trilayer with an
antiferromagnetic NiO spacer layer (Biagioni et al., 2005).
In this case there is no correlation between the domain
size in top and bottom layers. The domains in the top
layer are much smaller than those in the bottom layer and
presumably depend on the size of the antiferromagnetic
domains in the NiO layer. The critical thickness for the
transition from noncollinear to collinear coupling seems to
be preparation-dependent, a possible indication of roughness
effects.

4.2.5 Small particles

The samples discussed in Sections 4.2.1–4.2.4 were continu-
ous films. SPLEEM is also suited for the study of small parti-
cles, provided that they are single crystals with the top plane
parallel to the substrate. Such studies were already attempted
in the early years of SPLEEM. Pinkvos, Poppa, Bauer and
Kim (1993) studied small Co particles on W(110), obtained
either by growth at elevated temperature or by annealing a
thick film at elevated temperature. The particles grown at
elevated temperature (790 K) form elongated crystals along
the W[001] direction with submicron widths and were all
single domain, presumably due to the shape anisotropy. The
particles obtained by annealing show a pronounced mem-
ory of the original magnetization direction in the continuous
film, even in the smallest particles, which are quite irregular-
shaped and have a few 100-nm diameter. More recent work
aimed at the understanding of the magnetic domain struc-
ture of small particles. Fe on W(110) was chosen for this
purpose because growth experiments in connection with opti-
mizing conditions for QSE experiments (Zdyb and Bauer,
2002a) had shown a wide variety of growth shapes (Zdyb,
Jalochowski, Pavlovska and Bauer, 2006). They range from
more or less isometric crystals to ribbons and wires as shown
in Figure 19. Several energies compete in these epitaxial
crystals to different degrees, depending upon the shape of
the particle: stray field energy (shape anisotropy), exchange
energy, surface/interface energy, magnetoelastic anisotropy
energy, and magnetocrystalline energy. In the small isomet-
ric particles the first two energies are dominating, which
produces multidomain states, similar to the situation in poly-
crystalline particles on amorphous substrates (Cherifi et al.,
2005). In the wires (c, d) shape anisotropy is dominating, in
the ribbons all energies are relevant. In the larger flat crys-
tals in (c, d) magnetoelastic energy produces single-domain
states. It should be noted that for polycrystalline particles
other methods such as X-ray magnetic circular dichroism
PEEM are better suited although SPLEEM can be applied
to them too, albeit with much longer image acquisition
times.
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[−110] [001]
PP

(a)

(c) (d)

(b)

Figure 19. SPLEEM images of small epitaxial Fe crystals (a, b)
and wires (c, d) obtained by annealing 5–10-ML thick films at
about 700 K. The directions of the polarization and of the axes in
the W(110) surface are shown in (a) and (b). Electron energy 3.5 eV,
field of view 14 µm (Zdyb, Jalochowski, Pavlovska et al., 2006).

Finally, a study at the present resolution limits of SPLEEM
should be mentioned. Micromagnetic simulations have pre-
dicted the height and thickness ranges in small hexagonal Co
particles, in which single-domain and vortex domain states
should (co)exist. The coexistence region ranges from about
30–40 nm width to 600–6000 nm width, depending upon
thickness in the range from 1 to 10 nm. These widths are
partially accessible to SPLEEM with which the thermally
activated switching between the two states of Co epitaxial
particles on Ru(0001) was studied (Ding et al., 2005).

5 SUMMARY AND OUTLOOK

In this chapter a brief overview of the field of SPLEEM was
given with the goal to introduce the reader to the method
and its application possibilities. Complementary, though par-
tially overlapping, information may be found in two other
recent reviews (Bauer, 2005a,b). The qualitative aspects of
SPLEEM and its applications only were discussed, which
does not mean that it is not possible to obtain quantita-
tive data. Quantitative analysis of sufficiently detailed and
accurate SPLEEM measurements allows extraction of many
magnetic parameters that determine the direction or rela-
tive magnitude of the magnetization. Such parameters are
anisotropy constants or critical exponents. It is, however,

difficult to determine the absolute magnitude of the magne-
tization from the magnetic contrast, not only because of the
complications caused by QSEs, but generally because the
constant c in the magnetic contribution cP·M is not known
and |P| is usually not known accurately either.

The strengths of SPLEEM are the high surface sensitivity
and the combination of magnetic with structural informa-
tion obtained in the LEEM mode via diffraction contrast,
step contrast and quantum size contrast and in the LEED
mode. SPLEEM of course also has its drawbacks when com-
pared to other magnetic low-energy electron imaging meth-
ods, which do not provide the structural information. SEMPA
and XMCDPEEM can be applied to amorphous and poly-
crystalline samples with random crystal orientation, while
SPLEEM is only of limited use there. In addition, XMCD-
PEEM images give directly chemical information and in a
SEMPA instrument this information can be obtained too if
equipped with spectroscopy facilities.

The amount of information obtained till now with
SPLEEM is still limited, mainly because only two home-built
instruments have been available and operating until recently,
partially on-off and with limited resources. The recent instal-
lation of two commercial instruments, equipped with both
a spin-polarized and a high intensity LaB6 cathode, should
change this situation. The LaB6 gun can be used for focus-
ing so that the spin-polarized cathode does not have to have
high intensity. GaAs cathodes with high polarization, but low
intensity can then be used which will improve the magnetic
contrast by a factor of 4–5 above the present values. This
will increase the signal/noise ratio and, as a consequence,
the resolution considerably, possibly to the values obtainable
with the energy width-limited resolution of the cathode lens
of about 5 nm. Further improvements of the resolution will
require correction of the aberrations of the objective lens.
While this is theoretically possible it remains to be seen
whether or not it is also possible in experiment. The results
from the first aberration-corrected low-energy electron micro-
scope, the SMART (Schmidt et al., 2002) will have to show
this in the future. Some resolution improvement has been
achieved already. Another future avenue of research is time-
resolved SPLEEM. This has to be done in pulsed operation
of the gun, which is quite common already in high-energy
physics, synchronized with pulsed changes of the magnetiza-
tion. It is already used increasingly in XMCDPEEM studies.
In this case the high spatial resolution alluded to above prob-
ably cannot be achieved; otherwise a too large number of
pulse repetitions has to be used because of the low signal
per pulse. The method is also limited to processes in which
the magnetic state returns within a short time interval into
the state before the pulse-induced change.

Besides these future possibilities of SPLEEM there are
still many problems in the physics of ultrathin films and small
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particles that can be solved with SPLEEM in its present state.
Examples are (i) the influence of the lateral inhomogeneity in
ultrathin films on magnetic properties, which in many cases
have been studied only by laterally averaging methods. This
includes the influence of steps and of the step density on
SRTs and on the critical behavior; (ii) the micromagnetic
aspects of the interlayer coupling; and (iii) the competition
between the various anisotropies in small magnetic particles
with a wide variety of shapes.
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1 INTRODUCTION

‘Magnetism goes nano’ is the slogan that describes best the
activities in research on ferromagnetic systems. Those activ-
ities include basic research, as well as the research related
to applications in profit oriented industrial development lab-
oratories. As still a big business can be made with storage
media, the trend goes toward higher density, that is, smaller
bit structures, to compete with new storage devices like flash
memories. In basic research, the dimensionality plays a fas-
cinating role, as the size can be reduced to the limits where
the collective phenomenon ‘ferromagnetism’ will be affected.
Questions for the transition from atomic via molecular

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

magnetism to ferromagnetism come into the reach of fea-
sibility, promising new and highly interesting insight into
collective phenomena. To perform such studies it is equally
important to fabricate and to analyze such structures and
devices. In this contribution, we will focus on a microscopy
technique for magnetic structure analysis that bridges the
scales from micrometers to nanometers, that is, spin-SEM
(for scanning electron microscopy) or SEMPA (for scanning
electron microscopy with polarization analysis). Besides its
application in basic research, this technique has developed
into a versatile tool for solving problems in development
and even production of commercial devices.

With recent improvements in different components of
SEMPA and in sample preparation, spin-SEM is now appli-
cable for the investigation of all kinds of ferromagnetic
systems. This ensures the technique its importance in com-
petition with the high resolving scanning probe techniques
Scanning Probe Techniques: MFM and SP-STM, Vol-
ume 3. The latter show an ultrahigh sensitivity for sur-
face morphology and chemical composition on the atomic
scale, which limits their applicability to systems exhibit-
ing perfect smooth surfaces. This is commonly at variance
with fabrication processes of devices. Transmission elec-
tron microscopy based techniques, like Lorentz microscopy
Lorentz Microscopy of Thin-film Systems, Volume 3 or
electron holography Electron Holography of Ferromag-
netic Materials, Volume 3, cover a similar range of scales
as SEMPA. Utilizing special detector layouts (differential
phase contrast technique (Chapman, Batson, Waddell and
Ferrier, 1978)), scanning transmission electron microscopes
can show a similar suppression of morphological struc-
tures like spin-SEM. In comparison to transmission electron
microscopy techniques, however, SEMPA needs no massive



2 Electron microscopy and electron holography

sample manipulation, like reducing the thickness to some
10 nm. Spin-SEM can be applied to investigate samples or
devices in exactly the same setup they are intended for use
in commercial systems. Particularly the control of indus-
trial fabrication processes for media and devices will cre-
ate an increasing demand for spin-SEM investigation in the
future.

In this contribution, we will introduce the SEMPA tech-
nique with special emphasis on the scientific basics and less
on the technical realization. The aim is to make a broader
audience familiar with the technique, so that the nonexpert
in magnetic microscopy gets information at his hand that
helps decide whether the technique is suitable to solve his
problems or not.

The chapter is organized as follows: In Section 2, the
basics of spin-polarized secondary electron (SE) emission
is presented, whereas in the succeeding section, the implica-
tions of the physical process for the instrument are discussed
and principal design features and properties of SEMPA are
worked out. We also discuss some drawbacks that result
exclusively from the related physics. A state-of-the-art spin-
SEM is presented in the following section, that is, a new
generation of SEMPA that has been realized quite recently.
The specifications will be given and discussed in the frame-
work of design criteria that were realized. In Section 5, the
application of spin-SEM will be demonstrated by means of
the results obtained with different samples. Here, we focus
on the unique features of the techniques although their limits
are also shown.

2 BASICS OF SPIN-POLARIZED
SECONDARY ELECTRON EMISSION

When a solid is irradiated by electrons with energies in the
range of a few kiloelectron volts, electrons are reemitted
showing a well-known energy distribution, which is sketched
in Figure 1 (Reimer, 1998). The elastically scattered elec-
trons create a sharp peak at the primary energy (E0), fol-
lowed by structures that are due to electrons, which have
excited plasmons. On the flat background at lower ener-
gies, there are small structures that originate from Auger
electrons (100–2000 eV), and finally at very low energies
a pronounced intensity maximum is found. Electrons in that
energy range are called true secondary electrons. While most
of the higher-energy electrons that create structures in the
distribution are used in solid state and surface physics for
investigating the properties of matter, the electrons below
50 eV are used in SEM in general to visualize the mor-
phology of surfaces. Owing to the high SE intensity, good
statistics can be achieved and fast image acquisition is pos-
sible. These low-energy electrons are created in a cascade
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Figure 1. Intensity distribution of electrons leaving a surface, when
bombarded by electrons with energy E0. The small peak at E0 is
due to the elastically scattered electrons. As an inset, the small
peaks that appear due to Auger processes are shown enlarged.
Those electron energies are determined by energy levels of the atom
that was excited by the primary electron. Auger electrons are used
to study the chemical composition of surfaces in an energy range
from 100 to 2000 eV. At very low energies, the secondary electrons
generate a strong maximum. In scanning electron microscopy, the
electrons below 50 eV are often called true secondaries.

process by multiple inelastic scattering of the incident elec-
trons and the inelastic scattering of the excited electrons
that are created during preceding inelastic processes. The
electrons in the low-energy tail have undergone strong inter-
actions with electronic states around the Fermi energy during
their emission process.

Itinerant ferromagnets show a strong imbalance of the so-
called spin-up and spin-down electrons at the Fermi level. In
that nomenclature, spin-up/-down means antiparallel/parallel
alignment of the electron spin with respect to the sample
magnetization. Hence, owing to the aforementioned strong
interaction in SE emission, one should expect some signa-
ture of this spin imbalance in the low-energy SE. Indeed, in
the first investigation of spin-polarized SE emission a strong
polarization of those electrons was found (Chrobok and Hof-
mann, 1976). Subsequent studies of the energy dependence of
the spin polarization revealed a polarization enhancement for
SE with energies below ∼10 eV, that is, polarization values
higher than the averaged electron polarization at the Fermi
energy (Figure 2). The polarization decreases with increasing
SE energy. Above ∼30 eV the polarization value is that of
the average polarization of the electrons at the Fermi energy
PF (Figure 2). The enhancement of the polarization scales
roughly with the polarization value at EF, which means that
the polarization at low energies P0 becomes larger in the row
Ni, Co to Fe. For Fe, a polarization P0 ∼ 48–50% was found
(Kisker, Gudat and Schröder, 1982; Unguris, Pierce, Galejs
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Figure 2. Intensity and polarization distribution of secondary elec-
trons from an itinerant ferromagnet. The polarization is highest at
the very low energies where the intensity also peaks. For secondary
electron energies above 30 eV, the polarization value merges into the
value PF that is roughly the averaged polarization of electrons at the
Fermi level. P0 values differ for the different itinerant ferromagnets.
It is highest for Fe and lowest for Ni.

and Celotta, 1982; Hopster et al., 1983; Hammond, Fahsold
and Kirschner, 1992; Kirschner, 1988).

The enhancement is commonly believed to originate
from the cascade process of SE creation. In an itinerant
ferromagnet, a filtering mechanism is effective due to the
different density of states for up and down electrons. Roughly
speaking, as the inelastic electron/electron scattering can only
proceed via states around the Fermi level, the density of
states at EF determines the scattering probability. There are
two processes involved in the inelastic scattering: on the one
hand, the scattering of electrons with energies well above
EF into lower lying energy states and on the other hand, the
simultaneous excitation of electrons into higher states due to
energy conservation.

For minority spins, there are a great number of unoccupied
states available above EF, while almost all the majority states
around EF are occupied (see Figure 3). This means that
preferably minority spin electrons are scattered into states
around EF and are filtered out of the electrons that will
be emitted (E > EVac). For electrons with majority spin the
probability for inelastic scattering is very small (Figure 3),
due to a negligibly small number of states above EF. On
the other hand, if the energy difference that is available for
excitation is in the range of a few electron volts, that is,
when electrons with energy slightly above EF are scattered
into lower lying states, the electrons that can be excited will
originate exclusively from states close to EF. Hence, mostly
electrons of majority spin character are excited, because
close to the Fermi energy the occupied states are mostly
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Figure 3. Spin-resolved density of states for a hypothetical itin-
erant ferromagnet. The electrons with minority spin have a high
density of states above the Fermi level while majority spin elec-
trons occupy states below EF. The shaded energy range indicates
the band states below the vacuum level (EVac). Electrons above
EVac can leave the solid and contribute to the secondary electrons.
A rough sketch of the filtering processes that cause the enhanced
polarization is given. The energy loss due to Stoner excitations is
on the average �E.

majority states. In summary, with decreasing electron energy
the possibility to filter out minority and excite majority
electrons increases for electron energies around and below
the vacuum level. Owing to the multiplication that happens
within the emission process, the polarization enhancement is
created.

If there is no considerable imbalance of the density of
states at EF for spin-up and spin-down electrons, the SE
polarization will be very small if any is found at all. This
will happen in the so-called localized ferromagnets, which
have a magnetization that is originating from the occu-
pation of inner shell states. The effect of the localized
magnetic moments on the spin polarization of the conduc-
tion band electrons is generally very small. Hence, when
utilizing the SE spin polarization as a tool for investi-
gating ferromagnetism, this class of materials is out of
range. This obstacle can be partially overcome when the
material is covered with an ultrathin itinerant ferromag-
net layer (so-called dusting, see the following text). This
layer often mirrors the domain structure of the material
underneath while it fulfills the requirements for SEMPA
imaging.

The above-sketched process is associated with a net energy
loss, as the electron that loses energy falls into states
above EF, while the excited electron comes from states
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below EF. In total, the electron exchange creates electrons
with opposite spin and a mean energy loss �E. Roughly
speaking, �E is, on the average, the energy difference
of the maxima of the two densities of states (Figure 3).
The above described interaction process in ferromagnets
is called Stoner excitation (for an overview, see Feder,
1985).

The very existence of low-energy losses (in the range
<5 eV), particularly in combination with a high scattering
cross section, has a strong impact on the information depth
for the electron spin polarization. It was found that the
polarization is determined by the topmost layers of the
ferromagnet, that is, the information depth is extremely
small. For 3d ferromagnets, the latter amounts to about 5
atomic layers (Abraham and Hopster, 1987). This finding
is puzzling, as it apparently contradicts the general trend,
predicted for the so-called mean free path. The master or
universal curve (Ibach, 1977; Seah and Dench, 1979) gives a
mean free path in the range of 10 nm (30–50 atomic layers)
for electrons with energies below 10 eV. As this universal
curve is used in electron spectroscopy to estimate escape
depths for higher-energy electrons, it only takes energy losses
above 10 eV into consideration. This assumption is strongly
oversimplifying the physics of electron scattering at energies
a few electron volts above EF. More recent compilations of
mean free path data indicate much smaller values for certain
transition metals and thus a deviation from a universal-curve
behavior at low energies (Powell and Jablonski, 1999). In
fact, it has been found that the d holes in 3d transition
metals are responsible for strong electron–electron inelastic
interaction that gives an appropriately short mean free path
for low-energy electrons (Schönhense and Siegmann, 1993).
Since in a ferromagnet these d holes are also spin polarized,
a strongly spin-dependant mean free path can be expected
(Schönhense and Siegmann, 1993; Hong and Mills, 2000).
As a matter of fact the low losses and hence the small depth
of information are striking when the spin polarization is taken
into consideration.

As the quantization axis for the spin is given by the
magnetic field B inside the sample, the spin polarization
of the SE has a well-defined direction in real space and
in general reveals the orientation of the magnetization of
the ferromagnet (Unguris, Pierce, Galejs and Celotta, 1982;
Kirschner and Suga, 1987). As the charge of the electrons is
negative by definition, the magnetic moment of electrons is
antiparallel to its angular momentum. The polarization that
is defined via the angular momentum is thus antiparallel to
the magnetization vector.

In conclusion, the physical processes of SE emission give
a polarization enhancement at the very low energies, that
is, exactly in the range where the SE intensity is high.
The polarization is antiparallel to the magnetization. The

polarization value is highest for Fe and decreases from Co
to Ni. The low-energy losses, that is, the Stoner excitations,
dominate the scattering processes and are responsible for the
very small depth of information for electron polarization.

3 GENERAL CONSIDERATIONS

The physics of SE emission sets the limits and dictates
the prerequisites for the microscopy of magnetic structures
utilizing SE. In this paragraph, we will present the general
features of a spin-SEM and will work out how the physics
of SE emission implies certain solutions. In the conventional
SEM, the true SEs, which have the highest intensity in the
whole electron energy spectrum, are used for imaging. High
intensity is superior for imaging techniques, as it makes
quick measurement with high signal-to-noise ratio feasible.
The fact that in SE emission from itinerant ferromagnets the
highest polarization coincides with highest intensity brought
about ideas and conjectures for a new imaging technique
for magnetic structures (DiStefano, 1978; Celotta and Pierce,
1982; Kirschner, 1984).

The idea is to use a very narrow primary beam for SE cre-
ation and determine the SE spin polarization at the very low
energies (Figure 4) to obtain a local information about the
magnetization with high spatial resolution. Measuring the ori-
entation of polarization gives the full information about the
magnetization vector, as polarization and magnetization are
antiparallel (according to the properties of spin-polarized SE
emission). The latter proposition makes the vector analysis
of the spin polarization desirable. Putting the pieces together,
the basic idea is to measure the polarization orientation point
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Figure 4. Principle of a spin-SEM. The primary beam creates SE
at the sample surface. The SE are spin polarized. The polarization
is antiparallel to the magnetization at the emission spot. Measuring
the orientation of polarization reveals the magnetization orientation.
Scanning the primary beam across the surface gives the lateral
distribution of the magnetization orientation, that is, the domain
structure.
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by point using the smallest possible spot size for the imping-
ing electron beam. The resulting polarization distribution is
identical (except for the sign) to the local distribution of
the magnetization orientation, that is, the micromagnetic or
domain structure of the ferromagnet. From that basic consid-
eration, it is evident that the geometry of the experiment is
quite similar to that of SEM. In particular, it means that the
experiment is performed in reflection and sample thickness
and composition are no matters of concern.

To create the ultrafine, so-called primary, electron beam,
it was conjectured to utilize a SEM column and combine a
SEM and a spin-polarization analyzer. The result is a new
microscope that was called spin-SEM or SEMPA (for SEM
with polarization analysis). The unique feature of this type of
microscope is that it gives direct access to the distribution of
the magnetization orientation (as vectorial quantity), which
is identical to the magnetic structure that is of interest.

The extremely low depth of information, which is synony-
mous with high surface sensitivity, has strong implications
for the realization of a spin-SEM. First of all it means that the
surface of the sample under investigation has to be absolutely
clean. Therefore, any surface pollution by oxidation, contam-
ination, or any remains of a pretreatment have to be avoided.
Even contamination due to handling of samples under ambi-
ent conditions can cause the total loss of the polarization
signal. In general, this means that surface preparation tech-
niques have to be available in the microscope to produce
clean ferromagnetic surfaces in situ. Ion milling (or sput-
tering) is commonly used to remove contamination layers
from surfaces. Alternatively, one can deposit a ferromagnetic
layer that gives a fresh clean surface. The deposited film usu-
ally adopts the magnetic structures of the underlying sample.
Even when the sample surface has been perfectly prepared,
the surface has to stay clean during investigation. With data
acquisition times in the range of minutes, one can estimate
the vacuum that is required to perform such investigations.
It becomes evident that the microscope has to operate under
ultrahigh vacuum (UHV) conditions and has to be equipped
with sputtering and evaporation facilities.

Apparently, the high surface sensitivity seems to be a
disadvantage of the technique, as it requires the very sophis-
ticated and expensive equipment known from surface sci-
ence experiments. We will demonstrate, however, in the
course of this chapter that this property can be very advanta-
geous as well, because in combination with ultrathin films it
gives access to a large class of samples for investigation by
SEMPA. To stress the point once more: imaging of magnetic
structures utilizing spin-polarized SE emission works only
with clean surfaces and experiments have to be performed
under UHV conditions.

From the above considerations, the general setup can be
easily imagined (Figure 5). The basic components of the

Column
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Nup
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Scattering
target

Figure 5. Sketch of a SEMPA setup. Main components are the
SEM column and the spin detector, including the electron optics that
focuses the SE onto the detector crystal. Two out of four counting
facilities are displayed. The oppositely oriented diffracted beams
give access to the polarization component perpendicular to the plane
of drawing.
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Figure 6. Sketch of the scattering of electrons at atoms. Depending
on the direction in which the electrons are scattered, an angular
momentum is defined. Scattering into opposite angles gives opposite
angular momenta and thus opposite orbital magnetic momenta.
The interaction of the electron spin with the orbital momenta is
responsible for the increase/decrease of the scattering energy and
thus for different cross sections. A scattering asymmetry is found.

instrument are the SEM column and the spin-polarization
analyzer. The microscope is run under UHV conditions,
which means that all equipment including the SEM column
has to be UHV compatible.

The spin polarization of electrons is measured by means of
a scattering experiment. Owing to the coupling of the electron
spin and the orbital momentum (Figure 6) a right/left asym-
metry can be found. It means that the scattering intensities
under opposite angles are different. The asymmetry is pro-
portional to the polarization of the incoming electrons. More
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precisely, the asymmetry is proportional to the polariza-
tion component that is perpendicular to the scattering plane,
spanned by the incoming and scattered electron beams. To
achieve direct correlation and easy interpretation in polar-
ization detectors, normal incidence geometry is chosen and
the scattering intensities are measured under opposite angles.
In Figure 5, two scattered beams and corresponding detectors
are displayed (named Nup and Ndown). They are used to deter-
mine the polarization component that is perpendicular to the
plane of drawing, that is, the scattering plane. Additionally,
a second scattering asymmetry can be determined in a direc-
tion perpendicular to the first one. The according polarization
component is in the plane of drawing (parallel to the surface
of the scattering target). The corresponding scattered beams
point out of or into the plane of drawing.

To maximize the number of SEs that enter the detector,
a specifically designed electron optics is mounted in front
of the analyzer. This optics focuses the SE into the detector
while enlarging the angle of acceptance of the detector. The
ultimate aim is to bring all the SEs emitted into the half-space
into the analyzer.

All successful realizations of spin-SEM worldwide look
pretty much the same and comprise those above-mentioned
basic components. For a listing, see for instance in Oepen
and Hopster (2005, p. 137). The individual microscopes
differ with respect to the SEM columns and the polarization
detectors that are used. While the performance and features
of the various commercially available SEM columns can be
easily obtained from the companies selling SEM, the spin-
polarization analyzers are somewhat more exotic and will be
briefly discussed next.

The high-energy scattering at the cores of materials
with high atomic number is used in Mott detectors for
polarization analysis (typical energies 20–100 keV) (Koike
and Hayakawa, 1984; Allenspach, 1994; Iwasaki, Takiguchi
and Bessho, 1997; Stamm et al., 1998; Hopster, 1999). A
gold foil is used as scattering target. The scattering angles
are 120◦ with respect to the momentum of the incident
electrons (Kessler, 1985; Barnes, Mei, Lairson and Dunning,
1999). Mott detectors are bulky for high-voltage insulation
reasons.

The second type of detector is based on the low-energy
electron diffraction (LEED detector) at single crystal surfaces
(Kirschner and Feder, 1979; Kirschner, 1985). The scattering
is performed at a W(001) surface. The (2,0) diffraction beams
at 104.5 eV are taken for the polarization analysis (Frömter,
Oepen and Kirschner, 2003).

A second low-energy concept is based on the diffuse
scattering of electrons at polycrystalline Au films (low-
energy diffuse scattering (LEDS) detector) (Scheinfein et al.,
1989; Hembree, Unguris, Celotta and Pierce, 1987) at a
scattering energy of 150 eV.

What is common for all the above-mentioned detectors
is a very low efficiency for polarization analysis, that is, in
the range of 10−4 (Scheinfein et al., 1990). In other words,
1 electron in 10 000 contributes to the polarization analysis.
This is a disadvantage as it puts strong requirements on the
specification of every instrument component and makes an
optimized tuning absolutely necessary. In particular, for the
SEM column this means that the primary current should be as
high as possible, while the lateral resolution must be high at
the same time. Some rough estimations reveal that a primary
current in the range of 10−9 A is desirable to obtain reason-
able measuring times (Oepen and Hopster, 2005). Standard
thermionic emitters fail as electron source, because currents
in that range are available only at the cost of spatial resolu-
tion (Reimer, 1998). The best choice under the prerequisite of
good spatial resolution and high current is the field emission
(FE) column (especially thermally assisted FE or Schottky
guns). The number of SEs per incoming electron depends on
the primary energy. Particularly at energies above 10 keV the
SE yield decreases and drops by more than a factor of 3 with
respect to the values at energies around 1 keV (Kirschner,
1988). Hence, it is recommendable to run the SEM column
in a low voltage mode. Such working parameters are usually
at variance with high spatial resolution and high primary
intensities. The best compromise between resolution and SE
intensity has to be experimentally found – it usually depends
also on the sample under investigation. Again, FE columns
can meet the requirements of high resolution, high primary
current at low primary energy best.

Secondly, the electron optics and the polarization analyzer
have to be optimized in the sense, that all the SE created
by the primary current should be collected and focused
into the analyzer. For optimization, the convolution of
the SE energy distribution of polarization/intensity and the
detector analyzing properties, like permissible angle and
energy spread, have to be considered (Oepen and Hopster,
2005). The latest generation of a spin-SEM has been realized
recently (Kohashi and Koike, 2001; Frömter, Oepen and
Kirschner, 2003). We will discuss the obtained performance
of our system and compare it with the idealized system in
the following paragraph.

As mentioned above, the polarization detector measures
the left/right asymmetry of scattered electrons. The spin-orbit
coupling is the relevant effect and its contribution is small
in comparison to the electrostatic (Coulomb) scattering. To
separate the spin-dependent part from the much larger ‘back-
ground’ the normalized intensity difference between right and
left scattering intensity is constructed. The scattering asym-
metries

Avert = (Nright − Nleft)

(Nright + Nleft)
, Ahorz = (Nup − Ndown)

(Nup + Ndown)
(1)
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are proportional to the polarization, that is, the polarization
component perpendicular to the respective scattering planes.
The proportionality factor is the inverse of the sensitivity S

(in Mott scattering called Sherman function (Kessler, 1985)).
A 100% polarized electron beam gives an asymmetry of
S. For Mott and LEED detector the sensitivity is ∼25%
and considerably higher than S for the LEDS detector
(∼11%). As a general rule, one may say that the higher
the sensitivity, the easier is the handling of the spin-SEM,
as the system is less sensitive to slight misalignments in
the detector and electron optics that cause apparatus or
device asymmetries. Owing to the normalization procedure,
the surface morphology is suppressed and a strong magnetic
contrast can be attained.

4 REALIZATION OF A SPIN-SEM
UTILIZING A LEED DETECTOR

The preceding section discussed general considerations for
the implementation of spin analysis in SEM. In the following,
we will exemplarily present the realization and the perfor-
mance of a particular instrument. The spin-SEM, which has
been realized in our laboratory, consists of a modern UHV
compatible Schottky-emission SEM column and a LEED
spin-polarization detector. The LEED detector has been cho-
sen for several reasons: At first, the compact size guarantees
highest flexibility with little space required for the polariza-
tion analyzer. Secondly, the angular and energy acceptance
of the LEED scattering process can be well matched to the
broad energy and angular spread of SE emission. This allows
for comparatively high detection efficiency, since a large
amount of SE contributes to the spin analysis, while the appa-
ratus asymmetry, caused by scanning of the primary beam,
can be kept low. Details will be given below. Not least, the
use of the LEED detector for SEMPA has been pioneered
in our lab almost 20 years ago (Oepen and Kirschner, 1989;
Oepen and Kirschner, 1991). The detector discussed here
represents the third generation of ongoing improvement and
miniaturization processes.

4.1 Overview

The complete experimental setup consists of two vacuum
chambers, one for microscopy and the other for sample
preparation, including thin-film fabrication. The whole sys-
tem can be baked to at least 150 ◦C and is operated in the low
10−10 mbar residual pressure regime. Under these conditions,
the magnetic contrast from an iron sample has proved to be
useful for several days. Samples can be quickly inserted into

the microscopy chamber by means of a load lock and can be
further transferred into the preparation chamber under UHV.

One design criterion has been to achieve as much flexibil-
ity as possible for applying the high resolving electron beam
from the SEM column. For that purpose, several UHV ports
have been orientated with straight view onto the sample. On
such flanges, there are mounted the spin analyzer, a sputter
gun, a hemispherical energy analyzer, and an electron beam
evaporator for iron film deposition. In order to achieve high
detection efficiency, it is important to keep the distance sam-
ple/detector optics small. For that reason the spin detector
can be retracted, which maintains unhindered sample access
for other devices. The hemispherical analyzer, which is also
retractable, can be used for Auger electron spectroscopy. In
combination with the SEM column, this opens up the possi-
bility for spatially high resolution chemical analysis, that is,
scanning Auger microscopy (SAM).

4.2 The SEM column

The UHV version of the Zeiss Gemini system is used in our
microscope. This column was designed as primary source for
SAM and SEMPA. It is equipped with a Schottky FE cathode
and a combined electromagnetic/electrostatic objective lens.
The electron optical properties are superior to conventional
microscopes, as the column combines high current with
high spatial resolution, even at relatively low primary beam
energies. It thus fits very well the requirements for a SEM
column to be used in spin-SEM. At a working distance of
8 mm, a resolution of 7.5 nm is specified for a beam current
of 1 nA at 3 keV primary energy. This current value fits well
into the range that offers good working conditions (Hopster
and Oepen, 2005), while the low primary energy is superior
as it allows to operate close to the energy range where the
SE yield becomes maximum (Hopster and Oepen, 2005).

4.3 Geometric design considerations

As mentioned in the previous sections, the important issue
for a good working spin-SEM is to maximize the angular
acceptance of the polarization analyzer. For that reason, a
normal takeoff geometry is chosen, as illustrated in Figure 7.
Additionally, the distance between sample and detector optics
is minimized. The SEs are accelerated into the optics by
means of high potentials at the first elements of the optics.
The first condition puts strong limitations on the geometrical
arrangement. The angle between SEM column and detector
optics should be much smaller than 90◦ to maintain an
acceptable tilt angle with respect to the column axis. A too
large sample tilt would cause a serious deterioration of image
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Figure 7. Schematic of the spin detector. Two of the four (2,0) LEED beams are shown in this projection, together with their associated
electron counting channels. The first and fourth lenses of the transfer optics are split into quadrupole elements for beam steering.

quality in tilt direction. The small distance between sample
and detector optics is a limiting condition for the smallest
angle achievable and the size of the extraction optics. The
final solution is as follows: straight access to the sample at
a collection distance of 8 mm (to front end of detector) for
a conical extractor optics with full opening angle of 49◦.
The sample tilt is 64◦ with respect to the column axis. The
selected geometry is adapted to a column working distance
of 8 mm. As consequence of this geometry, the column’s
working distance is somewhat larger than in conventional
SEM applications, which causes a slight decrease in the
achievable final resolution.

The objective lens is responsible for a magnetic stray
field that declines with increasing working distance. A
vertical field component of 2 mT has been measured at the
sample position under working conditions. Owing to the fast
acceleration of the electrons toward the spin detector by the
first elements of the optics, no precessional rotation of the
spin-polarization vector could be observed within an error
margin of 1◦. The electric stray field of the column at the
sample surface is quite small and it is easily overcome by
the potential gradient of 56 V mm−1 at the sample, which
is generated by the electrical potentials at the first two lens
elements of the transfer optics (in the range of 2–3 kV). Two
elements of the electron optics are constructed as steering
elements (electrostatic quadrupoles). They serve to align the
electron beam with the axis of the optics and compensate for
small angular deviations due to electrostatic and magnetic
fields of the SEM column and sample tilt.

4.4 The spin detector

The diffraction of electrons at surfaces is a well-established
technique in surface science to investigate the structure and

quality of surfaces. When electrons with definite energy and
low angular spread are scattered at ordered surfaces a per-
fect diffraction pattern is obtained. Any deficiency from
one of those conditions gives a degradation of scattering
probability. Surface contamination, for example, can cause
superstructures or even the complete destruction of coher-
ent scattering. In the 1980s, much attention was paid to
spin effects in LEED. It was found that the scattering at
nonmagnetic surfaces, like W(001), can produce diffracted
beams of spin-polarized electrons owing to spin-orbit inter-
action in the scattering. The double scattering experiment
was the realization of a self-calibrating experiment that trans-
formed the polarization into an intensity variation (Kirschner
and Feder, 1979). With this experiment, the polarization sen-
sitivity could be measured precisely and a new spin detector
was suggested and realized. The angle and energy depen-
dence of the sensitivity was investigated for W(001), which
was the prerequisite for further optimization of the LEED
detector. The most important quantity to characterize the
detector efficiency is twice the product of reflectivity R times
the square of the polarization sensitivity S, that is, 2RS2

(Kirschner, 1985). This so-called Figure of Merit allows for
direct comparison with other types of spin detectors, since it
is derived from the uncertainty of polarization detection: the
statistical error of a single polarization measurement using
single electron counting technique is governed by Poisson
statistics. It can be expressed as (Kessler, 1985)

�P = 1√
NS2

(2)

For the LEED detector, N = N(2, 0) + N(2, 0) is the
total number of counts in two opposed beams for a given
acquisition time. As N is proportional to R, maximizing RS2

will minimize �P .
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In the calibration experiments, the highest Figure of Merit
has been found for the second-order diffracted beams and
at a kinetic energy of 104.5 eV. With an energy spread of
1.5 eV and an angular spread of 0.5◦ at normal incidence, the
sensitivity was determined to be S = −0.27, the reflectivity
R = 0.0011, and thus the Figure of Merit was calculated
to be 1.6 × 10−4 (Kirschner, 1985). In order to achieve
an appropriate and reproducible analyzer performance, it is
necessary to keep parameters like energy and angular spread
in a certain parameter range and the surface in a well-
defined condition regarding contamination and structure. Any
contamination decreases the polarization sensitivity.

The new detector for the spin-SEM is displayed in
Figure 7. Scattering at the W(001) surface is performed
in normal incidence. For that geometry and at the chosen
nominal scattering energy of 104.5 eV, the (2,0) beams
appear at a fixed angle of 49.4◦ with respect to the normal.
To preserve the initial direction of electron scattering, the
complete surrounding of the crystal is held at the same
potential, the scattering potential. The (2,0) beams can leave
the field-free region around the W(001) crystal by traversing
grids at the same potential, which separate the scattering from
the counting section. A second set of grids (retarding grids)
is used to separate the elastically scattered electrons from
the SE generated at the W crystal as well as to suppress
the inelastic background. The retarding grids act as high-
energy pass filters and are set to a potential close to sample
ground. An electron, which has passed both grids, is then
accelerated into a dual microchannel plate (MCP) assembly
for pulse amplification. Between the retarding grid and the
MCP entrance, a tapered optical element is mounted. With
this electrode, the electron beam is defocused before hitting
the front of the first channel plate. Owing to the defocusing,
the whole plate area can be illuminated by the electrons.
This is important to increase the expected lifetime, that is,
to increase the total number of detected events before the
MCP quality degrades. In addition, the lowered area intensity
reduces the dead time of the plate assembly, as subsequent
electrons will not hit exactly the same microchannel. The
current pulses generated in the MCP stack are collected with
an anode plate and, after high-voltage decoupling, fed into
counting electronics.

For cleaning the W(001) surface, the single crystal can
be flash heated above 2000 K from its rear by electron
bombardment. Within 30 s after flashing the detector is ready
again for measuring.

As discussed in the preceding paragraphs, the SE emission
is characterized by a wide energy spread with varying
polarization and an emission into half-space. The above-
mentioned conditions for optimized LEED analyzer spin
sensitivity (small angle/energy spread) would mean that only
a small portion of the total SEs could be utilized for spin

polarization analysis. The limited energy spread reduces the
usable number of electrons by a factor of 5 while 5 orders
of magnitude are lost due to the extreme limitation of the
angular acceptance. In other words, nearly all information is
wasted when the detector is run at its optimized performance
with respect to polarization sensitivity. The consequence
is a dramatic decrease of statistics and image quality for
given dwell time. As compensation, one had to increase
the measuring time by orders of magnitude. Images with an
appropriate number of data points could not be achieved in
reasonable times. Hence, the spin polarization analyzer has
to work at less favorable conditions in a spin-SEM in order
to cover a large part of the SE spectrum. The goal is to find
the optimum in the trade-off between degrading polarization
sensitivity versus increasing count rates upon increase of the
angle and energy acceptance. From general considerations
about the SE emission, it was deduced that the detector with
best performance (for spin-SEM application) should accept
all the SE up to at least 10 eV, while the acceptance angle
of the detector should be as large as possible (Oepen and
Hopster, 2005). The solution for the latter requirement is to
put the sample into the focal plane of the detector system. By
this, a large emission angle is transformed into a quasiparallel
beam configuration. This means that the majority of all the
electrons that are transferred into the detector are scattered
at conditions close to normal incidence. In our design (see
Figure 7), there is a drift tube at the end of the optics, which
is essential for adjusting the beam. The drift tube allows
tuning of the electrons into a parallel beam configuration just
by maximizing the observed intensities, as it permits only an
angular spread of maximum ±5◦.

Electrons with different energies are scattered into differ-
ent angles. Hence, a LEED process gives a discrimination of
energy in itself via angular selection of the scattered beams.
In our setup, the diaphragms that are used as grid support act
as apertures that limit the scattering angle of the diffracted
beams (Figure 7). For idealized normal incidence, the aper-
tures define an energy spread of roughly ±10 eV around the
nominal scattering energy.

4.5 Performance of the spin detector

In order to quantitatively understand the key properties
of the LEED detector, like the obtainable image contrast
and the detection efficiency, a best-case calculation has
been carried out (Frömter et al., subm., 2007). The most
simple approach involves a convolution of the spin and
intensity distributions of the SE with the calibration curves
for the energy-dependent reflectivity and spin sensitivity for
scattering at W(001). A more sophisticated and already a
quite accurate result can be obtained if the energy and angular
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Figure 8. Model of the detector transmission. Measured count rates
of all four channels (dots, right scale) from an iron sample and
calculated transmission values (lines, left scale) are plotted versus
the scattering potential applied to the W(001) crystal. The dashed
line is calculated accepting all elastically scattered SE, regardless
of their energy. The solid line gives the result for the model that
accounts for energy filtering at the entrance apertures in accordance
with the real geometry. The transmission in the model is normalized
per incoming secondary electron. Details concerning the parameters
and model are given in (Frömter et al., (subm. 2007)). (Reprinted
from Frömter et al., Review of Scientific Instruments, submitted.
 American Institute of Physics.)

dependent transmission properties of the apertures on the
diffracted beams are included into the model.

The result for the scattered intensity is shown in Figure 8.
Plotted are the calculated detector transmissions for the two
conditions described in the preceding text and experimen-
tal data from an Fe whisker. The abscissa is the electrostatic
potential applied to the scattering crystal with respect to sam-
ple and thus gives the variation of the kinetic energy of the
scattered electrons. The influence of the energy-determining
apertures is obvious from the comparison of the two theo-
retical curves. A gradual decrease in transmission at ener-
gies above 106 eV helps increase the overall performance,
since the polarization sensitivity is reduced at these energies.
The shape of the theoretical curve that includes the aperture
effects (solid line) fits the experimental data quite well. A
slight energy shift is found, which is probably caused by
some deviation from the exact geometry.

In order to compare the absolute numbers of experiment
and model, one has to estimate the number of electrons
actually entering the detector. The experiment has been
carried out with a primary current of 1 nA at 2 keV energy.
If one assumes for these conditions a SE yield of 1, there
will be roughly 6 × 109 SE per second entering the detector.
Taking the optimum transmission from the theory curve,
there should be 5 × 106 electrons per second detectable for
each scattered beam. For the five times smaller count rate
found in the experiment, several effects are responsible:
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Figure 9. Energy distribution of the SE after scattering at W(001).
Dots give the experimental results, when the retarding grid voltage
was varied between +5 and −20 V (top axis). The data shown
are differentiated with respect to energy (right axis), to obtain the
distribution. From the model, we obtain the dashed line as energy
distribution (left and bottom axes) if all elastically scattered SE are
accepted. The energy filtering at the entrance apertures, which is
included in the solid line calculation, is the reason for the gradual
cutoff above 5 eV that is in perfect agreement with the measured
data. At energies below 4 eV the grid transmission becomes less
than unity, so the measured data falls off more rapidly.

roughly 20% of the counts are lost at the retarding grids
owing to their reduced transmission at lowest energies
(Huchital and Rigden, 1972). The magnitude of this effect
has been estimated from the spectra in Figure 9. As the
structure of the energy dependence is almost the same for
theory and experiment, we can conjecture that the remaining
effect is mostly of geometrical origin. Appointing the further
reduction of count rates to the angular acceptance of the
optics, one can calculate an effective full opening angle of
SE acceptance. Assuming a Lambert intensity distribution,
the remaining transmission of 0.25 corresponds to a full
acceptance angle of 60◦. This value is well above the
geometrical acceptance of 49◦ and reflects the effectiveness
of the accelerating field at the sample. Putting the exact SE
yield into the calculation can vary the numbers slightly, but
will not change the general result. In summary, from the
comparison of the absolute numbers we may conclude that
the transfer optics does not focus the SE, which are emitted
at very large angles, into the detector. This is in part a
consequence of the drift tube, which has been inserted in
the electron path to facilitate alignment and that defines the
limiting input aperture.

Nevertheless, the obtained count rate well above 1 million
counts per second and per channel allows for taking quick
overview images from iron samples within less than a minute,
or taking high-quality images with only 1% uncertainty in the
asymmetry within 5–10 min.
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With the same theoretical approach the expected asym-
metry can be calculated, taking the SE polarization distribu-
tion and the energy-dependent sensitivity of the scattering at
W(001) into account. We assume a polycrystalline Fe surface
as sample, which represents the situation when decoration
with iron is performed. Although the spin polarization at zero
SE energy is taken to be 48% in the model, the predicted
asymmetry for the experimental setup is just 9%. For poly-
crystalline Fe films, asymmetries of 8.5% have been found
experimentally in our SEMPA. The agreement with the the-
oretical prediction is perfect. Note that the calculated value
is significantly smaller than the product of nominal detector
sensitivity times polarization 0.27 × 48% = 13%. The latter
is an ideal quantity that can only be achieved with electrons
very close to zero SE energy or with a constant polarization
of 48% for all SE.

The energy distribution of the SE can be measured by
varying the potential of the retarding grids and differentiating
the measured intensities. The obtained energy distribution
and a calculation from the above model are displayed
in Figure 9. Again a very good agreement is found. At
higher energies the transmission of the SE is reduced by
the apertures as precisely described by the model. On the
low-energy side, the experimental distribution is reduced
with respect to the theoretical curve, which is due to a
decreased transmission of the retarding grid setup. Measuring
the energy distribution of the SE has turned out to be a very
useful tool for checking the operation of the LEED detector.
From the results one can infer on the quality of the W(001)
crystal preparation or charging of the sample.

5 FEATURES OF THE TECHNIQUE

5.1 Application of high surface sensitivity

In Sections 2 and 3, we have already discussed the surface
sensitivity of spin-SEM and its implications, that is, the need
for the elaborated UHV technique and necessary cleaning of
the sample. These can be seen as a real disadvantage for
spin-SEM applicability. On the other hand, this particular
property of spin-polarized SE emission bears a big potential
for SEMPA.

Obviously, the high surface sensitivity gives access to the
investigation of magnetic structures in films of ultimately
low thickness down to the monolayer (ML) range. Several
ultrathin-film systems that exhibit epitaxial, layer-by-layer
growth have been investigated in situ utilizing spin-SEM. For
ferromagnetic films with in-plane easy axes of magnetization,
those studies reveal that the films are single domain after
growth, which is the state of lowest energy (Robins et al.,
1988; Oepen et al., 1990). It is believed that the single

domain state is created during film growth. While growing,
the increasing thickness lets the film pass the phase transition
from paramagnetism to ferromagnetism. At any stage of
film growth, the thickness varies locally by at least ±1 ML
from the mean integer thickness. For thermodynamical
reasons, the different heights appear only in larger connected
clusters, statistically distributed on the substrate. These
thicker parts are called islands. On thickness increase, the
islands become ferromagnetic first and one can expect a
spontaneous alignment of the moments within each island
along one of its axes of easy magnetization. In the ideal
case, the orientation of magnetization will equally occupy
all possible easy axes. Hence, a multidomain state would be
stabilized on thickness increase. As the experiment reveals
the opposite, we may conclude that a different mechanism is
effective: at the phase transition already small magnetic fields
can determine the magnetization direction, as the magnetic
susceptibility becomes infinite here (Oepen, 1991). Hence,
even smallest residual fields can cause the alignment of the
magnetic moments in the islands during film growth. Beyond
the phase transition, ferromagnetism is stabilized and the
state of aligned moments turns into the nearest lying easy
axes of magnetization and is frozen in. Thus, a single domain
virgin state is created.

In conclusion, the residual fields align all the moments
and the easy axis that is closest to the field direction
gives the magnetization direction in the ferromagnetic single
domain state. It has to be mentioned that there are also
stray fields created by the aligned moments of the islands,
which could vary the field direction locally. This effect,
however, is negligibly small because the stray field of
in-plane magnetized ML islands is extremely low.

Interestingly, a stable multidomain pattern can be created
in such a film by demagnetizing procedures. The local
minima of the energy landscape, which are required for
this behavior, are most likely created by small defects
that pin extremely localized magnetic features like Bloch
lines (Hubert, private communication). In such films, the
domain walls have been studied (Berger and Oepen, 1992).
Qualitatively, the same wall structures like in considerably
thicker films (Fuchs, 1962; Feldtkeller, 1963) were found,
that is, Néel walls with long-ranging tails. The domain
structure is very irregular and does not reflect any symmetry
(in contrast to the known behavior for bulk samples). The
reason for this characteristic feature is that the aligning
forces on the walls are negligibly small. The aligning forces
arise from magnetic stray fields that are created by the
magnetic poles, which appear when the wall orientation is
such that the component of magnetization normal to the
wall is noncontinuous for the two adjacent domains (pole
avoidance principle). As the magnetic pole strength scales
with the thickness of the film, the force is very small in
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the limit of ultrathin films and hence the pole avoidance
is not effective. On the contrary, the volume charges that
are created due to the Néel-wall structure cause a wall
interaction over large distances. This is one driving force
for the observed wall bending and the irregularity.

Ferromagnetic films with an out-of-plane easy axis of
magnetization behave differently: in general, multidomain
structures are found in the virgin state (Allenspach, Stam-
panoni and Bischof, 1990; Speckmann, Oepen and Ibach,
1995). Again, this is a consequence of the growth process
where local thickness variations occur. Around the phase
transition, the thicker parts become ferromagnetic and create
stray fields that magnetize the film oppositely in the vicin-
ity, as soon as the thickness of those regions increases. Note
that the stray fields for perpendicularly magnetized films are
much larger than the fields created by in-plane magnetized
films of the same thickness.

The temperature dependence of magnetization, namely, the
phase transition from ferro- to paramagnetism, has also been
studied in ultrathin films by observing the magnetization
of oppositely magnetized domains in spin-SEM. With this
technique, any influence due to applied probing fields (in
hysteresis measurements) and microstructural effects could
be ruled out (Kerkmann, Pescia and Allenspach, 1992).

In recent years, the perpendicular magnetic anisotropy
that is caused by surface anisotropies has attracted much
attention. One particular question arose with the transition
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Figure 10. Spin reorientation transition in a Co wedge on Au(111).
The spin-SEM image of the vertical magnetization component is
shown. The Co wedge was grown in situ through a mask. On
the left- and right-hand sides the bare Au surface is seen. The
thickness increases along the diagonal (left to right) from ∼3 ML to
∼6 ML. At lower Co thickness vertically magnetized domains are
found. With increasing thickness, the domains shrink and finally
the magnetization reorientates into the film plane (>5 ML). Above
5 ML, the vertical polarization is zero and shows the same contrast
as the bare Au surface. Owing to shadowing, the Co thickness
gradually increases at the edges from zero to the nominal thickness.
Along each edge a domain pattern can be observed as the thickness
range with vertical magnetization orientation is contained.

from vertical to in-plane magnetization on thickness increase.
It was speculated about a loss of long-range order. Spin-SEM
investigations could answer that question and reveal that
indeed a breakup into tiny domains appears (see Figure 10)
around the thickness range where the transition takes place
(Allenspach, Stampanoni and Bischof, 1990; Allenspach
and Bischof, 1992; Speckmann, Oepen and Ibach, 1995).
These domains caused the previously observed decrease
of signal in spatially integrating methods. Moreover, it
was demonstrated that from SEMPA studies, utilizing its
high spatial resolution, the magnetic surface anisotropy
could be determined (Speckmann, Oepen and Ibach, 1995;
Oepen, Speckmann, Millev and Kirschner, 1997). What is
remarkable is the fact that the first-order contribution to
the surface anisotropy could be derived from the magnetic
microstructure in the regime of vertical magnetization alone.

Recently the high surface sensitivity of spin-SEM has
been successfully employed for the investigation of the
temperature behavior of the layered antiferromagnetism in
La1.4Sr1.6Mn2O7 (Konoto et al., 2004), as well as the tem-
perature dependent transitions from antiferromagnetic to fer-
romagnetic coupling in slightly different manganites (Konoto
et al., 2005). In those studies, the high surface sensitivity was
used to selectively probe the magnetism of the respective top
layers in macrostepped surfaces of the complex material.

A very successful story of the application of SEMPA uti-
lizing surface sensitivity was the study of exchange-coupled
films (Unguris, Celotta and Pierce, 1991, 1997). A straight-
forward but intriguing experiment was the investigation of
the domain structure that is caused by exchange coupling
across a wedge shaped film. In the very first experiments, a
Cr wedge was grown on an Fe whisker. On top of the wedge,
a thin Fe film was grown and the magnetic structure in this
layer observed via SEMPA (Unguris, Celotta and Pierce,
1991) (Figure 11). While the domain structure on the (001)
surface of the whisker is very simple and stable, as was inves-
tigated before film deposition, the SEMPA investigation of
the layered stack reveals a strong oscillatory contrast, which
originates exclusively from the Fe film on top. The domain
structure shows interlayer thickness dependent stripes that
change alternatively from parallel to antiparallel alignment
with respect to the whisker magnetization (Figure 11). If the
Cr wedge was imaged before Fe deposition, the opposite
spin polarization was observed. This is attributed mainly to
the magnetization of the topmost Cr layer in the stack, thus
indicating an antiparallel coupling between Cr and Fe. From
those experiments, two different periods of the oscillatory
exchange coupling could be identified and determined very
precisely; biquadratic contributions (Pierce, Unguris, Celotta
and Stiles, 1999; Tulchinsky, Unguris and Celotta, 2000)
and phase slips (Unguris, Celotta and Pierce, 1991) were
identified.
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Figure 11. Oscillatory interlayer exchange coupling in Fe/Cr/Fe. (a) Schematic expanded view of Fe/Cr/Fe exchange coupling sample
showing the Fe whisker substrate, the Cr wedge, and the Fe overlayer. (b) SEMPA image of the component of magnetization, Mx , in the
Fe overlayer along the Fe whisker. The arrows mark the Cr spacer-layer thicknesses where phase slips in the short-period oscillations of
the magnetization occur. (c) A line scan through (b) showing the measured spin-polarization profile of the overlayer. (d) Spatial reflection
high-energy electron diffraction (RHEED) intensity oscillations along the Cr wedge before depositing the Fe overlayer give an accurate
determination of Cr thickness. (e) The spin polarization of the Cr layer P(Cr), before depositing the Fe overlayer, after subtracting the
background from the whisker. (Reprinted from Journal of Magnetism and Magnetic Materials, 200, Pierce, D.T., Unguris, J., Celotta,
R.J. and Stiles, M.D., Effect of roughness, frustration, and antiferromagnetic order on magnetic coupling of Fe/Cr multilayers, 1999, with
permission from Elsevier.)

At the very beginning of spin-SEM investigations, a new
idea appeared that promised to make SEMPA a universal tool
for domain structure and magnetic fine structure analysis,
that is, the decoration technique (VanZandt, Browning and
Landolt, 1991). It makes use of the pronounced surface sen-
sitivity of the technique, as the main idea is to deposit a very
thin layer of an itinerant ferromagnet on top of the sample
to be investigated. This layer thus creates a fresh and clean
ferromagnetic surface that is accessible for spin-SEM investi-
gation and somehow mirrors the magnetic state below. In the
meantime, the decoration or dusting technique has evolved
into a standard procedure, whenever sample transfer is neces-
sary at ambient conditions. It works in nearly every case. It is
not only that the dusting eliminates the cleaning procedures,
it also helps to increase the contrast. To make life easier, it is
obvious that Fe, the material that gives the highest contrast
in the spin-SEM, is mostly used for dusting. The maximum
contrast is already achieved when Fe in the thickness range
of a few atomic layers is deposited – independent of the fer-
romagnet under investigation. For every system, however, it
has to be checked whether the magnetic structure is influ-
enced (or even changed) by the dusting layer or not.

An example for magnetic imaging utilizing a dusting layer
is shown in Figure 12. The sample is a thin-film Co structure
on oxidized Si, fabricated by e-beam lithography. An Fe film
(thickness 1 nm) was deposited in situ (i) to prevent charging
while imaging, as large parts of the sample are insulating
SiO2 and (ii) to spare any cleaning procedure. All three
images have been taken simultaneously. On the left-hand
side the intensity distribution is shown, which displays the
sample morphology like in conventional SEM micrographs.
This image was obtained as the sum of all four scattering
intensities. It shows the Co rectangle (10 × 20 µm2, thickness
50 nm) with some remains of the photoresist used for
structuring. On the right-hand side, two polarization images
are shown, which display two components of the polarization
that are perpendicular to each other, as indicated by the
arrows. The polarization images show magnetic structures
in the film on the bare SiO2, as well as on top of the
Co structure. Obviously, the magnetization pattern differs
strongly in these two regions: the Fe film on the SiO2 shows
a uniaxial behavior, which can be seen from the black/white
contrast in one component, while the second component
does not show any magnetic contrast (except for the regions
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of domain walls). Within the Co structure, however, the
domain pattern exhibits all possible in-plane magnetization
orientations, as is evident from the appearance of all the
shades between black and white in both images. The expert
reader directly realizes that the domain walls are cross-
tie walls that are characteristic for films of soft magnetic
materials in a particular thickness range. The coarse structure
is a so-called Landau–Lifshitz pattern that minimizes the
magnetostatic energy in magnets of limited size. Hence,
the appearance of that type of micromagnetic structure and
wall indicates that the Fe film indeed mirrors the magnetic
structure of the Co beneath.

In the film on the bare SiO2 the magnetic structure is
much simpler; particularly the walls are straight and not as
complex as cross-tie walls. The domain pattern, however,
seems to be influenced by the magnetic domain structure of
the ferromagnetic rectangle. This is due to stray fields leaping
out of the structure. The small domains on the right-hand
side of the structure obviously cannot provide a complete flux
closure and stray magnetic fields are created. The property
of dusting, to visualize simultaneously the magnetic pattern
of a microstructure and its stray fields, is sometimes very
advantageous for the complete understanding and modeling of
the magnetic microstructure. If such an effect is not desirable,
or if an interaction of film and magnet cannot be ruled out,
the deposited film has to be thinner. In principle, the thickness
can be reduced below the thickness where the ferromagnetism
of an isolated iron film would set in. In that case, when
films of high magnetic susceptibility and vanishing remanence
are used, it will depend on the coupling if the film reflects
the magnetic structure of the ferromagnet or not. A strong
coupling can stabilize ferromagnetism in the part of the film
where it covers the ferromagnet, whereas in the rest of the
film long-range order will be missing. Hence, the film will
not have any effect on the ferromagnet under investigation.

The coupling and mechanism behind the decoration tech-
nique has not yet been studied systematically. In particular, it
depends on the chemical composition, thickness, and struc-
ture of the contamination layer. In the case of Figure 12, the
surface composition of the microstructure was not analyzed,
particularly, the thickness of the adsorbate and oxide layers
is unknown.

The decoration technique makes a different class of
ordered magnetic materials accessible for spin-SEM, that is,
the antiferromagnetic materials. Recently, the domain struc-
ture in ferromagnetic films deposited onto antiferromagnets
was imaged via SEMPA (Hopster, 1999; Matsuyama, Hagi-
noya and Koike, 2000). The coupling between antiferromag-
net and Fe adlayer, as well as the temperature behavior was in
the focus of the studies. Those investigations rely upon well
characterized and well prepared interfaces between antifer-
romagnet and film.

As further class of materials, dusting gives access to
localized ferromagnets that cannot be investigated otherwise
via SEMPA. This was demonstrated by Aeschlimann et al.
(1990), who studied the bit structure in TbFe magneto-optic
storage media. Owing to segregation of Fe to the surface,
they obtained a kind of self-dusting layer at the surface that
made the investigation feasible.

As in spin-SEM the backward-emitted SE electrons
are used, there does not exist any limitation on sam-
ple thickness, like in transmission electron microscopes.
Hence, SEMPA can also be applied for studying mag-
netic devices that are developed or produced in indus-
trial laboratories or fabrication facilities. The advantage is
that only very mild cleaning or sample manipulations are
necessary (ion milling or dusting) for imaging, and sur-
faces have not to be perfect regarding surface morphol-
ogy. Many examples of spin-SEM investigations of storage
media from industrial research and production facilities have
been given in a review article by Koike, recently (Koike,
2005).

In summary, we may conclude that the high surface
sensitivity is a big advantage of spin-SEM. That particular
property gives access to very different physical questions
and systems after appropriate sample preparation. Generally
speaking, mild ion milling is the adequate preparation
procedure in case of thick magnetic systems, while dusting
is advisable in case of thin films, multilayer systems,
and nonitinerant ferromagnets. Utilizing SEMPA, however,
means that some experience in surface science and the related
technology are an absolute necessity for the operator in
charge of microscopy.

5.2 Surface morphology

The spin polarization is proportional to the normalized
intensity difference, the scattering asymmetry (equation (1)).
Owing to the normalization, the sample morphology is
strongly suppressed. In literature, examples have been given
for strong magnetic contrast despite strong sample morphol-
ogy (Matsuyama and Koike, 1990). Morphology suppression
means, for instance, that surface roughness is irrelevant. This
makes the cleaning of surfaces via ion milling possible, with-
out any adverse effect on the magnetic image. The opposite
is true when high spatial resolution spin-resolving scanning
tunneling microscopy (spin-STM) is used for magnetic imag-
ing. Owing to the strong sensitivity of STM for any changes
of the local band structure, strong morphological contrasts,
even for structures on the atomic scale (steps, impurities), are
observed. High spatial resolution spin-STM requires abso-
lutely flat and well-defined surfaces to resolve the magnetic
contrast. As technical samples do not exhibit such ultimately
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Figure 12. Morphology and domain structure of a thin-film Co structure on SiO2. The dimensions of the Co rectangle are 10 × 20 µm2 and
the thickness is 50 nm. To prevent charging, a 1-nm-thick Fe film was deposited prior to imaging. The picture on the left-hand side gives
the topography. The pictures in the center and on the right-hand side show the magnetic structures obtained in two orthogonal in-plane
polarization components, as indicated by arrows.

perfect surfaces, they are out of reach for the investigation
via spin-STM. Hence, for the magnetic imaging of technical
samples spin-SEM (utilizing ion milling or dusting as prepa-
ration) is superior to the scanning probe techniques, although
one does not achieve the same extreme spatial resolution.

The inherent property of morphology suppression has been
demonstrated many times. Nevertheless this feature of spin-
SEM needs some further consideration: at first, samples that
consist of mesoscopic subsurfaces, which are inclined with
respect to each other, can show apparent magnetic con-
trast. This contrast is due to the surface orientation, which
determines largely the initial emission direction of the SE.
Different emission directions cause different apparatus or
device asymmetries, as the electron beam that is focused
into the detector hits the scatter target at a different position
or changes its angle of incidence. Hence, on a mesoscopic
scale a varying offset appears which is of purely experimen-
tal origin. It is like a locally changing device asymmetry.
A varying offset is superimposed upon the real polarization
structure and is usually difficult to eliminate. This emission
cone effect is minimal in one polarization component when
the surface’s inclination varies only in the direction perpen-
dicular to the scattering plane of the polarization component.
The two scattered beams, which determine the scattering
plane, are equally affected by the changes of the incoming
beam. When calculating the polarization distribution of the
component, all the changes cancel out to a large extent. Such
a special geometry was chosen, when the domain structure
on two macroscopic surfaces of a whisker with surfaces that
enclose an angle of 90◦ have been imaged in one picture
(Matsuyama and Koike, 1990).

Device asymmetry becomes a delicate problem in micro-
and nanostructures that exhibit a significant aspect ratio
of height to lateral extensions. Such structures can show
emission cone effects in both polarization components and
strong deviations from the true magnetic structure can
result. For structures with steep side planes, the effect

of varying emission angles can be observed even on the
horizontal upper surface around the edges. Here it is the
attractive electric field from the first detector electrode, which
is no more homogenous but tends to bend the electrons
outwards as it gradually follows the sample topography.
The emission cone effect is pronounced in the low-energy
polarization detectors while it is less important in Mott
detectors.

Besides the emission cone effect, the edge effect, well
known from SEM, will contribute to the polarization image.
While the edge effect gives an enhancement of the edge
structures in SEM micrographs owing to an apparently
enhanced SE yield, the spatial resolution is not affected for
conducting material in most cases (for a detailed discussion,
see textbooks about electron microscopy, e.g., (Reimer,
1998)). The enhanced yield comes from the SE emission
from the side planes, when the primary beam hits the top

Spin-polarized
secondary electrons

Substrate

R

Magnet

Figure 13. Sketch of the edge effect in a ferromagnetic material.
When nanostructures of height that is comparable to the electron
range R are analyzed, electrons from the side planes with different
polarization might dominate the SE emission. Additionally SE from
the bloom can be emitted from the nonmagnetic substrate. The
polarization of the SE will change continuously with the distance of
the primary beam from the edge. The arrows give the polarization
of the SE emitted in the indicated directions.
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surface and traverses the structure beneath the side plane
(Figure 13). The emission from side planes might influence
the polarization image and reduce the lateral resolution if
the side planes give a reduced polarization due to imperfect
dusting or due to surface contamination that could not be
totally removed by ion milling. As the amount of SE that
originate from the sidewalls depends on the distance of the
primary electron beam from the edge, the polarization will
change with distance to the edge and the magnetic structures
seem to be washed out, that is, apparently the magnetic
resolution is diminished. The edge effect depends strongly
on the steepness of the side planes and the height of the
nanostructure.

An estimation for the extrapolated range of high-energy
electrons in iron gives, based on the phenomenological
equation given in Reimer (1998), a value of >30 nm for
2 keV primary electrons. Images from nanostructures with
heights comparable to the extrapolated range will show a
degradation of resolution owing to the edge effect. Addition-
ally, resolution can be lost owing to the bloom of SEs, which
is created in the substrate close to the interface (Reimer,
1998). The SE in the bloom can also create low-energy SEs
when the bloom comes close to a surface. Near the edge of a
nanostructure this can happen and electrons are created at the
substrate surface because the bloom has a larger extent than
the primary beam. The measured polarization is altered when
the primary beam is approaching the edges of the structure
as the number of secondaries from the substrate increases.
The magnetic structure starts to fade away even before the
primary beam touches the edge of the structure. In very thin
nanostructures (height � extrapolated range), however, the
high-energy electrons penetrate into the substrate and SE are
emitted from the topmost layers only. No image degradation
is found.

The above-mentioned imperfect or inhomogeneous cover-
age of side planes with dusting material or contamination is
mostly due to shadowing during deposition of dusting mate-
rial or during sputter cleaning. The extent of the imperfection
depends on the steepness and profile of the side planes, the
spatial expansion of the evaporation or sputter source and
the angular alignment of sample and source. Shadowing can
be minimized by sample rotation during preparation. When
dusting is applied to nonconducting materials, charging also
might occur due to an imperfect coverage. The charging can
cause a loss of resolution in the SEM image and even a loss
of polarization in the SEMPA image due to the associated
energy shift of the SE.

In conclusion, we may summarize that spin-SEM is very
well suited for the high lateral resolution investigation of all
kinds of samples, particularly technical samples, as surface
roughness is not a problem. The SE-emission properties
can affect magnetic images, when structures with differently

oriented surfaces or steep edges are investigated. Special
care has to be paid to the interpretation of the results in
these cases.

5.3 Image analysis in spin-SEM

A unique feature of spin-SEM is that the polarization
detection can give direct access to the orientation of
the magnetization. As explained in the earlier paragraphs,
two perpendicular polarization components can be detected
simultaneously by one detector. The two components span
a plane, which is congruent with the sample surface, if
sample and scattering crystal (target) are aligned in paral-
lel – the geometry discussed in the following. It is more
complicated to derive the polarization values and finally the
local magnetization from the four measured count rates in a
real experiment than described so far. While scanning, the
data acquisition system calculates and stores point by point
a doublet of asymmetry components Ax and Ay according
to equation (1). The principal axes in the so-defined asym-
metry space are, by nature of the scattering process, aligned
with the axes of the corresponding magnetization compo-
nents Mx and My . This correlation is of course only true in
the absence of strong magnetic fields along the path of the
SE, which rotate the polarization. A well-defined polariza-
tion rotation can be used on purpose in polarization rotation
devices for spin-SEM, which can give access to the three
orthogonal polarization components, utilizing only one detec-
tor (Kohashi, Matsuyama and Koike, 1995).

For a qualitative understanding of the magnetization
distribution in simple cases, it is sufficient to plot two
grayscale images of the asymmetries Ax(x, y) and Ay(x, y),
which have been scaled to show the whole range of occurring
asymmetry values (Figure 14). The brighter areas can be
attributed to a more positive polarization component and the
darker to a more negative one. This simple approach is only
reliable, if all representative in-plane directions occur within
the selected field of view. If one direction is missing, the
closest intermediate direction will be scaled to full range and
thus be falsely interpreted as domain with full magnetization.

So, the question remains, why are not the exact values of
the A vector used to determine P instead of the relative
method described above? In a real spin detector there is
no direct proportionality between A and P, because there
is always a significant vectorial offset A0, the apparatus or
device asymmetry, which has to be corrected first:

M ∝ P = S−1(A − A0) (3)

The origins for the apparatus asymmetry A0 are different
total sensitivities of the individual counterchannels, which
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Figure 14. Domain pattern of an Fe whisker surface, obtained in
two in-plane polarization-sensitive axes. Both pictures were taken
simultaneously. The picture size corresponds to 5.9 × 5.9 µm2.

are mostly determined by the beam alignment in the transfer
optics and the precise sample position, different current
amplifications/sensitivities of the four detector channels, or
from residual magnetic fields, to name a few. The apparatus
asymmetry varies from image to image and has to be
determined for each measurement before any quantitative
information can be extracted.

In the easiest case, for example, a magnetic nanostructure
on nonmagnetic substrate, it is possible to determine the
asymmetry on the nonmagnetic region inside the image.
This asymmetry gives A0 directly and can thus be corrected
straight away in the magnetic parts of the image. Even in
the absence of nonmagnetic areas within the image, it is,
in most cases, possible to restore and thus correct for the
apparatus asymmetry. The method to employ makes use of
the statistical distribution of all measured (Ax , Ay) doublets
that occur in one image. In order to access this statistical
distribution graphically, one can display the two-dimensional
(2D) histogram of all recorded asymmetry doublets from one
SEMPA measurement in one intensity graph. Such plot is
the important tool to determine the device asymmetry and
to cross-check the experiment. Most importantly, the 2D
histogram is the prerequisite for any vectorial analysis of the
magnetization. Figure 15 displays the 2D histogram of the
measured asymmetry values from the image in Figure 15.
The histogram exhibits four accumulation points, which
indicate predominant anisotropy doublets, that is, dominant
orientations of the magnetization. The maxima correspond
to the magnetization of the four domains that appear in
the magnetic pattern of Figure 15. Under the condition that
the absolute value of the magnetization |M| is constant in
homogeneous material, the magnetization vector is lying on
the surface of a sphere and can be described by

M = |M|(cos ϕ∗ sin θ, sin ϕ∗ sin θ, cos θ) (4)
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Figure 15. Two-dimensional histogram of the asymmetry corre-
sponding to Figure 14. The number of asymmetry doublets appear-
ing in Figure 14 are coded in gray levels in the Ax ,Ay plane.
Four accumulation points can be identified, which lie on a circle.
This demonstrates that four orientations of domains predominate
the domain pattern. The center of the circle gives the total device
asymmetry A0 in the Ax ,Ay plane. The magnetization orientation
can be directly read from the plot.

where θ, ϕ are the polar angles, measured with respect to
symmetry adapted axes, for example, [100] and [001] in
cubic systems. Depending on the surface orientation of the
sample, one obtains a certain cut through that sphere. If
easy directions of magnetization exist within the surface,
one will find closure domains with orientation along those
directions. In Fe, the easy axes of magnetization are the
<100> directions. Hence, in a nominal (001) surface of iron
(as in the case of Figures 13 and 14) one can expect four
different directions of domain magnetization. Consequently,
the accumulation points found in Figure 13 have to be
elements of a circle with a radius that corresponds to the
value of |M| measured in asymmetry units. Drawing a circle
through the four accumulation points, we actually find an
almost perfect fit. The center of the circle, however, does
not coincide with (0,0) in the asymmetry plane, although
it should represent |M| = 0. The location of the center
of the circle is therefore identical to the vector of device
asymmetry A0.

The radius of the circle, which is proportional to the
value |M| of the magnetization, is an important quantity that
gives hints on detector sensitivity. Generally speaking, the
larger the radius, the better the detector works regarding
polarization sensitivity. The radius of the circle is also
sensitive to contamination of the sample surface.
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In a system with in-plane magnetization, a deformation of
the circle into an ellipse is most often caused by a tilt of
the sample surface with respect to the detector target. If the
latter is not the case, the ellipse will indicate some problem
with detector adjustment. If out-of-plane components can
exist in the system, like in ultrathin films or hard magnetic
systems, the deviation of accumulation points from a circle
can indicate the presence of a vertical component. The tilt
of the magnetization with respect to the surface plane (or
surface normal) can be calculated from the position of the
accumulation point in the 2D histogram, that is, putting
the distance to the center in relation to the expected circle
radius. The prerequisite is that the alignment of sample
and detector crystals are carefully controlled and accurately
known (Frömter et al., (subm. 2007)).

From the 2D histogram, one can also extract information
about the quality of polarization detection, particularly its
statistics. The distribution of the scatter events around the
maxima is determined by the uncertainty of the polariza-
tion measurement. The fact that the distribution of scattering
events is rotationally symmetric (with respect to the accu-
mulation maximum) indicates that no systematical error is
influencing the polarization analysis (see Figure 15). The
observed width of these accumulation maxima fits well the
predicted accuracy calculated according to equation (2).

The contrast-to-noise ratio (CNR) of a micrograph can
also be extracted from the 2D histogram. Magnetic structures
can be resolved in the domain pattern as long as the
distance between maxima is larger than the diameter of
the scattering distribution, that is, the uncertainty of the
polarization detection. The ratio of distance to diameter is
defined as CNR (sometimes also called contrast). Taking
the full width at half maximum of the scatter points and
the distance between the centers (in Figure 13), one obtains
a contrast for 180◦ domains of >3.7 (along the diagonal),
while that for 90◦ is >2.7 (horizontal/vertical spacing of the
scatter maxima). Currently, a CNR of 15 is obtained with
the same system using a dwell time of 20 ms per pixel.

From the former discussions, it follows that the 2D
histogram can be interpreted as the true angular distribution
of the orientation of M in the sample surface. Hence, the
2D histogram can be used to combine the vector information
of the two polarization components into one single domain
image. For that purpose, it is useful to change from a gray
scale to a color representation. In the 2D histogram, the
direction of magnetization is determined as the orientation
of the corresponding asymmetry doublet with respect to
the circle center. In case of in-plane magnetization, a
certain color can be appointed to a direction disregarding
the measured polarization value. Such color representation
is often used since it gives the complete survey over
all magnetization orientations in one image. Owing to

black/white reproduction of the book, we go without an
example for the color representation.

To summarize, the magnetization vector information can-
not be achieved without the investigation of the 2D his-
togram. The latter is used to find the device asymmetry. The
device asymmetry fixes the origin of the polarization vectors,
which in turn allows the association of vectors with measured
asymmetry doublets.

The details of the 2D histograms are also essential to
understand domain images. For instance, in Figure 15, the
accumulation points in the horizontal direction are well
separated, whereas in the vertical direction the polarization
maxima are connected via a line of counted events with
reduced frequency. Well-separated maxima appear because
the corresponding domains do not have mutual boundaries.
The corresponding domains are not adjacent but in opposite
edges of the domain pattern. In contrast, the domains that
correspond to the accumulation points on the left-/right-
hand side share a boundary that is blurred. The fact that
the scatter events are exactly lying on the line between
the scatter maxima (and thus seem to indicate a reduced
magnetization value) reveals that those asymmetry values
are composed from a statistical mixture of electrons having
one or the other polarization value, which belongs to the
two domain orientations. As both domains have about the
same Ax component, the x signal is constant, while the y

signal is determined by the spread of the primary electron
beam, which covers changing portions of the one or the other
domain. In other words, the lateral resolution is not good
enough to resolve the fine structure between the different
domains that intermix at the boundary of the large domains.
The same origin, an insufficient resolution, gives a sharp
horizontal domain wall (in Figure 14) that shows no trace in
the 2D histogram of the whole image.

The above given explanation of the domain image by
means of the corresponding 2D histogram strongly supports
the arrows indicated in the domain pattern, although the expe-
rienced reader with background in micromagnetics would
probably insist that the given domain magnetizations were
wrong. Indeed, from micromagnetic considerations alone that
would be true, but secondary effects (from the magnetic point
of view) dominate the magnetic structure. In fact, we find
indications for misaligned surfaces and the vertical domain
boundary seems to be pinned by a grain boundary that divides
most likely twin grains. From the domain pattern on a larger
scale (Figure 16), the complexity of the pattern is obvious,
including fir tree structures, which are a direct evidence for
a slight tilt of the surface out of the (001) orientation. The
SEM micrograph (Figure 17) shows step bunches that bend
around in the range where the domain image was taken. The
different orientation of the steps supports the thesis of adja-
cent twin grains. Although the overall system seems to be
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Figure 16. Overview of the domain pattern of the Fe whisker.
The pattern shown in Figure 14 is a zoom into the center of this
image. Image size is 200 × 200 µm2. The appearance of fir tree
structures demonstrates that the imaged subsurfaces are vicinal to
{001} surfaces.

Figure 17. SEM micrograph (sum of four spin channels) of the
central region of Figure 16. Image size is 100 × 100 µm2. The lines
appearing in the image are most likely step bunches. The orientation
of the lines changes going from right to left. This indicates that
the whisker has two different surface orientations on the left- and
right-hand side, most likely separated by a grain boundary.

very complex, we have chosen the higher resolving domain
image for the sake of simplicity to demonstrate the features
and strength of the 2D histogram.

Another example is depicted in Figure 18 that shows
again the histogram of measured polarization components
within the sample surface plane. The corresponding domain
structure is shown in Figure 19. In contrast to the previous
example, the 2D histogram does not show a pronounced
accumulation in individual points. A ring of scattering events
is found, the diameter of which is small compared to diameter
of the circle drawn through the accumulation points in
the previous example. There is a considerable amount of
polarization doublets situated within the ring. The sample
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Figure 18. Two-dimensional histogram corresponding to the
domain pattern shown in Figure 19. The circle marks the radius
of most frequent asymmetry doublets.
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Figure 19. Domain image obtained from a (Co/Pt)8 multilayer on
Si wafer. Polarization components within the film plane are shown.
The corresponding axes of sensitivity are indicated by the arrows.
Image size is 2.35 × 2.35 µm2.

is a Co/Pt multilayer stack that was covered by a Pt cap
layer to prevent oxidation of the thin Co layers. This sample
was decorated by Fe to perform the spin-SEM investigation.
From the dusting with Fe, one would expect almost the same
polarization value as before, that is, a larger ring diameter.

The smaller ring diameter as well as the other listed
properties can be consistently explained by magnetization
canting. The shallow ring structure indicates that there exists
a preferred canting angle. The radius of the ring is small,
which means that the magnetization is mostly out of plane.
The inhomogeneous color of the ring might indicate an
anisotropy in the in-plane component, that is, a preferential
orientation roughly in one direction. The uneven population
can be due to an in-plane magnetic field that had been applied
in-plane prior to the SEMPA investigation.
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Inside the ring there are also polarization doublets found.
Considering a constant value of |M|, this means that there
are parts in the domain pattern with even less tilting of
the magnetization out off the normal direction. A more
quantitative examination reveals that those parts come from
the transition regions between the domains.

It should be mentioned that for a disc-shaped thin-
film element, made from soft magnetic material, a ring
(with large ratio of radius/width) was found that did not
show any magnetization components in the enclosed area.
The corresponding magnetic pattern was a vortex struc-
ture in which the area covered by the vertically magne-
tized singularity is negligibly small (Hopster and Oepen,
2005).

In summary, to achieve a most complete set of information
it is important to analyze the asymmetry histogram besides
the lateral distribution of measured asymmetries. The his-
togram allows for the control of the experiment and detector
performance. Beyond that, the careful analysis gives further
insight into the magnetic behavior of the system under inves-
tigation. From the plot, the exact orientation of the local
magnetization, a global preferential magnetization orienta-
tion, and a possible magnetization tilt can be quantitatively
extracted.

6 SUMMARY AND OUTLOOK

In SEMPA, the spin-polarized SE emission is used for the
imaging of magnetic structures. Starting from the process
of SE creation, the ultimate performance and the require-
ments on the different components are discussed. The most
restrictive property of spin-polarized SE emission is the high
surface sensitivity, which demands for the application of
UHV technology. The latter makes the technique sophisti-
cated and somehow complex.

The apparently disadvantageous high surface sensitivity
can be turned into an advantage, as it allows under cer-
tain preparation conditions – dusting – the applicability of
SEMPA to almost all classes of materials and samples. With
a resolution below the 10-nm mark, dusting makes spin-
SEM most attractive for all kind of application laboratories
involved in the development of new magnetic devices or
storage media. Here, SEMPA can serve for the next 10 years
until the lateral dimensions will finally approach the sub-
nanometer range.
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Kisker, E., Gudat, W. and Schröder, K. (1982). Observation of a
high spin polarization of secondary electrons from single crystal
Fe and Co. Solid State Communications, 44, 591–595.

Kohashi, T. and Koike, K. (2001). A spin-polarized scanning
electron microscope with 5-nm resolution. Japanese Journal of
Applied Physics, 40, L1264–L1266.

Kohashi, T., Matsuyama, H. and Koike, K. (1995). A spin rotator
for detecting all three magnetization vector components by spin-
polarized scanning electron microscopy. Review of Scientific
Instruments, 66, 5537–5543.

Koike, K. (2005). Spin-SEM of storage media. In Magnetic
Microscopy of Nanostructures, Hopster, H. and Oepen, H.P.
(Eds.), Springer: Berlin, pp. 169–180.

Koike, K. and Hayakawa, K. (1984). Scanning electron microscope
observation of magnetic domains using spin-polarized secondary
electrons. Japanese Journal of Applied Physics, 23, L187–L188.

Konoto, M., Kohashi, T., Koike, K., et al. (2004). Direct imaging of
temperature-dependent layered antiferromagnetism of a magnetic
oxide. Physical Review Letters, 93, 107201–107204.

Konoto, M., Kohashi, T., Koike, K., et al. (2005). Microscopy of
magnetic transition in a layered manganite La2−2xSr1+2xMn2O7

(x = 0.32). Physical Review B, 71, 184441–184445.

Matsuyama, H., Haginoya, C. and Koike, K. (2000). Microscopic
imaging of Fe magnetic domains exchange coupled with those in
a NiO(001) surface. Physical Review Letters, 85, 646–649.

Matsuyama, H. and Koike, K. (1990). A data acquisition and display
system for spin-polarized scanning electron microscopy (spin
SEM). Review of Scientific Instruments, 62, 970–981.

Oepen, H.P. (1991). Magnetic domain structure in ultrathin
cobalt films. Journal of Magnetism and Magnetic Materials, 93,
116–122.

Oepen, H.P., Benning, M., Ibach, H., et al. (1990). Magnetic
domain structure in ultrathin cobalt films. Journal of Magnetism
and Magnetic Materials, 86, L137–L142.

Oepen, H.P. and Hopster, H. (2005). SEMPA studies of thin films,
structures, and exchange coupled layers. In Magnetic Microscopy
of Nanostructures, Hopster, H. and Oepen, H.P. (Eds.), Springer:
Berlin, Heidelberg, New York, pp. 137–167.

Oepen, H.P. and Kirschner, J. (1989). Magnetization distribution
of 180 domain walls at Fe(100) single-crystal surfaces. Physical
Review Letters, 62, 819–822.

Oepen, H.P. and Kirschner, J. (1991). Imaging of magnetic
microstructures at surfaces: the scanning electron microscope
with spin polarization analysis. Scanning Microscopy, 5, 1–16.

Oepen, H.P., Speckmann, M., Millev, Y. and Kirschner, J. (1997).
Unified approach to thickness-driven magnetic reorientation tran-
sitions. Physical Review B, 55, 2752–2755.

Pierce, D.T., Unguris, J., Celotta, R.J. and Stiles, M.D. (1999).
Effect of roughness, frustration, and antiferromagnetic order on
magnetic coupling of Fe/Cr multilayers. Journal of Magnetism
and Magnetic Materials, 200, 290–321.



22 Electron microscopy and electron holography

Powell, C.J. and Jablonski, A. (1999). Evaluation of calculated and
measured electron inelastic mean free paths near solid surfaces.
Journal of Physical and Chemical Reference Data, 28, 19–62.

Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image
Formation and Microanalysis, Second Edition, Springer-Verlag:
Berlin, Heidelberg, New York.

Robins, J.L., Celotta, R.J., Unguris, J., et al. (1988). Domain images
of ultrathin Fe films on Ag(100). Applied Physics Letters, 52,
1918–1920.

Scheinfein, M.R., Pierce, D.T., Unguris, J., et al. (1989). Improved
low-energy diffuse scattering electron-spin polarization analyzer.
Review of Scientific Instruments, 60, 1–11.

Scheinfein, M.R., Unguris, J., Kelley, M.H., et al. (1990). Scanning
electron microscopy with polarization analysis (SEMPA). Review
of Scientific Instruments, 61, 2501–2527.

Schönhense, G. and Siegmann, H.C. (1993). Transmission of
electrons through ferromagnetic material and applications to
detection of electron-spin polarization. Annalen der Physik, 2,
465–474.

Seah, M.P. and Dench, W.A. (1979). Quantitative electron spec-
troscopy of surfaces: a standard data base for electron inelastic
mean free paths in solids. Surface and Interface Analysis, 1, 2–11.

Speckmann, M., Oepen, H.P. and Ibach, H. (1995). Magnetic
domain structures in ultrathin Co/Au(111): on the influence of
film morphology. Physical Review Letters, 75, 2035.

Stamm, C., Marty, F., Vaterlaus, A., et al. (1998). Two-dimensional
magnetic particles. Science, 282, 449–451.

Tulchinsky, D., Unguris, J. and Celotta, R. (2000). Growth and
magnetic oscillatory exchange coupling of Mn/Fe(001) and
Fe/Mn/Fe(001). Journal of Magnetism and Magnetic Materials,
212, 91–100.

Unguris, J., Celotta, R.J. and Pierce, D.T. (1991). Observation of
two different oscillation periods in the exchange coupling of
Fe/Cr/Fe(100). Physical Review Letters, 67, 140–143.

Unguris, J., Celotta, R.J. and Pierce, D.T. (1997). Determination of
the exchange coupling strengths for Fe/Au/Fe. Physical Review
Letters, 79, 2734–2737.

Unguris, J., Pierce, D.T., Galejs, A. and Celotta, R.J. (1982).
Spin and energy analyzed secondary electron emission from a
ferromagnet. Physical Review Letters, 49, 72–76.

VanZandt, T., Browning, R. and Landolt, M. (1991). Iron over-
layer polarization enhancement technique for spin-polarized
electron microscopy. Journal of Applied Physics, 69,
1564–1568.



Investigation of Domains and Dynamics of Domain
Walls by the Magneto-optical Kerr-effect

Rudolf Schäfer
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1 INTRODUCTION

The magnetic microstucture, that is, the arrangement of
domains and domain walls, forms the mesoscopic link
between basic physical properties of a magnetic material and
its macroscopic properties. Hysteresis phenomena, energy
loss in inductive devises, noise in sensors, or the magne-
toresistive properties of modern spintronic devices can be
decisively determined by the peculiarities of the underlying
magnetic microstructure, especially by irreversibilities in the
magnetization process. The development and optimization of
magnetic materials therefore requires the knowledge of mag-
netic domains and their reaction to magnetic fields, which,
in most cases, can only be gained by direct imaging.

Although there has been considerable progress in magnetic
imaging in recent years, the classical Kerr technique still has

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

unbeatable advantages. The method is based on the magneto-
optical Kerr effect, that is, the magnetization-dependent rota-
tion of plane-polarized light on reflection from a nontranspar-
ent magnetic sample. By means of an analyzer, in an optical
reflection polarization microscope, this rotation is converted
into a (in general weak) domain contrast that can be enhanced
by digital image processing. Among all observation methods,
Kerr microscopy is the most versatile and flexible imaging
technique. With image processing, domain contrast is seen
on virtually all ferro- and ferrimagnetic samples. Often, no
specific surface treatment is required and even coatings may
be allowed. Magnetic fields of arbitrary strength and direc-
tion can be applied to the sample, making it possible to
observe magnetization processes and to simultaneously and
locally record magnetization loops. Magnetization dynamics
can be studied at arbitrary frequencies, covering the whole
range from slow processes (as fast as the eye can follow)
to excitations beyond the gigahertz regime by employing
time-resolved imaging methods. Samples may be heated and
cooled in optical heating stages and cryostats respectively so
that magnetic phase transitions or other thermal effects on
the magnetic microstructure can be investigated. Mechanic
sample deformation during domain observation is easily pos-
sible, which makes the study of stress effects on domains
possible. In- and out-of-plane magnetization components can
be imaged separately, and, for low-anisotropy materials, the
magnetization vector field at least on the sample surface can
be quantitatively evaluated. The information depth of Kerr
microscopy is in the 10-nm regime for metallic materials,
allowing the depth-selective observation of magnetization
distributions in layered sample systems. The magnification
can easily be varied by changing the microscope objective,
so that overview observations in the centimeter regime down
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to detailed studies of samples of micrometer size are possible.
The lateral resolution of optical microscopy with visible light
is limited to about 300 nm by the Rayleigh criterion. This can
be a drawback for the study of sub-micrometer patterned
structures or for certain micromagnetic objects like vortices
or stripe domains in very thin films. In bulk samples, only
the magnetization of the surface region can be seen, but this
limitation also applies to most other imaging techniques.

Since the first application of Kerr microscopy (Williams,
Foster and Wood 1951; Fowler and Fryer, 1952), there
has been tremendous progress in methodical developments
around the traditional Kerr technique. In this article, the men-
tioned possibilities of modern Kerr microscopy are reviewed,
together with physical and technological fundamentals. A
comprehensive review on magnetic domains and imaging
methods with emphasis on Kerr microscopy is given in the
monograph ‘Magnetic Domains’ (Hubert and Schäfer, 1998),
where an extended bibliography can also be found.

2 MAGNETO-OPTICS

Magnetic imaging at optical frequencies employs mainly the
magneto-optical Kerr and Faraday effect. Both are rotational
effects, that is, plane-polarized light is rotated somewhat
on transmission through an optically transparent specimen
(Faraday effect) or on reflection from a nontransparent sam-
ple (Kerr effect), respectively. Both effects can also be inter-
preted as circular birefringence (i.e., a birefringence of circu-
larly polarized light) and are described by the same physical
laws. Another effect, mostly used for transmission observa-
tions in magnetic garnets, is the Voigt or Cotton–Mouton
effect, also known as linear magnetic birefringence (i.e., a
birefringence of linearly polarized light). This effect can also
be applied in reflection, together with the magneto-optical
gradient effect. All three reflection effects are helpful for
domain analysis. Owing to its dominating importance, we
focus on the Kerr effect in this article and mention the other
effects only briefly.

2.1 Kerr effect

The rotational action of the Kerr effect (Kerr, 1877) is phe-
nomenologically described by the dielectric law D = εE , in
which an antisymmetric ε tensor (containing the components
of the magnetization vector) connects the electrical vector
E of an illuminating plane light wave with an induced dis-
placement vector D in the regime of optical frequencies. This
relation can be written in the form

D = ε(E + iQm × E ) (1)

where ε is the regular dielectric constant and Q is a
complex material parameter that is roughly proportional to
the saturation magnetization of the sample and that describes
the strength of the Kerr effect. The D vector can be
interpreted as secondary light amplitude being generated by
the magneto-optical interaction of E with the magnetization
vector m anywhere in the sample.

The cross product in equation (1) reveals the gyroelectric
nature of the Kerr effect. Its symmetry can be derived by
using the concept of a Lorentz force (m × E ) on the electrons
set in vibrational motion by the light wave (Figure 1a). If
the Lorentz movement vLor (parallel to the second term in
equation (1)) is projected onto the plane perpendicular to
the propagation direction of the reflected light wave, the
magneto-optic light amplitude K is obtained. This so-called
Kerr amplitude is polarized perpendicularly to the regularly
reflected amplitude N that is polarized in the same plane as
the incident light and that is given by the Fresnel equations.
By interference of K and N , the polarization vector of the
reflected light is rotated by the (small) angle �K = KN−1

(Figure 1b). Here K and N are the effective light amplitudes
after the light has passed through the analyzer. For domains
with opposite magnetization, the Lorentz force acts in reverse
direction, that is, the Kerr amplitude changes sign. A domain
contrast is produced if most of the reflected light from
one domain type is blocked by the analyzer, as indicated
in Figure 1(b), transferring the rotation of the polarization
plane to a difference in intensities. The size of the usable
signal that also determines the signal-to-noise ratio if video
microscopy is applied is important for good domain visibility.
The relative signal S, that is, the difference between the
intensities of bright and dark domains, is derived as (Hubert
and Schäfer, 1998)

S ∼= 4βKN (2)

Three properties are noted: (i) The Kerr signal is a
linear function of the Kerr amplitude K and therefore
of the respective magnetization components according to
equation (1). (ii) The Kerr signal can be enhanced by increas-
ing the analyzer angle β beyond �K, allowing to increase
the signal-to-noise ratio and to adjust to the sensitivity
of the detector. (iii) The ‘visibility’ of domains is deter-
mined by the Kerr amplitude and not by the Kerr rota-
tion. Although K depends on material constants, it can be
enhanced in case of materials where the incoming light is
not completely absorbed by magneto-optical interaction, but
‘uselessly’ reflected to some extent. Antireflection coatings
increase the absorbed intensity (based on interference effects
that reduce the regularly reflected light component while
enhancing the Kerr component – see Hubert and Schäfer
(1998) for a review), proportionally raising K and thus the
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Figure 1. (a) Illustration of the elementary magneto-optical inter-
action for the longitudinal Kerr effect. The sample with in-plane
magnetization is illuminated using light that is polarized parallel
to the plane of incidence. The electric field vector E of the inci-
dent light, together with the magnetization vector m, generates a
Lorentz movement of the electrons (‘right-hand rule’). If the result-
ing Lorentz speed vLor is then projected onto the plane perpendicular
to the direction of propagation of the reflected light, the magneto-
optical amplitude K is obtained (a similar K component would
also be generated if the light would be polarized perpendicular to
the plane of incidence). The interference of the normally reflected
component N and the Kerr component K results in magnetization-
dependent light rotation by a small angle �K, which, by using an
analyzer, leads to the domain contrast (b). The analyzer should
actually be set at the angle β>�K to optimize the domain visibil-
ity. The action of the compensator is illustrated in (c). It converts
elliptical light into a linear wave by shifting the two constituent,
orthogonal wave components. The symmetry of the transverse
Kerr effect is explained in (d). Only light of parallel polarization
yields an effect, so that a Kerr rotation is only possible at 45◦

polarization.

Without interference layer With ZnS interference layer

100 µm

Figure 2. Effect of a dielectric antireflection coating on the Kerr
contrast, demonstrated for an amorphous ribbon that is coated in
the right image.

useful signal (Figure 2). Effective dielectric coatings are ZnS
for metals and MgF2 for oxides. As the Kerr effect is weak
in general, this gain should not be relinquished even if digital
image processing (see Section 3.1.3) is applied.

In general, the polarization plane of the reflected light is
not just rotated with respect to that of the incident light,
but also elliptically polarized. Ellipticity is caused by an
‘intrinsic’, material-dependent (Oppeneer, 2001) phase shift
between the N and K components (also interference layers
on top of the sample surface can add a phase shift). If
a noticeable ellipticity occurs, the reflected wave is less
detectable by the analyzer. This problem can be eliminated
by the use of a compensator (see Figure 1c), which should be
attached in front of the analyzer. A compensator is an optical
device that is based on birefringent materials such as quartz
or mica and that is capable of impressing a controllable
retardance on a wave, that is, it changes the relative phase
of the constituent orthogonal ordinary and extraordinary
components of the wave in a variable way. Highest flexibility
is obtained by using simple wave plates with a fixed
retardance of λ4−1, for instance (rather than a regular
compensator as, e.g., of the Babinet type, which requires
that its optical axes are aligned along and perpendicular,
respectively, to the plane of the regularly reflected light – see
Figure 1c). A variable phase shift between N and K is
obtained by rotating the plate, which leads to a phase shift
of both components. By means of such a compensator, a
beam that is reflected elliptically from the sample can be
converted into a linear wave. The azimuth angle of this wave
is different from that of the incident wave, however, requiring
an additional analyzer rotation for extinction. In this way, it
is possible to extinguish at least the light of one domain thus
generating a significant Kerr contrast.

Different basic geometries are distinguished in Kerr
microscopy, which can again be derived with the help of
the Lorentz concept. To produce a Lorentz movement that
leads to detectable Kerr rotation, an appropriate direction
of light incidence and polarization has to be selected for a
given magnetization direction. As a simple rule, the Kerr
rotation is proportional to the magnetization component par-
allel to the reflected beam of light. This rule implies that
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domains that are magnetized parallel to the sample surface
(as shown in Figure 1a) require oblique light incidence, and
that for maximum rotation the plane of incidence must be
parallel to the axis of magnetization with the polarizer set
either parallel or orthogonal to the incidence plane (lon-
gitudinal Kerr effect, ϑ �= 0). The Kerr amplitude is then
proportional to the sine of the angle of incidence ϑ , and
therefore disappears for perpendicular incidence. In this case,
maximum rotation is exhibited by domains that are mag-
netized perpendicularly to the sample surface (polar Kerr
effect, ϑ = 0), while in-plane domains do not cause a Kerr
amplitude. At oblique incidence, both in- and out-of-plane
magnetization components generate a superimposed Kerr
contrast. The separation of the two components is possible
by proper difference images that are obtained at different
microscope settings, as demonstrated in Figure 3. Also, the
transverse Kerr effect, illustrated in Figure 1(d), leads to in-
plane magnetization sensitivity. Here, the in-plane m vector
is normal to the plane of (oblique) incidence. Light with
E parallel to this plane generates a Kerr amplitude, but its
polarization direction is the same as that of the normally
reflected beam. The transverse Kerr effect thus causes an
amplitude variation, which can be used for measuring pur-
poses. A rotation that is detectable by an analyzer is obtained
when the incident light is polarized at 45◦ to the plane
of incidence. Then, the E component perpendicular to the
incidence plane is not affected (E ||m), while the parallel
component is modulated in its amplitude on reflection, lead-
ing to polarization rotation by superposition, as also indicated
in Figure 1(d).

Polar contrast

(a) (b) (c)

In-plane contrast

Grain
boundary

5 µm

Figure 3. Domains in a coarse-grained NdFeB crystal in which
the magnetization axes of the four different grains are misaligned
relative to the observed surface as schematically shown in (a).
The magnetization components perpendicular to the surface (polar
components) can be imaged separately at perpendicular incidence
(b). At oblique incidence, polar and in-plane components show
up simultaneously (not shown). When the illumination direction is
rotated by 180◦, the polar Kerr effect does not change sign, whereas
the longitudinal effect does (see Figure 13b below). By forming the
image difference the polar contrast disappears, leaving just in-plane
contrast (c).

2.2 Other magneto-optical effects

Three further magneto-optical effects that can be used for
domain observation in a polarization microscope have to
be mentioned. Related to the Kerr effect is the Faraday
effect (Faraday, 1846). It follows the same symmetry rules,
but is restricted to transparent samples such as magnetic
garnet films and is observed in transmission experiments
(Fowler and Fryer, 1956). The Faraday contrast is much
stronger than the Kerr contrast and does not require electronic
means for enhancement. In recent years, the Faraday effect
found application in magneto-optic indicator films. These are
transparent garnet films with in-plane anisotropy that are
coated with a mirror layer on one side. If the mirror side
is placed in contact with a magnetic specimen, the stray field
of the sample induces a polar magnetization component in
the active layer, which can be viewed in the polar Faraday
effect at reflection. Charged domain walls, for instance, can
be indirectly imaged in this way (Nikitenko et al., 1998).

The Voigt effect (Voigt, 1898) was mainly applied for
transmission observations of in-plane domains in garnets
(Dillon, 1958). It is quadratic in the magnetization compo-
nents, so that only domains magnetized along different axes
show a contrast. The effect is strongest at perpendicular inci-
dence (where a Faraday or Kerr contrast of in-plane domains
is not possible) and requires a compensator for adjustment.
Later, the Voigt effect was also discovered in reflection exper-
iments on metals, together with the magneto-optical gradient
effect (Schäfer and Hubert, 1990) that shows up under similar
experimental conditions. The gradient effect is a birefrin-
gence effect, which depends linearly on magnetization gra-
dients. Both effects (in combination with the Kerr effect) are
helpful in the analysis of domains in cubic materials such as
epitaxial thin-film systems by considering their contrast laws
and depth sensitivities (see Schäfer (1995) for an overview).
The gradient effect can also favorably be applied to image
fine transitions and domain modulations. The phenomeno-
logical differences between Kerr, Voigt, and gradient effect
are compared in Figure 4, in which a typical domain pattern
of an iron–silicon crystal with two orthogonal easy axes of
magnetization in the surface was imaged in an optical polar-
ization microscope under different conditions as indicated.

3 KERR MICROSCOPY

Two types of Kerr microscopes are in use: wide-field
(regular) microscopes, which immediately provide an image
of a certain sample area, and laser-scanning microscopes,
in which a laser spot is scanned relative to the sample
surface building up the image sequentially. Both have their
drawbacks and advantages, as elaborated in the following
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Figure 4. Domains on a (100) surface of silicon–iron (Fe 3 wt%
Si, sheet thickness 0.3 mm), imaged in the magneto-optical Kerr (a),
Voigt (b), and gradient effect (c). The Kerr effect is linear in the
magnetization vector, so the four-domain phases in (a) show up
in different colors. The same pattern imaged in the Voigt effect
displays only two colors, one for each magnetization axis. This
contrast is independent of the magnetization direction since the
Voigt effect depends quadratically on the magnetization vector. The
gradient effect is sensitive to changes in magnetization. Therefore,
domain boundaries show up in this effect with a contrast, depending
on the relative magnetization directions of the neighboring domains.
Both Voigt and gradient effect are strongest at perpendicular
incidence of light and require a compensator for contrast adjustment.
(Reproduced from Schäfer, R. and Hubert, A. (1990). A new
magnetooptic effect related to non-uniform magnetization on the
surface of a ferromagnet. Physica Status Solidi A, 118, 271–288 by
permission of Wiley-VCH.)

sections. Emphasis is on wide-field microscopy as it is the
most commonly applied and most versatile technique.

3.1 Wide-field Kerr microscopy

3.1.1 Microscope

Standard wide-field Kerr microscopes are based on com-
mercial reflected light microscopes with strain-free optics to
allow for polarization microscopy. Wide-field microscopes
apply the Köhler illumination technique, which was intro-
duced in 1893 by August Köhler from Carl Zeiss corporation,
to obtain homogeneously illuminated images at maximum
resolution. This technique is explained by ray diagrams in
Figure 5, where the illumination and image-formation ray
paths are illustrated separately for the purpose of visual-
ization. Light emitted from the lamp is focused onto the
plane of the aperture diaphragm by the lamp collector lens,
passes through the opening of a variable field iris diaphragm,
and is then plane polarized and deflected downward into the
objective lens, for example, by a partially reflecting plane
glass mirror. After reflection from the specimen, the light
is captured by the objective and then passes through the
half-mirror again. Modern optical microscopes are built with

infinity-corrected objectives, that is, the light rays emerge
from the objective in parallel bundles from every azimuth
and are projected to infinity. These bundles enter the tube
lens, which forms an intermediate image that is further pro-
cessed toward the eyepiece or camera. In the ‘infinity’ space,
accessories like reflector mirror, analyzer, and compensator
are added with simple design and without distortion of the
image. Polarizers and analyzers in today’s microscopes are
made of dichroic polarizing foils. Although the polarization
degree (2 × 10−6) of such sheet polarizers is sufficient for
Kerr microscopy, they suffer from a high light absorption of
more than 50%. Light intensity by a factor of 2–3 and better
extinction can be gained by replacing sheet polarizers with
Glan–Thompson prism polarizers.

The field diaphragm is imaged on the specimen and thus
determines which part of the sample is illuminated. It does
not affect the optical resolution or intensity of illumination.
The latter is rather controlled by the aperture diaphragm
that also determines the angles of incidence and is there-
fore crucial for Kerr microscopy. Closing or opening the
aperture diaphragm varies the angle of the light rays reach-
ing the specimen from all azimuths, with the largest angle
of incidence being limited by the numerical aperture of the
objective. A centered aperture iris (Figure 5a) results in an
illumination cone that hits the sample vertically. Owing to
symmetry, the Kerr amplitudes resulting from in-plane mag-
netization components cancel each other, so that in this case
a sole sensitivity to out-of-plane magnetization is given as
required for the polar Kerr effect. An off-centered aperture
diaphragm (Figure 5c) leads to an obliquely incident bun-
dle of rays (with an angle-of-incidence dispersion ranging
between perpendicular and maximum) as necessary for lon-
gitudinal and transverse Kerr sensitivity. Oblique incidence
is also provided by a Berek prism (Figure 5d), which is a
90◦ prism constructed in the form of a trapezoid, resulting
in a light path where the beam is internally reflected three
times before it exits the prism. A Berek prism introduces
little depolarization and causes no light loss, contrary to the
mentioned glass plate reflectors for which just a quarter of
the illuminating light is used for image formation. However,
the viewing aperture is restricted by the prism itself, leading
to a reduced optical resolution in the direction transverse to
the microscope plane. If light intensity poses no problem, a
sheet reflector offers optimum resolution and high flexibility
in the observation mode (see next paragraph). In recent years,
microscope companies have largely eliminated the option of
Berek prisms in their product lines. The availability of highly
sensitive video cameras can partly compensate for this unfa-
vorable circumstance.

The plane of the aperture diaphragm is conjugate to the
back focal plane of the objective lens, also called diffraction
plane or pupil of the objective. As the back focal plane is
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Figure 5. The essential components and ray paths of a wide-field Kerr microscope. (a) Illumination path for perpendicular light incidence,
and (b) image-forming path. Oblique incidence (c) requires a displaced aperture slit and can also be obtained with a Berek prism (d). The
inset shows the diffraction plane of the microscope for the case of a sheet reflector. Here, the aperture diaphragm can be viewed and
adjusted to fulfill the requirements for the polar Kerr effect (centered iris diaphragm) or longitudinal and transverse effects (displaced slit
diaphragm). The orientation of the extinction cross depends on the polarizer setting (indicated by P), with the analyzer (A) and eventually
the compensator being adjusted for maximum extinction.

not identical for all objectives in conventional microscopes
(objectives are rather constructed for identical front focal
planes to guarantee identical sample positions), the relevant
lens that images the aperture into the pupil has to be moved or
supported by additional lenses to exactly provide this con-
dition for all objectives – a feature that is not available in
commercial microscopes. If the aperture diaphragm is not
imaged exactly to the pupil, it is not effective uniformly for
the whole observation field and the points on the sample are
not illuminated from the same angular range. This may result

in an inhomogeneous image up to a magnetic contrast inver-
sion across the image (see Fig. 2.16 in Hubert and Schäfer
(1998)). The diffraction plane can be seen in the so-called
conoscopical image of the microscope by replacing the eye-
piece by an auxiliary telescope or by a built-in, focusable
Bertrand lens. This image is characterized by a cross-shaped
extinction zone when the polarizer and analyzer are crossed
for maximum extinction (Figure 5, inset), rather than being
homogeneously dark as would be the ideal case. The reason
for this ‘Maltese’ cross, which becomes more pronounced
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as the numerical aperture of the objective increases, is that
a convergent light bundle, rather than a parallel laser beam,
is used in wide-field microscopy. All beams not lying in a
central incidence plane along or perpendicular to the polar-
ization plane cannot be extinguished by the analyzer as they
are reflected in an elliptical and rotated polarization state in
general. This is due to differential transmission of the p (E
vector parallel to plane of incidence) and s (E vector perpen-
dicular to plane of incidence) components at the steep optical
interfaces of lenses. This depolarization results in four bright
quadrants, separated by the Maltese cross, in the conoscopic
image. For best contrast conditions, the illumination should
be restricted to the area of maximum extinction in the cono-
scopic image by properly positioning the aperture stop, as
illustrated in the inset of Figure 5 for the case of a sheet
reflector (by using a Berek prism, half of the pupil would
be occupied by an image of the prism itself). For the polar
Kerr effect, a centered iris diaphragm is used, while the lon-
gitudinal effect is preferably adjusted by an off-centered slit
aperture that is oriented parallel to the plane of incidence. For
the transverse Kerr effect, the polarizer and consequently also
the extinction cross are rotated by 45◦ (due to depolarization
at the reflector, the use of a compensator is mandatory in this
case to obtain a closed extinction cross). Here, a displaced
slit perpendicular to the plane of incidence or a V-shaped
slit are the best solutions. Both, longitudinal and transverse
effects can be adjusted as well by using a Berek prism, while
the polar effect requires a sheet reflector. If a sheet reflector
is used, the ‘true’ transverse Kerr effect can be replaced by
the longitudinal effect by placing the slit aperture on the side-
ward branch of the extinction cross, thus causing a transverse
plane of incidence, that is, transverse sensitivity.

3.1.2 Lateral resolution

The lateral resolution in optical microscopy is determined
by the numerical aperture (NA = n sin α) of the objective
lens, where α is half the opening angle of the objective
(i.e., half the angle of the cone of light from the specimen
that is accepted by the objective) and n is the refractive
index of the medium used between objective and object
(n = 1 for air; n ≈ 1.5 for immersion oil). The higher α

and n, the more orders of diffracted light are collected by
the objective, which increases the resolution. The smallest
distance between two objects that can be resolved is given
by dmin = 0.5 λNA−1 according to the Rayleigh criterion (λ
is the wavelength of light, e.g., 550 nm for green light).
The highest numerical aperture available is 1.4, obtained
with oil-immersion objectives of 100× magnification. Using
such an objective and blue light for illumination, domains
as narrow as 150 nm can be resolved (Schmidt and Hubert,
1986). Smaller magnetic objects like domain walls down

to a size of some 10 nm may also become visible by
digital contrast enhancement, but their image is diffraction
broadened. Ultraviolet (UV) light would further improve
resolution; however, UV light with a wavelength of 400 nm
is already absorbed to 50% by conventional lenses (at 360 nm
wavelength, the absorption is 100%). UV microscopes with
all-quartz optics, permitting resolutions down to about 80 nm
at deep-UV wavelengths, have been developed mainly for
defect inspection in semiconductors. The implementation of
polarization optics in such microscopes, however, appears to
be problematic (Yamasaki, 2006, Private communication).

In Figure 6, some examples of high-resolution observa-
tions, using white light and oil immersion, are collected. The
surface magnetization of asymmetric Bloch walls on bulk
soft magnets is well resolved, even in the case of iron–silicon
with a surface wall width of just 150 nm (Figure 6a). The
same is true for all kinds of domain walls in magnetic films,
as shown for the examples of crosstie walls (Figure 6b) in
thin films and asymmetric Bloch and Néel walls in thick
films (Figure 6c). Also, small-angle magnetization modula-
tions (ripple or patchy modulations) are easily identified. The
practical limit for the observation of small particles is demon-
strated in Figure 6(d) for cobalt thin-film elements. Faint
contrasts are still visible on the 230-nm-wide dot. A reli-
able judgment on the magnetization distribution, however,
requires elements larger than a micrometer (Figure 6e). The
images in Figure 6(f) demonstrate an in situ observation of
current-induced domain wall propagation (Kläui et al., 2005)
in a NiFe stripe structure with a width close to the resolution
limit.

Restrictions in the resolution of Kerr microscopy are
outweighed by a highly flexible magnification. Sample areas
ranging between 5 mm and 30 µm can be covered by simply
changing objective lenses in standard microscopes. Often,
a low-resolution overview of domain patterns on a still
larger lateral scale is required, even in the research on
novel, nanoscale objects such as film systems for spintronics
(Schäfer, Hubert and Parkin, 1993). Custom-made Kerr
setups with separated illumination and observation paths are
suited for this purpose (see Fig. 2.14 in (Hubert and Schäfer,
1998)). An elegant way of realizing such microscopes is to
modify an optical stereomicroscope by using one path for
illumination and the other for observation. An example for
multiscale imaging in shown in Figure 7, which, at the same
time, is an example for the possibility of sample manipulation
by stress.

3.1.3 Image processing

As the Kerr effect is weak, polarization effects from imper-
fect surfaces, showing up especially at nearly crossed polar-
izers, can strongly obscure the magnetic image. Magnetic
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Figure 6. High-resolution Kerr observations. (a) Domain wall
imaging on different bulk samples. The surface wall width for the
FeSi Goss sheet (300 nm thick) with (110) surface orientation is
150 nm, for the metallic glass (25 µm thick) it is 0.9 µm, and for
the nanocrystalline ribbon (20 µm thick) a surface wall width of
1.6 µm is measured, as expected due to the decreasing anisotropy
in the order of materials. The black–white contrast of the wall seg-
ments is caused by the rotation sense of magnetization (see also
Figure 4a). (b) Crosstie wall in a 40-nm-thick Permalloy film, and
(c) coexisting asymmetric Bloch- and Néel walls in a 460-nm-thick
Permalloy film, the latter being characterized by a double contrast.
See (Hubert and Schäfer, 1998) for details. (d) Regular image (left)
and difference images between the remanent states after positive
and negative saturation (middle) and vice versa (right) on quadratic
cobalt elements of various sizes. The saturation field is aligned ver-
tically; the edge length of the elements is indicated in nanometers.
(e) Domain patterns in an array of 2-µm-wide Co elements after ac
demagnetization. In (f) the head-on domain walls in 500-nm-wide
NiFe stripes were shifted by current pulse injection (See also Cur-
rent Induced Domain-wall Motion in Magnetic Nanowires, Vol-
ume 2). (Sample for (d,e): courtesy A. Carl , Duisburg. Images (f):
courtesy T. Moore, M. Kläui (University Konstanz) and J. McCord
(IFW Dresden).)

contrast enhancement is possible by the interference lay-
ers mentioned in Section 2. A much more powerful option,
however, is the implementation of video microscopy and
digital image processing (Schmidt, Rave and Hubert, 1985;
Argyle, Petek and Herman, 1987). Magnetic materials are
ideally suited for difference imaging because the magnetic

1 mm

(a) (b)

10 µm

Figure 7. Demonstration of magnification range and sample
manipulation abilities of Kerr microscopy. (a) Low-magnification
domain overview on FeSi transformer steel sheet, showing three
grains of different misorientation (characterized by the density of
lancet domains (Hubert and Schäfer, 1998)) in the demagnetized
state. Sixteen images, obtained with a 3.2× objective lens, were
combined in this composite picture. Details of the lancet domains
are presented in the inset, which was obtained with a 100× oil
immersion objective at high resolution. The Kerr sensitivity was
rotated by 90◦, so that the domain walls are imaged rather than
the domains. In (b) an external tensile, a stress of 2 kg mm−2 was
applied to the sheet in vertical image direction, leading to domain
refinement and suppression of the supplementary domains.

state can be manipulated by external magnetic fields with-
out changing the topography of the specimen. The standard
procedure (Figure 8a) starts with a digitized, averaged image
of the magnetically saturated state, where in an external dc
magnetic field all domains are eliminated. Alternatively, an
alternating field of moderate amplitude can be applied, which
mixes up the domains during averaging with the advantage
that forces on the sample may be smaller than in the high sat-
urating field. This domain-free background (reference) image
is then subtracted from a state containing domain informa-
tion, so that in the difference image a clear micrograph of
the domain pattern is obtained, which can be improved by
averaging and digital contrast enhancement, free of topo-
graphic contrasts. Often, it is desirable to study domains in
different aspects, for example, under longitudinal and trans-
verse contrast conditions. This is possible by a combination
experiment, as also demonstrated in Figure 8(a). After hav-
ing created a regular difference image of a certain domain
pattern, an image of the same pattern, but under different
contrast conditions, is stored as a reference image that is
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Figure 8. (a) Difference techniques for contrast enhancement,
demonstrated for stress-induced domains on an iron-rich metallic
glass. In a combination experiment, difference images of the same
domain pattern are obtained under longitudinal (upper row) and
transverse (lower row) contrast conditions. (b) Nonmagnetic con-
trast contributions in a ‘regular’ difference image can be removed
by normalization by a ‘saturation difference image’, which is the
difference image between two saturated states along opposite direc-
tions. The sample is an amorphous ribbon with a wavy surface.

then subtracted from a saturated state obtained under the
same contrast conditions. Sometimes, inhomogeneities in the
illumination or nonplanar surfaces produce strong contrast in
the direct image, which can remain visible as artificial con-
trast in a ‘regular’ difference image. An enhanced method
(McCord and Hubert, 1999) that normalizes the standard
difference image by a ‘saturation difference image’, thus
removing these artifacts, is demonstrated in Figure 8(b). Fur-
ther experimental possibilities applying difference techniques
are shown in Section 4.

3.1.4 Setup

The complete experimental setup for video-enhanced, wide-
field Kerr microscopy is schematically shown in Figure 9.
As most of the light is thrown away in Kerr microscopy

Digital CCD
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Speckle
removed
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Rotating
 glass disk
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Hg-, Xe arc lamp,
or LED lamp

Magnetizing stages

In-plane field Out-of-plane field

Image
processing

Video-rate
CCD camera

Magnet

Display,
Recording

Figure 9. Experimental setup for wide-field Kerr microscopy.
Options are shown for illumination, video processing, and mag-
netizing stages. Also shown is the presence and suppression of
interference patterns by laser illumination with and without rotat-
ing glass disk respectively on a 28 by 28 µm2 Permalloy thin-film
element. (Courtesy A. Neudert, IFW Dresden.)

due to the small opening of the polarizer and analyzer, light
sources with a high luminous density are mandatory. The
best light source in most cases is a high-pressure mercury
arc lamp. It offers sufficient brightness and a color spectrum
that can be monochromatically used in the yellow-green as
well as the blue range by suitable spectral filters. The use
of monochromatic light can be useful for the imaging of
certain materials, for example, ferrites. Here, the portion of
linear Kerr light is largest at 400 nm so that the domains can
be imaged without additional means, while at 550 nm the
elliptical contribution is strongest, requiring a compensator.
The disadvantage of the mercury lamp is its instability and
short lifetime. Xenon-arc lamps are more stable and offer
white light at a luminous density of just one-quarter of the
mercury lamp. This is still sufficient if a Berek illuminator
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and prism polarizers are used to avoid light loss, or if loss is
compensated by a highly sensitive video camera. In any case,
the infrared radiation component of these lamps has to be
removed by heat-reflecting filters to protect the specimen and,
possibly, sheet polarizers from damage (also video cameras
may be sensitive to the near infrared).

Much higher light intensity at better stability is obtained
by laser illumination (Argyle, Petek and Herman, 1987) (the
luminous density of a 5-mW laser is comparable to that
of a 100-W mercury lamp). The laser light is fed into the
microscope by a multimode glass fiber of typically some
100 µm diameter, replacing the conventional arc lamp. The
image of the fiber output is then focused to a small spot
in the back focal plane of the objective by the microscope
optics (alternatively, the fiber end can also be directly
positioned in the back focal plane). This ensures an almost
parallel illumination of the sample. As the laser spot is
smaller than the arc image of a conventional lamp, the
spot image can be directly placed on the extinction cross
so that an aperture stop is not necessary. By moving the
fiber output around in the back focal plane, the plane of
incidence and the sensitivity axis is adjusted. A variety
of different lasers is available that cover a wide range of
wavelengths. Traditional argon ion lasers can be replaced
by modern diode lasers or diode-pumped solid-state lasers
such as Nd:YAG lasers with a wavelength in the infrared
that can be shifted to the visible range by frequency
doubling. Also, blue solid-state lasers are available. Lasers
can be run in continuous wave or pulsed modes, the
latter making them suitable for time-resolved imaging (see
Section 4). The coherence of the laser light introduces
problems in wide-field microscopy. Light scattering and
diffraction patterns (speckle) develop because of interference
at surfaces and dirt particles in the optics. Such mottle
unsteadiness (Figure 9, inset) makes it impossible to observe
magnetic responses in real time. These artifacts can be
eliminated by temporally scrambling the laser light. If the
interference patterns fluctuate substantially faster than the
integration time of the detector (e.g., the video frame rate
of the camera), the speckle and scattering artifacts disappear
in the image. Several methods for despeckling have been
developed (Inoué and Spring, 1997; Argyle and McCord,
2000): inserting a spinning glass wedge or a glass disk with
a randomly undulated surface in the illumination, sending
the light over tumbling and rotating mirrors, or mechanically
vibrating the glass fiber and additionally vibrating the tip
of the fiber so that its image covers a suitable area in the
back focal plane. In any case, satisfactory results with laser-
illuminated microscopes are only obtained in multiframe
accumulated images where residual laser effects are averaged
out. A promising alternative to laser illumination are high-
intensity light-emitting diodes (LEDs), which are also fed

into the microscope by an optical glass fiber (Kleinefeld,
2006 Private Communication). They combine high stability
with the absence of speckle and interference fringes. By
cooling the LED in liquid nitrogen, it tolerates higher
currents, thus delivering higher intensity.

A sensitive video camera transforms the optical image
into an electrical signal that is displayed on a screen,
either directly or after image processing. Charge-coupled
device (CCD) cameras or highly sensitive complementary
metal oxide semiconductor (CMOS) cameras have replaced
classical Nevicon tube cameras in recent years. A number
of ‘regular’ integrating video-rate CCD cameras, which
have been optimized for bright-field video microscopy, are
available. Also, digital CCD cameras can be used for Kerr
microscopy if their frame rate is fast enough (at least video
frequency) to allow real-time imaging. The read-out speed
of digital cameras can be enhanced by joining adjacent
pixels together into super pixels (binning), though at the
cost of resolution. An approximately 1000 × 1000 pixel
resolution at a frame rate of 30 frames per second (fps) are
reasonable numbers for standard Kerr microscopy. Owing to
the low light level in Kerr imaging, high camera sensitivity
is important. Image intensifiers (see Figure 22, below) can
further increase sensitivity, and cooling of the CCD chip
improves the signal-to-noise ratio. The option of electronic
shading correction that allows to improve inhomogeneously
illuminated images is advantageous. In practice, the image
brightness has to be adapted properly to meet the signal
requirements and optimum dynamic range of the video
camera. Increasing the analyzer angle β (Figure 1b – the
intensity increases with β2) or opening the aperture stop
beyond the width of the extinction cross, thus increasing
the background intensity, are practical means to achieve a
large signal-to-noise ratio. A possible loss in contrast is
not a severe problem, as contrast can easily be enhanced
electronically.

Image processing for contrast enhancement requires digital
image acquisition. Digital CCD and CMOS cameras directly
provide a digitized data stream, while for video-rate CCD
cameras the analogous output has to be converted by an
analog-to-digital converter. At least 8-bit resolution (meaning
that the intensity amplitude of an image is represented by 256
discrete values) is required in the (optimized) original image
to avoid visually obvious gray-level steps in the processed
image (for digital cameras, this number may be higher). To
create a difference image, first an averaged reference image
is stored by summation of repeated images (typically 64 or
128 frames) of the same sample state. The digital frame
memory, which holds the accumulated images, must have
a storage capacity of at least 16 bits to also accommodate
the brightest pixels of the sum of digital 8-bit images.
The reference image is stored and continuously subtracted
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from all following images, being displayed on the monitor
at the same time. As the visual observation of domain
motion is fundamental for any kind of domain analysis, it is
advantageous if the subtraction process is performed in ‘real
time’ at (at least) video frequencies without averaging. For
recording and presentation purposes, noise can be reduced by
adding each of the digitized images in a recursive procedure
to produce a running average of the incoming images.
Because noise is random and the signal is not, a running
average both reduces the noise contribution and enhances
the signal component of the output digital image. The result
is an image of constant brightness, the noise of which is
continuously reduced with increasing averaging time. Owing
to the small magnitude of the Kerr contrast, the resulting
difference image may contain relevant information often only
in the lower bit levels. The visually meaningful 8 bits are
selected and displayed. Domain images in 8-bit resolution are
sufficient for pleasing visual observation as the human eye
can distinguish, at most, 50 discrete shades of gray within
the intensity range of a video monitor. By difference-image
processing, the Kerr contrast is typically enhanced by a factor
of 30; this means that contrasts below 0.1% can be visualized
(the contrast sensitivity of the human eye is some percent at
best). Digitized images open the way for further computer
processing depending on specific demands.

The free space around the nosepiece of the microscope
allows a variety of sample manipulations. The application of
mechanical stress, as an example, was already documented
in Figure 7. In-plane magnetic fields of arbitrary direction
can be applied by rotatable coils or electromagnets. In the
design of Figure 9, the specimen is mounted on a stamp that
is placed between the pole pieces of an independently piv-
oted electromagnet. Magnetic fields µ0H up to some tenths
of a Tesla can be achieved in such setups, reaching the Tesla
regime at proper pole-tip geometry and close pole distance.
Sample displacement of centimeters in the X and Y direc-
tions is possible and the entire stage unit is capable of precise
up and down movement with the conventional coarse and
fine focusing mechanism of the microscope. In-plane fields
of arbitrary direction may alternatively be created by proper
superposition of the fields of two fixed, perpendicular elec-
tromagnets. Also, perpendicular magnetic fields (i.e., parallel
to the objective) can be generated in a Kerr microscope,
either by regular coils or by specially designed electromag-
nets, as sketched in Figure 9, which provide fields up to the
Tesla range. Other applications may require special designs
(see Section 4.2.5 on dynamic imaging). Optical cryostats
or heating stages, which fit between the pole pieces of an
electromagnet, allow temperature-dependent observation of
magnetization processes. As vacuum insulation is required
for these devices, the sample has to be observed through
a glass window. Long-distance objectives have to be used

then which suffer from a reduced optical resolution of about
0.5 µm at best, as given by the numerical aperture of these
objectives. A problem for the application of stronger fields
is parasitical Faraday rotations in the lenses or glass win-
dows of the optical temperature stages that may be much
stronger than the Kerr effect. The Faraday contribution can
be compensated by rotating the analyzer.

As extremely weak contrasts are enhanced by the differ-
ence imaging procedure, a high mechanical, thermal, and
electrical stabilization of the microscope and electronics is
indispensable to obtain optimal results (at least during the
time where the same reference image is used). A stable light
source, heat-reflection filters to avoid sample heating, and
placing the microscope on a damped table to avoid vibra-
tions are fundamental. Mechanical stabilization is most crit-
ical. Rough surfaces cause light scattering that immediately
destroys the Kerr contrast in a difference image if the sample
is displaced relative to the state where the reference image
has been accumulated. Displacements of the order of the res-
olution limit of the used objective are sufficient to deteriorate
a difference image. Considerable sample movement may be
caused on larger samples in the gradient of the magnetiz-
ing fields. Using stiff sample holders and stiff gluing of the
specimen reduces the problem (care has to be taken to avoid
unwanted mechanical stress in the samples). All magnetic
parts in the sample space should additionally be replaced by
nonmagnetic ones as far as possible.

3.1.5 Kerr microscopy and magneto-optical
magnetometry

Plotting the average image intensity in a sample area, which
is defined by the objective and field diaphragm, as a function
of the applied magnetic field yields a local magneto-optical
hysteresis curve. At the same time, the domain images can
be recorded, thus providing a visualization of the underlying
magnetization process. Figure 10 shows an example of such
an experiment, performed on an exchange-coupled bilayer
system.

3.1.6 Quantitative Kerr microscopy

Owing to its linearity and direct sensitivity to the magneti-
zation, the Kerr effect can be used for a quantitative deter-
mination of the magnetization direction (Rave, Schäfer and
Hubert, 1987). The principle of quantitative Kerr microscopy
is explained in Figure 11(a). The Kerr intensity has a sinu-
soidal dependence on the direction of the magnetization vec-
tor. This sensitivity function, which is used for calibration, is
obtained by measuring the intensity of saturated states along
different directions. Also, domain intensities can be used for
calibration if their magnetization direction is known a priori,
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Figure 10. Magneto-optical hysteresis curve, directly measured
in a wide-field Kerr microscope, together with domain images
on a CoFe (20 nm)/IrMn (10 nm) bilayer film. The domains in
the ferromagnetic CoFe film, which is exchange coupled to the
antiferromagnetic IrMn film that is responsible for the loop shift
(exchange bias effect, See also Exchange Coupling in Magnetic
Multilayers, Volume 1) are shown. The steep forward branch of the
magnetization curve is caused by domain wall motion (a–c), while
inhomogeneous rotational processes (d–k) are responsible for the
rounded part of the recoil branch. The wall motion along the forward
branch is so fast that it cannot be recorded by static images. The
magnetization M is normalized to the saturation magnetization Ms

in the plot. (Reproduced from J. McCord, R. Schäfer, R. Matthesi,
K.-U. Barholz: Observations by permission of American Institute
of Physics.)

for example, due to crystal anisotropy or at sample edges.
The intensity of unknown domains is then compared with
the calibration function and so the angle of m in the surface
can be measured. The problem is that due to the sinusoidal
dependence there are two possible angles for a given domain
intensity. To resolve this ambiguity, the domain pattern of
interest has to be imaged twice under different sensitivity
conditions that should be shifted by 90◦ (e.g., by choosing
longitudinal and transverse Kerr effects). Figure 11(b) shows
domains on an iron single crystal with [100] surface orienta-
tion that were imaged under these conditions. If the domain
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Figure 11. Principle and application of quantitative Kerr
microscopy. (a) Calibration functions of the Kerr intensity at lon-
gitudinal and transverse sensitivity as a function of magnetization
direction (schematically). The intensities of an unknown domain,
measured under the same conditions, are compared with the
calibration functions, as indicated by arrows. (b) Domain pattern
on iron–silicon [100] sheet, imaged under two complementary
Kerr sensitivities. (c) Quantitative images on a Co-rich amorphous
ribbon. The domain wall width of the as-quenched state (left) is
strongly enlarged (right) if residual anisotropies are reduced by
annealing in a rotating magnetic field (Schäfer and Herzer, 2001).
A vector plot and color code (here shown in black and white) can
be used for presentation.

magnetization is transverse to the contrast sensitivity, the
domain walls show up as black or white contrast, as given
by their surface rotation sense. In Figure 11(c), the quanti-
tative method was applied to domain walls in a cobalt-rich
metallic glass ribbon. Originally, these images are displayed
with a color code, where the in-plane magnetization direc-
tions are mapped by a color wheel. The quantitative method
can reliably be applied only to soft magnetic materials for
which no polar magnetization components are present at the
surface, which would otherwise be difficult to calibrate or
separate from in-plane contrast.
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3.1.7 Depth-selective Kerr microscopy

The magnetic information depth of the Kerr effect is about
20 nm in metals. A quantification of this depth sensitivity
has to consider the phase of the magneto-optic amplitude
(Träger, Wenzel and Hubert, 1992). The total magneto-
optical signal can be seen as a superposition of contributions
from different depths, which are damped exponentially and
which differ in phase as a function of depth according to a
complex amplitude penetration function (Figure 12a).

These phase differences can be exploited in Kerr micro-
scopy (Schäfer, 1995). Using a rotatable compensator, the
phase of the Kerr amplitude, generated in a certain depth,
can be adjusted relative to that of the regularly reflected
light amplitude (as shown in Section 2, a detectable Kerr
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Figure 12. (a) Depth sensitivity of the normalized Kerr amplitude
κ in iron. The relative phase of K and N was selected so that N
is allowed to interfere with the K generated right at the surface
(after Träger, Wenzel and Hubert, 1992). Proper phase selection
(b) Proper phase selection (b-schematically) allows layer-selective
Kerr imaging on thin-film sandwiches, as demonstrated in (c) for a
sputtered Co/Cu/Ni81Fe19 (5 nm/5 nm/50 nm) trilayer. (Sample: D.
Bürgler, FZ Jülich, imaging: J. McCord, IFW Dresden.)

rotation is only possible if K and N are in phase). In this
way, light from a selected depth zone may get invisible if
its Kerr amplitude is adjusted out of phase with respect to
the regular light. In sandwich films, (See also Exchange
Coupling in Magnetic Multilayers, Volume 1) consisting
of ferromagnetic layers that are interspaced by nonmag-
netic layers, the zero of the information depth can be put
somewhere into the middle of one layer so that the inte-
gral contributions of this layer just cancel, leaving only
contrast from the other layer (Figure 12b). This kind of layer-
selective Kerr microscopy is demonstrated in Figure 12(c)
for a Co/Cu/NiFe sandwich sample. Demagnetization in an
alternating field leads to a complicated mixture of wide
domains in the low-coercivity bottom layer and fine, irreg-
ular domains in the high-coercivity top layer. After contrast
separation, traces of these fine domains are also seen in the
bottom layer, most likely induced by dipolar interaction with
the magnetically charged domain walls of the top layer.

3.2 Laser-scanning Kerr microscopy

In a laser-scanning Kerr microscope, a polarized laser beam
is scanned relative to the specimen and its polarization
state after reflection is analyzed by a photodetector. The
early approaches of this technique were stimulated by the
interest in the dynamics of magnetization processes in thin-
film recording heads (see Section 4.2.1). First measurements,
using a fixed laser spot and a line scan of the sample (Re,
Shenton and Kryder, 1985), were soon extended to a two-
dimensional scanning technique (Kasiraj, Shelby, Best and
Horne, 1986). Elimination of nonmagnetic signals (due to
nonideal surfaces) was achieved by synchronous detection:
the magnetization was modulated by a high-frequency mag-
netic field. The corresponding modulation in the polarization
of the Kerr light was then extracted from the optical detector
with a phase-sensitive lock-in technique. Thus, a map of the
high-frequency magnetization response (permeability) was
obtained, in which the domain structure was revealed owing
to domain wall motion. In succeeding developments, the
domain information could be directly extracted by advanced
detection schemes that even have the capability of vector
magnetomery (Egelkamp and Reimer, 1990; Clegg, Heyes,
Hill and Wright, 1991; Silva and Kos, 1997; Nagai, Sekiguchi
and Ito, 2003).

The principle of such an advanced laser-scanning Kerr
microscope is illustrated in Figure 13(a). A collimated and
polarized laser beam is focused onto the specimen surface
using an infinity-corrected objective lens. Argon lasers are
widely used because of their brightness and excellent geom-
etry. The laser spot is then moved across the specimen by
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scanning probe and sample relative to each other. In com-
mercial instruments, which have been designed mainly for
biological applications, the laser spot is scanned in a TV-
raster fashion (beam scanning). For Kerr microscopy, how-
ever, moving the sample itself in a rasterlike way by using
a precision XY stage is more favorable. Although this stage
scanning is relatively slow (the time required to produce an
image is of the order of tens of seconds), it ensures that both,
the angle of incidence and the polarization state of the illu-
minating ray bundle, are constant over the entire scan. By
scanning, the image is constructed in a point-by-point man-
ner with a lateral resolution that is basically determined by
the size of the probing laser beam. Using a 100× oil immer-
sion objective with a numerical aperture of 1.3, a laser spot
size of 0.8 µm is obtained. A smaller focused spot size of
0.16 µm is achieved if the beam diameter is first increased
by beam expansion to completely fill the objective aperture
before it is focused on the sample (Inoué and Spring, 1997).

The reflected light, which is collected by the same objec-
tive lens, passes a rotatable quarter-wave plate to compensate
ellipticity and finally enters a Thomson polarizing beam split-
ter. To obtain maximum sensitivity and flexibility, the splitter
is set at 45◦ to the incident (undisturbed) polarization (Free-
man and Hiebert, 2002a). Alternatively, the beam splitter
can be set at 0◦ and the polarization plane can be rotated
by 45◦ by using a half-wave plate before the light enters
the splitter (Wright, Heyes, Clegg and Hill, 1995). The split-
ter provides two beams of orthogonal polarization direction
(Figure 13a, inset) that hit a pair of quadrant photodiodes.
Each pair of opposing quadrants is aligned along the pro-
jection of the samples x and y axes, respectively. The two
beams are of equal intensity for the case of undisturbed
45◦ polarization, while any sample-induced polarization rota-
tion leads to equal but opposite intensities (45◦ is the angle
most sensitive to small polarization changes). By suitably
combining the outputs of the eight photodiode quadrants,
the three orthogonal components of magnetization can be
simultaneously detected and separated, provided that they
are sampled nearly equally, which is true for objectives with
a high numerical aperture. As illustrated in Figure 13(b)
(and demonstrated experimentally in Figure 3), the longitu-
dinal Kerr contrast changes sign if excited by two beams
of opposite directions of incidence, while the polar con-
trast remains unchanged. By adding the signals of all four
diodes of one quadrant detector, the longitudinal components
are cancelled, while the polar components are added. As
the total intensity that reaches each detector is reduced and
enhanced, respectively, by equal amounts owing to the beam
splitting, the pure polar contrast can thus be separated by
subtracting the two sum signals (i.e., taking the quadrant
combinations (X1

+ + X1
− + Y1

+ + Y1
−) − (X2

+ + X2
− +

Y2
+ + Y2

−)), whereas a nonmagnetic surface-contrast image

Quadrant
photodiodes

Thomson
polarizing

beam spilitter

Colimator

Laser

Pinhole

Polarizer

Objective

(a) (b)

Specimen on
x – y scanner

E

E

E

E

E

y

x

l/4 plate

E

E

E

Quadrant
photodiodes

Stop

Beam
splitter

Top
perspective

view

k2
out

k1
out

k2
in

k 1
in

k1

k2

m

X2
+Y2

+

X2
− Y2

−

X1
+Y1

+

X1
− Y1

−

Figure 13. (a) Principle of laser-scanning Kerr microscopy (based
on setups realized by Wright, Heyes, Clegg and Hill, 1995, and
Freeman and Hiebert, 2002a). The polarization plane of light is
indicated by the E vector. The inset shows a perspective view from
top to illustrate the orthogonal polarization directions of the two
beams leaving the polarizing beam splitter. (b) Contrast of in- and
out-of-plane magnetization components depending on the direction
of the k vector.

is generated by simply adding the signals. The longitudinal
Kerr contrast of magnetization components along the x-axis
is revealed by combining (X1

+ − X1
−) − (X2

+ − X2
−), and

that along the y-axis by (Y1
+ − Y1

−) − (Y2
+ − Y2

−). Since
all data are collected from the quadrants simultaneously,
the three magnetization components at one sample spot are
captured at the same time. This elegant method of vector
magnetometry requires a highly symmetrical beam profile so
that each quadrant receives the same quarter of the beam
(Freeman and Hiebert, 2002a). The longitudinal contrast can
be further enhanced by introducing a set of four apertures
into the optical path in the back aperture of the objective lens.
This restricts the range of the angles of incidence to provide
a bundle of rays around an incidence angle of approximately
60◦, depending on the used objective’s numerical aperture
(Wright, Heyes, Clegg and Hill, 1995).
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Another advantage of the differential detection technique
is the common mode rejection of laser noise while at the
same time the signal is doubled. Further enhancement of
the signal-to-noise ratio can be achieved by applying lock-in
techniques: the illuminating laser beam is modulated by some
photoelastic (Silva and Kos, 1997), acousto-optic (Wright,
Heyes, Clegg and Hill, 1995), or electro-optic (Egelkamp
and Reimer, 1990) device and the reflected light is measured
by a phase-sensitive detection amplifier, thus selecting only
signals that are proportional to the Kerr amplitude. By using
ac detection, contrast arising from nonmagnetic surface struc-
tures is suppressed, the 1/f noise – inherent in the laser light
source – is avoided, and polarization changes can be mea-
sured independently of intensity fluctuations in the reflected
light. Signal enhancement by the lock-in technique (sup-
ported by additional subtraction of a constant background
intensity in the preamplified signal) makes it possible for
even the small light amplitude modulation of the transverse
Kerr effect to be used for imaging purposes (Egelkamp and
Reimer, 1990; Acremann et al., 2000). The technique, which
is not easily possible in conventional Kerr imaging, has
the advantage of being sensitive only to one magnetization
component. By illumination from two directions, quantita-
tive Kerr images can be obtained (Büscher and Reimer,
1993). Since the spots on the sample are illuminated sequen-
tially in a laser-scanning microscope, interference speckle
is less important and can be even completely eliminated by
using an aperture (pinhole) in the detection system (Wright,
Clegg, Boudjemline and Heyes, 1994). The aperture is placed
conjugate to the spot being scanned so that only the light
originating directly from the scanned spot is transmitted to
the photodetector (such confocal systems also offer three-
dimensional imaging capabilities, which is highly attractive
in biological studies (Sheppard and Wilson, 1984)). The use
of confocal imaging schemes has been shown to enhance the
lateral resolution in non-magneto-optical microscopes by a
factor of

√
2, which has, however, not been verified in Kerr

imaging (Nutter and Wright, 1998).
A disadvantage of laser-scanning Kerr microscopy is its

slow speed compared to regular imaging microscopes. The
image acquisition time of some tens of seconds in stage-
scanning microscopes can be lowered by beam scanning
(Ping et al., 1995). This requires, however, special optical
design to ensure a constant mean angle of incidence across
the whole scan. Depolarization errors can be minimized by
realizing the scanning with a vibrating single-mode optical
fiber (Ping, See and Somekh, 1996). Scan rates of one frame
per second can be obtained in this way, which, however, is
still not fast enough for live observations of domains at video
frequencies.

To conclude, scanning Kerr microscopy falls short in
replacing conventional microscopy for ‘routine’ domain

research as real-time imaging of domain motion cannot be
realized. The capability to simultaneously image all three
magnetization components (vector magnetometry) and to
easily eliminate background contrast by lock-in techniques is
advantageous. Static Kerr images of satisfactory quality, both
of in- and out-of-plane domains, can therefore be obtained.
Also, other quantities like permeabilities or magnetization
curves can conveniently be measured on a microscopic scale,
thus probing the spatial variation of magnetic properties. The
biggest potential of laser-scanning microscopes, however,
lies in their predestination for stroboscopic imaging of fast
dynamic processes (see Section 4.2.4).

4 DYNAMIC KERR MICROSCOPY

Dynamic magnetization processes cover a wide range of
timescales. Relaxation processes, wall creep, and aftereffect
phenomena may last up to minutes and longer, eddy-current-
limited processes in thick, electrically conducting specimens
last microseconds, and precessional phenomena in metal-
lic films occur in the nano- and sub-nanosecond regime
(See also Magnetization Dynamics Including Thermal
Fluctuations: Basic Phenomenology, Fast Remagnetiza-
tion Processes and Transitions Over High-energy Barri-
ers, Volume 2). Wide-field Kerr microscopy is suitable for
dynamic domain studies in a frequency range from arbi-
trarily slow to beyond the gigahertz regime. Slow domain
dynamics can be observed visually as fast as the eye can
follow, either directly in the microscope or on contrast-
enhanced images on the video screen if contrast enhance-
ment by real-time image subtraction is used. As an example,
domain growth by wall motion in an amorphous ribbon
is presented in Figure 14(a–c) by three difference images,
each obtained after stopping the field change during the
(slow) magnetization cycle. However, on fast magnetiza-
tion processes also, valuable information can be obtained
by regular difference-image processing. In Figure 14(d), the
domain state of (c) was excited by a 25-Hz sinusoidal field
of small amplitude. Blurred domain boundary contrast in
the averaged difference image indicates vibrational domain
wall motion. Increasing the field amplitude (e) reveals immo-
bile domains in the middle of the image and strong domain
activity on the sides, as evident by the strongly blurred
contrast in these areas. After switching off the alternating
field (f), the domain pattern differs in details from the ini-
tial one (c), indicating irreversible processes. Reversible and
irreversible wall displacements can immediately be distin-
guished in the experiment of Figure 14(g–i). In (g) and (h),
the domain state of (f) was subtracted from averaged images
of two states in which the sample was subjected to alternating
fields (25 Hz) of weak and moderate amplitudes, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14. Studying the dynamics of a domain pattern in an
amorphous ribbon (Fe78Si9B13, thickness 20 µm) by conventional
difference-image processing. The area shown is characterized by
180◦ domains that change their direction by about 90◦ at the top
owing to stress-induced magnetic anisotropy. (a–c) Growth of dark
domains in vertically aligned magnetic field. State (c) is excited by
an alternating magnetic field of 25 Hz and increasing amplitude in
(d) and (e). The moving parts of the domain pattern get blurred
in the averaged difference image. In (g,h), the configuration (f) is
subtracted from images with the same alternating fields applied as
before. Changes in the domain pattern show up as strong black and
white contrast in these dynamically averaged difference images.
After switching off the ac field, some walls remain displaced
irreversibly as can be seen by residual contrasts in the difference
image (i).

Those parts of the domain pattern that do not move stay gray
in the dynamically averaged difference images, while chang-
ing parts show up as contrast. After turning down the field
(i), contrast in the static difference image is left in those areas
where irreversible processes took place. Such difference tech-
niques can also be used to study periodic or quasi-periodic
processes, as demonstrated in Figure 15. Here, oscillating
domain walls were recorded with long exposure times at dif-
ferent frequencies with the static domain state subtracted. The
black and white contrast gives information on the amplitude
of wall motion that decreases with increasing frequency due
to eddy-current damping. An asymmetry in the wall ampli-
tude is also seen clearly. Two further examples of dynamic
studies by regular image subtraction, showing domain multi-
plication processes as a consequence of dynamic field exci-
tation, are presented in Figures 16 and 17.

Although dynamic effects can be studied by the aforemen-
tioned methods, such experiments do not reveal the dynamic
processes by themselves because they are either smeared out

(a) (b) (c)

200 µm

500 Hz 1000 Hz

Figure 15. Imaging of periodic wall oscillation processes in a
nanocrystalline ribbon (Fe73Cu1Nb3Si16B7, thickness 20 µm). The
domain state (a) is subtracted from images with a sinusoidal field
of 500 Hz (b) and 1000 Hz (c) of same amplitude applied along the
domain direction. (Courtesy S. Flohrer, IFW Dresden.)

1 mm

1 Hz 50 Hz 500 Hz

Figure 16. Eddy current–driven domain refinement in an ideally
oriented grain on FeSi transformer steel. Three static domain
states are shown after the sample was demagnetized with different
frequencies as indicated. (Courtesy S. Flohrer, IFW Dresden.)

by averaging procedures (as in Figure 14) or they are already
over when images are taken (as in Figure 16). Time-resolved,
high-speed imaging is rather required for detailed dynamic
investigations. Kerr microscopy offers these possibilities both
in the wide field and in the laser-scanning modes, as shown
in the following sections.

4.1 Principle of high-speed microscopy

The principle of time-resolved high-speed microscopy is
illustrated in Figure 18. The sample is excited by a
continuously changing or pulsed periodic magnetic field. At
certain time delays relative to the excitation, the magneti-
zation is microscopically probed in a finite time window.
Shifting the time delay of the probing window yields a series
of time-resolved images of the magnetization process. Time
resolution is either obtained by a gated high-speed video
camera using a constant light source for illumination, or by
a pulsed light source and continuous detection.

An ideal dynamic experiment should deliver a time-
delayed series of single-shot images, as indicated in
Figure 18(a), each of them representing the momentary mag-
netic state of the sample during the evolution of the magne-
tization process within the same excitation cycle. Repeating
the imaging sequence in a number of following cycles would
allow the study of the most general case that may also
include nonreproducible and stochastic magnetization events,
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(a)

40 µm

(b)

(d)(c)

Figure 17. The dynamic multiplication of Bloch lines in a crosstie
domain wall of a Ni81Fe19-film element of 50-nm thickness, again
studied by conventional image processing. Image (a) shows a
regular difference image in the demagnetized ground state. Image
(b) was acquired after applying a single field pulse (amplitude
400 A m−1, pulse length 1.2 ns, rise and fall time 120 and 170 ps,
respectively) along the short axis of the element, leading to an
increasing number of cross-ties, that is, the nucleation of new
Bloch lines. The locations of Bloch line generation are evident
in (c), where the difference of the two images before and after
the field pulse is shown. In (d), a train of field pulses with a
repetition rate of 23 MHz is applied. In these experiments, only
the domain states before (a) and after pulse-field application (c–d)
are displaced – the mechanism of Bloch line generation is not seen.
(Courtesy A. Neudert, IFW Dresden. Reproduced from A. Naudert,
J. McCord, R. Schäfer, R. Kaltofen, I. Mönch, H. Vinzelberg,
L. Schultz: Bloch line generation in cross-tie walls by fast magnetic
field pulses. Journal of Applied Physics (2006) by permission of
American Institute of Physics.)

which may change from cycle to cycle. Single-shot imag-
ing, however, requires a sufficient amount of photons to be
accumulated in the detector during the probing time in order
to obtain a sufficient signal-to-noise ratio. Very bright light
sources and highly sensitive image detectors are therefore
necessary. Also, the repetition rate of the experiment has to
be fast enough to provide adequately short time delays for
in-cycle imaging. Both conditions are increasingly difficult to
meet with rising excitation frequency or if the magnetization
response is too fast after pulse-field excitation.

If the repetition rate is the limiting factor (due to restric-
tions in the speed of light-pulse sequence, camera trigger,
or delay electronics), single-shot imaging can nonetheless be
applied as long as the detector sensitivity poses no limita-
tion. By capturing images at identical time delays relative
to the field excitation period (Figure 18b), but in different
cycles, it is still possible to identify stochastic events. In case
of repetitive processes, the full magnetization process may
even be recovered by shifting the time delay of probing. If
both detector sensitivity and repetition rate of the experiment
are limited, time-resolved microscopy has to be performed

Magnetizing
field

Continuous

Pulsed

Probing

Magnetizing
field

Probing

etc.

(a)

(b)

t1

t1 + ∆t

Time

Figure 18. Principle of time-resolved imaging, (a) for an ideal
single-shot experiment, and (b) in the stroboscopic mode. The
sample is excited either by alternating magnetic fields or a by train
of field pulses.

in a different way, known as stroboscopic imaging (though,
strictly speaking, the other methods are also of stroboscopic
nature). In a strobed system, image acquisition is precisely
synchronized to a periodic excitation, so that images are cap-
tured in the same time period of successive cycles (like in
Figure 18b) and accumulated over many cycles (up to some
10◦ for fast pulse-field experiments) until a sufficient signal-
to-noise ratio is achieved. The time delay is then periodically
shifted to temporarily scan along the magnetization process.
This accumulation technique, however, requires repetitive
magnetization processes during successive cycles. If the pro-
cess is different for every excitation period, a complicated
mixture of contrasts (or even no contrast at all) is seen in
the averaged images – in other words: only the repeatable
events are seen as sharp features in the accumulated images,
statistical events, and fluctuations are averaged out. A possi-
bility to extract stochastic events (‘noise’) from stroboscopic
images of nonrepetitive processes was described in Freeman,
Steeves, Ballentine and Krichevsky (2002b).

The limitations of single-shot and stroboscopic imag-
ing are demonstrated in Figure 19 by time-resolved (wide-
field) studies on the same location of the amorphous
ribbon that was already investigated in Figure 14. The pic-
tures uncover the domain activity hidden in the blurred
contrast of Figure 14(e). Time-resolved, stroboscopically
obtained pictures at 25-Hz sinusoidal excitation are shown
in Figure 19(a). They were recorded at three delay times as
indicated, starting from an almost saturated high-field state.
About 800 pictures of successive cycles, each with an illumi-
nation time of 0.4 ms, were collected and averaged for each
image. Repeatable as well as nonrepetitive processes are evi-
dent in the probed area, indicated by strong and faint (or even
blurred) domain contrast respectively. A strong reversibility



18 Magneto-optical techniques

(a)

(b)

(c)
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Cycle 2
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Figure 19. Dynamic studies at 25-Hz sinusoidal excitation on the
same sample area as in Figure 14. (a) Stroboscopic images, obtained
by a gated image intensifier and a digital CCD camera. Seven
hundred and sixty-eight frames of 0.4-ms illumination time have
been accumulated for each picture. The time delay relative to
the maximum field is indicated. (b) Single-shot images at 2-ms
illumination time, obtained by a high-speed CMOS camera with
sufficiently large frame rate. The pictures in each row were taken
successively within the same cycle. (c) Single-shot images at 0.4-ms
illumination time. The difference images in which an averaged
image of the saturated state is subtracted are shown in each case
(together with S. Flohrer and J. McCord , IFW Dresden).

in the middle zone is confirmed by this experiment, which
was already indicated by domain stiffening in the exper-
iments of Figure 14. By single-shot imaging (Figure 19b)
also, the irreversible processes are resolved by sharp con-
trasts. The two rows of images were recorded in different
cycles of excitation, with the images within one row having
been obtained subsequently within the same cycle at similar
delay times as in Figure 19(a). A comparison of the two rows
reveals similar and different domains that appear within the
two cycles, indicating reversible and irreversible processes.
The reversible domains add up to the strong contrast in the
stroboscopic experiment of Figure 19(a). The illumination
time for each image in Figure 19(b) was 2 ms, which was

obviously sufficient to get a reasonable signal-to-noise ratio,
but which occasionally left unsharp boundaries caused by
nonnegligible wall movement within this time window. This
effect should be strongly reduced if the illumination time of
the single shots is reduced to 0.4 ms (Figure 19c) as for the
stroboscopic image. However, strongly noisy pictures with
almost vanishing domain contrast are obtained then, indicat-
ing the limits of single-shot imaging. As the conditions for
serial single-shot imaging are (so far) impossible to meet for
frequencies above the 50-Hz regime due to the mentioned
limitations, most of the time-resolved imaging experiments
at power frequencies and beyond have to follow a strobo-
scopic scheme.

4.2 Experimental setups for time-resolved
microscopy

High-speed imaging requires the following main compo-
nents: microscope (or at least objective lens in case of laser-
scanning microscopy), image detection, pulsed light source
or triggered video camera to obtain time resolution, power
supply connected to a coil or stripe line for magnetic excita-
tion of the sample, and some synchronous means including
delay electronics to adjust and shift, respectively, the exci-
tation and probing time. Time resolution and repetition rates
of excitation and probing have to be chosen appropriately to
meet the specific requirements of the sample and processes
to be studied. If, for instance, the relaxation processes in
a magnetic thin-film element after pulse-field excitation last
20 ns, the repetition rate of the field pulses should be less than
50 MHz to allow complete relaxation before the next pulse
is applied. To provide repetitive conditions for stroboscopic
imaging, it also has to be assured that the initial domain
state is identically recovered between the excitation periods.
For time-resolved imaging, both laser-scanning microscopy
with a pulsed laser as well as wide-field microscopy can be
used, the latter either based on a pulsed light source or on
a triggered video camera. The three methods are compared
in this chapter, following a brief historical review on the
development of time-resolved Kerr microscopy.

4.2.1 Historical review

First time-resolved Kerr imaging techniques emerged in the
early 1960s, based on regular wide-field microscopy and
motivated by the interest of that time in the fast reversal
of soft magnetic films for memory applications and in the
dynamic processes and losses in electrical steel. In 1963, an
optical strobing apparatus for imaging the flux reversal in
NiFe films was introduced (Conger and Moore, 1963), in
which light pulses of about 100-ns duration were generated
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using sunlight and a mirror that was fastened to a spinning
turbine. Simultaneously, Drechsel (1961) used a xenon flash-
lamp to create single light pulses of 1 ms duration that were
applied to single-shot imaging of iron crystals after sharply
changing the magnetic field. Stroboscopic imaging on Goss
sheets with several minutes averaging time at sinusoidal exci-
tation up to 200 Hz was realized by Passon (1963) by adding
a rotating disk with holes in the illumination light path of a
continuously shining halogen lamp. Pictures were recorded
by photographic films in these early experiments. Some years
later, high-speed motion-picture cameras with frame rates
up to 5000 pictures per second allowed single-shot imag-
ing on transformer steel up to the 100-Hz regime (Houze,
1967; Haller and Kramer, 1970). The motion pictures could
be examined frame by frame to analyze the character of
domain wall motion. In the experiment of Houze, the high-
speed camera was synchronized with a xenon flash lamp,
that is, one flash per frame was recorded. In another setup
of Passon (1968), time resolution was realized by a com-
mercial television camera, equipped with a sensitive image
intensifier that could be gated by trigger pulses. Stroboscopic
observation of periodic processes up to 20 kHz with a gat-
ing time as low as 2 µs was possible with this system. Wall
damping and wall multiplication phenomena with increas-
ing frequency (due to eddy-current effects) were observed
in these pioneering experiments. Also found was an increase
in the reproducibility of magnetization processes in trans-
former steel with raising frequency – the precondition for
stroboscopic imaging. An excellent review on these findings
is given in Shilling and Houze (1974). In the meantime, laser
illumination had entered the scene. A Kerr optical ‘appara-
tus’ with a Q-switched ruby laser for pulsed illumination
was set up by Kryder (Kryder and Humphrey, 1969a). Time
resolution of 10 ns was obtained by synchronizing the laser
light pulses with the actuation of a Kerr electro-optic shut-
ter in front of the photo camera. The intensity of the laser
pulses (of some megawatts) was sufficient to provide single-
shot photographs of the dynamic state during flux reversal in
permalloy thin films (Kryder and Humphrey, 1969b). Many
of these early dynamic Kerr experiments became possible
only after contrast enhancement by optical interference layers
(see Figure 2).

A decade later, the emerging bubble memories again stim-
ulated interest in dynamic imaging. Most setups of that time
(Humphrey, 1975; Kryder and Deutsch, 1976) were based
on dye lasers that were triggered by pulsed nitrogen ion
lasers, generating light pulses in the 10-ns-duration range at
a low repetition rate of about 10 Hz. Owing to the high laser
energy, caution had to be taken to avoid sample damage by
overheating, for example, by defocusing the laser beam (Mal-
ozemoff, 1973). Such effects could be avoided by using con-
tinuous illumination and a gated image intensifier to obtain

25 µm 25 µm

(a) (b)

Figure 20. (a) Single-shot picture of ‘exploding’ magnetic bubbles
in a garnet film. (b) Stroboscopic image from the yoke of a thin-
film recording head, excited with a 1-MHz drive field. A difference
image between two states is shown that were acquired by series of
5-ns laser pulses, where the pulses of the second series are delayed
somewhat relative to the pulses of the first series. (Reproduced by
permission of Springer from Hubert and Schäfer, 1998, the pictures
are courtesy of F. Humphrey (a) and B. Argyle (b).)

high-speed photographs of bubble devices (Vella-Coleiro and
Nelson, 1974). In Kryder’s system (Kryder and Deutsch,
1976), the laser pulse frequency corresponded to the trig-
ger rate of a TV camera so that each frame recorded had
only one laser pulse for illumination. By recording on a
videotape recorder, the repeatability of the magnetization
process could be examined by frame-by-frame analysis of
the tape. Transient bubble domain shapes during expansion
and collapse in pulsed magnetic fields have been observed by
high-speed photography (Gál, Zimmer and Humphrey, 1975).
A snapshot of ‘exploding’ bubble domains, as an impressive
example, is shown in Figure 20(a). Single-shot imaging in
magnetic garnet films profited from strong contrasts due to
the polar Faraday effect that can be favorably applied in
bubble films.

Dynamic imaging in the following decade focused on the
understanding of the sources of wiggle and noise in thin-film
recording heads. First measurements were performed in a
photometric way (Re, Shenton and Kryder, 1985): an Ar laser
spot was focused on the pole tip in a regular optical polariz-
ing microscope. The head was excited by high-frequency cur-
rents up to 50 MHz, sent through the drive coil. The reflected
light, modulated by the polar Kerr effect, was then recov-
ered with a photomultiplier and a lock-in amplifier detection
scheme. By line scanning across the pole tip, the profile
of the switching magnetization could be determined. This
method was then extended to a two-dimensional scanning
technique (Kasiraj, Shelby, Best and Horne, 1986), deliv-
ering spatially resolved images of magnetization changes
with a time resolution of 50 ns. Since nonmagnetic signals
were eliminated by the lock-in technique in this approach,
the weak Kerr contrast of permalloy films was greatly
enhanced. Different approaches, applied to the imaging of
thin-film head yokes, were based on stroboscopic wide-field
Kerr microscopy and background subtraction for contrast
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enhancement (Petek, Trouilloud and Argyle, 1990; Liu,
Schultz and Kryder, 1990; Kryder, Koeppe and Liu, 1990). A
time resolution of 5–10 ns was obtained by dye laser pulses,
pumped by Nd:YAG and nitrogen lasers, respectively. An
example of such a stroboscopic image from the yoke of a
thin-film head is presented in Figure 20(b), showing the aver-
aged domain states at different phase positions in a difference
image to emphasize wall motion.

A revival of (still ongoing) interest in high-speed imag-
ing began in the late 1990s, owing to increasing demands
for higher speeds and densities from data storage technolo-
gies, and for newer approaches such as magnetic random
access memories (MRAMs) or spin electronics. The switch-
ing speeds of magnetization in metallic thin films have
approached the sub-nanosecond regime where intrinsic mag-
netic response times due to spin-precessional effects become
the limiting factor in devices, asking for an understanding
and control of fast magnetization reversal processes. Moti-
vated by these accumulated interests, dynamic behavior in
micro- and nanosized particles is being actively studied in
recent years by micromagnetic simulations and direct obser-
vation of the magnetization processes with simultaneous spa-
tial and temporal resolution. The necessary breakthrough in
terms of time resolution was related to the development of
ps- and fs-laser systems that are most frequently applied in
scanning Kerr microscopes. The first laser-scanning micro-
scope with a time resolution of 50 ps (Freeman and Smyth,
1996) was applied for polar Kerr measurements of magnetic
flux propagation in recording head pole tips. This apparatus
was then extended to in-plane sensitivity (Stankiewicz et al.,
1998) and time-resolved vector magnetometry (Ballentine,
Hiebert, Stankiewicz and Freeman, 2000) (see Section 3.2)
and used to study the switching behavior of patterned thin-
film elements with lateral extensions of some micrometers
that were deposited on coplanar transmission lines to create
magnetic field pulses (see Section 4.2.5). A strongly modu-
lated, nucleation-dominated magnetization configuration was
observed during dynamic switching, which was replaced by
domain wall motion if a transverse biasing field was applied,
leading to a dramatic enhancement of switching speed at
the same time (Choi et al., 2001). Excellent reviews of the
outstanding work of the Freeman group are found in (Free-
man and Hiebert, 2002a; Choi and Freeman, 2004; Choi,
Krichevsky and Freeman, 2005b).

Laser-scanning Kerr microscopy with a temporal reso-
lution in the 10-ps regime is now well established and
used for a wide variety of time-resolved observations. (See
also Investigation of Spin Waves and Spin Dynamics by
Optical Techniques, Volume 3, Time-resolved Kerr-effect
and Spin Dynamics in Itinerant Ferromagnets, Volume 3,
and Ultrafast Magnetodynamics with Lateral Resolu-
tion: A View by Photoemission Microscopy, Volume 3).

This includes investigations in magnetic recording heads and
media (Back, Heidmann and McCord, 1999; Wakana, Nagai
and Sakata, 2001; Veerdonk et al., 2001; Nagai, Sekiguchi
and Ito, 2003), as well as in patterned soft magnetic film
elements. ‘Precessional switching’ as reversal mechanism
of small elements could be demonstrated by time-resolved
imaging (Hiebert, Ballentine and Freeman, 2002; Hiebert,
Lagae and Boeck, 2003b). In this method, a fast-rising field
pulse is applied perpendicular to the initial direction of the
magnetization, causing a large angle precession that is used
to revert the magnetization if the field is stopped exactly after
180◦ precessional rotation. It could also be demonstrated
that post-switching oscillations (‘ringing’) can be avoided
(Krichevsky and Freeman, 2004) by properly combining
easy- and hard-axis field pulses in a crossed-wire stripeline
geometry (see Section 4.2.5). Other experiments using scan-
ning Kerr microscopy focus onto the spin-wave eigenmodes
of magnetization (Acremann et al., 2000; Park et al., 2002;
Barman et al., 2004; Buess et al., 2004 (See also Magnetic
Modes in Circular Thin Film Elements, Experiment and
Theory, Volume 2)) and the gyrotropic motion of a central
vortex in magnetic thin-film elements (Park et al., 2003; Park
and Crowel, 2005). Though most of the research groups are
using laser-scanning microscopy, there was also progress in
picosecond wide-field imaging, both based on triggered video
cameras (Chumakov et al., 2005) as well as on pulsed-laser-
illuminated microscopes (Neudert et al., 2005).

At the moment, the interest in magnetization dynamics
is shifting from field-induced to current-induced switching
(Stiles and Miltat, 2006) (See also Spin Angular Momen-
tum Transfer in Magnetoresistive Nanojunctions, Vol-
ume 5 and Theory of Spin-transfer Torque, Volume 2),
while at the same time the lateral dimensions of the relevant
magnetic structures are getting well smaller than microme-
ter. Microscopy at optical frequencies will therefore meet its
lateral resolution limit. Other methods with an order of mag-
nitude higher resolution, based on X-ray dichroism (Choe
et al., 2004; Kuksov et al., 2004; Stoll et al., 2004) or X-ray
holography (Eisebitt et al., 2004), offer an alternative. On
the basis of the latter technique, a spatial resolution of 5 nm
in conjunction with a time resolution of the order of 20 fs
is predicted for imaging at future X-ray free electron lasers,
offering the potential for stroboscopic snapshot imaging of
extremely fast magnetic switching processes of very small
particles in the future.

4.2.2 Camera-based stroboscopic wide-field Kerr
microscopy

In camera-based stroboscopic microscopes (Figure 21), the
magnetic field excitation of the specimen is exactly
synchronized with the exposure time of the video camera.
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Figure 21. Block diagram for camera-based stroboscopic wide-
field Kerr microscopy. Time resolution is provided by triggering
a high-speed video camera or a gated image intensifier at constant
illumination with precise timing relative to the field excitation.

A function generator, which also provides the signal for the
magnetic field, creates trigger pulses that are delayed in a
defined way relative to the field excitation by an electric
delay generator or optical delay line. These trigger pulses
control the moment when the camera is exposed for a short
time. The sample may be continuously illuminated in such
experiments or in synchronization with a pulsed light source.

Today a variety of digital CCD and CMOS camera systems
are available for time-resolved microscopy, which have
replaced the traditional high-speed movie cameras of the
early days of stroboscopy (see Section 4.2.1). A critical
factor is the read-out time of the camera that determines
the repetition rate of the experiment. Digital high-speed
CCD and CMOS cameras with frame rates ranging between
some hundred up to some thousand frames per second
(at sufficient pixel resolution) are presently available. For
comparison, the high-speed motion-picture camera used by
Houze (1967) already offered rates of 5000 pictures per
second (see Section 4.2.1). Frame rates up to the megahertz
regime are also possible with digital cameras. Such speeds,
however, are either reached by pixel binding on cost of
resolution or they only allow to capture very few consecutive
pictures that are stored in the (limited) memory of the
camera head before being transmitted to the computer. The
other important criterion is the time resolution given by the
electronic or mechanic shutter of the camera, which can
typically be varied from seconds down to the sub-100-ns
range in present cameras. The smallest opening time in
single-shot experiments depends on the sensitivity of the
CCD or CMOS chip and the intensity of the light source.
Single-shot imaging up to power frequencies is possible
with the mentioned cameras. Higher frequencies require
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Figure 22. (a) Schematics of an image intensifier (second genera-
tion). Significant signal amplification up to four orders of magnitude
is due to the microchannel plate (b). It consists of millions of very
thin, electrically conducting glass capillaries with typically 10-µm
diameter, which act as independent secondary electron multipli-
ers. Their luminous gain ranges from 10 000 Lm/Lm up to 107

for intensifiers having two microchannel plates. Beside their gat-
ing capability, image intensifiers (combined with a CCD camera)
can also be used to enhance low light level images in regular Kerr
microscopy.

stroboscopic imaging and the accumulation of images at
given time delays (see Figure 19a). Background subtraction
for contrast enhancement is recommended just as in regular
wide-field microscopy.

Much higher time resolution at increased sensitivity can
be gained by using a gateable image intensifier in combi-
nation with a regular CCD camera. The intensifier primar-
ily functions as an electronic shutter (Figure 22). A pho-
tocathode in a vacuum tube is permanently exposed to a
positive potential, which prevents the emitted photoelec-
trons from leaving its surface. On the arrival of a trigger
signal, an impulse of negative voltage is applied to the
photocathode, pushing the photoelectrons into a microchan-
nel plate (MCP) where they are accelerated and multi-
plied. After leaving the MCP, the multiplied electrons are
further accelerated before they finally hit the phosphor
layer of the output window generating photons. A regu-
lar CCD camera accumulates these photons during integra-
tion time. The gating time of the fastest image intensifiers
reaches currently the 200-ps regime at a repetition rate of
around 100 MHz (or less than 100 ps at kilohertz repetition
rates).

Equipped with such modern, highly sensitive CCD or
CMOS cameras and fast-image intensifiers, camera-based
wide-field strobes have been set up in recent years for
dynamic investigation of magnetic films (Chumakov et al.,
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2005) and bulk soft magnetic materials (Moses, Williams
and Hoshtanar, 2005; Flohrer et al., 2006). An advantage of
camera-based systems is the possibility to vary the effec-
tive opening time of the camera or intensifier, respectively,
between shortest and continuous exposure (as opposed to
laser-based stroboscopes with usually fixed pulse frequen-
cies – see following sections). This gives the opportunity to
compare time-resolved data directly with the images acquired
by static or quasistatic imaging. This comparison can be
helpful in the interpretation of dynamic processes, because
the peculiarities of the high-speed magnetization processes
can be readily identified.

Examples for camera-based dynamic experiments have
already been presented in Figure 19. The single-shot images
(Figure 19b,c) were recorded with a high-speed digital
CMOS camera, while time resolution in the stroboscopic pic-
tures (Figure 19a) was achieved by a gated image intensifier.
Two further examples, again obtained with image intensi-
fiers, show the characteristic features of fast magnetization
processes in bulk material (Figure 23) and thin-film elements
(Figure 24). In Figure 23 (Flohrer et al., 2006), the outermost
ribbons of nanocrystalline tape-wound cores with centimeter
dimension and different uniaxial anisotropy were imaged at
different frequencies of a sinusoidal magnetic field. Domain
refinement (wall multiplication) was visible with increasing
frequency for all three cores (Figure 23a). In the material
with the weakest anisotropy, regular domains were replaced
by patches at higher frequency. The partly blurred domain
boundary contrast at 50 Hz resulted from domain movement
during the exposure time or from slightly nonreproducible
wall displacement processes. An increase in the reproducibil-
ity of the magnetization process with rising frequency and
decreasing anisotropy was observed. Figure 23(b) demon-
strates the high-frequency magnetization process of the low-
anisotropy material that is dominated by nucleation and
growth of patch domains rather than by wall motion.

The thin-film switching process in Figure 24(a) (Chu-
makov et al., 2005) was imaged at a much higher time reso-
lution of 250 ps. A square-shaped film element was switched
between two (nearly) saturated states in a sharply rising
pulse-field applied along the elements diagonal and generated
by a coplanar waveguide (see Section 4.2.5). A ‘concertina’
pattern developed, which became visible at transverse Kerr
sensitivity and consisted of alternating areas of clock- and
counterclockwise magnetization rotation. The magnetization
was finally reverted by a mixture of rotation and domain
boundary motion that lasted several nanoseconds. Two vor-
tices were created and pushed toward the edges during this
process. Quasistatic switching in a slowly changing field
occured differently (Figure 24b): there was also a concertina
formed when the magnetic field was decreased from satura-
tion, which, however, broke down abruptly in the reversed
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Figure 23. Time-resolved domain observations on Fe73Cu1

Nb3Si16B7 nanocrystalline tape-wound cores (See also Soft Mag-
netic Materials – Nanocrystalline Alloys, Volume 4) in circum-
ferential magnetic field (core width 20 mm, outer diameter 25 mm,
ribbon thickness 20 µm). A gated image intensifier with a gating
time of one-hundredth of the magnetic field period was applied for
time resolution; several thousand frames of independent events were
accumulated for each image. (a) Stroboscopic images, taken around
the point of zero induction during sinusoidal excitation with saturat-
ing peak induction at different frequencies as indicated. Three cores
with different strength of induced anisotropy Ku were studied (top
row: 29 J m−3, middle row: 10 J m−3, bottom row: 5 J m−3). The
domain ground state, consisting of 180◦ domains and obtained by
static imaging, is shown for comparison. (b) Inductively measured
hysteresis loop and stroboscopic images obtained at 1 kHz on the
core with weak anisotropy. (Reprinted from Acta Materialia, 2006,
Flohrer et al., 2006. Magnetization loss and domain refinement in
nanocrystalline tape wound cores. Acta Materialia, 54 3253–3259,
with permission from Elsevier.)

field by the unpinning and fast motion of Bloch lines, leav-
ing the element in a four-domain Landau state with a single
vortex.
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Figure 24. Comparison of magnetization processes in a Permalloy
thin-film element (edge length 28 µm, thickness 50 nm) in diagonal
magnetic fields. The time-resolved images in (a) were obtained after
applying a pulsed magnetic field (rise time several nanoseconds,
duration 1000 ns, amplitude 2 kA m−1) opposite to a saturating bias
field. A gated image intensifier with a gating time of 250 ps was
applied for time resolution. To achieve a reasonable signal-to-noise
ratio, the Kerr images of some 108 independent events, excited by
a train of field pulses that are repeated periodically, were integrated
in time. The delay time of recording after onset of the field
pulses is indicated. (b) Quasistatic process in slowly changing field
that is decreased from saturation and inverted. Similar states are
shown at two orthogonal Kerr sensitivities as indicated by double
lines. The magnetization vector fields are drawn schematically.
(Reprinted with permission from D. Chumakov et al., Phys Rev. B
Vol. 71, 014410 (2005). Copyright (2005) by the American Physical
Society.)

4.2.3 Light-based stroboscopic wide-field Kerr
microscopy

The components of a stroboscopic wide-field microscope
based on pulsed illumination are shown in Figure 25. The

Wave, pulse
generator 

Delay
generator Trigger

Pulsed light source

Trigger

Camera

Microscope

Sample

Figure 25. Block diagram for light-based stroboscopic wide-field
microscopy. A pulsed light source is employed for time resolution.

wave or pulse generator is triggered by the light source
with some intermediate delay electronics. The images, shot
at a defined time delay, are accumulated in a regular
CCD camera. For comparative (quasi) static imaging, it is
advantageous to switch to a steady light source, which can
be easily realized in wide-field microscopes. Like in all
other wide-field techniques, contrast can be enhanced by
background subtraction.

Lasers are most widely employed as a pulsed light source.
The laser light is fed into the microscope by a glass fiber after
employing proper means to prevent speckle patterns (see
Section 3.1.4). A portion of the laser light shines on a pho-
todiode giving the trigger pulses. Today, the traditional dye
lasers (see Section 4.2.1) can be replaced by mode-locked
solid-state lasers such as Nd-YVO4 that deliver light pulses
with a length in the 10-ps range at visible wavelengths after
frequency doubling. The repetition rate of these lasers is fixed
at some 10 MHz, and their output power has to be limited to
the 100-mW range (e.g., by a rotatable half-wave plate) to
match the sensitivity range of the detection CCD camera and
to avoid sample damage. Externally triggerable, pulsed laser
diodes can be operated in the same time regimes and are also
suited for stroboscopic imaging (Wakana, Nagai and Sakata,
2001; Nagai, Sekiguchi and Ito, 2003). Still shorter pulses of
30–100 fs are achieved if the mentioned picosecond lasers
are used to pump a mode-locked Ti:sapphire laser. The emit-
ted femtosecond pulses have a wavelength around 800 nm
at a repetition frequency of about 80 MHz. At present, most
time-resolved experiments are carried out with the mentioned
laser light sources. The ongoing progress in laser technology
has already brought along sub-femtosecond lasers (Hentschel
et al., 2001), which so far have not been employed for imag-
ing. A problem with laser light sources is the repetition
rate that is usually fixed at a certain frequency (e.g., some
10 MHz in case of solid-state lasers), limiting the flexibil-
ity of the experiment as compared to camera-based systems.
Also possible for wide-field microscopy are pulsed xenon-arc
flashlamps. They provide light pulses of the typical order of
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1 µs at a low repetition rate in the 100 Hz regime, but they are
intense enough to allow single-shot imaging, for example,
in magnetic films with perpendicular anisotropy and thus
strong polar Kerr effect (Romanens et al., 2005). Flashlamps
are an alternative to lasers if lower time resolution is suffi-
cient. Signal-to-noise ratios like in quasistatic imaging can
be obtained, however, at strongly reduced exposure times.

An example for a laser-based wide-field strobing experi-
ment on a NiFe square element is presented in Figure 26,
again in comparison with the quasistatic process. Vortex
motion and wall displacement are characteristic for slowly
changing magnetic fields (Figure 26a). By applying a sharp
field pulse (b), fast rotational processes and spike domain
nucleation are observed (c), which are slowly resolved
after several nanoseconds. The development of small-angle
domains with oscillatory behavior in the low-permeability
closure domain is also noteworthy.

4.2.4 Stroboscopic laser-scanning Kerr microscopy

The principle components of a stroboscopic experiment
based on laser-scanning microscopy are shown in Figure 27.
The pulsed laser beam is split into a pump and probe beam.
The probe beam is directly used for imaging, as described
in Section 3.2, whereas the pump beam triggers the field
excitation via an electric delay generator (or optical delay
line) and pulse generator. Most of the modern scanning
microscopes are based on today’s standard laser, the mode-
locked and frequency-doubled titanium-sapphire femtosec-
ond laser. ‘Pulse picking’ may eventually be required to
adapt the high repetition rate of the laser to the rates of
the delay electronics (unless an optical delay line is applied).
To avoid sample damage or unwanted thermal effects on
the magnetization, the laser pulses may require attenuation
(to an optical power of typically below 100 µW), thereby
increasing the number of shots to be accumulated. The sup-
pression of nonmagnetic contrasts and signal enhancement
can be achieved by modulating the field excitation at kilo-
hertz frequencies (as indicated in Figure 27 for a train of
field pulses that is periodically interrupted) and using lock-
in detection (Hicken et al., 2002; Buess et al., 2004). The
time resolution achievable with laser-scanning microscopy
is ultimately limited by the laser pulse width, but may prac-
tically be limited by trigger jitter from the delay electronics
(Freeman and Hiebert, 2002a). A resolution of the order of
some 10 ps is typically achieved in present laser-scanning
microscopes.

Two stroboscopic operation modes can be employed in
a laser-scanning microscope: temporal and spatiotemporal-
resolving modes. In the temporal mode, (See also
Investigation of Spin Waves and Spin Dynamics by Opti-
cal Techniques, Volume 3, Time-resolved Kerr-effect and
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Figure 26. Excitation of a Landau ground state in a permalloy thin-
film element (edge length 40 µm, thickness 50 nm) in magnetic
fields parallel to the edge. (a) Quasistatic process. The dynamic
process (c), excited by a sharp field pulse (b), is completely
different. The difference images are shown as follows: In the
upper row of (c), an image of the saturated state was subtracted,
while images of the Landau ground state were subtracted in the
middle and lower row at different Kerr sensitivity directions as
indicated, highlighting changes in the magnetization. The time
delays where the images have been captured in a stroboscopic way
are indicated. The accumulation of some 106 single pictures, each
of them obtained with a laser pulse of about 20 ps length, was
necessary to obtain an image of sufficient contrast. (Reprinted with
permission from A. Neudert et al., Phys. Rev. B. Vol. 71, 134405.
Copyright (2005) by the American Physical Society.)

Spin Dynamics in Itinerant Ferromagnets, Volume 3, and
Ultrafast Magnetodynamics with Lateral Resolution: A
View by Photoemission Microscopy, Volume 3), the sam-
ple response is measured locally by focusing on a particular
place of the sample and changing the time delay. The Kerr
signal of a train of light pulses is accumulated after each time
step, building up the time-dependent profile for selected mag-
netization components (see Park et al., 2003, e.g., of such
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Figure 27. Block diagram of the main components of a typical stro-
boscopic imaging setup based on laser-scanning Kerr microscopy.
Instead of the electronic delay generator, an optical delay line (not
shown) may be used for the synchronization of probe beam and
magnetic pulse, in which the travel path of the probe beam with
respect to the pump beam is computer controlled using mirrors
mounted on a slider. (After Choi and Freeman, 2004.)

local magnetometry). For spatiotemporal imaging, the time-
dependent profile is locally measured and then the sample
is scanned at a particular fixed time delay to obtain a two-
dimensional mapping of the magnetic response. Repeating
the procedure at a different time delay leads to a stroboscopic
image series of the dynamic process. Like in stroboscopic
wide-field microscopy, only repetitive phenomena can be
imaged by this technique, while single-shot imaging is not
possible at all. A review of stroboscopic laser-scanning Kerr
microscopy is given in Freeman and Hiebert (2002a).

An example of a spatiotemporal stroboscopic laser-
scanning experiment is presented in Figure 28. A small
cobalt disk was excited by sharp magnetic field pulses per-
pendicular to the film plane. The temporal evolution of
the polar magnetization component at various time delays,
revealing precessional magnetization oscillations that last
several 100 ps is shown in the figure.

To conclude, laser-scanning-based stroboscopes have three
main advantages: (i) The time evolution of magnetization
can in a convenient and highly sensitive way be measured
locally in an area of the laser beam size. (ii) The laser
pulse can be used for pumping and probing by employ-
ing photoconductive switches (see Section 4.2.5). (iii) Lon-
gitudinal, transverse, and polar magnetization components
can be recorded simultaneously, as described in Section 3.2.
A drawback of the method is clearly related to the scan-
ning procedure that is required to obtain full images,
which makes it difficult to obtain static domain images for
comparison.

t = 20 ps t = 60 ps t = 100 ps t = 140 ps

t = 180 ps t = 220 ps t = 260 ps t = 300 ps

Figure 28. Stroboscopic laser-scanning Kerr microscopy of the
polar magnetization component in a cobalt disk with a diameter
of 6 µm and a thickness of 20 nm at increasing time delays after
pulse-field excitation. Laser pulses with a width of 100 fs were
used for imaging, and the magnetic field pulse was created with
a photoconductive switch. (Courtesy of Ch. Back, Regensburg. See
Acremann et al., 2000, for details.)

4.2.5 Magnetic field generation

For time-resolved studies, the magnetic system has to be
excited by an external magnetic field with a well-defined
time structure (in recent years it could be shown that
excitation is also possible by spin-polarized electric currents
(Stiles and Miltat, 2006), by heating with femtosecond laser
pulses (Koopmans, 2003) or by photomagnetic interaction
(Hansteen et al., 2006)). In most experiments, this time
structure is either harmonic (e.g., sine wave excitation)
or consists of a train of periodic field pulses of variable
shape and duration (pulse-field excitation) provided by a
signal generator. The excitation field can be created by
magnetic coils or electromagnets if large samples are to
be magnetized at power frequencies. For small samples,
coil/yoke systems like in magnetic recording heads can be
used well up into the megahertz regime. The field rise
times in these systems, however, are limited to a few
nanoseconds due to inductivity. Much faster rise times are
possible by overcoming the inductivity problem in coplanar
waveguides (Figure 29) that are fabricated from copper or
gold thin films by lithography using etching or lift-off
techniques. Such approaches are of course restricted to the
excitation of patterned magnetic film samples, which can
be deposited onto the conductor line. The impedance of the
waveguide has to be carefully matched to the current source
to avoid unwanted reflections or damping of the current
pulse. Magnetic fields up to the order of 10 kA m−1 are
possible with such transmission lines. Coplanar waveguides
may also be fabricated in cross-wire geometry, which allows,
for example, to study precessional switching by exciting
along and perpendicular to the easy axis of the deposited film
elements (Hiebert et al., 2003a), or to control post-switching
magnetization oscillations by varying the delay between two
orthogonal pulses (Krichevsky and Freeman, 2004).
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Figure 29. Coplanar waveguides, consisting of a conductor trans-
mission line that is separated from a pair of ground lines (all on
the same plane), for the generation of fast magnetic field pulses in
small elements. The microcoil in (a) provides perpendicular fields,
while the waveguide in (b) generates in-plane fields, as indicated.
The sample elements are deposited on top of the conductor line.
For wide-field Kerr microscopy, it is advisable to coat the strip
by antireflection layers to prevent disturbing light effects on the
sample (Chumakov et al., 2005). (Reprinted figure with permission
from D. Chumakov et al., Phys Rev. B Vol. 71, 014410 (2005).
Copyright 2005 by the American Physical Society.)

Magnetization dynamics is critically determined by the rise
time of the excitation pulses (Choi, Ho, Arnup and Freeman,
2005a). Commercial electronic pulse generators may provide
current pulses of down to 50-ps rise time with variable pulse
width down to about 500 ps and repetition rates of several
hundred megahertz. Faster rise times of a few picoseconds
are possible by so-called Auston switches (Auston, 1975),
which have been adapted from semiconductor physics to
the fast excitation of magnetic films (Freeman, 1994). In
the Auston switch, an above–band gap optical pulse from
a picosecond laser strikes a biased coplanar transmission
line structure, fabricated on a semi-insulating semiconductor
substrate, to create a transient photoconductivity and launch
a current pulse down the transmission line. The decay of
the photoexcitation is determined by the recombination rate
of the electron–hole pairs and is usually much slower in
the nanosecond range, preventing the creation of ultrashort
pulses. Laser-scanning microscopes are ideally suited for
the application of photoconductive switches in stroboscopic
experiments, as the probing laser can simultaneously be used
for current launching after employing beam splitting and
delay (Choi and Freeman, 2004). The biggest advantage
of photoconductive switches is the fact that the sample
can be pumped without the introduction of electronic jitter
(Hicken et al., 2002). Examples for the application of these
switches to the study of precessional excitation spectra or
localized spin-wave modes in film elements may be found
in Acremann et al. (2000); Park et al. (2002); Park et al.
(2003); Gerrits et al. (2002); Barman et al. (2004); Buess
et al. (2004).

5 OUTLOOK

The classical Kerr technique for magnetic domain observa-
tion has strongly gained in efficiency after the introduction
of digital image processing in the mid-1980s. By contrast
enhancement, domains get visible on virtually all relevant
ferro- and ferrimagnetic materials and magnetization direc-
tions can be determined quantitatively and even selectively
based on depth. The dynamic capability and the compatibility
with arbitrary applied magnetic fields make Kerr microscopy
ideally suited for the investigation of magnetization pro-
cesses on arbitrary timescales. On bulk materials, just the
surface region can be seen (like in most other domain obser-
vation techniques); therefore theoretical arguments combined
with domain studies in magnetic fields are required to get a
three-dimensional understanding of the magnetic microstruc-
ture. The optical resolution limit of about 200 nm limits the
application of Kerr microscopy when small objects are to
be studied as they are increasingly getting addressed with
rising miniaturization of devices. Yet, Kerr microscopy will
remain the method of choice for the visualization of moving
domains in the laboratory.

ACKNOWLEDGMENTS

The careful reading of the manuscript and supply of images
by Jeffrey McCord, Sybille Flohrer, and Andreas Neudert (all
IFW Dresden) is highly appreciated. Thanks also to Dmitry
Chumakov (IFW Dresden) and Christian Back (Regensburg)
for providing images.

REFERENCES

Acremann, Y., Back, C.H., Buess, M., et al. (2000). Imaging pre-
cessional motion of the magnetization vector. Science, 290,
492–495.

Argyle, B.E. and McCord, J. (2000). New laser illumination method
for Kerr microscopy. Journal of Applied Physics, 87, 6487–6489.

Argyle, B.E., Petek, B. and Herman, D. Jr. (1987). Optical imaging
of magnetic domains in motion. Journal of Applied Physics, 61,
4303–4306.

Auston, D.H. (1975). Picosecond optoelectronic switching and
gating in silicon. Applied Physics Letters, 26, 101–103.

Back, C.H., Heidmann, J. and McCord, J. (1999). Time resolved
Kerr microscopy: magnetization dynamics in thin film write
heads. IEEE Transactions on Magnetics, 35, 637–642.

Ballentine, G.E., Hiebert, W.K., Stankiewicz, A. and Freeman, M.R.
(2000). Ultrafast microscopy and numerical simulation study of
magnetization reversal dynamics in permalloy. Journal of Applied
Physics, 87, 6830–6832.



Investigation of domains and dynamics of domain walls by the magneto-optical Kerr-effect 27

Barman, A., Kruglyak, V.V., Hicken, R.J., et al. (2004). Imaging
the dephasing of spin wave modes in a square thin film magnetic
element. Physical Review B, 69, 174426.
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Schäfer, R. and Hubert, A. (1990). A new magnetooptic effect
related to non-uniform magnetization on the surface of a fer-
romagnet. Physica Status Solidi A, 118, 271–288.



Investigation of domains and dynamics of domain walls by the magneto-optical Kerr-effect 29
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1 INTRODUCTION

The invention of lasers has radically affected the field
of science and technology. Their development led to
the discovery and rapid promotion of nonlinear optics
(Franken, Hill, Peters and Weinreich, 1961; Akhmanov and
Khokhlov, 1964; Boyd, 1965; Shen, 1984). With mani-
fold applications, nonlinear optical phenomena play a vital
role in modern optics. Compared with linear optics, non-
linear optical processes reveal novel information about
the electronic structure of solids because, based on the
involvement of more than a single optical field, addi-
tional experimental degrees of freedom are accessible. In
the vast field of nonlinear optics second-harmonic gener-
ation (SHG), as the lowest-order nonlinear process, plays
a particular role. Being a higher-order process, it brings
new and complementary information in comparison with

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

linear optics, partly due to the different selection rules for
multiphoton processes and the higher-order susceptibilities
involved. Another strong point of the technique is it’s intrin-
sic surface and interface sensitivity that is derived from
extremely simple yet powerful symmetry constraints. The
SHG technique was therefore widely used for studies of
surfaces and interfaces (Shen, 1984; Heinz, 1991; Benne-
mann, 1998).

The breaking of time-reversal symmetry leads to a number
of well-known magneto-optical (MO) effects like Faraday
rotation in transmission and Kerr rotation in reflection
(Zvezdin and Kotov, 1997). For nonlinear optics, in the
electric-dipole approximation, even-order effects like SHG
are only allowed in media with a broken space inversion sym-
metry. As a consequence, even-order nonlinear MO effects
can only be observed in materials in which both space-
inversion and time-reversal symmetry are broken. Though
the first predictions of magnetic effects in SHG were made
over 40 years ago (Pershan, 1963; Adler, 1964; Lajzerowicz
and Vallade, 1967) and discussed in several theoretical pub-
lications (Kielich and Zawodny, 1973; Pan, Wei and Shen,
1989; Hübner and Bennemann, 1989), the field of nonlin-
ear magneto-optics really evolved in the past fifteen years
by the observation of huge MO effects from magnetic sur-
faces and interfaces (Reif, Zink, Schneider and Kirschner,
1991; Reif, Rau and Matthias, 1993; Spierings et al., 1993).
This ‘revival’ and recent strong development of nonlinear
magneto-optics is clearly related to the enormous interest
in the study and applications of magnetic multilayers and
nanostructures as well as to the development of solid state
mode-locked femtosecond lasers that are particularly suitable
for these kinds of studies (Keller, 2003).

One of the very important fundamental achievements
was the demonstration of the extreme sensitivity of
magnetization-induced second-harmonic generation (MSHG)
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to the slightest modifications of the spin-polarized electronic
structure of transition-metal surfaces (Wierenga et al., 1995;
Straub, Vollmer and Kirschner, 1996; Vollmer, Straub and
Kirschner, 1996b; Jin, Regensburger, Vollmer and Kirschner,
1998; Veenstra et al., 1999; Veenstra, Petukhov, Jurdik and
Rasing, 2000). Even tiny increases in the magnetization
of the surface layer, caused by the presence of atoms
with low coordination numbers on surfaces with atomic
steps, could be detected (Jin, Regensburger, Vollmer and
Kirschner, 1998). On the other hand, the possibility to dis-
tinguish the contributions from different interfaces (Kirilyuk,
Rasing, Haast and Lodder, 1998) showed a way to mea-
sure the magnetization of a buried interface and therefore
triggered a lot of applied interest. One of the particular
intriguing problems attacked with MSHG was the spin-
polarization of the interfaces between ferro- and antiferro-
magnets in exchange-biased structures (Sampaio et al., 2003,
2005; Valev, Gruyters, Kirilyuk and Rasing, 2006a,b; Valev
et al., 2007). In addition, it has been demonstrated that, con-
form the original predictions, SHG can be used to study
antiferromagnetic ordering and even image antiferromagnetic
domains, which is very hard or even impossible to do with
other techniques (Fiebig, Fröhlich, Krichevtsov and Pisarev,
1994; Fiebig, Fröhlich, Sluyterman and Pisarev, 1995).

This review is organized as follows: first, a general
description of MSHG is given followed by a discussion of the
theory of MSHG in Section 2. Then, the details of various
experimental techniques are given in Section 2. Section 4
discusses the applications of MSHG to magnetic surfaces;
Section 5 is concerned with buried magnetic interfaces, fol-
lowed by a discussion of the unavoidable bulk contributions
to the interface MSHG, and the consequences of the elec-
tronic quantum-well-state resonances. Further developments
of the techniques are briefly outlined in Section 6.

2 THEORY OF MSHG

2.1 General idea

An incident light wave induces a polarization in a medium
that serves as a source for the transmitted and reflected light.
In the electric-dipole approximation, this polarization P can
be written as an expansion in powers of the optical electric
field E(ω):

P(ω, 2ω, . . .) = χ(1)E(ω) + χ(2)E(ω)E(ω) + . . . (1)

The tensor χ(1) is the linear optical susceptibility allowed
in all media. SHG is described by the second term with
the corresponding nonlinear tensor χ(2) allowed only in
noncentrosymmetric media. The latter is easy to verify by

carrying out the inversion operation that changes the sign of
every polar vector, such as P or E. Consequently, χ(2) is
allowed at surfaces or interfaces between centrosymmetric
media, giving rise to the surface/interface sensitivity of the
technique. For crystals with a spontaneous or magnetic field-
induced magnetization M, the nonlinear second-order optical
polarization of a medium Pnl(2ω) can be written as:

Pnl(2ω) = χ crE(ω)E(ω) + χmagnE(ω)E(ω)M (2)

where the first term describes the purely crystallographic
contribution while the second one exists only in the presence
of a magnetization M and describes MSHG. Note that M
is an axial vector, so that the inversion operation does
not change its sign and the surface/interface sensitivity also
holds for magnetic materials. Thus these two contributions
to the nonlinear polarization Pnl(2ω) are of electric-dipole
character and simultaneously allowed in noncentrosymmetric
media, but their properties are different. The crystallographic
contribution is described by a polar tensor χ cr of rank 3,
whereas the magnetization-induced contribution is described
by an axial tensor χmagn of rank 4. In lossless media χ cr

is a real tensor and χmagn is an imaginary tensor, therefore
there is no interference between the SHG waves coming from
these two sources for linearly polarized fundamental light
(Pershan, 1963; Pan, Wei and Shen, 1989). The interference
becomes allowed for linearly polarized fundamental light in
the absorption region, because both tensors will be complex,
or by using circular optical excitation. It is this interference
that gives rise to new nonlinear MO effects, which have no
counterparts in linear optics (Pavlov, Pisarev, Kirilyuk and
Rasing, 1997; Kirilyuk, Pavlov, Pisarev and Rasing, 2000;
Gridnev et al., 2001).

The expression (2) is general and fully describes MSHG
in the electric-dipole approximation. The number of nonzero
component of χ cr and χmagn tensors depends on the crystal-
lographic and magnetic symmetry of the sample. For high
symmetry systems (the vast majority of thin-film structures
studied so far), each of these tensors consists of a few compo-
nents only. Moreover, these components are not intermixing
with each other, that is, the tensor

χ(2) = χ cr + χmagn · M (3)

can be written as a single third rank tensor whose components
are either even or odd in M. An important case is that of an
isotropic interface (that of a quite standard polycrystalline
film, for example, or a (100) surface of a cubic system).
In this case, and with xz being the plane of incidence, the
nonlinear MO tensor χ(2) can be written as (Pan, Wei and
Shen, 1989): The elements shown to depend on Mi are odd
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χ(2) =

 χxxx(My) χxyy(My) χxzz(My) χxzy(Mz) χ cr

xzx χxxy(Mx)

χyxx(Mx) χyyy(Mx) χxzz(Mx) χ cr
yzy χyzx(Mz) χyxy(My)

χ cr
zxx χ cr

zyy χ cr
zzz χzzy(Mx) χzzx(My) χzxy(Mz)


 (4)

in the corresponding magnetization component (roughly pro-
portional to it–see Pustogowa, Hübner and Bennemann,
1993). Thus the nonlinear MO properties of an isotropic
interface with a selected magnetization direction are char-
acterized by up to 10 (complex) numbers.

Here E(ω) and P(2ω) are local fields and polarizations; to
relate them to the amplitudes of the incoming and outgoing
electromagnetic waves, appropriate Fresnel factors should be
used. In fact, the χ(2) tensor alone determines the geometrical
symmetry properties of MSHG; for an extended treatment of
these properties, both theoretical and experimental, we refer
the reader to Gridnev et al. (2001).

The χ(2) tensor of equation (4) allows one to qualitatively
understand the behavior of MSHG as a function of magne-
tization reversal. In the transverse MO geometry, M||y, (see
Figure 1), equation (4) shows that in the case of S-polarized
incident light (i.e., Ein = Ey) one even (χzyy) and one odd
(χxyy(My)) tensor element will produce the outgoing SH
waves. Both of them lead to the same P -polarization of
the output. Therefore, the total MSHG output can be
written as

I 2ω(±M) ∝ |Ein|4(αχzyy ± βχxyy(M))2 (5)

where α and β denote the corresponding Fresnel factors (they
result, for example, in the angle of incidence dependence of
the MSHG signal). Thus the reversal of M leads to a change
in the MSHG intensity.

In contrast, in the longitudinal geometry, with M||x, the
corresponding odd element (χyyy(Mx)) gives rise to an
S-polarized output. The total output polarization will thus

x

y

zPin

Sin

My

Sout

Pout

Figure 1. Schematic geometry of the experiment: xz is the plane
of incidence, M is directed along y (transversal geometry) or along
x (longitudinal geometry). Input light is either P polarized (Ex , Ez)
or S polarized (Ey).

be a vector sum of the two orthogonal vectors, one of them
being reversed upon reversal of M. The resulting MO effect
is therefore a change of MSHG polarization (Reif, Rau and
Matthias, 1993; Koopmans, Groot Koerkamp, Rasing and
van den Berg, 1995). In both cases, the relative effects can
be quite large, as the odd and even tensor elements are of
similar size (see, e.g., Koopmans, Groot Koerkamp, Rasing
and van den Berg, 1995). This is in strong contrast to most
linear MO effects, where the odd components are generally
much smaller than the even ones.

The problem of calculating the nonlinear (magneto-)
optical response of a given medium contains two clearly
distinct parts: (i) calculation of the nonlinear susceptibility,
and (ii) with known susceptibility, calculate the outgoing
MSHG intensity. Both these parts are nontrivial and require
a lot of attention: part (i) involves sophisticated electronic
structure calculations in a nonperiodic electronic system,
while part (ii) contains nontrivial electromagnetic boundary
conditions and complicated multiple-scattering processes.

2.2 Nonlinear magneto-optical susceptibility

As a first step in the calculation of the nonlinear MO sus-
ceptibility tensor χ(2), a complete spin-dependent electronic
band structure of the sample should be computed, includ-
ing the corresponding wave functions. As by the ‘sample’
we mean surface or interface that is a nonperiodic structure,
both the band structure and wave functions will be position
dependent in the perpendicular to the surface direction.

Next, the electronic structure serves as a background for
the calculation of the MO response. This approach was
followed by Hübner and Bennemann (1989) and Hübner
(1990) using the Heisenberg’s equation-of-motion formalism
in second-order perturbation theory. The screening of the
driving electromagnetic field by the system’s electrons were
taken into account self-consistently.

The surface or interface susceptibility is then given by:

χijm(2ω) = e3q||a
�

λs.o.

�ω

∑
k,l,l′,l′′,σ

MiMj Mm

×




f (Ek+2q|| l′′σ )−f (Ek+q|| l′σ )

Ek+2q|| l′′σ −Ek+q|| l′σ −�ω+i�αl
− f (Ek+q|| l′σ )−f (Eklσ )

Ek+q|| l′σ −Eklσ −�ω+i�αl

Ek+2q||l′′σ − Eklσ − 2�ω + i2�αl



(6)
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Here, the symmetry of the wave functions enters through
the dipole matrix elements Mi = 〈�k,l,σ |pi |�k,l′,σ 〉, where
pi is the momentum operator. It is this symmetry that
is responsible for the selection rules giving rise to the
surface sensitivity of the response. The dependence on the
electronic structure results from the eigenvalues Ek,l,σ , which
depend on the wave vector k, the band index l, and the
spin σ . Note, the matrix elements may involve s-, or d-
states, as well as quantum well states (QWS) that appear
in ultrathin layers, and will depend on the corresponding
wave functions. f (Ek,l,σ ) is the Fermi function, αl is the
Lorentzian broadening of the states. Taking into account
only vertical transitions, equation (6) already shows how
changes of the susceptibility result from modifications in the
joint density of states, which is probed by nonlinear optics.
Since SHG is generated at the surface and the interface of
the film, the summation over the energy eigenvalues has
to be performed according to the surface and the interface
electronic structure. Thus for a paramagnetic material, the
band structure for both spin directions is the same and no
spin dependence results. In the case of a ferromagnetic
material, the nonlinear tensor χijm(M) will be separated
into odd and even components as discussed in the preceding
text.

The only attempt to carry out the whole computational
procedure in full was made by Andersen and Hübner (2002)
who calculated the nonlinear MO response of a single
Fe(001) monolayer on top of a 1, 2, 3, or 4 monolayer
‘substrate’. The results showed indeed the expected large
nonlinear MO effects. Such a sample is close to the limit
of modern computation possibilities. Moreover, even in that
case the calculation procedure was not entirely stable, as
their own tests showed. The problem is that small errors
in calculating the wave functions due to a restricted basis
set (to save computation time) get amplified when three
transition matrix elements are multiplied to obtain the final
result.

Another approach based on the first-principles layer
Korringa–Kohn–Rostocker method was employed to cal-
culate the MSHG response from the Ni(110) surface. The
preliminary results showed the contribution of the surface
states to the nonlinear MO susceptibility (Calmels, Crampin,
Inglesfield and Rasing, 2001), in good agreement with
experimental results (Veenstra, Petukhov, Jurdik and Ras-
ing, 2000).

2.3 Calculation of MSHG from multilayers

To calculate the MSHG response from a multilayer system
one realizes that, in fact, the nonlinear susceptibility χ(2) is
expected to quickly decrease on both sides of the interface.

As a result, the spatial distribution of χ(2) can be well approx-
imated by an infinitesimally thin nonlinear sheet between the
two non-nonlinear media, see Figure 2 (Bloembergen and
Pershan, 1962; Sipe, 1987; Wierenga, Prins, Abraham and
Rasing, 1994; Wierenga, Prins and Rasing, 1995). This is
even more true because the characteristic length to compare
with is the wavelength of light, typically several hundred
nanometers. Such an approximation reduces the number of
parameters in the problem. A well-known concept in optics
is to treat the boundary conditions at an interface, and the
propagation of light through a homogeneous slab, in terms
of matrices that relate the field components on both sides of
the interface and the layer respectively. Describing the full
multilayer is thus reduced to a simple matrix multiplication
(Palik, 1985).

Owing to the very small nonlinear susceptibility values,
the total problem can be split in two. In the first part, the
influence of the nonlinearity on the light behavior is totally
neglected. The local electric fields and polarizations induced
by the incident light inside the structure are derived from the
primary electric field through the linear susceptibility tensor.
The tensor, in turn, may depend on the layer magnetization,
thus giving rise to linear MO effects. The induced polariza-
tions are actually quite small compared to the fundamental
electric field and can be considered as a perturbation.

The second part of the problem concerns the electro-
magnetic waves at the second-harmonic frequency. Here,
the fundamental electromagnetic field is absent and the 2ω-
polarizations play the role of the only sources. If all the layers
of the structure possess a center of inversion, then, within the
electric-dipole approximation, there will be no volume polar-
ization. The total second-harmonic yield can thus be related
to the interfaces only, each interface being described by its
own nonlinear optical tensor χ(2).

εj ε′ εj −1

Layer j Layer j −1

z

y

xE+

E−

c(2)
j 

Figure 2. Infinitesimal nonlinear sheet inside an artificial vacuum
sheet at an interface.
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It should be noted that even in linear optics, the normal
component of the electromagnetic field is discontinuous
across ideal interfaces. The surface polarizations become
radiation sources. The corresponding electric fields can
be obtained from Maxwell’s equations, which are now
accompanied by the unconventional boundary conditions
taking into account singular polarizations of ideal interfaces
(Shen, 1984). A comprehensive treatment of problems related
to a model of both linear and nonlinear MO effects in
multilayers has been given by Atkinson and Kubrakov
(2002). Most often, however, bulk anisotropy of layers can
be neglected together with the linear MO effects that are
argued to be small enough.

The parameters accessible experimentally are the MSHG
intensity and polarization. In addition, also the phase of
the total MSHG output can be determined quite straight-
forwardly (Veenstra, Petukhov, de Boer and Rasing, 1998;
Leute, Lottermoser and Fröhlich, 1999). In order to deter-
mine the nonlinear susceptibilities at interfaces, the MSHG
output is first measured as a function of some parameters, for
example, angle of incidence, magnetization, sample thick-
ness, azimuthal angle, and so on. Then, multiple-scattering
calculations are used to fit the obtained data using the nonlin-
ear optical tensor components as fit parameters, provided that
the obtained experimental data are sufficient for an unam-
biguous fit. Various polarization combinations help to dis-
tinguish different tensor components by selectively exciting
one or another combination of them. An example of such an
analysis will be included in Section 5.

The main assumption of the discussed model is that
it considers the source of the SH field in the form of
an infinitely thin, coherently and homogeneously polarized
sheet. Although this assumption is justifiable in many cases
investigated experimentally, it is not sufficiently general.
Moreover, it is based on a macroscopic-like description of
the source of the SH field, which does not provide a direct
physical insight into the processes involved in the SHG
phenomena.

A different model was discussed recently (Hamrle,
Polerecký and Ferré, 2003; see also Sampaio et al., 2004),
where the problem of MSHG was considered from a different
point of view. The SH field was considered to be generated
by a point electric dipole oscillating at an angular frequency
2ω, positioned at the layer interface. This is closely related to
the symmetry considerations used in the macroscopic models
like that discussed in the preceding text.

This approach to the SHG has some advantages. In partic-
ular, once the electromagnetic (EM) field generated by the
point dipole is known, it can be used to evaluate the SH
field generated from a system with arbitrarily spatially dis-
tributed dipoles. Furthermore, as it is based on a well under-
stood microscopic quantity (an elementary dipole), it can be

more directly related to a quantum-mechanical description of
MSHG.

The elegance of the developed model becomes apparent
when systems with an inhomogeneous distribution of sus-
ceptibility tensors along the interfaces are considered. This
is the case when the magnetization of the layers, and thus the
interfaces, exhibits variations in the lateral dimension due to,
for example, the presence of magnetic domains, propagating
spin waves, periodic structures, magnetic nanostructures, and
so on, and where the optical properties (layer thicknesses and
permittivity tensors) can be assumed to be laterally homoge-
neous (Hamrle, Polerecký and Ferré, 2003).

2.4 Interface and bulk contributions to MSHG
from a superlattice

It would be misleading to state that all the MSHG response
from centrosymmetric media is generated at interfaces only.
Strictly speaking, the surface nonlinear optical tensor χ does
not even fulfill the energy conservation law, one of the basic
principles of physics. Reexamined closely (Petukhov et al.,
1998), this paradoxical result can be understood with the aid
of an additional bulk contribution to the energy flow, as part
of the surface response appears to be determined by the bulk
parameters alone.

Having realized that, it is interesting to look more closely
at the description of surface and bulk contributions to MSHG
from a multilayer. The polarization P can be written as an
expansion in powers of the optical electric field E(ω):

P(ω, 2ω, . . .) = χ1,dE(ω) + χ1,q∇E(ω) + χ2,dE(ω)E(ω)

+χ2,qE(ω)∇E(ω) . . . (7)

The tensor χ1,d is the linear optical susceptibility allowed
in all media. SHG is described by the third and the
fourth term where the electric-dipole tensor χ2,d is allowed
only in noncentrosymmetric media and at surfaces and
interfaces, while the quadrupole tensor χ2,q is allowed
everywhere. For crystals with a spontaneous or magnetic-
field induced magnetization M, expansion of the nonlinear
optical polarization of a medium Pnl(2ω) can be further
written (keeping only terms linear in magnetization) as:

Pnl(2ω) = χ crE(ω)E(ω) + χmE(ω)E(ω)M

+χq,crE(ω)∇E(ω) + χq,mE(ω)∇E(ω)M (8)

where the first and third term describe the purely crystallo-
graphic contributions while the second and fourth only exists
in the presence of a magnetization M.
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Although smaller, the last two terms in equation (8)
originate from the bulk and therefore may be comparable in
magnitude to the strong dipole contribution coming from the
very thin interface layer. Experimental results (see Sato et al.,
2001, and below) confirm this assumption and substantiate
the necessity to take this contribution into account in high-
quality single-crystalline multilayers.

3 EXPERIMENTAL DETAILS

The strong development of nonlinear magneto-optics in
the past decade is also related to the development of
solid state mode-locked lasers that combine short pulse
lengths with high repetition rates and allow the study
of ultrathin magnetic films without destroying them. For
most MSHG experiments nowadays, a Ti-sapphire laser
(82 MHz × 100 fs pulses) tunable from 750–1100 nm but
extendable to 400 nm–3 µm using a parametric amplifier, is
used. After proper filtering the generated specular harmonic
light can be analyzed.

For each polarization combination, the total MSHG
response from a magnetic material can be simplified by

P(2ω) = (χ even
eff ± χodd

eff (±M))E2
ω (9)

where χ even
eff and χodd

eff are effective tensor components that
are even and odd in the magnetization and describe the crys-
tallographic and magnetic contributions to the total response,
respectively. As both these contributions are complex quan-
tities, the total (MSHG) signal is thus given by

I 2ω = |χ even
eff |2 + |χodd

eff |2 ± 2|χ even
eff ||χodd

eff | cos 	
 (10)

where 	
 is the phase difference between the two con-
tributions. The importance of the latter is obvious: when
	
 = π/2, the interference term is zero and changing the
magnetization direction will have no effect on the total
MSHG signal.

Though generally phase information is lost in intensity
measurements, fortunately the phase can be measured quite
easily in nonlinear optics by using interference techniques
(Stolle et al., 1997). The latter can also be exploited in the
case where there is only a purely odd response, by adding
a nonmagnetic reference signal, as it is the interference
between even and odd terms that gives rise to the nonlinear
MO effects.

While MSHG signals give large relative MO effects, being
a nonlinear optical technique the absolute intensities are
rather small (10–104 photons/s) but easily detectable with
modern photon counting or charge-coupled devices (CCD),

though care should be taken to filter out the 2ω signal versus
the much stronger fundamental signal at ω (see Figure 3).

Because of the simplicity of the experimental configura-
tion, coupled with the large effects, the transverse geometry
is often used for experimental studies. For that situation, one
can define a magnetic contrast or asymmetry as:

A = I 2ω(+M) − I 2ω(−M)

I 2ω(+M) + I 2ω(−M)

= 2|χodd
eff |/|χ even

eff |
1 + |χ even

eff /χ even
eff |2 cos 	
 (11)

Because A is normalized with respect to the total SHG
intensity, it does not depend on the intensity or shape of
the fundamental light pulses, nor on the spectral properties
of optical components, such as filters, in the optical set
up. Together with the already mentioned simplicity, this
makes A a useful parameter for quantitative investigations.
One should, however, realize that the appearance of large
effects that result from the large magnetic tensor components
also means that, in contrast to most linear MO effects,
the nonlinear optical effects are often not simply linearly
proportional to the magnetization, as directly follows from
equations (10) and (11). This can for example strongly affect
the shape of an MSHG loop (Pavlov et al., 2001; Valev,
Gruyters, Kirilyuk and Rasing, 2005).

3.1 MSHG microscopy

It is interesting as well as challenging to employ the
nonlinear optical effects in the imaging mode. Owing to
the high sensitivity to the symmetry and order, SHG has
been used to image ferroelectric domains and domain
walls (Uesu, Kurimura and Yamamoto, 1995; Bozhevolnyi
et al., 1998; Mishina et al., 2001), molecular surface order-
ing (Flörsheimer et al., 1997a,b), metal (Pedersen and
Bozhevolnyi, 1999) and semiconductor (Erland et al., 2000)
surface structures. In addition, owing to its high contrast,
SHG microscopy could be combined with optical near-field
imaging (Smolyaninov, Zayats and Davis, 1997; Bozhevol-
nyi, Vohnsen and Pedersen, 1998; Zayats and Smolyaninov,
2004) thus expanding the resolution possibilities.

The MSHG technique can be straightforwardly adopted to
provide spatial information on the magnetization distribution
at interfaces. Owing to its high MO contrast as well as some
rather unusual MO effects, it can also be used as a technique
complementary to the standard Magneto-optical Kerr effect
(MOKE) microscopy.

The latter has been clearly demonstrated in thin films of
magnetic garnets where the initial inversion symmetry of
the bulk was broken by anisotropic film growth. The arising



Magnetization-induced second harmonic generation 7

Ti:sapphire
laser

Pulse shape
analysis

Attenuation

Reference
PMT

Nonlinear
crystal

PMT

Sample

Filters

Analyzer

Magnet

Focusing
lensPolarizer

Filter

Babinet–Soleil
compensator

Sample environment:
UHV, cryostat, etc.

Figure 3. Typical MSHG experimental setup, with an autocorrelator for pulse shape characterization and a reference SHG channel.

strong MSHG response has different symmetry properties
than the corresponding linear MO effects and was thus
useful in distinguishing the complementary magnetization
components, as shown in Figure 4 (Kirilyuk, Kirilyuk and
Rasing, 1997).

For imaging, laser light is focused onto a sample. The gen-
erated SHG light is used, after proper filtering, for the imag-
ing of the sample with the help of a CCD camera. Owing to
the very large contrast, the images could be obtained directly
and without any contrast improvement nor background sub-
traction, a procedure that is usually necessary to obtain the
image with linear magneto-optics. The size of the MSHG

At w At 2w

Out-of -plane M In-plane -M

(a) (b)

Figure 4. Images of magnetic domain structure in a thin layer
of magnetic garnet: (a) linear Faraday effect, (b) MSHG in
transmission. Below the images, the domain structure is shown as
inferred from the pictures: Faraday effect sees the polar component
of M only, while MSHG is able to detect also the in-plane
component of the magnetization, showing that each up/down
domain in the left picture is actually divided in two subdomains
with tilted magnetization directions.

image is restricted to the diameter of the focused laser beam,
approximately 30 µm in this case, whereas the resolution is
determined by the standard criteria for the used microscope.
The size limitation for the image can be overcome by using a
sample scanning procedure. Figure 5 shows a millimeter-size
image of an ultrathin stepped film, where owing to electronic
quantization effects (QWS) one can observe a strong con-
trast from monolayer-high steps (Kirilyuk, Rasing, Mégy and
Beauvillain, 1996). A more elaborated procedure, demon-
strated by Pavlov et al. (2001) (see Figure 6), involves a
combination of the high-resolution imaging with scanning the
sample, and a subsequent reconstruction of the total image
from small parts.

For the purposes of the present review, it is more inter-
esting to consider MSHG imaging based on a pure interface
response, such as for example that from CoNi/Pt interfaces
(Kirilyuk, Kirilyuk and Rasing, 1999), or from Pt/Co/Pt mul-
tilayers (Pavlov et al., 2001). Such sputtered multilayers were
found to be a promising MO material (Bijker, Donnet and
Lodder, 1996) because of their low Curie temperature and
strong MO effects.

Figure 7 shows the magnetization reversal process in a
9-nm thick CoNi film starting from a fully saturated sample
(see Figure 7a). A magnetic field of the same value (60
Oe) was applied for the given time intervals (usually 20 s)
followed each time by an image accumulation in zero field
(10 min per image). In the MSHG images of Figure 7,
there appear some details of the domain structure with a
weaker contrast than that of the opposite domains. For
example, images (d) and (e) clearly show several faint stripes
extending along the diagonal of the images. All of them
disappear later, in a completely saturated sample (f). Owing
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Figure 5. Large-scale image of a stepped Au/Co/Au(111) layer, showing monolayer sensitivity of SHG imaging.

Pt/Co (20 ML)/Pt
MOKE

MOKE MSHGPt/Co (40 ML)/Pt

(a) (b)

(c) (d)

20 µm

MSHG

Figure 6. MOKE and MSHG images for Pt/Co(20 ML)/Pt (a and
b), and for Pt/Co(40 ML)/Pt films (c and d). The field was previously
applied along the easy anisotropy axis. (Reproduced from Pavlov
et al., 2001, with permission from IOP Publishing Ltd.  2001.)

to the low quality of the linear MOKE images in such
transversal geometry, a precise comparison of the linear
and MSHG images is difficult. Therefore, it is unfortunately
impossible to give an unambiguous interpretation to these
structures as interface-related.

3.2 Measurements of the optical phase

In most surface, SHG experiments only the intensity of
the second-harmonic light is routinely measured. The phase
of SHG does, however, contain valuable information for
a correct interpretation of the experimental data (Veenstra,
Petukhov, de Boer and Rasing, 1998; Veenstra, Petukhov,
Jurdik and Rasing, 2000). Furthermore, phase-sensitive mea-
surements are especially useful in surface-specific SHG
where the response mainly originates from a thin surface
region so that the optical phase is directly related to the

(a) (b)

(d)(c)

(e) (f)

30 µm

Figure 7. MSHG images of magnetization reversal in a Pt/CoNi/Pt
sandwiched layer. Magnetization is saturated ‘up’ in image (a) and
‘down’ in image (f). Images (b), (c), (d), and (e) show gradual
appearance and growth of opposite magnetic domains. The laser
spot diameter is approximately 30 µm. No background subtraction
of any kind has been used.

phase of the components of the surface nonlinear suscep-
tibility χ(2). As an example, the phase may give direct
information about absolute molecular orientation on surfaces
(Kemnitz et al., 1986) and in liquid crystals (Stolle et al.,
1995). For MSHG, the phase between the even and odd sus-
ceptibility components is an extremely important parameter,
as it determines the actual contrast in the MSHG signal (see
equation (11)).

The phase of the SHG response can be determined with
an interference technique described in Chang, Ducuing and
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Bloembergen (1965). This method is however not compatible
with, for example, UHV apparatus when femtosecond lasers
are used. The reason is the dispersion of the optical windows
(	nglass ∼ 10−2), causing a too large time delay τ ∼ 1 ps)
between the fundamental and SHG pulses that destroys the
interference. The following alternative approach overcomes
this problem in an elegant way (Veenstra, Petukhov, de Boer
and Rasing, 1998).

When 2ω and ω pulses propagate through air, the relative
phase 
 between them gradually changes,


(d) = 
0 + δ
 = 
0 + 4π	nair

λ
d (12)

where 	nair = n(2ω) − n(ω) ∼ 10−5 is the dispersion of the
ambient air, d is the distance the two pulses have traveled
through air, and λ is the fundamental wavelength. By using
an additional SHG source (called reference) at position d in
the path of the beam, interference can be observed in the
detected total intensity

I2ω,tot (d) = I2ω,s + I2ω,r + 2α
√

I2ω,sI2ω,r cos[δ
(d) + 
0]
(13)

where I2ω,s and I2ω,r are the SHG signals generated by the
sample and the reference, respectively. The spatial coherence
is described by the coherence parameter α. This interference
disappears if the pulses do not overlap in time. As is shown in
Figure 7(a), this may happen if the femtosecond fundamental
and SH pulses have to travel through a strongly dispersive
element like an optical window.

Looking at the problem more closely, in the time domain
the optical field at the detector created by two pulses with a
delay τ can be described by the function

E2ω(t) = E1g(t) exp(−i2ω0t)

+E2g(t − τ) exp(−i2ω0t + i
) + c.c. (14)

where Eig(t) describes a slowly varying envelope with
amplitude Ei (i = 1, 2). Using the so-called ‘time-shifting’
identity, g(t − τ ) ⇔ G(�)ei�τ , where g(t) ⇔ G(�) is the
Fourier transformation, the measured spectrum at the detector
is given by

I (2ω0 + �) ∝ |G(�)|2

[E2
1 + E2

2 + 2αE1E2 cos(2ω0τ + �τ + 
)] (15)

where � denotes the deviation of the frequency from the
central frequency 2ω0 within the spectrum of the MSHG
output. The second term in the cosine, �τ , leads to beatings
in the spectrum of the SH light. The phase of the beatings
is directly related to the phase 
 of the response from the

sample. Thus the phase information can be easily recovered
by using a spectrometer.

In the experimental demonstration, the phase of the MSHG
response from an Rh/Co/Cu multilayer was measured. In
the longitudinal geometry the S-polarized MSHG from this
isotropic sample should be odd in M (see equation (4)) so
that reversal of the magnetization must change the phase of
the response by 180◦ (Stolle et al., 1997). A 3-mm thick
glass plate was used to introduce a time delay τ between the
SHG response from the sample and the reference (a thin
poled polymer film with high second-order nonlinearity),
see Figure 8(a). The beating part of the SHG spectrum is
shown in Figure 8(b) for opposite directions of M. The phase
change introduced by the magnetization reversal is found to
be 
(−M) − 
(+M) = 176◦ ± 5◦, in excellent agreement
with the expected π shift.

In Section 4, we describe the application of this technique
to the surface MSHG from Ni(110).

4 MSHG FROM MAGNETIC SURFACES

A clean magnetic surface is the benchmark object for a
nonlinear MO experiment. From the theoretical point of
view, it is also the simplest one. The experimental study
of it, however, requires utmost care mostly devoted to the
preparation of a well-defined and clean surface.

4.1 Ni(110) surface: spin-dependent spectroscopy

The spin-dependent electronic structure of ferromagnetic
surfaces and interfaces forms the fundamental basis for
understanding surface magnetic phenomena. The following
example (taken from Veenstra, Petukhov, Jurdik and Rasing,
2000) shows how MSHG can be used to study the electronic
surface states on a ferromagnetic metal surface.

Experiments were performed at room temperature on a
disk-shaped Ni(110) single crystal placed in UHV conditions
between the poles of an electromagnet. In a standard proce-
dure, the sample surface was cleaned by repeated cycles of
Ar+ sputtering and annealing, until no contamination could
be traced. The MSHG experiments started with the observa-
tion of the influence of the O2 absorption. Oxygen exposure
was done at approximately 3 × 10−9 mbar. Using Auger
electron spectroscopy, the coverage of the sample with oxy-
gen was found to be a nonlinear function of exposure that
saturated at 45 Langmuir (L). Such saturation coverage cor-
responds to 1 monolayer (ML) of NiO.

Figure 9 shows the oxygen exposure dependence of the
MSHG signal in the PinPout polarization combination. It can
be seen that when the clean surface is exposed the SHG



10 Magneto-optical techniques

(a)

411 412 413 414 415 416
−20

−15

−10

−5

0

(b)

5

10

15

20

S
pe

ct
ra

l i
nt

en
si

ty

Wavelength (nm)

+M
−M

Reference
Glass

Lens

M

2w
 sa

m
ple

2w
 re

fe
re

nc
e

BG39Window

Sample

UHV-system

Reference

Monochromator

∆d
Ana

lys
er

2w
w

w

Figure 8. (a) Sketch of the experimental setup for the spectral phase measurements. The SH pulse from the reference is delayed with
respect to the fundamental laser pulse due to the dispersion of the window. (b) Spectral interference from an Rh/Co/Cu multilayer for two
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Figure 9. SHG intensity from Ni(110) surface as a function of
oxygen dose for opposite directions of M as well as the MSHG
asymmetry.

intensity increases and has a maximum at 1 L, and another
maximum around 10 L. Close to 20 L, the intensity drops
by more than an order of magnitude with further increase
to saturate around 45 L. The observed two maxima seem
to be well in line with the appearance of the c(2 × 1)

and c(3 × 1) oxygen induced surface superstructures. These
superstructures could be observed, at these same coverages,
with low-energy electron diffraction (LEED). The magnetic
asymmetry plotted in the same figure, roughly indicates the
changes in the ratio χmagn/χ cr. Clearly, very small amounts
of oxygen drastically change the asymmetry, including the
change of sign. On the other hand, the observed SHG

intensity maxima at 1 and 10 L do not visibly correlate with
the MSHG asymmetry at all.

Spectroscopic MSHG experiments were carried out on
the same surface, with the aim to obtain a better insight in
the origin of the nonlinear MO response. A tunable optical
parametric amplifier pumped by a Ti:sapphire regenerative
amplifier was used to produce the fundamental light pulses
in the wavelength range of 750–1000 nm. To normalize the
measured second-harmonic intensity from the sample, the
SHG intensity from a c-cut quartz crystal in the transmission
geometry was measured with a second photomultiplier tube.
The phase of the SHG was measured using the UHV compat-
ible phase-sensitive detection technique (see preceding text
in Section 3.2).

The magnetic asymmetry measured in the PinPout polariza-
tion combination is plotted in Figure 10(a) as a function of
2�ω photon energy. The open circles represent the response
of a clean surface while the solid squares are the response of a
surface very slightly contaminated with oxygen (0.5 L). In the
inset, the average SHG intensity measured on a clean surface
is shown. The magnetic asymmetry has a sharp maximum
at 2.7 eV and changes sign at 2.6 and 3.1 eV. This reso-
nant feature completely disappears upon oxidation, clearly
proving its surface specific nature. The relation between the
effective susceptibilities and the intensity data of Figure 9 is
given by

4|χ eff|2 = I (+M) + I (−M) ± 2
√

I (+M)I (−M) cos(	ϕ)

(16)
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where 	ϕ is the phase difference between the SH fields
E(2ω, +M) and E(2ω, −M). This phase difference was
measured as a function of frequency and is shown in
Figure 10(b), along with the resulting effective susceptibili-
ties |χodd

eff | and |χ even
eff |. Surprisingly, the sharp maximum of

Figure 10(a) corresponds to the two-peak structure of |χodd
eff |

combined with a minimum of |χ even
eff |.

The resonances as observed in the nonlinear MO spectra
of Figure 10(b) can be calculated using equation (6) within
a simple model shown in Figure 10(c). The model involves
the spin splitting of the d bands around the Fermi energy
and an empty surface state around 2.5 eV above EF. The
exchange splitting of the d band leads to a maximum density
of states for minority spin electrons at the Fermi energy
and a maximum for majority spin electrons approximately
250 meV below EF. As this surface state is of nearly pure

pz character, the exchange splitting of this state is much
smaller than the splitting of the d states and can be neglected.
Including only these d states and a known surface state
(Goldmann, Dose and Borstel, 1985) in the summation of
equation (6), |χodd

eff | can be written as

χodd = A0 + A1

2�ω − E1 + i��1
+ A2

2�ω − E2 + i��2
(17)

where the second term describes the transitions of the minor-
ity spin electrons from filled to empty states having energy
difference E1 and the third term includes the transitions of the
majority spin electrons. Because of the spin dependence of
the resonant contributions to the odd tensor component, the
matrix elements A1 and A2 should have an opposite sign and
be of approximately equal amplitude. Using these relations,
the model can be used to fit |χodd

eff | to give E1 = 2.58 eV
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and E2 = 2.85 eV. Using |χ even
eff | from Figure 10(b), it is

now possible to calculate the magnetic asymmetry shown
in Figure 10(a) by the solid line. The typical features of the
asymmetry such as the two sign changes and the maximum
are described very well by the model. This proves that these
features do indeed arise due to the difference in exchange
splitting between the initial d states and the final surface
state, which proves that MSHG spectroscopy can be a pow-
erful tool to probe the spin-dependent electronic structure of
surfaces.

4.2 Magnetic moments of Co during growth
on a Cu surface

The following experiment made direct use of the enormous
sensitivity of MSHG to surface magnetism as well as to
structure and morphology. Jin, Regensburger, Vollmer, and
Kirschner (1998) studied in situ the layer-by-layer growth of

Co films on Cu(001). During the growth of the Co film (very
slow growth with a rate of about 7 ML/h) MSHG signals
were measured in the transverse MO geometry.

Figure 11(a) shows the total MSHG intensity for S-
polarized incident light as a function of the Co film thick-
ness dCo for the two opposite magnetization directions.
The MSHG yield from the uncovered Cu surface is much
smaller than that from a Co film. Therefore, at the begin-
ning of the Co deposition the MSHG intensity increases
almost linearly. The onset of a difference in the I (+M)

and I (−M) at dCo = 1.5 ML indicates the onset of mag-
netic order. The corresponding magnetic asymmetry is shown
in Figure 11(b), together with the average intensity in
Figure 11(c). On top of the overall thickness dependence
an oscillation with a one monolayer period is clearly vis-
ible up to dCo = 7 to 8 ML. The slowly varying part is
caused by changes in the electronic structure with increasing
film thickness and the appearance of quantum size effects in
the SHG.
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However, the one ML period oscillations must rather be
related to the morphology of the surface than to the electronic
structure. It is well known that SHG is quite sensitive to the
surface morphology. For example, on a stepped Al surface
the intensity changes by almost two orders of magnitude
depending on the step density and step orientation (Janz,
Bottomley, van Driel and Timsit, 1991). The enhancement
of SHG from this atomic scale roughness is caused by the
modified electronic structure of the flat surface. Co grows
on Cu in a nearly layer-by-layer growth mode (Schmid and
Kirschner, 1992). Periodically Co islands nucleate, grow in
size, and coalesce (see Figure 12) causing the total length of
step edges to oscillate. Therefore, the observed oscillatory
component in the SH intensity may be attributed to the
oscillatory varying step density.

The same periodicity is seen not only in the intensity,
but in the asymmetry as well. It is very well revealed in
the SinPout polarization combination (see Figure 11), where
the effect of morphology on the average SHG intensity is
smaller, compared to the PinPout one (Jin, Regensburger,
Vollmer and Kirschner, 1998). For clarity, the rapidly varying
component of the asymmetry is calculated as the difference
of A and its smoothly varying course.

A difficult point in the data treatment was to decide,
whether the increase of the measured asymmetry corresponds
to the increase of the surface magnetization or to its decrease.
This could be solved by a continuous increase of the film
thickness up to 150 ML so that the contribution of the buried
interface vanished. It was thus shown that the increase of
the magnetization-induced asymmetry at half-filled layers
indeed comes from the enhancement of the magnetic surface
nonlinearity in the whole thickness range.

Though MSHG, similar to the linear MOKE, does not
measure the magnetization directly, it has been shown in
Pustogowa, Hübner and Bennemann (1993), that to a first
approximation, the magnetic tensor elements of the second-
order susceptibility depend linearly on the magnetization.
Provided the amplitude of the change is small, variations of
the asymmetry directly relate to the variations of the tensor
elements. Therefore, the observed increase of the asymmetry
at half-filled layers suggests the increase of the magnetic
moments of the atoms at step sites as it is expected from
the simple argument of reduced coordination number at these
sites. It is by far not easy to estimate the absolute increase of

Nucleation Islands growth Layer completion

Figure 12. The layer-by-layer growth of a thin film: appearance,
growth, and coalescence of islands periodically change the number
of step atoms.

the step magnetic moments as the probing depth of MSHG
is not exactly known. Very roughly, the experimental data of
Jin et al. fall in line with theoretical estimates of an increase
in moment of a few percent at the step edges.

These measurements prove the ability of MSHG to detect
changes in the magnetic moment at interfaces of the order
of 1

50µB per atom.

5 INTERFACES IN MAGNETIC
MULTILAYERS

5.1 Investigation of buried interfaces of CoNi/Pt
films with MSHG

This section describes the first successful attempt (from
Kirilyuk, Rasing, Haast and Lodder, 1998) to derive the
relative nonlinear MO susceptibilities per interface from the
experimental MSHG data.

The samples for this study were Pt/CoNi/Pt sandwiched
layers, prepared in a computer controlled sputtering system,
base pressure of 5 × 10−8 mbar, with argon as a sputtering
gas. The deposition rates were kept low (1.7–2.0 Å s−1 for
Pt and 0.4–0.6 Å s−1 for CoNi), to assure a smooth layer
growth and a good control of layer thickness. A 40-nm thick
Pt buffer layer was deposited on a Si(001) substrate followed
by a magnetic CoNi layer (thickness varied between 3 and
12 nm) and covered by a 3-nm thick Pt cap layer. Such
samples were prepared at different Ar pressures (between
4 and 36 µbar). It was found that the magnetic properties of
the samples considerably depend on the growth conditions,
in particular on the Ar pressure used for sputtering.

Experimentally, the asymmetry of the MSHG signal A, as
defined by equation (11), was measured as a function of the
angle of incidence.

In order to determine the χ(2) tensor for one given inter-
face quality, a set of samples was used with different mag-
netic layer thicknesses, prepared under exactly the same
conditions (including of course the sputtering pressure of
pAr = 12 µbar). It was therefore assumed that the χ(2)’s are
the same for the different samples, and only the local optical
fields at the interfaces are changed, owing to absorption and
multiple scattering. To fit the data, the transfer matrix tech-
nique described in Section 4.2 was employed with nonlinear
susceptibilities as fitting parameters.

The results of the measurements together with the fitting
curves are shown in Figure 13(a) for the SinPout polarization
combination. The number of fitting parameters is determined
by the polarization used. Thus for SinPout one can arbitrarily
fix the only tensor component of the cover layer surface
zyy0 (neither the absolute intensity nor the optical phase
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thicknesses (indicated in the figure). Lines are the theoretical fit
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(b) The nonlinear tensor components derived from the fits in (a).
(Reproduced from Kirilyuk et al., 1998, with permission from the
American Physical Society.  1998.)

of the total MSHG signal is taken into account), hence
zyy1,2 and xyy1,2 are the only components left to be
determined (inset in Figure 13(a) shows the indexing of the
interfaces). This leaves eight parameters (2 interfaces × 2
complex components) to fully describe these data. The
uniqueness of the fits was checked for both SinPout and
PinPout polarization combinations by randomizing the initial
choice of the fit parameters. Figure 13(b) shows the χ(2)

tensor components obtained from the fits of Figure 13(a).
The convergence of the parameters is evident. An interesting
point is that the tensor components show opposite signs
for the subsequent magnetic layer interfaces (1) and (2).
This is an independent experimental confirmation of a strict
requirement from symmetry (It is easy to derive by using
the mirror symmetry operation with respect to the center
plane of the film that the second-order susceptibilities of
ideal mirrored interfaces are of equal amplitude but opposite

phase.) and provides a strong support for the model used
in the calculations. Also, the crystallographic and magnetic
contributions to χ(2) appear to be of the same order of
magnitude, in strong contrast to the linear case.

To determine the dependence of χ(2) on the interface qual-
ity, the sample with a 3-nm thick CoNi layer was measured
for different Ar sputtering pressures. The assumption was
then made that all tensor components changed in a simi-
lar way, that is, the scaling parameters M and C could be
defined as

χ(2)
magn(pAr) = M(pAr) · χ(2)

magn(p0) (18)

χ(2)
cr (pAr) = C(pAr) · χ(2)

cr (p0) (19)

with p0 = 12 µbar. To fit the data for any new sample only
the two complex parameters M and C are used (actually
this only gives three parameters in total because one phase
can still be fixed). The possibility to fit the data for any Ar
pressure in such a manner supports the assumption that all
χ(2)’s are changed in a similar way.

The parameters M(pAr) and C(pAr) represent the depen-
dence of the nonlinear MO interface properties on the inter-
face structure (controlled via the sample preparation condi-
tions). The value of C is proportional to the crystallographic
contribution to the MSHG, expressed via the local symmetry
breaking induced by the interface. It is incorrect to say, how-
ever, that M represents the purely magnetic part of MSHG.
Indeed, all the ‘magnetic’ elements of χ(2) are only nonzero
in the presence of the crystallographic symmetry breaking,
that is, the same factor influences both χ cr and χmagn. Hence,
one may write M ∝ C · M.

To extract information on the interface magnetic proper-
ties, we take the ratio m = M

C . In Figure 14, m is plotted
as a function of the sputtering Ar pressure for the SinPout

and PinPout polarizations. The precise coincidence of the m
dependency for both polarization combinations once again
supports the model used for the derivations.

Figure 14 shows that the crystallographic contribution
χ cr ∝ C increases rapidly above 15 µbar, while staying
almost constant below this pressure. The increase of χ cr indi-
cates an increasing interfacial roughness for higher sputtering
pressures. Though the crystallite size is known to stay con-
stant in the whole pressure range, the crystallites may become
slightly disoriented (Bijker, Donnet and Lodder, 1996). This
increase of χ cr due to the increasing interface roughness can
schematically be understood as being due to the increase of
the effective surface area of the interface. For stronger rough-
ness, other mechanisms may play a role (Aktsipetrov et al.,
1990).

In contrast to the crystallographic one, the magnetic contri-
bution m shows a clear maximum at pressures of 15–20 µbar.
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Figure 14. Crystallographic as well as magnetic contributions to
the nonlinear MO tensor derived from the two different polarization
combination data (indicated in the figure). (Reproduced from
Kirilyuk et al., 1998, with permission from the American Physical
Society.  1998.)

At very low Ar pressures the interface layers become slightly
intermixed due to the high energies of sputtered atoms. This
intermixing hardly affects the crystallographic part of MSHG
but clearly suppresses the magnetic one. Note that the maxi-
mum in the interface magnetization does not have to coincide
with the sharpest interface. Evidently, the drop of m for large
pAr is related to a decreasing in-plane magnetic moment of
the rough interface. A possible explanation here is that the
increasing roughness changes the local coordination of the
Co atoms, which may even lead to an out-of-plane lifting
of the local interface magnetic moments. This explanation
is supported by the observation of a specular S-polarized
MSHG output at higher Ar pressures (Bal, van den Berg,
Keen and Rasing, 2001). Such an MSHG yield can only
be nonzero in the presence of a perpendicular (out-of-plane)
magnetization component. In addition, polar MOKE hystere-
sis loops also showed a small remanence (≤10% of Ms)
for the sample sputtered at PAr = 36 µbar, confirming the
MSHG results.

It was also measured that up to a roughness rms value
of 1.0 nm, the value of χ cr is roughly proportional to the
surface/interface roughness measured by other methods, such
as atomic force microscopy (AFM) and grazing-incidence
X-ray scattering (see Figure 15).

Summarizing, nonlinear magneto-optics is clearly able to
follow the (subtle) changes in the interface structure, both
crystallographic and magnetic. For the case of Pt/CoNi/Pt,
an optimum sputtering pressure is found that yielded a
maximum in-plane interface magnetization with only a small
change in interface morphology. With further increase of the
sputtering pressure, the interface roughness clearly increases
while the in-plane interface magnetic moment decreases.
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Figure 15. Crystallographic χ(2) contribution as a function of
interface roughness determined from AFM and X-ray scattering
experiments. (Reproduced from Bal et al., 2001, with permission
from the American Institute of Physics.  2001.)

It should be underlined that for all studied samples, no
difference in the total layer magnetization was observed with
either MOKE or vibrating sample magnetometry (VSM).

5.2 Interface versus bulk MSHG in Fe/Au
multilayers

In this study, the MSHG technique was applied to Fe/Au
superlattices with atomically controlled epitaxial layers. The
superlattice with a modulation of mono-atomic layers of Fe
and Au has been known to show an artificial order with
an L10 structure that does not exist in nature (Takanashi
et al., 1995). Such an artificial structure remains at interfaces
between Fe and Au layers when the modulation period
becomes longer than mono-atomic (Mitani et al., 1996). The
linear MO spectra of the superlattices modulated by integer
and noninteger numbers of atomic layers have been studied
intensively, suggesting the formation of a peculiar band
structure in such an artificial real-space structure (Sato et al.,
1996, 1999).

Figure 16 shows the results of a rotational anisotropy mea-
surements for all four polarization combinations in the lon-
gitudinal geometry. A sample with lattice period x = 15 ML
was used. All curves show clear fourfold anisotropy and a
clear magnetic contrast.

In Figure 17, the results of all four polarization combina-
tions for the sample with x = 15 ML are plotted, for the case
of the transverse geometry. Note the different vertical scales
for the various data, indicating a substantial difference for the
MSHG response for different polarization combinations. It is
also obvious that all data involving Sin or Sout polarization,
yield a much stronger anisotropy, which is a direct conse-
quence of the in-plane xy tensor components that contribute
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to these signals (see subsequent text). Even the weakest
SinSout –curve shows a clear fourfold symmetry pattern.

Usually, an analysis of MSHG results (Pan, Wei and
Shen, 1989; Wierenga, Prins and Rasing, 1995; Hübner
and Bennemann, 1989) is performed assuming that the top
surface and buried interfaces are the only sources of the
nonlinear MO response. Their nonlinearity is described in
terms of the effective surface/interface dipole-like nonlinear
susceptibility χ(2)(M), which is a third rank tensor. Such
contribution yields the azimuthal patterns described by the
following formulae (Sato et al., 2001):

E
p,p

2ω (φ, ±Ml ) = Ap,p ± Cp,p sin 4φ,

E
s,p

2ω (φ, ±Ml ) = As,p ± Cs,p sin 4φ,

E
p,s

2ω (φ, ±Ml ) = ±Ap,s ± Bp,s cos 4φ,

E
s,s
2ω (φ, ±Ml ) = ±As,s ± Bs,s cos 4φ (20)

where the ± sign indicates those terms which change sign
upon magnetization reversal, A, B and C are independent
of φ and the direction of the longitudinal magnetization
Ml . Note that the light intensity is related to the field via
I

α,β

2ω = c/(2π)|Eα,β

2ω |2.
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Figure 17. Rotational anisotropy curves for the sample with single
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duced from Sato et al., 2001, with permission from the American
Physical Society.  2001.)

However, these patterns do not yield any effect of magneti-
zation reversal for the SinSout and PinSout MSHG intensity, in
contrast to the experimental observation shown in Figures 16
and 17. They are also unable to properly describe the patterns
for the other two polarization combinations (see Figure 16,
dotted lines on the plots for PinPout and SinPout polariza-
tion combinations; also in this case, the equations are not
able to fit the magnetic contrast because of different sym-
metry pattern, see subsequent text). Therefore, one has to
take into account additional anisotropic contributions to the
second-order nonlinear response. In particular, the nonlocal
(quadrupole-allowed) contribution from the bulk of cubic
nonmagnetic metals (Cu, Vollmer, Straub and Kirschner,
1996a; Ag, Koos, Shanon and Richmond, 1993; and Al,
Pedersen and Keller, 1989) and semiconductors (Si, Tom,
Heinz and Shen, 1983) has been shown to lead to a fourfold
anisotropy of SHG at their (100) surfaces. Accounting for
this additional contribution modifies the rotational patterns
to the following ones

E
p,p

2ω (φ, ±Ml ) = Ap,p + Bp,p cos 4φ ± Cp,p sin 4φ,

E
s,p

2ω (φ, ±Ml ) = As,p + Bs,p cos 4φ ± Cs,p sin 4φ,

E
p,s

2ω (φ, ±Ml ) = ±Ap,s ± Bp,s cos 4φ + Cp,s sin 4φ,

E
s,s
2ω (φ, ±Ml ) = ±As,s ± Bs,s cos 4φ + Cs,s sin 4φ (21)
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Using these equations for the theoretical fits to the
experimental data of Figures 16 and 17 showed a good
agreement between experiment and theory.

Thus, we have shown that the MSHG response of
Fe/Au(001) superlattices shows a strong azimuthal anisotropy
in both the MSHG intensity as well as in the nonlinear MO
Kerr rotation.

5.3 Quantum well states in ultrathin films

An interesting system where the interfaces play an important
role are thin metal layers, where due to the electronic
potential discontinuities experienced by electron states at
interfaces, the perpendicular wave vector can be quantized,
giving rise to resonances in the density of electronic states
that are usually referred to as QWS (Ortega and Himpsel,
1992; Segivia, Michel and Ortega, 1996; Suzuki et al., 1992;
Bruno, Suzuki and Chappert, 1996).

In MSHG experiments, QWS are mostly observed on
samples consisting of a transition-metal layer with a thin
(often wedge-shaped) noble metal overlayer on top. A strong
influence of QWS on the second harmonic intensity as well
as on the magnetic asymmetry has been observed when
measuring the MSHG response as a function of this noble-
metal overlayer thickness. It is nevertheless expected that
the MSHG output in such systems is generated mostly at the
interfaces, even in the case that QWS’s are involved (Luce,
Hübner and Bennemann, 1996; van Gelderen, Crampin,
Rasing and Inglesfield, 1996; Luce et al., 1998).

It is shown that quite different experimental MSHG
observations on QWS systems could be explained within
the same approach (Luce et al., 1998). The main difference
happened to come from the number of interfaces contributing
to the total response: systems where both the surface and the
interface are important, behave different than those with the
domination of only one of them. The following two sections
separately describe these two systems.

5.3.1 MSHG from Cu/Co/Cu(001)
and Cu/Fe/Cu(001) layers

Cu/Co/Cu(001) was the first system showing an extremely
strong dependence of the MSHG output on the copper over-
layer thickness (Wierenga et al., 1995; Vollmer et al., 1995).
In this study, 10 ML Co grown on Cu(001) was used as
a substrate, on which a thin Cu overlayer was epitaxially
grown. Figure 18 shows the very strong changes of the mag-
netic asymmetry as a function of the Cu layer thickness. This
magnetic asymmetry oscillates between +0.6 and −0.6 in the
range of 0–10 ML. As a reference, the dashed line on this
figure shows the result of multiple-scattering calculations for
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Figure 18. The MSHG asymmetry in PinPout (a) and SinPout (b)
polarization combinations as a function of Cu overlayer thickness
on top of a 10 ML Co film on Cu(001). The solid lines are guides to
the eye, dashed line is the result of multiple-scattering calculations.
(Reproduced from Wierenga et al., 1995, with permission from the
American Physical Society.  1995.)

the same system. Obviously the observed MSHG behavior is
not of optical but rather electronic origin. Ortega and Himpsel
have studied the same system (Ortega and Himpsel, 1992)
and found an oscillating behavior of the density of states
at the Fermi surface as a function of the Cu film thickness
and observed an oscillation period of 5.5 ML. Oscillations of
period 2.3 ML can be attributed to QWS as well.

The experimental results seem to indicate that these finite
size effects of the Cu film which modulate the electronic
structure at the interface can be seen by SHG, in both
the magnetic and nonmagnetic parts (see Vollmer et al.,
1995). It is, however, not clear what is the origin of the
observed oscillations. There is no direct relation to the oscil-
lation periods observed for interlayer coupling because not
only electronic states close to the Fermi energy contribute
but more or less all states within ±2�ω around the Fermi
energy. The situation can be described similarly to the case
of the linear Kerr effect (Bruno, Suzuki and Chappert, 1996).
Optical two-photon transitions from the Cu 3d band into
the quantized Cu 4s band are resonantly enhanced if the
energy difference between a discrete d-band state and an
s-band state equals the energy of an SH photon. This is
schematically illustrated in Figure 19. For films of finite
thickness, kz is no longer a good quantum number and the
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continuous bulk bands along the kz direction split up into
a set of discrete levels, QWS, indicated by dots in the
figure. The possible resonant transitions for a given wave-
length are also indicated in the figure by vertical arrows. If
the thickness of the film is increased, the QWS is moved
more toward the X point and the optical transition becomes
less resonant. Therefore, from this picture, a maximum of
SHG intensity can be expected for the given film thick-
ness D. At the thicknesses of 2D, 3D, and so on, there
will be again a resonant optical transition into a QWS
resulting in a variation of the SHG intensity with a period
of D.

Another possible mechanism is related to the appearance
of a new final state, due to the change in the film thickness.
Each time a QWS shifts though the Fermi energy, it becomes
a new possible final state. Generally speaking, this transition
is nonresonant for the given wavelength but nevertheless
contributes to the total signal. Because this kind of optical
transition is related to the Fermi energy, a periodic SHG
intensity oscillation with the same period observed for the
interlayer coupling is expected.

Thus the periodicity with layer thickness in transitions of
the second kind is independent of the photon energy while
the period of the first kind of transitions is strongly dependent
on it.

As is obvious from the figure, if only a few dominant
optical transitions occur, the k selectivity of the optical
response is optimal, and the SHG oscillations will be
most pronounced. Of course, the strength of the absolute
signal depends further on the joint density of states for

optical transitions. In the case of a ferromagnetic spacer
layer between the substrate and the overlayer film, resonant
transitions for minority and majority electrons are possible
at different overlayer thicknesses due to the spin-split d
states. Thus a phase shift for the I (+M) and I (−M)

signals occur. Consequently, one may observe an oscillatory
magnetic contrast in the SHG response though a nonmagnetic
overlayer is studied.

5.3.2 Au/Co(0001)/Au(111) system: double
oscillation period

In another case of a QWS system, the interference effects
play an essential role in the MSHG response, so that even the
oscillatory period can be changed (Kirilyuk, Rasing, Mégy
and Beauvillain, 1996). This would require that the primary
contribution to χ(2) comes from the overlayer itself rather
than from the (magnetic) substrate. As the total response
is the result of interference between the two contributions,
the relative phase between the SH waves coming from
two different interfaces will be important. This implies
in fact that also the parity of the QWS wave function
may influence the SHG response. Using for simplicity
|χs

ijm(2ω)| ≈ |χi
ijm(2ω)|, one gets

I (2ω) ≈ 2|χs
ijm(2ω)|2 + 2χs

ijm(2ω)χi
ijm(2ω) (22)

For equally weighted contributions one gets obviously a
perfect cancellation of the thickness-dependent χ(2ω), if the
resultant phase of the product of χs

ijm(2ω)χi
ijm(2ω) is −1,

like for inversion symmetric films. This may result from
the parity of the QWS. For example, if for increasing film
thickness d the first unoccupied QWS close to the Fermi
energy EF , which sets the oscillation period, has even parity
and if at the interface no phase shift of π occurs, then no SHG
results. Thus, in the case where the symmetry of the QWS
regulates I (2ω, d), one should observe in SHG a pronounced
period doubling of the oscillation period, since only the QWS
with odd parity cause oscillations.

This idea was experimentally verified on step-shaped
wedges of Au(111) or Cu(111) epitaxially grown on top
of thin (5–20 ML) Co(0001) films on a Au(111) substrate.
The copper wedge was covered by 10 ML of gold for
protection. The Co films were also grown as steps, with a
few different thicknesses. Because of the strong interface-
induced perpendicular magnetic anisotropy in this system,
it was possible to use different (polar or transversal) MO
configurations, depending on the Co thickness.

Figure 20(a) shows that the generated total SH intensity
exhibits a strongly oscillatory behavior as a function of the
gold overlayer thickness that can be very well described
by damped cosines. The slight change of the observed
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Figure 20. (a) SHG intensity (PinPout) as a function of the Au(111)
overlayer thickness on a 20 ML thick Co film. Inset shows a
photon energy dependence of the oscillation periods for PinPout

and SinPout polarization combinations. (b) MSHG asymmetry as a
function of the gold layer thickness. (Reproduced from Kirilyuk
et al., 1996, with permission from the American Physical Society.
 1996.)

periods for the curves measured with 720 and 850 nm
wavelengths appeared not to be significant: in the total range
of 720–1170 nm the period is constant (� ≈ 13–14 ML)
within 10–15% (see inset in Figure 20a).

The same kind of oscillatory behavior has also been
found for the magnetization dependent SHG. Figure 20(b)
shows the magnetic asymmetry for a 20 ML thick Co layer,
while the SH polarization rotation is plotted in the inset
for the perpendicularly magnetized 6 ML Co film. All the
observed periods are basically the same as given above for
the intensities. However, the shape of these curves is more
complicated than simple damped oscillations. This is due to
the fact that the magnetic signals are calculated as a ratio of
different oscillatory terms (see equation (11)).

Linear MOKE studies performed on the same kind of
samples (Mégy et al., 1995) reported oscillations of the
Kerr rotation with the much shorter period of 7.7 ML. This
strong difference with MSHG might be assigned to the
different wavelength region used for the MOKE experiments
(540–630 nm). To fill this gap, MOKE measurements were
done using the same Ti-Sapphire laser at λ = 850 nm. This
resulted in a period of 7 ± 1 ML. That is, in the case of
λMOKE = λSH, the total excitation energy was equal for the
two experiments. Also the situation 2λMOKE = λSH, was
investigated, in order to study possible effects of initial
and intermediate or intermediate and final states. However,
again the observed MSHG period was twice as large as the
period detected with MOKE. Hence the difference in periods
cannot be explained by the different total excitation energy
(�ω vs 2�ω).

It has been already discussed (see Section 5), that for a thin
film the corresponding tensor elements on the opposite film
interfaces are related to each other by a mirror symmetry and
therefore they differ only by a phase factor of 180◦. Hence
the resulting total SHG signal arises from the competition
between the signals from the two film interfaces that mostly
cancel each other and does only depend on the difference in
their local fields. In other words, the nonlinear polarization
P(2ω) is an odd function with respect to the film symmetry
plane.

Within this approach, the influence of QWS on MSHG
would be largely cancelled too because every QWS con-
tributes symmetrically (via its local density of states) to the χ

tensor elements of both interfaces. Even for the nonsymmet-
ric geometry (like our case – Co/Au and Au/air interfaces)
one may still argue that the corresponding electron wave
functions are rather symmetric once they form a confined
state.

Following these arguments, one may expect no QWS
effects on the MSHG signal at all! This is contrary to the
experimental observations of a total domination of QWS
in the SHG response. That one does observe a (rather
strong) signal is partly related to the fact that the local
electromagnetic fields at the two interfaces are different (this
follows from Fresnel formulae) and partly from the (a-)
symmetry of the QWS wave functions. In a simple textbook
picture, the confined QWS have alternating odd and even
character, that is, the asymmetry of the QWS wave functions
is repeated with the double period. This asymmetry can be
expressed as a relative phase factor between the two QWS
interface contributions (the Co/Au and the Au/air). Because
the total SHG response results from a coherent superposition
of these interface contributions, it will also display a periodic
behavior with the double period, despite of the fact that
the individual contributions oscillate with the single period.
Because the linear MOKE experiment only probes the Co/Au
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region, MOKE indeed shows the single period. It should be
stressed that it is the wave function phase at a given interface
which plays a crucial role and, without interference, the effect
would be unobservable.

To test these ideas, the total MSHG signal was decom-
posed into the contributions from different interfaces, as
described in Section 5.1. For this purpose, first the angle-of-
incidence dependencies of the MSHG signals were measured
for each gold overlayer thickness value. Next, a fit of these
data was performed, using the χ(2) tensor elements as fitting
parameters in SinPout polarization combination. Figure 21(a)
shows the individual χ(2)-components of the two gold layer
interfaces as a function of the film thickness, displaying an
oscillatory behavior with a mean period of around 6–8 ML
that is, the same period as observed by MOKE. However,
the resulting SHG intensity and magnetic signal perfectly
fit the experimentally observed slowly oscillating behavior
with the double period (see Figure 21b). This means that
while the local density of states and hence the χ(2)-tensor
at each interface show the standard QWS period, the
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Figure 21. (a) Tensor components of different Au(111) film inter-
faces as a function of the film thickness. Inset shows the linear
MOKE ellipticity for comparison. (b) Theoretical fit of the SHG
intensity (solid dots) and MSHG asymmetry (open dots) using the
parameters shown in (a). (Reproduced from Kirilyuk et al., 1996,
with permission from the American Physical Society.  1996.)

resulting total response includes also the phase between the
corresponding elements and therefore allows a slower varia-
tion. This is possible, of course, only because the interfaces
are not independent as soon as every QWS wave func-
tion is located at both interfaces simultaneously. Although
it is not exactly correct to talk about ‘contributions of dif-
ferent interfaces’ in such conditions, it is still possible to
formally use this model. One should mention here that the
χ(2)-components of different interfaces may be determined
accurately only relative to each other. Their absolute values,
in contrary, may contain rather large systematic errors. How-
ever, the derived fast-oscillatory behavior of the χ(2)-tensor
is obtained from the best fit of the (slowly oscillating) exper-
imental data, and may be considered as a strong support of
the model.

As for the linear MOKE technique, although it has ‘bulk’
sensitivity, the oscillatory part of the signal is provided by
the narrow region along the Au/Co interface, where the spin-
polarization of electrons is affected the most. Therefore, it is
related to the local density of states at this interface only,
which oscillates with a single QWS period.

Very similar results were obtained for Cu(111) and
Ag(111) overlayers, with corresponding periods of
12–14 ML. The main difference was the observed amplitude
of the intensity oscillations for both of these metals which
was much smaller than for Au(111). The recently detected
linear MOKE oscillations on Cu(111) (Bounouh et al., 1997)
showed a period of 7 ML. Hence, the period doubling is con-
firmed also for another system. From the experimental point
of view, it would be very interesting to study also a mag-
netic thin film as well as to increase the spectral region of
measurements.

5.4 Magnetization reversal at the interfaces

In the discussion of thin magnetic films and multilayers,
interfaces play an often dominating role determining the
magnetization reversal behavior. To find out the behavior
of the magnetization at the film interfaces as opposed to that
in the middle of the film, MSHG can be used in combination
with the linear MOKE technique. The magnetization reversal
hysteresis is thus measured simultaneously, from the same
spot on the sample (Zhao et al., 2005). Figure 22 shows
an example of such experiment on an amorphous TbFeCo
layers that have recently attracted attention as possible MO
hybrid-recording media (Awano et al., 2000). MOKE and
MSHG hysteresis loops were measured for different sample
temperatures across the Curie point TC = 465 K. A clear
difference between the results of the two methods was
observed that can only be related to the different magnetic
behavior in the bulk and at the interfaces of the film. Closer
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Figure 22. MOKE and MSHG hysteresis loops from a TbFeCo
MO recording layer for three different sample temperatures.

inspection of the loops in Figure 22 seems to indicate that
the reversal starts at the interfaces but stays somehow pinned
in the bulk, thus slowing down the bulk reversal.

6 CONCLUSION

This chapter revises the recent progress and achieved mile-
stones in the newly developed area or nonlinear magneto-
optics. By no means pretending of being comprehensive, it
focuses on the application of MSHG to surface and interface
phenomena, such as enhanced magnetic moments, electronic
surface states, and correlation between interface structure and
magnetism. The extreme surface/interface sensitivity of the
MSHG technique manifests itself in every of the considered
examples.

On the other hand, various interesting developments of
MSHG are not mentioned. Among them is the very exten-
sive work on nonlinear magneto-optics in antiferromagnetic
dielectrics (Fiebig et al., 2000, 2001; Feibig, Degenhardt and
Pisarev, 2002). In addition, one should mention the attempts
to study MSHG effects in complex systems such as magnetic
photonic crystals (Lyubchanskii et al., 2003) and nanoparti-
cles (Aktsipetrov, 2002), as well as a discussion of possible
MSHG effects in vacuum (Ding and Kaplan, 1989).

Another area where the MSHG technique is used quite
extensively, is for the pump-probe studies of ultrafast mag-
netization dynamics (Güdde et al., 1999; Regensburger,

Vollmer and Kirschner, 2000; Silva, Pufall and Kabos, 2002;
Gerrits, Hohlfeld, van den Berg and Rasing, 2002). Here,
MSHG has some advantage over MOKE, because (i) owing
to large odd components of the nonlinear optical tensor, dif-
ferent components of M can be easily separated, and (ii)
it is also quite straightforward to distinguish the electron-
temperature relaxation effects from those owing to the tran-
sient magnetization behavior, by analyzing the various ten-
sor components. In addition, the MO probe of the ultrafast
magnetization dynamics can only be done with femtosecond
laser pulses, which makes the measurements of the MSHG
response as easy as that of the MOKE. The particular direc-
tion where the MSHG probe can be especially interesting
is the observation of the magnetization dynamics at surfaces
and interfaces. The spin-orbit coupling at interfaces would
become accessible with this approach.
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1 INTRODUCTION

Dynamic properties and the eigenmode spectrum of magnetic
objects have become a focus of interest in modern mag-
netism. The fundamentals of this area are covered in several
chapters in this handbook [1].

Progress in research in this interesting field is largely
determined by the availability of suitable experimental tools.
A wide range of tools exists; most of them use optic and
electric properties. Here we confine the discussion to optical
techniques.

This chapter aims at providing an introduction into the
principle of operation and the range of applicability. We
discuss time-resolved Kerr effect magnetometry, Brillouin

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

light scattering (BLS) spectroscopy, and second-harmonic
generation (SHG) techniques. Emphasis is laid on the
introduction and discussion of the various tools and the
presentation of characteristic applications.

Optical techniques for the study of spin waves and spin
dynamics can be roughly categorized into two fundamen-
tal classes. Frequency-domain techniques provide a spec-
troscopic approach and issues such as the dispersion of
spin-wave modes can be directly obtained. The second class
comprises techniques working in the time domain, where the
magnetic response of a sample is probed, usually stroboscop-
ically, as a function of a stimulating pumping signal, and,
in a narrow time window, as a function of the time delay
to the excitation. Some experiments have been developed,
which combine both classes, such as time-resolved BLS spec-
troscopy.

In Section 2 the background in spin dynamics and
spin–wave modes is sketched. Section 3 contains an intro-
duction to various experimental techniques, such as BLS and
its variants, time-resolved Kerr effect microscopy, and SHG
techniques. The applications of these techniques to various
physical problems are addressed in Section 4 with several
examples. In Section 5 conclusions are given.

2 BACKGROUND IN SPIN DYNAMICS
AND SPIN-WAVE MODES

The fundamentals of spin dynamics and spin waves are
presented in several chapters of this handbook (see also
Hillebrands, 2003; Hillebrands and Thiaville, 2006). Here we
summarize this background and list the equations necessary
to understand the experimental optical techniques.
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In a classical picture, the magnetization precesses around
the internal field, described by the Landau–Lifshitz torque
equation of motion:

1

|γ |
∂ �M
∂t

= − �M × �Heff (1)

where γ = γ eg/2 is the gyromagnetic ratio, γ e =
−1.759 · 107 Hz Oe−1 is the value of γ for the free elec-
tron and g is the spectroscopic splitting factor. We neglect
damping effects. The effective magnetic field acting on the
magnetization, �Heff, is given by

�Heff = �H0 + 2A

M2
s
∇2 �M − 1

Ms

�∇�αgvol + �Hd + �h (2)

On the right-hand side, the first term is the external applied
field �H0. The second term accounts for the exchange inter-
action, where A is the exchange stiffness constant and Ms is
the saturated magnetization. The third term accounts for mag-
netic anisotropies with the enthalpy density gvol describing
the volume anisotropy and the gradient operator �∇�α for which
the differentiation variables are the components of the unit
vector �α pointing into the direction of the saturation magne-
tization �Ms. The fourth term describes the dipolar stray field.
In the case of an in-plane magnetized infinite film, the stray
field is zero, �Hd = 0, whereas in the case of an out-of-plane
magnetized film it is �Hd = −4πMsn̂ (in CGS units), n̂ with
pointing into the normal direction of the film surface. The
last term �h accounts for the fluctuating field generated by
the precessing moments. It has its origin in the dipolar and
exchange interaction.

In a ferromagnetic system, the dipolar and exchange
interactions result in the appearance of spin-wave modes.
An example of the spin-wave mode is shown schematically
in Figure 1. The displayed mode travels from the bottom
left to the upper right corner of the square. Phase fronts,
characterized by the same precession phase (dashed line in
Figure 1) and the wavelength λ can easily be identified as
indicated in the figure.

Inspecting equations (1) and (2) it is evident that both
dipolar and exchange interactions determine the mode prop-
erties. In finite objects such as films, squares, circles, and so
on, confinement and localization effects appear and modify
the dispension of the spin waves. The mode properties of
such confined spin waves are characterized by quantization
conditions for the wave vector and by boundary conditions
at the sidewalls of the object.

2.1 Exchange and dipolar modes in films

Spin waves investigated by optical techniques usually have
wavelengths comparable to or larger than the wavelength of

l

q

Figure 1. Sketch of a spin wave. The dashed line indicates a phase
front.

the used light. Thus interatomic distances are small compared
to the wavelength, and we can apply continuum models.
A good introduction is given in Hillebrands (2000). The
description in such a classical picture describe most of the
experimental observations. Quantum-mechanical corrections
must be taken into account for films thinner than a few
monolayers, but here a phenomenological correction of the
demagnetizing field still allows for using a classic description
(Stamps and Hillebrands, 1991).

We need to solve the Landau–Lifshitz torque equation
of motion (equation (1)), together with the magnetostatic
Maxwell equations,

�∇ × �H = 0 (3)

�∇ · ( �H + 4π �Ms) = 0 (4)

From the equation of motion, (equation (1)), six independent
partial wave solutions are obtained when exchange interac-
tion is taken into account.

In the presence of surfaces and interfaces, boundary
conditions must be fulfilled by a suitable superposition of
the partial wave solutions. These are the Maxwell boundary
conditions as well as a boundary condition derived from the
equation of motion (equation (1)). For the surface of a film
or an interface to a nonmagnetic layer this is the so-called
Rado–Weertman boundary condition (Rado and Weertman,
1959; Gurevich and Melkov, 1996)

�M ×
[

�∇�ασ inter − 2A

Ms

∂ �M
∂n

]∣∣∣∣∣
interface

= 0 (5)

Equation (5) describes the balances of torques acting on the
interface where σ inter is the enthalpy density describing a
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magnetic interface anisotropy. It is evident that interface
anisotropies provide an additional torque to the moments at
the interface.

For magnetic films, a number of different spin-wave modes
appear, depending on the geometry of the applied field and
the wave vector of the spin wave. Both the exchange interac-
tion and the dipolar interaction contribute to the dispersion.
However, depending on the specific mode, one or the other
can dominate the frequency.

If the wavelength of a spin-wave mode is very short
(i.e., the wave vector is very large), exchange interaction
dominates the frequency. In bulk materials, these so called
modes. Their dispersion is approximately quadratic, that is,
proportional to the square of the wave vector,

ω(q)

γ
≈ H + Dq2 (6)

with D = 2A/Ms denoting the so-called stiffness constant.
In films, perpendicular standing exchange modes, also called
perpendicular standing spin waves (PSSW), are observed.
Here the exchange modes propagate in a direction perpen-
dicular to the film and form a standing wave pattern. The
wave vector perpendicular to the film, q⊥, is quantized due
to the confinement. In case of both pinned (σ inter = ∞) and
unpinned (σ inter = 0) boundary conditions, the perpendicu-
lar wave vector reads q⊥,l = l(π/d) where d is the film
thickness and l = 0, 1, 2 . . . for unpinned boundary condi-
tions. In case of a general boundary condition, the expres-
sion of q⊥,l is more complicated (Gurevich and Melkov,
1996).

Spin-wave modes investigated by optical techniques and
traveling in the film plane usually have a wave vector in
the range between the wavelength of the used light and
many micrometers, which is much larger than interatomic
distances. Thus, exchange interaction is weak and these
modes are often governed by dipolar interactions. This can
be easily understood by considering the oscillating dipole
fields associated with the precessing moments. The local field
strength increases with the wavelength as more moments
locally contribute to the stray field.

The spin-wave dispersion depends on the direction of
the wave vector, �q, and the direction of the magneti-
zation vector, �M , with respect to the film orientation.
Figure 2 illustrates the various modes in the so-called
magnetostatic limit, where exchange interaction can be
neglected. Please note that changes in geometry result in
large changes in frequency as well as mode propagation
characteristics.

If the magnetization and the wave vector both lie in the
film plane and form an angle of ϕ ≈ 90◦, then in the case
of negligible anisotropy, the dispersion of the spin waves is
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Figure 2. Typology of spin-wave modes as a function of the
directions of the magnetization, �Ms, and the wave vector �q in the
dipolar limit. ωS is the frequency of the surface spin wave when
�q ⊥ �Ms and �q , �Ms lie in the film plane (MSSM, magnetostatic
surface mode). ωB, ωF are the frequencies of the volume spin waves,
with the wave vector parallel (MSBVM, magnetostatic backward
volume mode) and perpendicular (MSFVM, magnetostatic forward
volume mode) to the sample magnetization �Ms, respectively.
Calculated for a 1000-nm-thick Yttrium iron garnet (YIG) film
(4πMs = 1750 G, γ = 17.6 MHz Oe−1, A = 1.6 × 10−7 erg cm−1)
at H0 = 1900 Oe parallel to �Ms. (Reproduced from B. Hillebrands
et al., 2006, with permission from Springer-Verlag.  2006.)

given by Damon and Eshbach (1961):

(
ωS(q)

γ

)2

= H0 (H0 + 4πMs sin ϕ)

+ (2πMs)
2 (

1 − e−2q‖d) (7)

where q‖ is the in-plane component of the wave vector,
q2 = q2

‖ + q2
⊥,l and H0 is the applied magnetic field. This

spin-wave mode is called a magnetostatic surface mode
(MSSM) or, sometimes, a Damon–Eshbach mode.

In the presence of in-plane anisotropy, the direction of
magnetization is defined by the energy minimum of the total
magnetic enthalpy density

gtot = geff − �Ms �H0 (8)

which is the sum of the enthalpy density of the magnetic
anisotropy and the Zeeman energy. The direction of �Ms might
deviate from the direction of the applied field, �H0.

If the wave vector and the magnetization are collinear
and both lie in the film plane, we obtain the so-called
magnetostatic backward volume modes (MSBVM). The
slope of the corresponding dispersion and thus the group
velocity of these modes is negative, that is, the group and the
phase velocity point in opposite directions, giving this mode
its name (see ωB in Figure 2). Without anisotropies and in
the long wavelength limit (q‖d < 1), the dispersion is given
by Demokritov, Hillebrands and Slavin (2001), Kalinikos and
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Slavin (1986), and MacDonald (1951)

(
ωB(q)

γ

)2

= H0

[
H0 + 4πMs

(
1 − e−q‖d

q‖d

)]
(9)

The qualitatively different dispersions of the magnetostatic
surface wave (equation (7)) and the magnetostatic backward
volume wave (equation (9)) can be understood as follows:
We assume that the film plane is the (y, z) plane. A spin
wave propagating in the direction �q‖ in the film plane can be
written as

�M(�r, t) =

 0

0
Ms


 +


mx

my

0


 ei(ωt−�q‖�r)

= �Ms + �mei(ωt−�q‖�r) (10)

with �Ms ⊥ �m and
∣∣∣ �Ms

∣∣∣ � | �m|. The out-of-plane compo-
nent mx will create dynamic surface charges which alone
lead to a reduction of energy (frequency) with decrease
of wavelength (or increase of wave vector). However,
there exists also an additional energy term based on
the magnetic volume charges ρM = −4π∇ · �M = 4πi �q‖ ·
�m exp [i(ωt − �q‖�r)]. For �q‖ ‖ �M (magnetostatic backward
volume waves) it is �q‖ · �m = 0 and thus the volume charges
are absent. Hence the only term remaining is the energy based
on the surface charges and therefore the dispersion is nega-
tive. Contrarily, for �q‖ ⊥ �M (surface waves) it is �q‖ · �m 	= 0
and, therefore, this additional energy term increases in fre-
quency with increasing wave vector, and therefore the dis-
persion is positive.

In most cases, the dispersion can only be calculated numer-
ically; (Hillebrands, 2000; Hillebrands, 1990; Heinrich and
Cochran, 1993). A good description of the algorithm is given
in Stamps and Hillebrands (1991) for ultrathin films, that is,
when the product of the wave vector and the film thickness is
small compared to unity, q‖d 
 1. An approximate formula
can be used (Stamps and Hillebrands, 1991):

(
ω(q)

γ

)2

=
(

1

Ms

∂2geff

∂θ2 + H0 cos(ϕ − ϕH )

+2A

Ms
q2 + 4πMsf

(
1 − 1

2
q‖d

))

×
(

1

Ms

∂2geff

∂ϕ2
+ H0 cos(ϕ − ϕH )

+2A

Ms
q2 + 2πMsf q‖d sin2(ϕ − ϕq)

)

− 1

M2
s

(
∂2geff

∂θ∂ϕ

)2

(11)

with θ and ϕ denoting the polar and azimuthal angle of
the magnetization (using a conventional spherical coordi-
nate system) the saturation magnetization Ms, the applied
magnetic field H0, the exchange constant A, the demagne-
tizing factor f (which may deviate from 1 for very thin
films, see (Cochran, Heinrich and Arrott, 1986; Heinrich
et al., 1988)), and the film thickness d. The angles ϕ, ϕH , ϕq

indicate the directions of magnetization of the external field
and of the wave vector with respect to an in-plane reference
direction, which is usually chosen along a high-symmetry
crystallographic axis. In equation (11) the directional deriva-
tives of the effective anisotropy enthalpy density, geff, are
written as derivatives with respect to the polar and azimuthal
angles.

Equation (11) illustrates the applicability of investigat-
ing spin waves to determine magnetic anisotropies. The
basic underlying equation, the Landau–Lifshitz equation,
(equation (1)) is a torque equation and, correspondingly, the
second derivatives of the anisotropy enthalpy, which describe
torques, enter equation (11).

In the so-called magnetostatic forward volume mode
(MSFVM) geometry, the magnetization is perpendicular
to the film. The static internal field inside the film can
be written as an applied field reduced by a static film
magnetization, H0 − 4πMs. Without anisotropies and in the
long wavelength limit, the dispersion is given by Kalinikos
and Slavin (1986) and Demokritov, Hillebrands and Slavin
(2001)

(
ωF(q)

γ

)2

= (H0 − 4πMs)

×
(

H0 − 4πMs
1 − e−q‖d

q‖d

)
(12)

For the wave vector range considered here, the exchange
interaction can be neglected for systems with a weak stiff-
ness constant D = 2A/Ms such as Yttrium iron garnet
(YIG). However, in the case of, for example, permal-
loy, the stiffness constant is about 20 times larger. There-
fore, the contribution of exchange to the dispersion rela-
tion is not negligible, although it is still the dipolar
interaction that governs the shape of the dispersion. This
is presented in Figure 3(a), where dispersion relations of a
permalloy film are calculated with and without the exchange
contribution. We can see that the presence of exchange
adds a contribution γDq2, quadratic in q, as described by
equation (6). Owing to this contribution, the MSBVM ωB

may gain (from a certain value of q‖) a positive slope
and therefore both the phase and group velocity point in
the same direction.
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Figure 3. Full lines: The dispersions of a 30-nm thick
permalloy film (4πMs = 10 kG, γ = 17.6 MHz Oe−1, A = 1.3 ·
10−6 erg cm−1) under an applied external magnetic field H =
15 kOe parallel to �Ms. Both dipole–dipole and exchange interac-
tions are taken into account. The dashed lines show the dispersions
calculated for A = 0. ωS, ωB, and ωF are different spin wave modes
at different geometries as defined in Figure 2.

2.2 Quantized lateral spin-wave modes
and boundary conditions

Of particular interest is the mode spectrum in confined
magnetic structures, such as stripes, squares, rectangles,
circles, and so on, patterned into a magnetic film. New finite
size effects will appear because of the lateral boundaries of
these objects. In first approximation, it is useful to address
these final size effects by the simple quantization condition:

w = n
λn

2
; q‖,n = 2π

λn

= π

w
n (13)

where w is the width of the magnetic structure, n is a
positive integer, and λn is the spin-wave wavelength. This
is illustrated in Figure 4. If the magnetization lies statically
in the film plane along the structure edge, no stray fields
are generated for infinitely extended stripes. However, if the

0−w/2 w/2

q

M, H0
x

z
y

Figure 4. Sketch of a finite object with (n = 1) mode. Here n is
the mode index and λn the corresponding wavelength. We can use
these quantized values of the wave vector to evaluate the dispersion
equation in first-order approximation.

magnetization precesses around this direction, dynamic out-
of-plane stray fields appear since the dynamic part of the
magnetization has a component perpendicular to the film
plane. This is properly taken into account by the Maxwell
boundary conditions. In laterally confined structures, the
same effect appears at the sidewalls of the objects. In
zero-order approximation, we can describe quantized modes
using equation (13), but the stray fields at the sidewalls
are not considered. They will, however, generate surface
torques, since the cross product of the stray field with
the surface moments is a torque. This problem can be
solved phenomenologically by including a new boundary
condition, acting at the lateral edges (Guslienko, Demokritov,
Hillebrands and Slavin, 2002; Guslienko and Slavin, 2005).

∂ �m
∂z

+ 1

ξD
�m = 0; ξD = d

2π

(
1 + 2 ln

w

d

)
(14)

with �m denoting the dynamic part of the magnetization, and
d and w the thickness and the width of the object, (d 
 w),
respectively. Here, z is in-plane direction perpendicular to the
edge of the stripe, as sketched in Figure (4). The additional
surface torque of the dynamic stray fields is taken into
account by the parameter ξD.

Finite objects are associated with dipolar stray fields.
Unless the objects have an ellipsoidal shape, the internal
field is inhomogeneous, and thus we need to discuss the
propagation of spin waves in an intrinsically inhomogeneous
system. These phenomena are discussed in Section 4.2.2.

3 EXPERIMENTAL TECHNIQUES

In this section we will discuss several optical techniques,
which are applied to investigate spin wave and spin dynamic
properties.

Two classes of experiments exist. The first class comprises
spectroscopic techniques which allow to measure the spin-
wave mode spectrum directly. For thin films and patterned
structures, this is in particular the BLS spectroscopy. Here,
the primary quantity of observation is the frequency of
spin waves measured as a function of the wave vector.
Another spectroscopic techniques are optical ferromagnetic
resonance experiments. Here the fundamental precession
mode, the zero wave vector ferromagnetic resonance mode,
is excited, often by application of a cw microwave field. The
amplitude of the forced magnetization precession is measured
stroboscopically. The second class comprises techniques that
work on the timescale. Most of these techniques are based
on a stroboscopic approach. The sample is excited by a
short perturbation, and, with defined time delay, the magnetic
response is tested utilizing the magneto-optic Kerr effect
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(MOKE) and SHG. For the perturbation, short field pulses
or field steps, light pulses, microwave pulses, and so on,
can be used. The techniques are discussed in detail in the
following.

Other methods involving both spectroscopic and strobo-
scopic aspects exist. For instance, time-resolved BLS spec-
troscopy measures the intensity of spin-wave packets; how-
ever, in this case the sample is excited with microwave pulses
generating spin-wave pulses, whose propagation time is then
measured stroboscopically.

3.1 Brillouin light scattering spectroscopy

The fundamental principle of BLS spectroscopy is inelas-
tic scattering of monochromatic, visible light from spin
waves (Hillebrands, 2000; Hillebrands and Güntherodt, 1994;
Sandercock, 1982). This is illustrated in Figure 5. In a
quantum-mechanical picture, a photon of energy �ωL and
momentum �qL creates or annihilates a magnon (ω, �q), which
is the quantum of a spin wave. Consequently, the photon
frequency and wave vector are changed. Temporal and trans-
lational symmetries correspond to conservation of energy
and momentum. If a magnon is created, the scattered pho-
ton has the energy �ωL –�ω and momentum �qL –�q. If
a magnon is annihilated, the energy of the scattered pho-
ton is �ωL + �ω and the momentum is �qL + �q. For
finite temperatures (T � �ω/kB ≈ 5 K) both processes have
about the same probability. In a classical description the
process can be understood as scattering of light from a
propagating phase grating in the dielectric constant gen-
erated by the propagating spin wave via spin-orbit cou-
pling. The laser light is Doppler shifted by the frequency
of the spin wave, and the periodicity of the phase grating
induces a change in the direction of the scattered light. For

Scattered
photon

Incident
photon

Spin wave

wL ± w

qL ± q→ →

wL, qL
→

w, q
→

Figure 5. Scattering process of photons from spin-wave excitations
(magnons).

a detailed discussion see Hillebrands (2000) and references
therein.

For an infinitely extended film, translational invariance
exists in the plane of the film. Correspondingly the wave
vector components parallel to the film plane are conserved
in the scattering process. These components can be varied in
an experiment by changing the angle of light incidence. The
system is time invariant, and correspondingly the frequency
shift measured in the BLS experiments is equal to the
frequency of the spin wave.

As BLS is an optical technique, it allows for a local mea-
surement of spin waves with a spatial resolution defined by
the diameter of the laser spot. Typically, the spot size is of
the order of 40 µm. Techniques have been reported to reduce
the diameter down to the optical limit (see Section 3.1.2).
BLS can be applied in different environments, such as low
and high temperatures, ultrahigh vacuum, and so on.

3.1.1 The Brillouin light scattering setup

A typical BLS setup is shown in Figure 6. Light from a fre-
quency stabilized laser in single mode operation with wave-
length λ is focused onto the sample. As a light source a
cw laser, such as a solid-state laser or an Ar+-laser, can be
used, a typical linewidth is �ν = 20 MHz. From the spin
waves, light is inelastically scattered. The direction under
which the scattered light is analyzed determines the trans-
ferred wave vector in the scattering process and thus the wave
vector of the spin wave. Often the backscattering geometry
is used because of maximum momentum transfer, in par-
ticular for metallic samples, but forward scattering is also
applied if spin-wave modes with large wavelengths are inves-
tigated and the sample is transparent. The scattered light
containing elastic and inelastic contributions is sent through
a spatial filter, consisting of two lenses and a pinhole, to sup-
press background noise, and then enters the monochromator.
Commonly a multipass tandem Fabry–Pérot interferome-
ter developed by Sandercock (JRS Scientific Instruments),
is used. The light then passes a second spatial filter and a
prism to suppress signals from common transmission orders
of the two etalons outside of the measured spectrum. The
light is detected by a photomultiplier or an avalanche pho-
todiode. Single photon counting must be used, and the
dark count rate should be lower than 3 counts/s. A com-
puter or a multichannel analyzer collects the photon sig-
nals as a function of the mirror spacing and displays the
data.

Optical etalons are commonly used as the frequency-
selecting element. They consist of two highly flat (λ/200)
glass plates enclosed with a high reflectivity coating
(R = 92–96%). The transmission function of an etalon
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Figure 6. Schematic view of a Brillouin light scattering setup.

is the Airy function

I = I0
1

1 + F sin2(�φ/2)
(15)

with I denoting the transmitted intensity as a function of the
mirror spacing s, F = 4R/(1 − R)2 the finesse, R the mirror
reflectivity, �φ = 2πs/λ the phase shift for one loop (two
reflections) in the etalon, and λ the wavelength. Perpendicu-
lar incidence of the light is assumed, as it is the case in the
experimental setup described here. The etalon transmits all
the light if the spacing between the two plates is an integer
multiple of half the wavelength. In the experiment one of
the two plates is scanned piezoelectrically to allow for reso-
nance conditions for different wavelengths and corresponding
frequencies.

To avoid ambiguities in the assignment of inelastic peaks
to the respective transmission order, a tandem arrangement
is commonly used. Its central part is shown in Figure 7.
One mirror of each of the two etalons is mounted on a
common translation stage. The axes of the two etalons form
an angle �. If the translation stage is moved along the
normal direction of FP1 and if the spacing of etalon FP1

is changed by �, the corresponding change in spacing of
FP2 is � cos �.

To understand the operation let us assume that both
etalons are in transmission (see Figure 7b). If the spacing

of FP1 is changed by λ/2 this etalon is again put into
transmission. However, since the change in spacing of
FP2 is smaller by the factor cos �, FP2 is now not in
transmission. Since the light is sent through both etalons
in series, transmission is only obtained in the common
transmission order. Let us now assume that the light from
the sample contains an inelastic contribution. The spectrum,
shown in the upper left part of Figure 7, consists now of
a strong line at frequency ωL, corresponding to elastically
scattered light, and two weaker side bands at ωL ± ω. These
side bands appear in the transmission of the etalons at
characteristic spacings (see Figure 7b). It is evident that only
the signal from the side bands belonging to the common
transmission order is transmitted through both etalons. Thus
the ambiguity in the mode assignment is removed. In
practice, the translation stage is piezoelectrically driven with
a feedback for linearization. The frequency range between
the central transmission order and the first neighboring order
is called the free spectral range.

A frequency resolution in the subgigahertz regime and a
high contrast of better than 1010 (Sandercock, 1982; Mock,
Hillebrands and Sandercock, 1987) can be achieved, the latter
by multipassing the light beam through the etalons using a
system of mirrors and/or retroreflectors (see Figure 6). This
sensitivity allows for the observation of spin waves down to
magnetic monolayers, although the inelastic light scattering
process is rather ineffective (Krams et al., 1992).
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To maintain stable operation, the parallelity of the mirror
plates must be maintained to a very high degree (a com-
mon value is λ/100). This cannot be achieved statically,
and sophisticated dynamic stabilization schemes are applied
(Mock, Hillebrands and Sandercock, 1987; Sandercock,
1971; Hillebrands, 1999). Often a shutter system is used to
switch between the light from the sample and reference light
used for stabilization (see Figure 6). Active stabilization and
the data collection can be performed by hardware as well as
by software solutions, such as the TFPDAS3 package (Hille-
brands, 1999).

The total accessible frequency range in a BLS experiment
is in the range of 0.2 GHz–1 THz. In a typical experiment
a much smaller range is used, defined by the spacing of the
etalon mirror plates. The finesse, that is, the ratio of the free
spectral range over the resolution is fixed and is typically
of the order of 50. Thus the needed frequency resolution
determines the free spectral range. Scanning over several
transmission orders can be made to enhance the frequency
range. Sensibility down to monolayer thickness has been
shown with a good signal-to-noise ratio, for example, 2 ML
of Co deposited on Cu(001) (Krams et al., 1992).

3.1.2 Space-resolved Brillouin light scattering
spectroscopy

The laser spot size in a standard geometry is of the order
of 40 µm. Thus BLS spectroscopy can be used for imag-
ing of spin-wave propagation and spin-wave eigenmodes in
confined objects with moderate spatial resolution. A large
class of experiments involves the excitation of spin waves
in garnet films with wavelengths in the range of 0.1–1 mm.
Here a scanning sample stage allows the realization spatial
resolution by measuring the intensity of the inelastic scat-
tered light point by point on the sample in a scanning probe
fashion. Spatial resolution can be increased down into the
submicrometer range using the so-called microfocus tech-
nique. Here the full numerical aperture of an objective lens is
used for maximum optical resolution. Compared to standard
BLS spectroscopy two major modifications are made. First, a
microscope objective is used and, for maximum spatial res-
olution, the incoming laser light is expanded to the output
aperture of the objective lens. Second, for practical reasons,
an optical microscope setup is integrated to monitor the posi-
tion of the laser spot on the sample. Figure 8 illustrates the
light pass for both BLS spectroscopy and monitoring.

Unfortunately, a price is to be paid for the increased optical
resolution, and this is the loss in wave vector resolution,
in accordance with Heisenberg’s principle of uncertainty.
However, in small magnetic objects the excitation spectrum
most often consists of quantized, dispersionless modes, so
that the loss in wave vector resolution is not a real drawback.

Microfocus BLS spectroscopy has been used to measure
the local mode spectra in micrometer sized objects, such as
stripes, squares, rectangles, circles, and rings (see Section 4.5
for illustrations).

3.1.3 Time-resolved Brillouin light scattering
spectroscopy

The BLS spectroscopy technique has been extended toward
time resolution (Slavin, Demokritov and Hillebrands, 2002).
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Figure 8. Schematic view of microfocus Brillouin light scattering
setup.
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This allows for direct access to spin-wave propagation
phenomena by monitoring the propagation of microwave
excited spin-wave pulses. In a typical experiment, a spin-
wave pulse is launched in a sample by application of
a microwave pulse to an antenna structure. Observation
of the spin-wave packet is now realized by measuring
stroboscopically the time between launch and detection in the
area of the laser focus. Most often this technique is combined
with space-resolved BLS, enabling the full spatio-temporal
observation of the packet propagation.

Figure 9 illustrates the fundamental operation. Spin-wave
pulses are excited by an antenna structure connected to
a microwave generator with a microwave switcher. The
microwave switcher is controlled by a pulse generator,
which serves as the central clock. The microwave pulses
are typically 10–30 ns long and have a repetition rate upto
1 MHz. The propagating spin-wave pulse is detected in the
focus of the laser light. Here, most often a transmission
geometry is used because of the small wave vector of the
modes to be detected. If spin-wave pulses cross the laser
focus, they generate inelastically scattered photons, which

are then detected by the photomultiplier. The propagation
time is obtained by measuring the time between launch of the
spin-wave pulse at the antenna and its detection in the laser
focus (the time measurement unit is indicated in Figure 9
by ‘multichannel time analysis’). For this purpose a 24-bit
reference counter is used, which runs with a time base of
1.2 GHz. The counter is started by the pulse generator and
stopped by the detection of an inelastic scattered photon.
The content of the counter is thus a measure of the elapsed
time of such an event. A memory cell is addressed by the
content of the counter and its content is increased by 1.
After averaging many of these events the memory contains
the temporal distribution of the spin-wave signal in the laser
spot. Repeating this measurement point by point by scanning
the laser focus across the sample, the full spatio-temporal
information of the propagating spin-wave pulse is obtained.
The result is usually displayed in an animated movie format.

The time resolution is of the order of 2 ns, limited by the
narrow transmission linewidth of the Fabry–Pérot interfer-
ometer. In a typical experiment, the measurement at each
position on the sample takes about 1–10 s. A complete
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measurement of a two-dimensional spin-wave intensity pat-
tern in a YIG-film with a sample area of 2 × 6 mm2 and a
mesh size of 0.1 mm takes a little bit more than 2 h including
the time caused by sample positioning.

3.2 Time-resolved magneto-optic Kerr effect
magnetometry and microscopy

This class of experimental tools uses the magneto-optic Kerr
effect is used to pick up information on the magnetization and
its dynamics (Freeman, 2005; Rasing, van den Berg, Gerrits
and Hohlfeld, 2003; Freeman and Hiebert, 2002; Choi and
Freeman, 2005). The three standard Kerr effect geometries
linear in the magnetization – longitudinal, transverse, and
polar Kerr effect geometry – are used, although, particularly
for imaging, the polar Kerr effect geometry is most often
employed. In the longitudinal (transverse) geometry, the in-
plane magnetization component parallel to the (perpendicu-
lar) plane of the incidence is probed. In polar geometry, the
magnetization component perpendicular to the film plane is
tested.

The dynamic part of the magnetization is usually per-
pendicular to the static part. Consequently, for an in-
plane magnetized sample, both the polar Kerr effect as
well as one of the two in-plane Kerr effects contribute
to the signal. The polar Kerr effect is usually about a
factor of 100 larger than the longitudinal or the trans-
verse counter parts. This factor depends on many param-
eters, such as optical and magneto-optical parameters of
the ferromagnetic layer, overlayer, and substrate as well
as on the angle of incidence, light wavelength, light
polarization, and so on. (Višňovský et al., 1995; Qiu and
Bader, 1999; Hubert and Schäfer, 1998). For example, in
the case of 30-nm-thick permalloy film investigated by
s-polarized (p-polarized) light at an incidence angle ϕ = 45◦

and wavelength λ = 680 nm, the Kerr rotation in the case of
polar magnetization is 140 mdeg, (160 mdeg), whereas in the
case of longitudinal magnetization it is 6.4 mdeg (2.4 mdeg),
respectively. On the other hand, in thin films there is a
large ellipticity of the precession of the magnetic moments
which must be taken into account. The out-of-plane dynamic
component of the magnetization is typically a factor of 100
smaller than the in-plane dynamic component. Therefore, the
out-of-plane and in-plane components of the dynamic mag-
netization contribute more or less equally to the resulting
Kerr signal.

Two general classes of techniques are used: In the pump
probe approach, the system is excited by a short perturbation,
which can be a magnetic field pulse, heating by a light
pulse, and so on. With some controlled time delay a probe
light pulse is sent to the sample and the Kerr signal of

the reflected light is measured. The temporary evolution of
the magnetization dynamics is obtained by measuring the
Kerr signal as a function of the delay time. In a second
experimental approach, the system is subject to a microwave
field, which excites a uniform forced precession of the
magnetization. Pulsed light, which is synchronized to the
microwave frequency, is sent to the sample and the Kerr
signal is measured. A measurement of the Kerr amplitude as
a function of the microwave frequency, applied field, and so
on, yields the dynamic response of the sample. This is the so-
called optical ferromagnetic resonance technique, discussed
in the next subsection.

Figure 10 shows a schematic setup to measure the
dynamics of all three Cartesian components of the magneti-
zation, mx , my , mz (Freeman, 2005; Freeman and Hiebert,
2002). An electric pulse generator is used to generate current
pulses, and thus the sample is stimulated by magnetic field
pulses. Commonly the current pulses are sent to the sam-
ple using a strip-line geometry for reasons of high-frequency
impedance matching. For the detection part, a Ti:sapphire
laser system is commonly used, which typically provides 70-
fs-long pulses of λ = 800 nm wavelength and has a repetition
rate of 82 MHz. The laser serves as the general clock of the
system. Some part of the light and a photodiode are used to
generate the electrical clock signal to trigger the electrical
pulse generator. A pulse picker is used to reduce this repeti-
tion frequency of the laser down to 1 MHz, well adapted to
the timing of the magnetization dynamics. Often a frequency
doubler is employed to work at shorter wavelengths. Some
authors also report the successful use of pulsed diode laser
as a light source (Fassbender, 2003).

The laser light is sent to the sample via a beam split-
ter and an objective lens for focusing. The reflected light
is then sent to a polarizing beam splitter and to photodi-
odes, which work in the geometry of an optical bridge for
differential detection of the polarization rotation induced by
the MOKE. When quadrant detectors are used (as shown
in Figure 10), then linear combinations of signals from
proper detector quadrants provide signals proportional to
all three Cartesian magnetization components (Freeman,
2005; Freeman and Hiebert, 2002). Such a setup is fre-
quency limited by the rise time of the pulse generator
being about 50 ps as well as the jitter of the system.
The use of coplanar strip lines and a careful matching of
the impedances result in a frequency limit in the 5-GHz
range.

An alternative way allowing access to a higher frequency
range is to use a photoconductive switch, illuminated by
a laser pulse, to generate fast transient electrical current
pulses. Figure 11 shows the approach used by the Nijmegen
group (Gerrits et al., 2001; Rasing, van den Berg, Gerrits and
Hohlfeld, 2003). In such a switch the light pulse generates
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Figure 10. Scheme of the setup of the time-resolved Kerr effect experiment: A polarized pulsed-laser source is split by a beam splitter
and focused onto the sample with an oil immersion objective lens (numerical aperture NA = 1.3). The reflected light is analyzed by a
Thomson polarizing beam splitter (THOM). The light is detected by a quadrant detector that simultaneously acquires all three components
of the magnetization. To reduce noise, lock-in amplifiers (LA) are employed. Temporal resolution is achieved by synchronizing the laser
pulses through the output of a cavity dumper or pulse picker (PP/CD) triggering an electronic pulser (PULSER) at megahertz frequencies
via a variable delay generator (VDG) with computer-controlled variable delay �t . The pulses provided by the VDG are toggled (gated)
by a fast gating switch controlled by a function generator (FUNC) at kilohertz frequency. The gated train of electrical pulses from the
pulser (amplitude 50 V, length 10 ns, rise time 0.5 ns, fall time 1 ns) is launched to a coplanar transmission line, creating a transient in-
plane magnetic field �H(t) at the sample. The static magnetic field is generated by a permanent magnet (PERM). The spatial image is
built by scanning the sample position underneath the laser spot. (Reproduced from M.R. Freedman et al., 2002, with permission from
Springer-Verlag.  2002.)
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Figure 11. Scheme of the setup of the time-resolved Kerr effect
experiment demonstrating the photoconductive switch. The 100-fs
pump pulse excites a current pulse, which is concentrated in the
taper and launched into the signal line. The response of the magnetic
element to the correlated field pulse, h(t), is measured by detecting
the Kerr rotation of the 100-fs probe pulse as a function of the
pump pulse delay �t . (Reproduced from T. Rasing et al., 2001,
with permission from The Magnetics Society of Japan.  2001.)

electron hole pairs in doped GaAs and thus increases
the conductivity. Photoconductive switches show very fast
current raise times (≈10 ps), but however, also slow decay
times (≈600 ps). This problem can be circumvented by using
two photoconductive switches which are illuminated by two
laser pulses with a short delay in between. The output
currents of both switches are connected in an antiparallel
arrangement and thus will cancel each other in the long tail.
Figure 12 demonstrates the principle.

A typical operation voltage is ±30 V and the usual peak
power of the laser pulse excitation is 100 MW cm−2. Well-
defined magnetic pulses with a peak field strength of 100 Oe
a duration of less than 50 ps, and a jitter considerably
better than 1 ps can be generated. When using a single
photoconductive switch, a frequency resolution of about
15–20 GHz has been achieved (Zhu et al., 2005).

Experiments as described above are very well suited
to measure the magnetization dynamics of small magnetic
objects. Very often a high spatial resolution is needed. An
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of the double photoconductive switch setup that allows for a control of the shape of the field pulse generated. (Reproduced from H.A.M.
Gerrits et al., 2003, with permission from Elsevier.  2003.)

objective lens is used to focus the light down to a mini-
mum focus size, which is typically of the order of 1–10 µm.
A further reduction of the focus size going to the optical
limit has been studied. In Freeman and Hiebert (2002), the
use of a solid immersion lens is reported and the achieved
spatial resolution was 220 nm corresponding to a resolu-
tion of λ/2.9 relative to the wavelength (Rayleigh criterion).
By scanning the laser focus across the sample and measur-
ing the time-resolved magnetic response, two characteristic
quantities can be obtained from the measurements: First, the
dynamic response is measured point by point, as a func-
tion of the delay time. Second, images corresponding to a
given delay time can be made. Such images can be pre-
sented in an animated movie format, and the experimentally
determined ‘wiggling’ of the magnetization can be demon-
strated. Furthermore, the time-resolved local magnetization
response can be Fourier-transformed for each point on the
surface. The Fourier components can be imaged as a function
of the position. Thus, the local amplitude of individual modes
with a given frequency ω can be displayed. Here the Kerr
effect technique meets the microfocus-BLS technique, where
the mode amplitude is directly measured locally. Section 4.3
shows a result, where both methods are compared.

A number of related stroboscopic Kerr effect techniques
exist. For instance, magnetic anisotropy and an intense
light pulse can be used to excite precession, which is
then stroboscopically sampled with the techniques described
above (van Kampen et al., 2002; Hansteen, Kimel, Kirilyuk
and Rasing, 2005; Weber et al., 2005; Hicken, Barman,
Kruglyak and Ladak, 2003). Here the light pulse results
in a sudden local heating of the sample. In the presence
of a temperature-dependent anisotropy, this may result in a
change of the easy direction of magnetization, stimulating a
precession of the magnetization. van Kampen et al. (2002);
Hansteen, Kimel, Kirilyuk and Rasing (2005); Weber et al.
(2005); and Hicken, Barman, Kruglyak and Ladak (2003)
discuss this technique.

Most time-resolved Kerr microscopy setups use a scanning
approach. However, for wide-field imaging a conventional

Kerr microscope can be used jointly with pulse excitation.
Neudert et al. (2005) demonstrate this approach.

3.3 Optical ferromagnetic resonance

Tamaru et al. (2002, 2004) have pioneered the technique of
spatially resolved optical ferromagnetic resonance following
early experiments by Petek, Trouilloud and Argyle (1990).
They have shown that the uniform mode of a film or
the eigenmode spectrum of a small magnetic object can
be investigated by driving the system with an applied
microwave field, for instance, in a microwave cavity or for a
sample mounted on top of a coplanar strip line connected to
a microwave source. This optical approach has the advantage
that the full optical resolution can be used to obtain spatial
information about the mode profiles. Figure 13 shows a
typical setup.

A coplanar transmission line is used to apply the
microwave signal to the sample, while a Ti:sapphire
frequency-doubled laser system is used as a clock. The laser
is controlled by a 80-MHz reference clock, which also syn-
chronizes the microwave generator working at 8 GHz with an
intervening delay generator for phase adjustment. To increase
sensitivity, a lock-in technique is used. A 1-kHz signal gen-
erator modulates the microwave signal and is used as a
reference signal for a lock-in amplifier used for analysis of
the Kerr signal. For this type of experiment, a very precise
phase synchronization between the microwave signal and the
laser pulses is mandatory. The experiment is conducted in the
usual ferromagnetic resonance operation: the applied field
is changed and the output signal is measured as a function
of the applied field point by point on the sample. In this
way, the two-dimensional distribution of the mode profiles
are obtained as a function of the applied field.

3.4 Second-harmonic generation techniques

As discussed in Section 3.2, the magneto-optical Kerr effect
may be used to determine all three Cartesian components
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Figure 13. Schematic diagram of a Kerr effect ferromagnetic
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transmission line. (Reprinted with permission from S. Tamaru et al.,
2002,  2002, American Institute of Physics.)

of the magnetization. Therefore it is well suited to pick
up the dynamic signal. However, the polar, transverse, and
longitudinal Kerr effect contributions are mixed together and
often there is a need to separate them (Choi and Freeman,
2005).

The employment of the SHG technique is an alternative
elegant way to obtain magnetization information in all three
Cartesian directions. For materials with point symmetry (such
as most metals), the SHG signal originates only from the
interface or surface, because here the point symmetry is
broken. Using the SHG technique, the in-plane magnetic
contribution can be separated by realizing different orien-
tations of the analyzer (Gerrits et al., 2002a; Kabos, Kos
and Silva, 2000). When the incident light is p polarized,
then the s-polarized SHG yield (pin − sout) is an odd func-
tion of the longitudinal magnetization. On the other hand,
the p-polarized SHG yield (pin − pout) is an odd function
of transverse magnetization [2]. As the SHG signal only
weakly depends on the polar magnetization, this direction
was measured by means of the magneto-optical polar Kerr
effect (Gerrits et al., 2002a; Gerrits et al., 2002b). The only
disadvantage of this elegant approach is that it mixes surface
or interface magnetic signals related to in-plane magnetic
directions and the bulk magnetic signal related to the polar
direction.

4 APPLICATIONS OF OPTICAL
TECHNIQUES

The development of new experimental techniques, as dis-
cussed in Section 3, has enabled a large variety of new
experimental results. In this section we present a few of these
results. They are aimed at demonstrating the specific poten-
tials of some of the optical techniques discussed above and
are not meant as an introduction into the underlying physics.
As an example of the application of space- and time-resolved
BLS spectroscopy we discuss results on the spin-wave tun-
neling effect. BLS in the ‘Fourier microscope’ mode also
allows to characterize the lateral extensions of confined mag-
netic modes. This is demonstrated in the investigation of
localized modes in rectangular microelements. As a further
topic, the investigation of mode patterns in squares using
both time-resolved Kerr microscopy and microfocus BLS
spectroscopy will be presented. Next, as an example of the
optical ferromagnetic resonance technique, we demonstrate
the investigation of confined modes using this approach. We
finally conclude by presenting a few experiments on the
investigation of propagating spin waves using time-resolved
optical techniques, which complement BLS experiments.

4.1 Spin-wave tunneling

In a ferro- or ferrimagnetically ordered film spin waves may
propagate, characterized by their dispersion. Spin waves can
easily be excited using an antenna structure mounted on the
surface of the film and connected to a microwave generator.
If the antenna structure is driven by microwave pulses,
spin-wave pulses are generated. Their carrier frequency is
determined by the frequency of the microwave generator
ωµW, and their wave vector is determined by the dispersion
law ω(�q). The slope in the dispersion is the group velocity
of the spin-wave packets, �vg = ∇qω(�q).

The method of space- and time-resolved BLS, as described
in Sections 3.1.2 and 3.1.3, is used to study the propagation
properties of such spin-wave packets. We demonstrate this
for a specific physical problem. We assume that we have a
spin-wave waveguide realized by a YIG stripe of typically
6 µm thickness, 1.5 mm width, and 10 mm length. The YIG
films are grown on Ga–Gd–garnet (GGG) substrates, which
are nonmagnetic. The spin waves are excited by attaching
a microfabricated microwave antenna to the film, which is
connected to a pulsed microwave generator.

If we inhibit propagation of such a spin wave in certain,
narrow (smaller or comparable to spin-wave wavelength)
areas of the spin-wave waveguide, the spin-wave tunneling
effect may appear. It has been shown recently that a region
of lowered magnetic field can act as a tunnel barrier for a
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propagating dipolar-dominated backward volume (MSBVM)
spin wave (Demokritov et al., 2004). In this region, the
dispersion curve is shifted down on the frequency scale
because of the reduced internal field, and if the dispersion
does not allow any more for the propagation of a MSBVM
spin wave for the given frequency ωµW determined by
the microwave generator, propagation is forbidden. If the
forbidden region is small enough, tunneling of spin waves

may appear. Here we demonstrate the spin-wave tunneling
effect using a different scenario which is in a sample with a
narrow mechanical gap cut into the YIG waveguide.

The spin-wave waveguide was fabricated by chemical
etching of the YIG-film. While the mechanical gap was real-
ized by a transverse slot of 20 µm width. The waveguide was
magnetized along its longitudinal axis. Backward volume
magnetostatic spin waves (BVMSW) with a carrier frequency

Gap

(a)

(b)

Gap

H
Gap

YIG

GGG

Figure 14. (a) Schema of the setup for spin-wave tunneling measurements. (b) Tunneling of a spin wave through a mechanical gap. The
position of the gap is indicated by the black line. Left column: H = 1835 Oe, right column: H = 1846 Oe.
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of ω/2π = 7.125 GHz were excited in the waveguide using
a 25-µm-wide microstrip antenna.

Figure 14 shows the experimental results using space- and
time-resolved BLS spectroscopy for two different values of
the magnetizing field: H = 1835 Oe (left) and H = 1846 Oe
(right), yielding spin waves with q = 10 and 4.2 cm−1,
respectively. The data are normalized to the maximum value
in each picture. The larger magnetic field corresponds to a
smaller carrier wave number of the spin-wave packet incident
on the gap.

As expected, the main part of the waves is reflected from
the gap and forms a standing wave pattern together with the
incoming wave. A small part of the wave energy tunnels
through the gap and forms a propagating transmitted wave.
One can see in Figure 14 that the amplitude of the transmit-
ted pulse is smaller for short carrier wavelengths and larger
for long carrier wavelengths.

In the experiment, frames with the spatial information
are obtained for each time step, and thus an animated
video can be obtained, which shows the propagation of
the spin-wave pulse. Follow-up experiments have been
performed to measure the wave vector dependence of the
tunneling efficiency, and to investigate the trapping of spin
waves in so-called spin-wave cavities, made by two gaps cut
into the waveguide with a small separation.

4.2 ‘Fourier mode’ Brillouin light scattering
spectroscopy: characterization of spatial
distributions of the spin-wave intensity
and localization of modes

The spin dynamics in patterned magnetic structures is a
very important contemporary problem, motivated, apart from
basic science aspects, largely by applications in the field of
data storage and sensors, where the speed of operation now
reaches into the GHz regime. For this frequency regime BLS
spectroscopy and time-resolved MOKE techniques are two
important characterization techniques.

Let us first understand the spin-wave eigenmode prop-
erties in such small elements. The problem is nontrivial,
as in many cases both dipole–dipole and exchange inter-
actions must be taken into account simultaneously (see
Section 2.1). An additional difficulty comes from the fact
that many of the small magnetic elements have a inho-
mogeneous distribution of the internal field and the satura-
tion magnetization, in particular, if they have a nonelliptical
shape.

The complexity of spin waves inside such small magnetic
elements results from several physical effects:

• Spin-wave quantization due to spatial confinement, such
as in longitudinally magnetic stripes (Jorzick et al.,

1999; Mathieu et al., 1998; Roussigné, Chérif, Dugautier
and Moch, 2001; Wang et al., 2002) and in ellipsoidal
magnetic elements, where the internal magnetic field is
homogeneous (Mathieu et al., 1997; Hillebrands et al.,
1997).

• Spin-wave quantization and localization to small regions
inside the magnetic object. The inhomogeneous internal
magnetic field may form so-called spin-wave wells,
which may provide such a localization mechanism
(Jorzick et al., 2002; Park et al., 2002; Bayer et al.,
2004; Bayer, Demokritov, Hillebrands and Slavin, 2003;
Bayer et al., 2005).

In Section 3.1 we have derived the fundamental properties
of BLS spectroscopy. There it was stated that in the light
scattering process the in-plane component of the wave vector
is conserved if the film is infinitely extended. The latter is not
the case anymore for finite magnetic objects. To understand
the consequences we discuss Figure 15.
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Figure 15. Schematic description of the light scattering process for
(a) an infinite scattering volume (plane wave) and (b) a confined
scattering volume. qI and qS indicate the wave vector of the
incoming and scattered light, respectively.
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The BLS process in an unconfined medium is illustrated
in Figure 15(a): Monoenergetic photons with a frequency ωI

and wave vector �qI interact with the elementary quanta of the
spin waves, which are the magnons, described by ω and �q.
Because of the conservation laws resulting from the time and
translational invariance of the system, the scattered photon
has an increase or decrease in energy (ωS and momentum
�qS, as described in Section 3.1). For a laterally confined
structure, the in-plane translational invariance is broken.
Therefore, there is a given uncertainty in the scattered wave
vector �qS, as is shown in Figure 15(b), where the value
of the uncertainty is determined by the lateral size of the
element. The intensity of the scattered light as a function of
the dynamic magnetization, m(y) [3] of the spin-wave mode
confined to the stripe is according to Jorzick et al. (1999)
and Mathieu et al. (1998) proporational to

I (q) ∼
∣∣∣∣
∫ w/2

−w/2
�m(y) exp(−iqy)dy

∣∣∣∣
2

(16)

where w is the stripe width, q is the wave vector, and
the integration is performed along the stripe width. Thus,
the light scattering intensity is proportional to the squared
Fourier transform of the dynamic magnetization, | �m(y)|2. As
the integration is performed over the interval [−w/2, w/2]
and the dynamic magnetization is essentially a sine function
with a wave vector q, the maximum in scattering intensity
will be at q and the broadening will be determined by the
stripe width w. In the more complicated case of a rectan-
gular element discussed in Section 4.2.2, a two-dimensional
Fourier transform is needed.

4.2.1 Modes in longitudinal magnetized stripes

In order to understand the ‘Fourier microscope’ BLS
technique, let us first discuss the modes in a longitudinally
magnetized stripe, where the modes propagate in a direc-
tion perpendicular to the stripe axis. Since in this geometry
the magnetization is parallel to the stripe axis, the magnetic
field is homogeneous and equal to the applied external field
(neglecting areas close to the stripe ends). These stripes are
made from permalloy (Ni81Fe19) films of typically 20–40 nm
thickness with a typical width in the range of 1–2 µm.
Permalloy has the advantage that magnetic anisotropies are
small and can be neglected. The geometry studied here sup-
ports surface waves (MSSM or Damon–Eshbach modes),
which propagate in the film plane perpendicular to the stripes.
When the spin wave reaches a lateral boundary of the stripe,
it will be reflected and it forms a standing (confined) wave
as already discussed in Section 2.2 and shown in Figure 4.

The standing wave patterns will result in quantized
spin-wave frequencies. Figure 16 shows the measured results.
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Figure 16. Obtained spin-wave dispersion curve for permalloy
stripes with a thickness of 40 nm, a stripe width of w = 1.8 µm
and a separation between the stripes of 0.7 µm (open symbols)
and 2.2 µm (solid symbols). The external magnetic field along the
stripe axis was 500 Oe, being perpendicular to the �q vector as
sketched in the Inset. The solid horizontal lines indicate the results
of calculations using effective pinning (Demokritov, 2003). The
dashed lines, showing the hybridization between the dispersion of
the magnetostatic surface mode (MSSM) and the first perpendicular
standing spin-wave mode (PSSW), were calculated numerically for
a continuous film of 40 nm thickness. (Reproduced from J. Jorzick
et al., 1999, with permission from American Physical Society.
 1999.)

For small wave vectors, the spin-wave dispersion splits,
as expected, into several modes, which are laterally standing
modes due to the confinement. The mode order is char-
acterized by the number of nodes along the propaga-
tion direction. Each mode does not show any dispersion
and is observed over a finite but well-defined wave vec-
tor range. The separation between the modes decreases
with increasing wave vector (increasing frequency) and, for
higher order modes, this separation becomes indistinguish-
able. At 14 GHz, the dispersionless, perpendicular standing
spin wave, determined by the exchange interaction and trav-
eling perpendicular to the film, is observed. It intersects the
regime of the MSSM modes.

We now discuss the two main properties, namely, the lack
of dispersion and the finite wave vector range of observation,
in more detail. The discrete nature of the mode spectrum has
been already discussed in Section 2.2, so only the results
are discussed here. It is important to note that, owing to the
stray fields generated by the dynamic excitations outside of
the stripe, an additional pinning mechanism is present, since
the stray fields interact with the dynamic magnetization. This
is discussed in detail in Guslienko, Demokritov, Hillebrands
and Slavin (2002). As a result, the quantized values for the
parallel wave vector, q‖,n are given by q‖,n = n(π/weff,n),
where weff,n > w is an effective stripe width larger than the
real stripe width. This is shown in Figure 17.
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Figure 17. (a) Measured relative Brillouin light scattering intensities of the in-plane quantized spin-wave modes as a function of the wave
vector q‖ and the mode number n (black squares) compared to calculations as discussed in the text (solid lines). (b) Experimental data for
the quantized n = 3 mode compared to calculations using three different boundary conditions. (Reproduced from S.O. Demokritov et al.,
2003, with permission from IOP Publishing Ltd.  2003.)

Figure 17(a) shows the detected BLS intensities as a
function of the transfer red wave vector q‖. The mode intensi-
ties are normalized to the perpendicular standing spin-wave
mode. The black squares correspond to the experimentally
measured intensities, while the gray curves represent calcu-
lations based on equation (16).

Figure 17(b) shows the measured and calculated profiles
for different boundary conditions. It is evident that the
boundary condition determines the highest intensity of the
respective mode in the Fourier space, that is, it determines
value of the effective stripe width weff,n.

Measurements of intensities as a function of the wave
vector, as displayed in Figure 17, provide Fourier space
information. The larger the extent of the scattering regime
in real space, the smaller the distribution in Fourier space,
as measured with BLS. This can be used to estimate the
spatial extent of such localized spin-wave modes. However, it
should be noted that the BLS spectroscopy is a measurement
of intensities not of amplitudes, and thus phase information
is lost in this experiment. Consequently information about
the lateral extent of modes can be obtained, but not the exact
position of the mode amplitudes.

4.2.2 Characterization of the spatial distribution
of the spin-wave intensity and localization of
modes in a rectangular element

In the last section we have learned that information on
the spatial distribution of spin waves can be obtained from
the wave vector dependence of the BLS cross section of
the quantized modes. Now we discuss an application where
information on the lateral extent of spin-wave modes is very
useful. We examine spin waves in a rectangular structure, as
shown in Figure 18 (Inset).

Figure 18 displays the BLS intensity for a given mode as a
function of the transferred wave vector q‖ and perpendicular

to the applied field. This system is a Fe19Ni81 rectangular
of dimensions 1 × 1.75 µm2. For a transferred wave vector
parallel to the applied magnetic field (q‖ in Figure 18) a
nearly q-independent BLS intensity is observed indicating a
strong localization of the mode in real space. Investigations
have shown that owing to the strongly varying internal field
an additional localization mechanism operates here, which
localizes the mode to regions near the two boundaries (Jorz-
ick et al., 2002; Bayer, Demokritov, Hillebrands and Slavin,
2003). Contrarily, for a transferred wave vector perpendicu-
lar to the applied field (q⊥ in Figure 18) the peak in intensity
shows that the mode is quantized over a much wider spatial
length, consistent with the lateral dimensions of the rectangle.
These experiments show very clearly that BLS microscopy in
the ‘Fourier microscope’ mode is very useful to characterize
spatial extensions of dynamic modes in such structures.

0 0.5 1 1.5 2

q||

3π/w

q⊥

M

B
LS

 in
te

ns
ity

 (
ar

b 
un

its
)

Transferred wave vector (105 cm−1)

Figure 18. Brillouin light scattering study of a rectangular Fe19Ni81

element with dimensions 1 × 1.75 µm2. The intensity of the third
localized mode as a function of the transferred in-plane wave
vector parallel q‖ (circles) and perpendicular q⊥ (Squres) to the
applied magnetic field. Inset: geometry of the element. (Reprinted
from J. Jorzick, 2001, with permission from American Institute of
Physics.  2001.)
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4.3 Spin-wave modes in a square with Landau
flux-closure domain structure

In this section and discuss the spin waves inside a 16-
nm-thick permalloy (Fe19Ni81) square with a lateral width
L = 4 µm containing a Landau flux-closure domain structure.
The structure was produced by e-beam evaporation on a
Si-substrate and capped with a 2-nm-thick Al overlayer for
corrosion protection.

The domain walls are aligned along the diagonals of the
square and the magnetization directions in the four triangular
domains are aligned such that the flux is closed in the square.
This is indicated in Figure 19(a).

In a time-resolved Kerr microscopy experiment made at
the university of Regensburg (Perzlmaier et al., 2005), modes
were excited using a one-turn microcoil with the sample in

DWM, 0.8 GHz

(a)

(c)

(b)

(d)

(f)(e)

n = 0, 2.1 GHz

n = 1, 4.0 GHzn = 0, 2.3 GHz

n = 2, 5.5 GHz n = 3, 7.1 GHz

Figure 19. Spatial distribution of the amplitude of the dynamic
magnetization corresponding to the eigenmodes in a 4 × 4 µm2 per-
malloy (Fe19Ni81) square. The upper and lower parts of each
panel are measured using time-resolved scanning Kerr microscope
and microfocus Brillouin light scattering spectroscopy, respectively.
Diagonal solid lines indicate the domain walls, whereas the dashed
lines indicate the mode maxima for a quantization in a transver-
sal direction. The corresponding transversal quantization numbers
n and the measurement frequencies are indicated near the distribu-
tion. Arrows in (a) indicate the direction of the static magnetization.
DWM stands for domain wall mode. (Reproduced from K. Perzl-
maier et al., 2005, with permission from American Physical Society.
 2005.)

the center. A short current pulse was applied to the microcoil
generating a magnetic field pulse of duration 300 ps. The
time response of the sample was measured stroboscopically
with 10-ps time steps. The time response was measured
stroboscopically for each point of a two-dimensional mesh
across the sample in order to yield spatial information also.
The spatial resolution was 300 nm. From this data mode
patterns have been reconstructed by Fourier-transforming the
temporal response for each point on the sample. The upper
parts of the panels in Figure 19 were obtained by plotting
the Fourier component values for the respective mode
frequencies. As can be seen, at 0.8 GHz, intensity is observed
at the positions of the domain walls indicating a domain
wall resonance. With increasing frequency several spin-wave
modes (indicated by the index n in Figure 19) are observed.

Microfocus BLS (described in Section 3.1.2) is equally
well suited to measure these dynamic modes. The lower
halves of the panels in Figure 19 show the results. Here,
a Fourier transform of data is not necessary, as the BLS
process yields the spectral components directly. Again,
using a scanning probe approach, the spectra are measured
along a two-dimensional mesh of mesh size 200 nm. For
frequencies, where both methods yield results, the agreement
is remarkably pronounced. Modes with higher frequencies
are better accessed by microfocus BLS spectroscopy, where
time-resolved MOKE microscopy reaches its limit because of
constraints in the pulsed field excitation. On the other hand,
BLS does not access the modes with low frequencies as they
are overlapped by elastically scattered light.

Figure 19 shows a clear quantization of the modes in
each of the four triangular domains. Whereas a quantization
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Figure 20. Magnetization response at the center of the permalloy
element as a function of the dc bias field. The driving field frequency
is 7.04 GHz. Broken lines mark the peak positions for the nth mode
calculated by the magnetostatic surface mode model. (Reprinted
with permission from S. Tamaru et al., 2002,  2002, American
Institute of Physics.)
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Figure 21. Spatial distribution of magnetization response at each
peak. The upper and lower rows are the amplitude and phase
distributions, respectively. The amplitude is normalized to the
maximum value to give the largest contrast. (Reprinted with
permission from S. Tamaru et al., 2002,  2002, American Institute
of Physics.)

along the direction of the magnetization can be observed,
but not unambiguously assigned to a specific mode order;
quantization in the perpendicular direction is very clearly
observed. In Figure 19(b) and (c) the mode patterns show
one maximum in the transverse direction, in Figure 19(d–f)
the higher order modes are clearly observed.

4.4 Experiments with optical ferromagnetic
resonance techniques

As shown in Section 3.3, time-resolved Kerr effect magne-
tometry, synchronized to a driving cw microwave field, can

be used to measure spin-wave mode profiles (see Figure 12).
Figure 20 shows the measured magnetization response of a
100-nm-thick permalloy film sputter deposited on a glass
substrate and patterned into a 50 × 50 µm2 square. On top
of the structure a planar transmission line of 750-nm-thick
Cu with a center conductor width of 3 µm and an impedance
of 50 � is mounted. The sample has been first saturated,
and then the Kerr response has been measured as a func-
tion of the field, as shown in Figure 20. The sample is
driven at 7.04 GHz. Five peaks are clearly seen. Figure 21
shows the obtained spatial distribution of the magnetization
response at each peak. Standing wave patterns can easily be
identified.

4.5 Propagating spin waves observed by optical
techniques

The BLS spectroscopy technique is most often the method
of choice to study propagating spin-wave modes. This has
been demonstrated in Section 4.1, where spin-wave packets
tunneling through a forbidden region have been discussed.
We conclude this chapter by discussing complementary
experiments using time-resolved MOKE microscopy.

Indications for the generation of spin waves have been
found in a number of experiments (Silva, Kabos and Pufall,
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2002; Hiebert, Ballentine and Freeman, 2002; Gerrits, Silva,
Nibarger and Rasing, 2004), where a reduction of the
absolute value of the magnetization vector was observed.
There, the excitation of high wave vector spin waves
was confirmed. The direct observation of propagating spin
waves using this technique has been reported by Fassbender
(2003). Using a pulsed excitation of an infinitely extended
film mounted on a strip line, the propagation of well-
confined wave packets away from the strip line into the
film was observed. Figure 22 shows some obtained results.
The magneto-optic response for different distances from
the transmission line as a function of time is shown in
Figure 22(a), and the corresponding Fourier transforms are
shown in Figure 22(b). At x = 0, two peaks in the frequency
spectrum are observed, identified as a uniform precession
mode and a propagating spin-wave mode with frequencies
ν0 = 0.83 GHz and νk = 1.05 GHz, respectively. For the
uniform precession mode the strong decrease in mode
intensity in the direction perpendicular to the strip line
indicates the localization of this mode to the transmission
line. The intensity of the propagating wave, however, is
nearly constant over a large range. For larger distances the
mode is not observed for reasons of finite group velocity
and damping. The propagating spin-wave mode carries
energy away and reduces the energy to be dissipated in the
transmission line area.

Investigations like these allow the measurement of the
phase velocity vph, the wavelength λ, and the wave vector
q, as demonstrated in Figure 23. Here, the magneto-optic
signal, averaged along a line parallel to the transmission line,
is shown as a function of the distance x from the transmission
line for different delay times. The solid arrows indicate the
temporal evolution of constant phases. Their slopes allow
for the determination of the phase velocity, which is vph =
34±7 cm µs−1. The dashed arrow indicates the center of the
spin-wave packets, which move at the smaller group velocity
vg. From these data a wavelength of λ = 0.03 cm and a wave
vector of q = 210 cm−1 of the propagating spin wave are
obtained. The obtained data indicates that the observed mode
is an MSSM (see equation (7)).

5 CONCLUSIONS

This Chapter provides an introduction into the state of
the art of optic techniques for investigating magnetization
dynamics. Techniques on both the frequency scale and the
timescale – BLS spectroscopy and the Kerr effect – have
been presented. A few selected experiments have been
discussed to demonstrate the specific strengths for each
method.
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Figure 23. Data representation for determining the phase velocity
vph, the wavelength λ, and the wave vector kx . (Reproduced from
J. Fassbender et al., 2003, with permission from Springer-Verlag.
 2003.)

The field of magnetization dynamics is currently advancing
very fast. Progress is substantially driven by new experimen-
tal techniques. Further advancements in optical techniques
will certainly help to push this very interesting field contin-
uously forward.

NOTES

[1] See, for example, Dissipative Magnetization Dynamics
Close to the Adiabatic Regime, Volume 1, Nonlinear
Magnetization Dynamics in Nanomagnets, Volume 2,
Guided Spin Waves, Volume 2, and Magnetization
Dynamics: Thermal-driven Noise in Magnetoresistive
Sensors, Volume 2.

[2] The pin − pout SHG configuration also depends on the
polar magnetization component (Bennemann, 1998), but
this contribution is usually weak.
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[3] Recall that the dynamic magnetization �m = �M − �Ms

is the difference between the total and the saturation
magnetization.
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of dipolar spin waves through a region of inhomogeneous
magnetic field. Physical Review Letters, 93, 047201.

Fassbender, J. (2003). Magnetization dynamics investigated by
time-resolved Kerr effect magnetometry. In Spin Dynamics in
Confined Magnetic Structures II, Volume 87 of Topics in Applied
Physics, Hillebrands, B. and Ounadjela, K. (Eds.), Springer-
Verlag: Berlin, Heidelberg, New York, Tokyo, p. 59.

Freeman, M.R. (2005). Magnetization dynamics using time-resolved
magneto-optic microscopy. In Modern Techniques for Charac-
terizing Magnetic Materials, Zhu, Y. (Ed.), Kluwer Academic
Publishers.

Freeman, M.R. and Hiebert, W.K. (2002). Stroboscopic microscopy
of magnetic dynamics. In Spin Dynamics in Confined Magnetic
Structures I, Volume 83 of Topics in Applied Physics, Hillebrands,
B. and Ounadjela, K. (Eds.), Springer-Verlag: Berlin, Heidelberg,
New York, Tokyo, p. 93.

Gerrits, T., van den Berg, H.A.M., Hohlfeld, J., et al. (2001).
Precession dynamics in NiFe thin films, induced by short
magnetic in-plane field pulses generated by photoconductive
switch. Journal of the Magnetics Society of Japan, 25, 192.

Gerrits, T., van den Berg, H.A.M., Hohlfeld, J., et al. (2002a). Ultra-
fast precessional magnetization reversal by picosecond magnetic
field pulse shaping. Nature, 418, 509.

Gerrits, T., van den Berg, H.A.M., Hohlfeld, J., et al. (2002b).
Picosecond precessional magnetization reversal by magnetic field
pulse shaping. IEEE Transactions on Magnetics, 38, 2484.

Gerrits, T., van den Berg, H.A.M., Hohlfeld, J., et al. (2002c).
Picosecond control of coherent magnetisation dynamics in
permalloy thin films by picosecond magnetic field pulse shaping.
Journal of Magnetism and Magnetic Materials, 240, 283.

Gerrits, T., Silva, T.J., Nibarger, J.P. and Rasing, T. (2004). Large-
angle magnetization dynamics investigated by vector-resolved
magnetization-induced optical second-harmonic generation. Jour-
nal of Applied Physics, 96, 6023.

Gurevich, A.G. and Melkov, G.A. (1996). Magnetization Oscilla-
tions and Waves, CRC Press: Boca Raton, New York, London,
Tokyo.

Guslienko, K.Y., Demokritov, S.O., Hillebrands, B. and Slavin,
A.N. (2002). Effective dipolar boundary conditions for dynamic
magnetization in thin magnetic stripes. Physical Review B, 66,
132402.

Guslienko, K.Y. and Slavin, A.N. (2005). Boundary conditions for
magnetization in magnetic nanoelements. Physical Review B, 72,
014463.

Hansteen, F., Kimel, A., Kirilyuk, A. and Rasing, T. (2005).
Femtosecond photomagnetic switching of spins in ferrimagnetic
garnet films. Physical Review Letters, 95, 047402.

Heinrich, B. and Cochran, J.F. (1993). Ultrathin metallic magnetic
films. Magnetic anisotropies and exchange interactions. Advances
in Physics, 42, 523–639.

Heinrich, B., Purcell, S.T., Dutcher, J.R., et al. (1988). Structural
and magnetic properties of ultrathin Ni/Fe bilayers grown epitax-
ially on Ag(001). Physical Review B, 38, 12879.



22 Magneto-optical techniques

Hicken, R.J., Barman, A., Kruglyak, V.V. and Ladak, S. (2003).
Optical ferromagnetic resonance studies of thin film magnetic
structures. Journal of Physics D: Applied Physics, 36, 2183.

Hiebert, W.K., Ballentine, G.E. and Freeman, M.R. (2002). Com-
parison of experimental and numerical micromagnetic dynamics
in coherent precessional switching and modal oscillations. Phys-
ical Review B, 65, 140404.

Hillebrands, B. (1990). Spin-wave calculations for multilayered
structures. Physical Review B, 41, 530.

Hillebrands, B. (1999). Progress in multipass tandem Fabry-Pérot
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1 INTRODUCTION

The time-resolved optical exploration of the ultimate limits
of magnetization dynamics in itinerant ferromagnets (FMs)
is widely recognized as an intriguing field of research (for
reviews, see Zhang, Hübner and Bigot, 2002; Koopmans,
2003; Bennemann, 2004). Clearly, it has been driven by the
quest for fundamental understanding of magnetization pro-
cesses in the strongly nonequilibrium regime – a particularly
nontrivial issue. How to understand the magnetism of mate-
rials, when by an almost instantaneous perturbation of the

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

material different subsystems, such as electrons and lattice,
are no longer in thermal equilibrium? What are the limiting
timescales at which we can manipulate the magnetic order?
And what are the relevant processes that we need to under-
stand and maybe even can control?

Apart from this fundamental interest, there are two other
obvious drivers that have led to an exciting, rapidly pro-
gressing field of research. First of all there is the availability
since the 1990s of commercial and easy-to-handle systems
for producing femtosecond laser pulses, and the development
of ultrasensitive magneto-optical (MO) pump-probe schemes
with unprecedented time resolution.

Secondly, there is the intimate relation of the field with
the booming area of spintronics, and related therewith all
applications that require ultrafast control of magnetic mate-
rials and devices. Exemplary is the extremely rapid progress
in magnetic hard disk recording, where the need for sub-
nanosecond control over media and heads has emerged. A
similar driver is provided by the development of magnetic
random access memory (MRAM), for which new magnetic
switching schemes are being considered. More general, the
fundamental exploration of ultrafast magnetization dynam-
ics provides generic insight in elementary spin-scattering
phenomena that are of profound interest for many novel spin-
tronic devices.

Finally, technologies that combine the interaction of laser
light with magnetic materials within the application itself,
such as MO recording, have to be identified as an important
stimulus for laser-based studies of fast magnetic processes.
Of particular interest from this viewpoint are recent activities
striving for laser-based heat-assisted magnetic recording.

In general, pump-probe schemes have been most suc-
cessful in search for the ultimate timescales. In such a
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stroboscopic scheme, a first, pulsed perturbation is being
applied to the magnetic system under investigation after
which a second probe pulse, arriving at a preset delay time,
is being used to probe the magnetic state. By scanning the
delay time, the full temporal evolution of the magnet state
after its initial perturbation can be followed. It has to be
emphasized, however, that in general the probe only pro-
vides a limited access to the multidimensional character of
the strongly nonequilibrium magnetic state, which makes
interpretation of such experiments an art itself.

It should be stressed that any perturbation that changes
the magnetic ground state will do – although the physics
being probed may (and will) be strongly depending on the
type of excitation chosen. Also, probing the magnetization
dynamics can be achieved by different means; the choice
made again affecting the view on the magnetic system being
obtained. Although a number of approaches will be explained
throughout this chapter, our main focus will be on all-optical
approaches, in which femtosecond laser pulses are used both
as the perturbation and as the probe.

By now it is generally known that pulsed-laser excitation
triggers a rich spectrum of spin dynamical processes. The
field started with pioneering experiments by Beaurepaire,
Merle, Daunois and Bigot (1996), who addressed the truly
nonequlibrium regime of itinerant FMs for the first time. It
was found that laser heating of ferromagnetic thin films gives
rise to a loss of magnetic order within the first picosecond.
This exciting result became soon confirmed by several
groups. By now, a general consensus has been achieved on
a characteristic ‘demagnetization’ timescale of a hundred to
a few hundreds of femtoseconds.

Apart from the ultrafast loss of magnetic order, the exper-
iments provided access to spin-dependent dynamics in the
population of electronic states that could be interpreted as
‘artifacts’ when striving for resolving the genuine magneti-
zation dynamics, but could be seen as a highly challenging
spin-dependent phenomenon on itself as well.

Moreover, in many cases it turned out possible to trigger
precessional dynamics by perturbing the magnetic anisotropy
on a picosecond timescale by the laser heating. On the
one hand, this offered an alternative to pulsed field-induced
precessional experiments, on the other hand, it provided
a complementary view on the dynamics of the magnetic
anisotropy itself. In this respect, a particularly interesting
research topic that emerged is the ultrafast manipulation
of the interlayer exchange coupling between a FM and a
neighboring antiferromagnetic (AF) layer.

Despite the interest in laser-induced loss of magnetic order,
from technological point of view it would be of superior
interest not only to quench, but also being able to increase
or even fully create ferromagnetic order at a subpicosecond
timescale. Also this has been recently achieved in pioneering

experiments in FeRh thin films, by driving the metamagnetic
AF to FM phase transition by pulsed heating.

Today, we have reached the end of the first (extremely
successful) decade of laser-induced magnetization dynamics,
where the field went through a continuous discovery of new
phenomena and development of novel approaches. Theoret-
ical understanding of the processes at a microscopic level
is lagging somewhat behind. However, there is a growing
awareness being witnessed that these issues should be con-
sidered among the major challenges of modern condensed-
matter physics. It would be welcomed if this opinion would
lead to a significant increase of theoretical efforts.

The scope of this chapter is as follows. In Section 2
we start with a general overview, and introduce basic con-
cepts. In Section 3, experimental approaches, mostly con-
centrating on all-optical ones, are described in detail. Par-
ticular emphasis is on the subtle and nontrivial way the
targeted physical parameters are being probed. Then, a
number of sections reviewing experimental progress over
the past decade can be found. After a brief review of
the pioneering, early days (Section 4), sections on popula-
tion dynamics (Section 5), light-induced orbital momentum
transfer (Section 6), demagnetization dynamics (Section 7),
anisotropy dynamics induced precession (Section 8), and
growth of magnetic order by triggering phase transitions
(Section 9) will follow. Finally, concluding remarks will be
drawn in Section 10.

2 CLASSIFICATION AND BASICS

Within this section, first the dynamics of the average magne-
tization vector (orientational or precessional dynamics) and
the thermodynamics of spin systems (dealing with the mag-
nitude of the magnetization) are discussed separately. Then,
after some considerations regarding conservation of angular
momentum, different scattering mechanisms are briefly intro-
duced: electron–electron scattering, electron–phonon scat-
tering, and different types of spin-flip scattering.

2.1 Precessional dynamics

The most elementary spin dynamics process is that of the
precession of a single spin in an applied magnetic field
H . The field introduces a splitting between spin-up and
spin-down states with an energy difference equal to γµ0H ,
where γ is the gyromagnetic ratio. As a consequence,
the dynamics of any electron that is in a superposition
of the two eigenstates corresponds to a precession of the
spin expectation value around the field-axis at the Larmor
frequency ωL = γµ0H/�. The same frequency is found
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for an ensemble of spins, or the magnetization �M of a
homogeneous magnetic material. Characteristic frequencies
are in the gigahertz regime, as can be estimated from γ /� =
176 ns−1 T−1.

Including dissipation will lead to a damped precessional
motion, in which a gradual decay toward the lowest energy
state is accompanied by the alignment of �M with the
applied magnetic field. Accounting for dissipation in a
phenomenological way in the spirit of Gilbert, leads to
the well-known Landau–Lifshitz–Gilbert (LLG) equation of
motion (Miltat, Albuquerque and Thiaville, 2002)

d �M
dt

= γµ0

(
�M × �Heff

)
+ α

M

(
�M × d �M

dt

)
(1)

where we replaced the applied (external) field �H by the
effective field

�Heff = �H + �Hanis = �H − 1

µ0M
�∇Eanis( �M) (2)

Herein, the anisotropy field ( �Hanis, related to the gradient of
the anisotropy energy Eanis) may include contributions from
dipolar fields by the system itself (resulting in the ‘shape
anisotropy’), crystalline anisotropy (mediated by spin-orbit
interactions), and others. Note that this effective field depends
on the orientation of the magnetization vector itself, and
thereby becomes explicitly time-dependent even for a con-
stant external field. Finally, equation (1) can be generalized
to a nonhomogeneous magnetization distribution �M(�r, t), in
which the exchange interaction between noncollinear spins
has to be included as well.

It should be noted that the process of energy dissipation
is much more complicated than would have been expected
from the appearance of a single damping parameter in
equation (1). In fact, the value of α depends on almost all
details of the (micromagnetic) system; the ‘constant’ being
far more than a materials specific parameter. Exploration
of magnetic damping is an active field of research (see
e.g., Urban, Woltersdorf and Heinrich, 2001; Tserkovnyak,
Brataas and Bauer, 2002; Woltersdorf, Buess and Back, 2005;
Buess, Haug, Scheinfein and Back, 2005; Steiauf and Fähnle,
2005).

2.2 Thermodynamics–transfer of energy

After having treated the dynamics of the average magne-
tization vector, we consider the thermodynamic evolution
of spin fluctuations. In general, for an ordinary ferromag-
netic system, the thermal equilibrium value of the magne-
tization (Meq) displays a continuous decrease as a function
of increasing temperature. Above the Curie temperature and

in the absence of a magnetic field, any long-range magnetic
order vanishes. Without loss of generality, one can introduce
a spin temperature Ts, from the one-to-one relation between
Meq and T (Figure 1a); that is, at a spin temperature Ts the
magnetization equals Meq(Ts) by definition.

Let us next consider a system with interacting lattice
(phonons), electronic (excluding spin) and spin degrees of
freedom. Within the so-called three-temperature (3T) model
(Beaurepaire, Merle, Daunois and Bigot, 1996), each of
the subsystems are assumed to be internally in thermal
equilibrium, and described by their own temperature (Tp, Te,
and Ts, respectively) and heat capacity (Cp, Ce, and Cs),
where in general the latter can be functions of Tp, Te and
Ts, respectively. Given any starting set of temperatures, the
evolution of the system is described by a set of three coupled
differential equations:

Ce
dTe

dt
= −Gep(Te − Tp) − Ges(Te − Ts) (3)

Cp
dTp

dt
= −Gep(Tp − Te) − Gsp(Tp − Ts) (4)

Cs
dTs

dt
= −Ges(Ts − Te) − Gsp(Ts − Tp) (5)

The mutual coupling constants, Gep, Ges, and Gsp will
strive to balance out any nonequilibrium between the sub-
systems by exchange of energy (Figure 1b). In laser-heating
experiments (see next subsection), absorption of photons
leads mostly to electronic excitations, causing a quasi-
instantaneous increase of the electron temperature. The suc-
cessive dynamics has been found to be phenomenologically
describable by equations (3–5), as already noted in the orig-
inal work by Beaurepaire, Merle, Daunois and Bigot (1996).
Therefore, the model is extremely useful to parameterize
transient experiments, although only limited microscopic
insight is being provided.

As another limitation of this description, the three-
temperature model does not properly take care of conserving
the angular momentum �J of the total system (Koop-
mans, 2003; Koopmans, van Kampen and de Jonge, 2003).

Meq

Ts

TC

Ms
∆T

∆M

(a) (b)

Electrons Lattice

Spins

Te, Ce Tp, Cp

Ts, Cs

Figure 1. (a) Definition of spin temperature, and representation of a
laser-induced magnetization dynamics experiment, and (b) the three
interacting reservoirs in the three-temperature model.
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At present, angular momentum conservation is being consid-
ered as an important ingredient of understanding the ultrafast
equilibration process.

2.3 Transfer of angular momentum

At a subpicosecond timescale, it is natural to consider the
interacting reservoirs being isolated from the environment.
For such a closed system, not only the total energy should
be conserved (discussed in Section 2.2), but also the total
angular momentum �J . The spin (�Se) and orbital ( �Le) moment
of the electronic system are related to its magnetic moment

�µ = µB( �Le + g �Se) (6)

where g ≈ 2 for the materials considered here. In addition,
these electronic moments are related to the total angular
momentum of the system. When including possible momen-
tum carried by the laser field (photons) and the lattice
(phonons), the total angular momentum reads

�J = �Le + �Se + �Lphonon + �Lphoton (7)

Since the Hamiltonian of the entire system conserves �J ,
a change in magnetization of a closed system can only
be achieved by exchange among the four contributions at
the right-hand side of equation (7). This has interesting
consequences not contained within the three-temperature
model.

As an example, let us consider the exchange of energy
between the electron and the spin reservoir, heating up the
spins (lowering M) by cooling down a hot-electron gas. In
the absence of interactions with the laser field and lattice
this can only be achieved by an exchange of �Se and �Le as
mediated by spin-orbit coupling. One has to realize that in the
ground state, the magnetization of ferromagnetic transition
metals is strongly dominated by the spin momentum (i.e.,
µ ≈ gµBS) because of quenching of the orbital momentum
(Ashcroft and Mermin, 1976). Then, for g ≈ 2, transferring
spin momentum to orbital momentum leads to a reduction of
µ by a factor of 2 at most. In particular, it means that this
mechanism cannot lead to a full quenching of M , whereas
a complete loss of magnetic order has been experimentally
observed at high enough fluences (see the discussion on the
full quenching regime in Section 7).

2.4 Laser-induced electron and spin dynamics

This section addresses the different scattering processes as
of relevance after laser excitation.

2.4.1 Photoabsorption and state filling

The interaction of laser pulses with matter primarily
causes electronic excitations. Exploiting light sources in
the (near)visible range, with typically photon energies from
one to several electron volts, causes thereby excited elec-
trons with energies a hundred times the thermal energy at
room temperature. Even if the excitations conserve spin,
and thereby �M is conserved during the excitation, the
redistribution of occupied electronic levels will change the
MO response of the system (Koopmans, van Kampen and
de Jonge, 2003; Oppeneer and Liebsch, 2004). In particular,
excitations made by the pump pulse, will block the same tran-
sitions to be made by probe photons, a phenomenon denoted
‘dichroic bleaching’ (Koopmans, van Kampen, Kohlhepp and
de Jonge, 2000b).

After laser excitation, the total energy of the electron
system has increased. Although at this stage the system is
in strong thermal nonequilibrium and thereby a temperature
is not unambiguously defined, the excess energy can be
used to define an electron temperature, Te,E, according
to the equilibrium relation between excess energy and
electron temperature. For a free-electron system with a
constant density of states (DOS) DF one can derive Eex =
1
6π2DF(kBTe,E)2, where kB is the Boltzmann constant. In
the weak perturbation limit, treating only small changes in
temperature, we thus find:

�Te,E = 3

π2DFk
2
BTe,E

�Eex (8)

Alternatively, we could have defined a temperature accord-
ing to the slope of the electron distribution function f (E) at
the Fermi energy EF. From the analogy with a thermalized
electron distribution, one can derive

�Te,F = −
(

4kB
df (E)

dE

∣∣∣∣
EF

)−1

(9)

Note that laser excitation causes an instantaneous increase
of Te,E, while Te,F displays a gradual increase in which
electronic relaxation is involved.

2.4.2 Electron–electron scattering

The lifetime of ‘hot’ carriers is very short. Within a free-
electron metal, phase space arguments can be used to
derive the hot-electron lifetime (Knorren, Bennemann and
Burgermeister, 2000; Bennemann, 2004)

τ ee(E) = 1

Kee(E − EF)2
(10)
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where the electron–electron scattering constant K−1
ee is

typically 30 fs eV2 for Ag and 3 fs eV2 for nickel (Knorren,
Bennemann and Burgermeister, 2000). The difference reflects
the larger phase space for scattering provided by the high
DOS of the Ni d-band near EF. Note, however, that for such
metals, with d-states near the Fermi level, equation (10) is
not too accurately fulfilled.

After having started the cascade-like process of e–e
scattering, the electron gas rapidly thermalizes (Groeneveld,
Sprik and Lagendijk, 1995). Different approximations for the
thermalization process lead to an expression of the form

τT = A

KeeT 2
e

(11)

with A ∼ 2 K2 eV2 for nickel (van Kampen et al., 2005a).
Taking K−1

ee = 3 fs eV2 leads to a thermalization time τT ≈
300 fs for Ni. Significantly lower estimates (∼100 fs) are
obtained when correcting for deviations from equation (10),
in better agreement with experimental findings (van Kampen
et al., 2005a).

The simplest way of introducing laser excitation into
the 3T-model is by inserting a source term in equation (3)
(Beaurepaire, Merle, Daunois and Bigot, 1996):

Ce
dTe

dt
= −Gep(Te − Tp) − Ges(Te − Ts) + P (t) (12)

where P (t) denotes the power dissipated in the electron sys-
tem by absorption of photons at time t . This way, however,
the process of electron thermalization is not covered since in
the strict 3T-model the electron system is considered to be
internally in thermal equilibrium from the start (τT = 0).

Extended models have been introduced to account for the
thermalization by adding an additional bath of nonthermal
electrons (Fann, Storz, Tom and Bokor, 1992; Sun et al.,
1994). The extended 3T model (Koopmans, 2003) is sketched
in Figure 2. Within such a ‘E3T’ model, it is essential to use
Te,F to denote the temperature of thermalized electrons. The

0
0

1

2

∆T
 (

au
)

t /τE(b)(a)
Spins

Electrons
Lattice

Te,E

Te,F

Te,F

Te,F
Tp

TpTs

Ts
‘Hot’

Laser
1 2 3 4

Figure 2. Extended three-temperature model: (a) The four reser-
voirs, including nonthermalized ‘hot’ electrons excited by the laser
pulse. (b) Schematic transient of the four temperatures, discussed
in the text, for a case where τT = 0.2τE and τM = 0.5τE.

total energy stored in the system of nonthermal electrons is
then

Enonthermal = Ce(Te,E − Te,F) (13)

which vanishes after thermal equilibrium has been estab-
lished, Te,E = Te,F. The temporal evolution of the Fermi tem-
perature is often approximated by an empirical relation:

�Te = �T1

[
1 − exp

(−t

τT

)]
(14)

where �T1 is the final temperature rise, proportional to the
absorbed laser power in the low-fluence limit. Note that in
equation (14) we dropped the explicit subscript ‘F’, as we
will keep on doing throughout this chapter.

2.4.3 Electron–phonon scattering

Equilibration of electrons with the lattice proceeds via
electron–phonon (e–p) scattering (for a review, see e.g.,
Groeneveld, Sprik and Lagendijk, 1995). The most efficient
process is the deformation potential scattering by longitudinal
acoustic zone-edge phonons (with an energy of the order of
the Debye energy, �ωD) (van Hall, 2001). If one assumes
that the heat capacities Ce and Cp are relatively constant
over the temperature range covered, and neglecting the spin
system for the moment (Cs = 0), equations (3) and (4) can be
solved analytically, resulting in an exponentially converging
temperature with a time constant

τE = CeCp

Ce + Cp

1

Gep
(15)

where subscript ‘E’ denotes ‘Energy’ equilibration. Typi-
cally, τE ∼ 0.5 ps for the ferromagnetic transition metals
(van Kampen et al., 2005a).

Incorporating the thermalization process as well, an empir-
ical relation for the electron temperature transient can then
be introduced (van Kampen et al., 2005a):

�Te = �T1[1 − exp(−t/τT)] exp(−t/τE)

+�T2[1 − exp(−t/τE)] (16)

where �T2 is the final temperature to which Te and Tp con-
verge, and �T1 ≥ �T2. It is easy to show that �T1/�T2 =
1 + Cp/Ce. In the limit τT � τE, �Te approaches �T1 for
times τT � t � τE, and thereby a clear ‘overshoot’ of Te is
being witnessed.

The simplest microscopic approach, on equal footing with
the derivation of the free-electron lifetime (10), is obtained
by using a simple Einstein model with identical harmonic
oscillators representing the phonon system. Matrix elements
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for e–e and e–p scattering (λee and λep, respectively) can
then be assigned to the scattering processes, represented
in Figure 3. Alternatively, scattering probabilities Kee ∝ λ2

ee
(cf. (10)) and Kep ∝ λ2

ep entering the Boltzmann equations
describing the dynamics of the system, can be introduced.
It can be derived that for Te and Tp well above TD the
phenomenological coupling constant Gep of the 3T-model is
independent of temperature, and related to the microscopic
parameter Kep according to (Hohlfeld, 1998)

Gep = KepEpkB (17)

Using the Born–Oppenheimer approximation for the defor-
mation potential scattering, and equations (15) and (17),
yields τE of the order of 1 ps, in reasonable agreement with
experiment (van Kampen et al., 2005a).

2.4.4 Spin scattering

Often, it is of relevance to assign a characteristic timescale
τM to an experimentally obtained MO transient – indepen-
dent of the microscopic interpretation. Although the full 3T-
model can be used for that purpose, here we limit ourselves
to a simple approximation that can be treated analytically.
We use the following assumptions: (i) the spin specific heat
is neglected, (ii) Ce and Cp are considered constant, which
can be achieved at low enough fluence, (iii) we assume that
the spin dynamics is merely controlled by Tp and Te,E (and
not Te,F), according to:

dTs

dt
= (Te,E − Ts)

τM,e
+ (Tp − Ts)

τM,p
(18)

We note that the last assumption lacks a strict, physical moti-
vation, though it is in line with the description of the energy
flow in the 2T- and 3T-model. Moreover, it makes sense
that the highly excited (nonthermal) electrons have a sig-
nificant influence on the spin relaxation, as would not be
the case if equation (18) were described in terms of Te,F.
Finally, we use the electron and phonon temperature tran-
sients: �Te,E(t) = T2 + (T1 − T2) exp(−t/τE) and �Tp(t) =

eσ

e−σ e−σ e−σ

aλii
aλep

p+1 p−1
+or

Impurity

e

e
p

e

e
p

+

e

e e

e
λee

λep

(a) (b)

(c) eσ eσ

Figure 3. Feynmann diagrams for (a) e–e scattering, (b) e–p
scattering, and (c) e–p scattering accompanied with spin flip.

T2(1 − exp(−t/τE)), in agreement with equation (16). Then,
we find as a general solution:

�Ts(t) = �T2 + (τE�T ′
1 − τM�T2) exp(−t/τM)

τE − τM

+τE(�T2 − �T ′
1) exp(−t/τE)

τE − τM
(19)

with τ−1
M = τ−1

M,e + τ−1
M,p, and �T ′

1 = �T1τM/τM,e. An ‘over-
shoot’ of Ts is achieved in the case that the e–s channel
dominates over the s–p channel, that is τM,e � τM,p, unless
τM 	 τE, all as expected.

The result shows that an overall τM (including both contri-
butions via the s–p and s–e channel) can be fitted, without
prior knowledge of which of the two channels dominates,
and without needing information from transient reflection. If
the latter is available, and thereby �T1, the ratio of the fitted
�T ′

1/�T1 can be used to extract τM,e and τM,p separately.
Often, in literature, an even more empirical fitting function

is being used that can be described generally as:

�Ts(t) =
(

1 − exp
−t

τM

)
�Te(t) (20)

It should be emphasized that although the shape of the
resulting profile Ts(t) can be quite similar to the one produced
by (19), the extracted value of τM can be off by a factor two!
Examples thereof are discussed in Sections 6 and 7.

As to the microscopic origin of the laser-induced demag-
netization, quite a number of spin-scattering processes have
to be considered. We discuss them in the context of con-
servation of J . First, the hot-electron lifetime can be spin
dependent (Aeschlimann et al., 1997; Knorren, Bennemann
and Burgermeister, 2000; Bennemann, 2004). Experiments
using two-photon photoemission (TPPE) have indeed found
significant differences between majority and minority car-
riers for the ferromagnetic transition metals Co, Fe, and
Ni (Aeschlimann et al., 1997). The results have been inter-
preted in terms of the huge difference of phase space for
scattering majority and minority carries within the spin-split
DOS of these materials. Relevant timescales are in the low-
femtosecond regime. It should be emphasized, however, that
the spin-dependent lifetime has no relation to a change in
magnetic moment of the system.

Secondly, spin scattering by redistribution of angular
momentum within the electron system is considered. It
has been argued that hot electrons will have high enough
energy to overcome the Stoner gap (Scholl, Baumgarten,
Jacquemin and Eberhardt, 1997), and thereby create Stoner
excitations–changes of the local spin moment. These spin
flips would be accompanied by emission (or absorption) of
magnons (spin waves). However, also this process does not
provide a net change of the magnetic moment of the system.
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An other purely electronic process to be considered is
transfer from spin to orbital momentum as mediated by spin-
orbit coupling. From the typical energy scale �exc ∼ 0.1 eV
fast time scales �/�exc ∼ 10 fs could be anticipated indeed.
In Section 2.3, however, we already derived that, unlike
experimental observations, this mechanism cannot account
for a full quenching of M while conserving J . Moreover,
the final state would be characterized by a large orbital
momentum. Using arguments to be introduced in Section 3.2,
this should lead to an increase rather than a decrease of MO
signals upon laser heating, again contrary to experimental
observations.

Thirdly, transfer of energy between the lattice and spin
system can occur (Koopmans, Kicken, van Kampen and
de Jonge, 2005; Koopmans, Ruigrok, Dalla Longa and
de Jonge, 2005). This can be considered as ordinary spin-
orbit mediated spin-lattice relaxation (Yafet, 1963). Angular
momentum is being transferred from the spin to the lat-
tice, by absorption or emission of phonons carrying orbital
momentum. On a macroscopic scale, this transfer is being
witnessed as a finite rotation of a magnetic bar upon chang-
ing its magnetic moment, as in the classical De Haas and
Einstein experiment (Scott, 1962). For nonmagnetic metals
spin-lattice scattering has been well addressed, and described
by Eliot–Yafet type of scattering (Yafet, 1963). A finite prob-
ability a is assigned for an electron to flip its spin upon
momentum scattering with phonons or impurities. This pro-
cess is schematically represented in Figure 3(c). Although
values of a have been tabulated before for some nonmag-
netic metals (Beuneu and Monod, 1978), little is known about
implications for ferromagnetic transition metals. In passing
we not that, in principle, a similar factor a can also be related
to the spin diffusion length (lsf), used to describe magneto
transport in, for example, current-perpendicular to the plane
giant magnetoresistance (GMR) pillars (Dubois et al., 2006).
However, a comparison between the spin-flip probability in
the transport regime and the strongly nonequilibrium laser-
heating case is far from trivial – and has not been discussed
in literature yet. Therefore, in the present review, we will
refrain from such a detailed analysis.

Finally, scenarios including the laser field itself or hybrid
mechanism have been proposed, but all have their intrinsic
complications. At this stage, the reader may wonder what
is causing the demagnetization after all. Although a full
understanding has not been achieved yet, a more quantitative
discussion of the present insights is discussed in Sections 6
and 7.

3 EXPERIMENTAL APPROACHES

Over the past decade a number of techniques have been
developed that give access to the dynamics of spin systems

down to femtosecond timescales. Most of them rely on the
use of subpicosecond laser pulses. This section provides a
detailed description of the relation between magneto-optics
and spin dynamics, and discusses different experimental
approaches.

3.1 Excitation sources

In order to access subpicosecond magnetization dynam-
ics, extremely short rise time or pulse-lengths should be
exploited. From conceptual point of view, magnetization
dynamics is triggered in the most straightforward way by
short magnetic field pulses. Conventional approaches using
electronic pulse generators are limited to a rise time of sev-
eral tens of picoseconds at least, even when taking utmost
care to feed pulses into- and guide them through microscopic
strip lines (Elezzabi and Freeman, 1996; Elezzabi, Free-
man and Johnson, 1996; Hiebert, Stankiewicz and Freeman,
1997). An exciting alternative has been provided by using
picosecond electron bunches from a linear accelerator (Sieg-
mann et al., 1995) Experiments so far (Back et al., 1998,
1999; Tudosa et al., 2004; Stamm et al., 2005) have been
restricted to static microscopic characterization after single
pulse excitation. Time-domain extrapolations of the tech-
nique could be imaginable, although stroboscopic approaches
are very unlikely. In passing, we also stress the impor-
tance of spin-torque induced switching, which recently has
been observed spatio-temporally resolved by ultrafast x-ray
microscopy (Acremann et al., 2006).

Hybrid schemes, using femtosecond optical pulses to
produce picosecond rise time magnetic field pulses have been
demonstrated in a multitude of configurations. The standard
approach employs a photoconductive switch to launch an
electrical pulse into a strip line. Typically, around picosecond
rise times and – when desired – tunable duration can be
produced (e.g., Gerrits et al., 2002). An alternative, in which
switch and sample are integrated, is the use of laser pulses
to trigger breakthrough of a Schottky barrier that supports a
thin-film FM sample (Woltersdorf, Buess and Back, 2005).

Integrating pulse generator and sample even further is
established in all-optical configurations. In order to study
precessional dynamics similar to the field-induced cases,
a configuration can be employed in which an internal
anisotropy field pulse is being generated by pulsed-laser
heating of a magnetic thin-film system (van Kampen et al.,
2002). We stress that this approach has been demonstrated
to be widely applicable. However, it cannot be applied in,
for example, magnetic configurations in which the applied
and effective field are both along a symmetry axis of the
sample. Further details will be discussed in Section 8. The
next section will focus on thermodynamic processes triggered
by the laser heating.
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3.2 Ultrafast probes and time-resolved
magneto-Optics

A number of femtosecond laser-based approaches to probe
the subpicosecond magnetization dynamics have been devel-
oped. Detecting photoemitted electrons has been exploited in
different schemes: spin-polarized time-resolved photoemis-
sion (SP-TRPE) (Scholl, Baumgarten, Jacquemin and Eber-
hardt, 1997), time-resolved photoemission (TRPE) probing
the evolution of the exchange splitting (Rhie, Dürr and Eber-
hardt, 2003, 2005; Lisowski et al., 2005), or probing the
spin dynamics via the image-potential states at FM surfaces
(Schmidt et al., 2005). With the advance of new generations
of synchrotrons, X-ray magnetic circular dichroism – with
the unique potential of probing spin and orbital momenta
separately – is expected to play an important role in the near
future. Within the present chapter, though, we concentrate on
all-optical approaches.

The latter are based on the MO-Kerr effect. The key
link between the magnetic state of a material and the
MO response is provided via the dielectric tensor. As
an instructive case, for an optically isotropic material,
magnetized along ẑ, the dielectric tensor reads:

↔
ε =


 εxx εxy 0

−εxy εxx 0
0 0 εxx


 (21)

Note that εxy transforms antisymmetrically under reversal
of the magnetization, �M ↔ − �M , providing the ‘magnetic
contrast’.

Thus, polarized light experiences a rotation upon trans-
mission (Faraday effect) or reflection (Kerr effect) from a
magnetic medium. The resulting complex MO rotation is
written as θ̃ = θ + iε, where θ and ε are the induced MO
rotation and ellipticity, respectively. The relation between
MO rotation and �M can be written as (Koopmans, 2003)

θ̃ = F̃M (22)

where a generalized Fresnel coefficient F̃ has been intro-
duced that involves all details of the experimental config-
uration and sample layout. We restricted ourselves to the
simplified case where θ̃ depends on the magnitude (or a sin-
gle component) of �M only, and refer to (Koopmans, 2003)
for the general case.

Measuring θ̃ in a time-resolved experiment, one should be
aware of the possibility that the perturbation does not only
modify �M , but also the generalized Fresnel coefficient F̃ .
This can significantly hinder a simple interpretation solely in
terms of �M

Another, even more subtle complication arises because
MO experiments are only possible by the sake of spin-
orbit coupling, through which the spatial degree of freedom
(electric field) is correlated with the spin degree of freedom
(magnetic ordering). In fact, it can be stated that optics
is merely capable of measuring the orbital moments in a
material, whereas a prediction about �M is possible only
after assuming a certain fixed ratio of spin (�S) to orbital
( �L) momenta. This ratio is not a priori conserved upon
perturbation of the material. As to the dependency on �L, a
sum-rule has been derived that links the frequency integrated
absorptive past of the off-diagonal element of the dielectric
tensor to a part of the orbital momentum (Oppeneer, 1998).
Rather than writing equation (22) in terms of �L, we will
include those potential deviations within the explicit time
dependence of F̃ .

In the further analysis we assume the weak perturbation
regime, in which changes of the Kerr rotation are relatively
small. In that case, the relation θ(t) = F(t)M(t) can be
linearized (Koopmans, 2003):

�θ(t) = M0�F(t) + F0�M(t) (23)

where index ‘0’ denotes unperturbed values (at t < 0) and
� indicates pump-induced values. From equation (23) it is
easily seen that, whenever F(t) = F0 independent of t , the
relation

�θ(t)

θ0
= �ε(t)

ε0
= �M(t)

M0
(24)

is fulfilled, that is, the normalized transient rotation and
ellipticity should be equivalent. Therefore, any deviation
from equation (24) demonstrates the presence of an explicit
t-dependence of F . A similar identification of ‘optical
artifacts’ can be based on a spectroscopic analyses. Whenever
optical artifacts play a role, one may expect the normalized
MO transients to depend on the probing frequency ω. If not,
the relation

�θ(ω1, t)

θ0(ω1)
= �ε(ω2, t)

ε0(ω2)
= �M(t)

M0
(25)

holds for any set of frequencies (ω1, ω2).
Complementary to measuring the linear optical response,

higher order optical signals can be monitored to acquire
information on the magnetization dynamics. A well-known
example is provided by magnetization-induced optical sec-
ond-harmonic generation (MSHG) (See also Magnetization-
induced Second Harmonic Generation, Volume 3). Also
there, the aim is to extract information on those tensor ele-
ments that transform odd under reversal of �M . Well-known
advantages of MSHG are its interface sensitivity (Pan, Wei
and Shen, 1989; Hübner and Bennemann, 1989; Shen, 1989)



Time-resolved Kerr-effect and spin dynamics in itinerant ferromagnets 9

and the huge nonlinear Kerr angles that can be achieved
(Koopmans, Groot Koerkamp, Rasing and van den Berg,
1995). Disadvantages are the small signals, down to the pho-
ton counting regime, and an even less-trivial interpretation.
In principle, the analysis in terms of a generalized Fresnel
factor F̃ can be extended to the nonlinear case, leading to
similar explicit time-dependencies that affect magnetization
dynamics studies in the same way as in its linear counterpart
(Regensburger, Vollmer and Kirschner, 2000).

3.3 Implementations

The simplest realization of an all-optical time-resolved
magneto-optical Kerr effect (TRMOKE) experiment in a
crossed-polarizer configuration is sketched in Figure 4.
Pump and probe pulses are focused to overlapping spots on
the sample. The pump pulses pass a mechanical delay line
to adjust the time delay. The influence of the pump beam
on the polarization state of the reflected probe pulse is mea-
sured using an analyzer at an angle αA and any type of
photodetector. Either a measurement of θ̃ (t) with and with-
out pump pulses is performed, or, to enhance the sensitivity,
a mechanical chopper is placed in the pump beam, and a
lock-in amplifier is used to directly measure �θ̃(t).

It can easily be derived that the pump-induced change in
output signal is described in lowest order of �θ̃ and αA by
(Koopmans, 2003)

�I (t) = 2R0αA�θ(t) + α2
A�R(t) (26)

where R0 and �R(t) are the reflectivity and pump-induced
transient thereof. Within the basic implementation, no sen-
sitivity on ellipticity is achieved, and care has to be taken
to rule out artificial signals due to a �R(t) of nonmagnetic
origin. Bigot et al. argued that part of the drawbacks of the
crossed-polarizer approach are avoided by performing mea-
surements at a multitude of analyzer angles (Bigot, Guidoni,
Beaurepaire and Saeta, 2004).

∆t

θ (∆t)

Probe

Pump Sample

TRMOKE
Delay
line

(a) (b)

aA

aP

P

A

ep

es
ε (∆t)

Figure 4. Schematic illustration of a TRMOKE setup. (a) In the
crossed-polarizer experiment, a polarizer is inserted at ‘P’ and an
‘analyzer’ almost crossed at ‘A’. (b) Definition of the polarization
vectors �es and �ep.

A particularly attractive, alternative scheme is provided by
replacing the analyzer by a polarizing beam splitter, using a
pair of balanced photodiodes and generating the difference
signal by a differential amplifier (Ju et al., 1998b). Thereby,
a highly sensitive measure of the MO transient is achieved.
When working exactly at the balanced configuration, a
dependency on �R(t) can be avoided (Koopmans, 2003):

�I (t) = 2R0�θ(t) (27)

When required, a sensitivity to the complementary ellipticity
channel is obtained by using a quarter-wave plate, an option
also available for the crossed-polarizer configuration.

A final scheme is achieved by exploiting polarization
modulation using, for example, a photoelastic modulator
(PEM) placed before the sample (Koopmans, van Kampen,
Kohlhepp and de Jonge, 2000a). Then, the detected signal
displays oscillating signals Inf at harmonics nf of the PEM
frequency f . A number of configurations has been reported,
some of them solely depending on �θ̃(t), others also on �R

(Koopmans, 2003). As an example, having the main axis of
the PEM parallel or perpendicular to the plane of incidence,
one obtains to a fair approximation (Koopmans, van Kampen,
Kohlhepp and de Jonge, 2000a; Koopmans, 2003):

�I1F(t)

I0f

= 2J1(A0)�ε(t) (28)

�I2F(t)

I0f

= 2J2(A0)�θ(t) (29)

where Jn(A0) is the nth order Bessel function at the
retardation A0 of the PEM. It is obtained that the 1f -
signal is proportional to the transient ellipticity, whereas
the 2f -signal corresponds to rotation. Thus, the approach
is highly applicable when identifying optical artifacts (cf.
equation (24)).

Aiming at a full deconvolution of transient dielectric
tensor elements of the magnetic materials, rather than just
the transient (MO) reflection, a combination of experiments
is required. Combining rotation and ellipticity, both in
the magnetic and nonmagnetic channel, and/or combining
rotation (Kerr) and transmission (Faraday) measurements,
have been reported. Examples of such a transient MO
ellipsometry can be found in (Guidoni, Beaurepaire and
Bigot, 2002). When further striving for parallel detection of
a broad spectral range, the simplest configuration, that of the
crossed-polarizer, is most appropriate. Bigot introduced such
a method of femtosecond spectrotemporal magneto-optics,
in which spectrally broadened probe pulses (480–750 nm)
were used, and the Kerr and Faraday rotation spectra where
measured at a multitude of analyzer angles (Bigot, Guidoni,
Beaurepaire and Saeta, 2004).
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In the analysis so far, cases were treated where only the
magnitude M(t), or one of its vector components, Mi(t),
was of relevance. Vectorial schemes, to measure three com-
ponents of �M(t), using a high-aperture microscope objec-
tive and four-quadrant detection are widespread by now (for
details, see Freeman and Hiebert, 2002). While so far being
restricted to studies of magnetic field-induced dynamics, very
recently, an extension to all-optical investigations down to
the femtosecond regime has been reported (Vomir et al.,
2005).

It has been discussed that dichroic bleaching can hinder a
proper view on the ultrafast demagnetization process during
the first hundreds of femtoseconds. Attempts to establish a
full separation of �F(t) and �M(t) have been reported
by van Kampen et al. In particular, they suggested to
measure the MO transients at different ambient temperatures
to establish this separation (Koopmans, van Kampen and
de Jonge, 2003; van Kampen, 2003). The key approach is
as follows. We start by writing the normalized M(t) in terms
of a spin temperature Ts(t),

�θ(t)

θ0
= �F(t)

F0
+ 1

M0

dM0

dT0
�Ts(t) (30)

We now consider transient experiments at two ambient
temperatures (T0,1 and T0,2) and denote thermal differences
by δ. As an important approximation, we assume that the
state-filling effects are relatively independent of temperature,
that is, δ�F(t) ≈ 0 and δF0 ≈ 0, since broadening the
Fermi-profile by a few millielectron volts hardly changes the
hot-electron (> eV) behavior. Then we obtain:

δ

(
�θ(t)

θ0

)
= δ

[
1

M0

dM0

dT0

]
�Ts(t) + 1

M0

dM0

dT0
δ�Ts(t)

(31)
Note that |M−1

0 dM0/dT0| is strongly T -dependent. In fact,
it diverges while approaching TC, providing further support
for the neglect of the term δ(�F(t)/F0) in equation (30).
In order to proceed, we make a second approximation:
the evolution of the spin temperature is independent of the
starting temperature of the experiment, that is, δ�Ts(t) = 0.
Within the 3T-model, for example, this is fulfilled if Ce, Cp,
and Gep are T -independent, and Cs can be neglected. Then,
the spin dynamics can be derived from

�Ts(t) ≈ δ (�θ(t)/θ0)

δ
[
M−1

0

(
dM0
dT0

)] (32)

where the numerator is experimentally measured, and the
denominator is obtained from the materials specific M(T ).
Preliminary results of this thermal difference scheme have
been recently reported by our group (Koopmans, van Kam-
pen and de Jonge, 2003; van Kampen, 2003).

As a final more sophisticated approach, one might want
to perform a ‘thermal difference scheme’ but drop the
approximation of constant Ce and Cp. Such an approach
has been outlined in Koopmans (2004). While potentially an
interesting route for future studies, we refrain from a detailed
discussion in the present review.

4 PIONEERING WORK ON
LASER-INDUCED DYNAMICS

Early attempts on estimating timescales with laser-induced
magnetization dynamics were by Agranat and coworkers in
the mid-1980s (Agranat, Ashikov, Granovskii and Rukman,
1984, 1986). The demagnetization of transition metal thin
films was studied by measuring the remnant MO contrast
with a dc probing laser after pulsed-laser heating with pulses
of different duration. It was concluded that the spin relaxation
time in the FM lies in the interval 1ns < τM < 40ns.

First real-time experiments were performed using SP-
TRPE in the beginning of the 1990’s (Vaterlaus, Beutler
and Meier, 1991; Vaterlaus et al., 1992). Detailed exper-
iments were conducted on the rare-earth FM gadolinium
(Gd), yielding τM = 100 ± 80 ps, and iron. The accuracy
in those experiments was limited, however, by the rela-
tively long duration of the heating pulses (∼10 ns). Nev-
ertheless, the experimentally determined relaxation time τM

was found to be in good agreement with theoretical estimates
based on spin-lattice relaxation by Hübner and Bennemann
(1996). Therefore, around 1995, it was concluded that the
demagnetization upon laser heating is dominated by spin-
lattice relaxation, and proceeds at a typical timescale of
τM ∼ 0.1–1 ns.

In view of the previous context, a surprising result was
obtained in 1996 by Beaurepaire, Merle, Daunois and Bigot
(1996). They reported on a combined TRMOKE and transient
reflection study. The spin temperature, as extracted from
TRMOKE, was found to display a maximum around 2
ps, while the initial decay rate was a few tenths of a
picosecond only, suggesting τM < 0.5 ps (Figure 5). The
complete behavior was shown to be described adequately
by a 3T-model (equations (12), (4), and (5)). A complete
dominance of the spin-electron coupling over the spin-lattice
coupling needed to be assumed.

The experimental finding of an ultrafast (τM < 500 fs) spin
relaxation was confirmed soon thereafter by several groups.
Hohlfeld et al. exploited time-resolved SHG (Section 3.2) to
study Te(t) and Ts(t) in bulk polycrystalline nickel (Hohlfeld,
Matthias, Knorren and Bennemann, 1997). In contrast with
the work of Beaurepaire, it was found that already after 300
fs the magnetization is governed by the electron temperature,
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Figure 5. (a) Pioneering experiments by Beaurepaire, showing the loss of MO contrast of a nickel thin film within 1 ps after laser excitation.
(Reproduced from Beaurepaire et al., 1996, with permission from the American Physical Society.  1996.) (b) Similar data by Güdde and
Hohlfeld, using MSHG, and showing a quasi-instantaneous demagnetization. (Reproduced from J. Güdde et al., 1999, with permission from
the American Physical Society.  1999.)

that is, Ts(t) = Te(t), even before electrons and lattice have
mutually thermalized, that is, τM < τE. For even smaller
delay times, t < τT, at which the electron thermalization has
not set in yet, a break down of the classical magnetization
behavior was found. On the basis of this, one could conclude
that τM ≈ τT.

In later experiments, using shorter pulses, even a quasi-
instantaneous break down of the MO contrast was found
(Güdde et al., 1999; Hohlfeld et al., 1999); τM ≈ 0 � τT.
Within the experimental resolution, the loss of ‘magnetic
order’ was described by the time integral of the absorbed
pump power, that is, the absorbed energy was seen to be
converted directly to the spin system. Other experiments
showed a 100% quenching of M , when using high enough
fluence and films with a reduced TC (Güdde et al., 1999;
Conrad, Güdde, Jähnke and Matthias, 1999). A similar
FM→PM transition was demonstrated in more detail for
CoPt3 by Beaurepaire et al. (1998).

An alternative confirmation for an ultrafast subpicosecond
loss of magnetic order in Ni thin films (τM = 300 fs) came
from TRPE by Scholl, Baumgarten, Jacquemin and Eberhardt
(1997). In contrast with previous work, a second, slower
transition of hundreds of picoseconds was reported. The two
timescales were assigned to Stoner excitations and ordinary
spin-lattice relaxation, respectively. However, such a second
process has never been reproduced, despite specific search
for it (Hohlfeld, 1998; Hohlfeld et al., 1999).

On the basis of these first experiments it was concluded
that the loss of MO contrast is extremely fast, at least
within a few hundred femtoseconds, that is, well before
the electron and lattice system are mutually equilibrated;
(τM < τE). Speculations were around on a demagnetization
directly linked to electron thermalizaton (τM ≈ τT), or even
being quasi instantaneous (τM � τT), meaning that M(t) =
Meq(Te,E(t)). Particularly the last claim triggered some
concerns as to the simple interpretation of the data, and a

potential role of ‘optical artifacts’. Such optical effects will
be addressed in the next two sections. After that, we will
return to the genuine demagnetization process in more detail.

5 POPULATION DYNAMICS

Around the year 2000, a number of groups started to question
the simple interpretation of the TRMOKE experiments that
seemed to indicate an almost instantaneous demagnetization.
Doubting a direct proportionality between MO signal and M

is equivalent to considering a potential explicit time depen-
dence of the effective Fresnel coefficient F̃ in equation (22).

First experimental evidence that this was indeed the case
came from Koopmans, van Kampen, Kohlhepp and de Jonge
(2000a,b), who measured the rotation and ellipticity sepa-
rately in a TRMOKE experiment on (epitaxial) nickel thin
films (Figure 6a). It was found that during the first hundreds
of femtoseconds after laser excitation, a profound difference
between the two normalized channels arose: �ε(t)/ε0 �=
�θ(t)/θ0. Those experiments provided unambiguous proof
that, at least in some cases, the MO transient after pulsed-
laser heating does not reflect the genuine magnetization
dynamics. Effects were attributed to ‘dichroic bleaching’, or
state blocking effects, as introduced in Section 2.4.1.

Similar conclusions were drawn from MSHG experiments
on Ni(110) single crystals by Regensburger, Vollmer and
Kirschner (2000). MSHG experiments can be performed in
several configurations, selecting different (combinations of)
second-harmonic susceptibility tensor elements. In one of the
configurations, the authors observed a reversal of the MO
contrast when pumping at high enough laser fluence, whereas
it was carefully excluded to be related to a true magnetization
reversal. It was concluded, again, that the fast initial drop
of the MO signal cannot be unambiguously attributed to an
ultrafast demagnetization.
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By now, a clear consensus on the explicit time dependence
of F̃ has been achieved. However, it has been found also that
the relative importance of such ‘optical artifacts’, as well as
the timescale over which they contribute, depends strongly
on sample layout and experimental settings. Comin reported
results for 50-nm cobalt thin films, observing the strongest
differences persisting for a few hundred femtoseconds, very
similar to the original nickel work (Comin et al., 2004). Pro-
nounced differences in the transients of different MSHG
tensor elements of nickel and permalloy thin films were
reported by Melnikov, Güdde and Matthias (2002). Beau-
repaire performed detailed experiments on CoPt3 (Guidoni,
Beaurepaire and Bigot, 2002). It was again found that during
electron thermalization (t < τT) a difference between the real
and imaginary signal exists, however, full overlap was found
after thermalization was established (Figure 6b). Finally, van
Kampen carefully controlled the ‘chirp’ (i.e., the time lag
between high- and low-frequency components) of the laser
pulses to investigate the optical artifacts (van Kampen, 2003;
Koopmans, van Kampen and de Jonge, 2003). The MO trace
depended on the chirp indeed, in a way that was fully con-
sistent with expectations from simple models. This served as
additional proof for the absence of a direct relation between
θ̃ (t) and M(t).

Differences persisting for much longer times, up to several
tens of picosecond, were observed both by van Kampen
on Cu(001)/Ni (Koopmans, van Kampen, Kohlhepp and
de Jonge, 2000b; van Kampen, 2003), and by Kampfrath on

iron thin films (Kampfrath et al., 2002). In this context, it also
noteworthy mentioning similar results for manganites (more
specifically PCMO and LCMO) by McGill et al. (2004). In
that case, artifacts playing a role for nanoseconds could be
attributed to contrasting carrier dynamics.

In general, it has been argued that the strongest deviations
would occur in cases where either of the two signals strongly
dominates the static MO response, that is, cases where
θ0 � ε0 or vice versa. In such a case even small changes
in the minor channel (e.g., �θ(t)) would yield huge effects
in the normalized signal (�θ(t)/θ0). In MO spectra such
cases would occur near zero crossings of θ(ω) or ε(ω), with
obvious divergences at the zero crossings themselves.

In cases where θ0 and ε0 are of similar magnitude,
smaller differences – or even no measurable difference at
all – have been reported. Identical traces have been observed,
for instance, for nickel films on silicon wafers (Wilks,
Hughes and Hicken, 2002) (although subtle differences were
reported in Wilks et al., 2004), and Si/Si3N4/Ni films (van
Kampen, 2003). Moreover, Bigot used femtosecond spec-
troscopy with supercontinuum pulses (spectrum spreading
from 480 nm to 750 nm) to demonstrate that for CoPt3 films
the identity �θ(t)/θ0 = �ε(t)/ε0) holds for the whole spec-
tral range measured (Bigot, Guidoni, Beaurepaire and Saeta,
2004), although the temporal resolution was somewhat lower
(≥200 fs) in this experiment.

Altogether, lots of evidence has been gathered for opti-
cal artifacts. The few reports on long lasting effects are
not fully understood yet. In contrast, dichroic bleaching
during the thermalization phase of the electronic system
after optical excitation has been interpreted in a quantita-
tive way. In a naive picture, one would expect the relative
change of the MO response �θ/θ0 to be of the order of
the excitation density fexc, defined as the number of opti-
cally excited electrons per atom. Such a behavior can easily
be derived for an ensemble of two-level systems. However,
effects for dichroic bleaching as reported in the original
work (Koopmans, van Kampen, Kohlhepp and de Jonge,
2000b) were as high as �θ/θ0 ∼ 0.1 for laser fluences
corresponding to fexc = 0.01. It was conjectured that such
an effect could be understood by the fact that because
of momentum conservation during optical excitations, the
transitions are concentrated in specific parts of the Bril-
louin zone. As a result, the few states that are involved
are much more effective in blocking additional transitions
when using probe and pump pulses of the same photon
energy (Koopmans, van Kampen, Kohlhepp and de Jonge,
2000b).

Recently, Oppeneer and Liebsch (2004) performed ab ini-
tio calculations of the magneto-optics for nonequilibrium
electron distributions in nickel to put these hand waving
arguments on more solid ground. More specifically, they
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investigated the MO response right after optical excitation,
treating the electronic structure and optical matrix elements
within the density-functional theory. They found a quantita-
tive agreement with the experiments, but only when properly
taking the momentum conservation during optical excitation
into account. At the laser frequency of 1.7 eV the calcu-
lated dichroic bleaching corresponded to �ε/ε0 ≈ 9fexc, in
good agreement with experimental results (Figure 6c). It is
fair to stress that the calculations represent a worst-case sce-
nario in the sense that electronic relaxation of hot electrons
is not included. Such a relaxation is taking place within tens
of femtoseconds, most probably leading to a fast decay of
the bleaching effects. Detailed calculations thereof would be
of considerable interest, but require an enormous numerical
effort and have not been reported to date.

Concluding this section, both experimental and theoretical
results have demonstrated the nonequivalence of the MO
response and the transient magnetization in the regime of
the strongly excited state before thermalization has set in. By
focusing on the strongest of the complementary MO signals
(rotation vs ellipticity) one may hope to obtain a more direct
view on the magnetization dynamics. Nevertheless, a full
understanding has not yet been achieved, as also evidenced
by artifacts remaining for tens of picoseconds of unknown
origin that appear in some of the experiments.

6 EXPERIMENTS ON ORBITAL
MOMENTUM TRANSFER

In the process of laser-induced loss (or, more generally, mod-
ification) of magnetic order, a contribution by the transfer
of angular momentum between the laser field and the FM
sample cannot be excluded a priori. As to emphasize its
potential relevance, it is of interest pointing recent devel-
opments in optical control of ferromagnetic garnets. It was
demonstrated by Kimel and Hansteen et al. that circularly-
polarized light can be used to nonthermally excite and
coherently control the spin dynamics via the inverse Fara-
day effect in, for example, DyFeO3 (Kimel et al., 2005)
and Lu3−x−yYxBiyFe5−zGazO12 (Hansteen, Kimel, Kirilyuk
and Rasing, 2005). Other related work is that on ultra-
fast modification of the order parameter in AF materials
that has been addressed both in theory (Gomez-Abal, Ney,
Satitkovitchai and Hübner, 2004) and experiment (Kimel,
Pisarev, Hohlfeld and Rasing, 2002; Duong, Satoh and
Fiebig, 2004). In the latter case, however, conservation of
J does not play a role, since the AF ordered state carries no
net M .

The feasibility of the role of the laser field to the demag-
netization process in itinerant FMs could be concluded from

theoretical work by Zhang and Hübner. They developed a
particularly interesting model, in which an ultrafast mag-
netic response (within ∼10 fs) is explained by the dephas-
ing induced by a cooperative effect of spin-orbit coupling
and the external laser field (Zhang and Hübner, 2000).
Although not stated explicitly, either direct angular momen-
tum transfer from/to the laser field, or laser-enhanced transfer
between orbital and spin momentum should be at the basis
of the described effect. It is questionable, however, whether
the laser-induced mechanism plays a dominant role in the
demagnetization after laser heating of the ferromagnetic tran-
sition metals, as will be discussed in the subsequent text.

The first experiments on laser-induced angular momen-
tum transfer for itinerant FMs were reported by Ju et al.
(1998b). They used circularly-polarized pump pulses to study
ultrafast spin dynamics in CoPt3. More recently, Wilks and
coworkers reported on polarization dependent studies on the
ultrafast MO response of nickel thin films (Wilks et al.,
2004). Whereas linearly polarized pump pulses provided rel-
atively conventional transient demagnetization results (τM =
130 fs; minor difference between rotation and ellipticity),
pronounced effects showed up in the rotational channel
around zero delay when using circularly-polarized pump
pulses. Nevertheless, this additional signal was demonstrated
to transform even under reversal of the magnetic field, while
transforming odd under reversal of the handedness of the
polarization. Therefore, it cannot be considered a real mag-
netic effect, as also becomes clear from the observation
of similar features for nonmagnetic materials (Wilks and
Hicken, 2004). The additional features are well described
by the specular inverse Faraday effect (SIFE) and specular
optical Kerr effect (SOKE) (Wilks et al., 2004), related to
the third-order optical susceptibility tensor, χ

(3)
xxyy and χ

(3)
xyyx .

More recently, Dalla Longa performed additional circul-
arly-polarized pumping experiments on nickel thin films
(Dalla Longa, 2007), fully confirming results of Wilks.
In the work of Dalla Longa, however, focus was partic-
ularly on a potential influence of the handedness of the
pump polarization on the demagnetization timescale τM. It
was argued that when the angular momentum of the pho-
ton was parallel to the original magnetic moment of the
thin film, transfer of angular momentum could never pro-
mote a fast demagnetization on itself. Results (Figure 7)
showed τM to be independent of the pump polarization
within experimental accuracy (τM = 135 ± 10 fs when using
equation (20); τM = 74 ± 4 fs when using equation (19)),
ruling out a significant role of the photon angular momen-
tum in the laser-induced ultrafast demagnetization process in
nickel. In passing we emphasize that these results are in line
with earlier, more qualitative, conclusions on an insignificant
role of circular polarization for CoPt3 (Beaurepaire et al.,
1998).
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The latter conclusion cannot be considered as a com-
plete surprise, because it agrees with earlier predictions:
For example, in (Koopmans, van Kampen, Kohlhepp and
de Jonge, 2000b) an excitation density fexc = 0.01 led to
a maximum demagnetization of 5%. For nickel, with an
atomic magnetic moment of 0.6 µB. This corresponds to a
loss of 0.03 µB per Ni atom. Even if all absorbed photons
would have transferred one quantum of angular momen-
tum, the photon flux would have been a factor of 3 too
small. Even more strongly, taking into account the quenching
of orbital momentum in the transition ferromagnetic metals
(Ashcroft and Mermin, 1976), which generally leads to a
lowering of MO efficiency by one to two orders of magni-
tude, fully excludes a possible role of the photon-induced
mechanism.

It should be emphasized that the foregoing estimate does
not disqualify a photon-induced transfer between orbital and
spin momenta, mediated by the laser field. However, in
Section 2.3 it was argued that such a mechanism cannot

lead to a full quenching of magnetization in the systems
considered.

In conclusion, circularly-polarized light triggers interesting
processes in the itinerant FMs, but these cannot be considered
of relevance for the ultrafast demagnetization process. A
simple estimate shows that the amount of photons is too
small to account for the observed decrease of magnetic
moment. Moreover, the experiments demonstrate that a
possibly small transfer does not act as a seed for the
process.

7 DEMAGNETIZATION DYNAMICS

After having read Section 5, the reader might have wondered
whether TRMOKE is capable of probing the ultrafast mag-
netic behavior properly, and even whether a genuine demag-
netization is occurring within a picosecond at all. Fortunately,
the situation is far more positive. At present, it is generally
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believed that – in most cases – TRMOKE closely images
the genuine M(t) behavior, and agrees on a characteristic
timescale well below a picosecond, as based on the following
arguments:

1. A loss in MO contrast within a few hundred fem-
toseconds is observed in almost all itinerant ferromag-
netic metals (apart from Ni, e.g., Fe (Kampfrath et al.,
2002), NiFe (Melnikov, Güdde and Matthias, 2002),
Co (Güdde et al., 1999; Conrad, Güdde, Jähnke and
Matthias, 1999; Comin et al., 2004), CoPt3 (Beaure-
paire et al., 1998; Guidoni, Beaurepaire and Bigot,
2002), and Co25Ni75/Pt multilayers (Wilks, Hicken, Ali
and Hickey, 2005)).

2. In almost all experiments, starting with (Hohlfeld,
Matthias, Knorren and Bennemann, 1997), it has been
found that after approximately 300–500 fs, θ̃ (t) is
consistent with a spin temperature that is approaching
the electron temperature, that is, M(t) ∼ Meq[Te(t)].
From about half a picosecond, the demagnetization
transient θ̃ (t) reflects both the subpicosecond e–p
equilibration, as well as the diffusive cooling of the
thin film thereafter. Deviations from this behavior only
occur in those exceptional cases where differences
between �θ(t)/θ0 and �ε(t)/ε0 persist for longer
times.

3. The magnitude of the demagnetization (as measured
after a few hundred femtoseconds) displays a tempera-
ture dependence that would have been expected from a
laser-heating induced change of the equilibrium mag-
netization at different ambient temperatures, that is,
�θ̃ ∝ (dMeq(T )/dT )�T , where �T is determined by
the laser fluence and heat capacity (van Kampen, 2003).

4. Even in cases where differences between �θ(t)/θ0 and
�ε(t)/ε0 persist for tens of picosecond, the thermal
differences of the complementary channels (the real
and imaginary part of dθ̃/dT ) nicely overlap (Koop-
mans, van Kampen and de Jonge, 2003), as shown in
Figure 8.

5. If, in spite of the preceding arguments, at 1 ps the spin
system would not have reached thermal equilibrium
with electrons and lattice, a second (slower) transient
to the final fully equilibrated state should be observed
(most probably on a timescale of at most hundreds
of picoseconds). Except for initial work by Scholl,
Baumgarten, Jacquemin and Eberhardt (1997), in which
a slower transition to the fully demagnetized state after
a few hundred picosecond was claimed, such a two-
step process has never been observed for the elementary
itinerant FMs.

6. At large laser fluence (or reduced Curie temperature)
and at a reversed bias field (i.e., H antiparallel to M) it
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Figure 8. Transient MO response for Cu(001)/Ni/Cu at ambient
temperatures of 307 K (filled) and 373 K (open). Normalized
rotation (a) and ellipticity (b), respectively. (c) Thermal difference
curves for rotation (filled) and ellipticity (open symbols). The line
labeled Tnm (dark gray) indicates the fitted loss of electron plus
phonon excess energy in the Ni layer (in au), the line labeled
TM (light gray) represents the fitted spin temperature (in au) (van
Kampen, 2003).

has been shown possible to fully quench the MO con-
trast well within a picosecond, after which recovery is
in the opposite orientation (Beaurepaire et al., 1998;
Hohlfeld et al., 2001). It is difficult to come up with
any interpretation other than a successful magnetization
reversal, seeded within the first picosecond. We empha-
size that the possibility to achieve full quenching in Ni
thin films is not entirely uncontroversial. For example,
Cheskis et al. claimed to see a saturation of the con-
trast loss at high excitation densities (Cheskis et al.,
2005). However, such a saturation can equally well be
explained by the finite penetration depths of the pump
light and the relatively thick film thickness (30 nm, i.e.,
twice the extinction depth) used in that work. Thereby,
as a rough estimate, the laser power to heat the bottom
part of the film above the Curie temperature is almost
ten times higher than needed for the surface.

7. It has been demonstrated that the loss of MO contrast
is accompanied by emission of a picosecond terahertz
radiation pulse; which is interpreted as being due to
the sudden change in magnetic moment within the
first picosecond (Beaurepaire et al., 2004; Hilton et al.,
2004).
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8. In addition to the ultrafast demagnetization probed
by TRMOKE and TRPE, it has been found from
TRPE that also the exchange splitting is being reduced
within approximately 300 fs (Rhie, Dürr and Eberhardt,
2003, 2005). Although also the interpretation of the
photoemission data is far from trivial, it should be seen
as an additional evidence for genuine magnetic effects
during the first half a picosecond.

9. Despite the differences between �θ(t)/θ0 and �ε(t)/ε0

observed for some systems during the first hundreds
of femtoseconds, in many other cases complementary
channels do provide the same response. As an example,
this has been verified in particular detail for a broad
spectrum of laser frequencies in recent studies on CoPt3
(Bigot, Guidoni, Beaurepaire and Saeta, 2004).

10. It has been found that the sudden reduction of magnetic
moment can create an ‘anisotropy field pulse’ (van
Kampen et al., 2002), its duration being estimated to
be typically <2 ps for nickel thin films (cf. Section 8).
Thereby, indirectly it provides additional proof of a
genuine picosecond magnetic response.

11. In a special material (FeRh, cf. Section 9) a transition
from an AF to FM state within 1 ps has been demon-
strated unambiguously (Ju et al., 2004; Thiele, Buess
and Back, 2004). One could well argue: if it is even
possible to generate magnetism within 1 ps, then there
is no reason to disbelieve a lowering of the ferromag-
netic moment at a similar timescale.

Finally, we would like to stress that equally interesting
results have been observed in other FM systems, such as
Gd(0001) surfaces (Melnikov et al., 2004; Lisowski et al.,

2005), magnetic semiconductors such as InMnAs (Wang
et al., 2003, 2005), and several colossally magnetoresitive
mangantites and other oxides (e.g., Kise et al., 2000; Oga-
sawara et al., 2005).

Altogether, ample of evidence for the loss of magnetic
order in the elementary itinerant FMs within hundreds of
femtosecond has been gathered by now. In search for the
underlying mechanisms, it is of relevance agreeing on a
number of relevant timescales. Here we will focus on a
set of coherent experiments, both TRMOKE and transient
reflection, performed for nickel thin films. Care was taken to
have optically transparent films (homogeneously heating the
layer), thermally well isolated from the substrate. Thereby,
transport of hot electrons and thermal diffusion could be
excluded, and a local description in terms of an extended
3T-model will be valid (van Kampen et al., 2005a). A set of
characteristic data is displayed in Figure 9. It is concluded
that the demagnetization time τM ≈ 100–200 fs (when using
equation (20); just below 100 fs when using equation (19)
(Dalla Longa, 2007)) is approximately equal or slightly
longer than the thermalization time τT ≈ 80 fs, but shorter
than the e–p equilibration τE ∼ 0.4 ps. Weak temperature
dependencies in τM have been found in (van Kampen, 2003),
but will not be discussed any further here.

Quite a few mechanisms have been proposed to account
for such a subpicosecond demagnetization. However, as
discussed in Sections 2.3 and 2.4, many of the proposed
mechanisms excluding the lattice degree of freedom do
not obey conservation of angular momentum. (i) Some
interesting theoretical studies demonstrated femtosecond MO
response, however, more in the spirit of state-filling effects
than a transient M(t) (Hübner and Zhang, 1998; Zhang and
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represent 3T-model fits without- and with a coherent signal (dichroic bleaching) respectively (van Kampen, 2003).
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Hübner, 1999; Vernes and Weinberger, 2005). (ii) In some
explanations, the transfer of spin itself was not addressed
explicitly, and it was merely stated to be occurring during
electron thermalization (Hohlfeld, Matthias, Knorren and
Bennemann, 1997; Guidoni, Beaurepaire and Bigot, 2002,
and others). (iii) Elsewhere, a link was made with Stoner
excitations (Scholl, Baumgarten, Jacquemin and Eberhardt,
1997), or a collapse of the Stoner gap (Cheskis et al.,
2005), in both cases angular momentum conservation seems
not fulfilled. (iv) Spin-orbit scattering in which spin and
orbital momenta are exchanged would lead to an enhanced
orbital moment upon lowering M . Thereby an increase of
the MO contrast rather than a reduction would be expected
(MO measuring mostly orbital effects (Oppeneer, 1998)),
which has never been observed. (v) Transfer of orbital
momentum during laser excitation has been demonstrated
to be negligible (Section 6). (vi) Finally, emission of Tera
Hertz radiation has been observed to accompany the laser-
induced demagnetization (Beaurepaire et al., 2004; Hilton
et al., 2004). The configuration was such, however, that it
cannot explain the loss of angular momentum. At this stage,
we consider it unlikely that such a scenario will provide the
key answer.

Motivated by the controversy that arose, we have read-
dressed the possibility to include the lattice interactions in
order to take care for a potential bath of angular momen-
tum. Let us first restate two general arguments against such
a scenario: (i) It is too slow, or, phrased differently, it
would require an unrealistically large spin-flip probability
a (see subsequent text, and Section 2.4.4). (ii) If the lattice
is involved, one would expect the spin temperature to lag
behind the lattice temperature that is, τM > τE.

A first numerical model including e–p induced spin-flip
scattering was published in Koopmans, Kicken, van Kampen
and de Jonge (2005). In search for the simplest model that
just contained the essential ingredients three reservoirs were
defined. A simplified electron and lattice system were defined
as introduced in Section 2.4. In addition, the spin system was
described as a set of identical two-level systems obeying
Boltzmann statistics and with an exchange splitting �ex

that depends in a self-consistent way on the average spin
moment S, that is, using a mean-field (Weiss) description:
�ex = JS, where the exchange energy J is related to the
Curie temperature via kBTC = J/2. A spin-flip probability
a, for an e–p event to be accompanied by spin flip, was
introduced. All dynamics was performed within the random-�k
approximation.

Numerically solving the Boltzmann equations after opti-
cal excitation of the electron system, revealed traces for
Te, Tp and Ts very similar to the ones obtained by the
3T model (Koopmans, Kicken, van Kampen and de Jonge,
2005). Some results for an arbitrary set of parameters and
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as a function of spin-flip probability a are displayed in
Figure 10(a). As expected, the higher a, the faster the
equilibration of the spin temperature. However, as a sur-
prising observation it can be seen that for some sets
of parameters it is possible to achieve a spin response
faster than the heating of the lattice (i.e) τM < τE, even
though phonons are involved in the model. This clearly
disproves argument (ii) against a phonon-mediated demag-
netization.

These numerical efforts were later backed by an analytical
approach, both including spin-flip scattering with phonons
and with impurities. Equations could be derived for τM

and τE in the limit of infinitely fast thermalization τT → 0
(Koopmans, Ruigrok, Dalla Longa and de Jonge, 2005).
More specifically, for the phonon-mediated model, and for
temperatures ‘well-enough below TC’, a ratio

τM

τE
= 3c0Ds(�ωD)2

π2aDFk
3
BT 2TC

(33)

was found. For a reasonable set of parameters for Ni, it
required a ∼ 0.1 to end up with τM ∼ τE. On the basis of the
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band structure considerations – in particular the knowledge
that band degeneracies near the Fermi level can enhance
a by orders of magnitude (Fabian and Sarma, 1998) – it
was concluded that phonon-mediated spin-flip scattering in
the spirit of Elliot and Yafet may provide a non-negligible
contribution to the subpicosecond magnetic response for
realistic values of a. This significantly weakens argument
(i) against a phonon-mediated demagnetization.

All of this can be understood diagrammatically as sketched
in Figure 10(b): The energy flow from the electron to the
spin bath, whereby Ts approaches Te, is strongly influenced
by (the temperature of) the lattice. The fact that even a = 0.1
is sufficient to achieve τM ∼ τE is related to the fact that it
needs many e–p events (�ωq ∼ 0.05 eV) to lower the kinetic
energy of an optically excited electron (<1 eV), whereas a
single spin flip per atom is more than sufficient to quench
all magnetization in nickel (with a magnetic moment of
0.6 µB).

Finally, of even more generic interest, a potential link
between the demagnetization process and Gilbert damping of
precessional dynamics was derived in (Koopmans, Ruigrok,
Dalla Longa and de Jonge, 2005). Therefore, the same model
Hamiltonian was used to derive an analytical expression
for the Gilbert parameter α. The approach followed was
quite similar to the spin-flip scattering treated by Kamberský
(1970), though did not include ordinary scattering between
spin-dependent band levels (Kamberský, 1970; Kunes and
Kamberský, 2002). Interestingly, for all mechanisms con-
sidered, that is, both the impurity- and phonon-mediated
spin-flip scattering, practically the same relation between α

and τM was found (Koopmans, Ruigrok, Dalla Longa and
de Jonge, 2005):

τM ≈ c0
�

kBTC

1

α
(34)

again valid for T well-enough below TC. The parameter
c0 is between 1/8 and 1/4, slightly depending on details
of the models and regimes worked in. Although a strongly
simplified model it sets the relevant timescale with surprising
accuracy. For example, using α = 0.02–0.03 (being the
intrinsic value for nickel (Heinrich, Meredith and Cochran,
1979)), and TC = 630 K, readily predicts τM ∼ 100 fs, within
a factor of 2 of the measured value!

Thus, two major areas of contemporary research in mag-
netism were linked: (i) the ultrafast (subpicosecond) manipu-
lation of magnetic matter, and (ii) the switching and preces-
sional dynamics in multilayered and micromagnetic systems.
Maybe, relating the two fields provides future answers to
the origin of the femtosecond-scale magnetization processes
in itinerant FMs as triggered by pulsed-laser heating. For
sure, the new insight will inspire the community to come

up with new and even more dedicated investigations aiming
at further unraveling the secrets of ultrafast magnetization
dynamics.

8 ANISOTROPY DYNAMICS AND
LASER-INDUCED PRECESSION

Magnetic anisotropies arise from a subtle balance of the mag-
netic energy in an applied field, dipole–dipole interactions
(in case of shape anisotropy) and spin-orbit interactions that
give rise to coupling to the lattice (magnetocrystalline- and
surface anisotropies). It has been found that sudden laser
heating of a FM material can perturb the balance between
the different anisotropy contributions and the applied field,
launching a precessional motion of the magnetization vec-
tor. Such an approach provides access to both the preces-
sional dynamics (frequency and damping), as well as the
picosecond-dynamics of the magnetic anisotropy itself.

Ju et al. demonstrated the ability to use the ultrafast optical
modulation of the AF/FM interaction of an exchange-biased
(EB) bilayer to launch a precession of �M (Ju et al., 1998a,
2000). In these experiments, such a modulation was obtained
by heating a NiFe/NiO bilayer close to the blocking temper-
ature TB. A more general scheme was introduced by van
Kampen et al. They found a similar laser-induced precession
for a single magnetic layer with a canted equilibrium orienta-
tion of �M (Koopmans, van Kampen, Kohlhepp and de Jonge,
2000b; van Kampen, Koopmans, Kohlhepp and de Jonge,
2001). Initially, the phenomenon was observed for specially
engineered systems with a canted ground state orientation
of the magnetization, such as epitaxial Cu(111)/Ni/Cu and
Cu(001)/Ni/Cu at a proper (intermediate) Ni-layer thickness.
Owing to the contrasting temperature dependence of the vari-
ous anisotropy contributions, the canting angle c is strongly
T -dependent when starting at a nontrivial angle (c �= 0◦ and
c �= 90◦).

Later, it was reported that the phenomenon was even
more general, and could be observed in polycrystalline films
with an in-plane anisotropy as well, by pulling �M to a
canted orientation in an applied magnetic field (van Kampen
et al., 2002) (Figure 11). For such a nickel polycrystalline
film, the equivalence of the laser-induced precession with
microwave driven magnetization oscillations was verified in
a conventional ‘FMR’ experiment (van Kampen et al., 2002).

Many applications of the approach have followed. The
dispersion of perpendicular standing spin waves could be
resolved (van Kampen et al., 2002). In later experiments,
discrete modes in artificial spin chains, that is, submicrometer
pillars of [NiFe/Al2O3]n (n repetitions), were investigated
(van Kampen et al., 2005b). The all-optical approach is
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Figure 11. (a) Laser-induced precession in a polycrystalline nickel
thin film, showing demagnetization (<2 ps) and successive preces-
sion, by measuring the polar component of the canted �M , and (b)
schematic explanation: (I) In the external field, �M is canted out of
plane; (II) laser heating changes the equilibrium orientation, thereby
triggering a precession; (III) after thermal recovery, the final pre-
cession is almost in the original anisotropy field.

particularly convenient for measuring dynamics on wedge-
shaped samples, in which one of the film thicknesses is
continuously varying over the sample area. Józsa used this
configuration to explore correlations between damping and
coercivity as well as damping by means of spin pumping
(Józsa, 2006). Furthermore, the technique has been used to
probe anisotropies, such as in the Fe/AlGaAs(001) system
(Zhao et al., 2005). The role of anisotropy on the ultrafast
dynamics in cobalt has been addressed by Bigot, Vomir,
Andrade and Beaurepaire (2005). Finally, it should be
emphasized that the all-optical approach is particularly suited
to measure materials with a high anisotropy (thereby a
high precessional frequency) and a high damping (where a
frequency domain approach is troublesome), such as hard
disk recording media (Bergman et al., unpublished).

Returning to the initial ‘anisotropy field pulse’, it has been
demonstrated that the anisotropy is being modified really at
the picosecond timescale. This can be concluded qualitatively
from the observation of the first rotation of �M already after
several picoseconds. A more accurate estimate is obtained
by backtracing the anisotropy field pulse from the complete
precessional signal. A scheme therefore has been developed
by Józsa (2006). For a nickel thin film, a characteristic
timescale of at most 1–2 ps was derived this way.

Finally, a particularly interesting problem, with both sci-
entific and technological aspects, is the quenching of the
anisotropy interaction between a FM and an AFM, as orig-
inally being explored by Ju et al. for NiFe/NiO (Ju et al.,
1998a,b, 2000). More recently, Weber and coworkers reported
on a collapse of the exchange-bias field HEB within the first
10 ps after laser excitation, for three different EB systems
(NiFe/FeMn, IrMn/CoFe and NiMn/CoFe) (Weber, Nembach
and Fassbender, 2004; Weber et al., 2005; Weber, Nembach,
Hillebrands and Fassbender, 2005), the time scale basically
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Figure 12. Exchange-bias shift field as a function of pump-probe
delay measured for a IrMn/CoFe sample. (a) Easy axis transient
hysteresis loops for various pump-probe delays as indicated. (b)
Time evolution of HEB. (Reproduced from M.C. Weber et al., 2005,
with permission from EDP Sciences.  2005.)

determined by the relatively long pulse duration used (9
ps – see Figure 12). The fast thermal unpinning is followed by
a slower heat diffusion dominated recovery of HEB. Using a
similar approach and identical samples, Hoffmann et al. found
that even for 100-fs pulses the collapse of HEP seemed to
be just limited by the pulse duration (Hoffmann, 2006) – an
observation that is not well being understood by now.

Future studies would certainly profit from the availability
of well-defined, epitaxial systems. As a first attempt, Dalla
Longa et al. started to explore the ultrafast dynamics of the
EB effect in epitaxial Co/Mn films (Dalla Longa, Kohlhepp,
de Jonge and Koopmans, 2006). This system displays large
monolayer oscillations in both coercivity and EB field as
a function of the Co thickness (Kohlhepp, Kurnosikov and
de Jonge, 2005). First laser-induced precessional effects have
been demonstrated for this intriguing system (Dalla Longa,
Kohlhepp, de Jonge and Koopmans, 2006).
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9 ULTRAFAST PHASETRANSITIONS AND
GROWTH OF MAGNETISM

After having established the possibility to quench ferromag-
netic order on a subpicosecond timescale, a new challenge
is in generating magnetic order. Not only is this of pro-
found fundamental interest it would also open up more
serious applications of the laser-induced ultrafast magnetic
manipulation.

The simplest approach is provided by cooling down a
FM after laser heating above TC (Figure 13a). Beaurepaire
reported on such a laser-induced FM to PM transition within
0.5 ps in CoPt3, and the successive recovery to the original
FM state (Beaurepaire et al., 1998). Such experiments were
extended to the real switching domain by Hohlfeld et al.
(2001). The material of choice was the recording material
GdFeCo, and pairs of set and reset magnetic field pulse
allowed to follow the reversal process in a stroboscopic
experiment (Figure 13b). However, the growth of M is
basically limited by the cool-down time of the magnetic film,
a slow diffusion driven process taking tens to hundreds of
picoseconds.

A potentially much faster generation of magnetic order
could be achieved for materials that display a magnetic phase
transition (Figure 13c). A typical example is provided by
FeRh. Recently, Ju et al. (2004) and Thiele, Buess and Back
(2004) demonstrated independently the feasibility of driving
therein the AF→FM phase transition within a picosecond
by laser heating. When properly prepared, FeRh has the
chemically ordered CsCl structure. At low temperatures, the
material has an antiferromagnetic spin orientation, with iron
local moments of ±3 µB and no appreciable moment on
rhodium. At a phase transition temperature of ∼370 K, a
first-order transition to a ferromagnetic phase takes place,
with iron- and rhodium local moments of 3 µB and 1 µB,
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Figure 13. Schematic representation of growth of magnetic
moment by cooling down below TC (a) and by driving a AFM
to FM phase transition (c). An experimental realization of the first
option is displayed in (b) for a GdFeCo thin film, and applying
different external fields. (Reproduced from J. Hohlfeld et al., 2001,
with permission from the American Physical Society.  2001.)

respectively. The fact that the phase transition shows up
slightly above room temperature makes it particular attractive
for applications. The latter has been recently emphasized by
Thiele, Maat and Fullerton (2003). They proposed the use of
an exchange spring bilayer FePt/FeRh as a storage medium
for heat-assisted recording.

A typical time-resolved experiment is displayed in
Figure 14(a). Using FeRh thin films, Ju et al. observed that
about 20% of the final net MO signal establishes within
the first picosecond, converging to a full signal after ∼50 ps
(Ju et al., 2004). Different fingerprints have been suggested
to decide on a genuine laser-induced phase transition: (i)
Appearance of a MO signal when performing the experi-
ments in a magnetic field. (ii) The observation of a ‘thresh-
old fluence’, as reported by Ju et al. (2004), and shown in
Figure 14(b). A certain minimum laser fluence is needed
to heat up the film above the transition temperature, TP.
Moreover, the higher the fluence, the longer the MO sig-
nal persists, because it takes longer to cool down below
TP – all exactly as observed in Figure 14(b). (iii) A ‘two-
peak feature’ in the MO transient, as claimed originally by
both teams (Ju et al., 2004; Thiele, Buess and Back, 2004).
The magnetization may be expected to go twice through a
maximum – that is, during heat up as well as while cooling
down – since right above TP the magnetic moment is highest.
Also, at increasing laser fluence the time at which the second
peak occurs should be larger. This ‘two-peak argument’ will
next be addressed in more detail.

If the magnetic system would be in a constant equi-
librium with electrons and lattice, a double pass of the
state with highest M would be expected indeed. How-
ever, in the nonequilibrium experiment, the electron tem-
perature is almost suddenly raised well above TP. It is
questionable whether in such a case the equilibration of
electron and spin system is indeed accompanied by first a
buildup of magnetic order, after which it is quenched again.
Bergman, Ju et al. rephrased this consideration recently
in terms of two separate timescales: τ s to account for a
process in which Ts increases monotonically, driving M

through an optimum indeed, and τM accounting for a pro-
cess in which the magnetization (rather than Ts) grows
monotonously from zero to its final value (Bergman et al.,
2006).

Support for the second model came from magnetic field
dependent experiments, in which it was shown that the
two features originally observed had to be assigned to
the onset of a laser-induced precession, similar to the
ones described in Section 8. This behavior was successfully
accounted for by an LLG simulation in which both the
magnitude and orientation of �M were described (Bergman
et al., 2006) – including heat diffusion and a gradual increase
of M after passing TP. More specifically, the effective field
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(Heff(t |)) was calculated from time dependent orientation
and magnitude of the magnetization vector throughout the
film, �M(z, t)|), (z being the depth coordinate), and used
in the LLG equation for the normalized magnetization:
�m(t) = �M(z, t)/M(z, t) requiring all spins in the system to
be parallel:

d �m
dt

= γµ0

(
�m × �Heff

)
+ α

(
�m × d �m

dt

)
(35)

For more details we refer to Bergman et al. (2006). At higher
fields, a faster precession was found indeed as shown in
Figure 14(c). This new interpretation shows that a two-peak
feature as originally postulated is not observed upon laser
heating of FeRh, asking for a description in terms of τM.

By observing an ultrafast, subpicosecond component in
the MO response, both teams concluded to have solved the
long-standing issue whether the magnetic phase transition
in FeRh is driven by lattice expansion, or whether it
is a purely electronic phenomenon. The observation of a
growth of magnetism well before the lattice is expanded
(several picoseconds) unambiguously demonstrates the latter
(Ju et al., 2004; Thiele, Buess and Back, 2004).

The successive growth of the final MO contrast dur-
ing a period of tens of picoseconds has been addressed in
more detail in Bergman et al. (2006), exploiting a com-
bined TRMOKE and transient reflectivity approach. It was
concluded that all data are consistent with a subpicosecond
nucleation of magnetic moments that grow and align during
the next tens of picoseconds – driven by effective field and
mutual exchange interactions.

Our understanding of the whole process on a microscopic
scale is still limited. On the other hand, the material with
its two coupled spin systems may provide a very efficient
playground for acquiring more in-depth understanding of

magnetic processes at the subpicosecond timescale. It is
anticipated that exploring laser-induced magnetic phase tran-
sitions in general, and the FeRh case in particular, will grow
toward a very rich and challenging field of research in the
forthcoming years.

10 CONCLUDING REMARKS

Within a decade after the first report on femtosecond
magnetization dynamics an exciting and active field of
research has emerged. Hand in hand with developments
in spintronics, ever new phenomena have been discovered.
By now, a whole toolkit of methods for manipulating and
probing FM matter on a subpicosecond time scale has
become available. Main emphasis in this chapter was on
all-optical approaches. It was shown that femtosecond laser
pulses can demagnetize a ferromagnetic film within a few
hundred femtosecond, but also drive an AF to FM phase
transition and thereby generate a magnetic moment at a
similar timescale. By changing the magnetic anisotropy at
the subpicosecond timescale, precessional phenomena can be
triggered and probed in an elegant all-optical scheme.

As will have become clear, our understanding of many of
the phenomena is still at rather a phenomenological level.
While the basic interactions leading to the equilibration of
the electron and lattice system after pulsed-laser heating
are relatively well understood, no consensus on the micro-
scopic mechanisms underlying the femtosecond quenching
and growth of magnetic order has been achieved yet. Never-
theless, the bare fact that a genuine change in magnetic order
does occur within a few hundred femtoseconds is generally
accepted by now. A larger number of supporting arguments
were discussed, although it should be stressed that utmost
care remains necessary to interpret optical data in the strong
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nonequilibrium regime, where state-filling effects do mix up
with the ‘magnetic’ signal. Within the chapter, the role of
transfer of angular momentum has been emphasized, and
some of the recently proposed dissipation channels were
discussed. Recent approaches seem to point out a potential
universal link between dissipation of precessional motion of
the magnetization vector (Gilbert damping) with the relax-
ation time of microscopic spin fluctuations (represented by
τM). Moreover, a possible role of phonons in the magnetic
relaxation process even at picosecond timescale was esti-
mated.

Clearly, a more comprehensive understanding of the
underlying physics requires more dedicated theoretical efforts
as well as novel, targeted experiments. New insight could
be expected, for example, from the rapid development
of synchrotron radiation sources, which may open up the
possibility of performing element specific measurements of
the spin dynamics at subpicosecond timescale, with the
potential to discriminate between orbital and spin angular
momenta. Also, rapid progress has been witnessed in the
use of TRPE. Other routes, such as directly exciting and
probing lower energy excitations (such as spin waves) in the
system could be anticipated to provide deeper insight, but
have not been explored intensively in the picosecond regime
yet. Clearly, particular progress is expected from combing
several of the aforementioned approaches in a clever way.

Apart from progress by improving our analytical tech-
niques, exciting opportunities arise by engineering novel
structures. Experiments on FeRh, but also spin dynamics
in oxides that was not explicitly discussed in the present
chapter, have shown the exciting phenomena that can be
observed when moving to specific alloys and compounds.
Also, a growing awareness is being witnessed that new
classes of dynamics can be explored when entering the
regime of exchange-coupled systems. Finally, the develop-
ment of nano-structuring techniques opens up a particular
challenging route for a combined spatiotemporal manipula-
tion of the flow of energy and angular momentum in the
nonequilibrium regime.
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acknowledge support by the European Communities Human
Potential Programme (contract number HRPN-CT-2002-
00318 ULTRASWITCH), and by the Netherlands Foundation
for Fundamental Research on Matter (FOM).

REFERENCES

Acremann, Y., Strachan, J.P., Chembrolu, V., et al. (2006).
Time-resolved imaging of spin transfer switching: beyond
the macrospin concept. Physical Review Letters, 96,
217202-1–217202-4.

Aeschlimann, M., Bauer, M., Pawlik, S., et al. (1997). Ultrafast
spin-dependent electron dynamics in fcc Co. Physical Review
Letters, 79, 5158–5161.

Agranat, M.B., Ashikov, S.I., Granovskii, A.B. and Rukman, G.I.
(1984). Interaction of picosecond laser pulses with the electron,
spin and phonon subsystem of nickel. Soviet Physics JETP, 59,
804–806.

Agranat, M.B., Ashikov, S.I., Granovskii, A.B. and Rukman, G.I.
(1986). Interaction of picosecond laser pulses with the electron,
spin, and phonon subsystems of nickel. Zh. Eksp. Teor. Fiz., 86,
1376–1379.

Ashcroft, N.W. and Mermin, N.D. (1976). Solid State Physics,
Saunders College: Philadelphia.

Back, C.H., Allenspach, R., Weber, W., et al. (1999). Minimum
field strength in precessional magnetization reversal. Science,
285, 864.

Back, C.H., Weller, D., Heidmann, J., et al. (1998). Magnetization
reversal in ultrashort magnetic field pulses. Physical Review
Letters, 81, 3251–3254.
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Hübner, W. and Bennemann, K.H. (1996). Simple theory for spin-
lattice relaxation in metallic rare-earth ferromagnets. Physical
Review B, 53, 3422–3427.

Hübner, W. and Zhang, G.P. (1998). Ultrafast spin dynamics in
nickel. Physical Review B, 58, R5920.
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Zhang, G.P. and Hübner, W. (2000). Laser-induced ultrafast demag-
netization in ferromagnetic metals. Physical Review Letters, 85,
3025–3028.

Zhang, G.P., Hübner, W. and Bigot, J-Y. (2002). Laser-induced
Ultrafast Demagnetization: Ferromagnetism, A New Frontier?
Topics in Applied Physics , Springer: Berlin, pp. 245–288, Vol.
83.

Zhao, H.B., Talbayev, D., Dang, Q.G., et al. (2005). Ultrafast
magnetization dynamics of epitaxial Fe films on AlGaAs(001).
Applied Physics Letters, 86(15), 152512-1–152512-3.



Investigation of Ultrathin Ferromagnetic Films by
Magnetic Resonance

Klaus Baberschke
Freie Universität Berlin, Berlin-Dahlem, Germany

1 Introduction 1
2 In situ UHV-FMR: Experimental Details 2
3 g-tensor and Magnetic Anisotropy Energy (MAE) 5
4 Dynamics in the FMR, the Linewidth �H 11
5 Summary, Outlook 14
Notes 15
Acknowledgments 15
References 15
Appendices 17
A Units 17
B Notation of the Magnetic Anisotropy Energy 17

1 INTRODUCTION

When a magnetic dipole moment is subjected to a magnetic
field �H , it experiences a torque motion. Its equation of
motion is given by

∂ �µ
∂t

= γ
[
�µ × �H0

]
with γ = gµB

�
= g

(−e)

2mc
(1)

∂ �M
∂t

= −γ ( �M × �Heff) (2)

The motion of the angular momentum or the magnetic
moment consists of a uniform precession about �H with angu-
lar velocity �ωL = −γ �H . Without damping, the component of
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by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
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Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

�µ along �H remains fixed in magnitude, so that the ‘Zeeman
energy’ E = �µ · �H is a constant of the motion. Real systems
have a finite damping (relaxation). The dissipation of this part
of energy can be pumped into the torque motion by means
of microwave radiation in resonance with ωMW = ωL, yield-
ing a Lorentzian linewidth �H (Figure 1b, see Section 4).
Electron paramagnetic resonance (EPR) (equation 1) and fer-
romagnetic resonance (FMR) (equation 2) [1] are based on
the same principle – for EPR see (Abragam and Bleaney,
1966; Orton, 1968; Pake, 1962), for FMR see (Vonsovskii,
1966; Heinrich, 1994; Farle, 1998). Historically, they fol-
lowed very different routes: For EPR H0, the local and the
external field are equal and known with high precision. The
only unknown quantity is the g-factor or g-tensor. For FMR
it is the opposite, �Heff of a ferromagnet is the unknown
parameter. It is the vector sum of several anisotropic field
contributions (dipole, spin orbit, external, and microwave).

�Heff = �Hdipole + �HK + �H0 + �hMW (3)

Note that the exchange field in a ferromagnet is always
parallel to �M and does not contribute to the torque. �M can
be seen as the sum of the individual moments per volume
�M = ∑ �µi . For ultrathin simple ferromagnetic films (e.g.,

Fe, Co, Ni), µ is defined per particle.
In this chapter we will give a brief overview of three

aspects that are most important for the investigation of
novel magnetic nanostructures by means of microwave
spectroscopy: The UHV-FMR technique and its monolayer
sensitivity and the static parameters of magnetism (e.g.,
magnetic anisotropy energy (MAE) and interlayer exchange
coupling (IEC), both measured with FMR in absolute energy
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Figure 1. (a) Sketch of the uniform precession of vector �M about the external field �H0. (b) Zeeman levels for a spin ms = ±1/2 system
and the dipole transition for �hMW being perpendicular to �H0.

units). Finally in Section 4 we give examples for the spin
dynamics determined from the FMR linewidth.

The examples used here, mainly from our own work,
will elucidate the strength of FMR and its intimate contact
with ab initio calculations exactly adapted to FMR experi-
ments.

2 In situ UHV-FMR: EXPERIMENTAL
DETAILS

Magnetic resonance spectroscopy will be most instructive if
external parameters can be varied. One important parameter
is the temperature T . The intensity of the magnetic reso-
nance signal (area under the resonance line) is proportional
to the static susceptibility (White, 1970). Temperature varia-
tion allows us to study the EPR above the Curie temperature
TC and the FMR in the ferromagnetic phase below TC, cf.
Section 4. Other phase transitions such as those in supercon-
ductors or crystallographic phase transitions can be studied
with paramagnetic impurities as a sensor by means of EPR
(Baberschke, 1976; von Waldkirch et al., 1973). In ferro-
magnets, one of the most important quantities is the MAE
and its temperature dependence (Heinrich, 1994; Vonsovskii,
1966; Farle, 1998). FMR measures this directly in abso-
lute energy units, cf. Section 3 [2]. Equally important is the
measurement of the angular dependence of the resonance sig-
nal. Following equation (1), it is a standard procedure in the
paramagnetic regime to determine the anisotropic magnetic
moment, that is, the g-tensor (Abragam and Bleaney, 1966;
Orton, 1968; Pake, 1962). If these experimental requirements
can be combined with UHV, the EPR/FMR will be a very
powerful experimental tool to study ultrathin ferromagnetic
films. The ultimate sensitivity of microwave spectroscopy
is in the range of 1011 spins. Usually, in standard sur-
face science and UHV technique, molecules are adsorbed

with a submonolayer coverage onto a crystalline substrate,
for example, a Cu(001) crystal. Equivalently, ferromagnetic
monolayers (ML) of Fe, Co, and Ni are epitaxially grown on
such a substrate with a surface area of a few square millime-
ters. This corresponds to ∼1014 lattice sites on the surfaces
(Farle et al., 1985). Thus the EPR/FMR should be sensitive
to submonolayer coverage. This has been demonstrated for
1/100 ML of paramagnetic molecules (Zomack and Baber-
schke, 1986).

2.1 In situ UHV-FMR

Figure 2 shows the combination of a UHV chamber and a
microwave EPR/FMR spectrometer. Microwave spectrome-
ters are commercially available (Varian, Bruker). The most
popular microwave frequency is 9 GHz (X band). The cor-
responding microwave cavity usually has a geometric size
of ∼4 cm × 4 cm (wavelength of the microwave ∼3–4 cm)
with a central access hole of 0.5–1 in. diameter for inserting
the sample. In this central access hole a quartz finger tip of
a UHV chamber is inserted. In other words, the microwave
cavity and all other parts of the spectrometer are operated
in laboratory air. Only the sample itself is prepared and
measured in situ under UHV conditions. This offers a very
important variety of experiments, for example, to measure
ultrathin films, first facing vacuum without protection layer.
Then adding a cap layer and monitoring the effect of the cap-
ping on the magnetism of the ultrathin ferromagnet, or adding
step-by-step in situ a second ferromagnetic film and study-
ing IEC, and so on. Figure 2 shows the large electromagnet
with external fields of 10–15 kOe and the field axis point-
ing horizontally in the laboratory frame. The sample itself
is mounted on a vertical UHV manipulator with a rotating
vertical axis. This allows full angular-dependent measure-
ments varying the magnetic field from in plane to out of
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Figure 2. Sketch of the combination of a conventional EPR spectrometer with a large electromagnet and a UHV chamber equipped with
all necessary installations for surface science physics (Zomack and Baberschke, 1986; Farle, 1998). The pumping station is mounted on the
left-hand side, whereas the bottom part of the UHV chamber is inserted into the electromagnet and the microwave cavity. The electromagnet
(being movable on a track) and the microwave cavity are taken away from the UHV chamber for a standard bakeout procedure to reach a
base pressure in the 10−11 mbar range. For details see text.

plane. The commercial manipulator is equipped with a cool-
ing system for �He or �N2. It has a very large z (vertical)
travel of ∼50 cm. This specialty is necessary to move the
sample above the electromagnet into the upper part of the
UHV chamber for sample preparation. This upper level is
equipped with standard surface science UHV instruments
such as Auger, LEED, quadrupole, evaporator, sputter gun,
and so on. Recording a typical FMR spectrum takes only a
few minutes. Thus, a full angular dependence or temperature
dependence may be measured within an hour. Afterward,
the sample may be moved to the upper position for further
sample preparation such as adding a cap layer or a second
ferromagnet, adsorbing gas on the surface, and so on. Finally
it is moved down again for a second in situ experiment.

Figure 3 shows the EPR/FMR of Gd/W(110) as one
example. The Curie temperature of bulk Gd equals TCb ≈
292 K, for 1.6 ML Gd/W(110) it is TC < 292 K (open
squares) due to the finite size effect. Figure 3(b) convinc-
ingly shows the high sensitivity of the FMR. At 316 K, the
signal for 1.6 ML is recorded with a very good signal-to-
noise ratio. The resonance signal has been monitored from
360 K to below the corresponding Curie temperature for each
film (Farle and Baberschke, 1987). The steep increase of the
intensity follows the temperature dependence of the suscep-
tibility of the Gd films. The external field �H0 was applied
in plane along the easy axis of the Gd film. Consequently,
the external resonance field shifts to lower values at lower

temperature because the internal one �Hdipole + �HK increases
when the temperature is reduced.

The idea of a fingertip inserted into a microwave cavity
has been used before for 3He/4He dilution refrigerators
(Nagel et al., 1980; Baberschke and Tsang, 1980). The same
idea of experimental setup, namely, the combination of
UHV technique with magnetic measurements can be used to
determine the magnetization with a SQUID (Ney et al., 2002)
as well as the ac-susceptibility χac (Stetter et al., 1992). All
three techniques FMR, SQUID, and χac combined with state-
of-the-art surface physics and UHV technique offer a new
insight into the understanding of the fundamentals of the
magnetism of ultrathin ferromagnetic films.

2.2 Multifrequency FMR

Following equation (1), we estimate that a typical reso-
nance condition is given for ∼10 GHz and ∼3.5 kOe. Under
certain limitations the absorption of electromagnetic waves
between two Zeeman levels is proportional to ω2. Thus EPR
microwave spectroscopy is more sensitive by ∼4 orders of
magnitude than nuclear magnetic resonance operating in the
range of 100 MHz. On the other hand, microwave spec-
troscopy has some limitations. It operates usually only at
one fixed frequency due to microwave oscillators and the
waveguide technique. Consequently, the magnetic field has
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Figure 3. Typical magnetic resonance spectra of ferromagnetic monolayers (Farle and Baberschke, 1987). (a) EPR intensity for different
film thickness: 80 Å (full circles), 1.6 ML (open squares), 0.8 ML (open triangles). The arrow at 316 K corresponds to the experimental
spectrum given in (b). Note that the spectrum at 295 K in (b) is still above TC. (c) FMR of 7 ML Ni/Cu(001) at 1, 4, and 9 GHz. The spectra
are taken in the ferromagnetic phase. Corresponding to equations (1) and (2) also the external Zeeman field reduces if the microwave
frequency is reduced. Note the narrowing of the linewidth – at 1.12 GHz the linewidth is �H = 15 Oe only (cf. Section 4). All three
spectra are taken in situ in UHV without protective layer for the same film, just by replacing the microwave cavities.

to be scanned (see Figure 1b). The majority of experiments
are performed in dilute paramagnetic systems. These exper-
iments focus mostly on the determination of the different
components of the g-tensor (equation 1). Consequently, the
larger the frequency, the better the separation of different
components of the g-tensor (slopes in the Zeeman level)
for a given linewidth. Field scanning in a ferromagnetic
film creates some difficulties. First of all, in contrast to a
paramagnet, the ferromagnet has an internal anisotropy field
with an easy and a hard axis in the crystallographic frame.
Thus, the applied external field and the internal field are
usually not collinear. Scanning the external field through the
resonance condition means, in principle, dragging the mag-
netization behind the field direction and, as a consequence,
the Lorentzian line shape should be deformed. Fortunately,
this effect is very small. More important is the analysis of
the measured linewidth itself. If determined at only one fre-
quency, it will not be so easy to interpret this value. In
the past, quite frequently some inhomogeneous broadening

assuming local field distribution was used for the interpreta-
tion of the width. In Figure 3(c) we show the FMR of 7 ML
Ni/Cu(001) at 1, 4, and 9 GHz. Obviously, the linewidth is
strongly frequency dependent and narrows down to a few
oersteds only at low frequencies. This means that frequency-
dependent measurements are very important to disentangle
relaxation processes and other contributions to the linewidth
of the FMR in ultrathin ferromagnetic films. Fortunately,
microwave cavities in this lower frequency range (1, 3,
4 GHz) are available with the same geometrical size as
the 9 GHz cavity and the same central access hole of 1 in.
diameter. This allows us to keep the sample in UHV, only
replacing the 9 GHz microwave cavity by a 1 or 4 GHz cav-
ity, and measure the same film. In Section 4 it will be shown
that FMR measurements at very high frequencies of 200 GHz
and more are also of relevance to investigate the dynam-
ics of magnetic nanostructures. For these frequencies, the
wavelength reduces to below the millimeter regime. Differ-
ent experimental techniques are needed (Silsbee et al., 1979;
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Monod and Janossy, 1977). Currently these experiments are
not performed in UHV. Here, one still needs a protective cap
layer to record the FMR signal.

3 g-TENSOR AND MAGNETIC
ANISOTROPY ENERGY (MAE)

To solve the equations of motion equations (1) and (2) under
the influence of a small oscillatory microwave field �hMW

with �hτ⊥ �H0 and to calculate the resonance condition with
ωMW and a given external magnetic field H0 we refer to
standard literature, for example, (Vonsovskii, 1966; Heinrich,
1994; Farle, 1998). It is the advantage of magnetic resonance
spectroscopy that the method to calculate the resonance
condition and interpret, for example its angular dependence
(direction of H0 with respect to the crystallographic axis
of ultrathin films), is well established for a long time. In
this section we give a few examples to demonstrate the
power and usefulness of FMR to gain information on the
intrinsic parameters of ultrathin ferromagnetic structures. The
resonance conditions are given below for the polar and
azimuthal angular dependence

(
ω

γ

)2

=
[
H0 cos(θ − θH )

+
(

−4πMeff − 2K2‖
M

+ K4⊥
M

− K4‖
2M

)
cos 2θ

+
(

K4⊥
M

+ K4‖
2M

)
cos 4θ

]
×

[
H0 cos(θ − θH )

+
(

−4πMeff − 2K2‖
M

+ K4‖
M

)
cos2 θ

+
(

2K4⊥
M

+ K4‖
M

)
cos4 θ + 2K2‖

M
− 2K4‖

M

]
(4)

4πMeff : = 4πM − 2K2⊥/M (5)

and for θ = θH = 90◦:

(
ω

γ

)2

=
[
H0 cos(ϕ − ϕH ) + 2K2‖

M
cos 2(ϕ − ϕu)

+2K4‖
M

cos 4ϕ

]
×

[
H0 cos(ϕ − ϕH ) + 4πMeff

+2K2‖
M

cos2(ϕ − ϕu) + K4‖
2M

(3 + cos 4ϕ)

]
(6)

where θH is the polar angle of the external magnetic field H0

with respect to the surface normal of the thin film, θ the angle
of the magnetization, and ϕ the azimuthal angle in plane.

Only along the easy and hard axis of the magnetization, the
vectors �M and �H0 are parallel and θ = θH . For all other
orientations, the equilibrium angle of θ can be calculated
by minimizing the free energy of the system (Smit and
Beljers, 1955). Full angular-dependent measurements of the
FMR of ultrathin films have shown in numerous cases the
dragging of the magnetization, see for example, Figure 38
in (Farle, 1998). Equations (4)–(6) also show the various
contributions of anisotropy fields Ki/M (Berghaus et al.,
1989). In several cases, the analysis of the experimental
results was projected on two mechanisms only as given in
equation (5): The dipole or shape anisotropy field 4πM and
the so-called uniaxial out-of-plane anisotropy contribution
K2⊥/M , also called Ku/M . However, equations (4) and (6)
show that full angular-dependent FMR measurements also
give access to K2‖. An axial in-plane symmetry is usually
caused by steps at the surface or can be observed for vicinal
crystal surfaces. Since many of the ultrathin ferromagnets
(Fe, Co, Ni) are grown pseudomorphically on nonmagnetic
single-crystal substrates like Cu or GaAs, they will not
grow in their bulk crystallographic cubic structure but will
be tetragonally or trigonally distorted. This can easily be
detected by monitoring the K4⊥ and K4‖ contributions – K4

is a fourth-order term but in most cases not of cubic
symmetry. For details of the MAE and its notation, see
Appendix B.

As stated in the introduction one focal point of FMR
investigations in the past was the determination of anisotropy
energies and anisotropy fields in ultrathin ferromagnets. It
was often assumed that the g value is close to g = 2 for the
free electron (Vonsovskii, 1966; Heinrich, 1994). In contrast,
equations (4) and (6) offer the opportunity to determine not
only anisotropy fields but also, independently, the proper g

value as is common practice in standard EPR. Resolving the
double parentheses product in equation (4), we see that there
exists one term that depends only on the external magnetic
field H 2

0 . FMR experiments at different frequencies offer the
possibility of determining g also from the proportionality of
the parabolic behavior of ω2 = f (H). This will be discussed
in the following subsection.

3.1 g-tensor, µL, µS

In the past it was often assumed that the orbital magnetic
moment is quenched in cubic Fe, Co, and Ni structures and
magnetism was explained in terms of the spin magnetic
moment only. However, giant orbital magnetic moments
have been observed recently in magnetic nanostructures
(Gambardella et al., 2003). Even in bulk cubic materials, the
survival of large orbital moments for itinerant magnets has
been observed (Brewer et al., 2004). Kittel (Meyer and Asch,
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1961) has already shown that the departure from g = 2 is a
measure of the ratio of orbital-to-spin magnetic moment [3].

µL

µS
= g − 2

2
(7)

For bulk Fe, Co, and Ni, the g value increases from
2.09 to 2.21 (Stearns, 1986). This tells us that in Ni µL is
already 10% of the spin moment, and µL is parallel to µS in
accordance with the positive sign of the spin-orbit coupling
constant. In EPR, it is also well known that the light 3d
elements like Cr have g values g < 2, the spin-orbit constant
is negative and µL and µS are aligned antiparallel. EPR/FMR
have the capability to measure orbital and spin magnetism.
As a matter of fact, standard second-order perturbation theory
(Abragam and Bleaney, 1966; Orton, 1968; Pake, 1962)
shows that the MAE and the anisotropy of the orbital
magnetic moment are caused by the same matrix elements
mixing excited states into the magnetic ground state.

One example in thin-film magnetism is given in Figure 4.
A thick Fe film and ultrathin Fen/Vm multilayers were
measured by two techniques: FMR and X-ray magnetic
circular dichroism (XMCD) (Anisimov et al., 1999). For
the same specimen, the ratio of the orbital-to-spin magnetic
moment was measured by both techniques. In Figure 4(a),
the ratio is given as function of the Fe thickness. A thick Fe
film of 40 nm shows g = 2.09 corresponding to µL/µS =
0.045. When reducing the Fe thickness to 4 and 2 MLs
only, the g value increases up to g = 2.26, which means an
increase of µL by a factor of 3. In Figure 4(b), the XMCD
spectra for both, the V and Fe L3,2 edges are plotted. It
is known that at an Fe/V interface a magnetic moment is
induced at the V site. Following Hund’s rule for V (Fe) spin
and orbital moment are antiparallel (parallel) aligned. This
leads to an enhancement of the effective orbital moment and a

reduction of the total spin moment. FMR measures the total
magnetic response of such a multilayer structure, whereas
X-ray absorption spectroscopy (XAS) and XMCD (see
also Synchrotron Radiation Techniques Based on X-ray
Magnetic Circular Dichroism, Volume 3 and Magnetic
Spectroscopy, Volume 1) are element-specific methods and
are, therefore, in a position to measure the magnetism at the
Fe and the V site separately as shown in Figure 4(b). The
apparent discrepancy between the determination of µL/µS by
FMR and XMCD can therefore easily be explained. XMCD
(full circles) measure only the Fe contribution. For the total
response as probed by FMR we note from Figure 4(b) that
the spin moment of V is antiparallel to that of Fe. The total
spin moment is reduced. In contrast, the orbital moments of
Fe and V are aligned parallel. Therefore, the larger value for
the ratio (open circles) determined by FMR is completely
understandable.

In conclusion, owing to its element-specificity, XMCD
measures µS and µL at the Fe and the V site separately.
FMR determines the ratio µL/µS from the g value. If a
second measurement, for example by SQUID, provides the
total magnetization (µL + µS), spin and orbital contributions
may be separated without XMCD.

3.2 MAE in a ferromagnetic monolayer

The in situ FMR in ultrathin Ni/Cu(001) films of 3–25 ML
has been used to study the spin reorientation transition (SRT)
(Schulz and Baberschke, 1994). To analyze the experimen-
tally determined K values properly it is important to notice
that when changing the thickness of the ferromagnetic film,
the Curie temperature TC will change, too. It is therefore
not advisable to plot K(1/d) at a fixed thermodynamic tem-
perature T but rather at the reduced temperature t = T /TC.
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Figure 4. Orbital and spin magnetic moments, µL and µS, respectively, of Fe/V multilayers measured by FMR and XMCD (Scherz et al.,
2001). (a) The ratio µL/µS increases with decreasing Fe thickness. Note that XMCD measures only the Fe moments (full circles), whereas
FMR measures the total (Fe and V) response (open circles). The ratio µL/µS of V in Fe4V2 as obtained from XMCD (full squares) is
negative because µL and µS are aligned antiparallel in V. (b) XMCD spectra (thick solid line) and integrated XMCD signals as they would
appear in the spin (thin solid line) and orbital (dotted line) sum rule.
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Comparing experimental results only makes sense if the data
are taken at the same reduced temperature. The MAE van-
ishes at TC, that is, it is zero in the paramagnetic regime.
In Figure 5(a) two sets of data are plotted: full circles at
t = 0.56 and open triangles at t = 0.74. That this is an impor-
tant point is seen in Figure 5(b) in which experimental data
are plotted at a fixed temperature of T = 300 K as a func-
tion of the thickness from ∼1 to ∼10 ML. At first glance,
it seems that as the film becomes thinner the anisotropy K

increases with a positive slope. If, however, the data of Farle
et al. (1999) (full circles) are plotted at a fixed, reduced
temperature t = 0.21 (Figure 5c) instead of a fixed abso-
lute temperature T = 300 K, again a linear function of 1/d

results with negative slope up to ∼6 ML. This is the only
correct way of analyzing magnetic anisotropy of ultrathin
films. Figures 5(a) and 5(c) can be interpreted in the same
way: Starting from right to left, at very thin films of ∼3 ML
we see a linear increase with negative slope of f (1/d) up
to a particular value of ∼15 ML for Ni and ∼6 ML for Co.
In the ultrathin limit, the Ni and Co films grow pseudomor-
phically with tetragonal distortion for Ni(001) (trigonal for
Co(111)). At the bending, the pseudomorphic growth stops
and the films grow in the natural bulk structure of the specific
material, for example, fcc for Ni. These linear dependences
of K(1/d) in Figure 5(a) and 5(c) confirm equation (A3),
namely, the classical argument by Néel that the surface and
interface anisotropies scale down with 1/d. The diagrams
also show the extrapolation of the linear slope to the y axis
indicated as KV. Let us assume for sake of argument that
ultrathin films of Ni or Co grew with a rigid perturbed lattice
structure (i.e., tetragonally distorted owing to pseudomor-
phic growth) up to infinite thickness, indeed an extremely
large volume anisotropy of 30 or 90 µeV/atom would occur.
Of course, ferromagnetic films do not do that. The growth
mode collapses back to the natural bulk lattice structure of
the material with much lower anisotropy per particle. We did

observe that this linear function and bending in K(1/d) is
the most sensitive indicator for changes in the growth mode.
The crystallographic structure may change only by less than
0.1 Å, which is difficult to measure by diffraction (LEED)
but does have large effects on MAE and K .

FMR measures the total Meff (equation (5)). After sub-
traction of the dipole contribution 2πM2, the K parameters
(Figure 5) can be plotted as a function of 1/d or as a function
of T (for details see Appendix B). We also see that 2πM2

has to be scaled with the reduced temperature. It is obvi-
ous that because of the small magnetic moment per Ni atom
the shape anisotropy for Ni is much smaller (∼10 µeV/atom)
than for Co (∼90 µeV/atom) with a large magnetic moment
per atom. This is the simple reason why the easy axis of
magnetization for ultrathin ferromagnetic films of Co is in
most cases in plane. Whereas for Ni the K anisotropy caused
by the spin-orbit coupling can exceed the dipole contribu-
tion and result in an SRT from in plane to out of plane
at ∼7–9 ML (e.g., Figure 5a). For details see (Baberschke
1996, 2001; Farle, 1998). Like in bulk ferromagnets, the var-
ious Ki parameters have a different temperature dependence.
For bulk, see (Stearns, 1986), for ultrathin films, see (Farle,
1998; Baberschke, 2001). In equations (4) and (6) the shift
of the external resonance field H0 as a function of the tem-
perature or angle is measured in absolute field units, that
is, Oe. For a given magnetization, this can easily be trans-
lated into energy units. Many other spectroscopies discussed
in this volume measure magnetic anisotropy usually only in
arbitrary units. Determining the absolute MAE is the strength
of the FMR. Therefore, a new challenge is to compare FMR
experiments with ab initio calculations from first principles.

The importance of the temperature dependence of the
MAE in ferromagnetic nanoclusters recently became very
evident. Various groups have investigated small ferromag-
netic particles (e.g., Co) by means of MOKE and XMCD,
measuring very large MAE and orbital magnetization.

0.1 0.2 0.3

0

20

40

60
90

100
KV

2pM2

3

BulkhcpCo
T/TC = 0.215

1/d (1/ML)

15 10 5Bulkd (ML)

0.2 0.4 0.6 0.8

0

40

80

T = 300 K

8 4 2

Co/Cu(111)

1/d (1/ML) 1/d (1/ML)
0 0.05

(a) (b) (c)
0.10 0.15 0.20 0.25 0.30

d (ML) 20 710 5 4

t = 0.74
t = 0.56

–2

0

2

4

K
 (

10
6 e

rg
 c

m
–3

)

–10

0

10

20

30

K
 (

µe
V

/a
to

m
)

K
2 

(µ
eV

/a
to

m
)

K
2 

(µ
eV

/a
to

m
)

2pM2 (t = 0.74)

2pM2 (t = 0.56)

IIII

T

Ni/Cu(001)

K V ≈ 0

K V

Figure 5. K2 anisotropy as a function of 1/d (a) for Ni/Cu(001) at different reduced temperatures (Schulz and Baberschke, 1994), (b) and
(c) for Co/Cu(111). The data in (b) are taken from (Huang et al., 1994) (open squares) and (Kohlhepp et al., 1993) (asterisks). Both were
measured at fixed, ambient temperature. The data taken from (Farle et al., 1999) (full circles) are plotted at fixed temperature in (b) and as
a function of reduced temperature in (c).



8 Spin-polarized electron spectroscopies

Usually, one assumes a uniaxial anisotropy constant Ku.
However, Antoniak et al. (2005) measured the temperature
dependence K(T ) for Fe/Pt nanoparticles with FMR and
observed that it changes between 50 and 300 K by one order
of magnitude. This explains the whole magnetic behavior of
these nanoparticles.

To demonstrate the high sensitivity of the MAE on small
crystallographic lattice perturbations, we show in Figure 6(a)
ab initio calculations for an infinite-sized single Ni crys-
tal. It is an all electron, full relativistic calculation including
orbital polarization (full symbols) and without orbital polar-
ization (open symbols). The infinite-sized crystal was chosen
to demonstrate the importance of the volume contribution
Kv. Kv is defined as the difference in total energy between
the hard and easy axis, for bulk Ni the [100] and [111]
magnetization directions (Hjortstam et al., 1997). The dif-
ference in total energy was calculated for different ratios
c/a, starting from an fcc lattice (c/a = 1), passing through
a regime with tetragonal symmetry and ending in a bcc sym-
metry (c/a = 1/

√
2). For fcc and bcc, Kv almost vanishes,

Kv � 1 µeV/atom. In the tetragonal regime, Kv increases
by orders of magnitude up to Kv ≈ 500 µeV/atom. For the
FMR experiments shown in Figure 5, the pseudomorphic
growth of the Ni film produces a constant ratio c/a ≈ 0.95
(gray regime in Figure 6a). The ab initio calculations in
Figure 6 yield an anisotropy energy of Kv ≈ 100 µeV/atom.
This result is in perfect agreement with the experimental find-
ing after extrapolating the experimental value to Kv (T = 0).

Comparing experiment and theory, one comes to the con-
clusion that changes in the nearest-neighbor distance of
∼3%, that is, ∼0.05 Å, may change the MAE by orders of
magnitude.

The Weinberger group (Uiberacker et al., 1999) has per-
formed similar calculations for a particular FMR experiment
on a 12 ML Ni film grown on a Cu substrate and facing
vacuum. Figure 6(b) shows the magnetic part of the differ-
ence in total energy per individual Ni layer. For the open
triangles, a rigid, unrelaxed fcc lattice was assumed, whereas
open squares and open circles are calculations for a relaxed
tetragonal Ni structure adapted to the lattice of the Cu sub-
strate. It is obvious that the topmost Ni layer facing vacuum
shows a large negative contribution corresponding to the neg-
ative slope in Figure 5(a). It is also clear that the first Ni
layer on the Cu substrate has a different (smaller) negative
energy contribution due to hybridization with the Cu band
structure. Such an effect cannot be separated in an FMR
experiment – the experiment measures the sum of the two
contributions. However, the center part of the 12 ML Ni film
is most instructive: For a rigid cubic lattice, their energy con-
tribution is very small. If, however, one puts the real relaxed
lattice as determined from experiment into the calculation,
we see that the center part of an ultrathin film also con-
tributes to the total MAE in full agreement with the results
of Figure 6(a). That is to say, surface and interface magnetic
anisotropy contributions Ks are certainly very large follow-
ing the early argument by Néel, but they usually count only
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trilayer also showing the IEC, see Section 3.3. (Taken from Hammerling et al., 2003.)



Investigation of ultrathin ferromagnetic films by magnetic resonance 9

for one layer each, whereas the central part of an ultrathin
film counts for n − 2 layers. For the particular example shown
here, it is obviously clear that the Kv contribution to the total
MAE is the dominating one. For the details of the nomen-
clature, see Appendix B.

3.3 UHV-FMR in a trilayer and interlayer
exchange coupling (IEC)

The archetype of a magnetic multilayer structure is the
so-called ‘trilayer’, consisting of two FM films, FM1 and
FM2, weakly exchange coupled via a nonmagnetic spacer
NM. Two exchange-coupled ferromagnetic films exhibit two
eigenmodes of the uniform motion of the magnetizations
M1 and M2 – like two coupled pendula. Analogous to the
notion of phonon branches, they are labeled acoustic (in
phase) and optic (π out of phase) modes. The FMR is
the technique of choice for investigating these spin-wave
dynamics (Lindner and Baberschke, 2003b). It measures both
AFM and FM coupling and determines the MAE and IEC
parameters. For such a case, �M has to be replaced by the
vector sum �M1 + �M2 in the equation of motion, equation (2).

Furthermore, an additional energy contribution of the IEC
energy is added to the free-energy density. Following the
FMR resonance condition, equations (4–6) also have to be
modified. One has to distinguish the individual anisotropy
parameters of each FM film, for example, KNi

i and KCo
i (for

details see (Heinrich, 1994; Lindner and Baberschke, 2003a).
In theoretical calculations, the IEC usually enters with an IEC
constant at T = 0. Most of the experiments are analyzed with
an effective parameter Jinter.

Fex = −Jinter

�M1 · �M2

M1M2
(8)

The scalar product �M1 · �M2 takes care of the individual
orientation of Mi in each film. (Note that in an FMR exper-
iment with an external magnetic field H0, the orientation
of M changes as a function of the orientation and strength
of H0.) In Figure 7, an instructive example is given show-
ing that in a step-by-step experiment the UHV-FMR gives
detailed information on all relevant magnetic parameters for
such trilayers.

Figure 7(a) and (b) show the experimental and simulated
FMR spectra of a Ni7/Cu9/Co2 trilayer at two different
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temperatures. First, only the Co2 film capped with the Cu9

spacer layer was prepared. A single resonance line (dotted)
is recorded. Its intensity and position change because Ki

and M are temperature dependent. In a second step, the Ni7
film is deposited on top. At room temperature, the FMR
records two resonance lines: one of the weak optical mode
and a second one of the strong acoustical mode. From the
intensity and position of the two lines it is immediately
evident that this trilayer has an AFM coupling between
the two ferromagnetic films (Heinrich, 1994; Lindner and
Baberschke, 2003a). The simulation of the coupled resonance
lines (dashed) is in perfect agreement with experiment. A full
measurement of the dependence on the polar angle and the
temperature gives access to all MAE parameters, provided
M(T ) is known from another experiment. Taking the angular
dependences of only the bottom film and the IEC trilayer, all
unknown parameters influencing the resonance field of the
optical and acoustical mode can be determined. The only
parameter left, which determines the resonance shift, is Jinter

itself. This straightforward way of determining the coupling
demonstrates the advantage of in situ measurement. The
coupling between FM1 and FM2 is an oscillatory function
of the spacer thickness (Bruno and Chappert, 1991). For the
particular system Ni7/Cud /Co2, this has been observed and
determined by UHV-FMR for a spacer thickness in the range
of dCu = 2–9 ML (Lindner and Baberschke, 2003a). Again,
it is documented in textbooks (Heinrich, 1994) that FMR
is equally applicable for AFM and FM coupling: for AFM
coupling, the intense acoustical mode appears at a lower
magnetic field than the weak optical mode; for FM coupling,
this reverses such that the optical mode is at a lower magnetic
field than the acoustical mode. We note that FM1 and FM2 in
trilayers may also consist of the same material, for example,
Ni8/Cud /Ni9. For Ni films of different thicknesses, the MAE
values and magnetization are different, leading to different
eigen resonances of the individual modes.

Another important parameter for understanding the mag-
netism of coupled ferromagnetic films is the temperature
dependence of the coupling strength, that is, Jinter = f (T ).
Two models were proposed in the past:

1. Thermally excited spin waves in the magnetic layers lead
to a reduction of the effective IEC. In this model, the
characteristic temperature is given by TC. Arias and Mills
calculated a T 3/2 power law (Arias and Mills, 1999,
2000):

Jinter

Jinter,0
= 1 − a

(
T

TC

)3/2

(9)

Other parameters like the thickness of the spacer layer
are hidden in the prefactor a.

2. In the framework of electronic band structure, the smear-
ing of the Fermi edge at elevated temperature makes
the coupling less effective, excitations of electron–hole
pairs reduce the IEC (Bruno, 1995). This temperature-
dependent factor was calculated by Bruno as given in
equation (10).

Jinter

Jinter,0
= T /T0

sinh
(

T
T0

) (10)

The characteristic temperature T0 is controlled by elec-
tronic band structure effects, that is, vFermi and the spacer
thickness. The Curie temperature is no explicit parameter
but is implicitly included via the intralayer coupling of the
ferromagnets.

Lindner et al. (2002) have shown for various ultrathin film
systems over the full temperature range from ∼0 K up to
TC that the effective temperature dependence is very close
to the T 3/2 law and can be less well fitted by a x/sinh(x)

function. However, Nolting and coworkers (Schwieger and
Nolting, 2004; Schwieger et al., 2005) have reinvestigated
the origin of the temperature dependence of the IEC yielding
an effective functional dependence, which for given intra-
and interlayer exchange parameters gets very close to an
effective exponent of ∼3/2 but does not follow the exact
power law for spin-wave excitations with T 3/2. For the
Ni7/Cud /Co2 trilayer system, the temperature dependence is
plotted in Figure 7(c) and (d). Figure 7(c) gives the absolute
values for |Jinter|. For dCu = 5 ML the coupling is FM,
for dCu = 4 ML and dCu = 9 ML the coupling is AFM. In
Figure 7(d) the measured values are normalized to T = 0,
this eliminates the temperature-independent part of |Jinter|.
Nonmonotonic slopes as a function of dCu are seen; that
is, a nonmonotonic temperature dependence of |Jinter|. The
temperature dependence for AFM coupling is larger than
that for FM. This nonmonotonic behavior clearly indicates
that the coupling between spin-wave modes will be more
important for the temperature dependence of |Jinter|, than the
smearing of the Fermi edge.

In conclusion, the strength of the effective T 3/2 depen-
dence of Jinter depends on various parameters of the elec-
tronic band structure, electron–hole excitations, and spin-
wave excitations. Further in situ FMR experiments with
different Cu thickness and full angular- and temperature-
dependent measurements will give the key information to
understand the IEC. Recent quantum mechanical calculations
based on an extended Heisenberg model give clear evidence
that magnon excitations are responsible for about 75% of
the temperature dependence of the IEC. The remaining 25%
is due to temperature effects in the effective quantum well,
formed by the spacer and the spacer/magnet interfaces like
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reduced spin asymmetry or softening of the spacer Fermi
surface (Schwieger et al., 2007).

Finally, we come back to Figure 6(c) where the Wein-
berger group has calculated layer resolved the K anisotropy
(�EB) and the IEC for an Ni8/Cud /Ni9 trilayer. We see that
the anisotropy energy depends strongly on the c/a ratio as
discussed in the previous section. We also notice that for
dCu = 3 ML and dCu = 9 ML the spacer does not contribute
to the MAE. The layer-resolved calculated IEC demonstrates
clearly that more or less only the Ni layer contributes to the
exchange coupling directly at the interface but for very thin
spacers (3 ML) the Cu also makes a finite contribution.

4 DYNAMICS IN THE FMR,
THE LINEWIDTH �H

Starting from Figure 1 it is obvious that the linewidth in the
EPR and FMR is a measure of the spin relaxation, scattering,
and spin fluctuations. Two principal relaxation paths are
discussed in standard literature: spin–lattice relaxation and
spin–spin relaxation. The former is a process in which energy
dissipates from the magnetic system to the thermal bath.
For the latter, energy is scattered within the magnetic spin
system. It depends on the concentration of magnetic moments
(dilute ferromagnets) and can be discussed in the framework
of spin-wave excitations, magnon–magnon scattering, Stoner
excitations, and so on. For both processes, phase transitions
(structural or magnetic) are of importance: diverging spin
fluctuations as a function of temperature will influence the
linewidth. Müller and coworkers have given a nice example
for the EPR: SrTiO3 undergoes a structural phase transition
at ≈105 K. If this crystal is doped with a paramagnetic
center, the EPR will show a dramatic divergence of the
linewidth at this phase-transition temperature (von Waldkirch
et al., 1973). Similar effects were observed for the classical
antiferromagnet MnF2 at the Néel temperature of TN = 67 K
(Burgiel and Stranberg, 1964). In both cases, a dramatic
divergence of �H is observed.

For bulk ferromagnets like Ni and Fe whiskers also a line
broadening in the FMR occurs starting from low temperature
and approaching the Curie temperature from the T −

C side.
On the right-hand part of Figure 8, the FMR linewidth

�H(T ) is shown for bulk Ni. A very sharp peak of only 7 K
width is measured at the Curie temperature of TC ≈ 630 K.
The line broadens from below 200 Oe to more than 1.6 kOe.
How can this be understood? Approaching the phase transi-
tion from the T −

C side, one observes a breakdown of the uni-
form precession of the magnetization. The uniform rotation
of the spin waves with infinite wavelength breaks into pieces
because of thermal excitations. This increases the FMR
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Figure 8. FMR linewidth �H(T ) of bulk and ultrathin Ni films
d = 2–20 ML as a function of the temperature. Note the very sharp
peak for thicker films and the very broad peak for the ultrathin 2D
film. The inset shows the critical exponent β and the transition 3D
→ 2D. For details see Li and Baberschke (1992).

linewidth. Starting from the paramagnetic side above T +
C also

a narrow line of 250 Oe width is observed. The susceptibil-
ity and spin–spin correlation length ξ increase dramatically
owing to Gaussian and critical fluctuations. The sharpness of
the peak in the linewidth is surprising. It depends very much
on the high perfection of the crystallographic structure of the
single crystal. (Since these measurements are performed in an
external magnetic field, ξ will not diverge to infinite.) Apply-
ing the UHV-FMR to Ni(111) thin films grown on W(110),
we observe in the first place a shift of the diverging peak
to lower temperature in full agreement with the thickness-
dependent Curie temperature of ultrathin films caused by
finite size effects (Baberschke, 1996). At a certain thickness
of d = 4–6 ML, the Ni film undergoes a transition from 3D
to 2D behavior. Immediately, we observe a broadening of
the linewidth peak as indicated by ∼40 K in the figure. This
can be easily understood because the fluctuations in less than
3D are enhanced and extended over a larger range of tem-
perature. For details see (Li and Baberschke, 1992; Li et al.,
1990).

4.1 Gilbert damping and magnon–magnon
scattering

In the following text we focus on the analysis of the
linewidth in FMR experiments in ultrathin films deep in
the ferromagnetic phase T � TC. This is of particular
importance for the investigation of magnetization dynamics
and magnetization reversal in magnetic nanostructures. The
commonly used ansatz is to add the so-called Gilbert
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damping to the equation of motion, equation (2), that is, the
second term in equation (11). This Landau–Lifshitz–Gilbert
(LLG) equation has been discussed in great detail in many
review articles. For FMR in bulk material see, for example
(Sparks, 1964; Vonsovskii, 1966), for ultrathin films see, for
example (Heinrich, 1994, 2005). The Gilbert ansatz is based
on a double vector product − �M × ( �M × �Heff) as shown in
Figure 9(b) with a resulting vector that is always pointing
toward the symmetry axis of the Larmor precession. For
small angles β between Heff and M , this can be approximated
by the time derivative ∂ �M/∂t .

∂ �M
∂t

= −γ ( �M × �Heff) + G

γM2
S

[
�M × ∂ �M

∂t

]
with

α = G/γM (11)

Thus it can be interpreted as a velocity-proportional vis-
cous damping like in mechanical (Stokes) friction. The vis-
cosity damps the Larmor precession, and the magnetization
spirals into the z axis pointing to the surface of a sphere, that
is, the length of �M stays constant but the expectation value
〈Mz〉 increases if β → 0. This is indicated in Figure 9(b)
as relaxation path 1. A uniform motion of the magnetiza-
tion plus a viscous damping leads to a dissipation of energy
into the thermal bath (path 1 in Figure 9(a) – an irreversible
process. Two notations are commonly used in equation (11):
(i) G, the Gilbert-damping parameter, given as a relaxation
rate in s−1, or (ii) the dimensionless parameter α in analogy
to the viscous damping. The relaxation rate per second G

seems to be more instructive for easier comparison with other
relaxation rates in the literature. As discussed in Section 2,
standard EPR/FMR experiments use a fixed microwave fre-
quency and scan the external Zeeman field H0. Under these

conditions, the LLG (11) leads to a linewidth �HG depend-
ing linearly [4] on ω

�HG(ω) ≈ 2√
3

G

γ 2M

ω

cos β
(12)

One example is shown in Figure 3 in which for 1 GHz
experiments the linewidth for a 10 ML Ni film is very
narrow in the range of 10–20 Oe, whereas for the most
commonly used 10 GHz frequency the linewidth increases
up to 200–250 Oe.

A second relaxation process is discussed in standard lit-
erature and indicated in Figure 9(c): The uniform motion
of the magnetization (or switching the magnetization) may
scatter into excited states of the magnetic subsystem (spin
waves, Stoner excitations, magnon–magnon scattering, etc.)
The projection of �M onto the z axis stays constant since
the precessional energy is scattered into the transverse com-
ponents Mx and My . (For details see Sparks, 1964). These
processes may be reversible and are indicated in Figure 9(a)
as path 2. They are in full analogy with optical spectroscopy.
In the long run, these excitations will also decay into the ther-
mal bath as indicated by path 3. One may raise the question:
Is there any experimental evidence for the appearance of this
second relaxation process, that is, scattering within the mag-
netic subsystem, in magnetic nanostructures? The theoretical
background to study this question is known for a long time.
One possible model is described by the Bloch–Bloembergen
equation (Bloembergen, 1950; Bloch, 1946)

∂ �M
∂t

= −γ ( �M × �Heff) − Mx

T2
êx − My

T2
êy − Mz − MS

T1
êz

(13)

Uniform motion

k = 0

k ≠ 0

Dissipation to lattice

Spin waves

–M × (M × Heff)
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2
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3 –M × Heff

M M
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Figure 9. Schematic illustration of different relaxation processes taken from Suhl (1998); Sparks (1964): (a) The uniform motion of the
magnetization with k = 0 in an FMR experiment may scatter with energy dissipation into the thermal bath (path 1). In path 2 it can also
scatter into spin waves with k �= 0 – a reversible process. In the long run, this energy also travels along path 3 into the heat sink. (b) Depicts
the LLG scenario from equation (11). (c) Shows the Bloch–Bloembergen process for spin–spin relaxation.
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In this case, two different relaxation rates are introduced
into the equation of motion (Abragam and Bleaney, 1966):
the longitudinal relaxation rate T1, that is, the direct path into
the thermal bath, and the so-called transverse rate, T2, by
which energy is scattered into the transverse magnetization
components Mx and My . This is depicted in Figure 9(c). The
projection of �M on the effective field �Heff stays constant and
energy is scattered into the transverse components Mx and
My . This is a dephasing of the former coherent rotation of the
magnetization as discussed in the previous section. This sce-
nario of a transverse relaxation rate is known, for example,
Sparks (1964); Mills and Rezende (2003); Suhl (1998). Only
very recently, Arias and Mills have calculated this type
of magnon–magnon scattering in a quantitative manner for
standard FMR experiments in ultrathin films (Arias and
Mills, 1999, 2000) (see also Spin Waves: History and a
Summary of Recent Developments, Volume 1). The result
for the FMR linewidth is given below, with  as a parameter

�H2M(ω) =  sin−1

√√√√√
ω2 + (ω0/2)2 − ω0/2√
ω2 + (ω0/2)2 + ω0/2

(14)

It is obvious that the frequency dependence of the
linewidth for magnon–magnon scattering is by no means
linear. It saturates at very high frequency and starts with
a steep slope at low frequencies (Figure 10). The first
experimental evidence of a nonlinear �H(ω) was reported
for Fe/V nanostructure in Lindner et al. (2003) and for
Fe/GaAs films, (Woltersdorf and Heinrich, 2004). Recently,
the FMR linewidth of Fe/V multilayers has been measured
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Figure 10. FMR linewidths of two Fe/V-multilayer samples for
different in-plane and out-of-plane orientations of the external
field as a function of the microwave frequency. The inset is a
magnification of the low frequency regime. For details see Lenz
et al. (2006).

and analyzed over a very large frequency range from 1 to
225 GHz as shown in Figure 10 (Lenz et al., 2006). Key
information can be obtained from Figure 10: (i) FMR mea-
surements at very low frequencies (1–4 GHz) unambiguously
show that the linewidth narrows dramatically, that is to
say �H is given by relaxation processes only. A practice
used in the literature for earlier experiments between 9 and
36 GHz to assume a linear frequency dependence (Celin-
ski and Heinrich, 1991), extrapolating from this, an apparent
residual linewidth (the tangent crossing the y axis) does not
always seem to be justified. (ii) For all in-plane orientations
of the external field ([001] and [110]), one observes a nonlin-
ear frequency dependence. In contrast, for �H normal to the
film plane ([001], full triangles), a 100% linear frequency
dependence is observed. This is in perfect agreement with
the theoretical prediction in (Arias and Mills, 1999, 2000).
The authors of (Lenz et al., 2006) deduce a constant (inde-
pendent of orientation) Gilbert damping of ∼0.7 × 108 s−1

for these multilayers. Fitting equation (14) to the curved
frequency dependence yields a magnon–magnon scattering
rate of γ ≈ 10–50 larger than the Gilbert damping. Thus,
experimental evidence is given that both relaxation mech-
anisms (longitudinal and transverse scattering) are active in
magnetic nanostructures. A combination of magnon–magnon
scattering, modeled by equations (13) and (14), and a viscous
Gilbert damping described by equations (11) and (12) seems
to give a better insight into the spin dynamics of ultrathin
films. For the particular investigated systems, Fe/V multilay-
ers and Fe films on GaAs, the magnon–magnon scattering
of 1/T2 ≈ 109 s−1 seems to be about 2 orders of magnitude
faster than the viscous Gilbert damping of 1/T1 ≈ 107 s−1.

4.2 Spin-pump effects in the FMR

Consider in Figure 11(a) that 3d magnetic moments of the
FM are excited by a microwave radiation hν and undergo
a Larmor precession in an external field, equations (1) and
(2). It is standard textbook reasoning that the local 3d

moments are coupled to the sea of conduction electrons
via the classical s –d exchange interaction. In turn, the
conduction band of the FM is hybridized with the conduction
band of the NM. This classical s –d exchange between
spin waves and s electrons has been used by Janossy
and coworkers (Silsbee et al., 1979; Monod and Janossy,
1977) to activate and enhance the Larmor precession in
the NM conduction band, the so-called conduction electron
spin resonance (CESR). Angular momentum is transferred
to the conduction band and then transported into the NM.
These authors used highest-purity Au as NM and were
able to detect the spin current of the Au conduction band
through micrometer thick Au. This has been monitored
at the right-hand end of Figure 11(a) either as emitted
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Figure 11. Schematic illustration of the spin-pump effect of (a) a single interface and (b) a trilayer consisting of two different ferromagnetic
films and a nonmagnetic spacer. (c) Oscillatory behavior of the linewidth as a function of the Cu spacer. The data are taken from Lenz
et al. (2004) for a Ni8/Cux /Ni9 trilayer.

microwave radiation or by exciting another magnetic system.
This is the basic mechanism called spin pumping in our
days. Thus, angular momentum and energy are lost from
the ferromagnetic film and transported to the NM (metal,
semiconductor). In the frame of Figure 9(a), this can be
seen as a dissipation of energy like path 1 in Figure 9(a).
Recently, such a mechanism became of particular interest
for magnetic nanostructures consisting of two ferromagnetic
films separated by an NM spacer, see Figure 11(b). Such a
scenario has been investigated theoretically in Tserkovnyak
et al. (2002) and by others. Experimental evidence was
given in Heinrich et al. (2003) for Fe/40 ML Au/Fe (see
also Magnetic Ultrathin Films, Volume 4). The thickness
of the spacer will be of particular interest. For a larger
thickness, like 40 ML Au, there is no IEC between FM1 and
FM2 – see Section 3.3. Only ballistic transport is possible
for the spin current depending on the perfection of the spacer
and its interfaces. For ultrathin spacer films of only a few
monolayers, one expects also some IEC (see Section 3.3)
influencing the FMR linewidth. Constructive or destructive
interference phenomena and quantum well effects should be
detectable in the spin current Ipump. In Section 3.3 we have
seen that a trilayer consisting of two different ferromagnets
(Ni and Co or two Ni films with different thickness) has two
different (acoustic and optic) FMR modes. In Lenz et al.
(2004) and Heinrich et al. (2003) first evidence is given
that indeed the FMR linewidths influence each other when
both resonance conditions coincide. Figure 11(c) shows the
difference between the optic and acoustic linewidth �H opt −
�H ac for Ni8/Cux /Ni9 with an ultrathin spacer thickness of
dCu = 2–8 ML. On the left-hand side, the relative change in
the linewidth normalized to the linewidth for a single film
is plotted on a logarithmic scale, whereas on the right-hand
side the energy scale for Jinter (dashed line) is shown. The
broadening of the optical linewidth is the largest (more than
a factor of 2) for the thinnest Cu spacer and the largest Jinter.
A clear oscillatory behavior for both linewidth and Jinter is
observed as a function of dCu.

5 SUMMARY, OUTLOOK

As discussed by several examples, microwave spectroscopy
is a very useful technique to investigate ultrathin ferro-
magnetic films. It covers the ferromagnetic as well as the
paramagnetic regime. It is sensitive to ferromagnetic as well
as antiferromagnetic IEC in superstructures. The static res-
onance conditions, its angular and temperature dependence
as well as the linewidth, yield reliable information on the
static and dynamic parameters of ultrathin film magnetism.
If the standard FMR technique is combined with state-of-
the-art surface science and UHV technique, the combined
UHV-FMR spectroscopy opens a new challenging research
field to study the growth and crystallographic modifications,
the electronic band structure, and the direct observation of
the magnetism in one experiment. Such a complete set of
experimental observables is the best input for a better theoret-
ical description of the magnetism of magnetic nanostructures.
Standard FMR technique might have one drawback: the spec-
troscopy has no spatial resolution. The wavelength of the
microwave ranges from submillimeters to a few centimeters
and the absorbed energy out of the microwave radiation is
the macroscopic response of the whole specimen. A recent
development to overcome this problem is to combine an
STM or AFM tip with FMR. Several groups have devel-
oped this technique. A lateral resolution in the range of
10–100 nm was reached (Meckenstock et al., 2003; Mecken-
stock et al., 2004). Another interesting new development is
the combination of synchrotron radiation and FMR. XMCD
has the advantage of being element specific. XMCD also
has access to orbital and spin magnetic moments. If this can
be used to probe the change in the magnetization induced
by the precession of magnetic moments, this X-ray-detected
magnetic resonance (XDMR) is the analogue of the well-
known optical-detected magnetic resonance (ODMR). First
experimental results at the K-edge of Fe in a YIG crystal
have been reported recently (Goulon et al., 2005). Also, the
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combination of an electronic network analyzer with FMR
spectroscopy offers the possibility of studying the dynamics
of magnetic nanostructures in the frequency as well as in the
time (pulsed) domain (Counil et al., 2004).

Finally we point out recent advances in the theory of the
FMR in ultrathin films: The vast majority uses a classical
continuum model to interpret experimental spectra, where
the classical LLG equation of motion for the magnetization
or an expansion of the free energy is considered. Recently a
microscopic Heisenberg Hamiltonian was used to directly
calculate for FMR the spin-wave resonance modes and
external resonance fields as a function of the field direction
and as a function of temperature (Schwieger et al., 2005).
Future work will provide better microscopic insight into the
FMR of ultrathin films.

NOTES

[1] The FMR community uses a positive γ value, whereas in
EPR the negative sign of the charge is taken into account.

[2] Note that many other experimental techniques like
MOKE, spin-polarized PE, and so on, measure the mag-
netization in arbitrary units, only. MAE and IEC, for
example, measured by FMR are given in absolute energy
units per particle. These numbers are of interest for com-
parison with theory.

[3] This equation is strictly valid only for g-values close to
two.

[4] Note that this linear frequency dependence is a conse-
quence of the field-scanning technique in conventional
FMR. For other experimental techniques at fixed mag-
netic field and scanning the microwave frequency or
for Brillouin light scattering the analysis of the mea-
sured linewidth is different, see (Mills and Rezende,
2003). Caution has to be taken when comparing different
experiments.
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APPENDICES

A UNITS

The history of ferromagnetism and magnetic anisotropy went
different routes and was uncoupled from other areas of
solid-state magnetism, unfortunately. As a consequence, the
classification of magnetic anisotropy contributions used an
expansion different from Legendre polynomial expansion
in crystal-field theory. Moreover, as a consequence vari-
ous units are used in the historical part of magnetoelasticity,
namely, erg cm−3 and erg cm−2, that is to say energy per vol-
ume and area, respectively. Other parts of solid-state physics
and, in particular, the theory prefers eV/atom, that is to
say energy per particle (see also Theory of Magnetocrys-
talline Anisotropy and Magnetoelasticity in Transition-
metal Systems, Volume 1). This newer notation started to
be used in surface and thin-film magnetism and we strongly
advocate it, since it facilitates communication with theory
and gives an easier insight. For example, in thin-film mag-
netism Fe, Co, and Ni ions contribute equally strongly to the
anisotropy energy, be it a surface atom or an atom in the
inner part of a nanostructure, namely, 10–100 µeV/atom. In
the older version it would read 1.5–15 × 106 ergcm−3 for Kv

and 0.03–0.3 × 106 ergcm−2 for Ks, which is not so easy to
compare. A transformation of the older into the newer nota-
tion is simply given by the atomic volume of the individual
elements, for example, for fcc Ni, 106 ergcm−3 corresponds
to 6.83 µeV/atom or 7.38 µeV/atom for bcc Fe, respectively.

B NOTATION OF THE MAGNETIC
ANISOTROPY ENERGY

The magnetic part of the free-energy density and its
anisotropy in ultrathin ferromagnetic films has only two
origins: (i) the dipole–dipole interaction, which depends on
M and the shape of the specimen, (ii) all other contributions

(crystalline MAE, magnetoelastic MAE, etc.) are caused by
spin-orbit interaction or even better by a full relativistic treat-
ment of the free-energy density. We recall that the exchange
interaction �s1 · �s2, the Heisenberg Hamiltonian, is completely
isotropic, its energy levels do not depend on the direc-
tion in space in which the crystal is magnetized (Aharoni,
2000). The so-called anisotropic exchange is nothing but the
anisotropy of the orbital magnetism projected to an effective
spin space.

1. The dipole contribution: Mostly, a homogeneous dipole
density is assumed with a dipolar field of 4πM and
an energy density of 2πM2. For ultrathin films of
a few monolayers only, this may not be completely
appropriate. The dipolar field of a discrete lattice sum
has been discussed elsewhere (Farle, 1998; Heinrich
et al., 1987). The discrete sum of point dipoles delivers
somewhat smaller values for the dipolar contribution
but this may even be an underestimation because it is
currently clear that for 3d or 4f ferromagnets a finite
distribution of the magnetic moment density has been
measured by means of neutron scattering. In conclusion,
if the continuous dipole density ansatz is inadequate for
magnetic monolayers or nanometer dots, the real value
will be somewhat smaller but not as small as calculated
from a lattice grid with point dipoles.

2. Spin-orbit effects: The experimentalist measures the total
(or effective) magnetic anisotropy field or energy. Sub-
tracting from this measured value a separately deter-
mined or calculated dipolar contribution, the remaining
part is given by the spin-orbit-caused contribution and
is commonly labeled with Ki . We do not advice to ana-
lyze the sum of the two contributions with Keff because
the temperature dependence of the dipolar contribution
and the spin-orbit-caused anisotropy may be completely
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different. The latter contribution, which is also called
�Eband in the ab initio theory, is calculated from the
band structure. It has anisotropic contributions in vari-
ous spacial directions of the ferromagnet. To facilitate
a comparison between different experimental results or
comparison to theoretical ab initio calculations we list
below different notations. Owing to the pseudomorphic
growth of ultrathin Fe, Co, Ni, and Gd films on cubic
substrate crystals, one hardly has cubic symmetry in the
ultrathin film but rather structures of tetragonal or lower
symmetry.

Etetr = −K2α
2
z − 1

2
K4⊥α4

z

−1

2
K4‖

(
α4

x + α4
y

) + . . . (A1a)

= −K2 cos2 θ − 1

2
K4⊥ cos4 θ

−1

2
K4‖

1

4
(3 + cos 4ϕ) sin4 θ + . . . (A1b)

= −K ′
2 sin2 θ − K4⊥ sin4 θ

+K4‖ cos 4ϕ sin4 θ + . . . (A1c)

Ehex = K2 sin2 θ + 1

2
K2‖ cos 2ϕ sin2 θ + K4 sin4 θ

+K6⊥ sin6 θ + K6‖ cos 6ϕ sin6 θ + . . . (A2)

In the preceding equations, the free-energy density is
expanded in terms of trigonometric functions. Equation (A1a)
used by Heinrich (1994) is identical to equation (A1b),
which is given as a function of polar and azimuthal angles
up to fourth order. Quite often this energy is expanded

in a sine function with the same polar angle θ , given in
equation (A1c). It is obviously clear that the prefactor K ′

2 of
equation (A1c) is not identical to the one in equations (A1a)
and (A1b) (K ′

2 = K2 + K4⊥). Also, the fourth-order con-
tributions differ. Moreover, quite often the MAE is mea-
sured only in two directions: the easy and hard axes. The
total energy difference is projected onto the second-order
cos2 θ term – often labeled with Ku for uniaxial MAE. For
a proper determination of the various energy contributions,
a full angular-dependent measurement is required including
the field-dragging effect if the external field H0 is not aligned
parallel to the easy or hard axes. It is well established for
ultrathin films that the fourth-order term K4⊥ is by no means
small. Quite often it is in the same order of magnitude as K2.
Less popular but maybe more instructive is the expansion of
the free energy into spherical harmonics (Vonsovskii, 1974;
Coqblin, 1977; Farle, 1998). Clearly, the terms with power
cosn are grouped differently, resulting in different prefactors
and their temperature dependence. For bulk ferromagnets
the trigonometric expansion has been used mostly and the
K2, K4, and K6 contributions as a function of temperature
are listed in the literature (Stearns, 1986). This temperature
dependence with the oscillatory ± values and zero crossings
of the K(T ) parameters will change completely and look
different if one expands the measured energy in terms of
Legendre polynomials (Farle, 1998).

For ultrathin films of 5–10 atomic layers measured by
FMR, for example, each of these Ki parameters can be
decomposed into contributions of volume Kv

i and sur-
face/interface Ks

i (Farle, 1998; Baberschke, 2001) following
the reasoning by Néel.

Ki = Kv
i + 2Ks

i /d (A3)
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1 INTRODUCTION

Driven by the requirements for new information storage
technologies and the potential of ‘spintronics’ the last two
decades have seen a rapid increase in research devoted to
studies of low dimensional magnetic systems. New tech-
nologies such as molecular-beam epitaxy (MBE), previously
developed in the semiconductor industry, are now being
applied to the development of new magnetic materials with
unique properties. The understanding of the properties of
these two-dimensional (2D) systems has provided a num-
ber of exciting challenges for the scientific community, both
experimental and theoretical.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

On the experimental side, a whole range of electron spec-
troscopies previously developed for the study of metallic
surfaces have been ‘spin-sensitized’ through the addition of
spin polarimeters. Electron-based techniques are particularly
suited to the study of surfaces and thin films because the
strong Coulomb interaction between electrons results in a
relatively short mean-free path and associated probing depth.
In this chapter, we examine in detail the recent develop-
ments of one such technique, spin-polarized photoemission.
Photoemission itself has already seen widespread applica-
tion to the study of the electronic structure of a range of
different materials (Kevan, 1992; Hüfner, 2003). The spin-
polarized counterpart has a history spanning a period of time
that is almost as long as the ‘modern’ era of photoemis-
sion. However, it has taken several years for the complete
angle-resolved, spin-resolved photoemission experiment to
be developed to the point where it provides spectra with
a signal-to-noise ratio comparable to that of its non-spin-
resolved counterpart. Here it should be noted that in a further
contribution to the handbook by Dürr and Schneider (See also
Ultrafast Magnetodynamics with Lateral Resolution: A
View by Photoemission Microscopy, Volume 3) the time-
resolved photoemission microscopy and its application to
ultrafast magnetodynamics is treated in some detail.

Several reviews of spin-polarized photoelectron spec-
troscopy (SPPES) have already appeared in the literature
(Feder, 1985; Kisker, 1987; Johnson, 1997). The present
review represents an attempt to provide a perspective on the
rapid developments in the last 10 years. We first examine
the physics of the photoemission process itself with particu-
lar reference to the excitation of spin-polarized electrons. The
experimental aspects including the different spin polarimeters
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that are currently available and the unique requirements of a
polarimetry measurement are discussed. We then examine a
whole range of recent experiments. We discuss recent studies
of magnetic surface states observed on nonmagnetic materi-
als, spin-polarized quantum-well states that develop in non-
magnetic thin films deposited on ferromagnetic substrates,
the measurement of spin-dependent self-energy effects and
finally studies of a range of magnetic oxides including both
ferromagnetic and antiferromagnetic materials and ferromag-
net/oxide interfaces. The properties of the quantum-well
states observed in thin films are particularly relevant to
the discussion of the giant magnetoresistance (GMR) prop-
erty observed in magnetic multilayers and studies of the
oxides are relevant to the development of new capabilities in
spintronics.

2 THE PHOTOEMISSION PROCESS

In studies of condensed matter systems, photoemission
represents the excitation of an electron from an initial state
below the Fermi level to a final state above the vacuum
level. As illustrated in Figure 1, the initial state may fall
within the delocalized valence bands or it may represent
a more localized core level. In the absence of spin–orbit
coupling, it can be shown for linearly polarized incident
light that the nonrelativistic Schrödinger equation, with the
momentum operator p replaced by p –(e/c)A, represents an
adequate description of the spin-conserving transitions. Here
A = A0e

iωt is the vector potential of the electromagnetic

EVAC

EKIN

E
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Valence
band

Core level

h w

h wf

(a) (b)

Figure 1. A schematic of the photoemission process. The incident
photon with energy �ω excites an electron from an initial state
below the Fermi level EF to some final state above the vacuum
level Evac. The left panel shows the electron originating either from
the valence band or the more localized core level. The right panel
displays the excited electron-energy distribution in the final state.

field. From Fermi’s Golden rule, the differential cross section
dσ/d� for excitation from some initial state

∣∣ψ i

〉
to some

final state
∣∣ψ f

〉
is given by

dσ

d�
(Ef, �ω, kf, A) ∝

√
Ef

∑
i

∣∣〈ψ f

∣∣ (A · p + p · A)
∣∣ψ i

〉∣∣2

× δ (Ei − Ef − �ω) (1)

where the δ function describes the energy conservation of
the process. Measuring the kinetic energy of the electron in
the final state Ef and knowing the incident photon energy,
�ω, the experimentalist can trace back to the binding energy
of the electron in the initial state Ei.

Neglecting the diamagnetic term |A|2 which is always
small and noting that ∇.A is nonzero only in the surface
region, equation (1) is usually reduced to the simpler form

dσ

d�
∝

√
Ef

∑
i

∣∣〈ψ f

∣∣ (A · p)
∣∣ψ i

〉∣∣2
δ (Ei − Ef − �ω) (2)

The matrix element introduces selection rules, which can
be exploited to determine the symmetry of the initial state.
In the nonrelativistic limit, excitation by linearly polarized
light between one electron states of the form |n, l, m1〉 is
restricted to transitions such that �l = ±1 and �ml = 0.
In the event that the incident light is circularly polarized,
the second selection rule becomes �ml = ±1 dependent on
the handedness of the polarization. In the fully relativistic
treatment with spin-orbit coupling included, the selection
rules become �j = 0, ±1 and �mj = ±1 with j and mj

now referring to the total angular momentum.
A more complete description of the photoemission process

will allow for the many-body response of the system to the
excitation. Here the δ function of equation (2) is replaced by
the single particle spectral function of the hole state A(k , ω)
such that

A(k, ω) = 1

π

�2(k, ω)

[ω − εk − �1(k, ω)]2 + [�2(k, ω)]2 (3)

where the real component of the self energy, �1 (k, ω), gives
a shift in energy and associated mass enhancement and the
imaginary component of the self energy, �2 (k, ω), gives the
lifetime broadening. Note that ω in equation (3) represents
the initial-state energy Ei and εk represents the bare-band
dispersion in the absence of any many-body interactions. In
ferromagnetic systems, because of the spin polarization of the
electronic structure, we may anticipate a spin dependence in
the response of the system.

Extending the technique and measuring the photoemitted
current at some emission angle θ , it becomes possible to map
the dispersion of the different initial-state bands. As illustrated
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Figure 2. A schematic of the direct k-conserving transition in the
photoemission process. The incident photon excites an electron from
an initial state Ei below the Fermi level EF to some final state Ef

above the vacuum level EV. Spin conservation is maintained in the
transition.

in Figure 2, at a well-defined k||, the process represents a direct
transition between two bands of the same spin. In the solid-
state environment, momentum conservation is maintained
through the mediation of the crystal momentum giving

kf = ki + G (4)

where ki and kf are the wave vectors associated with the
initial and final states and G represents a suitable lattice
vector. If Ekin represents the kinetic energy in the final
state then to within a reciprocal lattice vector the parallel
momentum k|| of the photoelectron given by

k|| =
(

2m

�2

)1/2

E
1/2
kin sin θ (5)

and is conserved on crossing from the solid into the vacuum.
Thus a measurement of this component in the vacuum
supplies a good measure of the parallel component of the
momentum in the solid. The perpendicular component is
ill defined due to the breaking of translational symmetry
perpendicular to the surface plane.

3 THE EXPERIMENTAL
METHODOLOGY

As in any electron spectroscopy, spin-polarized photoemis-
sion requires the use of an electron spectrometer. These
instruments can take many different forms although, as illus-
trated in Figure 3, the hemispherical analyzer represents the
most commonly used instrument in SPPES at the present
time. A more complete discussion of the properties of such
an analyzer can be found elsewhere (e.g., Roy and Carette,
1977). Here, we note that in such an instrument the kinetic
energy of the electron is measured by retarding electrostatic
fields applied between the two hemispheres and the momen-
tum is selected by defining a small angle of collection. As
also illustrated in Figure 3, some form of electrostatic lens is
required to couple this analyzer to whichever spin polarime-
ter is selected for the experiment.

An overview of the practicalities of coupling spin
polarimeters to electron spectrometers has been given by
Pierce, Celotta, Kelley and Unguris (1988). In particular,
these authors emphasize the requirement for optimizing the
experiment by matching the phase space or acceptances of
the source, the electron spectrometer and finally of the spin
polarimeter itself. At any point on the pathway of the electron
beam the Helmholz–Lagrange law states that there will be a
conservation of the product EA�, where E is the energy, �

the solid angle and A the cross-sectional area. In the optimum
configuration this product will be matched to the acceptance
phase space of the polarimeter. Pierce, Celotta, Kelley and
Unguris (1988) have tabulated the latter for a number of
different spin polarimeters.

3.1 Measuring the spin polarization

The two principal means of measuring spin polarization
involve either the use of spin-dependent scattering via the
spin-orbit interaction with a heavy atom or the use of
an exchange interaction with a ferromagnetic material. We
briefly examine these two different approaches. Much of the
pioneering work in spin-polarized photoemission was carried
out with spin polarimeters of the high-energy Mott-scattering
type (Kisker, Clauberg and Gudat, 1982). Here the electrons
to be analyzed are scattered off gold atoms at energies typi-
cally of the order of 100 keV. Spin-orbit coupling of the elec-
tron in the potential of the gold atom leads to an asymmetry
in the scattering, left and right, dependent on the spin of the
electron. Because of the high energies involved in the earlier
designs, Mott polarimeters tended to be large. However, there
have recently been a number of successful modifications that
have allowed the polarimeter to be scaled down in size.
Figure 4 shows the configuration used in one such device
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Energy analyzer

Mott spin detector

Figure 3. Overview of a spin-resolved spectrometer system. A
Mott spin polarimeter is coupled to a hemispherical electron-energy
analyzer via an input lens. An electron multiplier array assembly
located in the exit plane of the energy analyzer is used for non-
spin-resolved multichannel detection.

as described by Huang et al. (2002a). After initially passing
through a deceleration lens, the incident beam of electrons is
accelerated onto the gold foil at an energy of 20 keV. As in
the earlier designs (Kisker, Clauberg and Gudat, 1982), those
electrons elastically scattered through 120◦ are detected by
two symmetrically opposite channeltrons. Retarding fields in
front of the latter collectors remove any electrons that have
undergone inelastic losses. The spin polarization P of the
incident electron beam is given by

P = 1

S

IA − IB

IA + IB
(6)

where S, the Sherman function of the device, is a measure
of its ability to distinguish different spins and IA and IB

represent the intensities measured in opposite channels. Mott
polarimeters of this type are now sufficiently small that
they can in principle be readily moved inside a vacuum
system and, therefore, be used for angle-resolved polarization
measurements. The figure of merit (FOM) used in comparing
different polarimeters is defined as

FOM = S2 I

I0
(7)

where again S is the Sherman function, I is the sum of
the current collected by the two opposite detectors and I0

is the incident beam current (Kessler, 1985). The FOM
for the traditional Mott polarimeter is typically 10−4; that
of the compact low-energy Mott device was initially of
the order of 2 × 10−5 (Tang, Zhang, Dunning and Walters,

Input lens

Electron
multiplier Scattering

target

HV insulating ceramic

Figure 4. Cross-sectional view of the Mott spin polarimeter with
enlarged conic-type collection angle. Only one pair of electron
multipliers is shown; the other pair is located in the perpendicular
plane.

1988). However, through the use of large area electron
detectors and careful optimization of the electron optics, the
FOM of the compact devices has gradually been improved.
Burnett, Monroe and Dunning (1994) reported an FOM
of approximately 1.6 × 10−4. More recently (Huang et al.,
2002a) have refined the electron optics further to achieve an
FOM of ∼2 × 10−4. The advantage of the Mott polarimeters,
both large and small, is that they are relatively easy to operate
in a reproducible fashion.

Originally designed for use in secondary electron micro-
scopy with polarization analysis (SEMPA) studies (Unguris,
Pierce and Celotta, 1986; Scheinfein et al., 1989), low-
energy diffuse scattering from polycrystalline gold films
has also proved an excellent device for energy- and
angle-resolved spin-polarized photoemission studies (John-
son et al., 1992). Rather than the high energies, character-
istic of the Mott devices, the electrons to be spin analyzed
are now scattered from a polycrystalline gold surface at the
much lower energy of 150 eV, an energy at which the Sher-
man function of gold exhibits a local maximum. The back-
scattered electrons pass through retarding grids to remove
low-energy secondary electrons, and are then collected by
four discrete anodes allowing a measurement of two compo-
nents of the polarization to be made in parallel. This type of
detector has an FOM of the order of 1.0 × 10−4 (Unguris,
Pierce and Celotta, 1986), that is, comparable to the tradi-
tional Mott detector.
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If the scattering surface is a single crystal rather than
polycrystalline it is possible to use spin-dependent diffraction
to measure the polarization. The spin asymmetry in the
scattering again reflects the spin-orbit interaction. Detectors
of this type include a low-energy detector, which relies on
spin-orbit effects in the diffraction of the electrons from a
single-crystal tungsten (001) surface (Kirschner and Feder,
1979). The intensities of the symmetrically opposite (2;0)
and (2;0) diffracted beams are measured with the electrons
incident at an energy of 100 eV. The authors report an FOM
for this detector of 1.6 × 10−4.

Spin polarimeters based on an exchange interaction fall
into two categories, those employing reflection and those
employing transmission. In practice, only the reflection
technique has been used in working spin polarimeters to
date. A detector based on low-energy reflection from a
ferromagnetic film has been described by Tillman, Thiel
and Kisker (1989). Here the scattering surface is a 400-Å-
thick Fe(001) film grown on an Ag(001) substrate. Reflected
intensities are measured when the electrons to be analyzed
are incident on a magnetized iron surface at an energy of
approximately 10.0 eV. The asymmetry in the scattering, A,
in such a detector is given by

A = 1

P

I↑↑ − I↑↓

I↑↑ + I↑↓ (8)

where P is the spin polarization in the incident beam and
I↑↑ and I↑↓ are the scattered intensities obtained when the
target and primary beam magnetic moments are parallel and
antiparallel, respectively. The FOM of such a device is then
given by

FOM = A2 IR

IP
(9)

where IR and IP are the reflected and primary beam currents,
respectively. One difficulty with an instrument of this type is
that with the reflecting or analyzing surface being effectively
another ‘sample’, two samples have to be successfully
prepared and magnetized. However, at 10.6 eV analyzing
energy, the authors report a value of 0.21 for A and an FOM
of 3.5 × 10−3.

More recently the spin-dependent reflectivity of electrons
from Fe single-crystal films, 2–8 monolayers (ML) thick,
grown on a W(110) substrate has been studied by Zdyb and
Bauer (2002). These authors analyzed their data in terms of
the quantum-well structure associated with the thin films, that
we discuss in detail later. The authors went on to point out the
importance of considerations of the quantum-well structure in
the design of future spin polarimeters. In a later study, Graf
et al. (2005) extended these ideas to studies of both Fe and Co
thin films grown on W(110). Again by measuring the spin-
dependent reflectivities as a function of film thickness the
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Figure 5. Total scattering cross section σ = 1/λ in nm−1 against
the number of unoccupied d orbitals for the transition metals
indicated. The data are obtained by analyzing the electron spin
polarization in overlayer films and are valid for electron energies
within 5 eV of the vacuum level.

authors determined that a five ML thick film of Co/W(110)
represented the optimum configuration for a spin polarimeter.
They further indicated that the FOM of such a device would
be of the order of 0.02, some two orders of magnitude higher
than that achieved in the miniature Mott detectors.

Turning to transmission, Schönhense and Siegmann (1993)
have suggested the possibility of using the spin-dependent
transmission through ferromagnetic thin films as a means
of detecting spin polarization. It is evident that such a spin
dependence in transmission exists in that the low-energy
secondary electron cascade in all electron spectroscopies is
known to display an enhanced spin polarization. The latter
polarization, which is typically larger than would be expected
simply on the basis of the bulk valence band polarization,
reflects the spin-dependent mean-free paths of the transmitted
electrons. Schönhense and Siegmann examined a number of
experiments in detail. As shown in Figure 5 they find that the
total scattering cross section σ(E) = 1/λ is well described
by the expression

σ = σ 0 + σ d(5 − n) (10)

where σ d accounts for scattering into the d holes and σ 0 is a
constant accounting for other inelastic scattering events. They
define a transport polarization α such that an electron beam
with small initial polarization P0 will acquire a polarization
after traveling a distance x such that

P (x) = P0 + α(x) (11)
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The transport polarization α is given by

α =
[
exp

(
σ− − σ+)

x − 1
]

[
exp (σ− − σ+) x + 1

] (12)

with σ (±) representing the spin-dependent cross sections. In
their picture, the spin polarization is, therefore, dominated
by the inelastic scattering involving unoccupied states above
the Fermi level.

Schönhense and Siegmann note that a spin polarimeter
based on the use of spin-dependent transmission will have
an FOM given by α2I where I = e−σx represents the total
spin-integrated transmission through the film and σ is the
spin-averaged total cross section. On the basis of their
experimental observations, they show that the FOM for
an iron film will peak at approximately 7 × 10−2 for film
thicknesses of approximately 1.0 nm. For Co they predict
an FOM of 6 × 10−2 for a film thickness of approximately
1.5 nm. These ideas have been given some support in studies
of the spin-dependent transmission through a free-standing
Co film (Lassailly et al., 1994; Van der Sluijs et al., 1994).
The authors of the latter study found that at low energies,
close to the surface vacuum level, the transmission coefficient
for the minority-spin electrons was 0.7 of that found for the
majority-spin electrons. The total transmitted current was of
the order of 10−5 of the primary beam. By cesiating both
sides of the film, this transmission ratio was increased to
3 × 10−4 and a Sherman function of S = 0.4 was measured
(Van der Sluijs et al., 1994).

3.2 Using the spin polarimeter

Before closing our discussion of the experimental details,
we offer a brief introduction to the practicalities of a spin-
polarization measurement. A more detailed discussion can be
found elsewhere (Kessler, 1985).

In order to measure a spin polarization, it is necessary to
define a quantization direction for the spin of the electrons.
In studies of ferromagnetic or ferrimagnetic systems, this is
achieved by ensuring the sample is magnetically saturated.
As an example, ferromagnetic thin films can be magnetized
by discharging a current pulse through a small coil in
close proximity to the film. As we discuss later, it is
also possible to perform spin-polarization measurements
on antiferromagnetic or even nonmagnetic systems when
spin-orbit effects are present. In this case, the quantization
direction is defined by the polarization vector of the incident
light with the latter being circularly polarized.

To avoid any error being introduced into the measurement
by apparatus asymmetries, it is necessary, in the case of
ferromagnetic systems, to make two measurements of the

spin polarization, one with the sample magnetized ‘up’(
I+

L , I+
R

)
and one with the sample magnetized ‘down’(

I−
L , I−

R

)
. Here IL and IR represent the number of electrons

scattered from the target into the left and right channels,
respectively. Assuming that the incident beam does not move
between the ‘+’ and ‘−’ measurements, any instrumental
asymmetry derived from a misalignment of the beam incident
on the scattering target can then be removed by combining
the four measurements such that the true spin polarization P

is given by

P = 1

S

√
I+

L I−
R −

√
I−

L I+
R√

I+
L I−

R +
√

I−
L I+

R

(13)

where as before S represents the Sherman function of
the instrument. The measured intensities combined in this
manner remove, to first order, any instrumental asymmetry.
The two measurements, ‘+’ and ‘−’, may have different
count rates without affecting the measured polarization.
Assuming that there is not an asymmetry that changes with
the two magnetization directions, the instrumental asymmetry
A is given by

A =
√

I+
L I−

L√
I+

R I−
R

(14)

The individual spin-up and spin-down spectra are obtained
from the polarization P by

I↑ = 〈I 〉 (1 + P) I↓ = 〈I 〉 (1 − P ) (15)

where

〈I 〉 = I+
L + I−

L + I+
R + I−

R

4
(16)

In studies employing incident circularly polarized light
equations (13) and (16) still apply but (+, −) represent the
direction of polarization of the incident light.

4 SOME RECENT APPLICATIONS OF
SPPES

In the following, we highlight some recent applications
of spin-polarized photoemission to problems in condensed
matter physics. In particular, we highlight some of the
latest developments in the study of spin-polarized surface
states and quantum-well states, we examine the application
of high-resolution SPPES to the study of spin-dependent
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surface state at the center of the zone on a Au(111) surface. The
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 1996.)

self-energizing effects and finally we review some recent
studies of magnetic oxide systems and ferromagnetic/oxide
interfaces. The latter oxide systems present a range of exotic
phenomena and are currently the subject of intense research
activity with respect to spin functionality in spintronics.
Primarily, we will restrict our discussion to studies of
materials that display magnetic properties. However, we
will also review the application of SPPES to the study
of the properties of the cuprates, the basis of the high Tc

superconductors.

4.1 Spin-polarized surface states

Discussed in detail elsewhere (Johnson, 1997), there have
previously been a number of studies of spin-polarized sur-
face states. In general, the spin polarization of the states
investigated in those studies reflected the reduced dimen-
sionality present at the surface or solid/vacuum interface of
ferromagnetic materials. Examples include states localized
on the Fe(001) (Brookes, Clarke, Johnson and Weinert, 1990)
and Fe(110) surfaces (Vescovo et al., 1993).

It has recently been shown that electronic states at the
surface of certain nonmagnetic materials can also display a
measurable spin polarization. In this case, the spin polariza-
tion reflects a spin-orbit interaction. Shown in Figure 6, a

state showing this property was first identified on the sur-
face of Au(111). (LaShell, McDougall and Jensen, 1996). In
a high-resolution photoemission study, these authors found
that an s–p derived Shockley state displaying parabolic dis-
persion actually split into two bands as the state moved away
from the center of the zone. The authors concluded that
the splitting reflected the spin-orbit term in the Hamiltonian
given by

HSO = �

4m2c2
σ · (∇V xp) (17)

where σ is the Pauli spin operator and, ∇V is the local
potential gradient and p is the electron momentum. The lack
of inversion symmetry at the surface allows this spin-orbit
interaction to lift the degeneracy between the two spin states.
Similar results and hence confirmation were found in a later
study of Au(111) but not Ag(111) (Nicolay, Reinert, Hufner
and Blaha, 2001).

Examination of equation (17) shows that the energy of
an electron depends on its spin direction and its momentum.
With a given momentum the effect reverses for different spin
directions and for a given spin the effect reverses either side
of the zone center. Such effects were confirmed in spin-
resolved studies of a surface state on the W(110) surface
(Hochstrasser, Tobin, Rotenberg and Kevan, 2002) and for
the Au(111) surface state (Hoesch et al., 2004). The results
of the latter study are shown in Figure 7 where the sign
convention (spin up vs spin down) is defined in a spin
coordinate axis that is the counterclockwise tangent to the
Fermi surface contour. The effect has also been reported
in a study of the magnetic Gadolinium (0001) surface state
that we discuss in detail later (Krupin et al., 2005). In their
study, Krupin et al. reported the observation of the ‘Rashba
effect’ and reported that it was enhanced upon oxidation of
the surface.

As Hoesch et al. note, such an effect will be unobservable
in the bulk of a material such as gold due to the combined
restrictions of the time reversal-symmetry E↑(k) = E↓(−k)

and the inversion symmetry E↑ (k) = E↑ (−k) leading to the
Kramers degeneracy E↑ (k) = E↓ (k).

4.2 Thin films and magnetic multilayers

Magnetic multilayers and related thin films have been an
important area of study in magnetism. This interest reflects
the many potential technological applications of the GMR
property observed in the multilayers. Indeed, this effect first
discovered in 1987 by Fert and Grünberg, has already seen
widespread use in a number of commercial applications.

GMR is observed in metallic multilayers consisting of
ferromagnetic layers separated by nonmagnetic spacer layers.
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Depending on the thickness of the spacer layer, the adjacent
ferromagnetic layers are aligned either ferromagnetically or
antiferromagnetically. In the latter configuration, a magnetic
field may be applied to realign the magnetic layers and
thereby modify the spin-dependent transport or resistance
through the system. It is this ability to substantially modify
the spin-dependent resistance in these ‘GMR’ materials that
makes them so important.

In order to understand this phenomenon we must first
understand the factors that determine the different alignments
of the adjacent magnetic layers. In fact, the spacer layer
thickness that results in the antiferromagnetic alignment can
correspond to several atomic layers. Insight into this property
comes from the recognition that the system can be treated
as a series of one-dimensional quantum wells. Within these
wells the electronic structure will be quantized with an energy
separation that reflects the width or thickness of the spacer
layer. Let us consider this quantization. In the vicinity of the
interface with the adjacent magnetic layer the wave function
of the electron state within the well takes the form

 = e−ikz + rce
iφeikz (18)

where rce
iφc represents the complex reflectivity at the

interface with the substrate and φc gives the phase change
of the wave function. A stationary or bound state exists
whenever the total phase change within the well is given
by the Bohr–Sommerfeld quantization condition

2φc + 2kma = 2πn (19)

Here, we are considering a well bound by two adjacent
magnetic layers and hence two identical interfaces. 2kma
represents the phase change accumulated on the round trip
across a well consisting of m atomic layers with interlayer
spacing a. Thus we see that as the number of layers
changes, the quantization condition changes and the energy
of the stationary state changes to accommodate additional
nodes within the wave function. Modifying equation (19)
accordingly we obtain

φc + (k + �k) (m + 1) a = π (n + 1) (20)

As we will see later, the spin-dependent scattering at the
interface results in quantum-well states showing a strong
spin polarization. As the thickness of the nonmagnetic layer
changes, the quantum-well states move to lower energy
and cross the Fermi level with a well-defined periodicity.
The total energy of the system is at a maximum when an
occupied quantum-well state is sitting right at the Fermi level.
Because the states are spin polarized the system can achieve
a lower total energy by having adjacent ferromagnetic layers
realign to an antiferromagnetic configuration. By doing so
the quantum-well state is allowed to ‘leak’ away through
one interface and the total energy is reduced.

The above represents a quantum well description of the
interlayer exchange coupling. In a more detailed analysis of
this picture, Smith, Brookes, Chang and Johnson (1994) con-
cluded that the appropriate quantum numbers for classifying
the quantum-well states were not n, the number of nodes,
or m, the number of layers, but rather ν = (m − n) as illus-
trated in Figure 8 for silver films deposited on an Fe(001)
substrate. In this classification scheme, the thickness against
energy relationship may be written

Dυ(E)

a
=

φc(E)

π
+ υ

1−k(E)
kBZ

(21)

where kBZ = π/a represents the zone boundary wave vector
and D = ma. A quantum-well state crosses the Fermi level
each time ν increments by one. It is clear from equation (21)
that the Fermi surface will therefore be sampled every �m

layers such that

�m =
(

1 − kF

kBZ

)−1

(22)



Spin-polarized photoelectron spectroscopy as a probe of magnetic systems 9

2
1

1 2

1
2 3 4

0

2 3 4 5 6 7 8 9 10 11 12n = 0

m = 0

v =

0 2 4 6 8 10 12

EU

EF

EL

Γt

X4′

Ag Layers
on Fe(001)

(minority spin)

Phase/2p

E
 −

 E
F
 (

eV
)

1

0

−1

−2

−3

−4

−5

3 4 5 6 7 8 9 151410 1112 13

Figure 8. Graphical solutions (full circles) for the energies of
quantum-well states of Ag overlayers on Fe(001) using the phase
accumulation model. Full bold waves represent the phase 2πn −
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where kF represents the Fermi wave vector. Recognizing
that 2(kBZ − kF) gives the associated bulk Fermi surface
spanning vectors, q, one immediately retrieves from equation
(22) a period length �ma given by 2π /q identical to that
obtained by Bruno and Chappert (1991) in an analytical
description of the thickness dependence of the oscillatory
interlayer exchange coupling in magnetic multilayers.

With a relatively short mean-free path for the escaping
electrons photoemission does not lend itself to direct studies
of the electronic structure of a multilayer. As such the spin-
polarized photoemission studies relevant to these materials
are studies that have focused on the properties of the
associated overlayers or thin films. Here we refer to, for
instance, silver films on Fe(001) substrates and copper films
on Co(001) substrates.

The first study that identified the role of spin-dependent
interfacial scattering was a study of the quantum-well states
that form in silver films deposited on an Fe(001) substrate
(Brookes, Chang and Johnson, 1991). In the study, the
authors identified an interface state or quantum-well state
characterizing a ML thick silver film. With increasing
thickness this state evolves into a series of states that move
up to and through the Fermi level as shown in Figure 9.
The movement to lower binding energy simply reflects the
fact that with each new layer the wave function describing
the quantum-well state has to gain an extra half wavelength
to accommodate the new atomic potential (Smith, Brookes,
Chang and Johnson, 1994). We can use the same quantization
condition given above for the multilayers but now the φc of
one interface is replaced by the φb describing the phase shift
of the wave function at the solid/vacuum interface. Thus the
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Figure 9. Spin-integrated photoemission spectra recorded from
silver films deposited on an Fe(001) substrate. The different film
thicknesses are indicated.

quantization condition of equation (19) now becomes

φc + 2kma + φb = 2πn (23)

The spin-polarized photoemission study of Brookes, Chang,
and Johnson (1991) revealed that the Ag quantum-well
states are highly spin polarized, preferentially with minority
spin. As discussed earlier, the observation of a strong spin
polarization can be explained in terms of the spin-dependent
reflectivities at the interface with the ferromagnetic substrate.
If one considers the spin-dependent band structure of iron
in the �H direction, Figure 10, one observes that in the
minority-spin band structure a s–d hybridization gap exists
in the vicinity of the Fermi level. At binding energies
corresponding to this gap, the propagating waves will be
reflected back into the silver layer. Thus, it is the gap
that defines the degree of confinement of the minority-spin
quantum-well state. In the majority-spin band structure, on
the other hand, the hybridization gap is displaced to higher
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binding energies and the majority-spin states in the silver
layer in the vicinity of the Fermi level will be less strongly
confined. The quantum-well states that survive in the silver
layer will, therefore, preferentially carry minority spin as
observed experimentally.

Subsequent inverse photoemission studies of the
Ag/Fe(001) system tracked the quantum-well states as they
continued to evolve above the Fermi level eventually con-
verging on the bulk X′

4 critical point (Ortega and Himpsel,
1992; Ortega, Himpsel, Mankey and Willis, 1993). These
studies clearly demonstrated in this and a number of other
systems that the Fermi surface was sampled by the quantum-
well states with a frequency identical to that observed for the
oscillatory exchange coupling in the associated multilayers.
This is illustrated in Figure 11 where the intensity observed
at the Fermi level in inverse photoemission studies of copper
films deposited on a Co(001) substrate is compared with the
oscillatory coupling observed in the associated Cu/Co(001)
multilayers.

An interesting question arises as to whether or not
majority-spin quantum-well states exist in the spin-polarized
photoemission spectra recorded from these films. Examina-
tion of Figure 10 shows that in the Fe majority-spin band
structure, the top of the s–d hybridization gap falls only
0.8 eV below the Fermi level and the top of the Ag d bands
falls 3.0 eV below. Thus one might anticipate seeing strong
majority-spin states in the region above the silver d bands up
to 0.8 eV below the Fermi level. In fact, such states are pre-
dicted in calculations using both the phase model approach of
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Figure 11. (a) Oscillations in the inverse photoemission intensity
at EF for copper films deposited on a fcc Co(001) substrate from the
study of Ortega, Himpsel, Mankey and Willis (1993). (Reproduced
from Ortega et al. (1993), with permission from the American
Physical Society.  1993.) (b) Results of a Kerr effect study
showing the oscillatory antiferomagnetic coupling in Cu/Co(001)
multilayers as a function of the copper thickness from the study of
Qiu, Pearson and Bader (1992). (Reproduced from Qiu et al. (1992),
with permission from the American Physical Society.  1992.)

equation (23) and the tight-binding method (Smith, Brookes,
Chang and Johnson, 1994) and ab initio calculations of the
layered KKR type (Crampin, De Rossi and Ciccaci, 1996).

The spin-polarized photoemission study of Ag on Fe(001)
(Brookes, Chang and Johnson, 1991) represented a study of
the spin-polarization effects in very thin films. Indeed, at
the ML limit it is probably more reasonable to describe
the induced state as an interface state. Two studies have
examined the spin-polarization characteristics of quantum-
well states in thicker films. In both cases, the studies
were of copper films deposited on a fcc Co(001) substrate
(Garrison, Chang and Johnson, 1993; Carbone et al., 1993).
As in the earlier Ag/Fe (001) study, the quantum-well
states shown in Figure 12 were found to be highly spin
polarized with minority spin. However, now the Cu films
were grown to thicknesses of the order of six atomic layers
or more. In fact in a more recent study Carbone et al.,
(1996) reported the observation of quantum-well states in
copper films of the order of 50 atomic layers thick. At
such thicknesses the escape depth of the photoelectrons
ensures that the spin-polarization information in the spectrum
clearly reflects emission from the Cu film itself rather
than the cobalt substrate. In their study, Carbone et al.
also claimed the observation of majority-spin quantum-well
states with considerably less intensity than the minority-spin
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Figure 12. Spin-resolved photoemission spectra recorded from
two, six, and eight monolayer thick copper films deposited on a
fcc Co(001) substrate. The minority- and majority-spin spectra are
represented by the open and full diamonds, respectively. The spectra
are recorded for photoelectrons emitted along the surface normal.

counterparts. They determined an exchange splitting of
0.15 eV between the two spin components.

In order to obtain a better understanding of the photoe-
mission spectra in their study Garrison, Chang and Johnson
(1993) calculated the electronic structure of the different
thickness copper films using a spin-dependent tight-binding
scheme in a slab formulation. These tight-binding calcula-
tions were carried out using an effective Hamiltonian of the
form

H =
∑

k

E(k) nk +
(

U

N

)∑
k,k′

nk↑nk′↓ (24)

Where the first term reflects the nonmagnetic band struc-
ture and the second term represents the modification due
to the on-site spin-dependent potential U . The latter was
simply taken as the effective Stoner parameter. Using such
an approach the authors sought a self-consistent solution
such that for each layer �l = Ulml where �l is the layer-
dependent splitting introduced into the d orbitals, Ul the
layer-dependent Stoner parameter and ml the calculated
moment for each layer. On the basis of their calculation
Garrison et al. concluded that the quantum-well states have
significant d as well as sp character. This interesting obser-
vation stems from the fact that, within the Cu film, as in bulk
Cu, the s-, p bands will hybridize with the d bands of the
same symmetry. This hybridization results in a small frac-
tion of the d electrons being carried up to and through the
Fermi level and indeed in bulk Cu, approximately 3% of the
d-electron manifold is unoccupied. A similar observation has
also been made in an ab initio layered KKR calculation of
copper films deposited on Co(001) (Van Gelderen, Crampin
and Inglesfield, 1996).

The observation that there is a small spin polarization in
the Cu d band, and further that this band crosses the Fermi
level, is a clear indication that a small magnetic moment
of d character must exist on the Cu site, an observation
that was confirmed in a magnetic circular dichroism (MCD)
study of Cu/Co multilayers (Samant et al., 1994; Held et al.,
1996). Here the authors, exploiting the dipole selection rules,
studied absorption at the Cu L-edge to obtain site and spin
specific information on the unoccupied d bands. The study
found a small moment of d character on the copper sites and
further concluded that the largest moments exist in the inter-
face where the hybridization with the neighboring Co layers
will be strongest. This observation of a localized interfa-
cial magnetic interaction has also been confirmed in numer-
ous other SPPES studies of the d bands in overlayer films
deposited on ferromagnetic substrates. As examples, we cite
the Pd(111)/Fe(110) interface (Weber, Wesner, Güntherodt
and Linke, 1991; Weber, Wesner, Hartmann and Güntherodt,
1992), the Pt/Co(0001) interface (Weber et al., 1993), the
Ag/Fe(001) interface (Brookes, Chang and Johnson, 1994)
and Ru and Rh deposited on Co(0001) (Rampe et al., 1995).
In general, these studies all identified a moment on the inter-
facial overlayer atoms but the induced polarization rapidly
decayed away with deposition of subsequent overlayers.

More recently Qiu and coworkers have continued to inves-
tigate the properties of quantum-well systems and their rela-
tionship to the oscillatory exchange coupling (Zhang et al.,
2000; Qiu and Smith, 2002; Wu et al., 2006). In particu-
lar, these authors have focused on the thickness dependence
of the quantum-well electronic structure (Rotenberg et al.,
2006) and on the properties of double quantum-well struc-
tures (Ling et al., 2002; Wu et al., 2006).
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There is also the possibility of quantizing the electronic
structure of d bands in a thin film. The role of this has been
explored in a SPPES study of chromium films grown on an
Fe(001) whisker with particular reference to the oscillatory
exchange coupling in Fe/Cr multilayers (Li et al., 1997). In
another PES study, Krajl et al. examined the quantization of
the d bands in silver films grown on an V(001) substrate
(Kralj et al., 2003). The authors were successfully able to
explain the quantum-well structure both in terms of the
phase models described in the preceding text and in terms
of tight-binding calculations. It is interesting to speculate
on the possible role of quantized d bands in the multilayer
structures. Indeed it is known that scattering from a d
resonance at energy Ed can induce a phase shift δl such
that (Harrison, 1980)

tan δl = �

2(Ed − E)
(25)

Thus the scattering induces a phase shift at energy E that
increases from 0 to π over the range � of the resonance. A
phase shift of π will shift the quantum-well states from one
thickness dependent branch to the next.

4.3 Collective excitations and self-energizing
effects

In recent years, the energy and momentum resolution of
angle-resolved photoemission have improved to a degree
that allows detailed studies of self-energy effects. Thus
it has become routinely possible to study the lifetime
and dispersion modifications associated with a variety
of collective modes including phonons, spin excitations,
and charge density waves. In magnetic systems, with the
added complexity of spin detection, the studies of mag-
netic systems have been considerably more limited. Here
we review the only detailed study of spin-dependent self-
energy effects, namely a recent study of gadolinium. The
spin-dependent electronic structure of this material had pre-
viously been studied extensively with spin-resolved photo-
emission.

The ground state of gadolinium is ferromagnetic with a
Curie temperature TC of 293 K. The (0001) surface of this
material has been shown both theoretically (Wu, Li, Freeman
and Fu, 1991) and experimentally (Li et al., 1991) to support
a surface state derived from the Gd 5d orbitals. The state,
which is spin polarized through an exchange interaction
with the localized 4f orbitals has an important history and
indeed it was spin-resolved photoemission studies of the
surface state that finally confirmed that the surface moments
were ferromagnetically aligned with the bulk of the material
(Mulhollan, Garrison and Erskine, 1992).
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Figure 13. Spin-resolved photoemission spectra recorded from the
Gd(0001) surface at 20 K. The upper and lower spectra represent the
emission in the majority- and minority-spin channels, respectively.
The lines indicate Lorentzian fits to the spectra superimposed on
appropriate backgrounds. The inset shows the relative inteansities
in the two spin channels.

The results of a more recent photoemission study of this
same state held at 20 K with both high energy and spin
resolution are illustrated in Figure 13 (Fedorov et al., 2002).
As noted earlier, both experiment (Mulhollan, Garrison and
Erskine, 1992; Li et al., 1993) and theoretical calculations
(Wu, Li, Freeman and Fu, 1991) indicate that the surface state
should be 100% majority spin, reflecting parallel alignment
of the surface and bulk moments. The coexistence of both
spin components at the same energy in Figure 13 is therefore
an intrinsic property of the surface state arising from a
combination of spin-orbit and spin-exchange processes. A
simple model yields a polarization P = �/

√
�2 + ζ 2 for

each quasiparticle state. With a spin-orbit parameter ξ =
0.3 eV and an exchange splitting � = 0.7 eV at 0 K, we get a
spin-orbit induced mixing R = (n/n−) = (1 − P)/(1 + P) ∼
5%. This increases to 8% at T = 150 K as the exchange
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splitting between the occupied and unoccupied surface states
gets smaller (Fedorov, Starke and Kaindl, 1994; Weschke
et al., 1996).

Fitting the spectra in Figure 13 with Lorentzian line shapes
shows that the minority-spin peak has a larger width than its
majority-spin counterpart, 116 meV as opposed to 86 meV.
Removing the contribution from the experimental resolution,
these widths become approximately 105 meV in the minority-
spin channel and 70 meV in the majority channel. Possible
decay modes for either spin photohole can involve elec-
tron–phonon, electron–magnon and electron–electron scat-
tering. Each of these different mechanisms will give distinct
spin-dependent contributions to the scattering rate. Elec-
tron–electron scattering by exchange processes favors the
two holes in the final state being of opposite spin (Sinkovic,
Shekel and Hulbert, 1995). From consideration of the total
density of states in the spin channels, the authors of the spin-
resolved study estimated the scattering rate from the process
to be equal for a majority-spin hole and a minority-spin hole.
The electron–phonon and impurity scattering rate are pro-
portional to the density of states at the hole binding energy
for the same spin while the electron–magnon rate is propor-
tional to the density of states for the opposite spin. Since the
majority-spin density of states is large while the minority-
spin part is small and from consideration of the required
momentum transfer, impurity and electron–phonon scatter-
ing should be more important in the majority-spin channel.
The observation that the minority-spin channel is broader
suggests electron–magnon scattering is the dominant decay
mechanism. At T = 0 K, the minority-spin component of a
photo-hole can scatter to the majority-spin component of a
hole state higher in the surface band by emitting a spin wave
(tilting the spins of the localized f electrons). The correspond-
ing spin-flip process is not available to the majority-spin
component of the photo-hole at T = 0 because the local-
ized f spins have saturated magnetization and are not able
to tilt upwards when the hole tilts down. At higher temper-
atures, inelastic scattering can occur back and forth between
the two spin channels mediated by the emission or absorption
of magnons, but the minority-spin component always has the
higher density of final states to scatter into. An approximate
treatment (Allen, 2001) using the ‘s–f’ Hamiltonian (Zener,
1951a–c) found the result

�

τ (↓)
=

√
3

4

P (↑) m∗

S

(
2JSa

�

)2

(26)

for the decay of the minority (↓) spin component due to
spin-flip scattering with magnon emission. Here J is the
s–f exchange parameter giving the exchange splitting 2JS =
0.65 measured for the surface state, m∗ = 1.21 is the effec-
tive mass measured for the surface band, and P (↑) = 0.87

is the experimentally measured majority component of the
band. With S = 7/2 and a = 3.6 Å, �/τ (↓) = 0.095 eV.
Conversely, replacement of P (↑) by P (↓) = 1 − P (↑) gives
�/τ(↑) ≈ 0.014 eV for the majority-spin component. Thus
at low T , the majority-spin channel is dominated by elec-
tron–phonon scattering, whereas the minority-spin channel
is dominated by electron–magnon scattering. On the basis of
the relative spin-dependent densities of states it is possible
to provide estimates of the contribution of phonon scatter-
ing in the two spin channels. These would be 46 meV in
the majority-spin channel and 10 meV in the minority-spin
channel, leaving approximately l0 meV in each channel due
to impurity scattering. This system has also been studied by
the group of Kaindl using scanning tunneling spectroscopy
(Rehbein, Wegner, Kaindl and Bauer, 2003). They arrived
at slightly different values for the different contributions but
also concluded that the occupied majority-spin surface state
preferentially decays via electron–phonon scattering. The
important experimental observation in the study described
in the preceding text is that the occupied minority-spin com-
ponent of that state has a shorter lifetime. The only way that
can occur is through the participation of magnon scattering.

4.4 Half-metallic ferromagnetic oxides

Half-metallic ferromagnets (HMF) show in the ideal case
a 100% spin polarization at the Fermi level EF. The high
polarization reflects a metallic density of states for one spin
direction and a band gap for the other spin direction. This
class of materials was first discovered via ab initio calcula-
tions by de Groot, Mueller, van Engen and Buschow (1983)
for Mn-based Heusler alloys, such as NiMnSb. Besides
the expectation of exceptional magneto-optical properties,
these materials have recently attracted considerable attention
because of their potential application in the field of spintron-
ics (Pickett and Moodera, 2001). In principle, HMFs are ideal
spin injectors and detectors because under moderate voltage
they can carry current of only one spin direction. A wealth of
theoretical work has been devoted to the spin-dependent elec-
tronic structure of metal-based HMF (Kübler, 2003; Wurmehl
et al., 2005) or zinc-blende chalcogenide HMF (Mavropou-
los, Ležaić and Blügel, 2005). Here we focus on transition-
metal oxide HMF, the existence of which, again, had all
been predicted by ab initio electronic structure calculations.
Examples include Fe3O4 (Yanase and Siratori, 1984; Zhang
and Satpathy, 1991), CrO2 (Schwarz, 1986; Korotin, Anisi-
mov, Khomskii and Sawatzky, 1998), La1–xSrxMnO3 (Pick-
ett and Singh, 1996) and Sr2FeMoO6 (Kobayashi et al.,
1998). The experimental challenge ever since has been to
prove the half-metallic nature of these ferromagnetic or fer-
rimagnetic materials. While this task would best be carried
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Figure 14. (a) Spin-resolved photoemission intensities (� spin
up, � spin down) measured at hν = 21.2 eV together with the
total intensity (•) of 5-nm-thick Fe(110) (bottom) and Fe3O4(111)
(top), obtained by oxidizing Fe(110) in oxygen atmosphere at
250 ◦C. (b) Spin polarization of Fe(110) (•) and Fe3O4(111) (•).
(Reproduced from Dedkov et al., 2002a, with permission from the
American Physical Society.  2002.)

out using polycrystalline materials to yield an average over
all k states of the Brillouin zone, the experimental studies
have mostly been aimed at using single crystalline material
or thin epitaxial films. This was necessary because the partic-
ular experimental techniques used for measuring spin polar-
ization all show a subtle surface sensitivity. Among these
are spin-polarized tunneling into superconductors, supercon-
ducting point-contact spectroscopy using Andreev reflection,
magnetic tunnel junctions (MTJ) and spin-polarized photoe-
mission. While most of the techniques depend critically on
interface qualities, photoemission relies particularly on ultra-
clean surfaces. Another crucial point concerns the different
nature of the electronic states probed by transport and by pho-
toemission measurements. In this section, we give an account
of the progress made in the field of oxidic HMF using SPPES.

1. Fe3O4(111), (100): SPPES studies of magnetite (Fe3O4)

began in 1975 (Alvarado et al., 1975). The interpretation of
the valence band photoemission spectra is still a subject of
controversial debate (Alvarado, Erbudak and Munz, 1976;

Alvarado and Bagus, 1978; Cai, Ritter, Weiss and Bradshaw,
1998; Dedkov, Rüdiger and Güntherodt, 2002a; Dedkov
et al., 2004; Fonin et al., 2005). Alvarado et al. performed
the first SPPES measurements on cleaved Fe3O4(100) sin-
gle crystals (Alvarado et al., 1975; Alvarado, Erbudak and
Munz, 1976; Alvarado and Bagus, 1978). The spin polar-
ization of the photoelectrons showing a maximum value of
−60% near the Fermi energy EF was measured at 10 K
using an incident photon energy of 5 eV (Alvarado, Erbudak
and Munz, 1976). From a single-ion-in-a-crystal-field (SICF)
model, a maximum value of P = −66.6% was obtained for
the spin polarization at T = 0 K (Alvarado, Erbudak and
Munz, 1976; Alvarado and Bagus, 1978). This was consid-
ered to be in agreement with the measured value of −60%.
However, subsequent spin-polarization measurements on epi-
taxial thin films of Fe3O4(111) and Fe3O4(100) yielded at
room temperature, values of −(80 ± 5)% and −(40–55)%
near EF, respectively (Dedkov, Rüdiger and Güntherodt,
2002a; Morton et al., 2002; Huang et al., 2002b; Fonin et al.,
2005). Figure 14 shows in (a) the spin-resolved photoemis-
sion intensities (� spin up, � spin down) together with the
total intensity (•) of Fe(110) (bottom) and Fe3O4(111) (top).
The spin polarization is shown in (b) for Fe(110) (�) and
Fe3O4(111) (•). In both cases, the spin polarization at EF is
accidentally −80%. For Fe3O4(111) this provided evidence
closer to the theoretically predicted half-metallic nature of
magnetite (Yanase and Siratori, 1984; Zhang and Satpathy,
1991), at least for the [111] direction.

For the interface between a 25-nm-thick Fe3O4(111) thin
film and a 2-nm-thick γ -Al2O3(111) layer a negative spin
polarization of about −40% was found by SPPES (Bataille
et al., 2006).

Interestingly, for the (100)-oriented epitaxial thin films of
Fe3O4 spin-polarization values of only −(40–55)% near EF

were obtained (Morton et al., 2002; Huang et al., 2002b).
These values are significantly lower than the −100% pre-
dicted by local spin density approximation (LSDA) calcula-
tions for the bulk material (Zhang and Satpathy, 1991) as
well as the −(80 ± 5)% measured at room temperature on
the (111)-oriented Fe3O4 surface near EF (Dedkov, Rüdiger
and Güntherodt, 2002a). The low value for the (100) surface
was ascribed either to surface imperfection (Morton et al.,
2002) or to strong electron correlation effects (Huang et al.,
2002b). Recent measurements of SPPES on epitaxial thin
films of Fe3O4(100) gave a spin polarization of −(55 ± 10)%
at EF (Fonin et al., 2005). In an effort to explain this result
on the basis of density-functional theory (DFT) and ab ini-
tio thermodynamics calculations it was discovered that the
surface electronic structure of Fe3O4(100) differs distinctly
from the bulk one. A (

√
2 × √

2)R450 wavelike surface atom
reconstruction due to a Jahn–Teller effect was found to lead
to surface states in the majority-spin band gap, resulting



Spin-polarized photoelectron spectroscopy as a probe of magnetic systems 15

in a calculated spin polarization of −40% at EF (Fonin
et al., 2005). However, for all of these comparisons between
experiment and theory it has to be remembered that, except
for the latter reference, the electronic structure calculations
have been performed for the bulk material without taking
account of subtle surface reconstruction and relaxation or
charge redistribution effects, particularly for (100) polar sur-
faces. These surface effects certainly play an important role
in VUV-PES and SPPES measurements.

For correlated electron systems, such as Fe3O4, an atomic
configuration-based approach had initially been chosen for
the interpretation of the SPPES data (Alvarado, Erbudak
and Munz, 1976; Alvarado and Bagus, 1978). Recent inves-
tigations (Cai, Ritter, Weiss and Bradshaw, 1998; Ded-
kov, Rüdiger and Güntherodt, 2002a), however, showed that
band dispersions (Yanase and Siratori, 1984; Zhang and
Satpathy, 1991) must be taken into account for the inter-
pretation of photoelectron spectra of Fe3O4. In particular,
surface symmetry-related band dispersions were identified
for Fe3O4(111). Angle-resolved PES determinations of the
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Figure 15. Right panel: spin polarization as a function of binding
energy of an epitaxial CrO2(100) film (a) after Ar+ sputtering for
210 s at 500 eV and (b) after 750 s sputtering and an additional
annealing treatment at 150 ◦C for 12 h. Left panel: corresponding
spin-polarized photoemission spectra at hν = 21.2 eV (� spin down,
� spin up) and total photoemission intensity (•). (Reproduced from
Dedkov et al., 2002b, with permission from the American Institute
of Physics.  2002.)

electronic band structure of well-ordered Fe3O4(111) sur-
faces using synchrotron radiation (Dedkov et al., 2004) gave
direct evidence for surface-Brillouin-zone (SBZ) symmetry-
related contributions of the oxygen and iron sublattices. In
the � − M direction of the Fe3O4(111) SBZ, two types of
dispersing states were identified. They originate from a peri-
odic multilayered structure of iron and oxygen ions, with
Fe2+ and Fe3+ cations incorporated into the close-packed fcc
oxygen sublattice. For Fe3O4(100) a ‘wavelike’ atom pattern
observed by STM along the [110] direction (Tarrach et al.,
1993; Stanka, Hebenstreit, Diebold and Chambers, 2000;
Fonin et al., 2005) gave the first hint of surface reconstruc-
tion effects, which were finally corroborated by DFT calcu-
lations (Fonin et al., 2005). Over a broad range of oxygen
pressures, the modified B-layer bulk termination, consisting
of oxygen and iron (FeB ) in octahedral B sites and showing
a pairwise ‘wavelike’ shift of iron atoms perpendicular to the
B rows, was identified as lowest energy configuration. As a
consequence of this reconstruction, surface states appear in
the band gap of the majority-spin subband leading to a reduc-
tion of the spin polarization to about −40% at EF and a loss
of half-metallicity of the Fe3O4(100) surface. These surface
states are a hybridization of dx2 − y2 states of octahedral iron
in the surface layer and px, py states of the surface oxygen
without a subsurface tetrahedral iron neighbor.

2. CrO2(100): In spite of applications in magnetic tapes
and potential use for magneto-optical storage, the electronic
structure of CrO2 was theoretically predicted only in 1986
using the LSDA to DFT (Schwarz, 1986). The first SPPES
investigations revealed a spin polarization of up to 90% near
2 eV binding energy below EF (Kämper et al., 1987). No spin
analysis using a 100-kV Mott spin detector (Kisker, Clauberg
and Gudat, 1982) was feasible at the time between EF and
2 eV binding energy because of the low photoemission inten-
sity. The low emission intensity was attributed to oxygen
deficiencies. However, high quality epitaxial thin films of
CrO2(100) grown on Ti(100) single-crystal substrates showed
a spin polarization of up to 95% at EF (Dedkov et al., 2002b).
Figure 15 shows in the right panel the spin polarization as a
function of binding energy of an epitaxial CrO2(100) film (a)
after Ar+ sputtering for 210 s at 500 eV and (b) after 750 s
sputtering and an additional annealing treatment at 150 ◦C
for 12 h. The left panel shows spin-polarized photoemission
spectra (� spin down, � spin up) and total photoemission
intensity (•). The value of P = 95% at EF in Figure 15(a)
agrees with measurements using superconducting point-
contact spectroscopy (Soulen, Byers and Osofsky, 1998; Ji
et al., 2001). The good agreement between spin-polarization
values from photoemission and transport measurements
has to be attributed to the unusually strong 2p(O)-3d(Cr)
hybridization found in electronic structure calculations based
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on LSDA + U (Korotin, Anisimov, Khomskii and Sawatzky,
1998). A value of 90% spin polarization for unoccupied
states above EF was also found using spin-resolved O 1s
X-ray absorption spectroscopy (Huang et al., 2003). These
data give evidence that the presence of holes in the oxygen
band prevents CrO2 from being an insulator and supporting
the notion that the material is a self-doped or p-type metal
(Korotin, Anisimov, Khomskii and Sawatzky, 1998).

The shoulder in the photoemission intensity in
Figure 15(a) and (b) which becomes most pronounced after
sputtering for 750 s, has been associated with the localized
Cr(3d) states. These, however, were found in LSDA + U

calculations (Korotin, Anisimov, Khomskii and Sawatzky,
1998) to be near 1 eV binding energy. The photoemission
intensity near 2 eV was more recently attributed to emis-
sion from the Cr2O3 surface layer (Chang et al., 2005). This
conclusion was reached on the basis of MCD in resonant
photoemission studies with hν tuned to the Cr 2p absorp-
tion edge. The energy positions of the Cr 3d bands in CrO2

are then determined with no contribution from antiferromag-
netic Cr2O3. However, this conclusion contradicts the finding
of the peak at 2 eV binding energy after prolonged sput-
tering (750 s), removing all Cr2O3 (Dedkov et al., 2002b).
Hence the peak at 2 eV is of intrinsic origin, most likely
associated with the lower Hubbard band (LHB). The upper
Hubbard band (UHB) may be evident in the atomic-like Cr
3d state observed in spin-resolved O 1s X-ray absorption
near 0.6 eV above EF (Huang et al., 2003). These obser-
vations combined give a Coulomb correlation energy U in
agreement with the value U = 3 eV used in LSDA + U elec-
tronic structure calculations (Korotin, Anisimov, Khomskii
and Sawatzky, 1998). Further, in agreement with these cal-
culations, a more localized Cr 3d derived spectral weight
near 1 eV is found by MCD in resonant photoemission
(Chang et al., 2005). In the most recent bulk sensitive board
X-ray photoelectron spectroscopy (HAX-PES) measurements
using hard X-rays (hν = 7942 eV) (Suga, 2006) dispersion-
less Cr(3d) states were found near 1 eV binding energy. Most
interesting in the HAX-PES measurements is the rather small
spectral weight near EF, similar to the previous VUV-PES
data by Kämper et al. (1987). This is in strong contrast to a
theoretical study using LSDA + DMFT (dynamic mean-field
theory) and applying the iterated perturbation theory (IPT) as
‘Anderson-impurity solver’ to the multiorbital case (Craco,
Laad and Müller-Hartmann, 2003). In this calculation, CrO2

is found to exhibit a rather unusually high density of states
at EF. The authors stress the importance of dynamical cor-
relation leading to a collective orbital Kondo effect and the
emergence of a correlated Fermi liquid scale. However, the
puzzle of the low intensity or missing Fermi edge in the
earlier surface-sensitive VUV (hν = 21.2 eV) photoemission
data (Kämper et al., 1987) has recently been attributed to a
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Figure 16. Temperature dependence of spin polarization of Mn 3d
states, eg at 1.0 eV binding energy and t2g at 2.2 eV binding energy
obtained with hν = 40 eV. The inset shows the spin-polarized
photoemission spectra for the majority and minority spins and
the difference at 40 K. (Reproduced from Park et al., 1998, with
permission from the American Physical Society.  1998.)

surface relaxation of CrO2(100) deduced from LSDA-based
first-principles calculations (Hong and Che, 2006). The dis-
torted tetrahedral oxygen coordination of each surface Cr
ion gives rise to an inversion of the t2g − eg splitting of
the Cr 3d orbitals, with EF lying in a gap between the
occupied eg and unoccupied t2g states for a local electronic
structure at the surface. For future photoemission intensity
calculations of CrO2 it appears indispensable to apply com-
putational schemes merging the local density approximation
(LDA) with DMFT and using quantum Monte–Carlo simula-
tions (QMC) to solve the effective Anderson-impurity model
of DMFT.

3. Manganites: The manganite class of materials is unusual
not only because of the occurrence of the colossal mag-
netoresistance (CMR), but also because of its dense gran-
ular magnetoresistance, and the development of concepts
like double exchange and Jahn–Teller polarons. The rich
electronic phase diagrams reflect the fine balance of inter-
actions, which determine the electronic ground state. The
different competing, novel phases, including orbital order and
orbiton excitations, arise from an interaction between differ-
ent microscopic degrees of freedom, including charge, spin,
orbitals, and lattice. The most straightforward evidence of a
minority-spin gap and a concomitant 95% spin polarization
near EF was obtained in La0.7Sr0.3MnO3 at 40 K by means
of SPPES (Park et al., 1998a,b). This observation was con-
sistent with first principles calculations of La1−xCaxMnO3

(Pickett and Singh, 1996). Figure 16 shows the temperature
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Figure 17. (a) The spin-resolved photoemission spectra (� spin
down,  spin up) together with the total emission intensity (•)
of Fe(110), 2 Å MgO on Fe(110), and 5 Å MgO on Fe(110) (from
bottom to top). (b) The spin polarization as function of binding
energy of a 50-Å-thick Fe(110) film (�), 2 Å MgO on Fe(110) (◦),
and 5 Å MgO on Fe(110) (•). (Reproduced from Dedkov et al.,
2006, with permission from the American Institute of Physics.
 2006.)

dependence of the spin polarization of the Mn 3d states, eg

at 1.0 eV binding energy and t2g at 2.2 eV binding energy,
obtained with hν = 40 eV (Park et al., 1998a,b). The half-
metallic nature of La0.7Sr0.3MnO3 had a crucial impact on
spin-polarized tunneling into Co through a SrTiO3 tunnel
barrier (de Teresa et al., 1999).

4.5 Ferromagnet-oxide interfaces

Interfaces between electrodes of itinerant ferromagnets and
insulating oxide layers play a decisive role in MTJs, giving
rise to the tunnel magnetoresistance (TMR). A most promi-
nent and successful example is Fe(100)/MgO(100)/Fe(100),
which was theoretically predicted to yield a TMR of
the order of about 1000% (Butler, Zhang, Schulthess and
MacLaren, 2001; Mathon and Umerski, 2001). The presently
highest TMR values that have currently been achieved
experimentally are 220% at room temperature (300% at

0 2 4 6 8 10 12 14 16 18
Thickness of MgO overlayer (Å)

1

0.8

0.6

0.4

0.2

0

P
/P

0

P0 = −80%
MgO/Fe(110)
Ni/Ge
Gd/Ge
Ce/Ge

Figure 18. The change of the normalized spin polarization at EF

of the MgO/Fe(110) system with increasing MgO layer thickness.
The spline fit to the experimental data is shown by a solid line.
The reference curves for depolarization of polarized electrons
(P0 = 23.5%) optically excited in germanium after traversing an
evaporated overlayer of Ni (dashed line), Gd (dotted line), and Ce
(dot–dashed line) are taken from Meier, Bona and Hüfner (1984)
and Dedkov, Fonin, Rüdiger and Güntherodt (2006). (Reproduced
from Dedkov et al., 2006, with permission from the American
Institute of Physics.  2006.)

4 K) for sputtered and textured Fe(100)/MgO(100)/Fe(100)
(Parkin et al., 2004) and 180% at room temperature for epi-
taxial, MBE grown Fe(100)/MgO(100)/Fe(100) (Yuasa et al.,
2004). Other materials combinations yielded 260% at RT
(361% after annealing; 403% at 5 K) for CoFeB/MgO/CoFeB
(Hayakawa et al., 2005; Lee et al., 2006) and 410% at room
temperature (507% at 20 K) for bcc Co(001)/MgO(001)/
Co(001) (Yuasa et al., 2006).

1. Fe/MgO: There also appears to be a problem with the
formation of a submonolayer of FeO at the Fe/MgO interface
(Meyerheim et al., 2001, 2002), which may be responsible
for reduced TMR values (Zhang, Butler and Bandyopadhyay,
2003). The formation of FeO at the interface of MBE grown
Fe(110)/MgO(111) could be identified via STM as well as
by SPPES (Dedkov, Fonin, Rüdiger and Güntherodt, 2006).
Figure 17 shows the spin-resolved photoemission spectra (a)
as well as the spin polarization (b) for clean Fe(110) and the
same with 2 Å MgO and 5 Å MgO overlayers (from bottom
to top). With increasing overlayer thickness the polarization
is attenuated from −80 to −50% and −20%, respectively.
This attenuation of the spin polarization as a function of
thickness of the MgO overlayer is represented in Figure 18.

In Figure 18, exponential fits to the experimentally
observed depolarization of electrons (P0 = 23.5%) excited
by circularly polarized light (hν = 3.05 eV) in germanium
after traversing an evaporated overlayer of Ni (dashed line),
Gd (dotted line), and Ce (dot-dashed line) are shown. All
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curves show an exponential dependence of the polarization
on the thickness of the overlayer possessing valence d
electrons in the vicinity of EF. The mean-free path for
spin-flip scattering decreases as a function of the number
of unoccupied d states in the valence band from Ni via
Gd to Ce (Ni: two unoccupied d orbitals, 4s23d8; Gd:
nine unoccupied d orbitals, 6s25d1; Ce: ten unoccupied
d orbitals, 6s25d0) (Meier, Bona and Hüfner, 1984). The
reference curves for the Gd/Ge and Ce/Ge systems are
very close to the experimentally observed sharp decrease
of spin polarization in the MgO/Fe(110) system and can
qualitatively be used as additional argument for the presence
of a depolarizing FeO layer at the MgO/Fe(110) interface,
that is, spin scattering into the four unoccupied d orbitals
of Fe2+ (3d6) in FeO. The comparison is only qualitative
with respect to the absolute number of hole states as
there may be additional spin scattering at the FeO/MgO
interface. The presence of such an FeO interfacial layer
and the increase of the FeO layer thickness at the MgO/Fe
interface with increasing MgO layer thickness is supported
by AES and STM measurements (Dedkov, Fonin, Rüdiger
and Güntherodt, 2006). For these MTJs values of the TMR
at RT of 32% (54% at 1.5 K) were obtained (Guerrero et al.,
2005; Hauch et al., 2006).

The influence of MgO overlayers deposited on 16 ML Fe
grown on GaAs(100) has been investigated for direct tran-
sitions between different symmetry Fe bulk and final states
by means of SPPES (Matthes, Tong and Schneider, 2004).
A spin-dependent attenuation for direct transitions related to
Fe bulk initial states has been observed as a function of the
MgO thickness.

2. α-Al2O3/Fe(110): The optimization of the oxidation
process of thin Al films deposited on an Fe(110) surface
was characterized in a spin-, angle-, as well as energy-
resolved photoemission study (SPARPES) of the valence
band (Dedkov, Fonin, Rüdiger and Güntherodt, 2002c). The
spin-resolved spectra together with the total intensity and the
spin polarization respectively, as a function of the binding
energy for W(110), Fe(110), 7 Å Al on Fe(110) as well as α-
Al2O3/Fe(110) are presented in Figure 19(a) and (b). For the
7 Å-Al/Fe system the spin polarization near EF is decreased
from −80% characteristic of the clean Fe(110) surface to
about −(35 ± 5)%. Aluminum has no d electrons in the
valence band and, therefore, the scattering of spin-polarized
electrons from the valence band of Fe can be described by the
spin-averaged scattering cross section (Siegmann, 1994). The
spin polarization of photoelectrons for adlayer/ferromagnet
systems can be calculated (Siegmann, 1994) by P = P0

exp(−d · σ), where P0 = −80% is the polarization of the
pure Fe(110) film, d the thickness of the adlayer (7 Å
for Al and 13 Å for 1 ML of α-Al2O3), and σ the total
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Figure 19. (a) The spin-resolved photoemission spectra (� spin
down,  spin up) together with the total emission intensity (•)
for W(110), Fe(110), 7 Å Al on Fe(110), and approximately 1 ML
Al2O3 on Fe(110). (b) The spin polarization as a function of binding
energy of a 50-Å-thick Fe(110) film (�), 7 Å Al on Fe(110) (�),
and approximately 1 ML α-Al2O3 on Fe(110) (•) (Dedkov, Fonin,
Rüdiger and Güntherodt, 2002c).

scattering cross section, which in our case is equal to
the spin-independent part of σ , σ 0 = 1/8 Å−1 for both
materials (Al and Al2O3) without d electrons in the valence
band (Siegmann, 1994). In this case, the spin polarization
would be attenuated to (−33%) which is in reasonably
good agreement with the value of −(35 ± 5)% observed
experimentally.

The spin-resolved spectra following oxidation of the 7-Å-
thick Al layer on Fe(110) via subsequent annealing at 250 ◦C
are presented in Figure 19(a) (top curves). The spin polariza-
tion of the α-Al2O3/Fe(110) system decreases to −(15 ± 5)%
near EF. The reason for the decrease of the spin polarization
can be due to additional attenuation of the spin-polarized
photoelectrons by the Al2O3 layer with an estimated
thickness of 11 Å, close to the thickness of 1 ML of α-Al2O3.
The estimated spin polarization of 1 ML α-Al2O3/Fe(110)
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is −17%, which is in the range of the experimental value
of −(15 ± 5)%. The spin polarization of −15% in the α-
Al2O3/Fe(110)/W(110) system obtained by SPARPES is in
contrast to the positive value determined by spin-polarized
tunneling into superconductors (Meservey and Tedrow,
1994). For the photon energy of hν = 21.2 eV, the cross
section of the photoemission process from the valence band
of Fe is larger for 3d electrons than for 4s electrons. There-
fore, an attenuation of the negative spin polarization of Fe
without change in sign, due to the coverage with α-Al2O3 can
be described by the spin-independent part of the scattering
cross section (Siegmann, 1994). In tunneling experiments, 4s
electrons from the valence band of Fe have a higher tunneling
probability in comparison with 3d electrons. It is the partici-
pation of the 4s electrons that explains the positive sign of the
spin polarization as calculated (Tsymbal and Pettifor, 1997)
and experimentally observed (Meservey and Tedrow, 1994)
for tunneling from the ferromagnet into the superconductor.

4.6 The antiferromagnetic cuprates

The origin of the high TC superconductivity observed in the
cuprates presents one of the greatest challenges in condensed
matter physics today. As such it is particularly important to
understand the nature of the low-energy excitations in these
materials. It is generally accepted that the superconductivity
in the cuprates evolves from a parent insulating state by
doping carriers into the two-dimensional CuO2 planes. The
ground state of the parent compound is an antiferromagnetic
Mott insulator. With doping, the systems move from the
antiferromagnetic state to a regime where superconductivity
is possible. Cluster calculations indicate that the ground
state associated with the CuO2 planes consists of a linear
combination of 3d9 and 3d10L states, and the photoemission
final state as a combination of 3d8, 3d9L and 3d10L2

states, where L denotes an oxygen ligand hole orbital. Most
theories predict that the 3d8 states close to the Fermi level
are of local singlet character rather than the high spin
triplet state favored by Hund’s first rule (Zhang and Rice,
1998).

To investigate this possibility Tjeng and coworkers have
used incident circularly polarized light and spin resolved the
electrons emitted in a resonant photoemission process involv-
ing the 2p spin-orbit split core level (Tjeng et al., 1997, 1999;
Tjeng, Brookes and Sinkovic, 2001). The authors of these
studies point out the critical importance of initially exciting
from the spin-orbit split core level. In the absence of such
an excitation, the measured polarization from the valence
bands would be zero for an antiferromagnetic material. The
results of their study of optimally doped Bi2Sr2CaCu2O8+δ

(Brookes et al., 2001) are shown in Figure 20, which shows
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Figure 20. Spin-polarized photoemission spectra from Bi2Sr2Ca
Cu2O8+δ . (a) The spin-integrated resonant photoemission spectra
taken at the Cu L3 absorption edge (full line). The symbols show
the integrated spectra separated into its singlet (�) and triplet (�)
components. (b) The measured spin polarization corresponding to
the spectra in panel (a).

the spin-integrated photoemission spectrum, the same spec-
trum resolved into triplet and singlet contributions and the
measured spin polarization. The latter polarization, defined as
(↑↑ − ↑↓)/(↑↑ + ↑↓) where ↑↑ refers to parallel alignment
of the photon spin and electron spin, σ+e↑ + σ−e↓, and ↑↓
refers antiparallel alignment of the same, σ+e↓ + σ−e↑, is
calculated to be 5/6 or 83.3% for pure singlet states and
−1/3 ∗ 5/6 or −27.8% for triplet states. It is clear from
the lower panel of Figure 20 that the measured polarization
provides strong evidence for the presence of the so-called
Zhang–Rice singlets (Zhang and Rice, 1988) in the vicinity
of the Fermi level.

5 SUMMARY AND FUTURE OUTLOOK

We have seen that in the past 20 years the development
and application of spin-polarized photoemission has been
extensive. Because of its sensitivity to the surface region
it has offered a number of new insights into the electronic
structure of ferromagnetic surfaces and thin films. Studies of
the latter have been particularly relevant to understand the
properties of the GMR materials. Further with the increased
photon fluxes now available from synchrotron radiation
sources it has become possible to develop new methodologies
and extend the technique to the study of nonmagnetic
and antiferromagnetic materials. We may anticipate still
further developments in the future particularly in the area
of development of more efficient spin polarimeters. Such
developments will allow experiments to be carried out with
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higher energy resolution than has been achieved to date.
Amongst other things this will make accessible studies of
the fine details associated with magnetic anisotropies in
thin films. We may also anticipate further developments
in the combination of spin-polarized photoemission and
microscopy. This will be particularly relevant as detailed
studies of nanoscale systems are pursued, particularly with
reference to materials investigated for their potential use in
spintronics.
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1 INTRODUCTION

In the last few decades, magnetism at surfaces and in thin
films has attracted great attention. These studies are of fun-
damental interest and some discoveries led to important
applications now used in everyday life, for example, magne-
toresistance phenomena used in data storage (Jullière, 1975;
Binasch, Grünberg, Saurenbach and Zinn, 1989; Baibich
et al., 1988). Most of the studies have focused on static mag-
netism but recently dynamics also receives growing interest.
The magnetization dynamics is governed by spin waves,
which are collective excitations and can be described as
quasiparticles, which carry a wave vector q, an energy E, and
a magnetic moment of 1 gµB (where g is the gyromagnetic
ratio and µB is a Bohr magneton), (See also Spin Waves:

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

History and a Summary of Recent Developments, Vol-
ume 1). The latter places them in the class of bosons. In
energy, they range from the µeV range to the 100 meV
range, in momentum, from zero (the zone center) to the zone
boundary (up to about 2 Å

−1
). Their lifetimes range from a

couple of ten femtoseconds to tens of microseconds, depend-
ing on damping. Low-energy spin waves are easily excited
by phonon–magnon interaction, that is, by temperature. If
a sufficient number of spin waves are excited, the global
magnetic moment of a body decreases substantially. There-
fore, spin waves play an important role for the magnitude
of the Curie temperature, that is, the ferromagnetic versus
paramagnetic transition.

The detailed description of the physical nature of these
collective magnetic excitations cannot be cast into one single
picture because of the many orders of magnitude of dynamic
range in energy, momentum, and lifetime. In the limit of long
wavelength, low energy, and long lifetime, the usual semi-
classical picture of precessing (classical) spins has proved
useful. In this case, each spin is only slightly tilted out of its
direction along the magnetic easy axis. Thus, the reduction
of the magnetic moment by 1 gµB occurs by the concerted
action of all spins in the entire crystal. This picture relies
on classical spins, because they may adapt any spin orien-
tation continuously, as opposed to the quantum spins being
quantized in direction. These ‘spin waves’ are damped by
collisions with phonons, other spin waves, electrons, lattice
deformations, and impurities, but they are usually long lived.

Spin waves have a characteristic dispersion, which links
their energy to their wave vector. Depending on the wave
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vector, different magnetic interactions determine the spin-
wave energy. The exchange interaction is typically much
stronger than other magnetic interactions. Nevertheless,
owing to its relatively short range, other interactions, like
the long-ranged dipole interaction, can become important at
sufficiently small wave vectors. As a rule of thumb, in 3d
ferromagnets this so-called dipole regime extends to wave
vectors below q < 10−3 Å

−1
(Cottam and Slavin, 1994). For

wave vectors above q > 10−2 Å
−1

, the exchange interaction
can be safely assumed to be the dominating interaction that
determines the spin-wave energy (Cottam and Slavin, 1994).

For different regimes, different theoretical approaches are
used to describe spin waves. As discussed in the pre-
ceding text, for the dipole or small wave-vector regime,
a macroscopic continuum model description is sufficient
(Mills, 1984). A large number of studies focus on the
low wave-vector regime with its macroscopic description.
A detailed summary can, for example, be found in Hille-
brands and Ounadjela (2002), (See also Investigation of
Spin Waves and Spin Dynamics by Optical Techniques,
Volume 3, Time-resolved Kerr-effect and Spin Dynamics
in Itinerant Ferromagnets, Volume 3, and Investigation of
Ultrathin Ferromagnetic Films by Magnetic Resonance,
Volume 3). By contrast, deep in the exchange-dominated
regime, where the wavelength may become comparable in
size to the interatomic distances in a crystal, a true micro-
scopic description is needed. For such high wave vectors the
strong exchange interaction leads to high spin-wave ener-
gies. These high-energy spin waves are usually short lived,
because of their strong interaction with single electron–hole
excitations, called Stoner excitation. These Stoner excitations
consist of an electron excited about EF and a hole in a filled
band with opposite spins of the quasiparticles (adding up to
1 gµB!). Electron and hole may have different wave vec-
tors, that is, they reside at different locations in the Brillouin
zone, and the wave vector of the Stoner excitation is the
vectorial sum of the individual wave vectors. High-energy
spin waves couple strongly with Stoner excitations because
of their similarity in energy, wave vector, and spin charac-
ter. This relationship is so intimate that spin wave may even
be described as a coherent superposition of Stoner excita-
tions (Majlis, 2001). It has been proved that this concept
holds not only for the high-energy, short wavelength spin
waves but also for the low energy, long wavelength modes
(Edwards and Bechara Muniz, 1985; Bechara Muniz, Cooke
and Edwards, 1985). The long lifetime of the latter is under-
standable because for electrons and holes very close to the
Fermi energy (i.e., low-energy Stoner excitation) the avail-
able phase space for the de-excitation is small.

The different regimes of spin waves have been studied
experimentally by various techniques, each having certain
strengths and weaknesses. The regions in energy/wave
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Figure 1. Scheme of the regions in wave vector/energy/thickness
space in which spin waves have been studied using established
experimental techniques (marked by different gray tones). None of
these techniques has been able to measure high wave-vector spin
waves in a single thin film or at surfaces, that is, in the ‘terra
incognita’.

vector/thickness space that are accessible by the established
techniques are shown in Figure 1. Spin waves in thin fer-
romagnetic films have been studied by ferromagnetic reso-
nance (FMR), Brillouin light scattering (BLS), and also by
time domain methods (Hillebrands and Ounadjela, 2002). All
these methods have in common that only long wavelength
spin waves can be studied, having a wave vector of the
order of 10−2 Å

−1
, at most (light gray areas in Figure 1).

High wave-vector spin waves can be investigated by inelastic
neutron scattering (INS) (dark gray) (Brockhouse, 1957), but
the weak interaction of neutrons with matter prohibits mea-
surements on ultrathin films or at surfaces (Schreyer et al.,
2000). Owing to the limitation of the established techniques,
spin waves in about 99% of the Brillouin zone in ultrathin
films remained unexplored experimentally (see Figure 1).
This region is, however, of high interest because here the
wavelength of spin waves can become comparable to the
distances between the atoms in the crystal. Thus, their study
allows direct access to magnetic properties at the surfaces on
the atomic scale.

Spin-polarized electron energy loss spectroscopy
(SPEELS) is a suitable technique to access the terra incog-
nita shown in Figure 1. In the experiment, a monochromatic,
spin-polarized electron beam is scattered inelastically from a
magnetized sample and the scattered electrons are analyzed
for their wave vector and energy transfer during scattering.
The use of electrons as scattering particles has certain mer-
its. Because of the strong interaction between low-energy
electrons and matter, electron scattering is highly surface sen-
sitive. This has been used for several decades in many surface
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sensitive techniques (see, e.g., Henzler and Göpel, 1994). In
addition, electron scattering is known for the relatively easy
realization of high-energy and high wave-vector transfers.
Thus, the basic idea to study spin waves by electron scatter-
ing is evident and it has already been proposed decades ago
(DeWames and Vredevoe, 1967). The history of the study
of spin waves by SPEELS has been a 25 years history of
trial and error until, in 1999, the proof of principle of this
technique was given (Plihal, Mills and Kirschner, 1999): a
spin-polarized electron with its spin antiparallel to the major-
ity spin orientation may create a spin wave by exchanging
with another electron in the surface with parallel (majority)
spin, coming out with somewhat smaller energy. The energy
difference equals the spin-wave energy. The interaction is of
the exchange type, that is, electrostatic, no direct magnetic
spin–spin interaction is involved. This is puzzling at the first
glance, but it is the origin of the extraordinary sensitivity of
SPEELS.

We are presently able to study spin-wave excitations
with wave-vector transfers up to (and beyond) the surface
Brillouin zone boundary on films as thin as 2.5 atomic layers.
From the signal-to-noise ratio, one could even speculate
that the sensitivity limit for the detection of spin waves by
SPEELS is in the submonolayer regime. Up to now, several
systems have been investigated by SPEELS (Vollmer et al.,
2003, 2004a,b,c; Etzkorn et al., 2004, 2005). In this chapter,
we will discuss the general method and the spectrometer used
for these studies, as well as the results of studies on fcc Co on
Cu(001), hcp Co on W(110), and Fe on Cu(001). We find that
the magnetic excitations are confined to an extraordinarily
small volume in space and time. By a Fourier analysis of the
energy loss spectra and using the measured group velocity
from the dispersion relation, we estimate a linear space–time
range of some 10 yocto sm (yocto � = 10−24) for wave
vectors about halfway to the zone boundary.

1.1 The spin-polarized electron energy loss
spectrometer

In the SPEELS experiments, spin-polarized electrons are
scattered from a magnetic sample. The energy and momen-
tum transfer of the scattered electrons to the sample is
analyzed to obtain information about the inelastic scatter-
ing processes. To realize the experiment, a spin-polarized,
monochromatic electron beam is needed that hits the sample
under controlled conditions. With the help of an analyzer,
the intensity of the scattered electrons is counted in a small
window in energy and wave-vector space.

The detection of spin waves demands the highest possible
electron flux through the SPEEL spectrometer. To accom-
plish this task, a new type of high performance SPEEL

spectrometer has been designed for this particular exper-
iment (Ibach et al., 2003). A sketch of the spectrometer
is shown in Figure 2. The spectrometer consists of three
main parts. In the first part, the spin-polarized electron
beam is created by a strained GaAs photocathode (Pierce
and Meier, 1976; Drescher et al., 1996). When hitting the
sample, the spin direction of the incident electrons is par-
allel or antiparallel to the direction of magnetization of the
sample. In the following, we will talk about I↑(I↓) if the
spin of the incident electron is parallel to the spin of a
majority (minority) electron of the sample. The second part,
the monochromator, consists of a premonochromator and
a main monochromator with deflection angles of 90◦ and
180◦, respectively. The third part of the spectrometer is the
analyzer, which is a standard EELS monochromator with a
deflection angle of 146◦ (Ibach, 1993; Ibach, Balden and
Lehwald, 1996) followed by a channeltron as detector. The
analyzer and the detector are mounted on an arm so that they
can be rotated around the sample position in the scattering
plane (Figure 2). The dimensions and a detailed descrip-
tion of the design of this SPEEL spectrometer are given in
Ibach et al. (2003).

In the experiment, the spectrometer was used to measure
the intensity of electrons scattered from the sample under a

kfq0
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q

q

→
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→

Analyzer

90° monochromator

180° monochromator

Strained
GaAs
photocathode

Channeltron
detector

Circularly polarizedlight beam

l = 830 nm M

Figure 2. Sketch of the spectrometer under operation with a GaAs
photocathode. The circularly polarized light excites a longitudinal
spin-polarized electron beam from the cathode (the spin direction is
shown by the arrow). After the electrons have traveled through the
electrostatic monochromators, the beam is transversely polarized.
Electrons having the proper energy then travel through the analyzer
into the detector (The full path is shown as a solid line through
the entire spectrometer). The inset illustrates the definition of the
scattering angles θ and θ0. (Reproduced from H. Ibach et al., 2003.
 2003 with permission from the American Institute of Physics.)
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particular angle and with a certain energy transfer. For exper-
imental reasons, the SPEELS measurements were performed
in the ‘constant wave-vector transfer mode’, that is, for each
scan, the wave-vector transfer is fixed by the scattering geom-
etry and the electron intensity is measured as a function of the
energy loss. The energy losses measured in the experiments
are small compared to the primary kinetic energy Ei

kin of the
incoming electrons and hence ki ≈ kf. Therefore, one can
approximate the wave-vector transfer parallel to the sample
surface to �K‖ ≈ ki(sin(θ0 − θ) − sin(θ)). All wave-vector
transfers mentioned in the following are calculated within
this approximation. Owing to the conservation of energy and
momentum parallel to the surface in the scattering event, the
measured intensity spectra comprise the information about
the inelastic events that occurred in the scattering process.

As an example, Figure 3 illustrates the excitation of a spin
wave as a scattering event. To excite a spin wave, energy,
momentum, and magnetic moment have to be transferred to
the sample. Both the energy and the momentum transfer are
detected by the spectrometer and allow conclusions about
the spin wave that was excited. Because the total magnetic
moment has to be conserved in the scattering process, the
excitation of spin waves is only possible if this conservation
law is fulfilled. In a simple picture, the creation of a spin
wave reduces the magnetization of the sample by 1 gµB.
Therefore, the incoming electron has to be of e↓(minority)
character to be able to excite a spin wave (as indicated in
Figure 3b). Vice versa, the annihilation of a spin wave is
only possible in the e↑ channel.

This selection rule can be used in the experiment to
separate spin-wave excitations from other excitations. It
is sufficient to have a spin-polarized incoming electron
beam and a ferromagnetic sample with a defined magne-
tization direction parallel to the polarization axis. In this
particular case, an energy loss caused by the excitation
of spin waves is only possible for one spin direction of
the incoming electrons and will appear only in I↓. This

(a) (b)
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Figure 3. Schematic picture of an electron scattering process in
which a spin wave is excited. θ0 defines the angle between the
incoming and outgoing electron path. θ is the angle between the
surface normal and the incident beam. The wave-vector component
parallel to the surface is conserved in the scattering process; the
component perpendicular to it is not. (Note that, by definition, the
spin and its magnetic moment point into opposite directions.)

circumvents the necessity of a ‘complete’ experiment with
a spin analysis of the scattered electrons, which is an
experimental challenge due to the notoriously inefficient
detectors (Kirschner, 1985a).

1.2 Established experimental methods to study
spin-wave excitations

Different experimental techniques are suited to study spin-
wave excitations. In all scattering techniques (INS, BLS, and
SPEELS), the approach to detect spin-wave signals is similar.
A particle with known energy is scattered under defined
conditions from a sample and is later analyzed with respect
to its wave vector and energy transfer during scattering.

A recent example of high wave-vector and high-energy
spin-wave excitations investigated by INS is shown in
Figure 4 (Perring, Taylor and Squires, 1995). The exper-
iments were performed on hcp Co using a time-of-flight
technique. The peaks visible in the spectrum in Figure 4(a)
are caused by energy losses due to spin-wave excitations with
different wave-vector transfers in different Brillouin zones.
The information measured in different Brillouin zones can be
backfolded into the first Brillouin zone. The resulting disper-
sion relation is shown in Figure 4(b). In these measurements,
the dispersion could be followed up to about 0.8 Å

−1
, that is,

about two-thirds of the Brillouin zone. The solid line is a fit to
the data using a dispersion relation calculated from a nearest-
neighbor Heisenberg model. A good agreement between the
measured dispersion and this model was found (Perring, Tay-
lor and Squires, 1995). The INS studies show a broadening
of the spin-wave peaks due to itinerant effects. Nevertheless,
the spin-wave losses were well defined up to the highest
wave vectors investigated.

BLS and FMR are used to study spin waves with long
wavelength (Q‖ = 10−3 Å

−1
). Both techniques probe several

similar properties of magnetic materials. They can deter-
mine the macroscopic magnetic quantities of a sample, for
example, the anisotropy. In addition, in both techniques
standing spin-wave modes perpendicular to the surface have
been observed in films with thicknesses of several nanome-
ters or thicker (Tannenwald and Weber, 1961; Grimsditch,
Malozemoff and Brunsch, 1979). This leads to the possi-
bility to study spin waves with higher wave vectors, up to
q⊥ ≈ 10−2 Å

−1
(Hillebrands and Ounadjela, 2002).

1.3 Spin waves within the Heisenberg description

The spin-wave dispersion relation for high wave vectors is
determined by contributions of the exchange interaction. This
interaction can be considered in the Heisenberg model of
localized magnetic moments. This description is not expected
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Figure 4. (a) Example of recent neutron scattering measurements
of spin-wave excitations in hcp Co (Perring, Taylor and Squires,
1995). The left side shows a time-of-flight spectrum, transformed
back into energy space (for details see Perring, Taylor and Squires,
1995). In (b) the resulting spin-wave dispersion is shown. The
wave vector is normalized in this graph so that the Brillouin zone
boundary is at q/a∗ = 0.5. The solid line is a fit obtained by
a nearest-neighbor Heisenberg model. (Reproduced from Perring
et al., 1995.  1995 with permission from Elsevier.)

to be truly valid for the mobile conduction electrons, which
carry the magnetic moments in 3d metals; however, it
provides a simple description of the underlying physical
properties.

Using the Heisenberg Hamiltonian:

H = −
∑
ij

Jij Si · Sj (1)

the spin-wave dispersion can be calculated. Here, Jij is the
exchange-coupling constant between the magnetic moments
Si and Sj . It was found by Bloch that the Heisenberg
Hamiltonian allows low-energy collective excitations of

spins (Bloch, 1930, 1932). These spin waves are transverse
fluctuations of the magnetic moment. As an approximation,
a small angle of precession is assumed. In other words,
each magnetic moment is only a little tilted out of its
equilibrium position. For simplicity, we will consider only
nearest-neighbor exchange interactions and a constant value
of J and S (not depending on the position, i.e., equal at the
surface, interface, and bulk). By considering the exchange
interaction as torque acting on each magnetic moment, one
obtains the equation of motion from equation (1)

i�
dS+

i

dt
= 2JS

∑
j

[
S+

i − S+
j

]
(2)

For thin films, it is useful to consider solutions in the form
of waves in the film plane,

S+
i = Aie

i(Q‖(Ri−ωt)) (3)

Here Ai is the amplitude of the spin wave at position Ri, Q‖
is the wave vector parallel to the surface, and ω is the angular
frequency of the spin wave. From this, we find that

�ωAi = 2JS
∑

j

[
Ai − Aje

i(Q||(Rj −Ri))
]

(4)

This equation can be used as a starting point to derive the
spin-wave dispersion in an arbitrary crystalline structure.

For the direction perpendicular to the surface two types of
solutions are possible. One is a surface spin-wave mode that
has an excitation amplitude, which decays exponentially into
the bulk An+1 = Ane

−α
a0
2 . For the following it is interesting

to note that the decay factor α for the surface spin-wave
amplitude depends on Q‖. The surface localization of the
surface spin-wave mode increases with Q‖ and is highest at
the surface Brillouin zone boundary. The other solutions are
bulk spin-wave modes, here An+1 = Ane

iq⊥
a0
2 where q⊥is

the wave vector perpendicular to the surface.
For a semi-infinite system, one thus obtains a continuum

of bulk modes and one surface mode for each given Q‖. For
example, the spin-wave dispersion for the surface mode for
an face centered cubic (fcc) semi-infinite crystal with (001)
surface along the (110) direction calculated from equation (4)
is given by

�ω = 8JS

[
1 − cos

(
Q‖

a0√
2

)]
(5)

In the experiments shown later, the films under investi-
gation were only a few atomic layers thick. This can be
taken into account by considering a slab of n layers with two
surfaces. The introduction of a second surface leads to two
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surface modes in the system, one acoustic (i.e., the spin-wave
energy vanishes as q approaches 0) and one optical surface
mode. In addition to the two surface modes, n–2 dispersion
relations are obtained that belong to modes having a wave-
like character perpendicular to the surface (standing waves),
that is, of ‘bulk’ modes.

The results of the above calculations for an 8 ML fcc slab
and an fcc semi-infinite crystal are shown in Figure 5(a). In
Figure 5(b), the dispersions obtained from similar calcula-
tions for hexagonal closed packed (hcp) Co are presented.
These systems have been chosen because both have been
investigated and are discussed in the following text. The only
free parameter in these calculations is the value of JS. For the
two dispersions shown, we have chosen JS = 15 meV. The
eight dispersions of the spin waves in the slab are represented
by solid lines. The two surface modes of the slab calcula-
tions are the lowest energy branches of the eight modes. The
acoustic mode of the surface spin wave of the 8 ML slab falls
on a line with the surface spin-wave mode of the semi-infinite
crystal. Noticeable differences between both of these surface
modes appear only for very thin slabs, as discussed later. The
above derivation of the spin-wave dispersions has been done
in a classical description. Though the quantum-mechanical
derivation is more appropriate, the spin-wave dispersion is
one of the cases where both descriptions yield exactly the
same results (Nolting, 1986).

The spin-wave energy of the acoustic branch at small wave
vectors can be approximated by

�ω = 2JSa2
0Q

2
‖ = DQ2

‖ (6)

Here, D is the so-called spin-wave stiffness. In many
experiments, the wave-vector transfer is limited to small

values so that the equation (6) is valid. In these cases, the
quantity published in literature is typically the spin-wave
stiffness.

The Heisenberg model is valuable, especially because of
its simplicity. It has already been mentioned that it is not
expected to be applicable to an itinerant electron system.
Nevertheless, we will see later that several of our results are
described surprisingly well within this model. Other findings,
however, can only be understood in an itinerant electron
description. Therefore, in the following, an introduction to
magnetic excitations in an itinerant electron model is given,
with emphasis on the differences to the results mentioned in
the preceding text.

1.4 Magnetic excitations in itinerant electron
ferromagnets

In the 3d-magnetic metals, the conduction electrons that
are the carriers of magnetic moments cannot be considered
as localized at a particular position, but as itinerant. The
discussion of magnetism in such itinerant electron systems
goes back to Stoner (1936, 1938). Magnetic order results in
an exchange splitting of the electron bands, which causes a
higher occupation of states for electrons of one spin direction
(majority electrons) compared to the other spin direction
(minority electrons).

The magnetic excitations allowed in the model are the
so-called Stoner excitations. The original Stoner model
overestimated the Curie temperature for magnetic order
substantially, because no collective spin excitations were
taken into account. This led to an overestimation of the
minimum energy for magnetic excitations. The consideration
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Figure 5. Spin-wave dispersions calculated within a nearest-neighbor Heisenberg model as a function of Q‖ for an 8 ML slab (solid lines)
and a semi-infinite crystal (gray area). In (a) calculations have been performed for an fcc crystal with a (001) surface and in (b) for a hcp
crystal with a (0001) surface. In these calculations JS = 15 meV. The symbols on the top axis mark the important points in the surface
Brillouin zone.
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of low-energy collective excitations within the itinerant
electron model is needed to describe the experimentally
observed Curie temperature. Collective excitations were
introduced by Slater (1937) for an itinerant electron system
in which all electron spins in the system are of majority
character except for one. He found that the lowest energy
magnetic excitations of such a system are of collective
nature. This state can be described by the superposition of
single particle states and represents the correlated motion
of the spin-reversed electron and the hole it left in the sea
of aligned electrons (Martin, 1967). It was found that its
properties are similar to the spin-wave excitations in the
localized model (Slater, 1937). The extension of the model
derived by Slater to more realistic itinerant metals has been
performed by Herring and Kittel (1951) and Herring (1952).
The general finding is that collective excitations exist in an
itinerant electron system and that they have similar properties
compared to the well-defined spin waves in a localized model
in the limit of low wave vectors and low energies. For
example, in this limit a quadratic dispersion relation of these
excitations was found (Herring and Kittel, 1951), as in the
Heisenberg model (see equation (6)). At high wave vectors
and energies, Stoner excitations are possible in itinerant
electron systems. A correlated electron–hole pair that is
created in the region where Stoner excitations are possible
can easily decay into such uncorrelated states. Therefore,
in the region in which Stoner excitations are possible,
the collective excitations are not well-defined long-living
spin waves, but they are strongly damped (Herring, 1966).
The general concept of magnetic excitations in itinerant
ferromagnets is summarized in Figure 6.

As a simple, one-dimensional example, in Figure 6(a) one
pair of exchange split bands is shown. The exchange splitting
is assumed to be identical to U over the entire Brillouin zone.
The majority band lies completely below EF to represent
a strong ferromagnet. The energy and wave-vector transfer
needed to excite a Stoner excitation of an electron from an
occupied majority state to an unoccupied minority state is
shown in Figure 6(b) as a gray area. For strong ferromagnets,
the minimum energy for Stoner excitations, the Stoner gap
�, is given by the distance between the majority band and
EF . A possible acoustic spin-wave branch is also shown
in Figure 6(b) as a black line. When the spin-wave branch
enters the Stoner continuum it is strongly damped. This range
of the dispersion is presented as a dotted line. The real
physical situation is only partly described by Figure 6. For
example, realistic band structures consist of more than one
band, and s bands of both spin characters cross the Fermi
edge so that no true overall Stoner gap exists. In our studies,
we investigate spin waves at surfaces by electron scattering.
In this case, additional effects have to be considered. It
has been theoretically predicted that in inelastic electron

scattering experiments, the creation of free electron like
Stoner excitations is as probable as a creation of d-electron
Stoner excitations (Penn and Apell, 1988); the calculations
have been performed for Fe; however, it can be assumed
that similar effects may also occur in Co. In addition, at the
surface the wave vector perpendicular to the surface has not
been conserved owing to the loss of translational invariance.
Both considerations lead to drastic changes compared to
what has been shown in Figure 6. Large parts of the Stoner
excitation free area for Q‖ are then filled owing to possible
excitations having a finite q⊥ (Tang, Plihal and Mills, 1998).

With the advance of theory, it became feasible to calcu-
late the above described magnetic excitation spectrum in bulk
itinerant ferromagnets on the basis of ab initio calculations
(Savrasov, 1998). Such calculations, however, have not been
made for surfaces and thin films. Other approaches are used,
starting from an ab initio calculation of the underlying band
structure. One frequently used approach is based on the adi-
abatic approximation, in which the electron motion is decou-
pled from the spin motion (see, e.g., Katsnelson and Lich-
tenstein, 2000; Frota-Pessôa, Muniz and Kudrnovský, 2000;
Halilov, Eschrig, Perlov and Oppeneer, 1998; van Schilf-
gaarde and Antropov, 1999; Pajda et al., 2000; Grotheer,
Ederer and Fähnle, 2001; Udvardi, Szunyogh, Palotás and
Weinberger, 2003; and references therein). Therefore, the
damping of spin waves by Stoner excitations is not taken into
account. As discussed in the preceding text, this is a good
approximation in itinerant electron systems only in the limit
of low wave vector and low-energy spin waves. In principle,
these calculations map the itinerant ferromagnetism onto a
Heisenberg like description. Several publications gave values
for the exchange-coupling constants derived this way (Pajda
et al., 2000; Grotheer, Ederer and Fähnle, 2001; Razee,
Staunton, Szunyogh and Györffy, 2002).

The other approach goes beyond the adiabatic approxi-
mation. This is a nontrivial extension of the model using
the adiabatic approximation, because one has to take into
account the full dynamics of the system (Cooke, Blackman
and Morgan, 1985; Blackman, Morgan and Cooke, 1985;
Trohidou, Blackman and Cooke, 1991; Bass, Blackman and
Cooke, 1992; Tang, Plihal and Mills, 1998; Plihal, Mills
and Kirschner, 1999; Hong and Mills, 2000a; Muniz and
Mills, 2002; Muniz, Costa and Mills, 2003; Costa, Muniz and
Mills, 2003, 2004a,b). This description includes the damp-
ing of spin waves caused by Stoner excitations and therefore
this theory is expected to be valid throughout the Brillouin
zone. So far, these calculations were only possible using an
empirical tight binding description of the underlying band
structure (Trohidou, Blackman and Cooke, 1991; Tang, Pli-
hal and Mills, 1998; Hong and Mills, 2000a; Costa, Muniz
and Mills, 2004a). In a recent series of publications, Mills
and coworkers applied this theory to magnetic thin films of
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Figure 6. (a) Pair of exchange split bands with the majority band completely below the Fermi energy EF (by the amount �) to represent a
strong ferromagnet. The exchange splitting parameter U is assumed to be constant in the entire Brillouin zone. (b) The gray region shows
the low-energy part of the Stoner spectrum calculated for the band shown in (a). At q = 0 the creation of a Stoner excitation costs an
energy which is equal to U . The minimum energy of the Stoner excitations is equal to � and is located at some higher wave vector. To
give a general idea, a possible spin-wave dispersion (not calculated from the bands shown in (a) is included in (b)).

Fe, Ni, and Co (Plihal and Mills, 1998; Plihal, Mills and
Kirschner, 1999; Hong and Mills, 2000a; Muniz and Mills,
2002; Muniz, Costa and Mills, 2003; Costa, Muniz and Mills,
2003, 2004a,b). These calculations showed that the damping
of spin waves caused by Stoner excitations is strong in these
films. As shown in the last section, within the Heisenberg
model one expects as many spin-wave modes at a given
Q‖ as layers are contained in the film. In the itinerant elec-
tron theory that goes beyond the adiabatic approximation,
this picture changes drastically. Instead of a number of dis-
crete modes each of zero width, the theoretical calculations
show only one broad feature (Costa, Muniz and Mills, 2003,
2004a). This arises from the strong damping and smearing
of the different modes. They overlap and can hardly be dis-
tinguished from each other (Costa, Muniz and Mills, 2004b).

In this section, two different theoretical concepts of mag-
netism have been introduced, in which high wave-vector spin
waves show a different behavior. In the following, we will
concentrate on spin waves in 3d metals, in which the elec-
trons that carry the magnetic moments have itinerant charac-
ter. Nevertheless, we will discuss our results to some extent
in a nearest-neighbor Heisenberg model. Of course, several
questions concerning the validity of such a description arise.
As discussed in the preceding text, high wave-vector spin
waves in this system are expected to be heavily damped. It
is expected that this damping not only influences the spectral
shape of the spin waves but also effects the dispersion (Costa,
Muniz and Mills, 2004b). In addition, a questionable assump-
tion is that only nearest-neighbor interactions are included in

our calculations. As is shown later, it seems possible to take
some of the above-mentioned criticism into account by an
effective nearest-neighbor exchange-coupling constant in the
Heisenberg model.

2 EXPERIMENTAL RESULTS

In this section, results of investigations of spin waves by
SPEELS are presented. As model examples, the systems fcc
Co on Cu(001) and hcp Co on W(110) are discussed. Some
of the experimental capabilities of the SPEELS technique
are demonstrated using these systems. In addition, some
results obtained on tetragonal distorted Fe on Co/Cu(001)
are mentioned.

2.1 SPEELS measurements of Co on Cu(001)
and Co on W(110)

Figure 7 shows some representative SPEEL spectra of I↑
and I↓ measured on 8 ML fcc Co on Cu(001) (a) and on
8 ML hcp Co on W(110) (c). For the SPEELS measurements
of fcc Co on Cu(001), the [110] direction of the Cu
crystal was oriented parallel to the scattering plane. Thus,
the measured wave-vector transfer was along the � − X

direction in the surface Brillouin zone (see inset Figure 7b).
The magnetization direction of the Co film was perpendicular
to the scattering plane, along [110], if not quoted otherwise.
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Figure 7. SPEEL spectra of I↑ and I↓ measured on 8 ML fcc Co on Cu(001) (a) and on 8 ML hcp Co on W(110) (c). The spectra have

been recorded at a wave-vector transfer of �K‖ = 0.78 Å
−1

. In Figure 7(b/d) the difference spectra of (a/c) are shown. The solid curves
show fits of the difference spectra (see text for details). The insets give the reciprocal space representation of the fcc Co(001) and hcp
Co(0001) surface, respectively. The arrows in the insets mark approximately the position of the wave vector at which the spectra were
recorded. For the spectra in (a) Ekin = 7 eV and θ0 = 90◦ and in (c) Ekin = 4 eV and θ0 = 80◦. The energy resolution in these scans was
�E ≈ 40 meV.

For the measurements of hcp Co on W(110), the scattering
plane was chosen along the Co[1120] axis, which is parallel
to the W[001] axis. This corresponds to the � − K direction
in the reciprocal space (see inset Figure 7d).

All spectra plotted in Figure 7 have been recorded at a
wave-vector transfer of �K|| = 0.78 Å

−1
, which corresponds

approximately to the reciprocal space position pointed out by
the arrows in the insets of Figure 7(b/d). The solid and open
triangle symbols mark the measured intensities of I↓ (incom-
ing electron spin of minority character) and I↑ spectrum
(incoming electron spin of majority character), respectively.
The intensities of these as well as the following spectra
have been corrected for the incomplete spin polarization of
the incident electron beam (which has been determined in
an independent scattering experiment to 0.79 ± 0.1 in this
case). In the I↓ spectra, a prominent loss feature centered at
about 170 meV is visible. This peak is caused by the exci-
tation of spin waves by the inelastic scattering of electrons,
as shown in the following text. In the spectra measured on
hcp Co (Figure 7c) additional loss features show up in both
spin channels. These can be attributed to the (almost) spin
independent scattering processes of vibrational excitations

of small amounts of adsorbates as discussed in more detail
later.

As can be seen in Figure 7(a/c), the energy loss around
170 meV is only present in the I↓ spectra. This spin-
selective excitation can be understood on the basis of the
considerations given in the previous section. Since the total
magnetic moment is conserved during the scattering process,
the incoming electron has to transfer its spin magnetic
moment to the crystal to reduce the magnetic moment of
the latter. The incident electron has to have minority spin
character and the outgoing electron, majority spin character
to excite a spin wave and to fulfill the conservation law. Thus,
this scattering event is only possible for an incoming electron
of minority spin character. This spin-selective excitation
process is a fingerprint of spin-wave excitations. Its unique
character can be used to improve the spin-wave signal-
to-background ratio by looking at the difference spectrum
(I↓ − I↑). The difference spectra obtained from the spectra
in Figure 7(a/c) are plotted in Figure 7(b/d). Assuming a
spin-wave peak and a background of electron–hole pair
excitations we are able to describe the difference spectra. The
spin-wave peak is described well by a Gaussian peak and the
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background with a second-order polynomial. The resulting
fit curves of the spectra are presented in Figure 7(b/d) as
solid lines. The two contributions for the spin wave and
the background are indicated separately dashed and a dotted
line, respectively. The energy resolution for the spectrometer
in this scan was �E ≈ 40 meV full-width at half-maximum
(FWHM) and the peak width of the spin-wave signal is
about 75 meV (FWHM) for fcc Co and about 90 meV for
hcp Co. The measured width is, therefore, not determined
by the spectrometer resolution, but the loss features have an
intrinsic width (Vollmer et al., 2003; Etzkorn et al., 2005).

The background is caused by the excitation of elec-
tron–hole pairs, which can be assumed to be partially
Stoner excitations. Beside the spin-wave excitations, the elec-
tron–hole pair excitation processes also depend on the spin
direction of the incident electron. It is known that both
I↓ and I↑ contain spin flip and nonspin flip processes of
electron–hole pair excitations (Hopster, Raue and Clauberg,
1984; Kirschner, Rebenstorff and Ibach, 1984; Kirschner,
1985b; Abraham and Hopster, 1989; Hopster and Abraham,
1989; Kämper, Abraham and Hopster, 1992). The intensity
in the different spin channels can often be explained by the
spin dependent density of occupied and unoccupied states.
In the spectra, Stoner excitations appear as a broad feature
with loss energies ranging from very low energies up to sev-
eral electronvolts. Only little structures as a function of the
loss energy have been observed. One study of Stoner exci-
tations using a ‘complete’ experiment was performed on Co
on Cu(001) (Kämper, Abraham and Hopster, 1992). It was
found that all the four spin channels contribute strongly to
the intensities at energy losses higher than 300 meV. The
energy resolution in these experiments was about 300 meV
so that the measurements below this loss energy are difficult
to interpret. If one assumes that all spin channels contribute
to the background also in the low-energy loss range, a sig-
nificant amount of Stoner excitations should be possible in
the energy range of spin-wave excitations. Thus, the damp-
ing of the spin waves due to the decay into these Stoner
excitations provides a likely explanation for the measured
spin-wave width.

Figure 7(a/c) displays the count rate in electron counts
per second. The spin-wave intensity measured under these
scattering conditions (for details, see figure caption) is about
1.5 × 103 counts per second using a flux of the incident
electron beam of the order of 20 nA, that is, ≈ 1011 electrons
per second. With this, the spin-wave intensity is of the order
of a few percent of the elastically scattered electron intensity.
These high intensities allow relatively short measuring times.
The spectra shown in Figure 7(a/c), for example, were
measured in about 30 min, only.

The spin-wave energy and shape are rather similar for
both spin-wave loss features measured on the two crystalline

Co phases (Figure 7), but the background of electron–hole
pair excitations is different for the two. Another aspect
is the varying amount of vibrational losses present in the
spectra. More and stronger vibrational losses caused by
small amounts of contaminations (residual gas adsorbed at
the surface) are visible in the spectra measured on Co on
W(110), though the vacuum conditions were similar in both
studies. In the spectra shown in Figure 7(c), the vibrational
loss features can be attributed to an H-metal vibration
(140 meV) and probably to an H2O vibration (450 meV). The
energy values are in agreement with literature values (Ibach
and Mills, 1982). The H vibration was cross-checked by
additional adsorption studies. From these adsorption studies,
it is also possible to estimate the amount of adsorbates. The
H-loss peak in Figure 7(c) corresponds to about 10% of the
saturation coverage.

To test the magnetic origin of the spin dependent excitation
of the spin-wave loss feature, we use a fundamental symme-
try argument. An important consequence of the spin-selective
excitation of spin waves is that when the magnetization of
the sample is reversed, the peak of the spin-wave loss feature
should appear in the ‘opposite’ spin channel. This is simply
because the definition of majority and minority spin reverses.
The proof of the magnetic origin of the loss feature is shown
in Figure 8. Here, two spectra were measured under iden-
tical conditions, except that the sample magnetization was
reversed. The spectra indicated with M are measured on a
Co film, which had the ‘normal’ direction of the magnetiza-
tion. In this case also the normal notation of majority and
minority spin character is used. These spectra are presented
as triangles and solid circles for the difference. The star sym-
bols in Figure 8(a) and the open circles in Figure 8(b) show
the spectra measured on the reversely magnetized Co film
(–M). For these spectra, the notation majority and minor-
ity might be confusing. Therefore, the spectra are assigned
as ‘the same’ channel. The spin direction of the incident
electrons (not with respect to the sample magnetization) was
the same for the spectra with open and solid symbols in
Figure 8(a). The main result of these measurements is that
by reversing the magnetization of the sample, the spectra
measured for the two incoming spin directions interchange
almost ideally. This holds true, in particular, for the spin-
wave feature. Thus, we have proved that the spin-selective
excitation is of magnetic origin, as expected for a spin-
wave excitation. In addition, scattering contributions to this
spectra caused by spin-orbit coupling (that do not change
the sign upon magnetization reversal) are seen to be neg-
ligible in this case. Since the spin-orbit contributions are
small, as expected for 3d metals, they will not be considered
here.

Another important characteristic of spin waves is their
dispersion. Since the measured loss features are attributed
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Figure 8. Comparison between SPEEL spectra and their differences measured on oppositely magnetized films. Both measurements were
taken on 8 ML Co on Cu(001), with �K‖ = −0.81 Å

−1
, Ekin = 7 eV, and θ0 = 90◦. In the measurements marked with M the magnetization

lies in the ‘normal’ direction, along [110] (triangles and solid dots). For the measurements labeled as −M , the magnetization was rotated
by 180◦ (stars and open dots). Note that for the difference spectrum recorded with −M , the negative difference is shown.

to a spin wave, they should move to higher energies for
higher wave-vector transfers, assuming an acoustic spin-
wave branch.

In Figure 9, SPEEL spectra measured on an 8 ML Co film
on Cu(001) at different wave-vector transfers are presented.
Here, the measured intensity at each energy loss was divided
by the intensity of the elastically scattered electrons to obtain
the normalized intensity. Figure 9(a/b) show the normalized
intensities for negative and Figure 9(c/d) for positive wave-
vector transfers. For low absolute values of the wave-vector
transfer, the spin-wave losses appear as a shoulder in the
elastic peak. For higher wave-vector transfers, the spin-wave
loss feature shifts to higher loss energies as a result of its
dispersion.

So far, the presented results were measured on 8 ML Co.
Because of the short mean free path of low-energy electrons,
this can be considered as a relatively thick film for such an
experiment. SPEELS measurements on thinner Co films have
been made to investigate the influence of reduced dimensions
on the spin waves and to test the capabilities of this method
(Etzkorn et al., 2004). As an example, SPEEL spectra
measured on 5 ML and on 2.5 ML Co films on Cu(001) are
shown in Figure 10(a/b) and (c/d), respectively. It is obvious
that even for 2.5 ML Co, the spin-wave loss features are
clearly visible in the spectra, though the spin-wave intensities
are reduced (note that the normalized intensity scales for
the two film thicknesses differ by a factor of 2). From
the measured signal-to-noise ratio, one may speculate that
it should be possible to investigate spin-wave excitations
by SPEELS in submonolayer quantities of magnetic films.
Beside the spin-wave signal, other loss features are present

in the spectra, especially in the spectra of 2.5 ML Co. These
losses were excited for both spin directions of the incoming
electrons and do not show dispersion. They can be attributed
again to vibrational losses caused by traces of adsorbates on
the surface. Mainly a loss feature at about 230 meV is visible,
which can be assigned to CO vibrations (Ibach and Mills,
1982). We have confirmed this by additional adsorption
studies, too.

In the SPEEL spectra given in Figures 9 and 10, a clear
dispersion of the spin-wave peak is visible. From these
spectra, one can determine the energy position of the spin
waves as a function of the wave-vector transfer. The resulting
dispersion curves are presented in Figure 11. Additional
data have been measured at and beyond the Brillouin zone
boundary (X). They are also plotted in Figure 11 to confirm
that the measured spin-wave dispersion obeys the periodicity
of the surface Brillouin zone.

In the previous section, the spin-wave dispersion within
a nearest-neighbor Heisenberg model was calculated for a
semi-infinite fcc crystal along the � − X direction. The
resulting dispersion relation of the surface spin-wave mode
was given in equation (5). We have fitted this dispersion
relation to the measured data for 8 ML Co on Cu(001). The
result is plotted as a solid line in Figure 11. A surprisingly
good agreement is found between the experimental data and
the calculated dispersion of the surface spin-wave mode.
Note that the shape of the calculated dispersion is fully
determined by the crystalline structure and geometry of the
system. The only fit parameter used in this model is the
product of the exchange-coupling constant and the magnetic
moment (JS). It defines the amplitude of the dispersion, in
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Figure 9. SPEEL spectra of 8 ML Co on Cu(001) with Ekin = 6.5 eV and θ0 = 90◦, taken at different wave-vector transfers, which are
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presented. All intensities are normalized with respect to the intensities of their elastic peaks. Each adjacent spectrum has an offset of 0.025
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offset of 1/16 of the total scale (one minor tick) to allow better comparison. All spectra were taken with Ekin = 7 eV and θ0 = 90◦.

other words, the spin-wave energy at the surface Brillouin
zone boundary. The value of JS resulting from the fit shown
in Figure 11 is JS = 15 ± 1 meV. This value is in perfect
agreement with the value of JS = 14.7 ± 1.5 meV which
was obtained by neutron scattering experiments for bulk spin

waves in fcc Co (with 8% Fe to stabilize the fcc phase at
room temperature) (Sinclair and Brockhouse, 1960; Pickart
et al., 1967).

At first glance, the dispersions of the three different film
thicknesses are similar. A closer look, however, reveals
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Figure 11. Spin-wave dispersion for 8, 5, and 2.5 ML Co on
Cu(001) measured by SPEELS. The data points represent the energy
position of the maximum of the spin-wave peaks, as determined
from the data presented in Figures 9 and 10. The solid and
the dashed lines are dispersions of the surface spin-wave mode
calculated within a nearest-neighbor Heisenberg model with JS =
15 meV for a semi-infinite film and a 2 ML slab, respectively.
Measurement with wave vectors at X and at �K‖ = −1.40 Å

−1

were taken with Ekin = 7 eV and θ0 = 80◦. The data point at
�K‖ = −1.49 Å

−1
was taken with Ekin = 8 eV and θ0 = 80◦.

that there are small but noticeable differences between the
dispersions of the different films. Although there is some
scattering in the data, a clear tendency is visible that the spin-
wave energies are reduced for thinner films for wave vectors
not too close to the surface Brillouin zone boundary. Close to
the surface Brillouin zone boundary, the spin-wave energies
are independent on the thickness within the error bars. As a
comparison, the calculated dispersion relation of the surface
mode of a 2 ML slab is added in Figure 11 as a dashed
line. For this calculation, we used a value of JS = 15 meV,
again. For intermediate wave vectors, the calculated spin-
wave energies for the 2 ML slab lie below that for an 8 ML
slab (or the semi-infinite crystal). At the surface Brillouin
zone boundary, however, both curves meet. This behavior
describes the experimental findings very well. Although JS
is the same, the calculated dispersions are different because
of the surface localization of a surface spin-wave mode and
the reduced thickness of the slab. The surface localization
increases with increasing wave vector of the spin waves.
In the nearest-neighbor Heisenberg model, the spin wave
is completely localized in the surface layer at the surface
Brillouin zone boundary. Since the interactions in the model
are limited to the nearest neighbors, it does not make any
difference for X whether the film is only 2 ML thick or
semi-infinite. For lower wave vectors, the spin wave is less
localized at the surface and therefore the absence of magnetic

atoms below the second layer in the slab configuration
reduces the spin-wave energy.

A compact representation of the main results on spin-
wave excitations obtained by SPEELS measurements is a
contour plot of the measured intensity of the spin waves as
a function of the wave vector and energy transfer. Figure 12
shows such a contour plot of the spin-wave losses obtained
from the spectra shown in Figure 9 that were measured on
8 ML fcc Co on Cu(001). The plotted intensities show the
difference of the I↓ and I↑ spectra after the subtraction of the
electron–hole pair background. Here, the lines connect points
of equal spin-wave intensities in energy and wave-vector
space. They are interpolated linearly between the measured
points. The underlying grid represents the density of the
measured data points.

The contour plot allows one to follow how the spin-wave
excitations evolve in the spectra with increasing wave-vector
transfers. For low wave vectors, the spin-wave losses start as
an intense and relatively narrow feature and they end as low
intensity broad humps at high wave vectors. The dispersion
derived from the nearest-neighbor Heisenberg model for
JS = 15 meV is added as a solid line in Figure 12. As already
shown, this dispersion matches the measured dispersion
well (compare also Figure 11). Deviations between the
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Figure 12. Contour plot of the spin-wave intensities measured by
SPEELS. The graph represents the difference spectra measured on
8 ML Co on Cu(001) from which the background of electron–hole
pair excitations were subtracted. The original spectra were shown
in Figure 9. The contour lines connect points of the same intensity.
Between the measured points, the intensity was linearly interpolated.
The density of the measured data is illustrated by the underlying
grid. Between adjacent dark (light) gray contour lines the intensity
changes by 200(1000) counts/second. The outermost contour line
marks the intensity of 200 counts per second. The thick solid
line represents the surface spin-wave dispersion derived from the
nearest-neighbor Heisenberg model for JS = 15 meV (see also
Figure 11).
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experimental data and the calculated dispersion occur mainly
for high wave vectors on the negative wave-vector side.
In this region, these deviations can be partially attributed
to the underestimation of the (subtracted) background of
electron–hole pair excitations by the fitting routine (see also
Figure 7).

One should note that the interpretation of this graph is
rather difficult. For example, the excitation mechanism of the
creation of a spin wave by an electron is not fully understood.
Therefore, the drop of the spin-wave intensity for higher
wave vectors can be related to either a drop of the excitation
probability or a drop of the spin-wave intensity itself. As
discussed later in more detail, there are arguments to assume
the drop to be mainly caused by the scattering process. The
unknown excitation process also leads to the difficulty that
spectra taken at different scattering conditions cannot be
transformed into each other. Therefore, in the graph shown
in Figure 12, only spectra are presented which were taken
with the same Ekin and θ0. Nevertheless, Figure 12 gives
a good summary of the results obtained by the SPEELS
measurements.

Also, in the SPEELS measurements on hcp Co on W(110),
the spin-wave loss feature shows a well-defined dispersion.
As visible in Figure 7, the spin-wave energies at �K‖ =
0.78 Å

−1
are similar for both the hcp and the fcc Co phase.

At higher wave vectors, however, a significant difference
between the two spin-wave dispersions occurs. This is
illustrated in Figure 13 in which the measured spin-wave
dispersions for 8 ML fcc Co and 8 ML hcp Co are plotted
together with the measured spin-wave width in both systems.
Owing to the different crystallographic orientations in which
the spin waves are measured the dispersion relations are
different in both cases. The calculated dispersion relation
for the hcp crystal within the nearest-neighbor Heisenberg
model for the surface mode of a semi-infinite crystal along
� − K is

Esw(Q||) = 16

3
JS

[
3 − cos(a0Q||) − 2 cos

(
a0Q||

2

)]
(7)

This dispersion relation has been fitted to the measured
data. The result is added as a black line in Figure 13(a).
From the fit of the dispersion, we obtain a value of JS =
14.8 ± 1 meV. The agreement between the experimental data
and the Heisenberg model is again fairly good. The value of
JS is similar to the value obtained from the dispersion in
fcc Co on Cu(001). We can conclude that the differences
in the spin-wave energies in the two dispersions measured
on fcc and hcp Co are due to the different crystallographic
directions in which the spin-wave energies are measured,
whereas the strength of the exchange coupling is similar in
both crystallographic lattices. The fact that the value of JS
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Figure 13. (a) Spin-wave dispersion of 8 ML Co on W(110)
measured by SPEELS. The solid line represents a fit to the data
with the dispersion of the surface mode of a semi-infinite crystal
calculated within a nearest-neighbor Heisenberg model (see text
for details). For comparison, data obtained for 8 ML fcc Co on
Cu(001) is also plotted. The surface Brillouin zone is marked for
both systems. In (b), the width of the spin-wave peak obtained from
the SPEEL spectra for both fcc and hcp is given. The width has been
corrected for the finite energy resolution of the spectrometer. The
large error bars for the highest wave-vector transfers are caused by
the low spin-wave intensities in the SPEEL spectra in this region.
The low intensity is due to the combined effect of a drop of the
excitation probability with both larger Ekin and higher wave-vector
transfer as discussed later.

is similar in both cases is not necessarily expected since
the crystal structure is different and the nearest-neighbor
distance is slightly changed (2.55 Å for fcc Co and 2.51 Å
for hcp Co). The value of JS obtained from Co on W(110)
is again in relatively good agreement to neutron scattering
experiments performed on bulk hcp Co (Perring, Taylor and
Squires, 1995) as discussed later.

In addition to the spin-wave energies, the spin-wave width
obtained from the measurements is plotted in Figure 13(b).
The width is rather large and has a similar behavior as
a function of the wave vector in both cases. The width
measured for hcp Co is larger by about 15 meV compared to
the width for fcc Co at each wave vector. One can speculate
about possible reasons for this increased width. It may result
from the different electronic structure, the crystalline quality,
or the influence of the substrate. Since, for high wave vectors,
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surface spin waves are largely confined in the topmost layers,
the influence of the substrate should be rather small for
an 8 ML thick film. In addition, we found a very similar
spin-wave width for 3 (not shown) and 8 ML Co films on
W(110) which suggests that the effect of the substrate may
not to be the dominating contribution in this case. Instead,
it could well be that the substantially larger amount of
crystalline imperfections in hcp Co on W(110) causes an
enlarged damping and thus a larger spin-wave width (Etzkorn
et al., 2005).

2.2 SPEELS measurements of 3 ML Fe on 1 ML
Co on Cu(001)

In addition to the studies of spin waves in the two crys-
tallographic orientations of cobalt, we have also examined
spin waves in another ferromagnet that is iron. Here, we
shortly mention a study of spin waves in Fe on Cu(001). This
system is of particular interest in the field of magnetism in

thin films, because it has the tendency to be antiferromag-
netic for ultrathin films (Li et al., 1994; Ellerbrock et al.,
1995; Keavney et al., 1995). Fe is stabilized on Cu(001) in
a strongly, rather complex tretragonal distorted lattice below
thicknesses of about 12 ML (Thomassen et al., 1992; Müller
et al., 1995; Biedermann, Tschelieβnig, Schmid and Varga,
2001). In the low-thickness regime, up to 3 ML, the Fe orders
ferromagnetically, but above, a more complex magnetic order
is observed. Above 12 ML thickness, the Fe retains a bulk
like bcc phase and also the magnetic properties are bulk like
(Thomassen et al., 1992).

Ultrathin Fe layers grown on Cu have their easy axis of
magnetization perpendicular to the surface plane (Thomassen
et al., 1992; Li et al., 1994). The projection of the spin of
the incident electrons onto the magnetization direction for
a perpendicularly magnetized sample would be zero in the
SPEELS experiments. To exploit the defined spin direction
of the incident electron, the easy axis of magnetization of
the system must be brought into the surface plane. For
that reason, we grew the Fe films on a Cu(001) substrate
predeposited with 1 ML Co. This switches the easy axis of
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Figure 14. SPEEL intensities and difference spectra measured on 3 ML Fe on 1 ML Co on Cu(001). The wave-vector transfers were 0.5 Å−1

(a/e), 0.81 Å−1 (b/f), 1.03 Å
−1

(c/g), and 1.17 Å
−1

(d/h), respectively. The measured intensity has been multiplied by the number marked in
each spectrum. The dominating loss feature in the intensity spectra itself is a vibrational excitation of H. In the difference spectra, however,
the spin-wave loss peak is still prominently visible. The difference spectra are calculated as I↓ − αI↑, where α is a weighting factor that is
chosen so that the difference vanishes at 0 meV loss energy (see text for details). Spectra have been recorded with Ekin = 7 eV, θ0 = 90◦,
and an energy resolution of 38 meV.
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magnetization of the entire film into the surface plane along
a [110] direction but leaves all other properties of the film
nearly unchanged (O‘Brien and Tonner, 1995; Torija, Pierce
and Shen, 2001).

In Figure 14(a–d), the energy loss spectra measured on
3 ML Fe on 1 ML Co on Cu(001) are shown for different
wave-vector transfers. The spectra are dominated by contri-
butions of the vibrational excitation of H at about 120 meV
loss energy. By exploiting the spin-dependent excitation pro-
cess of spin waves and calculating the difference of I↓ and
I↑, the H contribution vanishes and one still finds a quite
pronounced spin-wave feature. The spin-wave energies in
this system are rather low and the low-energy side of the
spin-wave loss feature might be influenced by spin depen-
dent contributions of the elastic peak. To reduce the influence
of these contributions to the difference spectra, the difference
has been calculated as I↓ − αI↑. Here, α is a weighting factor
which was chosen so that the difference vanished for 0 meV
loss energy. For all spectra shown α is a number close to 1,
since the spin dependent contributions to the elastic peak are
rather weak in these spectra. To ensure that the spin-wave
feature in the difference spectra are not altered by remaining
contributions of the elastic peak, we have performed mea-
surements with increased energy resolution (23 meV com-
pared to 38 meV). The difference spectra obtained from these
high-resolution measurements at 0.81 Å

−1
are also included

in Figure 14(f) as open circles. They have been scaled to
match the intensity at the spin-wave maximum. It is obvi-
ous from the agreement of the two shapes that the spin-wave
loss feature is well resolved at least for wave-vector transfers
above 0.81 Å

−1
.

One can also see that the spin-wave loss feature in this
system is very broad and not of Gaussian peak shape. The
FWHM of the spin-wave loss peaks are about the same as
the spin-wave energy at each wave vector.

The spin-wave dispersion and also the width of the spin-
wave loss peak measured on 3 ML Fe film on 1 ML Co
on Cu(001) is shown in Figure 15. For this system, the
experimental dispersion curve cannot be fitted well by the
Heisenberg model using only one value of JS for the entire
Fe film. If we assume, however, that the exchange-coupling
constant at the surface layer (J1) is enhanced by a fac-
tor of 2, with respect to the J in the interior of the
film, the spin-wave mode of the (modified) nearest-neighbor
Heisenberg model fits quite well the experimental data with
a value of JS = 5.8 meV (thick solid line in Figure 15)
(Vollmer et al., 2004b,c). Such an increased J1 at the sur-
face is generally expected from theoretical calculations for
many magnetic films (Pajda et al., 2000; Razee, Staunton,
Szunyogh and Györffy, 2002). The experimentally mea-
sured results for the Fe film on 1 ML Co on Cu(001) are
compatible with theoretical expectations, while for the Co
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Figure 15. The spin-wave dispersion of the spin waves measured
on 3 ML Fe on 1 ML Co on Cu(001). The vertical lines represent
the energy range for which the spin-wave peak intensity is larger
than half of its maximum intensity. The solid line is a dispersion
calculated with a modified Heisenberg model (see text for details).

films, a strongly increased J1 is in disagreement with the
description of the measured dispersion using the Heisen-
berg model. The large width of the spin-wave excitation in
the Fe indicates an extremely strong damping of this exci-
tation, as discussed in more detail in the next section. It
might well be that for such a drastic damping in this sys-
tem the Heisenberg model fails to describe the properties of
spin waves. Independent of the model describing the mea-
surements the data show that the spin-wave energies are
significantly reduced compared to results from bulk Fe. This
reduction can be seen in the spin-wave stiffness of about
D = 150 ± 10 meVÅ

2
that can be estimated from our data

of the tetragonally distorted Fe. This is much lower than the
spin-wave stiffness of 260–280 meV Å

2
measured for bulk

bcc Fe (Mook and Nicklow, 1973; Yethiraj et al., 1991). The
reduction is much stronger than what can be estimated to
result from reduced thicknesses or surface mode properties
(compare Figure 11). Thus, it may be attributed to the dif-
ferences in the exchange interaction of the two crystalline
phases of Fe.

The spin-wave loss features measured by SPEELS have
been typically measured with a low kinetic energy of the
incident electrons (typically Ekin < 10 eV). At this energy,
the spin-wave peaks are relatively intense in the measured
spectra. The measured spin-wave intensity, however, strongly
depends on the Ekin. This is illustrated in Figure 16 for
the three systems that have been presented, fcc Co, hcp
Co, and Fe on Co/Cu. The key feature in these graphs is
the strong enhancement of the spin-wave intensities below
Ekin = 10 eV. At these low primary energies, the intensity
of the spin-wave signal is enhanced by more than an order
of magnitude. This enhancement allows the clear detection
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Figure 16. The spin-wave intensity in the SPEEL spectra strongly depends on the kinetic energy of the incoming electrons Ekin. In (a), the
spin-wave intensity of 8 ML Co on Cu(001) as a function of Ekin is given. The solid points are for measurements with �K‖ = 0.7 Å
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and

the open symbols for �K‖ = 0.9 Å
−1

. In all measurements shown here, θ0 = 90◦. In (b), the data of 8 ML (circles) as well as of 3.3 ML

Co on W(110) (diamonds) are shown. Here the measurements were carried out with �K‖ = 0.88 Å
−1

and with two different θ0. In (c),

the data for 3 ML of Fe grown on 1 ML Co on Cu(001) is given. Here the measurements were carried out with �K‖ = 0.81 Å
−1

at two
different θ0.

of the spin-wave loss features. Though this enhancement
is crucial for the experimental results, its origin is not
completely understood. It is, however, presumably caused by
the energy dependence of the exchange scattering process.
One should note that the measured spin-wave intensities
shown in Figure 16 are influenced by both the cross section
of the scattering event and the transmission function of the
spectrometer. The latter is difficult to take into account
precisely because it depends on the potentials applied to
the spectrometer (about 40 different potentials) that will be
optimized for each scan and thus change. The data shown in
Figure 16 have a relatively large scatter, which we mainly
attribute to these differences in the optimization of the
potentials applied to the spectrometer.

The absolute intensity also depends on the scattering
geometry, for example, on the scattering angle θ0. The
enhancement of the spin-wave intensities at low primary
energies of the incoming electrons, however, is similar in
all three cases shown.

3 DISCUSSION

In the following section, the results presented in the last
section are discussed in more detail. We try to extract some
of the fundamental magnetic properties of the materials

investigated. Later, the results are compared to the exper-
imental data obtained by other techniques and discussed in
the light of recent theoretical calculations.

In the last section, we have seen that the spin-wave inten-
sity depends strongly on Ekin. To discuss possible underlying
reasons, we compare the results to theoretical predictions.
The interaction that allows excitation of a spin wave in an
electron scattering event is the exchange interaction (Feder,
1985). The probability of an exchange process is known
to decrease with increasing incident electron energy (Hop-
ster, Raue and Clauberg, 1984; Kirschner, 1985b). Mills and
Hong have calculated the spin dependent inelastic mean free
path in ferromagnetic metals. They have explicitly consid-
ered exchange processes that lead to the excitation of elec-
tron–hole pairs and of spin waves (Hong and Mills, 1999,
2000b). In their calculations, they found a strong increase
in the probability of exchange processes for minority elec-
trons at low incoming electron energies. The calculations
predict, however, that exchange processes of electrons with
energies higher than 5 eV above EF (that is equivalent to
Ekin ≈ 0 eV in our experiments) lead almost exclusively to
Stoner excitations. In other words, in these calculations, the
spin-wave excitations are probable only for primary ener-
gies lower than the work function. This energy regime is
not accessible in the SPEELS experiments. Thus, the prob-
ability of exciting a spin wave by exchange processes is
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underestimated in the theoretical predictions. The general
finding of enhanced spin-wave intensities at low Ekin, how-
ever, is in agreement with the energy dependence of the
exchange processes.

In many of the spectra shown, the spin-wave intensities
and therefore the observed probability of an electron to
scatter from a spin wave was rather large. Typically, the
measured spin-wave intensities were of the order of a few
hundred to a few thousands of counts per second (see
Figure 7). As has been shown by the normalized intensity
scale (e.g., in Figure 9), the intensity of the spin-wave signal
is typically of the order of a few percent of the intensity
of the elastic peak. The total background intensity can be
calculated by integrating the background signal over the
entire energy range up to the incident electron energy. One
finds that the total background intensity is of the same order
of magnitude as the intensity of the elastically scattered
peak. Therefore, in each measured I↓ spectrum about one
electron out of 100–1000 detected electrons was scattered
from a spin wave. For the moment, we assume that a
similar relation holds over the entire wave-vector range. For
metals, typically a few percent of the incoming electrons
are reflected from the sample. Using these assumptions,
we can estimate the probability that an incoming electron
of minority character is inelastically scattered by exciting
a spin wave to be about 10−4. This estimation should be
seen as an upper limit. It will overestimate the scattering
probability, because close to the specular condition, other
scattering mechanisms play an important role, which will
suppress the relative spin-wave intensities. The estimation
is also only valid for low primary energies of the incoming
electrons. As already shown, at other primary energies, we
observed orders of magnitude lower excitation probabilities
(see Figure 16).

Another point directly visible from the spectra or from
the contour plot shown in Figure 12 is that the measured
spin waves are rather broad. For high wave vectors, the
ratio of the spin-wave energy to the spin-wave width is
about two to three for Co and about one for Fe. This is
in agreement with the behavior expected for high wave-
vector spin waves in itinerant systems, especially at surfaces
(Tang, Plihal and Mills, 1998; Muniz and Mills, 2002). As
has been shown, for example, in Figure 7, it is possible
to fit the spin-wave loss feature measured on Co by one
single broad peak of Gaussian shape. If one assumes that
the total width of the spin-wave loss feature is reflecting the
damping of a single mode, it is straightforward to calculate,
for example, the lifetime of these spin waves. Within this
approximation, the behavior of the spin-wave excitations in
real space and time can be calculated from the measured
spectra by a two-dimensional Fourier transformation: from
wave vector to real space and from energy to time. One

example for spin waves with �K‖ = 0.81 Å
−1

measured on
8 ML fcc Co is shown in Figure 17. For the calculations, we
assumed a Gaussian peak shape in energy and wave-vector
space. The decay in time and space is inversely proportional
to the width of the spin wave in energy and wave-vector
space. For the example shown in Figure 17, the amplitude
of the spin wave in real space drops to e−1 of its initial value
after about ≈15 Å, only. Since the wavelength is about 8 Å,
the spin wave is already damped out after a few oscillations.
The lifetime of the spin wave is also short, about 30 fs. From
the dispersion, the group velocity vG and the phase velocity
vP of the excitation can be calculated by vG = (dE/dq) and
vP = (E/q). For fcc Co at �K‖ = 0.81 Å

−1
, one obtains the

values of vG ≈ 40 km s−1 and vP ≈ 39 km s−1. Owing to the
similar group and phase velocity and the short lifetime of
the spin wave, the spin wave spreads only little in space. By
multiplying vG with the lifetime, the distance by which the
center of gravity of the spin wave travels can be estimated;
it is about 12 Å (Figure 17). Therefore, the high wave-vector
spin waves in Co are highly confined in time and space owing
to the strong damping and, thus, they are not the well-defined
long-living excitations discussed in the introduction. We note
in passing that the above-mentioned ratio of the spin-wave
energy to the spin-wave width measured for Fe by the same
arguments comes from a spin wave that is already damped
out after its first oscillation. With this information on lifetime
and propagation speed, we may estimate the linear phase
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space is about 15 Å. The decay time is about 30 fs. Note that the
amplitude for the curve at t = 60 fs has been multiplied by 10.
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space of these elementary excitations in terms of time–space
coordinates. We find a value of roughly 10 × 10−24 sm, a
remarkably small value!

This does not, of course, mean that we obtain this kind of
experimental resolution in space and time with our method. It
just says that we are able to study objects that are extremely
confined in time and space using a method that works in
wave vector and energy space. Conversely, this means, for
example, for the spatial coordinate, that the high-energy
spin-wave characteristics will not change significantly if we
measure them on an ‘infinite’ thin film or on nanoscale
islands with a diameter of a few nanometers. Together
with the high surface sensitivity of electron scattering,
SPEELS may thus be an appropriate tool to study elementary
excitations in nanoscale magnets.

3.1 Comparison between the SPEELS data
and other experimental results

In the following, the results of this work are compared
to other experimental investigations of spin waves. Since
SPEELS is a new technique to study spin waves and explores
spin waves in a region, which has not been accessible by
other techniques, a direct comparison is difficult. INS is the
only technique, which allows the study of a similar wave-
vector range as the one investigated by SPEELS. Thus,
the following comparison will mainly focus on the results
obtained by INS. The measurement of spin-wave excitations
with high wave-vector transfers by INS is not an easy task in
3d ferromagnets, because of the high spin-wave energies in

these systems. Therefore, only a few INS studies have been
made.

In the case of fcc Co, which is not stable in bulk
at room temperature, no INS experiments that examine
very high wave-vector spin waves have been published.
One way to compare the results of the low wave-vector
transfer regime studied by INS with our data is to use
the nearest-neighbor Heisenberg model. The value of JS
derived from neutron scattering on bulk fcc Co (using
crystals with 8 and 6% Fe) is JS = 14.7 ± 1.5 meV (Sinclair
and Brockhouse, 1960; Pickart et al., 1967). This is in
excellent agreement with the value of JS = 15 ± 1 meV
obtained by SPEELS. To illustrate the results of these two
experiments, Figure 18(a) shows the dispersion measured
by INS (Sinclair and Brockhouse, 1960) and by SPEELS
for fcc Co. One should note that strictly speaking the
wave-vector axis shows a three-dimensional wave vector
in the case of INS whereas it is two dimensional for the
SPEELS measurements. Since the SPEELS measurements
are dominated by the excitation of surface spin waves (with
q⊥ = 0); however, both can be compared. To connect the
different wave-vector transfers the solid and the dashed
lines in Figure 18(a) display the dispersion calculated with
the nearest-neighbor Heisenberg model for the surface and
the bulk mode, respectively. The values of JS used are
the ones given in the publications Sinclair and Brockhouse
(1960) and Vollmer et al. (2003). The surface and the bulk
mode have a different dispersion for similar values of JS
(compare Figure 5); however, for the wave-vector range
measured by INS the spin-wave energies are very similar
in both cases.
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For bulk hcp Co, only one publication exists, to our
knowledge, in which the spin-wave dispersion was measured
up to the very high wave-vector transfers (Perring, Taylor
and Squires, 1995) (see also Figure 4). In the neutron mea-
surements, the dispersion of the bulk spin-wave mode was
obtained along � – M (Perring, Taylor and Squires, 1995)
whereas in the SPEELS data the spin-wave dispersion of
the surface mode is measured along �-K . These are the
two different high symmetry directions in the basal plane.
Figure 18(b) shows the results of both measurements and
also indicates the different Brilluoin zone boundaries (ver-
tical lines) of both cases. The spin-wave energies measured
by INS are higher than the one measured by SPEELS. To
compare the two different modes along the different direc-
tions in more detail, we use the nearest-neighbor Heisen-
berg model, again. A fit of the neutron data with the bulk
dispersion yields a value of JS = 19.2 ± 0.6 meV (Perring,
Taylor and Squires, 1995) (dashed line in Figure 18b). For
the SPEELS data we obtain JS = 14.8 ± 1 meV (solid line)
(Etzkorn et al., 2005). Within the Heisenberg model, it is
also possible to estimate the influence of the different crys-
tallographic directions on the spin-wave dispersion. In the
case of an isotropic exchange (this seems to be a reason-
able approximation, because the basal plane has a sixfold
symmetry and even in fourfold symmetries the anisotropy in
the exchanges are typically very small (Mook and Nicklow,
1973)), no drastic changes in the dispersion in any direc-
tion within the basal plane are expected for the wave-vector
range investigated by INS. Also the bulk and surface modes
are at similar energies at these wave-vector transfers. There-
fore, within the Heisenberg model the differences between
the two data sets are mainly caused by the differences in JS.
One could speculate about possible reasons for this deviation,
like the different properties of thin films and bulk Co. Con-
sidering the differences in the two experiments, however, in
our view the agreement is rather satisfying. One should note
that even within the results obtained by different INS studies
on hcp Co (typically for lower wave vectors) the observed
values for JS range from 17.3 to 20.2 meV (Perring, Taylor
and Squires, 1995 and references therein).

Another point that is worth mentioning is the amount of
Co used in the experiments to detect spin-wave losses. In the
case of INS measurements, about 100 g of single crystalline
Co was used to obtain the data shown in Figure 4. As we
have seen, high wave-vector spin waves can be studied by
SPEELS on a few atomic layers of Co. The electron beam
used in the experiments has a lateral extension of about
1 mm2. Therefore, the amount of material scattered from is
about a factor of 1010 different between both experiments.
For much lower wave vector and energy transfers, it is
possible to reduce the amount of material needed in INS
drastically. One example is the work of Schreyer et al.

(2000). They have studied spin waves using only about
10 mg Dy. Nevertheless, this amount of material is still higher
by a factor of 106 compared to the SPEELS experiments.

By BLS and FMR, the exchange stiffness D can be
measured in magnetic films. Within the nearest-neighbor
Heisenberg model, one can determine JS from D (see
equation (6)). Liu and colleagues performed BLS measure-
ments on about 100-nm-thick Co films of different crystalline
structures (Liu et al., 1996). The authors found values of
JS = 17.9 ± 0.6 meV for fcc and JS = 17.3 ± 1.4 meV for
hcp Co. Therefore, in qualitative agreement with our data,
no changes of JS were found for the different Co structures.
The reported absolute values for JS, however, are higher
than that obtained by SPEELS. Other BLS studies report
values of JS = 13.5 ± 3 meV (Vernon, Lindsay and Stearns,
1984) and JS = 18.3 ± 2.8 meV (Grimsditch, Fullerton and
Stamps, 1997). The low value reported by Vernon, Lindsay
and Stearns (1984) was obtained by BLS measurements on
polycrystalline films. In a FMR study also a low value of
JS = 13.5 ± 0.7 meV was measured on polycrystalline Co
films (Tannenwald and Weber, 1961). One may speculate
that these low values are related to the poor film quality. In
general, the agreement between the BLS and FMR results and
SPEELS data is fairly good, if one considers the difference in
the order of magnitude of the investigated wave-vector range
(about 2 orders of magnitude) and the uncertainty introduced
by the Heisenberg model.

We emphasize again that we have compared surface spin
waves to bulk spin waves and results obtained in very differ-
ent wave-vector regimes. This comparison was made using
the nearest-neighbor Heisenberg model. Within this model,
fairly good agreement between all experimental results is
observed, especially considering possible uncertainties intro-
duced by the model. Typically, the deviations of the literature
values to our experimental findings are of the same size as
the deviations of literature values among themselves. Gener-
ally, the SPEELS values tend to lie slightly below the values
obtained by other techniques.

3.2 Comparison to theoretical calculations

In the following, the results of the spin-wave excitations mea-
sured by SPEELS are compared to theoretical calculations.
It is widely accepted that calculations using the adiabatic
approximation may only give a crude estimate for high wave-
vector spin waves in 3d ferromagnets (Tang, Plihal and Mills,
1998; Udvardi, Szunyogh, Palotás and Weinberger, 2003).
Nevertheless, most calculations are performed within this
approximation, because it is nontrivial to go further. Several
recent ab initio calculations map itinerant magnetism on an



High-energy surface spin waves studied by spin-polarized electron energy loss spectroscopy 21

effective Heisenberg model to calculate the spin-wave disper-
sion. This allows a direct comparison between the calculated
exchange-coupling constants and the experimental findings,
as well as a comparison between the spin-wave dispersion
relations. Because no damping is included in these theories,
they must fail to predict the correct broad spectral shape of
the spin waves observed experimentally. Calculations that
examine spin-wave properties in thin films regularly obtain
a strong enhancement of the exchange-coupling constant
in the surface layer (see e.g., Pajda et al., 2000; Razee,
Staunton, Szunyogh and Györffy, 2002; Costa, Muniz and
Mills, 2004b). To the best of our knowledge, no calculations
for thin hcp Co films have been published. Therefore, the
discussion is limited to fcc Co. Pajda and coworkers found
in their calculations an enhancement of the nearest-neighbor
exchange-coupling constant for one ML Co on Cu(001) of
about a factor of 2 compared to the bulk value (Pajda et al.,
2000, 2001). In calculations by Razee, Staunton, Szunyogh
and Györffy (2002), it was observed that this enhancement
persists in the surface layer for Co films up to 7 ML thick-
ness. Other exchange-coupling constants, as well as the mag-
netic moment, are also enhanced close to the surface (Razee,
Staunton, Szunyogh and Györffy, 2002). These effects are,
however, typically much smaller than a factor of 2. SPEELS
seems especially suited to study such effects, because the
energy of surface spin waves at high wave vectors strongly
depends on the strength of the exchange coupling at the
surface. As we have seen earlier, we are able to describe
our measured dispersions for both fcc and hcp Co by a
nearest-neighbor Heisenberg model using only one value of
JS throughout the films and for all film thicknesses investi-
gated. Within the description of the Heisenberg model, we
therefore do not find any evidence for such an enhancement
of the exchange-coupling constant at the Co surface.

As has been discussed in the last section, the spin-wave
energies measured by SPEELS are typically slightly below
those expected from measurements using other techniques.
Following the above argument, we can bring our data in per-
fect agreement to other experimentally observed values of JS
by assuming that the exchange-coupling constant is reduced
at the surface. If the exchange-coupling constant at the sur-
face is different from the bulk value, then our experimental
findings on Co point in the direction of a reduction and not
of an enhancement. It was also found that the spin-wave
energy does not change for lower temperatures (Etzkorn
et al., 2004). Hence, the difference between experimental
values and theoretical expectations cannot be explained by
temperature effects. The entire argumentation is, however,
based on the nearest-neighbor Heisenberg model, which lim-
its possible conclusions.

Since the theoretically predicted enhancement of the
surface exchange is not observed in Co in the SPEELS

experiments, it can be expected that the surface spin-wave
energies are overestimated in the calculations that use an
enhanced exchange interaction. Calculations of the spin-
wave dispersions for bulk crystals do not consider the
exchange coupling at surfaces. These calculated dispersions
are typically in good agreement to the dispersion that we
can calculate in the Heisenberg model using the values of JS
obtained by SPEELS (Halilov, Eschrig, Perlov and Oppeneer,
1998; Pajda et al., 2001; Grotheer, Ederer and Fähnle, 2001).

This is illustrated in Figure 19 in which the dispersions
for bulk fcc and hcp Co obtained from recent calculations
using the adiabatic approximation are plotted. To compare the
SPEELS results with these calculations, the bulk dispersions
estimated from the nearest-neighbor Heisenberg model using
a value of JS = 15 meV is shown as solid lines. Of course,
the simple Heisenberg model does not allow a detailed
comparison to these highly sophisticated calculations. The
general agreement in the spin-wave energies is, however,
very good, especially considering that the calculations were
performed fully ab initio.

So far, the experimental results were compared to theories
using the adiabatic approximation. It has already been
discussed that this approximation is expected to fail for high
wave-vector spin waves in the itinerant electron systems.
As was pointed out by Mills and coworkers (Tang, Plihal
and Mills, 1998; Costa, Muniz and Mills, 2004b; Muniz and
Mills, 2002), the results from calculations within and beyond
the adiabatic approximation can differ qualitatively as well
as quantitatively.

In the case of Co, only a few theoretical publications
are available which treat the spin-wave excitations within
a nonadiabatic approach (Trohidou, Blackman and Cooke,
1991; Costa, Muniz and Mills, 2004a,b). All of them are
based on an empirical tight binding description of the
electronic structure, with parameters chosen by fitting to
ab initio calculated electronic structures. One of the studies
(Trohidou, Blackman and Cooke, 1991) has been performed
for hcp bulk Co. The result of this study is that high wave-
vector spin waves are significantly damped, as indicated by
a broadening of the structures. Nevertheless, the spin-wave
energies are similar to the energies which were calculated by
theories using the adiabatic approximation (Halilov, Eschrig,
Perlov and Oppeneer, 1998; Grotheer, Ederer and Fähnle,
2001). Two recent calculations have been performed for
thin fcc Co films on Cu(001) (Costa, Muniz and Mills,
2004a,b). The calculated quantity in these publications is
the layer-resolved spectral density of spin fluctuations as
a function of the wave vector. The calculations by Costa,
Muniz and Mills, (2004b) illustrated the changes in the
spectra shape when the calculations were done within and
beyond the adiabatic approximation. In the latter case,
the spectral shape deviates strongly from the expectations
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from Grotheer et al., 2001 and Halilov et al., 1998, with permission from the American Physical Society.  1998/2001.)

derived from a Heisenberg model except for very low wave
vectors. For higher wave vectors, the spectral density in
the nonadiabatic description consists of one single broad
feature, instead of several discrete modes as expected from
the Heisenberg model (see Figure 5). Only some structure in
the broad feature reminds of these modes. This behavior is in
qualitative agreement with the spectra measured by SPEELS
and provides a quite natural explanation of the broad spin-
wave loss features.

In Figure 20, the calculated spectral density in the surface
layer for a wave vector of �K‖ = 0.85 Å

−1
is compared

to the measured difference spectrum taken at about the
same wave vector. The calculated spectral density has been
shifted in the energy and scaled in the intensity axis to
allow better comparison between the two shapes. These
two shapes of the calculated and measured spectra are in
promising agreement. One has to mention that the measured
difference spectra cannot directly be related to the calculated
spectral density. The calculation considers only the e↓↑

spin channel. In the measured difference all spin channels
contribute. This is expected to lead to differences especially
concerning the background in the two cases. It is also
important to mention that the calculated spectral density
shown in Figure 20 is a quantity that is solely a property
of the spin excitations and does not take into account the
actual excitation process. This may lead to considerable
effects in the calculated spectra. For example, it has been
shown by Mills and coworkers (Plihal and Mills, 1998;
Costa, Muniz and Mills, 2003) that the spectral weight
of Stoner excitations measured by electron scattering is

underestimated in the calculations. The high-energy shoulder
in the calculations is slightly higher in intensity than the
measured one. The effect is stronger for lower wave-vector
transfers (not shown here) and may be attributed to the
cross-section dependence of the spin-wave excitation. As has
been mentioned by the authors, it is difficult to assign a
particular spin-wave mode to a structure in the calculated
spectral density (Costa, Muniz and Mills, 2004b). In these
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calculations, however, the lowest energy features are always
located in the surface layers. This indicates that a significant
part of the low-energy spectral density within the surface
layer can be attributed to what has been called a well-
defined surface spin-wave mode in the Heisenberg model.
Therefore, these calculations at least do not contradict the
interpretation that the loss features measured by SPEELS
are dominated by contributions of surface spin waves. The
good agreement between the theoretical and the experimental
results indicates that the effect of damping of spin waves by
Stoner excitations seems to be taken into account correctly
in the theory.

In addition to the spectral density, Costa, Muniz and Mills
(2004b) have also calculated the dispersion of the spin waves.
It was obtained by plotting the energy position of the maxi-
mum of the spectral density in the surface layer as a function
of the wave vector. The resulting calculated dispersion and
the dispersion measured by SPEELS are shown in Figure 21.
The agreement between the two dispersions is rather satis-
factory; however, as has been discussed in detail by Costa,
Muniz and Mills (2004b), small changes in the choice of the
tight binding parameters can change the calculated spin-wave
energies by a factor of 2 (Costa, Muniz and Mills, 2004a,b).
Thus, at the current stage of theory, it seems difficult to obtain
precise predictions of the spin-wave energies. Here, full ab
initio calculations going beyond the adiabatic approximation,
as they have been done for the bulk (Savrasov, 1998), would
be highly desirable for thin films.

4 CONCLUSIONS AND OUTLOOK

In this chapter, studies of high wave-vector spin waves
in 3d-ferromagnets using inelastic spin-polarized electron
scattering have been discussed. This technique allows a
unique access to high-energy spin waves at surfaces. For
the two investigated crystalline phases of Co (fcc and
hcp) very similar spin-wave properties have been found.
In both cases, the measured dispersions agree surprisingly
well with the dispersion of surface spin waves calculated
in a nearest-neighbor Heisenberg model. The value of the
product of the exchange-coupling constant and the spin
moment is similar (JS ≈ 15 meV) in both phases. This value
of JS is also in fairly good agreement with the results
obtained by other experimental techniques. Although the
dispersion relation agrees well with the expectations from
the Heisenberg model that does not take the damping of spin
waves into account, the measured energy loss features in the
spectra have a large intrinsic width, which indicates a strong
damping of these excitations. Indeed, recent calculations
going beyond the adiabatic approximation, that is, consider
the possible decay of spin waves into Stoner excitations, are
in promising agreement with the measured spin-wave widths
in the SPEEL spectra (Costa, Muniz and Mills, 2004b). In
contrast to several theoretical predictions, no enhancement
of the exchange coupling at the surface layer was measured
in thin Co films.

For 3 ML Fe on 1 ML Co on Cu(001), the measured
dispersion does not agree with the dispersion relation derived
from the nearest-neighbor Heisenberg model, if only one
value of JS for the entire Fe film was considered. The
agreement can be improved considerably if an enhanced
exchange coupling at the surface is taken into account. The
spin-wave features in this system are, however, damped
extremely strong (the ratio of spin-wave energy to spin-wave
width is about 1). For such a large damping the Heisenberg
model itself is expected to fail. The measured spin-wave
energies in this strongly distorted Fe system are significantly
smaller than that for bulk like Fe. Independent of any model
description, this can only be explained by a strong reduction
of the exchange interactions in the tetragonal distorted Fe
phase compared to bcc Fe.

From the above-mentioned results, two other experimental
approaches to study spin waves by inelastic electron scatter-
ing seem feasible. The use of a ‘standard’ non-spin-polarized
EELS should to be possible. The higher energy resolution in
such experiments may allow studying spin waves with much
smaller energies. Owing to the high spin-wave intensities
measured, also ‘complete’ experiments (in which the spin of
both the incoming and the outgoing electron is determined)
seem feasible. One of the interesting questions yet to be
answered is whether inelastic electron scattering can also be
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used to study other types of magnetic material, for example,
antiferromagnets or rare-earth magnets. In addition, electrons
as scattering particles to study spin excitations can be used
not only by SPEELS but also, for example, by scanning
tunnelling microscopy (STM). In fact, it has already been
demonstrated that spin flip excitations of single atoms can
be observed using STM (Heinrich, Gupta, Lutz and Eigler,
2004).

It is our hope that the results presented and discussed here
stimulate further experimental and theoretical efforts in the
field of elementary magnetic excitations at surfaces and in
nanostructures.
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Grotheer, O., Ederer, C. and Fähnle, M. (2001). Fast ab initio
methods for the calculation of adiabatic spin wave spectra in
complex systems. Physical Review B, 63, 100401-1–100401-4.

Halilov, S.V., Eschrig, H., Perlov, A.Y. and Oppeneer, P.M. (1998).
Adiabatic spin dynamics from spin-density-functional theory:
applications to Fe, Co, and Ni. Physical Review B, 58, 293–302.

Heinrich, A.J., Gupta, J.A., Lutz, C.P. and Eigler, D.M. (2004).
Single-atom spin-flip spectroscopy. Science, 306, 466–469.
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Pajda, M., Kudrnovský, J., Turek, I., et al. (2000). Oscillatory Curie
temperature of two-dimensional ferromagnets. Physical Review
Letters, 85, 5424–5427.
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1 INTRODUCTION

Soon after the invention of scanning tunneling microscopy
(STM) by Binnig and Rohrer in 1982 numerous derived
scanning probe methods have been developed (Binnig and
Rohrer, 1982, 1987). These methods, often named SXM,
where X either stands for the measured quantity or for the
utilized interaction, allow the imaging of a wide variety of
surface properties in real space and with high spatial resolu-
tion. Besides STM, the most frequently used SXM technique
is atomic force microscopy (AFM). Whereas STM detects
the quantum-mechanical tunneling current across a vacuum
gap between two closely spaced conductive electrodes, that
is, a sharp tip and sample surface, AFM senses the elec-
tromagnetic force between a surface and a tip, which is
located at the free end of a cantilever, and is therefore not
limited to conductive systems. Since magnetic properties of
surfaces and small particles are of great technical relevance
for the development of magnetic data storage devices it was
soon considered to extend the scanning probe methods to
this direction. In principle, two approaches were chosen: the

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

detection of the rather long-range magnetostatic tip–sample
force by magnetic force microscopy (MFM) (Martin and
Wickramasinghe, 1987; Sáenz et al., 1987) or by making use
of the spin-dependent conductivity between a magnetic STM
tip and a magnetic sample, the so-called spin-polarized scan-
ning tunneling microscopy (SP-STM) (Wiesendanger et al.,
1990b).

In the following two sections we survey the basic concepts,
experimental conditions, modes of operation, tip prepara-
tion, and the contrast mechanisms of MFM and SP-STM.
Several examples for both methods are presented to demon-
strate their capabilities. Whereas MFM requires minimum
sample preparation, is easy to adopt, and can be applied to
nonconducting samples as well, SP-STM is able to achieve
spin sensitivity with atomic resolution. The different contrast
mechanisms and the resulting resolution are particularly evi-
dent on magnetic vortices which can be observed in small
magnetic structures, as discussed in Sections 2.10 and 3.4.

2 MAGNETIC FORCE MICROSCOPY

2.1 Basic concept of MFM and modes
of operation

MFM detects the magnetostatic interaction between a force
sensor, that is, a tip located at the free end of a cantilever, and
the stray field emanating from a specimen. This technique
allows the imaging of domain patterns of ferromagnetic (and
ferrimagnetic) specimen with high spatial resolution down
to about 10 nm (Wiesendanger and Güntherodt, 2002). In
principle, MFM experiments are possible with any AFM
setup. However, obviously the force sensor has to be
ferromagnetic and the data acquisition has to be slightly
modified. One important advantage of MFM compared to
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other magnetic imaging techniques, for example, magneto-
optical imaging, is the possibility to acquire high-resolution
topography data simultaneously. SP-STM has the same
advantage and certainly a much better spatial resolution down
to the atomic scale. However, MFM is not restricted to
conductive samples and, since it detects the magnetostatic
interaction far above the specimen, it is quite insensitive
to surface contaminations. The latter enables experiments in
ambient conditions and without special surface preparation.

MFM is a noncontact technique, where the tip apex never
touches the surface neither in the static nor in any dynamic
mode of operation. Typical tip–sample separations range
from 10 to 100 nm. Therefore, the rather long-range mag-
netostatic interaction can be separated from the short-range
interactions, which are used in AFM to image the topogra-
phy. At this point, it has to be mentioned that electrostatic
forces have the same range and might still be present, thereby
hampering data interpretation. Therefore, it is helpful to min-
imize the influence of electrostatic forces by balancing the
contact potential difference with a corresponding bias voltage
between tip and sample (Schönenberger, Alvarado, Lambert
and Sanders, 1990; Yu, Ahner and Weller, 2004). In contrast
to AFM, no z-feedback control is employed for imaging.
Instead, the MFM signal is directly recorded in a constant
height above the sample using either the lift mode, where the
tip follows the prerecorded topography (Wadas, Moreland,
Rice and Katti, 1994) or the plane-subtraction mode (Dreyer,
Löhndorf, Wadas and Wiesendanger, 1998), where only the
tilt between tip and sample is compensated. The former
method is widely used but has one big disadvantage. While
prerecording the topography, the tip is very close to the sur-
face and the magnetostatic interaction is much stronger than
during MFM data acquisition. As a result, the magnetic struc-
ture of the sample (or the tip) might be modified. In principle,
the plane-subtraction mode requires only two scan lines, one
in x and one in y direction, to define a plane parallel to
the surface. They can be even recorded far away from the
region of interest. Therefore, it should be certainly used for
relatively flat samples. However, results as good as in the lift
mode can be obtained on samples with large topographical
features, although it is not a constant height mode in a strict
sense then.

Unfortunately, the nomenclature regarding the different
modes of operation of AFM, and therefore also of MFM,
emerged in the context of instrumental developments and is
often inconsistent and hard to understand. In general, one
can distinguish between static and dynamic modes on one
side and between contact, cyclic contact, and pure noncontact
modes on the other side. As mentioned in the preceding text,
MFM is always operated in the pure noncontact mode, that is,
the tip never enters the strongly attractive or repulsive regime
of short-range interactions, which are used for topography

imaging. In the static mode (also known as dc mode), the
cantilever deflection �z due to the tip–sample interaction is
monitored and can be directly converted into the tip–sample
force Fz via Hook’s law, that is,

Fz = cz · �z (1)

where cz is the spring constant of the cantilever. In the
various dynamic modes the cantilever oscillates with ampli-
tude A, either self-excited or externally driven, at or near the
resonance frequency ω0 = 2πf0 = √

cz/m, where meff is the
effective mass of the cantilever, which reflects the mass dis-
tribution along the cantilever. Two main detection schemes
exist, that is, frequency modulation (FM) and amplitude mod-
ulation (AM), respectively. The former mode is used in
vacuum for true atomic-resolution imaging and is in this
context also known as noncontact AFM (Morita, Wiesen-
danger and Meyer, 2002). The cantilever is self-excited and
either cantilever amplitude or excitation amplitude is kept
constant (CA or CE mode, respectively). The AM mode is
also named ac mode or tapping mode (TM), because of the
cyclic contact during topography scans with the surface at the
lower turnaround point of the oscillation. This technique is
used in ambient conditions or liquids. In all dynamic modes,
the MFM signal is related to the force gradient F ′

z provided
that A (typically between 5 and 50 nm) is much smaller
than the range of the magnetostatic interaction. Owing to the
stronger distance dependence, the dynamic modes are supe-
rior to the static mode, wherefore they are nowadays nearly
exclusively used.

To calculate F ′ one can assume the spring constant of the
cantilever to be effectively softened or hardened by an attrac-
tive or repulsive long-range interaction, respectively, that is,
ceff = cz − F ′

z. Thereby, the actual oscillation frequency ω

deviates from the frequency of the free cantilever ω0 by
�ω = ω − ω0. Assuming F ′

z << cz, the frequency shift for
FM-MFM data is directly proportional to the force gradi-
ent, that is, F ′

z = −2cz · �ω
ω0

. AM-MFM uses the variation of
phase φ or amplitude A as signal instead. Both quantities
change together with frequency. This can be understood if
one writes down the steady state solutions for an externally
excited damped harmonic oscillator, that is,

A = A0 · ω2
0√

(ω2 − ω2
0)

2 + 4γ 2ω2
(2)

and

φ = arctan
2γω

ω2 − ω2
0

(3)

respectively, where γ is the damping factor, which is related
to the quality factor Q of the oscillator by Q = meffω0/2γ .
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The resulting force gradient due to the amplitude change �A

or phase shift �φ can be calculated by F ′
z = −�A × 31.5 ×

cz/2 × Q × A0 or F ′
z = −�φ × cz/Q, respectively.

Like for every scanning probe method, the lateral reso-
lution of MFM is limited by the tip–sample separation and
the effective tip size. For flat samples, the separation can be
below 20 nm. For rough samples, much larger distances (up
to 100 nm) are necessary. The effective tip size for MFM
is determined by the spreading of the emanating stray field
of the tip and not by its physical size. However, the latter
influences the confinement of the stray field via the shape
anisotropy (cf. Section 2.3). The minimal detectable force
or force gradient is limited by all sorts of external noise
sources and by the sensitivity of the deflection sensor. For
example, if the minimal detectable deflection is 10 pm as
routinely obtained with interferometers (Rugar, Mamin and
Guethner, 1989), the minimal detectable force is 1 pN for a
soft cantilever with cz = 0.1 typically used in the static mode.
However, from a fundamental point of view the sensitivity is
thermomechanically limited. In analogy with the well-known
Johnson noise in a resistor a mechanical resistance � can be
introduced. Then the minimal detectable force Fmin for a
given temperature T and measurement bandwidth B is

Fmin =
√

�kBT B (4)

where kB is Boltzmann’s constant. For a rectangular canti-
lever of length l, width w, and thickness t , � is given by

� = wt2

lQ

√
Eρ (5)

where Q, ρ, and E are the quality factor, density, and
elastic modulus, respectively (Stowe et al., 1997). For typ-
ical soft (cz ≈ 0.1 N m−1) rectangular silicon cantilevers
(E = 1.79 × 1011 N m−1, ρ = 2.33 kg m−3, l = 200 µm,
w = 30 µm, t = 1 µm) in ambient conditions (Q = 300) at
room temperature (T = 300 K), the thermomechanical limit
is about 0.1 pN in a bandwidth of 1 kHz. At low tempera-
tures and in vacuum, where Q values are 1000 times larger,
much higher force sensitivities are possible. With specially
designed ultrasoft cantilevers, sub-attonewton force sensitiv-
ity has been achieved (Stowe et al., 1997; Mamin and Rugar,
2001). For the dynamic modes, the force gradient sensitivity
can be formulated similarly (Albrecht, Grütter, Horne and
Rugar, 1991), that is,

∂Fmin

∂z
=

√
4czkBT B

ω0Q〈A2〉 (6)

where 〈A2〉 is the mean-square amplitude of the cantilever
oscillation. For typical cantilevers and parameter in ambi-
ent condition (Q = 300) at room temperature (T = 300 K)

used in dynamic modes (f0 = 100 kHz, cz = 1 N m−1, A =
10 nm), the minimal detectable force gradient is about 3 ×
10−5 N m−1 in a bandwidth of 1 kHz. Equation (6) is valid
for the FM mode. However, for the AM mode the factor
4 in the nominator has to be replaced by 2. Note that the
factor

√
kBT /Q is present in equations (4) and (6), respec-

tively. Therefore, the sensitivity can be enhanced in vacuum
(higher Q values) and low temperatures (Hug et al., 1993;
Volodin, Temst, van Haesendonck and Bruynseraede, 2000;
Liebmann, Schwarz, Langkat and Wiesendanger, 2002).

2.2 Tip preparation

At the beginning of MFM, bent wires from ferromagnetic
materials like iron or nickel, with electrochemically etched
tips were used until de Boef (den Boef, 1990) suggested to
galvanize nonmagnetic tungsten wires with a ferromagnetic
material. Nowadays, standard microfabricated silicon or
silicon nitride force sensors with a ferromagnetic thin film
are usually employed, because their magnetic properties can
be adjusted by choosing a suitable ferromagnetic material
(Fe, Ni, Co, permalloy, CoCr, etc.) with an appropriate film
thickness (Grütter et al., 1990). Coated force sensors are
commercially available, but only with a limited choice. Much
better results can be obtained by using a normal tip and
optimizing the coating for a specific specimen. As a general
rule, material and thickness should be chosen to get the
largest possible MFM signal without disturbing the magnetic
structure of the sample and vice versa. Another important
point is the lateral resolution. In case of MFM the effective
size is mainly determined by the localization of magnetic
stray field emanating from the tip. The appropriate strategy
is to use sharp tips with high aspect ratios.

It is possible to increase the aspect ratio of standard tips
oneself, but it requires a focused ion beam instrument to
tailor an existing tip (Liu, Dan, Jinjun and Wu, 2002) or a
scanning electron microscope to grow a tip by electron-beam
deposition (Rührig, Porthun and Lodder, 1994). Recently,
carbon nanotubes have been attached to standard tips and
subsequently coated with cobalt (Deng et al., 2004). A very
convenient and effective way to reduce the spreading of the
tip magnetic stray field is to coat only one side face of the
pyramidal tip. The triangular shape of the side face automat-
ically induces an easy axis toward the tip apex. Moreover,
since for geometrical reasons the cantilever beam is usu-
ally not parallel to the surface, but tilted by about 15◦, it is
possible to prepare tips that are nearly exclusively sensitive
to the z component of the sample stray field, by choos-
ing the side face that points nearly perpendicular toward
the surface (Liebmann et al., 2005). With such tips data
interpretation is much easier, cf., equations (10) and (11) in
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Section 2.3. Note that it is impossible to avoid disturbing
additional in-plane sensitivities, if all side faces of a tilted
pyramid are coated.

2.3 Contrast formation and image interpretation

From a physical point of view the magnetostatic tip–sample
interaction energy ETS can be described in two equivalent
ways, that is,

ETS = −
∫

�JT �HSdV = −
∫

�JS �HTdV (7)

Either the sample magnetic stray field �HS above the
surface is probed with the tip magnetic polarization �JT or
the sample magnetic polarization �JS is probed with the
magnetic stray field �HT emanating from the tip. Since
different distributions of the magnetic polarization in the
sample result in the same stray field above the sample,
it is generally impossible to unambiguously deduce the
magnetic polarization in the sample from an MFM image.
To evaluate MFM data qualitatively, it is often helpful to
use a different representation of equation (7), obtained after
partial integration, that is,

ETS = −
∫

ρS	TdV −
∫

σ S	TdS (8)

Here, ρS and σ S are the volume and surface magnetic pole
densities, respectively, and 	T is the scalar potential of the
tip stray field. Both quantities are related via �HT = −�∇	T. If
no magnetic poles are present in the volume, that is, ρS = 0,
MFM images basically reflect the surface charge density
smoothed by the finite size of the tip stray field given by the
degree of localization of 	T. This simplified interpretation
is valid for thin films with out-of-plane polarized magnetic
domains.

As mentioned above, MFM detects either the force (static
mode) or the force gradient (dynamic mode). Expressions
for both quantities can be derived from equation (7). If we
approximate the magnetic polarization of the tip as a simple
dipole �m, then the force is given by

�F = �∇ETS = µ0
�∇( �mT �HS) (9)

Since only the vertical z component is detected,
equation (9) simplifies to

Fz = µ0
∂

∂z
( �mT �HS) = µ0(mx

∂Hx

∂z
+ my

∂Hy

∂z
+ mz

∂Hz

∂z
)

(10)

Further partial differentiation leads to the force gradient,

∂

∂z
Fz = µ0(mx

∂2Hx

∂z2
+ my

∂2Hy

∂z2
+ mz

∂2Hz

∂z2
) (11)

Note that for tips solely polarized along the z direction, that
is, mx = my = 0, force and force gradient depend only on
the first or second derivative of the stray field’s z component
respectively.

A very helpful and successful method of interpreting
MFM images qualitatively are micromagnetic simulations.
The specimen is subdivided into cells, which are described
by a single magnetic polarization vector. Typical cell sizes
are a few cubic nanometers, so that each vector represents
a large number of atomic spins. The time dependence of
the magnetic polarization �J (t) under the influence of an
effective magnetic field �Heff (including the external as well
as the anisotropy fields) is solved for each cell until the spin
orientations in all cells remain stable. This is done by means
of the Landau–Lifshitz–Gilbert equation

d �J
dt

= −γ �J × �Heff + α

| �J |
�J × d �J

dt
(12)

where γ is the gyromagnetic ratio and α is the damping
constant of the precessing magnetic polarization vector. The
calculated distribution of magnetic polarizations can be used
to obtain the stray field components and its derivatives above
the surface. According to equation (10) and (11) the result
qualitatively corresponds to the MFM signal, if the tip is
reasonably well represented by a point dipole.

Several proposals have been made to calculate magnetic
properties quantitatively from MFM images by some kind
of calibration procedure (Göddenhenrich et al., 1990; Lohau,
Carl, Kirsch and Wassermann, 2001; Hug et al., 1998; Zhu,
Lin, Shi and Luo, 1998). However, because of the principle
restrictions set by equation (7), all approaches are only of
limited validity. Therefore, MFM is not a well-suited tool
to determine the magnitude of magnetic polarization, but
to visualize magnetic structures and their correlation with
topographic features with high spatial resolution and minimal
sample preparation. In the following text, several examples
are shown, which demonstrate the capabilities of MFM.

2.4 Magnetic data storage

From the very beginning, MFM has been applied to inves-
tigate components involved in magnetic data storage. In
fact, MFM was first demonstrated on a magnetic record-
ing head (Martin and Wickramasinghe, 1987). The quick
increase of the areal density in magnetic storage devices
like hard disks and tapes demanded (and still demands)
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high spatial resolution techniques. From the invention of
MFM in 1987 until the year 2000, the areal density on
hard disks increased from about 10 Mb in.−2 (Thompson and
Best, 2000) to about 10 Gb in.−2 with a track width of
0.9 µm and a bit length of 70 nm. Recently, more than
100 Gb in.−2 have been reported in laboratory runs of hard
disks.

The MFM image in Figure 1 shows an example of a
digital tape with a longitudinal bit structure, that is, the
magnetic polarization along the track direction is in plane.
No specific preparation was performed for the measurement
in ambient conditions. Neighboring tracks are slightly tilted
against each other. Track width and bit length are about
10 and 1 µm, respectively. The areal density is considerably
smaller than that on hard disks, because the magnetic coating
on a tape is supported by a flexible substrate and suffers
from more external disturbances than a well protected rigid
disk in its stable case. However, the volume density is
much higher, wherefore tapes are still used as inexpensive
mass storage devices, for example, in backup applications.
Whereas a read head only detects zeros and ones while
reading, MFM allows to study much more details of the bit
pattern. For example, the magnification in the inset shows
the transition region between two tracks. This region is
of particular importance, because the magnetic signals of
bits in neighboring tracks interfere, whereby the readback
signal is diminished. Since MFM detects basically the same
quantity as the read head, that is, the magnetic stray field
above the surface, it can clarify how the implementation
of different materials or any other change of the design,
for example, tilt angle between tracks, influence the signal
quality.

Figure 1. Lift-mode AM-MFM image (50 × 50 µm2) of the bit
structure of a magnetic tape for mass storage. The inset shows
a magnification (5 × 5 µm2) of the transition region, where two
tracks meet.

2.5 Magnetization reversal

MFM can also be used in high magnetic fields, because
the magnetic tip is effectively a dipole, wherefore the net
force exerted on the tip is basically zero. Since the tip is
typically just about 10 µm high, this is even true for quite
inhomogeneous fields. In the example presented here the
domain pattern evolution of an 80-nm-thick La0.7Sr0.3MnO3

film with out-of-plane polarized domains has been recorded
along its major hysteresis loop while ramping an external
magnetic field µ0H = B from 0 mT (remanence) to 600 mT
(saturation) and back again to 0 mT (Schwarz et al., 2004).
The data have been recorded with a low-temperature force
microscope (Liebmann, Schwarz, Langkat and Wiesendan-
ger, 2002) in ultrahigh vacuum at 5.1 K. From such an
image series, it was possible to reconstruct the major hys-
teresis loop (Liebmann et al., 2005). Figure 2(a) and (b)
show two consecutively recorded images on the decreas-
ing branch from saturation toward remanence. The difference
image (c) = (a) − (b) reveals the individual reversal events
(Barkhausen jumps) between (a) and (b). By merging (c) into
the original domain pattern (a) as displayed in (d), growth
events (regions, which touch an already existing domain like
the event marked with G) can be distinguished from nucle-
ation events (isolated regions like the event marked with N).
By analyzing all images in this way the size distribution
for nucleation (e) and growth events (f) can be studied. The
Gaussian distribution for nucleation radii can be explained by
the critical droplet theory. Since the energy cost for a domain
wall creation scales with its surface area, and the energy gain
and cost for the stray field energy and the Zeeman energy,
respectively, scale with the volume, stable nucleation is only
possible above a certain critical radius. Its value depends
on parameters like exchange stiffness and magnetocrystalline
anisotropy energy, which can vary locally and thereby result
in a Gaussian distribution of radii around the mean value. The
growth events are much smaller than the nucleation events
(the smallest have diameters below 10 nm) and they exhibit
a very different size distribution, that is, a power law with an
exponential cutoff. It can be related either to self-organized
criticality (Bak, Tang and Wiesenfeld, 1987), where exter-
nally driven (magnetic field) systems organize themselves
in barely stable (critical) state by avalanches (Barkhausen
jumps), or to domain wall propagation through a disordered
medium (Alessandro, Beatrice, Bertotti and Montorsi, 1990).
A similar analysis can be performed for the increasing branch
(from remanence to saturation). Additionally, the correlation
between domain patterns and, in particular, the position of
nucleation events and with respect to topographical features,
for example, due to the granular structure of the speci-
men, can be investigated (Liebmann, Schwarz, Langkat and
Wiesendanger, 2002).
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Figure 2. Real space observation of individual magnetization
reversal processes in a La0.7Sr0.3MnO3 film with out-of-plane uni-
axial anisotropy. (a), (b) Two plane-subtraction mode FM-MFM
images (4 × 4 µm2) from a series recorded along the major hys-
teresis loop. They have been recorded consecutively in a slightly
different external magnetic field. (c) Difference image (a) − (b).
Only the magnetization reversal events, that is, the Barkhausen
jumps, remain visible. After merging (c) into the original MFM
image (a), nucleation (N), and growth (G) events can be distin-
guished in (d). (e) Gaussian distribution of nucleation radii after
evaluation of the whole image series. (f) Size distribution of the
growth areas. The solid line corresponds to a power law with expo-
nential cutoff.

2.6 Reorientation transition

The energy of a ferromagnetic material is given by the mag-
netic anisotropy energy and the stray field energies. The for-
mer is related to the spin-orbit coupling. Symmetry changes
at surfaces or those due to stress within the material can alter
the bulk magnetic anisotropy significantly. The stray field
energy strongly depends on the shape of the specimen. Thin
films, for example, tend to be polarized in plane, whereby
the density of free poles at the surface can be reduced
compared to an out-of-plane polarized film. However, for

(a) (b)

Figure 3. Thickness-dependent reorientation transition of Co on
Au(111). The plane-subtraction mode FM-MFM images (a) and (b),
both recorded in zero field and in an area of 5 × 5 µm2, have been
recorded with the same out-of-plane polarized tip, but with different
nominal Co thicknesses, that is, 2.0 ML and 6.0 ML, respectively.
In (a) domains are visible, while (b) exhibits a domain wall contrast.

very thin films (a few atomic layers), the surface anisotropy
can become dominating and might force the spins in an
out-of-plane direction. Consequently, a thickness-dependent
reorientation transition can be observed, for example, by
the magneto-optical Kerr effect (Qiu, Pearson and Bader,
1993; Baudelet et al., 1995), scanning electron microscopy
with spin analysis (Speckmann, Oepen and Ibach, 1995) and
MFM (Wadas, Dreyer, Kleiber and Wiesendanger, 1998).
Figure 3 displays two images from a whole series (Dreyer,
Kleiber, Wadas and Wiesendanger, 1999), where the Co
thickness on a Au(111) substrate has been increased stepwise
up to 7.0 monolayers (ML). The data were recorded in ultra-
high vacuum with a magnetic tip that was polarized along
the tip axis, which is oriented perpendicular to the surface.
Below 2.0 ML no MFM signal could be verified. From 2.0 to
3.8 ML the MFM images exhibit a clear out-of-plane domain
contrast, as visible in Figure 3(a). For higher thicknesses,
a domain wall contrast is observed as shown for 6 ML in
Figure 3(b). Since the same perpendicularly polarized tip was
used, an in-plane domain structure can be inferred, indicating
a thickness-dependent reorientation transition. On the same
material, it was observed that the surface anisotropy energy
can be strongly affected by contaminations (Dreyer, Kleiber,
Wadas and Wiesendanger, 1999). For a thickness of 4.3 ML
the in-plane polarization switched back to an out-of-plane
polarization by adsorption of carbon onto the cobalt film from
the residual gas in the vacuum chamber. Another important
parameter is the temperature, which can also induce a reori-
entation transition due to the temperature dependence of the
magnetic anisotropy energy.

2.7 Domain wall structure

Apart from domain imaging MFM also allows the investi-
gation of domain walls (Proksch, Foss, Dahlberg and Prinz,
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1994; Schneider, Müller-Pfeiffer and Zinn, 1996; Löhndorf,
Wadas, van den Berg and Wiesendanger, 1996). There are
two principle ways for the magnetic polarization in neighbor-
ing antiparallel in-plane polarized magnetic domains in a film
geometry to rotate by 180◦. The polarization vector either
rotates fully out-of-plane or remains in-plane all the time.
The former case is called Bloch wall and the latter Néel wall,
respectively. As a general rule, Bloch walls are observed in
rather thick films, where the magnetostatic energy density
due to the interaction between the free poles in the Bloch
walls on opposite surfaces is negligible. For thinner films this
energy contribution becomes dominant and Néel walls, where
no free poles are generated at the surfaces, are energetically
favorable. However, the thickness-dependent transition from
a Bloch to a Néel wall is not abrupt. In an intermediate thick-
ness range a mixture of both types is present – a so-called
cross-tie wall. Figure 4 shows an MFM image of such a
wall in a 50-nm-thick polycrystalline Co film on a SiO2 sub-
strate imaged with an out-of-plane polarized tip (Löhndorf,
Wadas, van den Berg and Wiesendanger, 1996). Bright and
dark areas correspond to the complex distribution of free
poles at the surface (cf. equation (8)) within the domain wall
as indicated in the inset. The Bloch lines in the middle of
the rhombi, where the magnetic polarization points normal
to the surface, exhibit the strongest contrast. Even far away
from the domain wall the MFM contrast is not uniform. The
textured MFM signal indicates that the magnetic polarization

Figure 4. Static mode MFM image (20 × 20 µm2) recorded in the
lift mode of a cross-tie wall acquired with an out-of-plane polarized
tip. Sign and distribution of magnetic poles, which are responsible
for the contrast formation, are displayed in the inset.

is not exactly in-plane everywhere, but tilts slightly out-of-
plane locally (Löhndorf, Wadas and Wiesendanger, 1997).
This effect results in the well-known magnetic ripple struc-
ture, which is often observed in thin films.

2.8 Multidomain particles

From a technical point of view domain patterns of laterally
structured thin film elements become increasingly important
owing to the development of micro- and nanoscale magne-
toelectronic devices. In hybrid ferromagnetic-semiconductor
spintronic systems, such elements act as source for spin-
polarized electrons, which is obviously influenced by local
variations of the spin orientation due to the presence of dif-
ferently oriented domains and domain walls between them.
Since the relative portion of edges becomes larger for smaller
lateral dimensions, the existence of closure domains, where
the direction of the magnetic polarization runs parallel to
the edges, is the most obvious feature in finite size ele-
ments. Figure 5 shows a lithographically prepared rectangu-
lar 4.0 × 2.0 µm2 large element. In (a) and (b) the film thick-
nesses are 100 nm and 70 nm, respectively (Barthelmess,
Pels, Thieme and Meier, 2004). The in-plane polarized clo-
sure domain pattern remains unchanged, but the type of
domain wall between the two main domains is different. In
(a) a simple Bloch wall facilitates the 180◦ rotation, while the
thinner structure in (b) exhibits a cross-tie wall, as described
in the previous section (cf. Figure 4). Image (c) displays a
micromagnetic simulation of (b). All features visible in the

(a) (b) (c)

Figure 5. Lift-mode AM-MFM images of polycrystalline Ni83Fe15

(permalloy) multidomain particle (4.0 × 2.0 µm2) with (a) 100 nm
and (b) 70 nm thickness. The two central domains in the thicker
film (a) are separated by a simple Bloch wall, while the more
complex cross-tie wall evolves in the thinner film (b). In (c) a
micromagnetic simulation of the experimental situation in (b) is
shown, which reproduces the MFM contrast well. (Courtesy of
G. Meier (Barthelmess, Pels, Thieme and Meier, 2004).)
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MFM image, that is, domain pattern as well as the cross-
tie wall, are very well reproduced. Note that the simulation
appears sharper than the MFM image, because the real tip is
not a point dipole. Furthermore, in experimental data domain
walls are often somewhat distorted if the tip modifies the spin
orientation locally.

2.9 Single domain particles

If the size of ferromagnetic particles is shrunk below a
certain value, the energy cost by inserting a domain wall to
minimize the stray field energy is too high. Since the stray
field energy scales with R3, but the domain wall energy only
with R2, a critical particle radius exists, below which the
stable configuration even in remanence is the single domain
state with two discrete directions of the magnetic polarization
(Kittel, 1946; Frei, Shtrikman and Treves, 1957). Note that
only ellipsoidal bodies can exhibit a truly uniform remanent
magnetic polarization in which the magnetic polarization is
parallel at all places within the particle.

Assuming a rotational ellipsoid, a critical diameter Dc can
be determined by comparing the energy difference between
a single- and a two-domain state (Kronmüller, Goll, Hertel
and Schütz, 2004)

Dc = 3µ0γ DW

N(1 − β)J 2
S

(13)

Here, γ DW is the wall energy, for example, 4
√

AK for
a Bloch wall, N is the shape-dependent demagnetization
factor, and β is the factor by which the stray field energy
is reduced in the two-domain configuration compared to the
single domain configuration. Using typical parameters for
cobalt, that is, Aex ≈ 3 × 10−11 Jm−1, K ≈ 4.5 × 105 Jm−3

and JS ≈ 1.8 T, single domain behavior can be observed
for magnetic particles with diameters below Dc ≈ 34 nm
·(N(1 − β))−1. Note that N , β < 1, and therefore (N(1 −
β))−1 > 1), that is, the single domain state for Co particles
is observed on length scales often much larger than 34 nm.

Figure 6 shows two MFM images of a quadratic array of
disks shaped particles with a periodicity of 500 nm (Kleiber
et al., 1998). The 17-nm-thick Co disks with a diameter
of 200 nm have been produced lithographically on a GaAs
substrate with 3-nm Cr adhesion layer as spacer. Owing to
their shape, the easy axis of magnetic polarization is in plane.
The in-plane demagnetization factor for this diameter to
thickness ratio is about N ≈ 0.1, whereby the critical length
scale for the single domain state is larger than 300 nm, which
is larger than the disk diameter.

Image (a) has been recorded with a standard out-of-plane
polarized tip, while the tip in image (b) was polarized

(a) (b)

Figure 6. Two Lift-mode AM-MFM images (1.1 × 1.1 µm2) of
the same single domain particle sample scanned with differently
polarized ferromagnetic tips. The disks with a diameter of 200 nm
are 17 nm thick with an in-plane easy axis and have been aligned
in an external in-plane field of µ0H|| = B|| = 0.3 T. The inset in
the lower right corner shows simulations of the contrast assuming a
purely out-of-plane (a) and in-plane (b) polarized tip, respectively.

in plane. The inset in the lower right corner displays a
simulation of the MFM contrast. In (a) the bright and dark
contrast reflects the north and south pole of the magnetic
dot, where the direction of the stray field is out of plane and
oriented either parallel (bright) or antiparallel (dark) with the
magnetic polarization of the tip. Note that the area occupied
by the dark and bright contrast is somewhat larger than
the particle size. For an in-plane tip the orientation of its
magnetic polarization and stray field outside of the particle
coincides at three positions above the particle: above the
center and at two ends, where the field lines leave and reenter
the particle. At the two ends the direction of the magnetic
field lines are opposite to the direction of the field lines
above the particle center. Therefore, image (b) exhibits a
stripelike contrast. Since the sample was magnetized in plane
before the measurements, all magnetic polarization vectors
are in the same direction. Without magnetization they are
randomly distributed as long as the interparticle distance is
large enough. Otherwise, dipolar coupling results in local
ordering. It is also possible to study the switching between
the two states of a single domain particle by using the stray
field from the tip plus an external field (Kleiber et al., 1998).
Specific orientations of the easy axis within the plane can
be induced by preparing elliptical particles (Kleiber et al.,
1998).

The properties and behavior of single domain particles,
for example, their magnetization reversal, are of particular
interest for magnetic data storage. Granular thin films with
typical grain diameters of about 12 nm are used in cobalt
based recording media (Thompson and Best, 2000). Today,
only a few hundred grains constitute one bit. One source of
noise in the readback signal is the presence of domain walls.
If only one bit is stored in just one grain, this problem can be
overcome. However, one problem is to increase the packing
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density of well-defined particle arrays. Another important
issue is the so-called superparamagnetic limit. When the
size is reduced even more, the direction of the magnetic
polarization rotates freely due to thermal excitation and in
some respects the particle behaves like a paramagnet and
therefore is useless for data storage.

2.10 Magnetic vortices

In small thin square-shaped elements certain magnetic con-
figurations exist, where the magnetic polarization is not
uniform, but no real domain walls exist, for example,
the so-called C-, S-, and Flower states (Goll, Schütz and
Kronmüller, 2003). If the lateral dimensions of the square
are large enough, the Landau flux-closure pattern develops,
where the magnetic polarization is oriented parallel to the
edges. Along the diagonals 90◦ domain walls are formed.
In the center of the square, spin frustration leads to a full
out-of-plane rotation of the magnetic polarization. Something
similar can occur in disks. For a given disk diameter and a
thickness above the critical thickness, below which the sin-
gle domain state is stable, a vortex state can develop. The
magnetic polarization follows the disk curvature and rotates
out of plane toward the center, where it finally orients per-
pendicular to the disk plane. Such a vortex state can be seen
in Figure 7 (Shinjo et al., 2000). Each permalloy (Ni80Fe20)
disk is 50 nm thick. The tip was polarized along its axis.
Bright and dark dots in their centers mark the positions of
the vortices, where the magnetic stray field of the sample and
the magnetic polarization of the tip are parallel or antiparallel,
respectively. In (a) all disk diameters are 1 µm, while they

(a) (b)

Figure 7. Lift-mode AM-MFM images (3.6 × 3.6 µm2) of permal-
loy (Ni80Fe20) disks with a thickness of 50 nm. In (a) all disks have
a diameter of 1 µm. The spot in the center indicates a vortex, where
the magnetization is forced out of plane due to spin frustration. It is
bright, if vortex polarity and tip magnetic polarization are parallel,
or dark if vortex polarity and tip magnetic polarization are antipar-
allel. The diameters in (b) range from 100 nm to 1 µm. All vortices
exhibit the same polarity, because they were aligned in an exter-
nal magnetic field of µ0H⊥ = B⊥ = 1.5 T normal to the sample
surface. (Courtesy T. Shinjo (Shinjo et al., 2000).)

vary from 100 nm to 1 µm in (b). Unlike in (a) all central
dots are dark in (b), because the specimen has been mag-
netized prior to the MFM measurement. The resolution of
MFM does not allow to investigate the fine structure of the
vortex core. However, this has been achieved by SP-STM
(see Section 3.4). At this point, it should be mentioned that
another vortex type has been observed with MFM. Supercon-
ducting vortices (flux lines) occur in type II superconductors
and consist of a normal conducting core, which is screened by
circular currents from the superconducting phase. Each vor-
tex carries one quantum flux, which can be detected by MFM
via its stray field. In particular, the arrangements of vortices,
for example, the glass state (Moser et al., 1995) or the regu-
lar Abrikosov lattice (Volodin, Temst, van Haesendonck and
Bruynseraede, 1998) and the influence of defects (Pi et al.,
2004) have been studied. Since the physics behind supercon-
ductivity is somewhat different from the magnetism treated
here, it will be not discussed further.

2.11 The future of MFM

MFM detects only the long-range magnetostatic tip–sample
interaction. However, magnetic ordering exists due to the
exchange interaction between the electron spins of neighbor-
ing atoms in a solid. Several theoretical calculations predicted
the feasibility to detect the exchange force between an indi-
vidual spin of a magnetically ordered sample and the spin
of the foremost atom of a magnetic tip at sufficiently small
tip–sample distances (Wiesendanger et al., 1990a; Mukasa
et al., 1994; Foster and Shluger, 2001; Momida and Oguchi,
2005). AFM in the dynamic mode using the FM tech-
nique in vacuum has proven its capability of achieving true
atomic resolution (FM-AFM, also known as NC-AFM, cf.
Section 2.1). However, the experimental realization of mag-
netic exchange force microscopy (MExFM) is very difficult,
because the exchange force is much weaker than the chemical
interactions that are responsible for the atomic-scale contrast.
Experiments with ferromagnetic tips have been performed
on the antiferromagnetic NiO(001) surface at room tempera-
ture (Hosoi, Sueoka, Hayakawa and Mukasa, 2000) and with
a considerably better signal-to-noise ratio at low tempera-
tures (Allers, Langkat and Wiesendanger, 2001; Hoffmann
et al., 2003). Although it was possible to achieve atomic
resolution, a periodic contrast that could be attributed to the
antiferromagnetically ordered spins of the nickel atoms could
not be observed in those experiments. However, very recently
MExFM has been successfully established by operating a
low-temperature AFM in a strong external field, whereby the
magnetic polarization of the tip was aligned in a favourable
direction. Under these conditions the arrangement of the
magnetic moments at the NiO(001) surface could clearly be
resolved (Kaiser, Schwarz and Wiesendanger, 2006).
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3 SPIN-POLARIZED SCANNING
TUNNELING MICROSCOPY

A magnetically sensitive imaging technique which offers
an even higher lateral resolution than MFM is spin-
polarized scanning tunneling microscopy and spectroscopy
(SP-STM/STS). It combines the atomic-resolution capabil-
ity of conventional, that is, spin-averaged, STM with spin
sensitivity. This is achieved by making use of the tunnel-
ing magnetoresistance effect between two magnetic elec-
trodes which – in planar geometries and with oxidic barri-
ers – is well studied and routinely utilized for data storage
applications. Similar to conventional, that is, spin-averaged
STM an atomically sharp tip is scanned at close distance
(≈1 nm) across the sample surface. As a bias voltage, typ-
ically in the range of several millivolts to a few volts, is
applied between tip and sample; a tunneling current flows.
Since this tunneling current is strongly distance depen-
dent with a decay constant in the range of 10−10 m−1

it can effectively be used for sampling contours of con-
stant local electronic density of states (LDOS) (Tersoff and
Hamann, 1983) which – in the case that the sample’s LDOS
does not vary too strongly – closely resembles the sam-
ple’s topography. The tunneling magnetoresistance effect
used in SP-STM is based on the principle that, in gen-
eral, the spin of an electron is conserved during tunneling
across a vacuum barrier. Since magnetic materials exhibit
an intrinsic imbalance between the spin-majority and spin-
minority electronic DOS this leads to a junction transmit-
tance which depends on the relative magnetization direc-
tions of the two electrodes involved (Wiesendanger et al.,
1990b). This review will describe three different operational
modes, each with specific amenities and limitations, which
allow the measurement of the sample’s local magnetization
direction.

3.1 Modes of operation

A simple yet powerful theoretical description of these meth-
ods was developed by Wortmann and coworkers (2001).
They decomposed the tunneling current I measured at tip
position �rT and bias voltage U into spin-averaged and spin-
dependent contributions, I0 and ISP, respectively:

I (�rT, U, θ) = I0(�rT, U) + ISP(�rT, U, θ) (14)

θ is the angle between the magnetization vectors of tip and
sample, �mT and �mS. By employing Bardeen’s description of

tunneling Wortmann and coworkers got

I (�rT, U, θ) = 4π3C2
�

3e

κ2m2

[
nTñS(�rT, U) + �mT �̃mS(�rT, U)

]
(15)

where nT is the non-spin-polarized LDOS at the tip apex, ñS

is the energy-integrated LDOS of the sample, and �mT and
�̃mS are the corresponding vectors of the (energy-integrated)
spin-polarized (or magnetic) LDOS:

�̃mS(�rT, U) =
∫ E=eU

E=EF

�mS (�rT, E) dE (16)

with

�mS =
∑

δ(Eµ − E)�S†
µ (�rT)σ�S

µ(�rT) (17)

�S
µ denotes the spinor of the sample wave function

ψS
µ =

(
ψS

µ↑
ψS

µ↓

)
(18)

and σ is Pauli’s spin matrix.
According to equation (15) the tunneling current is

expected to depend on the relative magnetic orientation
between tip and sample since – similar to Slonczewski’s
model (Slonczewski, 1989) for planar junctions – ISP scales
with the projection of �̃mS onto �mT, or, in other words, with
the cosine of the angle included between the magnetization
directions of the two electrodes, cos θ . Usually, an STM
is operated in the constant-current mode where a feedback
circuit drives the z component of the piezoelectric actuator
such that the tunneling current remains constant while scan-
ning the tip over the sample surface. Since, however, the
tunneling current scales exponentially with the tip–sample
distance,

I ∝ exp (−κz) (19)

with κ on the order of 10−10 m−1, even a rather substantial
variation of the total tunneling current by several 10% leads
to a variation of the tip height on the order of a few tens
of picometers (1 pm = 10−12 m) only (Wiesendanger et al.,
1990b; Kleiber, Bode, Ravlić and Wiesendanger, 2000). Such
tiny effects are difficult to detect and also hard to separate
from height variations of purely structural or electronic
origin. Therefore, as will be demonstrated in Section 3.7,
the constant-current mode of SP-STM is primarily suitable
for atomic resolution studies on atomically flat surfaces.

One possibility to overcome the difficulties of separating
topographic, electronic, and magnetic information is the
measurement of the local differential conductance dI/dU .
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Hereby, a small modulation Umod is superimposed to the bias
voltage U and the resulting current modulation is detected
by means of lock-in technique. Assuming a featureless
electronic structure of the tip, the spin-averaged measurement
of the differential conductivity, dI/dU0 (�rT, U) ∝ nS, gives
access to the sample’s non-spin-polarized LDOS nS (Selloni,
Carnevali, Tosatti and Chen, 1985; Tersoff and Hamann,
1983). If we apply magnetic tips, however, spin-polarized
components also contribute and, according to Wortmann
et al. (2001), the differential conductance can be written as:

dI

dU
(�rT, U) = dI

dU
(�rT, U)0 + dI

dU
(�rT, U)SP

∝ nTnS (�rT, EF + eU) + �mT �mS (�rT, EF + eU)

(20)
This so-called local differential conductance or dI/dU

mode is sensitive to the spin polarization within a narrow
energy interval �E around EF + eU . Therefore, it can nicely
be applied to spin-polarized surface states (Bode, Getzlaff
and Wiesendanger, 1998; Kleiber, Bode, Ravlić and Wiesen-
danger, 2000) which often provide a large conductance and
a high polarization. Even more important, the dI/dU sig-
nal can be measured simultaneously with the topographic
information, thereby allowing an efficient means of separat-
ing topographic from electronic and magnetic information. It
is important to note, however, that the spin polarization of
the magnetic LDOS �mS not only changes in size but may
also change its sign if different energy intervals �E are
compared. For example, the surface (and also the tip) may
exhibit a positive spin polarization in one energy interval
but a negative spin polarization in another (Bode, Getzlaff
and Wiesendanger, 1998; Wiesendanger, Bode and Getzlaff,
1999). Consequently, a high dI /dU signal does not imply
that the magnetization directions of both electrodes are par-
allel, but rather that the magnetic LDOS in both electrodes
have the same sign.

As long as surfaces with homogeneous (spin-averaged)
electronic properties are investigated, the differential con-
ductance mode offers a convenient way of imaging magnetic
domains at high spatial resolution. For surfaces with an inho-
mogeneous structure a separation of spin-averaged electronic
from magnetic effects can be accomplished by first record-
ing a dI/dU image with a bias voltage for which the spin
asymmetry defined by

A = dI/dU↑↓ − dI/dU↑↑
dI/dU↑↓ + dI/dU↑↑

(21)

becomes zero (electronic contrast image) and simultane-
ously recording a second dI/dU image with a bias voltage
for which the spin asymmetry is maximum (magnetic con-
trast image) (Pietzsch, Kubetzka, Bode and Wiesendanger,

2004). An alternative means of separating the magnetic con-
tributions which is based an a similar approach by John-
son and Clarke (1990) was developed by Wulfhekel and
Kirschner (1999). In analogy to experiments performed on
planar tunnel junctions they used a tiny coil for periodically
switching the tip magnetization �mT back and forth. If the
modulation frequency exceeds the cutoff frequency of the
feedback loop the measured signal of this so-called local tun-
neling magnetoresistance mode becomes proportional to the
local magnetization of the sample (Wortmann et al., 2001):

dI

d �mT
(�rT) ∝ �mS (U) (22)

Although this mode of operation can effectively separate
structural and spin-averaged electronic contributions from
magnetic effects, it is important to note that the spin
polarization of the magnetic LDOS �̃mS is not constant, but
that its size and sign depends on the respective energy range
under study. It may occur, for instance, that contributions
with positive and negative spin polarization cancel each
other. In this case, the spin polarization of the total tunneling
current and thereby the dI/d �mT signal vanishes in spite of the
fact that a local magnetization exists. Another limitation of
this technique is that ferromagnetic probe tips have to be used
and that their stray field may affect the local magnetization
distribution of the sample under investigation.

3.2 Tip preparation

The most delicate part when operating an SP-STM is the
preparation of suitable probe tips. So far, two concepts were
successfully used, that is, thin-film tips prepared by evapora-
tion of magnetic material onto the tip apex for the constant-
current mode and the differential conductance mode as well
as amorphous bulk tips for the local magnetoresistance mode.

Thin-film tips are usually prepared by deposition of
magnetic material onto an electrochemically etched W tip.
Upon etching, the tip is introduced into the vacuum system
via a load lock. Early experiments indicated that films
evaporated onto untreated tips are mechanically unstable
and can easily be lost when approaching toward the sample
surface or while scanning. It was found that the film stability
can be improved significantly by briefly heating the tip by
electron bombardment prior to deposition to about 2200 K.
Probably, this high-temperature flash melts the tip apex
and removes contaminations which weaken the interfacial
sticking. As evidenced by the scanning electron microscopy
images shown in Figure 8, however, it also results in
blunt tips with a typical diameter of about 1 µm (Bode,
Pietzsch, Kubetzka and Wiesendanger, 2001). If such a tip
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D = 1 µm

(b)(a)

Figure 8. Scanning electron microscopy images of a flashed W tip
at (a) medium and (b) higher magnification revealing a tip diameter
of about 1 µm.

is coated with 5–10 AL Gd, a GdFe alloy, or a rather
thin Cr film (50 AL), out-of-plane sensitivity is obtained.
However, the easy magnetization axis of such tips is not
always along the tip axis; for example, tips coated with
5–10 AL Fe or more than 100 AL Cr were found to be
in-plane sensitive (Bode et al., 2001). Obviously, material-
specific surface and interface anisotropies seem to be more
important than the shape anisotropy for determining the tip’s
magnetization direction.

The local magnetoresistance mode, where bulk magnetic
material is periodically switched by an external coil, requires
a careful choice of the tip material as the tip’s magnetization
reversal may mechanically couple into the tunnel junction by
magnetoelastic coupling (Wulfhekel and Kirschner, 1999).
Furthermore, the stray field may cause unwanted changes
of the sample’s domain structure. In order to minimize
these problems, the amorphous ferromagnet CoFeSiB is
a suitable material as it combines a low magnetoelastic
coupling constant with a low saturation magnetization. By
choosing appropriate tip geometries it was possible to tune

Umod

Umod

Mmodmod

Mmodmod

(a) (b)

Figure 9. Schematic experimental setup for local magnetoresis-
tance measurements with the STM using (a) an out-of-plane pointed
tip and (b) an in-plane-sensitive ring-shaped probe.

the sensitivity between out of plane or in plane. As mentioned
in the preceding text, the magnetic contrast scales with the
angle between the magnetization directions of tip and sample.
Out-of-plane sensitivity is easily achieved as a pointed object
like an STM tip usually prefers a magnetization direction
along the tip axis since this reduces its magnetostatic
energy. Figure 9(a) schematically shows an out-of-plane
sensitive tip together with the coil which drives the periodic
magnetization reversal. Owing to the intrinsic geometry
of the STM it is much more difficult to obtain in-plane
magnetic contrast. This could be achieved by using tiny ring-
shaped tips (Schlickum, Wulfhekel and Kirschner, 2003) as
schematically illustrated in Figure 9(b).

3.3 Domain wall structure

In order to prove the high spatial resolution capability
of SP-STM a suitable and well-defined test sample is
required. The surface spin structure of in-plane magnetized
Fe(001) whiskers has been intensively studied by scanning
electron microscopy with polarization analysis (SEMPA)
in the past (Scheinfein, Unguris, Celotta and Pierce, 1989;
Oepen and Kirschner, 1989). In contrast to bulk domain
walls, which exhibit a Bloch-like profile, a so-called Néel cap
was found on the surface, that is, the magnetization rotates
within the plane in order to reduce the magnetostatic energy.

Figure 10(a) and (b) show the topography and the simul-
taneously measured local magnetoresistance dI/d �m of the
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Figure 10. (a) Topography (left column) and (b) the simultane-
ously measured local tunneling magnetoresistance signal in the
central region of an Fe(001) whisker. A domain wall running along
a 〈100〉 direction can be recognized. A line profile measured along
the line in (b) together with a simulated profile is plotted in (c).
(Data with courtesy of W. Wulfhekel (Schlickum, Wulfhekel and
Kirschner, 2003).)



Scanning probe techniques: MFM and SP-STM 13

central region of an Fe(001) whisker, respectively. The
topography exhibits six monatomic step edges which sep-
arate atomically flat terraces. As visible in the dI/d �m signal
in Figure 10(b) a domain wall separates two domains being
visible in the upper and the lower part of the magnetic
image. The averaged line profile of Figure 10(c) which was
taken along the line in (b) reveals a contrast �I/I of
4% and a domain wall width of about 100 nm. Compar-
ison with a simulated line profile (black line) shows fair
agreement between experiment and micromagnetic calcula-
tions (Scheinfein et al., 1991).

Much more narrow domain walls were found in Fe
nanowires on stepped W(110) (Kubetzka, Pietzsch, Bode and
Wiesendanger, 2003). The upper left panel of Figure 11(a)
shows a spin-resolved dI/dU map of 1.8 AL Fe on W(110)
as measured with an in-plane-sensitive tip at zero field
(0 mT). Since the total coverage is below two atomic
layers the second layer is not closed. Instead, it forms
nanowires (DL) along the substrate’s step edges which
are separated by narrow regions of monolayer coverage.
Within the DL nanowires white and black lines can be
recognized. They originate from 180◦ walls which are

parallel or antiparallel with respect to the tip magnetization
direction, respectively. The wall width amounts to w ≈
7 nm. The intermediate dI/dU signal (gray) corresponds
to a perpendicular magnetization oriented either up or
down, two cases which cannot be distinguished with a tip
exhibiting pure in-plane sensitivity. The other panels of
Figure 11(a) show the same sample area exposed to an
increasing perpendicular magnetic field of up to 800 mT.
Owing to the Zeeman energy, areas which are magnetized
parallel to the field direction grow at the expense of
antiparallel ones. Pairs of 180◦ walls which enclose an
antiparallel domain (with respect to the external field) are
forced together. Thereby, 360◦ domain walls are formed.

The internal structure of the 360◦ walls has been analyzed
in detail by Kubetzka et al. (2003). Figure 11(b) shows
experimental line sections (gray circles) of two adjacent
domain walls. The wall profiles can be described by the sum
of two 180◦ walls at the positions ±c:

ϕ360(x) =
∑
+,−

arcsin

(
tanh

(
x ± c

w/2

))
(23)
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Figure 11. (a) Spin-resolved dI/dU maps (scan range: 200 × 200 nm2) of perpendicularly magnetized Fe double-layer (DL) nanowires
separated by monolayer segments measured at different external fields. At zero field (upper left) black and white lines can be recognized
which are approximately equidistant. These lines correspond to differently oriented domain walls (arrows) indicating that the tip is in-plane
sensitive. As the external field is enhanced domain wall pairs are formed. Thereby, the domain which is antiparallel to the external field
(⊗) is clamped between two domain walls. (b) Experimental line sections (◦) of the spin-resolved dI/dU signal taken across two domain
walls and fits with two 180◦ domain wall profiles (black line).
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The values of c and w can then be extracted from the data
if the varying tip magnetization is taken into account. Using
the function

y(x) = y0 + a· cos(ϕ360(x) + θ) (24)

one obtains the fitted curves which are shown as black lines
in Figure 11(b). The resulting fit parameters θ , c, and w

are displayed within the figure. Owing to the impact of
the external field on the ferromagnetic tip θ decreases from
90◦ to about 30◦. The extension of the inner 180◦ rotation
between the two opposite in-plane orientations, which is
approximately 2c, has been marked by a shaded area.

3.4 Magnetic vortices

As described in the previous section (Section 2.10) the
existence of perpendicularly magnetized magnetic vortex
cores was proven by MFM (Raabe et al., 2000; Shinjo et al.,
2000). However, MFM cannot elucidate the internal spin
structure of vortex cores because: (i) the lateral resolution
is typically limited to ≈20–50 nm, that is, larger than the
vortex core, (ii) the magnetic stray field of the MFM tip
easily interferes with the vortex, and (iii) the sensitivity is
restricted to the out-of-plane component of the stray field
gradient. All three problems are avoided by SP-STM using
antiferromagnetic probe tips (Kubetzka, Bode, Pietzsch and
Wiesendanger, 2002; Wachowiak et al., 2002).

Before focusing on the high spatial resolution capabilities
of SP-STM we want to demonstrate that magnetic thin-film
tips in the differential conductance mode can also be used
to study the magnetic domain structure of soft magnetic par-
ticles on a nanometer scale. Micromagnetic calculations by
Hertel (2002) showed that the lowest-energy domain con-
figuration also depends on the thickness. With increasing
thickness a transition from the so-called C-state via the
Landau-type or vortex configuration into a diamond state
(double-vortex) was found. This behavior is caused by the
thickness-dependent contribution of the magnetostatic energy
which has to be paid wherever the magnetization is perpen-
dicular to the element’s rim. At a certain critical thickness
it is energetically favorable to avoid the stray field by mag-
netizing the element along the edges throughout the entire
particle, leading to a so-called flux-closure arrangement.

This transition can be studied by SP-STM. The left column
of Figure 12 shows the topography of Fe islands which were
epitaxially grown on W(110). The mean island height h

varies between 3.5 nm (Figure 12a) and 8.5 nm (Figure 12c).
Note that the lateral dimensions of the islands – irrespective
of their height – are almost equal, that is, about 250 ×
500 nm2 along the [110] and the [001] direction, respectively.

In the right column of Figure 12 dI/dU maps measured
with in-plane-sensitive Cr-coated tips are shown. Since Cr
is an antiferromagnetic material these tips possess no stray
field and cannot interact with the sample’s domain structure
via magnetostatic interactions (Kubetzka, Bode, Pietzsch and
Wiesendanger, 2002). Since the Fe islands exhibit either
a low (dark) or a high (bright) dI/dU signal without any
significant variation on each particular island, we conclude
that the Fe islands shown in Figure 12(a) are in the single
domain state. Evidently, there exists a close correlation
between the magnetization direction of individual Fe islands
and the surrounding Fe ML: dark (bright) Fe islands are
always surrounded by a dark (bright) ML. magnetized along
[110]. The island in Figure 12(b) exhibits a height h =
7.5 nm. The corresponding spin-resolved dI/dU map shows
the typical pattern of a single vortex state (Wachowiak et al.,
2002). A diamond state is found on the even higher island
shown in Figure 12(c) (h = 8.5 nm) (Bode et al., 2004).

400 nm

100 nm

100 nm

(a)

(b)

(c)

Figure 12. Topography (left column) and spin-resolved dI/dU

maps (right) of Fe islands on W(110). The mean island height
is (a) 3.5 nm, (b) 7.5 nm, and (c) 8.5 nm. With increasing island
thickness the magnetic ground state develops from single domain
to the vortex configuration and finally to the diamond state.
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According to equation (15), the magnetic contrast of
SP-STM data scales with the projection of the vector rep-
resenting the sample magnetization onto the tip magneti-
zation. Consequently, we expect a cosine-like dependence
of the magnetic signal if the sample magnetization rotates
continuously. This condition is fulfilled in the vortex con-
figuration as observed in Figure 12(b). Here, the mag-
netization tangentially curls around the particle’s center,
where a discontinuity of the magnetization is avoided by
the formation of an out-of-plane magnetized vortex core,
which – depending on the actual material used – is about
10–50 nm in diameter.

Figure 13(a) shows a schematic representation of the
expected SP-STS contrast in the vicinity of a vortex core.
The actual tip magnetization direction is indicated by an
arrow at the left. If bias-dependent effects are not considered,
we expect a high (low) signal, if tip and sample are
magnetized (anti)parallel and an intermediate contrast, if they
are perpendicular. This is indicated by different gray values
in the background of Figure 13(a).

In order to illustrate the contrast mechanism of the
differential conductance or dI/dU mode in more detail,
Figure 13(b) shows tunneling dI/dU spectra which were
measured with an in-plane-sensitive Cr-coated probe tip
on top of an about 8 nm high island showing a vortex
configuration (Wachowiak et al., 2002). Although the spin-
averaged electronic structure of the Fe(110) surface is
homogeneous, the STS data reveal a strong spatial variation
of the spectral intensity over a wide sample bias range.
This variation is due to spin-polarized vacuum tunneling
between the STM tip and the magnetic sample surface.
With this particular tip only a small spin-dependent dI/dU

contrast is found at positive bias voltages U > 0.5 eV. At
U = +0.56 V all spectra cross and the corresponding spin-
dependent dI/dU map (inset) shows no systematic contrast.
At 0.43 V < U < +0.56 V the spin-resolved dI/dU signal in
the lower right corner is higher than in the upper left corner
of the dI/dU map. The highest spin asymmetry of about 0.5
is obtained at U = −0.18 V. The dI/dU peaks are probably
caused by a spin-minority d-like surface resonance, which
is well known from spin-resolved photoelectron emission
experiments (Kim, Vescovo, Heinze and Blügel, 2001). At
U = −0.43 V the spin-dependent dI/dU contrast vanishes
and inverts at even lower bias voltage. At U = 0.70 V the
dI/dU spectrum measured in the lower left corner of the
spin-dependent dI/dU map exhibits a local minimum, while
the spectrum in the opposite corner exhibits a shoulder. This
results in a very high spin asymmetry of about 70% (see
bottom panel).

The data of Figure 13(b) nicely demonstrate that a high
spin-resolved dI/dU signal not necessarily implies that
sample and tip are magnetized parallel. Without an external
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Figure 13. (a) Schematic arrow representation of the tip magnetiza-
tion (left) and the magnetic structure in the vicinity of a vortex core
(right). The contrast in SP-STS images, which is expected to scale
with the cosine of the angle included by the tip and local sample
magnetization, is shown in gray scale. White, black, and intermedi-
ate contrast represents high, low, and medium conductance due to
parallel, antiparallel, and orthogonal tip and sample magnetization
directions. (b) Tunneling spectra and corresponding spin-resolved
dI/dU maps (inset) measured with a magnetic tip in the vicinity of
a vortex core. The lower panel shows the spin asymmetry between
the dI/dU spectra measured on the white and black domain.

field available, the sample’s magnetization direction can only
be determined absolutely if the tip magnetization and the spin
character (minority vs. majority) of the concerned electronic
states are known. The spin-resolved dI/dU spectra and maps
of Figure 13(b) were acquired by measuring a full spectrum
at every pixel which is very time consuming. If just the
domain configuration has to be imaged it is sufficient to
perform the measurement at one particular bias voltage with
a large spin asymmetry.

We have zoomed into the central region of an Fe island
where the rotation of the magnetization into the surface nor-
mal is expected. Figure 14 shows maps of the spin-resolved
dI/dU signal measured with Cr-coated tips that are sen-
sitive to the in-plane and out-of-plane components of �MS

depending on the thickness of the Cr coating. While the
in-plane-sensitive dI/dU signal (left column) exhibits the
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Figure 14. High-resolution spin-resolved dI/dU maps taken with in-plane (left) and out-of-plane sensitive Cr-coated tips (right).
Experimental line sections taken along the black lines are compared to micromagnetic simulations (gray lines) http://math.nist.gov/oommf/
in the lower panel.

typical Landau pattern the out-of-plane image (right col-
umn) shows a homogeneous dI/dU signal for the entire
island except for a small bright spot approximately located
at the island center. This spot is caused by the perpen-
dicular orientation of the magnetization in the vortex core.
Line sections drawn along the indicated lines in the exper-
imental dI/dU maps (black lines) are plotted in the lower
panel. It was predicted theoretically (Feldtkeller and Thomas,
1965; Hubert and Schäfer, 1998) that the shape of a vor-
tex core is determined by the minimum of the total energy,
which is dominated by the exchange and the magnetostatic
or demagnetization energy. Compared to the latter the mag-
netocrystalline anisotropy energy, which is relevant for the
width of bulk Bloch walls, and the surface anisotropy are
negligible, as long as thin films made of soft magnetic mate-
rials like Fe are used. For the thin-film limit, that is, D = 0,
it has been shown (Feldtkeller and Thomas, 1965; Hubert
and Schäfer, 1998) that the vortex width as defined by the
slope of the in-plane magnetization component in the vor-
tex center is wD=0 = 2

√
A/Kd ≈ 6.4 nm, where A is the

exchange stiffness and Kd = µ0Msat
2/2 is the magnetostatic

energy density with Msat being the saturation magnetiza-
tion. This value is in reasonable agreement with the exper-
imental result wexp = 9 ± 1 nm. For comparison we have
also performed micromagnetic calculations employing the
widely used OOMMF software http://math.nist.gov/oommf/.
In short, the islands were divided into cuboids with lateral
dimensions of 1 × 1 nm2 and a height of 8 nm. The simu-
lation was started in a perfect vortex state, that is, without

any perpendicular component even in the vortex core. Upon
relaxation, the simulated profiles (gray lines) are in excellent
agreement with the experimental data.

3.5 Exchange-coupled nanoparticles

The ultimate spatial resolution of SP-STM/STS makes it a
unique technique for imaging single magnetic particles with
dimensions on the single-digit nanometer scale, which can
nicely be prepared by epitaxial growth on low-index sur-
faces of single crystals. For example, Figure 15 shows (a)
the topography and (b) the magnetic dI/dU signal of a
1.28 ML film as grown on a W(110) substrate held at room
temperature. This preparation leads to a closed and thermo-
dynamically stable monolayer of iron and double-layer (DL)
iron islands, where the local coverage is θ loc = 2 atomic
layers (AL) (Gradmann, Liu, Elmers and Przybylski, 1990;
Weber et al., 1997). As can be recognized in Figure 15(a)
the Fe DL islands are about 10 nm wide and elongated
along the [001] direction leading to a length of approxi-
mately 30 nm on average. This sample system has previ-
ously been investigated by Kerr effect measurements (Weber
et al., 1997) which have been interpreted in terms of a
thickness-dependent anisotropy: while the monolayer pref-
erentially keeps the magnetization within the film plane,
the DL islands exhibit a perpendicular anisotropy. Conse-
quently, a Gd tip with out-of-plane magnetization is expected
to image the domain structure of the DL islands. Indeed, as
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Figure 15. Overview images showing 1.3 AL Fe/W(110): (a)
topography and (b) spin-resolved dI/dU map. The perpendicu-
larly magnetized double-layer islands can reduce their magnetostatic
energy by changing the magnetization direction of adjacent Fe
islands between up and down.

can be recognized in Figure 15(b) two different values of
the dI/dU signal are observed representing islands which
are magnetized parallel or antiparallel with respect to the
tip magnetization. Approximately an equal number of black
and white DL islands can be found. By changing the mag-
netization direction of adjacent Fe islands between up and
down on a nanometer scale, the stray field above the sample
surface can be reduced. A similar behavior has also been

found for narrow Fe DL nanowires where adjacent stripes
couple antiparallel (Hauschild, Gradmann and Elmers, 1998;
Elmers, Hauschild and Gradmann, 1999; Elmers, 1998; Piet-
zsch, Kubetzka, Bode and Wiesendanger, 2000).

Images with an even higher magnification (Figure 16)
show, however, that the magnetic structure of the Fe DL
islands is more complex than a simple demagnetized, non-
continuous out-of-plane medium. Instead, the topography and
the corresponding magnetic dI/dU map of Figure 16(a) and
(b), respectively, reveal that some islands exhibit an interme-
diate contrast level. While the dI/dU signal of island A and
C is high and low, respectively, island B appears gray, that
is, the dI/dU signal measured on this island has an interme-
diate value. This analysis is also supported by a histogram
of the dI/dU signal strength measured above the three DL
islands shown Figure 16(c). The experimental observation of
Figure 16 can only be explained if island B is either nonmag-
netic or in-plane ferromagnetic. As analytically described by
a one-dimensional model by Kubetzka et al. (2001) – which
is based on the model of spatially switching anisotropies
introduced by Elmers (1998) – the magnetic behavior of the
Fe double-layer islands is governed by the close proxim-
ity of regions with different anisotropies: while the closed
ML exhibits an in-plane easy axis it is perpendicular for
the DL. As long as the DL island is sufficiently large the
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Figure 16. (a) Topography and (b) spin-resolved dI/dU map (scan range: 20 × 22 nm2) showing three double-layer islands marked A–C.
(c) Histogram of the spin-resolved dI/dU signal measured on the islands’ surfaces. Obviously, island B exhibits an intermediate spin-
resolved dI/dU signal. (d) In large Fe DL islands, the magnetization rotates out of the easy plane of the monolayer (ML) into the
perpendicular easy axis of the double layer (DL) thereby forming a 90◦ domain wall. As the Fe DL islands become too small it is
energetically favorable to keep the magnetization in plane as the domain wall costs too much energy. As a result of the exchange coupling
between the DL islands and the in-plane magnetized ML the magnetization of small islands remains within the surface plane.
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local magnetization rotates by 90◦ from in plane to out of
plane at the boundary between the closed Fe ML and the
DL islands. As the DL islands become smaller and smaller
the energy which is gained by turning the magnetization into
the easy magnetization direction of the DL decreases, until
it is smaller than the energy that has to be paid for the
90◦ domain wall that surrounds the DL island. Then it is
energetically favorable to keep the magnetization of the DL
in plane, in spite of the fact that the local anisotropy sug-
gests a perpendicular magnetization direction. This example
shows that the high spatial resolution of spin-polarized STM
leads to a better understanding of the magnetic proper-
ties, especially, if the material is inhomogeneous on the
nanoscale.

3.6 Dynamic processes

Microscopy techniques, which acquire the data sequentially
by scanning the sample point by point and line by line, offer
usually a very limited time resolution which is restricted to
the image sampling rate. This is also valid for STM and
its spin-sensitive form, that is, SP-STM. Nevertheless, it
is possible to observe dynamic processes like the thermal
switching behavior of sufficiently small magnetic particles,
if the switching time is sufficiently slow.

Epitaxial superparamagnetic particles can be prepared by
the evaporation of about 0.1–0.3 AL Fe on Mo(110). For
example, the topography of 0.25 AL Fe on Mo(110) is shown
in Figure 17(a). Mo is nonmagnetic and therefore cannot cou-
ple adjacent islands by direct exchange. As can be seen in
Figure 17(b) which was measured with an out-of-plane sen-
sitive Cr tip at T = 13 ± 1 K, most of the Fe islands are too
large (area a > 40 nm2) and therefore magnetically stable
on the timescale of imaging, that is, several seconds. These
islands exhibit either a high or a low spin-resolved dI/dU

signal representing islands being magnetized (anti)parallel
with respect to the tip. The spin-dependent dI/dU signal of
some islands, however, is not constant but changes either
between two subsequent lines within one particular image
(black arrows in Figure 17(b) and (c)) or between subsequent
images (white arrows) indicating that they are magnetically
unstable.

As mentioned in the preceding text, the scanning process
of SP-STM strongly limits the achievable time resolution.
This restriction can be bypassed by giving up one or even
both scanning directions and operating the STM in the so-
called line or point mode, respectively. In this case, the
time resolution is not limited by the image repetition rate
but by the line frequency or by the increment between two
successive points within one particular scan line. An example
of a measurement performed in the line mode is presented
in Figure 18. In the lower part of the topographic image
of Figure 18(a) a line marks four islands, the section of
which is shown in Figure 18(b). These islands are labeled
A–D from left to right. By repeatedly scanning along
the same line for about 40 min, thereby crossing islands
A–D at a rate of 1 Hz, one obtains spin-resolved dI/dU

maps as shown in Figure 18(c). Since the position of the
slow scanning direction is spatially fixed, this direction
represents the time rather than a lateral scale. The spin-
resolved dI/dU maps of Figure 18(c) have been recorded
at the same site of the sample at T = 13 K (bottom panel)
and T = 19 K (top panel). At T = 13 K islands A and D
exhibit a low and island C a high dI/dU signal. Since
these islands are rather large no switching processes were
observed on the timescale of the experiment. Only island
B, which is much smaller, switches about 50 times. As the
temperature is raised to T = 19 K, however, larger islands
become magnetically unstable, too. Now even the largest
island, D, switched once.

20 nm

(a) (b) (c)

Figure 17. (a) Topography and (b) the simultaneously recorded spin-resolved dI/dU map of 0.25 AL Fe/Mo(110). The islands are
perpendicularly magnetized up or down. The use of an out-of-plane sensitive Cr-coated probe tip results in a spin-polarized contribution
which appears as two distinct dI/dU contrast levels. The black arrows indicate Fe islands which switch between two subsequent scan lines
of the same image. Obviously, these islands are magnetically unstable at the measurement temperature T = 13 K. (c) Another island (white
arrow) magnetically switches in the time interval of two successive dI/dU maps.
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Figure 18. (a) Topography of Fe monolayer islands on Mo(110). The scan range amounts to 40 × 40 nm2. (b) Line section showing the
profile of four individual islands labeled A–D. (c) Spin-resolved dI/dU maps of the islands A–D shown in (b) as measured in the line
mode at T = 13 K (bottom panel) and T = 19 K (top panel).

3.7 Atomic resolution

The special strength of STM is its unique spatial resolution
down to the atomic scale. After showing that the SP-STM
can also be utilized to obtain information about magnetic
properties like the surface domain structure or the spin-
dependent LDOS, it is quite straightforward to ask whether
atomic spin resolution can also be achieved. Obviously,
this task requires an appropriate test sample. The smallest
possible magnetic structure is a magnetically ordered surface
where the magnetic moment alternates between adjacent
atomic sites, that is, an antiferromagnet.

Many materials, which are known to be antiferromagnets
in the bulk, are either alloys with a complex stoichiometry
that cannot be stabilized at the surface or exhibit a sur-
face magnetic ordering which differs from the bulk (Hänke
et al., 2005). Therefore, we decided to search for a thin-
film antiferromagnet, which can be grown epitaxially on a
refractory metal. One potential candidate is the Fe monolayer
on W(001). Early density-functional calculations (Wu and
Freeman, 1992) surprisingly predicted an antiferromagnetic
ground state that has been confirmed recently (Kubetzka
et al., 2005). Figure 19(a) shows the topography of 1.1 AL
Fe/W(001). Several double-layer islands with lateral dimen-
sions of less than 10 nm can be recognized.

With an out-of-plane sensitive Cr-coated probe tip we
have zoomed into the monolayer region approximately in

the center of Figure 19(a) (see box). Figure 19(b) and (c)
show the simultaneously measured spin-resolved constant-
current image and dI/dU map, respectively. Besides two
adsorbates which appear as protrusions, the constant-current
image shows a two-dimensional lattice which represents
the antiferromagnetic (2 × 2) superlattice: owing to the
spin-polarized contribution to the tunneling current the tip
is retracted from (approached toward) the sample surface
wherever the tip’s magnetic LDOS is (anti)parallel with
respect to the sample. As can be seen in the top panel of
Figure 19(d) the corrugation amounts to 2 pm only with a
periodicity of about 0.5 nm which is in good agreement with
the expected 0.45 nm. In the spin-resolved dI/dU map of
Figure 19(c) the same superstructure is visible.

In order to unambiguously prove the magnetic origin of
the superstructure, we have performed field-dependent exper-
iments employing ferromagnetic tips. Since the exchange
coupling within the Fe monolayer is much stronger than
the Zeeman energy, the external field leaves the sample’s
magnetic structure unaffected but only changes the verti-
cal component of the tip magnetization. Figure 20 shows
images taken within the same 4 × 4 nm2 large region around
an adsorbate. Between the measurements we have changed
the field direction from +2.5 T to −2.5 T. This field strength
is sufficient to force the magnetization of Fe-coated tips
out of their native in-plane direction to out of plane. If
the observed superstructure is indeed of magnetic origin the
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Figure 19. (a) Topography of 1.1 AL Fe on W(001). Within the
region marked by the box we have simultaneously measured (b) a
spin-resolved constant-current image and (c) a spin-resolved dI/dU

map. Note that the two adsorbates appear as protrusions in the
topography but exhibit a lower dI/dU signal strength. (d) Line
sections taken along the lines in (b) and (c).

pattern must invert. In contrast, the superstructure would
remain unchanged if it were caused by structural effects.
The top and bottom images of Figure 20 display the sum
and the difference of the two images, respectively. Indeed,
the contrast vanishes in the sum and is enhanced in the dif-
ference image. Interestingly, the magnetic superstructure is
visible even at the position of the adsorbate. This observation

+2.5 T −2.5 T

+

_

Figure 20. Constant-current images of a 4 × 4 nm2 region of an Fe
monolayer on W(001) around a native adsorbate measured with an
Fe-coated tip at different external fields (I = 30 nA, U = −40 mV).
Since the exchange coupling within the Fe monolayer is much
stronger than the Zeeman energy, the external field leaves the sam-
ple’s magnetic structure unaffected but only changes the vertical
component of the tip magnetization. Thereby, any magnetic contrast
is inverted but topographic and spin-averaged electronic contribu-
tions remain unchanged (middle row). Consequently, the sum (top
row) and the difference (bottom row) of two images recorded with
opposite tip magnetization directions allow the separation of non-
magnetic from magnetic contributions, respectively.

indicates that the Fe antiferromagnetic state is largely unaf-
fected by the adsorbate.

SUMMARY

The results shown in this chapter demonstrate that both
methods, MFM as well as SP-STM, have been developed
into powerful tools for high-resolution studies of the domain
structure of nanoscale samples. While MFM is easily applica-
ble even under ambient conditions but offers a rather limited
resolution of about 20 nm, SP-STM achieves atomic spin
resolution with the drawback that it can only be applied
under ultrahigh vacuum UHV conditions so far. Future
developments may enable to overcome these limitations; for
example, the spatial resolution of MFM can be improved
by a further reduction of the tip–sample distance until the
magnetic exchange force can be detected (Kaiser, Schwarz
and Wiesendanger, 2006). In order to apply SP-STM under
ambient conditions one may passivate the sample with an
appropriate adsorbate layer (Berbil-Bautista et al., 2006).
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face electronic structure of Fe(110): the importance of surface
resonances. Surface Science, 478, 193–202.

Kittel, C. (1946). Theory of the structure of ferromagnetic domains
in films and small particles. Physical Review, 70, 965–971.
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1 INTRODUCTION

There is presently an increasing challenge to prepare and
study 2D assemblies of identical nanoparticles or magnetic
nanoelements (nanomagnets) by sophisticated techniques.
This approach is complementary to the investigation of iso-
lated, well-characterized nanomagnets (see also Magneti-
zation Configurations and Reversal in Small Magnetic
Elements, Volume 2 and Superparamagnetic Particles,
Volume 4). In arrays, the interactions with the surround-
ing elements cannot be generally neglected. Many tech-
niques (Martin et al., 2003; Carl and Wassermann, 2002)
are used to prepare arrays of nanomagnets, based on
bottom-up (see also Chemical Synthesis of Monodisperse

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Magnetic Nanoparticles, Volume 3, Template-based Syn-
thesis and Characterization of High-density Ferromag-
netic Nanowire Arrays, Volume 4 and Novel Nanopartic-
ulate Magnetic Materials and Structures, Volume 4) or
top-down approaches (see also Nanoimprint Technology for
Patterned Magnetic Nanostructures, Volume 3), these last
methods being applied to ultrathin film structures.

A combination of lithography and ion milling processes
is the most common top-down technique used for pattern-
ing ultrathin films to create arrays of magnetic nanoelements
(see also Nanoimprint Technology for Patterned Mag-
netic Nanostructures, Volume 3). The ultimate resolution
is presently obtained by electron-beam lithography, but this
method is limited to the fabrication of small size arrays. In
counterpart, optical lithography allows one to realize arrays
of nanomagnets with a rather small period (80 nm) over large
areas, but without perfect identicae shape. Thus, new non-
conventional ways of top-down high-resolution patterning
over relatively large areas are highly desirable, especially to
design new types of discrete high-density magnetic recording
media or arrays of memory cells.

While always focusing on the issues of Volume 3 of the
Handbook, this chapter will begin in earnest in Section 2
by dealing with alternative top-down patterning methods
used for designing arrays of magnetic clusters or ultrathin
film nanoelements. This review will be concerned only with
simple 2D-metallic patterned nanostructures. Note that only
limited data are available so far on magnetic semiconductor
(Heimbrodt and Klar, 2002) or insulating film nano struc-
tures. In this chapter, particular emphasis is devoted to pat-
terning by ion irradiation, either through masks or by focused
ion beam (FIB). Following a survey of magnetic properties
in arrays of nanoelements in Section 3, the specific behavior
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of selected nanostructures will be examined in Section 4.
Periodic arrays of nanomagnets are good candidate to under-
stand the role played by competitive interdot exchange and
magnetostatic interactions. We will investigate the evolution
of magnetic properties from isolated to strongly interacting
and correlated nanoelements especially in the simple case of
Pt/Co/Pt out-of-plane magnetized nanostructures.

All along the review, the applicability to ultrahigh density
magnetic recording will be emphasized. Arrays of identical
nanomagnets, also called quantum magnetic dots (Chou, Wei,
Krauss and Fischer, 1994), are promising media for ultrahigh
density recording (Ferré, 2001; Lodder, Haast and Abelmann,
2001; Lodder, 2004; Carl and Wassermann, 2002). In this
spirit, nanodot arrays deposited by sputtering on preetched
wafers will be examined. The case of electrodeposited mag-
netic wires deposited inside periodic holes in membranes
or alumite templates will be treated in another contribu-
tion (see also Template-based Synthesis and Character-
ization of High-density Ferromagnetic Nanowire Arrays,
Volume 4). The case of patterned nanodot arrays for mag-
netic recording fabricated by interference optical lithography
(Lodder, 2004) will not be treated here.

2 FABRICATION METHODS

In this chapter, we will restrict ourselves to top-down fabri-
cation techniques, excluding lithography as a single step pro-
cess. Lithography techniques have been previously reviewed
(Martin et al., 2003; Carl and Wassermann, 2002), but they
do not address to new alternative techniques such as films
deposited on preetched templates or patterned by ion irradi-
ation patterning.

2.1 Deposition on prepatterned templates

2.1.1 Preetched substrates prepared by lithography

This method was first proposed by Gadetsky, Erwin,
Mansuripur and Suzuki (1996) to prepare perpendicular mag-
netic recording media. Photolithography was used first to
pattern square arrays of dots on glass or plastic substrates,
on which a thin SiN (10 nm)/Tb-rich TbFeCo (25 nm) mag-
netic film structure was subsequently deposited. The etching
depth, dot size, and periodicity were 10, 250, and 500 nm,
respectively.

More recently, Landis, Rodmacq and Dieny (2000) have
patterned Si wafer templates in the form of square nanopillars
by conventional lithography and reactive etching techniques.
The last step of the preparation consists of sputter depositing
a Co/Pt multilayer at low Ar pressure onto the entire

Figure 1. Atomic force microscopy (AFM) image of a square array
of dots with a diameter of 80 nm, the edge to edge spacing being
equal to 100 nm, prepared by ion sputtering on a preetched Si wafer.
(Moritz et al., IEEE Trans. Magn 38, 1731–36 (2002), ( 2002
IEEE).)

preetched substrate. The lateral size of the Si nanopillars
was first reduced down to 80 nm, with spacing as small as
100 nm (Moritz et al., 2002) (Figure 1). But, by reactive ion
etching and nanoimprinting, arrays of 30nm dots with 60nm
periodicity were finally fabricated. A relatively weak surface
roughness of 0.8 nm was measured on the top of 47 or 200-
nm-high nanopillars. Large pattern sizes, up to 3 mm × 3 mm
were realized. Sputtering of Co at normal incidence and of
Pt at a small incidence angle allowed one to deposit a Pt-
rich PtCo ultrathin film alloy (i.e., a nonmagnetic material)
on one sidewall of the nanopillars and CoO on the opposite
sidewall. As a result, ferromagnetic coupling between the
CoPt nanodots deposited on the top of nanopillars and the
PtCo layer located in between was eliminated.

2.1.2 Functionalized templates prepared by focused
ion beam (FIB)

A FIB or laser beam can locally modify the properties of
the substrate before depositing nanostructures. The irradiated
small regions serve as seeded sites that attract incident mag-
netic ions to form aggregates at preselected places. Square
arrays of ferromagnetic CoPt aggregates were grown after
functionalizing a convenient substrate at the apex of a square
array of defects created by Ga FIB (Perez et al., 2002; Han-
nour et al., 2005). In spite of their small size, the shape of
aggregates remains, up to now, highly ramified.

Another emergent technique to design periodic arrays
of nanoparticles is to use a chemical FIB-assisted method
(Kageyama and Suzuki, 2004). Co particles were produced
at selected places on a template by decomposing its octacar-
bonyl precursor under a scanning FIB. This method has been
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recently extended to produce periodic assemblies of FePt and
CoPt magnetic particles (Xu, Kageyama and Suzuki, 2005).

2.2 Ion irradiation through a mask

Argon ions are currently used for milling material, for
example, for designing patterns through a resist mask. The
removal of a large amount of matter is then required and
the surfacic ion dose must be rather high. In counterpart, it
has been shown recently (Chappert et al., 1998; Vieu et al.,
2002; Rettner et al., 2002a) that the magnetic properties
of ultrathin film structures are often strongly modified by
irradiation under low ion dose without etching and creating
any additional surface roughness. Thus, before discussing
ion beam patterning methods, a general survey on irradiation
process in ultrathin film structures is proposed. Some aspects
of this topic have been reviewed recently by Fassbender,
Ravelosona and Samson (2004).

Nanopatterning can be realized by uniform ion irradiation
through a contact mask deposited directly on the film, or
through a removable stencil mask. All types of ions may
be used. Another solution that avoids the preparation of a
mask is to pattern directly the film by scanning a nanosize
gallium FIB. The principles of these three techniques are
schematically depicted on Figure 2.

2.2.1 Uniform ion irradiation at low dose

Before investigating the modifications of magnetic properties
under irradiation, we will discuss the change of morpholog-
ical, structural, and physicochemical properties of ultrathin
film structures versus the type of ion, its energy, and dose.

Their radiation damage, etching depth, and intermixing of
ions at interfaces under low irradiation dose can be estimated
from the Transport of ions in matter (TRIM) calculations for
various ion energies (Ziegler, 1992). The used ion energy
ranges currently between 10 and 100 keV. For a given dose
and ion energy, damage increases with the mass of the

incident ions. At the same time, the mean implantation depth
of incoming ions is reduced. An increase of the ion energy
provides straighter trajectories, which allows one to minimize
the lateral ion straggling inside the media. More damage is
obviously created at higher energy, as when increasing the
dose.

The structural modifications induced by irradiation depend
much on the material. For example, in the Pd/FePd/Pd thin-
film structure, chemical ordering can be reinforced under He
irradiation since it favors the formation of the L10 stable
phase (Bernas et al., 2003). This elegant procedure allowed
significant increase of the anisotropy in this promising per-
pendicular recording media. In some other cases, a chemical
disordering is induced under irradiation (Fassbender, Rave-
losona and Samson, 2004). For the archetypal Co/Pt ultra-
thin layered structure, ion irradiation induces intermixing at
interfaces that is found to reduce its perpendicular magnetic
anisotropy (Chappert et al., 1998).

Now, let us focus on the widely studied case of irradiation
effects by light He ions at 30 keV on a room-temperature
sputter-grown Pt/Co/Pt ultrathin film structure. In that case,
He ions do not themselves perturb the structure since they
become deeply implanted far away from the film inside
the substrate (>100 nm). But He ion irradiation produces a
controlled ion beam mixing of the Co–Pt interfaces. This
effect brings into play the purely ballistic collisional mixing
and the chemical heat of mixing. At low dose, the mixing rate
is linear with He dose. As a result of a large negative heat
of mixing, a Co atom displaced from the interface into the
Pt layer stabilizes in a collision-induced site without further
relaxation. When reorganizing around a vacancy induced
by irradiation, atoms have a high probability to find a
higher thermodynamic configuration that minimizes energy.
Since Co and Pt elements are miscible in any proportion,
irradiation induce stable intermixing between Co and Pt
around interfaces. One important point is that for irradiation
with He ions at low dose, no etching of the film surface is
observed, so that the initial sample roughness is conserved.
A planar method for patterning magnetic recording media

(a) (b) (c)

Figure 2. Local irradiation: (a) by He ions through a contact mask, (b) by irradiation through a removable stencil mask, and (c) by a
focused Ga ion beam (FIB).
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was proposed (Chappert et al., 1998); in magnetic recording,
planarization ensures a higher stability of heads flying very
close above the disk. It is also interesting to note that the
optical indices of the Co/Pt structure are not significantly
modified under irradiation by He light ions with a typical
energy of 30 keV. All these features are conducive to
magnetic investigations by near field techniques.

As-grown Pt/Co/Pt films are ferromagnetic at room tem-
perature. For a Co thickness below 2 nm, the easy mag-
netization axis aligns perpendicular to the film plane as
the result of a large positive interface anisotropy. Using
a simple model, the observed magnetic changes can be
related to the irradiation-induced intermixing (Bernas et al.,
1999). This intermixing lowers the interfacial anisotropy,
the coercive field, and the Curie temperature (Ferré et al.,
1999). The magnetic properties of Co1−x Ptx alloys are
well known (Sanchez, Moran-lopez, Leroux and Cadev-
ille, 1988): for x < 75%, the alloy becomes ferromagnetic
at room temperature and the magnetic moment decreases
monotonously from 1.7 µB for x = 0 to 0.75 µB for x =
0.75. The variation of the Co–Pt concentration within the
ultrathin Co layer structure with the He dose can account for
the observed Curie temperature decrease. At room tempera-
ture, the perpendicular coercive field decreases monotonously
when increasing the He ion dose (Figure 3), and finally a
transition to a paramagnetic state takes place for a D =
2.5 × 1016 ions/cm2 dose. When changing the ion dose and
temperature, paramagnetic and ferromagnetic phases with
in-plane, oblique, and perpendicular anisotropy can be iden-
tified. The ‘temperature versus He ion dose’ phase diagram
has been determined for a Pt/Co(0.5 nm)/Pt sample (Figure 4)
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Figure 3. Polar MOKE (PMOKE) hysteresis loops of a
Pt/Co(0.5 nm)/Pt film versus the He irradiation dose at 30 keV.
(1) As-grown sample, (2) D = 3 × 1015 ions/cm2, and (3) D =
1016 ions/cm2. Magnetization of all loops is normalized to the sat-
uration magnetization MSO of the as-grown sample. (Chappert, C.
et al. (1998). Science, 280, 1919.)
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Figure 4. Temperature–dose magnetic phase diagram of an He-
irradiated Pt/Co(0.5 nm)/Pt ultrathin film at 30 keV. Several isode-
viation lines are indicated for the oblique phase. (J. Ferré et al.,
J. Phys. D: Appl. Phys. 36, 3103 (2003).)

(Ferré et al., 2003). When the Co thickness exceeds 1.4 nm,
another perpendicular-to-oblique reorientation transition is
evidenced first when increasing the He ion dose at room
temperature.

Helium irradiation effects are even more efficient in Co/Pt
multilayers. Two transitions may be successively identified,
first from a perpendicular to an in-plane magnetized state
(Figure 5), and finally to a superparamagnetic phase (not
shown in Figure 5). As proved from the pure critical behavior
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Figure 5. Room-temperature PMOKE hysteresis loop of an He-
irradiated Pt/[Pt(1.4 nm)/Co(0.3 nm)]6/Pt multilayer with He ions at
30 keV. (1) as-grown sample, (2) D = 2 × 1015 ions/cm2, (3) D =
6 × 1015 ions/cm2, and (4) D = 1016 ions/cm2. Magnetization, M,
of all loops has been normalized to the saturation magnetization
MSO of the as-grown sample. (Chappert, C. et al. (1998). Science,
280, 1919.)
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of the magnetization in the vicinity of the Curie temperature,
intermixing is highly uniform over the full sample area.

Since the ion intermixing at interfaces is induced by bal-
listic effects, the atomic displacement efficiency and damage
are more significant when using ions which are heavier than
He, like Ga. The Co–Pt in-depth intermixing profile pro-
duced by Ga ions inside the Pt/Co/Pt film structure has been
calculated by TRIM simulations (Ziegler, 1992) (Figure 6).
Qualitatively, similar magnetic changes are expected to occur
in Pt/Co/Pt films irradiated either by Ga or He ions, but at a
much lower dose for the heavier Ga ions (compare the depen-
dence of the coercive field with the dose for He (Figure 3)
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Figure 6. Co–Pt intermixing at the interfaces in a Pt/Co(1.4 nm)/Pt
film calculated by TRIM simulations for different values of the Ga
ion dose D increasing from 1013 ions/cm2 to 1.6 × 1015 ions/cm2.
The origin of the depth is located at the center of the Co layer.
(From Hyndman, unpublished.)
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Figure 7. Normalized PMOKE hysteresis loops of the as-grown
and irradiated Pt/Co(1.4 nm)/Pt film. The values of the dose D

indicated in the figure are in Ga ions/cm2 units. Note that the
sample becomes paramagnetic for D = 2 × 1015 ions/cm2. (Vieu
et al., Journal of Applied Physics. 91, 3103 (2002).)
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Figure 8. Semilogarithmic variation of the coercive field (open
squares) and of the anisotropy (black squares) of the
Pt/Co(1.4 nm)/Pt film with the Ga ion dose. (Vieu et al., Journal
of Applied Physics. 91, 3103 (2002).)

and Ga (Figures 7 and 8)). The irradiation efficiency on
coercivity in a Co/Pt multilayer has been determined by Ret-
tner et al. (2002a) for different types of ions with energy
in the 20–30 keV range (Figure 9). Similar behavior has
also been evidenced for ions with far higher energy, that
is, in the megaelectron volt MeV range (Figure 9) (Rettner
et al., 2002a; Kim et al., 2002). A main point is that lat-
eral ion straggling inside the film and morphological and
structural damages are relatively much more significant for
heavier ions.

As an example, the results of TRIM calculations (Ziegler,
1992) in an ultrathin Pt(6.5 nm)/Co(1 nm)/Pt(3.4 nm) film,
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Figure 9. Semilogarithmic plot of the reduced coercive field as a
function of the He, Ar, and Ga ion irradiation dose. He and Ar
irradiations were performed at 20 keV, 30 keV, and 2 MeV energy.
(Rettner et al., APL 80, 279–281 (2002).)
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show the following trends:

• Sixty-five percent of the Ga ions are implanted in the
Pt/Co/Pt film structure (vs no implantation with He).

• Multiple collisions for Ga (vs pure ballistic collisions for
He) and creation of 80 lacuna per Ga ion (vs 0.5 for He).

• The sputtering efficiency is six atomic planes for Ga
(vs 0.15 for He). The calculated etched depth has
been experimentally confirmed on Co/Pt structures for
different Ga ion doses (Hyndman et al., 2001a). Ga
ions generate a rougher surface than He irradiation.
Moreover, Ga irradiation favors expansion of the Pt
crystallite sizes along the (111) direction.

• In terms of magnetization and magnetic anisotropy,
1016 He ion/cm2 or 1015 Ga ion/cm2 irradiation doses
give comparable magnetic changes in this Pt/Co/Pt film.

The above trends confirm that light ions, such as He,
produce far less structural and morphological damage than
heavier ions, like Ar and Ga when restricting to doses that
give comparable changes in magnetism.

Several authors investigated the irradiation-induced chan-
ges in the magnetic properties of permalloy films with
in-plane easy anisotropy (Kaminsky et al., 2001). As expec-
ted, since magnetic interface effects are far less efficient
in determining anisotropy in in-plane films than those with
perpendicular anisotropy, rather large ion doses are necessary
to modify their magnetism by implantation of Ga into the
Co ferromagnetic layer. A transition from antiferromagnetic
to ferromagnetic coupling between the two Fe layers in the
Fe/Cr/Fe structure can be induced by Ga irradiation, allowing
to design a new type of magnetic patterning (Blomeier et al.,
2005). Magnetic micropatterning of FeNi/FeMn exchange
bias layers by ion irradiation through a mask has also been
demonstrated (Mougin et al., 2001). This method allows to
modify and control the exchange bias field value locally.

2.2.2 Patterning through a contact mask

Starting again from a Pt/Co/Pt film structure, a thick enough
resist or insulating layer (SiO2, SiN) is deposited first on the
film. Then, circular or square nanoholes are opened through
the contact mask by electron lithography and ion etching.
Finally, arrays of soft magnetic nanoelements in a harder
medium may be designed by uniform He ion beam irradia-
tion through this shadow mask. The contact mask may also be
made of an array of nanopillars (Krauss, Fischer and Chou,
1994). In that case, by uniform ion irradiation, an array of
ferromagnetic nanodots can be designed below these nanopil-
lars, while the nonprotected irradiated surrounding area
can become paramagnetic or weakly magnetized. Arrays of
Co25Pt75 nanodots with perpendicular anisotropy surrounded

by a weakly magnetic matrix have been fabricated through
such a mask by He irradiation (Devolder et al., 2003).

For a first demonstration, arrays of parallel ferromag-
netic stripes have been prepared by He irradiation through
a resist mask (Figure 10) (Chappert et al., 1998). To design
ultranarrow elements with highly contrasted borders, it is
more appropriate to deposit first a silica mask (about 400 nm
thick), which is subsequently patterned by electron lithogra-
phy and reactive ion etching. Silica masks with parallel ultra-
thin 30-nm-wide walls have been also prepared successfully
(Figure 11). Using a similar mask with 60-nm-wide walls, an
array of ultranarrow ferromagnetic Pt/Co/Pt stripes, separated
by micrometer wide irradiated paramagnetic regions, have
been prepared (Figure 12) (Devolder et al., 1999, 2000).

The collisional lateral straggling inside the film, the col-
lateral damage at mask borders, and the resolution of the
mask patterning technology, limit the sharpness of magnetic
nanostructures (Bernas et al., 1999). The lateral straggling,
which characterizes He ion-stopping profile is only about

(a)

(b)

10 µm

Figure 10. PMOKE images of an array of 1-µm-wide ferro-
magnetic stripes connected to a reservoir, separated by 1-µm-
wide irradiated paramagnetic regions. Magnetic patterning, in the
Pt/Co(0.5 nm)/Pt film, has been performed by He irradiation (D =
1016 ions/cm2, 30 keV) through a PMMA resist contact mask.
Images (a) and (b) are both differences from a magnetically sat-
urated image, and the reversed domains appear in gray. A magnetic
field pulse of amplitude 82 Oe and duration 2 s was applied between
snapshots A and B. (Chappert, C et al. (1998). Science, 280, 1919.)
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500 mm

Figure 11. Scanning electron microscopy image of a SiO2 mask.
The walls are 450 nm high, 30 nm thick and are separated here by
150 nm. (Devolder et al., APL 74, 3383–3385 (1999).)

Figure 12. PMOKE image (33 × 29 µm2) of the magnetic state of
an array of 60-nm-wide Co/Pt tracks, separated by 2.5 µm, obtained
after saturating the sample in a negative field (black) and applying a
positive field of 348 Oe during 10 s. This field was large enough to
reverse the magnetization in weakly ferromagnetic irradiated areas
(gray) between tracks (black). (Devolder et al., APL 74, 3383–3385
(1999).)

2 nm in ultrathin layers. Therefore, the resolution is in fact
limited by collateral damage due to ion beam divergence
below the silica mask, estimated to be 14 nm in the present
case (Devolder, Chappert and Bernas, 2002; Devolder et al.,
2001). This effect limits the sharpness of the designed
nanoelements. Moreover, imperfections of the mask’s edges
generate roughness at the border of the magnetic nanoele-
ments. When combining state-of-the-art lithographic tech-
niques, an ultimate nanometer-scale patterning of magnetic
properties can be reached using He irradiation while preserv-
ing the smoothness of the surface, a required condition for
ultrahigh density information storage technology.

2.2.3 Patterning through a stencil mask

Ion beam patterning can also be realized through a removable
stencil mask placed just above the film (Figure 2). This
method is also called proximity ion beam lithography. Wolfe
et al. (1996) discussed about the limitations of this technique
for realizing arrays of small (20–50 nm) nanostructures.
Devolder, Chappert and Bernas (2002) reported on the
ultimate resolution that can be reached by stencil masks
using He irradiation. The pertinent parameters are the gap G

separating the magnetic film from the mask, and the aspect
ratio (AR), that is, the ratio between thickness and size of
the mask openings. It appears that the gap must be chosen
in the 0.1 � G � 25 µm range, and the replication quality
is the best if AR > 3. For a 200-nm-diameter hole, drilled
into a 340-nm-thick SiC membrane, the collateral damage
can extend over 50 nm for G = 100 nm. It is highly reduced
(to about 10 nm) if a thicker 600-nm membrane is used.

Realistic mass production of discrete magnetic media
requires removable masks that replicate a given large pattern
many times. Stencil masks are potentially good candidates for
such an application. They have been used to design periodi-
cally organized soft magnetic dots in Co/Pt and FePt chem-
ically ordered superlattice films by ion irradiation (Terris
et al., 2000). However, the quality of the stencil masks was
not good enough at that time to reach the optimum resolution.

We will not discuss patterning using heavy ions at high
energy since they produce too much damage that is difficult
to control. Both etching and thermal effects have then to be
considered (Xiao et al., 1994; Cai et al., 1997).

2.2.4 Ion projection lithography

Patterned magnetic media can be produced by highly stable
ion projection lithography (Bruenger et al., 2002). A uniform
ion beam passes through an array of nanoholes drilled into a
stencil mask that is previously fabricated by lithography. An
electronic lens gives a demagnified image of this hole array
on the sample. Starting from a 3-µm-thick Si stencil mask
with 500-nm-wide holes, separated by 2 µm, arrays of 60-nm-
diameter magnetic dots have been realized using a uniform
Ar beam irradiation and an eight times demagnification. This
method does not require the use of a resist mask, so it can
be applied to pattern recording media (Dietzel et al., 2002;
Bruenger et al., 2002).

2.3 Direct writing techniques

2.3.1 Focused electron-beam writing

It has been demonstrated that magnetic properties of ultrathin
magnetic film structures can also be affected by a focused
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electron beam (Allenspach, Bischof, Düring and Grütter,
1998). To obtain a high electron-ion ballistic collisional
efficiency, electrons must have very high energy. In most
cases, the produced ion intermixing at interfaces is rather
low, so only weak magnetic changes are observed. Electron-
beam-assisted magnetic ion deposition can be more efficient
for designing nanostructures, but nearly no example is
reported so far in the literature.

2.3.2 Focused Ga ion beam (FIB) writing

This is certainly one of the most promising techniques to pat-
tern thin films with an ultimate nanometer resolution. Since
Ga ions are focused over a very small film area, damage can
be controlled over an extended range of doses. At relatively
high Ga doses (D > 1016 ions/cm2), FIB sputtering causes
the film to be etched away to depths larger than 10 nm. At
low doses (D < 1014 ions/cm2), the etching effect has a very
low efficiency, but the magnetic properties of ultrathin film
structures can still be locally modified. Ultrathin film FIB
patterning is usually performed with a weak probe current
(≈10 pA) at 30 keV energy. Irradiated lines separating nano-
magnetic regions are designed by scanning the FIB spot in
fast successive steps with a great precision, over a distance
typically equal to the FIB spot diameter in order to ascertain
overlap of irradiated areas along a given direction. The ulti-
mate FIB spatial resolution is presently 5 nm (Gierak et al.,
2005), giving an irradiated linewidth in the film of about
10 nm at low dose. The dose deposited in lines is controlled
by the exposure time of the spot varying from 0.1 to 100 ns.
This allows the design of irradiated lines with an equiva-
lent surfacic dose from 3 × 1012 to 3 × 1015 ions/cm2. At
low dose (<1014 Ga ions/cm2) (Figure 13a), irradiated lines
become weakly ferromagnetic without creating new surface
roughness on the virgin film. At mean dose (Figure 13b),
the central part of irradiated lines is rendered paramagnetic,
while their edges are weakly ferromagnetic. Thus, arrays of
tracks or dots may be designed by scanning the FIB along
one direction or two orthogonal directions, respectively (Aign
et al., 1998; Hyndman et al., 2001b; Toporov, Langford and
Petford-Long, 2000). Periodic arrays of drilled holes, called
antidots, have also been fabricated (Toporov, Langford and
Petford-Long, 2000). In order to realize complex structures
or to isolate magnetically a single magnetic nanoelement,
the FIB spot size can be adjusted between 10 and 50 nm,
and even scanned over a large sample area to sputter mate-
rial. This technique has been successfully used to fabricate
single high-quality in-plane magnetized permalloy nanoele-
ments (Xiong, Allwood, Cooke and Cowburn, 2001).

In most materials, the removal rate with 30 keV Ga ions is
around 1–10 atoms per incident Ga ion. For each incident
Ga ion on a Co/Pt film structure, approximately 500/Pt
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Figure 13. Schematic cross-section view of the lateral variation of
the Curie temperature through a line irradiated by a scanned FIB
having a Gaussian dose profile. (a) At low dose, the irradiated line
is still weakly ferromagnetic at its center. (b) At higher dose, the
central part of the line becomes paramagnetic while its edges are
weakly ferromagnetic. This explains why nanodot borders act as a
nucleation reservoir for further domain wall motion inside the dot.

and 500 Co ion displacements are generated. This rapidly
induces a large density of defects. For Pt/Co/Pt films, one
estimates that 300 ion impacts over a 10mn FIB spot diameter
(equivalent to D = 4 × 1014 ions/cm2) give rise to a 1-nm-
height surface film blister, which spreads over about 100 nm.
This swelling is due not only to Ga implantation (Basnar
et al., 2003) but also to a damage which modifies the crystal
structure. Voids and interstitial atoms are created, leading
to a volume enhancement associated to an amorphization
process. When increasing the FIB spot dose, etching effects
(drilled depth of 1.3 nm by 750 Ga ions per spot, i.e., for
1015 Ga ions/cm2) tend to form a cross-section volcano-type
profile. For 2250 ions, the depth of the drilled central hole is
already 3 nm. This phenomenon can be evidenced from small
local changes in light reflectivity, as already observed for an
array of Ga ion irradiated lines in a Pt/Co(1.4 nm)/Pt film
used for producing a square nanodot array (Figure 14). So,
the FIB writing technique can be inappropriate for designing
nanostructures in some cases, in particular, when it already
modifies too much the surface topology at low dose.
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Figure 14. Optical image of a Pt/Co(1.4 nm)/Pt film patterned as
a square (1 × 1 µm2) nanodot array by two orthogonal sets of
Ga irradiated lines, here revealed in light gray. The width of the
irradiated lines is overestimated because of the convolution with
the limited resolution (0.4 µm) of the optical microscope. The used
lineic Ga dose was 3 nC cm−1. (From Aign et al., 1998.)

2.4 Comparison between patterning techniques

At this stage, it is interesting to compare the performances
of different top-down techniques for realizing arrays of
magnetic nanoelements (Table 1).

Among the usual top-down patterning methods, only
electron-beam lithography is competitive with FIB for creat-
ing so narrow nanostructures. FIB and electron lithography
are both slow fabrication procedures, but FIB stands as a
direct writing method while electron lithography needs first
the mask fabrication and the use of a lift-off process. Another
advantage of the FIB technique is that magnetic patterning
in film structures can be often realized under a low dose that
avoids material etching and reduces considerably the duration
of the patterning process.

One possible drawback of the FIB patterning is due to
the Gaussian profile of the beam, and straggling effects that
lead to gradients in the magnetic properties at the edges of
the patterned nanoelements. Note that the width of these

regions can be limited, in the best cases, to only 10 nm. Since
irradiation often reduces coercivity, a field-induced domain
nucleation at dot edges can favor a better control of the
magnetic switching behavior (Aign et al., 1998). FIB can
be used to delimit the edges of a single track. Jamet et al.
(2001a) have shown that domain walls move much more
rapidly in such designed tracks than in wires patterned by
engraving techniques. This can be interpreted as a magnetic
wetting effect along the edges of the stripe. In other words,
FIB can partly suppress pinning effects for wall motion by
smoothing the track edges magnetically.

3 MAGNETISM IN NANOMAGNET
ARRAYS

3.1 Definitions and characteristic lengths

Nanomagnet is used to name all types of nanometer size
magnetic entities. When designed by a top-down pattern-
ing technique they will be called magnetic nanoelements.
Nanoelements having a shape symmetry will be named
dots when their thickness t does not exceed 50 nm, or pil-
lars when t becomes comparable or thicker than their lat-
eral size a (Krauss, Fischer and Chou, 1994). Tracks or
stripes are long nanoelements with rectangular cross section
(width: w, thickness: t). From this definition, they differ
from wires that are generally grown by bottom-up methods in
drilled templates (see also Advanced Magnetic Microwires,
Volume 4 and Template-based Synthesis and Characteri-
zation of High-density Ferromagnetic Nanowire Arrays,
Volume 4). In the investigated periodic arrays, nanomagnets
will be positioned at nodes of a square lattice with in-plane
periodicity P . The separation S = (P − a) represents the
distance between the edges of two neighboring nanoelements.

As well known (see also Magnetization Configurations
and Reversal in Small Magnetic Elements, Volume 2),
several characteristic lengths control the magnetic behavior
of magnetic nanoelements:

• The exchange length, lex = π(2A/µ0MS)
1/2, over which

the spin orientations are highly correlated. Here A stands

Table 1. Ultimate performances of lithography and nonconventional techniques for patterning arrays of nanomagnets.

Techniques Electron lithography Optical lithography Irradiationa through a mask Ion projection FIB

Complexity Yes No Yes Yes No

Replication No Yes Yesb/no Yes No
Resolution >10 nm >40 nmc >15 nm >20 nm >5 nm
Size of the array 50 µm >1 cm 100 µm >1 mm 50 µm

aWith light ions.
bStencil mask.
cConical shape of the nanoelement.
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for the exchange stiffness, µ0 the Bohr magneton, and
MS the magnetization at saturation. A typical value of
lex for Fe or Co is 10 nm.

• The dipolar length, D0 expressed as the ratio of the
domain wall over the dipolar energy density, D0 =
2(AK )1/2/µ0M

2
S. This quantity controls the stability

condition for magnetic bubble formation, the vortex
core size in circular magnetized nanoelements, and it
allows to predict large domain size in ultrathin films with
perpendicular anisotropy (Kaplan and Gehring, 1993).

• The domain wall width, � = π(A/K)1/2, where K is
the magnetic anisotropy. � is about 3–10 nm for films
with large out-of-plane anisotropy, and is much larger
(30–100 nm) for usual films with in-plane anisotropy.

3.2 Noninteracting arrays of nanomagnets

One of the major challenges is to determine the statics and
the dynamics of the magnetization reversal of well-defined
magnetic nanoelements when their sizes become compara-
ble or smaller than the characteristic exchange or dipolar
length and domain wall width. For narrow tracks, the perti-
nent parameters are obviously the width w and thickness t .
Then, the data must be compared to refined analytical cal-
culations but more generally to micromagnetic simulations
(Handbook of magnetism, Vol. 2). The size, shape, and mag-
netic anisotropy of these nanomagnets play a crucial role in
the magnetization reversal process (Cowburn, 2000), and for
determining equilibrium and field-induced metastable states.
Obviously, the best solution is to select only one magneti-
cally isolated nanoelement. Unfortunately, even sophisticated
methods are, most of the time, not sensitive enough to mea-
sure such a weak magnetic moment. Up to now, only two
techniques have succeeded to check the magnetic behavior
of nanomagnets at a scale smaller than characteristic mag-
netic lengths: (i) Micro-SQUID magnetometry was used to
investigate the magnetization reversal of a single Co particle
as small as 3 nm in diameter (Jamet et al., 2001b), and there-
fore to test unambiguously the Néel’s prediction of a coherent
spin reversal process. (ii) Spin-polarized scanning tunneling
microscopy (SP-STM) allowed measurements of the field-
induced magnetization reversal in small nanocrystals (Bode,
Pietzch, Kubetzka and Wiesendanger, 2004). Nevertheless,
such sophisticated methods can only be used in a very lim-
ited number of cases. For nanoelements with sizes of a
few tens of nanometers, transmission electron microscopy
(TEM) in Lorentz mode or electron holography can yield use-
ful local magnetic information (Hubert and Schäfer, 1998).
However, no technique is presently able to investigate fast
and ultrafast magnetization reversal dynamics on a single
nanomagnet.

Consequently, it is highly desirable to deduce the mag-
netic behavior of individual nanoelements from that of dot
assemblies. This can be only realized if nanoelements are
structurally and magnetically identical, that is, with monodis-
perse properties and without interdot coupling. This last
condition can be only fulfilled if the magnetostatic interac-
tion can be neglected, that is, when the separation between
nanoelements is at least five times larger than their thick-
ness. This is a difficult challenge since most nanomagnet
assemblies exhibit switching field distributions. Distribu-
tions are expected in many cases: of the size and shape
of the nanoelements, of the magnitude and/or of the direc-
tion of their magnetic anisotropy, the statistics of nucle-
ation, and so on. The most prejudicial effects for funda-
mental studies and applications come from nucleation field
distributions. For example, in the case of Au/Co/Au films,
with perpendicular magnetic anisotropy, an increase of the
nanodot density gives rise to a huge enhancement of the
mean coercive field, while the first dot is switching exactly
at the field found for magnetization reversal in the virgin
film (Jamet et al., 1998). This means that dot switching is
related to the distribution of nucleation fields inside the virgin
layer. All possible distributions obviously mask the predicted
specific magnetization reversal process of single nanoele-
ment. Unfortunately, the detail of distributions is generally
unknown so that individual processes cannot be, a priori,
rigorously evaluated. As discussed in the following text,
these limitations can be overcome for FIB-patterned arrays
of magnetic nanoelements. We will show how a very narrow
distribution of magnetic dot properties can be obtained in
that case.

3.3 Dipolar and exchange interactions
in magnetic dot arrays

Only single spherical or elliptical nanoelements exhibit a
uniform internal self-demagnetizing field. In counterpart,
the self-demagnetizing field of nonspherical nano elements
becomes inhomogeneous near the edges for both in-plane and
out-of-plane magnetized samples. Inside ultrathin nanoele-
ments, the demagnetizing field shape factor tends toward
0 or 2π for layers with in-plane or perpendicular mag-
netic anisotropy, respectively. For example, as checked by
micromagnetic calculations, the self-demagnetizing field of
out-of-plane magnetized nanoelements is non-homogeneous
at their edges over a distance that can be up to five
times the layer thickness. So, the reduction of the self-
demagnetizing field favors field-induced nucleation and
reversal of domains at nanoelement’s edges. A clear con-
sequence of self-demagnetizing effects is the generation of a
large variety of domain configurations in thick nanodots with
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perpendicular magnetic anisotropy (Hehn et al., 1996). When
the separation S between nanoelements is smaller than their
own thickness, the interelement magnetostatic interaction has
to be considered.

In practice, nearly no array of nanoelements with in-plane
anisotropy have been produced so far by the preparation
techniques concerned in this review. Consequently, we
will not report much on interelement magnetostatic effects
in these in-plane magnetized nanodot arrays. They have
been discussed by Fruchart et al. (1998). In that case, the
dipole–dipole interaction between ultrathin nanoelements is
short range, and decreases rapidly with their separation S.
Contrarily to the 3D case, where dipole–dipole interactions
are long range, a magnetic material confined in a 2D space
shows a smaller associated magnetostatic energy.

The effect of interdot interaction on magnetization rever-
sal in circular or square dot arrays with in-plane anisotropy
have been studied theoretically by Guslienko et al. (2001).
The magnetostatic interaction influences the nucleation and
annihilation of magnetic vortices. This has been checked
experimentally in permalloy dots by varying the dot sep-
aration (Novosad et al., 2003). The chirality of vortices is
also controlled by magnetostatic interactions (Natali et al.,
2002). Magnetostatic interactions in 1D-coupled dots have
been investigated in simple systems with planar anisotropy.
Novosad et al. (2003) have shown that the shape of the
nanoelements influences the magnetization reversal process
in chains. For in-plane magnetized nanomagnets arranged
on a rectangular lattice, a transition from a magnetic dis-
ordered state to an ordered state, similar to a paramag-
netic–ferromagnetic transition, has been evidenced when
reducing the periodicity in one direction (Cowburn, 2000).

Let us now concentrate on dot arrays with out-of-plane
magnetic anisotropy. The perpendicular (z) stray field com-
ponent Hz

dip, created outside an ultrathin magnetic nanoele-
ment decreases rapidly with the lateral distance x from its
edge. An approached analytical expression of Hz

dip with x

can be derived. If x is greater than the thickness t of
the element, but smaller than the dot diameter, the nano-
magnet can be considered as an electric wire, which sur-
rounds the element, carrying a current µ0MSt . Accord-
ing to the Ampere’s law, this current creates a dipolar
stray field component Hz

dip proportional to MSt /x. When
x is larger than the element size, that is, in a macrospin
approximation, Hz

dip vanishes more rapidly being propor-
tional to 1/x3.

Now, let us try to estimate the dipolar stray field experi-
enced by a central dot from the other dots positioned around
it on a square lattice. An analytical expression has been
deduced in the macrospin approximation, for nanoelements
of volume V with perpendicular magnetic moments confined
at nodes of a square lattice with period P . So, the dipolar

stray field Hz
dip is written as (Haginoya et al., 1999):

Hz
dip = [(0.716V )/P 3 + N ](MS/µ0) (1)

The self-demagnetizing field shape factor of a nanoelement,
N, is supposed to be constant. The first term in the brackets
represents the demagnetizing field factor due to all surround-
ing macrospins. As quoted by several authors (Haginoya
et al., 1999; Haast et al., 1998), N is smaller for nanoele-
ments than for the virgin continuous film, so that the equiv-
alent demagnetizing field factor in the brackets of expres-
sion (1) is reduced as well. As a consequence, the remanent
ratio, MR/MS, and hence the loop squareness, can be signif-
icantly improved, for example, from 0.2 for the virgin film
to 1 for the patterned medium (Haginoya et al., 1999).

Numerical calculations are required if one wishes to
account for the shape of the nanoelements. Nonhomogeneous
stray fields are generated by a nanoelement on itself and by
the surrounding nanoelements. For example, the case of an
array of square ultrathin flat (t � a) magnetic nanoelements
which are fully magnetized perpendicularly to their surface,
has been treated. The mapping of the z component of the
demagnetizing field in a central dot is depicted on Figure 15
(Jamet et al., 1999) for 1-µm wide ultrathin Co(t = 1.4 nm)
magnetic square dots separated by S = 50 nm. As expected,
the dipolar stray field is highly non-homogeneous at dot
edges and especially at corners. For arrays of thicker
nanoelements, that is, pillars, stronger demagnetizing field
effects are expected because of a higher magnetic moment
per element.

When the magnetic ultrathin nanoelements come close
to each other (S ∼ 1–2 nm), interexchange interaction can
also play a role through the nonmagnetic metal substrate
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Figure 15. In-plane dipolar field mapping inside a (1 × 1 µm2)
Pt/Co(1.4 nm)/Pt square dot due to the field radiated by all other
dots supposed to be in the same initial magnetic state. (J.P. Jamet
et al., J. Magn. Soc. Jpn., 23, suppl No S1 (1999).)
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or lateral insulating tunnel barriers (Kondratyev and Lutz,
1998). Magnetic ordering then occurs through an oscillat-
ing exchange coupling between the nanoelements that mod-
ifies the electronic state density. It results in either a net
local ferromagnetic or antiferromagnetic interelement cou-
pling depending upon the nature and size of the separation
between nanoelements.

3.4 Experimental determination of interelements
interactions

No direct method is able to determine the magnitude of
interactions between magnetic nanoelements when the lat-
tice period becomes smaller than the size of the magnetic
probe. This happens when the distance between nanomag-
nets is typically shorter than 50 nm. As discussed in the
preceding text, interactions can be intrinsic when they are
due to the dipolar coupling or the exchange interaction medi-
ated by the substrate, but sometimes nanoparticles can also
touch each other as a consequence of an imperfect patterning
process. To check magnetic interactions in dot arrays, the so-
called �M method, related to the Henkel plot procedure, has
been first proposed by Kelly, O’Grady, Mayo and Chantrell
(1989). It is now widely used to probe the sign of magnetic
interactions in several types of recording media, but also for
studies of new chemically synthesized self-organized lattices
of small quasi-monodisperse nanoparticles (a ≈ 6 nm) which
are separated by only a few nanometers (Sun et al., 2000).
This �M method has been applied successfully to determine
interactions in nanometer size particle assemblies designed
for future magnetic recording media (Wu, van de Veerdonk,
Chantrell and Weller, 2003; Zeng et al., 2002). It will be jus-
tified later in Section 4.3.2 for coupled Pt/Co/Pt dot arrays.

The �M method has been recently amended to intro-
duce switching field distributions of nanoelements (Wu,
van de Veerdonk, Chantrell and Weller, 2003). The vari-
ation of �M with the applied field, H , that is, the
�M(H ) curve can be extracted from the knowledge of
the dc demagnetization (DCD) and of the isothermal
remanent magnetization (IRM) curves. In DCD, the sam-
ple state is initially saturated in a negative field, while
an ac-demagnetized initial state is considered for IRM.
In both cases, the remanent magnetization MDCD(H) or
MIRM(H) are measured for increasing H values after
switching H to zero. From the MDCD(H) and MIRM(H)

plots, the pertinent quantity, �M(H) = MDCD(H) −
[1 − 2 MIRM(H)] is deduced. �M(H ) is related to devia-
tions from the case of noninteracting elements. The integrated
area between the �M(H ) curve and the field axis is found to
be positive for interparticle coupling dominated by exchange
interaction, and positive when it is dipolar in origin.

3.5 Arrays of interacting nanomagnets

This topic was partly treated by Martin et al. (2003) in
their review. In the case of a 2D array of single magnetic
layer nanoelements, in-plane magnetic interactions play a
major role on the magnetic switching behavior. However,
for nanoelements built from a magnetic multilayer structure,
interlayer interactions within a dot have also to be considered.
The second case is of vivid interest for new generations
of memories, such as magnetic random access memories
(MRAMs). At first, we will limit ourselves to the simple
case of single magnetic layer nanoelements.

Nanomagnets can be laterally coupled by exchange (Kon-
dratyev and Lutz, 1998) or magnetostatic interactions.
Exchange interactions through buffer or top layers are only
efficient for very closely spaced (S ∼ 1–2 nm) nanoelements.
Only a few predictions on exchange-coupled particles or
nanomagnets have been reported so far in the literature
(Scheinfein, Schmidt, Heim and Hembree, 1996; Chen et al.,
2002; Navarro et al., 2004). This is due to the intrinsic
difficulty in designing regular assemblies of particles with
controlled nanometer size separations. The study of the mag-
netism of model systems made up by assemblies of nano-
magnets with competitive exchange and dipolar interactions
is of fundamental interest since they can mimic real mag-
netic films for recording application (Zhu and Neal Bertram,
1989).

Most of the investigations have been limited to pure
magnetostatic interactions. From the macroscopic side, a
very instructive study of a lattice of in-plane dipolar-
coupled compass needles has been reported by Olive and
Molho (1998). They deduced the system’s thermodynamic
properties under a random applied field that is supposed
to mimic thermal fluctuations. A phase transition between
an ordered and a disordered state has been evidenced and
successfully interpreted by numerical simulations.

As discussed in the preceding text for noninteracting
nanomagnets in real systems (Section 3.2), we are also faced
with unknown distributions of their magnetic properties.
So, assuming an assembly of identical macrospins (single
magnetic domain state nanoelements), simple theoretical
models can only predict general trends. Nevertheless, in the
best experimental cases, with nanomagnets showing quasi-
monodisperse magnetic properties, several basic problems
have already been solved:

1. The thermodynamics of simple 2D-Ising or XY -coupled
systems, in particular, the transition between ordered and
disordered macrospin states (0D (isolated element) to 1D
(chains of elements), 1D to 2D (in-plane distributed ele-
ments), and 2D to 3D (elements in space) arrangements
of nanomagnets (Cowburn, 2000)).
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2. The switching field statistics of a nanomagnet interacting
with neighbors, and their related consequences on the
magnetization reversal of the array as a whole (Fruchart
et al., 1998; Repain et al., 2004).

3. The dynamics of dipolar-coupled Ising nanomagnets
distributed on a regular lattice and modeled using a
macrospin approximation (Sampaio et al., 2001).

Many theoretical treatments have been proposed to eval-
uate magnetic properties of arrays of nanomagnets and the
role of interactions including several types of distributions.
A neural network approach, composed of a self-organized
array of short- and long-range interacting magnetic dots, has
also been proposed (Horvath, Gmitra and Vavra, 2001; Hor-
vath and Gmitra, 2003; Gmitra and Horvath, 2003). Many
theoretical treatments in statistical physics are devoted to
dynamics, and some of them concern 2D interacting sys-
tems. However, most of the models predict slow dynamics
only; for example, a logarithmic relaxation is expected in
hierarchically constrained systems (Bray and Prados, 2001).
A 2D lattice of interacting magnetic dipoles gives rise to
quasilogarithmic or stretched exponential time decay (Sun
and Weili, 1997; Lottis, White and Dahlberg, 1991). Exper-
imental studies of magnetic relaxation (also called magnetic
aftereffect) have been performed either on simple clusters of
nanomagnets (Luis et al., 2002) or on a large array of quasi-
identical nanoelements (Sampaio et al., 2001); the relaxation
phenomenon always becomes slower when increasing the
complexity of interactions and the size of the array.

With reference to applications, the performances of a
so-called continuous magnetic recording medium are highly
dependent on its nanoscale heterogeneity and on the magne-
tostatic and exchange interactions between crystallites. This
is also true for discrete media made up of interacting single-
domain nanomagnets. Experiments and modeling are essen-
tial to determine the stability, integrity, and compactness of
data storage and processing devices.

In that context, we wish to first recall predictions or
results in granular films formed by crystallites interacting
through grain boundaries; some models include distribu-
tions of particle properties. The exchange coupling depends
on the intercrystallite spacing, but long-range magnetostatic
interactions are always efficient. Computer simulations in
CoCr recording granular thin-film media with perpendicu-
lar anisotropy have been reported several years ago by Zhu
and Neal Bertram (1989). They used a model consisting of
a periodic nanocolumnar magnetic structure with both inter-
granular exchange and dipolar interactions between columns.
Columns were supposed to be single crystalline with identi-
cal properties and uniformly magnetized (macrospin approx-
imation) during magnetization reversal. In a more recent
publication, also devoted to magnetic recording media with

perpendicular anisotropy, Victora, Willoughby, MacLaren
and Xue (2003) developped an electronic structure the-
ory with a local spin density approximation and coupled
it to micromagnetic simulations. Monte Carlo simulations
with exchange and dipolar interactions between nanoparticles
have also been proposed by El-Hilo, Chantrell and O’Grady
(1998) to deduce the temperature and time dependence of
magnetic properties. The magnetic behavior depends drasti-
cally on the strength and nature of the interactions. The main
trends issued from these calculations are as follows:

• Magnetostatic effects give rounded hysteresis loops
without modifying the coercivity much (Zhu and Neal
Bertram, 1989). The remanent magnetization is modified
accordingly.

• Domain patterns following an ac demagnetization are
very sensitive to the intergranular exchange strength J

(Figure 16).
• Spatial disorder or distribution of the interactions tend to

round the hysteresis loop shape (Ribeiro, 1991; Victora,
Willoughby, MacLaren and Xue, 2003).

• As shown on Figure 17, the value of the intergranular
exchange coupling has direct consequences on the hys-
teresis loop squareness and coercivity.

• For a film with distributed small intergranular J values,
the field-induced magnetic domain structure tends to
mimic the discreteness of the film morphology (Victora,
Willoughby, MacLaren and Xue, 2003; Zhu and Neal
Bertram, 1989). For increasing J , the magnetization in
neighboring crystallites tends more to align with each

(a) (b)

(d) (e)

(c)

Figure 16. Simulated magnetic domain patterns for 2d ac-
demagnetized granular films with perpendicular anisotropy for var-
ious intergranular exchange constants: (a) J = 0, (b) J = 0.25,
(c) J = 0.5, (d) J = 0.75, and (e) J = 1. (Victora et al., IEEE
Trans. Magn. 39, 710–715 (2003) ( 2003 IEEE).)
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Figure 17. Hysteresis loops in a perpendicular granular medium
simulated for different values of the exchange integral J , taking an
anisotropy constant K = 1.8 × 106 ergs cm−3. (Victora et al., IEEE
Trans. Magn. 39, 710–715 (2003) ( 2003 IEEE).)

other and the characteristic ac (Figure 16) or field-
induced magnetic domain size grows significantly.

• As expected, the shape of the magnetic relaxation curves
depend strongly on the exchange coupling, consistent
with nucleation (large dipolar coupling)- or wall propa-
gation (large exchange coupling)-dominated effects.

Kerr microscopy observations in a granular Co–Cr film
(Schmidt and Hubert, 1986) allowed to verify some of the
above predictions.

4 FROM MAGNETICALLY ISOLATED
TO COUPLED DOT ARRAYS

4.1 Arrays of dots on prepatterned templates

In Section 2.1.1, we described the preparation method of
magnetic nanodots deposited on the top of Si nanopil-
lars (Landis, Rodmacq and Dieny, 2000). These nanodots
are shown to be ferromagnetically decoupled. Owing to
an easy wall motion, the final stable states in square
nanodots are magnetically saturated. So, configurations
with only up- or down-magnetized dots are observed in
the remanent state. The distribution of switching fields
depends on nucleation pinning energy at sidewalls; it is
mainly related to the precise shape of the dots. Regular
arrays of [Pt(20 nm)/Co(0.5 nm)/Pt(1.8 nm)]4 magnetic nan-
odots (a = 80 nm, P = 180 nm) were deposited on 220-nm-
high Si-etched pillars (Moritz et al., 2002). The manipula-
tion of the magnetization state in single nanodots can be
done by local heating using an atomic force microscopy

(AFM) tip (Figure 18), as well as using conventional write
heads for disk drives. Good writing and reading perfor-
mances have been established in Co/Pt multilayer (100 ×
200 nm2) nanoelement arrays (Moritz et al., 2004). Com-
pared with a continuous film, the value of the signal-to-
noise ratio is high, due to a reduction of the bit tran-
sition noise. Using prepatterned Si templates, Baltz et al.
(2005a) succeeded to prepare arrays of exchange bias ferro-
magnetic–antiferromagnetic nanoelements with a lateral size
smaller than 100 nm.

4.2 Nanoelement arrays prepared by ion-induced
magnetic patterning through masks

4.2.1 Magnetism in track arrays prepared by He ion
irradiation through contact masks

High-resolution magnetic patterning by He ion irradia-
tion through a contact mask was first demonstrated on
Pt/Co(0.5 nm)/Pt films (Chappert et al., 1998). The 850-nm-
thick Polymethyl metacrylate (PMMA) resist layer mask was
deposited directly on the film and patterned by electron-
beam lithography. The irradiation dose was large enough
to render the Co layer paramagnetic in nonprotected areas,
as revealed by Polar magneto optical kerr microscopy
(PMOKE) microscopy on a stripe array connected to a reser-
voir (Figure 10).

In order to check the ultimate resolution of pattern-
ing, arrays of ultranarrow tracks, with width as narrow
as w = 50 nm, were designed in a [Pt(0.6 nm)/Co(0.3 nm)]6

multilayer (Devolder et al., 1999, 2001). For this purpose,
a 450-nm-thick SiO2 layer was deposited on the film, in
order to stop 30 keV He ions, and patterned to form a
high-resolution mask (30-nm-wide trenches) by electron-
beam lithography and dry etching (Figure 11). Finally, the
Co/Pt multilayer was irradiated under uniform He beam
at low dose (D = 2 × 1015 He ions/cm2). Under the mask-
protected areas, an array of ultranarrow ferromagnetic tracks
was preserved and the track magnetization state imaged
by magneto-optical microscopy after the application of a
small field (Figure 12), which was larger than the coer-
civity of the irradiated areas. The continuity of the struc-
ture and magnetism along the tracks, down to w = 30 nm,
was then demonstrated. PMOKE microscopy is thus able
to detect a large-enough magnetic contrast coming from
spaced ultranarrow wires. This is possible in spite of the
rather large value of the optical wavelength, λ = 535 nm,
or of the optical resolution (400 nm), while the con-
trast is theoretically reduced by the (w/λ)2 factor. The
coercive field in tracks was found slightly lower (20%)
than in the virgin film, evidencing ion straggling effects
(Section 2.2.2).
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Figure 18. Magnetic force microscopy (MFM) image of an array of etched Si dots covered by a Pt(20 nm)/[Co(0.5 nm)/Pt(1.8 nm)]4

multilayer before (left image) and after thermomagnetic switching of dots induced by an AFM tip. The dots have a lateral size of 400 nm,
with an edge-to-edge spacing of 100 nm. The controlled thermomagnetic switching of individual dots has been achieved by flowing pulse of
current from the metallic AFM tip to the dot and simultaneously applying a uniform field of about 200 Oe over the whole sample. (Moritz
et al., IEEE Trans. Magn 38, 1731–36 (2002), ( 2002 IEEE).)

Arrays of Co25Fe75 perpendicularly magnetized ferromag-
netic dots have also been designed by He irradiation through
a pillar-type mask (Devolder et al., 2003) (see Section 2.2.2).
This structure is especially interesting for magnetic recording
since magnetization reversal is nucleation free and proceeds
by domain wall injection from the surrounding magneti-
cally soft matrix. This guarantees a narrow coercivity dis-
persion.

4.2.2 Magnetism in track arrays prepared by He ion
irradiation through a stencil mask

As described in Section 2.2.3, a noncontact stencil mask is
fabricated by drilling holes in a membrane. This membrane
is suspended above the film surface. Magnetic patterning of
the film is realized by uniform ion irradiation through the
stencil mask. Dense CoCrPt dot arrays with perpendicular
anisotropy have been prepared using stencil masks (Terris
et al., 2000).

More recently, Abes et al. (2005) demonstrated that irra-
diation by 40 keV He ions (D = 6 × 1016 ions/cm2) trans-
forms L10 –Co50Pt50 magnetic hard films with perpendicular
anisotropy into an in-plane soft magnetic alloy. So, through a
stencil mask with 1 × 1 µm2 square apertures, they were able
to pattern an array of soft in-plane magnetized dots inside a
hard out-of-plane magnetized material.

4.2.3 Magnetism in nanoelement arrays with easy
in-plane anisotropy fabricated by ion
irradiation through a mask

Up to now there exists only a limited number of investi-
gations devoted to estimate magnetic changes due to ion

irradiation in in-plane magnetized films. Permalloy layers
have been patterned under Ar ion irradiation (dose range:
1013 –1016 Ar ions/cm2) at 200 keV, in the presence of an
applied field (Woods et al., 2002). This field reorients the
easy anisotropy axis in irradiated areas. So in-plane magnetic
anisotropy patterning can be realized by irradiation through
a mask. The same phenomenon has been evidenced in amor-
phous soft magnetic FeCoSiB films (McCord et al., 2005) but
using He ions. Magnetic domain imaging allowed the authors
to follow the rotation of the field-dependent anisotropy axis
orientation. Anisotropy patterned structures have also been
designed by irradiation through masks that were previously
prepared by photolithography.

4.3 Magnetic nanoelement arrays prepared
by focused Ga ion beam (FIB)

4.3.1 Arrays of magnetic nanodots patterned by Ga
FIB

We will essentially limit ourselves to FIB patterning under
low Ga ion dose for changing locally magnetic properties of
ultrathin film structures at nanometer scale. Patterns are then
produced by scanning a FIB over the film surface to magnet-
ically separate the nanoelements by irradiated lines (Gierak
et al., 2005). The first attempt to realize large (50 × 50 µm2)
arrays of quasi-identical ultrathin film magnetic square dots
by using a FIB has been reported by Aign et al. (1998). In
this first case, the dose was large enough to etch lines sep-
arating Pt/Co(1.4 nm)/Pt dots with a width estimated to be
50 nm.

So, under moderate Ga ion dose (>3 × 1015 ions/cm2),
arrays of discrete magnetic nanoelements can be efficiently
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patterned (Rettner et al., 2002b; Aign et al., 1998). For-
tunately, as for He ions, Ga ion irradiation at relatively
low dose is able to act directly on the magnetism of
Co/Pt ultrathin film structures without etching the sam-
ple too much (Sections 2.1.1 and 2.3.2). This was real-
ized in Pt/Co/Pt films and Co/Pt multilayers with doses
as low as 1012 –1014 Ga ions/cm2 (Vieu et al., 2002; Hyn-
dman et al., 2001a). Thus, by favoring intermixing at
interfaces, irradiation strongly modifies both the interface
anisotropy and the exchange interaction. For example, as
seen in Section 2.1.1, a ferromagnetic Pt/Co(1.4 nm)/Pt film
becomes paramagnetic at room temperature under irra-
diation for a dose of 2 × 1015 Ga ions/cm2 (Ferré et al.,
1999), while the perpendicular anisotropy orientation is
maintained at smaller dose. The effect of irradiation is
even more drastic in Co/Pt multilayers (Hyndman et al.,
2001a); two successive transitions occur from a perpendic-
ular to an in-plane anisotropy state for 1013 Ga ions/cm2,
and then to a paramagnetic state for 1015 Ga ions/cm2. In
spite of these strong changes in magnetism, the etching
process is quite inefficient at low doses (1 ML for 1.5 ×
1014 Ga ions/cm2).

As we shall see later, when increasing the dose within the
irradiated lines separating nanoelements, the exchange inter-
action is first reduced in a sharp zone (<10 nm) separating
Pt/Co/Pt tracks or dots. These sharp lines become weakly fer-
romagnetic with either perpendicular or in-plane anisotropy
(Figure 13a). Under a little higher dose, the central part of the
lines becomes paramagnetic (Figure 13b). At higher doses,
etching cuts the magnetic layer, and so separates physically
the nanoelements.

4.3.2 Pt/Co/Pt dot arrays with out-of-plane
anisotropy: a model system for studying
magnetization reversal in the presence of
interdot exchange and dipolar
interactions

The magnetic properties of Ising-like Pt/Co(1.4 nm)/
Pt(3.5 nm) square dot or track arrays, having perpendicular
magnetic anisotropy and patterned by FIB, have been exten-
sively studied (Aign et al., 1998; Jamet et al., 1999; Sampaio
et al., 2001; Hyndman et al., 2002a,b; Repain et al., 2004;
Gierak et al., 2005). Here, patterning is realized by scan-
ning a sharp (5–30 nm diameter) FIB spot over the film
(Figure 13). TRIM calculations (Ziegler, 1992) allow one
to determine the density of collision events in irradiated
lines (Figure 19). The interaction between Pt/Co(1.4 nm)/Pt
tracks or dots can then be monitored by choosing the
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Figure 19. TRIM simulation of the density of collision events for
two parallel FIB lines centered at y = 0 and 30 nm, and patterned
on a Pt(3 nm)/Co(1.4 nm)/Pt(5.6 nm) film. The FIB spot diameter
was set to 10 nm. Along x, the lines were built by a succession of
overlapping FIB spot irradiations separated by 10 nm. The number
of collision events is indicated on the right side of the image in
1016 ions/cm2 units. (From Hyndman, unpublished.)

(a) (b)

(c) (d)

Figure 20. PMOKE images of ac-demagnetized states of (1 ×
1 µm2) Pt/Co(1.4 nm)/Pt dot arrays patterned with lineic Ga ion
doses of: (a) 0.05 nC cm−1, (b) 0.1 nC cm−1, (c) 0.2 nC cm−1, and
(d) 0.5 nC cm−1, and a spot diameter of 10 nm. (V. Repain et al.,
Journal of Applied Physics. 91, 3103 (2002).)

irradiation dose (Hyndman et al., 2001b, 2002a; Repain
et al., 2004) (Figure 20). At high Ga ion dose (D > 4 ×
1015 Ga ions/cm2), the Co layer is entirely etched away
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so that the tracks and dots are surely exchange decou-
pled; in that case, only the interdot magnetostatic interac-
tion remains efficient. Owing to the magnetostatic coupling
in a thick-enough ferromagnetic layer, the ac-demagnetized
state of a Pt/Co(t = 1.4 nm)/Pt film shows a rather high
degree of checkerboard arrangements of the magnetization
in dot arrays (Figure 21e). In counterpart, no correlation is
found between the magnetic state of thin enough Co dots,
as for t = 0.5 nm (Figure 21d). At a lower dose (1.5 ×
1014 Ga ions/cm2 < D < 3 × 1015 Ga ions/cm2), the Pt over-
layer is partly etched, but not the Co layer. Nevertheless, the
magnetism of the Co layer is affected by irradiation: the Co
layer becomes paramagnetic at room temperature for a dose
D > 2 × 1015 Ga ions/cm2. It has been shown (Ferré et al.,
1999) that for a smaller dose the perpendicular anisotropy
and the Curie temperature are reduced when increasing the
dose. In other words, the exchange interaction between tracks
or dots can be accurately modified and controlled over a short
distance (≈2–10 nm) on the central part of the irradiated
lines. Thus, the magnetic behavior of arrays of tracks or dots
can be subsequently investigated when changing the relative
strength between exchange and dipolar couplings (Hyndman
et al., 2001a; Repain et al., 2004) (Figure 20).

Let us first focus on the magnetic behavior of arrays of
purely dipolar-coupled arrays of perpendicularly magnetized

(a) (b) (c)

(d) (e)

Figure 21. First row: results of the simulation of the demagnetized
states of (1 × 1 µm2) Pt/Co(1.4 nm)/Pt dot arrays for an increasing
strength of the dipolar interaction: (a) R = 0, (b) R = 0.44, and
(c) R = 4.4. Second row: PMOKE images of ac-demagnetized
domain structures for (1 × 1 µm2) dot arrays patterned on (d)
Pt/Co(0.5 nm)/Pt, or (e) Pt/Co(1.4 nm)/Pt films. (Reprinted figure
with permission from V. Aign et al., PRL 81, 5656 (1998).
Copyright 1998 by the American Physical Society.)

tracks or dots. It is not straightforward to predict the equi-
librium state of a large assembly of elements coupled by
long-range dipolar interactions. One way is to use Monte
Carlo simulations assuming a well-defined switching field for
each track or dot in the array; this treatment neglects self-
magnetostatic interactions within the nanoelements. In order
to model real systems, a distribution of nanoelement switch-
ing fields has to be introduced. Such calculations have been
done to describe the demagnetized state of a 1.3-µm periodic
array of square Pt(4.5 nm)/Co(1.4 nm)/Pt(3.5 nm) dots sepa-
rated by nonmagnetic 60-nm-wide irradiated lines for several
values of the parameter R = (�HSW/Hdip) (Figure 21a–c).
R is the ratio between the width (�HSW) of the switch-
ing field distribution and the interdot dipolar field (Hdip).
When Hdip > �HSW, each dot tends to be surrounded by
dots having opposite magnetization; a checkerboard config-
uration is then favored. However, since the magnetization
reversal can be initiated by the switching of different dots
at the same time, several checkerboards develop simultane-
ously around these centers and merge together by generating
magnetically frustrated areas. Such demagnetized patterns
were also found in arrays of long wires or pillars (Ross
et al., 2001). At a larger scale, this situation mimics a com-
plex antiferromagnetic state with antiphase boundaries. Each
antiferromagnetically coupled spin is replaced here by a dipo-
larly interacting macrospin. The observed magnetic pattern
of a Pt/Co(1.4 nm)/Pt ac-demagnetized array (Figure 21e) is
comparable to that calculated for R = 4.4 (c). This result
agrees with independently determined experimental values of
�HSW ≈ 20 Oe and Hdip = 81 Oe (Aign et al., 1998). FIB
patterning is especially convenient to avoid distributions of
switching fields in Co/Pt dots. In usual systems, a highly
distributed nucleation mechanism determines local switch-
ing fields. Using a FIB patterning procedure with a Gaussian
beam profile, dot borders are weakly irradiated (Figure 13);
consequently, the edges become magnetically softer than the
inside of the dots. Moreover, self- and interdot magnetostatic
interactions also favor nucleation at dot edges. So, for these
two reasons, the magnetization reverses first at dot edges in
small field. This creates a reservoir of nucleation from which
magnetization can subsequently switch by fast domain wall
motion, as soon as H reaches HSW. Thus, the distribution of
switching fields here is nothing else than that of the propaga-
tion field, which is particularly narrow for high-quality films,
as proved by the squareness of the hysteresis loop (Figure 3).
Fast reversal has the direct consequence that all dots appear
either in a single up- or down-magnetized state.

The mean dipolar field value can be calculated (Aign et al.,
1998; Repain et al., 2004) or evaluated from the following
local picture of the magnetization reversal. As expected, it
was experimentally verified by PMOKE imaging that the
reversal of a dot depends on the magnetic configuration of the
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surrounding dots. Starting from a saturated magnetized state
of the array, and applying a field in the opposite direction,
the first and last dots are supposed to reverse at fields
H min

S = HSW − Hdip and H max
S = HSW + Hdip, respectively,

neglecting the small HSW distribution. From high-resolution
PMOKE microscopy snapshots, the hysteresis loops of a
single central dot have been deduced for magnetization
reversal in the two extreme configurations (nearest-neighbor
dots magnetized in the same direction or oppositely to the
central dot) of the surrounding dots (Figure 22). This allowed
the authors to estimate the strength of the dipolar field,
Hdip ≈ (H max

S − H min
S )/2. In the central part of the dots, the

magnetization has been found to switch abruptly, consistently
with a fast wall motion-assisted reversal initiated from a low
field nucleated state at dot edges.

The effects of magnetostatics on the magnetization rever-
sal have been investigated on patterned dots, open tracks, and
compared to those happening in the virgin film (Figure 23).
The reversal process has been imaged for different field val-
ues, and the hysteresis loop reconstructed from the analysis
of multiple snapshots similar to those presented in Figure 23.
An abrupt magnetization reversal takes place in the vir-
gin part as well as in the track array. Nevertheless, as a
consequence of the dipolar interaction between tracks, inter-
mediate states with alternate magnetized tracks are favored
(Figure 23c). Some dots begin to switch before the onset of
the reversal of the virgin film; this behavior is expected, as
already shown when investigating the reversal of the first
dot (Figure 22). As calculated, the tilted loop shape for the
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Figure 22. Magnetic hysteresis loops measured on a single
Pt/Co(1.4 nm)/Pt 1 × 1 µm2 square dot in the FIB-patterned array.
(a) Reversal of the first dot, initially surrounded by dots magnet-
ically oriented in the same direction, (b) reversal of the last dot
initially surrounded by dots magnetically oriented in the opposite
direction. The loops at the left side are measured over the full area
of a dot, while the loops at the right side are probing only the central
part of the dot (0.33 × 0.45 µm2). (Reprinted figure with permission
from T. Aign et al., Phys. Rev. Lett. Vol. 81, 5656 (1998). Copyright
1998 by the American Physical Society.)
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Figure 23. Pt/Co(1.4 nm)/Pt film (a–f) PMOKE snapshots of the
field-induced magnetization reversal of several areas existing on
the sample: (left part) virgin film, (middle part) dot array, and
(right part) track array, connected to the virgin film at its right side.
After saturating the film in a negative field (black state), a positive
field is applied with successive values: (a) 160 Oe, (b) 211 Oe,
(c) 219 Oe, (d) 230 Oe, (e) 257 Oe, and (f) 279 Oe. The patterning
has been done by FIB (D = 5 × 1015 ions/cm2). The image size is
30 × 20 µm2. (g) Remanent hysteresis loops in the virgin part of the
sample, and in the dot and track patterned parts deduced from the
analysis of snapshots recorded for many field values. Magnetostatic
effects give an increase of coercivity in patterned areas. (Reprinted
from Journal of Magnetism and Magnetic Materials, Vol 240,
Hyndman et al., Magnetization reversal in weakly coupled magnetic
patterns, Pages 34–36, 2002, with permission from Elsevier.)

dot array is still a consequence of the interdot magnetostatic
interaction (Figure 23).

Starting from such a 2D-Ising model system, it is possible
to investigate by PMOKE microscopy the magnetization
reversal dynamics in a regular array of dipolar or exchange-
coupled dots (Hyndman et al., 2001b; Sampaio et al., 2001).
The magnetization reversal in this system exhibits slow
dynamics because of the presence of many equivalent
quasi-degenerate ground states. After saturating first the
dot array in a positive field and reversing it to a value
smaller than the coercivity, the observed slow relaxation
of the magnetization M (magnetic aftereffect) can be fitted
by a power law: M = At−α (Sampaio et al., 2001). The
exponent α is shown to increase with the applied field.
This time dependence is consistent with a many-body type
of relaxation. Monte Carlo simulations also support this
form for the expression of the relaxation law and the field
dependence of α. A power law has also been determined by
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Monte Carlo simulations for a 1D model of aligned small
particles coupled by dipolar interactions (Ribas and Labarta,
1996).

For lines irradiated under a relatively large lineic dose
(0.5 nC cm−1), the discreteness of the magnetic dot array is
clearly evidenced from the image of the ac-demagnetized
state (Figure 20d). At low lineic irradiation dose (D <

0.05 nC cm−1) (Figure 20a), the ac-demagnetized state is
formed by large up- or down-magnetized domains whose
walls are pinned on the reminiscent underlying FIB line
pattern. In another case of large dipolar effects in granu-
lar Co–Cr films, the effect of textural discreteness has been
already evidenced by magneto-optical microscopy (Schmidt
and Hubert, 1986). When comparing granular and FIB-
patterned films, crystallite boundaries and irradiated lines are
supposed to play a similar role. In a narrow dose range,
around D ≈ 0.2 nC cm−1 (Figure 20c), competitive interdot
dipolar and exchange interactions take place; this mimics a
kind of spin-glass state. The experimentally found demagne-
tized patterns, when increasing the dose in irradiated lines,
can be well understood from simulations in random granu-
lar media. In that case, both magnetostatic interactions and
reduction of the exchange interaction at grain boundaries
are considered (Figure 16) (Victora, Willoughby, MacLaren
and Xue, 2003). In the Pt/Co/Pt model system, the ratio
between interdot exchange and dipolar energy can be pre-
cisely adjusted with the ion dose in irradiated lines. Thus,
ideal granular media, that is, without distributions of grain
sizes and interactions, can be compared to patterned Pt/Co/Pt
dot arrays (Repain et al., 2004) and modeled by simulations
(Zhu and Neal Bertram, 1989).

As reported in the preceding text (Section 3.4), the �M

method remains a powerful tool to characterize the sign of the
resulting interdot interaction in discrete recording media. The
trends of this method appeared quite empirical at first glance.
With a 2D-Ising model system of quasi-identical interacting
dots located at the nodes of a square lattice, it was possible to
check the validity of this �M method (Repain et al., 2004).
The �M(H) curves have been deduced for Pt/Co(1.4 nm)/Pt
dot arrays when varying the exchange to dipolar coupling
ratio with the ion dose in FIB irradiated lines. Experimental
data are in good qualitative agreement with predictions:
�M is positive for exchange-dominated interdot interaction
and negative for favored dipolar coupling (Figure 24). The
origin of �M can be understood from the examination of
PMOKE snapshots. Interactions can be better quantified by
looking at the field dependence of the magnetic pattern at
different scales. �M is clearly related to the two-macrospin
correlation functions of neighboring dots (Figure 25).

What are the consequences of a reduction of periodicity P

and lateral dot size a at nanometer scales, when preserving
the irradiation dose in irradiated FIB lines? This was studied
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Figure 24. (a) Renormalized magnetization (DCD(H ) or IRM(H ))
and �M(H) curves for a Pt/Co(1.4 nm)/Pt dot array patterned with
a lineic Ga ion dose of 0.5 nC cm−1. Data points are visualized
on the graph by symbols. Continuous lines are simulation results
considering a Gaussian switching field distribution centered at
272 Oe, with a small standard deviation of 15 Oe. (b) PMOKE
snapshots of the DCD(H ) and IRM(H ) remanent magnetic states
over the central part of the array for different values of the applied
field H (indicated by 1–4 on the graph). The switched magnetic
dots are in black. (V. Repain et al., Journal of Applied Physics. 91,
3103 (2002).)
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Figure 25. Macrospin pair correlation function versus the distance
between Pt/Co(1.4 nm)/Pt dots in arrays patterned with a lineic Ga
ion dose of 0.5 nC cm−1. Data points correspond to first-, second-,
or third-neighbor dots, as shown in the figure. The line is a fit for
the eyes. The observed oscillation does not exist and the macrospin
correlation values are close to 50% for exchange-coupled dots, that
is, for a dose D = 0.2 nC cm−1. (From Repain et al., 2004.)

for etched lines using a 5 × 1015 Ga ions/cm2 irradiation dose
in a Pt(4.5 nm)/Co(1.4 nm)/Pt(3.5 nm) film (Hyndman et al.,
2002a). The width of the etched central part of the lines
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Figure 26. PMOKE images (18 × 18 µm2) of the central part of each of four demagnetized dot arrays with dot sizes: (a) 1800 nm,
(b) 900 nm, (c) 340 nm, and (d) 70 nm. Normalized remanent hysteresis loops are shown in (e). (R. Hyndman et al., Trans. Magn. Soc. Jpn,
2, 175 (2002).)

was estimated to be about 20 nm in that case. PMOKE
images of the demagnetized states of square dot arrays
are shown in Figure 26(a–d) (four values of the lattice
periodicity) (1800 < P < 70 nm). The limited resolution of
the PMOKE microscope does not allow one to resolve
separate magnetized dots when P < 300 nm (Figure 26d).
As can be seen in Figure 26(e), the remanent magnetization
and the coercive field are fortunately still finite at room
temperature even for reduced dot sizes (a = 50 nm). This
means that, in spite of a small reduction of the dot anisotropy
by ion straggling effects at their edges, the superparamagnetic
limit is not yet reached in that case. Starting from the usual
criterium KV = 40 kT for the superparamagnetic limit, and
since V = 3500 nm3, the anisotropy constant K must be
higher than 0.5 × 106 erg cm−3 to keep ferromagnetism in
these nanodots at room temperature. This is reasonable since
the anisotropy constant is higher (K = 1.4 × 106 erg cm−3)
for the virgin 1.4 nm Co film and inside patterned dots.

As reported in the preceding text (Section 2.1.1), the
change in magnetism by ion irradiation is much more
efficient in Co/Pt multilayers than in Pt/Co/Pt films; the
reason is that the main physical process is linked to
the presence of interfaces. While a virgin Pt(6.5 nm)/
[Co(0.3 nm)/Pt(0.6 nm)]6/Pt(2.8 nm) multilayer exhibits per-
pendicular anisotropy it becomes in-plane magnetized after a
uniform Ga irradiation with D = 1014 Ga ions/cm2 (Fig. 5).
An array of 1-µm square dots has been patterned by
FIB with this dose, and its magnetic state studied by
PMOKE microscopy and Differential phase contrast Trans-
mission electron microscopy (DPC-TEM) in Lorentz mode
(Warin et al., 2001). The remanent state consists of opposite

out-of-plane magnetized dots (Figure 27) separated by nar-
row (50 nm wide) in-plane magnetized FIB lines (Figure 28).
Head-to-head domain walls were evidenced by TEM inside
the irradiated lines. The direction of the magnetization may
be reversed independently in the dots or in the irradiated
lines under a magnetic field applied either out-of-plane or
in plane. Thus, FIB appears here as a convenient technique
here to produce patterning by anisotropy modulation.

Figure 27. PMOKE image (45 × 35 µm2) of an ac-demagnetized
state of the virgin [Pt(0.6 nm)/Co(0.3 nm)]6 multilayer film (top part
of the image), and of the FIB (D = 1014 Ga ions/cm2) patterned part
(bottom of the image). (P. Warin et al., Journal of Applied Physics,
90, 3850 (2001).)
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(a) (b)

 

 

Figure 28. (a) DPC-TEM image (7 × 7 µm2) of part of the ac-
demagnetized multilayer array considered in Figure 27, for an
untilted specimen. In this configuration in-plane magnetization
is only probed. (b) Schematic view of the magnetization distri-
bution within an area inserted in (a). Gray and black dots are
oppositely perpendicularly magnetized. The arrows indicate the
orientation of the magnetization inside the irradiated lines (D =
1014 Ga ions/cm2). (P. Warin et al., Journal of Applied Physics, 90,
3850 (2001).)

4.3.3 Arrays of tracks with out-of-plane anisotropy

The dipolar interaction between tracks separated by non-
magnetic irradiated narrow lines is clearly revealed by
the magnetic configuration of the array. As expected, the
PMOKE image of an ac-demagnetized periodic array of
Pt/Co(1.4 nm)/Pt tracks shows that they are preferentially
alternatively up and down magnetized (Figure 29) (Hyndman
et al., 2002a). As expected, remanent magnetization remains
finite for 70-nm-wide tracks. The same type of antiferromag-
netic arrangement has also been found for dipolar-coupled
in-plane magnetized single-domain rectangular nanoelements
(Kirk, Chapman and Wilkinson, 1997) (Figure 30). Such
type of configuration was also evidenced in the case of

in-plane magnetized single-domain circular nanoelements
which form chains and interact through dipolar fields (Cow-
burn, 2002). The alternate magnetized state can be inter-
rupted after a few periods giving rise to ferromagnetically
oriented nearest-neighbor nanoelements (Fig. 29b). Several
equivalent demagnetized states with nearly the same prob-
ability of occurrence can be generated, depending upon
slightly different initial conditions.

4.3.4 Magnetic dot arrays with out-of-plane
anisotropy: Application to ultrahigh density
perpendicular recording

The advantages of magnetic recording media with discrete
nanodots, also called quantum magnetic storage media, espe-
cially with perpendicular anisotropy, have been often pointed
out (Chou, Wei, Krauss and Fischer, 1994; Ferré, 2001; Lod-
der, Haast and Abelmann, 2001; Lodder, 2004; Khizroev and
Litvinov, 2004). Importantly, the signal-to-noise ratio can be
significantly improved in discrete media as compared to con-
tinuous ones. Just after the first demonstration that patterning
of discrete dots could be realized efficiently by Ga FIB (Aign
et al., 1998), IBM – Hitachi produced 140 Gbit in.−2 CoCrPt
dot arrays with perpendicular magnetic anisotropy (Rettner,
Best and Terris, 2001). A that time, the quality of the pattern-
ing was not sufficiently high enough due to instabilities of
the particular FIB machine when used at such a small scale.
They improved the process rapidly and obtained promising
ultrahigh density magnetic storage up to 200 Gbit in.−2 using
arrays of 20-nm-thick Co70Cr18Pt12 square (a = 67 nm) dots
overcoated by a 5-nm-thick C layer (Lohau et al., 2001;
Albrecht et al., 2002; Albrecht et al., 2003) (Figure 31). The
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Figure 29. PMOKE images (18 × 18 µm2) of the central part of four demagnetized stripe arrays. The width of the stripes are respectively:
(a) 1800 nm, (b) 900 nm, (c) 340 nm, and (d) 160 nm. Together with data for 70-nm-wide stripes, normalized remanent PMOKE hysteresis
loops are shown in (e). (R. Hyndman et al., Trans. Magn. Soc. Jpn., 2, 175 (2002).)
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Figure 30. TEM Foucault image of NiFe elements with two
pointed ends in an array with 250-nm center-to-center spacing. The
component of the induction is mapped in the vertical direction.
(Kirk et al., APL 71, 539–541 (1997).)

(a)

(c) (d)

(b)

Figure 31. AFM and MFM images of a 2 × 2 µm2 patterned region
in a CoCrPt film are shown in (a) and (b), respectively, along
with higher magnification images of small regions in (c) and (d),
respectively. The pattern period is ∼100 nm. (Rettner et al., IEEE
Trans. Magn. 38, 1725–1730 (2002) ( 2002 IEEE).)

nonmagnetic separation of the dots by FIB trenches was
estimated to be 30 nm. They found that 5-nm-deep trenches
(D = 0.04 nC cm−1) were sufficient to isolate the nanodots
magnetically. They suggested that the carbon overcoat was
implanted into the trenches along with Ga. Thus, the mag-
netic isolation was achieved by a physicochemical mecha-
nism involving a combination of Ga and C poisoning, and
by damage of the Co ions, but not only from sputtering of
Co70Cr18Pt12. The irradiated region has certainly not a large
enough anisotropy to support domain walls or remanent mag-
netization, so that magnetic domains could not extend beyond
the nanodot edges.
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Figure 32. Thermal decay of single-domain 80-nm nanodots from
MFM data and full decay as measured by Vibrating sample
magnetometer VSM. The decay rates were measured at room
temperature in the absence of an applied magnetic field. (Rettner
et al., IEEE Trans. Magn. 38, 1725–1730 (2002) ( 2002 IEEE).)

As already found in other systems, due to the variation
of the shape anisotropy, a transition from in-plane to out-
of-plane magnetized nanodots occurs when decreasing their
lateral size a (Fernandez et al., 1996). As proved by AFM,
this reorientation transition also takes place for Co70Cr18Pt12

nanodots when a <150 nm. As for Pt/Co/Pt, the magneti-
zation at the dot edges reverses first. However, contrary to
Pt/Co/Pt nanodots, a multidomain structure appears during
magnetization reversal in Co70Cr18Pt12 nanodots because of
large self-demagnetizing effects.

An important point concerns the magnetic stability in
nanodots. A very clear proof of the stabilization of the
magnetization state in nanodot arrays as compared to virgin
films has been demonstrated for Co70Cr18Pt12 by Rettner
et al. (2002b). Magnetic relaxation (or magnetic aftereffect)
measurements show a larger decay rate for the virgin
continuous film than for the nanodot array (Fig. 32). The
stability is enhanced over that of the unpatterned film,
even though the coercivity and anisotropy are reduced.
The self-demagnetizing field is also reduced for nanodots
(Section 3.3), which consequently slows down the relaxation.

As previously mentioned (Section 4.3.2), the dipolar cou-
pling acting on single-domain nanodots gives rise to a
checkerboard magnetized dot structure in an ac-demagnetized
state (Figure 31). Nevertheless, Rettner et al. (2002b) claim
that Co70Cr18Pt12 dot arrays are favorable for recording since
the interdot dipolar interaction does not exceed the coer-
civity. Moreover, these nanodots show a narrow switching
field distribution and an enhanced thermal stability. Using
a quasistatic write–read tester, feasibility of writing and
reading information has been demonstrated at the compet-
itive ultrahigh density of 200 Gbit in.−2. Patterning has been
shown to drastically reduce the jitter and to improve the
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signal-to-noise ratio and the addressing performance. Per-
pendicular recording with bit widths of less than 65 nm has
also been demonstrated independently by Seagate (Khizroev
et al., 2002). Additionally, the FIB technique has also been
tested satisfactorily for structuring 20-nm-thick Co longitu-
dinal recording media (Albrecht et al., 2003).

The fabrication of arrays of nanosensors can be also
realized by FIB (Fassbender, Ravelosona and Samson, 2004).
Khizroev and Litvinov (2004) have proposed to design
MRAMs and Microelectro mechanical systems (MEMS) by
this FIB technique.

5 CONCLUSION

New patterning techniques for fabricating dense arrays of
nanoelements with similar properties are still emerging. In
the present contribution we have shown how the mastered
technique of depositing films on prepatterned wafers allows
one to prepare high-density recording media and MRAM
cells. Multilevel recording on multiple storage layers was
proposed recently (Albrecht et al., 2005; Baltz, Landis,
Rodmacq and Dieny, 2005b).

Light He ion irradiation through a mask is a very promis-
ing planar technique to pattern ultrathin film media with an
ultimate resolution. New developments are expected soon
with this technique. Fassbender et al. (2002) have demon-
strated that irradiation of NiFe/FeMn by He ions allows
one to modify and control the magnitude of the exchange
bias field on a submicron scale without affecting the surface
roughness.

The effect of both interdot exchange and magnetostatic
interaction has been considered from static and dynamic
point of view, with a particular application to the Pt/Co/Pt
simple case exhibiting out-of-plane anisotropy. The present
storage density record in perpendicular magnetic recording
media has been obtained for a thin CoPtCr film patterned by
a Ga FIB. The advantage of the nucleation free magnetization
reversal was underlined in some particular cases.

The most promising methods for patterning magnetic films
will be certainly obtained by combining bottom-up and top-
down techniques. For example, arrays of quasi-monodisperse
short nanopillars (t = 50–250 nm) of iron with small diame-
ter (a = 10–14 nm) have been prepared by combining chem-
ical vapor deposition and scanning tunneling microscopy
(Wirth, von Molnar, Field and Awschalom, 1999; Wirth,
Anane and von Molnar, 2000). Nanopillars are perpendic-
ularly magnetized, thanks to the shape anisotropy. This is
a model system to study thermally activated magnetization
reversal in ultrasmall entities.

Fundamental studies on fast magnetization reversal dynam-
ics in isolated or coupled nanomagnetic systems are still

needed for a better understanding of the properties of isolated
or coupled nanoelements. Nanomagnetism and spinelectron-
ics are exciting topics that will surely lead to sounding appli-
cations. For that purpose, combined patterning techniques are
required for targeting ultimate spatial resolution and imagine
ingenious designs.
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1 INTRODUCTION

Nanometer size particles display many properties, which
are both quantitatively and qualitatively different from their
respective bulk materials and from the discrete atomic or
molecular species from which they are derived. Novel prop-
erties arise from the large fraction of atoms that reside
on the surface of the particles and from the finite num-
ber of atoms within each particle. Recently the study of
finite size effects of metal nanoparticles has intensified with
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the promise of uncovering the evolution of material prop-
erties with particle size and harnessing novel properties in
new materials and devices. Magnetic storage technology is
advancing rapidly toward its scaling limits. Thin granular
films of ferromagnetic nanoparticles formed by sputter depo-
sition are already the basis of conventional rigid magnetic
storage media hard drives. Progress in magnetic recording
density are due, in part, to the development of media with
finer and finer grain magnetic films (Weller, 2000). The
study of nanoscale magnetic domains are of both funda-
mental and pressing technical interest as the grain size of
advanced recording media is rapidly shrinking to dimensions
where magnetic properties depend strongly on nanoparticle
grain size.

A magnetic nanoparticle with size below 20 nm is usu-
ally in a ‘single magnetic domain’, within which all the
spins align in one direction and magnetization reversal occurs
in the case of free particles through rotation. An energy
barrier, �E, between two orientations of the magnetiza-
tion determines the relaxation in each orientation, and is
proportional to the particle volume, V, and the particle’s
anisotropy constant, K (Morrish, 1965; Unruh and Chien,
1996). As the particle size decreases to a level that the �E
becomes comparable to thermal energy (kBT), the orientation
of magnetic polarization in each particle begins to fluctu-
ate randomly. The particle becomes superparamagnetic. Such
size dependent nanomagnetism has stimulated tremendous
interest recently with the hope to map the scaling limits of
magnetic storage technology and understand spin-dependent
transport phenomena in nanoscale devices.

Numerous physical and chemical methods have been
employed to produce magnetic nanoparticles. These include
sputtering, metal evaporation, ball milling, electrodeposition,
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and solution phase chemistry synthesis, among which the
solution phase synthesis has been seen as the most promising
approach for preparing monodisperse magnetic nanoparti-
cles. It is known that solution phase chemistry can offer
an important homogenous nucleation step and facilitates the
controlled growth of the nuclei suspended in the solution. As
a result, magnetic nanoparticles with various monodisperse
sizes and shapes have been prepared. Furthermore, magnetic
nanoparticles prepared in this solution phase chemistry can
be readily stabilized against particle aggregation or oxida-
tion with a layer of robust organic or inorganic coating.
The stabilized nanoparticle dispersion can be deposited on
a solid substrate and the solvent is allowed to evaporate. By
controlling the concentration of the particle dispersion and
the solvent evaporation rate, 2D or 3D self-assembled mag-
netic nanoparticle superlattices can be formed. The magnetic
properties of these nanoparticles can be tuned from super-
paramagnetic to ferromagnetic and the well-controlled mag-
netic nanoparticle arrays have shown spin-dependent tun-
neling (Black, Murray, Sandstrom and Sun, 2000) and can
support high-density magnetization reversal transitions (Sun
et al., 2000). Previous synthesis, characterization, and poten-
tial applications of the monodisperse magnetic nanoparticles
have been well documented in several reviews (Green, 2005;
Willard et al., 2004; Cushing, Kolesnichenko and O’Connor,
2004; Park et al., 2005; Huber, 2005). In this chapter, we
focus on the most recent progress in the synthesis of mag-
netic nanoparticles, especially the synthetic work from our
group, with controlled size, shape, composition, and mag-
netic properties. The control on nanoparticle shapes allows
achieving texture and magnetic alignment of each particle in
a self-organized nanoparticle assembly for ultrahigh density
magnetic recording (DMR) and high-performance permanent
magnetic applications.

2 SYNTHESIS OF Co AND Fe
NANOPARTICLES

These two kinds of metallic nanoparticles are often synthe-
sized by thermal decomposition of metal–organic complexes
in the presence of stabilizing surfactants. Metal–organic
complexes, especially metal carbonyl and metal alkene com-
plexes are thermally unstable. Upon heating, they can decom-
pose to give metal atoms and release small ligand, CO, or
alkene. The metal atoms can aggregate to form nuclei. With
the deposition of more metal atoms over the existing nuclei,
metal nanoparticles are formed. Such decomposition chem-
istry has become a reliable approach for the production of
monodisperse Co and Fe nanoparticles owing to the fast
decomposition of the precursors and formation of magnetic
nuclei.

Cobalt nanoparticles are prepared by thermal decompos-
ing Co2(CO)8 in the presence of lipid-type surfactants. Fast
nucleation is achieved by injection of Co2(CO)8 into hot
(∼200 ◦C) solution containing oleic acid/trialkylphosphine
(R3P) (Sun and Murray, 1999), oleic acid/trialkylphosphine
oxide (R3PO) (Puntes, Krishnan and Alivisatos, 2001; Bao,
Beerman, Pakhomov and Krishnan, 2005). The surfac-
tant combination in, for example, trialkylphosphine and
oleic acid, is employed to control particle growth, stabilize
the particles, and prevent Co oxidation. Trialkylphosphine
reversibly coordinates neutral Co surface sites, slowing but
not stopping particle’s growth, that is it cannot prevent the
particles from eventually growing to undispersable aggre-
gates at high temperature when used alone. Oleic acid, when
employed alone, is an excellent stabilizing agent due to the
formation of cobalt oleate on the particle surface, but this
strong binding to the particle surface during the synthesis pre-
vents the particle from controlled growth. The combination
of trialkylphosphine/oleic acid produces a tight ligand shell,
which allows the particles to grow steadily while protect-
ing them from aggregation and oxidation. Co(η3-C8H13)(η

4-
C8H12) is another precursor that is commonly used to make
Co nanoparticles. Under 3 bar dihydrogen atmosphere, its
decomposition in anisole at 150 ◦C in the presence of a mix-
ture of oleic acid and oleylamine leads to monodisperse Co
nanoparticles (Dumestre et al., 2003).

Fe nanoparticles have been synthesized by thermal decom-
position of iron pentacarbonyl (Green, 2005). Oleic acid is
used for nanoparticle stabilization owing to the formation
of iron oleate on the nanoparticle surface. Monodisperse
Fe nanoparticles obtained from this process, however, do
not have good crystallinity due to the complexity of the
decomposition of Fe(CO)5 under these synthetic conditions.
Nonetheless, reductive decomposition of Fe[N(SiMe3)2]2 at
150 ◦C under H2 in the presence of hexadecylamine and oleic
acid leads to the formation of monodisperse Fe nanopar-
ticles with good crystallinity (Dumestre et al., 2004). The
Fe nanoparticles synthesized under these conditions are very
air sensitive and are difficult to characterize under normal
conditions. A recent report shows that monodisperse Fe
nanoparticles can be made and stabilized in both organic
and phosphate buffered saline. The synthesis is outlined in
Figure 1(a). The synthesis uses thermal decomposition of
Fe(CO)5 in octadecene (ODE) at 180 ◦C in the presence of
oleylamine (Peng, Wang, Xie and Sun, 2006). Figure 1(b)
shows the transmission electron microscopic (TEM) image
of 13-nm Fe nanoparticles. Structural characterization of
the nanoparticles shows that amorphous Fe3O4 produced
by natural oxidation of Fe nanoparticles cannot protect the
metallic Fe core from deep oxidation. But the desired sta-
bilization is achieved by controlled oxidation of the as-
synthesized nanoparticles using an oxygen transferring agent
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Fe(CO)5 + Oleylamine + ODE Fe

(a)

(b)

20 nm

Figure 1. (a) Schematic illustration of the synthesis of Fe nanopar-
ticles, and (b) TEM image of the 13-nm Fe nanoparticles. (Adapted
from Peng, Wang, Xie and Sun, 2006.)

(CH3)3NO. This controlled oxidation gives core/shell struc-
tured Fe/Fe3O4 in which crystalline Fe3O4 has inverse spinel
structure while Fe is amorphous. The thickness of the shell
is tuned by controlling the amount of (CH3)3NO added
into the reaction mixture. Magnetic measurements of the
2.5-nm/5-nm Fe/Fe3O4 nanoparticles show that they are
superparamagnetic with magnetic moment reaching 61.6 emu
g−1 particles (90.6 emu g−1 [Fe]) and is stabilized at
56.2 emu g−1 after the dispersion is exposed to air for over
8 h. In contrast, the as-synthesized nanoparticles start to
aggregate only after 2 h and completely oxidized within 8 h.

3 SYNTHESIS OF MAGNETIC IRON
OXIDE NANOPARTICLES

Magnetic iron oxide included in this review are mainly cubic
spinel structured MFe2O4. This oxide represents a well-
known and important class of iron oxide materials where
oxygen forms an fcc close packing, and M2+ and Fe3+

occupy either tetrahedral or octahedral interstitial sites. By
adjusting the chemical identity of M2+, the magnetic configu-
rations of MFe2O4 can be molecularly engineered to provide
a wide range of magnetic properties. Owing to this structural
versatility, nanometer-scale MFe2O4 materials have been
among the most frequently chosen systems for studies of
nanomagnetism and have shown great potential for many

important technological applications, ranging from informa-
tion storage and electronic devices to medical diagnostics
and drug delivery.

Iron oxide nanoparticles are commonly prepared by co-
precipitation of M2+ and Fe3+ ions by a base, usually
NaOH, or NH3·H2O (Kang, Risbud, Rabolt and Stroeve,
1996; Fried, Shemer and Markovich, 2001). This precipi-
tation method is suitable for mass production of magnetic
MFe2O4 ferrofluids, but it requires careful adjustment of the
pH value of the solution for particle formation and stabi-
lization, and it is difficult to control sizes and size distribu-
tions, particularly for particles smaller than 20 nm. An alter-
native approach to monodisperse iron oxide nanoparticles
is via high-temperature organic-phase decomposition of an
iron precursor, for example, decomposition of FeCup3 (Cup:
N -nitrosophenylhydroxylamine, C6H5N(NO)O−), (Rocken-
berger, Scher and Alivisatos, 1999) or decomposition of
Fe(CO)5 followed by oxidation to Fe2O3 (Hyeon et al., 2001;
Guo, Teng, Rahman and Yang, 2003; Redl, Cho, Murray and
O’Brien, 2003). The latter process has recently been extended
to the synthesis of monodisperse cobalt ferrite (CoFe2O4)

nanoparticles (Hyeon et al., 2002).
An improved synthesis of MFe2O4 nanoparticles involves

high-temperature (up to 300 ◦C) reaction between metal
acetylacetonate and a 1,2-alkanediol in the presence of oleic
acid and oleylamine. When pure iron acetylacetonate, for
example, Fe(acac)3, is used for the reaction, monodisperse
magnetite Fe3O4 nanoparticles are prepared (Sun and Zeng,
2002; Sun et al., 2004). If a different metal acetylacetonate
precursor M(acac)2 is added to the mixture of Fe(acac)3

and 1,2-alkanediol, MFe2O4 nanoparticles (with M = Co,
Mn) are obtained (Sun et al., 2004). The size of the oxide
nanoparticles is controlled by varying the reaction temper-
ature or changing reactant concentration (Xie et al., 2006).
Alternatively, with the smaller nanoparticles as seeds, larger
monodisperse nanoparticles up to 20 nm in diameter can be
synthesized by seed-mediated growth (Sun and Zeng, 2002;
Sun et al., 2004). Figure 2 shows the TEM images of 16-nm
Fe3O4 nanoparticles made from the seed-mediated growth
(Sun and Zeng, 2002).

Magnetic measurements of the Fe3O4 nanoparticles indi-
cate that the particles are superparamagnetic at room temper-
ature. Figure 3 shows the hysteresis loops of 16-nm Fe3O4

nanoparticles measured at both 10 K and at room tempera-
ture. It can be seen that the particles are ferromagnetic at 10 K
with a coercivity of 450 Oe (Figure 3a). At room temperature
there is no hysteresis (Figure 3b). The saturation magneti-
zation, σ s , is dependent on the size of the particles. For
example, σ s for 16-nm Fe3O4 nanoparticles is 83 emu g−1,
close to the value of 84.5 emu g−1 measured from the com-
mercial magnetite fine powder. For particles smaller than
10 nm, however, σ s is smaller under same field strength.



4 Nanomagnetism – application and charaterization

48 nm

Figure 2. TEM bright field image of a self-assembled array of the
16-nm Fe3O4 nanoparticles. (Adapted from Sun and Zeng, 2002.)
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Figure 3. Hysteresis loops of the 16-nm Fe3O4 nanoparticle assem-
bly measured at (A) 10 K and (B) 300 K. (Adapted from Sun et al.,
2004.)

This is likely due to the thermal fluctuation and surface spin
canting of the small nanoparticles (Morales et al., 1999).

The magnetic properties of the MFe2O4 nanoparticles can
be tuned by M in the structure. Figure 4 shows the hysteresis
loops of 16-nm CoFe2O4 nanoparticles measured at both
10 K and 300 K. The coercivity of the assembly is about
500 Oe at 300 K, but reaches 20 kOe at 10 K, much larger
than that of the 16-nm Fe3O4 nanoparticles (450 Oe at 10 K),
indicating that the incorporation of the Co cation in the
Fe–O matrix greatly increases the magnetic anisotropy of
the materials. Such anisotropy enhancement of CoFe2O4

versus Fe3O4 has also been observed in films deposited
from aqueous solution (Kim et al., 2003). In contrast, the
incorporation of Mn cation in the Fe–O matrix reduces the
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Figure 4. Hysteresis loops of the 16-nm CoFe2O4 nanoparticle
assembly measured at (A) 10 K and (B) 300 K. (Adapted from Sun
et al., 2004.)

magnetic anisotropy of the materials as the 14-nm MnFe2O4

nanoparticles shows an Hc of only 140 Oe at 10 K.

4 SYNTHESIS OF ALLOY
NANOPARTICLES

Chemically prepared FePt nanoparticles have generated great
interest recently because of their ease of synthesis, chemi-
cal stability, and potential applications in high-density data
storage (Sun et al., 2000) and high-performance permanent
magnets (Zeng et al., 2002). The particles are commonly
synthesized via simultaneous decomposition of iron pentacar-
bonyl, Fe(CO)5, and reduction of platinum acetylacetonate,
Pt(acac)2 (Sun et al., 2000; Sun, 2006). Oleic acid and oleyl
amine are proven to be a good ligand combination for FePt
particle stabilization. The composition of the FePt nanopar-
ticles is tuned by varying the molar ratio of Fe(CO)5 and
Pt(acac)2. Note that not all the Fe(CO)5 contributes to the
FePt formation during the synthesis. Fe(CO)5 has a low
boiling point (103 ◦C). At reaction temperature of 298 ◦C,
Fe(CO)5 is actually in the vapor phase. The formation of this
vapor phase results in the slow decomposition of Fe(CO)5 at
a rate that matches with the reduction rate of Pt(acac)2. The
FePt nanoparticles are formed in a shorter period of time.
Therefore, the consumption of Fe(CO)5 can not be completed
on this synthetic time scale. As a result, 0.5 mmol of Fe(CO)5

and 0.5 mmol of Pt(acac)2 yield Fe38Pt62, while 1.1 mmol
of Fe(CO)5 and 0.5 mmol of Pt(acac)2 lead to Fe56Pt44

nanoparticle materials. The FePt particle size can be tuned



Chemical synthesis of monodisperse magnetic nanoparticles 5

(a)

18 nm 30 nm

(b)

Figure 5. TEM micrographs of (a) a 3D assembly of 6-nm as-
synthesized Fe50Pt50 particles and (b) a 3D assembly of 6-nm
Fe50Pt50 sample after replacing oleic acid/oleyl amine with hexanoic
acid/hexylamine (Sun et al., 2000).

from 3 to 10 nm by first growing 3-nm monodisperse seed
particles in situ and then adding more reagents to enlarge the
existing seeds to the desired size (Sun et al., 2000). Figure 5
gives TEM images of the 6-nm FePt nanoparticles prepared
from the seed-mediated growth of 4-nm FePt nanoparticles.

The one-step decomposition/reduction method described
above can yield high quality FePt nanoparticles with con-
trolled composition but fail to produce particles larger than
4 nm unless the seed-mediated growth method is used, which
gives larger FePt particles but without accurate control on Fe,
Pt composition at different sizes. To overcome this synthetic
problem, a diol-less one-step synthesis is developed (Chen,
Liu and Sun, 2004). The lack of the diol from the reac-
tion mixture slows down the nucleation rate, allowing more
metal precursor to deposit around the nuclei formed in the
solution and leading to the formation of larger particles. The
size of the particles is tuned by controlling the molar ratio
of stabilizers to Pt(acac)2 and heating conditions. A ratio of
at least 8 is needed to make FePt nanoparticles larger than
6 nm in this one-pot reaction. It is also found that, at the fixed
stabilizers:Pt(acac)2 ratio of 8, both heating rate and interim
heating temperature are important in making FePt particles
with tunable sizes. Heating rate of ∼15 ◦C/min. and interim
heating temperature of 240 ◦C yields 6-nm FePt, while the
rate of ∼5 ◦C/min. and heating temperature of 225 ◦C leads
to 9-nm FePt. The composition of the particles is controlled
by varying the molar ratio of Fe(CO)5 and Pt(acac)2. Under
the reported reaction conditions, Fe(CO)5/Pt(acac)2 ratio of 2
gives 6-nm Fe53Pt47 and 9-nm Fe44Pt56 nanoparticles. Ther-
mal annealing and magnetic studies show that an assembly of
large (6 nm or above) FePt nanoparticles can withstand higher
temperature (650 ◦C) annealing without noticeable particle
sintering. Room-temperature coercivity of an assembly con-
taining discrete FePt dots can reach as high as 1.3 T, a value
that is suitable for hard magnetic applications.

The mechanism for the formation of FePt nanoparticles in
this one-pot, diol-less reaction is given in Figure 6 (Chen,

Fe-Pt Fe-Pt Fe Fe-Pt Fe-Pt Fe3O4

(i) (ii) (iii)

(a) (b) (c) (d)

Figure 6. Schematic illustration of the mechanism for the forma-
tion of FePt nanoparticles via Fe, Pt diffusion. (i) Fe coating; (ii)
Fe, Pt interface diffusion; (iii) Fe coating, then oxidation. (Adapted
from Chen, Liu and Sun, 2004.)

Liu and Sun, 2004). The Pt-rich nuclei (a) are formed from
the reduction of Pt(acac)2 either at temperature >200 ◦C or
by Fe atoms from the decomposed Fe(CO)5, or by both.
More Fe atoms coat over the existing Pt-rich nuclei, forming
larger clusters (b). Exposing these clusters to air leads to
formation of Pt-rich FePt/Fe3O4. Heating the clusters (b) to
refluxing at 300 ◦C results in atomic diffusion and formation
of fcc structured FePt nanoparticles (c). In the presence of the
excess of Fe(CO)5, the extra Fe continues to coat over (c),
giving core/shell structured FePt/Fe that is further oxidized
to FePt/Fe3O4 (d). The intermediate and product structures
proposed in Figure 6 have been separated and characterized
(Chen, Liu and Sun, 2004).

Stable CoFe nanoparticles are important for high magnetic
moment applications. Such particles can be synthesized by
co-decomposition of Fe(CO)5, and Co(η3-C8H13)(η4-C8H12)
or Co[N(SiMe3)2]2 (Desvaux et al., 2005). The precursors
are reacted under 3 bar H2 pressure in toluene at 150 ◦C
in the presence of 1 equivalent of hexadecylamine and 1
equivalent oleic acid. The solid product separated from the
reaction mixture contains monodisperse CoFe nanoparticles,
as shown in the scanning electron microscopy (SEM) image
(Figure 7). superconducting quantum interference devices
(SQUID) measurements show a ferromagnetic behavior at
room temperature with a saturation magnetization (Ms)

100 nm

Figure 7. SEM image of the cross-section view of a CoFe nanopar-
ticle assembly. (Reproduced from Desvaux et al., 2005, with per-
mission from Nature.  2005.)
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40 nm40 nm

(a) (b)

Figure 8. TEM bright field images of core/shell Fe58Pt42/Fe3O4 nanoparticles with core/shell being (a) 4-nm/0.5-nm and (b) 4-nm/2-nm
(Zeng et al., 2004).

reaching as high as 183 Am2 kg−1(CoFe). To improve the
air-stability of the nanoparticles, the array is annealed under
argon at 500 ◦C for 30 min. After annealing, the particles
adopt the body centered-cubic structure. Furthermore, the
annealing results in the formation of a carbon shell around
the surface of the particles, protecting the particles from fast
oxidation (no noticeable change in the magnetic properties
after two weeks of exposure to air). Magnetic measurements
of the annealed assembly show an improved magnetization
values, Ms = 220 Am2 kg−1(CoFe), close to the bulk CoFe
values, Ms = 245 Am2 kg−1(CoFe).

5 SYNTHESIS OF BIMAGNETIC
CORE/SHELL STRUCTURED
NANOPARTICLES

Magnetic core/shell nanoparticles can be categorized as those
with magnetic core coated with a layer of a nonmagnetic,
antiferromagnetic, or ferro/ferri-magnetic shell. A nonmag-
netic coating is used routinely for magnetic core stabilization
and surface functionalization for biomedical applications. An
antiferromagnetic coating over a ferromagnetic core leads
to exchange bias (a shift of the hysteresis loop along the
field axis) and improvements in the thermal stability of the
core (Skumryev et al., 2003). Compared with these two dif-
ferent types of core/shell systems, a bimagnetic core/shell
one, where both core and shell are strongly magnetic (ferro-
or ferri-magnetic) is magnetically more interesting owing to
their potential in electromagnetic and permanent magnetic
applications (Zeng et al., 2002; Carpenter, Calvin, Stroud and
Harris, 2003). In such a system, the intimate contact between
the core and shell leads to effective exchange coupling and

therefore cooperative magnetic switching, facilitating the fab-
rication of nanostructured magnetic materials with tunable
properties.

FePt/Fe3O4 nanoparticles represent a good example of
bimagnetic core/shell structures (Zeng et al., 2004). They
are prepared by coating the existing FePt nanoparticles with
Fe3O4 shell in a condition similar to the synthesis of Fe3O4

nanoparticles. For example, the 4-nm Fe58Pt42 nanoparticles
are made by the combination of reduction of Pt(acac)2

and decomposition of Fe(CO)5 in octyl ether solvent (Sun
et al., 2000). These 4-nm FePt nanoparticles are then used
as seeds and mixed with Fe(acac)3 and 1,2-hexadecanediol,
oleicacid, and oleylamine in phenyl ether solvent. Fe3O4

coating is achieved by heating the mixture (Zeng et al.,
2004). By controlling the material ratio of Fe(acac)3 to
FePt nanoparticle seeds, the Fe3O4 shell thickness can be
readily tuned. Figure 8(a) and (b) shows two TEM images of
the core/shell structured Fe58Pt42/Fe3O4 nanoparticles with
the darker region in the center being 4-nm Fe58Pt42 and
the lighter ring being 0.5 nm (Figure 8a) and 2-nm Fe3O4

(Figure 8b).
The Fe58Pt42/Fe3O4 core/shell nanoparticles are ferromag-

netic at low temperatures but superparamagnetic at room
temperature (Zeng et al., 2004). The particles with 0.5-nm
Fe3O4 shell have an Hc of 5 kOe, while those with 3-nm
shell have an Hc value of only 1.4 kOe. The large Hc value of
the core/shell nanoparticles originates from low-temperature
hard magnetic properties of the Fe58Pt42 core –the coer-
civity of the as-synthesized 4-nm Fe58Pt42 nanoparticles is
5.5 kOe at 10 K. Fe3O4 is magnetically a much softer mate-
rial, with 10 K Hc ranging from 200 Oe for 4 nm to 450 Oe
for 16 nm nanoparticles. However, in the Fe58Pt42/Fe3O4

system, the magnetic behaviors of Fe58Pt42 and Fe3O4 are not
distinguishable, and the hysteresis loops measured at 10 K
show smooth change of magnetization with applied field,
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Au
Fe(CO)5

(2) Oxidation
Au Fe3O4

(1) Decomposition

Figure 9. Schematic illustration of the synthesis of dumbbell-like
Au–Fe3O4 nanoparticles. (Adapted from Yu et al., 2005.)

suggesting that the Fe58Pt42 core and the Fe3O4 shell are
in intimate contact and are exchange coupled. Therefore, the
magnetization directions of both core and shell switch coher-
ently under an external magnetic field. The exchange-coupled
FePt/Fe3O4 nanoparticles can be used as building blocks to
form hard magnetic nanocomposites with enhanced magnetic
properties (Zeng et al., 2004).

6 SYNTHESIS OF DUMBBELL-LIKE
NANOPARTICLES

Dumbbell-like magnetic nanoparticles have two nanoparti-
cles in intimate contact with one being magnetic. Owing
to the epitaxial connection between these two units, the
dumbbell structure can be considered as a nanoscale junc-
tion. In such a system, the electronic structures of both
metal and metal oxide are modified by electron transfer
across the interface, leading to the enhancement in chemi-
cal and physical properties at the nanoscale interface. The
dumbbell-like Au–Fe3O4 nanoparticles with both Au and
Fe3O4 in nanometer sizes are prepared via the decomposi-
tion of Fe(CO)5 over the surface of the Au nanoparticles, as
illustrated in Figure 9 (Yu et al., 2005). The Au nanoparti-
cles are either synthesized in situ by injecting HAuCl4 solu-
tion into the reaction mixture or pre-made using a modified
synthetic procedure. Mixing Au nanoparticles with Fe(CO)5

in 1-octadecene solvent in the presence of oleic acid and
oleylamine and heating the mixture to reflux (∼300 ◦C) fol-
lowed by room temperature oxidation leads to dumbbell-like
Au–Fe3O4 nanoparticles. The size of the Au particles is
tuned by controlling the temperature at which the HAuCl4
is injected, or by controlling the HAuCl4/oleylamine ratio.
The size of the Fe3O4 particles is controlled by adjust-
ing the ratio between Fe(CO)5 and Au. More Fe(CO)5

leads to larger Fe3O4 nanoparticles. Au–Fe3O4 particles
with Au up to 8 nm and Fe3O4 up to 20 nm have been
synthesized.

Figure 10(a) and (b) shows two TEM images of the
dumbbell-like Au–Fe3O4 nanoparticles with Fe3O4 at around
14 nm and Au at 3 and 8 nm, respectively. Figure 10(c) is
the high angle annular dark field scanning transmission elec-
tron microscopy (HAADF-STEM) image of several dumb-
bell nanoparticles. In Figure 10(c), the Au particles are

(a) (b)

(c) (d)4 nm 2 nm

10 nm 24 nm

Fe3O4 (111)

Au (111)

0.485 nm

0.24 nm

Figure 10. TEM and STEM images of the dumbbell-like
Au–Fe3O4 nanoparticles: (a) TEM image of the 3–14-nm
Au–Fe3O4 particles; (b) TEM image of 8–14-nm Au–Fe3O4 par-
ticles; (c) HAADF-STEM image of 8–9-nm Au–Fe3O4 particles;
and (d) HRTEM image of one 8–12-nm Au–Fe3O4 particle (Yu
et al., 2005).

imaged as brighter dots. Figure 10(d) is a typical high resolu-
tion TEM (high resolution transmission electron microscopy
(HRTEM)) image of a dumbbell particle with Fe3O4 at
12 nm and Au at 8 nm. The lattice fringes in each of
the particles correspond to atomic planes within the parti-
cle, indicating that both particles are single crystals. The
distance between two adjacent planes in Fe3O4 is mea-
sured to be 0.485 nm, corresponding to (111) planes in
the inverse spinel structured Fe3O4 and that in Au is
0.24 nm, resulting from a group of (111) planes in fcc struc-
tured Au.

The interface communication between the nanoscale Au
and Fe3O4 leads to the change of magnetization behav-
iors of the Fe3O4 nanoparticles, especially for those smaller
than 8 nm (Yu et al., 2005). Figure 11 shows the hysteresis
loops measured at room temperature for Au–Fe3O4 par-
ticles with Au being 3 nm and Fe3O4 14 nm (Figure 11a)
and 6 nm (Figure 11b), respectively. Like Fe3O4 nanoparti-
cles, the dumbbell particles are superparamagnetic at room
temperature. The 3–14-nm dumbbell particles show loops
similar to the 14-nm Fe3O4 nanoparticles with saturation
moment reaching 80 emu g−1 (Figure 11a), a value that is
close to the related Fe3O4nanoparticles due to the negligible
weight percentage of 3-nm Au in the composite. The 3–6-nm
dumbbell particles, however, show a loop of slow increase
in moment with the field up to 5 T (Figure 11b), while the
pure 6-nm Fe3O4 nanoparticles are magnetically saturated
within 1 T. It seems that interfacial interactions between Au
and Fe3O4 make the small magnetic nanoparticles difficult
to achieve saturation.
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Figure 11. Hysteresis loops of Au–Fe3O4 particles measured at
room temperature: (A) 3–14-nm Au–Fe3O4 and (B) 3–6-nm
Au–Fe3O4 particles (Yu et al., 2005).

7 SHAPE-CONTROLLED SYNTHESIS OF
MAGNETIC NANOPARTICLES

The shape is one of the most important factors in deter-
mining the structural, physical, and chemical properties of a
nanoparticle and an assembled array of the particles. Shape-
controlled synthesis of nanoparticles has become a recent
focus, as different shapes of the particles can introduce elec-
tronic, optical, and magnetic properties that are different
from those observed in their spherical counterparts (Burda,
Chen, Narayanan and El-Sayed, 2005; Jun, Choi and Cheon,
2006). Shape-controlled synthesis and assembly of magnetic
nanoparticles can induce crystal orientation and further mag-
netic alignment of each nanoparticle in an assembly –a key
requirement for various magnetic applications.

Solution phase synthesis has shown great success in con-
trolling the monodispersity of the nanoparticle shapes. Nearly
monodisperse cobalt nanorods are synthesized by thermal
decomposition of [Co(η3-C8H13)(η

4-C8H12)] in the presence
of a mixture of hexadecylamine (HDA) and aliphatic acid
(Dumestre et al., 2003). Using octanoic acid (C8) results in
the formation of shorter and wider rods (Figure 12a). The
lauric acid (dodecanoic acid, C12) leads to cobalt nanorods
with an approximate size of 5:85 nm (Figure 12b). With
stearic acid (octadecanoic acid), the longer nanorods are
obtained.

The shape of the MnFe2O4 nanoparticles is controlled by
the amount of stabilizers added to the reaction mixture during
the synthesis of MnFe2O4 nanoparticles (Sun et al., 2004;
Zeng, Rice, Wang and Sun, 2004). A reaction of 2 mmol
of Fe(acac)3 and 1 mmol of Mn(acac)2, with 10 mmol of

(a) (b)

Figure 12. TEM micrographs of nanorods synthesized using hex-
adecylamine and (a) octanoic acid and (b) lauric acid (Dumestre
et al., 2003).

10 nm 10 nm

(a) (b)

Figure 13. TEM images of the as-synthesized (a) 12-nm cube-like
and (b) 12-nm polyhedron-shaped MnFe2O4 nanoparticles (Zeng,
Rice, Wang and Sun, 2004).

1,2-hexadecandiol in the presence of 6 mmol of oleic acid,
6 mmol of oleyl amine and 20 ml of benzyl ether gives 12-nm
MnFe2O4, while similar reaction in 22 ml or 25 ml of benzyl
ether yields 10 nm or 8 nm particles, respectively (Zeng, Rice,
Wang and Sun, 2004). When the surfactant/Fe(acac)3 ratio is
smaller than 3:1, the particles are nearly spherical with no
well-defined facets. Increasing the ratio to 3:1 yields cube-
like particles. If the particles are prepared using the seed-
mediated growth as in the synthesis of Fe3O4 nanoparticles
(Sun and Zeng, 2002), polyhedron-shaped particles are
obtained. Figure 13 shows the representative TEM images
of the MnFe2O4 nanoparticles with different morphologies,
with (a) being cube-like and (b) polyhedron-shaped particles.

Self-assembly of these shaped particles can lead to crys-
tal orientation of each particle in a self-assembled superlat-
tice (Zeng, Rice, Wang and Sun, 2004). Controlled evap-
oration of the carrier solvent from the hexane dispersion
(∼2 mg mL−1) of the particles shown in Figure 13 lead to
MnFe2O4 nanoparticle superlattices. Figure 14(a) shows the
superlattice assembly from the cube-like particles, whereas
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Figure 14. TEM images of 12-nm MnFe2O4 nanoparticle superlattices of (a) cubelike and (b) polyhedron-shaped nanoparticles. XRD (Co
Kaλ = 1.788965 Å) of (c) cubelike and (d) polyhedron-shaped nanoparticle superlattice on Si(100) substrates (Zeng, Rice, Wang and Sun,
2004).

Figure 14(b) is the assembly from the polyhedron-shaped
particles. Both assemblies have the cubic packing. But the
different shapes possessed by each group of the particles
affect the crystal orientation of individual particles within
the superlattices. X-ray diffraction (XRD) pattern of the self-
assembled cube-like particles shows an intensified (400) peak
(Figure 14c) while the XRD of the polyhedron-shaped parti-
cle assembly reveals a strong reflection of (220) (Figure 14d).
These are markedly different from that of a 3D randomly
oriented spinel structured MnFe2O4 nanoparticle assembly,
which shows a strong (311) peak. These indicate that each
of the cube-like particles in the cubic assembly has preferred
crystal orientation with {100} planes parallel to the Si sub-
strate while for the polyhedron-shaped particle assembly, the
{110} planes are parallel to the substrate.

Nearly monodisperse FePt nanocubes are synthesized by
controlled mixing of reactants and heating. (Chen et al.,
2006) The cubic nanoparticles are produced by first mixing
olecid acid and Fe(CO)5 with benzyl ether/octadecene solu-
tion of Pt(acac)2 and heating the mixture to 120 ◦C for about
5 min. before oleylamine is added and the mixture is heated
at 205 ◦C for 2 h (Chen et al., 2006). It is believed that the
nanocubes are formed from the growth of the cubic Pt-rich
nuclei generated during the initial stage of the reaction, as
the -COOH does not have a strong tendency to bind to Pt as
the surface energy of crystallographic planes of a fcc Pt crys-
tal generally follow the trend of (111) < (100). In a kinetic

growth process, the Fe-rich species prefer to deposit on the
(100) plane, leading to the formation of cubes. If oleylamine
is added first, sphere-like FePt nanoparticles are separated.
This indicates that the amine reacts with Pt, forming stable
Pt–NH2- complex and hindering the nucleation process. The
uniform FePt nanocubes must be derived from atomic diffu-
sion between Pt-rich core and Fe-rich shell in a process that
is similar to what is described in Figure 6 (Chen, Liu and
Sun, 2004).

Controlled evaporation of the carrier solvent from the
hexane dispersion (∼2 mg mL−1) of the nanocubes yields a
Fe50Pt50 nanocube superlattice array, as shown in
Figure 15(a) (Chen et al., 2006). This assembly pattern is
energetically favored as it gives the maximum van der
Waals interaction energy arising from face–face interac-
tions in short distance of the cube assembly (Korgel, Ful-
lam, Connolly and Fitzmaurice, 1998). The interparticle dis-
tance is around 4–5 nm, close the simple thickness addition
of the cube coating layer (2–2.5 nm, the length of oleate
or oleylamine). Selected area electron diffraction (SAED)
of the assembly in Figure 15(a) exhibits four bright (200)
spots that are linked by a four-fold symmetry, as shown
in Figure 15(b). The (111) diffraction ring is very weak in
this diffraction pattern. These indicate that the assembly in
Figure 15(a) is (100) textured. The textured cubic assembly
is further revealed by a small angle diffraction of the assem-
bly (Figure 15c). This is markedly different from that of a 3D
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Figure 15. (a) TEM image of a multilayer assembly of 6.9-nm Fe50Pt50 nanocubes; and (b) SAED of the assembly in (a), and (c) small
angle diffraction of the assembly in (a) (Chen et al., 2006).

2

2.5

2

1.5

1

0.5

0

1

0

−1

−2
−60 −40 −20 0

H (kOe)

M
 (

em
u,

 a
rb

 u
ni

t, 
×1

00
0)

In
te

ns
ity

 (
× 

1/
10

00
)

20 40 60

25 30 35 40 45 50 55 60

2q (°)

(001)

(110)

(111)

(200)

(002)

(a)

(b)

Figure 16. (a) XRD of thermally annealed FePt nanocube assembly
on a Si surface, and (b) room temperature in-plane hysteresis loop
of the FePt nanocube assembly in (a) (Chen et al., 2006).

randomly oriented FePt nanoparticle assembly with a strong
(111) peak, indicating that each nanocube in the assembly
has a preferred crystal orientation with {100} planes paral-
lel to the substrate. Thermal annealing of the FePt nanocube
superlattice induces FePt structure transformation from fcc
to fct (Chen et al., 2006). The XRD pattern of the annealed
assembly (675 ◦C under Ar for 1 h) has two strong (001)
and (200) peaks, as shown in Figure 16(a). The narrowed
peaks indicate the particle growth during the annealing pro-
cess. However, the peak intensity is different from that of
the spherical FePt nanoparticle assembly, which shows only
one strong (111) peak (Sun et al., 2000). This indicates that
(001) planes in the thermally annealed FePt nanocube array
distribute equally in parallel and perpendicular directions to
the substrate. Figure 16(b) is the room-temperature hysteresis
loop of the annealed FePt nanocube assembly with coercivity
at 22 kOe. The loop is exact the same in both parallel and
perpendicular direction of the assembly, confirming what is
concluded from the XRD analysis in Figure 16(b).

8 CONCLUSIONS

It is now well accepted that fabrication of ordered nanomag-
net arrays with controlled magnetic alignment is an impor-
tant goal in achieving high-density information storage and
high-performance permanent magnets. Many experimental
results have shown that solution phase chemistry is a versatile
method for preparing monodisperse magnetic nanoparticles
and nanoparticle superlattice array with controlled magnetic
properties. With the shape-induced texture in the assembly,
it is possible to align magnetic easy axis of each nanopar-
ticle in a self-assembled superlattice structure. When this is
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achieved, solution phase chemical synthesis will evolve as
a new alternative for the fabrication of the advanced mag-
netic nanostructures for ultrahigh DMR and magnetic energy
storage applications.
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1 INTRODUCTION

Patterned magnetic nanostructures (PMNs) open up great
opportunities for building a broad spectrum of revolutionary
magnetic devices, such as magnetic random accessible mem-
ories, quantized magnetic disks (‘bit-patterned media’), new
sensors, new actuators, and drug delivery, to name a few; for
understanding the fundamentals of micro-/nanomagnetics;
and for revolutionizing the magnetic data storage industry.
The properties of a magnetic material depend upon the size,
shape, spacing, orientation, and composition of the grains
inside the material, as well as the material components

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

between the grains. By patterning a magnetic material, we
introduce a new, unique, and powerful way to control each
of these parameters, thus creating new magnetic properties,
including properties unachievable by conventional fabrica-
tion approaches (e.g., thin-film deposition).

Obviously, the realization of the PMNs’ potential critically
hinges upon our ability in patterning, particularly the pat-
terning resolution, pattern-shape variety, critical dimension
control, patterning area, and alignment of patterning. Further-
more, it also critically depends on the patterning throughput
and cost, which dictate the commercialization potential of a
PMN device and the R&D cycle time.

Among available patterning methods, nanoimprint lithog-
raphy (NIL) has, in the author’s view, the unique combi-
nation of ultrahigh pattern resolution (∼2 nm), broad pat-
tern variety (2D and 3D), large printing area (>10 cm2),
and high throughput and low cost (Chou, Krauss and Ren-
strom, 1995; Chou, Krauss and Kong, 1996; Chou et al.,
1997; Guo, Krauss and Chou, 1997; Krauss and Chou, 1997;
Sun, Zhuang, Zhang and Chou, 1998; Tan, Gilbertson and
Chou, 1998; Wu et al., 1998; Heidari, Maximov, Sarwe and
Montelius, 1999; Lebib et al., 1999; Wang, Sun, Chen and
Chou, 1999; Bailey et al., 2000; Li, Chen and Chou, 2001;
Haisma, Verheijen, vandenHeuvel and vandenBerg, 1996).
Hence, NIL is playing a key role in today’s development and
commercialization of PMNs. For example, large-area pho-
tolithography has a resolution of ∼1 µm. The state-of-the-art
lithography tools for semiconductor industry have a 60-nm
resolution (half-pitch size), 1 in.2 single exposure area, and
a price tag of over $40 M per tool. Electron- and ion-beam
lithography and scanning probe lithography have excellent
patterning resolution (∼10 nm), but are low in throughput
and high in cost, and therefore are more suitable for direct
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writing of small areas (e.g., a few square millimeters) and for
making of NIL masks. Interference lithography (IL) can pro-
duce nanostructures over a large area (Anderson, Horwitz
and Smith, 1983; Yen et al., 1992), but it cannot compete
with NIL in terms of feature size, yield, and throughput.
Self-assembly is low cost and is potentially high throughput
(some methods have long pattern formation times), but have
very limited pattern variety, small domain size (no long-range
order), and random pattern location. Guided self-assembly
can alleviate some of the shortcomings of self-assembly, but
is still limited (Chou and Zhuang, 1999; Chou, Zhuang and
Guo, 1999).

The invention and development of nanoimprint have
intertwined with that of PMNs and quantized magnetic
disks (QMDs). One of the key motivations in developing
nanoimprint is to find an economical viable manufacturing
method for PMNs and QMDs.

As to PMN development, the idea of use of lithography
to separate magnetic disk tracks (so-called discrete track or
patterned media) was proposed in 1963 (Shew, 1963) and
that to separate bits in 1987 (Lambert, Sanders, Patlach
and Krounbi, 1987; Lambert et al., 1989). However, these
concepts have nothing to do with the utilization of single
magnetic domain (hence their unique properties), which is the
key foundation of QMD that was proposed in 1993 (Chou,
Wei, Krauss and Fischer, 1994). (Note: today’s terminology
of ‘patterned media’ refers to ‘patterned media with single-
domain bits’.)

Experimentally, the study of the patterned magnetic struc-
tures by lithography can be traced back to 1985, when the
effects of patterning on the multidomain formation in mag-
netic structures with lateral dimension of several tens of
micrometers were studied, followed by a number of other
investigations on the similar structures (Ruhrig, Bartsch,
Vieth and Hubert, 1990; Cosimini et al., 1988; Lo et al.,
1985; Corb, 1988). But, only multidomain structures were
observed. In 1988, magnetic structures with sub-250-nm fea-
ture size patterned by electron beam lithography (EBL) were
reported by two groups (Ozimek, 1985; Smyth et al., 1991;
Gibson, Smyth, Schultz and Kern, 1991). In 1993, the obser-
vation of single-domain formation in the patterned bars using
magnetic force microscopy (MFM), switching of the bars
using an MFM tip, and angle dependence of switching field
were reported (Lederman, Gibson and Schultz, 1993; Gib-
son and Schultz, 1993). The patterned Co and Fe rectangles
were studied (New, Pease and White, 1994, 1995a,b). In
1993, QMDs based on lithographically patterned magnetic
nanostructures were proposed (Chou, Wei and Fischer, 1994;
Chou, Wei, Krauss and Fischer, 1994), the fabrication and
study of a QMD with a density of 65 Gbit in.−2 using EBL
were reported in 1994 (Krauss, Fischer and Chou, 1994). Yet,
the QMD was regarded as being of only academic interest,

because there was no viable manufacturing in 1993. To solve
manufacturing problem for QMDs and other PMNs, NIL – a
low-cost, high-throughput nanofabrication technology – was
proposed and demonstrated in 1994 (Chou, Krauss and Ren-
strom, 1995, 1996).

After 1995, PMN research began to spread rapidly because
of (i) application of nanofabrication technology to magnetics;
(ii) availability of scanning MFM, allowing us for the first
time to image and manipulate the magnetic domain structures
with great precision; and (iii) invention of NIL, a sub-10-nm
resolution, high-throughput, low-cost, manufacturing tech-
nology that makes commercialization of PMN-based memo-
ries and sensors economically viable. Examples of later work
in different methods of fabricating patterned media include
ion beam irradiation (Chappert et al., 1998; Terris et al.,
1999; Albrecht, Rettner, Best and Terris, 2003), IL (Farhoud
et al., 1999; Ross et al., 2001), self-assembly (Zhukov et al.,
2003) and diblock copolymers (Thurn-Albrecht et al., 2000;
Park, Chaikin, Register and Adamson, 2001; Asakawa et al.,
2002; Naito et al., 2002; Abes, Cohen and Ross, 2003), and
porous alumina (Nielsch et al., 2002; Yasui, Imada and Den,
2003; Castano et al., 2004). Nanoimprint has been used to
fabricate discrete track disks (Wachenschwanz et al., 2005)
and QMDs (Chou, 1997).

Today, QMDs (bit-patterned media) have been placed
on the magnetic disks road map as one of the possible
approaches to high density, and on the same roadmap, NIL
is the manufacturing method.

2 PRINCIPLE AND CAPABILITY OF
NANOIMPRINT LITHOGRAPHY

2.1 Principle

NIL patterns nanostructures by physical deformation of a
deformable material using a mold, creating a thickness
contrast in the material; rather than by changing the local
chemical properties of the material using radiation (Figure 1)
(Chou, Krauss and Renstrom, 1995, 1996). After imprinting,
which involves material flow, a residual material layer often
exists, which may need, depending on applications, to be
removed by anisotropic etching (e.g., reactive ion etching,
RIE), that etches vertically much faster than it does laterally.
The imprinted material can serve as a resist for subsequent
processing which will be removed after processing, or as a
functional structure of a device that will stay as a part of
the device. For simplicity, we call the imprinted materials in
either case ‘resists’.

An imprint process starts at the design and fabrication of
a nanoimprint mold (mask), followed by the use of the mask
to imprint patterns into a material (resist) on a substrate.
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1. Imprint

2. Pattern transfer

Mold

Resist
Substrate

Press mold

Remove mold

RIE

Figure 1. Schematic of nanoimprint lithography process. (1)
Imprinting using a mold to create a thickness contrast in a resist;
and (2) pattern transfer using anisotropic etching to remove residue
resist in the compressed areas (Chou, Krauss and Renstrom, 1995,
1996).

2.2 NIL capabilities

Because it is based on a different fundamental principle,
NIL has many advantages over conventional lithography,
particularly in resolution, high pattern-transfer fidelity, 3D
patterning, lager area (full wafer if needed), high throughput,
and low cost.

2.2.1 Resolution

Since NIL is not based on the modification of the chemical
structure of a resist by radiation, its resolution is not limited
by the factors that limit the resolution of conventional
lithography: wave diffraction, scattering and interference in
a resist, backscattering from a substrate, and the chemistry
of resist and developer. In fact, photocurable NIL has
demonstrated 6-nm half-pitch grating with nearly atomic
smooth edges imprinted into a resist (Figure 2) (Austin
et al., 2004, 2005) and thermal NIL has demonstrated arrays
of 10-nm-diameter dots separated by 40 nm (400 dots/in.2)
(Figure 3) (Chou et al., 1997). Yet, these features are not
the limits of NIL, but the limits of our ability in making the
features on the molds; NIL can achieve even smaller features
if a mold can be made, as pointed out in the original NIL
papers (Chou, Krauss, and Renstrom, 1995, 1996). Recently,
imprinting of 2-nm-wide lines using carbon nanotubes as a
mold was reported (Hua et al., 2006).

2.2.2 High pattern transfer fidelity

NIL has been demonstrated to have high fidelity in pattern
transfer, accurately reproducing original mold patterns and
maintaining smooth vertical sidewalls in the imprint resist.
For example, repeated imprinting of static random access
memory (SRAM) patterns (metal layer) of 20-nm half-pitch
showed a standard deviation of 1.3 nm in the variation

12-nm pitch 17-nm pitch

Figure 2. SEM micrograph of imprinted resist grating with a
minimum 6-nm half-pitch. (Reproduced from Austin et al., 2004,
with permission from the American Physical Society.  2004.)

of the imprinted feature width (Figure 4) (Austin et al.,
2005). High-aspect-ratio patterns with smooth sidewalls on
the mold are transferred to the resist faithfully (Figure 5),
unlike in conventional lithography, which can produce sloped
sidewalls and line edge roughness, because of a Gaussian
shape of the light profile, light scattering, and other noise.

2.2.3 3D patterning

The third unique feature of NIL is 3D patterning, rather than
the 2D patterning as in conventional lithography. 3D features
are very desirable for certain applications such as microwave
circuits and microelectromechanical systems (MEMS). For
example, the T-gate for microwave transistors has a narrow
footprint for high-frequency operation, but a wide top for
lower resistance. Fabrication of a T-gate often requires two
EBL steps: one for the footprint and one for the wide top.
Each electron beam exposure could take over 2 hours to
pattern a single 4-in. wafer. With NIL, the entire 4-in. wafer
can be patterned in one step in less than 10 s. Figure 6 shows
a 40-nm T-gate fabricated by a single NIL step and lift-off
of metal (Li, Chen and Chou, 2001).

2.2.4 Large patterning area

The NIL exposure area (area patterned in a single step) can
be much larger that the exposure field of a conventional
photolithography stepper (∼1 in.2) because NIL does not
require high precision optics or a well conditioned monochro-
matic light source. Today, full 4 or 8 in. wafers are routinely
imprinted at once over a full wafer. When Air Cushion
PressTM is used (discussed in Section 3), excellent imprint
uniformity has been achieved (Figure 7) (Gao et al., 2006).
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Figure 3. SEM micrographs of a dot array of 10 nm diameter and 40-nm period and hence 400G dots/in.2 by nanoimprint lithography and
lift-off of metals. (a) A SiO2 mold with 10-nm minimum diameter pillars with a 40-nm period which are 60 nm tall, after being used 12
times; (b) a top view of 60-nm-deep holes imprinted into PMMA which have a 10-nm minimum diameter and a period of 40 nm; and
(c) a top view of 10-nm minimum diameter metal dots with a period of 40 nm, formed by imprinting into PMMA and a lift-off process.
(Reproduced from Chou et al., 1997, with permission from IEEE.  1997.)

2.2.5 High throughput and low cost

NIL is high throughput and low cost, because of its ability to
do full-wafer-scale parallel fabrication without complicated
and expensive optics systems and laser sources (Wu et al.,
1998; Yu, Wu, Chen and Chou, 2001; Li, et al., 2003; Yu
et al., 2003).

2.2.6 Self-cleaning

It has been observed, since the day one of nanoimprint devel-
opment, that NIL is a self-cleaning process (Wu et al., 1998).

That is, the dust on the mold is being cleaned every time the
mold imprints a wafer. The mold release agent on the mold
makes dust weakly bound to the mold, while the resist acts
like a glue to the dust, taking it away from the mold. A
‘dirty’ mold will become completely clean after just a few
imprints.

2.3 Various forms of nanoimprint

The principle of NIL can be implemented through a vari-
ety of approaches. Thermal NIL uses a resist material that
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Figure 4. SEM image of 20-nm half-pitch resist pattern for
SRAM metal contacts fabricated by NIL. (Reproduced from Austin
et al., 2004, with permission from the American Physical Society.
 2004.)

is either thermoplastic or thermal curable (Chou, Krauss
and Renstrom, 1995; Chou, 1998b, 2001). During a thermal
imprint process, a thermoplastic material starts as a solid
film, becomes a viscous liquid when its temperature is raised
higher, than its glass transition temperature (Tg), and returns
to a solid when its temperature is brought below Tg. This
solid-liquid-solid process is reversible and repeatable for an
infinite number of cycles. The imprint is performed when a
resist is in its liquid state. A thermoset material is originally
in a liquid form and becomes solid (cured) when heated to
a certain temperature for a certain duration. This curing pro-
cess is irreversible. Photo (or UV)-NIL uses a photocurable
material as resist (Haisma, Verheijen, vandenHeuvel and van-
denBerg, 1996; Chou, 2001). Like a thermal-curable material,
a photo-curable material is initially in liquid form, but it is
cured photochemically by photons (light) rather than heat,
which is also an irreversible process. Step-and-flash imprint
lithograph (SFIL) is a photo-NIL process in which drops of
a resist liquid are dispensed and imprinted on one single die

area at a time. This process is repeated as the imprint mold
is ‘stepped’ from die to die across the wafer, repeating the
resist drop and imprint cycle (Bailey et al., 2000).

Thermal NIL needs to heat an imprinted area to a
temperature higher than the initial temperature for a period
of time (can be as short as 100 ns). In principle, UV-NIL
is carried out without a change in temperature; in reality
photocuring in UV-NIL can cause local heating. Each of the
methods has its own advantages and shortcomings and has its
own well-suited applications. In the following text, we will
discuss some commonly shared properties and then compare
the pros and cons.

2.4 Pros and cons of different forms of NIL

The biggest advantage of thermal NIL is that it allows both
mold and substrate to be opaque, necessary in some processes
and materials systems. Thermoplastic NIL also allows the use
many off-the-shelf materials as imprinting resists, making
it easier to implement when sophisticated NIL resists are
unavailable. In fact, thermoplastic NIL was the first form
of nanoimprint to be introduced. The major disadvantage of
thermal NIL is that the temperature change during the imprint
process makes precision alignment difficult. The temperature
change also can make demolding (i.e., the separation of the
mold from the substrate) difficult because of the stress created
by the differences in the thermal expansion coefficients of the
mold, substrate, and resist. An opaque mold and substrate can
make the viewing of alignment marks during overlay more
difficult, although thermal NIL can use transparent molds or
opaque mold with transparent alignment windows.

In comparison, the primary advantage of Photocurable NIL
is the constant temperature during imprint, provided that
heating from the photoradiation can be removed. A photocur-
able NIL needs either a transparent mold or substrate.

In all curable NIL (either photo or thermal), where a resist
is initially in liquid form, the viscosity of the resist can
be formulated in order of that of wafer (a few centipoise).
A low viscosity allows excellent flow of the resist during
the imprint, which is important when the pattern density
varies significantly over the areas or the patterns are large
and deep (e.g., 50 µm diameter features and 60 µm deep).
In contrast, a thermoplastic resist often has a high viscosity
(∼300–3000 cP) even at temperatures significantly higher
the resist’s glass transition temperature. The reasons are that
a curable NIL resist consists of oligomers and monomers,
while a thermoplastic NIL resist is composed of long-chain
polymers (high temperature allows them to slip by each other
to deform). In some curable resist materials, additives (e.g.,
small particles) can drastically increase the viscosity.

Another form of nanoimprint, which may be in some
sense more powerful, is to directly imprint a functional
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UV curable resist
Transfer layer resist

200 nm

Date: 28 Aug 2003 Date: 28 Aug 2003

200 nm

Figure 5. Resist profile by nanoimprint showing smooth vertical sidewalls. (Reproduced from Li et al., 2003, with permission from IOP
Publishing Ltd.  2003.)

40 nm

90 nm

Figure 6. 3D patterning. SEM micrograph of two T gates of 40-nm and 90-nm footprint, respectively, fabricated by a single NIL and a
lift-off of metal (Li, Chen and Chou, 2001; Li, Chen, Zhang and Chou, 2003).

Mold

Substrate

Gas pressure

Figure 7. Schematic of Air Cushion PressTM (ACP) nanoimprint
principle (Gao et al., 2006; Chou, 2002).

material. The functional material could be a curable material
or thermoplastic, or hard solid materials such as silicon,
which melt into liquid during an imprinting (Li, Chen and
Chou, 2001; Chou, 2002). Sub-10-nm resolution is also
demonstrated in the direct imprint (Chou, 2002).

3 KEY ISSUES IN NIL

Regardless of which particular form of nanoimprint is
being used, the following issues are fundamentally important
for achieving good nanoimprinting: mold, material system,
pressing methods, imprint pressure uniformity, resist materi-
als dispensing methods, vacuum, demolding, and alignment.
These issues (except alignment) are discussed in the follow-
ing text.

3.1 NIL masks (molds), materials, and fabrication

In principle, any material harder than the imprint resist can
serve as a mold material. However, in practice, a mold
material is determined by the requirements of the imprint
method used, the mold material strength and durability, the
ease of mold fabrication, and users’ own understanding and
preference of mold materials. In many cases, multiple layers
of materials are used to gain more advantages.

3.1.1 Transparency to UV

In UV-NIL, unless the substrate is transparent, the mold
material(s) must be transparent to UV light in order to
cure the imprint resist. In thermal NIL, either transparent or
opaque mold materials can be used, and a transparent mold
or substrate are needed when direct heating of the resist by a
lamp or laser is used. A laser can be used for ultrafast thermal
imprinting (<200 ns) without much heating of the mold (Xia
et al., 2003). A common transparent mold material used in
NIL molds is fused quartz.

3.1.2 Material strength and durability

The second issue to consider in mold materials is the
material’s strength and durability in withstanding repeated
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imprints. Quartz is hard and brittle, so to improve a quartz
mold for imprinting, a thin layer of SiNx (Li, Chen, Zhang
and Chou, 2003), which is known to be stronger and more
durable, can be added to the surface of the mold. Other
choices for good mold surfaces are SiC and diamond-like
carbon films.

3.1.3 Mold fabrication

The most common way to fabricate a mold is to select a
mold substrate deposited with a suitable mold surface, then
use EBL to pattern a resist, followed by etching to transfer
the patterns in the resist into the mold (Chou et al., 1997;
Krauss and Chou, 1997). Sometimes a lift-off process is used
to pattern a harder etching mask material (e.g., chromium)
after EBL exposure to improve the etching mask durability.

Currently the feature size of EBL patterns are limited
to ∼10 nm, the pitch to ∼35 nm, and the area for such
size and pitch to several square millimeters. The size and
pitch limitations are due to electron scattering in the EBL
resist and mold substrate. The area limitation is due to the
resist exposure dose requirement, which makes the writing of
several square millimeters take several hours, and the writing
of a much larger area becomes impractical technically and
economically. Furthermore, most EBL tools write one ∼100
by 100 µm2 field at a time and stitch different fields together.
The stitching has an error in 10–30-nm range, depending on
EBL tool. Therefore, the patterns in different fields might not
be coherent. To solve the stitching error, a new approach is
to move the stage while keep the electron beam fixed during
writing, however, this introduces other errors.

To overcome the drawback of EBL in large-area periodic
patterns, IL (Flanders, Shaver and Smith, 1978) has been
extensively used to make NIL molds (Wu et al., 1998; Yu,
Wu, Chen and Chou, 2001; Yu and Chou, 2004). The advan-
tage of IL is the capability of fabricating periodic patterns
(e.g., gratings and grids) over a large area (e.g., 6 in. wafer)
in a parallel fashion, giving high throughput at relatively low
cost. The pitch of the grating by IL is given by λ/(2 sin θ).
When the interference half angle of the beams, θ , is near 90◦,
the pitch is near half of the wavelength, λ. However, at such
small pitch, the process latitude is very small and the yield
is very low, increasing the cost significantly. A high-yield
and low-cost approach is to use IL to make a master mold
and use NIL to make replicas (daughter molds) and man-
ufacturing. For examples, the uniform gratings in Figure 6
were imprinted using a mold fabricated by IL.

3.1.4 Mold fabrication compatibility

Another important consideration in mold fabrication is to use
materials that can be fabricated rather easily. For example,

metal is more ductile than hard dielectric materials, but it is
very hard to etch metal into patterns of high aspect ratio and
vertical sidewalls. In practice, good molds with high-aspect-
ratio intrusions and vertical sidewalls are made in dielectric
materials such as SiO2 or fused quartz.

3.1.5 Mold release agents

To separate a mold from an imprinted structure without
damage and without much force, mold release agents are
needed. The mold release agent can be applied by directly
coating the mold or by mixing it into the imprint resist.
Often both methods are used in parallel, since good com-
mercial NIL resist always have certain mold release agents.
All the mold release agents have fluorine side chains, which
significantly reduce the intermolecular interaction between
the mold and the imprinted resist. Mold release agents
that are directly coated on the mold often have a linking
group at the end of the molecular chain which attaches
the molecule to the mold, as in a self-assembled mono-
layer. The mold release agents are often perfluorinated
surfactants.

3.2 NIL materials (resists)

The materials used for NIL can be classified into three
groups according to their processing properties: thermoplas-
tic, thermocurable, and photocurable. In general, each class
of material consists of five components: (i) backbone mate-
rials (e.g., polymers, oligomers, monomers); (ii) solvents
(including monomers); (iii) plasticizers (for thermoplastic)
and initiators (curable); (iv) mold release agents; (v) others
(compatibilizers, lubricants, and other stabilizers). Clearly,
there are tremendous possibilities in formulating these NIL
resists, and commercial resist companies guard their for-
mulas like the ‘CocaCola recipe’. An enormous amount
of research and testing is required to find a good resist
formulation.

3.2.1 Thermoplastic materials (resists)

Thermoplastic materials have a characteristic glass transition
temperature, Tg , below which the material is solid and above
it, a viscous liquid. The backbone materials in thermoplastic
materials are a mixture of linear chain polymers, with no
cross-links between different chains. As the temperature is
raised above the glass transition temperature, the polymer
chains can slip by each other to flow, becoming a viscous
liquid. The viscosity lowers as the temperature becomes
higher, but does not become as low as that of a monomer-
based resist. Many solvents can be used, including certain
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monomers. Plasticizers are used to lower the Tg of the resist.
The mold release agents in thermoplastic materials, similar
to those used in curable materials, are often polysiloxane and
perfluorinated surfactants.

3.2.2 Photo (UV)-curable and thermocurable
materials

These materials are initially in a liquid state and become solid
when irradiated with the proper dose of photons (so-called
photocuring) or when heated to a certain temperature for
a certain duration (so-called thermocuring). The backbones
of curable materials consist of a mixture of monomers and
oligomers. Again the solvents include monomers. Examples
of UV and other radiation initiators for cross-linking are ben-
zophenone, 2-hydroxy-2-methyl-1-phenyl-1-propanone, and
1-hydroxydhexyl phenyl ketone. Examples of thermal ini-
tiators are benzyl peroxide (BPO) and azobisisobutyronitrile
(AIBN). Sometimes, additional additives are used to facilitate
the lubrication between the mold and the substrate, so that
the mold can be moved during alignment without excessive
friction.

3.3 Imprinting pressure and uniformity

To deform a resist on a substrate by a mold, the mold and the
substrate must be pressed toward each other to have contact.
To achieve good imprint uniformity, the pressure should be
not only uniform everywhere across the imprint area but
also sufficiently high to create the necessary deformation in
either the mold, the substrate, or both to make their surfaces
conform. The latter requirement is due to the fact that a mold
or a substrate initially might not be flat, but warped. In order
to make the mold and substrate conform, the imprint pressure
in many applications is much higher than that needed for
pressing a mold into a resist.

There are several methods used for pressing the mold into
the substrate, including solid parallel-plate press (SPP), Air
Cushion PressTM (ACP), one-sided air cushion press, and
electrical force-assisted NIL (EFAN) (Liang et al., 2005).
Clearly, for high yield – key to viable manufacturing – ACP
is the key.

3.3.1 Solid parallel-plate press (SPP)

One commonly used pressing method for imprint is SPP
(Figure 8). SPP, which is simple to construct, is often used
in home-built NIL tools as well as many commercial NIL
machines. However, SPP suffers several drawbacks: (i) Any
roughness, nonflatness, or dust on the surface of a press plate
(Figure 8b) and/or the backside surface of the wafer and the

Upper plate

Bottom plate

Mold
substrate

(a)

Shift

(b) (c)

(d) (e)

Figure 8. Schematics of solid parallel-plate press (SPP) nanoim-
print process and drawbacks: (a) ideal SPP; (b) nonparal-
lelism between plates; (c) imperfect plate surfaces; (d) uneven
mold/substrate backside; and (e) curved sample surfaces (Gao et al.,
2006).

mold (Figure 8c) will cause nonuniform pressure distribution
that results in imprint nonuniformity and local high pressure
points that will damage the mold and/or substrate. (ii) The
two press plates may not be perfectly parallel with each other
(Figure 8d), and hence assert shear and/or torque forces,
causing relative shift and/or rotation between the mold and
substrate. (iii) If either the mold and/or substrate has curved
surfaces, SPP could not bring all mold and substrate surfaces
into contact, leaving a large fraction of the wafer area
unimprinted (Figure 8e). (iv) In SPP, because a constant
force is applied between the two plates to provide the desired
pressure, if the mold and substrate surfaces are in contact
only at a point or in a small area, an enormous pressure can be
generated at this contact point or area, causing damages to the
mold or substrate. (v) The parallel plates of SPP have large
thermal mass, making isothermal NIL take long processing
time.

3.3.2 Air cushion press (ACP)

To improve pressure uniformity, yield, and thermal imprint
speed, and to overcome the aforementioned issues, a new
technique, air cushion press (ACP) (Figure 9) has been
developed (Chou, 2002; Gao et al., 2006). ACP utilizes a
gas (or fluid) to press the mold and substrate against each
other in a chamber. ACP has a number of advantages over
SPP: (i) ACP uses conformable gas (or fluid) layers to
eliminate any direct contacts between the solid plates and
samples (mold and/or substrate), hence removes any effects
related to the imperfection of the solid plates. (ii) Because
the pressurized gas is conformal to the mold and substrate,
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Figure 9. (a) and (b) Pressure distribution across a 100-mm-diameter imprint field when a 1.38 MPa nominal pressure is applied using SPP
and ACP, respectively. (c) Pressure versus color intensity calibration chart (Gao et al., 2006).
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Figure 10. (a) and (b) Schematics of experimental setups for studying the effects of backside dust/topology in SPP and ACP, respectively.
(c) and (d) Pressure distributions across a 100-mm-diameter imprint field with 0.1-mm-high paper piece inserted, when a 1.38 MPa nominal
pressure is applied using SPP and ACP, respectively. (e) Pressure versus color intensity calibration chart (Gao et al., 2006).

regardless of their backside shapes or any dust particles on
the backside, the pressure will be uniform everywhere over
the entire imprint area. (iii) Isotropically applied gas pressure
eliminates lateral shift or rotation between the mold and
substrate, reducing damage to the mold and prolonging mold
lifetime. (iv) Because a pressurized gas has much smaller
thermal mass than a solid plate, it speeds up the heating
and cooling of samples and shortens the thermal imprint
time by orders of magnitude (e.g., ACP can complete the
nanoimprint process in seconds rather than in tens of minutes
as in SPP).

The pressure distribution of SPP and ACP over an imprint
field of 100 mm diameter was investigated by placing a
pressure-sensitive film between a mold and a substrate,
both of which are 100-mm-diameter prime silicon wafers

of 0.5 mm thickness, with flat featureless front surfaces
and unpolished backsides (Gao et al., 2006). The pressure-
sensitive film consists of a layer of microencapsulated color-
forming material and a layer of color-developing material. A
pressure applied to the film will break the microcapsules.
As a result, the local density of broken microcapsules is
determined by the local pressure, and different broken micro-
capsule densities will, in turn, yield different color intensities
on the film. A higher pressure causes a higher density of bro-
ken microcapsules, and thus a stronger color. SPP is carried
out with a solid parallel-plate nanoimprinter, and ACP is
performed using a Nanonex NX-1000 nanoimprinter.

Figure 10 shows the imprint pressure distributions over
100 mm-diameter mold and wafer in both SPP and ACP,
measured by pressure-sensitive films when a nominal
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Figure 11. (a) and (b) Schematics of experimental setups for studying the effects of trapped dust in SPP and ACP, respectively. (c) and
(d) Pressure distributions across a 100-mm-diameter imprint field with 0.1-mm-high paper dust trapped, when a 1.38 MPa nominal pressure
is applied using SPP and ACP, respectively. (e) Pressure versus color intensity calibration chart (Gao et al., 2006).

pressure of 1.38 MPa (or 200 psi) is applied. In the imprint
by SPP (Figure 10a), the pressure is generated by apply-
ing a constant force of 1.13 × 104 N, which corresponds to a
nominal average pressure of 1.38 MPa (200 psi) over the 100-
mm-diameter mold and substrate. However, the pressure-
sensitive film measurement shows that the actual pressure
in SPP varies tremendously across the wafers, from below
0.5 MPa (areas of lightest color) to above 2.5 MPa (areas of
strongest color), showing a pressure variation over a factor
of 5 across the 100-mm-diameter nanoimprint field. Further-
more, Figure 10(a) shows that the lower half of the film has
a much higher average pressure than the upper half. This is
due to the nonparallelism between the two pressing plates.
The film also exhibits isolated local domains with strong col-
ors with light colors over their surroundings, caused by the
surface imperfections of pressing plates and wafers.

In contrast, in ACP, when the same nominal pressure of
1.38 MPa (200 psi) is supplied by a gas, the pressure-sensitive
film exhibits a uniform color across the entire nanoimprint
field (Figure 10b), indicating a uniform imprint pressure and
complete immunity to the problems suffered by SPP.

To further study the effects of dust or topology on the back-
side of the mold or substrate on imprint pressure uniformity,
we place a piece of ‘large artificial dust’, made of paper of
2.6 × 2.6 cm2 area and 0.1 mm thickness, on the backside of
the mold. We then apply a 1.38 MPa nominal pressure using
both SPP and ACP methods (Figure 11a and b). Clearly,
in SPP (Figure 11c) under the backside-dust conditions, all
the applied force is concentrated under the ‘large artificial

dust’, with a pressure reading well above 2.5 MPa (the upper
bound of the measurement range of the pressure-sensitive
film), while the area surrounding the dust area has almost
no imprint pressure (the pressure is below the 0.5 MPa
lower bound of the pressure-sensitive film). In contrast, in
ACP (Figure 11d) under the same condition, the ‘large arti-
ficial dust’ has no effects on the imprint pressure, which
remains uniform across the entire 100-mm-diameter imprint
field.

To study the effects of the dust trapped between the
mold and the substrate on pressure distribution in both
SPP and ACP, we place a ‘small artificial dust particle’,
which is a triangular shaped paper piece with an in-plane
dimension of 1 mm and height of 0.1 mm, between the mold
and the pressure-sensitive film. Again, the same nominal
pressure of 1.38 MPa is applied in the two different pressing
methods (Figure 12a and b). In Figure 12(c), in SPP under
this trapped-dust condition, the dust has a global effect
on the pressure distribution across the entire 100-mm-
diameter imprint field, causing distinct variations in pressure
and contact. More than 60% of the imprint field around
the dust site shows poor contact and a pressure below
0.5 MPa, while an extremely high pressure is applied on
the dust site. On the other hand, in ACP under the same
condition, the effects of dust on the pressure distribution are
localized to a small area (Figure 12d). The affected area is
limited to a circle 6 mm in radius, because of local wafer
deformation. The pressure distribution outside this circle
remains uniform.
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Figure 12. SEM image of uniform grating over an entire 4-in. wafer imprinted by ACP (Gao et al., 2006).

3.4 NIL resist dispensing methods and vacuum
environment

There are two major ways of dispensing a resist on a
substrate: a thin-film deposition by spinning (or spray) or
droplet dispensing. For thin-film deposition, during imprint
the mold needs to displace the resist from the protrusions of
the molds to the valley of the mold, and from areas of high
pattern density to areas of low pattern density.

For droplet dispensing, during an imprint a mold presses
the droplet into a thin film while filling up the trenches in
the mold. The flow of the resist liquid can remove some of
the air between the mold and the substrate. If the volume
of the remaining air is not too large, it can be completely
absorbed into the resist (Liang, Tan, Fu and Chou, 2006).
In this way, the imprint can be done without a vacuum
chamber without air bubbles formed in the resist. However,
as our study has indicated (Liang, Tan, Fu and Chou, 2006),
complete absorption of air bubbles takes such a long time
that for practical imprint conditions air bubbles exist and
the throughput will be also very low. Hence, a vacuum
environment is in general needed for both types of resist
dispensing methods.

3.5 Mold separation

To have a good separation of the mold from an imprinted
pattern, in addition to having good mold release agents,
which reduce the bonding of the mold and the resist, one
needs to reduce the stresses between the mold and the
resist. Furthermore, the demolding can be much easier (i.e.,

demolding force is much smaller) if the demolding starts
from a small area and propagates gradually into other areas.

4 CONTROL OF MAGNETIC
NANOSTRUCTURE PROPERTY BY
PATTERNING

In the demagnetized state, a thin-film or a bulk magnetic
material is magnetically divided into many small regions
called domains. Each magnetic domain, typically contain-
ing a number of polycrystalline grains, is spontaneously
magnetized, but with a random magnetization direction, so
that the material as whole has no net magnetization and
the total energy (which is the sum of magnetostatic energy,
exchange energy, crystalline anisotropy energy, magnetore-
striction energy, and Zeeman energy) is minimized (Cullity,
1972). Since there are many local energy minima, each of
them corresponding to a number of magnetic configurations,
the exact magnetic domain configuration in a thin film or
bulk material is rather unpredictable.

However, the situation is drastically different when a
magnetic material is patterned into a size smaller than or
comparable to a single-domain size (Cullity, 1972). In this
case, each PMN contains only one or a few magnetic
domains; the size, shape, and orientation of each domain
become well defined and predetermined by the pattern shape
and materials. The unique features of a PMN are attributed
to new interplay among different energy terms, in particular
between the magnetostatic energy and exchange energy, for
minimizing the total free energy.
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Figure 13. The atomic force microscopy (a) and magnetic force
microscopy (b) of three single-domain nickel bars that are 100 nm
wide, 1 µm long, and 35 nm thick. The grey dots represents
attractive force between tip and sample and the black dots repulsive
force.

4.1 Spontaneous formation of single domain

The first important property of a PMN is that a single domain
can be formed spontaneously without an applied magnetic
field, meaning the structure becomes a magnetic dipole on
its own as soon as it is fabricated. This is a consequence
of interplay between the magnetostatic energy and exchange
energy. When the width of a patterned magnetic structure
is less than the domain-wall size, the formation of multi-
ple domains within that width requires very high energy, as
it is required that the magnetization rotates to the opposite
direction over a shorter distance than in the normal case.
On the other hand, if all magnetic domains are aligned in
the same direction (i.e., ferromagnetism) forming a single
domain, there will be net magnetic poles, giving magne-
tostatic energy. The only way to reduce the magnetostatic
energy is to break the material into multiple domains to can-
cel out magnetic poles. But, as indicated earlier, because of
the small width of the patterned structure, formation of such
multiple domains requires much higher energy. Hence the
energy minimum is a single magnetic domain.

Single
domain

90° wall

Chaos

100 nm
1 µm 2 µm

Figure 14. MFM images of magnetic domains in cobalt squares
(35 nm thick) as their sizes are reduced from 2 µm to 100 nm. The
gray represents attractive force between tip and sample and the
black repulsive force. As the size reduces, the multidomain structure
becomes single domain as shown on the left (100 nm bar) that has
a south pole and a north pole.

Consider a patterned magnetic cube of a size of L. The
magnetostatic energy for a single-domain cube of a side
of L is proportional to its volume (L3), and the domain-
wall energy is proportional to area (L2). Hence, the total
energy of a multiple-domain cube (sum of the magnetostatic
and exchange energy) is approximately proportional to L2.5

(Cullity, 1972). Therefore, there is a critical size below which
the single-domain state has the lowest energy, but above
which the multiple-domain state has the lowest energy. This
critical size, determined by the magnetization and exchange
constant of a material, is about 100–300 nm in a thin film.

4.2 Control of domain configurations using shape

The magnetization direction in a single domain and in a
multidomain PMN can be controlled well by the shape of
the structure. In a single domain, the stable magnetization
is always along the long axis of the structure, to reduce the
demagnetization field and lower the total energy. Figure 13
shows both atomic force microscopy (AFM) and MFM
images of Ni bars which are 1 µm long, 100 nm wide, and
35 nm thick. The MFM image exhibits only two opposite
magnetic poles at the two ends of the bars – characteristic
of a single magnetic domain.

In a multidomain PMN, the magnetization at the edges
tends to be parallel to the edge to avoid free magnetic poles
for lowering the magnetostatic energy (the surface pole den-
sity is equal to the discontinuity of the magnetization normal
to the surface). Figure 14 shows MFM images of magnetic
domains in cobalt squares (35 nm thick) as their sizes are
reduced from 2 to 100 µm. At 2 µm, the domain configuration
is chaos. At 1 µm, it has four well-defined closure domains.
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Figure 15. Experimental switching field of isolated Ni and Co bars
versus bar width. The bar width was measured using SEM. The bars
are 1 µm long and 35 nm thick.

4.3 Effects of bar width on magnetic domain
switching field

Another key property of PMN is that the coercivity – the
magnetic field needed to switch the magnetization direc-
tion – can be controlled by changing the structure’s size and
shape anisotropy. This is again a consequence of the interplay
between the magnetostatic energy and the exchange energy.

To investigate this property in PMN, we fabricated nickel
and cobalt bars of 35 nm thickness and different width and
shape anisotropies using EBL, thermal evaporation, and lift-
off. Thermal evaporation, instead of sputtering, eliminates
crystalline anisotropy in the materials that could mask the
shape anisotropy effect. Vibrating sample magnetometer
measurements show that the unpatterned thin-film samples
fabricated with the bar samples have a coercivity of 50 Oe
for Co and 25 Oe for Ni, and have near-zero crystalline
anisotropy.

The switching fields of isolated Co and Ni bars with
a 1 µm length and 35 nm thickness as a function of the
bar width were measured by using an external field and
MFM and are shown in Figure 15 (Chou, Wei, Krauss
and Fischer, 1994; Kong and Chou, 1996). For Co bars,
the switching field increases monotonically with reduction
of the bar width, reaching 3000 Oe at 30 nm width. The
switching field is 60 times higher that of the unpatterned
thin film. For the Ni bars, the switching field first increases
with decreasing bar width, reaches a maximum switching
field of 740 Oe (30 times higher than that of the thin
film) at a bar width of 55 nm, then decreases slightly with
further reduction of the bar width. The decrease is likely
due to the fact that thermal energy becomes comparable
to magnetization switching energy (Cullity, 1972). The Ni
bar-width dependence is similar to that of Permalloy bars
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Figure 16. Experimental switching field of isolated Ni and Co bars
versus bar length. The bars are 100 nm wide and 35 nm thick.

studied elsewhere (Smyth et al., 1991). Furthermore, the
MFM shows that for 1-µm bar length and 35 nm thickness,
the critical width to form single domains is 300 nm for Co
and 150 nm for Ni, respectively.

4.4 Effects of bar length on magnetic domain
switching field

The effects of bar length on Co and Ni bars with a fixed bar
width and thickness (100 and 35 nm, respectively) were also
investigated. Unlike the bar-width dependence, the switching
field of the single-domain bars was found to first increase
with the bar length, then decrease after reaching a peak
(Figure 16). The peak switching field and the corresponding
bar length are 640 Oe and 1 µm for Ni, and 1250 Oe and
2 µm for Co, respectively. Furthermore, the switching field
of Ni bars decreases with the increase of the bar width much
faster than that in Co bars. The length dependence observed
here does not fit the Stoner–Wohlfarth model, which predicts
a coherent switching, meaning the switching field of a bar
should monotonically increase with the shape anisotropy
(therefore with the bar length) (Stoner and Wohlfarth, 1948).

The nonmonotonic length dependence suggests that dif-
ferent bar lengths have different switching mechanisms. For
short bars (<1 µm) in which the bar length is comparable
to domain-wall size, all spins would rotate more or less in
a same fashion, leading to a quasicoherent switching. For
long bars in which the bar length is significantly longer than
the domain wall, the exchange force is not strong enough to
keep all spins rotating in the same direction. In this case, the
domain reversal occurs at the ends of the bar where demag-
netization field is the strongest, and the reversal propagates
through the entire bar, leading to an incoherent switching.
As Co has a much stronger exchange force than that in Ni,
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Co bars should have a longer crossover length than that in
Ni, consistent with experimental results.

Although the switching speed of PMN has not yet been
measured, it is expected that coherent switching has time
scale of 1 ns and incoherent switching should be the bar
length divided by the domain propagation speed.

5 QUANTIZED MAGNETIC DISKS
(PATTERNED MEDIA) AND
NANOIMPRINT MANUFACTURING

QMDs (patterned media), based on fundamentally different
principles of data storage than current methods, have many
distinguished advantages to achieve high storage density
(Chou, Wei, Krauss and Fischer, 1994). This approach is
regarded as one of two recent candidates to replace the
current method (vertical media) of magnetic data storage (the
other one is thermal-assisted storage). QMDs are intended for
a data storage density of 300 Gbit in.−2 or higher. However,
the issue of manufacturability has been raised since the
conception of QMD. In fact, the drive to manufacture QMD
was one of the reasons to develop NIL (Chou, Krauss and
Renstrom, 1995; Chou, Krauss and Kong, 1996). Today, it
has been widely accepted that NIL is the best technology for
the manufacture of QMD. Here we discuss the advantages
of QMD and NIL manufacturing.

The ultimate storage density of a magnetic disk is related
to the magnetic recording media, write head, read head,
positioning and servo, and signal processing. Although they
are intricately related, the most important of all is the
recording media, which dictates the requirements of all
others. A good media will relax the requirements. The
following discussion focuses on a new medium.

5.1 Factors limiting storage density in
conventional magnetic media

The present magnetic media is a continuous, thin, magnetic
film supported by a rigid, nonmagnetic disk. The film consists
of many tiny, polycrystalline grains with a rather broad
distribution in size and shape and a random distribution
of crystallization direction. The magnetization orientation of
these grains is also random until a magnetic field created by
a write head aligns the magnetization of a tiny patch of these
grains. The data is represented by the magnetic moment, area,
size, and location of this patch.

Four factors limit the storage density capacity in a thin-film
media. The first is the ‘superparamagnetic limit’. Because of
the statistical nature in the size and easy-magnetization axis

S N SN

Transition region

Figure 17. Schematic of transition region between two bits for the
conventional magnetic recording media.

of polycrystalline grains in a magnetic media, the intrinsic
signal-to-noise ratio (SNR) of a magnetic signal roughly
equals the number of grains in each bit. To reduce bit size
while keeping the same SNR requires a reduction of the grain
size. But, when each grain becomes too small and weakly
coupled to its neighboring grains by the exchange force, the
energy to switch the magnetization of a grain can become less
than the thermal energy. Should that happen, thermal energy
will wipe out the written data. For an isolated sphere, the
superparamagnetic limit will be reached when the diameter
is below 9 nm. To maintain an acceptable SNR, namely
1000 grains, the superparamagnetic limit for longitudinal
recording gives a maximum data density of ∼150 Gbit in.−2,
insufficient to meet our needs.

The second limiting factor is the transition width between
two neighboring bits of opposite magnetization. The nature
of ferromagnetism, that is, the positive exchange integral,
(which occurs only in a few elements such as Co, Ni, and
Fe) favors the case of all magnetization aligned in the same
direction. When one bit is placed next to another bit with an
opposite magnetization, a transition region, called a domain
wall, must be formed to keep exchange energy reasonable.
Certainly the spacing between two bits cannot be smaller
than the domain-wall size. Furthermore, to lower the total
energy, the interplay between the magnetostatic force and
the exchange force makes the transition region between two
bits have a random zig-zag shape (so-called Neel spikes), as
shown in Figure 17. The zig-zag pattern not only increases
the effective width of a transition region, but also creates
noise in the reading signal (since the reading head, having
a straight-line shape, averages the positive and negative
magnetic charges in the zig-zags). The effective transition
region for today’s conventional medium is 10–30 nm.

The third factor is the ‘side tracks’. The magnetic field
distribution of a write head is not perfectly uniform and
the magnetic media has quasilinear response to the magnetic
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Figure 18. Schematic of a quantum magnetic disk which consists of patterned, single-domain, magnetic structures uniformly embedded in
a nonmagnetic disk.

field; the fringing field at the sides of a tip pole in a write
head writes two parallel tracks of useless noise next to the
data (called sidetracks). The hysteresis loop of a conventional
magnetic media has a finite slope. Since the sidetracks could
erase previously written data, extra space between two data
tracks must be reserved for the sidetracks, limiting data
packing density.

The fourth factor is the ‘tracking’. Conventional magnetic
media does not automatically provide a tracking signal since
a physical boundary does not always exist between two
neighboring bits (it exists only between two bits of opposite
magnetization). Hence, writing or reading a bit is a ‘blind’
process. The head first locates special codes (tacking marks)
written at the beginning part of each data section, then
calculates the movement between the head and disk to get
the nominal bit location. Therefore, the accuracy of the disk
rotation and servo will impose another limit on data density.
Furthermore, much real estate area and time are wasted in
writing the tracking marks, which currently use about 20%
of the total disk area and are expected to be more for higher
data density where tracking is more crucial.

5.2 Concept of quantized magnetic disks

All of the limitations listed in the last section can be
removed or alleviated if the continuous, thin-film media is
abandoned and replaced by a new media, QMDs. QMDs have
prefabricated, discrete, single-domain magnetic elements
uniformly embedded in a nonmagnetic disk (Figure 18)
(Chou, Wei, Krauss and Fischer, 1994). Each single-domain

element has a uniform, well-defined shape, a prespecified
location, and most importantly, a discrete magnetization
that is magnetized without an applied magnetic field and
has only two possible stable states: equal in magnitude
but opposite in direction. The spontaneous formation of
a single domain is due to the small size and the shape
anisotropy (as discussed in Section 4.2). Each magnetization
direction of a single-domain element represents a single bit
of binary information. A QMD of a vertical magnetization
uses pillars and a longitudinal magnetization uses bars. The
magnetic field needed to switch the magnetization direction
can be controlled by engineering the element’s size and shape
anisotropy (discussed in Section 4) (Chou, Wei, Krauss and
Fischer, 1994).

QMDs have many advantages over conventional disks,
such as spontaneous self-quantization of each bit’s magneti-
zation and a quantized writing process to reduce requirements
of write head and position accuracy; small, smooth, iso-
lated transition region allowing high data packing density and
near-zero transition noise; built-in tracking, which makes for
precision tracking and positioning of write/read heads and
overcomes the superparamagnetic limit.

The idea of storing one bit of information in a tiny
single-domain magnetic particle could have been conceived
when single-domain structure was observed (Kittel, Galt and
Campbell, 1950) or when single-domain particles were used
in making recording tapes. The theory of coherent switch-
ing of a single-domain particle has been discussed in the
celebrated paper by Stoner and Wohlfarth (note that switch-
ing the patterned single-domain element is usually incoher-
ent). Many other behaviors of single-domain structures were
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Figure 19. Schematic illustrating that the quantized switching process of a single-domain structure is like moving a ball over a hill. (a)
The ball, once over a hill, will roll to another state by itself; and (b) once the drive force is removed, the ball, before reaching the top of
the hill, will roll back to the original state.

theoretically investigated by Aharoni (1986, 1990, 1991).
However, a number of unique properties of single-domain
elements as a storage element in QMDs were not explored
until 1992 when two advanced technologies became avail-
able. One is the nanofabrication technology that enables us
to precisely engineer the shape, size, location, orientation,
and composition of a single-domain magnetic particle (Chou,
Wei and Fischer, 1994; Chou, Wei, Krauss and Fischer, 1994;
Fischer, Wei and Chou, 1993). The other is magnetic force
microscopy that allows us to image and manipulate the mag-
netic properties of each individual single-domain particle.
Recently, the advent of imprint lithography has brightened
the commercial potential of QMDs.

5.2.1 Overcome superparamagnetic limits

In a conventional disk, one bit is represented by approx-
imately 1000 weakly coupled polycrystalline grains. In a
QMD, each bit is stored in one discrete element that is
isolated from other elements, but inside the element poly-
crystalline grains are strongly coupled by the exchange force
behaving more like a large single magnetic grain. Therefore,
the volume and switching energy for the QMD elements are
much greater than that of a single grain in a conventional
disk, allowing significant reduction of bit size without reach-
ing the superparamagnetic limit. Finally, for a given material
volume, a larger shape anisotropy in the QMD elements can
lead to a larger switching field, allowing further increase in
data density (Cullity, 1972).

5.2.2 Discrete magnetization and quantized writing
process

Since each bit in a QMD spontaneously magnetizes itself
without an applied field and has only two opposite stable

magnetization states, the write process in a QMD is quantized
with three unique features. First, in contrast to conventional
disks where the magnetic moments, area, and location of
each bit must be precisely defined by a write head, in QMDs
these are already defined when the disk is fabricated. Thus,
the writing process in a QMD is a simple flip of the magnetic
direction of a discrete singledomain bit. A write head either
writes the entire bit perfectly or it does not write the bit
at all. Second, each bit in a QMD can be written perfectly
with a write field smaller than the size of the bit (Suriono
and Chou, 1996a,b). Third, a minor overlap of the writing
field with a nearby bit perturbs the magnetic moment of the
bit. Once the overlapping writing field is removed, the bit
returns to its original magnetic state. Clearly, the quantized
writing in a QMD greatly relaxes the requirements on write
head design and position accuracy, and significantly avoids
the writing errors and sidetracks (all of these advantages lead
to a higher data storage density).

The quantized writing process in a QMD is analogous to
moving a ball between two valleys separated by a mountain
(each valley represents one of the two energy minima)
(Figure 19). Once the ball is pushed from one valley over
the top of the mountain, it will roll down to the other valley
on its own (perfect writing). But, if the ball is released before
being pushed over the top, it will go back its original valley
(no writing).

The quantized writing property of QMDs has been demon-
strated experimentally using a magnetic force microscope tip
(MFM) (Chou, 1997; Kong, Shi, Krauss and Chou, 1997;
Kong, Zhuang and Chou, 1997; Kong et al., 1998) and theo-
retically using micromagnetic simulation (Suriono and Chou,
1996a,b). The magnetic field of an MFM tip splits, at the tip
point, into two halves: one pointing in one direction and
another in opposite direction. As the tip moves from one end
of a single-domain bar to the other end, the overlap between
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Figure 20. Schematic of the QMD writing process using an
MFM tip.

the bar and the field in one moving direction decreases and
the overlap between the bar and in the opposite direction
increases (Figure 20). If the bar can be switched with a
magnetic field of a size smaller than that of the bar, then
the magnetization direction of the single-domain bar will be
changed before the MFM tip reaches the other end of the
bar. In this case, the magnetic images of the bar will display
two poles with identical magnetizations. This is because for a
single-domain bar, no magnetic charge can be seen anywhere
except at the two ends of the bar. At the end where scanning
starts, the MFM sees one pole before the bar is switched and
at the finishing end, the MFM sees another pole after being
switched. Since the magnetization switches much faster than
the MFM scanning speed, the MFM image cannot tell the
occurrence of the switch until the tip reaches the other end.
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Figure 21. (a) MFM image in which the poles at the two ends of
the bar have identical polarization, confirming that the magnetiza-
tion of the single-domain bar is switched by the MFM tip having
a field of a size smaller than that of the bar. (b) MFM image in
which the switching occurs when an MFM tip is near the end of
the scan, the MFM image has a perfect north pole at the starting
end of the bar, but, at the finishing end, only half of a south pole
(before the switching) and half of a north pole (after the switching).
(Reproduced from Chou et al., 1997, with permission from IEEE.
 1997.)

The magnetic MFM image of a single-domain bar in
Figure 21(a) shows that the poles at the two ends of the
bar indeed have the identical polarization, confirming that
the magnetization of the single-domain bar is switched by
the MFM tip with a field size smaller than that of the bar.

When using a weaker switching field, a larger over-
lap between the switching field and the bar is required.
Figure 21(b) shows that switching occurs when an MFM tip
is near the end of a scan, therefore the MFM image has a
perfect north pole at the starting end of the bar, but, at the
finishing end it has only half of a south pole (before the
switching) and half of a north pole (after the switching). The
weaker switching field can be achieved by either reducing
the amount of magnetic material on an MFM tip during the
tip fabrication or increasing the space between the MFM tip
and the bar.

Writing of a 20 Gbit in.−2 longitudinal QMD using a MFM
tip is shown in Figure 22(a) and (b) (Kong, Zhuang and
Chou, 1997). Clearly, the writing process is quantized and
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Figure 22. Writing of a 20-Gbit in.−2 longitudinal QMD using a
MFM tip. The light gray represents attractive force between the
tip and the sample and the dark gray repulsive force (Kong et al.,
1998).

perfect. The write experiments were done using two MFM
tips: the writing tip with a large magnetic moment and the
reading tip with very small magnetic moment (so that it
would not flip the magnetization of the bar). Before writing,
the magnetization of all the bars was aligned in the same
direction. During the writing process, the writing tip was
lifted up and then was moved to one end of a bar. The end
of the bar initially had a magnetic pole opposite to that of the
MFM writing tip. The actual writing process was simply to
lower the writing tip, making the tip closer to the bar. It was
found that when the separation between the tip and bar was
less than 5 nm, the writing tip could perfectly flip the magne-
tization direction of the bar without flipping the neighboring
bars, at a data density of 20 Gbit in.−2 for longitudinal QMDs
(equivalent to 80 Gbit in.−2 for vertical QMDs). After writ-
ing one bar, the MFM writing tip was raised up and moved
to write other bars. This process was continued until all the
desired bars were written. After writing, the reading tip was
used to nondestructively image the written pattern.

It should be pointed out that the MFM tip does not have
a well-defined field distribution, and that the MFM does
not have any feedback to track the exact tip movement
leading to a poor positioning accuracy of MFM (about 1%
of the scanning window size). Also, the switching field of

35 nm

121606 X300 K3.0 K 100 nm

Figure 23. SEM image of Ni pillar array of 35 nm diameter,
120 nm height, and 100 nm spacing. The density is 65 Gbit in.−2

and the aspect ratio is 3.4 (Chou, Wei, Krauss and Fischer, 1994).

each bar is not exactly the same due to the fabrication
imperfection and magnetostatic interaction between the bars.
However, even under these circumstances, the 7.5 Gbit in.−2

longitudinal QMD can be written perfectly. This clearly
demonstrates the advantage of quantized writing process of
QMD in ultrahigh density recording. In other words, this
property of the QMDs relaxes the requirement of the writing
field and can increase tolerance toward the errors due to head
positioning and fringing field.

5.2.3 Cut-off interbit exchange force, small and
smooth transition, less noise

Since the exchange force has an effective range less than
10 nm, a thin layer of nonmagnetic material between two
neighboring bits in a QMD can completely cut off the
exchange force between the bits, leading to a ‘transition
region’ that is much smaller than the transition region in
a thin-film magnetic media where each grain is more or less
coupled by exchange force. Furthermore, the nonmagnetic
materials, patterned by a nanofabrication technique, can have
very smooth and straight edges (Figure 23), giving a much
quieter reading signal than that in a thin-film media where
the transition regions have a zig-zag shape.

5.2.4 Built-in tracking marks, precise tracking

In a QMD, since each discrete bit is a single domain isolated
by nonmagnetic materials and is spontaneously magnetized,
a variation in the magnetic field always exists between
neighboring bits regardless of the polarization of each bit
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Figure 24. (a) SEM image, (b) tapping mode atomic force microscopy image (TMAFM) image, and (c) MFM image of 3 × 3 bits of
a QMD with 65-Gbit in.−2 density. The grey patches represents attractive force between tip and sample and the black patches repulsive
force in (c). Each bit consists of a nickel pillar uniformly embedded in 200-nm SiO2 with 50 nm diameter (aspect ratio of 4) and 100 nm
period. The TMAFM image shows a very smooth surface with a roughness of 0.5-nm rms. The MFM image shows an alternating pattern
of magnetization directions for each bit (Chou, Wei, Krauss and Fischer, 1994).

(Figure 24). This provides a signal for tracking each bit.
In other words, in a QMD drive, discrete single-domain
elements automatically provide a ‘landmark’; each bit can
be physically ‘seen’ prior to writing or reading, allowing
much more precise tracking than the ‘blind tracking’ in a
conventional disk and therefore higher data density.

5.3 Nanoimprint manufacturing of quantized
magnetic disks (bit-patterned media)

A variety of structures for the implementation of QMDs
have been proposed (Chou, 1997; Chou, Shi and Kong,
1997). These structures can be classified as flat surface and
grooved surface. The grooved surface QMDs have grooves
for the isolation of different bits unfilled on the surface.
But the grooved surface QMDs have a dimension much

smaller than a flying head and hence will not affect the
flying. In either structure, nanoimprint will be most likely
used to pattern a dielectric material and the magnetic layers
will be subsequently deposited into the patterned dielectrics,
since etching of metal nanostructures is well known to be
very difficult. After the magnetic material deposition, for flat
surface QMDs, a polishing method will be used to planarize
the surface, while for grooved surface QMDs, no polishing
is needed, since the groove is sufficient to break a film
into discrete single magnetic domains (Chou, Shi and Kong,
1997; Chou, 1998a; Chou, 1999).

In patterning a dielectric structure for QMDs, there are
again two choices: indirect or direct patterning. In indirect
patterning, first nanoimprint is used to pattern a resist layer
and then the resist layer is transferred into a dielectric
material underneath. For direct patterning, a nanoimprint
technique can directly pattern a curable dielectric material.
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Figure 25. Schematic of the QMD fabrication process. (Reproduced from Wu et al., 1998, with permission from the American Institute of
Physics.  1998.)

011355 4.0 K X15.0 K 2.00 µm

Figure 26. SEM picture of a 190-nm-period square via array on
PMMA fabricated by single NIL using a pillar daughter mold.
(Reproduced from Wu et al., 1998, with permission from the
American Institute of Physics.  1998.)

As an example, Figure 25 shows a QMD fabrication
process (Wu et al., 1998). First, a thin metal plating base was
deposited on a silicon wafer, then a SiO2 film, followed by a
200-nm-thick NIL resist film (e.g., polymethylmethacrylate,
PMMA). The SiO2 layer is the nonmagnetic layer; its
thickness determines the final height of the nickel pillars.
The PMMA serves as the NIL resist. Second, pillar NIL
mold was used to pattern a via array in the PMMA film using

NIL. Then O2 RIE was used in the NIL for pattern transfer,
which anisotropically etched the via array into the entire
PMMA thickness. Third, a 20-nm Cr layer was evaporated
at a glancing angle on the top of the PMMA to provide
an additional mask for etching the SiO2. Fourth, CHF3 RIE
etched the via array into the SiO2 and stopped at the plating
base. The etching had a pressure of 2 mTorr, a power of
150 W, and a CHF3 gas flow of 15 sccm. During the final
several seconds of the etching, O2 was added into the plasma
to remove the passivating layer produced in the etching
process on the bottom and sidewall of the SiO2 vias, which
can affect the uniformity of the subsequent electroplating.
Fifth, nickel was electroplated through the holes. Finally,
chemical–mechanical polishing (CMP) was used to remove
the excess nickel from the top of the SiO2 layer to achieve
a smooth surface.

Figure 26 shows a 190-nm-period hole array patterned in
PMMA using NIL by a daughter QMD mold. Figure 27(a),
the electroplating is uniform. To examine the sidewall of the
nickel pillars, SiO2 was removed (Figure 27b). The nickel
sidewall seems to conform to the SiO2 template and no
voids were found. For a uniform area of 4 × 4 cm2 and
a density of 18 Gbit in.−2, the total number of bits of a
QMD is 45 Gbit. To make a smooth top surface, extra nickel
above the SiO2 surface was polished away using CMP. After
CMP, the QMD’s nonflat top surface became nearly flat.
An AFM image indicates that the roughness is about 4 nm
(Figure 28b). The roughness can be reduced by using an
improved CMP process.

Longitudinal QMDs with densities up to 30 Gbit in.−2

using NIL. The fabrication involves NIL in a 140-nm-thick
PMMA layer on a silicon substrate and a lift-off of 1.5-nm
Cr and 32-nm Co films evaporated thermally. As shown in
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Figure 27. SEM pictures of an 18 Gbit in.−2 large area perpendicular QMD fabricated using NIL. Each bit is an electroplated pillar. (a)
Top view. (b) The SiO2 was stripped off in order for the Ni pillars to be seen more clearly.
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Figure 28. (a) SEM picture of an 18 Gbit in.−2 large area perpendicular QMD fabricated using NIL. Each bit is an electroplated pillar.
The SiO2 was stripped off in order for the Ni pillars to be seen more clearly. (b) AFM image of the 18 Gbit in.−2 large area perpendicular
QMD. The image shows a surface roughness of 4 nm. (Reproduced from Wu et al., 1998, with permission from the American Institute of
Physics.  1998.)
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Figure 29. SEM picture of a 30 Gbit in.−2 large area longitudinal
QMD fabricated using NIL.

Figure 29, each bit is a bar 25 nm wide, 140 nm long, and
75 nm apart. MFM observations indicated that all the Co bars
in the QMDs were single domains. Each bar clearly shows
two opposite magnetic poles: one dark pole representing the
attractive tip–bar interaction and one bright pole representing
the repulsive interaction (Figures 13 and 22).

Clearly, the QMDs’ density in the examples provided
earlier are limited by our mold-making ability. In fact, the
use of NIL to make 400G dots/in.2 of metal dots (Figure 3c)
has been in demonstrated in 1996.

5.4 Future development of QMDs

From the discussions in the preceding text, it becomes clear
that the future of QMD hinges upon our ability to make
the NIL molds that not only have sub-40-nm pitch dots
over a large area (at least 0.5 in. in diameter) but are also
in concentric form. The rest of the NIL process has been
clearly demonstrated. A promising approach to fabricate the
NIL molds of QMDs is a guided self-assembly.

6 SUMMARY

We believe that nanoimprint technology is an enabling plat-
form manufacturing technology that will impact a broad
spectrum of fields. Patterned magnetic structures offer
great opportunities for revolutionary magnetic materials and
devices in data storage, sensors, and actuators. Nanoimprint
technology is essential to the manufacturing and thus com-
mercialization of QMD (patterned media) and other pattern

magnetic structures. To accelerate the process of reaching
such potential, we need to solve one of the key technological
challenges in nanoimprint manufacturing of pattern media,
namely, the making of the nanoimprint molds. We believe the
solution comes from the combination of several innovative
nanopatterning technologies. The next 5 years will be a very
exciting period in both nanoimprint technology and PMNs.
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1 INTRODUCTION

Even though metals, semiconductors, and complex oxides
are very different materials, molecular-beam epitaxy (MBE)
has been adapted to grow films of them all (Cho and
Arthur, 1975; Ploog, 1982; Eckstein and Bozovic, 1995).2

The hallmark of MBE is the very accurate control of the
synthesis process, and in practice this means control at the
atomic layer level. Also, as the word ‘epitaxy’ implies,

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

the growth of one layer should be in registration somehow
with the layer below. Often growth occurs under ultrahigh
vacuum (UHV) conditions, although sometimes carrier gases
or a large overpressure of a volatile component is used.
Sometimes, atomic beams are used, while in other cases,
molecular beams are employed and only a part of the incident
flux is destined to be incorporated in the growing layer. In
many cases, accurate atomistic assembly is used for putting
together devices, which depend critically on thicknesses of
layers. In other cases, new aggregate phenomena can be
found in samples containing interfaces that mediate charge,
spin, strain, and other important factors that control electronic
and magnetic properties.

The kinds of materials grown by MBE also span a
wide range of structural and molecular complexity. Single
component metallic films are structurally the simplest, since
the total dose of atoms per unit area just determines
the thickness of the layer grown, although faceting and
roughening are interesting complications that often control
the properties exhibited by such layers. The growth of soluble
alloys is similar to the growth of single component films,
but the details of how this works depend on the properties
of the components, such as their vapor pressure, as well
as the chemical factors that lead to the equilibrium phase
diagram. MBE growth, however, is carried out far from
thermal equilibrium. The most complex materials grown by
MBE are those containing many atomic constituents and
distinct atomic sites within the unit cell. Complex oxides
are the most studied of such complex materials grown by
MBE, and each unit cell may contain more than four different
metal atom constituents located in distinct sites along with
corresponding oxygen ions. Even with this diversity of
materials, there are common features of the use of MBE to



2 Growth techniques

grow magnetic materials of these types. This chapter covers
these materials classes, summarizing the development of the
growth processes and the results obtained.

2 MAGNETIC FILMS

Growth of films of magnetic metals using MBE began in the
early 1980s. Load locked chambers with UHV base pres-
sures, equipped with substrate heaters and in situ diagnostics
such as reflection high energy electron diffraction (RHEED)
were employed to grow transition-metal and rare-earth mag-
netic films. A number of different substrates and buffer layers
were used in this work. The magnetic metals studied include
rare-earth magnets, transition-metal magnets, and multilayer
and device structures involving them. In this section, we
describe representative results showing the most important
advances in creating and understanding novel magnetism in
artificial metallic structures. We begin with a description of
MBE of rare-earth superlattices, and then discuss superlat-
tices involving 3d transition metals that give rise to giant
magnetoresistivity (GMR). Then we discuss the use of fer-
romagnetic materials as injectors of spin-polarized charge
into semiconducting devices. This includes a variety of mag-
netic materials that are compatible with semiconductor film
growth. We finish with a discussion of magnetic oxides,
including the famous colossal magnetoresistive manganites.
These materials have very large values of spin polarization,
and magnetic tunnel junctions made with them have given
the largest values of tunneling magnetoresistance observed
so far.

3 MOLECULAR-BEAM EPITAXY OF
METALLIC MAGNETIC FILMS

Because metal surfaces are reactive, MBE of metal films is
done in UHV systems to avoid contamination. A schematic
diagram of such a system is shown in Figure 1. Typical val-
ues of base pressure reported for the growth of metal films are
less than 5e–10 Torr, with many groups reporting measured
base pressures less than 1e–10 Torr. This requires a chamber
having metal sealed valves and flanges that can be baked
(typically to >150 ◦C), a carefully designed load locked sys-
tem with external substrate outgassing and adequate pumping
to maintain the vacuum, including cryopanels for use during
growth. Such systems are usually equipped with ion pumps,
cryopumps, and titanium sublimation pumps, and the pump-
ing speed seen by the chamber is in the range of 1000 l s−1.

The sources used in metal film MBE are either thermal
effusion cells, capable of operating at temperatures as high

as 1800 ◦C (depending on the details of the cell), or electron
beam evaporators that are used for elements that have to
operate at higher temperatures. For magnetic films, elements
such as manganese, copper, and most of the rare-earth atoms
can be evaporated from conventional sources. Elements such
as chromium, iron, cobalt, nickel, yttrium, and lanthanum
require a higher temperature and often are evaporated from
special ‘high-temperature’ cells. More refractory elements,
such as the 4d and 5d transition-metal elements require evap-
oration from electron beam evaporators. Careful outgassing
of sources prior to and during the baking of a system is
important to obtaining the best vacuum possible.

Samples on which films are grown are held on a manipula-
tor that incorporates the possibility of heating or cooling the
sample and may also incorporate substrate rotation, which
is used to obtain more uniform growth. Surface diagnostic
tools are also usually incorporated for the measurement of
structural, chemical, and even magnetic properties. The most
common of these techniques is RHEED (Braun, 1999). It is
well suited for MBE because it is surface sensitive and does
not block the atomic or molecular beams used for growth. A
RHEED system consists of a monoenergetic, focused elec-
tron beam with energy typically between 5 and 50 keV that is
directed at a glancing angle toward the substrate; the electron
beam diffracts from the growing surface and the diffraction
pattern is characteristic of the surface lattice. On the opposite
side of the chamber a phosphor screen displays the diffrac-
tion pattern, and this is often recorded in real time as growth
occurs. The crystalline state of the surface can be moni-
tored in this way. It provides a quantitative measure of sur-
face flatness, the density, and structure of three-dimensional
nanograins that sometimes emerge at heterointerfaces, and
the gradual relaxation of lattice strain. Some systems incor-
porate tools for in situ chemical analysis, such as X-ray
photoelectron spectroscopy (XPS) or Auger electron spec-
troscopy. Also, Magnetic properties of surface layers can be
monitored if secondary electron microscopy with polarization
analysis (SEMPA) is used (Scheinfein et al., 1990).

For metal films, the choice of substrate can be a complicat-
ing factor. In semiconductor MBE, the substrate is usually the
same material or very similar to the film. In metal epitaxy,
this is usually not the case. It is necessary to find a sub-
strate, that is, chemically and structurally compatible with
the metal film being grown. Sometimes the substrate must
be an insulator, and in other cases metallic films are grown
on semiconductor films that already incorporate an epitax-
ial device layer structure that, together with the metal film,
forms the basis for an electronic or spintronic device. For
devices, the most commonly used substrates for metal epi-
taxy have been the insulators, sapphire and magnesium oxide,
as well as the semiconductors, silicon and gallium arsenide.
Significant issues of chemical compatibility arise when some
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Figure 1. Schematic diagram of a typical MBE system for the growth of metallic films.

metal films are grown on sapphire. In particular, rare-earth
atoms react with sapphire, removing oxygen and introducing
a layer of partially oxidized rare-earth hexa-aluminate. This
can be avoided by using a ‘buffer layer’ which is relatively
stable in contact with both the sapphire as well as rare-earth
atoms. Kwo and coworkers (1985b) reported that niobium
provides such a buffer. It does not chemically react very
rapidly with sapphire at temperatures below about 1300 ◦C.
It grows on

(
1120

)
sapphire with the in-plane orientation

shown in Figure 2. The niobium film is oriented in the
(110) direction. Niobium films grown by MBE at moderate
temperatures (800–900 ◦C) are very flat. By annealing in
UHV at somewhat higher temperatures (1300 ◦C) even
smoother surfaces are obtained at the expense of reducing the
sapphire at the interface. Figure 3(a) shows a niobium surface
grown at 850 ◦C. The surface is covered with unit-cell-high
terraces, but the direction of the terraces is not uniform.
By annealing the film at 1300 ◦C for 20 min this changes.
Figure 3(b) shows the surface that results, exhibiting fewer
and more uniformly spaced terraces. Such surfaces provide
a good substrate for the growth of rare-earth films.

The question of what growth conditions lead to the
best metallic films and superlattices was addressed by
Flynn (1988). He recognized that in many metal systems
experience showed that the best growth happened over
a rather narrow range of temperature. He observed that
the activation energies for bulk diffusion and for surface
diffusion are often proportional to the melting temperature
for many elements. For a wide range of metals, the activation
energy of bulk diffusion is found to be about 16 kTM, while
the activation energy of surface diffusion is found to be
3.5 kTM, where TM is the melting temperature and k is
Boltzmann’s constant. In order to quench bulk diffusion

12.9916

8.2432

[1100]

[0001]

3.3066

[001]

[110]

Nb (110)
Al2O3 (1120)

A-plane sapphire

(a) (b)

Figure 2. The orientation of Nb grown on a-plane sapphire is
illustrated. (a) The position of the aluminum sites on an a-plane
surface is shown. The solid circles are occupied and the open circles
are vacant. The orientation of Nb atoms in a 110 plane is shown
in (b), with a surface net unit cell shown outlined in the rectangle.
This rectangle orients on the sapphire surface as shown in (a).

at an interface, over the time a film is grown but enable
surface diffusion to adequately transport adatoms to adjacent
step edges, only a limited range of temperatures may satisfy
these criteria. Since a typical terrace size is about 100 unit
cells wide, the required rate of surface diffusion, active only
during the time an atom is on the surface and not yet buried,
can be determined. By comparing these two rates, Flynn
found that growth temperature should be about 3/8 times the
melting temperature. In particular, this means that it should
be very difficult to make structures, like superlattices, with
components having very different melting temperatures. This
model works well for elemental metals, but not so well for
complex compounds, such as oxides. The reasons for this are
numerous. For one, the phase diagrams of multicomponent
systems can change with temperature. In addition, the
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Figure 3. Surface morphology of Nb films grown by MBE. (a) An
atomic force micrograph of a Nb film grown at 850 ◦C and removed
from the growth chamber. (b) A micrograph of a similar film grown
at the same temperature, but then annealed at 1300 ◦C.

mobility of different atoms, ions or submolecular species
that diffuse on a surface during the growth of a complex
material can be very different, and no simple relationship
exists between the melting point of a compound and the
activation energy for diffusion rates of all surface species
present during growth. On the other hand, the underlying
idea that a competition between bulk and surface diffusion
governs the range of temperature that is optimum is still the
case, even though the complexity of both bulk and surface
diffusion makes it more difficult to extract a single optimum
growth temperature for more complex materials.

4 MOLECULAR-BEAM EPITAXY OF
RARE-EARTH MAGNETIC
MULTILAYERS

Rare-earth metals exhibit phase diagrams with interesting
magnetic structures in bulk samples. They crystallize into
close-packed phases, either hcp or fcc (excepting samarium),

and the conduction band in most of them is due to delocal-
ization of two 6s and one 5d electrons. The 4f electrons
are localized on the resulting 3+ ions, and both their spin
and their orbital angular momenta contribute to the ionic
magnetic moment since the 4f orbital motion is not strongly
coupled to the crystal field as the d electrons are in tran-
sition metals. The number of 4f electrons increases from
zero in lanthanum (and yttrium and scandium which are
electronically similar to lanthanum) to the filled 4f shell
containing 14 electrons in lutetium. The 4f electrons inter-
act with the delocalized s−d bands and this leads to an
indirect coupling of the 4f angular momenta via indirect
exchange. This coupling, also known as RKKY for Rud-
erman, Kittel, Kasuya, and Yoshida, is strongly dependent
on Fermi surface properties, such as the Fermi wave vec-
tor in different directions (Kittel, 1987). It is weaker than
direct exchange, which leads to magnetism in transition met-
als such as iron, and because it is weaker, the magnetic
ordering temperatures of the rare-earth elements that do
order tend to be lower. The elements gadolinium through
thulium, all of which are hcp, have a low-temperature fer-
romagnetic phase. For terbium through thulium there is a
higher-temperature antiferromagnetic phase that consists of
close-packed planes with in-plane ferromagnetic alignment,
and a temperature-dependent twist angle that rotates the
direction of magnetic moment orientation in a spiral fash-
ion around the c axis as one moves in the c-axis (0001)
direction. Gadolinium has the highest Curie temperature,
289 K, and does not exhibit a higher-temperature spiral
antiferromagnetic order, while dysprosium has a Neel tem-
perature of 179 K below which the spiral order appears,
and a Curie temperature of 89 K at which temperature a
first-order transition to ferromagnetic order occurs. Two
excellent reviews of the properties and discoveries found
in rare-earth magnetic superlattices have been written by
Majkrzak and collaborators (1991) and by Rhyne and Erwin
(1995).

An early demonstration of the ability of MBE to make
magnetic metallic films with new properties emerging
because of layer-by-layer control of the composition was
the work done studying superlattices containing layers of
magnetic rare-earth atoms separated by nonmagnetic yttrium
atoms. The atomic size of yttrium is close to that of gadolin-
ium and dysprosium, and superlattices containing these atoms
can be assembled with only moderate strain and with atomic
plane accuracy. The superlattice results summarized subse-
quently were made possible by the discovery that sapphire
could be used as a substrate, as long as an intervening layer of
niobium was grown to chemically isolate the rare-earth atoms
from the substrate Al2O3 (Kwo et al., 1985b). Previously,
Greene and coworkers found that rare-earth atoms underwent
a chemical reaction with sapphire at temperatures required
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for epitaxial growth (Greene et al., 1985). At around the
same time, Durbin and coworkers showed that smooth (110)-
oriented niobium films and niobium–tantalum superlattices
could be grown epitaxially on a-plane sapphire substrates
(Durbin et al., 1981). Since niobium does not react signifi-
cantly with either Al2O3 or rare-earth atoms at the temper-
ature ranges used for epitaxial growth, it provides chemical
isolation between the rare-earth superlattice and the sapphire
substrate. The niobium 110 surface can be viewed as hav-
ing a distorted triangular structure on which the hexagonal
close-packed rare-earth lattice orients.

The first rare-earth superlattice system studied was the
Gd–Y system by Kwo and coworkers (1985a, 1987). The
growth was carried out in a MBE system having a nominal
base pressure of 3 × 10−11 Torr. The substrate was heated to
improve the epitaxy, but the growth of the superlattice was
carried out at 220 ◦C in order to avoid vertical diffusion.
A thick Y layer was grown on top of (110) niobium to
isolate the superlattice from the niobium lattice. On top
of this, superlattices were grown of different numbers of
Gd and Y atomic planes per supercell. Gadolinium was
chosen for this work since it has the simplest magnetic phase
diagram of the ferromagnetic rare-earth elements. The most
important finding is illustrated in Figure 4 taken from Kwo
et al. (1987). The supercell consists of a Y slab and a Gd
slab. The Y slab had a variable number of Y planes and
the Gd slab had either 4 or 10 Gd planes per slab. They
observed an oscillatory dependence of the magnetic order
that emerged below the Gd Curie temperature depending on
the number of Y planes in each supercell. The oscillation
appeared to be independent of the number of Gd planes
per slab. The Gd slabs from supercell to supercell aligned
either antiferromagnetically or ferromagnetically with respect
to each other depending on the Y slab thickness. This result
was explained in terms of RKKY coupling of the Gd spins
through the nonmagnetic Y slabs. In fact, the separation
leading to the first maximum of remnant magnetization was
about seven Y layers, and this is in quantitative agreement
with simple model of RKKY coupling through the Y slab
as shown in Figure 4(c). The coupling is predicted to be
antiferromagnetic for three Y layers and ferromagnetic for
seven.

Superlattices of Dy and Y were grown and studied by
Flynn, Salamon, and coworkers (Borchers et al., 1987). This
system is more complicated than Gd–Y, because of the
spiral magnetic order that exists in Dy between 89 and
179 K (Majkrzak et al., 1991). In addition, the basal plane
strain is large enough to be important in this system. Since
the superlattices were grown on Y films (on top of (110)
niobium) that were thick enough to be relaxed, the Dy slabs
were in a tensile strain of 1.6% due to the lattice mismatch
between Y and Dy. If the superlattices are sufficiently perfect,
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Figure 4. Magnetic characterization of Gd:Y superlattices from
Kwo et al. (1987). Superlattices were grown in two series, with
either 4 or 10 Gd layers/supercell. In each series, films with different
Y layer thicknesses were grown. (a) The ratio of the magnetic
remanence to the magnetization extrapolated from high field back
to zero field. The authors point out that this normalizes the sample
volume and makes film-to-film comparisons quantitatively possible.
(b) The saturation field which behaves oppositely to the normalized
magnetic remanence. (c) A calculated exchange interaction between
two Gd planes separated by a Y slab of variable thickness. The
sign of the exchange interaction suggests that the low remanence
observed at the first minimum in (a) is due to an antiferromagnetic
coupling at that Y thickness. (Reproduced from Kwo et al., 1987,
with permission from the American Physical Society.  1987.)

the layer architecture engineered into the film may influence
the magnetic structure that naturally emerges, due to both
exchange and magnetoelastic effects. The question is how
the pitch of the superlattice interferes with the pitch of the
magnetic spiral. The spiral magnet order exists naturally
in single-phase Dy samples, and does not exist at all in
single-phase Y samples. Whether the pitch of the superlattice
somehow ‘stabilizes’ the spiral phase and prevents the
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formation of the uniformly magnetized ferromagnetic phase
is also complicated by the strain the Dy slab is under.

Superlattices with different layer thicknesses were grown
and studied by measuring their magnetic moment as well as
by neutron scattering (Salamon et al., 1986). In each super-
cell, the Dy slabs were around 15 atomic layers thick and
the Y slabs ranged from 5 to about 40 in different sam-
ples. The most obvious difference between bulk Dy and
these superlattices was the absence of the first-order tran-
sition to the ferromagnetic structure in the superlattices at
low temperatures. Starting from the spiral ordering temper-
ature around 180 K and extending to 10 K a spiral magnetic
structure was also observed in the superlattice films. This
was studied with neutron diffraction, which can distinguish
magnetic order from atomic order. The length scale of mag-
netic order sets a minimum linewidth to magnetic superlattice
reflections that are caused by the spiral order. Surprisingly,
the spiral structure extended from one Dy slab to neighbor-
ing Dy slabs, even though the material connecting the Dy
slab was nonmagnetic Y. Figure 5 shows magnetic super-
lattice reflections surrounding the 0002 structure peak. It is
clear that the spiral order persists down to 10 K and that the
linewidth of the magnetic peaks decreases as the tempera-
ture is reduced. On the basis of these data, it is possible
to infer that the length scale of magnetic structure correla-
tion extends through more than five superlattice periods. This
means that the spiral magnetic order extended from the mag-
netic Dy layer into and through the nonmagnetic Y layers,
although the degree of coupling through nonmagnetic Y lay-
ers was reduced for thicker Y layers. The spiral angle shift
per plane was found to be constant at about 50◦ in the Y
slabs, and Rhyne and Erwin and coworkers suggested that
a spiral spin density wave was induced in the Y slab by
proximity to the Dy layers (Erwin et al., 1987). This wave
would then carry the spin order information between the Dy
slabs. The pitch of the proximity induced spiral magnetiza-
tion in the Y layer provided evidence that Y has an incipient
conduction electron SDW. Alternatively, Majkrzak has sug-
gested that introducing a finite thickness spiral order in the
Dy slabs may naturally introduce spiral coupling via asym-
metric strain and the RKKY interaction (Majkrzak et al.,
1991).

5 TRANSITION-METAL MULTILAYERS
AND SUPERLATTICES: GIANT
MAGNETORESISTANCE

Superlattices containing different magnetic transition metals
have also been made by MBE. The motivation for this
work has largely been to study and optimize the phenomena
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Figure 5. Magnetic reflections obtained in neutron scattering from
Dy:Y superlattice from Borchers et al. (1987). In each supercell,
the Dy layer is nominally 4.7 nm thick and the Y layer is 4.0 nm
thick. The principle magnetic satellites are labeled 002− and
002+ and they emerge below the magnetic ordering temperature.
Similar reflections are obtained from a single-phase Dy film in the
helimagnetic phase. (Reproduced from Borchers et al., 1987, with
permission from the American Institute of Physics.)

of ‘giant magnetoresistance’, in which electronic transport
is strongly affected by the relative magnetic orientation of
different ferromagnetic layers.21 The underlying physics is
that differences in spin-polarized density of states in two parts
of a sample, magnetized in different directions, leads carrier
scattering and thus resistance. If an applied magnetic field
reorients the magnetization of one of the two parts, so that
they become pointed in the same direction, then the magnetic
scattering is eliminated and the resistance is reduced. This
shows up as a negative magnetoresistance. This effect has
been studied in polycrystalline as well as single crystal
material, in samples with very smooth interfaces as well as
in samples with rough interfaces between different layers.
MBE-grown samples with controllable interface roughness
have allowed a systematic investigation of the role of
interface characteristics. In practical terms, the phenomena of
GMR and the related tunneling magnetoresistance involving
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samples made with transition metals are so robust that
exquisite sample perfection is not required (Parkin, Bhadra
and Roche, 1991). Excellent devices can be made with
polycrystalline samples. This section reviews work done
growing and studying transition-metal multilayers by MBE.
For more information the reader is referred to excellent
reviews by Farrow (1998) and Etienne and Massies (1993).

The 3d transition metals exhibit a wide range of magnetic
properties, ranging from strong, high-temperature ferromag-
netism in Co, Fe, and Ni, to antiferromagnetism in Cr and
Mn, to paramagnetism in Ti, V, Cu, and Zn. The Fermi sur-
face of ferromagnetic transition metals and alloys is signifi-
cantly polarized, between 35 and 46% (Soulen et al., 1998).
Since transport is controlled by the properties of the Fermi
surface, the degree of Fermi surface spin polarization deter-
mines the amount of spin scattering that occurs in a GMR
device.

In a typical GMR device, two ferromagnetic films are sep-
arated by a paramagnetic or antiferromagnetic film. Typical
ferromagnets used have been Co, Fe, Ni, and permalloy (an
alloy of Ni and Fe). The paramagnetic film has been Cu, V,
or Au, and Cr has been used as an antiferromagnetic spacer
layer. Because of the way in which RKKY changes the sign
of exchange energy as a function of how far two spins are
from each other, the spacing between two ferromagnetic lay-
ers and the relative direction of the spins in the two FM layers
in a ferromagnet–paramagnet–ferromagnet trilayer together
determine whether carriers that propagate from one interface
to the other will be strongly scattered.

The earliest demonstration of GMR was reported by
Baibich et al. (1988) who found that very large magnetoresis-
tance could be obtained in (001)-oriented Fe/Cr superlattices
if the thickness of the Cr layers was chosen correctly. The
growth of the superlattice on top of (001) GaAs was moni-
tored using RHEED. This showed that a critical thickness of
Fe was required for the subsequent superlattice to grow crys-
tallographically ordered. The growth conditions were UHV
(background pressure of 5e–11 Torr) and the substrate tem-
perature was kept near room temperature. The growth rates
employed were typical of MBE, around 0.5 to 1 A s−1.

The magnetization of the Fe slabs earlier had been found
to be antiferromagnetically ordered for thin enough Cr layers
(Grunberg et al., 1986). The magnetization was in plane,
but oppositely directed in adjacent iron slabs. Evidence for
this is shown in Figure 6, where M versus H curves of
samples with different Cr thicknesses are compared. The
important thing to note is the difference in the shape of
the M(H) curves for samples in which the Cr layer is
thin, for example, see the curve for the sample with 9-
Å-thick Cr slabs. For thicker Cr layers, the M(H) curves
show ferromagnetic behavior. The data for the larger Cr
slabs, show that the magnetization shifts direction when a
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Figure 6. Magnetization curves at 4.2 K for different iron
chromium superlattices. The number next to each curve indicates
the thickness of the chromium layer in angstroms, while the thick-
ness of the iron layer is 30 Å for each superlattice. For the curve
labeled 60, the thickness of the iron layer was 60 Å. (From Baibich
et al., 1988.)

relatively small coercive field is applied. For thinner Cr
layer thicknesses, this is not the case. Instead, a very large
applied field is required to align all of the Fe magnetic
moments. This was interpreted as being due to a zero-field
antiparallel alignment (antiferromagnetic) of neighboring Fe
slab magnetic moments for the 9-Å samples. In order to
pin this down, spin flip neutron scattering was done on a
sample with a thin Cr layer. For an antiferromagnet spin
alignment, a ‘half-order’ magnetic reflection should be seen
due to the doubling of the magnetic periodicity compared to
the structural periodicity in the growth direction. In fact, that
is what was observed, as shown in Figure 7. This reflection
is sensitive to applied magnetic field; it can be eliminated
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Figure 7. Neutron scattering from iron chromium superlattice with
30 Å iron layer and 15 Å chromium layer/supercell at 1.6 K. The
film had 20 supercells. The magnetic reflection with periodicity
equal to twice the structural periodicity is sensitive to applied
field, indicating a spin flip transition leading to ferromagnetic
slab alignment occurs for less than 1 T applied field. (Reproduced
from Barthélémy et al., 1990, with permission from the American
Physical Society.  1990.)



8 Growth techniques

by applying a large enough field to make all the Fe spins
point in the same direction (Barthélémy et al., 1990). As
shown in the figure, this observation was taken as evidence
for ferromagnetic ordering of the superlattice by flipping
the spins with a large enough applied field. At zero field,
these spins had been slabwise antiferromagnetically aligned
because of the slab-to-slab RKKY exchange interaction.

For samples with antiferromagnetically aligned Fe slab
spins, the resistance depended strongly on magnetic field.
This is shown in Figure 8, where the resistance is shown as
a function of applied magnetic field for three different super-
lattices. Each of these samples had supercells containing the
same Fe slab thickness, namely, 30 Å. They differed in Cr
slab thickness. The largest effect was observed for the sample
with 9-Å Cr slab thickness. Here, the resistance changed by
almost a factor of two when a magnetic field large enough to
align all of the Fe spins was applied. This was the discovery
of GMR.

Following this work, GMR was investigated in samples
with improved interfacial flatness. The results indicate sub-
stantial subtlety in the factors that influence GMR. For
example, if (001) Fe/Cr superlattices with very flat interfaces
are studied, a different phenomenology emerges. The under-
lying antiferromagnetism in the Cr slab apparently gives
rise to a surface magnetization and net exchange coupling
between Fe slabs that shifts for every Cr layer grown. This
was discovered by Unguris, Celotta, and Pierce (1991) who
used SEMPA to probe the surface of a Cr wedge grown
on a flat Fe surface. In bulk Cr, which is bcc, it is approxi-
mately true that the magnetization of the body-centered atom
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Figure 8. Dependence of in-plane resistance of superlattice on
applied in-plane magnetic field. The sensitivity is largest for the
thinnest chromium layer, which has quiescent antiparallel spin
alignment of adjacent iron slabs. (From Soulen et al., 1998.)

is opposite to the magnetization of the corners. In fact, this
picture is modulated by a spin density wave that has a peri-
odicity of about 21 unit cells (Fawcett, 1988; Zabel, 1999).
Unguris, Celotta, and Pierce (1991) observed an oscillation
in the direction of the coupling between the Fe slabs that
had a period of approximately one Cr unit cell. This was
interrupted by an oscillation phase slip at relatively thick
intervals, typically 20, 40, and 60 monolayers of Cr, simi-
lar to the periodicity of the bulk Cr spin density wave. This
short period effect was not seen in samples having interfaces
with several monolayer roughness, as evidenced by streakier
RHEED patterns. (For a discussion of the use of RHEED in
measuring surface roughness see Section 8 below.) Clearly,
the phenomenon of GMR depends in detail on how the mag-
netic influence occurs at the interface to the Cr layer. The
short period oscillation was attributed to the rotation of the
interface magnetization direction caused by the antiferromag-
netism and spin density wave present in the (001) Cr film.
Observing the short period oscillations requires samples with
the flatness that so far only MBE has made possible.

6 SPIN INJECTION FROM METALLIC
FERROMAGNETS INTO
SEMICONDUCTORS

Another area of research in which magnetic materials grown
by MBE have made significant contribution is the injection
of spin-polarized current into semiconductor structures. Spin
injection and control of spin currents is a central component
of the larger topic of spintronics. This is a wide-ranging field
and includes the study of devices that sense magnetic fields
by measuring spin-polarized currents, such as in magnetic
tunnel junctions, as well as devices that use the spin degree
of freedom to perform quantum information manipulation.
In such quantum devices, spins or spin systems should be
prepared in a coherent initial state, undergo time evolution
in a controlled environment interacting with other quantum
degrees of freedom, and then be interrogated by projecting
out a final state quantum number. An important component of
this is the ability to deliver a single electron with a specified
spin state, at the right moment into a circuit embedded in
a semiconductor heterostructure. So, highly precise injection
of spins into semiconductors is required. In this section, we
describe experiments working toward this goal.

Early work aimed to obtain as transparent a contact as
possible between a semiconductor conduction channel and
a permalloy ferromagnetic injector, Ni0.8Fe0.2 (Hammar,
Bennett, Yang and Johnson, 1999; Lee et al., 1999). This was
done in Hammar, Bennett, Yang, and Johnson (1999) by
choosing the semiconductor InAs, which is known to not
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have a Schottky barrier. In Fawcett (1988) and Zabel
(1999) a small barrier between the permalloy and InAs
channel was preserved by the processing, but the contact
was very transmissive and nonrectifying. In both cases, a
good connection between the carriers in the two different
materials was obtained. The device geometry consisted
of two magnetic films connected by a two-dimensional
electron gas in the semiconductor. The spin injection in
both experiments was small, and the change in interface
resistance between the magnetic layer and the semiconductor
was of order 1%. The reason for this small response
was identified by Schmidt and coworkers who pointed
out that for transmissive contact metallurgy between a
ferromagnetic metal and a diffusive semiconductor, the
degree of spin polarization injected into the semiconductor
is less than the polarization of the ferromagnet by a factor
equal to the ratio of the semiconductor conductivity to
the ferromagnet conductivity (Schmidt et al., 2000). Since
a metallic ferromagnet has many times the carrier density
of a semiconductor, this factor is very small and accounts
for the small injection efficiency observed in these two
experiments. A solution to this problem was proposed by
Rashba (2000) who considered a spin injection system in
which the transport from the ferromagnetic metal into the
semiconductor was due to weak tunneling. In this case,
the small contact conductance effectively substitutes for the
ferromagnet’s large conductivity and results in much more
efficient spin-polarized current injection. In practice, that
barrier can be obtained from an epitaxial insulator or from
an intrinsic Schottky contact.

The growth and properties of Fe films on GaAs sub-
strates has been recently reviewed by Wastlbauer and Bland
(2005). They discuss the formation of the interface between
Fe and GaAs studied in experiments that systematically
examine the role of temperature, substrate reconstruction,
and surface stoichiometry on diffusion and interface com-
pound formation. Since the chemistry of Fe–Ga bonding
is different from Fe–As bonding, it is no surprise that
the overall nature of the crystalline growth of the Fe to
GaAs interface is different when the surface is predomi-
nantly terminated in Ga or As. The formation of Fe–As
bonds is energetically more favorable than Fe–Ga bonds
(Thibado et al., 1996). This leads to two-dimensional for-
mation of the Fe film on the As-terminated GaAs surface.
STM studies have shown that growth of submonolayer Fe
on As-rich surfaces happens via two-dimensional nucleation
and growth, followed by layer-by-layer growth of Fe on the
resulting surface (Kneedler et al., 1997). Quite a different
scenario occurs on Ga-terminated surfaces. There, the rela-
tive energetic cost of Fe–Ga bonds leads to the formation
of three-dimensional grains, which coalesce when the Fe
coverage exceeds five monolayers (Chambers et al., 1986;

Xu et al., 1999; Monchesky, Heinrich, Urban and Myrtle,
1999; Moosbühler, Bensch, Dumm and Bayreuther, 2002).
For thicker films, the surface shows a persistent As compo-
sition as seen by XPS during growth (Kneedler et al., 1997).
A subsequent detailed investigation of the role of temperature
on As and Ga surface segregation using Auger electron spec-
troscopy discovered diffusion and segregation of both atoms,
with the diffusion of As occurring at much lower tempera-
tures (Sano and Miyagawa, 1991). At the interface, a chem-
ical reaction occurs between the Fe and GaAs. Studies by
(Filipe, Schuhl and Galtier, 1997) suggest that a compound
with composition Fe3Ga2−xAsx forms at the interface.43 This
was correlated with a careful examination of the Fe–Ga–As
chemical phase diagram, and interfaces annealed to high tem-
peratures showed the growth of this phase occurring. The
magnetic properties of this material are reduced compared
with metallic Fe, so formation of such reacted interfacial
layers can be expected to reduce the performance of spin
injection. Other studies showed that growth at reduced tem-
peratures leads to a reduced thickness of reacted interface
material, but growth as low as – 15 ◦C still shows several
monolayers of such material forms, presumably limited by
bulk diffusion (Schultz et al., 2002).

With Fe layers grown on AlGaAs, spin injection has been
obtained using both Schottky contacts as well as Al2O3 tun-
nel barriers. The first report of large spin injection from
Fe into GaAs used a naturally occurring Schottky barrier
and was monitored via the degree of circular polarization
in the electroluminescent light. Zhu and coworkers grew Fe
on top of GaAs and obtained about 2% circular polariza-
tion of the resulting electroluminescence at room tempera-
ture (Zhu et al., 2001). They studied the effects of different
termination of the GaAs surface and found that similar lumi-
nescence polarization was obtained in all cases they studied,
As and Ga stabilized surfaces. van ‘t Erve and coworkers
(2004) compared the spin injection efficiency using intrinsic
Schottky barrier with amorphous Al2O3 barrier. They also
measured the spin injection by analyzing the circular polar-
ization state of the electroluminescence signal. They found
that spin injection occurred for both devices, but the elec-
troluminescence signal was more than 10 times as large for
the Schottky device. The luminescence signal is observed
from polarized electron and unpolarized hole recombination.
They suggested that the reduced emission efficiency with the
grown oxide barrier was due to an enhanced rate of elec-
tron–hole recombination caused by localized states at the
Al2O3 to AlGaAs interface. Another study looking at factors
that increase the magnitude of luminescence found that either
growing the Fe layer at low temperatures or introducing a
very thin intervening Al layer on top of the GaAs leads to
increased electroluminescence intensity (Chye, Huard, White
and Petroff, 2002). They interpreted this as being due to a
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reduced degree of interface compound formation. The degree
of magnetic order on an atomic scale controls the magneti-
zation of the injected current, and growth procedures that
lead to a cleaner, more magnetically distinct interface appear
to improve the degree of spin polarization injected across a
barrier.

Other interesting candidates for ferromagnetic injectors are
materials that should have completely spin-polarized bands,
half-metals. In metallic systems, Heusler alloys are thought
to be half-metallic, and several groups have investigated the
growth of different Heusler alloys on GaAs and performed
spin-injection experiments with their samples. Several groups
have grown such samples on different III–V compounds and
alloys. The earliest work was reported by Dong et al. (1999)
who grew single crystal Ni2MnGa on GaAs. They used a
very thin interfacial buffer layer consisting of Sc0.3Er0.7As
on top of which the magnetic alloy was grown. They
obtained a somewhat reduced Curie temperature, 320 K
instead of the bulk value of 376 K, but this could have
been due to the film thickness – it may have been thin
enough to reduce the magnetic order. Another Heusler alloy,
Co2MnGe was grown on GaAs by Ambrose, Krebs, and
Prinz (2000). They grew the compound on annealed GaAs,
using individual flux monitors to control stoichiometry, at
a moderately low temperature, ∼175 ◦C, and obtained films
with room-temperature ferromagnetism but unusual magnetic
anisotropy that was attributed to substrate strain. Later,
Dong and coworkers (2005) obtained a measure of spin
injection on a sample using Co2MnGe as the spin current
injector. They obtained about 13% circular polarization of
electroluminescent emission at 2 K, which corresponds to a
spin polarization of 0.27. This is shown in Figure 9 along
with a TEM image of the interface. At room temperature
the polarization disappeared. Since the Curie temperature
of this material is 905 K, the bulk is strongly magnetic
at room temperature. It was suggested that some interface
chemistry leads to degraded spin polarization at the junction
and this becomes more noticeable as the temperature rises.
In addition, control of the composition is required for
this compound to form. There is a rather wide range of
solubility of vacancies and antisite substitutions, so that
single crystal films can be grown even without sub 1%
relative composition control. But the effect of composition on
resulting magnetic properties and the stability of the interface
to GaAs are currently being investigated. A simpler Heusler
alloy with good structural stability at the GaAs interface
was investigated by Kawaharazuka et al. (2004). They used
Fe3Si, which is considered to be a Heusler alloy, but which
is not completely characterized as a half-metal at this point
in time, although as a Heusler alloy it is expected to be half-
metallic. They found observable spin injection even at room
temperature in electroluminescence.
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Figure 9. (a) A micrograph of a junction between the Heusler
alloy, Co2MnGe, and GaAs. (b) The temperature dependence of
the electroluminescence net circular polarization. (Reproduced from
Chye et al., 2002, with permission from the American Institute of
Physics.)

7 MBE GROWTH OF DILUTE
MAGNETIC SEMICONDUCTORS

Dilute magnetic semiconductors (DMS) are nominally insu-
lating phases when undoped, into which magnetic impurities
are alloyed at concentrations relatively high compared with
typical ‘dopant’ densities. The most studied systems are
based on II–VI and III–V parent phases. Magnetic impu-
rities from the 3d transition metals have most commonly
been used. The dopant atoms can do three things depending
on the semiconductor. First, they introduce a local magnetic
moment because the d electrons remain localized on the
dopant site. Secondly, they can introduce band carrier dop-
ing if the valence of the impurity differs from the nominal
valence of the site on which it sits. Finally, at a sufficiently
high density, the impurity atoms give rise to an impurity band
in which the Fermi energy can lie and which can mediate
conduction.

In II–VI systems, zinc and cadmium telurides and
selenides, as well as zinc oxide have been doped with Cr,
Mn, and Co (Hou et al., 2006; Slobodskyy et al., 2004;
Mofor et al., 2005; Buyanova et al., 2006; Nielsen et al.,
2006; Saeki, Matsui, Kawai and Tabata, 2004). The nomi-
nal valence of the transition metal in these systems is 2+, so
that no carrier doping occurs. For example, in the case of Co-
doped ZnO, ionic absorption bands indicate a fingerprint for
+2 valence (Pacuski et al., 2006). Since the impurity valence
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is the same as the valence of the site on which it substitutes,
the ‘dopant’ density can be very large, ∼50%. With such a
large density, the Curie temperature is expected to be large.
Indeed, in such systems, a TC > room temperature is found
(Hou et al., 2006; Mofor et al., 2005; Nielsen et al., 2006;
Saeki, Matsui, Kawai and Tabata, 2004).

In III–V systems, the transition-metal 3d dopant atom
tends to reside on the group-III site and ionizes to a valence
of 2+. This means that it introduces hole carriers as well as
a magnetic moment. The fact that it has a different charge
transfer means that it introduces a large energy cost and
this limits the density at which it can be incorporated in
equilibrium to a relatively small value. The earliest work
used InAs doped with Mn (Munekata et al., 1989; Ohno
et al., 1992). Later, GaAs was doped with Mn (Ohno et al.,
1996; Hayashi et al., 1997) and by introducing a post-growth
anneal, a Curie temperature as high as 174 K has been
obtained (Ku et al., 2003). An excellent review of the work
on III–V-based DMS by a large number of researchers is
provided by Jungwirth et al. (2006).

8 MBE GROWTH AND PROPERTIES OF
PEROVSKITE MAGNETIC OXIDE
FILMS AND DEVICES

Perovskite manganites exhibit a rich set of potentially use-
ful physical properties, controlled by composition, magnetic
field, temperature, and other factors. These properties, along
with their interesting underlying collective physics, have
motivated considerable work. The basic perovskite composi-
tion can be represented as ABO3, where A and B are different
metal atom sites, and often the A site is an alloyed mix-
ture of two different species. A ball and stick model of the
undistorted perovskite structure is shown in Figure 10. The
B atom is bonded covalently to six oxygen atoms in octa-
hedral coordination, forming BO3 molecular orbitals. Solid
lines show one such octahedron. Adjacent octahedra are con-
nected by corner-sharing each of the oxygen atoms, and
the A atom fits in the space between the octahedra. The
cube size is mainly determined by the size of the oxy-
gen orbitals, although the size and valence of the A and
B atoms also influence lattice size to a lesser degree. Typi-
cally, the cube size is between 3.8 and 4.0 Å. Many different
kinds of materials have this structure, ranging from simple
insulators, to insulators with very high dielectric constants,
to superconductors and the colossal magnetoresistive man-
ganites. In real materials the high symmetry shown in the
figure is broken by various (collective) distortions, including
Jahn–Teller bond length distortions of the BO3 unit and cell-
to-cell rotation of the octahedra, and these distortions play

A B O

Figure 10. A ball and stick model of the atomic positions in a
single unit cell of a simple cubic perovskite ABO3. The B atom is
a transition metal and is sixfold coordinated with oxygen atoms. The
B-atom d orbitals hybridize with the oxygen 2p orbitals to give the
states near the Fermi energy. The B-atom coordination is octahedral.
In this picture to complete an octahedra around the lower right-hand
B atom, three oxygen atoms should be added, one below, one to
the right, and one out in front. The octahedra are corner-sharing. In
real phases, such as manganites, other factors such as Jahn–Teller
level splitting and charge localization in Mott–Hubbard split bands
can lead to substantial distortions of the cubic structure shown.

important roles in determining the electronic and magnetic
properties.

The electronic structure of a perovskite phase is mainly
derived from the BO3 molecular orbital. The A site atoms
ionize and transfer charge to the BO3 bands. The valence
band is mainly oxygen in character and the conduction band
has B-atom character. Insulators like SrTiO3 have a filled
valence band and an empty conduction band. The oxygen
ions are each charged 2–, the Sr ion is 2+ and the Ti
ion is 4+. In conducting perovskites, the Fermi energy lies
in the BO3 band. The most studied manganite is the alloy
La1−xAxMnO3, where A is an alkaline earth, Sr or Ca. When
A is Sr, the alloy is often referred to as LSMO, while if A
is Ca the alloy is referred to as LCMO. The occupancy of
the conduction band per Mn ion is equal to 4 − x. When
the Sr content is zero there are four d electrons, while
for SrMnO3 there are three d electrons. Figure 11(a) shows
a schematic representation of the energy structure of the
molecular orbitals and the occupancy for LaMnO3. Because
of the crystal field, the eg orbitals have a higher energy than
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the t2g orbitals. The core t2g spins are strongly coupled by
the on-site exchange interaction. These spins align and form
an essentially classical core spin. The core electrons are not
strongly coupled to neighboring sites. On the other hand, the
eg states are more strongly coupled and they are itinerant in
the ferromagnetic phase.

Manganites have a rich assortment of magnetic states, as
Figure 11(b) shows (Chmaissem et al., 2003). The superex-
change interaction between Mn ions occurs through an inter-
mediate oxygen atom and is antiferromagnetic. The ferro-
magnetic exchange interaction between sites is due to ‘double
exchange’, where the itinerant bandwidth is maximized for
ferromagnetic spin alignment – it is more likely and there-
fore on average easier for an electron to hop to neighboring
sites when the core spins are pointed in the same direc-
tion. Ferromagnetic exchange is quenched if the eg electrons
are immobilized. For randomly oriented core spins, mag-
netic scattering dramatically reduces the conductivity. Thus
a metal–insulator transition (MIT) should also occur at the
magnetic phase transition. However, this is not the complete
picture of the MIT, as first pointed out by Millis, Littlewood,
and Shraiman (1995). Strong charge-to-lattice coupling is

Energy eg
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Figure 11. Electronic and magnetic structure of manganite alloys is
controlled by filling the MnO3 states. (a) A schematic representation
of the energy levels. (b) Structural and magnetic phase diagram of
La1−xSrxMnO3. The magnetic phases are antiferromagnetic (AF)
or ferromagnetic (FM), and the AF phases are A, C, or G type,
which describes the arrangement of core spins. A type has (100)
FM sheets with the magnetization of alternating layers oppositely
directed. G-type AF has every Mn–O–Mn bond AF, while the C-
type AF structure has a more complicated spatial arrangement of
spins. O+ and O′ denote orthorhombic phases in which Jahn–Teller
distortions are incoherent and coherent, respectively. C, T, and R
denote cubic, tetragonal, and rhombohedral phases. (Reproduced
from Ambrose et al., 2000, with permission from the American
Institute of Physics.  2000.)

also involved, and this amplifies the change in resistance that
occurs when the material becomes magnetic. For x = 0.35
the Curie temperature is the largest and the material should
become a half-metal, that is, have only one spin band present.
This is because both the eg and t2g states for the minority
spin electrons are shifted up in energy by the strong on-site
exchange energy. Ideally this would lead to a completely
spin-polarized MnO3 band in the absence of parasitic effects,
and this has been a strong motivation for using these man-
ganite phases for various ‘spintronic’ devices.

To see how the transport and magnetization are tied
together, Figure 12 shows the resistance versus temperature
for a thin film of x = 0.3 LSMO grown by MBE on a
(100) SrTiO3 substrate. The MIT occurs at 350 K where the
magnetization rises from zero as the temperature is lowered.
The resistance drops by about two orders of magnitude and
becomes as low as 40 µ�-cm. This is one of the lowest
residual resistivity values obtained for manganite phases
(O’Donnell et al., 2000a; Coey, Viret and von Molnár, 1999).

Several groups have used MBE techniques to grow man-
ganite films and devices. Figure 13 shows a schematic and a
photograph of one such system. Samples are grown on heated
substrates in a system with a base pressure of 1 × 10−9

Torr. Typical growth temperatures range from 650 to 720 ◦C.
RHEED is used to monitor the surface during growth. The
system employs thermal effusion cells for all elements used,
including the transition metals Mn, Cr, Ti, Cu, Zn, Au, and
Al. It also has trivalent cations La, Dy, and Bi, divalent
cations Ba, Sr, and Ca and it is equipped with an ozone beam
for oxidation (Johnson et al., 1990). In order to handle the
gas flow, the system is pumped by approximately 1000 l s−1

capacity turbomolecular pumping. Ozone is generated by a
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Figure 12. Resistance versus temperature for a film of LSMO,
x = 0.3, grown by MBE. (Reproduced from Karraharusuka et al.,
2004, with permission from the American Institute of Physics.
 2004.)
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Figure 14. Residual resistivity of (La1–xSrx)yMnO3 samples. The
parameter y describes the A site to B site composition ratio. For
stoichiometric LSMO y = 1, but single-phase material grows by
MBE over a wide range of y. For Mn excess, y < 1 and the residual
resitivity is only weakly dependent on y. For Mn deficiency, the
residual resistivity is strongly dependent on y.

silent discharge using a commercial unit capable of producing
3% ozone in oxygen. The ozone is distilled on cold silica gel
in a glass still. An hour of accumulation provides enough
ozone for more than 10 h of growth. After accumulation,
the vapor over the silica gel is pumped with a mechanical
pump to a pressure of 100 mTorr, and the ozone used in
the growth is drawn from the vapor flowing to the pump.
The flow into the growth chamber is controlled by a man-
ually operated needle valve, and reproducible ozone flow is
obtained by monitoring the MBE system pressure. Ozone
is injected from a tube about 5 in. from the substrate posi-
tion. The beam expands with an angle of about 10◦. Ozone
is much more effective at oxidizing metals than molecular
oxygen. While the ozone system is relatively simple to build,
care must be taken in operation due to the danger of explo-
sion. Too much ozone accumulation and too high a pumping
manifold pressure are conditions that may lead to explosion,
and consultation with an expert is advised before using such
a system. Other groups use atomic oxygen beams generated
by microwave discharge (Locquet and Machler, 1992).

Composition control is a very important aspect of mangan-
ite film growth. During growth using codeposition, molecular
beams provide the dose of atoms to grow each monolayer.
We denote the ratio of La + Sr surface composition to Mn
surface composition y. This strongly controls the electronic
properties of a film of LSMO as shown in Figure 14 where
residual resistivity is plotted versus y. Residual resistivity is

a measure of carrier scattering. The data show that excess
Mn does not lead to much increase in residual resistivity,
however, excess La + Sr does. This is also the case for
LCMO. Furthermore, the growth dynamics are very different
in these two cases. For films slightly rich in La, a smooth
surface is obtained, but if the film is rich in Mn, a dra-
matic proliferation of step edges results. This is shown in
the two AFM images in Figure 15. A change in composi-
tion of only 1 part in 1000 is enough to change between the
surface structures shown. In order to obtain both a smooth
surface as well as the lowest residual resistivity, the com-
position must be precisely controlled. Fortunately, RHEED
provides a clear indication of these two regimes, and com-
position control at the 1/1000 level is possible using this
as a diagnostic of surface composition. Figure 16 shows the
RHEED patterns observed from these two kinds of surfaces.
Figure 16(b) is from a smooth surface, such as shown in
the Figure 15(a). Figure 16(a) shows the diffraction pattern
obtained from a bumpy surface. Both of these images are
obtained with the electron beam in the 〈100〉 direction, along
the Mn–O bond direction. Figure 16(a) shows the emer-
gence of elevated half-order streaks, which also show up
in the diffraction pattern observed along the 110 azimuth.
This implies a surface having k-space rods as shown in the
inset to Figure 16(d).

Since the electrical and morphological properties of the
surface are so sensitive to composition, it is important to
control this very accurately. RHEED can provide notice
that the bumpy smooth boundary has been crossed, and
small corrections can be made to correct for this, but such
control is possible only as a refinement to a control scheme
that is accurate to the 1% level. RHEED can provide an
accuracy increase to 0.1% or better, but it is not able to
obtain 0.1% accuracy on its own. In order to get this, it
is necessary to use in situ flux monitors. Quartz crystal
microbalance growth rate monitors are useful if independent
measurements of different sources can be made. Atomic
absorption spectroscopy is also capable of providing accurate
flux monitoring (Klausmeier-Brown, Eckstein, Bozovic and
Virshup, 1992). However, to regularly obtain the required
accuracy it is necessary to regularly calibrate the in situ flux
monitors in some way. A convenient method for doing this is
to grow a measurement film on a substrate containing only
low-mass elements such as BeO, MgO, Si, and so on. If
the film is thin enough, it can be analyzed in a particularly
simple way by Rutherford backscattering (RBS) analysis
(Chu, Mayer and Nicolet, 1978). For sufficiently thin films,
each element in the film gives rise to an isolated peak, and the
integral of the peak is proportional to surface density time
the scattering cross section, which is element specific but
available in tables. This is shown in Figure 17. The substrate
signal is at lower energy and provides a reliable measure of



Growth of magnetic materials using molecular beam epitaxy 15

(a) (b)

1

0.75

0.50

0.25

0
10.750.500.250

1

0.75

0.50

0.25

0
0.75 10.500.250

2 nm

1 nm

0 nm

µm µm

Figure 15. Besides the residual resistivity, the metal atom ratio, y = ([La] + [Sr])/[Mn], also controls the surface morphology. The left
panel shows an AFM image of an atomically flat film, exhibiting terracing that has y slightly greater than 1. The second image showing
a very bumpy surface is for a film with y = 0.99. A small excess of Mn causes step-edge proliferation, leading to growth of a bumpy
surface. This is also visible in RHEED, where the smooth surface shows a small reflection spot, while the bumpy surface exhibits streaks
and extra reflections indicating a composition-driven surface reconstruction.

C′ D′

(c) (d)

(a) (b)

C D

0

4

8

12

−200 −100 0 100

In
te

ns
ity

 (
au

)

Pixel (relative to specular spot)

bumpy
smooth

Figure 16. RHEED patterns from the bumpy and smooth regions from an LSMO sample grown on STO. (a) Bumpy region; 〈100〉 direction.
(b) Smooth region; 〈100〉 direction. (c) Intensity profiles across lines CD and C′D′. Arrows indicate position of the elevated half-order
streaks. (d) Bumpy region; 〈100〉 direction. Inset shows schematic of k-space rods because of surface reconstruction.



16 Growth techniques

0

10

20

30

40

50

60

0 0.4 0.8 1.2 1.6 2 2.4

Y
ie

ld
 (

K
co

un
ts

)

Energy (MeV)

La

Sr

Mn

Ca

Mg

O

2.275 MeV 4He2+

LaSrCaMnO

MgO

Figure 17. RBS spectrum of a thin film of La–Sr–Ca–Mn–O
grown on top of MgO. Since all of the film constituent atoms are
heavier than Mg and the film is thin enough, they show up as
isolated peaks on a zero background.

the time-integrated beam current. With that knowledge, it is
possible to reproducibly calibrate the real-time flux monitor
sensors and obtain absolute composition control at the 1%
level.

The ground state of the manganite oxides (La0.67A0.33

MnO3 where A = divalent dopant) is ferromagnetic and very
nearly half-metallic. That is, the conduction electrons are
nearly 100% spin polarized. Experiments indicate that the
spin polarization, P = (n↑ –n↓)/(n↑ + n↓) (where n↑, n↓
are the density of states for spin +1/2 and spin −1/2
electrons respectively), is at least 0.83, compared with 0.42
for the canonical ferromagnet, iron (Viret et al., 1997; Soulen
et al., 1998; O’Donnell et al., 2000b). These materials thus
offer an interesting tool for scientists – a solid-state source
of highly (possibly 100%) spin-polarized electrons in a
system which is structurally, chemically, and epitaxially
compatible with many other interesting perovskite oxide
materials. Applications include spin-valve type magnetic
tunnel junctions for disk drive read heads, spin-injection
devices, and spin-polarized electron tunneling spectroscopy
of high TC superconductors (Viret et al., 1997; O’Donnell
et al., 2000b; Sun, Abraham, Roche and Parkin 1998; Obata,
Manako, Shimakawa and Kubo, 1999; Kwon et al., 1998;
Koller et al., 1998; Stroud et al., 1998). Many applications
of these materials involve heteroepitaxy between manganite
phases and other perovskite oxide compounds. Here, we
discuss fundamental questions regarding manganite growth
as it relates to heterostructure applications and describe the
growth of films for ‘colossal magnetoresistance’ spin-valve

sensors. The observations and conclusions also apply to other
manganite heteroepitaxy problems as well.

The epitaxial growth architecture of a typical spin-valve
device consists of a base layer of LSMO, x = 0.35, 100 nm
thick. On top of this a thin layer of four or five unit cells of
SrTiO3or CaTiO3 is grown. This is followed by the growth
of a top LSMO film 50 nm thick. The growth of the insulat-
ing barrier, especially the interfacial layers, is just as critical
as the growth of the manganite electrodes. Indeed, most
speculation regarding the rapid loss of magnetoresistance in
colossal magnetoresistance magnetic tunnel junctions with
increasing temperature has focused on barrier and interfa-
cial disorder (structural, magnetic, and/or compositional). By
comparing RHEED oscillations before and after the growth
of the insulating barrier one can see that even starting from
an atomically flat base electrode, disorder can nucleate in the
barrier heteroepitaxy and propagate into the top electrode.
The result is a decrease in both the magnitude of the tun-
neling magnetoresistance, and the temperature at which the
magnetoresistance vanishes. A zero bias anomaly in the tun-
neling conductance at low temperatures of the form predicted
by Altshuler, Aronov and Lee (1980) for electron–electron
interaction induced renormalization of the density of states
in a disordered metal has been observed (O’Donnell et al.,
2000b). SrTiO3, CaTiO3, and LaAlO3 barriers were investi-
gated. Of the three, CaTiO3 grows the best as judged by the
RHEED image of the barrier surface and RHEED oscilla-
tions during barrier growth. For the growth of the insulating
barrier, the substrate temperature was decreased by 90 ◦C
in constant ozone pressure for the first two interfacial lay-
ers to quench interdiffusion, then increased by 90 ◦C for the
remainder of the barrier growth, then decreased again by
90 ◦C for the initial layers of the manganite counter elec-
trode. Five unit cell barriers give a typical tunneling con-
ductance of 5 × 10−7�−1 µm−2 in tunnel junctions with an
area of 200 µm2. The tunneling conductance varies exponen-
tially with barrier thickness with each unit cell decreasing
the conductance by roughly a factor of 12. The interfacial
La1−xSrxO/CaO layer between the terminating MnO2 plane
of the manganite and the TiO2 plane of the CaTiO3 barrier
is deposited in a layer-by-layer mode with composition 1/2
(La1−xSrxO) +1/2 (CaO). The interfacial plane donates elec-
trons to the adjacent MnO2 plane. In a simple ionic picture,
growing this mixed composition at the interface maintains
a constant Mn4+/Mn3+ ratio of x:(1 − x). If the interfacial
layer is not doped in this way at the atomic layer level,
the Mn4+/Mn3+ ratio of the interfacial MnO2 plane will be
increased, effectively increasing the local doping level.

The films were processed into trilayer spin valves using
a device geometry that eliminates the effect of resistive
voltage drop from transport in the manganite layer. The
device architecture is shown in Figure 18(a) and (b). Current
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Figure 18. (a) and (b) Schematic view of a spin-valve device. An LSMO injector electrode on top provides spin-polarized carriers to
tunnel into a similar LSMO base electrode. The measured tunneling magnetoresistance is shown in (c) as a function of applied field for
different temperatures. The maximum measured in this experiment was 450% at 15 K. (d) Dependence of TMR on temperature. How the
TMR depends on temperature. It falls faster than the bulk magnetization predicts, indicating nanoscale quenching of the magnetic order
above 100 K.

is injected from the top electrode and extracted from the
left electrode. A third electrode ‘upstream’ of the injector
measures the base film voltage. The current transfer length, η

is many micrometers long. It is equal to η = √
RC/RS , where

RC is the specific tunneling resistance (units � cm2) and
RS is the base layer two-dimensional sheet resistance (units
�/square). This design serves two purposes. First, the use
of a third electrode provides a measurement of the voltage
across the barrier, without introducing any significant voltage
drop from current flowing in the plane. The resistance of the
junction is high, so that the series film resistance is a small
correction, and this design allows a direct measurement of the
tunneling voltage without the need for fine lithography. The
second advantage is the large shape anisotropy introduced for
one of the two electrodes, namely, the top one. This provides
a different coercive field for the two electrodes and leads
to a wider range of applied field in which the antialigned
configuration occurs. The tunneling magnetoresistance is
shown in the lower two panels of Figure 18. In the lower left
panel, curves are shown for different temperature that trace
out the hysteretic junction resistance as a function of applied
field. Defining TMR = RANTI/RALIGN the maximum TMR
was 4.5. The TMR decreased with temperature more rapidly

than the temperature dependence of the bulk magnetization
would predict. This was attributed to a reduced magnetization
just at the interface, due to the scattering introduced by the
barrier.

This hypothesis was investigated by Kavich and coworkers
using resonant X-ray magnetocircular dichroism (Kavich
et al., 2005; Freeland et al., 2006). This followed a study
by Park et al. (1998) using spin resolved photoemission to
measure the top layer spin polarization. Samples with two
unit cells of SrTiO3, grown on top of a manganite film were
studied. The X rays were tuned across the Mn L edge and the
dependence of magnetic scattering on energy and temperature
was measured also as a function of incident angle. The results
from several angles allowed the extraction of a magnetization
profile as a function of depth. A second sample was also
analyzed which had an interfacial layer of LaMnO3. The
use of such an interfacial layer to ‘protect’ the surface
magnetization had been suggested by Yamada and coworkers
and studied using optical harmonic generation, sensitive to
the abruptness of the magnetic profile (Yamada et al., 2004).
Figure 19 shows the magnetization profile inferred from the
XMCD measurements, showing a substantial drop in surface
magnetization as a function of temperature.
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Figure 19. Magnetization profile as a function of depth for different
temperatures as shown in the legends. (a) Magnetization profile for
a film of LSMO, x = 0.35, capped with two unit cells of SrTiO3

(STO). (b) Magnetization profile for a sample with two unit cells
of LaMnO3 between the LSMO and the STO cap. Both samples
show a significant drop-off in the interface magnetization as the
temperature rises. The low-temperature behavior of the LMO/STO
cap sample indicates a better surface polarization.

MBE also provides a method to assemble samples with
a fixed average composition, but with nanoscale organiza-
tion of the atomic constituents. Early work aimed at mak-
ing superlattices, having the same average composition as
the highest TC alloy (x ∼ 0.33), but with each plane either
LaMnO3 or SrMnO3 was carried out by Salvador et al.
(1999). They were able to use laser-based MBE to con-
struct superlattices consisting of alternating layers of LMO
and SMO, keeping the average x = 0.26. They observed a
systematic reduction of TC with increasing slab thickness.
They attributed this to increasing charge localization in the
constituent slabs as the slab thicknesses became larger. Bhat-
tacharya and coworkers have extended this work using MBE.
Digital superlattices maintaining an average composition of
x = 0.33 were grown, starting with samples with one unit
cell of SMO and two unit cells of LMO. Resistive transitions
spanning the range of superlattice pitches from 1:2 to 5:10
were grown and their properties measured. Figure 20 shows
resistance versus temperature for an alloy with composition
x = 0.33 as well as digital superlattices in this range. For the
thinnest slabs, the digital superlattice reduces doping disor-
der and a lower residual resistivity is observed. Comparable
R(T ) is also observed for the 2:4 sample, although a reduced
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Figure 20. Resistance versus temperature for five digital superlat-
tices, showing the emergence of charge localization as the layer
thicknesses are made larger. The 1/2 digital superlattice has a lower
resistivity than the random alloy of the same composition.

TC was observed. When the slab thickness increased to 3:6
and higher, the TC continued to drop and the low-temperature
resistivity developed a strong upturn, indicating localization.
These results indicate that new phase behavior can be tuned
by accurate atomic-scale synthesis.

Complex oxides provide a rich set of materials with
wide-ranging properties that have been observed in bulk
samples. These phases provide the starting point for efforts
to obtain new materials properties resulting from interaction
between different materials at carefully prepared interfaces.
The length scales of interactions between complex oxides
at such interfaces in likely to be small, typically several
unit cells at most. This places a high premium on careful
atomistic growth. MBE provides this kind of control and
the potential for new phenomena to emerge in cleverly
engineered samples.
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1 INTRODUCTION

The relatively new field of spin electronics (or spintronics)
deals with physical systems where the device functionality
is not only determined by the charge of electrons (holes)
but also by the spin of the carriers (for a review see Prinz,
1998). Whereas the charge has been exploited in electronic
devices for more than a century, it was not until 1988
when the door to the technical application of the spin was
opened–although already in 1936 Mott realized that up
and down spins in a metallic ferromagnet have different
mobilities (Mott, 1936). The giant magnetoresistance (GMR)
effect, which was discovered by the groups of Grünberg
(Binasch, Grünberg, Saurenbach and Zinn, 1989) and Fert
(Baibich et al., 1988), refers to the observation that the

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

resistance of a ferromagnet–nonferromagnet–ferromagnet
multilayer system is much larger when the ferromagnetic
layers are magnetized in opposite directions. Three years
later, the group of Parkin (Dieny et al., 1991) presented
magnetic read-heads incorporating spin valves which are
based on the GMR effect. Since then, besides a continuous
improvement of magnetic sensors, magnetic memory devices
were also proposed and demonstrated, like the magnetic
random access memory (MRAM) cell.

On the basis of the pioneering proposal of (Datta and
Das, 1990) to replace the emitter and collector in a field
effect transistor (FET) by ferromagnetic electrodes, a number
of concepts have been presented since then (for a review
see Prinz, 1998). A first bipolar spin transistor involving
ferromagnetic emitter and collector, sandwiched between a
nonmagnetic area in a trilayer geometry, was proposed and
demonstrated by Johnson (1993, 1995). In a planar geometry,
the injection of a spin-polarized current into a semiconductor
is a key issue (Ohno et al., 1999), followed by the preserving
of the spin state and its manipulation (Awschalom and
Kikkawa, 1999).

At the basis of most spintronics devices are the fer-
romagnetic contacts or layers which act as polarizers (or
analyzers) for the carriers. Getting beyond the typical spin
polarization of about 50% – that can be reached using
alloys of Fe, Co, and Ni (Monsma and Parkin, 2000) – will
dramatically enhance the performance of memory devices
and will be crucial for spin transistors. Consequently, it
is highly desirable to obtain a large degree of polariza-
tion at the Fermi level. The ideal case of 100% spin
polarization is a property of a special class of materials,
the so-called half-metallic ferromagnets (HMFs). They are
characterized by a metallic behavior of the majority-spin
electrons and a semiconducting behavior of the minority-spin
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electrons (de Groot, Mueller, van Engen and Buschow,
1983); for a review see Pickett and Moodera (Pickett and
Moodera, 2001). A number of compounds were found to
be half metallic through band-structure calculations, such as
CrO2 (Schwarz, 1986), Mn2VAl (Weht and Pickett, 1999),
the Mn-containing perovskite La1−xSrxMnO3, where the spin
polarization was determined via spin-resolved photoemis-
sion measurements (Park et al., 1998) and scanning tunnel-
ing spectroscopy (Wei, Yeh, Vasquez and Gupta, 1998), and
many more.

A special class of materials, the so-called Heusler alloys
(HAs) (Heusler, Starck and Haupt, 1903), came into focus
when de Groot et al. showed theoretically that a number
of Mn-based HAs are half-metals (de Groot, Mueller, van
Engen and Buschow, 1983). On the basis of the theoretical
results, the unusual magneto-optical properties of PtMnSb
were explained by the extreme asymmetry of the electronic
properties of spin-up and spin-down electrons (de Groot,
Mueller, van Engen and Buschow, 1984). HAs, which are
named after Heusler, are primarily defined by their crystal
structure. The half-HAs XYZ and the full-HAs X2YZ have
a C1b and L21 crystal structure, respectively, where X and
Y are transition metals and Z out of the group III, IV, or V
elements. The alloys crystal structure consists of four inter-
penetrating lattices with lattice parameters that are within the
realm of common compound semiconductors. Hence, the fact
that they are lattice-matched to many compound semicon-
ductors, have a compatible crystal structure (face-centered
cubic), and show high Curie temperatures (Oxely, Tebble
and Williams, 1963), makes them especially promising can-
didates for spintronics devices.

Epitaxial layers of stoichiometric HAs have been grown
on various semiconductor surfaces using d.c. (Kelekar and
Clemens, 2004) and r.f. (Caballero et al., 1997) sputtering,
pulsed-laser deposition (PLD) (Wang et al., 2005b) from
bulk HA targets, as well as molecular-beam epitaxy (MBE)
(Dong et al., 2001). Besides the crystallinity, stoichiometry,
and smoothness of the layers, also the local ordering of
the constituents has to be achieved for the HAs to be
half metallic. There are several ways to determine disorder,
such as X-ray diffraction (XRD), the measurement of the
magnetic moments, as well as the electrical resistance.
The most critical issue for the efficient injection of spin-
polarized carriers into a semiconductor is the control of
the atomic arrangement at the interface with the HA. For
instance, for many years the formation of a magnetically
dead layer at the Fe/GaAs interface has prevented spin
injection. The key advantage of MBE over alternative
preparation techniques such as sputter deposition, chemical
vapor deposition, or PLD is the ability to monitor in situ
the growth and determine the structure of the material. A
classical example for the need for MBE in magnetism is

the field of GMR systems and interlayer exchange coupling
in magnetic multilayers (Farrow, 1998). Thus, MBE is the
method of choice for the precise control of the growth
of epitaxial single-crystal magnetic material/semiconductor
heterostructures.

2 HEUSLER ALLOYS – AN OVERVIEW

HAs are intermetallic phases with a particular composition
and crystal structure. They are named after Friedrich Heusler,
who found that compounds containing two parts of copper,
one part of manganese, and one part of aluminum are
ferromagnetic, although their atomic constituents are not
ferromagnetic (Heusler, Starck and Haupt, 1903; Heusler
and Richarz, 1908). As will be explained in the subsequent
text, it is not only the half-metallic properties of some HAs
that sparked interest in these compounds but also more
importantly their ability to be grown epitaxially on compound
semiconductors, since interfaces are determining to a great
deal the capability to inject a spin-polarized current into a
semiconductor.

2.1 Structural properties

HAs consist of four interpenetrating face-centered cubic
sublattices, where the atoms of the species X1, X2, Y, and
Z, are at the positions (0,0,0), (1/2,1/2,1/2), (1/4,1/4,1/4), and
(3/4,3/4,3/4), respectively (Persson, 1929). Thus, type Y and
Z atoms are surrounded by eight X atoms. In case of the
full-HAs X2YZ with the L21 crystal structure, all positions
are filled, whereas in the half-HAs XYZ with C1b crystal
structure, the X1 sublattice is empty. This empty sublattice
makes the half-HAs prone to disorder due to exchanges with
the filled sublattice. The crystal structures are illustrated in
Figure 1. The atoms of the species X are transition metals
such as Ni, Co, Fe, Pd, Pt, Cu, Mn, Rh, Ru; the Y atoms
another transition metal like Mn, Ni, Fe, Co, Ti, V, Cr; and Z
a group III, IV, or V element such as Al, Ga, In, Si, Ge, Sn,
As, or Sb. It should be noted that if both X2 and Y are empty,
the zincblende structure of III–V compound semiconductors
is formed, which is advantageous for epitaxial growth on
semiconductor surfaces.

Ziebeck and Webster (1974), Webster (1971) were the first
to synthesize full-HAs containing Co. Ishida and collabora-
tors (Ishida, Akazawa, Kubo and Ishida, 1982; Ishida, Fujii,
Kashiwagi and Asano, 1995; Fujii, Sugimura, Ishida and
Asano, 1990) proposed that compounds of the type Co2MnZ,
where Z stands for Si or Ge, are also half-metallic ferro-
magnets–a new class of materials that will be explained
in Section 3. Also HAs of the type Fe2MnZ were found
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(a) (b)

Figure 1. Crystal structures of half XYZ (a) and full X2YZ
(b) Heusler alloys. The X atoms are dark-gray, the Y atoms black
and the Z atoms light-gray.

numerically to be half-magnetic metals (Fujii, Ishida and
Asano, 1995). Contrary hereto, Brown et al. (Brown, Neu-
mann, Webster and Ziebeck, 2000) have shown that there is
a finite very small spin-down density of states at the Fermi
level instead of an absolute gap by using polarized neutron
diffraction. This is in agreement with the ab initio calcula-
tions of Kübler et al. for Co2MnAl and Co2MnSn compounds
(Kübler, Williams and Sommers, 1983).

2.2 Magnetic properties

The magnetic coupling in HAs is complicated and far
from being completely understood. Thus, we will restrict
ourselves to a very brief summary of the most impor-
tant results. The ternary alloys of the form X2YZ and
XYZ are typical local moment systems with Y the local
moment material. It has been suggested that the coupling
of the local moments in HAs originates from the indi-
rect Ruderman–Kittel–Kasuya–Yosida (RKKY) type inter-
action; however, also other models are successfully applied
(Picozzi, Continenza and Freeman, 2002). Moreover, the sole
exchange via itinerant electrons is unrealistic due to the local-
ization of the magnetic moments to the Mn atomic sites
(Kübler, Williams and Sommers, 1983). It is rather believed
that, due to the presence of two of the transition metals, at
least some band-like contribution is also involved. Never-
theless, the resulting saturation magnetization in dependence
of the constituent atoms is well understood. On the basis
of ab initio calculations, Galanikis et al. showed that the
total spin magnetic moment M (per formula unit in µB)
of a Heusler alloy scales linearly with the number of the
valence electrons Z, such that M = Z − 24 for the full-HAs
and M = Z − 18 for the half-HAs (Galanakis, Dederichs and
Papanikolaou, 2002b). For example, a half-Heusler system
with 18 valence electrons per formula unit is nonmagnetic.
On the basis of this well-known Slater–Pauling behavior
(Kübler, 1984) it can be further deduced that the maximum
magnetic moment of a half Heusler is 5 µB, and that of a
full-Heusler alloy 7 µB.

The situation in half-HAs is illustrated by taking NiMnSb
as an example (Otto et al., 1989a,b). It was found experi-
mentally that the magnetic moments are present on the Mn
atoms. As the distance between the local moments is too
large for the direct exchange interaction to be efficient, some
authors propose that the coupling occurs via itinerant holes
in the Sb-5p valence band (Otto et al., 1987). In full-HAs,
the X atoms primarily determine the lattice constant, whereas
the Z atoms (group III, IV or V atoms) mediate the inter-
action between the d states of the local moment atoms Y
(Kübler, Williams and Sommers, 1983; Reitz and Stearns,
1979). The local moment atoms do not interact directly;
however, an interaction with the d states of the X atoms
delocalizes their occupied d states, resulting in delocalized
electrons moving in a common d band. Nevertheless, the
magnetization is localized to the Y atom in case of Mn, as
the minority-spin electrons (as defined locally) are excluded
from the Mn 3d shell. According to Kübler et al. the mag-
netic order is sensitive depending on the occupation of the
mediating p–d hybrid states–a fact that accounts well for
experiments by Webster (1971) in which this occupation was
varied by alloying. Depending on the coupling, the magnetic
properties range from weakly antiferromagnetic in case of
Pd2MnIn to strongly ferromagnetic in case of Co2MnSn.

The lattice constants and magnetic properties of some
common HAs (bulk crystals) are listed in Table 1 (for
reference see also Webster and Ziebeck, 1988).

3 HALF-METALLIC FERROMAGNETS

On the basis of band-structure calculations on the half-HAs
NiMnSb and PtMnSb, de Groot and coworkers (de Groot,
Mueller, van Engen and Buschow, 1983) claimed to have
found a new class of materials. The so-called HMFs are
characterized by one spin subband being metallic, whereas
the Fermi level falls into a gap of the other subband–that
is, the current-carrying electrons at the Fermi level are
100% spin polarized. This unusual behavior attracted a lot
of attention since then, as HMFs are ideally suited for
spintronics. Owing to various problems that will be discussed
in the subsequent text, it was not until 1998 that the half-
metallic character of a film was directly measured (Park
et al., 1998).

3.1 Properties

After de Groot’s discovery of a spin-splitted band struc-
ture in two Mn-based half-HAs, a number of theoretical
papers followed proposing half-metallic behavior for Fe3O4

(magnetite) (Yanase and Shiratori, 1984), rutile-type CrO2
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Table 1. Table of properties of selected Heusler alloys with relevance to epitaxial growth. Reference, unless otherwise noted, (Webster
and Ziebeck, 1988).

Class X atom Structure a(Å) mfu(µB) TC or TN(K) Reference
L21 B2

X2MnAl Co B2/L21 5.756 4.01 693, FM
Fe L21 5.816 1.58
Ni B2/L21 5.822 300, AFM
Cu L21 5.949 4.12 603, FM
Rh B2 6.005 >0.7 ∼95, FM
Pd B2 6.165 4.4 240, AFM
Pt L21 6.240 190, AFM
Au L21 6.360 4.2 233, FM

X2MnGa Co L21 5.770 4.05 694, FM
Ni L21 5.825 4.17 374, FM
Rh B2 6.054 >1.2 ∼80, FM
Pt L21 6.160 75, AFM

X2MnGe Co L21 5.743 5.11 905, FM
Ni L21 5.690 >300, FM Cherkashin, Gladyshevskiy, Kripyakevich and Kuz’ma (1958)
Cu b.c. tetrag. 2.84 300, FM Oxely, Tebble and Williams (1963)
Rh L21 5.993 4.3 450, FM
Pd L21 260, FM Natera, Murthy, Begum and Murthy (1970)

X2MnSi Co L21 5.654 5.07 985, FM
Fe L21 5.663 1.76 214, FM

X2MnSn Co L21 6.000 5.08 829, FM
Ni L21 6.053 4.22 360, FM
Cu L21 6.173 4.11 503, FM
Rh L21 6.252 3.1 412, FM
Pd L21 6.380 4.23 189, FM

X2MnSb Co1.5 L21 –C1b 5.929 4.90 600, FM
Ni L21 6.004 3.52 365, FM
Cu 6.096 38, AFM Oxely, Tebble and Williams (1963)
Rh tetragon. 335, FM
Pd L21 6.419 4.40 247, FM

X2MnIn Co >300, FM Holmes and Pepper (2003)
Ni L21 6.069 4.43 314, FM
Cu L21 6.206 3.95 500, FM
Rh B2 6.287 >2.3 ∼105, FM
Pd L21 –B2 6.373 4.3
Au L21 6.550 140, FM Elfazani et al. (1981)

X2CoGa Fe L21 5.767 5.09
X2FeSi Co L21 5.658 5.9 >980, FM

Fe D03 5.653 2.21 823, FM

X2FeGa Co L21 5.737 5.15 >1100, FM Brown, Neumann, Webster and Ziebeck (2000)
Ni L21 5.741 430, FM Liu et al. (2003)

X2FeAl Co L21 5.730 4.8 > RT, FM Hirohata et al. (2005b)
Fe D03 5.792 2.59 713, FM
Cu L21 5.905 1.94 870, FM Zhang et al. (2004b)

XMnSn Ni C1b ∼6.03 2.0 406, FM de Groot, van Engen, van Engelen and Buschow (1990)
Pt C1b 6.263 3.54 330, FM Hames and Crangle (1971)
Au C1b 6.341 3.62 600, FM Offernes et al. (1999)

XMnSb Co C1b 5.853 4.0 490, FM
Fe C1b 2 · 5.875 2.0 350, FM de Groot, van der Kraan, and Buschow (1986)
Ni C1b 5.927 4.2 728, FM Otto et al. (1987)
Cu C1b 6.095 AFM Jeong, Weht and Pickett (2005)
Rh C1b 6.152 3.63 320, FM
Pd C1b 6.246 3.95 500, FM
Pt C1b 6.201 4.14 582, FM
Au C1b 6.377 2.21 72, FM

a: lattice spacing (Å); mfu: magnetic moment per fu (formula unit); TC and TN: Curie (FM = ferromagnet) and Néel (AFM = antiferromagnet) temperature
in K, respectively.
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(Schwarz, 1986), full-HAs (Ishida, Fujii, Kashiwagi and
Asano, 1995), perovskite manganites (Pickett and Singh,
1996), double perovskites (Kobayashi et al., 1998), diluted
magnetic semiconductors (DMS) (Ogawa, Shirai, Suzuki and
Kitagawa, 1999), and others.

The degree of spin polarization P at the Fermi level is
usually defined by

P = N↑ − N↓
N↑ + N↓

(1)

where Nσ are the density of states at the Fermi level for
the respective spin-σ band. The band structure of a HMF,
illustrated in Figure 2(c), shows a spin polarization at EF of
100%. For comparison, the band structures for a normal (a)
and a ferromagnetic (b) metal are also shown.

What characterizes a half-metal? First and foremost, the
definition of a half-metal as a system that is metallic for one
spin and semiconducting for the other, leads to a complete
spin polarization at the Fermi level. Also, there exists a
gap for spin-flip (Stoner continuum) excitations due to the
structure of the minority band (Irkhin and Katsnel’son, 1994).
Further, an integer value of the spin moment is usually
central for half-metallicity, as is the unusual combination of
metallic conductivity and vanishing high-field susceptibility
(Eschrig and Pickett, 2001). For example, the magnetization
per functional unit of NiMnSb is 4 µB consisting of 3.8 µB

for Mn and 0.2 µB for Ni. The reasoning behind the integer-
spin criterion is that, as consequence of the gap in one of
the spin bands and as the sum of electrons in the two spin
states is an integer, the number of spin-up or spin-down
electrons is an integer too. Their difference has an integer
value, corresponding to the spin moment in units of µB.
The integer-spin criterion is a necessary, yet not sufficient
requirement for half-metals.

A more advanced classification of half-metals was intro-
duced by Coey and Venkatesan according to their electronic
and magnetic properties (Coey and Venkatesan, 2002). Five
classes of half-metallic materials (HMM) are distinguished:
half-metals that have metallic (I) or nonmetallic (II) con-
ductivity, metals (III), semimetals (IV), and semiconductors
(V). The subgroups XA and XB further denote the character
of the spin-up electrons at the Fermi level, that is, A for itin-
erant (localized in case of nonmetallic half-metals) and B for
the respective case in the spin-down band. A good indica-
tion for a type (I) HMM is metallic conductivity together
with the integer-spin rule. Examples for the different types
of HMM are: (II) Fe3O4 (magnetite); (III) La0.7Sr0.3MnO3;
(IV) Tl2Mn2O7 (Singh, 1997); and (Ga,Mn)As (V). Type
(III) La0.7Sr0.3MnO3 is considered a transport half-metal that
actually shows a finite density of states in both spin channels,
however, concerning conduction only one type of spin chan-
nel is involved (Nadgorny et al., 2001). The half-metallic
HAs belong to the type (I) HMM, and can be of subgroup
A (e.g., NiMnSb) or B (e.g., Mn2VAl).

3.2 Origin of the band gap in half-metals

Let us start by having a look at ordinary ferromagnets, which
are in general not half-metals. Co, for instance, has fully
spin-polarized d-bands with a filled spin-up 3d band and
only spin-down electrons at the Fermi level. However, the
Fermi level also crosses the unpolarized 4s band, resulting
in both spin-up and spin-down electrons at the Fermi level.
In order to reach full spin polarization at the Fermi level, it
is necessary to reorder the 3d and 4s bands by hybridization,
pushing the bottom of the 4s band above EF or depressing
the Fermi level in the d band below the bottom of the 4s

band. Consequently, all half-metals contain more than one
element.

EE

(c)(b)(a)
Ferromagnetic

metalMetal Half-metal

EF EF

N (E) N (E) N (E) N (E) N (E) N (E)

Figure 2. Spin-dependent density of states N(E) of a normal metal (a), a ferromagnetic metal (b) and a half-metallic material (c) [type
(IB)]; EF is the Fermi level. The normal metal (a) shows an equal number of electrons of spin up and spin down at EF (at 0 K). A
ferromagnetic metal (b) shows a spin polarization of the carriers at EF. In contrast, half-metallic ferromagnets show a gap in one of the
spin channels (at 0 K), that is, 100% spin-polarized carriers.
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In the case of the half-HAs, the gap basically arises from
the covalent hybridization between the lower-energy d states
of the high-valent transition-metal-atom like Ni or Co and the
higher-energy d states of the lower-valent TM atom, leading
to the formation of bonding and antibonding bands with a gap
in between. The bonding hybrids are localized mainly at the
high-valent TM atom site while the unoccupied antibonding
states are localized mainly at the lower-valent TM atom site
(Galanakis, Dederichs and Papanikolaou, 2002a).

In the case of the full-HAs, each Y atom has eight X atoms
as first neighbors instead of four as in the half Heuslers. Thus,
the hybridization between X and Y spin-down electrons, that
decreases the Y-spin moment in XYZ Heuslers, becomes
even more pronounced. The X atoms are ferromagnetically
coupled to the Y-spin moments and they possess a spin
moment significantly smaller than that of the Y atom. The sp
atom Z has a very small negative moment which is one order
of magnitude smaller than the X moment. The negative sign
of the induced sp moment characterizes most of the studied
full- and half-HAs with very few exceptions. Both half- and
full-Heusler compounds follow the Slater–Pauling curve. For
an in-depth discussion of the band gap formation due to
hybridization the reader is referred to Galanakis, Dederichs
and Papanikolaou (2002b).

Theoretical investigations suggest that, although the half-
HAs have more likely a high degree of disorder, the
consequences of this disorder on the spin polarization at the
Fermi level are not that drastic, since the half-HAs exhibit a
larger gap with respect to the full ones (Galanakis, Dederichs
and Papanikolaou, 2002b). Also, as is the case for NiMnSb, a
few percent of disorder induces states in the gap that do not
necessarily destroy the half-metallicity (Orgassa, Fujiwara,
Schulthess and Butler, 2000).

3.3 Measurement of the spin polarization

We will briefly review the methods for measuring the spin
polarization of a half-metal: point-contact Andreev reflection
(PCAR) (Soulen et al., 1998; Upadhyay, Palanisami, Louie
and Buhrman, 1998), magnetic tunnel junctions (MTJs)
(Jullière, 1975), spin-resolved photoemission (Park et al.,
1998), point-contact tunneling into a ferromagnet (Garcia,
Munoz and Zhao, 1999), and tunneling into a superconduct-
ing film (Meservey and Tedrow, 1994). For further reading,
please refer to Coey and Chien (2003). Interestingly, it was
not until 1998 that the half-metallic property of a thin film
was experimentally confirmed when Park et al. were mea-
suring the band gap in the spin-down band of manganese
perovskite by a surface sensitive technique. In fact, it is a real
challenging task to determine the difference between spin-up
and spin-down carriers in thin films. In many cases, this is

due to interface and surface problems (Galanakis, Ležaić,
Bihlmayer and Blügel, 2005), such as Sb segregation in case
of NiMnSb (Wojcik et al., 2002), where the half-metallic
properties were already confirmed in 1990 by spin-polarized
positron annihilation that has an information depth of 40 µm
(Hanssen and Mijnarends, 1986), that is, not for thin films. It
has to be noted that different values for the spin polarization
for a particular system are not only the result of experimental
shortcomings, but may also be due to the probing of differ-
ent electron states, for example, comparing photoemission
and tunneling measurements.

3.3.1 Magnetic tunnel junctions – MTJs (Jullière,
1975)

As the tunneling probability between two ferromagnetic con-
tacts depends on the relative magnetization of the contacts,
a tunnel-junction geometry can be used to extract informa-
tion about the spin polarization. However, the experimentally
accessible property is the magnetoresistance (MR), that is,
the relative difference between the resistivities of the paral-
lel and the antiparallel magnetization configuration, which is
critically depending on the interface states and barrier proper-
ties. Thus, the commonly extracted spin polarization P using
Jullière’s simple relationship MR = 2P 2/(1 + P 2) is rather
a measure of a specific device than an intrinsic material prop-
erty. An in-depth discussion of spin-dependent tunneling in
MTJs can be found in Tsymbal, Mryasov and LeClair (2003).

3.3.2 Point-contact tunneling into a ferromagnet
(Garcia, Munoz and Zhao, 1999)

As in case of MTJs, the tunneling between two ferromagnetic
leads in a point-contact geometry, that is, either between two
tips, a tip and a surface or in a lateral point-contact structure
involving a nanoconstriction, allows for the measurement
of the MR; and the extraction of a value for the spin
polarization P . Although the contacts may be difficult to
control, the method is very straightforward and permits
for the measurement of P as a function of temperature.
The temperature dependence of P , especially the commonly
observed fast decay with temperature, gives a valuable
insight into the imperfections of the material system. The
limitations of the method lie foremost in the preparation and
reproducibility of the experiment.

3.3.3 Tunneling into a superconducting film
(Meservey and Tedrow, 1994)

As in MTJs, a thin-film structure has to be fabricated,
however, now a superconducting film is replacing one of
the ferromagnetic films. Owing to the high critical field and
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the well-controlled oxide in the metal–metal oxide system,
the material of choice for the electrode is Al. However, this
requires a working temperature below 2.5 K. A magnetic field
is applied to the junction to spin split the quasi particles in
the superconductor and to saturate the magnetization of the
ferromagnet. The tunneling probability is proportional to the
convolution of the densities of states of the superconductor
and the ferromagnet, resulting in four conductance peaks.
From the four conductances, the spin polarization P can be
deduced.

The PCAR technique makes use of the fact that for an
electron to tunnel into a superconductor, a pairing electron
is required to form a Cooper pair. The process is only possi-
ble for an electron approaching the interface from the metal
side, when a hole is reflected back in the opposite spin
band of the metal. In case of a non-ferromagnetic electrode
(P = 0), the conductance is doubled in the energy range of
the superconducting gap, as all tunneling electrons can find
partners of opposite spin to form a Cooper pair. In case
of a half-metallic electrode with P = 1, no electrons are
available for forming a Cooper pair and the tunneling cur-
rent is completely suppressed. The analysis is based on the
Blonder–Tinkham–Klapwijk model of Andreev reflections
(Blonder, Tinkham and Klapwijk, 1982). By using the pro-
cedure described in Soulen et al. (1998) and Mazin (1999),
the spin polarization P can be extracted from the mea-
sured conductance–voltage characteristics using G(0)/Gn =
2(1 − P ), with G(0) and Gn the conductance at zero and
high bias voltage, respectively. When interface or surface
states are present, the entire conductance curve has to be
modeled in order to extract P . In general, PCAR can be
applied to a variety of samples and sample configurations
(foils, thin films, bulk crystals). The limitations of PCAR for
the determination of the spin polarization stem from the com-
plexity of the system. Besides the influence of the type of
transport regime–ballistic or diffusive–on P , also a depen-
dence on the effective potential barrier at the interface Z has
to be taken into account (Woods et al., 2004).

3.3.4 Spin-resolved photoemission (Park et al., 1998)

By using a spin-resolving detector for photo-excited elec-
trons, the spin asymmetry of the emitted electrons is a direct
measure of the spin polarization P . The information depth is
only 5–10 Å which makes the method prone to surface con-
tamination. The energy resolution is comparably low. The
complete band structure can be probed by performing angle-
resolved measurements for different wave vectors.

It has to be noted that, in principle, the thermally activated
mixing of spin-up and spin-down spins limits half-metallic
ferromagnetism to zero temperature (Dowben and Skomski,
2004). At finite temperatures, the spin-down density of

states is no longer vanishing. Other sources of reduced spin
polarization for bulk half-metals are, besides experimental
deficiencies, crystal defects, interfaces, and surfaces. For
example, whereas the MnSb-terminated surface of NiMnSb
has a very high spin polarization similar to the half-metallic
bulk crystal, the Ni-terminated surface exhibits a vanishing
spin polarization (Galanakis, 2004).

3.4 Candidate materials

Half-metallic characteristics have been studied primarily in
ternary compounds, such as spinels and HAs; however, also
a simple oxidelike CrO2 is a half magnet. We restrict the
following discussion to HAs for two reasons. First, they
hold the promise for epitaxial growth on compound semi-
conductor surfaces, and second, they have a large energy
gap within the spin-down band structure. The calculated
value for Co2MnSi, for instance, is about 0.4 eV (Ishida,
Masaki, Fujii, and Asano, 1998), which would be suffi-
cient for providing 100% spin polarization at room temper-
ature (kBT ∼ 25 meV). Other half-metals, such as CrO2 or
La0.7Sr0.3MnO3, exhibit a high degree of spin polarization
at low temperatures, but suffer from low Curie tempera-
tures (<500 K) and thus low magnetization at room tem-
perature. HAs, for which half-metallic behavior is predicted
for a significant number of half (Galanakis, Dederichs and
Papanikolaou, 2002a) and full (Galanakis, Dederichs and
Papanikolaou, 2002b) systems, are very promising candidates
for realizing 100% spin polarization at room temperature.
Indeed, half-metallic behavior could be confirmed experi-
mentally for many bulk crystals. Here, non-HAs will only be
listed for reference and only materials will be discussed that
are potentially interesting for forming heterostructures with
semiconductors.

Table 2 gives an overview of the theoretically pre-
dicted half-metallic compounds for which experimental spin-
polarization data exist. So far, CrO2 has been among the
highest degree of spin polarizations measured. It is a ferro-
magnetic metal with a TC = 387 K, but despite the fact that
this compound is commonly used in videotapes and cassettes,
it is metastable (Ji et al., 2001). Moreover, the problem with
most of the half-metallic oxides is their low Curie tempera-
ture (TC < 500 K). Thus, the spin polarization measured from
MR in a point contact is strongly temperature dependent, and
it becomes negligible at room temperature.

3.5 Applications of half-metals

Half-metals with their inherent spin polarization of ide-
ally 100% can be potentially used for a large variety of



8 Growth techniques

Table 2. Spin polarization data of selected half-metallic compounds (theoretical predictions) and dilute magnetic semiconductors (DMS).
References refer to spin polarization values. Other data are taken from references cited in Tables 1 and 3.

Material class Compound Magnetic Curie/Néel Ms/fu Exp. spin Reference
state temperature (K) (µB) polarization

(average)

Oxides CrO2 FM 387 2.0 90%, PCAR Soulen et al. (1998)
96%, PCAR Ji et al. (2001)

Fe3O4 FI 860 4.0 −72%, PC Coey and Chien (2003)
−80%, PE Dedkov, Rüdiger and

Güntherodt (2002)
−39%, MTJ Hu and Suzuki (2002)

Half Heusler NiMnSb FM 730 3.9 58%, PCAR Soulen et al. (1998)
50%, PE de Groot, Mueller, van Engen

and Buschow (1983)
∼50%, PE Bona et al. (1985)
40%, PE Zhu et al. (2001)
45%, PCAR Ritchie et al. (2003)
<48%, PCAR Miyoshi et al. (2006)

NiFeSb FM 2.4 100%a, inverse
PE

Ristoiu et al. (2000a)

52%, PCAR Zhang et al. (2003)

Full Heusler Co2MnSi FM 1030 5.0 ∼53%, PCAR Cheng et al. (2001)
56%, PCAR Ritchie et al. (2003)
54%, PCAR Singh et al. (2004)
<58%, PCAR Miyoshi et al. (2006)

Co2MnGe FM 905 5.0 ∼57%, PCAR Cheng et al. (2001)
Co2.4Mn1.6Ga FM 50%, PCAR Hickey et al. (2005)
Co2Cr0.6Fe0.4Al FM 665 3.7 81%, PCAR Clifford, Venkatesan, Gunning

and Coey (2004)
Co2FeGa FM >1100 5.2 59%, PCAR Zhang et al. (2004a)
Ni2MnIn FM 318 54%, PCAR von Oehsen et al. (2005)
Fe3Si FM 1.1 45%, PCAR Ionescu et al. (2005)

Perovskites (La1−xSrx)MnO3 FM 280–380 99%, MTJ Bowen et al. (2005)
Sr2FeMoO6 FI 420 −85%, MTJ Bibes et al. (2003)

DMS CdMnTe
ZnBeMnSe

FM 50–100%, PE Oestreich et al. (1999)

FM 90%, LED Schmidt and Molenkamp (2001)

FM: ferromagnet; AFM: antiferromagnet; FI: ferrimagnet; Ms: saturation magnetization; fu: formula unit; PCAR: point-contact Andreev reflection; PE:
spin-polarized photoemission; MTJ: magnetic tunnel junction; PC: point-contact tunneling into a ferromagnet; LED: spin light-emitting photo diode
configuration.
a100% above background, 67% at the Fermi level.

applications. As the current tunneling out of a ferromag-
netic material is spin polarized, the largest polarization is
obtained with half-metals. This way they can, for example,
act as the polarized current source as well as the analyzing fil-
ter in spin transistors (Johnson, 1995) or scanning tunneling
microscopes (STMs) for the imaging of magnetic domains.
Ferrimagnetic half-metallic STM tips may even solve the
problem of the perturbation of the sample magnetization due
to the tip’s stray field (van Leuken and de Groot, 1995).

However, the potential applications of half-metals are not
limited to spin-polarized contacts. For PtMnSb, an unusually
large Kerr rotation of 2.5◦ at 720 nm was observed which may
be useful for new optical applications (van Engen, Buschow,

Jongebreur and Erman, 1983). The half-metallic properties
also lead to a small plasma frequency, which enhances the
Kerr effect (Antonov et al., 1997). Moreover, half-metals will
be useful in multilayer spin-valve systems, as the very large
difference in the density of states for the two spin directions
leads to very high differences in the low and high resistance
path. For a band gap of 1 eV, one can expect MR ratios
exceeding 80% (Johnson et al., 1996). Also for magnetic
tunneling junctions that are at the heart of the MRAM cell,
where higher tunneling magnetoresistance (TMR) ratios are
desired, half-metals are predicted to outperform the competing
materials based on theory (Lu et al., 1996; Viret et al., 1997;
Mukhopadhyay and Das, 2006).
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4 EPITAXIAL GROWTH OF HEUSLER
ALLOYS

The magnetic properties of ferromagnetic contacts, such as
the magnetic anisotropy or the degree of spin polarization,
are largely influenced by the crystal structure and orientation
of the films. Although polycrystalline films can be used for
a number of applications, especially also for small electronic
structures, they are not the first choice for spintronics
applications. The epitaxy of metals on semiconductors,
that is, the growth of single-crystalline metal films with a
defined crystalline relationship to the substrate, has been an
intensive area of research for quite some time and it is well
documented in the literature (Sands et al., 1990). Although
perfect layers of epitaxial, elemental ferromagnets can be
grown on semiconductors, these contacts suffer from a small
spin polarization, which is on the order of 50% at best. The
first half-metal that was theoretically (de Groot, Mueller, van
Engen and Buschow, 1983) and experimentally (Hanssen,
Mijnarends, Rabou and Buschow, 1990) investigated was the
half-Heusler alloy NiMnSb. Epitaxial growth was achieved
on GaAs (van Roy, de Boeck, Brijs and Borghs, 2000), as
the crystal structure is very closely related to the zincblende
structure of GaAs, and NiMnSb shows a lattice mismatch of
4.4% with GaAs. In the following, we will briefly discuss the
growth techniques relevant for the epitaxial growth of HAs,
followed by a review of epitaxial HA-semiconductor hybrid
systems (for a review, see also Palmstrøm, 2003).

4.1 Growth techniques

4.1.1 Sputter deposition

The sputter deposition of magnetic films is quite common
in the magnetic device industry, as it offers the advantages
of high deposition rates and large sample throughput, low
cost, and stoichiometric equality of sputter target and grown
layer. The most common sputter gas is Ar, which is kept at
pressure in the range from 10−3 to 10−1 Torr during growth.
The background pressure in the growth chamber prior to
growth is commonly not better than 10−8 Torr, although
ultrahigh vacuum (UHV) sputter systems are employed too.
The substrates are commonly degreased and subsequently
outgassed in vacuum. The films are then sputtered from bulk
HA targets at typical r.f. sputter powers between 10 and
100 W or d.c. powers of 30 W, while the substrate is kept
at temperatures between room temperature and 500 ◦C.

So far, mostly polycrystalline HAs were grown and
structurally and magnetically characterized. Some of the high
quality HA films grown on semiconductors are:

Full-HAs, Co2MnGe on MgO(100) (Yamamoto et al.,
2006) and Al2O3 a plane with suitable metal seed layers
(Geiersbach, Bergmann and Westerholt, 2002); Co2MnSi on
GaAs (Singh et al., 2006); on glass (Raphael et al., 2001);
on MgO(100) and Al2O3 a plane with suitable metal seed
layers (Geiersbach, Bergmann and Westerholt, 2002; Singh
et al., 2004); on thermally oxidized Si (Kim, Kwon and
Kim, 2004); on MgO(100), SrTiO3(100), Si(100), Si(111),
and SiO2 with a V seed layer (Kämmerer et al., 2003),
Co2MnSi/AlOx/Co75Fe25 MTJs (Sakuraba et al., 2005a);
Co2MnSn on MgO(100) and Al2O3 a plane with suit-
able metal seed layers (Geiersbach, Bergmann and West-
erholt, 2002); Co2(Cr,Fe)Al on GaAs(001) (Hirohata et al.,
2005b), thermally oxidized Si (Inomata, Okamura, Goto
and Tezuka, 2003), MgO(001) (Kelekar and Clemens, 2004;
Marukame et al., 2005; Matsuda et al., 2006), AlOx (Ino-
mata, Okamura and Tezuka, 2004; Conca et al., 2005),
and on a-plane Al2O3 (Jakob et al., 2005); Co2MnAl on
Cr-buffered MgO(001) (Sakuraba et al., 2005b), thermally
oxidized Si (Kim, Kwon and Kim, 2004); Cu2MnAl on
MgO(100) (Geiersbach, Bergmann and Westerholt, 2002);
(Bach, Westerholt and Geiersbach, 2002), thermally oxidized
Si (Kim, Kwon and Kim, 2004); Ni2MnIn on InAs (von
Oehsen et al., 2005).

Half-HAs: NiMnSb on glass (Caballero et al., 1997),
Cu and NiFe for multilayers (Caballero et al., 1998),
Al2O3(0001) (Bobo et al., 1997), MgO with Mo buffer
layer (Ristoiu et al., 2000a; Ristoiu, Nozieres and Ranno,
2000b), GaAs (Debernardi, Peressi and Baldereschi,
2003; Debernardi, Peressi and Baldereschi, 2005);
NiMnSb/PtMnSb superlattices (Mancoff et al., 1999);
NiMnGa on silicon cantilevers (Wuttig, Craciunescu and Li,
2000); and PtMnSb on MgO(001) and W(001) (Kautzky and
Clemens, 1995); on Al2O3(0001) (Kautzky and Clemens,
1995; Bobo et al., 1997); and PtMnSb/CuMnSb multilayers
(Watanabe, Takanashi and Fujimori, 1991).

4.1.2 Pulsed laser deposition (PLD)

The PLD method involves the evaporation of a solid target
in a (ultra) high-vacuum chamber by means of high-energy
laser pulses. The strong absorption of the laser radiation
by the target surface leads to its rapid evaporation. The
evaporated material is highly exited and ionized, forming a
plasma plume of high energetic species (10–100 eV/ion). The
ablated material is then deposited onto the heated substrate
surface to allow for surface diffusion. Typically, excimer
lasers are used as the emitted wavelengths are absorbed by
a number of target materials. Other commonly employed
laser types are CO2 lasers, Q-switched Nd:YAG lasers, and
also femtosecond lasers. The PLD targets are much smaller
than sputtering targets. In order to avoid memory effects,
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the laser is scanned over the target surface. One important
feature of the PLD technique is that the stoichiometry of
the target is transferred to the growing film–a result of the
extremely fast heating rate of the target due to the pulsed-
laser irradiation. Also, as the evaporated species have a high
energy, the growth temperatures can be kept lower compared
to other methods, allowing for overgrowth of sensitive device
structures. Furthermore, by controlling the number of pulses,
the film growth can be controlled down to the atomic
level. Contrary to sputter deposition, the background pressure
during growth can be kept in a range where in situ electron
probes, like (differentially pumped) reflection high-energy
electron diffraction RHEED, can be employed.

For the growth of HAs, the only requirement is that a
large enough bulk target can be synthesized. So far, the
following HAs have been deposited onto semiconductor
surfaces: Co2MnX (X = Si, Ga, Ge, Sn, SbSn) on Si, GaAs,
and InAs (Valerio et al., 2005; Grigorescu et al., 2005);
Co2MnSi on GaAs (Autric, Valerio and Grigorescu, 2005),
Al2O3 (a plane) (Stadler et al., 2005), GaAs (001) (Wang
et al., 2005a,b; Stadler et al., 2005) and Si3N4 (Stadler et al.,
2005); NiMnSb on Si and InAs (Giapintzakis et al., 2002a,b),
Si(100) (Zhu, Lu, Lai and Ding, 2005) and InSb (Gardelis
et al., 2004; Autric et al., 2004).

4.1.3 Molecular beam epitaxy (MBE)

MBE has proven its strengths in many fields of research
and development of (opto-)electronic structures and devices
over the past decades. Materials systems for spintronics will
be no exception, as the requirement of perfect interfaces is
even tighter than in case of conventional electronics (Prinz
and Krebs, 1981). In solid-source MBE, ultrapure elemental
materials are evaporated from effusion cells in an UHV
chamber onto a heated substrate where they react. Cell
shutters in combination with rather low growth rates, as well
as in situ growth monitoring by RHEED, allows for ultimate
precision in materials growth. One big advantage over
the other methods is that reactive semiconductor surfaces
can be properly prepared under UHV conditions, rendering
them smooth and free of oxides prior to the HA growth.
Furthermore, the homoepitaxial growth of a buffer layer
in the III–V chamber guarantees ideal starting conditions,
before the sample can be transferred to a separate metal MBE
chamber in order to avoid cross-contamination.

The following HAs have been grown on semiconduc-
tor surfaces (for a review see Palmstrøm, 2003). Full-
HAs: Ni2MnGa on GaAs(001) (Dong et al., 2000, 2001;
Lund et al., 2002); Ni2MnGe on GaAs(001) (Dong et al.,
2001; Lund et al., 2002; Lu et al., 2003); Ni2MnAl on
GaAs(001) (Lund et al., 2002; Dong et al., 2003); Ni2MnIn
on InAs(001) (Dong et al., 2001; Xie et al., 2001, 2005);

Co2MnGe on AlGaAs/GaAs (Dong et al., 2005); Co2MnGe
on GaAs(001) (Ambrose, Krebs and Prinz, 2000a,b, 2001)
and Ge(111) (Tsui et al., 2006); Co2MnAl on GaAs (Chen,
Basiaga, O’Brien and Heiman, 2004; Heiman et al., 2005);
Co2MnGa on GaAs (Heiman et al., 2005; Hickey et al.,
2005; Holmes and Pepper, 2002); Co2FeSi on GaAs(001)
(Hashimoto, Herfort, Schönherr and Ploog, 2005a,b);
Co2(Cr1−xFex)Al on GaAs (Hirohata et al., 2005a,b);
Fe2AlSi on GaAs(001) (Hong et al., 1991); and Fe3Si on
GaAs(001) (Liou et al., 1993) and GaAs(113)A (Herfort,
Schönherr and Ploog, 2003; Herfort, Schönherr, Friedland
and Ploog, 2004; Muduli, Herfort, Schönherr and Ploog,
2005a; Muduli et al., 2005b,c).

Half-HAs: NiMnAl on MgO(001) (Hassdorf et al., 2003);
and NiMnSb on (In,Ga)As/InP (Bach et al., 2003a,b; Hein-
rich et al., 2004; Koveshnikov et al., 2005), GaAs(001) (van
Roy, de Boeck, Brijs and Borghs, 2000) and GaAs(111)A
and B (van Roy et al., 2003).

4.2 Epitaxial growth on semiconductor surfaces

Epitaxial growth has many advantages: control and moni-
toring of growth, defined surfaces, perfect interfaces, correct
stoichiometry. This way, in the early days of ferromagnetic-
semiconductor hybrid systems (Prinz, 1990), metastable bcc
(body-centered cubic) Co was synthesized on GaAs(110)
(Prinz, 1985). Molecular-beam epitaxy methods, and to a lim-
ited extend also sputter deposition and PLD, have been used
to grow good quality magnetic single-crystal HA films on
GaAs and Si substrates. The structural properties of the films
are commonly characterized by RHEED, XRD, transmission
electron microscopy (TEM), and anti ferro magnet (AFM).

One prerequisite for epitaxial growth of thin films on a
substrate is, besides a similar crystal structure, that both
lattice constants are closely matched. In a few cases or in
case of certain large misfit-systems, a coincidence lattice can
be formed (Trampert and Ploog, 2000). For Co2FeSi/GaAs,
the lattice constants of bulk Co2FeSi (5.658 Å) and GaAs
(5.653 Å) differ by 0.08%, which can be considered as
a small lattice mismatch allowing for epitaxial growth.
Figure 3 shows the lattice parameters for selected HAs and
semiconductor substrates.

Typically, the MBE growth of HAs starts with preparing a
defined GaAs template in a separate III–V growth chamber
using standard GaAs growth techniques. For the HA growth,
the substrate is transferred in UHV into the metal deposition
chamber. As arsenic can act as a contaminant for HAs, this
chamber is kept As free. The metallic constituents are then
codeposited from high-temperature effusion cells, where the
evaporation rates can be controlled via the cell temperatures
and are adjusted by measuring the beam-equivalent pressure
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Figure 3. Full- and half-Heusler alloy (XYZ and X2YZ) lattice
parameters as a function of the atom species X, along with the
lattice constants of semiconductors (horizontal lines).

using a Bayard–Alpert ionization gauge. In situ RHEED,
together with ex situ XRD and AFM, are used to determine
the growth mode, epitaxial relationship, lattice constants,
strain, stoichiometry, and smoothness of the films. The
structural properties of the heterostructure, and especially the
interface quality, can further be studied by high-resolution
transmission electron microscopy (HRTEM).

The material system that is best investigated in terms
of growth is the half-Heusler alloy NiMnSb (see reference
Turban et al., 2002a,b,c and references therein). A common
observation is that the number of defects is lower for higher
growth temperatures. This observation is generally true for
inert surfaces, like MgO, however, fatal for III–V semicon-
ductors, as interface reactions will play a critical role. As
a consequence, a trade-off has to be made between inter-
face and crystal film quality. Different from the growth of
III–V materials where the stoichiometry is as result of the
sticking coefficient of the group III species (within lim-
its), HAs have a wide compositional phase field. Hence, the
growth is not self-regulating and the individual fluxes have
to be adjusted very precisely (Palmstrøm, 2003). Table 3
gives an overview of epitaxially grown HAs on semicon-
ductor surfaces, listing growth temperatures, orientations,
seed layers, structural, as well as magnetic properties, if
available. No information about atomic disorder is given
in the Table. As mentioned in the preceding text, epitaxial
growth is a necessary ingredient for perfect interfaces; how-
ever, atomic disorder still remains a problem in HAs with
consequences for their potential application as half-metallic
contacts.

4.3 Characterization of an epitaxially grown
Heusler alloy: Co2FeSi/GaAs

We are now going to discuss some details of the epitaxial
growth of a full-Heusler alloy system on GaAs by MBE
(Hashimoto, Herfort, Schönherr and Ploog, 2005a). Co2FeSi
has the cubic L21 crystal structure and the lattice constant of
the bulk is 5.658 Å, which is closely lattice-matched to GaAs
(5.653 Å), yielding a lattice mismatch as small as 0.08%.
Fe3−xCoxSi shows a high stability of the cubic fcc phase
over a wide compositional range (0 < x < 2.15), which can
be used to control the magnetic properties, for example,
magnetic anisotropy and magnetic moment.

According to the Slater–Pauling rule (m = NV − 24, with
NV the number of valence electrons), a magnetic moment
of 6 µB per f.u. (formula unit) and a Curie temperature
of over 1000 K can be expected based on the number of
valence electrons (see preceding text). Indeed, Wurmehl
et al. confirmed the magnetic moment and measured a Curie
temperature of 1100 K, making Co2FeSi the half-metallic
ferromagnet exhibiting the highest Curie temperature, and
with the largest magnetic moment reported for full-HAs
(Wurmehl et al., 2006). Recent calculations of the surface
band structure of Co2MnSi predict a stable, half-metallic
Mn-terminated surface (Hashemifar, Kratzer and Scheffler,
2005). If applicable this would make Co2FeSi indeed an
excellent candidate for spintronics.

Prior to the metal growth, perfect GaAs surfaces were
prepared by depositing a 100 nm-thick GaAs buffer layer in a
separate III–V growth chamber. The growth conditions were
chosen to obtain the As-terminated c(4 × 4) reconstruction of
GaAs(001). By cooling the samples down to 420 ◦C under
As4 pressure, the formation of macroscopic defects on the
surface during subsequent metal deposition can be prevented
(Schönherr, Nötzel, Ma and Ploog, 2001). The transfer of the
samples into the As-free metal chamber occurs under UHV
conditions at a base pressure of 5 · 10−10 Torr.

The first step for growing stoichiometric Co2FeSi was
to optimize the growth conditions for the binary alloy
Co0.66Fe0.34 (bcc structure). The atomic composition of the
Co0.66Fe0.34 layers was determined by measuring the film’s
lattice constant by XRD, and by determining the deviations
from the data documented in the literature. In the next step,
for obtaining the ternary alloy Co2FeSi, Si was codeposited
keeping the Fe and Co fluxes constant at the optimized values
for Co0.66Fe0.34. For finding the optimum growth conditions,
the growth temperature was varied from 100 to 400 ◦C. As
the growth temperatures are comparably low, a small growth
rate of about 0.1 nm min−1 was chosen not to compromise
the crystal quality. As a free parameter, the temperature of
the silicon cell (TSi) was varied from 1280 to 1335 ◦C to
obtain stoichiometric Co2FeSi. The atomic composition of
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Co2FeSi was determined by high-resolution X-ray diffraction
(HRXRD), monitoring the perpendicular lattice mismatch
(�a/a) of the films using the Co2FeSi(004) reflection.

4.3.1 Structural properties of epitaxial films
(Hashimoto, Herfort, Schönherr and Ploog,
2005a)

The growth was monitored in situ using RHEED. The
RHEED pattern observed during the growth of Co2FeSi is
rather spotty at growth temperatures below 100 ◦C. With
increasing growth temperatures, the RHEED pattern grad-
ually transforms into sharp streaks with Kikuchi lines and a
Laue circle, indicating the required two-dimensional growth
mode and a well-ordered single-crystal surface.

The structural properties of the films were examined
ex situ by HRXRD using Cu Kα radiation with a Ge(220)
monochrometer and a triple-bounce analyzer crystal. Figure 4
shows ω-2θ XRD curves of the Co2FeSi(004) reflection
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3534333231
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TG = 100°C

TG = 250°C
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TSi = 1310 °C

Co2FeSi(004)

GaAs(004)

Figure 4. High-resolution X-ray diffraction ω-2θ scans for sto-
ichiometric Co2Fe2Si/GaAs(001) films around the Co2FeSi(004)
reflection for three growth temperatures from 100 to 350 ◦C. The
metal effusion cell temperatures were the same for all three films.

of stoichiometric Co2FeSi films grown at different growth
temperatures (100, 250 and 350 ◦C). For low growth tem-
peratures, higher order interference fringes are found (up
to fifth order) – a fingerprint of high crystal quality, inter-
face perfection, as well as smooth surfaces. At a growth
temperature of 250 ◦C, the number of interference fringes
decreases – a sign of a beginning crystal or interface degra-
dation. At the high growth temperature, the main diffraction
peak is broadened and also shifted to a larger reflection
angle – most likely a sign of an interfacial reaction. This
speculation was confirmed by a wide-range ω-2θ scans,
showing an additional peak at around ω = 17.3◦, which can
be ascribed to the (Co,Fe)2As(110) reflection. It is worth
noting that the growth temperature at which an interfa-
cial compound is formed is much higher than that of Fe,
Co or FeCo on GaAs, which makes Co2FeSi much more
suitable for device applications than these ferromagnetic
metals.

The atomic ordering of the film can be studied by
analyzing additional X-ray deflections, namely the (002)
and (113) reflections. For the L21 structure, three types
of reflections are allowed (Webster and Ziebeck, 1988):
(i) h, k, l are all odd (e.g., (113) reflection); (ii) h, k, l are
all even and h + k + l = 4n + 2 (e.g., (002) reflection); and
(iii) h, k, l are all even and h + k + l = 4n (e.g., (004)
reflection), where n is an integer and h, k, l are the Miller
indices of the diffracting plane. Type (iii) are the fundamental
reflections which are not influenced by disorder and the other
two are the order-dependent superlattice reflections. Type
(i) reflections are reduced to zero in the limit of complete
disorder between Si and Fe sublattices, which lead to the
reduction of the crystal symmetry to the B2 (CsCl) structure.
Type (ii) reflections, on the other hand, are reduced to zero
in the limit of complete disorder between all three sublattices
resulting in a further reduction of the crystal symmetry to the
A2 (bcc) structure.

From the ω-2θ curve around the Co2FeSi(002) reflection
and the reciprocal space map around the Co2FeSi(113) reflec-
tion of a stoichiometric Co2FeSi film (thickness: 18.5 nm,
grown at 100 ◦C), it was found that the two superlattice
reflections of the L21 structure show interference fringes.
This is an indication of long-range atomic order in the struc-
ture even for low growth temperatures. These reflections are
also observed for Co2FeSi films grown at different Si cell
temperatures, that is, different Si compositions, and differ-
ent growth temperatures. To precisely determine the order-
ing parameter, further HRXRD measurements and analysis
are necessary, accompanied by electrical resistance measure-
ments, which largely depend on the concentration of defects
and impurities in the film. Further, the perfectly oriented
vertical fringes indicate that the epitaxially grown Co2FeSi
layers are fully strained.
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Co2FeSi

GaAs
∼2 Å

Figure 5. High-resolution cross-sectional transmission electron
microscopy image of a perfect Co2FeSi/GaAs interface. The growth
temperature was 100 ◦C. The GaAs d{220} lattice spacing of 2 Å is
indicated below.

HRTEM is a powerful tool for studying the structural
properties of the interface in great detail. Figure 5 shows
a HRTEM (phase contrast) image of the Co2FeSi/GaAs
interface (Hashimoto et al., 2006). The abrupt interface
of the Co2FeSi layer grown at 100 ◦C and the GaAs
substrate is indicated by arrows. A perfect matching of
the Co2FeSi(220) and GaAs(220) atomic planes across the
interface is observed, that is, the Co2FeSi layer is coherently
strained. For films grown at higher temperatures, sharp
interfaces are no longer observed. Already at a growth
temperature of 200 ◦C, a 1–2 monolayer thick interlayer is
found resulting from interfacial reactions.

4.3.2 Magnetic properties of epitaxial films

The magnetic properties of Co2FeSi/GaAs heterostructures
were investigated using a superconducting quantum interfer-
ence device (SQUID) magnetometer. The in-plane magnetic
anisotropy was determined at room temperature by applying
an external magnetic field along the [110], [110] and [100]
directions.

Films grown at temperatures below 200 ◦C exhibit an easy
axis along the [110] direction, a hard axis along [110] and
an intermediate hard axis along [100]. Along [110], square-
like hysteresis loops with a small coercive field of 4.5 Oe
are found. The saturation magnetization Ms of stoichiometric
films is 1250 ± 120 emu cm−3, which is indeed very close to
the bulk value of Co2FeSi (1124 emu cm−3 at 295 K). This
observation is another hint that the stoichiometric compo-
sition determined from the lattice constant is correct. The
saturation magnetization decreases with increasing growth
temperature, which is consistent with the proposed alteration
of the interface due to chemical reactions. For the samples
grown at 350 ◦C, the magnetization curves become more
rounded and the angular-dependent difference becomes less
pronounced. The previously observed uniaxial anisotropy

almost disappears and the underlying cubic magnetocrys-
talline anisotropy dominates, turning the 〈100〉 direction into
the easy direction.

Further, by fitting the magnetization curves along the [110]
direction with the following expression for the magnetic field
as a function of magnetization (Dumm et al., 2000):

H(m) = 2Keff
1

(2m3 − m)

Ms

+ 2Keff
u

m

Ms

(2)

values for the cubic magnetocrystalline anisotropy term Keff
1

and the uniaxial anisotropy term Keff
u were obtained; m is

the normalized magnetization component. It was found that
Keff

u reaches a maximum for films grown at 200 ◦C, and has
smaller values for growth below and above that temperature.

To study the influence of the surface and bulk part of
the film on the magnetic properties, the effective anisotropy
constants can be decomposed into volume Kvol

u,1 and interface
K int

u,1 contributions in the following way:

Keff
u,1 = Kvol

u,1 + K int
u,1

d
(3)

where d is the thickness of the film (Dumm et al., 2000).
For Co2FeSi films grown at 100 ◦C, Keff

1 is independent of d,
indicating that Keff

1 is a volume related term, whereas Keff
u is

linearly dependent on 1/d. From curve fitting, Kvol
u is found

to be almost zero and K int
u = (7.3 ± 0.9) × 10−2 erg cm−2,

demonstrating that Keff
u is a purely interface-related term

as is observed in other FM/SC systems too. The value of
K int

u is in between those of Fe (Brockmann et al., 2000)
and Fe0.34Co0.66 (Dumm et al., 2000) on GaAs: 1.2 × 10−1

and 2.6 × 10−2 erg cm−2, respectively. Furthermore, K int
u can

be expected to be larger for higher growth temperatures. In
general, the uniaxial in-plane magnetic anisotropy observed
in FM/SC systems is anticipated to have its origin in an
anisotropic bonding at the interface (Sjöstedt, Nordström,
Gustavsson and Eriksson, 2002). The quality of the interface
is improved up to a growth temperature of slights below
200 ◦C above which interfacial reactions become limiting.
Thus, it can be concluded from the analysis of the in-plane
magnetic anisotropy that the optimum growth temperature
for obtaining a perfect interface is below 200 ◦C.

5 SPIN INJECTION FROM HEUSLER
ALLOYS INTO SEMICONDUCTOR
HETEROSTRUCTURES

As discussed in the preceding text, spin injection into a
semiconductor is key to many spintronics device ideas (de
Boeck et al., 2002). Semiconductor-based spintronics will
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potentially offer greater functionality than metal spintronics,
as the electronic properties of the systems can be easily
tuned in contrast to metals, and the integration with the
traditional semiconductor electronics seems feasible. For
instance, it was demonstrated that spin-relaxation times in
GaAs can be controlled by an electric field (Sandhu, Heberle,
Baumberg and Cleaver, 2001). However, the electronic
excitation of spin-polarized carriers in semiconductors like
GaAs or Si is still a great challenge, whereas efficient
room-temperature electric spin injection in metals has been
a reality for quite some time. It is even commercially
employed in all-metal magnetic read-heads, making use of
the GMR effect (Baibich et al., 1988; Binasch, Grünberg,
Saurenbach and Zinn, 1989). It was not until 1999 when
highly efficient spin injection into nonmagnetic GaAs was
demonstrated using magnetic semiconductors as spin aligners
(Fiederling et al., 1999; Ohno et al., 1999). Moreover, it was
found that the spin-relaxation times in semiconductors can
be orders of magnitude larger than momentum or energy
relaxation times of the electron (Kikkawa and Awschalom,
1998). Another ingredient for semiconductor spintronics,
the controlled manipulation and preservation of the spin
over lateral distances of 100 µm and more, was reported
the same year in bulk GaAs (Awschalom and Kikkawa,
1999). Recently, using simple, undoped GaAs quantum wells
in connection with dynamic quantum dots, coherent spin-
transport lengths approaching 1 mm seem possible (Stotz,
Hey, Santos and Ploog, 2005).

5.1 Spin injection into semiconductors – an
overview

The concept of a semiconductor-based spintronics device,
involving spin injection, manipulation by an electrostatic gate
via spin-orbit coupling, and spin detection, was introduced
by Datta and Das (1990). The initial step is the efficient,
electrical injection of spins into the semiconductor. Although
spin injection has already been reported by Aronov and
Pikus (1976), no convincing results on realizing a Datta-
and Das-type device by using metal or metal alloy Ohmic
contacts (e.g., NiFe) on semiconductors (e.g., InAs) have
been presented (Monzon and Roukes, 1999; Gardelis et al.,
1999; Filip, Hoving, Jedema and van Wees, 2000). Initially,
it was believed that the spin-polarized electrons in the
ferromagnetic metals are preserving their spin upon entering
the semiconductor via an Ohmic contact. Schmidt and
coworkers later realized that the conductivity mismatch in
the Ohmic contact between the metal and the semiconductor
might present a fundamental obstacle for spin injection
(Schmidt et al., 2000). For a review of this topic, see also
Schmidt (2005).

One way around the conductivity mismatch problem
is to replace the Ohmic metal injector by a magnetic
semiconductor, such as BeMnZnSe, GaMnAs, or ZnMnSe
(Fiederling et al., 1999; Ohno et al., 1999; Jonker et al.,
2001). This way, the relative resistance difference of the
spin channels is larger as compared to metal injectors, and
it can be further increased by a spin polarization close to
100%. In this case, the resistance of the materials plays no
longer a role, as the spin-injection efficiency is always unity
(Schmidt, 2005), and very large spin polarizations – up to
83% – have been reported (Jonker et al., 2001). It should
be noted that, despite the success, the practical applicability
of dilute magnetic semiconductor contacts is limited to low
temperatures (still well below room temperature) and/or high
magnetic fields.

A second approach to the conductivity mismatch problem
is to use tunnel contacts for spin injection (Rashba, 2000),
since the tunneling process is spin dependent and the tunnel
contact can have a high impedance. This way, ferromagnetic
metallic contacts with their advantages of simple fabrication
and superior magnetic properties entered the arena again.
Spin polarizations P of around 30–40% were reached in
the following Schottky tunnel contact systems: Fe/GaAs,
P = 2% observed between 25 and 300 K (Zhu et al., 2001);
Fe/AlGaAs, P = 32 and 30% at 90 and 240 K, respectively
(Hanbicki et al., 2002, 2003); Fe/AlGaAs, P = 30% at 2 K
(Adelmann et al., 2005); epitxaxial MnAs/GaAs, P = 6% at
80 K (Ramsteiner et al., 2002); Fe/InAs, P = 12% at 6.5 K
and an external magnetic field of 10 T (Ohno et al., 2003);
and Fe3Si/GaAs, P = 10% at 25 K (Kawaharazuka et al.,
2004). The last system is of great importance as Fe2FeSi
marks a step into the direction of epitaxial-HAs (almost
lattice-matched to GaAs).

One alternative to Schottky barriers is the use of
Al2O3 as an insulating tunneling barrier: (Co, Fe, and
NiFe)/Al2O3/AlGaAs, P = 0.8% for Co, 0.5% for Fe, and
0.2% for NiFe at room temperature (Manago and Aki-
naga, 2002); Fe/Al2O3/AlGaAs, P = 40% at 5 K (best case,
30% typical) (van’t Erve et al., 2004); NiMnSb/Al2O3/Al,
P = 28% (Tanaka, Nowak and Moodera, 1999); and
CoFe/AlOx/AlGaAs, P = 24% at 80 K and 12% at room
temperature (van Dorpe et al., 2003). However, it will be
extremely difficult to increase the spin polarization of these
systems due to the preparation-related issues and the elec-
tronic properties of the Al2O3-metal interface.

Crystalline MgO, on the other hand, holds great promises
as a barrier material since in CoFe/MgO(001), the majority
electron states decay slowly in the MgO barrier as evanescent
states, whereas the minority electron states decay rapidly
(Zhang and Butler, 2004). The resulting high-tunneling spin
polarization was experimentally verified to be 85% using
superconducting tunneling spectroscopy (Parkin et al., 2004).
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Recently, the group of Parkin reported spin-polarization
values of 57% at 100 K and 47% at room temperature
in FeCo/MgO(001)/GaAs (Jiang et al., 2005; Jiang, Wang,
Shelby and Parkin, 2006). By further analyzing their data in
combination with time-resolved Kerr rotation and differential
reflectivity measurements, an even higher injection efficiency
of 70% for temperatures from 10 K up to room temperature
was claimed (Salis et al., 2005).

However, it has to be noted that tunneling junctions can
only be used for spin injection in reverse bias. In a standard
planar Datta–Das–type device geometry where the tunnel
junctions are in series, it is not feasible to both inject and
detect the spins this way (Schmidt, 2005).

Figure 6 illustrates the different schemes for spin injection
into a semiconductor. In the general case of an Ohmic, fer-
romagnetic metal electrode (a), the spin-injection efficiency
is very limited due to conductance mismatch. The situation
is improved, if a half-metallic electrode is used (b); how-
ever, interface effects may drastically reduce the efficiency.
A solution for the conductance mismatch problem is tun-
neling barrier, separating the half-metallic or ferromagnetic
electrode and the semiconductor (c).

5.2 Detection of spin polarization by
light-emitting diodes

A common approach for detecting (small) spin polariza-
tions in direct band gap semiconductors, such as GaAs, are
quantum well based light-emitting diodes (LEDs) (Fiederling
et al., 1999; Ohno et al., 1999; Jonker et al., 2001). Spin-
LEDs have been used for obtaining most of the spin-injection
data presented in the previous section. Owing to the optical
selection rules for radiative recombination, the spin polar-
ization of the electrons can be extracted by analyzing the
polarization of the emitted electroluminescence (EL). In the
quantum well, two types of holes exist, heavy holes (HH) and
light holes (LH), which both may recombine with electrons
and emit photons with positive and negative helicity. In the

general case, the EL spectra do not yield the spin polariza-
tion in a straightforward way. However, in the special case of
quantum wells, the heavy- and light-hole states are no longer
degenerated because of confinement and/or strain effects. If
the heavy- and light-hole bands are separated by an energy at
least several times the thermal energy, it becomes possible to
spectrally resolve the heavy-hole emission. In the so-called
Faraday geometry, where the spin orientation and light prop-
agation direction are both perpendicular to the plane of the
LED’s quantum well, the selection rules are very simple. As
a consequence of the fact that the spin carried away by the
photon is ±1, a spin-up electron can only recombine with a
+3/2 HH (σ+ emission) and a spin-down electron only with
a spin −3/2 HH (σ− emission), respectively. The circular
polarization of the emitted light, Pcirc, is now simply given
by (I+ − I−)/(I+ + I−), where I+ and I− are the peak inten-
sities of the σ+ and σ− components, respectively (Jonker
et al., 2001). Pcirc, and the spin polarization of the electrically
injected carriers, Pspin = (n↑ − n↓)/(n↑ + n↓), are equal in
case of free exciton emission from an AlGaAs/GaAs/AlGaAs
quantum well structure (n↓ and n↑ are the number of elec-
trons of the respective spin orientation) (Jonker et al., 2000).
As the injected electrons spend a certain amount of time in
the semiconductor heterostructure before they recombine in
the quantum well, the measured spin polarization is only a
lower bound of the real spin polarization in the semicon-
ductor. Thus, for a correct interpretation of the EL mea-
surements, spin-relaxation processes have to be taken into
account (Malinowski et al., 2000). The EL measurements are
usually carried out in a temperature-controlled cryostat that is
placed in a superconducting magnet. Details about a typical
spin-LED setup can be found in (Ramsteiner, 2003).

5.3 Spin injection from Heusler alloys into
semiconductors

To achieve the goal of efficient spin injection at room tem-
perature, ideal half-metallic contacts with high Curie tem-
peratures are the material system of choice, as conductivity

(a) (b) (c)

Figure 6. Schemes of spin injection into a semiconductor: (a) Ohmic (diffusive) contact between ferromagnetic metal and semiconductor.
The spin-injection efficiency is very limited; (b) (Ohmic) contact between half-metal and semiconductor. Although the half-metallic film is
fully spin polarized, the spin polarization at the interface may be significantly lower; (c) Tunnel barrier (Schottky barrier, insulating oxide
barrier) between ferromagnetic metal and semiconductor shows an enhanced spin-injection efficiency.
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mismatch for 100% spin-polarized systems may not be an
issue. So far, only a few spin-LED systems involving HAs
have been fabricated and characterized.

The full-HA Co2MnGa has been deposited by MBE onto
the GaAs spin-LED structure (Hickey et al., 2005). The
InGaAs quantum well was located 300 nm below the surface
and the HA was in contact with an AlGaAs layer, forming a
Schottky barrier. The growth of the III–V material and metal
film was carried out in two separate chambers, requiring that
the GaAs device was capped with As prior to the transfer
into the metal chamber. Note that instead of a film with the
ideal Heusler alloy stoichiometry Co2MnGa, a film with the
composition Co2.4Mn1.6Ga was grown. The spin polarization
of the injected electrons was determined to P = 13% at 5 K;
and P disappears already at 20 K. The spin polarization,
determined at 6 K by the PCAR technique employing a
Nb tip, yielded a transport spin polarization of about 50%.
The authors attribute the discrepancy between the measured
transport spin polarization and the spin injection to interfacial
disorder.

Another full-Heusler system, Co2MnGe, was also grown
by MBE on a AlGaAs spin LED involving a GaAs quan-
tum well (Dong et al., 2005). The spacing and intensi-
ties of the RHEED streaks suggest that Co2MnGe grows
in the (001) orientation and an L21-like crystal structure
(Dong et al., 2003). The maximum steady-state spin polar-
ization measured at 2 K was 13%, while the injected spin
polarization was calculated to be 27% based on a cali-
bration of the spin detector using Hanle effect measure-
ments. In both experiments, an otherwise identical Fe elec-
trode control structure was grown (spin polarization 40%
at 2 K). Compared to this structure, the spin polarization
injected from Co2MnGe decays more rapidly with increas-
ing temperature and despite the Curie temperature of 905 K,
Co2MnGe structures show no spin polarization at room tem-
perature (compared to 15% at room temperature for Fe
structures). Due to the small gap for minority spins in the
calculated band structure of Co2MnGe and the slight dis-
order observed in TEM, the lack of half-metallic behav-
ior is not too surprising. Consequently, HAs with a larger
minority-spin gap, such as Co2MnSi, may be more effective
injectors.

5.4 What next? Necessary experiments and device
concepts

First of all, magnetic materials with a close to 100% spin
polarization will definitely be crucial for future spintronic
devices. This does not necessarily mean that spin polariza-
tions of 100% are absolutely required, although they are

intriguing. So far, the race for the best spin injection mate-
rial is still too close to call. The future success of HAs
largely depends on the ability to control disorder and on
a theoretical treatment of the complex problem of disor-
dered interfaces at nonzero temperature that is absolutely
necessary.

However, once the problem of spin injection is solved,
there is a multitude of new device concepts on the hori-
zon (Zutic, Fabian and Das Sarma, 2004). Especially the
spin transport in inhomogeneous semiconductors, like p-n
junctions, holds great promises (Das Sarma, Fabian, Hu
and Zutic, 2001). In a recent study of p-n junctions in
which nonequilibrium spins are introduced into one (or both)
regions (p and n), it was shown that the spin be transported
(under an external bias) through the space-charge region sep-
arating the p and n regions. Moreover, the spin gets amplified
when crossing the space-charge region. Other phenomena
that have been demonstrated are the increase of an effective
spin diffusion range in the p–n junction, the possibility of
generating spin current in a spin-polarized solar cell, and an
all-electronic control of spin (spin capacitance effect) (Zutic,
Fabian and Erwin, 2006).

6 CONCLUSIONS

The future of advanced spintronic devices, like the spin tran-
sistor, relies on the efficient spin injection from a ferromagnet
into a semiconductor, the scattering-free transport, manipula-
tion, and detection of the spin-polarized current. These tough
requirements make it necessary to use a growth method for
the epitaxial single-crystalline magnetic film/semiconductor
heterostructures that allows for extremely precise control
of the growth process. In general, MBE has proven to be
the method of choice when perfect interfaces and access to
the structural properties of the growing film are required.
HAs on III–V compound semiconductor surfaces are very
promising combinations of ferromagnetic and semiconduct-
ing materials. They combine the ability to be grown epi-
taxially and to yield Curie temperatures well above room
temperature. Moreover, some of them are most likely half-
metallic ferromagnets with a degree of spin polarization of, or
at least close to 100%. One caveat, however, is the inevitable
problem of atomic disorder in these ternary material sys-
tems, as they exhibit a structural instability due to the fairly
broad free-energy minimum. Thus, before spin transistors
will become a reality, a number of problems have to be
addressed in a joint effort of materials science, physics, and
device engineering. The most prominent being the need to
understand in detail, and consequently improve, the spin-
injection probability from the ferromagnet into the unpolar-
ized semiconductor.
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nel magnetoresistance in nanojunctions based on Sr2FeMoO6.
Applied Physics Letters, 13, 2629–2631.

Binasch, G., Grünberg, P., Saurenbach, F. and Zinn, W. (1989).
Enhanced magnetoresistance in layered magnetic structures with
antiferromagnetic interlayer exchange. Physical Review B, 39,
4828–4830.

Blonder, G.E., Tinkham, M. and Klapwijk, T.M. (1982). Transition
from metallic to tunneling regimes in superconducting micro-
constrictions - excess current, charge imbalance, and super-
current conversion. Physical Review B, 25, 4515–4532.

Bobo, J.F., Johnson, P.R., Kautzky, M., et al. (1997). Optical spec-
troscopy investigations of half metallic ferromagnetic Heusler
alloy thin films: PtMnSb, NiMnSb, and CuMnSb. Journal of
Applied Physics, 81, 4164–4166.

de Boeck, J., van Roy, W., Das, J., et al. (2002). Technology
and materials issues in semiconductor-based magnetoelectronics.
Semiconductor Science and Technology, 17, 342–354.

Bona, G.L., Meier, F., Taborelli, M., et al. (1985). Spin polarized
photoemission from NiMnSb. Solid State Communications, 56,
391–394.
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1 INTRODUCTION

Magnetic materials cover a very wide range of substances
starting from pure elements to intermetallic compounds and
oxides up to molecular magnets. Magnetic materials are usu-
ally applied as polycrystalline (often textured) bulk solids or
as thin films. The main purpose for studying single crys-
tals is to provide unique physical data for understanding
the bulk properties of magnetic materials or selected con-
stituent phases as a function of their crystallographic orien-
tation and composition. This is of outmost importance for
optimization of production routes of textured transformer
sheets, anisotropic hard magnets, or textured thin films,
because the relevant parameters can only be derived from
the single-crystalline specimens. Another important aspect

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 3: Novel Tech-
niques for Characterizing and Preparing Samples.  2007 John
Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

is the study of magnetization processes, which depend sen-
sitively on the stoichiometry, impurity content, and den-
sity of structural defects (apart from grain boundaries) and
require well-prepared single crystals. Complex crystallo-
graphic structures or magnetic ordering of compounds, which
are constituents of the magnetic materials, are preferably
studied on single-crystalline specimens of various sizes. In
polycrystalline or multiphase samples, many of these fea-
tures inferred from X-ray or neutron diffraction patterns are
often hidden because of disturbing reflections from accom-
panying phases. Single crystals with an optimum orien-
tation are suitable only for special commercial purposes
such as magnetostrictive materials for high-performance
devices.

Generally, despite the numerous publications on properties
of single-crystal specimens of magnetic metals, alloys and
compounds, information about crystal growth methods and
the appropriate process parameters is often scarce. There-
fore, in this chapter, special emphasis is devoted to the
various methods for single-crystal preparation of magnetic
materials and the appropriate process parameters. One par-
ticular concern is the tight correlation between the growth
method applied and the alloy phase diagram, which provides
decisive information for the choice of operating tempera-
ture, feed rod composition, and other growth conditions.
Some fundamental aspects and more details about the growth
methods themselves can be found in the excellent hand-
books (Wilke and Bohm, 1988; Hurle, 1994). Owing to
the wide spectrum of existing magnetic materials and the
abundance of previous measurements, we can only refer to
some particularly important examples of properties deter-
mined from single crystals. We refer to the other chapters
of this comprehensive handbook and previous textbooks
(e.g., Kneller, 1962) for more details on measured magnetic
quantities.
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2 PHASE DIAGRAMS AND CHOICE
OF GROWTH METHODS

The growth methods, applicable to a specific magnetic mate-
rial are determined by the desired size and degree of perfec-
tion of the single crystal and also by the phase diagram of
the alloy system or in the case of flux growth, even by multi-
component phase diagrams, which involve possible solvents.

Among the various magnetic materials we can differentiate
between pure elements (iron, rare earths), alloys (Fe–Si,
Fe–Ni), binary (FePt, TbFe2, Y2Fe17) or quasibinary solid
solution compounds (Dy1–xTbxFe2), and multicomponent
compounds (Nd2Fe14B) or oxides (RMn2O5). As different
as the materials themselves, are the phase diagrams of the
alloys. Within this section, we therefore can only show a few
typical examples of phase diagrams important for magnetic
materials and discuss their consequences for crystal growth
with special emphasis on growth from the melt.

Figure 1 displays the phase diagram of the Fe–Si system.
It not only contains an element with a solid-state transforma-
tion Fe (other examples are Dy, Gd) but also shows Fe–Si
solid solutions (for transformer sheets) and ordered inter-
metallic compounds such as the congruent melting binary
compound FeSi.

Pure iron crystallizes on cooling the liquid at 1538 ◦C as
the bcc δ phase. At 1394 ◦C it transforms into the fcc γ phase
and subsequently at 912 ◦C into the bcc α phase, which has

same crystal structure as the δ phase. Finally, a ferromagnetic
ordering transition takes place at 770 ◦C. This sequence of
phase transitions doesn’t allow the growth of perfect single
crystals (growth from the melt results in a well-pronounced
substructure). Therefore, for single-crystal growth of pure
Fe a method has to be used which operates below the
lower transition temperature (912 ◦C). In contrast, the Fe–Si
solid solutions at concentrations >3.8 at% Si undergoes no
phase transformation and therefore can be grown directly
from the melt by different methods like Bridgman growth,
zone melting in a crucible, floating zone (FZ) melting,
and Czochralski (CZ) growth. The same statement holds
for the intermetallic compound FeSi. In those cases, only
the desired dimensions, purity, and physical perfection of
the crystals decide about the preferred method for crystal
growth.

The phase diagram Fe–Pt (Figure 2) exhibits complete
solid solubility of the fcc γ -(Fe,Pt) phase at elevated
temperatures apart from the small Fe-rich region (<5 at%
Pt). The crystal growth from the melt of the γ -(Fe,Pt)
phase can be accomplished by various growth methods
(Bridgman growth, CZ, FZ). However, depending on the
composition the γ -(Fe,Pt) crystal can undergo different
ordering transitions. For example, around 50 at% Pt the
tetragonal γ 2-FePt phase forms below 1300 ◦C via a solid-
state ordering process from the disordered γ -(Fe,Pt) crystal.
A growth directly from the melt of the ordered γ 2-FePt
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phase, which is interesting for magnetic recording media,
is not possible. Single crystals of γ 2-FePt can be prepared
by a strain-anneal treatment below the ordering temperature
as described in Section 4.2.1.

In the Fe–Tb system (Figure 3) all binary phases melt
incongruently, that is, by formation of a new solid phase and
a melt of different composition. For example, heating the
Fe17Tb2 phase to 1312 ◦C the reaction Fe17Tb2 = γ -Fe + L
takes place. This means that the phase Fe17Tb2 cannot coexist
with a stoichiometric melt of the same composition. Direct
growth of Fe17Tb2 is possible from a melt of a composition
within the so-called primary crystallization field ranging from
17 to 21 at% Tb. The use of a FZ method is favorable with a
liquid zone composition in this range. Because Tb in this case
acts as a solvent, the method is known as traveling solvent
floating zone (TSFZ) method.

Similar relations can be found in the phase diagram
of Nd–Fe–B. This system is interesting because of the
anisotropic magnetic phase Nd2Fe14B (�), which has out-
standing importance in permanent magnetic materials. A
binary section at a Nd:B ratio of 2:1 is shown in (Figure 4).
Crystal growth by TSFZ appears to be preferable due to the
high sensitivity of the neodymium to oxidization and reac-
tions with crucible materials. A detailed description is given
in Section 4.2.2.

3 METHODS OF CRYSTAL GROWTH

The phase diagrams of the alloy systems of magnetic
materials can show different types of phase formation (see
Section 2): congruent melting compounds, peritectically
melting compounds, and phases, which are not in equilibrium
with the melt. As a result, quite different techniques must be
used for single-crystal growth. Each method provides crystals
of a characteristic size and morphology, chemical purity, and
crystalline perfection.

Two main approaches can be used for the growth of
magnetic single crystals, namely, the growth from a solid
or a liquid phase. A growth from the gaseous phase was
also used for selected materials but does not play an
important role. The smallest samples, often used for a
crystal-structure analysis, are simply obtained from arc
melted alloy ingots. Their size may be only a few tens of
micrometers, but can even reach nearly 1 mm. In order to
perform magnetic, electrical, or other physical measurements
single crystals with dimensions of several millimeters are
needed. Still higher requirements on dimensions are valid
for crystals with commercial applications (cf. Section 4.3.2).
For preparation of such ‘big’ single-crystalline samples
specific crystal growth techniques are employed. A short
description of growth methods along with some details
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related to the crystal growth of magnetic materials is given
in the following text. The fundamentals of crystal growth
and detailed information about the methods can be found

in the excellent handbooks (Wilke and Bohm, 1988; Hurle,
1994).

3.1 Crystal growth from the solid phase

One possible method to grow relatively large and very pure
single crystals of phases which do not coexist with the
melt, for example, α-Fe, α-Gd, and α-Dy (cf. phase dia-
gram Figure 1 for Fe), is the growth from a solid phase by
a recrystallization technique. Annealing of a polycrystalline
sample at elevated temperature below the phase transition
leads to coarsening of crystallites by grain growth. In order
to enhance the grain growth process, which is driven by
the reduction of grain boundary energy, internal stress, and
entropy of disorder, a controlled deformation of the sam-
ple prior to annealing can be carried out which increases
the density of defects (strain-anneal technique). This pro-
cess was first described for aluminum by Sauveur (1912).
Furthermore, annealing in a temperature gradient improves
the formation of large and perfect grains. The purity of the
material plays a crucial role in this process. At elevated
temperatures, impurities can segregate to grain boundaries
and therefore lower their mobility. Details about the crystal
growth of iron and some rare-earth metals will be given in
Section 4.1.1.
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3.2 Flux growth

The flux growth method is crystal growth from a melt
in which the constituents of the material to be grown are
dissolved. The most important advantage of using a flux is
that the process temperature can be below the melting point
of the desired single crystal. As a result, appropriate crucible
materials can by easily found and, as for chemical vapor
transport, high-temperature phase transitions, or incongruent
melting can be circumvented. Therefore, the technological
effort can be reduced compared with the plain melt growth
methods. The main shortcomings of the method are the
degraded purity of the grown crystals (due to incorporation of
the flux material) and their small size. The principal problem
to be solved in this method is the choice of the solvent. The
properties desirable for the solvent are:

1. The compound to be grown is the only stable solid phase
in the flux under growth conditions.

2. The solubility of the components of the crystal to be
grown should not be too low and should decrease with
falling temperature.

3. The melting point of the flux material must be much
lower than the stability limit of the crystal to be grown.

4. A very low solubility of the solvent elements in the
grown crystal is desirable (at least incorporated elements
should not affect the measured properties).

5. A crucible material must exist, which does not react with
and is not wetted by the melt solution.

6. The viscosity of the solution should be low, preferably
in the range 10−3 –10−2 Pa s.

7. The solidified residual melt should be easy to separate
from the grown crystals.

Single crystals of multiferroic compounds, for example,
RMn2–xFexO5 and RMn2–xCoxO5 oxides (R = Y, Tb, Ho)
have been grown from a PbO/PbF2 flux. The solubility
of the different components in the flux can be roughly
estimated from binary phase diagrams. Unfortunately, the
multicomponent phase diagrams in most cases have not been
studied yet. Platinum is a good candidate as the crucible
material for PbO/PbF2 fluxes.

The growth process must be performed in a well-defined
atmosphere (oxygen partial pressure) in a furnace with
a good thermal stability and well controlled temperature.
Chamber furnaces with a controllable atmosphere usually
meet the requirements. The weight ratio between solvent
and growing material varies in a wide range depending
on the multinary phase diagram of the complex systems.
The crystal growth takes place with slow cooling of the
furnace. After heating to a maximum temperature and waiting
for equilibrium the temperature is slowly decreased with
a rate of a few degrees per hour. Spontaneous nucleation
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Figure 5. Typical temperature program for flux growth with a tem-
perature oscillation in the metastable region below the liquidus
temperature TL around the melting point TM: 1–constant linear
growth, 2–constant cooling rate, 3–maximum stable growth rate.
(Reproduced from Scheel et al., 1972, with permission from Else-
vier.  1972.)

occurs first and one has to control the number of nuclei
in order to obtain only a few large single crystals during
subsequent growth. In order to minimize the number of
growing nuclei, a temperature oscillation technique during
the starting phase of the cooling can be used (Scheel and
Elwell, 1972). A typical programmable temperature–time
regime for the flux growth is shown in Figure 5. Depending
on the crystal/solvent system, either variable cooling rates
with a constant linear growth rate or a constant cooling
rate or a maximum stable growth rate can be applied
during crystallization. A detailed description is given by
Scheel and Elwell (1972). The residual solvent can be
removed from the crystals by treating samples in different
etching solutions, which do not dissolve the crystals, or by
crucible rotation in the hot stage to remove the solvent from
the crystals grown at the bottom or at the walls of the
crucible. Another variant called flux creep method applied
for the growth of Sm–Fe crystals will be described in
Section 4.2.3.

A second method to produce single crystals from a melt
solution of the components is the traveling solvent method.
An alloy consisting of the components of the compound to
be grown and the solvent forms the liquid zone, which is
moved through the material at a very low rate. The use of a
seed for growing oriented crystals is possible. Other details
related to the crystal growth of refractory compounds from
the flux can be found in the comprehensive review of Gurin
and Korsukova (1983) who analyzed the complete process.
The crucible-less TSFZ method is described together with
the FZ method due to the similarity of the methods.
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3.3 Crystal growth from the melt

Samples needed for crystal-structure investigations can be
usually very small with a size of a few tens of micrometers.
Such small single-crystal fragments of about 40 × 45 ×
15 µm3 can be extracted from polycrystalline arc melted
and heat treated samples if the phase diagram allows this
synthesis of the compound. The elements are melted in a
water-cooled copper heart in purified argon at a pressure
of about 0.6 bars. The melting procedure must be repeated
several times in order to improve the alloy homogeneity. For
further homogenization and grain coarsening the samples can
be subjected to an annealing treatment with an annealing
temperature as close as possible to the stability limit of the
phase. Finally, single-crystalline specimens can be cut out of
large grains of the button.

A growth from the melt of elemental components is the
most common approach to prepare big single crystals of
intermetallic magnetic compounds. In order to decide which
particular method can be used, an exact knowledge of the
phase diagram, the partial pressures of the components at
the melting temperature, and the reactivity of the melt with
the crucible material and the environmental atmosphere is
necessary. The following methods for crystal growth of mag-
netic materials from the melt are used depending on their
phase stability and melting temperature: FZ melting, hori-
zontal FZ melting with levitation in a cold crucible, vertical
container zone melting, CZ method, Bridgman–Stockbarger,
and Tamann–Stöber method. The main advantage of the
growth from the melt is an opportunity to obtain large sin-
gle crystals (up to several cubic centimeters), which can be
analyzed by various techniques including magnetic and elec-
trical transport measurements for particular crystallographic
directions. In principle, crystals can be grown from the melt
of all compounds which are stable up to the melting point
and which melt congruently or even incongruently with a
melt composition not too far from the compound stoichiom-
etry. The basic concept to be considered in all methods of
directional solidification from a melt is the morphological
stability of the solid–liquid phase boundary connected with
constitutional supercooling (Rutter and Chalmers, 1953).

A possible instability of the moving solid/liquid interface
is caused by the formation of a steady state boundary
layer with alloy component enrichment near the interface
due to deviations of the crystal stoichiometry from the
melt composition described by the distribution coefficient
k = cS/cL < 1 (or k < 1) determined from the solidus
(cS) and the liquidus (cL) concentration of the equilibrium
phase diagram (cf. Section 2). Constitutional supercooling
occurs if GL < m·GC , where GL is the temperature gradient
in the liquid near the solid/liquid interface, GC is the
solute concentration gradient in the steady state diffusion

boundary layer of the liquid phase, and m is the liquidus
slope in the equilibrium phase diagram. In the steady state
conditions of unidirectional solidification, with a planar
solid/liquid interface, this gradient is (Tiller, Jackson, Rutter
and Chalmers, 1953):

GC = (1–k)

k
·N∞·V

D
(1)

where N∞ is the solute concentration in the melt far from
the solid/liquid interface, V is the growth rate, and D is
the solute diffusion coefficient in the melt. Because of the
lack of exact experimental data for melts of the various
magnetic materials the simple approach of equation (1)
seems to be appropriate to describe the phenomenon. Any
unstable solid/liquid interface leads to a cellular growth with
undesired second phase formation. While k and D are fixed
by the alloy system a high-temperature gradient GL must
be realized by the design of the crystal growth facility.
Moreover, the pulling rate V must be chosen to be as low as
necessary to guarantee a stable growth. The various demands
discussed, can be fulfilled using one of the wide variety of
growth methods.

The Tamann–Stöber method is characterized by melting
the material in a vertical crucible. The crucible is located in
a temperature zone with a gradient so that on slow cooling
the melt at the bottom of crucible crystallizes first. For a
convenient seed selection the bottom of the crucible usually
ends in a rounded tip with a small radius of curvature. This
method is also referred to as vertical gradient freezing (VGF)
method. The Bridgman technique uses a relative translation
of the crucible containing a completely molten material to
an axial temperature gradient in a furnace. In the crystal
growth of magnetic materials, mainly vertical configurations
shown in Figure 6 are used. The temperature gradient near
the solid/liquid interface can be made more stable and steeper
applying the vertical Stockbarger configuration consisting of
two furnaces with different temperature levels divided by an
adiabatic loss zone as illustrated in Figure 7. The crucible
is moved into the temperature gradient zone with a velocity,
which must be controlled very well.

A problem of general interest in all crucible methods is
the choice of the crucible material. It must be chemically
inert with respect to the melt, should not be wetted by the
melt, and should have a thermal expansion coefficient less
than the crystal itself. Depending on the material to be grown
graphite, graphite covered with boron nitride, alumina, boron
nitride, quartz, and Al2O3-supported silica as well as open or
welded molybdenum and tantalum crucibles are used. Melts
of metallic magnetic materials usually react with oxygen,
and oxides contaminate the crystal and disturb the grain
selection and growth process. Therefore, an inert atmosphere
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Figure 6. Vertical Bridgman method and related temperature pro-
file. (Reproduced from G. Behr et al., 2000, with permission from
Springer-Verlah GmbH.  2000.)
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Figure 7. Vertical Stockbarger configuration and related tempera-
ture profile. (Reproduced from G. Behr et al., 2000, with permission
from Springer-Verlah GmbH.  2000.)

of purified argon or helium and in some cases high vacuum
conditions must be realized in the growth chamber.

CZ growth by crystal pulling from a melt contained in
a crucible is a widely used method in research and indus-
try. It is schematically illustrated in Figure 8. The apparatus
consists of the following components: (i) a crucible, which
can be rotated, (ii) the upper pulling shaft, which enables
a rotation and has a stable velocity, (iii) the heater, and
(iv) a vacuum containment. Seed crystals are used if avail-
able. The choices of the crucible material and the atmo-
sphere have to meet the same requirements as discussed for
the Bridgman method. To avoid contamination from cru-
cible material CZ growth of magnetic materials is often
carried out using a tri-arc or tetra-arc configuration with a
water-cooled copper hearth in an atmosphere of argon. It
can also be applied in a scull-like configuration, where a

Melt

Pull
rod

Seed

Crystal

Envelope

Crucible

TTM

RF coil

Figure 8. Czochralski method of the crystal growth and related
temperature profile. (Reproduced from G. Behr et al., 2000, with
permission from Springer-Verlah GmbH.  2000.)

skull of unmelted material remains between the cold-copper
hearth and the melt. To avoid any contact with the crucible
for refractory and highly reactive materials like rare earths
and rare-earth-containing compounds, radiofrequency (RF)
inductive heating in a Hukin-type copper cold crucible is
also utilized.

A common procedure to allow the growth of only one
crystallite in all pulling methods is the bottleneck technique.
Starting from a polycrystalline seed, the diameter of the
growing crystal is reduced to a minimum followed by enlarg-
ing the diameter to the normal rod size. In the narrow part of
the crystal only a few or sometimes one single crystallite can
propagate. Otherwise, a growth process without seed can be
performed starting with the polycrystalline material, which
provides many small seeds for further growth.

Zone melting originally described by Pfann (1952) for
purification of metals has been widely developed and used
as a commercial growth technology in the past 50 years. In
this method, only a relatively narrow zone of a cylindrical
rod is molten and the zone travels from one end of the rod
to the other one. It can be realized as a horizontal or vertical
arrangement in containers or as crucible-free zone melting
(FZ). The FZ method is normally preferred for refractory
and highly reactive materials for which no crucible material
is available.

A variety of zone melting techniques evolved with hori-
zontal and vertical configurations, single and multiple heating
zones (Pfann, 1988). The most common technique is to use
a long horizontal crucible or boat to contain the material.
A seed crystal is placed at one end and a molten zone
is produced so that the end of the seed is just melted.
The zone is then traversed away from the seed along the
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Figure 9. Floating zone (FZ) method and related temperature
profile. (Reproduced from G. Behr et al., 2000, with permission
from Springer-Verlah GmbH.  2000.)

length of the boat. This method can lead to contamina-
tion from the boat and thus the system has been turned
through 90◦ to give a vertical FZ. In this case, the molten
material is prevented from falling down by surface tension.
The molten zone is traversed up or down along the rod. In
this form, it is a crucible-less technique of crystal growth
and is called floating zone technique schematically shown in
Figure 9.

There are different possibilities to heat the zone. In the
past, the heat was often supplied to the molten zone using
specially shaped RF coils. Apart from RF heating, halogen
lamps, arc discharge, electron beam, and laser heating have
been used in FZ techniques (Feigelson, 1985). In the case
of RF heating, the coils are usually a single or double turn
and the electromagnetic field couples directly to the material.
This makes it easy to design different coil forms to obtain
the correct shape of the growing interface so that a proper
crystal is obtained. The main limitation of the RF heating
is the necessity of electrical conductivity of the melts. For
some materials with insufficient electrical conductivity at low
temperatures a preheater is often used.

The use of arc discharge or halogen lamps has been very
successful in growing plenty of different materials. Either an
elliptical horizontal or vertical optical mirror configuration
can be used, where the arc or halogen lamp is at one focus
of the mirror and the FZ is at the other one. The growth
usually proceeds inside a transparent holder so that gas
supplies can be used to operate under inert, oxidizing, or
reducing atmosphere. Thus, this method can be summarized
as a moving melt zone method in which the crystal rotation
is optional. It is distinguished by a small melt volume and
usually relatively large temperature gradients.

Commercial systems with optical (radiation) heating spe-
cially designed for FZ growth are available only from the
following companies: NEC (single- and double-ellipsoid

mirror furnaces), Crystal Systems, Inc. (four-mirror furnace)
in Japan, MPEI (open vertical ellipsoid configuration with
aperture) in Russia, GERO in Germany and Cyberstar in
France (single- and double-ellipsoid mirror furnaces). Mainly
elliptical mirrors are used to focus the light from one or sev-
eral lamps onto the sample. The light sources mostly used
are either tungsten halogen lamps of 0.3–1.5 kW maximum
power or xenon arc discharge lamps up to 10 kW for high
power requirements. In all cases, lamp bulbs made of fused
quartz are employed.

A disadvantage of mirror furnaces is the fact that temper-
ature measurements during growth are quite difficult. A non-
contact measurement of the sample temperature by pyrometer
is virtually impossible due to the much higher level of light
reflected versus radiation emitted from the sample. Feedback
control of image furnaces is quite uncommon; in the case of
FZ growth, the zone is usually controlled by visual observa-
tion of the sample and manual regulation of the power.

Three typical apparatuses for FZ growth are shown in
Figure 10. The shape and stability of the molten zone play
an important role in FZ melting. The molten zone is hanging
free, between the two rods, and its length is limited to
approximately the rod diameter for diameters up to 10 mm
used for crystal growth of most magnetic materials. To
maintain a convex solid/melt interface, which is necessary for
proper grain selection (especially for the growth of peritectic
melting compounds with small growth velocities, see also
Section 4.7), the optical systems are preferable to RF heating
due to the strong energy absorption at the surface. The RF
power, by contrast, penetrates into the material depending on
its electrical resistivity and the frequency of the RF generator
applied.

In case of intermetallic compounds special attention has
to be paid to the gas purity in the growth chamber. A
common way is the use of purifying systems with heated
titanium, zirconium, or alloys of these elements. The gas
purity can be controlled by measuring cells with ZrO2 as
sensor material.

Two special features connected with the crystal growth
of magnetic materials, especially with rare-earth-containing
compounds, silicides and borides, should be mentioned.

First, the purity of the constituent components plays a
key role in the growth process especially of intermetallic
compounds because oxide particles hinder the grain selec-
tion very severely. The metals used for preparation of mag-
netic materials often do not compete with the high purity
of semiconductors. Special attention has to be paid for the
purity of rare-earth elements. In some commercially avail-
able materials undefined oxygen contents are present and
sometimes up to about 1% tantalum is present as a relic of
the preparation process. The choice of the appropriate sup-
plier is of principal significance. In some cases purification
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Figure 10. FZ crystal growth equipment with the quadro-mirror horizontal optical heating (CSI Japan) (a), double mirror vertical optical
heating (MPEI Moscow) (b), and horizontal RF heating (IFW Dresden) (c).

by distillation or electromigration is possible and should be
applied. The best results in growing of special rare-earth-
containing intermetallic compounds were achieved using rare
earths from the noncommercial supplier Ames Laboratories.

Secondly, silicothermic or borothermic reactions of oxy-
gen traces with silicon or boron can arise. The reactions
have the desired effect of melt refining but also shift the
composition and therefore must be taken into account dur-
ing preparation. The consideration of the oxygen content in
materials is described, for example, in Behr et al. (1985).

The silicothermic and borothermic reactions of all oxide
traces in the materials follow the scheme

MeOx + (2 + x/2)Si = MeSi2 + x/2SiO2 or

MeOx + (2 + 2x/3)B = MeB2 + x/3B2O3 (2)

SiO2 + Si = 2SiO and B2O3 + B = 3BO (3)

Complete evaporation of SiO takes place in vacuum at
temperatures above 1000 ◦C and for BO above 1500 ◦C.
During growth in an argon atmosphere these temperatures
change to 1400 ◦C and about 1600 ◦C.

One typical preparation route of starting materials and
of feed rods for FZ melting and the TSFZ method is the
follows:

First, special attention has to be paid to obtain suitable start-
ing materials. This includes an overall purity not less than
3N and especially a low content of oxygen (often not speci-
fied by manufacturers). To reduce the oxygen contamination
for rare-earth elements bulk material is favorable.
Second, the materials must be stored and handled under clean
conditions mainly in glove boxes operating with purified
argon, and all melting processes should proceed under
purified argon or helium gas.

The alloying of compounds is possible in arc-melting facil-
ities. Compounds with less reactive components can be
melted in crucibles, too. For crystal growth by FZ or by
TSFZ techniques feed rods of good homogeneity are neces-
sary. The most effective method to obtain such rods is the
use of a Hukin-type cold crucible equipped with a casting
mould (see Figure 11). In this case the elements and the
hot melt do not contact the crucible but levitate inside the
water-cooled crucible. The melt is very effectively stirred
by the electromagnetic force generated from the coil con-
nected with HF generator (in the shown case 100 kHz, 50 kW,
Hüttinger, Germany). After alloying the melt is cast into a
water-cooled copper mould with 6 or 8 mm diameter. As
long as the melt crystallizes radially, no macrosegregation
is observed and the feed rods exhibit excellent homogeneity
along the axis.



10 Growth techniques

Figure 11. Hukin-type cold crucible equipped with a casting
mould.

4 CRYSTAL GROWTH OF SELECTED
MAGNETIC MATERIALS

4.1 Crystal growth of soft magnetic alloys

The free energy of a ferromagnetic crystal depends on the
orientation of the spontaneous magnetization relative to the
crystal axis. This phenomenon is known as the magne-
tocrystalline anisotropy and is displayed in the orientation
dependence of the magnetization. Therefore, single crystals
of magnetic materials are necessary to investigate this depen-
dence in detail.

4.1.1 Pure metals

The 3d metals Co, Ni, Fe, and 4f metals Gd, Tb, Dy, and
Ho (highest magnetic moment) are typical representatives of
soft magnetic metals.

Both pure cobalt and nickel melt below 1500 ◦C and do not
exhibit crystallographic phase transformations above 450 ◦C.
So crystal growth can be realized directly from the melts in

crucibles by Bridgman technique, CZ growth, and by zone
melting in crucibles or as FZ melting.

Nickel and cobalt had been grown using Bridg-
man–Stockbarger technique by da Andrade and Henderson
(1951) and by Šestak (1957). Alumina crucibles were used
and the growth process was carried out in a hydrogen-
containing atmosphere.

Better crystal perfection can be achieved by using methods
with a free growing surface. Cobalt and cobalt-rich Co–Fe
alloy crystals were grown by Bachmann and Wakiyama
(1975) using CZ growth under argon atmosphere. The
crucible consisted of alumina and was surrounded by a RF
heated carbon susceptor isolated by an alumina shield. The
equipment was installed in a quartz tube with flowing argon
atmosphere (1.5 l min−1) purified by a Ti getter. A 〈0001〉
oriented seed was used for pulling Co single crystals with a
rate of 2.5 cm h−1 using the bottle-neck technique. The grown
crystals were several centimeters long and up to 1 cm in
diameter. To maintain the hcp cobalt structure a fast cooling
rate of about 20 K min−1 in the vicinity of the martensitic
transformation Ms (420 ◦C) was applied. From the same
author (Bachmann, 1973) an apparatus was designed for
electron beam FZ growth in a vacuum of 2 × 10−8 mbar.
The apparatus can be used at a Bridgman or CZ mode, too.

Hayashi, Ono and Komatsu (1978) reported the growth of
cobalt single crystals from 4N cobalt material by an electron
beam FZ method using pulling rates of 0.4–0.7 mm min−1.
About 70% of the samples were striation free single crystals
the rest had one or two grain boundaries along the growth
axis. By spontaneous nucleation and grain selection two
preferential directions of crystallization were observed, along
the 〈0001〉 axis and another about 60◦ inclined to the 〈0001〉
axis. As reported, striation free crystals could be grown at
slow growth rates <1 mm min−1 only. The same authors
reported the growth of nickel single crystals by the FZ
method (Hayashi and Komatsu, 1979). They used 4N nickel
rods with a diameter of 5 mm as starting material for FZ
growth with RF heating under flowing argon atmosphere and
in vacuum with electron beam heating. The pulling rates were
chosen to 0.2 and 1 mm min−1. With both heating methods
two preferred orientations of the crystals near 〈100〉 and near
〈111〉 were found. The deviation from these orientations is
slightly more severe in using the electron beam FZ method.

As concluded from the Fe–Si phase diagram (Figure 1)
after crystallization from the melt pure iron exhibits two
phase transitions that renders it impracticable to produce
high-quality single crystals directly from the melt. But, iron is
one of the very well investigated examples for preparation of
highly perfect single crystals by a strain-annealing technique.
For the growth high-purity iron is required, which can be
achieved by the following tedious procedure:
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Vapor-deposited high-purity iron was prepared in several
steps with special care to avoid all electrically active ele-
ments. At first, commercial iron powder was dissolved in
hydrochloric acid to prepare ferrous chloride. Next, the solu-
tion was evaporated and FeCl2·4 H2O crystals were formed,
which were subsequently dehydrated at 773 K to FeCl2. The
impurity content of nickel is high and the product has a low
bulk density. The next step is vacuum distillation over lumpy
sponge iron to separate the nickel from the ferrous chloride.
The evaporation temperature of FeCl2 is 973 K, the reduction
temperature of sponge iron is 1023 K and the condensation
temperature is 673–773 K. The separation of nickel on the
sponge iron is due to the more negative free reaction enthalpy
of FeCl2 compared to NiCl2, and results in Ni contents
<1 wt ppm. Vacuum was used to increase the evaporation
rate of FeCl2 and to ensure a clean atmosphere. This process
step, combining distillation with a heterogeneous chemical
reaction, is referred to as exchange distillation. It leads to
condensed FeCl2 with a high density and permits a larger
amount of material to be used and a more constant evapora-
tion rate in the subsequent reaction to be achieved.

Ferrous chloride is proportioned by sublimation within
a temperature range of 873–950 K from a container made
of pure iron. The extrapolation of the vapor pressure of
the compound, which is known between 950 K (melting
point) and 1285 K (boiling point), gives vapor pressures
of about 100–1500 Pa within the temperature range of
873–950 K. To ensure practical deposition rates of pure
iron of 28–280 nm s−1, a higher amount of ferrous chloride
can be offered by increased evaporation temperatures or by
increasing the evaporation rate. The reduction of the ferrous
chloride was performed with hydrogen in a quartz tube of
80 mm diameter. The iron produced during the reduction
process was deposited on a resistance-heated pure iron wire
of 1 mm diameter.

The typical experimental conditions were described in
Weise and Owsian (1976). The rods of up to 15 mm diameter
and up to 300 mm length are compact. The measured density
was 7875.5 kg m−3, which is very close to the theoretical
value. The optimum conditions are achieved for deposition
rates greater than 0.14 µm s−1 and deposition temperatures
above 1273 K. The residual resistivity ratio r293 K/r4.2 K is
about 3000. More details about the morphology and the
defect structure as well as the properties like density,
coercivity, and the residual resistivity ratio have been given
by Weise and Owsian (1976). The impurity content of the
prepared highly pure Fe was measured by spark source mass
spectrography, gas hot extraction, and carrier gas fusion
methods. The main impurity elements (with contents in wt
ppm) were: Ta (13), Cu (5), Ni (2), Mo (<2), Ga (1), Zr (1),
C (10), O (9), N (6), H (<6), and Cl (2). All other trace
elements were below 1 wt ppm.

The crystal growth of ultrahigh-purity and doped iron by
the strain-anneal technique contains the following process
steps:

1. The deposited rods of high-purity (or doped) iron were
subjected to a FZ process.

2. The zone floated material 13 mm in diameter con-
tains large elongated grains which don’t allow homoge-
neous deformation. Therefore, the material was annealed
around the α–γ transformation temperature to destroy
this microstructure. By radius hammering with one inter-
mediate annealing procedure (840 ◦C for 2 h followed
by quenching in water) it was formed to 4-mm-diameter
rods with a degree of plastic deformation of about 70%.

3. The rods were annealed for recrystallization to a fine
grained microstructure in a horizontal quartz furnace at
800 ◦C under purified hydrogen atmosphere.

4. The optimum critical deformation, about 1.5% for pure
iron up to 3% for Ni-doped iron (enhancement of
deformation energy in the grains), was realized by
stretching at room temperature with a constant strain rate
of about 10 µm s−1.

5. The last step is the crystal growth in a temperature
gradient, which is realized in a vertical tube furnace
with a hermetic outer quartz tube and flowing argon
or purified hydrogen atmosphere. The prepared 4-mm-
diameter iron rod is placed inside the heated copper tube
and heated to maximal 890 ◦C. The feed is pulled town
through the temperature gradient of maximal 50 K cm−1

with a pulling rate of about 10 mm h−1.

With this technique it is possible to grow single crystals
from pure iron with a length of 100 mm and a diameter
of 4–6 mm. However in many cases the rod contains–two
to six crystals in a bamboo like morphology. By adding
10–20 ppm of nickel the growth becomes less perfect,
but 200–500 ppm Ni stabilize the growth. The effect of
different types of substitutional and interstitial impurities
on the deformation created microstructure as well as the
mobility of grain boundaries is different. The different
behavior during grain growth is much more dependent on the
microscopic dislocation substructure than on the macroscopic
microstructure. In all cases a different amount of misoriented
parasitic grains is observed, the origin of which is mainly the
rod surface. The lowest density of parasitic grains was found
in carburized nickel doped iron crystals.

Shimizu et al. (2001) discovered superconductivity in ε-
iron transformed from α-iron under a pressure of 16–30 GPa.
In their study they could not find a superconducting transition
to zero values in ‘normal’ iron. Only after using pure iron
like in the above described single-crystal growth experiments
the superconducting transition to zero resistivity at about 2 K
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could be demonstrated as described by Jaccard et al. (2002)
and Holmes et al. (2004).

Crystals of most of the transition-metal elements were
grown by chemical vapor transport, too. Due to their small
dimensions these crystals are of value only for special
purposes and a detailed description will not be given.

Single crystals of rare-earth elements with high purity and
perfection are difficult to grow due to two main reasons:

1. The rare-earth elements react with oxygen and with
practically with all crucible materials.

2. The magnetic rare-earth elements dysprosium, gadolin-
ium, and terbium exhibit a phase transformation from a
high-temperature phase with cubic bcc crystal structure
to a low-temperature phase with hexagonal hcp structure.
Because this transition takes place at temperatures less
than 100 K below the melting point this transformation
cannot be avoided by rapid quenching.

In the past there were many attempts to grow pure single
crystals of rare earths. So Behrendt in 1958 reported the
growth of Dy crystals (Behrendt, Legvold and Spedding,
1958), by a Bridgman technique under vacuum atmosphere
in a tantalum crucible. The problem is the large amount
of tantalum from the crucible material incorporated in the
crystal. The Dy–Ta phase diagram (see Massalski, Okamoto,
Subramarian and Kacprzak, 1990) displays a significant
solubility of Ta in the rare-earth melt. All grown crystals
exhibit many grains, what could be attributed to the fcc to hcp
phase transition at high temperature. Nevertheless, samples
cut from individual grains could be used for measurements
of anisotropic magnetic properties.

Really large single-crystalline grains were obtained by
Nigh (1963) using the following strain-anneal method. The
sample was melted under argon in an arc furnace. The
resulting 8-mm-thick and 30-mm-diameter buttons had a high
degree of crystal orientation. Grain growth was accomplished
by annealing the button at temperatures somewhat below the
melting point of the respective rare earths. The annealing
took place in a vacuum furnace hanging at a thin tungsten
wire. It was possible to anneal Gd and Tb in vacuum,
but an argon atmosphere was required for Dy and Ho to
reduce distillation. To illustrate this procedure we report
here results on Gd. The largest crystals were obtained by
annealing at 1050 ◦C for 12 h followed by an increase of
temperature by 50 K increments every 12 h up to a maximum
of 1200–1225 ◦C (the fcc/hcp phase transition temperature
of Gd is 1235 ◦C). The best results were obtained with the
specimen near the top of the heater in a temperature gradient
of approximately 25 K cm−1. A similar technique has applied
in growing Dy crystals. For Dy and Ho annealing in a
temperature gradient for one single temperature level was
applied.

Sousa et al. (1985) reported measurements on zone refined
crystals with dimension of 10 × 1×1 mm3 and with a resis-
tivity ratio of 15. The crystals were obtained by a FZ process
followed by a zone annealing process at a temperature below
the solid-state phase transition by Fort (1991a). The author
describes the FZ growth in an ultrahigh vacuum (UHV)-rated
RF induction heating FZ facility reconstructed from a com-
mercially available high vacuum RF FZ apparatus (Metals
Research Ltd., Royston). The starting materials are obtained
from Rare Earth Products Ltd. (REP), Widnes, UK, or the
Materials Preparation Center, Ames Laboratories, Iowa State
University, USA. The rods for float zoning were cast in
a cold boat system using RF heating, which is capable of
melting metals under UHV conditions (Fort, Jones, Beaudry
and Gschneidner, 1981). The FZ growth was carried out
under an argon atmosphere purified to better than 1 ppm of
all impurity gases. The sample was also degassed in vac-
uum under UHV conditions by running a hot (not molten)
zone along the rod. The growth of Dy crystals from REP
starting metal, which was further purified by resublimation
under UHV conditions, was carried out under 0.7 bar argon
with a growth rate of 42 mm h−1 followed by an annealing
pass (with reduced power) at approximately 1470 K. Overall,
however, any strain induced by cooling through the bcc–hcp
transformation at 1653 K did not significantly impair the
crystal quality. Crystals obtained from attempts using metal
as received from REP were less successful as they are smaller
and generally showed considerable substructure on X-ray
examination. By the same procedure Ho crystals were grown
without subsequent annealing pass.

Fort (1991b) reported crystal growth attempts by solid-
state recrystallization on rare-earth metal elements and rare-
earth alloys, which adopt the hexagonal close-packed crystal
structure. The procedure involved annealing ingots, which
had been strained by fast cooling from the melt. A heat treat-
ment recipe of annealing for at least 40–60 h at a temperature
equivalent to 85% of the absolute melting temperature or
95% of any hcp–bcc transformation temperature (whichever
was the lower one) was deduced to lead to the most extensive
grain growth. The potential advantages of solid-state crystal
growth over melt growth for these materials are: the experi-
mental simplicity, the improved quality of crystals prepared,
and the lower volatilization losses for materials with high
vapor pressure.

4.1.2 Fe-based alloys

One of the most important magnetic materials is the widely
used electrical steel or silicon electrical steel. It is an iron-
based steel containing from 3- to 4.5-wt% silicon. It is
usually used in the form of cold-rolled strips less than 2 mm
thick, which are called laminations when packed together.
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The assembled laminate cores are used in transformers and
stators and rotors of electric motors. To improve the magnetic
properties grain-oriented electrical steel is used. Therefore, it
is of interest to study the electrical and magnetic properties
of the corresponding single crystals.

As far as the silicon concentration in this alloy is >1.9 wt%
Si the δ to γ to α transformations of the pure iron disappear
and a direct crystallization from the melt becomes possible
(see Fe–Si phase diagram Figure 1). Therefore, all methods
of crystal growth from the melt can be used to obtain single
crystals.

Ringpfeil, Wiesinger and Fischer (1962) reported the
growth of Fe-(2.5–4)wt%Si crystals by the Bridgman
technique in alumina crucibles under flowing hydro-
gen (ca. 3 mbar pressure) with growth rates from 10 to
60 mm h−1.

Vaněk and Kadečková (1979) reported the RF (360 kHz)
FZ growth of Fe-3wt%Si crystals 13 mm in diameter in a
hydrogen atmosphere. The molten zone was moved down-
wards at rates of 7–120 mm h−1 with (30 rpm) and without
rotation of the lower part. Striations from inhomogeneities in
the silicon concentration start to form at rates >21 mm h−1

and are well developed at high growth rates. The forma-
tion of striations does not depend on rotation of the feed
rod. Vaněk, Kadečková, Jurisch and Löser (1983) achieved
Fe-3wt%Si crystals 7 mm in diameter by FZ melting with
both electron beam and RF heating with growth rates of 60
and 120 mm h−1.

Ringpfeil, Wiesinger and Fischer (1962) reported the
growth of Fe–Ni and other soft magnetic alloys. Since
the Fe–Ni phase diagram displays a solid solution of the
γ -Fe(Ni) phase above about 7 up to 100 mol% Ni (see
Massalski, Okamoto, Subramarian and Kacprzak, 1990) this
phase can easily be grown from the melt by a Bridgman
technique using alumina crucibles.

More detailed orientation dependent magnetic measure-
ments are shown in standard textbooks (Kneller, 1962).

4.2 Crystal growth of hard magnetic alloys

4.2.1 FePt, CoPt, and FePd compounds with large
magnetocrystalline anisotropy

Ferromagnetic ordered alloys with the L10 crystal structure,
FePd, FePt, and CoPt, have drawn much attention as promis-
ing materials for ultrahigh dense magnetic storage media due
to their large magnetocrystalline anisotropy (Maykov et al.,
1989). The anisotropic crystal field in single crystals causes
a large magnetocrystalline anisotropy constant Ku as well as
anisotropic magnetostriction. Since Ku is a measure for the
achievable recording data density its precise determination

is practically important. Multivariants, twin boundaries, and
residual stress, surface and interface anisotropies cause barri-
ers to evaluate the precise Ku for L10-type Fe–Pt thin films
and nanoparticles. Therefore, L10-type bulk single crystals in
a single-variant state are necessary for the accurate evaluation
of Ku of these ordered alloys. Furthermore, the investiga-
tion of the temperature dependence of the magnetocrystalline
anisotropy is meaningful for heat-assisted magnetic record-
ing techniques, because the switching field governed by Ku

can be reduced by heating during writing processes.
In order to investigate the magnetic properties associated

with crystallographic orientations, single crystals of FePd
and CoPt have been grown by the Bridgman technique
(Maykov et al., 1989; Tanaka, Ichitsubo and Koiwa, 2001)
and the FZ method under a purified He atmosphere (Shima
et al., 2004a,b, 2005). Single crystals of Fe60Pt40 have been
grown with the FZ method as well (Inoue et al., 2006). The
equiatomic phases undergo a transition from a disordered
fcc to an ordered tetragonal L10 phase. Since the symmetry
of the ordered phase is lower than that of the disordered
one, there are three variants of the ordered phase. In the
absence of any external field, all three variants are formed
with an equal probability, resulting in a twinned structure.
The application of external stress or a magnetic field during
the ordering processes leads to the preferential formation of
a favorably oriented variant (Tanaka, Ichitsubo and Koiwa,
2001; Yermakov and Maykov, 1989).

Accordingly, single-variant Fe48Pd52 single crystals were
prepared by a compressive stress method (Shima et al.,
2004a). Single-crystalline samples with disordered fcc struc-
ture were received after homogenization of FZ grown crystals
at 1473 K for 24 h in an evacuated quartz tube and quench-
ing into ice water. The crystalline orientation was determined
by the electron backscattering pattern method and the back
reflection Laue method. The disordered fcc Fe48Pd52 single
crystal was cut into a cube with six crystallographic equiv-
alent {001} planes. The heat treatment for ordering under
the compressive stress along the [100] direction was car-
ried out using a Mo implement. The specimen was fixed
between Mo plates and the temperature was increased up
to 973 K followed by a slow cooling with the rate of 3 K
min−1. The difference in the thermal expansion coefficients
between the Mo plate and the specimen causes the compres-
sive stress. The back reflection Laue patterns for the ordered
L10 Fe48Pd52 exhibited clear spots indicating that the c axis
is selectively aligned.

Figure 12 shows the magnetization curves along the c and
a axis in the ordered L10 Fe48Pd52 at 4.2 K (Shima et al.,
2004a). The easy axis of magnetization is the c axis. On the
contrary, there is no difference in the magnetization curves
along the [100] and the [010] directions of the disordered
fcc Fe48Pd52. The uniaxial magnetocrystalline anisotropy
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Figure 12. The magnetization curves of L10 Fe48Pd52 showing the
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Figure 13. The longitudinal magnetostriction curves along the c

and the a axis in the L10 Fe48Pd52 and the [001] direction in fcc
Fe48Pd52. (Reproduced from Shima et al., 2004, with permission
from Elsevier.  2004.)

constant at 4.2 K becomes Ku = 2.5 × 106 J m−3, but there
is some variance in the values of various authors (cf. Yer-
makov and Maykov, 1989; Shima et al., 2004a). The uniax-
ial magnetocrystalline anisotropy becomes weaker at higher
Pd concentrations. As shown in Figure 13 the longitudinal
magnetostriction increases with external magnetic field in
analogy with the magnetization curves (Shima et al., 2004a).

The value of the magnetostriction constant λ100 in
the disordered fcc Fe48Pd52 is 60 × 10−6. In the ordered
L10Fe48Pd52 sample the value λa = 100 × 10−6 along the
a axis is larger, whereas the value of λc = 20 × 10−6 along
the c axis is smaller than λ100.

Single crystals of Co100–xPtx (x = 45, 50, and 55) were
similarly prepared by the FZ method (Shima et al., 2005).
The heat treatment for homogenization was carried out at
1473 K for 48 h. The L10-type Co100–xPtx in a single-variant

state was obtained by a heat treatment under uniaxial
compressive stress. A compressive stress of 20–25 MPa was
applied along one of the 〈001〉 directions in the fcc-type
Co100–xPtx . The c axis, which becomes the easy magnetic
axis, aligns parallel to the compressive stress direction. Both
the a and c axes elongate with increasing Pt concentration,
whereas the axial ratio c/a has a minimum value of 0.976 at
x = 50, resulting in the largest tetragonal distortion (Shima
et al., 2005). The magnetization curve along the c axis is
immediately saturated under an effective magnetic field
of less than 80 kA m−1 (1 kOe). In contrast, a very high
magnetic field of 1.11 × 105 kA m−1 (140 kOe) is necessary
for saturation along the a axis. The coercive force Hc

observed in the magnetization curves along the c and a-axes
are, respectively, about 32 kA m−1 (0.4 kOe) and 64 kA m−1

(0.8 kOe), and much smaller than that in the multivariant
L10-type Co–Pt alloys. The uniaxial magnetocrystalline
anisotropy constant Ku at 298 K exhibits the largest value
of 4.5 × 106 J m−3 for x = 50.

L10-type Fe60Pt40 single crystals in the single-variant state
have been prepared in a similar way (Inoue et al., 2006).
It should be noted that Fe50Pt50 bulk single crystals in a
single-variant state are difficult to obtain because Fe50Pt50,
probably the most desirable substance for recording media,
has a high ordering temperature, and hence preparation at
high temperature is necessary, which induces recovery and
recrystallization.

Large magnetocrystalline anisotropy between the magne-
tization curves along the c and a axes is observed in the
single-variant Fe60Pt40 single crystals. The magnetization
curve along the c axis is easily saturated below 398 kA m−1

(5 kOe), while the saturation along the a axis is achieved
above the high magnetic field of about 8.75 × 103 kA m−1

(110 kOe). The values of the coercivity Hc along the c

and a axes are about 36 kA m−1 (0.45 kOe) and 28 kA m−1

(0.35 kOe), respectively. The value of Hc along the c axis is
much smaller than that of L10-type Fe–Pt bulk alloy in the
multivariant state, and also than in thin films and the nanopar-
ticles. The values of anisotropy constants, at 5 K are eval-
uated to be K1 = 7.4 × 106 J m−3, K2 = 0.13 × 106 J m−3,
and Ku = 6.9 × 106 J m−3, respectively (Inoue et al., 2006).
The present values of K1 + K2 and Ku are larger than
those of L10-type FePd (Shima et al., 2004b) and CoPt
(Shima et al., 2005) single crystals in the single-variant
state. That is, the L10-type Fe60Pt40 alloy has large magne-
tocrystalline anisotropy constants despite the deviation from
the equiatomic composition. The second-order magnetocrys-
talline anisotropy constant K1 and the uniaxial magnetocrys-
talline anisotropy constant Ku monotonically decrease with
increasing temperature, while K2 is almost independent of T .
However, both K1 and Ku keep a large value up to 298 K,
being 6 × 106 J m−3 and 5.5 × 106 J m−3, respectively.
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Finally, we remark that apart from these compounds with
large magnetocrystalline anisotropy prospective for magnetic
storage media, single crystals of invar alloys Fe75Pt25,
Fe72Pt28, and Fe72Ni3Pt25 have also been grown by the
Bridgman–Stockbarger technique. Elastic constants of the
compounds in the presence of an external magnetic field
have been determined for single-crystalline samples with the
ultrasonic pulse echo technique (Kawald et al., 1989).

4.2.2 Crystal growth of R2Fe14B compounds for
high-performance permanent magnets

Compounds of R2Fe14B, where R stands for rare earths
including Y, have attracted much attention after discovering
the outstanding permanent magnetic properties in ternary
Nd–Fe–B alloys, which are based on the formation of a
new phase Nd2Fe14B (Sagawa et al., 1984). A brief overview
on crystal growth activities of R2Fe14B compounds and
their intrinsic properties determined is given by Franse and
Radwanski (1996).

Small single-crystalline samples of Nd2Fe14B were simply
obtained by Hukin-type cold-crucible induction melting of
alloys from high-purity elements (Nd: 99.9%, Fe: 99.99%,
B: 99.99%). Crystals (0.3 mm in diameter) were observed
to grow in shrinkage cavities obtained after slow cooling of
the melt under vacuum (Givord, Li and Moreau, 1984). From
the intensities of Laue photographs of these single-crystalline
samples the tetragonal structure of the Nd2Fe14B phase was
revealed. In this structure, Nd atoms are distributed on two
crystallographic sites of low symmetry, whereas Fe atoms
occupy six different sites. Large single crystals for studies
of fundamental magnetic properties are difficult to grow
for the following reasons: (i) the compound does not melt
congruently (cf. Figure 4 in Section 2), (ii) the rare earths
have a high affinity to oxygen and their melts are quickly
covered by an oxide film, and (iii) the melt reacts with
most crucible materials. In the cold-crucible method the
melt is levitated by inductive forces within the split water-
cooled Cu-crucible and melt-crucible contact is effectively
avoided. Indeed, Givord, Li and Delabathie (1984) succeeded
in growing 3-cm-long Nd2Fe14B and Y2Fe14B bars of 1 cm2

cross section by a CZ method from a Nd-rich Nd15Fe77B8

melt in a Hukin-type cold-crucible facility (cf. Section 3.3).
The values of the magnetic ordering temperatures, 573 K
for Y2Fe14B and 595 K for Nd2Fe14B, are similar. From
the Nd2Fe14B crystal a cube of 4.5 × 4.5 × 4.3 mm3 was
cut for magnetization measurements. As shown in Figure 13
the large uniaxial anisotropy observed in Nd2Fe14B at
300 K favors the c axis (Givord, Li and Delabathie, 1984).
However, below 135 K, an easy direction is stabilized,
which is at an angle θ with respect to the c axis (inset
to Figure 14). At higher temperatures, the reorientation of
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the easy magnetization direction and the c axis. (Reproduced from
Givord et al., 1984, with permission from Elsevier.  1984.)

the magnetization toward the c axis results from the relative
decrease of crystal-field interactions with respect to exchange
interactions, which favor a collinear arrangement of Nd and
Fe moments.

More details about the growth of Nd2Fe14B single crystals
between 5 and 10 mm diameter and >1 cm length by the
cold-crucible CZ method are provided by Swets (1986).
Special care was devoted to avoiding oxygen. The crucible
was contained in a quartz walled chamber flushed with
high-purity Ar, which was further purified by passing over
Ti at 800 ◦C and through a Ga–In–Al bubbler at room
temperature. Even under these circumstances an oxide layer
was initially formed on the melt surface. It was ‘skimmed
off’ with a quartz rod from the top of the growth chamber.
Because of the peritectic formation of Nd2Fe14B, Nd-rich
melts and slow growth velocities are favorable. Beyond a
pulling rate of >5 mm h−1 Nd-rich phases were precipitated.
The preferred growth direction for polycrystalline seeds is
either along the a axis or the [110] direction, whereas a c axis
oriented crystals can be grown with a single-crystalline seed
with the respective the c axis orientation. The cold-crucible
CZ technique was also used by Koon et al. for the growth
of R2Fe14B (R = Y, Nd, Tb) with 5 mm h−1 (Koon, Das,
Rubinstein and Tyson, 1985).

Nd2Fe14B, Y2Fe14B as well as R2Fe17 crystals were grown
with the tri-arc CZ method (Sinnema, Verhoef, Menovsky
and Franse, 1987). In the method the skull of the material
prevents the contact of the melt with the water-cooled
Cu crucible. A Ti getter has been used to purify the Ar
atmosphere; a titanium button was melted by a tetra arc that
burns continuously during the growth process. Pulling rates
of 3 mm h−1 similar as in FZ melting (cf. Hirosawa et al.,
1986) were applied. In case of Nd2Fe14B the crystal was
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Figure 15. Nd2Fe14B single-crystal FZ grown from a stoichiometric feed rod (top). Crystal orientations with respect to the rod axis are
indicated. Longitudinal sections of initial part of the crystal: Nd2Fe14B + Fe (dark) (a), cross section of the Nd2Fe14B crystal (b), and last
part with frozen zone: Nd2Fe14B + Nd-rich phases (dark) (c). (Reproduced from I. Mazilu, PhD Thesis, 2006.)

grown with a stoichiometric seed from the Nd15Fe77B8 melt,
whereas a tungsten tip was utilized as seed for the Y2Fe14B.
Laue photographs taken from different places proved that
the mosaic structure in the Nd2Fe14B crystal is <1◦. The
bars contained a few large single-crystalline grains with a
maximum size of 1 cm3.

Single crystals of a series of R2Fe14B (R = rare earth
except of Sm) were grown by the FZ method with an
infrared imaging furnace under purified Ar atmosphere
(Hirosawa et al., 1986). This technique turned out to be very
effective for R2Fe14B crystal growth but also for related
R2Co14B compounds (Hiroyoshi et al., 1987). The typical
dimensions of single crystals grown by this technique are
several millimeters in diameter. Because Nd2Fe14B (as well
as related compounds) forms by a peritectic reaction, the
TSFZ technique (cf. Section 3.3) is appropriate where the
feed rod and the seed are of stoichiometric composition,
whereas the FZ is off-stoichiometric. It can be generated by
placing a small disk of (Nd,B)-rich composition between seed
and feed rod and melting it together with its adjacent parts.

Alternatively, an off-stoichiometric zone can be estab-
lished by progressive growth from a stoichiometric feed rod.
This is shown for a FZ growth experiment with optical
heating. In the initial stage of the growth process primary,
γ -Fe dendrites along with the peritectic Nd2Fe14B phase
(Figure 15a) grow from the melt in agreement with the phase
diagram. In this way, the melt composition in the zone is
continuously enriched in Nd and B until it encountered the
primary solidification range where the single Nd2Fe14B phase
grows (Figure 15b). The composition difference between the

stoichiometric crystal and the frozen zone, which also con-
tains Nd-rich phases, is illustrated in Figure 15(c).

For the whole series of FZ grown R2Fe14B single crys-
tals the temperature dependence of the saturation magne-
tization from 4.2 K to magnetic ordering temperatures, the
magnetocrystalline anisotropy field HA (Hirosawa et al.,
1986; Hiroyoshi et al., 1986) and the anisotropy con-
stants Ku1(Hirosawa et al., 1985) have been measured.
Spin-reorientation processes similar to Nd2Fe14B have been
detected and the angle of easy axis of magnetization direction
from the c axis has been measured for Ho2Fe14B, Er2Fe14B,
Tm2Fe14B compounds (Hirosawa et al., 1986). The coupling
scheme of the R2Fe14B compounds leads to ferromagnetism
for light rare earths (Y, Ce, Nd, Pr, Sm) but ferrimag-
netism for heavy rare earths (Er, Tb, Gd, Ho, Dy, Tm)
with obvious differences in the magnetic behavior. For heavy
rare-earth-containing compounds, the partial compensation
between Fe and R sublattice magnetization leads to a positive
thermal coefficient of the saturation magnetization in some
restricted temperature range. As shown by Hirosawa et al.
(1986) (Figure 16) the value of magnetocrystalline anisotropy
field HA of Nd2Fe14B is not the largest among the R2Fe14B
compounds at room temperature and may be enhanced by
alloying with other rare earths such as Tb or Dy. In fact Dy
is utilized for improving permanent magnetic properties of
Nd2Fe14B-based materials.

Mechanical properties were studied in uniaxial compres-
sion tests with 2 × 2 × 5 mm3 samples from big CZ grown
crystals crystallographically oriented with the (001) plane at
an angle of 45◦ to the cuboid axis (Kuhrt et al., 1991). The
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stress–strain curves at elevated temperatures 900–1050 ◦C of
single-crystalline samples are shown in Figure 17. Substan-
tial ductility of Nd2Fe14B crystals occurs only at appreciably
higher temperatures and lower strain rates than those gener-
ally used in the die-upsetting process (typically 700–800 ◦C)
(Lee, 1985). The results support the assumption that it is not
the plasticity of the Nd2Fe14B phase, but other mechanisms
such as grain boundary sliding combined with anisotropic
grain growth that allow the microcrystalline Nd–Fe–B alloys
to be so easily deformed and crystallographically textured.

The detailed oxidation and corrosion mechanisms of com-
mercial rare-earth hard magnets are still a current research
topic. Studying single crystals the different behavior of
commercial polycrystalline materials and the Nd2Fe14B
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Figure 18. Potentiodynamic polarization curves recorded close to
the corrosion potential Ucorr in 0.1 M sodium sulphate solution
(ph = 5) at 730 rpm at the surfaces of a Nd2Fe14B single crystal
which are in plane with the crystallographic (100) plane or with the
(001) plane; comparative curve for polycrystalline Nd2Fe14B with
random grain orientation. (Reproduced from Rada et al., 2006, with
permission from Elsevier.  2006.)

phase itself can be distinguished. An anisotropic corrosion
behavior on the two surface planes of a Nd2Fe14B single
crystal, namely, (100): a plane parallel to the c axis and (001):
a plane perpendicular to the c axis was recently reported
(Figure 18), which corresponds to the behavior of highly
textured sintered Nd–Fe–B magnets (Rada et al., 2006). It
is interesting to note that the (100) plane displaying the most
active dissolution tendency in aqueous environment is iden-
tical with the (100) plane (perpendicular in a axis [100]
direction) of preferred growth of the single crystal.

By means of calibrated dynamic secondary ion mass
spectrometry (SIMS) using Cs+ primary ions an upper limit
for the oxygen content cO = 0.006 ± 0.002 at% in the single-
crystalline Nd2Fe14B matrix was determined, which is at
least 1 order of magnitude lower than in polycrystalline
samples. Another striking difference is the oxygen uptake,
which depends on processing and sample handling in cast
polycrystalline samples, whereas Nd2Fe14B single crystals
are much less sensitive (Oswald et al., 2005).

4.2.3 Crystal growth of other rare earth–transition
metal compounds

In this section crystal growth attempts and selected magnetic
properties of other classes of rare earth–transition metal
intermetallic compounds prospective for the development of
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permanent materials are briefly reported, which were studied
in the past years but did not attract such an outstanding
commercial interest like Nd2Fe14B.

R2T17 (T = Fe, Co) compounds are distinguished by the
combination of their large values of magnetic moments, high
Curie temperatures, large anisotropy, and a strong coupling
of magnetic moments of rare earths and transition metals.
Moreover, exiting phenomena like a first order magnetic
transition have been reported (Sinnema, Franse, Menovsky
and Radwanski, 1986; Garcia-Landa et al., 1995; Garcia-
Landa, Algarabel and Ibarra, 1997). For the crystal growth
of R2Fe17 and R2Co17 compounds the same methods as for
Nd2Fe14B can be applied (Sinnema, Verhoef, Menovsky and
Franse, 1987). Sinnema et al. reported the growth of R2Fe17

(R = Y, Dy, Er, Ho), R2Co17 (R = Y, Dy, Er, Nd, Pr, Gd,
Tb), and also substitutional compounds such as Ho2Co14Fe3

by the modified tri-arc CZ method (Sinnema, Verhoef, Men-
ovsky and Franse, 1987) described in Section 4.2.2. Dif-
ferent from ternary systems, most binary R–T phase dia-
grams are known (Massalski, Okamoto, Subramarian and
Kacprzak, 1990). Many R2T17 compounds melt congruently
or almost congruently. Compounds such as Tb2Fe17 (cf.
Figure 3 in Section 2), Sm2Fe17 and Nd2Fe17 are formed peri-
tectically (Massalski, Okamoto, Subramarian and Kacprzak,
1990), and the composition difference between the com-
pound and the peritectic melt increases in this sequence,
which aggravates the crystal preparation. The crystals con-
gruent melting R2T17 compounds can easily be grown with
relatively high pulling rates of 30 mm h−1 (Sinnema, Ver-
hoef, Menovsky and Franse, 1987). This is about 1 order
of magnitude faster than for Nd2Fe14B crystal growth. As-
cast materials of the same alloy or W tips were used as
seeds and rotated with 33 rpm during the growth. The com-
pounds display either the hexagonal Th2Ni17-type structure
(Y2Fe17, Dy2Fe17, Er2Fe17, and Tb2Co17) or the rhom-
bohedral Th2Zn17-type structure (Nd2Co17, Gd2Co17, and
Pr2Co17). The preferred growth direction was often close
to the c axis with typical orientation deviations of the order
of 10◦. The crystals grown by the tri-arc method were of
high quality and the magnetic transitions are very sharp
(Sinnema, Verhoef, Menovsky and Franse, 1987). Crystal
growth with volatile elements like Sm2Fe17 or Yb2Fe17

was not possible by this method. From the single crys-
tals the crystallographic structure, the lattice constants of
various R2Fe17 and R2Co17 compounds (Sinnema, Ver-
hoef, Menovsky and Franse, 1987) and their fundamental
magnetic properties (Garcia-Landa, Algarabel and Ibarra,
1997; Thang et al., 1998) were determined. As shown in
Figure 19 for Er2Fe17 (Sinnema, Verhoef, Menovsky and
Franse, 1987) the magnetic easy direction is in the basal
plane of the hexagonal unit cell, different from the uniaxial
magnetic behavior of Nd2Fe14B. Substituted Tb2Fe17–xSix
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Figure 19. Magnetization curves of Er2Fe17 measured in magnetic
fields up to 35 T. The very sharp magnetic transition in the c axis
illustrates the high quality of the single crystal. (Reproduced from
Sinnema et al., 1987, with permission from Elsevier.  1987.)

(x = 0–3.3) single crystals were grown by a CZ method,
too (Du et al., 1998). Oriented Er2Fe17 seeds with rota-
tion rates 30 rpm and relatively high growth velocities of
12–15 mm h−1 were utilized. The substitution of Si for
Fe leads to the reduction of lattice parameters and a sig-
nificant increase of the Curie temperature from 413 to
526 K.

Alternatively, Dy2Fe17 (Coelho, Mohan, Gama and
Kronmüller, 1996) and substituted Sm2(Fe1–xAlx)17 (Kato
et al., 1995) compounds were also grown with the Bridg-
man method. High pressures (1 MPa) of Ar and BN coated
alumina crucibles were utilized for the growth of substituted
Sm2(Fe1–xAlx)17 single crystals (Kato et al., 1995). Some
amounts of A1 were found to be transferred from the crucible
to the sample, due to an appreciable reaction between Al2O3

and Sm. The angle between the magnetization direction and
the b axis increases linearly with increasing Al fraction x

(Ono et al., 1998).

RCo5 and related R–Co compounds
Among the intermediate phases which cobalt forms with
rare earth the SmCo5 and Sm2Co17 are of importance for
permanent magnetic materials (Strnat et al., 1967). The series
of intermetallic compounds RCo5 crystallizes in the CaCu5-
type hexagonal structure. The Curie temperatures and the
magnetocrystalline anisotropy of these compounds are rather
high and can reach 747 ◦C and 1 × 107 J m−3, respectively,
for SmCo5 (Strnat et al., 1967; Alameda, Givord, Lemaire
and Lu, 1981). Because of the volatile character of Sm
single crystals are difficult to achieve. Single crystals of
Y2Co17 and YCo5 were grown by a FZ method (Hoffer
and Strnat, 1967). The magnetization curves in the principal
crystallographic directions were measured in the temperature
range 20–300 K (Hoffer and Strnat, 1967) and down to
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4.2 K (Alameda, Givord, Lemaire and Lu, 1981). Different
from the Y2Co17, which exhibits an easy plane, YCo5 is a
uniaxial ferromagnet where the c axis is the easy magnetic
axis and displays no detectable basal plane anisotropy.
At 4.2 K the anisotropy constant can reach K1 = 7.38 ×
106 J m−3 and shows weak temperature dependence because
of the high Curie temperature 704 ◦C of YCo5 (Alameda,
Givord, Lemaire and Lu, 1981). Single crystals of the
ferrimagnet DyCo5 were grown by the Bridgman method
using the BN coated crucible technique (Ohkoshi et al.,
1977). A magnetic study revealed the rotational-type spin-
reorientation phenomenon that occurs in single crystals of
DyCo5.

Single crystals of other RCo2 (R = Gd, Ho) and HoNi2
Laves phases were achieved by slow cooling (20 K h−1) of
the melt and by the Bridgman method (Gignoux, Givord
and Lemaire, 1975). Crystal-field parameters have been
determined from the magnetization variation in intense
magnetic fields up to 1.03 × 104 kA m−1 (130 kOe).

RT12-type compounds
Fe-rich rare-earth compounds crystallizing in the tetragonal
ThMn12 (I4/mmm) structure type are of interest as poten-
tial permanent magnet materials (Buschow, 1991). The pure
RFe12 compound does not exist for any of the rare earth,
however, the ThMn12 structure can be stabilized in pseu-
dobinary compounds RFe12−xMx with M = Ti, V, Cr, Mo,
W, or Si for values of x ∼ 1.0. Single crystals of Er(Fe11Ti),
Lu(Fe11Ti) (Andreev et al., 1988), and Dy(Fe11Ti) (Hu, Li,
Coey and Gavigan, 1990) have been prepared. The large
Dy(Fe11Ti) crystals, 40 mm long and 5 mm in diameter, have
been grown by the tri-arc CZ method. The magnetic structure
and the corresponding easy magnetic moment direction in
the RFe12–xMx compounds is governed by the Fe sublattice
anisotropy and the R sublattice anisotropy. The Fe sublattice
anisotropy favors an easy magnetization direction parallel to
the c axis and the corresponding K1 value has about the same
magnitude as in R2Fe14B and R2Fe14C compounds. How-
ever, the crystal field induced by the rare-earth sublattice in
RFe12M differs drastically from that found in RFe14B and
R2Fe14C, both in sign and magnitude. This may be seen, for
instance, by comparing the magnetic structures of Dy2Fe14B
and DyFe11Ti. The former compound is a normal ferrimag-
net with the magnetic moments oriented along the c direction
at all temperatures T < TC. By contrast, DyFe11Ti is a fer-
rimagnet with M||c only in the limited temperature range
200 K ≤ T ≤ TC = 534 K. Below 200 K two spin reorienta-
tions occur, as can be derived from the results of magnetic
measurements of Hu, Li, Coey and Gavigan (1990) shown
in Figure 20. The magnetic moment is parallel to the [100]
direction below 58 K and parallel to the c axis above 200 K.
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Figure 20. Temperature dependence of the magnitude and the
orientation of the spontaneous magnetization Ms obtained from a
DyFe11Ti. (a) Components of Ms along [100] and [001]. (b) Angle
between Ms and the c axis. (Reproduced from B.P. Hu et al., 1990,
with permission from the American Physical Society.)

At temperatures between the two spin-reorientation transi-
tions (first order at 58 K and second order at 200 K) the
spin structure is canted. A slight variance between results
of magnetic measurements on single crystals by various
authors may be due to different concentrations (Wu et al.,
1998). Indeed, in single crystals of Tb(Fe,Ti)12 grown by the
cold-crucible CZ technique a segregation of titanium along
the crystal axis was quantified by chemical analysis (Wu
et al., 1998). An effective macrosegregation coefficient of
titanium keff = 0.92 was derived by fitting the experimen-
tal data of crystals grown at 5 mm h−1 from a melt with
Tb1.2Fe10.61Ti1.39 starting composition shown in Figure 21.
From their experimental results Wu et al. have defined the
pseudobinary phase diagram around the Tb(Fe,Ti)12 phase as
peritectic. This peritectic reaction causes a complex of α-Fe
and TiFe2 as a nonhost phase with a high titanium fraction of
25 at%. To avoid this, the optimum Tb-rich melt composi-
tion Tb1+δFe12–xTix with δ = 0.20 was experimentally deter-
mined. Using high-quality single-crystalline samples with no
nonhost phase impurities the reliable spin-reorientation tran-
sition temperature TSR = 290 ± 3 K for TbFe11Ti in three
main crystallographic directions was confirmed. From a
series of Tb(Fe,Ti)12 compounds it has been revealed that
TSR is strongly reduced with increasing Ti fraction in the
samples.
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R3T29-type compounds
Other novel classes of iron-based metastable intermetallic
compounds, R3(Fe,M)29 and their nitrides R3(Fe,M)29Ny

(M = Ti, V, Cr, and Mo), were extensively investigated for
potential application as permanent magnets (Cadogan et al.,
1994). The new family of R3(Fe,M)29 possesses the mono-
clinic Nd3(Fe,Ti)29-type structure and can be considered as
an intermediate structure consisting of the 1:12 structure and
the 2:17 structure at the ratio of 1:1. Like the iron-based inter-
metallic compounds of 2:17 and 1:12, a marvelous improve-
ment in the Curie temperature, for example, from TC = 486 K
for Sm3(Fe,Ti)29 to TC = 750 K Sm3(Fe,Ti)29Ny , and a dras-
tic modification in anisotropy take place upon the introduc-
tion of interstitial atoms of C, and especially N, in 3:29
compounds. This is connected with a considerable lattice
expansion (Cadogan et al., 1994). Accurate determination of
the crystallographic structure as well as the anisotropic mag-
netic properties of the R3(Fe,M)29 compounds require the
preparation of single crystals (Courtois et al., 1998a,b). The
Nd3(Fe,Ti)29 phase is metastable. A solid-state heat treatment
at temperatures typically around 1000 ◦C, followed by water
quenching, is required to obtain compounds, which possess
the 3:29 structure at room temperature. However, it is known
that in the case of heavy rare-earth compounds a crucial shift
in composition is needed to stabilize the binary R2Fe17 com-
pounds. Therefore it is possible to prepare R3(Fe,M)29 single
crystals by a solid-state transformation of a R2(Fe,M)17 sin-
gle crystal whose actual chemical composition is R3(Fe,M)29.

Following this route a Y2(Fe,V)17 single crystal (hexag-
onal Th2Ni17-type structure) with a chemical composition
close to Y3(Fe,V)29 was grown under an argon atmosphere

using the cold-crucible CZ method (Courtois et al., 1998a).
A cylindrical seed 0.5 mm in diameter with a length side par-
allel to the c axis of the 2:17 hexagonal structure was placed
at the end of a head rotating with 5 rpm. The pulling rate
was 22 mm h−1. The Y2(Fe,V)17 single crystal obtained was
subsequently sealed in a quartz tube under an argon atmo-
sphere and annealed at 1015 ◦C for three days, followed by
water quenching.

Powder X-ray diffraction showed the expected monoclinic
cell, but single crystal X-ray data exhibited hexagonal sym-
metry. This discrepancy has been resolved by performing
magnetization measurements on the crystal, which showed
hexagonal symmetry with significant in-plane anisotropy.
These observations have been quantitatively analyzed by
considering that the crystal is, in fact, twinned. The mag-
netization was measured in applied fields up to µ0H = 7 T
in the temperature range 5 K < T < 300 K. Over the whole
temperature range investigated, the [001] axis of the CaCu5

cell (which corresponds to the [102] axis of the Nd3(Fe,Ti)29

monoclinic cell) is the hardest magnetization direction and
the spontaneous magnetization lies in the plane perpendicular
to this axis (Courtois et al., 1998a,b).

In a similar way, a novel Y3(Fe,Cr)29 single crystal
with the Nd3(Fe,Ti)29-type structure has been successfully
prepared (Yang et al., 1999). Y2Fe15Cr2 single crystals with
a Th2Ni17-type structure were grown with growth rates
of 15–25 mm h−1 and a rotation rate of 30 rpm using the
CZ method. Crystals were subjected to a heat treatment at
1000 ◦C for four days followed by quenching in water, which
resulted in a 3:29 structure. The lattice parameters of the
crystal are a = 1.0645 nm, b = 0.8455 nm, c = 0.9678 nm,
and β = 97.462◦, respectively. The Curie temperature 410 K
is similar to TC = 439 K of the Y3(Fe,V)29 single crystal
(Courtois et al., 1998a). From the magnetization curves
measured along the easy and hard direction it was concluded
that the hard magnetic direction is [102] and that the
crystal keeps a planar anisotropy from 1.5 to 293 K. The
magnetocrystalline anisotropy constants at 1.5 K are K1 =
−0.87 × 106 J m−3 and K2 = 0.19 × 106 J m−3.

SmxFey and miscellaneous compounds
In this section, we briefly review a few other attempts of
crystal growth of hard magnetic materials. As mentioned
earlier crystal growth of several compounds containing
volatile elements is difficult or impossible. In some cases the
so-called flux method can be applied to reduce the operating
temperatures (as discussed in Section 3.2).

In the case of Fe–Sm compounds a Sm self-flux was
successfully applied to grow crystals, which cannot be
prepared otherwise (Samata et al., 1998; Samata, Sakamoto,
Yashiro and Nagata, 2001). After arc melting an appropriate
amount of rare earth (Sm) and iron the button (∼30 g) was
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Figure 22. A SEM image of an as-grown Sm6Fe23 crystal. The
large square plane and the small triangular planes are the (100) and
(111) planes, respectively. (Reproduced from Samata et al., 2001,
with permission from Elsevier.  2001.)

placed in a BN coated alumina or yttria crucible. The crucible
was further sealed in a quartz ampoule with Ar gas after
evacuation to 6.7 × 10−2 Pa (5 × 10−5 Torr). The mixture
was heated over the dissolution temperature (900–1050 ◦C)
using an electric furnace. After being held at that temperature
for 0.5–6 h, it was cooled with 0.1–4 K h−1 to 700–850 ◦C,
and then the quartz ampoule was cooled to room temperature
by turning off the electric furnace. One special feature of
this flux-creep-up method is that the flux creeps up the
inner wall of the crucible during the crystal growth (Samata,
Sakamoto, Yashiro and Nagata, 2001). Since the Sm flux
around the crystal was easily oxidized into oxide powder
in a few days, crystals could be removed easily from the
bottom of the crucible without applying any mechanical
strain. The crystallization of various intermetallic compounds
is possible by adjusting the growth condition. Crystals of
SmFe2, SmFe3 (Samata, Sakamoto, Yashiro and Nagata,
2001), Sm6Fe23 (Samata, Sakamoto, Yashiro and Nagata,
2001; Samata et al., 2001), and Nd6Fe13–xAl1+x (Samata
et al., 2001) were grown using this technique. In the latter
case a Nd(Al)-rich flux was utilized. A scanning electron
microscopy (SEM) image of a flux-grown Sm6Fe23 crystal
is shown in Figure 22.

Since the chemical composition of the mixture in the
crucible changes in accordance with the creep-up of the
flux, this method may be promising for both, the search
for new phases and the crystal growth of known materials.
In particular, SmFe7 is a new phase (Samata et al., 1998;
Samata, Sakamoto, Yashiro and Nagata, 2001) crystallizing
in the tetragonal structure (space group P 42/ mmm) with a
significantly large spontaneous magnetization 136 emu g−1

at 293 K, high TC = 608 K, and huge magnetocrystalline
anisotropy constants K1 + K2 = −6.9 × 106 J m−3 at 293 K

(Samata et al., 1998), which are comparable with those of
Nd2Fe14B.

With this promising method also crystals of Al-
substituted compounds Sm(Fe1–xAlx)2, Sm(Fe1–xAlx)3,
Sm6(Fe1–xAlx)23, and Sm(Fe1–xAlx)7 were grown and
their magnetic properties were investigated (Samata, Kasai,
Taniguchi and Nagata, 2003). The saturation magnetiza-
tion of all compounds decreases by Al substitution. In the
Sm(Fe1–xAlx)3 and Sm(Fe1–xAlx)7 systems, the anisotropy
field is decreased with the Al substitution, while, in the cubic
Sm(Fe1–xAlx)2 and Sm6(Fe1–xAlx)23 systems, it is increased
significantly. The Curie temperature of these compounds
seems to be dependent on the average distance between the
Fe nearest-neighbor atoms.

Flux methods have been utilized for crystal growth of
various other magnetic compounds, too, which cannot be
mentioned in this report.

4.3 Crystal growth of high-magnetostrictive
compounds

4.3.1 Binary RFe2 compounds

Heavy rare-earth elements, R = Tb and Dy, display the largest
known magnetostrictions (∼1%), however, only at cryogenic
temperatures (Clark, 1980). Among the various magnetostric-
tive materials RFe2 Laves phase compounds exhibit huge (up
to 10−3) magnetostrictive strain at room temperature, which
is important for technological reasons (Clark, Tamagawa and
Belson, 1972). Among the RFe2 compounds single crystals
of TbFe2, ErFe2, and TmFe2 exhibit [111] as the easy mag-
netization direction, whereas for DyFe2 and HoFe2 the easy
magnetization direction is [100]. The room-temperature mag-
netostriction constants λ111, for TbFe2, ErFe2, and TmFe2

single crystals, and λ100 for DyFe2, HoFe2 single crystals
as function of a magnetic field in the easy magnetization
direction are shown in Figure 23 (Clark, 1980). The highly
anisotropic magnetostriction reveals the importance of grain
orientation in achieving high magnetostriction with two ben-
eficial effects (i) the increase of the magnetostriction constant
(λs ≈ 0.6 λ111 in an isotropic polycrystal) and (ii) the lower
internal losses at grain boundaries.

Various attempts of single-crystal growth of RFe2 com-
pounds are described by McMasters, Holland and Gschneider
(1978). Small single crystals of TbFe2, DyFe2, and ErFe2

have been prepared by the Bridgman technique using tung-
sten crucibles. However, the crucible-sample interface con-
tained dendrites of the contamination product, which seri-
ously limited the size of the crystals. Other crucible materials
led to even more crucible contamination.

Single crystals of HoFe2 and Ho1–xTbxFe2 compounds
have been prepared by a tri-arc CZ technique described in
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Figure 23. Room-temperature magnetostriction |λ111| for TbFe2,
ErFe2 and TmFe2 single crystals (a). For TbFe2, λ111 > 0; for
ErFe2, and TmFe2, λ111 < 0 is valid. Room-temperature magne-
tostriction λ100 for DyFe2, HoFe2 single crystals (b). (Reproduced
from Clark, 1980, with permission from Elsevier.  1980.)

Section 3.3 (Milstein, Koon, Johnson and Williams, 1974).
Master alloy compositions 1% rich in rare earths were
utilized in order to suppress Fe-rich phases. Preferable results
were obtained with single-crystalline seeds rotated with
40–80 rpm at a pull rate 5 mm h−1. However, suppression
of spontaneous nucleation of second grains and beneficial
effects on crystal quality were achieved by counterrotation
of hearth of the tri-arc facility with 50–75 rpm. The growth
atmosphere employed was Ar gas purified by gettering over
a Ti sponge at red heat, which passed through a molecular
sieve held at −78 ◦C. High-quality crystals of up to 1 cm in
diameter and some centimeter in length have been grown.
Electron probe and physical measurements, in particular,
anisotropy data measured on spheres ground from different
portions of the boules proved the uniform composition over

some centimeters length, the absence of second phase and
second grains, and the small strains in the samples.

However, this technique leads only to favorable results for
congruent or nearly congruent melting compounds with mod-
erate or low vapor pressures at their melting temperatures.
More recently, a cold-crucible CZ technique was applied
for the crystal growth of NbFe2, HoFe2, Tb0.27Dy0.73Fex

(x = 1.9, 1.95) (Terfenol-D) (Bi, Abell and Ford, 1996). In
contrast to the tri-arc method, melting is accomplished by
RF (350 kHz) induction heating in a Hukin-type vertical cold
crucible (cf. Section 3.3). The contact between the crucible
and the melt of ∼50-g mass is eliminated by levitation in an
electromagnetic field. The process proceeds under a 0.2 MPa
Ar atmosphere. A tungsten rod is used as a seed rotating
with 5 rpm for crystal growth of HoFe2, and Terfenol-D with
28 mm h−1 pull rate. The crystal boules 10 mm in diameter
and ≥20 mm in length consist of a couple of large grains
and the perfection of Terfenol-D crystals suffers from twin
boundaries and needle-shaped Widmannstaetten precipitates
of (Tb/Dy)Fe3.

A horizontal levitation zone melting technique was devel-
oped by McMasters, Holland and Gschneider (1978) at Ames
Laboratory, which circumvents crucible reactions of the reac-
tive melt. Principal problems which had to be solved for a
successful crystal were (i) reduction of the ripples of the out-
put signal of the 25 kW RF generator (200–550 kHz), which
are detrimental for the control of the molten zone in crystal
growth (ii) the appropriate arrangement of the copper tube for
best levitation in this open boat configuration (iii) designing
of the pancake shaped work coil in order to achieve a narrow
molten zone and steep temperature gradients, and (iv) proper
adjustment of the conditions for levitating the zone, which
are different for each material. The growth proceeds in a
quartz tube evacuated and backfilled with a protective He/Ar
gas mixture, which could vary from 0.13 MPa to 0.5 MPa.

The single-crystal growth of TbFe2 is described here as
an example since it encompasses most problems associated
with other substances of this family (McMasters, Holland
and Gschneider, 1978). The compound TbFe2 is formed by
a peritectic reaction L + TbFe3 ↔ TbFe2 at 1187 ◦C and the
peritectic horizontal extends from 75 at% (TbFe3) to 55 at%
Fe (cf. Tb–Fe phase diagram Figure 3 in Section 2). At the
Tb-rich side a eutectic reaction between TbFe2 and Tb occurs
at 847 ◦C and 27 at% Fe. TbFe1.98 feed rods 9 mm in diameter
and 75 mm in length were prepared by arc melting from high-
purity elements. At about 10-mm distance from the end the
feed rod was cut and a 3-mm-thick disk with composition
Tb45Fe55 was placed between the two pieces. Finally the
three pieces were welded together. The Tb45Fe55 section is
melted and the molten zone passed along the rod at a rate of
0.8 mm h−1. The slow rate of this TSFZ growth process is
necessary since it proceeds below the peritectic temperature
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and involves diffusion of the stoichiometric composition
TbFe2 across the molten zone. The success of the crystal
growth process, which takes place under a gettered 0.4 MPa
Ar atmosphere to minimize evaporation, depends on the
stability of the molten zone and the solid-liquid interface
shape. Zoned samples contained single-crystalline sections
of about 15 mm length (∼1 cm3). At the bottom because of
incomplete levitation a thin polycrystalline layer occurred,
which is removed from the crystal like other polycrystalline
parts. The method was also successfully utilized for the
growth of smaller crystals of TmFe2 (Abbundi and Clark,
1978), DyFe2, and Tb0.27Dy0.73Fe2 and also 1–2 cm3 large
crystals of Nd, Pr, and γ -Ce (McMasters, Holland and
Gschneider, 1978). The latter rare-earth crystals were grown
with considerable higher rates of 3–6 mm h−1 in conjunction
with a strain-anneal technique (cf. Section 4.1.1).

4.3.2 Quasibinary Dy1–xTbxFe2 compounds
(Terfenol)

The RFe2 compounds possess unusually large magnetostric-
tion strains and also a high magnetic anisotropy. For cer-
tain magnetostrictive applications high strains at low fields
are necessary. In these cases, a low magnetic anisotropy
is important in order to maximize domain wall mobility
and easy domain rotation at low fields. RFe2 compounds
with different rare earths can display room-temperature
anisotropy constants of opposite sign (cf. Table 7 in Clark
(1980)). This makes it possible to tailor compounds with
optimum magnetostriction and low anisotropy. Studies by
Clark (1980) have demonstrated that the pseudobinary com-
pound Tb1–xDyxFe2, known as Terfenol-D, has a signifi-
cantly reduced magnetic anisotropy. The room-temperature
magnetostriction constant λ111 ≈ 1600 × 10−6 of single crys-
tals at the compensation region x ≈ 0.73 is still high in
comparison with λ111 ≈ 2450 × 10−6 of the binary TbFe2.
Because of its high magnetostriction in low external mag-
netic fields the Tb0.27–0.30Dy0.73–0.70Fe2 compounds in the
last years became outstanding candidates for applications
such as sonar devices (Abbundi and Clark, 1978). Accord-
ingly, preparation, microstructure, and physical properties
of this particular compound have been widely investigated.
The Laves phase (Tb,Dy)Fe2 compound has a MgCu2 struc-
ture type, its magnetic easy axis is the 〈111〉 direction and
the magnetostrictive strain along this direction is 16.6 times
larger than that along the 〈100〉 direction. Considering this
huge magnetostrictive anisotropy and the hindrance to mag-
netic domain processes of inhomogeneity, boundaries, impu-
rities, and so on, Tb–Dy–Fe single crystals with a minimum
amount of defect structure and impurity content which are
oriented along the 〈111〉 crystal axis are desirable not only
as subjects of fundamental research but as material with

optimum magnetostriction characteristics for the applications
itself.

As already discussed in the foregoing section, there are
three common crystal growth techniques, which one might
consider for producing aligned grains and possibly single
crystals of Terfenol-D, (i) Bridgman growth, (ii) CZ growth,
and (iii) FZ solidification. Methods (i) and (ii) both require
the alloy to be held in a container material which could
lead to contamination, whereas no container is required in
method (iii). FZ solidification also has another advantage
as a steady state process in which the composition of the
solid freezing from the zone must equal the composition
of the solid being fed into the zone. In the FZ method RF
induction heating (McMasters, Verhoeven and Gibson, 1986;
Verhoeven, Gibson, McMasters and Baker, 1987) as well
as optical heating (Mei, Okane, Umeda and Zhou, 1997;
Mei, Yoshizumi, Okane and Umeda, 1997) was applied.
Maximum 8 mm rod diameters can be achieved because the
surface tension limits the size of the zone with a typical
length of 8–10 mm. In the case of the induction furnace an
electromagnetic force also contributes to zone stability.

Indeed, Terfenol-D crystals have been grown by the verti-
cal FZ method with a pancake RF induction coil (450 kHz)
from Tb0.27Dy0.73Fex (1.9 < x < 1.975) (McMasters, Ver-
hoeven and Gibson, 1986), and Tb0.3Dy0.7Fex (Verhoeven,
Gibson, McMasters and Baker, 1987) feed rods typically
10 mm in diameter and 200 mm in length prepared by arc
melting from >99.97 wt% pure elements. The binary Dy–Fe
and Tb–Fe phase diagrams (Massalski, Okamoto, Subramar-
ian and Kacprzak, 1990) are quite similar and in both systems
the RFe2 compound melts peritectically. It is reasonable to
assume that the isopleth of interest in the ternary Dy–Tb–Fe
system would be a quasibinary diagram, which would appear
nearly identical to the Dy–Fe diagram. A schematic ternary
Dy–Tb–Fe phase diagram along with the resulting composi-
tion profile of growing cells is given by Mei, Okane, Umeda
and Zhou (1997).

For a steady state at the growth front one would require
a rare-earth concentration beyond the liquidus composition
at the RFe2 peritectic temperature in order to grow pure
RFe2 without formation of a primary RFe3 phase. The
TbFe3 phase was detected in the center of the TbFe2

dendrites. FZ experiments with Tb0.27Dy0.73Fe2 alloys have
shown that for growth rates in excess of 125 mm h−1, the
Terfenol-D compound grows directly from the melt as a
primary phase. Considering that for both Dy–Fe and Tb–Fe
binary alloys the RFe2 compound melts incongruently it is
likely to assume that the Terfenol-D compound also melts
incongruently, but it is stabilized kinetically and grows above
the peritectic temperature by a metastable congruent reaction
(McMasters, Verhoeven and Gibson, 1986). In all cases, the
microstructures contained a second, darkly etching phase as
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200 µm

Figure 24. Cellular microstructure of Terfenol-D single crystals.
(Reproduced from Mei et al., 1997, with permission from Elsevier.
 1997.)

shown in (Figure 24). The dark phase was examined by
scanning electron microscopy, scanning Auger microscopy
and optical microscopy, and it was shown to be pure rare-
earth metal. These results demonstrate that in this alloy
system the eutectic reaction at the base of the cells or
dendrites occurs by a divorced eutectic reaction mode for
the rate of solidification 125–500 mm h−1 employed in FZ
melting. The pure RFe2 compound is extremely brittle but
structures of RFe2 + eutectic, while still brittle, are much
less subject to breakage upon handling. Therefore crystals
often are prepared from Fe-depleted RFex feed rods (x < 2).
The ductile second phase consisting of pure rare-earth metal
forms as an interconnected skeleton network, which probably
accounts for the reduction of brittleness found for alloys of
x = 1.9 versus alloys of x ≈ 2. It has been demonstrated that
FZ solidification with induction heating (450 kHz) in alloys
of Tb0.27Dy0.73Fex (x = 1.9 − 1.975) produces samples with
essentially no macrosegregation along the axis in crystals
over 18 cm length. The term single crystal for Terfenol-D
is often used for aligned multigrain structures consisting
of primary dendrites or cells of the RFe2 compound with
rare-earth metal in the intercellular/interdendritic regions (cf.
Figure 23). However, it was reported that the desired 〈111〉
crystal was not obtained even using a seed technique. On
the other hand, 〈112〉 and 〈110〉 oriented twinned crystals
(Figure 25) were easily produced due to the preferred growth
of the Tb–Dy–Fe alloy (Verhoeven, Gibson, McMasters
and Baker, 1987). The 〈112〉 orientation is 19.5◦ tilted
with respect to the desired 〈111〉 direction and λ112 =
94% λ111. The twinning in the crystals is harmful to
their magnetostrictive properties because of its hindrance to
magnetization process.

R
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〈111〉- -

Rare
earth (R)

Figure 25. Schematic view of a dendrite growth front. (a) Three-
dimensional view. (b) Transversal view along A–A. (Reprinted
with permission of ASM International. All rights reserved.
www.asminternational.org.)

In the induction furnace it is difficult to obtain 〈111〉 ori-
ented crystals even with seed crystals, because the liquid
interface is a little concave to the melt. The direct driv-
ing force of twinning seems to be the growth rate. The
rate dependence of the twinning was studied and 〈111〉 ori-
ented Tb–Dy–Fe single crystals (6 mm diameter; 100 mm
length) were successfully grown in an optical image zone
melting furnace from a master alloy Tb0.3Dy0.7Fe1.90 (Mei,
Yoshizumi, Okane and Umeda, 1997). An ideal seed is
an oriented Tb–Dy–Fe single crystal, which is usually
obtained by cutting from a twinless crystal. Another sim-
ple method was found to grow the 〈111〉 twinless crystals
directly from the twinned seed crystals (Mei, Yoshizumi,
Okane and Umeda, 1997). One seed crystal was cut from
the 〈112〉 oriented twinned ‘single’ crystal with the origi-
nally lateral (111) planes as its upper face. The perpendicular
〈111〉 direction was easily determined owing to the sheetlike
morphology of the twinned crystals. Along this direction,
both of the twinned parts and parent parts exhibited the
same {111} planes, and the obtained 〈111〉 twinned seed
had its original twin planes perpendicular to the follow-
ing growth direction. From the 〈111〉 oriented seed crystals,
〈111〉 oriented twinless Tb0.3Dy0.7Fe1.90–1.95 single crystals
were successfully grown at rates of 3–15 mm h−1 in the
image furnace. These rates are considerably constrained com-
pared to the growth of the twinned crystals with 〈112〉 ori-
entation cited above.

Recently, the growth of 〈113〉 orientated crystals (10 mm
diameter; 50 mm length) with a horizontal crystal growth
furnace with induction heating was accomplished with a
〈113〉 oriented seed crystal by carefully controlling the
temperature gradients and the growth rates between 30 and
240 mm h−1, which are well beyond that for growth of 〈111〉
oriented crystals (Zhang, Gao, Zhou and Shi, 2004). The
magnetostrictive properties are superior to the specimens
with 〈112〉 oriented twinned ‘single’ crystals.
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Alternatively, Terfenol-D crystal growth was carried out
in Bridgman furnaces. Arc-cast fingers were placed in quartz
crucibles with 2–2.5 cm diameter and directional solidified
from bottom to top (Verhoeven, Gibson, McMasters and
Baker, 1987). The heat was supplied by an induction coil
(450 kHz) and the temperature gradient was produced by
placing the round bottom of the crucible on a water-cooled
pedestal. Growth rates of 200–250 mm h−1 were employed.
The solidification front was dendritic with planar-sheet
morphology. The sheet faces are parallel to {111} planes,
the primary growth direction lies along the 〈112〉 direction
and grains are aligned within 5–10◦ of the growth axis.
Similar to the FZ crystals a rare-earth phase (Tb + Dy) is
placed between the sheets, but the alignment of the sheet
dendrites into parallel arrays is not always obtained for the
Bridgman crystals. Crystals were also grown from induction
cast Tb0.3Dy0.7Fe1.9 alloy rods in a Bridgman furnace with
A12O3 crucibles at 30–3600 mm h−1 pulling rates (Mei,
Yoshizumi, Okane and Umeda, 1997). Contamination from
Al2O3 crucible material and atmosphere was severe. A
significant rare-earth loss along the axial direction was
observed even at high growth rates of 600 mm h−1. A change
of the preferred growth direction from 〈112〉 to 〈110〉 was
observed for lower growth rates (<60 mm h−1) (Mei, Okane,
Umeda and Zhou, 1997; Mei, Yoshizumi, Okane and Umeda,
1997).

Owing to very low growth rates of single crystals, both the
FZ and the modified Bridgman method are not economical
for volume production. Therefore, a crystal growth technique
for the production of large diameter drivers and for mass pro-
duction of smaller diameter elements within one heat was
developed by ETREMA Products, Inc., Ames (Iowa). It is
based on a modified Bridgman technique (Snodgrass and
McMasters, 1997). Terfenol-D alloy is melted in a ceramic
crucible, and then poured via a hole in the bottom of the cru-
cible into preheated molds. The molds are withdrawn from
secondary furnace sections in a standard Bridgman manner.
As the material is solidified, the rate of withdrawal and the
direction of heat flow are controlled to produce crystallo-
graphically aligned drivers of Terfenol-D. This method is
capable of producing drivers as large as 65 mm in diameter
and lengths as great as 175 mm. For rods <50 mm, the system
can produce aligned drivers of 250 mm in length. The system
is also capable of producing several smaller rods (<28 mm
diameter) simultaneously.

4.3.3 Ni2MnGa-based ferromagnetic shape
memory alloys

Ferromagnetic shape memory alloys (FSMAs) moved from
a hypothetical new class of active materials, to join piezo-
electric and magnetostrictive materials, upon observation of

a 0.2% magnetic-field-induced strain at 265 K in a single
crystal of Ni2MnGa by Ullakko et al. (1996). By compari-
son, piezoelectric materials show strains of the order 0.1%
(Haertling, 1999) and the leading magnetostrictive material,
Terfenol-D, shows a field-induced strain of about 0.24%
(Cullen, Clark and Hathaway, 1990). The magnetic alloy
exhibiting a martensitic phase transformation allows control
of large displacements by application of a magnetic field at
constant temperature. Ni2MnGa is a Heusler alloy, L21, hav-
ing a cubic lattice with a = 5.822 Å in the high-temperature
phase. The martensitic transformation temperature is near
276 K. The low-temperature phase evolves from the par-
ent phase by a diffusionless, displacive transformation that
gives a tetragonal structure, a = b = 5.90 Å, c = 5.44 Å. The
properties of Ni–Mn–Ga samples sensitively depend on the
alloy composition (Chernenko, Cesari, Kokorin and Vitenko,
1995). Compositions slightly off the Heusler stoichiometry
are chosen in order to render alloys having Curie tempera-
tures greater than the martensite transformation temperature,
which in turn was to be greater than room temperature.

Crystals were grown by the Bridgman technique (Ullakko
et al., 1996; Chernenko, Cesari, Kokorin and Vitenko,
1995; Murray et al., 2000; Sozinov, Likhachev, Lanska and
Ullakko, 2002) as described in by Murray et al. (2000). Mas-
ter alloys from high-purity nickel, manganese, and gallium
were arc melted into buttons and then drop cast into a chilled
copper mold. The as-cast ingots were placed in alumina cru-
cibles and heated to 1350 ◦C for 1 h to allow homogenization
before withdrawing the sample from the heat zone at a rate of
5 mm h−1. In order to minimize evaporation of the Mn during
crystal growth, the furnace was backfilled to a positive pres-
sure of 6.83 × 105 Pa with purified argon after the chamber
and sample had been degassed at 1350 ◦C under vacuum. A
typical single-crystal boule measured 1 cm in diameter and
5 cm in length. After Laue orientation, several samples were
cut from the crystal boule by electric spark erosion.

Usually, after a martensitic phase transition multiple vari-
ants of martensite form within a single crystal of the parent
high-temperature phase. Afterwards, that multivariant state
can be transformed into a nearly single variant of marten-
sitic phase by an appropriate mechanical treatment. In this
way nearly single-variant martensitic samples were prepared
where the full field-induced strain can be exploited. Strains of
6% associated with the crystallographic distortion by appli-
cation of a field of 320 kA m−1 (4 kOe) to a single-variant
sample from an off-stoichiometric Ni47.4Mn32.1Ga20.5 crystal
were reported (Murray et al., 2000). Electron probe micro-
analysis of this crystal showed the composition to vary along
the boule axis with Mn content increasing and Ga content
decreasing in the growth direction. A very large 10% strain
was achieved for a Ni48.8Mn29.7Ga21.5 single crystal grown
with 30 mm h−1, after homogenization at 1253 K and aging
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Figure 26. Field-induced strain of a single-variant sample of
orthorhombic seven-layer phase in the Ni48.8Mn29.7Ga21.5 alloy at
300 K measured perpendicular to the magnetic field applied along
the [100] direction. (Reproduced from A. Sozinov et al., 2002, with
permission from the American Institute of Physics.  2002.)

at 1073 K (Sozinov, Likhachev, Lanska and Ullakko, 2002).
The Curie temperature is about TC = 368 K. The marten-
sitic transformation starts at 337 K (Ms) and is completed at
333 K (Mf ) during cooling. At lower temperatures, start-
ing at 245 K, the magnetic susceptibility increased, indi-
cating the intermartensitic transformation. By X-ray studies
it was found that the crystal structure of the first high-
temperature martensitic phase is nearly orthorhombic and
has lattice parameters of a = 0.619 nm, b = 0.580 nm, and
c = 0.553 nm at ambient temperature. Seven-layer modula-
tion along the (110)[110]p system was observed. The crystal
structure of the second martensite is tetragonal with lattice
parameters of a = b = 0.547 nm, and c = 0.660 nm (c/a =
1.207) at 200 K and a = b = 0.551 nm and c = 0.654 nm
(c/a = 1.187) at ambient temperature. Figure 26 shows the
results of the field-induced strain measurements of the alloy
at ambient temperature. The magnetic field was applied par-
allel to the a axis. The maximum strain achieved in the first
cycle at the field of 1.05 T is εMSM = 9.5%. This value is
lower than the crystallographic limit e0 = (1–c/a) = 10.66%
expected for complete transformation between two single
variants.

4.4 Crystal growth of magnetocaloric materials

The magnetocaloric effect is a change in the temperature of
a magnetic solid in response to a changing magnetic field.
The magnetocaloric effect is intrinsic to all magnetic mate-
rials and is due to the coupling of the magnetic sublattice
with the magnetic field, which changes the magnetic part of

the entropy of a solid (Pecharsky and Gschneidner, 1999).
This process has been used for about 70 years to achieve
very/ultra low temperatures in small volumes by a process
known as adiabatic demagnetization refrigeration (Gschnei-
dner and Pecharsky, 1999). The magnetocaloric effect can
be measured directly or it can be calculated indirectly from
the measured magnetization or field dependence of the heat
capacity. The range of operating temperatures of various
classes of substances such as PrNi5, pure rare earths (Pr, Nd,
Er, Tm, Dy), rare-earth-containing intermetallic compounds
(RAl2, GdPd, RNi2) depends on the magnetic phenomena
utilized for the magnetocaloric effect. Gd, Gd5Si4, and Ge-
substituted compounds Gd5(SixGe1–x)4 operate near room
temperature. The giant magnetocaloric effect of the latter
compound results from a simultaneous first order magne-
tostructural transformation and a structural transition from
a paramagnetic monoclinic high-temperature phase into a
ferromagnetic orthorhombic phase (Pecharsky and Gschnei-
dner, 1999). Single crystals of magnetocaloric substances are
exploited for details of crystallographic structures, the mag-
netic order, and anisotropic material properties.

The single crystals of Gd (Tishin, Gschneidner and
Pecharsky, 1999) and Dy (Chernyshov et al., 2005), which
were prepared from high-purity polycrystalline metals via
a strain-anneal process (cf. Section 4.1.1), were studied
over broad temperature (T ) and magnetic field (H ) intervals
and have revealed peculiarities of magnetothermal properties
especially in the vicinities of the magnetic ordering tempera-
tures. When the magnetic field vector is parallel to the a axis
of a crystal, the refined H–T phase diagram of Dy is more
complicated than previously thought, and it contains several
new phases (Chernyshov et al., 2005).

The crystal growth of Gd5(SixGe1–x)4, which is of con-
siderable interest for practical application, is hampered by
the high melting point of the compounds (>2073 K) and
the reactivity of both the rare-earth metal and silicon at
these temperatures. Moreover, the phase diagram near the
Gd5(SixGe1–x)4 region at high temperatures is not well
known. Single crystals of the monoclinic Gd5(SixGe1–x)4

compound were synthesized only recently by the Bridg-
man method in a conical tipped tungsten crucible (Lograsso,
Schlagel and Pecharsky, 2005). The as-cast Gd5(SixGe1–x)4

ingot was electron beam welded under vacuum into the cru-
cible for crystal growth. The ingot was heated in a tungsten-
mesh resistance furnace under a pressure of 8.8 × 10−5 Pa up
to 1273 K and held at this temperature for 1 h to degas the
crucible and furnace chamber. The chamber was then back-
filled to a pressure of 3.4 × 104 Pa with high-purity argon.
The ingot was then heated to 2273 K and held at this tempera-
ture for 1 h to allow thorough mixing before withdrawing the
sample from the heat zone at 4 mm h−1. Tungsten crucibles
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Figure 27. Longitudinal section of a typical as-grown Gd5Si2Ge2

ingot. The ingot is comprised of three to four single crystals and
is severely cracked along the entire length. (Reproduced from
Lograsso et al., 2005, with permission from Elsevier.  2005.)

were found to be inert, that is, no formation of tungsten sili-
cides or germanides were observed, but slight solubility of
W in molten Gd5(SixGe1–x)4 resulted in the precipitation
of pure W dendrites in the bulk alloy and along the cru-
cible wall, leading to mechanical bonding between crucible
and ingot. Upon cooling the Gd5Si2Ge2 ingot was severely
cracked (Figure 27) due to the mismatch of thermal expan-
sion between specimen and crucible (Lograsso, Schlagel and
Pecharsky, 2005). Overall, the bulk crystal solidified in the
monoclinic phase with a slight increase in lattice parameters
reflecting the slight increase in Si:Ge ratio along the ingot.
The temperature TC = 261 K of the magnetostructural trans-
formation increased by approximately 10 K. The large values
of the magnetocaloric effect in specimens taken from the
start of crystal growth slightly decreased over the length. No
evidence was found for the solidification of second phases.
Magnetization measurements using a Gd5(Si1.95Ge2.05) sin-
gle crystal with the magnetic field applied along three crystal-
lographic directions [001], [010], and [100] were carried out.
The giant magnetocaloric effect is maximum in the vicinity
of TC. The H–T phase diagrams were constructed for the
Gd5(Si1.95Ge2.05) single crystal with field along the three
directions and a small anisotropy was observed, which is
correlated with the nature of the crystalline anisotropy (Tang
et al., 2003).

On the other hand, significant anisotropy of the magne-
tocaloric effect was derived from magnetization measure-
ments in Tb2PdSi3 single crystals grown by the FZ method
(Majumdar et al., 2000). The Tb2PdSi3 compound exhibits
a hexagonal AlB2-type structure and undergoes a paramag-
netic–antiferromagnetic transition at TN = 23 K. From the
entropy change–
S shown in Figure 28 a large anisotropy
is emphasized in the sense that the observed magnetocaloric
effect over a wide T range in the vicinity of TN is large
for a [10-10] direction, in sharp contrast to relatively smaller
values for [0001] direction. This implies that, if the present
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Figure 28. Entropy change by increasing the applied magnetic field
from 0 to 4 × 103 kA m−1 (50 kOe), as derived from magnetization
data as a function of temperature for Tb2PdSi3. (Reproduced from
S. Majumdar et al., 2000, with permission from the American
Physical Society.  2000.)

material could be used for magnetic refrigeration at low tem-
peratures, one may have a relatively better cooling power if
the magnetic field H is applied along a [10-10] direction
of the crystal (in the basal plane of the hexagonal unit cell)
instead of [0001] the perpendicular c axis. Another notewor-
thy point is that the sign of −
S is essentially positive for
the former direction, whereas it is negative for the latter.

The utilization of anisotropic materials was subject of
a recent theoretical study, too (Lima, Gschneidner and
Pecharsky, 2004). The results indicated that using single
domain magnetic materials it is theoretically possible to
increase the efficiency of magnetic refrigeration up to 65%
for a device operating at low temperature and utilizing TbAl2.

4.5 Selected intermetallic compounds for
spintronics

Spin-polarized transport in magnetic materials is beginning to
play an important role in the development of magnetoelec-
tronic devices. Half-metallic (HM) ferromagnetic materials
have recently drawn intense interest due to their potential use
in this field (see contributions in Vol. 5 of this Handbook).

Investigation of single crystals are usually used to verify
theoretically predicted magnetic effects and properties since
it is believed that they represent the least disturbed structure
of a compound and its intrinsic properties. There are only
a few publications about the growth of single crystals in
this group of materials. The ferromagnetic shape memory
compound Ni2MnGa plays an important role (Schlagel, Wu,
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Hang and Lograsso, 2000) (cf. Section 4.3.3) as do the
compounds Co2MnX (X = Si, Ge) (Cheng et al., 2001) due
to their high Curie temperatures and the predicted high spin
polarization.

Cheng et al. (2001) reported the growth of both Co2MnSi
and Co2MnGe high-quality crystals. The magnetic moment
per formula unit of 5.1 µB well agrees with the known
predictions and confirmes the semimetallic nature of these
materials. Cheng started from the pure elements (better
3N purity), which were melted together by arc melting
under argon atmosphere. The compound was homogenized
by turning and remelting the boule. The crystal growth
proceeded using the tri-arc Czochalski method. Using small
seed crystals from a previous experiment, single crystals
about 6 mm in diameter and 30–40 mm in length were grown
at 7 mm h−1 with a seed rotation of 15 rpm opposite to the
rotation of the hearth of the tri-arc facility. The temperature
of the melt, measured by optical pyrometry, was raised to
about 1523 K before immersing the starting seed. Slices of
both crystals were annealed at 1073 K for nine days followed
by water quenching. The crystals are single phase and single
crystalline with an orientation near [100].

Single crystals of the full-Heusler compound
Co2Cr0.6Fe0.4Al were grown by the FZ technique by the
authors. Firstly, starting materials (purity better than 3N) are
mechanically or chemically treated, to remove oxide films
often present on metal pieces in spite of highly pure condi-
tions of storage. Then all the materials are initially melted
in an arc-melting furnace on a water-cooled Cu plate under
purified argon atmosphere. The resulting master alloy is
remelted in a Hukin-type cold crucible with RF induction
heating and cast into a copper mould with a cylindrical cav-
ity. The cylindrical rod produced, typically 6 mm in diameter
and 60–80 mm in length, is used for FZ crystal growth as a
feed rod.

The single-crystal growth was accomplished by vertical
FZ techniques with optical heating (see Figure 10) at a
growth rate of 12 mm h−1. Axially symmetric counterrotation
of crystal (30 rpm) and feed rod (10 rpm) was employed. The
crystals shown in Figure 29 were single crystalline over the
whole diameter for the last 20 mm. They were oriented by
Laue technique and cut for magnetic measurements.

4.6 Crystal growth of multiferroic materials

Multiferroics, sometimes called magnetoelectrics, possess
two or more switchable properties (order parameters) such
as electrical polarization, magnetization, or strain (Smolen-
ski and Chupis, 1982; Schmid, 1994a,b). Although a number
of materials exhibit both ferroelectricity and (anti)ferro-
magnetism, there is not always a substantial coupling

0 1 2 3 4 5 6

HOWA

7 8 9 10

Figure 29. Co2Cr0.6Fe0.4Al single crystal grown by FZ method.
(Courtsey of G. Behr, IFW Dresden, 2005.)

between them. In contrast, in most cases ferroelectricity and
magnetic ordering exclude each other (Khomskii, 2006). Of
practical interest is the potential to control (i) the sponta-
neous electric polarization by a magnetic field or (ii) the
magnetization by an electric field through magnetoelectric
coupling. These materials may have a perspective for future
device applications such as electrically recorded magnetic
media.

Magnetoelectric effects have been studied in some mul-
tiferroics since the late 1960s. In general, the applied mag-
netic field results in a small modulation of the spontaneous
polarization. Why and under which circumstances a large
coupling should come about is a major open question, but
this problem has proved difficult to tackle owing to the
lack of materials that show such strong coupling (Hur et al.,
2004a). Recently, some compounds with huge magnetoelec-
tric effects have been found among Mn oxides: in HoMnO3,
ferromagnetic ordering can be switched on and off by an
electrical voltage (Lottermoser et al., 2004), and TbMn2O5

exhibits a practical value for magnetically controlling a fer-
roelectric polarization, which can be continuously tuned by
a magnetic field between two states with opposite direction
(Hur et al., 2004a).

4.6.1 Magnetic and ferroelectric phases of the family
of RMn2O5 compounds

In comparison to the family of the hexagonal mangan-
ites RMnO3 (R = Ho-Lu), the number of investigations on
RMn2O5 single crystals (R = Y, Bi, or a rare-earth element)
is scarce. In spite of the detailed studies of selected RMn2O5

compounds, little is actually known about the detailed inter-
play of ferroelectricity and magnetism in RMn2O5, pri-
marily owing to its chemical and structural complexity
(Saito and Kohn, 1995; Golovenchits, Morozov, Sanina and
Sapozhnikova, 1992). According to the authors (Chapon
et al., 2004) the emergence of ferroelectricity is a conse-
quence of magnetic frustration between nearest and next-
nearest Mn4+ neighbors in an antiferromagnetic square
lattice.
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RMn2O5 belongs to the orthorhombic space group Pbam
at room temperature. Upon cooling below 50 K it displays
a sequence of magnetic and electric phase transitions the
nature of which is a result of the interplay of magnetic
exchange interactions among Mn3+, Mn4+, and R3+ spins (if
the R3+ ion is magnetic) and the lattice polarization (Sanina,
Sapozhnikova, Golovenchits and Morozov, 1988; Kagomiya
and Kohn, 1998). Mn spins order at the antiferromagnetic
Neel temperature TN1 of about 40 K. According to earlier
neutron diffraction studies, magnetic moments of Mn3+ and
Mn4+ ions form a helical magnetic structure below TN1 =
39 − 45 K (Wilkinson et al., 1981; Kagomiya, Kimura, Noda
and Kohn, 2001; Hur et al., 2004a).

The technological potential of most of the known magne-
toelectric compounds is limited by (i) the small magnitude
of the observed effects and (ii) by the low operating tem-
peratures (<100 K). The rather low values of the ferroelec-
tric Curie temperature TC and the spontaneous polarization
with respect to typical ferroelectrics seem to indicate a weak
nature of the ferroelectricity of RMn2O5, which is induced
by an ordering process differing from that of typical ferro-
electrics (Kato, Kohn and Ishikawa, 1997).

However, operating temperatures might be increased by
an appropriate substitution of Mn by other transition met-
als T = Fe, Co, as was shown by Shim et al. (2004).
The small magnitude of magnetoelectric effects observed
so far has been overcome in some recently investigated
compounds of RMn2O5 (Fiebig, 2005). A significant mag-
netodielectric effect, that is, a change of the dielectric con-
stant ε in an applied magnetic field, was reported near a
unique commensurate–incommensurate magnetic transition
in (Tb, Dy, Ho)Mn2O5, which is intricately coupled with
a dielectric transition. In particular, the magnetodielectric
effect for DyMn2O5 is more than 100% (along the crys-
tallographic b axis) in a broad temperature range below
T ’N if the magnetic field is applied along the a axis of
the crystal (Hur et al., 2004b). This ‘colossal magnetodielec-
tric’ (CMD) effect demonstrates a new kind of an intriguing
interplay between spin and lattice degrees of freedom being
active in RMn2O5. It provides an important means to tune
dielectric properties with external magnetic fields (Hur et al.,
2004a).

In TbMn2O5, a reversal of the electric polarization in a
magnetic field of the order of 1 T has been observed below
the antiferromagnetic ordering at TN1 = 38 K, including a
memory effect with remnant states (Hur et al., 2004a). The
behavior is reproducible throughout many cycles. This effect
can be used to set the polarization in a controlled way
with a magnetic field. In ferroelectric YMn2O5 crystals, a
strong enhancement of the electrical polarization can be
achieved by application of large magnetic fields of about
20 T (Kadomtseva et al., 2003).

The unit cell parameters of the RMn2O5 phase differ
significantly from those in the adjacent regions of the
bivariant equilibrium in the corresponding thermodynamic
phase diagrams (Fedorova, Titova, Golikov and Balakirev,
2003). The fact that the unit cell can be varied with the
chemical composition of the initial components indicates the
existence of a sizable region of homogeneity of this substance
both with respect to metal components and oxygen. No
further studies in this direction have been reported, although
a possible strong effect of the crystal composition and
corresponding point defect structure on physical properties
can take place similar to those of superconducting cuprates
(Liang and Lin, 2002; Gorina et al., 1998).

4.6.2 Thermodynamics and crystal growth
of RMn2O5 compounds

The study of the phase diagrams of R–Mn–O (R = Y, Tb,
and Ho) systems as function of temperature, composition,
and the oxygen partial pressure pO2 is of great importance for
controllable single-crystal growth of RMn2O5. The previous
studies were mainly focused on subsolidus phase diagrams
at low oxygen pressures (pO2 = 0.02 − 0.1 MPa) (Balakirev
and Golikov, 2003; Munoz, Alonso, Martinez-Lope and Mar-
tinez, 2004; Kitayama et al., 2002; Fu, Huebner, Trubelja and
Stubican, 1994). Systematic studies at elevated oxygen pres-
sures are missing, but are extremely important for RMn2O5

phase formation, since at lower pO2 the decomposition reac-
tion proceeds at high temperatures:

RMn2O5 ⇐⇒ RMnO3 + 1

3
Mn3O4 + 1

3
O2 (4)

An increase of the decomposition temperature of RMn2O5

with increasing pO2 is expected and has been confirmed by
Fu, Huebner, Trubelja and Stubican (1994). This behavior of
RMn2O5 is evident since the high oxygen pressure favors the
stabilization of the high oxidation states of manganese, Mn4+

and Mn3+. Oxygen pressures of more than 20 MPa seem to
be overstated for the synthesis of RMn2O5 compounds, since
heat treatment of LaMn2O5 and SmMn2O7, which can not
be synthesized at 0.02 MPa, at these pressures show higher
Mn mean oxidation states of 3.56+ and 3.63+, respectively.
That corresponds to an increased oxygen concentration with
respect to the stoichiometry (Munoz et al., 2004).

The polycrystalline materials of RMn2O5 (R = Y, Tb,
Ho) can be synthesized by conventional solid-state reactions
at around 1100 ◦C in air for 48–72 h. La and Nd systems
require higher pressures pO2 at these temperatures (Kitayama
et al., 2002). But, since RMn2O5 materials show strongly
anisotropic properties (Hur et al., 2004a; Fiebig, 2005)
the studies are preferably carried out on single-crystalline
samples oriented in an appropriate way. In this case, the
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effects of minor phases, grain size and grain boundaries are
excluded and the intrinsic behavior of the crystal lattice can
be studied. Therefore, availability of single crystals of several
tens of cubic millimeter size, high purity, and structural
perfection is of great importance.

Single crystals of RMn2O5 compounds have been grown
by a flux technique (cf. Section 3.2) at various solvent com-
positions (Wanklyn, 1972; Sanina, Sapozhnikova, Goloven-
chits and Morozov, 1988; Golovenchits, Morozov, Sanina
and Sapozhnikova, 1992).

Rare-earth manganites have been grown firstly from Bi2O3

and from PbO/Bi2O3 solvents (Tamura, Sawaguch and
Kikuchi, 1965). These fluxes attack Pt crucibles severely,
and since Bi3+ is similar in size and charge to R3+, it
tends to replace R3+ in the crystal lattice up to several at%
(Wanklyn, 1972; Sanina, Sapozhnikova, Golovenchits and
Morozov, 1988). Better RMn2O5 crystals of higher purity
have been grown from PbO/PbF2 flux, which is less cor-
rosive and does not show a noticeable solubility of the
solvent elements in the RMn2O5 phase (Wanklyn, 1972).
Single crystals of RMn2O5 of several cubic millimeters in
size grown from PbO/PbF2/B2O3 flux in a Pt crucible have
been reported by Wanklyn (1972). Afterwards the same
technology was repeated by almost all other groups for
preparing single crystals of RMn2O5 compounds (Kagomiya
et al., 2003; Inomata and Kohn, 1996; Gardner, Wilkinson,
Forsyth and Wanklyn, 1988; Kobayashi et al., 2004a,b; Doi
and Kohn, 1992; Kagomiya and Kohn, 1998; Kato, Kohn
and Ishikawa, 1997; Koyata and Kohn, 1997; Koyata et al.,
1996) and with small variations in the growth parameters
(Golovenchits, Morozov, Sanina and Sapozhnikova, 1992;
Sanina, Sapozhnikova, Golovenchits and Morozov, 1988).
The flux was usually held at 1280–1300 ◦C for 10–15 h
at ambient oxygen pressure and then slowly cooled down
to 950–1000 ◦C. Crystals grow in the form of black pel-
lets or cubes with a typical size of 0.5–5 mm (Hur et al.,
2004a). No characterization of the crystal perfection, inclu-
sions of other phases and crystal purity were reported
so far.

There are only a few reports about doping of RMn2–xTxO5

polycrystalline materials (Shim et al., 2004; Munoz et al.,
2002) and to our knowledge nothing about doping of the
single crystals.

4.7 Crystal growth activities of less-common
magnetic alloys

Numerous multicomponent intermetallic rare earth–transition
metal compounds with interesting magnetic properties have
only minor practical interest and therefore we can cite only
a few recent examples of crystal growth activities.

In 1994 intermetallic R–T borocarbides, RT2B2C (R =
rare-earth elements, Sc, Y, or La; T = Ni, Pd) were discov-
ered (Nagarajan et al., 1994). Depending on the rare-earth
component the compounds with the tetragonal body-centered
ThCr2Si2-type crystallographic structure can exhibit mag-
netic ordering, superconductivity, or an interesting interplay
of both phenomena. Because of the high melting temper-
atures (>1500 ◦C) and the extreme reactivity of the melts
with oxygen and practically all known crucible materials the
crystal growth of these compounds is rather challenging. So
far two methods of crystal growth were successfully applied.
Crystals grown by the Ni2B-flux method provide a basis
for the determination of several anisotropic physical prop-
erties of quaternary RNi2B2C but suffer from the relatively
small size and imperfections arising from the flux (Cho et al.,
1995; Rathnayaha et al., 1997). For some of the compounds
the FZ methods were applied for the growth of bulk crys-
tals typically 6 mm in diameter and up to 40 mm in length
(Takeya, Hirano and Kadowaki, 1996; Takeya, Kadowaki,
Mirata and Mirano, 1996; Behr et al., 1999; Souptel et al.,
2005; Behr and Löser, 2005). The TbNi2B2C compound
displays antiferromagnetic ordering below TN = 14 K. The
relevant pseudobinary section TbB2C2 –TbNi2B2C–TbNi4B
of the quaternary phase diagram with a peritectic temperature
of Tp = 1518 ◦C is shown in Figure 30 (Behr et al., 1999).
The incongruent melting of the RNi2B2C compound implies
that the phase is only formed from the off-stoichiometric
FZ composition. This corresponds to a TSFZ method in a
stable growth process and limits the pulling velocities to
<2 mm h−1. If stoichiometric feed rods are used, the ini-
tial part of the crystal contains inclusions of the TbB2C2

primary phase before the composition of the FZ gradu-
ally approaches the composition in the primary solidification
range of TbNi2B2C (Figure 31).

Single crystals of ternary R2PdSi3 (R = Ce, Gd, Tb, Dy,
Ho, Er, Tm) compounds, which display hexagonal AlB2-
type structures, where successfully prepared both by the
tri-arc CZ method (Saha et al., 1999, 2000) as well as by
FZ methods in Ar atmosphere (Graw et al., 2000; Mazilu
et al., 2005). The challenges for crystal growth are similar
to the above-mentioned RNi2B2C compounds; however,
the compounds are congruent melting and therefore enable
higher growth velocities of 5–10 mm h−1 (Graw et al.,
2000; Mazilu et al., 2005). The compounds exhibit various
types of incommensurate magnetic orderings, metamagnetic
transitions, and a giant negative magnetoresistance if the
critical temperatures are approached (Saha et al., 1999, 2000;
Majumdar et al., 2000).

The availability of high-quality single crystals of R2PdSi3
compounds (R = Ce, Gd, Tb, Dy, Ho, Er, Tm) made it
possible to study in more detail the magnetic properties of
compounds of the same crystallographic structure but for
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Figure 30. Tb–Ni–B–C phase diagram section TbB2C2 –TbNi2B2C–TbNi4B relevant for TbNi2B2C crystallization processes. Superposed
is a differential thermal analysis (DTA) heating plot. (Courtesey of H. Bitterlich IFW, Dresden, 2000.)
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Figure 31. Metallographic image of a longitudinal section of
a TbNi2B2C crystal growth experiment with inclusions of the
TbB2C2 primary phase. (Reproduced from Souptel et al., 2005, with
permission from Elsevier.  2005.)

rare-earth elements with different shapes of the 4f orbital
(Frontzek et al., 2006). Investigations on these single crystals
yielded anisotropic magnetic behavior in all substances,
surprisingly even for the Gd compound, which is an S-state
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Figure 32. Tb2PdSi3 single-crystal magnetization data at T = 2 K
for the c direction and at 4 K for the a direction well below the
ordering temperature (TN = 23.6 K). (Reproduced from Frontzek
et al., 2006, with permission from Elsevier.  2006.)

ion. In the high-temperature regime the magnetocrystalline
anisotropy is dominated by the lowest order crystal electric
field (CEF) term B02. At lower temperatures CEF terms of
higher order induce deviations from the Curie-Weiss law.
Still, the B02 term dominates the CEF for Tb2PdSi3 and
Er2PdSi3 and determines the magnetic easy direction in
the ordered state, too (Figures 32 and 33). In contrast, the
magnetic easy and magnetic hard directions in the ordered
state are determined by higher order terms for Dy2PdSi3
and Ho2PdSi3. This leads to the crossing of the magnetic
easy and hard direction in the paramagnetic state far above
the Neél temperature in both compounds. The low ordering
temperatures also indicate a delicate balance of magnetic
exchange interaction and CEF.
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Figure 33. Er2PdSi3 single-crystal magnetization data at T =
1.8 K well below the ordering temperature (TN = 7 K). (Reproduced
from Frontzek et al., 2006, with permission from Elsevier.  2006.)

5 CONCLUSIONS

In this chapter, we have summarized the crystal growth
methods, single-crystal growth attempts, and some char-
acteristic measurements of magnetic properties of various
classes of magnetic materials: soft magnetic pure metals
and alloys, highly anisotropic compounds for high-density
magnetic recording media, rare earth–transition metal com-
pounds for high-performance permanent magnets, highly
magnetostrictive intermetallic compounds and FSMAs for
magnetomechanical applications, magnetocaloric materials,
selected intermetallic compounds for spintronics, multifer-
roic materials, and some other less-common magnetic com-
pounds. The main purpose of single-crystalline specimens is
to carry out measurements of intrinsic properties of mag-
netic materials or their constituent phases as a function of
the crystallographic orientation and composition, but com-
plex crystallographic structures or magnetic ordering of com-
pounds and magnetization processes can also be revealed.
Single crystals with optimum orientation of magnetostrictive
materials and FSMAs are even prospective for commercial
applications in high-performance devices.

It was shown in various examples for crystal growth
of magnetic materials how phase diagram features of the
alloy system, the required size of the single-crystalline spec-
imen and its physical and chemical perfection determine the
choice of the appropriate growth method and appropriate
process parameters. For example, if a compound is formed
by a peritectic reaction, slower growth rates are applied for
crystal growth than for congruent melting compounds. In
case of solid-state transformations below the melting tem-
perature, high-quality crystals cannot be prepared directly
from the melt, but strain-anneal techniques of the as-grown
samples are required. Other important issues are the melt
reactivity with crucible materials and the environmental gas,

and volatile elements. Here container-less growth techniques
(FZ melting) and special flux techniques, which operate at
reduced temperature, can be useful. However, there are still
a number of magnetic systems from which ‘highly desirable’
single crystals cannot be prepared or only with insufficient
quality. In this case, single crystals with substituted elements
of the same class of compounds (with the same crystallo-
graphic structure) turned out to be helpful to reveal important
anisotropic magnetic features. Novel techniques, phase dia-
gram studies as well as new ideas on growth processes are
necessary for further progress in single-crystal preparation of
some well-known and prospected new magnetic materials.
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Souptel, D., Behr, G., Löser, W., et al. (2004). CeSi2−δ single
crystals: growth features and properties. Journal of Crystal
Growth, 269, 606–616.

Tabata, H. and Hirano, T. (1988). Growth of MoSi2 single crystals
by the floating zone method. Journal of the Japan Institute of
Metals, 52, 1154–1158.

Wanklyn, B.M. (1969). The flux growth of single crystals of rare
earth perovskites (orthoferrites, orthochromites and aluminates).
Journal of Crystal Growth, 5, 323–328.



Amorphous Alloys

Hywel A. Davies and Michael R.J. Gibbs
University of Sheffield, Sheffield, UK

1 Introduction and Background 1

2 Formation and General Characteristics of Glassy
Alloys 2

3 Fundamental Magnetic Properties 4

4 Processing of Metallic Glasses 6

5 Liquid State Processing of Metallic Glasses 9

6 Induced Magnetic Anisotropy and Magnetostriction 12

7 Permeability, Magnetic Losses, and Transformer
Applications 17

8 Sensors 17

References 18

Further Reading 21

1 INTRODUCTION AND BACKGROUND

Amorphous alloys, also frequently referred to as metallic
glasses, noncrystalline alloys, or glassy alloys, are metallic
materials that are devoid of long-range atomic order. They
can be produced by several different techniques, most of
which involve rapid solidification from the liquid or gaseous
state. However, other, very different routes, including (i)
mechanical alloying of crystalline precursor materials, either
elemental or partly prealloyed; (ii) mechanical milling of pre-
alloyed crystalline precursors; (iii) high energy ion or neutron
bombardment of crystalline alloys; (iv) electroless deposition
from solution; or (v) electrodeposition from solution, have
been successfully employed to produce amorphous alloys.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

This overview is concerned specifically with soft
ferromagnetic amorphous alloys. It is restricted very largely
to material produced in ribbon forms by rapid solidifi-
cation from the liquid state, except for, where necessary
for the purposes of comparison, brief mention of mate-
rials produced by other routes. These soft ferromagnetic
glassy alloy ribbon materials, often described by their trade
names ‘METGLAS’ or ‘VITROVAC’, together with
the nanocomposite ultrasoft magnetic ‘FINEMET’ and
‘VITROPERM’ alloys and the nanocrystalline melt spun
rare earth (RE)–iron–boron-based hard magnetic alloys,
having the trade name ‘MQP’, are among the most success-
ful examples of the commercial exploitation of rapid solidi-
fication technology in the production of advanced alloys.

The first explicit report of a ferromagnetic amorphous
alloy was for sputter-deposited thin-film Co–Au by Mader
and Nowick (1965), following the earlier theoretical predic-
tion of amorphous ferromagnetism (Gubanov, 1960). The
first reported ferromagnetic melt-quenched glassy alloys
were Pd12Co68Si20 (Tsuei and Duwez, 1966) and Fe83P10C7

(Duwez and Lin, 1967), produced by a piston and anvil
splat-quenching technique. The discovery of other, more
favorable, ferrous alloy glass-forming compositions, particu-
larly those based on (Fe, Co, Ni)SiB, and the demonstration
of the excellent soft magnetic properties of alloy glasses
after annealing to remove the quenched-in stresses (Luborsky
et al., 1975) stimulated rapid growth of scientific and tech-
nological interest in the materials. With the utilization of the
single-roll melt-spinning technique for producing thin rib-
bon in extended lengths (Liebermann and Graham, 1976;
Kavesh, 1978), the pace of development accelerated greatly
in the late 1970s and 1980s. A key step in the commer-
cial exploitation of metallic glasses, pioneered by Allied
Chemical in the United States, was the development of the
planar flow casting (PFC) process (Narasimhan, 1979), which
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facilitated the continuous casting of glassy alloy ribbon in
uniform widths up to 300 mm and with good thickness toler-
ance down to as low as 15 µm but, more typically, 25–30 µm.
This led to the use of FeSiB-based glassy alloys for the cores
of toroidally wound distribution transformers, typically of
capacity 25 kVA, on the basis of significantly lower core
losses and exciting currents than for the long entrenched Fe-
3wt%Si crystalline materials (Smith, 1993; Hasegawa, 2004).
Similarly, very low magnetostriction CoFeSiB-based alloy
glass ribbons have been widely exploited, where very high
permeabilities µ and low coercivities Hc are required, as
in small high-frequency transformers, inductors, and chokes,
in competition with the commercially established Fe–80Ni
crystalline permalloys. Another major application of the alloy
glass ribbons has been for security tags in stores and libraries.
These aspects of the magnetic properties and applications are
discussed in Sections 7 and 8.

Amorphous FeSiB- and FeZrB-based alloys with, in the
former case, small additions of Cu and Nb are also used in
ribbon forms as precursors for the evolution by heat treatment
of exceptionally low Hc and high µ nanocomposite structures
(Yoshizawa, Oguma and Yamauchi, 1988; Suzuki et al.,
1990). These are based on a 70/30 vol% mix of Fe–Si or
Fe nanocrystallites in an untransformed residual amorphous
matrix. This class of alloys is reviewed by Herzer in Soft
Magnetic Materials – Nanocrystalline Alloys, Volume 4.

In the early 1980s, a variant of melt spinning, involving
the casting of a fine stream (typically ∼100 µm diameter)
of glass-forming alloy melt into a rotating bath of water,
was adopted in the production of amorphous ferromagnetic
round section wire (Ohnaka, Fukusako and Ohmichi, 1982).
These wires, because of their particular cylindrical geometry
and magnetic domain structure, can have magnetic hysteresis
characteristics substantially different from those of amor-
phous alloy ribbons of the same compositions. Even finer
glassy alloy filaments, with diameters down to below 5 µm
and known as microwires, can be produced by a variant of the
Taylor wire process (Taylor, 1924). Here, the molten alloy,
encased within a viscous molten silicate glass jacket, is drawn
down by a continuous process and vitrified by water quench-
ing. The stress induced by the differential thermal contraction
of the alloy core and silicate sheath during solidification also
imparts unique magnetic characteristics. These amorphous
wires and microwires can be exploited for practical devices
such as magnetic field or stress sensors. The processing and
magnetic properties of such wires are reviewed by Vazquez
in Advanced Magnetic Microwires, Volume 4.

Recently, several multicomponent ferromagnetic alloys
have been shown to be glass forming at low rates of cooling
such that they can be vitrified in thicknesses >1 mm (Inoue,
1997, 2000). This class of alloys, which offers the possibility
of producing soft magnetic cores in a wide range of shapes

by direct casting from the melt, is reviewed by Inoue et al.
in Soft Magnetic Bulk Glassy and Bulk Nanocrystalline
Alloys, Volume 4.

2 FORMATION AND GENERAL
CHARACTERISTICS OF GLASSY
ALLOYS

2.1 Glass-forming criteria and structure

A noncrystalline solid formed by continuous cooling from
the equilibrium liquid state is known as a glass in the
classical sense of the word. Such vitrification necessitates
cooling to below the glass transition temperature Tg at a
rate that is sufficiently high to avoid the development of the
long-range order that characterizes the crystalline state. It
is unlikely that a pure metal could be vitrified to a stable
glass from the liquid state, and additions of one or more
solute elements are required in order to render the glass
resistant to crystallization at room temperature and above.
The structure, after vitrification, can be described (Polk,
1972) as a dense random packing of hard spheres. However,
it is not entirely random and retains a significant degree
of short-range order (SRO), both topological and chemical,
from the equilibrium liquid state. The chemical SRO was
first explicitly demonstrated experimentally by Sadoc and
Dixmier (1976) for a CoP alloy, on the basis of atomic
pair correlation functions, derived from Fourier transforms of
neutron and X-ray diffraction data; the results clearly showed
the absence of P–P pairs at the distance expected from the
P atom diameter. The SRO can be enhanced or modified
by elevated temperature annealing of the glassy structure,
as is evident from the fact that this causes mechanical
embrittlement in certain compositions, particularly Fe-based
alloys (Davis, 1976). This evidently results from reduction
in quenched-in ‘free volume’ through short-range diffusive
displacements, particularly of the small metalloid atoms.
The effects of annealing on magnetic properties, especially
including field and stress annealing, provide further evidence
of changes in the local order (Luborsky and Walter, 1977a,b);
in fact, such field and stress annealing evidently result
in directional chemical ordering of the metal–metalloid
bonds.

In addition to thermally stabilizing the glassy state, the
additions of suitable solute elements in appropriate concen-
trations to a base metal are a prerequisite for increasing the
glass-forming ability (GFA) such that the glassy phase can be
produced in tractable and useful section thicknesses. Thus,
the GFA can be expressed either as the critical cooling rate
for glass formation Rc or the minimum thickness of fully
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glassy phase xc that can be formed by a particular quench-
ing process (Davies, 1978, 1983). The aim in rendering an
alloy readily glass forming (RGF) is to depress the liquidus
temperature Tl to a level well below the weighted mean
melting temperature for the pure component elements or of
the pure base metal and any intermediate high-melting-point
compound phase. Here, we define an RGF composition as
one having an Rc ≤ 106 K s−1, which corresponds to a fully
glassy phase having a section thickness formed by chill block
melt spinning of >15–20 µm. Hence, compositions at or near
deep eutectics, such as those that commonly occur in late
transition metal–metalloid (LTM–Met) systems, are gener-
ally RGF. Examples of deep eutectics in ferromagnetic binary
alloy systems include (Fe, Co, or Ni)–(P or B), with eutectic
compositions at approximately 20 wt% Met, and these are all
RGF. The NiP and NiB alloy glasses are essentially nonmag-
netic at room temperature because their Curie temperatures
TC are close to, or below, ambient. Examples of RGF binary
ferromagnetic LTM–Met alloys with TC well above room
temperature are Fe-(15–25)at%B and Co-(16–25)at%P.

Addition of a second LTM and/or of a second or more
metalloid element tends to enhance the GFA by further
depressing the liquidus temperature and preferably also by
increasing Tg. A corollary of this is that the composition
range for RGF tends to be widened. Examples of such mul-
ticomponent ferromagnetic alloy glasses are Fe40Ni40B20,
Fe78Si9B13, and Co75Fe4Si5B16. An example of the influ-
ence on GFA of Si additions to FeB alloys is given in
Figure 1, where some isometrics for various values of critical
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Figure 1. Critical mean thickness determined for various amor-
phous Fe–B–Si alloys all cast onto a 250-mm-diameter OFHC
copper wheel except: cast onto a 300-mm-diameter tool steel roll; ◦
cast onto a 76-mm-diameter OFHC copper roll. (Reproduced from
Luborsky et al., 1982, with permission from IEEE.  1982.)

ribbon thickness of glassy phase xc, accurately determined
from magnetic coercivity measurements, are plotted for the
FeBSi ternary system (Luborsky, Reeve, Davies and Lieber-
mann, 1982). This clearly shows how the composition range
for RGF of ∼14–22 at%B for the binary Fe–B alloys,
centered approximately about the eutectic at ∼17 at%B, is
substantially widened on substitution of Si. The maximum
GFA corresponds to a ternary eutectic at Fe75Si10B17 with
xc being about 42 µm for ribbon spun on a Cu roll and
∼60 µm when spun on a steel roll, for which the thermal
contact with the melt is better because of a higher surface
temperature.

Binary alloy systems of the LTM metals Fe, Co, and Ni
with the early transition metals (ETMs) Zr, Hf, and Nb from
periods 5 and 6 also manifest deep eutectics, generally in the
range 8–15 at% ETM; and thus they are RGF. A metalloid
element such as B can be added to further enhance the
GFA. Examples are Co90Zr10 (Nose and Masumoto, 1980)
and Co82Nb12B6 (Inoue, Kobayashi, Nose and Masumoto,
1980), which, as for many of the LTM–Met alloys, are soft
ferromagnetic at room temperature.

Many of the binary alloys systems of RE metals and
of yttrium with LTMs show deep eutectics on the RE-rich
side of the system in each case and several have been
shown to be RGF by melt spinning, centered approximately
about the eutectic composition. Examples of ferromagnetic
melt-quenched glassy alloys of the RE–LTM type are Gd-
(33–55)at%Co and Gd-(32–50)at%Fe (Fukamichi, Kikuchi,
Masumoto and Matsuura, 1979; Buschow, 1979). These are
magnetically harder than the LTM–Met and LTM–ETM
alloys because of the local anisotropy induced by the RE
metals (Coey, 1978). The coercivity level can be manipulated
by adjusting the alloy composition. Amorphous RE–TM
alloys of interest for magneto-optic recording applications
tend, however, to cover different ranges of composition such
that they need to be produced by sputter deposition (Grundy,
1980). Because of the absence of the long-range order
characteristic of the crystalline state, amorphous alloys do not
manifest magnetocrystalline anisotropy and the LTM–Met
type can have very high µ and low Hc. Nevertheless, the
directionally random chemical order that exists in alloy
glasses in the as-quenched state leads to random anisotropy
(Alben, Becker and Chi, 1978) . Marked magnetic anisotropy
can be induced by the application of a uniaxial stress or a
magnetic field during elevated temperature annealing, where
significant local atomic diffusion can occur. The degree of
strain-induced anisotropy is influenced by the magnitude
of the saturation magnetostriction λs. These aspects of
induced anisotropy are discussed in greater detail in a
later section of this chapter. As for all magnetic materials,
shape anisotropy also has an influence on the magnetic
properties.
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The absence of a microstructure in a metallurgical sense,
that is, no crystal boundaries that normally act to pin domain
walls, also promotes magnetic softness. Moreover, the non-
crystalline structure results in high electrical resistivity, typ-
ically in the range 100–200 µ�cm, compared, for instance,
to values in the range 30–50 µ�cm for crystalline Fe–Si and
Fe–Ni permalloys, which favors their application for mains
and high-frequency transformers and other devices.

2.2 Strength, deformation, and embrittlement

As a consequence of the absence of crystalline order in
the structure, lattice dislocations, which are present in all
crystalline metals, are no longer a consideration. Such mobile
dislocations in crystalline metallic materials result in yield
strengths or elastic limits that are only a fraction of the
theoretical values, which correspond to the stresses required
to break the interatomic bonds. The yield strengths of
metallic glasses typically range between ∼E/30 and ∼E/50,
where E is the Young’s modulus (Davis, 1976; Kimura
and Masumoto, 1983); thus, they approximate in each case
the corresponding theoretical cohesive strength. Fracture
strengths of Fe–Met alloy glasses range between ∼2.2 and
∼4 GPa (the value for Fe78B10Si12, for instance, is 3.4
GPa) (Kimura and Masumoto, 1983), but a compressive
strength in excess of 5000 MPa was recently recorded
for a Co43Fe20Ta5.5B31.5 bulk glass (Inoue et al., 2003).
It should be borne in mind that values of E for alloy
glasses are lower than those of equivalent crystalline alloys,
typically by ∼20–40% for Fe-based alloys, for example;
this reflects the slightly larger mean interatomic distances
in the glass than in the crystal, consistent with a lower
atomic packing density. The ultrahigh strengths of metallic
glasses are also reflected in very high microhardness, for
instance, typically ∼900–1000 Hv for Fe–Met and Co–Met-
type ferromagnetic alloy ribbons but somewhat lower for
corresponding Ni–Met-based glasses.

At temperatures well below Tg and at high values of
stress τ , where τ > µ/50 (µ is the shear modulus), metallic
glasses deform heterogeneously by a highly localized shear
mechanism. The shear bands are thought to be extremely nar-
row –a few nanometers wide (Donovan and Stobbs, 1981).
The fact that they can be revealed by metallographic etching
of a deformed cross section indicates that the chemical SRO
is locally modified by the shearing process. When deformed
in pure tension, most Fe-, Co-, and Ni-based alloy glasses in
their as-cast state fail by a single shear displacement at the
yield stress, which is usually slightly above the limit of pro-
portionality, on a plane ∼55◦ to the applied stress (Kimura

and Masumoto, 1983). In bending, which is a mixture of ten-
sile and compressive straining, the compressive component
stabilizes the material against tensile failure, and Fe-, Co-,
and Ni–Met-type alloy glass ribbons in their as-cast state
(unless the total metalloid element concentration is high)
can generally be bent back on themselves to a true tensile
strain of unity on the outer surface, through the occurrence
of multiple shearing. Thus, in such cases, the toughness of
the material can be described as high. However, on annealing
at elevated temperatures, for instance, to relieve the quench-
ing stresses and thus optimize the soft magnetic properties,
Fe–Met-based glasses undergo irreversible embrittlement,
prior to crystallization (Davis, 1976; Luborsky and Walter,
1976). The particularly detrimental role of P in promoting
embrittlement was demonstrated by Luborsky and Walter
(1976). It is interesting that Ni-based LTM–Met glasses, in
contrast, tend not to embrittle in the glassy state prior to crys-
tallization, particularly if the metalloid concentration is <20
at% (Lewis, Ward and Davies, 1979) and P is avoided as an
alloying element. Progressive substitution of Ni by Fe results
in a transformation from a nonembrittling to an embrittling
regime, depending on the metalloid species and concentration
(Ward, Hunger, Lewis and Davies, 1979).

The embrittlement phenomenon in metallic glasses is not
clearly understood. It results from subtle changes in the
chemical SRO associated with structural relaxation, that is,
the removal by annealing of excess free volume quenched
during the vitrification. All Fe-based LTM-Met metallic
glasses are characterized by ductile–brittle transitions at a
temperature Tdb, by analogy with crystalline Fe and other bcc
metals. In the as-cast state, Tdb, for technologically impor-
tant Fe–Met alloys glasses, for instance, Fe78Si9B13, is below
ambient temperature, whereas on annealing at elevated tem-
perature, Tdb increases, largely irreversibly, to above ambient
temperature.

At low stresses, or as the temperature approaches Tg,
metallic glasses deform by homogeneous flow or creep
and, at sufficiently low stresses, the flow is Newtonian
viscous, that is, the strain rate is proportional to stress
(Spaepen and Taub, 1983). This is a common feature of many
noncrystalline materials, pitch being a classical example.

3 FUNDAMENTAL MAGNETIC
PROPERTIES

3.1 Magnetic moment

The dependence of saturation moment per TM atom, deter-
mined at 4.2 K, on the TM content for LTM80B20 and
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LTM80P20 glassy alloys (O’Handley, 2000) is given in
Figure 2 (LTM in this case indicates Fe, Co, and/or Ni). The
corresponding variations of moments for crystalline alloys
are included as dotted lines. The displacement of the data for
the glassy LTM80B20 alloys, relative to the Slater–Pauling
curve, is consistent with data for crystalline (LTM)B and
(LTM)2B compounds and alloys (O’Handley, 2000). Rela-
tively large magnetic moments are achieved in a wide range
of glassy alloys based on Fe, Co, Ni. The lower moments than
for the corresponding crystalline alloys are not only consis-
tent with the concentration(s) of the nonmagnetic metalloid
atom(s), B and/or P in the present case, but also commonly
including Si, which are added to promote vitrification by
rapid quenching. Hence, the influence of the absence of a
long-range order in the glassy alloys on the magnetic moment
per LTM atom is considered to be negligible (O’Handley,
2000). The effects of the ETM solute substitutions, exempli-
fied in Figure 2 by Cr, Mn, and V, can be rationalized on the
basis of the virtual-bound-state model (O’Handley, 2000).

The saturation moment per TM atom increases with
increasing TM:Met ratio for both Fe-based (FeB and FeP)
and Co-based (CoB, CoB, CoZr) alloy glasses and extrapo-
lates to values only slightly lower than those for bcc Fe and
hcp Co, respectively (O’Handley, 2000).

3.2 Curie temperature

The dependence of the Curie temperature TC on the LTM
content for glassy (FeNi)80B20, (FeCo)80B20 alloys and

for various other amorphous alloy systems is shown in
Figure 3 (O’Handley, 2000). The TC data for FeNi and FeCo
crystalline alloys are summarized by the dotted lines. The
compositional dependence of TC for the glassy alloys is not as
amenable to theoretical analysis as is the case for that of the
magnetic moment. Although the shape of the dependences for
the amorphous FeNi-based alloy systems is broadly similar
to that for the crystalline FeNi system, the maxima in the
glassy alloy curves are displaced to lower valence electron
to atom ratios.

The influence on TC of a wide range of TM and platinum
group metal solute substitutions for Fe in FeSi10B12 metallic
glasses, up to concentrations x of ∼10 at%, were investigated
by Donald, Kemeny, and Davies (1981). The dependence of
TC on x was generally linear or nearly linear and the values
of dTC/dx are plotted against the group number of the solute
in Figure 4.

It is interesting to note that the shapes and positions of the
curves bear a much closer resemblance to that for Ni100–xMx

binary crystalline alloys than to that for Fe100–xMx alloys
(see Donald, Kemeny and Davies, 1981). This suggests that
the majority subband in Fe-based glasses is full, due to
the hybridization of the s–p states of the metalloid with
the d orbitals of the TMs, as is the case for crystalline
Ni. Also, the approximately 12-fold atomic coordination in
the glassy state for the Fe-based glass bears a much closer
resemblance to that in crystalline fcc Ni than to that in
bcc Fe.

The magnitude of TC for LTM–Met glasses is also strongly
influenced by the metalloid element concentration and, espe-
cially in Co-based alloys, by the metalloid species. In FeB
glassy alloys, TC increases from ∼510 ◦C at 12 at%B to
∼750 ◦C at 28 at%B (Hasegawa and Ray, 1978). In contrast,
for Co–Met binary alloy glasses, TC decreases with increas-
ing metalloid content at a rate of approximately 50 ◦C per
at% metalloid, though CoP alloys have substantially lower
TC values than CoB alloys at any given metalloid concen-
tration, clearly indicating the strong influence of the local
atomic environment on this parameter (O’Handley, 1983).
However, the concentration ranges over which measure-
ments are possible for these Co-based binary alloy glasses,
and indeed for most other Co-based glassy alloys, is lim-
ited because TC is higher than the crystallization tempera-
ture Tx.

It should be borne in mind that TC for a glassy alloy is not
absolutely fixed and depends on the structural state of the
glass. Generally, TC increases by typically ∼10 K, when the
as-cast glassy structure is relaxed, evidently because of subtle
changes in, topological and chemical, short-range atomic
order (Chen, Sherwood, Leamy and Gyorgy, 1976).
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The influence of composition on the saturation magne-
tostriction of Fe-, Ni-, and Co-based alloy glasses is dis-
cussed in Section 6.

4 PROCESSING OF METALLIC GLASSES

4.1 Requirements for metallic glass formation

The alloy compositional factors that favor glass formation in
metallic systems have been outlined in the previous section,
in the context of ferromagnetic alloys. As indicated, alloys

with compositions at, or close to, eutectics are RGF. A
useful empirical parameter for predicting whether or not an
alloy is RGF, which we assume rather arbitrarily, though for
sound practical reasons, to be a composition which can be
completely vitrified at a cooling rate Ṫ ≤ 106 K s−1, is �T ∗

(Donald and Davies, 1978), which is given by

�T ∗ = T mix
l − Tl

T mix
l

(1)

Equation 1 represents the fractional departure of the liquidus
temperature Tl from the simple rule of mixtures melting
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solute metal M) with group number (i.e. the number of outer
d + s electrons) of M for dilute additions of (a) period 4 solutes
(shown also are values of dTC/dx for samples which have been
relaxed fully), and (b) periods 5 and 6 solutes, to glassy FeSi10B12-
based alloys. (Reproduced from Donald et al., 1981.  1981, with
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temperature T mix
l where T mix

l = �xiT
i
m · xi and T i

m are the
mole fraction and melting point, respectively, of the ith
component of an alloy of n component elements. Some
adjustment is required for systems where intermediate phases
with exceptionally high congruent melting points occur. It
was shown in a survey of numerous binary and ternary alloys
that, with a few exceptions, compositions that were RGF had
values of �T ∗ > 0.2 (Donald and Davies, 1978). This was
subsequently used to identify RGF compositions in several
systems (Holt, Ankeny and Cline, 1980).

Another useful empirical approach for predicting RGF
in metallic systems, first proposed by Giessen (1982) for
binary alloys, is based on two parameters: the excess negative
enthalpy of mixing �Hm and the component atomic radius

ratio rA/rB, where A and B represent the smaller and larger
atomic species, respectively. Two-dimensional maps for two
series of binary alloy systems, based on Ni and on Zr, with
�Hm and rA/rB axes, gave satisfactory delineation between
RGF and non-RGF systems, with the former group being
concentrated in the regime having coordinates of high �Hm

and low rA/rB. This principle has been incorporated by Inoue
and coworkers to formulate a set of rules for bulk metallic
glass formation (having critical cast rod diameters >0.5 mm)
with the additional requirement that the alloys should have
at least three components (Inoue, 1997).

Numerous Fe-, Co-, and Ni-based bulk glass-forming
alloys, generally with several solute metal additions to min-
imize the melting temperature, have now been demonstrated
(Inoue, 2000; also, see Soft Magnetic Bulk Glassy and Bulk
Nanocrystalline Alloys, Volume 4.)

The process of rapid quenching for vitrification is illus-
trated in Figure 5 by the time–temperature–transformation
(T–T–T) curves for three extreme examples, pure Ni and
two easy glass-forming alloys, Pd82Si18 and Pd77.5Si16.5Cu6.
The T–T–T curves indicate, in each case, the time required
effectively for the start of crystallization as a function of
temperature. Glass formation occurs when the cooling rate
exceeds a critical value Rc, such that it bypasses the nose of
the T–T–T curve, as shown. In the general case, the lower
the Tl relative to Tg, the narrower the gap between Tl and Tg,
the more rapid the increase in melt viscosity with increas-
ing undercooling below Tl and, consequently, the nose of
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crystallization.
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the T–T–T curve is moved to progressively longer times.
Thus, Rc decreases with increasing Tg/Tl (Turnbull, 1969;
Davies and Lewis, 1975). Predicted values of Rc, based on
theories of crystal nucleation and growth and of transforma-
tion kinetics and involving several simplifying assumptions
(Uhlmann, 1972; Davies, 1976), are plotted against Tg/Tl in
Figure 6 for several glass-forming alloys, including ferro-
magnetic LTM–Met alloys based on Fe, Co, and Ni–Fe, as
examples. The predicted values of Rc for the latter are in the
range 105 –106 K s−1, in good agreement with correspond-
ing experimentally estimated values. Correlation between Rc

and Tg/Tl for bulk alloy glass formers is less satisfactory,
partly because of high melt viscosities above Tl for these
very low Tl alloys (Davies, 1995) and the greater influence
of heterogeneous nucleants (Lewis and Davies, 1977).

4.2 Thermal stability of metallic glasses

The thermal stability of a glassy alloy, measured by its
Tg, or in cases where the glass transition is masked by
the devitrification event, the crystallization temperature Tx,
is of particular interest and relevance for soft magnetic
alloys, since they must generally be annealed at elevated
temperature to remove quenched-in stresses, in order to
optimize the magnetic properties, and, in some cases, to
develop a specific anisotropy. Globally, Tg (or Tx) has

been shown to scale satisfactorily with the cohesive energy,
measured, for instance, by the molar heat of sublimation �Hs

for a wide range of glass-forming alloys (Donald and Davies,
1978); the larger the �Hs, the higher the Tg, as would be
expected for a phenomenon related to atomic diffusivity.
Accordingly, ferromagnetic alloy glasses based on Fe, Ni,
and Co generally have values of Tg or Tx that are intermediate
between those of the glasses based on or containing large
concentrations of refractory metals, such as CoTa and those
based on the noble metals, such as AuSi.

A more detailed investigation of the influence of composi-
tion on the Tx of Fe-, Ni-, and Co-based metallic glasses was
undertaken by Donald and Davies (1980). The measured Tx

values for a broad series of glassy alloys based on Fe, Ni, and
Co, with a constant metalloid content of 10 at% Si + 12 at% B
and with substitutions of other metals from period 4, includ-
ing Cr, Mn, Ti, V, and the noble metal Cu, and also includ-
ing binary intermixtures of Fe, Ni, and Co, are plotted against
valence (s + d) electron to atom ratio in Figure 7. There is a
remarkably smooth correlation for the alloys containing Fe,
Ni, and Cr, which are characterized by having very similar
hard sphere atomic diameters. Additionally, size effect contri-
butions to the thermal stability are associated with the Mn, Ti,
and V substitutions, whose atomic diameters are significantly
different from the Fe and Ni, while Cu rapidly destabilizes both
the Fe- and Ni-based glasses. However, for the Ni–Co-based
alloys and the Co–Fe-based alloys containing up to 15 at% Fe,
Tx follows a separate half loop, the reason for which has not
yet been established. The effects of other metals from periods
5 and 6 were also studied (but are not included here) and these
showed a clear correlation with the atomic size difference from
those of Fe and Ni. The additional increment in Tx over and
above that due to conduction electron density is approximately
proportional to the second power of the fractional difference in
diameter between solvent and solute metal atoms.

These data provide guidelines for predicting the safe
maximum temperatures for annealing of ferromagnetic glassy
alloy of various compositions.

4.3 Thermal requirements for rapid solidification

The aim for all rapid solidification processes is to bring the
melt into intimate thermal contact with a cool and thermally
conducting heat sink, generally at a high relative velocity,
in order to promote efficient and uniform melt spreading to
a thin section or subdivision into small droplets. The higher
the Rc for an alloy, the smaller the section thickness or the
droplet diameter must be, that is, the smaller the length of
the heat path should be.

The cooling rate in the melt is also dependent on the
efficiency of heat transfer h across the interface with the
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heat sink. In the absence of interfacial resistance to heat
flow and for a highly conducting heat sink, that is, ideal
cooling conditions, Ṫ is determined by the thickness x and
the thermal conductivity of the melt section, with Ṫ being
proportional to x−2. For melt spinning of ribbon, for instance,
h has been estimated experimentally to be ∼105 Wm−2 K−1

(Warrington, Davies and Shohoji, 1982), with a spread of
∼ ±5 Wm−2 K−1 between alloys. This is a very high value
for a metal-casting process, principally because a new clean
melt surface is continually being created at the interface with
the roll and intimate physical contact is being maintained.
Figure 8 shows the computed variation of Ṫ with x for
h = 105 Wm−2 K−1, for the ideal cooling limit, computed
for an RGF alloy Fe40Ni40P14B6 (Davies, 1978, 1983). For
x < ∼10 µm, Ṫ α x−2, that is, Newtonian (interface control)
conditions prevail, but, as x increases, the cooling regime
progressively approaches ideal, since the heat transfer is

increasingly controlled by the thermal resistance of the liquid
medium. Thus, for example, a ribbon of thickness 10 µm
is predicted to cool at ∼2 × 106 K s−1 and a 100-µm-thick
ribbon at 105 K s−1. The data in Figure 8 can be combined
with those given in Figure 6 to yield a plot of approximate
maximum thickness of glassy phase that can be melt spun to
ribbon xc versus Tg/Tl (Figure 9).

5 LIQUID STATE PROCESSING
OF METALLIC GLASSES

5.1 Ribbon casting

5.1.1 Chill block melt spinning (free jet)

A jet of molten alloy is ejected under pressure through a
circular orifice at the base of a crucible and impinges onto
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the circumferential surface of a rapidly rotating roll (typical
linear velocity: 20 m s−1; Liebermann and Graham, 1976).
The roll is generally fabricated from Cu or, preferably, a
highly conducting Cu alloy such as Cu-1wt%Cr, which is
harder and more wear resistant than pure Cu. An elongated
puddle is established at the point of impingement, from
which a thin ribbon is continuously extracted and solidified

Free jet melt spinning

Planar flow casting®

Figure 10. Nozzle configuration for free jet melt spinning and
planar flow casting.

(Figure 10). This then parts from the roll surface well
downstream of the puddle. The higher the roll speed Vr, the
shorter the puddle and the smaller the ribbon thickness x. In
this process, the puddle is also able to spread laterally since it
is unconstrained. Thus, the ribbon width w is also a function
of Vr.

It has been shown (Kavesh, 1978) that:

x α
Qm

V n
r

(2)

where Q is the flow rate of melt and m and n are constants
which depend on melt composition and roll material. Ideally,
n = 0.75 and m = 1 − n but, in practice, n varies between
∼0.65 and ∼0.85 (Vincent and Davies, 1982). Similarly
(Kavesh, 1978),

w α
Qm

V n
r

(3)

Thus, Vr principally influences x while Q has a greater
influence on w.

In practice, w is limited to 4–5 mm by instability of
the puddle, while the limit on x tends, in practice, to be
∼80 µm, beyond which it becomes nonuniform. However,
the maximum thickness of amorphous phase equates to xc,
which is governed by Rc and the interfacial heat transfer
coefficient h.

5.1.2 Planar flow casting (PFC)

In this process, the nozzle tip is in close proximity to the
roll surface (the typical gap size is 0.3–0.5 mm) and the
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Figure 11. Schematic of the planar flow casting process.

melt is streamed through a rectangle-shaped slot nozzle
(Narasimhan, 1979). Since the puddle is now constrained
between the nozzle tip and the roll (Figure 10), convergence
of the stream through capillary forces is prevented and
a ribbon of width equal to the slot length can be cast
(Figure 11). Thus, in principle, there is no limit to the width
of the strip that can be cast, although, in practice, there
are engineering limitations related to the uniformity of gap
that can be achieved for a long slot. The melt flow rate is
given by Q = wVrx (ignoring thermal contraction). Since
w is now constant, then, for constant Q, x is proportional
to V −1

r . Because the puddle is constrained, in addition to
facilitating the production of ribbon of width >4 mm, the
process also gives a more uniform ribbon thickness than the
free jet variant, since oscillations or vibrations of the puddle
are reduced in amplitude.

On the basis of Bernoulli’s equation, the ribbon thickness
x can be shown to be given (Fiedler, Mühlbach and Stephani,
1984) by

x =
(g

b

)c b

v

(
2p

ρ

)1/2

(4)

where b is the slot breadth, p is the pressure at the slot, ρ is
the density of the liquid, g is the nozzle tip/roll gap, and c is
a constant ≈1/3. An analysis of casting conditions for glassy
alloy strip (Fe40Ni40B20) was also made by Takayama and
Oi (1979).

A significant problem with both free jet and PFC ribbon
are the gas pockets (air pockets, if casting is in air) that
are entrapped between the melt and the roll surface during
casting. These cause roughness on the roll contact surface of
the ribbon and thus reduce the packing fraction in a wound

core and can adversely influence Hc (Kronmüller, 1981).
They can also act as centers where localized crystallization
may occur during casting or where premature crystallization
may occur during subsequent annealing. The gas pockets can
be eliminated by casting in reduced pressures, particularly
in a helium atmosphere (Todd et al., 1999), though this is
not economically viable for commercial production. Clearly,
for extended operations, the roll must be internally water
cooled to avoid overheating of the substrate; however, for
laboratory-scale samples of ribbon, this is not generally
necessary. PFC is now used for all commercial production of
soft magnetic glassy alloys, and ribbon widths up to 300 mm
are routinely produced.

5.1.3 Stacking of ribbons

The severe embrittlement of Fe-based LTM–Met metallic
glasses at the temperatures required for effective anneal-
ing out of quenched-in stresses, in addition to the small
thickness of the cast ribbon (∼25 µm for METGLAS
2605SC, for instance), results in difficulties in handling,
punching, and stacking of individual laminations for the
construction of a conventional transformer yoke. Thus, the
ribbon is toroidally wound, prior to annealing, in commer-
cial distribution transformers, which typically have a capacity
of ∼25 kVA for 110/120 V output voltage systems (Smith,
1993). However, for large power transformers, toroidally
wound cores are less practicable than a stacked configu-
ration. In an attempt to overcome this limitation and also
to improve the packing density, the hot rolling of stacks
of 5–10 ribbons was investigated. Although this material,
known as Powercore, improved the stacking density and
had good magnetic properties without additional annealing
(Smith, 1993), it has proved, as for annealed ribbon, to be
very brittle and difficult to cut (Hasegawa, 2003). Neverthe-
less, stacked cores have been fabricated by cutting segments
of large METGLAS wound cores and used as the pole
piece magnets for magnetic resonance imaging equipment
(Hasegawa, 2003).

5.2 Production of metallic glass powder

5.2.1 Pulverization of melt spun ribbon

The most efficient and widely applicable method of produc-
ing ferromagnetic LTM–Met amorphous alloy powders for
consolidation into magnetic cores is the fragmentation of
melt spun glassy alloy ribbon into a flaky powder having
platelet-shaped particles, using, for example, a ball mill or
a hammer mill. This has the advantage that a much wider
range of compositions can be efficiently fully vitrified in
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bulk quantities by melt spinning onto a solid heat sink than
is possible by atomization processes. It is advantageous for
pulverization, though not a prerequisite, if the ribbon is either
intrinsically brittle in the as-cast state or can be embrittled by
annealing at temperatures well below Tg or Tx. The size of
the platelets, which has an influence on the magnetic proper-
ties of the pressed cores (Hasegawa, Hathaway and Chang,
1985; Raybould and Tan, 1985), is controlled by the milling
parameters and time.

Various consolidation techniques have been investigated
for amorphous ferromagnetic alloy powders, including
explosive compaction (Cline and Hopper, 1977; Hasegawa
and Cline 1985), gas-gun compaction (Morris, 1982), iso-
static pressing (Hasegawa, Hathaway and Chang, 1985), vac-
uum hot pressing or cold pressing (Raybould and Tan, 1985),
and warm extrusion (Kawamura, Takagi and Akai, 1988).
In some cases, an insulating ceramic binder was employed
to reduce AC losses and to increase the roll-off frequency.
Annealing of compacts to reduce any residual stresses that
are present is important, particularly for cold consolidated
materials. Surprisingly, it was reported (Raybould and Tan,
1985) that variations in consolidate density between 80 and
90% of the theoretical density had no significant effect on the
magnetic properties; in particular, consolidation to interme-
diate densities was found to be amenable to mass production
techniques.

5.2.2 Fluid atomization

These processes involve the breakup of a molten alloy stream
into small droplets by a high-velocity fluid, either liquid
or gas, or, in some cases, a combination of liquid and gas
(see review by Miller, 1983). The higher the velocity of the
quenchant, the smaller the mean droplet diameter dp, and thus
the higher the mean

.

T . Gas atomization generally employs
N2 or Ar, though He gives higher Ṫ because of its higher
thermal conductivity. Liquid atomization usually employs
water, which is a more efficient atomizer and coolant than
a gas. Water-atomized powder generally consists largely of
irregular shaped particles, which enhances the strength of a
compacted core. Ṫ for gas atomization is usually <104 K s−1,
even for the finest particles, though ultrasonic gas nozzles
can increase Ṫ up to 105 K s−1 for 20-µm particles (Miller,
1983). Ṫ for water-atomized powder particles is frequently
in the range 105 –106 K s−1 and up to 80% of glassy
phase has been reported for sub–20-µm powder particles of
Fe69Si17B14 and Fe74Si15B11 alloys (Yamaguchi and Narita,
1978). Gas–liquid atomization, typically using argon and
water, has been reported as yielding fully amorphous sub-
20-µm particles for Fe75Si10B15 and Fe81.5Si14.5B4, alloys
(Miller, 1983).

5.2.3 Centrifugal atomization

In the variant of this process developed by Pratt and Whitney
(Miller, 1983), the melt stream impinges on a concave-
shaped disc rotating at extremely high velocity (typically
150 000 rpm). This accelerates the melt to close to the rim
speed and atomizes it directly to very fine droplets at the disc
edge. These are quenched by helium gas jets. The process
was reported as having been used to produce amorphous
powder for several ferromagnetic FeSiB alloys. The powder
has a narrow particle size distribution, though the particles
are spherical and thus not well suited to compaction to solid
bodies.

5.2.4 Other atomization techniques

Spark erosion, which is essentially the electrical discharge
machining process, has been successfully employed to
produce a wide range of ferromagnetic alloy powders
(Berkowitz, Walter and Wall, 1981). The powder is formed
during the discharge when local melting or vaporization of
the electrodes occurs, which then condenses and solidifies in
the dielectric fluid; Ṫ is reported as being up to 106 K s−1

for 20-µm particles. Particles are spherical and range in size
from a few submicrometers up to 50 µm.

Electrohydrodynamic atomization (Perel, Mahoney,
Duwez and Kalensher, 1980) involves the use of a very
high electric-field gradient generated at the tip of a heated
capillary nozzle containing molten alloy. A gradient of the
order of 1 MV cm−1 is produced by applying a potential of
typically 10 kV between the melt and electrode in close prox-
imity with the nozzle. When the electrostatic forces overcome
the surface tension of the melt, an extremely fine droplet is
omitted and solidified as a spherical particle. Particle diam-
eters are typically ∼0.1 µm and amorphous Fe40Ni40P14B6

powder has been successfully produced.
The disadvantage of both these techniques is that produc-

tion rates are only of the order of grams per hour.

6 INDUCED MAGNETIC ANISOTROPY
AND MAGNETOSTRICTION

The absence of macroscopic magnetocrystalline anisotropy
in amorphous ferromagnetic alloys means that other sources
of anisotropy may dominate in these materials. In general,
induced magnetic anisotropies in amorphous ferromagnets
have energy densities of the order of 102 –103 J m−3 and
can have their absolute magnitude and direction controlled
by postproduction thermomechanical treatment. These treat-
ments include annealing in the presence of a magnetic field,
annealing under load or the introduction by annealing of
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a surface layer of devitrified material (Thomas and Gibbs,
1992).

Figure 12(a) emphasizes, in a schematic representation,
that in zero applied field, neighboring magnetic moments
align parallel to one another because of the quantum-
mechanical exchange interaction and also, in general, make
some angle θ0 with the nearest-neighbor bond direction. The
angle θ0 is defined from the local anisotropy symmetry in
an amorphous ferromagnet. It has remained unclear as to
whether this local symmetry has the same or similar form
to crystalline materials that may appear on devitrification,
such as bcc iron. The case where all moments are perfectly
collinear in the induced easy axis direction in the demagne-
tized state is an ideal one in amorphous ferromagnets. There
is strong evidence (Kronmüller, 1979; Pankhurst, Betteridge,
Jiang and Gibbs, 1994; Wildes et al., 2004) of moment non-
collinearity (θ0 varying spatially about some mean value,
usually related to a dominant anisotropy direction) in the fer-
romagnetic ground state. The degree of noncollinearity may
vary with imposed thermal history, but is never absent. It is
surprising that this is equally the case in alloys containing
RE or TM atoms, the former being intuitively more likely to
show such an effect due to the more localized moment on
such atoms.

In these amorphous structures, where a priori no two
atomic environments are topologically or chemically equiv-
alent, there can be a distribution in magnitude and direction
of the local anisotropy and exchange interactions. Where the
exchange is weak, the moments follow the local anisotropy
vector, and where the exchange is strong the local anisotropy
can be spatially averaged out. This noncollinearity can
directly impact on technical applications. We consider later
in this chapter sensors that rely on magnetization by pure and
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Figure 12. A schematic illustration of the effect of a magnetic field
on two neighboring dipole moments in an amorphous ferromagnet
(a) in zero applied field and (b) in a field applied as indicated, with
rotation of the dipoles toward the field direction and a concomitant
change in bond length from the magnetostriction.

coherent rotation of the moments for maximum response. The
noncollinearity affects the response, especially at low fields.

Figure 12(b) represents schematically the effect of changes
in bond length when the magnetization direction rotates on
the application of an external magnetic field. The total mag-
netic contribution to the free energy includes contributions
from exchange, anisotropy, and magnetoelastic effects. The
exchange contribution to the magnetic part of the free energy
causes the moments to remain parallel, and the Zeeman term
promotes rotation toward the applied field direction. The
moment rotation depicted can therefore in general result in a
change in bond length, δl, as the magnetization rotates. Such
a field-induced strain is known as Joule magnetostriction,
and the inverse (Villari) effect is that a mechanical strain in
the material (intrinsic or extrinsic) can change the ease with
which the magnetization may rotate in a given field. This
field-induced strain introduces the magnetoelastic contribu-
tion to the free energy.

The measurement of anisotropy and magnetoelastic prop-
erties in amorphous ferromagnets presents challenges from
the point of view of the extreme magnetic softness of the
alloys, and also their standard thin-ribbon geometry. This
whole area has been comprehensively reviewed (Squire,
1994). Bonding to other materials must be avoided as this
can lead to stress-induced anisotropy as the bond cures. The
thin section (typically 25 µm) and nonuniform cross section
(a legacy of the rapid solidification processing) lead to further
practical difficulties. The dilatometric method has proved to
be the most robust and insightful technique (Squire, 1994).

6.1 Induced magnetic anisotropy

We consider this topic within the context of samples from
which the stresses arising from the casting process have been
removed by a simple thermal treatment (typically 30 min
at Tx − 50 ◦C, where Tx is the temperature of the onset of
crystallization as determined in slow-scan-rate differential
scanning calorimetry, for example). It can further be assumed
that for all the data discussed the samples have remained
fully amorphous as determined by X-ray diffraction and the
maintenance of magnetic softness. The latter may be a more
sensitive guide than the former in amorphous ferromagnets.

The first method of introducing a uniaxial magnetic
anisotropy of controlled magnitude and direction is to per-
form an isothermal anneal in the presence of a saturating
magnetic field at a temperature below the ferromagnetic
Curie temperature of the alloy. Alternatively, the sample may
be cooled slowly (say 10 K min−1) down through the Curie
temperature to ambient. Field annealing drives a rearrange-
ment of the topological and chemical short-range structure
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of the amorphous alloy to produce a material with direction-
ally ordered metal–metal and metal–metalloid pairs. The
resulting anisotropy constant for this uniaxial anisotropy,
Ku, depends on both annealing time and temperature. An
easy axis is induced in the direction of the annealing field,
which is retained when the material is cooled to ambient
temperature in the presence of the field. The kinetics of the
development of the easy axis has been shown to obey a
two-level model (Gibbs, Evetts and Leake, 1983; Kronmüller
et al., 1985; Kronmüller, 1983) where, for a field anneal at
a given temperature, the anisotropy constant of a material
approaches a maximum value. This value is annealing tem-
perature dependent when the anisotropy is induced owing to
two-ion interactions, and temperature independent when it is
induced owing to single-ion anisotropy (Callen and Callen,
1963, 1965). Thus, Ku is temperature independent in single-
TM alloys (e.g., Fe-based alloys) and temperature dependent
in two- or three-TM alloys (e.g., Fe–Ni or Fe–Co alloys).
Figure 13(a) and (b) illustrates such data (Thomas and Gibbs,
1992).

It is important to note that the introduction of anisotropy
from an applied field can take place at any temperature below
the Curie temperature (it is driven by thermal activation),
and effects can take place at temperatures that are a little
removed from ambient. In the region of a domain wall,
the magnetization distribution can act on the local topology
and chemical order to produce a profile to the local easy
axis, which matches the magnetization profile in the domain
wall. This pins the domain wall and reduces the initial
permeability, an effect known as disaccommodation. This
possibility must be taken into account in lifetime predictions
of properties in these materials, but, because it is a thermally
activated process, equilibrium is reached even if there is an
initial transient response in the permeability.

Annealing under a tensile load has been studied in Co-
rich (low magnetostriction −λs ≈ 10−8) amorphous alloys.
The induced anisotropy has two components, Kan arising
from an anelastic response of the materials and Kpl arising
from the plastic response (Nielsen, 1985). It is significant
that both components are nonzero at the composition for
which the magnetostriction (and hence the basic strain
magnetostriction coupling) is zero. The anelastic component
can be recovered by a second zero-applied-stress anneal. At
low anneal temperatures, the easy direction is parallel to
the applied stress, turning orthogonal to the applied stress
at higher temperatures. This is viewed as arising from the
competition between the anelastic and plastic components of
the strain. At high annealing temperatures, |Ki |max can reach
800 J m−3 (Gibbs, 1990).

There have been studies (Vázquez, Ascasibar, Hernando
and Nielsen, 1987) on the simultaneous application of a
tensile stress and a transverse magnetic field on ribbon
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Figure 13. (a) Anisotropy constant, Ku, versus anneal time for
METGLAS2605S2 for different annealing temperatures (squares
420 ◦C, triangles 400 ◦C, inverted triangles 350 ◦C, diamonds
250 ◦C). (b) Anisotropy constant, Ku, versus anneal time for
VAC0040 for different annealing temperatures (squares 250 ◦C,
triangles 300 ◦C, inverted triangles 350 ◦C, diamonds 370 ◦C).

samples; in this case, |Ki |max = 1100 J m−3. It was proposed
that the applied stress enhanced the field annealing effect as
the sum of a tensile stress anneal and a transverse field anneal
was less than that of the combined stress-field anneal.

A third method of introducing a uniaxial anisotropy in
amorphous alloys is to precipitate surface crystallinity in
Fe-based magnetostrictive (λs ≈ 10−6) alloys (Hang Nam
and Morrish, 1981). The easy direction is perpendicular to
the ribbon plane and |Ki |max can reach 6000 J m−3 as the
thickness of the surface crystalline layer increases (Herzer
and Hilzinger, 1986). The mechanism proposed is that the
crystalline surface layer, which is of higher density than the
amorphous underlayer, will place the underlayer in biaxial
compression. In a material of positive magnetostriction, this
will bring the easy axis in the amorphous material to lie
perpendicular to the ribbon plane, dominating the shape
anisotropy in this direction.
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6.2 Magnetostriction

Fe-based amorphous alloys have saturation magnetostriction
constants, λs, in the range 20 − 30 × 10−6. If Fe and
Ni are present in equal proportions, the value of λs is
reduced to around 10 × 10−6. The basic mechanisms of
magnetostriction in amorphous alloys have been extensively
discussed (O’Handley, 1987). Figure 14 summarizes the
composition dependence of λs in the (Fe, Co, Ni)B alloy
system (O’Handley, 1978). The ability to smoothly vary the
saturation magnetostriction by compositional control makes
amorphous ferromagnetic alloys very attractive in device
development.

Magnetostrictive strain, λi in a direction i in a material
can be defined by

λi = 1

cij

∂EK

∂εi

(5)

where εi is the strain in the direction i, cij is the appropri-
ate elastic constant, and EK is the anisotropy energy den-
sity. The topological disorder prevents simple macroscopic
summation of the microscopic λi . Amorphous alloys, which
may be taken as topologically isotropic to first order, have
nonzero λi . This summation problem has been addressed
(Furthmüller, Fähnle and Herzer, 1987), with each ‘structural
unit’ characterized by a unique uniaxial anisotropy, and the
magnetostrictive strain can be calculated using equation 5.
The units are mechanically coupled (the solid is dense and
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Figure 14. Saturation magnetostriction at room temperature for
amorphous (FeCoNi)80B20 alloys. Solid line shows course of zero
magnetostriction compositions and dashed line shows predictions
based on the split band model. (Reproduced from R.C. O’Handley,
2000.  2000 John Wiley & Sons Inc.)

contiguous) and the macroscopic strain manifests itself by
elastic strain transfer from unit to unit. The summation is
nonzero due to the anisotropic elastic properties of the ‘struc-
tural units’.

The engineering magnetostriction, λe, is defined as the
difference in magnetostrictive strain in a given direction in
a sample before and after the application of a magnetic field
(Bucholtz, Koo, Dandridge and Sigel, 1986). For amorphous
alloys, λs is assumed to be isotropic, and therefore λe can be
written as

λe = 3

2
λs sin2 θ (6)

where θ is the angle through which the magnetization has
rotated away from the easy axis direction in which it lay in
zero applied field.

The basic model for magnetization by coherent moment
rotation in amorphous alloys (Livingston, 1982) can be
developed to deduce a number of important parameters
related to the magnetostriction. If a magnetic field H rotates
the magnetization through an angle θ , the magnetization M

in the direction of the field is given by

M = Ms cos θ = Ms
H

Ha
(H ≤ Ha) (7)

where Ms is the saturation magnetization and Ha the
anisotropy field. In terms of the anisotropy constant

Ha = 2Ku

µ0Ms
(8)

Considering equations (6) and (7), the strain λe in the field
direction is given by

λe = 3λs

2

(
cos2 θ − 1

3

)
= 3λs

2

(
H 2

H 2
a

− 1

3

)
(9)

The magnetomechanical coupling constant, d, is defined by

d = dε

dH
= 3λsH

H 2
a

dmax = 3λsMs

2Ku
(10)

If a longitudinal stress, σ , is applied to an amorphous
ferromagnet of nonzero magnetostriction, then there is a
magnetoelastic contribution to the free energy given by

Eme = −3

2
λsσ cos2 θ (11)

The anisotropy field is reduced to

Haσ = 2Ku − 3λsσ

µ0Ms
(12)
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The total strain in the field direction, ε, is the sum of elastic
and magnetostrictive terms, hence

ε = σ

Es
+ 3λs

2

(
H 2

H 2
aσ

− 1

3

)
(13)

where Es is the Young’s modulus in a saturating magnetic
field. Equation (9) states that the effective Young’s modulus
is magnetic field dependent – the so-called �E effect.

�E

Es
= 9λ2

s EH 2

MsH 3
aσ

(14)

The magnetomechanical coupling factor, k, related to the
fractional energy transfer between magnetic and mechanical
energy, important in transducer applications, is given by

k = d

(
EMs

Haσ

) 1
2

=
[

1 + MsH
3
aσ

9λ2
s EsH 2

]− 1
2

≤ 1 (15)

For certain Fe-rich amorphous alloys (e.g., METGLAS
2605SC), k = 0.98 and (�E/Es) ≥ 10 have been achieved,
which implies that outstanding sensor and actuator properties
should be available from these materials (Squire and Gibbs,
1989).

Figure 15 shows the engineering magnetostriction data
corresponding with the anisotropy data shown in Figure 13.
It is important to note that the engineering magnetostric-
tion reaches a saturation value at a given time and tem-
perature before the anisotropy has saturated. Saturation of
the engineering magnetostriction comes about from rota-
tional reorientation of the local ‘structural units’, whereas the
appropriate directional order has to reach saturation (requir-
ing long-range diffusional processes) before the anisotropy
can saturate (Thomas and Gibbs, 1992).

Figure 16 shows the �E effect in METGLAS2605SC
as a function of the field annealing angle (Squire and Gibbs,
1989). E/Es is not unity at zero field, reflecting the moment
noncollinearity discussed earlier. The maximum reduction in
modulus (∼80%) occurs in fields that are only five times the
ambient field of the earth, demonstrating the extreme mag-
netic softness and outstanding magnetomechanical properties
of appropriately treated material.

The basics (Livingston, 1982), and a more advanced treat-
ment (du Trémolet de Lacheisserie, 1982), of magnetoelas-
ticity in amorphous ferromagnetic alloys have been reviewed
in the literature. A comprehensive phenomenological model
for magnetization, magnetostriction, and �E effect has also
been published (Squire, 1990). This model takes explicit
account of the moment noncollinearity discussed earlier in
the chapter.
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7 PERMEABILITY, MAGNETIC LOSSES,
AND TRANSFORMER APPLICATIONS

The combination of zero magnetocrystalline anisotropy and
low induced anisotropies in amorphous ferromagnetic alloys,
with the absence of features (e.g., grain boundaries) for
domain wall pinning produces materials with relative per-
meabilities of up to 105 after optimized heat treatment. The
structural disorder of the alloys also gives rise to electri-
cal resistivities around three times larger than in comparable
crystalline magnetic materials.

If as-cast material is taken, accepting some loss of
permeability from the effect of cast-in stress, with its
excellent mechanical properties, then high-grade, flexible
magnetic shielding can be provided (Smith, 1982). The
magnetic and mechanical advantages over crystalline Ni–Fe-
based shielding products can be considerable.

At power frequencies (50–400 Hz), the drive for greener
energy supply has worked in favor of amorphous alloys.
The lower saturation magnetization caused by the greater
solute content than for Si steel can be tolerated as cores
are now designed not to be driven to such high levels
of magnetization. The frequency dependence of eddy cur-
rent loss is usually taken as ∝ f n with n = 2 for common
crystalline materials such as Si–Fe, but n = 1.5 in amor-
phous ferromagnetic materials. It should be borne in mind,
however, that, to a significant degree, the smaller losses
for the Fe-based amorphous alloys are due to smaller strip
thickness than for the silicon steel, which results in signif-
icantly smaller eddy current losses. It has been shown that
Hi–B silicon steel strip of thickness 100 µm, manifests lower
AC losses that are only slightly larger than 25-µm-thick
amorphous alloy. It is implicit that, at the 25-µm thick-
ness level, the Fe–Si alloy would have significantly lower
losses than the amorphous alloy due to its much smaller λs.
The level of harmonic distortion caused by loads on trans-
former cores significantly affects the total loss. The lower
core loss in amorphous alloys offers much reduced higher
harmonics, and therefore lower overall losses (Hasegawa,
2004). As frequency rises to the airborne transformer range
(400 Hz), the losses in amorphous alloy cores are one-fifth
of those in grain-oriented silicon steel. For design pur-
poses, ample data on permeability and loss as a function
of frequency may be found on the manufacturers’ web-
sites (METGLAS Products, www.metglas.com; Vacuum-
schmelze, www.vacuumschmelze.de).

While the resistivity of amorphous alloys is much higher
than that of their crystalline counterparts, further improve-
ment may be obtained by producing powder cores. Powder-
form amorphous material may be produced directly by pow-
der atomization or by grinding up of ribbon material. The
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Figure 17. The pulse reversal curve of three toroids of VAC6030
(solid line) in as-received state, (dotted line) slow cooled (2◦ s−1)

from above the Curie point to ambient, and (dashed line) fast cooled
(100◦ s−1) from above the Curie point to ambient. The pulse was
at a rate of 300 T (ms)−1.

increased brittleness of annealed ribbon can aid in this pro-
cess. In the kilohertz operating range, losses can be compa-
rable with N–Zn ferrites (Hasegawa, Hathaway and Chang,
1985). The highest densities after dynamic compaction are
around 90% (Hasegawa, Hathaway and Chang, 1985); how-
ever, increased stress on the core material lowers the perme-
ability (Hasegawa, 2003).

Switched-mode power supplies (SMPS), operating at
10–200 kHz, require low loss and high-saturation induc-
tion, and for high-power SMPS there is an advantage from
the low losses and high-saturation induction of amorphous
alloys. Ferrite cores that are electrically insulating, but have
low saturation induction have been used. The amorphous fer-
romagnets have much higher induction, and sufficient resis-
tivity to offer better overall performance.

Magnetic switching using a saturable inductor has been
known for over 50 years, but interest was rekindled with
the advent of amorphous alloy cores (Smith, 1982). Pulse
characteristics have been studied (Jones, 1982, 1983). The
pulse response for a core of Co-based (low magnetostriction)
alloy is shown in Figure 17.

Careful postprocessing of the core can give a pulse
response close to ideal (Sheard, Gibbs and Avery, 1989).

8 SENSORS

It is the combination of magnetic softness and high mag-
netomechanical coupling that has led to numerous sugges-
tions for sensors based on amorphous alloys. The applica-
tion of amorphous alloy ribbons (Hernando, Vázquez and
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Barandiaran, 1988; Hasegawa, 2004) for sensors has been
comprehensively reviewed.

In terms of market penetration, the leader is electronic
article surveillance of consumer products (Herzer, 2003). In
this application, a length of amorphous alloy is packaged
together with a piece of semihard magnet strip. The latter
is incorporated for activation and deactivation. Sensing is
by harmonic or acoustomechanical means. The very square
loop possible with carefully treated amorphous ferromagnets,
coupled with high yield strength and electrical resistivity,
makes them the material of choice for the harmonic system.
It is usually a Co-based low magnetostriction material that
is used. The acoustomechanical system relies on mechanical
resonance in the sensing layer and on the �E effect. Fe-
based, high-magnetostriction amorphous alloys are used in
this case. The unit cost in both cases is low, and the market
penetration is high.

A range of magnetometry devices has been proposed
on the basis of modulation of fibre-optic interferometers
(Dandridge et al., 1980; Bucholtz et al., 1987) and shear
wave propagation (Squire and Gibbs, 1988; Kilby, Squire
and Willcock, 1993). The fiber-optic route using ribbon-
form amorphous alloy was shown to have problems both
with frequency response (Brugel, Gibbs and Squire, 1988a)
and high sensitivity to bonding (Brugel, Gibbs and Squire,
1988b). The shear wave option has generated a sensitivity of
0.1 nT/

√
Hz. This is in the range where there are application

windows, and several devices are close to commercialization.
Stress or strain sensing via changes in susceptibility has

been demonstrated. There are significant advantages in using
negative magnetostriction amorphous alloy ribbons, and a
figure of merit (FOM) of 104 can be achieved (Barandiaran
and Gutierrez, 1997). The degradation caused by bonding has
been addressed (Wun-Fogle et al., 1987), and with a viscous
bond, limiting application to AC strain detection, an FOM of
>2 × 105 was achieved. A semiconductor strain gauge has
an FOM of ∼250 by comparison.

If the constraint of bulk magnetic material (in this case rib-
bon) can be relaxed, then thin-film deposition may be used
to advantage. Amorphous ferromagnetic films derived from
commercial METGLAS alloy targets have been used in con-
junction with microbridges and membranes to produce pres-
sure sensors with FOM up to 2 × 105 (Gibbs et al., 1996; Karl
et al., 2000). The potential for further application and integra-
tion within the microelectromechanical systems (MEMS) has
been discussed (Gibbs, Hill and Wright, 2004). Thin-film tech-
nology overcomes many of the drawbacks of bonding, and a
microstrain sensor using amorphous (Fe90Co10)78Si12B10 sput-
tered on to a soft glass substrate, demonstrated an FOM of
1.2 × 105 (Shin, Inoue and Arai, 1999).

The high magnetomechanical coupling also implies that
there could be highly efficient transfer of sound waves

into electrical signals (hydrophonics) using amorphous alloy
cores. Scrolls of METGLAS2605SC have been shown to
demonstrate an optimum effective magnetomechanical cou-
pling coefficient of 0.75 (maximum is 1). Very low bias
fields were required (Rees, Gibbs and Pace, 1989; Rees et al.,
1992).
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Transactions on Magnetics, 30, 4809–4811.

Perel, J., Mahoney, J.F., Duwez, P. and Kalensher, B.E. (1980).
Application of electrohydrodynamics to rapid solidification of fine
droplets and splats. In Rapid Solidification Processing-Principles
and Technologies, Mehrabian, R., Kear, B.H. and Cohen, M. (Eds.),
Claitor’s Publishing Division: Baton Rouge, pp. 287–293.

Polk, D.E. (1972). Structure of glassy metallic alloys. Acta Metal-
lurgica, 20, 485–491.

Raybould, D. and Tan, K.S. (1985). Factors affecting the magnetic
properties of consolidated amorphous powder cores. Journal of
Materials Science, 20, 2776–2785.

Rees, D.W., Gibbs, M.R.J. and Pace, N.G. (1989). The use
of a metallic glass scroll as an acoustic transducer element.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 36, 332–336.



Amorphous alloys 21

Rees, D.W., Gibbs, M.R.J. and Pace, N.G. (1992). Metallic glasses
as acoustic transducers. IEEE Transactions on Magnetics, 28,
3006–3008.

Sadoc, J.F. and Dixmier, J. (1976). Structural investigation of amor-
phous CoP and NiP by combined x-ray and neutron diffraction.
Materials Science and Engineering, 23, 187–192.

Sheard, S.M., Gibbs, M.R.J. and Avery, R.K. (1989). Characteri-
sation of Co-based metallic glasses for saturable inductor cores.
Journal of Magnetism and Magnetic Materials, 75, 397–406.

Shin, K-H., Inoue, M. and Arai, K-I. (1999). Strain sensitivity of
highly magnetostrictive amorphous films for use in microstrain
sensors. Journal of Applied Physics, 85, 5465–5467.

Smith, C.H. (1982). Magnetic pulse compression by metallic
glasses. Journal of Applied Physics, 64, 6032–6034.

Smith, C.H. (1993). Applications of rapidly solidified soft magnetic
alloys. In Rapidly Solidified Alloys, Liebermann, H.H. (Ed.),
Marcel Dekker, pp. 617–663.

Spaepen, F. and Taub, A.I. (1983). Flow and fracture. In Amorphous
Metallic Alloys, Luborsky, F.E. (Ed.), Butterworths: London, pp.
231–256.

Squire, P.T. (1990). Phenomenological model for magnetization,
magnetostriction and �E effect in field-annealed amorphous rib-
bons. Journal of Magnetism and Magnetic Materials, 87, 299–310.

Squire, P.T. (1994). Magnetomechanical measurements of mag-
netically soft amorphous materials. Measurement Science and
Technology, 5, 67–81.

Squire, P.T. and Gibbs, M.R.J. (1988). Shear-wave magnetometry.
IEEE Transactions on Magnetics, 24, 1755–1757.

Squire, P.T. and Gibbs, M.R.J. (1989). �E effect in obliquely field
annealed METGLAS2605SC. IEEE Transactions on Magnet-
ics, 25, 3614–3616.

Suzuki, K., Kataoka, N., Inoue, A., et al. (1990). High saturation
magnetization and soft magnetic properties of bcc Fe-Zr-B-Cu
alloys with ultrafine grain structure. Materials Transactions, JIM,
31, 743–746.

Takayama, S. and Oi, T. (1979). The analysis of casting conditions
of amorphous alloys. Journal of Applied Physics, 50, 4962–4965.

Taylor, G.F. (1924). A method of drawing metallic filaments and
a discussion of their properties and uses. Physical Review, 23,
655–660.

Thomas, A.P. and Gibbs, M.R.J. (1992). Anisotropy and magne-
tostriction in metallic glasses. Journal of Magnetism and Mag-
netic Materials, 103, 97–110.

Todd, I., Davies, H.A., Gibbs, M.R.J., et al. (1999). The effect of
ambient gases on surface quality and related properties of nanocrys-
talline soft magnetic ribbons produced by melt spinning. Journal
of Magnetism and Magnetic Materials, 196–197, 196–198.
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1 INTRODUCTION

It is well known that the microstructure, noticeably the
grain size, essentially determines the hysteresis loop of a
ferromagnetic material. Figure 1 gives an example for the
variation of the coercivity Hc over the whole range of
structural correlation lengths starting from atomic distances
in amorphous alloys over grain sizes, D, in the nanometer
regime up to macroscopic grain sizes. The permeability
shows an analogous behavior being essentially inversely
proportional to Hc. The 1/D dependence of coercivity for
large grain sizes (cf. Pfeifer and Radeloff, 1980) reflects
the conventional rule that good soft magnetic properties
require very large grains (D > 100 µm). Thus, the reduction
of particle size to the regime of the domain wall width
increases the coercivity Hc toward a maximum, controlled by
the anisotropies present. Accordingly, fine particle systems
have been mostly discussed as hard magnetic materials
(cf. Luborsky, 1961). Lowest coercivities, however, are

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

again found for smallest structural correlation lengths like
in amorphous alloys (‘grain size’ of the order of atomic
distances) and in nanocrystalline alloys for grain sizes D <

20 nm. The extraordinary D6 dependence of coercivity at
small grain size moreover demonstrates how closely soft
and hard magnetic behavior actually can be neighbored.
Indeed, the soft magnetic alloys are only one manifestation of
the novel and extraordinary magnetic properties that can be
realized by establishing structural features on the nanometer
scale. Thus, nanocrystalline microstructures are also of high
interest in order to enhance the properties of rare-earth hard
magnets (cf. Buschow, 1997).

The decrease of coercivity in nanocrystalline soft mag-
netic materials has to be well distinguished from superpara-
magnetic phenomena, that is, the well-known decrease of
coercivity in small, isolated, or weakly coupled particles due
to thermal excitation (Kneller, 1969; Luborsky, 1961). In
the present case, we consider small ferromagnetic crystal-
lites well coupled by exchange interaction that results in
low coercivity and, unlike superparamagnetic particles, in
a simultaneously high permeability.

The most prominent example of soft magnetic nanocrys-
talline materials are devitrified glassy Fe–Cu–Nb–Si–B
alloys introduced by Yoshizawa, Oguma and Yamauchi
(1988). The material reveals an ultrafine microstructure of
bcc Fe–Si with grain sizes of 10–15 nm embedded in an
amorphous minority matrix. This particular microstructure
enables a unique combination of the low losses, high per-
meability, and low magnetostriction achieved by permalloys
and Co-based amorphous alloys, but with a saturation mag-
netization up to 1.3 T–much higher than either of these
materials can conventionally offer. The material was pro-
duced by crystallization of an amorphous Fe–Si–B alloy
with small additions of Cu and Nb, a hitherto somewhat
unusual combination which proved to be the key for the
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Figure 1. Coercivity, Hc, versus grain size, D, for various soft magnetic metallic alloys: Fe–Nb–Si–B (solid up triangles, Herzer, 1990),
Fe–Cu–Nb–Si–B (solid circles, Herzer, 1990–1995), Fe–Cu–V–Si–B (solid down triangles, Herzer, 1997 and open down triangles,
Sawa and Takahashi, 1990), Fe–Zr–B (open squares, Suzuki et al., 1991a,b), Fe–Co–Zr (open diamonds, Guo et al., 1991), NiFe alloys
(+ center squares and open up triangles, Pfeifer and Radeloff, 1980), and FeSi 6.5 wt% (open circles, Arai, Tsutsumitakae and Ohmori,
1984). (Reprinted from J. Magn. Magn. Mat., 112, Herzer, Nanocrystalline Soft Magnetic Materials, 258–262, 1992, with permission from
Elsevier.)

particular ultrafine grain structure and the associated soft
magnetic properties.

The work of Yoshizawa et al. stimulated an inten-
sive research for alternative alloy compositions. Thus,
low-magnetostrictive nanocrystalline Fe–(Cu)–Zr–B alloys
(Suzuki et al., 1990, 1991a,b) or Fe–Hf–C thin films
(Hasegawa and Saito, 1991) have been established which
exhibit a still higher saturation magnetization up to 1.7 T due
to the higher Fe content in the alloy. Still, the outstanding
soft magnetic properties of the original alloy system could
not be reached. Interestingly, as a kind of precursor, the first
example for soft magnetic behavior in the nanocrystalline
state was given by O’Handley et al. (1985) for a devitrified
glassy cobalt-based alloy. However, the soft magnetic prop-
erties were inferior to the amorphous state and, thus, not very
attractive, which at present seems to be typical for cobalt-
based nanocrystalline materials. Indeed, the most promising
properties so far have been found in iron-based alloys on
which we will focus this article. Table 1 summarizes some
examples and their magnetic properties in comparison with
conventional soft magnetic alloys.

We continue in Section 2 with a review of the random
anisotropy model which provides the theoretical background
for the soft magnetic properties observed in nanocrystalline
and amorphous materials. This is followed in Section 3 by
an overview of the most important alloy systems and their
basic characteristics. Section 4 provides the experimental

complement of Section 2 and discusses the various magnetic
anisotropy contributions ultimately relevant for the soft
magnetic properties in optimized nanocrystalline alloys.
Concluding remarks are found in Section 5.

2 RANDOM ANISOTROPY MODEL

The basic conditions for good soft magnetic properties gener-
ally are a low or vanishing magnetic anisotropy constant K ,
which is a measure for the energy density needed to rotate the
magnetization vector out of its energetically preferred orien-
tation (magnetic easy axis). The most important contribution,
the magnetocrystalline anisotropy, is related to the symme-
try of the local atomic structure. For bcc-FeSi 20 at%, the
constituent phase in nanocrystalline Fe73.5Cu1Nb3Si13.5B9,
the magnetocrystalline anisotropy constant is about K1 =
8.2 kJ m−3 (Gengnagel and Wagner, 1961), which is orders
of magnitude too large in order to explain by itself the low
coercivity (Hc < 1 A m−1) and high permeability (µi ≈ 105)
observed in the nanocrystalline material.

The key to understanding the soft magnetic properties in
nanocrystalline materials is to recognize that the microstruc-
ture leads to a distribution of magnetic anisotropy axes
randomly varying their orientation on a scale smaller than
the domain wall width. The smoothing action of ferromag-
netic exchange interaction, thus, impedes the magnetization
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Table 1. Typical values of grain size D, saturation magnetization Js, saturation magnetostriction λs, coercivity Hc, initial permeability µi,
electrical resistivity ρ, core losses PFe at 0.2 T, 100 kHz, and ribbon thickness t for nanocrystalline, amorphous, and crystalline soft magnetic
ribbons. (Reprinted from Handbook of Magnetic Materials, Vol 10, Buschow, K.H.J, Nanocrystalline Soft Magnetic Alloys, Elsevier Science
B.V., pp 415–462, 1997, with permission from Elsevier.)

Alloy D Js λs Hc µi ρ PFe t References
(nm) (T) (10−6) (A m−1) (1 kHz) (µ�cm) (W kg−1) (µm)

Fe73.5Cu1Nb3Si13.5B9 13 1.24 2.1 0.5 100 000 118 38 18 Yoshizawa et al. (1988)
Fe73.5Cu1Nb3Si15.5B7 14 1.23 ∼0 0.4 110 000 115 35 21 Vacuumschmelze (1990, 1993)a

Fe84Nb7B9 9 1.49 0.1 8 22 000 58 76 22 Suzuki et al. (1991, 1993)
Fe86Cu1Zr7B6 10 1.52 ∼0 3.2 48 000 56 116 20 Suzuki et al. (1991, 1993)
Fe91Zr7B3 17 1.63 −1.1 5.6 22 000 44 80 18 Suzuki et al. (1991, 1993)
Co68Fe4(MoSiB)28 am. 0.55 ∼0 0.3 150 000 135 35 23 Vacuumschmelze (1990, 1993)a

Co72(FeMn)5(MoSiB)23 am. 0.8 ∼0 0.5 3000 130 40 23 Vacuumschmelze (1990, 1993)a

Fe76(SiB)24 am. 1.45 32 3 8000 135 50 23 Vacuumschmelze (1990, 1993)a

80%Ni–Fe (permalloys) ∼105 0.75 <1 0.5 100 000b 55 >90c 50 Vacuumschmelze (1990, 1993)a

50–60%Ni–Fe ∼105 1.55 25 5 40 000b 45 >200c 70 Vacuumschmelze (1990, 1993)a

aTypical commercial grades for low remanence hysteresis loops.
b50 Hz values
cLower bounds due to eddy currents

to follow the easy axes of the individual grains. The effective
anisotropy constant for the magnetization process will there-
fore be an average over several grains and, hence, be reduced
in magnitude. This makes the essential difference to large
grained materials where the magnetization follows the ran-
domly oriented easy axis of each grain and, accordingly, the
magnetization process is controlled by the full local magne-
tocrystalline anisotropy.

The degree to which the local magnetocrystalline anisotro-
pies are finally averaged out has been successfully addressed
in terms of the so-called random anisotropy model (Herzer,
1989, 1990) which was originally developed in order to
explain the soft magnetic properties of amorphous ferromag-
nets by Alben, Becker and Chi (1978). We review in this
section the basic concepts of this model as well as its exten-
sions (Herzer, 1995, 2005a; Suzuki, Herzer and Cadogan,
1998b) to multiphase systems with mixed random and uni-
form anisotropies.

2.1 Basic concepts

The random anisotropy model starts from a microstructure
characterized by a distribution of magnetic anisotropy axes
randomly varying their orientation over the scale of the grain
size, D. The interplay between exchange and anisotropy
energy is basically described by the following free energy
density

φ = A
∑

i=x,y,z

(∇mi)
2 + K1 fK(m · u) + . . . (1)

where A is the exchange stiffness, m is the direction of
the magnetization vector, K1 is the local magnetocrystalline
anisotropy constant, and fK is a dimensionless function
describing the angular variation of the anisotropy energy
density with respect to a local symmetry axis denoted
by u.

It is evident from equation (1) that the exchange energy
density scales as A/L2 if the magnetization changes its
orientation on a length scale L, for example, by following the
easy axes of the local magnetic anisotropies. Consequently,
the exchange energy would exceed the local anisotropy
energy (i.e., A/L2 > K1) if the magnetization followed the
local anisotropy variations on a scale smaller than

L0 = ϕ0

√
A/K1 (2)

where ϕ0 is a dimensionless parameter in the order of 1. This
basic ferromagnetic correlation length represents the char-
acteristic minimum scale below which the direction of the
magnetization cannot vary appreciably. It, for example, deter-
mines the order of the domain wall width for grains larger
than L0. Typical values are L0 ≈ 5–10 nm for Co-based
and L0 ≈ 20–40 nm for Fe-based alloys. Accordingly, both
amorphous (D ≈ atomic scale) and nanocrystalline alloys
(D ≈ 5–20 nm) fall into the regime where the structural cor-
relation length D is smaller than L0 and where the local
randomly oriented anisotropies are, hence, averaged by the
smoothing effect of exchange interaction.

The magnetic anisotropy relevant to the magnetization
process for D < L0 is given by the average of the anisotropy
energy density over the volume Vex = L3

ex defined by a
correlation length Lex, where the magnetization direction
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Figure 2. Schematic representation of the random anisotropy
model for grains embedded in an ideally soft ferromagnetic matrix.
The double arrows indicate the randomly fluctuating anisotropy
axis, the hatched area represents the ferromagnetic correlation vol-
ume determined by the exchange length Lex within which the
orientation m of the magnetization is constant.

is kept constant by exchange interaction. The situation is
schematically sketched in Figure 2. The average over the
randomly oriented anisotropies of the N = (Lex/D)3 grains
in the exchange-coupled volume is determined by statistical
fluctuations. The average anisotropy constant 〈K1〉, hence,
scales down as (cf. Appendix)

〈K1〉 = K1√
N

= K1 · (D/Lex)
3/2 (3)

The resulting easiest magnetic axis of the N grains is
randomly oriented from one region of exchange-coupled
grains to the other. The magnetization will follow these
easy axes and the exchange energy consequently scales as
A/Lex

2. Accordingly, the average total free energy density
with respect to the homogeneously magnetized state becomes

〈φ〉 ≈ A · (α/Lex)
2 − 1

2β |K1| · (D/Lex)
3/2 (4)

where the dimensionless parameters α and β are basically
related to the effective average angle between the easiest axes
of the exchange-coupled regions and to the symmetry of the
random anisotropy axis, respectively (cf. Herzer, 2005a).

The minimum of 〈φ〉 with respect to Lex is given for

Lex = ϕ0

√
A/〈K1〉 (5)

with ϕ0 = α
√

8/(3β). The resulting exchange length Lex,
thus, follows from the basic exchange length L0 as defined
in equation (2) by self-consistently substituting the average
anisotropy constant 〈K1〉 for the local anisotropy constant
K1. This renormalization accounts for the fact that the scale
on which the exchange interaction dominates expands at the
same time as the anisotropy is averaged out and, hence, the
local anisotropies are averaged out even more efficiently.
Combining equations (3) and (5) finally yields

〈K1〉 = K1 · (D/L0)
6 (6)

This final result is essentially based on statistical and
scaling arguments and, therefore, is not limited to uniaxial
anisotropies (as may be anticipated from Figure 2 or from
the original work of Alben et al.) but also applies for cubic
or other symmetries. The prefactors α, β, and ϕ0 remain
open parameters within this scaling analysis. Their theoretical
determination would require a by far more complex micro-
magnetic analysis of the problem. Yet, all these parameters
can be ultimately combined in a single material constant,
which is given by the basic exchange length L0, that is, the
critical scale below which the averaging mechanism becomes
effective. It is therefore more appropriate to write down the
final result in the rationalized form of equation (6) involving
the ratio D/L0 rather than in the explicit form found in the
original literature (cf. Alben, Becker and Chi, 1978; Herzer,
1990) involving all the individual material parameters and,
in particular, more or less arbitrary prefactors.

The most significant feature predicted by the random
anisotropy model is the strong variation of 〈K1〉 with the
sixth power of the grain size. In typical nanocrystalline
Fe-based alloys with grain sizes in the order of 10–15 nm,
that is, D ≈ L0/3, the local magnetocrystalline anisotropy
of K1 ≈ 105 J m−3 is thus reduced by 3 orders of magnitude
toward a few joules per cubic meter, which is small enough
to enable superior soft magnetic behavior. Correspondingly
the renormalized exchange length, Lex, expands into the
micrometer regime and is almost 2 orders of magnitude larger
than the basic exchange length L0 (≈40 nm). High-resolution
Kerr effect studies of nanocrystalline Fe73.5Cu1Nb3Si13.5B9

indeed reveal very wide domain walls of about 2 µm in
thickness, indicative of the low effective anisotropy of the
material (Schäfer, Hubert and Herzer, 1991).

2.2 Multiphase systems and mixed anisotropies

The preceding arguments were based on a single phase
system. In real materials, however, we deal with various
structural phases. In typical soft magnetic nanocrystalline
materials, the randomly oriented crystallites of about 10
nm in size are embedded in an amorphous matrix. The
latter is made up again of structural units with magnetic
easy axes randomly fluctuating on the much smaller scale
of atomic distances. Moreover, real materials reveal addi-
tional anisotropies, such as magnetoelastic- and field-induced
anisotropies, which are uniform on a scale much larger
than the exchange length. Such long-range anisotropies ulti-
mately determine the soft magnetic properties of optimized
nanocrystalline alloys where the contribution of the random
anisotropies tends to become negligible. The original model
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has been extended correspondingly (Herzer, 1995, 2005a;
Suzuki, Herzer and Cadogan, 1998b).

2.2.1 Average anisotropy

The average anisotropy constant 〈K〉 of a coupled multiphase
system with anisotropies randomly oriented on a scale
smaller than a magnetic correlation length Lex can be
described by (Herzer, 2005a)

〈K〉 =
√

K2
u +

∑
ν

xνβ
2
νK

2
1,ν · (Dν/Lex)

3 (7)

where Ku denotes a uniaxial anisotropy, which is uniform
on a scale much larger than Lex. The random contributions
are represented by the local anisotropy constants K1,ν ,
the grain sizes Dν , and the volume fractions xν of the
individual structural phases labeled by the index ν. The
result includes a grain size distribution if the term structural
phase is used in a more general sense for all grains with the
same K1,ν and the same grain size Dν . The parameters βν

mainly involve conventions used for defining the anisotropy
constants for different symmetries but also include some
statistical corrections in the order of 10–20%. Numerical
simulations for single phase systems result in β ≈ 1 for
uniaxial and β ≈ 0.4 for cubic symmetry. The rather distinct
value of β for the cubic case is largely a consequence
of common conventions for the anisotropy energy. The
latter result in 	φK = |K1|/3 for cubic and 	φK = |K1|
for uniaxial anisotropies, where 	φK = φmax

K − φmin
K is the

difference of the anisotropy energy density between the
hardest and easiest axis. The average anisotropy constant
〈K〉 in equation (7) is defined as the difference between the
maximum and minimum of the average anisotropy energy
density. For a single phase system with Ku = 0, it is related
to 〈K1〉 as introduced in equation (3) by 〈K〉 = β〈K1〉.

The above result is valid as long as the average number
of coupled grains Nν = xν(Lex/Dν)

3 is larger than one for
each individual phase. For the derivation it is only necessary
to assume that the magnetization is parallel within a vol-
ume defined by a correlation length Lex, without specifying
the precise coupling mechanism. This reduces the problem
to adding up random anisotropies which can be done ana-
lytically using statistical concepts and/or by straightforward
micromagnetic simulations (cf. Herzer, 2005a).

If the coupling mechanism is dominated by exchange
interaction , the correlation length Lex is self-consistently
related to the total average anisotropy constant 〈K〉 by

Lex = ϕ
√

A/〈K〉 (8)

where ϕ is a prefactor in the order of unity.

In the general case, the average anisotropy 〈K〉 has to be
determined from equations (7) and (8) by numerical iteration.
Explicit solutions can be obtained in the limiting cases of
a vanishing or dominating macroscopic anisotropy Ku. The
results are

〈K〉 =
(∑

ν

xν

√
βν

∣∣K1,ν

∣∣ (Dν/L0,ν

)3

)2

(9)

for Ku = 0, and

〈K〉 ≈ Ku + 1
2

∑
ν xν

√
βν

∣∣K1,ν

∣∣ Ku
(
Dν/L0,ν

)3
(10)

if the uniform anisotropy is dominating over the random
contributions. The latter is accompanied by a change of the
scaling behavior of the random anisotropy contribution from
D6 to D3. In the above relations

L0,ν := ϕ0,ν

√
A/K1,ν with ϕ0,ν := ϕ/

√
βν (11)

define the basic exchange lengths related to the local aniso-
tropies of the individual structural phases (cf. equation (2)).
These length scales should not be confused with the renor-
malized exchange length Lex of equation (8), which is self-
consistently related to the average anisotropy 〈K〉. The
corresponding prefactors have been estimated to be about
ϕ0 ≈ 1.5 for cubic and ϕ0 ≈ 1.7 for uniaxial symmetry,
respectively.

Figure 3 illustrates the competition of a uniform uniaxial
anisotropy Ku and the average random anisotropy 〈K1〉 as
obtained by numerical simulations (Herzer, 2005a). For small
Ku the easiest magnetic axis is dominated by the random
anisotropy. Accordingly, the easiest axes reveal a large
angular dispersion from one region of exchange-coupled
grains to the other. However, as Ku approaches and finally
exceeds the average random anisotropy contribution 〈K1〉,
the easiest magnetic axis is rotated toward the macroscopic
anisotropy axis and the angular dispersion of the easiest axis
disappears more and more.

Figure 4 illustrates the expected grain-size dependence of
the average random anisotropy for the material parameters of
optimized nanocrystalline Fe–Si–B–Nb–Cu alloys (Herzer,
2005b). We have included the contribution of the random
atomic scale anisotropy of the amorphous matrix as well as
the case of a small uniform anisotropy Ku here.

In the absence of long-range anisotropies, the average
anisotropy 〈K〉 scales with D6 down to grain sizes of
about 5 nm. Although the atomic scale anisotropy of the
amorphous phase in this simulation is almost 2 orders of
magnitude higher than that of the bcc crystallites, its average
contribution is virtually negligible for D > 5 nm since the
structural anisotropies are fluctuating on the much shorter
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Figure 3. Average orientation of the easiest magnetic axis for a
system of randomly oriented particles with average anisotropy
constant 〈K1〉 = K1/N

1/2 and a superimposed, uniform uniaxial
anisotropy Ku (full symbols: randomly oriented cubic grains; open
symbols: uniaxial grains, dashed line: limit for Ku = 0).) (With
permission from Properties and Applications of Nanocrystalline
Alloys from Amorphous Precursors, Idzikowski, B. Svec, P. and
Miglierini, M. (Eds), The Random Anisotropy Model, pp 15–34,
2005.)

scale of atomic distances (Dam. ≈ 0.5 nm). In this regime
where the contribution of the bcc crystallites is dominating,
equation (7) simplifies drastically and 〈K〉 becomes

〈K〉 := β〈K1〉 = βK1 · x2
cr(D/L0)

6 (12)

This result corresponds to exchange-coupled crystallites
diluted in an ideally soft magnetic matrix. The only mod-
ification made over the original single phase model is the
inclusion of the crystalline volume fraction xcr. The statisti-
cal precondition for the averaging mechanism, that is, N > 1,
then becomes D < L0/x

1/6
cr . This means that the critical grain

size below which exchange interaction starts to suppress the
local anisotropies is somewhat enhanced owing to the dilu-
tion effect.

The random anisotropy of the amorphous matrix becomes
only visible for very small grain sizes below about 5 nm,
resulting in a grain size independent anisotropy. However,
this theoretical minimum value of 〈K〉 and the related
coercivity (Hc ∼ 0.001 A m−1) are so small that the situation
shown for smallest grain sizes in Figure 4 remains academic.

In real materials, whether amorphous or nanocrystalline,
the minimum anisotropy is ultimately determined by more
long-range anisotropies. To illustrate this more realistic sit-
uation, we have assumed the presence of a small uniform
anisotropy Ku = 5 J m−3. As can be seen from Figure 4, the
average anisotropy constant 〈K〉 is almost totally determined
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1% Fe2B (D = 10 nm)

Figure 4. Theoretical estimate of the average anisotropy 〈K〉
for a system of randomly oriented crystallites of bcc Fe80Si20

(K1 = 8.2 kJ m−3) with grain size D and embedded in an amor-
phous matrix with a volume fraction x = 0.75. The atomic scale
anisotropy constant of the amorphous phase was assumed as
K1 = 430 kJ m−3 which is the value for Fe2B and which can be
looked upon as an upper bound. The exchange stiffness constant
was assumed as A = 6 × 10−12 J m−1 which is the experimental
value for nanocrystalline Fe73.5Cu1Nb3Si13.5B9. (Reprinted from
J. Magn. Magn. Mat. 294, G. Herzer, Anisotropies in Soft Mag-
netic Nanocrystalline Alloys, pp 99–106, 2005, with permission
from Elsevier.)

by Ku for grain sizes below about 10–15 nm. The grain-
size dependence of the random contribution, that is, δK =
〈K〉 − Ku, changes from a D6 dependence to a D3 depen-
dence, and finally, gets grain size independent due to the
random anisotropy of the amorphous phase. The latter is
larger than that for the case Ku = 0, because the maxi-
mum value for the renormalized exchange length is lim-
ited by Lex = ϕ(A/Ku)

1/2. As a consequence, the random
anisotropies of the amorphous phase are less effectively aver-
aged out.

A very small volume fraction of an additional crystalline
phase with significantly higher anisotropy can finally change
the picture totally. This is illustrated in Figure 4 assuming
a 1% fraction of Fe2B precipitates (K1 = 430 kJ m−3) with
10 nm grain size. The example explains at least qualitatively
the finding in experiment that Fe2B precipitates can signifi-
cantly degrade the soft magnetic properties even though the
grain size of the bcc crystallites remains unchanged.

2.2.2 Grain coupling

Adding up anisotropies is only one aspect of extending the
random anisotropy model to multiphase systems. Another
most challenging problem is how to relate the effective
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exchange stiffness constant A to the local material param-
eters. It is intuitively clear that A has to be ultimately
understood as an effective average value on the scale of
the exchange length. However, as demonstrated by exper-
iment (cf. Section 4.1.2), it is not a simple volume average.
It is rather determined by the ‘weakest link’ in the exchange
chain, which, for example, is the amorphous intergranular
phase in typical nanocrystallized materials (Herzer, 1989).
Hence, A should result from some kind of ‘inverse averag-
ing’ of the local exchange constants. The most promising
approach to the problem so far has been proposed by Suzuki
and Cadogan (1998a). They consider the situation where the
magnetization changes its orientation over the scale of the
exchange length Lex ∝ (A/〈K〉)1/2. Like in a domain wall,
the average tilting between neighboring spins is then approx-
imately inversely proportional to Lex, that is, proportional to
1/A1/2. The key argument of Suzuki et al. is that the local
tilting angle should increase if the local exchange interaction
becomes weaker and vice versa. Accordingly they assume the
local tilting angle to be proportional to 1/A

1/2
loc , where Aloc

is the local exchange stiffness. The effective exchange stiff-
ness, hence, can be calculated by averaging the local tilting
angles. The result is

D + δ√
A

= D√
Acr

+ δ√
Aam

(13)

where D is the grain size, δ is the intergranular spacing,
and Aam and Acr denote the exchange stiffness constants
of the amorphous matrix and the crystallites, respectively.
Although physically very reasonable, this model is a rather
phenomenological approach limited to the typical two-phase
structure of nanocrystallized materials where the crystalline
phase is completely surrounded by the amorphous phase. A
more rigorous micromagnetic treatment including extensions
to multiple phases or to situations like incomplete wetting of
the crystallites by the amorphous matrix still provides a most
challenging theoretical task.

For the derivation of equation (7), it is only neces-
sary to assume that the magnetization is parallel within
a volume defined by a correlation length Lex without
specifying the precise coupling mechanism. The coupling
mechanism hereby has not necessarily to be exchange inter-
action but could also be dipolar interaction. In the lat-
ter case, ‘Lex’ should be understood as magnetic cor-
relation length , which is not necessarily proportional to
1/〈K〉1/2 like it is for exchange interaction. Dipolar inter-
actions, without any doubt, become increasingly important
when the exchange interaction between the crystallites is
largely interrupted, for example, when the amorphous inter-
granular phase becomes paramagnetic at elevated tempera-
tures (cf. Section 4.1.2). The proper incorporation of dipolar

interactions into the concepts of the random anisotropy model
still provides another basic theoretical challenge for future
investigations.

2.3 Coercivity and permeability

For pure random anisotropies averaged out by exchange
interaction, coercivity Hc and initial permeability µi are
directly related to the average anisotropy constant 〈K〉 by

Hc = pc
〈K〉
Js

; µi = pµ

J 2
s

µ0 〈K〉 (14)

where Js is the average saturation magnetization of the
material and pc and pµ are dimensionless prefactors in the
order of unity. These relations have been originally derived
for coherent magnetization rotation in conventional fine
particle systems (cf. Bozorth, 1951). In the regime D < Lex,
however, they also apply for domain wall displacements
(Herzer, 1990). Accordingly, coercivity and permeability are
expected to vary with grain size as Hc ∝ D6 and µ ∝ 1/D6.

However, if the magnetization process is controlled by
more long-range anisotropies, the theoretical description of
Hc and µi gets more complex, similar to the case in con-
ventional soft magnetic materials. For domain wall displace-
ments, the coercivity is then determined by anisotropy fluc-
tuations δK according to

Hc ≈ 1

2Js

∣∣∣∣∂γ W

∂x

∣∣∣∣
max

≈ δK

Js

Lex

λ
(15)

where γ W = 4(A〈K〉)1/2 is the domain wall energy, Lex is
the exchange length as introduced in equation (8), and λ is
the fluctuation length of the effective anisotropy.

For large grains, D > Lex, we have λ ≈ D and δK ≈ K1,
such that equation (15) yields Hc ∝ K

1/2
1 /D, that is, the

well-known 1/D dependence of coercivity in conventional
soft magnetic materials.

In the regime D < Lex, the effective contribution of the
random magnetocrystalline anisotropies to the magnetization
process is an average over the volume of the exchange length
Lex. Accordingly, the wavelength of the effective anisotropy
fluctuations is given by the exchange length itself, that
is, λ ≈ Lex, and the fluctuation amplitude is δK = 〈K〉 −
Ku. The coercivity, thus, is Hc ∼ (〈K〉 − Ku)/Js and we
expect for Hc the grain-size dependence shown in Figure 4
for 〈K〉 − Ku. The most significant feature hereby is the
transition from a D6 to a D3 law as Ku starts to dominate.

The preceding discussion assumed that the superimposed
uniaxial anisotropy is perfectly uniform. This is rather the
exception than the rule in reality, mostly due to internal
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mechanical stresses and/or surface defects. The typical fluc-
tuation wavelengths λ are much larger than Lex and range
from a few to about 100 µm. Such Ku fluctuations ultimately
provide the limiting factor for the soft magnetic proper-
ties in amorphous and optimized nanocrystalline alloys. The
result is a grain size independent contribution, Hc ∝ K

1/2
u /λ,

which finally dominates over the random microstructural
anisotropies. This is the case in amorphous alloys and in
optimized nanocrystalline Fe–Cu–Nb–Si–B alloys for grain
sizes below about 15–20 nm.

Permeability µ behaves even more complex if we deal
with a dominating long-range anisotropy Ku. In particular, it
depends sensitively on the angle between applied magnetic
field and macroscopic anisotropy direction. If the sample is
magnetized perpendicular to the Ku axis, µ is determined by
magnetization rotation and, hence, is inversely proportional
to the total anisotropy, that is, µ ∝ 1/〈K〉. It is, thus, grain
size independent although coercivity may simultaneously
vary proportional to D3. If magnetized parallel to the uniform
anisotropy axis µ is determined by domain wall pinning and
we expect permeability to vary inversely proportional to Hc

again, that is, µ ∝ 1/δK .

3 ALLOY SYSTEMS AND BASIC
CHARACTERISTICS

The most suitable method to synthesize nanocrystalline
alloys with attractive soft magnetic properties is controlled
crystallization from the amorphous state. The amorphous
precursor material is prepared either as a thin film by
sputtering techniques or, more typically, as a ribbon by
rapid solidification from the melt. A typical nanocrystalline
structure with good soft magnetic properties occurs if the
amorphous state is crystallized by the primary crystallization
of bcc Fe, before intermetallic phases like Fe–B compounds
may be formed. Both an extremely high nucleation rate
and a slow growth of the crystalline precipitates are needed
in order to obtain the nanoscaled microstructure. However,
such a crystallization characteristics is rather the exception
than the rule and needs an appropriate alloy design which
promotes the nucleation of bcc Fe, retards the grain growth,
and simultaneously inhibits the formation of intermetallic
phases. The requirement of a good glass-forming ability puts
further constraints on the accessible alloy compositions.

3.1 Fe–Cu–Nb–Si–B alloys

The most attractive soft magnetic properties in the
nanocrystalline state are found for compositions like

Febal.Cu0.5−1Nb2−3Si12−16B6−9. The basic alloy design
corresponds to that of a typical Fe–Si–B metallic glass.
The alloys have a good glass-forming ability and are eas-
ily accessible by rapid solidification as originally amorphous
ribbons, typically 20 µm thick. The nanocrystalline state is
achieved by a subsequent heat treatment above the crystal-
lization temperature. The desired crystallization characteris-
tics is provided by the combined addition of Cu and Nb.

Figure 5 shows a typical example for the evolution
of the microstructure and the soft magnetic properties
with the annealing temperature. Accordingly, annealing of
Fe73.5Cu1Nb3Si13.5B9 at temperatures between about 500
and 600 ◦C leads to the primary crystallization of ultrafine
bcc Fe∼80Si∼20 grains with typical grain sizes of 10–15 nm.
The bcc grains are randomly oriented and embedded in a
residual amorphous matrix which occupies about 20–30%
of the volume and separates the crystallites at a distance
of about 1–2 nm. This nanocrystalline structure is the basis
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for the excellent soft magnetic properties indicated by the
high values of the initial permeability of about 105 and
correspondingly low coercivities of less than 1 A m−1. The
magnetic properties and the underlying microstructure are
relatively insensitive to the precise annealing conditions
within a wide range of annealing temperatures, Ta, of about
	Ta ≈ 50–100 ◦C. They develop in a relatively short period
of time (about 10–15 min) and do not much alter even after
prolonged heat treatment of several hours (cf. Yoshizawa and
Yamauchi, 1991a). Only annealing at more elevated temper-
atures above about 600 ◦C leads to the precipitation of small
fractions of boride compounds like Fe2B or Fe3B with typical
dimensions of 50–100 nm, while the ultrafine grain structure
of bcc Fe–Si still persists. Further increase of the annealing
temperature above about 700 ◦C finally yields grain coarsen-
ing. Both the formation of Fe borides and grain coarsening
deteriorates the soft magnetic properties significantly.

For comparison, Figure 5 includes the data for a
Fe74.5Nb3Si13.5B9 alloy. The crystallization behavior of this
Cu-free alloy is quite different and leads to a severe degra-
dation of the soft magnetic properties as typically observed
for conventional amorphous alloys. The average grain size is
relatively large and shows a distinct variation with the anneal-
ing temperature. The crystallization of the Cu-free alloy is
furthermore characterized by the almost simultaneous forma-
tion of bcc Fe–Si and Fe–B compounds, while the addition
of already a few tenth at% of Cu leads to two clearly sep-
arated crystallization stages (Kataoka et al., 1989a; Herzer
and Warlimont, 1992).

The formation of the particular nanocrystalline structure
is essentially related to the combined addition of Cu and
Nb (or other group IV to VI elements) and their low
solubility in bcc Fe–Si: copper enhances the nucleation of
the bcc grains while niobium impedes coarsening and, at
the same time, inhibits the formation of boride compounds.
The microstructure evolution is schematically illustrated in
Figure 6 and can be described as follows:

In the early stage of annealing, prior to the primary
crystallization of bcc Fe–Si, the phase separation tendency
between Cu and Fe leads to the formation of Cu-rich clusters
with a diameter of a few nanometer (Hono et al., 1992).
These Cu clusters directly serve as heterogeneous nucleation
sites for the Fe–Si primary crystals (Hono, Ping, Ohnuma
and Onodera, 1999). The consequence is an extremely fine
nucleation of bcc Fe–Si crystallites at a high rate which
subsequently grow in a diffusion controlled process as the
annealing proceeds further. As the bcc Fe–Si phase forms,
Nb and B are excluded from the crystallites because of their
low solubility in bcc Fe–Si and, hence, are enriched in the
residual amorphous matrix. At the same time, effectively
all Si tends to be partitioned into the bcc Fe–Si phase
(Herzer, 1991; Hono et al., 1992). The enrichment with B

As quenched
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(amorphous)

Initial stage
of crystallization

Optimum
nanocrystalline

state

Compositional
fluctuations

Nucleation
of bcc
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growth

Cu cluster

bcc-Fe—Si

Amorphous
Nb and B enriched

Amorphous

Amorphous
Fe—Cu—Nb—Si—B
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bcc-Fe—Si
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Figure 6. Schematic illustration of the formation of the nanocrys-
talline structure in Fe–Cu–Nb–Si–B alloys based on atom probe
analysis results and transmission electron microscopy observations
by Hono et al. (1992, 2000), Hono, Ping, Ohnuma and Onodera
(1999).

and, in particular, with Nb increasingly stabilizes the residual
amorphous matrix and, thus, hinders coarsening of the bcc
grains. The presence of Nb also inhibits the formation of
Fe boride compounds. The transformation finally ceases in a
metastable two-phase microstructure of bcc Fe–Si embedded
in an amorphous Fe–Nb–B matrix.

Figures 7 and 8 show the Curie temperatures TC and
the room-temperature magnetization Js of Fe–Cu–Nb–Si–B
alloys in the amorphous and in the nanocrystalline state. The
precipitation of the bcc Fe–Si phase is clearly manifested in
a significant increase of the Curie temperature TC from 250 to
320 ◦C in the original amorphous state to about 600–740 ◦C
after nanocrystallization. The residual amorphous matrix is
ferromagnetic. Its Curie temperature and saturation mag-
netization, however, are clearly different from that of the
amorphous precursor which reflects the discussed change in
composition.
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Buschow, K.H.J, Nanocrystalline Soft Magnetic Alloys, Elsevier
Science B.V., pp 415–462, 1997, with permission from Elsevier.)

Figures 9 and 10 show the crystalline fraction and the Si
content of the crystallites as evaluated from thermomagnetic
investigations by comparison with literature data for α-Fe–Si
(Herzer, 1989, 1991). X-ray investigations of Ueda, Ikeda
and Minami (1994) give comparable results. The crystalline
fraction is mainly determined by the boron content and
independent of the Si content. Both the crystalline fraction
and the average grain size decreases with increasing boron
content. This indicates that the boron plays a similar role as
Nb in retarding the grain growth. The local Si content in the
bcc grains is considerably larger than the average Si content
of the alloy. For the high Si-content alloys the composition of
the bcc grains is close to stoichiometric Fe3Si which results
in a DO3 superlattice structure (Müller, Mattern and Illgen,
1991).

The transformation to the nanocrystalline state can be
approximately described by the reaction

Fe–Cu–Nb–Si–B −→ xcrα − Fe1−ySiy

+(1 − xcr)(Fe1−aNba)nB (16)

which allows to estimate the crystalline fraction xcr and the
local atomic compositions by balance of atomic
concentrations. A reasonable fit of the experimental data
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Fe96−zCu1Nb3SixBz−x in the as quenched amorphous (open sym-
bols) and nanocrystalline state after annealing 1 h at 540 ◦C (solid
symbols, upper part). The lower part of the figure shows the
local magnetization of the residual amorphous matrix in the
nanocrystalline state (note the change in the axis scale). (Reprinted
from Handbook of Magnetic Materials, Vol 10, Buschow, K.H.J,
Nanocrystalline Soft Magnetic Alloys, Elsevier Science B.V.,
pp 415–462, 1997, with permission from Elsevier.)

is obtained with n ≈ 2.2, indicating that the nucleation and
growth of the bcc grains proceeds until the residual amor-
phous matrix is enriched with boron such that its composition
is close to stoichiometric (Fe1−aNba)2B. In nanocrystalline
Fe73.5Cu1Nb3Si13.5B9, for example, the crystalline volume
fraction is about 70% and the local compositions are close
to Fe∼80Si∼20 in the bcc crystallites and Fe∼60Nb∼10B∼30 in
the residual amorphous matrix, respectively.

The effect of copper in enhancing the nucleation density,
in a way, is unique. Gold is the only element which
has been verified to have a comparable effect on the
crystallization behavior (Kataoka, Matsunaga, Inoue and
Masumoto, 1989b). Niobium can be substituted by other
group V or VI refractory elements, like Cr, V, Mo, W, or Ta
which act similarly on the crystallization process and on the
magnetic properties (Yoshizawa and Yamauchi, 1991b). Like
for Nb, the atomic volumes of these refractory elements are
larger than that of Fe which reduces the diffusion coefficients
and, thus, stabilizes the amorphous matrix and slows down
the kinetics of grain coarsening (Müller and Mattern, 1994).
Accordingly the efficiency of these elements for grain-size
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The solid line is the crystalline fraction calculated from the bal-
ance of atomic concentrations according to the reaction given by
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refinement increases in the order of their atomic volumes, that
is, Cr < V < Mo ≈ W < Nb ≈ Ta. Finest grain structures
and superior magnetic properties require a certain minimum
amount (typically 2–3 at%) of the elements Nb or Ta.
More recent investigations by Ohnuma et al. (2000) indicate
that the grain-size refinement and, hence, the soft magnetic
properties can be optimized further by mutually adjusting the
Cu and Nb content such that the Cu clustering occurs just
before the onset of primary crystallization.

Another aspect of alloy design is that good soft magnetic
properties require not only a small grain size but at the
same time the absence of boron compounds. The required
separation between the primary crystallization of bcc Fe and
the precipitation of Fe–B compounds not only is determined
by Cu and Nb but also needs a low or moderate boron content
in order to minimize the driving force for the formation of
boride compounds. On the other hand, Fe–Si–B metallic
glasses require a certain minimum amount of B as well as
minimum content of (Si + B), for the sake of glass-forming
ability. This is one of the reasons that superior soft magnetic
properties are only found for relatively low boron contents
in the range 5–10 at% and correspondingly high Si contents
of about 12–16 at% (cf. Figure 11).

Further aspects of alloy design and microstructure of the
Fe–Cu–Nb–Si–B system can be found, for example, in the
reviews of Herzer (1997), Yoshizawa (1999) and Hono and
Ohnuma (2002).
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3.2 Further alloy compositions

A major driving force in the search for further alloy compo-
sitions was to increase the saturation magnetization which,
in the optimized compositions around Fe73.5Cu1Nb3Si13.5B9,
is limited to about Js ≈ 1.2–1.3 T due to the high Si con-
tent in the bcc grains. An appreciable increase of Js, thus,
requires a nanocrystalline structure which essentially con-
sists of pure α iron. The major problem hereby is to find
appropriate amorphous precursor compositions with both suf-
ficient glass-forming ability and the necessary crystallization
characteristics.

As, for example, shown in Figure 8, the saturation mag-
netization in the Fe–Cu1Nb3SixBz−x system increases up
to about 1.6 T if the Si content is reduced by replacing
it with boron. However this benefit is finally accompanied
by a severe degradation of the soft magnetic properties (cf.
Figure 11) since the higher boron content favors the forma-
tion of boron compounds. In order to obtain a homogeneous
nanocrystalline bcc structure with good soft magnetic prop-
erties, it is ultimately necessary to keep the boron content
at a moderate level below about 10 at%. However, a corre-
sponding reduction of the boron content at low Si contents,
for the sake of glass-forming ability, is only possible if other
good glass-forming elements are added simultaneously. Such
elements which extend the glass-forming range at low Si and
B contents are group IVa to VIa transition metals. The glass-
forming range is the widest for Hf containing alloys and
decreases in the order of Zr > Nb ≈ Ta > Mo ≈ W > V >

Cr. The most stable amorphous phase is, thus, obtained in
alloys containing refractory metals with large atoms and low
d-electron concentrations, that is, particularly Zr, Hf, Nb, and
Ta. These elements at the same time are very effective in sup-
pressing the formation of the undesired boride compounds.

Accordingly, high iron content Fe–(Cu1)–M∼7B2−9 alloys
with M = Hf, Zr, Nb, and/or Ta have been found to exhibit
both a more or less sufficient glass-forming ability and the
necessary crystallization characteristics in order to give a
nanocrystalline structure with good soft magnetic properties,
low magnetostriction, and a high saturation induction up to
1.7 T (Suzuki et al., 1990, 1991a,b, 1993). Yet glass-forming
ability and castability still remain a major problem with these
alloys. Thus, the Nb containing alloys which yield reasonable
properties, like, for example, Fe84Nb7B9, are located at the
border of the glass-forming range (Suzuki, Makino, Inoue
and Masumoto, 1994) which makes them most difficult to
produce, in particular, on larger scale. The glass-forming
ability is considerably improved with the addition of Zr
or Hf. However, the strong oxygen reactivity of either of
the two elements is a severe problem and requires a good
protecting casting atmosphere. Moreover, the compositions
with the highest saturation magnetization of Js = 1.6–1.7 T,

like Fe91Zr7B2 are again located at the border of the glass-
forming range. The preparation of Fe–M–B thin ribbons by
rapid solidification, thus, requires substantially more effort
than necessary for the more conventional Fe–(Cu,Nb)–Si–B
compositions and, therefore, is presently still limited to
smaller quantities.

In the Fe–M–B alloy system, the addition of copper is
not necessarily required in order to yield a nanocrystalline
structure with reasonable magnetic properties. Quenched-
in compositional fluctuations in the amorphous state due
to a relatively low glass-forming ability and the enhanced
concentration of refractory elements insoluble in α-Fe are
considered as a possible explanation (Suzuki, Makino, Inoue
and Masumoto, 1994). Still, the addition of Cu again
promotes the primary nucleation of the bcc Fe and enhances
the soft magnetic properties significantly.

It should be finally mentioned that the spectrum of
accessible nanocrystalline systems can still be considerably
expanded by thin-film sputtering techniques. One example
are Hf carbide dispersed nanocrystalline Fe–Hf–C films
crystallized from the amorphous state (Hasegawa and Saito,
1991; Hasegawa, Kataoka and Fujimori, 1992). They com-
bine good thermal stability, good high-frequency proper-
ties in the megahertz range with low magnetostriction, and
high saturation induction of Js = 1.7 T which can be even
increased up to 2.0 T by multilayering these films with Fe.
Another example are (Fe,Co,Ni)–(Si,B)–(F,O,N) granular
alloy films (cf. Fujimori, 1995) which, at a saturation induc-
tion of about 1 T, possess a uniquely high electrical resistivity
of 103 –104 µ�cm which makes them a possible candidate for
future high-frequency devices.

4 ANISOTROPIES AND SOFT MAGNETIC
PROPERTIES

Figure 11 summarizes the soft magnetic properties of typ-
ical nanocrystalline Fe-based alloys. Lowest coercivities
(Hc ≈ 0.5–1 A m−1) and highest permeabilities (µ ≈ 105)
are found around the originally proposed compositions, that
is, Fe∼74Cu1Nb3Si13−16B6−9. Figure 12 compares the prop-
erties with other near-zero magnetostrictive alloys. Accord-
ingly, nanocrystalline materials offer a unique combination
of a high saturation induction and a high permeability.

The soft magnetic properties found in the optimized com-
positions can be only partially understood by the grain-size
effect. They are ultimately determined by the competition of
magnetocrystalline, magnetoelastic, and annealing-induced
anisotropies as well as by the ribbon quality (i.e., impuri-
ties, surface roughness, oxide layers, etc.). Thus, the degra-
dation of the soft magnetic properties shown in Figure 11
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for decreasing Si contents is a consequence of the simul-
taneously increasing magnitudes of the saturation magne-
tostriction, the field-induced anisotropy, and the local mag-
netocrystalline anisotropy constant. At very low Si contents,
the simultaneously enhanced boron content additionally pro-
motes the precipitation of boride compounds even after opti-
mized annealing. The degradation toward high Si contents
results from an increasing grain size due to the simulta-
neously decreasing boron content and from the enhanced
tendency for the formation of silicon oxide layers. At very
high Si contents, finally, the correspondingly low boron con-
tent reduces the glass-forming ability which additionally pro-
motes coarse-grained crystalline precipitations already in the
as-cast state. On the basis of the theoretical background given
in Section 2, we will now discuss in more detail the vari-
ous magnetic anisotropy contributions relevant for the soft
magnetic properties.

4.1 Magnetocrystalline anisotropy

4.1.1 Grain-size effect

Figure 13 shows the coercivity Hc and the initial permeabil-
ity µi of various nanocrystallized alloys as a function of the
grain size D. The relatively broad scatter of the data is mainly
related to the circumstance that the experimental variation of
the grain size cannot be performed in a straightforward man-
ner. It inevitably requires variations of the alloy composition
and/or the annealing conditions which changes both the vol-
ume fraction and composition of the precipitated crystallites
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a small fraction (less than 10%) of Fe2B precipitates. References to
the symbols are given in Figure 1. (Reprinted from J. Magn. Magn.
Mat., 157/158, G. Herzer, Nanocrystalline Soft Magnetic Materials,
133–136, 1996, with permission from Elsevier.)

and the residual matrix. As a consequence, the local mag-
netocrystalline anisotropy constant, K1, and the exchange
interaction, A, between the grains change simultaneously.
Nonetheless, the D6 dependence predicted by the random
anisotropy model seems to provide a good guiding princi-
ple through most of the coercivity and permeability data for
grains smaller than L0 ≈ 40 nm.

However, there are also systematic deviations from the
simple D6 law. The major reasons are (i) precipitates of
highly anisotropic compounds like Fe2B and/or (ii) more
long-range anisotropy contributions which are uniform on
a scale much larger than the exchange length.

The formation of Fe2B compounds can indeed drastically
deteriorate the soft magnetic properties while the grain size
of the bcc crystallites may remain unchanged (cf. Figures 5
and 13). The effective hardening caused by the Fe2B precip-
itates already at smallest volume fractions is related to their
relatively large size of 50–100 nm and, in particular, to their
large magnetocrystalline anisotropy constant, K1, of about
430 kJ m−3 which is orders of magnitude higher than that of
the bcc crystallites. As demonstrated in Figure 14, the good
soft magnetic properties of the nanocrystalline bcc structure
are largely recovered when K1(Fe2B) passes through zero
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at 250 ◦C. This particular temperature dependence allows
to detect even smallest amounts of borides, hardly visible
by more direct structural investigations, and thus provides a
most sensitive tool in order to separate whether an eventual
degradation of the soft magnetic properties arises from too
large bcc grains or from hard precipitates.

Long-range anisotropies lead to modified or vanishing
grain-size dependence for small grain sizes. Relevant to
this are magnetoelastic anisotropies, creep- or field-induced
anisotropies and/or shape anisotropies which control the
magnetization process when the random magnetocrystalline
anisotropy is sufficiently averaged out. Thus, it is evident
from Figure 13 that the soft magnetic properties of nanocrys-
talline Fe–Cu–Nb–Si–B alloys become basically grain size
independent for grain sizes below 15–20 nm. Suzuki, Herzer
and Cadogan (1998b) confirm this behavior for the coercivity
of Fe–Cu–M–Si–B (M = IVa to VIa metal) alloys while
they find a Hc ∝ D3 law, for example, for nanocrystalline
Fe91Zr7B2 with grain sizes D ≈ 12–18 nm.

Figure 15 shows some typical hysteresis loops for D <

L0. In the regime of the D6 law, the hysteresis loops reveal
a high remanence to saturation ratio Jr/Js. An example
with Jr/Js ≈ 0.95 is given in Figure 15 by the sample
with D ≈ 25 nm. Such an isotropic remanence enhancement
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Figure 15. Characteristic hysteresis loops in the nanocrystalline
state. The average grain sizes for the examples shown are about
25 nm for xNb = 1.5 at% and 12 nm for xNb = 3 at%, respec-
tively. (Reprinted from J. Magn. Magn. Mat., 157/158, G. Herzer,
Nanocrystalline Soft Magnetic Materials, 133–136, 1996, with per-
mission from Elsevier.)

toward Jr/Js = 1 is another characteristic feature when
exchange interaction starts to dominate over anisotropy. The
phenomenon is of particular interest for tailoring isotropic,
nanoscaled hard magnets (cf. Buschow, 1997). However,
the effect disappears at smaller grain sizes where more
long-range anisotropies dominate over the averaged random
anisotropies. Figure 15 includes a typical example (sample
with D = 12 nm) with a remanence ratio around 0.5. The
latter clearly indicates that the magnetization process is
dominated by a distribution of uniaxial anisotropies which
are uniform on a scale much larger than the exchange length.

Figure 16 shows typical domain patterns found for small
grain sizes below 15 nm. The wide regular domains as
well as typical stress patterns provide further evidence for
the dominance of more uniform anisotropies in such opti-
mized samples. Only high-resolution optical Kerr microscopy
still reveals irregular magnetization patches within the wide
domains (Flohrer, Schäfer, Polak and Herzer, 2005). A corre-
sponding example is given in Figure 16(c). These magnetiza-
tion patches are fluctuating on a scale of a few micrometers
which is in the order of the renormalized exchange length
Lex. They arise from the residual contribution of the ran-
dom magnetocrystalline anisotropies and reflect the angular
dispersion of the easiest magnetic axis from one region of
exchange-coupled grains to the other. Accordingly, these
patches are found to be more pronounced, the more the ran-
dom anisotropies contribute to the total magnetic anisotropy
and, vice versa, they tend to disappear, the more long-range
anisotropies dominate. Comparable magnetization patches
are virtually invisible in soft magnetic amorphous alloys due
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Figure 16. Magnetic domains observed in nanocrystalline
Fe73.5Cu1Nb3Si16B7 (annealed 1 h 540 ◦C). Examples for regular
wide domains (a), rare zones with stress patterns (b) and a
high-resolution image of a domain wall (c) are shown. The high-
resolution image (c) also exemplifies the patchy magnetization
fluctuations typically observed within the wide domains. (By
courtesy of R. Schäfer, IFW Dresden.)

to the extremely small contribution of the averaged random
anisotropies.

In summary, it appears that, like in amorphous metals,
the average random anisotropy of optimized nanocrystalline
alloys like Febal.Cu0.5−1Nb2−3Si12−16B6−9 is negligibly small
and that the soft magnetic properties are predominantly con-
trolled by more long-range uniaxial anisotropies like mag-
netoelastic and annealing-induced anisotropies. Yet, unlike
soft magnetic amorphous metals, there are still situations
where the random magnetocrystalline anisotropy becomes
significant even for smallest grain sizes. The most prominent
example is the temperature dependence of the soft magnetic
properties which will be discussed in the following.

4.1.2 Grain coupling

The suppression of magnetocrystalline anisotropy requires
that the randomly oriented grains are ferromagnetically cou-
pled by exchange interaction. Consequently, if the exchange
interaction is reduced, the local anisotropies will be less
effectively averaged out and the soft magnetic properties will
degrade.
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amorphous matrix (T am
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607 ◦C), respectively. (Reprinted from Scr. Metall. Mater., 33,
G. Herzer, Soft Magnetic Nanocrystalline Materials, 1741–1756,
1995, with permission from Elsevier.)

The crucial role of the exchange interaction becomes most
evident from the temperature dependence of the magnetic
properties (Herzer, 1989) which is shown in Figure 17. The
exchange coupling between the bcc grains mainly occurs via
the intergranular amorphous matrix. The latter has a much
lower Curie temperature than the bcc grains (cf. Figure 7). As
a consequence, the intergranular coupling is largely reduced
as the measuring temperature approaches the Curie tempera-
ture T am

C of the amorphous matrix and the soft magnetic prop-
erties degrade correspondingly. Simultaneously, as shown
in Figure 18, the domain structure simultaneously changes
from wide domains to a pattern of small, irregular domains
(Schäfer, Hubert, and Herzer, 1991; Flohrer, Schäfer, Polak
and Herzer, 2005). These features are basically reversible
and, thus, are not connected with irreversible, microstructural
changes during the measurement.

The particular example shown in Figure 17 reveals a small
uniaxial anisotropy (Ku ≈ 6 J m−3) transverse to the ribbon
axis induced by magnetic field annealing. In the low tem-
perature regime, this induced anisotropy dominates over the
averaged magnetocrystalline anisotropy, as indicated by the
small remanence to saturation ratio Br/Bs. However, when
approaching T am

C , the random anisotropies rapidly increase
due to the reduced grain coupling and take over the con-
trol of the hysteresis loop. As a consequence, the remanence
to saturation ratio steeply increases around 250 ◦C. From the
theoretical analysis of the interplay between random and uni-
form anisotropies (cf. Figure 3) we expect this transition to
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Figure 18. Transition from wide domains at room tempera-
ture to a patchy domain pattern at 350 ◦C for nanocrys-
talline Fe73Cu1Nb3Si16B7 with a small field-induced anisotropy
Ku ≈ 3 J m−3. (Reprinted from Acta mater., 53, Flohrer, S.,
Schäfer, R., Polak, Ch. and Herzer. G., Interplay of Uniform and
Random Anisotropy in Nanocrystalline Soft Magnetic Alloys,
pp 2937–2942, 2005, with permission from Elsevier.)

occur at Ku ≈ 0.5〈K1〉 for cubic crystallites. Accordingly,
the increase of Br/Bs is shifted toward higher tempera-
tures with increasing magnitude of the induced anisotropy.
Thus, for a sample with Ku ≈ 30 J m−3, the remanence starts
to increase significantly only at about 450 ◦C and wide
domains can be still observed beyond temperatures of 500 ◦C
(Flohrer, Schäfer, Polak and Herzer, 2005). Yet, the temper-
ature dependence of Hc, being mainly determined by the
random anisotropies, remains essentially comparable to that
of a low Ku sample.

Above T am
C the coercivity reaches a maximum with

increasing measuring temperature and, finally, decreases
toward zero together with the remanent magnetization. Inter-
estingly, the latter occurs at a temperature (560 ◦C) below
the Curie temperature (607 ◦C), of the bcc grains. This indi-
cates the transition to superparamagnetic behavior which has
been confirmed by a more detailed analysis of Lachowicz
and Slawska-Waniewska (1994). Hernando and Kulik (1994)
showed that the maximum of Hc shifts toward T am

C , and
that, Hc increases by one order of magnitude as the inter-
granular distance is increased from δ ≈ 1–2 nm to δ ≈ 5 nm.
Simultaneously the onset temperature for superparamagnetic
behavior decreases and approximately coincides with T am

C
for δ ≈ 13 nm.

The whole results for the magnetic behavior above the
Curie point, T am

C , of the amorphous matrix indicate that the
grain coupling is largely, but not completely, interrupted
above T am

C and still persists to higher temperatures. Yet,
the precise coupling mechanism for T > T am

C is still under
discussion. Both exchange penetration through the thin, para-
magnetic intergranular layer (Hernando and Kulik, 1994)
and dipolar interactions (Herzer, 1995) provide reasonable
explanations in order to interpret the experimental findings.
In any case, the strength of the coupling decreases with
increasing temperature due to the simultaneous decrease

of the magnetization in the bcc grains. Consequently, the
soft magnetic properties keep on degrading even above
T am

C until thermal energy dominates and the system gets
superparamagnetic.

The temperature dependence of the magnetic properties
demonstrates that it is important to maintain an efficient
exchange coupling between the grains by appropriate alloy
design such that the Curie temperature of the residual amor-
phous matrix is clearly higher than application temperatures.
Thus, for example, too high additions of Nb (or comparable
elements), although favorable for grain refinement, can be
disadvantageous because they decrease the Curie tempera-
ture of the matrix considerably (Yoshizawa and Yamauchi,
1991a). Similarly, reduced grain coupling due to a low Curie
temperature of the intergranular phase also provides one
of the explanations for the minor soft magnetic properties
in nanocrystalline Fe–Zr–B alloys (cf. Slawska-Waniewska
et al., 1994) or Fe–Hf–C thin films (Hasegawa, Kataoka and
Fujimori, 1992).

Figure 19 finally shows the temperature dependence of the
permeability in comparison with other soft magnetic mate-
rials. In highly permeable crystalline alloys, like permalloy
(80% NiFe), the magnetocrystalline anisotropy constant K1

is adjusted to zero by alloying and annealing which, how-
ever, is effective only for a certain temperature. Thus, the
temperature dependence of K1 yields a pronounced vari-
ation of the soft magnetic properties around the tempera-
ture where K1 is zero (cf. Pfeifer, 1992). In particular, the
drop of permeability toward lower temperatures (because
of K1 > 0) can be a problem for certain applications like,
for example, magnetic cores for ground fault interrupters. In

−40 −20 0 20 40 60 80 100

−15

−10

−5

0

5

10

15

µ
(T

)/
µ

(2
0 

°C
) 

− 
1 

(%
)

Temperature, T (°C)

Permalloy Amorphous
Co68Fe4(MoSiB)28

Nanocrystalline
Fe73.5Cu1Nb3SixB22.5−x

xSi = 13.5

xSi = 15.5

Figure 19. Relative change of the initial permeability normalized
to its room-temperature value versus the typical range of application
temperatures for highly permeable soft magnetic materials. All
examples have been transverse field annealed and reveal an initial
permeability in the range µi ≈ 70 × 103 − 90 × 103.



Soft magnetic materials – nanocrystalline alloys 17

comparison, in nanocrystalline and amorphous materials, the
magnetocrystalline anisotropy is averaged out by exchange
interaction which is effective over a large temperature range.
Accordingly the magnetic properties vary smoothly in both
materials. In amorphous alloys, the behavior is mainly deter-
mined by induced anisotropies whose magnitude decreases
and, thus, the permeability typically increases with increasing
temperature. This mechanism also applies to nanocrystalline
materials but is opposed by the reduction of the intergranular
coupling at higher temperatures. Accordingly, the permeabil-
ity runs through a maximum at an intermediate temperature,
Tmax. The latter depends on the details of the annealing condi-
tions as well as on the alloy composition–though the physical
mechanisms are still under investigation. Depending on Tmax,
the permeability may thus be found to increase, to decrease,
or to be even largely temperature independent over the range
of application temperatures.

4.2 Saturation magnetostriction

Apart from a low or vanishing magnetocrystalline anisotropy,
another basic requirement for excellent soft magnetic prop-
erties is the absence of magnetostriction in order to minimize
magnetoelastic anisotropies

Kσ = − 3
2λsσ (17)

arising from internal or external mechanical stress, σ . For
example, even stress-relieved toroidal wound cores may still
reveal internal stresses of a few MPa. In the amorphous state
the material reveals a high positive saturation magnetostric-
tion of λs ≈ +23 × 10−6, typical for Fe-based amorphous
alloys. The associated magnetoelastic anisotropy of about
Kσ ≈ 50 J m−3, thus, limits the achievable initial permeabil-
ity to typically µi ≈ 104.

It is the actual highlight of nanocrystalline Fe-based alloys
that the phases formed on crystallization can lead to low
or vanishing saturation magnetostriction, λs. Figure 20 sum-
marizes the situation in the Fe–Cu–Nb–Si–B system. The
decrease of λs is ultimately responsible for the simultaneous
increase of the initial permeability upon the formation of the
nanocrystalline state (cf. Figure 5).

While λs is fairly independent of the composition in the
amorphous state (cf. Herzer, 1991), it depends sensitively on
the Si content in the nanocrystalline state, passing through
zero at low and at high Si concentrations around 16 at%.
Still, the maximum permeability is not necessarily found for
the λs ≈ 0 compositions, but for Si contents around 13 at%
(cf. Figure 11) due to the impact of the other anisotropy
contributions.
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Figure 20. The saturation magnetostriction, λs, of Fe–Cu–Nb–
Si–B alloys: (a) Influence of the annealing temperature, Ta and
(b) influence of the Si content in the nanocrystalline state. The
figure includes the data for Fe–Nb–B (solid up triangle) and
Fe–(Cu)–Zr–B alloys (open down triangles) from Suzuki et al.
1991, 1993. (Reprinted from Handbook of Magnetic Materials,
Vol 10, Buschow, K.H.J., Nanocrystalline Soft Magnetic Alloys,
Elsevier Science B.V., pp 415–462, 1997, with permission from
Elsevier.)

The detailed behavior of λs can be understood from the
balance of magnetostriction among the structural phases
present in the nanocrystalline state, that is, (Herzer, 1991)

λs ≈ xcr · λFeSi
s + (1 − xcr) · λam

s (18)

where xcr is the crystalline volume fraction, and λFeSi
s and λam

s
denote the local magnetostriction constants of the α-Fe–Si
grains and the residual amorphous matrix, respectively. The
composition dependence essentially reflects the composi-
tional variation of λs found for polycrystalline α-Fe100−xSix
(cf. Yamamoto, 1980). Thus, near-zero magnetostriction in
nanocrystalline Fe-based alloys requires a large crystalline
volume fraction with negative magnetostriction in order to
compensate the high positive value of the amorphous Fe-
based matrix. This is achieved either by a high Si content
in the bcc grains (λFeSi

s ≈ −6 × 10−6 for α-Fe80Si20), like in
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the Fe–Cu–Nb–Si–B system, or if the grains consist of pure
α-Fe (λFe

s ≈ −4 × 10−6) like in Fe–Zr–B alloys (Suzuki
et al., 1991a,b) or Fe–(Si)–Hf–C thin films (Hasegawa,
Kataoka and Fujimori, 1992). For the low Si-content alloys
it is further important to have a low boron concentration in
order to obtain a large crystalline fraction and to suppress
the formation of boride compounds which yield a positive
contribution to λs (cf. the increase of λs in Figure 20a at ele-
vated annealing temperatures where such boride compounds
are formed).

An important point to stress is that the superposition of
the local magnetostriction constants to zero really results
in stress insensitivity of the magnetic properties like in
amorphous Co(Fe)-based alloys. This is again a consequence
of the smoothing effect of exchange interaction for structural
correlation lengths much smaller than the domain wall width.
Thus, the nanoscale fluctuations in magnetoelastic anisotropy
associated with the locally varying magnetostrictions are
randomly averaged out which results in a single isotropic
magnetostriction coefficient. The situation contrasts with that
for large grained crystalline systems, where an average zero
saturation magnetostriction does not generally imply stress
insensitivity of the hysteresis loop. Thus, the small grain size
is also a decisive factor for the magnetostriction: although it
does not directly influence the value of λs, it opens a new
way in order to achieve isotropically low magnetostriction by
combining the properties of different structural phases with
the help of exchange interaction.

4.3 Annealing-induced anisotropies

So far magnetic anisotropies have been discussed as a rather
disturbative factor for the soft magnetic properties. However,
if properly controlled, they also can be a powerful tool in
order to tailor the shape of the hysteresis loop according to
the demands of various applications. Like, for example, in
amorphous materials, this can be realized in nanocrystalline
materials by either magnetic field annealing or tensile stress
annealing which both yields a uniform uniaxial anisotropy.

4.3.1 Magnetic field–induced anisotropies

Magnetic field annealing induces a uniaxial anisotropy with
an easy axis parallel to the direction of the magnetic field
applied during the heat treatment. The anisotropy formation
is related to directional atomic ordering along the direction
of the local magnetization in order to minimize spin-orbit
coupling energy (cf. Néel, 1954; Fujimori, 1983). Figure 21
shows some typical examples for the hysteresis loops and
the corresponding impedance permeability as obtained after
characteristic heat treatments.
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Figure 21. Quasistatic hysteresis loops and 50 Hz permeability of
nanocrystalline Fe73.5Cu1Nb3Si13.5B9 annealed for 1 h at 540 ◦C
without (R) and with a magnetic field applied parallel (Z) and
transverse (F2; Ku ≈ 20 J m−3, µ ≈ 30 × 103) to the magnetic
path. Sample F1 (Ku ≈ 6 J m−3, µ ≈ 100 × 103) was first crys-
tallized at 540 ◦C and subsequently transverse field annealed at
350 ◦C. (Reprinted from Handbook of Magnetic Materials, Vol 10,
Buschow, K.H.J., Nanocrystalline Soft Magnetic Alloys, Elsevier
Science B.V., pp 415–462, 1997, with permission from Elsevier.)

The flat-shaped loops (F1, F2) are obtained by transverse
field annealing, that is, by inducing a uniaxial anisotropy
perpendicular to the ribbon axis. The magnetization process
is determined by rotation of the magnetization vectors from
the easy direction toward the ribbon axis. This results in
a permeability, µ, practically constant up to ferromagnetic
saturation which by

µ = J 2
s

2µ0Ku
(19)

is directly related to the induced anisotropy energy con-
stant, Ku.

The rectangular loop (Z) results after longitudinal field
annealing. The uniaxial anisotropy is parallel to the ribbon
axis and, thus, the magnetization process is dominated by
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180◦ domain wall displacements. Highest maximum perme-
abilities can be achieved this way. Since the domain wall
energy is proportional to the square root of Ku, low induced
anisotropies in this case facilitate domain refinement which
results in good dynamic properties like reduced anomalous
eddy current losses (cf. Petzold, 2002; Flohrer et al., 2006).

The round loop (R) results after conventional anneal-
ing without magnetic field. The magnetization process is
a mixture of magnetization rotation and domain wall dis-
placements. Characteristic features of the round loop are a
high initial and high maximum permeability. Still, anneal-
ing without magnetic field does not mean that there are
no induced anisotropies. The latter are always induced
along the local direction of the spontaneous magnetization
within a ferromagnetic domain as long as the annealing
temperature is lower than Curie temperature. One should
therefore more precisely speak of magnetization-induced
instead of field-induced anisotropies. A magnetic field dur-
ing annealing just aligns the magnetization which leads to
a uniform anisotropy. Correspondingly, zero field annealing
yields a distribution of uniaxial anisotropies reflecting the
domain structure during the heat treatment. The remanence
to saturation ratio of around 50%, typical for randomly ori-
ented uniaxial anisotropies, indicates that these randomly
induced anisotropies are fluctuating on a scale larger than the
exchange length and, hence, control the soft magnetic prop-
erties at small grain sizes. These induced anisotropy fluctua-
tions can be reduced by rotating field annealing which results
in a significantly reduced coercivity and an enhanced rema-
nence (Ito and Suzuki, 2005). Similarly, the field annealed
samples typically reveal a smaller coercivity than the samples
annealed without field which can be understood from the sim-
pler domain configuration due to the more homogeneously
induced anisotropy. Correspondingly, proper transverse field
annealing allows higher initial permeabilities than obtained
by the conventional heat treatment without a magnetic field.

The almost perfectly rectangular- or flat-shaped hysteresis
loops after field annealing indicate that the field-induced
anisotropy clearly dominates over the residual contributions
from magnetocrystalline and magnetoelastic anisotropies.
Still, the induced anisotropy constant, Ku, can be tailored
small enough in order to achieve highest permeabilities (e.g.,
Ku ≈ 6 J m−3 and µ ≈ 100 000 as for the F1 loop shown
in Figure 21). Figure 22 summarizes the dependence of Ku

on the annealing condition and on the alloy composition
for nanocrystalline Fe–Cu–Nb–Si–B alloys annealed in a
transverse magnetic field.

If the material is nanocrystallized first without applied field
and subsequently field annealed at lower temperatures, the
resulting induced anisotropy depends on the field anneal-
ing temperature, Ta, and the annealing time, ta, but less
sensitively than, for example, in amorphous alloys (cf.

Yoshizawa and Yamauchi, 1990). The dependence of Ku on
the annealing conditions (cf. Figure 22a) allows to tailor hys-
teresis loops with different levels of permeability as exem-
plified by the F1 and F2 loops shown in Figure 21. Linear,
low remanence hysteresis loops with highest permeabilities
up to µ ≈ 200 × 103 (Ku ≈ 3 J m−3) can be achieved in this
manner. Only if the induced anisotropies fall below about
Ku ≈ 2–4 J m−3 the random magnetocrystalline anisotropies
start dominating again which is indicated by nonlinear hys-
teresis loops with high remanence (Herzer, 2005b). In com-
parison, amorphous Co-based alloys still show a low rema-
nence and a linear hysteresis loop for induced anisotropies
of Ku ≈ 0.5 J m−3 and even smaller values because of their
virtually negligible magnetocrystalline anisotropy.

If the field annealing is performed during nanocrystalliza-
tion, the induced anisotropy reaches a maximum value which
is relatively insensitive to the precise annealing conditions
and, thus, corresponds to the equilibrium value characteris-
tic for the alloy composition (Herzer, 1994a). As shown in
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Figure 22(b), the induced anisotropy energy decreases with
increasing metalloid contents and, in particular, with increas-
ing Si/(Si + B) ratio. Accordingly, the lowest anisotropy
energies and, thus, the highest permeabilities are found for
the high Si-content alloys. The effect of the copper and nio-
bium concentration on Ku is only minor as long as both
elements are chosen such that a homogeneous nanocrystalline
structure is formed. However, the influence of niobium or
other refractory elements on Ku can become significant for
alloy compositions with very low silicon and correspond-
ingly high boron contents. Such compositions tend to reveal
traces of boride compounds which may significantly con-
tribute to Ku. The latter is supported by the decrease of
Ku upon reducing the boron content and increasing the Nb
or Zr content which suppresses the formation of such com-
pounds.

The anisotropy induced by a magnetic field applied
during nanocrystallization primarily originates from the bcc
grains (Herzer, 1994a) and can be understood from the
directional ordering of Si-atom pairs (cf. Sixtus, 1970). In
particular, the decrease of Ku with increasing Si content
is related to the simultaneously increasing long-range order
(DO3 superlattice structure) of the bcc grains. Thus, the
necessary degrees of freedom for an induced directional
ordering are reduced as the composition of the grains
approaches completely ordered Fe3Si where the lattice sites
for the Fe and Si atoms are entirely determined by chemical
interactions (cf. Néel, 1954). This mechanism is the key
factor that nanocrystalline Fe–Cu–Nb–Si–B alloys exhibit
lowest induced anisotropies and, hence, highest permeability
despite of their high saturation magnetization.

The mechanisms of anisotropy formation also determine
the thermal aging of the soft magnetic properties. Thus, ther-
mal aging can be basically understood as the formation or
reorientation of induced anisotropies along the local magne-
tization directions at application temperatures. The reduced
degrees of freedom for anisotropy formation due to the super-
lattice structure and the high Curie temperature allow to
stabilize low anisotropies, that is, high permeabilities, at
annealing temperatures much higher than it is possible for
amorphous alloys or permalloys. This essentially reduces the
kinetics for anisotropy changes at application temperatures.
In comparison with amorphous metals, the thermal stabil-
ity is additionally improved by the more stable crystalline
structure. As a consequence, nanocrystalline alloys exhibit
an excellent thermal stability of their soft magnetic proper-
ties surpassing by far that of amorphous alloys and even that
of permalloys (Herzer, 1997). This allows higher continuous
service temperatures up to 150 ◦C.

The tremendous practical impact of field-induced anisotro-
pies is evident. Their understanding is ultimately the key

for the reproducible control of the soft magnetic proper-
ties. By appropriate choice of alloy composition and anneal-
ing conditions, transverse field annealing of nanocrystalline
Fe–Cu–Nb–Si–B alloys, thus, allows to induce anisotropies
in the range of Ku ≈ 3–100 J m−3. This corresponds to ini-
tial permeabilities of about µi ≈ 104 –2 × 105 which per-
fectly covers the need of applications like common mode
chokes or earth leakage circuit breakers (Petzold, 2002). More
recent investigations try to expand the property spectrum
of nanocrystalline alloys toward lower permeabilities in the
order of several hundreds to several thousands as they are
useful, for example, for energy storage chokes or current
transformers. This can be achieved by adding Co and/or Ni,
which like in amorphous metals (cf. Fujimori, 1983), sig-
nificantly enhances the field-induced anisotropy due to pair
ordering of Fe and Co or Ni atoms. Yoshizawa et al. (2003),
for example, showed that the field-induced anisotropy in
nanocrystalline Fe78.8−xCoxCu0.6Nb2.6Si9B9 (x = 0 to 78.8)
is enhanced from ∼100 J m−3 at x = 0 to ∼600 J m−3 at x =
50. Ni has a similar effect on Ku like Co, but the coercivity
increases drastically for Ni concentrations above about 10–15
at%. Yet, with the combined addition of Co and Ni like in
Fe66.8−xCoxNi10Cu0.8Nb2.9Si11.5B8 (Herzer and Otte, 2004),
one can obtain similarly high field–induced anisotropies but
with only about half the amount of Co, that is, at lower raw
material cost. In any case, the drawback of increasing the
field-induced anisotropy either by reduction of the metalloid
contents (cf. Figure 11) or by adding Co and/or Ni is a dis-
advantageous increase of saturation magnetostriction. Müller
et al. (1996), for example, showed that the saturation mag-
netostriction of nanocrystalline Fe73.5−xCoxCu1Nb3Si15.5B7

and Fe86−yCoyZr7B6Cu1 alloys increases from near zero to
maximum values of about λs ≈ 20 ppm (for x = 30 at%) and
λs ≈ 40 ppm (for y = 60 at%), respectively, when substantial
amounts of Co are added.

4.3.2 Creep-induced anisotropies

Annealing under tensile stress causes an anelastic or plastic
deformation of the material and, as a consequence, an
easy or hard magnetic axis along the stress axis. The
basic characteristics of this creep-induced anisotropy in
Fe–Cu–Nb–Si–B alloys (Kraus et al., 1992; Herzer, 1994b;
Hofmann and Kronmüller, 1996) are essentially the same as
they are well known from amorphous alloys.

Figure 23 shows some typical hysteresis loops after crys-
tallization under tensile stress. The creep-induced anisotropy
constant is proportional to the tensile stress σ a applied during
annealing, that is,

Ku = − 3
2kσ a (20)
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The anisotropy parameter k is a dimensionless proportion-
ality constant being introduced in formal analogy to the mag-
netostriction constant in equation (17). By definition k > 0
denotes a magnetic easy axis parallel to the stress axis while
k < 0 denotes a magnetic hard axis, that is, an easy plane
perpendicular to the stress axis.

Figure 24 depicts the variation of the creep-induced
anisotropy with the annealing temperature, Ta and the com-
position (Herzer, 1994b). The decrease of k for Ta ≥ 480 ◦C
coincides with the transformation from the amorphous to the
nanocrystalline state which is completed for Ta ≥ 500 ◦C.
The creep-induced anisotropy in the amorphous state is com-
parable to that typically observed in other amorphous alloy
systems. However, upon devitrification, its absolute value
significantly increases. Within the range where the nanocrys-
talline state is formed, the anisotropy induced during crys-
tallization is fairly insensitive to the annealing time and
temperature and, thus, corresponds to an equilibrium value
mainly determined by the Si concentration. In particular, the
magnetic hard ribbon axis (k < 0) observed for high Si con-
tents turns over to an easy ribbon axis (k > 0) for alloys
with Si concentrations below about 10 at%. An anisotropy
of similar order of magnitude can also be induced in sam-
ples previously crystallized without stress. However, in this
case the induced anisotropy is more sensitive to the anneal-
ing temperature since the kinetics of anisotropy formation is
considerably slower (cf. Hofmann and Kronmüller, 1996).

The comparison of Figures 20 and 24 reveals that the
variation with annealing temperature or alloy composition,
in a way, is similar for both the creep-induced anisotropy
parameter, k, and the saturation magnetostriction, λs, respec-
tively. However, there are also significant differences. In
particular, both quantities pass through zero at different Si
concentrations. As a consequence, a strong creep-induced
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state. (Reprinted from Handbook of Magnetic Materials, Vol 10,
Buschow, K.H.J., Nanocrystalline Soft Magnetic Alloys, Elsevier
Science B.V., pp 415–462, 1997, with permission from Elsevier.)

anisotropy is found for the near-zero magnetostrictive com-
positions. It appears that the equilibrium value of the
anisotropy parameter k differs from the saturation magne-
tostriction λs only by the lack of the positive contribution
from the amorphous matrix. A closer analysis of the exper-
imental data indeed confirms that the normalized anisotropy
parameter k/xcr (xcr is the crystalline volume) approximately
equals to the local saturation magnetostriction constant, λFeSi

s ,
of the bcc-FeSi grains (Herzer, 1994b). This suggests that the
creep-induced anisotropy in the nanocrystalline state mainly
originates from the local magnetoelastic anisotropy of the bcc
grains due to an elongation induced by the stress annealing.
The mechanism was confirmed by Ohnuma et al. (2003a,b)
who directly showed by means of transmission X-ray diffrac-
tometry that the lattice spacing of the Fe(Si) nanocrystallites
is elongated along the stress direction after the stress anneal-
ing. The amorphous matrix itself gives only a minor con-
tribution to the anisotropy energy. This can be understood
from (i) the comparably low magnitude of the creep-induced
magnetic anisotropy generally observed in amorphous alloys
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which (ii) in the nanocrystalline state is still weighted by the
relatively small volume fraction of the amorphous matrix.

Creep-induced anisotropies, in principal, allow to tai-
lor linear hysteresis loops by annealing under controlled
tensile stress. The advantage over field annealed Co-
doped alloys is that one can combine low magnetostric-
tion and high anisotropies. Alves et al. (2002, 2005), for
example, have prepared toroidally wound cores of near-
zero magnetostrictive nanocrystalline Fe74.5Cu1Nb3Si15.5B6

with induced anisotropies up to about Ku ≈ 2000 J m−3 (i.e.,
µ ≈ 300) by (i) continuously annealing the material for a
short time (10–60 s) at elevated temperatures around 650 ◦C
under a tensile stress of 270 MPa and (ii) subsequently wind-
ing toroidal cores. However, the practical application of this
technique is most challenging due to the severe embrittlement
after nanocrystallization.

Yet, the practical impact of creep-induced anisotropy in
nanocrystalline materials often is of more disturbative nature.
For example, thin SiO2 layers give rise to small tensile
stresses during the anneal treatment which yield an unwanted
creep-induced anisotropy perpendicular to the ribbon plane
and, thus, a degradation of the soft magnetic properties even
for zero-magnetostrictive compositions (cf. del Real, Prados,
Conde and Hernando, 1994). This is a particular problem
for the nanocrystalline material, since its creep-induced
anisotropy is more than one order of magnitude larger than,
for example, in near-zero magnetostrictive, amorphous Co-
based alloys. The uncontrolled formation of such oxide
layers contributes to the decrease of permeability toward
high Si contents (cf. Figure 11) where both the creep-induced
anisotropy and the driving force for the formation of a SiO2

layer are particularly large.

5 CONCLUSIONS

The key to the soft magnetic properties of nanocrystalline
alloys is that their structural correlation length is much
smaller than the ferromagnetic exchange length. Thus, simi-
lar to the case of amorphous metals, the local magnetocrys-
talline anisotropies are randomly averaged out owing to the
smoothing effect of exchange interaction. This averaging
mechanism also applies to the fluctuations of magnetoelastic
anisotropy associated with the local magnetostriction coef-
ficients of the individual structural phases. The result is an
isotropic magnetostrictive behavior characterized by a single
magnetostriction coefficient λs which vanishes for particu-
lar compositions like nanocrystalline Fe73.5Cu1Nb3Si15.5B7.
For such optimized compositions, the contribution of mag-
netocrystalline and magnetoelastic anisotropies is ultimately
negligible and the soft magnetic properties are largely
determined by field-induced anisotropies which play a

tremendously important role in tailoring the hysteresis loop
according to the requirements of the application.

Lowest coercivities (Hc ≈ 0.5–1 A m−1) and highest
permeabilities (µ ≈ 105) are found around the originally
proposed compositions, that is, Fe∼74Cu1Nb3Si13−16B6−9

which are commercially available under the trade
names FINEMET (cf. Hitachi Metals Ltd, 1993) and
VITROPERM (cf. Vacuumschmelze GmbH, 1993). The
soft magnetic properties are comparable with the excellent
properties possessed by established materials such as
permalloys or Co-based amorphous alloys. The advan-
tages, however, are a higher saturation induction of about
1.2–1.3 T and a significantly better thermal stability of the
soft magnetic properties allowing higher continuous service
temperatures up to 150 ◦C. Similar to amorphous metals,
the production inherent low thickness around 20 µm and a
high electrical resistivity around 115 µ�cm minimize eddy
current losses in nanocrystalline ribbons. Accordingly, the
frequency dependence of permeability and the core losses of
nanocrystalline Fe–Cu–Nb–Si–B alloys are comparable to
those of amorphous Co-based alloys and surpass by far the
properties of conventional materials, even that of ferrites,
over the whole frequency range up to several 100 kHz. A
corresponding comparison is given in Figure 25. The combi-
nation of high saturation magnetization and high permeability
together with good high-frequency behavior, low losses,
and the good thermal stability allows reductions in the size
and weight of magnetic components used in, for example,
switched mode power supplies or telecommunications.

Apart from its technical performance the material is based
on the inexpensive raw materials iron and silicon. The
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Figure 26. Toroidal wound cores and components of VITRO-
PERM 800F (Fe73.5Cu1Nb3Si15.5B7).

amorphous precursor material for the Fe–Cu–Nb–Si–B
alloys, is furthermore easily accessible by rapid solidification
from the melt – a well-established technique for large-scale
production of amorphous metals.

The combination of the above factors has rendered the
nanocrystalline solution competitive, not only with amor-
phous Co-based alloys but also with classical crystalline
alloys and ferrites. The consequence is a steadily increas-
ing level of applications in magnetic cores for ground fault
interrupters, common mode chokes and high-frequency trans-
formers. Figure 26 shows some typical examples. The world-
wide production rate meanwhile approaches an estimated
1000 tons/year and with increasing trend. The only drawback
of the nanocrystalline materials appears to be the embrittle-
ment that occurs upon crystallization, which requires final
shape annealing and, thus, restricts application mainly to
toroidally wound cores.

The second family of near-zero magnetostrictive, nano-
crystalline alloys based on Fe∼84−91(Cu1)–(Zr,Nb)∼7B2−9

appears even more interesting due to their still higher satura-
tion magnetization up to 1.7 T. However, their application so
far is limited to smaller quantities. One of the major reasons
is that they require a much more sophisticated production
technology due to their limited glass-forming ability and or
the oxygen reactivity of the Zr addition.
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APPENDIX

The objective of this appendix is to illustrate in some more
detail how random anisotropies are averaged out. We start
with a simple analytical model calculation and subsequently
generalize the results to uniaxial and cubic anisotropies
oriented randomly over all spherical angles.

The way how anisotropies are averaged can be illustrated
by a simplified planar model where we assume that the
magnetization vector and the anisotropy axes are lying in
a plane. In order to keep the model three dimensional, we
still allow the in-plane anisotropy axes to fluctuate along the
coordinate perpendicular to the plane. This simple approach
may be physically justified for a typical ribbon shaped sample
where the large out-of-plane demagnetizing factor forces the
magnetization mainly into the ribbon plane. Accordingly,
the local anisotropy energy density of an individual grain
is assumed to be

φ
(i)
K (θ) = K1 sin2(θ − ψi) (A1)

The angle ψi denotes the orientation of the local easy
axis and is randomly fluctuating from grain to grain. The
angle θ describes the orientation of the magnetization which
is assumed to be constant on a scale Lex > D. Further
model assumptions are that each grain has the same size
D and the same local anisotropy constant K1. The average
anisotropy energy density over the volume Vex = L3

ex can
then be evaluated as

φK(θ) = 1

Vex

∫
Vex

K1 sin2(θ − ψ(x)) d3x

= K1
1

N

N∑
i=1

sin2(θ − ψi)

= kN sin2(θ − �N)

+K1 − kN

2
(A2)
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with

kN = K1 ·
√√√√ 1

N
+ 1

N2

∑
i

∑
j ( �=i)

cos
(
2(ψi − ψj)

)
(A3)

In the last step of equation (A2), the sum over the N =
(Lex/D)3 coupled grains has hereby been rewritten as one
anisotropy expression with magnitude kN and orientation �N

using trigonometric relations. The calculation is illustrated in
Figure A1.

If we look at a statistical ensemble with independent sets
of each N coupled grains, both �N and kN are still random
numbers. In a more physical picture this means that the
easiest orientation �N of N coupled grains is randomly
fluctuating on the scale of Lex from one exchange-coupled
region to the neighboring one. Similarly the anisotropy
constants kN are fluctuating around an average value

〈kN 〉 = βK1√
N

(A4)

with a standard deviation

σK :=
√〈

k2
N

〉 − 〈kN 〉2 = η · 〈kN 〉 (A5)

The fluctuations arise from the second expression under
the square root in equation (A3), that is, from the sum
over all anisotropy cross terms between grains at differ-
ent sites. Their relative orientation (ψi –ψj ) is a random
phase and the individual anisotropy cross terms therefore
largely cancel. The parameters β and η involve higher
order angular moments like 〈cos2n(ψi –ψj)〉 originating from
the anisotropy fluctuations within the ensemble. Numeri-
cal simulations yield β ≈ 0.90±0.04 and η ≈ 0.50±0.05 for
an ensemble with 2000 statistical independent sets of each
N(= 2 − 219) grains. The simulations show that the results
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Figure A1. Local and randomly averaged anisotropy density φK as
a function of the magnetization direction θ .

apply already for an ensemble with statistically independent
sets of only two coupled grains.

While the angular dependence of the anisotropy expres-
sions given in equations (A1–A3) is specific to the above
model, numerical simulations show that the relations for
the ensemble averages, that is, equations (A4) and (A5),
also apply very well for uniaxial or cubic anisotropies ori-
ented randomly over all spherical angles. If the average
anisotropy constant 〈kN 〉 in equation (A4) is understood
as the difference between the maximum and minimum
of the average anisotropy energy density, we accordingly
find β ≈ 1.06±0.03(η ≈ 0.31±0.05) for uniaxial and β ≈
0.393±0.003(η ≈ 0.22±0.03) for cubic anisotropies, respec-
tively. The indicated errors arise from the finite ensemble
size which was about 4000 statistical independent sets of
N coupled grains. The rather distinct value of β for the
cubic case is largely a consequence of common conven-
tions for the anisotropy energy. The latter result in 	φK =
|K1|/3 for cubic and 	φK = |K1| for uniaxial anisotropies
where 	φK = φmax

K − φmin
K is the difference of the anisotropy

energy density between the hardest and easiest axis.
Figure A2 demonstrates that in the general case the energy

surface of randomly oriented coupled grains no longer has
the high symmetry exhibited by a pure uniaxial or cubic
anisotropy. This is unlike our simplified model calculation,
where the angular dependence is the same for the local and
averaged anisotropy.

Random uniaxial anisotropies can be largely characterized
analytically. The anisotropy energy density can be written
as φK = m · K

1
· m, where K

1
is a symmetric second rank

tensor with zero trace and m = M/Ms is the normalized
magnetization vector. The average over the N coupled
grains assumes the magnetization m to be constant and,
hence, simply results in 〈φK〉N = m · K

N
· m with K

N
being still a symmetric second rank tensor with zero trace.
The eigenvectors of the anisotropy tensors K define the
anisotropy axis and the eigenvalues the anisotropy constants.
In a coordinate system defined by its eigenvectors, K

N
can

always be represented as

K
N

= kN ·

 u 0 0

0 1 − 2u 0
0 0 u − 1


 (A6)

The coordinates have been hereby chosen such that the x

axis is defined by the magnetic hardest and the z axis by the
easiest axis. The anisotropy constant kN denotes the energy
difference between the hardest and easiest direction and,
hence, is positive by definition. For a single grain we would
simply have k1 = |K1|, while for N grains the ensemble
average is given by 〈kN 〉 = β|K1|/N1/2 with β ≈ 1.06 as
just discussed. The parameter u describes the symmetry and,
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N = 1 N = 1 Mio
(random average)

x

z

(a)

(b)

y

fK − fK
min

Figure A2. Energy surfaces for (a) uniaxial and (b) cubic
anisotropies. The distance from the origin corresponds to the
anisotropy energy difference φK − φmin

K for a certain orientation
of the magnetization vector. The scale of each plot is different and
adopted to the maximum energy difference. The thin black lines
indicate the easiest magnetic axes.

with the above choice of the coordinate axis, is restricted
to the range 1/3 ≤ u ≤ 2/3. The boundaries u = 1/3 and
u = 2/3 correspond to a magnetic easy axis with a hard plane
and a magnetic hard axis with an easy plane, respectively.

In the more traditional notation, this distinction is made
by the sign of K1, where K1 > 0 corresponds to u = 1/3.
However for N coupled grains, we find from our numerical
simulations that u is distributed around an average value
given by 〈u〉 ≈ 0.50 with a standard deviation of σ u ≈
0.07, no matter if we start from an easy (u = 1/3) or a
hard axis (u = 2/3). As illustrated in Figure A2 we thus
deal with three preferred axes, perpendicular to each other,
corresponding to a minimum, a saddle point and a maximum
of the anisotropy energy.

For cubic anisotropies the corresponding arguments would
involve the more complicated analysis of a fourth rank
tensor which still has to be done. We can therefore only
discuss the still somewhat preliminary numerical results.
For one single cubic grain we have three easy axes along
the 〈100〉 directions and four hard axes along the 〈111〉
directions for K1 > 0 and vice versa for K1 < 0. However,
this distinction gets lost for randomly oriented grains. A
random energy surface produced by a set of N grains with
K1 > 0 can always be reproduced by another set of N grains
with K1 < 0. The random average, thus, again breaks the
high original symmetry and ultimately results in only one
easiest axis and one hardest axis forming an average angle
of about 50◦ with each other. Yet, there are a number of
intermediate easy and hard directions which still remind one
of the original cubic symmetry. These various easy axes
typically form an angle of about 80–90◦ with each other and
their energies are relatively close together, differing only by
about 10–20%.
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1 INTRODUCTION

Since the first synthesis of a ferromagnetic amorphous
alloy was achieved in a vacuum deposited Co–Au sys-
tem in 1965 (Mader and Nowick, 1965), a large num-
ber of Fe- and Co-based ferromagnetic amorphous alloys
have been developed in the order of Fe–P–C (Duwez and
Lin, 1967), Fe–P–B (Yamauchi and Nakagawa, 1971), (Fe,
Co, Ni)–P–B (Hasegawa, 1972), (Fe, Co)–P–B–Al (Sher-
wood et al., 1975), (Fe, Co, Ni)–B–Si (Masumoto, Kimura,
Inoue and Waseda, 1976), (Fe, Co, Ni)–B (O’Handley,
Hasegawa, Ray and Chou, 1976), (Fe, Co, Ni)–(Cr, Mo,
W)–C (Inoue, Masumoto, Arakawa and Iwadachi, 1978),
(Fe, Co, Ni)–Zr (Nose and Masumoto, 1980), (Fe, Co,
Ni)–Hf (Inoue, Kobayashi and Masumoto, 1980a), and (Fe,

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Co, Ni)–(Zr, Hf, Nb)–B (Inoue, Kobayashi, Nose and
Masumoto, 1980b) systems. Furthermore, good soft mag-
netic properties have been reported simultaneously by three
different research groups for Fe–P–C (Chen, 1974; Fuji-
mori, Masumoto, Obi and Kikuchi, 1974), Fe–P–B (Egami,
Flanders and Graham, 1975), and (Co, Fe)–B–Si (Kikuchi,
Fujimori, Obi and Masumoto, 1975) systems between 1974
and 1975. The (Fe, Co)–P–B and (Fe, Co)–B–Si amorphous
alloys have been used as soft magnetic materials named
METGLAS. Subsequently, there had been no data on the
synthesis of new soft magnetic amorphous alloys for almost
15 years between 1981 and 1995, though Fe–B–Si–Nb–Cu
(FINEMET) (Yoshizawa, Oguma and Yamauchi, 1988),
Fe–Zr–B (Suzuki et al., 1990), and Fe–M–B (M = Zr, Hf,
Nb) (NANOPERM) (Makino, Inoue and Masumoto, 1995)
nanocrystalline alloys were developed as a new type of soft
magnetic material. It is well known that the Fe- and Co-based
amorphous alloys described previously required a high cool-
ing rate above 105 K s−1 and the resultant melt-spun alloys
have been limited to a small thickness range less than about
50 µm (Chen, 1980; Masumoto, 1982; Liebermann, 1993).
If we can find a new Fe- or Co-based soft magnetic alloy
with much higher glass-forming ability (GFA), the resultant
bulk amorphous alloys are expected to extend their field of
application as soft magnetic materials. Since 1995, a new
class of Fe- and Co-based glassy alloys with a supercooled
liquid region beyond 50 K before crystallization and a high
GFA have been found, and bulk glassy alloys (BGAs) have
been synthesized in a thickness range of up to 6 mm by
the copper mold casting method (Inoue, Zhang, Itoi and
Takeuchi, 1997a; Inoue, Zhang and Takeuchi, 1998c; Inoue,
2000).
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Figure 1. Relationship between critical cooling rate (Rc) for glass formation, maximum sample thickness (tmax) for glass formation, and
reduced glass transition temperature (TgT

−1
m ; Tg and Tm are glass transition and melting temperatures, respectively) for bulk glassy alloys.

The data for ordinary amorphous alloys, which require high cooling rate for glass formation, are also shown for comparison. Ln: lanthanide
metal; TM: VI–VIII group transition metal.

Figure 1 shows the relationship between the critical cool-
ing rate (Rc), the maximum sample thickness (tmax) for
glass formation, and the reduced glass transition tempera-
ture (TgT

−1
m ; here, Tg and Tm are the glass transition and

the melting temperatures, respectively) for amorphous and
glassy alloys reported to date (Inoue, 1995, 1997, 1998;
Inoue, Takeuchi and Zhang, 1998b,c). The lowest Rc is
as low as 0.10 K s−1 (Inoue and Nishiyama, 1997) for the
Pd40Cu30Ni10P20 alloy and tmax reaches a value as large
as approximately 100 mm. It is also noticed that the recent
improvement of GFA reaches 6–7 orders for Rc and 3–4
orders for tmax. There is a clear tendency for GFA to
increase with increasing TgT

−1
m . Figure 2 shows the rela-

tionship between Rc, tmax, and the temperature interval of a
supercooled liquid (�Tx) defined by the difference between
Tg and the crystallization temperature (Tx) (Inoue, 1995,
1997, 1998; Inoue, Takeuchi and Zhang, 1998b,c). One can
see a clear tendency for GFA to increase with increasing �Tx.
The value of �Tx exceeds 100 K for several glassy alloys in
Zr–Al–Ni–Cu(–Pd) and Pd–Cu–Ni–P systems.

It is generally known that a variety of BGAs have
been synthesized using various solidification methods such
as water quenching, copper mold casting, high-pressure
die casting, and so on, for the past 17 years since 1988.
Table 1 summarizes typical BGA systems and the calendar

years when their alloy systems were reported. The alloy
components can be classified into nonferrous and ferrous
alloy systems. When we look at the features of the alloy
components in more detail, they can be classified into
five groups as summarized in Figure 3. The first group
consists of early transition metals (ETMs: IV–VI group
transition metals in the periodic table) or lanthanide metals
(Ln), Al, and late transition metals (LTMs: VIII group
transition metals) as exemplified by Zr–Al–(Ni, Cu) (Inoue,
Zhang and Masumoto, 1990) and Ln–Al–(Ni, Cu) (Inoue,
Zhang and Masumoto, 1989) systems. The second group
is composed of LTMs, ETMs, and metalloids that are
typical for Fe–(Zr, Hf, Nb)–B (Inoue, Koshiba, Zhang and
Makino,1998a) and Co–(Zr, Hf, Nb, Ta)–B (Itoi and Inoue,
1998) systems. The third group is exemplified by the Fe–(Al,
Ga)–metalloid system (Inoue and Gook, 1995) and the
fourth group is expressed by Mg–Ln–LTM (Inoue, Ohtera,
Kita and Masumoto, 1988) and ETM–Be–LTM (Peker and
Johnson, 1993) systems. However, the Pd–Cu–Ni–P (Inoue,
Nishiyama and Matsuda, 1996a) and Pd–Ni–P (Drehman
and Greer, 1984) systems (group V) are composed of only
two kinds of group elements (LTMs and metalloids), and
hence are different from the alloys belonging to the four
previous groups, which are made up of a combination of three
types of group elements. All the alloys belonging to groups



Soft magnetic bulk glassy and bulk nanocrystalline alloys 3

C
rit

ic
al

 c
oo

lin
g 

ra
te

, R
c 

(K
 s

–1
)

Supercooled liquid region, ∆Tx (=Tx – Tg) (K)

10–2

10–1

100

101

102

103

104

105

0 20 40 60 80 100

100

10

1

120

M
ax

im
um

 th
ic

kn
es

s 
fo

r 
gl

as
s 

fo
rm

at
io

n,
 t m

ax
 (

m
m

)

Pd–Cu–Ni–P
(Fluxed)

Pd–Cu–Ni–P
(Nonfluxed)

Zr–Al–Cu–Pd

Fe–Co–Zr–Nb–B

Zr–Al–Ni–Cu–Pd

Fe–Al–Ga–P–C–B

Zr60Al15Ni25

Pd40Cu40P20

Fe80P13C7

Pd82Si18

Pd77Cu6Si17

Pt40Ni40P20

La55Al25Ni20
Mg–Cu–Y

Figure 2. Relationship between critical cooling rate (Rc) for glass formation, maximum sample thickness (tmax) for glass formation,
and temperature interval of supercooled liquid region (�Tx = Tx − Tg; Tx and Tg are crystallization and glass transition temperatures,
respectively) for bulk glassy and ordinary amorphous alloys.

Table 1. Bulk glassy alloy systems and calendar years when details about each alloy system were first
published.

Nonferrous alloy systems Years Ferrous alloy systems Years

Mg–Ln–M 1988 Fe–(Al, Ga)–(P, C, B, Si, Ge) 1995
(Ln = lanthanide metal, M = Ni, Cu, Zn) Fe–(Nb, Mo)–(Al, Ga)–(P, B, Si) 1995
Ln–Al–TM 1989 Co–(Al, Ga)–(P, B, Si) 1996
(TM = VI–VIII group transition metal) Fe–(Zr, Hf, Nb)–B 1996
Ln–Ga–TM 1989 Co–(Zr, Hf, Nb)–B 1996
Zr–Al–TM 1990 Ni–(Zr, Hf, Nb)–B 1996
Ti–Zr–TM 1993 Fe–Co–Ln–B 1998
Zr–Ti–TM–Be 1993 Fe–(Nb, Cr, Mo)–(C, B) 1999
Zr–(Ti, Nb, Pd)–Al–TM 1995 Ni–(Nb, Cr, Mo)–(P, B) 1999
Pd–Cu–Ni–P 1996 Co–Ta–B 1999
Pd–Ni–Fe–P 1996 Fe–Ga–(P, B) 2000
Pd–Cu–B–Si 1997 Ni–Zr–Ti–Sn–Si 2001
Ti–Ni–Cu–Sn 1998 (Fe, Co)–B–Si–(Nb, Zr) 2002
Cu–(Zr, Hf)–Ti 2001
Cu–(Zr, Hf)–Ti–(Y, Be) 2001

I–IV have three simple rules of alloy formation which can
be stated as (i) multicomponent – consisting of three or more
elements, (ii) significant atomic size mismatch of 12% or
more, and (iii) negative heats of mixing (Inoue, 1995, 2000;
Inoue, Zhang and Takeuchi, 1997b). It has subsequently been
reported that the alloys with the three empirical rules can
have a new structure that has the following features: a higher
degree of dense random packed atomic configurations, new

local atomic configurations, and long-range homogeneity
with attractive interactions as summarized in Figure 4 (Inoue,
1995, 2000; Inoue, Zhang and Takeuchi, 1997b). It is also
summarized that the multicomponent alloys with such a new
structure can suppress the nucleation reaction of a crystalline
phase and have difficulty of atomic rearrangements leading to
the suppression of the growth reaction of a crystalline phase,
as shown in Table 2.
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ETM: early transition metal
LTM: late transition metal
Ln: lanthanide metal
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Figure 3. Features of alloy components for bulk glassy alloys reported to date. The alloy components can be divided into five groups.

Table 2. Mechanism for reduced instability of metallic supercooled
liquid and formation of bulk glassy alloys.

Constitute three or more kinds of elements with large atomic
size ratio ≥12% and negative heats of mixing

Increase in degree of dense random packed structure
(topological and chemical points of view)

Formation of liquid with new atomic configurations
and multicomponent interactions on a short-range scale

Decrease of melting temperature (Tm),
increase of reduced glass-transition temperature (TgTm

−1)

Difficulty of
atomic rearrangement
(decrease of atomic

diffusivity,
increase of viscosity)

Increase of
solid/liquid

interfacial energy

Necessity of atomic
rearrangement

on a long-range scale
for crystallization

Increase of
glass-transition

temperature (Tg)

Suppression of
a crystalline-phase

nucleation

Suppression of
a crystalline-phase

growth

Multicomponent
consisting of
three or more

elements

Significant
atomic size
mismatch

≥12%

Negative
heats of
mixing

New
structure

High degree of dense packed atomic
configurations
New local atomic configurations
Long-range homogeneity with attractive
interaction

(1)

(2)
(3)

Figure 4. Features of alloy components for reduced instability of
supercooled liquid and high glass-forming ability.
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2 ALLOY SYSTEMS AND STRUCTURE

Table 3 shows examples of the soft magnetic BGAs and their
properties. The soft magnetic BGA systems are also classified
into five groups as exemplified by (i) Fe–(Al, Ga)–metalloid
(Inoue and Gook, 1995), Fe–(Cr, Mo)–Ga–metalloid (Shen
and Schwarz, 1999), and Fe–Ga–metalloid (Shen, Koshiba,
Mizushima and Inoue, 2000b); (ii) (Fe, Co)–(Zr, Hf, Nb,
Ta)–B (Inoue, Koshiba, Zhang and Makino, 1998a; Itoi and
Inoue, 2000); (iii) (Fe, Co)–Ln–B (Inoue and Zhang, 1999);

Table 4. Atomic distances (r) and coordination numbers (N) of
glassy Fe70M10B20 (M = Zr or Nb) and amorphous Fe70Cr10B20

alloys. The subscripts of 1 and 2 for the pairs indicate the first
and second neighboring Fe–Fe and Fe–M pairs. The structural
parameters calculated from the crystalline Fe3B structure are also
tabulated for comparison.

Pairs M = Zr M = Nb

ra (nm) Nb ra (nm) Nb

Fe–B 0.212 1.4 0.214 1.4
B–Fe 0.212 4.9 0.214 4.9
M–B 0.244 1.3 0.240 1.6
B–M 0.244 0.65 0.240 0.80
Fe–Fe1 0.254 8.1 0.253 8.0
Fe–Fe2 0.285 2.6 0.283 2.7
Fe–M1 0.290 1.0 0.281 1.1
M–Fe1 0.290 7.0 0.281 8.0
Fe–M2 0.336 0.50 0.335 0.44
M–Fe2 0.336 3.5 0.335 3.1

Pairs M = Cr Fe3B crystal (calculated)

ra (nm) Nb ra (nm) Nb

(Fe, Cr)–B 0.212 1.6 0.207 2.0
B–(Fe, Cr) 0.212 6.3 0.207 6.0
(Fe, Cr)–(Fe, Cr)1 0.251 8.8 0.258 8.7
(Fe, Cr)–(Fe, Cr)2 0.283 3.0 0.281 2.7

aError = ±0.002 nm.
bError = ±0.2.

Table 5. Atomic distances (r) and coordination numbers (N) of amorphous Fe70Co10B20 and glassy Fe67Co10Ln3B20 (Ln = Sm, Tb, or
Dy) alloys.

Fe–B Fe–Fe Fe–Co Fe–Ln

r (nm) N r (nm) N r (nm) N r (nm) N

Fe70Co10B20 0.205 ± 0.005 2.0 ± 0.4 0.255 ± 0.001 7.8 ± 0.2 0.281 ± 0.001 1.8 ± 0.1 – –
Fe67Co10Sm3B20 0.205 ± 0.004 2.2 ± 0.5 0.248 ± 0.000 6.4 ± 0.2 0.266 ± 0.001 2.6 ± 0.1 0.296 ± 0.001 0.6 ± 0.0
Fe67Co10Tb3B20 0.197 ± 0.004 1.6 ± 0.4 0.246 ± 0.001 6.5 ± 0.3 0.272 ± 0.001 2.7 ± 0.1 0.305 ± 0.001 0.7 ± 0.0
Fe67Co10Dy3B20 0.198 ± 0.003 2.7 ± 0.4 0.243 ± 0.001 5.4 ± 0.4 0.268 ± 0.001 3.0 ± 0.1 0.303 ± 0.001 0.7 ± 0.0

Fe Fe
LnM

B B

Fe–M–B system
(M = Zr, Nb, etc.)

Fe–Ln–B system
(Ln = Sm, Tb, Dy, etc.)

Figure 5. Local atomic structure models for Fe-based glassy alloys.

(iv) Fe–(Cr, Mo, W)–C–B (Pang, Zhang, Asami and Inoue,
2001); and (v) (Fe, Co)–B–Si–(Zr, Nb) (Inoue and Shen,
2002; Inoue, Shen and Chang, 2004) systems.

As the most important alloy systems in which Fe-based
BGAs are obtained, one can list the Fe–M–B (M = Zr, Hf,
Nb, Ta) and Fe–Co–Ln–B systems. Atomic configurations
in these alloy systems were examined using anomalous and
ordinary X-ray scattering techniques (Imafuku et al., 1999,
2000; Matsubara et al., 2000), in comparison with ordinary
Fe–Cr–B and Fe–Co–B amorphous alloys, which require
a high cooling rate above 105 K s−1 for glass formation.
On the basis of the radial distribution function data, the
atomic distance and coordination numbers of each constituent
atomic pair are summarized for Fe–(Zr or Nb)–B and
Fe–Co–Ln–B glassy alloys in Tables 4 and 5, respectively.
On the basis of the data generated by the structural analysis,
local atomic configuration models of the Fe-based glassy
alloys are shown in Figure 5. The construction of a network
of atomic configurations consisting of triangle prisms, which
are connected with each other through glue atoms comprising
Zr, Nb, or a lanthanide metal, is a feature of this type
of glassy alloys. Such a linkage structure is an important
factor for stabilization of the supercooled liquid in the
Fe–M–B type glassy alloys. The crystallization behavior
of the Fe–Nb–B (Imafuku et al., 1999) and Fe–Co–Ln–B



Soft magnetic bulk glassy and bulk nanocrystalline alloys 7

(Inoue and Zhang, 1999) glassy alloys was also examined.
It has been recognized that the primary crystalline phase is
a metastable complex fcc (Fe, Nb)23B6 phase with a large
lattice parameter of 1.1 nm and a unit volume consisting of
96 atoms and including icosahedral clusters. As is evident
from the distinct difference in the atomic configurations
between the glassy phase and the primary crystalline phase,
the necessity of long-range atomic configurations to construct
the primary crystalline phase with a large unit volume from
the glassy phase causes retardation of the crystallization
reaction. This mechanism is concluded to be one of the
reasons for the stability of the supercooled liquid and the
formation of BGAs.

3 THERMAL STABILITY AND SOFT
MAGNETIC PROPERTIES

When the ferrous alloys summarized in Table 1 are chosen,
one can detect a large supercooled liquid region beyond 50 K
before crystallization on the differential scanning calorimetry
(DSC) curve. In the case of Fe–Al–Ga–P–C–B system,
BGAs in a cylindrical rod form are produced in the diameter
range of up to 2.5 mm by the copper mold casting method
(Inoue, 1997). It has also been confirmed that there is no
distinct difference in Tg, �Tx, and crystallization behavior
among the BGA cylinders with different diameters ranging
from 0.5 to 2.5 mm. Figure 6 shows the outer morphology
and the surface appearance of the cast Fe–Al–Ga–P–C–B
bulk glassy cylinders (Inoue, Shinohara and Gook, 1995).
The BGAs possess good soft magnetic properties combined
with a rather large saturation magnetization (Is) of 1.23 T.
It has been confirmed that the coercivity (Hc) is less than
5 A m−1 in an optimum annealed state. The use of the
Fe70Al5Ga2P9.65C5.75B4.6Si3 alloy enables us to produce a

Figure 6. Outer morphology and surface appearance of a cast
Fe73Al5Ga2P11C5B4 glassy alloy cylinder with a diameter of 1 mm.

Figure 7. Outer morphology and surface appearance of a cast
Fe70Al5Ga2P9.65C5.75B4.6Si3 glassy alloy ring with a thickness of
1 mm, an outer diameter of 10 mm, and an inner diameter of 6 mm.

ring-shaped glassy alloy with a thickness of 1 mm, an outer
diameter of 10 mm, and an inner diameter of 6 mm, as shown
in Figure 7 (Mizushima, Ikarashi, Makino and Inoue, 1999a).
The ring-shaped alloy shows the same DSC curve as that
for the melt-spun glassy sheet with a thickness of 20 µm.
The magnetization curves also show that the ring-shaped
alloy has an Is of 1.2 T, which is the same as that for
the melt-spun sheet. Very interestingly, Hc and maximum
permeability (µm) of the ring-shaped alloy are 2.2 A m−1

and 110 × 103, respectively, which are far superior to those
for the same ring-shaped sample (3.7 A m−1 and 27 × 103,
respectively) made from the melt-spun glassy sheet, as
shown in their B –H hysteresis curves in Figure 8. Such
a significant enhancement of the soft magnetic properties
of the cast ring–shaped sample is presumably due to the
formation of a well-arranged domain structure along the
circumference. It has more recently been reported that the
use of Fe65Co10Ga5P12C4B4 alloy without Al leads to an
increase in Is in a cast cylindrical rod form with a diameter
up to 2 mm (Shen, Kimura, Inoue and Mizushima, 2000a;
Shen, Koshiba, Mizushima and Inoue, 2000b).

A similar large supercooled liquid region beyond 60 K
was found to be obtained in a wide composition range
of 0–53 atom % of Co and 0–28 atom % of Ni in a
completely different alloy system of (Fe, Co, Ni)70Zr10B20

(Inoue, Zhang, Itoi and Takeuchi, 1997a). This glassy alloy
system also shows good soft magnetic properties as is evident
from high permeability, more than 20 × 103 at 1 kHz, and
small saturation magnetostriction constant (λs), less than
15 × 10−6. Furthermore, it is noticed that nearly zero λs

is obtained in the Co-rich composition range, as shown in
Figure 9. By choosing an appropriate alloy composition in
the Fe–Co–Ni–Zr–Nb–B alloy series, BGAs have been
produced in the diameter range of up to 6 mm by the copper
mold casting process, exemplified in Figure 10.
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Figure 8. B –H hysteresis loop, coercivity (Hc) and maximum
permeability (µm) of cast ring-shaped Fe70Al5Ga2P9.65C5.75B4.6Si3
glassy alloy, together with the data on a similar alloy made by
stacking melt-spun sheets with a thickness of approximately 20 µm.

The increase of B content to 30 atom % in the (Fe, Co,
Ni)62Nb8B30 alloy series causes a further extension of the
supercooled liquid region to more than 80 K in the (Fe, Co)-
rich alloy composition range (Inoue, Zhang, Koshiba and
Itoi, 1999b). Figure 11 shows the compositional dependence
of �Tx in melt-spun (Fe, Co, Ni)62Nb8B30 glassy alloys. It
is seen that the Co-rich Co40Fe22Nb8B30 alloy shows a large
supercooled liquid region at 81 K (Inoue, Itoi, Koshiba and
Makino, 1999a). The Fe- and Co-based glassy alloys with
20–30 atom % of B exhibited a high electrical resistivity of
2.2–2.4 µ� m and hence we expected to obtain good high-
frequency permeability. Figure 12 shows the permeability
of the melt-spun Fe- and Co-based glassy alloys with
20 atom % of B and 30 atom % of B, together with the data
of commercial Fe- and Co-based amorphous sheet samples. It
is clearly seen that the Fe- and Co-based glassy alloys possess
much better high-frequency permeability as is evidenced
form high permeability of 7 × 103 at a high frequency of
1 MHz.

4 CONSOLIDATED BULK ALLOYS

In addition to BGAs synthesized by copper mold cast-
ing (Inoue, Shinohara and Gook, 1995) and thick glassy
sheets prepared by controlling the wheel speed in the melt-
spinning process (Mizushima, Makino, Yoshida and Inoue,
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Figure 9. (a) Saturation magnetization (Is), (b) coercivity (Hc),
and (c) saturation magnetostriction constant (λs) as a function of Fe
content for glassy Co70–xFexZr10B20 and Co72–xFexZr8B20 alloys
subjected to annealing for 600 s at 800 K.

Figure 10. Outer morphology and surface appearance of cast
Fe60Co8Zr10Mo5W2B15 glassy alloy cylinders with diameters of
3 and 5 mm.

1999b), an Fe-based BGA can be produced by the consol-
idation technique (Inoue, Yoshida, Mizushima and Makino,
2001). When we consider the Fe–Al–Ga–metalloid alloy,
a fully dense BGA was produced at the pressing tem-
perature of 703 K, which is the lowest processing tem-
perature as compared with those for the other Fe-based
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glassy alloys. Figure 13 shows the outer morphology and
the surface appearance of Fe–Al–Ga–P–C–B–Si BGAs
prepared by the warm consolidation technique. Figure 14

Figure 13. Outer morphology and surface appearance of bulk
glassy Fe70Al5Ga2P9.65C5.75B4.6Si3 alloys with a thickness of 1 mm
prepared by warm consolidation for 480 s at 703 K under an applied
pressure of 570 MPa.

shows the change in the magnetic flux density (B800)
under an applied magnetic field of 800 A m−1 (Hc), the ini-
tial permeability (µi) at 1 kHz, and the core loss (W5/50)
at 0.5 T (5 kOe) and 50 Hz with annealing temperature
for the Fe–Al–Ga–P–C–B–Si consolidated BGAs (Inoue,
Yoshida, Mizushima and Makino, 2001). The consolidated
BGA exhibits a rather high B800 of 1.17 T, rather low Hc

of 12 A m−1, rather high µ’ of 2.5 × 103, and low W5/50 of
0.11 W kg−1. Table 6 summarizes the soft magnetic prop-
erties of the consolidated Fe–Al–Ga–P–C–B–Si BGA,
together with the data of the other consolidated Fe-based
bulk glassy (Fe–Co–Ni–Hf–Nb–B and Co–Fe–Zr–B)
and amorphous (Fe–B–Si) alloys. It is noticed that the
Fe–Al–Ga–metalloid bulk alloy exhibits much better soft
magnetic properties compared with the other Fe-based bulk
glassy and amorphous alloys. The much better soft magnetic
properties are presumably due to the formation of a BGA
with truly full density. It is believed that if the soft magnetic
properties can be improved slightly, the consolidated BGA
will surely be used as a practical soft magnetic material.

5 BULK NANOCRYSTALLINE ALLOYS

The BGAs in Fe–B–Si–(Nb or Zr) systems are very attrac-
tive as a new type of soft magnetic bulk alloy because
of their high Is, exceeding 1.5 T (Inoue and Shen, 2002;
Inoue, Shen and Chang, 2004). Recently, a cast amorphous
alloy cylinder with a diameter of 0.5 mm was formed in the
Fe–B–Si–Nb–Cu system by copper mold casting (Inoue,
Shen and Ohsuna, 2002). The amorphous Fe–B–Si–Nb–Cu
alloy cylinder exhibits a multistage crystallization process in
which the first stage is due to the precipitation of the bcc-Fe
phase and the following stages are attributed to the tran-
sition of bcc-Fe + amorphous to bcc-Fe + Fe23B6 + Fe2B +
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Figure 14. Changes in (a) magnetic flux density (B800) at
800 A m−1, (b) coercivity (Hc), (c) initial permeability (µi)
at 1 kHz, and (d) core loss (W5/50) at 0.5 T (5 kOe) and
50 Hz with annealing temperature (Ta) for bulk glassy
Fe70Al5 Ga2P9.65C5.75B4.6Si3 alloy prepared by warm consol-
idation for 480 s at 703 K under an applied pressure of 570 MPa.
The vertical dashed line indicates the glass transition temperature
(Tg) of the alloy.

Fe3Si + Fe2Nb phases. Figure 15 shows the bright- and
dark-field transmission electron microscopy (TEM) images
and the selected-area electron diffraction pattern of the
Fe72.5B12.5Si10Nb4Cu1 cast cylinder with a diameter of

(a) (b)

100 nm 100 nm

Figure 15. (a) Bright- and (b) dark-field transmission electron
microscopy images and selected-area electron diffraction pattern of
cast Fe72.5B12.5Si10Nb4Cu1 amorphous alloy cylinder with a diam-
eter of 0.5 mm annealed for 300 s at 883 K.

0.5 mm annealed for 300 s at 883 K, which is a temperature
between the first (Tx1 = 841 K) and the second (Tx2 ≈ 940 K)
crystallization temperatures. It is seen that bcc-Fe grains
with a size of approximately 10 nm disperse homogeneously
in the remaining amorphous phase matrix. The nanobeam
energy-dispersive spectroscopy (EDS) reveals that the Si
element is enriched in the bcc-Fe phase, while the Nb
element is rejected. A similar tendency is also obtained in the
Fe73.5B9Si13.5Nb3Cu1 melt-spun alloy (FINEMET) (Hono,
Inoue and Sakurai, 1991; Hono et al., 1992). The decrease
in Si content and the increase in Nb content in the remaining
amorphous phase cause an increase in the thermal stability
of the remaining amorphous phase in conjunction with the
nanoscale bcc-Fe particles. Table 7 summarizes the thermal
stability and soft magnetic properties of the nanocrystalline
Fe72.5B12.5Si10Nb4Cu1 alloy cylinder consisting of the mixed
bcc-Fe and amorphous phases obtained by annealing the cast
amorphous alloy cylinder. The data of the nanocrystalline
Fe73.5B9Si13.5Nb3Cu1 melt-spun alloy (FINEMET) are also
presented for comparison (Yoshizawa, Oguma and Yamauchi,
1988). It is noticed that the nanocrystalline alloy cylinder
exhibits good soft magnetic properties, that is, a high Is

Table 6. Magnetic flux density (B800) at 800 A m−1, coercivity (Hc), maximum permeability (µm), initial perme-
ability (µi) at 1 kHz and core loss (W5/50) at 0.5 T (5 kOe) and 50 Hz of bulk glassy Fe70Al5Ga2P9.65C5.75B4.6Si3
alloy prepared by warm consolidation for 480 s at 703 K under an applied pressure of 570 MPa. The data of
other bulk glassy (Fe56Co7Ni7Hf8Nb2B20 and Co56Fe16Zr8B20) and amorphous (Fe78B13Si9) alloys prepared
by the same consolidation technique are also shown for comparison.

B800 (T) Hc (A m−1) µm (103) µi at 1 kHz (103) W5/50 (W kg−1)

Fe70Al5Ga2P9.65C5.75B4.6Si3 1.17 12 2.5 2.5 0.11
Fe56Co7Ni7Hf8Nb2B20 0.76 28 1.6 1.1 0.17
Co56Fe16Zr8B20 0.57 24 1.9 1.1 0.21
Fe78B13Si9 0.52 59 0.53 0.53 0.31
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Table 7. First crystallization temperature (Tx1), saturation magnetization (Is), coercivity (Hc), and initial permeability (µi) at 1 kHz of cast
Fe72.5B12.5Si10Nb4Cu1 alloy cylinder with a diameter (d) of 0.5 mm annealed for 300 s at Ta. The data of melt-spun Fe72.5B12.5Si10Nb4Cu1

and Fe73.5B9Si13.5Nb3Cu1 (FINEMET) alloys with thicknesses (t) of 40 and 18 mm, respectively, are also shown for comparison.

t or d (mm) Ta (K) Tx1 (K) Is (T) Hc (A m−1) µi at 1 kHz (103)

Fe72.5B12.5Si10Nb4Cu1 (bulk) 0.5 883 841 1.21 1.8 32
Fe72.5B12.5Si10Nb4Cu1 (melt-spun) 0.040 883 841 1.23 0.71 80
Fe73.5B9Si13.5Nb3Cu1 (melt-spun) (Yoshizawa et al., 1988) 0.018 823 775 1.24 0.53 100

of 1.21 T, a low Hc of 1.8 A m−1, and a high µi of
32 × 103 (Inoue, Shen and Ohsuna, 2002). One can notice
clearly the achievement of good soft magnetic properties in
the nanocrystalline structure state even for the bulk alloy
cylindrical rod form.

6 ORIGIN OF LOW COERCIVITY OF
GLASSY ALLOYS

6.1 Coercivity of amorphous and glassy alloys

In crystalline materials, Hc is determined by dislocations and
grain boundaries. In amorphous materials these defects do not
exist. Nevertheless, the observed Hc has values of the order
of magnitude 0.5–10 A m−1. The origins of Hc have been
identified and discussed (Kronmüller, 1981a,b). In the order
of increasing importance in amorphous alloys these are:

1. Intrinsic fluctuations of exchange energies and local
anisotropy (10−4 –0.1 A m−1), H i

c.
2. Clusters of chemical short-range ordered regions

(<0.1 A m−1), H SO
c .

3. Surface irregularities (<0.5 A m−1), H surf
c .

4. Volume pinning of domain walls by defect structures in
magnetostrictive alloys (1–10 A m−1), Hσ

c .

The observed Hc is considerably larger than the expected
ones for intrinsic fluctuations or short-range ordered regions.
The typical value for the contribution of the surface irregu-
larities Hc has been estimated to be 0.5 A m−1 for Fe-based
amorphous alloys and thus represents one of the limiting
factors for Hc of the amorphous alloys (Kronmüller, 1981a;
Kronmüller and Gröger, 1981). It is therefore suggested that
inhomogeneities exist in amorphous alloys, acting as strong
pinning centers for domain walls. These pinning centers were
found to correspond to stress sources.

Stress sources are supposed to have their origin in the
partial instability of the free volume below the melting point.
The free volume may exist in dispersed form as agglomerates
in the melt off. By a relaxation of the atomic network,
the vacancy clusters may collapse, thus generating planar

D

T

T

Figure 16. Schematic two-dimensional model for formation of
quasi-dislocation dipoles in amorphous alloys by agglomeration of
vacancy-type point defects in planar regions. The quasi-dislocation
dipole is characterized by dipole width (D), dipole length (L)
perpendicular to the drawing plane, and an effective Burgers
vector (b).

defects, which act as stress sources (Kronmüller et al., 1979;
Kronmüller, 1980, 1981b). Figure 16 shows a model for
the formation of the quasi-dislocation dipole (QDD)-type
defects in amorphous alloys by agglomeration of vacancy-
type point defects (Kronmüller, 1979, 1981b). The QDDs
are characterized by the dipole width (D), the dipole length
(L), and an effective Burgers vector (b).

The coercivity of a random distribution of the QDD-
type defects of density ρd is given as (Kronmüller, 1981a,b;
Kronmüller and Gröger, 1981)

Hσ
c = 12G�V√

30Fδ

√
πρd ln

(
πd

2δ

)
λs

Is
(1)

where G is the shear modulus, �V = DLb corresponds
to the local volume contraction due to the QDDs, F is
the domain-wall area, δ is the domain-wall thickness, and
d is the domain width. The factor of ln{πd(2δ)−1} in
equation (1) takes into account the statistical fluctuations
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due to the πd(2δ)−1 independent positions of the domain
wall within the domain width. Numerical calculations based
on equation (1) predict values of the right order of mag-
nitude for Hc in magnetostrictive alloys, while measure-
ments of the temperature dependence of HcIsλ

−1
s , which

should correspond to δ−1/2 ∝ K1/4 (where K is the effec-
tive anisotropy energy density), in a number of Fe-based
amorphous alloys have provided convincing proof for the
existence and role of the QDDs (Kronmüller, 1981a,b;
Kronmüller and Gröger, 1981).

If G, F, δ, and d are independent of the alloy system, Hσ
c

can be written as

Hσ
c ∝ �V

√
ρd

λs

Is
(2)

Figure 17 shows Hc as a function of λsI
−1
s for the melt-spun

glassy Fe–(Al, Ga)–(P, C, B, Si, Ge) alloys and ordinary
amorphous alloys with a thickness of 20–35 µm subjected
to annealing (Bitoh, Makino and Inoue, 2003). Here, the
contribution of the surface irregularities to Hc is assumed to
be 0.5 A m−1 (Kronmüller, 1981a; Kronmüller and Gröger,
1981). It should be noted that the glassy Fe–(Al, Ga)–(P,
C, B, Si, Ge) alloys exhibit lower Hc than the ordinary
amorphous alloys with the same λsI

−1
s . The gradient of the

Hc versus λsI
−1
s plot for the glassy alloys is smaller than
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Figure 17. Coercivity (Hc) after annealing as a function of satura-
tion magnetostriction constant and saturation magnetization (λsI

−1
s )

for melt-spun Fe-based glassy alloys with a thickness of 20–35 µm
and ordinary amorphous alloys. Contribution of surface irregulari-
ties to Hc is assumed to be 0.5 A m−1.

that for the ordinary amorphous alloys. This result indicates
that �V ρ

1/2
d of the glassy alloys is approximately 0.4 times

that of the ordinary amorphous alloys; that is, ρd and/or
�V of the glassy alloys are much smaller than those of
the ordinary amorphous alloys. Here, the decrease of �V

means the decrease in the pinning force due to the elastic
stress (Kronmüller, 1981a,b; Kronmüller and Gröger, 1981).
It should be noted that �V and ρd strongly depend on the
quenched-in free volume described in the preceding text.
Table 8 shows the mass density (ρ) of the typical Fe-based
glassy and ordinary amorphous alloys (Bitoh, Makino and
Inoue, 2004). It should be noted that the differences of ρ

between the crystalline and the glassy or amorphous phases
(�ρc) of the glassy alloys (0.06–1.11%) are much smaller
than those of the ordinary amorphous alloys (2.64–2.94%).

6.2 Magnetization process and low coercivity of
glassy alloys

The magnetization curve of amorphous or glassy ferromag-
netic alloys is similar to that of the crystalline materials in
many aspects. In the low magnetic field (H ) region, the
magnetization process is governed by domain-wall move-
ment. Sufficiently above the anisotropy field (HK ), the alloy
is homogeneously magnetized. Further magnetization is due
to an alignment of microscopic inhomogeneous spin states
around inhomogeneities of the atomic network. In this so-
called field range of approach to ferromagnetic saturation,
the field dependence of magnetization is described fairly well
by (Kronmüller, 1979, 1981b; Kronmüller et al., 1979)

I = Is − �I (H) + �Ipara(H) (3)

where the last term in equation (3) describes the increase
of magnetization due to the so-called spin-wave paraprocess
and

�I (H) = ap

Hp
(4)

Since the effect of intrinsic inhomogeneities on �I (H) is
negligibly small (Kronmüller, 1979), the inhomogeneity term
(apH−p) is due to spin inhomogeneities induced by the
magnetoelastic interactions between the elastic stress (σ ) and
the magnetization. Equation (4) may be attributed to certain
types of stress sources as follows (Kronmüller et al., 1979;
Kronmüller, 1979, 1980, 1981b):

point-like defects : σ ∝ r−3 −→ H−1/2

quasi-dislocation dipoles : σ ∝ r−2 −→ H−1

isolated quasi-dislocations : σ ∝ r−1 −→ H−2

where r is the distance from the stress center.
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Table 8. Mass densities (ρ) of as-quenched and annealed glassy (Fe77Al2.14Ga0.86P8.4C5B4Si2.6 and
Fe73Al5Ga2P11C5B4) or amorphous (Fe80B20 and Fe78B13Si9) samples and crystalline samples (mother
alloys). Tc and Tg are Curie and glass transition temperatures, respectively.

Annealing condition ρa (kg m−3) �ρr
b (%) �ρc

c (%)

Fe77Al2.14Ga0.86P8.4C5B4Si2.6 As-quenched 7139 – 1.11
603 K (≈0.95Tc) for 7.2 ks 7153 0.20 0.91
713 K (≈0.97Tg) for 600 s 7163 0.34 0.77

Crystal (mother alloy) 7218 – –

Fe73Al5Ga2P11C5B4 As-quenched 7023 – 0.46
583 K (≈0.95Tc) for 7.2 ks 7035 0.17 0.28
713 K (≈0.97Tg) for 600 s 7051 0.40 0.06

Crystal (mother alloy) 7055 – –

Fe80B20 As-quenched 7388 – 2.71
593 K (≈0.90Tc) for 7.2 ks 7393 0.07 2.64

Crystal (mother alloy) 7588 – –

Fe78B13Si9 As-quenched 7179 – 2.94
653 K (≈0.95Tc) for 7.2 ks 7195 0.22 2.72

Crystal (mother alloy) 7390 – –

aRelative error ≈ 0.02%.
b�ρr = (ρannealed − ρas-quenched)/ρas-quenched.
c�ρc = (ρcrystal − ρamorphous)/ρamorphous.

The range of spin inhomogeneities is governed by the so-
called exchange length (Kronmüller, 1979; Kronmüller et al.,
1979)

LH =
√

2A

HIs
(5)

where A is the exchange stiffness constant. The role of LH

is most clearly demonstrated by the field dependence of
the inhomogeneity terms due to dislocation dipoles. If D

is smaller than LH , the magnetization detects a dipole; how-
ever, for LH < D, the magnetization detects the two opposite
monopoles (dislocations) of the dipole separately, and a H−2

low is measured. Therefore, it is possible to obtain the mean
dipole width, which is given for 〈D〉 = LH(Ht), by the tran-
sition field (Ht) from the H−1 law to the H−2 law. The
length of the effective Burgers vector (b) can be evaluated
from the coefficient (a2) of the H−2 term (Kronmüller, 1979;
Kronmüller et al., 1979).

Figure 18 shows I as a function of H−1 for the melt-
spun Fe–(Al, Ga)–(P, C, B, Si) glassy alloys with a
thickness of 25–30 µm (Bitoh, Makino and Inoue, 2004).
The H−1 –power law behavior of �I (H) is observed for
all the alloys in the range of 20 <∼ (µ0H)−1 < 40–50 T −1

(20–25 < µ0H <∼ 50 mT, where µ0 is the permeability of
a vacuum). In the higher magnetic field range, �I (H) of
the glassy alloys obeys the H−2 power law (Bitoh, Makino
and Inoue, 2004). These results indicate that the QDD-type
defects are the main sources of the elastic stress.
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Figure 18. Magnetization (I ) as a function of inverse mag-
netic field ((µ0H)−1) of as-quenched and annealed (for 600 s
at 0.97Tg; Tg is glass transition temperature) melt-spun glassy
Fe77Al2.14Ga0.86P8.4C5B4Si2.6 and Fe73Al5Ga2P11C5B4 alloys.

The analysis of the magnetization curves yields the follow-
ing results: that is, both the Fe–(Al, Ga)–(P, C, B, Si) glassy
alloys and the Fe–B(–Si) amorphous alloys have almost the
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same 〈D〉 (≈14 nm), b (≈0.05 nm), and δ (≈80 nm) val-
ues (Bitoh, Makino and Inoue, 2004). It can be considered
that all the alloys also have almost the same value for G.
The QDD-type defects are formed by the agglomeration of
vacancy-type point defects in planar regions. Therefore, ρd is
proportional to �ρc�V −1 because �ρc denotes the amount
of the free volume in the amorphous or glassy alloys. Let us
further consider that L is proportional to 〈D〉. Then all the
alloys have almost the same �V . Under these assumptions,
Hσ

c can be expressed as follows:

Hσ
c = pc(F, d)

√
�ρc

λs

Is
(6)

where pc, the prefactor, depends on F and d. Figure 19
shows the observed Hσ

c Isλ
−1
s as a function of (�ρc)

1/2.
This figure clearly shows that Hσ

c Isλ
−1
s is proportional to

(�ρc)
1/2. The prefactor of the annealed alloys is approxi-

mately 0.4 times smaller than that of the as-quenched ones. It
is considered that F is increased by the structural relaxation
(Schroeder, Schäfer and Kronmüller, 1978). These results
suggest that low ρd, which corresponds to low density of the
domain-wall pinning centers, is the origin of the low Hc of
the Fe–(Al, Ga)–(P, C, B, Si) glassy alloys.
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Figure 19. Coercivity times saturation magnetization divided by
saturation magnetostriction constant (Hσ

c Isλ
−1
s ) as a function of

square root of density differences ((�ρc)
1/2) between crystalline

and amorphous phases. Fe73-GA: Fe73Al5Ga2P11C5B4; Fe77-GA:
Fe77Al2.14Ga0.86P8.4C5B4Si2.6; FeB: Fe80B20; FeBSi: Fe78B13Si9;
Ta: annealing temperature; Tc: Curie temperature; Tg: glass transi-
tion temperature.

7 APPLICATIONS AND FUTURE TRENDS

Table 9 summarizes the advantages and disadvantages of
soft magnetic properties, comparing those of Fe- and Co-
based ordinary amorphous alloys. Advantages to be noted
are (i) much higher GFA leading to the formation of
thicker sheets and plates, larger diameter wires, and thick
rings, (ii) higher electrical resistivity of 2.2–2.4 µ� m at
room temperature, (iii) more homogeneous glassy struc-
ture without clusters for crystal nucleation, (iv) appearance
of a large supercooled liquid region before crystallization,
(v) lower Hc, (vi) higher µi, (vii) intentional arrangement of
domain-wall structure caused by control of casting and/or
cooling condition, (viii) better high-frequency µi, (ix) good
microforming ability in the supercooled liquid region, and
(x) warm consolidation into a highly dense bulk form.

Because of these unique advantages, the soft magnetic
glassy alloy powder (Liqualloy) has already been developed
as a core material for choke coils used in switching-
mode power supplies. The choke coil is one of the largest
components in a current switcher, and has been an obstacle to
the creation of smaller units. When current is passed through
a choke coil, inductance is lowered due to direct current
(DC) magnetic saturation in the core material, the degree
of which is commonly referred to as its DC superposition
characteristic. Previously, the main core material used was
ferrite, popular because of its low cost, but a major drawback
of this material was its low DC magnetic saturation point.
The demand for smaller choke coils is strong, and Fe-based
metallic materials that are not easily subject to DC magnetic
saturation have steadily come into use. However, the metallic
core materials have a high degree of core loss, which leads
to less efficient switching power supplies owing to heat
generation in the core or power dissipation. The Fe-based
magnetic glassy alloys exhibit rather high Is, low core losses,
and high electrical resistivity, simultaneously. It is difficult
to produce the ordinary amorphous alloy powder with low
GFA, because high-pressure gas atomization or mechanical
grinding of melt-spun tapes must be used. Since the glassy
alloys also have high GFA and good corrosion resistance,
the glassy alloy powder can be produced easily by water
atomization, which reduces manufacturing costs remarkably.
Figure 20 shows the core loss (W ) at 100 kHz, which is a
typical operational frequency of the switching-mode power
supplies with a Fe–Cr–P–C–B–Si glassy alloy dust core
(Koshiba, 2003). The mixture of the near spherical glassy
powder (98 mass %) with diameters ranging from 350 to
800 µm, reign for the electrical insulation of each powder and
the lubricant were molded into a toroidal shape by applying
a static pressure. The molded core was annealed for 3.6 ks at
763 K in a nitrogen atmosphere. The data of the commercial
dust cores made of pure Fe, sendust (Fe–Al–Si), and Mo
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Table 9. Advantages and disadvantages of soft magnetic properties, comparing those
of Fe- and Co-based ordinary amorphous alloys.

Advantages Disadvantages

Much higher glass-forming ability Higher material cost
Higher electrical resistivity Lower saturation magnetization
More homogeneous glassy structure
Appearance of a large supercooled liquid region
Lower coercivity
Higher initial permeability
Intentional arrangement of domain-wall structure
Better high-frequency permeability
Good microforming ability
Warm consolidation into a highly dense bulk form
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Pure Fe Sendust
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Figure 20. Core loss (W ) at 100 kHz of glassy alloy
(Fe74.43Cr1.96P9.04C2.16B7.54Si4.87) dust core as a function of
maximum magnetic flux density (Bm). The data for commercial
dust cores are also shown for comparison.

permalloy (Ni–Fe–Mo) are also shown for comparison in
Figure 20. The core loss of the glassy alloy dust core is
considerably lower than that of the commercial ones. The
low core loss and excellent DC superposition characteristics
of the glassy alloy dust core will contribute to highly efficient
switching.

On the other hand, the disadvantages are (i) higher mate-
rial cost due to the necessity of using special solute elements
to obtain an increase in GFA and (ii) lower Is due to the addi-
tion of larger amounts of solute elements. In particular, the
lower Is for soft magnetic glassy alloys is a serious obstacle
to future use in power transformers. Consequently, a great

deal of time and effort have been devoted to increasing Is,
though there exists a trade-off between the decrease in the
solute contents for an increase in Is and the increase in the
solute content for an increase in GFA. However, owing to the
attractive properties described earlier, it is strongly believed
that the present soft magnetic BGAs will become practical
magnetic materials in the near future.
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1 INTRODUCTION

Electrical steels are traditional, mature magnetic materials
that are in an ongoing state of incremental development.
They comprise over 97% of the volume of all soft magnetic
materials currently produced, amounting to a value of around
£5000 million per annum. This represents around 1% of all
steel production and amounts to over 8 million tonnes per
annum. Coupled to this, over 5% of all the electrical energy
we generate is consumed as iron losses when electrical steels
are used as the magnetic core of electrical equipment, mainly
motors and transformers. This costs the UK economy alone
around £800 million per year, apart from the considerable
detrimental effect on the environment as the by-product of
generation of this wasted energy (Moses, 2002).

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Recently, soft magnetic iron composite cores produced by
powder metallurgy routes are finding some niche applica-
tions. Their 3-D characteristics, physical shapes, and mag-
netic properties are very different to those of electrical steel
which are produced in thin sheet form. Hence, it is important
to include composite material here to recognize the possible
option for using this form of material for a growing range of
medium frequency applications, in particular. It should also
be pointed out that development continues on other impor-
tant magnetic materials such as soft ferrites and iron–cobalt
alloys which are used in small volume, but critical, power
applications. These are not covered here but reviews can
be found elsewhere, for example, (Buschow, 1995; Fish,
1989; Boll, 1978). In this article, the reference to material
properties, characterization, and so on, refer specifically to
electrical steels rather than to the soft magnetic composite
(SMC) materials unless otherwise stated because of their far
greater importance in today’s context.

Nonoriented and grain-oriented electrical steels are pro-
duced in strip form up to over 1 m in width, and normally
between 0.1 and 0.65 mm in thickness. Silicon is added
to increase the electrical resistivity, which in turn reduces
losses under ac magnetization. Silicon does, however, reduce
the saturation magnetization and can cause brittleness but
it does beneficially reduce the magnetostriction and crys-
tal anisotropy. The materials are produced by conventional
steel making followed by a complex series of thickness
reduction by hot and cold rolling together with annealing
and coating to develop the desired magnetic and mechani-
cal properties (Moses, 1990). The coating on grain-oriented
and nonoriented steel must be uniform in thickness and suf-
ficiently thin to minimize the building factor of assembled
cores.
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Grain-oriented steel contains around 3% silicon (weight)
and comprises a strong [001](110) texture with grains up to
10 mm in diameter, which are developed by a critical sec-
ondary recrystallization process. The grain-oriented material
has losses and permeability several times better than those of
nonoriented steel when magnetized along its rolling direction
which is the predominant direction of the 〈100〉 axes of the
grains. The properties of grain-oriented silicon steel depend
on the strongly anisotropic magnetic characteristics of iron
and some of its alloys which tend to cause low loss and
high permeability when magnetized along 〈100〉 directions
of individual grains or crystals. Because of its texture, the
domain structure mainly comprises antiparallel bar domains
separated by 180◦ walls in the demagnetized state. Grain-
oriented material is also referred to as Goss textured steel
named after its prime developer, N.P. Goss, and should not be
confused with other grain-oriented steels such as [001](100)
textured or Cubex material which has been produced only in
small quantities (Moses, 1990).

Nonoriented steel is an iron alloy with up to 3% silicon
which has a mainly isotropic, random texture with grains
around 10–100 µm in diameter and a very complex domain
structure. They are far cheaper than grain-oriented material,
and magnetic properties are reasonably uniform (isotropic)
in all directions in the plane of the strip. They are broadly
divided into two groups: fully processed, where the mag-
netic properties are fully developed by the manufacturer,
and semiprocessed, where the user gives the material a final
anneal after assembly or forming to complete the develop-
ment of the magnetic properties. The material is covered with
a nonmagnetic coating which not only has to provide elec-
trical insulation between layers or turns in assembled cores
but also needs to be of a form to give suitable punching or
welding characteristics.

The magnetic properties of electrical steels depend on the
static domain structure and the manner in which various
types of domain walls move under the influence of ac
fields. In practice, the domain structure is more complicated
than the idea pattern in a well-oriented grain of steel as
referred to earlier (Shilling and Houze, 1974). Much of the
present understanding of the properties of electrical steel has
been developed from the knowledge of static and dynamic
domain structures observed on the surface of electrical steel.
Figure 1 shows a typical pattern in grain-oriented material
compared with the far more complicated structure typical of
nonoriented steel (Hubert and Schafer, 1998).

Conventional grain-oriented (CGO) steel was developed
during the 1950–1960s based on the Armco Steel Inc.
process for secondary recrystallization. In the 1970s, Nippon
Steel Corporation used a modified technology and production
route to produce so-called high permeability, grain-oriented
(HGO) steel with a better distribution of well-oriented, larger

1 mm

H

100 µm

(a) (b)

Figure 1. Typical static domain images in (a) grain-oriented and (b)
nonoriented electrical steel. (Reproduced from Hubert et al., 1998.
With permission from Springer-Verlag GmbH.  1998.)

grains, up to around 10 mm in diameter compared with
around 0.3 mm for CGO steel. Such large grains normally
have wide domains and higher associated losses when
magnetized, but a high-stress coating is applied to ensure
that the benefit of better orientation is realized (Moses, 1990).
The coating process is complex. A thin layer of magnesium
oxide is first applied which reacts with the steel surface at
high temperatures to produce a glass film or Forsterite layer
(Mg2SiO4 glass film). A phosphate layer is applied later
in the production process to produce the necessary surface
electrical insulation and also to induce a high surface tensile
stress along the rolling direction of the steel strip which
in turn changes the static domain structure in a beneficial
manner to cause a significant improvement in the stress
sensitivity of the magnetic properties (Moses, Pegler and
Thompson, 1972).

A further improvement in losses is achieved by additional
surface treatment in grain-oriented, domain-refined steels
(Kubota, Fujikura and Ushigami, 2000). Here, a beneficial
surface stress is induced by either laser or mechanical
treatment to cause further refinement, or narrowing, of
the mean width of static domains with a corresponding
reduction in loss. Such material normally cannot be stress-
relief annealed after domain refining treatment because the
beneficial surface stress is then removed.

2 LOSSES IN ELECTRICAL STEELS

Micro and macro eddy currents occur due to domain wall
motion in soft magnetic materials subjected to ac mag-
netization. This produces the internal heating commonly
referred to as iron loss. Traditionally, the loss is divided into
three components, namely, hysteresis, classical eddy current,
and anomalous (excess) loss. For commercial grading, these
losses are quantified in terms of power (W kg−1), but the
same quantities are expressed, often for scientific research,
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Figure 2. Energy loss per cycle as a function of magnetizing
frequency in grain-oriented electrical steel at 1.7 T. (Reproduced
from F. Fiorillo, 2004, with permission from TU Bergakademie
Freiberg.  2004.)

as energy components in J kg−1 to represent the energy loss
per cycle of magnetization.

Figure 2 shows the traditional way of expressing the
measured variation of these energy loss components with
magnetizing frequency at a fixed sinusoidally time varying
flux density of peak value B̂ (Fiorillo, 2004).

As can be seen from Figure 2, hysteresis loss per cycle
is independent of frequency. It cannot be calculated the-
oretically from first principles but is proportional to the
area enclosed by the static B –H loop. From measurements
on many different types of material, it is found to depend
mainly on the composition, nature, and distribution of impu-
rities, texture, grain size, and internal stress. It is associ-
ated with the pinning of domain walls at imperfections in
the material, so high-purity material will have relatively
low hysteresis loss. Domain wall motion, particularly in
grain-oriented materials, is also impeded close to lamination
surfaces by factors such as roughness and coating-induced
stress. The following empirical equation is often quoted for
the total hysteresis power loss at a given magnetizing fre-
quency f .

Ph = Khf
(
B̂

)x

(1)

where B̂ is the peak flux density, and Kh and x are parameters
that depend on the material factors referred to earlier as well
as the specific magnetizing conditions.

The classical eddy current power loss in a thin lamination
at magnetizing frequency f is calculated from

Pe =
Kc

(
B̂fd

)2

ρ
(2)

where Kc is a material-dependent constant, d is the lami-
nation thickness, and ρ is its electrical resistivity. It should
be noted that this commonly used equation assumes con-
stant permeability, that is, a linear B –H curve, which is
true only at low induction in silicon iron. It assumes no skin
effect which implies a low ratio of the product of permeabil-
ity and frequency to resistivity, and it assumes sinusoidally
time varying flux throughout the thickness of the lamina-
tion (Brailsford, 1966). Noting that approximations are made
when deriving equation (2), it still shows the need for thin,
high-resistivity laminations to minimize Pe.

The measured loss such as that shown in Figure 2 is
always greater than the sum of Ph and Pe by an amount Pa,
the anomalous loss, which is attributed to loss mechanisms
occurring during domain wall motion. Many experimental
studies have been carried out in attempts to identify and
quantify the causes of Pa in electrical steels. Undoubtedly,
mechanisms such as domain wall bowing, wall nucleation
and annihilation, nonuniform wall mobility, and nonrepeti-
tive wall motion from cycle to cycle contribute to the cause
of the anomalous loss. A commonly used equation for esti-
mating the anomalous loss under sinusoidal flux is written
as, (Bertotti, 1998),

Pa = 8.8
√

σGSVo

(
B̂f

)3/2
(3)

where σ is the conductivity, S is the cross-sectional area of
the material, and G and Vo are parameters which are material
and magnetization dependent. The numerical constant allows
for waveform dependence of the expression (e.g., for a
triangular waveform, it assumes a value of 8).

The components depicted in Figure 2 could be written in
terms of energy loss per cycle as

P/f = C0 + C1f + C2f
2 (4)

where C0, C1, and C2 are constant for a given flux density
and frequency. Equation 4, of course, represents the loss
variation of the components with frequency as shown in
Figure 2. In nonoriented, low silicon alloys, at 50 Hz,
the hysteresis loss accounts for 30–60% of the total loss,
Pe accounts for 40–60%, and Pa accounts for 10–20%
depending on the magnitude of flux density. In high-silicon
materials, Ph becomes relatively higher. In grain-oriented
materials, hysteresis loss drops from around 33 to 25%
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of the total as the thickness is decreased from 0.35 to
0.23 mm, whereas the anomalous loss component increases
from around 33 to 49%, although its absolute value only
drops by about 10% as seen in Figure 3 (Fortunati, 2004).

3 FACTORS AFFECTING MAGNETIC
PROPERTIES OF ELECTRICAL
STEELS

Many factors affect the domain structure of electrical steel,
which in turn controls the magnetic properties. In the previ-
ous section, it was pointed out that impurities, lamination
thickness, composition, frequency, and peak flux density
affect the loss components. In any engineering application,
the iron loss in a magnetic core can be as much as 40%
greater than that extrapolated from laboratory tests on lam-
inations of the same grade of steel from which the core is
assembled. This deterioration is defined and measured as the
core building factor whose origin and importance is described
elsewhere (Moses, 1984). In this section, effects of some of
the parameters that directly affect the magnetic properties of
the steel are briefly outlined.

3.1 Magnetizing flux density and frequency

The variation of loss with both flux density and frequency
is well characterized under sinusoidal flux conditions and
is well understood from the basic knowledge of domain

activity. Equations (1–4) give a good indication of the
parameters controlling the rate of increase of loss which
occurs with increasing flux density or frequency. These
equations cannot give quantitative values and are unreliable
for prediction under extreme or complex magnetization con-
ditions, so laboratory measurements of material loss charac-
terization are needed for design and performance prediction
of advanced machine cores. However, loss and permeability
measurements on electrical steels magnetized at the increas-
ingly higher frequencies and flux densities demanded by
users requires complex, expensive equipment with skilled
operators in order to obtain reproducible, reliable data.

3.2 Stress and temperature

Mechanical stress can have either a beneficial or an adverse
effect on the properties of electrical steels (Moses and
Phillips, 1978). Figure 4 shows the variation of loss and
magnetostriction with stress at 50 Hz in grain-oriented steel
when magnetized along its rolling direction at 1.5 T, 50 Hz. It

1.5
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Figure 4. Variation of loss and magnetostriction with stress applied
along the rolling direction of grain-oriented electrical steel. (Repro-
duced from A.J. Moses et al., 1978, with permission from IEEE.
 1978.)
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should be noted that the magnetostriction, that is, the change
of dimensions of the steel, which occurs with change of mag-
netization, is an important parameter in some applications,
because it is the primary cause of acoustic noise output from
static electrical equipment. Tension and compression indi-
cated on the graph refers to stress applied along the rolling
direction with different values of transverse stress simulta-
neously applied. For example, when no transverse stress is
present (the curve labeled 0 on graph), both magnetostriction
and power loss rise rapidly with compressive stress applied
along the rolling direction, whereas tensile stress applied
along the same direction has comparatively little effect. The
characteristics change significantly when transverse stress is
simultaneously applied. For example, a high transverse com-
pressive stress of −10 MPa considerably reduces the sensitiv-
ity of loss and magnetostriction to longitudinal compression,
whereas a transverse tensile stress makes the magnetic prop-
erties far worse.

The presence of mechanical stress introduces magnetoe-
lastic energy into the material, and domains are redistributed
even in the demagnetized state to minimize the free magnetic
energy again. Domains in electrical steel tend to line up in
〈100〉 directions closest to a tensile stress direction or fur-
thest from a compressive stress direction which is the reason
for the large detrimental effect of compressive stress or the
small effect of tensile stress applied along the magnetizing
direction seen in Figure 4.

Because of the complex domain structure and the random
nature of building stress in magnetic cores, it is impossible
to calculate the effect of stress on the magnitude of loss,
permeability, or magnetostriction. The results in Figure 4
also indicate that it is over simplistic and even misleading
to say that compressive stress will seriously degrade the
magnetic properties of grain-oriented material. Although this
is often the case in practice, the importance of stress direction
and whether it is unidirectional or not should be noted in any
practical core assembly.

The coating applied to the surface of grain-oriented steel
reduces the sensitivity of the magnetic properties to com-
pressive stress (Moses, Pegler and Thompson, 1972). High
permeability steel has lower stress sensitivity partly because
of the specially chosen high-stress coating. The coating-
induced stress in grain-oriented material effectively causes
the stress sensitivity curves of the type shown in Figure 4 to
shift to the right due to a large tensile component along the
rolling direction. These stress sensitivity characteristics can
be qualitatively estimated from the predicted reorganization
of the magnetic domain structure, which occurs to minimize
the total free energy in response to the introduction of the
induced magnetoelastic energy. The magnitude of the magne-
toelastic energy relative to other magnetic free energy sources
determines the form and the nature of stress sensitivity under

any given magnetization conditions. In theory, the magne-
toelastic energy depends on the magnitude of the stress, its
direction relative to 〈100〉 directions of individual grains and
the magnitude of the saturation magnetostriction constants
(λ100 and λ111). These constants change with composition in
such a way that the stress sensitivity of loss and magnetostric-
tion drops with increasing silicon content to a minimum at
around 6.5% (weight) silicon.

Magnetic properties such as loss, permeability, and mag-
netostriction of electrical steel are temperature sensitive to
varying degrees (Nakaoka et al., 2005). Saturation magneti-
zation drops with increasing temperature until it reaches zero
at the Curie point, which varies with silicon content and is
770 ◦C in alloy-free iron. The domain structure which deter-
mines the magnetic properties is partly established according
to the magnitudes of the magnetocrystalline anisotropy con-
stants, electrical resistivity, and magnetostriction constants,
all of which are temperature sensitive (Chen, 1958).

The losses drop by a few percent as the temperature
rises from ambient to 100 ◦C (Bullingham, 1971), but the
permeability also falls (Jenkins, 2004). In grain-oriented
material, the effectiveness of the stress-inducing coating
drops with increasing temperature, so the stress sensitivity
of loss, magnetostriction, and permeability will increase.
If the temperature is reduced below ambient, the magnetic
properties do not change, but reports suggest that at cryogenic
temperatures the losses increase significantly (Nakata et al.,
1992). This is possibly due to microstructural changes, which
particularly affect the hysteresis.

3.3 Losses under distorted magnetization

Both nonoriented and grain-oriented electrical steels are
being used in increasing quantities in applications where
they are magnetized under nonsinusoidal flux conditions.
Harmonic components in the flux density waveform increase
the losses considerably. The loss, Pd, occurring under such
conditions can be analyzed as a Fourier sum of contributions
from each set of flux density and field harmonic component
present as

Pd = πnf

∞∑
n=1

B̂nĤn sin φn (5)

where B̂n and Ĥn are the peak values of the nth harmonic
components of flux density and field respectively, and φn

is the time phase angle between corresponding harmonics
of the b and h waveforms. This inherent frequency depen-
dence of the harmonic losses indicates the advantage of
high-resistivity, thin-gauge material when flux distortion is
present.
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In typical transformer and rotating machine applications,
flux distortion can be responsible for half of the additional
core losses included in the machine building factor or around
10–20% of the total core loss depending on geometry,
assembly, and nominal flux density.

The more widespread use of electronically generated volt-
age sources to excite rotating machines in variable-speed
drive systems is of increasing interest and importance. For
example, in pulse width modulation (PWM) drive systems,
machine core losses can increase by 50% or more because
of the very high order harmonics present (Boglietti, Fer-
raris, Lazzari and Profumo, 1991). Figure 5 shows the influ-
ence of material thickness and silicon content on losses
under PWM conditions in nonoriented steels (Moses and
Leicht, 2005). The harmful effect of reducing the wave-
form modulation index from 1.0 to 0.5 shown in Figure 5
is important in variable-speed drive systems where such a
range is often used in practice. The beneficial influence of
using thinner-gauge or higher-resistivity steel can also be
appreciated.

3.4 Rotational losses

Magnetization commonly rotates in the plane of parts of
laminations assembled in electrical machine cores and is
claimed to increase stator losses in some cases by up to
25% (Werner, 1991). The process, commonly referred to
as rotational or 2–D magnetization, has been known and
studied for many years (Moses, 1992b). It is rare for any
part of a machine core to be magnetized under pure rotational
flux, which we define as a magnetization condition when the
flux density vector, Br, at a point in a lamination is constant
in magnitude and rotates at constant speed, ω. The rotational
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Figure 5. Effect of thickness and silicon content of nonoriented
electrical steel on losses under PWM conditions at 1.5 T (peak) and
50 Hz (first harmonic). (Reproduced from Moses et al., 2005, with
permission from the American Institute of Physics.  2005.)

loss, Pr, can be written as

Pr = 1

T

∫ T

o

{
hx

dbx

dt
+ hy

dby

dt

}
dt (6)

where T is the magnetization period, hx and hy , dbx /dt

and dby /dt are orthogonal components of instantaneous
tangential component of surface field and spatial rates
of change of flux density, respectively. Figure 6 shows
typical variation of rotational loss with flux density in
grain-oriented and nonoriented silicon steels compared to
characteristics under sinusoidal, unidirectional flux density
along the rolling direction (Zurek, 2005). The rotational loss
of the nonoriented steel is seen to be up to three times
higher than that under the same magnitude of unidirectional
(ac) flux. The difference for the grain-oriented material is
far less but still significant. In general, it is found that the
ratio of rotational loss to ac loss becomes higher as material
texture or anisotropy increases (Arabi and Moses, 1984).
The reduction of rotational loss at high flux density occurs
because of fewer and fewer domain walls existing as the
material approaches saturation.

Rotational losses can be analyzed in terms of hystere-
sis, eddy current, and excess loss components in order to
study the influence of factors such as grain size, thickness,
composition, and so on, which generally play very similar
roles as under ac conditions. Likewise, the effect of flux
harmonics, stress, and temperature on Pr follows similar
trends as with unidirectional magnetization. Domain observa-
tions (Ledingham, Broadbent and Radley, 1989) demonstrate
that rotational magnetization is very complex compared to
unidirectional processes. It should be noted that the mag-
netization process is quite different under ac magnetization
compared to rotational conditions, so care must be taken if
attempting to infer or predict rotational loss from the value
under unidirectional magnetization. Indeed, materials with
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Figure 6. Variation of rotational loss (ROT) with flux density in
nonoriented (CNO) and grain-oriented (CGO) electrical steel and
comparison with corresponding ac losses (AC) when magnetized
along rolling directions.
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the ‘best’ magnetic properties under unidirectional magne-
tization need not necessarily be better than others under
rotational conditions.

It is debatable whether it would be more useful for
engineering applications to characterize materials under a
pure rotational field as the reference magnetization condition
than pure rotating flux density as is generally the case today.
The research community is striving to characterize materials
at very high flux densities but there are questions over the
practical relevance to normal machine applications where
rotational levels are generally far lower (Moses, 2004a).

3.5 High-silicon steels

Addition of silicon to steel is attractive as it increases
electrical resistivity, hence reducing the eddy current losses;
it reduces magnetostriction to around zero at 6.5% Si,
hence tending to reduce acoustic noise of machines; it
reduces the sensitivity to mechanical stress and reduces the
magnetocrystalline anisotropy, hence improving the usability
of the steel. However, these benefits have to be weighed up
against the disadvantages of lower saturation magnetization
and permeability, and most important, as far as production
and operation are concerned, increased brittleness, which
makes the material very difficult to manufacture and process.

Various processes have been tried over the years to
produce steel containing up to around 6.5% silicon (Moses,
1992a). The method that was eventually commercialized in
1993 involves adding silicon to strips already containing
around 3% silicon to increase the content to 6.5% by a
chemical vapor diffusion process (Takada, Abe, Masuda
and Inagaki, 1988). Here, combining the beneficial effects
of silicon addition with thinner gauge (around 0.1 mm)
gives low core loss at 6.5% silicon in a sufficiently ductile,
nonoriented product. A comparison between flux density
produced by a 50 Hz, 800 A m−1 field (B8), magnetostriction,
and losses at various flux density/frequency combinations
is shown in Table 1. Typical data for Mn–Zn ferrite and
iron-based amorphous materials are included for comparison.
Under some magnetizing conditions, the high-silicon alloy
is seen to have the lowest core loss, but for any particular
application many other factors must of course be taken into
account when selecting a material.

Another attraction of high-alloy electrical steel is the
possibility of creating a resistivity gradient through the
thickness of the sheet by controlling the concentration of
silicon or the additional alloying element. This phenomenon
has been demonstrated and quantified in the laboratory
using several techniques, for example, diffusion from silicon-
bearing coatings (Moses and Thursby, 1983). Even under
sinusoidal flux conditions, it is claimed that concentration

gradients can lead to loss reductions of 50% or more
(Barros Lorenzo, Ros-Yanez, De Wulf and Houbaert, 2004).
High-silicon steel with controlled silicon gradient is today
commercially produced using the CVD process by JFE
in Japan, and large scale development to produce similar
material by a hot dipping process is well advanced in Europe
(Houbaert, 2004).

A further potential advantage of the material with a silicon
concentration gradient is the anticipated improved perfor-
mance under PWM conditions. PWM magnetizing wave-
forms contain low magnitude, but very high frequency har-
monics. For example, a typical waveform might comprise a
dominant 50 Hz component with a modulation index of 15
giving flux harmonics around 35 and 15% of the fundamen-
tal, clustered around frequencies of 1.5 and 3.0 kHz, respec-
tively. These high-harmonic components, although small in
magnitude, produce additional close-to-surface eddy cur-
rents, which, in theory, can be reduced by the presence of
a resistivity gradient where the resistivity is highest at the
surface. This effect has been demonstrated in the laboratory
where the relative increase in loss under PWM conditions
compared to sinusoidal magnetization has been found to be
lower in material with a resistivity gradient. The relative
effect depends on the annealing conditions which control the
gradient profile (Anayi, Moses and Jenkins, 2003).

High-silicon steels are finding niche markets in high-
frequency applications up to around 20 kHz, in cores sub-
jected to distorted flux where losses or acoustic noise in
conventional electrical steel may become excessive. If the
material is to be used to its full technical potential as an
important component in energy saving systems, develop-
ment of the expensive and complex siliconizing processes is
necessary to ensure that consistently uniform magnetic and
mechanical properties are achieved.

4 OPTIMIZATION OF MAGNETIC
PROPERTIES

The losses and permeability of the best grades of electrical
steels have improved considerably over the last decades
as, for example, shown in Figure 7 (Gunther, Abbruzzese,
Fortunati and Ligi, 2005). Much of the improvement has
been incremental and apart from achieving greater product
consistency, it is possible that there is little scope for further
improvement of the CGO materials (Jenkins, 2004).

A major challenge with nonoriented steels has been
to simultaneously optimize losses and permeability in the
same material. Generally speaking, low alloy content and
small grain size are necessary to achieve high permeability,
whereas low loss is normally achieved in steel with high
alloy content and large grain size.
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Figure 7. Recent improvements in grain-oriented electrical steels.
(Reproduced from K. Gunther et al., 2005, with permission from
Verlag Stahleisen GmbH.  2005.)

1.80
High-efficiency series

0.35 mm thickness
0.50 mm thickness

50H series

35H series Thickness

0.35 mm
0.35 mm

0.50 mm
0.50 mm

1.75

1.70

In
du

ct
io

n,
 B

50
 (

T
)

1.65

1.60
10 20 30

Iron loss, W10/400 (W kg−1)

40 50 60 70
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icon steels. (Reproduced from T. Kubota, 2005, with permission
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Figure 8 illustrates a typical set of characteristics of
commercial nonoriented steels which have been developed
to have high permeability and low loss in the same products.
The steel makers have achieved this by greater texture control
made possible with the advent of cleaner steel produced
with the aid of improved desulfurization, decarburization,
and vacuum degassing (Kubota, 2005). Such findings have

led to it now becoming well established that texture control
for enhancement of magnetic properties is as important in
nonoriented steels as in grain-oriented steels.

Reduction of thickness is an option to reduce eddy cur-
rents, and technology has already been established for com-
mercial production of grain-oriented material, 0.1 mm thick.
This usually involves rerolling strips from a thicker gauge,
which, combined with other necessary extra processing,
makes the material cost effective only for special applica-
tions. It is quite feasible to produce nonoriented steel even
thinner but cost becomes a more major component, so it is
normally restricted to high alloy grades. It is well known that
for a given composition, there is an optimum thickness and
optimum average grain size that gives minimum loss. The
optimum condition is related to the ratio of eddy current loss
to hysteresis loss. However the optimum condition depends
on the form of magnetization, for example, it will vary with
peak flux density, frequency, and harmonic content of the
flux waveform.

The challenge of competition at power frequency from
iron-based amorphous ribbon was one reason for the trend to
the development of thinner grades of electrical steel. Figure 9
(Kubota, Fujikura and Ushigami, 2000) shows how the move
to thinner steels, in this case 0.23–0.15 mm, can be combined
with other advances to develop thin grade material whose
magnetic properties can potentially surpass those of iron-
based amorphous materials. Domain refining is combined
with large grains to reduce hysteresis loss. Reduced density
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Figure 9. Future prospects for low loss grain-oriented silicon steel.
(Reproduced from Kubota et al., 2000, with permission from
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of defects in cleaner steels leads to removal of pinning sites
and consequently lower hysteresis loss. Removal of surface
closure domains by surface treatment has a similar effect. The
reduced thickness itself reduces the eddy current component
of loss.

In contrast to the focus on thickness reduction, there are
incentives for assessing the possibility of developing thick
materials which are attractive to core manufacturers because
of benefits in core handling and assembly. If various major
technical challenges in the production process can be over-
come, it may be feasible, by appropriate processing, to
increase the permeability of thick material without experi-
encing the anticipated increase in loss (Fortunati, 2004).

Another area where there is scope for development of
grain-oriented steels is improvement in the complex inter-
face between the coating and the steel. So-called surface
pinning of domain walls, for example, which is believed to
increase eddy current losses by 20% or more, is very much
influenced by the nature of this interface. The influence of the
disturbed layer close to the surface becomes proportionately
more important as its thickness relative to the sheet thickness
decreases. This is probably the reason why the anomalous
loss shown in Figure 2 becomes a more significant contribu-
tion in thin-gauge material. There is scope for modification
of the surface topology and the coating on grain-oriented
steel to attempt to reduce their contribution to the anoma-
lous loss. The steel surface needs to be as smooth as possible
and near-surface oxidation should be minimal to cut down
surface domain wall pinning or drag.

A further opportunity lies with the development of glass-
less coatings for grain-oriented steel (Ushigami, Nakayama,
Arai and Kubota, 2004). These would remove many close-
to-surface magnetic problems completely, as well as improve
the mechanical punching quality. In the case of domain-
refined steels, there is scope for better scribing by laser or
other surface treatment.

4.1 Recent developments

Development of electrical steels is market driven. The
main technological driving forces are to reduce losses and
lower magnetostriction. All manufacturers are striving to
improve the production process of both nonoriented and
grain-oriented steels. It is now possible, with the availability
of cleaner steels, to improve texture control, even of nonori-
ented steels, using elements other than silicon or aluminum.
For example, manganese or tin additions can result in high
permeability combined with low losses. This approach would
enable the steel manufacturer to produce other combinations
of desirable properties for specific applications such as low
loss and very high mechanical strength (Kubota, 2005). This

builds on comprehensive work carried out in the 1960s on
a wide composition range of single crystals of mainly iron-
based alloys to identify optimum combinations of resistivity
and magnetic saturation (Foley et al., 1970). Today’s better
steel production technology does enable this prior knowledge
to be exploited.

An ongoing problem in producing grain-oriented steel is
that improved texture is associated with larger grain size
implying higher losses without the aid of stress-inducing
coatings. However, it is now becoming more feasible to
reduce grain size while maintaining good orientation. One
recent attempt is to introduce chromium to reduce power
loss but at the expense of reduced saturation and permeability
(Huppi, 1996).

An area of great interest is the introduction of low slab
reheat in the production process for grain-oriented material
(Fortunati, 2004). This route is compact and time saving,
and offers the opportunity to develop new thin or thick
products with a sharp Goss texture. Normal practice requires
a very high slab temperature prior to hot rolling to allow
the formation of precipitates essential in the Goss secondary
recrystallization process. Not only is the high-temperature
process energy demanding but it can also cause other
technical problems (Jenkins, 2004; Gunther, Abbruzzese,
Fortunati and Ligi, 2005).

A process that would significantly reduce manufacturing
cost of all electrical steels is thin strip casting. If casting
direclty from the melt to hot rolling thickness is successfully
implemented, it will result in an enhanced produce with the
extra benefit of the complete elimination of the high costs of
continuous casting, slab reheating, and hot rolling (Gunther,
Abbruzzese, Fortunati and Ligi, 2005).

Another major achievement to aim for in the produc-
tion of grain-oriented steel is the replacement of the high-
temperature box anneal, in which the secondary recrystal-
lization process occurs, by a continuous annealing process.
The continuous process has been demonstrated on the labo-
ratory scale as being technically feasible and is claimed to
have many benefits making it, together with strip casting, the
most innovative route for future generations of grain-oriented
steel products (Fortunati, 2004).

Major advances in coating technology for nonoriented
steels have been made over the last few years (Lindenmo,
Coombs and Snell, 2000). These have mainly been in the
areas of the use of more environmentally suitable materials,
better uniformity of coating composition and thickness, as
well as improved punching and welding characteristics.
Combined, these not only improve the basic magnetic
properties of the steel but also the building factors of machine
cores.

Although not directly a material property, it should be
noted that different grades of fully processed, nonoriented



Advanced soft magnetic materials for power applications 11

material have different sensitivities to deterioration of mag-
netic properties during material processing by the core
builder, which in some applications needs to be offset against
the magnetic benefits high alloy content brings (Schoppa,
Schneider and Wuppermann, 2000).

5 LOSS PREDICTION

Several approaches have been developed in attempts to pre-
dict losses of electrical steel laminations magnetized uni-
formly at a known sinusoidal flux density under ideal lab-
oratory conditions. The present status of some methods for
predicting losses in electrical steel laminations is summarized
in this section. To consider the even greater challenge of pre-
dicting losses of assembled electrical machine cores rather
than sheets or strips of material under ideal conditions, fac-
tors such as localized magnetization, stress, and temperature
need to be taken into account. These are described elsewhere
(Moses, 2004b).

Most methods of predicting losses of laminations under
given magnetizing conditions depend on knowledge of dc
B –H characteristics, conductivity, and thickness of the
material. In order to quantify the frequency dependence
of the loss, at least one value of loss at a given flux
density and magnetizing frequency is needed as a reference
condition. It is only possible to predict losses empirically
because of the complex material-structural factors, which
determine the magnitude of the hysteresis component of loss,
in particular.

A widely used approach is a statistical theory of domain
wall displacement based on a concept of magnetic objects
whose activity, together with the db/dt variation in a lami-
nation, is used in the loss prediction (Bertotti, 1988). The
magnetic objects are defined as regions of one or more
domain walls that move in a correlated fashion during ac
magnetization. The energy loss, Pp, predicted under sinu-
soidal magnetization using this approach can be written as

Pp = KhB̂f + π

6

2
σd2(B̂f )2 + 8.8

√
σGSVo

(
B̂f

)3/2
(7)

This is closely related to equations (1–3). The first term
represents the hysteresis, where the loss per cycle is assumed
to be independent of frequency. The second term is calculated
from Maxwell’s equations assuming homogeneous, isotropic,
linear material. The third term is calculated from the
Bertotti–Fiorillo model using a dynamic Preisach approach
which simulates the excess loss by a finite switching rate of
hypothetical magnetic dipoles (Bertotti, 1988). Measured or
known values of loss at two frequencies are needed to calcu-
late the terms Vo and Kh for a given material and magnetizing

conditions. The term G is a geometrical factor introduced in
the theory related to the eddy current density around moving
domain walls (Bertotti, 1998).

The same approach can be used to predict loss under non-
sinusoidal conditions provided the skin effect is negligible
(Fiorillo and Novikov, 1990). A further refinement enables
the same concept to be used to develop a general equation to
represent losses under highly distorted flux conditions such
as those occurring in devices operated under PWM excita-
tion without reference to loss under sinusoidal magnetization.
However, again the method neglects the skin effect and the
influence of minor B –H loops which may occur under dis-
torted flux waveforms, so the range of application is restricted
(Kaczmarek, Amar and Protat, 1996). The loss under such
distorted flux can be written as

Pd = KhB̂f +
2σd2

(
B̂

)
3m�τ

2

+ 4

√
2σSGVo

m
√

�τ

(
B̂

)3/2
(8)

where S is the cross-sectional area of the lamination, m is
its density, τ is a wave-shape-dependent constant, and G

and Vo are the material-dependent parameters that can be
calculated from measurement of loss under two sine wave
magnetization conditions.

It is claimed that the loss separation and analysis using
the concept of magnetic objects is a natural and general
consequence of the magnetization process (Fiorillo, 2004).
The approach apparently gives a good measure of relative
differences in loss versus frequency characteristics of various
materials, but use as a tool for loss prediction over the wide
range of magnetization conditions experienced in machine
cores needs to be fully demonstrated. Also, some doubt in
the approach exists because of the question over the validity
of the assumption of constant hysteresis loss per cycle (Ban,
1998).

Another approach is to obtain a voltage-driven solution
of the diffusion equation using a history-dependent hystere-
sis model (Zirka, Moroz, Marketos and Moses, 2002). A
transplantation method is used together with a model for
simulation of excess loss from the Landau–Lifshitz–Gilbert
equations for magnetic viscosity. Apart from the material
thickness and conductivity, the only other necessary input
data is a family of first-order dc B –H reversal curves and
one reference value of loss at a given frequency and peak
flux density, for example, 1.5 T, 50 Hz. A novel feature is the
use of a parameter enabling accurate reproduction of the fre-
quency dependence of the excess loss. The model is claimed
to include constants which can be directly related to the
material microstructure and it is claimed to predict losses in
nonoriented and grain-oriented material to within 2% of the
measured values (Marketos, Moroz, Moses and Zirka, 2002).
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A similar approach based on the viscosity principle is to
use a dynamic hysteresis model together with a 2-D magnetic
potential finite element formulation. This models static B –H

loops, traditional eddy currents, and anomalous loss. It has
been used to predict the B –H trajectory and hence the
losses for an electrical steel lamination with PWM excitation.
Good agreement with experimental results has been claimed
(Leonard, Marketos, Moses and Lu, 2006).

Other methods are based on predicting loss at a given flux
density, magnetizing frequency, and waveform from prior
measurements taken over a specified range of magnetizing
conditions on Epstein strips, single sheets, or wound toroidal
cores. Artificial neural networks have been used for this
purpose to predict loss or permeability of toroids wound
from grain-oriented steel with uncertainty typically less than
5% over a wide magnetization range (Moses and Leicht,
2004). This approach would be of maximum utility if it were
combined with a method to go a stage further and predict
localized losses in machine cores. It does require a large
amount of training data over a wide range of magnetization
conditions, compositions, and thicknesses to make it of any
real practical use.

A recently developed mathematical approach is based on
linear relationships found experimentally between loss mea-
sured under sinusoidal flux density and that under PWM
waveforms with a given total harmonic distortion (THD) at
the same fundamental frequency (Moses and Leicht, 2005).
Again, as with neural network approaches, a series of mea-
surement data under sinusoidal flux conditions is necessary
as a starting point. However, the formation of the polyno-
mial linear equations linking loss under PWM conditions to
that under more readily accessible sinusoidal conditions for
a given material composition and thickness avoids the need
to produce data under the complex waveforms.

6 IRON POWDER CORE MATERIAL

There is an increasing interest in SMC materials because
of the demand for miniaturization of cores for power elec-
tronic applications. For very high-frequency operation, ferrite
cores are the main option based on cost and performance in
spite of their low saturation magnetization and permeability.
However for dc, and increasingly medium frequency, oper-
ation, there is growing use of cores formed by compacting
iron, silicon iron, and other iron alloy powders. The compo-
sitions of commercial composite cores are essentially similar
to those of common conventional bulk materials but each has
a broader range of potential applications due to the possibil-
ity of true 3-D electromagnetic design and higher frequency
operation than is feasible using even thin laminations.

Grain size, sintering temperature, and the degree of
porosity need to be carefully controlled in order to optimize
structure-sensitive properties such as maximum permeability
and low coercive force. The dc magnetic properties of hot-
pressed, high-purity, atomized iron powder compacts can
be as good as or better that those of conventional high-
purity iron (Moyer, McDermott, Topolski and Kearney,
1980). Such sintered products are not normally suitable
for ac applications since eddy currents will normally be
excessive. However for dc applications, the careful control
of sintering conditions, in particular, leads to products with
high permeability and low coercivity which could satisfy
growing demands for tighter specifications and complex core
shapes for electromagnetic actuators for use in transport and
industrial sectors (Taylor, Mingard and Bell, 1998).

During the 1990s, advances in powder production and
powder metallurgy, in general, drew more attention to mag-
netic powder cores suitable for ac applications because of
their potential for use in novel 3-D topologies for electri-
cal rotating machines offering performance or cost advan-
tage over conventional laminated cores. Magnetic powder
parts, today, are produced from high-purity powder parti-
cles each covered by insulating organic or inorganic coat-
ings, which cause a barrier to global eddy current paths
under ac magnetization. The coated powder particles, typ-
ically of 0.1-mm diameter, are mixed with less than 1%
volume of binding material prior to conventional com-
paction into near-final-shape components. This is followed
by low temperature (typically 150 ◦C) curing to cross-link
the resin binder and produce high mechanical strength. The
binding material acts as a lubricant in the pressing pro-
cess and increases the mechanical strength of the composite
core. Often a final anneal at 300–500 ◦C is carried out to
develop the best combination of strength and magnetic prop-
erties. Such materials are referred to as soft magnetic com-
posites or sometimes, although misleadingly, bonded iron
cores.

The insulating coating on the powder particles in SMCs
eliminates particle-to-particle eddy current paths hence min-
imizing eddy current losses, but it reduces the permeability
and to a small extent the saturation magnetization. Internal
stress caused by particle deformation during compaction is
the main cause of dominant hysteresis loss in SMCs but a
subsequent anneal can reduce this. Care is needed in com-
paction and annealing to avoid breaking down the particle
coatings, otherwise eddy current loss increases.

The choice of the alloying element controls the resistiv-
ity of the individual powder particles, hence the local eddy
current loss. Low resistivity material is used for dc appli-
cations but alloys with inherent high resistivity are needed
to minimize eddy current loss for high-frequency opera-
tion. Permeability and coercivity are structure sensitive and
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depend on factors such as powder size and shape, porosity,
purity, and internal stress just as for sintered materials. Gen-
erally the permeability of a bulk SMC can be expressed as
(Yanagimoto, Majima, Sunada and Aikawa, 2004)

µ ∝ Bn
s

aK + bσλ
(9)

where Bs is the saturation induction, λ is the magnetostric-
tion, K is an anisotropy factor, σ is the internal stress;
a, b, and n are constants whose values depend on the mate-
rial. The internal compaction stress in metallic powder cores
is much higher than in ferrites and tends to dominate over
the anisotropy. Fine powder can lead to composites with con-
stant permeability/frequency characteristics and lower loss at
high frequency than course powder, but the course powder
composites generally have higher permeability and saturation
induction.

Powder shape and size affects the final magnetic properties
of an SMC and many combinations have been tried. One
interesting approach for making high-performance SMCs has
been demonstrated using anisotropic properties of elongated
particles pressed by a conventional powder metallurgical
process. The particles, up to over 5 mm long, are either coated
or uncoated for ac and dc use, respectively (Bularzik, Krause
and Kokal, 1998). Figure 10 shows the variation of core
loss with flux density and frequency of such coated powder
compacts compared with that of phosphorus- and silicon-
bearing steel laminations. Figure 10(a) shows that even at
60 Hz, where the eddy current loss of the powder core is
only 5% of the total compared to 50% in nonsilicon steel, the
material could be efficient in power frequency applications
such as PWM systems where high harmonic flux is present.
The low eddy current loss of the powder core makes its high-
frequency loss lower than that of the high-silicon material
as can be seen in Figure 10(b). The loss characteristics do
depend on the particle size and the ratio of their length to
width/thickness as well as on the material density, which
in turn depends on the thickness of the insulating coating.
As with most SMCs, the compact needs to be annealed
to reduce the high hysteresis loss caused by pressing-
induced strain within particles without thermally breaking
down the particle coating. The material, although apparently
technically feasible, has not been produced commercially.

Figure 11 shows the variation of loss with frequency in
other types of annealed and unannealed SMCs compared to
that of a pure iron grade 1018 lamination with the same loss
at 0.5 T, 50 Hz (Persson, Jansson, Jack and Mecrow, 1995).
At magnetizing frequencies higher than 300 Hz, the loss of
the laminated steel exceeds that of the SMCs. In general,
SMCs are competitive in performance with laminated steels
in the frequency range from 50 Hz to 100 kHz. In another
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Figure 10. Loss variation with flux density (a) and frequency (b)
of pressed iron powder material compared to that of phosphorous
(CRML) and silicon (M-19) bearing steels at 60 Hz. (Reproduced
from J.H. Bularzik et al., 1998, with permission from EDP Sciences.
 1998.)

example, it is quoted that the loss of coated iron powder
composites is normally significantly higher than that of
electrical steel at magnetizing frequencies up to around
1 kHz, but in the range 10–100 kHz it is considerably less
(Goldman, 1995). Unfortunately, the permeability is not high
at any magnetizing frequency and more development is
needed to overcome this problem if the material is to make
an impact in a wider range of electrical machine applications
(Persson, Jansson, Jack and Mecrow, 1995).

Table 2 compares dc B –H data of two iron SMCs from
different sources with lamination materials (West, 1998).
This illustrates the much larger permeability of conventional
steel compared with that of the SMCs, and shows that the
difference does drop at high flux density. Table 3 compares
losses of similar materials with that of a higher-specification
nonoriented steel over a wide frequency and flux density
range (West, 1998). For the ‘degraded’ lamination, the
performance data includes an allowance to estimate the
degradation of the lamination properties when built into a
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Table 2. Comparison of dc fields (A m−1) to
produce given flux density in SMC powder cores
with those of typical electrical steel laminations.

Flux density 1 T 1.5 T 1.75 T 2 T

Somaloy 500 3 13 30 86
Accucore 1.4 4.8 10.7 n/a
Typical laminations 0.1 0.4 5 n/a

core due to punching shorts and rotational loss. It is perhaps
more practicable to use these ‘degraded’ lamination figures
rather than ideal laboratory data when comparing lamination
performance with that of SMCs. At 400 Hz, the loss of one
SMC is comparable with that of the high-grade lamination.

It can be appreciated from this snapshot comparison of
permeability and losses that if SMCs are to compete with
laminations in electrical machine applications, their 3-D
properties must be exploited, since magnetic characteristics
of laminations at low to medium frequency are generally
better. Hence, the main advantage of such powder parts
is the possibility for machine designers to fully exploit
3-D flux paths in machine topologies aimed at producing
cores with unique electromagnetic properties combined with
low material and manufacturing costs, good dimensional
tolerances, and satisfactory temperature stability (Jansson,
Persson, Jack and Mecrow, 1996). The magnetic and thermal
properties are claimed to be isotropic and therefore very
suitable for such 3-D topologies (Jansson and Persson, 1998).

Figure 12 shows an example where the 3-D versatility of
the SMC is used in the design of a complex three phase
claw pole, brushless motor incorporating permanent magnet
material together with the SMC to optimize a complex,
magnetically efficient, flux path where use of laminations
would be impracticable (Viarouge, 2004).

It is interesting to note that the acoustic noise output of
powder cores can be less than that of equivalent laminated
assemblies (Cros, Perin and Viarouge, 2002). Another poten-
tial advantage of SMCs is that an integrated approach to the
design of electrical machine core and windings can be taken
to facilitate manufacturing as well as to increase the scope for
novel topologies due to thermal as well as electromagnetic
options. End-of-life recycling also becomes more convenient
as it is easier to separate copper and iron powder parts when
an SMC is used. It is important when comparing the effec-
tiveness of SMC cores with that of a conventional lamination
assembly, for any machine core application, that full use is
made of the novel features and opportunities offered by SMC
parts, which would not be realized fully by direct substitution
of one for another.

Loss predictions in powder cores should be made with due
regard to the very different structure compared to electrical
steels, in particular, the 3-D nature of the materials, which
makes equation 2 invalid and the eddy current path in the
material more complex. A monotonic decrease of resistivity

Figure 12. Complex 3-D geometry of core parts for a claw pole
motor. (Reproduced from P. Viarouge, 2004, with permission from
the UK Magnetics Society.  2004.)
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Table 3. Comparison of losses (W kg−1) at various flux density/frequency (T Hz−1) combinations in SMC cores and lamination
steels.

T Hz−1 1/60 1/100 1/400 1.5/60 1.5/100 1.5/100 1.75/60 1.75/100 1.75/400

Somaloy 500 (SMC) 10 18 100 19 35 205 n/a n/a n/a
Accucore SMC 5.2 9 44 10 17 90 12 21 n/a
0.4-mm lamination 3.5 n/a n/a 8.7 n/a n/a 12 n/a n/a
0.4-mm degraded 7.5 n/a n/a 17.1 n/a n/a 24 n/a n/a

lamination
0.5-mm polycore 2.0 4 40 3.5 10 101 7 20 n/a
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Figure 13. Schematic illustration of relationship between resistiv-
ity and eddy currents in SMC material. (Reproduced from Saito
et al., 2005, with permission from IEEE.  2005.)

with annealing temperature and variation of eddy currents
with core size has been postulated to be due to the break-
down of surface insulation (Saito, Takemoto and Iriyama,
2005). It is assumed that two kinds of eddy currents are
present as illustrated in Figure 13: firstly, circulating within
the individual insulated particles and secondly, circulating
around clusters of particles.

Any model for predicting the ac magnetic properties
of SMCs must take account of the frequency dependent
skin depth and the two eddy current mechanisms referred
to earlier. Until now, no empirical approach has been
reported which will take these accounts into effect. To make
consistently accurate predictions of losses in SMC cores over
a wide magnetizing range, models capable of accounting
for core shape and size dependence of eddy current loss in
complex geometries will be needed. It has not been necessary
for these to be included in the development of models for
predicting losses in thin laminations because of their 2-D
nature.

One approach to loss prediction in SMCs assumes losses
can be separated into hysteresis and eddy current compo-
nents. The eddy current loss is separately calculated by finite
element analysis (FEA) for a homogeneous isotropic core
with known resistivity and combined with a Steinmetz model
which estimates the basic hysteresis component (Nord, Pen-
nander and Jack, 2004). Unexplained size dependence of
eddy current loss was observed in the eddy current simu-
lation, which might be related to the micro and macro eddy
current paths being followed simultaneously at some fre-
quencies. The FEA approach does lead to close agreement
between measured and predicted results but the calculations
depend on fitting arbitrary material constants into the expres-
sion for the hysteresis component, so the physical basis of
the approach is not clear.
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1 INTRODUCTION

Binary and ternary intermetallic compounds between rare-
earth (RE) elements, such as samarium (Sm) and neodymium
(Nd) with transition metals (TMs), like cobalt (Co) and/or
iron (Fe), and with boron (B) have become the basis for a
wide spectrum of RE permanent-magnet materials. A large
number of phases have been synthesized, exhibiting different
stoichiometries and a variety of crystal structure types
since the 1970s. In many cases, their physical properties
turned out to be of the high technical importance and
these compounds are manufactured on an industrial scale.
The Sm–Co phases, which also show a variety of crystal
structure types, have been studied for more than 40 years
and have recently become of interest for the high-temperature
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permanent-magnet applications. Belonging to another family
of phases, which has been intensively studied for more
than 20 years, are the RE2TM14B (Herbst, 1991) and
RETM12−xXx with X = Ti, V, Si (Buschow, 1988).

The unique magnetic properties of the RE series from lan-
thanum to lutetium plus yttrium result from the incomplete
filling of the 4f shell. The 4f orbitals are rather compact
and well localized on the atom and there are both spin and
orbital contributions to the magnetic moment. The orbital
moment leads to the behavior of uniaxial magnetocrystalline
anisotropy, which is indispensable for the development of
magnetic hysteresis. Magnetic interactions between the local-
ized 4f electrons are weak and the RE metals themselves
have low Curie temperatures. By combining them with one
of the ferromagnetic 3d elements where the magnetic 3d elec-
trons occupy the outermost orbitals of the atom and interact
strongly, it is possible to combine the advantages of 4f and
3d magnetism. The particular RE element needed for uni-
axial anisotropy is determined by the symmetry of the site
it occupies in the crystal structure. High-performance mag-
nets are based on compounds of the magnetic light RE (Pr,
Nd, Sm) for anisotropy and a 3d TM element (Co, Fe) for
high magnetization and high Curie temperature. The most
promising phases are SmCo5, Sm2(Co,Fe)17, Nd2Fe14B and
Sm2Fe17N3.

Up to now a large number of RE–TM intermetallic com-
pounds are known and have been investigated intensively by
many authors. The complex interactions of the 3d and 4f
electrons lead to a wide range of intermetallics with differ-
ent stoichiometries and variable RE elements that modify the
magnetic properties of the 3d TM and 4f RE elements. Basic
concepts related to the intrinsic magnetic properties of the
3d-rich RE–TM intermetallic compounds are summarized
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in various review articles (Franse and Radwanski, 1993;
Buschow, 1986). Buschow (1977) surveys the physical prop-
erties, composition, and crystal structure of intermetallic
compounds formed between RE elements and 3d transition
elements. Apart from binary compounds the results of pseu-
dobinary series are also considered. The magnetic properties
determined by the exchange interactions involving 4f as well
as 3d electrons, are discussed together with experimental
results available on magnetovolume effects and various reso-
nance techniques such as nuclear magnetic resonance (NMR)
and the Mössbauer effect.

However, the excellent intrinsic properties, such as large
magnetocrystalline uniaxial anisotropy, high saturation mag-
netization and Curie temperature are not the only prerequi-
site for high-quality permanent magnets. The coercive field,
remanence and maximum energy product depend also sen-
sitively on microstructural properties such as grain size,
particle shape, grain boundary type, and the distribution
of secondary phases. Magnetic and microscopic investiga-
tions of permanent magnets show that microstructural fea-
tures affect the magnetic properties of permanent magnets
in a characteristic manner (Fidler, Knoch, Kronmueller and
Schneider, 1989; Rabenberg, Fidler and Bernardi, 1992;
Hirosawa and Tsubokawa, 1990; Khlopkov et al., 2004;
Gutfleisch et al., 2006; Kronmüller, Durst and Sagawa,
1988). In addition to these experimental studies, the the-
oretical treatment of microstructural effects is beneficial
for the improvement of permanent magnets. The theoreti-
cal background for the study of magnetization processes in
ferromagnetic materials is the continuum theory of micro-
magnetics (Brown, 1963, 1978). Micromagnetic calcula-
tions show that microstructural effects considerably dete-
riorate the coercive field of single hard magnetic particles
and grains (Schrefl, Schmidts, Fidler and Kronmuller, 1993;
Kronmüller, 1987; Kronmüller and Schrefl, 1994; Schmidts
and Kronmüller, 1991). Besides the magnetic behavior of
the individual particles and grains also the intergrain inter-
actions determine the magnetic properties of nucleation-
controlled hard magnetic materials (Martinek and Kron-
mueller, 1990; Pastushenkov, Forkl and Kronmueller, 1991;
Fukunaga and Inoue, 1992). Static computational micro-
magnetics of demagnetization processes in nanoscaled per-
manent magnets (Fischer and Kronmüller, 1996) quantita-
tively predicts experimental results (Manaf, Buckley and
Davies, 1993). The expansion and pinning behavior of mag-
netic domains strongly depends on the intrinsic properties of
the various phases and precipitates in the multiphase mag-
nets, such as in the Sm(Co,Cu)5/Sm2(CoFe)17-type magnets
(Goll, Kronmuller and Stadelmaier, 2004; Streibl, Fidler and
Schrefl, 2000; Scholz et al., 2003; Hadjipanayis et al., 2000).

A combination of the intrinsic properties of the material,
such as saturation polarization Js, magnetic exchange, and

magnetocrystalline anisotropy of various phases and the
influence of the microstructure on the magnetization rever-
sal process governs the hysteresis properties of the magnets.
The intergranular structure between the grains plays a signifi-
cant role determining the magnetic properties, thus a detailed
understanding of the microstructure and grain boundaries
is necessary. The microstructural features directly influence
magnetic domain structures, which are a result of the occur-
rence of magnetic stray fields. The direct observation of
microstructure and magnetic domain structure leads to a
deeper insight of the reasons for coercivity of RE mag-
nets. Advanced analytical methods, such as high-resolution
electron microscopy, force microscopy, position sensitive
3D-atom probe and other techniques have been used to study
RE magnets. Modeling of magnetic materials is performed
at various levels and becomes more important as computer
power is improved. Nowadays, numerical 3D-micromagnetic
simulations of the magnetization reversal process incorpo-
rate realistic microstructures. Advanced analytical investi-
gations and future simulations should be able to predict
optimal microstructures and properties for given hard and
soft magnetic materials (Fidler and Schrefl, 2000). Special
emphasis of the present review is laid on the discussion of
the extrinsic magnetic hysteresis properties that are related
to the microstructure of the various types of RE perma-
nent magnets. The crystal structures of the most important
RE–Co and RE–TM–B compounds as basis for permanent
magnets are described in Chapter 2 “Crystal structures and
magnetic properties of RE-Co intermetallics” and Chapter 3
“Crystal structures and magnetic properties of RE-TM-B
intermetallics”, whereas Chapter 4 “Microstructure and coer-
civity of rare-earth permanent magnets”, describes the role of
microstructure on the hysteresis properties, such as coercive
field and energy density product of Sm–Co and Nd–Fe–B-
based permanent magnets.

2 CRYSTAL STRUCTURES AND
MAGNETIC PROPERTIES OF RE–Co
INTERMETALLICS

The large values of coercivities of RE–Co and
RE–(Co,Fe)–B intermetallics derive from the uniaxial
magnetocrystalline anisotropy. The RE atoms provide most
of the magnetocrystalline anisotropy, while the magnetiza-
tion arises principally from the TM sublattice. Investigations
of magnetization and anisotropies of promising candidates
for permanent-magnet materials by Strnat and coworkers led
to the discovery of large magnetocrystalline anisotropies of
RECo5 compounds with the hexagonal CaCu5 crystal struc-
ture (Hoffer and Strnat, 1966, 1967; Strnat et al., 1967). For
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these compounds in which the 4f shell has a nonzero orbital
magnetic moment, theoretical analyses demonstrated that
the behavior of the RE ion under the combined influence of
the exchange and crystalline electric field controls the easy
magnetization direction and accounts for much of the large
uniaxial anisotropy (Buschow, van Diepen and de Wijn,
1974; Sankar et al., 1975; Hummler and Faehnle, 1996)

The metallic phases present in the Sm–Co-based perma-
nent magnets are all derivative of the binary intermetallic
phases appearing in the Sm–Co binary phase diagram. For
the understanding of the metallurgical behavior and the mag-
netic properties of these magnets, it is therefore essential to
understand the alloying behavior and crystal structure of the
compounds appearing in the Sm–Co binary system. The dif-
ference between the atomic radii of the Sm atom (0.1994 nm)
and the Co atom (0.1383 nm) precludes, according to the
Hume–Rothery rules (Cahn, 1996) any significant solid sol-
ubility between the two types of atoms. This results in the
appearance of a series of intermetallic compounds in the
binary phase diagram for different ratios of the Sm–Co con-
centrations. The phases that are important for Sm–Co-type
magnets appear in the region of high Co concentration. The
Sm–Co5 phase occurs at 83.3 at% of Co and Sm2Co17 phase
occurs at 89.5 at% of Co. The Co-rich side of the Sm–Co
binary phase diagram shows that both phases, SmCo5 and
Sm2Co17, exhibit no solubility at room temperature although
some solubility region can be observed at higher temper-
ature above 800 ◦C (Strnat, 1988; Buschow and van der
Goot, 1968). Besides this fact also the Sm2Co7 phase has
to be taken into account in the preparation of single-phase
SmCo5 alloys. The homogeneity range for SmCo5 phase
at 1200–1300 ◦C has been reported to exist between about
14.5 and 17 at% of Sm (Buschow and van der Goot, 1968).
Almost no solubility of excess Sm exists in the SmCo5 phase
even at higher temperature. In the case of the Sm2Co17 phase
a homogeneity range is obtained toward an excess of Sm
at higher temperature, while almost no solubility of excess
Co can be observed at any temperature. This behavior is
explained in terms of the crystallographic structure consid-
erations for both phases.

Several other RE–TM lattices are derived from RETM5

by judicious replacement of RE and TM atoms (Buschow,
1971). These include the RETM2 (cubic Laves phase;
MgCu2-type) structure formed by the extremely magne-
tostrictive compounds (Clark, 1993), the RETM3 (rhom-
bohedral; PuNi3-type) structure, the RETM12 (tetragonal;
ThMn12-type) structure characterizing a class of magnetically
anisotropic materials such as REFe10TM2 (de Boer, Ying-
Kai, de Mooij and Buschow, 1987; de Mooij and Buschow,
1988) and the rhombohedral RE2TM17 (Th2Zn17-type) struc-
ture. Representatives of the rhombohedral RE2TM17 class
include the hard-magnet compound Sm2Co17 including the

interstitial nitride phase Sm2Fe17N3 exhibiting a large high
Curie temperature (TC ≈ 750 K), a large room-temperature
magnetization, and uniaxial anisotropy (Coey and Sun,
1990).

According to the binary Sm–Co phase diagram six
ordered intermetallic compounds: SmCo2, SmCo3, Sm2Co7,
Sm5Co19, SmCo5, Sm2Co17 appear in the composition range
67–89 at% Co: (Massalski, 1990). The crystal structure
of the binary Sm–Co phases are summarized in Table 1.
The Sm2Co7 and SmCo5 exist as hexagonal structures with
the P 63/mmc and the P 6/mmm space group symmetries,
respectively. The Sm2Co17 phase occurs in two modifica-
tions, as the rhombohedral structure (R3m symmetry) and
the hexagonal structure (P 6/mmc symmetry).

Other RE elements form also isomorphic structures of type
CaCu5. This RECo5 structure is formed by the two types
of layers one formed solely of Co atoms and another mixed
layer formed by RE and Co. This layer stacks in a hexagonal
sequence giving a unit cell as shown in Figure 1.

The RECo5 structure of CaCu5 is a result of an ordered
substitution of Co atoms by RE atoms in the hexagonal close-
packed (hcp) Co structure (Khan, 1973). Hexagonal close-
packed structures are formed by the alternate stacking of
layers in two different positions ABABAB. . .. By replacing
three Co atoms, which form an almost equilateral triangle,
by an RE atom the RECo5 structure is formed. This
transformation is described by

3Co(B) + 5Co(A) ⇒
−1Co(B)

−2Co(A)

+1RE(A)

2Co(B) + 3Co(A) + RE(A)

≡ RECo5 (1)

As a result of this substitution the interlayer distance
diminishes with respect to the pure hcp structure. The change
of the interlayer distance is explained by the different atomic
radii of the various RE elements. The normal shrinkage
with increasing atomic number inside the series is found,
corresponding to a smaller radio of the involved RE atom.
This explains the different tendency of the various RE atoms
to form disordered stacking sequences and leading to planar
stacking faults and twin boundaries.

The crystal structures from the SmCo2- until the SmCo5-
phase are closely related with each other and are based on
a regular stacking of two kinds of layers, one is a layer of
SmCo2-Laves phase structure and the other is that of SmCo5.
For compounds between RETM5 and TM, a fully ordered
structure is derived from the 1:5 compound by replacing
some RE atoms with TM-atom pairs. The two-index formula
for the expected compositions was derived by Stadelmaier
(1984):

REm–nTM5m+2



4 Hard magnetic materials

Table 1. Crystal structure data of binary Sm–Co compounds. (Reprinted with permission Buschow
et al., copyright 1968, Elsevier.)

Compound Lattice constant (nm) Structure type Space group Space group number

Sm3Co a = 0.7090 Fe3C Pnma 62
b = 0.9625
c = 0.6342

SmCo2 a = 0.5050 MgCu2 Fd3m 227
Sm5Co2 a = 1.6282 Pd5B2 C2/c 15

b = 0.6392
c = 0.7061

SmCo3 a = 0.5050 NbBe3 R3m 166
c = 2.4359

Sm2Co7 a = 0.5047 Ce2Ni7 Pb3/mmc 194
c = 2.4326

Sm5Co19 a = 0.5035 Ce5Co19 R3m 166
c = 4.8450

SmCo5 a = 0.5002 CaCu5 P6/mmm 191
c = 0.3964

Sm2Co17 a = 0.4856 TbCu7 P6/mmm 191
c = 0.4081

Sm2Co17 a = 0.8360 Th2Ni17 Pb3/mmc 194
c = 0.8515

Sm2Co17 a = 0.8395 Th2Zn17 R3m 166
c = 1.2216

SmTiCo11 a = 0.8406 ThMn12 I4/mmm 139
c = 0.4730

z = 1

z = 1/2

z = 0

Sm atoms

Co atoms

Figure 1. SmCo5 crystalline structure, hexagonal, hP6, CaCu5

structure type, a = 0.5002 nm, c = 0.3964 nm, P6/mmm.

where m is the number of RETM5 units making up the
new structure, and n is the total number of RE atoms being
replaced.

From the technical point of view only compounds with a
Curie temperature exceeding 400 ◦C are of interest. From the
possible Sm–Co binaries, this is only fulfilled for Sm2Co7,

Sm5Co19, SmCo5 and Sm2Co17 (Strnat, 1988). In view of
their richer cobalt content and, hence, higher magnetization
the RE2Co17 compounds were also heavily investigated
as hard-magnet materials. The light RE members of the
series have the rhombohedral Th2Zn17 structure, which is
closely related to the CaCu5 structure. In contrast to the
RECo5 series, the cobalt sublattice in the RE2Co17 phases is
characterized by basal plane rather than uniaxial anisotropy,
and the total anisotropy is lower (Radwanski, Franse and
Sinnema, 1985). The size difference between the Sm and
Co atoms makes the solubility of additional Sm in this
structure difficult. Pairs of Co atoms, on the other hand, can
substitute Sm in the SmCo5 structure to some extent. The
substitution of Sm atoms occurs when pairs of Co atoms
forming dumbbells replace the Sm position. When Sm atoms
are randomly substituted by Co pairs, a disordered Co-rich
phase sometimes referred as an SmCo7 structure of type
TbCu7 (P 6/mmm) is formed (Khan, 1973). When 22% of
the Sm atoms have been substituted by Co pairs, the TbCu7

structure becomes unstable and a phase separation occurs
into the two nearest phases, SmCo5 and Sm2Co17 structures.

The Sm2Co17 in its two modifications is the result of the
ordered substitution of 1/3 of the Sm by two Co atoms
lying above and below the former Sm position (Figure 2).
If the stacking for the mixed planes follows an ABABA. . .

hexagonal sequence, the Th2Ni17 structure is formed. If the
stacking follows an ABCABC. . . sequence, the Th2Zn17
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(b) Hexagonal structure

z = 1

z = 1/2

z = 3/4

z = 1/4

z = 0

Sm atoms

Co atoms

(a) Rhombohedral structure

z = 1

z = 5/6

z = 2/3

z = 1/2

z = 1/3

z = 1/6

z = 0

Figure 2. Sm2Co17 structures. (a) rhombohedral, hR19, Th2Zn17structure type, a = 0.8395 nm, c = 1.2216 nm, R3m and (b) hexagonal,
hP38,Th2Ni17 structure type, a = 0.8360 nm, c = 0.8515 nm, P63/mmc.

structure is formed (Figure 3). In order to compare the
structures SmCo5, SmCo7, Sm2Co17-R and Sm2Co17-H, the
lattice parameters of each structure is related to each other
according (Figure 4).

c1:5 = c1:7 = 1

3
c2:17R = 1

2
c2:17H (2)

a1:5 = a1:7 = 1√
3
a2:17R = 1√

3
a2:17H (3)

With the random substitution of Sm atoms by Co pairs
a linear increase of the c parameter is found while the
a parameter reduces slightly (Khan, 1973). In the RECo5,
structure the RE atoms give the main contribution to the
valence electron density. As more Sm atoms are substituted
by Co pairs the number of valence electrons reduces,
while the reduced volume of the cell increases. The order
transformation that leads to the Sm2Co17 structure can be
viewed as result of the better packing obtained by the
Sm2Co17 structure compared to the corresponding disordered
TbCu7-type structure.

The occurrence of a particular stacking sequence deter-
mines the stable phase at room temperature in the SmCo-
magnets and therefore has important significance on the
magnetic properties of the magnet. It has been found by
Khan (1973) and Ray (1986) that in the Sm–Co binary phase
diagram, Sm2Co17 hexagonal Th2Ni17 does not really occur
even at high temperatures and instead a TbCu7 disordered
structure is formed.

[0001]

C

C

B

B

B

BB

A

A

A

AA

{1120}

(a) Rhombohedral (b) Hexagonal

(c)

A

B

C

Figure 3. Stacking sequences for the (a) Th2Zn17 type structure,
(b) Th2Ni17 structure. (c) A view along the c direction showing the
different stacking positions.
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a2:17

a1:5

Figure 4. Basal plane of the unit cells of SmCo5 and the Sm2Co17

crystal structures.

The occurrence of a particular stacking sequence in a
layer structure is explained in terms of energetic differences
between two stacking configurations. Blandin, Friedel and
Saada (1966) have shown that long-range oscillatory forces
occur in metallic crystals that are related to the valence
electron density. For a closed-packed structure, the different
modifications only differ in the order of stacking of identical
layers. This allows considering only the energy difference
between closed-packed layers in different stacking environ-
ments. The difference between the energies should be enough
to determine the stable stacking sequence.

Any mistake in the stacking sequence of an otherwise
perfect ordered Sm2Co17 layer structure will lead to a
stacking fault and changes the crystallographic dependent
properties around the fault. In Sm2Co17-R structure, the
stacking planes are the (0001)-basal planes. When one layer
of the basic structural unit is missing from the normal
sequence, an intrinsic stacking fault is formed as shown in
Figure 5. From the stacking fraction, the intrinsic stacking
fault leads to the appearance of a hexagonal sequence of one
unit cell height running as a platelet with normal parallel
to the c axis. If instead of a missing layer, the stacking
fault originates from the addition of one layer of the basic
structural unit to the normal sequence, an extrinsic stacking
fault is formed as shown Figure 6. In this case, the extrinsic
stacking fault can lead to the formation of a hexagonal
sequence running perpendicular to the c direction. Coherent
twinning formed by a multiple shearing operation on the
(0001) plane with the displacement vector 1

3

[
1010

]
also

occurs, which leads to a hexagonal platelet (Figure 7).
Efforts to improve the magnetic properties of the Sm2Co17

drove to the use of different substitutions for part of the
Co and Sm in the magnet. To understand the effect of the
substitutions in the magnetic properties of the magnet, an
understanding of the anisotropy and magnetization mecha-
nism of the Sm2Co17 magnet is necessary. In SmCo5 magnets
the Co sublattice gives an important contribution to the total
magnetic anisotropy, favoring the easy-axis anisotropy of
the structure. In the case of Sm, the RE sublattice con-
tributes significantly to the easy-axis anisotropy observed.

[0001]

[1100]

C

C

C

B

B

B

B

A

A

A

Twin plane

Twin plane

C

Figure 5. Intrinsic stacking fault formed by the missing of one A
layer. It should be noted that, in this case, a hexagonal sequence
CBC is formed with one unit cell height (Estevez-Rams, 1996).
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C

C

C
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B

A

A
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Figure 6. Extrinsic stacking fault formed by the addition of a B
layer. In this case also a hexagonal stacking sequence BAB is
formed (Estevez-Rams, 1996).

As temperature rises the Co contribution prevails since Sm
sublattice contribution is rapidly diminished with tempera-
ture. The formation of the previously described dumbbells
by substituting Sm by Co pairs, the easy-axis anisotropy
decreases owing to the dumbbell contribution to easy plane
anisotropy. The Sm sublattice is responsible for a strong
contribution to the uniaxial anisotropy in Sm2Co17 (Kumar,
1988).

Iron has been used to improve the saturation magnetiza-
tion of the Sm2Co17 magnets. One Fe atom is thought to
preferentially substitute one Co at the dumbbell site (Perkins
and Fischer, 1976; Nagamine, Rechenberg and Ray, 1990).
The increased substitution of Co by iron results in a precip-
itation of a Co–Fe phase and in a loss of coercivity (Perry
and Menth, 1975). It is also known that Sm2Fe17 has an
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Figure 7. Coherent twinning formed by a mirror operation over
a C layer. This defect also leads to a hexagonal sequence BCB
(Estevez-Rams, 1996).

easy-plane anisotropy (Kumar, 1988). The Fe in the dumbbell
site has a strong negative exchange interaction, which also
causes a large expansion of the c axis with Fe content (Ray,
1986). The addition of a small amount of Zr has been found
to favored a higher amount of Fe without the precipitation
of the Co–Fe phase detrimental for the magnetic proper-
ties (Ojima, Tomizawa, Yoneyama and Hori, 1977). There is
an on-going discussion about the exact behavior of Zr in the
Sm2Co17 magnets. Although it has been argued that Zr enters
substituting the Sm, it is somehow accepted that Zr is substi-
tuting Co, but the exact Co position where Zr goes is still sub-
ject to discussion. Rabenberg et al. (1991) argues, based on
extended X-ray-absorption fine-structure spectroscopy that
Zr goes to the mixed plane substituting the 12j Co position.
On the other hand, Ray has argued that in Fe-doped Sm2Co17

magnets, Zr-vacancy pairs substitute the Fe–Fe dumbbells,
based on size considerations (Ray, 1986) and in indirect evi-
dence from Mössbauer spectroscopy (Nagamine, Rechenberg
and Ray, 1990). Neutron and X-ray experiments directly
support this idea showing a preference of Zr for the 6c
dumbbell site (Ying-chang et al., 1985). Satyanarayana, Fujii
and Wallace (1982) reported an alloy of Sm2Co17Zr1 having
the 2:17-H hexagonal modification with lattice parameters
a = 0.8558 nm c = 0.8123 which corresponds to an inter-
layer distance of 0.2031 nm. This interlayer distance is
below the same value for the rhombohedral structure in
the Sm2Co17-R. The substitution of the Co–Co dumbbell
site by a pair of Zr-vacancies will reduce the overall inter-
layer distance in spite of the larger size of the Zr atom
compared with the Co one. The distance of the Co dumb-
bell from the mixed layer is influenced by the interaction
between the Co pair. A Zr-vacancy pair will lie closer to

the mixed plane and a smaller interlayer distance should be
expected. From the analysis already made of the stability
of the Sm2Co17 hexagonal and rhombohedral modification,
the diminishing of the interlayer distance could well explain
the transformation from the rhombohedral to the hexagonal
structure upon the addition of Zr. The influence of Zr in
the valence electron concentration and the modification of
the Fermi surface and band structure could also influence
the observed behavior. In commercial Sm2Co17-type mag-
nets, a platelet phase enriched in Zr appears upon a lengthily
heat treatment precipitated inside the Sm2Co17 rhombohe-
dral matrix (Mishra et al., 1981). Fidler and Skalicky (1982)
have indexed such phase as the hexagonal Sm2Co17 struc-
ture with Zr substitution. This hexagonal structure agrees
with the former analysis and appears as a result of the ener-
getic favoring of the hexagonal stacking. The later being
a result of the reduction of the interlayer distance with
the substitution of the dumbbell site by Zr-vacancy pairs
according to Ray proposal. Zr substitution also increases the
anisotropy field (Satyanarayana, Fujii and Wallace, 1982),
which is a further evidence that Zr could be substituting
the Co dumbbell. The Co pair is responsible for favoring
the easy plane anisotropy in the Sm2Co17 structure (Kumar,
1988).

Cu improves the coercivity of the Sm2Co17 magnets
inducing the precipitation of a fine scale microstructure
formed by cells of Sm2Co17-R surrounded by a SmCo5

wall (Livingston and Martin, 1977). The improvement in
coercivity is associated to a pinning mechanism on the cell
walls (Nagel, 1979). Cu is considered to be completely
soluble in SmCo5 and an isostructural SmCu5 is known
(Nishida and Uehara, 1974; Katayama and Shibata, 1973).
Others have reported a decomposition into two 1:5 structures
(Hofer, 1970). Careful studies of the phase diagram for the
ternary Sm–Co–Cu system were carried out by Perry (1977),
who demonstrated that Cu stabilizes the SmCo5 structure
changing the peritectic line for the SmCo5 to a eutectic one.
He also found that Cu inhibits the appearance of Sm2Co17

phases. Little solubility of Cu in this structure is also been
shown. The destabilization of the Sm2Co17 structures with
Cu can be a result of the transformation of the band structure
and valence electron density upon the addition of Cu in the
Sm2Co17 material. The binary phase diagram of Fe–Cu and
Co–Cu shows little to no solubility of Cu in Co and Fe. The
later, has been taken as indication that the atoms of Cu and
Fe have a repulsive interaction.

Real Sm2Co17 magnets are complex system formed by
at least five components and with a complicated metallur-
gical behavior. Figure 8 shows a heavily faulted rhombohe-
dral Sm2(Co,Fe)17 matrix phases. The magnetic properties
of these magnets strongly depend on the composition and
processing conditions of the alloy. Morita and coworkers
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Figure 8. TEM images showing the heavily faulted regions
within the rhombohedral Sm2(Co,Fe)17 matrix phase in a
Sm(Co,Fe,Cu,Zr)7.5 hard-magnet material.

have studied the Sm(Co, Cu, Fe)z and Sm(Co, Cu, Fe, Zr)z
phase diagrams (Morita, Umeda and Kimura, 1987). Accord-
ing to their result, it is obvious that with the increase of Zr
the homogeneity range of the Th2Ni17 hexagonal structure
increases. The extension of the homogeneity range for the
2:17 phase in both sides of the stoichiometry 10.5 at% Sm,
while observing that with the increase of Sm, the Th2Ni17

structure transforms to the disordered TbCu7. At the solution-
izing temperature the alloy is in a disordered TbCu7 state.
This state is a complex state retaining the R3m symmetry
but with random occupation of dumbbell sites by TM pairs,
Zr-vacancy pairs and excess Sm atoms. Such metastable
state can be retained by a sufficiently quick cooling from
the solutionizing temperature in order to avoid the segre-
gation of more energetically favorable equilibrium phases
upon cooling. The step aging allows the precipitation of a
1:5 cell boundary phase enriched in Cu, while precipitating
a Zr-rich platelet phase believed to be a Th2Ni17 hexag-
onal structure. The cell phase is a Sm2Co17-R, Th2Zn17,
Fe enriched phase. The platelet phase and the cell bound-
ary phase are believed to be formed cooperatively, acting
the platelets as diffusion path for the Cu. The binary phase
diagram shows no solubility of Co in Fe this indicates an
unfavorable mixing enthalpy for both atoms and a repulsion
interaction. We therefore believe that the platelet Th2Ni17

phase where Fe dumbbell pairs are substituted by Zr-vacancy
pairs can effectively act as diffusion path. The platelet cell c

parameter was determined by Fidler, Skalicky and Rothwarf
(1983) to be 0.8 nm. In the rhombohedral structure, were
Fe–Fe pairs occupy the dumbbell site, the repulsive interac-
tion between Fe atoms and Cu atoms impedes an effective
diffusion of Cu.

3 CRYSTAL STRUCTURES AND
MAGNETIC PROPERTIES OF
RE–TM–B INTERMETALLICS

Besides the binary phases also ternary RE–TM intermetallic
compounds are candidates for hard magnetic phases. Consid-
erable technological interest has centered on RE2Fe14B com-
pounds because of their excellent intrinsic properties, such as
saturation magnetization and magnetocrystalline anisotropy
over Sm–Co materials. Practically magnets with energy
products up to the 450 kJ m−3 (≈ 56, 7 MG Oe) range, have
been prepared from melt-spun (Lee, Brewer and Schaffel,
1985; Croat, 1989) and sintered (Sagawa et al., 1987; Kaneko
and Ishigaki, 1994; Rodewald, Wall, Katter and Uestuener,
2002) alloys. The spectrum of applications for Nd–Fe–B
magnets continues to expand. On the scientific side, the exis-
tence of an entire RE2Fe14B series has stimulated a great deal
of research on their properties and the physics underlying
those properties (Herbst, 1991).

The ternary Nd–Fe–B phase diagram was investigated by
Schneider, Henig, Petzow and Stadelmaier (1986) follow-
ing investigations of Stadelmaier, Elmasry, Liu and Cheng
(1984) and Matsuura et al. (1985). The original nominal
composition for the preparation of Nd2Fe14B-based sintered
permanent magnet is Nd15Fe77B8 (Sagawa et al., 1984a,c)
which is richer in Nd than the stoichiometric composition
of the hard magnetic phase Nd2Fe14B. This composition
lies in the liquid plus Nd2Fe14B plus Nd1+εFe4B4 region.
The crystal structure of Nd2Fe14B is a tetragonal phase
belonging to space group P 42/mnm with crystal parame-
ters a = 0.88 nm and c = 1.21 nm whose crystallographic
unit cell is shown in Figure 9 (Fuerst, Herbst and Alson,
1985; Herbst, Croat and Yelon, 1985). The excess of Nd in
the starting material is provides the liquid Nd-rich phase at
sintering temperature which enables the densification of the
magnet by liquid phase sintering process. The phase forms
an intergranular nonmagnetic phase during the cooling pro-
cess, which magnetically decouples the Nd2Fe14B grains.
According the ternary phase diagram a third phase is formed
which is Nd1+εFe4B4(P 42/ncm, tP328, a = 0.7117 nm,
c = 3.507 nm). This phase is detrimental to the hard mag-
netic properties of the magnet due to the further reduction
of remanence and originating strong internal demagnetizing
stray fields.

Comparable hard magnetic properties can be also obtained
with Pr2Fe14B, but the Nd compound has received more
attention as a magnet material, because it has higher satura-
tion magnetization leading to higher remanence and energy
density product. Table 2 compares the saturation magnetiza-
tion Js, anisotropy field HA, easy direction of magnetocrys-
talline anisotropy and Curie temperature TC of the RE2Fe14B
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Figure 9. Crystal structure of the Nd2Fe14B phase (tetragonal,
P42/mnm tP68).

Table 2. Intrinsic magnetic properties of RE2Fe14B-compounds at
room temperature (Herbst, 1991).

Alloy Js(T) HA(kA m−1) Anisotropy direction Tc(K)

La2Fe14B 1.38 1600 [001] 530
Ce2Fe14B 1.17 2080 [001] 424
Pr2Fe14B 1.56 6000 [001] 565
Nd2Fe14B 1.60 5840 [001] 585
Sm2Fe14B 1.52 >12000 <100> 616
Gd2Fe14B 0.89 1920 [001] 661
Tb2Fe14B 0.70 17600 [001] 620
Dy2Fe14B 0.71 12000 [001] 598
Ho2Fe14B 0.81 6000 [001] 573
Er2Fe14B 0.90 640 <100> 554
Tm2Fe14B 1.15 640 <100> 541
Yb2Fe14B 1.20 [001] 524
Lu2Fe14B 1.17 2080 [001] 535
Y2Fe14B 1.41 2080 [001] 565
Th2Fe14B 1.41 2080 [001] 481

compounds (Herbst, 1991). It is obvious that all, except the
Sm, Er, and Tm compounds show easy-axis anisotropy at
room temperature.

In addition to the similarities with simpler TM-metalloid
materials, many structural parallels exist between RE2Fe14B

and other RE–TM systems. Analogies with the hexagonal
CaCu5 structure characterizing the permanent-magnet com-
pound SmCo5 and a variety of other RE–TM phases
include the hexagonal arrays of Fe atoms in R2Fe14B are
the cognates of the TM arrays in RETM5. Both form
hexagonal prisms enclosing the RE atoms. Givord, Li and
Moreau (1984) have emphasized that the B and Fe sites
of RE2Fe14B correspond to the TM and RE sites, respec-
tively, in RETM5. Given the similarities of RETM5 and
RE2Fe14B on the one hand and of RETM5 and RE2TM17

on the other, it is not surprising that many parallels exist
between RE2Fe14B and RE2TM17, especially the presence
of hexagonal TM nets surrounding RE atoms in each
structure.

The RE2Fe14B structure has been found to form with
yttrium, thorium, and all the rare-earth elements except
europium and radioactive promethium (Herbst, 1991). Lattice
parameter measurements show that the effect of the lan-
thanide contraction, the decrease in the radii of the trivalent
lanthanide ions with increasing atomic number, is appar-
ent in the decrease of the clattice parameter through the
RE (La–Lu) series. As the atomic number increases, the
addition of another electron to the 4f shell does not com-
pletely screen the larger nuclear charge, and the radius
of the RE ion contracts. The crystallographic work on
Nd2Fe14B and neutron studies indicate that the nuclear
position parameters change minimally through the series.
Only two families of Nd2Fe14B-type compounds are known
in which Fe or B is totally replaced by another ele-
ment, namely, RE2Co14B (Buschow, van Noort and de
Mooij, 1985) and RE2Fe14C (de Boer et al., 1988). Par-
tial substitution of RE, Fe, or B with maintenance of the
RE2Fe14B structure is possible with many other elements,
and RE2Fe14BHC and RE2Co14BHx interstitial hydride series
exist (Cadogan and Coey, 1986; Gutfleisch and Harris,
1996).

4 MICROSTRUCTURE AND
COERCIVITY OF RARE-EARTH
PERMANENT MAGNETS

Magnetic materials and their applications have been known
for many centuries. Nowadays permanent magnets are used
in numerous domestic and professional appliances such as
consumer electronics, computer peripherals, and telecommu-
nications. The growing demand for miniaturization in modern
technology requires the further development of permanent
magnets. Smaller and stronger permanent magnets allow the
construction of small devices by replacing electromagnets or
less powerful permanent magnets.
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The increase in applications of permanent magnets goes
hand in hand with the discovery and development of progres-
sively more powerful permanent magnets during this century.
The most common figure of merit for the performance of a
permanent magnet is the maximum energy density product
(BH)max, which is proportional to the magnetic field that is
produced outside a unit volume of magnetic material. Thus
(BH)max is a measure for the potential to reduce the size and
weight of a magnetic device. The greater (BH)max the smaller
the magnet to produce a field of a given value. The enormous
reduction in the size of permanent magnets achieved owing
to the discovery of new classes of materials that exhibit
increasing (BH)max values. The resulting magnetic field in
the air gap Hag is direct proportional to the volume of the
magnet Vm and the stored energy density product (Bm · Hm)

and indirect proportional to the volume of the air gap Vag

according to

Hag ≈
√

Vm · (Bm · Hm)

µ0 · Vag
(4)

A magnet should be shaped for the most efficient use in
such a way that its operating point is close to the (BH)max

point. It is evident that the increase of the energy density
product reduces besides the volume also the weight of the
permanent magnet-containing device, and new designs of
static, such as charged beam guiding systems, and dynamic
devices are possible.

Besides the Curie temperature, the energy density prod-
uct, also the remanence that determines the maximum flux
density within the air gap of a magnetic circuit and the
coercive field are necessary to distinguish and describe dif-
ferent permanent-magnet materials. For practical applications
also the temperature coefficients of the remanence and the
coercive field are important parameters, which considerably
vary in different types of magnets. The RE–intermetallic
phases with a high uniaxial magnetocrystalline anisotropy,
such as SmCo5, Sm2Co17 and Nd2Fe14B are the basis for
high-performance RE magnets (Strnat et al., 1967; Sagawa
et al., 1984a; Croat, Herbst, Lee and Pinkerton, 1984b;
Herbst, 1991). Sm–Co magnets exhibit the highest coer-
cive fields JHC and Nd2Fe14B-based magnets show the
highest value of remanence Br and energy density prod-
uct (BH)max, obtained so far. RE magnets are divided into
the group of the so-called single-phase, nucleation-controlled
magnets, based on the SmCo5 or Nd2Fe14B hard magnetic
phases, and into the group of domain wall pinning con-
trolled, multiphase magnets. Two-phase magnets, which are
nowadays also used in high-temperature advanced power
applications consist of a continuous Sm(Co,Cu)5–7 cellular
precipitation structure within a Sm2(Co,Fe)17 matrix phase.
Nanocrystalline RE magnets exhibit microstructures of

Table 3. Comparison of the magnetocrystalline anisotropy K1,
saturation polarization Js, the maximum theoretical energy density
product (BH)th

max, and Curie temperature TC of the most important
rare-earth–intermetallic compounds for hard magnets.

Hard phase K1(MJ m−3) Js(T) (BHth
max) (kJ m−3) TC( ◦C)

Nd2Fe14B 4.9 1.61 516 310
Sm2Fe17N3 8.9 1.54 472 477
SmCo5 17.0 1.05 219 727
Sm2Co17 3.9 1.30 336 916

single-phase, two-phase, and multiphase character, in which
the inhomogeneous magnetization behavior near the inter-
granular regions creates remanence enhancement. Table 3
compares the magnetocrystalline anisotropy K1 and satura-
tion polarization Js together with the maximum theoretical
energy density product (BH)th

max and Curie temperature of
the most important RE–intermetallic compounds for hard
magnets.

In Hoffer and Strnat (1966) discovered a new family of
magnetic materials for permanent magnets that showed an
extremely high magnetocrystalline anisotropy, an important
requirement for obtaining a high coercivity. The new family
of material based on RECo5 was the first family of the
RE–intermetallic magnets. For the RECo5, the most impor-
tant representative was SmCo5. In RE–intermetallic magnets
the RE provides mainly the magnetocrystalline anisotropy
necessary for achieving high coercivities, while the TM
mainly raises the magnetization. A second family of RE–TM
magnets was soon discovered being the main representative
Sm2Co17. The increase of Co in the Sm2Co17 compared with
the SmCo5 compound had the advantage of raising the mag-
netization, but the crystalline anisotropy lacked behind the
SmCo5, efforts were then directed to raise the coercivity
of magnets based on such compound in order to increase
the (BH)max energy product. The coercivity was improved
by a time consuming and complex heat treatment, after the
addition of minor amounts of Cu and Zr that also allowed
the raise of the magnetization by the substitution of part
of the Co by Fe. A review on Sm–Co-based permanent-
magnet material based on RE–Co is given by Strnat (1988)
and Kumar (1988). The expensiveness of Co together with
the scarcity of Sm led to efforts toward the substitution
of both elements, Fe was the best candidate due to its
larger contribution to magnetization than Co. This leads in
1983 to the discovery of a new family of materials show-
ing large magnetocrystalline anisotropy and therefore good
candidates for permanent magnets. The new material dis-
covered by Sagawa et al. (1984b,c), Croat, Herbst, Lee and
Pinkerton (1984a,b), and Hadjipanayis, Hazelton and Law-
less (1983) was based in the ternary compound Nd2Fe14B
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and large energy products, higher than 360 kJ m−3 at room
temperature, was achieved in 1984. Nowadays the maxi-
mum energy density product of Nd2Fe14B-based permanent
magnets have been gradually increased to values exceed-
ing 450 kJ m−3 (Kaneko, 2000; Rodewald, Wall, Katter and
Uestuener, 2002, 2003; Khlopkov et al., 2004). Figure 10
shows the increase of the maximum energy density prod-
uct together with the increase of coercive field achieved
during the last 100 years. It should also be noted that the
low Curie temperature of the Nd2Fe14B hard magnetic phase
strongly determines the maximum application temperature of
the magnet.

The characteristic property of permanent magnets is the
magnetic ‘hardness’, the extent to which the material retains
its magnetization in opposing fields. A measure for the mag-
netic hardness is the coercive field JHC, which has been
drastically increased by the invention of the RE-based perma-
nent magnets (Figure 10). To obtain a large energy product,
both a high coercive field and a high spontaneous magneti-
zation are required. Magnetic hardening is either obtained
by shape anisotropy or by magnetocrystalline anisotropy.
Permanent magnets up to the beginning of this century
had consisted mainly in magnetic steels containing cobalt,
carbon, tungsten additives and exhibited a low coerciv-
ity and low-energy products. In 1930, the Alnico magnets
with (BH)max were introduced, made mainly of a com-
bination of nickel, cobalt, and aluminum while in 1950
the ferrites were developed with a lower coercivity than
the Alnico magnets but also at a lower production cost.
The magnetic hardness of Alnico magnets (Enz, 1982;
Kneller, 1962) originates from shape anisotropy. They are
based on the precipitation of elongated ferromagnetic FeCo
particles in a less magnetic AlNi matrix. The magnetocrys-
talline anisotropy of Ba hexaferrites (Rathenau, 1953) is
considerably larger than the shape anisotropy of Alnicos.

Because of their high coercive field and their low price,
they are the most commonly used magnets nowadays.
A disadvantage of the ferrites is their small spontaneous
magnetization. Excellent candidates for high-quality mag-
nets are RE–TM compounds where the RE component
accounts for the high magnetocrystalline anisotropy and
the TM provides a high magnetization. Sintered mag-
nets based on Sm–Co compounds show excellent mag-
netic properties (Strnat, 1988). Because of the higher con-
tent of cobalt, the spontaneous magnetization also increases
and therefore the energy density product of Sm2Co17-
based magnets is even higher than the one of SmCo5

magnets. Nd2Fe14B-based magnets exhibit a large uniaxial
anisotropy as well as a high spontaneous magnetization that
leads to the largest energy density products measured so
far.

The direction of magnetization of a permanent magnet
can be reversed either continuously, through coherent or
incoherent rotation processes, or discontinuously, through
dynamic domain processes. The coercivity is determined by
the easiest of these processes. In modern RE permanent
magnets, the magnetization rotation is impeded by the
magnetocrystalline anisotropy. The nucleation field (Stoner
and Wohlfarth, 1948)

Hnuc = 2K1

Js
(5)

determines the maximum coercivity. As the coercive field of
a real magnet is limited by the fact that the grain diameter
exceeds the theoretical single-domain diameter, it is clear
that the magnetization reversal process is controlled by the
nucleation and expansion of reversed magnetic domains and
not by rotation processes only.
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Figure 10. Historical development of the maximum energy product (BH)max and the coercive field JHc in permanent-magnet materials
since 1900. The low Curie temperature TC of the Nd2Fe14B limits the maximum operating temperature of Nd–Fe–B-type magnets.
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The coercive field of the so-called nucleation-controlled
magnets, such as SmCo5 and Nd2Fe14B-type, is well-
described by the universal relation (Kronmüller, 1987;
Sagawa and Hirosawa, 1987)

µ0Hc = µ0
2K1

Js
α − NeffJs (6)

The first and second terms of equation (3) represent
modified magnetocrystalline and demagnetizing fields, where
α and Neff correspond to microstructural parameters that
describe the effect of the microstructure on these effective
fields and which in turn may depend on the intrinsic material
parameters. The parameter α mainly describes the reduction
of the nucleation field due to lattice defects or the disorder at
the grain surfaces (Kronmüller and Fähnle, 2003), whereas
Neff, accounts for the effective demagnetizing factor by
internal enhanced stray fields at the grain edges and corners.
Both effects lead to a reduction of Hc.

If the coercive field obeys the condition

|JHc| ≥ 1

2 · µ0
· Jr (7)

the maximum energy density product depends only on the
remanence Jr assuming a perfectly squared demagnetization
curve of the magnet, and is given by:

(B · H)theor.
max = 1

4 · µ0
· J 2

r (8)

In this case, the residual flux density Br = Jr is expressed
as the following equation:

Jr = Js · ρ

ρ0
· Vhm · Fhm = Js · ρ

ρ0
· Vhm · cos θ (9)

where, Js is the saturation magnetization of the hard magnetic
phase (1.61 T), Vhm and Fhm are the volume fraction and the
degree of alignment of the hard magnetic grains, respectively.
In order to enhance Jr and therefore the energy density
product, it is necessary to avoid pores and to densify the
magnets up to the theoretical value ρ0, increase the volume
fraction Vhm and achieve a high degree of alignment Fhm.
The theoretical value of the maximum energy product of
Nd2Fe14B-based magnets is calculated to be 516 kJ m−3

(64 MG Oe) assuming 100% perfect alignment and 100%
volume fraction of the hard phase. The origin of this magnetic
property lies in the Nd2Fe14B ternary tetragonal compound as
a main phase. In addition, according to the ternary Nd–Fe–B
phase diagram this magnet also contains a certain amount of
Nd1.1Fe4B4-phase and an Nd-rich phase, which is essential
for sintering with liquid phase. In order to densify the
magnets up to the theoretical density, it is very important to

control the composition of magnets thus generating sufficient
amount of liquid phase at sintering. Furthermore, controlling
the volume fraction of the constituent phases is indispensable
for enhancing the residual flux density (Br) and to keep the
intrinsic coercivity (JHc) stable.

4.1 Nucleation-controlled rare-earth magnets

The coercive field of SmCo5- and Nd2Fe14B-based mag-
nets is determined by the high uniaxial magnetocrystalline
anisotropy as well as the magnetostatic and exchange inter-
actions between neighboring hard magnetic grains. The
long-range dipolar interactions between misaligned grains
are more pronounced in large-grained magnets, whereas
exchange coupling reduces the coercive field in small-grained
magnets. The basic microstructural feature of polycrystalline
SmCo5- or Nd2Fe14B-based magnets is the individual hard
magnetic grain with its size, shape, and orientation param-
eters. The ideal microstructure of the so-called single-phase
magnets consists of aligned single-domain hard magnetic
particles. Strictly speaking, in reality these magnets show
a complex, multiphase microstructure with various types of
intergranular phases according to their phase diagram and
phase relations. The amount of each phase and their dis-
tribution within polyphase materials are perhaps the most
complex of the microstructural parameters. The occurrence
of the multiphase microstructure is one of the reasons why
the coercive field of the magnets according to the mag-
netocrystalline anisotropy field of the hard phase, such as
30.7 MA m−1 for SmCo5 and 6.05 MA m−1 for Nd2Fe14B, is
never reached in practice.

The microstructure of single-phase, anisotropic SmCo5-
type magnets consists of grains oriented parallel to the align-
ment direction. Most of the SmCo5 grain interiors show a
low defect density. The grain diameter exceeds the theo-
retical single-domain size and is in the order of 5–10 µm.
Besides SmCo5-grains also grains with densely packed, par-
allel stacking faults perpendicular to the hexagonal c axis are
observed. Such basal stacking faults correspond to a trans-
formation of the SmCo5-crystal structure into the Sm-rich
Sm2Co7 and Sm5Co19 structure types. Using high-resolution
electron microscopy together with X-ray microanalysis, the
different polytypes and structural modifications of these
Sm-rich phases are characterized. Incoherent precipitates
with diameters up to 0.5 µm were identified as Sm2O3- or
CaO-inclusions. In SmCo5-type sintered magnets, the coer-
civity is determined by the nucleation field of reversed
domains which is lower than the coercive field of a magnet-
ically saturated particle with a single-domain structure and
nucleation by the expansion field of the reversed domains.
The nucleation of reversed domains takes place in regions
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with low magnetocrystalline anisotropy. RE-rich precipitates
mainly deteriorate the JHc of the final magnet. The reason
for the formation of these phases is due to the addition of a
RE-rich sintering aid phase before the sintering process. The
coercivity can be improved by adding small amounts of TM
powders or TM oxides. Transmission electron micrographic
(TEM) studies shows that the chemical composition, the size
distribution and the impurity content (oxygen content) of the
starting powder material are important factors for the mag-
netic properties of SmCo5-type sintered magnets. For lower
cost magnets samarium is partly substituted by a mixture
of cerium-mischmetal elements or for improved magnetic
properties by praseodymium, thus three groups of SmCo5-
type sintered magnets are distinguished, (CeMM,Sm)Co5

with low Js, and (BH)max, SmCo5 with high JHc and
(Pr,Sm)Co5 with high (BH)max values. Microstructural inves-
tigations on sintered magnets of the type (CeMM,Sm)Co5

and (Pr,Sm)Co5 showed similar results as in the case of
SmCo5 sintered magnets. The corresponding X-ray spectra
of the different phases showed a mixture of RE elements due
to their ratio of the nominal composition of the magnet.

High-performance Nd2Fe14B-based permanent magnets
are produced with different composition and various pro-
cessing techniques, which influence the complex, multi-
phase microstructure of the magnets, such as size and shape
of grains, the orientation of the easy axes of the grains,
and the distribution of phases. Formation and distribution
of the phases are determined by the composition of the
magnets and the annealing treatment. Especially grain size
and the alignment of the grains strongly depend on the
processing parameters. Grain sizes in the range between
10 and 500 nm are obtained by melt-spinning, mechanical
alloying, and the HDDR (hydrogenation-disproportionation-
desorption-recombination) process (Harris, 1992). Sintered
and hot worked magnets exhibit grain sizes above 1 µm. The
powder metallurgical sintering route is the most important
preparation technique for RE permanent magnets and con-
sists of the following production steps: melting of the alloy
under vacuum, crushing, milling, alignment in magnetic field,
pressing, sintering, annealing, machining, and coating.

The processing route of the magnet strongly influences
the grain size and grain size distribution. The coercive
field in sintered magnets strongly depends on the sintering
parameters, such as temperature and time. Nanocrystalline
and submicron magnets are obtained by the melt-spinning
route, or by mechanically alloying, or by the HDDR process
(Harris, 1992; Cadogan and Coey, 1986). Hot pressing
and die upsetting of Nd–Fe–B ribbon materials reveals
a densely packed, anisotropic magnetic material. Platelet-
shaped grains with diameters less than 1 µm are observed
by TEM-investigations. The degree of orientation of the
platelets, which are stacked transverse to the press direction

100 nm

Figure 11. Microstructure of a melt-spun MQ3-type Nd14Fe72

Co7B6Ga1 magnet (Jr = 1.32 T, JHc = 1241 kA m−1).

with the easy c axes perpendicular to the face of each grain,
determines the remanence and coercive field of the magnet
(Mishra, 1987). The degree of alignment, size and shape of
the grains, and the intergranular regions within the ribbons
control the macroscopic magnetic properties. Die upsetting
modifies the spheroidal grains after hot pressing to platelets
as shown in the TEM images of Figure 11. Misaligned
grains, which are clearly visible, deteriorate the remanence.
The c axis for each grain runs perpendicular to the straight
elongated edge. Nd-rich phase is found among the platelet-
shaped grains as a fine layer between the straight edges or as
pockets at the end of the platelets or between the misaligned
and aligned grains. On the other hand, the magnets with a
lower remanence show a microstructure with more equiaxed
grains. In most of the melt-spun magnets regions with
abnormally grown, large grains were found. Some of these
grains were fully developed, platelet-shaped grains.

Substituent and dopant elements influence the microstruc-
ture, coercivity, and corrosion resistance of advanced
(Nd,S1)-(Fe,S2)-B:(M1,M2) magnets. The replacement of
the Nd-rich intergranular phase by secondary phases formed
after doping by M1 and M2 type elements improves the cor-
rosion resistance, especially in large-grained magnets. The
multicomponent composition of the magnets leads to the
formation of nonmagnetic and soft magnetic phases. Gen-
erally, two types of substituent elements, which replace
the RE element or the transition element sites in the hard
magnetic phase, and two types of dopant elements are dis-
tinguished (Fidler and Schrefl, 1996). Substituent elements
mainly change the intrinsic properties such as spontaneous
magnetic polarization, Curie temperature, and magnetocrys-
talline anisotropy. Depending on the type, the dopant ele-
ments, which show a low solubility within the hard magnetic
phase, form additional intergranular rare-earth-containing or
boride phases. These phases change the coupling behavior
between the hard magnetic grains. Nonmagnetic intergranular
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phases eliminate the direct exchange interaction and also
reduce the long-range magnetostatic coupling between the
hard magnetic grains; both effects lead to an increase of the
coercive field. On the other hand, the decrease of the vol-
ume fraction of the hard magnetic phase within the magnet
decreases the remanence. Insufficient temperature stability
and poor corrosion resistance are the main factors limiting
applications of Nd2Fe14B-based magnets. Secondary non-
magnetic phases, which replace the Nd-rich intergranular
phase, considerably improve the corrosion resistance and are
of great technological interest.

Nd–Fe–B-based permanent magnets with a composi-
tion close to Nd15Fe77B8 exhibit a complex multiphase
microstructure. According to the ternary phase diagram at
least three equilibrium phases occur, the hard magnetic
Nd2Fe14B phase, the boride phase Nd1+εFe4B4 and the low
melting Nd-rich phase. Other phases, such as Fe-rich and
Nd oxides, and pores are found depending on the compo-
sition and processing parameters. Selected substituent ele-
ments replace the Nd atoms (S1 = Dy,Tb) and the Fe atoms
(S2 = Co,Ni,Cr), respectively, in the hard magnetic phase
and considerably change intrinsic properties, such as the
spontaneous polarization, the Curie temperature and the mag-
netocrystalline anisotropy. The formation of intermetallic,
soft magnetic Nd-(Fe,S2) phases, such as the Laves type
Nd(Fe,S2)2-phase, deteriorate the coercivity of the magnets.
If dopant elements M1 or M2 are added to Nd–Fe–B, in
some cases the coercivity is increased and the corrosion resis-
tance is improved. This is the case, if the Nd-rich intergran-
ular phase is replaced by other phases, such as AlNd6Fe13

and Nd3Co. Our previous, systematic TEM-studies per-
formed on sintered, melt-spun, mechanically alloyed, and
hot worked magnets have shown that two different types of
dopants can be distinguished independently of the processing
route. Both types influence the microstructure in a differ-
ent way (Bernardi, Fidler and Fodermayr, 1992; Bernardi
and Fidler, 1994). Type 1 dopants (M1 = Al, Cu, Ga) form
binary M1–Nd or ternary M1–Fe–Nd phases, and Type 2
dopants (M2 = Ti, Zr; V, Mo; Nb, W) form binary M2–B
or ternary M2–Fe–B phases. The processing route of the
magnet strongly influences the grain size and grain size dis-
tribution. The coercive field in sintered magnets strongly
depends on the sintering parameters, such as temperature and
time. Nanocrystalline and submicron magnets are obtained
by the melt-spinning route, or by mechanically alloying, or
by the HDDR process (Nakayama et al., 1994; Buschow,
1988; Gutfleisch and Harris, 1996). Hot pressing and die
upsetting of Nd–Fe–B ribbon materials reveals a densely
packed, anisotropic magnetic material. Platelet-shaped grains
are observed by TEM-investigations. The degree of orienta-
tion of the platelets, which are stacked transverse to the press
direction with the easy c axis perpendicular to the face of

each grain, determines the remanence and coercive field of
the magnet.

Nd–Fe–B sintered magnets possessing outstanding mag-
netic properties have developed into a major permanent-
magnet material in the 20 years since their invention. The
drastic increase of the energy density product of newly
developed Nd2Fe14B-based magnets enabled the invention of
many new applications of permanent magnets. In the conven-
tional powder metallurgical sintering process it is very impor-
tant to keep the processing atmosphere either in a vacuum
or in an inert gas because RE elements such as Nd, Pr, and
Dy, which are essential for fabrication of Nd–Fe–B mag-
nets are easily oxidizable. Several authors have reported to
obtain Nd2Fe14B-based magnets with energy density product
>440 kJ m−3 (Kaneko, 2000; Fidler, Sasaki and Estevez-
Rams, 1999; Rodewald, Wall, Katter and Uestuener, 2002,
2003) by keeping the oxygen content low (Sagawa et al.,
1987), using the powder mixing technique (Otsuki, Otsuka
and Imai, 1990), increasing the magnetizing field and reduc-
ing the pressure during compaction (Endoh and Shindo,
1994) or using the rubber isostatic pressing (RIP) technique
to improve the orientation of the particles in the green com-
pact to obtain sintered magnets with perfect orientation.
The increasing demand for highest energy density mag-
nets (>400 kJ m−3), especially for voice coil motors in hard
disc drives and for magnetic circuits for magnetic resonance
imaging devices, needs an efficient manufacturing process
for Nd2Fe14B sintered magnets with improved energy den-
sity product. A new technology–RIP–has been developed by
Sagawa and Nagata (1993) and Sagawa, Nagata, Itatani and
Watanabe (1994) to improve the orientation of the particles
in the green compact to obtain sintered magnets with perfect
orientation. RIP is one of the key technologies to approach
for the theoretical limit, 64 MG0e at room temperature, of the
magnets based on Nd2Fe14B. In RIP, magnet powder is sub-
jected to such a strong ulsed field just before the compaction
that the powder in the rubber mold is thoroughly oriented.
Then the powder is compacted isostatically, while the ori-
entation is completely held. In the conventional die pressing
that uses no rubber molds, the pressure applied to the powder
is uniaxial. The uniaxial pressure tends to disturb the orien-
tation of the particles during the pressing. To prevent this
orientation disturbance, the powder has to be subjected to
a strong magnetic field throughout the pressing. This is one
of the reasons why a pulsed field cannot be adopted for the
conventional die pressing. The high orientation of the magnet
produced by RIP is attributed to the application of a strong
pulsed field that dissolves the agglomeration of the magnet
powder particles, and then, impulsively orients the particles
by isostatic pressing that holds the orientation high during the
pressing. The misalignment of the hard magnetic grains with
a diameter of 2–5 µm is in the best case in the order <14 ◦C.
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The oxygen content of the magnets has to be reduced from
values of 4000–6000 ppm to a value <1000 ppm. A high
oxygen content is one limiting factor to decrease the Nd-
content in order to improve the volume fraction of the hard
magnetic phase. The squareness of the demagnetization curve
and the coercive field drastically decreases as abnormal grain
growth (AGG) of the Nd2Fe14B grains occurs (Rodewald,
Wall, Fernengel and Rodewald, 1997).

Remanence and energy product increase with decreasing
Nd-content, whereas the coercive field shows its highest
value at a high Nd-content. In the case when the oxygen
content of the magnets was determined to be in the order
of 4000–6000 ppm, a large part of the Nd was bound in the
stable phase Nd2O3 phase. This is the why below 14 at% Nd
density and hard magnetic properties of the magnets dras-
tically deteriorated in magnets with a high oxygen content.
On the contrary, low oxygen content can cause the AGG
and lower the magnetic properties. The influence of oxy-
gen on the hard magnetic properties is more complex. Kim,
Camp and Stadelmaier (1994) reported that a controlled dop-
ing with oxygen improved grain alignment and resulted in an
increase in remanence, coercivity, and loop squareness. One
possibility to improve the alignment factor is to optimize the
alignment field and/or pressure during transverse pressing.
Even the sintering process influences the degree of align-
ment of the grains (Chin et al., 1988). On the other hand,
several authors (Fernengel et al., 1996; Sagawa, Nagata,
Itatani and Watanabe, 1994) found that isostatic die press-
ing (θ = 11–14 ◦C) yields highest alignment followed by the
transverse field die pressing (18–20 ◦C) and the axial field
die pressing (25–27 ◦C). The demagnetization curve of an
optimized magnet with (BH)max>430 kJ m−3 and a low oxy-
gen content and a composition of Nd13.5FebalB5.95Cu0.03Al0.7

is shown in Figure 5 and the corresponding TEM image
is shown in Figure 6. The magnets produced were sintered
between 960 and 1100 ◦C. The sintering temperature was
varied to get optimum density (7.5–7.6 g cm−3) and (BH)max.
The density of the samples and the remanence increased with
increasing sintering temperature keeping the sintering time
constant (3 h), while the squareness of the demagnetization
curve only partly increased and drastically decreased as AGG
of the Nd2Fe14B grains occurred (Livingston, 1996). AGG
of the Nd2Fe14B grains occurred preferentially in magnets
with low oxygen content. The oxygen content strongly affects
the AGG and the magnets with higher oxygen content have
the higher critical temperatures at which the AGG occurs.
Figure 6 shows that the microstructure mainly consists of
Nd2Fe14B grains of several microns in diameter. Only a few
Nd-rich phases are found as intergranular phases, especially
at grain boundary junctions.

Numerical micromagnetic simulations have shown that
the grain boundary phases influence the coercive field

significantly (Süss, Schrefl and Fidler, 2000). The finite
element simulations confirm the experimental results that
nonmagnetic Nd-rich phases at grain boundary junctions
increase the coercive field. Microstructural studies have
characterized the complex multiphase microstructure of
Nd2Fe14B-based permanent magnets (Fidler and Knoch,
1989). Two types of grain boundaries have been found in
sintered magnets. Depending on the composition, both, grain
boundaries free of any intergranular phase and also Nd-rich
phases separating hard magnetic grains have been identified.
Figure 12 shows a typical grain boundary junction, with only
a thin layer of intergranular phase. In doped sintered magnets,
the dopant element is partly dissolved in the hard magnetic
phase. In the case where the solubility of the dopant is low
at the sintering temperature (Nb, Mo, Zr), precipitates are
formed. Dopants also form new intergranular phases and
influence the wetting of the liquid phase and the smoothness
of the surface Nd2Fe14B-grains during sintering and therefore
affect the coercivity. Intergranular phases change the cou-
pling behavior of the hard magnetic grains. Distorted grain
boundary phases with reduced magnetocrystalline anisotropy
favor the formation of reversed domains. The composition
of these phases can be influenced by substituent and dopant
elements (Bernardi, Fidler and Fodermayr, 1992). For a per-
fect microstructure the calculated coercive fields agree well
with the Stoner–Wohlfarth theory (Stoner and Wohlfarth,
1948). The most misoriented grain, which has the largest
angle between the easy axis and the alignment direction,
determines the coercive field. The coercive field decreases
with increasing misalignment. The values of the calculated
coercive field are about 5–10% smaller than the values pre-
dicted by the Stoner–Wohlfarth theory. For sintered magnets,
the measured thickness of the nonmagnetic grain boundary

500 nm

Figure 12. TEM image showing a grain boundary junction of a
high energy density Nd13.5FebalB5.95Cu0.03Al0.7 sintered magnet
with (BH)max = 432 kJ m−3, Jr = 1.51 T and JHc = 755 kA m−1.
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phase varies between zero and several nanometer. This
reduced magnetocrystalline anisotropy decreases the coercive
field considerably, from 3200–900 kA m−1, for example. The
reduction of the magnetocrystalline anisotropy reverses the
dependence of the coercive field on the degree of align-
ment (Martinek and Kronmueller, 1990). Bachmann, Fischer
and Kronmüller (1998) observed a similar behavior of the
coercivity on the degree of alignment for nanocrystalline
magnets. The coercive field increases as the misalignment
angle is changed from 8 to 16 ◦C misorientation. The Fou-
cault TEM image of Figure 13 clearly shows the nucleation
of reversed domains close to grain boundaries. Figure 14
compares the nucleation process for two different degrees of
alignment. The micromagnetic simulations are in good agree-
ment with the results obtained by Lorentz electron micro-
scopic investigations (Figure 13). The isosurfaces represent

500 nm 

Figure 13. Foucault TEM image showing the domain nucleation at
grain boundaries. Sintered Nd13.5FebalB5.95Cu0.03Al0.7 magnet with
(BH)max = 432 kJ m−3, Jr = 1.51 T and JHc = 755 kA m−1.

the reversed nucleus. In the well-aligned sample, higher
demagnetizing field initiates the nucleation of reversed
domains in the defect region. The simulations are in agree-
ment with experimental data that show a slight increase of
coercivity with misalignment for Dy-free Nd–Fe–B mag-
nets, whereas a decrease of the coercive field with increasing
misalignment is observed in highly coercive, Dy-containing
Nd–Fe–B magnets (Kim, Camp and Stadelmaier, 1994). The
coercive field of Nd–Fe–B sintered magnet increases with
increasing Nd-content (Hirosawa and Kaneko, 1998). The
simulations show that the presence of the Nd-rich phase
significantly changes the exchange and the magnetostatic
interactions. As a consequence, the nucleation of reversed
domains is suppressed.

4.2 Pinning controlled Sm(Co,Cu,Fe,Zr)7.5–8
magnets

Alloys of Sm(Co, Cu, Fe, Zr)z are typically prepared
by melting the respective constituents by low-frequency
induction heating under an inert gas cover (Ray and Millott,
1971). Typical initial composition of the constituent elements
is 10–12 Sm at%, 55–71 Co at%, 15–25 Fe at%, 3–5 Cu
at%, 1–3 Zr at% for conventional applications and 11–13
Sm at%, 59–79 Co at%, 0–10 Fe at%, 8–14 Cu at%, 2–4
Zr at% for high-temperature applications (Ray, 1986).

A complex production process, which involves sintering,
homogenizing, isothermal aging, and annealing, results in
the formation of a cellular precipitation structure, which
acts as pinning centers for magnetic domain walls (Fidler,
Skalicky and Rothwarf, 1983; Livingston and Martin, 1977;
Mishra et al., 1981; Rabenberg, Mishra and Thomas, 1982;
Nagel, 1979). The compact is first sintered between 1190 and
1210 ◦C in order to obtain a full dense alloy trying, at the

q = 8° q = 16°

Figure 14. Numerical finite element micromagnetic simulation of the nucleation of reversed domains at a grain boundary junction in an
Nd2Fe14B-based sintered magnet in dependence of the misalignment θ of the grains. The isosurfaces represent the regions where Jz/Js and
<0.7 and the nucleation process of reversed domains will start.
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same time, to avoid excessive grain growth because of their
negative effect in mechanical properties. Typical grain size is
up to 50 µm. A solutionizing treatment is carried on to get a
fully homogenized single-phase sample at a sufficiently high
temperature and then is rapidly quenched in order to avoid
phase segregation during cooling. The step aging or slow
cooling heat treatment is performed at a lower temperature
to obtain the precipitation of the cell boundary phase and the
well formation of the continuous cell structure that accounts
for the coercivity of the magnet. The two-phase magnet com-
pound with the nominal composition Sm(Co,Cu,Fe,Zr)7.5–8

is the best choice for high-temperature applications per-
manent magnets with operating temperatures above 300 ◦C,
because of its high magnetocrystalline anisotropy, the strong
domain wall pinning behavior and the high Curie temperature
(Strnat, 1988; Hadjipanayis et al., 2000; Chen et al., 1998).
The microstructure, which consists of the Sm2(Co,Fe)17 cell
matrix phase, the Sm(Co,Cu)5–7 cell boundary phase and the
Zr-rich lamella phase, develops mainly during the isothermal
aging (Tang et al., 2001). The formation of a fine cellu-
lar precipitation structure is a necessary precondition for
high permanent-magnet properties at elevated temperatures,
because of its behavior as pinning centers for the magnetic
domain walls. However, the compositions of the distinct
phases and the elemental profiles also have an even higher
influence on the magnetic properties. The diffusional redis-
tribution of the various elements during the heat treatment
results in a characteristic microchemistry (Fidler et al., 2002;
Goll, Kronmuller and Stadelmaier, 2004; Hadjipanayis et al.,
2000; Goll, Kleinschroth, Sigle and Kronmüller, 2000). As
all of the elements are placed on regular crystallographic
sites, there is only diffusion of vacancies, which is very
slow compared to interstitial diffusion. There are two main
diffusional processes: Cu segregates to the 1:5 cell bound-
ary phase and Fe segregates to the 2:17 matrix phase (Ray,
Soffa, Blachere and Zhang, 1987). As the cell size of the
precipitation structure increases with the duration of the
isothermal aging, it is necessary to decrease the tempera-
ture when the desired cell size has been obtained. Diffusion
continues during the following slow cooling and the subse-
quent annealing at 400 ◦C, but with a reduced rate because
of the lower temperatures. Even the solutionized samples
may have a microstructure and microchemistry, which have
a strong influence on the duration and the profile of the heat
treatment. Cu clusters within the solid solution that enabled
a higher Cu diffusion rate and allowed the samples to be
quenched directly after the isothermal aging (Perkins and
Strässler, 1977a). The TEM images of Figure 15 show the
typical cellular and lamellar precipitation structures, A high-
resolution nanoprobe TEM investigation shows that the Fe
content within the cell matrix phase is higher than the nomi-
nal content, which confirms that Fe mainly segregates to the
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Figure 15. TEM images showing rhombic, cellular precipitation
structure of a sintered Sm(Co,Cu,Fe,Zr)7.5 magnet. Views (a) paral-
lel and (b) perpendicular to the alignment direction c. Cell boundary
phase Sm(Co,Cu)5–7 (A), cell matrix phase Sm2(Co,Fe)17 (B).

2:17 phase. A higher Fe/Co ratio decreases the anisotropy
constant K1 (Perkins and Strässler, 1977b) and increases the
spontaneous polarization (Ray, 1984). The Zr content within
the cell matrix phase lies between 1.0 and 2.4 at%. A high
Zr concentration is found in the platelet phase perpendicu-
lar to the c axis, which presumably acts as diffusion path
for the distribution of elements during the annealing pro-
cedure (Ray, 1990; Ray, Soffa, Blachere and Zhang, 1987;
Rabenberg et al., 1991).

The magnetization reversal mechanism in Sm(Co, Fe, Cu,
Zr)z magnets has been attributed to domain wall pinning
at the Sm(Co, Cu)5−7 cell boundaries (Durst, Kronmueller
and Ervens, 1988a,b). Various experimental investigations,
such as Kerr effect microscopy (Livingston, 1975), Lorentz
electron microscopy (Fidler, 1982), analysis of initial mag-
netization curves (Livingston, 1981), and measurements
of the irreversible susceptibility (Liu and Hadjipanayis,
1999) confirmed this assumption. Theoretical considera-
tions (Kronmüller, 1987; Kronmüller and Fähnle, 2003) and
numerical micromagnetic simulations (Streibl, Fidler and
Schrefl, 2000; Scholz et al., 2003) reveal the details of
these complex magnetization reversal processes. The Lorentz
micrograph of Figure 16 shows the domain wall pinning at
the continuous cell boundary phase Sm(Co,Cu)5–7 at the
remanent state at room temperature. The coercivity is deter-
mined by the difference and the gradient of the domain
wall energy (Livingston and Martin, 1977; Livingston, 1996,
1981) and by the magnetoelastic coupling energy between
domain wall stresses and lattice deformation strains (Fidler,
1982). The exchange constant A and the anisotropy constant
K1 of the cell boundary phase are mainly determined by
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Figure 16. Foucault TEM image showing the domain pin-
ning at the continuous cellular precipitation structure in a
Sm(Co,Cu,Fe,Zr)z sintered magnet for high-temperature applica-
tions.

the Cu concentration (Fidler et al., 2002; Goll, Kronmuller
and Stadelmaier, 2004). In more detail, the different crystal
structures and magnetic properties of the cell matrix and the
cell boundary phase give rise to a gradient in the domain
wall energy, which originates the pinning effect. There are
two types of possible domain wall pinning processes. As
Cu mainly segregates in the Sm(Co, Cu)5−7 phase, the mag-
netocrystalline anisotropy of this phase can be tailored by
the Cu content of the magnet (Lectard, Allibert and Ballou,
1994). The anisotropy constant K1 of the cell boundary phase
is either higher (low Cu concentration) or lower (high Cu
concentration or high temperatures) than that of the cell
matrix phase (Figure 17). As a result it is energetically favor-
able for a magnetic domain wall to either stay in the cell
boundary phase (‘attractive’ domain wall pinning because of
lower domain wall energy) or just inside the cells (‘repulsive’
domain wall pinning because of higher domain wall energy).
If the cell boundary thickness is larger than the domain wall
width which itself depends indirectly on the square root of
K1 the coercive field is given by Kronmüller (2000) and
Kronmüller, Durst and Sagawa (1988):

µ0Hc = µ0
1

Js cos ψ0

∣∣∣∣dγ (z)

dz

∣∣∣∣
max

− NeffJs (10)

Neff denotes the effective demagnetizing factor, ψ0 the
angle between the applied field and the easy axis, z is the
direction normal to the cell boundary wall and dγ (z)/dz

denotes the maximum slope of the wall energy. In the more
typical case, where the boundary thickness becomes narrower
than the domain wall width, the complex influence of geo-
metrical and intrinsic magnetic parameters on the coercive
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Figure 17. Temperature dependence of the anisotropy coefficients
K1 of the Sm2(Co,Fe)17 and Sm(Co, Cu)5 phases (Tang et al.,
2001). The coercivity of Sm(Co,Fe,Cu,Zr)z permanent magnets is
determined by the gradient in domain wall energy between the
different phases, which is proportional to the difference of the mag-
netocrystalline anisotropy constants �K1. Because of the different
temperature dependences of the two phases �K1 is strongly depen-
dent on the operating temperature of the magnet. (Reprinted with
permission W. Tang et al., copyright 2001, Elsevier.)

field has to be determined using numerical micromagnetic
simulations. Finite element reveal that the cell boundary
width has a strong influence on the coercivity (Scholz et al.,
2003). This suggests that, if an improved heat treatment
resulted in larger cells with thicker cell boundaries, a higher
coercivity could be achieved. A minimum thickness of 10 nm
is necessary for coercivities above 1000 kA m−1. Repulsive
pinning enables larger coercivities than attractive pinning.
For a thickness of more than 40 nm of the intercellular phase,
the pinning behavior is lost again, because the domain wall
sweeps through the whole intercellular phase and reverses
its magnetization. As a result the unreversed cells remain
until nucleation starts the reversal of their magnetization.
In the case of repulsive domain wall pinning, a minimum
thickness of the intercellular phase is required, too. As the
thickness of the intercellular phase increases, the energy bar-
rier becomes wider and this mechanism becomes more and
more difficult. It has been shown that with increasing tem-
perature the coercivity mechanism changes from repulsive to
attractive pinning. The nucleation mechanism was found to
be dominant above the Curie temperature of the cell walls
(Kronmüller and Fähnle, 2003).

Recently a new series of magnets with Hc up to
1050 kA m−1 at 400 ◦C has been developed (Hadjipanayis
et al., 2000; Chen et al., 1998). These magnets have low
temperature coefficients of HC and a straight line B versus
H (extrinsic) demagnetization curve up to 550 ◦C. High Cu-,
low Fe- and a higher Sm-concentration were found to con-
tribute to high coercivity at high temperatures. In low Cu
samples the magnetocrystalline anisotropy values of the 1:5
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and the 2:17 phases cross at a certain temperature, which does
not happen in high Cu samples. However, as a large part of
the magnet consists of the 1:5 phase, the saturation polariza-
tion s strongly decreases in high Cu-containing samples. The
actual domain wall pinning process in high Cu-containing
magnets is rather complicated and varies from repulsive
to attractive, depending on whether the magnetocrystalline
anisotropy in the Cu-containing 1:5 cell boundary phase is
lower or higher than in the 2:17 cell matrix phase, respec-
tively. The shape and the thickness of the cell boundary phase
and the elemental profiles across the phase determine the
coercivity Hc.

4.3 Nanocrystalline, composite
Nd2Fe14B/(α-Fe,Fe3B) and other novel
rare-earth magnets

The increasing demand for powders for bonded magnets
leads to the development nitrided Sm–Fe and nanocrystalline
Nd–Fe–B materials. The RE2Fe17 compounds have low
Curie temperatures and exhibit planar magnetic anisotropy.
Substitutions or additions are needed to raise TC and to
change the magnetocrystalline anisotropy. Almost any sub-
stitution will raise TC, but recent attention has focused on Al
and Ga which also induce uniaxial anisotropy when present
in modest amounts in Sm2Fe17. However, the most effec-
tive way of increasing TC of RE2Fe17 and modifying its
anisotropy is to use interstitial additions (B, C, N). Inter-
stitial modification, especially with nitrogen, has added a
new dimension to the compounds that can be considered
from RE permanent magnets. Besides raising TC of iron-rich
intermetallics, largely through the effect to lattice expansion
(6%), interstitial atoms also control the magnetocrystalline
anisotropy. Since 1990, there have been extensive studies of
interstitial 2:17, 3:29, and 1:12 compounds containing nitro-
gen and carbon in the structures (de Boer et al., 1988), but the
interstitial compound that exhibits the most favorable combi-
nation of intrinsic magnetic properties remains is Sm2Fe17N3

with TC = 470 ◦C (Coey and Sun, 1990). Mechanical alloy-
ing and HDDR of Sm2Fe17N3 give high coercivity and good
loop shape, but have so far only yielded isotropic material.
The main disadvantage of nitrided powders is the dissoci-
ation at high temperature (about 600 ◦C) according to the
reaction:

Sm2Fe17N3 → 2SmN + Fe4N + 13α-Fe (11)

Another useful family are the pseudobinaries Sm
(Fe12−xMx) where M = Ti, V, Si, which crystallize in
the tetragonal ThMn12 structure (Buschow, 1988; de Boer,
Ying-Kai, de Mooij and Buschow, 1987; de Mooij and

Buschow, 1988). The best of them show TC and magnetic
anisotropy similar to those of Nd2Fe14B, but with somewhat
lower magnetization. These compounds can also be improved
by interstitial modification with nitrogen or carbon.

Nanocrystalline, single-phase Nd2Fe14B magnets with
isotropic alignment show an enhancement of remanence
that is attributed to intergrain exchange interactions, which
enhance the remanence by more than 40% when compared
with the remanence of noninteracting particles, if the grain
size is in the order of 10–30 nm. Numerical micromagnetic
calculations have revealed that the interplay of magnetostatic
and exchange interactions between neighboring grains influ-
ence the coercive field and remanence considerably (Kneller
and Hawig, 1991; Schrefl, Fidler and Kronmüller, 1994).
Numerical micromagnetic simulation shows a large vol-
ume fraction of an inhomogeneous polarization distribution
near grain boundaries in small-grained, isotropic, single-
phase magnets, leading to an increase of the remanence
and a decrease of the coercive field. Exchange interac-
tions between neighboring soft and hard grains in nanocrys-
talline, composite magnets lead to remanence enhance-
ment of isotropically oriented grains (Davies et al., 1993;
Mccallum, Kadin, Clemente and Keem, 1987; Coehoorn,
de Mooij and de Waard, 1989; Hadjipanayis and Gong,
1988; Ding, Mccormick and Street, 1993; Goll, Seeger and
Kronmüller, 1998). Soft magnetic grains in two- or multi-
phase, composite permanent magnets cause a high polariza-
tion, and hard magnetic grains induce a large coercive field
provided that the particles are small and strongly exchange
coupled. The coercive field shows a maximum at an aver-
age grain size of less than 15–20 nm. Intergrain exchange
interactions override the magnetocrystalline anisotropy of the
Nd2Fe14B grains for smaller grains, whereas exchange hard-
ening of the soft phases becomes less effective for larger
grains. The magnetization distribution at zero applied field
for different grain sizes, clearly shows that the remanence
enhancement and energy product increases with decreasing
grain size and increases with increasing α-Fe content. Owing
to the competitive effects of magnetocrystalline anisotropy
and intergrain exchange interactions, the magnetization of
the hard magnetic grains significantly deviates from the local
easy axis for a grain size D ≤ 20 nm. As a consequence
coercivity drops, since intergrain exchange interactions help
overcome the energy barrier for magnetization reversal. With
increasing grain size the magnetization becomes nonuniform,
following either the magnetocrystalline anisotropy direction
within the hard magnetic grains or forming a flux closure
structure in soft magnetic regions. Neighboring α-Fe and
Fe3B grains may make up large continuous areas of soft
magnetic phase, where magnetostatic effects will determine
the preferred direction of the magnetization. The large soft
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magnetic regions deteriorate the squareness of the demagne-
tization curve and cause a decrease of the coercive field for
D > 20 nm. A vortex-like magnetic state with vanishing net
magnetization will form within the soft magnetic phase, if the
diameter of soft magnetic region exceeds 80 nm. Many of the
fully dense permanent-magnet materials, especially those that
are sintered, are very hard and brittle, and machining them to
their final shape is often tedious. The reduction of production
handling and assembly costs led to an interest in bonded mag-
nets, which are made by consolidating a magnet powder with
a polymer matrix. While machining is easy, the production
processes also frequently allow parts to be made directly to
their final dimensions. Thermosetting binders, such as epoxy
resin, are employed for use in compression-molded magnets,
thermoplastic binders like nylon for injection-molded mag-
nets, and elastomers such as rubber are used for extruded
magnets. The major drawback to bonded magnets is the
reduction in their magnetic properties, relative to those that
are 100% dense with magnetic material.
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1 HISTORICAL REVIEW OF
PERMANENT MAGNET MATERIALS

Permanent magnets have been attracting the attention of
mankind since more than a thousand years. The application of
lodestone, a fine mixture of ferrimagnetic magnetite (Fe3O4)
and antiferromagnetic maghemite (γ -Fe2O3), in geomancy
and in compasses by Chinese experts is well documented
(Livingston, 1996). Since the coercivity HcJ of lodestone
amounts to only several 1 kA m−1, these magnets had to
be handled very carefully. Since the sixteenth century,
needle-shaped strips of iron–carbon alloys with coercivities
HcJ of approximately 4 kA m−1 were used by sailors of
European countries. In the beginning of the nineteenth

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

century, tungsten steel or cobalt–chromium steels were
developed. These magnetic materials enable the manufacture
of horseshoe magnets with maximum energy densities of
about 8 kJ m−3 (O’Handley, 2000).

In 1932, Mishima reported the hard magnetic proper-
ties of Fe–Al–Ni–Co alloys (Mishima, 1932), which are
denoted by the tradename Alnico. The coercivity HcJ of these
magnets is determined by shape anisotropy. During a heat
treatment at temperatures in the range 750–850 ◦C, a precipi-
tation of ferromagnetic elongated α-(Fe,Co) rods in a Ni–Al-
enriched matrix occurs by spinodal decomposition. Isotropic
Alnico magnets achieve coercivities HcJ in the range of
0.5–150 kA m−1 and maximum energy densities between
8 and 80 kJ m−3. In order to achieve anisotropic Alnico
magnets, a texture in the polycrystalline microstructure was
induced by directional solidification. Subsequent annealing
in a magnetic field resulted in precipitation of elongated
α(Fe,Co) rods parallel to the magnetic field (De Voss, 1969).
Anisotropic Alnico magnets achieve coercivities HcJ between
0.5 and 170 kA m−1 and maximum energy densities between
40 and 75 kJ m−3, see Figure 1. Single-crystal Alnico 5 mag-
nets have a maximum energy density of 80 kJ m−3, owing to
the optimized alignment of the α(Fe,Co) precipitates.

In 1952, Went et al. detected the hard magnetic properties
of the hexagonal ferrites based on MeO·6Fe2O3, Me: Ba,
Sr, Pb (Went, Rathenau, Gorter and Van Oosterhaut, 1952).
The coercivity of the hexaferrites is due to a strong magne-
tocrystalline anisotropy, which aligns the magnetic moments
of the Fe ions parallel to the hexagonal axis. In order to
reverse the polarization of a magnet, in principle, a reversed
magnetic domain must be nucleated in each grain by the
external field. The coercivities of isotropic Ba hexaferrites
range from 210 to 270 kA m−1. Within a unit cell, a third
of the magnetic moments of the 24 Fe3+ ions are aligned
antiparallel to the remaining Fe3+ ions, so that a small
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Figure 1. Progress in the maximum energy density of permanent
magnets. For RE–TM magnet materials, the theoretical limits are
indicated.

remanent polarization results. The maximum energy densities
of isotropic BaO·6Fe2O3 range between 6.5 and 9 kJ m−3.

The uniaxial anisotropy of the hexaferrites enables the pro-
duction of anisotropic magnets by powder metallurgy. After
calcination, the material is milled to a fine alloy powder.
The powder particles can be aligned by a magnetic field,
compacted, and sintered to dense magnets. The coercivi-
ties of anisotropic Ba hexaferrites range between 130 and
340 kA m−1. Owing to the increased magnetic polarization,
much higher maximum energy densities between 20 and
30 kJ m−3 result, see Figure 1.

Even for these well-known magnetic materials, an essential
improvement in the magnetic properties has been achieved
lately. By a partial substitution of Sr by La and of Fe by
Co, the remanent polarization and the coercivity could be
increased by 4.4 and 7.5% respectively (Ogata et al., 1999).

In 1966, Strnat noticed the magnetocrystalline anisotropy
of the rare earth (RE)–cobalt compounds RECo5 (Hoffer
and Strnat, 1966). The RE metals comprise the elements
with the atomic numbers 58 (cerium) to 71 (lutetium),
in which the 4f orbitals are filled with electrons. Owing
to similar chemical properties, Y and La are also often
included. Fortunately, these metals are rather abundant.
For instance, the concentration of Ce in the earth’s crust
amounts to 46 ppm and is as available as the common metals
Co (23 ppm), Sn (40 ppm), Pb (16 ppm), or Mg (15 ppm),
(Vendel, 1984). Within the RE metals, Nd (24 ppm), Sm
(6.5 ppm), and Dy (5 ppm) are rather abundant, see Figure 2.

In particular, the SmCo5 compound has a very strong
magnetocrystalline anisotropy. Hence, it was thought that
anisotropic magnets should be prepared by powder
metallurgy, similar to the production of the anisotropic hex-
aferrites. However, the RE–Co alloy powders are very sen-
sitive to oxidation, and it took 3 years before Das succeeded
in the preparation of anisotropic SmCo5 magnets by powder
metallurgy (Das, 1969). The coercivity of sintered SmCo5

magnets is determined by nucleation of reversed domains,
similar to the hexaferrites, but ranges between 1500 and
2400 kA m−1. As a consequence of the high magnetic polar-
ization, which results from the ferromagnetically coupled Co
and RE3+ moments, the maximum energy densities amount
to 160 up to 200 kJ m−3, see Figure 1.

Since the concentration of Co atoms in the RE2Co17 com-
pounds is increased, a higher magnetic polarization results.
However, the high saturation polarization of the RE2Co17

compounds could not be exploited for increasing the maxi-
mum energy density of sintered magnets, since most of the
RE2Co17 compounds had a planar anisotropy. Only Sm2Co17

and Er2Co17 compounds have a uniaxial anisotropy (Ray
and Strnat, 1972). On the basis of the Sm2Co17 compound,
Ojima et al. prepared magnets with a maximum energy den-
sity of 240 kJ m−3 and a coercivity of 500 kA m−1 (Ojima,
Tomizawa, Yoneyama and Hori, 1977), which is too small
for technical applications. Hence, another route for achieving
strong coercivities had to be developed. By partial substi-
tution of Co by Fe, Cu, and Zr and an appropriate heat
treatment, a cellular microstructure of Sm2(Co,Fe)17 cells
in a Sm(Co,Cu)5 matrix could be achieved (Mishra et al.,
1981). Since the intrinsic magnetic properties of these phases
differ, magnetic domain walls are pinned at the phase bound-
aries. Hence, the pinning force determines the coercivity of
such multiphase Sm2(Co,Cu,Fe,Zr)17 magnets (Fidler and
Skalicky, 1982; Katter et al., 1996a,b; Katter, 1998). The
coercivities HcJ of sintered Sm2(Co,Cu,Fe,Zr)17 magnets can
be tailored to meet the requirements of an application and
range between 800 and 2100 kA m−1. The maximum energy
densities vary between 200 and 240 kJ m−3, see Figure 1.

By increasing the Co content at the expense of the
Fe concentration and by adjusting the Cu concentration
Sm2(Co,Cu,Fe,Zr)17, magnets with a coercivity HcJ of about
700 kA m−1 at a temperature of 500 ◦C were developed
(Liu et al., 1999; Walmer et al., 2000a,b; Goll, Sigle, Had-
jipanayis and Kronmüller, 2000; Zhang et al., 2000). With
an appropriate coating, such magnets can be applied at high
temperatures up to 550 ◦C.

Because of the successful application of RE–Co magnets,
RE–Fe alloys were examined for intermetallic compounds
with superior hard magnetic properties. Besides alloying and
powder metallurgy (Sagawa et al., 1984a,b), the alternative
processing route of rapid solidification or melt spinning,
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Figure 2. Abundance of rare-earth metals in comparison to some commercial metals.

respectively, has been investigated (Koon and Das, 1981;
Croat, 1981a,b; Croat et al., 1984a,b; Hadjipanayis, Hazelton
and Lawless, 1983, 1984). The efforts resulted in the
development of different production routes for Nd–Fe–B
magnets on the basis of the hard magnetic Nd2Fe14B
compound. The crystallographic positions of the different
atoms in this new unit cell and their magnetic moments
were determined exactly by neutron diffraction (Herbst,
Croat, Pinkerton and Yelon, 1984). In this compound, the
Nd atoms can be replaced by any other RE atom that
influences the intrinsic magnetic properties (Sagawa et al.,
1984; Herbst and Yelon, 1985). By a partial substitution of
Nd by Dy, the coercivity of (Nd,Dy)–Fe–B magnets can be
increased due to the enhanced magnetocrystalline anisotropy
of the Dy2Fe14B compound (Sagawa et al., 1984; Rodewald,
1985). Hence, the coercivities of Nd–Fe–B magnets can be
adjusted to the application and now range between 950 and
2860 kA m−1, the maximum energy densities being extend
from 415 to 225 kJ m−3, see Figure 1.

Some years later, promising hard magnetic properties were
also detected in novel interstitial RE–Fe–N and RE–Fe–C
compounds, the properties of which are presented by J. M.
D. Coey in a separate chapter of this handbook (See also
Dilute Magnetic Oxides and Nitrides, Volume 4).

The various production technologies for Nd–Fe–B mag-
nets by powder metallurgy and their impact on the hard
magnetic properties are presented in Section 2. In 2003,
about 25.290 tons of Nd–Fe–B magnets were produced by
powder metallurgy globally (Luo, 2004). Additional infor-
mations on the status of the magnet industry are pre-
sented in Current Status and Future Development of the
Magnetic Materials Industry in China, Volume 4. The

magnetizing behavior and the temperature stability of sin-
tered Nd–Fe–B magnets are reviewed in Sections 3 and 4. A
lot of research and development activities have been focused
on the improvement of the corrosion behavior of sintered
Nd–Fe–B magnets, which is decisive for many applications.
The basic results and the progress in RE–TM magnet mate-
rials are summarized in Section 5. In many applications, the
RE–TM magnets also experience mechanical stress besides
magnetic stress. Some basic mechanical properties of sintered
RE–TM magnets are compiled in Section 6. Some conclu-
sions on the exploitation of the intrinsic magnetic properties
of the different RE–TM compounds by commercial RE–TM
magnet grades or by paramount laboratory magnets finish this
review.

2 PRODUCTION OF SINTERED RE–TM
MAGNETS BY POWDER
METALLURGY AND THE IMPACT
ON THE PROPERTIES

Most of the RE magnets with a high remanent polarization
Jr or a strong coercivity HcJ, respectively, are produced
by powder metallurgy on a large scale in many shapes
and dimensions. The processing route of RE–TM magnets
starts with alloying. The alloys are melted from RE metals,
transition metals (TMs), master alloys, and specific additions
in vacuum induction furnaces since the RE metals are very
sensitive to oxidation, in particular, at high temperatures.

An alternative processing route is the calciothermic reduc-
tion. RE oxides, TM powders, additions, and a reducing
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agent, for instance, Ca hydride, are intensively mixed and
compacted. During heating in a sealed container up to
1200 ◦C, the Ca metal evaporates and reduces the RE oxides
to small RE particles, which immediately start to alloy
with the TM and the additions, respectively (Herget, 1985).
Finally, an RE–TM alloy powder in a matrix of Ca oxide
results. After cooling to room temperature, the Ca oxide and
excess Ca metal are separated from the alloy powder by
leaching. Qualitatively, the calciothermic reaction and the
leaching process can be described by equations (1) and (2),
according to Herget (1985):

7.5Nd2O3 + 72Fe + 0.133Fe40B60

+ 22.5Ca −→ Nd15Fe77B8 + 22.5CaO (1)

Ca + CaO + 2H2O −→ 2Ca(OH)2 (2)

The cast ingots or the calciothermic alloy powders have a
multiphase polycrystalline microstructure. The hard magnetic
Nd2Fe14B grains are in equilibrium with Nd-rich constituents
and some Nd1.1Fe4B4 grains (Matsuura et al., 1985). The
magnetic moments of the Nd2Fe14B grains are aligned par-
allel to the tetragonal axis by strong crystalline electric fields
and hence are distributed randomly. In order to achieve
a well-defined texture, powder metallurgy is applied. The
alloys are crushed and milled to a fine alloy powder, see
Figure 3. The powder particles must consist of single crys-
tals or fragments thereof. In general, alloy powders with a
particle size in the range between 3 and 5 µm meet this con-
dition very well. For the production of anisotropic magnets,
there exist different routes, which determine the magnetic
properties, the dimensional tolerances, and the processing
costs. After compaction of the alloy powders by different
pressing technologies, the green parts are sintered to com-
pact magnets. At sintering temperature, the fraction of the
Nd-rich constituents is melted, so that liquid-phase sintering
occurs and magnets with a density of approximately 98%
of the theoretical density can be achieved. Afterward, a heat
treatment is applied in order to optimize the microstructure
with respect to the coercivity HcJ of the magnets. Finally, the
magnets are machined to dimensions, according to customer
specifications, see Figure 3.

The maximum energy density is determined by the rema-
nent polarization Jr and the reversible permeability µrev, see
equation (3):

(BH)max = J 2
r

4·µo·µrev
(3)

In order to achieve a high maximum energy density, the
remanent polarization and the reversible permeability have
to be optimized. The remanent polarization Jr is determined

T

t

Vacuum melting
and casting

Crushing

Milling

Aligning

Sintering/annealing

Magnetizing

Machining/Surface
treatment

Pressing

Isostatic

pressing

Die

pressing

P

P

P

P

H

H

P(H) H

Figure 3. Processing of anisotropic RE magnets by powder
metallurgy.

by equation (4):

Jr(20 ◦C) = Js(20 ◦C)· ρ

ρ0
·(1 − Vnonmag)·0.01·fϕ (4)

where Js(20 ◦C), ρ/ρ0, Vnonmag, and fϕ denote the saturation
polarization of the Nd2Fe14B compound at 20 ◦C, the density
related to the theoretical density of the alloy, and the fraction
of nonmagnetic constituents and the alignment coefficient
respectively.

The alignment coefficient is defined by Fernengel et al.
(1996)

fϕ = (100% · cos ϕ) with ϕ = arctan

(
2
Jr⊥
Jr‖

)
(5)

and represents the average misalignment angle ϕ of the
grains with respect to the easy axis, see Figure 4. The
precondition is a cylindrical symmetrical distribution of
the misaligned grains. Magnets pressed isostatically or in
an axial magnetic field, respectively, meet this precondi-
tion fairly well. For magnets pressed in a transverse mag-
netic field (see Section 2.3), the perpendicular components
of the remanent polarization Jr⊥ parallel or transverse to
the pressing direction are different. Hence, for transversely
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Figure 4. Schematic representation of the distribution of the com-
ponents Jr⊥ of the magnetic polarization after magnetizing an
anisotropic magnet perpendicular to its easy axis and definition of
the alignment coefficient fϕ . Precondition is a homogeneous axial
distribution of the misaligned grains, such as in cold isostatically
pressed magnet blocks, axial field die pressed, or rubber isostatically
pressed net-shaped magnets.

pressed magnets, two alignment coefficients have to be dis-
tinguished. The alignment coefficients can be easily deter-
mined from the remanent polarization measured parallel Jr‖
and perpendicular Jr⊥ with respect to the easy axis of an
anisotropic magnet by a pair of Helmholtz coils after appro-
priate magnetization (Fernengel et al., 1996).

The impact of different processing routes on the magnetic
properties is reviewed in detail.

2.1 Cold isostatic pressing of magnet blocks (CIP)

For the production of big blocks, the alloy powder is
sealed in a mold, aligned by a magnetic field, and pressed
isostatically. Since the pressure increases homogeneously
from all directions, the alignment of the powder particles is
not disturbed significantly during compaction, see Figure 5.
The isostatically pressed blocks are sintered to >98% of the
theoretical density. Hence, isostatically pressed blocks have
an excellent texture and achieve a high remanent polarization
Jr. The alignment coefficient fϕ ranges between 96 and 99%.
After sintering, the magnet blocks are annealed in order to
optimize the coercivity.

Figure 6 gives the demagnetization curves J (H) and
B(H) of isostatically pressed Nd–Fe–B magnets with a
high remanent polarization at different temperatures. At room
temperature, the typical remanent polarization and the coer-
civities amount to 1.46 T and 955 kA m−1 for HcJ or to
915 kA m−1 for HcB, respectively. With a recoil perme-
ability of 1.03, a maximum energy density of 415 kJ m−3

results for this commercial magnet grade VACODYM
722 HR.

Isotatically pressed blocks of Sm2(Co,Cu,Fe,Zr)17 mag-
nets achieve remanent polarizations of 1.12 or 1.10 T with

43

2

1

Figure 5. Principle of cold isostatic pressing of large magnet
blocks: (1) alignment field, (2) alloy powder, (3) mold, (4) pressure
container. Dimensions up to 105 mm in diameter and approximately
300 mm in length can be produced.
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Figure 6. Demagnetization curves J (H) and B(H) of isostatically
pressed Nd–Fe–B magnet blocks, grade VACODYM 722 HR,
depending on the temperature. The typical magnetic properties
at room temperature amount to Jr = 1.46 T, HcJ = 955 kA m−1,
(BH)max = 415 kJ m−3.

coercivities HcJ of 800 or 2070 kA m−1, respectively, which
results in maximum energy densities of 240 or 225 kJ m−3.
The lower Co concentration in isostatically pressed blocks of
SmCo5 magnets results in a smaller remanent polarization of
1.01 T and a maximum energy density of 200 kJ m−3. Owing
to the extraordinarily strong magnetocrystalline anisotropy
of the SmCo5 compound, a strong coercivity HcJ of
>1500 kA m−1 results.

2.2 Net-shaped magnets by axial field die-pressing
(AP)

The manufacture of parts from isostatically pressed RE mag-
net blocks takes a lot of machining and therefore increases
the processing costs. An alternative route is the production
of net-shaped parts by die-pressing. The alloy powder is
filled into the cavity of a die, aligned by an axial mag-
netic field, and compacted, see Figure 7. Since the easy axes
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Figure 7. Principle of axial field die-pressing of large net-
shaped magnets: (1) alignment coil, (2) magnetic field, (3) mold,
(4) punches, and (5) alloy powder.

of the powder particles are aligned parallel to the press-
ing direction, the alignment is disturbed during compaction
due to friction between the powder particles and the die.
Hence, the remanent polarization of axial field die-pressed
magnets is about 6–8% lower than isostatically pressed
magnet blocks. By axial field die-pressing, a large variety
of shapes with different dimensions can be manufactured
economically.

Axial field die-pressed magnets based on Nd–Dy–
Fe–Co–B alloys can achieve very high coercivities HcJ.
For instance, the typical demagnetization curves J (H) and
B(H) at room temperature demonstrate a remanent polariza-
tion of 1.08 T and coercivities of 2.865 kA m−1 for HcJ and
830 kA m−1 for HcB, see Figure 8. With increasing tempera-
ture, a decrease in the coercivity HcJ cannot be prevented, but

at a temperature of 150 ◦C the coercivity HcJ still amounts
to 1.200 kA m−1. Such magnets resist strong reversed mag-
netic fields even at elevated temperatures. This is a decisive
benefit for many motor applications. The maximum energy
density of such magnets with a strong coercivity amounts to
225 kJ m−3.

Net-shaped magnets produced by axial field die-pressing
from Sm2(Co,Cu,Fe,Zr)17 alloy powders achieve remanent
polarizations and coercivities HcJ in the range of 0.97–1.05 T
and 2070–800 kA m−1. The maximum energy density of
such magnets varies between 170 and 210 kJ m−3. Owing
to the lower saturation polarization of the SmCo5 com-
pound, the remanent polarizations and the coercivities HcJ

of net-shaped SmCo5 magnets amount to 0.85–0.95 T and
2400–1200 kA m−1. The maximum energy densities of axial
field die-pressed SmCo5 magnets range between 140 and
180 kJ m−3.

In general, net-shaped Sm–Co magnets are more brittle
than Nd–Fe–B magnets and are sensitive to chipping, but
have a superior temperature and corrosion stability.

2.3 Net-shaped magnets by transverse field
die-pressing (TP)

Another possibility is the pressing of parts in a transverse
magnetic field, see Figure 9. In this case, the alignment of
the powder particles is not disturbed very strongly during
compaction; therefore, it results in remanent polarizations
similar to isostatically pressed magnet blocks. Hence, in
sintered transverse field die-pressed magnets, alignment
coefficients, fϕ , vary between 94 and 96% in general.
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Figure 8. Demagnetization curves J (H) and B(H) of isostatically pressed Nd–Fe–B magnet blocks, grade VACODYM 688 AP, depending
on the temperature. The typical magnetic properties at room temperature amount to Jr = 1.08 T, HcJ = 2865 kA m−1, (BH)max =
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Figure 9. Principle of transverse field die-pressing of near net-
shaped magnets: (1) alignment coils, (2) magnetic field, (3) mold,
(4) punches, and (5) alloy powder.

By transverse field die-pressing, mainly rectangular blocks
or near net-shaped parts are manufactured. After sintering,
the blocks are cut into thin magnet plates according to
customer specifications. However, near net-shaped parts may
need some contour grinding before cutting. Hence, the
machining costs increase in comparison to axial field die-
pressed magnets.

The typical magnetic properties of transverse field die-
pressed Nd–Fe–B magnets range from 1.14 up to 1.43 T
for the remanent polarization and from 2865 to 955 kA m−1

for the coercivity HcJ or from 885 to 915 kA m−1 for the
coercivity HcB, respectively, which depends on the alloy
composition. Accordingly, the maximum energy densities
vary between 250 and 395 kJ m−3.

2.4 Net-shaped magnets by rubber isostatic
pressing (RIP)

A new pressing technology, which combines the benefits
of cold isostatic pressing (CIP) – an almost perfect align-
ment – and die-pressing net-shaped parts, is rubber isostatic
pressing (RIP) (Sagawa and Nagata, 1993; Sagawa, Nagata,
Watanabe and Itani, 2000; Nagata and Sagawa, 2002). The
alloy powder is tapped into a thick rubber mold up to a well-
defined density and then the die is closed by the upper punch.
Afterwards, the powder particles are aligned by strong mag-
netic field pulses with a peak field strength of 2.400 kA m−1.
Finally, the alloy powder is compacted by axial pressing, see
Figure 10. However, by the thick rubber mold, the pressing
forces are diverted, so that an almost isostatic compaction
occurs. Hence, near net-shaped parts with alignment coef-
ficients comparable to isostatically pressed blocks can be
manufactured.

By RIP, near net-shaped blocks with a remanent polar-
ization of 1.47 T and a coercivity of 920 kA m−1 could be

1

Net-shaped
magnet block

1

4

5 33

2

2

66

4
7

Figure 10. Principle of rubber isostatic pressing of net-shaped
magnets: (1) pulse field alignment coil, (2) magnetic field, (3) thick
rubber mold, (4) punches, (5) alloy powder, (6) support die, and
(7) support spring.

manufactured. The maximum energy density of such blocks
amounts to 424 kJ m−3, see Figure 11. Such magnets achieve
alignment coefficients f > 96%, which implies an average
misalignment angle of <16◦ related to the easy axis of the
magnet.

The almost perfect alignment of the grains results in strong
demagnetizing local stray fields, which decrease the coer-
civity of such magnets (Rodewald et al., 2000). Owing to
the small coercivity HcJ, the maximum continuous oper-
ating temperature amounts to about 60 ◦C for a load line
B/µ0H = −2.

2.5 Review of alternative processing routes

Besides the production of anisotropic RE–TM magnets by
powder metallurgy, several alternative processing routes have
been developed, in particular, for Nd–Fe–B magnets. Main
objectives have been the elimination of some processing
steps in order to simplify the production route and to reduce
the processing costs; in particular, the handling of fine and
pyrophoric RE–TM alloy powders. However, in most cases,
isotropic magnet materials with inferior magnetic properties
result. For the manufacture of anisotropic magnets, additional
processing steps, such as hot deformation or hot rolling are
needed. Besides, some alternative processing routes only
enable the production of magnets with special shapes, for
instance, ring magnets, thick layers, or thin films.

2.5.1 Rapid solidification and compaction of RE–TM
magnets

Alloy powders for polymer-bonded magnets are produced
in large quantities by rapid solidification or melt spinning
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Figure 11. Demagnetization curves J (H) and B(H) of Nd–Dy–Fe–B magnets manufactured by rubber isostatic pressing (RIP) at
different temperatures. : registered trademark of Intermetallics Co. Ltd.

of Nd–Fe–B alloys. The molten alloy is chilled onto a
fast rotating wheel surface, so that amorphous or submicro-
crystalline ribbons with a thickness between 30 and 50 µm
result (Croat et al., 1984). Since the easy axes of the crystals
are distributed randomly, the alloy powders of such sub-
microcrystalline ribbons are isotropic with respect to the
magnetic polarization. The remanent polarization and the
coercivities of annealed and crushed alloy powders, made
from Nd–Fe–B ribbons, range from 0.78 to 1.0 T and 510
to 1430 kA m−1, depending on the composition of the alloy
powders. The maximum energy densities, related to the the-
oretical density, vary from 95 to 140 kJ m−3.

Compact isotropic Nd–Fe–B magnets can be manufac-
tured by hot-pressing at temperatures of about 750 ◦C (Croat
et al., 1984). The remanent polarization and the coercivities
of compact isotropic hot-pressed net-shaped magnets range
from 0.8 to 0.83 T for the remanent polarization, from 1440
to 1400 kA m−1 for the coercivity HcJ, and from 112 to
120 kJ m−3 for the maximum energy density.

By an additional hot-deformation process at a temperature
of about 750 ◦C, anisotropic Nd–Fe–B magnets can also
be manufactured (Lee, Brewer and Schaffel, 1985). Owing
to a pressure-induced anisotropic grain growth of these
grains, the easy axes of which are aligned parallel to the
pressing force, a texture of hot-deformed magnets is obtained
(Mishra, Brewer and Lee, 1988; Li and Graham, 1990). The
magnetic properties of compact anisotropic hot-deformed
Nd–Fe–B magnets amount to 1.15–1.3 T for the remanent
polarization, to 1600–1000 kA m−1 for the coercivity HcJ,
and to 250–340 kJ m−3 for the maximum energy density.

Similar principles are exploited for the production of
radially aligned ring magnets by hot-backward extrusion
(Yoshikawa et al., 1994, 1999; Grünberger, 1998). The

magnetic properties of radially aligned Nd–Fe–B ring mag-
nets strongly depend on the inner and outer diameters. Radi-
ally anisotropic Nd–Fe–B magnets with a remanent polariza-
tion between 1.08 and 1.32 T, coercivities HcJ between 1990
and 1110 kA m−1, and maximum energy densities between
230 and 330 kJ m−3 are commercially available.

2.5.2 Gas atomization of RE–TM alloys

Another economic route for the production of isotropic
alloy powders with strong coercivities HcJ is inert gas
atomization (Yamamoto, Inoue and Masumoto, 1989; Lewis,
Sellers and Panchanathan, 1995, 1996; Sellers et al., 1997;
Branagan, Burch, Sellers and Hyde, 1998). The RE–TM
alloy is melted by an electric arc and dispersed by a gas
stream, which in general results in a wide particle size
distribution (Yamamoto, Inoue and Masumoto, 1989; Lewis,
Sellers and Panchanathan, 1995). The magnetic properties
of the alloy powder depend on the microstructure of the
particles, which can be optimized by appropriate quenching
rates (Branagan, Burch, Sellers and Hyde, 1998; Kramer
et al., 2003), subsequent heat treatments (Yamamoto, Inoue
and Masumoto, 1989), or alloying additions, for instance, TiC
(Branagan, Hyde, Sellers and Lewis, 1996). The research
and development activities focus on the production of
alloy powders with small dimensions, a narrow particle
size distribution, and a submicrocrystalline microstructure in
order to improve the coercivity HcJ and the squareness of the
demagnetization curve J (H).

Commercial gas-atomized Nd–Fe–B alloy powders for
the manufacture of bonded RE–TM magnets, in particular,
by injection molding, with a remanent polarization and coer-
civity HcJ of 0.73–0.76 T and 670–750 kA m−1 are available.
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The maximum energy density of such alloy powders ranges
between 80 and 92 kJ m−3.

2.5.3 Mechanical alloying and compaction
of RE–TM magnets

Mechanical alloying is a powder metallurgical processing
route, originally developed for the production of oxide dis-
persion–strengthened materials. In general, it is well suited
for the preparation of any type of nonequilibrium phases,
such as amorphous or nanocrystalline materials. A pow-
der blend consisting of elemental powders is milled in a
ball mill in an inert atmosphere. Mechanical alloying was
applied for the preparation of hard magnetic Nd–Fe–B
powders first by Schultz, Wecker and Hellstein (1987).
Elemental Nd, Fe, and B powders were milled in a ball
mill in an inert atmosphere. The individual powder par-
ticles were cold worked by collisions with the balls or
by friction. Heavy deformation, repeated cold welding, and
fracture produced a nanocrystalline composite, which con-
sisted of an amorphous Nd-rich phase and α-Fe crys-
tals after prolonged milling. After a subsequent heat treat-
ment, at a temperature between 600 and 750 ◦C, the hard
magnetic Nd2Fe14B compound was crystallized. Mechan-
ically alloyed and heat-treated Nd–Fe–B alloy powders
have a nanocrystalline microstructure. Each particle con-
sists of many randomly aligned grains with dimensions
of less than 100 nm. Similar to rapidly solidified rib-
bons, mechanically alloyed Nd–Fe–B alloy powders can
be applied for the manufacture of polymer-bonded mag-
nets. Typical magnetic properties of mechanically alloyed
Nd–Fe–B powders amount to 0.8–0.92 T for the remanent
polarization, 1200–1000 kA m−1 for the coercivity HcJ, and
102–140 kJ m−3 for the maximum energy density (Schultz,
Wecker and Hellstein, 1987; Bollero, Gutfleisch, Müller and
Schultz, 2002).

Nanocrystalline two-phase Nd–Fe–B powders with enh-
anced remanent polarizations up to 1.2 T and smaller coer-
civities HcJ in the range between 336 and 480 kA m−1 could
be prepared by mechanical alloying and annealing (Neu
and Schultz, 2001). Intensive milling of Nd–Fe–B pow-
ders, which are much easier to crush and to mill, also
resulted in isotropic alloy powders with remanent polar-
izations and coercivities of about 0.68 T and 1.200 kA m−1

(Daniel, 1995).
Compact isotropic magnets can be produced by hot

pressing, and an additional hot-deformation process enables
the manufacture of anisotropic magnets (Schultz, Schnitzke
and Wecker, 1988).

Mechanical alloying of SmF3, Co, and Ca powders
resulted after a heat treatment at a temperature between 600
and 750 ◦C in isotropic SmCo5 powders with an extremely

high coercivity HcJ of 5240 kA m−1 (Liu, Dallimore and
McCormick, 1992).

2.5.4 Hot rolling of RE–TM magnet materials

There are some research and development activities on the
production of anisotropic RE–TM magnets directly from
cast Pr–Fe–Cu–B or Nd–Fe–Cu–B alloys in order to
minimize the number of processing steps. In general, cast
ingots get a heat treatment at temperatures of about 1000 ◦C
in order to homogenize the microstructure. By hot rolling
such ingots, anisotropic magnet plates with a thickness
up to a few millimeters have been produced (Shimoda,
Akioka, Kobayashi and Yamagami, 1988, 1989; Shimoda,
Akioka and Kobayashi, 1990; Hinz, Schumann, Helming and
Schäfer, 1994; Rivoirard et al., 2000). During hot rolling,
a grain refinement and an alignment occurs. Similar to the
hot-deformation process, the easy axes of the grains align
parallel to the deformation force and hence orientate the easy
axis perpendicular to the rolling plane (Hinz, Schumann,
Helming and Schäfer, 1994). Typical thickness reductions
range between 75 and 95%. The optimal magnetic properties
are achieved after proper annealing at temperatures between
1000 and 500 ◦C (Arai et al., 1994). In general, the magnetic
properties of hot-rolled Pr–Fe–Cu–B or Nd–Fe–Cu–B
magnets range between 0.9 and 1.2 T for the remanent
polarization, between 800 and 1300 kA m−1 for the coercivity
HcJ, and between 120 and 290 kJ m−3 for the maximum
energy density.

2.5.5 Plasma spraying of RE–TM magnet layers

A very straightforward processing route for manufacturing
RE–TM magnet layers with a thickness up to some mil-
limeters is plasma spraying. In principle, plasma spraying
needs only three processing steps: alloying, crushing to an
alloy powder with a particle size in the range 40–100 µm,
and plasma spraying. The coarse alloy powder is melted in
a gas plasma, in which the temperatures can be as high as
20 000 ◦C. The molten RE–TM particles are accelerated and
are consolidated onto a substrate. Parts with complicated
shapes can be manufactured, for instance, thin-walled hol-
low cylinders. The cooling rates are estimated to amount
to about 106 K s−1. Hence, amorphous or very fine crys-
talline microstructures result. In order to prevent oxidation,
plasma spraying has to be performed in vacuum or in an inert
atmosphere.

Without preheating the substrate, low coercivities of some
10 kA m−1 result in the as-deposited Nd–Dy–Fe–B layers,
which increase substantially after appropriate annealing. The
Nd16Dy1Fe76B7 layers have got the best magnetic properties
after annealing: remanent polarizations and coercivities
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HcJ are in the range 0.66–0.7 T and 1210–1250 kA m−1.
Maximum energy densities from 80 to 82.4 kJ m−3 are
obtained (Willson, Bauser, Liu and Huang, 2003).

Preheating the substrate to temperatures of about 600 ◦C,
Nd16Dy1Fe76B7 layers achieve remanent polarizations of
0.55–0.59 T and coercivities of 960–1600 kA m−1. The max-
imum energy densities of the almost isotropic layers amount
to 44–61 kJ m−3 (Overfelt, Anderson and Flanagan, 1986;
Rieger et al., 2000; Willson, Bauser, Liu and Huang, 2003).

In Nd–Fe–B plasma-sprayed layers, consolidated onto Cu
substrates, which were heated to temperatures in the range
500–800 ◦C, some magnetic anisotropy could be obtained
(Wyslocki, 1992b). Owing to the partial alignment of the
Nd2Fe14B grains, a remanent polarization of 0.9 T could be
obtained. The very fine microstructure of the layer results
in a strong coercivity HcJ of 1200 kA m−1. Both features,
alignment of the grains and the fine microstructure, contribute
to a high maximum energy density, which amounts to
180 kJ m−3.

Plasma-sprayed layers, prepared form SmCo5 alloy pow-
ders, achieve thin isotropic magnets with huge coercivities
from 3750 up to 5400 kA m−1 (Kumar, Das and Wettstein,
1978). Owing to the low remanent polarizations between 0.5
and 0.56 T, maximum energy densities from 43 to 61 kJ m−3

are obtained.

2.5.6 Liquid dynamic compaction of RE–TM magnet
layers

Similar to plasma spraying is the formation of RE–TM
magnet layers with a thickness from 1 to 10 mm by liq-
uid dynamic compaction. The RE–TM alloy with the final
composition is melted and dispersed into small droplets by
ultrasonic gas atomization. The droplet stream is consoli-
dated onto a substrate. Growth rates up to 1 cm min−1 were
achieved (Chin et al., 1986). The solidification rates were
estimated to range between 100 and 1000 K s−1. Owing to the
almost amorphous microstructure of as-deposited Nd–Fe–B
layers, only coercivities from 240 to 400 kA m−1 resulted.
However, by annealing at temperatures between 600 and
700 ◦C, a fine-grained microstructure and improved mag-
netic properties of the isotropic layers could be achieved.
Remanent polarizations and coercivities HcJ of 0.53–0.7 T
and 620–1250 kA m−1 are reported (Chin et al., 1986;
Harada, Ando, O’Handley and Grant, 1990). The maxi-
mum energy density of these isotropic layers amount to
48–80 kJ m−3.

2.5.7 Preparation of thin RE–TM films

For some micromechanic devices, such as miniature motors,
pumps, actuators, sensors, hard magnetic films with a

thickness of a few micrometers may be required. Such films
can be prepared by sputtering or by laser ablation. A lot of
research and development activities are going on in order
to optimize the processing conditions, such as the substrate
material and the temperature, the sputtering gas atmosphere,
the target composition, the target–substrate distance, or even
the application of a magnetic field parallel to the substrate
plane (Cadieu et al., 1987; Parhofer, Gieres, Wecker and
Schultz, 1996; Parhofer et al., 1998; Araki, Nakanishi and
Umemura, 1999; Neu and Shaheen, 1999; Jiang and O’Shea,
2000; Castaldi, Gibbs and Davies, 2003). The films deposited
onto the substrates at ambient temperatures are amorphous
and need annealing at temperatures between 400 and 700 ◦C
for crystallization. By consolidation of the sputtered material
onto heated substrates, microcrystalline films can be achieved
directly (Cadieu et al., 1987; Parhofer, Gieres, Wecker and
Schultz, 1996).

About 1- to 2-µm-thick Nd–Dy–Fe–B films with a
texture perpendicular to the film plane could be prepared by
sputtering. In general, the magnetic properties range from 0.9
to 1.3 T for the remanent polarization, 200 to 800 kA m−1 for
the coercivity HcJ, and 150 to 190 kJ m−3 for the maximum
energy density (Sun, Tomida, Hirosawa and Maehara, 1996;
Parhofer, Gieres, Wecker and Schultz, 1996; Parhofer et al.,
1998; Araki, Nakanishi and Umemura, 1999; Castaldi, Gibbs
and Davies, 2003).

In contrast, sputtered SmCo5 or Sm2(Co,Cu,Fe,Zr)17 films
with a thickness between 1 and 2 µm crystallize with their
easy axis in the film plane. The magnetic properties range
from 0.6 to 0.8 T for the remanent polarization, 1000 to
1200 kA m−1 for the coercivity HcJ, and to about 120 kJ m−3

for the maximum energy density (Cadieu et al., 1987; Neu
and Shaheen, 1999).

Lately, some research and development projects have been
focusing on the preparation of thin RE–TM films by pulsed-
laser deposition. The thickness of such films, in general,
ranges from 0.1 to 0.3 µm. The crystallization onto heated
substrates with temperatures in the range 400–550 ◦C result
in anisotropic films with a remanent polarization of about
0.6 T and a coercivity HcJ of 800 kA m−1 for Sm–Co films
(Neu et al., 2002b) and remanent polarizations between 0.9
and 1 T and coercivities HcJ between 400 and 1000 kA m−1

for Nd–Fe–B films (Hannemann et al., 2002; Fähler et al.,
2003; Neu et al., 2002a).

Isotropic Nd–Fe–B films with a thickness from about
10 to 120 µm could be prepared by high-speed pulsed-laser
deposition (Nakano et al., 2003). The magnetic properties
range between 0.4 and 0.68 T for the remanent polarization,
800 and 1200 kA m−1 for the coercivity HcJ, and up to
77 kJ m−3 for the maximum energy density.

Although some improvements are to be expected by
optimization of the pulsed-laser deposition, the sputtering
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process seems to be more promising for the preparation of
RE–TM hard magnetic films.

2.5.8 Amorphous hard magnetic RE–TM materials

In RE–Fe–Al systems, RE: Pr and Nd, there is a wide
composition range for the formation of an amorphous phase,
which enables the preparation of bulk amorphous alloys by
conventional solidification methods (Inoue et al., 1996a,b;
Inoue, Zhang and Takeuchi, 1997). Cylindrical rods with
diameters up to 3 or 12 mm for Pr–or Nd–Fe–Al alloys
respectively could be manufactured by injection casting into
a Cu mold with a small pressure of 0.05 MPa or by sucking
the molten alloy into a Cu mold. X-ray spectra indicate that
the cylindrical rods consist of an amorphous phase. Detailed
analyses of the microstructure reveal that the samples consist
of Nd nanocrystals in an amorphous matrix. Indeed, the
amorphous matrix contains two amorphous phases with
a different composition and some short-range order (Sun
et al., 2003).

The magnetic properties amount to 0.089 or 0.112 T for
the remanent polarization, 300 or 288 kA m−1 for the coer-
civity HcJ, and 13 or 19 kJ m−3 for the maximum energy
density of Pr60Fe30Al10 or Nd60Fe30Al10 rods (Inoue et al.,
1996; Inoue, Zhang and Takeuchi, 1997). The squareness
of the demagnetization curve J (H) depends on the diam-
eter of the rods. This result indicates that the hard mag-
netic properties are sensitive to the disordered structure in
the amorphous phase. There seems to be a tendency that
the hard magnetic properties increase with the develop-
ment of a short-range order. Annealing of cast cylinders
at a temperature of 330 ◦C for 10 min increases the rema-
nent polarization by about 5%, but no significant change
of the coercivity HcJ occurs. Heating beyond the crystal-
lization temperature of about 510 ◦C results in NdAl2 and
Nd3Fe1−xAlx crystals in an Nd matrix. As a consequence,
the hard magnetic properties decrease substantially (Inoue
et al., 1996).

Investigation of the temperature dependence of the coer-
civity of Nd60Fe30Al10 and of Nd60Fe20Co10Al10 ribbons or
of cast ingots demonstrates a strong increase in the coerciv-
ity at low temperatures with a maximum between 2640 and
3200 kA m−1 at temperatures between 50 and 77 K (Turtelli
et al., 2002). At temperatures below 77 K, the coercivities
decrease again. The magnetization curves J (H) and the
linear temperature dependence of the coercivity indicate a
pinning-type behavior. Probably the magnetic domain walls
are pinned at the nanocrystals in the amorphous matrix
(Turtelli et al., 2002).

In order to increase the glass-forming ability, Nd60−xFe30

Al10Bx rods, x = 0, 1, 3, 5, were prepared by low-pressure

Cu-mold casting. For Nd59Fe30Al10B1 rods with a diam-
eter of 1 mm, a small increase of the remanent polariza-
tion and of the maximum energy density to 0.154 T and
4.2 kJ m−3 results, whereas the coercivity HcJ does not
change significantly and amounts to 340 kA m−1 (Kong, Li
and Ding, 2000).

By addition of B, B and Cu, or Dy to Nd60Fe30Al10

alloys, the coercivity of 3-mm ingots, which were cast
into a Cu mold, could be improved up to 388 kA m−1 for
a Nd41.2Pr13.8Dy5Fe20Al10 at the expense of the remanent
polarization (Betancourt and Valenzuela, 2003).

However, the coercivity mechanism in amorphous
RE–Fe–Al alloys is still under investigation.

3 MAGNETIZING OF RE–TM MAGNETS

After sintering, RE–TM magnets are in the thermally demag-
netized state. Hence, the grains contain different magnetic
domains, the dimensions of which are determined by the min-
imization of the magnetic stray field energy at the surface of
the magnet. The magnetic domains are separated by domain
walls, which can either move easily within the grains or be
pinned at phase boundaries, precipitates, or planar crystal
defects (Kronmüller, 1978).

Perfect magnetization of anisotropic magnets to saturation
implies that all grains must be magnetized in the easy
direction and no multidomain grains exist anymore. The
saturation of magnets can be achieved by strong magnetic
field pulses. The required magnetic field strength depends
on the coercivity mechanism, the saturation polarization of
the magnetic material, and the load line of the magnet or of
the magnet assembly, respectively. The following coercivity
mechanisms are dominant in RE–TM magnet materials with
strong coercivities:

• nucleation of reversed domains in every saturated grain
or

• pinning of the magnetic domain walls at phase bound-
aries, precipitates, or planar crystal defects.

The magnetizing curve of a magnet material from the ther-
mally demagnetized state indicates which coercivity mecha-
nism prevails, see Figure 12. In nucleation-type magnets, for
instance, Nd–Fe–B, SmCo5, or hard ferrites, the magnetic
domain walls can be moved easily within the grains, so that
the polarization increases steeply already in small magnetiz-
ing fields, see Figure 12(a). But, perfect saturation requires
a magnetizing field strength of at least twice the saturation
polarization of the magnet material (Blank, Rodewald and
Schleede, 1989).
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Figure 12. Principal magnetizing behavior of thermally demagne-
tized RE–TM magnets. (a) Nucleation-type anisotropic RE–TM
magnets, for instance, Nd–Fe–B or SmCo5 magnets, or
isotropic RE–TM magnets, for instance, rapidly solidified
Nd–Fe–B ribbons, (b) pinning-type RE–TM magnets, for instance,
Sm2(Co,Cu,Fe,Zr)17 magnets with coercivities HcJ of 800 or
2070 kA m−1, respectively.

However, in isotropic Nd–Fe–B magnets, for instance,
magnets made from rapidly solidified Nd–Fe–B ribbons,
there is only a flat increase in the polarization from the
thermally demagnetized state, see Figure 12(a). Probably
only those grains, whose easy axes are aligned parallel to
the magnetizing field strength, are easily saturated, whereas
in all other grains the polarization must be rotated parallel to
the magnetizing field. The rotation of the polarization against
the magnetocrystalline fields requires strong magnetizing
fields. In principle, saturation of isotropic magnets needs
a magnetizing field strength similar to the anisotropy field
strength.

The coercivity mechanism in nucleation-type magnets
has been described by the micromagnetic theory for nucle-
ation of reversed domains (Kronmüller, 1985, 1987; Adler
and Hamann, 1985; Kronmüller, Durst and Sagawa, 1988;
Sagawa and Hirosawa, 1988; Kou, Kronmüller, Givord and
Rossignol, 1994) or by an empirical model for the existence
and expansion of nuclei of reversed domains (Givord, Tenaud
and Viadieu, 1988; Givord and Rossignol, 1996; Barthem,
Givord, Rossignol and Tenaud, 2002; Givord, Rossignol and
Barthem, 2003).

In pinning-type magnets, the magnetic domain
walls are pinned at phase boundaries, for instance, in
Sm2(Co,Cu,Fe,Zr)17 magnets with coercivities HcJ between
500 and 800 kA m−1. In order to saturate a pinning-type
magnet, the domain walls must be removed from the
pinning sites, which requires magnetizing fields larger than
the pinning field strength, see Figure 12(b). Saturation

of such magnets needs magnetizing field strengths of at
least twice the coercivity HcJ, see Section 3.2. Microscopic
models for the coercivity mechanism of pinning-type
magnets have been compiled by several authors (Durst and
Kronmüller, 1987; Katter et al., 1996; Katter, 1998).

However, in some magnet materials, the pinning
field strength is not well defined, for instance, in
Sm2(Co,Cu,Fe,Zr)17 magnets with strong coercivities above
1600 kA m−1, see Figure 12(b).

In Alnico magnets, the coercivity is determined by
the shape anisotropy of the ferromagnetic Fe–Co rods in
the nonmagnetic matrix. The coercivity is determined by
the difference of the demagnetizing coefficient N| parallel
to the easy axis and N⊥ perpendicular to the easy axis of the
magnet, see equation (6).

µ0HcJ = −J ·(N| − N⊥)·f (q) (6)

where f (q) denotes a distribution function, which takes into
account the nonideal alignment of the easy axes of the Fe–Co
rods (Buschow, 1998). For the case of noninteracting uniaxial
single domain particles, f (q) amounts to 0.5.

For magnetization of permanent magnets, the internal
magnetic field strength Hint in the magnet is decisive. The
internal field strength is determined by the applied field
strength Happl and the demagnetizing field strength Hdemag

of the magnet or the magnet assembly. The demagnetizing
field strength depends on the dimensions of the magnet or
the load line of a magnet assembly, respectively, and the
polarization of the magnet materials, see equation (7):

Hint = Happl − Hdemag = Happl − 1

µ0 × N × J
(7)

where N denotes the demagnetization coefficient and J the
polarization of the magnet material.

Most of the advanced magnets are magnetized by a short
pulse field, which is achieved by discharging a capacitor bank
over a Cu coil. The duration of the field pulse must last
sufficiently long in order to overcome the eddy currents at
the surface of the magnets, in particular, for large blocks. In
general, a pulse width in the range between 5 and 10 ms is
sufficient for a complete field penetration. The penetration
depth λ (see equation 8) depends on the electrical resistance
ρ and the permeability µ of the magnet material and the
frequency f of the field pulse (Parker, 1990):

λ = constant·
√

ρ

µ·f (8)

In general, magnets are magnetized after assembly, since
handling of not-magnetized magnets is easier and prevents
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contamination by ferromagnetic particles. In addition, chip-
ping of magnet edges due to the mutual attraction of magnet
parts is avoided.

3.1 Magnetization of nucleation-type magnets

Magnetization of nucleation-type magnets, for instance, sin-
tered anisotropic ferrites, SmCo5, or Nd–Fe–B magnets, is
fairly easy from the thermally demagnetized state. Since the
magnetic domain walls in the individual grains can be moved
easily, a polarization of about 95% of the saturation polariza-
tion results even after magnetization by a small magnetizing
field strength of about 200 kA m−1. However, removal of the
magnetizing field strength decreases the polarization, since
there is no significant coercivity. In the multidomain grains,
the domain walls are moved back in order to minimize the
magnetic stray field energy, see Figure 13.

Magnetization by a field strength of about 500 kA m−1 sat-
urates some grains, so that some coercivity results. Such
grains do not contain domain walls anymore. Since most
of the grains are still multidomain grains, the demagneti-
zation curves J (H) of such partially magnetized magnets
demonstrate a very poor squareness, see Figure 13.

Complete magnetization requires a strong internal field
strength >1600 kA m−1. In that case, every grain is saturated.
There are hardly any grains that contain small reversed
domains.

The coercivity of nucleation-type magnets is determined
by the nucleation of reversed magnetic domains in each grain,
since the grains are decoupled magnetically by nonmagnetic
Nd-rich constituents. The minimal volume of such a reversed
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Figure 13. Magnetizing behavior of sintered Nd–Dy–Fe–B mag-
nets. The demagnetization curves J (H) were measured on different
samples, each in the thermally demagnetized state, after magneti-
zation by the indicated field strengths Hmag. For complete magne-
tization an applied field of 2000 kA m−1 is recommended.

magnetic domain is proportional to the domain wall thickness
cubed (Givord, Tenaud and Viadieu, 1988; Givord and
Rossignol, 1996). In general, the nucleation occurs at crystal
defects, where the magnetocrystalline anisotropy is reduced
or at edges of grains, where strong local stray fields assist
the nucleation. At edges of grains, local stray fields up to
about 2.5 times the saturation polarization can occur (Adler
and Hamann, 1985; Blank, Rodewald and Schleede, 1989).
In order to overcome such strong local stray fields, the
magnetization field strength should be at least twice the
saturation of the magnet material.

There is a dominant impact of the microstructure of a mag-
net on the coercivity. Besides, on a strong nucleation field
strength Hn, which is mainly determined by the magnetocrys-
talline anisotropy, the coercivity depends on local demag-
netizing stray fields, which are described by an effective
demagnetizing coefficient Neff (Adler and Hamann, 1985;
Durst and Kronmüller, 1985; Kronmüller, Durst and Sagawa,
1988; Kou, Kronmüller, Givord and Rossignol, 1994), see
equation (9).

HcJ = Hn − Neff

µ0 × J
(9)

where Hn denotes the nucleation field strength, J the
polarization of the magnet material, and Neff presents an
effective demagnetization coefficient, which depends on the
local microstructure.

3.2 Magnetization of pinning-type magnets

Magnetization of pinning-type magnets, for instance, sin-
tered Sm2(Co,Cu,Fe,Zr)17 magnets with coercivities in the
range 600–800 kA m−1, need an internal magnetizing field
strength, which is strong enough to overcome the pinning
forces. If a small magnetizing field strength is applied, the
magnetic domain walls are not moved and there is only a
negligible increase in the polarization, see Figure 14. For
internal magnetizing field strengths of about the coercive
field strength, the domain walls can be pulled away from
the pinning sites and the domains with a polarization parallel
to the magnetic field grows significantly. Since the strength
of the pinning sites may vary within the microstructure, the
complete magnetization requires a magnetizing field strength
of at least twice that of the coercive field strength.

Magnetization of Sm2(Co,Cu,Fe,Zr)17 magnets with strong
coercivities in the range 1500 up to 2100 kA m−1 demonstrate
a more heterogeneous pinning behavior. For magnetizing
field strengths, which are lower than the coercivity, there is
an increase in the polarization up to about a third of the rema-
nent polarization, see Figure 15. Probably not all pinning
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Figure 14. Magnetizing behavior of sintered Sm2(Co,Cu,Fe,Zr)17

magnets with a coercivity HcJ of about 800 kA m−1. The demagne-
tization curves J (H) were measured on different samples, each in
the thermally demagnetized state, after magnetization by the indi-
cated field strengths Hmag. For complete magnetization, an applied
field of 2000 kA m−1 is recommended.
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Figure 15. Magnetizing behavior of sintered Sm2(Co,Cu,Fe,Zr)17

magnets with a coercivity HcJ of about 2070 kA m−1. The demag-
netization curves J (H) were measured on different samples, each
in the thermally demagnetized state, after magnetization by the indi-
cated field strengths Hmag. For complete magnetization, an applied
field of 3650 kA m−1 is recommended.

sites exert the same pinning strength on the magnetic domain
walls. In fact, in well-annealed Sm2(Co,Cu,Fe,Zr)17 magnets
with strong coercivities, there exist two kinds of pinning
sites with different pinning strengths (Katter et al., 1996).
The different pinning sites were revealed by the different
temperature dependences of the corresponding coercivities.
Increasing the internal magnetizing field strength beyond the

coercive field strength results in a strong increase in the
polarization, see Figure 15. However, complete saturation
of Sm2(Co,Cu,Fe,Zr)17 magnets requires a magnetizing field
strength of at least twice the coercive field strength.

4 TEMPERATURE STABILITY
OF SINTERED RE–TM MAGNETS

The magnetic properties of sintered RE magnets depend on
temperature. For a proper design of magnet assemblies, their
temperature dependence has to be taken into account. In
particular, the maximum operating temperature of a magnet
grade must not be exceeded in order to prevent degradation
of a magnet assembly.

The maximum continuous operating temperature of perma-
nent magnets depends on the temperature coefficients TC(Jr)
of the remanent polarization, TC(HcJ) of the coercivity, and
the load line B/µ0H of the magnet or the magnet assem-
bly. In general, the maximum operating temperature Top

of the different permanent magnets increases proportional
to the Curie temperature TC of the magnet material, see
Figure 16.

As far as the RE–TM magnets are concerned, the rema-
nent polarization of Nd–Fe–TM–B, TM: TMs, as well as
Nd–Dy–Fe–TM–B magnets, with strong coercivities HcJ >

2400 kA m−1, is larger than the remanent polarizations Jr of
SmCo5 or Sm2(Co,Cu,Fe,Zr)17 magnets, see Figure 17. But,
at temperatures above 200 ◦C, SmCo5 magnets are superior
to Nd–Dy–Fe–TM–B magnets and, at temperatures above
230 ◦C, Sm2(Co,Cu,Fe,Zr)17 magnets exceed the remanent
polarization of Nd–Fe–TM–B magnets. The temperature
dependence of the remanent polarization is mainly deter-
mined by the Curie temperatures of the different hard mag-
netic compounds, TC(Nd2Fe14B) ∼= 312 ◦C, TC(SmCo5) ∼=
720 ◦C and TC(Sm2Co17) ∼= 820 ◦C (Gutfleisch, 2000).

The temperature dependence of the coercivities of RE–TM
magnets is mainly determined by the temperature depen-
dence of the anisotropy field strength HA. Since the
anisotropy field strength of the Nd2Fe14B compound, HA

∼=
52 kA m−1, is significantly smaller than that of SmCo5 com-
pounds, HA

∼= 320 kA m−1 (Gutfleisch, 2000), the coercivity
of Nd–Fe–TM–B magnets decreases more strongly with
increasing temperature than the coercivity of SmCo5 mag-
nets, see Figure 18. At temperatures >150 ◦C, the coer-
civity of Sm–Co magnets exceeds the coercivities of
Nd–Dy–Fe–TM–B magnets. The coercivity of the multi-
phase Sm2(Co,Cu,Fe,Zr)17 magnets is determined by pinning
of the magnetic domain walls and depends only on the square
root of the anisotropy field strength, which reduces the tem-
perature dependence of the coercivity HcJ.
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Figure 16. Maximum continuous operating temperatures Top of permanent magnet materials, depending on their Curie temperatures TC.
The shaded lines indicate the lowest or highest operating temperatures, respectively, for the different permanent magnet materials.
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Figure 17. Remanent polarization Jr of RE–TM magnets, depend-
ing on the temperature.

As a consequence, sintered Nd–Fe–B magnets achieve
maximum energy densities at 20 ◦C in the range
224–424 kJ m−3, but, at temperatures of approximately
120 ◦C, sintered Sm2(Co,Cu,Fe,Zr)17 magnets are superior,
see Figure 19.

The temperature stability of permanent magnets is deter-
mined by reversible and irreversible polarization losses. The
reversible polarization changes are represented by the tem-
perature coefficient of the remanent polarization TC(Jr).

Irreversible polarization losses are mainly caused by the
temperature dependence of the coercivity HcJ and the thermal
aftereffect. With increasing temperature, the coercivity HcJ

of Nd–Fe–B magnets decreases and as a consequence the
polarization of grains that have smaller coercivities may be
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Figure 18. Coercive field strength HcJ of RE–TM magnets,
depending on the temperature.

reversed. Such irreversible polarization losses do not depend
on time.

Minor polarization losses are due to the thermal aftereffect
or magnetic viscosity, respectively, and depend on time
logarithmically (Néel, 1951). The polarization losses due to
the temperature dependence of the coercivity HcJ and to the
thermal aftereffect can be recovered by remagnetization.

However, polarization losses due to the deterioration of
the magnet surface, for instance, by oxidation or by improper
cutting and grinding (Blank and Adler, 1987) or by changes
of the mircostructure due to high operating temperatures
cannot be eliminated by remagnetization. The basic features
that affect the temperature stability of RE–TM magnets are
compiled in Table 1.
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Table 1. Principle terms, which affect the temperature stability of RE–TM magnets.

Reversible polarization losses Irreversible polarization losses Irreversible polarization losses by microstructural
changes

Reversible temperature coefficient TC(Jr) Temperature coefficient TC(HcJ) Surface oxidation
Thermal aftereffect, determined by the Changes in the microstructure due to
coefficient Sv temperature
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Figure 19. Maximum energy density (BH)max of RE–TM mag-
nets, depending on the temperature.

4.1 Temperature coefficients of the remanent
polarization J r and of the coercivity H cJ

The remanent polarization Jr and the coercivity HcJ of RE
magnets decrease continuously with increasing temperature.
The monotonous decrease is characterized quantitatively
by the temperature coefficient of the remanent polarization
TC(Jr) or of the coercivity TC(HcJ) respectively according
to equations (10) and (11).

TC(Jr) = Jr(T1) − Jr(T0)

Jr(T0) · (T1 − T0)
× 100 in%/K

for the temperature range T0 < T < T1 (10)

TC(HcJ) = HcJ(T1) − HcJ(T0)

HcJ(T0) · (T1 − T0)
× 100 in%/K

for the temperature range T0 < T < T1 (11)

where T0 and T1 denote the lower and the higher temper-
ature, very often T0 amounts to 20 ◦C. Jr(T0), Jr(T1), and
HcJ(T0), HcJ(T1) represent the remanent polarizations or the
coercivities at these temperatures. The temperature coeffi-
cients describe the temperatures dependences only in small
temperature ranges T0 < T < T1 fairly well. However, rema-
nent polarizations calculated by means of the temperature

coefficient TC(Jr) are a little bit smaller because the temper-
ature dependence of the polarization is a convex graph, see
Figure 20(a), whereas coercivities interpolated by means of
the temperature coefficient TC(HcJ) are too large, since the
temperature dependence of the coercivity is a concave graph,
see Figure 20(b). The deviations between the polynomial
regression curves of the measurements and the interpolations
by the temperature coefficients amount to <0.5% for the
remanent polarization, but up to 15% for the coercivity HcJ.
The difference reflects the different values of the tempera-
ture coefficients. For instance, at a temperature of 120 ◦C, the
coercivity amounts to 608 kA m−1 estimated by the temper-
ature coefficient TC(HcJ) and to 524 kA m−1 calculated by
the regression polynom, see Figure 20(b). Hence, an error of
about 15% results.

Typical temperature coefficients of some RE–TM magnet
grades for the temperature ranges 20–100 ◦C and 20–150 ◦C
are compiled in Table 2.

4.2 Irreversible polarization losses due to the
temperature dependence of the coercivity H cJ
and the thermal aftereffect

The decrease in the coercivity HcJ with increasing tempera-
tures results in the reversal of the polarization of those grains
that experience strong demagnetizing fields. The demagne-
tizing field strength is the sum of the applied field strength
and local stray fields. Local stray fields of pores or impu-
rities may amount to twice the polarization of the magnet
material (Blank, Rodewald and Schleede, 1989). Owing to
the opposite local fields, the magnetization of some grains
in the magnet may be reversed, so that irreversible polariza-
tion losses result. Such irreversible polarization losses do not
depend on time and occur as soon as the temperature in the
magnet increases.

Irreversible polarization losses, which are caused by the
temperature dependence of the coercivity, can be anticipated
by an annealing treatment of the magnetized magnets or
the magnetized magnet assembly. As a rule of thumb, such
aging treatments for the stabilization of a magnetized magnet
are performed at temperatures 10–50 K above the maximum
operating temperature (Adler and Marik, 1981).
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Table 2. Temperature coefficients TC(Jr) of the remanent polarization and TC(HcJ) of the coercivity HcJ of some RE magnet grades
for the temperature ranges 20–100 ◦C and 20–150 ◦C.

Temperature range 20–100 ◦C 20–150 ◦C

Magnet grade (Jr in T/HcJ (kA m−1)) TC(Jr) (%/K) TC(HcJ) (%/K) TC(Jr) (%/K) TC(HcJ) (%/K)

SmCo5 (0.90/2400) −0.040 −0.14 −0.045 −0.15
SmCo5 (1.01/1500) −0.040 −0.24 −0.045 −0.25
Sm2(Co,Cu,Fe,Zr)17 (1.12/800) −0.030 −0.15 −0.035 −0.16
Sm2(Co,Cu,Fe,Zr)17 (1.10/2070) −0.030 −0.18 −0.035 −0.19
Nd2Fe14B (1.47/955) −0.115 −0.77 – –
Nd2Fe14B (1.18/2465) −0.085 −0.55 −0.095 −0.50
Nd2Fe14B (1.08/2865) −0.080 −0.51 −0.090 −0.46
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Figure 20. Temperature dependence of (a) the remanent polar-
ization Jr(T ) and of (b) the coercivity HcJ(T ) of sintered
Nd–Dy–Fe–TM–B magnets. The deviation between the polyno-
mial regression curves of the measurements and the interpolations
by the temperature coefficients TC(Jr) or TC(HcJ), respectively, for
the different temperature intervals 20–100 ◦C and 20–150 ◦C are
demonstrated.

Minor and time-dependent polarization losses may result
from the thermal aftereffect or the magnetic viscosity,
respectively. As soon as the sum of the external field and of

internal stray fields becomes strong enough, the polarization
of some grains decreases by nucleation of reversed domains.
Hence, there are some multidomain grains, which contain
magnetic domain walls. Even if the external magnetic field
is kept constant, the domain walls can be moved by thermal
activation in order to further decrease the energy of local
magnetic stray fields. This results in minor decreases of the
polarization dJ and is denoted as the thermal aftereffect or
magnetic viscosity, respectively. Figure 21 demonstrates the
principle of the aftereffect on a demagnetization curve at a
constant reversed magnetic field strength.

The decrease in the polarization depends on time loga-
rithmically and has been analyzed in detail by Néel. The

Magnetic field strength H

P
ol

ar
iz

at
io

n 
J 

dHn = Sv ln t /t0 

Hi = 0

dHn 

t = t0 

(1)

(2)

T
im

e

Figure 21. Procedure for the measurement of the coefficient Sv of
the thermal aftereffect: (1) at first the demagnetization curve J (H)

is measured with a fixed sweep rate dH/dt , (2) after remagneti-
zation of the magnet by a strong pulse field, the demagnetization
curve was measured again, but, at the time t = t0, the external field
was kept constant and the decrease in the polarization, depending
on time, was recorded.
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polarization losses by the thermal aftereffect can be simu-
lated by a small additional reversed external field dH (Néel,
1951), see equation (12):

dH ≈ Sv · ln
t

t0
(12)

where Sv and dH denote the coefficient of the thermal after-
effect and the field increment that is needed for simulating
the same polarization losses, t gives the time in reference to
the moment at which the external magnetic field is applied
and kept constant, t0 ≈ 10−11 s, is the characteristic time for
lattice vibrations (Coey, 1996). The coefficient of the ther-
mal aftereffect is proportional to the coercivity HcJ for many
magnet materials. This implies that the coefficient of the ther-
mal aftereffect decreases with increasing temperature, since
the coercivities HcJ decrease as well. The coefficient of the
thermal aftereffect in dependence of the polarization (Street,
Day and Dunlop, 1987), of the coercivity (Liu and Luo, 1990;
Nishio and Yamamoto, 1993), and of the temperature has
been examined by several teams (Stieler, Heiden, Kuntze
and Kohake, 1984; Rodewald, 1985; Givord et al., 1987a,b;
Singleton and Hadjipanyis, 1990). In order to determine the
influence of the microstructure on the magnetic viscosity,
the temperature dependence of the viscosity coefficient Sv

has been examined on single-phase and multiphase nanocrys-
talline Nd–Fe–B or Pr–Fe–B magnets, respectively, by M.
Becher et al. Whereas multiphase Nd–Fe–B or Pr–Fe–B
magnets with a high coercivity have got high viscosity coef-
ficients with a strong temperature dependence, exchange-
coupled RE–Fe–B magnets with low coercivities have got
smaller viscosity coefficients with a small temperature depen-
dence (Becher, Seeger and Bauer, 1998).

For sintered Nd–Dy–Fe–B magnets, the coefficient of
the thermal aftereffect Sv ranges from 8 to 10 kA m−1 at
a temperature of 20 ◦C and decreases to about 2 kA m−1 at
a temperature of 200 ◦C, probably due to the decrease in the
coercivity (Rodewald, 1985). For sintered Sm–Co magnets,
the coefficient of the thermal aftereffect varies between 2 and
12 kA m−1 and depends on the coercivity HcJ.

Figure 22 gives the relative irreversible polarization losses
�Jirr/J , depending on the exposure time at a temperature
of 130 ◦C in air for sintered Nd–Dy–Fe–TM–B magnets.
Owing to the small coercivity and the strong temperature
coefficient of the coercivity TC(HcJ), such magnets experi-
ence irreversible polarization losses between 1 and 3% for
small load lines, but suffer irreversible polarization losses
from about 15 to 18% for a load line of B/µ0H = −0.5. The
irreversible polarization losses can be reduced by increasing
the coercivity or by improving the squareness of the demag-
netization curve J (H) of the sintered magnets.

The irreversible polarization losses of typical Sm–Co
magnets at temperatures between 100 and 200 ◦C amount to
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Figure 22. Irreversible polarization losses of sintered
Nd14.3Dy1Fe76.7B8 magnets with different load lines B/µ0H

at a temperature of 130 ◦C, depending on the exposure time.

some percent only, due to the stronger coercivities HcJ and
the smaller temperature coefficient TC(HcJ), see Figure 23.

In principle, the irreversible polarization losses due to the
temperature dependence of the coercivity HcJ and the thermal
aftereffect can be recovered by remagnetization.

4.3 Irreversible polarization losses due
to microstructural changes

However, irreversible polarization losses due to the dete-
rioration of the RE–TM magnet surface, for instance, by
improper cutting and grinding (Nishio, Yamamoto, Nagakura
and Uehara, 1990), by oxidation (Adler and Marik, 1981;
Blank and Adler, 1987) or by changes of the microstruc-
ture due to high temperatures, cannot be eliminated by
remagnetization. The inset of Figure 24 demonstrates the
microstructure of an oxidized surface and the impact on the
demagnetization curve J (H). By oxidation, the surface of
the Nd–Fe–B grains is converted to a mixture of Nd oxide
(hexagonal Nd2O3) and α-Fe (Schrey, 1986). The thickness
of such a selectively oxidized surface layer may amount
to some 10 nm only and hence cannot be detected by light
microscopy. Only for extreme heat treatments in air, the oxi-
dized layer increases up to the grain size of the sintered
magnets.

In a demagnetizing field, the polarization of the selec-
tively oxidized surface layer is reversed at a much lower
field strength than the bulk magnet because the coercivity
HcJ,surf ranges between 1800 and 800 kA m−1, for instance,
and is much lower than the coercivity of the magnet
(Givord, Tenaud and Viadieu, 1986; Blank and Adler, 1987).
Since the demagnetization of sintered Nd–Fe–B magnets is
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Figure 23. Irreversible polarization losses of sintered SmCo5 and Sm2(Co,Cu,Fe,Zr)17 magnets with different load lines B/µ0H at different
temperatures of 100, 200, and 300 ◦C, respectively, depending on the exposure time.
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Figure 24. Influence of a selectively oxidized surface grain layer
on the demagnetization curve J (H) of a sintered RE–TM magnet.
The enlarged microstructure of a severely oxidized layer of a
Nd–Dy–Fe–B magnet after annealing in air at 500 ◦C for 23 h
demonstrates that about one layer of grains is deteriorated.

determined by nucleation of reversed domains, not only the
oxidized surface layer but the whole layer of surface grains
with a thickness between 10 and 20 µm is reversed. Hence,
a distinct step in the demagnetization curve J (H) occurs.

The height dJsurf of such a step is given by twice of the
ratio of the volume Vsurf of the reversed grain layer at the side

surface to the total volume of the magnet, see equation (13):

dJsurf = 2·Js·Vsurf

V
= 2·Js·Asurf·d

V
(13)

where Js denotes the saturation polarization of the reversed
layer, Asurf the area of the side surface of the magnet, d the
thickness of the reversed layer, and V the total volume of
the magnet.

The coefficient 2 results from the reversal of the polariza-
tion from the positive to the negative direction.

The height dJsurf/2 is defined by the difference between
the inflection point of the step in the demagnetization curve
and the demagnetization curve of the unspoiled magnet. The
coercivity HcJ,surf of the selectively oxidized surface layer is
defined as the field difference between the inflection point of
the step in the demagnetization curve and the ordinate, see
Figure 24. The demagnetization curve has to be corrected by
the demagnetizing field strength N/µ0·J .

Increasing the thickness of the selectively oxidized layer
by annealing for longer times or at higher temperatures
results in an increase in the height of the step dJsurf and in
a reduction of the coercivity HcJ,surf of the oxidized surface
layer (Blank and Adler, 1987).

By surface treatments, the coercivity HcJ,surf and the height
dJsurf of the step can be influenced. By etching or by proper
annealing, the step can almost be removed, but, after aging
the magnets in air, the step may reappear.
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4.4 Long-term stability of sintered Nd–Dy–Fe–B
magnets

In general, the magnetic flux of sintered RE–TM magnets is
constant, provided that strong temperature loads, corrosion
of the magnet, and any other damages are prevented. The
irreversible polarization losses due to the temperature depen-
dence of the coercivity HcJ depend on the magnet material
and can be taken into account in any designed application.

The time-dependent irreversible polarization losses due to
the thermal aftereffect decrease logarithmically with time.
The corresponding reversed field increment can be calcu-
lated from equation (12). Then the polarization losses can
be deduced from the demagnetization curves J (H) of the
magnet material.

Figure 25 presents measurements of the irreversible polar-
ization losses on sintered Nd–Dy–Fe–B magnets with coer-
civities of 1200 or 2460 kA m−1, respectively, and different
load lines after aging at a temperature of 100 ◦C over a
period of 766 days (2.1 years). The dimensions of the mag-
nets were chosen in a way that irreversible polarization losses
due to the temperature dependence of the coercive field
strength are negligible. Hence, the polarization losses are
mostly determined by the thermal aftereffect. After aging
the Nd–Dy–Fe–B magnets for 1 year, irreversible polar-
ization losses of about 1% result. The measurements are
fairly well described by the logarithmic regression curves,
see Figure 25.

With these regression equations, the irreversible polariza-
tion losses for aging periods of 3, 5, and 10 years have

been calculated for example. The results are compiled in
Table 3. Owing to the logarithmic time dependence, the irre-
versible polarization losses increase only up to <2%, pro-
vided increase in temperature beyond 100 ◦C, corrosion, or
any other microstructural changes at the magnet surfaces are
prevented.

4.5 Stability of RE–TM magnets against
radiation

RE–TM magnets are often applied in focusing devices for
particle beams in accelerators or in spectrometers. In such
an environment, the RE–TM magnets may be exposed to γ

Table 3. Long-term irreversible polarization losses of sintered
Nd–Dy–Fe–B magnets with different load lines B/µ0H after
aging at a temperature of 100 ◦C in air, calculated from
the regression curves in Figure 25. The regression curves
are deduced from measurements over a period of 766 days
(2.1 years).

Aging of Nd–Dy–Fe–B 1 year 3 years 5 years 10 years
magnets at 100 ◦C in air

HcJ = 2460 kA m−1, −1.03 −1.12 −1.16 −1.22
B/µ0H = −0.9

HcJ = 2460 kA m−1, −1.04 −1.15 −1.19 −1.26
B/µ0H = −0.6

HcJ = 1150 kA m−1, −1.20 −1.34 −1.40 −1.48
B/µ0H = −6.1

(1) dJirr/J = −0.0842 Ln(t(days)) − 0.5293
R2 = 0.8111, HcJ = 2460 kA m−1, B/m0H = −0.9

(2) dJirr/J = −0.0935 Ln(t(days)) − 0.4909
R2 = 0.8604, HcJ = 2460 kA m−1, B/m0H = −0.6

(3) dJirr/J = −0.1231 Ln(t(days)) − 0.4745
R2 = 0.8708, HcJ = 1150 kA m−1, B/m0H = −6.1
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Figure 25. Long-term irreversible polarization losses of sintered Nd–Dy–Fe–B magnets with different load lines B/µ0H after aging at a
temperature of 100 ◦C in air. The regression curves are deduced from measurements over a period of 766 days (2.1 years).
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radiation as well as to irradiation of neutrons or other charged
particles. While direct irradiation of RE–TM magnets by
neutrons or charged particles may be avoided, in many cases,
the magnets are often exposed to γ radiation. The effect of
γ radiation from a 60Co source on the magnetic properties
of RE–TM magnets has been examined on five similar sets
of SmCo5, Sm2(Co,Cu,Fe,Zr)17, and Nd–Dy–Fe–B mag-
nets at a constant temperature (Boockmann et al., 1991).
The magnetic properties and the load lines of the magnets
amount to Jr = 0.95 T, HcJ = 1800 kA m−1, and B/µ0H =
−0.7 for SmCo5 magnets, Jr = 1.1 T, HcJ = 1400 kA m−1,
and B/µ0H = −0.71 for Sm2(Co,Cu,Fe,Zr)17 magnets, and
Jr = 1.2 T, HcJ = 1520 kA m−1, and B/µ0H = −0.61 for
Nd–Dy–Fe–B magnets. The magnets were supported on
nonmagnetic plates with a distance of about 2 cm between
every magnet, so that there was hardly any influence from
the magnetic stray fields of the neighboring magnets. All
magnets were exposed to γ radiation from a 60Co-source
emitting γ photons with energies of 1.17 and 1.33 MeV. The
irradiation rate amounts to 1 krad min−1. During the irra-
diation, the temperature was controlled by a thermocouple
and could be kept constant at (22 ± 4)

◦C. After an accu-
mulated dose of about 10 Mrad, one set of five magnets of
each grade was always removed. The remanent polarization
of every magnet and the demagnetization curves J (H) of
selected magnets were measured. The difference between the
remanent polarization before and after the irradiation dJr,rad,
related to Jr, and the standard deviations are presented in
Figures 26–28 in dependence on the accumulated dose of
the γ radiation.
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Figure 26. Dependence of the polarization losses dJr,rad/Jr on the
accumulated dose of γ radiation for sintered SmCo5 magnets with
a load line B/µ0H = −0.7 at a temperature of about 22 ◦C. The
data present the average of five measurements and the standard
deviations.
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Figure 27. Dependence of the polarization changes dJr,rad/Jr on the
accumulated dose of γ radiation for sintered Sm2(Co,Cu,Fe,Zr)17

magnets with a load line B/µ0H = −0.71 at a temperature of about
22 ◦C. The data present the average of five measurements and the
standard deviations.
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Figure 28. Dependence of the polarization changes dJr,rad/Jr on
the accumulated dose of γ radiation for sintered Nd–Dy–Fe–B
magnets with a load line B/µ0H = −0.61 at a temperature of about
22 ◦C. The data present the average of five measurements and the
standard deviations.

For sintered SmCo5 magnets, there seems to be a small
decrease in the average remanent polarization by about
1–2%, see Figure 26. However, this was mainly caused by
some oxidation at the edges of the magnets. After removal of
the edges, no significant changes of the remanent polarization
could be detected, which is in agreement with other results
(Zeller and Nolen, 1987). The coercivity HcJ of the irradiated
SmCo5 magnets has not been changed within an accuracy of
the measurements of about 4%.

For sintered Sm2(Co,Cu,Fe,Zr)17 magnets, the changes
in the remanent polarization dJr,rad are less than 1% up
to an accumulated dose of about 50 Mrad, see Figure 27.
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Comparison of the demagnetization curves before and after
the irradiation revealed no significant changes of the coer-
civity HcJ within an accuracy of the measurements of
about 2%.

The remanent polarization of γ -irradiated Nd–Dy–Fe–B
magnets increased by about 3%, see Figure 28. The increase
does not seem to depend on the accumulated dose; the
origin is not known till now. A similar effect is also
reported by Cost et al., who detected an increase in the
remanent polarization of Nd–Dy–Fe–B magnets by about
0.8% after an accumulated dose of 48.8 Mrad (Cost, Brown,
Giorgi and Stanley, 1987). However, Zeller et al. found a
decrease in the remanent polarization of Nd–Fe–B magnets
by about 1.5% after an accumulated γ dose of 50 Mrad
and no significant changes in the remanent polarization
of Nd–Dy–Fe–B magnets (Zeller et al., 1988). Since the
coercivity HcJ and the temperature stability of Nd–Fe–B
magnets are inferior to Nd–Dy–Fe–B magnets, which
have a stronger coercivity HcJ, such polarization losses
may be caused by aging due to an increase in the local
temperature. In conclusion, the remanent polarization of
sintered Nd–Dy–Fe–B magnets with coercivities HcJ >

1300 kA m−1 is not affected by γ radiation up to an
accumulated dose of 50 Mrad.

Irradiation of sintered Nd–Fe–B magnets with a low coer-
civity of 890 kA m−1 and a load line B/µ0H = −0.35 with
20 MeV protons results in polarization losses of −17% at
15 K and in almost total demagnetization after an irradiation
at a temperature of 300 K. However, alloyed Nd–Dy–Fe–B
magnets with a higher coercivity of 1357 kA m−1 and a small
load line B/µ0H = −10 experience hardly any polariza-
tion losses at room temperature even after a dose of 100
Mrad of 20 MeV protons (Talvitie et al., 1991). This indi-
cates that the polarization losses may be caused by local
heating in the collision cascade during irradiation, which
results in the nucleation and expansion of reversed magnetic
domains (Kähkönen et al., 1992a,b). Measurements of the
demagnetization curves J (H) before and after the irradia-
tion tests by 20 MeV protons do not reveal any changes of
the microstructure.

In contrast, SmCo5 and Sm2(Co,Cu,Fe,Zr)17 magnets
proved to be quite stable even after irradiation with 500 MeV
protons. Polarization losses dJr,rad of less than 1% were
measured after irradiation by 5 Grad at a temperature of
less than 120 ◦C (Blackmore, 1985). Remagnetization of
the irradiated magnets resulted in the original magnetic
properties and proved that no microstructural changes had
occured.

Similar results were obtained after irradiation by 106 MeV
deuterons. SmCo5 and Sm2(Co,Cu,Fe,Zr)17 magnets did
not experience significant polarization losses up to a dose
of 3 Mrad, whereas Nd–Dy–Fe–B magnets were more

sensitive to irradiation by 106 MeV deuterons (Zeller and
Nolen, 1987).

Irradiation of Nd–Dy–Fe–B magnets with fast neutrons
>0.1 MeV resulted in remanent polarization losses of about
4.5% for magnets with a coercivity >1560 kA m−1 and a
very small load line B/µ0H = −36 after a total neutron
fluence of 1.5 × 1016 neutrons cm−2. During irradiation,
a temperature of 77 ◦C was measured (Brown and Cost,
1989). Nd–Dy–Fe–B magnets with lower coercivities or
stronger load lines experienced much stronger polarization
losses. Remagnetization after the irradiation resulted in a
full recovery of the remanent polarization and an increased
coercivity (Cost, Brown, Giorgi and Stanley, 1988). Hence,
neutron irradiation has a similar effect on the polarization
losses as a temperature load. By irradiation, nucleation of
reversed domains is induced, but no changes occur in the
microstructure.

SmCo5 and Sm2(Co,Cu,Fe,Zr)17 magnets are much more
stable with respect to neutron irradiation. Irradiation with
fast neutrons (>0.1 MeV) up to a total fluence of 2.61 × 1018

neutrons cm−2 at a temperature of 77 ◦C results only in small
polarization losses of less than 2% (Cost, Brown, Giorgi
and Stanley, 1987). Owing to higher coercivities, SmCo5

and Sm2(Co,Cu,Fe,Zr)17 magnets have a superior irradiation
stability.

5 CORROSION BEHAVIOR OF SINTERED
RE–TM MAGNETS

In many applications, RE–TM magnets are exposed to hot
and humid atmospheres. In such climates, the surfaces of
the RE–TM magnets may be oxidized, in particular, the RE
components are preferentially oxidized.

In comparison to sintered Sm–Co magnets, Nd–Fe–B
magnets are more sensitive to corrosion. As a consequence,
all finished magnets get a final surface treatment. Such mag-
nets have been applied at ambient conditions, for instance,
room temperature, humidity up to 50%, no condensation of
moisture, for more than 10 years in telephone transducers,
without any corrosion problems.

However, in hot and humid climates, conventional
Nd–Fe–B magnets, which do not contain Co additions,
corrode heavily. For instance, in an accelerated test at
130 ◦C and 95% relative humidity, such magnets experi-
ence substantial mass losses by corrosion, whereas alloyed
Nd–Dy–Fe–Co–TM–B magnets with some additions of
TM: Cu, Ga, Al, and an appropriate microstructure are not
affected significantly. Indeed, the weight of such magnets
increases a little bit due to the formation of a passivating
surface layer (Katter et al., 2001).



Rare-earth transition-metal magnets 23

5.1 Basic principles

The microstructure of sintered Nd–Dy–Fe–B magnets con-
sists of grains of the hard magnetic (Nd,Dy)2Fe14B com-
pound, which are separated from each other by Nd-rich
constituents, in general, a Nd–Fe solid solution. Besides,
there are some Nd oxides embedded or occasionally some
Nd1.1Fe4B4 grains may occur.

In a hot and humid climate, the Nd-rich constituents
are preferentially converted to Nd hydroxides and some
hydrogen is released. The hydrogen reacts immediately
with the Nd-rich constituents and forms Nd hydrides.
In such a hot and humid environment, Nd hydrides
are not stable, react with water vapor, and are trans-
formed into Nd hydroxides. Since this chemical reaction
releases additional hydrogen, the reaction cycle contin-
ues (Katter et al., 2001). The microstructure of sintered
Nd–Fe–B magnets and the basic constituents are presented
in Figure 29.

The formation of Nd hydrides results in a strong volume
increase of the Nd-rich constituents, so that cracks occur
along the grain boundaries. Such microscopic cracks accel-
erate the corrosion. In the worst case, the surface of the
sintered Nd–Fe–B magnets disintegrates. Almost white Nd
oxides and grains of Nd2Fe14B peel off from the surfaces of
the magnets.

The corrosion rate of sintered Nd–Dy–Fe–B magnets
depends on the composition of the magnet, in particular, on
the electrochemical potential of the RE-rich constituents, and
on the microstructure, for instance, on the fraction and on the
distribution of the RE-rich phases.

By proper addition of some TMs, for instance Co, Nb,
V, Mo, Cu, Ga, to the alloy, the corrosion stability of
sintered Nd–Dy–Fe–B magnets can be improved sub-
stantially (Ohashi, Tawara, Yokoyama and Kobayashi,
1987; Hirosawa, Mino and Tomizawa, 1991; Kim and
Camp, 1996; Grieb, 1997; Fernengel et al., 1999). Some
of these additions transform the Nd-rich constituents
into more noble intermetallic compounds, for instance,
Nd3(Co,Cu), (Nd,Dy)5(Co,Cu,Ga)3, Nd6(Fe,Co)13 Ga, see
inset in Figure 29. Since the free electrochemical poten-
tials of these compounds were determined to be about
800 mV higher than that of pure Nd metal, such
Nd–Dy–Fe–Co–TM–B magnets, TM: Cu, Al, Ga, are
much more stable in hot and humid climates (Katter et al.,
2001). For such alloyed Nd–Dy–Fe–Co–TM–B magnets,
the corrosion rate is substantially reduced. Depending on the
total RE content, such magnets can be stable in hot and humid
climates. For magnets with an appropriate total RE content,
there is a passivation of the surface in the beginning and,
after a prolonged exposure, the magnets start to rust similar
to pure iron. However, magnets with a higher total RE con-
centration experience some mass losses, which depends on
the exposure period in hot and humid climate (Kaszuwara
and Leonowicz, 1999; Katter et al., 2001) or on the total RE
content, if a fixed exposure period for the corrosion test is
applied (Tokuhara and Hirosawa, 1991).

The sequence of the corrosion attack has been confirmed
by measurements of the electrochemical potential of the con-
stituents by scanning probe microscopy. The measurements
demonstrate a correlation between the electrostatic potential
and the corrosion rate. The hard magnetic Nd2Fe14B grains

Nd—Dy—Fe—B Nd—Dy—Fe—Co—TM—B

(Nd,Dy)2Fe14B (Nd,Dy)2(Fe,Co)14B

Nd2O3 Nd2O3

Nd(Fe) Ndx(Co,TM)y

Matrix

Oxide

Nd-rich constituents

Figure 29. Model of the microstructure of sintered standard Nd–Dy–Fe–B magnets or alloyed Nd–Dy–Fe–Co–TM–B magnets, TM:
Cu, Al, Ga. The inset indicates that the replacement of Nd-rich constituents Nd(Fe) by more noble Ndx(Co,TM)y compounds improves the
corrosion resistance substantially.
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have a superior corrosion stability compared to Nd1.1Fe4B4

borides or to the Nd–Fe solid solutions (Bala, Pawlowska,
Szymura and Rabinovich, 1998; Schultz, El-Aziz, Barkleit
and Mummert, 1999; Mummert et al., 2000; El-Aziz, 2003).

5.2 Typical corrosion tests

There are many different corrosion tests, in particular, in
hot and humid climates at different temperatures. Other
tests focus on more aggressive media, such as sulfu-
ric acid in order to measure electrochemical potentials
(Bala, Pawlowska, Szymura and Rabinovich, 1998; Schultz,
El-Aziz, Barkleit and Mummert, 1999; Mummert et al.,
2000), salt spray tests for automotive applications (Katter
et al., 2001), seawater test for marine applications, and so on.

A very common test is the highly accelerated stress
test (HAST), according to the standard IEC 68-2-66. The
test samples are stored at 130 ◦C, 95% relative humidity,
and 2.6 bar water vapor pressure. Under these conditions,
no condensation of vapor occurs. The mass losses per
surface area of the magnets are monitored, depending on
the exposure time. Standard Nd–Fe–B magnets suffer mass
losses of about 10–100 mg cm−2 after 10 days, whereas the
mass losses of alloyed Nd–Dy–Fe–Co–TM–B magnets,
TM: Cu, Al, Ga, with an improved corrosion stability amount
to <1 mg cm−2, see Figure 30. If some condensation occurs,
such alloyed Nd–Dy–Fe–Co–TM–B magnets start to rust
similar to iron.

The results of the accelerated corrosion tests could be
confirmed by a long-term corrosion test in dry air with a
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Figure 30. Mass losses per surface area of standard sintered
Nd–Dy–Fe–B or alloyed Nd–Dy–Fe–Co–TM–B magnets with
an improved corrosion resistance, depending on the exposure time.
The highly accelerated stress test (HAST) is performed at 130 ◦C,
95% relative humidity, and 2.6 bar vapor pressure.

relative humidity of about 50% over a period of 2 years.
Sintered Nd–Fe–B magnets with an extremely high total RE
content corrode faster than magnets with a lower RE content.
The improvements were achieved by a controlled oxidation
of RE-rich alloy powders in air before sintering (Ma et al.,
1994; Kaszuwara and Leonowicz, 1999) or by addition of
Co, Cu, Al, Zr, or C to Nd–Fe–B alloys (Kim and Camp,
1996; Kaszuwara and Leonowicz, 1999).

Since sintered SmCo5 and Sm2(Co,Cu,Fe,Zr)17 mag-
nets only contain a few isolated intergranular RE-
rich constituents, they are much more stable in hot
and humid climates than Nd–Dy–Fe–Co–TM–B mag-
nets. Figure 31 compares the mass losses of alloyed
Nd–Dy–Fe–Co–TM–B, SmCo5, and Sm2(Co,Cu,Fe,Zr)17

magnets, depending on the exposure period in a HAST test.
SmCo5 and Sm2(Co,Cu,Fe,Zr)17 magnets form a passiva-
tion layer, which sometimes increases their weight. Hence,
they are rather stable in such a hot and humid climate,
whereas Nd–Dy–Fe–Co–TM–B magnets experience small
mass losses of <1 mg cm−2 after 10 days and some milligram
per square centimeter after an exposure period of 50 days.

By performing the stress test at 130 ◦C and a humidity
of 100%, often denoted as pressure cooker test (PCT) or
autoclave test, the corrosion stress can be accelerated by a
factor of about 10. Since condensation of water vapor occurs,
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Figure 31. Comparison of mass losses per surface area of sintered
SmCo5, Sm2(Co,Cu,Fe,Zr)17, and alloyed Nd–Dy–Fe–Co–TM–B
magnets in dependence on the exposure time. The highly accelerated
stress test (HAST) has been performed at 130 ◦C, 95% relative
humidity, and 2.6 bar vapor pressure.
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the alloyed Nd–Dy–Fe–Co–TM–B magnets are covered
with red rust after some days, but no disintegration of the
magnet surface occurs (Katter et al., 2001).

Under salt spray conditions, according to the standard DIN
50021, the magnets are covered by red rust after an exposure
time of 24 h in general.

5.3 Coating of RE–TM magnets

In applications where condensation of humidity occurs or
other corrosive media exist, sintered Nd–Fe–B magnets
must be protected by metallic or organic coatings. Typical
commercial coatings for sintered Nd–Fe–B magnets, their
color, hardness, and maximum operating temperatures are
compiled in Table 4. Such coatings also facilitate the han-
dling and cleaning of sintered magnets, for instance, for
applications in clean-room workshops.

6 MECHANICAL PROPERTIES
OF SINTERED RE–TM MAGNETS

Sintered RE–TM magnets are applied in many devices, for
instance, motors, generators, couplings, bearings, separators,
sensors, and so on in order to optimize the efficiency
of the device or in order to reduce the weight or the
volume of the magnet assemblies. In general, magnets
operate as functional materials, but, in dynamic applications,
mechanical properties may also become important.

Some mechanical properties of sintered Nd–Fe–B mag-
nets have been examined in dependence of different process-
ing routes (Horton, Wright and Herchenroeder, 1996; Horton

et al., 1997), on the composition, for instance, the Co content
(Rabinovich et al., 1996; Jiang et al., 2001) or different RE-
rich constituents (Ohashi, Tawara, Yokoyama and Kobayashi,
1987; Otsuki, Sato and Fujiwara, 1989) or various additions
of Al, Cr, Nb, Zr (Szymura, Wyslocki, Rabinovich and Bala,
1994; Rabinovich et al., 1996).

Besides, on the composition, the mechanical properties
may also depend on the microstructure, characterized by the
average grain size. There are different routes for manufac-
turing Nd–Dy–Fe–Co–TM–B magnets, TM: Cu, Al, Ga,
with various grain sizes. For instance, Nd–Dy–Fe–TM–B
magnets with various fractions of RE-rich constituents can be
sintered from appropriate alloy powder blends. Owing to the
different volumes of the liquid phase at the sintering temper-
ature, the average grain size of Nd12.8−xDy0.74FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, x = 0, 0.1, 0.3, 0.9, 1.4,
2.0, varies between 6.5 and 9.5 µm (Rodewald, Katter and
Üstüner, 2004).

Another route is the sintering of Nd12.9Dy0.74FebalTM1.3

B5.6 magnets from alloy powders with different average
particle sizes, according to Fisher sub sieve seizer (FSSS),
for instance, 2.1, 2.6, 3.1, 3.5, 3.7, and 4.1 µm. By adjusted
sintering conditions, dense magnets with an average grain
size between 4.0 and 6.5 µm could be achieved (Rodewald,
Katter and Üstüner, 2004).

The densities of the sintered magnets are controlled by
the Archimedes principle. Owing to the liquid-phase sin-
tering, Nd–Dy–Fe–TM–B magnets easily achieve densi-
ties between 7.55 and 7.6 g cm−3 or ρ/ρ0 > 99%, where
ρ0 denotes the density of the Nd2Fe14B compound. The
typical magnetic properties amount to Jr = (1.42 ± 0.02) T
and HcJ = (12 ± 1) kA m−1. The maximum energy densi-
ties range between 360 and 400 kJ m−3. The average grain

Table 4. Typical commercial surface coatings of sintered Nd–Fe–B magnets for protection against corrosion or for handling in clean
rooms.

Surface Thickness Method Color Hardness Corrosion Temperature
resistance range (◦C)

Sn >15 µm Galvanic Silver semibright HV 20 Humid climate <160
Ni >10 µm Galvanic Silver semibright HV 350 Humid climate <200
Ni + Sn >5 µm Ni+ Galvanic Silver semibright HV 20 Humid climate <160

>10 µm Sn
Al spray coating >5 µm Spray coating Yellow semibright 4 H Excellent climatic, <180

salt spray resistance
Al yellow chromate >5 µm IVD Yellow semibright HV 20 Excellent climatic, <500

salt spray resistance
Electrocoating >15 µm EPP Black 4 H Excellent climatic, <130

salt spray resistance
>6 µm EPP Black 4 H Excellent climatic, <150

salt spray resistance

IVD, Ion Vapor Deposition; EPP, Electrophoretic Paint
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size was determined by the three circular intercept method,
according to the standard ASTM E112. The following
mechanical properties were determined by standardized tests:
the compressive and the bending strength, the fracture tough-
ness, the Young’s modulus, and the Vickers hardness.

6.1 Compressive strength fcomp

In general, the compressive fcomp strength is determined
on cubes with dimensions of approximately 5 × 5 × 5 mm3,
which are cut from sintered Nd–Dy–Fe–TM–B magnets
parallel to the easy axis by diamond grinding. The ram speed
of the press amounts to 0.15 mm min−1. Of each batch, the
measurements are performed on five samples, the averages
of the results and their standard deviation are compiled in
Figure 32. Overall, the compressive strength fcomp amounts
to (960 ± 50) N mm−2 on the average and does not depend
on the grain size of the sintered magnets within the accuracy
of the measurements. These results are in fair agreement with
measurements on Nd–Dy–Fe–Co–B magnets with different
alloying additions of Cr, Al, Nb, or Zr, the compression
strength of which ranges between 860 and 1120 N mm−2

(Rabinovich et al., 1996).
Measurements of the compressive strength perpendicular

to the easy axis result in about 4–8% smaller values. Hence,
there is only a negligible anisotropy of the compressive
strength in sintered Nd–Dy–Fe–TM–B magnets.

In addition, the temperature dependence of the compres-
sive strength of Nd12.9Dy0.4FebalTM1.3B5.6 magnets, TM: Co,
Cu, Al, Ga, with a high remanent polarization of 1.45 T, a
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Figure 32. Compressive strength of Nd12.9Dy0.74FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, depending on the average grain size.
The dashed graphs represent the compressive strength fcomp ± σ , σ

denotes the standard deviation.
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Figure 33. Compressive strength of Nd12.9Dy0.4FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, depending on the temperature.
The dashed graphs represent the compressive strength fcomp ± σ, σ

denotes the standard deviation.

coercivity HcJ of 1000 kA m−1, and an average grain size
of 8.4 µm has been examined. On the average, the compres-
sion strength decreases by about 7%, when the temperature
increases by 100 K, see Figure 33.

The compressive strength of sintered SmCo5 or
Sm2(Co,Cu,Fe,Zr)17 magnets amounts to approximately
1000 or 650 N mm−2 respectively. In particular,
Sm2(Co,Cu,Fe,Zr)17 magnets are more sensitive to
compression forces and must be handled carefully in order
to prevent chipping or cracks.

6.2 Bending strength fbend

The bending strength fbend of Nd–Dy–Fe–TM–B magnets,
TM: Co, Cu, Al, Ga, was measured by the three-point
bending test on bars with dimensions of approximately 5 ×
2 × 50 mm3, for instance, according to the standard ASTM
314-64, depending on the grain size. On the average, the
bending strength perpendicular to the easy axis amounts
to about (330 ± 20) N mm−2 and does not depend on the
grain size of the sintered magnets within the accuracy of the
measurements, see Figure 34.

There is a little anisotropy of the bending strength. In
general, the bending strength perpendicular to the easy axis
results in 4–10% smaller values than when it is parallel to
the easy axis.

However, the bending strength of Nd–Dy–Fe–TM–B
magnets, TM: Co, Cu, Al, Ga, with Co concentrations >3%
or with different alloying additions of Cr, Al, Nb, or Zr,
ranges only between 160 and 280 N mm−2 (Rabinovich et al.,
1996; Jiang et al., 2001).
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Figure 34. Bending strength of Nd12.9Dy0.74FebalTM1.36B5.6 mag-
nets, TM: Co, Cu, Al, Ga, depending on the average grain size. The
dashed graphs represent the bending strength fbend ± σ, σ denotes
the standard deviation.

In addition, the bending strength was examined on mag-
netized bars perpendicular to the easy axis, which resulted in
about 10–15% smaller values. Probably the repulsive mag-
netic forces promote the crack formation and propagation
(Rodewald, Katter and Üstüner, 2004).

Finally, the bending strength of Nd12.9Dy0.4FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, with a high remanent
polarization of 1.45 T, a coercivity HcJ of 1000 kA m−1 and
an average grain size of 8.4 µm was examined, depending
on the temperature. On the average, the bending strength
decreases only by about 5%, when the temperature increases
by 100 K, see Figure 35.
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Figure 35. Bending strength of Nd12.9Dy0.4FebalTM1.3B5.6 mag-
nets, TM: Co, Cu, Al, Ga, depending on the temperature. The
dashed graphs represent the bending strength fbend ± σ, σ denotes
the standard deviation.

The bending strength of sintered SmCo5 magnets amounts
to approximately 120 N mm−2, whereas the bending strength
of sintered Sm2(Co,Cu,Fe,Zr)17 magnets ranges between 90
and 150 N mm−2 in general. The smaller bending strengths
of Sm–Co magnets reflect rather well their high sensitivity
to cracking.

6.3 Fracture toughness KIC

The fracture toughness KIC of Nd12.9Dy0.74FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, sintered of alloy powders with
different average particle sizes at adjusted temperatures was
examined on bars, 3 × 6 × 30 mm3, for instance, depending
on the grain size. The bars had a notch of 0.2 mm in
width and 3 mm in length in the middle of the bar, made
by spark erosion wire cutting, in order to achieve a well-
defined starting point for the cracks. The fracture force
was determined by a three-point bending test according
to ASTM 314-64. The cracks always started at the notch
and extended symmetrically. On the average, the fracture
toughness perpendicular to the easy axis amounted to (184 ±
10) N mm−3/2. There was only a small decrease in the
fracture toughness with decreasing grain size, see Figure 36.
The fracture toughness KIC was not affected significantly by
the fraction of RE-rich constituents in the sintered magnets.

Measurements of the fracture toughness parallel to the easy
axis resulted in 10–15% smaller values. Within the accuracy
of the measurements there was only a small anisotropy of
the fracture toughness KIC.

4 5 6 7

Average grain size (µm)

120

140

160

180

200

220

F
ra

ct
ur

e 
to

ug
hn

es
s 

K
IC

 (
N

 m
m

−3
/2

)

Figure 36. Fracture toughness KIC of Nd12.9Dy0.74FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, sintered of alloy powders with
different average particle sizes at adjusted temperatures, depending
on the average grain size. The dashed graphs represent the fracture
toughness KIC ± σ, σ denotes the standard deviation.



28 Hard magnetic materials

The fracture toughness KIC was sensitive to the pro-
cessing route of the magnets. The data ranged from about
60 N mm−3/2 for Nd–Fe–B magnets prepared from TiC-
containing gas-atomized alloy powders up to 175 N mm−3/2

for sintered Nd–Fe–B magnets (Horton et al., 1997). For
sintered Nd–Dy–Fe–B magnets, most of the data ranged
between 90 and 175 N mm−3/2 (Otsuki, Sato and Fuji-
wara, 1989; Horton, Wright and Herchenroeder, 1996;
Jiang et al., 2001), whereas for Nd–Dy–Fe–Co–B mag-
nets with a Co concentration >3%, the fracture toughness
decreased to a range between 100 and 110 N mm−3/2 (Jiang
et al., 2001).

Lately, the fracture toughness KIC of
Nd12.9Dy0.4FebalTM1.3B5.6 magnets, TM: Co, Cu, Al,
Ga, with a high remanent polarization of 1.45 T, a coercivity
HcJ of 1000 kA m−1, and an average grain size of 8.4 µm
was determined, depending on the temperature. On the
average, the fracture toughness decreased by about 4–6%
when the temperature increased by 100 K, see Figure 37.

The fracture toughness KIC of SmCo5 magnets varies
between 50 and 70 N mm−3/2 (Horton, Wright and
Herchenroeder, 1996). Sintered Sm2(Co,Cu,Fe,Zr)17 mag-
nets have an even smaller fracture toughness between 40
and 50 N mm−3/2, which corroborates their sensitivity to
chipping.

6.4 Young’s modulus E

The Young’s modulus E of sintered Nd12.9Dy0.74Febal

TM1.3B5.6 magnets, TM: Co, Cu, Al, Ga, with an aver-
age grains size of 9.8 µm was determined on bars, 3 ×
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Figure 37. Fracture toughness KIC of Nd12.9Dy0.4FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, depending on the temperature. The
dashed graphs represent the fracture toughness KIC ± σ , σ denotes
the standard deviation.

4 × 50 mm3, by ultrasound attenuation. The Young’s mod-
ulus E amounted to (160 ± 3) kN mm−2 perpendicular to the
easy axis. Measurements of the Young’s modulus parallel to
the easy axis yielded insignificant larger values. Within the
accuracy of the measurements, there was only a negligible
anisotropy of <3%.

The Young’s modulus E did not seem to be very sensitive
to the composition of the magnets. Data of magnets with
different Co concentrations or different alloying additions
of Cr, Al, Nb, or Zr, ranged between 130 and 160 kN mm−2

(Szymura, Wyslocki, Rabinovich and Bala, 1994; Rabinovich
et al., 1996).

Measurements of the Young’s modulus of sintered
Nd12.9Dy0.74FebalTM1.3B5.6 magnets at temperatures
between 20 and 200 ◦C proved only a small decrease by
about 2.5% when the temperature was increased by 100 K,
see Figure 38.

The Young’s modulus E of sintered SmCo5 magnets
amounted to approximately 110 kN mm−2. However, the
Young’s modulus of sintered Sm2(Co,Cu,Fe,Zr)17 mag-
nets was comparable to Nd–Dy–Fe–TM–B magnets and
amounted to 150 kN mm−2.

6.5 Vickers hardness HV 1

The Vickers hardness HV 1 was examined on polished
surfaces of Nd12.9Dy0.74FebalTM1.3B5.6 magnets, TM: Co,
Cu, Al, Ga, depending on the grain size. The indenter load
amounted to 10 N. There is no significant dependence of the
Vickers hardness on the average grain size, see Figure 39.
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Figure 38. Young’s modulus E of sintered Nd12.9Dy0.74

FebalTM1.3B5.6 magnets with an average grains size of 9.8 µm,
depending on the temperature. The dashed graphs represent the
Young’s modulus E ± σ, σ denotes the standard deviation.
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Figure 39. Vickers hardness HV 1 of Nd12.9Dy0.74FebalTM1.3B5.6

magnets, TM: Co, Cu, Al, Ga, depending on the average grain size.
The dashed graphs represent the Vickers hardness HV 1 ± σ, σ

denotes the standard deviation.

This may be due to the wide distribution of the dimensions
of the grains in sintered magnets. For instance, even magnets
with an average grain size of about 5 µm still contain some
large grains with dimensions up to 20 µm. On the average,
the Vickers hardness HV 1 amounts to (610 ± 30).

The Vickers hardness does not seem to be sensitive to the
composition or to the microstructure of the magnets. Typical
data range from 530 to 600 HV 1 for magnets with different
RE contents (Otsuki, Sato and Fujiwara, 1989) or different
Co contents (Jiang et al., 2001).

The Vickers hardness HV 1 of sintered Sm–Co magnets
is quite similar to Nd–Dy–Fe–TM–B magnets and amounts
to 550 HV 1 for SmCo5 magnets and to 640 HV 1 for
Sm2(Co,Cu,Fe,Zr)17 magnets.

6.6 Other thermal, caloric, or electrical properties
of RE–TM magnets

Additional thermal, caloric, or electrical properties of sin-
tered RE–TM magnets can be retrieved from data sheets of
magnet producers.

Very often, RE–TM magnets are glued onto soft magnetic
parts, for instance, pole plates, rotor laminations of motors,
casings, yokes, and so on. In particular, at increased operating
temperatures, magnets with a large pole area may experience
a shearing stress due to the different coefficients of the
thermal expansion of the magnet and the support material.
Under extreme conditions, the shearing stress may result in
loosening of the bond. Hence, the coefficients of the thermal
expansion should be taken into account.

For Nd–Dy–Fe–TM–B magnets, TM: Co, Cu, Al, Ga,
there is a significant anisotropy of the coefficients of
the thermal expansion, which range between 5 and 7.5 ×
10−6 K−1 parallel to the easy axis and between −0.5
and −1 × 10−6 K−1 perpendicular to the easy axis of the
Nd–Dy–Fe–TM–B magnets.

For sintered Sm–Co magnets, the anisotropy of the coef-
ficients of the thermal expansion is less pronounced. For
SmCo5 magnets, the coefficients of the thermal expan-
sion amount to 7 × 10−6 K−1 parallel and to 13 × 10−6 K−1

perpendicular to the easy axis of the SmCo5 magnets
and vary from 8 to 10 × 10−6 K−1 parallel and from
11 to 12 × 10−6 K−1 perpendicular to the easy axis of
Sm2(Co,Cu,Fe,Zr)17 magnets.

The thermal conductivity of sintered Nd–Dy–Fe–TM–B
magnets amounts to approximately 9 W m−1 K−1, which
is about 11% of the thermal conductivity of iron, which
amounts to 80.2 W m−1 K−1, but is rather similar to the
thermal conductivity of neodymium metal, which amounts
to 16.5 W m−1 K−1. The thermal conductivity of sintered
SmCo5 magnets is 10% larger than the thermal conductiv-
ity of Nd–Dy–Fe–TM–B magnets and amounts to about
10 W m−1 K−1. Owing to the high Co content, the ther-
mal conductivity of sintered Sm2(Co,Cu,Fe,Zr)17 magnets
increases to 12 W m−1 K−1, which is only 12% of the thermal
conductivity of cobalt metal, which amounts to 100 W m−1

K−1, but is similar to the thermal conductivity of samarium
metal, which amounts to 13.3 W m−1 K−1.

The specific heat of sintered RE–TM magnets is rather
constant. The data range between 440 and 500 J kg−1

K−1 for Nd–Dy–Fe–TM–B magnets, between 370 and
420 J kg−1 K−1 for SmCo5 magnets, and between 370 and
390 J kg−1 K−1 for Sm2(Co,Cu,Fe,Zr)17 magnets. There are
only minor differences to the specific heat of iron metal,
452 J kg−1 K−1, or cobalt metal, 456 J kg−1 K−1.

The electrical resistivity of sintered Nd–Dy–Fe–TM–B
magnets ranges between 1.1 and 1.6 � mm2 m−1. In gen-
eral, the electrical resistivity parallel to the easy axis is
about 10–20% larger than the resistivity perpendicular to
the easy axis of the Nd–Dy–Fe–TM–B magnets. There is
only a small increase in the electrical resistivity of approxi-
mately 2.8 × 10−2 � mm2 m−1 K−1 in the temperature range
between 20 and 100 ◦C.

By alloying additions to Nd–Dy–Fe–TM–B magnets, the
electrical resistivity cannot be changed significantly. The
electrical resistivity of Nd–Dy–Fe–TM–B magnets is about
10 times larger than the electrical resistivity of iron metal,
which amounts to 0.10 � mm2 m−1.

The electrical resistivity varies between 0.5 and
0.6 � mm2 m−1 for sintered SmCo5 magnets and between
0.75 and 0.85 � mm2 m−1 for sintered Sm2(Co,Cu,Fe,Zr)17

magnets, which is similar to the electrical resistivity
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of samarium metal, 0.94 � mm2 m−1, and an order of
magnitude larger than the electrical resistivity of cobalt
metal, 0.06 � mm2 m−1.

7 CONCLUSIONS

Permanent magnets have become a key component in
many devices. Owing to the high maximum energy density,
RE–TM magnets are able to drive small motors in watches
as well as strong motors in electric vehicles or huge motors
for the propulsion of ships. There are miniature motors with
a diameter of 1.9 mm, a length of 5 mm, which rotate at a
speed of 100 000 rpm and achieve a power of 60 mW. On
the other hand, there are motors with a diameter up to 3.2 m,
a length up to 9.5 m, which rotate at 120 rpm. The power
of such machines amounts to 5 MW and there are designs
for motors with a power up to 18 MW for the propulsion of
ships.

In addition, heavy and large hydraulic devices are going
to be replaced by permanent magnet motors, for instance,
in electronic power steering of vehicles or electroni-
cally assisted braking. In such motors, the cogging torque
must be minimized. Novel and economic butterfly-shaped
Nd–Dy–Fe–TM–B magnets meet such specifications.

For the design and engineering of magnet assemblies, a
large variety of RE–TM magnets are commercially available.
Most economic is of course the application of net-shaped
parts produced by axial field die-pressing. The dimensional
tolerances depend on the dimensions and on the shape of the
magnets. For instance, parts with nominal dimensions up to
7 mm perpendicular to the pressing direction tolerances of
±0.10 mm can be achieved. For larger blocks with dimen-
sions up to 60 mm perpendicular to the pressing direction,
the tolerances range between ±0.45 and ±0.90 mm. More
precise tolerances down to ±0.02 mm can be manufactured
by grinding, but such a treatment consumes more machining
time in the workshops.

Typical magnetic properties of axial field die-pressed
Nd–Dy–Fe–TM–B magnets range from 1.08 to 1.36 T
for the remanent polarization, 2865 to 955 kA m−1 for the
coercivity HcJ, and 225 to 350 kJ m−3 for the maximum
energy density, see Figure 40. The maximum continuous
operating temperatures range from 60 ◦C for magnets with
a high energy density up to 230 ◦C for magnets with a high
coercivity.

As discussed in Section 2.3, near net-shaped
Nd–Dy–Fe–TM–B magnets with improved energy
densities can be manufactured by transverse field die-
pressing. In general, such magnets require some machining
in order to meet the dimensional tolerances. Typical mag-
netic properties range from 1.14 to 1.43 T for the remanent

polarization, 2865 to 955 kA m−1 for the coercivity HcJ, and
250 to 395 kJ m−3 for the maximum energy density. The
maximal continuous operating temperatures are similar to
axial field die-pressed magnets.

The optimal magnetic properties and the largest parts
can be produced by cold isostatic pressing of
Nd–Dy–Fe–TM–B blocks. The magnetic properties range
from 1.18 to 1.47 T for the remanent polarization, 2230
to 875 kA m−1 for the coercivity HcJ, and from 270 to
415 kJ m−3 for the maximum energy density. The maximum
continuous operating temperatures of isostatically pressed
magnets range from 50 ◦C for magnets with the highest max-
imum energy density to 190 ◦C for magnets with the highest
coercivity.

A superior temperature stability of magnet assemblies
can be achieved by the application of Sm–Co magnets.
For net-shaped SmCo5 parts or isostatically pressed blocks,
the remanent polarization varies between 0.9 and 1.01 T
with coercivities HcJ between 2400 and 1500 kA m−1 and
maximum energy densities between 160 and 200 kJ m−3,
see Figure 40. In general, maximum continuous operating
temperatures up to 250 ◦C can be applied.

Even higher operating temperatures up to 300 or
350 ◦C can be achieved for magnet assemblies of
Sm2(Co,Cu,Fe,Zr)17 magnets. Typical magnetic properties of
Sm2(Co,Cu,Fe,Zr)17 magnets with moderate or high coer-
civities range between 1.04 up to 1.12 T for the remanent
polarization, 2070 or 800 kA m−1 for the coercivity HcJ,
and 205 or 240 kJ m−3 for the maximum energy density,
see Figure 40. With respect to the temperature and corro-
sion stability, Sm–Co magnets are the most stable RE–TM
magnets. Recently developed Sm2(Co,Cu,Fe,Zr)17 magnets
can even be applied at temperatures up to 550◦, but such
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Figure 41. Exploitation of the maximum energy density of sin-
tered RE–TM magnets based on SmCo5, Sm2(Co,Cu,Fe,Zr)17 or
Nd2Fe14B compounds by commercial RE–TM magnet grades.

magnets achieve only a remanent polarization of 0.85 T and a
maximum energy density of 127 kJ m−3 at room temperature
(Walmer, 2002).

By optimization of the alloy composition, by improv-
ing the processing route, and by refining the microstruc-
ture, Nd–Dy–Fe–TM–B magnets can be tailored to meet
the requirements of many different applications. As indi-
cated in Figure 1, the maximum energy density of RE–TM
magnets could be increased step by step and is now
approaching the technical limits. The remanent polarization
of commercial Sm–Co magnets reaches 94% of the theo-
retical limit and the remanent polarization of commercial
Nd–Dy–Fe–TM–B magnets achieves 92% of the theoreti-
cal limit, see Figure 41.

By refined manufacturing conditions in laboratory facil-
ities, almost ternary Nd–Fe–B magnets now achieve a
remanent polarization of 1.533 T, a coercivity HcJ of
784 kA m−1, and a maximum energy density of 460 kJ m−3

(Kaneko, 2004).
Besides optimization of the processing routes of RE–TM

magnets, future research and development activities should
be focused on the search for new hard magnetic RE–TM
compounds.
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Néel, L. (1951). Le Traı̂nage Magnétique. Journal de Physique et
le Radium, 12, 339–351.

Neu, V. and Schultz, L. (2001). Two-phase high-performance Nd-
Fe-B powders prepared by mechanical milling. Journal of Applied
Physics, 90, 1540–1544.

Neu, V. and Shaheen, S.A. (1999). Sputtered Sm-Co films:
microstructure and magnetic properties. Journal of Applied
Physics, 86, 7006–7009.

Neu, V., Hannemann, U., Fähler, S., et al. (2002a). Effect of rare
earth content on microstucture and magnetic properties of Sm-
Co and Nd-Fe-B thin films. Journal of Applied Physics, 91,
8180–8182.

Neu, V., Thomas, J., Fähler, S., et al. (2002b). Hard magnetic Sm-
Co thin films prepared by pulsed laser deposition. Journal of
Magnetism and Magnetic Materials, 242–245, 1290–1293.

Nishio, H. and Yamamoto, H. (1993). Magnetic aftereffect of
Nd-Fe-Co-B-V compression bonded magnets. IEEE Translation
Journal on Magnetics in Japan, 8, 16–20.

Nishio, H., Yamamoto, H., Nagakura, M. and Uehara, M. (1990).
Effects of machining on magnetic properties of Nd-Fe-B sys-
tem sintered magnets. IEEE Transactions on Magnetics, 26,
257–261.

Ogata, Y., Kubota, Y., Takami, T., et al. (1999). Improvements of
magnetic properties of Sr ferrite magnets by substitutions of La
and Co. IEEE Transactions on Magnetics, 35, 3334–3336.

O’Handley, R.C. (2000). Modern Magnetic Materials – Principles
and Applications, John Wiley & Sons: New York, p. 474.

Ohashi, K., Tawara, Y., Yokoyama, T. and Kobayashi, N. (1987).
Corrosion resistance of Co-containing Nd-Fe-Co-B magnets. In
Proceedings of the 9th International Workshop on RE Magnets
and Their Applications, Herget, C. and Poerschke, R. (Eds.), DPG
GmbH: Bad Honnef, pp. 355–361.

Ojima, T., Tomizawa, S., Yoneyama, T. and Hori, T. (1977).
Magnetic properties of a new type of rare earth cobalt magnets.
IEEE Transactions on Magnetics, MAG-13, 1317–1319.

Otsuki, E., Sato, T. and Fujiwara, T. (1989). Fracture strength of rare
earth magnets. In Proceedings of the 10th International Workshop
on RE Magnets and Their Applications, Shinjo, T. (Ed.), Society
of Non-Traditional Technology: Tokyo, pp. 373–381.

Overfelt, R.A., Anderson, C.D. and Flanagan, W.F. (1986). Plasma
sprayed Fe76Nd16B8 permanent magnets. Applied Physics Letters,
49, 1799–1801.

Parhofer, S., Gieres, G., Wecker, J. and Schultz, L. (1996). Growth
characteristics and magnetic properties of sputtered Nd-Fe-B
thin films. Journal of Magnetism and Magnetic Materials, 163,
32–38.

Parhofer, S., Kuhrt, C., Wecker, J., et al. (1998). Magnetic prop-
erties and growth texture of high-coercive Nd-Fe-B thin films.
Journal of Applied Physics, 83, 2735–2741.

Parker, R.J. (1990). Advances in Permanent Magnetism, John Wiley
& Sons: New York, p. 293.

Rabinovich, Yu.M., Sergeev, V.V., Maystrenko, A.D., et al. (1996).
Physical and mechanical properties of sintered Nd-Fe-B type
permanent magnets. Intermetallics, 4, 641–645.

Ray, A.E. and Strnat, K.J. (1972). Easy directions of magnetization
in ternary R2(Co,Fe)17 phases. IEEE Transactions on Magnetics,
MAG-8, 516–518.



Rare-earth transition-metal magnets 35

Rieger, G., Wecker, J., Rodewald, W., et al. (2000). Nd-Fe-B
permanent magnets (thick films) produced by a vacuum-plasma-
spraying process. Journal of Applied Physics, 87, 5329–5331.

Rivoirard, S., Chateigner, D., de Rango, P., et al. (2000). Texture
investigation of hot-forged Nd-Fe-B magnets. Philosophical
Magazine A, 80, 1955–1966.

Rodewald, W. (1985). Magnetic properties of Nd15−xDyxFe77B8

alloys. In Proceedings 4th International Symposium on Magnetic
Anisotropy and Coercivity in RE-TM Alloys, Strnat, K.J. (Ed.),
University of Dayton, pp. 737–745.

Rodewald, W., Katter, M. and Üstüner, K. (2004). Coercivity and
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1 INTRODUCTION

In polycrystalline anisotropic magnetic materials, the coer-
civity Hc is strongly dependent on the size of particles
or grains. The often suggested correlation between Hc and
the single domain particle size has no theoretical ground
(Aharoni, 1986; Brown, 1945) and, in the case of hard-
magnetic materials, it contradicts experimental observations
(Grönefeld and Kronmüller, 1990). It is an empirical fact,
however, that with decreasing particle size, the coercivity
increases. When approaching the superparamagnetic size,
which is of the order of a few nanometers in anisotropic
materials, Hc decreases again because of the increasing effect
of thermal fluctuations. This general dependence offers a

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

relatively simple way to convert the high anisotropy into
a high coercivity by producing materials with particles or
grains of the size of tens to hundreds of nanometers.

The general equation that proved to be applicable to a
vast majority of hard-magnetic materials, whose coercivity is
controlled by the nucleation of reversed magnetic domains,
presents the coercivity as a function anisotropy field HA and
the saturation magnetization Ms as:

Hc = αHA –NeffMs (1)

where the parameters α and Neff describe the effects of
microstructure (including the grain size) and the local
stray fields (which are also dependent on the microstruc-
ture), respectively. Theoretical derivations (Kronmüller,
1987) replace the anisotropy field from equation (1) (HA =
2K1/µ0Ms) with the nucleation field (see equation (2)). On
the other hand, the theoretical maximum energy product
(BH)max (which characterizes an energy conserved by a per-
manent magnet with a perfectly square hysteresis loop and
Hc ≥ Ms/2) is equal to µ0M

2
s /4 (Cullity, 1972). Table 1

shows the room-temperature intrinsic magnetic properties of
some rare-earth (R) intermetallic compounds. In addition to
Ms and HA, the table includes the Curie temperature Tc,
which is important for estimating a temperature stability of
the permanent magnet (it is not, however, sufficient for find-
ing the maximum operating temperature but the temperature
dependence of HA is also very important).

As it can be seen from the data in Table 1, the Nd2Fe14B,
Pr2Fe14B, Nd2Fe14C, and Sm2Fe17N2.3 compounds promise
the highest (BH)max due to their high values of Ms, but
the magnets based on the 2:14:1 compounds have very lim-
ited application temperature range because of their low Tc.
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Table 1. Intrinsic magnetic properties of some magnetically hard compounds.

Compound µ0Ms (T) HA (MA m−1) TC (◦C) References

Nd2Fe14B 1.6 5.36 312 Buschow (1991)
Pr2Fe14B 1.56 6.96 292 Buschow (1991)
Nd2Fe14C 1.5 7.60 262 Buschow (1991)
Sm2Fe17N2.3 1.54 11.20 476 Coey and Sun (1990)
Sm2Fe17C 1.24 4.24 279 DeMooij and Buschow (1988)
Sm2Fe15Ga2C ≈1 >7.20 346 Shen et al. (1994)
Sm2Fe15Si2C ≈1 7.20 305 Shen et al. (1994)
SmFe11Ti1 1.16 7.36 312 Buschow (1991)
SmFe10V2 1.10 4.80 337 Buschow (1991)
SmFe10Mo2 0.97 >4 187 Buschow (1991)
NdFe11TiN0.5 ≈1.30 6.40 467 Yang et al. (1991)
SmFe3 0.81 11.20 377 Buschow (1977) and Wecker, Katter, Schnitzke and Schultz (1991)
Sm2Co17 1.25 5.20 920 Strnat (1988)
Sm2(Co0.7Fe0.3)17 1.45 8 840 Strnat (1988)
Pr2(Co0.53Fe0.47)17 1.56 2.56 760 Satyanarayana, Fujii and Wallace (1984)
SmCoa

5 1.14 ≤35.20 681–747 Korolev et al. (1975) and Buschow (1977)
PrCo5 1.20 13.60 620 Strnat (1988)
LaCo5 0.91 14 567 Strnat (1988)
YCo5 1.06 10.40 630 Strnat (1988)
SmCo4B ≈0.5 96b 237 Ido, Ogata and Maki (1993)
SmCo2Fe2B ≈0.7 12 509 Ido, Ogata and Maki (1993)

aReference data vary because of a wide homogeneity range for the alloy.
bAt 4.2 K.

Despite the high Ms, Pr2(Co0.53Fe0.47)17 will not likely make
a good magnet because of the low HA. On the other hand, the
compounds with very high HA and modest Ms, like SmCo5

and SmCo4B, can potentially develop exceptionally high Hc,
but not likely the record values of (BH)max.

The most obvious way to decrease particle size is by
milling. This route seems even more attractive since it may
produce single crystals, which can be aligned by a magnetic
field. Unfortunately, mechanical milling cannot produce par-
ticles smaller than 0.5–1 µm. Moreover, the coercivity of
single crystals is very sensitive to the state of their surface.
The surface of as-milled particles is always damaged and
often oxidized leading to easy nucleation of domain walls
and to a low Hc. Most of the contemporary nanocrystalline
hard-magnetic materials are produced by either rapid solid-
ification or high-energy mechanical milling. In the case of
rapid solidification, the molten alloy is ejected onto a chilled
metal surface, usually a rotating copper wheel. Depend-
ing on a quenching rate (which is usually controlled by
the wheel speed) the method produces fine nanocrystalline,
partially amorphous, or fully amorphous structures. Sub-
sequent annealing may also be needed to form grains of
the desired size. Melt spinning, which is the most widely
used method of rapid solidification, is capable of produc-
ing both laboratory-scale and industrial-scale quantities of
materials in the form of flakes or ribbons. An intensive
mechanical milling diminishes the size of crystallites inside

the particles by introducing an increasing number of lat-
tice defects and developing subgrains. The process eventu-
ally leads to a complete destruction of a long-range atomic
order. The high-energy milling which starts from several
components with different composition is called mechanical
alloying. Similar to overquenched ribbons, the amorphous
powders must be annealed. Both the rapid solidification and
mechanical milling/alloying can lead to metastable com-
pounds–sometimes having better magnetic properties than
the stable ones.

Most of the as-prepared nanocrystalline hard-magnetic
materials are quasi-isotropic (the melt-spun SmCo5 is one
of the few exceptions, Li et al., 2002): their grains have no
preferred crystallographic orientations, so the easy magne-
tization directions (EMDs) are oriented randomly. In this
case, even if every grain has a perfectly square hystere-
sis loop parallel to the EMD, the magnets, as a whole,
are not expected to have a remanence higher than half the
saturation magnetization. However, for very small crystal-
lites the intergranular exchange interaction can be strong
enough to ‘pull’ the magnetization of the adjacent crystal-
lites together (Callen, Liu and Cullen, 1977). This ‘rema-
nence enhancement’ phenomenon is often used in single-
phase nanocrystalline magnets (Hadjipanayis and Gong,
1988).

If the magnet consists of two phases with different
magnetic properties, the exchange interaction between the
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nanograins forces them to change their magnetizations
in accord. The ‘exchange coupling’ allows us to bene-
fit from the high coercivity of the anisotropic compounds
(like those listed in Table 1) and the high magnetiza-
tion of magnetically soft materials (like pure iron) com-
bining them in one nanocomposite magnet. The poten-
tial of this phenomenon, which had been observed for
the first time in melt-spun Nd–Fe–B alloys (Coehoorn,
DeMooij and DeWaard, 1989), was fully understood after
one-dimensional modeling (Kryukov, Manakov, Sadkov and
Sakhaev, 1989; Kneller and Hawig, 1991). According to
Kneller and Hawig, for an effective coupling, the size of
soft magnetic grains should be less than twice the domain
wall width of the hard phase. Two-dimensional (Feut-
rill, McCormick and Street, 1994) and three-dimensional
(Fukunaga and Inoue, 1992; Schrefl, Fischer, Fidler and
Kronmüller, 1994) models were later developed. The lat-
est description of the magnetic hardening mechanism in
Pr–Fe–B nanocrystalline magnets was proposed by Goll,
Seeger and Kronmuller (1998) and Kronmüller and Goll
(2002b).

Skomski and Coey (1993) predicted giant energy prod-
uct values for certain exchange-coupled nanostructures, for
example, 120 MGOe in a multilayer composed of alter-
nating 2.4-nm hard-magnetic Sm2Fe17N3 layers and 9-nm
Fe65Co35 layers. Since the highest theoretical (BH)max for a
single-phase Nd2Fe14B magnet is 64 MGOe, and this value
is nearly achieved by now (∼85%) in sintered magnets,
it is hardly surprising that the exchange-coupled nanocom-
posites are sometimes referred to as the next generation
permanent magnets. It should be noted, however, that
the giant values of (BH)max given earlier were derived
under the assumption that the hard-magnetic phase in the
nanocomposite is crystallographically oriented. Obtaining
texture in the magnets produced by rapid solidification
requires considerable efforts even in systems where it is
possible.

Another distinct group of rare-earth nanocomposite mag-
nets is that of precipitation-hardened R–Co–Cu–Fe–Zr
magnets. In these alloys, the structure of nanoscale
Sm2(Co,Fe)17 cells develop in the bulk state through an elab-
orate heat treatment. Unlike most of nanocrystalline materi-
als, these ‘bulk-hardened’ magnets retain alignment of the
EMD for their nanophases. Also, the coercivity of these
magnets is believed to be controlled by pinning of domain
walls, rather than by domain wall nucleation as suggested in
equation (1).

In the following sections, we review specific nanocrys-
talline and nanocomposite magnets. The magnets are clas-
sified according to their component phases. Within this
division, we discuss separately the different preparation
methods.

2 RARE-EARTH–TRANSITION
METAL–METALOID-BASED
NANOCRYSTALLINE MAGNETS

2.1 R–Fe–B phase diagrams and crystallization
of R–Fe–B alloys

The R–Fe–B phase diagrams have been intensively stud-
ied since 1970s (Chaban et al., 1979; Stadelmaier, Elmasry
and Cheng, 1983; Stadelmaier, Elmasry, Liu and Cheng,
1984; Matsuura et al., 1985; Oesterreicher, 1985; Schnei-
der, Henig, Petzow and Stadelmair, 1986; Grieb, Henig,
Schneider and Petzow, 1989; Landgraf et al., 1991; Givord,
Nozieres, Sanchez-Lazamares and Leccabue, 1992; Knoch,
Reinsch and Petzow, 1994). From the phase constitution
point of view, the R–Fe–B alloys for permanent magnets
are categorized according to the R content: (i) alloys with
low R content that contain the R2Fe14B hard-magnetic phase
and a soft magnetic phase: α-Fe or Fe3B; (ii) near stoi-
chiometric alloys that correspond to R2Fe14B single phase
(R11.77Fe82.23B6 in at%); and (iii) high R content alloys that
contain the R2Fe14B phase and a R-rich phase.

At a slow cooling rate, a stoichiometric Nd2Fe14B alloy
solidifies according to the following sequence (Schneider,
Henig, Petzow and Stadelmair, 1986):

Liquid

1280 ◦C
(liquidus point)

−−−−−−−−−−−−−−−→ Fe

1180 ◦C
(peritectic reaction)

−−−−−−−−−−−−−−−−−−→ Nd2Fe14B

The Nd2Fe14B crystals develop around the initially formed
Fe nuclei and hinder diffusion between the primary Fe
crystals and the rest of the Fe-depleted liquid matrix. In
this way, the as-cast Nd2Fe14B ingot consists of Nd2Fe14B
grains, α-Fe residual crystals, and an Nd-rich phase close to
the Fe30Nd70 stoichiometry.

Branagan and McCallum (1995) gave a model CCT (con-
tinuous cooling transformation) diagram for the stoichiomet-
ric Nd2Fe14B alloy system showing the phase transformation
upon solidification at different cooling rates (i.e., by the melt-
spinning process). A vertical section of the Nd–Fe–B phase
diagram along the tie line between Fe and Nd2Fe14B is pre-
sented in Figure 1.

Liao and Altounian (1989) showed that (NdxFe1−x)100−yBy

alloy systems present a glass-forming ability for Fe content
less than 87.5 at%, while the thermal stability of these alloys
increases with boron concentrations and is dependent on the
Nd:Fe atomic ratio.

Rapidly solidified Nd2Fe14B alloys may display different
microstructure features depending on the thermal history of
the melt before ejection. Large superheating of the melt
(above 1723 K) can prevent the early precipitation of nuclei,
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Figure 1. A vertical section of the Nd–Fe–B phase diagram along the tie line between Fe and Nd2Fe14B. (Reprinted with permission
Branagan et al., copyright 1995, Elsevier.)

whereas a lower ejection temperature (1573 K) induces a
nanocrystalline structure (Tang et al., 2003).

For each category of the R–Fe–B alloy systems, R lean,
2:14:1 stoichiometric, and R rich, the magnetic properties
are different and strongly related to the grain size. For the
first two categories, as the scale of the structure decreases
to a certain level down to the nanometer range (but not
below the critical superparamagnetic size), magnetizing-like
interactions over short distances determine the enhancement
of the remanence and the energy product while the coer-
civity may increase due to the increased density of grain
boundaries.

2.2 Single-phase and R-rich nanocrystalline
R–Fe–B alloys

The first studies on nanophase hard-magnetic systems were
made on RFe2 (R = Tb, Sm) alloys initially in a vitreous
state, which upon crystallization develops a nanocrystalline
structure with large coercivity at room temperature (Clark,
1973; Koon and Das, 1981). Hadjipanayis, Hazelton and
Lawless (1983) and Croat, Herbst, Lee and Pinkerton (1984)
obtained large coercivity on melt-spun Pr–Fe–B(Si) and
Nd–Fe–B alloys, respectively. The large coercivity was due
to the highly anisotropic R2Fe14B tetragonal phase, which
was produced in the nanoscale size during melt spinning or
after crystallization. Coercivity of nanocrystalline R2Fe14B-
based alloys is much larger than that of the corresponding

bulk alloys, including sintered magnets. For example, melt-
spun stoichiometric Nd2Fe14B magnets can easily attain a
coercivity of 1.15 MA m−1 (see Table 2) whereas the coerciv-
ity of Nd–Fe–B sintered magnets reaches only 960 kA m−1

(Sagawa et al., 1984). Table 2 summarizes the main intrinsic
and extrinsic magnetic properties of R2Fe14B nanocrystalline
magnets. Large values of coercivity can also be obtained in
the R2Fe14C system, but their metallurgy is more compli-
cated because of a phase transformation from Nd2Fe17Cx to
Nd2Fe14C (Coehoorn, Duchateau and Demissen, 1989).

Besides melt spinning, other rapid solidification tech-
niques like vapor deposition (Sellmyer, 1992; Fullerton et al.,
1998), atomization (Narasimhan, Willman and Dulis, 1986),
mechanical alloying (Schultz, 1990), and liquid dynamic
compaction (Harada, Ando, O’Handley and Grant, 1990)
have been employed for the fabrication of R2Fe14B nanocrys-
talline magnets. By using the rapid solidification route, the
nanocrystalline structure can be obtained either in situ by
varying the cooling rate during solidification or by crys-
tallizing the amorphous products. When using mechanical
alloying, a subsequent annealing is always required to crys-
tallize the amorphous or partially amorphous structure.

2.2.1 R2Fe14B nanocrystalline ribbons obtained
directly by quenching

The microstructure of the ribbons prepared by melt spinning
is dependent on the quench rate (which in turn is determined
by the speed of the spinning wheel). For a given composition
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Table 2. Magnetic properties of R2Fe14B nanocrystalline magnets.

Magnet µ0Ms (T) HA (MA m−1) TC (◦C) Hc (MA m−1) References

Nd2Fe14B 1.6 5.34 315 1.19 Croat, Herbst, Lee and Pinkerton (1984)
Pr2Fe14B 1.56 6.94 292 0.95 Goll, Seeger and Kronmuller (1998)
Tb2Fe14B 0.66 17.55 356 7.66 Pinkerton and Van Wingerden, (1986)
Dy2Fe14B 0.71 11.97 320 5.1 Pinkerton and Van Wingerden, (1986)
Pr2Co14B 0.97 7.98 717 1.99 Buschow, Demooij and Coehoorn, (1988)

Ms: saturation magnetization, HA: anisotropy field, TC: Curie temperature, Hc: coercive field.

and temperature of a melt, the best combination of magnetic
hysteresis parameters can be obtained in a narrow range of
the wheel speed (e.g., in the case of Nd–Fe–B alloys, the
optimum wheel speed is 20–21 m s−1, (Pinkerton, 1987),
while the Nd–Fe–B ribbons quenched at 32 m s−1 are
entirely amorphous (Mishra, 1986)). The best magnetic
properties (coercive fields) in isotropic specimens were
obtained for an optimum structure of the ribbons consisting
of small polyhedral Nd2Fe14B crystallites surrounded by a
thin (2–3 nm) shell of a paramagnetic Nd-rich phase (Croat,
Herbst, Lee and Pinkerton, 1984). Though the typical average
grain size d is of the order of the single domain size dsd,
which was reported to vary from 150 nm (Mishra, 1986)
to 300 nm (Livingston, 1985), it is not necessary to have
d < dsd (Grönefeld and Kronmüller, 1990). On the other
hand, the magnetic insulation provided by the grain-boundary
phase is always favorable for the high coercivities.

Remanence of a magnet consisting of randomly oriented
noninteracting uniaxial grains is limited by Jr = Js/2. For
the single-phase Nd2Fe14B ribbons with d ≤ 26 nm the
remanence may exceed Js/2 because of exchange coupling
between the 2:14:1 nanocrystallites (Clemente, Keem and
Bradley, 1988). The absence of the Nd-rich grain-boundary
phase is the other necessary condition of the remanence
enhancement phenomenon. The higher remanence leads to
the higher maximum energy product: Nd2Fe14B ribbons
with (BH)max = 150 kJ m−3, Hc = 960 kA m−1 (Clemente,
Keem and Bradley, 1988) and (BH)max = 170 kJ m−3, Hc =
800 kA m−1 (Bauer, Seeger, Zern and Kronmuller, 1996)
were reported. Values of Jr up to 1.42 T and (BH)max =
180.7 kJ m−3 were reported in Pr–Fe–B composite ribbons
with Fe-rich composition (Goll, Seeger and Kronmuller,
1998).

Since anisotropic magnets present higher values of the
energy product because of the high remanence, efforts have
been made to prepare anisotropic R2Fe14B ribbons via the
directional solidification process (melt spinning at low wheel
speed) and directional solidification combined with hot defor-
mation (twin-roller melt spinning) that leads to the formation
of columnar or dendritic structures, respectively (Dadon,
Gefen and Daniel, 1987; Coehoorn and Duchateau, 1988;

Chin, Huang and Yau, 1992, 1993). Anisotropic Nd–Fe–B
nanocrystalline alloys were produced also by splat quench-
ing (Harada, Ando, O’Handley and Grant, 1991). Coarse
columnar structures in ribbons melt spun at low wheel speed
led to a low coercivity, which undermined benefits of the
obtained texture. Splats with columnar dendritic structures
showed sufficiently high coercivity but only modest magnetic
anisotropy.

2.2.2 R2Fe14B nanocrystalline ribbons obtained
by annealing of amorphous precursors

Calorimetric studies indicate that crystallization of amor-
phous Nd2Fe14B alloys starts at about 580 ◦C with some vari-
ation when other additive elements are included (Figure 2).
The optimum annealing temperature for the overquenched
Nd–Fe–B and PR–Fe–B ribbons, however, is much higher,
700–800 ◦C. The higher annealing temperature leads to the
formation of an optimum microstructure for magnetic hard-
ening; particularly it eliminates α-Fe, which is usually the
first product of crystallization. Nevertheless, unless the alloy
contains a significant excess of R, a small amount of the soft
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magnetic phase always remains. Because of this, the mag-
netic properties of overquenched and subsequently annealed
R–Fe–B ribbons are generally lower than those of directly
quenched ribbons (Manaf, Leonowicz, Davies and Buck-
ley, 1991). The kinetics of devitrification of overquenched
Nd13.5Fe81.7B4.8 and Nd13.9Fe78.3B7.8 alloys has been stud-
ied by Jha, Davies and Buckley (1989). The glass-forming
ability can be enhanced by the addition of TiC: the opti-
mum wheel speed for (Nd2.17Fe14.17B1.17)100−x(TiC)x was
reduced as compared to the TiC-free composition (Branagan
and McCallum, 1995; Branagan, Hyde, Sellers and McCal-
lum, 1996).

The crystallization of the amorphous phase into the tetrag-
onal R2Fe14B phase and the magnetic hysteresis have been
also examined in melt-spun alloys by Tao and Hadjipanayis
(1984). The crystallization temperatures were found to be
much higher (∼650 ◦C) for Fe–Y–B and the heavy rare-
earth alloys than in the light rare-earth Fe–R–M up to Gd
(∼560 ◦C). The crystallized samples have coercivities up to
480 kA m−1. The tetragonal La2Fe14B phase was found to be
formed both in as-cast and crystallized melt-spun La–Fe–B
alloys. This phase, however, is not stable and transforms
into α-Fe and La–B upon annealing at higher temperatures
(Hadjipanayis, Tao and Gudimetta, 1985).

2.2.3 R2Fe14B nanocrystalline powders

Nanocrystalline single-phase isotropic powders can be pre-
pared by high-energy ball milling of either single precursor
alloys or several precursors with different compositions. The
latter technique known as mechanical alloying involves a
solid-state reaction between the elemental powder compo-
nents, leading to the formation of composite particles with
a layered morphology. In accordance with the mechanical
characteristics of the starting powders and the thermody-
namics of the alloy system, the reaction corresponding to
the formation of 2:14:1 compound can take place during
the milling or during the subsequent heat treatment (Wecker
et al., 1994; Gong, Hadjipanayis and Krause, 1994; Chen
et al., 1995). Coercivity values as high as Hc = 840 kA m−1

were obtained for Nd15Fe77B8 powders (Chen et al., 1995).
The optimum grain size of the Nd2Fe14B phase was found
to be about 50 nm.

Intensive milling of off-stoichiometric PR–Fe–B alloys
with Dy and Zr additions lead to coercivity values as
high as Hc = 2.12 MA m−1 in Pr15Dy1Fe75.9B8Zr0.1 pow-
ders, whereas the reduction of R content and the presence
of Co lead to excellent properties, µ0Mr = 0.92 T, Hc =
1 MA m−1, and (BH)max = 140 kJ m−3, supposedly originat-
ing from a microstructure with a mean grain size of 20 nm
(Bollero et al., 2002).

2.3 Exchange-coupled nanocomposite R–TM–M
alloys

2.3.1 Nanocomposite α-Fe/R2Fe14B alloys obtained
by direct quenching

In the early 1990s, Davies et al. (1992) showed that when
decreasing the Nd content below 11 at% in nanocomposite
NdxFe94−xB6 alloys, the α-Fe phase precipitates in an
increasing amount up to 35 vol% for x = 8 at%. Owing
to the high saturation magnetization of α-Fe and exchange
coupling between the α-Fe and N2Fe14B grains, this resulted
in an additional enhancement of remanence, though Hc was
gradually lowered. Manaf, Buckley and Davies (1993) and
Manaf et al. 1993 reported a remanence larger than 1 T, a
coercivity of 485 MA m−1 and (BH)max > 160 kJ m−3 for
the Nd-lean alloys with 8–10 at% Nd. The alloys consisted
of a magnetically hard Nd2Fe14B phase with an average grain
size of less than 30 nm and α-Fe phase grains with an average
particle grain size of less than 10 nm.

A systematic study of the two-phase α-Fe/Nd2Fe14B
magnets by Bauer, Seeger, Zern and Kronmuller (1996)
showed that the remanence increases up to µ0Mr = 1.25 T
with increasing the content of α-Fe phase to approximately
30 vol%. This remanence value represents an enhancement
of 56% as compared to that of the Nd2Fe14B exchange-
decoupled magnet without Fe. However, because the square-
ness of the hysteresis loop deteriorates with increasing
α-Fe content, (BH)max is nearly constant for α-Fe amounts
between 0 and 30 vol%, with only a weak maximum
(186.4 kJ m−3) at 30 vol%. In melt-spun α-Fe/Pr2Fe14B mag-
nets, Goll, Seeger and Kronmuller, (1998) obtained a pro-
nounced maximum of (BH)max equal to 180.7 kJ m−3 for
about 30 vol% of α-Fe phase. For α-Fe amounts exceed-
ing this value, the coercivity of the magnet falls below Jr/2
and the (BH)max values start decreasing (Mendoza-Suarez,
Davies and Escalante-Garcia, 2000).

The variation of the magnetic properties with the wheel
speed of PrxFe94−xB6 nanocomposite ribbons with 6 ≤
x ≤ 10 was studied by Mendoza-Suarez et al. (1999). The
largest remanence enhancement was associated with the
wheel speed that led to a grain size of ∼30 nm for the 2:14:1
phase and of ∼20 nm for the α-Fe phase. Values of the energy
product as high as (BH)max = 170 kJ m−3 were obtained for
x = 9, 10 at%.

A c-axis orientation of the 2:14:1 phase has been observed
by Jin et al. (2002b) (Figure 3) in the free surface of
(Pr,Tb)2(Fe,Nb,Zr)14B/α-Fe exchange-coupled nanocompos-
ite ribbons spun at speeds below 10 m s−1.

A crystallographic texture with the c axis perpendicular to
the plane of the specimens in Nd3.6Pr5.4Fe83Co3B5 ribbons
prepared at a low wheel speed (10 m s−1) has also been
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Figure 3. X-ray diffraction patterns of as-spun Pr7Tb1Fe87

Nb0.5Zr0.5B4 ribbons indicating a trend for a c-axis texture of 2:14:1
phase perpendicular to the ribbon plane. (Reprinted with permission
Z. Jin et al., copyright 2002, Elsevier.)

reported by Zhang, Guan, Yang and Zhang (2001). The
orientation of the c axis switches to the ribbon plane
for a higher wheel speed (20 m s−1) in which case, a
high remanence of 0.74 Ms and a larger energy product
(BH)max = 194 kJ m−3 have been obtained.

2.3.2 Nanocomposite α-Fe/R2Fe14B alloys obtained
by recrystallization

In the α-Fe/R2Fe14B two-phase magnets, the small size of the
grains, especially those of the α-Fe phase, is essential for the
intergranular exchange coupling. To avoid the overgrowth of
α-Fe soft crystalline phase during annealing, high rates of
heating and cooling, as well as a short isothermal stage are
required. The whole annealing procedure usually lasts for
only a few minutes, often seconds. This may, in particular,
complicate reproducing the experimental results reported by
different groups.

Most of the researchers agree that crystallization of
amorphous R-lean R–Fe–B alloys occurs in several states.
Among the observed metastable intermediate phases were:
R2Fe23B3, RFe11B6, and R3Fe62B14 (Buschow, Demooij
and Coehoorn, 1988); R3Fe81B16 and R6Fe77B17 (Gu et al.,
1989; Gu, Shen and Zhai, 1990, 1994); R2Fe17 (Linetsky,
Raigorodsky and Tsvetkov, 1992); and RFe7 (Withanawasam
et al., 1995; Gabay et al., 1996).

The typical fully amorphous Pr8Fe86B6 ribbons present
a multistage microstructural evolution upon crystallization.

From the amorphous matrix, the metastable TbCu7-type
phase precipitates initially and then it transforms into the
metastable Pr2Fe23B3 prior to the formation of Pr2Fe14B and
α-Fe phases (Jin et al., 2002a). It has been found that a
more homogeneous and finer microstructure is obtained if
the as-spun precursors were partially amorphous. The typical
dependence of coercivity of as-spun and annealed R–Fe–B
ribbons on the wheel speed is presented in Figure 4. The
annealing is effective above a certain wheel speed.

Wang et al. (2000) studied the effect of the quenching
rate during the ribbon formation, on the phase transformation
and magnetic properties of Pr8Fe86B6 ribbons subsequently
annealed. It has been shown that the magnetic properties of
the ribbons deteriorate with increasing the quenching rate
followed by annealing. The directly spun ribbons present a
remanence of 1.2 T and a coercivity of about 432 kA m−1,
whereas ribbons spun at 22 and 30 m s−1 and optimally
annealed show remanence values of 1.08 and 0.88 T and
coercivity values of about 408 and 280 kA m−1, respectively.
The decrease of the magnetic hysteresis properties was
attributed to the formation of coarser and more irregular
microstructure.

A comprehensive study on the effect of various substi-
tutions M (M = Cr, Nb, Ti, and Zr) for Fe, on the mag-
netic and structural properties of Pr8Fe84M2B6 melt-spun
nanocomposites, has been done by Chen, Okumura, Had-
jipanayis and Chen (2001). All these substitutions were
found to make the microstructure finer and to improve
the magnetic properties. The largest enhancement was
obtained in Nb-substituted Pr8Fe84Nb2B6 magnets showing
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Figure 4. Coercivity of Pr8Fe86B6 as a function of the wheel
speed (Chen et al., 1999). The annealing was performed at 800 ◦C
for 0.5–1.5 min. (Reprinted with permission Chen et al., copyright
1999, American Institute of Physics.)
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Hc = 518.7 kA m−1, (BH)max = 143.2 kJ m−3, with a grain
size in the range of 10–20 nm.

Addition of Nb and Zr to Pr7Tb1Fe88B4 nanocomposite
ribbons was reported (Jin et al., 2002b) to suppress the grain
growth resulting in a large improvement of the magnetic
properties with ∼50% enhancement of the coercivity and
a considerable increase of (BH)max from 441 kA m−1 and
117 kJ m−3 to 646 kA m−1 and 162 kJ m−3, respectively.

The effect of Al, Ti, or Hf additions on the magnetic
properties of Pr8.5(Fe0.9Co0.1)84.5M1B6 ribbons was reported
by Wang and Davies (2003). In particular, the addition of Al
slightly increases the coercivity whereas Ti or Hf increases
the coercivity and energy product as a result of enhanced
exchange coupling induced by the finer microstructure.

In contrast to the single-phase Pr12(Fe100−xCox)82B6 (with
x ≤ 20) nanocrystalline ribbons, which present good hard-
magnetic properties ((BH)max = 220 kJ m−3) by overquen-
ching followed by annealing without any addition of grain
growth inhibitor element, the two-phase Pr-lean ribbons have
been found to benefit greatly with the addition of 1 at% Zr.
This addition to the Pr10Fe84B6 alloy resulted in an improved
loop shape and Hc up to 550 kA m−1 while (BH)max was
increased to 140 kJ m−3 compared with 80–110 kJ m−3 for
Zr-free ribbons (Harland and Davies, 2000).

Ga substitution for Fe was found to refine the microstruc-
ture of the Pr9Fe74Co12GaB5 ribbons and lead to an
improvement of the magnetic properties from Jr = 1.14 T
and (BH)max = 136 kJ m−3 in Ga-free samples and Jr =
1.22 T to (BH)max = 177.6 kJ m−3 in Ga-added samples
(Zhang, Chang, Chiu and Chang, 2004). Overstoichiomet-
ric Nd–Fe–Ga–Nb–B melt-spun ribbons were studied by
Bauer, Seeger and Kronmuller (1995) who reported that the
coercivity is not significantly changed in samples with grain
size within the range of 10 nm–1 µm.

The partitioning behavior of Co within the component
phases and the Curie temperature of Pr2Fe14B/
α-Fe nanocomposite ribbons with the nominal compo-
sitions Pr9.7Fe76.6Co7.8B5.9 and Pr9.2Fe69.4Co15.4B6.0 have
been studied by Zhang et al. (2001a) using three-dimensional
atom probe and transmission electron microscopy (TEM). It

has been found that Co is dissolved uniformly, with no dif-
ference in concentration between the two component phases.
For the nanocomposite samples, the Curie temperature was
found to increase more rapidly with increasing overall Co
content than for single-phase alloys as the Co/(Co + Fe) ratio
in the 2:14:1 phase, when part of the nanocomposite system,
is higher than the overall ratio.

Table 3 lists some of the best R2Fe14B/α-Fe nanocompos-
ite magnets with (BH)max > 160 kJ m−3.

Nanocomposite materials were also prepared in Pr–
Co–Nb–B systems (Withanawasam, Panagiotopoulos and
Hadjipanayis, 1996). The final microstructure consisting of
a mixture of Pr2Co14B and Co is formed after annealing the
melt-spun ribbons through an intermediate transformation to
the metastable TbCu7-type structure.

2.3.3 Nanocomposite α-Fe/R2Fe14B powders

Another versatile technique to produce R2Fe14B/α-Fe nano-
composite magnets is intensive milling of R-lean alloys
or stochiometric alloys blended with different fractions of
α-Fe. A 25 wt% Fe addition gave the optimum combination
of the hysteresis magnetic parameters: Jr = 1.19 T, Hc =
528 kA m−1, and (BH)max = 178 kJ m−3 (Bollero et al.,
2002).

Mechanically milled Nd8−xSmxFe88B4 (x = 0–2.5) alloys
have been studied by Zhang et al. (2004). The optimum mag-
netic properties of the powder milled for 5 h were achieved
after annealing at 630 ◦C for 20 min. The reduced remanence
was found to increase from 0.680 to 0.806 with increas-
ing Sm content. Gong, Hadjipanayis and Krause (1994)
obtained a remanence enhancement (Mr/Ms = 0.60–0.68)
for R–Fe–Nb–B mechanically alloyed samples, with 5–15
at% R (R = Nd, Tb).

Neu et al. (1996) analyzed the influence of different addi-
tions to α-Fe/Nd2Fe14B powders starting with the Nd8Fe88B4

based composition. For Zr and Si addition, µ0Mr of approx-
imately 1.1 T and Hc = 320–344 kA m−1 were obtained.
Comparison of the magnetic properties of magnets pro-
duced by mechanical alloying of elemental powders and

Table 3. Magnetic properties of the best R2Fe14B/α-Fe nanocomposite magnets (ribbons).

Composition Process route Grain size µ0Mr(T) Hc(kA m−1) (BH)max(kJ m−3) References

Pr8.5(Fe0.8Co0.2)86Cu0.5B5 Annealed 15–20 nm 10.9 583 160 Wang et al. (2000)
Pr9Fe74Co12GaB5 As-spun 15 nm 1.22 497 177.6 Zhang, Zhang and Shen (2002)
Nd3.6Pr5.4Fe83Co3B5 As-spun 13–16 nm 0.74 Ms 450 194 Zhang et al. (2001)
Pr8Fe87B5 As-spun Hard-magnetic 1.17 472 180.7 Goll, Seeger and Kronmuller (1998)

grains: 20–30 nm
Soft magnetic
grains: 15 nm
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by intensive milling of precursor alloys (Neu and Schultz,
2001) showed that the latter technique is in some ways
superior. The Nd9Fe77Co8.5Si1B4.5 milled and annealed mag-
net had Hc = 480 kA m−1, Jr = 1.11 T, and (BH)max =
147 kJ m−3, if made from the precursor alloy, as compared to
Hc = 464 kA m−1, Jr = 1.07 T, and (BH)max = 139 kJ m−3,
if made from the elemental powders.

2.3.4 Nanocomposite Fe3B/R2Fe14B alloys

Coehoorn, DeMooij and DeWaard (1989) reported for the
first time Nd4Fe78B18 nanocomposite magnets, containing
Fe3B as the main phase and Nd2Fe14B as a secondary
phase, prepared by crystallization of melt-spun amorphous
precursor. Because of the high boron content, an amor-
phous alloy is easily formed in the Nd2Fe14B/Fe3B system
during melt spinning even under a relatively low wheel
speed. Shen et al. (1994a) analyzed the thermal stability of
Ndy(Fe1−xBx)100−y alloys and found a very strong rise of
crystallization temperature with x. In other words, boron
remarkably increases the thermal stability of amorphous
Nd–Fe–B alloys.

The addition of Hf and Ga in Nd4Fe76Co3(Hf1−xGax)B16

(x = 0, 0.5, and 1) melt-spun ribbons was found to
improve the magnetic properties via improving the shape
of grains. The values of remanence and coercivity of some
Fe3B/R2Fe14B optimally heat-treated ribbons with various
additions (Fe, Al, Si, Cu, Ga, Ag, and Au) are reported by
Kanekiyo, Uehara and Hirosawa (1993), and presented in
Figure 5.
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Figure 5. Remanence and coercivity of Fe3B/R2Fe14B optimally
heat-treated ribbons with additions M = Fe, Al, Si, Cu, Ga, Ag,
and Au (Kanekiyo, Uehara and Hirosawa, 1993).

Systematic studies on the effects of different alloying addi-
tions on Nd–Fe–B alloy with 3–5 at% Nd and 18.5 at% B
have been also presented in reports of Hirosawa, Kanekiyo
and Uehara (1993), Kanekiyo, Uehara and Hirosawa (1994),
and Hirosawa and Kanekiyo (1996). It was found that com-
bined additions of Co and Ga are particularly effective for
improving the remanence, coercivity, and energy product. On
the basis of TEM observations, it was concluded that these
improvements result from a smaller grain size after the crys-
tallization reaction. Ping, Hono and Hirosawa (1998) studied
the distribution of Co and Ga atoms in Nd4.5Fe73B18.5Co3Ga1

at various stages of crystallization. In the early stage of
crystallization, Co and Ga atoms are rejected from the pri-
mary particles of the soft magnetic Fe3B phase and are
partitioned to the amorphous matrix phase. In the fully crys-
tallized Fe3B/Nd2Fe14B nanocomposites, Co and Ga atoms
are partitioned into the Nd2Fe14B phase. Evidence for a slight
enrichment of Ga atoms at the Nd2Fe14B/Fe3B interface has
been found.

Gao, Zhu, Yang and Park (1998) found that the addi-
tions of Hf and Ga slowdown the crystallization rate in
the Nd4Fe76Co3Hf0.5Ga0.5B16 amorphous alloy compared to
the Nd4Fe80B16 alloy. The optimum magnetic properties
reported on annealed ribbons were (BH)max = 122.4 and
116.8 kJ m−3, respectively, while the remanence ratio Mr/Ms

exceeded 0.8.
The coercivity of the nanocomposite magnets consisting

of magnetically soft and magnetically hard phases is usually
adjusted by varying the amount of the latter. However, in
the Fe3B/Nd2Fe14B system, the room for adjustment is very
small: when the Nd content exceeds 4.5 at%, the intermediate
Nd2Fe23B3 phase appears upon heating and it transforms
into α-Fe and Nd1Fe4B4, which are all magnetically soft.
The addition of Cr extends the range for the formation
of the magnetically hard Nd2Fel4B phase. Uehara et al.
(1998) showed that in Nd5Fe77Bl8, the Nd2Fe23B3 phase
crystallizes along with Fe3B from the amorphous phase and
at the higher temperatures it decomposes into a mixture
of α-Fe and Nd1Fe4B4, whereas in Nd5Fe74Cr3B18, the
Nd2Fe23B3 phase breaks up into Nd2Fel4B, Fe3B, and α-Fe.
According to Zhang, Matsushita and Inoue (2001), the
optimum values of the magnetic properties obtained in the
annealed Nd3Dy0.5Fe67Co9.5B20 ribbons correspond to the
four-phase structure of Nd2Fe14B, Fe3B, α-Fe, and a residual
amorphous phase ferromagnetic at room temperature.

An external magnetic field, applied during the annealing
of melt-spun Nd4Fe73.5Co3Hf1−xGaxB18.5 alloys, induced a
grain refinement of about 20% and led to an increase of
remanence and energy product by 30% (Yang and Park,
1995). The alloy having x = 0.5 exhibited Jr = 1.25 T, Hc =
225 kA m−1, and (BH)max = 126.4 kJ m−3. A similar effect
of the magnetic field annealing was reported by Gao et al.
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(1999) for Nd4Fe76Co3 (Hf1−xGax)B16 (x = 0, 0.5, and 1)
melt-spun ribbons.

Besides the above traditional view on the Fe3B/R2Fe14B
magnets, unconventional opinion exists (Li et al., 2004), that
the hard-magnetic properties observed in these alloys may be
induced in the Fe3B phase not by the exchange interaction
with the Nd2Fe14B phase but rather by the partial substitution
of Nd for Fe in the Fe3B structure.

Another group of Nd–Fe–B-based nanocomposites com-
bines the features of Fe3B/R2Fe14B and α-Fe/R2Fe14B. In
the alloys containing approximately 9 at% Nd and 8–12
at% B, the magnetically soft metastable Pr2Fe23B3 phase
transforms into Pr2Fe14B, α-Fe, and Fe3B by annealing at
temperatures higher than 750 ◦C (Chen et al., 2003b). The
phase evolution and magnetic properties of such Fe3B/α-Fe/
R2Fe14B nanocomposite magnets were studied by Chang
et al. (2002) for the (Nd0.7Pr0.25La0.05)xFebalCo10Ti2By

alloys with x = 4.5–10.7 and y = 10.9–18.6. The best mag-
netic properties were obtained in the (x, y) = (10.7, 10.9)

alloy with Jr = 0.8 T, Hc = 1.41 MA m−1, and (BH)max =
104.8 kJ m−3. An intrinsic coercivity Hc > 800 kA m−1, and
(BH)max > 128 kJ m−3 were developed in melt-spun ribbons
with compositions of (Nd0.95La0.05)11FebalCo10M2B10–10.5

with M = Cr, V, Mo, Ti (Chang et al., 1999; Chang, Wang,
Chang and Chen, 2000).

2.3.5 Nanocomposite Nd–Fe carbides

Alloys based on R2Fe14C compound were also reported as
a promising group of permanent magnet materials (Hellwig
et al., 1991).

Nanocomposite Nd–Fe carbide ribbons
A study of the effect of C substitution for B on the magnetic
and structural properties in nanocomposite Nd10Fe82B8−xCx

(x = 0, 2, 4, 5, 6, 7) ribbons in correlation with their
crystallization behavior have been presented by Daniil,
Okumura, Hadjipanayis and Sellmyer (2003). For x ≤ 4,
the crystallization of Nd2Fe14(B,C) and α-Fe occurs in one
single stage. For x > 4, two structural transitions take place;
the final stable structure consisting of Nd2Fe14(B,C) and
α-Fe is formed from the intermediate Nd2Fe17Cx and α-Fe
structures. The coercivity has a maximum of 696 kA m−1 for
x = 2. With decreasing x, the formation of 2:14:1 phase is
accelerated. From qualitative evaluation of X-ray diffraction
(XRD) patterns it was derived that Nb and Zr additions
reduce the amount of α-Fe significantly in as-spun and
annealed Nd10Fe82C6B2 ribbons (Daniil et al., 2002).

Quenching of Nd11Fe72Co8(B0.8C0.5)9 alloys at the
optimum wheel speed allowed (BH)max = 140.5 kJ m−3

(Yamamoto and Yamaguchi, 1991). Zhang, Chang, Chiu and

Chang (2004) reported that ribbons with the stoichiome-
try Pr11−xDyFe72+xCo10C4B2 (x = 0–3) consist of 2:14:1,
α-Fe, 2:17 phases and a small amount of paramagnetic rare-
earth 1:2 carbide. The highest values of the magnetic hystere-
sis parameters were obtained in Pr10DyFe73Co10C4B2(Br =
0.94 T, Hc = 861 kA m−1).

Nanocomposite Nd–Fe carbide powders
The phase transformation and magnetic properties of
mechanically alloyed Nd16Fe77−xCx (x = 7–11) and
Nd16Fe84−xCx−y (y = 0–x and x = 7, 8, 9) alloys, were
studied by Sui et al. (1996). More carbon than the stoi-
chiometric content for Nd2Fe14C was necessary to stabilize
the tetragonal 2:14:1 structure. Substitution of boron
for carbon can accelerate the phase transformation from
Nd2Fe17Cx to Nd2Fe14(C, B) and lead to an improvement
of the magnetic properties. The Nd-rich phase with an
fcc structure was reported to coexist with Nd2Fe14C in
mechanically alloyed Nd–Fe–C samples (Sui et al., 1996),
but it was not found in melt-spun samples. The best
properties were achieved in the Nd16Fe76B5C3 mechanically
alloyed powders with Br = 0.71 T, Hc = 1.48 MA m−1, and
(BH)max = 91.5 kJ m−3.

2.4 Bulk nanocrystalline magnets

As discussed earlier, the nanocrystalline R–Fe–B magnets
are typically produced in the form of thin ribbons or fine
powders. There are two exceptions to this observation: (i) the
RxFe80−x−yCoyB20 alloys (R = Nd, Pr, Dy; x = 3.5–4.5;
y = 10–13.5; in some reports with a small addition of Zr),
which because of their remarkable glass-forming ability, can
be cast into tubes or rods with 0.5–1 mm in diameter in amor-
phous state followed by crystallization annealing (Zhang and
Inoue, 2002; Pawlik and Davies, 2003; Marinescu, Paw-
lik, Davies and Chiriac, 2004) and (ii) bulk nanocrystalline
R–Fe–B alloys formed by room-temperature severe plastic
deformation under pressure and subsequent annealing, with
Hc up to 1.52 MA m−1 (Popov, Gynderov and Stolyarov,
1996). As for the melt-spun R–Fe–B ribbons and intensively
milled R–Fe–B powders, for most of the applications they
must be consolidated before use. The most common tech-
nique is the binding of the hard-magnetic powder with a poly-
mer or metal (usually Zn or Al). Though the nonmagnetic
binder inevitably dilutes the magnetization, the bonded mag-
nets with intermediate (BH)max of 80–144 kJ m−3 are rela-
tively inexpensive and can be formed into intricate net shapes
(Brown, Ma and Chen, 2002). Fully dense nanocrystalline
R–Fe–B magnets are commercially produced by compacting
the R-rich melt-spun ribbons (≥13.5 at% R) at 700–750 ◦C
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(Lee, 1985). Alternatively, a shock compaction can consol-
idate the amorphous or nanocrystalline R–Fe–B precursors
without any microstructural changes (Leonowicz et al., 1998;
Saito, 2001). Both the hot- and shock-compacted nanocrys-
talline magnets are isotropic.

Hot plastic deformation of R–Fe–B magnets aligns the
EMDs of the 2:14:1 grains parallel to the applied pressure.
This remarkable transformation can be observed in different
kinds of R–Fe–B materials–cast, sintered, and so on. In the
case of nanocrystalline magnets, it was first reported for hot-
pressed melt-spun alloys (Lee, 1985) and later for mechani-
cally alloyed powders (Wecker et al., 1994). The hot plastic
deformation is usually done by either extrusion or upsetting
the magnets in a loose die. The latter method is often referred
to as die upsetting. In one of the versions of the die-upsetting
technique (Yang et al., 1997), the hot compaction and hot
deformation were performed in a single step. In the typical
die-upset R–Fe–B magnets (Wecker et al., 1994; Leonow-
icz et al., 1994), the 2:14:1 grains are platelet shaped with a
height of 50–100 nm and a diameter of 100–300 nm and the
R-rich phase can be found in the form of thin grain-boundary
layers. The hot-compacted specimens are isotropic while the
hot-deformed ones are anisotropic due to the developed tex-
ture (Figures 6 and 7). In the model by Li and Graham
(1992), the R-rich phase, which is liquid at the temperature of
deformation, provides a mass transport necessary for growth
of favorably oriented grains. Other studies (Grünberger et al.,
1997) suggested that the liquid grain-boundary phase is not
required for deformation and texturing, but it is rather nec-
essary for a crack-free deformation at high strain rates. The
commercially available die-upset R–Fe–B magnets have a
(BH)max up to 360 kJ m−3. The highest energy product val-
ues, up to 435.2 kJ m−3, were reported for magnets made of

−20

−5

0

5

10

15

−15 −10 −5 0 5 10 15

1

2

H (kOe)

4π
M

 (
kG

)

Figure 6. Demagnetization curves of hot-compacted (1) and hot-
deformed (2) Nd16Fe77.5Ga0.5B6 magnets produced from intensively
milled powders.

200 nm

Figure 7. Elongated Nd2Fe14B grains in the hot-deformed
Nd15.5Fe77Ga0.5B6 magnet (scanning electron microscopy (SEM)
image of the fractured surface of the magnet). Pressure had been
applied in vertical direction.

amorphous shock-compacted precursors (Harada, Fujita and
Kuji, 1996; Saito et al., 1998).

While the typical R–Fe–B alloys for die upsetting contain
more than 12 at% R (to provide the R-rich phase), consid-
erable efforts were recently made to obtain anisotropic die-
upset nanocomposites. In one of the attempts (Gabay, Zhang
and Hadjipanayis, 2004), the R-rich and R-lean ribbons were
blended and die upset together. The resulting magnets con-
sisted of alternating layers of the two starting alloys arranged
perpendicularly to the pressing direction (Figure 8). In the
R-rich layers, the R2Fe14B grains were crystallographically
aligned, while the R2Fe14B and α-Fe grains in the R-lean
layers retained the random orientation. Though anisotropic
magnets with less than 12 at% R have been obtained, their
properties (see Figure 9) were far inferior to those of the tra-
ditional α-Fe-free die-upset magnets. In another recent study
(Lee et al., 2004), die-upset anisotropic (Nd,Pr,Dy)2Fe14B/
α-Fe magnets were reported with (BH)max of 336 kJ m−3.
The highest maximum energy product in composite magnets
reported to date is (BH)max ∼ 432 kJ m−3 and was obtained
for die-upset specimens fabricated with composite powder
synthesized by coating (Liu et al, 2006). However, in this
case, the soft magnetic phase exceeds by far the nanometer
scale.

2.5 Magnetization reversal mechanism
in nanostructured magnets

The magnetic hysteresis in the nanocrystalline R2Fe14B
alloys is difficult to model because the real microstructures
are not only refined but are rather nonhomogeneous (Herbst
and Croat, 1991). The pinning of domain walls at grain
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Figure 8. Microstructure of a composite magnet made from equal
weight percent of Pr13.5Fe68Co12Ga0.5B6 and Pr3.5Tb1Fe89.5B6: (a)
SEM back scattered electron (BSE) image with the arrow showing
the pressure direction and TEM images of areas with (b) platelet-like
R2Fe14B grains, (c) equiaxed R2Fe14B and α-Fe grains. (Reprinted
with permission Gabay et al., copyright 2004, American Institute
of Physics.)

boundaries has been suggested based on the shape of
initial curves and field and temperature dependencies of
the coercivity (Hadjipanayis, Dickerson and Lawless, 1986;
Pinkerton and Van Wingerden, 1986). On the other hand,
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Figure 9. Demagnetization curves of die-upset magnet (Pr,Tb)8.72

Fe85.04Ga0.24B6 made from equal weight percent of Pr13.5Fe80

Ga0.5B6 + Pr3.5Tb1Fe89.5B6. The curves were measured parallel and
perpendicular to the pressure direction.

the coercivity controlled by nucleation of reversed domains
has been proposed by Durst and Kronmuller (1987) based
on the variation of the coercivity with temperature data.
This mechanism is also supported by measurements of
the initial magnetization and remanence showing that the
magnetization reversal occurs by rotation of the magnetic
moments of neighboring grains at a time. In later studies, the
magnetization reversal process in the fine-grained magnets
was explained better using the random anisotropy model
(Givord and Rossignol, 1996). When the grains are smaller
than 20 nm, the strong intergranular interactions lead to the
formation of ‘interaction domains’.

In nanocrystalline magnets without exchange coupling,
Hc can be described by a modified form of equation (1)
(Kronmüller, 1987; Martinek and Kronmuller, 1990):

µ0Hc = αKµ0H
min
N − NeffJs (2)

with H min
N – the smallest nucleation field of reversed domains

and αK and Neff – the microstructure parameters describ-
ing the variation of the magnetocrystalline anisotropy at the
grain surface due to imperfections and the local demagnetiz-
ing coefficient, respectively. The microstructure parameters
can be obtained by analyzing the temperature dependence
of Hc. In the case of decoupled grains, the αK parameter
varies in the range 0.7 < αK < 0.9. The exchange interac-
tion between the magnetic moments of adjacent grains can
be described by introducing the coefficient αex attached to
αK. The αexαK value of the exchange-coupled magnets is
substantially lower than αK of the magnets with decou-
pled grains. In the two-phase magnet containing 46.9%
α-Fe, αexαK was found to be as low as 0.06 (Goll, Seeger
and Kronmuller, 1998; Kronmüller and Goll, 2002b). The
microstructural parameter Neff is 0.1–0.16 in stochiometric
and two-phase nanocrystalline magnets compared to 0.75–1



Rare-earth nanocrystalline and nanostructured magnets 13

for magnets with decoupled grains (Bauer, Seeger, Zern
and Kronmuller, 1996; Kronmüller and Goll, 2002b) indi-
cating smaller internal stray fields in the exchange-coupled
nanocomposites.

Micromagnetic analysis by Kronmüller and Goll (2002b)
has showed three main sources of the reduction of Hc

in nanocrystalline R–Fe–B magnets with the nucleation-
controlled coercivity: (i) misaligned grains, (ii) imperfect
grain boundaries, and (iii) exchange coupling between neigh-
boring grains which induces cooperative demagnetization
processes of clusters of grains.

3 RARE-EARTH–COBALT
NANOSTRUCTURED AND
NANOCRYSTALLINE MAGNETS

3.1 Bulk-hardened nanostructured R–Co magnets

The bulk-hardened (or precipitation-hardened) Sm–Co mag-
nets were developed in the 1970s (Tawara and Senno, 1973;
Ojima, Tomizawa, Yoneyama and Hori, 1977). They are
also often called the 2:17 magnets after their major com-
ponent, the Sm2Co17 phase. These magnets are particularly
attractive due to their excellent temperature stability and
good corrosion resistance. However, these magnets are rather
expensive because of their high-priced raw materials and
typical heat-treatment processing which is long and compli-
cated. Because of its ‘bulk’ nature, the magnetic hardening
in the 2:17 Sm–Co alloys can be achieved in various types
of materials. Sintered magnets, that is, those produced via a
powder metallurgy, are anisotropic and show the best mag-
netic performance. Cast isotropic magnets are less expensive;
they can be further crushed and used for manufacturing
anisotropic polymer-bonded magnets. Recently bulk harden-
ing has been realized in Sm(Co,Fe,Cu,Zr)z melt-spun rib-
bons (Goll, Kleinschroth, Sigle and Kronmuller, 2000; Yan,
Bollero, Müller and Gutfleisch, 2002; Yan, Sun, Han and
Shen, 2002). These ribbons can be potentially used for large-
scale manufacturing of isotropic and partially anisotropic
polymer-bonded magnets.

3.1.1 Crystallography and phase relations

The binary Sm–Co phase diagram depicts the coexistence
of the Sm2Co17 phase with another important phase, SmCo5.
The structures of the two compounds are related (Buschow
and Van der Goot, 1968): Sm2Co17 can be considered
as SmCo5 with one-third of the Sm atoms replaced by
pairs (so-called dumbbells) of the Co atoms stretched along
the [001] direction. There are two modifications of the

Sm2Co17 structure, both with the Co dumbbells ordered: the
rhombohedral one (the Th2Zn17 type) often referred to as
2:17R and the hexagonal one (the Th2Ni17 type), 2:17H .
It is the 2:17R structure that is stable at room temperature
and is the primary phase of the 2:17 magnets. Random
substitution of the Co dumbbells for the Sm atoms in the
SmCo5 structure results in the off-stoichiometric SmCo5+δ

structure. In the binary Sm–Co alloys, this structure is stable
at high temperatures within a limited range of compositions.
The addition of certain elements (most notably, Cu and Zr)
greatly extends the range of the off-stoichiometric SmCo5+δ

structure. In Sm–Co–Zr system, this range stretches all
the way to the Sm2Co17 composition (Derkaoui, Valignat
and Allibert, 1996). Thus, in the doped Sm–Co alloys, a
third 2:17 structure exists–the hexagonal one with disordered
dumbbells. Historically, this structure is known as that of the
TbCu7 type (Buschow and Van der Goot, 1971) or simply
‘1:7’. The commercial 2:17 magnets usually contain Cu, Zr,
and Fe in addition to Sm and Co. The traditional way to
express the magnet compositions is Sm(Co,Fe,Cu,Zr)z. This
approach, however, is misleading when referring to the above
crystallographic relations; when forming any of the three
2:17 structures from the parent 1:5 compound a dumbbell
of two Co, Fe, or Cu atoms, but only one Zr atom occupy
the Sm site. Also it should be noted that because of the
evaporation loss of Sm, in the 2:17 magnets prepared via a
powder metallurgy, the effective z value is larger than the
nominal one by 0.6–0.8 atoms (Liu et al., 2000).

3.1.2 Microstructure evolution

In general, the microstructure of the 2:17 magnets
(Figures 10 and 11) develops in three-step processing. The
alloys have to be annealed at 1150–1190 ◦C to form a single-
phase hexagonal structure (2:17H or 1:7; Ray (1984) consid-
ered this structure as ‘disordered rhombohedral’). The sub-
sequent isothermal aging at 800–850 ◦C forms a submicron
size microstructure consisting of the 2:17R cells surrounded
by 1:5 layers.

According to Melton and Nagel, the cellular morphology
minimizes the strain induced by a c-axis misfit between
the coherent 2:17 and 1:5 structures (Melton and Nagel,
1977). It is still disputable how the cellular structure is actu-
ally formed. Livingston and Martin suggested that the cells
evolve by precipitation and growth of the 2:17R particles,
while the remnants of the 1:7 matrix phase form the 1:5
cell boundaries (Livingston and Martin, 1977). According to
another model (Melton and Nagel, 1977), the cell boundaries
arise from binding of isolated 1:5 particles during coars-
ening. Stadelmaier, Goll and Kronmüller (2005) who also
considered the cell boundaries as precipitates compared them
with the Widmannstätten pattern. In this model (Stadelmaier,
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Figure 10. Schematic representation of microstructure in fully
heat-treated 2:17 bulk-hardened Sm–Co magnets.
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Figure 11. Typical cellular and lamellar mircostructure in 2:17
magnets along parallel and perpendicular direction to the c axis.

Goll and Kronmüller, 2005), the regular geometric pattern
of the cells is caused by a low-index crystallographic inter-
face between the 2:17 and 1:5 phases rather than by the
minimum strain energy. In Sm(Co,Fe,Cu,Zr)z magnets, the
2:17/1:5 cellular structure is intersected by Zr-rich lamellae,
which have been recently identified (Xiong et al., 2004) as
(Zr,Sm,Cu)1(Co,Fe)3 with the Be3Nb structure. After aging,
the alloys have to be cooled to 350–400 ◦C at the rate
0.7–1 ◦C per min. The slow cooling is accompanied by an
exchange of atoms between the phases, notably by diffusion
of the Cu atoms into the 1:5 cell boundaries (Figure 12). A
noticeable coercivity appears only at this stage, though for
certain alloys, the aging (Yan, Bollero, Müller and Gutfleisch,
2002) or slow cooling (Tang et al., 2001) stages can be omit-
ted. One should also mention that the highest concentration
of Cu was found in the so-called triple junctions, that is the
junction of three neighboring cells (Figure 12).

The above mechanism of the microstructure evolution in
2:17 magnets with heat treatment has been formulated in the
early 1980s (Mishra et al., 1981; Fidler, Skalicky and Roth-
warf, 1983). Some very recent findings (Goll, Kronmüller
and Stadelmaier, 2004; Stadelmaier, Goll and Kronmüller,
2005) suggested that, opposite to the conventional view, the
cell boundaries first consist of a mixture of 2:17, 2:7, and
5:19 phases, and the 1:5 structure forms only at the cooling
stage.

The cellular/lamellar microstructure of the 2:17 magnets
strongly depends on both the alloy composition and process-
ing parameters. These effects were summarized in recent
review by Hadjipanayis et al. (2000). Smaller z values in
Sm(Co,Fe,Cu,Zr)z result in larger volume fraction of the 1:5
cell-boundary phase and, therefore in a smaller average cell
size (Figure 13). Because the coercivity is associated with
the Cu concentration in the cell-boundary phase, more Cu is
required to achieve the same coercivity in the alloy with the
larger volume fraction of the 1:5 phase. Cu, being a nonmag-
netic element, decreases the magnetization of the magnet.
Iron, on the contrary, increases the saturation magnetiza-
tion. It also increases the average cell size (in part, probably,
by stabilizing the 2:17 phase) and promotes a uniform and
well-developed cellular structure. Though the cellular struc-
ture can be developed without Zr, addition of this element
increases the coercivity dramatically, up to 3.20 MA m−1, in
the alloys with high z values. Density of the Zr-rich lamel-
lar phase increases with Zr. It is certain that Zr assures the
high-temperature single-phase structure and controls its sep-
aration into 2:17R and 1:5 during aging. The role of the
lamellar phase is not that clear. It may stabilize a uniform
cellular structure and/or provide diffusion paths for the Cu
atoms during the slow cooling.

3.1.3 Recent advances in 2:17 magnets

Though sintered 2:17 magnets may have a room-temperature
maximum energy product of more than 240 kJ m−3, they
are used almost exclusively for high-temperature applica-
tions (for room-temperature applications, the 2:17 magnets
cannot compete with the more powerful and less expensive
Nd–Fe–B magnets). However, the 2:17 magnets with the
highest room temperature (BH)max have a weaker perfor-
mance above 300 ◦C (Ma et al., 1996). During the 1990s,
most of the studies in the 2:17 magnets were focused on the
high-temperature properties. As a result of these concentrated
efforts the maximum operating temperature of the 2:17 mag-
nets has been increased to 450–500 ◦C (Liu, Chui, Dimitrov
and Hadjipanayis, 1998; Chen et al., 1998). In general, the
Sm(Co,Fe,Cu,Zr)z magnets with smaller z have better tem-
perature stability (Figure 14, Hadjipanayis et al., 2000). In
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Figure 12. Nanoprobe energy dispersive X-ray (EDX) patterns of Sm(CoCuFeZr)z magnets homogenized at 1185 ◦C, aged at 700 ◦C for
24 h and followed by slow cooling to 400 ◦C; (a) triple cell-boundary junction, chemical composition (at%): Sm: 20.5, Cu: 29.4, Co: 37.7,
Fe: 11.3, Zr: 1.1; (b) regular cell boundaries, chemical composition (at%): Sm: 13.4, Cu: 14.4, Co: 53.1, Fe: 17.8, Zr: 1.3.
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Figure 13. Effect of Cu content on cellular microstructure in Sm(Co, Fe, Cu, Zr)7 (Hadjipanayis, 1999).

fact, certain 2:17 magnets show the unusual positive temper-
ature coefficient of coercivity (Popov, Korolev and Shchegol-
eva, 1990).

The effect of bulk magnetic hardening in the
Sm–Co–Fe–Cu–Zr alloys is not a unique feature of
this system. In addition to the long-known inexpensive
Ce-based magnets, there were a number of recent attempts
to replace the crucial alloy components. Bulk-hardened
magnets with Sm replaced by Y and Pr (Gabay, Zhang and
Hadjipanayis, 2001) show a room-temperature coercivity
of 640 kA m−1. However, they require more Cu and Zr

than the Sm-based magnets and, therefore, have inferior
overall magnetic properties. Sm can also be replaced by Gd
(Rong et al., 2004). Ti was long considered as an alternative
to Zr. Recently, Sm–Co–Cu–Ti (Zhou et al., 2000) and
Pr–Co–Cu–Ti (Zhang et al., 2003) magnets were found
to have a significant coercivity at 400–500 ◦C, despite
poor properties at room temperature. Similar behavior was
observed when Cu in the traditional magnets had been
replaced by Ni (Tang, Zhang and Hadjipanayis, 2002a).
The problem with Ti and Ni is that unlike Zr and Cu
they have significant room-temperature solubility in the
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Figure 14. Temperature dependence of coercivity in
Sm(Co,Fe,Cu,Zr)z magnets with different z (Hadjipanayis
et al., 2000).

2:17R structure reducing the magnetic properties of this
phase which is the primary phase in the magnets. The
phenomenon of bulk magnetic hardening was even observed
in the Pr–Co–Zr alloys (Gabay, Zhang and Hadjipanayis,
2000) despite the absence of Cu(Ni) and the fact that
magnetocrystalline anisotropy of the main Pr2Co17 phase is
not uniaxial.

3.1.4 Coercivity mechanism

The predominant magnetization reversal model suggested for
the 2:17 Sm–Co magnets is that of domain wall pining
where the domain walls are pinned at the cell boundaries
owing to a large gradient of domain wall energy (Livingston
and Martin, 1977). Indeed, magnetic domain observations

show that in the highly coercive 2:17 magnets, domain
walls are waved and follow the cell boundaries (Figure 15).
However, there is no agreement on the nature of this
gradient. Figure 16 shows schematically the most typical
profiles of the anisotropy constant (domain wall energy)
suggested to explain the coercivity in the bulk-hardened
magnets.

The profile shown in Figure 16(a) was suggested for
Sm(Co,Fe,Cu)7 sintered magnets (Livingston and Martin,
1977). When the domain wall energy of the cell-boundary
phase is higher than that of the cell, the boundary is a
repulsive pinning site–a barrier for moving domain walls.
The K1 profile shown in Figure 16(b) has been proposed for
the first time by Kronmüller (1984) and was quantified later
by Goll (2002) and Kronmüller and Goll (2002a). The profile
was also obtained experimentally for Sm(Co,Fe,Cu,Zr)7.4–7.5

sintered magnets (Goll, 2002; Xiong et al., 2004). The
problem with the repulsive pinning model is that the largest
difference between the higher domain wall energy of the
1:5 phase and the lower energy of the 2:17 phase must be
expected at the end of the isothermal aging. The coercivity,
however, appears only during the subsequent slow cooling
when this difference is expected to decrease as Cu diffuses
from the 2:17 cells into the 1:5 cell boundaries. To resolve
this controversy, more complicated compositional profiles
were suggested. According to one of the models (Yan,
Gutfleisch, Gemming and Müller, 2003) the Cu-poor outer
layers of the 1:5 phase result in the profile shown in
Figure 16(c) and act as repulsive pinning sites. However, this
model is not compatible with the experimentally determined
atomic distribution within the boundary between the cell and
the cell wall phases. The recent idea that the 1:5 phase itself

300 nm

(a) (b)

300 nm

Figure 15. Typical magnetic domain structure in the fully heat-treated 2:17 Sm–Co magnets: (a) Fresnel and (b) Foucault modes of Lorentz
microscopy.
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Figure 16. Profiles of the anisotropy constant K1 or domain wall
energy γ at the 1:5 cell-boundary phase as (a) suggested by
Livingston and Martin (1977), (b) estimated by Goll (2002) and
Xiong et al. (2004), (c) proposed by Yan, Gutfleisch, Gemming and
Müller (2003), and (d) assumed by Liu et al. (2001) and Rong et al.
(2004). (Reprinted with permission Rong et al., copyright 2004,
American Institute of Physics.)

forms only during the slow cooling (Goll, Kronmüller and
Stadelmaier, 2004; Stadelmaier, Goll and Kronmüller, 2005)
may also explain why the coercivity appears only at the latter
stage.

If the domain wall energy of the cell-boundary phase is
lower than that in the cell, the boundary is an attractive
pinning site, that is, a trap for domain walls. The attrac-
tive pinning models, in which the 1:5 phase is uniform

(Figure 16d) were recently used for qualitative (Liu et al.,
2001) and quantitative (Rong et al., 2004) simulations. The
same experimental K1 profile as shown in Figure 16(b) can
be interpreted (Xiong et al., 2004) in favor of the attrac-
tive pinning, with the domain walls trapped at the Cu-rich
layers of the 2:17 phase adjacent to the cell boundaries.
The other model (Popov, Gaviko, Magat and Ivanova, 1990)
states that attractive pinning sites appear during the slow
cooling at the 2:17/1:5 interface, when the Cu atoms dif-
fuse to the interface in order to accommodate the interphase
stress.

The 2:17/1:5 interface is not the only pinning site ever
considered. According to Katter et al., 1996, the very strong
domain wall pinning in the Sm(Co,Fe,Cu,Zr)z magnets
might be expected at the intersections of the 1:5 grain-
boundary phase and the Zr-rich lamellar phase. However, this
contribution to the coercive field is debated since the lamellar
phase exists after the high-temperature treatment when the
coercive field is still small.

It should be also noted that the cell-boundary Sm(Co,Cu)5

phase itself is known to have a high room-temperature coer-
civity (Nesbitt et al., 1968). With increasing temperature, the
domain wall energy of the 1:5 phase decreases more rapidly
than that of the 2:17 phase. This means that any repulsive
pinning model implies a transition to the attractive pinning
at a certain elevated temperature. The 1:5 grain-boundary
phase has a lower Curie temperature. At this temperature,
a maximum of the coercivity is observed in the magnets
with an ‘anomalous’ temperature dependence of Hc (Popov,
Korolev and Shchegoleva, 1990; Gabay, Tang, Zhang and
Hadjipanayis, 2001; Zhang et al., 2003). Once the grain-
boundary phase becomes paramagnetic, the magnetization
reversal occurs in the separated 2:17 cell either via uni-
form magnetization rotation or via nucleation of domain
walls. It has been pointed out (Gabay, Tang, Zhang and
Hadjipanayis, 2001) that, if the Cu concentration in the cell
boundaries is high enough, the 2:17 cell can be magnet-
ically separated even at room temperature (Figure 17). In
such magnets, the coercivity has a ‘normal’ monotonic tem-
perature dependence and it is always nucleation controlled.
Neither domain wall observations nor the low initial mag-
netic susceptibility traditionally associated with the pinning-
controlled coercivity contradict the magnetization reversal
in the magnetically separated 2:17 cells. Since the cells
still interact magnetostatically, the magnetic domain struc-
ture similar to the one shown in Figure 13 can be formed by
interaction domains. In this case, the initial magnetic sus-
ceptibility is expected to be low, if the cells are smaller
than the single domain particle size. The anomalous tem-
perature dependence of coercivity was also reported in 2:17
melt-spun ribbons (Goll, Kleinschroth, Sigle and Kronmuller,
2000).
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3.2 Nanocrystalline R–Co magnets

3.2.1 Melt-spun R–Co magnets

Owing to their large magnetocrystalline anisotropy, SmCo5

and related compounds have been obvious candidates for
developing coercivity through decreasing the grain size.
Melt-spun SmCo5 ribbons showed coercivity values lower
than that expected for a material with such a large anisotropy
field (Takahashi et al., 1985). Since the Co-rich part of the
Sm–Co phase diagram does not have a deep eutectic, the
melt spinning does not lead to an amorphous structure. Most
of the recent efforts in the melt-spun SmCo5 were focused
on solidification at relatively low speeds. The SmCo5 ribbons
melt spun at the wheel speed of 5–6 m s−1 crystallize direc-
tionally with their EMDs preferentially laying in the ribbon
plane (Ding, McCormick and Street, 1995; Li et al., 2002).
Owing to this texture, the performance of the ribbons is
comparable with that of the anisotropic sintered SmCo5 mag-
nets with the remanence, coercivity, and maximum energy
product values of 0.91 T, 1.296 MA m−1, and 145.6 kJ m−3,
respectively (Yan, Zhang, Zhang and Shen, 2000).

The PrCo5 compound has a higher theoretical energy prod-
uct than SmCo5 because of its higher magnetization. Melt-
spun Pr–Co alloys show coercivity values of more than
800 kA m−1 but very poor squareness of the hysteresis loop
(Morimoto, Yagi and Takeshita, 1991). Their hard-magnetic
properties can be markedly improved by additions of C
(Fuerst, Herbst, Murphy and Van Wingerden, 1993) or C and
Ti (Branagan, Kramer, Tang and McCallum, 2000). In both
cases, the additions were believed to inhibit grain growth: in
the first case, by facilitating quenching, whereas in the sec-
ond case, by forming TiC grain-boundary precipitates. The
maximum energy product (BH)max of the melt-spun ribbons

still did not exceed 64–72 kJ m−3. The RCo5 compounds
with R = Y, Ce, Gd, Er (all having high magnetocrystalline
anisotropy) were found to be even less suitable for manufac-
turing melt-spun permanent magnets (Fuerst, Herbst, Murphy
and Van Wingerden, 1993). Although, partial Gd substitu-
tions for Sm (Zhang W.Y. et al., 2001) and Pr (Meacham
and Branagan, 2003) were found to be beneficial for the
hard-magnetic properties.

In the Sm–Co alloys with compositions between 1:5 and
2:17, melt spinning generates the metastable ‘1:7’ structure
(which can be equally called the Co-rich 1:5 and Co-
depleted disordered 2:17). Since the Sm2Co17 (and especially
Sm2(Co,Fe)17) has a saturation magnetization substantially
higher than that of SmCo5, it seems natural to increase
(BH)max of the SmCo5 ribbons by shifting their composition
toward Sm2Co17. Unfortunately, the coercivity of the melt-
spun SmCoz and Sm(Co,Fe)z alloys rapidly decreases with
increasing z from 5 to 8.5 (Chen et al., 2003a). This trend
might be expected, since the anisotropy field decreases
with increasing z (the anisotropy field of Sm2Co17 is about
one-fourth of that of SmCo5). However, the major reason
for the poor hard-magnetic properties of the melt-spun
Sm–Co ribbons appears to be related to a coarse dendritic
microstructure of the crystallized alloys (Ding, McCormick
and Street, 1995; Yan et al., 2002). Since Crabbe, Davies
and Buckley (1994) showed that melt spinning of the
Sm(Co0.704Fe0.209Cu0.061Zr0.025)7.61 alloy produces a single-
phase microstructure with a grain size of about 30 nm,
various additions were tried to refine the microstructure of
melt-spun SmCoz alloys. Carbon in combination with either
Zr (Du et al., 2003) or Nb (Hsiao, Aich, Lewis and Shield,
2004) produces a fine 1:7 microstructure with a coercivity
of 1.12–1.44 kA m−1. A room-temperature coercivity of
3.08 MA m−1 was reported for a B-containing melt-spun
Sm(Co,Fe,Cu,Zr,B)7.5 alloy (Makridis et al., 2002). It should
be noted that, although the boron-added Sm2(Co,Fe,Mn)17

melt-spun and annealed alloys show improved temperature
stability, excessive amount of B may lead to deterioration of
the hard-magnetic properties because of the formation of the
magnetically soft Sm2Fe14B phase (Kim and Hadjipanayis,
1998).

3.2.2 Mechanically alloyed and intensively milled
R–Co magnets

In contrast to the melt-spinning technique, the high-energy
ball milling easily produces an amorphous SmCo5 material
without C or B additions. A subsequent crystallization
annealing at about 600 ◦C leads to a uniform nanocrystalline
microstructure. After milling together elemental Sm and
Co, Wecker, Katter and Schultz (1991) obtained SmCo5

magnets with the coercivity of 2.40 MA m−1, while Liu,
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Dallimore, McCormick and Alonso (1992) (they started from
SmF3, Co and Ca) achieved a coercivity of 5.20 MA m−1.
However, the same microstructure of RCo5 nanograins can
be realized when a single-phase RCo5 precursor is subjected
to the high-energy milling. In this case, the amorphization
during milling can be accomplished in a shorter time
reducing the risk of alloy oxidation and contamination
by the materials of the milling media. By this route,
high-performance isotropic nanocrystalline PrCo5 (Chen,
Meng-Burany and Hadjipanayis, 1999), YCo5 (Tang et al.,
2000), and LaCo5 (Okumura, Zhang and Hadjipanayis, 2002)
magnets with Hc = 1.28–1.92 MA m−1 were successfully
produced (Figures 18 and 19). A certain excess of R over the
nominal 1:5 stoichiometry is required to obtain the maximum
Hc. This fact is apparently related to the partial oxidation of
the rare earth during the milling (which, of course, must be
done in a protective environment, e.g., under argon).

Nanocrystalline Sm2Co17 magnets also can be produced
via the mechanical alloying (Wecker, Katter and Schultz,
1991). In this case, the highest reported Hc values are lower
than those of SmCo5 (up to 768 kA m−1 has been reported
by Chen, Meng-Burany, Okumura and Hadjipanayis (2000)).
This is not surprising, since the nucleation-controlled coer-
civity of the nanocrystalline magnets is expected to be pro-
portional to the anisotropy field HA (Sm2Co17 has a lower
HA than SmCo5) reduced by the effective internal demagne-
tization field NeffMs (Sm2Co17 has a higher NeffMs because
of the higher Ms). In the amorphous intensively milled
SmCoz (5 < z < 8.5) alloys, annealing at 500–650 ◦C leads
to the formation of a metastable 1:7 phase, whose mag-
netic properties vary with z with values between those of
SmCo5 and Sm2Co17. Though the material is isotropic, the
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Figure 18. Coercivity of as-milled and annealed, at 800 ◦C for
1 min, PrCo5 powders as a function of milling time. (Reprinted
with permission Chen et al., copyright 1999, American Institute of
Physics.)
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Figure 19. Coercivity of YxCo100–x (x = 16.8–20) powders as a
function of Y content. The powders were milled for 4 h and annealed
at 950 ◦C for 1 min. (Reprinted with permission N. Tang et al.,
copyright 2000, Elsevier.)

nanocrystalline structure demonstrates an enhanced rema-
nence due to intergranular exchange coupling (Ding, Liu,
McCormick and Street, 1993). Annealing at higher temper-
atures leads to the equilibrium 1:5 and 2:17 phases. This
does not immediately lead to deterioration of the hard-
magnetic properties, since the average grain size remains
small. With further increase of the annealing temperature the
grains coarsen and the remanence enhancement disappears.
A maximum energy product of 144 kJ m−3 was reported
for the optimally heat-treated Sm12.5Co87.5 alloy (Ding, Liu,
McCormick and Street, 1993). Similar studies performed
with the Pr–Co alloys (Chen, Zhang and Hadjipanayis, 2000)
also led to an increase of (BH)max from 72 kJ m−3 for
PrCo5 to 94.4 kJ m−3 for the alloy with 70% PrCo5 and 30%
Pr2Co17 (at the annealing temperature of 800 ◦C used in that
work, only the equilibrium phases could be expected).

Addition of Fe to the Sm–Co alloys leads to the for-
mation of an additional metastable phase, bcc Co–Fe, after
intensive milling (Ding, McCormick and Street, 1994). This
phase remains in the microstructure after annealing at tem-
peratures below 800 ◦C, that is, it may coexist with the
hard-magnetic phases 1:7, 2:17, 1:5, and 2:7. The exchange-
coupled nanocomposites consisting of a mixture of magnet-
ically hard grains and magnetically soft bcc grains demon-
strate even higher enhanced remanence than the single-phase
alloy with hard nanograins. For mechanically alloyed and
annealed Sm13(Co,Fe)87 magnets, a (BH)max of 160 kJ m−3

has been reported (Ding, McCormick and Street, 1994).
Recently, various alloying elements were examined in an

attempt to extend the temperature range of the nanocrys-
talline Sm–Co magnets. It was found, in particular, that the
Sm(Co,Ti,Zr,B)7 magnets show an increased thermal stabil-
ity of the 1:7 phase (Rhen, Venkatesan, Harris and Coey,
2003).
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3.2.3 Anisotropic nanocrystalline PrCo5 magnets

Despite their high coercivities, the nanocrystalline magnets
produced from amorphous precursors do not show high rema-
nence and (BH)max values, because the EMDs of the indi-
vidual crystallites are orientated randomly. In the case of
Nd–Fe–B alloys, the EMDs may be almost perfectly aligned
by a hot plastic deformation. Fuerst and Brewer (1993)
observed a similar effect when subjecting to die-upsetting
hot-compacted Pr–Co and Pr–Co–C nanocrystalline ribbons
with the PrCo5 as the major phase. Although imperfect,
the induced texture markedly increased the remanence. For
unknown reasons, the Sm–Co alloys with much higher Hc

values do not develop texture during die upsetting. The opti-
mum combination of the remanence and coercivity has been
achieved for the Pr–Sm–Co–C alloys with the (BH)max up
to 152 kJ m−3 (Fuerst and Brewer, 1994). Recently, Gabay,
Zhang and Hadjipanayis (2005) showed that, because the
intensive milling route provides better PrCo5 nanocompos-
ite magnets than melt spinning, the anisotropic die-upset
magnets can be produced from intensively milled PrCo5

powder using less (if any) additions. Figure 20 shows the
properties of intensively milled Pr0.9Sm0.1(Co0.98Cu0.02)5

alloy after hot compaction and after hot deformation. Tex-
ture induced by the 75% deformation increases the rema-
nence from 0.64 to 0.89 T and (BH)max from 89.6 to
133.6 kJ m−3, while the coercivity decreases from 1.28 to
0.84 MA m−1. The die-upset magnet consists of 1:5 and 2:17
grains with a size 20–200 nm (Figure 21). The smaller grains
are more or less equiaxed, but many of the larger grains
are elongated similar to those in the die-upset Nd–Fe–B
magnets.
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Figure 20. Demagnetization curves of hot-pressed (1) and die-
upset (2) Pr0.9Sm0.1(Co0.98Cu0.02)5 magnets. Curves for the die-
upset magnet were measured parallel and perpendicular to the
pressure direction. (Reprinted with permission A.M. Gabay et al.,
copyright 2005, Elsevier.)

200 nm

Figure 21. TEM image of die-upset Pr0.9Sm0.1(Co0.98Cu0.02)5

magnet. (Reprinted with permission A.M. Gabay et al., copyright
2005, Elsevier.)

3.2.4 Nanocrystalline Sm(Co,Fe,B)5 magnets

Boron can be used not only as an element that promotes
amorphization in rapidly solidified Sm–Co alloys but also
to promote the formation of Sm–Co boride structures. The
SmCo4B compound, in which the B atoms replacing Co in
the parent SmCo5 structure are ordered along the c axis, has
a magnetocrystalline anisotropy even higher than SmCo5.
This makes SmCo4B a promising candidate for nanocrys-
talline hard magnet. Unfortunately, the Curie temperature
of SmCo4B is only 197 ◦C. It can be increased by addi-
tional Fe substitution for Co. Gong and Hadjipanayis (1996)
achieved the coercivity of 1.28 MA m−1 for SmCo2Fe2B
via intensive milling and subsequent annealing. However,
their melt-spinning experiments yielded Hc values lesser than
400 kA m−1. On the other hand, Saito et al. have found that
melt spinning can stabilize the disordered SmCo5−xBx struc-
ture with x < 1 and with Hc larger than SmCo5 (Saito, Taka-
hashi and Wakiyama, 1987). There is, therefore, a possibility
of optimum combination of the hard-magnetic properties in
metastable Sm(Co,Fe)5−xBx nanocrystalline alloys, though
the realization of high (BH)max values is not likely to happen
in these materials.

4 SAMARIUM–IRON
NANOCRYSTALLINE MAGNETS

4.1 Nanocrystalline Sm(Fe,M)12 alloys

Out of the numerous R(Fe,M)12 compounds with the tetrag-
onal ThMn12 structure, only those with R = Sm and M =
Ti, V, Mo, and Si possess a room-temperature magne-
tocrystalline anisotropy which is uniaxial and large enough
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for the development of permanent magnet materials. The
few studies made so far have been reported on Mo-
and Si-containing alloys (Schultz and Wecker, 1988; Ding
and Rosenberg, 1990), whereas the majority studies were
focused on the alloys with Ti and V. Both melt spin-
ning and high-energy milling were employed to manufac-
ture nanocrystalline Sm(Fe,Ti)12 and Sm(Fe,V)12 magnets.
The SmFe12−xMx magnets with the desired 1:12 structure
can be obtained for x ≥ 1, if M = Ti and for x ≥ 1.5, if
M = V. This assures a higher saturation magnetization and
theoretical energy product for the alloys with Ti. How-
ever, the SmFe11Ti compound is metastable below 1000 ◦C,
and, therefore, relatively high annealing temperatures are
required to obtain this phase in the amorphous precur-
sors. This, in turn, results in excessive grain growth and
evaporation loss of Sm (this element has a high vapor
pressure). At room temperature, an Hc of 448 kA m−1 has
been obtained for melt-spun Sm1.04Fe10.79Ti1.17 (Wang et al.,
1990) and 624 kA m−1 for melt-spun Sm0.95Fe10V2 (Pinker-
ton and Van Wingerden, 1989); even a higher coerciv-
ity, 936 kA m−1, was reported for the mechanically alloyed
Sm(Fe,V)12 alloy (Schultz, Schnitzke and Wecker, 1990). For
melt-spun ribbons, the highest coercivity values appear to
be reached in alloys containing both Ti and V, with val-
ues of 816 kA m−1 for Sm1.04Fe9.88Ti1.04V1.04 (Wang et al.,
1990) and 960 kA m−1 in SmFe10TiV ribbons annealed in
Sm atmosphere (Okada, Kojima, Yamagishi and Homma,
1990). Such an annealing technique aimed to prevent the
evaporation losses of Sm is, of course, too expensive for
a commercial application. In fact, despite a number of
advantages (the low rare-earth content, good corrosion resis-
tance, and reasonably high coercivity), the nanocrystalline
Sm(Fe,M)12 magnets have never been commercialized, since
they have a lower remanence than the isotropic Nd–Fe–B
magnets.

4.2 Nanocrystalline SmFe3 and Sm5(Fe,M)17
alloys

The hexagonal SmFe3 compound (with PuNi3 structure)
has a room-temperature anisotropy field of 11.20 MA m−1.
Wecker, Katter, Schnitzke and Schultz (1991) prepared
the nanocrystalline SmFe3 alloys by mechanical alloying
followed by annealing and obtained a room-temperature
coercivity of 840 kA m−1. Further improvement has been
achieved via partial Zr substitution for Sm: the melt-
spun Sm–Zr–Fe with the 1:3 structure showed Hc of
1.024 MA m−1 (Wecker, Katter, Schnitzke and Schultz,
1991), and up to 1.184 MA m−1 in mechanically alloyed sam-
ples (Schultz, Schnitzke, Wecker and Katter, 1991). Unfortu-
nately, the saturation magnetization of the (Sm,Zr)Fe3 alloy

does not exceed 1.05 T and the typical remanence value of
the isotropic nanocrystalline 1:3 magnets is only 0.4–0.5 T.

Another Sm–Fe compound with exceptional magnetic
hardness, isostructural to the hexagonal Nd5Fe17, was first
discovered in sputtered Sm–Fe–Ti films (Kamprath, Liu,
Hegde and Cadieu, 1988). Though it can be obtained in the
binary Sm–Fe alloys (Cadieu et al., 1991), partial replace-
ment of Fe by Ti and/or V greatly favors the formation
of this phase (Yang, Wang and Sun, 1997). The ternaries
around Sm20Fe70Ti10 (Schnitzke, Schultz, Wecker and Kat-
ter, 1990a) are the most studied alloys with the 5:17 structure.
Melt-spun and mechanically alloyed nanocrystalline magnets
show room-temperature Hc values up to 4.64 MA m−1 (Kat-
ter, Wecker, Schultz and Grössinger, 1990) and 6 MA m−1

(Yang et al., 1994), respectively. However, similar to SmFe3,
the Sm5(Fe,Ti)17 magnets did not find practical applications
because of their low saturation magnetization.

5 NANOCRYSTALLINE AND
NANOCOMPOSITE
RARE-EARTH–IRON NITRIDES
AND CARBIDES

5.1 Magnets based on Sm2Fe17 nitrides

Interstitial modification of the R2Fe17 compounds dramat-
ically changes their magnetic properties (Coey and Sun,
1990). Owing to a volume expansion of the atomic lattice
caused by the absorbed N, C, or H atoms, the Curie tem-
perature and saturation magnetization increase significantly.
In Sm2Fe17, the interstitial N (or C) also induces a strong
uniaxial magnetocrystalline anisotropy. The saturation mag-
netization of the resulting Sm2Fe17 nitride is almost as high
as that of Nd2Fe14B, whereas the anisotropy field and Tc are
substantially higher (see Table 1). These excellent magnetic
properties were immediately realized in high-performance
isotropic magnets, both in the nanocrystalline and nanocom-
posite form.

A room-temperature coercivity of up to 2.40 MA m−1 has
been obtained for mechanically alloyed Sm2Fe17 powders
subjected to crystallization, annealing, and subsequent nitrid-
ing at 400–550 ◦C in N2 gas (Schnitzke, Schultz, Wecker
and Katter, 1990b). The room-temperature remanence and
(BH)max were equivalent to those of similarly prepared
Nd–Fe–B, while their performance at the elevated temper-
atures was better. By lowering the Sm content from the
stoichiometric 10.5–7 at% and using the same mechanical
alloying–annealing–nitriding technique O’Donnell, Kuhrt
and Coey (1994) obtained a nanocomposite magnet consist-
ing of 20-nm-sized Sm2Fe17N3 and α-Fe grains. Owing to
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intergranular exchange interaction an enhanced remanence of
1.2 T (and a coercivity of 320 kA m−1) had been achieved.

Pinkerton and Fuerst (1992) obtained Hc of 1.84 MA m−1

for melt-spun Sm–Fe ribbons annealed in vacuum and then
in N2 gas. To facilitate the uptake of nitrogen, the ribbons
were ground down to less than 25 µm. Katter, Wecker and
Schultz (1991) have pointed out that the melt-spun Sm–Fe
alloys may have two crystalline modifications: the rhombo-
hedral 2:17 structure formed at the lower quenching speeds
and higher Sm concentrations and the disordered hexago-
nal 1:7 structure formed at higher speeds and lower Sm
concentrations. The 1:7 structure can also be stabilized by
Nb or Zr additions (Moukarika et al., 1996). The melt-spun
nanocomposites consisting of fine 1:7 Sm–Zr–Fe–N grains
and α-Fe grains showed a remanence of 0.99 T, a coer-
civity of 656 kA m−1, and (BH)max = 140 kJ m−3 (Hidaka,
Yamamoto, Nakamura and Fukuno, 1998). Even better prop-
erties were obtained for a single-phase 1:7 structure: the melt-
spun nanocrystalline (Sm0.7Zr0.3)(Fe0.8Co0.2)9B0.1Nx alloy
reportedly showed a remanence of 1.07 T, a coercivity of
784 kA m−1, and (BH)max = 180.8 kJ m−3 (Sakurada et al.,
2000).

The coercivity of nitrogenated melt-spun Sm2Fe17 alloys
can be further improved by zinc coating (Fukunaga, Aikawa,
Nagaoka and Kanai, 1996).

5.2 Magnets based on Sm2Fe17 carbides

Though the effect of interstitial carbon on Sm2Fe17 is similar
to that of the nitrogen atoms, the number of the C atoms
per formula unit after a solid–gas carburization usually does
not exceed 2. This means a lesser volume expansion of
the 2:17 lattice and lesser gain in the magnetic properties.
Nevertheless, a coercivity of 1.856 MA m−1 was reported
for Sm2Fe17C2 obtained by annealing mechanically-alloyed
Sm2Fe17 powders in acetylene gas (Kuhrt et al., 1992). By
mechanically alloying Sm, Fe, and graphite powders Geng
et al. (2001) prepared nanocomposite magnets consisting of
the Sm–Fe carbide with the disordered 1:7 structure and α-
Fe. Similar to the 2:17 nitrides, these carbides are structurally
unstable above 700 ◦C.

A simpler way of manufacturing the 2:17 carbides was
found after discovering that, if Fe in Sm2Fe17 was par-
tially replaced by Ga, Si, (Shen et al., 1994), Al (Zhang,
Cheng and Shen, 1996), Cr (Chen, Ni, and Hadjipanayis,
1998), V, Ti, Nb, and Zr (Daniel et al., 1998) a suf-
ficient amount of carbon (more than 1.5 atoms per the
2:17 formula) can be introduced directly during melting.
The melt-spun and annealed Sm2Fe14Ga3C≤2.5 nanocrys-
talline ribbons show Hc values of 1.04–1.20 MA m−1

(Kong et al., 1994; Hadjipanayis et al., 1995). A similar

Hc value of 960 kA m−1 had been reported for nanocrys-
talline Sm2Fe15Ga2C2 prepared via mechanical milling (Cao
et al., 1996). A small excess of Sm over the 2:17 stoi-
chiometry increases the coercivity up to 1.76 MA m−1 (van
Lier, Seeger and Kronmüller, 1997). Additional doping
with Cu, Mo, Nb, and Zr can further improve the hard-
magnetic properties of the Sm2(Fe,Si)17Cx , Sm2(Fe,Al)17Cx ,
and Sm2(Fe,Ga)17Cx ribbons (Zhang, Zhang, Shen and
Zhang, 1998; Tang et al., 1998a,b; Zhang et al., 2000). van
Lier et al. (1998) succeeded in preparing an isotropic hot-
deformed magnet with the energy product of 60.8 kJ m−3

from melt-spun Sm2(Fe,Ga)17C2 ribbons.

5.3 Magnets based on Nd(Fe,M)12 nitrides
and carbides

Interstitial modification of the Nd(Fe,M)12 compounds
changes their intrinsic magnetic properties in a way similar to
that of Sm2Fe17 (Yang et al., 1991; Wang and Hadjipanayis,
1991).

However, even the best properties of the 1:12 nitrides
(those of NdFe11TiNx) are inferior to the properties of
Sm2Fe17N2.3 (see Table 1). Correspondingly, nanocrystalline
magnets made out of these materials show only modest per-
formance. By nitriding melt-spun and annealed Nd(Fe,Mo)12

ribbons in N2 gas, room-temperature coercivities in the range
of 480–640 kA m−1 can be obtained (Tang, Singleton and
Hadjipanayis, 1993; Pinkerton, Fuerst and Herbst, 1994).
The melt-spun and nitrided Nd(Fe,M)12Nx with M = Ti,
V, W, as well as the carbides obtained by treating the
Nd(Fe,Mo)12 in methane showed worse properties (Endoh,
Nakamura and Mikami, 1992; Tang, Singleton and Hadji-
panayis, 1993). Nitriding mechanically alloyed Nd(Fe,M)12

powders leads to higher Hc values (Endoh, Nakamura and
Mikami, 1992). While the coercivity of Nd(Fe,Mo)12Nx pow-
der was about the same–up to 640 kA m−1 (Gong and Had-
jipanayis, 1992), higher Hc values, 720–880 kA m−1 were
reported for Nd(Fe,V)12Nx (Yang, Mao and Altounian, 1996;
Tang et al., 1998c).
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1 GENERAL SITUATION OF THE
CHINESE MAGNET INDUSTRY

Commercial magnetic materials consist of two parts (IEC,
1973; Luo, 1991): soft magnetic materials (SMMs) and
hard magnetic materials (HMMs). According to the material
nature, magnetic materials may be metallic or nonmetal-
lic (ferrite), crystalline, or amorphous. There are mainly
two types of SMMs: soft ferrite (SF) and amorphous (or
nanocrystalline) material. The three major commercially
available magnets are Alnico, hard ferrite (HF), and rare-
earth magnets (NdFeB, SmCo).

The output, sales value, and averaged price of SMMs (Luo,
1995; Chen, 2004; Zhou and Lu, 1999; Zhou, 2001) and
HMMs (Jia et al., 1998; Jia, Jia and Li, 2004; Luo, 2000a,b;
Zhang, 2002, 2004) produced in China during 1990–2005
are summarized in Table 1.

Output changes of both soft (SMM) and hard magnets
(HMM) made in China during 1990–2005 are shown in
Figure 1. Outputs of both SMMs and HMMs have been
increasing every year; the only difference is in their annual
growth rate. The portion between them depends on the dif-
ference in their growth rate. The averaged output growth
rate of SMMs and HMMs during 1990–2005 was +16.1
and +17.6% respectively, that is, the growth rate of HMMs
was higher than that of SMMs. In 1990, the percentage of
SMM/T was 28.8%; it reduced to 23.3% in 1998. Then it
became 29% in 2003 and dropped to 22.8 in 2004. Generally
speaking, the output of SMMs is one-fourth of the total.

The output percentage of SMMs and HMMs is around
one-fourth and three-fourths of the total, respectively.
The ratio between the sales value of SMMs and HMMs
is around 50 to 50% all the time. The sales value
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($ × 106) of SMMs and HMMs made in China during
1990–2005 is shown in Figure 2. The portion of SMMs
was >50% during 1993–1996. It became <43% during
2003–2005.

Averaged sales prices of SMMs, HMMs, and the averaged
price of TMMs are summarized in Figure 3.

General speaking, the price of SMMs is much higher than
that of HMMs. Although the material and processing cost
for different magnets is different, it is not the deciding factor
for price. The key point is that most SMMs are sold as final
products or devices, but hard magnets are sold as blocks.
Consequently, all magnet producers have to provide devices

Table 1. Output (tons), sales value ($×106), and averaged price ($/kg) of SMM, HMM, and total magnetic
materials (TMMs) made in China (1990–2005).

1990 1991 1992 1993 1994 1995

Output (tons) SMM 15 150 17 580 20 210 23 150 26 610 30 880
�(%) +16 +16 +15 +15 +15 +16
SMM/T (%) 28.8 28.4 27.6 27.3 26.6 25.4
HMM 37 405 44 217 53 069 61 749 73 523 90 686
�(%) +18 +18 +20 +16.4 +19 +23.3
HMM/T (%) 71.2 71.6 72.4 72.7 73.4 74.6
TMM 52 555 61 797 73 279 84 899 100 133 121 566
�(%) +17 +17.6 +18.6 +15.9 +17.9 +21.4

Value ($×106) SMM 132.2 162 196.2 238.5 287.3 351.4
�(%) +20 +22.6 +21 +21.6 +20.5 +22
SMM/T (%) 44.2 47.9 49.6 50.3 50.9 50.9
HMM 166.7 176.3 199.3 236.1 277.3 338.8
�(%) + +5.8 +16.5 +14.9 +17.5 +22
HMM/T (%) 55.8 52.1 50.4 49.7 49.1 49.1
TMM 298.9 338.3 395.5 474.6 564.6 689.9
�(%) + +13.2 +16.9 +20 +19 +22.1

Price ($/kg) SMM 8.72 9.22 9.71 10.3 10.8 11.38
�(%) – +5.7 +5.3 +6 +4.9 +5.4
HMM 4.46 3.99 3.76 3.82 3.77 3.74
�(%) – −11.8 −6.1 +1.6 −1.3 −0.8
TMM 5.69 5.47 5.40 5.59 5.64 5.675
�(%) – −4 −1.3 +3.5 +0.9 +0.6

1996 1997 1998 1999 2000 2001

Output (tons) SMM 35 480 40 600 46 780 55 010 63 250 73 500
�(%) +15 +14.4 +15 +17.6 +15 +16
SMM/T (%) 24.7 23.7 23.3 23.6 24.6 26.1
HMM 108 270 130 935 154 265 178 200 194 085 222 910
�(%) +19.4 +20.9 +17.8 +15.5 +8.9 +14.9
HMM/T (%) 75.3 76.3 76.7 76.4 75.4 73.9
TMM 143 750 171 535 201 045 233 210 257 335 296 410
�(%) +18.2 +19.3 +17.2 +16 +10.3 +15.2

Value ($×106) SMM 428.2 489.8 564.3 663 761.6 869.9
�(%) +22 +14.4 +15.2 +17.5 +14.9 +14.2
SMM/T (%) 50.7 48.98 47.3 46.1 45.8 47.4
HMM 416.9 510.3 628.4 776.2 901.5 964.7
�(%) +23.2 +22.4 +23.1 +23.5 +16.1 +7
HMM/T (%) 49.3 51.02 52.7 53.9 54.2 52.6
TMM 845.1 1000.1 1192.7 1439.2 1663.1 1834.6
�(%) +22.5 +18.3 +19.3 +20.7 +15.6 +11.1

Price ($/kg) SMM 12.07 12.06 12.06 12.05 12.04 11.84
�(%) +6 −0.08 0 −0.08 −0.08 −1.69
HMM 3.85 3.9 4.07 4.36 4.6 4.47
�(%) +3.2 +1.3 +4.4 +7.1 +5.5 −2.9
TMM 5.88 5.83 5.93 6.17 6.46 6.19
�(%) +3.7 −0.9 +1.7 +4 +4.7 −4.4
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Table 1. (Continued ).

2002 2003 2004 2005

Output (tons) SMM 83 800 101 660 128 000 164 000
�(%) +14 +21.3 +25.9 +28.1
SMM/T (%) 27.7 29 22.8 24.7
HMM 254 660 317 870 432 660 500 360
�(%) +14.2 +24.8 +24.8 +15.6
HMM/T (%) 72.3 71 77.1 75.3
TMM 338 460 419 530 560 660 664 360
�(%) +14.2 +23.9 +33.65 +18.5

Value ($×106) SMM 966 1140.8 1428.5 1777.2
�(%) +11 +18.1 +25.2 +24.4
SMM/T (%) 46.7 42.2 40.7 42.6
HMM 1102.3 1563.5 2084.3 2398.4
�(%) +14.3 +41.8 +33.3 +15.1
HMM/T (%) 53.3 57.8 59.3 57.4
TMM 2068.3 2704.3 3512.8 4175.6
�(%) +12.7 +30.7 +29.9 +18.9

Price ($/kg) SMM 11.53 11.22 10.94 10.64
�(%) +4.2 −4.3 −2.6 −2.85
HMM 4.33 4.92 4.817 4.793
�(%) +3.4 +2.4 −2.1 −0.5
TMM 6.11 6.446 6.265 6.285
�(%) −1.3 +5.5 −2.9 +0.3

SMM: soft magnetic material; HMM: hard magnetic material; TMM: total magnetic material; T: magnetic
materials in total; �: annual growth rate (%).
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Figure 1. Output ( × 103 tons) of SMMs and HMMs made in China
during 1990–2005.

or final products of high grade with precise tolerance to their
customers to gain more added value, rather than gross blocks.
This way, the needed profit can be guaranteed.

2 IMPORTANCE OF MAGNETIC
MATERIALS IN MODERN
COMMUNITY

Silicon-based semiconductors and magnetic materials are two
of the cornerstones of the modern world economy. The
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Figure 2. Sales value (million USD) of SMMs and HMMs made
in China during 1990–2005.

importance of magnetic materials is obvious. Magnetic mate-
rials are widely used not only in computers, electronics,
communication, transportation, automotives, aviation, and
aerospace industries but they also penetrate into the daily
lives of common people.

Whereas in the past the measure of the level of development
of an industrialized country was its output of iron and steel,
today this measure for a modern economy is the consumption
of magnetic and other high-tech materials, since this more
accurately reflects the standard of living of the citizens in
each country.
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Figure 3. Averaged prices of SMMs, HMMs, and TMMs in China
during 1990–2005.

In the early 1990s, the statistics showed that the consump-
tion of magnetic materials per capita for developed countries
such as the United States, Japan, and Europe was $4.5/capita.
In developing countries, such as India, this number is only
$0.25/capita, that is, 5.5% of that of developed countries.
Per capita consumption in developed countries is 18 times
higher than that in developing countries. The gap between
developed and developing countries is so significant!

Owing to the policy of birth control, the annual growth
rate of Chinese population has reduced from 2% in 1960s to
less than 1% in the late 1980s. The average annual growth
rate of population in China during the last 15 years since
1990 is 0.755%. The population in 2004 was 11.95% higher
than that of 1990, that is, the net growth of population
was 0.1398 billion. Obviously, the policy of birth control
has helped in strengthening the national economy. While
the annual growth rate of the sales value and per capita
consumption of magnetic materials averaged was +17.85
and +14.89% respectively, the growth of both, the sales
value and per capita consumption of magnetic materials, in
2004 was 11.75 and 8.06 times higher than that in 1990,
respectively. The consumption value per capita in China in
1990 was $0.217, which was only 87% of that in India.
It became $1.555 in 2004. The average annual growth
rate of per capita consumption during 1990–2004 was
+15.1%. On the basis of this measure, the living standard
of China has improved almost seven times since 1990.
This is the result of the national economic development,
but the contribution of birth control policy should not be
ignored. If there was no birth control and the population
growth rate kept as high as 2% since 1970s, then 0.5–0.6
billion population would have been added to the current
number, which is the denominator, and the per capita
consumption as quotient would have been reduced by 50%

or more! The situation in India will give the evidence of the
importance of birth control as evidenced in another country,
where the increased GDP is misappropriated by the growing
population.

The population, sales value, domestic consumed value of
magnetic materials (both hard and soft) made in China,
and per capita consumption during 1990–2004 are listed
in Table 2. The percentage of produced magnets consumed
domestically is in brackets.

The average annual growth rate of population during
1990–2004 was 0.81%. It further reduced to 0.64% during
2000–2004. The average annual growth rate of the sales
value of magnetic materials, its consumption domestically,
and consumption per capita during the same period is
+19.24, +16.034, and +15.1%, respectively. It is worth
mentioning that the annual growth rate of consumption per
capita since 1997–2002 was around +12.06%. In 2003 and
2004, it reached +27.8 and +26.9% respectively, which is
much higher than the averaged growth rate of +15.1% during
1990–2004. The per capita consumption in 2004 reached
$1.555/capita, while it was $0.959/capita in 2002. In other
words, it has increased 62% during the last two years! The
reason is obvious: sales value was significantly increased in
2003 and 2004: its annual growth rate was around +30%
in 2003 and 2004, which is much higher than its averaged
value of +19.24%.

The growth of consumption per capita in China during
1990–2004 is shown in Figure 4.

Population (×109), sales value ($ × 109), and domes-
tic consumption ($ × 109) of magnetic materials during
1990–2004 is shown in Figure 5.

The growth rate of per capita consumption in developed
countries will also continue to rise, although the growth rate
will likely be quite low in comparison to that of China. If
we assume a growth rate of +2% annually for developed
countries (the actual annual growth rate is less then 2%),
then the growth trend for developed countries will follow
the dashed line in Figure 6.

It should be noted that the vertical coordinate axis in
Figure 3 is logarithmic (log $/capita), which generates a
straight line under the assumption of constant growth rate.
As shown in Figure 6, if the annual growth rate of per capita
consumption for China averages 10, 8, or 7% instead of the
current growth rate of +15%, then the logarithmic curve
will cross the dashed line that represents the corresponding
data for developed countries in 2021, 2028, and 2034,
respectively. According to the last statistics published by the
Chinese government, the annual GDP growth rate for China
was 9.5% during 1985–2004. The annual economic growth
rate for China will be kept around ∼8% in the foreseeable
future. Consequently, the gap between China and developed
countries will be eliminated by 2040! In other words, the
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Table 2. Population (×109), sales value ($×109), domestic consumption ($×109), and per capita consumption
($/capita) of magnetic materials.

1990 1991 1992 1993 1994

Population (×109) 1.170 1.181 1.1918 1.2025 1.213
�(%) +0.98 +0.94 +0.91 +0.90 +0.91
Sales value ($×109) 0.2988 0.3383 0.39024 0.4617 0.55912
�(%) +18 +13.2 +15.3 +18.3 +21.1
Domestic consumption ($×109) 0.25398 0.2774 0.31219 0.3555 0.41375
(%) (85) (84) (80) (77) (74)

Consumption, $/capita 0.217 0.235 0.262 0.296 0.341
�(%) +8.3 +11.5 +12.8 +15.4

1995 1996 1997 1998 1999

Population (×109) 1.224 1.235 1.246 1.257 1.267
�(%) +0.86 +0.89 +0.89 +0.88 +0.8
Sales value ($×109) 0.69024 0.8451 0.99294 1.1802 1.4105
�(%) +23.5 +22.4 +19 +18.9 +19.5
Domestic consumption ($×109) 0.49697 0.59157 0.6752 0.76713 0.88862
(%) (72) (70) (68) (65) (63)

Consumption ($/capita) 0.406 0.479 0.542 0.61 0.701
�(%) +19.1 +18 +13.1 +12.6 +14.9

2000 2001 2002 2003 2004

Population (×109) 1.277 1.286 1.294 1.302 1.3098
�(%) +0.79 +0.7 +0.625 +0.62 +0.6
Sales value ($×109) 1.6176 1.8346 2.0683 2.7043 3.512
�(%) +14.7 +13.4 +12.7 +30.7 +29.9
Domestic consumption ($×109) 1.0029 1.1191 1.24098 1.5955 2.03696
(%) (62) (61) (60) (59) (58)

Consumption ($/capita) 0.785 0.870 0.959 1.2254 1.555
�(%) +11.2 +10.8 +10.2 +27.8 +26.9

�: annual changing rate (%).
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Figure 4. Per capita consumption value of magnetic materials in
China (1990–2004).

living standard of China will be the same as that of developed
countries by 2040.

A similar analysis was made by me in 2002. At that
time, the cross with the dashed line representing developed
countries was in 2025, 2033, and 2039, respectively. In
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fact, the time required to catch up with developed countries
may be shortened by 4 years due to the unusual growth of
consumption per capita during the last 2 years.

The per capita consumption value of $1.555 means that
the living standard of China has improved seven times in
comparison with that in 1990; nevertheless, it is still only
one-third of that of developed countries. Obviously, Chinese
people still have a long way to go in order to eliminate the
economic gap with developed countries completely.

The Communist Party of China announced in the 16th
National Congress that within the first 20 years of the new
century, a relatively comfortable life will be made possible
for Chinese people, then it will take another 30 years to catch
up with the developed countries in living standard. All data
concerning the development of the magnet industry in China
during the last decade since 1990 can be used as evidence
for the reality and reasonability of such a plan.

3 SOFT MAGNETIC MATERIALS
IN CHINA

All materials, which can be magnetized to saturation in
a relatively low magnetic field, but lose high induction
completely once the magnetic field is moved away, are
called soft magnetic materials. Owing to historical reasons,
types of magnetic materials are numerous and their branding
names or grades are quite confusing. The International
Electrotechnical Committee (IEC) worked on classification
and technical terms of magnetic materials for many years and
proposed a solution in 1973 (IEC, 1973), according to which
magnetic materials are divided into two classes based on
their coercive force and application: SMMs and HMMs. Each
type of magnetic material can be further divided according
to its nature, structural characteristics, and compositions.

According to such classification, there are seven types of
SMMs (Luo, 1991). Five of them are traditional metallic
crystalline SMMs, namely, pure iron and low carbon steel,
silicon steel, Fe–Ni (permalloy), Fe–Co, Fe–Al/Fe–Si–Al.
The sixth one is nonmetallic SMM–SF. All the six SMMs
mentioned earlier are crystalline materials. The final seventh
type of SMMs developed in late 1960s are rapidly solidified
(RS) amorphous or nanocrystalline (developed in 1980s).

Pure iron and low carbon steel and silicon steel are
classified as electrotechnical steel traditionally, which are
produced in mass scale and are not related to electronic
materials. Thus, the traditional metallic SMMs only include
Fe–Ni, Fe–Co, and Fe–Al/Fe–Si–Al alloys.

Current major commercial SMMs are SF and RS mate-
rials (Luo, 1995). As for the traditional metallic SMMs,
there are Fe–Ni, Fe–Co, and Fe–Al/Fe–Si–Al alloys,
which are mostly replaced either by SF or by amor-
phous/nanocrystalline materials, respectively. Anyway, the
sales value of these metallic SMMs is a small part of the total.
Consequently, SF and RS materials are solely discussed in
the present paper. The traditional metallic SMMs have been
ignored. Of course, this way the estimated total output and
sales value of SMMs produced in China will be less than
what it exactly is, but the tolerance will be less than 2% of
the total.

3.1 Chinese soft ferrite industry

3.1.1 General situation

SF has developed from the study on spinel oxide started in
1947. Its permeability is high enough, the electric resistance
is 104 times higher than that of metallic material; conse-
quently, its power loss is much less and can be used at a
higher frequency. Such materials have been commercialized
since the 1950s. Now it is widely used in consumer electron-
ics, such as radio, TV, audio, computer, and communication.

There are two groups of SF: (Mn,Zn)Fe3O4-based, that
is, Mn–Zn ferrite; (Ni,Zn)Fe3O4-based, that is, Ni–Zn
ferrite. The resistance of Mn–Zn ferrite <102 � cm, both
permeability and magnetization is higher, it is used as an
inductor, working at a frequency of ∼100 kHz. The resistance
of Ni–Zn ferrite is as high as 104 –106 � cm, so it can be
used at higher frequencies of up to 100 kHz–100 MHz.

The production of SF in China started in the middle of
1950s. The products were of low grade, which were mainly
used for radio. Both the process and the equipment were
out of date. With the development of economy in China,
the SF industry improved considerably. Significant progress
was achieved in the 1990s, both quantitatively and quali-
tatively, which can be seen by the improvement in TVs,
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PCs, and mobile phones made in China. The booming of
the electronics sector and the involvement of foreign compa-
nies and investors has given much help in the development
of the SF industry in China: TDK, FDK, Nippon-Ceramic
Co., Ltd., Philips. Some companies from Taiwan have set up
plants in main land either jointly or independently. The total
output of SF in 2004 reached 120 000 tons. In 1980, it was
3500 tons only.

3.1.2 Current status

Producers of SF in China are estimated to be around 100.
The output in 2003 was 90 000 tons, among which Mn–Zn
ferrite was 60 000 tons, Ni–Zn ferrite was 25 000 tons, and
the rest was about 5000 tons.

There are three types of producers: state owned, private,
and foreign invested. The output of state-owned companies

is 15 000 tons, which is 17% of the total; the output of private
companies is 50 000 tons, that is, 55% of the total; the output
of foreign-invested companies is 25 000 tons, that is, 28% of
the total. The state-owned portion will be reduced, but the
portion of both private- and foreign-invested companies will
increase in the future.

The number, location, and production capacity of SF
producers are listed in Table 3 (Chen, 2004).

The output (tons), sales value ($ × 106), and price ($/kg)
of SF made in China during 1990–2005 are listed in Table 4.

Usually, the price of magnetic materials reduces with their
output growth. However, SF seems to be an exception; its
price increased continuously until 1996. The performance of
products was much improved during this period. Moreover,
SF is sold as devices or final products with complex shape
and precise tolerance. It is quite different from HF, which
is sold as gross blocks. In other words, the price of SF is

Table 3. Location, capacity (tons/year) of Chinese soft ferrite producers.

Location Company number Capacity (2003) (tons/year) Capacity (2005) (tons/year) Output of powder (tons)

Shanghai 10 31 060 27 350 11 200
Zhejiang 17 31 060 48 500 6000
Jiangsu 16 23 700 31 600 3000
Guangdong 8 14 400 22 000 –
Siquang 8 14 600 38 500 6200
Middle South 3 2000 3000 1000
North China 10 5000 10 000 –
Foreign invested 11 18 500 20 000 –
Total 83 122 760 200 950 –
Powder contained 23 200 tons 37 000 tons
Actual output of 99 560 tons 163 900 tons

soft ferrite

Table 4. Output (tons), value ($×106), and price ($/kg) of soft ferrite made in China (1990–2005).

1990 1991 1992 1993 1994 1995 1996 1997

Output (tons) 15 000 17 400 20 000 22 900 26 300 30 500 35 000 40 000
�(%) – +16 +14.9 +14.5 +14.8 +16 +14.8 +14.3
Value ($×106) 129 158.3 192 233.6 281.4 344.6 420 480
�(%) – +22.7 +21.3 +21.7 +20.5 +22.5 +21.9 +14.35
Price ($/kg) 8.6 9.1 9.6 10.2 10.7 11.3 12 12
�(%) – +5.8 +5.5 +6.3 +4.9 +5.6 +6.2 0

1998 1999 2000 2001 2002 2003 2004 2005

Output (tons) 46 000 54 000 62 000 72 000 82 000 99 500 128 000 164 000
�(%) +15 +17.4 +14.8 +16.1 +13.95 +21.3 +28.6 +28.1
Value ($×106) 552 648 744 849.6 943 1114.4 1395.2 1738.4
�(%) +15 +17.45 +14.8 +14.2 +11 +18.2 +25.2 +24.6
Price ($/kg) 12 12 12 11.8 11.5 11.2 10.9 10.6
�(%) 0 0 0 −1.7 −2.6 −2.7 −2.7 −2.8

�: annual changing rate (%).
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Figure 7. Price variation of soft ferrite made in China during
1990–2005.

not just the material cost, it includes partially added value
for devices. Thus, the price of SF is much higher than that
of HF. Starting from the new century, the promotion of the
SF industry as a whole has stopped. The price has declined
slightly since 2000. One can learn about this by comparison
of prices of SF and HF. In order to get a higher price to
guarantee the needed profit, magnet producers should make
final products with high performance and higher tolerance,
instead of gross blocks. Following this method, the magnet
manufacturers in developed countries have been successful
for years. The Chinese magnet manufacturers should also
follow the same method.

The price change in SF made in China during 1990–2005
is shown in Figure 7.

The output (×102 tons) and sales value ($ × 106) of SF
produced in China during 1990–2005 are shown in Figure 8.

The average annual growth rate of output and sales
value of SF during the last decade was around +15.2 and
+18% respectively. The growth rates of both have increased
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Figure 8. Output (×102 tons), sales value ($ × 106) of soft ferrite
made in China.

considerably during 2002–2005, which reached +28 and
+25%. Curves of output and sales value are parallel in
principle. The value curve exceeded the output curve due
to the increase in price during 1990–1996, with an average
annual growth rate of +5%. They became closer due to the
reduction in price after 2000, with an average reducing rate
of −2.5%.

3.2 Chinese rapidly solidified material industry

Rapidly solidification, RS, or rapidly quenching (RQ) is a
technology that was developed in the late 1960s, cooling
rates of which range from 102 to 1010 K s−1. Many new
materials with peculiar structures and excellent properties
have been prepared by this technique. Structures of these
materials ranged from microcrystalline (grain size of approx
micrometers), nanocrystalline (grain size of approx microm-
eters) to amorphous (noncrystalline).

Research on amorphous metals and related RQ technology
started in China in 1976, and has since spread to most uni-
versities and research institutes. From the 1980s, many metal
plants have been involved in the commercialization of amor-
phous. As a result of R & D works, >100 grades of RS mate-
rials were developed, among which 28 grades are included
in the Chinese National Standards. Different RS materials,
including Fe-based (Fe ≥ 65 wt%), Co-based (Co ≥ 50 wt%),
Ni-based (Ni ≥ 60 wt%), Fe–Ni-based (Fe + Ni ≥ 65 wt%),
Fe–Co-based (Fe + Co ≥ 60 wt%), and Co–Ni-based (Co +
Ni ≥ 60 wt%) amorphous materials have been developed and
are commercially available in China now. Since both RS pro-
cess and its products are quite different from the traditional
metallurgy, rapidly solidification and RS materials are con-
sidered as a revolutionary development in the last century.

3.2.1 Historical review of the development of RS
materials in China

In 1976, RS materials were first prepared in the laboratory.
The historical development of RS materials in China is
summarized as follows (Luo, 1995; Zhou and Lu, 1999;
Zhou, 2001):

1976–1980, fundamental research: Studies on RQ or RS
materials were started in 1967. They became quite popular
in all universities and research institutes all over China in
the 1970s and were commercialized in the 1980s. Some
metallurgy plants were also involved in preparing RQ
and RS materials. More than 100 grades RS materials
were established. The commercialized RS materials included
iron based (Fe > 65 wt%), cobalt based (Co > 50 wt%),
nickel based (Ni > 60 wt%), iron–nickel based (Fe + Ni >

65 wt%), copper based (Cu > 70 wt%), and so on.
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1981–1985, development of applied technology : In order
to produce RS materials, much efforts have been made to
develop the needed melt spinner or jet caster for the ribbon:
• Before 1982, jet caster with batch melt of several

kilograms was developed.
• In 1983, jet caster with double ladles of 50 kg volume

were developed and the width of the melt spun ribbon
was 50 mm.

• In 1985, jet caster with three ladles of 50 kg capacity for
each was developed and the width of melt spun ribbon
was 100 mm.

• Development of 50 grades RS materials has been fin-
ished.

• Fe–Ni-based ribbon was successfully used to make
induction cores for current leakage protectors. This
development was invaluable for the rural area of China,
where 85% of serious electric shock accidents occurred.
Since Ni content in Fe–Ni amorphous ribbon is only
half of that in permalloy, its price is also only half of
that of permalloy. Consequently, the market demand for
such materials sharply increased in the late 1980s. The
success of Fe–Ni RS materials has promoted further
development of production of RS materials in China.
Its total output was around 10 tons in 1985.

1986–1990, building of the pilot-producing line of RS mate-
rials :
• In 1989, the melt spinner with three ladles of 100–200 kg

volume was set up.
• On-line ribbon automatic catching/wounding mechanism

was developed successfully.
• Fourteen sets of transformers (3–100 kVA) with amor-

phous ribbon cores were built and put into test.
• RS materials were used as welding material, catalyst,

and construction fiber.
• Twenty-eight Stat Standards of RS materials were estab-

lished and nine invention patents were issued.

1991–1995, starting pilot production of core devices :
• Pilot production of million pieces core was built up in

1993.
• c-type, r-type, o-type cores were prepared in mass scale

for electronic transformer, choke, inductor, magnetic
amplifier, and so on.

• Seventy-five sets of distribution transformers were built
by using Fe-based RS ribbon and put into electricity net
for test in comparison with that made by grain-oriented
Si steel; the power loss under zero load was 60% lower.
They worked stably, reliably, with lower temperature
rising, and higher ability against overload.

1996–2000, further industrialization:
• In 1996, ‘Engineering Center of Amorphous and

Nanocrystalline Materials’ was established in CISRI
with the support of the Stat Science and Technology
Committee.

• Producing line of Fe-based RS materials with annual
output of 3000–5000 tons and an assembling line of
transformer and cores was built. The ribbon width was
220 mm.

2001 – present, further development of RS industry :

The evolution of domestic melt spinner for melt spun
ribbon is summarized in Table 5.

3.2.2 Chinese amorphous and nanocrystalline
materials

RS has been included in the Stat Standard as commercial
materials. The conventional RS materials are listed in the
following tables as samples. Characteristics of FeCuM (M =
Nb, Mo, Cr + V)SiB nanocrystalline soft magnetic alloys are
listed in Table 6.

The characteristics of Fe–Ni-based, Fe-based, Co-based,
and Co–Ni-based RS SMMs are listed in Tables 7–11 (Luo,
1995; Zhou and Lu, 1999; Zhou, 2001), respectively. Their
major applications are also shown in these tables.

According to their nature, RS materials can be divided into
two groups: SMMs and nonmagnetic materials. The nonmag-
netic RS materials are used as welding, heating, and construc-
tion materials. They are also used in other minor applications,
which are listed in Tables 12–14 as samples (Luo, 1995).

The SMMs include both crystalline (nanocrystalline)
and noncrystalline (amorphous) materials. Amorphous or
nanocrystalline materials are used for power transformers
that work at several hundreds of hertz, pulse transformers,
switch power sources, mutual inductors, and so on. But the
main use of amorphous ribbons is for distribution power

Table 5. The evolution of melt spinner and ribbon width produced in China.

1981 1983 1985 1987 1989 1991 1992 1993 1999

Capacity (kg/batch) 2 10 30 50 100 – 100–200 – 500–1000
Fe-based amorphous width (mm) <10 10–20 40 50 100a – – 100b 220b

Fe-based nanocrystalline ribbon width (mm) – – – – – <10 20–30 60 100

aOn-line fully automatic winding system of amorphous ribbons.
bOn-line fully automatic winding system of amorphous ribbon and with automatic roll changing.
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Table 6. Characteristics of FeCuM (M = Nb, Mo, Cr + V)SiB nanocrystalline soft magnetic alloys.

µ0.08 (×103) µm (×103) Hc (A m−1) Br (T) Bs (T) P (W kg−1)

FeCuNbSiB (NMF) 17.5 64 0.48 – 1.18 P5/20 k = 14.34
P2/200 k = 128

Fe73.5Cu1Nb3Si13.5B9 (TMF) 1.5 168 0.38 1.02 1.20 P10/400 k = 0.52
P10/1 k = 1.89

FeCuNbSiB (TMF) 5 – 0.64 0.06 1.16 P10/1 k = 0.81
P10/400 k = 0.23

Fe74Cu1Mo3Si13B8 (NMF) 10 37.3 1.36 0.87 1.33 P5/20 k = 16
Fe74Cu1Mo2.5Si13.5B9 (LMF) 2.5 134 0.648 1.16 1.31 P10/400 k = 0.43

P10/1 k = 1.52
Fe74Cu1Mo3Si13B9 (TMF) 2.5 3.34 1.44 0.08 1.33 P5/20 k = 14.3
FeCuCrVSiB (NMF) 11 51 0.96 0.58 1.05 P2/200 k = 79.3
FeCuCrVSiB (LMF) 0.56 82 0.4 0.93 1.02 P2/200 k = 459
FeCuCrVSiB (TMF) 4.3 6.1 0.96 0.05 1.03 P2/200 k = 73.8

NMF: annealing without magnetic field; LMF: annealing with longitudinal magnetic field; TMF: annealing with transverse
magnetic field.

Table 7. Fe–Ni-based RS soft magnetic materials.

Composition B (T) R′ Hc µm P (W kg−1) TC Tx ρ Major

(at%) Bs B80 (A m−1) (A m−1) (×10)3 P1/400 P1/5k P0.2/20 k ( ◦C) ( ◦C) (g cm−3) applications

Fe29–50Ni30–44

(P,B,C)15–24

0.75 0.6 – 1.2 400 1.5 65 15 243 410 7.5 Leakage current
protector

Switch power source,
sensor

Fe29–50Ni30–44

(P,B,C)15–24

0.75 – 0.1 1.6 3 – – 15 258 421 7.5 Switch power
source

High-frequency
inductor

Fe45–50Ni28–30 0.9 0.8 – 1.2 400 – – – 300 500 7.4 Magnetic amplifier
V1–2Si7–8B14–15 Mutual inductor

transformers working at an industrial frequency of 50–60
Hz. Output percentages of different types of RS materials
made in China (1997) are shown in Figure 9. Fe–Ni-based
and FeCuNbSiB are all SMMs, the former being mainly
amorphous and the latter nanocrystalline. The rest are non-
magnetic materials.

3.2.3 General situation of Chinese RS materials

The output (tons), sales value ($ × 106), and price ($/kg)
of RS materials made in China during 1990–2005 are
summarized in Table 15.

The annual changing rate �(%) of related data is included
in the Table 15. The sales price change of RS materials is
shown in Figure 10.

The output of RS materials has been increasing continu-
ously since 1990. The growth rate during the last decade
has been around +20% annually. Accordingly, its price
has been declining with an annual reducing rate of −5%.
Now the price is only half of that of 10 years ago! The

significant increase in price since 2003–2004 is the result
of increase in price of raw materials. The output (×102 tons)
and sales value ($ × 106) of RS materials made in China
during 1990–2005 are summarized in Figure 11.

3.3 General status of Chinese soft magnets

The output (tons), sales value ($ × 106), and price ($/kg) of
SF, RS materials, and SMMs in total (T) made in China
during 1990–2005 are summarized in Table 16.

As mentioned earlier, there are two types of SMMs in
China: SF and RS materials (amorphous and nanocrystalline).
Also, there are some metallic soft magnetic alloys, which are
very few in quantity; these have therefore been ignored in
the present paper. The error in output and sales value should
be less than 2% due to such ignorance.

The output of RS materials has been increasing continu-
ously from 1% of the total in 1990 to 2.2% in 2003. This
tendency would be the same in future, especially if Fe-based
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Table 9. Co-based RS soft magnetic materials.

Composition B(T) R′ Hc µm µρ P (W kg−1) TC Tx ρ Major

Bs B30
(A m−1) (A m−1) (×103) (×103) P0.5/20 k P0.3/100 k

( ◦C) ( ◦C) (g cm−3) applications

Co67–69Fe3.5–5 0.7 0.5 ≤0.1 1.2 – 4 25 – 340 530 7.8 Pulse transformer
Si17–10B16–19

M1.2–2.2

High-frequency
converter

Co61–65Fe4–4.5 0.68 0.5 ≥0.85 1.2 400 – 35 – 320 510 7.8 Magnetic amplifier
Si9–14B12–18M2–7 Mutual inductor

Leakage current
protector

Co66–72Fe1.5–4 0.8 0.6 – 1.2 – – 20 – 320 530 7.9 Switch power
source (20 kHz)

Si15–13B10–20M3–7

Co67–70Fe2.5–3.5 0.6 0.5 – 1.6 200 – – 110 300 540 8 Switch power
source
(100–200 kHz)

Si10–12B12–19M2–5

Co65–86Fe1–7B3–20 0.6 – – 1.2 – – 20 – 260 480 7.9 Magnetic head and
sensor of high
frequency

Si10–14M2–15

Co66–68Fe4–5 0.53 – – 1.6 150 – – – 320 520 7.9 Magnetic shielding
(as quenched)

Si6–10B15–26M2–7

M: one or more metals

Table 10. Co–Ni-based RS soft magnetic materials.

Compositions (at%) B(T) R′ Hc µm P (W kg−1) Tc Tx ρ Major applications

Bs B80
(A m−1) (A m−1) (×103) P0.1/20 k P0.3/1000 k

( ◦C) ( ◦C) (g cm−3)

Co24–40Ni28–39 0.55 – – 1.3 100 40 – 220 460 7.9 Switch power
source

Fe6–14Si5–9B7–16

Co24–40Ni28–39 0.6 0.55 0.9 1.2 400 50 – 319 443 7.9 Magnetic amplifier
Fe6–14Si5–9B7–16 Sensor

Table 11. Fe-based RS corrosion resistant alloy.

Composition (at%) Dimension (mm) Bs(T) S (cm2 g−1) Corrosion Applications
(thickness 0.03 mm) resistance

Fe74–79Cr4–9 Thickness 0.02– .03 1.1 90–130 Better than
Cr-stainless steel

Magnetic separation

P10–15C6–10 Width 0.5 mm Water treatment
Cathode for gold extraction

S: specific surface.

Table 12. Ni-based RS elastic alloy and its application.

Composition (at%) E (Mpa) σ (Mpa) Hv ρ (10−7 �-m) Major application

Ni89.5–93Si5–6B2.5–3.5 7.8 × 104 3.4 × 103 850 15 Membrane of sensor

E: Young’s module; σ : shearing module.
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ribbon is used as cores for distribution transformer. The
output (tons) of both SF and RS materials made in China
during 1990–2005 is shown in Figure 12.

Although the output of RS materials has been increasing
continuously, its price has been reducing significantly; there-
fore, the percentage of its sales value is only 2% of the total.
Sales value ($ × 106) of both SF and RS made in China
during 1990–2005 are shown in Figure 13.

Prices of SF, RS materials, and averaged price for SMMs
in total (averaged) made in China during 1990–2005 are
shown in Figure 14.

Because of the improvement in performance, SF was sold as
a final product and its price had been increasing slightly before
1997. In contrast, the price of RS materials had been declining
continuously. The increase in the price in 2003–2004 was
the result of the increase in price of raw materials. Since the
portion of SF is about 98% of the total, the averaged price of
soft magnets in total is almost the same as that of SF.

4 GENERAL STATUS OF HARD MAGNET
INDUSTRY

The sales value ($ × 109) of SMMs, HMMs, and global
TMMs during 1960–2010 is listed in Table 17.

Data of 1960–1990 are taken from (Luo, 1996), data of
2000 are actual, and the forecast of 2010 is based on actual
data of 2002–2004. The annual average growth rate �(%) is
included in the same table. The data in the brackets are in
percentage related to the total value.

Sales value of SMMs was higher than that of HMMs until
the middle of 1990s. Since 1994, the sales value of hard mag-
nets exceeded that of SMMs. It is worth noting that the aver-
aged annual growth rate of TMMs during last 50 years has
been around +6.1% (6.1075%). During the last 50 years, the
average annual growth rates of SMMs and HMMs have been
quite different: they have been around +3.8% (3.81248%)
and +9.6% (9.5513%), respectively. Thus, every decade the
value of SMM and HMM would increase 1.45 and 2.49 times,
respectively. Such tendencies will continue. Consequently,
the value of HMM has exceeded that of SMM since 1994.
In 2010, the value of HMM is expected to be more than two
times that of SMM. The change in the global sales value
($ × 109) of magnetic materials since 1960 is summarized
in Figure 15. The changing trend of both SMMs and HMMs
mentioned above can be seen clearly from Figure 15.

5 STRUCTURE CHANGE OF THE
MAGNET INDUSTRY

There are four major commercially available magnets: Alnico
developed in the late 1930s; HF developed in the early 1950s;

first and second generation of rare-earth magnets: SmCo5

(1968) and Sm2Co17 (late 1970s); and third generation of
rare-earth magnet developed in 1983–NdFeB.

The global output T (tons), sales price P ($/kg), and
sales value V ($ × 109) of Alnico, ferrite, SmCo, and
NdFeB magnets since 1985–2010 are listed in Table 18.
The sales values V ($ × 109) of each type of magnets during
1985–2010 are shown in Figure 16.

As seen in Figure 16, the value of HF is more than half
of the total until 1999; till then it was the majority of the
magnet market. Starting from 2000, the value of rare-earth
magnet (NdFeB + SmCo) exceeded that of HF. Such tenden-
cies would continue in the foreseeable future; consequently,
rare-earth magnets would certainly be the majority of mag-
nets sold in the twenty-first century.

Both performance and price of each type of magnets are
rather different. However, we cannot evaluate each type
of magnets solely by its performance or its price. The
energy stored in unit volume of magnet–energy product
E (kJ m−3)–is an important parameter in characterizing a
magnet. The price of unit energy stored in a magnet is called
price performance W ($/J) of such magnet. The price per-
formance W ($/J) can be expressed by following formula:

W = Pρ

E
(1)

Where W is the price performance ($/J), P is the price
($/tons), ρ is the density (tons m−3), and E is the energy
product (kJ m−3) of the magnet.

The price performance of different magnets is listed in
Table 19. The densities of magnets are also included in the
same table.

The market share of certain magnets could not be evalu-
ated by its tonnage output (T ) solely, but could be evaluated
by the energy stored in such magnets (J ). If energy stored
in all magnets in total globally is Jtot, then J /Jtot (%) will be
the market share of such magnets. Energy stored in a certain
magnet J is expressed by the following formula:

J = T E

ρ
(2)

Where J is the total energy stored (joule), T is the tonnage
output (tons), E is the energy product (kJ m−3), and ρ is the
density (tons m−3) of the magnet.

Market shares of different magnets during 1985–2010 are
listed in Table 20.

Data for 1985, 1990, and 1995 in Table 20 were referred
from (Luo, 1997), the data of 2005 and 2010 are estimated
on the actual data of 2002–2004.

The structure change of the global magnet market
(1985–2010) is summarized in Figure 17.
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Table 13. The composition (%) and applications of Ni-based and Cu-based welding materials.

Composition (at%) Tm (◦C) Tw (◦C) σ (Mpa) Twork (◦C) ρ (10−7 �-m) Major application

Ni79.5–85.5Cr6–8B2.75–3.5 960–990 1040–1100 137–156 <850 8.7 Welding stainless steel and
supper alloy

Si4–5Fe2–4C0.1–0.2

Cu77–88Si10–20Ni2–3 830–870 900–920 205–402 <850 8.7 Welding steel/steel and
steel/Cu to replace
Ag-based material

Cu75–79Ni5–15Si4–12P5–10 560–640 700–750 98–137 <850 8.7 For welding Cu/Cu,
Cu/Ag–Cd, Cu/Ag to
replace Ag foil

Cu80–90Ag8–12Si1–3P2–4 560–640 700–750 98–137 <850 8.7 To replace Ag-based welding
material

Tm: melting point; Tw: welding temperature; Twork: working temperature; σ : shear strength in welding area.

Table 14. Fe-based RS metallic fiber and its application.

Composition (at%) Scale (mm) Twork (◦C) η (10−6/◦C) Tm (◦C) ρ (g cm3) Application

Fe30–60Ni20–40(Cr,
Si,Mn)15–30

�0.4–0.6 1000–1350 17.64–18.54 1380–1420 7.72 To strengthen
furnace body

Length 20–35

η: lineal expansion coefficient.

57%35%

8%

Fe-Ni based FeCuNbSiB Others

Figure 9. Output distribution of different RS materials made in
China (1997).

Both vertical and horizontal coordinate axes in Figure 17
are given in logarithm because the changes in both market
share J/Jtot and price performance W ($/J) have covered
quite big ranges: from 0.003 to 0.916 for J/Jtot (%) and
from 0.8 to 11.4 for W ($/J).

The market share of SmCo was 2% in 1985. Owing to
strong competition from NdFeB, the market share of SmCo
declined significantly since the middle of 1980s: it reduced
to 1.54 and 1% in 1990 and 1995 respectively. As a result
of significant reduction in the cost of both Co and Sm since
1995, the market share of SmCo has increased gradually in
recent years; it was 1.1 and 1.4% in 2000 and 2005 and it
will be 1.2% in 2010.

The price performance of SmCo magnet was the highest
among all others: it was $11.4/J in 1985, it reduced to $4.7/J

in 2000, and it will be $3.2/J in 2010. It has reduced 3.5
times in comparison with that in 1985.

Market shares of different magnets changed considerably
during 1985–2010: Positions of all traditional magnets,
such as Alnico, HF, and SmCo are moving from upper
right down toward lower left. NdFeB goes exactly in the
opposite direction: moving from lower right toward upper
left. Obviously, NdFeB is just like a gradually rising sun
in the new century! The market share of ferrite, Alnico,
and SmCo in 1985 was 91.6, 6.06, and 2.04% respectively.
NdFeBs market share in 1985 was a negligible 0.3%! It has
jumped to 5% in 1990, which has exceeded that of Alnico
and SmCo in the same year. The market share of NdFeB
was 12 and 22% in 1995 and 2000 respectively and it will
be 32.8 and 47.5% in 2005 and 2010 respectively.

Alnico magnet had the majority share of the global magnet
market before 1970. Since then, the market share of Alnico
has been declining steadily. It dropped from 6% in 1985 to
1.8% in 2000 and it will be 0.4% or less in 2010! HF has the
current majority share of the magnet market. Owing to the
competition from NdFeB, its price performance has reduced
gradually: It was $0.94/J in 1985, it became $0.96/J since the
late 1980s until late 1990s due to performance improvement,
then it dropped to $0.9/J in 2000 and it will be $0.8/J in 2010.
The market share of ferrite is also shrinking: it was 91.6, 89,
84, and 75 in 1985, 1990, 1995, and 2000 respectively. It
will drop to 51% by 2010.
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Table 15. Output (tons), sales value ($ × 106), price ($/kg) of RS materials made in China during
1990–2005.

1990 1991 1992 1993 1994 1995 1996 1997

Output (tons) 150 180 210 250 310 380 480 600
�(%) +23 +20 +17 +19 +24 +23 +26 +25
Value ($ × 106) 3.2 3.7 4.2 4.9 5.9 6.8 8.2 9.8
�(%) +19 +16 +14 +17 +20 +15 +21 +20
Price ($/kg) 21.3 20.5 20 19.6 19.1 18 17.1 16.4
�(%) −3.5 −3.9 −2.5 −2 −2.6 −6 −5.3 −4.3

1998 1999 2000 2001 2002 2003 2004 2005

Output (tons) 780 1010 1250 1500 1800 2160 2600 3100
�(%) +30 +29 +24 +20 +20 +20 +20 +20
Value ($ × 106) 12.3 15 17.6 20.3 23 26.4 33.28 38.75
�(%) +25.5 +22 +17 +15.3 +13.3 +15 +26 +16
Price ($/kg) 15.8 14.9 14.1 13.5 12.8 12.2 12.8 12.5
�(%) −3.8 −6 −5.7 −4.4 −5.5 −4.9 +4.9 −2.4

Price ($/kg)

21.3 20.5 20 19.6 19.1
18 17.1 16.4 15.8 14.9 14.1 13.5

12.8 12.2 12.8 12.5
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Figure 10. Price change of RS materials made in China during
(1990–2005).

The price performance of ferrite is the lowest among all
magnets. It will be $0.8/J in 2010. The price performance of
NdFeB was $5.83/J in 1985. It is estimated to be $1.73/J in
2010, that is, it is 2.1 times that of ferrite. In 2010, the price
performance of SmCo and Alnico will be $3.23/J and $3.39/J
respectively, that is, it will be 4 and 4.2 times that of ferrite.

6 GLOBAL MAGNET INDUSTRY
CENTER SHIFTING

Magnets as functional materials and their development
and applications are closely related to both fundamen-
tal research and booming of modern industry. Generally
speaking, if half of the global total output of magnets
is produced in a certain country or area, and where the
research activity on magnetic materials is rather dynamic,
then this country or area would become the ‘Center of
Global Magnet Industry’. Europe was such a center before
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Figure 11. Output (×102 tons) and sales value ($ × 106) of RS
materials made in China during (1990–2005).

World War II. After World War II, the Center of Global
Magnet Industry shifted to the United States. Since late
1960s of last century, this center has shifted to Japan. With
the beginning of the new century, the Center of Global
Magnet Industry has finally shifted to China, which is
evidenced by outputs of different types of magnets produced
in China.

It is worth mentioning that China has a long history
and tradition on magnetism and magnetic materials and
their applications. There are many engineers and techni-
cians working in the fields of magnetism and magnetic
materials. Statistics showed that more than 1000 students
graduated from the department of universities related to
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Table 16. Output (tons), sales value ($ × 106), price ($/kg) of SF, RS, and soft magnetic materials in total (T) made in China during
1990–2003.

1990 1991 1992 1993 1994 1995 1996 1997

Output (tons) SF 15 000 17 400 20 000 22 900 26 300 30 500 35 000 40 000
�(%) +15 +16 +15 +14.5 +14.8 +16 +14.8 +14.3
SF/T (%) 99 99 99 98.92 98.84 98.77 98.65 98.52
RS 150 180 210 250 310 380 480 600
�(%) +23 +20 +17 +19 +24 +23 +26 +25
RS/T (%) 1 1 1 1.08 1.16 1.23 1.35 1.48
T 15 150 17 580 20 210 23 150 26 610 30 880 35 480 40 600
�(%) +15 +16 +15 +14.5 +14.9 +16 +14.9 +14.4

Value ($ × 106) SF 129 158.3 192 233.6 281.4 344.6 420 480
�(%) +21 +22.7 +21.3 +21.7 +20.5 +22.5 +21.9 +14.3
SF/T (%) 97.58 97.72 97.86 97.95 97.95 98.06 98.09 98
RS 3.2 3.7 4.2 4.9 5.9 6.8 8.2 9.8
�(%) +19 +16 +14 +17 +20 +15 +21 +20
RS/T (%) 2.42 2.28 2.14 2.05 2.05 1.94 1.91 2
T 132.2 162 196.2 238.5 287.3 351.4 428.2 489.8
�(%) +21 +22.5 +21.1 +21.5 +20.5 +22.3 +21.8 +14.4

Price ($/kg) SF 8.6 9.1 9.6 10.2 10.7 11.3 12 12
�(%) +5.5 +5.8 +5.5 +6.3 +4.9 +5.6 0 0
RS 21.3 20.5 20 19.6 19.1 18 17.1 16.4
�(%) −3.5 −3.9 −2.5 −2 −2.6 −6 −5.3 −4.3
T 8.73 9.22 9.71 10.3 10.8 11.38 12.07 12.06
�(%) +5.3 +5.6 +5.3 +6 +4.9 +5.4 +6.06 −0.8

1998 1999 2000 2001 2002 2003 2004 2005

Output (tons) SF 46 000 54 000 62 000 72 000 82 000 99 500 128 000 164 000
�(%) +15 +17.4 +14.8 +16.1 +13.9 +21.3 +28.6 +28.1
SF/T (%) 98.33 98.16 98.02 97.96 97.85 97.73 98 98.14
RS 780 1010 1250 1500 1800 2160 2600 3100
�(%) +30 +29 +24 +20 +20 +20 +20 +20
RS/T (%) 1.67 1.84 1.98 2.04 2.15 2.22 2 1.86
T 46 780 55 010 63 250 73 500 83 800 101 660 130 600 167 100
�(%) +15.2 +17.6 +15 +16.2 +14 +21.3 +28.5 +27.9

Value ($ × 106) SF 552 648 744 849.6 943 1114.4 1395.2 1738.4
�(%) +15 +17.4 +14.8 +14.2 +11 +18.2 +25.2 +24.6
SF/T (%) 97.82 97.74 97.69 97.67 97.62 97.78 97.67 97.82
RS 12.3 15 17.6 20.3 23 26.4 33.28 38.75
�(%) +25.5 +22 +17 +15.3 +13.3 +15 +26 +16
RS/T (%) 2.18 2.26 2.31 2.33 2.38 2.22 2.33 2.18
T 564.3 663 761.6 869.9 966 1140.8 1428.5 1777.15
�(%) +15.2 +17.5 +14.9 +14.2 +11 +18.1 +25.2 +24.4

Price ($/kg) SF 12 12 12 11.8 11.5 11.2 10.9 10.6
�(%) 0 0 0 −1.7 −2.6 −2.7 −2.7 −2.8
RS 15.8 14.9 14.1 13.5 12.8 12.2 12.8 12.5
�(%) −3.8 −6 −5.6 −4.4 −5.5 −4.9 +4.9 −2.4
T 12.06 12.05 12.04 11.84 11.53 11.22 10.94 10.64
�(%) 0 −0.08 −0.08 −1.7 −2.7 −2.8 −2.5 −2.8

magnetism annually. Many conferences concerning mag-
netism and magnetic materials are held in China every
year. All of these promote the Chinese magnet industry.
Tonnage outputs of magnets made in different coun-
tries in 2004 are summarized in Table 21. Distributions

of NdFeB, ferrite, and Alnico magnet outputs in 2004
in different countries are summarized in Figures 18–20,
respectively.

In short, outputs of different magnets made in China are
the highest in the world since the beginning of the new
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Figure 12. Output (tons) of both SF and RS materials made in
China during 1990–2005.
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Figure 13. Sales value ($ × 106) of both SF and RS made in China
during 1990–2005.

century. The position of China in the global magnet market
will be further strengthened in the future. Discussing the
position of China in the global magnet market and the future
trend someone with breadth of vision in the West said that
‘China would be the center of the global magnet industry
in the twenty-first century. Owing to her abundant natural
resources, wide territory, large population, and huge domestic
market, China would keep such a position much longer than
Europe, The United States of America and Japan did!’ (Port
Wheeler, private communication, May, 2002).
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Figure 14. Price ($/kg) of SF, RS, and soft magnet in total
(averaged) made in China.

Along with providing the majority of produced magnets,
the Global Center of the Magnet Industry should provide
magnets that are cheaper and better to all customers glob-
ally. On the basis of the abundant natural resources, huge
manpower, and excellent expertise, China will surely be
able to play the role of Global Center in the twenty-first
century.

In view of the fact that China becomes the Center of
Global Magnet Industry, there are two opinions: one is rather
pessimistic, the other is quite optimistic.

The pessimist asked: ‘As NdFeB magnets are so important,
and are used in all high tech applications, including IT,
computer, and consumer electronics, then it is hard to
understand why USA and Europe agreed to stop their NdFeB
magnet production?’ They strongly suggested ‘Do not shift
all production lines to China, at least you have to keep the
most advanced one for your own country!’ They are afraid
that China will have a monopoly in this area just as someone
else has had in the past. Of course, monopoly is not good
for the healthy development of the magnet industry.

The optimist said: ‘Now the economy globalization
becomes reality, where can make magnets better and cheaper,

Table 17. Global sales value ($ × 109) change of magnetic materials.

1960 1970 1980 1990 2000 2010

SMM 0.77 1.39 1.89 2.69 3.55 5
�(%) ∼+6 +6.0846 +3.121 +3.5921 +2.8129 +3.48423
SMM/T (%) (85.6) (82) (70) (57.4) (44.2) (28.7)

HMM 0.13 0.31 0.81 2 4.48 12.44
�(%) ∼ +9 +9.0792 +10.081 +9.4587 +8.4 +10.7528
HMM/T (%) (14.4) (18) (30) (42.6) (55.8) (71.3)

TMM 0.9 1.7 2.7 4.69 8.03 17.44
�(%) ∼ +6 +6.6 +4.7 +5.7 +5.6 +8.1
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Figure 15. Global sales value ($ × 109) changes of magnetic
materials since 1960.

then we have to shift all production activities there, it is
natural and no one should complain. In fact, we have to thank
China, without her contribution who can imagine that the
price of sintered NdFeB magnets would drop from $350/kg
in 1983 to $60–70/kg. Without significant price dropping of
magnets, the popularization of magnet application is impos-
sible.’ I believe that the latter opinion reflects the truth and
fact more than the former.

There are a lot of samples to show whether a busi-
ness can be kept only due to ‘strategy reason’ or not. The
rare-earth deposit in Mountain Pass, California, USA kept
its pivotal position in the world market before the rising
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Figure 16. Sales value V ($ × 109) of each type of magnet
(1985–2010).

of the Chinese rare-earth industry until 1980s. In the late
1980s and early 1990s, there was a certain possibility for
Molycorp to cooperate with China in rare-earth business in
some way. But it was stopped due to ‘national security’,
when it was clear that the mining in Mountain Pass only
lost money in early 1990s. Again, it was forced to con-
tinue this business only because of ‘strategic consideration’.
Unfortunately, in a duration of 5 years, no single ‘patriot’
could be found in the United States who was willing to
buy the expensive rare earth from Molycorp and refused
to use rare earth from China. Finally, mining in Moun-
tain Pass was closed in 1997. This is the result of market
economy!

Table 18. Global output T (tons), sales price P ($/kg), and sales value V ($ × 109) of different magnets.

1985 1990 1995

T (tons) P ($/kg) V ($ × 109) T (ton) P ($/kg) V ($ × 109) T (ton) P ($/kg) V ($ × 109)

NdFeB 75 200 0.015 2170 170 0.37 7040 150 1.056
SmCo 800 260 0.208 900 210 0.19 700 185 0.13
Alnico 7000 35 0.245 7300 30 0.22 7150 28 0.2
Ferrite 2 × 105 3.8 0.76 2.9 × 105 4.2 1.22 3.5 × 105 4.5 1.575
Total 207 875 1.228 300 370 2 364 790 2.96

2000 2005 2010

T (tons) P ($/kg) V ($ × 109) T (tons) P ($/kg) V ($ × 109) T (tons) P ($/kg) V ($ × 109)

NdFeB 18 640 110 2.05 41 100 90 3.7 102 700 80 8.216
SmCo 1200 134 0.16 2400 110 0.264 3800 95 0.36
Alnico 7300 28 0.2 6000 26 0.156 5000 26 0.13
Ferrite 4.6 × 105 4.5 2.07 6.2 × 105 4.5 2.79 8.3 × 105 4.5 3.735
Total 486 540 4.48 669 500 6.91 941 500 12.441
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Table 19. Variation of price performance of magnets during 1985–2010.

ρ (tons m−3) 1985 1990 1995

P ($/tons) E (kJ m−3) W ($/J) P ($/tons) E (kJ m−3) W ($/J) P ($/tons) E (kJ m−3) W ($/J)

NdFeB 7.4 200 000 254 5.83 185 000 279 4.91 150 000 295 3.76
SmCo 8.4 260 000 190 11.49 210 000 207 8.52 185 000 223 6.97
Alnico 7.3 35 000 56 4.56 30 000 56 3.91 28 000 56 3.65
Ferrite 5.1 3800 20.7 0.94 4200 22.3 0.96 4500 23.9 0.96

ρ (tons m−3) 2000 2005 2010

P ($/tons) E (kJ m−3) W ($/J) P ($/tons) E (kJ m−3) W ($/J) P ($/tons) E (kJ m−3) W ($/J)

NdFeB 7.4 110 000 310 2.63 90 000 326 2.04 80 000 342 1.73
SmCo 8.4 134 000 238.8 4.71 110 000 242 3.82 95 000 246.8 3.23
Alnico 7.3 28 000 56 3.65 26 000 56 3.39 26 000 56 3.39
Ferrite 5.1 4500 25.5 0.9 4500 27 0.85 4500 28.7 0.8

7 HARD MAGNET INDUSTRY IN CHINA

All materials, which can be magnetized in a magnetic
field, are called magnetic materials. The magnetization of
HMM can be kept without a magnetic field. There are
three commercially available magnets: Alnico, HF, and rare-
earth magnets (SmCo, NdFeB etc.). Along with fully dense
sintered magnets (S), bonded magnets (B) are also being
developed. Bonded ferrite magnets are the majority at the
current time, but bonded NdFeB magnets are also developing
rather fast. The data for bonded NdFeB(B) magnets is in
two parts: Chinese domestic company made, the production
of which was started from 1993, and the output of foreign
joint venture companies (started from 1996). The details are
discussed later. There are bonded SmCo and Alnico magnets
as well, but they are very few.

The output (tons), sales value ($ × 106), and price ($/kg)
of different type of hard magnets made in China during
1990–2005 are summarized in Table 22.

With the development of the economy in China, her
magnet industry has developed considerably since the late
1980s. Owing to excellent scientists and engineers, R & D
on magnets is rather popular here. Moreover, China herself
is a huge market, which absorbs all kind of magnets, from
Alnico, ferrite to highest grade of SmCo and NdFeB.

8 ALNICO MAGNET INDUSTRY IN
CHINA

In 1932, 25Ni10Al–Fe was discovered by Mishima in
Japan (Luo, 1991). On the basis of Fe–Ni–Al, Alnico was
developed. It was an Fe-based alloy, which later became

a major commercial magnet in the early 1940s, especially
after Neel’s important work of annealing in the magnetic
field (1947), which changed Alnico from an isotropic magnet
to an anisotropic one. Consequently, its magnetic properties
have improved considerably. Alnico magnets developed
significantly in 1950s and 1960s, and their global production
reached the peak value of 40 000 tons in the late 1960s.

AlNi permanent magnet was first made in Shanghai,
China in 1947. Chinese Alnico magnet industry developed
rather late in comparison with developed countries. However,
based on inexpensive labor cost, excellent expertise, and
huge domestic market, Alnico magnet industry in China
developed rather fast, The total output of Alnico in China
was around 1000 tons annually in 1960s. It was more than
2000 tons annually during 1970s and 1980s. The number of
Alnico manufacturers was around 70. During the last decade,
numerous small Alnico manufacturers were consolidated into
a few big ones. Now China is at the top in the world in
the production of Alnico. Although there is very serious
competition from different types of magnets, such as ferrite
and rare-earth magnets, due to its excellent thermal stability,
Alnico is still widely used for meters (watt-hour meter,
voltmeter, ampere meter, mileage meter), acoustic devices,
motors, and sensors used for automobiles and motorcycles.

8.1 Current status of Alnico magnet industry
in China

With the fast development of ferrite and rare-earth magnets in
China during the last decade, Alnico had serious competition
from them. HF took most low-cost market shares, and
rare-earth magnets took market shares of high-performance
products. Fortunately, Alnico kept its position in the market
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Table 20. Variation of market shares for different magnets (1985–2010).

1985 1990

T (tons) E (kJ m−3) J (×107 J) J /Jtot (%) T (ton) E (kJ m−3) J (×107 J) J /Jtot (%)
(MGOe) (MGOe)

Knife (S) 75 (254)32 0.26 0.3 1860 (279)35 7.01 5.15
Knife (B) – – – – 310 (56)7 0.29 –
SmCo 800 (190)24 1.81 2.04 887 (207)26 2.19 1.54
Alnico 7000 (56)7 5.37 6.06 7300 (56)7 5.6 3.95
Ferrite 2 × 105 (20.7)2.6 81.18 91.6 2.9 × 105 (22.3)2.8 126.8 89.36
Total 207 875 88.62 100 300 370 141.9 100

1995 2000

T (tons) E (kJ m−3) J (×107 J) J /Jtot (%) T (tons) E (kJ m−3) J (×107 J) J /Jtot(%)
(MGOe) (MGOe)

NdFeB (S) 5500 (295)37 21.93 12.1 15 100 (310)39 63.25 22
Knife (B) 1540 (64)8 1.62 − 3540 (71.6)9 4.16 –
SmCo 700 (223)28 1.86 1 1200 (239)30 3.41 1.1
Alnico 7150 (56)7 5.48 2.8 7300 (56)7 5.6 1.8
Ferrite 3.5 × 105 (23.9)3 164 84.1 4.6 × 105 (25.5)3.2 230 75.1
Total 364 790 194.9 100 486 540 306.4 100

2005 2010

T (tons) E (kJ m−3) J (×107 J) J /Jtot (%) T (tons) E (kJ m−3) J (×107 J) J /Jtot (%)
(MGOe) (MGOe)

NdFeB (S) 360 00 (326)41 158.6 32.8 90 000 (342)43 415.9 47.5
Knife (B) 5100 (75.6)9.5 5.3 − 12 700 (79.6)10 19.4 –
SmCo 2400 (242)30.5 6.9 1.4 3800 (246.8)31 11.16 1.2
Alnico 6000 (56)7 4.6 0.9 5000 (56)7 3.84 0.4
Ferrite 6.2 × 105 (27)3.4 328.2 64.9 8.3 × 105 (28.7)3.6 467.1 50.9
Total 669 500 505.7 100 941 500 917.4 100

Note: Density of sintered NdFeB ρ = 7.5 tons m−3; density of bonded NdFeB ρ = 6.1 tons m−3.

due to its excellent magnetic performance. Its absolute output
tonnage has increased slightly, although its output percentage
has significantly reduced.

The thermal stability of different magnets is compared in
Table 23.

The price of Alnico is reducing steadily. The rate of
reduction in price of Alnico was quite high before 1995
(≥10%), mainly due to the reduction in the cost of cobalt.
The price stabilized after 1995.

The output of Alnico was almost around 2000 tons annu-
ally from 1990 until 1998. The output of Alnico increased
to 3000 tons till 1999, after which it was around the same
level, probably until 2005. The biggest application of pro-
duced Alnico is in the watt-hour meter. In order to save
electricity, a policy of ‘1 Wh m for each family’ was started
by the Chinese government in 1998. Obviously, this pol-
icy, in fact, gave big support to the Chinese Alnico magnet

industry. The Alnico output growth of 40% since 1999–2002
is the direct result of this!

The sales value of Alnico dropped significantly from
$79.2 × 106 (1990) to $41.4 × 106 (1995). It was almost
half of that of 1990. During the same period of time, its
price dropped from $36/kg to $20.2/kg. The output was kept
the same at around 2000 tons annually. The growth of sales
value during 1998–2005 is the result of the output growth
during the same period of time, because the price was kept
almost the same at $20/kg. The significant growth of sales
value in 2003–2004 was mainly due to rise in both output
and price, especially the increase in the price of Co.

The output (×100 tons), sales value ($ × 106), and price
($/kg) of Alnico made in China during 1990–2005 are shown
in Figure 21.

The price of Alnico magnets declined from $36/kg in
1990 to $20/kg in 1998 with average annual reducing rate
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Figure 17. Structure change of global magnet market.

Table 21. Tonnage outputs of magnets made in different countries
(2004).

Country/area Alnico Hard ferrite Nd–Fe–B

China 3500t (56%) (S) 350 000t (51%) (S) 27 510t (81%)
(B) 50 000t (32%) (B) 1350t (35%)
(T) 400 000t (47%) (T) 28 860t (77%)

Japan 300t (5%) (S) 196 000t (28%) (S) 60 000t (18%)
(B) 12 995t (8%) (B) 565t (15%)

(T) 208 995t (25%) (T) 6565t (17%)
USA 700t (11%) (S) 38 873t (5%) (S) –

(B) 40 300t (26%) (B) 210t (5%)
(T) 79 173t (9%) (T) 210t (1%)

Europe 750t (12%) (S) 46 700t (7%) (S) 300t (1%)
(B) 42 200t (27%) (B) 345t (9%)
(T) 88 900t (11%) (T) 645t (2%)

Others 1000t (16%) (S) 60 000t (9%) (S) –
(B) 10 500t (7%) (B) 1365t (36%)
(T) 70 500t (8%) (T) 1365t (3%)

Global total 6250t (S) 691 573t (S) 33 810t
(B) 155 995t (B) 3835t
(T) 847 568t (T) 37 645t

Note: Data in brackets are percentages of the global total. S: sintered magnet;
B: bonded magnet; T: global total.

of −7.63%. The price reduced slowly from $20/kg in 1998
to $19.1 in 2003 with an annual reducing rate of −0.9%
(0.92513). The price was increased to $/20/kg in 2004 due
to the increase in the price of raw materials in 2004. The
sales value variation is similar to that of the output.
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Figure 18. Distribution of global output of NdFeB magnets
(S + B) in 2004.
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Figure 19. Distribution of global output of hard ferrite (S + B) in
2004.
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Figure 20. Distribution of global output of Alnico magnets in 2004.

8.2 Global output of Alnico magnets

The output of Alnico in Japan was 8300 tons in 1970. It
reduced to 3400 tons in 1980, it became less than 2000 tons
in 1990, and was only 1100 tons in 2000. The situation in
the United States and Europe is similar to that in Japan. The
output of Alnico magnets from 1994 to 2005 in Japan, the
United States, Europe, China, others, and the global total is
listed in Table 24.
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Table 22. Output (tons), sales value ($ × 106), and price ($/kg) of various magnets made in China
(1990–2005).

1990 1991 1992 1993 1994 1995

Alnico 2200 2100 2400 2450 2300 2050
HF (S) 31 500 38 000 46 000 54 000 65 000 80 000
HF (B) 3500 3800 4200 4600 5100 7000
Output HF (T) 35 000 41 800 50 200 58 600 70 100 87 000
(tons) SmCo 55 57 59 61 63 66
NdFeB (S) 150 260 410 620 1020 1500
NdFeB (B) – – – 18 40 70
RE (T) 205 317 469 699 1123 1636
Total 37 405 44 217 53 069 61 749 73 523 90 686
Alnico 79.2 67.2 68.4 63.2 51.3 41.4
HF (S) 56.7 69.2 85.1 102.6 124.8 156.8
HF (B) 11.9 12.5 13.4 14.7 15.9 21
Value HF (T) 68.6 81.7 98.5 117.3 140.7 177.8
($×106) SmCo 6.05 6.1 6.1 6.1 6.1 6.2
NdFeB (S) 12.8 21.3 32.4 47.7 75.5 106.5
NdFeB (B) – – – 2.2 4.3 6.9
RE (T) 18.85 27.4 38.5 56 85.9 119.6
Total 166.7 176.3 199.3 236.5 277.9 338.8
Alnico 36 32 28.5 25.8 22.3 20.2
HF (S) 1.8 1.82 1.85 1.9 1.92 1.96
HF (B) 3.4 3.3 3.2 3.2 3.1 3
Price HF 1.96 1.95 1.96 1.99 2 2.04
($/kg) SmCo 110 107 104 100 97 94
NdFeB (S) 85 82 79 77 74 71
NdFeB (B) – – – 120 108 98
REM 92 86.4 82.1 80.1 76.5 73.1

1996 1997 1998 1999 2000 2001

Alnico 2000 1900 2100 3000 3200 3040
HF (S) 95 000 115 000 135 000 155 000 168 000 180 000
HF (B) 9000 11 200 13 500 15 400 16 500 21 500
Output HF (T) 104 000 126 200 148 500 170 400 184 500 201 500
(tons) SmCo 70 85 105 120 135 170
NdFeB (S) 2100 2550 3260 4200 5550 6400
NdFeB (B) 100 200 300 480 700 800
RE (T) 2270 2835 3665 4800 6385 7370
Total 108 270 130 935 154 265 178 200 194 085 211 910
Alnico 40.4 38.4 42 59.1 62.4 58.7
HF (S) 190 241.5 297 356.5 403.2 432
HF (B) 27.9 35.8 47.3 57 64.5 87
Value HF (T) 217.9 277.3 344.3 413.5 467.7 519
($ × 106) SmCo 6.3 7 8.9 9.8 10 11.6
NdFeB (S) 142.8 165.8 202.1 243.6 288.6 281.6
NdFeB (B) 9.5 21.8 31.1 50.2 72.9 73.6
RE (T) 158.6 194.6 242.1 303.6 371.5 366.8
Total 416.9 510.3 628.4 776.2 901.6 944.5
Alnico 20.2 20.2 20 19.7 19.5 19.3
HF (S) 2 2.1 2.2 2.3 2.4 2.4
HF (B) 3.1 3.2 3.5 3.7 3.9 4.05
Price HF 2.1 2.2 2.32 2.43 2.53 2.55
($/kg) SmCo 90 87 85 82 74 68
NdFeB (S) 68 65 62 58 52 44
NdFeB (B) 95 105 103.7 104.6 104.1 92
REM 69.9 68.6 66.1 63.3 58.2 49.8
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Table 22. (Continued )

2002 2003 2004 2005

Alnico 3000 3000 3500 3500
HF (S) 190 000 200 000 350 000 395 000
HF (B) 27 700 33 500 51 500 67 500
Output HF (T) 208 000 218 600 401 500 462 500
(tons) SmCo 220 265 330 400
NdFeB (S) 7900 18 460 27 510 35 000
NdFeB (B) 1140 1300 1350 1500
RE (T) 9260 19 760 28 860 36 500
Total 220 260 232 645 433 860 502 500
Alnico 57.6 57.3 70 70
HF (S) 456 480 840 869
HF (B) 113 135.5 211.4 279.4
Value HF (T) 569 615.5 1051.4 1148.4
($×106) SmCo 13.6 15.9 19.8 24
NdFeB (S) 300.2 646.1 935.3 1120
NdFeB (B) 100.3 110.5 112.1 120
RE (T) 400.5 756.6 1047.4 1240
Total 1027.1 1429.4 2168.8 2458.4
Alnico 19.2 19.1 20 20
HF (S) 2.4 2.4 2.4 2.2
HF (B) 4.1 4.04 4.1 4.14
Price HF (T) 2.74 2.87 2.59 2.43
($/kg) SmCo 62 60 60 60
NdFeB (S) 38 35 34 32
NdFeB (B) 88 85 83 80
REM 43.25 38.29 36.29 34

HF: hard ferrite; REM: rare-earth magnets; (S): sintered; (B): bonded; (T): total.

Table 23. Comparison of thermal stability between various magnets.

Curie temperature Reversible temperature coefficient (%/K) Maximum working temperature, Tm (K)

TC (K) ( ◦C) Near Br (273–373 K) Near Hc (273–373 K)

Alnico 1030–1180 757–907 –0.02 +0.03–0.07 823
SmCo5 1000 727 –0.045 –0.3 523
Sm2Co17 1000 727 –0.03 –0.2 523
NdFeB 583 310 –0.1 –0.8 393
Ferrite 723 450 –0.2 0.2–0.5 358

The Alnico output variation in China, Japan, the United
States, Europe, others, and the global total is summarized in
Figure 22.

As seen in Figure 22, the output of Alnico magnets in
all developed countries has been decreasing steadily during
1994–2005. China is the only exception, whose output is at
the same level and has even shown certain growth during
the same period. So it is follows that increase in total global
output of Alnico is the same as the output of China.

The electricity system in urban areas of China was very
old. Most of them were built in 1920s or 1930s of the
last century, that is, before World War II. They have long

been out of date and should be reconstructed immediately.
Moreover, with the development of the national economy, a
project of ‘rural electrification’ started in the middle of the
1990s. In order to save electricity, a policy of ‘1 Wh m for
each family’ was started by the Chinese government in 1998.
This project concerns a population of around one billion and
covers 90% territory of China. This project would last more
than one decade. One can image how big the demand for
magnetic materials will be in order to realize such a project
as the biggest application of produced Alnico is watt-hour
meter. Obviously, this project in fact provides an opportunity
for the further development of the Chinese magnet industry,
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Table 24. Alnico output in China, Japan, USA, Europe, and others (1994–2005).

1994 1995 1996 1997 1998 1999

China 2300 2050 2000 1900 2100 3000
�(%) 6.2 –12 –2.5 –5.3 +7.7 +42.8
Japan 1700 1600 1500 1400 1200 1100
�(%) –6 –6 –6.3 –7 –14 –8.4
USA 1000 1000 1000 1000 1000 950
�(%) 0 0 0 0 0 –5
Europe 1550 1500 1450 1300 1200 1100
�(%) –3.2 –3.3 –3.4 –10.4 –7.7 8.4
Others 1000 1000 980 900 900 1000
�(%) 0 0 –2 –8.2 0 +11
Global total 7550 7150 6930 6600 6400 7150
�(%) – –5.3 –3.1 –4.8 –3.1 +11.7

2000 2001 2002 2003 2004 2005

China 3200 3040 3000 3000 3500 3500
�(%) +6.7 –5.2 –1.4 0 +14.3 0
Japan 1100 750 600 450 300 220
�(%) 0 –32 –20 –25 –33 –27
USA 950 900 850 800 700 610
�(%) 0 –5.3 –5.5 –5.9 –12.5 –12.8
Europe 1000 1000 900 900 750 620
�(%) –10 0 –10 0 –16.7 –17.3
Others 1000 1100 1100 1000 1000 1000
�(%) 0 +10 0 –10 0 0
Global total 7250 6790 6450 6150 6250 5950
�(%) +1.4 –6.3 –5 –4.7 +1.6 –4.8
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Figure 21. Output (×102 tons/year), sales value ($ × 106), and
average price ($/kg) of Alnico magnets made in China during
1990–2005.

including the Alnico industry. The Alnico output growth of
40% since 1999–2005 is the direct result of this!

9 HARD FERRITE INDUSTRY IN CHINA

HF, developed in the early 1950s, became major commer-
cially available magnets in the 1960s. Their sales value
exceeded that of Alnico in the early 1980s. In spite of
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Figure 22. Output of Alnico (tons) in China, Japan, the United
States, Europe, others, and global total.

competition from rare-earth magnets, the global output
growth of HF was around +5% annually. The production
of HF in developed countries becomes very difficult due to
the increase in the cost of production. Now, the HF output
in developed countries is only one-sixth of the global total.
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Table 25. Content comparison of powder made from iron scales and oxide.

Fe2O3 (%) SiO2 (%) Cl (%) Other impurity (m2/g)b Powder size (µm)c R. H. (%)

Ruthnera 98–99.8 0.005–1 0.08–0.9 Rest 1.7–3 – –
H2SOa

4 99.1 0.21 – Rest 3 – –
Hematitea 98–99.2 0.15–1 0–0.06 Rest 0.6–0.7 – –
Iron scales >99 <0.3 0 Rest – <10 <1

R.H.: relative humidity.
aIron oxide.
bSpecific surface.
cAverage powder size.

9.1 Raw materials of hard ferrite

Iron oxide has been long and widely used as a raw material
for HF by major magnet manufacturers in the world. The
advantage of iron oxide lies in its constant and pure chemical
composition. Unfortunately, China does not have iron oxide
in abundance. All the iron oxide available in China is used
only for steel making. Thus, instead of iron oxide, China has
to use iron scales to make HF magnets, which are waste that
come from hot rolling during steel making. Steel output of
China in 2004 was 270 million tons, which exceeded that of
the United States and Japan put together. Obviously, China
has enough iron scales to meet the increasing demand of the
HF industry. Iron scales are abundant and stably available in
China with a very low price.

There are at least two problems in using iron scale as
raw material. First, chemical composition of iron scale is
unstable and fluctuates from batch to batch, because materials
processed during hot rolling always vary. Secondly, the
oxidation of iron during hot rolling process is not uniform
with high content of Fe3O4 and FeO. It took more than
20 years’ R & D work by Chinese researchers and engineers
to solve many theoretical and practical problems they faced
while using iron scale as raw material for making HF. A
unique technology of using iron scale to replace iron oxide
has been developed by the Beijing General Research Institute
of Metallurgy Mining (BGRIMM) successfully (Bian and Li,
2001). This process has already been put to use for mass
production in China. Owing to replacement of iron oxide
by iron scale, the material cost is reduced by at least one-
third.

BGRIMM is the biggest producer of presintering powder
of ferrite in China. BGRIMM develops most advanced
kilns and its operation is fully controlled by computers.
It has an annual yield capacity of 8000 tons per set. Ten
kilns were built in Beijing at BGRIMM’s base. Such
equipment and technology has now spread to different parts
of China. The composition of presintered powder produced
by BGRIMM and products made by other process are
compared in Table 25.

With the development of the metallurgy industry in China,
more and more iron oxide made from steel plants is available.
The location distribution of presintered powder makers in
China is listed in Table 26. The number of BGRIMM’s kiln
and output of powder made by such kiln is shown in brackets
in this table.

9.2 Brief review on the global sintered ferrite
industry

With global economic development, the demand for magnetic
materials is increasing simultaneously. The price of magnets
is declining all the time. The developed countries are find-
ing it difficult to continue the production of ferrite due to
low profit margins. Thus, the shifting of the production line

Table 26. Location distribution of presintered powder
makers in China.

Region Province Number Capacity
city of kiln (×103 tons/year)

North Beijing 10 (10) 80 (80)
(BGRIMM)
Tianjin 1 3
Shanxi 2 (2) 16 (16)

Subtotal 13 (12) 99 (96)
Northeast Liaonin 6 (3) 35 (15)
East Shanghai 1 (1) 8 (8)

Jiangsu 6 40
Anhui 4 (1) 28 (8)
Zhejiang 11 (9) 88 (72)

Subtotal 22 (11) 164 (88)
Mid-south Henan 3 (1) 15 (8)

Hubei 9 (5) 63 (40)
Hunan 1 5
Kuandong 2 10

Subtotal 15 (6) 93 (48)
Southwest Sichuan 3 16
Total 59 (32) 402 (242)

Note: Data in brackets are related to that produced by kiln
BGRIMM developed.
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Table 27. Volume portion of hard ferrite used for each application in China.

Year Output (×103 tons) Used tonnage/acoustics Used for motor Used for holding instrument
(×103 tons) (%) (×103 tons) (%) (×103 tons) (%)

1990 31.5 27.72 (88) 630 (2) 3150 (10)
1991 38 32.68 (86) 1140 (3) 4180 (11)
1992 46 38.64 (84) 1840 (4) 5250 (12)
1993 54 43.20 (80) 3240 (6) 7560 (14)
1994 65 48.75 (75) 5200 (8) 11 050 (17)
1995 80 56.00 (70) 8000 (10) 16 000 (20)
1996 95 63.65 (67) 14 250 (15) 17 100 (18)
1997 115 74.75 (65) 23 000 (20) 17 250 (15)
1998 135 86.40 (64) 28 350 (21) 20 250 (15)
1999 155 93.00 (60) 38 750 (25) 23 250 (15)
2000 168 100.80 (60) 42 000 (25) 25 200 (15)
2001 180 108 (60) 45 000 (25) 27 000 (15)
2002 190 114 (60) 47 500 (25) 28 500 (15)
2003 200 120 (60) 50 000 (25) 30 000 (15)

to developing countries started in the 1980s. The output of
HF in developed countries reached its peak value in early
1980s. Before 1985, the average annual growth rate >40%,
in 1985–1990, the average annual growth rate was around
4–10%, after 1990, the average annual growth rate became
negative to: −1 to −8%. Outputs of HF made in Japan, the
United States, and Europe in total were only one-sixth of the
global total in 2004. Total outputs in developing countries,
such as China, India, and SEA are five-sixth of the global
total.

The growth of global total output of HF has continued due
to the increase in the global market demand. The average
annual growth rate of global output of HF is more than 5%.
This growth will continue in the twenty-first century.

9.2.1 Application of sintered hard ferrite

Applications of HF are quite different in different countries.
There are three applications in China: acoustics (rings),
motor (segments), and holding instruments (including magnet
separator). The volume of used magnets for each application
is changing; these are listed in Table 27 and summarized
in Figure 23. Only one portion is used for application in
a motor, which is expanding among other applications.
Portions for acoustics and holding instrument have reduced.

9.3 Bonded ferrite magnets

Owing to the demand of refrigerator door sealing, TV tube
focusing, and so on, bonded ferrite magnet was developed
in the United States and Europe by mixing magnetic pow-
der with polymer binder in the 1960s. Such bonded mag-
nets are called LEEP. Later, bonded magnets with higher
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Figure 23. Percentages of hard ferrite output for different
applications.

performance were developed and were called HEEP. On
the basis of their applications and magnetic performances,
Japanese bonded magnet producers divided such magnets
into two groups: flexible and rigid. We follow this classi-
fication in the present paper. With the development of the
electronic industry, the bonded magnet industry in China has
improved considerably since the late 1980s.

9.3.1 General review on global bonded
ferrite magnets

With the increase in the cost of producing bonded ferrite
magnets, the industry has shifted from developed countries
to developing countries including China, similar to the
industries for producing other types of magnets. The use of
bonded magnets in each country is different; therefore, the
direction in which they develop is definitely different. For
example, LEEP in Europe is mainly used as sound-damping
materials for the automotive industry, in the United States,
LEEP is used for advertisements, and, in Japan, it is used for
medicinal purposes.
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The output (tons), sales value ($ × 106), price ($/kg) of
bonded ferrite magnets produced in China, Japan, the United
States, Europe, SEA, and others during 1995–2005 are listed
in Table 28. Data, except for China, are mainly taken from the
publication by JABM and from discussion at the meeting of
the JABM Marketing Committee (Tokyo, Japan, December
2, 2004) (JABM, 2004).

9.3.2 Bonded ferrite magnet industry in China

In the 1970s, injection equipment and technology were
imported to China to produce bonded isotropic magnets
mainly used for refrigerator seals and adjusting the core
magnet plate for the TV tube. Since then, the producing
technology, inspecting, and magnetizing equipment have
been improving continuously during the 1980s. Almost
70% bonded ferrite is isotropic, whose energy products are
0.7–1 MGOe. The anisotropic bonded ferrite with energy
products around 1.4–1.6 MGOe is less then 30% of the total.
The forming process of anisotropic bonded ferrite requires an
orientation field, which is rather expensive in comparison
with that of the isotropic one. Moreover, the anisotropic
magnet is used for the micromotor, which requires a magnet
with special shape and precise tolerance; therefore, the
price of the anisotropic bonded ferrite is much higher than
that of the isotropic one. In the early 1990s, with further
development of the electronic industry in China, the demand
for higher-grade bonded ferrite magnets became more urgent.
Such magnets require more qualified powder, which had to
be imported into China in the early 1990s.

In order to solve this problem, BGRIMM developed a
special grade of powder to meet the demand of bonded
ferrite magnets. Now BGRIMM is able to provide powder for
bonded ferrite. The specifications of the powder for bonded
ferrite made by BGRIMM are listed in Table 29.

With the development of bonded ferrite magnet indus-
try, a lot of new advanced technology and equipment has
been imported into China recently. These include injection
machines with orientation magnet field and automatic press
with magnet field for warm compressing. Magnets prepared
by calendering, rolling, and extruding have also been intro-
duced. In order to get some idea on the price of bonded
ferrite magnets, the average prices of bonded ferrite in the
China market are summarized in Table 30 and are shown in
Figure 24.

Preparing rigid bonded ferrite magnets in China started in
1993. Its price reduced with growth in output. Especially,
its price reduced due to the replacement of the imported
powder by the domestic one. The price has been stable since
2001, with improvement in the producing process. The totally
averaged price of bonded ferrite magnets is the average of
both flexible and rigid magnets.

10 SINTERED NdFeB PRODUCERS IN
THE UNITED STATES, EUROPE,
AND JAPAN

In the United States, there were three (3) NdFeB magnet
producers before 1997:

Hitachi Magnets (USA): In the early 1970s, Hitachi Metals
acquired former General Electric (GE) hard ferrite plant in
Edmore, MI, USA. Then it expanded to China Grove, NC,
where NdFeB were partly made.
CRUMAX (VAC): This was an old local magnet producer in
the middle of 1990s. It was owned by YBM, it was sold to
Morgan Crucible (UK) and was managed by VAC in 1999.
It was fully closed in 2003.
UGIMAG (MQI): Indiana Technology was the first sintered
NdFeB magnet producer in the United States. It was sold
to UGIMAG in 1992, and then it was resold to MQI in
2000. Recently, its production activity has been transferred
to China.

The ownership of the last two companies has changed
quite frequently; nevertheless, none of them could avoid the
stopping of magnet production. In fact, they had already
announced the closure of their production activities in the
United States by the end of 2003.

In Europe, there were four (4) sintered NdFeB magnet
manufacturers:

Philips Components (UK): The production activity of this
company stopped in middle of the 1990s.
VAC (Germany): The biggest producer in Europe – VAC – was
sold to Morgan Crucible in 1999, and then it made a joint
venture with the Chinese magnet producer, Sanhuan, in 2004.
Magnetfabrik Schramberg (Germany): This company is still
working with a small output.
REOREM (Finland): This company is still working with a
small output.

In Japan, there were ‘five and half’ (5.5) NdFeB magnet
manufacturers:

Sumitomo Special Metals Co. (SSMC)
Hitachi Metals Co., Ltd. (HML)
Shin-Etsu Chemical Co.
TDK
Dowa Mining Co.: Dowa had to stop its NdFeB production
in 2002 due to a sharp reduction in the sales price in the
market. Dowa got the license from SSMC in the same year.
Toking Co.: Located in Sendai, Japan, it produces all kinds of
magnets, including Alnico, hard ferrite, Sm-Co and NdFeB
magnets, but due to patent restriction this company stopped
NdFeB magnet production in early 1990s. So this company
can be considered as a “half NdFeB magnet producer” solely,
but not a real one.
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30 Hard magnetic materials

It was announced jointly by HML and SSMC on Decem-
ber 18, 2003 (Jia et al., 1998; Jia, Jia and Li, 2004) that
both companies will join together to establish a new com-
pany – ‘NEOMAX Co. Ltd’. It was informed that NEOMAX
is running quite well and its high-grade magnets meet the
demands of newly developed applications, such as automo-
tive motor, VCM for HDD less than 1 in., lift, and so on.

The others have had to slow down their production due to
the impact from China. In order to reduce the price pressure,
they are now focusing on assembling or devices making,
instead of magnet production solely. Shin-Etsu Co. is in a
better financial situation among all others, because it imports
very cheap rare-earth concentrates from China, instead of
rare-earth metal. After separation, the highly purified single
rare-earth oxides can be sold in the international market at
a rather high price. Shin-Etsu uses Nd oxide as starting
materials to prepare Nd metal and then to make NdFeB
magnets. Obviously, in this way, Shin-Etsu is in a better
position than other Japanese magnet producers to compensate
the reduction in magnet price.

11 OUTPUT, PRICE, AND SALES VALUE
OF NdFeB MAGNETS

The output of sintered NdFeB magnets in Japan, the United
States, Europe, and China during 1987–2000 was presented
in my report (Luo, 2000c) at the 16th International Workshop
on REM held in Sendai, Japan (September 2000). Data for
China and Japan are more accurate because associations of
the magnet industry in these countries publish relatively good
data annually. Although there is an Association of Magnet
Manufacturers in the United States, the data published
by this association are definitely incomplete because some
major magnet producers are not members. It is even more
difficult to get data for Europe. Many participants from
different countries were interested in these data and we
had many interesting and important discussions during the
conference.

Some Japanese experts told me that the published produc-
tion of sintered NdFeB magnets in Japan is always under-
estimated by around 20–30% due to a number of reasons,
particularly the reluctance of certain companies to provide
their actual production. These experts made their estimate
based on data given by master alloy producers. According to
the opinion of experts from the United States and Europe, the
outputs in the United States and Europe are actually 20–30%
less than what is given in my table. This is because the own-
ership of magnet companies in the United States and Europe
has changed quite frequently in last few years, thus their sales
have dropped significantly and the data in my table are out

of date. As for NdFeB production in China, usually they are
related to blocks but not final magnets. In order to make con-
sistency with data for other countries, data for China would
have to be converted to final products, that is, the data should
be reduced by 20–30% as well.

On the basis of these inputs, the tonnage outputs (tons),
sales value ($ × 108), and price ($/kg) of sintered NdFeB
magnets made in China, Japan, the United States, and Europe
during 1995–2004 are reestimated and listed in Table 31.

Owing to the increased production cost in developed
countries and the sharp decrease in the sales price of magnets
in the international market, it will be rather difficult to
continue magnet production in these countries. Consequently,
the growth of production in these countries will also be rather
difficult in future. The annual growth rate of the global total
output of sintered NdFeB was more than +20% until 2000,
it became negative in 2001 (−6%), and it again became
positive after 2002 (≥ + 10%).

The output changes of sintered NdFeB magnet made in
China, Japan, the United States, and Europe since 1995
are summarized in Figure 25. The curve with triangles in
Figure 25 is related to data given by JEMA for Japan, which
is −20% lower, as mentioned before. According to the data
given by JEMA, the output of China exceeds that of Japan in
2000, but not in 2001. The outstanding feature in Figure 25
is the big jump in the output by China after 2002, since
production in both the United States and Europe has almost
stopped and 80% of global output is now concentrated in
China!

The year 2001 was a ‘nightmare’ for global magnet
industries. Owing to the global economic recession, business
for both IT and computer industries was very bad. Both
IT and computer industries are major customers of NdFeB
magnets; consequently, the purchase of magnets dropped
sharply in 2001. Statistics showed that in 2001 the output
of sintered NdFeB magnets in Japan was 20% lower in
comparison with that of 2000 and the sales value dropped
by 36%! The situation in the United States and Europe was
similar: their outputs dropped by 28 and 18%, respectively.
China is the only exception in the world, where the output
growth of NdFeB is continuing, although its growth rate was
much reduced, from +33% (2000) to +16% (2001).

Owing to the sharp output reduction in the West, the curve
of global output had declined in 2001. Owing to the reduction
in the output of sintered NdFeB in Japan, China became
the number one producer of sintered NdFeB in the world in
2001.

The prices in Japan, the United States, and Europe are
different, but they are more or less at the same level. The
price of China magnets is only half of that in western market.
This is the most attractive factor of China magnets! The
price changes of sintered NdFeB magnets made in China,
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Table 29. Powder specifications for bonded ferrite made by BGRIMM.

Grade Type of ferrite Powder size (µm) Density (G cm–3) Br kg bHc (kOe) iHc(kOe) (BH)max(MGOe)

XSF-1 Ba ferrite 2–4 3.7 1.5 1.2 2.4 0.50
XSF-2A Ba ferrite 1.1–1.4 3.6 1.8 1.5 2.2 0.75
XSF-2B Ba ferrite 1.5–1.8 3.6 1.8 1.4 1.9 0.70
XSF-2S Sr ferrite 1.5–1.8 3.6 1.8 1.4 2 0.70
XSF-3 Sr ferrite 1–1.4 3.6 2.4 2 2.6 1.30
XSF-4 Sr ferrite 1.2–1.5 3.6 2.45 2 2.8 1.40

Table 30. Prices ($/kg) of bonded ferrite magnets in China market during 1990–2005.

1990 1991 1992 1993 1994 1995 1996 1997

Flexible ($/kg) 3.4 3.3 3.2 3 2.8 2.6 2.6 2.8
Rigid ($/kg) – – – 12 11 10 9 8.7
Totally averaged ($/kg) 3.4 3.3 3.2 3.2 3.1 3 3.1 3.2

1998 1999 2000 2001 2002 2003 2004 2005

Flexible ($/kg) 3.1 3.4 3.6 3.6 3.6 3.5 3.6 3.6
Rigid ($/kg) 8.5 8 7 8.4 8.5 8.7 8.8 8.8
Totally averaged ($/kg) 3.5 3.7 3.9 4.05 4.1 4.04 4.1 4.14
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Figure 24. Price ($/kg) variation of bonded ferrite made in China
(1990–2005).

Japan, the United States, Europe, and the global average are
compared in Figure 26 (1995–2004).

The annual growth rate of sales value in Japan kept rather
high >50% until 1990. Starting from 1991, it declined by
∼20% annually. In 1992, the growth rate of sales value in
Japan became negative, then it remained <20% until 1999.
It declined again in 2000. In 2001, sales values of sintered
NdFeB declined in all countries, the only difference being
in their reducing rate: they were −36, −41, −32, and −6%
for Japan, the United States, Europe, and China respectively.
Since 2000, sales values in the United States and Europe have
declined steadily. The sales value in Japan had increased a
bit after 2001, but even in 2003, it was still much lower than
its peak value of 2000.

The sales value of China in 2002 had exceeded that of
2000 with an annual growth rate of +17%. It increased
even more in 2003 (with an annual growth rate of +93%)
due to unusual output expansion (with annual growth rate
of +109.7%), although the annual price reduction rate was
around −8% (see Table 32).

Value ($ × 108) of NdFeB in China, Japan, the United
States, Europe, and global total is shown in Figure 27.

The global total value of sintered NdFeB magnets in 2003
was still less than its peak value in 2000, in spite of its
unusual increase in 2003. The same situation was seen in
Japan. Its sales value in 2004 was far less than its peak
value in 2000. As for China, her sales value in 2002 already
exceeded that in 2000. Her sales value in 2004 was almost
three times higher than that in 2000 due to her output growth
of five times during the same time, although her price in 2004
was 39% less than that of 2000.

The output percentage change of sintered NdFeB made
in China, Japan, the United States, and Europe during
1995–2004 is summarized in Figure 28.

Now, the output of sintered NdFeB made in China is
79.7% of the global total. The output from Japan, Europe,
and the United States is 19.4, 0.9, and 0% respectively. As for
the distribution of sales value, the picture is quite different:
in 2004, value percentages were 63.6, 34.8, and 1.6% for
China, Japan, and Europe respectively.

The gap between output and sales value is the main prob-
lem faced by the Chinese NdFeB magnet industry. The only
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Table 31. Output (tons), sales value ($ × 108), price ($/kg) of sintered NdFeB magnets in China, Japan, the United States, and
Europe (1995–2004).

1995 1996 1997 1998 1999

China output (tons) 1820 (+48%) 2100 (+15%) 2550 (+21%) 3260 (+28%) 4200 (+29%)
Value ($ × 108) 1.2922 (+42%) 1.428 (+11%) 1.658 (+16%) 2.0212 (+22%) 2.436 (+21%)
Price ($/kg) $71/kg (−4%) $68/kg (−4%) $65/kg (−5%) 62 (−5%) 58 (−7%)

Japan output (tons) (JEMA) 2200 (+24%) 2600 (+18%) 3800 (+46%) 4500 (+18%) 5300 (+18%)
– – 3200 4000 4700

Value ($ × 108) 3.036 (+20%) 3.51 (+16%) 4.98 (+42%) 5.76 (+15%) 6.625 (+15%)
Price ($/kg) 138 (−3%) 135 (−2%) 131 (−3%) 128 (−3%) 125 (−2%)

USA output (tons) 520 (+16%) 640 (+23%) 750 (+17%) 710 (−6%) 810 (+14%)
Value ($ × 108) 0.7322 (+12%) 0.87 (+19%) 0.99 (+14%) 0.909 (−9%) 0.972 (+7%)
Price ($/kg) 141 (−3%) 136 (−4%) 132 (−3%) 128 (−3%) 120 (−6%)

Europe output (tons) 410 (+24%) 510 (+24%) 580 (+14%) 630 (+9%) 680 (+8%)
Value ($ × 108) 0.5576 (+21%) 0.673 (+21%) 0.7424 (+10%) 0.7812 (+5%) 0.782 (+0.1%)
Price ($/kg) 136 (−3%) 2 (−3%) 128 (−3%) 124 (−3%) 115 (−7%)

Global output (tons) 4950 (+30%) 5850 (+18%) 7680 (+31%) 9100 (+18%) 10 990 (+21%)
Value ($ × 108) 5.619 (+23%) 6.549 (+11%) 8.406 (+28%) 9.471 (+13%) 10.875 (+15%)
Price ($/kg) 113.5 (−6%) 112 (−1%) 109 (−3%) 104 (−5%) 99 (−5%)

2000 2001 2002 2003 2004

China output (tons) 5600 (+33%) 6500 (+16%) 8800 (+35.4%) 18 460 (+109.7%) 27 510 (+49)
Value ($×108) 3.03 (+24.4%) 2.86 (−5.6%) 3.344 (+17%) 6.461 (+93.2%) 9.078 (+40.5%)
Price ($/kg) 54 (−6.9%) 44 (−18.5%) 38 (−13.6%) 35 (−7.9%) 33 (−5.7%)

Japan output (tons) (JEMA) 6400 (+20.8%) 5100 (−20.3%) 5600 (+9.8%) 6200 (+10.7%) 6700 (+8%)
5250 (+11.7%) 4650 (−11.4%) 4750 (+2.1%) 5250 (+10.5%) 5950 (+13.3%)

Value ($×108) 7.04 (+6.3%) 4.49 (−36.2%) 4.59 (+2.2%) 4.712 (+2.7%) 4.824 (+2.4%)
Price ($/kg) 110 (−12%) 88 (−20%) 82 (−6.8%) 76 (−7.3%) 72 (−5.3%)

USA output (tons) 850 (+5%) 610 (−28.2%) 280 (−54%) 100 (−64.3%) <10 (−90%)
Value ($×108) 0.935 (−6.2%) 0.55 (−52.4%) 0.24 (−43.6%) 0.08 (−66.7%) −
Price ($/kg) 110 (−8.3%) 90 (−18%) 85 (−5.5%) 80 (−5.9%) −

Europe output (tons) 750 (+10.3%) 640 (−14.7%) 580 (−9.4%) 460 (−20.7%) 300 (−34.8%)
Value ($×108) 0.83 (+6.1%) 0.54 (−34.9%) 0.46 (−14.8%) 0.34 (−26%) 0.222 (−34.7%)
Price ($/kg) 105 (−8.7%) 85 (−19%) 80 (−5.9%) 74 (−7.5%) 74 (0%)

Global output (tons) 13 600 (+25%) 12 850 (−6.2%) 15 260 (+19%) 25 220 (+65%) 34 520 (+36.9%)
Value ($×108) 11.835 (+8.8%) 8.44 (−29.4%) 8.634 (+2.3%) 11.593 (+34.3%) 14.124 (+21.8%)
Price ($/kg) 87 (−12%) 66.1 (−24% 57.9 (−12%) 46.1 (−20.4%) 40.9 (−11.3%)

way to solve this problem is to eliminate the technical gap
that exists between China and developed countries, that is,
to improve the performances of Chinese products.

It is well known that the prices of magnets are quite differ-
ent, depending on their grades and performances. Generally
speaking, the better the magnet, the higher its price would
be. The price gap between Chinese and international magnet
markets is rather big. As a sample, the averaged prices for
different grades are shown in Figure 29.

The vertical coordinate axis shows magnet price ($/kg)
and the horizontal coordinate axis shows energy prod-
ucts (MGOe) of magnet. There are two group curves:
A – China market; B – international market. Each group
contains two curves: one relates to 1998 and the other
relates to 2003. The following are worth noting from
Figure 29:

1. The price of magnets is rising with their energy products
extensively. For example, now magnets with 40 MGOe
can be sold for $40/kg in the Chinese market, magnets
with 44 MGOe and 48 MGOe can be sold for as high as
$55/kg and $80/kg respectively. Obviously, only higher-
grade magnets can be sold at a better price. This is the only
way to get rid off the problem of low economic efficiency
(profit) of the NdFeB magnet industry in China.

2. Prices in Chinese and international markets are quite
different as they belong to a different curve group. In
general, the price in the Chinese market is only 65–70%
of that in the international market.

3. Prices in both international and Chinese markets are
reducing with time. The reducing rate in the international
market seems even more than that in the Chinese market
due to the price gap between them.
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Figure 25. Output of sintered NdFeB in China, Japan, the United
States, and Europe (1995–2004).
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Figure 26. Sales price ($/kg) of sintered NdFeB magnets in China,
Japan, the United States, Europe, and global average during
1995–2004.

Moreover, if magnet manufacturers want more value added
to their magnets, they should manufacture magnets with high
tolerance and accuracy, instead of block magnets, and should
also do magnet assembling to make devices. This way, the
magnet manufacturers in developed countries can compen-
sate the pressure of price reduction successfully. Considering
that the use of NdFeB in motor application will considerably
increase in the near future, we have to focus on the develop-
ment of NdFeB with high-energy products and a high coer-
cive force, lower temperature coefficient, that is, which are
suitable for motor use. In order to realize the use of NdFeB
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Figure 27. Value ($ × 108) of sintered NdFeB magnets made in
China, Japan, the United States, Europe, and global total.

for motors more quickly, magnet manufacturers should work
with motor designers and motor makers more closely.

12 APPLICATION EXPANSION OF NdFeB
MAGNETS

Since the middle of the 1990s, the market demand of
NdFeB has increased so significantly that it has pushed the
production expansion to a higher pace. Owing to expansion
in production of NdFeB, its sales price has reduced sharply.
The global economic recession has made the situation for
the NdFeB magnet industry even worse; this situation may
continue until 2005. On the other hand, the price reduction
helps in NdFeB being used for many new applications
such as motors, especially electric vehicle (EV), hybrid car,
power generators, and magnetic refrigerator, whereas this
was impossible earlier due to the high price of NdFeB.

In order to show the expansion of NdFeB, we take some
samples from recent applications of NdFeB magnets in
China.

12.1 Electric bicycle (EB)

Electric Bicycle (EB) has a permanent magnet motor
(36 V/180 W) in the wheel center of bicycle and a recharge-
able battery, electron monitor, with total weight ≤ 40 kg, and
its speed ≤ 20 km/hr. The running distance per charge is in
the range of 40–60 km. This type of EB is suitable for urban
transportation in cities with population of several millions.
This type of EB has been gaining popularity in south China
in recent years. For example, Suzhou city with a popula-
tion of half million has 180 000 EBs in the down town area.
One and a half million EBs were sold in 2002. Three and
a half million EBs were made in 2003. A total of around
5 million EBs were made in China in 2004.
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The photograph of EB made in Suzhou is shown in
Figure 30 as a sample.

The motor used for EB is an NdFeB magnet motor of
36 V/180 W. Three hundred and eighty grams of sintered
NdFeB is used for each motor. The NdFeB that is used
is of 38SH or 40H grades, the price of which is around
$38/kg. There are two types of motors: high speed and low
speed, their prices are ¥350–420/pics and ¥240–280/pics,
and it is $42/pics on average. The price of EB ranges from
¥1800–2500/pics, that is, $260/pics on average.

In order to show the value addition with product stream,
we have taken data of 2003: total output of EBs is 1.5
million pieces. One thousand three hundred and thirty tons
of sintered NdFeB magnets were used. It needs 653 tons of
Nd2O3 with a value of 8.16 million USD (the price of Nd2O3

is $12.5/kg). The value of used NdFeB magnets, motors, and
EBs is 46.55 million USD, 147 million USD, and 910 million

Figure 30. Electric bicycle using NdFeB motor made in Suzhou.

USD respectively. If we take the value of Nd2O3 as 1, then
the value of the NdFeB magnet, value of NdFeB motor, and
value of EB will be 6.2, 18, and 111 respectively!

The sharp increase in the output of EBs and used sintered
NdFeB magnets is shown in Figure 31.
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Figure 31. Output of EB (×103 pics) and used NdFeB magnets
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The total output of EBs will be 15 million pieces and
the NdFeB magnets needed for such an application will be
around 6000 tons in 2007. The annual EB output growth rate
of 12 was rather high in the initial stage (> +100%). It will
be reduced to a normal range of within +30% annually, when
the annual output reaches 15 million pieces or more.

12.1.1 Why EB has become popular in China

The EB originated in Japan, the most famous one with the
trade mark PAS is made by Yamaha Co. Statistics show that
in 2003 the total output of EBs in the world was 600 000
pieces. The distribution on locations is as follows:

Japan – 250 000 pieces; USA – 150 000 pieces; Europe –
100 000 pieces;

Taiwan – 100 000 pieces.
In the same year, 3.5 million EBs were made in China,

which is almost six times higher than the global total! Why
has the use of EBs spread so quickly in China? Some of the
reasons are as follows:

1. The income of people in China is not very good as it
is a developing country. The car is not affordable for
every family. But, due to its low price, the EB is able to
meet the needs of the common people. According to the
published economic statistics in 2001, the cost of one EB
(¥1800–2500/pics) is equal to the monthly income of a
family in the city, or equal to the three-month income of
a family in rural area. Anyway, the EB is economically
available for Chinese people. Moreover, the service fee
for EB is low: charging fee and depreciation of battery
−¥0.9/charge. Consequently, the EB has become very
popular in China recently.

2. Because of its huge population, the car did not become
very popular in China, simply because of lack of
oil supply and parking space. But electricity is much
cheaper and easily available in China. Moreover, there
is no pollution caused by using EB.

3. The people of China are used to using the bicycle
to commute to various places. There is a very strong
network for producing bicycles and all related parts,
which can also be used for EB production. This is the
reason why the EB industry has become so strong in
China within the last couple of years.

12.2 Low-grade NdFeB to replace ferrite

At the end of 2003, I made a business trip to south
China and visited the biggest magnet producers of bonded
NdFeB (Galaxy in Chengdu), sintered NdFeB (Yunsheng in
Ningbo), ferrite (DMEGC in Dongyang), and Alnico magnet
(Hangzhuo Permanent Magnet Group in Hangzhuo, HPMG).

I saw ‘the explosion expansion of sintered NdFeB’ every-
where in Zhejiang province with my own eyes, especially in
the area of Ninbo city and around.

Rare-earth magnets are considered to be high-tech materi-
als, which need high volume of investment, high technology,
and highly qualified employees. But, to my surprise, what I
saw in Cixi city was exactly opposite of this! There are nei-
ther big workshop buildings with modern equipment, nor are
there qualified technicians. Half of the raw materials used are
taken from the recycled material without any special treat-
ment. They do not intend to make high-grade NdFeB, but
only aim to replace HF. Their products are small disk mag-
nets used as buttons for clothes, boxes, and bags. Because
their magnetic force is much stronger than that of HF, such
products are extremely popular among customers. Here there
is mass production of NdFeB, with trucks waiting outside the
plants. At one of the plants, the output of the small disk mag-
net per day is 12 tons, that is, ≥6 million pieces per day! Such
products are widely used in China and abroad. The economic
efficiency of such plants is much higher than that of tradi-
tional magnet producers, which make higher-grade magnets.
Statistics showed that that there are 6–8 such plants in Cixi
and the total annual output is ≥5000 tons. This is rather con-
fusing: which way should the China NdFeB magnet industry
go? Should it follow the developed countries, or should it
follow Cixi?

The major applications of NdFeB magnets as high-tech
and new materials are in modern high-tech industries includ-
ing IT, computer, communication, automotive, and small
appliances, for example, cordless tools. The total amount of
magnets used for such new applications would be thousands
of tons!

Therefore, the quality of products is most important for
long-term development. The ‘Way of Cixi’ is only an
appearance of certain conditions and period; it is surely not
the main stream!

12.3 Application distribution of sintered NdFeB
magnets

12.3.1 Distribution of sintered NdFeB magnets on
applications in China

Applications of sintered NdFeB magnets in China can be
divided into three groups:

1. High-tech application, such as MRI, VCM, CD pickup,
CD-ROM/DVD-ROM, mobile phone, cordless tools,
EB/EAV, etc.

2. Traditional application, such as speaker, magnetic sep-
arator, magnetizer including dewaxer used in oil fields
and the petroleum industry.



36 Hard magnetic materials

Table 32. Output (×103), used NdFeB (tons), value ($ × 108) of NdFeB, motors, and EB (Miao, 2004).

Year Output (×103pics),
(�(%))

Used NdBeF (tons),
(Price ($/kg))

Value of needed
NdFeB ($ × 106)

Value of motor
($ × 108) A. P.
($42/pics)

Value of EB
($ × 108) A. P.
($260/pics)

1997 10 3.8 (65) 0.247 0.0042 0.026
1998 30 (200) 11.4 (62) 0.707 0.0126 0.078
1999 80 (166) 30.4 (58) 1.76 0.0336 0.208
2000 200 (150) 76 (52) 3.95 0.084 0.52
2001 580 (190) 220 (44) 9.68 0.244 1.51
2002 1500 (158) 570 (38) 21.66 0.63 3.9
2003 3500 (133) 1330 (35) 46.55 1.47 9.1
2004 6000 (71) 2280 (33) 75 2.52 15.6
2005 9000 (50) 3420 (32) 109 3.87 23.4
2006 12 000 (33) 4560 (31) 141 5.04 31.2
2007 15 000 (25) 5700 (30) 171 6.3 39

A. P.: averaged price.

Table 33. Application distribution of sintered NdFeB in China
in 2003.

High-tech application MRI 360 tons 2.0%
VCM 210 tons 1.1%
CD pickup 940 tons 5.1%
DVD-ROM + CD-ROM 1500 tons 8.1% (30.7%)

(5650 tons)
Mobile phone 360 tons 2.0%
Cordless tools 940 tons 5.1%
EB + EAV 1340 tons 7.3%

Traditional application Speaker 4000 tons 21.7%
Magnetic separator 2500 tons 13.5% (46%)

(8500 tons)
Magnetizer (dewaxer etc.) 2000 tons 10.8%

Low-grade use (Cixi) 3000 tons 16.2%
Others 1310 tons 7.1%
Total 18 460 tons 100%

3. Low-grade uses such as magnets made in Cixi.

The distribution of used NdFeB in China (2003) is listed
in Table 33 and shown in Figure 32.

The section of high-tech application is 31% of the total,
considering the use for motors. This section will grow in
future. The section of traditional application is 46% of the
total and may reduce slightly. The use of low-grade magnets,
similar to that made in Cixi, may remain steady for a certain
period of time, its absolute tonnage may even increase, but its
percentage would decline in the long term. In 2007, the need
for sintered NdFeB magnets for EB and EAV will be 5700
and 2385 tons, respectively. The need in EB and EAV will
exceed 8000 tons, and that in EV has not yet been included.
It should be noted that all these demands appeared only after
1997. If the low-grade use is included, then the total demand
would exceed 20 000 tons, which shows a sharp increase in
the market demand for NdFeB in future!
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Figure 32. Application distribution of sintered NdFeB made in
China (2003).

In the twenty-first century, one would see numerous
improvements and growth in the NdFeB magnet industry.
In particular, the next decade will see great improvement in
the quality and capability of the NdFeB magnet industry in
China. This will result in better and cheaper magnets for
customers all over the world.

12.3.2 Application of sintered NdFeB magnets
in Japan

There are three major applications of sintered NdFeB mag-
nets in Japan: VCM, MRI, motor/generator. The portions
used for certain applications vary every year. The changes
during 1996–2003 are listed in Table 34 and summarized in
Figure 33.

Sintered NdFeB magnets are widely used in the HDD of
computers and consumer electronics. VCM is the biggest
application of NdFeB magnets, but its weight percentage is
reducing continuously from 57% of the total in 1996 to 35%
in 2003 because the most advanced magnets with energy
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Table 34. Percentage changes of used sintered magnets for certain application in Japan (1996–2003).

VCM (%) Motor/generator (%) MRI (%) Acoustics (%) Communication (%) Others (%)

1996 57 14 16 3 5 5
1997 58 15 14 3 6 4
1998 55 15 14 3 8 5
1999 50 20 14 3 10 3
2000 47 24 13 2 11 3
2001 43 29 16 2 9 2
2002 36 32 17 4 9 2
2003 35 34 15 8 8 2
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Figure 33. Percentage change of used NdFeB magnets for different
applications in Japan during 1996–2003.

products ≥48 MGOe are used. Consequently, the weight per
piece is much reduced. Now HDD is not only widely used
for PC but is also used as a memory unit for video systems
of TVs, car navigation systems, mobile phones with large
memories, and so on. These 1-in. HDDs are very minute in
size. The size of its VCM magnet is 3 × 2 × 0.8 mm with an
unsymmetrical shape, which is rather difficult to prepare.

The portion of magnets used for MRI is relatively stable;
it ranges between 13 and 17%. It is not only used for
medicinal purpose, but the digital MRI can also be used
for quality control of agricultural products, space-orientation
application, and so on (Asfour, Raoof and Fournier 2004).

The usage of small-sized magnets, such as microspeakers,
pickups of CD and DVD, vibration motors of mobile phones,
and audio systems for automobiles, has increased in acoustic
devices and communications in recent years instead of ferrite
magnets.

A remarkable increase has been observed in motor appli-
cation since 1995. The driving force behind such an increase
is closely related not only to improvement in performance
of magnets but also to the progress in motor designs such
as SPM (surface permanent magnet) type and IPM (interior
permanent magnet) type by using high-performance magnets.

SPM type is mainly applied in servomotors for fabric
automation and office automation, elevator lifting motor, and

so on. The use of IPM type is expanding in many applica-
tions, including compressor motors. The IPM type is being
increasingly used because the simple rectangular-shaped
magnets can be used, which are significantly less expen-
sive in comparison to segment magnets while preparing and
assembling. IPM-type motor has been adopted by Toyota and
Honda for their hybrid electric vehicle (HEV). The magnets
used are 38UH grade with (BH ) max = 38 MGOe, iHc =
25 kOe, which can be used at a temperature as high as 180 ◦C.

13 LOCATION DISTRIBUTION OF NdFeB
MAGNET MANUFACTURERS IN
CHINA

The total output of sintered NdFeB magnets in China in
2004 was 27 510 tons. The magnet plant locations cover 12
provinces and Beijing–Tianjin cities. The output distribution
of sintered NdFeB magnets made in China on their locations
is shown in Figure 34.

In general, sintered NdFeB magnet production in China is
concentrated in three areas: Zhejiang province takes the first
place with 47.1% of the total output; Shanxi province takes
the second place with 21.7% of the total; Beijing–Tianjin
area takes the third with 11.7% of the total. The rest 19.5%
of the total production is spread over nine provinces.
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Figure 34. Location distribution of sintered NdFeB magnets made
in China (2004).
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Figure 35. Location distribution of NdFeB magnet manufac-
turers in China. 1–Zhejiang province; 2–Shanxi province;
3–Beijing/Tianjin area; 4–Jiangsu province; 5–Kuangdong
province; 6–Inner Mongolia; 7–Shiannxi province; 8–Ninxia
province; 9–Gangsu province; 10–Shandong province;
11–Sichuang province; 12–Liaonin province.

Since NdFeB magnets are rather sensitive to corrosion,
and it is quite hot and humid during summer in south China,
the weather conditions here are unfavorable for making
NdFeB magnets, especially the high-grade magnets. Thus,
the NdFeB production volume in Zhejiang province is the
highest, but the quality is not very good. Magnets of higher
grade are produced in north China: Beijing–Tianjin area and
Shanxi province (see Figure 35).

Of course, the quality of magnets depends on the process
and equipment used, that is, both software and hardware
used for manufacturing. The magnet plants equipped with
the most advanced processes and equipment are located
in the Shandong province. Therefore, the best magnets are
produced there.

The actual statistical data of sintered NdFeB magnets made
in China between 2003 and 2006 are given in the appendix.
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APPENDIX A

Table 1A. Statistics of Sintered NdFeB Made in China (data in brackets are blocks).

2003 2004 2005 2006

Zhejiang 7 510 (48.3%) (12 750t) 10 470t (45.7%) (17 480t) 14 290t (47.4%) (22 540t) 18 240t
(47.7%) (27 990t)

Shanxi 3 250 (20.9%) (5 500t) 4 960t (21.7%) (8 050t) 5 710t (18.9%) (8 950t) 7 010t (18.3%)
(10 050t)

Beijing/Tianjin 2 540 (16.3%) (4 200t) 3 420t (14.9%) (5 600t) 4 770t (15.8%) (7 450t) 6 280t (16.5%)
(9 390t)

The rest 2 250 (14.5%) (3 980t) 4 060 (17.7%) (6 610t) 5 390t (17.9%) (8 260t) 6 690t (17.5%)
(10 440t)

Total 15 550 (+77%) (26 430t) 22 910 (+47.3%) (37 790t +43%) 30 160t (+31.7%) (47 200t +25%) 38 220t (+26.7%)
(57 87t +22.6%)

Zhejiang province 2003 2004 2005 2006

Block 12 750t 17 480t (+37%) 22 540t (+29%) 27 990t (+24.2%)
Magnet 7 510t 10 470t (+39%) 14 290t (+36%) 18 240t (+27.6%)

Ninbo area 2003 2004 2005 2006

Ningbo area 2003 2004 2005 2006
Konit Mag. Co. 800 (1200)t 1080 (1800)t 1 450 (2 200)t 1 280 (2 050)t
Yunsheng Mag. Co 1600 (2650)t 1440 (2400)t 1 700 (2 700)t 2 400 (3 530)t
Ketian Mag. Co. 300 (500)t 720 (1200)t 950 (1 400)t 940 (1 400)t
Yongjiu Mag. Co. 600 (1000)t 650 (1 050)t 720 (1 150)t 1 080 (1 480)t
Zaobao Mag. Co. 400 (700)t 550 (900)t 570 (950)t 700 (1 080)t
Jinji Strong Magn. 240 (400)t 420 (700)t 450 (700) t 620 (950)t
Juyou Mag. Co. 240 (400)t 360 (560)t 380 (600)t 500 (720)t
Sanhuan Nd Mag. 180 (300)t 180 (300)t 150 (300)t 120 (180)t
Tonchuang Mag. – – 250 (350)t 350 (500)t
Huahui Mag. Co. – – 150 (240) 360 (520)t
YinXin Mag. Co. – – 200 (300)t 280 (400)t
Xiangyang Mag. – – 150 (240)t 250 (360)t
Tonsheng Mag. Co – – 200 (320)t 160 (250)t
Songke Mag. Co. 300 (500)t 330 (550)t 380 (600)t 450 (650)t
Cixi Heli Mag. Co. 1400 (2500)t 1800 (3200)t 2 000 (3 300)t 1 980 (3 200)t
Cixi Xinli 300 (500)t 330 (550)t 410 (640)t 380 (600)t
Cixi Yongsi – – 200 (320)t 350 (550)t
Cixi Hesheng – – 150 (250)t 260 (380)t

Subtotal: Block 10 650t 13 210t 16 560t 18 800t
Magnet 6 360t 7 860t 10 460t 12 460t

Hangzhou HPMG 300 (500)t 300 (500)t 340 (500)t 360 (550)t
Zhongke Maigao 200 (400)t 250 (420)t 300 (480)t 320 (500)t
Shenghua 100 (200)t 300 (450)t 360 (600)t 820 (1 370)t
Pengcheng – – 250 (400)t 350 (560)t

Subtotal: Block 1 100t 1 370t 1 980t 2 980t
Magnet 600t 850t 1 250t 1 850t

Dongyang area 2003 2004 2005 2006

Innovo Magnetics 300 (500)t 1320 (2200)t 1 400 (2 200)t 2 250 (3 600)t
Dongyang DMEGC 150 (300)t 140 (200)t 240 (350)T 450 (680)t
Zhongyuan Mag. Co. – – 240 (350)t 370 (560)t
Dongyang Baijian Mag. – – 200 (300)t 210 (320)t
Other 100 (200)t 300 (500)t 500 (800)t 650 (1 050)t

(continued overleaf )
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Table 1A. (Continued ).

Subtotal: Block 1 000t 2 900t 4 000t 6 210t
Magnet 550t 1 760t 2 580t 3 930t

Shanxi province 2003 2004 2005 2006

Block 5 500t 8 050t (+46.4%) 8 950t (+11.2%) 10 900t (+12.3%)
Magnet 3 250t 4 960t (+52.6%) 5 710t (+15.1%) 7 010t (+12.3%)

Taiyuan area 2003 2004 2005 2006

Tongli Magn. Co. 480 (800)t 540 (850)t 580 (900)t 750 (1 200)t
Jinshan Magn. Co. 240 (400)t 450 (700)t 450 (700)t 550 (860)t
Tianhe Magn. Co. 240 (400)t 800 (1300)t 650 (800)t 450 (600)t
Hongri Magn. Co. 180 (300)t 240 (400)t 200 (350)t 350 (620)t
Huiqiang Magn. Co. 120 (200)t 180 (300)t 200 (350)t 460 (800)t
33 Research Institute 120 (200)t 120 (200)t 80 (100)t 350 (450)t
Hengao Magn. Co. 120 (200)t 180 (300)t 190 (300)t 300 (480)t
Taiyuan Innovo – – 400 (600)t 580 (900)t

Subtotal: Block 2 500t 4 050t 4 100t 5 910t
Magnet 1 500t 2 510t 2 750t 3 790t

Rest of Shanxi 2003 2004 2005 2006

Hengci Keji 600 (1 000)t 800 (1 200)t 800 (1 300)t 520 (830)t
Jingyu Magn. Co. 350 (500)t 400 (700)t 460 (750)t 980 (1 400)t
Sanhuan Jingxiu 300 (500)t 350 (600)t 500 (800)t 680 (1 060)t
Luyuan Magn. Co. – – – 240 (400)t
Other 500 (1 000)t 900 (1 500)t 1 200 (2 000)t 800 (1 300)t

Subtotal: Block 3 000t 4 000t 4 850t 4 990t
Magnet 1 750t 2 450t 2 960t 3 220t

Beijing-Tianjin-Tangshan 2003 2004 2005 2006

Block 4 200t 5 600t 7 450t 9 390t
Magnet 2 540t 3 420t 4 770t 6 280t

2003 2004 2005 2006

BJMT 300 (500)t 270 (450)t 340 (500)t 400 (600)t
THINOVA 250 (400)t 350 (600)t 400 (650)t 460 (720)t
Sanhuan Eng. Center 250 (400)t 400 (600)t 430 (700)t 450 (730)t
Xinhuan Co. 120 (200)t 120 (200)t 150 (250)t –
Gaoxiao Innovo 180 (300)t 400 (700)t 400 (650)t 1 100 (1 600)t
AT & T 240 (400)t 280 (450)t 250 (400)t 920 (1 300)t
Sanhuan Lucky 850 (1400)t 1000 (1600)t 1 170 (1 800)t 1 350 (1 950)t
Tianjin Tianhe Go. – – 350 (500)t 450 (640)t
Tangshan Huida Co. – – 420 (650)t 500 (770)t
Langfang Zhongci – – 160 (250)t 250 (380)t
Other 350 (600)t 600 (1000)t 700 (1100)t 400 (700)t

Jiangsu province

Block 1 000t 2 000t 2 850t 3 080t
Magnet 500t 1 200t 1 860t 2 000t (5.2%)

2003 2004 2005 2006

Shanghai Roke – – 430 (650)t 350 (530)t
Shanghai Zhenbao – – 380 (600)t 450 (750)t
Other 500 (1000)t 1200 (2000)t 1050 (1600)t 1200 (1800)t
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Table 1A. (Continued ).

Guangdong province

Block 1 300t 1 600t 1 740t 2 220t
Magnet 800t 950t 1 060t 1 370t (3.6%)

2003 2004 2005 2006

Jingyue Mag. Plant 300 (500)t 450 (700)t 520 (900)t 650 (1 120)t
Meizhou Mag. Co. – – 80 (120)t 120 (180)t
Other 500 (800)t 500 (900)t 460 (720)t 600 (920)t

Shandong province

Block 380t 1 060t 1 550t 1 880t
Magnet 190t 660t 1 020t 1 280t (3.3%)

2003 2004 2005 2006

Yantai Shougang 60 (120)t 240 (380)t 350 (550)t 620 (880)t
Yantai Zhenghai 30 (60)t 170 (280)t 250 (400)t 300 (480)t
Other 100 (200)t 250 (400)t 420 (600)t 360 (520)t

Hebei province

Block 400t 500t 600t 700t
Magnet 200t 320t 380t 460t (1.2%)

2003 2004 2005 2006

Other 200 (400)t 320 (500)t 380 (600)t 460 (700)t

Inner Mongolia

Block 600t 1 000t
Magnet 400t 620t (1.6%)

2003 2004 2005 2006

Baotou Ruefuxin Co. – – 400 (600)t 620 (1 000)t

Liaonin province

Block 360t 450t 320t 510t
Magnet 250t 270t 220t 320t (0.8%)

2003 2004 2005 2006

Shenyang Zhongbei 250 (360)t 270 (450)t 220 (350)t 320 (510)t

Sichuan/Gansu/ Ninxia provinces

Block 600t 1 100t 600t 1 050t
Magnet 310t 660t 450t 640t (1.6%)

2003 2004 2005 2006

Sichuan/Gansu/Ninxia 310 (600)t 660 (1 100)t 450 (600)t 640 (1 050)t
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APPENDIX B

B1 Development History of the China NdFeB
Magnet Industry

NdFeB magnet industry appeared in China in the late
1980s, which was much later in comparison with developed
countries. Although the numbers of NdFeB magnet plants
were more than 100, most of them were small workshops
with producing capacities of less than 5 tons/year. Plants with
producing capacities ≥100 tons/year appeared only in early
1990s. The quality of their products was unstable and the
economic efficiency of these plants was not high enough.

B1.1 1987–1996 – initial stage of the developing
NdFeB magnet industry in China

‘Low start point’ was the character of this period because of
low initial investment, all equipment was locally made and
simple. Chinese engineers were forced to work out a special
process to prepare NdFeB magnets by using simple hardware.
Middle-grade NdFeB magnets can be prepared by using the
‘Chinese process’ successfully. On the whole, the NdFeB
magnet industry in China was much behind compared to that
in developed countries. Along with a technical gap, a big
gap existed in the management and quality control systems
between China and developed countries. The questions were
whether to build the magnet industry in an intensive way
or still keep the small-scale peasant economy? Whether to
build modern quality control systems or still keep the quality
systems random and out of control? Most of the owners
of magnet plants in this period had some background of
materials science and machinery, but none of them were
familiar with the modern management and quality control
systems. Owing to the huge market demand, the NdFeB
magnet industry in China developed rather fast, in spite of the
many difficulties that existed. Consequently, many investors
who got a lot of money from other businesses looked at
the NdFeB magnet industry as a better business for new
investment. Thus, the second stage of development of the
NdFeB magnet industry in China started.

B1.2 1997–2002 – second stage of the developing
NdFeB industry in China

‘Higher starting point’ was the character of this stage: the
volume of investment in this period was much higher than
that in the initial stage. It was at least 30–50 million RMB,
while it was only 1 million RMB or less in the initial
stage. The biggest investment in this period reached 280
million RMB! Using the big investment, the plant built

in this stage was equipped with best domestic equipment
following advanced processes, some plants even imported all
the equipment from Japan, Germany, and the United States.
The producing capacity was usually ≥200 tons/year, some
reaching even 2000 tons/year. The products were of middle
and high grades.

The technology, including both software and hardware,
and know-how are a top secret for magnet manufacturers,
which they never disclose to others, especially to com-
petitors from developing countries. But the situation dra-
matically changed while China became the global manu-
facturing center since the beginning of the new century.
Equipment producers in developed countries could not find
customers for their new products in their own countries.
They have to seek potential customers in China now. What
looked impossible a couple years ago now seemed real-
istic and practical. Last year, some Japanese equipment
manufacturers jointly developed a new fully closed and
automatic producing line for manufacturing sintered NdFeB
magnets with a capacity of 500 tons of final magnets/year
(equivalent to 800 tons block magnet/year). They guaran-
teed to make highest-grade magnets with energy products of
50 ± 2 MGOe, and oxygen content in magnet � 1000 ppm.
It is especially worth mentioning here that the total price of
such a producing line is �60% of the sum of the individual
equipment!

Now, an advanced producing line for high-grade NdFeB
magnets is under construction. All the equipments being used
are made in China. Of course, its total cost is only 1/3–1/5
of the imported one. Considering economic globalization and
continuously increasing market demand for NdFeB, a new
stage for the development of the NdFeB magnet industry is
starting in China now.

B1.3 2003 – a new stage of the developing NdFeB
magnet industry in China

The character of this stage will be ‘three highs’: high start
point; high investment; high reward. Thus, the project will
be run as follows: (i) To get the most advanced produc-
ing line by using high investment to guarantee high grade of
produced magnets for special uses. (ii) To follow most advan-
tageous processes to make magnets in an intensive way: to
divide producing process into two parts–master alloy/powder
production and magnet manufacturing, to reduce investment
and increase economic efficiency. (iii) To run the business
according to the way of capital management, in order to
guarantee a high reward of investment.

In this way, the China NdFeB magnet industry would
mature and would match with international standards finally.
As a member of new materials, the NdFeB magnet industry
in China would march forward further.
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1 INTRODUCTION

Ferrimagnetism is the phenomenon that a compound shows
a resultant magnetization, which originates from the antipar-
allel orientation of two or more nonequivalent sublattice
magnetizations. This implies that ferrimagnetism can only
occur in certain crystal structures consisting of two or more
crystallographic nonequivalent sublattices, which are occu-
pied by paramagnetic ions in sufficiently high concentrations.
The first materials which were identified to be ferrimagnetic
were the ferrites MFe2O4, which crystallize in the spinel
structure and for which the molecular field was applied for
the first time (Néel, 1948). A compound AB2O4 with the
spinel structure contains two cation sublattices, the tetrahe-
dral (A) and the octahedral sites (B). In Néel’s theory of
ferrimagnetism, the effective inter- and intra-sublattice inter-
actions A–B, A–A and B–B are introduced, which are in
fact super-exchange interactions, that is, indirect exchange
via the anion p orbitals. The strength of these super-exchange
interactions depends on the electronic structure of the cations,

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

as well as on the geometry of the relative configuration of the
interacting cations and the intermediate anion. In particular it
appears that the antiferromagnetic A–B interaction between
Fe3+ ions in the spinel structure is very strong, resulting in
ferrimagnetic ordering with high ordering temperatures for
the spinel ferrites. In addition to the spinel structure, Fe3+

ions can also be substituted in a number of other crystal struc-
tures, of which the most important are the garnet structure,
R3Fe5O12, the perovskite structure RFeO3, and hexagonal
structures like the magnetoplumbite structure MFe12O19 and
related structures. Although a large number of 3d-metal oxide
compounds may exhibit ferrimagnetic behavior at low tem-
peratures, the focus in this paper is on oxide compounds
with a high concentration of iron because of the possible
applications, that is, the ferrites, which show a substantial
magnetization at room temperature. The electrical resistance
of ferrites is highly dependent on the chemical composition;
even if a small amount of the Fe3+ ions is reduced to Fe2,
the resulting mixed valence of iron accounts for a relatively
high conductivity. The electrical conductivity is usually ther-
mally activated, which is indicative of the semiconducting
or insulating nature of these materials. If there are no mixed
Fe-valences, the ferrites are highly resistive materials.

2 SPINEL FERRITES

2.1 Magnetite

The most prominent and well-known ferrimagnetic com-
pound is magnetite, Fe3O4, a magnetic mineral, which is
an important ore of iron and occurs abundantly in nature
as octahedral spinel crystals and as a common constituent of
igneous and metamorphic rocks. Magnetite is named after an
old finding place, Magnesia, an ancient city in west Turkey.



2 Ferro- and ferrimagnetic oxides and alloys

A peculiar variety of natural magnetite, lodestone, exhibits
a permanent magnetization and consists of oxidized and Ti-
substituted magnetite. The origin of this permanent magne-
tization is attributed to the microstructure developed during
the formation of this mineral or is supposed to be induced
by the strong magnetic field caused by lightning impact
(Wasilewski and Kletetschka, 1999; Mills, 2004). Because
of the magnetic properties of magnetite containing rocks,
magnetite is often used as a probe in geomagnetism as well
as in extraterrestrial research. In particular, the research of
certain characteristics of magnetite containing minerals on
Mars by the Spirit Rover was designed to determine whether
liquid water was present on Mars or not (Bertelsen et al.,
2004; Morris et al., 2004). The analysis of Martian mete-
orites is also leading to the discussion whether the magnetic
particles in the meteorites are magnetosomes in origin, that is,
four-billion-year-old fossils of magnetotactic bacteria, indica-
tive of ancient extraterrestrial life, or that these particles are
exclusively from inorganic origin: the decomposition of Fe-
rich carbonates (Weiss et al., 2004). The magnetic properties
of a number of Martian meteorites containing magnetite are
also used to probe the enhanced ancient Martian magnetic
field (Collinson, 1997).

Magnetite can be met in still several other domains of sci-
ences. In archaeology, ancient ceramics are characterized by
the detection of magnetite by magnetization measurements
(van Klinken, 2001), whereas mineral magnetic analysis at
archaeological sites can give information about the decom-
position of organic remainders, which affects the magnetism
of the soil (Linford, 2004).

Recent environmental studies monitored the heavy metal
pollution of surface water by the magnetism of magnetite in
sediments (Desenfant, Petrovsky and Rochette, 2004); mag-
netite particles accumulated on pine needles are indicative of
airborne pollutants (Urbat, Lehndorff and Schwark, 2004).
Airborne subway particles, which consist mainly of mag-
netite have been shown to be highly genotoxic, partly due
to the relatively high concentration in subways (Karlsson,
Nilsson and Moller, 2005).

In biological and medical sciences, the magnetism of mag-
netite is prominently present. A few examples are as follows:
Magnetotactic bacteria can orient along magnetic lines due
to the magnetization of small magnetite and greigite (Fe3S4)

particles inside these bacteria (Frankel, 2003). The navi-
gation system over long distance of some vertebrates, like
migratory birds and fishes, is supposed to be related to the
magnetism of magnetite particles (Walker et al., 1997). The
human brain contains biogenic magnetite, which triggers the
dispute whether the interaction of mobile phone RF radiation
with these particles may cause health problems (Cranfield,
Wieser, Al Madan and Dobson, 2003). Furthermore, nanopar-
ticles of magnetite are very effective in the study of human

cancer cells for diagnosis and therapy (Zhang, Kohler and
Zhang, 2002).

Although magnetite is one of the best known ferrimagnetic
materials, the investigation of the physical properties is still
an intriguing field and raises sometimes more problems than
giving answers as is shown in the recent reviews on the
Verwey transition (Brabers, 1995; Walz, 2002; Garcia and
Subias, 2004). Especially for applications of magnetite in
which the nanoscale structures are important (i.e., particulate
magnetic media, thin films, multilayer structures etc.), the
structure of the crystal surface as well as the defect structure
of the reduced dimensions are decisive for the physical
properties of these nanoscale structures. In both cases, the
typical crystal structure of magnetite plays an important role.
The room-temperature structure of magnetite is the inverted
spinel structure (space group O7

h –Fd3m). The tetrahedral A
sites are occupied by one-third of the iron ions as Fe3+ ions
and the remaining Fe ions are located on the octahedral
B sites as mixed valence Fe ions with an average charge
of 2.5+. Table 1 gives the coordinates of the equivalent
positions of this space group as relevant for the spinel
structure. The first column is the number of equivalent
positions in the set, identified by a character in the second
column. The third is the point symmetry of the position of
each set and the last column presents the coordinates of all
equivalent positions in fractions of the lattice parameter. The
unit cell contains 8 ‘molecules’ of AB2O4; 32 oxygen ions
occupying the position e, 16 B ions in the position d, which
are in the center of an oxygen octahedron and 8 A ions in the
position a, which are in the center of an oxygen tetrahedron.
The positions f and b are interstitial tetrahedral sites and
the position c-interstitial octahedral sites. In real spinels like
magnetite the closed cubic packing of the oxygen ions is
disturbed by the displacement of the oxygen ions from their
ideal position into a 〈111〉 direction, away from the central
tetrahedral ions, because of the large size of the A-site ions.
A measure for this displacement is the oxygen parameter u,
which determines the position e of the oxygen lattice sites
(Table 1). For the undisturbed structure u = 0.375.

Hornstra (1960) recognized that twinning in the spinel
structure can occur by stacking faults in which the b and c
sites are occupied instead of the a and d positions, leading to
the presence of twins. The twin or antiphase boundaries are
responsible for the anomalous magnetic behavior observed
for single-crystalline magnetite thin films. The reduced
magnetic moment as well as the nonsaturation at high fields
are due to the changes in the configuration of the interacting
cations across the antiphase boundary (Margulies et al.,
1996; Heijden et al., 1996). Owing to the different angles
between the cations, the AB interaction is strongly decreased,
whereas the intra-sublattice A–A and B–B interactions
are increased, reversing the dominant interaction found in
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Table 1. The sets of the equivalent symmetry points of the space group Fd3m − O7
h relevant for the spinel structure. The origin is taken

at the A-site and u ≈ 3/8 (Reproduced from N.F.M. Henry et al., 1965, with permission from thr International Union of Crystallography.
 1965).

48 f mm u,0,0; u,0,0; 1/4+u,1/4,1/4; 1/4−u,1/4,1/4;
0,u,0; 0,u,0; 1/4,1/4+u,1/4; 1/4,1/4−u,1/4;
0,0,u; 0,0,u; 1/4,1/4,1/4+u; 1/4,1/4,1/4−u

O2− sites 32 e 3 m u,u,u; 1/4−u,1/4−u,1/4−u;
u,u,u; 1/4−u,1/4+u,1/4+u;
u,u,u; 1/4+u,1/4−u,1/4+u;
u,u,u; 1/4+u,1/4+u,1/4−u;

B sites 16 d 3 m 5/8,5/8,5/8; 5/8,7/8,7/8; 7/8,5/8,7/8; 7/8,7/8,5/8;
16 c 3 m 1/8,1/8,1/8; 1/8,3/8,3/8; 3/8,1/8,3/8; 3/8,3/8,1/8;

A sites 8 b 43 m 1/2,1/2,1/2; 3/4,3/4,3/4;
8 a 43 m 0,0,0; 1/4,1/4,1/4;

bulk material (Margulies et al., 1997). The result is a low
magnetization at low fields and nonsaturation at high fields.

The second topic of interest for nanostructures, which is
related to the peculiar structure of magnetite, concerns the
Verwey transition at 124 K, where the cubic structure trans-
forms into a monoclinic Cc structure. The low-temperature
unit cell corresponds to the cubic spinel structure with
a
√

2.a
√

2.2a and additional small deformations to arrive at
the monoclinic symmetry. The lattice parameters at 10 K are
a = 11.868 Å; b = 11.851 Å; c = 16.752 Å and β = 90.20◦

(Iizumi et al., 1982). The transition was attributed by Verwey
(1939) to an electronic ordering of Fe2+ and Fe3+ ions on the
B sites causing a decrease in the electrical conductivity of
about two orders of magnitude. A similar electronic ordering
was also supposed to exist at room temperature on the (100)
crystal surface, which was evidenced by magnetic-sensitive
scanning tunneling microscopy (STM) through the observa-
tion of a certain structure with periodicity of 1.2 nm on a
natural crystal (Wiesendanger et al., 1992). The reconstruc-
tion of the (100) surface (

√
2 × √

2) R 45◦, observed on syn-
thetic nonstoichiometric crystals was also proposed as evi-
dence for an electron ordering in the form of Fe2+ –Fe2+ and
Fe3+ –Fe3+ pairs along the 〈110〉 B-site rows (Shvets et al.,
2004). Moreover, on (100) surfaces of high-quality stoichio-
metric synthetic crystals a long-distance 1.2-nm corrugation
has been observed in the 〈110〉 B-site rows, which could
indicate that the surface may be a Wigner crystal rather than
a Wigner glass (Koltun, Hermann, Güntherodt and Brabers,
2001; Coey, Shvets, Wiesendanger and Güntherodt, 1993).
Also on (110) as well as on (111) surfaces reconstruction and
peculiar structures have been observed with STM techniques
(Jansen, Brabers, van Kempen, 1995; Lennie et al., 1996;
Oda et al., 1998). A remarkable superstructure has been
found on an oxygen-rich (111) surface with quasi-hexagonal
symmetry and 4.2-nm periodicity, which is supposed to be
of electronic origin. It is obvious that the surface struc-
ture of magnetite will be perceptive to modifications of the

electronic structure due to the presence of the mixed valence
iron ions at the B sites. The observed 4.2-nm superstructure
has been suggested to be related either to a polaronic or to
a charge-density wave electron-lattice instability (Berdunov,
Murphy, Mariotto and Shvets, 2004b).

Besides the electronic effects, chemical effects are impor-
tant as well for the surface structure of magnetite. For
instance, in a reducing environment, the appearance of a
phase segregation of wüstite (Fe1−xO) is observed on a
(111) Fe3O4 surface (Condon et al., 1997). Further it has
to be noted that for interfaces with magnetite in thin-film
structures, the surface structure can be modified in an even
more complex way. Interdiffusion between the layers occurs
like in MgO–Fe3O4 interfaces, where MgFe2O4 is formed
in the entire magnetite layer at relatively low temperatures
around 400 ◦C (Anderson et al., 1997). This is not surprising,
since the cation exchange between octahedral and tetrahedral
sites is for the magnesium ferrite system at this temperature
already substantial in the bulk material (Brabers and Klerk,
1977a). For other metal ions like Cu and Mn even diffu-
sion at 300 ◦C and lower temperatures is expected to go on
(Brabers, 1971; Brabers and Klerk, 1977b). Moreover, from
magnetic aftereffect experiments, it is evidenced that in mag-
netite even at room-temperature migration of iron ions takes
place by mediation of cation vacancies on the B sites (Walz,
2002). Because interfaces are usually stressed due to lattice
misfit and lattice defects, the stability of well-defined inter-
faces in which magnetite is involved might be problematical.
In particular this plays an important role in spin electronics
application, in which the electronic structure of magnetite at
the interface has to comply with certain requirements. For
example, it has been shown that the structure and the defects
on the surface modifies the spin transport significantly, which
in turn spoils the wanted tunneling magnetoresistance effect
(Berdunov, Murphy, Mariotto and Shvets, 2004a).

It is clear that if one succeeds in constructing a spin
electronic device based on magnetite films, the deterioration
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of spin-polarized transport by a possible aging of the
magnetite films is a major technological challenge. Because
the ionic diffusion is in particular at the interface already
substantial at room temperature, thermodynamically stable
structures have to be fabricated to prevent aging.

2.2 The Verwey transition

An enigma concerning magnetite is the continuous discussion
on the mechanism of the Verwey transition and the real elec-
tronic structure of the low-temperature phase. Around 124 K,
magnetite undergoes a first-order phase transition, which was
originally related to an ordering of Fe2+ and Fe3 ions on the
octahedral sites (Verwey, 1939). In fact, the transition can
be considered as an electronic phenomenon, because all the
octahedral sites are occupied by Fe3+ ions, over which a
number of electrons is distributed equal to half of the num-
ber of available sites. The main question is now if these
electrons are localized on specific sites in the low and the
high-temperature phase as well, or if these electrons are itin-
erant. In Verwey’s picture, the structure is purely ionic. While
at temperatures above the transition temperature Tv the local-
ized electrons are rather mobile, hopping from one site to
another, the electrons below Tv are frozen in rows along the
〈110〉 direction, resulting in an orthorhombic structure. This
ordering scheme has to be modified in such a sense that the
pure ionic nature of the ordering is replaced by a partial ionic
ordering. On the basis of electron diffraction experiments,
Zuo, Spence and Petuskey (1990) proposed an ionic charge-
ordering scheme with Cc-symmetry in which a characteristic
charge-density wave is present. A refined analysis of the
structure with high-resolution neutron and X-ray diffraction
showed a dominant [001]c charge-density wave with a sec-
ondary [001/2]c modulation (Wright, Attfield and Radaelli,
2001, 2002). The four B-site sublattices in this model are
split into pairs of large and small sites, indicative for charge
order. However, the difference in size is small and is pro-
vided as evidence for a not complete ionic separated charge
order of Fe2+/Fe3+ ions but for apparent partial local charges
of 2.4 and 2.6, with a modulation in the c direction. From X-
ray resonant-scattering studies of the ‘forbidden’ reflections
near the Fe–K-α absorption edge, even a complete renun-
ciation of ionic ordering has been proposed. For the (002)
reflection, no difference was observed in the energy depen-
dence below and above Tv (Hagiwara et al., 1999). Similar
behavior was also observed for the (006) reflection, which
led Garcia et al. (2000) to the conclusion that all the octahe-
dral sites must have identical anomalous scattering factors,
that means there is no difference between Fe2+ and Fe3+

sites within the time window of the X-ray radiation, 10−16 s.
Consequently, no charge fluctuation above or charge

ordering below Tv would exist. Nevertheless, the same

forbidden reflections were also observed in cobalt ferrite
(Subias et al., 2004b), in which the B sites are populated
by Co and Fe ions, because of the inverse spinel structure
of cobalt ferrite. This implies that Co and Fe ions, which
have irrefutably a different scattering factor for the resonant
diffraction, do not disturb the coherence.

With this in mind, one cannot exclude that charge dis-
proportion on the octahedral Fe sites, leading to two dis-
tinct B-site Fe ions, will have no effect upon the resonant
diffraction, which makes the conclusion about the nonexis-
tence of the charge ordering doubtful. The finite intensity of
the X-ray resonant scattering for the forbidden reflections
is caused by the anisotropic environment of the resonant
ions. The asymmetry of the local sites can be an intrinsic
property of the crystal structure or induced by several other
factors. The magnetic interactions do not play a dominant
role in the resonant scattering in spinel ferrites as is shown
by the results on the nonmagnetic zinc ferrite (Kanazawa,
Hagiwana, Kokubun and Ishida, 2002) and the experiments
on magnetite above the Néel temperature (Subias et al.,
2004b). Besides the intrinsic anisotropy of the crystal struc-
ture (the trigonal symmetry of the B site) point defects can
also contribute to the resonant scattering (Dmitrienko and
Ovchinikova, 2003). Magnetite can have a highly defective
structure due to the oxygen nonstoichiometry.

Subias et al. (2004a) reported the absence of resonant
scattering for certain superstructure reflections which was
taken as evidence for the absence of charge order below
Tv. Although, Toyoda et al. (1999) observed in a similar
experiment super-lattice reflections, which they took as
evidence for the valence contrast between the Fe ions.

Very recently, Huang et al. (2006) reported O–K-edge res-
onant X-ray scattering experiments, which proved the exis-
tence of charge-orbital ordering vanishing abruptly above the
Verwey temperature. A definitive proof of this orbital order-
ing in magnetite, which is also imperative for the existence of
charge ordering, is given by Su et al. (2006), which reported
an extended study of single crystal X-ray resonant scattering.
This conclusion is based on the observation of the giant reso-
nant enhancement of superstructure reflections, characteristic
of the Verwey transition at all relevant absorption edges (i.e.,
Fe–K, Fe–L3 and O–K) and ab initio band structure calcu-
lations.

The charge/orbital ordering is well described by a super-
structure a/

√
2 × a

√
2 × 2a, with the charge modulation in

the c direction (Su et al., 2006; Huang et al., 2006).
The use of refined anomalous scattering coefficients for the

octahedral iron ions gave direct evidence for a high degree
of 46% Fe2+/Fe3+ charge order in magnetite at 90 K (Goff,
Wright, Attfield and Radaelli, 2005).

A nuclear resonance study on Fe57 in magnetite around
Tv revealed 8 A-site NMR lines and 15 B-site lines for the
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low-temperature phase (Novak et al., 2000). According to
the Cc-symmetry the number of B lines must be 16. One line
coincides with the A spectrum and was indeed found in an
additional NMR study (Mizoguchi, 2001). Since the nucleus
acts as a probe on an atomic scale, the effect of differences in
charge must be easy detectable. However, the observed B-site
lines could not be split into two sets of lines on the basis of
the NMR parameters like the spin–lattice relaxation time T1

and the spin–spin relaxation time T2. This is not consistent
with the presence of Fe2+ because the Fe2+ relaxation is
usually much faster, and suggests strong mixing of the 3d5

and 3d6 configurations of the B-site ions. This means that
a complete ionic ordered structure is not supported by the
NMR results.

A number of band structure calculations have been pub-
lished for magnetite to elucidate the electronic structure
above as well below Tv. Depending on the method which is
used the results are diverse, as expected. The self-consistent
spin-polarized augmented plane wave (APW) method with
the local spin density approximation (LSDA) revealed that
the majority-spin electrons are semiconducting with a size-
able energy gap, whereas the minority spin electrons are
present at the Fermi energy, which indicates that the 3d6

electrons of the iron ions are itinerant above Tv (Yanase and
Siratori, 1984; Pénicaud, Siberchicot, Sommers and Kubler,
1992). The LSDA band structure calculations render always
a metallic solution without charge ordering. Zhang and Sat-
pathy (1991) tried to obviate this problem by suggesting a
three-band model Hamiltonian to describe the motion of the
electrons on the B sites. However, a critical parameter for
itinerant or localized character of the 3d electrons is U/t ,
where U is the electron–electron Coulomb interaction and t

the 3d bandwidth (Hubbard, 1963, 1964a,b, 1965). Modifica-
tion of the LSDA method, introducing a Coulomb interaction
correction, the so-called LSDA + U method, gives indeed a
stable solution with a charge ordering and an energy gap
of 0.19 (Antonov et al., 2001) and 0.34 eV (Anisimov, Elfi-
mov, Hamada and Terakura, 1996). Unfortunately, in both
studies the orthorhombic Verwey-ordering scheme was taken
as starting point, which has been shown to be unrealistic
(Wright, Attfield and Radaelli, 2001). With electronic struc-
ture LSDA + U calculations based on the low symmetry
monoclinic structure of magnetite, a periodic charge dis-
proportion along the c axis was found, in agreement with
the experimental X-ray structure determination (Madsen and
Novak, 2005). LSDA + U calculations in the tight-binding
linear muffin-tin orbital calculation scheme for the P2/c

structure of magnetite unveiled a strong charge as well
as an orbital ordering for the low-temperature phase, with
an energy gap of 0.18 eV. However, the obtained total 3d
charge disproportion is rather small (Leonov et al., 2004).
The results show that the charge order has a pronounced

〈100〉 modulation, which is not compatible with the so-called
Anderson criterion. It was pointed out by Anderson (1956)
that nearest-neighbor Coulomb interactions in magnetite led
to a Tv higher than 104. The Verwey transition is excep-
tional in the sense that if only the Coulomb interaction is
the driving force for the transition, substantial short-range
order must be present in the disordered structure to explain
the low Tv = 124 K. The octahedral sites in the spinel struc-
ture are arranged in tetrahedrons, with each site belonging to
two tetrahedrons. In this arrangement, it is possible to create
substantial short-range order, imposed by the Anderson cri-
terion: the total ionic charge of the individual tetrahedrons
must be constant, which means an occupation by 2Fe2+ and
2Fe3+ ions per tetrahedron.

The violation of Anderson’s point charge criterion in
the outcome of the LSDA + U band calculation explicitly
explained by the t2g orbital ordering, would lead to additional
Coulomb interactions stabilizing a charge-ordered structure,
which does not comply with Anderson’s criterion (Jeng,
Guo and Huang, 2004). From a theoretical point of view,
charge order combined with orbital ordering seems to be
a realistic description of the mechanism of the Verwey
transition, notwithstanding the denial of any charge ordering,
based on X-ray resonant scattering (Garcia et al., 2001).
This controversy on the existence of a long-range order
of different electronic states on octahedral sites has been
discussed recently using a number of experimental and
theoretical results (Fähnle, Kronmuller and Walz, 2005).

The electronic structure and the mechanism of the Verwey
transition are important for deciding whether magnetite
can be useful in spin electronics. If the material can be
considered as a semimetal, there is a 100% spin polarization
of the charge carriers, which is very attractive for spin
electronics (de Groot and Buschow, 1986). Unfortunately, the
various reports on spin-polarized photoelectron spectroscopy
do not give a fixed result but show a scattering of the
spin-polarization degree of the conduction electrons, which
might be caused by the variation of the surface structure
of the thin films used in the experiments (Morton et al.,
2002; Dedkov, Rudiger and Güntherodt, 2002; Huang et al.,
2002; Fonin et al., 2003). That the surface structure modifies
indeed the photoelectron emission has been shown by the
temperature dependence around Tv of the onset energy near
the Fermi level at which the emission starts. Depending on
the crystal plane of the single crystal and surface treatment,
a gradual shift of the spectral onset energy or a small
jump at Tv superimposed on an overall gradual dependence
occurs (Schrupp et al., 2004). This implies that for certain
surfaces an energy gap is formed at Tv, indicative of
a clear metal–insulator transition as was earlier deduced
from photoelectron spectra (Chainani et al., 1995). For other
surfaces, the gap does not disappear at Tv but is reduced by a



6 Ferro- and ferrimagnetic oxides and alloys

step from 0.10 to 0.05 eV. A similar step and the persistence
of the gap above Tv was also reported for a cleaved surface
(Park et al., 1997). Soft X-ray photoemission experiments
gave evidence of the existence of strongly bound small
polarons, which supports a picture for the Verwey transition
in which elastic effects (like Jahn–Teller effects) interplay
with local Coulomb interactions (Schrupp et al., 2005). The
local structure of the octahedral sites, detected by EXAFS
measurements shows indeed distortions, which are in favor
of this picture (Subias, Garcia and Blasco, 2005).

X-ray absorption spectroscopy (XAS) and magnetic circu-
lar dichroism (MCD) experiments, which are not so surface
sensitive as photoelectron spectroscopy, proved the B-site
spin moment to be noninteger, in contrast to the predicted
half-metallic feature. Evidence was found for a substantial
average orbital moment of the B-site iron ions, 0.33 µB

(Huang et al., 2004). However, XMCD experiments, taking
into account self-absorption and other spurious experimental
effects reveal vanishing orbital moments and nearly integer
spin values (Goering et al., 2005; Goering, Gold, Lafkioti
and Schütz, 2006)! From the preceding discussion it might
be clear that the intrinsic electronic and magnetic structure
of bulk magnetite is not yet completely settled.

Additional experimental data which can give insight into
this problem concern the influence of impurities on the
Verwey transition (Brabers, Walz and Kronmüller, 1998)
and magnetic aftereffects, caused by electronic processes
(Walz, 2002). The magnetic disaccommodation (DA) spectra
of highly perfect single-crystalline magnetite are shown in
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Figure 1. The isochronal disaccommodation (DA) spectra of per-
fect single-crystalline magnetite in the low-temperature range as
measured, t1 = 1 s after demagnetization and at the following times:
t2 = 2, 4, 8, 16, 32, 64, 128 and 180 s, yielding the curves 1, . . . 8,
respectively. (Reproduced from Walz et al., 1982, with permission
from Wiley-VCH.  1982.)

Figure 1 (Walz et al., 1982). DA is defined as the relative
difference of the reciprocal susceptibility 1/χ measured at
two times t1 and t2 after the demagnetization of the sample:

DA = [χ−1(t2) − χ−1(t1)]/χ
−1(t1) (1)

The DA reflects the stabilization of the domain wall
after demagnetization, which is achieved by reorientation
of the local configuration, intermediate by ionic or electron
transport processes. The low-temperature DA spectra in
Figure 1 are most clearly structured for perfect single crystals
but are modified and even complete suppressed by lattice
imperfections like nonstoichiometry, mechanical stresses,
impurities etc. (Walz, 2002). The conclusion is evident
that the DA spectra below Tv are electronic of origin and
represent intrinsic properties of bulk magnetite. A detailed
analysis of the DA spectra explains the observed spectra as
follows: the extended relaxation zone of logarithmic time
dependence in the 4 K < T < 30 K range, together with the
exponential Debye-type relaxation peak at 30 K are assigned
to coherent electron tunneling processes and local electronic
excitations (Walz, Weidner and Kronmüller, 1980; Walz
et al., 1982; Kronmüller and Walz, 1980).

The 30 K peak is composed of a narrow superposition of
two single Debye-type processes, as clearly indicated in the
initial permeability plot in Figure 1 and which results from
the thermal excitation between the doublet and singlet of
the dε level (Kronmüller and Walz, 1980). Between 35 and
50 K, a relaxation gap occurs, accompanied by a dip in the
initial susceptibility. In the 50–125 K range an extended
relaxation area with logarithmic time dependency appears,
which is caused by thermally activated variable range hop-

ping processes further supported by a T −1/4 dependence of
the logarithm of the conductivity (Lenge, Kronmüller and
Walz, 1984; Mott, 1990). Further evidence for the assignment
to thermal activated variable range hopping was brought on
by the DA spectra of electron-irradiated magnetite, which
showed a splitting of the extended logarithmic relaxation
zone into separated Debye processes (Walz and Kronmüller,
1990). Essential for the existence of a thermally activated
magnetic relaxation is the presence of localized magnetic-
anistropic species, which can reorientate under the influence
of the (de)magnetization process. For the low-temperature
electronic relaxation in magnetite it is obvious that Fe2+

ions, due to their residual orbital moment, represent such
anisotropic species. Consequently, processes contributing to
the DA must be linked to the electron transitions between
octahedral Fe sites by means of thermal activated hopping
or incoherent tunneling, which implies charge localization on
the Fe2+.

An interesting feature of the Verwey transition is that the
transition temperature is very sensitive for the perfection
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of the crystal, that is, the oxygen stoichiometry and the
cation impurities. It turned out that the Tv shifting with
the concentration of the cation impurity depends on the
charge and the size of the substituent, as well as on the
A or B site on which the substitution takes place (Brabers,
Walz and Kronmüller, 1998). In Figure 2, the shifting of Tv

for stoichiometric magnetite substituted with various cations
is plotted against the substituent concentration. Substitution
with bivalent ions (Ni, Mg, Co) on the B sites reveals a
nearly identical shift with impurity concentration and even
for the trivalent Ga an identical behavior is found, if the
cation distribution is taken into account, one-third of Ga
on B sites (Kohout et al., 2005). The ionic size of the
impurities does fit in the range of the two and trivalent
octahedral iron ions, which means that the crystal lattice is
not extremely deformed by these substitutions. However, the
substitution with bivalent zinc on the A sites resulted in a
shift twice as large as observed for the above mentioned
substitutions (Schwenk et al., 2000), which is also the case
for Ti4+ on B sites and cation vacancy doping by changing
the oxygen content of the crystals. In the latter cases the
ratio of the concentration of the octahedral two and three
valent ions is deviating from one, which seems to be more
effective to retard the Verwey transition than an octahedral
impurity with a similar charge as the iron ions, which leaves
this ratio untouched. From these findings one could arrive
at the conclusion that the charges of the B-site ions, that
is, the Coulomb interactions between the B sites are the
dominant driving force for the Verwey transition. Although
it must be noted that the small trivalent Al ions also have a
rather strong effect upon the shifting, indicating that lattice
or phonon effects may play an additional role. In a first
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Figure 2. The shift of Tv for substituted stoichiometric magnetites
Fe3−xMxO4 as function of the concentration x. (Reprinted figure
from Brabers et al., 1958, with permission from the American
Physical Society.  1958.)

approximation with a two-state mean-field model, accounting
for Coulomb short- and long-range interactions only, a
number of experimental results on the impurity and pressure
dependence and even the value of the transition temperature
were explained satisfactorily (Brabers, Walz and Kronmüller,
1999a,b, 2000). The effect of the cation substitutions on
the octahedral lattice consists of a (partial) blocking of
the electron exchange mechanism necessary to establish the
long-range ordering scheme. The result is that a fraction of
the 2+ or 3+ ions is localized, limiting the number of sites
to participate in the ordering–disordering process. With the
proposed model the transition temperature was calculated:
Tv = W/8 k in which W represents an energy gap separating
the electronic subbands of the two-state model. Taking a
value of W ∼ 0.10 eV (Kuipers and Brabers, 1979) one
arrives at a value around 145 K, in reasonable agreement with
the experimental value of 124 K. The model describes the
linear Tv shifting �Tv = −αxTv in which x the substituent
concentration M in Fe3−xMxO4, Tv the Verwey temperature
of the perfect magnetite crystal and α = 3 for bivalent and
trivalent substitutions on B sites or α = 9 for Zn2+ on A
and Ti4+ on B sites (Brabers, Walz and Kronmüller, 1999a).
With a refinement of the model, in which the dependence of
the interionic potential on the unit cell dimensions is taken
into account, an expression for the pressure dependence of
Tv is found (Brabers, Walz and Kronmüller, 1999b):

dTv/dp = −6/7v/N · k (2)

v is the relative volume change at Tv and atmospheric
pressure (�V/V = 6 × 10−4); N , the number of Fe2+-type
ions per m3 (N = 1.35 × 1028 m−3); and k, the Boltzmann
constant.

The calculated value of dTv/dp = kGPa−1 agrees fairly
well with the experimental data, which varies between −2.0
and −5.0 kGPa−1 for pressures up to 6 GPa.

A further refinement of the two-state mean-field model
is the replacement of the two distinct levels by two bands
of finite width (Brabers, Walz and Kronmüller, 2000). This
provides the explanation of the discontinuity in the relation
of Tv upon the impurity content at higher concentration,
and also marks the transition from first to second order
(Shepherd et al., 1991). Fitting the model parameters yields
a Coulomb gap of 0.04 eV and a bandwidth of 0.01 eV,
which are typical values for localized electron systems and
supports a small polaronic band picture (Brabers, Walz and
Kronmüller, 2000).

The IR optical conductivity is also consistent with a small-
polaron nature of the charge carriers (Degiorgi, Wachter and
Ihle, 1987; Pimenov et al., 2005). This suggests that the
charge order is not only driven by electrostatic Coulomb
interactions, but that elastic lattice contributions are also
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relevant for the localization of the electrons on the Fe2+

ions and the nature of the Verwey transition. An interplay of
an electron ordering with elastic lattice effects is very likely,
which point of view is also put forward by Su et al. (2006)
by introducing the Jahn–Teller distortions of the high spin
Fe2+ ions.

2.3 Mixed spinel ferrites

A large variety of metal ions can be incorporated into the
oxide spinel structure, which implies that the physical proper-
ties of the technical applied spinel ferrites like permeability,
high induction, temperature and time stability, low losses
and operating frequency can be tuned by a proper choice
of the composition. It must be noted that spinel ferrites are
usually soft magnetic, with the exception of magnetite and
maghemite (γ -Fe2O3) in particulate media. In Table 2 some
basic magnetic properties of a number of simple ferrites are
given. From these data predictions can be made for the rel-
evant magnetic properties of the mixed ferrites, useful for
applications. For instance, the mixed series of the simple fer-
rites with ZnFe2O4 are important because of the phenomenon
that the magnetization increases upon substitution as shown
in Figure 3. The nonmagnetic Zn ions are located on the A
sites, which results in the enhancement of the spontaneous
magnetization as a consequence of the antiferromagnetic cou-
pling between the tetrahedral and the octahedral sublattice.
However, with increasing Zn concentration the Néel tem-
perature decreases and above a concentration of x ∼ 0.5,
the antiparallel magnetic structure of the A and B sublat-
tices is replaced by spin-canting and spin-glass structures.
The spinel ferrites, which are important for applications are
based on a limited number of chemical systems. The basic
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Figure 3. The magnetic moment at 0 K per formula unit of the
Me1−δZnδFe2O4 mixed series.

composition of a soft ferrite for a specific application is first
of all determined by the frequency and the power level at
which the material is used. Mn–Zn ferrites are suitable up
to 1 MHz for low and high power level. For frequencies
above 1 MHz, the Ni–Zn ferrite system is more appropriate,
because of the high electrical resistance, due to the absence of
Fe2+, which lowers the losses. At microwave frequencies the
electrical conductivity must be very low, so that microwave
ferrites are found in the Ni–Al ferrite system. An illustrative
example that the choice of a basic ferrite composition for a
specific application is determined by the operation frequency
is given by the ferrites for deflection yokes. Because of the
higher sweep frequency in high-definition T V and the higher
resolution and the larger screen in display monitors, the orig-
inal Mg–Mn ferrites are gradually replaced by the more high
resistive ferrites like Mn–Mg–Zn and Ni–Zn–Cu ferrites.

Another new field in soft ferrites is the multilayer ferrite
chip inductor, which consists of thin ferrite layers between
silver strips which form the internal windings in the final
assembly of the ferrite layer inductor. Because ferrite layers
and silver strips are sintered together, low-temperature sinter-
ing is required, which limits this technique to the low-melting
Ni–Zn–Cu ferrite system (Ohiai, 1997).

In addition to the basic composition, which represents only
the main components of the ferrites, several types of additives
are used to achieve a fine-tuning of the final properties.
Depending on the objectives three types of additives can
be distinguished. The first class of additives comprises
of those which substitute for the main components and
which control the intrinsic properties like magnetostriction,
magnetic anisotropy and electrical resistance. For instance
in high-permeability Mn–Zn ferrite, the presence of Fe2+ is
essential to obtain zero magnetic anisotropy. To decrease the
electrical conductivity, simultaneously with the introduction
of Fe2+ four valent ions like Ti or Ge are substituted
(Stijntjes, Klerk and Broese van Groenou, 1970). In Ni–Zn
ferrites the anisotropy is tuned by the substitution of bivalent
cobalt (Vogel, Gyorgy, Johnson and Sherwood, 1986). The
second type concerns additives designed to segregate at
the grain boundaries like Si, Zr, Ca and Ta, in order to
increase the grain-boundary resistance and to reduce eddy-
current losses (Otsuki, 1992; Drofenik, Žnidarsič and Zajč,
1997). Ca and Si are already present in the raw materials
as impurities. In addition to the formation of the high-
resistance grain boundary, Ca and Si promote the sintering
of the polycrystalline ferrite by the formation of a ‘glass’
phase at the boundary. Sintering can be carried out at lower
temperatures, preventing exaggerated grain growth. The third
class of additives promotes or prevents grain growth. Grain
growth is usually promoted by a liquid phase at the grain
boundary by additives like CaO, SrO, V2O5, Nb2O5, Sb2O5,
PbO, and CuO (Yan and Johnson, 1978). TiO2 and SiO2
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Table 2. Magnetic properties of simple ferrites at room temperature and magnetic moment at 0 K.

Compound Tc K σ at 300 K G.cm3 g−1 Mo
s µB/F.U K1105 erg cm−3 λ100 × 10−6 λ111 × 10−6 λs × 10−6

Fe3O4 860 95.5 4.1 −1.2 −19.5 +77.5 –
γ -Fe2O3 1020 87.3 – −0.46 – – +22
CoFe2O4 790 80–94 3.4–4.0 +18 +30 −650 +170 –
Cu0.5Fe2.5O4 575–630 – 4.0–5.4 – – – –
CuFe2O4 725–775 20–30 1.3–2.7 −0.6 −65–100 +7 +15 –
Fe2CrO4 430 28 2.45 – – – –
Li0.5Fe2.5O4 943 69 2.60 −0.8–0.9 −25–28 +3 +4 –
MgFe2O4 605–710 31–62 0.82–2.38 −0.25–0.45 −10–14 +2 –
MnFe2O 550–620 80 4.5–4.8 −0.25 −50–55 +1 +3 –
NiFe2O4 860–870 56 2.2 −0.68 −45–63 −25–34 –
ZnFe2O4 10–15 – – – – – –
Fe2TiO4 120 – – – – – –

sustain also the exaggerated grain growth but without a
liquid phase; this effect is caused by the formation of
cation vacancies and the diffusion of Ti and Si into the
grains. Ta2O5 and ZrO2 inhibit particle growth (Ishino et al.,
1992). However, depending on the processing parameters
like sinter temperature and atmosphere, additives can show
opposing effects upon the grain growth. Ta2O5 dissolves in
the spinel lattice above 1250 ◦C leading to an increased grain
growth, below 1250 ◦C grain growth is inhibited by Ta2O5

segregation at the grain boundary (Žnidarsič, Limpel, Dražič
and Drofenik, 1992). Similar to BaO, segregating in the solid
grain boundary below 1240 ◦C preventing grain growth, at
higher temperature a liquid phase is formed promoting grain
growth (Drofenik, Besiničar and Kolar, 1984).

The properties of ferrites are not only determined by the
chemical composition; the polycrystalline microstructure and
the cation distribution between the tetrahedral and octahedral
sites determine the properties as well. Because of the tem-
perature dependence of the cation distribution, for example,
in Mn, Mg, and Cu ferrites, the magnetic properties can
vary within the range as indicated in Table 2, which is due
to the differences in cation distribution, which are frozen
during the cooling after the sinter process. The microstruc-
ture, that is, the nature of the grain boundary and the grain
size does affect the magnetic susceptibility. Ferrites have an
advantage that the electrical conductivity is lower than for
metallic materials, but for high-permeability Mn–Zn ferrites
it is desirable to choose compositions with some excess of
iron. This excess of iron is present as Fe2+ and sets the mag-
netic anisotropy and magnetostriction to zero, which gives
rise to a large secondary maximum in the permeability (Stijn-
tjes and Roelofsma, 1986). Unfortunately, the mixed valence
of the iron ion also gives rise to an increased electronic
conductivity, which increases the eddy-current loss. By an
appropriate ceramic processing, the grain boundaries can be
oxidized preferentially, which increases the grain-boundary

resistance and causes a frequency dependence of the effective
conductivity (Koops, 1951), which means a reduction of
the losses in the low frequency range. As will be dis-
cussed in the section on the magnetic permeability, the
grain-boundary characteristics play an important role in the
development of high-quality ferrites. The grain-boundary
chemistry and structure of various commercial-grade Mn–Zn
ferrites were investigated with high-resolution-transmission-
electron-microscopy and Auger analysis. It was shown that
glassy phases are present on a nanoscale in 1-MHz ferrites,
while for 100-kHz ferrites no such phases are present, but
only an enrichment of the grain boundary occurs with impu-
rities like Ca, Si, Ti and Sn. Simultaneously, a 5–10-nm
mosaic structure occurs near the grain boundary, with low
angle tilts in the order of a few tenths of a degree (Nomura,
1992). Also, residual stresses, due to the grain-boundary
structure and stresses induced by the thermal processing alter
the permeability and losses, which is convincingly proved in
the case of the excessive silver addition to Ni–Cu–Zn multi-
layer ferrite chip inductors. The deterioration of the magnetic
properties is caused by the comprehensive stress, originat-
ing from silver precipitates at the grain boundary (Nakano,
Momoi and Nomura, 1992).

2.4 Maghemite

An outstanding ferrite material is maghemite, γ -Fe2O3,
which at room temperature is a metastable phase of ferric
oxide. The stable α-Fe2O3 phase, hematite, has a corundum-
type crystal structure; maghemite has a cation-deficient spinel
structure Fe[θ0.33Fe1.67]O4, with the cation vacancies at the
B sites. Maghemite can only be prepared at temperatures
below 450 ◦C by oxidation of magnetite or dehydration of
ferric hydroxides because above 450 ◦C γ -Fe2O3 transforms
to the stable α-phase. Because of the low-temperature prepa-
ration, poorly crystallized particles are formed in which the
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Fe3+ cations and the vacancies are distributed in a disordered
way. An ordered structure of maghemite is also known, in
which the vacancies and Fe3+ ions are 1:5 ordered on the B
sites, forming a tetragonal structure with a = 8.3396 Å and
c = 24.9663 Å. The cubic lattice parameter of the disordered
structure is 8.3363 Å (Greaves, 1983). γ -Fe2O3 is applied
in magnetic recording in the form of particulate media and
as thin films. An important property for this application is
the coercive force Hc. For iron-based recording particles,
the Hc is increased by improving the acicular form of the
particles, which increases the shape anisotropy (range of Hc

250–450 Oe). A second possibility is the increase of the mag-
netocrystalline anisotropy by Co2+ doping. The most effec-
tive way to increase Hc turned out to be the absorption of
Co2+ in the surface of the particles, which results in materi-
als known as surface Co-modified iron oxides (Hc∼1000 Oe).
Besides the shape and the magnetocrystalline anisotropy, the
surface anisotropy is another factor determining the size of
the coercive force of the ferrite particles. Because of the large
specific surface, the balance of the exchange interactions at
the surface will be different from that in the bulk. A magnetic
surface reconstruction might occur where the spin system
lowers its energy by adopting a noncollinear structure at the
surface. The concept of surface spin canting explains the par-
ticle size dependence of the magnetization and spin canting
has been experimentally proved to exist by the nondisappear-
ance of the second and fifth line in the Mössbauer spectra in
an external longitudinal field (Coey, 1971). However, spin
canting in small particles has not been restricted to the sur-
face layer as was theoretically described by a simple mean-
field model, but is a routine manifestation of the response of a
uniaxial magnetic particle to an applied field. Consequently,
a ferrimagnetic particle will not saturate by a large magnetic
field (Pankhurst and Pollard, 1991). Experimental evidence
for the spin canting throughout the particle has been given
by the Mössbauer study of 57Fe surface enriched γ -Fe2O3

particles (Parker and Berkowitz, 1991; Parker, Foster, Mar-
gulies and Berkowitz, 1993). Notwithstanding the importance
of Co-modified γ -Fe2O3 as recording medium, the mech-
anism of the increase of Hc by the surface treatments is
not clear. Co absorption onto the γ -Fe2O3 acicular particles
increases the uniaxial anisotropy of the precursor particles,
originally mainly due to the shape anisotropy. Since acicu-
lar γ -Fe2O3 particles are elongated along the 〈110〉 axis, the
large single-ion anisotropy of Co2+ in the 〈100〉 direction
should introduce a multiaxial anisotropy in the epitaxial ori-
ented cobalt ferrite layers on the particle surface. The result
has to be an anisotropic axis at the surface not collinear
with those of the interior. An explanation for the observed
uniaxial anisotropy of the whole particle is not found. The
demagnetization field of the particle has been suggested to
induce a uniaxial cobalt ferrite coating by establishing a local

reorientation of the anisotropic Co2+ ions like in the DA
phenomena. Another possibility is the migration of Co2+ into
the lattice sites with a symmetry axis close to the field direc-
tion. The crystal defects at the surface created by the cobalt
absorption have to be considered in more detail as possible
explanation of the enhanced anisotropy. It has been shown
that other ‘chemistry’ effects at the surface layer change the
anisotropy as well (Slonczewski, 1992).

2.5 The magnetic permeability of polycrystalline
ferrites

For designing components based on polycrystalline soft
ferrites, the magnetic permeability as function of frequency,
temperature, and magnetic field as well as the magnetic
losses are significant factors. For polycrystalline ferrites two
magnetization processes are of importance: rotation of the
spontaneous magnetization in the domains and the domain
wall displacement. In general the domain wall displacement
gives a larger component to the permeability than the
rotational process and accounts for the high permeability
of a certain class of nonmicrowave ferrites. For microwave
ferrites (>100 MHz) the rotational process is the dominant
mechanism. On the basis of the natural spin resonance
(NSR), which occurs at a resonance frequency ωr = γH A

(Landau and Lifshitz, 1935), in which H A is the anisotropy
field. A relation between the static permeability and the
resonance frequency of the NSR has been derived:

fr(µi − 1) = 4/3γMs (3)

in which Ms represents the saturation magnetization and
γ = g × e/2mc. (Snoek, 1948).

For a series of polycrystalline NixZn1−xFe2O4, the dis-
persion frequency in the permeability spectrum could be
well explained by the NSR according to formula (3), which
suggests that these ferrites are magnetized by the rotational
process (Smit and Wijn, 1959).

The initial permeability of a material originating from
rotational magnetization is given by:

(µi − 1) = c × M2
s /K1 (4)

The coefficient c depends on the sign of the anisotropy
(c = 1/3 for positive K1, c = 1/2 for negative K1). The rota-
tional permeability does not depend on the microstructure of
a polycrystalline ferrite, but for a large number of ferrites
the permeability turned out to be linearly dependent on the
grain size D. This microstructure dependence can easily be
understood by the domain wall displacements if one consid-
ers the pinning effect of the grain boundaries upon the walls.
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Because of the crystallographic disorder in the grain bound-
ary and the porosity of the ceramic ferrites, domain walls
are pinned at the periphery of the grain and can only bulge
out when a small external field is applied. In equilibrium,
the gain in field energy is in balance with the increased wall
energy caused by the increased wall area and the demagne-
tization energy because of the magnetic poles formed on the
bulged wall. By considering the demagnetization energy as
the main effect, µi can be approximated by

(µi − 1) ≈ 20 M4
s × D/K2

1 × d (5)

with d being the distance between the domain walls (Smit
and Wijn, 1959).

A linear grain size dependence of the permeability was
found with a simple but elegant model of spherical bulging
of a domain wall, pinned to the grain boundary in a spher-
ical grain with diameter D = 2r . The responding spherical
bulging upon a weak magnetic field is schematically shown
in Figure 4; the increased wall surface is π × (r2 + x2) and
the volume of the black spherical segment is π/6 × x(3r2 +
x2). Minimization of the magnetostatic energy of the reversed
magnetization in this segment and the wall energy gives for
the permeability:

(µc
i − 1) = 3/4π × M2

s × D/γ (6)

in which γ represents the wall energy (Globus, 1977) and
µc

i the experimental µi, corrected for the porosity µc
i =

µi × dx/d, with dx, the X-ray density and d the density of
the polycrystalline material. The frequency dependence of
the wall susceptibility can also be derived from the equation
of motion of a unit surface of a 180◦ domain wall in an
infinite medium (Döring, 1948)

mz̈ + βż + αz = 2Ms × H (7)

m represents the domain wall mass, β the damping and
α the restoring force per unit surface. Supposing that the
damping is dominant and the response of the domain wall is

Grain

g

Wall

H = 0 H
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X

Figure 4. Schematic presentation of a domain wall pinned to the
grain boundary in a spherical grain.

linear, equation (6) can be derived for the wall permeability
and for the relaxation frequency fo = 4γ /πβr2 (Guyot,
Merceron, Cagan and Messekher, 1988). For polycrystalline
NiFe2O4 a relaxation frequency proportional to 1/D2 was
found and the maximum in the frequency dependence of the
magnetic losses was found to be proportional with Dm, the
mean grain size diameter (Gieraltowski and Globus, 1977).
A practical impact of these findings is that the dispersion
of the permeability can be shifted to higher frequencies
and the magnetic losses be suppressed by tailoring the
microstructure that is, lowering the grain size. Bulging of
the domain wall in a weak magnetic field is a reversible
process, which is supposed to cause no losses up to a critical
field Hcr above which a sudden increase is observed. A
typical example of the field dependence of the permeability
for polycrystalline Ni–Zn ferrite is given in Figure 5 (Globus
and Duplex, 1971). The appearance of the critical field Hcr is
attributed to the depinning of the domain walls from the grain
boundary. The result is an irreversible displacement of the
domain wall with hysteresis losses (Guyot and Globus, 1973,
1977). Hysteresis losses within Globus’ model are ascribed
to the continuous pinning and depinning of the domain
wall at the grain boundaries, which can be considered as a
friction force causing an energy loss. A second contribution
to the losses is proportional with the wall energy in that
part of the domain wall, which is created and annihilated
during the wall displacements. The same wall displacement
is also related to the magnetoacoustic emission (MAE).
MAE is the phenomenon when bursts of stress waves
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Figure 5. The permeability of polycrystalline Ni0.5Zn0.5Fe2O4

(grain size D = 3.0 µm and porosity = 0.03) as function of the mea-
suring field H at various temperatures. (Reproduced from A. Glo-
bus et al., 1971, with permission from EDP Sciences.  1971.)
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are generated during the irreversible magnetization process,
originating from magnetoelastic interactions. The MAE is
usually attributed to the release of magnetoelastic energy
associated with the jumping of non −180◦ domain walls,
because the displacement of a 180◦ wall does not change
the magnetoelastic energy; the linear magnetostriction is
an even function of the magnetization. In particular, for
180◦ domain walls, the release of the elastic energy by
the creation and annihilation of these walls is supposed
to cause the MAE, which can in turn be the mechanism
for the hysteresis loss in ferrites (Guyot and Cagan, 1991,
1993).

The microstructure of ceramic ferrites is not only specified
by the grain size, but nonmagnetic inclusions like closed
pores and the finite thickness of the grain boundaries modify
the physical properties significantly. In addition for the low
anisotropy Mn–Zn ferrites, indications are found that also
for ferrites with mainly rotational magnetization processes, a
large grain size effect upon the permeability exists (Visser,
Roelofsma and Aaftink, 1989). An explanation for this
apparent controversy is found in the magnetic inhomogeneity
of the ferrite materials.

If the demagnetizing fields caused by the nonmagnetic
closed pores and the low-permeability grain boundaries are
taken into consideration, the apparent µe for a polycrystalline
matrix is given by Rikukawa (1982):

µe = (1 − P )µi/(1 + P/2) × (1 + 0.75δ/D × µi/µb) (8)

with µe the apparent permeability, P the porosity, δ the
width of the grain boundary, D the grain size, µi the
permeability of the grain and µb the permeability of the grain
boundary, which is supposed to be much lower than µi. Since
equation (8) contains only µi, irrelevant which mechanism
is accountable for the magnetization, ferrites with rotational
permeability can show a grain size effect. Most high-quality
ferrites have very low porosity, which means that only low-
permeability grain boundaries have to be considered which
simplifies equation (8) to (Johnson, Noordermeer, Severin
and Meeuwissen, 1992):

µe = µi × D/(µiδ + D) (9)

This is known as the nonmagnetic grain-boundary model
(NMGB). The experimental results on certain polycrystalline
Mn–Zn ferrites show a good fit with equation (9) as is shown
in Figure 6, indicating that in these ferrites the rotational
mechanism cannot be excluded. The observed decrease of
the resonance frequency with increasing grain size is another
point in favor of the rotational permeability for these ferrites
(Visser and Johnson, 1991). However, a serious drawback
of the NMGB model is that the loss factor µ′′/(µ′)2 and
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Figure 6. (a) Grain size dependence of the rotational permeability
of polycrystalline Mn0.68Zn0.24Fe2.08O4. The grains contain no
domain walls because of the small size of the grains. The solid
curve fits equation (9) with µi = 2500 and δ = 1.5 nm. (Reprinted
from Johnson et al., 1991, with permission from Elsevier.  1991.)
(b) Similar plot as (a) for Mn0.60Zn0.35 Fe2.05O4. (Reprinted from
Johnson et al., 1992, with permission from Elsevier.  1992.)

the temperature factor 1/µ2dµ/dT are independent of the
grain size, which is not in agreement with experiment (Visser
and Johnson, 1991). Both factors are strongly affected by
the microstructure (Snelling, 1988). In fact the Globus wall
size model and the NMGB model can be combined in
a transition region, as was shown by the analysis of the
permeability data of coarse-grained Mn–Zn ferrites, these
models also have mutually excluding regions of validity
(Visser, Johnson and van der Zaag, 1992). However, in the
design of ferrites, these models are useful as guidelines to
produce materials with improved properties for particular
specifications.

Besides the permeability, the magnetic losses are an impor-
tant quality factor of a magnetic ferrite. The magnetic loss
is composed of three contributions: hysteresis losses, eddy-
current loss and the residual loss, which can be represented
by a total loss factor (Snelling, 1988):

tan δt/µ = µ′′/(µ′)2 = tan δh/µ + tan δe/µ + tan δr/µ

= 4/3νB/µoµ
3 + πµod

2f/16ρ + tan dδr/µ

= a × B + b × f + c (10)
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with ν the Rayleigh coefficient (µ(H) = µi + νH), B the
peak value of the flux density perpendicular to the cross
section of a cylinder of the ferrite material with radius d, f

the frequency, and ρ the bulk resistance. The coefficients
a and c are the hysteresis and residual loss coefficients
and are pure material properties, b is the eddy-current
loss coefficient also depending on the geometry of the
component.

The total power loss can be determined from the loss factor
by the relation:

P = (tan δ/µ) × π × f × B2/µo Watt/m3 (11)

The eddy-current loss in ferrites is usually small compared
with the total loss because of the low electrical conductiv-
ity. However to produce high-permeability Mn–Zn ferrites,
which means low anisotropy, compensation by substitution of
Fe2+ –Ti4+ is often used. The introduction of Fe2+ enhances
the electrical conductivity in the grain, which increases the
eddy-current loss. By a proper addition of Ca and Si to the
grain boundary, a higher effective resistance in the low fre-
quency range is obtained, which lowers the eddy-current loss
again, but also the permeability according to the NMGB
model.

The largest contribution to the total loss originates from
the hysteresis losses, caused by the irreversible domain wall
displacements, which increase with increasing amplitude of
the ac field and which are determined by the wall pinning. A
possibility of decreasing the hysteresis loss is to suppress the
wall permeability and to promote the rotation permeability,
which can be achieved by small grains in which no wall can
exist or by domain wall pinning by anisotropic ions like Co2+

ions. Specifically, ferrites with low power losses at high fre-
quencies are indispensable for the size reduction of power
supplies operating at high frequencies. For Mn–Zn power
ferrites applied up to 500 kHz, substantial improvements of
the losses have been realized by simultaneous substitution
with Co2+ and Ti4+ and an optimization of the thermal pro-
cessing of the ceramic production by which the Ca segregates
preferentially at the grain boundary. If the large Ca ion is
incorporated in the grain, the lattice stresses cause additional
losses (Stijntjes and Roelofsma, 1986). The hysteresis losses
provoke a loss tangent proportional to the magnetic induc-
tion and the eddy-current loss a tangent proportional with
frequency. The third loss contribution, the residual loss, is
the remaining loss, measured at low frequencies and small
field, where hysteresis and eddy-current losses are going
to zero.

The residual loss is partly associated with the mag-
netic aftereffects due to thermally activated domain wall
motions.

3 MAGNETIC IRON GARNETS

The garnet structure has been for the first time found for
a series of silicates with the general formula (A3)c(B2)a

(Si3)d O12h; the space group is O10
h − Ia3d, containing 8

‘molecules’ per unit cell (Menzer, 1926, 1928). There are
three different cation sublattices given by the subscripts c, a
and d, indicating the Wyckoff positions and which are com-
posed of 24 dodecahedral, 16 octahedral, and 24 tetrahedral
sites, respectively. The garnet structure can accommodate a
large variety of cations in variable concentrations and an
extended range of mixed series is known. Magnetic iron-
based synthetic garnets were first synthesized by Bertaut
and Forrat (1956). The prototype of the magnetic garnet is
yttrium iron garnet (YIG), which can be presented by the
formula (Y3+

3 )c (Fe3+
2 )a (Fe3+

3 )d O12h. The Y3+ are located
on the dodecahedral sublattice and the octahedral a and tetra-
hedral d lattices are occupied by Fe3+ ions. Substitution of
Y3+ by a rare-earth (RE) ion gives a series of iron garnets
all with a lattice parameter in the order of 12 Å and with
remarkable temperature dependence of the saturation magne-
tization, as shown in Figure 7 (Bertaut and Pauthenet, 1957).
The magnetization of the iron garnet is the resultant of the
magnetization vectors of the three sublattice magnetizations,
Ms = Ma + Md + Mc, in which the iron sublattice magneti-
zations Ma and Md are antiparallel and the RE sublattice Mc

is parallel with Md for the light RE (Ce, Pr, Nd) and parallel
with Ma for the heavier RE ions (Eu, . . . , Yb). The antifer-
romagnetic coupling of the RE with the Fe3+ ions is weaker
than between the iron ions, which results in a quick drop
of the RE magnetization at low temperature. Because of the
large moment of the RE ions, the RE magnetization prevails
at low temperature and the Fe3+ magnetization at higher tem-
perature. The result is the presence of a compensation point
in the T dependence of the magnetization. For all the RE
iron garnets, Tc is determined by the super-exchange inter-
action of the Fe3+ lattices and is almost identical for all the
RE iron garnets (±560 K). At room temperature the complete
antiparallel arrangements of the magnetizations as mentioned
before occur, but at low temperatures the RE moments itself
are arranged in a noncollinear structure. The point symme-
try of the dodecahedral RE site is D2, rhombic. The local
symmetry on these sites is formed by three perpendicular
twofold axes for which there are six different orientations
possible with reference to the cubic crystal structure axis. In
principle there are now six magnetic sublattices possible of
which the magnetization can be canted with respect to each
other. For instance, the umbrella structure has been reported
for Er3Fe5O12 (Hock, Fuess and Bonnet, 1991), whereas the
double umbrella structure has been reported for holmium
and terbium iron garnets (Hock, Fuess, Vogt and Bonnet,
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Figure 7. Spontaneous magnetization of a number of rare-earth garnets and yttrium iron garnet in µB per formula unit as function of
temperature. (Reproduced from Bertaut et al., 1957, with permission from IEE.  1957.)

1990; Guillot, Tcheou, Marchand and Feldmann, 1984). If
the resultant magnetization is directed along the 〈111〉 direc-
tion the magnetic moments of the RE ions are divided into
two sets of three, which lie on two cones, forming the double
umbrella structure. For the magnetization parallel to the 〈100〉
direction two of the six RE moments lie along the magneti-
zation direction and the other four lie again on one cone, the
so-called umbrella structure. The exchange interactions of the
RE ions are weaker than the iron interactions, which makes
it easy to change the direction of their magnetic moments,
especially close to the compensation temperature. Spin ori-
entation transitions can occur by a temperature variation or
an external magnetic field. A survey of this type of transi-
tions is given by Balestrino and Geller (1985). Iron garnets
are excellent materials for microwave frequencies because of
the narrow resonance line. Thin films are favorable for their
magneto-optic properties. In particular the substitution of the
RE ion by Bi and the iron by other metals gives the opportu-
nity to tune the properties for special purposes. However, the
substitution of iron by other magnetic or nonmagnetic metal
ions lowers the Curie temperature and the spontaneous mag-
netization; if diamagnetic cations are involved, local canting
of the Fe3+ magnetic moments may occur, which can gen-
erate even more magnetic phase transitions. A survey on the

numerical data of the magnetic properties of RE iron garnets
is given by Novak (1991).

4 HEXAGONAL FERRITES

PbFe12O19 is the archetype of a class of ferrites, which are
indicated as M-type hexaferrites. These ferrites crystallize
into the hexagonal magnetoplumbite structure, which is
characterized by the space group P 63/mmc(D4

6h). The basis
of this lattice is formed by a hexagonal closed packed array
of oxygen ions, where in every fifth layer one-quarter of
the oxygen ions is substituted by a Pb2+ ion. The Fe ions
are located on five different interstitial sublattices, three with
octahedral sites (indicated by 12k, 2a and 4f2), one with
tetrahedral (4f1) and one with bipyramidal sites (2b). The
symbol of these sites includes the number of sites per unit
cell. The lattice parameters of the magnetoplumbite structure
are a ≈ 5.88 Å and c ≈ 32.1 Å. The unit cell contains two
formula units. A variety of M-type ferrites can be produced
by part or complete substitution of the Pb2+ cations by Ba2+,
Sr2+ or Ca2+. The Fe3+ ions can be substituted by trivalent
ions like Al3+, Ga3+, Mn3+, or by a combination of divalent
and four valence ions, such as Co2+ –Ti4+.
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BaFe12O19 was the first M-type ferrite employed as
hard-magnetic material (Went, Rathenau, Gorter and van
Oosterhout, 1952). The magnetic structure is ferrimagnetic
with the magnetizations of the three sublattices 12k, 2a and
2b antiparallel with the remaining 4f1 and 4f2, which by
complete alignment gives a spontaneous magnetization of
(16 − 8) · 5 = 20 µB per formula unit (Gorter, 1957). The
high coercive force is caused by the large uniaxial anisotropy
along the c axis, which is caused by the hexagonal structure
and the typical oxygen coordination of the bipyramidal
sites (Smit and Wijn, 1959). Permanent magnets based on
BaFe12O19 are produced by a ceramic technology, in which
two objectives are essential. In the first place the grain size
must be small (about 1 µm) in order to be a single domain to
obtain high coercivity. Secondly, the grains must be aligned
during a wet-pressing process by a magnetic field, in order
to get an anisotropic magnet with an enhanced effective
magnetization. The temperature dependence of the saturation
magnetization around room temperature is high, which makes
the M-type ferrites not suited for high precision applications
(Shirk and Buessem, 1969). The ceramic processing of the
production of permanent hexaferrite magnets plays a crucial
role in the final performance of the magnets. The basic
properties of the M-hexaferrites are not very distinct for the
various compositions, as long as the iron concentration is
high. The microstructure, that is, the grain size, alignment
and the grain boundary determine to a great extent the
hard-magnetic properties. The Sr-based M-ferrites have the
advantage of a higher coercive force at some level of remnant
magnetization, because the ceramic processing is easier to
control for this composition (Cochardt, 1966). The ceramic
techniques have been optimized in such a way that further
improvement of the performance of the permanent ferrite
magnets is very limited. However, some improvements seem
still to be possible by improving the intrinsic properties by a
chemical modification. An increase of the anisotropy in the
Sr-based M-ferrite is possible, if Sr2+ and Fe3+ are replaced
by La3+ and Co3+, which results in a strong increase of
anisotropy and coercivity, without a negative effect on the
remnant magnetization (Tenaud et al., 2004).

Table 3. Compositions of hexagonal ferrites.

Type Chemical formula Short symbol

M BaFe12O19 BaM
W BaMe2Fe16O27 Me2W
Y Ba2Me2Fe12O22 Me2Y
Z Ba3Me2Fe24O41 Me2Z
X Ba2Me2Fe28O46 Me2X
U Ba4Me2Fe36O60 Me4U

Besides the M-type hexaferrites, a number of other hexa-
ferrites exist which have strongly related crystal structures
because they are built from similar crystal blocks as the
M-structure (Smit and Wijn, 1959). In Table 3 the chemi-
cal formulas of the various types are given, in which Me
stands for a bivalent transition-metal ion or Mg and Zn. In
all these ferrites the hexagonal axis settles the magnetiza-
tion in the sense that the magnetization is strongly aligned
into the c direction, which means hard-magnetic materials.
A second possibility is that the magnetization is aligned
in a plane perpendicular to the c axis, which means high
magnetic permeability in the plane but low in the other direc-
tions, the so-called ferroxplana materials. The W-, X- and Z-
type compounds show uniaxial anisotropy in the c direction,
but because of their problematic processing in the produc-
tion, they are not attractive for the production of permanent
magnets. The Y compounds, showing the ferroxplana behav-
ior, are materials very well suited for high frequencies up to
1 GHz (Jonker, Wijn and Braun, 1957).
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tisme et antiferromagnétisme. Annales de Physique, 3, 137–198.

Nomura, T. (1992). Micro- and Nanostructure-property Relation-
ships in Soft Ferrites, Ferrites. Proceedings of the Sixth Interna-
tional Conference on Ferrites, Tokyo, pp. 65–70.

Novak, P. (1991). Landolt Bornstein, Numerical Data and Funda-
mental Relationships in Science and Technology, Springer-Verlag,
Vol. III-27e.

Novak, P., Stepankova, H., Englich, J., et al. (2000). NMR in
magnetite below and round the Verwey transition. Physical
Review B, 61, 1256–1260.

Oda, Y., Mizuno, S., Todo, S., et al. (1998). Surface structure
of magnetite Fe3O4 (110). Japanese Journal of Applied Physics
Part 1, 37, 4518–4521.

Ohiai, T. (1997). Current status of soft ferrites in Japan. Journal of
Physical IV, Colloques, 7(Suppl C-1), 27–30.

Otsuki, E. (1992). Nanostructures and Magnetic Properties of
MnZn Ferrites, Ferrites, Proceedings of the Sixth International
Conference on Ferrites, Tokyo, pp. 59–64.

Pankhurst, Q.A. and Pollard, R.J. (1991). Origen of the spin-canting
anomaly in small ferrimagnetic particles. Physical Review Letters,
67, 248–250.

Park, J.H., Tjeng, L.H., Allen, J.W., et al. (1997). Single parti-
cle gap above the Verwey transition. Physical Review B, 55,
12813–12817.

Parker, F.T. and Berkowitz, A.E. (1991). Field response of sur-
face spins on Co-adsorbed γ -Fe2O3. Physical Review B, 44,
7437–7443.

Parker, F.T., Foster, M.W., Margulies, D.T. and Berkowitz, A.E.
(1993). Spin canting, surface magnetization and finite size effects.
Physical Review B, 47, 7885–7891.

Pénicaud, M., Siberchicot, B., Sommers, C.B. and Kubler, J. (1992).
Calculated electronic band-structure and magnetic moments of
ferrites. Journal of Magnetism and Magnetic Materials, 103,
212–220.

Pimenov, A., Tachos, S., Rudolf, T., et al. (2005). Terahertz
conductivity at the Verwey transition in magnetite. Physical
Review B, 72, 035131.

Rikukawa, H. (1982). Relationship between microstructure and
magnetic properties of ferrites containing closed pores. IEEE
Transactions on Magnetics, Mag-18, 1535–1537.

Schrupp, D., Sing, M., Tsunekawa, M., et al. (2004). Surface
electronic structure and Verwey-transition of magnetite studied
by photoemission spectroscopy. Annalen der Physik, 13, 78–80.

Schrupp, D., Sing, M., Tsunekawa, M., et al. (2005). High-energy
photo-emission on Fe3O4. Small polaron physics and the Verwey
transition. Europhysics Letters, 70, 789–795.

Schwenk, H., Bareiter, S., Hinkel, C., et al. (2000). Charge ordering
and elastic constants in Fe3−xZnxO4. The European Physical
Journal B, 13, 491–494.

Shepherd, J.P., Koenitzer, J.W., Aragon, R., et al. (1991). Heat
capacity and entropy of nonstoichiometric Fe3(1−δ)O4: thermo-
dynamic nature of the Verwey transition. Physical Review B, 43,
8461–8471.

Shirk, B.T. and Buessem, W.R. (1969). Temperature dependence of
MS and K1 of BaFe12O19 and SrFe12O19 single crystals. Journal
of Applied Physics, 40, 1294–1296.

Shvets, I.V., Mariotto, G., Jordan, K., et al. (2004). Long-range
charge order on the Fe3O4(100) surface. Physical Review B, 70,
155406.

Slonczewski, J.C. (1992). Theory of surface anisotropy and coerciv-
ity in γ -Fe2O3. Journal of Magnetism and Magnetic Materials,
117, 368–378.

Smit, J. and Wijn, H.P.J. (1959). Ferrites, Philips Technical Library:
Eindhoven.

Snelling, E.C. (1988). Soft Ferrites, Second Edition, Butterworths:
London.

Snoek, J. (1948). Dispersion and absorption in magnetic ferrites at
frequencies above one megacycle. Physica, 14, 207–217.

Stijntjes, Th.G.W., Klerk, J. and Broese van Groenou, A. (1970).
Permeability and conductivity of Ti-substituted MnZn-ferrites.
Philips Research Reports, 25, 95–107.



Ferrimagnetic insulators 19

Stijntjes, Th.G.W. and Roelofsma, J.J. (1986). Low loss power
ferrite for frequencies up to 500 kHz. Advances in Ceramics, 16,
493–499.

Su, Y., Li, H., Claessen, R., et al. (2006). Definitive evidence for
orbital ordering in magnetite. Nature, Submitted to.

Subias, G., Garcia, J., Blasco, J., et al. (2004a). Magnetite, a model
system for mixed-valence oxides, does not show charge ordering.
Physical Review Letters, 93, 156408.

Subias, G., Garcia, J., Proietti, M.G., et al. (2004b). X-ray resonant
scattering of (0 0 4n + 2) forbidden reflections in spinel ferrites.
Physical Review B, 70, 155105.

Subias, G., Garcia, J. and Blasco, J. (2005). EXAFS spectroscopy
analysis of the Verwey transition in Fe3O4. Physical Review B,
71, 155103.

Tenaud, P., Morel, A., Kools, F., et al. (2004). Recent improvements
of hard ferrite permanent magnets based on La-Co substitution.
Journal of Alloys and Compounds, 370, 331–334.

Toyoda, T., Sasaki, S. and Tanaka, M. (1999). Evidence of charge
ordering of Fe2+and Fe3+ in magnetite observed by synchrotron
X-ray anomalous scattering. The American Mineralogist, 84,
294–298.

Urbat, M., Lehndorff, E. and Schwark, L. (2004). Biomonetoring
of air quality in the Cologne conurbation using pine needles
as a passive sampler–Part 1-magnetic properties. Atmospheric
Environment, 38, 3781–3792.

Verwey, E.J.W. (1939). Electronic conduction of magnetite (Fe 3O4)

and its transition point at low temperature. Nature, 144,
327–328.

Visser, E.G. and Johnson, M.T. (1991). A novel interpretation of
the complex permeability in polycrystalline ferrites. Journal of
Magnetism and Magnetic Materials, 101, 143–147.

Visser, E.G., Johnson, M.T. and van der Zaag, P.J. (1992). A New
Interpretation of the Permeability of Ferrite Polycrystals, Ferrites.
Proceedings of the Sixth International Conference on Ferrites,
Tokyo, pp. 807–811.

Visser, E.G., Roelofsma, J.J. and Aaftink, G.J.M. (1989). Domain
wall loss and rotational loss in high frequency power fer-
rites. Proceedings of the Fifth International Conference on Fer-
rites, Bombay. Crystal –Properties and Preparation, 27–30,
605–610.

Vogel, E.M., Gyorgy, E.M., Johnson, D.W. and Sherwood, D.W.
(1986). The dependence of the critical field on the induced
anisotropy in Ni-Zn-Co ferrites. Advances in Ceramics, 16,
131–138.

Walker, M.M., Diebel, C.E., Haugh, C.V., et al. (1997). Structure
and function of the vertebrate sense. Nature, 390, 371.

Walz, F. (2002). The Verwey transition-a topical review. Journal of
Physics: Condensed Matter, 14, R285–R340.

Walz, F. and Kronmüller, H. (1990). Point defects in electron
irradiated magnetite. Physica Status Solidi B, 160, 661–671.

Walz, F., Weidner, M. and Kronmüller, H. (1980). Investigation
of magnetic after-effects in magnetite at low temperatures (4 to
35 K). Physica Status Solidi A, 59, 171–182.

Walz, F., Brabers, V.A.M., Chikazumi, S., et al. (1982). Magnetic
after-effects in single and polycrystalline magnetite. Physica
Status Solidi B, 110, 471–478.

Wasilewski, P. and Kletetschka, G. (1999). Lodestone: natures
only permanent magnet –what it is and how it gets charged.
Geophysical Research Letters, 26, 2275–2278.

Weiss, B.P., Kim, S.S., Kirschvink, J.L., et al. (2004). Magnetic
test for magnetosome chains in Martian meteorite ALH 84001.
Proceedings of the National Academy of Sciences of the United
States of America, 101, 8281–8284.

Went, J.J., Rathenau, G.W., Gorter, E.W. and van Oosterhout, G.W.
(1952). Ferroxdure, a class of permanent magnetic materials.
Philips Technical Review, 13, 194–208.

Wiesendanger, R., Shvets, I.V., Burgler, D., et al. (1992). Topo-
graphic and magnetic-sensitive scanning tunneling microscope
study of magnetite. Science, 255, 583–586.

Wright, J.P., Attfield, J.P. and Radaelli, P.G. (2001). Long range
charge ordering in magnetite below the Verwey transition.
Physical Review Letters, 87, art 266401.

Wright, J.P., Attfield, J.P. and Radaelli, P.G. (2002). Charge ordered
structure of magnetite Fe3O4 below the Verwey transition.
Physical Review B, 66, art 214422.

Yan, M.F. and Johnson, D.W. (1978). Impurity-induced exaggerated
grain growth in Mn-Zn ferrite. Journal of the American Ceramic
Society, 61, 342–349.

Yanase, A. and Siratori, K. (1984). Band structure in the high
temperature phase of Fe3O4. Journal of the Physical Society of
Japan, 53, 312–317.

Zhang, Y., Kohler, N. and Zhang, M.Q. (2002). Surface modifi-
cation of superparamagnetic magnetic monoparticles and their
intercellular uptake. Biomaterials, 33, 1553–1561.

Zhang, Z. and Satpathy, S. (1991). The electron states, magnetism
and the Verwey transition in magnetite. Physical Review B, 44,
13319–13331.
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1 INTRODUCTION

The structural family of perovskites is a large family of
compounds having crystal structures related to the mineral
perovskite CaTiO3. In the ideal form, the crystal structure
of cubic ABX3 perovskite can be described as consisting of
corner sharing [BX6] octahedra with the A cation occupying
the 12-fold coordination site formed in the middle of the
cube of eight such octahedra. The ideal cubic perovskite
structure is not very common and also the mineral perovskite
itself is slightly distorted. The perovskite family of oxides
is probably the best-studied family of oxides. The interest
in compounds belonging to this family of crystal structures
arises from the large and ever surprising variety of properties
exhibited and the flexibility to accommodate almost all of
the elements in the periodic system. Pioneering structural
work on perovskites were conducted by Goldschmidt and
coworkers in the 1920s that formed the basis for further

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

exploration of the perovskite family of compounds (Bhalla,
Guo and Roy, 2000). Distorted perovskites have reduced
symmetry, which is important for their magnetic and electric
properties. Owing to these properties, perovskites have great
industrial importance, especially the ferroelectric tetragonal
form of BaTiO3.

2 THE CRYSTAL STRUCTURE
OF PEROVSKITE

If the large oxide ion is combined with a metal ion
having a small radius, the resulting crystal structure can be
looked upon as close-packed oxygen ions with metal ions
in the interstitials. This is observed for many compounds
with oxygen ions and transition metals of valence +2, for
example, NiO, CoO, and MnO. In these crystal structures,
the oxygen ions form a cubic close-packed (ccp) lattice with
the metal ion in octahedral interstitials (i.e., the rock salt
structure). Replacing one-fourth of the oxygen with a cation
of approximately the same radius as oxygen (e.g., alkali,
alkaline earth, or rare earth element) reduces the number of
octahedral voids, occupied by a small cation, to one-fourth.
The chemical formula is written as ABX3 and the crystal
structure is called perovskite. X is often oxygen but other
large ions such as F− and Cl− are also possible.

The idealized cubic structure is realized, for example,
in CaRbF3 and SrTiO3. The latter can be described as
Sr2+ and O2– ions forming a ccp lattice with Ti4+ ions
occupying the octahedral holes created by the oxygen ions.
The perovskite structure has a three-dimensional net of
corner sharing [TiO6] octahedra with Sr2+ ions in the
12-fold cavities in between the polyhedra (see Figure 1).
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Figure 1. Outline of the ideal cubic perovskite structure SrTiO3

that has (a) a three-dimensional net of corner sharing [TiO6]
octahedra with (b) Sr2+ ions in the twelve fold cavities in between
the polyhedra.

In the cubic ABX3 perovskite structure (a = 3.905 Å, space
group Pm3m, Z = 1), the A atoms are in Wyckoff position
1b, 1/2,1/2,1/2; the B atoms in 1a, 0,0,0; and the X atoms
in 3d 1/2,0,0; 0,1/2,0; 0,0,1/2, all being special positions. If
the position of the Sr2+ ion (A) is vacant, the remaining
framework is that of the ReO3 type. Partial occupation of
the A position occurs in the cubic tungsten bronzes AxWO3

(A = alkali metal, 0.3 ≤ x ≤ 0.93). The ReO3 structure type
can be converted to a denser packing by rotating the
octahedra until a hexagonal close packing of the RhF3

type is obtained. The void in the center has then an
octahedral surrounding. If this octahedral hole is occupied
we have the ilmenite structure, FeTiO3. The perovskite
structure is known to be very flexible, and the A and
B ions can be varied leading to the large number of
known compounds with perovskite or related structures. Most
perovskites are distorted and do not have the ideal cubic
structure.

Three main factors are identified as being responsi-
ble for the distortion: size effects, deviations form the
ideal composition, and the Jahn–Teller effect. It is rare
that a distortion of a certain perovskite compound can
be assigned to a single effect. In most cases several fac-
tors act on the structure. As an example of the complex-
ity, BaTiO3 has four phase transitions on heating: rhom-
bohedral (R3m), −90 ◦C → orthorhombic (Amm2), 5 ◦C →
tetragonal (P 4mm), 120 ◦C → cubic (Pm3m).

2.1 Size effects

In the ideal cubic case, the cell axis, a, is geometrically
related to the ionic radii (rA, rB, and rO) as described in
equation (1):

a =
√

2(rA + rO) = 2(rB + rO) (1)

The ratio of the two expressions for the cell length is called
the Goldschmidt’s tolerance factor t , and it allows us to
estimate the degree of distortion. It is based on ionic radii,
that is, purely ionic bonding is assumed, but can be regarded
as an indication for compounds with a high degree of ionic
bonding; it is described in equation (2).

t = (rA + rO)√
2(rB + rO)

(2)

The ideal cubic perovskite SrTiO3 has t = 1.00, rA =
1.44 Å, rB = 0.605 Å, and rO = 1.40 Å. If the A ion is
smaller than the ideal value then t becomes smaller than 1.
As a result, the [BO6] octahedra will tilt in order to fill
space. However, the cubic structure occurs if 0.89 < t <

1 (Wells, 1995; Müller, 1993). Lower values of t will
lower the symmetry of the crystal structure. For example,
GdFeO3 (ICSD, 2005) with t = 0.81 is orthorhombic (rA =
1.107 Å and rB = 0.78 Å) (see Figure 2a). Also the mineral
perovskite CaTiO3 itself, has this structure. With values less
than 0.8, the ilmenite structure is more stable.

On the other hand, if t is larger than 1 due to a large A
or a small B ion then hexagonal variants of the perovskite
structure are stable, for example, BaNiO3 type structures. In
this case, the close-packed layers are stacked in a hexagonal
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Figure 2. (a) Low values of the tolerance factor t will lower the
symmetry of the crystal structure. GdFeO3 with t = 0.81 have
tilted [FeO6] octahedra and crystallize in the orthorhombic system
(rA = 1.107 Å and rB = 0.78 Å). (b) If t is larger than 1 due to
a large A or a small B ion then hexagonal variants form of the
perovskite structure. The t value for BaNiO3 is 1.13 (rA = 1.61 Å
and rB = 0.48 Å).

manner in contrast to the cubic one found for SrTiO3, leading
to face sharing of the [NiO6] octahedra, (see Figure 2b).
The t value for BaNiO3 is 1.13 (rA = 1.61 Å and rB =
0.48 Å). Since perovskites are not truly ionic compounds
and the t values also depend on the values that are taken
for the ionic radii, the tolerance factor is only a rough
estimate.

2.2 Changing the composition from the ideal
ABO3

An example is the family of compounds SrFeOx (2.5 ≤
x ≤ 3). The valency of the Fe ions can be changed by heating
the sample in either an oxidizing or a reducing environment.
As a result, the oxygen content can vary between 2.5 and 3.
For example, in SrFeO2.875 some Fe ions can be assigned
to the oxidation state +3 and others to +4. The oxygen
vacancies order so that FeO5 square pyramids are formed (see
Figure 3). The SrFeOx compounds are examples of defective
perovskites. Their chemistry can be described according
to the homologous series AnBnO3n–1, n = 2 − ∞. Several
other types of vacancy orderings are known, for example,
the structures of Ca2Mn2O5 and La2Ni2O5 having n = 2 are
shown in Figure 4(a–b).

2.3 Jahn–Teller effects

In some perovskites, the distortion of the structure can be
assigned to Jahn–Teller active ions at the B position. For
example, in LnMnO3 (Ln = La, Pr, or Nb) with Mn3+ ions
the 3d4 electrons divide up into 3 tg and 1 eg electron. The
odd number of electrons in the eg orbital cause an elongation
of the [MnO6] octahedron.

3 SUPERSTRUCTURES RELATED TO
THE PEROVSKITE STRUCTURE

If we double all three unit cell edges of the cubic perovskite
structure, it is possible to occupy equivalent positions with
atoms of different elements (see Figure 5). In K2NaAlF6,
the K+ and the F− ions take the Ca2+ and the O2–

positions, respectively, of the perovskite. The one-to-one
relation can be recognized by comparing with the doubled
formula of perovskite. The comparison also shows how the
octahedral Ti4+ position shifts into two sites for Na+ and
Al3+ (Müller, 1993). In kryolite, Na3AlF6, the Na+ ions
occupy two different positions, namely the Sr2+ and the Ti4+

positions of the doubled perovskite cell, that is, positions
with coordination numbers of 6 and 12. Since this is not
convenient for ions of the same size, the structure experiences
some distortion.

Perovskites of the type ACuO3–δ which have Cu atoms in
the octahedral sites are deficient in oxygen; alkaline earth,
and trivalent ions (Y3+, lanthanoids, Bi3+, Tl3+) occupy
the A site. A typical composition is YBa2Cu3O7–x with
x ≈ 0.04. These compounds are high-temperature supercon-
ductors. The structure is a superstructure of perovskite, but
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Figure 3. Ordering of oxygen vacancies in SrFeO2.875 (=Sr8Fe8O23). Fe ions are located in both square pyramids and in octahedra.

with approximately two-ninth of the oxygen positions vacant,
in such way that two-third of the Cu atoms have square pyra-
midal coordination and one-third have square-planar coordi-
nation (see Figure 6). The cobaltite GdBaCo2O5.5 is another

example of an oxygen-deficient perovskite-related structure
where the Co3+ ions have octahedral and square pyramidal
coordination (Frontera, Garcia-Munoz, Llobet and Aranda,
2002) (see Figure 7).

b

c

a

(b)(a)

a

b

c

Figure 4. Ordering of oxygen vacancies in (a) Ca2Mn2O5 having [MnO5] square pyramides and (b) La2Ni2O5 having [NiO6] octahedra
and [NiO4] square planes.
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A

B

C

D

Figure 5. Superstructures of the perovskite type. If the unit cell
edges are doubled, it is possible to occupy equivalent positions
with atoms of different elements. The one-to-one relation can
be recognized by comparing with the doubled formula of perovskite.

Structure type Example A(Yellow) B(Red) C(Green) D(Blue)

Perovskite SrTiO3 Sr2+ O2– Ti4+ Ti4+
Elpasolite K2NaAlF6 K+ F− Na+ Al3+
Kryolite (NH4)3AlF6 NH+

4 F− NH+
4 Al3+

K2PtCl6 – K+ Cl− – Pt4+

Also the brownmillerite structure is an oxygen-deficient
superstructure of cubic perovskite with an ordering of
oxygen vacancies. Ruddlesden and Popper designed a
series of homologous compounds with the general formula
AO(ABO3)n, where AO represent a rock salt structure layer
separating blocks of perovskite layers characterized by n =
1, 2, 3, . . . , ∞. Examples are the high Tc superconductor
prototype La2CuO4 and the 2D quantum antiferromagnet
La2NiO4.

4 ELECTRONIC AND MAGNETIC
PROPERTIES OF PEROVSKITES

Perovskites with transition metal ions (TMIs) on the B site
show an enormous variety of intriguing electronic or mag-
netic properties. This variety is not only related to their
chemical flexibility but also, to a large extent, to the complex
character that TMIs play in certain coordinations with oxygen
or halides (Lemmens and Millet, 2004). While magnetism

c

b

Y

Ba

Figure 6. The high-temperature superconductor YBa2Cu3O6.96.
The structure is a superstructure of perovskite with approximately
two-ninth of the oxygen positions vacant, in such way that two-
third of the Cu atoms have [CuO5] square pyramidal coordination
and one-third have square-planar [CuO4] coordination. The per-
ovskite structure is attained by inserting oxygen atoms in between
the yttrium atoms (gray) and in between the [CuO4] square planes.

and electronic correlations are usually related to unfilled 3d
electron shells of the TMI, pronounced dielectric properties
are connected with filled 3d electron shells. Multiferrocity,
a coexistence of spontaneous ferroelectric and ferromagnetic
moments, is a rare phenomenon due to the small number
of low-symmetry magnetic point groups that allow a spon-
taneous polarization (Schmid, 1994). Nevertheless, in the
presence of competing interactions (Hemberger et al., 2005),
canted moments (Kimura et al., 2003; Higashiyama et al.,
2004), or in composites (Zheng et al., 2004) large magneto-
capacitive couplings have been reported (Fiebig, 2005).

In the following section, we will discuss examples of
material properties in which transition metal perovskites and
related structures prove to be outstanding. To some extent,
these aspects also touch application areas, such as capacitors,
transducers, actuators, sensors, and electro-optical switches.

4.1 Dielectric and ferroelectric perovskites

High dielectric permittivity (ε) or ferroelectric materials are
of enormous importance as electroceramics for engineer-
ing and electronics. Perovskites, for example, titanium or
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Figure 7. The cobaltite GdBaCo2O5.5 has a perovskite related
structure were 1/12 of the oxygen atoms are missing leading to that
50% of the Co atoms have square pyramidal [CoO5] coordination
and 50% of the Co atoms have octahedral [CoO6] coordination.

niobium perovskites, BaTiO3, and LiNbO3, have been inten-
sively studied in the past (Cross and Newnham, 1987; Cross,
1987). A large ε is based on collective polar displacements
of the metal ions with respect to the oxygen sublattice and is
a highly nonlinear and anisotropic phenomenon. The phase
transition that leads to ferroelectricity is usually described by
a soft-mode model (Shirane, 1974).

To optimize dielectric and mechanical properties, several
routes have been followed from the structurally simple
BaTiO3 via the solid solution system Pb(Zr,Ti)O3 to other
distinct families of materials. These routes explicitly take
into account the flexibility for chemical manipulation and
“docility” of the perovskites (Cross and Newnham, 1987;
Cross, 1987). One of them is the relaxor ferroelectric. It is
genuinely based on a multielement substituted Pb titanate
(PbTiO3) with the composition A(B’B”)O3 with a random
occupation of the A and B sites by metal ions of different
valence.

Relaxor ferroelectrics show enormously large dielectric
constants, a pronounced frequency dispersion and variation
of ε as function of temperature. These effects are due to slow
relaxation processes for temperatures above a glass transition
(Lunkenheimer, Schneider, Brand and Loidl, 2000). The
length scales of fluctuating composition and spontaneous

polarization are 2–5 nm, that is, the effects are based
on electronic inhomogeneities and the existence of polar
nanoregions. The lattice part of the response is considered
to be a local softening of transverse-optical phonon branch
that prevents the propagation of long-wavelength (q = 0)
phonons. It is interesting to note that the fundamental limit,
the superparaelectric state, is still not reached for such
small length scales (Spaldin, 2004). Generic examples for
relaxor ferroelectrics are PZT: Pb(Zn1/3Nb2/3)O3−xPbTiO3

and PMN: Pb(Mg1/3Nb2/3)O3−xPbTiO3, with PZT having a
higher temperature scale compared to PMN.

Incipient ferroelectrics or quantum paraelectrics can be
regarded as almost ferroelectric crystals (Höchli, Knorr and
Loidl, 1990). Examples are KTaO3 and SrTiO3 (Bednorz
and Müller, 1984). Pronounced quantum fluctuations of ions
suppress the phase transition into the ferroelectric state
and stabilize the soft transverse-optical mode. The dielec-
tric susceptibility shows a divergence in the limit T = 0 K
together with pronounced phonon anharmonicities (Bednorz
and Müller, 1984). In these systems, even minor substitu-
tions or doping can induce phase transitions into ferroelectric
states. Finally, we mention perovskite-related oxides with
giant dielectric constants (GDCs) where no evidence for
a ferroelectric instability exists. These nonintrinsic permit-
tivities are attributed to barrier layers and surface effects
(Lunkenheimer et al., 2002). Examples are CaCu3Ti4O12,
(Ramirez et al., 2000) and the Li-ion conductor material
La0.67Li0.25Ti0.75Al0.25O3 (Garcia-Martin, Morata-Orrantia,
Aguirre and Alario-Franco, 2005).

4.2 Magnetism and electronic correlations

Magnetism or orbital (electronic) ordering phenomena of
various kinds are observed in perovskites with TMI that have
unfilled 3d electron shells. Electronic correlations (Fazekas,
1999) of such 3d states are generally strong, as the ratio
Ud/W of the Coulomb repulsion energy Ud versus the
bandwidth W is larger compared to other electronic states,
that is, they have a more local character and a tendency
for insulating states or metal-insulator transitions (Imada,
Fujimori and Tokura, 1998). Hopping and superexchange of
these electrons takes place via oxygen sites due to the overlap
of the respective wave function. Thereby, the properties
and phase diagrams of a perovskite strongly depend on
nonstoichiometries and, even more, on tilting or distortions
of the [BO6] octahedra. Further aspects rely on order/disorder
processes of the orbital part of the 3d wave function, charge
doping and charge/orbital inhomogeneous states that lead to
colossal response, for example, to external magnetic fields
(Tokura, 2003).
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However, before considering such effects, the properties
of the system are given by a hierarchy of energies based on
the electronic structure, that is, the number of 3d electrons,
the Hund’s rule coupling, the crystalline electric field or
Jahn–Teller splitting of the 3d electron states, and finally
due to exchange energies.

4.3 Cuprates, Jahn–Teller distortions and
high-temperature superconductors

This hierarchy of energies is well established for cuprates
with Cu2+ in a 3d9 configuration. The hole in the d shell
has egx

2 − y2 symmetry and contributes to an s = 1/2
spin moment. The orbital moment is quenched due to the
crystalline electric field of the surrounding oxygen. The eg

electron is Jahn–Teller active, that is, local or collective
configurations with oxygen in distorted octahedra are ener-
getically preferable. Extreme limits are pyramidal [CuO5] or
even a planar [CuO4] configuration of the oxygen neigh-
bors. Thereby, the superexchange and magnetic interactions
between the s = 1/2 spin moments are restricted to a plane
or, if building blocks are shifted by half a unit cell within
the plane, to a quasi-one-dimensional path. There are numer-
ous realizations of such low-dimensional magnetic systems
as in Sr2CuO3 (spin chain system) or SrCu2O3 (spin lad-
der system) (Lemmens, Güntherodt and Gros, 2003). Owing
to the small coordination number of the spin moments in
one dimension and pronounced quantum fluctuations related
to the small magnitude of the spin, such compounds gener-
ally do not show long-range ordering. Strong fluctuations are
evident as broad maxima in the magnetic susceptibility and
continua in inelastic neutron scattering.

Superexchange and electronic correlations – restricted to
a two-dimensional, weakly doped plane – are the key ingre-
dients of high-temperature superconductors. The crystal
structure of the prototype and perovskite-related compound
YBa2Cu3O7–x is shown in Figure 6. For x ≈ 1, the result-
ing Cu2+ with s = 1/2 moments show long antiferromag-
netic range ordering with a Néel temperature of more than
500 K. This high ordering temperature marks the exception-
ally large energy scales and strong correlations involved in
these materials. With smaller x, doping is induced that leads
to a drastic drop of the Néel temperature and the onset of
high-temperature superconductivity. The maximum super-
conducting transition temperature is Tcmax = 92 K for this
system.

Electronic correlations are essential to understand the
effect of doping. The electronic structure of cuprates in
the vicinity of the Fermi level is given by an occupied
low-energy and an unoccupied high-energy band, the lower
and the upper Hubbard band, separated by the Coulomb

repulsion energy Ud of the 3d electrons. High-temperature
superconductors are charge transfer insulators, that is, the
oxygen is included in this scheme as an occupied, non-
bonding 2p band separated by a smaller charge transfer
energy � from the upper Hubbard band (� < Ud). The
doping process consists of introducing a novel correlated
electron state, the Zhang–Rice singlet state (Imada, Fuji-
mori and Tokura, 1998), in the proximity of the oxygen
band. This state of hybridized Cu and O character leads
to a transformation from a long-range Néel state to a
high-temperature superconductor. Although the number of
known high-temperature superconductors seem to be large
(of the order of 20 compounds), they all rely on this
scheme of a doped, two-dimensional perovskite-related struc-
ture with pronounced electronic correlations (Imada, Fuji-
mori and Tokura, 1998; Dagotto, 1994; Orenstein and Mil-
lis, 2000).

4.4 Cobaltates, spin state transitions and oxygen
deficiency

If the hierarchy of energies, mentioned in the preceding text,
is not well defined, the compound chooses certain ways to
lift degeneracies of the electronic system. Important are spin
state transitions or crossover behavior, a partial metallization
of 3d electrons, or charge disproportionation of the TMI
sites. Perovskites based on cobalt and vanadium serve as
model systems for such effects and the resulting interplay of
electronic and structural degrees of freedom. In the following
text, we will discuss briefly two cobaltates to give an example
for the resulting complexities.

In the cobalt perovskite LaCoO3, with the same crystal
structure as is shown in Figure 1, all three spin states of Co3+

(3d6) are close to degenerate. As these states correspond to
slightly different ionic radii with decreasing temperatures,
a crossover of the dominant populations from high spin
(s = 2), intermediate spin (s = 1) to low spin (s = 0) Co3+

3d6 states takes place. This process is mainly controlled
by temperature and has no evident collective character.
The magnetic susceptibility shows a broad maximum and
a strong decrease at low temperatures (Korotin et al., 1996).
The different ionic radii of the spin states also couple the
electronic configurations of the TMIs only weakly to other
properties of the compound.

An ordered oxygen deficiency leads to a multiplication
of the unit cell volume. It also has a profound influence
on the electronic and magnetic properties of the compound
(Vidya et al., 2004). Owing to the smaller coordination num-
ber of some TMI sites, the respective bandwidth is reduced,
and with increasing electronic correlations, the tendencies
for charge/orbital ordered states is enhanced. In Figure 7
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the perovskite cobaltite GdBaCo2O5.5 is depicted. Oxy-
gen defects form chains of [CoO5] pyramids and [CoO6]
octahedra along the crystallographic a axis. Compared to
the ideal perovskite LaCoO3, the behavior is rather com-
plex and highly collective. The phase diagram contains
a metal-insulator transition and three different magnetic
phases that include spin state ordering (Fauth, Suard, Caig-
naert and Mirebeau, 2002; Chernenkov et al., 2005; Plakhty
et al., 2005).

4.5 Manganites and orbital degrees of freedom

In the manganite (La,Sr)MnO3, the ratio La3+/Sr2+ deter-
mines the oxidation state of Mn and thus the ratio
Mn3+/Mn4+. This corresponds to the number of Mn sites
with a single 3d eg orbital occupied. Double exchange
describes the situation where these states simultaneously hop
via Mn4+ ions. The remaining 3 t2g electrons on each Mn ion
sum up to s = 3/2 due to Hund’s rule coupling and form a
‘rigid background’. The bandwidth and charge transport are
solely given by eg state dependents on the spin and orbital
orientation of the exchange partners.

As a function of composition, different magnetic ground
states and orbitally/charge ordered structures are observed.
These degrees of freedom react rather cooperative because
of the strong interlink of the octahedra in the perovskite
structure (Choi et al., 2005). Pronounced effects are observed
in all physical quantities. However, most spectacular is the
colossal magnetoresistance (CMR) at the borderline between
a ferromagnetic insulating and ferromagnetic metallic phase.
For a more complete treatment of this increasingly rich
field of research including a discussion of relevant vana-
dium and titanium perovskites, we refer to reviews (Imada,
Fujimori and Tokura, 1998; Tokura, 2003; Tokura and
Tomioka, 1999; Salamon and Jaime, 2001; Dagotto, 2002)
and recent focus issues (Keimer and Oles, 2004) of interna-
tional journals.

5 SYNTHESIS

Many perovskites are synthesized by solid-state reactions
giving polycrystalline samples. The starting materials are
then usually simple binary oxides or pure elements made
to react at relatively high temperatures. This synthesis tech-
nique involves problems due to the fact that certain starting
oxides (e.g., PbO) may vaporize. The reaction temperature
can be lowered by applying microwave synthesis techniques,
thus minimizing the loss of volatile starting components.
Hydrothermal synthesis techniques have been applied to
manufacture nanopowders of, for example, BaTiO3. Powders

and thin films with controlled levels of dopants have been
prepared with the sol–gel technique using metal alkoxides
as precursors. Thin films of ferroelectrics have been success-
fully prepared by physical vapor deposition (PVD) or pulsed
laser deposition (PLD).

During recent years, several research groups have suc-
ceeded in growing single crystals of several families of
perovskite-related compounds from molten alkali carbonates
or other fluxes such as hydroxides or halides. Large sin-
gle crystals (>10 cm long) of manganites and other oxides
have been grown by utilizing optically heated floating zone
techniques with oxygen injected into the furnace around the
molten zone (see Figure 8). The review (Bhalla, Guo and
Roy, 2000) and references therein are referred for further
aspects of synthesis techniques.

Crystal

Halogen lamp
and mirrors

Figure 8. Outline of the principles for a floating zone mirror
furnace. The crystal is grown by moving sintered powder rods
through an optically heated floating zone.
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1 INTRODUCTION

The magnetism of oxides was long regarded as an important,
but well understood and uninspiring branch of magnetism
from which little that was new could be expected. The
sources of magnetism in transition-metal and rare-earth
oxides are the metal cations, which bear a magnetic moment
due to unpaired electrons in the 3d shells, or sometimes in
the 4d shell. The number of electrons per cation is integral,
and the moments are well localized on the ions. The oxides
are usually insulators or wide-gap semiconductors. Electrons
or holes, introduced by doping or nonstoichiometry, are often
trapped, and do not contribute to the conductivity.

The crystal structures of oxides are frequently based on a
close-packed lattice of oxygen anions (ionic radius 140 pm)
where the 3d cations occupy the octahedral interstices
with six oxygen neighbors, or the tetrahedral interstices
with four oxygen neighbors. The larger cations show some
preference for the octahedral sites. The 4f ions have a greater

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

coordination number, and may even take the place of an
anion in the close-packed oxygen lattice.

The primary band gap Ep in 3d oxides is between the
filled oxygen 2p valence band, corresponding to O2− ions,
and the empty conduction band of 4s character, formed from
the transition-metal states. The localized 3d levels lie in the
gap (see Figure 1). The magnitude of Ep decreases on mov-
ing along the 3d series from 8.1 eV for TiO2 or 5.7 eV for
Sc2O3 to 3.4 eV for ZnO or 4.9 eV for Ga2O3. The mea-
sured band gap Eg can be much less than Ep because of the
possibility of p–d, or d–s transitions. A list of common 3d
cations, for which a localized electron picture is appropriate
is given in Table 1.

The wave functions of the 3d cations have exponentially
decaying tails, which ensures that there is negligible overlap
between cations which are not nearest neighbors. These
neighbors share one or more common coordinating oxygen
anion. Hence the magnetic exchange coupling is essentially
an affair of nearest-neighbor cations, with an intervening
oxygen. These are known as superexchange interactions.

A dilute oxide has the general formula

(MxN1−x)On (1)

where M is a magnetic cation, N is a nonmagnetic cation, n

is an integer or rational fraction, and x is the magnetic dop-
ing level 0 ≤ x ≤ 1, which will usually be expressed here in
percent. An important limit is xp, the percolation threshold
(Stauffer, 1985), where continuous nearest-neighbor paths
first appear which link M cations throughout the crystal.
Below xp there are only isolated cations, and small clusters
of nearest-neighbor pairs, triplets, and so on. Above xp there
is a bulk cluster, which encompasses most of the magnetic
cations. Whenever the exchange interactions only involve
nearest neighbors, there is no possibility of long-range order
below xp, the percolation threshold, approximately 2/Z0
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3d
EF

4s

Figure 1. Generic electronic structure diagram for a 3d metal
oxide.

Table 1. Charge state, electronic configuration, ionic radius in Oh

coordination for common magnetic and nonmagnetic cations in
oxides.

Cation Charge state Configuration Ionic radius (pm)

Sc 3+ 3d0 83
Ti 3+/4+ 3d0/3d1 61/69
V 2+ 3d3 72
Cr 3+ 3d3 64
Mn 2+/3+/4+ 3d5/3d4/3d3 83/65/53
Fe 2+/3+ 3d6/3d5 82/65
Co 2+/3+ 3d7/3d6 82/61
Ni 2+/3+ 3d8/3d7 78/69
Cu 2+ 3d9 72

(Deutscher, Zallen and Adler, 1983), where Z0 is the cation
coordination number. Depending on the structure, Z0 lies
between 6 and 12, which means that xp is in the range 16
to 33%.

It therefore came as a surprise when a series of reports,
beginning with that of Masumoto et al. (2001a), claimed that
oxides with only a few percent of magnetic cations, usually
1–10%, were ferromagnetically ordered at room temperature.
The first samples were all thin films. Table 2 lists some of
these early reports.

These results were surprising for at least three reasons:

1. The magnetic order appears in films where the doping is
far below xp.

2. The magnetic order is ferromagnetic, whereas the
superexchange in oxides is usually antiferromagnetic.

3. The films are ferromagnetic at room temperature and
above, although no such dilute magnetic oxide or semi-
conductor, and no dilute magnetic metal had ever been
found to be magnetically ordered at room temperature.
(An exception is Pd, which has a greatly enhanced Pauli
paramagnetism and by itself almost satisfies the Stoner
criterion for the appearance of magnetism.)

In these circumstances the claims of ferromagnetism in
these films were regarded with scepticism, and the conviction
that high-temperature ferromagnetism must somehow be
associated with a segregated impurity phase. In some of the
samples, secondary phases in the form of cobalt clusters,
Mn–Ga alloys or nanoparticles of Fe3O4 were indeed
found. In other systems such a V-doped ZnO there are no
known ferromagnetic phases in the ternary system. For this,
and other reasons discussed below, one is led to consider
the high-temperature ferromagnetism of dilute oxides and
nitrides as a new and significant magnetic phenomenon.

2 MAGNETIC INTERACTIONS
IN OXIDES

The principal magnetic interaction in oxides is superex-
change. The coupling between the spins of two cations occurs
via the intervening oxygen, as shown schematically for the
Mn2+ − O2− − Mn2+ bond in Figure 2. The Mn has a half-
filled 3d shell, so only minority-spin electron transfer from
the oxygen to the manganese is possible. A 2p electron with ↓
is transferred to the Mn on the left, leaving a 2p↓ hole, which
can be filled by an electron from the other Mn, provided
it is ↓. Superexchange theory leads to a Heisenberg-type
Hamiltonian

H = −2JSi · Sj (2)

where the exchange constant J = J0 cos2 θ where θ is
the superexchange bond angle and J0 = t2/U , where t is
the M–O transfer integral and U is the on-site Coulomb
interaction for the M ion. Typically, t ≈ 0.1 eV and U ≈
5 eV. Hence the order of magnitude of the exchange constant
is 2 meV or 20 K.

The expression for the Curie temperature in mean-field
theory is

TC = 2ZJS(S + 1)

3k
(3)

Hence, if S = 5/2, the largest value possible in the 3d
series, and the cation coordination number Z = 8, we find



Dilute magnetic oxides and nitrides 3

Table 2. Dilute ferromagnetic oxide thin films with TC above room temperature.

Material Eg (eV) Doping Moment (µB) TC (K) Reference

GaN 3.5 Mn – 9% 0.9 940 Sonoda et al. (2002)
Cr – >400 Hashimoto, Zhou, Kanamura and Asahi (2002)

Gd – 6% >400 Teraguchi et al. (2002)
AlN 4.3 Cr – 7% 1.2 >600 Wu et al. (2003)
TiO2 3.2 V – 5% 4.2 >400 Hong et al. (2004)

Co – 1–2% 0.3 >300 Masumoto et al. (2001a)
Co – 7% 1.4 >650 Shinde et al. (2003)
Fe – 2% 2.4 300 Wang et al. (2003)

SnO2 3.5 Fe – 5% 1.8 610 Coey, Douvalis, Fitzgerald and Venkatesan (2004)
Co – 5% 7.5 650 Ogale et al. (2003)

ZnO 3.3 V – 15 % 0.5 >350 Saeki, Tabata and Kawai (2001)
Mn – 2.2% 0.16 >300 Sharma et al. (2003)

Fe – 5%, Cu – 1% 0.75 550 Han et al. (2002)
Co – 10% 2.0 280–300 Ueda, Tabata and Kawai (2001)
Ni – 0.9% 0.06 >300 Radovanovic and Gamelin (2003)

Cu2O 2.0 Co – 5%, Al – 0.5% 0.2 >300 Kale et al. (2003)

Hole

O2−

Figure 2. Superexchange interaction between ions with more than
half-filled d shells via an O2− anion.

TC ≈ 800 K. In practice, the superexchange interactions are
often frustrated – the antiparallel coupling of all nearest
neighbors cannot be achieved for geometric reasons imposed
by the topology of the lattice. Furthermore, equation (3) is
known to overestimate TC by about 30%. In practice, the
magnetic ordering temperatures of oxides do not exceed
1000 K. Hematite – α-Fe2O3 – has a Néel temperature of
960 K. In most cases the magnetic ordering temperatures of
oxides are a few hundred kelvin, at best. When they are
diluted with nonmagnetic cations, the coordination number
Z = Z0x is reduced, and TC varies as x above the percolation
threshold (Figure 3).

The validity of the Heisenberg model in oxides has been
amply demonstrated by fitting the exchange constants to
the spin-wave dispersion relations determined by inelastic
neutron scattering. Complete data sets have been obtained
for Fe2O3, Cr2O3, and Fe3O4, among others (Samuelsen
and Shirane, 1970; Samuelsen, Hutchings and Shirane,
1970; Bourdonnay et al., 1970). The values of the exchange
constants range from −30 K to +6 K in α-Fe2O3. Negative
interactions are for superexchange bonds involving the same
ions, with large bond angles. Positive values are for bonds
involving ions in different valence states, or near 90◦ bonds
between ions in the same valence state.
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Figure 3. Variation of the magnetic ordering temperature in a dilute
magnetic oxide with nearest-neighbor superexchange interactions.
The dotted line is the prediction of mean-field theory for long-range
interactions.

During the 1960s, a wealth of information was accumu-
lated on the nature of the exchange interactions between
different cations for different superexchange bond angles.
An extensive set of rules was formulated by Goodenough
(1955) and Kanamori (1959). These rules were simplified by
Anderson (1963), as follows:

1. 180◦ exchange between half-filled orbits is strong and
antiferromagnetic.

2. 90◦ exchange between half-filled orbits is ferromagnetic,
and rather weak.

3. Exchange between a half-filled and an empty orbital of
different symmetry is ferromagnetic and rather weak.
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To summarize, concentrated magnetic oxides are well
described in terms of the m-J paradigm: there are local-
ized magnetic moments m on the cations, and superexchange
interactions couple them together. The paradigm provides a
good account of the magnetic order and the spin waves. Mag-
netocrystalline anisotropy in oxides is also well understood,
in terms of crystal-field theory. The electric field acting on
the localized electron shell of a 3d ion can be expressed
as a multipole expansion where the second derivatives of
the potential couple with the electric quadrupole moment of
the ionic charge distribution, and the fourth derivatives with
the hexadecapole moments (Hutchings, 1964). The leading
term in the expansion is

Hcf = θ2<r2>A2
0Ô2

0 ≈ DŜZ
2 (4)

where Ôn
m is the Stevens operator equivalent, a method used

to evaluate the matrix element of the wave function corre-
sponding to a particular value of J (described in some detail
in Hutchings (1964)). In a site with uniaxial anisotropy, Ô2

0

is equivalent to (3JZ − J (J + 1)). θ2 is the reduced matrix
element known as the Stevens parameter. For the 4f series,
J is a good quantum number, and the sixth order terms may
need to be taken into account for ions with J>5/2. Typi-
cally, the crystal-field parameter D, the zero field spin-orbit
splitting of the ground state, for non-S-state ions is of order
λ2/�, where λ is the spin-orbit coupling and � is the crystal-
field splitting. This ratio is of order 1 K. The small magnitude
of this interactions means that an applied magnetic field of
order 1 T will suffice to saturate the magnetization in a hard
direction.

Nitrides are rather different, in that the ionic model does
not suit them so well. The large, highly charged N3+ ion does
not really exist. Such configurations are inevitably screened,
and have a strongly covalent character. The ionic model is
a plausible starting point for compounds such as RN, where
R is a trivalent 4f cation, or an ion such as Ga3+ or Al3+.
In interstitial compounds such as Fe4N, the nitrogen is in an
uncharged, atomiclike state, where it is actually smaller than
the surrounding iron atoms.

3 MAGNETIC PROPERTIES OF DILUTE
OXIDES AND NITRIDES

First, it is useful to summarize the behavior which is normally
expected from a dilute magnetic oxide. A random distribution
of magnetic dopant ions is illustrated schematically in
Figure 4(a). At low concentrations, most of the dopants are
isolated, with no magnetic nearest neighbors, and a Curie-law
susceptibility is expected.

χ = µ0Nxg2µB
2S(S + 1)

3kT
(5)

As the concentration increases, there will be an increasing
proportion of dimers and larger groups. The dimers and other
even-membered groups have a Curie–Weiss susceptibility

χ = µ0Nx2g
2µB

2S(S + 1)

3k(T − θ)
(6)

Isolated polaron

(b)(a)

Isolated ion

Overlapping polarons

Antiferromagnetic pair

Figure 4. (a) Schematic representation of distribution of dopant ions in a dilute magnetic semiconductor. (b) The same, but with donor
defects which create magnetic polarons where the dopant ions are coupled ferromagnetically.
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where θ is a negative constant of order 10–100 K, which is
proportional to the antiferromagnetic exchange coupling J0.
The odd-membered groups with a net moment contribute a
modified Curie-law susceptibility. With all this, deviations
from a linear response to an applied field of up to 1 T,
for example, are only perceptible below about 10 K. The
room-temperature dimensionless susceptibility is of order
10−3x. Such is the behavior normally expected of a dilute
magnetic oxide. This is what is actually found in bulk
crystalline materials and in well-crystallized, defect-free thin
films. There are numerous examples in the literature of this
‘normal’ behavior, for example, Sati et al. (2006), Pacuski
et al. (2006), and Rao and Deepak (2005).

We now present experimental results on the dilute oxides
and nitrides, which can exhibit an anomalous ferromagnetic
behavior when they are in thin-film or nanocrystalline form.
The crystal structures of host materials are presented in
Figure 5. Some structural details are given in Table 3,
including the percolation threshold xp and the cation site
symmetry. The band gap Eg is listed, together with the
high-frequency dielectric constant. The main systems will
be discussed in turn.

Magnetization measurements on thin films deposited on
substrates, which are the samples of most interest in the
present context, present something of a challenge. There
is a huge mismatch between mass of the thin-film sam-
ple – typically some tens of micrograms – and that of the
substrate – which is about a thousand times greater. Com-
monly used substrates include sapphire (Al2O3), MgO,
SrTiO3, LaAlO3, and Si. The problem is illustrated in
Figure 6. The substrate presents a diamagnetic signal, which
is perhaps reproducible to within 1% given the uncertainties
in positioning and centering the substrate in the supercon-
ducting quantum interference device (SQUID) magnetome-
ter, vibrating-sample magnetometer (VSM), or alternating-
gradient force magnetometer (AGFM) used to measure the
hysteresis loop. It is therefore practically impossible to deter-
mine the diamagnetic susceptibility of the undoped film.
A Curie-law signal due to paramagnetic dopant ions can
be readily detected at low temperatures, but it is diffi-
cult to measure any high-field slope that may be associ-
ated with the ferromagnetic signal. The diamagnetic sus-
ceptibility of some common substrate materials is listed in
Table 4.

(a) (b) (c)

Figure 5. Crystal structures of host semiconductors: (a) TiO2 (anatase), (b) ZnO or GaN (wurtzite), (c) SnO2 or TiO2 (rutile). Oxygen in
dark spheres, cations in light spheres.

Table 3. Parameters for some oxides.

Material Structure nc (1028 m−3) ε m∗/m Eg (eV) C xp

ZnO Wurtzite 3.94 4.0 0.28 3.4 Tetrahedral 0.18
TiO2 Anatase 2.93 9.0 1.0 3.2 Octahedral 0.25
SnO2 Rutile 2.80 3.9 0.24 3.6 Octahedral 0.25

nc: cation density; ε: high-frequency dielectric constant; Eg: optical band gap; C: cation coordination; xp: cation percolation threshold.
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Table 4. Diamagnetic susceptibility of some substrate mate-
rials (room temperature) χ = M/H is the dimensionless
SI susceptibility. To obtain the mass susceptibility (units
m3 kg−1) divide by the density. To convert to dimensionless
cgs susceptibility (emu cm−3) divide χ by 4π .

Material Density (kg m−3) χ (10−6)

Al2O3 3960 −19
MgO 3600 −14
SrTiO3 5120 −7.1
LaAlO3 6510 −18
Si 2329 −4.1
SiC 3210 −13
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Figure 6. Data reduction for magnetization measurements on a
thin film of a dilute magnetic oxide or nitride. (a) Diamagnetic
substrate, (b) ferromagnetic thin film with diamagnetic substrate,
(c) ferromagnetic component isolated from (b).

The measured response for a ferromagnetic thin film is
shown in Figure 6(b). The magnetization appears to saturate
in a field of order 1 T, and the high-field slope becomes that
of the substrate, within experimental error. The procedure is
then to suppose that the magnetization is indeed saturated
and to subtract the high-field diamagnetic slope as the
substrate correction, yielding the magnetization curve for the
film shown in Figure 6(c). Typically, these ‘ferromagnetic’
hysteresis loops for dilute magnetic oxides exhibit little
coercivity (≈ 10 mT), and a small remanence ratio (Mr/Ms ≈
5–10%) [1]. The magnetization of the samples is often
given in units of Bohr magnetons per transition metal (TM)
ion by normalizing the measured magnetic moment by the
number of TM ions supposedly in the sample. This unit is
useful when comparing different doping concentrations and
also when comparing different host materials, if the TM
concentration is accurately known.

3.1 ZnO

ZnO is a promising semiconductor material with a band gap
of 3.37 eV. It has a natural tendency to be n-type on account
of oxygen vacancies or interstitial zinc atoms in the wurtzite
structure. Recently, it has been possible to make nitrogen-
doped p-type material, which opens the way to producing
light-emitting diodes and laser diodes. An extensive review
of the semiconducting properties of ZnO is available (Ozgur
et al., 2005).

Various cations can replace zinc in the structure. The Co2+

ion gives a characteristic pattern of optical absorption in
the band gap, due to crystal-field transitions of the ion in
tetrahedral coordination. Studies of the magnetic properties
of bulk material doped with Co (Rao and Deepak, 2005;
Bouloudenine et al., 2005) or Mn (Alaria et al., 2005)
show only the paramagnetism expected for isolated ions
and small antiferromagnetically coupled nearest-neighbor
clusters which arise statistically at a low doping level, as
discussed above (Figure 5a).

The range of solid solubility of cations of the 3d series
in ZnO films prepared by pulsed-laser deposition was estab-
lished by Jin et al. (2001); solubility limits as high as 15%
were found for Co, but most other cations could be intro-
duced at the 5% level. None of these films were found to
be magnetic, but following Ueda, Tabata and Kawai, (2001),
who were the first to report high-temperature ferromagnetism
in films doped with Co at the 10% level, there have been
numerous reports of ferromagnetic moments in films doped
with Co (See among others Janisch, Gopal and Spaldin,
2005; Prellier, Fouchet and Mercey, 2003; Pearton et al.,
2004 and references therein), as well as almost every other
3d dopant from Sc to Ni (Sharma et al., 2003; Venkatesan
et al., 2004b; Saeki, Tabata and Kawai, 2001; Radovanovic
and Gamelin, 2003) (Figure 7). It must be emphasized that
there are no reports of magnetism in undoped ZnO films,

Sc

2

1

0
Ti V Cr

3d dopant (5 at%)

s
 (
m

B
/M

)

Mn Fe Co Ni Cu Zn

Figure 7. Magnetic moment measured at room temperature for
ZnO with various 3d dopants. (Reprinted with permission
M. Venkatesan et al., copyright 2004, Nature Publishing Group.)
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however, prepared. There are also numerous counterexam-
ples where no room-temperature moment has been found in
doped films. Negative results tend to be underreported in
the literature, so the observation of ferromagnetism in ZnO
films is probably less prevalent than one might imagine. It
is very sensitive to the deposition conditions (Ozgur et al.,
2005). However, nanoparticles and nanorods of ZnO with
cobalt and other dopants have also been found to be mag-
netic under certain process conditions (Martinez et al., 2005),
although the moments per cobalt atom are an order of mag-
nitude less than those found for the thin films, which are
typically 0.1–1 µB/Co.

Some progress has been made toward providing a sys-
tematic experimental account of the phenomenon. Narrow
process windows have been delimited where ferromag-
netism can be observed, depending on the deposition
method – pulsed-laser deposition, sputtering, evaporation,
organometallic chemical vapor deposition, and others. With
Cr and Mn, for example, it is difficult to produce ferromag-
netic moments in n-type material, whereas p-type samples
can exhibit the symptoms (Kittilstved, Liu and Gamelin,
2006) (Figure 8). The substrate temperature required for fer-
romagnetism is often around 400 ◦C, where the films are not
of the best crystalline quality. This points to a defect-related
origin of the magnetism (Khare et al., 2006). Other evidence
in this sense comes from the appearance of magnetism in
Zn-doped (Halliburton et al., 2005; Schwartz and Gamelin,
2004), or in oxygen-deficient (Patterson, 2006) films.

The evidence that Co-doped ZnO is an intrinsically fer-
romagnetic semiconductor is rather sparse. No magnetore-
sistance has been observed at room temperature, despite the
high TC, nor is there clear evidence of an anomalous Hall
effect. Magnetoresistance can, however, be observed below
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about 30 K (Stamenov et al., 2006). Furthermore, there is a
band-edge magnetic dichroism which exhibits ferromagnetic
response (Kittilstved, Liu and Gamelin, 2006; Neal et al.,
2006), as well as a paramagnetic dichroic response from the
dilute Co2+ ions in tetrahedral sites in the wurtzite lattice,
Figure 9 (Kittilstved, Liu and Gamelin, 2006). The ferromag-
netic dichroism has been observed for Ti and Co (Figure 10)
and also for V and Mn doping (Neal et al., 2006). The inter-
action between the conduction electrons and the Co spins
seems to be rather weak, and the magnetic properties are lit-
tle influenced by changing the carrier concentration, by Al
doping, for example Venkatesan et al. (2006).

A problem in interpreting the magnetic data for some
dopants is the tendency to form ferromagnetic impurity
phases, which may escape detection by X rays. For cobalt,
in particular, absence of evidence cannot be taken as evi-
dence of absence. There is a tendency for nanometric
coherent cobalt precipitates to appear in the ZnO films
which exhibit ferromagnetic properties (Park et al., 2004).
An impurity-based explanation (Mn2−xZnxO3) has been
advanced also for Mn-doped material (Kundaliya et al.,
2004). For other dopants, such as vanadium, contamination
by high-temperature ferromagnetic impurity phases seems
improbable.

In some cases, there are features of the data which
make an impurity-phase explanation untenable. These are
(i) observation of a moment per transition-metal ion greater
than that of any possible ferromagnetic impurity phase based
on the dopant ion, and which may exceed the spin-only
moment of the cation, and (ii) observation of an anisotropy of
the magnetization, measured in different directions relative
to the crystal axes of the film, which is not a feature of
any known ferromagnetic phase at room temperature. An
example is shown in Figure 11.
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The tunnel spin polarization of transition-metal-doped
ZnO has been measured (Rode, 2006). Although poorly
reproducible, these results are in line with the observation
of magnetic circular dichroism (MCD) on the band edge as
discussed above. The possibility of obtaining and manipulat-
ing a spin current in ZnO could be of great interest, as the
spin lifetime in ZnO is rather long (Ghosh et al., 2005).

3.2 TiO2

Anatase with 1–2% Co doping was the first example of
high-temperature ferromagnetism in a dilute oxide film
(Masumoto et al., 2001a). The same group reported
ferromagnetism in rutile films (Masumoto et al., 2001b). The

solubility of aliovalent Co in these oxides is low, and there is
the possibility of cobalt-metal clustering (Kim et al., 2003;
Stampe, Kennedy, Xin and Parker, 2003). But films can be
prepared which are apparently free of clusters, and exhibit
ferromagnetism (Shinde et al., 2003; Bryan, Heald, Cham-
bers and Gamelin, 2004). Other evidence that Co-doped
TiO2 may be intrinsically ferromagnetic, and carrier mediated
include electric-field modulation of the magnetization (Zhao
et al., 2005), observation of band-edge optical dichroism
(Toyosaki et al., 2005a), anomalous Hall effect (Toyosaki
et al., 2004) as well as tunnel magnetoresistance (Toyosaki
et al., 2005b).

Other cation dopants reported to make TiO2 ferromagnetic
include V (Hong et al., 2004) and Cr (Chambers and Farrow,
2003). It is found that highly perfect Cr-doped TiO2 films are
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not ferromagnetic, whereas films with structural defects may
be (Kaspar et al., 2005). The Cr is trivalent in TiO2 films,
and the magnetization is highly anisotropic (Osterwalder
et al., 2005).

TiO2, unlike ZnO or SnO2 is usually quite insulating in
thin-film form, which indicates that delocalized, conduc-
tion electrons are not necessary for the high-temperature
ferromagnetism.

3.3 SnO2

First reports of high-temperature ferromagnetism in SnO2

films came from Ogale et al. (2003), who reported a Curie
temperature of 650 K and a huge moment of 7.5 µB/Co for
films doped with 5%. Subsequently, ferromagnetism was
observed for films doped with V, Cr Mn, Fe, and Ni, as
well as Co, (Hong et al., 2005b; Coey, Douvalis, Fitzgerald
and Venkatesan, 2004; Hong et al., 2005c), and in some
of these cases the moments also exceed the cation spin-
only values (Ogale et al., 2003; Fitzgerald et al., 2006).
In the case of V doping, for example, the results have
been shown to depend rather critically on the substrate
employed (Hong et al., 2005c; Fitzgerald et al., 2006). The
anisotropic magnetization and weak hysteresis found for
doped ZnO or TiO2 is also found for SnO2. It seems to
be a characteristic signature of the ferromagnetism in dilute
oxides.

In the case of Fe-doped SnO2 films, nanocrystalline Fe3O4

forms in some conditions, but it cannot be the complete
explanation of ferromagnetism, when the moment exceeds
1.33 µB/Fe.

3.4 Other oxides

Room-temperature ferromagnetism has been reported in thin
films of Cu2O produced by sputtering (Kale et al., 2003) or
electrodeposition (Liu et al., 2005).

Indium oxide doped with Cr is a promising system.
Moments of 1.5 µB/Cr are found, and there seems to be
little prospect of contamination of the films by ferromagnetic
impurities. (CrO2 is ferromagnetic, with TC = 390 K, but TC

is reported as 900 K). An anomalous Hall signal is observed
at room temperature, and the magnetism is related to the
carrier concentration (Philip et al., 2006).

Indium tin oxide, the well-known transparent conductor is
ferromagnetic when doped with Mn (Philip et al., 2004).

Ferromagnetic behaviour has been observed for HfO2

doped with Fe or Co doping (Coey et al., 2005; Hong et al.,
2005a). HfO2 is an example of a material which is magnetic
in thin-film form even when undoped (Coey et al., 2005;
Venkatesan et al., 2004a). See the following text.

Another interesting oxide is LaSrTiO3. This metallic oxide
is ferromagnetic when doped with Co and also shows tunnel
spin polarization (Herranz et al., 2006a,b).

3.5 d0 systems

There is some evidence that it is possible to achieve ferro-
magnetism an undoped defective oxides. Thin films of HfO2

show weakly hysteretic ferromagnetism when prepared on
various substrates, with magnetizations of up to 30 k Am−1.
(Hong et al., 2005a; Coey et al., 2005). This is perhaps mis-
leading, as the magnetization does not scale with substrate
thickness. Typically it can be 200–400 µB nm−2. Other sys-
tems where ferromagnetism has been reported in thin films
include anatase-TiO2 (Hong, Sakai, Poirot and Brizé, 2006),
CaB6, SrB6 (Dorneles et al., 2004), and reduced powders of
HfO2 and WO3. On the other hand, investigations of alkaline
earth oxides MgO, CaO, SrO, BaO, some of which have been
predicted to exhibit ferromagnetism related to the presence
of cation vacancies (Elfimov, Yunoki and Sawatzky, 2002),
have thus far shown no sign of being magnetic.

3.6 Nitrides

The first reports of ferromagnetism in a dilute nitride were
from Sonoda et al., who found TC = 960 K in a film of
GaN doped with 9% Mn (Sonoda et al., 2002). Such high
doping makes one wary of Ga–Mn phases, which have
high Curie points. Nevertheless, Cr-doped GaN and AlN
are also reported to be high-temperature ferromagnets (Park
et al., 2002; Wu et al., 2003), and there are no plausible
ferromagnetic impurity phases in these systems.

More striking are the reports of ferromagnetism in GaN
films grown by molecular-beam epitaxy and doped with Gd.
First reports, which showed TC > 400 K were for films with
x = 6% (Dhar et al., 2005a). Subsequently, films were doped
with Gd at the level of 1016 –1019 atoms/cm3, which corre-
sponds to 2 × 10−7 < x < 0.0002, and the system appears to
order ferromagnetically, with a moment per Gd atom as high
as 104 µB in the most dilute films (Dhar et al., 2005b). Here
the Gd atoms are separated by an average distance of 4.5 to
45 nm, in a matrix which is nonconducting, yet they exhibit
room-temperature ferromagnetism. The Gd, whether substi-
tutional or interstitial, creates large strains in the piezoelectric
GaN matrix.

4 DISCUSSION

The experimental picture is obscured by the difficulty in
reproducing some of the experimental results, and the
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difficulties in characterizing defects and interface states in
the thin films, as well as the difficulty in detecting small
amounts (≈ 1 wt%) of secondary phases. The anomalous fer-
romagnetism is not a feature of highly perfect films or bulk
crystalline material.

The presence of ferromagnetic nanoparticles of a second
phase with a high TC is an important factor, and possibly the
complete explanation of the ferromagnetism in certain cases.
Co nanoparticles are difficult to detect, but Fe and Fe3O4

are readily picked up by Mossbauer spectroscopy. Other
high-temperature ferromagnets are spinel phases, where the
antiferromagnetic interactions lead to ferromagnetic struc-
tures where the moment does not exceed 1.5 µB/magnetic
cation. High-temperature nitride ferromagnets include Mn4N,
MnGa2, and MnGa3. Nevertheless, it seems improbable that
impurity phases can be a general explanation. In some sys-
tems, there are no plausible candidates for ferromagnetic
impurities, other than ubiquitous iron introduced by careless
sample handling. Other arguments were given in Section 3.1.

Insofar as it is possible to generalize from the data at
hand, the characteristic features of the high-temperature
ferromagnetism in dilute oxides and nitrides are as follows:

The ferromagnetism exhibits very little hysteresis. The
loop in Figure 6(c) is practically the same for any of the
systems we have been discussing.

The films may be insulating or semiconducting; the
semiconductors are usually n-type. They may be partially
compensated, semiconducting, or degenerate. Coupling bet-
ween the magnetism and the conduction electrons is weak.

The moment does not depend obviously on the film
thickness or doping level when x < xp. It is often
100–400 µB nm−2. The moment per dopant ion increases as
x decreases, and it may exceed the spin-only value for the
ion at low concentrations.

The ferromagnetism is already present in some undoped
films, and in all films at concentrations that lie far below the
percolation threshold associated with nearest-neighbor cation
coupling. TC can be far above RT.

The magnetism is highly anisotropic, in a way unrelated to
the dopant, but dependent on the film/substrate combination.

The conventional picture of magnetism in insulators or
magnetic semiconductors is at a loss to account for these
observations. The Curie or Néel temperatures of oxides are
plotted on a histogram in Figure 12. None of them exceed
the Néel point of α-Fe2O3, which is 960 K. The ordering
temperatures in solid solutions vary as x or as x1/2. No
order is expected at room temperature when x < 10%, or
in insulators when x < xp. The magnetic behavior we would
normally expect from the m-J paradigm is a superposition of
Curie-law paramagnetism for isolated ions and Curie–Weiss
behavior for the small, antiferromagnetically coupled groups
of two, three, or more ions. Indeed, this is what is found in
well-crystallized, bulk material (Rao and Deepak, 2005), but
not in the ferromagnetic thin films of interest here.

Next we consider carrier-mediated exchange. In the first
generation of n-type rare-earth magnetic semiconductors
such as EuS, studied in the 1960s and 1970s (Methfessel
and Mattis, 1968), the carriers are electrons in the spin-split
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5d/6s conduction band. In the next generation of p-type
materials such as (GaMn)As, the carriers are holes in a
spin-split 4p valence band. In an influential paper, Dietl
et al. (2000) suggested that high Curie temperatures might
be obtained in this way in p-type Mn-doped ZnO or GaN.
These materials are usually n-type, however, and the s–d
exchange interaction α is usually weaker than the p–d
exchange interaction β.

A newer a model of magnetic semiconductors is one
where exchange is propagated by a spin-split impurity
band (Figure 13) derived from donor or acceptor defect
states, which form magnetic polarons (Figure 5b). This has
the virtue of yielding simple expressions for the Curie
temperature when treated by molecular field theory (Coey,
Venkatesan and Stamenov, 2005; Priour and Das Sarma,
2006)

TC =
[
S(S + 1)s2xδ

3

]1/2
Jsdωc

kB
(7)

Where S and s are the cation core spin and the donor spin
respectively. δ is the donor or acceptor defect concentration
and the cation volume fraction in the oxide ωc ≈ 8%.

The problem is that, knowing the values of the parameters
in the model, especially Jsd ≈ 1 eV, the predicted Curie
temperatures are again of the order of 10 K, which are 1 or 2
orders of magnitude too low. The model can be modified by
introducing hybridization and charge transfer from the donor
orbitals to those of the dopants, but at some point in the
dilute limit it has to fail, and a different approach is needed.

Small concentrations of conduction electrons do provide
ferromagnetic coupling via the RKKY interaction, but an
estimate of the magnitude of the magnetic ordering temper-
ature due to this interaction is

TC ≈ Z0n
5/3m∗δx1/3J 2

sfS(S + 1)

(96ð�2n
2/3
c kB)

(8)

The Curie temperature at elevated carrier concentrations,
corresponding to about 1021 cm−3, does not exceed a few
tens of kelvin.

Some insight into the problem is provided by first-
principles calculations for specific defects. Early calculations
by Elfimov et al. for CaO (Elfimov, Yunoki and Sawatzky,
2002) indicated that a Ca vacancy could stabilize a moment
on the adjacent oxygen ions where two holes coupled with
parallel spin to form a triplet state. These extended molec-
ular magnetic states were then shown to couple ferromag-
netically to produce long-range order. A similar calculation
for CaB6 led to the prediction of defect-related ferromag-
netism there too (Monnier and Delley, 2001), which has
been observed in powders (Lofland et al., 2003) and amor-
phous films (Dorneles et al., 2004). In HfO2, Das Pemmaraju
and Sanvito (2005) have shown that an Hf vacancy induces
a moment of 4 µB on holes in the surrounding oxygen
ions, and the coupling of these extended molecular mag-
netic objects is again ferromagnetic. Although no evidence
of ferromagnetism in defective CaO has yet been found, the
idea of oxygen-hole-related molecular magnetism has much
to commend it.

Electronic defects associated with oxygen or nitrogen
appear to be the most plausible source of the anomalous
ferromagnetism in doped and undoped material. These holes
are strongly correlated, and can form extended molecular
orbitals. At least the m part of the m-J paradigm has to be
revised. It is unclear whether the extended spin moments
overlap sufficiently to provide the exchange necessary for
high-temperature magnetism, or whether a quite different
mechanism must be sought, based, for example, on elastic
strain.

There have been numerous calculations in doped systems
(Janisch, Gopal and Spaldin, 2005; Patterson, 2006; Gopal
and Spaldin, 2006 and references therein). A critical feature
in these systems is the position of the different 3d charge
states relative to the primary band gap, which is difficult
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to obtain accurately by density-functional theory methods.
Some insight is provided by phenomenological theory (Kit-
tilstved, Liu and Gamelin, 2006).

5 CONCLUSIONS

The magnetism of dilute magnetic oxides and nitrides is one
of the most intriguing and potentially important open ques-
tions in magnetism at present. There is sufficient evidence
that the observations are not, in most cases attributable to
artifacts or trivial impurities. There is something to explain.

There appear to be two sources of the magnetism, defects
and dopants. Both are usually necessary, but in the d0

systems, the former suffice. The nature of the magnetic order
and the coupling mechanism has to be explained, but it seems
that the m-J paradigm for magnetism in solids is unable to
encompass these materials.

On present evidence, the coupling between the 3d dopants
and the conduction electrons in these systems is weak.
There is evidence of intrinsic ferromagnetism, but useful
magnetoresistive effects, for example, are not observed
at room temperature. Applications of this new class of
materials, which exhibit some sort of ferromagnetism above
room temperature, optical transparency, and a wide range of
transport properties ranging from degenerate semiconductor
to insulator, remain to be identified.

NOTES

[1] 1 Am2 = 103 emu; 1 Am2 kg−1 = 1 emu g−1; 1 Am−1 =
10−3 emu cm−3; 1 µB fu−1 = 5585/MW Am2 kg−1.
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1 INTRODUCTION

In the beginning of the twentieth century, Heusler stud-
ied the magnetic properties of ternary alloys containing
both transition and main-group metals (Heusler, 1903).
The motivation for this work was the mysterious obser-
vation that magnetic alloys could be formed from non-
magnetic elements. (Antiferromagnetism was not discov-
ered yet, so chromium and manganese were considered as
nonmagnetic elements.) More than a century later, these
alloys, named after Heusler, are still an area of active
research. A number of them possess the unique prop-
erty of exhibiting metallic behavior for one spin direc-
tion only. Half-metals (as these alloys have been baptized)
are the ultimate materials in spintronics, where besides
the charge, the spin of the electron plays an essential
role – conceptually in some cases and indispensably as com-
ponents of an actual device in other cases. Also, half-metals
form an interesting area for fundamental research in mate-
rials science. Electronic structure calculations have played
an important role in the area of half-metallic properties
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of Heusler alloys and beyond. Part of the reason for this
is the degree of refinement these calculations have today,
which make them a reliable instrument in materials sci-
ence, especially in areas where little experimental data is
at hand. There is hardly any direct experimental observa-
tion of half-metallicity possible. The most direct way of
observing half-metallic magnetism is spin-resolved positron
annihilation, an expensive measurement requiring dedicated
equipment and single crystals. The possibility of extract-
ing 100% spin-polarized electrons from a half-metal has
been taken as a proof of half-metallic magnetism, but this
requires electrons to cross a surface or an interface. Only
recently, we have began to realize that surfaces and inter-
faces are distinct objects with distinct properties. They
require special studies, both computationally as well as
experimentally. Unfortunately, the understanding of inter-
faces is not nearly as advanced as that of bulk proper-
ties. This chapter follows more or less the historic devel-
opments of the half-metallic properties of Heusler alloys.
This implies that computational studies form its backbone.
However, experimental studies are essential and will be
discussed.

Today we know two classes of alloys named after Heusler:
the C1b structure and the L21 structure, sometimes referred
to as the half Heuslers and the full Heuslers, respec-
tively. Both structures are closely related with each other
as well as with the zinc-blende structure. All three are
based on a face centered cubic Bravais lattice. Whereas
the zinc-blende structure has the 0, 0, 0 and 1/4, 1/4, 1/4
positions, the three constituents in the Heusler C1b struc-
ture occupy the 0, 0, 0; 1/4, 1/4, 1/4; and 1/2, 1/2, 1/2
positions. The full-Heusler structure is identical with the
half-Heusler structure, furthermore, the element occupying
the 1/4, 1/4, 1/4 position also occupies the 3/4, 3/4, 3/4
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position. Thus, the C1b structure lacks the inversion sym-
metry that the L21 structure has. These differences and sim-
ilarities are essential and at the same time almost sufficient
to understand the quite different, rich physics of both classes
of alloys.

Two groups initially studied the electronic structure of
Heusler alloys independently and at the same time. NiMnSb,
a half-Heusler, showed semiconducting behavior exclusively
for the minority-spin direction and was baptized a ‘half-
metallic ferromagnet’ (de Groot, Mueller, van Engen and
Buschow, 1983). At the same time, several full Heuslers
were studied (Kübler, Williams and Sommers, 1983), and
it was noticed by these authors that for Co2MnAl and
Co2MnSn, ‘the minority-spin state density nearly vanished’.
Both groups realized the consequences of controlling the
electron spin in electrical conduction, an area known as
spintronics today. Kübler remarks ‘This should lead to pecu-
liar transport properties in these Heusler alloys’, while the
publication of the Dutch group was delayed by half a
year because of a patent application using half-metals as
a source of spin-polarized electrons in a transistor contain-
ing two layers of half-metal separated by a nonmagnetic
layer.

The similarities of both Heusler structures and the occur-
rence of half-metallic magnetism in both types of alloys
suggest a common origin. These similarities are misleading,
however. The origin of half-metallic magnetism in the two
structures is quite distinct. Also, the defect chemistry, impor-
tant for the robustness of the half-metallicity, is different, as
we will see.

2 HEUSLER C1bs

2.1 Nickel–manganese–antimonide

2.1.1 General

Since NiMnSb is a half-metal that has been studied for a
long time, both computationally as well as experimentally,
it will be treated here in detail. The band structure is shown
in Figure 1 for both spin directions. The majority-spin panel
shows that three bands cross the Fermi level with sizable
slope. This is a consequence of the rather large bandwidths
of the bands. The minority-spin direction shows an energy
gap at the Fermi level with valence and conduction bands
that closely resemble those of many zinc-blende semicon-
ductors with an indirect band gap. The similarity is even
more pronounced if we remove the Ni d states from the
Hamiltonian (but not their interaction with the antimony and
manganese states) and compare the valence band with that
of GaSb (Figure 2). This observation is important. One can
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Figure 1. Band structure of NiMnSb for (a) the majority-spin
direction and (b) the minority-spin direction.

analyze band structures in terms of tight-binding interactions
as described by Slater and Koster. An interaction between
two atoms in real space contributes a cosine to the band struc-
ture in the corresponding direction of k space. The strength
of the interaction determines the dispersion, while the wave-
length of the cosine is determined by the inverse of the
distance between the interacting atoms in real space. There-
fore similarities of band structures directly reflect similarities
in chemical bonding. Much of this information is lost if one
considers quantities derived from Brillouin zone integrals
like densities of states. So, the essential ingredients are the
trivalent manganese with tetrahedral coordination interacting
with the pentavalent antimony, which is also tetrahedrally
coordinated (as long as no inversion center is present, even
d wave functions of manganese in NiMnSb can play the same
role as the odd p functions in a zinc-blende semiconductor).
Whereas this interaction is direct in the zinc-blende semi-
conductors, it is indirect through the nickel atoms in the half
Heuslers; to quote Kübler: ‘a nickel induced Mn–Sb cova-
lent interaction’ (Kübler, 2000). Whereas the zinc-blende
semiconductors show a band gap for 8 valence electrons,
18 electrons are required here in order to keep the nickel
d shell filled. Thus, the magnetic moment of NiMnSb is
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Figure 2. Valence-band structure of minority-spin (semiconduct-
ing) NiMnSb (C1b structure) where the Ni-d states were deliberately
removed from the Hamiltonian (full lines). For comparison the
valence-band structure of GaSb (calculated with the same method)
is shown (broken lines).

4 µB, of which manganese carries 90%, while the remain-
ing moment resides on the nickel atom. The interactions
for the majority-spin direction are quite different. Because
the manganese d states are much lower in energy as com-
pared to the minority-spin d states, these electrons are prac-
tically degenerate with the antimony electrons they interact
with. Consequently, the bandwidths are larger when com-
pared to the semiconducting spin direction and no band gap
occurs, either at the Fermi energy or in the vicinity of it.
Note that this is a very different case from the strongly
magnetic half-metals, the manganites with colossal mag-
netoresistance, or, for example, CrO2. In these cases, the
majority and minority bands are to a good approximation
shifted in a ridged bandlike fashion by the exchange interac-
tion. The Fermi level intersects the majority band while the
corresponding minority band is still empty. This situation
is practically determined by the valence of the ion carrying
the magnetic moment only. Thus, very little influence is to
be expected from disorder, surfaces, and interfaces, as long
as the proper valence of the magnetic species is conserved.
NiMnSb, on the other hand, requires the correct crystal struc-
ture and site occupancy, as shown in the next paragraph.
Since the role of nickel is so passive, one wonders whether
it is needed at all. Manganese–antimonide does exist, but
it crystallizes in the nickel–arsenide structure. This struc-
ture has a deformed octahedral coordination of the metal
and a trigonal prismatic coordination of the pnictide. Con-
sequently it is not half-metallic. But manganese–antimonide
in the zinc-blende structure is a half-metal, very much like
nickel–manganese–antimonide. The magnetic moments are
identical. So the role of nickel in NiMnSb is to stabilize it in
the crystal structure with the required coordination of man-
ganese and antimony. It is very efficient in doing so: the
lattice parameter of NiMnSb is actually smaller than that of
zinc-blende manganese–antimonide.

Let us return to the issue of point defects in nickel–
manganese–antimonide. A proper site occupancy is essential
(Helmholdt et al., 1984). For example, nickel–manganese
interchange deprives the manganese of its tetrahedral coor-
dination and consequently does not show any half-metallic
properties. Even a 1% interchange is enough to destroy the
band gap (Orgassa, Fujiwara, Schulthess and Butler, 2000).
However, such an interchange is energetically very unfa-
vorable. It costs 2.8 eV per interchanged Ni–Mn pair, more
than the heat of evaporation. Similar considerations hold for
nickel–antimony interchange. This is consistent with nuclear
magnetic resonance (NMR) measurements on cold-worked
Heusler alloys. All investigated full Heuslers showed broad-
ening of the manganese line, but even severe crushing in the
case of NiMnSb left the NMR spectrum unaffected (Schaf,
Le Dang, Veillet and Campbell, 1983). The trivalent behav-
ior of manganese for the minority-spin direction implies
that minority-spin d electrons are involved in the chemical
bonds and the valence-band formation. Magnetic materials
can be classified as strong magnets or weak magnets. Strong
magnets are defined as magnets, where an increase in the
spin-up, spin-down splitting in energy (the exchange inter-
action) does not lead to an increase in magnetic moment.
Clearly, the magnetic moment is not limited by the strength
of the exchange interaction, but by a lack of available elec-
tron states. For transition metals, this implies a full major-
ity d shell or an empty minority d shell. In the case of a
weak magnet, the moment is not determined by a lack of
available states but by balancing the energy gain of mag-
netic moment formation (the exchange interaction) against
the cost of transferring electrons from one spin direction
to the opposite one (band energy). The involvement of the
manganese d electron in the valence band for the minority-
spin direction classifies NiMnSb as a weak magnet. One can
force NiMnSb into becoming a strong magnet by artificially
increasing the exchange interaction till the magnetic moment
has obtained the value of 5 µB, characteristic of a strong
magnet in this case. The resulting band structure is shown in
Figure 3. NiMnSb has evolved into a normal metal. Clearly
half-metallicity and strong magnetism are mutually exclusive
in NiMnSb.

2.1.2 Experimental bulk properties

A striking, but trivially proven property of half-metals is
the occurrence of integral magnetic moments. This property
follows directly from the fact that the number of electrons
of the semiconducting spin direction and the total number
of electrons are integers. This gives a direct indication
of whether a compound could be a half-metal. It should
be applied with caution, however. An integral magnetic
moment is no proof of half-metallicity: integral magnetic
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Figure 3. Band structure of NiMnSb with an artificially increased
exchange splitting: (a) majority-spin channel and (b) minority-spin
channel.

moments can occur accidentally within the precision of
the experiment. The sulfospinel greigite is not half-metallic
in spite of its integer magnetic moment of 2 µB. The
opposite case can also occur. An integral number of electrons
(per formula unit) occurs only for an integral number of
atoms. So, a nonintegral magnetic moment does not disprove
half-metallicity if deviations from stoichiometry occur, for
example, in the form of vacancies. These imperfections
are more difficult to measure than a magnetic moment.
(Chemical analyses of a sample will not help if the missing
element is present in the sample in the form of another phase,
which is frequently the case. X-ray diffraction is insensitive
in detecting smaller fractions of other phases.) The magnetic
moment at a low temperature for NiMnSb agrees with the
expected 4 µB.

The most direct proof of half-metallicity is provided by
positron annihilation. This method measures the Fermi sur-
faces for the two spin directions independently and can
also detect the absence of a Fermi surface for a particu-
lar spin direction. These are genuine bulk measurements.
This way, the half-metallic properties of NiMnSb were
confirmed experimentally to the precision of 0.01 electrons
(Hanssen and Mijnarends,1986; Hanssen, Mijnarends, Rabou

and Buschow, 1990). (Another attractive feature of positron
annihilation is that it can be applied on a broad range of
temperatures, unlike methods such as de Haas–van Alphen
or cyclotron resonance.)

Fingerprints of half-metallicity are expected to show up in
transport properties like the temperature dependence of elec-
trical resistivity, the (anomalous) Hall effect, and so on. The
situation here is remarkably complex, however, and a sim-
ple consistent picture is missing. The first study specifically
addressing these points is the work of Otto et al. for NiMnSb
(as well as PtMnSb, AuMnSb, CoMnSb, and PtMnSn). In a
half-metal, no spin-flip scattering (one magnon scattering)
is possible. The characteristic T 2 term in the temperature
dependence of resistivity at low temperatures is indeed miss-
ing for NiMnSb (as well as for PtMnSb and CoMnSb, see the
following text). The normal Hall effect shows a strong linear
decrease from 4 to 90 K by a factor of 7, after which it satu-
rates. Otto explains this remarkable feature as resulting from
a complex Fermi surface comprising three sheets of mixed
hole/electron character. Otto et al. report a strong anomalous
Hall effect for all cases they investigated. Assuming a degree
of spin polarization of the conduction electrons that is pro-
portional to the magnetization (both as a function of tempera-
ture), a linear behavior is observed in all systems investigated
for the anomalous Hall effect divided by the normal resis-
tivity as a function of resistivity. NiMnSb follows this trend
above 97 K only. The temperature dependence of the resis-
tivity in half-metals was reviewed and studied theoretically
by Irkhin and Katsnelson. The expected temperature depen-
dence of the resistivity is T 9/2, which has not been reported
experimentally. On the other hand, these authors also con-
sidered the nonquasiparticle contribution to the temperature
dependence of the resistivity and obtained T ∼1.65, very close
to the experimentally observed T 3/2, above a temperature
of 100 K (Irkhin and Katsnelson, 1994, 2002). Strong evi-
dence exists that a transition takes place in NiMnSb, but a
complete understanding is still missing. An interesting sce-
nario considers the thermal excitation of electrons at the
Fermi energy level to the bottom of the conduction band
(Hordequin, Ristoiu, Ranno and Pierre, 2000). This excitation
transfers a majority-spin electron to the minority-spin direc-
tion. It reduces the magnetic moment and thus the exchange
splitting, lowering the activation energy for more excitations
of this type. A catastrophe occurs, the bottom of the conduc-
tion band drops below the Fermi level and the half-metallic
properties are lost. Basically, this is a magnetic analog of
the semiconductor–metal transition as described by Falicov.
Such a phase transition could happen for any half-metal, but
it requires the Fermi level to be positioned asymmetrically in
the band gap, closer to the conduction band for half-metals
with a band gap in the minority-spin direction. More recently,
evidence has been obtained that around a temperature of
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90 K, a reordering of the magnetic moments occurs, with
loss of the half-metallic properties (Borca et al., 2001). The
low temperature of these transitions is somewhat unexpected.
Naively one would expect the spin polarization of the con-
duction electrons as a function of temperature to roughly
follow the magnetization. Clearly more work is needed in
order to obtain a full understanding here. Why was this transi-
tion not noticed in measurements of the magnetization? How
does the transition depend on details of the magnon spectrum
and could it be suppressed by doping with lanthanide atoms
(Attema et al., 2004)? Half-metals with a band gap in the
majority-spin direction, an area practically unexplored till
now, could greatly contribute to our understanding of finite
temperature properties.

2.1.3 Surfaces and interfaces

The majority of the techniques that measure the degree
of spin polarization of the conduction electrons are actu-
ally surface-sensitive techniques. It is important to have an
understanding of the physical properties of the surface of
NiMnSb and half-metals in general. Also, knowledge and
understanding of interfaces of half-metals with semiconduc-
tors, in particular, is of importance in spintronics. Ideally,
a bona fide energy gap exists for one spin direction in the
half-metal throughout the interface into the semiconductor.
Such an interface is an exception. Designing an interface that
fulfills all requirements requires proper insight into the inter-
actions at the interface. Strongly magnetic half-metals have
fundamentally different surface and interface properties com-
pared to weak magnetic half-metals. In the case of strong
magnetic half-metals, the magnetic properties are essen-
tially determined by the ion carrying the magnetic moment
and its valence. As long as this valence is conserved, the
half-metallic properties are conserved, even at the surface.
Figure 4 shows a comparison of the surface electronic struc-
ture with the bulk for the strongly magnetic half-metal CrO2

(van Leuken and de Groot, 1995). In both cases, remarkably
little influence of the surface on the electronic properties is
found. In the case of weak magnets, additional strict require-
ments on the structure need to be fulfilled in order to maintain
half-metallic properties. These conditions are violated at the
surfaces. Experimentally, spin-dependent photoemission did
not show 100% polarization (Bona et al., 1985), but inverse
photoemission (probing the empty electron states) showed a
very high degree of spin polarization (Ristoiu et al., 2000).
Photoemission is a very surface-sensitive technique. A draw-
back is the possibility that it does not measure the entire
Brillouin zone. For this reason Andreev reflection is supe-
rior. The spin polarization obtained this way is only 60%
(Soulen et al., 1998). Originally, Andreev reflection was not
considered as a particularly surface-sensitive technique, but
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Figure 4. Comparison of the density of states of bulk CrO2 (a)
with the density of states per layer of the CrO2(001) slab: central
CrO2 layer (b), sub-subsurface layer (c), subsurface layer (d),
surface layer (e), and first vacuum layer (f). Vertical scale: 2 states
per eV formula unit per division and 0.2 states per eV formula unit
per division for (f).

this question is still under debate (Eschrig, Kopu, Cuevas
and Schoen, 2003), and its interpretation is sometimes subtle
(Auth, Jakob, Block and Felser, 2003). Electronic structure
calculations on all the possible surfaces of low index (100,
110, 111) showed that none of them exhibited half-metallic
surfaces, independent of the termination, and there are no
reasons to assume that more complex surfaces would not
interpolate between these cases (see e.g., Galanakis, 2002
for the (001) surfaces). The most detailed calculations find
two metallic minority-spin surface states for the (001) surface
(Jenkins and King, 2001). The same is found for the (111)
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surface (Jenkins, 2004). This study also gives detailed infor-
mation on the thermodynamic stability of the various (111)
surfaces. An important conclusion is the stability of the
antimony-terminated surface. For details we refer to the orig-
inal literature.

The breakdown of half-metallicity at the surface of
NiMnSb could be a reason to abolish NiMnSb and Heuslers,
in general, as candidates for spin injection into semicon-
ductors. However, it should be realized that the surface of
NiMnSb is quite different from the interface with a semi-
conductor in view of the similarity in electronic structure
between NiMnSb and III–V semiconductors. Also, the appli-
cation of a strong magnetic half-metal like CrO2 on a III–V
semiconductor may very well introduce metallic behavior in
the semiconductor for the spin direction in which the half-
metal itself is semiconducting.

The properties of an interface are even more complex than
those of a surface. Experimentally, few techniques are avail-
able to directly measure interface properties as compared
to those available for measurements at the surface. Com-
putationally also, the situation is much more complicated
than is generally realized. Even if no lattice mismatch exists
between the two materials and interdiffusion of atoms from
the neighboring materials can be neglected, the number of
possible interfaces is still infinite, since the lateral orienta-
tion of one material with respect to the other is undetermined.
Also, the structure at the interface and its volume need to
be determined. This requires a careful and very expensive
structure optimization. But it should be realized that actual
interfaces are not determined by thermodynamic equilibrium
alone. These optimizations are essential: the value of the spin
polarization of the conduction electrons at the interface can
change by hundreds of percent as compared with the guessed
geometry. Structural relaxations in the stacking direction can
be calculated quite straightforwardly. But relaxations in the
lateral directions require very large unit cells and can be
performed for relatively easy cases only. An early study of
interfaces of low index of NiMnSb with InP and CdS showed
(de Wijs and de Groot, 2001; Figure 5) that only one inter-
face maintained semiconducting properties for the half-metal
throughout the interface into the semiconductor. It is the 111
interface where both half-metal and semiconductors are anion
terminated with a displacement of the lattices with respect
to each other in the lateral directions in such a way that
the two anions are positioned on top of each other in the
stacking direction. In the first inspection, such an interface
may look unstable, but such anion–anion bonds do occur in
minerals like costabite and paracostabite, which have crys-
tal structures very much related to the interfaces described
here. Minerals are stable on a geological timescale. Much
can be learned from the reason for this being the only half-
metallic interface. The 111 direction in NiMnSb is the only
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Figure 5. Structure of the half-metallic NiMnSb(111)/CdS(111)
interface. The [111] axis runs horizontally, form left to right. Notice
the Sb–S bond at the interface (dSb1–S1 = 2.7 Å).

direction in which one finds layers of one element only, the
100 and 110 directions already show at least one plane with
more than one component. The origin of the band gap in
NiMnSb is very much like that in a III–V semiconductor,
where the trivalent manganese can play a role similar to
that of a trivalent metal like gallium in the corresponding
semiconductor. But there is a difference between the two.
In Ga–pnictide semiconductors, the contribution of Ga to
the valence bands consists of 4s and 4p electrons, whereas
Mn in NiMnSb contributes 4s and 3d electrons, with differ-
ent main quantum numbers. Each element separately (Ga or
Mn) gives a band structure with a bona fide band gap, but a
mixture of them does not. The double-anion-terminated 111
interface is the only interface without anions coordinated by
both transition and main-group metals. These findings are
confirmed by calculations on Ga(1–x) MnxSb. The limited
solubility of Mn in, for example, GaAs as known in dilute
magnetic semiconductors, is not unrelated with the problems
of a NiMnSb/semiconductor interface. Experimental work
has been focused mainly on (100) interfaces. The best surface
morphology and crystal quality was obtained for NiMnSb
grown on GaAs, which was 20% deficient in antimony (van
Roy et al., 2000, 2001). A (111) NiMnSb–GaAs B inter-
face of good quality was realized (van Roy et al., 2003).
This interface did not show a high degree of polarization,
possibly because of the lattice mismatch.

2.2 Heusler alloys isoelectronic with
nickel–manganese–antimonide

2.2.1 General

The band structures of PdMnSb and PtMnSb show strong
similarities with that of NiMnSb. In PdMnSb, the Fermi
energy straddles the top of the valence band. PtMnSb shows
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major differences in the conduction band as compared with
NiMnSb. The origin of these differences is relativistic: they
originate from the mass–velocity and Darwin terms. The
result is that the platinum 6s states are positioned much lower
in energy than the 4s states of Ni in NiMnSb. This has a
direct influence on the nature of the band gap. The direct
gap for PtMnSb is very much like NiMnSb, the bottom of
the conduction band at the � point, however, is a single
degenerate band in which Pt s states contribute substantially.
This possibly influences the magneto-optic Kerr effect.

The very high magneto-optic Kerr effect in PtMnSb
spurred interest in this compound and in Heusler alloys, in
general. The 2.5◦ (double) rotation at room temperature was
a record (van Engen, Buschow and Jongebreur, 1983). A
simple model related this observation to the half-metallic
properties as the complement of the optical generation of
spin-polarized electrons in semiconductors: where an optical
transition with circularly polarized light from a spin-orbit
split valence band generates spin-polarized electrons in the
conduction band, the absorption of light from a 100% spin-
polarized, spin-orbit split top of a valence band is possible
for one (circular) polarization only. This uncompensated
excitation gives a peak in the magneto-optic spectrum at
a remarkably good position (de Groot, Mueller, van Engen
and Buschow, 1984). The differences between PtMnSb and
NiMnSb could be explained by the much higher position of
the final state in the latter compound caused by the absence of
strong scalar relativistic effects, leading to a second peak at
much higher energy (Wijngaard, Haas and de Groot, 1989).
On the other hand, the importance of a very small diagonal
part, which enters the denominator in the expression of the
Kerr effect, was stressed (Feil and Haas, 1987).

The first calculations of magneto-optical spectra based on
first-principles calculations appeared in the beginning of the
1990s (Halilov and Kulatov, 1991; Kulatov, Uspenkii and
Halilov, 1995). The magneto-optical properties of PtMnSb
were reproduced very well. The results for NiMnSb showed
a discrepancy of 0.5 eV in the position of spectral features
and peaks that are more than twice as strong as compared
with experiment. The latter point is of no importance, since
any defects in samples and temperature reduce spectral fea-
tures. A very thorough study on the background of magneto-
optics in NiMnSb, PdMnSb, and PtMnSb analyzed in detail
the effects of spin-orbit coupling, the magnetic moment,
the degree of hybridization, the half-metallic character, the
plasma frequency, and the crystal structure. This was accom-
plished by calculations on a large number of (sometimes
hypothetical) compounds, in which these factors could be
controlled separately. All factors contributed in the case of
PtMnSb (Antonov et al., 1997). Regrettably, no analyses
were made as to whether a specific part of the Brillouin zone
contributed to the observed effect. Recent measurements

on the (magneto-)optical properties of NiMnSb (Gao et al.,
1999) were interpreted using the calculations of Antonov
et al. and very good agreement was obtained. On the other
hand, recent measurements on the temperature dependence
of the Kerr effect in PtMnSb showed that there still remains
an aspect to be understood: the Kerr effect increases by more
than a factor of 3 on cooling down to 100 K (Carey, Newman
and Wears, 2000). The diagonal part of the dielectric tensor
is responsible for this unexpected result.

2.3 Other half-metals in the C1b structure

2.3.1 Slater–Pauling curves

If one plots the magnetic moment per formula unit of a
large collection of compounds as a function of the number
of valence electrons, many linear dependences are obtained.
A unique curve with slope –1 is obtained for high electron
concentrations, at the right side of what has been baptized
the Slater–Pauling (SP) curve (Figure 6). This particular
behavior is obtained if the number of majority electrons is
constant; in practically all cases, this implies that the majority
d bands are completely filled, for example, it is an implication
of strong magnetism. The situation at the left-hand side of
the SP curve is more complex. One could imagine that
strong magnetism based on empty minority-spin bands is
the origin. But low electron concentrations necessarily imply
atoms from the left side of the transition-metal series, and
the delocalized behavior of their d electrons does not favor
magnetism (Kübler, 2000). An exception is found in the
strongly ionic, strongly magnetic compounds like the colossal
magnetoresistance materials and oxides like CrO2. They are
half-metals, but are not the subject of this chapter. Several
different curves with a positive slope are found at the left side
of the SP diagram, each representing a different mechanism
for keeping the number of minority-spin electrons constant.
One such mechanism is half-metallic magnetism.

In NiMnSb, if we were to substitute Ni with other 3d
metals, the resulting compounds would follow the SP curve
as long as the half-metallic magnetism persists. As mentioned
before, the presence of minority-spin d electrons in the
valence-band complex causes NiMnSb to be a weak magnet.
Consequently, the maximal magnetic moment in a possible
series of half-metals based on it is 4 µB. This marks NiMnSb
as the end of the series. Indeed, compounds with electron
concentrations beyond NiMnSb are not half-metallic. In
NiFeSb, the reduction in magnetic moment is accomplished
by the occupation of minority-spin d states in the conduction
band with the inevitable loss of half-metallicity. The required
loss of half-metallicity and reduction of magnetic moments
is energetically, more favorably realized by adopting an
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Figure 6. Slater-Pauling curves showing the relation between several classes of half-metals.

antiferromagnetic magnetic structure by doubling the unit
cell (CuMnSb). A reduction of the electron density leads to
CoMnSb calculated to be a half-metal indeed (Kübler, 1984).
The band structure for the minority (semiconducting)-spin
direction has hardly changed. The metallic spin direction
is more strongly affected and the magnetic moment is
reduced to 3 µB. Following the SP curve, the next compound
is FeMnSb. Calculations show a half-metallic electronic
structure here as well (de Groot, van der Kraan and Buschow,
1986). Consequently, the magnetic moment is reduced to
2 µB, which is quite a small moment for iron and manganese
to share in a magnetic alloy. This is actually not the case.
FeMnSb is a ferrimagnet, so 2 µB represents the difference
of the moments on iron and manganese. This way, both the
energy gain of the energy gap as well as the maximal gain in
exchange energy can be obtained: the ferromagnetic solution
can accommodate the larger moments as well, but at the
expense of the energy gain associated with the band gap.
This constitutes an exchange coupling mechanism unique for
half-metals and is expected to occur for band gaps exceeding
the exchange coupling strengths, which rarely exceed 0.1 eV.
The next case is MnMnSb (this notation is used to accentuate
the very different crystallographic point group symmetries of
the two manganese atoms). It is a half-metallic ferrimagnet
with a net moment of 1 µB. Another way of reducing the
number of charge carriers is the substitution of nickel with
4d or 5d elements like osmium, iridium, or rhodium. In these
cases, the exchange interaction of the introduced elements
is not strong enough to maintain half-metallic properties.
Instead a rigid band like that of the Fermi energy occurs.
The band gap is maintained, but the Fermi level is positioned

below the top of the valence band. PtMnSn shows a similar
behavior (de Groot van der Kraan and Buschow, 1986).

The results discussed in the previous paragraph are only
partially confirmed experimentally, mainly because of the
fact that these systems adopt different crystal structures.
Experimentally a magnetic moment different from 3 µB is
found for CoMnSb. The explanation for this discrepancy
is that CoMnSb actually shows a tetragonal superstructure
related to the Heusler C1b structure but with partial occu-
pation of cobalt on the empty sites (Szytula et al., 1972).
The situation for FeMnSb is also more complex. Partial
substitution of Ni by Fe in NiMnSb leads initially to the
theoretically expected behavior. But beyond 10%, a second
non-half-metallic phase similar to CoMnSb shows up. No
calculations have been reported on iron-substituted NiMnSb
yet. Mn2Sb does exist and is experimentally found to be a
ferrimagnet with a magnetic moment of 1 µB. However, it
crystallizes in the Cu2Sb structure, quite different from the
Heusler structure. Band structure calculations in the actual
structure are consistent with the magnetic properties, but do
not show any sign of half-metallicity (Wijngaard, Haas and
de Groot, 1992).

Potentially, other half-metals could exist by substituting
both transition metals in NiMnSb. CoVSb has been seriously
considered, but has been rejected on the basis of neutron
scattering work (Heyne et al., 2005).

2.3.2 CrMnSb, half-metallic antiferromagnetism

The SP curve described in Section 2.3.1 intersects the ordi-
nate for CrMnSb. Usually, the intersection of the SP curve
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is an indication of a nonmagnetic solution. But in this partic-
ular case, we have seen that the reduction of magnetization
following the SP curve is energetically more favorably real-
ized by adopting an antiparallel ordering of the magnetic
moments of the two different magnetic atoms. Following this
trend toward CrMnSb, a fundamentally new type of material
is encountered: There is no net magnetization, but the con-
duction electrons remain completely spin polarized. This was
baptized half-metallic antiferromagnetism (de Groot, 1991).
It is a situation quite distinct from traditional antiferromag-
nets, in which magnetization vanishes because of a symmetry
operator or a spin-density wave. As a matter of fact, the half-
metallic antiferromagnetism is so different from conventional
antiferromagnetism, that its name is controversial. The rea-
son we use the name is that the cancellation of the moments
on different atoms (Cr and Mn in this case) on different
Wyckoff positions is, nevertheless, exact. It follows from the
requirement of integral magnetic moments for half-metals
and this is zero here. Unfortunately, CrMnSb actually crys-
tallizes in the same crystal structure as Mn2Sb, and although
it is antiferromagnetic for some range of composition it is
not half-metallic. Isoelectronic VFeSb does adopt the Heusler
C1b structure, but it is a nonmagnetic semiconductor. Clearly,
the energy gain of having a band gap for the second spin
direction exceeds the gain in exchange energy of a magnetic
solution here. The half-metallic antiferromagnetic solution
could be stabilized in a calculation by partially replacing
the more delocalized d metal vanadium by manganese (van
Leuken and de Groot, 1995). The required electron count was
maintained by modifying the occupation of the main-group
element: (VFeSb)(1–x)(MnFeIn)x . We are not aware of any
attempts to synthesize this compound. A practical realization,
whether as a Heusler alloy or other, would be important. Not
only has it been predicted that half-metallic antiferromagnets
show a novel form of superconductivity (‘single-spin super-
conductivity’) (Pickett, 1996) but also that applications of
systems with 100% spin polarization without magnetization
are easily imagined.

3 HEUSLER L21 STRUCTURE

The Heusler L21 structure is obtained by occupation of the
remaining open position of the C1b structure by the element
with cube coordination already present in this structure. This
introduces an inversion center in the crystal structure and
eliminates the tetrahedral coordination of the two atoms in
the half-Heusler structure. The strong interatomic interaction
responsible for the well-defined band gaps in the half
Heuslers is forbidden by symmetry in the full Heuslers.
The relation with zinc-blende semiconductors is lost, as
evidenced by the distinct band gap topologies. Half-metals

in the L21 show narrower bands, and a band gap opens up
simply because the bandwidth is not always larger than a
ligand-field splitting. This process is quite independent of the
structure; a continuing decrease of interatomic interactions
with respect to crystal-field and intra-atomic interactions
leads through various other possible type of half-metals to
magnetite in the end (Yanase and Siratori, 1984), at which
point a Mott insulating state occurs. This is case 3 of half-
metallicity in the classification scheme of half-metals (Fang,
de Wijs and de Groot, 2002). The fact that both classes of
half-metals (C1b and L21) share the same SP curve should
not be interpreted as an indication of a common detailed
mechanism in both cases; it merely reflects the fact that
bonding–antibonding interactions are strongest near half-
filled electron shells, independent of the specific details
of these interactions. (Several different versions of the SP
curves exist. Both classes of Heuslers fall only on the same
SP curve if the unit of the ordinate is the average number of
charge carriers per atom.)

The number of known full-Heusler alloys as well as the
number of potential half-metals is larger than those for
the half Heuslers. Much of the systems investigated at this
moment go back to the early experimental work of Ziebeck
and Webster (1974). From a computational point of view,
besides the early work of Kübler, important early work came
from the Japanese group (Fujii, Sugimura, Ishida and Asano,
1990; Ishida, Fujii, Kashiwagi and Asano, 1995; Fujii, Ishida
and Asano, 1995). An important aspect is the occurrence of
disorder in full Heuslers. The type of disorder that can occur
and the influence of disorder, particularly, in connection
with the integrity of the band gap is a subject of active
research. There seems to be a trend that the most damaging
types of disorder are also the energetically less favorable
ones. This justifies some optimism in terms of applications,
but the amount of disorder is not always determined by
thermodynamics alone, in particular, in cases where samples
are prepared at low temperatures. Annealing afterwards is
sometimes difficult because of the risk of interdiffusion from
or to a neighboring layer already present.

The physics of half-metals in the full-Heusler alloys is
best displayed in an SP curve shown in Figure 7 (Galanakis,
Dederichs and Papanikolaou, 2002). Galanakis, Dederichs,
and Papanikolaou (2002) also compiled much of the exper-
imental and computational results on full Heuslers. For this
reason we will concentrate on more recent work here. Much
work has been done on the alloys in the upper right corner
of the SP curve. Magnetic moments are relatively large here,
but more importantly, the Curie temperatures are also high.
Several groups have addressed the problem of impurities
in Co2MnSi. A strong dependence on the impurity concen-
tration was found depending on the preparation condition
as inferred from residual resistance ratios (RRRs) (Raphael
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Figure 7. Calculated total spin moments for all the studied Heusler
alloys. The dashed line represents the Slater–Pauling behavior. With
open circles we present the compounds deviating from the SP curve.

et al., 2002). Single crystals showed an RRR of 6.5, arc
melted samples 2.7, while the best films had an RRR of 1.4.
Neutron diffraction on polycrystalline bulk samples showed
the presence of Co–Mn disorder. Electronic structure cal-
culations (Picozzi, Continenza and Freeman, 2004) showed
a Mn antisite to be harmless, but a Co antisite induces a
strong peak in the density of states at the Fermi level for the
majority spin. It is considered of rather localized character,
however. The effect of imperfections, strain, and impurities
were investigated for Co2MnGe, isoelectronic with the sili-
con analog (Carey, Block and Gurney, 2004). The effect of
strain on the spin polarization of the conduction electrons
was negligible up to 3%. On the other hand, the presence
of impurities and, in particular, oxygen has a devastating
effect. Nevertheless, Co2MnSi showed 61% tunneling mag-
netoresistance at a temperature of 10 K, using an aluminum
oxide barrier (Kammerer, Thomas, Huetten and Reiss, 2004).
The effect decreases rather fast, but is continuous with tem-
perature, which is explained in nonperfect interfaces.

Half-metallic behavior was predicted for Co2CrAl, with
the magnetic moment of 3 µB expected from the SP curve.
Experimentally a magnetic moment of 1.55 µB was obtained,
which would disprove half-metallicity (Buschow and van
Engen, 1981). However, later work showed variations of
the magnetic moment between 1.5 and 3 µB. Reproducible
moments in line with a half-metallicity are obtained by par-
tially substituting Cr by Fe (Elmers et al., 2003 and ref-
erence 7 therein). Electronic structure calculations proved
that a low iron concentration was most effective (Miura,
Nagao and Shirai, 2004). Two detailed studies of interfaces

with III–V semiconductors were reported recently. Although
half-metallicity was lost, a very high degree of spin polar-
ization (estimated at ∼90% from Figure 1) was obtained for
the (110) interface with GaAs – higher than (100) interfaces
(Nagao, Shirai and Miura, 2004). For InP, on the other hand,
the (001) surface showed more than 80% majority-spin con-
tribution at the Fermi level (Galanakis, 2004), corresponding
to over 60% spin polarization.

Finally, we consider the half-metals with low electron con-
centration, which are found in the lower left part of the
SP curve. The half-metallic properties of Fe2CrAl could not
be confirmed experimentally. The magnetic moment derived
from the saturation magnetization was 1.75 µB rather than the
1 µB expected from the SP curve. Also, the band structure
did not show half-metallic properties, when calculated with
the experimental lattice constant (Zhang, Bruck, de Boer and
Wu, 2004).

A most interesting phenomenon, at least from a scientific
point of view, occurs when following the SP curve further
to the left. One step to the left of Fe2CrAl, one arrives at
Fe2VAl, where the SP curve crosses the ordinate. Conse-
quently, no distinction between majority spin and minority
spin exists anymore, which implies either a half-metallic
antiferromagnet or a nonmagnetic solution, where the preser-
vation of the band gap along the SP curve suggests semicon-
ducting behavior. Experimentally, it is a nonmagnetic semi-
conductor with exotic properties, which are outside the scope
of this review. But the SP curve continues beyond this point.
The crossing of the ordinate in the SP curve indicates a transi-
tion from half-metals with a minority-spin gap to half-metals
with a majority-spin gap for Mn2VAl (Weht and Pickett,
1999). Half-metals with a majority-spin gap are rare. Other
examples are found in the double perovskites (Kobayashi
et al., 1998) and magnetite (Fe3O4), but the half-metallic
properties of the latter compound are seriously challenged.
The many-body physics at finite temperature of half-metals
with a band gap for majority-spin electrons is distinct from
that of ordinary half-metals (Irkhin and Katsnelson, 1994).
The prospect of studying these differences in a series of sim-
ilar chemical compounds is a challenge for the future.
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1 INTRODUCTION

Half-metallic ferromagnets are solids that are metals with a
Fermi surface in one spin channel, but for the opposite spin
there is a gap in the spin-polarized density of states (DOS),
like a semiconductor or insulator (O’Handley, 2000). The
gap may occur in either the majority or minority channel. In
general, half-metals are ferromagnetic but a ferromagnet is
not necessarily a half-metal. Half-metals are the extreme case
of strong ferromagnets where not only 3d electrons are fully
polarized, but also other (sp) down-spin bands do not cross
the Fermi level. As a result of this, only electrons of one spin
direction contribute toward conduction yielding 100% spin
polarization at the Fermi energy, EF. This unusual property

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

could have significant implications for applications related
to magnetism and spin electronics. Electrically conducting
ferromagnetic materials where the conduction electrons have
a high mobility and are fully spin polarized are desirable
for realizing future thin-film spin electronic devices. Since
the devices will probably be expected to work around
and above room temperature, the new ferromagnets should
have Curie temperatures in excess of 500 K. Half-metallic
ferromagnetic electrodes can serve as ideal spin injectors
and detectors, because they can carry current in only one
spin direction under moderate voltage. They also constitute
ideal components for giant magnetoresistance (GMR) and
tunneling magnetoresistance (TMR) devices.

Half-metallicity yields features of the solid that are quite
different from conventional ferromagnetic metals. It is not
an easy property to detect experimentally, unlike supercon-
ductors, metals, semiconductors, or insulators where there
is a clear indication in electrical transport. It has therefore
been customary to rely on electronic structure calculations to
identify half-metals. One of the features is flat high-field sus-
ceptibility at low temperature, but it is impractical to measure
the intrinsic high-field susceptibility of a ferromagnet accu-
rately to assert that it is zero. The response of a half-metal
to an electric and magnetic field is quite different. There is
electric conductivity, but no high-field magnetic susceptibil-
ity. The application of an external magnetic field only shifts
the up- and down-spin bands by ±gµBH with no change in
net spin moment. Hence, the spin susceptibility vanishes, like
an insulator. The best indication of a half-metal is metallic
conduction in a solid with a spin moment at T = 0 which
is precisely an integral number of Bohr magnetons per unit
cell. In a stoichiometric compound, the number of electrons
per unit cell n = n↑ + n↓ is an integer. On account of the
gap in one of the spin-polarized bands, n↑ or n↓ is also an
integer. It follows that both n↑ and n↓ are integers, and so
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Figure 1. Schematic densities of states of (a) a normal metal, (b) a
ferromagnetic metal, and (c) a half-metal.

is the difference n↑ − n↓ which is the spin moment in units
of the Bohr magneton. The integer spin moment criterion, or
an extension of it to cover the case of a solid solution, is a
necessary but not a sufficient condition for half-metallicity.

The schematic diagram of a normal metal, ferromagnetic
metal, and half-metal is shown in Figure 1. Normal and
conventional ferromagnets such as Fe, Co, Ni are not half-
metals. The conduction electrons in the 3d ferromagnets are
not fully spin polarized, even when the d band is strongly spin
split, because of the simultaneous presence of 4s electrons at
the Fermi level. Cobalt and nickel, for example, are strong
ferromagnets with fully spin-polarized d bands and fully
occupied majority spin states (↑ 3d band), and only ↓ 3d

electrons at EF (O’Handley, 2000). However, the Fermi level
also crosses the unpolarized 4s band, which carries most of
the current. So there are both the spin-up and spin-down
densities of states present at EF . In order to obtain only ↑
or ↓ electrons at EF, it is necessary to reorder the 3d and 4s

bands. This is done by hybridization, pushing the bottom of
the 4s band up above EF or depressing the Fermi level in the
d band below the bottom of the 4s band. Therefore, all half-
metals consist of more than one element – they are alloys or
compounds. Most known examples are oxides, sulfides, or
Heusler alloys. Some are stoichiometric compounds, others
are solid solutions.

2 CLASSIFICATION OF HALF-METALS

Half-metals can be classified (Coey, Venkatesan and Bari,
2001; Coey and Sanvito, 2004) into four categories, types
I–IV, as presented in Figure 2. Type IA (IB) half-metals
(Figure 2a and b) only have majority (minority) spin elec-
trons appearing at EF. In type II half-metals (Figure 2c),
the electrons lie in a band that is sufficiently narrow for
them to be localized. The heavy carriers may then form
polarons, where conduction takes place via electron hopping

between spin-polarized sites. Type III half-metals (Figure 2d)
have localized ↑ carriers and delocalized ↓ carriers or vice
versa (also known as transport half-metal ). A DOS exists
for both subbands at EF, but the carriers in one band have
a much larger effective mass than those in the other. As
far as electronic transport properties are concerned, only
one sort of carriers contributes significantly to the con-
duction. Type IV half-metals (Figure 2f) are semimetal-
lic – magnetically ordered semimetals with a great difference
in effective masses between electrons and holes. There is
a big difference between a half-metal and a semimetal. A
semimetal (Figure 2e) like bismuth, graphite, or antimony is
usually nonmagnetic with small and equal numbers of elec-
trons and holes (≈ 0.01 per atom) due to a small overlap
between valence and conduction bands. Table 1 summarizes
the various types of half-metals in detail (Coey, Venkatesan
and Bari, 2001; Coey and Sanvito, 2004).

3 HALF-METALLIC MATERIALS

In this section, we will review some materials that are
claimed to be half-metals before discussing the experimen-
tal techniques needed to measure spin polarization and other
half-metallic characteristics. There are two main classes of
materials – oxides and Heusler alloys. The crystal structures
of a few representative materials are presented in Figure 3.
Table 2 summarizes the list of different types of half metal-
lic materials with predicted spin moment per formula unit,
deduced from band structure calculations, and the Curie tem-
perature.

3.1 Oxides

3.1.1 CrO2

Chromium dioxide crystallizes in the tetragonal rutile struc-
ture (Barry, 1999; Coey and Venkatesan, 2002) and it is the
best-studied half-metal in the literature (Barry, 1999; Coey
and Venkatesan, 2002). The formal electronic configuration
is (t22g)

↑ for Cr4+, and 2p6 for O2− although there is some

O2− → Cr4+ charge transfer and strong mixing of oxygen
hole and chromium electron states at EF (Lewis, Allen and
Sasaki, 1997; Korotin, Anisimov, Khomski and Sawatzky,
1998). Band-structure calculations (Schwarz, 1986) have
shown that CrO2 is a half-metallic system (Figure 4a) with
the spin-spilt band structure of a type IA half-metal and a spin
gap �↓ > 1 eV. The half-metallic character is maintained up
to the surface (van Leuken and de Groot, 1995). The calcu-
lations generally show a t2g bandwidth of 2.5–3.0 eV, with
a trident structure including a narrow peak in the DOS due
to the dxy electrons. All the calculations and experimental
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Figure 2. Schematic density of states for a half-metal. (a) Type IA with only ↑ electrons at EF, (b) type IB with only ↓ electrons at EF,
(c) type II, (d) type III, (e) semimetal, (f) type IV, half-metallic semimetal. The symbols �sf,�↑,↓, and Eµ refer to the spin-flip excitation
energy, spin gap, and the mobility edge, respectively (Coey, Venkatesan and Bari, 2001; Coey and Sanvito, 2004).

Table 1. Summary of the classification of half-metals (Coey, Venkatesan and Bari, 2001; Coey and Sanvito, 2004).

Type Density of states Conductivity ↑ electrons at EF ↓ electrons at EF

1A Half-metal Metallic Itinerant None
1B Half-metal Metallic None Itinerant
IIA Half-metal Nonmetallic Localized None
IIB Half-metal Nonmetallic None Localized
IIIA Metal Metallic Itinerant Localized
IIIB Metal Metallic Localized Itinerant
IVA Semimetal Metallic Itinerant Localized
IVB Semimetal Metallic Localized Itinerant
VA Semiconductor Semiconducting Few, itinerant None
VB Semiconductor Semiconducting None Few, itinerant

results yield a low-temperature magnetic moment of σ =
133 Am2 kg−1 corresponding to an integral moment of 2.0 µB

per formula unit (Chamberland, 1977). The Curie temper-
ature of CrO2 is about 395 K. The transport properties
(resistivity, magnetoresistance) exhibit a syndrome where
spin-flip scattering seems to be suppressed below a tem-
perature � ≈ 0.2TC. This is related to spin-wave excita-
tions and not to the spin-flip gap �sf, which is many times
greater than �. A series of Andreev reflection measurements
(Soulen et al., 1998; Ji et al., 2001) have been carried out
on CrO2 – superconductor point contacts. These indicate a

very high spin polarization, P ≈ 80–96% for CrO2 at low
temperatures (<2 K).

3.1.2 Fe3O4

Magnetite, the most famous magnetic mineral, is a spin-
polarized, Fe2+ –Fe3+ mixed-valence metal. It is the half-
metal with the highest Curie temperature (860 K) among
oxides. The B sites of the spinel structure (Figure 3b)
are populated by an equal mixture of Fe3+ and Fe2+, so
the average B-site configuration is (t32ge2

g)
↑ (t0.5

2g )↓. The



4 Ferro- and ferrimagnetic oxides and alloys

Table 2. Half-metallic materials.

Material Type ↑ electrons ↓ electrons TC M = (N↑ − N↓) References
(K) µB

CrO2 IA Cr (t2g) – 396 2 Coey and Venkatesan (2002), Lewis, Allen and Sasaki (1997)
and Korotin, Anisimov, Khomski and Sawatzky (1998)

Sr2FeMoO6 IB – Mo (t2g) 420 4 Kobayashi et al. (1998)
Fe3O4 IIB – Fe (t2g) 860 4 Penicaud, Silberchiot, Sommers and Kubler (1992) and

Zhang and Satpathy (1991)
La0.7Sr0.3MnO3 IIIA Mn (eg) Mn (t2g) 390 <3.7 Nadgorny et al. (2001)
Tl2Mn2O7 IVB Mn (t2g) Tl (6s) 120 6 Singh (1997)
(Co1−xFex )S2 IA Co (eg) – ∼100 (1 − x) Jarrett et al. (1968) and Mazin (2000)
NiMnSb IA Ni (eg) – 730 4 de Groot, Mueller, van Engen and Buschow (1983)
PtMnSb IA Pt (eg) – 572 4 de Groot, Mueller, van Engen and Buschow (1983)
Co2MnSi IB Co (t2g) – 985 5 Fujii, Ishida and Asano (1995)
Co2(Cr0.6Fe0.4)Al IA Co (t2g) – 690 <3.7 Block et al. (2003) and Felser, Elmers and Fecher (2005)
Mn2VAl IB Mn (t2g) – 760 2 Weht and Pickett (1999)
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Figure 3. Crystal structure of (a) CrO2, (b) Fe3O4, (c) (La,Sr)MnO3, (d) Sr2FeMoO6, (e) half-Heusler, and (f) full-Heusler.

A sites contain oppositely magnetized Fe3+(t32ge2
g)

↓ cores.
The ↓ B-site electrons form small polarons which hop
among the B sites (Brabers, 1995). Magnetite undergoes
a metal–insulator phase transition below about 120 K in
which the conductivity abruptly decreases by a factor ∼100
(Verwey, 1939). Resistivity at 120 K, where the B-site
charges order, is ∼10−4 �m. High-quality films and crystals

have a spin moment of 4.0 µB at this temperature, reflecting
the ferrimagnetic structure of A and B sites. Magnetite is
a type IIB half-metal with a spin gap in the majority DOS
(Penicaud, Silberchiot, Sommers and Kubler, 1992; Zhang
and Satpathy, 1991) as shown by the band structure in
Figure 4(b). Despite the strong belief that magnetite should
exhibit a large spin polarization owing to its half-metallicity,
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et al., 1998), and (d) Co2CrAl (Felser, Elmers and Fecher, 2005).

no concrete manifestation has been reported as yet and the
low magnetoresistance values in TMR junctions is still not
properly understood.

3.1.3 La0.7Sr0.3MnO3

Optimally doped La1−xSrxMnO3 (LSMO) is a half-metallic
material and potential candidate for spin electronics

applications, although LSMO (x = 0.3–0.4) has a Curie tem-
perature around 360–380 K, which is probably too low for
any room-temperature devices. It crystallizes into a rhombo-
hedrally distorted perovskite structure. The substitution of Sr
for La creates a mixture of Mn3+ (t32geg)

↑ and Mn4+ (t32g)
↑

on the B sites of the structure (Figure 3c) (Coey, Viret and
von Molnar, 1999). The hopping e↑

g electron produces ferro-
magnetic coupling by double exchange. The electronic struc-
ture of LSMO, as described by band theory, is completely
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spin polarized reflecting the type III, transport half-metallic
behavior (Nadgorny et al., 2001). Electronic structure calcu-
lations on this (Nadgorny et al., 2001) and the isostructural
phase (La0:67Ca0:33)MnO3 (Pickett and Singh, 1996) place
the Fermi level slightly above the bottom of the t↓2g band. The
ferromagnetic moment is consistently reported as slightly less
than the 3.7 µB when x = 0.3. (La0.7Sr0..3)MnO3 is a type
IIIA half-metal, with both mobile Mn(eg) ↑ electrons and
immobile Mn(t2g) ↓ electrons at EF having very different
mobilities for the two spins.

3.1.4 Sr2FeMoO6

In the ordered double perovskites A2BB’O6, the transition-
metal sites are occupied alternatively by different cations B
and B’ (Figure 3d). Oxygen atoms bridge between B and B’,
forming alternating octahedra with B or B’ as central atom.
The double perovskite Sr2FeMoO6 (SFMO) crystallizes in
a tetragonal structure, space group P 42/n, with NaCl-type
order of Fe and Mo. Here, Fe and Mo ions alternate on
the B and B’ sites. In all the proposed models, its electronic
structure is composed of localized up-spins borne by the Fe3+

(S = 5/2) ions and a conduction band partially occupied by
the single itinerant down-spin electron provided by the Mo5+

ions. Formal electronic configurations are Fe3+ (t32ge2
g)

↑ and

Mo5+(t12g)
↓, although the Mo and Fe t↓2g orbitals are strongly

mixed. A half-metallic structure (Figure 4c) is predicted
(Kobayashi et al., 1998). The compound is ferrimagnetic
with TC = 420 K and a saturation magnetic moment of 4 µB.
It is a type IB half-metal. Some good-quality films have
moments approaching this value (Westerburg, Reisinger and
Jakob, 2000), but moments measured in single crystals are
generally lower (Tomioka et al., 2000) which is usually
attributed to antisite disorder of Fe and Mo. X-ray magnetic
circular dichroism (XMCD) (Besse et al., 2002) confirms
the presence of a finite spin moment on Mo together
with only very small orbital moments on both Fe and Mo
suggesting that the predicted half-metallicity is due to a
configuration with five localized d electrons forming a high-
spin moment on Fe and one antiparallel delocalized electron
shared between the Mo and the other sites.

3.1.5 Tl2Mn2O7

The pyrochlore manganite Tl2Mn2O7 is a cubic compound
with an interesting electronic structure and unexpected mag-
netic properties (Shimakawa, Kubo and Manako, 1996; Sub-
ramanian et al., 1996). In a simple ionic picture, the material
would be an insulator containing Mn4+ (3d3) and Tl3+ (5d10)
cations. Only the former bear the magnetic moment of 3 µB

due to a t3↑
2g configuration. The thallium compound, however,

is a ferromagnetic semimetal with a small number of heavy

holes at the top of a narrow ↑ band of mainly Mn (t2g)
character and an equal number of mobile ↓ electrons in a
broadband of mixed Tl (6s), O (2p), and Mn (3d) character
(Shimakawa et al., 1999; Singh, 1997; Mishra and Sathpaty,
1998). The number of carriers has been estimated at 0.086
per unit cell (Imai, Shimakawa, Sushko and Kubo, 2000) or
0.005 per manganese from LSDA-LAPW calculations. Other
calculations (Shimakawa et al., 1999; Singh, 1997; Mishra
and Sathpaty, 1998) give 0.04 or 0.24 carriers per unit cell,
but all agree on the ferromagnetic semimetallic structure. The
mobile ↓ electrons are expected to dominate the conduction,
while the heavy ↑ holes, for which the Fermi energy lies
just 0.07 eV below the top of the band, will be easily local-
ized by any impurities or disorder that may be present in
the compound. Tl2Mn2O7 can also be regarded as a half-
metal insofar as the ↑ holes do not contribute significantly
to the conduction; it is therefore a type IVB half-metal (Coey
and Sanvito, 2004). Measurements of the Hall effect confirm
the electronic structure predictions to the extent that the Hall
coefficient is negative, and corresponds, in a one-band model,
to 0.01–0.05 electrons per unit cell (Shimakawa, Kubo and
Manako, 1996; Imai, Shimakawa, Sushko and Kubo, 2000).

3.2 Heusler alloys

Another promising class of materials for spin electronic
applications is the Heusler alloys, a number of which
have been predicted to be half-metallic ferromagents (de
Groot, Mueller, van Engen and Buschow, 1983; Pickett and
Moodera, 2001; Irkhin and Katsnel’son, 1994; Galanakis
and Dederichs, 2005). The Heusler structures consist of
four interpenetrating fcc sublattices, some of which may
or may not be filled. Full-Heusler alloy, A2BC, crystallizes
in the L21 structure (Figure 3f) and all the sublattices are
filled. Half-Heusler alloy, ABC, crystallizes in the Clb crystal
structure (Figure 3e) and the A1 sublattice is empty. The
ClB structure is closely related to the zinc-blende structure.
Some of these alloys exhibit very high Curie temperatures (as
high as 1100 K) and integral spin moments required for half-
metallicity. Both Heusler and half-Heusler compounds show
the Slater–Pauling behavior (Kübler, 1984) of the binary
transition-metal alloys. The total spin magnetic moment per
unit cell scales with the total number of valence electrons
following a simple electron counting scheme (Galanakis and
Dederichs, 2005). The total number of electrons Zt is the
sum of the number of spin-up and spin-down electrons,
while the total spin moment Mt is given by the difference
(Zt = N↑ + N↓; Mt = N↑ − N↓ → Mt = Zt − 2N↓). The
minority band contains 9 electrons for half-Heusler and 12
electrons for full-Heusler alloys. Therefore, the total spin
moment is given by the relation Mt = Zt − 18 (Figure 5a)
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or Mt = Zt − 24 (Figure 5b) for the half- and full-Heusler
alloys respectively (Galanakis and Dederichs, 2005). The
variation of magnetic moment and Curie temperature with
the number of valence electrons (Wurmehl et al., 2005)
is shown in Figure 5(c) and (d). Typical examples that
fall in this half-metallic category include the half-Heusler
alloys NiMnSb (de Groot, Mueller, van Engen and Buschow,
1983), PtMnSb (de Groot, Mueller, van Engen and Buschow,
1983) and the full-Heusler alloys Co2MnSi (Fujii, Ishida
and Asano, 1995), Co2(Cr,Fe)Al (Block et al., 2003; Felser,
Elmers and Fecher, 2005). Theoretical calculations predict
the critical dependence of magnetic properties on structure,
atomic ordering, number of electrons per unit cell, and
defects. Half-metallicity is sensitive to the composition and
surface structure and atomic disorder (Palmstrøm, 2003).

3.2.1 NiMnSb

Many groups have intensively studied the NiMnSb alloy
because of its high-spin polarization (de Groot, Mueller,
van Engen and Buschow, 1983). This half-Heusler alloy
has atoms ordered on three of the four sublattices of the
fcc structure and crystallizes in the Clb structure, with the
fourth remaining vacant. A self-consistent spin-polarized
calculation of energy bands in NiMnSb was performed by
de Groot, Mueller, van Engen and Buschow (1983), who
first predicted half-metallicity in this material. In the majority
spin-up band, the Mn d states are shifted to lower energies
and form a common d band with the Ni d states, while
in the minority spin-down band the Mn states are shifted
to higher energies and are unoccupied, so that a band gap
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at EF is formed separating the occupied d bonding from
the unoccupied d antibonding states. NiMnSb is a type IA
half-metal with ↑ electrons of Ni(eg) character at EF and
the calculated magnetic moment is 4 µB per formula unit.
Presence of small quantities of other phases and modest
amounts of atomic disorder can destroy the half-metallicity
(Orgassa, Fujiwara, Schulthess and Butler, 1999).

3.2.2 PtMnSb

Considerable interest has focused on the half-Heusler
alloy PtMnSb, which crystallizes in the ClB structure.
Self-consistent electronic structure calculations by de Groot,
Mueller, van Engen and Buschow (1983) and de Groot,
Mueller, van Engen and Buschow (1984) revealed half-
metallic behavior, and the spin-spilt band structure is that
of a type IA half-metal. The results are very similar to
those for NiMnSb. The calculated magnetic moment was
again 4 µB per formula unit. The main contribution to
the magnetic moment comes from the Mn atoms (4 µB),
which have their minority d band shifted EF. The partial
Pt moment (0.18 µB) is quite small and the even smaller
Sb moment (−0.04 µB) couples antiferromagnetically to the
Mn moments. The compound shows a very large magneto-
optical Kerr rotation. The Kerr rotation has a maximum in
excess of 2.5◦ at 720 nm (van Engen, Buschow, Jongebreur
and Erman, 1983). The vanishing spin-down density at EF

leads to a noncancellation of the optical transitions arising
from up- and down-spin bands. The half-metallic properties
also lead to a small plasma frequency enhancing the Kerr
effect. The effect derives from the large spin-orbit coupling
of Pt together with the large magnetic moment on Mn and
the strong hybridization of Mn, Pt, and Sb orbitals.

3.2.3 Co2MnSi

Half-metallic behavior has also been predicted for Co2MnSi
(Fujii, Ishida and Asano, 1995) in which both the cobalt and
manganese atoms carry magnetic moments. The magnetic
properties depend sensitively on the degree of atomic order
and the conduction electron concentration. Spin-polarized
band-structure calculations (Fujii, Asano and Ishida, 1984)
indicate that the moments are predominantly 3d in origin
and the shapes of the DOS for Co and Mn are similar.
This ternary intermetallic full-Heusler alloy is predicted to
be half-metallic with a minority spin Co 3d gap of 0.4 eV.
In addition, Co2MnSi is a type IB half-metal with a TC =
985 K, the highest among those of all known Heusler alloys
containing manganese. The saturation magnetic moment is
5 µB per formula unit.

3.2.4 Co2(Cr,Fe)Al

Co2CrAl has 27 valence electrons and is in the ordered
L21 structure. Its electronic structure shows a gap for
minority spin electrons at the Fermi energy. It is thus a
type IA half-metal (Figure 4d). Block et al. (2003) have
recently argued that the electron count 27.8 for the compound
Co2Cr0.6Fe0.4Al leads to a DOS peak in the majority spin
electrons due to Fermi surface nesting. The magnetization
curves show the alloy to be a soft ferromagnet with a
low-temperature saturated moment of 3.65 µB per formula
unit (Felser, Elmers and Fecher, 2005; Clifford, Venkatesan,
Gunning and Coey, 2004), very close to the value of
3.7 µB per formula unit predicted from the band-structure
calculations (Block et al., 2003; Felser, Elmers and Fecher,
2005). The Curie temperature of the alloy was found to
be 660 K. Disorder is known to destroy the half-metallic
property.

3.2.5 Mn2VAl

Mn2VAl has a ferrimagnetic structure with a moment of
roughly 1.5 µB on each Mn and −0.9 µB on V. The DOS
within nearly 0.5 eV of the Fermi level, both above and
below, is dominated by Mn t2g character (Weht and Pickett,
1999). At stoichiometry, the saturation moment is reported
to be 2.0 µB per formula unit, close to the integral value of
the spin moment and the Curie temperature is 760 K (Jiang,
Venkatesan and Coey, 2001). It is not a robust half-metal
because any changes in stoichiometry as well as incomplete
atomic order will greatly affect the structural stability and
magnetic properties of the system and can eliminate the spin
gap, introducing light ↓ holes at the Fermi level. The Fermi
level lies exactly in the minority spin band. In the system
Mn2V1+xAl1−x , although V and Al atoms may substitute
each other’s sublattice, the structure remains the Heusler
one from x between −0.3 and +0.2, with linearly varying
saturation moment (Yoshida, Kawakami and Nakamichi,
1981). The ideal compound is predicted to be a type IB
half-metal with Mn (t2g) ↓ electrons at EF.

3.2.6 Other half-metals

FeS2 is a nonmagnetic semiconductor with the Fe2+ in a low-
spin state (t32g)

↑(t32g)
↓ and a gap between the t2g and eg states,

in agreement with the band-structure calculations (Eyert,
Hock, Fiechter and Tributsch, 1998; Opahle, Koepernik and
Eschrig, 1999). On the other hand, CoS2 is an itinerant
ferromagnet and the Fermi level sits on a steep slope of
the DOS. On substitution of Co (∼0.1%), it becomes a
ferromagnetic metal and remains ferromagnetic all the way
through to CoS2. The solid solutions are ferromagnetic with
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TC ∝ x and m ≈ xµB for x > 0.1 in an extremely wide
concentration range (Jarrett et al., 1968). This seems to be a
robust half-metal of type IA (Mazin, 2000).

In the case of Mn4N, where the Mn occupies an fcc lattice
the DOS at EF is zero for the Mn(I) positions and has a
deep minimum at the Mn(II) position which resembles that
of a half-metal (Matar, Mohn, Demazeau and Siberchicot,
1988; Fujii, Ishida and Asano, 1992). Investigations of the
isostructural ferromagnetic system Fe4N which has a high
saturation magnetization (2.2 µB per Fe) revealed the same
result, an absence of DOS at EF at the Fe(I) positions (Matar,
Mohn, Demazeau and Siberchicot, 1988; Sakuma, 1991).

Theoretical calculations on half-metals with zinc-blende
transition-metal chalcogenides and pnictides are reviewed
in detail by Liu (2005). Half-metallic ferromagnetism is
also achieved while doping some transition-metal atoms into
the semiconductors ZnTe and CdTe. In some cases, half-
metallicity is robust when these materials are subject to large
deformations. Zinc-blende-type CrAs, CrSb, and MnAs are
theoretically predicted to be half-metals (Akinaga, Manago
and Shirai, 2000; Shirai, 2001).

4 SPIN POLARIZATION

There is no clear experimental signature or property which
allows us to identify a material as a half-metal. This is
in contrast to metals, semiconductors, and superconductors
where there is a clear electrical signature.

Spin polarization is a measure of the ratio of the electron
density for each spin at the Fermi energy, and is given by
the expression,

P0 = (N↑ − N↓)/(N↑ + N↓) (1)

where N↑,↓ are the densities of states of majority (↑) or
minority (↓) at EF, but this parameter is not necessarily
the one measured experimentally. In the case of ballistic or
diffusive transport, the densities of states must be weighted
by the Fermi velocity of the electrons, or its square,
respectively (Mazin, 1999).

Pn = (〈N↑v
↑n
F 〉 − 〈N↓v

↓n
F 〉)/(〈N↑v

↑n
F 〉

+〈N↓v
↓n
F 〉) (2)

P1 or P2 may be large for transport half-metals (type
III – La0.7Sr0.3MnO3 and type IV – Tl2Mn2O7), but P0 can
be small for the same materials. The densities of states in
tunneling experiments should be weighted by the appropriate
spin-dependent tunneling matrix element to give tunneling
spin polarization PT. Mazin shows that PT is equal to P2 in

the case of a specular barrier with low transparency (Mazin,
1999). One of the major problems with the above definition
is that it is only valid at 0 K – the actual value of the spin
polarization drastically reduced with increasing temperature
due to spin-flip processes. Another argument is that the
spin polarization of a ferromagnet in a heterostructure is
not simply a property of the ferromagnet alone, but it is
a joint property of the materials used in the heterostructure.
In epitaxial tunnel junctions, for example, the effective spin
polarization depends on the barrier oxide and the applied
bias. There is mounting evidence that the spin polarization
in a tunnel junction is critically dependent on the interface
with the barrier and can even change sign for a given
ferromagnetic electrode according to the nature of the barrier
(de Teresa et al., 1999). This leads to doubts of claims that
the polarization is an intrinsic property of a material, except
when P = 100%.

Measuring the spin polarization poses lots of challenges.
All the techniques for measuring spin polarization somehow
involve extracting electrons from the surface of the material,
with the chance that its inherent polarization will be modified
in the process. But, until now, there are no measurements
that identify a material as a half-metal without removing
electrons. Several methods have been explored to measure
the spin polarization of ferromagnetic metals as summa-
rized in Figure 6. Table 3 lists a number of measurements
of spin polarization for half metallic materials including
elemental ferromagnets Fe, Co and Ni. The spin polariza-
tion is weighted differently in each technique. Photoemis-
sion experiments (Park et al., 1998) measure the unweighted
spin polarization P0 of a ferromagnet. Tedrow and Meser-
vey’s technique of spin-polarized tunneling (Meservey and
Tedrow, 1994) measures the tunneling spin polarization Pt

directly. Andreev reflection (Soulen et al., 1998; Upadhyay,
Palanisami, Louie and Burman, 1998) measures the transport
spin polarization directly, weighted by v

↑,↓
F or its square, but

is not sensitive to the sign of the polarization. Spin-polarized
scanning tunneling microscopy (Bode, 2003) gives the tun-
neling spin polarization Pt through a vacuum barrier. In addi-
tion to these direct measurements, transport measurements in
point contacts (Versluijs, Bari and Coey, 2001; Garcia, 2000)
and tunnel junctions (Moodera and Mathon, 1999) with two
ferromagnetic electrodes separated by a thin insulating bar-
rier are used to determine the spin polarization indirectly
through magnetoresistance measurements (Figure 6). There
are several experimental difficulties in all these measurement
methods and they rarely yield 100% polarization.

When the electrons are fully spin polarized, N↑ or N↓ = 0
and P0 = P1 = P2 = 100%, but they will be different for
any other polarization. For example, for (La0.67Ca0.33)MnO3

(Pickett and Singh, 1996), N↑ and N↓ are 0.58 and 0.27
states eV−1 fu−1, respectively, and v

↑
F and v

↓
F are 0.76 × 106
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Figure 6. Experimental techniques for measuring spin polarization. (a) Photoemission, (b) tunnel junction, (c) Andreev reflection,
(d) Tedrow–Meservey, and (e) point contact (M denotes ferromagnetic electrode and S represents superconducting electrode).

Table 3. Measured spin polarization in various systems.

Material Method T (K) P (%) References

Fe Andreev 4.2 43 Soulen et al. (1998)
Tedrow–Meservey 0.2 45 Monsma and Parkin (2000)
Tedrow–Meservey 0.2 77 Parkin et al. (2004)

Co Andreev 4.2 40 Soulen et al. (1998)
Tedrow–Meservey 0.2 42 Monsma and Parkin (2000)

Ni Andreev 4.2 42 Soulen et al. (1998)
Tedrow–Meservey 0.2 31 Monsma and Parkin (2000)

CrO2 Photoemission 300 95 Kämper et al. (1987)
Andreev 4.2 94–98 Soulen et al. (1998) and Ji et al. (2001)
Tunnel junction 4.2 8 Gupta, Li and Xiao (2001)
PMR 4.2 82 Barry (1999) and Coey and Venkatesan (2002)

Fe3O4 Photoemission 300 80 Dedkov, Rüdiger and Güntherodt (2002)
Tunnel junction 4.2 43 Seneor et al. (1999)
Point contact 300 84 Versluijs, Bari and Coey (2001)

La0.7Sr0.3MnO3 Photoemission 40 100 Park et al. (1998)
Andreev 4.2 58–92 Nadgorny et al. (2001)
Tunnel junction 4.2 85–95 Viret et al. (1997) and Bowen et al. (2003)
Tedrow–Meservey 4.2 72 Worledge and Geballe (2000)

Sr2FeMoO6 Tunnel junction 4.2 90 Bibes et al. (2003)
Point contact 300 11 Clifford (2005)

NiMnSb Photoemission 300 50–67 Ristoiu et al. (2000) and Bona et al. (1985)
Andreev 4.2 58 Soulen et al. (1998)
Tunnel junction 4.2 25 Tanaka, Nowak and Moodera (1999)
Tedrow–Meservey 0.4 28 Tanaka, Nowak and Moodera (1999)

Co2MnSi Tunnel junction 10 61 Kämmerer, Thomas, Hütten and Reiss (2004)
Andreev 300 20 Clifford (2005)

Co2(Cr,Fe)Al Tunnel junction 300 42–47 Marukame et al. (2005) and Okamura et al. (2005)
Point contact 300 80 Clifford (2005)

and 0.22 × 106 m s−1, hence P0 = 36%, P1 = 76% but P2 =
92%. In the case of 3d ferromagnets in the diffusive limit,
the value of P is always positive and close to 40% (Monsma
and Parkin, 2000) despite the fact that the 3d↑ bands are full

for the strong ferromagnets cobalt and nickel, and the Fermi
level lies in the 3d↓ band. The positive spin polarization is
actually associated with the more mobile 4s electrons, which
are polarized by hybridization with the 3d states.
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In the case of point contacts or tunnel junction geometry,
the magnetoresistance is defined as

MR = �R/R↑↓ = (R↑↓ − R↑↑)/R↑↓

= 2P1P2/(1 + P1P2) (3)

where R↑↓(R↑↑) is the resistance in antiparallel (parallel)
state and P1 and P2 are polarizations of the two electrodes.
Note that MR cannot exceed 100%. Since the conductance
is G = 1/R, �R/R is also equal to (G↑↑ − G↑↓)/G↑↑. It is
often used in conjunction with the Julliere model (Julliere,
1975) to infer the spin polarization if the electrodes are
identical (P1 = P2) or if the polarization of one of them is
known.

5 MEASUREMENTS OF SPIN
POLARIZATION

5.1 Spin-resolved photoemission

Spin-resolved photoemission measurements (Figure 6a) dir-
ectly manifest the half-metallic nature of materials (Park
et al., 1998). For the majority (minority) spin, the photoemis-
sion spectrum showed a metallic Fermi cutoff, whereas for
the minority (majority) spin, it showed an insulating gap. The
spin polarization of ejected photoelectrons can be measured
for different incident photon energies. This method provides a
rather direct image of the spin-polarized DOS near EF, but it
lacks the necessary energy resolution (∼1 meV) and requires
very careful surface preparation as the photoelectrons that
carry the information are coming from a thin layer at the sur-
face. The surface or interface states may have a critical influ-
ence on the result. The measured polarization is weighted by
the absorption cross section for ↑ and ↓ electrons.

The stoichiometric or near-stoichiometric ordered NiMnSb
alloy, with MnSb surface termination, exhibits high polariza-
tion in normal-incidence spin-polarized inverse photoemis-
sion. The polarization at the Fermi level is 67% (Ristoiu
et al., 2000). This is significantly higher than the polariza-
tion asymmetry of 50%, at room temperature, measured from
a polycrystalline sample using spin-polarized photoemission
(Bona et al., 1985). Careful studies (Park et al., 1998) on
La0.7Sr0.3MnO3 shows that the spectrum for the majority spin
extends up to EF and shows the metallic Fermi cutoff, while
that for the minority spin decreases rapidly at ∼1 eV binding
energy. The spin polarization is found to be ∼100%. Typi-
cal data for La0.7Sr0.3MnO3 (Park et al., 1998) is shown in
Figure 7(a).

5.2 Andreev reflection

Andreev reflection is a process which occurs when a current
passes between a superconductor and a normal metal through
a point contact (Figure 6c). For an electron to pass from a
normal metal to a superconductor it must form a Cooper
pair with another electron. The ↑ electrons injected from
the normal metal into the superconductor must form Cooper
pairs, and this is achieved by the simultaneous injection
of a ↓ hole from the superconductor back into the metal.
The injected current is doubled in this way for a normal
metal, when the junction is biased within the superconducting
gap, �. If a normal metal is replaced by a half-metal, Cooper
pairs are unable to form since electronics of both spin are
required to form a pair. For a half-metallic ferromagnet,
there are no states available, and the current is then zero
(Soulen et al., 1998; Upadhyay, Palanisami, Louie and
Burman, 1998). The effect depends on the degree of spin
polarization, which may be deduced from data at T = 0
using P1 = 1 − G0/2Gn where G0 is the conductance at zero
bias and Gn is the conductance when the applied voltage
is much greater than the energy gap. The data (Ji et al.,
2001) for CrO2 is presented in Figure 7(b). This technique
is simple to implement – no special surface preparation is
necessary and there are no limits on sample geometry.
Point contact Andreev reflection (PCAR) technique, by
creating a nanocontact by depositing through a nanohole
made through a layer of PMMA, was recently established
to measure the spin polarization of various half-metals
(Clifford, 2005).

5.3 Tunnel junctions

Magnetic tunnel junctions (MTJs) generally consist of fer-
romagnet/insulator/ferromagnet (FIF) structures (Figure 6c).
Spin-polarized tunneling in ferromagnetic junctions has been
recently reviewed by Moodera and Mathon (1999). These
are usually made up of thin film of ferromagnetic electrodes
separated by a thin layer of insulating barrier oxide. The
most important part of junction preparation is the formation
of the tunnel barrier. Up to now, Al2O3 has been the most
commonly used tunnel barrier material. Thin layers of this
material are amorphous and as a result the TMR is predom-
inantly determined by spin polarization of the ferromagnetic
electrodes. However, it was recently shown that much higher
TMR values can be obtained with crystalline MgO tunnel
barriers (Parkin et al., 2004; Yuasa et al., 2004) as shown
in Figure 8(a,b). The reason is that the tunneling matrix ele-
ments for crystalline MgO are spin dependent, so the barrier
acts as an efficient spin filter.
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Figure 7. (a) Spin-resolved photoemission spectra of La0.7Sr0.3MnO3 thin film (Park et al., 1998) and (b) normalized conductance
G(Vb)/Gn versus bias voltage Vb for Pb/CrO2 point contacts at 1.85 K for different contact resistances (Ji et al., 2001). The solid lines are
fits to the data, with the BTK model resulting in P, Z, and � as shown in the panel.

The magnitude of the TMR is related to the spin polariza-
tion P of the individual FM electrodes: (R↑↓ − R↑↑)/R↑↓ =
2P1P2/(1 + P1P2), where R↑↓ and R↑↑ are the resistance
of the MTJ corresponding to antiparallel and parallel orien-
tation of the FM electrodes, respectively. For best results,
the junction area should be small, so the ferromagnetic elec-
trodes can be deposited as two perpendicular stripes using
shadow masks, or else the films are patterned using a litho-
graphic technique. The electrode shapes are chosen so that
they have different switching fields, and the magnetoresis-
tance is measured from the difference in resistance between

the parallel and antiparallel configurations. While the mag-
netoresistance is sensitive to applied voltage, falling rapidly
with increasing bias, the polarization is sensitive to temper-
ature and decreases rapidly with increasing temperature.

5.4 Tedrow–Meservey method

Meservey and Tedrow (1994) measured the conduction
electron spin polarization of magnetic metals and com-
pounds using the Zeeman-split quasiparticle DOS in a
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Figure 8. (a) TMR versus field for MTJs with structures (all thicknesses in Å): 100 TaN/250 IrMn/8 Co84Fe16/30 Co70Fe30/29
MgO/150 Co84Fe16/100 Mg (Parkin et al., 2004). (b) Tunnel magnetoresistance of Fe(001)/MgO(001)/Fe(001) junctions (Yuasa et al.,
2004). (c) Spin-polarized differential tunnel conductance versus voltage in NiMnSb/Al2O3/Al at 0.4 K (Tanaka, Nowak and Moodera, 1999).
(d) Typical magnetic field effect on a Fe3O4 nanocontact showing the I :V curves with and without a magnetic field (Versluijs, Bari and
Coey, 2001).

superconductor. This technique involves a tunnel barrier
where the second electrode is a thin layer of superconduct-
ing aluminum (Figure 6d). The superconducting electrode
serves as an analyzer of the spin polarization of the tun-
neling current. They showed that the conduction electrons in
ferromagnetic metals are spin polarized and that the spin is
conserved in the tunneling process. Tunneling from a ferro-
magnetic film, with its unequal spin distribution at the Fermi
level (EF), into such a spin-split superconducting Al film
reflects the spin polarization of the tunneling electrons com-
ing from the ferromagnet. The superconducting transition of
Al is 1.2 K, but there is a high critical field because the pene-
tration depth in a type I superconductor can be much greater

than the film thickness. Figure 8(c) compares the field depen-
dence of dI/dV for the first reported half-metal, NiMnSb
(Tanaka, Nowak and Moodera, 1999).

The normal tunneling characteristic from a ferromagnet
to a superconductor in zero field is shown in Figure 8(c).
It depends on the convolution of the ferromagnetic and
superconducting densities of states, and the twin peaks
are separated by the superconducting energy gap; for Al,
2� ≈ 0.25 meV. In an applied field, the superconductor
quasiparticle DOS are Zeeman split, allowing the tunnel
current to be clearly resolved into spin-up and spin-down
parts and the curve becomes asymmetric, as shown in
Figure 8(c). The spin polarization is usually inferred from
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the conductivity at the four points labeled σ 1 to σ 4, using
the formula

P = [(σ 1 − σ 3) − (σ 2 − σ 4)]

= [(σ 1 − σ 3) + (σ 2 − σ 4)] (4)

5.5 Point contacts

Point contact phenomena, like quantum conductance, are best
studied in nanocontacts formed when two macroscopic elec-
trodes are put into contact and then slowly pulled apart.
Precise control over the movements of the electrodes is
desirable for the formation of a stable nanocontact. In
this technique, a stable conducting contact is established
between two crystallites of the ferromagnetic material, and
the magnetoresistance of the contact is measured (Figure 6e).
Normally, there is no method of controlling the magne-
tization directions in the initial contact before applying
the magnetic field, so the experiment involves making
many contacts and selecting those with the largest mag-
netoresistance. Typical data for Fe3O4 are illustrated in
Figure 8(d) (Versluijs, Bari and Coey, 2001). A related
structure is a nanowire between two spin-polarized elec-
trodes. Provided the transfer of the electron across the con-
tact does not interfere with its spin (the transport may
be ballistic, by hopping, or by tunneling) the magnetore-
sistance for classical spins is still given by equation (3)
(Julliere, 1975).

6 TRANSPORT PROPERTIES

In view of the difficulties in measuring P directly, it is worth
exploring other experimental signatures, apart from the inte-
gral spin moment and metallic conduction, which can throw
some light on half-metallicity. The transport properties of
some half-metallic systems show unique features, though it
is not generalized to all half-metallic systems. In conven-
tional metallic ferromagnets, generally a T 2 dependency of
the resistivity is found in the low-temperature region (Wohl-
farth, 1980; Meaden, 1971). This quadratic term is usually
ascribed to the electron-scattering process called one-magnon
scattering (Mannari, 1959), where an electron undergoes a
spin flip in an inelastic process involving creation or annihi-
lation of a magnon. In half-metallic ferromagnets, spin-flip
one-magnon scattering at low temperatures is not possible,
because only states with one spin direction are present at
EF at T = 0 K. This will lead to the absence of T 2 depen-
dence of resistivity and to an increase in the mobility of
the charge carriers. The first available magnetic scattering

processes involve two magnons, which give rise to a term
in the resistivity varying as T 9/2 (Kubo and Ohata, 1972).
Unfortunately, such a term is very difficult to disentan-
gle from regular scattering processes involving phonons.
However, the absence of a T 2 term forms only a necessary
and not sufficient condition for complete spin polarization
of current carriers at low temperatures. For example, if
the Fermi surfaces of spin-up and spin-down carriers are
spheres with a large radius difference (in k space), magnons
with wave vectors shorter than this difference do not con-
tribute to the scattering of these current carriers, and a T 2

term cannot be observed. In addition, there is no contribu-
tion of one-magnon processes to the anomalous Hall effect
(Rs(T ) ∝ aT 3 + bT 4). It follows that magnetic scattering in
half-metals should be dominated by two-magnon processes.
Careful studies on NiMnSb and PtMnSb (Otto et al., 1989)
reveal that the resistivity varies linearly with temperature
below 15 K (Figure 9a,b). However, electron–electron and
electron–photon scattering processes can also lead to such
behavior and creates difficulty to ascribe the dependence
entirely to a half-metal. The most dominant magnetic scat-
tering processes involve two magnons, which give rise to a
term in the resistivity varying as T 9/2 is reported by Kubo
and Ohata (1972) based on a rigid band electronic structures
of half-metals. Unfortunately, such a term is very difficult
to disentangle from regular scattering processes involving
phonons. Irkhin and Katsnel’son (2002) showed that the
resistivity is proportional to T 9/2 for T < T ∗ and to T 7/2

for T > T ∗, T ∗ being the crossover temperature for longi-
tudinal scattering processes. The T 7/2 behavior also plays
an important role in magnetoresistance. At finite temper-
atures, however, it is necessary to take into account the
effect of spin fluctuations, which breaks down the perfect
spin polarization. In the absence of spin gaps, magnetiza-
tion deviates from its saturation values as δM ∝ T 3/2 in
three dimensions. In the strong Hund’s coupling limit, spin
polarization of the conduction electrons are proportional to
the total spin polarization. At finite temperatures, the half-
metallic structure of conduction electrons breaks down and as
a consequence, the rigid band approaches cannot be justified.
Taking into account the nonrigid band behavior due to spin
fluctuations, it was established (Furukawa, 2000) that the
most dominant contribution for the low-temperature resistiv-
ity is from an unconventional one-magnon scattering process
in which case the resistivity is proportional to the prod-
uct of the following two quantities – magnon population
δM and the DOS of the minority spin quasiparticles which
should also scale as δM . Therefore, ρ(T ) ∝ (δM)2 ∝ T 3.
This T 3 behavior is demonstrated experimentally for mixed
valent manganite La0.7Sr0.3MnO3 single crystals (Figure 9c)
(Furukawa, 2000).
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Figure 9. Temperature dependences of the (a) electric resistivity of the half-Heusler alloys TMnSb (T = Cu (A), Au (B), Co (D), Ni (E),
Pt (F)) and PtMnSn (C) (Otto et al., 1989), (b) spontaneous Hall coefficient of TMnSb (T = Au (A), Co (C), Pt (D), Ni (E)) and PtMnSn
(B) (Otto et al., 1989), and (c) T 3 behavior of resistivity in La1−xSrxMnO3 single crystals (Furukawa, 2000).

7 SURFACE/INTERFACE STATES

The DOS and exchange interactions at the surface/interface
may be very different from those of the bulk. It was
well established that spin disorder has a profound effect
on the half-metallic nature (Skomski and Dowben, 2002;
Dowben and Skomski, 2003). Opposite spin surface states
(Jenkins and King, 2001; de Wijs and de Groot, 2001;
Jenkins and King, 2002) in half-metals can develop into
interface states (de Wijs and de Groot, 2001; Jenkins and
King, 2002; Picozzi, Continenza and Freeman, 2003) and
destroy the half-metallic behavior. The increase in the

number of interfaces enhances the spin minority population,
which in turn decreases the spin polarization. At finite
temperature, thermally activated spin-flip scattering such as
spin waves will also induce states within the gap (Dowben
and Skomski, 2003). Even in an ideally prepared single
crystal at zero temperature, the spin-orbit coupling will
introduce states in the half-metallic gap of minority states,
which are produced by spin-flip scattering of the majority
states. Magnon excitations tend to decrease the polarization
at low temperature for many half-metallic systems viz
La0.7Sr0.3MnO3 (Obata, Manako, Shimakawa and Kubo,
1999), CrO2 (Coey and Venkatesan, 2002; Watts et al.,
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2000) and NiMnSb (Borca et al., 2001; Hordequin, Ristoiu,
Ranno and Pierre, 2000). The low-energy transverse and
longitudinal optical modes (phonon modes) can couple to
spin-wave modes and reduce the net magnetization in half-
metals (Dowben and Skomski, 2003).

The best-studied half-metal CrO2 with nearly 100% spin
polarization possesses stoichiometric (001) surface. Calcula-
tions reveal two oxygen-derived surface states in the band
gap for the minority spin direction. However, these states lie
well below EF and do not affect the half-metallicity at the
surface (van Leuken and de Groot, 1995). For magnetite, the
loss of half-metallicity could be due to the presence of disor-
der above the Verwey transition temperature (TV = 120 K),
which results in smearing of the energy gap in the minority
subbands. Manganites and double perovskites show nonsto-
ichiometry surfaces which lead to surface reconstructions.
In half-Heusler NiMnSb, the random disorder, in particular,
Ni–Mn interchange greatly affects the half-metallic prop-
erty and hence the spin polarization (Helmholdt et al., 1984).
First-principles band theory calculations have demonstrated
that antisite disorder can destroy the half-metallic character
of a number of Heusler alloys (Orgassa, Fujiwara, Schulthess
and Butler, 1999). Major challenges remain in controlling the
composition, defects, atomic ordering both in the bulk and
at the interface.

8 APPLICATION OF HALF-METALS
IN SPIN ELECTRONICS

High-spin polarization half-metallic materials are promising
candidates for integration into the GMR multilayers, first
discovered by Fert et al. (Baibich et al., 1988), as the spins
of the current carriers are predominantly aligned in the
same direction (Figure 10a). They are ideal sources of spin-
polarized electrons and can act as spin injectors, detectors,
and magnetically controllable spin filters. The emerging
science of spin electronics seeks to exploit the two separate
spin channels in increasingly sophisticated electronic devices.
So far, these expectations have not been fully realized in
practical applications.

8.1 Spin valves

The basic element of a spin valve is two ferromagnetic layers
separated by a nonmagnetic spacer (Figure 10b). The electri-
cal resistance of the structure is low when the magnetization
directions of the ferromagnetic layers are aligned parallel and
high when they are antiparallel. One of the ferromagnetic lay-
ers, the free layer, switches magnetization direction close to

zero field. The other layer, the pinned layer, is grown next to
an antiferromagnet and its magnetization direction is pinned
at low fields. Switching of the free layer at low fields, there-
fore, results in a transition from the parallel to antiparallel
state and a change in resistance. Hence the exchange-biased
spin valve is a highly sensitive magnetic field sensor and
can be used in several applications. Improvements in spin
valve performance (GMR, exchange field, sensitivity) are
continually pursued both through the development of new
materials and thin-film stacks, in particular, using high spin-
polarized half-metallic electrodes, and the design of new spin
valve geometries. The basic FM/NM/FM/AF spin valve has
evolved into many variants (Dieny, 2004; Coehoorn, 2003).
For example, dual spin valves essentially consist of three
FM layers separated by two nonmagnetic spacers. The mag-
netization of the outer two FM layers are pinned by an AFM
layer, whereas the inner FM layer is free. GMR ratios as large
as 25% have been reported (Egelhoff et al., 1995, 1996) for
these structures but the increased thickness of the structure
may make it unsuitable for read-head applications. A further
advance in spin valve design was the development of the
synthetic antiferromagnet (SAF) (Parkin, More and Roche,
1990). The pinning fields in the SAF spin valve can be twice
as large as that of the standard spin valve. Another advan-
tage of using the SAF is that, in a patterned device, stray field
created by the pinned layer on the sensing layer is reduced
because of the antiparallel alignment of the two FM lay-
ers in the pinned layer. Spin valves with nano-oxide layers
(NOLs) were introduced in Kamiguchi et al. (1999) result-
ing in enhanced MR ratios of up to 18%. An overwhelming
amount of spin valve research has been driven by the inter-
ests of the magnetic storage industry. Less than a decade after
their discovery, spin valves were introduced as sensor mate-
rials in hard disk read heads. Other applications include posi-
tion, speed and velocity sensors, and electronic compasses.

8.2 Magnetic tunnel junction

The basic two terminal device is an MTJ (Figure 10c)
(Moodera, Kinder, Wong and Meservey, 1995) where two
ferromagnetic half-metallic electrodes are separated by a thin
insulating barrier. In a configuration where the magnetic
moments are aligned parallel in top and bottom half-metallic
electrodes, current will pass by tunneling of the majority
spin electrons. There is no tunneling event in the antiparallel
configuration because spin-up electrons can only tunnel into
spin-up empty states, which lead to high resistance state.
The schematic band profile in TMR and GMR junctions
(Mavropoulos, Ležaić and Blügel, 2005) is compared in
Figure 11. This simple ideal half-metal based spin-controlled
switch (MTJs) device finds interesting applications in the
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area of magnetic memories (MRAMs) and also read heads
for magnetic hard disk drives (Prinz, 1998; Wolf et al.,
2001). These devices are nonvolatile with high speed, high
density, and low power consumption. They are promising
replacements for the present semiconductor RAMs. As
a result, there exists a great potential market for these
applications. Spin polarization measured via MTJ is the
realistic limit for spin electronics applications. Moreover, the

tunnel junction area is precisely controllable and so is the
magnetic orientation of the two magnetic electrodes. Other
applications include sensors, contactless potentiometer, and
so on. A huge TMR ratio will certainly help to realize sensors
with enhanced sensitivities in small field ranges.

The theoretical prediction of spin polarization in the half-
Heusler (de Groot, Mueller, van Engen and Buschow, 1983)
and as full-Heusler (Fujii, Ishida and Asano, 1995; Block
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et al., 2003; Felser, Elmers and Fecher, 2005) alloys is
currently the driving force for evaluating the potential of
MTJs. Experimental attempts to realize MTJs with Heusler
alloy did not yield any enhancement till recently. NiMnSb
based MTJ exhibit spin polarization of 25% at 4.2 K and
9% at 300 K. Recently, MTJs based on full-Heusler alloy
of type Co2Cr0.6Fe0.4Al showed promising results, reaching
spin polarization values of 42–47% at room temperature
(Marukame et al., 2005; Okamura et al., 2005). Another
interesting candidate is half-metallic Co2MnSi (TC = 985 K).
It was found that the temperature dependence of the spin
polarization scales with the magnetic moment (Meservey,
Pereskevopoulus and Tedrow, 1976) as described by the
Bloch T 3/2 behavior (O’Handley, 2000) and consequently,
materials with large Curie temperatures should have a high

remanent spin polarization at room temperature. Recent
experimental results on MTJs with Co70Fe30 and Co2MnSi
electrodes separated by a AlOx barrier yields 66% spin
polarization at 20 K (Kämmerer, Thomas, Hütten and Reiss,
2004). This value clearly exceeds that of the 3d-based
magnetic elements or their alloys but is also well below the
predicted 100%.

According to Butler, Zhang, Schulthess and MacLaren
(2001), it is possible to obtain huge TMR values at room
temperature in epitaxial Fe(100)/MgO(100)/Fe(100) with
thick MgO tunnel barriers. This has been realized to some
extent in CoFe/MgO (Parkin et al., 2004) and Fe/MgO/Fe
(Yuasa et al., 2004) based MTJs. These MTJs based on
MgO tunnel barrier will certainly have an immense impact
on spin electronic devices operable at room temperature.
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Moreover, they exhibit high temperature stability which
makes them suitable for integration with CMOS circuits
for MRAM applications (Parkin et al., 2004). In particular,
Parkin et al. showed that these devices would have dramatic
effect on MRAMs with read performance better than the
current prototypes and eases the implementation of advanced
MRAM architectures with ultradense cross-point random
access memory (Reohr et al., 2002).

Half-metallic electrodes also constitute ideal components
for GMR with half-metallic electrodes sandwiching a non-
magnetic metal (Figure 10a). While half-metallic property of
materials can be exploited fully in GMR-based junctions, the
presence of interface states dramatically affect the TMR junc-
tions as the tunneling rate is slower compared to the spin-flip
rate (Mavropoulos, Ležaić and Blügel, 2005).

8.3 Spin transistor

Another proposed application of half-metal is in the spin
MOSFET with an Si channel, MOS gate, and ferromagnetic
source and drain electrodes as described by Tanaka (2005).
The source/channel and drain/channel contacts, made up
of half-metallic ferromagnets, are Schottky barriers, which
allow for efficient spin injection and detection. The typical
device structure is shown in Figure 12(a). The spin MOSFET
behaves similar to Si-MOSFETs but with an additional
spin-dependent transport functionality. Spin-polarized charge
carriers are injected through the Schottky barrier by tunneling
into the Si channel. The half-metallic drain selectively
extracts the spin-polarized carriers from the channel, only
when the spin configuration between the ferromagnetic
source and drain is parallel. Thus, the output current depends
on the relative magnetic configuration of the source and
drain (Tanaka, 2005) as shown in Figure 12(b). Experiments
showed that Schottky barriers can be used as spin aligners
in reverse bias (Zhu et al., 2001; Hanbicki et al., 2002).
However, under reverse bias, it is difficult to incorporate
two Schottky barriers in series in GMR injector/detector
configuration as one of them will lose its spin dependence
(Schmidt, 2005).

8.4 Spin filters

A different approach to polarized spin injection is the
spin filter (Hao, Moodera and Meservey, 1990), a tunnel
barrier with different barrier heights, and therefore greatly
different transmission coefficients for ↑ and ↓ electrons.
Barrier heights are sufficiently different for almost fully spin-
polarized currents to emerge on the far side of a barrier with
unpolarized incident current. This can be realized using the
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half-metallic ferromagnetic materials with the majority spin
channel with the lower resistance carries the entire current
and minority channel acts as a barrier. The spin-filter effect
may be used to provide a low-energy spin-polarized electron
source.

9 CONCLUSIONS

The classification of half-metals is discussed taking account
of both itinerant and localized electrons. For many poten-
tial applications, we need half-metals, which are compati-
ble with semiconductors. In order to obtain useful materials
operable at room temperature, it is quite important to explore
new half-metallic compounds and structures through band-
structure calculations and seek the highest possible Curie
temperatures. The growth of high-quality single-crystalline
epitaxial films of various half-metallic ferromagnets must be
controlled. The effect of interfacial states on semiconduc-
tors needs to be studied in detail. Interface engineering will
be critical for device operation, for example, making use
of multiple reflection as in spin tunnel junctions. There are
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dramatic developments in the search for new semiconductor-
compatible half-metals such as Heusler alloys. However,
growth temperature must be reduced to match the semi-
conductor integration. Studies should be focused on new
half-metallic oxides and nitrides with high Curie tempera-
ture to enable them to be introduced in tunnel junctions or
spin valves to attain huge TMR values at room temperature.
The half-metallic oxides, nitrides, sulfides, Heusler alloys,
and the novel magnetic semiconducting oxides, in the form
of ultrathin films or layered samples, should be sufficient
for future nanoscale applications. The ability to pattern in
a subnanometer range today suggests that the role of half-
metals in spin electronic applications is reaching a new stage.
The difficulties in measuring the spin polarization directly
forced to explore other experimental techniques to identify
a half-metal, apart from an integral spin moment, metallic
conduction criteria and band-structure calculations.
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1 INTRODUCTION

Magnetic nanoparticles have attracted much attention because
of their unique magnetic properties, which, in several
respects, differ considerably from those of bulk materials,
and because of their many technological applications. Mag-
netic nanoparticles play a crucial role in information tech-
nology as they are used for data storage in, for example,
hard disks in modern computers. Apart from this very impor-
tant application, they are applied, for example, in ferrofluids
and catalysts, for magnetic targeted drug delivery and MRI
contrast imaging, and in biotechnology. Moreover, magnetic
nanoparticles are commonly found in nature, including, for
example, in sediments, in living organisms, and in primitive
meteorites. It has been shown that a variety of different ani-
mals can navigate on the basis of a magnetic sense, which
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can be ascribed to magnetic nanoparticles in their bodies.
The preparation, properties, and applications of magnetic
nanoparticles have been the subject of several review papers
(Bean and Livingston, 1959; Mørup, Dumesic and Topsøe,
1980; Mørup, 1990; Tronc, 1996; Leslie-Pelecky and Rieke,
1996; Murad, 1996, 1998; Dormann, Fiorani and Tronc,
1997; Kodama, 1999; Garcia-Palacios, 2000; Walker, Diebel
and Green, 2000; Battle and Labarta, 2002; Pankhurst, Con-
nolly, Jones and Dobson, 2003; Tartaj et al., 2003; Jönsson,
2004; Willard et al., 2004; Bansmann et al., 2005).

Usually, crystals of ferromagnetic and ferrimagnetic crys-
tals spontaneously split up in magnetic domains as this
reduces the magnetic energy. The domain walls, in which
the spin directions gradually chance from the magne-
tization direction of one domain to that of the next,
typically have widths of the order of 100 atomic lay-
ers. Because it costs exchange energy to form a domain
wall, it is not energetically favorable to form domain
walls in particles with dimension below a certain crit-
ical size. The critical size for single domain behavior
is typically in the range 10–1000 nm, depending on the
material.

A very significant difference between bulk materials and
nanoparticles is that the magnetization direction may be
unstable in magnetic nanoparticles because the thermal
energy may be sufficient to overcome the energy barrier
separating the easy directions of magnetization. This phe-
nomenon, termed superparamagnetic relaxation, is particu-
larly crucial in the development of high-density magnetic
data storage media. The continued increase in the data stor-
age density requires a reduction of the particle size, but the
onset of superparamagnetic relaxation in very small parti-
cles makes them useless for data storage and this ultimately
sets an upper limit for the density of stored data in magnetic
recording media.



2 Ferro-, ferri-, and antiferrimagnetic nanoparticles

In this chapter, we discuss the properties of magnetic
nanoparticles with special emphasis on superparamagnetic
relaxation, and we show how a number of different experi-
mental techniques can elucidate these phenomena. The aim
of this chapter is to give an introduction to the field for non-
specialists rather than presenting a comprehensive review. In
Section 2, a general introduction to magnetic relaxation phe-
nomena in nanoparticles is given. In Section 3, we present a
brief review of some of the common preparation techniques,
and, in Section 4, we discuss some of the most important
(nonmagnetic) characterization techniques. Section 5 deals
with the most important techniques used for studies of mag-
netic relaxation phenomena in nanoparticles with an empha-
sis on studies of noninteracting particles. In Section 6, we
show how the magnetic relaxation phenomena can be influ-
enced by interparticle interactions. Finally, in Section 7, we
give a brief discussion of the magnetic structure of nanopar-
ticles, spin canting, and the related transverse relaxation.

2 MAGNETIC RELAXATION IN
NANOPARTICLES

Single domain particles are characterized by two or more
easy directions of magnetization, that is, directions of the
magnetization, which give minimum magnetic energy. If
the magnetocrystalline anisotropy is predominant, the easy
directions are defined by the crystal symmetry. However, in
nanoparticles, it is commonly found that other contributions
to the magnetic anisotropy are more important (Mørup,
Dumesic and Topsøe, 1980; Dormann, Fiorani and Tronc,
1997). For ferromagnetic and ferrimagnetic particles, shape
anisotropy may be significant if the particle shape deviates
from the spherical shape. The lower symmetry of the surface
atoms compared to bulk can result in surface anisotropy,
which may be predominant for particle sizes below about
10 nm. Furthermore, if a particle is exposed to stress, this
may also result in a contribution to the magnetic anisotropy.
For these reasons, the magnetic anisotropy of nanoparticles is
complex, but commonly it is assumed that nanoparticles have
a dominating uniaxial anisotropy with a magnetic energy
given by the simple expression

E = KV sin2 θ (1)

where K is an effective magnetic anisotropy constant, V is
the particle volume, and θ is the angle between the mag-
netization direction and the easy axis of magnetization. In
this case, there are energy minima at θ = 0◦ and θ = 180◦

separated by an energy barrier of height KV . In very small
particles at a finite temperature, the energy barrier may be

comparable to the thermal energy, and the particles then
perform superparamagnetic relaxation, that is, spontaneous
fluctuations of the magnetization direction between the easy
directions of magnetization. The superparamagnetic relax-
ation time, τ , is approximately given by the Néel–Brown
expression (Néel, 1949; Brown, 1963)

τ = τ 0 exp(KV /kBT ) (2)

where τ 0 is typically in the range 10−12 –10−9 s, kB is Boltz-
mann’s constant, and T is the temperature. τ 0 depends on
material parameters such as the magnetization, the magnetic
anisotropy constant, the particle volume, and also weakly on
temperature (Néel, 1949; Brown, 1963; Dormann, Fiorani
and Tronc, 1997). Equation (2) is valid for particles that are
well separated, such that interparticle magnetic interactions
are negligible. The influence of interparticle interactions on
the magnetic relaxation is discussed in Section 6.

Superparamagnetic relaxation can be studied using several
different experimental techniques. In experimental studies,
the timescale of the experimental technique is crucial. If
the superparamagnetic relaxation time is longer than the
timescale of the experimental technique, the magnetization
appears static, but, if it is shorter, one may instead observe
an average value of the magnetization. The temperature at
which the superparamagnetic relaxation time is equal to
the timescale of the experimental technique is called the
blocking temperature, TB. It is noteworthy that the blocking
temperature of a sample is not uniquely defined, but, for
each applied experimental technique, a related blocking
temperature can be defined.

In practice, samples of superparamagnetic particles have
a particle size distribution, and the magnetic anisotropy
constants may also vary from particle to particle because of
differences in, for example, particle size, shape, stress, and
the surface state. Therefore, there will be a distribution of
energy barriers, which can lead to a very broad distribution
of relaxation times due to the exponential dependence of
the superparamagnetic relaxation time, τ , on the energy
barrier, KV . In a sample with an energy barrier distribution,
the (median) blocking temperature can be defined as the
temperature at which half the volume of the particulate
material has relaxation times shorter than the timescale of the
experimental technique and half of it has longer relaxation
times.

In DC magnetization measurements, the timescale is
of the order of seconds or longer. In AC magnetization
measurements, one can choose the timescale by choosing the
frequency. For studies of nanoparticles with short relaxation
times, Mössbauer spectroscopy, with a timescale of the order
of a few nanoseconds, is often used. Even shorter relaxation
times may be studied by inelastic neutron scattering. The
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use of these techniques for studies of magnetic relaxation
in nanoparticles is discussed in Section 5. In a few studies,
it has been demonstrated that muon spin relaxation (µ-SR)
also can be used for studies of superparamagnetic relaxation.
This technique can be used to study relaxation phenomena
with frequencies in the range 104 –1011 s−1 (Bewley and
Cywinski, 1998; van Lierop, Ryan, Pumarol and Roseman,
2001; Ucko et al., 2001).

Below the blocking temperature, where the superparam-
agnetic relaxation is negligibly slow, there may still be ther-
mal excitations, which affect the magnetic properties. For
a particle with magnetic energy given by equation (1), the
probability that the magnetization direction forms an angle
in the range between θ and θ + dθ with the easy direction
of magnetization is given by Mørup and Topsøe (1976) and
Mørup (1983)

p(θ)dθ = exp(−E(θ)/kBT ) sin θ∫ π/2
0 exp(−E(θ)/kBT ) sin θdθ

dθ (3)

Thus, even well below the blocking temperature, the
magnetic properties may be influenced by fluctuations of
the magnetization direction close to the easy axis. These
fluctuations are uniform, that is, the magnetic moments
of all the ionic spins are parallel and they have been
termed collective magnetic excitations. Collective magnetic
excitations can be described in terms of precession of
the (sublattice) magnetization vector in the anisotropy field
in combination with transitions between precession states
with different precession angles (Mørup et al., 2002). In
Mössbauer spectroscopy studies, the fluctuations can be
considered fast compared to the timescale, and, as discussed
in Section 5.3, one measures a magnetic hyperfine field,
which is proportional to the average magnetization, which
is given by Mørup and Topsøe (1976), Mørup (1983), and
Mørup and Hansen (2005)

〈M〉T = M0〈cos θ〉T = M0

∫ π/2

0
cos θp(θ) dθ

≈ M0(1 − kBT /2 KV ) (4)

where M0 is the saturation (or nonrelaxing) magnetization
and the approximation is valid for kBT � KV . In inelas-
tic neutron-scattering experiments, which have a shorter
timescale, one can measure the transition energy for tran-
sitions between the precession states. This is discussed in
Section 5.4.

In nanoparticles of antiferromagnetic materials, the sub-
lattice magnetization directions may fluctuate in a way that
is similar to the fluctuations of the magnetization direction
of ferromagnetic and ferrimagnetic nanoparticles. Ideally, the
net magnetic moment of an antiferromagnetic particle should

be negligible. However, in practice, nanoparticles of antifer-
romagnetic materials have nonzero magnetic moments. This
can be explained by uncompensated magnetic moments due
to different numbers of ions with spin up and spin down at the
surface and possibly also in the interior of the particles (Néel,
1961; Richardson et al., 1991; Kodama, 1999). It has recently
been suggested that thermal excitations of the uniform mode
in a nanoparticle of an antiferromagnetic material can result
in a contribution to the magnetic moment (thermoinduced
magnetization), which increases with increasing temperature
(Mørup and Frandsen, 2004; Mørup and Hansen, 2005).

Apart from the thermally activated relaxation discussed
in the preceding text, it has been suggested that quantum
tunneling between the energy minima may take place (Chud-
novsky and Gunther, 1988; Barbara and Chudnovsky, 1990).
Since quantum tunneling is temperature independent, one
should expect that it gives rise to a temperature-independent
relaxation time below the temperature where the thermally
activated relaxation is slow compared to quantum tunneling.

3 SAMPLE PREPARATION TECHNIQUES

Magnetic nanoparticles can be synthesized by using numer-
ous different techniques. Here, we present a brief overview
of some of the most commonly applied preparation meth-
ods and give some examples of the occurrence of magnetic
nanoparticles in nature.

3.1 Chemical synthesis and thermal
decomposition

Wet chemical synthesis methods are among the most-used
techniques for preparation of magnetic nanoparticles (Willard
et al., 2004). For example, nanoparticles of iron oxides,
such as maghemite (γ -Fe2O3), magnetite (Fe3O4) (Jolivet,
Tronc and Chanéac, 2000), and hematite (α-Fe2O3) (Sugi-
moto, Wang, Itoh and Maramatsu, 1998), are conveniently
prepared by precipitation from aqueous solutions of iron
salts. By varying the preparation conditions, it is possible
to vary the average particle size. Thermal decomposition of,
for example, (oxy)hydroxides or hydrated salts is another
commonly used technique for preparation of nanoparticles
(Richardson et al., 1991; Bødker et al., 2000). By varying the
decomposition temperature, one can vary the average parti-
cle size. Precipitation and thermal decomposition techniques
usually result in rather broad size distributions. Narrow size
distributions can be obtained using the so-called inverse
micelle technique (O’Conner et al., 2001; Willard et al.,
2004). Thermal decomposition of, for example, Fe(CO)5 in
organic liquids containing appropriate surfactant molecules
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can also lead to very narrow particle size distributions (Fisker
et al., 2000; Sun et al., 2000), and three-dimensional ordered
arrays of nanoparticles can be prepared by drying suspen-
sions of such monodisperse particles (Bentzon et al., 1989).

3.2 Preparation of metallic nanoparticles
by reduction

Metallic nanoparticles can be prepared by reduction of,
for example, metal oxide nanoparticles in hydrogen at
elevated temperatures. Often, there is a strong tendency for
the particles to sinter during the reduction. Therefore, the
reduction is often carried out using samples of particles, that
are well dispersed on a high-surface-area support, such as
silica, carbon black, alumina, or others (Topsøe, Dumesic and
Mørup, 1980; Bødker, Mørup and Linderoth, 1994; Bødker
et al., 1998). Metallic nanoparticles are very reactive and
may even burn when exposed to air. Therefore, studies of
their magnetic properties must be performed in a controlled
environment, and sophisticated in situ cells have been
constructed for such studies (Bødker and Mørup, 1996).

3.3 Chemical reduction using NaBH4

Nanoparticles of amorphous TM1–xBx alloys, where TM is a
transition metal (Fe, Co, or Ni), can be prepared by reduction
of the transition-metal ions in aqueous solution using NaBH4

(or KBH4). It has been shown that the boron content can be
varied by changing the pH value of the solution in which the
reaction takes place (van Wonterghem et al., 1986; Linderoth
and Mørup, 1991).

3.4 Evaporation techniques

Evaporation of metals in inert atmospheres has also been
used to produce nanoparticles and, by varying the gas
composition and pressure, it is possible to vary the particle
size (Granqvist and Buhrman, 1976). In some studies, this
preparation technique has been combined with separation
in a mass spectrometer such that one can select particles
with a well-defined size (Billas, Becker, Chatelain and
de Heer, 1993).

3.5 Ball milling

For large-scale production of nanoparticles, high-energy ball
milling may be used (Koch, 1991; Suryanarayana, 2001).
With this technique, one can typically reduce the crystal

size to around 10–20 nm within hours. Further milling does
not result in smaller particles because ball milling of very
small particles also can result in growth of crystallites
(Mørup, Jiang, Bødker and Horsewell, 2001). Ball-milled
samples usually contain many defects, and the crystallites
of nanometer size often form large agglomerates. Besides,
material from the balls and vials usually contaminate the ball-
milled samples. A very interesting feature of ball milling is
that one can make chemical reactions by high-energy ball-
milling mixtures of different materials. In this way, it appears
possible to produce nanocrystals of metastable materials,
which cannot be produced by traditional techniques (Koch,
1991; Suryanarayana, 2001; Principi, 2001).

3.6 Coating of nanoparticles

As discussed in Section 6, magnetic interactions between
nanoparticles can have a significant influence on the mag-
netic relaxation. Therefore, it is often important that one is
able to control the distance between the particles. Coating
the nanoparticles with surfactant molecules such as oleic acid
reduces the magnetic interaction, and, for antiferromagnetic
particles, this may be sufficient to ensure that the interac-
tions are negligible. For nanoparticles of ferromagnetic or
ferrimagnetic materials, further separation may be necessary
to reduce the interactions because of the long-range dipole
interactions. In several studies, coated particles have been
suspended in a liquid to form a stable suspension (a fer-
rofluid). One may then ideally control the strength of the
interactions by diluting the liquid, and studies of the mag-
netic properties can be performed on frozen samples. In other
studies, particles have been prepared in a matrix of polyvinyl
alcohol (PVA), which is a solid at room temperature (Tronc,
1996; Tronc et al., 2000).

3.7 Magnetic nanoparticles in biological samples

The iron storage protein ferritin has been used in many
studies of the fundamental magnetic properties of nanopar-
ticles. Ferritin consists of a core of iron oxyhydroxide sur-
rounded by a protein shell. It can be extracted from, for
example, horse spleen, and it is commercially available. Fer-
ritin has the advantage that the particle size distribution is
relatively narrow, and the protein shell ensures that the inter-
particle interactions are negligible. Several different animals
utilize magnetic nanoparticles for navigation. Magnetotac-
tic bacteria contain a chain of, for example, single domain
magnetite particles, which have superparamagnetic block-
ing temperatures well above room temperature. This chain
of particles acts as a compass needle (Blakemore, 1975).
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Homing pigeons have a magnetic sense, which is based on
arrays of superparamagnetic nanoparticles in the tissue of the
upper-beak skin. These arrays are deformed by the Earth’s
magnetic field and, via complex mechanisms, this enables
the pigeons to navigate (Davila, Fleissner, Winklhofer and
Petersen 2003).

3.8 Magnetic nanoparticles in geological samples

Nanoparticles of iron oxides and oxyhydroxides are wide-
spread in soils and are responsible for the reddish color of, for
example, tropical soils. Superparamagnetic behavior in geo-
logical samples can have important implications in studies of
geomagnetism (Néel, 1949). The magnetic properties of soils
have been extensively studied by, for example, Mössbauer
spectroscopy (Murad, 1998; Vandenberghe et al., 2000).

4 CHARACTERIZATION OF
NANOPARTICLES

4.1 Structural characterization

In studies of magnetic nanoparticles, it is essential that they
are well characterized with respect to purity, size, shape, and
so on. It is, for example, noteworthy that even tiny amounts
of a strongly magnetic impurity phase may dominate the
magnetization of an antiferromagnetic material.

A standard technique for characterization of nanoparticles
is X-ray diffraction, which is used to identify the crystalline
phases in a sample. Furthermore, this technique can also
be used to estimate the particle size since the diffraction
lines of nanoparticles are broadened with a line broadening
that is inversely proportional to the particle size (Langford,
Louër and Scardi, 2000). X-ray diffraction is less suitable
for characterization of amorphous and poorly crystalline
materials.

Transmission electron microscopy is another standard
technique for characterization of nanoparticles. It gives
information about both the particle size and the particle
morphology. In studies of crystalline nanoparticles, elec-
tron diffraction can be used to determine the crystal struc-
ture. High-resolution transmission electron microscopy often
allows observation of the lattice planes, and, in this way,
the crystal structure can also be studied. Often, nanoparticles
have a tendency to agglomerate, and it may then be difficult
to obtain information on individual particles. Well-separated
particles can be prepared by coating with appropriate sur-
factant molecules, and, by analyzing them in large numbers,
one can estimate the particle size distribution. Figure 1(a)
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Figure 1. (a) Transmission electron microscopy image of amor-
phous Fe–C nanoparticles. (b) Size distribution of the same par-
ticles determined by a computer analysis of approximately 4500
particles in an image. The mean diameter is 5.9 nm with a stan-
dard deviation of 0.3 nm. (Kluwer Academic Publishers, Jour-
nal of Nanoparticle Research 2(3), 2000, pp 267–277, Estimation
of Nanoparticle size distributions by image analysis, R. Fisker,
J.M. Carstensen, M.F. Hansen, F. Bødker, S. Mørup, figure 6, with
kind permission of Springer Science and Business Media.)

shows an example of a transmission electron microscope
image of surfactant-coated amorphous Fe–C particles with
a very narrow size distribution. The particles were prepared
by thermal decomposition of Fe(CO)5. Figure 1(b) shows
the corresponding size distribution obtained from a computer
analysis of an image containing about 4500 particles (Fisker
et al., 2000).

Other techniques that can be employed for the morpholog-
ical characterization of nanoparticles are small-angle neutron
scattering (SANS) and small-angle X-ray scattering (SAXS).
For samples with nearly uniform particle sizes, these tech-
niques can give information on the size distribution and
the structural and magnetic (for SANS) correlations between
particles.
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4.2 Particle size distributions

As discussed in Section 2, the exponential dependence of
the superparamagnetic relaxation time on the energy barrier,
KV , implies that the particle size distribution can have a
great influence on the magnetic behavior of a sample, even
for narrow size distributions. It is therefore important to know
and include the particle size distribution when experimental
data are analyzed. Let the number-weighted particle volume
distribution be fN(V ) dV . Thus, the number of particles
with volumes between V and V + dV is fN(V ) dV . If
the signal from a particle of size V is g(V, x), where x

is the experimental parameter that will be varied in the
measurements, the resulting signal, G(x), from the entire
sample is

G(x) =
∫ ∞

0
g(V, x)fN(V ) dV (5)

Often, the normalized number-weighted or volume-
weighted volume distribution is represented by a log-normal
distribution

fLN(V ) dV = 1√
2πσV

exp

(
− ln2(V/Vm)

2σ 2

)
dV (6)

where Vm is the median particle volume and σ is the loga-
rithmic standard deviation (Granqvist and Buhrman, 1976).
This distribution function has been used to describe the size
distribution of nanoparticles in numerous publications.

5 EXPERIMENTAL STUDIES OF
NONINTERACTING MAGNETIC
PARTICLES

5.1 DC magnetization measurements

When a sample of superparamagnetic particles is exposed to
an applied magnetic field above the blocking temperature, the
measured magnetization equals its thermal equilibrium value,
that is, the particles are magnetized in a way that is similar
to a paramagnetic material. However, the magnetic moments
that interact with the applied magnetic field are the moments
of whole particles, which can be hundreds or thousands
of Bohr magnetons. This is in contrast to paramagnetic
materials in which only the magnetic moments of individual
ions (typically a few Bohr magnetons) interact with the
field. Therefore, at a given temperature, the magnetization
of a sample of superparamagnetic particles will approach the
saturation value much faster than for a paramagnetic material.
Often, the magnetic anisotropy energy can be considered

negligible compared to the Zeeman energy, and the magnetic
energy is then given by

E = −µ · B + KV sin2 θ ≈ −µ · B (7)

where µ is the magnetic moment of the particle, B = µ0H is
the applied magnetic induction, and H is the intensity of the
applied magnetic field. To ease the language in the following,
we refer to B(= µ0H) as the applied magnetic field as it is
common in the literature. The average magnetization along
the applied field in thermal equilibrium is proportional to the
Langevin function L(µB/kBT ):

〈M〉 = M0L(µB/kBT )

≡ M0[coth(µB/kBT ) − kBT /µB] (8)

Thus, if the magnetization is plotted as a function of B/T ,
curves obtained at different temperatures should be identical
in a temperature range where M0 and µ can be considered
temperature independent. This behavior is often taken as a
fingerprint of a superparamagnetic sample.

In a detailed analysis of magnetization data, one has to
take the particle size distribution into account. The average
magnetic moment of a particle in a small applied magnetic
field is m(V, T ) = χ(V, T )V H , where χ(V, T ) is the initial
magnetic susceptibility and T is the temperature. The total
initial susceptibility of the sample is by definition the total
magnetic moment divided by H and the total sample volume,
that is,

χ(T ) =
∫ ∞

0 χ(V, T )VfN(V ) dV∫ ∞
0 VfN(V ) dV

≡
∫ ∞

0
χ(V, T )fV(V ) dV

(9)
Here, we have defined the volume-weighted size dis-

tribution function fV(V ) dV = VfN(V ) dV /
∫ ∞

0 VfN(V ) dV ,
which is conveniently used in experimental studies where the
sample signal is proportional to the particle volume.

When the magnetic anisotropy is not negligible, the field
dependence of the magnetization deviates from the Langevin
function. An analysis of the magnetization curves may
then be used to estimate the magnetic anisotropy constant
(Hanson, Johansson and Mørup, 1993; Respaud, 1999).

Below the blocking temperature, the magnetization curves
exhibit hysteresis. It is characteristic that the coercivity
decreases with increasing temperature and vanishes at the
blocking temperature. The temperature dependence of the
coercivity has in several cases been found to be in accordance
with the expression (Bean and Livingston, 1959)

Hc ≈ 2 KV (1 − 5
√

kBT /KV )/µ (10)
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Often, the superparamagnetic relaxation in samples of
magnetic nanoparticles is studied by measuring the so-called
zero-field-cooled (ZFC) and the field-cooled (FC) magne-
tization curves. A ZFC magnetization curve is obtained by
cooling the sample in zero applied magnetic field from a tem-
perature, where the entire sample shows a superparamagnetic
response. Then a small field is applied and the magnetiza-
tion of the sample is measured as a function of temperature
during heating. The FC magnetization curve is measured
as a function of increasing temperature after cooling the
sample in the applied magnetic field. A typical example is
shown in Figure 2. At temperatures well below the block-
ing temperature, the ZFC magnetization is small because
the sample is not in thermal equilibrium and the magneti-
zation directions of the particles in a small applied field are
mainly governed by the randomly oriented easy directions of
magnetization. With increasing temperature, first the smaller
particles become superparamagnetic, and the probability of
finding the particles with their magnetization directions close
to that of the applied field increases, resulting in an increase
in the magnetization. With further increasing temperature,
more and more particles become superparamagnetic, result-
ing in an increasing magnetization until the net effect of the
thermal energy is a decrease in the magnetization. In the
FC state, the magnetization in the blocked state is prefer-
ably frozen in directions close to that of the applied field.
Therefore, the magnetization is considerably larger than that
in the ZFC state. The ZFC and the FC curves coincide above
the bifurcation temperature, which is the temperature above
which all particles are superparamagnetic.

The ZFC magnetic susceptibility curves are often modeled
in the following manner: Well below the blocking temper-
ature, the magnetic moments are frozen in random easy
directions and the effect of an applied external field in this
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Figure 2. ZFC and FC magnetization curves measured on a fer-
rofluid of the Fe–C particles from Figure 1 with a concentration of
0.05 vol% in an applied field of µ0H = 0.5 mT.

case is to slightly change the directions of minimum energy.
For particles with uniaxial anisotropy and randomly oriented
easy axes, a minimization of the energy yields the low-field
magnetic susceptibility

χ0 = µ0M
2
0

3K
(11)

Well above the blocking temperature, the thermal effects
dominate and the susceptibility at low fields is obtained using
the fact that the Langevin function fulfills L(x) ≈ x/3 for
x < 1. The result is

χ∞ = µ0M
2
0 V

3kBT
(12)

In the analyses of ZFC susceptibility curves for real
samples, it is often assumed that the response of a particle
of a given size is described by equation (11) for T <

TB and equation (12) for T ≥ TB as the effects of the
particle size distribution on the relaxation time significantly
smear out the assumed sharp transition between the blocked
and superparamagnetic state. A typical timescale of such
measurements is τm ≈ 100 s. It should be noted that the
peak in the ZFC magnetization curve corresponds to the
blocking temperature for a sample of particles of the same
size. However, for a particle size distribution, the peak
temperature can be up to a factor of 2 larger than the
blocking temperature (Gittleman, Abeles and Bozowski,
1974; Chantrell, El-Hilo and O’Grady, 1991).

To elucidate the energy barrier distribution and to reveal
information on interparticle interactions, it is useful to study
the remanent magnetic moment after exposing the sample to
different temperature and field conditions. These different
conditions lead to the so-called thermoremanent magneti-
zation (TRM), isothermal remanent magnetization (IRM),
and the direct current demagnetization (DCD) magnetiza-
tion. These techniques have especially been used for studies
of magnetic recording media, where the stability of the rema-
nent state after exposure to a magnetic field is essential for
the ability to read the stored information. For an introduc-
tion and further references on these techniques, see Dormann,
Fiorani and Tronc (1997).

Magnetic viscosity measurement is another useful tech-
nique for studies of superparamagnetic relaxation (Labarta,
Iglesias, Balcells and Badia, 1993; Iglesias, Badia, Labarta
and Balcells, 1996). In such measurements, one measures
the approach to equilibrium magnetization as a function of
time. For example, the sample can be cooled in an applied
magnetic field and the field is switched off at a selected tem-
perature. Subsequently, the time dependence of the magneti-
zation M(t) is measured as a function of time. The magnetic
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viscosity is defined as

S = ∂M(t)

∂ ln t
(13)

In several studies, it has been found that the magnetic
viscosity becomes temperature independent at very low
temperatures (Zhang, Tejada, Hernandez and Ziolo, 1997;
Tejada, Zhang and Chudnovsky, 1993). This has been taken
as evidence for quantum tunneling. It has, however, been
pointed out that if the distribution of energy barriers, 	Es,
diverges approximately inversely proportional to 	E for
	E → 0, this will also lead to an apparently temperature-
independent relaxation time (Barbara et al., 1992). Both
computer simulations (Kodama, Berkowitz, McNiff and
Foner, 1996) and analytical calculations (Mørup, 2003) have
shown that there may be energy barrier distributions due
to localized magnetic defects that diverge for 	E → 0.
It can be shown that a plot of S/kBT against kBT ln(t)

gives information about the distribution of energy barriers
(Iglesias, Badia, Labarta and Balcells, 1996). In a study of
ferritin, St. Pierre et al. (2001) have shown experimentally
that the energy barrier distribution in fact seems to diverge for
	E → 0. The origin of such an energy barrier distribution
is further discussed in Section 7.

5.2 AC magnetization measurements

The applied magnetic field intensity in the AC magnetization
measurements is H(t) = H0 cos(ωt), where ω = 2πf and
f is the frequency of the applied magnetic field. The
response of the magnetic moments of the particles may be
phase shifted compared to the applied field and is therefore
conveniently described as a complex number. The complex
magnetic susceptibility is written as

χAC(ω, T ) = χ ′(ω, T ) + iχ ′′(ω, T ) (14)

where χ ′ and χ ′′ are the in-phase and out-of-phase compo-
nents of the measured susceptibility, respectively. A simple
expression for χAC has been given by Gittleman, Abeles, and
Bozowski (1974). They wrote the time-dependent magnetic
susceptibility as

χAC(t, T ) = χ0 + (χ∞ − χ0) · (1 − e−t/τ ) (15)

where χ0 is the magnetic susceptibility in the absence of
thermal fluctuations (equation 11), χ∞ is the equilibrium
susceptibility (equation 12), and τ is the superparamagnetic
relaxation time (equation 2). This expression is a good
approximation to more accurate and complicated expressions
for a random distribution of easy axes (Svedlindh, Jonsson

and Garcı́a-Palacios, 1997). By Fourier transformation, one
obtains

χAC(ω, T ) = χ∞ + iωτχ0

1 + iωτ

= χ∞ + χ0(ωτ)2

1 + (ωτ)2
+ i

ωτ(χ0 − χ∞)

1 + (ωτ)2
(16)

AC susceptibility measurements have the advantage that
the timescale is well defined and that it can be varied over
several orders of magnitude ranging from ∼10−2 to 105

s−1. The in-phase susceptibility shows a behavior similar
to χZFC(T ). The out-of-phase susceptibility is nonzero when
the relaxation time of a significant fraction of the particles is
of the order of ω−1 and peaks at the blocking temperature. It
should be noted that, for a size distribution of particles, which
is not too narrow, the out-of-phase susceptibility mirrors the
distribution of superparamagnetic relaxation times (Jonsson,
Mattsson, Nordblad and Svedlindh, 1997). Figure 3 shows
AC susceptibility curves of samples of noninteracting and
interacting γ -Fe2O3 nanoparticles. For the noninteracting
sample, it is seen that both the in-phase and out-of-phase
susceptibility curves are shifted toward higher temperatures
as the frequency is increased and also that the peak height
of the out-of-phase susceptibility curve depends only weakly
on the frequency. The curves for the interacting sample are
discussed in Section 6.

5.3 Mössbauer spectroscopy

Mössbauer spectroscopy has been widely used for studies of
the magnetic properties of nanoparticles. The technique can
be used for several isotopes of which the most important one,
which we have also focused on here, is 57Fe. An introduction
to Mössbauer spectroscopy can be found in, for example,
Greenwood and Gibb (1971). The technique is very sensitive
to relaxation phenomena with relaxation times of the order
of nanoseconds and can therefore be used for studies of
relaxation phenomena that cannot be studied by, for example,
AC and DC susceptibility measurements.

57Fe Mössbauer spectra of bulk magnetic materials con-
sist of one or more sextets, depending on the number of
different Fe atomic sites. The distance between the lines is
proportional to the magnetic field acting at the nucleus. In
Mössbauer studies of magnetic nanoparticles, superparamag-
netic relaxation can have a dramatic influence on the shape of
the spectra, depending on the relaxation time. The timescale
of Mössbauer spectroscopy, τM, is related to the Larmor pre-
cession time of the nuclear magnetic moment in the magnetic
hyperfine field. In 57Fe Mössbauer spectroscopy studies, τM

is typically of the order of a few nanoseconds. The spectra
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Figure 3. In-phase (a) and out-of-phase (b) AC susceptibilities
versus temperature at different frequencies ranging from 15 Hz to
10 kHz for a noninteracting 0.03 vol% ferrofluid (open symbols) and
an interacting 17 vol% ferrofluid (filled symbols) of 8-nm γ -Fe2O3

nanoparticles. (Reprinted figure from T. Jonsson, P. Nordblad,
P. Svedlindh, Phys. Rev., B57, pp 497–504 (1998).)

consist of sextets for relaxation times that are long compared
to τM. For relaxation times close to τM, the lines are broad-
ened and the magnetic splitting gradually collapses. For very
short relaxation times (<10−10 s), only a singlet or a dou-
blet component is observed. This is illustrated in Figure 4,
which shows theoretical 57Fe Mössbauer spectra for different
relaxation times.

Since the inevitable particle size distribution results in a
broad distribution of relaxation times, the spectra of samples
of magnetic nanoparticles consist of superpositions of com-
ponents with different relaxation times. In nanoparticles, for
which τ 0 is small compared to τM, a typical particle size
distribution results in a very broad distribution of relaxation
times at temperatures where the average relaxation time is
close to τM. Therefore, close to the blocking temperature,

t = 2 × 10−8 st = 1 × 10−7 s

t = 1 × 10−8 s t = 5 × 10−9 s

−12 −8 −4 4 12

t = 2.5 × 10−9 s

Velocity (mm s−1)

t = 1 × 10−11 s

Velocity (mm s−1)
0 8 −12 −8 −4 4 120 8

Figure 4. Theoretical Mössbauer spectra calculated for different
superparamagnetic relaxation times and a hyperfine field fluctuating
between ±55 T.

only a very small fraction of the particles have relaxation
times close to τM. Thus, the spectra mainly consist of a
superposition of a sextet with narrow lines, due to particles
that are well below their blocking temperature (τ  τM),
and a sharp central doublet or singlet, due to particles that
exhibit fast superparamagnetic relaxation (τ � τM) (Kündig,
Bömmel, Constabaris and Lindquist, 1966; Mørup et al.,
2002). Figure 5 shows Mössbauer spectra of α-Fe nanopar-
ticles for which τ 0 is of the order of 10−10 s (Bødker et al.,
1998), and the spectra therefore mainly consist of a sextet
and a doublet with relatively narrow lines. Broad compo-
nents due to particles with relaxation times of the order of
10−8 –10−9 s only give a minor contribution. In nanoparti-
cles of α-Fe2O3, τ 0 is of the order of 10−11 s (Bødker and
Mørup, 2000) and, in Mössbauer spectra obtained near the
blocking temperature, the contributions from particles with
relaxation times of the order of 10−8 –10−9 s are barely vis-
ible. This is illustrated in the spectra of noninteracting 9-nm
hematite particles shown in Section 6 (Figure 8a). In samples
of nanoparticles for which τ 0 is of the order of 10−10 –10−9 s,
a larger fraction of the particles have relaxation times com-
parable to the timescale of Mössbauer spectroscopy in a
temperature range where KV /kBT is small. This results in
spectra with broadened lines around the blocking temper-
ature. This is the case for spectra of γ -Fe2O3 nanoparti-
cles with sizes of the order of 5–10 nm (Mørup, Bødker,
Hendriksen and Linderoth, 1995; Frandsen et al., 2004) for
which τ 0 ≈ 4 × 10−10 s (Jonsson, Mattsson, Nordblad and
Svedlindh, 1997).
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Figure 5. Mössbauer spectra of 3-nm α-Fe particles obtained at
the indicated temperatures. (Reprinted from Journal of Magnetism
and Magnetic Materials, vol 177–181, Bodker et al., ‘Superpara-
magnetic relaxation in α-Fe particles’, pp 925–927 (1998), with
permission from Elsevier.)

Below the blocking temperature, the magnetic hyperfine
splitting of the spectra is reduced owing to collective mag-
netic excitations. For a particle with magnetic anisotropy
energy given by equation (1), the observed magnetic hyper-
fine field is proportional to 〈M〉 (equation 4) and is given by
Mørup and Topsøe (1976) and Mørup (1983)

Bobs ≈ B0(1 − kBT /2 KV ) (17)

where B0 is the magnetic field acting on the nucleus in the
absence of superparamagnetic relaxation. For antiferromag-
netic particles, Bobs is proportional to the average value of
the sublattice magnetizations, but can also be expressed by
equation (17) (Mørup and Hansen, 2005).

Studies of the temperature dependence of the Mössbauer
spectra of nanoparticles allow the parameters KV and τ 0

to be estimated. Often, the particle volume, V , is known
from, for example, X-ray diffraction or transmission elec-
tron microscopy. In such cases, the magnetic anisotropy
constant can be estimated. Mössbauer studies of mag-
netic nanoparticles of α-Fe (Bødker, Mørup and Linderoth,
1994), γ -Fe2O3 (Tronc, 1996), and α-Fe2O3 (Bødker and
Mørup, 2000) have shown that the magnetic anisotropy con-
stant increases with decreasing particle size. This has been
explained by a contribution from the surface to the magnetic
anisotropy, which is expected to increase with decreasing
particle size.

In the presence of an applied magnetic field B, the
magnetic energy of a ferro- or ferrimagnetic particle is given
by equation (7) and, if the magnetic anisotropy is negligible,
the magnetic field at the nucleus is given by

Bobs ≈ B0L(µB/kBT ) + B (18)

Figure 6 shows room-temperature Mössbauer spectra of
7.5-nm maghemite nanoparticles in different applied mag-
netic fields (Mørup, Bødker, Hendriksen and Linderoth,
1995). It can be seen that even moderate applied fields
result in a substantial splitting. The lines are relatively broad,
mainly because of the distribution of magnetic moments
due to the particle size distribution, which gives rise to a
distribution in the values of Bobs. For values of µB/kBT

larger than 2–3, one may use the high-field approximation
L(x) ≈ 1 − x−1 and we then find

Bobs ≈ B0(1 − kBT /µB) − B (19)

The minus in front of the last term is because the magnetic
hyperfine field in iron compounds is usually opposite to the
magnetization. It can be seen from equation (19) that a plot of
the induced hyperfine field, Bind = Bobs + B, as a function
of B−1 should give a straight line with intercept B0 and
slope B0kBT /µ from which the magnetic moment of the
particles can be estimated (Mørup, Dumesic and Topsøe,
1980; Mørup, 1983). When the magnetization is known, the
average particle size can be estimated.

5.4 Neutron scattering

Neutron scattering is another technique that has appeared
useful in studies of the magnetic properties of nanoparticles.
Neutrons can be scattered by both nuclei and ionic magnetic
moments. Therefore, neutron diffraction gives information
not only about both the crystal structure (as X-ray diffrac-
tion) but also about the magnetic structure. Thus, one can
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Figure 6. Mössbauer spectra of coated 7.5-nm maghemite nanopar-
ticles obtained at 295 K with the indicated values of magnetic fields
applied perpendicular to the γ -ray direction. (Reprinted figure from
S. Mørup, F. Bødker, P.V. Hendriksen, S. Linderoth, Phys. Rev.
B52, pp 287–294 (1995).)

study, for example, how the magnetic structure and the mag-
netic transition temperature of nanoparticles may depend on
particle size. In a neutron diffraction study of plate-shaped
nanoparticles of NiO with a thickness of a few nanometers
(Klausen et al., 2002), it was found that the Néel temperature
was considerably lower than the bulk value, in accordance
with theoretical estimates.

In inelastic neutron-scattering experiments, one analyzes
the energy distribution of neutrons that are diffracted at a
certain diffraction angle using a so-called triple-axis neutron
spectrometer (Hansen et al., 2000). By choosing a diffrac-
tion angle corresponding to a purely magnetic reflection, the
energy distribution of the scattered neutrons gives informa-
tion about the energy of magnetic excitations in the sam-
ple. As an example, Figure 7 shows energy scans from a
triple-axis neutron spectrometer taken around the pure hexag-
onal (001) antiferromagnetic reflection for 15-nm hematite
nanoparticles (Hansen et al., 1997). The zero field scans
(a) show a relatively narrow, quasielastic peak centered at
zero energy transfer and two broad inelastic peaks at energy
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Figure 7. (a) Typical inelastic neutron-scattering data on 15-nm
α-Fe2O3 nanoparticles obtained at zero field at the indicated temper-
atures. (b) Inelastic neutron-scattering data obtained at T = 268 K
at the indicated applied magnetic fields. (Reprinted figure from
M.F. Hansen, F. Bødker, S. Mørup, K. Lefmann, K.N. Clausen,
P.A. Lindgärd, Phys. Rev. Lett. 79, pp 4910–4913 (1997).)

transfers around ε ≈ ±0.2 meV. The width of the quasielas-
tic peak increases with increasing temperature because of the
finite lifetime of the magnetization orientations in superpara-
magnetic particles. Thus, the superparamagnetic relaxation
time can be estimated from the line width of the quasielas-
tic peak. Neutron scattering is sensitive to fluctuations at the
timescale 10−14 s > τ > 10−7 s, that is, it is suitable for the
study of superparamagnetic relaxation, which is so fast that
Mössbauer spectroscopy becomes insensitive to the relax-
ation frequency. The inelastic peaks are caused by collec-
tive magnetic excitations and their positions correspond to
the energy change associated with a transition between two
neighboring precession states. The position of the inelastic
peaks is at ε = ±�ωAF, where ωAF ≈ �

−1gµB(2BABE)1/2

is the antiferromagnetic resonance frequency, g is the gyro-
magnetic ratio, µB is the Bohr magneton, BA = K/Ms is the
anisotropy field, Ms is the sublattice saturation magnetiza-
tion, and BE is the exchange field (Hansen et al., 1997, 2000).
It can be seen that the area of the inelastic peaks increases
with increasing temperature. This is due to the tempera-
ture dependence of the population of the precession states.
When magnetic fields are applied, the inelastic peaks move to
higher energies (Figure 7b) because the magnetization vec-
tors precess in an effective field, which has contributions
from both the anisotropy field and the applied field.
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6 INTERPARTICLE INTERACTIONS

The magnetic properties of samples of nanoparticles are often
strongly influenced by interparticle interactions. In partic-
ular, interactions can have a significant influence on the
superparamagnetic relaxation. In some cases, the interac-
tions result in faster relaxation and, in other cases, they
result in some suppression of the relaxation. These appar-
ently contradicting results have given rise to some debate in
the literature (Hansen and Mørup, 1998; Dormann, Fiorani
and Tronc, 1999). Both dipole interaction and exchange inter-
action between magnetic nanoparticles can be significant.

6.1 Dipole interactions

In samples with ferromagnetic or ferrimagnetic nanoparti-
cles, the magnetic dipole interaction between neighboring
particles is of the order of Edd = µ0µ

2/(4πd3), where d is
the average distance between neighboring particles. If the
concentration of particles is high, the interaction energy may
be comparable to both the anisotropy energy and also to the
thermal energy for temperatures up to about 100 K or more
(Hansen and Mørup, 1998). In samples with weak interac-
tions, the dipole fields modify the energy barriers separating
the easy directions of magnetization. Dormann, Bessais, and
Fiorani (1988) have proposed a model according to which the
energy barriers always increase because of the dipole inter-
actions. This model can qualitatively explain many exper-
imental observations of suppression of superparamagnetic
relaxation in samples with interparticle interactions. How-
ever, in some Mössbauer spectroscopy studies, the opposite
behavior has been observed (Prené et al., 1994; Tronc et al.,
1995). Simple analytical calculations (Mørup and Tronc,
1994; Hansen and Mørup, 1998) have shown that the net
effect of weak dipole interactions is to reduce the aver-
age value of the energy barriers, and this can explain the
increase in the relaxation frequency with increasing inter-
action strength. Later theoretical work has confirmed that
the net effect of weak dipole interactions is to reduce the
average energy barriers and thereby increase the relaxation
frequency (Jönsson and Garcı́a-Palacios, 2001; Iglesias and
Labarta, 2004; Berkov, 1998).

In samples of ferro- and ferrimagnetic nanoparticles, it
has been found that strong dipole interactions may result
in a divergence of the superparamagnetic relaxation time
at a finite temperature, which depends on the strength
of the interactions. This has been investigated using, for
example, AC magnetization measurements (Zhang, Boyd and
Luo, 1996; Djurberg et al., 1997; Dormann et al., 1999).
Both theoretical estimates and experimental studies have
indicated that the critical temperature is of the order of

Edd/kB (Mørup, 1994; Hansen and Mørup, 1998). Below
this critical temperature, such samples may exhibit com-
plex nonequilibrium phenomena that are similar to those
observed in spin glasses (Djurberg et al., 1997; Mamiya,
Nakatani and Furubayashi, 1998; Jönsson, 2004). In ZFC
magnetization measurements, interactions are observed to
shift the peak of the curve toward higher temperatures. In
AC susceptibility measurements, the peaks of the in-phase
and out-of-phase susceptibility curves are typically shifted
toward higher temperatures and, for strong interactions, the
shape of the susceptibility curves may change significantly
with frequency. In Figure 3, which shows AC suscepti-
bility data for both noninteracting and strongly interacting
γ -Fe2O3 nanoparticles, it is seen that the interactions shift
all peaks toward higher temperatures and that the shape
and height of the out-of-phase susceptibility curves have a
stronger dependency on the frequency than the correspond-
ing curves for the noninteracting particles. It is noteworthy
that, because of the longer timescale of magnetization mea-
surements compared to that of Mössbauer spectroscopy, the
decrease in the relaxation time due to weak interactions
may not be clearly visible in magnetization measurements
(Mørup, 1994).

In summary, it is found that for weak magnetic dipole
interactions the superparamagnetic relaxation time decreases
with increasing strength of the interactions, but, for stronger
interactions, the relaxation time increases when approaching
a spin-glass-like ordered (collective) state.

6.2 Exchange interaction between nanoparticles

Because nanoparticles of antiferromagnetic materials have
magnetic moments that are much smaller than those of typ-
ical ferromagnetic and ferrimagnetic particles, the magnetic
dipole interaction between them is much weaker. Anyway,
it has been found in several Mössbauer spectroscopy stud-
ies that interactions between antiferromagnetic nanoparticles
can significantly suppress the superparamagnetic relaxation.
This has been attributed to exchange interactions between
surface atoms of neighboring particles (Mørup et al., 1983;
Hansen, Bender Koch and Mørup, 2000; Bødker, Hansen,
Bender Koch and Mørup, 2000; Frandsen and Mørup, 2003).
As an example, Figures 8(a) and (b) show Mössbauer spec-
tra of noninteracting and interacting 9-nm hematite particles,
respectively. The particles in the two samples were from the
same batch. The noninteracting particles were coated with
oleic acid and suspended in heptane, whereas the interact-
ing particles were uncoated, suspended in water, and then
dried at room temperature allowing them to interact. The
large differences between the spectra in Figures 8(a) and
(b) show that interactions can have a substantial influence
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on the relaxation. The observations can be explained by a
simple model in which the magnetic energy of a particle, i,
which interacts with its neighbors, j , is written (Mørup et al.,
1983; Hansen, Bender Koch and Mørup, 2000; Frandsen and
Mørup, 2003)

Ei = KVi sin2 θ − Mi ·
∑

j

Kij Mj (20)

where Mi and Mj represent the (sublattice) magnetization
of the particles i and j , respectively and Kij is an effec-
tive exchange coupling constant due to exchange coupling
between surface atoms belonging to neighboring particles.
If the first term in equation (20) is predominant, super-
paramagnetic relaxation may take place between the easy
directions close to θ = 0 and θ = π and, as discussed in
Section 5.3, this results in spectra consisting of superim-
posed sextets and doublets. Strong interactions can result in
an ordered (collective) state at temperatures where noninter-
acting particles would be superparamagnetic (Mørup et al.,
1983; Hansen, Bender Koch and Mørup, 2000; Frandsen
and Mørup, 2003). The magnetic properties may then be
calculated using a simple mean-field model in which the
summation in the second term in equation (20) is replaced
by an average value (Mørup et al., 1983; Hansen, Ben-
der Koch and Mørup, 2000; Frandsen and Mørup, 2003).
Equation (20) then has a form similar to equation (7), that is,
the effect of interactions is described in terms of an effective

interaction field. If the interaction term in equation (20) is
predominant, there is only one energy minimum. At finite
temperatures, the (sublattice) magnetization then fluctuates
around the direction corresponding to this energy minimum.
If the fluctuations of the sublattice magnetization directions
are fast compared to the timescale of Mössbauer spec-
troscopy, the magnetic splitting in the spectra is propor-
tional to the average value of the magnetic hyperfine field.
Variations of the magnitude and direction of the interac-
tion field in the sample results in a distribution of mag-
netic hyperfine splittings, which leads to broadened sex-
tets, like those seen in Figure 8(b), as it is also the case
in spectra of superparamagnetic particles in applied mag-
netic fields (Figure 6). If the neighboring particles are ran-
domly oriented, one might expect that the contributions
from different neighboring particles in the summation of
equation (20) partially cancel, and therefore the interaction
field should be small. However, it has been shown that inter-
acting nanoparticles of α-Fe2O3 nanoparticles may not be
randomly oriented, but can form chains of particles with a
common [001] axis. Neutron diffraction studies have shown
that both structural and magnetic correlations exist across
the interfaces along this direction. This can explain the sub-
stantial exchange coupling between the particles (Frandsen
et al., 2005).

In recent studies, it has been found that exchange inter-
actions between nanoparticles of different magnetic materi-
als can have unexpected effects on the superparamagnetic
relaxation time (Frandsen and Mørup, 2003; Frandsen et al.,
2004). For example, the superparamagnetic relaxation of iron
oxide particles was to some extent suppressed when they
were mixed with nanoparticles of CoO, whereas the opposite
effect was found when the iron oxide particles were mixed
with nanoparticles of NiO. The studies indicate that there
can be a strong exchange interaction between nanoparticles
of iron oxide and nanoparticles of CoO and NiO. The dif-
ferent effect of mixing with CoO and NiO can be explained
by differences in magnetic anisotropy of the nanoparticles
of the two materials (Frandsen and Mørup, 2003; Frandsen
et al., 2004).

7 MAGNETIC STRUCTURE AND
TRANSVERSE RELAXATION IN
NANOPARTICLES

Several studies have shown that the magnetic structure of
nanoparticles may deviate from that of the correspond-
ing bulk materials. Computer simulations have suggested
that nanoparticles of NiO may have a complicated anti-
ferromagnetic structure with eight sublattices instead of
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the simple two-sublattice structure that is found in bulk
(Kodama, Makhlouf and Berkowitz, 1997). In bulk hematite,
the magnetic structure changes at the Morin temperature,
TM ≈ 263 K. Above TM, the sublattice magnetization is per-
pendicular to the [001] axis of the hexagonal structure.
Below this temperature, the sublattice magnetization is par-
allel to this direction. However, in particles with diameters
less than about 20 nm, the sublattice magnetization direc-
tion remains perpendicular to the [001] axis at all tempera-
tures (Kündig, Bömmel, Constabaris and Lindquist, 1966;
Schroeer and Nininger, 1967; Bødker and Mørup, 2000).
Neutron-scattering studies have shown that the Néel tem-
perature of NiO nanoparticles can be lowered compared
to the bulk value (Klausen et al., 2002). It has recently
been shown that interparticle interactions on powders of
hematite nanoparticles can rotate the sublattice magnetiza-
tion directions because of exchange coupling between dif-
ferently oriented neighboring nanoparticles (Frandsen and
Mørup, 2005).

In many defect-free macroscopic crystals of ferrimagnetic
and antiferromagnetic materials, the spins in the sublattices
are antiparallel. However, if a sample has defects in the inte-
rior, magnetic frustration may result in localized noncollinear
magnetic structures. Noncollinear (canted) spin structures are
commonly found in diamagnetically substituted ferrites and
garnets (Coey, 1987; Dormann and Nogues, 1990). Simi-
lar spin-canting effects may be found at surfaces, and may
therefore be important in nanoparticles. Experimental stud-
ies have revealed a rich variation of the dependence of
spin canting on composition, temperature, particle size, and
applied magnetic fields (Coey, 1971, 1987; Morrish and
Haneda, 1983; Parker, Foster, Margulies and Berkowitz,
1993; Kodama, Berkowitz, McNiff and Foner, 1996; Tronc
et al., 1998, 2000; Mørup, 2003). In particular, spin canting
in maghemite (γ -Fe2O3) nanoparticles has been extensively
studied because of their importance in magnetic data storage
media.

Spin canting is conveniently studied by Mössbauer spec-
troscopy with large magnetic fields applied parallel to the
γ -ray direction. In 57Fe Mössbauer spectra, obtained in this
way, the relative intensities of lines 2 and 5 in the six-line
spectra are proportional to sin2 θ0/(1 + cos2 θ0), where θ0

is the angle between the γ -ray direction and the total mag-
netic field at the nucleus. If the magnetic hyperfine field is
large compared to the applied field, one finds that θ0 ≈ θ c,
where θc is the canting angle. Figure 9 shows, as an example,
Mössbauer spectra of maghemite nanoparticles obtained at
various temperatures with a magnetic field of 6 T applied
parallel to the γ -ray direction (Tronc et al., 2000). In a
perfect ferrimagnetic material, lines 2 and 5 would have
zero intensity. The finite intensity of the lines in the spectra
obtained at 9 K thus show that there is a noncollinear spin
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Figure 9. Mössbauer spectra of maghemite nanoparticles with a
mean diameter of 2.7 nm. The spectra were obtained at the indicated
temperatures with a magnetic field of 6 T applied parallel to
the γ -ray direction. (Reprinted from the Journal of Magnetism
& Magnetic Materials, vol 221, Tronc et al., pp 63–79, Surface-
related properties of γ -Fe2O3 nanoparticles, 2000, with permission
from Elsevier.)

structure in the sample. At higher temperatures, the intensity
of lines 2 and 5 gradually disappears. This may be explained
as follows: Let θc be the angle between a canted spin and the
spin direction in defect-free environments. Owing to sym-
metry, a canted state with a canting angle θ c is usually
accompanied by an equivalent state with canting angle – θ c

(Mørup, 2003). The energy barriers that separate such equiv-
alent states may be quite small and at finite temperatures
there may therefore be transitions between such equiva-
lent canted states. If the relaxation time of this so-called
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transverse relaxation is of the order of nanoseconds, lines 2
and 5 in the Mössbauer spectrum are broadened (Helgason,
Rasmussen and Mørup, 2006). If the transverse relaxation is
fast compared to the timescale of Mössbauer spectroscopy,
the nucleus only experiences the average magnetic hyper-
fine field, which is parallel to the applied magnetic field and
the intensity of lines 2 and 5 therefore vanishes, as seen in
the Mössbauer spectra in Figure 9. It has been shown that
the energy barriers, 	E, separating equivalent states with
canting angles θ c and – θ c, may have a distribution, which
diverges for 	E → 0 (Mørup, 2003). This may explain some
of the observations of an apparently temperature-independent
relaxation at low temperatures, discussed in Section 5.1.

In several studies, it has been assumed that spin canting
is restricted to the surface, and the thickness of the canted
surface layer has been calculated. However, this simple
model cannot explain the irregular variation of the degree
of canting with particle size (Linderoth et al., 1994). In fact,
it has been shown that maghemite particles with similar
size may have different degrees of canting, depending on
the preparation method (Morales, Serna, Bødker and Mørup,
1997; Serna et al., 2001). This indicates that defects in the
interior of the nanoparticles also can play an important role.

Extensive spin canting results in a diminished saturation
magnetization. This makes the particles less useful for many
applications such as data storage, biotechnology, and so
on. Therefore, it is important to use preparation techniques,
which lead to particles with low defect concentrations.
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Kündig, W., Bömmel, H., Constabaris, G. and Lindquist, R.H.
(1966). Some properties of supported small α-Fe2O3 particles
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1 INTRODUCTION

Magnetic nanoparticles, clusters, and particulate thin films
have many present or future applications, for example, as
permanent magnets, soft magnets, and sensors. However,
in recent years, the most active area of research has been
magnetic recording, and this trend is likely to continue in the
foreseeable future. Magnetic recording media, such as hard
disks and magnetic tapes, are widely used for data storage
in computers and in audiovisual technology. Key criteria
for magnetic recording media are areal density, signal-to-
noise ratio, and thermal stability. Nanoparticulate thin films
are ideally suited for this application because factors such
as grain size, grain-size distribution, texture, magnetization,
grain isolation, and film smoothness can be controlled with
considerable precision. This is an important aspect of the
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fascinating increase in hard-disk storage density since about
1990, when thin-film media were introduced on an industrial
scale. In addition, nanoparticulate thin films and related
materials, such as fine particles and ferrofluids, have present
or potential uses in many other areas including biomedical
imaging and treatment applications.

This chapter deals with various aspects of nanoparticu-
late magnetic thin films and of the particles they contain.
Emphasis is on magnetic recording media, due to their spe-
cial importance in advanced data storage. Furthermore, we
focus on the processing of nanoparticles of different shape,
size, chemical composition, and texture, and on magnetic
properties and phenomena directly related to the structures of
interest. For information about basic magnetic phenomena,
bulk properties, experimental and theoretical methods, and
applications beyond magnetic recording media we refer to
other articles of this handbook and to the references quoted in
the following text. Similarly, structures produced from ultra-
thin films, such as dots and antidots, geometries created by
ion-beam milling and lithography, and top-down approaches
such as scanning tunneling microscopy (STM) deposition go
beyond the scope of this article.

1.1 Basic concepts of magnetic recording

A key figure of merit of magnetic recording media is the
areal storage density, measured in bits per square centime-
ter (b cm−2) or bits per square inch (1 b in.−2 = 6.452
b cm−2). Figure 1 shows schematically the development of
the areal storage density in recent decades. Since its inven-
tion, magnetic recording has developed rapidly, competing
with and often outperforming other storage media, from vinyl
records and punch cards to advanced electronic and optical
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Figure 1. Increase in areal storage density since the 1950s
(schematic). Modern audiovisual and data recording would be
unthinkable without this development of storage media.

storage media such as CD-ROMs and flash memory. The
main advantages of magnetic storage are the potential den-
sity and cost. The bit size of optical and magneto-optical
media is limited by the wavelength of the used light, whereas
semiconductor devices can be slow and/or volatile.

Defining an effective bit size as the square root of
the inverse areal density, the progress shown in Figure 1
corresponds to a bit-size reduction from 250 µm in 1960 to
250 nm in 2000. The recent trend is likely to continue in
the next few years, with terabit recording at the horizon.
An upper limit to the recording density is provided by the
thermal stability of the stored information, which makes
it difficult to realize room-temperature magnetic recording
using bit sizes smaller than several nanometers (Section 1.2).

A condition for magnetic recording is magnetic hysteresis,
as epitomized by coercivity, remanence, and loop shape. In
a sense, magnetic recording media are intermediate between
soft and hard magnets. Typical media exhibit moderate
but well-controlled coercivities. The coercivity Hc must be
sufficiently large to ensure the long-time stability of the
stored information, but very high coercivities complicate the
recording process, because they require excessive writing
fields. Very small particles obey the coherent rotation or
Stoner–Wohlfarth theory, and for uniaxial anisotropy the
coercivity approaches the anisotropy field Ha = 2K1/µoMs.
In this expression, K1 is the first uniaxial anisotropy constant
and Ms is the spontaneous magnetization. In most systems,
Hc is much smaller than Ha. This is due to real-structure
imperfections (Section 1.2).

The first magnetic recording medium was the magnetic
wire, invented by Valdemar Poulsen in Denmark in 1898.
Until the early 1940s, steel wires were used quite extensively
for dictation, telephone recording, and radio broadcasting.
Tape recording was pioneered in Germany, leading from

a patent for iron-coated paper (!) and polymer film strips
in 1928 to the first portable tape recorder (Volk, 1935).
This was the starting point for various developments in
sound and audiovisual magnetic recording, including the
introduction of the tape cassette system in 1963 and of the
VHS videocassette system in 1976.

A very important application of magnetic recording is data
storage (Mee and Daniel, 1996; Comstock, 1999; Wood,
2000). Data storage using magnetic tapes is cheap but slow
and therefore not suitable for applications where fast access
is important. The first data-storage tapes, used in the United
States in 1951, had bit lengths of about 200 µm and areal
storage densities of the order of 0.002 Mb in.−2. Tape storage
systems range from ordinary audiocassettes to large reel-
to-reel systems for mass storage. Audiocassettes were a
popular choice for some home computers in the 1980s but
are no longer used. By contrast, reel-to-reel and sophisticated
cartridge systems continue to be used for purposes such as
data backup. For example, present-day tapes have capacities
of up to 320 GB.

Diskettes or floppy disks are a very convenient storage
medium with moderate capacity. The first floppy disks, intro-
duced in 1971, had a diameter of 8 in. and a storage capacity
of 0.08 MB. Early personal computers used 51/4′′ floppy
disks, whereas single-sided single-density 51/4′′ disks, first
produced in 1976, had a capacity of 0.18 MB. The 31/2′′

disk format was introduced by Sony in 1981. The widely
used 31/2′′ DS/HD disks, which date back to 1987, have
a storage capacity of 1.44 MB and an areal density of more
than 2.4 Mb in.−2, as compared to about 0.3 Mb in.−2 in early
51/4′′ disks (1 MB in.−2 = 0.155 GB cm−2). The traditional
way of producing floppy discs was to start from magnetic
thin films that were isotropic in the plane. The disks were
then obtained by cutting.

Today, hard disks are the most powerful data-storage
medium for personal computers. Early hard disks, introduced
by IBM in 1973, had a capacity of 30 MB but were large
and cumbersome. Designed for use in data centers and
large offices, they often required special power supplies and
equipment racks. Since the 1980s, internal and external hard
disks have been used in personal computers. The first PC hard
disks had a capacity of only 5 MB, increasing to typically
about 1 GB (1000 MB) in the mid-1990s and about 100 GB
in 2005. This increase has been made possible by advances in
magnetic nanotechnology, defining an effective bit size as the
square root of bit width (track spacing) and bit length (inverse
linear bit density). This underlines the role of nanostructuring
in advanced magnetic recording: areal densities of 1 Mb
in.−2, 1 Gb in.−2, and 1 Tb in.−2 correspond roughly to bit
sizes of 25 µm, 800 nm, and 25 nm, respectively. The physics
of ultrahigh-density magnetic recording has recently been
reviewed by Plumer, van Ek and Weller (2001).
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1.2 Recording materials and limits

Early magnetic storage media used ferromagnetic 3d metals,
especially iron and nickel, in the form of powders, wires,
and thin films. They were soon complemented or superseded
by magnetic oxides in the form of elongated small parti-
cles. Widely used oxides are γ -Fe2O3, CrO2, and BaFe12O19,
with typical particle lengths between 1 and 2 µm and coer-
civities of order of 50 mT (500 Oe). These media have the
magnetization in the disk or tape plane, as contrasted to per-
pendicular recording. The latter, presently in a development
stage, is more difficult to realize than longitudinal record-
ing but has greater potential for ultrahigh-density recording
(Wood, 2000).

The coercivity of typical magnetic particles is much
smaller than the Stoner–Wohlfarth prediction Ha =
2K1/µoMs. This is because real-structure imperfections give
rise to incoherent magnetization reversal, even if the par-
ticle size is smaller than the critical single domain size
(Skomski, 2003). Furthermore, for particle diameters larger
about 20 nm, there are incoherent curling or ‘vortex’ modes,
irrespective of the presence of imperfections. It is there-
fore necessary to have a sufficiently high anisotropy K1.
The leading contribution to the anisotropy involves spin-
orbit coupling and crystal-field interactions. It depends on
the local chemistry and on the atomic coordination of the
magnetic moments and can be tuned quite easily by chemical
substitutions (Skomski and Coey, 1999).

However, with decreasing particle size the coercivity
increases and becomes more Stoner–Wohlfarth like. In
fact, for some materials, the coercivity of small par-
ticles is actually too high for convenient writing, and
coercivity tuning is more important that mere anisotropy
enhancement. Aside from chemical substitutions, this may
be done by exploiting the strong temperature dependence
of the anisotropy and magnetization of some magnetic
alloys (thermally assisted writing) and by using hard-soft
composites.

An upper limit to the room-temperature areal density is
given by the thermal stability of the stored information. Small
hard grains of uniaxial anisotropy K1 and volume V exhibit
magnetic energy barriers Ea = K1V. When the volume is
too small, thermal excitations reverse the spin direction and
destroy the stored information. In a different context, this
phenomenon is known as superparamagnetism. As analyzed
by Becker and Döring (1939) and later popularized by
Néel and Brown, thermally activated magnetization processes
obey the Arrhenius law τ = τ o exp(Ea/kBT ). In terms of the
thermal stability factor ξ = ln(τ/τ o), stability is achieved for
volumes larger than

V = ξkBT/K1 (1)

Since τ o∼10−10 s for a wide range of materials, safe
information storage for more than 10 years implies ξ ≈ 60.
Room-temperature anisotropies of very hard materials are
of order 10 MJ m−3 (Skomski and Coey, 1999), so that V

cannot be made arbitrarily small. Making particles elongated,
V = b2t where the film thickness t � b, does not solve
the problem, because very thin particles are susceptible
to thermally activated domain formation. The domain-wall
energy γ = 4

√
AK1, where A∼10 pJ m−1 is the exchange

stiffness, so that the energy barrier for a double wall is of
order 8b2√AK1. This energy is independent of t and means
that the room-temperature bit size cannot be much smaller
than about 2 nm. Exchange coupling to other phases, such
as antiferromagnets, stabilizes the stored information at the
expense of areal density and does not represent a viable way
of overcoming the superparamagnetic limit.

The high anisotropy of materials helps to improve ther-
mal stability and coercivity. For this reason, hard mag-
netic materials are increasingly used in magnetic recording,
although extremely high coercivities complicate writing. A
typical example is L10 materials, such as FePt. Advanced
high-density recording media, characterized by more than
10 Gb in.−2 (1.55 Gb cm−2), are based on materials such as
Co–Cr–Pt–B, where Pt improves anisotropy. Other classes
of materials, such as rare-earth transition-metal (RE-TM)
nanocomposite films are also being considered.

1.3 New magnetic recording media

Magnetic thin films have been used as recording media
in hard-disk drives since about 1990. Together with the
development of recording-head technology, from the early
inductive read heads and magnetoresistive (MR) heads since
1990 to the recent giant magnetoresistive (GMR) heads,
this has been the key factor in the enhancement of the
storage density in recent years (Mee and Daniel, 1996). The
head development is accompanied by a shift of emphasis
from read-back signal amplitude to signal-to-noise ratio, with
focus on questions such as grain-size distribution and grain-
size refinement. This includes grain isolation by chemical or
physical means, in order to reduce intergranular coupling.

There are several approaches forwards the development
of new recording media: Sputtering is a well-established
method, but it is rapidly approaching its grain size and noise
limits. Another approach is to use patterned media where
each grain acts as a recording bit. This has the potential
to increase the recording density beyond 1 Tb in.−2, but it
is very difficult to fabricate large-area patterned media and
to read and write signals on such media. A third approach
is to use patterned perpendicular recording media. This
makes it possible to stabilize the magnetic structure by using
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elongated particles, but there are various technical challenges
involved in this and all recording schemes that approach
1Tb in.−2.

1.3.1 Sputtered media

The first generation of magnetic media for hard disks used
particulate media consisting of γ -Fe2O3 particles dispersed in
polymeric binders. The coating was spun onto the substrates,
and the magnetic particles were aligned by a circumferential
magnetic field before the solvents had completely evaporated.
To improve the mechanical durability and to separate the
recording head from the polymeric binder, aluminum oxide
particles with diameters larger than the coating thickness
were added. Since adequate mechanical properties require
a particle volume fraction of less than 30%, relatively thick
coatings are necessary. Thin coatings with good uniformity
are very difficult to obtain and the nonmagnetic aluminum
oxide particles degrade the signal-to-noise ration.

Today, most magnetic recording media for hard-disk
drives are thin films, which are deposited by sputtering.
The advantages of the sputtered film media over particle-
coated media are their superior magnetic properties in
much thinner films and smoother surfaces. Smooth surfaces
allow low flying heights that reduce spacing between the
head and the medium, thereby increasing the areal density.
In addition, by modifying the sputtering parameters, the
microstructure can be controlled and magnetic properties
can be tailored to satisfy desired recording requirements.
Advantageous magnetic properties of sputtered thin films
are high magnetization, high anisotropy, and adjustable
coercivity. In particular, the enhanced magnetization allows
the use of thin recording layers without loss in read-back
signal, and the high anisotropy enhances the thermal stability.

Figure 2 shows the basic structure of a thin-film medium,
which consists of a substrate, an underlayer, a magnetic
layer, an overcoat, and a lubricant. An Al–Mg alloy with
a thick plated amorphous NiP layer is used as the substrate.
The hard NiP layer allows easy polishing and provides a
surface for resistance to mechanical damage. The underlayers

Lubricant

Overcoat

Magnetic layer

Underlayer

Substrate

Figure 2. Basic structure of a thin-film medium.

develop a necessary texture, which controls the grain size and
hexagonal c-axis alignment of the magnetic layer.

The underlayers, Cr or body-centered cubic Cr alloys
such as Cr–Mo and Cr–W, promote the epitaxial growth
of magnetic layer. To reduce the grain size and orientation,
an additional nucleation or seed layer is deposited before
the Cr-alloy underlayer, because it is difficult to nucleate
the necessary Cr texture on glass or glass-ceramic surfaces.
Examples of seed-layer materials are MgO (Lee, Cheong,
Laughlin and Lambeth, 1995) and AlN (Mirzamaani and
Doerner, 1996).

Most magnetic layers for the present longitudinal record-
ing are pseudoternary and -quaternary alloys based on
hcp cobalt. Typical examples are Co–Cr–Ta, Co–Cr–Pt,
Co–Ni–Pt, Co–Ta–Ni, Co–Cr–Pt–Ta, and Co–Pt–Cr–X
(X = Ni, B, or Si). Another material of potential interest
is Co–Cr–Pt–Ta–Nb. A key issue in magnetic recording
is media noise. In thin-film media, a major consideration is
transition noise, which strongly depends on the grain size and
on whether the grains are exchange coupled. Reducing inter-
granular interactions by physically isolating or chemically
segregating the grains helps reduce the media noise. The
chromium yields grain boundaries that decouple the grains
and improve the corrosion resistance. Elements such as Ta,
B, Nb, P, Pt, W, Si, Ir, and Sm are added to Co to improve
the signal-to-noise ratio by realizing optimized nanostruc-
tures. A similar effect is obtained by adjusting deposition
parameters. For example, using high gas pressure to sputter
Co alloy can create voided grain boundaries, which helps to
isolate the grains physically (Yogi et al., 1990).

1.3.2 L10 alloys

Unlike most other additives, Pt enhances the magnetocrys-
talline anisotropy of the magnetic alloys, improving both the
coercivity and the thermal stability (Ishikawa and Sinclair,
1996). Magnets with equiatomic compositions, such as FePt
and CoPt, crystallize in the tetragonal CuAu(I) and L10 struc-
ture. These materials, discovered by Graf and Kussmann
(1935) and Jellinghaus (1936), are characterized by very
high magnetic anisotropies of several megajoule per cubic
meter and have long been used as specialty permanent mag-
nets. Recently, this fascinating class of materials has attracted
considerable attention in magnetic recording. Figure 3 shows
that the L10 structure consists of alternating monolayers of
different atoms. The magnetic L10 magnets contain a 3d or
iron-series transition-metal element, such as Fe or Co, and a
4d or 5d transition-metal element, such as Pt or Pd.

A challenge is that nearly equiatomic FePt and CoPt form
both the disordered fcc and ordered L10 structure. The cubic
anisotropy of the fcc is very low, and a proper heat treatment
of the as-deposited fcc films is necessary to form the L10
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Figure 3. Structure of L10-type magnets: (a) equiatomic compo-
sition and (b) general composition (ABC2). (Reproduced from
R. Skomski et al., 2005, with permission from Elsevier.  2005.)

phase. The coercivities of appropriately grown FePt films,
about 2 T, are in fact too high for convenient writing. Current
research aims at tuning the coercivity by methods such as
random or site-specific substitutions on 1a, 1c, and 2e sites.

A promising approach is to embed CoPt and FePt parti-
cles in a nonmagnetic matrix, such as C, SiO2, Ag, Al2O3,
and B2O3. Most of these films are deposited in a multilay-
ered film and subsequently annealed to obtain the desired
nanocomposite structure. For example, the anisotropy of
FePt in nanocomposite FePt:B2O3 films can be controlled
by varying the total film thickness, initial B2O3 layer thick-
ness, and the Fe concentration (Luo et al., 2000). Yan
et al. (2003) have fabricated nonepitaxially grown, double-
layered FePt:C/FeCoNi thin films with excellent perpendic-
ular anisotropy on a soft underlayer.

1.3.3 Rare-earth transition-metal compounds

A potentially important class of materials for magnetic
recording is RE-TM intermetallics. By rare-earth and tran-
sition-metal substitutions it is possible to tune the properties
such as magnetization, Curie temperature, and anisotropy
over a wide range (Skomski and Coey, 1999). The room-
temperature anisotropy of SmCo5 is as high as 17 MJ m−3, as
compared to 0.53 MJ m−3 for hcp Co. This large anisotropy
would allow grain sizes down to a few nanometers, with-
out losing the thermal stability. This corresponds to areal
densities in excess of 1 Tb in.−2.

However, RE-TM films with the desired properties are
usually difficult to produce, as deposited RE-TM films are
amorphous and do not have large crystalline anisotropy when
they are sputtered below 600 ◦C. This leads to unfavorably
high processing temperatures during growth or post anneal-
ing, which is difficult to realize on an industrial scale. Fur-
thermore, rare earths are very corrosive and need special
care during processing. Among the considered alloys are Sm-
Co and Pr-Co, and the resulting structures are granular. For
example, room-temperature deposition of Pr-Co films on Cr

underlayers yields essentially amorphous films with coerciv-
ities of about 30–40 mT. Subsequent annealing for 20 min at
400 ◦C causes the Pr-Co to crystallize, and high-resolution
transmission electron microscopy (TEM) reveals grain sizes
of about 10 nm. The coercivity reaches 200–800 mT, depend-
ing on film thickness and deposition conditions (Malhotra
et al., 1996).

1.3.4 Particulate and other structured media

Advanced magnetic recording technology requires new mag-
netic nanostructures, such as nanoparticle-based media with
great uniformity in both particle size and particle properties
(Weller and Moser, 1999). This includes the limit of pattern-
ing the media so that each grain represents one bit (White
et al., 1997). Methods to produce suitable nanostructured
thin-film materials include artificial structuring, template-
assisted assembly (Sun, Fullerton, Weller and Murray, 2001),
and self-assembly. A comprehensive treatment of these meth-
ods goes far beyond the scope of this chapter, and we will
restrict ourselves to a few examples and then address some
material issues in more detail.

E-beam and focused ion-beam lithography, which work
for feature sizes down to 50 nm or less, are slow and
cumbersome. By contrast, optical lithography and related
methods, such as laser-interference lithography (Zheng et al.,
2001), can be used to pattern large areas; but the feature
size is limited by the wavelength. Template methods, such as
electrodeposition into porous anodic alumina, combine small
feature sizes, and large-area processing (Sellmyer, Zheng and
Skomski, 2001). They can also be used to produce structures
such as nanocylinders (Section 3).

In some cases, the exchange interaction of the heavy (4d
or 5d) transition-metal atoms is antiferromagnetic. This is
exploited in antiferromagnetically coupled or AFC media,
where Co-based magnetic layers are separated by ultrathin
ruthenium layers (Fullerton et al., 2000). For some thickness,
the Pauli-paramagnetic ruthenium layer yields an antiferro-
magnetic RKKY-type coupling between the Co layers, and
the recording signal is the staggered magnetization of the
structure.

One way of producing arrays of monodisperse particles
is chemical synthesis. The nanoparticle dispersions are sta-
bilized toward aggregation and oxidation by a layer of
organic stabilizers. It is then deposited on a solid substrate
and the solvent is allowed to evaporate. In the films, the
grains or nanoparticles are separated by a nonmagnetic coat-
ing (Figure 4), which minimizes exchange coupling between
adjacent grains. As an example, decomposition of Fe(CO)5

and using polymer stabilizers is a common way to make
Fe nanoparticles (see e.g., Johansson, Hanson, Hendriksen
and Mørup, 1993). It is also possible to produce binary-alloy
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(a) (b)

Figure 4. Chemically processed nanoparticles: (a) coating by ionic
compounds and (b) steric repulsion due to long-chain surfactants.
(Reproduced from David Sellmyer et al., Advanced Magnetic
Nanostructures, Chapter 9, 2006, with permission from Springer.
 2006.)

nanoparticles, such as CoPt and FePt, but the preparation
of nanoparticles with well-controlled stoichiometry is quite
complicated (Sun et al., 2000).

2 METALLIC NANOCLUSTERS

Magnetic nanoclusters, which have diameters from 1 to
10 nm, are of great scientific and technological interest.
An example are the magnetic moments of free Fe, Co,
and Ni clusters whose size dependence was determined by
measuring their Stern–Gerlach deflections (Bucher, Douglass
and Bloomfield, 1991; Billas, Becker, Châtelain and de
Heer, 1993; Apsel, Emmert, Deng and Bloomfield, 1996;
Edmonds et al., 1999). At a low temperature of 120 K,
small Fe clusters (25 ≤ N ≤ 130 atoms) have a moment of
3 µB per atom, as compared to the bulk value of 2.2 µB;
which is reached at about N = 500 atoms (Billas, Becker,
Châtelain and de Heer, 1993). This moment reduction, which
reflects the reduced atomic coordination of surface atoms,
and other features, such as pronounced surface anisotropy,
make clusters attractive for potential applications such as
high-density data storage, spin electronics, memory devices,
and high-performance magnetic materials.

Traditionally, CoPt and FePt nanoparticles are prepared by
normal magnetron sputtering or electron beam evaporation
techniques (Stavroyiannis et al., 1998; Yu et al., 1999; Bian,
Sato and Hirotsu, 1999; Suzuki, Kiya, Honda and Ouchi,

2001). Here we focus on a relatively recently developed
gas-aggregation technique, where magnetron sputtering is
employed in the source (Haberland, Karrais, Mall and
Thurner, 1992; Haberland et al., 1994) for the preparation of
magnetic nanoclusters and of cluster-assembled nanocom-
posites. This cluster-deposition technique can produce a
range of mean cluster sizes from 3 to 12 nm with high depo-
sition rate (can be as high as 5 Å s−1), and a well-controlled
cluster size and size distribution. A major advantage is that
the clusters have size dispersions much smaller than that of
grains in a typical vapor-deposition system.

2.1 Cluster source and gas aggregation

The formation of metal clusters by gas aggregation, where
metal atoms are either evaporated or sputtered into a cooled
inert gas flow at relatively high pressure, has been well
established for the last two decades. By repeated collisions
with the carrier gas, the supersaturated metal vapor nucleates
and forms clusters. In some cases, this method is used
in combination with mass selectors or time-of-flight (TOF)
spectrometers (Baker et al., 2000).

Sputtering-based cluster sources have three advantages:
(i) they can produce a large range of mean cluster sizes
from 200 to 15 000 atoms per cluster, (ii) they have a high
degree of ionization, from 20 to 50%, depending on the target
material, and (iii) a wide variety of elements and alloys can
be used as source materials. Usually, the deposition rate
is about 3 Å s−1 for the total flux of the cluster beam.
Sputtering-based gas-aggregation sources are now widely
used in laboratories and commercially available from Oxford
Applied Research and Mantis Deposition.

Figure 5 shows a modern cluster-deposition system with
a sputtering-based gas-aggregation source (Xu, Sun, Qiang
and Sellmyer, 2003a,b). It consists of five chambers: (i) the
chamber for cluster formation containing a LN2 cooled
aggregation tube with a magnetron sputter discharge, (ii) a
chamber containing a quadrupole mass selection and e-beam
deposit in system for particle coating, (iii) the deposition
chamber with a substrate holder, (iv) a sample load-lock

TOF
Ar gas

LN2

Cluster source
Mass selector

E-beam
Evaporation

Sputtering

FePt 

Ag, C atoms

Figure 5. Cluster-deposition system (schematic). (Reproduced from D.J. Sellmyer et al., 2005. With permission from IEEE.  2005.)
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chamber (not shown) for rapid substrate change, and (v) a
chamber (not shown) containing the TOF mass spectrometer.
Briefly, the clusters are generated in the aggregation tube,
go through two apertures, and are then deposited onto the
substrate. The cluster size can be adjusted by varying the
source parameters: gas-aggregation tube temperature, gas
pressure, gases Ar to He flux ratio, magnetron power, and
the condensation length in which the clusters aggregate. If
a very narrow cluster size distribution is needed, the mass
selector can be employed; in this case the ratio of rms
diameter deviation to average diameter can be made as small
as σ/d ≈ 3%. Figure 6 shows an example of Fe clusters
produced with the quadruple mass selector.

2.2 L10 FePt and CoPt nanoclusters

This section deals with the size distribution and nanostructure
of FePt and CoPt clusters prepared by the gas-aggregation
technique (Xu, Sun, Qiang and Sellmyer, 2003a,b).

2.2.1 Size distribution and nanostructure of clusters

For cluster films deposited on a substrate, the determination
of the structure are mostly done by using TEM. For the TEM
observations, the FePt and CoPt nanoclusters are directly
deposited onto carbon-coated films supported by Cu grids.

The TEM images in Figure 7 show CoPt clusters with
average size of 4.9 nm (σ = 0.46 nm, σ/d = 0.09), prepared
with sputtering power of 160 W (Xu, Sun, Qiang and

100 nm 100 nm

Figure 6. (a) Atomic-force (AFM) images of Fe clusters.
(b) Enlarged Fe clusters with size about 8 nm.

Sellmyer, 2003a). The high-resolution image indicates that
the CoPt clusters have faceted surfaces. Similar results were
obtained for FePt clusters (Xu, Sun, Qiang and Sellmyer,
2003b). The cluster size follows a Gaussian distribution
rather than the lognormal one observed in Fe clusters
(Upward et al., 2000). This distinction is important but not
yet understood in terms of the cluster formation mechanism.

The formation of L10-ordered FePt clusters naturally
requires a high-temperature postdeposition annealing. How-
ever, postdeposition annealing leads to subsequent crystal-
lite growth and concurring agglomeration of the clusters on
the substrate. Rellinghaus, Stappert, Acet and Wassermann
(2003) used a sintering oven between the cluster source and
the deposition chamber, allowing preparation and thermal
sintering of FePt nanoclusters in the gas phase prior to their
deposition.
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Figure 7. TEM images of CoPt clusters with cluster size distribution. Right: Larger magnification of the clusters. (Reproduced from D.J.
Sellmyer et al., 2005. With permission from IEEE.  2005.)
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Ag

Si

(a) (b)

Si

FePt

Ag matrix N: Numer of bilayers

FePt/C bilayer

Figure 8. Cluster film structures: (a) codeposition and (b) multilayers.

2.2.2 FePt:C cluster films

For most applications, embedded clusters are more important
than free clusters. The matrix material may be magnetic or
nonmagnetic and metallic or nonmetallic. A cluster beam
combined with an atomic beam from normal magnetron
sputtering guns is used for matrix materials deposition, such
as Ag, C, and so on. Figure 8 shows two examples: clusters
embedded in matrix by codeposition (a) and isolated by a
matrix via multilayers (b).

Figure 9 shows TEM images for annealed FePt:C nan-
ocluster films prepared by the multilayer method. Alternating
FePt cluster and C layers were deposited onto a Si substrate.
The average FePt cluster size is about 4.5 nm, and the thick-
ness of carbon layer was adjusted to yield C volume fractions
changing from 7 to 45% (Xu, Yan and Sellmyer, 2004).
The carbon serves to isolate the clusters and to avoid clus-
ter aggregation during thermal annealing. After annealing,
the FePt clusters remained well separated by the amorphous
carbon, Figure 9(b).

As verified by X-ray diffraction, the grains have the
L10 structure. Both in-plane and perpendicular coercivities
increase with annealing temperature. A perpendicular coer-
civity larger than 13 kOe was achieved in the films annealed
at a temperature of 700 ◦C for 10 min. The same method
was also used to prepare dilute FePt:C cluster films with
a FePt volume fraction of 5%. The low-temperature coer-
civity is 4.0 T, corresponding to an anisotropy field of

10 nm

(a) (b)

5 nm

Figure 9. TEM images of FePt:C cluster film with 45 vol% C,
annealed at 650 ◦C for 10 min. (Reproduced from Y. Xu et al.,
2004, with permission from IEEE.  2004.)

8.3 T. This indicates that the individual FePt particles are
Stoner–Wohlfarth like.

3 CHEMICALLY DEPOSITED
NANOPARTICLES AND NANOTUBES

There are three main bottom-up approaches in making
isolated magnetic clusters: chemical reaction (molecular
clusters), evaporation or sputtering and condensation (gas
phase clusters), and matrix isolation (solution phase and
template synthesis). Matrix isolation is the most widely used
method in creating magnetic nanostructure. In this section,
the main focus is on (i) the creation of nanostructures through
solution processes and (ii) template synthesis.

3.1 Chemical reaction mechanisms

3.1.1 Cluster formation by solution reaction

Cluster synthesis by solution phase reaction is a thermo-
dynamic quasiequilibrium approach and follows the well-
established theory of crystal growth. It consists of three con-
secutive processes: supersaturation, nucleation, and growth
(Murray, Kagan and Bawendi, 2000). Solvents ensure that
the chemical reaction proceeds homogeneously and act as a
flexible isolating matrix to keep the clusters apart. To produce
monodispersed clusters, it is highly desirable that nuclei with
identical size be created at the same time in supersaturated
solution. In many cases, the supersaturation is technically
achieved through the rapid injection of organometallic com-
pounds into a hot solution. Either thermal decomposition or
chemical reduction at the high temperature, combined with
the rapid drop of processing temperature, induces a sharp
nucleation followed by slow growth at low concentration.

Both the inhibition of additional nucleation during growth
and the controlled growth of nuclei are important to obtain
monodispersed clusters. When the concentration of growth
species is lower than the specific concentration after the
explosive nucleation, additional nucleation is inhibited. The
organic capping agents on cluster surfaces act as a diffusion
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barrier to control the growth of the nuclei. The polymeric lay-
ers covering the clusters also prevent agglomeration and oxi-
dation, and define the minimum intercluster separation after
self-assembly. Further growth, named Ostwald ripening, is
observed in many systems at a late stage of growth. The main
characteristic of Ostwald ripening is that the larger clusters
keep growing at the expense of smaller ones, driven by the
difference of their surface free energy. Ostwald ripening also
helps to narrow the size distribution if it is properly exploited.

3.1.2 Template-mediated synthesis

If the isolating matrix is a solid nanostructure instead of
a liquid, the matrix isolation approach is called template-
mediated synthesis, rather than solution phase synthesis. A
wide variety of materials covering both organics and inor-
ganics have been built into nanostructures by template-
engaged processes (Hulteen and Martin, 1997; Sellmyer,
Zheng and Skomski, 2001; Sui, Skomski, Sorge and Sell-
myer, 2004a; Sui et al., 2004b). The only requirement seems
to be the proper method to load the pores with the desired
materials, as long as the template is stable with respect
to the nanomaterials and chemical reactions inside these
pores.

Most of the work in this area is based on porous
films such as anodized alumina, track-etched polycarbon,
and self-assembled block copolymers (Hulteen and Mar-
tin, 1997). The common feature of these templates is
nanopores having their axis perpendicular to the film
plane, but pore diameters, densities, distributions, ther-
mal and chemical stabilities, surface chemical characteris-
tics differ from one template to another. For nanostruc-
tures deposited by electrochemical, electroless, sol–gel and
electrophoretic process, the templates are involved phys-
ically rather than chemically and have a similar isolat-
ing effect for all the typical templates. For nanostructures
produced by high-temperature chemical reaction – chemical
vapor deposition (CVD) or hydrogen reduction – anodized
alumina film becomes the only option, due to its heat
resistance (Sui et al., 2002; Sui, Skomski, Sorge and
Sellmyer, 2004a).

3.2 Magnetic clusters produced by solution
phase reaction

The decomposition of organometallic precursors in an inert
atmosphere (Section 3.1.1) has long been employed to pro-
duce Co, Fe, and Ni clusters (Thomas, 1966; Hoon, Kilner,
Russell and Tanner, 1983), but with a relatively large size dis-
tribution. A modification of this technique, namely, the rapid
injection of organometallic reagents into a hot coordinating

solvent, has led to the synthesis of monodispersed clusters
of transition metals and their alloys with controllable size
and shape. The synthesis of FePt cluster by the combination
of Pt(acac)2 reduction and Fe(CO)5 thermal decomposition
in dioctylether under airless condition is a typical chemical
synthesis via solution phase reaction (Sun et al., 2000). The
cluster size is controlled by the explosive nucleation and the
slow seed-mediated growth. For example, 10-nm FePt clus-
ters are produced first by growing 3-nm clusters in situ and
then adding more reagents to enlarge the existing seeds to
10 nm. The alloy composition can be adjusted by changing
the molar ratio of iron carbonyl to the platinum salt. Postan-
nealing is necessary to transform the FePt clusters from the
disordered face-centered cubic to the ordered L10 structure.
Following a similar recipe, clusters of both transition-metal
oxides and a RE-TM alloy (SmCo5) with narrow size dis-
tributions have also been synthesized. However, the low
anisotropy of the Sm-Co, 0.2 MJ m−3 indicates incomplete
phase transformation, leaving much room for improvement
by the solution phase reaction.

One of the oldest techniques for the synthesis of magnetic
clusters is the precipitation of oxides from the solution. For
example, Fe3O4 nanoparticles were produced via coprecipi-
tation from a FeCl3 and FeCl2 water solution by NaOH or
NH3·H2O base. The advantage of the precipitation reaction is
that large quantities of clusters can be produced by control-
ling the pH value and the metal cation concentration properly.
However, it is difficult to tailor the size and shape of the par-
ticles. This problem has been solved by a recently developed
organic-phase synthesis approach. Either metal or oxide clus-
ters can be generated by the decomposition of organometallic
compounds in the presence of polymeric stabilizers. The
type of the organometallic precursors and the solvents, the
decomposition and growth condition are critical in determin-
ing whether metal or oxide clusters will be produced (Park
et al., 2004). For example, 5-nm clusters of iron oxides are
produced by the decomposition of iron-oleate complex in 1-
hexadecene at 350 ◦C > 280 ◦C for 30 min. When the same
iron-oleate complex is processed in trioctylamine at 380 ◦C,
20-nm iron cubes are synthesized. Both iron cubes and spher-
ical iron oxide clusters have size variations of less than 4.1%,
without applying size-selection process. This technique can
be extended to produce monodispersed manganese ferrite and
cobalt ferrite clusters also.

Magnetic clusters made by solution reaction provide
not only a good opportunity to explore the basic physics
and chemistry of nanomaterials, but also supply a rich
source of building blocks to construct macrosystems with
controlled nanostructure. Such structures are of impor-
tance, for example, in permanent magnetism (Skomski
and Coey, 1999; Sellmyer, 2002). When FePt and Fe3O4

clusters of similar size (about 4 nm) assembled together
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Figure 10. TEM image of binary particulate thin films: (a) FePt and Fe3O4 nanoparticles and (b) annealed FePt–Fe3Pt nanocomposite.
(Reprinted by permission from Macmillan Publishers Ltd: Nature 420, H. Zeng et al., 2002.  2002.)

in specific mass ratio, and heated in a gas mixture
(Ar + 5% H2) at 650 ◦C for 1 h, the binary system is
transformed into a homogeneous mixture of hard tetrago-
nal FePt phase and a high magnetization soft Fe3Pt phase
(Zeng et al., 2002). Figure 10 shows typical TEM images
of (a) assembled binary FePt and Fe3O4 nanoparticles, and
(b) of the annealed FePt–Fe3Pt nanocomposite. The latter
structure exhibits effective exchange coupling between hard
and soft magnetic phases to enhance the energy product of
the nanocomposite.

3.3 Magnetic nanostructures created by
template-mediated reaction

3.3.1 Magnetic nanotubes and one-dimensional
nanocomposites

Magnetic nanostructures may be produced in a wide range of
shapes, sizes, and materials (Skomski, 2003). This includes
not only thin films, particles, and nanowires but also struc-
tures such as nanotubes and nanorings. Transition-metal
nanotubes and nanowires have been produced by electro-
less or electrodeposition guided by various porous templates
(Tourillon et al., 2000; Sellmyer, Zheng and Skomski, 2001).
Nanochannels of porous alumina are used as nanoreactors
to create both nanotubes and nanoparticles. However, it is
difficult to tune the magnetic properties of one-dimensional
structures generated by electrochemical methods. This refers,
in particular, to magnetic compounds, such as intermetallics
and ferrimagnetic oxides.

Nanoporous alumina templates have been loaded with a
mixture of H2PtCl6 · 6H2O and FeCl3 · 6H2O and heated in
hydrogen for 1.5 h at 560 ◦C. This led to the formation of
FePt nanotubes inside the pores of the template. Similarly,
Fe3O4 nanotubes arrays were produced by loading the

template with alcohol solution of 65% Fe(NO3)3 · 9H2O and
processing at 250 ◦C for 2.5 h in flowing hydrogen (Sui,
Skomski, Sorge and Sellmyer, 2004a). The porous alumina
film simply serves as a skeleton in which FePt or Fe3O4

are generated in situ by hydrogen reduction and shaped into
nanotubes with their morphologies complementary to the
nanochannels of the anodized alumina. Figure 11 shows the
results of the procedure: TEM micrographs of (a) FePt and
(b) Fe3O4 nanotubes, and hysteresis loops of (c) FePt and
(d) Fe3O4. The magnetic properties can be explained in terms
of a tubular random-anisotropy model (Sui, Skomski, Sorge
and Sellmyer, et al., 2004a).

Hysteresis in very small particles is realized by coher-
ent or Stoner–Wohlfarth rotation. In practice, this applies
to particles with diameters of less than 5–20 nm, depending
on factors such as particle shape and real structure (defect
structure). In larger particles, there is a broad range of inco-
herent spin configurations such as spin waves and curling
modes or ‘vortices’. Figure 12 shows some examples for
nanotubes and nanorings (Sui, Skomski, Sorge and Sell-
myer, 2004a). The physical origin of these nonuniform
spin states and the corresponding length scales have been
reviewed by Skomski (2003, 2004), and there is also a
discussion of incoherent magnetization states in nanoparti-
cles of various shapes (Skomski, Kashyap, Sorge and Sell-
myer, 2004).

The technique of chemical reactions in nanochannels
can be extended to the creation of quasi-one-dimensional
nanocomposites of transition metals in carbon by the com-
bination of hydrogen reduction with carbon deposition using
CVD (Sui et al., 2002). Figure 13 shows TEM micrograph
of a composite FePt:C nanofiber. The FePt L10 clusters were
formed by hydrogen reduction at 650 ◦C, followed by car-
bon deposition using C2H2 pyrolysis at the same temperature.
The FePt:C nanocomposite exhibits a coercivity of 29.0 kOe
after heating at 900 ◦C in nitrogen.
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Figure 11. TEM micrographs and room-temperature hysteresis loops of magnetic nanotubes: (a) isolated FePt nanotube surrounded by
alumina and (b) Fe3O4 nanotubes released from the matrix, (c) hysteresis of FePt and (d) Fe3O4. In the loops, the external field is parallel
(solid lines) and perpendicular (dashed lines) to the tubes axes. (Reproduced from Y.C. Sui et al. 2004, with permission from the American
Institute of Physics.  2004.)
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Figure 12. Some spin structures in magnetic nanotubes and nanor-
ings: (a) and (b) curling, (c) coherent rotation, (d) curling modified
by random anisotropy, and (e) excited spin-wave mode. (Repro-
duced from Y.C. Sui et al., 2004, with permission from American
Institute of Physics.  2004.)

3.3.2 Template-mediated self-assembly

FePt L10 nanoparticles produced within the pores of the
templates by hydrogen reduction can be extracted and
capped with organic surfactants. These clusters have a
relatively large size distribution. After size selection via
chemical processing, clusters with average diameter of 11 nm
precipitated out. Figure 14 shows a TEM image of the
selected FePt cluster assembled on a copper grid with
10 nm carbon coating, which demonstrates a narrow size
distribution with standard size deviation (σ/d) of about 7%.
Those clusters form a suspension in hexane and behave as a
liquid under the influence of capillary action.

200 nm

Figure 13. TEM micrograph of a nanofiber-like FePt:C
nanocomposite.

Figure 15 depicts an alumina template with ordered pore
array. The barrier layer consists of a regular hexagonal array
of hemispherical cells above the pores. Two-step anodization
of aluminum foils can create similar structures (Sui et al.,
2002). The pore array of the alumina template tunes the
self-assembly process when the FePt cluster suspension is
drop cast over the template, and a magnetic pattern matching
the hexagonal pore distribution is generated. This simple
and fast technique is called template-mediated self-assembly
(TMSA). An external magnetic field applied at the same time
aligns the magnetic clusters during assembly.

The result of the TMSA process is shown in Figure 16.
The images show the barrier layer after TMSA cluster
suspension of FePt L10 in an external magnetic field. The



12 Ferro-, ferri-, and antiferrimagnetic nanoparticles

100 nm

Figure 14. TEM image of the selected FePt cluster assembled on a
copper grid with 10-nm carbon coating. (Reproduced from Y.C. Sui
et al., 2005, with permission from American Institute of Physics.
 2005.)
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Figure 15. Alumina template with ordered pore array (schematic).
(Reproduced from Y.C. Sui et al., 2002 with permission from
Elsevier.  2002.)

average pore diameter is 50 nm, which lead to the formation
of 50-nm FePt dots arrays. The advantages of this technique
over traditional self-assembly are that it can generate ordered
cluster arrays up to centimeter scales or larger, and that
the magnetic dots can be aligned by a magnetic field. This
technique has a high potential for nanofabrication of arrays
for high-density magnetic recording or other nanodevices.

4 CONCLUDING REMARKS

For two reasons, the focus of this article has been on nanopar-
ticles and particulate thin films for recording media. Firstly,
the recording industry has been the major driving force in

(a) (b)
2 µm02 µm0

Figure 16. Self-assembled template-mediated L10 FePt: (a)
atomic-force microscopy and (b) magnetic-force microscopy.
Images are taken from the closed end of the pores (top side in
Fig. 15). (Reproduced from Y.C. Sui et al., 2005, with permission
from American Institute of Physics.  2005.)

recent magnetism research, and this trend is likely to con-
tinue in the near to medium future. Secondly, various aspects
of experimental, theoretical, and industrial magnetism rele-
vant to particulate magnets are treated in other parts of this
handbook. However, it is important to keep in mind that
many other present or future materials, such as soft magnets,
permanent magnets, ferrofluids, and sensors, are nanopartic-
ulate magnets. Examples are isotropic permanent magnets
(Coehoorn, de Mooij and de Waard, 1989) and nanocrys-
talline soft magnets (Yoshizawa, Oguma and Yamauchi,
1988). Furthermore, particulate systems often combine fea-
tures of nanoparticles or clusters with those of thin-film and
bulk magnets (Zhou et al., 2004).

There are various methods to fabricate free and embedded
ensembles of nanoparticles for magnetic recording. Key
requirements for storage densities approaching 1 Tb in.−2 are
nanoparticles with well-controlled sizes, size distributions,
separations, and crystalline orientations, and there has been
an unprecedented search for artificial granular nanostructures
that satisfy these criteria. The balance of room-temperature
anisotropy and cluster or grain size is becoming increasingly
important as the superparamagnetic limit is approached.

Our specific emphasis has been on cluster deposition of
magnetic particles and deposition into porous templates.
Chemical deposition is not as versatile as vacuum deposition
technologies, such as sputtering. A combination of conven-
tional thin-film technology and self-assembly may be a viable
route to overcome these limitations.
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1 INTRODUCING AMORPHOUS
MAGNETIC MICROWIRES

Amorphous microwires, being among the softest magnetic
materials, present outstanding peculiarities. Those with large
and positive magnetostriction, exhibit bistable behavior with
magnetization reversal through a giant Barkhausen jump
originating in the propagation of a single-domain wall. On
the other hand, microwires with vanishing magnetostric-
tion show giant magnetoimpedance (GMI) effect. And both
types show natural ferromagnetic resonance (NFMR) at
microwave frequencies. Recently, a combination of fabri-
cation methods has enabled the design of new bimagnetic
multilayer microwire materials with novel properties, thus
opening new generation of magnetic microwires. All these
properties, and many others, make amorphous magnetic

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

microwires very attractive for unique technological applica-
tions, and also provide opportunities for fundamental micro-
magnetic studies due mainly to their simple magnetic domain
structure.

Magnetic microwires with disordered atomic structure
belong to the large family of amorphous alloys. From the
early development of amorphous metallic alloys, researchers
have been looking to obtain amorphous microstructured
materials with specific shapes and magnetic properties
designed for applications, in particular, devices. Such devel-
opments have been running in a parallel way with the devel-
opment of new techniques of fabrication. In this regard, for
example, amorphous alloys are prepared, in the shape of
ribbons, by rapid solidification techniques (usually directly
labelled as metallic glasses), as thin films by sputtering
methods, and as bulk materials, by optimized nonequilib-
rium techniques. Among these materials, amorphous thin
films are readily integrated into thin-film and semiconduc-
tor technology but their magnetic character is not as soft
as that of the others. Metallic glasses are commonly fab-
ricated in ribbon form with specific applications in cores
of small transformers or elements in sensor devices. For
general information about amorphous alloys, the reader is
referred to the chapter Amorphous Alloys, Volume 4. Here,
we focus on a particular family of metallic glasses with
cylindrical shape. What is actually an amorphous magnetic
microwire? and what are the conditions determining their
technically exciting behavior? Their same name provides the
reader with a detailed description of the nature of microwires:
amorphous magnetic microwires. Firstly, due to their fer-
romagnetic behavior, the largest energy term among mag-
netic interactions to be considered is exchange coupling.
Secondly, their nature being structurally amorphous, mag-
netocrystalline anisotropy can be neglected so that magne-
toelastic anisotropy plays a major role. And thirdly, their
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cylindrical symmetry induces a very characteristic magnetic
shape anisotropy.

In fact, all of the above three factors are influenced by
the rapid solidification method employed in the fabrication.
Firstly, composition, as in other magnetic amorphous alloys
obtained by melt spinning is mainly restricted to various
FeCo-based alloys. Of particular relevance is the fact that the
alloy composition determines the magnetostriction constant,
λs. Secondly, the quenching technique determines the possi-
bility to achieve amorphous structure, but in turn introduces
unique distribution of strong internal mechanical stresses, σ .
Thus, magnetostriction and stresses determine the strength
of magnetoelastic anisotropy. And finally, the particular fab-
rication method determines the cylindrical shape. Here, for
simplicity, we will consider the term microwire for kinds of
amorphous and nanocrystalline wires with diameter ranging
between 1 and 100 µm.

In summary, the magnetic behavior of amorphous mag-
netic microwires is determined by exchange interaction, plus
shape and magnetoelastic anisotropy energy terms. Major
scientific and technological relevance of amorphous alloy
microwires are associated either with their characteristic
single-domain structure determining their bistable behavior,
or with their ultrasoft magnetic behavior in connection with
the GMI effect.

Magnetic wires with polycrystalline structure have been fab-
ricated by metallurgical procedures for many years with diam-
eter from millimeter to hundred of microns. Typically, such
procedures induce large mechanical stresses that, combined
with the shape anisotropy, determine their magnetic response
of interest in various sensing applications. In particular, the
so-called Wiegand wires were introduced in the beginning of
the 1980s exhibiting quite large Barkhausen jump that can be
employed for pulse sensors (Wiegand, 1981).

The production of amorphous wires with diameter in the
range of hundred microns was first enabled by the development
of modified melt-spinning processes in the 1970s. The first
successful method to produce amorphous wires, based on
a process of liquid solidification into water, was developed
by Kavesh (1976). There, the metallic molten alloy was
directly injected into a confluent cooling fluid (normally
water) with viscosity nearly equal to that of the molten alloy.
The first work on the attractive magnetic behavior of such
amorphous wires was reported by O’Handley (1975). Further
development of quenching technique into rotating water was
subsequently achieved in Japan by Ohnaka et al. (1982)
and Masumoto, Ohnaka, Inoue and Hagiwara (1981) and
particularly by technical researchers at Unitika Ltd, allowing
the commercialization of amorphous microwires, produced in
a continuous way, with a diameter restricted to around 100 µm.
Relevant scientific work in the 1980s was performed by the
researchers Mohri in Japan and Humphrey et al. (1987) in

United States. In the 1990s, other groups have been actively
involved in the research of these microwires particularly
paying attention to preparation and structure characterization
by Olofinjana and Davies (1992) in Sheffield, magnetic domain
observation by Yamasaki (1992) and Yajako, Yamasaki and
Humphrey (1993) in Kyushu, magnetic bistability by Mitra
and Vázquez (1990) and Vázquez, Gómez-Polo, Chen and
Hernando (1994) in Madrid, magnetoelastic behavior by
Squire, Atkinson, Gibbs and Atalay (1994) in Bath, and
other groups in Japan mainly involved in development of
various sensor devices. Additionally, in 1994, the GMI effect
was rediscovered in nonmagnetostrictive amorphous wires
simultaneously by Panina and Mohri (1994) in Nagoya and
Beach and Berkowitz (1994) in San Diego. Recent activities
are mainly related to their adoption as sensing elements by
several groups in Europe and particularly in Japan.

The story on the development of the amorphous micro-
wires prepared by quenching and drawing method is even
longer. These microwires covered by an insulating Pyrex coat
are fabricated by a technique that, in essence, was introduced
in the 1920s by Taylor (1924) in United States. After
modifications of this method, first glass-coated microwires
were prepared in the former Soviet Union in the 1950s
by Ulitovsky (1957). First reports on such materials were
dealing with their mechanical properties by Nixdorf (1967)
in Germany and by Goto (1977) in Japan, and on magnetic
properties by a number of researchers in former Eastern
Europe (i.e., Schneider in East Germany, and Kraus in
Checkoslovakia (Kraus, Schneider and Wiesner, 1976)). The
interesting radar absorption properties attracted much interest
in the Soviet Union during the 1980s, and the work was
developed somehow independently by different groups in
Kishinev, Moscow, and Leningrad. By the beginning of the
1990s, first reports in western journals were introduced by
Chiriac in Romania and Vázquez in Spain (Chiriac, Pop,
Barariu and Vázquez, 1994; Zhukov et al., 1995) through
their contacts with Larin and Torcunov in Amotec Ltd in
Moldova (Baranov et al., 1989). This interest was related
to the fact that exhibiting similar outstanding properties as
wires prepared by liquid quenching into water, they offered
additional possibilities to be used as sensing elements due to
their reduced diameter, ranging between 1 and 30 µm, and
protecting insulating glass coating. Additionally, interest was
also related to their real possibilities as outstanding materials
at microwave frequencies derived from the so-called NFMR
effect that make them attractive in radar absorption coatings
or even as left-handed materials (LHMs).

From the original studies of the Russian school, other fam-
ilies of similar fibers have been investigated by a group in
Montrèal leaded by Ström-Olsen, and then Yelon (Rodkowski
et al., 1995), or by Kraposhin in Saint Petersburg. Other
works around Moscow have been reported by Shalyguina
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(Moscow State University), Antonov (Theoretical and
Applied Electrodynamics) and Usov (Troistsky Institute) in
Moscow, and by Manov (Advanced Metal Technologies Ltd)
in Israel.

Nowadays, various attempts are being performed to fabri-
cate novel microwires with new or optimized properties. In
this regard, the recent introduction of so-called multilayered
microwires consisting of several cylindrical microlayers with
different magnetic behavior offers promising perspectives
owing to the observed biphase magnetic behavior of interest
for the spin-valve-like magnetic or the asymmetric mag-
netoimpedance responses (Pirota et al., 2004). In parallel,
latest attempts are focused on the preparation of magnetically
harder, although structurally not amorphous, microwires by
introducing anisotropic hard phases. All these attempts are
related to the employment of new metallurgical or com-
bined techniques. The present trends can be thus summarized
considering the path of methods used to prepare microwire
materials: from metallurgical traditional methods enabling
the production ‘typically’ of millimeter diameter fibers, to
the rapid solidification techniques for producing micrometric
diameter wires, and, in the next stage leading probably to
the controlled production of submicrometric and nanometric
wires which require different fabrication procedures.

Specific international workshops and meeting have been
devoted to amorphous microwires. The first one was orga-
nized by Unitika Ltd in London, 1991, chaired by Ogasawara
and Humphrey. Next one was held in Albuquerque, New
Mexico, in 1994 chaired by Hasegawa and Ramanan, and
their proceedings appeared as a special issue of IEEE Trans-
actions on Magnetics (1995). In 1999, Mohri organized a
symposium at the University of Nagoya. Vázquez, González,
Zhukov, and Gómez-Polo chaired in 2001 the International
Workshop on Magnetic Wires in San Sebastián, Spain, the
papers later appeared in a special issue of the Journal of
Magnetism and Magnetic Materials (2002).

The general aspects of advanced microwires are described
in this chapter to give the reader a general overview with a
particular emphasis on the magnetization processes, in which
lies the origin of their technological applications.

2 AMORPHOUS MICROWIRES:
PRODUCTION AND PROCESSING

Magnetic alloys composition that can be produced with
amorphous structure, similarly as for metallic glass ribbons,
can be given as TMxM(1−x) with x typically between 70
and 80%. Transition metals (TMs), Fe, Co, and Ni and their
combinations determine the magnetic character. Many other
TMs have been investigated, such as Ti, V, Nb, Ta, Cr, Mo,

W, Mn, Pd, or Al (Hagiwara, Inoue and Masumoto, 1982).
As for the metalloids, those typically considered are Si and B,
although others such as C, P, Al, and so on, can be employed.

Intrinsic magnetic properties such as saturation magnetiza-
tion or Curie temperature exhibit similar values as amorphous
alloy in ribbon shape having the same composition. The tech-
nical magnetic behavior of microwires can be classified into
three groups according to their magnetostriction, λ:

1. FeSiB alloys with large and positive magnetostriction (in
the order of 1–3 × 10−5).

2. FeSiBCuNb alloys with similar λ, but which notably
reduces its value and eventually changes sign upon
nanocrystallization process.

3. CoFeSiB alloys with balanced magnetostriction for the
Fe/Co rate at around 5%.

4. CoSiB alloys with negative and slightly reduced magne-
tostriction λ ≈ −1 × 10−6.

Mechanical or electrical properties are quite similar to
those of amorphous ribbons. The reader is referred to review
articles (Donald, 1987) for in-water-quenched wires and
(Goto, 1980) for glass-coated microwires.

2.1 Fabrication techniques

General information about the fabrication of amorphous
microwires can be found in Ogasawara and Ueno (1995)
on in-water-quenched wires, (Zhukov et al., 2003) on glass-
coated microwires, and (Ogasawara and Ueno, 1995; Hagi-
wara and Inoue, 1993) on both types of amorphous materials.
Figure 1 shows views of the in-rotating-water-quenching (1a
and 1b) and glass-coating (1c) units at ICMM/CSIC labora-
tories as well as a glass-coated microwire (1d).

2.1.1 In-rotating-water-quenching production
technique

In this method, experimentally introduced and patented by
Ohnaka (1980), a molten metal stream is ejected through
the orifice of a quartz tube into a water layer formed by
centrifugal force on the internal surface of a rotating drum.
The equipment and the process itself essentially consists of
the following elements and steps:

1. A rotating drum unit, typically 0.5 m diameter, which
rotates at around 350 rpm. Owing to centrifugal force,
water previously bombed at the drum forms a tiny layer
approximately 2 mm deep onto its internal surface.

2. A microwave coil heater of the metallic mother alloy.
This is previously prepared by pressing of powders and
preheated for homogenization, or alternatively prepared
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by arc melting. Such mother alloy is placed inside a ver-
tical quartz nozzle tube having a small orifice, typically
0.1–0.3 mm diameter, at its bottom. The temperature
of the molten alloy can be controlled by means of a
thermocouple.

3. An ejection system of the molten alloy by argon over-
pressure, around 0.5 MPa, on the top quartz tube. Once
the convenient temperature is reached, in the range
between 1250 and 1300 ◦C, and with the help of a pneu-
matic system, the whole quartz tube is lowered so that
the mentioned orifice gets quite close to the surface of
the rotating water layer. This proceeds simultaneously
to the injection of the argon overpressure so that a molten
lead stream crosses the quartz orifice and plunges into
water.

4. A cooling system that consists of the rotating water. The
quenching rate is of the order of 105 K s−1.

5. A microwire collector system. Typically, a continuous
production of several tens of meters can be produced
at laboratory scale (depending on the weight of mother
alloy). Then the drum stops and the microwire is
collected manually. Commercial equipments incorporate
an additional winding system to enhance the production
of amorphous wire.

The quenching rate (about 105 K s−1) required to achieve
amorphous structure restricts the diameter in a range typi-
cally from 80 to 200 µm. The production of a continuous wire
is solved by controlling a number of fabrication parameters
such as the following: (i) Diameter of the orifice at the bottom
of the quartz tube; allowing for shrinkage during solidifica-
tion, typically 3–4 vol%, this parameter determines the final
wire diameter. (ii) Temperature of molten alloy. (iii) Argon
overpressure. (iv) Distance from the orifice to water layer
during injection. (v) Tangential velocity at the surface of the
rotating drum and drum diameter itself. (vi) Ejection angle
between the jet of molten metal and the rotating water layer.

2.1.2 Quenching and drawing procedure:
glass-coated microwires

As introduced previously, this technique is based on early
works by Taylor, Ulitovsky and others (Ulitovsky, 1957;
Goto, 1977; Nixdorf, 1967; Kraus, Schneider and Wiesner,
1976; Donald, 1987; Ohnaka, 1980; Larin et al., 2002), and it
has had an emerging interest in recent years. By this method,
it is possible to fabricate composite microwires consisting
of a metallic nucleus with diameter ranging between 1
and 30 µm and an insulating coating 2–10 µm thick (see
Figure 1d). The main differences with previously described
wires are (i) the smaller diameter of the metallic nucleus
with interesting possibilities in miniaturization and (ii) the
presence of the insulating coating, which offers protection
against corrosion and electrical insulation, but also induces
additional strong mechanical stresses to the nucleus.

The main steps of this process of fabrication (see
Figure 1c) are as follows:

1. A vertically moving system with controlled veloc-
ity to ensure the continuous production, at around
400 m min−1, of microwire. This allows the vertical dis-
placement of the Pyrex tube that contains the pellet of
metallic mother alloy, previously prepared as mentioned
earlier.

2. A microwave coil heater surrounding the Pyrex tube
with the metallic pellet. It induces the melting of
the metallic alloy, at 1200–1300 ◦C, which generates
sufficient heating for practical melting of the Pyrex, or
similar insulating glass. The metallic alloy and insulating
external layer then remain as a very viscous melt.

3. A drawing and quenching system that essentially con-
sists in a first starting manual process by which that
viscous melt is drawn down. By this procedure, the melt
rapidly solidifies into a metallic nucleus with surface
Pyrex coating. This rapid solidification is enhanced by
a running water jet allowing a quenching rate of about
105 K s−1. The solidified microwire gets down with a

(a) (b) (c) (d)

5 µm

Figure 1. In-rotating-water-quenching unit: general view (a), and during the melting process (b). Quenching and drawing unit (c) and
glass-coated microwire (d).
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total mass vertical displacement coupled to the vertical
moving system.

4. A microwire collector system, enabling a continuous
production of around 400 m min−1 with typically several
kilometer-long microwire produced at laboratory scale.
The system consists of a rotating cylinder collecting
the drawn microwire whose rotating velocity is coupled
to the vertical displacement mentioned above. It also
has a lateral displacement to allow winding of several
kilometers of microwires around a bobbin. Additionally,
the continuous production of microwire is automatically
controlled by a microwave sensor detecting the presence
of microwire below the heater units.

A number of parameters determine the geometrical dimen-
sions of the final microwire as, for example: (i) vertical
drawing stress and velocity, (ii) insulating tube thickness
(typically 0.5–2 mm), (iii) temperature of the melt, (iv) vac-
uum underpressure inside the Pyrex tube in order to control
the diameter of the metallic core.

Usually, the insulating coating is made out of Pyrex,
but other insulators as Ursan can be employed. Controlled
tailoring of the coating thickness is also important as
described later because of the different internal stresses
induced in the nucleus during the fabrication process.

Finally, we should mention an alternative method devel-
oped by the group in Montréal (Ström-Olsen and Rud-
kowsky, Piotr, 1991). In this method, the rapid solidification
method is based on the melt extraction from a continuous
stream of liquid alloy. The molten material wets the edge of
a fast rotating metallic wheel. The molten tip is placed under
the center of the sharp edge of the wheel to wet symmetri-
cally and finally extract small fibers. The surface below the
line of contact transfers heat to the casting wheel and permits
a thin layer of liquid to be pulled from the molten tip. The
cross section of the fibers is nearly circular, with diameter
in the range of 5–25 µm, while their continuous length may
reach up to several meters.

2.2 Distributed mechanical stresses due
to quenching

Different attempts have been performed to determine the
complex distribution of internal mechanical stresses, σ int,
arising from the casting technique for both in-water-
quenched and glass-coated microwires:

1. In-water-quenched microwires: Stresses are frozen in as
a consequence of thermal gradient inside the wire during
quenching. According to the classical theory of elasticity
and considering that the cooling front corresponds to a
cylindrical surface, there appears a thermal gradient in

the radial direction (Boley and Weiner, 1990). A general
assumption is that the cooling process takes place steeply
in differential tubular shells inwards from the surface
where the cooling rate should be higher. Complex
stress distributions have been reported (Madurga and
Hernando, 1990; Liu, Malmhäll, Arnberg and Savage,
1990; Costa and Rao, 1991; Velázquez et al., 1991).
Essentially, three components of stresses: radial, σ r,
azimuthal, σφ , and axial, σ z, appear being radially
distributed. Whereas radial stress remains always tensile
(positive) in character, circular and axial stresses change
sign from tensile at the inner part to negative at the
outer part having maximum value at the surface, so
defining two main regions within the wires: the inner
core and the outer shell where the interface remains
at a radius r ≈ 0.7 R(R being the microwire radius).
Some refinements of the stress distribution have been
considered more recently, in order to account for the
stresses around the axis of the wire (Chen et al., 2001),
the result of which is given in Figure 2. Estimated
average value of stresses is in the order of 50–100 MPa.

2. Glass-coated microwires: The case of glass-coated
microwires is even more complex since now we have
to consider the stresses arising from three different con-
tributions: (i) thermoelastic stresses from the tempera-
ture gradient during quenching, which are essentially
similar to those as for in-water-quenched microwires;
(ii) drawing stresses, tensile in nature, originated by the
extraction process; and (iii) stresses coming from the dif-
ferent thermal expansion coefficients of metallic nucleus
and insulating coating.

Different authors have calculated the stress distributions.
Baranov et al. (1989) considered that most stresses actually
arise from the differential thermal expansion coefficients so
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Figure 2. Radial distribution of stresses frozen in during quench-
ing: radial, σ r, azimuthal, σφ , and axial, σ z. (Reproduced from
D.-X. Chen et al., 2001, with permission from IEEE.  2001.)
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obtaining complex axial, σ zz, radial, σ rr, and azimuthal, σφφ ,
stress contributions:

σ rr = σφφ = 3ErSr

(Er + 3) Sr + 4
εEm

σ zz = σ rr
(Er + 1) Sr + 2

ErSr + 1
(1)

with ε = (αg − αm)�T , (�T being the temperature change),
where Er = Eg/Em, Sr = Sg/Sm, and α denote, Young’s
modulus, cross section, and thermal expansion coefficient,
respectively, and subscripts m and g indicate metallic and
glassy coating, respectively. Other models (Chiriac and
Ovari, 1996; Velázquez, Vázquez and Zhukov, 1996) con-
sider all three origins for stresses. Nevertheless, the final
distribution of stress depends on the prevailing relative con-
tribution either from the drawing stresses or from the coating
stresses arising from the differential thermal expansion coef-
ficient. Average value of stresses in glass-coated microwires
is of the order of 400–500 MPa.

2.3 Controlled processing: how to tailor
properties

In a search to adjust to desired magnetic behavior, as-cast
amorphous microstructure can be modified by mechanical,
chemical, or thermal processing. Most noticeable methods
are given in the following sections.

2.3.1 Cold drawing and chemical etching

These processes are aimed at the modification of the geom-
etry of the microwires. Cold drawing was developed by
Unitika Ltd and other groups in Japan (Malmhäll et al., 1987;
Kakuno, Masuda, Yamada and Mochida, 1987) with a final
objective of reducing the diameter of such amorphous wires
in order to miniaturize the sensing elements made out of
such materials. The diameter of the wires is reduced contin-
uously step by step through a large number of drawing pro-
cesses. In this way, the microwire diameter can be reduced
from around 120 µm down to typically 30 µm. Although the
amorphous microstructure is maintained, strong mechanical
inelastic stresses are induced by this process which usually
hardens its magnetic behavior. Cold-drawn microwires are
subjected subsequently to thermal processing that reduces
such stresses, thus recovering and even optimizing the soft
properties of precursor microwires.

Glass coating of microwires can be either fully or partially
reduced by suitable chemical etching (Chiriac, Pop, Barariu
and Vázquez, 1994; Zhukov et al., 1995; Catalán et al., 1997;
Chiriac, Ovari, Marinescu and Nagacevschi, 1996). Diluted

acids (i.e., HF, HCl, and others) are employed to proceed
with a careful coating removal, which also modifies the
stress state of the metallic nucleus resulting in a significant
magnetic softening.

2.3.2 Inducing particular short-range ordering:
thermal annealing

Amorphous microstructure can be modified by different
thermal processes which relax and induce particular short
range ordering (Fujimori, 1983; Hernando and Vázquez,
1993; Nielsen, 1985). Further information can be found in the
chapter corresponding to amorphous ribbons. For amorphous
microwires, simple thermal treatments at low temperatures
result in a relaxed more stable amorphous microstructure
with partial annihilation of structural defects and significant
reduction of the mechanical stresses induced during the
quenching fabrication process.

On the other hand, thermomagnetic annealing gives rise
to internal stress relaxation and, when annealing below the
Curie point, it induces short range ordering with an associated
induced magnetic anisotropy with easy magnetization direc-
tion lying along the orientation of the field during annealing.
The thermal treatment can be done either in a conventional
furnace or by current annealing, making an electrical current
flow along the microwire. In the latter case, it generates a cir-
cumferential field and a circular induced anisotropy by itself
when the current is not high enough to overcome the Curie
temperature of the alloy. Finally, thermomechanical anneal-
ing also induces noticeable anisotropies as for the case of
amorphous ribbons. Experimental results concerning all these
types of annealing for in-water-quenched microwires and on
glass-coated microwires can be found in Gómez-Polo and
Vázquez (1993), Zhukov et al. (2000) and Zhukov (2006).

3 AXIAL MAGNETIZATION PROCESS
AND MAGNETIC BISTABILITY

All the outstanding magnetic characteristics of amorphous
microwires and particularly their magnetization processes
derive from the unique stress distribution and from the
magnetostriction constant, in turn determined by the alloy
composition. The corresponding magnetoelastic anisotropy
together with the shape anisotropy determines the magne-
tization process for each type of microwires. A number
of review papers dealing with magnetization process of
in-water-quenched (Humphrey et al., 1987; Vázquez and
Chen, 1995; Squire, Atkinson, Gibbs and Atalay, 1994),
and glass-coated microwires (Vázquez and Zhukov, 1996;
Chiriac and Ovari, 1996; Vázquez, 2001a; Zhukov, 2002)
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have been previously reported. Here, most important char-
acteristics are collected and the latest results introduced and
discussed. In this first section, we analyze the magnetization
process of magnetostrictive microwires exhibiting bistable
behavior and its consequences.

3.1 Domain structure and axial hysteresis loops
of Fe-based magnetostrictive microwires

3.1.1 Axial hysteresis loops and main domain
structure

General information about the distribution of magnetiza-
tion in the wire can be straightforwardly extracted from
combined information from axial loops and domain obser-
vation (see Figure 3). The low-frequency low-field longitu-
dinal hysteresis loop of Fe-based microwire, prepared by
the techniques described previously, is astonishingly sim-
ple. It takes a square shape with a single giant Barkhausen
jump at switching field of around 5–30 A m−1 for in-water-
quenched and glass-coated microwires, respectively. From
this simple experimental fact and assuming a domain wall
displacement magnetization process (confirmed by additional
experiments), we can derive some important information: the

axial magnetization reversal takes place by the displacement
of a single-domain wall.

Complementary information can be obtained from mag-
netic domain observation in the case of in-water-quenched
microwires (i.e., by magnetooptic Kerr effect, or Bitter tech-
nique) (Reininger, Kronmüller, Gómez-Polo and Vázquez,
1993): at the surface, domain patterns are relatively complex
with a number of zigzag walls denoting some complex dis-
tribution of magnetization direction at that region. In turn,
the domain structure of the inner part is much simpler as
observed after careful polishing of the microwire: at zero
field, no domain wall can be detected indicating the homoge-
neous distribution of magnetization in a large single domain
axially magnetized.

At higher applied fields (not observed in Figure 3), mag-
netization process takes place in a nearly reversible way until
approaching magnetic saturation at fields of the order of units
or tens of kiloamperes per meter for in-water-quenched and
glass-coated microwires, respectively. In fact, for in-water-
quenched wires, remanence, Mr, to saturation magnetization,
Ms, squareness ratio, mr = Mr/Ms, is nearly mr ≈ 0.5 (see
Figure 4a) (for an analysis of the correlation between rema-
nence and fractional volumes of core and shell, see Fujimori,
1983; Hernando and Vázquez, 1993; Nielsen, 1985). This
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Figure 3. Fe75Si15B10 in-water-quenched microwire: correlation between low-field bistable hysteresis loop (top right) and main domain
structure (schematic view, top left). Evolution of inner core domain between remanence and switching, as observed by Kerr effect, during
magnetization reversal (bottom). (Reproduced from T. Reininger et al., 1993, with permission from American Institute of Physics.  1993.)
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Figure 4. (a) Magnetization profile at the remanence (*), just
before (◦) and after (•) switching for an Fe-rich amorphous
wire (a). (Reproduced from M. Vázquez et al., 1995, with permis-
sion from IEEE. copyright 1995.) The evidence of bistability in
glass-coated Fe-rich wires in samples of very short lengths (b).
(Reproduced from M. Vázquez et al., 1996, with permission from
Elsevier.  1996.)

indicates that the fractional volume involved in the giant
Barkhausen jump, that is, the inner core is nearly one-half of
the wire and, consequently, its radius is r ≈ 0.7 R (note that
this corresponds to the distance to the wire axis in Figure 2
where axial stress is no longer predominant). The outer shell
consists of a multidomain structure with magnetization radi-
ally oriented and additional closure structures at the very sur-
face (see schematic view in Figure 3), all of that magnetizing
reversibly at high field. This is consistent with the distribu-
tion of stresses obtained in the previous section. From its
analysis, we conclude that the easy magnetization direction
from magnetoelastic origin is axial at the core where axial
tensile stresses dominate. At the shell, maximum stresses
are azimuthal and axial and their compressive character in
the surface of the wire results in a Poisson contraction and
radial easy axis. This radial easy axis, in competition against
the transverse demagnetizing field, gives rise to the complex

domain structure at the surface of microwires, as schemati-
cally drawn in Figure 3.

The case of glass-coated microwires is very similar,
although the domain structure is much more difficult to
observe owing to their reduced dimension. Figure 4(b) shows
how the bistability is preserved in glass-coated microwires
even at very short sample lengths.

3.1.2 Fine domain structure of microwires

Finer domain structure at the inner part of in-water-quenched
microwires has been thoroughly studied by Yamasaki (Mitra
and Vázquez, 1990; Vázquez, Gómez-Polo, Chen and
Hernando, 1994). A careful polishing of microwires allows
one to observe a finer domain structure at the border between
core and shell.

Closure domain structures also appear at the ends of mic-
rowires to reduce the large magnetostatic energy associated
with magnetic charges that would otherwise appear (Vázquez,
Gómez-Polo and Chen, 1992; Gómez-Polo, Vázquez and
Chen, 1993). This fine domain structure has been directly
observed by magneto-optic Kerr effect and Bitter technique
in in-water-quenched microwires (Reininger, Kronmüller,
Gómez-Polo and Vázquez, 1993; Vázquez, Gómez-Polo and
Chen, 1992; Gómez-Polo, Vázquez and Chen, 1993; Vázquez,
Theuss and Kronmüller, 1999) (see Figure 3, bottom). The
existence of those closure structures is also derived from
the profiles of magnetization and susceptibility close to the
ends in both types of microwires. Figure 4(a) shows the
reduced-remanence regions at the ends of the wire. Such
reduction is ascribed to the closure structures (note those
enlarged regions just before the switching) (Vázquez, Theuss
and Kronmüller, 1999; Zhukova, Usov, Zhukov and González,
2002). The length of such closure structures is of about 3 cm
and 1 mm for in-water-quenched and glass-coated microwires,
respectively, that gives us a hint of half the minimum length
of microwires to observe bistable magnetic behavior: around
6 cm and 2 mm for in-water-quenched and glass-coated Fe-
rich microwires, respectively. The loop for a 2-mm-long
glass-coated microwire is shown in Figure 4(b). Figure 5(a)
shows the hysteresis loop for a 5-cm-long in-water-quenched
microwire that now consists of two Barkhausen jumps. This
indicates that the inner core at its center is not a single-domain
structure, which is confirmed by the corresponding domain
structure (after careful polishing) showing the presence of two
antiparallel domains (Figure 5b).

3.2 Bistable reversal mechanism
and its dynamics

The very existence of the closure structure at the microwire
ends is very important for understanding the magnetization
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Figure 5. Hysteresis loops for a 10- and 5-cm-long wires (a), and
the domain structure of a microwire shorter than the critical length
for bistability (b). (Reproduced from T. Reininger et al., 1993, with
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reversal process under homogeneous axial field. At the
bottom of Figure 3, a set of images shows the domain struc-
ture at 1-cm distance from the end of a microwire between
the remanence and the switching: at the inner core, there is
a main single domain (light) and the tip of a closure domain.
At the left, only the expanded closure domain (dark) can
be observed. As the reverse applied field increases, the clo-
sure domain structure increases in size. At a given applied
field, the energy stored at the main domain becomes large
enough so that, the magnetic configuration becomes unstable
and a single wall depins from the closure structure and prop-
agates along the wire until reaching the closure structure at
the opposite end. Note that the enlargement of the closure
domain before the switching is not detected in the hysteresis
loop of Figure 3(a) because the tiny coil is placed at the cen-
ter of the wire. A simple expression for the switching field,
Hsw, is

Hsw ∼ [1/(µ0Msνcr)](αEγ + βEsf) (2)

where Eγ denotes the wall energy and Esf is the stray field
energy from the charges at the wire end, νcr is the fractional
volume of the enlarged closure structure at the depinning, and

α and β are geometric parameters. The general mechanism
of reversal can be seen as nucleation of reverse domain plus
depinning and propagation of a single wall, with the partic-
ularity, as discussed later, that the reverse domain may exist
at any finite field.

The magnetization reversal process and its dynamics has
been studied in several works for the two types of microwires
from the early work by O’Handley (1975). More recent
studies are connected with the investigations on the closure
structures at the wire ends for in-water-quenched microwires
(del Real et al., 1993; Chen, Dempsey, Vázquez and
Hernando, 1995), and glass-coated microwires (Zhukov,
2001; Neagu et al., 2001a). It was firstly shown that evolu-
tion of the reversal process was unidirectional irrespective of
the initial remanent state, possibly owing to the slightly dif-
ferent closure structures at each end (Vázquez, Gómez-Polo
and Chen, 1992; Gómez-Polo, Vázquez and Chen, 1993).
Experimental methods similar to those of Sixtus and Tonks,
in which a long solenoid drives the magnetization drives the
magnetization process and two peak-up coils where peak sig-
nals are induced upon the passing of the propagating wall.
A careful analysis of the symmetric shape of the induced
peaks (see Figure 6a) revealed that the shape of the wall is
rather quasiplanar not only for in-water-quenched (del Real
et al., 1993; Chen, Dempsey, Vázquez and Hernando, 1995)
but also for glass-coated microwires (Varga, Garcı́a, Vázquez
and Vojtanik, 2005) (note that the time constant of the cir-
cuit should be shorter than the peak width). Moreover, from
the width of the induced peaks it is also possible to deduce
the length of the wall to be of the order of few centime-
ters and millimeters for in-water-quenched and glass-coated
microwires, respectively.

The motion equation of the wall during propagation can
be written as

m
d2x

dt2 + β
dx

dt
+ αx = 2µ0MsH (3)

where β represents the damping coefficient, m is an effective
mass of the wall, α the restoring force constant, and 2MsH

the driving force supplied by the applied field. Once the
wall propagates at constant velocity, equation (3) reduces
to v = (2µ0Ms/β)(H – H0), where H0 is generally taken
as the critical propagation field. The velocity of the wall is
thus experimentally deduced from the flight time between
those two peaks. Figure 6(b) shows the evolution of the
wall velocity, v, with the applied field, H , for a range of
measuring temperatures. For large enough field, H ≥ Hsw,
the velocity increases as expected linearly with the applied
field and the switching field, Hsw, depends on the measuring
temperature. Note the high speed of the propagating wall
reaching up to 500 m s−1 at applied fields of 200 A m−1.
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A first astonishing fact is that the extrapolation of that
linear behavior to zero velocity gives a negative field.
According to classical nucleation–propagation theory, square
loops are obtained when nucleation field, Hn (typically
provided by an extra local exciting coil), is larger than
the propagation field, Hp, so that, once the reverse domain
is formed, it immediately enlarges and propagates along
the entire microwire (Hn > Hp): the propagation field is
the linear extrapolation value to zero velocity, while the
switching field corresponds to the nucleation field. In the
present case, something singular happens, at negative fields
the closure structures at the ends of the wire existing to
reduce the stray fields energy play the role of the reverse
domain, but a wall does not depin and propagates until
reaching the propagation or switching field. Thus, we reach
a reversal mode of square loop by which a reverse domain
is first nucleated even at negative applied field but does not
move until reaching the propagation field (Hp > Hn): the
extrapolated figure corresponds to an effective nucleation
field while the switching field corresponds to the propagation
or depinning field.

Further studies on the domain wall dynamics in glass-
coated microwires in the low-field regime have been per-
formed in order to obtain deeper information. As observed
in Figure 6(b), in the low-field regime, a nonlinear behavior
is observed whose analysis has allowed one the experimen-
tal confirmation of the scaling behavior of the single-domain
wall propagating on large distance (Varga et al., to be pub-
lished). Three regions can be then distinguished for the prop-
agating wall: (i) Below some critical field, Hcr, the domain
wall is pinned at the wire end; (ii) just above that field,
the domain wall propagates in the adiabatic regime, interact-
ing with the defects during its propagation, with an average
velocity that scales as v ∼ (H – Hcr)

q , with q the scaling
factor; and (iii) at higher fields, H > Hsw, the domain wall
propagates in the viscous regime and its average velocity
is proportional to the applied magnetic field as considered
above. The scaling law is an universal law valid on a wide
range of scales where crackling noise is detected: from meter
(earthquake-tectonic plates rub past one to another), decime-
ter (movement of the car on the landscape full of holes),
centimeter (splitting the piece of paper), millimeter (drop
of the water moving around the dirty glass) down to the
micrometer scale for the domain wall movement or for dis-
location propagation under small tension (Sethna, Dahmen
and Myers, 2001; Zapperi, Castellano, Colairoi and Durin,
2005; Nakatani, Thiaville and Miltat, 2003). Fitted values of
scaling factor to experimental results are close although not
exceeding 1/2, and they reflect the correlation length of the
domain wall with the defects (the lower the q, the longer is
the correlation length).

With regard to the damping of domain wall motion,
two mechanisms are commonly considered (O’Handley,
1975; del Real et al., 1993; Chen, Dempsey, Vázquez
and Hernando, 1995): eddy current and spin relaxation.
An additional contribution from structural relaxation/spin
origin has been recently experimentally and theoretically
introduced (Varga, Garcı́a, Vázquez and Vojtanik, 2005).
A general expression for the temperature dependence of
damping coefficient β has been then proposed as the sum
of eddy current, βe, spin relaxation, βr, and interaction with
the mentioned defects, βs, damping mechanisms:

β = βe + βr + βs = k1Ms(T )2

ρ(T )

+ k2(Ms(T )3(1 + r�T ))1/2 + k3
τ

T
(4)

where k1 is a geometrical parameter, k2 is proportional to
mechanical stresses induced during fabrication, σ r, and k3

reflects the interaction between the wall and local structural
defects, ρ is the resistivity, r ≈ E(αg –αm)/σ r, and τ the
relaxation time.
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3.3 Magnetoelastic effects

3.3.1 Influence of applied tensile, torsional,
and bending stresses

Magnetoelastic anisotropy plays an important role owing
to the relatively high magnetostriction, λs, of Fe-based
amorphous microwires, of the order of 1–3 × 10−5. The
application of mechanical stress induces an extra magnetoe-
lastic anisotropy with energy density Km.elas = (3/2)λsσ ap

that reinforces or balances the anisotropy arising from
stresses frozen in during fabrication. In the case of applied
tensile axial stress, it is observed that the remanence increases
continuously until saturation as a consequence of the increase
of the fractional volume of the inner core with axial easy
direction at the expense of the outer shell. This evolution
supplies complementary information on the distribution of
the internal stresses at the shell. For example, the applied
stresses at which remanence saturates are of the order of
100 and 400 MPa for in-water-quenched and glass-coated
microwires, respectively.

From equation (2), a simple expression can be derived for
the dependence of the switching field on applied stress, σ ap,
(Severino, Gómez-Polo, Marı́n and Vázquez, 1992):

Hsw = γ

√
λ(σ ap − σ r) − µ0Neff(L)Ms (5)

where γ is a parameter containing mainly geometrical
factors, and the effective demagnetizing factor Neff is a
function of the length-to-diameter ratio of the wire. Actually,
Hsw is determined by a term proportional to the energy stored
in the depinned wall which is proportional to the applied
stress.

The fitting of that expression to experimental results
is very reasonable as observed in Figure 7(a) for several
microwires with different lengths (Severino, Gómez-Polo,
Marı́n and Vázquez, 1992). At low applied tensile axial
stress, it balances internal stress in the outer shell which
reduces the energy stored in the wall and the switching field
according to equation (5). Note also, that for the shortest
microwire, bistability is only observed after applying large-
enough stresses. When applied and internal stresses nearly
balance each other, and the effective demagnetizing field
becomes more important, the formation of a number of walls
is possible. This hinders the formation of a large domain and
consequently the observation of bistable behavior.

Application of torsional stresses induces distributed tensile
and compressive stresses following a helical path at 45◦

with the wire axis. Figure 7(b) shows the domain structure
of an in-water-quenched wire subjected to torsional stress,
where the helical path denotes the easy magnetization
direction at 45◦ (Hernando et al., to be published). Torsional
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Figure 7. Dependence of switching field on applied tensile stress
for a FeSiB in-water-quenched microwire (length = 12, 9.9, 8.4,
and 6 cm) (a). (Reproduced from A.M. Severino et al., 1992, with
permission from Elsevier.  1992.) Bitter image of the domain
structure at the surface of a torqued microwire (after Hernando
et al., to be published), and torsional dependence of remanence for
a bistable Fe-based microwire (b). (Reproduced from M. Vázquez
et al., 1991, with permission from Elsevier.  1991.)

stress, τ = µξr , with µ the shear modulus, and ξ the
angular displacement per unit length, induces inhomogeneous
stresses so that, the corresponding magnetoelastic anisotropy
is given by:

Km.elas(r) = 3

2
λsµξr (6)
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One should also consider the different response to applied
torsion of the inner core and the outer shell because each
region exhibits a different internal magnetoelastic easy axis.
Upon twisting, ξ , the magnetization rotates toward the helix
at 45◦ from the axial direction in the core and from the
transverse direction at the shell. For large enough torsion,
the magnetization orientates along the helical direction in the
whole microwire, resulting in a reduced remanence of mr =
0.7. An expression for the evolution of reduced remanence,
mr = Mr/Ms, with torsion has been proposed elsewhere
(Vázquez et al., 1991; Chiriac et al., 1997) considering the
evolution of the fractional volumes of the core and the shell
with applied torsion as well as that of the magnetization
direction in each region:

mr = 1√
2
vos

(
Kτ

Kos

)
+ 1√

2
vic


1 +

(
1 + K2

τ

K2
ic

)−1/2

 (7)

Where Kτ , Kic, and Kos denote the average magnetoelastic
anisotropy constant induced by torsion, and those internally
at the inner core and the outer shell, respectively, and vic

and vos are the fractional volumes of the core and shell,
respectively. The experimental evolution with applied torsion
is fitted to that expression, as observed in Figure 7(b), for
a series of microwires that have been thermally treated
inducing variations of the fractional volumes.

Applying bending stresses gives rise to distributed tensile
and compressive stresses for convex and concave curvature
regions of the wire, respectively. For the convex region with
tensile component, the magnetization easy axis parallel to
the wire axis is reinforced, while the compressive stress
at the concave region induces a transverse easy axis. For
large enough bending (small radius of curvature) the domain
structure consists of an asymmetric inner core with axial
magnetization and the residual region with transverse easy
axis (Vázquez, Gómez-Polo, Theuss and Kronmüller, 1996;
Vázquez, Gómez-Polo, Velázquez and Hernando, 1994). That
asymmetric core is then responsible for the bistable behavior
in bent microwires (Figure 8).

3.3.2 Thermally induced stresses in glass-coated
microwires

An expression for the stresses induced during the fabrication
in glass-coated microwires by the coating is given in
equation (1). The strength of their effect on the mag-
netic behavior of microwires can be straightforwardly
derived by comparing hysteresis loops (see Figure 9) for
microwires with different metallic radius to total radius
ratio, ρ = rmet/Rtot

Glass coating plays an important role to determine stresses
not only in the as-prepared state, but also as a source

of additional stresses when the measuring temperature is
modified owing to the different thermal expansion coef-
ficients, αm and αg, of metallic nucleus and glass coat-
ing, respectively (Vázquez et al., 2004b, 2006b). A gen-
eral expression for the stresses arising from the coating and
induced by a temperature change, �T , is

σ(T ) = E(αg − αm)�T + σ r (8)

where σ r denotes the internal stresses induced during fabrica-
tion. An estimation of the effective thermally induced tensile
stresses when decreasing temperature down to around 10 K is
of the order of 200–300 MPa (Vázquez et al., 2004b, 2006b).

Recently, experiments have been performed to evaluate the
temperature dependence of the switching field and its fluc-
tuations in glass-coated microwires. In fact, previous studies
were reported on the jitter of induced pulses by the reversal of
magnetization that in principle should be avoided for techno-
logical purposes (Mohri, Humphrey, Yamasaki and Okamura,
1984; Zhukova et al., 2002). Figure 10(a) shows the distri-
bution of the switching field as a function of temperature.
It can be observed that not only the average switching field
but also the width of the distribution decreases with increas-
ing temperature. Such studies have allowed us to evaluate
the contributions to the switching field: the magnetostrictive
term (mostly relevant at high temperatures and containing the
temperature dependence of magnetostriction and that of coat-
ing stresses), and the structural fluctuations term (relevant at
low temperatures as indicated for the damping parameter)
(Varga, Garcı́a, Vázquez and Vojtanik, 2003, 2005; Garcı́a,
Varga and Vázquez, 2005).

The fitting to this temperature dependence has been done
considering the magnetoelastic and structure contributions
(see Figure 10b). Note that temperature dependence of mag-
netoelastic term arises from that of mechanical stresses
induced by the coating, and from the magnetostriction. The
switching field can be then expressed as (Varga, Garcı́a,
Vázquez and Vojtanik, 2003; Garcı́a, Varga and Vázquez,
2005):

Hsw = p
{[

α(x)M3
s (T ) + β(x)M2

s (T )
]
(1 + r(�T ))

}1/2

+ nG(T , t)

Ms(T )
(9)

where p is a constant, r ≈ E(αg –αm)/σ r, α and β the rel-
ative contributions to magnetostriction from single-ion and
two-ion mechanisms, λ(T ) = αM3

s (T ) − βM2
s (T ), n is the

density of structural defects interacting with the propagat-
ing wall, and G is a relaxation function with relaxation time
τ . It should be mentioned that the magnetostriction is sen-
sitive not only to modification of temperature but also to
applied mechanical stresses and to thermal treatments in
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a similar way as amorphous ribbons (Zhukov et al., 2003;
Barandiarán et al., 1987). Such changes, �λ, can reach val-
ues up to 10−7 so that, they are relevant for Co-base non-
magnetostrictive alloys.

3.3.3 Magnetoelasticity and elastic moduli

Applied magnetic fields produce magnetostrictively induced
deformation that gives rise to modification of effective elastic
Young and shear moduli of magnetostrictive microwires, and

to variations of the sound velocity. Several reports have been
published on magnetoelastic properties related to �E effect
and sound velocity effect for both types of microwires, where
the role played by thermal treatments and/or the application
of stress is shown (Squire, 1994; Kakuno, Masuda, Yamada
and Mochida, 1987; Chiriac et al., 2000). The induced
torsional deformation has also been reported where dc
axial and ac circular field were applied simultaneously
(Velázquez et al., 1995; Navarro, Garcia-Beneytez, Vázquez
and Hernando, 1996). Forced and free oscillations are
detected for the torsional magnetoelastic resonance where
resonant peaks at given frequencies are accounted for by
considering the existence of two main domain regions, and
its connection to the variations of shear modulus. Complex
bifurcation modes have also been detected.

3.3.4 Field-induced rotation of magnetostrictive wires

Exciting a vertically standing Fe-based microwire with a
longitudinal ac field (of the order of kilohertz frequency),
supplied by a solenoid or coil, results in spontaneous rota-
tion of the wire with frequency of the order of units or tens
of hertz. Such a rotation is only observed for given val-
ues of the exciting field frequency (see Figure 11a), and the
most important characteristics of this unusual effect recently
rediscovered in bistable amorphous microwires (Chiriac,
Marinescu and Ovari, 1997; Castaño et al., 1999; Sugino,
Takezawa, Honda and Yamasaki, 2001) are as follows:
(i) It is observed for different types of wires (even ribbons)
with amorphous or polycrystalline microstructure (e.g., until
3-mm-diameter commercial Ni cylindrical rods (Luna,
Raposo, Rauscher and Vázquez, 2002). (ii) A minimum
threshold field amplitude is needed for proper rotation the
sense of which depends in a complex way on the field itself.
(iii) Typical rotation frequency of microwire is of the order
of units or tens of hertz, much lower than that of the exciting
field, and it depends on mechanical friction to the capillary or
tube surrounding the wire. (iv) Such rotation can be accompa-
nied by levitation of the wire, when allowed by the sustaining
force from the gradient field acting exerted by the exciting
coil (see Figure 11b).

The origin of this phenomenon is quantitatively not well
known, but it must be connected with the magnetostrictive
character of the samples because the only requirement to
be observed is a sufficiently large value of magnetostric-
tion of the wire. Apparently, longitudinal vibrations of the
wire, induced by the magnetostrictive elongations due to
the exciting field, transform into coherent rotation through
the friction with the surrounding tube or capillary. This phe-
nomenon exhibiting some peculiar characteristics related to
lack of symmetry and chaos as well as a kind of magnetic
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Institute of Physics.  1999.) Field-induced rotation in a levitating
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ratchet was, nevertheless, studied for many years without
final full understanding (Barnett and Kenny, 1952).

3.4 Arrays of bistable microwires: magnetostatic
interactions and chaotic behavior

An interesting possibility for bistable microwires is its
employment as memory units in magnetic labels (Hernando

et al., 1996). There, a set of parallel bistable microwires are
placed in a tag, each one with different switching field so that,
when magnetized under an increasing field, each microwire
reverses at its characteristic switching field. In order to
increase the capability of storing information, it is desirable
to reduce the size of sensing units (wire length and interwire
separation), place them as close as possible, and reduce, when
possible, the differential switching field among all of them.
Experimental results indicate, nevertheless, that when they
are spaced too closely, the intrinsic switching field of each
wire is shifted indicating that some magnetostatic interaction
takes place, and the magnetic information can be lost.

Bistable magnetic microwires are characterized by a nearly
single-domain structure with a large axial domain with clo-
sure structures at the ends that appear to reduce the stray
field energy. It seems likely that closure structures are either
perturbed and/or they do not close completely their stray
fields so that, each microwire can be taken as an effective
dipole creating a stray field at the neighboring microwires
modifying their switching field. Several studies have been
reported on the magnetostatic interactions in sets of mag-
netic microwires (Velázquez, Garcı́a, Vázquez and Hernando,
1996, 1999). From the experimental point of view, the hys-
teresis loop of a set of nearly identical microwires is char-
acterized by as many Barkhausen jumps as the number of
microwires, as observed in Figure 12(a) (Sampaio et al.,
2000).

The modeling to quantify such hysteresis loops has been
done considering the total magnetic energy, Emag, that
contains the Zeeman, dipolar, and anisotropy contributions
and can be given by the general expression:

E = −
∑

j

�mj · �Hap −
∑
i>j

�mi · �mj − 3( �mi · �nij )( �mj · n̂ij )

r3
ij

−
∑

j

kj

( �mj

mj

· ẑ

)2

(10a)

where mi denote the dipolar magnetic moment of each
microwire, rij is the distance between neighboring micro-
wires, and kj is the magnetic anisotropy constant with
longitudinal easy axis. The final expression of magnetization
and the effective switching field are determined by the Monte
Carlo method. Alternatively, the problem can be solved by
iteration, considering the expression for the magnetization
of each wire as a function of the applied field plus the
interactions with the surrounding microwires as

Mi(Hi) = Mi


Hap −

j=N∑
j=1

KijMj


 (10b)
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Reconstruction of the attractor in the magnetization phase diagram
of a set of five microwires (b). (Reproduced from J. Velázquez
et al., 1996, with permission from the American Physical Society.
 1996.)

The later contribution depends on their geometrical
arrangement, which being dependent on the distances
between individual microwires, rij , is reflected in the con-
stant Kij . To start the process, initial values are introduced
in a first iteration (Vázquez et al., 2004a).

Several different modeled configurations of microwires
arrays have been considered as linear, cubic, or hexagonal
configurations (Vázquez and Velázquez, 2002). Particularly,
the hexagonal configuration is of interest regarding the sim-
ilarities with the case of nanowires in nanoporous alumina
membranes.

Finally, it should be mentioned that the switching field of
individual microwires, although very close, cannot be taken
as identical. As a consequence of that, a complex behavior

with weak-chaos characteristics has been found when
analyzing the magnetic stability of the set of microwires.
The reader is referred to previous references for further
details (Velázquez, Garcı́a, Vázquez and Hernando, 1996,
1999; Vázquez and Velázquez, 2002), and as an example,
Figure 12(b) shows the temporal evolution of magnetization
of a set of two microwires showing the reconstruction of the
corresponding attractor.

3.5 Applications of Fe-based magnetostrictive
microwires

3.5.1 Applications based on magnetic bistability

A number of applications can be found from the unique
magnetization reversal of bistable microwires (Vázquez and
Hernando, 1996). Some of them are related to sharp jit-
terless voltage induced in pick-up coils wound around the
microwires during the magnetization reversal, with improved
response with regard to Wiegand wires (Mohri, 1994a;
Rauscher and Radeloff, 1989). Applications using bistable
microwire as sensing elements include switchers, rotation
counters, and position and velocity sensors among others.
Sensors employed in security systems making use of the
sharp induced voltage also include those based on the high
harmonic response (Humphrey, 1987) such as an identifica-
tion magnetic tag where codification is related to the mul-
tipeak induced signal in a set of bistable microwires with
different switching fields.

3.5.2 Applications based on magnetoelasticity

The magnetostrictive character of Fe-based microwires is
very suitable for various magnetoelastic sensing applica-
tions. Among others, some examples are mentioned in the
following. Delay lines and sound velocity sensors using mag-
netostrictive Fe-based microwires have been proposed by
Hristoforou (1997) and Hristoforou and Niarchos (1992).
Digitizers, dc current sensor, and noncontact torsional stress
sensors have been proposed based on inverse Wiedemann
effect and torsion (Meydan and Elshebani, 1992; Pulido
et al., 1991). A thermoelastic sensor makes use of differen-
tial thermal expansion coefficients of glass-coated microwires
(Vázquez et al., 2006a). A novel viscometer is based on
the field-induced rotation effect of magnetostrictive wires
discussed above (Vázquez et al., 2001). A magnetoelastic
sensor for signature identification based on the magnetoe-
lastic behavior of magnetostrictive microwires has also been
proposed (Zhukov, Vázquez and Beneytez, 1998; Zhukov,
Garcia Beneytez and Vázquez, 1996). As an example of its
possibilities for signature identification and authentication, a
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magnetoelastic sensor (a), and a typical magnetoelastic signature
defined by a number of pulses with given serial time interval (b).
(Reproduced from A. Zhukov et al., 1998, with permission from
EDP Sciences.  1998.)

schematic view of the sensor is shown in Figure 13(a). A typ-
ical magnetoelastic signature before digitalizing is depicted
in Figure 13(b), where the voltage peaks, proportional to
the mechanical stress are plotted as a function of time. An
individual magnetoelastic signature is characterized by the
number of peaks, their trend, and time intervals, while ampli-
tude of peaks typically depend on the mood of the signatory.

4 CIRCULAR MAGNETIZATION
PROCESS AND GIANT
MAGNETOIMPEDANCE

4.1 Magnetization process of microwires
with circumferential easy axis

4.1.1 Axial magnetization process of Co-based
negative magnetostriction microwires

The axial hysteresis loop of as-cast negative magnetostric-
tion Co-base CoSiB-like amorphous microwires obtained by
in-water quenching consists, as for positive magnetostric-
tion microwires, of a low-field giant Barkhausen jump and a
reversible magnetization process at higher fields until reach-
ing saturation (see Figure 14a). While it looks similar to
the bistable loops of Fe-based microwires and the coercivity
takes similar values, there are some differences: (i) reduced
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Figure 14. Axial hysteresis loop (a) and schematic view of domain
structure (b) for an as-cast negative magnetostriction CoSiB
in-water-quenched microwire, and for an as-prepared glass-coated
microwire with similar composition (c).

remanence at stable magnetic states takes smaller values of
around mr ∼ 0.36 and (ii) differential susceptibility around
remanence takes higher values of around 1 order of mag-
nitude. These experimental results (Humphrey et al., 1987)
together with the direct observation of domains by magneto-
optical Kerr effect (Yamasaki, 1992; Yajako, Yamasaki and
Humphrey, 1993), allow us to assume that the domain
structure consists, as for Fe-based microwires, of two main
regions: (i) an inner core with easy magnetization direction
diverging from the wire axis by a small angle that depends
on the radial coordinate and (ii) a shell domain structure with
mostly circumferential easy axis giving rise to the so-called
bamboolike structure. This domain structure is schematically
depicted in Figure 14(b).

Upon applying an axial magnetic field, magnetization
reverses at the core with a Barkhausen jump not so large
as for Fe-based wires owing to the reduced axial component
of the magnetization. A critical length to observe bistability
is again observed (Zhukova, Usov, Zhukov and González,
2002). At a higher field, magnetization rotates at the shell
toward the axial direction until the disappearance of the
circumferential domains.

A typical axial hysteresis loop of Co-based glass-coated
microwire is shown in Figure 14(c). In this case, there is no
large Barkhausen jump, and magnetization process can be
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interpreted as taking place by magnetization rotation from a
circumferential orientation toward the longitudinal direction.
This denotes the existence of a spontaneous circumferential
anisotropy throughout the whole microwire, practically with-
out inner core (Zhukov, 2001; Neagu et al., 2001a; Varga,
Garcı́a, Vázquez and Vojtanik, 2005). This indicates that the
whole cross section should consist of a circumferentially
magnetized shell, with a well-defined transverse magnetic
anisotropy, Kφ , whose anisotropy field, Hκφ , can be experi-
mentally evaluated as the field required to reach saturation in
Figure 14(c). The average effective axial stress built in dur-
ing rapid solidification can be determined from the anisotropy
field expression Hφκ = 2Kφ/µ0Ms = 3λσ/µ0Ms. Taking
the experimental values of the anisotropy field, Hφκ , the sat-
uration magnetization, Ms, and the magnetostriction constant
of this alloy composition (λ ∼ −1 × 10−6), one reaches an
average effective axial stress of 400 MPa.

A similar all-radii circumferential anisotropy can be also
observed in nonmagnetostrictive CoFe-based in-water-quen-
ched microwires induced by suitable stress-annealing treat-
ments (Freijo et al., 1999). As observed in Figure 15(a) for
the axial hysteresis loop after stress annealing, a circum-
ferential anisotropy with circular anisotropy field of around

6 Oe is deduced. In spite of this circumferential anisotropy,
a vortex micromagnetic structure with axial magnetization
should appear at the very axis of the wire to reduce the
otherwise significant exchange energy that would be stored.
An effective radius of that vortex can be calculated by
minimization of the total exchange (circular, φ, and radial,
r , terms) plus circular anisotropy, Kφ , energies, leading to
the Euler equation:

(d2�/dr2) + (1/r)(d�/dr) + [K�/A − 1/2r2] sin 2� = 0
(11)

In the example shown in Figure 15(a), a vortex diameter
of around 0.3 µm is calculated which gives an almost neg-
ligible contribution to the whole axial hysteresis loop. A
similar evaluation for an as-prepared negative magnetostric-
tion (–2 × 10−6) Co-based glass-coated microwire results in
a vortex diameter of about 0.2 µm.

4.1.2 Crossed nonaxial magnetization processes

In cylindrical coordinates, suitable to the shape of our sam-
ples, the magnetization vector (considering axial and circular
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components) can be expressed through the susceptibility
tensor as:

(
MzMφ

) =
(

χzz χzφ

χφz χφ

) (
Hz

Hφ

)
(12)

which is useful particularly when the magnetization has
nonvanishing components along the two orthogonal direc-
tions. Axial and circular hysteresis loops gives rise to χzz

and χφφ susceptibility terms, respectively. The Matteucci
effect consists of the observation of a circular component
of magnetization (or equivalently of a voltage induced at
the ends of microwires) when axially magnetizing the wire
(the corresponding susceptibility term is χφz). The inverse
Wiedemann effect consists of the existence of an axial mag-
netization component when the wire is subjected to a circular
field (susceptibility term χzφ).

Figure 15 shows the four hysteresis loops correspond-
ing to the 4 susceptibility terms in equation (12) for a
CoFe nonmagnetostrictive wire after stress annealing, induc-
ing a circular anisotropy. Axial, circular, Matteucci and
inverse Wiedemann hysteresis loops are given respectively
in Figure 15(a–d).

These effects are typically observed when the magneti-
zation exhibits some helical component so that, when
magnetizing axially or circularly, crossed circular or axial
magnetization processes are observed, respectively (Kraus
et al., 1994). Such a helical component can be induced by
applying torsion or annealing under torsion. In fact, a spon-
taneous helical component of magnetization is experimen-
tally deduced from both types of crossed loops in as-cast
microwires (Velázquez et al., 1991), and actually it arises
from the departure from parallelism between the magne-
tization in the core and the shell and/or just from inter-
face between both regions. Recent studies suggest that the
core/shell model should be modified with the introduction
of some helical component at the core of negative magne-
tostriction in-water-quenched wires (Chen et al., 2001).

4.1.3 Circular magnetization process
and magnetoinductive effect

The circular magnetization process, Mφ versus Hφ , is rel-
evant when the microwires exhibit a circular component
of magnetization, and in the case of the GMI effect con-
sidered in the next section. The circular magnetic field,
Hφ , is supplied by the flow of ac current, I , along the
microwire (as in the case of the inverse Wiedemann effect),
and is radially inhomogeneous, Hφ = I r/R. Circular mag-
netization, Mφ is evaluated by integration of the voltage
induced at the ends of the microwire, as a consequence of
the changes in circular component of magnetization after

subtracting the voltage coming from the ac current itself,
that is, Mφ ≈ ∫ dMφ/dt ≈ ∫(V – VI )dt . As an example,
Figure 15(b) shows the circular hysteresis loop, Mφ ver-
sus Hφ , corresponding to a stress-annealed nonmagnetostric-
tive CoFe-based in-water-quenched microwire (Pulido et al.,
1991). Alternatively, circular magnetization reversal can be
studied by magneto-optical Kerr effect (Chizhik, González,
Zhukov and Blanco, 2002; Kabanov, Zhukov, Zhukva and
González, 2005), thus obtaining direct information on the
magnetization process at the very surface of the microwires.

The circular hysteresis loop in Figure 15(b) is obtained at
a low ac field frequency (at 80 Hz). An increase of the work-
ing frequency gives rise to a noticeable enhancement of the
voltage induced at the ends arising from the circular magneti-
zation process. This circular magnetization process is some-
times labelled as magnetoinductive effect, which has been
studied by several authors specially for in-water-quenched
microwires (Mohri et al., 1992; Velázquez, Vázquez, Chen
and Hernando, 1994). The magnetoinductive voltage, �Vind,
can be expressed as:

�Vind ≈
√

1 + (
πµ0r

2χφ maxf/2ρ
)2

(13)

where r and ρ are the radius and resistivity of the micro-
wire, and χφmax denotes the maximum circular susceptibility,
which is achieved for an ac current circulating through
the wire that generates a magnetic field corresponding to
the circular coercivity. Note that magnetoinductive voltage
increases with the frequency, f , of the exciting circular field
and with the circular susceptibility, but it decreases with
resistivity of the wire. Concerning the later, circular sus-
ceptibility shows maximum values just around the circular
switching field or circular coercivity. While the frequency
range for this magnetoinductive effect is of the order of
kilohertz, at higher frequencies it is overcome by a new phe-
nomenon: the magnetoimpedance effect.

4.2 Giant magnetoimpedance effect

4.2.1 Magnetization process of nonmagnetostrictive
CoFe microwires

Nonmagnetostrictive amorphous CoFe-based microwires
exhibit the softest behavior when magnetizing along both
axial and circular directions. The intrinsic magnetoelastic
anisotropy, being now much smaller owing to the reduced
magnetostriction (of the order of 10−7), enables the forma-
tion of a larger number of walls, and magnetic bistability is
no longer observed: within the core, a multidomain struc-
ture is present that destroys bistability but in turn, results in
the largest values of initial permeability (up to about 105).
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Figure 16 shows the axial hysteresis loop for an as-prepared
in-water-quenched CoFe-based microwire.

Bistability can be, nevertheless, observed at low temper-
ature as a consequence of the increase in magnetostriction
(Theuss et al., 1995). It should also be mentioned that mag-
netostriction of such nonmagnetostrictive microwires is sig-
nificantly modified by thermal treatments as well as by the
application of mechanical stress. In fact, as for ribbon-shaped
amorphous alloys, magnetostriction decreases linearly with
applied stress, and a change of sign can even be observed as
has been reported for the two families of microwires (Gómez-
Polo and Vázquez, 1993; Zhukov et al., 2000; Zhukov, 2006;
González et al., 2000; Neagu et al. 2001b).

4.2.2 Phenomenology of giant magnetoimpedance

The phenomenon of GMI, consists of the modification
of impedance, both real and imaginary components, of a

metallic conductor upon the action of a static magnetic field.
Although this phenomenon was first reported many years ago
(Harrison, Turney and Rowe, 1935), it did not attract much
attention until its rediscovery in the 1990s (Panina and Mohri,
1994; Beach and Berkowitz, 1994) in nonmagnetostrictive
CoFe-based in-water-quenched microwires. The most impor-
tant characteristics of GMI for microwires are: (i) that they
must show a magnetic character as soft as possible, (ii) the
largest relative changes of impedance with static field reaches
up to around 600%, and (iii) the static field required to
observe GMI is typically of the order of few units or tens of
oersted, with a maximum sensitivity of around 300% Oe−1

at very low fields. A number of review articles have been
recently published covering the different aspects of magne-
toimpedance (Knobel, Vázquez and Kraus, 2003; Vázquez,
2001b; Mohri et al., 2001). Here, we will only summarize
some interesting effects related to microwires while further
detailed information can be found in those review articles.

The common experimental method to evaluate GMI is very
simple: the impedance of a microwire is typically evaluated
through the four-points technique by which the voltage at
the ends of the microwire is measured as a function of a
low-amplitude ac current flowing along the microwire. A
modification of the impedance is then observed when the
sample is subjected to a static magnetic field. The GMI ratio
is usually defined as:

�Z

Z
=

∣∣Z(H0)
∣∣ − ∣∣Z(H0,max)

∣∣∣∣Z(H0,max)
∣∣ (14)

where the impedance Z = R + iX.
Figure 17 shows the frequency dependent GMI effect for

two as-cast amorphous microwires. The larger values of GMI
are observed for in-rotating-water microwire at frequencies
of the order of about 1 MHz or less, while glass-coated
microwires show their maxima at higher frequency of around
10 MHz (Vázquez et al., 1998; Chiriac, Ovari and Marinescu,
1998).

GMI actually depends not only on frequency but also
on a number of additional parameters characterizing the
microwire and particularly the circular magnetization pro-
cess. These factors include: (i) current flowing through the
microwire (specially, depending on whether it creates a circu-
lar field overcoming the circular coercivity, or not), (ii) alloy
composition (and consequently magnetostriction), (iii) the
actual magnetic domain structure, and (iv) thermal treat-
ments relaxing the amorphous microstructure or inducing
anisotropies. For further information on the phenomenology
of GMI the reader is referred to the review articles mentioned
earlier.
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Figure 17. Giant magnetoimpedance ratio (GMI), as a function
of static magnetic field for a range of measuring frequencies
for a CoFe nonmagnetostrictive in-rotating-water microwire (a)
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4.2.3 The skin effect and the giant
magnetoimpedance: circular permeability

The origin of GMI is related to the classical electromagnetic
skin effect (Knobel, Vázquez and Kraus, 2003; Vázquez,
2001b; Mohri et al., 2001). When an ac current of sufficient
high frequency flows along a metallic sample, it concentrates
in a thin layer at the surface as a consequence of the induced
eddy currents. The skin depth, δ, over which the current flows
is given by

δ =
√

ρ

πf µφ

(15)

which in turn determines the impedance of the sample that
can be expressed as

Z = RDC

(
ka

2

)
J0(ka)

J1(ka)
(16)

Here, Ji is the Bessel functions, and k = (1 + i)/δ. Typ-
ically, the penetration depth, δ, in metallic nonmagnetic
samples depends only on their conductivity and on the fre-
quency of the ac current. Nevertheless, in ultrasoft magnetic
materials, the skin effect is strongly enhanced through the
transverse permeability as deduced in equations (14) and
(15). The effect of the static applied field is thus simply
that of modifying the effective circular permeability of the
microwire. Actually, GMI can be regarded as a consequence
of the circular magnetization process generated by the high-
frequency ac circular field, the circular permeability can be
modified and to some extent tailored by the static magnetic
field.

Particularly, the domain structure existing in the micro-
wires determines the Z(H) profile of the impedance response
to static applied fields. Two main GMI profiles are directly
correlated with the domain structure and magnetization pro-
cess of microwires: (i) single-peak (SP) behavior consists
of a continuous decrease of GMI ratio from a maximum
nearly at zero applied field, Hmax ≈ 0, and (ii) two-peak (TP)
behavior, which maximum GMI is observed at a given static
field, Hmax �= 0. Figure 18 shows examples of each of those
behaviors. SP behavior is observed in those microwires with
an effective axial anisotropy, while TP behavior appears in
those microwires with an effective circular anisotropy which
corresponds to the field, Hmax, for which maximum GMI is
observed. The correlation between GMI shape and the cor-
responding magnetization process has been discussed further
elsewhere (Vázquez, Sinnecker and Kurlyandskaya, 1999).

4.2.4 Stress-impedance and magnetoelastic effects

Because the GMI response is determined by the circular
susceptibility, it is clear that it will be modified magnetostric-
tively by the application of mechanical stresses. A number
of works have been published concerning the influence of
applied stresses, particularly tensile and torsional stresses,
on the GMI response (Knobel, Vázquez, Sánchez and
Hernando, 1997; Li, Vázquez and Chen, 2003; Prida et al.,
2003). An example is given in Figure 19(a) for applied tor-
sion. The stress-impedance (SI) ratio, under a given applied
dc field, for any kind of applied mechanical stress, can be
defined as (

�Z

Z

)
H0

= |Z(σ)| − |Z(σ max)|
|Z(σ max)| (17)
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1999, Materials Science Forum, pp. 209.  1999.)

Additionally, GMI has also been proved to be a useful tool
to determine a number of magnetic characteristics of magne-
toimpedive samples. For example, from the dependence on
applied stress, σ , of the field, Hmax, at which maximum GMI
is observed, it is possible to derive quantitatively the magne-
tostriction of the microwire (Knobel, Vázquez, Sánchez and
Hernando, 1997) as

λs = −
(

µ0
Ms

3

) (
�Hmax

�σ

)
(18)

There is particular technological interest in the possibil-
ity of obtaining asymmetric GMI that enable a continu-
ous reading of impedance with field (Panina, 2002; Kraus,
Freit, Pirota and Chiriac, 2003). Such asymmetry can be
obtained by superimposing an additional static field, or
inducing a helical anisotropy either by applying a torque
or by mechanical torsion stress annealing (Zhukov et al.,
2000; Panina, Mohri and Makhnovskiy, 1999; Kim, Jang,
Kim and Yoon, 1999; Gómez-Polo, Vázquez and Knobel,
2001). Figure 19(b) shows the asymmetric GMI obtained
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et al., 2003, with permission from the American Institute of Physics.
 2003.) Asymmetric torsion impedance after a helical anisotropy
is induced by torsion annealing (b). (Reproduced from M. Knobel
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after current annealing under torsion for different annealing
times. It should be mentioned that particular real enhance-
ment of GMI is to be expected by suitable thermal treat-
ment and smoothening of the sample surface (Kraus, 1999).
Another characteristic of GMI is the appearance of hysteresis
as a consequence of the irreversibility in the circular magne-
tization process. Such hysteresis should be avoided as much
as possible for technological applications (Knobel, Vázquez
and Kraus, 2003; Vázquez, 2001b; Mohri et al., 2001).

4.2.5 Giant magnetoimpedance and ferromagnetic
resonance

At frequencies higher than few tens of megahertz, the
evaluation of impedance is no longer reliable by the
four-point technique due to uncertainties in parasitic and
cable impedances. To determine the effective impedance
at microwave frequencies, several experimental methods
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are employed including guided waves in cavities, the
insertion of microwires into coaxial lines for determination
of transmission coefficients, or through studies on the real
and imaginary components of permeability (Lofland, Garcı́a-
Miquel, Vázquez and Baghat, 2002; Garcı́a-Miquel, Garcı́a,
Garcı́a-Beneytez and Vázquez, 2001; Jacquart and Acher,
1996). The electromagnetic field configuration at microwave
frequencies is the same as for radiofrequencies where orthog-
onal electrical field and magnetic field are acting on the
sample, and now the impedance has to be considered as
the relation between both fields. In the microwave frequency
range, the magnetoimpedance effect has been theoretically
correlated with ferromagnetic resonance phenomena (Yelon,
Menard, Britel and Ciureanu, 1996; Melo, Menard, Ciureanu
and Yelon, 2002) where one should consider the correla-
tion between surface impedance and the skin effect. Under
particular biasing field, H0, the ferromagnetic resonance fre-
quency can be approximated by Garcı́a-Miquel et al. (2001)
and Garcı́a et al. (2000):

fr = γµ0

√
(H0 + Ms)

(
H0 − 2k

µ0Ms

)

∼= γµ0

√
Ms(H0 − Hk) (19)

where γ is the gyromagnetic ratio and Hk = 2k/µ0Ms is the
transverse anisotropy field. The resonance frequency can be
experimentally evaluated also through the scattering param-
eter S11 correlating to the incident, Pin, reflected, Pref, and
absorbed, Pabs, powers as: |S11|2 = Pref/Pin = 1 − Pabs/Pin.
As an example, Figure 20(a) shows the evolution of the square
of the scattering parameter with the frequency for a series of
increasing applied field values, allowing us to determine the
field dependence of the resonance frequency (as determined
from the minimum square scattering parameter). Figure 20(b)
shows the field dependence of the square resonance fre-
quency, following equation (19), for a series of glass-coated
microwires. Extrapolation of observed linear behavior gives
us values of anisotropy fields, while saturation magnetization
can be extracted from the corresponding slopes.

Several experiments have been performed on the corre-
lation between absorption spectra and magnetization pro-
cess for amorphous and nanocrystalline microwires (Ovari,
Chiriac, Vázquez and Hernando, 2000; Lofland et al., 1999;
Montiel et al., 2005). In these reports, the observed low-field
absorption peak has been ascribed to the magnetization rever-
sal process of the microwires. All the outstanding microwave
phenomena are actually a consequence of the so-called
NFMR, which in these glass-coated microwires appears in
this frequency range. In CoFe and Fe-based microwires
NFMR frequencies are of around 2–3 GHz and 8–12 GHz
for nonmagnetostrictive CoFe-based and magnetostrictive
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Figure 20. Evolution of the square scattering parameter, |S11|2
with the working frequency for a range of increasing applied
field values up to 700 Oe as indicated by the arrow (a). (Repro-
duced from H. Garcı́a-Miquel et al., 2001, with permission from
IEEE.  2001.) Applied field dependence of the square resonance
frequency, f 2, for a series of glass-coated microwires (b) with
compositions: (	) Co72.5Si12.5B15, (
) (Co0.94Fe0.06)72.5Si12.5B15,
(◦) (Co50Fe50)72.5Si12.5B15, (�) Fe72.5Si12.5B15. (Reproduced from
H. Garcia et al., 2000, with permission from Sociedad Española de
Cerámica y Vidrio.  2000.)

Fe-based microwires, respectively as a consequence of the
intrinsic magnetoelastic anisotropy (Baranov, Zotov, Larin
and Torkunov, 1991).

4.3 Applications based on ultrasoft behavior
and microwave absorption

4.3.1 Ultrasoft magnetic behavior and giant
magnetoimpedance

Nonmagnetostrictive CoFe-based amorphous microwires are
among the softest magnetic materials and consequently, they
can be used in a broad spectrum of sensing devices. A
first application of such wires is as magnetic tips for a
particular near field microscopy. The CoFe-based in-water-
quenched microwire is subjected to a particular chemical
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Figure 21. Sharpened microwire (a) used as magnetic tip in spin-
polarized scanning tunneling microscopy, and high sensitivity fine
structure of the domain wall in a Co sample (b). (Reproduced from
W. Wulfhekel et al., 2001, with permission from Springer-Verlag.
 2001.)

etching resulting in sharpening of the microwire end (see
Figure 21a). As an example, Figure 21(b) shows the high
sensitivity fine structure of the domain wall in a Co sam-
ple obtained in a spin-polarized scanning tunneling micro-
scope (Wulfhekel et al., 2001). An additional advantage of
these wires is the significant reduction of magnetostrictively
induced vibrations at the tip.

Nevertheless, the large number of applications where non-
magnetostrictive microwires are usefully employed include
sensing elements based on the GMI effect. They have been
extensively developed in Japan mainly around the group led
by Mohri (1994b), Mohri, Uchiyama and Panina (1997), and
Mohri et al. (2002). Most of the sensors use CMOS-type cir-
cuitry where tiny pieces of amorphous microwires (1–2 mm
long) showing GMI effect are employed as elements to sense
static field. Magnetic field sensors are characterized by low
power consumption and high low-field sensitivity (around
100% change in impedance, up to 1 nT). Several sensors,
as developed by Aichi Steels (3D magnetic field sensors,
GPS compass, etc.) (Cai, Yamamoto and Honkura, 2005 Pri-
vate Communication), are currently used in car industry or
car traffic monitoring. Other related applications include the
record of the car magnetic signature in parking places and
on moving cars (Valenzuela, Vázquez and Hernando, 1996;
Uchiyama et al., 2000).

Stress-impedance effect is being used as principle of
work in other families of sensors (Cobeño et al., 2001): in
biomedical applications as, for example, to detect cancer

tumors, biomechanical movements (as eyelid or articulator
movements (Mohri, 1994b; Mohri, Uchiyama and Panina,
1997; Mohri et al., 2002; Sonoda, 1995), or as biomolecular
labels when coated to specific antibody (Kurlyandskaya and
Levit, 2005).

4.3.2 Electromagnetic field absorption

Probably one of the most interesting technological appli-
cations of glass-coated microwires is their employment as
absorbers to the electromagnetic radiation, as has been theo-
retically studied and experimentally demonstrated (Baranov,
1998, 2003; Belozorov, Derkach and Tarapov, 2002). This is
very important for electromagnetic shielding of military and
civil vehicles, planes, and ships, in civil airports or for mobile
phones and similar technologies. These types of experiments
were already performed years ago but not well publicized.
Particularly, arrays of glass-coated microwires in suitable
dielectric matrix are most interesting for such shielding.
As can be observed in Figure 22(a), there is a broad fre-
quency spectrum for the absorption, with maximum value of
around 30 dB (equivalent to 99.9% absorption). Recent stud-
ies (Makhnovskiy, Panina and Sandacci, 2005; Makhnovskiy
et al., 2006; Acher et al., 2000) show that the microwave
behavior (i.e., scattering spectra) of this type of composite
materials based on glass-coated microwires can be suitably
tuned by relatively small applied field and mechanical stress.
This is particularly relevant for applications in remote non-
destructive evaluation of structural materials.

Finally, the potential exists to use glass-coated microwires
to develop LHMs, where the wave vector, k, the electric field,
E, and the magnetic, H , field would form a left-handed rather
than a right-handed vectors set. Such materials exhibit nega-
tive index of refraction as proposed in Veselago (1967), and
this behavior has attracted much attention owing to recent
theoretical and experimental reports (Pendry, 2000; Smith,
Pendry and Wiltshire, 2004). Particularly, such phenomenon
is predicted in the case when both permeability and permi-
tivity show negative values simultaneously, which can be
achieved in arrays of glass-coated microwires under particu-
lar conditions of frequency and field (Baranov and Vázquez,
to be published; Engelvin-Adenot, Dudek, Toneguzzo and
Acher, 2007). As shown in Figure 22(b), negative perme-
ability can be found just above the FMR frequency, which
combined with appropriate dielectric matrix would result in
an LHM.

5 NOVEL ADVANCED MICROWIRES

Until now, we have been considering microwires with amor-
phous microstructure. They exhibit outstanding properties
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derived from the out-of-equilibrium fabrication processes.
Once these rapid solidification methods have been completed,
further processing can be done to achieve extraordinary prop-
erties of interest, in particular, appreciations. In this section,
we review information on different processing methods used
to optimize some particular properties or even resulting in
a novel family of microwire material with unique magnetic
behavior. First, we analyze microwires exhibiting inhomoge-
neous structure, with a characteristic structure length of the
order of nm (e.g., either nanocrystals or grains embedded in
matrix). Later on, we consider multilayer microwires with
homogeneous characteristics within each layer.

5.1 Composite microwires

5.1.1 Nanocrystalline microwires: optimizing soft
magnetic behavior

Owing to their metastable nature, amorphous microwires
thermally treated at elevated temperature can crystallize,
which often results in drastic magnetic hardening. However,
as shown by Yoshizawa, Oguma and Yamauchi (1988)
for FeSiB amorphous alloy ribbons with small addition
of elements as Cu and Nb, a stable and homogeneous

microstructure with soft magnetic properties can be attained
after suitable thermal treatments (for detailed information,
see chapter Soft Magnetic Materials – Nanocrystalline
Alloys, Volume 4). A similar effect has been reported for
in-water-quenched microwires (Gómez-Polo et al., 1993;
Vázquez, Marı́n, Davies and Olofinjana, 1994) and glass-
coated microwires (Arcas et al., 1996; Chiriac, Ovari, Pop
and Barariu, 1997).

Microwires showing high magnetostriction exhibit bistable
behavior in their as-cast state, which is later destroyed
by the thermal treatments. Figure 23(a) shows the evo-
lution of coercivity for a Fe75Si11B10Cu1Nb3 in-water-
quenched microwire (Gómez-Polo et al., 1993; Vázquez,
Marı́n, Davies and Olofinjana, 1994), where different mag-
netic stages can be detected: (i) a first reduction after anneal-
ing up to 440 ◦C is ascribed to the relaxation of internal
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Figure 23. Annealing temperature dependence of coercivity for
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mission from the American Institute of Physics.  1994.)



26 Micro- and nanowires

mechanical stresses in the amorphous structure, (ii) annealing
near 460 ◦C results in a relative increase in coercivity, which
is ascribed to a first nucleation of Cu-rich clusters that act as
pinning centers, (iii) optimum ultrasoft behavior is obtained
by annealing at 530 ◦C when the composite nanostructure
consists of α-Fe(Si) nanograins, around 10 nm in grain size,
embedded in a residual amorphous matrix, and (iv) further
crystallization with the growth of grain size and appear-
ance of new phases (borides) with harder character results
in increased coercivity. For glass-coated microwires, a sim-
ilar evolution of coercivity is observed although at slightly
more elevated temperatures, perhaps due to a difference in
the effective temperature of the microwire owing to the pro-
tective coating (Arcas et al., 1996; Chiriac, Ovari, Pop and
Barariu, 1997).

A general expression for the coercivity considering its
proportionality with the energy stored in a wall is:

Hc ∝
√

A(3λσ + 〈Kcrys〉)
µ0Ms

(20)

Here, all λ, σ and 〈Kcrys〉 (the average magnetocrystalline
anisotropy of treated microwire) are modified by the ther-
mal treatments. The ultrasoft character is ascribed to reduc-
tion of the average anisotropy constant, 〈Kcrys〉, due to the
reduced size of nanocrystals, 10–12 nm in average, smaller
than the exchange correlation length, as well as to the sig-
nificant reduction of the magnetostriction. The evolution
of the magnetostriction with annealing temperature can be
observed in Figure 23(b). Here, the final reduction of mag-
netostriction after annealing at 540 ◦C has been ascribed to
the balance between contribution between nanocrystalline
and residual amorphous phases, while intermediate relative
increase seems to be related to first structural modifications
as mentioned previously.

It is to be mentioned that besides ultrasoft magnetic char-
acter, nanocrystalline microwires exhibit improved mechan-
ical behavior with respect to ribbon-shaped samples
(Olofinjana and Davies, 1995). Because the bistability is lost
at the optimum nanocrystalline state owing to the reduced
effective anisotropy, the most interesting issue is that of
improved magnetoimpedance behavior due to its soft char-
acter (Knobel et al., 1996). Nevertheless, optimum GMI
does not reach the results obtained with soft amorphous
microwires.

5.1.2 Nanocomposite hard and granular microwires

Whereas the amorphous state results in magnetic softening,
some different attempts have been made to prepare hard
magnetic microwires. First attempts have been done simply
by crystallizing precursors soft amorphous microwires for

the alloy compositions considered so far. This gives rise to
magnetic hardness and enhanced coercivity of the order of
100 Oe.

Later attempts have been made by adding suitable ele-
ments in order to induce magnetic hardening either by
forming new hard phases or just by enhancing pinning
mechanism of magnetization reversal (Wang et al., 1997;
Sinnecker et al., 1999; Zhukov et al., 1999). Several glass-
coated microwires containing immiscible elements have been
prepared by quenching and drawing technique followed by
thermal treatments so that final granular systems are formed.
We mention three series of alloys Fe–Co–Cr (with coercivity
of 16 kA m−1), Fe–Ni–Cu (50 kA m−1), or Co–Ni–Cu–Mn
(60 kA m−1). Some technical difficulties arise, nevertheless,
to fabricate these microwires owing to the higher temperature
required to melt such alloys as well as their high tendency
toward oxidation. Despite these works, reported values of
coercivities of several hundreds of oersted, the net magne-
tization is unfortunately significantly reduced in comparison
with that of soft phases. Latest results performed on FePt rich
microwires have allowed coercivities of around 100 kA m−1

(Badini, Torcunov, Garcı́a and Vázquez, to be published).
Finally, some recent works have been reported in granular

microwires showing that they exhibit some magnetotrans-
port properties, particularly magnetoresistance, which are of
interest for sensing applications although so far being rela-
tively modest in amplitude (Zhukov et al., 2004a,b; Zhukov,
González and Zhukova, 2005).

5.2 Multilayer microwires

Owing to the cylindrical symmetry, the preparation of mul-
tilayered microwires by adding external layers or micro-
tubes to existing wires has been studied. First, attempts were
reported in Rauscher and Radeloff (1991) where composite
microwires were prepared consisting of a soft NiFe-based
core and a hard CrCoFe shell. There, the magnetic interac-
tions between components play an important role to deter-
mine the bistable magnetic behavior of the core.

Attempts were performed by electrochemical deposition
of CoP, CoFeNi, and CoNi alloys onto Cu-rich microwires
which was used as electrode (Kurlyandskaya et al., 1999;
Vázquez et al., 2000; Sinnecker et al., 2000; Atalay and
Atalay, 2005). The objectives for fabrication of these micro-
tubes onto metallic nonmagnetic microwires were related to
their magnetoimpedance properties. Owing to the differential
conductivity and especially their permeability, the magne-
toimpedance behavior was expected to show a particular
response. In fact, quite large variations of the imaginary
component of impedance were reported (see Figure 24a).
Additionally, interest lies in the preparation technique itself
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Figure 24. Large giant magnetoimpedance (GMI), effect in a CoP
microtube electroplated onto a Cu microwire (a) (reproduced from
J.M. Garcı́a et al., 2000, with permission from the American Insti-
tute of Physics.  2000) with corresponding schematic interpreta-
tion of domains (b). (Reproduced from J.M. Garcı́a et al., 2001,
with permission from the American Institute of Physics.  2001.)

that allowed the fabrication of novel materials with non-
standard properties. Electrodeposition of outer layers to
microwires opens new possibilities for controlled behavior
such as modifiable easy magnetization axis (from radial to
in plane of the layer) depending on thickness and electro-
plating parameters. Figure 24(b) shows the domain structure
at the surface of a Co microlayer onto Cu microwire where
the existence of radial anisotropy is deduced. A correlation
between the frequency dependence of the impedance and
the penetration of the surface closure structure was found
that enabled the evaluation of the thickness of such closure
structure (Garcı́a et al., 2001).

More recently, multilayered microwire structure has been
achieved employing the two families of amorphous micro-
wires considered in previous sections as precursors and com-
bining sputtering and electrodeposition techniques. For this

purpose, a specific electrodeposition cell is to be designed
because of the particular geometry of the electroplating
(Pirota et al., 2004). Sputtering of a nanolayer by commercial
sputtering is first required in the specific case of glass-coated
microwires to provide a conducting path for electroplating.
For example, Ti, Ag, or Au layer, several tens of nanome-
ter thickness, is first sputtered onto the Pyrex-like coating.
This nanotube actually acts as an electrode for the subsequent
electrodeposition of metallic elements and alloys, magnetic
or nonmagnetic, thus obtaining a multilayered microwire.

The influence of these additional coatings on the magnetic
behavior of multilayer microwire is really impressive as is
given in Figure 25 as an example. The shape of a hysteresis
loop can be tailored for particular purposes: after just sputter-
ing a Ti nanolayer in Figure 25(a), the nearly nonhysteretic
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Figure 25. Hysteresis loops of multilayer microwires consisting
of a (CoFeNi)75Si10B15 glass-coated microwire (�) and after (
)
sputtering a 10-nm-thick Ti nanolayer (a), and for a Fe72.5Si12.5B15

glass-coated microwire (�), after sputtering a 30-nm-thick Au
nanolayer (�) and after subsequent electroplating (
) of a 14-m-
thick Ag microlayer (b). (Reproduced from K. Pirota et al., 2005,
with permission from Elsevier.  2005.)
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loop of a CoFeNi-based nonmagnetostrictive microwire, typi-
cal of a circular anisotropy becomes square denoting the axial
anisotropy ascribed to the compressive stresses induced by
the Ti nanolayer. In turn, in Figure 25(b), the square loop of a
Fe-based magnetostrictive microwire becomes finally nearly
nonhysteretic after sputtering and subsequent electroplating
two nano- and microlayers, respectively.

An interesting possibility is to obtain multiphase magnetic
microwires by suitable electroplating of magnetic material
(Pirota et al., 2005), which was recently exploited in the
production of biphase magnetic multilayer microwires. In
the case shown in Figure 26(a), the internal core is a non-
magnetostrictive ultrasoft Co-rich alloy, and the externally
electroplated microlayer consists of a magnetically harder
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Figure 26. High-field hysteresis loops for a soft/hard biphase
magnetic multilayer microwire consisting of an ultrasoft Co-
based nonmagnetostrictive glass-coated microwire, coated by an
intermediate sputtered 10-nm-thick Au nanolayer, and an outer
electroplated CoNi microlayer shell with increasing thickness (a)
(reproduced from K. Pirota et al., 2005, with permission from
Elsevier.  2005), and one branch of the low-field hysteresis loops
after premagnetizing to saturation (b). (After Torrejón, Badini,
Pirota and Vázquez, 2007.)

CoNi alloy. The hysteresis loops show the biphase hystere-
sis loop characterized by two giant Barkhausen jumps: the
first one at the very low-field region (observed at around
20 A m−1) corresponding to the magnetization reversal at
the magnetically ultrasoft Co-rich ultrasoft amorphous alloy,
while the second one is observed at higher field (of around
20 kA m−1) and is ascribed to magnetization reversal at the
external semihard CoNi microlayer.

The existence of a magnetic coupling between the soft core
and the hard layer has been recently confirmed (Torrejón,
Badini, Pirota and Vázquez, 2007). Figure 26(b) shows the
shifted low-field magnetization curves of the ultrasoft core
after premagnetizing in a saturating magnetic field for a range
of thicknesses of the electroplated hard shell. This shifting or
bias field, Hb, is parallel to the premagnetizing field direc-
tion similar to antiferromagnetic-like coupling in exchange
FM/AFM biased thin films used in spin valves. In the present
case, where the bias field depends on the geometrical charac-
teristics (i.e., length and thickness of each phase), its origin
has been ascribed to the magnetostatic field created by unbal-
anced charges at the ends of the hard layer which remains in
its remanence state after premagnetizing. A similar effect has
been found in the case of electroplating directly onto an in-
water-quenched microwire (Vázquez et al., 2006a,b, 2007;
Torrejón, Badini, Pirota and Vázquez, 2007).

The possibility of tailoring multilayer microwires is partic-
ularly interesting regarding some technological applications.
One, based on the magnetoelastic behavior of the multilayer
microwires, makes use of the mechanical stresses induced
by the new coatings and of their different magnetic response
upon temperature changes. This principle has been used
for sensitive quick-response thermal sensors (Vázquez et al.,
2001).

Other applications are based on the magnetic coupling
between phases. The field created by the hard phase can
be employed as the additional dc field required to obtain
asymmetric magnetoimpedance which is used for magnetic
field sensing. The magnetostatic bias between soft and
hard phases giving rise to a spin-valve effect, similar to
exchange coupling in planar multilayer structures, opens new
applications deriving from the cylindrical symmetry of the
multilayer microwires.

6 FINAL REMARKS

We conclude the chapter with a mention of the large
number of fields where magnetic microwires are rele-
vant, from fundamental aspects as exhibiting simple, nearly
ideal domain structure for suitable micromagnetic static and
dynamic calculations, weak-chaos behavior induced by mag-
netic interaction, or the scaling law in low-field propagating
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single-domain wall, to interesting fabrication and process-
ing techniques, to engineering materials, or to a variety of
sensor applications profiting, for instance, of their excellent
magnetoelastic or microwave properties. Present challenges
are related to the search of novel microwires with opti-
mized hard, soft, or multiphase magnetic behavior, as well
as to fabricate, in a controlled way, wires with more reduced
dimensions, that is, nanoscale diameter which is the topic of
the next chapter.
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Arcas, J., Gómez-Polo, C., Zhukov, A., et al. (1996). Magnetic
properties of amorphous and devitrified FeSiBCuNb glass-coated
microwires. Nanostructured Materials, 7, 823.

Atalay, F.E. and Atalay, S. (2005). Giant magnetoimpedance effect
in NiFe/Cu plated wire with various plating thicknesses. Journal
of Alloys and Compounds, 392, 322.

Badini Confalonieri, G.A. (2005). Thesis Vanishing magnetostric-
tion amorphous alloy wires for sensor applications, University of
Sheffield.

Badini, G., Torcunov, A., Garcı́a, K. and Vázquez, M., to be
published.

Barandiarán, J.M., Hernando, A., Madurga, V., et al. (1987).
Temperature, stress, and structural-relaxation dependence of the
magnetostriction in (Co0.94/BFe0.06)75/BSi15B10 glasses. Physical
Review B, 35, 5066.

Baranov, S.A. and Vázquez, M., Engineering microwave properties
of glass-coated microwires for radio-absorption screens. to be
published.

Baranov, S.A. (1998). Magnetic properties of an amorphous micro-
conductor in the microwave range. Technical Physics, 43, 122.

Baranov, S.A. (2003). Permeability of an amorphous microwire in
the microwave band. Journal of Communications Technology and
Electronics, 48, 226.

Baranov, S.A., Zotov, S.K., Larin, V.S. and Torkunov, A.V.
(1991). Features of natural ferromagnetic resonance in an amor-
phous microwire (in Russian). Fizika Metallov i Metallovedenie,
69, 172.

Baranov, S.A., Berzhanskii, V.N., Zotov, S.K., et al. (1989). Ferro-
magnetic resonance in amorphous magnetic wires (in Russian).
Fizika Metallov i Metallovedenie, 67, 73.

Barnett, S.J. and Kenny, G.S. (1952). Gyromagnetic ratios of iron,
cobalt, and many binary alloys of iron, cobalt and nickel. Physical
Review B, 87, 723.

Beach, R.S. and Berkowitz, A.E. (1994). Giant magnetic field
dependent impedance of amorphous FeCoSiB wire. Applied
Physics Letters, 64, 3652.

Belozorov, D.P., Derkach, V.N. and Tarapov, S.I. (2002). High
frquency absorption and magnetoimpedance of amorphous micro-
wires. Advances in Modern Radio Science, 12, 48.

Boley, B.A. and Weiner, J.H. (1990). Theory of Thermal Stresses.
Theory of Thermal Stresses, John Wiley & Sons: New York.

Cai, C.M., Yamamoto, M. and Honkura, Y. (2005). Private com-
munication. Intermag. the press.

Castaño, F., Vázquez, M., Chen, D-X., et al. (1999). Magneto-
mechanical rotation of magnetostrictive amorphous wires.
Applied Physics Letters, 75, 2117.

Catalán, C., Prida, V.M., Alonso, J., et al. (1997). Effect of
glass coating on magnetic properties of amorphous microwires.
Materials Science and Engineering A, Rapidly Quenched &
Metastable Materials, (suppl.) 438–441.

Chen, D.X., Dempsey, N.M., Vázquez, M. and Hernando, A.
(1995). Propagating domain wall shape and dynamics in iron-rich
amorphous wires. IEEE Transactions on Magnetics, 31, 781.

Chen, D-X., Pascual, L., Castaño, F., et al. (2001). Revised core-
shell domain model for magnetostrictive amorphous wires. IEEE
Transactions on Magnetics, 37, 994–1002.

Chiriac, H., Marinescu, C.S. and Ovari, T.A. (1997). Comparative
study of the giant magneto-impedance effect in CoFeSiB glass-
covered and cold-drawn amorphous wires. IEEE Transactions on
Magnetics, 33, 3349.

Chiriac, H. and Ovari, T.A. (1996). Amorphous glass-covered
magnetic wires: Preparation, properties, applications. Progress in
Materials Science, 40, 333.

Chiriac, H., Ovari, A.T. and Marinescu, C.S. (1998). Giant magneto-
impedance effect in nanocrystalline glass-covered wires. Journal
of Applied Physics, 83, 6584.

Chiriac, H., Ovari, T.A., Marinescu, S.C. and Nagacevschi, V.
(1996). Magnetic anisotropy in FeSiB amorphous glass-covered
wires. IEEE Transactions on Magnetics, 32, 4755.

Chiriac, H., Ovari, T.A., Pop, Gh. and Barariu, F. (1997). Magnetic
behavior of nanostructured glass covered metallic wires. Journal
of Applied Physics, 81, 1.

Chiriac, H., Pop, G., Barariu, F. and Vázquez, M. (1994). Magnetic
behavior of the amorphous wires covered by glass. Journal of
Applied Physics, 75, 6949.

Chiriac, H., Hristoforou, E., Neagu, M., et al. (1997). A new
magnetic field sensor based on magnetostrictive delay lines.
Sensors and Actuators, A, 59, 79.

Chiriac, H., Hristoforou, E., Neagu, M., et al. (2000). Stress
dependence of sound velocity in Fe-based amorphous wires.
IEEE Transactions on Magnetics, 36, 3436.
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Magnetoimpedance effect in CoFeNi plated wire with ac field
annealing destabilized domain structure. Journal of Applied
Physics, 85, 5438.

Larin, V.S. Torkunov, A.V., Panina, L.V., et al. (2002). Micro wires
and a process for their preparation. UK Patent GB0108373.2.

Li, Y.F., Vázquez, M. and Chen, D-X. (2003). Torsion-dependent
magnetoimpedance in FeCuNbSiB nanocrystalline wires with
vanishing or transverse anisotropy. Journal of Applied Physics,
93, 9839.

Liu, J., Malmhäll, R., Arnberg, L. and Savage, S.J. (1990).
Theoretical-analysis of residual-stress effects on the magne-
tostrictive properties of amorphous wires. Journal of Applied
Physics, 67, 4238.

Lofland, S.E., Baghat, S.M., Garcı́a-Beneytez, J.M., et al. (1999).
Low field microwave magnetoimpedance in amorphous micro-
wires. Journal of Applied Physics, 85, 4442.

Lofland, S.E., Garcı́a-Miquel, H., Vázquez, M. and Baghat, S.M.
(2002). Microwave magnetoabsorption in glass-coated amor-
phous microwires with radii close to skin depth. Journal of
Applied Physics, 92, 2058.

Luna, C., Raposo, V., Rauscher, G. and Vázquez, M. (2002).
AC Magnetic field-induced rotation in levitating magnetostrictive
wire. IEEE Transactions on Magnetics, 38, 3180.

Luna, C., Raposo, V. Garshelis, I. et al., (2003). Inducing rotation
and levitation in magnetostrictive wires and rods. Sensors and
Actuators A, 106, 274.

Madurga, V. and Hernando, A. (1990). Radial stress-distribution
generated during rapid solidification of amorphous wires. Journal
of Physics: Condensed Matter, 2, 2127.

Makhnovskiy, D.P., Panina, L.V. and Sandacci, S.I. (2005). Field
and Stress -Tuneable Microwave Composite Materials Based on
Ferromagnetic Wires. In Progress in Ferromagnetism Research,
Murray, V.N. (Ed.), Nova Science Publishers: Hauppauge.

Makhnovskiy, D.P., Panina, L.V., Garcı́a, C., et al. (2006). Experi-
mental demonstration of tunable scattering spectra at microwave
frequencies in composite media containing CoFeCrSiB glass-
coated amorphous ferromagnetic wires and comparison with the-
ory. Physical Review B, 74, 064205.

Malmhäll, R., Mohri, K., Humphrey, F.B., et al. (1987). Bistable
magnetization revehersal in 50-mum diameter annealed cold-
drawn amorphous wires. IEEE Transactions on Magnetics,
23, 3242.

Masumoto, T., Ohnaka, I., Inoue, A. and Hagiwara, M. (1981).
Production of Pd-Cu-Si amorphous wires by melt spinning
method using rotating water. Scripta Materialia, 15, 293.

Melo, L., Menard, D., Ciureanu, P. and Yelon, A. (2002). Influence
of surface anisotropy on magnetoimpedance in wires. Journal of
Applied Physics, 92, 7272.

Meydan, T. and Elshebani, M.S. (1992). Displacement transducers
using magnetostrictive delay-line principle in amorphous materi-
als. Journal of Magnetism and Magnetic Materials, 112, 344.

Mitra, A. and Vázquez, M. (1990). Stress-Dependent and annealing-
dependent magnetic-properties of amorphous wires. Journal of
Physics D: Applied Physics, 23, 228.

Mohri, K. (1994a). Review on recent advances in the field of
amorphous-metal sensors and transducers. IEEE Transactions on
Magnetics, 20, 942.

Mohri, K. (1994b). Aplication of amorphous magnetic wires to
computer peripherals. Materials Science and Engineering A,
185, 141.

Mohri, K., Humphrey, B.B., Yamasaki, J. and Okamura, K. (1984).
Jitter-less pulse-generator elements using amorphous bistable
wires. IEEE Transactions on Magnetics, 20, 1409.

Mohri, K., Uchiyama, T. and Panina, L.V. (1997). Recent advances
of micro magnetic sensors and sensing application. Sensors and
Actuators, A, 59, 1.

Mohri, K., Kohzawa, T., Kawasima, K., et al. (1992). Magnetoin-
ductive effect (MI effect) in amorphous wires. IEEE Transactions
on Magnetics, 28, 3150.

Mohri, K., Uchiyama, T., Shen, L.P., et al. (2001). Sensitive micro
magnetic sensor family utilizing magneto-impedance (MI) and
stress-impedance (SI) effects for intelligent measurements and
controls. Sensors and Actuators, A91, 85.

Mohri, K., Uchiyama, T., Shen, L.P., et al. (2002). Amorphous wire
and CMOS IC-based sensitive micromagnetic sensors utilizing
magnetoimpedance (MI) and stress-impedance (SI) effects. IEEE
Transactions on Magnetics, 38, 3063.

Montiel, H., Alvarez, G., Betancourt, I., et al. (2005). Correlations
between low-field microwave absorption and magnetoimpedance
in Co-based amorphous ribbons. Applied Physics Letters, 86,
072503.

Nakatani, Y., Thiaville, A. and Miltat, J. (2003). Faster magnetic
walls in rough wires. Nature Materials, 2, 521.

Navarro, E., Garcia-Beneytez, J.M., Vázquez, M. and Hernando, A.
(1996). Bifurcations in highly magnetostrictive amorphous wires.
Journal of Applied Physics, 79, 9231–9235.

Neagu, M., Chiriac, H., Hristoforou, E., et al. (2001a). Domain wall
propagation in Fe-rich glass covered amorphous wires. Journal
of Magnetism and Magnetic Materials, 226–230, 1516.

Neagu, M., Chiriac, H., Vázquez, M., et al. (2001b). Saturation
magnetostriction of Co-rich glass-covered amorphous wires.
Journal of Magnetism and Magnetic Materials, 254, 472.

Nielsen, O.V. (1985). Effects of longitudinal and torsional stress
annealing on the magnetic anisotropy in amorphous ribbon
materials. IEEE Transactions on Magnetics, 21, 2008.

Nixdorf, J. (1967). Ein neues Verfahren zur Herstellung dünner
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1 INTRODUCTION

Nanoscale arrays of ferromagnetic materials have an exciting
future in a wide range of applications, including magnetic
storage and nanoelectromechanical systems (NEMS) sen-
sors and actuators. The motivation for studying nanowire
arrays is that they hold much promise in fast-moving tech-
nologies such as magnetic storage. In addition, nanowire
arrays inherently provide a high density of sensors, which

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

will enable completely new applications, such as com-
pact, high-bandwidth NEMS sensors. Several of these
applications are discussed in this introduction, but the
principles can be applied to many other important
technologies.

One of the best examples of a fast-moving technology
is magnetic storage, which has played a key role in the
development of information technology since IBM built the
original hard disk drive, known as random access method of
accounting and control (RAMAC), in 1956. RAMAC had an
areal density of 2 kbit in.−2 and stored 5 MB of information
on 50 24-in. disks. From 1956 to 1991, the areal density
progressed at an average rate of 23% per year. After 1991, the
annual increase in storage density for commercially available
hard disks increased to 60%. By 2006, IBM was selling
2.5-in. hard disks with areal densities of 30 Gbit in.−2, and
a number of companies had demonstrated densities ranging
up to 120 Gbit in.−2 in their laboratories. If nanowire arrays
were used as perpendicular magnetic storage media (O’Barr
et al., 1997; Ross et al., 1999), an areal density of about 1
Tbit in.−2 could be achieved using a hexagonally arranged
array of nanomagnets with a lattice constant of about 25 nm
(Figure 1; see also Section 7).

Nanowire arrays can be fabricated more cost-effectively
by electrodeposition into nanoporous templates than by tra-
ditional fabrication methods, such as nanopatterning using
focused ion beam or electron-beam lithography (Routke-
vitch et al., 1996). Moreover, these arrays of magnetic
nanowires can be easily fabricated over areas of sev-
eral square centimeters. Although a variety of nanoporous
templates are reviewed here, hexagonally arranged porous
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Figure 1. Principle of a conventional magnetic media based on
longitudinal thin films and the principal of a patterned magnetic
media based on single-domain nanowires.

alumina templates are most important for the following dis-
cussion on nanowire arrays.

Since 1975, numerous articles on disordered porous alu-
mina templates filled with ferromagnetic materials have
been published (Kawai and Ueda, 1975; Kaneko, 1981;
Almawlawi, Coombs and Moskovits, 1991; Feiyue, Met-
zger and Doyle, 1997; Strijkers et al., 1999; Zeng et al.,
2000). These structures had large distributions in both their
pore sizes and their interpore spacings, and the degree
of pore filling was usually not specified in the litera-
ture. On the basis of an approach by Masuda and Fukuda
(1995) (see also Section 3), several groups have obtained
ordered porous alumina arrays with sharply defined pore
sizes and interpore spacings using two-step electrochem-
ical anodization of aluminum (Li et al., 1998; Nielsch
et al., 2002a; Stadler et al., 2005). Using this technique,
the pores had excellent short-ranged order, leading to a
polydomain structure where typical domain sizes were
on the microscale. Monodomain pore arrays have also
been obtained by electron-beam lithography (Li, Müller
and Gösele, 2000) and nanoimprint techniques (Masuda

et al., 1997; Tan, 2005; Stadler et al., 2005; McGary et al.,
2006).

The first attempts at developing metal-filled alumina
membranes for magnetic media were made by a Japanese
company in the middle 1970s (Kawai and Ueda, 1975;
Kaneko, 1981). At that time, disordered membranes were
used and information was stored like conventional media
(1 bit ≡ 10–100 magnetic wires). At the turn of the century,
two major Japanese companies (Canon and Fujitsu Tech-
nology) restarted research activities on the development of
a high-density magnetic media based on perfectly ordered
alumina membranes with the hope of obtaining patterned
magnetic media with a storage capacity in the terabits per
square inch range, where each magnetic nanowire could be
addressed and store 1 bit of information.

In sensor applications, clusters of nanowires have often
been used in order to make contact between the wires
and microfabricated electronics (Lindeberg and Hjort, 2003).
Track-etched, templated Ni nanowire clusters have been used
in this way to measure magnetoresistance (MR) as high as
1% (�R/R) caused by a strong field (7 kOe). Because of the
potential of individual nanowire sensors, many groups have
made magnetic nanowires and are studying the magnetic
properties of the wires as a function of size, template,
composition, temperature, and external fields (Liu, Wang,
Yan and Xue, 2004; Chiriac, Moga, Urse and Ovari, 2003;
Nielsch et al., 2002b,c; Skomski, 2003; Kelcher, Park, Yoo
and Myung, 2005). Magnetotransport in Bi nanowires has
also been studied at low temperatures (Zhang et al., 1998).
In addition to the cluster measurements, copolymer templates
have been made with sufficiently spaced wires to allow
MR measurements of single wires at a time (Gravier et al.,
2004).

However, for some innovative sensor applications, such as
artificial cilia transducers which mimic the cilia in the ear,
it is essential to have dense arrays of parallel wires that are
perpendicular to the substrate (Figure 2a). This requirement
is also present in magnetic random access memory in order to
achieve high density (each bit a single nanowire) combined
with thermal stability (Figure 2b). For applications like these,
template-based nanomagnets are the best option.

This article discusses several templates that can be used
in the fabrication of nanomagnet arrays in Section 2, with
an emphasis on nanoporous anodic alumina. Next, two
methods for the fabrication of nanomagnets are explained
in Section 3. The magnetic properties of Co, Ni, and
permalloy nanowires arrays are described in Section 4,
followed by some modeling results of these properties in
Section 5. Sections 6 and 7 present arrays with perfect large-
scale order and some key applications. Finally, a summary of
the fundamentals presented here is given in the concluding
remarks.
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Figure 2. Schematics of acoustic and magnetic sensors based on
magnetic nanowire arrays.

2 GENERAL SYNTHESIS TECHNIQUES
FOR MAGNETIC NANOWIRE ARRAYS

Although this chapter primarily focuses on fabrication using
anodic alumina templates, several nanoporous templates can
be used to make nanowires. Self-assembled nanoporous tem-
plates include both anodic alumina and diblock copolymers.
Another template involves pores that are defined inside cer-
tain polymers using ion tracks. Once a nanoporous template
is obtained, nanowires can be grown inside the pores via
electrochemical deposition. If the nanowires are grown to
extend out of the pores, the exposed sides will induce lateral
growth, which may be undesirable. For example, in many
applications, the nanowires are removed from their template,
and lateral outgrowths on the surface will inhibit the tem-
plate etching. In magnetic nanowires, outgrowth will also
alter the measured magnetic properties of the sample, such
as anisotropy.

For completeness, the reader should be aware that there
are several other methods of growing nanowires that do
not involve templates, including fabrication of individual
nanowires via step-edge decoration (Petrovykh, Himpsel and
Jung, 1988; Tokuda et al., 2004), aqueous growth using elec-
trical fields (Cheng, Gonela, Gu and Haynie, 2005), and the

vapor–liquid–solid technique (Morales and Lieber, 1998).
Also, in addition to the ‘bottom-up’ approaches of self-
assembly discussed here, some experimentalists have fabri-
cated ferromagnetic nanowires using ‘top-down’ approaches
such as lithography. Although some interesting studies on
ferromagnetic nanowires fabricated this way have been
reported (Florez, Krafft and Gomez, 2005; Dumpich, Krome
and Hausmanns, 2002; Castano et al., 2002), the nanowires
are strictly limited to parallel configurations with the sub-
strate in order to obtain high aspect ratios (10–100). There-
fore, two-dimensional arrays, such as those discussed here,
are not possible.

The most common nanoporous templates are discussed in
detail below, including anodic aluminum oxide, selectively
etched block copolymers, and ion-track-etched polymers.
Another template that is less common involves phase-
separated Al–Si alloys from which the Al has been etched
(Fukutani, Tanji, Motoi and Den, 2004).

2.1 Anodic alumina templates

The main advantage of anodic alumina nanoporous templates
is that the nanopores can be made to self-assemble strictly
parallel to each other and perpendicular to the substrate
(Figure 3), using a two-step anodization process that was
developed initially by Masuda and Satoh (Masuda and
Fukuda, 1995; Masuda, Tanaka and Baba, 1990). The pores
are grown inside an oxide that forms during the anodization
of either Al foil or Al films for integrated nanopores (Rabin
et al., 2003). The process of anodization involves applying

Nanopores

Sputtered
thin-film contact

U of MN SEl 1.5 kV ×33 000 100 nm WD 6 mm

Figure 3. As seen in this fractured side view of anodic alumina
nanopores, the pores are strictly parallel to each other. A Cu contact
has been sputtered onto one side for electrodeposition of wires into
the other side of the pores.
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(a)

1 µm

(b)

1 µm

Al2O3

Al

Figure 4. Self-assembled anodic alumina nanopores with typical
short-range order: (a) Al surface after first oxide is etched away
and (b) top of oxide after second anodization.

a voltage to a clean, smooth surface of aluminum while
exposing it to an acid. The pores appear to form owing to
mechanical stresses in the thickness-limited passive oxide
that grows as a result of the anodization (Li et al., 1998).
The pore ordering occurs at the oxide/Al interface, so the
electrolyte/oxide interface, or top interface, will be less
ordered than the bottom interface in self-assembled pores.
Also, the bottom of the as-grown pores will be closed off by
the passive oxide layer, which is called the barrier layer.

The two-step process (Masuda and Fukuda, 1995; Masuda,
Tanaka and Baba, 1990) involves an initial, long anodization
(∼16 h) to establish order at the oxide/metal interface. This
nanoporous oxide is then etched away, leaving a clean Al

(a)

(b)

(c)

(d)

Al

Al oxide
Al

Figure 5. Process for directed self-assembly of nanopore arrays by
nanoimprint method: (a) master stamp with ordered array of posts,
(b) molding on the Al using an oil press, (c) patterned Al sheet, (d)
anodization and growth of high-order nanopore arrays.

substrate that is textured where the bottoms of the now-
etched nanopores had been (Figure 4a). A second oxide is
then grown under the same conditions, and the new pores
form at the already organized sites of the first anodization
because of variations in mechanical stress at the textured Al
surface (Figure 4b). These nanopores are parallel to each
other since they will grow at the same location from top to
bottom.

The dimensions of the nanoporous arrays are determined
by the temperature of the electrochemical bath, the choice
of electrolyte, and the voltage. The latter two parameters are
especially important, and it has been shown that the interpore
spacing (a) varies linearly from 10 to 500 nm with applied
voltage (V ) from 5 to 195 V according to

a(nm) ∼ −b + mV (V ) (1)

where researchers have found values of b and m to be in
the range of 0–1.7 and 2.5–3, respectively (Li et al., 1998;
Cobian, 2004). Sulfuric acid is the common electrolyte for
a less than 30 nm, oxalic acid is used for 30 < a < 70 nm,
and phosphoric acid is used for a > 100 nm. Pore diameters
are typically a third to a half of the interpore spacings.
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Figure 6. Atomic force micrograph of Si3N4 posts defined by electron-beam lithography for use as an imprint nanostamp.

With self-organization, the nanopores are hexagonally
ordered with short-range order (Figure 4) (Tan, 2005; Stadler
et al., 2005). However, a mechanical texture to the surface
of the aluminum prior to anodization can be introduced
to encourage long-range order (Figure 5). This has been
done either by direct nanolithography and etching of the
Al surface (Li et al., 1998) or by imprinting the Al with
lithographically defined stamps of either SiC (Masuda et al.,
1997; Masuda, Nishio and Baba, 1993) or Si3N4 (Stadler
et al., 2005; Nielsch et al., 2003; Choi et al., 2003). Figures
6–8 show atomic force micrographs of a nitride stamp and an
imprinted Al surface, and an scanning electron microscopy
(SEM) photo of the resulting pores with long-range order,
respectively (Tan, 2005; Stadler et al., 2005; McGary et al.,
2006). Another stamp, and the resulting array of perfectly
ordered Ni nanowires, is described in Section 6.

After growing the nanopores, the barrier layer is etched
in phosphoric acid and a metallic contact is deposited on
one side for electrodeposition of metal into the other end of
the pores, Section 3.1. However, the barrier oxide presents a
difficulty when trying to integrate nanowires onto convenient
substrates, such as Si or glass (Rabin et al., 2003). Some
researchers have tried to etch the whole sample in phosphoric
acid, but the pores widened and lost their shape when the
barrier layer was being removed. For short pores, for example
those used for nanopattern transfer, the barrier layer can
be removed by reactive ion etching with an inductively
coupled plasm head (Zou, Qi, Tan and Stadler, 2006). This

technique combines the speed of reactive ion etching (RIE)
with the directionality of ion milling (Horst et al., 1997).
Alternatively, electrodeposition techniques have also been
used with a thinned barrier layer, see Section 3.2. In this
case the barrier layer was not removed, but by an exponential
reduction of the anodization potential over time the barrier
layer was thinned down to less than 5 nm and dendrite pores
were formed at the pore bottoms.

2.2 Diblock copolymer templates

Diblock copolymer membranes are an alternative to anodic
alumina templates. Their advantages include the lack of a
barrier layer and the ease of dissolution of the template to
expose the wires, if desired for a specific application. How-
ever, the possible diameters (14–50 nm with a = 24–89 nm)
are limited, and they are more difficult to align completely
perpendicular to the substrate for subsequent electrodeposi-
tion of nanowires.

Diblock copolymers have two different types of poly-
mers (e.g., polystyrene and polymethylmethacrylate) that are
attached at one end (Xu et al., 2001; Gates, Mayers, Cattle
and Xia, 2002; Thurn-Albrecht et al., 2000). Close-packed
arrays can be achieved when the ratio of the minor to the
major component is 0.3:0.7, then the minor phase is removed
to make a nanoporous membrane (Olayo-Valles et al., 2005;
Guo et al., 2006). An electric field can be used to help
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Figure 7. Atomic force micrograph of a polished Al surface that has been imprinted using a nanostamp.

1 µm

Figure 8. Scanning electron micrograph of nanopores that grew
inside the oxide as an imprinted Al surface was anodized. The
stamp was used to induce long-range order.

align the columns perpendicular to the substrate using surface
charges between the blocks (Morkved et al., 1996; Amund-
son et al., 1994). However, the substrate can introduce com-
peting interfacial interactions that encourage the cylindrical
nanodomains to align parallel to the substrate if the voltage is
not above a specific threshold (Thurn-Albrecht, DeRouchey,
Russell and Jaeger, 2000).

Interestingly, nanowires can be grown directly by phase
separation of a mixture of metal salt and polymer, but they

will not be aligned. Au nanowires have been embedded
directly into poly(ethylene oxide)–poly(propylene oxide)–
poly(ethylene oxide) block copolymer by mixing gold salt
(HAuCl4) into the block copolymer medium and reducing
the salt via UV irradiation and thermal reduction (Kim
et al., 2004). Variations of styrene and vinylpyridine diblock
copolymers have produced cylindrical nanostructures which
have either been coated with metals or semiconductors or
have been filled with metals through photoreduction (Fahmi,
Braun and Stamm, 2003; Djalali, Li and Schmidt, 2002).

2.3 Etched ion-track templates

Nanowires can also be grown in ion tracks that have
been etched in polycarbonate (Whitney, Jiang, Searson
and Chien, 1993; Ferain and Legras, 1997; Schonenberger
et al., 1997; Mbindyo et al., 2002; Dauginet-De Pra, Ferain,
Legras and Demoustier-Champagne, 2002; Attenborough
et al., 1995; Valizadeh, George, Leisner and Hultman, 2002).
This technique produces a lower density of nanopores, even
down to a single nanopore (Enculescu et al., 2003; Chtanko,
et al., 2004; Toimil Molares et al., 2003), so that single
wires can be measured. For this, 10–50-µm-thick polymer
membranes are irradiated with heavy ions, such as Ar, Xe,
Au, or Pb, with energies of 8–12 MeV/nucleon for single-
ion tracks or 0.2–2 GeV with fluences between 106 and 109

ions/cm2 for multiple tracks. The tracks left by the ions can
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then be chemically etched in aqueous NaOH, sometimes
after UV irradiation, to make pores as small as 15 nm.
Occasionally, the polycarbonate membrane is spun-coated
onto a substrate for convenient integration (Dauginet-De Pra,
Ferain, Legras and Demoustier-Champagne, 2002), but the
resulting pores tend to be conically shaped.

3 PREPARATION OF MAGNETIC
NANOWIRES

Two approaches will be presented for the electrodeposi-
tion of magnetic nanowires in alumina membranes. First,
electroplating directly onto a metallic electrode will be dis-
cussed where the barrier layer at the bottom of the pores
has been removed. Second, a pulsed plating technique will
be described in which the nanowires can be grown onto a
thinned barrier layer.

3.1 Deposition directly onto contact electrodes

Once the nanoporous templates discussed above are fab-
ricated, electrochemical deposition is the best method for
nanowire growth due to the high aspect ratios involved. For
direct deposition, the barrier oxide at the bottom of the pores
is removed by floating the template on phosphoric acid with
the bottom down in order to avoid pore widening. A con-
tact film can then be sputtered onto one side of the template,
but care must be taken that the film covers up the pores.
Sometimes, rf sputtering can yield films that penetrate the
pores a short distance, and they will not provide good elec-
trical contact for growing wires. The use of oblique-angle
sputtering can provide a solution. Films of copper, silver,
gold, or any metal can be used, but precious metals usually
require a thin initial coating of Ti or Cr to provide adhe-
sion to the nanoporous oxide because of the high surface
energetics. Contact-coated nanopores are submerged into an
electrolyte containing metal ions and a voltage is applied that
is sufficient to reduce the ions (Figure 9). The back of the
sample is insulated so that only the contact at the bottom of
the nanopores is exposed to the electrolyte, and wires grow
as the metal reduces there.

The nanowires grow most evenly using potentiostatic
deposition, where a constant voltage is applied to the
electrode with respect to a reference electrode that is placed
in close proximity to the working surface. This voltage
must be less than the reduction potential of the metal, and
overpotentials (η) increase current density (J ) according to
Erying’s equation:

J = nFA
(
COe−αnFη/kBT − CRe(1−α)nFη/kBT

)
(2)

Power

Voltage
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electrode
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electrode

…
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…

Figure 9. Schematic of electrodeposition apparatus used to grow
nanowires inside templates.
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Figure 10. A plot of the current density versus growth time for
potentiostatic electrodeposition of nanowires. The schematics show
the progress of the growth of the nanowires with time.

where F is Faraday’s constant, A is the electrode area, α

is an empirical constant, kB is Boltzmann’s constant, and
T is the temperature. The deposition rate is proportional
to J , so it will scale exponentially with overpotential, so
this overpotential can dramatically affect the resulting mor-
phology, for example, grain size (Paunovic and Schlesinger,
1998). Also, the current density can be monitored during the
growth in order to reach the desired lengths of the nanowires
(Figure 10).

The most common electrolyte is a Watts bath, which
is composed of metal sulfates and boric acid (a Lewis
acid) to control the pH both in the bulk electrolyte and
at the working surface. A typical recipe for Ni nanowires
is 26 g l−1 nickel sulfate heptahydrate, 45 g l−1 boric acid
(using −1.5 V vs a Ag/AgCl reference electrode at room
temperature (RT) and sonication). For Fe nanowires, 80 g l−1



8 Micro- and nanowires

FeSO4 · 7H2O, 30 g l−1 H3BO3 can be used, and a new mag-
netostricitve alloy, Fe1−xGax or Galfenol, can be obtained
by adding 25 g l−1 Ga2(SO4)3 · 18H2O. Voltages of −1 to
−1.5 V versus Ag/AgCl can be used at RT with sonica-
tion, and sometimes complexing agents are added to the
electrolyte (McGary, 2006). For growth of alloy nanowires,
the overpotential for the two constituents will be different
at a specific growth voltage. This is a good thing when one
wants to control composition according to equation (2) using
the standard reduction potentials. However, for nanowires,
it can lead to great variations in nanowire composition as
the wire grows closer to the reference electrode. Therefore,
somewhat dilute electrolytes can be advantageous (McGary,
2006). X-ray diffraction (XRD) has shown that these bcc
metals grow with the [110] direction parallel to the wire
axis, and energy dispersive spectroscopy (EDS) or wave-
length dispersive spectroscopy (WDS) can be used to study
compositional variations along the wires.

A typical bath for Co nanowires is 75–250 g l−1 CoSO4

with 0–50 g l−1 H3BO3 and sometimes NaOH is used to
adjust the pH (3.3–6.5) (Cobian, 2004). As discussed in
Section 4, the crystallography of several electrodeposited
metals, especially hcp Co, has been shown to be depen-
dent on pH. A high pH yields wires with the c axis par-
allel to the wire axes and low pH yields wires with the
c axis perpendicular to the wire axes, as shown by XRD
and ferromagnetic resonance (Cobian, 2004; Darques, Enci-
nas, Vila and Piraux, 2004). This makes titration and the
choice of whether to use Lewis acids matters of importance
because the magnetocrystalline anisotropy of Co is large.
Finally, for Co/Cu multilayered nanowires, 250 g l−1 CoSO4

and 12.5 g l−1 CuSO4 can be used. The reduction potential
of copper (+0.14 V vs Ag+/AgCl) is much higher than the
reduction potential of cobalt (−0.48 vs Ag+/AgCl). There-
fore a dilution of Cu2+ in the bath enables deposition of
Co primarily at more negative overpotentials and Cu primar-
ily at potentials between the standard reduction potentials.
The optimal potentials for depositing cobalt and copper were
determined by cyclic voltammetry to be −1 and −0.5 V,
respectively (Cobian, 2004; Tan and Stadler, 2006). For the
thin multilayers required to produce MR (1–20 nm), trans-
mission electron microscopy (TEM) must be used to analyze
the layers (Tan and Stadler, 2006).

3.2 Pulsed electrodeposition on the oxide barrier

As mentioned above, the alumina membranes can be pre-
pared via a two-step anodization process (Figure 11). When
depositing wires without removing the barrier layer (e.g.,
for integrated templates), the quality and homogeneity of
the deposition process has been significantly improved by

 Metal filling

Me+electrolyte

Ni

ton ton
toff

C
ur

re
nt

Time

(e)

Thinning of the barrier layer

(d) 

 Second anodization

(c)

Prestructured aluminum substrate

(b)

 First anodization

(a)

Figure 11. Schematic diagram demonstrating the fabrication of a
highly ordered porous alumina matrix and the preparatory steps
necessary for the subsequent filling of the structure. The Al substrate
was prestructured by a long-time anodization and by removing the
oxide (a,b). A second anodization step yielded a highly ordered
alumina pore structure (c). The barrier layer was thinned and the
pores were widened by isotropic chemical etching (d). To thin
the barrier layer further, two current-limiting anodization steps
followed, with dendrite pores forming at the barrier layer. Pulsed
electrodeposition of nickel in the pores is shown in (e).

thinning the barrier layer (Figure 11d). This thinning is done
by chemical pore widening and by current-limited anodiza-
tion (Nielsch et al., 2000a). Firstly, growth electrolyte (oxalic
acid) is heated to 30 ◦C to decrease the thickness of the bar-
rier layer and to widen the pores chemically. After 3 h, the
barrier layer is decreased from 45 to 30 nm and the mean pore
diameter is increased from 30 nm to approximately 50 nm.
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Figure 12. (a) Sketch of the magnetic structure. Nickel nanowires
are arranged in a hexagonal array perpendicular to a silicon substrate
and embedded in an aluminum oxide matrix. (b) Top-view SEM
micrograph of a nickel-filled alumina matrix, with an interpore
distance of 105 nm, fixed on a silicon substrate. The Ni columns
have a diameter DP = 35 nm and a length of ∼700 nm.

Afterward, the electrolyte is cooled down to 2 ◦C to inter-
rupt the widening process. Secondly, the structure is anodized
twice for 15 min using constant-current conditions of 290 and
135 mA cm−2, respectively. During these anodization steps,
the anodization potential decreases and the pores branch out
at the formation front such that the thickness of the barrier
layer is significantly reduced. Finally, the anodizing potential
reaches 6–7 V, which corresponds to a barrier oxide thick-
ness of less than 10 nm (Figure 11d) (Nielsch et al., 2000a).

Ferromagnetic materials can then be electrodeposited from
aqueous electrolytes at the pore tip of these high-aspect-
ratio porous templates (Figure 11e). A highly concentrated

Watts-bath electrolyte is used to achieve a high concentration
of metal ions in each pore. For example, a typical recipe
for a nickel electrolyte is 300 g l−1 NiSO4 · 6H2O, 45 g l−1

NiCl2 · 6H2O, 45 g l−1H3BO3, pH = 4.5, T = 35 ◦C (Nielsch
et al., 2000a,b). The typical electrolyte for a cobalt deposition
is similar, except that it contains Co salts and has a pH
of 4.3 (Nielsch et al., 2000a,b). Frequently, an alternating
current (AC) signal is used for the deposition (Almawlawi,
Coombs and Moskovits, 1991; Feiyue, Metzger and Doyle,
1997; Choi et al., 2003; Nielsch et al., 2000a) when a porous
alumina structure is kept on its aluminum substrate for the
filling process. The metal is directly deposited onto the nearly
insulating oxide barrier layer at the pore tips. It has been
demonstrated that a pulsed electrodeposition (PED) is more
suitable for a direct and homogeneous filling of the porous
alumina structures, as described briefly in the following text
(Nielsch et al., 2002a).

Nielsch found that pore filling was based on modulated
pulse signals in the milliseconds range. During a relatively
long pulse of negative current (8 ms, Ipulse = −70 mA cm−2),
metal was deposited in the bottom of the pore (Nielsch
et al., 2002a). The measured voltage varied between –8 and
–12 V. After the deposition pulse, a short pulse of positive
polarization (2 ms, Upulse = +4 V) followed to interrupt the
electric field at the deposition interface immediately. A rel-
atively long break time (0.3–1 s) was allowed between the
deposition pulses to refresh the ion concentration at the depo-
sition interface, to let the deposition by-products diffuse away
from the pore bottoms, and to ensure a stable pH in each
pore during the deposition. Consequently, the delay time toff

improved the homogeneity of the deposition. For the depo-
sition of nickel toff = 990 ms was selected. The deposition
continued until the nanowires began to grow out of the pores.

For the characterization of these metal-filled templates
(Figure 12a) and their magnetic properties, the tips of the
nanowires closest to the substrate must be removed. To do
this, the top of the template structure is fixed to a silicon
substrate by conducting glue. Next, the aluminum substrate
is removed by a saturated solution of HgCl and the structure
is turned upside down. After removing ∼200 nm from the
top of the sample using a focused ion beam, the top ends of
the nanowires become visible at the surface and a relatively
smooth surface can be obtained.

As an example, Figure 12(b) shows an SEM image of
a nickel sample with a nanowire diameter of 35 nm and
a 105-nm interpore distance (Nielsch et al., 2000a). Fer-
romagnetic nanowires (white) with a monodisperse diame-
ter were embedded in the porous alumina matrix (black).
Because of the self-organization process, the nanowires were
arranged in a hexagonal pattern. Nearly 100% pore filling
was obtained for all of the samples, demonstrating that the
metallic filling extended over the whole length of the pores.
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The crystallinity of these samples was further analyzed by
XRD. From the 2θ scan, the average crystallite size was
estimated using the Scherrer equation for round particles,
yielding an average grain size DGr = 10–15 nm. Analysis
by transmission electron microscopy has been performed on
individual Ni nanowires that have been released from the
alumina matrix by selective chemical etching. The nanowires
consist of nanocrystallites of between 20 and 100 nm most
of which have tetrahedral shapes, a face-centered cubic (fcc)
lattice, and preferential 〈110〉 orientation perpendicular to the
nanowire axis (Nielsch et al., 2001). Before magnetic char-
acterization, the nanowire arrays embedded in the alumina
matrix were transferred onto a silicon substrate and the den-
drite structure of the magnetic nanowire was removed by ion
bombardment (Nielsch et al., 2002c).

4 MAGNETIC PROPERTIES OF
MAGNETIC NANOWIRE ARRAYS

Although many magnetic materials have been grown in
nanoporous templates, the following discussion focuses on
Co, Ni, and permalloy in order to review several differ-
ent aspects of magnetic nanowires. In particular, magnetic
anisotropy is best studied using Co because the crystallo-
graphic and shape anisotropies are comparable. Controlling
coercivity is particularly interesting in Ni and permalloy.
These chosen properties are interesting for applications in
sensors and recording applications, respectively, but they also
give the reader a sense of what properties are present in
magnetic nanowires for many applications.

4.1 Arrays of cobalt nanowires

Cobalt is an especially interesting ferromagnetic material
for nanowires because it has a large magnetocrystalline
anisotropy. In fact, when comparing energy densities, this
anisotropy (Ku = 4.1 × 105 J m−3) is comparable to the
magnetostatic shape anisotropy (µ0M

2
s /2 = 1.3 × 106 J m−3)

(O’Handley, 2000). Therefore, aligning the c axis of the unit
cell parallel and perpendicular to the wire axis enables con-
trol of a variety of interrelated magnetic properties, such as
effective anisotropy, coercivity, and remanent magnetization.

This crystallographic alignment can be controlled using
deposition parameters such as the pH of the solution, includ-
ing the local pH at the growth surface, the deposition rate,
applied magnetic fields, and the nanowire size. For example,
Co will deposit in either the fcc or hcp phase depending on
pH, where very low pH (<2.3) yields fcc (Cobian, 2004).
Crystallographic alignment of magnetic hcp cobalt has been
shown through the use of a magnetic field (Cobian, 2004;

Stadler et al., 2005), but the pH is a stronger determinant of
crystallographic alignment. For this reason, if Lewis acids,
such as boric acid, are used to buffer the local pH, an
applied magnetic field will have little effect on the crys-
tallographic alignment. This has been shown in electrolytic
solutions that contain boric acid, but are subsequently titrated
to achieve controlled pH (Cobian, 2004; Darques, Encinas,
Vila and Piraux, 2004). As mentioned in Section 3.1, low pH
(3.3–5.3) will yield (100) alignment and high pH (>5.8) will
yield (002) alignment, which means the hcp c axis is aligned
perpendicular and parallel to the wire axis, respectively.
Finally, deposition rate can be controlled using the Co2+

ion concentration in the electrolyte. If the rate is too fast, or
too slow, an applied field will not affect the alignment. For
example, with no boric acid (pH = 3.5) and 250 g l−1 CoSO4,
the alignment was (002) as expected for high pH solutions
for all applied magnetic fields (Figure 13a). However, with
a medium concentration of CoSO4 (155 g l−1) and no boric
acid, a perpendicular applied field caused (100) alignment as
the Co nanowires grew (Figure 13b) (Cobian, 2004).

The effects of the crystallographic alignment on magnetic
properties can be seen from the hysteresis loops taken
by vibrating sample magnetometry (VSM) of the resulting
nanowires arrays. Although shape anisotropy will dominate,
as predicted by the energy densities, a fivefold increase in
the remnant magnetization and a threefold increase in the
coercivities of the nanowires whose anisotropy axes were
aligned parallel to each other can be obtained (Figure 14a).

Magnetostatic interactions between the nanowires can
limit the overall control of the magnetic properties of the
array, and templates that enable larger spacing between the
nanowires may extend control. Also, if Co/Cu multilayers
are grown along the nanowires, the shape anisotropy of each
Co layer can be controlled when its thickness is comparable
to the diameters of the nanowires (Stadler et al., 2005; Tan
and Stadler, 2006). Finally, the parameters discussed in the
preceding text have similar affects on crystallography over
a wide range of diameters. However, the diameter itself
will have a large effect on the magnetic properties, with
the coercivity increasing with decreasing diameter until the
diameter reaches about 30 nm, after which the coercivity will
sharply decrease (Figure 14b) (Stadler et al., 2005).

4.2 Nickel and permalloy nanowire arrays

4.2.1 SQUID characterization and effects of Ni
volume fraction

In addition to the vibration sample magnetometer (VSM)
mentioned above, a superconducting quantum interference
device (SQUID) magnetometer can also be used to measure
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100 nm

(a)

100 nm

(b)

Figure 13. TEM micrographs and diffraction patterns of Co
nanowires grown from a solution (pH ∼ 3.5) with no pH buffer-
ing agent. (a) High concentrations of Co2+ ions yielded expected
[001] alignment along the wire axis, so side view is (100). (b)
Slower deposition rates enabled the crystallographic alignment to
be controlled by an applied magnetic field, and perpendicular fields
caused the c axis to be aligned perpendicular to the nanowires axis
(Cobian, 2004). (Reprinted with permission T. Xu et al., copyright
2001, Eslevier.)
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Figure 14. (a) Hysteresis loops parallel to the nanowire axes
((002) texturing: Hc = 630 Oe, Mr/Ms = 0.33; (100) texturing:
Hc = 190 Oe, Mr/Ms = 0.065). (b) Hysteresis loops for (100) 40-
nm-diameter nanowires (parallel: Hc = 650 Oe, Mr/Ms = 0.167;
perpendicular: Hc = 130 Oe, Mr/Ms = 0.21).

the magnetic properties of nanowire arrays. Figure 15 shows
a hysteresis loop for a sample with an interpore distance
Dint = 65 nm, a nanowire diameter DP = 25 nm, and a
column length L = 700 nm (Nielsch et al., 2002c). When an
applied field was parallel to the axis of these Ni nanowires,
the hysteresis loop exhibited a coercivity H

‖
c ≈ 1100 Oe and

a squareness of 96%. In the perpendicular direction, the
coercivity was small (H⊥

c ≈ 150 Oe), large magnetic fields
were required for a complete magnetization, and the loop
showed a nearly reversible behavior. Therefore, this sample
had its preferential magnetic orientation along the wire axis.

For this arrangement each Ni nanowire was a single-
domain particle, and its anisotropy was determined by the
particle shape (Nielsch et al., 2001). When this magnetic
array was saturated along the magnetic easy axis, the
average internal stray field between the nanowires was
H

‖
D = 2π3/2(DP/Dint)

2 · Ms = 770 Oe (Nielsch et al., 2001)
and thus it was smaller than H

‖
c . Each Ni nanowire had
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Figure 15. SQUID hysteresis loops of the nickel nanowire array
with a pitch of 65 nm, a column length of about 700 nm, and a
wire diameter of 25 nm measured with an applied field parallel
(◦) and perpendicular (�) to the column axis. The inset shows
a micrograph image of the corresponding sample recorded by
transmission electron microscopy. The Ni nanowires embedded in
the alumina matrix can be clearly seen.

on average a switching field Hsw ≈ H
‖
c with a standard

deviation �Hsw, due to the diameter variation. After the
sample had been saturated along the nanowire axis and the
magnetic field had been switched off, a very small fraction
of nanowires reversed their magnetization, because locally
(Hsw − �Hsw) < HD. This explains the small deviation of
the measured squareness (96%) from the expected value of
100% for H

‖
D < H

‖
c .

In these Ni samples, the volume fraction of the ferromag-
netic material in the oxide matrices was usually around 10%
(Nielsch et al., 2001). Even with this relatively low volume
fraction, the dipolar interaction seemed to have significant
impact on total magnetic anisotropy of the nanowire arrays.
The effect of the volume fraction of magnetic material in the
alumina membrane on the total magnetic anisotropy and the
hysteresis loops was investigated in detail (Nielsch et al.,
2001). A set of three Ni samples with fixed interpore dis-
tances of 105 nm and column lengths of about 800–1000 nm
was prepared. Figure 15 shows the hysteresis loops for the
nickel arrays measured with an applied field parallel (‖) and
perpendicular (⊥) to the wire axis. In this experiment, the Ni
nanowire arrays had wire diameters of 55 (sample A), 40 (B),
and 30 nm (C), which corresponded to volume fractions of
magnetic material of P = 24.5, 13, and 7.5%, respectively.

The hysteresis loop for sample A measured in the ‖ direc-
tion showed a coercive field of H

‖
c ≈ 600 Oe and square-

ness of about 30% (Figure 16a). For the ⊥ direction, the
hysteresis showed a low coercive field of H⊥

c ≈ 100 Oe.
The hysteresis for both directions exhibited similar satura-
tion fields (Hs ≈ 4000 Oe). Therefore, this sample did not
have a preferential magnetic orientation. In contrast, sample
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Figure 16. SQUID hysteresis loops for hexagonally ordered Ni
nanowire arrays with a pitch of 105 nm and pore diameters of DP

55 nm (a), 40 nm (b), and 30 nm (c).

B (DP = 40 nm; Figure 16b) exhibited increased coercive
fields of about H

‖
c ≈ 1000 Oe and improved magnetic hard-

ness, ∼80% squareness. This sample had a magnetic easy
axis along the wire axis (H ‖

s ≈ 2500 Oe, H⊥
s ≈ 5500 Oe,

and H
‖
c 	 H⊥

c ). For sample C (DP = 30 nm), a square-
ness of 98% and the highest coercive field H

‖
c ≈ 1200 Oe
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(Figure 16c) were measured. This is the highest reported
coercivity for a high-density (Dint < 120 nm) Ni nanowire
array (Kawai and Ueda, 1975; Kaneko, 1981; Zeng et al.,
2000; Hwang et al., 2000a; Chou, Wie, Krauss and Fis-
cher, 1994). Samples B (40 nm) and C (30 nm) had similar
magnetic anisotropies. The bulk value of the saturation mag-
netization Ms ≈ 484 emu cm−3 was used. By determining
the absolute amount of nickel in the pores using atomic
absorption spectroscopy and relating it to the absolute mag-
netization by SQUID magnetometry, these samples were
determined to have Ms = 480 emu cm−3.

The magnetic anisotropy of arrays of thin magnetic wires
results from the interplay of a series of effective fields. In
the case of a single-domain wire, which is expected for
Ni with diameters smaller than 55 nm, three contributions
must be considered. First is the macroscopic demagneti-
zation field due to the average magnetic charges of the
wires at the surface. For Ni in the geometry of a hexago-
nal pore structure, the average derived demagnetization field
(−4πMsP ; P > porosity of the template structure) is about
−1750 Oe for 55 nm pores, −920 Oe for 40 nm pores, and
−520 Oe for 30 nm pores. Second, the shape anisotropy of
the individual wire if magnetized parallel to the pore axis
is of the order of 2πMs ≈ 3200 Oe. Third, a contribution
results from the magnetocrystalline anisotropy energy, given
by (−4K1/3Ms > 120 Oe for Ni where K1 is the magne-
tocrystalline anisotropy. When reducing the pore diameter
from 55 to 30 nm while keeping the interpore distance con-
stant (Dint = 105 nm), the remanence increased up to nearly
100% and the coercive field shifted toward 1200 Oe. Sam-
ple B with DP = 40 nm and sample C with DP = 30 nm,
mentioned above, were single-domain wires, which were
preferentially magnetized in the ‖ direction because the shape
anisotropy of 3200 Oe easily overcame the crystal field of
120 Oe. Theoretically, the effective coercive field of a sin-
gle infinitely extended cylinder magnetized parallel to the
〈111〉 easy direction of the Ni cylinder axis for homogeneous
rotation is given by Hc = 4K1/3Ms − 2πMs. This holds if
the cylinder diameter is smaller than the critical diameter
Dcrit for the curling process (Aharoni and Shtrikman, 1958),
DP < Dcrit ≈ 3.68 × √

(πM2
s ) (A = 8.6 × 107) erg cm−1 for

Ni yielding for Ni Dcrit = 40 nm. Therefore, the curling mode
is not an appropriate description for the magnetization of
samples with DP = 40 and 55 nm (Nielsch et al., 2001).

As single-domain particles, the magnetic reversal process
of these Ni nanomagnets appears to occur by inhomoge-
neous switching modes, as discussed in the micromagnetic
modeling by Hertel (2001, 2002). The small size distribu-
tion in the pore diameter (�DP/DP < 10%) (Nielsch et al.,
2002a; Masuda and Fukuda, 1995) has a positive impact
on the magnetic properties. The highest measured coercive
field (Hc ∼ 1200 Oe for a close-packed nickel nanowire array

embedded in a membrane matrix) has been reported when
P = 7.5%. Earlier work on unarranged nickel nanowire
arrays demonstrated lower coercive fields, about 1000 Oe or
less along the easy axis (Kawai and Ueda, 1975; Kaneko,
1981; Zeng et al., 2000; Ounadjela et al., 1997). The large
size distributions (up to �DP/DP > 50%) (Strijkers et al.,
1999) in the pore diameters and the interwire distances
enhanced the magnetic interactions in the nanowire arrays
and reduced the squareness of the hysteresis loop.

4.2.2 Dynamic properties of nickel nanowires

The dynamic properties of Nickel nanowires have been
investigated by a few groups. M.H. Kuok et al. from the
National University of Singapore have investigated spin-
wave modes in Ni nanowire arrays by inelastic Brillouin
light scattering experiments in zero magnetic fields (Wang
et al., 2003). They detected three so-called bulk magnon
modes in Ni nanowires and observed an increase in the mode
frequencies with decreasing nanowire diameter (f ∼ 1/D2

P),
which can be labeled as a magnetic quantum size effect. In
contrast, on lithographically patterned magnetic films, only
surface spin-wave modes have been detected (Jorzick et al.,
1999a,b; Mathieu et al., 1998).

Riccardo Hertel from the Max Planck Institute in Halle
has simulated the dynamic properties and the switching
modes of Ni nanowires by micromagnetic simulations. He
showed that magnetic switching does not occur via coherent
rotation (Stoner–Wohlfarth model) or via classic curling. If a
nanowire is 60 nm in diameter and more than 1 µm in length,
the switching event happens at a timescale of a few hundred
picoseconds after a reversed field is applied. In this case
switching happens by the propagation of a vortex domain
wall (local curling mode) along the nanowire axis (Hertel,
2002; Hertel and Kirschner, 2004). If the nanowire diameter
is reduced, the magnetic stiffness increases, for example, for
40 nm diameter the switching process is accomplished after
a few nanoseconds. In this case, a 180◦ head-to-head wall
starts at one end of the nanowire and propagates along the
length of the wire (Hertel and Kirschner, 2004). The writing
speed of conventional magnetic media is currently in the
range of a few hundred picoseconds. We can assume that Ni
nanowires with sub-30 nm diameter will experience slower
switching (>5 ns), and therefore their application to patterned
magnetic media, may be restricted.

4.2.3 Permalloy nanowire arrays

A further enhancement of the coercive fields of the Ni
nanowire arrays was obtained by adding a small amount
of iron sulfate (0.8 g l−1 FeSO4·7H2O) to the Ni electrolyte,
see Section 3.2. The resulting magnetic nanowire contained
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Figure 17. SQUID hysteresis loops of the permalloy (Ni83Fe17)

nanowire array with a pitch of 105 nm, a column length of about
1000 nm, and a wire diameter of 30 nm measured with an applied
field parallel (�) and perpendicular (•) to the column axis.

83% Ni and 17% Fe, which is the nearly ideal compo-
sition for permalloy (80% Ni, 20% Fe). Although there
was a negligible effect of magnetic anisotropy in the Ni
nanowires, this will be even smaller for permalloy nanowires
than for Ni nanowires. On the other hand permalloy (Ms =
800–900 emu cm−3) has a higher saturation magnetization
than nickel (480 emu cm−3). For a permalloy nanowire array
with 30 nm wire diameter, 105 nm interwire distance, and
800 nm wire length, the preferential magnetic orientation was
parallel to the wire axis (Figure 17). This hysteresis loop for
the parallel direction (‖) had coercive fields of 1350 Oe and a
squareness of 96%. The hysteresis loop for the perpendicular
direction (⊥) exhibited a small coercive field (100 Oe) and
higher saturation fields, up to 7500 Oe. If Figure 17 is com-
pared with Figure 14(a), the permalloy nanowire array had
a higher coercivity but a slightly reduced remanence. The
additional amount of iron led to an enhancement of the total
saturation magnetization Ms of each nanowire. The coerciv-
ity and the saturation field increased because of the rise of
the theoretical shape effect factor for a nanowire (2πMs).
On the other hand, the interactions between the nanowires
increased because of the enhancement of the average demag-
netization fields (−4πMs·P : P ≡ metal filling fraction in
the oxide matrix), which led to the reduction of the rema-
nence. In conclusion, all these investigations suggest that Ni
nanowires and permalloy nanowires are suitable for patterned
perpendicular magnetic media. Although, coercive fields of
H

‖
c = 1200–1350 Oe were obtained, and the squareness of

the hysteresis loop was in the range of 95 to 100%, the
estimated demagnetization field inside the magnetic array
was still in the range HD = 0.5 − 0.7 × H

‖
c . For applica-

tion as storage media, the dipolar interactions inside the
nanowire arrays have to be further reduced, for example,

HD = 0.1 − 0.2 × H
‖
c . In principle, this can be obtained by

reducing the ratio between nanowire diameter (DP) and inter-
pore distance (Dint) by 50–65%, whereby the filling fraction
of magnetic material inside the oxide matrix will decrease to
less than 3%.

5 MODELING OF THE MAGNETIC
PROPERTIES

5.1 Switching field of individual nanowires

Ideally nanowires have a uniaxial anisotropy and the magne-
tization prefers to align parallel to the nanowire axis (z direc-
tion). This anisotropy depends on the aspect ratio of these
one-dimensional nanostructures. Here, two simple analytical
models for the calculation of the switching field and coercive
field for an isolated magnetic nanowire are described.

5.1.1 Stoner and Wohlfarth model

In the classical model based on (Stoner, Wohlfarth and
Wohlfarth, 1948), a homogeneously magnetized 3D ellipsoid
is used as an approximation for a cylindrical shaped nanowire
(Figure 18). In this simple model, any effects related to the
crystal structure of the nanowires are excluded. The energy
term of the stray field ED is determined by the aspect ratio
a = L/DP (length/diameter) and the alignment (ϑ) of the
magnetization toward the nanowire axis.

ED = πM2
s

[
1 + 3

a2
[1 − ln(2a)]

]
sin2 ϑ (3)

When the magnetic dipole is aligned along the nanowire axis,
the stray field is in the lowest energetic state. On the basis
of the energy term ED, the maximum switching field HD of
a homogeneous magnetized cylinder can be calculated.

HD = 2πMs

[
1 + 3

a2
[1 − ln(2a)]

]
(4)

Most of the experimental data presented in the Chapter 4
were taken from magnetic nanowires that exhibited aspect
ratios >10. Therefore equation (2) can be simplified for
the case a 	 1. The approximated switching field for 180◦

rotation of the magnetization is given by equation (3).

HD = 2πMs (5)

For Ni, Co, and Fe nanowires, the theoretic switching fields
have been calculated on the basis of the model of Stoner and
Wohlfarth as HD = 3260, 8900, and 10 800 Oe, respectively.
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Figure 18. In Stoner–Wohlfarth model a homogeneous magnetized
cylinder (a) is approximated by a elongated ellipsoid (b). During the
switching process the magnetization is homogenous at any stage of
the rotation process.

These values are more than two times higher than the
maximum coercivities measured on magnetic nanowires
up to now. Contrary to the Stoner–Wohlfarth model, the
magnetic nanowires tend to be inhomogeneously magnetized.
Micromagnetic simulations provide a more realistic picture
of the magnetization inside the nanowire and their switching
behaviors. An alternative analytic model has been suggested
by Jacobs and Bean (1955).

5.1.2 Jacobs and Bean model

In the simple model by Jacobs and Bean (1955) a chain of
an integer number a, of magnetic spheres is used for the
calculation of the switching field (Figure 19). Each sphere

L

Wire axis DP

Figure 19. Jacobs and Bean Model: A chain of homogeneous
magnetized spheres is used as an approximation for a single-domain
nanowire.

is homogeneously magnetized and the magnetization vector
in each sphere is pointing in the same direction. On the
basis of the dipolar interactions between the magnetic spheres
the stray field energy ED is calculated depending on the
orientation angle (ϑ) of the magnetization M toward the
nanowire axis.

ED = 1

2
πM2

s


 a∑

j−1

a − j

aj3


 sin2 ϑ (6)

On the basis of (6) the coercive field HD for an infinitely
long nanowire (a → ∞) has been calculated as follows:

HD ≈ 1.2πMs (7)

The calculated switching field for an isolated nanowire based
on the model of Jacobs and Bean is about 40% lower than
the Stoner–Wohlfarth approximation.

5.1.3 Curling model

The Curling model (Aharoni, 1999) is a noncoherent calcu-
lation that minimizes the total magnetic energy. Curling is
often suggested as the reversal mechanism for ferromagnetic
nanowires when their diameters are several times larger than
the magnetic exchange length λex = (2A/µ0M

2
s )1/2 (where

A is the exchange stiffness constant, Ms is the saturation
magnetization of the ferromagnetic material, and µ0 is the
permittivity of free space). For Ni, Co, permalloy, and Fe
the magnetic exchange lengths are λex = 8.3, 2.9, 5, and
2.3 nm, respectively. When magnetic reversal occurs via curl-
ing, a magnetic vortex structure is formed at the nanowire
ends and for magnetic cylinders with an infinite length,
an analytic solution can be calculated. In contrast to the
Stoner–Wohlfarth model where the exchange energy is min-
imized, in curling the stray field energy is minimized and
this leads to an inhomogeneous and vortex-type magnetiza-
tion. The analytic solution for the nucleation field, Hsw, is
given as

Hsw = 27A

Ms·D2
P

− 2K1

Ms
(8)

where K1 is the magnetocrystalline anisotropy constant.
If the nanowire diameters are DP ≥ √

27A/2π ·M2
s the

Curling approximation is a very useful approximation
for the theoretic switching field. At smaller diameters
the Stoner–Wohlfarth approximation is a more suitable
model. If we calculate the theoretic switching field for
nickel nanowires with 40 nm (55 nm) diameters and zero
magnetocrystalline anisotropy (K1 = 0), the results with
Stoner–Wohlfarth, Jacobs–Bean, and Curling are 3200 Oe
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(3200 Oe), 1795 Oe (1778 Oe), and 2650 Oe (1310 Oe),
respectively. Unfortunately, these theoretic values all have
large discrepancies with each other and the experimental data
(Figure 16): 1000 Oe (600 Oe) coercivity for DP = 40 nm
(DP = 55 nm).

5.2 Dipolar interactions inside the nanowire
arrays

Each saturated nanowire produces a dipolar magnetic field,
which interacts with the neighboring nanowires. The sum of
the dipolar fields from each nanowire inside a magnetic array
is called stray or demagnetization field. When an external
magnetic field �Hex is applied, the effective field �Heff, which
acts on each nanowire, is the difference between �Hex and
the sum of the dipolar fields originated by the neighboring
nanowires.

�Heff = �Hex −
∑

i

�HD,i (9)

In the case that the whole magnetic nanowire array is
saturated parallel to the nanowire axis and the external
magnetic field is pointing in the same direction, the effective
magnetic field �Heff within the nanowire array is lower than
the applied external magnetic field �Hex.

The average demagnetization field of a nanowire array
can be calculated under the assumption that the nanowire
array is a magnetic thin film with an effective saturation
magnetization per volume Meff. When a porous alumina
membrane with a pore diameter DP and an interpore distance
Dint is filled completely with a ferromagnetic material, Meff

can be calculated on the basis of the ratio of the volume of
the ferromagnetic material versus the matrix volume.

Meff = π√
12

(
DP

Dint

)2

Ms (10)

The average dipolar field HD inside a saturated nanowire
array (magnetic field parallel to nanowire axis) can be
estimated as shown in equation (11):

HD = 4πMeff = 2π2

√
3

(
DP

Dint

)2

Ms (11)

A more accurate model for the demagnetization field inside
a saturated nanowire array with a hexagonal arrangement
has been proposed by Samwel, Bissel and Lodder (1992).
A magnetostatic field HA→B acts from nanowire A toward
nanowire B from a distance Dint, and both nanowires have
length L. The dipolar field at the top of nanowire B, which

is pointing parallel to the nanowire axis, can be calculated
by the following equation:

HA→B = πD2
PMs

2L


 1

Dint
− 1√

D2
int + L2


 (12)

For a hexagonal arrangement of an infinite large nanowire
array the average stray field has been calculated on the basis
of the approach of Samwel, Bissel and Lodder (1992).

HD = 3πD2
PMs

LDint

∞∑
i=1

i−1∑
j=0


 1√(

i2 − ij + j2
)

− 1√(
i2 − ij + j2 + (L/Dint)

2)

 (13)

The indices i and jare explained by Figure 20. In equation
(13), the total dipolar field is summed for a 60◦ section of
the magnetic array and is multiplied by 6. Equation (13) can
be written as a function of the average demagnetization HD:

HD = 4πMeffγ (14)

in this case γ can be interpreted as a correction factor for
equation (11):

γ = 3
√

3

2π

Dint

L

∞∑
i=1

i−1∑
j=0


 1√(

i2 − ij + j2
)

− 1√(
i2 − ij + j2 + (L/Dint)

2)

 (15)

For magnetic arrays with a high-aspect-ratio nanowires
(L/DP > 10) the correction factor γ is in the range of
0.95–0.98. Therefore we can conclude that equation (10)
is a relatively accurate approximation for the calculation
of the average stray field inside a saturated nanowire array
(nanowire axis parallel to applied field).

5.3 Monte Carlo simulation of the hysteresis loop

In the past Hwang et al. (2000b) and Zheng, Pardavi-Horvath
and Vertesy (1997) have worked on the numerical simulation
of the hysteresis loops when the magnetic field is applied
parallel to the nanowire axis. An Ising-type approach is used,
where each nanowire is a single-domain magnet (i) with a
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Figure 20. Map of a magnetic nanowire array for the calculation
of the dipolar interactions. On the basis of the hexagonal symmetry
only one-sixth part of the array is plotted, which is sufficient for
the calculations.

boxlike hysteresis loop, when the magnetic field is applied
parallel to the wire axis, and an individual switching Hsw(i).
The average switching field Hsw(i) of the whole magnetic
array corresponds to the measured coercive field Hc of a
nanowire array with identical geometrical parameters, for
example, L, Dint, DP. The variation of Hsw(i) follows a
classical Gaussian distribution. �Hsw(i) is used as a fitting
parameter for the simulation and defines the variation width
of Hsw(i).

Usually, Monte Carlo simulations are started with a satu-
rated array of nanomagnets (M(i) = +Ms). At the beginning,
the external magnetic field Hex is significantly larger than the
saturation field of the whole array. The effective field Heff(i)

is calculated by adding up the stray field contributions for
each nanomagnet i from all neighboring nanowires j with
the magnetic polarization p(j) = +1.

Heff(i) = Hex − πD2
PMs

2L

∑
j �=i

[
1

D(i, j)

− 1√
D(i, j)2 + L2

]
p(j) (16)

The external field Hex is reduced in infinitely small steps
until the first nanowire is found where the local effective
field is smaller than the individual switching field: |Heff(i)| >

|Hsw(i)|. After that the polarization of the nanomagnet i

becomes negative (p(i) = –1), the local effective magnetic
field Heff(j) is recalculated for each nanomagnet j and the
external field Hex is reduced until another nanomagnet k
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Figure 21. As an example, a numerical simulation of the hysteresis
loop is shown for an array of 37 Ni nanowires with a nanowire
diameter of 45 nm, an interwire distance of 105 nm, and a wire
length of 800 nm.

is found that fulfills the criteria |Heff(k)| > |Hsw(k)|. This
iterative procedure is repeated until the whole array of single-
domain magnets has totally changed its polarization (p(i) =
−1). The complete hysteresis loop is simulated by varying
the external field Hex from +Hs → −Hs → +Hs stepwise
and calculating the magnetization of the entire magnetic array
as a function of the external field.

As an example, the hysteresis loop (nanowire parallel to
Hex) of a miniarray composed of 37 magnetic nanowires
was simulated. For the simulation an average switching field
Hsw = 1000 Oe and a distribution width of �Hsw = 250 Oe
were selected. The following geometric parameters were
used for this calculation: nanowire diameter DP = 45 nm,
interwire distance Dint = 105 nm, and nanowire length L =
800 nm. The simulated hysteresis loop and the domain pattern
for three different external fields Hex = 510, 970, and 1190
are plotted in Figure 21. Since the number of nanowires in
this test simulation was small, the Barkhausen jumps, which
originate from the switches of single wires, can be detected
in this hysteresis loop.

In these Monte Carlo simulations (Figure 22) the dis-
tribution width of the switching field �Hsw was a very
essential parameter. In order to visualize the effect of �Hsw

on the simulated hysteresis loops, a second test calcula-
tion was performed for an array composed of 37 nanowires
(with the same geometric parameters, Hsw = 1000 Oe, and
�Hsw = 20, 100, 250, and 400 Oe). For low �Hsw the hys-
teresis loop looked similar to a parallelogram. When the
distribution width �Hsw was enhanced, the shearing effect
on the hysteresis loop increased and the edges of the loop
became rounded. In the past, only the stray field interactions
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Figure 22. This simulation demonstrates the influence of the
switching field distribution on the hysteresis loop when the mag-
netic field is applied parallel to the nanowire axis. The geometric
parameters of this simulation are identical to the simulation shown
in Figure 21.

have been considered, but shearing effects in the hysteresis
loops of magnetic nanowires have been discussed in the lit-
erature (Hwang et al., 2000b). As demonstrated in Section 6,
the ordering degree of the nanowire array has an important
influence on the coercive fields and the shearing effect of the
hysteresis. Disordered nanowire arrays have a broad distri-
bution in nanowire diameter. Therefore less-ordered nanos-
tructures have a broader distribution of the switching field
�Hsw and their hysteresis loops exhibit stronger shearing
effects. Briefly, the dipolar interactions between the nano-
magnets and the distribution width of the switching field are
responsible for the shearing of the hysteresis loops.

For comparison with the experimental measurement,
Monte Carlo simulations were performed on magnetic arrays
with up to 65 269 nanowires. In Figure 23, the experimental
data of a nickel nanowire array (wire diameter DP = 30 nm,
periodicity Dint = 105 nm, wire length L = 800 nm, Hc =
Hsw = 1150 Oe) was measured by a SQUID magnetometer
and the statistical analysis of the magnetic force microscopy
(MFM) investigations (Nielsch et al., 2001, 2002b) were
compared with the corresponding Monte Carlo simulation.
Here an excellent fit to experimental data was obtained for
�Hsw = 150 Oe. �Hsw corresponds to 13% of Hc.

In this analysis, a Ni nanowire array within a self-ordered
alumina template with an average deviation in pore diam-
eter of about 8% was used. If we assume further that
2�DP/DP ≈ �Hsw/Hsw ≈ 16%, we can presume that the
factor �Hsw in this simulation is in good agreement with the
variation of the cross-section area of the magnetic nanowires.
The experimental data presented by Nielsch et al. (2001,
2002b) and the Monte Carlo simulations give clear evidence
that a perfectly ordered nanowire array with a well-defined
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Figure 23. Comparison of a numerical simulation and a SQUID
hysteresis loops of a nickel nanowire array with a pitch of
100 nm, column length of about 700 nm, and a wire diameter of
30 nm measured with an applied field parallel and perpendicular
to the column axis. Additionally the statistical results from MFM
investigations while an external magnetic field H was applied to
the sample are also plotted in this figure.

pore diameter will have a higher magnetic anisotropy than a
self-ordered nanowire array with a larger distribution in pore
diameter.

6 FERROMAGNETIC NANOWIRE
ARRAYS WITH PERFECT
ARRANGEMENT ON LARGE
(CM2)-SCALE ORDER

For the application of magnetic nanowire arrays as a mag-
netic media and as magnetic field sensors, a perfect arrange-
ment of the array on a large scale is necessary in order
to be able to address each individual nanowire. Addition-
ally, a perfect arrangement narrows the distribution of the
nanowire diameters and interpore distances, and this will
reduce the switching field distribution of the individual
nanowires �Hsw. As demonstrated in Section 5.3, a low
�Hsw will improve the total anisotropy of the whole mag-
netic array. This assumption has been proved experimentally,
by measurement of the hysteresis loops of nickel-filled alu-
mina membranes with a different degree of self-ordering
(Nielsch et al., 2002c; Vázquez et al., 2004).

Using imprint lithography as a tool for prepattering alu-
minum surfaces, alumina templates with a perfect hexag-
onal pore arrangement on a square centimeter scale can
be achieved using a single anodization process. Initially,
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Figure 24. The sketch shows the fabrication process for a perfect
ordered magnetic nanowire array.

Masuda et al. (1997) used this technique for the fabrication
of perfectly ordered, unfilled alumina membranes on a small
scale.

In this section, the fabrication of Ni nanowire arrays on
a square centimeter scale based on imprint lithography is
presented. First, mechanically polished Al substrates were
patterned by an imprint master mold, or stamp, described
elsewhere (Choi et al., 2003). The stamp consisted of hexag-
onal arrays of Si3N4 pyramids with a pitch of a = 500 nm
(Figure 24a). The imprinted etch pits on the Al surface acted
as nucleation sites for pore formation (Figure 24b). The pre-
structured Al surface was anodized with 1 wt% H3PO4 at
195 V for 75 min. Alumina templates (Figure 24c) with a
perfect hexagonal arrangement of pores on a square centime-
ter scale were obtained. Subsequently, the barrier layer was
thinned at the pore bottom (Figure 24d) from about 250 nm
to less than 7 nm, which resulted in the formation of small
dendrite pores at the pore bottom, as described in Section 3.2.
Nickel was directly plated onto the nearly insulating barrier
by current pulses (Figure 24e). Subsequently, Si substrates
were fixed on top of the area (Figure 24f), the Al substrate
was selectively removed by chemical etching and the sam-
ple was turned upside down (Figure 24g). Finally, the barrier
layer and the dendritic part of the nanowires were removed
by etching with a focused ion beam (Figure 24h), in order
to reduce the stray field interactions between the nanowires.
Scanning electron images (Figure 25a) of the nanowire struc-
ture revealed h ≈ 4 µm, a = 500 nm, and DP = 180 nm with
a dispersion �DP/DP < 2%. In comparison, Figure 25(b)

2 µm

(a)

(b)

500 nm

Figure 25. SEM micrographs of nickel nanowire arrays with a
2D monocrystalline (a) and 2D polycrystalline (b) arrangement
of the magnetic columns fabricated by imprint lithography and
self-organization, respectively. Both arrays have 500-nm interwire
distance and 180-nm column diameter. The length of the magnetic
columns is ∼5 µm. The inset in (a) shows a higher magnification
of the same Ni nanowire array with the perfect arrangement.

shows a nickel nanowire array with a 2D polycrystalline
arrangement. The latter array, which was fabricated by the
classical two-step anodization process, had a medium-range
ordering and a larger dispersion �DP/DP ≈ 10%. Both sam-
ples were fabricated under identical electrochemical condi-
tions.

The hysteresis loops were measured for both samples
in the direction of nanowire axes and perpendicular to the
nanowire axes (Figure 26). In the case when the nanowires
had a monodisperse pore diameter and monocrystalline
arrangement, a coercive field of 250 Oe and a remanence of
42% were detected. The second sample exhibited a reduced
coercivity of 160 Oe and a remanence of 30% because of
larger dipolar interactions caused by larger deviations in
the nanowire diameters and higher disorder in the magnetic
array. In contrast to earlier results on Ni nanowires with
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Figure 26. SQUID hysteresis loops of the nickel nanowire arrays
with a 2D monocrystalline (a) and 2D polycrystalline (b) arrange-
ment measured with an applied field parallel and perpendicular to
the column axis.

DP < 55 nm (Figure 26a), a single Ni nanowire with DP =
180 nm diameter does not exhibit a boxlike magnetization
loop. The reduced remanence of an array of nanowires
appears to be due to dipolar interactions, and the sample
with the 2D monocrystalline arrangement (Figure 26a) has
a narrower distribution of the nanowire switching fields
(�Hsw /Hsw ≈ 2�DP/DP).

7 APPLICATIONS

7.1 Recording application and magnetic force
microscopy

One of the promising applications of nanowire arrays is
in recording, where one bit of information would corre-
spond to one single-domain, nanosized particle, or one nano-
magnet. These nanomagnets would have large aspect ratios

Si substrate

Si substrate

Al substrate

(a)

(b)

(c)

Si substrate

Figure 27. Schematic diagram demonstrating the preparation steps
for the subsequent magnetic force microscopy. The filled template
was attached to a Si substrate (a). The Al substrate was removed by
selective chemical etching (b) and the structure was turned upside
down. By focussed ion beam milling the barrier layer and dendrite
structure were removed and a smooth surface was obtained (c).

to maintain thermal stability rather than the ∼1000 grains
required by longitudinal media as discussed in Section 1. The
following section discusses an atomic probe technique that
can be used in evaluating these nanowire arrays for recording.

In contrast to the bulk measurements of VSM and SQUID,
MFM can be used to image the magnetic polarization at
the top end of each magnetic nanowire (Figure 27) (Nielsch
et al., 2001, 2002b). Figure 28 demonstrates the domain
structure of an array of nickel columns in the demagnetized
state. First, the topographic image of the Ni nanowire
array embedded in the alumina matrix was measured by
atomic force microscopy as shown in Figure 28(a). The
geometric parameters of the sample were the same as in
Figure 16(b) (DP = 40 nm). Dark spots in the magnetic
image (Figure 28b) imply that the magnetization was point-
ing up and bright spots imply that the magnetization was
pointing down. Up magnetization may be interpreted as a
binary ‘1’, and down magnetization as a binary ‘0’. It can
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Figure 28. (a) Topographic image recorded by atomic force micro-
scope of an array of magnetic nanowires with 105 nm interwire
distance and 40 nm wire diameter embedded in the alumina mem-
branes. (b) Magnetic force microscopic image of the correspond-
ing nanowire array in the demagnetized state, showing the mag-
netic polarization of the pillars alternately ‘up’ (white) and ‘down’
(black).

be deduced from the picture that the Ni pillars were single-
domain nanomagnets aligned perpendicular to the surface.
The patterned domain structure was due to an antiferromag-
netic alignment of pillars influenced by the weak magnetic
interaction between these nanomagnets.

The labyrinth pattern (Figure 28b) of the domain structure
was characteristic for hexagonally arranged single-domain
magnetic particles with a perpendicular magnetic orientation
in the demagnetized state. In the case of a quadratic lattice,
each of the four nearest neighbors will be aligned antiparallel,
and the domain structure exhibits a checkerboard pattern
(Ross et al., 1999). In a hexagonal lattice, two of the six
nearest neighbors will align their magnetization parallel and
four will be magnetized antiparallel if the stray field has

only nearest-neighbor interaction. In Figure 28(b), it can
be seen that an average of 2.5 nanomagnets were aligned
parallel and that 3.5 were magnetized antiparallel. Therefore,
the stray field interaction appeared to extend over several
lattice periods Dint, because of the high aspect ratio of
the magnetic nanowires. The stray field interactions for
sample B with DP = 40 nm therefore appeared moderate,
as has been shown using the simple approximation of the
demagnetization field HD.

Additionally, MFM investigations with applied magnetic
field can be used to study the switching behavior of the
individual nanowires in the array (Nielsch et al., 2002b).
Low moment magnetic tips should be used for MFM scans,
in order to prevent switching of the magnetization in the
nanowires by the dipole field of the magnetic tip (Htip ≈
50 Oe). Here, the sample was saturated by an external
magnetic field of about 5000 Oe along the wire axes. The first
scan was performed without an external field (Figure 29a). In
order to get a better impression of the magnetic polarization
of each pillar, the MFM images were numerically enhanced.
Even though Hex = 0 Oe and the maximum demagnetization
field of HD = −920 Oe was smaller than the coercive field, a
few pillars had already switched their polarization, because
of the dipolar interactions between the nanowires and the
distribution of the switching field of the individual nanowires.
Next the external magnetic field was increased to −300,
−600, and −900 Oe (Figure 29b–d) in the direction opposite
to the magnetization. The stray field of the sample appeared
to increase, Heff = HD + Hex. For Hex = −300 Oe, the
effective field in the nanowire array was already smaller
than the coercive field, therefore a significant number of
nanowires had reversed their magnetizations. Increasing
the external field led to an increased number of reverse-
magnetized pillars (Figure 29b–d). The enhancement of Heff

was partly compensated by the reduced dipole interactions
from the reversed pillars. In the final image (Figure 29d),
the applied external field had nearly reached the coercive
field H

‖
c = 1000 Oe. The number of switched (black) and

unswitched (white) nanowires was nearly equal. In this case,
the average demagnetization field in the sample was reduced
nearly to a minimum and Hex ≈ Heff ≈ H

‖
c .

The suitability of nickel nanowire arrays for patterned per-
pendicular magnetic media has been studied in more detail.
For this experiment sample A (DP = 30 nm) with the best
magnetic performances in terms of squareness (100%) and
coercivity (1200 Oe) was used (see Figure 16c). An attempt
was made to saturate a defined area of a demagnetized sample
by a strong magnetic MFM tip (Htip ≈ 250 Oe) and an exter-
nal magnetic field (Hex = −1200 Oe). The amount of the
applied external field was nearly equal to the average switch-
ing field (Hsw) of the individual nanowire (H ‖

c = 1200 Oe)
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Figure 29. An external magnetic field was applied perpendicular to the sample surface. (a) The MFM image of the saturated nanowire
array. Numerically enhanced MFM images recorded with an applied magnetic field of Hex = 0 (a), –300 (b), −600 (c), and −900 Oe (d).

and was applied in the direction of the nanowire axis. Start-
ing in the upper region of Figure 30 the strong magnetic
tip was scanned over an area of 5 × 5 µm2. Hereby, a total
external field of about H ′

ex = Hex + Htip = −1450 Oe was
locally applied on this selective area. Subsequently, the exter-
nal magnetic field was switched off. An enlarge area of
10 × 10 µm2 (Figure 30) was scanned with the magnetic
tip in order to measure the domain pattern of the manip-
ulated area in the nanowire array. Inside the area of the first
scan, nearly every nickel column (∼93%) was magnetized in
the same direction. Figure 30 shows the local impact (dark
quadratic region) of the external magnetic field and the strong
magnetic tip during the first MFM scan on the magnetization
of nanowires. Around the magnetized region of 5 × 5 µm2,
the nickel nanowire array remained in the demagnetized state
and exhibited the labyrinth-like domain pattern (Figure 28).
The border between the magnetized area and the surround-
ing demagnetized area is clearly visible. From this picture, it
can be concluded that the applied magnetic field (Hsw ≈ Hc)

alone was not strong enough for the switching of magnetic
polarization in the Ni columns. Hence, the additional field

contribution from the strong MFM tip (Htip) enabled the local
switching process in the Ni nanowire array. The probabil-
ity for a nickel nanowire to remain unswitched (light spots)
increased in the lower region of the magnetically manipu-
lated area (Figure 30, first scan). In the upper region, where
the first magnetic scan procedure was started, the first five
or six horizontal nanowire rows had been saturated in the
same direction. During the first scan procedure when the
area of the saturated nanowires was growing, the probability
for a nanomagnet to remain unswitched increased. It can be
assumed that the stray field interactions between the demag-
netized and the magnetized area can be neglected and the net
stray field in the demagnetized area is zero. By increasing
the area of parallel-magnetized nanowires, the dipole interac-
tions between the magnetic elements were enhanced and the
applied local field (Htip + Hex) was becoming less sufficient
for a complete magnetic alignment of magnetization in a hor-
izontal row of nickel columns. At the left and right border
of the magnetically manipulated area, the stray field interac-
tions were weak and a lower number of unswitched magnetic
columns were observed there. From this experiment, it can



Template-based synthesis and characterization of high-density ferromagnetic nanowire arrays 23

Second scan

First scan (5 × 5 µm2)

Second scan (10 × 10 µm2)

First scan

S

N

S

N

S

N

S

N

S

N

S

N

N

S

N

S

10 µm

10 µm

5 µm

5 µm
0 µm

0 µm

Hex = 1200 Oe ≈ Hcll

Htip ≈ 250 Oe

Htip ≈ 250 Oe

Figure 30. Local magnetic switching of a demagnetized sample area (5 × 5 µm2, first scan) by a strong magnetic MFM tip (Htip ≈ −250 Oe)
and an external magnetic field (Hex = −1200 Oe). This image of the domain pattern (10 × 10 µ m2) was recorded by a second subsequent
MFM scan without an external magnetic field.

be concluded that the stray field dipole interactions between
the nanowires were extended over several interwire distances
because of their high aspect ratio (nanowire length to inter-
wire distance L/Dint ≈ 7). In principle, a single nanowire
can store 1 bit of information and can be locally switched
independently of the magnetization of its nearest neighbors.

Researchers from Fujitsu Laboratories in Japan (Kikuchi
et al., 2005) have preformed reading and writing tests on
cobalt-filled porous alumina structures with 63-nm pitch
on 2.5-in. disks, recently. Although they performed these
experiments on disordered porous alumina structures, they
demonstrated the data readout of the magnetic polarization of
individual nanowires with a standard head for perpendicular
recording. Currently, the Fujitsu researchers performing these
tests on ferromagnetic materials filled alumina pore arrays
with short and long range ordering.

7.2 Nanoelectromechanical systems (NEMS) and
magnetic sensors

Other applications for magnetic nanowires include mag-
netic and mechanical sensors, where the nanowires can
essentially be used as magnetoelectronic systems and/or
NEMS with advantages that scale indirectly with size. In
particular, NEMS sensors involve nanowire motion. Typ-
ically the force to be sensed moves the nanowires, and
this motion is then detected by another means. Similar
size advantages are already commercially achieved with
microelectromechanical systems (MEMS), which began to
attract interest in the middle of the last century (Feyn-
man, 1992). Advantages of MEMS include reduced mass,
increased resonant frequencies, lower force constants, and

ease of ‘manufacturing’ large numbers of devices simul-
taneously using silicon (Si) planar processing. MEMS are
now seen commercially in applications such as mirrors for
optical communications (Lin and Goldstein, 2002; Ermolov
et al., 2002), accelerometers (Beliveau, Spencer, Thomas and
Roberson, 1999), medical devices (Maluf, Gee, Petersen and
Kovacs, 1996), and flow control in ink-jet printers (Brünahl
and Grishin, 2002; Lee, Kim, Kuk and Oh, 2002), and acous-
tic sensor arrays (Arnold, Nishida, Cattafesta and Sheplak,
2003).

Several groups are taking the MEMS-like ‘top-down’
approach to new limits in the nanoscale through novel
lithography techniques using ion and electron-beam etch-
ing (Abadal et al., 1999; Yang et al., 2001; Roukes, 2001;
Sundararajan and Bhushan, 2002). These novel non-silicon-
specific techniques enable new materials to be used, which
further increases the potential functionality of NEMS. How-
ever, owing to the limitations of lithography, they are limited
in that the devices must usually have their largest dimension
in plane and, as mentioned above, the processing is expen-
sive with small areal coverage. Arrays of magnetic nanowires
enable ‘bottom-up’ fabrication of NEMS, which offers the
advantage of low-cost, high-density arrays.

Two applications of magnetic nanowire sensors can be
classified as NEMS. The first involves layered nanowires
to be used for atomic resolution in magnetic resonance
force microscopy using layers of Ni, Au, and Pt (Valizadeh,
George, Leisner and Hultman, 2002). A nanoreflector of Ag
is preferentially grown on top of the Au layers at various
locations along the wire depending on the sensor design
(Barbic and Scherer, 2005). The resonance of such wires
has been studied as well (Husain et al., 2003).
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The second NEMS application of magnetic nanowires
involves magnetostrictive nanowires for acoustic sensors
(Stadler et al., 2005; McGary and Stadler, 2005; McGary
et al., 2006; Downey and Flatau, 2005). These magnetostric-
tive nanowires are being tailored to dimensions that will
resonate at a variety of frequencies for applications in sonar,
hearing, and ultrasound. Because they are magnetostrictive,
the nanowires will generate a magnetic field when they
change dimension because of the acoustic signal. This field
will then be detected by a magnetic sensor, ideally this sen-
sor will be a nanowire giant magnetoresistance (GMR) sensor
that is integrated directly into the base of each nanowire. In
this way, a very small array will be produced for sensing
the magnitude and phase of the incoming sound. Resonant
frequencies can range from kilohertz to gigahertz for 20 nm
nanowires by varying the lengths from 0.5 to 100 µm (Stadler
et al., 2005). Arrays of shorter wires will therefore be useful
in medical applications, for example, in echocardiography,
and the arrays can be polished at an angle to produce varying
lengths, which will enable high spatial resolution imaging.
Longer nanowires will be useful in applications such as ultra-
sound, sonar, and hearing.

In addition to NEMS, nanowires can be used as magnetic
sensors, which use MR to sense external fields. This property
can be intrinsic to the nanowire material, for example, Ni, or
it can be optimized by designing multilayers inside the wires.
An example of the latter is Co/Cu/Co stacks in which one of
the Co layers is fabricated to have a higher coercivity than
the other, perhaps by altering its thickness. Most magnetic
nanowires studies involve template-grown arrays, although
sometimes step decoration has been used, for example, Fe
wires on sapphire steps (Westphalen, Zabel and Theis-Brohl,
2004).

These Co/Cu/Co multilayers are an example of GMR
structures. These structures involve passing current through
two ferromagnetic layers that have different coercivities
(such as Co), and they are separated by a nonmagnetic
spacer (such as the Cu). The ferromagnetic layer that is
more coercive is considered to have a ‘fixed’ magnetization
direction and the magnetization of the other ferromagnet
is designed to be soft so that it can point in the direction
of the magnetic field to be sensed. When these two layers
are aligned (which occurs when the sensed field is aligned
with the fixed layer), the resistance of the structure is
low. However, when the ferromagnets are not aligned, the
electrons become polarized in one layer, and they are less
likely to be able to conduct through the other layer due to
interfacial scattering.

This phenomenon of GMR is mostly studied using
Co/Cu/Co layers (McGary, 2006; Piraux et al., 1997; Blon-
del, Meir, Doudin and Ansermet, 1994; Liu, Nagodawithana,
Searson and Chien, 1995), which have yielded MR of 20%

100 nm

Figure 31. High-resolution TEM image of a Co/Cu/Co multilay-
ered nanowire.

or higher at RT (Liu, Nagodawithana, Searson and Chien,
1995; Doudin, Blondel and Ansermet, 1996). The exact MR
ratio depends on the total length of the nanowire, which often
includes long Cu ends that contribute to the total resistance,
but not to the MR, so the absolute MR of the multilayers will
be higher than the measured MR. Figure 31 shows a 100-
nm nanowire from an array grown with the recipe given in
Section 3 with (30 nm) Co/(50 nm) Cu layers. Similar wires
with 150 nm diameters and (5 nm) Co/(5 nm) Cu yielded 7%
MR at RT using the recipe given (Stadler and Tan, 2006).
Several other configurations have been studied in which the
pure Co ferromagnetic layers are replaced by CoNiCu (Hey-
don et al., 1997), NiFe (Blondel, Meir, Doudin and Anser-
met, 1994; Dubois et al., 1997), CoNi (Attenborough et al.,
1995), Ni (Wang et al., 1996; Chen, Searson and Chien,
2003), and Fe (Piraux et al., 1997). The Cu nonmagnetic
spacer can also be replaced by other metals, such as Ag (Val-
izadeh, George, Leisner and Hultman, 2002), Pt (Chu, Inoue,
Wada and Kurashima, 2004), or Pb (Dubois et al., 1999).
Most groups use single electrochemical baths which contain
sulfates or other salts of all of the desired metals, but some
groups use separate baths for each layer (Blondel, Doudin
and Ansermet, 1997). In growing these GMR structures, it
is difficult to obtain ferromagnetic layers with the required
differences in coercivity. In patterned thin-film sensors, this
is usually done using an antiferromanget next to one of the
ferromagnets in order to fix its magnetization. However, anti-
ferromagnets are often oxides or alloys that are difficult to
deposit (e.g., IrMn), and the other option, synthetic antifer-
romagnets, involves stacks of up to five elements which can
require additional metal ions in the electrolyte, and hence
complicate the deposition of each layer. As mentioned above,
the coercivity can be altered by varying the thickness of one
of the ferromagnetic layers, but this has a limited effect.
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Another method is to vary the crystallographic alignment of
Co in the various layers using an external applied magnetic
field as shown in Figure 13 (Cobian, 2004). This allows one
bath for all of the layers as long as the nanowires can be
deposited inside a double-axes magnet.

8 CONCLUSIONS

About 10 years ago, Masuda and Fukuda discovered the
self-ordered growth of nanoporous alumina membranes via
anodization. Since this time, highly ordered anodized alu-
mina has attracted many international groups as a template
material for the synthesis of magnetic nanowires. Classical
ferromagnetic materials, such as iron, cobalt, and nickel, as
well as novel magnetic materials, such as CoPt and GaFe
alloys, have been electrodeposited by constant or pulsed
electrical signals inside the nanopores of these alumina mem-
branes. The monodisperse nanowires are then in a strictly
parallel hexagonal arrangement that is perpendicular to the
substrate. The diameters have been tailored from 10 to
350 nm by varying the anodization conditions, such as elec-
trolyte, voltage, and temperature.

The magnetic properties of the nanowires and arrays have
been modified through the choice of material, diameter,
spacing, and applied fields during growth. For Co nanowires
the anisotropy has been controlled by balancing the strong
crystallographic anisotropy of Co with the shape anisotropy
of the wires. Multilayered nanowires of Co/Cu/Co with
controlled anisotropy in the Co are well suited for magnetic
sensors and magnetic random access memory (MRAM).
For Fe1−xGax alloys (Galfenol), the magnetostriction varies
with composition, which has been controlled via deposition
parameters. Nanowire arrays of Galfenol are essentially
NEMS that can be used as cilia for sensors of acoustic
and other mechanical signals. For Ni and NiMn nanowires,
large coercivities have been obtained with weak dipolar
interactions between wires due to small magnetocrystalline
anisotropy and small magnetic moment. These materials are
therefore particularly suitable for patterned perpendicular
magnetic media.

Numerical simulations were presented that showed that the
independent magnetization reversal of individual nanowires
inside a close-packed array was possible. Also, perfectly
ordered magnetic nanowire arrays have been demonstrated
on the square centimeters scale by nanoimprinting the
Al precursor prior to anodization. Significant improvement
of the magnetic performance was obtained, because the
nanomagnets had a very narrow size distribution, as well
as perfect order.

The fabrication of large-scale, perfectly ordered nanowire
arrays with sub-100 nm periodicity and very monodisperse

magnetic nanowires with sub-10 nm diameters are still a great
challenge, and further developments of these nanostructures
are necessary. Also, the growth of novel magnetic materials,
especially new alloys, will be a frontier for this field that
must be reached in order to realize the potential of many
applications. New applications continue to be developed,
including multilayer nanotubes, self-assembled 3D nanos-
tructures based on multilayer magnetic nanowires, nanowires
with specific binding sites for molecules or DNA, and more.
With many fundamentals understood, we are only seeing the
tip of the iceberg in the impact of magnetic nanowires.
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1 INTRODUCTION

Not long ago, carbon allotropes like graphite, diamond, car-
bon nanotubes, and fullerenes were accepted to be basically
diamagnetic. In Short, the diamagnetic signal is the counter-
response to an applied magnetic field from localized elec-
trons, as in diamond, or from delocalized π-band electrons,
as in graphite for fields normal to the graphene layers, or
from a mixture of the diamagnetism of localized electrons
and the so-called van Vleck paramagnetic (magnetic dipole
interband transitions due to the asymmetry of the chemi-
cal bond) contributions, as in fullerenes and nanotubes. This
magnetic response was reviewed some years ago by Haddon
(1995). On the other hand, it was a common belief that any
ferromagnetic-like signal measured at room temperature in a
carbon structure is due to magnetic impurities. Apart from

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

a few publications at the end of the 1980s and in the 1990s
(some of them will be reviewed in Section 2), the scientific
community did not take the possibility that a carbon structure
could show magnetic order at room temperature seriously.
The main problem scientists have to convince themselves on
such a phenomenon in a material with only s and p electrons
is that magnetic impurities, like Fe or Ni, may contribute
to the magnetic response substantially in case the ‘intrinsic’
magnetic signals are relatively small.

Paradoxically, the overall success of the pioneer model of
ferromagnetism in metals contributed substantially to create
some kind of ‘magnetic prejudice’ for more than 60 years. In
his original article, Heisenberg (1928) rejected the possibility
of magnetic order in elements with main quantum number
n < 3 (for the electrons responsible for the ferromagnetism).
Elements like Fe, Ni, or Co have a net magnetic moment
m in the solid state due to unpaired 3d electrons. Through
exchange interactions between them characterized by a con-
stant J , compounds based on these elements belong to the
restricted family of ferromagnets with Curie temperature
above room temperature. In contrast, carbon in the atomic
state has m = 0 and in the solid state shows strong covalent
bondings that suppress any unpaired-electron spin. It is there-
fore understandable that judging the ‘sometimes unclear’
experimental evidence in the past the possibility of mag-
netic order in carbon-based materials was tacitly denied by
the main stream of scientists working in magnetism.

From the basic research point of view the existence of a
room-temperature magnet containing only s and p electrons
is of great significance for the physics of magnetism, espe-
cially because of the expected interesting correlation effects
between electrons. We note that macroscopic magnetic order
in metal-free organic materials has been reported in 1991
in the open-shell radical p-nitrophenylnitronyl nitroxide
(p-NPNN) (Turek et al., 1991; Tamura et al., 1991) and
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in tetrakis(dimethylamino)ethylene (TDAE) + C60 charge-
transfer salt (Allemand et al., 1991) with Curie temperatures
Tc = 0.6 and 16 K, respectively. These findings were rec-
ognized by the community, in clear contrast to the few,
rather unnoticed works where evidence for magnetic order
in carbon was reported before 1991 (see Section 2). A num-
ber of studies on molecular magnets with low Curie tem-
peratures (Tc < 30 K) have been done in the last 10 years
(Veciana, 2001; Blundell and Pratt, 2004). We also note
that antiferromagnetic order has been observed in a mate-
rial with only s or p electrons, as probably the first example
for an s-electron antiferromagnet reported in the compound
(Na/K)8(AlSiO4)6 below 50 K by Srdanov, Stucky, Lippmaa
and Engelhardt (1998) indicates; see also Madsen, Iversen,
Blaha and Schwarz (2001).

To the best of our knowledge, we are not aware of
any physical law that prohibits the existence of a room-
temperature ferromagnet in a compound with only s or p
electrons. Therefore, and taking into account experimental
data, there are no reasons to deny a priori its existence.
In this article we review in Section 2 a few early publica-
tions that indicate the possible existence of unusual mag-
netic order in carbon. In Section 3, we discuss the char-
acterization of the magnetic impurities, an important issue
when the intrinsic magnetic signals of the studied com-
pounds are relatively weak. In Section 4, we review differ-
ent magnetic phenomena observed in carbon structures, that
is, diamagnetism (Section 4.1), paramagnetism (Section 4.2),
as well as recent observations of magnetic order in well-
characterized carbon-based samples prepared under special
conditions (Section 4.3). In the last section of this article, we
review the possible origins for a magnetic order in carbon,
discussed nowadays in the literature.

2 EARLY REPORTS ON
FERROMAGNETIC-LIKE BEHAVIOR
IN CARBON STRUCTURES

Till the end of the last millennium nearly 100 papers and 30
patents describing ferromagnetic structures containing either
pure carbon or carbon combined with first-row elements
were published. Many of these publications, some of them
unknown to the main stream of magnetism experts, was
reviewed recently by Makarova (2003, 2004). Unfortunately,
in several of these early published studies the concentration
of impurities is not clarified, perhaps not even determined.
Therefore, it is not easy to provide a rigorous evaluation
for most of them, also because the reproducibility of those
results was apparently not reported in later work. Taking into
account the experience of the author with the contribution

of magnetic impurities (mainly Fe), we cannot assume that
those early observations were free from systematic errors.
Nevertheless, some of these results attract our attention. In
this section, we restrict ourselves to discuss chronologically
only a few of them.

Apparently, one of the first room-temperature organic fer-
romagnets was synthesized by Oostra and Torrance (1984)
and reported in a symposium that took place in Honolulu.
Three years later, these authors published a paper in which
they showed that the reaction of symmetrical triaminoben-
zene (C6H9N3) with iodine produces a black, insoluble poly-
mer. This polymer showed, in some of the runs, ferromag-
netism up to ∼600–700 K, which is near its decomposi-
tion temperature (Torrance, Oostra and Nazzal, 1987). The
observed magnetization in that sample remains unknown
since only the magnetic moment was reported without pro-
viding any information on the sample mass or volume.
Although some trace quantities of Fe were found, neither
its amount nor the irreversibility observed with temperature,
implies that magnetic impurities may be the possible source
for the magnetism. Apparently, a lack of reproducibility of
the results reported by these authors remained in the years
to come.

Korshak et al. (1986) (see also Korshak, Medvedeva,
Ovchinnikov and Spektor, 1987) found a spontaneous mag-
netization M = 0.02 emu g−1 (1 emu g−1 = 1 Am2 kg−1) in
a chain of interacting radicals obtained by polymerization
of a BIPO polydiacetylene crystal (BIPO: 1,4-bis-(2,2,6,6-
tetramethyl-4-oxy-4-piperidyl-1-oxyl)-butadiene). The appar-
ent magnetic order vanished at temperatures between 420
and 460 K. The value reported for the spontaneous magneti-
zation is not high enough to assure negligible contributions
from transition-metal impurities. However, the relatively low,
apparent Curie temperature of less than 500 K does not imply
pure iron or iron oxide (magnetite) magnetic contribution.
One cannot rule out, however, that an Fe–C or another mag-
netic element–C alloy may show such a Curie temperature.

An extraordinary saturation magnetization value of Ms ∼
150 emu g−1 was reported [1] by Ovchinnikov and Spector
(1988) for the pyrolytic decomposition at 1300 ± 100 K of
polyacrylonitril (PAN) with a Curie temperature near 800 K.
The impurity concentration reported in that publication does
not seem to account for the large magnetization value. To the
best of our knowledge, apparently nobody could reproduce
those results.

Murata, Ushijima, Ueda and Kawaguchi (1991) mea-
sured the magnetization of amorphous-like carbons pre-
pared from tetraaza compounds by chemical vapor deposition
(CVD) method. The starting, commercially available materi-
als (tetraaza) were organic monomers with different amounts
of carbon, hydrogen, and nitrogen. The carbon-based material
was heated in vacuum at 950 ◦C for 30 min. The aza-carbon
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showed a remnant magnetization value (measured not at 0
but at 50 Oe applied field) Mr � 0.45 emu g−1 at room tem-
perature. Murata, Ushijima, Ueda and Kawaguchi (1991)
further showed that at room temperature Ms increased as
a function of the ratio between hydrogen and carbon (H/C)
of the starting material. For H/C � 2.8 the authors obtained
Ms � 2 emu g−1. Although this work gave no information on
the impurity concentration in the final samples, the system-
atic increase of Ms with H/C does not seem to support an
impurity magnetic contribution. The role of hydrogen on the
magnetic order was not clear.

The same authors (Murata, Ushijima, Ueda and
Kawaguchi, 1992) later showed that the amorphous-like
carbon compound prepared by direct pyrolysis of 1,2-
diaminopropane (H/C = 3.3) was ferromagnetic with Ms �
10 emu g−1 at room temperature (a factor 10 smaller than
magnetite Fe3O4) (see Figure 1). A complete elemental anal-
ysis of impurities for the magnetic sample was not reported in
that work, but only 3 wt% nitrogen and an unknown amount
of hydrogen. If we assume that the signal is due to Fe
impurities, then to obtain a magnetization at saturation of
10 emu g−1 the carbon sample should have several weight
percent of Fe! Not only does this number appear to be too
large but the temperature dependence of the magnetization
(see Figure 1) does not also show any sign of magnetism of
small ferromagnetic particles, nor a Curie or Curie–Weiss
behavior. The superparamagnetism effect is expected in case
the Fe (or Fe3O4) grains are small enough and are randomly
distributed in the sample. It shows a strong temperature
dependence in the magnetization for fields of the order of
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Figure 1. Temperature dependence at three different applied fields
of the magnetization of an amorphous-like carbon compound pre-
pared by direct pyrolysis of 1,2-diaminopropane with a ratio
between hydrogen and carbon, H/C = 3.3. (Reproduced from
Murata et al. 1992, with permission from the Royal Society of
Chemistry.  1992.)

those shown in Figure 1. As an example for superparam-
agnetism of Fe in carbon, see Figure 9 in Esquinazi et al.
(2002) where a graphite crystal with an average Fe con-
centration of 500 µg g−1 has been measured. The observed
dependence is in clear contrast to that in Figure 1 as well as
in highly oriented pyrolytic graphite samples with concen-
trations of Fe impurities in the 10 µg g−1 region (Esquinazi
et al., 2002).

Murata, Ushijima, Ueda and Kawaguchi (1992) speculated
that atomic hydrogen may have led to the formation of
a three-dimensional network of both sp3- and sp2-carbons,
which according to theoretical predictions (Ovchinnikov
and Spector, 1988) (see also Section 5) may originate a
spin-ordered state in the (dangling) π electrons from the
sp2-carbons. As Murata, Ushijima, Ueda and Kawaguchi
(1991) and Mizogami, Mizutani, Fukuda and Kawabata
(1991) observed, ferromagnetic behavior in pyrolytic carbon
is obtained from adamantane as a raw material by CVD
method under low-temperature growth. Clear hysteresis loop
was observed at room temperature. The authors stressed that
the highly oriented structure and a large number of unpaired
electrons appeared to play an important role in the observed
ferromagnetism. Ferromagnetic impurities like Fe were not
detected within experimental accuracy.

An interesting experiment was performed by Murakami
and Suematsu (1996) inducing magnetic ordering in fullerene
C60 crystals exposing them to light irradiation from a xenon
lamp in the presence of oxygen. Before irradiation the
pristine fullerene crystals showed the usual temperature-
independent diamagnetic signal with a susceptibility χ �
−2.7 × 10−7 emu (gOe)−1, state (a) in Figure 2. This dia-
magnetism is overwhelmed by a para- and ferromagnetic
response after irradiation of the sample under xenon light
in oxygen for 2.5 h, state (b) in Figure 2. After annealing
the sample (after state (b)) at 400 ◦C in vacuum to remove
physisorbed oxygen (O2, usually the origin for the param-
agnetic response in some carbon-based samples) the param-
agnetic contribution decreased but an enhancement of the
ferromagnetic-like contribution was observed, state (c) in
Figure 2. After leaving the sample in air for three months,
the ferro- and paramagnetic contributions increased as can be
seen in Figure 2, state (d). Figure 3 shows in more detail the
ferromagnetic hysteresis loop of the C60 crystal in the state
(c) at room temperature. Note that the magnetization plot-
ted in the figures were calculated by dividing the measured
magnetic moment by the total sample mass and not by the
ferromagnetic mass of the sample. The authors separated the
ferromagnetic part from the sample and obtained an increase
of 100 in the magnetic moment (0.1 µB) per C60 molecule.

From the work of Murakami and Suematsu (1996) the
following is worth noting. (i) The temperature dependence of
the saturation magnetization indicates an extraordinarily high
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Figure 2. Magnetic field dependence of the magnetization at 5 K
for (a) a pristine C60 powder crystals, (b) the same sample exposed
to xenon light in oxygen for 2.5 h, (c) after annealing it at
400 ◦C for 2.5 h and (d) after leaving it in air for three months.
(Reproduced from Y. Murakami et al., Pure & Appl. Chem., 1996,
with permission from the International Union of Pure and Applied
Chemistry.  1996.)
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Figure 3. Magnetization hysteresis loop at room temperature of a
C60 sample corresponding to state (c) in Figure 2 at low fields. The
inset shows the results in a larger field scale. (Reproduced from
Y. Murakami et al., Pure & Appl. Chem., 1996, with permission
from the International Union of Pure and Applied Chemistry.
 1996.)

Curie temperature Tc ∼ 800 K. (ii) No elemental analysis of
the samples at the different preparation steps were reported
in that work, although with the used procedure one does
not expect the introduction of impurities. On the other hand
Makarova et al. (2003) recently reported similar effects by
photopolymerization of fullerene films (see Section 4.3.2).
(iii) The temperature dependence of the magnetic moment
at fixed fields shows the contribution of small particle
magnetism, which is in part the origin for the Curie-like

term measured at low temperatures (T < 40 K). (iv) The
room-temperature hysteresis loops (see Figure 3) indicate
a saturation field of the order of 2 kOe and a remanence
magnetization of the order of 10% of its saturation value. It is
remarkable that similar values are also obtained for different
ferromagnetic carbon-based samples produced by different
methods (see Section 4.3). From this study it remains unclear
whether polymerized fullerene or a disordered graphitic
structure is responsible for the observed magnetic order.

For completeness we also note the reports on the ferromag-
netic behavior of micrographitic structures with high surface
area (∼3110 m2 g−1) (Ishii, Matsumura and Kaneko, 1995;
Ishii, Shindo and Kaneko, 1995). The magnetic properties of
activated mesocarbon microbead (a-MCMB) were examined
over the temperature range 1.7–285 K. Magnetic hysteresis
and a saturation and residual magnetization of 0.032 and
0.016 emu g−1 at 1.7 K were observed. Although the mag-
netic hysteresis loop became small while increasing tempera-
ture, it still remained at 285 K. The Fe impurity concentration
was 80 ppm. In the case that this quantity of Fe would be
ferromagnetic at low temperatures one expects a saturation
magnetization at least two times larger than the measured
one. Therefore, neither the absolute values of the measured
magnetization nor its temperature dependence (Ishii, Mat-
sumura and Kaneko, 1995) can be taken as evidence against
an extrinsic origin for the observed magnetism. Although
low-surface-area carbon (570 m2 g−1) showed no ferromag-
netism (Ishii, Shindo and Kaneko, 1995), the unknown impu-
rity contribution always casts a doubt and this is the main
reason for the scepticism and the lack of interest that the
scientific community showed in the past on all the results
involving magnetic order in metal-free materials.

3 MEASUREMENT OF THE IMPURITY
CONCENTRATION

There are several methods for a quantitative determination
of the impurity concentration of a sample. They are as
follows: (i) Particle-induced X-ray emission (PIXE). This is
a standard-free, quantitative, nondestructive multielemental
analysis, which provides a 0.1–100 µg g−1 detection limit
depending on the matrix and element to be analyzed. It
requires a proton beam in the megaelectron volt energy range.
(ii) Energy dispersion X-ray (EDX) analysis spectroscopy
using electrons. This method is similar to PIXE. However, its
detection limit is at least a factor of 100 larger due to strong
bremsstrahlung background. (iii) X-ray fluorescence (XRF)
analysis. This method is similar to PIXE; however, for bulk
analysis a large sample mass >100 mg is required for good
sensitivity. XRF microbeam usually requires a synchrotron.
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(iv) Methods like Inductively-Coupled-Plasma-Spectrometry
(ICP-MS), Secondary Neutral Mass Spectrometry (SNMS),
and Secondary Ion Mass Spectroscopy (SIMS) need standard
samples for quantification. Very low detection limits can be
achieved, depending on the element to be analyzed. The
disadvantage is, however, that these methods are destructive.
(v) Neutron activation analysis (NAA) is a very sensitive
method but needs a relatively large amount of sample and a
(large) neutron source to make the nucleus of the impurities
radioactive. A study that was recently done has checked the
accuracy of the PIXE method by comparing its results with
those obtained from XRF and NAA on the same samples.
Very good agreement has been found between the three
methods (Barzola-Quiquia et al., 2007).

For carbon-based materials the preferred method is PIXE.
It uses protons to get a map for all relevant impurity elements
within a sample depth of 30 µm for a proton energy of
∼2 MeV in carbon. A systematic and full characterization
of the magnetic impurity content in each of the samples,
and after each treatment or handling (it makes no sense to
start with a highly pure sample and then cut it with a steel
knife afterwards), is of primary importance and absolutely
necessary specially because in several samples, due to their
small magnetization and/or small mass, the magnetic moment
at saturation is very small (ms <∼ 10−5 emu). The reader can
get more details on this method in the papers by Butz et al.
(2005) and Esquinazi et al. (2006). Here we would like to
make a few remarks. A total charge of 0.5 µC suffices to
obtain with a proton microbeam a minimum detection limit
for Fe impurities below 1 µg g−1. The advantage of using a
microbeam for PIXE analysis, compared to a broad beam, is
that a distribution map for all relevant impurity elements can
be obtained contrary to the integral value from the broad-
beam method, which is a rather important issue considering
the grossly inhomogeneous distribution of impurities like
Fe which we have encountered in some samples (see, e.g.,
Figure 1 in Spemann et al., 2003). A typical broad-beam
PIXE spectrum for a highly oriented pyrolytic graphite
(HOPG) sample is shown in Figure 4. It shows the presence
of a number of impurities, the Fe content being (0.45 ±
0.04) ppm. Taking into account experimental (see Sections 2
and 4.3) as well recent theoretical studies (see Section 5),
hydrogen, as well as oxygen, may be related to the origin
of the magnetic signals in carbon-based materials. However,
hydrogen content measurements with a sensitivity in the parts
per million range are a rather difficult experimental task. Butz
et al. (2005) briefly discuss the methods available for this
kind of measurement.

A recent study done by Reichart et al. (2006) using
a proton–proton scattering method analyzed the hydrogen
distribution of pristine as well as irradiated HOPG samples,
which were implanted with micrometer-sized spots and
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Figure 4. Typical broad-beam PIXE spectrum from a HOPG sam-
ple. The main impurities are Ti, V, and Fe. The minimum detection
limit for other elements heavier than Si is ∼0.3 µg g−1. Note that
2.1 µg g−1 iron in the carbon matrix means a concentration of
0.45 ppm Fe. (Reproduced from T. Butz et al., 2005, with permis-
sion from Springer.  2005.)

extended areas with various doses of 2.25 MeV protons at
the Leipzig microprobe LIPSION (see Section 4.3.3). For
this study a sensitive three-dimensional hydrogen microscopy
system at the Munich microprobe SNAKE was used. The
background hydrogen level in pristine HOPG was determined
to be about 0.3 at-ppm. About 4.8 × 1015 H atoms/cm2 were
observed in the near-surface region (∼4 µm-depth resolu-
tion). The depth profiles of the implants showed hydrogen
located within a confined peak at the end of the penetration
range, in agreement with SRIM Monte Carlo simulations and
no evidence of diffusion broadening along the c axis. For
the sample with microspots, up to 36 at-% of the implanted
hydrogen was not detected, providing support for a lateral
hydrogen diffusion.

3.1 The role of iron

Iron is usually the main magnetic impurity that one finds in
carbon-based materials. Owing to its relatively large para-
and ferromagnetic contributions, the measurement of its
concentration is of main importance. As an example and
assuming that 1 µg Fe per gram carbon for a sample with the
density of graphite would be ferromagnetic, its contribution
would be �2.2 × 10−4 emu g−1 to the magnetization in the
case of Fe clusters or �1.4 × 10−4 emu g−1 in the case of
Fe3O4 clusters. Usually such small amounts of impurities
are diluted in the sample and one does not measure a ferro-
but a paramagnetic or superparamagnetic behavior because
of small particle magnetism. For an example see Figure 9 in
Esquinazi et al. (2002) where the magnetization of a graphite
sample with an average concentration of Fe ∼500 µg g−1



6 Micro- and nanowires

has been measured. Instead of a ferromagnetic behavior,
a superparamagnetic-like behavior was measured with a
strong temperature dependence. From the saturation of the
magnetic moment at very high fields and low temperatures
one can estimate that ∼840 µg g−1 Fe in the graphite
matrix contributes to the magnetic response. Interestingly,
this relatively large amount of Fe in carbon did not show
ferromagnetism. Nevertheless, the influence of ferromagnetic
impurities, specially that of Fe and magnetite (Fe3O4), has
to be carefully checked because the ferromagnetic signals of
the carbon-based samples are (still) relatively small.

Measurements of the magnetization of graphite nodules
from a meteorite (Coey et al., 2002) and of the magnetic
force gradients of carbon nanotubes in contact with ferro-
magnetic substrates (Cespedes et al., 2004) suggest that mag-
netic ordering in graphite might be induced by a proximity
effect. A relatively large magnetization-decay length (iden-
tical to the spin-diffusion length) λs ≈ 5 nm was estimated
for the graphite–magnetite interface by Coey et al. (2002).
However, there is no direct evidence yet for such a large
magnetization-decay length. Local ferromagnetism in C/Fe
multilayers was observed by resonant magnetic reflectivity
of circularly polarized synchrotron radiation (Mertins et al.,
2004). The thickness of the carbon layers was 0.55 nm in
comparison with 2.55 nm for the Fe layers. Taking into
account an average roughness of 0.35 nm at the interface
where a mixture of C and Fe exists, the induced ferromag-
netism appears within a penetration depth of less than 0.5 nm.
This result would agree with the results of Höhne, Ziese and
Esquinazi (2004) in which by studying the magnetization of
graphite–magnetite composites a λs � 0.4 nm was inferred
with no indication of an induction of bulk ferromagnetism
in graphite through the contact with magnetite. More experi-
ments are necessary for a conclusion about the existence of a
large magnetic proximity effect in certain carbon structures.

4 MAGNETIC STATES IN CARBON
STRUCTURES

4.1 Diamagnetism

Usually, a diamagnetic signal is measured in carbon-based
materials. The absolute value of this signal depends on the
contribution of the core electrons, valence electrons, and a
van Vleck paramagnetic term mentioned in the introduction.
The total susceptibility of natural IIa diamond single crystal
at room temperature is χ � −5.9 × 10−7 emu (gOe)−1. This
value is only a few percent from that of oriented graphite,
which shows the largest diamagnetic susceptibility for fields
applied parallel to the c axis. In a simple but successful model

the diamagnetic response is proportional to an effective
area of the electronic current loop (see Haddon (1995) and
references therein). Therefore, one can derive an effective
radius for the electronic circulation, which goes from the
closed-shell atom confinement as in diamond to current flows
along several bonds in conjugated rings. With this concept it
is possible to understand the increase in the ring π electron’s
current diamagnetic response for planar aromatic organic
compounds. To understand the susceptibility of fullerenes,
however, a constrained movement of the π electrons and the
van Vleck paramagnetic contribution should be taken into
account.

Owing to the increasing importance of single-wall and
multiwall carbon nanotubes in basic and applied research,
there has been a renewed interest in the properties of oriented
graphite. Interestingly, the transport and magnetic properties
of graphite are still not well understood (see, e.g., Kopelevich
et al. (2003a) and references therein). Measurements of
highly oriented pyrolytic graphite samples with rocking curve
width at half maximum full-width half-maximum (FWHM)
≤ 0.4◦ provide a value for the susceptibility χ || = −(2.4 ±
0.1) × 10−5 emu (gOe)−1 at 300 K and for fields applied
parallel to the c axis (Esquinazi et al., 2002). This large
diamagnetism stems from ‘fast-moving’ electrons (McClure,
1956) with a small effective mass m∗ ∼ 0.05 m0 (here m0

is the free electron mass). Within a tight-binding picture
the small effective mass is due to the large π-bonding
overlap of the neighboring C atoms in a single layer given
by the band parameter γ 0 ∝ 1/m∗. For the calculation
of χ the linear dispersion relation for two-dimensional
(2D) graphene E(k) ∝ k was assumed (Wallace, 1947).
The main contribution to the T -dependence of χ(T ) at
T >∼ 150 K is given by ∂f/∂E|E=EF (f is the Fermi–Dirac
distribution function) due to the condensation of fermions
into the Landau level with n = 0 after the application of
a magnetic field (McClure, 1956). Although experimental
results are, in general, in agreement with this theory, to
explain the saturation of χ(T ) at low T a series of additional
band parameters has to be included (see Dresselhaus et al.
(1988) and references therein). We note, however, that this
further developed theory does not account for the measured
anisotropy of the g factors (Dresselhaus et al., 1988).

High-resolution magnetization measurements in different
HOPG samples indicate that at low temperatures χ does
not saturate but has a shallow, well-defined and field-
dependent minimum at T <∼ 30 K (see, e.g., Kopelevich,
Lemanov, Moehlecke and Torres, 1999; Huber, Urbano,
Sercheli and Rettori, 2004). This minimum is not due to
magnetic impurities. The origin for this minimum is not yet
clarified and no attempt has been made to check whether it
is compatible with elaborate theories for the diamagnetism
in graphite.
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Owing to the available sample quality, the measurement
of the anisotropy in the carrier diamagnetism of graphite
is difficult. Taking into account recent measurements of
the electrical anisotropy that indicates a ratio (parallel to
perpendicular to the c axis) of the order of or larger
than 104 for well-ordered samples, we expect to have a
susceptibility |χ⊥| smaller than the atomic susceptibility
|χ at| of carbon in graphite, which is of the order of |−5 ×
10−7| emu (gOe)−1 according to literature. We have to also
take into account internal misalignments of the crystallites
in the sample. At room temperature and for a sample with
FWHM = 0.4◦, owing to the χ || component a value of the
order of |−1.7 × 10−7| emu (gOe)−1 would be measured for
fields applied nominally parallel to the planes. The effect
of this internal misalignment has been verified by electrical
conductivity measurements (Kempa, Semmelhack, Esquinazi
and Kopelevich, 2003).

4.2 Paramagnetism in disordered carbon

The response of free, independent magnetic moments under
an applied magnetic field B and without interaction between
them gives rise to paramagnetism. As a function of field and
temperature the magnetization M due to this effect follows
the Brillouin function BJ (y) where J is the total angular
moment of the magnetic ion and y ∝ B/kBT . For y 	 1 the
susceptibility χ = M/B follows the Curie law χ = C/T , C,
being the Curie constant. At low-enough temperatures the
paramagnetic response follows a s-like curve with saturation
of M at high-enough magnetic fields, that is, at y 

1. This kind of behavior is observed in carbon samples
when some kind of disorder exists. In disordered carbon
structures, apart from the intrinsic van Vleck paramagnetism
due to nonspherical potential, paramagnetic signals due to
localized spins from unpaired electrons associated with the
existence of broken σ -dangling bonds or the mixture of
sp2 –sp3 bonds are measured. In this case the density of
paramagnetic centers is related to the disorder of the carbon
structure. Interestingly, in earlier work (see Delhaès and
Carmona (1981) and references therein) this density was
also correlated with the hydrogen concentration. Although
this paramagnetic phenomenon is well known one should not
confuse it with the s-like response of ferromagnets. In general
the paramagnetic response follows a Curie law (it scales with
H/T ) and shows no hysteresis in the magnetization loop.

According to theoretical work zigzag (Fujita) edges of
ordered graphene layers may also contribute to the para-
magnetic response due to electron spin localization at the
sp2 free bond of the edge carbon atoms (Fujita, Wak-
abayashi, Nakada and Kusakabe, 1996). Although no direct
evidence for this contribution has been reported yet, scanning

tunneling microscopy (STM) measurements on this kind of
edges indeed indicate an increase in the electronic density of
states (Esquinazi et al., 2002; Kobayashi, Fukui, Enoki and
Kusakabe, 2006) as predicted.

If we increase the disorder in a graphite structure the
main diamagnetic signal decreases in absolute value and
turns paramagnetic when the disorder is large enough. An
example of this behavior can be seen in Figure 5 where
the temperature dependence of the magnetization of a target
made of an ultrapure graphite powder and of the material
obtained from disordered carbon films prepared by pulsed-
laser deposition (PLD) on Si substrates are shown (Höhne
et al., 2004b; Esquinazi and Höhne, 2005).

In general, disordered carbon material shows a Curie-like
dependence added to a Pauli-like contribution (T -indepen-
dent paramagnetism) (see Figure 5). The inset in Figure 5
shows the field dependence of the magnetization for the
carbon film material at 5 K. These data can be described by
the classical Langevin expression from which we obtain a
spin density ns ∼ 1019 g−1. Annealing the disordered carbon
material at 1000 ◦C for 10 h in vacuum clearly reduces
the temperature-dependent paramagnetic part (see Figure 5).
Note that the observed behavior with annealing is not in favor
of a magnetic impurity contribution. Within experimental
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Figure 5. Temperature dependence of the magnetization at 1 kOe
obtained for graphite target made from an ultrapure graphite powder
and disorder carbon films, before and after annealing at 1000 ◦C for
10 h in vacuum. Inset: Field dependence of the magnetization of
the carbon films at 5 K (�), and after subtraction of the Pauli-
like term (�) given by the straight line through the points (◦)
M = 3.1 × 10−6H emu (gOe)−1 where H is the applied field in
oersted. In the scale of the figure the Pauli-like magnetization curves
measured at 300 K (before and after annealing) and at 5 K (after
annealing) (◦) practically coincide. The continuous lines through
the points (�, �) are fits to the classical Langevin expression.
(Reproduced from Esquinazi et al., 2005, with permission from
Elsevier.  2005.)



8 Micro- and nanowires

Table 1. Paramagnetic-like properties of disordered carbon sam-
ples at different years. The samples are (a) different noncrys-
talline carbons (Delhaès and Carmona, 1981), (b) activated car-
bon fibers (low-T annealing) (Shibayama, Sato, Enoki and Endo,
2000), (c) PLD-carbon films (nonannealed) (Höhne et al., 2004b),
(d) Nanofoam (Rode et al., 2004), and (e) PLD-carbon films
(nonannealed) (Takai et al., 2004).

Year . . .1981 2000 2003 2003 2004

Sample (a) (b) (c) (d) (e)
ns(g−1) 1019 –1020 ∼4 × 1019 ∼2 × 1019 ∼1020 ∼2 × 1020

Ms(emu g−1) <∼0.5 ∼0.2 ∼0.4 ∼0.35 ∼1.5

ns: spin density; Ms: magnetization at saturation measured at T < 10 K.

error the hysteresis loops for the disordered carbon films
above 5 K are reversible. This indicates that a disordered
mixture of sp2 –sp3 bonds, which exists in the disordered
carbon films, does not automatically trigger ferromagnetism.

A quick look at the published literature shows that the
paramagnetic response of disordered carbon is a ‘time-
independent’ general phenomenon. Table 1 shows the spin
density ns and the magnetization at saturation Ms of very
different disordered carbon samples. In their virgin, nonan-
nealed states, carbon fibers, nanofoams, or amorphous carbon
films prepared by PLD, show similar values for both ns and
Ms and their overall behavior as a function of temperature
follows a Curie-like dependence added to a Pauli-like contri-
bution. One should be careful to associate magnetic ordering
to this paramagnetic response. Nevertheless, at low-enough
temperatures and for high-enough spin density nonsimple
magnetic behavior was reported in nanofoams (Rode et al.,
2004; Arčon et al., 2007) where a small ferromagnetic-like
hysteresis loop was superposed to the main paramagnetic
response. Also, the observed behavior of some activated
carbon fibers (Shibayama, Sato, Enoki and Endo, 2000) or
nanographite (Enoki and Takai, 2006) suggests that inter-
actions between localized spins may exist. The localized
spins at the edges can have an exchange interaction between
them mediated by π electrons. The paramagnetic response
of disordered carbon is being rediscovered nowadays owing
to its sensitivity to guest molecules. It is believed that
physisorption of guest molecules in the micropore space of
nanographite (or nanofoam) network can produce a magnetic
switching effect of the edge-state spins, an effect that can be
used for molecular device applications of nanographite as
gas-sensing probe (Enoki and Takai, 2006).

4.3 Magnetic order

At the beginning of this millennium there were a few new
reports on magnetic order in carbon-based structures that

began to finally attract the interest of the community. In this
section we will review mainly those works published since
the year 2000.

4.3.1 In highly oriented pyrolytic graphite

According to theoretical ideas that are described in Section 5
a perfect graphite sample should show nil or at most very
weak ferro- or ferrimagnetic signal. In fact well-annealed
graphite powder of high purity and high degree of orientation
(which indicates a small defect density) does not show
any evidence for such a phenomenon within experimental
accuracy. Most, but not all, of the oriented bulk graphite
samples, however, show weak ferromagnetic-like signals.
It should not be surprising if somebody measures a non-
ferromagnetic-like signal in an oriented graphite sample,
because this signal depends on the properties of each
sample. In general, the measurement of these signals is
not simple since their magnitude is overwhelmed by the
giant diamagnetic one. The subtraction of this diamagnetic
contribution is, in general, simple since it depends linearly
on applied field. However, for the signal levels we are
discussing (ferromagnetic-like magnetic moment of the order
of 10−5 emu or less; see, e.g., Esquinazi et al. (2002))
the available magnetometers (in general superconducting
quantum interference devices, SQUIDs) may produce in
some cases hysteresis curves that do not come from the
samples but are artifacts of different origins. One should
spend enough time to characterize those artifacts.

After a first report on ferromagnetic- and superconducting-
like behavior in the magnetization of some HOPG samples
by Kopelevich, Esquinazi, Torres and Moehlecke (2000)
Esquinazi et al. (2002) studied in detail several HOPG sam-
ples from different sources with concentration of Fe impuri-
ties between <0.3 µg g−1 and ∼19 µg g−1. The concentration
of other magnetic metallic impurities were below 2 µg g−1.
Figure 6(a) shows that the magnetization at 2 kOe, after sub-
traction of background contributions, does not show a cor-
relation with the Fe concentration. The results also indicate
that the ferromagnetic-like hysteresis loops are weakly tem-
perature dependent between 5 and 300 K, see inset in (b). A
naive estimate assuming that the Fe concentration behaves as
ferromagnetic Fe- or Fe3O4-bulk in the carbon matrix would
give the two lines shown in Figure 6(a). Except for three
HOPG samples the others show magnetization values below
the ones expected from those lines. This figure clearly shows
how much care is needed with the sample handling in all
these studies. The assumption that such a small amount of
Fe distributed in the carbon matrix behaves ferromagnetically
is not consistent with the behavior we observed in graphite
samples with much larger Fe concentrations (Esquinazi et al.,
2002) nor in 4d–5d metals, where paramagnetism as well as
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Figure 6. (a)Magnetization at 2 kOe as a function of Fe concentra-
tion at two temperatures ((X): 300 K, (•): 5 K) for different HOPG
and Kish graphite samples. The solid line represents the expected
magnetization if Fe contained in the samples was in a ferromag-
netic state. The dashed line represents the analogous relation for
Fe3O4. (b) Hysteresis loops at 5 K (•) and 300 K (continuous line)
of a HOPG sample (FWHM ∼1.3◦) for fields applied parallel to the
graphene planes. No background was subtracted from the data. The
inset shows the T -dependence of the magnetization at saturation
(�) and its remanence (�) after annealing for 16 h at 700 K. (Repro-
duced from Esquinazi et al., 2005, with permission from Elsevier.
 2005.)

spin glass behaviors are measured for Fe concentrations of
∼100 ppm or larger (Peters et al., 1984).

Figure 6(b) shows two hysteresis loops for a HOPG sam-
ple. We note that in this field range no sign of diamagnetism
is measured but a paramagnetic behavior is added to the
hysteresis. This is one of some fortuitous cases where the
diamagnetic component is small enough owing to the small
misalignment of the sample in the SQUID. The observed
behavior in Figure 6 is in clear contrast with the T -dependent
paramagnetic contribution measured in samples with a larger
amount of Fe impurities (Esquinazi et al., 2002). The rea-
son for the temperature-independent (between 5 and 300 K)
Pauli-like paramagnetism is probably related to the intrin-
sic lattice disorder as in disordered carbon samples (see
Section 4.2). The results shown in Figure 6 belong to a
relatively disordered HOPG sample with FWHM �1.3◦

and a Pauli-like susceptibility χ ∼ 5 × 10−7 emu (gOe)−1,
smaller than that obtained for disordered carbon χ ∼ 3 ×
10−6 emu (gOe)−1 (Höhne et al., 2004b). We expect that
by increasing the lattice disorder a Curie-like paramagnetic
contribution will appear. The overall results suggest that spe-
cial lattice disorder and probably the influence of a light atom
like hydrogen may be related to the origin of the observed
ferromagnetism. A review of the recent theoretical ideas on
this topic is given in Section 5.

4.3.2 In fullerenes

Reports on magnetic order in fullerenes, either pressure poly-
merized (Makarova et al., 2001; Wood et al., 2002; Narozh-
nyi et al., 2003), hydrofullerite C60H24 (Antonov et al.,
2002) or photopolymerized fullerene powder and films in
the presence of oxygen (Makarova et al., 2003) triggered
a renaissance of interest in the magnetism in carbon struc-
tures. Neutral C60 can be polymerized into phases in which
the cages are linked by cyclic C4 units by photoirradiation,
an electron beam, or by pressure. Polymerized fullerenes can
exist in a variety of one-, two-, or three-dimensional phases.
According to the original reports, polymerization of C60 at
temperatures and pressures near the cage collapse and graphi-
tization of the anisotropic 2D rhombohedral Rh-C60 phase
leads to ferromagnetism with Tc >∼ 500 K (Makarova et al.,
2001; Wood et al., 2002; Narozhnyi et al., 2003). The sys-
tematic work of Wood et al. (2002) indicates a maximum in
the magnetization for samples prepared at conditions near
the cage collapse. We should note, however, that neither
the amount of magnetic samples nor the studied condition-
parameters range (temperature, pressure, and time) are suf-
ficient to give a clear phase diagram for the occurrence
of ferromagnetism in polymerized fullerenes. There is not
enough experimental evidence that assures that the magnetic
order does depend primordially on a specific lattice structure
of the polymerized fullerene. This fact added to the non-
negligible impurity concentration (see below in this section)
found in those samples (Spemann et al., 2003) casts doubts
about the intrinsic nature of most of the ferromagnetic signals
(Höhne and Esquinazi, 2002). The measured Curie tempera-
ture for the pressure-polymerized samples E16 and E17 was
500 K (Makarova et al., 2001; Höhne and Esquinazi, 2002).
Samples prepared in a similar way, however, revealed Curie
temperatures above 800 K (Wood et al., 2002; Narozhnyi
et al., 2003).

Four pressure-polymerized phases have been identified as
rhombohedral (Rh), tetragonal (T), orthorhombic (O), and
dimeric (D) phases (Davidov et al., 2000). The details of the
p − T phase diagram are rather complicated and can be seen
in Figure 18 in the review of Makarova (2004). The R phase
is thought to be stabilized between 700 and ∼1100 K in the
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pressure range between ∼3 and ∼9 GPa. The speculation that
the magnetism in polymerized fullerene is related to the Rh
structure near the cage collapse at the phase transition line
between rhombohedral and disordered structure, as depicted
in Makarova et al. (2003) and Makarova (2003, 2004),
cannot be confirmed at present. The polymerized samples
studied by Makarova et al. (2001) and Höhne and Esquinazi
(2002) (with the names E16, E17, and E20) were actually
produced at 1125 K (T phase with disordered graphite), 973 K
(mostly Rh phase), and 1073 K (Rh phase with disordered
graphitized fullerite) and at pressures of 2.5 and 6 GPa where
this last pressure corresponds to the last two samples; see also
Makarova et al. (2005).
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Figure 7. (a) Hysteresis loops of the magnetization measured at
T = 400 K in the virgin state (�), and after heat treatment for 3 h at
700 K (•) and for 16 h at 800 K (�). To convert the magnetization
unit A m−1 into emu g−1 divide the first by the density of the sample
∼1.75 × 103 kg m−3. (b) Magnetization values measured at 400 K
in magnetic fields of 0.2 (�) and 1 T (∗ ) after heat treatment for
3 h at different temperatures. The values measured after treatment
at 650 K were set to 100. Inset: Normalized magnetization values
measured at 400 K and a magnetic field of 0.2 T as a function of
annealing time at 750 K (�) and 800 K (•); these annealing studies
were performed first at 750 K and then at 800 K. All measurements
were done on sample E17. (Reproduced from R. Höhne et al., 2002,
with permission from Wiley VCH-Verlag.  2002.)

Indirect evidence for the absence of a correlation between
the Rh phase and the magnetism in fullerenes is given by
the annealing behavior of the samples studied by Höhne
and Esquinazi (2002). Figure 7(a) shows the magnetization
loop at 400 K of sample E17 (the same sample included
in Makarova et al., 2001) at different annealing stages.
Figure 7(b) shows the evolution of the magnetization (at
fixed applied field of 2 kOe and a temperature of 400 K)
with annealing temperature (after leaving the sample for 3 h
at each temperature). There are no changes of the magnetic
state after treatments up to 650 K even after 10 h. After a
treatment at 700 K weak changes on the magnetic state were
observed. After 3 h treatment at 700 K the magnetization (at
400 K and at a field of 1 T) had 98.5% of the virgin value,
decreasing to 79% after 16 h at 800 K.

Korobov et al. (2003) showed that the Rh phase prepared
at T = 1025–1050 K and p = 6 GPa rapidly decomposed at
520–570 K for 5 min and did not demonstrate additional ther-
mal stability. Comparing this result with the evolution with
annealing shown in Figure 7 we conclude that there is no evi-
dence of a relation between the Rh phase and the magnetic
signal. Recently published band structure calculations of Rh-
C60 performed in the local-spin-density approximation found
no magnetic solution for Rh-C60 and energy bands with dif-
ferent spins are found to be identical and not split, concluding
that the rhombohedral distortion of C60 itself cannot induce
magnetic ordering in polymerized fullerene in agreement
with magnetization, X-ray emission, and absorption spec-
tra measurements performed in Rh-C60 samples (Boukhvalov
et al., 2004). These results suggest that the magnetic ordering
is related to other carbon structures that are formed before the
fullerene cages collapse, as the work of Wood et al. (2002)
indicates; see Figure 8.

An important issue is the impurity concentration in the
fullerene samples polymerized under pressure. Apparently
the pressure cells used by Makarova et al. (2001) were not
clean enough according to the measured impurity concen-
tration through PIXE measurements (Höhne and Esquinazi,
2002; Spemann et al., 2003) that reaches values of the order
of 400 µg g−1 of iron, nonhomogeneously distributed across
the sample within 30 µm depth from the surface. Because the
pristine C60 powder has a much smaller impurity concentra-
tion, the impurities should have been incorporated during
some sample preparation steps. Owing to the iron concentra-
tion one may speculate that Fe3C may have been synthesized
during the preparation conditions. Such an alloy shows a
Curie temperature of the order of 500 K similar to the mea-
sured one in some of the samples (Makarova et al., 2001). In
fact, polymerized C60 samples mixed with iron before poly-
merization show a similar Curie temperature (500 K) as those
reported by Makarova et al. (2001), owing to the presence
of the compound Fe3C (Talyzin et al., 2007). Taking into
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Figure 8. Hardness and remanent magnetization as a function of the preparation temperature for fullerene samples treated at 9 GPa,
indicating the region of radical center generation. According to Wood et al. (2002) a pressure of 9 GPa was applied to all the samples
before heating. The samples were then heated to preparation temperatures in the range 700–1200 K where they were held for 1 min. X-ray
diffraction work (Bennington et al., 2000) indicates that this isobar will go through an almost pure rhombohedral phase straight into the
graphitic hard carbon phase. Note that a maximum remanent magnetization was obtained near the cage collapse. (Reproduced from R.A.
Wood et al., 2002, with permission from IOP Publishing Ltd.  2002.)

account this result and the amount of Fe found in the orig-
inal samples (Höhne and Esquinazi, 2002; Spemann et al.,
2003), one concludes that the main magnetic signal and the
ferromagnetic transition reported by Makarova et al. (2001)
likely originated from Fe3C (Makarova et al., 2006). We note
that recent experimental study (Han et al., 2005) performed
on samples prepared from fullerenes with lower impurity
content and after high pressure high temperature (HPHT)
treatment showed vanishingly small bulk magnetization, indi-
cating that the pressure polymerization of fullerenes is not
an appropriate method to produce magnetic carbon.

In spite of the results discussed above we would like to
comment on a combined experiment with PIXE and magnetic
force microscopy (MFM) done in the pressure-polymerized
fullerenes (Han et al., 2003b; Spemann et al., 2003). In
one piece of the E16 sample described above, a region
of area ∼500 × 250 µm2 with a concentration of magnetic
impurities below 1 µg g−1 was selected and characterized
with MFM. Around 30% of the pure region showed magnetic
domains, indicating that only a small fraction (∼10%) of the
sample contributes to the magnetic signal measured by the
SQUID. Figure 9 shows one kind of MFM images obtained
in such pure region where apparent magnetic domains were
observed (Han et al., 2003b, 2003c). The MFM image
changes clearly when it is measured under a magnetic field;
see Figure 9. It remains unclear, however, how large the total
magnetic moment and mass of the impurity-free magnetic
region are.

We should note that in the work of Wood et al. (2002) no
detailed impurity measurements were provided although we
would naively rule out such a contribution because a max-
imum in the magnetization is obtained only at a particular

A

C

B = 0 Oe B = 80 Oe

D
B

(a) (b)

Figure 9. Magnetic force gradient images taken at room tempera-
ture from the pure region of the E16 bulk sample without (a) and
with (b) magnetic field of 80 Oe. The scan size was 2.5 × 2.5 µm2

and the tip-sample distance was 100 nm. The arrow shows the direc-
tion of applied magnetic field. Note the clear change in the phase
shift signal at the regions denoted by letters before and under a
magnetic field. (Reproduced from Han et al., 2003, with permission
from Elsevier.  2003.)

point of the phase diagram; see Figure 8. However, as the
work of Talyzin et al. (2007) indicates, there appears to be
a chemical reaction of Fe with C60 at the used temperature
and pressure treatment, which forces the cage structure to col-
lapse with a ∼15% volume shrinking. Owing to this collapse
it is possible that the pressure cell breaks and contamination
from outside penetrates the sample. This may be a possible
explanation for the behavior shown in Figure 8.

In Section 2 we have noted that Murakami and Suematsu
(1996) produced magnetic order in C60 crystals exposing
them to xenon-light radiation in the presence of oxygen.
Similar to polymerization by pressure, oxygen-free C60 films
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and crystals can be photopolymerized under the action of
UV and visible light (Rao et al., 1993a,b). Two processes
occur when C60 is simultaneously exposed to oxygen and
light: a photoassisted diffusion of molecular oxygen into
solid C60 and oxidation of C60 (Rao et al., 1993a). The
oxygen phototransformed phase has, in general, the formula
C60(O2)x with x depending on the light wavelength and
intensity as well as the crystallinity of the sample. There is
indirect evidence that the photoassisted reaction of oxygen
with C60 may lead to the opening and breaking of the C60

cages (Wohlers, Bauer and Schlögl, 1997; Matsuishi et al.,
1997). Whether after the opening of the cages the oxygen
atoms or other light atoms like hydrogen play a main role in
the magnetic order remains to be studied.

Makarova et al. (2003) repeated the experiment of
Murakami and Suematsu (1996) transforming C60 bulk sam-
ples by white light for several days and C60 films by Ar-ion
laser and electron beam with different wavelengths. More
details on the preparation conditions as well as the penetra-
tion depths of the irradiation can be found in the original
publication. The change in the magnetic signal has been
characterized by ac susceptibility and SQUID measurements
for the bulk samples and through MFM measurements of
the fullerene films. Fullerene irradiated in the presence of

Topography MFM

Figure 10. Left-side sketch shows the fullerene film with the
two irradiated regions: the upper ellipse corresponds to the laser-
illuminated region in air (2.6 eV and 200 mW cm−2 intensity)
(Makarova et al., 2003) and the lower rectangle, to the region where
20 spots of 1.8 µm diameter each where irradiated with a proton
microbeam with a current of 500 pA and fluences between 0.068
and 68 nC µm−2. In contrast to the clear change in topography at
the laser-irradiated spot (due to the grain formation) and at the
proton-irradiated spots in HOPG (see Section 4.3.3) no change in
the topography is detected after proton irradiation of the spots in
the fullerene film. All images correspond to an area of 5 × 5 µm2.
(Reproduced from Esquinazi et al., 2005, with permission from
Elsevier.  2005.)

oxygen showed clear ferromagnetic hysteresis loops with
a saturation magnetization that increased with the exposi-
tion time. Figure 10 shows the topography and the magnetic
field gradient images of the laser-illuminated spot region of
a fullerene film. The magnetic signals (maxima and min-
ima in the force gradient) coincide with the topography. The
irradiation-driven transition from a van der Waals–bonded
solid to a chemically bonded one contracts the lattice, cre-
ating grains as seen in the atomic force microscopy (AFM)
images (see Figure 10). These grains or the surface of the
grains turned out to be magnetic. No magnetic signals are
measured at the nonexposed areas even when topography
irregularities exist (Makarova et al., 2003). A nonexposed
region of the same C60 film was irradiated with protons
(20 spots pairwise separated by 20 µm at different fluences
and 2.5 MeV energy); see Figure 10. Although no change in
topography was observed, the irradiated region reveals clear
phase constrast. Since the penetration depth of the protons
at the energy used is much larger than the thickness of the
C60 film (∼0.25 µm) it is not expected that those protons
remain in the film. As we will discuss in the next sections,
the defects produced by the proton irradiation and the hydro-
gen atoms already in the sample may trigger magnetic order.
In summary, we may conclude that fullerenes do not show
magnetic order and serve only as an auxiliary unit for the
formation of magnetic carbon defects.

4.3.3 In proton-irradiated carbon structures

Although irradiation effects in graphite were a major research
area in the past, their influence on the magnetic properties
were only noted through the increase in the spin density and
a decrease in the diamagnetism owing to the introduction
of lattice defects (Kelly, 1981). Recently, induced magnetic
order by proton irradiation was found in graphite and
disordered carbon and fullerene films (Esquinazi et al., 2003;
Höhne et al., 2004a; Han et al., 2003a; Esquinazi et al.,
2006). In this section we will briefly review some of
the obtained results, mainly on the effects produced by
proton irradiation in HOPG samples. For a detailed review
on these effects in carbon structures and other irradiation
characteristics, the reader should refer to a recently published
article (Esquinazi et al., 2006).

The early literature on magnetism in carbon structures
tends to indicate that apparently hydrogen (or maybe another
light atom like oxygen) plays a role in the reported ferro-
magnetism. As we have described in Section 2, especially
the work of Murata, Ushijima, Ueda and Kawaguchi (1991,
1992) suggests a correlation between hydrogen concentration
and magnetic order in carbon. Proton irradiation provides
us with the unique possibility to implant hydrogen, produce
lattice defects in the carbon structure, and simultaneously
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have a complete elemental analysis of the sample. Protons
in the megaelectron volt energy range have a penetration
depth of several tens of micrometers inside a carbon struc-
ture (Spemann et al., 2004). The defect formation process
by high-energy protons is a nonequilibrium athermal pro-
cess and it appears rather unlikely that ordered arrays of
defects are formed by migration of interstitial carbon atoms
or vacancies, maybe with the exception of interstitials across
the gallery. According to Banhart (1999) and from electron
irradiation studies, the essential types of radiation damage up
to intermediate temperatures are the rupture of basal planes
(due to shift of the C atoms out of the plane) and the aggre-
gation of interstitials into small dislocation loops between the
graphene layers. The protuberances measured at the irradi-
ated surface of microspots (Han et al., 2003a) result from the
creation of interstitials. The migration energy of the intersti-
tial depends on whether it is bounded. Di-interstitials were
proposed to explain the irradiation-induced amorphization of
graphite with a migration energy of 0.86 eV (Niwase, 1995).
The interstitial loops are stable up to rather high tempera-
tures, probably to 1000 ◦C (Banhart, 1999).

Irradiation changes the ratio of sp2 to sp3 bonding leading
to cross-links between the graphene layers and the forma-
tion of sp3 clusters (Tanabe, 1996). These clusters appear
to be stable and do not anneal at high temperatures. Raman
and X-ray photoemission spectroscopy (XPS) measurements
indicate an additional disorder mode peak ‘D’ at 1360 cm−1.
Experimental results after proton irradiation in HOPG sam-
ples indicate that with increasing fluence the E2g2 and D
modes become broader and the ratio of their intensities
I(D)/I(E2g2) increases as a measure of the degree of disor-
der (Höhne et al., 2004a). Monte Carlo simulations (Ziegler,
1977–1985) indicate that the vacancy and interstitial num-
ber produced by the megaelectron volt protons is about 15
times larger than the number of implanted ions. For fluences
0.001–75 nC µm−2 we get in the near-surface region between
4.7 × 10−6 and 0.35 displacements per carbon atom, that is,
complete amorphization for the highest fluence, using a dis-
placement energy of 35 eV for Frenkel pairs in HOPG, in
agreement with recently published studies of the damage
cascades by irradiation on graphite (Abe, Naramoto, Iwase
and Kinoshita, 1997). For a fluence of 75 nC µm−2 we have
∼5 × 1011 protons/µm2, that is, the regions where defects
are created by each individual proton overlap heavily. A
dangling bond at the vacancy position in the carbon struc-
ture could trap a hydrogen atom – not necessarily from the
proton implantation but already present as impurity in the
sample. Theoretical estimates (Lehtinen et al., 2004) indicate
(see Section 5) that certain H-vacancy complexes as well as
hydrogen bonded to carbon adatoms (just above a graphene
layer) have a magnetic moment; each hydrogen would pro-
vide an average magnetic moment of ∼1 µB.

‘Magnetic spots’ of micrometer size
With a proton microbeam of energy in the megaelectron volt
range directed onto the HOPG surface parallel to the c axis
of the sample without beam scanning (excepting line scans,
see the following text) it is possible to ‘magnetically write’
on a graphite surface, leading to the formation of micron-
sized spots with enhanced defect density, as measured by
micro-Raman (Höhne et al., 2004a; Esquinazi et al., 2006).
In general, two spots separated by a distance of 20 µm were
irradiated with the same ion fluence and several ion fluences
were used. For large-enough fluences the swelling at the
spots can be directly observed with an optical microscope
(Spemann et al., 2004; Esquinazi et al., 2005). The height of
this swelling depends on the irradiated fluence and on the
mass of the ions. The swelling in the c direction occurs
together with the contraction in the graphene layer; the
newly formed interstitial planes push the existing planes
apart leading to a protuberance at the sample surface. The
dependence of the maximum swelling height h, measured by
AFM (see Figure 11), with the fluence for proton irradiation
f follows the function h = 27.5f 0.61 nm with f in nC µm−2.
With an MFM one can measure the phase change of the,
eventually magnetic, signal on the spots; see Figure 11.
Whether these phase changes at the surface of the spots
are of magnetic origin should be further checked since
electrostatic effects, partially related to changes in the work
function of the irradiated area, may provide a nonnegligible
contribution.

The maximum amplitude of the signal (maximum phase
shift) as a function of the fluence has a more complicated,
nonmonotonic dependence, which depends also on the proton
current used (Esquinazi et al., 2006). The units of the phase
signal from the MFM are ‘degrees’; a relation of this phase
shift of the tip vibration to the force gradient can be found
in Lohau et al. (1999, 2000). Examples for the magnetic
moment calculated from measurements of the phase shift
in carbon samples can be found in Han et al. (2003b,
2003c); Han and Esquinazi (2004). The dependence of the
phase signal amplitude with the tip-to-sample distance can
be used to estimate roughly the local magnetization of a
micrometer region assuming a specific thickness (usually of
the order of 1 µm). For the magnetic spots a relatively large
magnetization was estimated (Han and Esquinazi, 2004).
However, in those measurements the influence of electric
potential differences (e.g., difference in contact potentials
(work functions) between tip and sample surface or circuit-
induced potential differences) was not taken into account
and appropriately checked. Therefore, we may doubt the
estimated values as well as the magnetic origin of the
phase contrast at and in the surroundings of an irradiated
spot till clear evidence from other experimental techniques
is obtained. SQUID measurements done on thousands of
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Figure 11. AFM (top left) and MFM images (scan size: 20 × 20 µm2) for a 2 × 2 µm2 spot irradiated with 2.25 MeV protons at a fluence
of 7.5 × 1016 cm−2 � 0.115 nC µm−2. The AFM and MFM line scans shown below were extracted from the images as indicated by the
black triangles. The images show the results of the spot measured after irradiation (B = 0), after exposing it to a field of ∼1 kOe in the
c direction (B-up) or −c-direction (B-down). The measurements were done, however, at zero applied field. Since the sample had to be
removed from the MFM for the exposure to an external magnetic field, the subsequent repositioning of the spot in the MFM was accurate
to ∼2 µm. Note that the phase changes in these images may be partially influenced by electrostatic as well as aging effects, since there was
a certain time lag between the measurements at different applied magnetic fields. (Reproduced from Han et al., 2003a, with permission
from Wiley VCH-Verlag.  2003.)

spots in HOPG confirm that there show magnetic order
(Barzola-Quiquia et al., 2007) The recently performed X-
ray circular dichroism absorption measurements at proton-
irradiated spots produced on 200-nm-thick carbon films
suggest the presence of magnetic order at the carbon K-
edge (Ohldag, et al., 2006). These kinds of experiments are
very important to rule out impurity contributions as well
as to confirm the magnetic order at the proton-irradiated
regions.

With an α particle microbeam of 1.5 MeV energy sim-
ilar topological spots were produced on HOPG surfaces
(Han et al., 2003a). In contrast to the phase contrast
obtained at the spots produced with the proton microbeam,
those spots showed a much smaller contrast indicating
that disorder alone does not trigger the observed sig-
nals. Nevertheless, more experiments using α particles in
a broader range of parameters are still necessary because
we cannot rule out that other effects, like local annealing,
adversely influence the development of the observed phe-
nomena.

Proton irradiation of large areas
Eventually, in order to visualize magnetic domain patterns
as well as to increase the induced magnetization to reach the
minimum range of commercial SQUIDs (typical magnetic
moment resolution ∼10−7 emu or better) it is necessary to
increase the irradiation area as well as the total irradiated
charge. Figures 12 and 13 show the magnetic moment data
and magnetic images obtained for a HOPG sample irradiated
in a broad area (Esquinazi et al., 2003).

The increase of the saturation magnetic moment with
the total irradiated charge has been reproduced in other
HOPG samples (Esquinazi et al., 2003, 2006; Barzola-
Quiquia et al., 2007). However, irradiation can lead also
to negligible change or even to a reduction of the total
magnetic moment upon the selected irradiation parameters
and sample characteristics. The parameters that influence the
magnetic order are (i) the total implanted charge; (ii) the input
energy; (iii) the fluence, the irradiated charge per unit area;
(iv) the ion current, large currents might heat the sample
and nonsystematic effects are then possible; (v) micro- or
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Figure 12. Magnetic moment as a function of applied field of a
HOPG sample proton irradiated with a total charge of 3 µC and
611 µC (stage No. 1 and 2 + 3, respectively, described in Esquinazi
et al. (2003)). The field was applied parallel to the graphene planes.
(Reproduced from Esquinazi et al., 2004, with permission from
Elsevier.  2004.)

macroirradiation; (vi) sample temperature; and (vii) the initial
state of the sample, namely, the density and type of defects,
as well as the concentration of hydrogen before irradiation.
Computer simulation results of the effects of adsorbed
hydrogen on the band structure of a graphene layer indicate
that metallization caused by specific defects can quench a
spin-polarized state (Duplock, Scheffler and Lindan, 2004).

Clear proton irradiation effects on the magnetic response
of thin carbon and fullerene films were reported (see Höhne
et al. (2004a) and Esquinazi et al. (2006) and Figure 10),
although the thickness of those films (<∼1 µm) were much
smaller than the proton penetration depth at the used energies,
that is, most of the protons should go through the material.
These experimental facts indicate either that the hydrogen
concentration in the sample or surrounding before irradiation
might be relevant (the measured H concentration at the
surface of HOPG samples is rather high; see Reichart et al.
(2006)) and/or that the defect concentration in the first
micrometer from the sample surface and produced by the
proton beam is not negligible.

4.3.4 In other carbon-based structures

Kapton is a tough, aromatic polyimide material, generally
used in the form of a composite film (of amber color)
in a wide variety of applications. The molecular structure
is composed of an imide part, polymellitic dianhydride,
and a bridging part, 4,4′-oxydianiline, that is, it contains
basically the elements C, N, O, and H. Kapton has been
(and apparently is still) used as wiring insulation, although it
is suspected to be involved in several aircraft disasters owing
to its tendency to arc. Kapton and some other polymer films
with heat resistance transform into graphite films with high

crystallinity after heat treatment at high temperatures (T >

2000 K). For polyimide films the degree of graphitization
increases for thinner films (Hatori, Yamada and Shiraishi,
1992, 1993). Low-temperature annealing of polymers leads
to the formation of porous structures with a high density
of radical molecules. Therefore, it is tempting to think that
through the exchange interaction between unpaired electrons
on free radicals one may trigger magnetic order. Note,
however, that this assumption does not always work as the
magnetization of disordered carbon revealed; see Section 4.2.

Kaburagi and Hishiyama (2002) observed an interesting
behavior of the magnetization of Kapton when it starts
decomposing around 770 K. Figure 14 shows the magneti-
zation loops at 300 K measured for Kapton samples kept for
1 h at each of the temperatures shown in the figure and under
nitrogen flow. The results clearly show that Kapton’s magne-
tization behavior changes from the usual diamagnetic one to a
ferromagnetic one at annealing temperatures around 500 ◦C.
A maximum saturation magnetization at room temperature
of 0.06 emu g−1 (coincidentally a value observed for some
of the polymerized fullerene samples) was reached after an
annealing temperature of 520 ◦C. Note that the ferromagnetic
behavior vanishes for annealing temperatures above 520 ◦C.
Taking into account that annealing dramatically decreases
the concentration of light elements (a 70% weight loss was
measured after a heat treatment at 540 ◦C (Kaburagi and
Hishiyama, 2002)) the results suggest that a specific bal-
ance between graphitic-like order plus a certain amount of
light atoms are necessary to trigger the magnetic order. The
coercive field at 300 K was of the order of 0.005 T and a
remanent magnetization of the order of a few percent of
its saturation value. The magnetic response of the annealed
samples shows the contribution of three components, that is,
diamagnetism, paramagnetism (clearly observed when M is
measured as a function of temperature at fixed field), and
ferromagnetism. We expect that the magnetic order is not
homogeneously distributed in the annealed sample. In spite
of the clear magnetic order demonstrated by the SQUID
measurements, the authors did not find evidence of mag-
netic domains using MFM, nor any sign for an anisotropic
response within experimental error. Measurements done after
five months revealed a slight decrease of M and increase of
the paramagnetic part. This aging effect of the magnetic order
appears to be a general feature observed in different carbon-
based samples; see Section 4.3.5. We should note, however,
that several groups could not still reproduce the results of
Kaburagi and Hishiyama (2002) shown in Figure 14. There-
fore we may doubt whether the observed effects are intrinsic
to the measured samples.

Kopelevich et al. (2003b) reported on local ferromag-
netism in microporous carbon with the structural regularity
of zeolite Y. The authors observed clear hysteresis loops
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Figure 13. Top: Phase gradient images obtained at room temperature from MFM at three surfaces of a HOPG sample at three irradiation
stages as described in Esquinazi et al. (2003). Bottom right: Topography and phase gradient line scans of the MFM image at the stage
No. 2. As in Figure 11 the possible influence of electrostatic effects may play a role in the observed phase contrast and should be checked
in future experiments. (Reproduced from Esquinazi et al., 2003, with permission from the American Physical Society.  2003.)

added to a paramagnetic contribution. Subtracting this con-
tribution at low temperatures, the saturation magnetization
of this sample is <∼0.04 emu g−1. This value should be com-
pared to ∼0.06 emu g−1, which is the maximum expected
saturation magnetization due to the Fe concentration in the
samples (Kopelevich et al., 2003b). In contrast to the behav-
ior observed in most of the carbon-based samples reported
above, this microporous carbon revealed a rather complicated
temperature and field dependence added to clear difference
between field and zero-field cooled samples at low-enough
temperatures and fields. Following the experimental work of
Harris, Burian and Duber (2000) that indicates that micro-
porous carbon may have a fullerene-related structure, in
which pentagons and heptagons are distributed randomly
throughout a hexagonal network, Kopelevich et al. (2003b)
proposed that the origin of magnetism may be related to
topological disorder and curved graphene sheets, whereas the
behavior at low temperatures may be due to a percolative-
type transition of isolated magnetic clusters. This proposal
agrees with the ab initio density functional theoretical cal-
culations on carbon nanostructures with negative Gaussian
curvature and without undercoordinated carbon atoms that
reveal a net magnetic moment in the ground state of these
structures (Park et al., 2003). It would be interesting to repeat
these measurements with samples of higher purity and to
study the evolution with annealing.

4.3.5 Aging and annealing effects

Depending on the sample and the origin of the magnetic
order, it is possible to observe aging effects in the magneti-
zation. Taking into account previous reports on the behavior
and diffusion of hydrogen in graphite (Atsumi, 2002) one
may expect to observe some time dependence in the mag-
netic response in some of the magnetic samples if hydrogen is
involved in its origin. We note, however, that in general it is
not simple to separate a pure hydrogen diffusion effect from
structural relaxation because both may always be correlated.

Aging effects at room temperature in the magnetization
has been observed in the fullerene C60H24 by Antonov et al.
(2002). Hydrofullerites C60Hx synthesized at hydrogen pres-
sures of 0.6 and 3 GPa were found to be ferromagnetic at
room temperature (Antonov et al., 2002) with a magnetiza-
tion at saturation of the order of 1 emu g−1. Figure 15 shows
that the magnetization of a ferromagnetic sample decreases
when the sample is stored at ambient conditions.

Different measurements were done in irradiated samples
to test the possible influence of hydrogen diffusion in the
observed magnetism. Measurements were done in irradiated
spots in HOPG as well as in disordered carbon films just
after irradiation and after several months of leaving the
sample at ambient conditions. After a period of more than
six months the magnetic signals decreased (Esquinazi et al.,
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2006). Figure 16 shows the magnetic moment of a disordered
carbon sample before, just after proton irradiation, and after
one year at room temperature (after irradiation). It is clearly
seen that the ferromagnetic-like hysteresis vanishes after
one year. A clear decrease of the maximum phase shift of
the MFM signal at the magnetic spot positions as well as
changes in the topography with time have also been observed
(Esquinazi et al., 2006). Annealing irradiated samples at high
temperatures (∼1000 ◦C) makes the phase contrast vanish at
room temperature (Esquinazi et al., 2006).
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Figure 16. Magnetic moment (the diamagnetic background was
subtracted) as a function of applied field for the disordered carbon
film CH577a after preparation by PLD (before irradiation (�)), after
irradiation (•) and one year later, leaving the sample at room
temperature (�). (Reproduced from Esquinazi et al., 2005, with
permission from Elsevier.  2005.)

The oxygen effect on the magnetic properties of graphite
has been explored by Kopelevich, Moehlecke and da Silva
(2006). In their experiments, an activated graphite powder
was prepared by cutting and grinding an ultraclean graphite
rod at T = 300 K in oxygen atmosphere by means of a virgin
diamond saw blade. It is found that whereas the starting
sample demonstrated a diamagnetic (nonhysteretic) response,
measurements performed on the oxidized graphite powder
revealed a pronounced ferromagnetic signal. It has also
been found that the ferromagnetism vanishes with time after
taking the sample out from the oxygen atmosphere, providing
indirect evidence that the ferromagnetism is triggered by the
adsorbed oxygen and not by a possible trace of magnetic
impurities.

5 POSSIBLE ORIGINS OF THE
MAGNETIC ORDER

In general, magnetic order in solids at low-enough tempera-
tures, that is, below the Curie temperature, is characterized
by a microscopic arrangement of magnetic moments, which
are related to atoms containing partially filled electron shells,
like in elements (and their alloys) with 3d or 4f electrons.
To account for the ‘order’ one needs an exchange interaction
(given by a constant J ) of electrostatic origin between the
localized magnetic moments or, in case of itinerant electron
magnetism, an effective exchange energy for the unpaired,
delocalized electrons. What makes the room-temperature
carbon-based magnetic order unusual is the absence of d
and f electrons, that means an apparent absence of local-
ized magnetic moments. In this section we review several
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proposals for a magnetic order in carbon structures and their
correlations with experimental results. We would like to men-
tion that due to the still inhomogeneous distribution (actually
unknown) of magnetic material in the reported carbon struc-
tures, it makes little sense to speak about a specific amount
of Bohr magneton per carbon atom or per fullerene cage.
Any correlation of this number with theoretical predictions
should be dealt with carefully.

(a) Can ferromagnetism occur in a perfect graphene layer?
Itinerant ferromagnetism in graphite: It has been pointed out
that the low dimensionality and density of carriers in graphite
(n2D = 1 . . . 2.4 × 1011 cm−2) may give rise to itinerant
ferromagnetism (Khveshchenko, 2001a,b). This phenomenon
is related to the large electron–electron interaction expected
for a two-dimensional system with a low density of carriers.
The strength of this interaction can be estimated through the
Coulomb coupling constant

rs = e2m∗

�2εε0
√

πn2D

(1)

where m∗ = 0.04–0.06 m (Sharma, Johnson and McClure,
1974) is the effective mass of the carriers (m is the free
electron mass), ε = 12–15 the dielectric constant. Using
these values we get rs = 7–21. The constant rs is given
by the ratio between potential Coulomb energy (between
carriers) and the Fermi (kinetic) energy. If rs >∼ 1 and within
a rough picture, it may be possible that the ground state of an
electron pair is not given by spin-up and spin-down but both
with the same spin direction because in this case the Coulomb
interaction decreases (the effective distance between the two
electrons increases) and therefore a magnetic order appears.

In case the main carriers are massless Dirac fermions, as it
is assumed for graphite due to the linear dispersion relation
of the carriers near the Fermi energy, then the strength of the
Coulomb interaction is characterized by

g = e2

ε0vF�
(2)

With vF ∼ 2 × 106 m s−1, g ∼ 10 and therefore the strong
Coulomb interaction can open an excitonic gap in the
spectrum of the Dirac fermions (Khveshchenko, 2001a,b).
Theory indicates that the occurrence of a gap is accompanied
by the appearance of a small magnetic moment due to the
band anisotropy.

Indirect experimental evidence for the importance of the
Coulomb interaction between carriers and the opening of
a gap with field may be given by the field-induced metal-
insulator transition in the magnetoresistance of HOPG for
fields applied normal to the layers (Kempa et al., 2000, 2003;
Kopelevich et al., 2003a). Direct experimental evidence for
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Figure 17. (a) The structure of a magnetic graphene ribbon. Dark
circles represent carbon atoms and open circles, hydrogen. The
unit cell contains 10 carbon and 3 hydrogen atoms, represented by
dashed lines in the x, y plane. The monohydrogenated C(1) carbon
atom forms sp2 bonding, whereas the dihydrogenated C(10) carbon
atom, an sp3 bonding. (Reproduced from Kusakabe et al., 2003,
with permission from the American Physical Society.  2003.)
(b) Spin density represented by isosurfaces. Bright and gray
surfaces represent spin-up and spin-down densities. (Reproduced
from Kusakabe et al., 2003, with permission from the American
Physical Society.  2003.)

the existence of a gap in the band structure of graphite
is still missing and therefore the existence and further
details of the long-range itinerant ferromagnetic order remain
unclear.

(b) Magnetic properties of graphene with zigzag edges :
Fujita, Wakabayashi, Nakada and Kusakabe (1996) catego-
rized two-dimensional graphitic structures in nanometer scale
as a novel graphitic material with properties different from
bulk graphite or small aromatic molecules due to the influ-
ence of the open edges. Depending on the shape and termi-
nation of the edges a magnetic instability may occur in the
graphitic structure. One distinguishes between three types
of edges: zigzag (monohydrogenated Fujita’s edge, edges
similar to the position C(1) in Figure 17(a), dihydrogenated
zigzag edges, Klein’s edge (Klein, 1994), edges similar to the
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position C(10) in Figure 17(a)), or armchair edges. Theoreti-
cal predictions (Fujita, Wakabayashi, Nakada and Kusakabe,
1996) indicate that the electronic states at Fujita’s zigzag
edges (terminated with one hydrogen atom, i.e., sp2-bonded
carbon atoms) are strongly localized with the nonbonding
unpaired electrons having a localized magnetic moment with
S = 1/2. These states, characterized by nearly flat dispersion
in a certain range of momentum space and whose density
of states has a sharp peak around the Fermi energy, would
decay exponentially into the bulk of the 2D sheet (Nakada,
Fujita, Dresselhaus and Dresselhaus, 1996). The edge states
are believed to be responsible for the paramagnetic as well
as the unconventional behavior observed in activated carbon
fibers by Shibayama, Sato, Enoki and Endo (2000) (see also
Enoki and Takai (2006)). Evidence for an increase of the
density of states at the Fermi level at zigzag edges has been
obtained by STM studies (Giunta and Kelty, 2001; Esquinazi
et al., 2002; Kobayashi, Fukui, Enoki and Kusakabe, 2006).

Although a dihydrogenated zigzag edge behaves as Klein’s
edge and becomes magnetically ordered as Fijuta’s edge
(Kusakabe and Maruyama, 2003), a graphene ribbon with
both edges either mono- or dihydrogenated cannot be mag-
netic, unless they are uncompensated. This is expected
because of the effective antiferromagnetic compensation (net
moment zero) of the localized magnetic moments at the
opposite edges of the graphene ribbon. This situation agrees
with the so-called Lieb’s theorem (Lieb (1989b) see also
Lieb (1989a)), which states that the ground state of a lat-
tice like graphene is magnetic with a total spin given by
S = |NA − NB|/2, where NA(NB) is the number of A (B)
sites or stared (unstared) carbon atoms, if a short-range inter-
electron repulsion U is assumed. A similar result has been
obtained already for hydrocarbon molecules by Ovchinnikov
(1978). If the π -electron system is described by this bipartite
network with only nearest-neighbor electron transfer paths
(electrons hop from a lattice position A to B without direct
A–A or B–B hopping) then a flat band appears at EF if
the orbital energy is the same for every site. A couple of
examples on how to estimate S for two hydrocarbon net-
works are given by Maruyama et al. (2004).

A finite magnetic moment per unit cell is obtained in
graphene if both Fujita’s and Klein’s edges exist in the
same ribbon. In this case the spin balance cancels owing
to the existence of an sp2- and an sp3-bonded carbon atoms
(C(1) and C(10) in Figure 17(a)) at the edges. The flat band
is destroyed and an energy difference appears between the
spin-up and spin-down bands. This spin gap is estimated
with local-spin-density-approximation (LSDA) to be of the
order of 0.2 eV for the unit cell of Figure 17(a) (Kusakabe
and Maruyama, 2003) (note that the calculation is done at
T = 0 K). The LSDA results indicate a net magnetic moment
of 1 µB per unit cell of the ribbon. Similar calculations

substituting hydrogen by fluor and oxygen as well as the
addition of methylene indicate that the net magnetic moment
depends on the bonded atom at the edges (Maruyama and
Kusakabe, 2004; Maruyama et al., 2004). Note that the
sp2 –sp3 unbalance of carbon-bonded atoms plays a crucial
role in triggering the finite magnetic moment. Note that this
is not localized at the edges but distributed in the whole
cell. The structure and energy spectra of different classes of
large hydrocarbons (∼104 carbon atoms) with different edge
structures and semiconducting properties have been studied
theoretically by Dietz, Tyutyulkov, Madjarova and Müllen
(2000). The main results of this work indicate that defects
in polycyclic aromatic hydrocarbons change their energy
spectra and in some cases the defect state energy levels are
situated within the energy gap as n or p state in conventional
semiconductors. In some cases the defects can lead to a high-
spin state (ferro- or antiferromagnetic order) in the aromatic
hydrocarbon.

Since electron–electron interactions play a main role in
the development of a spontaneous spin-polarized state at the
zigzag edges, one may doubt the use of certain theoretical
approximations to solve this problem. Therefore, controlled
approximations are always necessary to understand and
clarify their influence on the calculated low-energy properties
of the small graphitic structures. Hikihara, Hu, Lin and
Mou (2003) studied the effects of the electron–electron
interactions and showed that (i) in the presence of a
Hubbard interaction the ground state is a spin singlet
with finite charge and spin gaps without spontaneous spin
polarization. (ii) Electrons at the zigzag edges correlate
ferromagnetically composing effective spins that are easily
polarizable by an external field. (iii) The localization at
the zigzag edges of the effective spins are robust against
electron–electron interactions. Regarding the question of
interaction between graphene layers (interlayer interaction)
in a 3D graphite structure, Harigaya (2001) showed that
the magnetic properties change drastically depending on the
type of stacking geometry; for the simple stacking there is
apparently no magnetic solution.

(c) Three-dimensional structures of full carbon magnets :
Mataga (1968) and Tyutyulkov and Bangov (1974) were
probably the first authors to propose organic ferromag-
nets with unpaired electrons in nonbonding π-molecular
orbital, in particular, in hydrocarbon molecules and nonclas-
sical π -conjugated polymers. A few years later Ovchinnikov
(1978) published similar ideas. A magnetic all-carbon struc-
ture with a mixture of sp2 and sp3 bonds was proposed by
Ovchinnikov and Shamovsky (1991) (see also the references
therein). These authors suggested that a three-dimensional
all-carbon structure with the highest magnetization would
contain an equal number of sp2 and sp3 hybridized carbon
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Figure 18. The theoretical structure of ‘ferrocarbon’ that contains
equal numbers of sp2 and sp3 hybridized carbon atoms. This struc-
ture is intermediate between the graphite and diamond structures
and contains 50% of unpaired-electron carriers. The lattice param-
eters were determined by energy minimization by Ovchinnikov
and Shamovsky (1991). (Reproduced from A.A. Ovchinnikov et al.,
1991, with permission from Elsevier.  1991.)

atoms, that is, a mixture of the diamond and graphite struc-
tures. Note that the structure is obtained by shifting some
of the sp2 carbon atoms out from the planar graphene layer
and hybridizing them to an sp3 state with the next carbon
neighbors from the top or bottom graphene layers. Through
this sp3 hybridization a singlet state is achieved for the for-
mer π electrons. Every sp2 carbon atom with one unpaired
electron is surrounded by three sp3 carbon atoms. The ele-
mentary cell of the structure proposed by Ovchinnikov and
Shamovsky (1991) and shown in Figure 18 has eight car-
bon atoms with a maximum magnetic moment of 4 µB per
unit cell. The authors’ estimations suggest that an exchange
interaction between all pairs of nearest unpaired electrons
localized on the sp2 carbon atoms might be possible and
the triplet, ferromagnetic electronic configuration should be
the ground state of the structure. In spite of some reports
in literature (see Shulg’a, Boldyrev and Ovchinnikov (1992)
and references therein) it is unclear whether such a structure
has been realized and how large its intrinsic magnetization
was since nobody apparently could reproduce those results.

Unpaired spins in an all-carbon structure can be also
found in special cases like nanostructures with negative
Gaussian curvature, see Figure 19(a), as suggested by Park
et al. (2003). The carbon radicals are those depicted by the
gray spheres in one of the four phases of the tetrapod, see
Figure 19(b). Note that in this structure the radicals are not
undercoordinated but sterically protected by heptagons (gray
areas in Figure 19(b)) and hexagons. These radicals are the
source for the spin polarization. According to Park et al.
(2003) the decomposition of the calculated electronic density
of states for the sp2 terminated tetrapod suggests that 4 of

12 unpaired spins are not localized and originate a magnetic
ground state. Although such negative Gaussian curvatures are
unlikely to be the origin of the magnetic order in graphite
structures, the authors speculate that this building block may
exist in carbon foams giving rise to its anomalous magnetic
behavior (Rode et al., 2004).

(d) Magnetic properties of vacancies and adatoms on cer-
tain carbon structures : Till the end of the 1990s there was
basically consensus that disorder in a graphite or other
carbon-based structure produces a paramagnetic behavior
due to the formation of nonbonding electrons (dangling
bonds). Owing to the expected electron–electron interac-
tions in graphene, González, Guinea and Vozmediano (2001)
suggested that topological defects enhance the density of
states and induce electronic instabilities, giving rise to the
possibility of ferromagnetism as well as p-wave supercon-
ductivity. Quantitative treatments of the magnetic proper-
ties of vacancies and adatoms using spin-polarized density-
functional simulations have been published recently. Experi-
mental evidence for ferromagnetic behavior in carbon struc-
tures with some kind of disorder, like proton-irradiated
graphite (Esquinazi et al., 2003), suggests that vacancies
and adatoms, possibly with the influence of light atoms like
hydrogen or oxygen, play an important role in the magnetic
order. Ab initio calculations indicate that a carbon adatom
on a graphene sheet can have equilibrium positions with
a finite magnetic moment of the order of 0.5 µB (Lehtinen
et al., 2003). This moment can be understood if we consider
that the hybridization state is different for the two surface
atoms attached to the adatom and this last one (sp2 –sp3 vs
sp2 hybridization, respectively); the half pz electron of the
adatom provides the 0.5 µB.

(a) (b)

Figure 19. (a) Structure of the building block of schwarzite, the
‘tetrapod’. (Reproduced from Park et al., 2003, with permission
from the American Physical Society.  2003.) (b) Three trivalent
carbon radicals are represented by the gray spheres. The tetrapod
contains 12 trivalent radicals. The gray areas indicate the heptagons
to which the radicals are associated. (Reproduced from Park et al.,
2003, with permission from the American Physical Society. 
2003.)
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Figure 20. (a) Atomic structure of a vacancy in a graphene
layer. (Reproduced from Y. Ma et al., 2004, with permission
from IOP Publishing Ltd.  2004.) (b) Structure of a vacancy
surrounded by two hydrogens. (Reproduced from Lehtinen et al.,
2004, with permission from American Physical Society.  2004.)
(c) Structure of a C–H group adsorbed between two graphene
layers. (Reproduced from Lehtinen et al., 2004, with permission
from American Physical Society.  2004.)

Ma, Lehtinen, Foster and Nieminen (2004) analyzed
the magnetic state of a vacancy in a graphene sheet as
that shown in Figure 20(a). Their result indicates that the
vacancy undergoes a Jahn–Teller distortion moving the
atoms 1 and 2 together in Figure 20(a). This deformed
pentagon saturates the sp2 electrons of the atoms 1 and 2,
leaving number 3 with a dangling bond that is responsible
for the 1.04 µB magnetic moment. Ma, Lehtinen, Foster
and Nieminen (2004) also studied the dependence of the
electronic structure and magnetic properties on the vacancy
concentration of carbon nanotubes. Their results indicate that
vacancies can change the electronic structure of the nanotube
and, in case it is metallic, the vacancy may trigger ferro- or
ferrimagnetism.

The calculations of Lehtinen et al. (2004) indicate that
if an hydrogen encounters an empty vacancy, then it com-
pensates the dangling bond, and the magnetic moment of
Figure 20(a) vanishes. However, if a vacancy is saturated
by a hydrogen atom, a second hydrogen atom can bond
to the other side of the vacancy (see Figure 20(b)). This
configuration with one H-atom above the graphene plane and
one below has a magnetic moment of 1.2 µB localized on the
dangling sp2 bond. The other possibility to have a magnetic
moment of the order of 0.9 µB is when the hydrogen atom
bonds to the C adatom in between two graphene layers (see
Figure 20(c)). Lehtinen et al. (2004) estimated the total mag-
netic moment produced in the irradiation experiments made
by Esquinazi et al. (2003) taking into account the amount of
hydrogen atoms, vacancies, and C adatoms obtaining reason-
able agreement. We note, however, that the magnetic order
is not demonstrated by these calculations but is implicitly
assumed through defect–defect interactions.

Chan et al. (2004) used density-functional theory and
reactive force field molecular dynamics to study the magnetic
order in fullerenes with defect rhombohedral structure. They
found that if a hydrogen bonds a C atom near a vacancy of
the C60 cage, a ferromagnetic ground state is found with a
moment of 3.0 µB per cage. In contrast to the graphene case
mentioned above, this bonding of hydrogen in the curved
fullerene structure does not quench the magnetic moment
but one of two possible states, destroying the spin balance.
To account for the measured magnetization the authors
estimated a ratio H:C60 ∼ 10%. Inelastic neutron scattering
experiments performed by the same authors indicated a
similar concentration of hydrogen as the theoretical estimate.

(e) The influence of hydrogen: In the previous section
we saw that bonding of hydrogen with carbon atoms near
vacancies or at the edges of graphene layers may be of
advantage for the formation of a magnetically ordered state
in certain carbon structures. In this section we would like
to emphasize some results from literature that indicate that
the coupling of hydrogen to carbon atoms in graphite-like
structures can have a strong influence in the electric and
magnetic properties of the carbon structure.

Ruffieux et al. (2000) combined AFM and STM measure-
ments to study the topography and the electronic changes
in the vicinity of defects produced by chemisorbed hydro-
gen or atomic vacancy formation on the basal plane of
graphite. HOPG samples were irradiated with a low pro-
ton flux of 1012 cm−2 s−1 and 10 eV energy. In the region
where chemisorbed hydrogen was present, these authors
found superlattice-type modifications of the electronic prop-
erties over a distance of 25 lattice (∼6 nm range) constants
without modifications in the topography. These results are
the first to show a long-range modification of the electronic
structure produced by a hydrogen atom.
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A positive muon (µ+) is an elementary particle with a
mass (1/9)th that of a proton and therefore much larger
than that of an electron. The electronic structure around a
(µ+) in a solid is virtually identical to that of hydrogen
in the same solid. After implantation in a solid these par-
ticles occupy interstitial sites and are a convenient way to
simulate the behavior of hydrogen impurity. The study of
the spin-relaxation rate and Knight shift, within the 2.2 µs
lifetime of the muon, provides a valuable way to char-
acterize the local electronic structure one would expect
around a hydrogen atom in the implanted solid structure.
Evidence for local magnetic moment formation on the car-
bon atoms of a graphene layer around a positive muon
in graphite was obtained by Chakhalian et al. (2002) sup-
ported by the unusually large and temperature-dependent
Knight shift. The muon-spin-relaxation rate is also anoma-
lously large and deviates from the Korringa relaxation for
normal metals. Chakhalian et al. (2002) noted that this
result is compatible with the strong energy dependence
in the density of states and the small Fermi energy of
graphite.

First-principles calculations of the electronic density of
states of graphene done by Duplock, Scheffler and Lindan
(2004) showed that the adsorption of atomic hydrogen opens
a substantial gap of 1.25 eV inducing a spin-polarized state.
This result agrees, in principle, with the experimental results
from Chakhalian et al. (2002) described above. The results
of Duplock, Scheffler and Lindan (2004) further showed that
the spin state is quenched when hydrogen is adsorbed either
on a Stone–Wales defect (pentagon and a heptagon pair on
the graphene layer) or on a layer containing this defect. This
amazing result appears to be due to the metallization induced
by this kind of defect on the band structure of the graphene
layer.

6 CONCLUSION

Defects undoubtedly alter the magnetic properties of carbon-
based structures. The simplest, well-reproducible example is
the increase of the paramagnetic contribution with disorder
in a graphite structure. There are several publications that
indicate that in certain carbon-based structures a magnetic
order exists, which remains even above room temperature
and without the influence of metal ions. This interesting
behavior was overseen by the main stream of experts in
magnetism partially because of the unclear characterization
of the magnetic impurity contribution in several, earlier pub-
lications and also due to the lack of sensitivity in earlier
studies. This situation has been improved by systematic and
careful studies of the magnetism in graphite, disordered car-
bon, and fullerenes, especially after proton irradiation in

which an overall impurity characterization was performed.
On the basis of the results obtained recently, the author is
convinced that room-temperature ferromagnetism in metal-
free carbon-based materials is a much more general phe-
nomenon than one ever thought. Impurities remain a problem
because in several of the not-yet optimized materials the sig-
nals are rather weak and can be easily overwhelmed by
a few tens of parts per million of ferromagnetic iron or
other magnetic ion. This unwanted contribution added to
aging effects and poor reproducibility of the methods used
to produce magnetic order in carbon systems are the main
problems faced by researchers nowadays. A large number
of open questions will keep researchers busy in the years to
come, namely, the origin for the magnetic order; the range
of Curie temperature; the maximum achievable saturation
magnetization in carbon structures; the contribution to the
magnetic order from lattice defects and their influence as
H-trapping centers; the electrical conductivity of the ferro-
magnetic structures; the influence of the ion current, fluence,
and energy of the irradiated particle and the sample tem-
perature on the magnetic order; the hydrogen and oxygen
coverage in the first micrometers from the surface before and
after irradiation; the defect relaxation and hydrogen, or other
light element, diffusion, and their influence on the magnetic
order.

NOTES

[1] In the manuscript from Ovchinnikov and Spector (1988)
the absolute value of magnetization is in units of G g−1,
a unit that does not match the usual magnetization units.
In that publication, however, there is a figure where the
magnetization in G and in emu g−1 for the same sample
are given. From that figure we infer that the used ‘G g−1’
should be equivalent to emu g−1.
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1 THIN-FILM GROWTH

Ultrathin magnetic films have been extensively investigated
since early 1980. In ultrathin films the interfaces play a
crucial role. In ultrathin structures, the exchange energy
between electrons maintains the same orientation of the
atomic magnetic moments across the film. The magnetic
properties of interface atoms are often different from those
in the bulk. These properties in ultrathin films are shared
by the atoms inside the film because of the very strong
exchange forces. As a result, ultrathin films behave like
giant magnetic molecules that are characterized by unique
magnetic properties absent in the bulk. In order to fully
benefit from the unique behavior of interface atoms on
thin-film magnetic properties, one is compelled to prepare
ultrathin-film structures having the best possible quality
of interfaces. The deposition of the film material on a
suitable substrate is usually carried out close to room
temperature (RT) where the film growth is controlled by
the interplay of thermodynamics and kinetics. The atomic
layers are formed by nucleation of flat atomic islands and
the deposited atoms are incorporated into these islands by
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surface diffusion. However, this is a nonequilibrium kinetic
process that affects the growth mode. In general, one can say
that perfect interfaces cannot be achieved, but by choosing
suitable growth conditions one can create ultrathin-film
structures in which the interfaces have a dominant effect. In
fact, a reasonable degree of interface roughness can result
in novel magnetic properties which would be absent in
structures having perfect interfaces. In the following, we
will demonstrate the wealth and depth of studies obtained
by using ultrathin-film homoepitaxial and heteroepitaxial
structures grown in a quasi layer by layer mode where the
interface roughness is mainly limited to a few atomic layers.

The growth of ultrathin metallic structures has been
mainly carried out using three major deposition techniques:
thermal deposition (TD), laser pulse deposition (LPD), and
sputtering.

1.1 Thermal deposition (TD)

Deposition rates are usually between 1 and 10 atomic lay-
ers/min. That slow rate automatically requires that the growth
be carried out in stringent ultrahigh vacuum (UHV) condi-
tions: a vacuum pressure lower than a few times 10−10 Torr
is a necessity which can’t be compromised. Interface diffu-
sion and segregation usually limits the substrate temperatures
to the vicinity of 300–400 K, but in some cases one has
to resort to the use of cryogenic substrate temperatures at
the initial stages of the growth. In that case, it has been
found useful to eventually increase the substrate tempera-
ture to the highest allowable temperature in order to avoid
excessive lattice defects, achieve large atomic terraces, and
improve the overall interface roughness. One has to realize
that interface diffusion and intermixing are characterized by
significantly lower energy barriers compared with the bulk.
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Therefore once several atomic layers have been deposited
the substrate temperature can be increased without having
an adverse effect on the interface quality. There are no
universal rules to follow. It depends on the individual sub-
strates and deposited films. It is crucial to be able to follow
the film growth in situ by means of some surface science
techniques. Scanning tunneling microscopy (STM), reflec-
tion high-energy electron diffraction (RHEED), low-energy
electron diffraction (LEED), angular resolved Auger electron
spectroscopies (ARAES), and X-ray photoelectron spectro-
scopies (XPS) are most commonly employed as in situ UHV
tools. The growth of heteroepitaxial structures can be affected
by a number of problems related to interface thermodynamics
and lattice mismatch.

1.1.1 Surface segregation and interdiffusion

Surface segregation can be important in the growth of
heteroepitaxial structures especially at elevated temperatures.
It is often thought that alloys like CoCu or FeAu are not
formed naturally because their heats of alloying is endother-
mic. This does not necessarily apply to surfaces. In many
cases, the thermodynamics favors surface segregation (mix-
ing of film and substrate atoms) on a low surface free energy
substrate and as a result metastable alloys can be formed
(Steigerwald, Jacobs and Egelhoff, 1988). The effect of seg-
regation was nicely demonstrated by Egelhoff (1989) using
Ni grown on a Cu(001) substrate. Rapid segregation was
observed at 450 K. Bulk diffusion was not possible at these
temperatures. A lattice site hop via the vacancy mechanism
would happen on a timescale of 107 years at 450 K. The
Cu/Ni interface provides a much lower activation energy
allowing an effective segregation of Cu on the top of the
deposited Ni film (Egelhoff, 1994a). A possible process is
exchange diffusion often referred to as the place-exchange
atomic mechanism. In this process, surface diffusion pro-
ceeds by the combined motion of an adatom moving down
into the substrate surface at the same time that a substrate
surface atom moves up to form a new film atom (Chambliss,
Wilson and Ching, 1992; Grass, 2003). Interface exchange
diffusion can dramatically affect the magnetic properties. A
typical example is an Fe-whisker/Cr/Fe(001) structure which
has played a crucial role in the study of exchange coupling
between two ferromagnets separated by a spin density wave
(SDW) Cr(001) layer. Scanning electron microscopy with
polarization analysis (SEMPA) (Unguris, Celotta and Pierce,
1991; Unguris, Celotta and Pierce, 1992) and magneto-optic
Kerr effect (MOKE) measurements (Purcell et al., 1991)
showed that the exchange coupling oscillates with the thick-
ness of the Cr film with a short-wavelength period of ∼2
atomic layers. Heinrich and coworkers have carried out
quantitative studies (Heinrich and Cochran, 1993; Heinrich,

Cochran, Monchesky and Urban, 1999). They found that
the coupling is extremely sensitive to small variations in
the growth conditions. In addition it was also established
that the phase of the coupling in this system was shifted
by 180◦. The bilinear exchange coupling strength was found
to oscillate between ferromagnetic and antiferromagnetic for
an even and odd number of the Cr atomic layers. This is
exactly opposite to that expected for a SDW in Cr(001).
This study showed that the strength of the bilinear cou-
pling constant J1 was very sensitive to the initial growth
conditions: a lower initial substrate temperature resulted in
a larger exchange coupling strength. This behavior indi-
cated that the atomic formation of the Cr layer is more
complex than had been previously acknowledged. ARAES
(Venus and Heinrich, 1996), STM (Davis, Stroscio, Pierce
and Celotta, 1996), and proton induced AES (Pfandzelter,
Igel and Winter, 1996) have shown that the formation of
the Fe/Cr(001) interface is strongly affected by an interface
exchange atom diffusion. The ARAES studies showed that
interface alloying during the growth starts at the low temper-
ature of 100 ◦C. Interface alloying increases with increasing
temperature. It is driven by the difference in binding ener-
gies between the substrate and the adatoms. Interface alloying
has been observed in those systems for which the substrates
have a lower melting point than the adatom solids. Therefore
this effect is not symmetric. It happens at the Fe/Cr inter-
face but it is absent at the Cr/Fe(001) interface (Heinrich,
Cochran, Monchesky and Urban, 1999). Freyss, Stoeffler
and Dreysse (1997) used a tight-binding d-band Hamilto-
nian to show that the interface alloying indeed results in
the reversal of the phase of the bilinear exchange coupling
in agreement with the experimental studies. The interface
roughness of Fe/Cr/Fe(001) and Fe/Cr(001) structures has
a profound effect on the SDW even in thick Cr layers.
In Fe/Cr/Cr(001) superlattices grown on MgO(001) sub-
strates (Fullerton, Bader and Robertson, 1996), the neu-
tron scattering data have shown that the transverse SDW
(with the magnetic moment parallel to the film and the
single Q wave vector oriented perpendicular to the lay-
ers) orders symmetrically in the Cr layers with the nodes
near the Fe–Cr interfaces. This is in agreement with the
Stoeffler and Gautier theoretical calculations (Stoeffler and
Gautier, 1995) showing that the magnetic moment in Cr is
primarily stabilized by SDW order. The magnetic moment
in Cr can be easily decreased, even quenched, by inter-
face disorder. The SDW in Cr depends strongly on the
degree of interface roughness. Cr(001) films grown on (1102)
oriented Al2O3 substrates having a Nb(001) buffer layer
(Boedeker, Schreuer and Zabel, 1999) and covered by an
Fe(001) layer showed a different behavior. For thicknesses
less than 25 nm a transverse incommensurate SDW with
the magnetic moment of Cr perpendicular to the film was
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observed. In this case, the interface disorder was accommo-
dated by orienting the magnetic moment of the Cr atoms
perpendicular to the in-plane Fe magnetic moments. There is
no preference for the Cr moments to be parallel or antipar-
allel to the surrounding Fe atomic moments. Commensurate
SDWs were obtained by limiting the Cr thickness to val-
ues less than the SDW wavelength, see further details in
Boedeker, Schreuer and Zabel (1999).

1.1.2 Surfactants in epitaxy

An absorbate can modify the balance of surface and interface
free energies and can have a pronounced effect on surface
morphology. That was nicely demonstrated by the Egelhoff
and Chambliss groups (Steigerwald, Jacobs and Egelhoff,
1988; Chambliss, Wilson and Ching, 1992). Transition metals
(TMs) such as Fe and Ni have the tendency to conglomerate
and intermix on Cu(001) substrates. An absorbate such as
oxygen forms stronger bonds with Fe and Ni than with
Cu. This significantly decreases the TM surface energy
and leads to an appreciable reshuffling of the Ni and
Fe atoms resulting in a flattening of the Fe, Ni/vacuum
interface (Egelhoff, 1994b). Egelhoff et al. (1997) have used
oxygen as a surfactant in the growth of Co/Cu/Co spin
valve structures. Their spin valve structures were fabricated
using sputtering (see Section 1.3 below). Single Co/Cu/Co
specimens grown on a NiO substrate in 2 mTorr of Ar,
oxygen free, exhibited a giant magnetoresistance (GMR)
effect of 14%: Egelhoff et al. refer to this structure as
a ‘bottom spin valve’. Bottom spin valves grown in an
atmosphere of 2 mTorr Ar plus 5 × 10−9 Torr of oxygen
exhibited an increase in GMR from 14 to 19%. This increase
in GMR is thought to be due to the growth of smoother
Co/Cu interfaces resulting in an increased specular scattering
of the conduction electrons at those interfaces. The GMR
effect could be further increased by postgrowth oxidation
of the top Co layer. A surface film of oxidized Co led to
a smoother Co/CoO interface which further increased the
level of specular scattering of electrons. The Egelhoff et al.
procedure (Egelhoff et al., 1997), considerably increased the
efficiency of GMR sensors and has become a part of the
processing steps for commercially made spin valve sensors.

Not all surfactants lead to smooth interfaces. Fe films
grown on GaAs(001) substrates are known to incorporate
approximately 0.6 monolayer (ML) of As as a surfactant.
This limits the size of Fe terraces to 3 nm. In this particular
case the As likes to become attached to the Fe atomic
steps. In fact, the As floats on the top of metallic layers
deposited over the Fe films. The surface reconstruction of
Au(001) (grown on Fe(001)) is 2 × 2 instead of the well-
known 5 × 1 reconstruction of a clean Au(001) surface, see
Figure 1. STM images have shown that the Au terraces are

Figure 1. STM image of the top Au(001) layer in a
GaAs/Fe/Au(001) structure prepared by thermal deposition.
Lower right inset: Note that the Au(001) film has a 2 × 2 surface
reconstruction. This reconstruction is triggered by surfactant As.
Notice that the atomic terraces are rounded and decorated by 2 × 2
atomic kinks.

not of a rectangular shape as is the case of a clean Au
surface, but are rounded and are terminated by a high density
of atomic kinks consisting of 2 × 2 Au atoms: the surface
of the 5 × 1 reconstruction consists of rectangular shaped
terraces. (Recent measurements carried out together with the
Max Planck Institute, Halle, and the Technical University,
Krakow.) A well-known 5 × 1 reconstruction of Au(001)
was observed in GaAs/Fe/Au(001) structures prepared by
LPD, see Figure 2. This suggests that LPD does not allow
surfactant As to float on the top of the metallic layers.

It was found possible to increase the size of atomic terraces
of Fe grown on GaAs(001) by removing the surfactant
As by sputtering using grazing incidence 500 eV Ar+

ions. Subsequent annealing and the growth of Fe at 200 ◦C
markedly improved the film conductivity (Monchesky et al.,
1999). This indicated that the removal of As and subsequent
annealing and growth at 200 ◦C repaired the defects created
by the sputtering and improved the surface smoothness: this
resulted in a greater specular electron reflectivity at the
Fe/vacuum interface (Enders et al., 2001).

1.1.3 Lattice strain

In heteroepitaxy the lattice mismatch can be significant and
can result in ordered structural defects which can profoundly
modify the magnetic properties of ultrathin-film structures.

Pd/Fe(001)
A typical example is Pd grown on Fe(001) templates.
Because of a high density of states at the Fermi surface, the
magnetic properties of Pd are sensitive to structural changes.
Several authors have predicted the onset of ferromagnetism
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Figure 2. STM image of the top Au(001) layer in a
GaAs/Fe/Au(001) structure prepared by laser pulse deposi-
tion (LPD). The STM image corresponds to a well-known 5 × 1
reconstruction of a clean Au(001) surface. The Au(001) surface is
terminated by a corrugated atomic (111) plane, see the lower right
inset. Notice that the atomic terraces are square shaped with the
atomic steps oriented along the 〈110〉 crystallographic directions.

in fcc Pd having a lattice expanded by 6% (Moruzzi and
Marcus, 1989a,b). Molecular beam epitaxy (MBE) makes it
possible to explore the interplay of structure and magnetism
in ultrathin Pd layers by creating metastable phases and
manipulating the atomic structure via epitaxial strain. In the
Fe/Pd(001) system, the lattice strain results from the 4.2%
mismatch between the bcc Fe(001) and the Pd(001) surface
nets. Ultrathin Pd(001) films grown on Fe(001) are expanded
laterally to match the Fe mesh (Celinski et al., 1990). The
structure and magnetism of Pd in Fe/Pd/Fe (001) trilayers
grown on Ag(001) substrates were studied in Celinski et al.
(1990). The main result of the magnetic measurements was
that the Pd was ferromagnetic only for two adjacent Pd
atomic layers at the Fe/Pd and Pd/Fe interfaces. By increasing
the thickness of Pd by one additional atomic layer (a total
thickness of 5 ML) the long-range ferromagnetic order in Pd
was lost. Using RHEED and X-ray diffraction it could be
shown that the Pd ultrathin films grew on Fe(001) with a
4.2% latterly expanded lattice accompanied by an out-of-
plane contraction of 7.2% (c/a = 0.89). The ultrathin films
of Pd grown on Fe(001) had a pronounced face-centered
tetragonal (fct) structure (Fullerton et al., 1995). Theoretical
ab initio studies of the interfacial structure showed that the
structural ground state of the epitaxially strained Pd layer
was well described by a fct structure which maintained the
bulk Pd atomic volume (Fullerton et al., 1995). This was in

agreement with the results of RHEED and X-ray diffraction
measurements.

Ab initio theoretical studies of Fe3Pdn superlattices (where
n is the number of Pd atomic layers) with fct Pd found that
indeed the first two atomic layers of Pd at the Fe/Pd and
Pd/Fe interfaces are ferromagnetic but the magnetic moment
in the third atomic layers abruptly disappears (Fullerton
et al., 1995). The spin polarization in Pd is mainly induced by
the Fe moments and does not have an intrinsic character. The
magnetic moment in the Pd atomic layer adjacent to Fe was
found to be 0.29 Bohr magnetons (µB). Polarized neutron
reflectivity results on an Fe(5.6 ML)/Pd(7 ML)/Au(20 ML)
sample determined the average moment per Fe atom to
be 2.66 µB (Fullerton et al., 1995). Calculations for the
same structure showed that this value is consistent with the
observed induced Pd polarization. It is interesting to point
out that metallic fcc Pd having a lattice expansion of 4.2%
would result in long-range ferromagnetic order (Fullerton
et al., 1995). Clearly the lattice vertical relaxation has to
be taken into account in order to explain the real magnetic
properties of strained epitaxial structures.

Lattice strain is eventually relaxed by the introduction of
a network of misfit dislocations. Crystalline Au/Pd/Fe(001)
and Au/Fe/Pd/Fe(001) epitaxial layers grown on GaAs(001)
represent typical cases. Pd has a lateral lattice mismatch of
4.2% with respect to the Fe(001) and 4.9% with respect to
the Au(001) atomic meshes, and therefore samples with a
sufficiently thick Pd layer are influenced by the presence
of lattice strain induced defects. Using plan view trans-
mission electron microscopy (TEM), (Woltersdorf, Heinrich,
Woltersdorf and Scholz, 2004), a self-assembled network of
misfit dislocations was found to be oriented along the 〈100〉
crystallographic axes of Fe, see Figure 3.

Figure 3. Plan view TEM image of the 90Au/9Pd/16Fe/GaAs(001)
sample exposing the misfit dislocation network (Woltersdorf, Hein-
rich, Woltersdorf and Scholz, 2004). The upper left inset shows the
corresponding diffraction pattern. The fourfold symmetry of defects
is evident in the presence of reciprocal sheets. The mean separation
between dislocation lines was ∼15 nm. (Reprinted with permission
B. Heinrich et al., copyright 2004, American Physical Society.)
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The onset of a rectangular network of misfit disloca-
tions resulted in a strong extrinsic magnetic damping. This
damping could be described by a two-magnon scattering pro-
cess (Woltersdorf, Heinrich, Woltersdorf and Scholz, 2004;
Woltersdorf and Heinrich, 2004). The lattice defects associ-
ated with misfit dislocation slip planes created a rectangular
network of uniaxial anisotropies having an overall fourfold
in-plane symmetry oriented along the 〈100〉 axes of the
Fe(001) template. No overall average uniaxial anisotropy
was observed indicating that the distribution of the uniax-
ial anisotropies along the misfit dislocation slip planes was
highly symmetric. Due to inhomogeneities in the induced
in-plane network of uniaxial anisotropies the ferromagnetic
resonance (FMR) linewidth exhibited a strong fourfold angu-
lar dependence on the direction of the saturation magne-
tization with respect to the Fe crystallographic axes. The
maximum two-magnon scattering occurred with the magne-
tization directed along the 〈100〉 axes, while the two-magnon
scattering contribution was absent when the magnetization
was directed along the 〈110〉 axes.

An angular dependent extrinsic damping created by a
rectangular network of defects appears to be a common
phenomenon.

Ni/Fe and Heusler alloy films
The creation of a network of lattice defects satisfying
the in-plane crystalline fourfold symmetry has also been
observed in metastable bcc Ni/Fe(001) bilayers grown on
Ag(001) substrates (Heinrich et al., 1988), Fe(001) films
grown on bcc Cu(001) (Celinski and Heinrich, 1991), and
in Fe/V superlattices (Lindner et al., 2003). After depositing
3 ML of Ni on Fe(001) to form a Ni/Fe(001) bilayer the bcc
Ni went through a major structural change. Mijiritskii et al.
(1998), showed that the Ni underwent a bcc to fcc marten-
sitic transition creating a mosaic of four fcc Ni domains
with the fcc Ni{110} planes parallel with the bcc Fe{110}
planes and the Ni〈211〉 crystallographic directions along the
Fe〈110〉 axes. The lattice defects created by the martensitic
transition again resulted in local anisotropies having the over-
all symmetry of the Fe(001) template (Lindner et al., 2003).
This resulted in two strong magnetic effects: firstly, an addi-
tional average in-plane fourfold anisotropy field in Ni/Fe,
2K/Ms, was created and exceeded the cubic anisotropy field
of the bulk Fe by nearly an order of magnitude. Secondly, the
inhomogeneous part of the magnetic anisotropy resulted in
a strong extrinsic damping with the damping maxima occur-
ring when the magnetization was directed along 〈110〉 and
the damping minima occurring when the magnetization was
directed along the 〈100〉 crystallographic axes of the Fe.
Coercive fields of several hundred oersted were observed
due to the enhanced anisotropy and lattice defects (Heinrich
et al., 1993; Przybylski et al., 2002).

A similar situation occurs for semimetals. Half-Heusler
compound NiMnSb(001) films were grown in UHV, MBE,
on (In,Ga)As/InP (001) wafers for possible applications in
spin injection devices, (Bach et al., 2003). A quasicontinuous
network of defects closely aligned with the 〈100〉 in-plane
directions (Koveshnikov et al., 2005) resulted in strong
two-magnon scattering which led to an extrinsic magnetic
damping exceeding the intrinsic damping by two orders of
magnitude (Heinrich et al., 2004). The ability to control the
damping by means of a network of misfit dislocations could
be attractive to promote a fast convergence to the steady
state of magnetic memory pixels where the rotation of the
magnetic moment in the time domain is of the order of
nanoseconds.

Fe/MgO
The role of lattice mismatch and chemistry at interfaces is
exemplified by the growth of MgO on Fe(001). The growth of
high quality crystalline layers of MgO on Fe is attractive for
use in Fe/MgO/Fe(001) spin polarized tunneling junctions
(Klaua et al., 2001). It also represents an interesting case
of interface formation involving a TM (Fe), and an oxide
(MgO) having a large tunneling barrier. The structural studies
were particularly simplified by using perfect Fe whiskers
for substrates: the Fe whiskers were prepared by chemical
vapor deposition (CVD). Single-crystal Fe(001) discs were
also used. The MgO layers were deposited on a substrate
at 295 K using electron beam evaporation. MgO grows
pseudomorphically on Fe(001) for thicknesses up to 6 ML
with the epitaxial relationship of Fe(001)[110]/MgO(001)
[100] and a 3.8% compression of the MgO lattice. A partial
lattice relaxation sets in for MgO films thicker than 6 ML,
resulting in an increased lattice spacing. The most convincing
indication of the pseudomorphic growth and subsequent
sharp onset of misfit dislocations can be seen in the LEED
patterns.

The LEED and RHEED spots were very sharp on a clean
bcc Fe(001) whisker indicating a superb surface quality. Sim-
ilar sharp spots were observed from the MgO(001) surface
after the growth of 6 ML of MgO. For thicknesses greater
than 7 ML the MgO LEED pattern showed four additional
satellite spots around each main MgO diffraction spot, see
Figure 4. The four lines connecting any given set of satellite
spots and their central diffraction spot were directed along
equivalent 〈100〉 in-plane crystallographic directions of the
MgO lattice. This splitting decreased with increasing thick-
ness of MgO. This behavior can be explained using a model
which includes edge dislocation formation at the Fe/MgO
interface. The MgO lattice warps in a narrow region above
the misfit dislocation lines. The warped surfaces created tilted
reciprocal-space rods which satisfied the fourfold in-plane
symmetry of the Fe(001) template. The LEED satellite
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Figure 4. LEED patterns of MgO(001) films grown on a nearly
perfect Fe(001) whisker template (prepared by chemical vapor depo-
sition). Notice that the MgO(001) starts to grow with the lattice
spacing of Fe and having nearly perfect LEED diffraction spots
like those of the Fe(001) whisker. At 8 ML the MgO(001) partly
releases its lattice strain (compression) by creating a network of
misfit dislocations. The dislocation glide planes result in surface
corrugations leading to inclined reciprocal rods. Each main diffrac-
tion spot is surrounded by four satellite spots reflecting the fourfold
symmetry of the Fe(001) template, see the text. Notice that the satel-
lite spots decrease their separation with increasing thickness of the
MgO film which indicates that the core of the dislocation network
remains confined to the Fe/MgO(001) interface.

spots were caused by the tilted reciprocal-space rods. STM
images revealed nearly perfect layer-by-layer growth. Elec-
tron diffraction and STM studies revealed an overall sur-
face topography and orientation but they did not provide
one with details of the chemistry at the Fe/MgO inter-
face. Ab initio calculations by Butler, Zhanh, Schulthess and
MacClaren (2001) for Fe/MgO/Fe(001) trilayers have pro-
vided evidence for the importance of lattice perfection at the
Fe/MgO interface. They showed that tunneling magnetore-
sistance (TMR) can become as large as several 1000% due
to a strongly peaked conductance in the majority channel
for a parallel alignment of the Fe magnetic moments, while
the minority channel conductance is dominated by interface

states. Clearly the transmission magnetoresistance, the TMR
ratio, will be strongly affected by the chemistry and lattice
configuration at the Fe/MgO interface. Meyerheim et al. have
addressed this question by using surface X-ray diffraction
(SXRD) measurements (Meyerheim et al., 2001). They found
that, contrary to common belief, MgO is not formed in direct
contact with the Fe. They found that a FeO interface layer is
formed between the Fe substrate and the growing MgO layer,
see Figure 5. This oxide layer clearly must affect the forma-
tion of interface states and the corresponding TMR ratio.

The Fe-whisker/MgO/Fe/Au(001) structure provided an
ideal opportunity to investigate tunneling through a nearly
perfect crystalline tunneling junction. The tunneling in Fe-
whisker/MgO and Fe-whisker/MgO/Fe/Au(001) structures
was investigated by means of an STM tip (Klaua et al., 2001).
The tunneling I–V characteristics were found to be very asym-
metric. For a negative bias no tunneling current was observed
due to the large tunneling barrier in MgO. The I–V curves
for a positive bias showed an abrupt increase in the tunnel-
ing current when the Fermi level of the STM tip was lined
up with the conduction band states of MgO. In fact in that
way it was possible to determine the potential barrier of the
Fe/MgO/Fe system. For 2 ML of MgO the tunneling barrier
was already 2.5 eV. The tunneling barrier reached the bulk
value of 3.5 eV at an MgO thickness of 5 ML. The relationship
between the MgO layer thickness and the electron transport

Bulk Fe

Bulk Fe (±3%)

1.58

1.77

2.46

2.39
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1.68
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Fe
Mg
O
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Figure 5. A model of atomic layers of a crystalline
Fe/MgO/Fe(001) structure prepared on a Fe(001) whisker.
This model was obtained by interpreting the surface X-ray
diffraction (SXRD) measurements, see Meyerheim et al. (2001).
Notice that the first oxide layer is mostly FeO with the oxygen
atoms located on the fourfold hollow sites of the top Fe(001)
atomic layer. The integers on the left side describe the interplanar
distances in angstroms. (Reprinted with permission Meyerheim
et al., copyright 2001, American Physical Society.)
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through the MgO layers was obtained by taking STM topo-
graphic images and acquiring tunneling I–V characteristics
simultaneously. These images showed that the tunnel bar-
riers were homogeneous across a large area of the sample,
and they revealed a low density of localized defects (a few
nanometers across) that correlated neither with substrate steps
nor with misfit dislocations. These defects were most likely
caused by localized defect states located midway between the
valence and conduction bands of MgO (Klaua et al., 2001).
The same I–V images were obtained for the Fe/MgO and the
Fe/MgO/Fe/Au samples. Both samples exhibited mainly per-
fect tunneling characteristics and a low density of localized
defects. This was an important observation. It can be con-
cluded that the electron transport in high quality crystalline
MgO tunneling junctions proceeds by ballistic tunneling.

The magnetization behavior of single crystalline Fe-
whisker/20MgO/20Fe/20Au(001) films was investigated by
depth-selective Kerr microscopy (Schaefer et al., 2002). No
magnetic coupling through the MgO was observed. It was
demonstrated that a moving 180◦ whisker domain wall acts
on the Fe film by writing domains in the film that are mag-
netized transverse to the wall direction. The sign of the
transverse domains depends on the internal rotation sense of
the whisker wall, not on its surface rotation. The change in
sign of the transverse domains was always accompanied by
a Bloch line. This clearly indicated that the residual fringing
fields emerging from the whisker wall must be responsible
for the interaction. The sign of these fringing fields depends
on the internal rotation alignment of the whisker wall.

Fe/GaAs
The importance of growth of metallic structures on semi-
conductor substrates has been realized right at the advent
of MBE studies of 3d TM elements. The early develop-
ment in this field is well described in Prinz (1994). The
Fe/GaAs(001) interfaces became very attractive for spintron-
ics devices using electrical spin injection into semiconduc-
tors. See review chapters on Spin-Light Emitting Diodes
(SLED) by Jonker (2005) and Optical Studies of Electron
Spin Transmission by Bland, Steinmueller, Hirohata and
Taniyama (2005). The magnetic properties of GaAs/Fe(001)
will be further discussed in Section 2.5. The Naval research
laboratory (NRL) group has carried out extensive studies of
GaAs/Fe(001) and GaAs/AlGaAs/Fe(001) interfaces. They
were able to find plausible Fe/AlGaAs(001) interface struc-
tures (Zega et al., 2006) by employing high-angle annular-
dark-field (HAADF) imaging, the highest resolution chemi-
cally sensitive TEM technique. The results were interpreted
by means of using computer simulations based on density-
functional theory. It was found that the Fe films grown at the
substrate temperature of 10–15 ◦C results in a structurally
disordered Fe3GaAs compound interface that is about 5

atomic layers in thickness. By means of low temperature
annealing at 200 ◦C the interface becomes ordered and coher-
ent with intermixing of the Fe and AlGaAs occurring on a
single atomic plane. This marked improvement in the inter-
face structure results in an appreciable increase in spin injec-
tion polarization going from 18% for grown samples to 25%
for annealed samples. The interface structure strongly affects
carrier lifetimes and perfectness of Schottky barriers. The Fe
films grown at 175 ◦C on a GaAs(001) template terminated
by an As rich 2 × 4 reconstruction resulted in an appreciable
enhancement of carrier lifetimes and a decrease in the den-
sity of midgap states (depinning of the Fermi level) compared
to the Fe films grown on S-passivated, AlGaAs, and native
oxide GaAs(001) templates (Jonker, Glembocki, Holm and
Wagner, 1997). The STM study of a submonolayer growth
of Fe on a (2 × 6) reconstructed GaAs(001) template was
carried out by Ionescu et al. (2005). The (2 × 6) reconstruc-
tion is a Ga-rich As terminated surface. They have shown
that in the early stages the growth of Fe clusters mainly
occurs atop the As-dimer rows. At 0.3 ML of Fe a transi-
tion from the 3D cluster growth to a 2D island nucleation
takes place. At 1 ML the coalescence of several islands leads
to a large distribution of island sizes and decreased island
density. The STM images indicated that during deposition
some of the Fe penetrates into the GaAs(001) substrate.
Fe atoms substitute for Ga atoms in the second layer dis-
placing them into an interstitial position. In addition, it is
suggested that the Fe atoms inside the top As layer together
with the top Fe layer form Fe2As antiferromagnetic com-
pound seed crystals for the bcc Fe growth. The following
Fe growth is GaAs(001)‖Fe2As(001)‖Fe(001) and within the
plane GaAs[110]‖Fe2As[100]‖Fe[110]. The substitution of
Ga atoms by Fe is in agreement with the recent Mössbauer
studies (Kardasz et al., 2007). A low hyperfine field compo-
nent was found in the TD Fe films on GaAs(001) − (2 × 6).
The low hyperfine field (0.65 T) component corresponds to
approximately 6% of the relative intensity.

1.2 Laser pulse deposition (LPD)

LPD turned out to be particularly useful for the growth of
high Tc material compounds (Chrisey and Hueber, 1994).
The main advantage of this method is that any material
can be deposited, and the stoichiometry of any material is
preserved. It turns out that the popular view is not always
true. In magnetically doped TM oxides, such as Co-doped
TiO2, when the film composition has been independently
measured, it has been found to be different from that in the
target. In the LPD method repeatable short pulses from a
high-power laser impinge on the surface of a target material.
The evaporation takes place within the very short time of
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a few nanoseconds. The material does not melt but it is
ablated. The resulting vapor consists mostly of atoms and
dimers. The laser pulse is usually longer than the time
required for evaporation and this results in absorption of
the light by the vapor. The absorption of light leads to
ionization of the evaporated atoms and the formation of a
visible so-called plasma plume which expands toward the
target. The evaporated material in the plasma reaches an
energy of ∼1 eV, much higher than that obtained by thermal
evaporation. A recoil plasma plume and target macroscopic
and microscopic surface irregularities after repeated exposure
to high-energy laser pulses lead to the so-called splashing in
which particles and droplets are deposited on the substrate.
The particles and droplets are of the order of a micron in
size and are absolutely undesirable in the growth of ultrathin
films. There are a number of modifications of the LPD system
that allow one to minimize the effect of splashing (Gavignan,
1991; Holzapfel et al., 1996). Generally a large distance
between the target and the substrate, rotation of the target
during deposition, and keeping the laser power slightly above
the ablation threshold help to minimize the role of splashing
(Jenniches et al., 1999).

The LPD average deposition rate is not high: usually a
fraction of a monolayers per minute, similar, but even lower
than the deposition rate for TD films. However, during the
laser pulse the evaporation rate is very high and one obtains
the so-called instantaneous deposition (Cheung and Sankur,
1988). The deposition rate during the pulse can be in the
range of 104 ML s−1 which is 6–7 orders of magnitude
higher than the deposition rate associated with TD (Jenniches
et al., 1999). This large deposition rate leads to a substantial
increase in the density of condensation nuclei compared
with TD. After applying the laser pulse the atoms in the
plasma plume are deposited over a period of the order of
1 µs, the duration time of the plasma plume. This leads to
a very high rate of deposition. Each laser pulse deposits
between 10−3 and 10−2 ML of atoms/µs. It is known that
the number of nuclei scales with the flux as (F /D)c, where
F is the flux, D is the diffusion constant, and c ∼ 0.5
(Villain, Pimpinelli and Wolf, 1992). Therefore during the
first laser pulse a significantly larger density of nuclei is
formed than is established during TD. Small critical nuclei
consist only of two atoms. After the next laser pulse the
burst of deposited single atoms is available to participate in
the growth. Between laser pulses the deposited adatoms have
time to diffuse and to become attached to the closely spaced
nuclei. In this way a full atomic layer is slowly filled. In
TD the deposition is continuous and the flux is 6–7 orders
of magnitude smaller than that obtained using LPD. This
means that the density of TD nuclei is much lower. The
nuclei are larger and more separated. The deposited atoms
have a much longer time to get attached to existing nuclei

than is the case for LPD. This can profoundly affect the
growth of structures where it can be expected that a fast
incorporation of atoms into a continuous layer is important
for maintaining a metastable structure.

Jenniches et al. (1999) found that using LPD one can
grow metastable fcc Fe(001) on Cu(001) layer by layer up to
10 ML. The growth was carried out at RT. The fcc Fe(001)
films thicker than 10 ML underwent a phase transition to
bcc Fe. Fcc Fe forms a high magnetic moment state that
increases with thickness up to 3 ML. Between 5 and 7 ML the
film experiences an inverse spin reorientation from a mag-
netization oriented in plane to an out-of-plane magnetization
orientation in which the easy axis is perpendicular to the film
plane. The TD films showed no layer-by-layer growth for the
first 2 ML: a layer-by-layer growth appeared only after an
average thickness of 2 ML. The LPD films grew in the fcc
structure, whereas the TD films grow in a fct structure. The
LPD films have the lattice constant of Cu in both directions.
The fct films were found to be unstable with increasing tem-
perature (Zharnikov et al., 1997), while the LPD films were
found to be stable. Improved morphology and structure for
films grown by LPD was also observed in the growth of
Fe(111) on a Cu(111) substrate. The deposition was carried
out at 220 K in order to eliminate a significant interdiffu-
sion of Cu and Fe. Two monolayers thick Fe/Cu(111) films
grown by TD exhibited a conglomerated structure where the
surface coverage ranged from 0 to 5 ML with a consider-
able presence of ridgelike features (Ohresser et al., 1999).
TD deposited films of Fe on Cu(001) had a critical thickness
of 3 ML for the fcc to bcc lattice transformation. The LPD
films grew with a better structural quality than the TD grown
films. In the low thickness range, 3 ML, the LPD films have
a long-range order and a large magnetic moment while the
TD films have a short range order and low magnetic moment
(Ohresser et al., 1999).

LPD is not always a winner. The bcc Fe(001) films grown
by TD on a GaAs(001) substrate exhibit a smoother GaAs/Fe
interface than those grown by LPD. Mössbauer studies
have shown that the LPD films have a high degree of Fe
incorporated into the GaAs while the TD films incorporated
only a small amount of Fe into the GaAs substrate and
these incorporated atoms exhibited a small hyperfine field
(Kardasz et al., 2007). The rough Fe/GaAs interface obtained
using LPD is most likely caused by the high kinetic energy
of the LPD atoms. Layer-by-layer growth is only observed
using TD, but the average size of terraces is similar in the
LPD and TD grown films. The interface magnetic properties
are profoundly affected by the method of deposition. The
LPD deposited films exhibit nearly zero in-plane uniaxial
anisotropy, whereas the TD deposited films exhibit a large
uniaxial anisotropy of 1 KOe for Fe(001) films 10 ML thick
(Monchesky et al., 1999).
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1.3 Magnetron sputtering

Sputtering differs from MBE growth techniques due to the
difference in the kinetic energy of the deposited atoms.
The energy of the sputtered atoms depends on many fac-
tors (Eric E. Fullerton private communication). It depends
on the relative potential of the target, the masses of the
sputtering gas, target atoms, the product of the gas pressure
and the target-to-substrate distance. The latter is particularly
important because the sputter gas thermalizes the sputtered
atoms. The greater the gas pressure and/or target-to-substrate
distance the more the atoms are thermalized and can be
characterized by a temperature that approaches ambient tem-
perature, see Schuller and Falco (1981), Fullerton (1993), and
Windischmann (1992). The energy of the adatoms impinging
on a substrate in sputtering can have a profound effect on the
deposited film morphology. Crystalline TM films, rare-earth
(RE) and oxide epitaxial layers have been grown using sput-
tering in which the sputtered atoms are deposited on epitaxial
buffer layers grown on single-crystal substrates. Epitaxial
crystalline films prepared by the use of sputtering include
Fe (Yaegashi, Kurihara and Segawa, 1993; Fuke, Sawabe
and Mizoguchi, 1993; Fullerton et al., 1993; Mattson, Fuller-
ton, Sowers and Bader, 1995); Pt and FePt (Lairson et al.,
1992; Lairson, Visokay, Sinclair and Clements, 1993); Co
(Morawe et al., 1991); Cu (Giron et al., 1993); SmFe12,
Sm2Co7, Sm2Co17 (Fullerton, Sowers, Pearson and Bader,
1997) and MgO (Park, Fullerton and Bader, 1995).

MgO(111), MgO(110), and MgO(001) substrates have
been employed to grow different orientations of the bcc
TMs Nb, Mo, Fe, and Cr (Mattson, Fullerton, Sowers and
Bader, 1995). Nb, Mo, Cr, and Fe films have been grown
with the (001), (112), and (110) crystallographic orienta-
tions on MgO(001), MgO(110), and MgO(111) substrates,
respectively. Fe/Cr(001) and Fe/Cr(211) superlattices have
been grown on MgO(001) and MgO(110) substrates cov-
ered by a 10-nm Cr buffer layer which was deposited
at 600 ◦C (Fullerton et al., 1993). The subsequent Fe/Cr
superlattices were grown at 180 ◦C. The epitaxial orien-
tation of the Fe/Cr(211) superlattices was found to be
Fe/Cr

[
011

] ‖MgO
[
110

]
while for Fe/Cr(001) the epitaxial

orientation was found to be Fe/Cr[001]‖MgO[011]. These
orientations correspond to a 3.8 and a 16.7% lattice mis-
match of the Cr with MgO, respectively. The crystalline
lattice coherence was found to be ∼43 nm. A 10-nm Cr
buffer layer was found to be sufficiently thick to relieve most
of the epitaxial strain prior to the growth of the superlattice
films. XRD measurements showed that the Fe/Cr superlat-
tices sputtered on MgO appeared to be comparable in crys-
talline quality to those grown on MgO using MBE. The
Fe/Cr superlattices were used to investigate the strength of
the exchange coupling between the iron films. The exchange

coupling exhibited an oscillatory dependence on the Cr film
thickness. Only long wavelength oscillations were observed
indicating that the interface roughness of the sputtered films
was worse than those prepared on good single crystalline lat-
tice matched substrates using MBE (Heinrich and Cochran,
1993; Heinrich, Cochran, Monchesky and Urban, 1999 and
references within). In the sputtered Fe/Cr superlattices the
strength, oscillation period, and phase of the long wavelength
exchange coupling strength were found to be identical for
both superlattice orientations. The crystalline magnetic vol-
ume anisotropies were found to be nearly the same as those
observed for bulk Fe.

Ultrathin films of MgO (5–30 nm) were grown epitaxially
onto 15-nm-thick Fe(001) which was used as a seed layer
on MgO(001). The LEED spot patterns were observed
to be broad and diffused even for 0.5-nm-thick MgO.
This indicated that sputtering results in a more disordered
MgO(001) lattice structure than that observed for MgO
films grown on bulk Fe(001) substrates using TD, see
the preceding text. However, the long-range lattice order
improved with an increasing MgO thickness. This suggested
that the lattice strain in the sputtered films was released
already in the initial stages of growth. X-ray forward
scattering measurements on sputtered MgO films revealed
peaks corresponding to the main crystallographic directions
of bulk crystalline MgO.

Epitaxial RE-TM thin films were grown using sputtering
onto a buffer layer of 10–20-nm-thick W deposited on
MgO(001) (Fullerton, Sowers, Pearson and Bader, 1997).
The W(001) buffer layer was sputtered onto a substrate
held at a temperature of 600 ◦C. The W mosaic spread
was found to be ∼1◦. The epitaxial relationship was found
to be W[100]‖MgO[110]. This resulted in c-axis tetragonal
SmFe12 films and a c-axis growth of hexagonal Sm–Co films.
The magnetization in Co-rich Sm2Co17 films was found to
be reversible on thermal cycling to 800 K and showed only
a 13% reduction in magnetic moment from RT to 800 K.
The in-plane coercivity was observed to be 1 T at 300 K and
retained the quite high value of 0.42 T at 500 K.

Sputtering has been extensively employed in the prepara-
tion of spintronics devices. These systems will be described
in separate Chapters.

2 MAGNETIC ANISOTROPIES IN
FERROMAGNETIC THIN FILMS

2.1 Anisotropies in bulk single-crystal
ferromagnets

Most of our understanding of the properties of ultrathin fer-
romagnetic films is derived from experimental studies carried
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out on films of the TMs Fe, Co, and Ni. Consequently this
article will concentrate on a discussion of films composed of
those three metals and their alloys. In their bulk form, and
in thermal equilibrium at RTs, iron is a body-centered cubic
metal (bcc), cobalt is a hexagonal close-packed metal (hcp),
and nickel is face-centered cubic metal (fcc). The ferromag-
netic state is characterized by a magnetic moment per unit
volume, Ms, that is independent of an applied magnetic field
to a good approximation (Chikazumi, 1964; Brown, 1978).
This magnetization density does depend upon the tempera-
ture, and obtains its maximum value at T = 0 K. The mag-
netization vanishes at the Curie temperature in zero applied
magnetic field. The Curie temperatures of iron, cobalt, and
nickel are 1044, 1390, and 631 K (Crangle and Goodman,
1971). It is known from experiment that the free energy of
a ferromagnet depends upon the orientation of the magne-
tization, Ms, with respect to the crystalline axes that define
its crystal structure. The origin of this magnetic anisotropy
is spin-orbit coupling between the atomic spin moment and
the atomic orbital moments (Kittel, 1949; Chikazumi, 1964).
On the basis of symmetry arguments the variation of the free
energy contribution due to anisotropy in a cubic crystal can
be written, to lowest order in the magnetization components,

Fa = −K1

2

[(
Mx

Ms

)4

+
(

My

Ms

)4

+
(

Mz

Ms

)4
]

(1)

where K1 is an empirical temperature dependent parameter
and Mx , My , and Mz are the components of �Ms along the
three cube axes. Note that the dependence of Fa on the
magnetization components can also be written in the form

Fa = K1

M4
s

[
M2

xM2
y + M2

xM2
z + M2

yM2
z

]
(2)

The equivalence of equations (1) and (2) follows from the
relation M2

s = M2
x + M2

y + M2
z .

For hexagonal crystal symmetry the anisotropic free
energy can be expressed in lowest orders by

Fa = K2 sin2(φ) + K4 sin4(φ) (3)

where

sin2 (φ) = 1 −
(

Mz

Ms

)2

and φ is the angle between �Ms and the c axis of the
crystal. K2 and K4 are temperature dependent parameters,
see Chikazumi (1964).

The variation of the free energy density with magnetization
direction in the crystal results in a torque density that acts so

as to align the magnetization along a direction that minimizes
the free energy density. This torque density can be written as

�L = �Ms × �Ha (4)

where

�Ha = −
(

∂Fa

∂Mx

)
ûx −

(
∂Fa

∂My

)
ûy −

(
∂Fa

∂Mz

)
ûz (5)

is an effective magnetic field that exerts the same torque
on the magnetization as does a real magnetic field (Brown,
1978).

2.2 Ultrathin ferromagnetic crystals

Consider a very thin crystal whose thickness t is very small
compared with its lateral dimensions and which is uniformly
magnetized. The magnetization in such thin films is uniform
for internal magnetic fields that are comparable to, or larger
than, typical anisotropy fields: the same exchange interaction
between spins that results in the ferromagnetic state makes
any spatial variation of the magnetization density relatively
costly in free energy (Brown, 1978). It is clear that the free
energy density of this film is likely to be quite different when
the magnetization is directed along the film normal as com-
pared with the case in which the magnetization lies in the
film plane. The most important source of this free energy dif-
ference is due to the magnetic fields generated by the shape
of the film. When the magnetization lies in the plane of a
film a few mm in lateral dimensions but a few nm thick
the magnetic field generated by the magnetization density,
discontinuity at the film edges can be ignored (the approx-
imation of infinite lateral dimensions). However, when this
same uniform magnetization has a component, Mz, directed
along the film normal the discontinuity in magnetization at
the film surfaces generates an internal demagnetizing field
Hd = −4πMz. The interaction between this demagnetizing
field and the magnetization density contributes a term to the
free energy density having the form

Fd = 2πM2
z (6)

Another important source of difference between a bulk
magnetic crystal and a magnetic thin film comes about
because the thin film must necessarily be supported on a
substrate. If the crystal structure of the thin film is not exactly
matched to the crystal structure of the substrate, the bonding
between the film and substrate must result in deformation of
the film. In general, the film structure becomes distorted both
in plane and out of plane. The simplest case is that in which
the film retains fourfold symmetry in plane but the lattice
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spacing in the perpendicular direction becomes different from
the in-plane spacing so that the thin film adopts a tetragonal
symmetry. For tetragonal symmetry the magnetocrystalline
free energy density can be written as

Fa = −K
par
1

2

[(
Mx

Ms

)4

+
(

My

Ms

)4
]

−K
perp
1

2

(
Mz

Ms

)4

− K⊥
(

Mz

Ms

)2

(7)

where K
par
1 , K

perp
1 , and K⊥ are anisotropy parameters having

the dimensions of energy per unit volume. An example of this
case is that of a thin crystal of Fe(001) grown on the (001)
surface of a silver substrate (Heinrich et al., 1988, 1991;
Heinrich and Cochran, 1993, Section 1.4.1). The atoms in
the fcc Ag(001) surface net form a square array 2.889 Å on
a side. The atoms on the bcc Fe(001) surface planes form
a square array 2.866 Å on a side. Thus the fourfold hollows
on the silver surface can accommodate the Fe(001) surface
atoms if the iron net is expanded by 0.8% in plane. At the
same time the spacing between iron atomic layers is reduced
by 1.5%: see Section 1.4.1 Heinrich and Cochran (1993).

It may happen that the thin ferromagnetic film is grown on
a substrate template that does not exhibit in-plane fourfold
symmetry. In that case the free energy density should include
a term of lower symmetry having the form of an in-plane
uniaxial anisotropy in addition to the terms of equation (7):

Fu = − Ku

M2
s

(
�Ms·û

)2
(8)

In equation (8) Ku is a uniaxial anisotropy parameter and û

is a unit vector that specifies the orientation of the in-plane
twofold axis.

It is an experimental fact that the magnetocrystalline
anisotropy parameters of equations (7) and (8) depend upon
thickness and temperature. It has been observed that each
of the parameters in equations (7) and (8) usually exhibits a
thickness dependence such that

Ki = KiV +
(

KiS

t

)
(9)

where KiV is a thickness independent volume coefficient
that has the units of energy per unit volume, and KiS is
a coefficient that has the units of energy per unit area,
(Heinrich and Cochran, 1993). KiS has the dimensions of
a surface anisotropy term. In fact the anisotropy coefficients
KiS are found to be sensitive to the structure and chemical
composition of the film surfaces and their interfaces with
the substrate and any cover layer that may be present:
often the film is covered by a nonmagnetic layer either

because it forms part of a multilayer, or because the film
is covered by an inert film such as gold in order to
protect the magnetic film from corrosion if the specimen
must be removed from the vacuum system. It should be
noted, however, that an inverse dependence of the anisotropy
parameter on thickness can also result from the inclusion in
the film of a network of dislocations generated in order to
relieve stresses in the magnetic film due to lattice mismatches
between film and substrate (Chappert and Bruno, 1988,
Section IVB).

2.3 The measurement of ultrathin-film
anisotropies

The variation of the film free energy with magnetization
orientation means that torques are exerted on the magne-
tization vector due to the effective fields of equation (5).
Thus any experimental technique that permits one to mea-
sure torques on the magnetization can be used to obtain the
anisotropy coefficients of equations (7) and (8). There are
two main methods for the investigation of these torques:
(i) FMR experiments and (ii) experiments designed to mea-
sure the orientation of the magnetization vector as a function
of the strength and orientation of an applied magnetic field.

FMR is a dynamic technique in which the frequency is
measured when the magnetization, having been perturbed
from equilibrium, precesses around its equilibrium orienta-
tion. The precessional frequency depends upon all of the
magnetic fields to which the magnetization is subject, includ-
ing the dipolar and anisotropy effective fields:

Hα = −∂Fsum

∂Mα

(10)

where Fsum = Fd + Fa + Fu from equations (6–8). A study
of how the precessional frequency depends upon applied
magnetic field strength and orientation enables one to
determine the effective fields due to magnetocrystalline
anisotropy. In FMR experiments the precessional frequencies
are determined from the resonant absorption of microwave
radiation; see the review articles by Heinrich (1994), Farle
(1998), and Poulopoulos and Baberschke (1999).

A related technique is Brillouin light scattering (BLS).
In BLS the magnetization oscillates around its equilibrium
orientation as the result of thermal agitation. The optical
constants of the magnetic thin-film material are modulated
at the magnetization precessional frequency, ω, and this
modulation results in a frequency shift of ±ω in the
frequency of light reflected from the film; see the articles by
Cochran (1994), and by Hillebrands and Güntherodt (1994).
FMR and BLS have approximately the same sensitivity.
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FMR requires larger specimens than does BLS, but the
frequency discrimination is so fine that one can measure
effective fields with a precision of 1 Oe in a 10 Å thick iron
film having an area of 1 mm2. The frequency resolution of
the BLS technique is between 10 and 100 times less than
that for FMR but it can be used to investigate specimens
whose dimensions are as small as a few microns on a side.
Note that both FMR and BLS measurements yield effective
fields. It is therefore necessary to know Ms in order to
obtain the anisotropy coefficients Ki . Usually the saturation
magnetization must be measured in a separate experiment
using a sensitive magnetometer such as a superconducting
quantum interference device (SQUID). However, the strength
of the FMR absorption signal is proportional to Ms, and it
proves to be possible to obtain Ms with an accuracy of a few
percent by means of very careful absorption measurements
(Celinski, Urquhart and Heinrich, 1997).

A second class of experiments designed to evaluate
anisotropy coefficients is based upon the measurement
of magnetization curves. Anisotropy coefficients can be
deduced from a series of measurements of the magnetization
component directed along the applied magnetic field, MH , as
the applied field is varied from zero to a field large enough
to ensure that MH = Ms. The free energy difference between
the zero field state and the saturated state is given by

�F =
∫ Ms

0
H dMH (11)

The change in �F with the direction of the applied mag-
netic field is a direct measure of the variation of the free
energy density with the orientation of the magnetization
vector, and therefore it can be used to determine the vari-
ous anisotropy parameters. A very sensitive magnetometer
is required to measure the magnetization density in ultra-
thin magnetic films. Usually the magnetic moment of a
specimen of known thickness and area is measured using
a SQUID or an alternating-gradient magnetometer (AGM):
see Flanders (1988). Absolute magnetic moment measure-
ments are difficult and rather slow, therefore in most cases
the magnetometer is used only to measure the saturation mag-
netization, Ms, and the magneto-optic Kerr effect, MOKE, is
used to measure the ratio MH /Ms as a function of applied
magnetic field. For a discussion of the physics of MOKE see
Bader and Erskine (1994). These authors also discuss the use
of MOKE to investigate anisotropy in ultrathin films. MOKE
is a particularly convenient tool for finding the orientation
of easy and hard magnetic axes. The optical beam used to
measure MOKE can be focused to a very small spot a few
microns in diameter so that MOKE can be used to inves-
tigate specimens having small lateral dimensions. The use
of MOKE to measure anisotropy coefficients is discussed by

de Jonge, Bloeman and den Broeder (1994), and by Johnson,
Bloeman, den Broeder and de Vries (1996). Bayreuther et al.
(2003), have discussed the use of hard axis magnetization
curves to deduce the in-plane magnetic anisotropy coeffi-
cients for Fe(001) films grown on GaAs(001) substrates.
They were able to evaluate K

par
1 and K⊥ (see equation (7))

from a comparison of the MH versus H data with a the-
ory based upon continuous rotation of the magnetization
vector, �Ms.

A very useful modification of the MH versus H tech-
nique has been described by Weber, Allenspach and Bischof
(1997). These authors provide a fixed bias magnetic field, Hb,
applied along a direction perpendicular to the variable mag-
netic field, H . The bias field guarantees a reversible rotation
of the magnetization vector over an extended range of the
field, H . The method has been shown to be particularly use-
ful for the measurement of in-plane anisotropy coefficients
when the variable field is aligned with an in-plane easy axis.

Finally, Gradmann and his coworkers have developed
a torsion magnetometer that can be used to measure the
magnetic properties of thin magnetic films in the UHV
system in which the films are grown (Gradmann, Kümmerle
and Tham, 1976). These authors have shown that the
torsion data can be used to measure the specimen magnetic
moment and the anisotropy parameters at the same time.
This technique has been used to measure the magnetic
moment of Ni(111) films, in UHV, grown on a Re(0001)
crystal, (Gradmann and Bergholz, 1984). The magnetic
moment of a Ni film only 2.5 MLs thick and having an
area of 0.1 cm2 could be measured with an uncertainty of
approximately 1%. See also the review article by Gradmann
(1993).

2.4 The origin of magnetocrystalline anisotropy

2.4.1 First-principles electronic band calculations

First-principles calculations of magnetic anisotropies are
based upon the solution of Schrödinger’s equation for
interacting electrons with spin. The forms of the equations
to be solved are discussed by Gay and Richter (1994). In
order to calculate anisotropies it is necessary to calculate the
ground state energy of the system under investigation for
various orientations of the magnetization vector with respect
to the crystalline axes. This is a formidable task since the
energy differences in question, in the order of millielectron
volts per atom, are very small compared with the total ground
state energy of the order of Volts per atom. Nevertheless,
in their pioneering articles Gay and Richter (1986, 1987),
calculated the magnetic anisotropy coefficients for Fe, Ni,
V, and Co monolayers having the lattice spacing of the
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Ag(001) surface. They also calculated the perpendicular
uniaxial anisotropy coefficients for freestanding (001) iron
films 3, 5, 7, and 9 layers thick. The calculations indicated
that Fe and V monolayers should have a magnetization vector
oriented perpendicular to the film plane, whereas Ni and
Co film magnetizations should lie in the film plane. The
success of these calculations in predicting a perpendicular
magnetization for Fe(001) in agreement with experiment
stimulated a great deal of theoretical and experimental work
on thin-film magnetic anisotropies. The precision with which
the ground state energies could be calculated improved with
time until it is now claimed that anisotropy energies for
Fe, Ni, and Co monolayers, which are of the order of
1 meV/atom, can be calculated with an uncertainty of the
order of 0.001 meV/atom. (1 meV/atom corresponds to a
surface energy of 2.45 ergs cm−2 for atoms arranged on a
Cu(001) surface net – a square net 2.56 Å on a side.) See
the review article by Wu and Freeman (1999).

In all of the above calculations the variation of the ground
state energy with orientation of the magnetization is due to
spin-orbit coupling. In many cases the calculated thin-film
perpendicular anisotropy coefficients are in agreement with
experimental observations. However, the calculations are
usually carried out for smooth and perfect surface interface
planes, whereas in real specimens these interface planes
are usually rough on a scale of at least ±1 atomic layer.
Moreover, in many cases of interest there is some intermixing
between substrate or overlayer atoms with the thin magnetic
film atoms (Schurer, Celinski and Heinrich, 1995). Therefore,
one cannot expect perfect agreement between calculated
and observed anisotropy coefficients no matter how exactly
solved the theoretical model may be.

2.4.2 The Néel model

In 1954 L. Néel introduced a phenomenological model for
the ferromagnetic state based upon the sum of pairwise
interactions between ferromagnetic atoms. This model was
meant to help understand the origin of surface anisotropies as
well as to elucidate the physics of magnetoelastic phenomena
(Néel, 1954). The pair interaction was written as the sum of
Legendre polynomials:

W(r, θ) = L(r)P2(cos θ) + g(r)P4(cos θ) + · · · (12)

where r is the separation of the atom pair, L(r) and g(r) are
phenomenological parameters, and θ is the angle between
the magnetization direction and the line that joins the atom
pair. Usually only the first term of the above series is used
to discuss magnetic anisotropies and magnetoelastic effects.
Thus, ignoring the constant term, the pair interaction can be

written as

W(r, θ) = Lf (r)
(
ûr ·m̂

)2
(13)

where ûr is a unit vector directed along the line joining the
atom pair, and m̂ is a unit vector in the direction of the mag-
netization vector. This simple model can be used to calculate
the free energy density for an ultrathin film in terms of the
parameter Lf . Such a free energy function will consist of the
sum of a term proportional to the film thickness, a volume
term, plus a term independent of film thickness, a surface
term. It is clear that the free energy density must depend upon
any strains introduced by film growth on a lattice mismatched
substrate because it depends upon the angles between mag-
netization direction and the orientation of the lines join-
ing nearest-neighbor atoms. Chapter 8 of Chikazumi (1964)
demonstrates the use of the Néel model to deduce the form of
the magnetoelastic coupling energy for cubic crystals. For a
(001) oriented cubic lattice whose in-plane lattice parameter
has been altered by ε1 = �a/a, and whose lattice parameter
perpendicular to the plane has been altered by ε2 = �c/a

the magnetoelastic energy density is given by:

Fme = const

+B1

[
ε1

(
Mx

Ms

)2

+ ε1

(
My

Ms

)2

+ ε2

(
Mz

Ms

)2
]

(14)
B1 is a magnetoelastic coupling constant. From the condition
that the film must be stress free along the film normal one has

ε2

ε1
= −2C12

C11
(15)

where C11, C12 are elastic constants such that the elastic
energy density is given by

Fel = C11

2

(
2ε2

1 + ε2
2

) + C12
(
ε2

1 + 2ε1ε2
)

(16)

see Sander (1999). From equations (14) and (15), and the
condition M2

x + M2
y + M2

z = M2
s the strain contribution to

the free energy density can be written as

Fme = const + B1 [ε2 − ε1]

(
Mz

Ms

)2

= const − B1

(
1 + 2C12

C11

)
ε1

(
Mz

Ms

)2

(17)

For iron C11 = 2.41 × 1012 ergs cm−3, C12 = 1.46 ×
1012 ergs cm−3, and B1 = −34.3 × 106 ergs cm−3. Therefore,
if an iron film is stretched in plane, the magnetoelastic cou-
pling acts so as to orient the magnetization in the film
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plane. For a strain of 1% the magnetoelastic contribution
to the effective perpendicular uniaxial anisotropy would
be −K⊥ = 7.6 × 105 ergs cm−3, see equation (7). This can
be compared with the dipole–dipole energy Fd = 2πM2

s =
18.2 × 106 ergs cm−3. Sander (1999) describes in detail how
to calculate the magnetoelastic contribution to the effective
uniaxial anisotropy coefficient for cubic and hexagonal films
having various surface plane orientations.

The above Néel model results in an anisotropic free energy
density that is independent of the substrate or overlayer
materials. In order to correct this defect MacLaren and
Victora (1993) and Victora and MacLaren (1993a,b) have
proposed an extension of the Néel theory that includes a pair
interaction between ferromagnetic atoms and nonmagnetic
nearest-neighbor atoms having the form

W(r, θ) = Lm(r)
(
ûr ·m̂

)2
(18)

where ûr is a unit vector in the direction of the line joining a
ferromagnetic atom with a nonmagnetic atom, and m̂ is a unit
vector parallel with the magnetization vector. In this version
of the theory at least two interaction parameters are required,
Lf and Lm. MacLaren and Victora have determined these
two parameters for the Co(001)/Pd system by comparison
of the resulting anisotropic free energy expression with
the free energy obtained from first-principles calculations
using the experimentally observed strained lattice spacings
as measured by Engel et al. (1991). The results of their
first principles calculations were in good agreement with
experiment. They used the values of Lf , Lm so determined
to calculate the anisotropy coefficients for (111) and (110)
oriented Co/Pd surfaces. The results were in reasonable
agreement with the experimental data of Engel et al. (1991).

The Victora and MacLaren extension of the Néel model
has been applied to Co/Cu(001) and Co/Pd(001) struc-
tures by Heinrich, Kowalewski and Cochran (1998). These
authors used measured lattice strains and measured surface
anisotropy energies to deduce that Lf = 9.0 × 10−16 and
Lm = 2.3 × 10−16 ergs for the Cu/Co interface compared
with Lf = 7.1 × 10−16 and Lm = 6.9 × 10−16 ergs for the
Co/Pd interface. Thus the interaction energy between Co and
Pd atoms was found to be approximately three times larger
than the interaction energy between Co and Cu atoms. This
difference is not unexpected given the tendency of Pd to
form a magnetic moment when placed at an interface with a
ferromagnet.

In an interesting application of the Néel model,
equation (12), Bayreuther et al. (2003) were able to show
that the fourth order in-plane volume anisotropy coefficient
should be correlated with the fourth order in-plane sur-
face anisotropy coefficient (see the notation of equations (7)

and (9)). Indeed, the ratio
(
K

par
1S /K

par
1V

)
was found to be inde-

pendent of composition for a series of Fe1−xCox alloy films
grown on a GaAs(001) substrate. The experimental ratio was
found to correspond to a thickness of 6 MLs.

2.4.3 Vicinal surfaces

If a crystal is cut so that the surface plane makes a small angle
with respect to a principle crystallographic plane the result is
a surface containing many monatomic steps. Such a surface
is called a vicinal surface. In a series of experiments in which
Fe films and Fe films covered by Ni films were grown on vic-
inal Ag substrates it was discovered that the specimens exhib-
ited an in-plane twofold magnetic anisotropy in which the
direction of the uniaxial anisotropy axis was correlated with
the orientation of the vicinal surface steps (Heinrich et al.,
1988). A few years later systematic studies of the anisotropies
introduced by growing Fe and Co films on deliberately mis-
cut vicinal substrates were initiated by Chen and Erskine
(1992), who studied Fe films grown on W substrates, and by
Krams et al. (1993), who studied Co films grown on Cu sub-
strates. In these studies the substrates exhibited a well-defined
surface roughness consisting of parallel monatomic steps sep-
arated by a distance that depended on the relatively small
angle between the surface normal and the crystalline [001]
direction. In the case of Fe grown on a W(1 1 14) surface
the uniaxial easy axis was found to be perpendicular to the
step edges. In the case of Co grown on Cu(1 1 13) the easy
axis was found to be parallel with the step edges. In the case
of Co/Cu the uniaxial anisotropy parameter was found to be
quite strong: Ku = 6 × 105 ergs cm−3 and therefore compa-
rable in strength with the in-plane fourfold anisotropy param-
eter K

par
1 = −6.5 × 105 ergs cm−3. Albrecht et al. (1992),

also studied anisotropies deliberately introduced by substrate
steps for Fe(110) films grown on W(110). They showed that
their experimental results were in good agreement with cal-
culations based upon the Néel pair model of anisotropies
(Néel, 1954).

According to Krams et al. (1993) and Krams, Hillebrands,
Güntherodt and Oepen (1994), the uniaxial anisotropy due to
a stepped surface is a consequence of the lattice mismatch
between the magnetic thin film and the substrate upon
which it has been grown. Chuang, Ballentine and O’Handley
(1994), ascribe the step-induced uniaxial anisotropy partly
due to magnetoelastic effects and partly due to the missing
bonds at the step edges and corners. The latter authors have
applied the Néel model (Néel, 1954), to derive expressions
for the effect of steps on the (001), (110), and (111) surfaces
of simple cubic, bcc, and fcc crystals. Their models do
correctly predict the orientation of the easy in-plane magnetic
anisotropy axes, but they tend to overestimate the strength of
the anisotropy parameters for the Co/Cu and Fe/W systems.
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Arias and Mills (1999), have also discussed the problem
of step-induced anisotropies, see Section 2.4.4. They have
concluded that the contribution of surface steps to the in-
plane uniaxial anisotropy energy due to stray magnetic fields
is consistent with observations on Fe(001) films grown on a
vicinal substrate.

More recent studies carried out on Co and Fe films
grown on vicinal substrates can be found in the arti-
cles by Mikuszeit, Pütter and Oepen (2004), and by
Rickart et al. (2004).

2.4.4 Surface roughness

1. The expression for the magnetostatic contribution to the
free energy density, Fd of equation (6), has been written
for a uniformly magnetized continuum. In a real thin
film the magnetization density is localized near atomic
positions. This nonuniform magnetization distribution may
be better modeled by a collection of point dipoles situated
at the atomic positions. The magnetostatic energy density
of a lattice of point magnetic dipoles has been studied by
Draaisma and Draaisma and de Jonge (1988), and is dealt
with in the appendix of Heinrich et al. (1988). These authors
have shown that the correction to Fd can be described as a
surface contribution to the perpendicular uniaxial anisotropy
having the form

Fcorr = −Ks

t

(
Mz

Ms

)2

(19)

per surface, where Ks depends upon the crystal structure
and upon the surface plane of the film. For cubic struc-
tures the correction is largest for the bcc(001) surface, and
amounts to 0.05 ergs cm−2 per surface for iron. The correc-
tion, equation (19), favors alignment of the magnetization
vector along the film normal. This contribution to the per-
pendicular uniaxial surface anisotropy parameter is approxi-
mately a factor of 10 smaller than the surface energy param-
eter measured for the Fe(001)/Au interface (Heinrich and
Cochran, 1993).

2. The above correction to the uniaxial surface free energy
contribution treats surface roughness whose dimensions are
the interatomic spacing. Any real thin-film specimen will
exhibit surface roughness on a much larger lateral scale as a
result of the mode of growth, or as a result of growth on a
substrate whose chemical composition varies from place to
place on the surface, or as a result of growth on a substrate
whose surface consists of flat smooth areas bounded by steps.
Dieny and Vedyayev (1994), have pointed out that lateral
variations of the uniaxial surface energy parameter around
the average value, �KSperp, will generate a fourfold surface

free energy term having the form

�FSperp = −K4S sin2 (θ) cos2 (θ) (20)

where θ is the angle between the average magnetization vec-
tor and the normal to the film plane. Note that the angular
variation of �FSperp corresponds to a fourfold variation of the
anisotropy energy with angle. Dieny and Vedyayev have cal-
culated the surface energy parameter K4S for a periodic array
consisting of square mesas of length on a side and repeated
with a two-dimensional spatial period of length L. The key
finding is that K4S is proportional to the square of the fluctua-
tion of the uniaxial surface energy parameter around the aver-
age value. This means that the easy axes of the fourfold sur-
face energy term are oriented at 45◦ to the film normal. They
have also shown that for reasonable estimates of the uniaxial
surface energy parameter fluctuations the effective anisotropy
field, 2K4S/MsD, where D is the film thickness, can become
comparable to fourfold volume anisotropy effective fields,
2K

par
1 /Ms, for films a few monolayers thick. Thus the four-

fold free energy term generated by the lateral variation of
the twofold surface energy term may be expected to play
an important role in specimens for which the dipolar field,
4πMs, is nearly cancelled by the uniaxial surface energy
effective field 2K⊥S/MsD. Under those circumstances the
magnetization vector may be canted so that it is neither ori-
ented perpendicular to the film nor parallel with the film
surface: see Allenspach, Stampanoni and Bischof (1990).

Heinrich, Monchesky and Urban (2001), have also inves-
tigated the effect of lateral variations of any of the mag-
netic anisotropy parameters. Their calculation was modeled
on the Slonczewski treatment of the effect of spacer thick-
ness variations on the interlayer exchange coupling between
two ferromagnetic films separated by a nonmagnetic spacer
layer (Slonczewski, 1991). They concluded that any system
that exhibits a lateral variation of the anisotropic free energy
characterized by a particular angular power will exhibit an
effective anisotropic free energy corresponding to a higher
angular power as a consequence of exchange averaging over
the lower order term. Specifically, Heinrich et al. have shown
that, under simplifying but reasonable assumptions, lateral
variations of the uniaxial anisotropy parameter Ku results in
a fourfold anisotropy energy having the form

�F4
∼= −2�Ku

[
�Ku/Ms

(2A/Ms) k2
eff

]
sin2(φ) cos2(φ) (21)

where φ is the average angle that the magnetization direc-
tion makes with the direction of the uniaxial axis, A is
the exchange stiffness parameter, keff = π/L, and L is the
characteristic spatial period of the inhomogeneities. Note
that the above expression is proportional to (�Ku)

2 so that



16 Magnetic thin films

fluctuations of either sign contribute to easy axes that are
oriented 45◦ to the original twofold axis. This is in agree-
ment with the calculations of Dieny and Vedyayev. Note that
if Ku is the average uniaxial surface energy parameter then
�Ku/Ms in the brackets in equation (21) must be replaced
by the effective field (�Ku/MsD). For the case in which the
thickness of the film fluctuates around the mean thickness, D,
by an average value �D the fluctuations in the surface free
energy parameter can be written �Ku = Ku (�D/D). It fol-
lows that the resulting fourfold surface free energy term will
not be independent of film thickness as is required of a true
surface energy term unless (�D/D) is proportional to

√
D.

It should be noted that the fourfold in-plane anisotropy
measured by Bayreuther et al. (2003), in Fe/Co alloy films
grown on GaAs(001) can also be explained as the result of
fluctuations in the strength of the in-plane twofold anisotropy
parameter; see the last paragraph of Section 2.4.2.

3. It has been pointed out by Bruno (1988), that the mag-
netostatic contribution to the free energy density, Fd, see
equation (6), must be corrected to take into account stray
fields when the film thickness varies from place to place. Any
film roughness may be expected to affect the magnetostatic
energy density which is calculated from the expression

Fd = −1

2

∫
Volume

�M· �H dV (22)

where �H is the magnetic field generated by the magnetization
distribution. Bruno finds that for a stepped surface the correc-
tion to Fd of equation (6) can be described as a contribution
to the uniaxial surface anisotropy parameter corresponding to
a free energy contribution proportional to sin2 (θ), where θ is
the angle between the magnetization vector and the film nor-
mal. For a step height of one atomic layer separating flat areas
10 atomic spacings wide, this contribution to the surface
energy parameter can be as large as 0.15 ergs cm−2, per sur-
face, for a Fe(110) interface. This form of surface roughness
favors alignment of the magnetization along the film normal.
Arias and Mills (1999), discuss in detail the calculation of
the contribution to the free energy density for the case of
an external magnetic field, H0, applied in the film plane so
that in the absence of surface roughness the magnetization
density, Ms, would everywhere be parallel to the applied
magnetic field and the contribution to the free energy den-
sity would be −MsH0. For an external magnetic field applied
along the z direction in the film plane these authors show that
the correction to the free energy density caused by surface
roughness is given by

�F = −Ms

2

∫
Volume

dV hz(�r) (23)

where hz is the z component of the magnetic field gener-
ated by the surface roughness, and the integral is taken over
the volume of the film taking the roughness into account.
Arias and Mills applied their theory to the case of equally
spaced steps generated by growth of the film on a vicinal
surface. They show that the correction to the magnetostatic
energy density is a uniaxial anisotropy in which the easy
axis is parallel with the step edges. The strength of the step-
induced uniaxial free energy calculated for Fe(001) and a
vicinal angle of a few degrees was found to be in the range
0.02–0.04 ergs cm−2, values similar to those found experi-
mentally.

2.5 Anisotropy data

RT uniaxial perpendicular anisotropy coefficients, plus refer-
ences to the relevant articles, are listed in the review article
by Johnson, Bloeman, den Broeder and de Vries (1996).
Their Table 3 lists data for Fe films grown on various sub-
strates; Table 4 lists data for Co films grown on various
substrates; and Table 5 lists data for Ni films grown on
various substrates. More detailed data and discussion are pro-
vided in the review article by Heinrich and Cochran (1993):
in particular, refer to their Table 1 for anisotropy parameters
measured for the interface between Fe(001) and vacuum, Ag,
Cu, Au, and Pd. The review article by Farle (1998), contains
extended discussions of the Ni/Cu(001) and the Gd/W(001)
systems. The case of Fe grown on GaAs(001) has become
very interesting because the small mismatch between the
Fe(001) and the GaAs(001) interface makes this combina-
tion an obvious choice for devices based on a hybrid ferro-
magnetic/semiconductor system. The Fe/GaAs(001) system
is exhaustively discussed in the monumental review article
by Wastlbauer and Bland (2005). Their article includes a
compilation of measured anisotropy coefficients plus relevant
references.

It is interesting to point out complexities related to the
in-plane uniaxial anisotropy in GaAs(001) structures. The
origin of the large in-plane interface uniaxial anisotropy in
GaAs/Fe(001) has so far not been clearly understood. The
hard magnetic axis lies along the

[
110

]
crystallographic

direction which is parallel to the dangling bonds of As ter-
minated (2 × 6) and pseudo (4 × 6) reconstructed GaAs(001)
substrates (Monchesky et al., 2000). However Moosbuehler,
Bensch, Dumm and Bayreuther (2002) have shown that the
strength and sign of the in-plane uniaxial surface anisotropy
is not affected by a particular reconstruction of the GaAs
template. A genuine Ga rich (4 × 6) reconstruction results
in almost the same uniaxial anisotropy as that observed in
the (2 × 6) As rich reconstruction. Therefore it is hard to
believe that the source of this anisotropy lies in chemical
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bonding between the dangling bonds of As and the Fe. This
point of view is further supported by recent results obtained
by Aktas et al. (submitted). They found that a Cr(001) layer
grown over a 15 ML thick Fe(001) film grown on GaAs(001)
can significantly decrease, or even entirely remove, the in-
plane uniaxial anisotropy. This observation implies that the
interface chemistry between As and Fe cannot be the source
of the in-plane anisotropy. Calculations by Mirbt, Sanyal,
Isheden and Johansson (2003), have suggested that an inter-
face in-plane shear (of the order of 2%) can be stabilized
at the GaAs/Fe(001) interface. A significant interface shear
was observed in InAs/Fe(001) structures by Xu, Freeland,
Tselepi and Bland (2002). However, recent work by Gor-
don and Crozier (2006), using the technique of polarization
dependent X-ray absorption fine structure (XAFS) has shown
that an interface shear of approximately 1% is present in
2 ML thick Fe films grown on GaAs(001) substrates and,
without a capping layer, measured in situ at pressures in
the mid-10−10 Torr. The in-plane shear strain was found
to be ε6 = −0.013 (The notation used here is that used
by Sander (1999), and by Thomas et al. (2003), in which
the displacement of an atom originally at (x1, x2, x3) in a
Cartesian coordinate system is given by dxm = ∑3

n=1 εm,nxn

where εm,n are the components of the strain tensor. In
the present application to a strained Fe(001) film in which
x1, x2 are taken to be along the in-plane cube axes, and
following Thomas et al. (2003), ε11 = ε22 = ε1, ε33 = ε3,
ε12 = ε21 = ε6/2, and ε13 = ε31 = ε23 = ε32 = 0. The in-
plane uniaxial anisotropy contribution to the free energy
density is given by (B2ε6/2) sin (2φ) where φ is the angle
between the magnetization vector and the [100] direction
and, following Thomas et al., B2 = 7.62 × 106 J m3.) Thus
the surface cell length along [110] was observed to be smaller
than the surface cell length along

[
110

]
. No interface shear

could be detected within experimental error in a 5 ML thick
Fe sample: this observation suggests that in their samples
the lattice shear was located only at the GaAs/Fe inter-
face. The in-plane lattice shear leads to a uniaxial anisotropy
due to the magnetoelastic parameter B2, (Sander, 1999),
with the uniaxial magnetic axis oriented along one of the
〈110〉 directions, (Urban, Woltersdorf and Heinrich, 2001).
Thomas et al. (2003) have observed in-plane shear in rela-
tively thick Fe(001) layers grown on GaAs(001) and capped
with aluminum. The in-plane shear component ε6 was clearly
resolved for films thicker than 4 nm. The shear component
ε6 = 0.002 at 13 nm, became unobservably small at a film
thickness of 2 nm. In this case the sign of the in-plane
shear was reversed compared to that in the ultrathin films
investigated by Gordon and Crozier (2006). In the measure-
ments reported by Thomas et al. (2003), the strength and
sign of the in-plane uniaxial anisotropy energy associated
with the in-plane shear follows closely the predictions of the

equation

fme =
(

B2ε6

2

)
sin (2φ) (24)

where φ is the angle between the magnetization vector
and the [100] direction and, following Thomas et al., B2 =
7.62 × 106 J m−3. In this case the easy in-plane uniaxial
anisotropy axis was directed along the [110] crystallographic
direction.

Using the interface shear from the XAFS measure-
ments and the value B2 = 7.62 × 107 ergs cm−3 for bulk
iron (Thomas et al., 2003), multiplied by 2.87 × 10−8 cm
results in an interface anisotropy of approximately
−0.014 ergs cm−2: this surface energy is approximately a
factor of 5 smaller than the observed anisotropy (Urban,
Woltersdorf and Heinrich, 2001; Moosbuehler, Bensch,
Dumm and Bayreuther, 2002). However it leads to the correct
orientation for the easy magnetic axis, (Rickart et al., 2004).
In order to explain the strength of the observed in-plane uni-
axial anisotropy at the GaAs/Fe[001] interface one would
require a larger interface shear and perhaps an enhanced
value of the magnetoelastic coefficient B2.

Seki et al. (2003), have shown that thin films of the
alloy Fe38Pt62 having a uniaxial perpendicular anisotropy
parameter as large as K⊥ = 1.8 × 107 ergs cm−3 can be
grown on an MgO(001) substrate at substrate temperatures
as low as 300 ◦C. These films, 18 nm thick, were grown
by means of codeposition of Fe and Pt by sputtering
on a (1-nm Fe + 40-nm Pt) buffer layer deposited on
the MgO(001) crystal at RT. The films exhibited long-
range intermetallic order having the L10 structure. Such
films may be useful for ultrahigh density recording media.
It is very interesting that Fe and Pt codeposited on a
clean MgO(001) substrate at temperatures ranging from 500
to 700 ◦C formed isolated islands of the alloy Fe52Pt48

consisting of crystals having a tetragonal structure with the
c axis oriented along the normal to the substrate (Shima
et al., 2003). Films composed of islands 10 nm thick not
only exhibited a very large uniaxial perpendicular anisotropy
but they were characterized by coercive fields as large as
40 KOe!

Finally, the attention of the reader is directed to the article
by Tian et al. (2005). These authors have discovered how
to grow films of bcc Ni up to a thickness of 3.5 nm on
GaAs(001). Body-centered Ni does not occur in nature. Their
bcc(001) Ni films are characterized by a Curie temperature
of 456 K, a lattice constant of a = 0.282 nm, and an atomic
magnetic moment of 0.52 µB. Their films exhibited an in-
plane fourfold anisotropy parameter of strength K

par
1 = 4.0 ×

105 ergs cm−3, with the easy axis along 〈100〉.
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1 INTRODUCTION

Future development of magnetic devices strongly depends
on the progress of the performance of hard magnetic films.
Recently, a lot of work has been reported for nanoscale pat-
terned or particulate magnets (Carl et al., 1999; Sun et al.,
2000; Chen et al., 2003), since they are believed to be good
candidates for future magnetic devices such as next-generation
ultra-high-density magnetic storage media and biasing nano-
magnets in micro-electromagnetic devices. However, all fer-
romagnetic materials are characterized by a critical grain size
where thermal fluctuations become dominant at room tem-
perature. In order to reduce this critical grain size, materials
with high magnetocrystalline anisotropy (Ku) have attracted
much attention. In this chapter, firstly, the fundamental phe-
nomena and models which are important for the understanding
of hard magnetic properties in thin films will be described.
Secondly, the recent developments of hard magnetic films and
their potential applications will be mentioned.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

1.1 High Ku materials

It is well known that the magnetocrystalline anisotropy is a
key factor to determine the nature of magnetic materials.
For soft magnetic materials (SMs), many studies have
been made to reduce the effective magnetic anisotropy
by amorphization (Hoffmann, 1964) or nanocrystallization
(Yoshizawa, Oguma and Yamauchi, 1988; Hasegawa and
Saito 1992; Suzuki et al., 1991; Herzer, 1989). On the
other hand, for hard magnetic materials (HMs), a lot of
effort has been made for exploring new materials, since the
origin for a large magnetocrystalline anisotropy is due to
the asymmetry of crystal structure. For instance, Sm–Co
alloy (Buschow, 1969; Senno and Tawara, 1975; Ojima,
Tomizawa, Yoneyama and Hori, 1977) and Nd–Fe–B alloy
(Sagawa et al., 1984; Croat, Herbst, Lee and Pinkerton,
1984) magnets with complex crystal structures, which were
discovered in the last few decades, exhibit a large uniaxial
magnetic anisotropy Ku. Representative high Ku materials
are summarized in Figure 1 (Weller and Moser, 1999). It
is well known that L10 ordered alloys (CuAu-type crystal
structure) such as MnAl, CoPt, FePd, and FePt possess large
Ku, which arise from a breakdown of the crystal symmetry
from a cubic structure to a tetragonal one. For example, it
has been reported that the Ku of L10 FePt almost reaches
a value of the order of 108 erg cm−3 which is close to that
of Sm–Co alloy and about 20 times larger than that of pure
Co. The large Ku of L10 FePt offers thermally stable grains
with diameters down to a few nanometers, as compared with
about 10 nm for pure Co.

1.2 Magnetization process and coercivity

A lot of features of magnetic materials are implied in the
magnetization curves (M–H curves); in other words, the
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response of the magnetization of the material to an applied
field. The curves with the field applied along either the
hard or easy axis contain important information regarding
the behavior of hard magnets. This may be associated with
the concept of nucleation and domain wall displacement. By
measuring the initial magnetization curve (virgin magneti-
zation curve) after demagnetization, two different kinds of
qualitative behavior are observed. These are classified into
nucleation-type (a) and pinning-type (b) magnets as shown
in Figure 2. In a nucleation-type magnet, the initial curve
is steep and the saturation of magnetization is reached at a
field much lower than the coercive field (Hc). Domain walls
are present in the initial state and they are free to move and
do not feel pinning effects, leading to the easy saturation of
magnetization. Once the domain walls are swept away from
the specimen, it is difficult to nucleate reversed domains.
In a pinning-type magnet, on the other hand, a field of the
order of the coercive field (H ≈ Hc) is required to saturate
the magnetization of the specimen from the initial state. This
indicates that domain wall pinning is the main mechanism
for coercivity.

M M

HH
(a) (b)

Figure 2. Schematic illustration of initial magnetization curves in
(a) nucleation-type and (b) pinning-type magnets.

When the specimen size is reduced, single domain (SD)
states become stable, and then, the magnetization rotation
becomes a dominant process. However, an SD particle
does not necessarily reverse the magnetization by coherent
rotation, because incoherent rotation such as curling and
buckling owing to morphological defects is not excluded. The
transition from coherent rotation to incoherent rotation occurs
at a particle diameter of about 10 nm, which is of the order
of 5 (A/µ0M

2
S)1/2, independent of the magnetic anisotropy

energy K . With increasing particle size, multidomain (MD)
particles are formed. The critical boundary between MD and
SD particles with a spherical shape is given by the critical
diameter of particles Dcrit = 9γ B/µ0M

2
S, where γ B is the

specific wall energy (E4(AK)1/2) (Kronmüller and Fähnle,
2003). A qualitative relation between Hc and the particle
diameter D is given in Figure 3.

1.3 Exchange-spring magnet

Kneller and Hawig (1991), proposed the exchange-spring
magnet as a way to create a next-generation, high-
performance permanent magnet. Such systems are based on
the interfacial exchange coupling of two suitably dispersed
nanostructured ferromagnetic phases. One of the two phases
is an HM in order to provide a high coercive force, while
the other is an SM to provide high saturation magneti-
zation. Theoretical treatment of such systems predicts the
improvement of hard magnetic properties such as a high max-
imum energy product ((BH)max), a reversible demagnetizing
curve (exchange spring) and high remanence (Br) ratio. For
instance, such exchange-spring characteristics can be realized
by preparing a nanostructured composite of fine HM grains
separated by a thin SM layer. However, it is noted that parti-
cles must not be exchange coupled to each other in order not
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Figure 3. Schematic qualitative relation between coercivity Hc and
particle diameter.
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Figure 4. A schematic illustration of the exchange-coupling behavior of the magnetization curve. H: hard magnetic layer; S: soft magnetic
layer.

Table 1. K and exchange length lex of Fe, Co, and
Ni. lex = (A/Ku)

1/2, A = 10−11 (J m−1).

K (103 J m−3) lex(nm)

Fe 48 14
Ni 4.5 47
Co 410 5

to switch collectively. In appropriate systems, the magnetiza-
tion of SM may be exchange coupled to that of magnetically
hard nanocrystalline grains; the coupling then tends to hold
the moment of SM parallel to those of the nearest grain
over an exchange length (lex). A schematic illustration of
exchange-coupled behavior in magnetization curves is shown
in Figure 4. The values of K and lex are summarized for
representative SM such as Fe, Ni, and, for reference, also
Co in Table 1. If the thickness of the SM layer is larger
than lex, no additional moment enhancement is expected. In
order to realize high-performance permanent magnets that
are greater than existing magnets, magnetic thin-film multi-
layers may be a promising candidate as an exchange-spring
system. Skomski and Coey (1993) predicted that the rema-
nent enhanced magnets, in other words, materials with giant
(BH)max, of 1090 kJ m−3 (137 MGOe) could be realized for
Sm3Fe17N3/Fe65Co35 multilayer films, assuming alignment
of the hard-phase easy axes and development of sufficient
coercivity.

2 FABRICATION OF THIN FILMS

In order to prepare hard magnetic films, many kinds of
deposition techniques are used. Here, conventional and

typical deposition techniques such as sputtering and thermal
evaporation are briefly described.

2.1 Sputtering

Sputtering is a most widely used technique for preparing
thin films. The benefit of this method is that both metals and
insulators can easily be deposited. Besides, a lot of sputtering
parameters, such as pressure during deposition, distance
between target and substrate, input power, deposition rate,
and so on, can easily be changed. Since the operation of a
sputtering system is simple, it has become a conventional
and convenient technique for thin-film preparation, not only
for academic but also for practical use. Moreover, if an
important report on the process is revealed, it can be mutually
transferred between the laboratory and the industry. The
definition of sputtering is as follows:

Sputtering is the process in which atoms are ejected
from the surface of a material (target) when the surface is
bombarded by energetic particles (ions). Sputtering can often
be operated using inert gases like Ar, Kr, or Xe, since there
is no chemical reaction between the sputtering gas and the
target. The inert gas is ionized in a strong electric field,
creating a plasma above the target. When a subtle amount
of reactive gas such as oxygen or nitrogen is mixed with the
sputtering gas and introduced into the sputtering chamber
during deposition, compound films of oxide or nitride can be
prepared. This process is called reactive sputtering. When
a composite (multicomponent) target or multiple targets
are used, alloy films can be prepared. Several sputtering
systems are proposed for thin-film deposition including dc
diode, RF diode, magnetron, and ion-beam sputtering. The
basic construction of sputtering is shown in Figure 5(a). The
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Figure 5. A schematic illustration of sputtering systems.

base pressure for most sputtering systems is in the range
from 10−6 to 10−4 Pa. This relatively high vacuum (HV)
is achieved with diffusion, turbo molecular, or cryogenic
pumps. Recently, in order to improve the quality of films,
sputtering systems with a base pressure in ultrahigh vacuum
(UHV) region are being used. The working pressure during
deposition is in the range of 10−2 –1 Pa. A typical sputtering
system with a UHV chamber is illustrated in Figure 5(b).

2.2 Thermal evaporation

Materials to be deposited are thermally evaporated and then
deposited onto a substrate. The thermal evaporation process
is conventionally called vacuum evaporation. There are a
lot of ways to evaporate the material. The simplest way is to
heat the source materials in a crucible up to approximately its
evaporation temperature by passing electrical current through
a filament, which surrounds the crucible. The filament is
generally made of refractory metals such as W, Mo, or Ta,
with or without ceramic coating. Another method consists of
bombarding the surface of the material with electron beam
(EB) created by an electron gun (EB deposition). The heating
of the material is much more localized in this case. Crucibles
of graphite, alumina, beryllia, boron nitride, zirconia, and
some refractory metals are used with indirect heating.

EB evaporation is carried out in a vacuum chamber with
a pressure of the order of 10−4 –10−6 Pa. The operation
pressure during deposition depends strongly on the quality
of the equipment and deposition materials. Figure 6 shows
a schematic illustration of a typical EB evaporation system
with three independent EB guns. Ingots (source material)
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Figure 6. Schematic representation of an EB deposition system.

are melted by the EB created by an electron gun powered
from several kilowatts to several hundred kilowatts. The
high-energetic EB is directed onto the melting crucible,
where the source material is located. The multilayered
structure is prepared by controlling shutters above crucibles.
If necessary, the thickness is controlled in the unit of
monatomic layer and monitored by reflection high-energy
electron diffraction (RHEED) oscillation. A thin film is then
deposited on a substrate with a variety of temperatures by
heating the substrate.

Another method is pulsed-laser deposition (PLD, also
known as laser molecular-beam epitaxy, MBE), in which
the material is locally heated with a laser beam. PLD
is an improved process used for the deposition of alloys
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and/or compounds with a precisely controlled chemical
composition. A high-power pulsed laser such as KrF excimar
laser or YAG laser is irradiated onto the target of source
materials through the quartz window.

The MBE system is a complicated but most reliable depo-
sition process in thermal evaporation and it works at rela-
tively higher vacuum, in other words, UHV atmosphere (i.e.,
10−9 –10−7 Pa). In order to get high-quality samples, the
growth chamber is usually combined with in situ characteri-
zation equipment. This is an excellent preparation technique
for fundamental studies; however, it is now difficult to trans-
fer the fundamental results directly into industry except for
semiconductor fields.

2.3 Thin-film growth process

In general, depending on the thermodynamic parameters of
the deposit and the substrate surface, film growth processes
are classified as follows: (a) Volmer-Weber mode (island
growth), (b) Frank-van der Merwe mode (layer growth), and
(c) Stranski-Krastanov mode (mixed growth). The Volmer-
Weber mode is schematically described in Figure 7. In the
first stage, a thin film is grown with the island-growth mode
(island state). The lateral grain size is expected to increase
with increasing the surface mobility of the adsorbed species;
in other words, large grains are formed at high substrate
temperature. With increasing the volume fraction of the
material, that is, increasing the nominal thickness of the film,
the islands grow and coalesce forming an interconnected
mazelike pattern (discontinuous state). Finally, percolation
occurs and the film changes from a discontinuous to a
continuous state, and leads to the reduction of the bare
substrate surface. However, the coalescence is strongly
affected by the deposition temperature. The morphology
tends to show the continuous state when the film is fabricated
at low temperature, while it tends to show the island state at
high deposition temperature. The tendency to form an island
state is enhanced by increasing the surface mobility of the
adsorbed species by increasing the substrate temperature.

The understanding of magnetization processes in the
magnets of nanometer scale is of great technological and
scientific interest. Since the early work of Kittel (1946) and
Stoner and Wohlfarth (1948), the magnetization processes of

Small island Discontinuous Continuous

Figure 7. Growth process of thin film.

fine particles and their assemblies have been investigated
extensively (Jacobs and Bean, 1995). The magnetization
reversal process, and therefore the coercivity should depend
strongly on the characteristic size and the morphology
of materials. Up to now, only a few studies have been
devoted to the discussion about the relationship between
experimentally measured magnetization behavior and actual
nanostructural observations of thin films. However, recent
development of the fabrication technique for thin films has
enabled the preparation of nanoscaled magnetic materials
and recent progress of the characterization technique also
has enabled the evaluation of magnetic properties on the
nanoscale.

3 RARE-EARTH–TRANSITION-METAL
ALLOY THIN FILMS

3.1 High-performance rare-earth magnets

Hard magnets based on SmCo5 possess the highest uniaxial
anisotropy Ku ≈ 108 erg cm−3 of all the magnets, as shown
in Figure 1. On the other hand, magnets based on Sm2Co17

phase exhibit higher saturation magnetization and Curie
temperature. Besides, recently developed magnets based
on Nd2Fe14B exhibit the highest energy products (BH)max.
These permanent magnets are called high-performance per-
manent magnets and their magnetic properties are summa-
rized in Table 2 (Evetts, 1992; Schrefl and Fidler, 1992;
Skomski and Coey, 1993; Hu, Li, Gavigan and Coey,
1989).

It is well known that a particular nanostructure is required
to obtain the hard magnetic properties in these materials.
Important aspects of this structure involve the size, shape,
and crystal orientation of grains, and the intergrain coupling.
Recent improvement of microfabrication and thin-film prepa-
ration technique enables these permanent magnets to have
reduced dimensions down to a micrometer region to fit the

Table 2. Several magnetic properties on rare-
earth–transition-metal magnets (Evetts, 1992; Schrefl
and Fidler, 1992; Skomski and Coey, 1993; Hu, Li,
Gavigan and Coey, 1989).

Material 4πMS (kG) Ku (×107 erg cm−3) TC(K)

SmCo5 10.7 17.2 1020
Sm2Co17 12 3.3 1190
Nd2Fe14B 16.1 4.3 588
Sm2Fe17N3 15.4 8.9 749
Sm2Fe11Ti1 12.1 4.8 584
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micromagnetic device applications. One potential applica-
tion of hard magnetic films is micro-electromechanical sys-
tems (MEMS), that are prepared from relatively thick films
of the order of several micrometers and the high (BH)max

of rare-earth magnets promises small lateral dimensions.
Several MEMS components such as a submillimeter elec-
tric motor and a stepper motor were successfully prepared
(Yamashita, Yamasaki, Ikeda and Iwabuchi, 1991; Lemke,
Lang, Göddenhenrich and Heiden, 1995). Another applica-
tion is the creation of a bias magnetic field on the monolithic
microwave integrated circuits (MMICs).

Furthermore, there is a huge application area of hard mag-
netic films for consumer electronics, such as a magnetic data
storage on computer hard disks (HDs), HD video recorders,
portable music players, and so on. The present conventional
CoCr-based materials are facing the superparamagnetic limit,
where the information stored in the small magnetic dots
tends to become thermally unstable. In order to overcome
the limit of areal recording density, the substitution of present
recording system to a perpendicular regime is being imple-
mented and materials with a higher Ku are of great inter-
est. Compared to other applications, small film thicknesses
(5 ∼ 20 nm) are required for magnetic recording.

In this section, the magnetic properties of rare-earth-based
permanent magnet films are briefly reviewed particularly
focusing on their improvement through the introduction of
underlayers and the adoption of the concept of an exchange-
spring magnet.

3.2 Sm–Co thin films

The first report on the fabrication of rare-earth-based per-
manent magnet films was performed by Theuerer, Nesbitt
and Bacon (1969). A getter sputtering technique was used to
prepare SmCo5 thin films and a large coercivity exceeding
20 kOe was obtained in the in-plane direction at the substrate
temperature TS of 600 ◦C. They also reported that a large
coercivity of 30 kOe was obtained for SmCo3.65Cu1.35 thin
films at TS = 500 ◦C. Cadieu et al. investigated the synthe-
sis and the magnetic anisotropy of SmCo5 and Sm2(Co, Fe,
Zr)17 thin films (Cadieu et al., 1982; Cadieu, Cheung and
Wickramasekera, 1985; Cadieu, 1987; Hegde et al., 1994;
Rani et al., 1997). In order to apply these films to recording
media, the effect of Cr underlayer on the magnetic proper-
ties and microstructure were investigated, firstly by Velu and
Lambeth (1992) and Okumura et al. (1995). They reported
that the introduction of Cr underlayer plays an important
role for getting high coercivity on Sm–Co films. Fullerton
et al. (1996, 1997) studied the microstructures and the mag-
netic properties of epitaxial rare-earth–transition-metal films
on a Cr underlayer and its effects were investigated (Mishra

et al., 1981). They observed strong in-plane anisotropies that
reflect the symmetry of the Cr buffer layers. Malhotra et al.
(1996) reported that Hc as high as 31 kOe was obtained for
100-nm-thick Sm–Co films with a Cr underlayer of 20 nm
after annealing at 500 ◦C. They also reported that high Hc of
20 kOe was obtained for several 10-nm-thick Sm–Co films
with a Cr underlayer. They concluded that the reason for
the large enhancement in coercivity after annealing is due to
the crystallization of SmCo grains. Many studies on SmCo5

films exhibiting in-plane magnetic anisotropy have been car-
ried out. However, in order to influence the progress on
high-density magnetic recording, the study of Sm–Co films
with perpendicular magnetic anisotropy is strongly needed.
Recently, Chen, Hegde, Jen and Cadieu (1993) reported that
Sm–Co films, which were sputter deposited at a high Ar
pressure and postannealed at a high temperature, showed
perpendicular magnetic anisotropy, but these Sm–Co films
were amorphous and the perpendicular magnetic anisotropy
was insufficient. Recent investigation enabled the improve-
ment of the perpendicular magnetic anisotropy by controlling
the crystal orientation (Sayama, Mizutani, Asahi and Osaka,
2004).

3.3 NdFeB thin films

The fabrication of NdFeB thin films was firstly demonstrated
by Cadieu, Cheung and Wickramasekara (1986). They pre-
pared NdFeB films by using a slow deposition rate together
with applying bias field in the in-plane direction, and high
Hc of 16 kOe was achieved. However, in order to consider
a practical use, some drawbacks were pointed out: the sub-
strate temperature during deposition, 750 ◦C, was too high
and the easy magnetization axis was aligned in the in-plane
direction. Since then, many studies have been made in order
to control the crystal orientation and to improve the mag-
netic properties. Table 3 summarizes representative studies on
NeFeB thin films reported so far (Aylesworth, Zhao, Sell-
myer and Hadjipanayis, 1988; Yamashita, Yamasaki, Ikeda
and Iwabuchi, 1991; Lemke, Muller, Göddenhenrich and Hei-
den, 1995; Shindo et al., 1996; Parhofer, Gieres, Wecker and
Schultz, 1996; Shima, Kamegawa, Hono and Fujimori, 2001).

Aylesworth, Zhao, Sellmyer and Hadjipanayis (1988) stud-
ied the effect of an Fe underlayer on NdFeB films and a
coercive field of 5 kOe measured in the perpendicular direc-
tion was obtained. They concluded that Fe underlayer plays
an important role for suppressing the formation of Nd–O
phase. Yamashita, Yamasaki, Ikeda and Iwabuchi (1991)
studied the effect of composition and substrate temperature
during deposition. High Hc of 7 kOe measured in the perpen-
dicular direction and large (BH)max of more than 20 MGOe
were obtained. Furthermore, by using the NdFeB films, the
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Table 3. Representative studies on NdFeB thin films (Cadieu, Cheung and Wickramasekara, 1986; Aylesworth, Zhao, Sellmyer and
Hadjipanayis, 1988; Yamashita, Yamasaki, Ikeda and Iwabuchi, 1991; Lemke, Muller, Göddenhenrich and Heiden, 1995; Shindo et al.,
1996; Parhofer, Gieres, Wecker and Schultz, 1996; Shima, Kamegawa, Hono and Fujimori, 2001).

Author Heat treatment ( ◦C) Underlayer Composition Hc (kOe) [Direction] Notes Year

Cadieu Tsub = 750 – Unknown 16 [ // ] UHV-sputtering bias field 1986
Aylesworth Tsub = 500 Fe(200) Unknown 5 [⊥] Multiple-gun sputtering, bias field 1988
Yamashita Tsub = 450 – Nd13Fe76B11 7 [⊥] – 1991
Lemke Tsub = 620 Unknown – 2.1 [⊥] – 1995
Shindo Tann = 700 Ti Nd13−15FebalB7−11 5 [ // ] – 1996
Parhofer Tsub = 550 – Nd32.2Fe62.1B5.7 18 [⊥] UHV sputtering 1996
Shima Tsub = 650 Cr Nd12.7Fe73.5B13.8 5.5 [⊥] Cr overlayer 2001

Tsub and Tann means substrate and annealing temperature.
Marked // is in plane and ⊥ is perpendicular to the plane.

operation of small-sized pulsed motors was demonstrated as
one of the possible applications. Shindo et al. (1996) studied
the effect of postannealing for the films consisting mainly of
the Nd2Fe14B phase and a coercive field of 5 kOe in the in-
plane direction was obtained. Parhofer, Gieres, Wecker and
Schultz (1996) studied the relationship between the magnetic
properties and the composition and high Hc of 18 kOe in the
perpendicular direction was achieved. In order to achieve
hard magnetic properties, the Nd2Fe14B phase should be suf-
ficiently crystallized. Here, two methods have been consid-
ered: one is the postannealing that transforms the amorphous
phase into the crystallized phase; the other is the deposition
on heated substrates. However, it is hard to change the in-
plane oriented c axis of the NdFeB phase to the perpendicular
oriented one by postannealing. Shima, Kamegawa, Hono and
Fujimori (2001) studied the effect of Cr overlayer on NdFeB
films and the highly oriented Nd2Fe14B phase was achieved
on a glass substrate. They concluded that Cr overlayer plays
a significant role in developing crystallographically textured
Nd2Fe14B grains, and they also assume that the developed
texture is due to the seeding effect of the overlayer to induce
the crystallization of the amorphous underlayer.

4 FePt THIN FILMS

As described in Section 1, many studies have been focused
on the L10 ordered alloys such as MnAl, CoPt, FePd, and
FePt, because they possess large uniaxial magnetocrystalline
anisotropy Ku. Among them, L10 ordered FePt alloy has
attracted much attention in recent years as a candidate
material for applications such as next-generation high-density
magnetic storage, because of large Ku of the order of 107 erg
cm−3 and high corrosion resistance compared to rare-earth-
based alloys described in Section 3. In this section, the basic
properties and recent topics of FePt thin films are described.

4.1 L10 ordered structure

The key feature which is essential for remarkable magnetic
properties of FePt alloys is the chemically ordered L10

phase around the equiatomic composition in the thermal
equilibrium phase diagram as shown in Figure 8 (Okamoto,
2000). Although the thermodynamic ordering temperature
of L10 FePt phase is 1300 ◦C, the FePt films fabricated
by sputtering or vacuum evaporation methods usually have
disordered face centered cubic (FCC) structure. In general,
high-temperature postannealing above 500 ◦C is necessary to
transform the disordered FCC phase to the L10 structure. The
crystal structure of L10 structure is basically face centered
tetragonal (FCT), composed of alternating atomic planes of
Fe and Pt along the c axis (Figure 9). The L10 ordered phase
of FePt alloy exhibits a large uniaxial magnetocrystalline
anisotropy along the c axis, with a reported bulk value
of 7 × 107 erg cm−3 (Ovanov, Solina and Demshina, 1973).
This value is the highest of all the materials including no
rare-earth elements as described in Figure 1.

4.2 Film morphology and magnetization process

The magnetization process of hard magnetic films depends
strongly on the film morphology. It was clearly demonstrated
in FePt thin films epitaxially grown on a MgO(001) substrate
(Shima, Takanashi, Takahashi and Hono, 2002a, 2004). The
film morphology may be changed by deposition parameters.
Here, as two representatives, the results obtained by changing
the substrate temperature TS or the nominal thickness tN will
be described.

4.2.1 Substrate temperature (TS) dependence

Transmission electron microscopy (TEM) bright field images
and selected area electron diffraction (SAED) patterns of the
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FePt films deposited on a MgO(001) substrate at various TS

in the range from 200 to 700 ◦C are shown in Figure 10.
The nominal thickness tN is fixed at 10 nm. In the diffrac-
tion pattern for TS = 200 ◦C, only A1 diffraction spots are
observed to be overlapped with the MgO diffraction spots
from the substrate. Very weak superlattice spots are observed
in the diffraction pattern for TS = 300 ◦C, suggesting that the
degree of order is still very low. The intensities of superlattice
spots increase with TS. The SAED patterns show the epitaxial
growth with cube–cube orientation relationship between the
FePt film and the MgO substrate, that is, (001)FePt||(001)MgO

and <100>FePt||<100>MgO.
Figure 11 shows a TEM image for tN = 10 nm (TS =

700 ◦C). The film was grown with the island-growth mode.
Strongly faceted islands of FePt particles are observed with

large size distribution. The major facet planes are (100) and
(010), and the minor facet plane is (110), indicating that the
surface energy of (100) and (010) planes is the lowest. When
particles are small, the surface energy is large compared
to the volume free energy, and thus the small particles
would show clear faceting. The stripe contrast observed
in the particles are the Moiré pattern originating from the
lattice parameter difference between FePt and MgO, and
the distance between neighboring stripes is approximately
2.2 nm as expected from the lattice mismatch between
FePt and MgO with aFePt = 0.40 nm and aMgO = 0.42 nm,
respectively. In cross-sectional TEM images, no structural
defects, such as twins are observed and the surfaces of the
particles are atomically flat. The sizes of particles are widely
distributed with a typical lateral size of about 50 nm. In
addition to these particles, much smaller particles are also
observed. This suggests that a number of small particles were
formed in the initial stage of the film deposition, and then
they coalesced to form big particles.

Magnetization curves taken at 295 K for different substrate
temperature TS are shown in Figure 12. The solid and broken
curves represent the magnetization measured in the direction
perpendicular and parallel to the film plane, respectively. The
film prepared at TS = 200 ◦C is magnetically soft because of
the low magnetocrystalline anisotropy of disordered FePt.
With increasing TS, at TS = 450 ◦C, the easy magnetization
axis changes from in plane to the direction perpendicular
to the film plane. The coercivity Hc of the film increases
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Figure 10. Bright field TEM images and SAED patterns of FePt films fabricated on MgO(001) substrates at various TS. (Reprinted with
permission Y.K. Takahashi et al., copyright 2003, Elsevier.)

Figure 11. TEM bright field image and selected area diffrac-
tion (SAED) pattern (inset) of FePt thin film with tN = 10 nm.
(Reprinted with permission Shima et al., copyright 2002, American
Institute of Physics.)

from 0.85 kOe to about 42 kOe with increasing TS from 450
to 700 ◦C. The in-plane magnetization of the film prepared
at TS = 450 ◦C saturates at 20 kOe. In the film deposited
above 500 ◦C, however, the in-plane magnetization does not
saturate even at 55 kOe, indicating high uniaxial magnetic
anisotropy. Since the maximum magnetic field of 55 kOe in
the super conducting quantum interence device (SQUID) is
not sufficient to saturate the magnetization, the real value of
Hc and saturation magnetization (MS) are even higher. From
the change of the magnetization curves, it is noted that the
magnetocrystalline anisotropy increases with the progress of
the L10 ordering as TS is increased.

4.2.2 Nominal thickness (tN) dependence

A remarkable change in the morphology of the film is
observed for the films with different nominal thicknesses (tN)

deposited at 700 ◦C. Figure 13 shows TEM images for differ-
ent tN values. With increasing tN, the typical size of particles
increases from ∼50 nm for tN = 10 nm to about ∼400 nm
for tN = 20 nm because of the coalescence. With further
increase of tN, particles grow to form an interconnected
isotropic mazelike pattern. However, the mazelike structure
does not percolate for tN ≤ 45 nm. The percolation occurs
for tN = 50 nm, and the film changes from discontinuous to
continuous morphology. The electronic transport measure-
ment also reveals that there is a drastic change in electrical
resistance between tN = 45 and 50 nm. The resistances are
800 M� and 810 � for tN = 45 and 50 nm, respectively. With
further increase of tN, the percolated network expands at
the expense of the voids, and the free space between FePt
diminishes.

Figure 14 shows magnetization curves for different values
of tN. The easy magnetization axis is perpendicular to the film
plane for all the samples, since the [001] axis of the tetragonal
L10 ordered structure is perpendicular to the film plane as
shown in Figure 1. Huge Hc of about 40 kOe, measured in
the direction perpendicular to the film plane, was obtained
for tN = 10 nm at room temperature. With increasing tN, the
coercivity decreases slowly, but still keeps a quite large value
of about 25 kOe for tN = 45 nm. However, a drastic change
of the magnetization curves is observed (Thiele, Folks, Toney
and Weller, 1998; Kooy and Enz, 1960) between tN = 45 and
50 nm. This critical region corresponds to the change in the
morphology of the films from a particulate to a continuous
state. With further increasing tN, the magnetization becomes
easier to be saturated in the perpendicular direction.

In Figure 15, the magnetic properties obtained from the
magnetization curves and electrical resistance as a function
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field perpendicular and parallel to the film plane, respectively. (Reprinted with permission Y.K. Takahashi et al., copyright 2003, Elsevier.)
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Figure 13. TEM images of FePt thin films for different film
thicknesses: 10 nm (a), 20 nm (b), 45 nm (c), 50 nm (d), 60 nm (e),
and 100 nm (f). (Reprinted with permission Shima et al., copyright
2002, American Institute of Physics.)

of tN are summarized. Large coercivites are obtained for
tN ≤ 45 nm, and a drastic change by 1 order of magnitude
is observed between tN = 45 and 50, where the electrical

1000
HN

0

–1000
(a) (b)

(c) (d)

(e) (f)

1000

M
ag

ne
tiz

at
io

n 
(e

m
u 

cm
–3

)

0

–1000

1000

–1000

–40 –20 0 20 40
Magnetic field (kOe)

–40 –20 0 20 40

0

Figure 14. Room-temperature magnetization curves for FePt thin
films with different film thicknesses: 10 nm (a), 20 nm (b), 45 nm
(c), 50 nm (d), 60 nm (e), and 100 nm (f). The magnetic field was
applied in the direction perpendicular to the film (solid line) and
in the in-plane direction (broken line). (Reprinted with permission
Shima et al., copyright 2002, American Institute of Physics.)

resistance also reveals a drastic drop showing the onset
of percolation. The nucleation field (HN), at which the
magnetization begins to drop with decreasing the field after
saturation, is also evaluated. In the case of the films with
large coercivity, the nucleation fields are defined from the



Hard magnetic films 11

100

10

4
2

4
2

4
2

1

(a)

(b)

(c)

(d)

0

–10

–20

6

4

2

109

Isolate particle Continuous

106

103R
0 

(Ω
)

K
u 

(e
rg

 c
m

–3
)

H
N

 (k
O

e)
H

c 
(k

O
e)

100
0 20 40

Film thickness, tN (nm)

60 80 100

8×107
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thin films as a function of the film thickness tN. Magnetic
properties are coercivity Hc (a), nucleation field HN (b), and the
uniaxial magnetic anisotropy Ku (c), respectively. (Reprinted with
permission Shima et al., copyright 2002, American Institute of
Physics.)

cross point of the extrapolation of the values of saturation
magnetization and the tangential line at the coercivity. The
behavior of HN shows a tendency similar to that of the
coercivity: HN also changes drastically between tN = 45
and 50 nm. The uniaxial magnetic anisotropy Ku determined
from the area enclosed between the magnetization curves in
applied fields parallel and perpendicular to the film plane
are also shown in Figure 15(c). The films with tN ≥ 25 nm
showed a large value of 6.0 ± 0.5 × 107 erg cm−3 which is
very close to the value of the fully ordered FePt alloys
(7 × 107 erg cm−3). No jump is seen between tN = 45 and
50 nm. For tN ≤ 25 nm, Ku decreases gradually with tN. This
is thought to be due to the lack of magnetization saturation
associated with the fact that for very small tN, the coercivity
is larger than the maximum applied field (55 kOe).

Magnetic force microscope (MFM) images superimposed
with atomic force microscope (AFM) images for different tN
are shown in Figure 16. For tN = 10 nm, most particles have
an SD state. With increasing tN, MD particles, which corre-
spond to a black and white contrast inside a particle, appear.
The critical size from an SD to an MD particle is estimated
to be approximately 200 nm. Almost all particles have the
MD state for tN = 45 nm; nevertheless, the coercive force

is still quite high. There is no remarkable difference in the
domain structure between tN = 45 and 50 nm, that is, at the
percolation boundary where the coercivity shows a notice-
able drop. In other words, the drastic decrease in coercivity
is not associated with a change in the domain structure, but
it depends only on the percolation of particles. The origin
for this behavior might be considered in the following way:
there are some nucleation sites where reversed domains are
easily generated at a very low magnetic field. However, such
nucleation sites are very few. For a discontinuous film that is
not percolated, domain walls created around the nucleation
site cannot propagate all over the film, resulting in high coer-
civity. For a percolated continuous film, on the other hand,
the domain walls can propagate all over the film, once the
nucleation has occurred. Therefore, the coercivity becomes
very small.

The drastic change in Hc is clearly observed at the
percolation boundary in association with the morphology
change from discontinuous to continuous state, where the
magnetic domain structure shows no remarkable change.
Transition from SD to MD particles proceeds gradually for
even smaller tN below the percolation limit. The detailed
magnetization process of the samples in the region tN <

40 nm is given in the case where a field high enough to
saturate the magnetization is applied.

Figure 17 shows Hc as a function of tN at room tem-
perature and 4.5 K. Hc was obtained from the magneti-
zation curves measured with the applied magnetic field
perpendicular to the substrate plane, using a vibrating sam-
ple magnetometer (VSM) equipped with a superconduct-
ing magnet (maximum magnetic field of ±140 kOe). Huge
Hc values of 70 kOe at room temperature and 105 kOe at
4.5 K are obtained for tN = 5 nm. In addition, the maximum
energy product (BH)max at room temperature reaches about
50 MGOe, which is almost equal to the ideal value (2πMS)

2.
At both room temperature and 4.5 K, Hc decreases gradually
with tN. However, it remains large (42 and 59 kOe at room
temperature and 4.5 K, respectively) even for tN = 40 nm.
A rapid decrease of Hc for tN ≤ 3 nm at room temperature
is caused by poor chemical order in small particles with a
diameter less than a few nanometers and also by thermal
instability. It has been found from MFM observation that
most of the particles have the SD state for tN ≤ 5 nm where
the particle sizes are a few tens of nanometers or smaller.
As tN increases, MD particles appear with increasing aver-
age size, and most of the particles have the MD state for
tN ≥ 25 nm where the particle sizes are typically of the order
of hundreds of nanometers. SD and MD particles are mixed
in the intermediate region between tN = 5 and 25 nm.

The tN dependence of Hc shows different behavior depend-
ing on the microstructure of the film (Takahashi, Hono,
Shima and Takanashi, 2003). Figure 18 shows Hc measured
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Figure 16. MFM images superimposed with AFM images of FePt thin films for different film thicknesses, tN = 10 nm (a), 20 nm (b), 45 nm
(c), 50 nm (d), 60 nm (e), and 100 nm (f). (Shima, Takanashi, Li and Ishio, 2003). (Reprinted with permission T. Shima et al., copyright
2003, Elsevier.)
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Figure 17. Hc as a function of tN at room temperature and 4.5 K.
(Reprinted with permission Shima et al., copyright 2004, American
institute of Physics.)

in the easy magnetization axis as a function of tN for films
deposited on various substrates: MgO(001), MgO(110) sin-
gle crystal, and SiO2 amorphous substrates (Takahashi et al.,
2004b). The substrate temperature TS was fixed at 700 ◦C.
Electrical resistance measurements and TEM observations
indicate that the percolation occurs between tN = 45 and
50 nm for the film on any substrate. Nevertheless, in con-
trast to the behavior for the films on MgO(001) substrate, a
gradual change of Hc was observed and no jump was seen
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Figure 18. Hc as a function of tN for the film on various sub-
strates: MgO(100), MgO(110) single crystal and SiO2 amorphous
substrates. Each Hc was measured in the easy magnetization axis.
(Reprinted with permission Takahashi et al., copyright 2004, Amer-
ican Institute of Physics.)

at the critical thickness for the films on MgO(110) and SiO2.
The former indicates low resistance to the movement of the
nucleated domain walls for the films on MgO(001), while
the latter indicates the presence of pinning for the domain
wall movement for the films on MgO(110) and SiO2. X-ray
diffraction (XRD) and TEM measurements revealed that FePt
films grown on MgO(110) substrates consist dominantly of
(101) texture, where twins with two different directions of
the c axis, that is, the easy magnetization axis, exist. FePt
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films grown on SiO2 glass substrates show polycrystalline
structure consisting of grains with different directions of the
c axis. The pinning is then thought to be due to structural
defects like twins and/or grain boundaries.

4.3 Magnetization process for highly oriented
FePt(001) particles

FePt(001) island films grown on MgO(001) substrates at high
TS provide model systems for the assembly of hard mag-
netic particles because of their defect-free highly oriented
structure. Figure 19 shows the initial magnetization curves
starting from the demagnetized state for different values of
tN, clearly showing the difference between the magnetiza-
tion processes in SD and MD particles. All the magnetization
curves were measured at 295 K in the direction perpendicular
to the film plane. The vertical axis indicates the magnetiza-
tion normalized by the magnetization value at 140 kOe. tN
is 3, 5, 8, 10, 12, 15, 18, 20, 25, 30, and 40 nm. The films
with tN = 3 and 5 nm are very difficult to be magnetized,
because they contain only SD particles with sizes from ten
to a few tens of nanometers. Hence, the magnetization pro-
gresses only by the magnetization rotation in the particles.
However, with increasing tN (10 and 12 nm), that is, with
increasing particle size, a steep increase of the magnetiza-
tion at low magnetic field is observed although the complete
saturation is still hard. The fractional magnetization at low
magnetic field corresponds to the magnetic domain wall dis-
placement; in other words, particles larger than 200 nm with
MD structure are first magnetized at low magnetic field. With
further increasing tN (15 and 20 nm), the volume fraction
of MD particles increases, and consequently, the fraction of
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Figure 19. Initial magnetization curves for FePt films with different
tN. tN is 3, 5, 8, 10, 12, 15, 18, 20, 25, 30, and 40 nm. (Reprinted
with permission Shima et al., copyright 2004, American institute of
Physics.)

the magnetization that is magnetized at low magnetic field
increases. This figure also indicates that the particles smaller
than 200 nm, that is, with SD structure, still exist for the film
with tN = 20 nm because a small fraction of the magnetiza-
tion is still hard to saturate. However, they disappear for the
films with tN ≥ 25 nm. In this case, the magnetization can
easily be saturated at a field lower than 10 kOe by domain
walls displacement process. Such initial magnetization curves
are usually classified as ‘nucleation type’. The coexistence
of both SD and MD structures is clearly elucidated from the
initial magnetization process, and is consistent with the MFM
observations.

Even in hard magnets showing so-called nucleation-type
behavior to date, it is well known that a high magnetic field
comparable to or larger than Hc is generally required to
fully magnetize the material, because the existence of multi-
ple phases and/or grain boundaries and interparticle dipolar
interaction prevents the complete disappearance of reversed
domains. However, the FePt nanoparticles are clearly differ-
ent from these. Figure 20 shows the magnetization curves for
tN = 25 nm, with variation of the initial applied field (Hin)

from the virgin state. Hin is 2 kOe (a), 3 kOe (b), 4 kOe
(c), 5 kOe (d), and 6 kOe (e). The magnetic field is first
increased to Hin from the virgin state and then reversed to
–55 kOe. It is then increased again through zero to +55 kOe,
and finally reversed through zero to –55 kOe. In the case
of Hin = 2 kOe (Figure 20a), most of the particles have their
magnetization easily reversed at low negative magnetic fields
of a few kilooersteds when the magnetic field is reversed.
With increasing Hin, the fraction of the particles showing eas-
ily reversed magnetization decreases (Figure 20b,d), before
finally disappearing at Hin = 6 kOe (Figure 20e). This result
indicates that 6 kOe alone is enough to fully magnetize the
sample and obtain a high Hc value of more than 50 kOe. In
other words, domain walls are completely wiped out from
each particle at a low magnetic field, and the nucleation of
reversed domains becomes very difficult; a high magnetic
field is then required for magnetization reversal (Shima et al.,
2006).

This remarkable nucleation-type behavior may be
attributed to the ideal structure with defect-free, perfectly
aligned, monocrystalline FePt nanoparticles, and weak dipo-
lar interaction between particles. The wipeout of domain
walls is thought to be dominated by the competition between
the applied magnetic field and interparticle dipolar inter-
action (Durst and Kronmüller, 1987; Givord, Tenaud and
Viadieu, 1988; Givord et al., 1992) in sintered NdFeB mag-
nets where NdFeB grains are densely packed. Conversely, for
FePt nanoparticles shown in this section, the particle density
is low and the interparticle distance is considerably larger.
Therefore, the interparticle dipolar interaction is significantly
reduced compared to that in sintered NdFeB.
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of Physics.)

4.4 Low-temperature fabrication of L10 phase

It is well known that the substrate temperature during depo-
sition and/or the postannealing temperature are required to
be high (usually more than 500 ◦C) for the preparation of
highly ordered Fe–Pt alloy films. However, for practical use,
it is essential to reduce the growth temperature. Recently, a
lot of studies have focused on the reduction of the ordering
temperature by several approaches as summarized in Table 4.

Maeda et al. (2002) reported that the addition of Cu to FePt
is an effective way to reduce the ordering temperature, and
Hc of about 5 kOe was obtained after annealing at 300 ◦C. A
similar result was also reported by Takahashi, Ohnuma and
Hono (2002). They confirmed that the Fe site was substituted
by Cu in a FePtCu system and the decrease of the ordering
temperature was thought to be attributed to faster diffusion
in Cu-containing FePt alloy, owing to the depression of the
melting temperature. Besides the addition of Cu, Platt et al.
(2002) studied the effect of Au and Ag in the FePt films.
The reduction of the annealing time by Zr addition (Lee,
Yang, Kim and Na, 2001) and the control of the particle size
by C addition were also reported (Ko, Perumal and Shin,
2003).

Ravelosona, Chappert, Mathet and Bernas (2000) actively
studied the effect of ion irradiation. They have shown that
the long-range order in FePt films, grown by sputtering at
moderate temperatures, was enhanced by He ion irradiation.
After irradiation, the perpendicular magnetic anisotropy was
observed to increase. Authors believe that this irradiation

technique could be a candidate for the fabrication of partially
ordered granular media based on the weakly ordered alloys.

Luo and Sellmyer (1995) and Endo, Kikuchi, Kitakami
and Shimada (2001) found that the rapid diffusion at Fe/Pt
interface occurred at temperatures around 300 ◦C and the
multilayer structure directly transforms to the ordered FCT
phase when Fe and Pt layer thicknesses are almost equal.
They also confirmed that the rapid formation of the FCT
phase in the multilayers with Fe/Pt ≈1 was due to rela-
tively rapid diffusion at the interface. Ultimate multilayer
structure is an alternate stacking of monatomic layers of Fe
and Pt. Shima, Moriguchi, Mitani and Takanashi (2002b)
reported that the L10 phase could artificially be produced
by alternating Fe(001) and Pt(001) monatomic layers on
a MgO(001) substrate at temperatures below 230 ◦C. The
samples prepared by this technique exhibited perpendicular
magnetization with a large uniaxial magnetic anisotropy Ku

of 3 × 107 erg cm−3 and high chemical ordering (long-range
order parameter S = 0.7 ± 0.1) even at TS = 200 ◦C.

Furthermore, Suzuki, Harada, Honda and Ouchi (1999)
reported that a high Ar pressure during deposition was very
effective in promoting the chemical ordering. On the other
hand, Takahashi, Ohnuma and Hono (2001) reported that the
combination of the elevated substrate temperature during the
deposition and postannealing was effective for the promotion
of ordering even at 300 ◦C.

Numerous studies were made for the samples with compo-
sitions around Fe50Pt50 (in at%). However, Seki et al. (2003)
found that L10 ordered FePt(001) films with large magnetic
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Table 4. Recent studies on the reduction of the ordering temperature for FePt films (Hsu, Jeong, Laughlin and Lambeth, 2001; Maeda
et al., 2002; Takahashi, Ohnuma and Hono, 2001, 2002; Platt et al., 2002; Lee, Yang, Kim and Na, 2001; Ko, Perumal and Shin, 2003;
Ravelosona, Chappert, Mathet and Bernas, 2000; Luo and Sellmyer, 1995; Endo, Kikuchi, Kitakami and Shimada, 2001; Shima, Moriguchi,
Mitani and Takanashi, 2002; Suzuki, Harada, Honda and Ouchi, 1999; Seki et al., 2003).

Method Substrate Composition Fe:Pt (at%) Temperature (◦C) Author Year

Au underlayer SP Si(001) 55:45 300 Y. -N. Hsu 2001
Cu addition SP Glass 46.5:53.5 300 T. Maeda 2002

SP Glass 50:50 400 Y. K. Takahashi 2002
SP Si(001) 50:50 350 C. L. Platt 2002

Zr addition SP Glass 59:41 500 S. R. Lee 2001
C addition SP MgO(001) 49.5:50.5 400 S. H. Ko 2003
He+ irradiation SP MgO(001) 50:50 350 D. Ravelosona 2000
Multilayering SP Glass – 300 C. P. Luo 1995

SP Quartz 52:48 300–325 Y. Endo 2001
Monatomic layer control MBE MgO(001) 52:48 230 T. Shima 2002
High Ar pressure SP Glass/sapphire – 450 T. Suzuki 1999
In situ annealing SP Glass 50:50 300 Y. K. Takahashi 2001
Off stoichiometry SP MgO(001) 38:62 300 T. Seki 2003

SP: sputtering.

anisotropy could successfully be prepared at TS = 300 ◦C by
decreasing the Fe concentration from the equiatomic com-
position. This is quite a simple method for the reduction of
ordering temperature, although the detailed mechanism is not
elucidated yet.

4.5 Self-assembly of FePt nanoparticles

The demand for higher magnetic recording density with a
low system noise stimulates the need for a medium consisting
of magnetically isolated particles with a size below 10 nm.
Besides, the size of ferromagnetic particles dispersed in a
nonmagnetic matrix is expected to become a few nanome-
ters even for a bit size of a 10–20 nm. This size almost
reaches the superparamagnetic limit for existing materials
that are unsuitable for such applications. Besides, in order to
overcome thermal fluctuation and demagnetizing fields that
make the magnetization of the recording bit unstable, high
Ku materials are needed. A lot of studies on granular-type
films consisting of L10 ordered FePt particles dispersed in
a nonmagnetic matrix have been performed. Recent reports
on FePt granular films, where FePt nanoparticles are embed-
ded in the matrix materials are indicated here; oxide (MgO:
Mukai, Uzumaki and Tanaka, 2003; Shima, Takanashi, Taka-
hashi and Hono, 2006; Al2O3: Bian et al., 1999; White et al.,
2003; Al–O: Watanabe, Masumoto, Ping and Hono, 2000;
Ping et al., 2001; SiO2: Saito, Kitakami and Shimada, 2002;
Luo and Sellmyer, 1999; B2O3: Luo et al., 2000), nitride
(BN: Daniil et al., 2002; Christodoulides et al., 2001; AlN:
Chen, Luo, Lie and Hua, 2001; Si3N4: Kuo and Kuo, 2000),
metal, and so on (Ag: Chen et al., 2002; Ping et al., 2001; C:

Christodoulides et al., 2001; Lee et al., 2005). Generally, the
granular structure is obtained by following preparation tech-
niques: one of them is codeposition of Fe, Pt, and matrix
material. The other consists of first depositing FePt/matrix
films in a multilayer form and subsequently annealing the
samples at high temperature to form granular structure. Sput-
tering and ion implantation techniques are used.

Among a lot of investigations on FePt granular films, Taka-
hashi et al. (2004a) revealed that there exists a size depen-
dence of the degree of chemical order in FePt–Al2O3 granu-
lar films. In other words, when the particle size becomes less
than a few nanometers, the ordered phase becomes unstable
with respect to the disordered phase. Since FePt nanoparti-
cles cannot be coarsened when the volume fraction of FePt is
low in the oxide matrix, they may not be able to be ordered
to the L10 structure owing to the size effect.

Figure 21 shows a self-organized magnetic assembly
(SOMA) of FePt nanoparticles (Sun et al., 2000) which has
given a great influence on research direction as a promis-
ing candidate for an advanced future magnetic recording
media. The chemically processed FePt particles are initially
in the disordered state, so they must be ordered to the L10

phase by annealing. However, several problems are still to be
overcome. One of these problems is that the ordered arrays
of nanoparticles are deteriorated by the coalescence of the
particles. The other is that aligning the c axis of the parti-
cles by the chemical synthesis method is not easy. Recent
progress of chemical synthesis may have an answer to the
first problem: it was revealed that SiO2-coated FePt nanopar-
ticles, which were prepared by chemical synthesis, suppress
the coalescence of the particles after annealing at high tem-
perature (Yamamoto, Morimoto, Ono and Takano, 2005). In
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30 nm

Figure 21. TEM image of a 3-D assembly of FePt nanoparticles
with a diameter of 6 nm (Sun et al., 2000).

addition, the direct synthesis of L10 nanoparticles at low
temperature using ‘modified polyol method’ was demon-
strated and was found to be effective for reducing the order-
ing temperature and suppressing the coarsening (Takahashi,
Ogawa, Hasegawa and Jeyadevan, 2005).

5 NANOCOMPOSITE MAGNET FILMS

Several attempts to realize an exchange-spring magnet, in
other words, a nanocomposite magnet, have been performed
by the mixture of a hard magnetic layer and a soft magnetic
layer as described in Section 1.3. A possible combination
for the nanocomposite structure is constituted by Sm–Co,
Sm–Fe, Nd–Fe–B, Fe–Pt as the hard phase and α-Fe, Fe3B,
NiFe, Co as the soft phase. Theoretical energy products
(BH)max of some nanocomposite magnets and bulk Nd2Fe14B
alloy, as a reference, are shown in Table 5 (Skomski 1994;
Sabiryanov and Jaswal, 1998a). ‘Megajoule magnet’ can

Table 5. Theoretical energy product (BH)max of some nanocom-
posite magnets and bulk Nd2Fe14B alloy (Skomski, 1994;
Sabiryanov and Jaswal, 1998a).

Material (BH)max

Hard phase Soft phase (MGOe) (kJ m−3)

Sm2Fe17N3 Fe65Co35 137 1090
Sm2Fe17N3 Fe 110 880
FePt Fe 90 720
Nd2Fe14B Fe 90 720
Sm2Fe17 Fe 74 592
SmCo5 Fe65Co35 65 520

Nd2Fe14B (bulk) 55 440

possibly be achieved when Sm2Fe17N3 and Fe65Co35 alloys
are selected. Several papers on the experimental work were
published on Co/Sm–Co (Liu, Skomski, Liu and Sellmyer,
2000), Fe/FePt (Liu et al., 1997), Fe/Pt (Liu, Luo, Liu
and Sellmyer, 1998), FePt/Fe3Pt (Zeng et al., 2002), and
Ni80Fe20/Sm40Fe60 (Yan et al., 2001). However, to date,
magnetic properties such as remanence enhancement and
energy product have not succeeded those of the best aligned
‘single-phase’ magnets such as Nd2Fe14B with (BH)max � 55
MGOe. The key technology to achieve the improvement of
magnetic properties is thought to be in the control of the
direction of the easy magnetization axis and the epitaxial
growth of each layer.
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1 INTRODUCTION

Magneto-optics was discovered in the nineteenth century.
Michael Faraday (1791–1867) observed the rotation of the
plane of light polarization in a piece of longitudinally mag-
netized glass in 1845 (Faraday, 1846), while John Kerr
(1824–1907) realized the complementary effect in reflec-
tion from the poles of a magnet in 1876 (Kerr, 1877). More
precisely, the magneto-optical Kerr effect (MOKE) is the
change of polarization (ellipticity and/or rotation of the polar-
ization axes) and/or intensity of the light being reflected by
a magnetized surface. Three different geometries are distin-
guished (Figure 1): the polar (a), the longitudinal (b), and
the transversal MOKE (c). All of these effects are linear in
the magnetization and/or the magnetic field (quadratic contri-
butions may superimpose at very high fields). Both Faraday
rotation and MOKE may be classified as magnetic circu-
lar birefringence (MCB) effects, which are Kramers–Kronig
related to magnetic circular dichroism (MCD). They have

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

to be distinguished from transverse magneto-optical (MO)
effects being quadratic in magnetization and/or magnetic
field. The Voigt or Cotton–Mouton effect (Voigt, 1898, 1908;
Cotton and Mouton, 1907) is commonly known as magnetic
linear birefringence (MLB), which is related to the magnetic
linear dichroism (MLD).

Today, the theory of magneto-optics is well understood and
the development of MO materials and devices is an extremely
vivid field of research. This has been documented in the last
20 years from various points of view, either focusing on
materials (Buschow, 1988) or on theory (Oppeneer, 2001),
or on both of them in an excellent monograph (Zvezdin and
Kotov, 1997). Aspects of applications were in the focus of
other reviews or monographs. Ever since, Faraday rotation
and MOKE have been most popular methods to image ferro-
and ferrimagnetic domain structures (Dillon, 1963; Craik
and Tebble, 1965; Dillon, 1971; Hubert and Schäfer, 1998).
Although MO recording materials and devices have been
developed since more than 30 years, they reached maturity
only in the last 10 years. In particular, the preparation of
high performance MO materials and their heterostructures
allowing the storage, readout, and erasure of data at very
high densities were sensitively improved. This has been
documented in various extensive reviews (Mansuripur, 1995;
Gambino and Suzuki, 1999; Röll 2003). Thin films and
nanostrucures are, meanwhile, probably the most investigated
materials in MO research and development (Ferré, 1992).
Even more sophisticated structures like MO light waveguides
and magnetophotonic crystals (Lyubchanskii et al., 2003) are
at the dawn of applications.

In parallel to the development of appropriate materials,
the search for optimized light sources has become increas-
ingly important. The development of the MO disc technol-
ogy is intimately connected with the development of novel
laser diodes emitting at shorter light wavelengths. On the
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Figure 1. Schematic longitudinal (a), polar (b), and transversal
Kerr effect (c) configurations.

other hand, high-power mode-locked solid-state lasers with
ultrashort pulses are now playing a major role in mod-
ern materials research, where MOKE has become an indis-
pensable tool for investigating novel nanostructured and/or
very thin-film materials at high temporal resolution (Hille-
brands and Ounadjela, 2002, 2003). Owing to its very fast
response, high accuracy, and high temporal and spatial res-
olution, the MO probe has proved to be probably the most
powerful method to study magnetic properties at extreme
length and timescales (Rasing et al., 2003). The novel term
femtomagnetism stands for temporal magnetic response on
a subpicosecond timescale and substantially relies on MO
spectroscopical techniques (Bigot, Guidoni, Beaurepaire and
Saeta, 2004). The excellent time resolution of MOKE is
also absolutely essential in spintronics research, where spin
states of magnetic semiconductors are investigated at the
picosecond timescale (Kimel et al., 2004). Finally, the devel-
opment of powerful and versatile synchrotron-based light
sources in the X-ray regime opened another extremely fruit-
ful branch of magneto-optics. Magnetically dichroic signals
(X-ray magnetic circular dichroism, XMCD, X-ray magnetic
linear dichroism, XMLD) at resonance with spin-polarized
transitions from K and L edges (Schütz et al., 1987) have
proven to be extremely sensitive and have become widely
used for investigations of quantitative aspects of magnetism,
meanwhile also connected with microscopic imaging at high
spatial resolution (Stoehr et al., 1993, Fischer et al., 1996).

When talking about magnetic domains intuitively the
topography of ferromagnetic and ferrimagnetic magnetiza-
tion is normally considered (Hubert and Schäfer, 1998). This
view is, however, incomplete, since there are at least as many
antiferromagnetic materials in nature as ferromagnetic ones.
For thermodynamic reasons, they also decay into domains,
the structure of which is, however, less evident than in the
ferroic case. It is usually not accessible by MOKE or Fara-
day rotation and has never been considered as useful as the
ferromagnetic one. This opinion has changed in recent years,
since antiferromagnetic materials gained appreciable techno-
logical interest within the context of spin electronics (Prinz,
1998), exchange bias (Nogués and Schuller, 1999), magne-
toelectric, and multiferroic systems (Fiebig, 2005). While the
cumbersome method of neutron topography was previously

the only direct method to verify the ±180◦ orientation of an
antiferromagnetic uniaxial order parameter (Tanner, 1979),
nonlinear MO spectroscopy is now an alternative to image
antiferromagnetic domain topography at higher resolution
using second harmonic generation (SHG) (Fiebig, Fröhlich,
Krichevstov and Pisarev, 1994). Another very promising
method utilizes the XMLD of antiferromagnets with appro-
priate symmetry (Nolting et al., 2000).

In this contribution, we shall give brief overviews on
the theoretical aspects (Section 2) and the experimental
techniques (Section 3) presently involved in magneto-optics.
Section 4 will then deal with some MO materials and their
applications, which are presently in the focus of interest:
magneto-optical storage materials, magnetic semiconductors,
antiferromagnets, and magnetophotonic crystals.

2 THEORETICAL ASPECTS

2.1 Linear magneto-optics

In the spectral range of visible and UV light, MO effects are
linked to the dielectric permittivity tensor being perturbed by
magnetic contributions. Being far above the frequencies of
magnetic resonances, there is virtually no contribution from
the magnetic permeability. Let us first consider a simple
quasiclassic model of the axial (polar) MO effects based
on the Drude–Lorentz model of elastically bound electrons
(spatial coordinate r = (x, y), mass m, charge e, damping
constant γ , eigenfrequency ωo) under the combined action of
the electrical field of the light wave, E = (Ex, Ey) exp (iωt)

and an axial external magnetic field, B = Bẑ. The equation
of motion reads

mr̈ + γ ṙ + mω2
or = eE + e(ṙ × B) (1)

and is solved by harmonically oscillating coordinates
x = xo exp(iωt) and y = yo exp(iωt) which enter circular
coordinates,

x± = α±E±/e (2)

with x± = (xo ± iyo) exp(iωt) and E± = (Ex ± iEy) exp
(iωt). The electric dipole moment p± = ex± = α±E±
involves the polarizabilities

α± = e2

m
(
ω2

o − ω2
) + iωγ ∓ eωB

≈ e2

m
(
ω2

o − ω2
) + iωγ

×
{

1 ± eωB

m
(
ω2

o − ω2
) + iωγ

}
(3)
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such that finally

�p =
(

px

py

)
= 1

2

(
α+ + α− i (α+ − α−)

−i (α+ − α−) α+ + α−

)

×
(

Ex

Ey

)
= �α �E (4)

The tensor of the dielectric permittivity

εij = Nαij

εo

+ δij ,

�ε = 1

2

(
N(α+ + α−)/εo + 1 iN(α+ − α−)/εo

−iN(α+ − α−)/εo N(α+ + α−)/εo + 1

)
(5)

is diagonal in circular polarization and yields the complex
refractive indices

ñ± = √
ε± =

√
Nα±/εo + 1 ≡ n± + iκ± (6)

The Faraday rotation angle is readily found from the circular
birefringence n+ − n− and yields

�F = π

λo
(n+ − n−) t ∝ Re (α+ − α−) ∝ B (7)

where t is the sample thickness. The Faraday ellipticity is
related to the circular dichroism κ+ − κ− via

εF = π

λo
(κ+ − κ−) d ∝ Im (α+ − α−) ∝ B (8)

In a ferromagnet, one has to replace B by the magnetization
M such that

�F, εF ∝ M (9)

Kerr rotation and ellipticity in the polar geometry (Figure 1a)
is calculated by starting from an x polarized incident
wave, which contains two circularly polarized eigenmodes
at longitudinal propagation,

E±
i =

(
1
±i

)
Ei

2
with Ei = Eoei(ωt−kz) (10)

Making use of the dielectric tensor, equation (5), which may
be written as

ε =

 εxx iεxy 0

−iεxy εxx 0
0 0 εzz


 (11)

and of Fresnel’s formulae, one obtains the reflected field
components

E+
r = 1 − n+

1 + n+

(
1
i

)
Ee

2
(12)

where E−
r = 1−n−

1+n−

(
1
−i

)
Ei

2 and n± = (
εxx ∓ εxy

)1/2
. One

thus obtains

Erx = 1

2

(
1 − n+
1 + n+

+ 1 − n−
1 + n−

)
Ei

= −n+n− + 1

(1 + n+) (1 + n−)
Ei = Axei
x (13)

Ery = i

2

(
1 − n+
1 + n+

− 1 − n−
1 + n−

)
Ei

= i
−n+ + n−

(1 + n+) (1 + n−)
Ei = Ayei
y (14)

and the ratio

Ery

Erx
= i

n+ − n−
n+n− − 1

= Ay

Ax

ei(
y−
x)

= Ay

Ax

[
cos

(

y − 
x

) + i sin
(

y − 
x

)]
(15)

For 
y − 
x = 0 one solely obtains Kerr rotation,

Re
Ery

Erx
= Ay

Ax

= tan θK ≈ θK (16)

while for 
y − 
x = π
2 mere Kerr ellipticity is observed,

Im
Ery

Erx
= Ay

Ax

= εK (17)

Since in general 0 �= 
y − 
x �= π
2 , both components as

defined by equations (16) and (17) are simultaneously
observed. Under the constraint |εxy | 	 |εxx | a compact final
formula is derived,

Ery

Erx
= i

n+ − n−
n+n− − 1

≈ εxy

i (εxx)
1/2 (εxx − 1)

(18)

Interestingly, a transparent solid with real tensor components
εxx and εxy lacks any Kerr rotation, ReEry

Erx
= 0, but reveals

nonvanishing Kerr ellipticity,

Im
Ery

Erx
= εK = −εxy

(εxx)
1/2(εxx − 1)

(19)

Since the secondary motion of the electrons due to the
Lorentz field in equation (1) is perpendicular to both the
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direction of the magnetization and to the primary motion,
a secondary amplitude is superimposed to the primary
beam of the reflected light. This explains qualitatively the
differences between the three general MOKE geometries
shown in Figure 1. In the polar geometry, P-MOKE (a)
the magnetization is perpendicular to the reflecting surface;
hence, a linearly polarized wave generates a secondary
component, which is strongest at perpendicular incidence.
There is no dependence on the initial direction of the
polarization. In the longitudinal configuration, L-MOKE
(b) the magnetization is parallel to both the plane of
incidence and to the reflecting surface. This generates a
rotation of the polarization of the reflected beam both for
s (= perpendicular) and p (= parallel) polarized light with
respect to the plane of incidence, however, with different
signs of the Kerr rotation. It vanishes for perpendicular
incidence and maximizes at intermediate angles of incidence.
General results for arbitrary angles of incidence have been
derived by explicit use of the corresponding Fresnel’s
formulae (see e.g., Metzger, Pluvinage and Torguet, 1965;
Dillon, 1971; Zvezdin and Kotov, 1997).

For the transversal geometry, T-MOKE (c) does not
involve any rotation or ellipticity as is the case for P-MOKE
or L-MOKE, since the secondary amplitude either vanishes
(in s-wave polarization, where M is parallel to ṙ) or adds
along the propagation vector (in p-wave polarization). How-
ever, in the latter case, the reflectivity changes at oblique
incidence when inverting the magnetic field (or magneti-
zation), since the component of the electric polarization P
perpendicular to the direction of the reflected beam changes.
Thus, the transversal ‘Kerr’ effect is quite useful for observ-
ing or measuring magnetization contrast by simple intensity
measurements (Voigt, 1908; Yang and Scheinfein, 1993).
T-MOKE was first observed by Zeeman (1897) and is partic-
ularly suited to visualize surface magnetic domain structures
(Hubert and Schäfer, 1998).

It should be mentioned that second-order contributions,
that is, quadratic in the components of M, may be quite
sizeable. They are natural ingredients from the beginning
in the sense of perturbation expansions like those used in
equation (3) and dominate in the transverse Voigt geometry.
The linear dielectric tensor, equation (11), has to be supple-
mented by a quadratic one and reads as follows for cubic
crystals (Hubert and Schäfer, 1998):

ε = ε


 1 −iQmz iQmy

iQmz 1 −iQmx

−iQmy iQmx 1




+

 B1m

2
x B2mxmy B2mxmz

B2mxmy B1m
2
y B2mymz

B2mxmz B2mymz B1m
2
z


 (20)

Here, m is the unit vector of the magnetization, Q ∝ εxy

(Voigt constant), and B1 and B2 are material parameters. In
the Faraday configuration with mx = my = 0, Faraday effect
and P-MOKE emerge linearly in mz as anticipated above,
whereas in the L-MOKE configuration with mx �= 0 �= my ,
the Kerr rotation angle may effectively contain quadratic
contributions formally described as

θK ∝ my + αmxmy + βm2
x (21)

They were shown to depend on the angle of incidence and
to give rise to asymmetric hysteresis loops as reported, for
example, for the case of thin films of Fe (Postava et al., 1997;
Yan, Schreiber, Grünberg and Schäfer, 2000) and discussed
within an extended MOKE theory (Osgood, Clemens and
White, 1997; Osgood, Bader, Clemens and White, 1998).

All MO spectroscopies are based on the coupling of
electromagnetic waves to the orbital states of spin-polarized
electron states. Since these are coupled by the spin-orbit
interaction, techniques like MOKE are intimately probing
the very heart of magnetism within the electronic struc-
ture of materials (Schoenes, 2003). In order to understand
MOKE theoretically, basically the nondiagonal element of
the dielectric tensor, εxy , which enters the pertinent for-
mulae, equations (18) and (19), has to be calculated in
a reasonable approximation. Attempts to do this without
taking into account the spin-orbit interaction (Bennett and
Stern, 1965) virtually failed, and an early perturbation the-
ory (Argyres, 1955) including spin-orbit coupling was finally
acknowledged to be basically correct. Direct calculations
of MOKE spectra (Misemer, 1988; Oppeneer, Sticht, Mau-
rer and Kübler, 1992) confirmed that the Kerr effect scales
linearly with the spin-orbit coupling strength. Here, we
restrict ourselves to give a simple picture, starting with the
imaginary part of the optical conductivity, σxy , which is
Kramers–Kronig related to the dielectric tensor component
εxy (Bruno, Suzuki and Chappert, 1996),

σ ′′
xy(ω) ∝ 1

ω

∑
i,f

f (Ei)
[
1 − f (Ef)

]

× [|〈i|p−|f 〉|2 − |〈i|p+|f 〉|2] δ(ωif − ω) (22)

where f (E) is the Fermi function, 〈i|p±|f 〉 the dipole matrix
elements for left and right circularly polarized light, and
�ωif = Ef − Ei photon energies connecting initial and final
electronic states of the system under inspection. Figure 2
(Bruno, Suzuki and Chappert, 1996) shows a simplified
quasiatomic energy scheme of a ferromagnetic metal, where
optical absorption in the visible region is due to dipolar
allowed d–p transitions. Two level splittings are essen-
tial: (i) the exchange splitting �ex ≈ 1–2 eV between the
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Figure 2. Energy levels of a ferromagnet, showing the electric dipolar optical transitions for left and right circular light (a) and the
corresponding absorption spectra (b). (Reproduced from Bruno et al., 1996, with permission from the American Physical Society.  1996.)

spin-up and spin-down electrons and (ii) the spin-orbit split-
ting �so ≈ 10–20 meV between the dxz,yz states. The tran-
sitions from the spin-orbit split levels into the pz state
are distinguished by their photon polarization, σ+ and σ−,
respectively. This explains the dichroism within the absorp-
tion spectrum as depicted in Figure 2(b), which reveals four
differently polarized absorption lines. Clearly, this MCD
would be absent without spin-orbit splitting, viz in case
of degeneracy of the dxz,yz states. It would also be absent
without the exchange splitting, since the two spin-orbit split
doublets would collapse and annihilate any dichroism. It
should be remarked that the spin-orbit splitting does not
necessarily occur in the ground state (Schoenes, 2003). For
example, the largest ever reported Faraday rotation exceed-
ing 2 × 106 deg cm−1 is observed in thin films of europium
monochalcogenides EuS, EuSe, and EuTe, which have a
4f7(8S7/2) ground state without any orbital moment. Hence,
there is no spin-orbit splitting in the initial state, but in the
final ones.

Realistic calculations of MOKE spectra have to take into
account the full band structure of the systems involved. They
require the knowledge of the single particle electron wave
functions and their energies. The dielectric permittivity tensor
components or, equivalently, the components of the optical
conductivity are usually calculated within the Kubo formal-
ism (Kubo, 1957), while its principal ingredients (energies
and wave functions) are provided within density-functional
theory (DFT) (Kohn and Sham, 1965), for example, in local
spin density approximation (LSDA). Figures 3–5 show three
examples of ab initio calculated MOKE spectra of ferromag-
netic Co, CoPt (Oppeneer and Antonov, 1996), and MnBi

(Oppeneer et al., 1996), respectively. All of them (solid lines)
compare reasonably well with experimental results (Weller
et al., 1994; Weller, 1996; Di, 1992; Harder, Menzel, Widmer
and Schoenes, 1998, respectively) on bulk samples. Inter-
estingly, the cobalt spectra turn out to depend substantially
on the crystallographic directions, that is, on the magne-
tocrystalline anisotropy (left: fcc-Co, right: hcp-Co [1120]
and [1000]). This is another manifestation of the spin-orbit
interaction. The spectra of MnBi give an example of the
difficulties in obtaining reliable experimental results on a
material, which is not easily prepared in perfect stoichiometry
and where vacuum conditions may play a role on the abso-
lute values of the MOKE components of 
K. We remark that
the magnitude of 
K increases from Co to CoPt and MnBi.
Even larger values have been found for other rare-earth (RE)
elements, in particular, for Ce compounds. Record values as
high as θK = 90◦ were found, for example, in CeSb (Pittini,
Schoenes, Vogt and Wachter, 1996). This is a consequence
of the strong localization of the 4f electrons, where the 100%
effects shown in Figure 2 are approximately realized. As a
tribute to the high correlation of the 4f electrons, however,
precise calculations of the MO spectra require the introduc-
tion of an additional Hubbard-like Coulomb interaction U

(Yaresko et al., 1996; Oppeneer, 2001).

2.2 X-ray magneto-optics

XMCD is closely related to conventional MOKE or MCD,
but is shifted down to the subnanometer wavelength regime,
that is, 2 orders of magnitude smaller than visible light
(Schütz et al., 1987). The dichroic effect occurs in the
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Figure 3. Polar Kerr rotation θK and ellipticity εK of (001) and (110) fcc-Co (left) and hcp-Co (0001) and (1120) (right) obtained from
theory (solid lines; only interband contributions: dotted lines) and experiments (symbols: after Weller et al., 1994). (Reproduced from P.M.
Oppeneer et al., 1996, with permission from Springer-Verlag GmbH.  1996.)
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Figure 4. Polar Kerr spectra of CoPt from theory (solid lines:
after Oppeneer and Antonov, 1996) and experiments (symbols:
after Weller, 1996). (Reproduced from Oppeneer et al., 2001, with
permission from Elsevier.  2001.)

vicinity of element-specific inner-core absorption edges and
denotes the dependence of the absorption of circularly polar-
ized X rays on the ferromagnetic magnetization compo-
nent onto the photon wave vector (Ebert and Schütz, 1996;
Starke, 2000). At L edges in 3d transition metals (TMs)
relative changes in the absorption constant as large as up
to 50% occur. Very similar to MOKE, as observed in the
NIR/visible/UV regime (Figure 2), the physical origin of
XMCD in the X-ray absorption is based on angular momen-
tum conservation and spin-orbit interaction basically in the
initial state. If the energy of the absorbed photon equals the
binding energy of a particular inner-core level (e.g., p3/2),
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Figure 5. Polar Kerr spectra of MnBi from theory (lines; for
various lifetime broadenings and for Mn2Bi) and experiments
(symbols: after Di, 1992, broken lines: after Harder, Menzel,
Widmer and Schoenes, 1998). (Reproduced from Oppeneer et al.,
2001, with permission from Elsevier.  2001.)

the photoelectron is excited into an unoccupied state of d
symmetry above the Fermi level, obeying dipolar selection
rules. In the case of a circularly polarized absorbed photon,
the emitted photoelectron acquires both an expectation value
of the spin and the orbital momentum projected onto the
direction of propagation of the incoming photon obeying the
constraint �ml = ±1. The spin and orbital polarizations as
calculated via Clebsch–Gordan coefficients are 〈σz〉 = 50
and 25% at the L2 and L3 edges, whereas 〈lz〉 = 75% at
both L edges. According to the Pauli principle, the photo-
electron can be considered as a local probe for the spin and
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orbital polarization of the absorbing atom. Just like in a spin
ferromagnet, the final density of states exhibits a spin polar-
ization owing to the exchange interaction, and the transition
probability of the absorption process depends on the polar-
ization of the final d states, which is directly related to the
magnetization of the absorbing atom. In the ideal case of a
completely spin-polarized final state, that is, one spin band
is completely shifted below the Fermi level and the mag-
netic moments are fully aligned, the difference between the
absorption coefficients for the direction of the magnetization
parallel µ+ and antiparallel µ− to the photon propagation
direction (µ+ − µ−) normalized with respect to the unpo-
larized absorption (µ+ + µ−) corresponds directly to 〈σ z〉
provided that the corresponding orbital polarization can be
neglected. Taking into account also the orbital contribution,
a further increase or decrease of the dichroic signal at the L3

and L2 edges has to be expected.
As an example, Figure 6 shows the XMCD of Fe at the

levels 2p3/2 and 2p1/2 (c), obtained as a difference spec-
trum of the two circularly polarized X-ray absorption spectra
(XAS) (b), and after subtracting the nonmagnetic substrate
background (a) (Chen et al., 1995). Further, the summed
and the integrated XAS are shown (d). In principle, the
comparison of the magnetic contrast taken at the L3 and
L2 edges yields information on the lateral spin and orbital
contributions. By applying sum rules (Thole et al., 1992;
Carra et al., 1993) one can extract separately the spin and
the orbital moments, whose ratio is morb/mspin ≈ 0.04 in the
case of bcc-Fe (Figure 6). This unique feature of XMCD
spectroscopy has revived appreciable interest in the orbital
moments, whose role, for example, in the origin of the
magnetocrystalline anisotropy energy of ferromagnets is of
paramount importance (Weller et al., 1995; Weller, 1996).
The other great advantage of XMCD is its element speci-
ficity. For example, experiments on multilayers are selective
with respect to the elements involved and can reveal individ-
ual magnetic moment distributions of individual layers or at
interfaces (cf. Section 3.6).

The realization of XMLD being quadratic in M and
occurring on transversely magnetized samples in absorp-
tion geometry was demonstrated by Kuiper et al. (1993)
on Fe2O3, while its dispersive counterpart, the X-ray MO
Voigt effect, was first observed by Mertins et al. (2001)
on an amorphous Co film. The ellipticity, which corre-
sponds to the MLB in the visible region, was analyzed
using the dichroic reflection at an analyzer plate. Its value
agrees excellently with ab initio caculations, which crucially
have to take into account the exchange splitting of the 2p
core states. While the observed Voigt ellipticity is quite
small (θV = 7.5 deg µm−1), much larger effects (�R/R ≈
20%) were observed in reflection on antiferromagnetic NiMn
and NiO (Oppeneer et al., 2003). Thus, reflection XMLD
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XAS (d) spectra of Fe/parylene thin films taken at two opposite
saturation magnetizations. Integrated spectra for sum-rule analysis
are shown as dotted lines in (c) and (d). (Reproduced from Chen
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 1995.)

promises to become a versatile tool to image antiferromag-
netic domains, which may sustain external magnetic fields in
contrast to conventional XMLD–PEEM (photoelectron emis-
sion microscope) (Section 3.6).

2.3 Nonlinear magneto-optics

Usually MOKE signals are observed at the same fre-
quency as that of the incident light, hence, the name lin-
ear MO response. Under favorable circumstances there is,
however, also a measurable fraction of frequency-doubled
light due to SHG. This effect is referred to as nonlin-
ear, because of its origin due to the nonlinear optical
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susceptibility, which generates light at second harmonic
(SH) frequency, but not on the dependence on the mag-
netization, which remains linear to first order as in the
ordinary MOKE. SHG appears when inversion symmetry
is broken (Shen, 1984) as is usually the case for every
solid at its surface. A simultaneous change of the state
of polarization of SH reflected light was predicted (Pan,
Wei and Shen, 1989; Hübner and Bennemann, 1989) and
first been observed on an Fe surface (Reif, Zink, Schnei-
der and Kirschner, 1991). The determination of a mag-
netic structure from SHG is based on the relation Pi(2ω) =
ε0[χijk(i) + χijk(c)]Ej(ω)Ek(ω) between the induced non-
linear polarization Pi(2ω) at the doubled frequency 2ω and
the electric fields Ej(ω) and Ek(ω) of the incident light
at frequency ω. χijk(i) and χijk(c) are the nonlinear sus-
ceptibility tensor components, which couple to the crys-
tallographic and magnetic structure, respectively. From the
nonvanishing components χijk(c) it is possible to determine
the magnetic structure and interactions of a system (Birss,
1966). The theory of nonlinear MO effects was consid-
ered for metal surfaces (Pustagowa, Hübner and Bennemann,
1993; Hübner and Bennemann, 1995; Bennemann, 1998),
insulating antiferromagnets (Fiebig, Fröhlich, Krichevstov
and Pisarev, 1994; Qian, Dong and Xing, 2001; Iizuka-
Sakano, Hanamura and Tanabe, 2001), and magnetic granular
alloys (Granovsky, Kuzmichov and Clerc, 2003). The best-
known phenomenon is NOMOKE (occasionally also termed
SHMOKE = second harmonic magneto-optical Kerr effect;
Crawford, Silva, Teplin and Rogers, 1999). This counter-
part to MOKE has meanwhile become a popular instru-
ment in order to characterize magnetic surfaces and inter-
faces, in particular, of thin films and multilayers (Rasing,
1998). Nonlinear MO spectroscopy benefits from its ‘addi-
tional degrees of freedom’ (Bennemann, 1998), since it
can clearly distinguish between transitions of magnetic and
nonmagnetic origin. In centrosymmetric materials, SHG is
restricted to the symmetry-breaking surfaces and interfaces.
It is therefore a highly selective sensor for surface or interface
magnetism.

An illustrative comparison is drawn in Figure 7 between
MOKE and NOMOKE properties obtained on a thin-film
sample of Co with variant thickness t (in monolayer units,
ML) (Vollmer, Jin, Regensburger and Kirschner, 1999).
While the MOKE signal increases linearly with t as predicted
(see Section 3 Visnovsky, 1995), the intensity I (2ω) maxi-
mizes already for 2 ML with a slightly decreasing asymme-
try A between the components I (2ω, +B) and I (2ω, –B).
Unfortunately, the efficiency of the SHG is very small,
I (2ω)/I (ω) ≈ 10−12. Hence, in contrast with linear MOKE,
the use of nonlinear MOKE presently rather lies in its fun-
damental ability to explore surfaces and interfaces, than in
practical applications.
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(c) measured on Co/Cu(001) at variant Co thickness under an angle
of incidence α = 38◦ with λ = 633 nm. (Reproduced from Vollmer
et al., 1999, with permission from Elsevier.  1999.)

3 EXPERIMENTAL TECHNIQUES

3.1 Magneto-optic ellipsometry

In addition to conventional ellipsometry aiming at determin-
ing Kerr rotation angle θK and ellipticity εK, domain imaging
by polarization optical techniques has become very important
in recent years (Hubert and Schäfer, 1998). High perfor-
mance experimental techniques are now available for both
MO ellipsometry and domain imaging. Kerr microscopes
have been developed to achieve satisfying contrast also in
the case of weak MO effects (θK ≈ 0.1◦

) by using sensi-
tive charge coupled device cameras and sophisticated image
processing (Meyer, Pommier and Ferré, 1989; Hubert and
Schäfer, 1998). The measurement of rotations and elliptici-
ties with a resolution of a few microradians is achieved, for
example, with the help of a photoelastic modulator (PEM)
(Jasperson and Schnatterly, 1969) driven at a fairly high fre-
quency of f ≈ 0 kHz. The signals at both the fundamental
and the first harmonic frequency of the emerging light inten-
sity are detected by using lock-in detection. Linear detection
of the signal is achieved when placing the reflecting sample
between polarizers, which are oriented 45◦ with respect to
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each other. As a rule, ellipticity is observed at frequency f ,
whereas rotation emerges at 2f . Instead of a PEM a Fara-
day rotation modulator may also be used. It is much easier
to assemble than the photoelastic one, however, at the price
of a reduced signal-to-noise ratio owing to the lower mod-
ulation frequency, f ≈ 1 kHz. Moreover, sensitivity to Kerr
ellipticity is achieved here only when placing an additional
birefringent λ/4 retarder plate into the reflected beam.

Analyses of MOKE measurement techniques utilizing
different modulators, retarders, polarizing beam splitters, and
so on, have been presented by various authors (Sato, 1981;
Nederpel and Martens, 1985; Bader and Moog, 1987; Sato
et al., 1993; Kim, Aderholz and Kleemann, 1993; Yang and
Scheinfein, 1993; Zeidler et al., 1996; Berger and Pufall,
1997; Pufall, Platt and Berger, 1999; Vavassori, 2000; Teplin
and Rogers, 2001; Allwood, Xiong, Cooke and Cowburn,
2003). They are usually based on the Jones matrix calculus
(Azzam and Bashara, 1979) using homogeneous dielectric
permittivity tensors as in our classical example of Section 2.
In the following, we briefly present two methods, one being
extremely simple and easy to mount, while the other one is
more sophisticated, highly precise, and prepared for absolute
calibration.

For many purposes, very low-cost MOKE apparatus with-
out any polarization modulation and lock-in technique is
sufficient. After deleting the PEM and one of the orthog-
onal magnetic fields, M(T) or M(L), in the setup shown in
Figure 8, one remains with a laser diode or a HeNe laser
as a light source, while a Si photodiode or a phototransistor
serves as a detector (D). When orienting the analyzer (P2)
for the reflected light nearly crossed to the incident p polar-
ization (angular mismatch 0 < α 	 π/2) and measuring the
transmitted light intensity for both magnetization directions,
I+ and I−, one can easily determine the Kerr angle from
the asymmetry AK = (I+ − I−)/(I+ + I− − 2Iu) by setting
θK ≈ αAK/2 provided that θK 	 α. Here, Iu is the leakage

y

x

D

PEM

S

M(T)

Laser

M(L)

P2

P1

Figure 8. L- and/or T-MOKE experiment with light source (laser),
polarizer (P1), sample (S), magnet (M), photoelastic modulator
(PEM), analyzer (P2), and photodetector (D). Two pairs of magnetic
pole shoes are shown for L- and T-Moke, M(L) and M(T),
respectively. (Reproduced from P. Vavassori et al., 2000, with
permission from the American Institute of Physics.  2000.)

intensity measured at α = 0. A p-oriented quarter wave plate
placed in the reflected beam makes Kerr ellipticity accessible
via a related formula, εK ≈ αAK/2.

A spectroscopical setup for measuring θK and εK in
P-MOKE configuration quantitatively and employing pho-
toelastic polarization modulation is shown in Figure 9 (Kim,
Aderholz and Kleemann, 1993). Two arrangements for light
source (L) and detector (D) are in use. For routine inves-
tigations, a 5-mW HeNe laser or a laser diode is placed
directly in front of the polarizer P1 and behind the analyzer
P2, respectively. In the second case, for measurements of
the spectral dependences as a function of the light wave-
length 350 ≤ λ ≤ 800 nm, the light source L is a 50-W
tungsten filament lamp, and D is a photomultiplier. Fiber
optical attachments F1 and F2 are interfaced in order to pro-
duce a parallel white beam with diameter d ≈ 3 mm at the
entrance (F1) and to collect it at the exit (F2). Thereafter,
the light is dispersed by a grating monochromator G with
a spectral bandpass �λ ≈ 2 nm before reaching the photo-
multiplier D. The optical elements consist of two Glan air
polarizing prisms (P1, P2), an elasto-optic modulator (M), a
calcite wedge Babinet-Soleil-type phase compensator (C) and
quartz lenses L1 and L2 for focusing the light beam onto the
sample S and F2 or D, respectively. S is placed with its sur-
face plane perpendicular to the field B of an electromagnet
(|B| ≤ 2T). It is hit by the light beam at near normal inci-
dence, αi < 3◦. The light intensity emerging at D is Fourier
analyzed by two lock-in amplifiers, A1 and A2, tuned to the
first and second harmonics of the modulator frequency ω, I1

and I2, while a third amplifier measures the dc component,
I0. When properly setting the orientations of the light vector
components and of the optical elements, I1 and I2 measure
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M C
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Figure 9. P-MOKE spectrometer with light source (L), optical
fibers (F1 and F2), polarizers (P1 and P2), lenses (L1 and L2),
photoelastic modulator (M; frequency ω), Babinet-Soleil compen-
sator (C), sample (S), monochromator (G), photomultiplier (D), and
amplifiers tuned to dc (A0), ω (A1), and 2ω (A2). (Reproduced from
W.S. Kim et al., 1993, with permission from Institute of Physics
Publishing Ltd.  1993.)
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directly the Kerr ellipticity and the rotation, respectively,
while I0 serves for normalizing the signals and filtering noise.
Absolute calibration of the signals is achieved by normaliz-
ing I1 and I2 to amplitudes obtained at certain calibration
settings of the compensator (C) and of the analyzer (P2),
respectively (Kim, Aderholz and Kleemann, 1993). It should
be noticed that the Kerr ellipticity is often the best option
for measuring the magnetization of a reflecting material. On
one hand, it might provide a spectral advantage with respect
to rotation, as is the case, for example, for the widely used
MO material Co at photon energies around 5 eV (Figure 3)
(Weller et al., 1994). On the other hand, very often the large
Faraday rotation in the windows of the vacuum vessel or
cryogenic setup risks to mask tiny Kerr rotation signals.

Another problem to be addressed are interference effects
owing to surface layers at bulk samples or in multilayer
samples with individual layer thicknesses in the order of the
optical wavelength used. The theory as sketched in Section
2.1 applies to the reflection at only one optical interface.
In order to describe the MO response of layered systems,
one has to account for the reflections at the inner surfaces.
To this end a transfer matrix formalism has been developed,
which considers the amplitude and phase conditions at the
interfaces. The theory was originally developed (Yeh, 1980)
for nonmagnetic birefringent multilayers. In order to include
the description of magnetic anisotropic media, the dielectric
tensor becomes, in general, asymmetric (due to broken time
inversion symmetry) and complex (i.e., containing refraction
and absorption indices). At the interfaces, continuity of
amplitudes and phases has to be properly accounted for.
Transfer matrices have been developed for various magnetic
symmetries (polar, longitudinal, and transversal) and film
sequences (Sprokel, 1984; Visnovsky, 1986a; Zak, Moog,
Liu and Bader, 1990), and applied to pertinent thin-film
and multilayer configurations with remarkably good success
(Visnovsky, 1986b; Visnovsky et al., 1995).

It turns out that the multiple reflections not only inside
the active MO layers but also at adjacent buffer or cap
layers have to be taken into account. This may become cru-
cial, in particular, in the vicinity of the plasma frequency
of adjacent nonmagnetic metallic layers (Visnovsky et al.,
1995). Figure 10 shows saturated P-MOKE spectra of tri-
layers Au(5 nm)/Co(tCo)/Au(25 nm)/glass for different thick-
nesses of the Co layer, which agree well in experiment (a,c)
and theory (b,d). It has to be stressed that these caculations
rely on bulk optical constants of all components, Au, Co,
and even float glass, which absorbs strongly at photon ener-
gies E > 3.8 eV. Comparison with P-MOKE data obtained
on bulk Co (Figure 3) clearly shows that the multilayer struc-
ture and its nonmagnetic components strongly suppress the
Kerr angle, |θK| at high photon energies, ≈3.8 eV. This is,
again, primarily due to the glass substrate, while the Au

layers exert their main influence at low energies, ≈1.5 eV.
Remarkably, in the ultrathin limit, t < 20 nm, the MOKE
parameters depend linearly on the thickness, t , as shown
in Figure 7 for the longitudinal Kerr angle of s-polarized
light of wavelength λ = 633 nm incident under 38◦ (longi-
tudinal) on a thin film of Co (Vollmer, Jin, Regensburger
and Kirschner, 1999). This result is not intuitively expected,
since reflection properties should by definition not depend on
the thickness of the mirror. However, this is not true at thick-
ness scales t 	 λ, because of the finite penetration length of
electromagnetic waves even into strongly absorbing metals.

3.2 Vector MOKE

It is often desirable to measure not only the component
of M along the applied field but also the orthogonal
magnetization component(s) in order to reconstruct the
complete magnetization vector. To this end, various ‘vector
MOKE’ (V-MOKE for short) strategies have been developed
(Florczak and Dahlberg, 1991; Yang and Scheinfein, 1993;
Daboo et al., 1993; Berger and Pufall, 1999; Vavassori, 2000;
Schmitte et al., 2002). In the setup chosen by Vavassori
(2000) (Figure 8), complete vector magnetometry is possible
without any moving element in a conventional MOKE setup.
It involves a HeNe laser, whose beam passes a rotatable
glan-Thomson polarizer P1, hits the sample S under an angle
of incidence of 25◦, after reflection passes a PEM with
frequency ω (Jasperson and Schnatterly, 1969), a second
polarizer P2 and is detected by a photodiode D. A magnetic
field can be applied both parallel and perpendicular to the
plane of incidence by means of a double-axis electromagnet
M. By choosing both polarizations, s and p, detecting the
modulated signal under both ω and 2ω, and rotating all
optical elements (except the sample) in a second set of
measurements by ±45◦, one can find all the data, which
suffice to calculate all three vectorial components of the
normalized magnetization, mx , my , and mz, as shown for the
magnetic hysteresis curve of a 180-nm-thick film of CoNiO
in Figure 11. This sample was prepared with an oblique
out-of-plane anisotropy axis. This explains the occurrence
not only of a finite transverse in-plane component my but
also of a perpendicular component mz while reverting the
magnetization with a field parallel to the x axis.

Other setups use L-MOKE exclusively with s-polarized
light, E ‖y (coordinates as in Figure 8), while the external
field H lies in the (xz) plane of incidence (Schmitte et al.,
2002). Let the magnetization M be a vector lying in the
(xy) plane. Then the MOKE signal is proportional only to
its x component, Mx . The y component My would yield a
T-MOKE signal in p polarization, but remains undetected in s
polarization. It can be registered, however, by its s-polarized
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Figure 10. Saturated P-MOKE spectra of [Au (5 nm)/Co (tco)/Au (25 nm)]n/glass (1 mm) samples for different values of tco from
experiments (a,c) and matrix calculations (b,d). (Reproduced from Visnowsky et al., 1995, with permission from the American Physical
Society.  1995.)

L-MOKE signal upon rotating the plane of incidence by 90◦

into the (yz) orientation, while keeping the sample and the
field fixed. In practice, the same target is reached by keeping
the plane of incidence fixed, but rotating the sample and the
field together by 90◦.

The rotation of the optical and magnetic components
can be avoided by mounting two orthogonal s-polarized
L-MOKE setups, thus realizing simultaneous vector mag-
netometry. Alternatively one may use a combination of L-
and T-MOKE. Since the transverse Kerr effect implies an
intensity change of the reflected p-polarized light, while the
longitudinal Kerr effect provokes a rotation of its plane of
polarization, one can unambiguously extract both quanti-
ties in a simultaneous experiment. The fact that there are
no moving parts of the setup is clearly the advantage of
this technique (Flocrzak and Dahlberg, 1991), but enhanced

calibration efforts have to be taken, since both measured
signals are not commensurate.

3.3 Diffracted MOKE

MOKE experiments are very advantageous in performing
locally resolved magnetometry on a submicron level by
simply focusing the light onto the desired area. Hence,
Kerr magnetometry has become an indispensable tool for
investigating small magnetic structures. If these structures
have some periodicity, for example, either as a mechanical
or a magnetic (i.e., domain) stripe pattern, another piece
of information can be drawn from the reflected light.
The material acts like a diffraction pattern, where the
diffraction orders may contain magnetic information via the
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rotation or ellipticity of the emerging light, hence, the name
D-MOKE (Grimsditch and Vavassori, 2004) or, occasionally,
Bragg-MOKE (Schmitte, Schemberg, Westerholt and Zabel,
2000). Figure 12 shows schematically the D-MOKE setup of
Grimsditch and Vavassori (2004), where the incident beam
is chosen to hit the grating under a typical L-MOKE angle
α0 and various positive and negative diffraction orders n

are expected to appear at angles αf = α0 ± αn. While the
mechanical shape of the grating and the periodicity of its
reflectivity determine the distribution of diffracted spots via
Fourier transformation of the intensity distribution function,
the underlying magnetization pattern contributes a magnetic
form factor. The MOKE signal reflects the Fourier transform
of the magnetization pattern according to

f (m)
n =

∫
m(r) exp(2πnir/d)dS (23)

where m(r), d, and r are the normalized magnetization
profile, its period, and the position inside the unit cell
area, respectively (Geoffroy et al., 1993; Vial and van
Labeke, 1998; Vavassori et al., 1999; Schmitte, Schemberg,
Westerholt and Zabel, 2000; Schmitte, Westphalen, Theis-
Bröhl and Zabel, 2003; Grimsditch and Vavassori, 2004).
The electric field in the nth-order diffracted beam from a
magnetic patterned surface may be written as

En = E0

(
rpp(ss)fn + r

(m)
pp(ss)f

(m)
n

)
(24)
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Figure 12. Block diagram of a D-MOKE setup. (Reproduced from
M. Grimsditch et al., 2004, with permission from Institute of
Physics Publishing Ltd.  2004.)

where E0 is the incident electric field, fn = ∫
exp(2πnir/d)

dS the structural form factor of the grating, and rpp(ss) and
r
(m)
pp(ss) the nonmagnetic and magnetic p(s)-polarized reflectivi-

ties of the material, respectively. It has to be noticed that both
rpp(ss) and r

(m)
pp(ss) are, in general, differently angular dependent

according to their individual Fresnel’s coefficients. Hence,
it turns out that a good agreement between observed and
calculated D-MOKE usually requires micromagnetic calcu-
lations (Brown, 1978). As an example, Figure 13 (Grims-
ditch and Vavassori, 2004) shows hysteresis curves up to
diffraction order n = 2 obtained experimentally (upper row)
on a two-dimensional periodic arrangement of square rings
of permalloy, in comparison with theoretical magnetization
curves (lower row) calculated on the basis of object oriented
micromagnetic framework (OOMMF) (Donahue and Porter,
2000). D-MOKE is considered as a novel technique, which
can yield information on the magnetic spin structure within
micro- or even nanosized particles. As with every diffrac-
tion method, D-MOKE requires a periodic arrangement of
exactly equal elements. Micromagnetic calculations are indis-
pensable for a detailed understanding of the magnetic form
factors. Hence, any transformation of the D-MOKE signal
from Fourier space into the real space should be accompanied
by simulations. If successful, the method might compete with
or even surpass other magnetic imaging methods like PEEM
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Figure 13. D-MOKE hysteresis loops of zeroth-, first-, and second-order for square rings of permalloy, periodically arranged on a square
lattice obtained with an edge-parallel magnetic field (upper panels: experimental; lower panels: calculated). (Reproduced from M. Grimsditch
et al., 2004, with permission from Institute of Physics Publishing Ltd.  2004.)

(Section 3.6). Recently, it could be shown that periodic mag-
netic structures may also serve as diffraction gratings for soft
X rays (Remhof et al., 2005). Analogous to D-MOKE, one
finds diffracted beams in reflection, whose XMCD contrast
mirrors the magnetic form factor (equation (23)). In combi-
nation with micromagnetic simulations, this opens another
possibility to transform the element-specific magnetization
patterns from Fourier into real space, with no restrictions on
magnetic fields to be applied and no need for sophisticated
X-ray optics.

3.4 Dynamic MOKE

The dynamics of magnetization reversal is of prime impor-
tance in magnetic and MO recording and in the context
of modern magnetoelectronics (Ferré, 2001). MO diagnos-
tics has become a leading technique being involved in three
types of magnetization reversal phenomena: (i) thermomag-
netic effects induced by local laser heating of the sample, (ii)
photoinduced effects, which are not based on thermal heating
and open a new field of research called femtomagnetism, and
(iii) magnetic field–induced effects as evidenced by magne-
tization reversal or full hysteresis loops. In the latter cate-
gory, MO techniques are indispensable in order to observe
the field-driven dynamics of magnetization reversal from
the milli- to the gigahertz region. At very low frequencies,
Kerr microscopy was successfully employed, for example,

on ultrathin Pt/Co/Pt trilayers in order to observe the creep
of pinned domain walls under near-coercive magnetic fields,
and to determine the stationary wall velocity v as a function
of the field H (Lemerle et al., 1998) and the local wall rough-
ening (Repain et al., 2004). Figure 14 shows a double expo-
sure of a domain-wall contrast before and after a magnetic

Figure 14. P-MOKE image (size 90 × 72 µm2) of a domain wall
in Pt(1.2 nm)/Co(0.5 nm)/Pt(1.2 nm)/glass before (black) and after
(gray) being swept by a perpendicular field of 46 mT during 111 µs.
(Reproduced from Lemerle et al., 1998, with permission from the
American Physical Society.  1998.)
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field pulse of 460 Oe during a time of 111 µs. Excellent agree-
ment with creep theory (Feigel’man, Geshkenbein, Larkin
and Vinokur, 1989) was obtained.

At intermediate frequencies, dynamic ferromagnetic hys-
teresis loops are known to broaden as the frequency f

increases. In simple Ising-type systems with one leading
relaxation time, τ , one even expects a dynamic phase
transition at a critical frequency f0 in the sense that the
dynamic order parameter, Q = (1/2π)

∮
Mdt , changes dis-

continuously from Q = 0 at f < f0 to Q �= 0 at f > f0

(shift of the loop, e.g., to the upper two quadrants in
the M–t plane) (Chakrabarti and Acharyya, 1999). Such
processes have been studied, for example, at frequencies
up to f = 2 kHz on thin films of Fe/GaAs (Moore and
Bland, 2004). Figure 15(g) shows the dynamic broadening
of hysteresis loops recorded with L-MOKE on a super-
ferromagnetic (i.e., predominantly dipolarly coupled) dis-
continuous multilayer of CoFe nanoparticles embedded in
amorphous alumina at frequencies from 5 mHz up to 10 Hz
(Bedanta et al., 2006). The very weak coercive field increases
power law–like, Hc = Hc0 + bf α, where µ0Hc0 ≈ 0.2 mT
and α ≈ 0.5 (Figure 15h). The dynamic contribution reflects
the presence of nucleation processes and domain-wall slid-
ing motion, as confirmed by L-MOKE microscopy for
f ≈ 0.1 Hz in Figure 15(a–f) (Bedanta et al., 2006) in close
agreement with observations in continuous ferromagnetic
films (Lee et al., 2000).

Finally, at high frequencies, MO techniques are indispens-
able either as touchless transient methods, if high magnetic
field pulses are involved (Takeyama, Osada and Miura, 2004;
Singleton et al., 2004) or as unrivaled fast speed meth-
ods, if timescales at or below the nanosecond level are to
be resolved. Here, questions are posed like ‘how fast can
the magnetization of a magnetic medium or element be
changed?’ and ‘what are the fundamental and practical limits
of the speed of magnetic writing and reading?’. They are of
paramount interest with far reaching consequences for the
future of data storage and retrieval. Surely, there is large
economical and technical interest in finding answers, which
hopefully guarantee further applicability of Moore’s law with
respect to the acceleration of data transfer. However, there
is also a lot of exciting fundamental research, which greatly
profits from ultrafast laser pulse sources and MO pump-probe
techniques.

Since the invention of the first magnetic memory disk
in 1954, much effort has been put into enhancing the
speed, bit density, and reliability of magnetic memory
devices. Modern magnetic random access memory (MRAM)
devices aim at fast coherent magnetization rotation by
precession of the entire memory cell (Hiebert, Stankiewicz
and Freeman, 1997; Back et al., 1998; Choi et al., 2001;
Hiebert, Ballentine and Freeman, 2002; Kaka and Russek,
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Figure 15. (a–f) Longitudinal Kerr microscopy domain
images at room temperature of initially remanent
[Co80Fe20(1.3 nm)/Al2O3(3 nm)]10 (size 980 × 700 µm2) under a
supercoercive field, µ0H = 0.65 mT, at t = 1.5 (a), 2.5 (b), 3.5
(c), 4.5 (d), 5.5 (e), and 7 s (f). (g) Normalized L-MOKE loops
obtained on the same sample at T = 294 K and f = 0.005 (1), 0.01
(2), 0.1 (3), 1 (4), and 10 Hz (5), and (h) frequency dependence of
the coercive field, best fitted to power laws Hc = Hc0 + bf α with
µ0Hc0 = 0.2 mT and α = 0.5 ± 0.1 (solid line). (From Bedanta
et al., 2007.)

2002), since conventional reversal by domain-wall motion
is much too slow. In principle, the fundamental limit of
the switching speed via precession is given by half of the
precession period. The dynamics of the magnetization then
follows the Landau–Lifshitz–Gilbert equation of motion,

dM
dt

= − |γ | (M × Heff) − λ [M × (M × Heff)] (25)
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where the gyroscopic constant γ represents the precession
frequency. The phenomenological damping factor λ drives
the system toward an energy minimum. Heff is the sum
of the external field Hbias· Hpulse, the anisotropy Hani and
the demagnetizing field Hdem, and is decisive for the path
on which the magnetization reaches a new equilibrium.
Methods have been developed to reverse the magnetization
in undercritically damped systems by coherent rotation of
the magnetization at switching times of about 200 ps while
avoiding any ringing. Here, we show one example of how to
achieve this by applying specifically shaped magnetic field
pulses that match the intrinsic properties of the magnetic
elements. Figure 16 shows the apparatus (Gerrits et al.,
2002) containing a sequence of two pump-laser pulses,
which are separated by a distinct time delay and excite
two GaAs-photoconductive switches. The generated current
pulses are superimposed to produce one short and squarelike
magnetic field pulse. The field pulse is launched down
a coplanar waveguide structure and excites the thin-film
permalloy (Ni81Fe19) element at the end of the tapering. The
inset is a micrograph of the 8-nm-thin permalloy magnetic
element that has an elliptical shape with dimensions of
8 × 16 mm. The vector- and time-resolved element response
is measured by magnetization-induced second harmonic
generation (MSHG) (see Section 3.5) and P-MOKE. A
high-reflectance infrared mirror (HRIR) is used to split the
fundamental and SH part of the beam. A photomultiplier tube
(PMT) is used to detect the SH photons. By applying proper
pulse shaping the authors succeeded in achieving writing
frequencies of 5 GHz.

Which kind of spin dynamics has to be expected at times
far below the precession period? Again, ultrashort laser
pulses are the ultimate solution for all kinds of dynamic

10 µm
PMT

MSHG

HRIR

Balanced diodes

Polar MOKE

Probe
pulse

H bias, x

H pulse, y 8 × 16 µm
Permalloy
(NiFe) film

Pump pulse 1
Pump pulse 2

z
y

x

Figure 16. Experimental setup of a pump-probe experiment for
measuring the xy- and time-resolved magnetization of a thin-film
permalloy element with dimensions 8 × 16 µm2 (micrograph upper
left corner) using 150 fs Ti:Sapphire laser pulses for switching
the field and probing the magnetization by MOKE and MSHG.
(Reproduced from Th. Gerrits et al., 2002, with permission from
Nature Publishing Group.  2002.)

investigations in the subnanosecond regime. Mode-locked
pulse lasers, which deliver light pulses with duration ≈10 fs,
are predestinated to probe spin dynamics on this timescale.
Surprisingly, at the very beginning of a typical magne-
tization reversal (or spin-flip?) experiment a tremendous
increase of the spin temperature is observed. This was
apparent with time-resolved L-MOKE on a polycrystalline
Ni film (Beaurepaire, Merle, Daunois and Bigot, 1996), in
which a 60-fs dye laser pulse heats the spin temperature
up to nearly 600 K within 2 ps, hence, much faster than
predicted for conventionally precessing spins. The dynam-
ics of the spin excitation (demagnetization) and recovery
was measured with an all-optical pump-probe experiment.
In parallel, the increase of the electron temperature was
measured by the dynamics of the optical transmission. It
rises differently than the spin temperature in the first 2 ps,
thus corroborating early ‘two-temperature’ models (Anisi-
mov, Kaspeliovitch and Perel’man, 1974a,b). These findings
were confirmed by spectrotemporal magneto-optics using a
Ti:Sapphire pulse laser (Bigot, Beaurepaire, Guidoni and
Merle, 2002; Bigot, Guidoni, Beaurepaire and Saeta, 2004).
Obviously, femtomagnetism, that is, magnetism on a fem-
tosecond timescale, seems to behave quite differently than
conventional demagnetization processes (spin precession,
magnetic domain motion and rotation). These become rel-
evant only on the nanosecond timescale of spin-lattice, mag-
netic dipole, and spin–spin interactions (Zhang, Hübner,
Beaurepaire and Bigot, 2002). In other experiments (Koop-
mans, van Kampen, Kohlhepp and de Jonge, 2000), a dis-
proportionality of θK and εK was observed, although both
quantities should be proportional to M. Hence, the question
arises, if really the magnetization vector M is measured in
ultrafast pump-probe demagnetization experiments? The new
data seem to reveal the blocking of spin-excitation channels
rather than a true change of M. Hence, alternatively, dichroic
bleaching and nonequilibrium MOKE response have been
proposed for an adequate description (Oppeneer and Lieb-
sch, 2004). Further theoretical and experimental research is
clearly needed in this novel field of magnetism.

3.5 Nonlinear MOKE

NOMOKE is a typical surface effect and in metals it is
dominating, even if the material underinspection has bro-
ken inversion symmetry (Pan, Wei and Shen, 1989). Hence,
it appears tempting to measure both MOKE and NOMOKE
with the same apparatus and thus provide both magnetic vol-
ume and surface information simultaneously as shown in
Figure 7 (Vollmer et al., 1995). One apparatus toward this
end was shown in Figure 16. A similar setup of Teplin and
Rogers (2001) contains the V-MOKE option, in addition.
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It allows to measure both L- and T-MOKE for achieving
the magnetization vector components both in the bulk (via
fundamental wave ellipticity) and at the surface or interface
(via second harmonic wave ellipticity). Images of the spa-
tial magnetization distribution can be measured by moving
the sample across the laser focus using an xy-piezo scan-
ner. The light pulses of the Ti:Sapphire laser (τ = 50 fs)
are further utilized to investigate bulk and surface magne-
todynamics by simultaneous pump-probe strategies. As an
example, Figure 17 shows the magnetization components of
a permalloy film, which are precessing synchronously in a
static field after application of a 100-ps field pulse (Teplin
and Rogers, 2001).

3.6 Magneto-optic X-ray microscopy

The magnetic contrast occurring in XMCD can be applied
to imaging techniques in the absorption mode. XMCD
microscopy has been developed utilizing either (i) the
primary absorption process or (ii) the subsequent emission
of secondary electrons. In the latter mode, XMCD has been
coupled to a PEEM, which gains a spatial resolution on
samples at remanence from a few micrometers (Stöhr et al.,
1993) to 300 nm (Schneider et al., 1997). Basic features of
these experiments are the element specificity and the surface
sensitivity, but they are restricted to studies in virtually
zero magnetic field. As an example, Figure 18 shows two
X-PEEM micrographs obtained on a bilayer of ferromagnetic
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Figure 17. Normalized dynamic MOKE and NOMOKE
(= SHMOKE) response of a Fe80Ni20 thin-film sample to a
magnetic field pulse with 100 ps rise time in the transverse
direction. Static transverse and longitudinal fields are applied so
that the magnetic response of each magnetization component is
linear and not hysteretic. (Reproduced from C.W. Teplin et al.,
2001, with permission from the American Institute of Physics.
 2001.)

cobalt (XMCD contrast at the Co L3 edge) deposited
on antiferromagnetic LaFeO3 (XMLD contrast at the Fe
L3 edge) (Nolting et al., 2000). The images reveal clear
correlations between the domains in both layers, which are
exchange coupled and exhibit local exchange bias (Nogués
and Schuller, 1999) domain by domain. The very origin
of the global exchange bias, that is, the solid shift of the
ferromagnetic hysteresis loop along the field axis as induced
by magnetic field cooling was unraveled on the bilayer
system Ir20Mn80/Co by using XMCD–PEEM in the total
electron yield mode, which tolerates nonzero magnetic fields
(Ohldag et al., 2003). Here, a fraction of about 4% of pinned
excess magnetic moments on the antiferromagnetic Ir20Mn80

interface were clearly observed by Mn L3-edge XMCD and
attributed to the very heart of the observed exchange bias.

An alternative approach to image magnetic domains with
improved parameters, viz on the nanometer length scale
and permitting the application external magnetic fields uses
microzone plates for lensless imaging of X rays in trans-
mission. This was first realized at the synchrotron source
BESSY I using the XMCD effect used in the complementary
transmission mode (Fischer et al., 1996). Figure 19 shows
some of the recorded magnetic X-ray micrographs of a mul-
tilayer [Gd(0.4 nm)/Fe(0.4 nm)]75 (Fischer et al., 1998). The
domain structures observed indicate magnetization vector
components parallel and antiparallel to the light wave vector,
respectively, at an approximate resolution of 30 nm. Differ-
ent stages of the reverting magnetization from nucleation
(N) to saturation (S) while passing relatively hard wormlike
structures (W) are indicated. In the nucleation regime, a time-
dependent magnetic aftereffect (= creep (C); cf. Figure 14
(Lemerle et al., 1998)) could be studied on a timescale of
seconds.

4 MAGNETO-OPTICAL MATERIALS

Since more than 20 years, the two most prominent technolog-
ical applications for MO effects have been optical isolators
for fiber optical data transmission and MO memories. Both
fields have intensely triggered the research of MO mate-
rials, whose state of the art has variously been reviewed
(Dillon, 1991; Schoenes, 1992; Mansuripur, 1995; Zvezdin
and Kotov, 1997; Gambino and Suzuki, 1999; Oppeneer,
2001; Röll, 2003). In the following sections, the established
experience will briefly be recalled, while the focus will rather
be laid onto the more recent developments.

4.1 Magneto-optical storage materials

The success of modern optical data storage devices started in
1982 with the introduction of the audio compact disc (CD).
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Figure 18. Fe L-edge XMLD (a) and Co L-edge XMCD images (b) and local spectra from the antiferromagnetic and ferromagnetic layers
for Co(1.2 nm)/LaFeO3/SrTiO3(001). The contrast in the images arises from antiferromagnetic domains in (a) and ferromagnetic domains
in (b) with in-plane orientations of the antiferromagnetic axis and ferromagnetic spins as indicated below the images. The X-ray spectra
were recorded in the indicated areas and illustrate the origin of the intensity contrast in the PEEM images. (Reproduced from F. Nolting
et al., 2000, with permission from Nature Publishing Group.  2000.)

The erasable MO disc became available in 1988. The binary
information is stored in small magnetic domains which
are formed or erased in a magnetic layer by laser pulses
in the presence of a magnetic field (thermomagnetic writ-
ing/erasing). Readout is obtained from intensity modulations
of the reflected laser light caused by P-MOKE at the writ-
ten domains (Mansuripur, 1995; Gambino and Suzuki, 1999;
Röll, 2003).

MO storage materials are expected to undergo a very large
(‘unlimited’) number of write/erase operations without any
loss in recording/reading quality. The MO media write mag-
netically with thermal assist and read optically. Presently
there are two standard formats, 5.5 and 3.5 in., which are
protected by hard envelopes. The larger format MO disks
have been capable of holding about as much as the stan-
dard CD-ROM, but under the pressure from inexpensive and
relatively fast CD-R and CD-RW, more recently also DVD-
RW disks, MO drives seemed to be losing ground. However,
novel principles of MO recording technology like direct over-
write (Saito, 1999) and magnetically induced superresolution

(MSR) (Kaneko, 1999, 2000) are now promising again to find
their way back into the group of most advanced magnetic
storage devices of the future.

Above their Curie temperature, TC, any magnetic material
loses its spontaneous magnetization and thus all magnetic
information due to a complete disordering of their magnetic
domains. Even more importantly, the material’s coercivity,
Hc, decreases as the temperature approaches the Curie point,
and becomes zero when this temperature is exceeded. Mod-
ern MO recording systems use materials with TC ≈ 200 ◦C,
low enough to enable the disk not to be damaged by many
heating and cooling cycles, but high enough not to risk a loss
of data under ambient conditions.

The fact that Hc drops at higher temperatures allows
thermally assisted magnetic recording with relatively weak
magnetic fields, which simplifies the drive’s design. Even a
relatively weak laser, P ≈ 1 mW, can generate a high local
temperature when focused onto a small spot of the order
of 1 µm. When the material is heated, the magnetization of
the material can easily be changed by applying a magnetic
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Figure 19. A sequence of XMCD micrographs at the Fe L3 edge of a layered Gd–Fe system in an applied magnetic field covering the
complete hysteresis loop. The different stages saturation (S), nucleation (N), and wormlike domains (W) are marked. The hysteresis loop,
M/Ms versus H (solid line), was determined from MOKE measurements. (Reproduced from P. Fischer et al., 1998, with permission from
Institute of Physics Publishing Ltd.  1998.)

field from a permanent magnet. When the material is cooled
to room temperature, Hc rises back to such a high level
that the magnetic data cannot easily be affected by magnetic
fields, which may accidentally approach the MO device from
outside. The basic schematic of the recording process is
illustrated in Figure 20. The disk inserted into the drive will
face the magnet from the label side, whereas the transparent
face will face the laser. Although longitudinal recording as is
customary in most present days’ hard disks might be feasible
by using L-MOKE readout, MO recording has always
used the perpendicular direction of the magnetization with
P-MOKE readout and potentially higher density of data
storage.

Readout
signal

Detector

Electronic
control

MO medium

Objective
lens

Beam
splitter

Laser

Polarizer
Laser beam

Figure 20. Optical paths and electronic control of the MOKE
write and read head. (Reproduced from H. Röll et al., 2003, with
permission from Wiley VCH.  2003.)

For readout, the laser is operated at sufficiently low
power, which does not change the stored information, viz the
domain structure. The state of polarization of the reflected
light is changed by P-MOKE, that is, the incident, linearly
polarized light becomes elliptical with a slight tilt of the
long polarization axis, θK ≤ 0.5◦. For opposite magnetization
directions, ±θK is obtained such that the light passing
an analyzing polarizer encounters an intensity modulation
between differently magnetized bubble domains (‘bits’). The
electronic control of the lens position in Figure 20 is to
focus and to track the laser beam along the ‘land’ areas,
which carry the storage material loaded with information.
Usually quadrilayer stacks are used in the design of MO
disks. In order to increase the optical absorption of the
MO layer (thickness ≈30 nm) and thus to reduce the laser
power for recording, it is coated by thin (≈100 nm) dielectric
antireflection layers made from AlN or SiN. Another thin Al
layer (≈50 nm) is introduced to serve both as a light reflector
and as a heat sink.

The polar Kerr effect used for the readout procedure is
sensitive to the magnetization component perpendicular to
the film plane. In order to obtain a complete perpendicular
orientation, a sufficiently large uniaxial anisotropy Ku is
necessary. It must be larger than the shape anisotropy which
is proportional to M2

s ,

Ku ≥ (1/2)µ0M
2
s (26)

Further, a large product MsHc is required to ensure high
recording density. Very low medium noise, large P-MOKE
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signals and a large domain-wall stiffness minimizing wall
jaggedness are to optimize the signal-to-noise ratio. Finally,
high corrosion resistance is desirable.

Many different materials have been considered because
of their individual promising features. For example, MnBi
with its large MOKE signal, θK > 1◦, has always appeared
to be a good candidate. However, it was finally abandoned
for MO recording purposes because of the high media noise
owing to its polycrystalline structure. Only when being in a
single crystalline state the MO properties of MnBi still attract
interest (Brammeier et al., 2004). Amorphous RE–TM alloys
with extremely low media noise have finally served for
the development of MO data storage systems passing three
generations of media with increasing complexity:

1. binary RE–TM amorphous alloy films
2. ternary or quaternary RE–TM amorphous alloy films
3. exchange coupled ternary RE–TM alloy bilayers.

The first generation started with RE-rich RE–TM amor-
phous alloy films (RE = Tb, Gd and TM = Fe, Co) (Chaud-
hari, Cuomo and Gambino, 1973; Gambino and Suzuki,
1999). These materials, for example, Tb75Fe25, are widely
used as relatively thin films (20–50 nm) in current commer-
cial MO disks. Even better quality was obtained by materials
of the second generation, ternary RE–TM alloys, where Tb
and Fe can be partially substituted by other RE or TM atoms,
for instance, Gd, Dy or Co, Ni, respectively. Since the films
reveal antiferromagnetic coupling between the RE and the
TM components, the net magnetization Ms can be small
in spite of the fact, that the magnetizations of the RE and
TM subnetworks are high. As the temperature dependencies
of the two subnetwork magnetizations are different often a
compensation temperature, Tcomp, exists where the net mag-
netization is even zero (Figure 21). At Tcomp the coercivity
of the material becomes very large, since an external field
cannot turn the magnetization into any given direction. This
is important for the stability of the domains. At a high tem-
perature near TC, the coercivity is sufficiently small to form
a domain by the external bias field Hb. During cooling to
room temperature the coercivity increases rapidly and, as a
consequence, a written domain will not be destroyed by any
external stray field.

Magnetization data for different TbFeCo films are shown
in Figure 22 (Greidanus, Jacobs, Spruit and Klahn, 1989).
Within a small range of composition the compensation tem-
perature changes from zero to a value above Curie tem-
perature. For the stability of the domains a compensation
temperature near room temperature is favorable. It can be
obtained by a Tb content of approximately 25%. The com-
position influences also the Curie temperature, TC, but in a
much smaller range. A Curie temperature near 200 ◦C is con-
venient for the writing process. For a given Tb content, the
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Figure 21. Magneto-optical properties of rare-earth (RE) and
transition-metal (TM) thin films (Ms : saturation magnetization, θK:
Kerr rotation angle, Hc: coercivity). (Reproduced from H. Röll
et al., 2003, with permission from Wiley VCH.  2003.)
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Figure 22. Magnetization curves Ms versus T of films of
Tb29.9Fe62.6Co7.5 (1), Tb27.2Fe63.5Co7.3 (2), Tb23.6Fe67.6Co8.8 (3),
and Tb21.2Fe71.9Co6.9 (4). (Reproduced from F.J.A.M. Greidanus
et al., 1989, with permission from IEEE.  1989.)

Curie temperature can be slightly shifted to higher values
by substitution of Fe by Co (Hansen, 1991). For TbFeCo
films being near to the compensation point at room tempera-
ture (comparable to Figure 22, curve 2), excellent recording
parameters have been achieved: θK = 0.43◦ at λ = 830 nm
with a carrier-to-noise ratio of greater than 60 dB at a band-
width of 30 kHz (Hatwar, Genova and Stinson, 1990).

The Kerr effect required for readout is related to inter- and
intraband transitions of the RE/TM alloy. For wavelengths
between 620 and 780 nm, which are still commonly used
for readout, the main contribution comes from the 3d
electrons of the TMs. In the temperature range near the
compensation temperature, the Kerr rotation θK varies only
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slightly according to the variation of the magnetization of
the TM subnetwork. An external field, however, acts on
the net magnetization, which changes from a RE-dominated
behavior below the compensation temperature to a TM
dominated behavior above the compensation temperature.
Hysteresis loops determined by MOKE, therefore change
their sign when the temperature passes the compensation
temperature Tcomp (Figure 21).

A very important contribution to noise comes from irregu-
larities of the written domains. They depend on the composi-
tion as well as on the writing conditions. In Figure 23, this is
demonstrated for some test structures observed in Tb/Fe mul-
tilayers. Domains which are spontaneously formed usually
have an irregular shape (Figure 23a). By using laser pulses
of 20 µs length and various power levels, circular domains
can be written in a film with Hc = 170 kA m−1. Depending
on the power level the diameter can be varied between 5 and
1 µm (Figure 23b). The regularity of the domains depends
also on the magnitude of the bias field during the writing
process (Figure 23c). For a pulse length of 10 µs and a power

level of 1.8 mW, the field must exceed 15 kA m−1, otherwise
a granular substructure is observed within the domains. In
Figure 23(d), a domain structure is shown which is obtained
by magnetic field modulation. A circular domain can be par-
tially overwritten when the laser spot is slightly shifted and
the bias field is reversed from one direction to the opposite.
The result is a track of crescentlike domains. It is obvi-
ous, that a high recording density along the track can be
obtained in spite of a relatively large diameter of the individ-
ual domain. This type of recording is applied in the present
generation of the MiniDisc.

A principal limitation for the recording density is set by
optical diffraction. The diameter d of the diffraction pattern
produced by the objective lens during writing and reading is
given by

D = 1.22λ/NA (27)

where λ is the wavelength of the radiation (at present between
780 and 620 nm) and NA is the numerical aperture of the
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Figure 23. Magnetic domains in Tb/Fe multilayers observed by Kerr microscopy. (a) Spontaneously formed domains in films with different
coercivities; (b) thermomagnetically written domains in the film with Hc = 170 kA m−1 at pulse length 20 µs and variant laser power; (c)
domains thermomagnetically written with laser power 1.8 mW, pulse length 10 µs, and variant bias field Hb; (d) domains written by magnetic
field modulation. (Reproduced from H. Röll et al., 2003, with permission from Wiley VCH.  2003.)
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objective lens of the optical head. The writing process is not
so critical, because the size of the written domain depends
mainly on the relation between the applied bias field Hb

and the temperature distribution of Hc produced by the laser
pulse (cf. Figure 23b). By appropriate conditions, domains
smaller than the optical limit d can be created. The main
problem originates from the reading process, since it is not
possible to distinguish very small domains in a distance
below (d/2). It is assumed, that the problem can be over-
come in near future by MSR or related techniques (Kaneko,
1999; 2000). This principle is related to optical near-field
techniques, where a narrow aperture is shifted over the sam-
ple in a very close distance and reads out the information
from the center of a diffraction-broadened domain (‘bit’).
Its realization is closely coupled to the use of MO record-
ing materials of the third generation, viz exchange coupled
RE–TM ternary alloy films.

The original procedure to write, erase, and read out
information from a MO disc is discontinuous (see the
preceding text) and excludes the direct overwrite function for
very high-speed real-time recording. Here exchange-coupled
RE–TM alloy bilayers can help very elegantly (Saito, 1999).
Figure 24 shows schematically the bilayer consisting of
a TM dominated memory layer (1; e.g., sample 3 from
Figure 22) and a RE-dominated reference layer (2; e.g.,
sample 1 from Figure 22). Layer (2) has low coercivity at
room temperature and is initialized by Hini (left-hand side).
Interfaces appear between up-magnetized parts of layer (1)
(logic ‘1’). Then a low-level laser pulse heats the layer
(1) to TL close to its Curie temperature such that the
antiparallel ground state forms by virtue of the interlayer
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Figure 24. Principle of direct overwrite by laser intensity mod-
ulation (see text). (Reproduced from H. Röll et al., 2003, with
permission from Wiley VCH.  2003.)

exchange. This sets the disc to logic ‘0’. Alternatively, a
high-level laser pulse heats the disc to TH close to the
Curie temperature of layer (2). Now an inverted weak bias
field Hb switches layer (2) down, while layer (1) being
above its Curie temperature loses its information. On cooling,
however, layer (1) is switched up via exchange coupling and
now carries the information ‘1’. Thus, by low-level and high-
level modulation of the laser power an arbitrary bit pattern
can be recorded by direct overwrite. This principle, together
with the concept of superresolution (only the center of the
laser spot is used for reading and writing), has opened the
breakthrough to very high density MO recording. Presently
(year 2005), the highest storage levels of commercial MO
discs are 9.1 GB (5.5 in.) and 2.3 GB (3.5 in.).

A more straightforward solution toward even higher stor-
age densities would be the application of a green or blue
laser instead of the present red and infrared lasers. In near
future, GaInN-based semiconductor lasers will be used at
wavelengths of 428 nm (blue), which would allow an increase
of recording density by a factor 3.8 by a linear reduction of
the dimensions. However, for the presently available RE/TM
media, the figure of merit drops rapidly with decreasing
wavelengths. The most promising candidates for green and
blue laser radiation are Co/Pt or Co/Pd multilayer structures,
for example, with a composition 25× (0.4-nm Co + 1.9-
nm Pt) (Carcia and Suzuki, 1999; Kaneko, 2000). Stud-
ies on TbFeCo/Pt multilayers (Itoh, Suzuki and Birukawa,
1999) have shown that the Pt component is essential for
the enhanced P-MOKE angles in the violet region (≈3 eV,
Figure 4) and high perpendicular anisotropy. Although lab-
oratory experiments have been successfully performed, it
is an open question, if large numbers of discs with such
a complicated structure can be produced on an industrial
scale.

4.2 Magneto-optical semiconductors

Three classes of magnetic semiconductors have to be distin-
guished:

1. magnetic insulators
2. semimagnetic semiconductors
3. ferromagnetic semiconductors.

Magnetic insulators, which can also be considered as ‘large
gap magnetic semiconductors’, comprise all magnetic ionic
crystals, for example, the cubic europium chalcogenides
(EuO, EuS, EuSe, and EuTe), the cubic garnets like yttrium-
iron-garnet, Y3Fe5O12, YIG, the (quasi)tetragonal rutile-type
compounds like MnF2, NiF2, FeF2, and CoF2, the cubic
TM oxides like MnO, NiO, FeO, and CoO, and the layered
halides like FeCl2, FeBr2, and CrCl3. All of these and
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many more insulating compounds are well known from their
magneto-optic behavior, which has been described in some
detail in previous reviews (Dillon, 1971; Ferré and Gehring,
1984; Eremenko and Kharchenko, 1992; Oppeneer, 2001).

Considerable interest has recently been devoted to anti-
ferromagnets like FeF2 and CoO because of their key role
in the appearance of exchange bias, which occurs when
being exchange coupled to an adjacent ferromagnet (Meik-
lejohn and Bean, 1956; Nogués and Schuller, 1999) (see
Section 4.3). Both constituents – the ferro- and the anti-
ferrmagnetic component – and the evolution of domains
at their interface are subject to detailed MO investigations,
both in the visible (Roshchin et al., 2005) and in the soft
X-ray regime (Ohldag et al., 2003). Two further classes of
insulating magnets came recently into the focus of inter-
est, the so-called magnetoelectrics and multiferroics (Fiebig,
2005; Eerenstein, Mathur and Scott, 2006). While multi-
ferroics experience the coexistence of two types of long-
range order (e.g., TbMnO3 has antiferromagnetic order below
TN = 44 K and ferroelectric order below TC = 27 K (Kimura
et al., 2003)), magnetoelectrics have only one type of long-
range order (mostly antiferromagnetic). In these compounds,
magnetoelectric coupling denotes the induction of a dielectric
polarization by a magnetic field and – concomitantly – the
appearance of a magnetic moment induced by an electric field
(O’Dell, 1970). This is prototypically realized in the antifer-
romagnetic insulator Cr2O3, whose antiferromagnetic 180◦

domains were imaged magneto-optically (Fiebig, Fröhlich,
Krichevstov and Pisarev, 1994, see Section 4.3).

Semimagnetic semiconductors, SMS (also: diluted magne-
tic semiconductors, DMS) are usually II–VI semiconductors,
in which TM ions of magnetic semiconductors (preferentially
chalcogenides of Cr, Mn, Fe, and Co) substitute cations of
the host semiconductor material (preferentially chalcogenides
of Zn, Hg, and Cd) at concentrations x<̃50%. The funda-
mental difference between SMS and ordinary semiconduc-
tors, for example, between Cd1−xMnxTe and Cd1−xZnxTe,
is the strong field-induced magnetism in SMS, which is
not observed in the absence of a magnetic field. The local-
ized d electrons of the dopant ions strongly couple to
the delocalized sp carriers of the host semiconductor. By
virtue of sp–d exchange large MO effects are induced
as first observed by Komarov, Ryabchenko and Terletskii
(1977a,b) on Cd1−xMnxTe at microwave frequencies. Verdet
constants as large as 10 deg Oe−1cm−1 were observed at
a temperature T = 77 K and photon energy W = 1.8 eV
for x = 0.2 (Gaj, Galazka and Nawrocki, 1978). These
effects are due to a giant band splitting of the electrons,
holes, and excitons, and may be observed both via MCD
or via MCB (Faraday rotation). Recently, Verdet constants
in the same order of magnitude were also observed in a
large gap SMS, Zn1−xCoxO, x = 0.042, at UV wavelengths,

W = 3.4 eV, and temperature T = 5 K (Ando et al., 2001).
These effects vanish at room temperature, but should be
regained in ferromagnetically ordering Zn1−xCoxO (Sato and
Katayama-Yoshida, 2000).

A large amount of experimental results and steps toward
a theory of the carrier-ion exchange in SMS have been com-
piled by Gaj (1988) and Kossut and Dobrowolski (1993). The
s–d exchange is a direct ferromagnetic exchange between s
and d one-electron orbitals centered at the same ion core
and is virtually independent of the host and magnetic ions.
On the contrary, the p–d exchange is kinetic due to p–d
hybridization and can have either sign. As a rule, it is fer-
romagnetic for less than half-filled d shells as for Cr(d4),
but antiferromagnetic for more than half-filled d shells as for
Mn(d5), Fe(d6), or Co(d7+). They have been determined in
Cd1−xCrxS by free exciton spectroscopy (Twardowski et al.,
1996). At larger concentrations, d–d exchange may give rise
to collective states, for example, spin glass or antiferromag-
netic, which have extensively been investigated using the
MO probe (Ayadi, Ferré, Mauger and Triboulet, 1986).

The giant Faraday rotation in SMS is used to study the
magnetization of the Mn2+ ions optically. At low x it is
given by

θF = θ0(�ω)BS(H, T ) + χ(�ω) (28)

where θ0(�ω) and χ(�ω) are the paramagnetic contribution
of Mn2+ and the diamagnetic contribution of the interband
transitions, respectively, while BS(H, T ) is the Brillouin
function referring to the spin quantum number S(= 5/2
for Mn2+) at the magnetic field H and the temperature
T . The first term in equation (28) saturates at high fields
(µ0H > 7 T) such that only the negative second term
remains. For x > 0.01, the d–d interaction between the
magnetic ions becomes important and gives rise to quantized
nearest-neighbor pair states with corresponding Zeeman
levels and steps in the Faraday rotation θF versus B (Matsuda
and Kuroda, 1996).

By exciting SMS with intense femtosecond laser pulses
with circular polarization and measuring the time-resolved
MOKE rotation, the Larmor precession of the Mn2+ spins
initiated by photoinjected carriers can be observed. The pump
pulse, tuned to the heavy-hole (HH) exciton resonance cre-
ates magnetic moments of electrons and HH along the growth
direction in CdTe/Cd1−xMnxTe quantum wells, which is per-
pendicular to both the magnetic field and the sample surface
(Voigt geometry). After pumping, the conduction electron
spins precess with Larmor frequency amplified by the s–d
exchange. In contrast, HH being quantized along the growth
direction cannot precess and decay. Interestingly, as shown
in Figure 25, a slower weak θK oscillation appears superim-
posed. It is due to the Mn2+ spins being subject to additional
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Figure 25. (a) Geometric configuration of the time-resolved
magneto-optical Kerr rotation measurement. (b) Time-resolved Kerr
rotation signal of CdTe/Cd1−xMnxTe quantum wells for σ+ excita-
tion at 3 T and 5 K. (Reproduced from Akimoto et al., 1998, with
permission from the American Physical Society.  1998.)

tipping owing to the HH exchange field (Akimoto et al.,
1998).

Picosecond spin dynamics of photoinduced (nonequilib-
rium) spin polarization is also of major interest in ferro-
magnetic semiconductors of the type Ga1−xMnxAs, which
have recently been shown to reach Curie temperatures up
to TC ≈ 250 K in suitable heterostructures (Nazmul et al.,
2005). This technique is believed to contribute to the devel-
opment of ultrafast magnetic devices in spintronics. The
hole-mediated ferromagnetic exchange in semiconductors
opens the possibility to change the magnetic properties of
Ga1−xMnxAs by modulating the hole concentration (Ohno,
1998). The magnetization dynamics of an epitaxially grown
Ga0.98Mn0.02As film of 350 nm thickness was measured by
using a pump-probe MOKE technique (Kimel et al., 2004).
At a fluence of 10 µJ cm−2 the photoinduced magnetization
turned out to correspond to the application of an external
field of about 1 mT. The observed relaxation time of 30 ps
(Figure 26) was attributed to intraconduction band relax-
ation and – surprisingly – was independent of the Mn2+

ordering.
Magneto-optics is also the proper instrument for testing

the efficiency of spin-injection devices. Spin transmis-
sion across ferromagnet/semiconductor interfaces is one of
the key goals for the realization of the spin transistor
(Datta and Das, 1990). In order to evaluate the actual

0.6

0.4

0.2

0

0 50

(Ga, Mn)As

hn = 1.56 eV 
T = 10 K
T = 60 K
Fit

B = 0 mT

LT-GaAs

Time delay (ps)

100 150

K
er

r 
ro

ta
tio

n 
(m

ra
d 

G
W

−1
 c

m
2 )

−0.2

Figure 26. Temporal decay of the Kerr rotation of Ga0.98Mn0.02As
after circularly polarized excitation with 100-ps laser pulses of
power 0.1 GW cm−2 at a photon energy of 1.56 eV and T = 10 and
60 K, respectively, in comparison with the behavior of a reference
film of low-temperature grown-GaAs. (Reproduced from Kimel
et al., 2004, with permission from the American Physical Society.
 2004.)

degree of spin transmission, up to 32% were reported on
Fe/AlGaAs/GaAs–Schottky diodes (Hanbicki et al., 2003),
it was proposed to measure the changes of the magneto-optic
response of the ferromagnetic component, for example, via
P-MOKE while injecting charge carriers. Experiments car-
ried out on bilayers of Co/GaAs and Ni0.8Fe0.2/GaAs (Rug-
giero et al., 2003) showed, however, that any change of the
MOKE signal coming from the spin injection was masked
by the dominating intrinsic MO activity of the bare ferro-
magnetic layer. More adequate are attempts analyzing the
spin polarization of the current through the semiconductor
component directly via the circular polarization of the light
emitted at a sensing pn contact. Recently, it was demon-
strated that the circular polarization of the emission from
an optically pumped vertically emitting multiquantum well
laser (VCSEL) is very sensitive to the spin polarization of the
driving current. For example, by generating 30% spin polar-
ization of the photoelectrons via the circular polarization of
the pump light, 100% polarization of the laser radiation was
obtained, thanks to the nonlinearity of the laser threshold
(Hövel et al., 2005). Using this sensitive MO diagnostics
tool, 0.75% spin polarization could be observed at T = 90 K
in an electrically pumped spin VCSEL when using a perpen-
dicularly magnetized Fe/Tb multilayer in remanence as an
injecting electrode (Gerhardt et al., 2005).

4.3 Antiferromagnets

Only recently, the majority of the magnetism community has
acknowledged antiferromagnets to be worth studying and to
pay attention about. The opinion changed radically, since
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antiferromagnetic materials gained appreciable technological
interest with regard to the concepts of spin electronics
(Prinz, 1998), exchange bias (Nogués and Schuller, 1999),
magnetoelectric and multiferroic systems (Fiebig, 2005;
Eerenstein, Mathur and Scott, 2006). However, although
only in recent years advanced MO spectroscopical methods
became available in order to determine antiferromagnetic
domain topograhy (see the following text), the benefits
of magneto-optics toward understanding antiferromagnetic
crystals became obvious already more than 30 years ago.
The quadratic MO effects, in particular, the MLB was found
to be an excellent tool to determine the magnetic specific
heat cm of optically transparent materials, for example,
rutile type antiferromagnets like MnF2 and FeF2 (Jahn and
Dachs, 1971). It was soon understood (Smolenskii, Pisarev
and Sinii, 1975, 1976) that the optical refractive index and
the corresponding linear birefringence are sensitive to spin-
correlation functions. One may consider (Borovik-Romanov,
Kreines and Talaev, 1974a,b) the dependence of the electrical
energy of radiation per unit volume on the spin correlations
according to

we =1

2

∑
i,j=x,y,z

[
εiiEiEi

+ 1

2

∑
l,l′γ ,δ

Ri,j,γ ,δ〈Sγ

i Sδ
j 〉EiEj

]
(29)

In this relation, εii represents the unperturbed optical permit-
tivity tensor components, Ei the electric field of the radiation,
Ri,j,γ ,δ the magneto-optic tensor components, and 〈Sγ

i Sδ
j 〉 the

spin-correlation functions, respectively. Single ion (l = l′)
and two-ion (l �= l′) contributions are included. From this
one readily obtains the magnetically perturbed permittivity
components

ε′
ii = ∂we

∂Ei∂Ei

, ε′
ij = ∂we

∂Ei∂Ej

(30)

which are linear functions of the spin-correlation functions.
This applies equally to the refractive indices and to the
linear birefringence, when expanding the Fresnel ellipsoid
given by equation (30). Thus, a comparatively simple optical
method provides access to spin correlation functions, which
are usually measured by neutron scattering. Surprisingly, it
turned out that MLB method was capable of determining
an important thermodynamic quantity, namely, the magnetic
energy, U ∝ J 〈SiSi+1〉. Here J and 〈SiSi+1〉 stand for the
nearest-neighbor spin exchange interaction and the corre-
sponding spin–spin correlation function. Empirically, MLB
is very often dominated by the same correlation function,
�nm ∝ 〈SiSi+1〉, thus giving access to the magnetic specific

heat (d�nm/dT ) ∝ (dU/dT ) ∝ cm. It should be stressed that
the same information is basically contained in the refrac-
tive indices (Markovin, Pisarev, Smolensky and Syrnikov,
1976), which are, however, usually much harder to measure
at sufficient accuracy than linear birefringence. The ease of
measuring MLB at very high accuracy made it an extremely
popular MO method (Ferré and Gehring, 1984). It is often
superior to caloric methods, where phonon contributions may
mask the tiny magnetic anomalies.

By using proper modulation methods, the MLB can be
measured with an utmost accuracy in the order δ(�n) ≈ 10−8

on a crystal of thickness 1 mm (Ferré and Gehring, 1984).
Similarly, changes of refractive indices may be determined at
an accuracy up to the order δn ≈ 10−6 when employing pho-
toelastically modulated two-beam interferometry (Schäfer
and Kleemann, 1985). In conjunction with polarization
microscopy, the modulation method is able to determine
crystal optical anisotropy with high accuracy at domains on
the micrometer scale. As an example, Figure 27 shows the
temperature dependence of the MLB in α-MnS, a crystal
isomorphic in the cubic phase to NiO. Two anomalies are
observed, where the magnitude of the MLB sharply rises in
an order parameter fashion, �nm ∝ 〈S2〉, at TC1 = 152.7 K
and at TC2 = 129.5 K (Kleemann, Schäfer and van der Heide,
1982). Obviously two successive phase transitions occur,
from the cubic into a rhombohedrally compressed (as in
NiO) at TC1, and into a rhombohedrally elongated phase
– very probably with multi-k antiferromagnetic ordering due

to biquadratic exchange – at TC2. This conjecture is corrobo-
rated by a comparison with strain data (Figure 27). Owing to
a decay of the cubic single crystal into an antiferromagnetic
multidomain sample at the phase transition, which transforms
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Figure 27. Linear birefringence �n versus T (solid points) of
α-MnS measured at λ = 560 nm on single T domains selected in
phase I (curve 1) and III (curve 2), respectively. Comparison is
made with lattice distortion data fitted to the MLB data at low
T . (Reproduced from Kleeman et al., 1982, with permission from
Elsevier.  1982.)
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into yet another domain network at the second one, the micro-
scopic MLB technique is indispensable.

Antiferromagnetic domains were first postulated by Néel
(1948) and first evidenced by MO methods in 1960 on NiO
(Slack, 1960; Roth, 1960). These latter authors were able
to map domains exhibiting MLB of different sign owing to
coupling of strain to spin-pair correlation functions, which
give rise to magnetostrictive distortion of the cubic lattice.
Figure 28 shows the so-called T (= trigonal) domain pattern
of a (111) oriented crystal plate of α-MnS under the polar-
izing light microscope at T = 74 K (Kleemann, Schäfer and
van der Heide, 1982). The pattern appears with different con-
trast depending on the choice of three different orientations
of the crossed polarizers,

[
211

]
,
[
121

]
, and

[
112

]
. These

are projections of the three trigonal 〈111〉 axes, which are
orthogonal to the magnetic easy planes similar to the situation
found in NiO (Slack, 1960; Roth, 1960), but not orthogonal
to the sample plane. The T1 domain (optically neutral for
all polarizer settings) is missing because of surface compres-
sive stress along [111] arising at the phase transition at TN =
129.5 K. According to minimum strain conditions, the crys-
tallographic orientations of the twin walls are restricted to the
110 and 100 planes. Only the walls parallel to (110), (101),
and (011) intersect the habit plane perpendicularly along[
211

]
,
[
121

]
, and

[
112

]
(sharp borders), while all other walls

are oblique with respect to the habit plane (diffuse borders).
It should be noticed that the possibilities of antiferromag-
netic domain topography were recently rediscovered using
resonant XMLD techniques with polarized synchrotron radi-
ation. Essentially under the same polarization selection rules
as applicable to MLB (Roth, 1960), the 12 intraplanar 〈112〉
oriented S (= spin) domains within the four T domains have
been imaged by XMLD/PEEM on NiO (Hillebrecht et al.,
2001).

The intimate interplay between MO permittivity and
spin correlations makes magneto-optics a versatile tool to
tackle more sophisticated problems of statistical physics.
For example, the famous random-field Ising model, one
of the standards for microscopic disorder in spin systems
(Imry and Ma, 1975), has been studied on diamagnetically
diluted uniaxial antiferromagnets like Fe1−xZnxF2, x <̃ 0.5,
using both MLB (Belanger, Jaccarino and King, 1983) and
Faraday rotation (Kleemann, King and Jaccarino, 1986).
Peculiarly, both MO techniques reveal the same critical
dependence, namely, (d�nm/dT ) ∝ (dθF/dT ) ∝ cm. This is
in accordance with field-scaling properties of the leading
singularities of all second derivatives of the free energy
with respect to T and H . All of them, (∂2F/∂H∂T ),
(∂2F/∂H 2), (∂2F/∂T 2), diverge as Hy |T − TC|−α , with
the same α ≈ 0, but different exponents y emerging from
scaling theory (Kleemann, King and Jaccarino, 1986). This
is illustrated by Figure 29, which shows the logarithmic

T4

T3

T3

T2

T4

T = 74 K

P   121

P   112 110

101

Sample

011

P   211

100 µ

(a)

(b)

(c)

Figure 28. MLB contrast of T domains in phase III of as-grown
(111) platelets of α-MnS with thickness 25 µm observed at various
settings of the polarizers (left-hand panel). Optically neutral Tj

domains (j = 2, 3, and 4) are indicated. (Reproduced from Kleeman
et al., 1982, with permission from Elsevier.  1982.)

divergences of (d�nm/dT ) (Belanger, Jaccarino and King,
1983) and (dθF/dT ) (Pollak, Kleemann and Belanger,
1988) obtained on Fe0.47Zn.53F2 in different external mag-
netic fields.

MLB – or its Kramers–Kronig complement MLD – is
applicable to domain topography only, whenever the spatial
symmetry is broken in the antiferromagnetic phase. For
example, all cubic systems become optically anisotropic as
collinear spin ordering takes place. This does not hold in
uniaxial single crystals, if the magnetic order parameter con-
serves the axial symmetry. Contrary to frequent belief, this
is also valid for the resonant XMLD technique (the XMLD
contrast observed on a thin film of LaFeO3 in Figure 18
becomes possible only because of its inherent ‘twin’ struc-
ture containing crystallites with alternate in-plane c axes!).
In the case of antiferromagnetic 180◦ domains, linear MO
methods are applicable only if a magnetic field induces a net
magnetization and time inversion symmetry becomes broken
(Eremenko and Kharchenko, 1987; Dillon, 1991). Figure 30
shows a drastic example, namely, the metamagnetic domain
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pattern of the uniaxial antiferromagnet FeCl2 in its ‘mixed
phase’, that is, when exposed to sufficiently high axial mag-
netic field (Kushauer, 1995). The domains show Faraday
rotation contrast between strongly magnetized metamagnetic
(= paramagnetically saturated) domains (white) embed-
ded in weakly magnetized antiferromagnetic background
(black) induced by fields between the critical values,
Hc1 = 841 kA/m < H < Hc2 = 1420 kA m−1. Magnetostat-
ically stabilized stripe domains are observed, which nucleate
as bubbles close to the critical fields (a,t) and form maze-type
patterns with minimal mutual distances (h–j) at intermediate
fields, H≈1100 kA m−1. Similarities with stripe and bub-
ble domain patterns in ferrimagnetic garnets and strongly
perpendicular anisotropic films are obvious (Kooy and Enz,
1960; Thiele 1970; Bobeck and della Torre, 1975; Hubert
and Schäfer, 1998).

Domain visualization of uniaxial antiferromagnets in its
zero-field ground state has long time been possible only via
neutron topograhy (Alperin, Brown, Nathans and Pickart,
1962; Schlenker and Baruchel, 1978), a tedious and time con-
suming technique (exposure times up to 24 h!), which has a
poor spatial resolution in the order of 0.1 mm. Only recently,
a purely MO technique was discovered, which is applicable
to uniaxial antiferromagnetic crystals, which are based on
nonreciprocal properties of the point group involved (Fiebig,
Fröhlich, Krichevstov and Pisarev, 1994). It is possible by

using nonlinear resonant sum frequency spectroscopy, viz by
mapping the interference patterns of time-inversion and non-
time-inversion symmetrical contributions to the nonlinear
polarization. A model system fulfilling the above symme-
try conditions is the axial magnetoelectric antiferromagnet
Cr2O3, a sample of which shows its domain structure in
Figure 31 in right (a,c) and left (b) circular SH light at a pho-
ton energy of 2.1 eV (Fiebig, 1995). The technique, although
involving a setup with an optical parametric oscillator (OPO)
for two-photon spectroscopy in a suitable spectral region,
is less expensive than the spin-polarized neutron probe and
reveals a much better spatial resolution in the order of 1 µm.
It has been applied to a number of nonreciprocal materi-
als. Presently, attention is focused on magnetoelectric and
multiferroic materials (Fiebig, 2005) like HoMnO3 (Goltsev,
Pisarev, Lottermoser and Fiebig, 2003) and YMnO3 (Fiebig
et al., 2002), where access to antiferromagnetic and ferro-
electric domain structure was enabled by SHG spectroscopy.

4.4 Magnetophotonic crystals

Starting with the pioneering work of Yablonovich (1987) and
John (1987) photonic band gap (PBG) materials or pho-
tonic crystals (PCs) have been of utmost interest among
theoreticians and experimentalists because of their promis-
ing potential in applications in micro- and optoelectronics.
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Figure 30. Faraday rotation contrast of metamagnetic domains (white) observed in a (111) platelet (thickness 170 µm) of antiferromagnetic
FeCl2 (black) at T = 10 K under various axial magnetic fields 481.4 ≤ H ≤ 1407.3 kA m−1. (From Kushauer, 1995.)
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PCs are one- (1D), two- (2D), or three-dimensional (3D)
periodically ordered structures made from materials with
different refractive indices. The periods being in the order
of the wavelengths of the impinging electromagnetic radi-
ation (microwaves, infrared, or visible light) give rise to
interference effects, which finally lead to band formation
in the electromagnetic spectrum. A PBG may finally inhibit
light propagation for certain frequencies and selected or even
arbitrary polarization.

PCs, even those without a PBG, have multiple interesting
and useful properties related to the dispersion, anisotropy,
and polarization properties of the photonic bands (Joannopou-
los, Meade and Winn, 1995). They have, for example,
been demonstrated to create efficient dispersion compensa-
tion, enhanced nonlinear frequency conversion, to operate as
highly efficient Bragg mirrors and to realize the localization
of light (Yablonovitch, 1987). The tunability of the optical
properties of PCs can open new applications of these materi-
als in integrated-optics devices. Tunability in semiconductor
structures may, among others, be achieved by use of mag-
netic constituents. This leads to the fabrication of magnetic
photonic crystals (MPCs), which have attracted much inter-
est in the past 10 years. Review articles about the theory and
the experimental realizations of MPCs were published by
Lyubchanskii et al. (2003), Zvezdin and Belotelov (2004),
and Inoue (2006).

Incorporation of magnetic components into PCs can lead
to new and interesting phenomena of magneto-optics such
as enhanced MCB and MLB (Inoue and Fujii, 1997; Steel,
Levy and Osgood, 2000; Levy, Yang and Steel, 2001;
Saado, Golosovsky, Davidov and Frenkel, 2002; Dolgova
et al., 2004). The first PC structures were one-dimensional
multilayers with dielectric mirrors (λ/4 stacks of materi-
als with high and low refractive index) and a transparent
magnetic λ/2 Fabry–Pérot cavity (Figure 32). These ‘1D
MPCs with stacking faults’ were designed as to fulfill the
optical isolator conditions, viz 45◦ Faraday rotation and
100% transparency at a given wavelength. This aim could
be reached in a very good approximation by Kato et al.
(2003) with a bilayer number k = 6, an enhancement of θF

by a factor of 150, and an absorption in the order 10−6.
Figure 33 (inset) gives an impression of the high finesse of
the spectral enhancement of both the optical transmission
and the Faraday rotation (enhancement factor 50) of a related
MPC, (SiO2/Ta2O3)5/Bi:YIG/(SiO2/Ta2O3)5 (Murzina et al.,
2004).

The theory of 1D MPCs is related to that of magnetic
multilayers (Visnovsky et al., 1995), although the layers are
coarsened toward micrometer thickness instead of the ‘con-
ventional’ nanometric periods. However, the matrix formal-
ism to be applied is very similar. A 4 × 4 transfer-matrix
formalism is applicable, which describes the circularly
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Figure 32. Schematic 1D magnetophotonic crystal containing a
Bi:YIG layer as a defect and acting as a Fabry–Pérot resonator
with enhanced Faraday rotation of Bi:YIG.

polarized eigenmodes with clock- and anticlock-wise rotation
of the electric-field vector (Belotelov and Zvezdin, 2005).
In 2D and 3D, the full eigenvalue problem has to be
resolved as in classical PC theory (Sakoda, 2004). This
means to solve the Helmholtz equation under the constraint
of a spatially periodic dielectric constant, ε(r), a problem
which reminds of the equation of motion of electrons in
the periodic potential of a crystal. Dispersion relationships,
ω(k), and a band structure emerge for (nonexisting) quasi-
longitudinal and (existing) quasitransverse modes, which are
vectorial Bloch functions. Taking into account the peri-
odic magneto-optic Voigt parameter (see equation (20)), Q(r)
changes the mode behavior in the sense that transverse
electric (TE) modes adiabatically transform into transverse
magnetic (TM) ones and vice versa. This is a consequence
of the gyrotropy of the medium. Peculiarly for the MPC
structure, it turns out that the specific Faraday rotation
grows sharply, when the frequency approaches the band gap.
This can be understood by the fact that the group veloc-
ity of the light decelerates appreciably close to the gap.
This leads to an increased light-matter interaction (simi-
larly as for the light in the Fabry–Pérot cavity of a 1D
MPC) with enhanced MO effects. This was evidenced on
a 3D colloidal MPC containing a Faraday active transpar-
ent liquid, where the Faraday rotation increases by a factor
of 5 within the stop band, whereas it is virtually unaf-
fected outside the stop band (Koerdt, Rikken and Petrov,
2003).

Self-organizing colloidal crystals with magnetic compo-
nents (Xu et al., 2002), inverted magnetically filled opals
(Gates and Xia, 2001), and structured ferrofluids(Richardi
et al., 2002) are presently the most popular candidates of
MPC growth. Apart from these artificially prepared mag-
netic superlattices, natural or artificially prepared magnetic
domain structures have been investigated. They may occur
as 1D stripe domain patterns or as 2D bubble lattices
(Bobeck and della Torre, 1975; Hubert and Schäfer, 1998).
Again, as in structural MPCs, mode conversion TE → TM is
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Figure 33. SHG spectra of the MPC with λPBG ≈ 900 nm mea-
sured in the p-in, p-out and s-in, p-out polarization combinations,
open and solid circles, respectively. Inset: Transmittance spectra
(solid circles) and Faraday rotation angle (open circles) measured
at normal incidence. (Reproduced from Murzina et al., 2004, with
permission from the American Physical Society.  2004.)

expected (Nikitov and Tailhades, 2001). Applications in MO
waveguides (Dötsch et al., 2005) are envisaged.

A new aspect of MPCs is the use of optical nonlinear-
ity because of their ability to enhance small effects signif-
icantly (Aktsipetrov et al., 2005). For example, the mod-
ification of the electromagnetic wave dispersion near to
the PBG edges allows one to effectively fulfill the phase
matching conditions for SHG, if either the fundamental or
the SH wave is tuned toward the gap (Dumeige et al.,
2001). A new domain of nonlinear optics appears as the
second- and third-order structural nonlinearities that are com-
bined with the broken time-reversal symmetry owing to
the magnetization of ferromagnetic materials. As a result
of this combination, SHG and third-harmonic generation
(THG) become very sensitive to control by external mag-
netic impacts. MSHG has, for example, been observed in
MPC microcavities formed from a half-wavelength-thick
Bi:YIG film sandwiched between two high-finesse dielec-
tric Bragg reflectors (Murzina et al., 2004; Fedyanina et al.,
2004). Apart from the well-known enhancement of the Fara-
day rotation (Figure 33, inset), this 1D MPC reveals SHG
for both s- and p-polarized fundamental radiation, which is
resonance enhanced at least by a factor of 103 as compared
to the intensity outside the PBG (Figure 33, main panel).
Magnetization-induced changes of the relative phase of the
SH wave are observed using SHG interferometry and reach
the factor of 4 in intensity and 180◦ in phase for directions
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opposite to the dc magnetic field. The longitudinal and polar
nonlinear MOKEs manifest themselves in a considerable
rotation, up to θK ≈ 50◦, of the SH wave polarization.
This enhancement is attributed to the fulfillment of the phase-
matching conditions for the MSHG effect in layered struc-
tures with periodic modulation of both optical (MO) and
nonlinear optical parameters. Recently, also a 2D magne-
tophotonic crystal, viz a hexagonal magnetic bubble lat-
tice, has been shown to reveal enhanced MSHG at the
PBG with noticeable influence of an external magnetic field
(Dadoenkova et al., 2005).

5 CONCLUSION

Magneto-optics in solid-state research and applications has
reached a new level as an indispensable tool for magnetic
research and applications. Although the traditional tasks are
still vivid and most useful, viz applications in MO recording
and optical isolators, new techniques have matured in the
last 10 years. Partially they are based on sophisticated light
sources, which make magneto-optics extremely important, if
not irreplaceable. Together with ultrafast laser light sources
the limits of magnetic dynamics can now be explored. In
conjunction with intense, polarized, and highly resolved syn-
chrotron radiation core level, X-ray spectroscopy has become
a routine tool to separate spin from orbital magnetism, to
distinguish between contributions of different magnetic ele-
ments, and to image magnetic nanodomains both in real and
Fourier space. Intense laser light sources are the key to real
surface sensitive magnetic explorations via MSHG and to
unprecedented possibilities for MO SHG imaging of 180◦

domains in antiferromagnets. New materials for spintronics
and magnetic storage purposes like ultrathin films, multilay-
ers, and patterned nanostructures are preferably investigated
by magneto-optic methods for obvious reasons. But there
are also new devices like magneto-optic waveguides and
magnetophotonic crystals, which are specially designed for
magneto-optics and will certainly soon enter the market for
tele and data communications. It is probably not too opti-
mistic to predict that (Lyubchanskii et al., 2003) ‘the use of
magnetic materials in combination with dielectrics, metals,
and semiconductors can lead to the creation of a new class
of devices for photonics applications, and a new direction in
photonics called magnetophotonics’.
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1 INTRODUCTION

Modern society is highly dependent on reliable refrigeration
technology. Without this technology: the food supply would
be seasonal and limited to locally produced nonperishable
items; comfortable living conditions would be impossible
everywhere; and many medical advancements, for example,
MRI, organ transplantation, organ and tissue cryostorage,
and cryosurgery would be impossible. It is startling that all
these and other developments in achieving and maintaining
temperatures lower than ambient are supported by the
technology which remains essentially unchanged from the
time it was invented more than a century ago.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Near-room-temperature refrigeration today is almost enti-
rely based on a vapor-compression refrigeration cycle. Over
the years, all parts of a commercial refrigerator, that is,
the compressor, heat exchangers, refrigerant, and packaging,
were considerably improved due to extended research and
development efforts carried out by the academia and indus-
try. Both recently achieved and anticipated improvements
in the technology, however, are incremental since conven-
tional refrigeration is already near its fundamental limit of
energy efficiency. Furthermore, chlorofluorocarbons (CFCs),
hydrofluorocarbons (HFCs), and other chemicals used as
refrigerants eventually escape into the environment promot-
ing ozone layer depletion and global warming, and therefore,
liquid chemical–based refrigeration is a major factor con-
tributing to deleterious, cumulative changes in the global
climate.

Refrigeration is defined as the use of a working body that
changes its temperature in response to certain thermodynamic
triggers to cool an object. These variations must be achieved
quickly, repeatedly, reversibly, and with minimum energy
losses. Since a magnetic field easily and effectively cou-
ples to magnetic moments of individual atoms in a solid, the
magnetic field is one of the common thermodynamic vari-
ables that can alter the temperature of a magnetic solid. For
instance, heating (but not cooling) of ferromagnetic materials
having a measurable hysteresis by a low frequency ac mag-
netic field is a well-known magnetothermal effect, and this
so-called hysteresis heating has been successfully utilized
in treating certain tumors by hyperthermia (Borelli, Luderer
and Panzarino, 1984). Both heating and cooling of soft ferro-
magnetic materials in response to increasing and decreasing
magnetic fields, respectively, has been known since the latter
part of the nineteenth century when Warburg (1881) reported
a small but measurable, reversible temperature changes in
pure iron in response to magnetic field changes. Today,
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this phenomenon is recognized as the magnetocaloric effect
(MCE) and materials exhibiting large, reversible temperature
changes in response to changing magnetic fields are usually
referred to as magnetocaloric materials.

2 THE MAGNETOCALORIC EFFECT
AND ITS SIGNIFICANCE

The magnetocaloric effect – commonly abbreviated as
MCE – is one of the most fundamental physical properties
of magnetic materials. The MCE describes the behavior of
a magnetic solid when it is exposed to a changing mag-
netic field: its temperature may be appreciably increased or
decreased, with both the sign and the extent of the tem-
perature difference between the final and the initial states
of the material being dependent on numerous intrinsic and
extrinsic factors. The chemical composition, the crystal struc-
ture, and the magnetic state of a compound are among the
most important intrinsic material parameters that determine
its MCE. The extrinsic factors include the temperature, the
surrounding pressure, and the sign of the magnetic field
change, that is, whether the magnitude of the magnetic field
has been raised or lowered. These variables affect the mag-
netic field–induced temperature changes and therefore play
a role in defining the MCE.

The MCE is inherent to every magnetic solid, and has
extraordinary fundamental importance because it spans many
orders of magnitude over length, energy, and timescales:
from quantum mechanics to micromagnetics, from statistical
to macroscopic thermodynamics, and from spin dynamics
to bulk heat flow and thermal conductivity. Understanding
and, ultimately, controlling this vast, many-body and many-
parameter landscape is an enormously challenging task, yet
even partial successes along the way facilitate greater pre-
cision and better control over the design of novel mag-
netocaloric solids. In other words, knowing how changes
in the chemical composition, the crystal structure, and the
microstructure affect the physical behavior of solids helps to
create an environment in which a material could be tailored
to exhibit a specific combination of magnetic and thermal
properties.

In addition to its basic scientific significance, the MCE
is the cornerstone of near-room-temperature magnetic cool-
ing, which is poised for commercialization in the foresee-
able future and may soon become an energy efficient and
environmentally friendly alternative to vapor-compression
refrigeration technology (Pecharsky and Gschneidner, 1999a;
Zimm et al., 1998; Zimm, 2003, Tishin and Spichkin, 2003;
Gschneidner, Pecharsky and Tsokol, 2005). Practical appli-
cations of the MCE, therefore, have the potential to reduce

the global energy consumption, and eliminate or minimize
the use of ozone depleting compounds, greenhouse gases,
and hazardous chemicals.

Among several alternatives to conventional refrigeration
(thermoelectric cooling is probably the best known and well
developed, yet it remains an energy inefficient technology),
magnetic cooling has been in and out of the limelight for
many decades. Its first application was suggested in late
1920s by Debye (1926) and, independently, by Giauque
(1927). One-step cooling from 1.5 to 0.25 K by adiabati-
cally demagnetizing gadolinium sulfate octahydrate was suc-
cessfully demonstrated by Giauque and MacDougall (1933).
Since then, adiabatic demagnetization refrigeration has been
and still remains a great tool in achieving ultralow temper-
atures in many research laboratories. The potential of the
magnetic cooling for the near-room-temperature applications,
however, remained uncertain before the late 1990s despite
two well-known demonstrations that were undertaken in the
last quarter of the twentieth century, that is, those by Brown
(1976) and Green, Chafe, Stevens and Humphrey (1990).

Today, following a seminal work of Zimm et al. (1998),
near-room-temperature magnetic refrigeration has quickly
caught the attention of both scientists and engineers, and
by the end of 2006 more than 20 laboratory-scale magnetic
cooling units have been built and tested. Various degrees of
success in implementing magnetic refrigeration as a near-
room-temperature cooling technology have been reported by
Bohigas et al. (2000), Hirano et al. (2002), Rowe and Bar-
clay (2002a,b), Blumenfeld, Prenger, Sternberg and Zimm
(2002), Hirano (2003), Wu (2003), Zimm (2003), Richard,
Rowe and Chahine (2004), Clot et al. (2004), Shir et al.
(2005), Lu, Xu, Wu and Jin (2005), Okamura, Yamada,
Hirano and Nagaya (2005), Rowe, Dikeos and Tura (2005),
Vasile and Müller (2005), and Zimm, Boeder and Chell
(2005). Furthermore, as far as the authors of this chapter are
aware, a few more units have been built and either tested or
are undergoing rigorous evaluation as of the time of writing
this article, yet to date there have been no publication con-
cerning these units in any kind of broadly available medium.

Among the many components that need to come together
in order to make a successful operating magnetic refrigerator
shown schematically in Figure 1 (for more information
see recent reviews by Pecharsky and Gschneidner 1999a;
Gschneidner, Pecharsky and Tsokol 2005 and a monograph
by Tishin and Spichkin 2003), the magnetocaloric compound
(the magnetic refrigerant material) is of utmost importance.
First, its MCE must be large for a given, usually relatively
small magnetic field change, and it should occur in the
temperature range between that of the hot and cold heat
exchangers of a device. Second, the magnetocaloric material
must be chemically stable, noncorrosive, nonflammable, and
nontoxic. Third, the compound or alloy must be composed
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Figure 1. Schematic of a magnetic refrigerator. The wheel consists
of regenerator beds packed with a magnetic material. As the wheel
rotates, one of the beds (top) enters the high-magnetic-field volume,
heating up due to the magnetocaloric effect. Heat exchange fluid
flows through the bed removing heat via hot heat exchanger.
Previously magnetized and already cooled by the heat exchanged
fluid bed exits the high-magnetic-field area (left), cooling down due
to reverse magnetocaloric effect. Heat exchange fluid flows through
the bed, thereby removing heat from a load.

from readily available, inexpensive components. Fourth, the
manufacturing of the material should be economical without
adding too much to the cost of the final product, which is a
regenerator bed. Finally, in addition to chemical stability, the
magnetocaloric material should exhibit sufficient mechanical
stability to ensure that the life span of a magnetic refrigerator
is comparable to the life span of a modern conventional
refrigeration device.

Over the last decade, basic research on the magnetocaloric
materials enjoyed nearly explosive growth (Gschneidner,
Pecharsky and Tsokol, 2005). As a result, a variety of
advanced magnetocaloric materials have been discovered and
we are certain that more exciting breakthroughs lie ahead.
Magnetocaloric compounds have extended far beyond the
prototypical elemental Gd to include binary rare-earth-based
alloys, oxide perovskite materials, complex intermetallics,
and chalcogenides and pnictides. Recently, novel magne-
tocaloric materials have been reviewed in detail by Gschnei-
dner, Pecharsky and Tsokol (2005), and therefore, we refer
the reader to this review for an exhaustive list of materials
along with a large body of numerical MCE data. Instead,
this chapter is intended as a primer about the current state
of the art in magnetocaloric materials, concentrating on com-
pounds that have a good chance of commercial success in the
near future. Even though predictions in science maybe quite
unreliable, we will conclude this work with our thoughts on

how the science of near-room-temperature magnetocaloric
materials will develop and where we are most likely to see
the biggest breakthroughs in the next few years to a decade.

3 MAGNETOCALORIC EFFECT: THE
FUNDAMENTALS

The MCE arises from the coupling of a magnetic sublattice
with an external magnetic field, which affects the magnetic
part of the total entropy of a solid. Similar to isothermal com-
pression of a gas, during which positional disorder and the
corresponding component of the total entropy of a gaseous
system are suppressed, exposing a paramagnet near abso-
lute zero temperature or a ferromagnet near its Curie tem-
perature, TC, to a change of a magnetic field (B) from
zero to any nonzero value, or in general, from any ini-
tial value Bi to a final higher value Bf(�B = Bf − Bi > 0)

greatly reduces disorder of a spin system. Thus, the magnetic
part (SM) of the total entropy (S) is substantially lowered.
In a reversible process, which resembles the expansion of
a gas at constant temperature, isothermal demagnetization
(�B < 0) restores the zero-field magnetic entropy of a sys-
tem. The MCE, therefore, can be quantified as an extensive
thermodynamic quantity, which is the isothermal magnetic
entropy change, �SM. The latter is illustrated in Figure 2
as the difference between entropy functions determined at
a common given temperature and is marked by a vertical
arrow.

When a gas is compressed adiabatically, its total entropy
remains constant, whereas velocities of the constituent
molecules, and therefore, the temperature of the gas both
increase. Likewise, the sum of the lattice and electronic
entropies of a solid must change by −�SM as a result of
adiabatic magnetization (or demagnetization) of the mate-
rial, thus leading to an increase (decrease) of the vibra-
tional entropy of the lattice. This brings about an adiabatic
temperature change, �Tad, which is an intensive thermody-
namic quantity that is also used to measure and quantify the
MCE.

In Figure 2, �Tad is illustrated as the difference between
the two entropy functions determined at the same entropy
and is indicated using a horizontal arrow. It is worth noting
that in the case of a refrigeration cycle employing a gas, it
is a change of pressure that results either in the adiabatic
temperature change, or the isothermal entropy change, while
in the case of a magnetic solid it is a change of magnetic
field that brings about the entropy or temperature change. No
matter how strong the magnetic field is around the sample,
the MCE will remain zero as long as the field is kept
constant.
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For a given material at a constant pressure, the two
quantitative characteristics of the MCE, �SM and �Tad, are
functions of the absolute temperature, T , and the magnetic
field change, �B. The MCE can be easily computed provided
the behavior of the total entropy of a compound is known as a
function of temperature in both the initial and final magnetic
fields, for example, see Figure 2:

�SM(T ,�B)�B = S(T ,B)B=Bf − S(T ,B)B=Bi (1)

�Tad(T ,�B)�B = T (S,B)B=Bf − T (S,B)B=Bi (2)

Equation (2), in which the entropy is the independent vari-
able and the temperature is the dependent variable, is straight-
forwardly employed in direct measurements of the adiabatic
temperature change �Tad. The temperature of a sample is
measured in both Bi and Bf, that is, before and after the
magnetic field has been altered. The difference between
the two temperatures yields the intensive MCE value, for
example, see Gopal, Chahine, Földeaki and Bose (1995),
Gopal, Chahine and Bose (1997), and Dan’kov, Tishin,
Pecharsky and Gschneidner (1997), which is usually reported
as a function of temperature for Bi = 0.

At equilibrium, both �SM and �Tad are correlated with
the magnetization (M), magnetic flux density (B), heat
capacity at constant pressure (CP ), and absolute temperature
by one of the following fundamental equations derived
from the well-known Maxwell relationships and general

thermodynamics:

�SM (T ,�B)�B =
Bf∫

Bi

(
∂M(T ,B)

∂T

)
B

dB (3)

�Tad (T ,�B)�B = −
Bf∫

Bi

(
T

CP (T ,B)
× ∂M (T ,B)

∂T

)
B

dB

(4)
As immediately follows from equations (1)–(4), materials

whose total entropy is strongly influenced by a magnetic field
and whose magnetization varies rapidly with temperature in
any magnetic field are expected to exhibit an appreciable
MCE. The MCE usually peaks when |(∂M(T ,B)/∂T )B | is
the greatest, that is, around TC in a conventional ferromagnet
or near absolute zero temperature in a paramagnet. The MCE
of a simple ferromagnet is gradually lowered both below and
above TC, as is clearly seen in Figure 3.

Equations (3) and (4) are applicable to ferromagnets that
magnetically order via a second-order phase transformation
and they give correct estimates of the MCE for the first-order
phase transition materials, yet both equations fail to describe
the MCE in the vicinity of a truly discontinuous first-
order phase transition when either or both |[∂M(T ,B)/∂T ]B |
and [T /CP (T ,B)]B do not exist or cannot be accurately
measured [1]. Equations (1) and (2), on the other hand, define
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Figure 2. The total entropies of Gd shown as functions of temperature in 0 and 7.5 T magnetic fields near the Curie temperature of the
metal (TC = 294 K). The vertical arrow represents the isothermal magnetic entropy change, �SM, while the horizontal arrow is the adiabatic
temperature change, �Tad, both for the case when Gd is magnetized at TC.
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Figure 3. The characteristic temperature dependencies of the magnetocaloric effect (for a fixed magnetic field change �B, solid line,
left-hand scale) and the magnetization (for a constant magnetic field B, dash-dotted line, right-hand scale) of a soft ferromagnetic material
near its Curie temperature, TC.

the MCE regardless of the thermodynamic nature of the
phase transformation that occurs, if any, in a material.

For a first-order phase transition, it is also possible to
employ an approximation, which is based on the Clausius–
Clapeyron equation to determine the entropy change, �S:(

dB

dT

)
eq

= −
(

�S

�M

)
T

(5)

In equation (5), the left-hand-side derivative is taken under
equilibrium conditions, that is, when the Gibbs free energies
of the two phases are identical. For the right-hand side,
�S = S2 − S1 and �M = M2 − M1, where the subscripts 1
and 2 correspond to the states of the material in the initial and
final magnetic fields, respectively. Obviously, equation (5) is
only applicable when Bf is strong enough to complete the
transformation from state 1 to state 2 and when the quantity
dB/dT at equilibrium is known. In other words, the B − T

phase diagram for the system must be well established.
By combining equations (3) and (4) with equation (5) and
postulating that T /CP (T ,B) is constant (for a true first-
order phase transition the magnetic field has no effect on the
heat capacity other than shifting the transition temperature),
the following proportionality can be written for the adiabatic
temperature change:

�Tad ∝
(

T

CP (T ,B)

)
B

(
dB

dT

)
eq

�M (6)

The extensive measure of the MCE is indeed an irreplaceable
tool enabling a quick and reasonably accurate way of gauging
whether or not a compound is suitable as a magnetocaloric
material (e.g., see Földeaki, Chahine and Bose, 1995). In
this context, it is worthwhile to remind the reader that while
a good magnetocaloric material must have as large �SM

as possible, it must also have the largest possible �Tad to
be competitive with known prototypic MCE materials. In
other words, one must be careful when comparing the cool-
ing potential of closely related materials (e.g., two metallic
alloys containing different lanthanides or two perovskite-
type oxide materials) exhibiting similar �SM over vastly
different temperature ranges or chemically dissimilar materi-
als (such as a lanthanide-containing intermetallic compound
with a perovskite-type oxide) over the same range of tem-
peratures based solely on the magnitudes of �SM. Caution
should be exercised because absolute temperature and heat
capacity are both factored in the definition of the adiabatic
temperature change, see equations (4) and (6). Furthermore,
one should always be aware of both random and systematic
errors, which when combined may reach 25%, depending
on the temperature range and the experimental technique
that was employed to measure the magnetocaloric proper-
ties of a material. These and other related subjects have been
extensively discussed in the past and we refer the reader to
critical assessments written by Pecharsky and Gschneidner
(1999b, 2001) and Pecharsky, Gschneidner, Pecharsky and
Tishin (2001).



6 Magnetic materials with outstanding properties

4 THE BENCHMARK MCE
MATERIAL – GADOLINIUM

As far as near-room-temperature applications are concerned,
the rare-earth metal Gd is truly a benchmark magnetic refrig-
erant material. It exhibits excellent magnetocaloric proper-
ties, which are difficult to improve upon. Not surprisingly,
the metal has been employed in each of the early demonstra-
tions of near-ambient cooling by the MCE (Brown, 1976;
Green, Chafe, Stevens and Humphrey, 1990). Gadolinium
was indeed used as the refrigerant powering the first suc-
cessful proof-of-principle refrigerator device (Zimm et al.,
1998). Metallic gadolinium has constituted the whole or at
least a major part of every magnetic regenerator bed in every
near-room-temperature magnetic cooling machine built and
tested to date (Bohigas et al., 2000; Hirano et al., 2002;
Rowe and Barclay, 2002a,b; Blumenfeld, Prenger, Sternberg
and Zimm, 2002; Hirano, 2003; Wu, 2003; Zimm, 2003;
Richard, Rowe and Chahine, 2004; Clot et al., 2004; Shir
et al., 2005; Lu, Xu, Wu and Jin, 2005; Okamura, Yamada,
Hirano and Nagaya, 2005; Vasile and Müller 2005; Zimm,
Boeder and Chell, 2005).

Pure Gd metal adopts the simplest, hexagonal close-
packed crystal structure, and it orders ferromagnetically at
TC = 294 K (this value is representative of a 99.95+ wt%
pure metal, but can be lower in an impure metal (see
Dan’kov, Tishin, Pecharsky and Gschneidner, 1998). Below
its Curie temperature, the magnetic moments of all Gd atoms
align parallel to the c axis of the crystal (the easy mag-
netization direction) but for T < 232 K the moment direc-
tion begins to deviate from the c axis reaching a maxi-
mum of ∼65◦ for T = 180 K (Cable and Wollan, 1968).
The moments can be realigned with the c axis by a weak
magnetic field. Since magnetization and heat capacity are
two most relevant physical properties defining the MCE,
see equations (1)–(4), these are displayed for reference
in Figures 4 and 5, respectively, for a Gd single crystal
(Dan’kov, Tishin, Pecharsky and Gschneidner, 1998). Even
though, the magnitude of |∂M/∂T |B decreases with the
increasing magnetic field (Figure 4), the absolute value of
the derivative is always maximized in the immediate vicin-
ity of TC and remains substantial in magnetic fields of 5 T
and higher. The zero-field heat capacity (Figure 5) exhibits a
λ-type maximum, which is typical for many second-order
ferromagnetic ordering transitions. As the magnetic field
increases, the sharp peak in heat capacity becomes more
and more rounded, that is, the heat capacity below the
zero-field peak is suppressed, while it becomes enhanced
above TC.

Large |∂M/∂T |B and large changes of the heat capac-
ity induced by the magnetic field imply the presence of
the large MCE in Gd. The isothermal magnetic entropy
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Figure 4. The magnetization of Gd single crystal measured in
magnetic fields ranging from 0.2 to 5 T. Every M(T ) curve is
separated from its nearest neighbor(s) by a fixed difference in the
magnetic field, that is, �B = 0.2 T. The magnetic field vector was
parallel to the [0001] direction during each measurement.
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Figure 5. The heat capacity of single crystal Gd measured in
various constant dc magnetic fields with the magnetic field vector
parallel to the [0001] direction.

change, calculated using equations (1) and (3) from the
heat capacity and magnetization data, respectively, is shown
in Figure 6. This figure indicates that the MCE computed
from the two different types of experimental data (compare
the results for a 2 and 5 T magnetic field changes) match
well, provided experimental measurements have been per-
formed with sufficient accuracy. Furthermore, the results of
Figure 6 clearly show that as the magnetic field increases,
the derivative of the MCE with respect to the magnetic field
decreases (both �Tad and �SM are nearly proportional to
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B2/3, that is, d(MCE)/dB ∝ B−1/3, see Oesterreicher and
Parker, 1984). In other words the highest specific MCE (i.e.,
the MCE per unit field change) always occurs near zero
magnetic field. The intensive MCE of Gd, calculated using
equation (2) from the data presented in Figure 5, is illustrated
for four different magnetic field changes in Figure 7. Similar
to �SM, �Tad, peaks at TC and d(�Tad)/dB is also substan-
tially reduced as B increases. The nearly B2/3 dependence of
the �Tad of Gd is illustrated in Figure 8, where experimental
measurements reported by numerous authors (see Dan’kov,
Tishin, Pecharsky and Gschneidner, 1998; Gschneidner and
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Figure 8. The magnetocaloric effect of Gd at its Curie temperature,
shown as a function of the final magnetic field, Bf, for Bi = 0,
both measured directly and calculated from heat capacity data by
different authors (symbols) and the least squares fit assuming power-
law dependence of the MCE on the magnetic field. See Dan’kov,
Tishin, Pecharsky and Gschneidner (1998) and Gschneidner and
Pecharsky (2000) for a list of references and sources of the
experimental MCE data.

Pecharsky, 2000) exhibit an excellent fit of the MCE data to
the B0.7 behavior.

It is worth noting that the magnetocrystalline anisotropy
of Gd in fields exceeding a few tenths of a tesla is negli-
gible (Dan’kov, Tishin, Pecharsky and Gschneidner, 1998),
and therefore, the results shown in Figures 4–7 change lit-
tle when the magnetic field is applied along a different
crystallographic direction, or even for a polycrystalline Gd,
provided the latter is as pure as the single crystal used to
collect these data (the purity of the metal was 99.98 wt%).
The behavior of the MCE of Gd illustrated in Figures 6
and 7 is quite universal for materials with second-order
paramagnetic–ferromagnetic phase transformations. The dif-
ferences between the MCE of Gd and those of other second-
order phase transition materials mainly lie in differences
in the absolute values of the MCE for the same mag-
netic field change, the temperature of the peak, and how
quickly the derivative, d(MCE)/dB, is suppressed by the
increasing magnetic field. To illustrate this universality, we
show in Figure 9 the adiabatic temperature change of five
different magnetocaloric materials, all of which order mag-
netically via second-order transformations at various tem-
peratures ranging from ∼14 to ∼294 K. One of the five
materials – elemental dysprosium – orders antiferromagneti-
cally but magnetic fields exceeding ∼2 T transform the metal
into a collinear ferromagnet, thus the behavior of the MCE
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Figure 9. The magnetocaloric effect of polycrystalline ErAl2
(Gschneidner, Pecharsky and Malik, 1996), polycrystalline DyAl2
(Gschneidner, Pecharsky and Malik, 1996), single crystalline Dy
with the magnetic field vector parallel to the a axis (Chernyshov
et al., 2005), polycrystalline Gd0.73Dy0.27 (Pecharsky and Gschnei-
dner, 1995), and single crystalline Gd with the magnetic field vector
parallel to the c axis (Dan’kov, Tishin, Pecharsky and Gschneidner,
1998) as calculated from heat capacities measured in a 0 and 10 T
magnetic field.

near the Neél temperature of Dy is nearly identical to that of
other ferromagnets [2].

5 THE GIANT MAGNETOCALORIC
EFFECT

Rising interest in both the fundamental science and potential
applications of advanced magnetocaloric materials has been
sparked by recent discoveries of new compounds exhibiting
a MCE much larger than those found in the vast majority
of previously known compounds, including elemental Gd.
The most notable examples that originated a modern pool
of advanced magnetocaloric materials are FeRh (Annaora-
zov et al., 1992), La0.8Ca0.2MnO3 (Guo et al., 1997), and
Gd5Si2Ge2 and related Gd5(SixGe4−x) alloys (Pecharsky and
Gschneidner, 1997a,b,c); the latter references also coined
the phrase ‘the giant magnetocaloric effect’ (GMCE) mate-
rials. A few years later, several other families of materials
have been shown to also exhibit a GMCE at temperatures
close to ambient. These include Tb5Si2Ge2 (Morellon et al.,
2001), MnAs and MnAs1−xSbx compounds (Wada and Tan-
abe, 2001; Gama et al., 2004), La(Fe1−xSix)13 alloys (Hu
et al., 2001) and their hydrides La(Fe1−xSix)13Hy (Fujita,
Fujieda, Hasegawa and Fukamichi, 2003), MnFeP0.45As0.55

and related MnFePxAs1−x alloys (Tegus, Brück, Buschow

and de Boer, 2002; Brück et al., 2003), and Ni2±xMn1±xGa
ferromagnetic shape memory alloys (Albertini et al., 2004;
Pasquale, Sasso and Lewis, 2004; Zhou, Li, Kunkel and
Williams, 2004).

Today, it has been well established that the GMCE arises
from magnetic field–induced magnetostructural first-order
transformations. Upon the application of a magnetic field,
the magnetic state of a compound changes from a param-
agnet or an antiferromagnet to a nearly collinear ferromag-
net simultaneously with either a martensitic-like structural
change (e.g., see Morellon et al., 1998; Choe et al., 2000),
or is accompanied by a phase volume discontinuity but with-
out a clear crystallographic modification (Fujita, Fukamichi,
Koyama and Watanabe, 2004). When the system undergoes
a first-order phase transition, then the behavior of the total
entropy as a function of temperature reflects a discontinuous
(in reality almost always continuous except for some ultra-
pure lanthanides, see Pecharsky, Gschneidner and Fort, 1996;
Gschneidner, Pecharsky and Fort, 1997) change of entropy
at a critical temperature, Tt. Figure 10 shows a schematic
T − S diagram modeling discontinuous entropy changes in
a Gd5Si2Ge2 compound near the magnetostructural transi-
tion in a 0 and 2 T magnetic fields. A magnetic field has
a small effect on the heat capacity both below and above
the first-order phase transition temperature, but Tt increases
with the increasing magnetic field at a rate of approximately
4 K T−1 (Pecharsky, Gschneidner and Pecharsky, 2003). The
phase transition in the magnetic field Bi occurs at tempera-
ture Tt,Bi , and the enthalpy of this transformation is �HBi .
The discontinuous equilibrium change of the entropy at Tt,Bi

totals �SBi = �HBi/Tt,Bi . Likewise, the phase transition in
the magnetic field Bf occurs at Tt,Bf , the enthalpy of this
transformation is �HBi , and the equilibrium entropy change
is �SBf = �HBf/Tt,Bf . It was shown by Pecharsky, Gschnei-
dner, Pecharsky and Tishin (2001) that for relatively small
magnetic fields, that is, those that are most suitable for com-
mercial near-room-temperature magnetic refrigeration appli-
cations, the maximum MCE in a first-order phase transition
material can be defined as follows:

�SM
∼= �HBi

Tt,Bi

∼= �HBf

Tt,Bf

(7)

�Tad
∼= ∂Tt

∂B
(Bf − Bi) (8)

Equation (8) additionally assumes that the derivative, ∂Tt/∂B,
is constant.

Comparing the schematics presented in Figures 10 and 2
and considering equations (7) and (8) it is easy to see that for
first-order systems one has to be careful when evaluating the
magnetocaloric properties of different materials in relatively
small magnetic fields. Thus, a compound with a large �SM
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Figure 10. The idealized schematic of the S − T diagrams of
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measures of the magnetocaloric effect at TC.

may not necessarily be a compound with a large �Tad.
Quite to the contrary, it is possible that among the two, the
compound exhibiting a smaller �SM has a larger �Tad. To
illustrate these situations, we show in Figure 11 schematic
T − S diagrams of two hypothetical materials ‘B’ and ‘C’
together with the same for Gd5Si2Ge2. Material ‘B’ has �SM

twice as large as that of the Gd5Si2Ge2, yet the adiabatic
temperature changes of both materials are identical. Material
‘C’ has a �SM, which is smaller by 20% but its �Tad is 1.5
times that of Gd5Si2Ge2.

The behavior of both the extensive and intensive mea-
sures of the GMCE in first-order phase transition materials
is different when compared to the conventional MCE in
second-order phase transition compounds, as can be eas-
ily seen from Figure 12 when compared to Figures 3, 6, 7
and 9. First, especially for small magnetic fields, the GMCE
is much larger than the conventional MCE (also see Figure 3
in a review by Gschneidner, Pecharsky and Tsokol, 2005).
Second, the width of the GMCE becomes broader as �B

increases, but it broadens asymmetrically toward one side,
away from the phase transition temperature. Third, as �B

increases, both the �SM and the �Tad increase rapidly for
small fields with the corresponding derivatives (∂�Sm/∂�B

and ∂�Tad/∂�B) exhibiting a clear tendency toward satura-
tion. As a matter of fact, when the magnetic field is strong
enough to complete the transformation, the magnitudes of the
�SM discontinuities remain truly identical (see the left-hand
sides of the peaks in Figure 12(a) at �B = 5 and 7.5 T).
Considering Figure 10, these discontinuities correspond to
�SBi = �HBi/Tt,Bi and the observed modest rise of the
background under �SM peaks is due to magnetic field effects
on the magnetic entropy of the material in the ferromagnetic
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Figure 11. Schematic S − T diagrams of three different materials
illustrating independence of both the extensive and intensive
magnetocaloric effects in small magnetic fields.

state, just as in other materials exhibiting conventional MCE.
As was shown recently by Chernyshov et al. (2005), the cal-
culated magnetic entropy change in Dy in the vicinity of
its first-order magnetic phase transition at T = 90 K matches
the entropy change of the spontaneous ferromagnetic FM
→ antiferromagnetic AFM phase transformation measured
directly in a zero magnetic field (Pecharsky, Gschneidner
and Fort, 1996) to within 2%.

6 ROLE OF THE STRUCTURAL CHANGE
IN THE GMCE

Although crystallographic details of the magnetic
field–induced structural changes are well-documented at
least for some of the GMCE materials (Pecharsky, Holm,
Gschneidner and Rink, 2003; Holm et al., 2004), the con-
tribution of crystallographic changes to the MCE presents
an interesting basic science question. Ab initio calculations
of the entropies involved in the magnetostructural phase
changes are difficult, to say the least, and therefore, we will
provide insight into this question using some of the available
experimental data. We concentrate on R5(Si4−xGex) com-
pounds, where R is a rare-earth element, because alloys with
R = Gd that have nearly the same composition (x), and there-
fore, have closely spaced Curie temperatures, can be prepared
in two different crystal structures around x = 2 in the param-
agnetic state (Pecharsky et al., 2003). The magnetic ordering
in these materials occurs via a second-order phase trans-
formation when x < 1.91 because both the paramagnetic
and ferromagnetic Gd5(Si4−xGex) phases have the same
orthorhombic Gd5Si4-type structure and these alloys exhibit
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a conventional MCE. When x ≥ 1.91, the paramagnetic
Gd5(Si4−xGex) phases adopt the monoclinic Gd5(Si2Ge2)-
type structure and order ferromagnetically concurrently with
a structural change to the orthorhombic Gd5Si4-type struc-
ture. This results in a first-order paramagnetic to ferromag-
netic transformation and yields the GMCE, see Figure 12.

Taking into consideration this difference in the thermody-
namic nature of phase transitions occurring in closely related
intermetallic phases, in Figure 13 we illustrate the behavior
of the total entropies of Gd5(Si2.5Ge1.5) and Gd5(Si2Ge2) in
0 and 7.5 T magnetic fields. The former compound orders
ferromagnetically in a conventional second-order manner at
TC = ∼312 K, while the latter material undergoes a first-
order magnetostructural transition at TC = ∼270 K. Since
the Curie temperatures of the two materials are slightly dif-
ferent, all data in Figure 13 are plotted as functions of the
reduced temperature, T − Tt, where Tt is taken just above
TC as the temperature at which the magnetostructural trans-
formation in Gd5(Si2Ge2) is complete. For clarity, the total
entropy functions of Gd5(Si2.5Ge1.5) were also reduced by
subtracting a constant value of ∼5.5 J/g-at K to match the
total zero magnetic field entropy of Gd5(Si2Ge2) just below
the magnetostructural transition temperature.

As expected from the similarity of the chemical compo-
sitions, identical crystallography, and ferromagnetism, the
total entropy functions of the two materials after normal-
ization show nearly indistinguishable behavior in a zero
magnetic field immediately below their respective Curie tem-
peratures. A major deviation between the two entropy func-
tions occurs in the vicinity of TC, where the entropy of
Gd5(Si2Ge2) is increased by the change in structural entropy
�Sstr = �Hstr/Tt, where �Hstr is the enthalpy or latent heat
of a first-order structural phase transformation. As is easily
seen from Figure 13, the two zero magnetic field entropy
functions continue to behave very similarly above the TC; in
fact, the difference between them remains nearly constant and
is equal to �Sstr. Once again, we relate this similarity in the
behavior of the two entropies to close relationships between
crystallography and magnetism of these two compounds.

The total entropies of the two materials after the appli-
cation of the magnetic field do not match as well as the
zero magnetic field entropies do, as is also clearly seen in
Figure 13. This mismatch is related to different effects of
the magnetic field on conventional ferromagnets, such as
Gd5(Si2.5Ge1.5), when compared to Gd5(Si2Ge2), which has
a first-order magnetic-martensitic phase change. In fact, since
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Figure 13. The behavior of the total entropies of Gd5Si2.5Ge1.5,
where ferromagnetic ordering at TC is a second-order phase
transformation (solid lines), and of Gd5Si2Ge2 where ferromagnetic
ordering is a first-order phase transformation (dash-dotted lines)
in the vicinities of their respective Curie temperatures in 0 and
7.5 T magnetic fields. The three vertical arrows around Tt indicate
the magnitudes of the magnetocaloric effects of the two materials,
and entropy of the first-order phase transition in Gd5Si2Ge2, all at
T = Tt.

the crystal structure is decoupled from a magnetic sublat-
tice in the case of Gd5(Si2.5Ge1.5), the magnetic field does
not actually transform the system into a nearly collinear
ferromagnet, nor does it raise the Curie temperature of the
material. Conversely, in the case of Gd5(Si2Ge2), where the
magnetic field induces a magnetostructural phase change,
the Curie temperature is increased nearly linearly with the
field. Furthermore, first-principles calculations indicate that
the conventional ferromagnetic ordering of the orthorhom-
bic paramagnetic Gd5(Si2Ge2) occurs at a much higher
temperature than a conventional ferromagnetic ordering of
the monoclinic paramagnetic Gd5(Si2Ge2) if the mono-
clinic structure can be maintained in a ferromagnetic state
(Pecharsky et al., 2003; Paudyal, Pecharsky, Gschneidner
and Harmon, 2006). This difference in the Curie temperatures
of the two structures and the fact that the magnetostruc-
tural transition between the monoclinic paramagnetic and
orthorhombic ferromagnetic phases of Gd5(Si2Ge2) occurs
at T monoclinic

C < Tt < T orthorhombic
C may explain the suppres-

sion spin fluctuations and ferromagnetic clustering above Tt

in the case of Gd5(Si2Ge2), while both should be present in
Gd5(Si2.5Ge1.5).

The MCEs at TC are shown in Figure 13 as arrows for
both compounds (the arrows are offset along the temperature
axis for clarity). Obviously, the two MCEs are considerably
different and the difference between them should be primarily
ascribed to the absence and the presence of a structural

change in Gd5(Si2.5Ge1.5) and Gd5(Si2Ge2), respectively.
Even though the magnetic field has slightly different effect
on the total entropies of the two compounds, the difference in
�SM at the TC is nearly identical to �Sstr. The large magnetic
field–induced phase volume and chemical bonding changes,
observed in Gd5Si2Ge2 and other R5Si4–xGex materials,
therefore, indicate that the GMCE is achieved due to the
concomitant change of the entropy during the structural
transformation, designated in Figure 13 as �Sstr. As a result,
it is possible to speculate that the observed GMCE is the sum
of the conventional magnetic entropy-driven process (�Sm,
which is the same as �SM in a material without a structural
change as defined by equation (3) and the difference in the
entropies of the two crystallographic modifications (�Sstr)

of a solid:

�SM(T , �B)�B=Bf−Bi = �Sstr + �Sm (9)

Although the first factor in the right-hand side of equation (9)
is a hidden parameter in conventional magnetization, heat
capacity, and direct MCE measurements because any of these
properties reflect both the magnetic and crystallographic
states of the material, an estimate of �Sstr based on com-
paring the MCEs exhibited by these two members of the
Gd5(Si4−xGex) family is possible. This situation is illus-
trated in Figure 14, where we plot the isothermal magnetic
entropy changes of Gd5Si2Ge2 and of Gd5(Si2.5Ge1.5) for
field changes from 2 to 10 T (both sets of data have been
taken from Pecharsky, Gschneidner and Pecharsky, 2003).
Considering equation (9) and recalling that �Sstr is indepen-
dent of the magnetic field, provided that the entire volume
of the material retains the low field crystal structure at Bi

and it is completely converted into the high-field allotrope
by Bf, the difference between the peak values of �SM should
remain constant regardless of the field change. This constant
difference, indeed, is approximately equal to �Sstr. A simple
calculation based on the data presented in Figure 14 results in
�Sstr = 1.08(4) J/g−at−1 K−1 (or 9.8 ± 0.3 J kg−1 K−1) for
Gd5Si2Ge2.

Recently, Morellon et al. (2004) were able to establish
the role of the lattice in bringing about the GMCE by
using a different approach. They employed a single com-
pound – Tb5Si2Ge2 – in which the magnetic and structural
transitions are separated by about 10 K under normal pres-
sure. After applying hydrostatic pressure, the two transition
temperatures were superimposed and the two transformations
were recoupled, resulting in a GMCE and in an estimated
�Sstr on the order of 9 J kg−1 K−1 (or ∼1 J/g−at−1 K−1).
Considering that the structural transition in Tb5Si2Ge2 (Rit-
ter et al., 2002) is the same as that found in the Gd5Si2Ge2

the agreement between the two values was expected and is
indeed very good.
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Figure 14. The magnetocaloric effects of Gd5Si2Ge2 (a) Gd5Si2.5Ge1.5 (b) calculated from heat capacity data allowing for the calculation
of the contribution from the structural transition to the observed isothermal magnetic entropy change of Gd5Si2Ge2.

7 CONCLUSIONS: WHAT DOES THE
FUTURE HOLD?

The discovery of the GMCE and extensive characterization
of multiple families of GMCE materials are indeed extremely
important developments both in the science of the MCE
and, potentially, in its application to near-room-temperature
cooling. As described above, the overlapping contribution
from the crystallographic and related electronic changes in
the lattice may account for 50% or more of the total MCE
(as quantified by the isothermal magnetic entropy change)
in magnetic fields of 5 T and below. More significantly,
the relative contribution from the structural entropy change
�Sstr to �SM increases as the magnetic field decreases so
long as the final magnetic field (Bf) is strong enough to
complete the magnetostructural transition. A chart schemat-
ically comparing the MCEs in first-order phase transition
compounds (GMCE materials) and second-order phase tran-
sition compounds (MCE materials) is shown in Figure 15.
At any temperature, the GMCE materials have much larger
magnetic field–induced entropy changes compared to con-
ventional MCE compounds. As far as near-room-temperature
applications are of concern, elemental Gd and Gd5Si2Ge2

remain the leaders in their respective groups of compounds.
Advanced magnetocaloric materials, no doubt, should exist

in other solid systems where structural changes are coupled
with ferromagnetic ordering, and therefore, can be triggered
by a magnetic field. Considering equation (9), the strongest
MCEs in the weakest magnetic fields are anticipated to be
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Figure 15. A map showing the magnitudes of the magnetocaloric
effect in first-order (GMCE materials) and second-order (MCE
materials) phase transition materials. (Adopted from Gschneidner,
Pecharsky and Tsokol 2005, Figure 3.)

found in novel materials designed to maximize the entropy
differences of the low-magnetic-field and high-magnetic-
field phases that includes the large entropy of a structural
transformation, �Sstr, in addition to a large magnetic entropy
change �Sm. Furthermore, it is important that these materials
also have a large �Tad, which can be achieved by maximizing
the effect of a magnetic field on the phase transition
temperature.
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Where shall one look for such materials? Although no one
at this point can give a definitive recipe, we believe that the
most useful magnetocaloric materials

• will have large densities in order to support maximum
cooling power in a small volume;

• will be first-order phase transition materials exhibiting
GMCEs to provide maximum cooling power at the
lowest energy cost;

• will order ferromagnetically to minimize internal entropy
losses from realignment of spins in ferromagnets, anti-
ferromagnets, spin glasses, and so on;

• will be metals because metals usually have much better
thermal conductivities than ceramics;

• will contain a lanthanide, most likely Gd, and will have
50% or more magnetic atoms in order to minimize
inactive thermal mass of the solid;

• and will finally, likely be crystalline bulk materials, not
nanostructures or amphorous materials for near-room
temperature.

Although nanostructures offer numerous potential benefits,
such as large surface areas, control of geometry, and good
thermal conductivity, nanoparticles normally do not order
magnetically since the blocking temperatures are usually
well below the temperature range useful for consumer
applications. Amorphous alloys, which offer superior mec-
hanical properties over brittle intermetallic alloys, have
magnetocaloric properties which are distinctly inferior to the
crystalline materials, primarily because the atoms and thus
the spins of the magnetic atoms are randomly orientated
causing an entropy loss due to the energy required to align
the spins by the applied magnetic field (Gschneidner and
Pecharsky, 2000).

In summary, much remains to be done to better understand,
and therefore, achieve a better control over known magnetic
materials to maximize their magnetocaloric properties and
performance. A clear path forward will remain highlighted
by thorough experiments coupled with theory, where the
latter is tested and refined against the former, thus resulting
in discoveries of new and improved materials and bringing
near-room-temperature magnetic refrigeration technology to
fruition in the not-so-distant future.

NOTES

[1] By definition, partial first derivatives of the Gibbs
free energy with respect to intensive thermodynamic
variables, for example, T , P , or B, vary discontinuously
at the first-order phase transition. As a result, the bulk
magnetization is expected to undergo a discontinuous

change at constant temperature, and the heat capacity
is expected to be infinite during a first-order phase
transformation. Thus, in theory, [∂M(T ,B)/∂T ]B and
[T /CP (T ,B)]B do not exist at the temperature of the
first-order transition. In reality, these changes occur over
a few kelvin wide temperature range and both functions
can be measured experimentally.

[2] When a magnetic field varies between zero and a certain
nonzero value that is lower than the critical field needed
to induce a metamagnetic transition in an antiferromag-
netic system, a ‘negative’ of ‘reverse’ magnetocaloric
effect is commonly observed, specifically, �Tad becomes
negative and �SM positive when �B > 0.
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1 PNICTIDES

Transition-metal-rich phosphides and arsenides or anti-
monides (X = P, As, Sb) exhibit very peculiar but strongly
related crystal structures, leading to fairly marked mag-
netic characteristics. Both the magnetic ordering tempera-
tures and the local magnetic moments of transition elements
(T) usually do not range very far from those of the met-
als and alloys, respectively. In fact, the main series of TT′X
and TX metal–type compounds display nearest metal–metal
distances 10–20% larger than only those in pure metal
compounds (Fruchart, 1982). Contrary to halides, oxides,
and chalcogenides, the size of the nonmetal element X in

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

this case is effectively smaller, the ionic–covalent charac-
ter of the T–X bonds is less marked, to the benefit of the
metal character of phosphides and arsenides. This peculiar-
ity stands for the classes of closely structured TT′X and TX
compounds as well, where X = Si, Ge, Sn, Sb,. . ., for
example, with MnAlGe on one side and MnSb on the other.

It also exists as a ternary pnictides series, for example,
as skutterudites phosphides or antimonides (Leithe-Jasper
et al., 2004), or more complex systems, for example,
Zr2Fe32P8 (Le Sénéchal et al., 1999) of the generic formula
�n(n+1)Rn(n–1)T6(n2+1)X2(2n2+1)+1 (where R is a rare-earth
element and � is a vacancy), that most of the time exhibit
either magnetic properties at low temperature only or are
weakly polarized with a small moment, if any. These are not
discussed here since they exhibit weak magnetic character-
istics, often disperse and also peculiar magnetic components
and couplings. Also, the binary and ternary transition-metal
nitrides are not considered here since the marked interstitial
character of X = N in many metal lattices is better compared
to those in parent metal carbides, even borides. The coordi-
nation polyhedron of nitrogen in transition-metal nitrides is
quite different from that in compounds with a less metallic
type such as phosphides, arsenides, antimonides.

Nevertheless, the magnetic properties of the two main
series TX and TT′X considered here remain dominated by
direct metal–metal interactions (Fruchart, 1982); however,
the T–X bonds lead to a reduction in the magnetic polariza-
tion reference to the orbital scheme of a pure ionic state and
support marked competition of exchange forces. Addition-
ally, for several compounds, rather strong magnetic moments
(larger than ∼3 µB for Mn) have been measured. In fact, the
classes of TX and TT′X materials are also characterized by
instabilities of the local magnetic polarization, with a pos-
sible impact on long-range magnetic ordering that, in most
cases, are accompanied by structural transitions.
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Earlier, J.B. Goodenough had focused his interest on
these two series of peculiar compounds, thus establishing
conceptual phase diagrams (Goodenough, 1973, 1976) and
had proposed a general analysis of the subtle physical and
magnetic aspects of T-metal pnictides in terms of electron
filling orbitals, with regard to characteristics that were
intermediate between metal and ionic types.

Such singular behaviors led to the renewal of a marked
interest in both series of TT′X and TX metal phosphides
and arsenides since high-performance magnetocaloric prop-
erties have been revealed quite recently. Promisingly, their
corresponding magnetic transitions spread over a wide range
of temperature for large changes in magnetization, moreover
being induced by moderate magnetic fields, as delivered by
the modern permanent magnet, for example, the NdFeB-type
of magnet.

2 CRYSTAL STRUCTURE
RELATIONSHIPS

The TT′X series of compounds exhibit peculiar structural
arrangements as a consequence of sensitive T–T′ metal inter-
actions. From a unique pseudo unit cell (block) contain-
ing one formula unit (fu), the very rich series of polytype
structures labeled T2 (tetragonal, 2 fu/cell), H3 (hexagonal,
3 fu/cell), O4 (orthorhombic, 4 fu/cell), O8, H12, and so on,
are derived (Artigas, Fruchart, Boursier and Fruchart, 1990).
The elementary block is defined as a pseudorhombic unit cell,
where the X atoms form two types of interstices, two with
tetrahedral coordination, T , and two of fivefold coordination
with the shape of square-based pyramids, P . The three fun-
damental polytype members crystallize with the Cu2Sb (SG:
P4/nmm), the Fe2P (SG: P62m), or the Co2P (SG: Pnma)-
type of structure. These structures are strongly related since
the different point symmetry groups allow one to build com-
pact but different arrangements of blocks with respect to
the fourfold, threefold, and twofold symmetries, respectively.
The three main TT′X structures are represented in Figure 1,
along with the rhombic pseudo unit cell containing one for-
mula unit that is defined from a triangular channel formed
by the X atoms.

Analogies can be established between the different crystal
structures of the former series and those of the T′X one. Here,
one of the metal atoms (T′) is ‘missing’, the corresponding
tetrahedron, T , being empty; thus the T-metal atom occupies
the center of the octahedron formed from two neighboring
pyramids, P . The corresponding crystal structures are of
the NiAs hexagonal type (H2, SG: P-3/mmc) and the MnP
orthorhombic type (O4, SG: Pnma), as seen in Figure 2. Both
the TX crystal structures are directly related since the second
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Figure 1. Structures (c) – type Fe2As (T2), (d) – type Fe2P (H3),
and (e) – type Co2P (O4) of the TT′X compounds as projected
along axes to evidence the T (tetrahedral) and P (pyramidal) sites,
the latter identified by arrows toward the apical X site. Above are
represented fragments illustrating the triangular channel (a), hosting
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Figure 2. MnAs crystal structures in hexagonal (a) and orthorhom-
bic (b) types. (Nascimento, F.B., Materials Research, 9(1), (2006)
113.)

one can be considered to be the orthohexagonal distorted
variant, the T atom being shifted from the center of the
octahedron as a bipyramid, alternately in one or the other
of the two pyramids. In fact, the series of TX and TT′X
pnictides derive from the NiAs or are filled from Ni2In via
displacive or distortive types of transformations.
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For both series TT′X and TX, more dense structures
(shorter and shorter metal–metal distances) are obtained
by application of external pressure or chemical pressure
(Krumbugel-Nylund et al., 1974) following the succession
T2 (TT′X) to H3 (TT′X and TX) to O4 (TT′X and TX). Since
the magnetic coupling forces are intimately related to the
metal-to-metal distances and directly depend on the crystal
structure taken by the TT′X or TX compounds, magnetoelas-
tic transitions take place systematically with changes in both
the crystal and magnetic structures (e.g., ferro to antiferro
(AF) in the MnAs–FeAs system Krumbugel-Nylund, 1974).
The competing magnetic interactions promote the presence
of metastable noncollinear, long-range ordering arrangement,
leading to metamagnetic behavior versus the applied mag-
netic field. Also, instabilities of the electronic origin are
commonly observed, and abrupt changes in the metal atom
magnetization level can accompany the structure transition,
which is often of the first-order type.

3 GENERAL OVERVIEW ON MAGNETIC
PROPERTIES

The structural and magnetic characteristics of most inter-
metallic compounds of transition elements, namely, the pnic-
tides formed with P, As, and Sb, had been extensively
reviewed 15 years ago by Beckman and Lundgren (1991).
The reader is invited to refer to this excellent review for
information on most of the compounds mentioned earlier.
As mentioned in the preceding text, one can easily recall the
most pertinent phase diagrams, as reported versus composi-
tion, stoichiometry, or external pressure, thus well illustrating
the dramatic interplays between crystal structures and oppo-
site magnetic couplings.

Both the series of pnictides discussed here reveal optimal
magnetic properties corresponding well to a peculiar valence
electron concentration (VEC) that leads to extreme ordering
temperatures or (and) large magnetization levels. Whatever
the crystal structure of the considered TT′X polytypes may
be, the maximum TC of most compounds takes place close
to the d6 configuration (Fe), as for Fe2P, MnCoP, MnCoAs,
CrNiAs, and so on (Fruchart, 1982). This also applies to
the solid solutions and multinaries. For example, Figure 3
presents the huge variation of both Curie temperature in the
Mn1–xCoxP system and magnetization, as reported earlier
(Fruchart, Martin-Farrugia, Rouault and Sénateur, 1980).
For the optimized VEC value, ferromagnetic couplings are,
most of the time, dominating but with a slight change in
composition or application of pressure (chemical or external
pressure), dramatic changes take place with abrupt drops
in magnetization. Then, AF couplings control the long-
range magnetic ordering, which is often incommensurate

T (K)

600
Orthorhombic

500

400

300

200

100

0
AF

AF

TN

TC

OP

0

1F

2

3

ms
(mB/f u)

ms

Mn2P Co2P

Hexagonal

Figure 3. Magnetic phase diagram of the system Mn2P–Co2P.
(After Fruchart, D., et al. Phys. Stat. Sol. (a) 57 675–682. Hand-
book of Magnetic Materials, Buschow (Ed.), Vol. 6, O. Beckman
and L. Lundgren, p. 236.)

with the crystal cell. The situation is perfectly illustrated
in Figure 4(a–c), all related to Fe2P. In the vicinity of the
change in ordering, both the ferro-antiferromagnetic and the
ferro-paramagnetic transitions are accompanied either by a
change in the crystal structure or at least by discontinuities
of the cell parameters. Simultaneously, the magnetic moment
of the T (T′) element can vary abruptly as the electronic
state becomes modified (Bacmann et al., 1994). Additionally,
in the paramagnetic state, short-range magnetic ordering
effects have been observed with a regime of high-temperature
correlation of up to 3TC (Zach et al., 1994, 1995; Zach,
Guillot, Picoche and Fruchart, 1995a).

Very similar instability effects, also of electronic origin,
have been pointed out in the TX series, as illustrated in
Figure 5 for the CrP–MnP–FeP system (Sénateur, Roger,
Fruchart and Chappert, 1969; Beckman and Lundgren, 1991).
The well-known lattice and magnetic instability of MnAs
(Goodenough and Kafalas, 1967) versus temperature, com-
position, and application of pressure are more particularly
illustrated in Figure 6(a) versus composition and Figure 6(b)
versus application of an external pressure.

More recent fundamental investigations on the properties
of the TT′X series have been reported from the 1990s up
to now, mostly by T. Kanomata et al. in Japan, R. Zach
et al. in Poland, D. Fruchart et al. in France, J. Bartolomé
et al. in Spain, for a part under crossed collaborations, and
by E. Brück et al. in The Netherlands. After the discovery
of the very important magnetocaloric effect (MCE) in MnAs
by H. Wada et al. in Japan, S. Gama et al. in Brazil have
evidenced colossal MCE properties of MnAs1−xSbx systems
under pressure.

These contributions can be classified relative to their main
objectives and interests as follows:

1. Investigation of the magnetic and electronic structures.
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2. Correlation of the typical magnetoelastic behaviors with
the crystal and magnetic transformations at specific
transitions.

3. Transformations induced by applying external pressure
or high magnetic fields.

4. Specific analysis of the change in entropy at transition
in terms of MCE.

3.1 Investigation of the magnetic and electronic
structures

3.1.1 TT ′X pnictides

Fe2P remains a material of reference because of the multiple
magnetic and physical sensitive characteristics obtained with
the pure and substituted compounds. Band structure calcula-
tions using a KKR-CPA (Korringa Kohn Rostoker-Coherent
Potential Approximation) method were performed to com-
pare with the experimental results obtained by a combination
of magnetization and neutron diffraction measurements on

Fe2P (Koumina et al., 1998) and on FeMnP1–xAsx com-
pounds (Tobola et al., 1996). A fairly good agreement was
reached in determining the magnetic moments from expe-
rience and calculations. The reentrant spin glass SP (Spin
Glass)–type transition at T ∼ 125 K of Fe2P substituted with
small amounts (5%) of both Cr and Ni was studied by dc
magnetization and ac susceptibility (Srivastava et al., 1994).
The critical exponent of the freezing phenomenon was deter-
mined, thus ranging well with values observed for ordinary
paramagnetic SP transitions. The magnetic phase diagram of
slightly Cr-substituted Fe2P samples was determined from
magnetization and neutron diffraction experiments. Three
different regions were identified with reference to an inter-
mediate range (50 < T < 120 K), where negative interac-
tion forces reveal an important comparison made with low
and high ranges of temperatures respectively, both exhibit-
ing ferromagnetic-type orderings (Sudish-Kumar, Srivastava,
Krishnamurthy and Sahni, 1999).

The dependence of the thermopower Seebeck coefficient
S(T) (Nakama et al., 1998) was measured versus polarization
of the magnetic structure by application of high magnetic
fields up to 15 T. A large field dependence was found with a
shoulder between 60 and 70 K and a discontinuity at ‘TC’; a
first-order-type transition.

The magnetic phase diagram of MnRhAs (H3 type)
was reanalyzed using single-crystal and ac susceptibility
technique in order to make the metastable character of a so-
called ferro-AF multistep transition taking place between 127
and 176 K more precise. Three zones with different behaviors
were evidenced to relate to the spin canting phenomena (Rillo
et al., 1992).

The ferromagnetic (Fe1–xRux)2P (H3 type) system was
investigated using the same technique as in the preceding
text, thus revealing two magnetic transitions, the role of
increasing Ru content being interpreted similar to the appli-
cation of high pressure on the binary Fe2P (Artigas et al.,
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1992), the latter being reanalyzed by neutron diffraction and
band structure calculations (Tobola et al., 1996). A compar-
ison was established with the parent MnFeP0.7As0.3 where a
drop in the magnetic moment of Fe was evidenced earlier at
ferro-AF transition.

Following the phase diagram reinvestigation (Bacmann
et al., 1990) of the (Mn1–xFex)2P (H3 type) by ac
susceptibility, new magnetic phases were detected, in agree-
ment with a parallel neutron diffraction analysis. The system
(Mn1–xCox)2P (O4 type) isoelectronic to Fe2P (H3 type)
for x = 0.5 was analyzed parallel to magnetization mea-
surements and band structure calculations (Sredniawa et al.,
2002). In agreement with the magnetic arrangements, as
determined elsewhere by neutron diffraction, the rapid drop
in phase transitions induced by much higher Mn contents
was correlated with a marked enhancement of density of
states (DOS) close to the Fermi level. Complementary to
the two preceding ternary systems, analysis of the pseudo-
quaternary MnFe1–xCoxP systems by different experimen-
tal techniques and band structure calculations (Sredniawa
et al., 2001) reveals a very interesting phase diagram with a
first-order AF-ferro transition sensitive to composition. This
orthorhombic phase diagram appears quite similar to the
hexagonal part of the MnFeP–MnFeAs hexagonal system
(Bacmann et al., 1994; Tobola et al., 1996). Substitution of
Si to P in MnFeP was shown to be possible up to x ∼ 0.4;
however, the thermal treatment history dependence reveals
unexpected and puzzling effects in terms of Curie tempera-
ture (Zhang et al., 2005).

Magnetization curves measured in an H3 (MnRuP) and
in T2 (MnZnSb and MnGaGe) systems around Curie tem-
perature to determine the critical exponents (Ono et al.,
2001) lead to the conclusion that the two-dimensional mag-
netic character applies well for the later T2-type com-
pounds, contrary to the H3-type MnRuP. Systematic compu-
tational KKR-CPA analyses of tetragonal arsenides, binary,
and ternary antiferromagnets (Cr2As, CrMnAs, Mn2As,
CrNiAs) were performed (Tobola et al., 1997), revealing an
excellent agreement with the previous magnetic structure
determination, namely, using neutron diffraction. However,
the hexagonal CrNiAs compound, isoelectronic to Fe2P,
reveals strong competition between AF and ferromagnetic
couplings, and it was anticipated that pressure effects or
substitution should increase the magnetic moment of Cr up
to more than 2 µB. The pressure effects have been stud-
ied in detail by Ohta et al., as reported in Section 3.3. The
reports given by this group are parallel to the high-field mag-
netization performed on (Cr1–xNix)2As with x = 0.5, 0.7,
concluding that the low temperature anomalous magnetiza-
tion attributed to the spin glass–like behavior related to band
magnetism (Ohta et al., 1995a). From a band structure anal-
ysis, they concluded that CrTX systems with T = Fe, Co,
Ni, X = P, As, Cr are magnetically ordered but Cr carries
only a magnetic moment (Ishida, Takiguchi, Fujii and Asano,
1996). Finally, a study based on neutron diffraction (Bac-
mann, Fruchart, Koumina and Wolfers, 2004) revealed that
the low-temperature phase of CrNiAs (up to ∼110 K) con-
sists of a sine-modulated structure with moments on both Cr
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and Ni, but up to TC ∼ 210 K, only Cr carries a moment,
forming a simple collinear structure.

More recently, all possible magnetic exchange cou-
plings that could take place in the tetragonal series of
TT′X pnictides were reviewed from theoretical symme-
try approaches (Fruchart, 2005). Contrary to most mag-
netic arrangements established up to now, which form AF
collinear magnetic structures, long-range noncollinear struc-
tures are basically allowed in complete agreement with a
first experimental result (Yamagishi et al., 1999). Here also,
potential magnetoelastic couplings must be accounted to fully
understand the magnetic phase diagram, as anticipated earlier
(Shirakawa and Ido, 1976).

Definitively, a systematic analysis of the magnetic cou-
plings versus the metal–metal distances in some TT′X with
T = Cr and Mn, T = 4d elements (Ru, Rh, Pd) phosphides
and arsenides leads to the conclusion that the physical behav-
ior should also be interpreted in terms of itinerant–electron
magnetism (Ohta, Kanomata and Kaneko, 1990; Kanomata
et al., 1991), as revealed by fitting the susceptibility traces.

3.1.2 TX pnictides

For TX pnictides, similar fundamental analyses were per-
formed in order to better understand the subtle equilibrium
state between ferromagnetic and AF phase regions.

Symmetric and antisymmetric anisotropic exchange ener-
gies were considered for the relative stability of the different
modulated magnetic phases existing in the monopnictides
MnP, FeP, CrAs, MnAs (Sjöstrøm, 1992). The results, based
on a band model analysis, confirm that the shape of the
Fermi surface and the antisymmetric interactions is crucial
for the stability of the helical magnetic structure, for example,
in MnP.

The magnetic couplings supported by conduction carriers
were demonstrated to be of relative importance in corre-
lating the transport and magnetic properties (Barner, 1987).
Also, the canted and helicoidal equilibrium spin structure was
attributed to mixed couplings, with peculiar field and temper-
ature dependence in MnPxAs1–x and CrxMn1–xSb systems
(Kohnke et al., 1996).

MnP (O4 type) is one of the few magnetic systems in
which a uniaxial Lifshitz point (LP) has been identified,
occurring at the confluence of modulated, ferromagnetic,
and paramagnetic phases. Experiments were performed by
applying the magnetic field along the main direction of the
orthorhombic cell, thus allowing the evaluation of the critical
exponent parameters, for example, susceptibility and specific
heat (Becerra, Bindilatti and Oliveira, 2000). The results have
been successfully interpreted in terms of a 3-D Ising model.
Besides, from the analysis of the wave vector dependence
q(H) with the applied field of all the modulated magnetic

structures (helix, fan, cone), the shape of the magnetization
curves realized while applying the field along the lattice vec-
tors was explained along with the nature of the cone-phase-
type transition (Zieba, Slota and Kucharczyk, 2000). The
characteristics of the LP, triple point, and critical end point
were derived on the basis of an axial next nearest-neighbor
Heisenberg model (ANNNH), thus appearing in semiquanti-
tative agreement with the experiments. Effective values for
the crossover exponent, wave vector exponent, and magneti-
zation discontinuity provide explanations of the deviation to
experimental results. Apart from the mechanisms of phase
transformation, the nature of the O4–MnP-type magnetic
structure was requestioned theoretically by density-functional
determination (Niranjan, Sahu and Kleinman, 2004). The
high-temperature magnetic state was shown to be antiferro-
magnetic and the absence of any Curie–Weiss-type magnetic
susceptibility was justified by the lack of long-range ordering,
according to the model.

3.2 Typical magnetoelastic behaviors

A peculiar system MnFeP1–xAsx revealed to be very inter-
esting since it contains the three main structure polytypes
O4 for the P-rich side, T2 for the As-rich side, and H3
for intermediate compositions, as shown in Figure 7. By
analyzing the dependence of magnetic couplings versus the
metal–metal distances (‘densification’ effect from T2 to H3
to O4), the intermediate H3 part of the phase diagram reveals
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the existence of a singular transition TT at x ∼ 0.27 between
a ferromagnetic domain and an antiferromagnetic one. The
so-called Curie temperature ‘TC’ from ferro to ‘paramag-
netic’ P state appeared to have similar trends: first-order
transition type with a magnetoelastic character, as the F–AF
transition. The influence of high magnetic fields was mea-
sured in the range 0–20 T from 4 to 400 K, thus inducing
magnetic phase transformations with magnetoelastic charac-
ters (Zach, Guillot and Fruchart, 1990). Then the magnetic
ordering was checked for using several complementary tech-
niques such as X-ray and neutron diffraction versus temper-
ature, Mössbauer spectroscopy, and magnetic measurements
(Bacmann et al., 1994; Zach et al., 1995). The a cell param-
eter drops down by ∼1% at the F–AF and F–P transitions
TT and ‘TC’; conversely, the c cell parameter increases by
∼2.5%, thus almost no change in volume is observed. Crystal
structure refinements indicate that, starting from the ferro-
magnetic state, the magnetoelastic transitions TT and ‘TC’ led
to the mean 〈Mn–Mn〉 (pyramidal sites) distance remaining
unchanged, the 〈Fe–Fe〉 (tetrahedral sites) distance dropped
by 0.1 Å, conversely to the 〈Mn–Fe〉, which increased by
the same value. A high-field X-ray diffraction investigation
performed on MnFeP0.5As0.5 confirms the same change in
the a and c cell parameters when applying high field just
above ‘TC’; however, the cell volume slightly and continu-
ously decreases with increasing magnetic field through the
transformation (Koyama, Kanomata, Matsukawa and Watan-
abe, 2005), thus realizing the reverse behavior of the volume
expansion when temperature increases. Solving the complex
noncollinear and incommensurate AF structure using both
neutron diffraction and 57Fe Mössbauer spectroscopy indicate
that at TT (and accordingly at ‘TC’) the magnetic moment
drops down by ∼50% (0.6 µB), the magnetic moment of
Mn remaining unaffected, close to 3 µB. All these trends
were confirmed later by KKR-CPA electronic structure cal-
culations. The confirmation of most of the characteristics
of the MnFeP1–xAsx magnetic system was achieved more
recently using 57Fe Mössbauer spectroscopy, but applied to
close compositions as those previously analyzed (Hermann
et al., 2004).

Both competing positive and negative interactions and a
reduction in the Fe–M exchange forces induce a ferromag-
netic–paramagnetic magnetoelastic transition with a marked
loss of long-range correlation just above ‘TC’, as indicated
by the important diffuse scattering at large q vectors (Bac-
mann et al., 1994). A magneto-resistance study was realized
on MnFeP0.55As0.45 on a polycrystalline sample prepared by
a solid-state reaction (Tegus, Brück, Buschow and de Boer,
2002). The extremum of the derivative of ρ(T ) coincides
well with ‘TC’. The increase in resistivity, which is almost
constant in the room-temperature (RT) range, approaching
the magnetic ordering temperature may be related to the

existence of AF spin fluctuations. This appears in agreement
with what was proposed by Zach et al. (1995).

The critical field behavior was investigated experimentally
(Zach, Guillot, Picoche and Fruchart, 1995a), allowing to
propose a Landau type of thermodynamic model as seen
in Figure 8(a–c). This model was shown to be supported
well by systematic magnetic measurements under pressure,
allowing to build a (T, B, P) diagram (Zach, 1997).

Recently, a model description of the first-order phase tran-
sition in MnFeP1–xAsxwas proposed (Tegus et al., 2005b)
on the basis of the Bean–Rodbell model. Exchange inter-
actions, elastic energy, entropy, pressure terms and, finally,
the Zeeman energy were used to minimize the Gibbs free
energy with respect to the volume and magnetization. The
fit of pertinent parameters to experimental data confirms that
the magnetoelastic couplings play a very important role in
the mechanism of the phase transition.

Besides, the magnetoelastic properties and electronic struc-
ture analysis for a similar H3 system (Fe1–xNix)2P were
determined recently (Zach et al., 2004). Once more, the tetra-
hedral site where preferentially Ni substitutes for Fe loses its
magnetic polarization rapidly.

In both cases, similar to the other ones of the TT′X
series, the magnetoelastic character of the first-order-type
transitions is directly related to magnetic instabilities of
electronic origin, induced by chemical pressure effects.

3.3 Transformations induced by external pressure
or high magnetic fields

Since the TT′X (and TX) systems of magnetic transition-
metal pnictides reveal very dramatic competitions of cou-
pling forces, with correlated magnetoelastic phenomena, an
external pressure technique was used along with a high mag-
netic field to better understand the nature of the transitions.

The MnRhAs (H3 type) compound first proved to be
very attractive with regard to the successive complex non-
collinear structure, AF at low temperature, transforming to
a F + AF state via a first-order transition at TT = 158 K,
then losing long-range ordering at TC ∼ 200 K (Chenevier
et al., 1984; Bacmann et al., 1986). Moreover, antiphase
magnetic arrangements occurred immediately down to TT, as
specially confirmed later by neutron diffraction and topog-
raphy (Chenevier et al., 1992). The pressure dependence of
the different transitions was first investigated by Kanomata,
Shirakawa and Kaneko (1987), indicating the stabilization
of the AF domain at the expense of the F + AF one. This
was confirmed in more detail with the (T, B, P) phase
diagram determined on the extended MnRhAs1–xPx system
(Zach et al., 1992, 1995; Zach, 1997). Critical field expo-
nent as well as triple point and end point were evidenced
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and interpreted using a Landau-type thermodynamic model
as for the MnFeP1–xAsx system (Zach, 1997).

Pressure-induced structural transition in the ferromag-
net MnRhP (H3 type) and MnRhAs at RT by using an
in situ experiment (Eto et al., 2000). A transformation to
an orthorhombic (more dense) structure occurred under
34 GPa. Another unidentified transformation also occurred
for MnRhAs under 25 GPa. The Curie temperature depen-
dence of the former and ferromagnetic compound was
checked under pressure, revealing a c-plane dependence of
the exchange forces (Nishino et al., 2000). The magnetic
characteristics of the second compound, as submitted to
external pressure, but in a weaker pressure range than for the
X-ray investigation, were determined by Fujii et al. (2001).
This experiment has allowed to establish a singular behav-
ior, as reported in Figure 9, but in good agreement with
earlier studies (Zach et al., 1997). For a pressure larger than
5 GPa, an almost ferromagnetic phase was stabilized. Simi-
larly, a ferromagnetic state was stabilized under pressure up
to 12 GPa in the MnRhAs0.5P0.5as a part of reanalysis of the
MnRhAs1–xPx system with x = 0.4, 0.5, 0.6 (Zach et al.,

1992; Fujii et al., 2002a). Finally, the related but more com-
plex system MnRh1–xCoxAs was investigated up to 8 GPa
for magnetic properties and using in situ experiments for
X-ray analysis (Fujii et al., 2002b). MnCoAs (O4 type) is
a ferromagnet and from substitution of Rh to Co, a rein-
forced ferromagnetic state can be expected at the expense of
the low-temperature AF state. A comparison of the results
in terms of magnetic couplings acting along the c axis
with those recorded on parent compounds (MnRhP, MnRuP,
MnRhAs, MnRhAs1–xPx , MnZnSb) allowed the authors to
conclude that RKKY-type interactions play an important role
in the exchange mechanism in the TT′X system, as illustrated
in Figure 10.

Other sensitive TT′X systems were investigated under
pressure, with CrNiAs and CrRhAs (both H3 type) for a simi-
lar phenomenology anticipated with both the CoxMn1–xP and
MnRhAs1–xPx , systems. A decrease in the ordering temper-
ature TC and TN respectively was induced by application of
pressure (Ohta et al., 1995b; Ohta and Onmayashiki, 1998).

Interestingly, MnFeAs (T2 type) transforms and is stabi-
lized to MnFeAs (H3 type) by using high pressure (6 GPa)
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Figure 9. The (P–T) phase diagram determined from the present
experiment. A pressure-induced phase transition from AF(I) to F
takes place at around 5 GPa. TP was not detected in this experiment.
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Figure 10. Mn–Mn interaction curves in MnMX-type intermetallic
compounds calculated from RKKY theory and estimated from
refs. (30–32) in Fujii et al., (2002b) for Mn alloys. Observations
of TC for MnRuP (•), MnRhAs (◦), MnZnSb (�) are also
plotted. (Fujii, N., et al. Journal of Alloys and Compounds, 345,
(2002b), 66.)

at a temperature of 800 ◦C. X-ray analysis of the cell param-
eters, neutron diffraction to analyze both the crystal and
magnetic structures, 57Fe Mössbauer spectroscopy studies,
and KKR-CPA electronic structure calculations were under-
taken (Tobola et al., 2001). All results were in fair agreement
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Figure 11. Experimental magnetic moments of Fe (triangle) and
Mn (square) in tetragonal (T2-filled symbols) and hexagonal (H3-
empty symbols) structures of MnFeAs. (Tobola, J., et al. Journal of
Alloys and Compounds, 317–318, (2001), 279.)

with the fact that the Mn magnetic moment (pyramidal site)
was weakly reduced from T2 to H3 type, but, for Fe (tetra-
hedral site), it was almost zero as T2 was comprised between
1.1 and 1.54 µB, respectively, deduced from the calculations
and the experiments. This supports well the specific instable
character of the magnetic moment of Fe sitting in the tetrahe-
dral site of the TT′X compounds similar to MnRhAs1–xPx in
the H3 range of compositions. Figure 11 represents the posi-
tion of the Mn and Fe magnetic moment versus the mean
metal–metal distance.

Niziol et al. have primarily studied the (Co1–xMnx)2P
system (x = 0.6 and 0.75), namely, using ac susceptibility
measurement under external pressure (Niziol et al., 1993).
The metastable character of the ferromagnetic state with ref-
erence to the low-temperature incommensurate AF structure
was correlated with a magnetovolume effect. The results
led to the proposition of a localized/delocalized picture of
magnetism.

In the past, the tetragonal compound Mn2Sb (T2 type)
has got attention for its ferrimagnetic characteristics up to
relatively high temperature, as reported in Beckman and
Lundgren (1991). Under external pressure and using neutron
diffraction, the ferri-antiferromagnetic transition initiated
when applying pressure for many of the parent-substituted
compounds was not evidenced in pure Mn2Sb (Ryzhkovskii
et al., 2002). Under a pressure of 2.8 GPa, the pure binary
antimonide is only characterized by a spin reorientation
phenomenon. Besides, it was shown earlier on a parent
system (Val’kov and Khapalyuk, 1997) that cycles of thermal
treatments applied on substituted Fe0.5Mn1.1As (T2 type)
allowed to suppress the low-temperature phase down to 77 K,
the material still being ferromagnetic, contrary to the sample
prepared in a conventional way.
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In terms of field-induced structural and magnetic trans-
formations, the monopnictide series provides a very inter-
esting result with MnAs (Ishikawa, Koyama, Watanabe and
Wada, 2003; Ishikawa, Koyama and Watanabe, 2004). From
both magnetization measurements and X-ray diffraction per-
formed under a magnetic field, a metamagnetic transition
from paramagnetic to ferromagnetic state was induced above
TC. From the X-ray profile analysis, the forced magnetic state
was stabilized at ∼3.5 T, and the first-order crystalline and
magnetic transition was deduced from a particularly squared
hysteresis loop, as reported in Figure 12.

4 MAGNETOCALORIC PROPERTIES OF
THE TT′X AND TX SERIES

4.1 Thermodynamics of magnetocaloric materials

In order to understand the physical origin of the MCE, it
is useful to recall briefly the thermodynamic properties of
a magnetic material plunged in a magnetic field B. Under
constant pressure, the full entropy is given by

S(T , B) = Slat(T ) + Se(T ) + Sm(T , B) (1)

where Slat, Se, and Sm represent respectively the lattice
entropy, the electronic entropy, and the magnetic entropy.
The MCE can be related to the magnetic properties of the
material through the thermodynamic Maxwell’s equation(

∂S

∂B

)
T

=
(

∂M

∂T

)
B

(2)

According to the magnetization measurements versus
temperature and applied magnetic field, the magnetic-entropy

change of a material can be calculated using this relation as

�Sm(T , 0 → B) =
B∫

0

(
∂M

∂T

)
B ′

dB ′ (3)

Considering the temperature variation M(T ) and equa-
tion (3), it is concluded that a homogeneous magnetic mate-
rial having a definite magnetic phase transition temperature
is not suitable for use as the refrigerant because (∂M/∂T )

varies considerably with temperature change near TC and, as
a result, entropy change is maximum accordingly.

Using magnetization measurement made at discrete tem-
perature intervals and by numerical integration of equa-
tion (3), �Sm can be approximated as

�Sm =
∑

i

Mi+1 − Mi

Ti+1 − Ti

�Bi (4)

where Mi+1 and Mi are the magnetization values measured
in a field B, at temperature Ti+1 and Ti respectively.

In the classical mean-field theory, the relative magnetiza-
tion is given by

σ =Bj(y)= 2j + 1

2j
coth

(
2j + 1

2j
y

)
− 1

2j
coth

(
1

2j
y

)
(5)

where Bj is the Brillouin function and j is the total
angular momentum. The argument y is the solution to the
simultaneous equations

σ = Bj(y)

y = 1

T

[
3TC

(
j

j + 1

)
σ + gµBj

k
B

]
(6)

where k is the Boltzmann constant, g the Landé factor, and
µB the Bohr magneton.

According to principles of magnetism, the magnetic
entropy is derived from

Sm = R


ln


sinh

(
2j+1

2j
y
)

sinh
(

y

2j

)

 − yBj (y)


 (7)

where R is the universal gas constant, and the changes of
magnetic entropy caused by a variation of magnetic field
�B = Bf − Bi are given by

�Sm(T , �B = Bf − Bi) = Sm(T , Bf ) − Sm(T , Bi) (8)

For deeper analyses, one can refer, for example, to the
analytical model developed by von Ranke et al. (2005) to
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understand the colossal MCE, or, more extensively, to the
recent book by Tishin and Spichkin (2003).

From the preceding considerations, it can be expected that
the best magnetocaloric materials in terms of application
for refrigeration close to RT must undergo first-order-like
magnetic transition that is easy to handle under rather low
magnetic fields (e.g., 1–2 T), with a limited hysteresis effect
to be effectively activated reversibly, with a high density
of atom magnetization. Transition-metal-rich magnetic mate-
rials, such as the T-pnictides, herein reviewed can fulfill
these specifications, since they often exhibit tunable both lat-
tice and ferromagnetic characteristics, along with being good
thermal conductors and being formed with rather inexpensive
elements.

Reports with more technical details and systems are
available in more specific papers such as (Lebouc, Allab,
Fournier and Yonnet, 2005).

4.2 Magnetocaloric properties in the TT′X series

Up to 2002, the best promising magnetocaloric material
close to RT belonged to the series deriving from the
Gd5(Si1–xGex)2-type compounds (Pecharsky and Gschnei-
dner, 1997).

The MnFeP1–xAsx series was revealed by Tegus, Brück,
Buschow, and de Boer (2002) as a performing MCE chal-
lenger of the gadolinium intermetallics in terms of effective-
ness, also with reference to the cost of elements. Tunability
of their MCE characteristics in interesting temperature ranges
for application was demonstrated soon after by the same
group when selecting different compositions by substitution
of As to P (Tegus, Brück, de Boer and Buschow, 2002)
or of Mn to Fe (Brück et al., 2003; Tegus, 2003). Interest-
ingly, high values of magnetic-entropy changes for different
compounds of the MnFeP1–xAsx series were measured up
to −�Sm ∼ 35 J kg−1 K−1, in rather moderate applied mag-
netic field, the temperature of activation ranging from ∼150
to 350 K, as shown in Figure 13. However, the best perfor-
mances remained a little far from RT, better results were
recorded close to RT when a moderate part of Ge to As was
substituted, thus forming MnFeP0.5As0.5–xGexwith a smaller
c/a ratio of the hexagonal cell parameter (Brück et al., 2004).
This point proved to be of importance for the corresponding
increase in the corresponding so-called Curie temperature
‘TC’ and amplitude of the magnetoelastic effect at transition.
Further, the maximal magnetic-entropy change was derived
from little more complicated formulas such as Mn1.1Fe0.9

P0.7As0.3–xGex (Tegus et al., 2005a). A more overall anal-
ysis of the properties of the MnFeX series was established
first by E. Brück et al. (Brück et al., 2004; Brück, Ilyn, Tishin
and Tegus, 2005). Complementary to these specific papers,
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Figure 13. Magnetic-entropy change for different compounds of
the MnFeP1–xAsx system for applied field change of 2 and
5 T. (Brück, E., et al. Journal of Alloys and Compounds, 383,
(2004), 34.)

reports were made on the same series of TT′X materials
(Fruchart et al., 2005). This particularly concerns systems
exhibiting sensitive magnetic properties with magnetoelastic
transitions (Mn1–xCox)2P, Fe(Fe1–xMx)P, MnRhAs, as well
as MnAs.

Besides, a model description of the first-order phase
transition in MnFeP1–xAsx was built by the same group
(Tegus et al., 2005b), based on the Bean–Rodbell model.
Another type of approach was proposed a little earlier (von
Ranke et al., 2004) based on the Landau theory as well as
in (Zach, Guillot and Tobola, 1998; Zach et al., 1997) to
derive the conditions of a first-order transition and then to
evaluate �Sm and �Slat, the magnetic and lattice contribution
to change in entropy. All the results appear to fit correctly
with the experimental data (Tegus et al., 2005b; von Ranke
et al., 2004; Zach, 1997; Zach, Guillot and Tobola, 1998).
However, the electronic part of entropy change at transition
�Se was not accounted for.

4.3 Magnetocaloric properties in the TX series

The discovery of giant MCE in MnAs1–xSbx samples
was made by Wada and coworkers and was reported in
2001–2002. This was a major step in the utilization of
T-intermetallics as magnetic refrigerant materials (Wada and
Tanabe, 2001; Wada, Taniguchi and Tanabe, 2002). The
magnetic-entropy change was rapidly fixed up to – �Sm ∼
30 J kg–1 K for x ∼ 0.3 (Wada et al., 2003). These were
unusual characteristics in the vicinity of the first-order phase
transition between the ferromagnetic low-temperature NiAs-
type structure and the nonmagnetic MnP-type structure, as
illustrated in Figures 2 and 14. Substitution of Sb to As
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Figure 14. Magnetization and inverse susceptibility of MnAs
showing the temperature region of different NiAs and MnP crys-
tal structures. (Handbook of Magnetic Materials, Buschow (Ed.),
Vol. 6, Beckman, O. and Lundgren, L. p. 204.)

appeared interesting since this decreases the transition tem-
perature, with a reduction of the strong hysteresis effect
related to the very abrupt character of the first-order tran-
sition of MnAs. A theoretical analysis of the giant MCE
in MnAs1–xSbx compounds, based on the Landau theory
of phase transition, using a Bean–Rodbell-type model, the
critical dependence of the transition temperature first versus
second order was deduced and also the temperature depen-
dence of �Sm was derived in a fair agreement with experi-
ence (von Ranke et al., 2004). Then a composite system was
anticipated for an optimal design and process to work in an
Erickson mode near RT.

The parallel effect of deviation from stoichiometry of
MnAs1–xSbx materials was analyzed on the magnetic and
MCE properties, and excess iron content was related to some
decrease in the optimal magnetization level (Morikawa and
Wada, 2004). Interstitial iron resulting from excess composi-
tion was proposed as the parameter controlling the ‘TC’ well,
the nature (order) of the phase transition, the amplitude of the
hysteresis at transition, and finally the force of the MCE, in
relation to the increase in the c/a cell parameter ratio. Because
of a certain lack of miscibility with Sb additions, the single-
phase region was ascribed to compositions Mn1+δAs1–xSbx

with δ ranging from 0.05 to 0.11 (Morikawa, Wada, Kogure
and Hirosawa, 2004). Then a specific heat treatment deter-
mined to get the best composition and element distribution,
parallel to the high value of −�Sm ∼ 34 J kg−1 K field rang-
ing in (0–5 T), and a Clausius–Clapeyron analysis (first-
order transition) was demonstrated to fit fairly well to the
estimate of −�Sm plotted versus T built according to the
Maxwell relation (Wada and Asano, 2005). A further anal-
ysis of the heat treatment process was made more recently,
thus allowing to determine the condition for homogeneous
materials with sharp transition (Wada, Funaba and Asano,

2006), when quenching the Mn1+δAs1–xSbx samples directly
from the melt instead of slow cooling down as done ear-
lier. Besides, using a high-pressure resistive furnace (5.5 MPa
applied during synthesis), high quality MnAs samples were
prepared (Nascimento et al., 2006), thus exhibiting high vari-
ation of entropy well, up to −�Sm ∼ 47 J kg−1 K for 0–5 T
applied field.

Application of external pressure on MnAs was experi-
enced, leading to colossal MCE levels, the change in entropy
at transition exceeding −�Sm ∼ 260 J kg−1 K from 0 to 5 T
under 0.223 GPa as shown on Figure 15, effectively more
than six times stronger than without application of pressure
(Gama et al., 2004). From such experiments and analysis,
the authors have concluded that, if generally admitted, the
assumption of field independence of �l and �e is cer-
tainly not valid. Similar pressure experiences were under-
taken on well-known Gd5Si2Ge2-type compounds by the
same group (Magnus et al., 2005), with a reverse behavior for
the entropy variation in spite of preserving the magnetization
level, even increasing the transition temperature. A com-
plete model allowing the description of the colossal entropy
variation of MCE material was developed and specifically
applied to MnAs (von Ranke et al., 2006). It includes the
exchange interactions (β-parameter), the magnetoelastic con-
tributions (η-parameter), the external pressure effects (via the
Grünesein relation, γ -parameter), the magnetic field depen-
dence of the lattice entropy, but neglecting the electronic
contribution. By adjusting the phenomenological parameters
β, γ , η to experimental results, the model allows to determine
the temperature dependence without and under applied field
of the total entropy �T. However, the authors consider that
if the model does not reproduce exactly the shape of the �T
traces versus temperature and pressure, the fair agreement in
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Figure 15. The MCE of MnAs as a function of temperature and
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amplitude value leads to ascribe the colossal MCE effect to
marked increase in the lattice entropy under pressure. The-
oretical analyses of the fundamental behavior and of the
(T, H, P) phase diagram of MnAs have been made paral-
lel to the experimentations of the S. Gama’s group by de
Oliveira (2004) and Nascimento et al. (2006).

4.4 Magnetocaloric properties in another series
of pnictides

Another series of intermetallic compounds also reveals
interesting features in terms of sensitivity to temperature,
magnetic field, pressure, chemical composition. . . ferro-
magnetic phases, with first- or second-order magnetoelastic
coupled transitions, as, for example, related to Mn3GaC,
LaSi13–xSix , Ce(Fe1–xCox)2, MnTGe, MnCoSi1–xGex. . .

all different type compounds. Also, in the series of transition-
metal compounds, other families were checked for, as part of
an extended list, for example, Mn5Ge3–xSbx (Songlin et al.,
2002a), Mn5–xFeSixSi3 (Songlin et al., 2002b), NdP and
NdAs (Plaza et al., 2004). . . with medium to rather high
variations of magnetic entropy at transition. However, the
reference book by Tishin and Spichkin (2003) exposes deeply
the basic concepts and displays unique sets of data on all of
the known systems exhibiting MCE properties. A compara-
tive review of the main characteristics of the most promising
MCE alloys and compounds has been reported more recently
by Brück (2005).

Other types of materials are interesting to consider in terms
of potentially high ferromagnetic but switchable properties,
for example, the ternary iron germanium pnictides (X = P,
As, Sb) where, apart from MnP and NiAs-type compounds,
the systems reveal rich ferromagnetic but switchable proper-
ties with different types of structures (Mills and Mar, 2000).

5 CONCLUSION

Two main series of transition-metal-rich pnictides, TT′X
and TX, reveal a wide panel of various magnetic proper-
ties, but critical situations are confronted owing to strong
magnetoelastic couplings associating crystal structure pecu-
liarities and instabilities of magnetic configurations. These
series prove to be very attractive with the recent evidence
of a marked magnetocaloric character to the many existing
transitions. Presently, the renewed interest in the TT′X and
TX pnictides covers large fields from fundamental analy-
ses to performances of materials and systems. In fact, the
need of alternative solutions to solve the double problem
of energy and of environment preservation promotes more

research efforts, for example, for room-temperature refrig-
eration and air conditioning. Anyway, it is worth noting
that, exactly 40 years ago, early but determining fundamen-
tal characterizations devoted to the just-discovered series of
transition-metal pnictides were thus achieved (Goodenough
and Kafalas, 1967). This made a milestone lecture of very
unusual physical properties versus temperature, magnetic
field, and pressure, exhibited by the herein discussed series.
The need for a deeper but detailed knowledge led to renewed
investigations on magnetic pnictides to better understand the
various but interdependent overall contributions to MCE.

6 CHALCOGENIDES

The following part of the chapter is a short review of the
knowledge of magnetic chalcogenides compounds. We limit
the field of this review to the really new and unusual prop-
erties of compounds. The most important event in magnetic
compounds is the new interest on the diluted ferromagnetic
semiconductors (DMSs) compounds that should be the basic
materials for a new kind of electronic components: the ‘spin-
tronic’ components, in which information is carried by the
spins of charge carriers. The first compound family is a
zinc-blende compound family in which the metal can be sub-
stituted by a magnetic ion. These materials are intensively
studied for their epitaxial compatibility with the more classi-
cal semiconductors such as GaAs or Si. In complement, the
half-metallic ferromagnetic compounds can help to create a
basic set of spintronic materials.

After a brief presentation on some layered ferromagnetic
compounds and on a ‘new class of alkali metal–transition
metal chalcogenides’, we present recently studied rare-
earth and copper chalcogenides that exhibit some structural
similarity with high TC superconductor structures. We finish
our discussion of magnetic chalcogenides with two studies
on magnetic actinide (essentially uranium) compounds that
always constitute an important research activity.

7 NEW MATERIALS FOR SPINTRONICS

Experimental studies on Fe/Cr multilayers (Baibich et al.,
1988) have made it obvious that the spin drives the con-
ductivity in these structures and led to a new solid state
physic concept: spin-based electronic, so-called spintronic, is
presently the subject of intensive developments in the world.
The first applications, for the magnetic hard disk reading
heads, use the giant magnetoresistance (GMR) and tunnel-
ing magnetoresistance (TMR) (Barthélémy, Fert and Petroff,
1999; Tsymbal, Mryasov and LeClair, 2003) allowing the
actual data storage capacities being reached.
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The actual spintronic challenge is now to find convenient
materials to construct a real spin-based electronic device in
parallel with the conventional ones based on IV, III–V, and
II–VI semiconductors. For this purpose, both ferromagnetic
semiconductors and half-metallic ferromagnetic compounds
are explored.

7.1 The diluted ferromagnetic semiconductors
(DMS)

This materials class is derived from the classical semicon-
ductors III–V and II–VI with zinc-blende or wurtzite crys-
tallographic structure. The ferromagnetism is obtained with a
partial substitution of the cations by magnetic ions as 3d or 4f
metal where the ferromagnetic interaction will be mediated
by the holes (Dietl, Haury and Merle d’Aubigné, 1997; Dietl,
Ohno and Matsukura, 2001). These material series constitute
the diluted magnetic compounds, called DMS.

The most relevant feature of DMS, which attracted con-
siderable interest, is the coexistence and interaction of two
different electronic subsystems: unlocalized conduction (s
type) and valence (p type) band electrons and localized (d
or f type) electrons of magnetic ions. In particular the s,
p–d exchange interaction leads to strong band splittings,
which result in giant magneto-optical effects (Chang and
Xia, 2002). On the other hand, the randomly distributed
magnetic ions with the d–d exchange interaction can induce
formation of antiferromagnetic or spin-glass phases instead
of the ferromagnetic one, depending on the magnetic ion
concentration and temperature (de Jonge and Swagten, 1991;
Twardowski, 1995).

After about three decades of investigation, many devices
were synthesized by molecular-beam epitaxy (MBE) tech-
nology for DMS growth with various magnetic ions (like
Mn, Fe, Co, and recently Cr). Figure 16 displays computed
ferromagnetic ordering temperatures (Dietl, Haury and Merle
d’Aubigné, 1997) and evidences a possibility to reach room-
temperature ferromagnetism for some compounds. This pre-
diction was confirmed by the observed ordering temperature
of (Ga,Mn)As that has reached 100 K on one hand (Ohno
et al., 1996) and, on the other hand, the recent studies starting
from the ZnO thin films present some ferromagnetic proper-
ties at room temperature (Yan, Ong and Rao, 2004; Shi-Shen
et al., 2004) as displayed in Figure 17. Table 1, displays some
recent experimental results collected by Hebard et al. (2004).
It includes the results for the (Ga,Mn)As sample (Ohno et al.,
1996).

Hebard et al. (2004), in their paper, discuss the meaning
of high TC ferromagnetism in DMS and make clear the
various disturbing effects during the sample synthesis and
their consequences on the final apparent properties.
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Figure 16. Computed values of the Curie temperatures TC for
various p-type IV, III–V, and II–VI semiconductors containing 5%
of Mn by cation and 3.5 × 1020 holes/cm3. (After Dietl, T. et al.,
2001 and Dietl, T., 2002.)

The electronic structure of these compounds was inten-
sively studied by several authors with various methods. Two
recent papers (Sanyal, Bengone and Mirbt, 2003; Erikson
et al., 2004) present a fine analysis of the electronic struc-
ture of these compounds. In the first step, starting from
self-consistent electronic structure calculation, including a
collinear spin arrangement, an electronic structure is deter-
mined. Then, the deduced exchange interactions are used in
Monte Carlo simulations to take into account the statistical
mechanics part of the problem. The results for several repre-
sentative groups III–V and II–VI DMSs are found to agree
nicely with the experimental data particularly for the ordering
temperatures.

As pointed out by many authors in recent studies of
these materials, it is difficult to get reproducible results
which are very sensitive to the methods (MBE, pulsed-
laser deposition, metallo organic chemical vapour deposition,
etc.) and conditions of compound film elaboration. It seems
that it is rather difficult to obtain homogeneous distributions
of the magnetic cations in the sample and, the observed
Curie temperature is often markedly lower than the predicted
one. Finally, the semiconductor properties are depending
of the nature and the magnetic ions concentration which
affect the strength of exchange interactions that stabilize the
ferromagnetic state.

In conclusion, it seems, these semiconductors are actu-
ally difficult to use for electronic application so that a very
important characteristic of these compounds is the possibility
to insert them in devices using standard III–V or II–VI semi-
conductors. In addition, as known from Tomasz Dietl: ‘With
no doubt, search for functional ferromagnetic semiconductor
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Table 1. Experimental results on some diluted magnetic semiconductors AxM1−xB samples as
collected by Hebard et al. (2004), except for GaAs line that was given by Ohno et al. (1996).
TC denotes, the observed Curie temperature by field (Ha) cooling and Hco is the coercitive field as
observed at the temperature To.

Host material Carrier concentration (cm−3) Magnetic ion TC (K)/Ha (Oe) Hco (Oe)/To (K)

GaAs p type, 7.7 × 1020 3.5% Mn 60/NA 50/5

GaP:C p type, 1 × 1020 3% Mn 330/500 50/300
5% Mn 40/500 NA

GaP n type, 1 × 1016 3% Mn 60/1000 NA

GaN:Mg p type, 3 × 1017

3% Mn 250/100 25/100
3% Fe 250/500 100/10
5% Fe <200/500 125/10
3% Ni 200/500 NA
5% Ni 40/500 NA

SiC:Al p type, 1 × 1017 5% Fe 250/500 50/10
5% Mn 250/500 150/10

nanostructures and their theoretical modeling have evolved
into an important branch of today’s materials science and
condensed matter physics.’

7.2 The half-metallic ferromagnetic compounds

Half-metallic ferromagnets (HMFs) are metals having 100%
spin-polarized electrons at the Fermi level. The high Curie
temperature and very small lattice mismatch with widely
employed semiconductors are the useful features that are
suitable for spintronic applications.

Some Heusler compounds, like NiMnSb, PtMnSb,
PdMnSb, or PtMnSn, were found to possess this necessary
combination of properties with a ground state (de Groot,
Mueller, van Engen and Bushow, 1983) characterized by a
100% spin polarization of charge carriers.

Recently, Akinaga and coworkers (Akinaga, Manago
and Shirai, 2000) have grown a new zinc-blende phase
of CrAs. The epitaxial growth was performed by MBE
on a GaAs substrate. This zinc-blende CrAs layer was
identified as a room-temperature ferromagnet (Figure 18).
Studies by several authors seem to indicate that this
metastable zinc-blende structure is possible for thin layers
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of other similar compounds such as VAs, CrAs, CrSb,
MnAs (Kübler, 2003 and their referenced papers). The
zinc-blende HMFs would exhibit a high Curie temper-
ature of the same order as the Heusler HMF NiMnSb
with TC = 701 K (Kübler, 2003). As for DMS compounds
previously described, the main interest of these zinc-
blende HMFs is their ability to form thin films (few
nanometers) by epitaxy on the traditional III–V and II–VI
semiconductors which is combined with their high Curie
temperatures.

These half-metallic ferromagnetic compounds should be
difficult to use because there are basically instable phases
that can be stabilized only by the constraints of substrate
with the zinc-blende structure. This fact can make the
design of future spintronic devices complicated and therefore,
to date, it is difficult to evaluate their future impact on
applications.

8 TRANSITION-METAL
CHALCOGENIDES

8.1 Magnetic properties of the lamellar
compound Cr2Ge2Te6

Cr2Ge2Te6 is a recently studied layered material belong-
ing to the lamellar ternary M2X2Te6 chalcogenides family
(where M is a +3 oxidation state metal such as V, Mn,
Fe, Co, Ni, Zn, Cd, or Hg and X2 a silicon or a germa-
nium pair). The crystallographic structures of these com-
pounds can be described as hexagonal compact stackings
of Te atoms in which M atoms and the X2 pair occupy
octahedrons in the different layers. The different layers are

attached by empty slabs, so-called van der Walls gap. As
some other compound family member, Cr2Ge2Te6 exhibits
a ferromagnetic state at low temperature with a Curie point
of 61 K that is significantly higher than for other compounds
as Cr2Si2Te6 (TC = 32 K) (Carteaux, Brunet, Ouvrard and
André, 1995).

8.2 New class of alkali metal–transition metal
chalcogenides

The chalcogenides AxMyXz (A = alkali metal, M = transition
metal, X = S, Se, or Te) crystallize in structures that, depend-
ing upon the stoichiometry, contain isolated groups, dimers,
chains, or layers, where the anionic building units MyXzx

are formed by linkage of the [MX4] tetrahedrons via their
edges. The particularity of this study is the use of magnetic
properties as an indication of transition between separated or
linked together building units (Bronger and Müller, 1997).
When the building units are linked together, the compound
exhibit some antiferromagnetic orderings while in the other
case the paramagnetic susceptibilities are exhibited (Bronger
and Müller, 1997).

9 R(4f), X COMPOUNDS

The ternary R–T–X (R = rare earth, T = transition metal,
X = chalcogen) including rare-earth and transition-metal (3d
or 4d) elements form a very wide space of formulas that
exhibit a large panel of physical properties. To illustrate a
typical series of compounds, we briefly present the properties
of rare-earth with copper chalcogenides.
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9.1 The EuRCuS3(R = Y, Gd–Lu) compound
series

The EuRCuS3 (R = Y, Gd–Lu) compounds series (Wake-
shima, Furuuchi and Hinatsu, 2004) is derived from europium
sulfide Eu2CuS3 (space group Pnma) (Lemoine, Carré and
Guittard, 1986) in which the Eu3+ cations (not magnetic at

ground state) are replaced by other rare-earth atoms while
the magnetic Eu2+ are kept. These substitutions do not
change the crystallographic structure except for the smallest
atoms, R = Tm, Yb, and Lu, for which the structural type is
KZrCuS3 (space group Bbmm) that is a supergroup of Pnma.
The structure of these compounds can be displayed as stack
of layers of CuS4 tetrahedrons and RS6 octahedrons spaced
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by Eu planes (Figure 19). These systems of layers can be
considered as close to high-TC superconductor compounds
with the substitution of oxygen by the sulfur atoms.

These compounds exhibit ferromagnetic behavior for
R = Y or Lu (nonmagnetic rare-earth atoms) and ferrimag-
netic ones for the magnetic rare-earth atoms. The ordering
temperature is close to 5 K for all compounds. The suscep-
tibility, magnetization (Figure 20a) and specific heat (Cp)
measurements on the Y and Lu compounds reveal that the
ferromagnetic ordering is induced only by the Eu2+ (in the
eightfold degeneracy ground state). In Figure 20 the magne-
tization curves for EuYCuS3 and EuGdCuS3 show the contri-
bution of the gadolinium atom as equal to that the europium
atoms. This is consistent with the same state 48S7/2 for both
atoms and for all these compounds the magnetic moments
are close to the classical ionic values if we take in account
the crystal-field anisotropy for an isotropic powder sample.
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10 Ac(5f), X COMPOUNDS

Actually, the chalcogenides including uranium (and also
some other actinides, particularly thorium) form a significant
part of the recent metal chalcogenides studies. Here, we
briefly describe some typical studies of magnetic uranium
chalcogenides: U3Te5, U2Te3. Moreover the compounds of
formula UXY (X = chalcogen, Y = P, As, or Sb) form an
other family which displays particularly high anisotropy of
uraniums compounds, even in the paramagnetic state.

U3Te5, U2Te3

As detailed in the previous reference, the U3Te5 compounds
crystallize in the orthorhombic space group Pnma with three
uranium nonequivalent atom sites U(1), U(2), U(3). Their
respective magnetic moments lie in the a–c plane with a
FxCz-type structure, with different magnetic moments for
U(1), U(2), U(3). A spin reorientation toward the c direc-
tion occurs around T = 45 K. Both magnetic structures are
displayed in Figure 21 (Tougait, André, Bourée and Noel,
2001).

Neutron diffraction data for U2Te3 (Pnmn space group) are
consistent with an antiferromagnetic not collinear GxAz-type
structure. The magnetic moments of uranium atoms in both
crystallographic sites U(1) and U(2) are in the a–c plane
with different magnitudes. A slight spin reorientation on the
U(2) site occurs also around T = 45 K. Close to the ordering
temperature (T = 95 K, TN = 95 K), some small neutron
diffraction lines indicate a complex magnetic structure.

In both compounds, these results are correlated with the
macroscopic magnetic measurements.

10.1 UXY compounds

The compounds UPSe, UPTe, USbSe, and USbTe are ferro-
magnetic with the ordering temperature of TC = 55, 85, 128,
and 127 K respectively (Kaczorowski, Noël and Zygmunt,
1995). The authors have measured the susceptibilities and
magnetizations on single crystals that display a very large
anisotropy of uranium (Figure 22).

The compound UAsSe is ferromagnetic with a order-
ing temperature TC close to 113 K (Henkie, Fabrowski,
Wojakowski and Zaleski, 1995). This magnetic state dis-
appears at low temperature while the resistivity increases
(Kondo effect).
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Sciences, 310, série II, 1621–1627.

Artigas, M., Fruchart, D., Rillo, C., et al. (1992). Magnetic phase
transitions in (Fe1−xRux)2P (0.25 < x < 0.6). Journal of Mag-
netism and Magnetic Materials, 104–107(3), 1993–1994.

Bacmann, M., Chenevier, B., Fruchart, D., et al. (1986). Magnetic
structures and magnetoresistivity of MnRhAs. Journal of Mag-
netism and Magnetic Materials, 54–57(3), 1541–1542.

Bacmann, M., Fruchart, D., Chenevier, B., et al. (1990). Magnetic
phase diagram of the (Fe1−xMnx)2P system. Journal of Mag-
netism and Magnetic Materials, 83(1–3), 313–314.

Bacmann, M., Fruchart, D., Koumina, A. and Wolfers, P. (2004). In
Low Temperature Magnetic Structure of CrNiAs. The Proceedings
of EPDIC8, Andersson, Y., Mittemeijer, E.J. and Welzel, U.
(Ed.), Trans Tech Publications, Materials Science Forum, pp.
179–182.

Bacmann, M., Soubeyroux, J.L., Barrett, R., et al. (1994). Magne-
toelastic transition and antiferromagnetic ordering in the system
MnFeP1−yAsy . Journal of Magnetism and Magnetic Materials,
134(1), 59–67.

Baibich, M.N., Broto, J.M., Fert, A., et al. (1988). Giant magne-
toresistance of (001)Fe/(001)Cr magnetic superlattice. Physical
Review Letters, 61, 2472.

Barner, K. (1987). Correlation of magnetic and transport properties
for some mixed magnetic transition metal pnictides. Journal of
Magnetism and Magnetic Materials, 70(1–3), 268–270.
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1 INTRODUCTION

Among the most interesting and technically important prop-
erties of any class of materials are its couplings with other
phenomena. Examples include piezoelectricity, thermoelec-
tricity, electro-optics, magneto-optics, and magnetomechan-
ical effects. Magnetostriction refers to the deformation of
a material owing to changes in its state of magnetization.
The magnetostrictive deformation can be isotropic (magne-
tovolume effect), or anisotropic (Joule magnetostriction). A
large volume change is often observed on cooling a magnetic
material through its Curie temperature (Figure 1). In the case
of Ni, this volume expansion is over 4% (Gschneider, 1964;
Stoelinga, Gersdorf and deVries, 1965; Kollie, 1977).

This volume change allows the material to accommodate
the increased energy of the spins in the magnetically ordered

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

state; when electrons are no longer equally distributed
between spin-up and spin-down states, their kinetic energy
increases (Janak and Williams, 1976). In the ferromagnetic
state, increasing a field beyond the anisotropy field may
also induce a small isotropic strain associated with the
high-field susceptibility. This chapter will focus more on
the Joule magnetostriction, an anisotropic strain of lower
symmetry than the crystal itself that arises from a change in
direction of the magnetization (Figure 1, inset circle) as well
as on a related phenomenon, the large field-induced strain
in magnetic shape-memory alloys such as Ni–Mn–Ga. This
latter effect is not due to the rotation of the magnetization
but rather to field-induced twin-boundary motion.

Magnetostrictive strains are typically less than 10−4 except
for certain rare-earth and rare-earth/transition-metal alloys.
The net volume change during anisotropic magnetostric-
tion is often close to zero, so λ⊥ ≈ −0.5λ‖, where λ⊥(λ‖)
is measured in the direction perpendicular (parallel) to
the field-induced, saturation magnetization. Not only is the
magnetostrictive strain tensor anisotropic about the mag-
netization direction but it can also have very different
components depending on the crystallographic direction in
which the magnetization is oriented. The inverse effect,
whereby an imposed stress changes the state of magne-
tization, is important for a variety of sensors. In addi-
tion, magnetostrictive materials under certain conditions can
appear to have a reduced elastic stiffness, called the �E

effect, and hence reduced sound velocity. These phenomena
will be discussed. Other useful references on magnetostric-
tion include the following: Del Moral (2006); O’Handley
(2000); Cullen, Clark and Hathaway (1997); Lacheisserie
(1993); Kittel and Galt (1967); Kanamori (1963); and Kittel
(1949).
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Figure 1. Schematic of the thermal expansion of a magnetic mate-
rial as a function of temperature illustrating the increased vol-
ume due to the presence of a local magnetic moment and the
onset of magnetic anomalies below the Curie temperature. A small
anisotropic strain, depending on the direction of magnetization
(circled inset), is also observed below TC. The latter is usually
referred to as anisotropic magnetostriction. (Reprinted with per-
mission O’Handley R.C., copyright 2000, John Wiley & Sons Inc.)

Magnetostriction is an elastic deformation. Time-reversal
invariance of physical phenomena requires that the strain
be the same if the magnetization direction reverses along
the same axis. Hence, there is no change in strain for 180◦

domain-wall motion. There is change in magnetostrictive
strain for 90◦ domain-wall motion and for magnetization
rotation.

Historically, Ni was the most widely used magnetostric-
tive material. Though it has a magnetostrictive strain of
only 30 or 40 × 10−6, the low magnetic anisotropy of Ni
allows this strain to be achieved in relatively weak fields.
In the 1960s and 1970s, the magnetostriction of many rare-
earth transition-metal intermetallic compounds and alloys
was studied. This led to the development of the highly
magnetostrictive alloy, Fe2(Tb0.3Dy0.7), called Terfenol-D,
having λ‖ − λ⊥ ≈ 2400 × 10−6 and relatively low magnetic
anisotropy, µ0Ha ≈ 0.1T (Abbundi and Clark, 1977; Clark,
1980). But these intermetallic compounds are brittle and
hard to grow with the proper texture. A new class of duc-
tile, high-magnetostriction alloys based on BCC solid solu-
tions of Fe–Ga has shown λ100 ≈ 400 × 10−6 in fields of
order 0.01 T (Clark et al., 2000; Guruswamy et al., 2000).
(λ100 is the change in length relative to the dimensions of
the demagnetized crystal, measured parallel to the crystallo-
graphic [100] direction when M is saturated in that direction.)

In was noted three decades ago that the large field-
induced strain in Dy appears to be associated with twin-
boundary motion (Liebermann and Graham, 1976). It had
long been speculated that similar large strains could be
observed in a subclass of shape-memory alloys that are
also ferromagnetic shape memory alloys (FSMAs). Examples
of such materials include Fe–Pd and Ni2MnGa. It was

expected that an applied field could either move crystallo-
graphic twin boundaries in the martensitic state to produce
a large strain, or change the temperature of the transforma-
tion from the untwined, high-symmetry (austenite) phase to
the twinned, low-symmetry (martensite) phase. Thus, appli-
cation of a field at a temperature close to the transformation
could control the large deformation energy there (Ullakko
1996; James and Wuttig, 1996). Experimental evidence of
magnetic-field-induced strain by motion of twin boundaries
began to accumulate (Ullakko et al., 1996; James and Wut-
tig, 1998; Tickle et al., 1999). The full field-induced strain of
1 − c/a = 6% in tetragonal Ni–Mn–Ga (Murray et al.,
2000) and 10% in its orthorhombic phase (Sozinov,
Likhachev, Lanske and Ullakko, 2002) have been observed.

Field-induced strain in FSMAs has two components. First,
there is the usual elastic magnetostrictive strain that increases
quadratically with applied field as the magnetization direction
changes; it is of the order −150 × 10−6 in Ni–Mn–Ga
alloys (Tickle et al., 1999). Second, when mobile twin
boundaries are present, there is a much larger plastic strain,
of order 6 or 10% in tetragonal or orthorhombic Ni–Mn–Ga,
respectively. This strain starts to appear when the applied
field exceeds a threshold field, and initially increases linearly
with the field, then saturates gradually as H approaches Ha ≈
0.55 × 106 A m−1. There are several recent review articles
on FSMAs (O’Handley and Allen, 2000; O’Handley et al.,
2000; Kostorz and Müllner, 2005; Söderberg et al., 2006).

This article reviews the phenomenology and range of
observed anisotropic magnetostricitve strains. It also summa-
rizes some aspects of the current understanding of magnetic-
field-induced strains in FSMAs. The two phenomena,
magnetostriction and field-induced strain in FSMAs, are
compared and contrasted.

2 ANISOTROPHIC MAGNETOSTRICTION

Changing the direction of magnetization in a magnetic mate-
rial for T < TC generally causes it to strain anisotropically
(Figure 1, circled inset); that is, the magnetization vector has
associated with it a stress tensor with principal axes directed
along M that causes a mechanical deformation. The field
dependence of this anisotropic strain is shown schemati-
cally in Figure 2 for an isotropic material (ε‖ for strain
measured parallel to the field and ε⊥ for strain measured
perpendicular to the field). This anisotropic strain was first
observed in 1842 by Joule in iron and is often called Joule
magnetostriction. The fact that the magnetostrictive strain,
ε(H) = �l(H)/l ≡ λ(H), saturates above a certain field,
λ (Hsat) ≡ λs, indicates that the anisotropic strain is due to
a field-induced change in the direction of the magnetization,
not the change in the field itself.
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Figure 2. When a demagnetized sample is magnetized by an
external field, the sample strains anisotropically. The strain in the
direction of magnetization, ε(H‖), will be opposite in sign to the
strain measured perpendicular to the direction of magnetization,
ε(H⊥). The strains depicted above are those for a material with a
positive magnetostriction constant: (�l/l)‖ > 0.

Values of the saturation magnetostriction, λs, can range
from zero (effectively, ε < 10−7) to nearly ±10−4 in 3d
metals and alloys and to over ±10−3 in some 4f metals and
alloys. For Ni, which has a principal magnetostrictive stress,
B1 = +6.2 MPa and, given its Young’s modulus, E = 2 ×
1011 N m−2, we would expect to observe magnetostrictive
strains of the order 30 × 10−6. This is indeed close to the
magnetostriction of polycrystalline Ni, λs = −34 × 10−6.
The minus sign indicates that Ni tends to contract in the
direction of magnetization and shows a nearly volume-
conserving expansion in the two orthogonal directions,
ε⊥ = −ε‖/2.

The inverse effect is also important. Stressing or straining
a magnetic material can produce a change in its preferred
magnetization direction or in its M–H curve (Figure 3).
These phenomena are called inverse Joule effects, Villari
effects, or piezomagnetism. If the saturation magnetostriction
coefficient, λs, is positive, it is easier to magnetize the
material in the tensile strain direction. It is harder to
magnetize a material in a direction for which λs < 0 and the

M

H

M

H

s = 0

lSs < 0

lSs > 0

s = 0

slS > 0 slS < 0

 <M >  = 0

s = 0

M M

Figure 3. Imposing a strain on a magnetic material by an external
mechanical stress can alter the change direction of magnetization
(magnetic anisotropy) and thus alter the shape of the M–H curve
below saturation. The cases above illustrate the changes observed
for a polycrystalline material with a positive magnetostriction
constant. (Reprinted with permission O’Handley R.C., copyright
2000, John Wiley & Sons Inc.)

imposed strain ε > 0 or for which λs > 0 and ε < 0. This
implies the existence of terms in the magnetic anisotropy
energy, which depend on strain as well as on the direction
cosines of the magnetization: M = Ms(αx, αy, αz). These
magnetic–elastic coupled terms describe the magnetoelastic
(ME) anisotropy energy. The anisotropic strain effects arising
from terms in the free-energy containing products of strain
and magnetization direction are the focus of this chapter.

2.1 Phenomenology

2.1.1 Field dependence of Joule magnetostriction

The anisotropic magnetostrictive strain relative to the direc-
tion of magnetization may be described for an isotropic mate-
rial comprised of a single domain (i.e., one magnetization
direction) by the relation

ε = 3

2
λs

(
cos2 θ − 1

3

)
(1)

Here ε = �l/l is the strain measured at an angle θ relative to
the saturation magnetization direction and λs, the saturation
magnetostriction coefficient, is the measure of the magnitude
of the strain on changing the direction of magnetization in the
material. The strain ε is sometimes called the magnetostric-
tion, λ, but clearly, from equation (1), ε is a function of the
direction of M or of the applied field so it should not be con-
fused with the saturation magnetostriction λs which is a mate-
rial constant. Figure 2 shows the variation of strain in a given
direction in a material as an external field is increased either
parallel or perpendicular to the strain-measuring direction.

For a uniaxial material in the absence of an external
field, the magnetization lies along the ‘easy axis’ direction
(defined by the uniaxial magnetic anisotropy). A ‘hard-
axis’ magnetization process (in which the field is applied
orthogonal to the preferred direction of magnetization) is
known to be linear in the field, H and to scale with the ratio
of the saturation magnetization, Ms, to the anisotropy field,
Ha: M(H) = MsH/Ha. This relation can be expressed in
terms of the reduced magnetization, m(H) = M(H)/Ms, and
reduced field, h = H/Ha giving m = h. (The anisotropy field
is the field at which a linear, hard-axis magnetization process
saturates.) From Figure 4(a), and m(H) = cos[θ(H)], we
may write equation (1) as

ε = 3

2
λs

(
m2 − 1

3

)
(2)

That is, the magnetostrictive strain in a hard uniaxial
direction is quadratic in m = h, so ε is proportional to H 2

(Figure 4b), saturating at h = 1.
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Figure 4. Reduced magnetization (b) and magnetostriction (a)
versus reduced field, h, calculated for different orientations of
applied field relative to easy axis. Application of a magnetic field
perpendicular to the easy axis of a material causes a rotation of the
magnetization direction and results in a linear M–H characteristic
and a quadratic dependence of strain on field. The field-dependent
strain is shown here as positive along the field direction as is the
case for λs > 0 (O’Handley, 2000).

Above saturation, the two strain curves in Figure 2 are
essentially parallel to each other (except for the presence of
any high-field-susceptibility-induced volume magnetostric-
tion) and their difference defines λs. From equation (1)

ε‖ = 3

2
λs

(
1 − 1

3

)
= λs ε⊥ = 3

2
λs

(
0 − 1

3

)
= −λs

2
(3)

That is, the saturation magnetostriction λs is the strain mea-
sured in the field direction relative to the randomly magne-
tized state (〈cos2 θ〉 = 1/3). However, because a completely
demagnetized state is not easily achieved with certainty, mea-
surement of both ε‖ and ε⊥ in equation (3) is recommended
to determine λs in isotropic materials:

ε‖ − ε⊥ = 3

2
λs so that λs = 2

3
(ε‖ − ε⊥) (4)

The significance of equation (4) for measurement of λs

in isotropic materials can be appreciated by referring to
Figure 2. Changes in the zero-field magnetization distribution
may shift the origin up or down between the limits of
ε‖ and ε⊥, but the difference between the two high-field
strains remains fixed at (3/2)λs. Thus, two strains should
be measured to specify λs in an isotropic material. More
than two measurements are required to fully specify λij for
lower-symmetry materials.

The magnetostrictive strain is the same in each of
two magnetic domains separated by a 180◦ domain wall
because cos2 θ is the same in each domain. This is due to

time-reversal invariance; the energy is the same whether the
microscopic currents rotate to give M in one direction or they
reverse sign to give M in the opposite direction. Therefore,
there is no magnetostrictive shape change associated with
a magnetization process involving only 180◦ domain walls.
(There may be a local strain about a 180◦ domain wall owing
to the change in orientation of M there, but the elastic con-
straint of the material reduces this strain relative to the mag-
netostrictive strain of an unconstrained, saturated sample.)

2.1.2 Some data

For materials that are not isotropic, the magnetostriction
constant can be different in different directions and higher-
order distortions than the dipolar strain in equation (1) may
also play a role. For example, magnetizing an iron crystal
along 〈100〉 causes an elongation along 〈100〉 relative to
the demagnetized state. Magnetizing it along 〈111〉 causes
a contraction along the 〈111〉 direction relative to the
demagnetized state. Nickel contracts in the direction of
magnetization for any crystal orientation. This is reflected
in the principal magnetostriction coefficients of Fe and Ni:

BCC iron λ100 = 20.5 × 10−6 and λ111 =−21.5 × 10−6

FCC nickel λ100 = −46 × 10−6 and λ111 =−25 × 10−6

It should be noted that the 〈100〉 directions are the easy
directions of magnetization for BCC-Fe and the 〈111〉 direc-
tions are easy for FCC-Ni (O’Handley, 2000, Ch. 5; Lacheis-
serie and Monterroso, 1983). Rotating the magnetization
of an iron crystal from one easy axis to a different easy
axis causes an increase in length along the field axis of
(3/2)λ100 ≈ 31 × 10−6. The field at which the magnetostric-
tion saturates is the anisotropy field (see Figure 4).

Many of the rare-earth metals and rare-earth intermetal-
lic compounds are characterized by very strong magnetic
anisotropy which makes it difficult to get an accurate mea-
surement of saturation magnetostriction values. Some data
for these materials are given in Table 1. Further data on
these systems can be found in Cullity (1973) and O’Handley
(2000) and in review articles (Clark, 1980; Morin and
Schmitt 1990; Cullen, Clark and Hathaway, 1997). An alloy
having nearly zero magnetic anisotropy at room temper-
ature, Terfenol-D (Fe2[Dy0.7Tb0.3]) was developed at the
Naval Ordinance Laboratory (hence the name Ter-Fe-NOL)
(Clark, 1980; Cullen, Clark and Hathaway, 1997) by com-
bining appropriate ratios of the cubic Laves compounds
Fe2Tb (K1 = −7 × 107 J m−3) with Fe2Dy (K1 = 3 ×
107 J m−3).

The highly magnetostrictive rare-earth compounds are
prone to oxidation and are relatively brittle (poor ten-
sile behavior and not easily machined). Favorably textured
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Table 1. Magnetostriction constants λ100 and λ111 in parts per million at 4.2 K and at room temperature for
several materials. Some polycrystalline room-temperature values are also listed. The prefix a designates an
amorphous material. For uniaxial materials (denoted by superscript ‘u’) where λγ ,2 or λε,2 was reported, their
values are given in parentheses in the λ100 and λ111 column, respectively.

T = 4.2 K Room temperature

λ100(λ
γ ,2) λ111(λ

ε,2) λ100(λ
γ ,2) λ111(λ

ε,2) Polycrystal λs

3d metals
BCC-Fe 26 −30 21 −21 −7
HCP-Cou (−150) (45) (−140) (50) (−62)
FCC-Ni −60 −35 −46 −24 −34
BCC-Fe-Ga – – 400 30 –

a-Fe80B20 48 – – – +32
a-Fe40Ni40B20 +20 – – – +14
a-Co80B20 −4 – – – −4

4f metals/alloys
Gdu (−175) (105) (−10) 0 –
Tbu – (8700) – (30) –
TbFe2 – 4400 – 2600 1753

Tb0.3Dy0.7Fe2 – – – 1600 1200

Spinel ferrites
Fe3O4 0 50 −15 56 +40
CoFe2O4 – – −670 120 −110

Garnets
YIG −0.6 −2.5 −1.4 −1.6 −2

polycrystalline boules ([211] parallel to the boule axis) can
be grown with modest yield. There remained a need for a less
expensive and more ductile high-magnetostriction Fe-based
alloy. It appears to have been found in the BCC-Fe–Ga solid
solutions (appropriately named Galfenol) (Clark et al., 2000,
Guruswamy et al., 2000). The variation of λ100 with Ga con-
tent is shown in Figure 5 (λ111 is less than 10% of λ100) due,
in part, to the large value of C44 ≈ 1.2 × 1011 Pa over most
of the Ga range studied) (Wuttig, Dai and Cullen, 2002). The
peak in λ100 at xGa = 26 at% is because of the vanishing of
C11 − C12 there. The peak in λ100 at 19% Ga occurs in the
solid solution range and is of technical importance; its origin
is possibly due to directional ordering of Ga over a short
range.

Field-dependent data are not presented here because
the form of the strain versus field can depend on many
factors such as sample shape, microstructure, and stress,
which may obscure the predicted quadratic dependence
on field for magnetization along a hard axis (Figure 4).
The typical field dependence of magnetostriction in a vari-
ety of magnetic alloys are compared in Figure 6 on a
Log–Log scale. It includes representative behavior for the
very low anisotropy Fe-rich amorphous magnetic alloys
(such as Fe80B20, for which λ100 = 32 × 10−6 (O’Handley,
1978)), BCC Fe81Ga19 and Fe2(Dy0.7Tb0.3), Terfenol-D.
Also included in Figure 6 is the field dependence of the

0 10 20 30 40
0

100

200

300

400

x (at%)

(3/2)l
(10−6)

Fe100 − xGax

Fe100 − xAlx

Figure 5. Dependence of λ100 on composition for a variety of
Fe1−xGax alloys compared with the behavior of Fe1−xAlx (Hall,
1959). The solid lines are for furnace-cooled samples and the
dashed lines are for quenched samples. Data for Fe1−xBex alloys
is available up to 12 at% and follows that for Fe–Ga in that range.
(Data assembled by M. Wun Fogle and J. Restorff, unpublished.)
(Reprinted with permission R.C. Hall, copyright 1959, American
Institute of Physics.)

magnetostriction (solid line) and field-induced twin-boundary
motion (dashed line) for Ni–Mn–Ga (see next section).
In all cases, the magnetostriction is shown as quadratic in
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the field up to its saturation value. Note the difference in
saturation fields for the various materials. The diagonal dot-
ted line is a guide to the eye with a slope of unity; it indicates
that the saturation magnetostriction is not achieved at a field
that is proportional to the saturation magnetostriction.

A quality factor for many applications is the ratio strain per
unit field, λ/H . Amorphous magnetic alloys have advantage
on that basis because they typically saturate in fields of
order 10–100 A m−1 though they produce far less strain
than the other materials. Terenol-D shows about six times
the magnetostrictive strain of Fe–Ga (2400 × 10−6/400 ×
10−6) but Galfenol magnetostriction saturates in a field
of approximately about 8 kA m−1 while Terfenol-D requires
about 80 kA m−1 to saturate.

2.2 Cubic systems

The ME contribution to the magnetic anisotropy of a cubic
material is expressed to first order as

fME = B1

[
exx

(
α2

1− 1

3

)
+eyy

(
α2

2− 1

3

)
+ ezz

(
α2

3− 1

3

)]

+B2
[
exyα1α2 + eyzα2α3 + ezxα3α1

] + · · · (5)

Here, the direction cosines specify the direction of magneti-
zation and the Bi’s are the stresses of magnetic origin, which
give rise to the components of the magnetostrictive strain ten-
sor, εij , by minimization of the total free energy including
elastic terms:

(εii) =




− B1

(c11 − c12)

(
α2

1 − 1

3

)
− B2

c44
α1α2 − B2

c44
α1α3

− B2

c44
α1α2 − B1

(c11 − c12)

(
α2

2 − 1

3

)
− B2

c44
α3α2

− B2

c44
α1α3 − B2

c44
α3α2 − B1

(c11 − c12)

(
α2

3 − 1

3

)




(6)

Equation (6) makes it clear that the magnetostrictive strain,
εij , results from the action of components of the ME stress
tensor, Bij , on the material whose stiffness is characterized
by the elastic constants, cij . The strain in any direction, β,
is specified by projecting εij on the vector (β1, β2, β3):

∂	

	
= (β1, β2, β3)(eii)


 β1

β2

β3


 =

∑
eiiβ

2
i +

∑
i<j

eij βiβj

(7)

1 2 3 4 5 6

Log[H (A m−1)]

Log[l100]

−5

−4

−3

−2

−1

Amorphous

Fe19Ga21

Fe2(Dy0.7Tb0.3)

Ni−Mn−Ga

Figure 6. Log–Log representation of λ100 versus H typical of
various classes of magnetostrictive materials. Amorphous magnetic
alloys are represented by Fe80B20 and the Ni–Mn–Ga behavior is
typical of its tegragonal phase (see below). The fine diagonal line
represents a linear dependence of saturation magnetostriction on
field indicating an advantage for amorphous alloys in terms of the
quality factor, λ/H .

Substituting the values of εij given in equation (5) into
equation (7), gives the strain in direction β for magnetization
in direction α:

∂	

	
= − B1

c11 − c12

(
α2

1β
2
1 + α2

2β
2
2 + α2

3β
2
3 − 1

3

)

− B2

c44

(
α1α2β1β2 + α2α3β2β3 + α3α1β3β1

)
(8)

Equation (8) shows how the deformation of a magnetic
sample depends on the direction of magnetization through
the α’s and on the strain-measuring direction through the

β’s. The factor of −1/3 in equation (8) reflects the fact that
a demagnetized crystal with a perfectly random distribution
of domain magnetizations is taken by convention to be in a
state of zero strain, dl/l = 0.

For a sample magnetized in the [100] direction, the strain
measured in that direction is defined as λ100. In that case,
α1 = β1 = 1 and α2 = α3 = β2 = β3 = 0, giving:

λ100 = −2

3

B1

c11 − c12
(9)
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For λ111, αi = βi = (1/3) giving:

λ111 = −1

3

B2

c44
(10)

Similarly, for λ110 we get,

ε110 = λ110 = −1

6

B1

(c11 − c12)
− 1

4

B2

c44
= 1

4
λ100 + 3

4
λ111

(11)
For an isotropic material, all reference to crystallographic

direction is gone, so we expect λ100 = λ111 = λs, and thus
equation (8) reduces to equation (1).

2.3 Polycrystalline materials

For a random polycrystalline material, rotating M pro-
duces the full ME stress, Bi , in each grain, but the
local strain of each grain may be incompatible with
the strains of adjacent grains. The macroscopic material
expresses the magnetostrictive strain that is the sum of
those of its grains that are constrained and have different
orientations.

When magnetostrictive strains are small, it may be
adequate to neglect elastic interaction of various grains
(O’Handley and Grant, 1985). For a completely random
3-D polycrystalline material Callen and Goldberg (1965)
obtained:

λs = 2

5
λ100 + 3

5
λ111 (12)

The λs values measured for polycrystalline nickel and
iron are −34 × 10−6 and −7 × 10−6, respectively. Use of
equation (12) is justified only for an untextured polycrys-
talline material and for amorphous alloys. If a polycrystalline
material is crystallographically textured or if the grains are
more nearly isotropic magnetoelastically (i.e., λ100 ≈ λ111),
then a net strain closer to the true magnetostriction value can
be realized.

Values of saturation magnetostriction for several materials
are listed in Table 1. The experimental notation (λ100, λ111)

is used because of its prevalence in the literature. More
universal definitions of λ, namely, λα,2 ≈ 3λ100/2, λε,2 ≈
3λ111/2 (Lacheisserie, 1993), are described in the following
text. Where the literature indicates that λγ ,2 or λε,2 was
measured, those values are listed in parentheses in Table 1.

2.4 Magnetoelastic contribution to anisotropy

For a cubic material, the magnetocrystalline anisotropy
energy density can be written as fa = K1(α

2
1α

2
2 + α2

2α
2
3 +

α2
3α

2
1) + K2α

2
1α

2
2α

2
3 + · · ·. The direction cosines of the mag-

netization are arranged in a way that defines an energy
function that reflects the crystal symmetry. The anisotropy
coefficients, Ki , describe the strength of the preference for
M to orient in specific crystallographic directions. Inspec-
tion of equation (5) shows that for a given value of strain,
the ME energy resembles a magnetic anisotropy energy
inasmuch as it is a function of the magnetization orienta-
tion. However, the first two ME terms for a cubic material
are of lower symmetry, than the cubic magnetocrystalline
anisotropy terms, K1 and K2. ME energy is simply that
part of the magnetic anisotropy that depends on strain;
it can be of lower symmetry than the strain-independent
part because of the small change in symmetry imposed
by the strain. Thus, isolation of the strain-dependent part
of the anisotropy provides a measure of the ME coupling
coefficients, Bi .

The ME contribution to the anisotropy is responsible for
the inverse magnetostrictive effect illustrated in Figure 3.
Inverse ME effects appear in two situations. First, an
imposed mechanical strain alters the energy density function,
fa(θ, φ), and hence changes the magnetization process
below saturation. Second, a magnetostrictive strain (resulting
from a change in magnetization direction) alters the free
energy and hence changes the approach to saturation. The
latter is a second-order effect and is most apparent in
high-magnetostriction materials such as some rare-earth-
containing materials.

An example of stress or strain-induced anisotropy can
be found in O’Handley (2000). Essentially, tension in
a positive magnetostriction material (λsεxx > 0 or B1

εxx < 0) makes the magnetization process easier in the
tensile direction. The area to the left of a hard-axis
magnetization curve gives the anisotropy energy density,
Keff. If one measures the magnetization curve of a sam-
ple in different known states of strain, then the change
in that area indicating the energy needed to magnetize
the sample changes by B1ε(1 + υ). This is true even for
an arbitrarily shaped magnetization curve – the strain-
induced change in energy needed to magnetize a sam-
ple is the ME energy (O’Handley, Song and Ballentine,
1993).

2.5 Symmetry-invariant notation

It is important to know the form that the magnetostriction
must take in hexagonal and in other low-symmetry mag-
netic structures. Materials with hexagonal structures include
cobalt and many cobalt-rich alloys, rare-earth metals, and
some rare-earth intermetallic compounds, as well as barium
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hexaferrite. Presented here are the results of the general for-
malism for magnetic anisotropy and magnetostriction intro-
duced by Callen and Callen (1960, 1963, 1965) and reviewed
by Lacheisserie (1993).

Legendre polynomial expansions of the magnetic free
energy are used widely for cubic materials; the simple
expansion fa = ∑

n=0,. . . Cn sin2nθ is often used for uniaxial
materials. It was noted by Callen and Callen in 1960 that it
is appropriate to expand the magnetic anisotropy energy in
a set of orthogonal, normalized functions based on Legendre
polynomials,

g	(α) =
	∑

m=−	

Am
	 Ym

	 (α) (13)

The argument α is the direction cosine of the magnetization.
The coefficients, Am

l , of the spherical harmonics, Ym
l , are

defined so the polynomials, gl(α), belong to the irreducible
representation of the crystal point group to be described. The
anisotropy energy density is then written:

f hex
K =

∑
	=0

k	g	(α) = ko + k2

(
α2 − 1

3

)

+k4

(
α4 − 6

7
α2 + 3

35

)
+ · · · (14)

The anisotropy coefficients, kl , based on such expansions
are found more often in the literature on rare-earth materials.
When these functions are used, the ME energy expression
is a sum of products of strain components and direction
cosines, each of which has the same symmetry. This is
illustrated in Figure 7 for the cubic system where the strains
and direction-cosine terms are both seen to have the familiar
forms of the atomic d orbitals in cubic symmetry. These
are the five irreducible representations of the cubic point
group.

The form of the ME energy in cubic and uniaxial
symmetry is given below to lowest order in these symmetry-
invariant polynomials. This is followed by the formula for
the magnetostriction. Higher-order terms and forms for other
symmetries can be found in (Lacheisserie, 1993).

For cubic symmetry, the ME free energy is

f cubic
me = εxx + εyy + εzz

3
[bα,0 + · · ·]

+3

2

(
εzz− εxx +εyy

2

) [
bγ ,2

(
α2

3− α2
1+α2

2

2

)
+· · ·

]

+1

2
(εxx − εyy)

[
br,2(α2

1 − α2
2) + · · ·]

+2εxyα1α2
{
bε,2 + · · ·} + cycl. (15)

The terms bl,m and εij are the ME coupling (stress) coeffi-
cients and strains, respectively, in the irreducible representa-
tion. The magnetostriction for cubic crystals, to fourth order
in αi is

λcubic = 1

3
λα,4

(
α4

1 + α4
2 + α4

3 − 3

5

)
+

∑
i=1,2,3

(
β2

i − 1

3

)

×α2
i

[
λγ ,2 + λγ ,4

(
α2

i − 6

7

)
+ · · ·

]

+
∑

i<j=1,2,3

2βiβjαiαj

[
λε,2+λε,4

(
α2

k−
1

7

)
+ · · ·

]

(16)
The superscript α on the magnetostriction denotes vol-

ume strains, which preserve crystal symmetry. The γ

and ε exponents come from the molecular-orbital nota-
tion that describe 3d orbitals as either the doublet dγ

(dz2 and dx2−y2 ) or the triplet dε (dxy , dyz and dzx);
see Figure 7. They are volume-conserving uniaxial strains.
The index after the Greek superscript indicates the order
in direction cosines (2 = uniaxial, 4 = cubic, etc.). These
symmetry-based cubic magnetostriction coefficients can be
expressed in terms of the older coefficients by the rela-
tions:

λ100 = 2

15
λα,4 + 2

3

(
λγ ,2 + 1

7
λγ ,4 + · · ·

)
≈ 2

3
λγ ,2 (17)

λ111 = − 4

45
λα,4 + 2

3

(
λε,2 + 4

21
λε,4 + · · ·

)
≈ 2

3
λε,2 (18)

For hexagonal symmetry, the free-energy density is
given by

f uniaxial
me = b

α,0
1

εxx + εyy + εzz

3
+ b

α,0
2

√
2

3

×
(

εzz − εxx + εyy

2

)
+

[
b

α,2
1

εxx + εyy + εzz√
2

+ b
α,2
2

(
εzz − εxx + εyy

2

)](
a2

3 − 1

3

)

+bε,2
[

1

2

(
εxx − εyy

) (
α2

1 − α2
2

) + 2εxyα1α2

]

+2bζ,2 (
εyzα2α3 + εxzα1α3

) + · · · (19)

For crystals of hexagonal symmetry, the magnetostric-
tion is
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Atomic wave functions Cubic magnetostrictive strains

Isotropic

Monoclinic

Orthorhombic

Tetragonal

be,2exy
+ cycl.

bg,2(exx − eyy )

bg,2
exx + eyy

2−ezz

ba,0
exx + eyy + ezz

3
s

a1
2

 + a2
2

2
dz

2 ∝ a3
2  −

dx2−y2  ∝ a1
2 − a2

2

dxy
  ∝ a1a2

+ cycl.

Figure 7. The first line shows the form of the isotropic s-wave function and the isotropic, volume magnetostriction. In the next three rows,
the symmetry and amplitude (solid line, ψd > 0, dotted lines, ψd < 0) of the five atomic d functions are seen to be isomorphic with the five
cubic Joule magnetostriction strains (equation (15)). This is because both are examples of irreducible representations of the cubic group.
(Adapted from O’Handley, 2000.)

λhex = 1

3
λ

α,0
1 + λ

α,0
2

(
β2

3 − 1

3

)

+
[

1

3
λ

α,2
1 + λ

α,2
2

(
β2

3 − β2
1 + β2

2

3

)](
α2

3 − 1

3

)

+λε,2
[

1

2

(
β1

2 − β2
2

) (
α2

1 − α2
2

) + 2β1β2α1α2

]

+2λζ,2 (
β2β3α2α3 + β1β3α1α3

) + . . . (20)

The α- and ε-labeled magnetostriction coefficients describe
the same distortions in a hexagonal system as they do
in cubic symmetry. ε-labeled terms distort the symmetry
in the base plane; ζ terms shear over the c axis (Clark,
1980).

2.6 Temperature dependence

Proper measurement and analysis of the temperature depen-
dence of magnetostriction can indicate a great deal about
the nature of the strain-dependent, anisotropic interactions
in a material and about the symmetry of the local atomic
environment of the magnetic species.

Figure 8 shows the temperature dependence of the two
principal magnetostriction constants in Ni. The shaded area
shows the trend and scatter in data from numerous sources.
The solid lines are theoretical fits that are based on the
assumption of localized magnetic moments as will be
described below.

The temperature dependence of magnetostriction in iron
is quite different from that of nickel, with λ100 showing a
maximum below room temperature then decreasing at lower
temperatures (Tatsumoto and Okamoto, 1959; Lacheisserie
and Monterroso, 1983). The temperature dependence of the
magnetostriction of Ni comes closer to the theoretical than
does that of iron. It is believed this is due to the lower energy
of the Ni d bands (thus, more localized magnetic moment)
compared to those of Fe.

In rare-earth metals, the metallic character comes from
the 5d and 6s valence bands whereas the magnetic moments
arise from the partially filled 4f states, which are more
atomiclike, more localized; thus the magnetostriction of rare
earths should be well described by theory. Figure 9 shows
the temperature dependence of λA and λC = λε,2/2 for
single-crystal Tb. Note the steep decrease with increasing
temperature for λA (cubic symmetry strain with temperature
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Figure 8. The shaded areas show range of experimental magne-
tostriction of Ni single crystals (Franse and Stolp, 1970; Lee and
Asgar, 1971) and solid lines show calculated temperature depen-
dence (Lacheisserie, 1972; Lacheisserie and Roucy, 1982).

dependence proportional to m10) compared to λC (uniaxial
strain with temperature dependence proportional to m3). See
theory in the following text.

In these examples, just as for magnetocrystalline anisot-
ropy, λ(T ) drops much more sharply with increasing tem-
perature than does M(T ). Here, the results of the theory
developed by Callen and Callen (1966) for the tempera-
ture dependence of anisotropy and magnetostriction are out-
lined. To describe the strain dependence of the energy, the
anisotropic Hamiltonian is expanded in powers of strain to
first order:

HME = εµSi · ∂Jij

∂εµ

· Sj + εµSi · ∂D
∂εµ

· Si + · · · (21)

Here, Si is a spin vector at site i. The elastic Hamiltonian
is added to equation (21) and the expectation value of

0 40 80 120 160 200 240 280 320
0

0.8

1.6

2.4

3.2

4

Temperature (K)

l

(10−3)

Terbium

lC

lA
Tc

lC (0)′I5/2(x)

lA (0)′I9/2(x)

H = 30 KOe
a-axis data
b-axis data
Theory

Figure 9. Temperature dependence of λA and λC = λε,2/2 for Tb
single crystal (Rhyne and Legvold, 1965).

this strain-dependent Hamiltonian, E = 〈H 〉 is minimized to
allow solution for the strain components εu. The two-ion
term expresses the strain dependence of the anisotropic-
exchange interaction, Jij , between the z components of
spins at two different sites. It gives rise in the solution
to correlation functions 〈Sz

i Sz
j 〉. (The usual Heisenberg

exchange interaction, which is most responsible for the value
of the Curie temperature, is an isotropic interaction between
two spins). The single-ion term expresses the effect of
strain on the crystal-field anisotropy, D, seen by a single
magnetic ion. It leads to terms in the solution proportional to
〈(Sz

i )
2〉. These spin-correlation functions play a central role

in understanding the temperature dependence of anisotropy
and magnetostriction (Callen and Callen, 1960, 1963, 1965;
Lacheisserie, 1993; O’Handley, 1978; Legvold, Alstad and
Rhyne, 1963; Rhyne and Legvold, 1965).

The exact results of the quantum statistical mechanical
model of temperature dependence of ME effects owing to
single-ion effects can be summarized as follows:

λ	(T )

λ	(0)
or

K	(T )

K	(0)
= κ	(T ) =

〈
[Sz

i (T )]2
〉

〈
[Sz

i (0)]2
〉

⇒ I	+1/2(X)

I1/2(X)
≡ Î	+1/2(X) (22)

Here, I (X) is a modified Bessel function and Î(X) is a
reduced, modified Bessel function (Callen and Callen, 1960,
1963, 1965). The argument X is defined by the temperature
dependence of magnetization m(T ) = I3/2(X) so that X can
be formally written as X = I−1

3/2(m).
Approximate temperature dependences of the modified

Bessel functions have been calculated (Callen and Callen,
1963, 1965); they are characterized by different dependences
on the reduced magnetization, m, above and below approxi-
mately 0.6 TC. Table 2 shows the low-T and high-T approx-
imations for single-ion anisotropy for l = 2 and 4.

The temperature dependence of the magnetization for the
two-ion exchange mechanism is given more simply by the
square of the reduced magnetization:〈

Sz
i (T )Sz

j (T )
〉

〈
Sz

i (0)Sz
j (0)

〉 ≡ m2 (23)

Table 2. Approximate single-ion magnetization power law depen-
dences for uniaxial (l = 2) and cubic (l = 4) systems at low and
high temperatures.

Approximations to Îl+1/2(X) l = 2 l = 4

Low T ∼ml(l+1)/2 m3 m10

High T ∼ml m2 m4
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The two-ion exchange is sometimes weaker than the single-
ion anisotropy but does play a role in many dipole-coupled
rare-earth systems (Morin and Schmitt, 1990).

Lacheisserie (1972) has shown that the nickel data avail-
able in 1971 can be fit up to 300 K with a combination of
single-ion and two-ion terms (solid lines, Figure 8)

Bγ,2 = 110{0.13Î5/2(X) + 0.87m2} × 106 erg cm−3

Bε,2 = 149{2.54Î5/2(X) − 1.54m2} × 106 erg cm−3
(24)

Equation (24) indicates that the magnetostriction of nickel
contains a two-ion, anisotropic-exchange term in addition to
a single-ion contribution. The former plays a significant role
as T/TC approaches unity because there the more-strongly
temperature-dependent, single-ion terms are very small.
These nickel magnetostriction functions, equations (22) and
(24), at room temperature and 4.2 K agree with the data in
Table 1. The temperature dependence of magnetostriction in
iron is more complex than that of Ni. This is believed to be
because of the more itinerant nature of the 3d states (delocal-
ized magnetic moments) in Fe compared to Ni (Lacheisserie
and Monterroso, 1983).

The temperature dependence of λγ ,2 in Gd follows that of
a sum of single-ion and two-ion terms (Callen and Callen,
1965). Here, the two-ion term is strong enough to account
for a change in sign of λ above 220 K.

A particularly simple case is that of amorphous metal-
lic alloys. Although these materials are macroscopically
isotropic, they are characterized locally by uniaxial anisot-
ropy. The measured temperature dependence of magne-
tostriction in several different amorphous alloys is quite well
described by the uniaxial, single-ion form of equation (22),
Î5/2(X). Some cobalt-rich amorphous alloys show a change
in sign of λs with increasing temperature that, as in the case
of Gd, may be associated with a significant two-ion contri-
bution (O’Handley, 1978; Lacheisserie, 1987).

2.7 Second-order effects

There are two second-order ME effects that are important
to note. One is a change in the ME constants, either λs

or Bi , when a material is strained to a significant level. In
this effect, the ME energy density contains terms that are
quadratic in strain and also have direction cosines of the
magnetization as coefficients. The other second-order effect
is a change in the elastic constant of a material owing to the
presence of a magnetostrictive strain in addition to the strain
produced by an external stress. This is referred to as the �E

effect.

2.7.1 Strain-induced changes in ME coefficients

In highly strained materials, such as epitaxial thin films with
significant lattice mismatch between the film and substrate,
the ME coupling coefficient, B1, can assume values different
from bulk. Just as an external strain or stress can alter
the magnetocrystalline anisotropy (equation (5)), it can also
alter the ME coupling coefficient or the magnetostriction
coefficient. This may be appreciated by recognizing that
equation (5) is the first-order term in an expansion of the
magnetic anisotropy in strain. If terms of second order in
strain, such as Dijαiαj εij , are added to the free energy,
then the terms may be regrouped to express an effective
ME coupling coefficient, Beff

1 = B1 + D1εij (O’Handley and
Sun, 1992; Sander, 1999).

Such second-order changes in ME coupling coefficients
have been measured directly by straining a bulk material
(Lacheisserie and Roucy, 1982) as well as in epitaxial
thin film of Ni/Cu, (Ha and O’Handley, 1999; Ciria and
O’Handley, 2002), or in polycrystalline thin films of Fe
(Koch, Weber, Thürmer and Rieder, 1996; Sander, 1999). A
detailed theory of these effects is under development (Fahnle
and Komelj, 2002).

Values of D1 for Ni films (Lachaeisserie, 1993; Sander,
1999; Ciria et al., 2003) are of the order −2.3 × 108. Clearly
when these values are multiplied by a strain of order 1%,
the product is comparable to the magnitude of the first-
order ME coupling coefficient, B1, namely, 6.2 × 106 Pa
and −3.4 × 106 Pa for Ni and Fe, respectively. In both of
the cases cited, the second-order effect changes the sign of
the ME energy density, Beff

1 ε, for positive strain but not for
negative strain.

2.7.2 �E Effect

Application of an external mechanical stress to a magne-
tostrictive material induces a strain which in turn, tends to
rotate the magnetization; M moves toward a tensile stress
direction for λ > 0, B < 0 (Figure 3). The stress-induced
rotation of M brings with it the magnetostrictive strain in
addition to the mechanically induced strain. In the weak
stress regime, the Joule magnetostriction makes a mate-
rial appear mechanically softer than if the magnetization
were not free to respond to the stress. This is illustrated in
Figure 10 (from Lacheisserie, 1993). The material appears
mechanically softer regardless of the sign of the magne-
tostriction indicating that this effect is quadratic in λs. The
added magnetic strain, εM ≈ λs, is generally insignificant
compared to the elastic strain for large stresses. Thus, this
�E effect, as it is called, is more important for acoustic
waves, vibrations, and damping, than it is for mechanical
strength.
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Figure 10. Strain versus stress in a magnetic material in the elastic
regime. When the magnetization is fixed, the small strain behavior
is purely linear. When the magnetization is free to respond to the
applied stress, the material appears softer because of the additional
magnetostrictive strain, εM. (Adapted from Lacheisserie, 1993.)

The total strain εtot that the ferromagnetic sample experi-
ences understress, σ , can be written as a sum of the mechan-
ical strain and the magnetostrictive strain:

εtot = σ

EM

+ 3

2
λs

[
cos2 θ − 1

3

]
(25)

Here, EM is the Young’s modulus for fixed magnetiza-
tion (no magnetostrictive contribution). The magnetostric-
tive contribution to total strain is taken from equation (1)
where θ is the angle between the magnetization and the
strain-measuring direction. Because cos θ = m = H/H eff

a for
a hard-axis magnetization process, we can eliminate cos θ

from equation (25). The apparent modulus, Eapparent = EH =
∂σ/∂εtot, in the presence of this magnetostrictive strain is
then obtained from equation (25) as:

1

Eapparent
≡ 1

EH

= ∂etot

∂σ
= 1

EM

− 3λsH
2

(H eff
a )3

∂H eff
a

∂σ
(26)

The ME contribution to the effective anisotropy field, H eff
a ,

can be written as 3λsσ/Ms to first order, giving

EM − EH

EH

≡ �E

E
= 9λ2

s H
2

Ms(H eff
a )3

EM (27)

This formula applies when the magnetization is initially
orthogonal to the stress direction.

Figure 11 shows the variation with temperature of the
�E effect in amorphous Fe–P–C ribbons as a function of
annealing condition: Z indicates zero field annealed, L and
T indicate field annealed, longitudinal, and transverse to the
ribbon direction, respectively. The experiments were done by
measuring variations in the vibration frequency of the ribbon
near 400 Hz (Berry and Pritchet, 1975). Clearly the �E effect
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Figure 11. �E effect measured by the vibrating reed technique
on an amorphous Fe–P–C ribbon in three annealing conditions:
Z, no field, L, longitudinal field; T , transverse field. (Reprinted
with permission Berry et al., copyright 1975, American Physical
Society.)

is a function of the initial magnetization configuration of a
sample. Annealing in the transverse direction gives an initial
magnetization state that produces the most magnetostrictive
strain under longitudinal flexure. At these low strain levels,
the modulus of the amorphous ribbon is reduced by 80% in
a field of about 6 Oe.

The �E effect is used in many magnetoacoustic devices
where the resonance frequency, proportional to E

1/2
H , can be

modulated by an applied field.
The relative strength of the �E effect is measured by a

magnetomechanical coupling factor, k, which is defined as
the ratio of the energy in coupled ME modes to the geometric
mean of the pure elastic and pure magnetic energies:

k = 2dHσ√
1
2 sHσ 2 1

2χH 2
= 4d√

sHχσ
= 4d

√
EH

χσ
(28)

Here the free-energy density has the form,

g = 1

2
sHσ 2 + 2dHσ − 1

2
γ σH 2 (29)

In equation (29), sH is the mechanical compliance at constant
field, sH = E−1

H , and χσ is the magnetic susceptibility at
constant stress. This energy form expresses the partition
of energy between pure elastic modes (1/2)sHσ 2, pure
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magnetic modes (1/2)χσH 2, and coupled ME modes, dHσ .
The magnetic and elastic responses for a coupled ME system
are expressed:

− ∂g/∂H = M = χsH + dσ

and − ∂g/∂σ = ε = σsH + dH (30)

The parameter d, called the magnetostrictivity, is defined as

1

V

∂2G

∂H∂σ
= −∂M

∂σ
= ∂e

∂H
≡ d (31)

It describes the magnitude of magnetic-field-induced strain
or stress-induced changes in M in a material. If the isotropic
magnetostrictive strain expression in equation (1) is sub-
stituted for ε in equation (30), and m = H/Ha for hard-
axis magnetization is used, the magnetostrictivity can be
expressed below saturation as

d = 3λs
H

Ha
2

(32)

where d = 0 for H > Ha (Livingston, 1982). Figure 12
shows the variation of d(H ) for a material with pure
transverse anisotropy (solid line) and for a more realistic
M–H loop (dashed). Note that d(H ) is the field derivative of
λ(H) shown in Figure 4 or from equation (1). Equations (27)
and (32) indicate that the �E effect reaches a maximum
when d2 is a maximum; d reaches a peak at or below the
effective anisotropy field, H eff

a .
The magnetostrictivity is important for transducer applica-

tions because it describes the stress sensitivity of magnetiza-
tion (magnetoacoustic microphone) or the field sensitivity of
strain (ME speaker or sonar projector) (equation (31)). What
is needed for these applications is a material with a large
value of λs but more importantly, a small value of Ha so
that saturation is achieved in a relatively weak field. Hence,
a useful figure of merit for transducer materials is the ratio
λs/K

2
eff as suggested by equation (32). Keeping in mind that

the area under d(H ) is fixed by λs (equation (30)), it is clear

−1 +1

d

0 H/Ha

Figure 12. Magnetostrictivity versus field applied transverse to an
easy axis (solid line) and for a more rounded magnetization curve
(dashed line).

that decreasing the anisotropy field tends to increase the peak
value of d(H ).

The magnetomechanical coupling factor, k, can take on
values between zero and unity, the latter being the condition
of complete coupling. In tensor notation, k33 pertains to
longitudinal mode coupling. Similar expressions apply for
shear mode coupling constants.

In terms of the �E effect, it can be shown that

k2 = EM − EH

EM

= �E

E
(33)

Thus, the �E effect can be expressed in terms of k, d, or
the magnetostrictive strain.

2.8 Measurement techniques

The techniques for measuring magnetostriction fall into three
broad categories.

1. When the sample is free to strain, that is, it is not
constrained by adhesion to another material, the true
magnetostrictive strain may be measured directly by
a variety of means including the use of strain gauge,
dilatometer, or capacitance techniques (in which the
straining material displaces a capacitor plate). These are
direct measurements of free strain.

2. When the magnetic sample is constrained by another
body having appreciable bending modulus, Et (E is the
elastic stiffness and t is the thickness of the second
component), then the magnetostrictive stress, Bi can
sometimes be measured by the deforming effect that an
applied field has on the composite. Rotating M from
an easy to a hard axis in a cubic material (equation (5))
generates the full ME stress, Bi . In this case, a strain less
than the free magnetostriction, |ε| < |λijk|, is generated
in the constrained magnetostrictive material.

The ME coupling coefficients of thin films on sub-
strates have been determined from the deflection of the
film-substrate cantilever upon change of the magneti-
zation direction (Klokholm, 1976; Tam and Schroeder,
1989; Weber, Koch and Rieder, 1994). The displace-
ment, �y, of the end of the substrate of length L, fixed at
one end (Figure 13), depends on the net in-plane stress,
σf , generated by the appropriate ME coupling coeffi-
cient, Bf , exerted by the film as described by Stoney’s
equation (valid for L > 3w, with w being the width of
the cantilever):

�y = 3tf L2Bf (1 − υs)

t2
s Es

≈ 2tf L2Bf

t2
s Es

(34)
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Figure 13. Schematic representation of cantilever bending owing
to ME stress as the magnetization direction is changed. The case
shown here is for λs > 0, or B1 < 0.

Here ti , Ei , and υi are the thickness, modulus,
and Poisson’s ratio of the film, i = f , or substrate,
i = s, respectively. The magnetostriction constant can
be determined from Bf using equations (8–10) if the
elastic constants of the film are also known (but it is the
stress, Bi , that is actually measured).

The cantilever deflection can be measured by a change
in capacitance with the film acting as one plate of the
capacitor (Klokholm, 1976), by differential capacitance
technique with the film between two capacitor plates
(Koch, Leonhard, Thurner and Abermann, 1990), or by
deflection of a laser beam reflected from a point on
the sample (Betz, Lachiesserie and Baczewski, 1996;
Sander, Enders and Kirschner, 1995). This is a direct
measurement of ME stress or of constrained strain.

The simple form of equation (34) overlooks more
complex aspects of the deformation of a single-crystal
cantilever such as the impact that clamping has on
the deformation tensor and, particularly in shorter can-
tilevers, the opposite curvature across the width (due
to the Poisson effect of the composite beam). Dahmen,
Lehwald and Sander (2000) used analytic and finite ele-
ment models to address these issues and arrived at a
generalized Stoney equation that includes the effects of
the dimensionality of the curvature due to an applied sur-
face stress. These results were extended to the case of
a cantilever deformed by the magnetostrictive stress due
to a 90◦ rotation of the magnetization; the components
of the ME stress tensor measured in such a case were
determined for cubic, tetragonal, trigonal, and hexagonal
symmetry (Dahmen, Ibach and Sander, 2001).

3. If free or bonded magnetic samples are subjected to
known strains, then the ME coefficient, Bi , can some-
times be determined from the strain-induced change in
anisotropy (perhaps measured from the M–H curve) of
the magnetic sample of interest. This is the inverse
method of measuring the ME coupling. This method
can be applied to bulk (Sun and O’Handley, 1991) or
thin-film samples but it is most commonly used for
the latter (O’Handley, Song and Ballentine, 1993; Song,

R

f

A

B
y

cos f = A
R

L

t f

ts

Figure 14. Geometry for determining strain in a thin film on a
substrate at the circularly curved, central portion of a four-point
bending jig. (Reprinted with permission O’Handley R.C., copyright
2000, John Wiley & Sons Inc.)

Ballentine and O’Handley, 1994; Baril, Gurney, Wilhoit
and Speriosu, 1999).

The magnitude of the strain in a film of thickness tf on
a substrate of thickness ts > tf can be related to the vertical
displacement, y, in a four-point bending geometry. In a four-
point fixture, the bending is circular inside the inner two
pressure points separated by a distance 2L (Figure 14). It
can be shown that in the limit of circular curvature of radius
R, the film strain is ε = ts/(2R). Using cos φ = A/R =
(R − y)/R and φ = L/R, the parameters R and φ can be
eliminated to give:

y = ts

2εf

[
1 − cos

(
2εf L

ts

)]
2εf L/ts�1−−−−−−→ L2

ts
εf (35)

Thus, knowing the vertical displacement at a given distance,
L, from the center of a film on a substrate gives the
magnitude of the strain imposed on the film. In such a
bending geometry, the film is essentially constrained (by
the substrate) across its width, εyy = 0, and is free to
strain normal to its surface, εzz = 0. It can be shown
(O’Handley, 2000) that εzz = −υεxx(1 − υ) ≈ εxx/2. Thus,
the ME contribution to the anisotropy energy of the film
strained by εxx = εf = yts/L

2 is, from equation (5):

fME = B1exx

[
α2

x − 1 − 2υ

3(1 − υ)

]
≈ B1exx

(
α2

x − 1

6

)
(36)

Details for various geometries are given in O’Handley,
Song and Ballentine (1993).

3 MAGNETIC SHAPE-MEMORY ALLOYS

3.1 Introduction

Ni–Mn–Ga and other FSMAs show large magnetic-field-
induced strains owing to twin-boundary motion in the
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martensitic phase (Ullakko et al., 1996; James and Wuttig,
1998). The stoichiometric compound, Ni2MnGa, transforms
from a cubic austenite phase to tetragonal martensite below
about 250 K. It was shown (Chernenko, Cesari, Kokorin and
Vitenko, 1995; Murray et al., 1998; Vasil’ev et al., 1999)
that compositions having higher electron-per-atom ratios
such as Ni49Mn29Ga22 have Tmart above room temperature
and, thus, can show magnetic-field-induced twin-boundary
motion at room temperature. It is in these compositions that
magnetic-field-induced strain has most often been studied
(Murray et al., 1998; O’Handley et al., 2000; Tickle et al.,
1999; Wu et al., 1999; Heczko, Sozinov and Ullakko, 2000);
the maximum field-induced strain in tetragonal martensite,
given by 1 − c/a = 6%, was reported in 2000 (Murray
et al., 2000). Compositions with slightly higher Mn/Ga
ratios transform from the cubic austenite to orthorhombic
martensite and can show a field-induced strain of 10%
(Sozinov, Likhachev, Lanske and Ullakko, 2002).

In order to understand the magnetic-field-induced strain
in these materials, it is important to clarify (i) the nature
of the structure across a twin plane, (ii) the effects of an
externally applied magnetic field (or stress) on the energy
of two martensite variants having different orientations of
their c axes (the magnetic easy axis), and (iii) perhaps most
importantly, the relative magnitudes of the yield stress that
must be overcome to initiate twin-boundary motion, the

magnetic mechanism that drives the growth of a particular
variant, and the thermal energy at the operating temperature.

3.1.1 Crystal structure

Figure 15 shows the evolution of the X-ray powder diffrac-
tion pattern with decreasing temperature from cubic austen-
ite to tetragonal martensite for Ni49.5Mn29.5Ga21 (Richard,
2005). For diffraction peaks satisfying h + k + l = 4n (n is
an integer), the splitting from single lines to doublets (with
the appearance of some modulation peaks) is the impor-
tant characteristic of the transformation that makes twinning
and field-induced twin-boundary motion possible. The inset
shows the variation of the magnetic susceptibility with tem-
perature indicating TC at about 360 K and the first-order
martensite transformation centered at 306 K.

Well below the martensite finish temperature, the sample
is fully transformed to tetragonal martensite. This single-
phase, martensitic regime is of interest here; it can be
twinned. Single crystals of Ni50Mn29Ga21 can show large-
scale twins separated by a twin boundary (Figure 16c) across
which a shear displacement is observed (Murray et al., 1998).
Ni–Mn–Ga particles of similar composition made by spark
erosion (Tang et al., 2003) show abundant nanometer-scale
twinning after annealing (Figure 16, Solomon, Smith, Tang
and Berkowitz, 2004; Solomon et al., 2005).
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Figure 15. X-ray powder diffraction patterns for Ni–Mn–Ga alloy at selected temperatures. Splitting of peaks below 306 K indicates the
transformation to tetragonal martensite. Inset: susceptibility versus temperature (Richard, 2005).
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(a) (b)

(c)

Twin
boundary

2 cm

Figure 16. (a) High-resolution transmission electron microscopy
images Ni–Mn–Ga particles made by spark erosion. (b) Atomic-
scale five-layered martensite reflects the atomic instability along
〈101〉 in {101} (Solomon, Smith, Tang and Berkowitz, 2004;
Solomon et al., 2005). The twinning evident as a horizontal
interface in (a) can also be seen in some samples on a macroscopic
scale (c) (Murray et al., 1998). (Reprinted with permission Solomon
et al., copyright 2004, American Institute of Physics.)

Three different twin variants (different c-axis orientations)
are possible in tetragonal martensite; two are depicted
schematically in Figure 17. The elastic energy associated
with a twin plane in the martensitic phase is minimized
if the plane is arranged with mirror symmetry as shown
in Figure 17(a). There are only two stable positions for
the atoms along the twin-plane {101} in a 〈101〉 direction.
The energy barrier between these two states is critical for
understanding the motion of twin boundaries; the barrier
height reflects changes in the lattice potential with position
near defects. In fact, the atomic structure of the twin plane
is more complicated than the planar form shown here.
Evidence suggests that the twin plane consists of a series
of terraces and steps that define not only dislocations (with
a burgers vector, b, in the plane of the terrace) but also
disconnections characterized by a height, h, due to the steps
(Hirth and Pond, 1996). Clearly, the horizontal twin interface
in Figure 16(a) shows an irregular form. For the purpose of
understanding magnetic-field-induced twin-boundary motion,
it is assumed here that the longer-range structure of the
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H ≠ 0b

E
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b

H
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Figure 17. At temperatures below T0, the martensitic phase is
stable; it can form crystallographic twins (a) to minimize strain
energy that accumulates during transformation. Panel (b) shows
two possible atomic positions exist parallel to and near the twin
boundary. Application of a magnetic field lowers the energy of the
potential well corresponding to the variant having its c axis more
nearly parallel to H .

twin plane depicted in Figure 17 is an adequate model
because the magnetic exchange interaction ensures that the
magnetization is relatively uniform over a longer range than
the distance between the steps; the exchange length can be
calculated from the magnetic anisotropy to be of order 14 nm
(O’Handley et al., 2001). The external magnetic field shown
as parallel to variant 1 and its effects on the free energy will
be discussed in the following text.

If a tetragonal Ni–Mn–Ga crystal is cut so that the sample
faces are parallel to its cubic austenite {100} planes, then it
can generally be trained so that a single set of {101} twin
planes is active. After suitable heat treatment to homogenize
the composition, the crystal is prepared for actuation by
application of a compressive bias stress, σ > σ 0, in the
direction shown in Figure 18(a); this favors growth of twin
variants having c parallel to the compression axis. If a
second stress, orthogonal to the first, is briefly applied as in
Figure 18(b) but not fully detwinning the crystal, then a twin
structure like that in Figure 18(b) can be achieved. This stress
is reduced (Figure 18d); then a magnetic field is applied as
shown in Figure 18(d) with a weak, orthogonal bias stress;
twin boundaries move back and forth as the ratio of the field
energy to the stress energy, µ0MsH/σε0, is greater or less
than unity.

(a) (b) (c) (d)

H
M

C
C

s0
s < s0

e(H )

sH

s

Figure 18. Panels (a) and (b) show crystal training, (c) and (d)
crystal actuation. The shaded and clear regions distinguish variants
having c axis vertical and horizontal, respectively.
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3.2 Actuation

3.2.1 Strain versus field

After setting the sample in an initial state with the c axis
perpendicular to the field direction, one-time field actuation
was reported to produce the maximum field-induced strain
in tetragonal martensite, 1 − c/a (Murray et al., 2000). It
was demonstrated that cyclic actuation of FSMA crystals is
possible in a system that contains a reset mechanism, such
as a spring that is compressed as the sample deforms by
twin-boundary motion under the action of a field directed
orthogonal to the spring axis. The field-induced strain
observed in such cyclic actuation is often only 2.5 or
3% (Figure 19) (Henry et al., 2002) in contrast to the 6%
achieved under low static load. There are two reasons for this.
First, when the sample ends are constrained, twin boundaries
are generally inhibited from entering the constrained regions,
reducing the active sample length. Second, the presence of
the back stress from the spring as the sample is actuated
decreases the effectiveness of the magnetic driving force.

Note also the evidence in Figure 19 of a threshold
magnetic field below which little twin-boundary motion
occurs. (The threshold field is more evident in quasistatic
measurements (Murray et al., 2000); it is somewhat rounded
out in these 2 Hz, cyclic measurements.) The threshold field
is a stochastic magnetomechanical parameter, much like
the coercive field below which no irreversible domain-wall
motion occurs. A related threshold or yield stress appears

in stress–strain measurements on these materials and the
two are related by µ0MsHi = σ yieldε0, where Hi is the
internal field (applied field corrected for demagnetizing
effects) above which gross twin-boundary motion initiates.
In a perfect crystal, Hthresh depends on the local energy
change when a twin boundary interacts with the Peierls
potential; in a real crystal, it also depends on the much
larger energy change when the twin boundary interacts with
a distribution of defects (Marioni, Allen and O’Handley,
2004; Paul, O’Handley and Peterson, 2005). Threshold fields
of 0.1–0.3 T are typically observed in active Ni–Mn–Ga
crystals, and the field-induced strain saturates when the
applied field reaches about 0.7 T.

The behavior in Figure 19 should be compared and
contrasted with that of magnetostriction. Beyond the obvious
difference in the magnitude of the field-induced strain in the
two cases, there are two features of the FSMA behavior in
Figure 19 that are different from that in magnetostriction.
These are (i) the presence of a threshold field below which
the large strain does not appear in FSMAs and (ii) the
large hysteresis of FSMAs (magnetostriction is anhysteretic,
especially in the ideal hard-axis magnetization process).
Further differences will be pointed out in the following text.

3.2.2 Frequency dependence

These cyclic actuation experiments were extended to higher
frequencies in order to understand the operational bandwidth
of Ni–Mn–Ga crystals having a volume of about a cubic
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centimeter. Figure 20 shows the field-induced strain achieved
at 4.6 kOe versus frequency for Ni49.5Mn29.5Ga21 (Henry
et al., 2003). Overlaid on the curve are the strain versus
field loops at selected frequencies. The maximum field that
could be achieved with the power supply used in these
experiments drops off above 300 Hz because of the increased
inductive reactance of the field coils. What is clear from the
data is that (i) there is considerable structure in the strain
versus frequency curve, (ii) there is a clear decrease in strain
above about 350 Hz (actuation frequency is twice the drive
frequency), and (iii) the strain versus field loops show more
hysteresis with increasing frequency and the phase of the
strain changes dramatically relative to that of the field above
about 350 Hz.

The structure in the ε(f ) curve between 100 and 200 Hz
has been determined to arise from mechanical resonances in
the measuring system. The decrease in output strain above
300 Hz is due to the decreasing strength of the applied field
as well as to a material resonance, as evidenced by the
180◦ change in phase of the strain relative to the field. The
resonance centered near 350 Hz appears to be the material
resonance.

Pulse field actuation experiments were carried out to probe
the details of twin-boundary kinetics (Marioni, O’Handley
and Allen, 2003). It was observed that the field-induced strain
lags the initiation of the magnetic-field pulse by more than
that expected from the need to exceed the threshold field for
twin-boundary motion. An additional lag is found to be due
to the inertia of the sample under the appreciable acceleration
(3 × 104 m s−2) it experiences in these experiments. It is

also observed that the free end of the sample does not
achieve a velocity greater than 6.2 m s−1, regardless of the
peak field strength or its rise time. This is now understood
to be a consequence of the fact that the magnetic energy
applied to the sample cannot exceed KuV and this limits the
FSMA kinetic energy and thus, v ≤ (2Ku/ρ)1/2 ≈ 6 m s−1.
So the large displacement of actuated FSMA crystals appears
to limit their bandwidth to f < 2500 Hz for samples of
any size.

3.3 Models

Of the many models describing the field-induced motion of
twin boundaries in FSMAs, four are briefly compared. They
are (i) numerical micromagnetic models (James and Wuttig,
1996), (ii) thermodynamic models (O’Handley, 1998; L’vov,
Gomonaj and Chernenko 1998; Likhachev and Ullakko,
2000; Kiefer and Lagoudas, 2005), (iii) analytic, micromag-
netic model (Paul, Marquiss and Quattrochi, 2003; Paul,
O’Handley and Peterson, 2005), and (iv) kinetic models
(Paul, O’Handley and Peterson, 2005; O’Handley et al.,
2006). These models generally include the Zeeman energy,
magnetic anisotropy energy, and an external stress for each of
two or sometimes three variant types. They may also include
a magnetostatic energy that tends to restore the net mag-
netization to zero when the field vanishes or, with similar
effect, an internal elastic energy that tends to restore the field-
induced strain to zero when the field is removed. Energies
associated with the yield stress, σ yield can also be added.
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Likhachev and Ullakko (2000) have taken a more general
analytic approach to the problem in three dimensions. They
integrate the Maxwell relation, (∂ε/∂H) = −(∂M/∂σ), to
arrive at the field-dependent strain. Experimental M(H) and
σ(ε) data are used as input to allow prediction of ε(H, σ) that
includes magnetostatic effects without the need to describe
them analytically.

3.3.1 Thermodynamics

A phenomenological, free-energy model for the field and
temperature dependence of the magnetization in ferromag-
netic martensites has been described (L’vov, Gomanaj and
Chernenko, 1998). In their model, the free energy of the
large strain due to twin-boundary motion is combined with
the much smaller magnetostrictive strain, both as coeffi-
cients of the direction cosines of the magnetization. While
the magnetostrictive strain does depend only on the direc-
tion of magnetization, the strain due to twin-boundary
motion does not necessarily appear as the magnetization
is rotated if the twin boundaries are pinned. Nevertheless,
this model was successfully extended to describe the field
dependence of stress–strain curves as well as the field
dependence of the magnetostrictive stress (see Figure A1)
that accumulates in a twin variant as its magnetization
is rotated by the applied field even before twin-boundary
motion.

Models of Paul, Marquiss and Quattrochi (2003) and Paul,
O’Handley and Peterson (2005) are analytic micromagnetic
treatments (exchange energy is included) that describe (i) the
field-induced displacement of the 90◦ domain wall from the
twin boundary at fields below threshold in the presence of an
elastic defect, (ii) the field-induced acceleration of the twin
dislocation between pinning events, and (iii) the interaction
of the twin boundary with a localized, elastic defect.

In one variation of the second class of models (O’Handley,
1998), the free-energy density of a two-variant crystal takes
the form:

g(θ, f1) = −µ0MsH
[
1 + (1 − f1) cos θ

]
+(1 − f1)Ku sin2 θ + 1

2
Ceff [(f1 − f2)ε0

]2

+σ extε0
[
f1 − (1 − f1) cos θ

] · · · (37)

Here, f1 and f2 = 1 − f1 describe the equilibrium variant
distribution and the term proportional to an effective elastic
constant, Ceff, describes the effect of elastic energy stored
in the crystal when twin-boundary motion occurs from the
equivariant state. θ is the angle between the applied field
direction and the magnetization in variant 2. The external
stress term was added later (Murray et al., 2000). The

resulting field-induced strain is given by

ε(H) ≡ ε0δf = 2Kuh(1 − h/2) − σε

Ceffε0
(38)

and the field-induced magnetization is

m(H) ≡ M(H)

Ms
= f1 + hf2 = δf + 1

2
+ h

(
δf − 1

2

)
(39)

Here, δf = f1 − 1/2 is the imbalance in the volume
fraction of variants 1 and 2 and h = µ0MsH/(2Ku) = cos θ2

(O’Handley, 1998).
When the field is small compared to the anisotropy

field, the analytic models predict a linearly increasing twin-
rearrangement strain. If an ad hoc yield stress is included
(Murray et al., 2000) or if defects are incorporated in a
microscopic way (Paul, Marquiss and Quattrochi, 2003), then
the observed threshold behavior is accounted for. When the
applied field approaches the anisotropy field, the Zeeman
energy difference across the twin boundary is decreased
(M.H approaches zero everywhere in the sample) and the
achievable strain saturates. The normalized driving force
that describes field-induced strain (δf from the rhs of
equation (38) normalized to Ku) is plotted in Figure 21
without (solid line) and with (dashed line) twin-boundary
yield stress included. The effect of compressive bias stress
orthogonal to the field axis would be to increase the field
at which actuation initiates and decrease the strain at which
actuation saturates.

A closer examination of the assumptions of the equilibrium
thermodynamic models is informative. The dependence of
the free-energy densities of two adjacent variants in an
external magnetic field applied parallel to the c axis of one
of them (variant 1 in Figure 17) is shown in Figure 22. Note

1

0

0 0.5 1

Dg

Ku

Figure 21. Output of equation (38), ε versus h with zero bias stress
is shown passing through the origin. The displaced dashed lines
show the effects of an ad hoc addition of a twin-boundary yield
stress of order 1 MPa, which is equivalent to a field of 100 kA m−1

or 0.2 Ha.
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Figure 22. Variation of magnetic free energy density with field
strength for two martensite variants, variant 1 having its magnetic
easy axis, c, parallel to H (O’Handley et al., 2006).

that above h = 1, the free energy difference between the two
variants does not change; the thermodynamic driving force
for twin boundary motion is constant for h > 1.

3.3.2 Kinetics

While it is clear from Figure 22 that application of a
magnetic field stabilizes variant 1 relative to variant 2, an
energy barrier must exist between these two states because
the twin boundary does not spontaneously move to expand
the volume of variant 1 at the expense of variant 2 under
application of a field below the threshold value. Further, the
application of magnetic field also exerts a mechanical shear
stress or torque, τmag, on the atoms along the twin plane
in a direction that moves the twin plane into the unstable
variant (Figure 23). This magnetic energy density difference,
g2 − g1, and the torque energy density, τ yieldγ 0, where γ 0
is the shear strain involved in the process (γ 0 = 0.122 for
Ni–Mn–Ga (O’Handley et al., 2001)) are each of the order
105 J m−3 corresponding to about 10 µeV atom−1. These
magnetic energies are much less than thermal energy per
atom at room temperature �gmag � Ku � (kBT /V ). Thus,
it is expected that at room temperature, thermal fluctuations
are capable of causing a cluster of several hundred atoms
to surmount the barrier, allowing the system to sample both
potential wells. But the thermal energy has no preference
for direction when the two energy minima have the same

H

c

M1

c

M2

q2 c

c
f1

1 − f1

Figure 23. Simple two-variant model of twinned tetragonal
martensite. Panel at right represents the change in crystallography
across the twin plane and the torque on each variant for a sample
constrained from rotating (O’Handley et al., 2006).

potential; to change the variant configuration, the energy
wells should have different energies or a shear stress must act
on the atoms. The magnetic field provides the difference in
energy minima as shown in Figure 22. In Figure 17, variant
1 is favored by a shear stress along [101] in (101) that acts
to move some of the atoms of variant 2 into the dashed
position. At T = 0 K, the magnetic shear stress, τmag, would
have to exceed the yield stress for twin-boundary motion
(Murray et al., 2000; Ullakko, 1996; Müllner and Ullakko,
1998; Heczko and Ullakko, 2001):

τmag ≡ Ku

γ 0
> τ yield (40)

Here τ yield is the threshold shear stress across the twin bound-
ary that initiates twin-boundary motion. This condition may
not be met at low temperature. At nonzero temperatures, the
magnetic field provides a direction for the transition between
the energy minima while the thermal energy provides most
of the activation energy to get over the barrier:

gmag + kBT

V
> τ yield (41)

Here, gmag includes both the Zeeman energy difference
between the two states and the magnetic torque on the atoms.
Thus, the role of thermal activation must be considered when
modeling the actuation of FSMAs. The fourth category of
models (analytic micromagnetics) has begun to describe the
temperature dependence of field-induced strain in FSMAs,
which is now considered (Paul, O’Handley and Peterson,
2005).

3.4 Temperature dependence

Magnetic-field-induced strain is generally observed to occur
over a limited temperature range below the martensite
transformation and above a lower cutoff temperature. Early
studies on polycrystalline compositions indicated a very
narrow operating range below the transformation (Murray
et al., 1998; Heczko, Sozinov and Ullakko, 2000). Other
temperature-dependent measurements on single crystals are
summarized in Figure 24 (Wu et al., 1999; Liu et al., 2002);
they indicate that the temperature range depends on the alloy
composition, with one sample being actuated down to 160 K.

Heczko and Straka (2003) described a model that attributes
the temperature dependence of field-induced twin rearrange-
ment to the condition in equation (40). They measured
the temperature dependence of the magnetic anisotropy,
the lattice constants, and twin-boundary yield stress of a
Ni–Mn–Ga alloy. They find that the yield stress increases
sharply with decreasing temperature. Their model does
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Figure 24. Experimental results for temperature dependence of
field-induced strain in three different Ni–Mn–Ga martensites (Liu
et al., 2002).

provide a basis for understanding the limited range of
activation. However, the condition in equation (40) contains
no magnetic-field dependence even though twin-boundary
motion is observed to proceed at fields below Ha. Further,
this model, like all thermodynamic models, does not con-
tain a real physical driving mechanism between the states of
the double well, nor does it account for the role of thermal
activation in the twin-boundary actuation process.

More recently the temperature dependence of the mechan-
ical torque exerted on the unfavorably oriented variants by
application of a field, T = −(∂GZeeman/∂θ) where GZeeman

is the first term in equation (37), has been considered to
describe the temperature dependence at various fields of the
twin-boundary activated strain (O’Handley et al., 2006). This
model includes thermal activation and the difference in rates
of transition between the two potential wells in the presence
of an applied field. For Ni–Mn–Ga martensite variants hav-
ing their crystallographic c axis perpendicular to the applied
field (variant 2 in Figure 17), the field-dependent torque per
unit volume, τ = T/�, is given by

τ 2 = −∂(−MsH cos θ2)

∂θ
= −2Kuh

√
1 − h2 (42)

Here Ms, Ku, and h are temperature dependent. This torque
on the magnetization is clockwise about the center of mass
of variant 2 in Figure 17, generates a mechanical torque on
variant 2 that is also clockwise. There is no torque on vari-
ant 1 because θ1 = 0, except that which is transferred from
variant 2 in the presence of a physical constraint against
rotation of variant 1. The shear across the twin boundary is
in a direction that drives the atoms near the twin plane in

variant 2 in a direction that grows variant 1 (cf. Figures 17
and 21).

The temperature dependence of the shear stress at the
twin boundary is expressed in general terms by making
use of the relation for uniaxial anisotropy (Akulov 1936;
Callen and Callen, 1966) expressed in equation (23) for two-
ion interactions and in Table 2 (l = 2, high T ) for single-
ion mechanisms. (This relation would not hold through an
intermartensitic transformation in which the nature of the
anisotropy changes; such transformations are often observed
in the Ni–Mn–Ga system.) Further, the temperature depen-
dence of the reduced magnetization is approximated with the
scaling relation, m = 1 − t2 = 1 − (T /TC)2. In this case, the
temperature dependence of the torque density reduces to:

τ(T ) = −2Ku(0)h(T )(1 − t2)2
√

1 − h(T )2 (43)

The field dependence of the torque density rises from zero
at h = 0 to a maximum of Ku at h = 1/

√
2 then decreases

to zero again when the applied field reaches the temperature-
dependent anisotropy field (θ2 = 0).

Figure 25 plots the thermally activated torque density,
τ(T )�R(T ) versus t , for different values of h(T ). �R(T ) is
the net thermally activated transition rate for atoms moving
from positions favoring variant 2 to those favoring variant 1:

�R = A1→2 exp

[
−�G0 − µ0MsH cos θ

kBT

]

−A2→1 exp

[
−�G0 + µ0MsH cos θ

kBT

]
(44)

Here, Ai−j is a preexponential factor for attempt rate in
the double well potential and �G0 = 0.015 eV is the defect
energy barrier height in the absence of a magnetic field. An
activation barrier close to this value, and the approximate
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Figure 25. Dependence of thermally activated torque on reduced
temperature for �G = 15 meV and various values of h(T ). Two
assumed forms for τ y(T ) are shown. (Adapted from O’Handley
et al., 2006.)
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range of the strain field about a Ni–Mn–Ga twin boundary,
2 nm, were estimated earlier (O’Handley et al., 2001). (See
(O’Handley et al., 2006), for numerical values used.) Here,
a preexponential factor of unity has been used in the ther-
mal activation so the vertical scale is arbitrary. Note that the
thermally activated torque is quenched as the reduced tem-
perature, t , approaches zero and vanishes at t = 1 (or below
t = 1 upon transformation to austenite where the two wells
become one). The very weak thermal activation at low tem-
peratures does not allow the relatively small magnetic energy
to effect twin-boundary motion. Two forms of threshold
shear stress are also shown in Figure 25, one a simple linear
relation based on the weak temperature dependence of the
elastic constants, and the other a representation of the expo-
nential temperature dependence observed in one Ni–Mn–Ga
alloy (Heczko and Straka, 2003). The shaded area around
these yield-stress lines suggests the distribution of pinning
strengths that is inherent in the stochastic process of twin-
boundary actuation (Marioni, Allen and O’Handley, 2004).
Equations (43) and (44) then indicate that field-induced twin-
boundary motion occurs over a limited temperature range
(between about h = 0.5 and 0.8 here) below the marten-
sitic transformation temperature, T0 (vertical dashed line), or
even lower if the applied field decreases below the anisotropy
field for T < T0. Actuation vanishes in the temperature range
where the temperature-dependent torque drops below the
temperature-dependent threshold stress.

Superimposed on the calculated curves are data from Liu
et al. (2002) showing the decrease in field-induced strain
at temperatures below the maximum field-induced strain.
The horizontal range of the data was scaled based on
the Curie temperature; the vertical axis of the data was
scaled to fit the general curve. This is not intended to be
a quantitative confirmation of the model but an indication
of how it is able to predict the vanishing of thermally
activated, field-induced strain at low temperatures. These

temperature-dependent models provide new insights into the
complex processes that govern the temperature dependence
of magnetic-field-induced twin-boundary motion, and show
that it contrasts starkly with the temperature dependence of
magnetostriction.

4 SUMMARY

ME effects arise from the strain dependence of spin-orbit
and anisotropic-exchange interactions. Joule magnetostric-
tion can be described by at least five related parameters: the
ME coupling coefficients Bi (stresses of magnetic origin),
the magnetostriction constants λi (strains of magnetic ori-
gin), the magnetostrictivity, d (the change in magnetization
per unit stress or the change in strain per unit field), the �E

effect, or magnetomechanical coupling factor, k. The Joule
magnetostriction is the strain associated with the direction of
magnetization. In an unconstrained sample, λ is proportional
to a component of the magnetic stress, Bi , divided by the
appropriate stiffness modulus. The inverse Joule effect brings
about a change in the magnetization process or change in the
anisotropy field, upon straining a sample.

The temperature dependence measured for Joule ME
effects is generally steeper than that of the magnetization
itself. (The same is true as for magnetic anisotropy.) The
reduced magnetostriction, λγ ,α(T )/λγ ,α(0), varies as the
l(l + 1)/2 power of the reduced magnetization in materials
whose magnetic moments are well localized. Rare-earth
metals and alloys with Lz = 0 can show much larger ME
effects than most 3d transition metals and their alloys.

The large field-induced strains observed in FSMAs are due
to torque-induced twin-boundary motion and hence are more
closely related to (i) martensite crystallography, including
compatibility between parent austenite and martensite (James

Table 3. Comparison of Joule magnetostriction and field-induced twin-boundary motion.

Anisotropic magnetostriction Field-induced twin-boundary motion

Strain and symmetry Magnetostrictive strain lowers symmetry of
crystal by small elastic distortion

Large strain results from reorientation of
low-symmetry crystallographic twins by
twin-boundary motion

Strain reference Direction of M Crystal axes
Strain mechanism Spin-orbit interaction or anisotropic exchange Field-induced torque on crystal, thermal activation
Range of strain <10−4 in transition metals, 2 × 10−3 in

rare-earth/transition metal alloys
1 − c/a = 6% tetragonal, 10% in orthorhombic

Ni–Mn–Ga
Reversibility Elastic; small hysteresis due to 90◦

domain-wall motion
Plastic; large hysteresis due to twin boundary

threshold
Role of domain walls Motion of 90◦ walls gives strain; motion of

180◦ walls does not
90◦ walls follow twin boundary 180◦ walls

produce no strain
Temperature dependence λ(T )/λ(0) = ml(l+1)/2

λ(0) generally > λ (room temperature)
ε(H) observed below martensite transition but

not below thermal cutoff
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and Hahn, 2000) as well as 1 − c/a, which limits the
strain in tetragonal martensites, (ii) defect structure, which
governs the mobility of twin boundaries, and (iii) the
magnetic anisotropy, which limits the torque and hence the
shear stress that can be applied along a twin boundary.
Table 3 summarizes some of the salient characteristics of
Joule magnetostriction and magnetic-field-induced strain in
FSMAs that distinguish these two magnetic-field-induced
strains that arise from very different mechanisms.

In Fe, 90◦ domain walls separate two magnetic domains
that are weakly strained by Joule magnetostriction in a
twinning relation across the domain wall. Application of a
field favoring one of the domains may move the domain wall;
rotation of the magnetization via domain-wall motion results
in a change in magnetostriction in that ‘transformed’ region
and hence a small change in the gross shape of the crystal.
In FSMAs the twin boundary is a crystallographic feature,
not a result of magnetostriction. The 90◦ domain wall that is
located at the twin boundary in zero field can be separated
from the twin boundary by application of a field below the
threshold for twin-boundary motion without the large strain
that distinguishes these materials; a small magnetostrictive
strain accompanies the rotation of the magnetization.
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APPENDIX

It is important to consider the possible role of conventional
magnetostriction in the actuation process of magnetic marten-
sites. Anisotropic magnetostriction is observed to be about
−100 to −150 × 10−6 in Ni–Mn–Ga (Tickle et al., 1999).
This small strain, quadratic in the applied field, is indi-
cated schematically in Figure A1 for Ni–Mn–Ga by the
solid line below a typical threshold field of 200 kA m−1. In a
multivariant martensite, as the magnetization is rotated, the
domains are not free to fully express their magnetostrictive
strain because of the constraints of adjacent variants, sample
clamping, and any imposed bias stress. In these cases, the
magnetic stress (the magnetoelastic coupling coefficient, B1

in this case) builds up inside the constrained variant. This
stress can be as large or larger than the yield stress for twin-
boundary motion; for Terfenol-D, B1 ≈ 60 MPa and in most
other magnetic materials it is of the order of 1–10 MPa. The
question here concerns the role of this stress accumulation on
twin-boundary motion as a field is applied to a multivariant
magnetic martensite. The large field-induced strain of certain
magnetic martensites is due to twin-boundary motion. Twin-
boundary motion may or may not occur in a multivariant
crystal upon field-induced rotation of the magnetization in
unfavorably oriented variant. However, once twin-boundary
motion is initiated, it will proceed to minimize the energy in
the presence of the applied field and the accumulated mag-
netostrictive stress.

In an actuation experiment configured as in Figure 18
but having the external stress provided by a compres-
sion spring, one would expect the stress in the load
path to be proportional to the strain. Figure A1 shows

the output of a load cell during cyclic actuation of the
Ni–Mn–Ga sample whose field-induced strain is similar to
that shown in Figure 19 (O’Handley et al., 2003). Note that
the stress increases quadratically by as much as 0.5 MPa
even at fields below the threshold for twin-boundary motion.
Once twin-boundary motion is initiated (the range over
which hysteresis is observed), this motion proceeds with
no increase in load-path stress until the magnetic driving
stress exceeds the load-path stress (spring plus ME stress).
There is no increase in stress above saturation at about
Ha ≈ 500 kA m−1.

It is possible quantitatively to explain the stress versus
field data in Figure A1. The free energy in equation (1) must
be supplemented with the ME anisotropy energy density in
cubic systems, which has the form (O’Handley, 2000):

gME = B1
[
εxx(α

2
x − 1

3 ) + εyy(α
2
y − 1

3 ) + εzz(α
2
z − 1

3 )
]
(A1)

Here, the εii are the principal magnetostrictive strains and
αi are the direction cosines of the magnetization. Because
the ME energies are small (B1ε ≈ 103 J m−3) compared
to the magnetic anisotropy, the magnetization direction,
determined from dg/dθ = 0, is only weakly affected by
ME energy. However, to determine the stress inside a
constrained crystal, the derivative of the free energy with
respect to strains is taken, and the magnitude of B1 is
such that it cannot be neglected relative to the other
stresses in the problem that affect twin distribution. When
the magnetization in variant 2 rotates in the presence of
a field, it exerts a compressive (Tickle et al., 1999a,b)
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Figure A1. Magnetic-field dependence of stress measured by a load cell during actuation of Ni–Mn–Ga crystal. Theoretical results of
equation (4) are plotted for the increasing field branch on half of the data set using different values of σ 0 that correspond to the initial bias
stress as labeled. (Reprinted with permission R.C. O’Handley et al., copyright 2003 International Society for Optical Engineering.)

magnetostrictive stress on variant 1 proportional to B1ε ≈
103 J m−3. When the total energy density is written and
minimized to find the stress, σy , the result is (O’Handley
et al., 2003):

σy = ∂g

∂ε2y

+ σ ext = σ 2y + σ ext (A2)

= 3
2 [B1(f1 − h2) − σ ext(y0, h)] + σ ext(y0, h) (A3)

The stress predicted by equation (A2) is plotted as a
solid line in Figure A1. The model results correctly pre-
dict the quadratic increase in stress approaching 1 MPa
before twin-boundary motion initiates. This stress is due to
magnetostriction in the constrained sample. This model also
expresses the absence of an increase in stress during twin-
boundary motion. Finally, the saturation of magnetostrictive
stress above the anisotropy field is also properly described.
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1 INTRODUCTION

The interactions between long-range magnetic order and
long-range ferroelectric order have been studied in depth
since the first experimental confirmation of the magnetoelec-
tric effect in the late 1950s (Dzyaloshinskii, 1959; Astrov,
1960; Folen, Rado and Stalder, 1961). We note the existence
of several reviews (Smolenskii and Chupis, 1982; Schmid,
1973; Fiebig, 2005; Eerenstein, Mathur and Scott, 2006) and
monographs (Birss, 1954), which give a general overview of
the subject.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Of particular interest for this review are those materials
which that exhibit a combined magnetic and ferroelectric
transition. Perhaps the best known of these is Ni–I boracite
(Ni3B7O13I) which shows coupled ferromagnetic (FM), fer-
roelectric, and ferroelastic properties at a single phase tran-
sition at T = 61.5 K (Ascher, Rieder and Stoessel, 1966;
Toledano, Schmid, Clin and Rivera, 1985). The multifer-
roic behavior in this boracite arises from the fact that the
magnetic transition is connected to a structural distortion,
which in turn allows the development of ferroelectric order
(Toledano, Schmid, Clin and Rivera, 1985). This transition
can be understood in terms of a phenomenological Landau
theory that couples the FM, ferroelectric, and ferroelastic
order parameters to a primary antiferromagnetic (AFM) order
parameter (Toledano, Schmid, Clin and Rivera, 1985). The
strong coupling between magnetic and ferroelectric order
parameters in systems having a simultaneous phase transi-
tion is demonstrated by the observation that in Ni3B7O13I it
is possible to reverse the direction of the spontaneous polar-
ization by applying an external magnetic field perpendicular
to the direction of magnetization (Ascher, Rieder and Stoes-
sel, 1966).

Cr2BeO4 also develops magnetic and ferroelectric order
at a single phase transition (Newnham, Kramer, Schulze and
Cross, 1978). Below T = 28 K, Cr2BeO4 orders antiferro-
magnetically into a state with spiral spin structure, and this
AFM state shows an extremely small spontaneous polariza-
tion (approximately one million times smaller than that of
BaTiO3). The coupling between magnetic and ferroelectric
order is expressed by a model proposing a mechanism in
which the electric polarization is induced solely by the AFM
order (Stefanovskii and Yablonskii, 1986). A similar model
for magnetically induced ferroelectric order will be discussed
in detail in the following sections.
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The multiferroic behavior of BaMnF4 is useful for illustrat-
ing the importance of symmetry considerations in determin-
ing magnetoelectric properties. Pyroelectric BaMnF4 orders
antiferromagnetically when cooled below T = 26 K, and
there is a dielectric anomaly at this magnetic transition
temperature (Samara and Richards, 1976). This decrease in
dielectric constant below TN varies like the square of the
sublattice magnetization, and clearly indicates a coupling
between the magnetic and ferroelectric properties of the sam-
ple. This interaction between magnetic and ferroelectric order
is attributed to a magnetoelectric coupling, which causes a
polarization-induced spin canting of 3 mrad (Fox and Scott,
1977). This spontaneous magnetoelectric effect is allowed by
the 2′ magnetic point group of BaMnF4. Substituting 1% Co
for Mn changes the magnetic point group to 2, which does not
allow a spontaneous magnetoelectric effect, and no dielectric
anomaly is observed in BaCo0.01Mn0.99F4 (Fox, Tilley and
Scott, 1980). While the magnetic structure in BaMnF4 is
strongly affected by the ferroelectric order, the very large
coercive field precludes controlling the magnetization using
an external electric field (Fiebig, 2005).

Until quite recently, the theoretical and experimental stud-
ies have focused on ferroelectricity in systems with simple
FM or AFM order (Fox, Tilley and Scott, 1980; Toledano,
Schmid, Clin and Rivera, 1985) (with studies on Cr2BeO4

being the notable exception). These systems are tractable
from a theoretical standpoint, and allow a comparison to
be made between experimental results and straightforward
models based on magnetic space groups. However, limit-
ing the scope of investigation to systems with FM or AFM
order neglects a large class of materials that have more com-
plex magnetic structures. Here, we will not consider systems
(several of which are listed in Table 1 of Smolenskii and
Chupis, 1982) which are ferroelectric at high temperature
and then have a lower temperature magnetic phase transition
(Fiebig et al., 2002). Instead, in this brief review article we
will focus on the more recent studies in which ferroelectricity
appears simultaneously (in a single combined phase transi-
tion) with long-range sinusoidally modulated magnetic order
(Kimura et al., 2003; Hur et al., 2004), which we will refer to
generically as ‘incommensurate’ magnetic order. (Commen-
surate systems have a wave vector q such that aq = n/m,
where n and m are integers. If this condition is not satis-
fied, the system is incommensurate.) Accordingly, we will
briefly summarize the experimental situation for the sys-
tems TbMnO3 (TMO) (Hur et al., 2004; Kenzelmann et al.,
2005) and Ni3V2O8 (NVO) (Lawes et al., 2004, 2005; Ken-
zelmann et al., 2006). Then we will describe in detail the
symmetry analysis developed in Lawes et al. (2005), Ken-
zelmann et al. (2006), and Harris (2006a) to understand the
phenomenology of these systems. We believe that this theo-
retical approach is simple enough that it can easily be applied
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Figure 1. Experimental results for the spontaneous (i.e., in zero
applied electric field) polarization P versus applied uniform mag-
netic field H applied along different crystallographic directions at
selected temperatures for NVO. Only the b-component of the spon-
taneous polarization vector is nonzero. The arrows indicate the
directions of increasing and decreasing magnetic field. (Reprinted
with permission G. Lawes et al., copyright 2005, American Institute
of Physics.)

to the ever increasing number of systems like NVO or TMO
in which ferroelectricity is induced by incommensurate mag-
netic long-range order (For a symmetry analysis of several
other systems, see Harris, 2006b).

To illustrate this phenomenon, we show, in Figure 1
some intriguing data from (Lawes et al., 2005) showing
that the spontaneous polarization P depends strongly on the
applied magnetic field H. At first glance, this data seems
to have no obvious explanation. However, when viewed in
combination with the magnetic phase diagram (see Figure 6)
we will see that this data indicates that the spontaneous
polarization is nonzero only in the magnetic phase we
will call the ‘low-temperature incommensurate phase’. The
hysteresis is a consequence of passing through a first-order
phase boundary between this phase and an AFM phase in
which a spontaneous polarization is not allowed. Thus, the
dramatic dependence of polarization on magnetic field has
a simple explanation: ferroelectric order appears only in
one specific magnetic phase whose existence depends in the
value of the magnetic field. This strong coupling between
magnetic and ferroelectric order is potentially important for
device applications, as we will discuss in the following
section. From a basic physics standpoint, these systems
that exhibit a coupling between the ferroelectric moment (a
polar vector) and the magnetic moment (an axial vector) are
very interesting. (As we will see, such systems have order
parameters whose response to both electric and magnetic
fields becomes large especially near a phase transition.) A
complete understanding of this coupling from a microscopic
theory is not yet available. Here, we will show that the
Landau expansion explains the observed phenomenology
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of this interaction and that these results follow from the
microscopic symmetry of the strain dependence of the
exchange tensor. This explanation will serve as a guide to
constructing a fully microscopic theory of magnetoelectric
coupling.

Briefly, this review is organized as follows. In Section 2,
we discuss some general types of applications in which the
magnetoelectric coupling may be exploited to develop new
types of devices. It should be emphasized that these applica-
tions are speculative, and are intended to illustrate the types
of new devices that could be developed using these new
materials. In Section 3, we review the Landau description of
ferroelectricity. In Section 4, we give a simplified theoretical
analysis of incommensurate magnetic ordering and in Section
5, we discuss how Landau theory leads to a symmetry-
based description of incommensurate magnetic ordering. It
is our aim to demystify the use of representation theory
for the determination of magnetic structure by diffraction
techniques. Understanding these incommensurate magnetic
structures is crucial to developing a model for the coupling
between magnetic and ferroelectric order in these systems.
In Section 6, we use the results of Section 5 to analyze how
symmetry restricts the form of the coupling between electric
and magnetic order parameters and thereby explain the simul-
taneous appearance of these two kinds of order parameters in
a single phase transition. The construction of this interaction
is greatly simplified by the fact that it involves an expansion
in powers of the order parameters relative to the paramag-
netic paraelectric phase. Thus the interactions have to satisfy
the invariances of the disordered paramagnetic/paraelectric
phase (Dzyaloshinskii, 1957; Landau and Lifshitz, 1958) and
we do not need to broach the more complicated question
of analyzing the symmetry of interaction within an ordered
phase. In Section 7, we analyze the symmetry of the strain
dependence of the exchange tensor and show that it leads
to results identical to those of Landau theory. In Section 8
we summarize the main points of this review and speculate
on some future directions of research. We will discuss how
our results on ferroelectric order in incommensurate magnets
may offer guidance in searching for new magnetoelectric
materials. Finally in Section 9, we briefly discuss results
which appeared subsequent to the writing of this review.

2 DEVICE APPLICATIONS

The development of devices incorporating both charge and
spin degrees of freedom, often referred to as spintronics,
has already led to significant technological breakthroughs
(Wolf et al., 2001). Magnetic sensors based on giant mag-
netoresistance (GMR) are widely used as the read heads

in modern hard drives, and magnetic random access mem-
ory also relies strongly on couplings between charge and
spin. Additionally, there are a wide range of proposals for
devices based on controlling the spin degree of freedom in
FM semiconductors, including spin valves and qubits for
quantum computing. Much of the research on materials in
which charge and spin are coupled has focused on metallic
and semiconducting systems. However, dielectric materials
exhibiting couplings between electric polarization and mag-
netization may also play an important role in developing the
next generation of spintronic devices.

Magnetoelectrics are systems in which either applying an
external magnetic field produces an electric polarization or
applying an external electric field produces a magnetization.
This type of coupling between charge and spin was postu-
lated by Pierre Curie at the end of the nineteenth century
(Curie, 1894), but not observed experimentally until the late
1950s (Astrov, 1960; Folen, Rado and Stalder, 1961). Materi-
als in which two or more of ferroelectric, FM, and ferroelastic
order coexist are referred to as multiferroics. This strict defi-
nition of multiferroics is often relaxed to include systems that
exhibit combinations of any type of long-range magnetic, fer-
roelectric, or ferroelastic order. Furthermore, a fourth class
of ferroic order, ferrotoroidicity, has been included in dis-
cussions of multiferroic materials (Fiebig, 2005; Schmid and
Rivera, 1994; Ye et al., 1994). This review will concen-
trate specifically on magnetoelectric multiferroics, where the
coexistence of long-range magnetic and long-range dielectric
order leads to a pronounced coupling between the charge and
spin degrees of freedom in these systems.

We consider two classes of devices based on magneto-
electric multiferroics. The first class of devices depend on
the magnetoelectric effect – the induction of a magnetiza-
tion (polarization) by an applied electric (magnetic) field.
Using the magnetoelectric effect, it is possible to design a
range of devices from sensors to transducers to actuators,
in which magnetic and electric properties are coupled. The
second class of devices exploits the fact that these materi-
als have simultaneously appearing long-range magnetic and
ferroelectric order. The underlying assumption is that multi-
ferroics exhibit both charge and spin ordering, and because
of the coupling between the two, both magnetic and ferro-
electric order will be strongly affected by either magnetic
or electric fields. Strictly speaking, only magnetic field con-
trol of the electric polarization has been demonstrated for the
multiferroic materials with incommensurate magnetic struc-
tures discussed in this review, but magnetic phase control by
an external electric field has been demonstrated in other mul-
tiferroic materials (Lottermoser et al., 2004). Very recently,
Ederer and Spaldin have discussed the materials requirements
for electrically switchable magnetic properties in thin-film
multiferroics (Ederer and Spaldin, 2005).
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The investigation of magnetoelectric devices is an active
area of research. Prototype devices fabricated using piezo-
electric–magnetostrictive composite materials to produce
magnetoelectric coupling have already been tested (Bayra-
shev, Parker, Robbins and Ziaie, 2003; Srinivasan et al.,
2002), and there are a range of proposals for other mag-
netoelectric devices. These include utilizing magnetoelectric
materials as the pinning layer in GMR devices (Binek and
Doudin, 2005), for low-frequency wireless power applica-
tions (Bayrashev, Parker, Robbins and Ziaie, 2003), and for
developing tunable dielectric materials (Katsufuji and Tak-
agi, 2001). One key feature of magnetoelectric materials is
that they allow the design of devices controlled magnet-
ically or electrically, as desired. Controlling the magnetic
properties of materials using an electric field offers signifi-
cant benefits in designing new devices. Using current-based
methods to switch magnetic devices is relatively slow and
power intensive. Voltage control of the magnetic properties
is expected to offer significantly faster switching (thin-film
ferroelectrics can show switching times of less than 200 ps
(Li et al., 2004)) in a low-power device. Magnetoelectric
materials offer the potential for fabricating highly tunable,
fast switching, low-loss/low-power devices having very small
form factors, which would be suitable for a wide range of
commercial and industrial applications.

The materials property most relevant in determining the
suitability of a compound for applications in magneto-
electric devices is the magnitude of the magnetoelectric
susceptibility, χME. For homogeneous materials, χME sat-
isfies the bound,

(
χ2

ME ≤ χEχM

)
(1)

where χE and χM are the electric and magnetic suscepti-
bilities of the system, respectively (Smolenskii and Chupis,
1982). Therefore, in order to maximize the magnitude of the
magnetoelectric coupling, one should attempt to maximize
the magnitudes of both χM and χE. Since ferroelectrics typi-
cally have large values of χE and ferromagnets typically have
large values of χM, multiferroics are expected to have large
values of χME. Furthermore, since susceptibilities are largest
at the ordering transition, systems developing magnetic and
ferroelectric order at the same temperature should show
exceptionally large magnetoelectric couplings. Understand-
ing the microscopic origins of the magnetoelectric coupling
in these multiferroic systems will have important ramifica-
tions for developing novel magnetoelectronic devices.

Beyond simply exhibiting very large magnetoelectric cou-
plings, intrinsic multiferroics also have both long-range mag-
netic order and long-range ferroelectric order. The coupling
between magnetization and polarization offers new possibili-
ties for designing devices. The ability to control the magnetic

or ferroelectric state of a system using either a magnetic
field or an electric field would offer the ability to develop
multifunctional memory elements, for example, ferroelec-
tric memory that can be written to using magnetic fields.
We will discuss two proposals for new technologies that
explicitly utilize the ferroelectric and magnetic characters
of magnetoelectric multiferroics. It should be emphasized
that this discussion is meant only to illustrate some of the
potential applications arising from the incorporation of multi-
ferroic materials into new devices. More investigation on the
specific properties of these multiferroics is required before
proof-of-principle devices could be designed on the basis of
these speculations. Because the spontaneous polarization in
incommensurate multiferroics is small, these materials are
not expected to replace conventional ferroelectrics in any
type of current devices. Therefore, we will concentrate on
discussing novel applications which would only be possible
using multiferroic materials.

As the bit density of modern hard drives increases, the
characteristic size of the magnetic structures used to store
the information is decreasing. As the physical size of the bit
is reduced, the anisotropy energy decreases, and the magnetic
moment can begin to thermally fluctuate. Controlling these
thermal fluctuations is necessary to ensure the long-term sta-
bility of stored information in ultradense magnetic recording
material. For long-term magnetic storage (5+ years), the ratio
of the energy barrier against these thermal fluctuations to kBT

should be large, roughly 55. In current devices, this is often
accomplished by using materials with very large magnetic
anisotropy energies or by exploiting the anisotropic differ-
ence between FM and AFM layers. One possible application
for multiferroic materials is to use the coupling between fer-
roelectric and magnetic order in these systems to stabilize the
magnetic moment against thermal fluctuations in nanoscale
magnets.

In many magnetoelectric multiferroics, there is a strong
coupling between the ferroelectric and magnetic order param-
eters. In such systems, fixing the polarization (magnetization)
direction will fix the axis of the magnetization (polariza-
tion). This coupling is observed in measurements showing
that the sign of the magnetically induced polarization is inde-
pendent of the sign of the applied magnetic field, although
the development of ferroelectric order depends strongly on
the magnetic field axis. In such multiferroics, fixing the elec-
tric polarization would also fix the magnetization axis. This
ferroelectrically induced magnetic anisotropy would inhibit
thermally activated switching of the magnetic moments by
significantly increasing the magnitude of the energy bar-
rier to magnetization reversal. This could be accomplished,
for example, by assembling multiferroic nanoparticles on
a ferroelectric substrate. In this geometry, the very large
ferroelectric anisotropy energy would provide a tunable
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Figure 2. Schematic illustration of a device to measure magnetic
fields by using the induced polarization. The middle layer (white)
is a multiferroic material with strong magnetoelectric couplings and
the outer layers (gray) are ferromagnetic metals. In this example, the
polarization is induced in a direction perpendicular to the applied
magnetic field.

barrier against thermal fluctuations of the magnetic moment
as well.

Multiferroics may also have important applications in
developing magnetic field sensors. There are a range of
proposals for incorporating magnetoelectric materials in
exceptionally sensitive magnetic field detectors. Even rel-
atively small external magnetic fields will produce a volt-
age change in materials with very large magnetoelectric
couplings. Since it is often better to measure small volt-
ages at zero applied current rather than small magnetiza-
tions or small changes in resistivity, magnetoelectric mate-
rials offer the potential for developing greatly improved
magnetic field sensors. Because multiferroics exhibiting
simultaneous magnetic and ferroelectric transitions offer
exceptionally large magnetoelectric couplings, these mate-
rials are particularly interesting in the context of improved
sensors. Figure 2 shows a schematic for such a device
(http://www.nasatech.com/Briefs/May00/NPO20523.html).
The magnetization produces a spontaneous polarization
directed perpendicular to the plane of the sensor. This mag-
netically induced voltage can be measured to a high degree
of accuracy, either directly or by measuring the dielectric
response of the compound. This device could also be config-
ured to extract energy from an alternating magnetic field–the
magnetically induced alternating voltage could be used as a
supply for very low-power applications (Bayrashev, Parker,
Robbins and Ziaie, 2003).

Beyond simply being used as a passive magnetic field sen-
sor, the device illustrated in Figure 2 could also be configured
as a voltage-biased magnetic memory element. One of the
difficulties facing current magnetic random access memory
(MRAM) devices lies in producing magnetic fields that are
strong enough to cause a moment reversal in the memory ele-
ment but also sufficiently localized to affect only one specific
element. While identifying multiferroic materials in which

applying a voltage could reverse the direction of the magne-
tization would certainly be beneficial for developing MRAM
devices, a more modest type of voltage-assisted magnetiza-
tion reversal could also be implemented in memory elements.
As will be discussed in the following section, ferroelectric
order can be promoted or suppressed by the application of
an external magnetic field in many multiferroic materials. We
expect that in these materials, applying an electric field could
then suppress or promote magnetic ordering. In such a sys-
tem, the coercivity of the magnetic memory element could
be tuned by applying an electric field. Incommensurate mul-
tiferroics may be more suitable for devices based on voltage-
tunable coercivity, rather than voltage-tunable magnetization,
because of the very small spontaneous polarization typically
developing in these systems.

Consider the multiferroic memory element in a FM state,
which can be suppressed by applying a sufficiently large
voltage. In the absence of an electric field, the coercivity
of the memory element is large, so the magnetization is
unaffected by stray magnetic fields. In order to reverse
the magnetization direction, a bias voltage is applied to
the multiferroic element, bringing the system closer to the
magnetic transition, reducing the magnitude of the coercive
field. In this state, the magnetization can be reversed by
a relatively small external magnetic field, smaller than the
coercive field of the unbiased multiferroic. When the voltage
is removed, the new magnetization will be stable. This type
of voltage-assisted magnetization reversal could be used to
produce arrays of magnetic memory elements that could
be switched by the same external magnetic field. Only
those elements that have a bias voltage applied will have a
sufficiently small coercivity to be switched by the magnetic
field. This technique may offer advantages over transitional
MRAM devices, such as a smaller sensitivity to stray fields
(allowing higher bit density) and potentially faster switching
times. This is schematically illustrated in Figure 3.

While multiferroics offer many exciting possibilities
for designing novel magnetoelectric and magnetodielectric
devices, there are several materials limitations that need to
be overcome, specifically for incommensurate multiferroics.
All incommensurate multiferroics identified to date have
transition temperatures well below room temperature, with
the possible exception of Ba0.5Sr1.5Zn2Fe12O22 (T. Kimura,
private communication). Additionally, the magnitude of the
spontaneous polarization in incommensurate multiferroics is
very small, with typical polarizations on the order of only
10−3 Cm−2. Finally, incommensurate multiferroics often
have a small or negligible net magnetization in the ordered
state. These limitations make it difficult to identify applica-
tions in which incommensurate multiferroics could replace
conventional FM or ferroelectric materials. However, the
strong spin-charge coupling in multiferroic materials does
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Figure 3. Voltage-assisted MRAM. (a) Schematic diagram showing a model curve for how the coercive magnetic field is expected to vary
with voltage. (b) With the magnetization of the bits originally directed to the right, a small (50 Oe) writing field is applied. At zero voltage,
this is smaller than the coercive field, so that the magnetization does not switch. However, applying 5 V across the multiferroic layer
reduces the coercive field to almost zero, so that this small magnetic field is sufficient to reverse the direction of magnetization.

offer the possibility of designing new classes of devices,
which would be impossible with conventional materials.
Identifying incommensurate multiferroics having higher tran-
sition temperatures and larger ordered moments (both electric
and magnetic) is one of the major current research objectives
for multiferroic materials. Furthermore, there is some hope
that the ferroelectric properties of incommensurate multifer-
roics may be enhanced in thin films. Recent work on BiFeO3

films has shown that the magnitude of the polarization in thin
films is approximately an order of magnitude larger than in
bulk samples (Wang et al., 2003). This has been explained in
terms of epitaxial strain (Li et al., 2004) and allows the pos-
sibility that the spontaneous polarization of incommensurate
multiferroics may be enhanced in thin films.

3 FERROELECTRICITY

We start by making a few observations concerning the sym-
metry properties of ferroelectric systems for which magnetic
ordering plays no role. In the most common scenario, fer-
roelectrics exhibit a high-temperature phase having spatial
inversion symmetry which prevents the existence of a vector
order parameter. Then, as the temperature is reduced through
a critical value, TF, a lattice instability develops in which
inversion symmetry is broken cooperatively via a continuous
phase transition at which a spontaneous polarization appears.
Within a Landau theory this transition is described by a free
energy as a function of the polarization P which is of the form

F = 1

2
χ−1

E P2+O(P)4 = 1

2
a(T − TF)P2 + O(P)4 (2)

At the transition, the fact that the quadratic term in P becomes
unstable (negative) reflects the divergence in the electric
susceptibility at the ferroelectric transition. This instability
is sometimes traced to a soft phonon, but whatever the
mechanism, the appearance of ferroelectricity represents a
broken symmetry. Conversely, as will become relevant in

the following, ferroelectricity can only occur if the sym-
metry is broken to permit the ordering of the polarization
vector. We will use this criterion to determine which types
of magnetic order can possibly induce ferroelectric order.
If one takes the quartic terms in equation (2) to be of the
form (b/4)[P2]2 (with a > 0 for stability), then minimiza-
tion of F with respect to P shows that for T < TF one has
P ∼ [a(TF − T )/b]1/2, which is expected to hold as long as
TF − T is not so large that sixth- and higher-order terms in
F are important. Mean-field theory ignores spatial correla-
tions that lead to modifications of critical exponents, but the
scope of this review does not permit consideration of such
corrections (Domb and Green, 1976).

As the temperature is further lowered it is possible for this
ferroelectric system to develop long-range magnetic order
(Fiebig et al., 2002). In this case, one does not expect signif-
icant interaction between electrical and magnetic properties
because the two phenomena are essentially independent of
one another. In these systems, the spontaneous polarization
will depend only weakly on the applied magnetic field. In
this scenario, it is well known (Lawes, Ramirez, Varma
and Subramanian, 2003) that one can expect anomalies in
the dielectric response of the system when the ferroelectric
develops (independently) long-range magnetic order. This
review is not concerned with such an ‘accidental’ superposi-
tion of electric and magnetic properties. Instead, we focus our
attention on the situation when the appearance of long-range
magnetic order induces ferroelectricity. Furthermore, we will
consider an interesting subclass in which the long-range mag-
netic order is modulated with an apparently incommensurate
wave vector. We will develop a Landau theory for this com-
bined phase transition in which the fact that the wave vector
does not have high symmetry (and is thus neither FM or
AFM) is crucial to our analysis. Thus the development here
cannot be obtained by a trivial extension of theories appli-
cable to FM or AFM ferroelectrics. A simplifying feature
of this formulation is that it is based on an expansion of the
free energy in powers of the various order parameters relative
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to the paramagnetic phase. Accordingly, each term in this
expansion has to have the full symmetry of the disordered
phase (Dzyaloshinskii, 1957; Landau and Lifshitz, 1958). In
contrast, it is less straightforward to analyze whether the sym-
metry of a magnetically ordered phase permits an induced
ferroelectric order. Also, the Landau formulation correctly
predicts which components of the spontaneous polarization
vector are induced by the magnetic ordering. In addition, the
Landau expansion indicates that the spontaneous polarization
is proportional to the nth power of the emerging magnetic
order parameter. In the cases considered here n = 1, as we
shall see.

4 TOY MODELS
FOR INCOMMENSURATE MAGNETISM

4.1 Review of mean-field theory

In this section we review the description and phenomenology
of incommensurate magnets, because the characterization of
their symmetry is essential to understanding the coupling
between magnetic and electric long-range order.

For the purposes of this review, it suffices to consider the
description of incommensurate magnets within mean-field
theory. For a system consisting of quantum spins of mag-
nitude S on each site, we write the trial free energy as

F ≡ U − T S = Tr[ρH + kT ρ ln ρ] (3)

where H is the Hamiltonian, T the temperature, U the
internal energy, S the entropy, and the actual free energy is
the minimum of F with respect to the choice of ρ subject to
the conditions that ρ is Hermitian with unit trace. Within
mean-field theory we take the density matrix to be the
product of independent single particle density matrices ρ(i)

for each site i:

ρ ≡
∏

i

ρ(i) (4)

This approximation corresponds to the intuitive idea that
when correlations between spins are neglected, each spin
reacts to the mean field of its neighbors.

In equation (3), the trace of ρH gives the internal energy
U and that of −kρ ln ρ gives the entropy S. In the absence
of anisotropy it suffices to set

ρ(i) = 1

2S + 1
[I + cσ (i)·Si] (5)

where I is the unit matrix of dimension (2S + 1), c is a
constant of order unity, chosen to make equation (6) true, and

Si is the vector spin operator for site i (here Si is a (2S + 1)

dimensional matrix). The free energy is then minimized with
respect to the trial parameters σ (i), which physically are
identified as the average spin vectors:

〈S(i)〉 ≡ Tr[ρ(i)S(i)] = σ (i) (6)

Thus, σ (i) is the vector order parameter at the ith lattice
site. In this formulation the internal energy is quadratic in
the order parameter σ , whereas the entropic term involves
both quadratic and higher powers of the order parameter.
As we shall see, even without explicit calculations much
information can be inferred from the symmetry of the trial
free energy as a function of the order parameter(s).

As mentioned in the introduction, we will focus our atten-
tion on systems which display incommensurately modulated
magnetic long-range order. We refer the reader to a compre-
hensive survey of such systems by Nagamiya (1967). Here
we give a simplified review. To characterize an incommen-
surate state we consider a toy model consisting of a one-
dimensional system with interparticle separation a and hav-
ing isotropic AFM exchange interactions J1 and J2 between
nearest and next-nearest neighbors, respectively. If J2 is
AFM and large enough, these two interactions compete and
produce an incommensurate spin structure. Thus we are led
to consider the Hamiltonian

H =
∑

n

Sn · [J1Sn+1 + J2Sn+2] (7)

with J2 > 0. The corresponding trial free energy is

F = 1

2
dkT

∑
i

σ (i)2 +
∑

n=1,2

Jnσ (i) · σ (i + n) + O(σ 4) (8)

where the entropic term is scaled by a constant of order
unity, d.

4.2 Wave vector selection

It is instructive to write the free energy per spin, f , in terms
of Fourier variables, σ (q) = (1/N)

∑
i eiqxi σ (i), where N is

the total number of spins as

f ≡ F

N
= 1

2

∑
q

χ(q)−1σ (q)·σ (−q) + O(σ 4) (9)

where χ(q)−1 = dkT + J1 cos(qa) + J2 cos(2qa) is the
wave vector-dependent susceptibility. At high temperature
(when kT � |J1| and kT � |J2|), χ(q)−1 is positive for all
q and the free energy is minimized by setting all the order



8 Magnetic materials with outstanding properties

parameters σ (q) to zero. In Figure 4, we show χ(q)−1 as a
function of wave vector q for a sequence of temperatures. As
the temperature is lowered through a critical value Tc, χ(q)−1

becomes zero for the wave vector q ≡ q0 which minimizes
χ(q)−1:

cos(q0a) = −J1

(4J2)
(10)

This determination of the value of q0 is called wave vec-
tor selection. As the temperature is reduced through Tc the
paramagnetic phase becomes unstable against the formation
of long-range order at the selected wave vector q0. If q0 is
commensurate, that is, if q0/(2π) is rational, then the mag-
netic unit cell has length 2π/q0. Otherwise the periodicity of
the magnetic structure is incommensurate with the periodicity
of the lattice. However, it is essentially impossible to distin-
guish whether a system is truly incommensurate or merely
has a very large magnetic unit cell. Since the properties of
systems depend very weakly on whether the magnetic unit
cell is infinite, the question whether the magnetic structure
is truly incommensurate is an academic one.

For T < Tc the order parameter σ (q0) assumes a nonzero
value determined by the (negative) quadratic terms in the
free energy in combination with the (positive) terms of order
σ 4, so that

f ∼ 1

2
rσ (q0)

2 + uσ(q0)
4 (11)

Within mean-field theory r ∼ a(T − Tc), in which case
|σ (q0)| ∼ (Tc − T )1/2. Once order develops at one wave
vector, other terms of order σ 4 prevent order develop-
ing at other wave vectors. This scenario is realistic for a
three-dimensional system (for which long-range order is not
destroyed by thermal fluctuations). The eigenvector associ-
ated with the eigenvalue of the quadratic form which passes
through zero is called the critical eigenvector. The critical
eigenvector contains the form factor of the ordering, that is,
it completely describes the pattern of spin ordering within
a unit cell. In this simple model there is only one spin per
unit cell, so the eigenvector specifies the spin direction, that
is, the component of spin which condenses. (This concept
will be better illustrated when we consider real systems that
often have more than one magnetic site per unit cell.) In the
present case when there is no anisotropy, the spin structure
when σ (q) becomes nonzero for q = q0 is a modulated one
in which the x component of spin has a complex amplitude,
Ax , so that

σx(i) = Axe
iq0xi + A∗

xe
−iq0xi (12)

and similarly for the other spin components. If these com-
plex amplitudes Ax, Ay , and Az all have the same phase (We
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Figure 4. χ(q)−1 at a sequence of temperatures, T = Tc + 0.3n

for n = 0, 1, 2, 3, 4, 5 with J1 = 1.0 and J1/J2 = 2.56 (as is
appropriate for NVO). Here Tc = 0.711.

say that two complex-valued quantities, z1 and z2, have the
same phase if z1/z2 is real, but is not necessarily positive
real.), then the spin is linearly polarized with respect to an
axis determined by the ratios of Ax , Ay and Az and with an
amplitude that varies sinusoidally with position. If the com-
plex amplitudes do not have the same phase, then the spin
structure will be a helix, a spiral, or a fan, and so on.

4.3 Effects of anisotropy

This toy model will not accurately capture the behavior of
real magnetic systems because we have not yet included
any magnetic anisotropy. As can be seen from Figure 5,
the sequence of phases which appear as the temperature is
reduced for zero anisotropy (K = 0) is not characteristic of
the case when K is nonzero, even if K is small. So K 	= 0 is
the generic scenario. In the presence of single-ion easy-axis
anisotropy, the trial free energy at quadratic order assumes
the form

f = 1

2

∑
q

χ(q)−1σ (q) · σ (−q)

−K
∑

q

σ x(q)σ x(−q) + O(σ 4) (13)

where K is an anisotropy energy that favors alignment of
spins along the easy axis, here the x axis, and f denotes the
free energy per spin. In this case, the instability (at which
long-range order first appears) is one in which the spins are
confined to the easy axis and have a sinusoidally varying
amplitude. This type of ordered phase will be referred to as
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Figure 5. Zero-temperature phase diagram for the J1 − J2 (S = 1)
model with easy-axis anisotropy scaled by K (Kenzelmann et al.,
2006). The points represent numerical implementation of mean-field
theory except for K = 0 where analytic results are used. Here, ‘HTI’
denotes a longitudinally polarized incommensurate phase and ‘LTI’
an elliptically polarized incommensurate phase. In both phases, the
modulation vector is given by equation (10). ‘AF’ denotes a two-
sublattice collinear antiferromagnetic phase. For large anisotropy
this model reduces to the anisotropic nearest–next-nearest neighbor
Ising (ANNNI) model (Fisher and Selke, 1980a,b). The dashed
line is drawn for a value of the anisotropy energy that reproduces
the evolution of magnetic phases in NVO as a function of T for
H = 0. (Reprinted with permission G. Lawes et al., copyright 2006,
American Physical Society.)

the high-temperature incommensurate (HTI) phase and the
associated critical temperature will be denoted THTI. If the
anisotropy is not too large, then, as the temperature is further
reduced, the fourth-order terms in the free energy (which we
have so far neglected) become important. One effect of these
terms can be visualized as incorporating the constraint of
‘fixed length’. In the HTI phase, the spins have a length that
varies sinusoidally with position. However, in the ground
state, we expect each spin to have its maximum length S but
to be oriented in a direction to optimize the energy. Thus,
in the extreme limit of zero temperature, the constraint of
fixed spin length is fully enforced. Although the constraint
is less fully realized at higher temperature, the qualitative
effect is clear: when the temperature is sufficiently reduced,
one has a continuous phase transition into a phase we refer to
as the low-temperature incommensurate (LTI) phase. In this
phase, the spins develop transverse order (in addition to the
preexisting longitudinal order along the easy axis) to more
nearly achieve fixed spin length. If the easy-axis anisotropy
is small, the range of temperature over which the HTI phase
is stable is also small. The phase diagram of such a model as
a function of anisotropy energy K and temperature is shown
in Figure 5 (Lawes et al., 2004; Kenzelmann et al., 2006).

We will mainly be concerned with the two incommensurate
phases, the longitudinally modulated HTI phase and the
elliptically polarized low-temperature incommensurate LTI
phase. Although the details of the unit cell complicate the
picture, the phenomenology of the HTI and LTI phases
are usually roughly similar to that of the simplified case
discussed here. In Figure 6, we show the experimentally
determined phase diagrams of NVO and TMO as a function
of applied magnetic field H and temperature T , with the HTI
and LTI phases labeled.

4.4 Wave vector locking

From equation (10), it would seem that the wave vector q is
a continuous and smooth function of J2/J1. Although our toy
model does not give any simple explanation for the observed
temperature dependence of q, a more complete analysis (as
in Harris et al., 2006 and Kajimoto et al., 2004) leads to a
small dependence on temperature which, like the dependence
on J2/J1, might be thought to be smooth and continuous.
However, there are terms which favor commensurate values
of q. These terms in the free energy must conserve wave
vector, but only to within a reciprocal lattice vector G (which
for our one-dimensional toy model can assume the values
Gm = (2mπ/a), where a is the nearest-neighbor separation).
Thus one has the so-called Umklapp terms such as δf =
wσ(q)4, when 4q = Gm. More generally the Umklapp terms
give a contribution to the free energy of the form

δf =
∑
m,n

wm,nσ (q)2nδnq−2mπ/a (14)

where the coefficient wm is of order unity and δx is unity if
x = 0 and is zero otherwise. (Within the present formulation
these terms come from expanding Trρ ln ρ to higher than
quadratic order in the order parameter.) The effect of these
Umklapp terms is to cause the wave vector to ‘lock’ onto
a commensurate value q = 2(m/n)π/a as J2/J1 is varied.
Since σ(q) is smaller than one, especially near the ordering
transition, these terms become much less important as the
integer denominator n increases. Thus the effect of the
Umklapp terms is that the variation of q as a function of
a control parameter (such as the temperature) becomes a so-
called devil’s staircase, which may either be complete or
(if σ is small enough) incomplete, as shown in Figure 7.
In the systems we will discuss here, there is no clear
evidence of a devil’s staircase as a function of temperature.
Accordingly, we find it convenient to imagine that q is
incommensurate, and does not get stuck on commensurate
values by Umklapp terms. Even if this is not strictly true, the
difference in properties between an incommensurate system
and a commensurate system with a large integer denominator
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Figure 6. Phase diagram for NVO (a) and TMO (b) as a function of H and T . The HTI and LTI phases will be discussed in more detail,
but correspond roughly to the scenario of our toy model. The interpretation of the H dependence of the phase boundaries for NVO is given
in Kenzelmann et al. (2006). For NVO, AF indicates a commensurate antiferromagnetic phase with a weak ferromagnetic moment. (The
NVO phase diagram is adapted from Lawes et al., 2004 and the TMO phase diagram is adapted from Kimura et al., 2005.) (Reprinted with
permission T. Kimura et al., copyright 2005, American Physical Society.)
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Figure 7. The devil’s staircase (DS). (a) An incomplete DS for the dependence of the magnetization of TbNi2Ge2 as a function of magnetic
field (Bud’ko et al., 1999). (b) Schematic example of a complete DS function Y = f (X). In a complete DS, the function is nonconstant
on a set of measure zero. For an incomplete DS, the function is nonconstant on a set of nonzero measure. (Reprinted with permission S.L.
Bud’ko et al., copyright 1999, Elsevier.)

n is experimentally irrelevant for the large values of n

(n ∼ 50), for the systems we will discuss. Accordingly, we
will refer to the systems as ‘incommensurate’ even though
this may not be strictly accurate.

In principle, the symmetry of real systems is usually such
that anisotropy also occurs in the exchange interaction, in
which case the trial free energy assumes the form

f = 1

2

∑
q

∑
α=x,y,z

χ(q)−1
α σ α(q)·σ α(−q) + O(σ 4)

(15)
where χ(q)−1

α = dkT + J1α cos(qa) + J2α cos(2qa). If Jnα

is isotropic (i.e., if it does not depend on α), then the
wave vector selected for the ordering of the α component
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of spin also will not depend on α. However, in principle
Jnα depends weakly on α, and therefore the selected wave
vector q0 will also depend weakly on α and the ordering
will involve σx(qx), σy(qy), and σz(qz), where qx , qy , and
qz differ slightly from one another. Thus in the LTI phase
it is possible that the two components of spin might have
slightly different wave vectors, which we denote qHTI and
qLTI. But as with the Umklapp contributions, there will be
quartic terms in the free energy (in this formulation coming
from the entropic terms) which favor locking the two wave
vectors to be equal. These terms can be of the form

flock = a[σ HTI(qHTI)
2σLTI(−qLTI)

2

+ σHTI(−qHTI)
2σLTI(qLTI)

2]δqHTI,qLTI (16)

where σHTIe
iφHTI ≡ σ HTI(qHTI) (σ LTIe

iφLTI ≡ σ LTI(qLTI)) is
an order parameter characterizing the appearance of the HTI
(LTI) phase, and for simplicity we have assumed that the
constant a is real valued. This interaction only satisfies wave
vector conservation if the two wave vectors are exactly equal.
If, in the absence of this term, the two wave vectors are
sufficiently close to one another, then this locking energy
will cause the wave vectors of the two order parameters
to be locked into equality with one another. (In this case,
minimization of δf will also fix the relative phase φHTI −
φLTI.) Since exchange anisotropy is usually not large, the
wave vectors associated with different spin components are
normally almost equal to one another. In that case, flock will
be large enough to lock the HTI and LTI wave vectors to
a common value. This ‘locked’ scenario is quite common
and we assume it to be the case here. Indeed for the systems
discussed below, the data suggests that the HTI and LTI order
parameters involve a single wave vector.

5 MAGNETIC SYMMETRY

5.1 Nontrivial unit cell

There is one final refinement of our toy model which we must
consider, that is the structure of the crystallographic unit cell.
In the toy model considered above, the entire spin structure is
characterized by a wave vector and a single complex vector
amplitude. Note that the wave vector determines only how
the spin wave function evolves from one unit cell to the next.
However, to date, almost all magnetically incommensurate
systems which have been identified as multiferroics have
two or more magnetic ions per crystallographic unit cell. To
describe such more general structures, one must introduce
a spin wave function for the unit cell. Accordingly, we
now discuss how this spin wave function for the unit cell

is restricted by the symmetry of the crystal lattice. As
a preliminary, we start by discussing the crystal structure
of the two systems, NVO and TMO. In Table 1, we list
the general equivalent positions which define the space
group operations. For NVO we choose the generators of
the space group to be the identity, E, a twofold rotation
about the x axis, (x, y, z) → (x, y, z), the x − y glide plane,
(x, y, z) → (x, y + 1

2 , z + 1
2 ), spatial inversion, (x, y, z) →

(x, y, z), and translations. For TMO, the generators are taken
to be E, a mirror z plane, (x, y, z) → (x, y, 1

2 − z), the y − z

glide plane, (x, y, z) → ( 1
2 − x, y + 1

2 , z), spatial inversion,
and translations. The magnetic sites are at the positions listed
in Table 2 and shown in Figure 8.

5.2 Representation theory

If there are nu spins in a unit cell, then an incommensurate
state will be described by a wave vector q and the complex-
valued Fourier amplitudes Sα,τ (q), where α = x, y, z and
τ = 1, 2, . . . nu , in terms of which we write the spin wave
functions in the form

Sα,τ (R) = Sατ (q)eiq·(R+rτ ) + Sατ (q)∗ e−iq·(R+rτ ) (17)

where rτ is the position of the τ th site within the unit cell. For
NVO τ = 1, s; 2, s; 3, s; or 4, s for spine (s) sites and 1, c, or
2, c for cross-tie (c) sites. Thus, apart from the wave vector
q, the determination of the spin structure requires fixing the
6nu real-valued parameters that are needed to specify the 3nu

complex-valued parameters Sατ (q). Note that the complex
amplitudes S(q) are defined relative to the phase, q · (R +
rτ ) which would obtain if the wave were perfectly sinusoidal.
(For NVO and TMO this convention will simplify later
results.) One should think of the spin wave function as con-
sisting of a superposition of sinusoidal spin distributions for
each of the three Cartesian components of spin on each of the
nu sublattices. Each distribution is characterized by an ampli-
tude and phase as encoded in the complex amplitude Sατ (q).

We now discuss how symmetry restricts the possible val-
ues of the amplitudes Sα,τ (q) and how these variables are
determined via diffraction experiments. The analysis of the
symmetry of such systems in terms of their point groups
is not developed. Accordingly, a model-independent (repre-
sentation) analysis (Bertaut, 1971; Rossat-Mignod, 1987) is
customarily invoked in such cases when it is assumed (as
is generally the case) that the magnetic ordering transition
is a continuous one. As we shall see in examples discussed
later, it is essential to correctly characterize the symmetry
properties of the magnetic ordering in order to understand
how this ordering induces ferroelectricity. However, perhaps
surprisingly, a crucial point in connection with representation
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Table 1. General positions of the space groups for NVO (top), Cmca (#64 in Hahn, 1983)
and for TMO (bottom), Pbnm (#62 in Hahn, 1983). For Cmca, the primitive translation
vectors are a1 = (a/2)î + (b/2)ĵ ; a2 = (a/2)î − (b/2)ĵ ; and a3 = ck̂. For Pbnm they are
a1 = aî; a2 = bĵ , and a3 = ck̂.

r = (x, y, z) 2zr = (x, y + 1
2 , z + 1

2 ) 2yr = (x, y + 1
2 , z + 1

2 ) 2xr = (x, y, z)

Ir = (x, y, z) mxyr = (x, y + 1
2 , z + 1

2 ) mxzr = (x, y + 1
2 , z + 1

2 ) myzr = (x, y, z)

r = (x, y, z) mxyr = (x, y, 1
2 − z) 2xr = (x + 1

2 , y + 1
2 , z) mxzr = (x + 1

2 , y + 1
2 , 1

2 + z)

Ir = (x, y, z) 2zr = (x, y, 1
2 + z) myzr = ( 1

2 − x, y + 1
2 , z) 2yr = ( 1

2 − x, y + 1
2 , 1

2 − z)

Table 2. Left: Unit cell lattice positions in NVO of the Ni2+ ions carrying S = 1 (given as fractions of the
cell dimensions a, b, and c). The ‘spine’ sites are rs

n and the cross-tie sites are rc
n . Right: Positions of the

Mn and Tb ion sites in the unit cell of TMO as fractions of the cell sides a, b, and c.

rs
1 (0.25, −0.13, 0.25)

rs
2 (0.25, 0.13, 0.75)

rs
3 (0.75, 0.13, 0.75)

rs
4 (0.75, −0.13, 0.25)

rc
1 (0, 0, 0)

rc
2 (0.5, 0, 0.5)

n = 1 n = 2 n = 3 n = 4

Mn (0, 1
2 ,0) ( 1

2 , 0, 0) (0, 1
2 , 1

2 ) ( 1
2 , 0, 1

2 )

Tba (x, y, 1
4 ) (x + 1

2 , y + 1
2 , 3

4 ) (x, y, 3
4 ) (x + 1

2 , y + 1
2 , 1

4 )

ax = 0.9836 and y = 0.0810 from Blasco et al. (2000).

theory that seems to have been universally overlooked until
recently (Lawes et al., 2005; Kenzelmann et al., 2005, 2006)
is that for systems such as the family of multiferroics we con-
sider here inversion symmetry places additional constraints
on the allowed magnetic structures that can appear at the
ordering transition.

To explain this recent development, we first give a
much simplified review of representation theory. If the
magnetic ordering transition is assumed to be continuous,

then the phase transition is signaled by an instability in the
susceptibility that occurs as the temperature is lowered into
the magnetically ordered phase. Alternatively, one may see
this instability in the quadratic terms when the free energy
is expanded in powers of the order parameters. As we have
already noted, we may confine our attention to the order
parameters associated with the selected wave vector q which
first becomes unstable as the temperature is lowered. In order
to conserve wave vector the quadratic terms in the Landau

b = 0

b = 0

b = 0

b = d
s2 s3

s4s1
b = −d

c
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D

E

F

G

H(a) (b)
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4
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c
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2

1
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2

Figure 8. (a) The unit cell (ABCDEFGH) showing only Ni ions numbered as in Table 2. The b axis is perpendicular to the plane of the
paper. Dashed circles represent spins in adjacent planes displaced from the solid symbols by ±b/2. (b) The unit cell of TbMnO3 showing
only the Mn ions (filled circles) and the Tb ions (filled triangles), numbered as in Table 2.
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expansion associated with the selected wave vector q must
be of the form

f2 =
∑

α,β,τ ,τ ′
cα,τ ;β,τ ′(q)Sα,τ (−q)Sβ,τ ′(q) (18)

where Sα,τ (−q) = Sα,τ (q)∗ . For f2 to be real for any choice
of the complex-valued Fourier amplitudes, it is required that
cα,τ ;β,τ ′(q)∗ = cβ,τ ′;α,τ (q). Within a simple theory, such as
mean-field theory, the coefficient cα,τ ;β,τ ′ in equation (18) is
such that

f2 =
∑

α,β,τ ,τ ′

[
dkT δα,βδτ,τ ′ − c̃α,τ ;β,τ ′(q)

]
Sα,τ (−q)Sβ,τ ′(q)

(19)
where d is a constant of order unity of entropic origin, δα,β

is unity if α = β and is zero otherwise, and the c̃α,τ ;β,τ ′(q)

are temperature-independent coefficients determined by the
spin–spin interactions of the system. When kT is much larger
than the characteristic interaction energy, all the eigenvalues
of f2 are positive and the paramagentic phase is stable.
As the temperature is lowered, one eigenvalue will become
nonpositive although we do not rely on the specific form of
equation (19). The stability of the resulting ordered phase is
then ensured by the quartic terms of order uS4, which were
not included in equation (18).

Note that the pattern of spin ordering within the unit cell is
determined by the eigenvector associated with the first eigen-
value of the quadratic free energy, which passes through
zero as the temperature is lowered. (We call this eigen-
value the ‘critical eigenvalue’ and the associated eigenvector
the ‘critical eigenvector’.) This phenomenon was discussed
briefly earlier in connection with wave vector selection. As
we shall see, this analysis of the symmetry of the critical
eigenvector is essential when one constructs the allowed cou-
plings between magnetic and ferroelectric order parameters.
(A similar, but more complicated analysis, has been devel-
oped to describe second-harmonic generation by Sa, Valenti
and Gros, 2000.)

As in the case of phonons or other normal modes,
the eigenvectors of this quadratic form can be labeled
according to the irreducible representations (irreps) 	n of the
paramagnetic phase, which leave invariant the selected wave
vector for ordering. (This group of symmetry operations
is called the group of the wave vector or the little group.)
The relevant symmetry is that of the paramagnetic phase
because the expansion of the free energy in powers of the
order parameters is relative to this phase (Dzyaloshinskii,
1957; Landau and Lifshitz, 1958). For the orthorhombic
systems, NVO and TMO, considered in this review, all the
irreps are one dimensional. In such cases, the eigenvectors
of f2 must also be eigenvectors of the rotation or mirror

(or glide) operations of the little group with eigenvalues
of unit magnitude. (To illustrate the principles involved in
the complete symmetry analysis of magnetic structures, we
focus on the simplest scenario, namely when the irreps are
one dimensional and each wave vector is an eigenvector
of all the symmetry operations of the group of the wave
vector. To use the point of view expressed here for a two-
dimensional irrep, see Harris, 2006b.) We now enumerate the
symmetry operations for NVO and TMO, which leave the
wave vector invariant. For NVO the ordering wave vector
lies along the crystal a axis, and the symmetry operations of
the little group are 2x , a twofold rotation about the x axis
(we often refer to a, b, and c as x, y, and z, respectively) and
mxy , a glide operation which takes z into −z followed by a
translation of (b + c)/2. For TMO the ordering wave vector
lies along the crystal b axis and the symmetry operations
are a twofold screw rotation about the y axis, 2y and the
mirror plane mxy . These operations are defined in Table 1.
Technically speaking, the eigenvalues of these symmetry
operations (which characterize the symmetry of the irrep)
are known as characters and their values for each irrep 	p

and for each symmetry operation O are given in the so-
called ‘character table’, which we give for NVO and TMO
in Table 3. We see that (apart from a phase factor for TMO)
we have four irreps, that is, four symmetries, depending on
whether the spin wave function is chosen independently to
be even or odd under the two mirror operations.

The result of the group theoretical analysis is that one
expresses the Fourier amplitudes Sατ (q) in terms of symme-
try adapted coordinates m

(n)
r associated with the irrep 	n.

Thus if the spin distribution is that of irrep 	n, we write

S	n
α,τ (q) =

∑
r

m(n)
r Un,r

α,τ (20)

where the symmetry adapted basis functions Un,r
α,τ give the

α component of spin on the τ th sublattice for the rth basis
function associated with irrep 	n. Although the symmetry
adapted coordinates and basis functions are allowed to be
complex, the spin vectors given by equation (17) are, of
course, real valued.

To make the analysis more intuitive, we may liken it to the
problem of determining allowed wave functions for a particle
in a spherically symmetric potential. For illustrative purposes
we consider a Coulomb potential with a weak spherically
symmetric perturbation (for example, a perturbation of the
form ar4). To solve this problem, one introduces symmetry
adapted basis functions for the various irreps, which in this
case are s functions ψ(s)

n , p functions ψ
(px)
n , ψ

(py)
n , ψ

(pz)
n ,

and so on, where n labels the principal quantum number. As
is well known, as a consequence of spherical symmetry, the
potential has nonzero matrix elements only between symme-
try adapted basis functions having the same symmetry label,
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Table 3. Character table for the symmetry operations O of the group(a) Gk
for the irreps 	n for incommensurate magnetic structure of (left) NVO with
k = (q, 0, 0) and (right) TMO for k = (0, q, 0).

Oa = 1 2x mxy mxz

	1 1 1 1 1
	2 1 1 −1 −1
	3 1 −1 −1 1
	4 1 −1 1 −1

Oa,b = E 2̃y mxy m̃yz

	1 1 1 1 1
	2 1 1 −1 −1
	3 1 −1 1 −1
	4 1 −1 −1 1

aOperators (without tildes) are defined in Table 1.
bFor an operator O we define Õ = eiqa/2O.

q, where q denotes (s), (px), and so on. Thus eigenfunctions
� can be characterized by a symmetry (irrep) label q and, in
analogy with equation (20), �(q) can be expressed as a linear
combination of symmetry adapted basis functions ψ

(q)
m , for

m = 1, 2 . . . having a given symmetry label:

�(q) =
∑
m

cmψ(q)
m (21)

The symmetry adapted basis functions ψ
(q)
m are determined

solely by the symmetry of the system. In contrast, the coeffi-
cients cm (which we have called the symmetry adapted coor-
dinates, m

(n)
r ) depend on the specific details of the potential.

Analogously, in our magnetic structure problem, the possi-
ble eigenvectors will be linear combinations of the symmetry
adapted basis functions Unr

ατ with coefficients m
(n)
r . The U ’s

can be constructed on the basis of symmetry considerations,
whereas the m’s depend on the specific details of the system.
An intuitive picture of the nth symmetry adapted basis func-
tion associated with irrep 	 can obtained as follows. Consider
the family of symmetry operations Op of the little group
(which conserves the wave vector). We arbitrarily assign an
amplitude U	,n

ατ to one Sα,τ (q). Then, the condition that the
spin wave function is to have a given symmetry under the
operations Op, will fix the amplitude of the other sublattices
that are related to the initial one (α, τ) by the operations
Op . For NVO, for instance, if we fix the x component of
the spine site s, 1 to be U

p,1
x,τ (q) (assuming irrep 	p to be

the active irrep), then in order to have a given symmetry, the
amplitudes of all the other spine sites will be given by

Sx,τ ′(q) = ±U
p,1
x,τ ′(q) (22)

with the sign chosen according to the symmetry of the
basis function being constructed. As a result, in construct-
ing allowed eigenfunctions to describe the ordered phase we
generally will find that spin functions for each family of
crystallographically equivalent sites will be specified by a
single parameter. Using the above procedure, one can con-
struct the spin distribution in the form of equation (20) and

the results for the spin distribution on the magnetic sublat-
tices assuming a given irrep are given subsequently in the
tables.

We now give a short explanation on how to read these
tables. For NVO, the first column of Table 4 gives the
spin distribution S	1

α,τ for the irrep 	1. To specify a spin
distribution we have to specify the complex amplitudes
for 3 Cartesian spin components of 6 magnetic sublattices,
which requires a total of 18 complex parameters. Symmetry
indicates that if irrep 	1 is assumed to be the active irrep,
then the distribution is in fact completely specified by fixing
the values of the four complex amplitudes (which we have
called symmetry adapted coordinates, m

(n)
r ) m

(1)
sx , m

(1)
sy , m

(1)
sz ,

and m
(1)
cx . (Notice that here the index r assumes the values sx ,

sy , sz, and cx .) In our language, the symmetry adapted basis
functions are the functions which multiply the m’s. Thus

U 1,r=sx
x,τ=ns = ∂S

	1
x,τ=ns

∂m
(1)
sx

= (i, i, −i, −i) (23)

where, on the right-hand side of the equation are given the
values for the x components of spin on the sublattices τ =
1s, 2s, 3s, 4s. In the same way, for the y and z components
one has

U
1,r=sy
y,τ=ns = ∂S

	1
y,τ=ns

∂m
(1)
sy

= (1, −1, 1, −1) (24)

U 1,r=sz
z,τ=ns = ∂S

	1
z,τ=ns

∂m
(1)
sz

= (i, −i, −i, i) (25)

Similarly, irreps 	2, 	3, and 	4 require fixing respectively
four, five, and five symmetry adapted coordinates. Clearly,
the fitting procedure is to try each irrep in turn and see
which irrep best fits the data. Often one irrep will be vastly
superior to all the others. Normally, one does not include
phase factors i into the complex amplitudes, as is done in
Table 4 for m

(1)
sx , for instance. This inclusion cannot affect

the structure determination because the best fit will determine
the same value of im

(1)
sx as it would have done for m

(1)
sx had
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Table 4. Symmetry adapted basis functions Unr
ατ which transform according to the irreducible representation

	n for the incommensurate phase associated with q = (q, 0, 0) for the Ni spine (s) and cross-tie (c) sites of
NVO in the notation of equation (20). So Unr

ατ = ∂S	n
ατ /∂m

(n)
r The symmetry adapted coordinates m

(n)
r , where

r = sx, sy, sz, cx, cy, cz, assume complex values, as discussed in the text. The numbering of sites is given in
Table 2. The phase factors of i are chosen to simplify the transformation properties under spatial inversion,
as is discussed later.

Site τ S	1
α,τ S	2

α,τ S	3
α,τ S	4

α,τ

1s (im
(1)
sx ,m

(1)
sy , im

(1)
sz ) (m

(2)
sx , im

(2)
sy , m

(2)
sz ) (im

(3)
sx , m

(3)
sy , im

(3)
sz ) (m

(4)
sx , im

(4)
sy ,m

(4)
sz )

2s (im
(1)
sx , −m

(1)
sy , −im

(1)
sz ) (m

(2)
sx ,−im

(2)
sy , −m

(2)
sz ) (−im

(3)
sx , m

(3)
sy , im

(3)
sz ) (−m

(4)
sx , im

(4)
sy , m

(4)
sz )

3s (−im
(1)
sx , m

(1)
sy ,−im

(1)
sz ) ( m

(2)
sx ,−im

(2)
sy , m

(2)
sz ) (−im

(3)
sx , m

(3)
sy ,−im

(3)
sz ) (m

(4)
sx − im

(4)
sy , m

(4)
sz )

4s (−im
(1)
sx ,−m

(1)
sy , im

(1)
sz ) ( m

(2)
sx , im

(2)
sy ,−m

(2)
sz ) ( im

(3)
sx , m

(3)
sy ,−im

(3)
sz ) (−m

(4)
sx , −im

(4)
sy , m

(4)
sz )

1c (m
(1)
cx , 0, 0) (m

(2)
cx , 0, 0) (0,m

(3)
cy ,m

(3)
cz ) (0,m

(4)
cy ,m

(4)
cz )

2c (−m
(1)
cx , 0, 0) (m

(2)
cx , 0, 0) (0,m

(3)
cy ,−m

(3)
cz ) (0,−m

(4)
cy , m

(4)
cz )

Table 5. Symmetry adapted basis functions Unr
ατ which transform according to the irreducible representation

	n for the incommensurate phase associated with q = (0, q, 0) for the Mn sites (nM) and TB sites (nT) in
TMO, numbered as in Table 2. The complex-valued symmetry adapted coordinates for the irrep 	n are m

(n)
r

and in this table r = Mx, My,Mz, T1x, T1y, T1z, T2x, T2y, T2z.

Site (τ ) S	1
ατ S	2

ατ S	3
ατ S	4

ατ

1M (m
(1)
Mx

,m
(1)
My

, m
(1)
Mz

) (m
(2)
Mx

, m
(2)
My

,m
(2)
Mz

) (m
(3)
Mx

, m
(3)
My

m
(3)
Mz

) (m
(4)
Mx

,m
(4)
My

, m
(4)
Mz

)

2M (m
(1)
Mx

, −m
(1)
My

, −m
(1)
Mz

) (−m
(2)
Mx

,m
(2)
My

, m
(2)
Mz

) (−m
(3)
Mx

, m
(3)
My

,m
(3)
Mz

) (m
(4)
Mx

, −m
(4)
My

, −m
(4)
Mz

)

3M (−m
(1)
Mx

,−m
(1)
My

,m
(1)
Mz

) (m
(2)
Mx

, m
(2)
My

,−m
(2)
Mz

) (−m
(3)
Mx

,−m
(3)
My

, m
(3)
Mz

) (m
(4)
Mx

, m
(4)
My

,−m
(4)
Mz

)

4M (−m
(1)
Mx

,m
(1)
My

, −m
(1)
Mz

) (−m
(2)
Mx

, m
(2)
My

,−m
(2)
Mz

) (m
(3)
Mx

,−m
(3)
My

,m
(3)
Mz

) (m
(4)
Mx

, −m
(4)
My

,m
(4)
Mz

)

1T (0, 0,m
(1)
T2z

) (m
(2)
T2x

,m
(2)
T2y

, 0) (0, 0,m
(3)
T2z

) (m
(4)
T2x

,m
(4)
T2y

, 0)

2T (0, 0,−m
(1)
T1z

) (−m
(2)
T1x

,m
(2)
T1y

, 0) (0, 0,m
(3)
T1z

) (m
(4)
T1x

, −m
(4)
T1y

, 0)

3T (0, 0,m
(1)
T1z

) (m
(2)
T1x

,m
(2)
T1y

, 0) (0, 0,m
(3)
T1z

) (m
(4)
T1x

,m
(4)
T1y

, 0)

4T (0, 0,−m
(1)
T2z

) (−m
(2)
T2x

,m
(2)
T2y

, 0) (0, 0,m
(3)
T2z

) (m
(4)
T2x

, −m
(4)
T2y

, 0)

we not included the factor of i. Inclusion of the factor of
i may appear to be an unwanted complexity. However, its
inclusion will prove to be convenient later in equation (37).
One can verify that the symmetry adapted basis functions
given in equations (23–25) transform into themselves (with
a + or − sign) under 2x or mxy , as indicated in the character
table.

As for NVO, we can use Table 5 to write down the
symmetry adapted basis functions for TMO. For instance,

U
1,r=Mx

x,τ=nM = ∂S
	1
x,τ=nM

∂m
(1)
Mx

= (1, 1, −1, −1) (26)

U
1,r=My

y,τ=nM = ∂S
	1
y,τ=nM

∂m
(1)
My

= (1, −1, −1, 1) (27)

U
1,r=T2z

z,τ=nT = ∂S
	1
z,τ=nT

∂m
(1)
T2z

= (1, 0, 0, −1) (28)

To further illustrate this, we write an explicit formula for
the distribution of magnetization in NVO assuming 	4 to
be the active irrep. Then using equations (17) and (20) we
write the distribution of the x component of spin on the 1,s
sublattice as

Sx,1s(r) = m(4)
sx

eiq·r + [m(4)
sx

]∗ e−iq·r (29)

where r ≡ R + τ 1,s is the actual position of the spin in the 1,s
sublattice. The complex-valued symmetry adapted coordinate
m

(4)
sx incorporates the amplitude and phase of the sinusoidal

wave for the x component of spin on the spine sublattices.
We give some (but not all) of the other results assuming 	4

to be the active irrep, namely,

Sy,1s(r) = im(4)
sy

eiq·r − i[m(4)
sy

]∗ e−iq·r (30)

Sz,1s(r) = m(4)
sz

eiq·r + [m(4)
sz

]∗ e−iq·r (31)

Sx,2s(r) = −m(4)
sx

eiq·r − [m(4)
sx

]∗ e−iq·r (32)
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Sy,1c(r) = m(4)
cy

eiq·r + [m(4)
cy

]∗ e−iq·r (33)

and so forth. Thus, the incommensurate state is parame-
terized as consisting of sinusoidal waves having arbitrary
amplitudes and phases for each spin component of each
crystallographically inequivalent set of sites (i.e., spine sites
or cross-ties, respectively). As we shall see in a moment,
the recent new development (Lawes et al., 2005; Kenzel-
mann et al., 2005) for crystals whose paramagnetic phase
is inversion symmetric is to invoke this symmetry to fix
the relative phases or, in cases like TMO, the amplitudes
of crystallographically inequivalent (with respect to the lit-
tle group) Tb sites that are related to one another by spatial
inversion.

In the above analysis, we assumed that ordering occurs
via a single irrep. One might wonder if two irreps could
accidentally have an instability at the same temperature.
We reject the possibility of such an accidental degeneracy.
However, if one adjusts an additional control parameter,
such as the pressure, it is possible to reach a multicritical
point where two irreps simultaneously become active. A
simple example of this principle arises when one treats a
ferromagnet on a tetragonal lattice. In that case, one irrep
is one dimensional and corresponds to the FM order lying
along the fourfold crystal (c) axis and the other irrep is
two-dimensional and corresponds to ordering in the plane
perpendicular to the c axis. Clearly, the mean-field transition
temperatures for these two distinct orderings should be
assumed to be different. If the anisotropy is easy axis, the
FM moment will lie along the c axis and if the anisotropy
is easy plane the moment will be perpendicular to the c
axis. It is possible for the anisotropy to vanish, but only by
adjusting another thermodynamic variable, such as uniaxial
stress. One therefore concludes that criticality is associated
with a single irrep. Since the transformation to symmetry
adapted coordinates can be determined using only symmetry
considerations, the possible patterns of spin ordering within
the unit cell are strongly restricted.

When, for NVO or TMO, the temperature is lowered
further and the LTI phase is entered (see Figure 6), then an
additional irrep will become active via a second continuous
phase transition. For NVO, the new LTI representation (in
addition to 	4 already present in the HTI phase) is (Lawes
et al., 2004) 	1 and for TMO the new LTI representation
(in addition to 	3 already present in the HTI phase) is
(Kenzelmann et al., 2005) 	2. In an appendix we discuss
that when two different irreps are active, their presence does
not induce the development of a third irrep. However, had
there been a further phase transition from the LTI phase into
yet another incommensurate phase with three irreps, then the
presence of three different irreps would induce the presence
of a fourth one.

As an illustration of how to apply the above results,
we show, in Figure 9, typical spin configurations for NVO
which result from the spin wave functions which transform
according to irrep #4. The configuration shown in (a) is not
allowed because, as we discuss below, it is not consistent
with the inversion symmetry of the paramagnetic phase.

5.3 Effect of inversion symmetry for NVO

Until now we only used the consequences of the symmetry
of the group of transformations that leave the wave vec-
tor invariant at a continuous magnetic ordering transition.
According to the usual formalism (Bertaut, 1971; Rossat-
Mignod, 1987), one can only exploit symmetries that con-
serve the wave vector. (If the wave vector were on a face
of the Brillouin zone, it could be invariant under inversion).
Recently (Lawes et al., 2005; Kenzelmann et al., 2005, 2006;
Schweizer, Villain and Harris, 2007), it has been shown
that in such systems spatial inversion plays a crucial role
in reducing the number of parameters (symmetry adapted
coordinates) needed to specify the magnetic structure. We
now give a simplified description of how inversion symmetry
restricts the allowed spin structures.

As we have observed previously, the quadratic free energy
of equation (18) must be invariant under all the operations
of the paramagnetic space group. In particular, the opera-
tions for the systems we consider here which are not in the
little group of the wave vector are those generated by spa-
tial inversion, I. Usually when one introduces an additional
symmetry, the matrix for the quadratic free energy becomes
block diagonal. Here, the result of the additional symmetry is
not to reduce the size of the submatrices for the quadratic free
energy, but rather it places additional constraints on the sym-
metry adapted coordinates m which appear in Tables 4 and 5.

We first analyze the situation for NVO. We need to
determine the effect of I on the spin wave functions
listed in Table 4. Recall that the magnetic moment is
a pseudovector. That means that under spatial inversion
the orientation of the moment is unchanged, but it is
simply transported from its initial location at r to the
transformed location, −r. Looking at equation (17) we see
that spatial inversion interchanges S and S∗ , but since the
orientation is unchanged, spatial inversion will not affect the
spin component label α. However, spatial inversion does
interchange Ni sublattices #1 and #3 and also #2 and #4.
In other words, in the notation of Table 4, we have

ISx,s1 = S∗
x,s3, ISx,s2 = S∗

x,s4 (34)

and similarly for the y- and z-components. To see the
consequences of these relations, consider the effect of the
first of these two relations acting on the spin distribution for
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Figure 9. Two structures for spine spins in an a–c plane for NVO obtained using spin components from Table 4 which transform according
to irrep 	4. For simplicity this figure is for the wave vector k = 2π/(3a), where a/2 is the distance between sites. The axis for the twofold
rotation 2x is indicated. The glide plane, which relates spins in adjacent layers is not shown. The sites are numbered as in Table 2. At the
bottom of each panel, we give (in degrees) the phase θ = q · r of the propagation factor exp(iq · r) at each site. (a) For m

(4)
sx = 1, m

(4)
sz = −i

and the other parameters equal to zero. (b) For m
(4)
sx = m

(4)
sz = 1 and the other parameters equal to zero. As we shall see in equation (43),

the order parameters m
(4)
sx and m

(4)
sz must have the same phase, that is, m

(4)
sx /m

(4)
sz must be real. Only the configuration in (b) satisfies this

constraint.

irrep 	1 given in the first column of Table 4, for instance.
The first relation of equation (34) implies that

I(im(1)
sx

, m(1)
sy

, im(1)
sz

) = (−im(1)
sx

, m(1)
sy

, −im(1)
sz

)∗ (35)

which can be written as

I(m(1)
sx

, m(1)
sy

, m(1)
sz

) = (m(1)
sx

, m(1)
sy

, m(1)
sz

)∗ (36)

This same analysis can be repeated for the other representa-
tions and also for the second relation of equation (34). Then
we see that the choices of the phase factors i in Table 4 leads
to the simple result that for α = x, y, or z, and independent
of representation 	n

Im(n)
sα

(q) = m(n)
sα

(q)∗ (37)

(Had we not included the phase factors i in Table 4, we
would have had to keep track of which m’s obey Im = m∗

and which obey Im = −m∗ .) For the cross-tie sites, the
situation is similar except that under spatial inversion each
sublattice is transformed into itself. Thus, we find that

Im(n)
cα

(q) = m(n)
cα

(q)∗ (38)

So, generally for NVO we have for any representation 	n

Im(n)
r (q) = m(n)

r (q)∗ (39)

where r = sx, sy, sz, cx, cy, cz. (Note that this relation does
not imply inversion symmetry. If the system has inversion
symmetry about the origin, then Im

(n)
r (q) = m

(n)
r , and mag-

netic order cannot induce ferroelectric order. Thus one cannot
have ferroelectric order if all the m’s are real.)

Now we invoke the invariance of the free energy with
respect to spatial inversion (which, for NVO, is a sym-
metry of the paramagnetic lattice). For this purpose, we
consider the form of the quadratic free energy written in
equation (18). Since f2 is quadratic in the S’s, it can also be
written as a quadratic form in the symmetry adapted coordi-
nates m:

f2 =
∑
jkn

F
(n)
j,k m

(n)
j (−q)m

(n)
k (q)

=
∑
jkn

F
(n)
j,k m

(n)
j (q)∗ m

(n)
k (q) (40)

where n refers to the irrep 	n. Note that there are no
matrix elements connecting coefficients of different irreps.
Also we used wave vector conservation which implies
that q couples to −q. For f2 to be real no matter what
the m’s might be, one requires that the matrix F be
Hermitian:

F
(n)
j,k = F

(n)
k,j

∗
(41)
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Now we use equation (39) to see the consequence of f2 being
inversion invariant. We have that

If2 =
∑

n

∑
jk

F
(n)
j,k

[
Im

(n)
j (q)∗

] [
Im

(n)
k (q)

]

=
∑

n

∑
jk

F
(n)
j,k m

(n)
j (q)m

(n)
k (q)∗

= f2 =
∑

n

∑
jk

F
(n)
k,j m

(n)
k (q)∗ m

(n)
j (q) (42)

Thus we see that inversion invariance of f
(n)
2 implies that

F
(n)
j,k = F

(n)
k,j . Combining this with equation (41) we see that

all the coefficients of the quadratic form must be real val-
ued. This means that all the components of the eigenvectors
of the quadratic free energy, when written in terms of the
variables of equation (40), can be taken to be real valued.
However, this does not mean that these variables must be
real. Rather, since these variables are allowed to be com-
plex, we may initially take them to be real valued, but more
generally one may then introduce an overall complex phase
factor. So, the critical eigenvector of irrep 	n (which, when
normalized, has components x

(n)
j ), has an arbitrary overall

phase, in which case the symmetry adapted coordinates in
the HTI phase are given as

m
(4)
j = σ HTIx

(4)
j = |σHTI| eiφHTIr

(4)
j (43)

in terms of the real-valued eigenvalue components r
(4)
j . As

mentioned above, since the r’s depend on the details of the
interactions, we do not say anything about their explicit form.
Also, because we have introduced an overall scale factor

σ HTI, we may require that
∑

j

[
r
(4)
j

]2 = 1. Notice that the
phase of all variables of a given irrep are the same. In other
words, the phases of the m’s in equations (30–33) are all the
same. Equation (43) shows that we are dealing with an x–y-
like order parameter σ ≡ σHTIe

iφHTI which has an amplitude
and a phase. (As the temperature is varied near THTI, Landau
theory gives the approximate result σ HTI ∼ (THTI − T )1/2.)
In the appendix, this argument (showing that the x

(n)
j are real

apart from an overall phase factor) is extended to include
fourth-order terms in the free energy. In analyzing exper-
imental data, it is very helpful to realize that apart from
the overall phase, φHTI, all the phases of the of the sym-
metry adapted coordinates m

(4)
j are fixed. When speaking in

terms of the spin components, Sατ (q), the listing of Table 4
indicates that (for irrep #4, for instance), Sx,1s(q), Sz,1s(q),
Sy,1c(q), and Sz,1c(q) will all have the same phase, but (due
to the factor i), Sy,1s(q) will be out of phase with the other
variables, as one sees in equation (30). As it happens, unless
a huge number (several thousand) of reflections are moni-
tored, it is impossible to use diffraction data to fix the relative

phases with any degree of certainty. Thus, this theoretical
development is useful to completely determine the spin struc-
ture of complicated systems such as NVO or TMO. (See note
added in publication.)

We now check to see whether the HTI phase has a center
of inversion symmetry, in which case, a spontaneous polar-
ization cannot be induced in this phase. We will show that
for NVO a phase with a single representation has inversion
symmetry. First of all, because we assume incommensura-
bility, we can redefine the origin to be arbitrarily close to a
lattice site at R, such that φ − qR is a multiple of 2π . We
have already noted that Imτ

α = mτ
α

∗ . But if φ in equation
(43) is redefined to be zero, this implies that Imτ

α = mτ
α,

which means that the spin structure has inversion symmetry
about the redefined origin. In Figure 9, we show an example
of a system obeying equation (43) which does have inver-
sion symmetry and one having an arbitrary set of parameters
out of Table 4 which does not satisfy equation (43) and is
therefore not allowed. This latter structure does not display
inversion symmetry. Note that, as exemplified in Figure 9(b),
it is possible for a structure to be noncollinear, but to have a
center of inversion symmetry. So noncollinearity, in and of
itself, does not guarantee having a spontaneous polarization.

The analysis of the LTI phase is similar. Here again, one
can use the transformation properties of the order parameters
under inversion to fix the phases of the spin amplitudes.
Again, at quadratic order, one has the same result as for
the HTI phase: all the LTI order parameters ms

α for the LTI
irrep 	1 have the same phase, φLTI (which generally is not
equal to φHTI). The analysis is extended to quartic order
in the appendix. When two order parameters are nonzero,
inversion symmetry will be broken if the centers of symmetry
of the two irreps do not coincide, that is, if φLTI 	= φHTI, as
is expressed in equation (61).

5.4 Effect of inversion symmetry for TMO

For TMO the nth Mn sublattice (denoted nM) is transformed
into itself, so, using Table 5, we have

IS
	n

α,nM =
[
S

	n

α,nM

]∗
(44)

which implies that

Im
(n)
Mα

(q) =
[
m

(n)
Mα

(q)
]∗

(45)

For the Tb spins, inversion transforms sublattice #1 (denoted
T 1) into sublattice #3 (denoted T 3) and #2 (denoted T 2)
into #4 (denoted T 4), so that for them one has

IS
	n

α,T 1(q) =
[
S

	n

α,T 3(q)
]∗

, IS
	n

α,T 2(q) =
[
S

	n

α,T 4(q)
]∗

(46)
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These relations imply that

Im
(n)
T1α

=
[
m

(n)
T2α

]∗
(47)

The situation for TMO is slightly more complicated than it
was for NVO because of the presence of the lower-symmetry
Tb sites. In the HTI phase, the irrep for TMO was determined
to be 	3. One can repeat the argument used for NVO to show
that all the symmetry adapted coordinates on the Mn sites,
m

(3)
Mα

, have the same phase. To proceed further, we now study

the quadratic free energy f
(3)
2 associated with the irrep 	3.

In matrix notation we have the quadratic free energy in terms
of symmetry adapted coordinates as

f
(3)
2 =

[
m

(3)
Mx

∗
, m

(3)
My

∗
, m

(3)
Mz

∗
, m

(3)
T1z

∗
, m

(3)
T2z

∗ ]

×




a b c z1 z2

b d e z3 z4

c e f z5 z6

z∗
1 z∗

3 z∗
5 g z7

z∗
2 z∗

4 z∗
6 z∗

7 h







m
(3)
Mx

m
(3)
My

m
(3)
Mz

m
(3)
T1z

m
(3)
T2z




(48)

In writing this form, we have used the fact that the reality
of f

(3)
2 requires the matrix to be Hermitian. Also the matrix

elements b, c, and e are real, as can be shown from the
arguments used previously for NVO. We now consider
complex-valued matrix elements zn, which have no analog
for NVO. (An analogous formulation would be needed for
NVO if we were to consider the effect of the minuscule
moments which are induced on the lower-symmetry oxygen
sites.) We see that the form of equation (48) implies a
contribution to f

(3)
2 of the form

δf
(3)
2 = z1

[
m

(3)
Mx

]∗
m

(3)
T1z

(49)

Using equations (45) and (47), we have that

Iδf
(3)
2 = z1m

(3)
Mx

[
m

(3)
T2z

]∗
(50)

Invariance under inversion symmetry indicates that this term
must be the same as that, z∗

2 [m(3)
T2z

]∗ m
(3)
Mx

, given by equation
(48). We thus conclude that z∗

2 = z1. Similarly, one can
show that z∗

4 = z3 and z∗
6 = z5. Inversion symmetry gives

no information on the phase of z7. Thus the matrix for f
(3)
2

is of the form 


a b c y1 y∗
1

b d e y2 y∗
2

c e f y3 y∗
3

y∗
1 y∗

2 y∗
3 g y4

y1 y2 y3 y∗
4 h


 (51)

where only the y’s are complex valued. One can then
show that any eigenvector of this matrix must be of the
form

ψ = [Mx, My, Mz, T1, T2] = σ HTI[rx, ry, rz, c, c∗ ]eiφHTI

(52)
where rα is real, c can be complex, and we require the
normalization 2|c|2 + ∑

r2
α = 1. As for NVO, we intro-

duced an arbitrary overall phase φHTI. Note that m
(3)
Mα

(q) =
σHTIrαeiφHTI , m

(3)
T1z

(q) = σHTIce
iφHTI , and m

(3)
T2z

(q) =
σHTIc

∗ eiφHTI . Thus, as a result of inversion symmetry, the
amplitudes of the two Tb sublattices (c and c∗ ), which with-
out considering inversion symmetry were unrelated, are now
equal in magnitude and have equal and opposite phases rela-
tive to the Mn sites. The value of this relative phase (of c) is
not fixed by symmetry. As for NVO, one can verify that ψ

is inversion invariant if φ is redefined to be zero, since then
Irα = rα and Ic = (c∗ )∗ = c. (The latter relation follows
from equation (47).)

5.5 Summary

Finally, we should emphasize that although we do not
have a quantitative treatment of the development of mag-
netic long-range order, we can certainly determine the mag-
netic symmetry. This information is encoded in Table 3.
For NVO, σHTI is associated with irrep #4 and there-
fore is odd under a twofold rotation about x and even
with respect to the mirror plane taking z into −z. Like-
wise, σ LTI is associated with irrep #1 and is therefore
even with respect to both these operations. For future
reference, we also give the transformation properties of
σHTIσLTI. These results are summarized in Table 6. The
symmetry of the LTI phase of NVO is illustrated in
Figure 10.

For TMO, the HTI order parameter σHTI is odd with
respect to the mirror taking z into −z and is even with respect
to the mirror taking x into −x. Likewise, σ LTI is associated
with irrep #2 and is even with respect to the mirror taking z

into −z and is odd with respect to the mirror taking x into
−x and these results are summarized in Table 6.

In Table 7, we give the experimentally determined values
of the symmetry adapted parameters that describe the HTI
and LTI phases of NVO and TMO. The results for NVO
are analyzed in detail in Kenzelmann et al. (2006). We
will make a few brief observations here. For NVO, the
spine spins dominantly have order in the x direction in the
HTI phase from irrep 	4 indicating that the x axis is the
easy axis. The additional order in the LTI phase due to
irrep 	1 is along the y direction, and the phase difference
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Table 6. Transformation properties of order parameters for NVO (left) and TMO (right).
In this table, σ ≡ σeiφ . and ‘c.c.’ denotes complex conjugation. Each column gives the
result of applying the operator at the top of the column to the order parameter listed in
the row.

Order Parameter 2x mxy I

σ HTI(q) −1 1 c.c.
σ LTI(q) 1 1 c.c.
σ LTI(q)σHTI(−q) −1 1 c.c.

Order Parameter 2̃y mxy I

σ HTI(q) −1 1 c.c.
σ LTI(q) 1 −1 c.c.
σ LTI(q)σHTI(−q) −1 −1 c.c.

Table 7. Values of the symmetry adapted parameters that describe the HTI and LTI phases of NVO (see Lawes
et al., 2004) and TMO (see Kenzelmann et al., 2005). The uncertainty in the last digit quoted is given in
parenthesis. Where there is no parenthesis, the entry is fixed by symmetry to be zero. For TMO, the two Tb
order parameters were assumed to have the same magnitude (as predicted by Landau theory) and the phase
difference between the Tb parameters m

(2)
T1α

and m
(2)
T2α

in the LTI phase was found to be 1.3(3)π . For NVO,
T = 7K is in the HTI phase and T = 5K is in the LTI phase. For TMO, T = 35K is in the HTI phase and
T = 15K is in the LTI phase.

NVO TMO

T (K) Variable α = x α = y α = z T (K) Variable α = x α = y α = z

7 m
(4)
sα 1.93(5) 0.20(5) 0.10(4) 35 m

(3)
Mα

0.0(8) 2.90(5) 0.0(5)

7 m
(4)
cα 0 −0.2(2) 0.00(2) 35 |m(3)

Tnα
| 0 0 0.0(4)

5 m
(4)
sα 2.0(1) 0.16(9) 0.01(5) 15 m

(3)
Mα

0.0(5) 3.9(1) 0.0(7)

5 m
(1)
sα 0.5i(5) −0.5i(1) 0.00i(3) 15 m

(2)
Mα

0.0i(1) 0.0i(8) 2.8i(1)

5 m
(4)
cα 0 −2.1(2) −0.03(9) 15 |m(3)

Tnα
| 0 0 0(1)

5 m
(1)
cα 0.9i(5) 0 0 15 |m(2)

Tnα
| 1.2(1) 0(1) 0

φLTI − φHTI = π/2 indicates that the spin structure is a
spiral, as illustrated in Figure 10. From this figure, one
sees that interactions between nearest neighboring spins in
adjacent spines displaced from one another along either c or
b are AFM. Since the wave vectors are the same for both
types of order, we infer that the exchange interactions are
nearly isotropic.

For the Mn spins in TMO, the situation is much the same.
In the HTI phase, the Mn spins dominantly have order in
the y direction, indicating that this axis is the easy axis.
In the HTI irrep (	3) one sees, from Table 5, that sites #1
and #2 (in one basal plane) have positive y components of
spin and that sites #3 and #4 (in the adjacent basal plane)
have negative y components of spin indicating FM in-plane
interactions and AFM out-of-plane interactions. In the LTI
phase of TMO, the additional irrep 	2 involves spins along
z axis and Table 5 shows that for irrep #2 the components
are again arranged ferromagnetically within basal planes but
antiferromagnetically between adjacent basal planes. The fact
that both components of spin are organized similarly suggests
that the exchange interactions are probably nearly isotropic.
As for NVO the difference in phase between the LTI and HTI
order parameters is characteristic of a spiral spin structure.

6 MAGNETOELECTRIC COUPLING

6.1 Landau theory with two order parameters

Now we consider the Landau expansion for the free energy,
fME, of the combined magnetic and electric system. One
might be tempted to write

fME = a(T − TF )P2 + b(T − TM)|σ |2 (53)

where σ is a magnetic order parameter and, if we wish to
describe a phase transition in which both electric and mag-
netic order appear simultaneously, we would set TF = TM.
There are several reasons to reject this scenario. First of
all, it is never attractive to assume an accidental degener-
acy (TF = TM ). This degeneracy can happen, of course, but
normally one would have to adjust some addition control
parameter (such as pressure) to reach such a higher-order
critical point. In addition, in this type of scenario magnetic
and electric properties would not be interrelated. In NVO
and TMO, in contrast, as shown in Figure 1, the electric
polarization has a dramatic dependence on the applied mag-
netic field (Lawes et al., 2005), which such an independent
scenario could not explain.



Ferroelectricity in incommensurate magnets 21

x

∆

x

A

2x

A

A′

y

z

A′

G
lid

eMirror
plane

y

Figure 10. Schematic representation to show the symmetry of spin
components for NVO. Here, we show sections of two adjacent
a–c planes. The filled circles indicate the cross-tie sites whose
spin components are not shown, for simplicity. The x components
transform according 	4: they are odd under the twofold rotation
2x about the x axis and are even under the x–y glide plane (the
mirror plane is shown on the left with a subsequent displacement
�� along ŷ). (Remember that the magnetic moment vector involves
a cross product and therefore is an axial vector: under a mirror
operation it picks up an extra minus sign.) The y components
transform according to 	1: they are even under both operations.
Although the x and y components have different symmetry, they
can plausibly result from nearly isotropic exchange interactions.

6.2 Landau theory with two coupled order
parameters

Accordingly, we turn to a formulation in which the appear-
ance of magnetic order induces ferroelectric order. (The
possibility that electric order induces magnetic order is not
allowed by symmetry, by the argument in footnote 87 of
Toledano, Schmid, Clin and Rivera (1985).) So we write

fME = aχ−1
E P2 + a(T − TM)|σ |2 + VME (54)

where χ−1
E does not approach zero and the simultaneous

appearance of magnetic and electric order is due to the term
VME. As we have seen, the magnetic order is associated
with a nonzero wave vector, whereas the ferroelectric order
is a zero wave vector phenomenon. Accordingly, we are
constrained to posit a magnetoelectric coupling of the form

VME ∼ σ(q)σ (−q)P (55)

This term will do what we want: when magnetic order
appears in σ(q), it will then give rise to a linear perturbation

in P , so that P ∼ χE|σ(q)|2. This argument is schematic, of
course, and we will have to fill in the details, which must be
consistent with the crystal symmetry of the specific systems
involved.

The minimal phenomenological model that describes the
magnetic and electric behavior of the HTI and LTI phases is
therefore written as

f = 1

2
(T − THTI)σHTI(q)σ ∗

HTI(q)

+1

2
(T − TLTI)σLTI(q)σ ∗

LTI(q)

+O(|σ |4) + 1

2
χ−1

E P2 + VME (56)

where

VME =
∑

A,B = LTI, HTI

∑
γ=x,y,z

aA,B,γ σA(q)∗ σB(q)Pγ (57)

6.3 Symmetry of magnetoelectric coupling

We now show that this free energy reproduces the observed
phenomenology of ferroelectricity in NVO and TMO. First,
of all, in the HTI phase (where σ LTI = 0) VME is of the form

VME =
∑
γ

bγ |σ HTI(q)|2Pγ (58)

where bγ is real. Now we use the fact that VME has to be
inversion invariant, since it arises in an expansion relative
to the paramagnetic phase, which is inversion invariant
(Dzyaloshinskii, 1957; Landau and Lifshitz, 1958). We
use Iσ HTI(q) = σHTI(q)∗ and IPγ = −Pγ to show that
bγ must vanish. Indeed, we have already seen, the HTI
phases of NVO and TMO are inversion invariant. So, for
these situations bγ in equation (58) must be zero and no
polarization can be induced in the HTI phase.

Now we consider the situation in the LTI phase when the
two order parameters σHTI and σ LTI are both nonzero. The
argument which indicated that aHTI,HTI,γ = 0 can be used to
establish that aLTI,LTI,γ = 0. Then we write

VME =
∑
γ

[
cγ σHTI(q)∗ σLTI(q)

+c∗
γ σ ∗

LTI(q)σHTI(q)
]
Pγ (59)

This interaction has to be inversion invariant, so we use
the transformation properties of the order parameters under
inversion to write
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VME = IVME = −
∑
γ

[
cγ σHTI(q)σLTI(q)∗

+c∗
γ σLTI(q)σHTI(q)∗

]
Pγ (60)

Comparison with equation (59) indicates that cγ must be pure
imaginary: cγ = irγ , where rγ is real. Then

VME = 2
∑
γ

rγ σHTI(q)σLTI(q)Pγ sin[φHTI − φLTI] (61)

This result shows that to get a nonzero spontaneous polariza-
tion it is necessary that two order parameters be nonzero. (A
similar interaction was proposed by Frohlich, Leute, Pavlov
and Pisarev, 1998 in their analysis of second-harmonic gen-
eration.) Furthermore, these two order parameters must not
have the same phase. In fact, a more detailed analysis of
Landau theory shows that the phase difference φHTI − φLTI

is expected to be π/2. (This result comes from an analysis of
the quartic terms. As we observed earlier, the function of the
quartic terms is to enforce the constraint of fixed spin length.
This constraint usually means that the ordering in two rep-
resentations should be out of phase, so that when one repre-
sentation gives a maximum of spin lengths, the other gives a
minimum of spin lengths.) The reader should be alerted to the
fact that there are systems such as TbMn2O5 and YMn2O5

which have a magnetoelectric interaction of the form

VME =
∑
γ

rγ [|σ 1(q)|2 − |σ 2(q)|2]Pγ (62)

and which therefore can support a ferroelectric phase in the
presence of a single incommensurate magnetic order param-
eter (Harris, 2006b). (A similar magnetoelectric interaction
was found in Cowley, 1980, and Sergienko, Sen and Dagotto,
2006, for commensurately ordered magnetic systems.)

Finally, we consider how the symmetry properties con-
strain the spontaneous polarization. Look at Table 6. There
we see how the magnetic order parameters transform under

the various symmetry operations of the paramagnetic phase.
For VME to be an invariant, we see that for NVO, P must
be odd under 2x (which restricts P to be along y or z) and
it must be even under mxy (which restricts P to be along
x or y). Thus, symmetry restricts P to be only along y.
This is exactly what experiment shows. For TMO, P must
be odd under both 2̃y and mxy . Thus, symmetry restricts P
to lie along z at H = 0, as is observed in experiment. (At
higher magnetic fields, the magnetic symmetry must change
to explain why the polarization switches from the z axis
to the x axis.) Furthermore, the temperature variation of P,
shown in Figure 11 looks very much like that for an order
parameter. But that is to be expected because if we minimize
the total free energy with respect to P, using equation (61),
we see that the spontaneous polarization is given as

Pγ ∼ χEσHTIσLTI (63)

When the LTI phase is entered, σHTI is already well devel-
oped and is therefore essentially independent of temperature.
Thus we expect that crudely Pγ ∼ σ LTI. Indeed, although we
have not undertaken a quantitative analysis, the experimental
curves of P versus T look quite similar to those for an order
parameter.

Finally, for TMO for a large magnetic field along a (see
Figure 6) or along b (see Kimura et al., 2005), there is a
change of orientation of the spontaneous polarization P to
lie along a. Since there seems to be no analogous phase
transition within the HTI phase, we attribute this reorientation
to a change in the LTI spin state. Instead of the additional
irrep of the LTI phase being 	2 (as it is at low field), we
infer that the new LTI irrep is 	1, since this combination
of irreps is consistent with having P along a. Furthermore,
if we assume that the exchange coupling is isotropic, then
we would expect that 	1 ordering would be FM within
basal planes and AFM between planes. From Table 5, this
constraint can only be satisfied if the ordering involves the
x component of spin. So, from the polarization data we
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Figure 11. Temperature dependence of the spontaneous polarization at zero applied magnetic field for NVO (a) and for TMO (b). Note the
different scales for P. (Reprinted with permission G. Lawes et al., copyright 2005, American Institute of Physics (a) and Reprinted with
permission T. Kimura et al., copyright 2003, Nature Publishing Group (b).)
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speculate that the Mn spin structure (which at low field is in
the b–c plane) is rotated, at high field, into the a–b plane.

6.4 Spin-current model

A microscopic explanation of ferroelectricity occurring
simultaneously with spiral order of the type seen in TMO or
NVO was given by Katsura, Nagaosa and Balatsky (2005).
(Subsequently, a similar result was obtained phenomenolog-
ically Mostovoy, 2006.) In this theory, a microscopic mech-
anism is invoked in which a spontaneous polarization Pij

can be induced by spins Si and Sj which are located at
respective positions ri and rj . Assuming a noncollinear spin
ordering (presumably established by competing exchange
interactions), they found that

Pij = a

[
rij × (Si × Sj )

rij

]
(64)

where a is a constant and rij = ri − rj . This model success-
fully predicts the magnetically induced spontaneous polariza-
tion in both NVO and TMO. First of all, in the HTI phases
if the spins are assumed to be collinear, this mechanism pre-
dicts that Pij = 0. In a phase in which the spins rotate a plane
perpendicular to n, one see that the vector Si × Sj must be
parallel to n. If one averages over spins in planes perpendic-
ular to the wave vector q, one see that the net polarization
must be in the direction n × q. For the LTI phase of NVO,
for instance, the vector n is parallel to the b direction and q is
along the a direction. This model therefore correctly predicts
a spontaneous polarization along the c direction. However,
the predictions of this mechanism are less obvious when there
are small transverse components of magnetization which are
allowed within the observed irrep.

The same argument also correctly predicts the direction
of the spontaneous polarization in TMO and gives the same
prediction for the rotation of the plane of the magnetization
when TMO is subject to a large magnetic field that rotates
the direction of the spontaneous polarization.

6.4.1 Note added in Proof

Recently, the stacked triangular antiferromagnet
RbFe(MO4)2 with spins confined to the plane perpendicular
to the threefold axis, with each such plane forming a 120◦

antiferromagnet has been shown to be ferroelectric (Kenzel-
mann et al., 2007). Since the spins are perpendicular to the
threefold axis, the vector Si × Sj must lie along the three-
fold axis. The observed spontaneous polarization along the
threefold axis contradicts the prediction of the spin-current
model that there be no ferroelectricity induced by antifer-
romagnetism. So, while the spin-current model is appealing

in the simplicity of its conclusion, it cannot be a universal
explanation of magnetically induced ferroelectricity. In this
system equation (62) is verified by showing that Pγ goes like
|σ 1(q)|2 when σ 2(q) vanishes.

We also point out a recent paper of Sergienko and Dagotto
(2006) (SD) who show that the Dzyaloshinskii–Moriya
(DM) interaction can induce a combined magnetic and fer-
roelectric phase transition. However, in the model explicitly
considered in their paper, the phenomenology seems inap-
propriate since the transition requires a threshold strength of
the DM interaction, whereas the phenomenology we have
developed here always gives ferroelectricity independent of
the strength of the magnetoelectric coupling providing the
symmetry is appropriate.

6.5 Broken symmetry

We should also mention some considerations concerning
broken symmetry for NVO. (Clearly, a similar discussion
applies to other similar systems.) Since both transitions
involving the HTI phase involve broken symmetry, we assert
the following. At the level of the present analysis when
the temperature is reduced to enter the HTI phase, the
modulated order appears with an arbitrary phase φHTI. Of
course, if this state is truly incommensurate, then this phase
will remain arbitrary. Normally, however, we would expect
some perturbation to break this symmetry and this continuous
symmetry should be removed. However, we do expect a
degeneracy with respect to the time-reversed version of the
ordered HTI phase. In that case upon performing many runs
of the same experiment, both time-reversed versions of the
HTI ordered phase should occur with equal probability.

One can make much the same observation about the
HTI→LTI phase transition. Here, one has the additional
broken symmetry associated with the irrep 	1. When the
temperature is reduced to enter the LTI phase, the system
will have two symmetry-equivalent states into which it can
condense. As with the usual magnetic phase transitions,
one can (in principle) select between these two phases by
applying a suitably spatially modulated magnetic field. Such
an experiment does not seem currently feasible (because
modulation of an applied field on an atomic scale is
difficult to produce). However, because the magnetic order
parameters are coupled to the ferroelectric moment, one
can select between the two symmetry-equivalent possibilities
for the LTI order parameter by applying a small electric
field. An interesting experiment suggests itself: compare the
magnetic state as determined by, say, neutron diffraction for
the two cases of a small applied electric field in the positive
and negative b directions. According to the magnetoelectric
trilinear coupling, application of such an electric field should
select the sign of the product σ HTIσ LTI. In this context, we
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remark that measurement of the spontaneous polarization P
(as in Figure 1) is made by preparing the sample in a small
symmetry-breaking electric field E0, which is removed once
P becomes nonzero. The ferroelectric order is confirmed by
verifying that P changes sign when the sign of E0 is changed.

7 MICROSCOPICS

Since the spontaneous polarization P must result from a
spontaneous condensation of an optical phonon having a
dipole moment, we are led to study the symmetry of the
phonon excitations at zero wave vector. Neglecting nonzero
wave vectors, we write the α component of the displacement
of the τ th ion in the unit cell at R as

uα(R, τ ) =
∑

i

Qiξ
(i)
α (τ ) (65)

where ξ (i)
α (τ ) is the normalized form factor of the ith general-

ized displacement whose amplitude is Qi . A comprehensive
analysis is given elsewhere (Harris, Yildirim, Aharony and
Entin-Wohlman, 2006), but here we confine our attention to
generalized displacements in NVO which transform appro-
priately (like a displacement along b) to explain experiments.
Such a (y-like) generalized displacement Qi must be invari-
ant under the operations (see Table 2) E, σ x , σ z, and 2y

and change sign under σ y , 2x , 2z, and I. There are 12
such generalized displacements of the 13 ions in the prim-
itive unit cell. Six of these are the uniform displacements
along b of all crystallographically equivalent sites of a given
type, that is Ni spine sites, Ni cross-tie sites, V sites, O1,
O2, and O3 sites, and these uniform displacements, denoted
Q1, Q2, . . .Q6, give rise to a dipole moment along the b
axis. Other generalized displacements involve, perhaps sur-
prisingly, oppositely oriented displacements along the a or c
axis within a group of crystallographically equivalent sites.
We illustrate one of these (Q7 involving Ni cross-tie sites)
along with Q2 in Figure 12. Since Q7 has the same symme-
try as Q1 . . .Q6, it must couple to these modes. One can
easily visualize this by imagining the ions to act like hard
spheres. In that case, as the cross-tie ions approach spine
sites #1 and #4, they cause these site (which initially were
at negative y) to move to more negative y. Similarly, as the
cross-tie sites move away from sites #2 and #3, these ions
have more room to move closer to y = 0. In other words,
the opposing motion of the cross-tie sites in mode Q7 along
the c axis interacts with the uniform motion in mode Q1 of
the spine sites along b. In summary, the elastic free energy
as a function of displacements can be written as

f ({Qi}) = 1

2

12∑
i,j=1

VijQiQj (66)
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Figure 12. Pattern of two generalized displacements, Q2 (a) and
Q7 (b), which transform under the symmetry operations of the
crystal like a displacement along b. In (a), ‘+’ indicates motion
along the positive b axis. In Q2, all the cross-tie sites move in
parallel along the b axis and therefore this motion induces a dipole
moment. As discussed in the text, the nonuniform motion of the
cross-tie sites in the generalized displacement Q7 induces uniform
motion of the spine site in the b direction which in turn produces
a dipole moment.

At the time of this writing, no calculation or neutron
experiments to determine Vij have appeared. Instead we have
recourse to a very crude toy model, obtained by setting

f ({Qi}) =
∑

i

1

2
Miω

2
DQ2

i (67)

where Mi is the mass of ions in mode Qi and ωD is the
Debye frequency, characteristic of phonons.

We now consider the effect of a generalized y-like
displacement Qi on the exchange interaction between nearest
neighbors in the same spine. Then for spins numbered 1 and
4 in a unit cell we have the exchange interaction as a function
of displacement as

H14(Qi) = H14(0) + Qi

∑
αβ

Sα(1)
dMαβ(1, 4)

dQi

Sβ(4) (68)

The existence of a mirror plane perpendicularly bisecting the
1–4 bond (mbc) implies that

H14(Qi) = mbcH14(Qi) (69)

which is

H14(Qi) = Qi[S1x, S1y, S1z]
d

dQi

×

 Mxx −Myx −Mzx

−Mxy Myy Mzy

−Mxz Myz Mzz





 S4x

S4y

S4z


 (70)

where we used mbcQi = Qi , mbcS1x = S4x , mbcS1y = −S4y ,
and mbcS1z = −S4z (the spin is a pseudovector). Thus,
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to satisfy equation (69) the derivatives must satisfy the
conditions

dMyx

dQi

= −dMxy

dQi

,
dMzx

dQi

= −dMxz

dQi

,
dMzy

dQi

= dMyz

dQi

(71)

Thus the gradient of the exchange tensor must assume the
form

dMαβ(1, 4)

dQi

= d

dQi


 Jxx Dz −Dy

−Dz Jyy Jyz

Dy Jyz Jzz


 (72)

where Jαβ is the symmetric exchange tensor and D is the
Dzyaloshinskii–Moriya vector, which specifies the antisym-
metric component of the exchange tensor.

We determine the other similar interactions in the unit cell
using the appropriate symmetry operations. If 2y is a rotation
about an axis parallel to b and which passes through site #4,
then

H(4, 1′; y) = 2yH(1, 4; y) = Qi[S4x, S4y, S4z]
d

dQi

×

 Jxx Dz Dy

−Dz Jyy −Jyz

−Dy −Jyz Jzz





S1′x

S1′y
S1′z


 (73)

where we used 2yQi = Qi , and site #4′ is one unit cell to the
right of site #4 in Figure 12. Also, if 2x is a rotation about
the a axis, then

H(2, 3; y) = 2xH(1, 4; y) = Qi[S2x, S2y, S2z]
d

dQi

×

−Jxx Dz −Dy

−Dz −Jyy −Jyz

Dy −Jyz −Jzz





S3x

S3y

S3z


 (74)

where we used 2xQi = −Qi and

H(3, 2′; y) = 2yH(2, 3; y) = Qi[S3x, S3y, S3z]
d

dQi

×

−Jxx Dz Dy

−Dz −Jyy Jyz

−Dy Jyz −Jzz





S2′x

S2′y
S2′z


 (75)

where site #2′ is one unit cell to the right of site #3 in
Figure 12.

When we consider equation (67) and neglect fluctuations,
the spin–phonon interactions lead to the result

〈Qi〉 = (
Miω

2
D

)−1 ∑
αβ

∑
n,m

〈Sα(n)〉dMαβ(n, m)

dQi

〈Sβ(m)〉 (76)

where 〈 〉 indicates a thermal average and (n, m) are summed
over the four nearest-neighbor spine–spine interactions in a
unit cell. Assuming the spins are characterized by spine spin
components scaled by a for irrep 4 and by b for irrep #1, we
write the spin components as

Sx(x1) = (ax + ibx)e
iqx1 + (a∗

x − ib∗
x )e−iqx1

Sx(x2) = (−ax + ibx)e
iqx1 + (−a∗

x − ib∗
x )e−iqx1

Sx(x3) = (ax − ibx)e
iqx4 + (a∗

x + ib∗
x )e−iqx4

Sx(x4) = (−ax − ibx)e
iqx4 + (−a∗

x + ib∗
x )e−iqx4 (77)

Sy(x1) = (iay + by)e
iqx1 + (−ia∗

y + b∗
y )e−iqx1

Sy(x2) = (iay − by)e
iqx1 + (−ia∗

y − b∗
y )e−iqx1

Sy(x3) = (−iay + by)e
iqx4 + (ia∗

y + b∗
y )e−iqx4

Sy(x4) = (−iay − by)e
iqx4 + (ia∗

y − b∗
y )e−iqx4 (78)

Sz(x1) = (az + ibz)e
iqx1 + (a∗

z − ib∗
z )e−iqx1

Sz(x2) = (az − ibz)e
iqx1 + (a∗

z + ib∗
z )e−iqx1

Sz(x3) = (az − ibz)e
iqx4 + (a∗

z + ib∗
z )e−iqx4

Sz(x4) = (az + ibz)e
iqx4 + (a∗

z − ib∗
z )e−iqx4 (79)

Using these evaluations one can carry out the sum over
(n, m) in equation (76) to get

〈Qi〉 = 16(Miω
2
D)−1

[
F

(s)
i sin(qa/2) + F

(c)
i cos(qa/2)

]
(80)

where

F
(c)
i =  [

a∗
x bz + a∗

z bx

]
dDy/dQi

+
∑
α

πα [
aαb∗

α

]
dJαα/dQi (81)

and

F
(s)
i =  [

azb
∗
y + bza

∗
y

]
dJyz/dQi

+ [
axb

∗
y + bxa

∗
y

]
dDz/dQi (82)

where −πx = πy = πz = 1. Note that these terms require
the presence of both order parameters a and b and hence
they can only be nonzero in the LTI phase. Also these
terms are only nonzero if a and b have different phases.
For displacements that could give rise to a spontaneous
polarization along the a or c axes, the sum over (n, m)

in equation (76) gives zero (Harris, Yildirim, Aharony and
Entin-Wohlman, 2006). These conclusions agree with the
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result found using Landau theory. This magnon–phonon
coupling also contributes to the temperature dependence of
the wave vector q (Kenzelmann et al., 2006; Harris et al.,
2006).

To get an order-of-magnitude estimate of the various
quantities, we consider the effect of the motion of the oxygen
ions, which are the lightest atoms and therefore have the
largest displacements. Crudely speaking, the dipole moment,
PQ of the generalized displacement Q is given by PQ =
qQ

∑
i∈Q ui , where qQ is the charge of the ions of Q and

ui is the displacement of ion i in Q. More accurately, qQ

should be replaced by an effective charge q∗
Q which takes

account of the electrical relaxation that occurs as the ions
move. (This is analogous to the discussion given at the end
of the preceding paragraph.) Thus, even Q7 will develop a
(probably small) dipole moment in the b direction. However,
for simplicity we set

〈P 〉 = qi〈Q〉
vuc

= 2e〈Q〉
vuc

(83)

where vuc ≈ 275 × 10−30m3 is the volume of the unit cell.
More accurately, 〈Q〉 should be replaced by 〈Q〉√n, where
n is the number of ions involved in the mode generalized
displacement Q (So n = 4 or n = 6). So, in meters, 〈Q〉 ≈
(275 × 10−30)(5 × 10−4)/(3.2 × 10−19√n), where we took
P = 5 × 10−4 C m−2 as a typical value. Thus we estimate the
ionic displacement to be of order 〈Q〉 ∼ 0.001 Å. (Actually,
neutron diffraction indicates that the ionic displacement
ought to be at most 0.001 Å.) (We thank Prof. C. Broholm
for communicating this bound to us.) If ∂J/∂Q represents a
typical value for ∂Mαβ/dQ, then

〈Qi〉 ∼ (�c)2

(Mic2)(�ωD)2

∂J

∂Q
(84)

Working in Åand eV and taking 〈Qi〉 = 0.001 Å, �ωD ≈
0.05 eV, Mic

2 ≈ 1.6 × 1010 eV, and �c ≈ 2000 eV Å, we
find that this mechanism requires that

∂J

∂Q
∼ 0.01 eV/Å (85)

This seems to be a plausible value. Obviously a first-
principles calculation of ∂Mαβ/∂Qi would be of interest to
make this analysis more concrete.

8 SUMMARY AND OUTLOOK

The development of multiferroic materials having very large
magnetoelectric couplings offers the possibility of design-
ing new types of devices that exploit the coupling between

magnetic and ferroelectric order. Furthermore, investigating
the nature of the coupling between magnetic and ferroelec-
tric order parameters in these compounds may be important
in understanding other systems displaying significant inter-
actions between different types of long-range order. We will
briefly summarize the main results of the model we have pre-
sented coupling ferroelectricity with incommensurate mag-
netic order, and then discuss what this implies for future
research on magnetoelectric multiferroics.

8.1 Summary of this review

As many of the recently identified materials exhibiting simul-
taneous magnetic and ferroelectric order are incommensurate
magnets, we have focused on these systems. We discussed a
toy model for incommensurate magnetism. In this model, we
saw that, under the assumption that the magnetic anisotropy
is not too large, the magnetic system will undergo a param-
agnetic to a longitudinally ordered incommensurate phase we
refer to as the HTI phase. On further lowering the temper-
ature, the is another transition to a distinct incommensurate
phase with additional transverse spin ordering, which we call
the LTI phase.

Because knowing the detailed symmetry of the incommen-
surate magnetic structure is crucial for determining whether
ferroelectric order is allowed, we considered the extension
of this toy model to systems with nontrivial unit cells. We
addressed this problem by expressing the spin order param-
eters in terms of irreducible representations consistent with
the symmetry restrictions of the unit cell. The central obser-
vation for understanding the magnetoelectric coupling is that
the free energy must be invariant under all symmetries of
the paramagnetic phase, and in particular, if the paramag-
netic crystal has inversion symmetry, it must be invariant
under spatial inversion. This requirement was used to deter-
mine whether a particular incommensurate magnetic struc-
ture allowed the possibility of ferroelectric order. Using this
approach, we are able to qualitatively explain the multifer-
roic behavior of both NVO and TMO, including the absence
of ferroelectric order in the HTI phase, the development of
ferroelectricity in the LTI phase, and the qualitative features
of the spontaneous polarization (direction and temperature
dependence).

It is worth noting that the magnetoelectric coupling we
have described here does not reduce to the analogous cou-
pling that can occur in a ferromagnet or in an antiferromag-
net. As remarked in the review of Smolenskii and Chupis
(1982), such a trilinear coupling cannot exist in structures that
(like NVO or TMO) have inversion symmetry in the param-
agnetic phase. Indeed, the mechanism we invoke requires that
q 	= 0, as one can see from equation (61). (If q = 0, then the
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order parameters are real, φHTI = φLTI = 0 and VME = 0.) In
that review, they also mention a coupling that involves gradi-
ents of the magnetic order parameter. That type of coupling
may be related to the one used here, although in our case the
symmetry properties of the unit cell play a crucial role that
cannot be replaced by a continuum vector field.

We also showed that the microscopic symmetry of the
derivative of the exchange tensor with respect to ionic
displacement leads to results in complete agreement with the
symmetry arguments based on the Landau expansion. This
symmetry will have to be respected by any truly microscopic
theory of magnetoferroelectrics.

8.2 Outlook for device applications

The success of the theory described in this review sug-
gests that it may be valuable both in understanding the
origins of multiferroic behavior in presently identified sys-
tems, and well as in guiding the search for new multiferroic
compounds having desirable materials properties. We briefly
discussed the technological drivers motivating the search
for magnetoelectric materials, by illustrating the types of
devices that might be possible using multiferroics. How-
ever, there are two main difficulties that must be resolved
before these materials could be incorporated into fabricat-
ing next generation magnetoelectric devices. Firstly, the very
low transition temperatures into the ferroelectric LTI phase
(6.4 K for NVO and ∼27 K for TMO) make these materials
unsuitable for many applications. Secondly, the spontaneous
polarizations in these systems are typically several orders
of magnitude smaller than what is found in conventional
ferroelectrics. Before incommensurate multiferroics can be
considered for applications, it will be necessary to engineer
materials having larger spontaneous polarizations developing
at higher temperatures. We discuss in the following some
of the general ideas extracted from our model which may
help guide the search for new multiferroics more suitable for
applications.

Extending the search for multiferroics from simple ferro-
magnets to systems with incommensurate magnetic order is
an important first step in finding materials that have a room-
temperature transition into a phase, developing magnetic and
ferroelectric order simultaneously. Insulating ferromagnets
tend to have very low transition temperatures, but many
incommensurate magnets have ordering temperatures well
above room temperature (Sosnowska, Newmaier and Seichle,
1982). In fact, the incommensurate magnetic structure asso-
ciated with ferroelectric order in one recently identified mul-
tiferroic (T. Kimura, private communication) persists up to
T = 320 K. Our results suggest that insulating incommensu-
rate magnets with high magnetic ordering temperatures may

be prime candidates in the search for strongly coupled mag-
netoelectric multiferroics at room temperature.

The second shortcoming of currently known incommensu-
rate multiferroics for device applications is the small value
of the spontaneous polarizations. As we develop a better
understanding of the microscopic mechanisms giving rise to
multiferroic order, it should be possible to engineer materi-
als with larger ferroelectric moments. Additionally, several
recent studies suggest that the spontaneous polarization of
certain multiferroic materials may be significantly enhanced
in thin-film geometries (Wang et al., 2003). This offers the
possibility of improving the properties of incommensurate
multiferroics by preparing the thin-film samples that would
be required for device applications.

8.3 Experimental outlook

Both of the systems we have considered in detail (NVO and
TMO) are inversion symmetric in the paramagnetic phase,
and only develop ferroelectric order by coupling the polar-
ization to two distinct magnetic order parameters. On the sur-
face, this might suggest that the search for new multiferroic
materials should focus on systems with multiple magnetically
ordered phases developing in zero field. However, as pointed
out in equation (62) ferroelectricity can appear within a sce-
nario involving the condensation of a single magnetic order
parameter and very recent experiments on RbFe(MoO4)2

have shown this unambiguously (Kenzelmann et al., 2007).
This specific example raises the general problem of

producing multiferroic order in a system that has neither
magnetic nor ferroelectric order in the high-temperature
phase. In particular, consider systems that lack inversion
symmetry, but whose rotational symmetry elements preclude
a nonzero vector order parameter. We give two families of
such crystal structures. The first is that of the point group
D2 (orthorhombic space groups #16–#24 in Hahn, 1983)
and the second is that of point group T (cubic space groups
#195–#199 in Hahn, 1983). In the para phase, these systems
have no magnetic long-range order and, because these crystal
structures do not allow vector ordering, they do not display
ferroelectric order. When such a system develops long-range
incommensurate order with a wave vector along one of the
crystallographic directions, then only rotations about this
direction remain symmetric and a spontaneous polarization
along the direction of the wave vector is permitted, at least
in principle. This mechanism would therefore allow the
development of multiferroic order at a single phase transition.

These results suggest that there are many more multiferroic
materials than previously considered, and offer guidelines to
identifying new multiferroics. The magnetic transition giv-
ing rise to ferroelectric order should produce a noncollinear
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spin structure. Because magnetic order in geometrically frus-
trated magnets is often driven by anisotropic interactions,
such complex spin structures often arise on frustrated trian-
gular lattices. Furthermore, because the magnetic exchange
energies at the ordering temperatures are typically large in
frustrated systems (with the order temperature Tc an order
of magnitude smaller than the Weiss temperature), these
systems often show significant magnetoelectric coupling.
Systems having low-energy phonon modes may be more
susceptible to magnetically induced ferroelectric distortions,
although other typical requirements for conventional ferro-
electrics, specifically empty d orbitals (Seshadri and Hill,
2001), are apparently unimportant in multiferroics. Finally,
while many of the magnetically induced multiferroics stud-
ied so far are in fact incommensurately ordered, it is not a
necessary prerequisite, but is simply a consequence of the
geometrical frustration in these systems (Kenzelmann et al.,
2007). A recently studied commensurately ordered multifer-
roic is discussed in Sergienko and Dagotto (in press).

We also refer the reader to Section 6.5 where we suggest
an experiment to test our assertions about broken symmetry,
namely that the application of a small symmetry-breaking
electric field should select states for which σ HTIσ LTI has a
fixed sign, although neither order parameter individually has
a fixed sign.

Another experimental program which this study suggests
concerns the phase diagram of these systems in the T –E

plane, where E is the uniform applied field. Since only the
LTI phase of NVO or TMO has a spontaneous polarization,
this phase is favored (relative to the HTI or AF phases) in the
presence of an electric field. So we propose the schematic
phase diagram shown in Figure 13. We have not specified
the scale of the horizontal axis in this schematic figure, but
at least for the LTI–AF transition in NVO we can estimate
how thin a film would have to be to produce a 5% shift in
the transition temperature for an applied voltage of 5 V. The
analog of the Clausius–Clapeyron equation for the LTI–AF
phase boundary in the T –E plane is

dT

dE
= −V (PLTI − PAF)

(SLTI − SAF)
(86)

Now take V to be the volume per Ni ion. The volume
of the conventional unit cell is v = abc, so V = abc/12,
because there are 12 Ni’s per conventional unit cell. a = 5.9,
b = 11.4, and c = 8.2, all in 10−10 m. For one Ni ion, the
total entropy change from zero to infinite temperature is
k ln 3. Guided by specific heat measurements (Lawes et al.,
2004) we set

(S+ − S−) = 0.01k ln 3 (87)
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Figure 13. Schematic phase diagram for a system like NVO in the
T –E plane. (We do not give the scale of the E axis.)

and take P = 5 × 10−4 C m−2 as a typical value. Then we
find

dT

dE
= −[(540 × 10−30 m3/12)](5 × 10−4 C m−2)/

[1.4 × 10−25 JK−1] = 1.5 × 10−7 Km V−1 (88)

To see roughly what this means, set dT = 0.05 Tc = 0.2 K
and dE = 5V/t , where t is the thickness of the sample. This
gives 0.2t × 10−8, or t ≈ 1 µ.

Finally, we emphasize that it would be desirable to
determine the magnetic structure of TMO for high magnetic
fields along the a or b direction to test whether the magnetic
structure proposed below equation (63) is realized.

8.4 Theoretical outlook

It is clear that the next step for theorists is to construct a fully
microscopic theory to explain the phenomenological trilin-
ear interaction highlighted in this review. Here, we indicated
how the dependence of the exchange interaction on ionic
displacements gives rise to the symmetries expected from
Landau theory. What is clearly missing is a microscopic cal-
culation of the exchange constants. This sort of calculation
as a function of bond angles has been pursued for Cu–O–Cu
bonds (Tornow, Entin-Wohlman and Aharony, 1999). How-
ever, what is needed here is the more complicated calculation
for Ni–O–Ni bonds and furthermore, it would seem that this
is going to require some sort of calculation based on the
local density approximation to determine the dependence of
the exchange tensors on ionic displacements. Calculations of
this type are being carried out.
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9 RECENT DEVELOPMENTS

Subsequent to preparation of this review there have been
several important studies of optical and dynamical properties
of multiferroic systems. We give a very brief overview of
work in these two areas.

We first consider the optical properties of phonon modes.
We remind the reader of the crucial fact that for systems
with inversion symmetry the modes at zero wave vector can
be classified as being either even or odd under inversion
symmetry. Only odd modes can be detected by absorption of
electromagnetic radiation and only even modes contribute to
Raman scattering (in which an outgoing photon is observed
with a small shift in energy from the incoming photon
due to creation or destruction of an elementary excitation
of the system). Of course, when the system develops a
spontaneous polarization, this selection rule is broken in
a way that one can analyze by asking what ferroelectric
subgroups are contained in the original centrosymmetric
space group. Here, we give a simple approach to elucidate
the mechanisms involved in breaking inversion symmetry.
For this purpose, we construct an effective linear coupling
between even and odd modes which leads to their mixing and
concomitant breakdown of the even–odd selection rule due
to the presence of a spontaneous polarization. We consider
the expansion in terms of displacements relative to the
inversion symmetric structure. In that expansion inversion
symmetry does not permit the existence of a linear even–odd
phonon coupling of the form

V =
∑
m,n

cnmQodd,nQeven,m (89)

where Qodd,n is the amplitude of the nth odd phonon mode at
zero wave vector and Qeven,m is that of the mth even phonon
mode at zero wave vector. So we consider the anharmonic
perturbation V3 due to the interaction of three phonons:

V3 =
∑

k1,k2k3

∑
r,s,t

crstQr(k1)Qs(k2)Qt(k3)

×�(k1 + k2 + k3) (90)

where Qn(k) is the amplitude of the nth phonon at wave
vector k and � expresses the conservation of wave vector
modulo a reciprocal lattice vector. We replace one of
these phonon amplitudes by its equilibrium value in the
ferroelectric phase. For concreteness we specialize to the
case of NVO where the condensed phonons which give rise
to the observed spontaneous polarization along the y axis are
Qyn(0), the nth y like mode at zero wave vector. Thus, the

coupling we seek is of the form

V ∼
∑

k

∑
r,s,t

crstQr(k)Qs(−k)〈Qyt (0)〉 (91)

where 〈Qyt (0)〉 is the amplitude of the static distortion in the
phonon coordinate Qyt (0). We then see that the coupling at
zero wave vector is of the form

V ∼ Py

∑
m,n

dmnQeven,m(0)Qodd,n(0) (92)

As a result of this coupling absorption active (odd) modes
that transform like x, y, or z will be mixed into Raman
active (even) modes that transform like xy, y2 (Ag), and
yz respectively. What this means is that Raman modes
of symmetry, say, xy, will now be absorption active for
radiation polarized with the electric field along x. Likewise
Raman active modes that transform like xy, yz, or Ag will
be mixed into absorption active modes that transform like
x, z, or y, respectively. (xz Raman modes will get mixed
into xyz modes that are silent modes.) As a result, modes
that are absorption active with radiation polarized so that
the electric field is along x will be weakly Raman active
with xy symmetry. For xz symmetry Raman scattering,
the polarization will not induce and new modes. This
argument explains which modes may now be observed in the
presence of the ferroelectric distortion. (Similar conclusions
for the optical selection rules for TbMn2O5 were obtained in
Aguilar et al., 2006.) The cross section for distortion-induced
absorption or Raman scattering is proportional to the square
of the wave function induced by the distortion. Thus the
induced cross sections will be proportional to the square of
the spontaneous polarization, as is observed (Aguilar et al.,
2006). In addition, as the ferroelectric phase is entered there
should also appear an anomalous temperature-dependent shift
in frequency of the modes proportional to the square of the
order parameter.

In addition to the mechanism of equation (90), one may
have similar effects from a spin-phonon interaction treated
by Fennie and Rabe (2006). This interaction is schematically
of the form

V =
∑

r, r′,αβ

∑
m,n

QmQnSα(r)Sβ(r′)QmQn

∂2Jα,β(r, r′)
∂Qm∂Qn

(93)

where the Q’s are phonon amplitudes and Jαβ(r, r′) is an
exchange tensor which couples the α component of spin at
site r to the β component of spin at site r′. When Sα(r)Sβ(r′)
is replaced by its thermal expectation value, a result of the
form of equation (92) is obtained, except that Py is replaced
by a spin–spin correlation function, which has the same
symmetry as Py .
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The spontaneous polarization also has a dramatic effect
on the absorption because of magnon creation or excitation.
This process, which, in the absence of a spontaneous
polarization, is only allowed because of magnetic dipole
excitation, now has a strongly enhanced cross section due
to admixing of the wave function which allows the highly
dominant electric dipole excitation process (Pimenov et al.,
2006a,b). Thus, even though the wave function of the
magnon only suffers a tiny perturbation and energy shift due
to magnetoelectric interaction, its absorption cross section is
significantly increased because of the possibility of electric
dipole excitation. A detailed calculation of this effect has
appeared (Katsura, Balatsky and Nagaosa, 2007). However,
a simple effective magnon-polarization coupling can be
intuited from the trilinear magnetoelectric interaction which
is schematically of the form

V ∼
∑
αβγ

cττ ′
αβγ Sατ (q)Sβτ ′(−q)Pγ (94)

In a magnetically ordered phase (even one without a sponta-
neous polarization), we have the effective interaction

V ∼
∑
αβγ

cττ ′
αβγ 〈Sατ (q)〉Sβτ ′(−q)Pγ (95)

This indicates an effective coupling that mixes the sponta-
neous polarization (at zero wave vector) into the spin exci-
tation (magnon) at wave vector q or −q. This would be
observed by a huge enhancement of the cross section for
absorption of electromagnetic radiation by magnon creation
caused by the possibility of an electric dipole process in
which radiation at zero wave vector couples to the low-
energy magnon at wave vector q. By the Kramers–Kronig
relation, this coupling also explains (Sushkov et al., 2007)
the anomalous enhancement which is seen in some multifer-
roics when spin ordering takes place.

ACKNOWLEDGMENTS

We have greatly profited from many discussions with
A. Aharony, C. Broholm, H. D. Drew, O. Entin-Wohlman,
M. Kenzelmann, T. Kimura, A. P. Ramirez, and T. Yildirim.
We acknowledge help from B. Adhikary in preparing the
figures. ABH thanks the US–Israel BSF for partial support.

REFERENCES

Aguilar, R.V., Sushkov, A.B., Park, S., et al. (2006). Infrared
phonon signatures of multiferrocitiy in TbMn2O5, Physical
Review B , 74, 184404 cond-mat 0605416.

Ascher, E., Rieder, H., Schmid, H. and Stoessel, H. (1966).
Some properties of ferromagnetoelectric nickel-iodine Boracite
Ni3B7O13I, Journal of Applied Physics, 37, 1404.

Astrov, D.N. (1960). The magnetoelectric effect in antiferromag-
nets, Journal of Experimental and Theoretical Physics (USSR),
38, 984 [Soviet Physics JETP, 11, 708 (1960)].

Bayrashev, A., Parker, A., Robbins, W. and Ziaie, B. (2003). Low
frequency wireless powering of microsystems using piezoelectric-
magnetostrictive laminate composites. ”Tranducers ’03,” 12th
International Conference on Solid-State Sensors, Acutators and
Microsystems. Digest of Technical Papers, Boston, MA pt. 2, vol.
2, p. 1707.

Bertaut, E.F. (1971). Magnetic structure analysis and group theory.
Journal de Physique, Colloque C1, 32, 462.

Binek, Ch. and Doudin, B. (2005). Magnetoelectronics with mag-
netoelectrics. Journal of Physics: Condensed Matter, 17, L39.

Birss, R. (1954). Symmetry and Magnetism, North Holland: Ams-
terdam.

Blasco, J., Ritter, C., Garcia, J., et al. (2000). Structural and
magnetic study of Tb1−xCaxMnO3 perovskites. Physical Review,
62, 5609.

Bud’ko, S.L., Islam, Z., Wiener, T.A., et al. (1999). Anisotropy and
metamagnetism in the RNi2Ge2 (R=Y, La-Nd, Sm-Lu) series.
Journal of Magnetism and Magnetic Materials, 205, 53.

Cowley, R.A. (1980). Structural phase-transitions. 1. Landau theory.
Advances in Physics, 29, 1.

Curie, P. (1894). Sur la symetrie dans les phenomenes physique,
symetrie d’un champ electrique et d’un champ magnetique.
Journal of Physics, 3(Ser. III), 393.

Domb, C. and Green, M.S. (Eds.) (1976). Phase Transitions and
Critical Phenomena, Academic Press: New York,, Vol 6.

Dzyaloshinskii, I.E. (1957). Thermodynamic theory of weak ferro-
magnetism in antiferromagnetic substances. Soviet Physics JETP,
5, 1259.

Dzyaloshinskii, I.E. (1959). On the magneto-electrical effect
in antiferoomagnets. Journal of Experimental and Theoretical
Physics (USSR), 37, 881 [Soviet Physics JETP, 10, 628 (1960)].

Ederer, C. and Spaldin, N. (2005). Influence of strain and oxy-
gen vacancies on the magnetoelectric properties of multiferroic
bismuth ferrite. Physical Review B, 71, 060401.

Eerenstein, W., Mathur, N.D. and Scott, J.F. (2006). Multiferroic
and magnetoelectric materials. Nature, 442, 759.

Fennie, C.J. and Rabe, K.M. (2006). Magnetically induced phonon
anisotropy in ZnCr2O4 from first principles. Physical Review
Letters, 96, 759–205505.

Fiebig, M. (2005). Revival of the magnetoelectric effect. Journal of
Physics D, 38, R123.

Fiebig, M., Lottermoser, Th., Frohlich, D., et al. (2002). Obsevation
of coupled magnetic and electric domains. Nature, 491, 818.

Fisher, M.E. and Selke, W. (1980a). Infinitely many commensurate
phases in a simple ising-model. Physical Review Letters, 44,
1502.

Fisher, M.E. and Selke, W. (1980b). Infinitely many commensurate
phases in a simple ising-model. Physical Review Letters, 45,
E148.



Ferroelectricity in incommensurate magnets 31

Folen, V.J., Rado, G.T. and Stalder, E.W. (1961). Anistropy of
magnetoelectric effect in Cr2O3. Physical Review Letters, 6, 607.

Fox, D.L. and Scott, J.F. (1977). Ferroelectrically induced ferro-
magnetism. Journal of Physics C: Solid State Physics, 10, L329.

Fox, D.L., Tilley, D.R. and Scott, J.F. (1980). Magnetoelectric
phenomena in BaMnF4 and BaMn0.99Co0.01F4. Physical Review
B, 21, 2926.

Frohlich, D., Leute, St., Pavlov, V.V. and Pisarev, R.V. (1998).
Nonlinear optical spectroscopy of the two-order-parameter com-
pound YMnO3. Physical Review Letters, 81, 3239..

Hahn, T. (Ed.) (1983). International Tables for Crystallography,
D. Riedel: Boston, Vol A.

Harris, A.B. (2006a). Ferroelectricity induced by incommensurate
magnetism. Journal of Applied Physics, 99, 08E303.

Harris, A.B. (2006b). Symmetry of multiferroics. Journal of Applied
Physics, 99, 08E303. cond-mat/0610241.

Harris, A.B. Aharony, A., Entin-Wohlman, O., et al. (2006) unpub-
lished.

Harris, A.B., Yildirim, T., Aharony, A. and Entin-Wohlman, O.
(2006). Towards a microscopic model of magnetoelectric inter-
actions in Ni3V2O8. Physical Review B, 73, 184433.

http://www.nasatech.com/Briefs/May00/NPO20523.html.

Hur, N., Park, S., Sharma, P.A., et al. (2004). Electric polariza-
tion reversal and memory in multiferroic material induced by
magnetic fields. Nature, 429, 392.

Kajimoto, R., Yoshizawa, H., Shintani, H., et al. (2004). Magnetic
structure of TbMnO3 by neutron diffraction. Physical Review B,
70, 012401; Physical Review B, 70, 219904(E) (2004).

Katsufuji, T. and Takagi, H. (2001). Coupling between magnetism
and dielectric properties in quantum paraelectric EuTiO3. Physi-
cal Review B, 64, 054415.

Katsura, H., Balatsky, A.V. and Nagaosa, N. (2007). Dynamical
magnetoelectric coupling in helical magnets. Physical Review
Letters, 98, 027203 cond-mat 0602547.

Katsura, H., Nagaosa, N. and Balatsky, A.V. (2005). Spin current
and magnetoelectric effect in noncollinear magnets. Physical
Review Letters, 95, 057205.

Kenzelmann, M., Broholm, C., Rogado, N., et al. (2006). Field
dependence of magnetic ordering in Kagomé-staircase compound
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APPENDICES

A QUARTIC TERMS

A.1 HTI phase of NVO

Since irrep #4 cannot induce any other irrep, the free energy
only involves order parameters of that irrep. (So we will omit
the superscript n = 4 which labels that irrep.) Then, correct
to quartic order we write the free energy associated with irrep
#4 as

H = H(2) + H(4) + . . . (A1)

where

H(2) =
∑
ττ ′

vτ,τ ′mτ(q)∗ mτ ′(q) (A2)

and

H(4) = (1/4)
∑

τ1,τ2,τ3,τ4

wτ1,τ2,τ3,τ4mτ1(q)∗

×mτ2(q)∗ mτ3(q)mτ4(q) (A3)

where mτ=1(q) = msx (q), mτ=2(q) = msy (q), mτ=3(q) =
msz(q), mτ=4(q) = mcy (q), and mτ=5(q) = mcz , and the spin
components at all the sites in the unit cell are given in
Table 4 in terms of these variables. Hermiticity implies that
vτ,τ ′ = v∗

τ ′,τ and

wτ1,τ2,τ3,τ4 = w∗
τ3,τ4,τ1,τ2

(A4)

and w can be taken to be symmetric under interchange of τ 1

and τ 2 and of τ 3 and τ 4. Since H(4) must be invariant under

inversion we have that

H(4) = 1

4

∑
τ1,τ2,τ3,τ4

wτ1,τ2,τ3,τ4

[
Imτ1(q)∗

] [
Imτ2(q)∗

]
× [

Imτ3(q)
] [
Imτ4(q)

]
= 1

4

∑
τ1,τ2,τ3,τ4

wτ1,τ2,τ3,τ4mτ1(q)mτ2(q)

×mτ3(q)∗ mτ4(q)∗ (A5)

For this to reproduce H(4)we must have that

wτ1,τ2,τ3,τ4 = wτ3,τ4,τ1,τ2 (A6)

In conjunction with equation (A4), this indicates that all the
matrix elements of w are real.

Now we transform to normal modes:

mτ(q) =
∑

ρ

rτ ,ρξρeiφρ (A7)

ξρ′ =
∑
τ ′

rτ ′ρ′mτ ′(q)e
−iφρ′ ≡ ξρ′e−iφρ′ (A8)

where ρ = 0, 1, 2, 3, 4 labels the normal mode, the r’s are
real, and the critical mode (ρ0) has an amplitude ξ 0 which
heretofore we called σ HTI. The quartic Hamiltonian is

H4 = 1

4

∑
τ1,τ2,τ3,τ4

∑
ρ1,ρ2,ρ3,ρ4

wτ1,τ2,τ3,τ4rτ1,ρ1rτ2,ρ2rτ3,ρ3

×rτ4,ρ4ξρ1
ξρ2

ξρ3
ξρ4

e
i
(
φρ3

+φρ4
−φρ1

−φρ2

)
(A9)



Ferroelectricity in incommensurate magnets 33

This quartic term will involve contributions proportional to
ξ

p

0 ≡ σ
p
HTI, where p ranges from zero to four. If we were to

omit the quartic terms with p = 3, then the minimum of the
trial free energy would be realized for σHTI 	= 0, but with the
other ξρ’s being zero. Therefore, the most important term to
consider is the one cubic in σHTI, which is

δH4 = 1

2

∑
τ1,τ2,τ3,τ4

3∑
ρ=1

wτ1,τ2,τ3,τ4rτ1,0rτ2,0rτ3,0rτ4,ρ

× ξρσ 3
HTIe

i(φρ−φHTI) + c. c.

=
3∑

ρ=1

Aρξρσ 3
HTI cos[φρ − φHTI] (A10)

where Aρ is real. The quadratic terms for the noncritical
variables can be written as

δH2 = 1

2

3∑
ρ=1

χ−1
ρ ξ∗

ρ ξρ = 1

2

3∑
ρ=1

χ−1
ρ ξ 2

ρ (A11)

where χρ is the susceptibility of the ρth mode. Then, after
minimization with respect to the noncritical variables ξρ for
ρ > 0, we see that cos[φρ − φHTI] = ±1 (so that σLTI and
σLTI are in phase) and

ξρ = ±χρAρσ 3
HTI (A12)

Thus the effect of the quartic terms is to induce nonzero
values for the noncritical normal modes and thereby slightly
change the components of the critical eigenvector, but the
quartic terms do not change the fact that all the order
parameters mτ belong to irrep #4 and that they all have the
same relative phase.

A.2 LTI phase of NVO

Now we consider the LTI phase, where we have two irreps
simultaneously present. There are various types of quartic
terms. First, consider those quartic terms which only involve
a single irrep. We can apply the analysis of the HTI phase,
to state that such terms do not modify the conclusion that all
the symmetry adapted coordinates of irrep #4 have the same
phase, φ4, and all the symmetry adapted coordinates of irrep
#1 have the same phase φ1.

Next consider the more general quartic terms which
involve both irreps. Terms of the type [m(4)]∗ [m(1)]∗ m(4)m(1)

are independent of the phases and therefore after minimiza-
tion of the trial free energy these terms do not modify the
phases. There are no terms that involve three order parame-
ters of one irrep and one order parameter of the other irrep.

So the only terms that might affect the phases are terms of
the form [m(4)]∗ [m(4)]∗ m(1)m(1) and its complex conjugate.
So, we consider quartic terms of the form

F4 =
∑

τ1τ2τ3τ4

w(4)(4)(1)(1)
τ1τ2τ3τ4

m(4)
τ1

(q)∗ m(4)
τ2

(q)∗

× m(1)
τ3

(q)m(1)
τ4

(q) + c. c. (A13)

Hermiticity requires that w(4)(4)(1)(1)
τ1τ2τ3τ4

= [w(1)(1)(4)(4)
τ3τ4τ1τ1

]∗ . Then
inversion symmetry indicates that the w coefficients are real.
Thus these quartic terms give

F4 = A cos
[
2(φ4 − φ1)

] ∑
τ1τ2τ3τ4

∑
ρ1ρ2ρ3ρ4

r(4)
τ1ρ1

r(4)
τ2ρ2

r(1)
τ3ρ3

× r(1)
τ4ρ4

ξ (4)
ρ1

ξ (4)
ρ2

ξ (1)
ρ3

ξ (1)
ρ4

(A14)

where the r’s are the real-valued transformation coefficients
determined in quadratic order. All the quantities in F4 are
real. So F4 is minimized by either setting cos[2(φ4 − φ1)] =
±1. An explicit calculation for the actual experimentally
determined values of the order parameters indicated that the
correct choice of sign is the negative sign, and therefore
that the two irreps are out of phase with one another. This
conclusion agrees with the intuitive argument based on the
idea that quartic terms tend to enforce the fixed spin length
constraint. When the coordinates of one irrep are maximal,
then those of the other irrep should be minimal. Thus, we
conclude that | sin(φHTI − φLTI)| = 1 in equation (61).

B DO TWO IRREPS INDUCE A THIRD
ONE?

When two irreps, 	x(q) and 	y(q) are simultaneously
present (as happens in the LTI phase), one might ask
whether their combination could then induce a third rep-
resentation, 	a(q), all of which are assumed to be associ-
ated with the selected wave vector q. Since 	y(q)	y(−q)

is unity, it is equivalent to ask whether for some k,
products like 	x(q)k−1 ⊗ 	y(−q)k ⊗ 	a(q) or 	y(q)k−1 ⊗
	x(−q)k ⊗ 	a(q) transform like unity. (The form of this
product is dictated by wave vector conservation. In this con-
nection, we neglect the possible effects of Umklapp terms.) If
one of these products satisfies this condition, then the exist-
ing order parameters can give rise to a linear field acting on
	a(q), thereby inducing a nonzero value for this representa-
tion. By explicit enumeration of the various cases, one can
verify that the condition to induce a third irrep cannot be
satisfied. If, hypothetically, there existed a third phase tran-
sition in which a third irrep condensed, then the presence of
these three irreps would induce the fourth irrep.
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1 INTRODUCTION

Intermetallic systems with strong electronic correlations
continue to be of interest since these systems can serve
as model systems to study electron interactions. The strong
electron interactions result in a largely enhanced effective
mass of the quasiparticles, hence the name heavy-fermion
(HF) systems. The electronic interactions can lead to a
variety of different ground states: paramagnetic, magnetically
ordered, or superconducting. Most ordered systems show
antiferromagnetic (AF) order, only a few compounds order

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

ferromagnetically. Especially the interplay between magnetic
order and superconductivity (SC) attracts special interest.

Research in the two decades after first observations in
CeAl3 in 1975 (Andres, Graebner and Ott, 1975) and fol-
lowing the discovery of HF SC in CeCu2Si2 in 1979
(Steglich et al., 1979), by which it was verified that the
low-temperature anomalies found in CeAl2 are indeed due to
charge carriers with very large effective mass (m ≈ 1000me

with me being the free electron mass, ‘heavy fermions’), was
driven by the discovery of new systems and the investiga-
tion of their properties. In contrast, during the last decade
the research focused mainly on two topics: (i) the interplay
between magnetic order and SC, and (ii) the behavior at mag-
netic instabilities at T = 0, that is, at a so-called quantum
phase transition (QPT). Interplay between SC and magnetic
order is an important issue since in classical superconductors
magnetic impurities suppress SC while in HF superconduc-
tors the magnetic f electrons are essential and are involved
in the superconducting pairing mechanism and form Cooper
pairs. In contrast to phonon-mediated SC there seems to be
growing evidence that in HF superconductors spin fluctua-
tions play the role as superconducting glue. HF superconduc-
tors usually do not show an isotropic superconducting energy
gap, but have unusual order parameters with an anisotropic
gap and line or point nodes where the gap vanishes. Coex-
istence and/or competition of both phenomena, magnetism
and SC, can also have important implications for the order
parameters which might have to be compatible with each
other. The appearance of SC is closely related to QPTs. At a
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QPT a magnetically ordered phase vanishes as a function of
an external parameter, the ordering temperature is suppressed
to TN/c = 0. In the case of a continuous phase transition tuned
to occur at T = 0, this T = 0 QPT is then called a quantum
critical point (QCP). In the vicinity of such a magnetic insta-
bility unusual low-temperature behavior in thermodynamic
and transport properties is observed, called non-Fermi-liquid
behavior. Sometimes these systems become superconducting
close to the QPTs. Since the transition from a nonmagnetic
to a magnetically ordered state occurs at T = 0, quantum
rather than thermal fluctuations become critical at the QPT.
It is this nature of these quantum fluctuations that attracts
experimentalists as well as theorists.

We focus our review on only a few typical model systems.
They are prominent examples for the interplay between SC
and magnetic order or for systems close to a QCP. We will
present thermodynamic and transport properties and show
in addition microscopic measurements like nuclear mag-
netic/quadrupole resonance, muon spin rotation or neutron
scattering.

General reviews about the experimental situation in
HF systems can be found in (Grewe and Steglich, 1991;
Kuramoto and Kitaoka, 2000; Stewart, 2001) while an
overview of theoretical concepts, especially on the interplay
between magnetism and SC is given in (Thalmeier et al.,
2005).

This overview is organized as follows. We first introduce
the basic concept of QPTs and QCPs and present a sim-
ple microscopic model to describe HF systems (Section 2).
We will then move on to the archetypal system CeCu2Si2 in
Section 3. A relatively new class of materials is derived from
the classical CeIn3, the Ce115 systems, being close to quan-
tum criticality and exhibiting a rich variety of magnetically
ordered phases and SC. They can be described within a con-
ventional picture of QCPs. Then theoretical aspects about
different behavior at QPTs are presented. While systems
showing a conventional behavior at a QCP sometimes exhibit
SC, unconventional behavior seems to exclude the appear-
ance of SC. We restrict ourselves to one important member
with unconventional behavior which will be presented in
Section 4: YbRh2Si2. This compound was only discovered a
few years ago in contrast to the system CeCu6−xAux , which
has been known for roughly two decades. We end with a
short summary and outlook (Section 5).

2 QUANTUM PHASE TRANSITIONS

Many strongly correlated electron (HF) systems, usually
intermetallic rare-earth compounds containing mainly cerium
(Ce) or ytterbium (Yb), can be tuned continuously from
a magnetically ordered to a nonmagnetic ground state by

means of an external control parameter such as doping x,
hydrostatic pressure p, or magnetic field B. This offers the
possibility to induce a T = 0 phase transition, a so-called
QPT, separating a magnetically ordered state from a non-
magnetic ground state at T = 0. Instead of being driven by
thermal fluctuations as for finite temperature phase transi-
tions, a magnetic–nonmagnetic transition as a function of
the control parameter at absolute zero is driven by quan-
tum fluctuations. If a continuous phase transition is tuned to
T = 0, we will call this special QPT in the following a QCP.
Around the critical value of the control parameter where the
magnetic order vanishes, that is, for TN/c = 0 at the QCP,
these systems no longer behave as Fermi liquids (FLs) like
usual metals but exhibit strong deviations from FL behavior
in thermodynamic and transport properties at low temper-
atures, called non-Fermi-liquid (NFL) behavior. This NFL
behavior is visible for example, in the specific heat showing
a specific heat coefficient γ = C/T quite often diverging as
the logarithm of the temperature, γ = C/T ∝ − ln T , or an
electrical resistivity varying with temperature as �ρ ∝ T n,
n < 2. These T dependences are in marked contrast to the
predictions for a Landau–Fermi liquid (LFL) with γ = const
or �ρ = T 2. The general phase diagram of systems close to a
QCP is displayed in Figure 1. Some compounds even become
superconducting in the vicinity of the QCP with indications
for unconventional SC.

However, the concept of QCPs is not restricted only to
magnetic and HF systems but is a more general concept for
systems where a second-order phase transition separates an
ordered phase from a nonordered one and where the phase
transition can be tuned to Tc = 0. While for finite temperature
phase transitions the critical fluctuations are restricted to
a region just around the ordering temperature or a small
fraction in reduced temperature given by the energy scale
of the transition temperature, such an energy scale does not

NFL

FL

x, p, s, B, ...
Control parameter

Ordered
(AF, FM)

T
em

pe
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TN = 0
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Not ordered
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Figure 1. General phase diagram of magnetic systems close to a
quantum critical point (QCP) where TN → 0. At the QCP, unusual
temperature dependences in thermodynamic properties are observed
(NFL). Sometimes superconductivity (SC) occurs in the vicinity of
the QCP.
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exist at the QCP and the temperature itself is the scale for
spin excitations. These low-energy spin excitations becoming
critical at the QCP are discussed as the possible origin for the
NFL behavior. Here the nature and dimensionality of these
critical fluctuations play a crucial role. Their character may
also be responsible for the occurrence of SC in the vicinity
of a QCP in some of the systems.

A simple microscopic approach to understand the physics
at a QCP is the so-called Doniach model (Doniach, 1977),
which starts from the competition between the Kondo effect
and the Ruderman–Kittel–Kasuya–Yosida (RKKY) interac-
tion. Here the Kondo effect describes the exchange interac-
tion between a magnetic impurity and conduction electrons.
For an AF coupling with coupling constant J the impurity
spin is completely screened by conduction electrons at low
temperatures, resulting in the formation of a nonmagnetic
Kondo-singlet ground state. This Kondo singlet is accompa-
nied by an energy gain of kBTK ∝ e−1/JN(EF) with TK the
Kondo temperature. In HF systems however, independent
magnetic impurity spins are no longer present, but they form
a periodic array of f electrons (Kondo lattice). This slightly
modifies the effective TK. On the other hand, the f electrons
can interact with each other through the RKKY interaction.
This interaction is mediated via the conduction electrons and
favors a magnetically ordered ground state. As for the Kondo
effect, the coupling constant between local spin and conduc-
tion electrons is important. However, it enters into the energy
gain of the system in a different way from that for the Kondo
effect. For the RKKY interaction the energy is then lowered
by kBTRKKY ∝ J 2N(EF). The ground state in HF systems is
now determined by the competition between Kondo effect
and RKKY interaction. If the Kondo interaction dominates,
the system orders magnetically. In the case of a stronger
Kondo effect, a nonmagnetic ground state is formed and usu-
ally FL behavior is observed. Since both interactions depend
on the coupling constant J between the local moments and
the conduction electrons and J can be changed by hydrostatic
pressure, magnetic field, or chemical substitution, the ground
state in these systems can be tuned from magnetically ordered
to a nonmagnetic ground state. At the QCP where both inter-
actions cancel each other, interactions that are usually weaker
can become dominant and for example, SC can occur.

3 CONVENTIONAL QUANTUM
CRITICALITY

3.1 CeCu2Si2

CeCu2Si2 is one of the prototypical HF compounds exhibit-
ing antiferromagnetism and SC at low temperatures. Both
phenomena are observed below 1 K and the interplay can be

adjusted sensitively by very small changes in sample com-
position or by applying hydrostatic pressure. Especially this
interplay between both ground states and the vicinity of the
compound to a QCP at the disappearance of the AF order
attract both experimentalists and theorists.

Although the superconducting properties of CeCu2Si2
(Tc ≈ 600 mK, Bc2 ≈ 1 T) were already discovered more
than 25 years ago (Steglich et al., 1979), the nature of
the HF SC still remains unclear. The compound forms
only in a very narrow range of the ternary phase diagram
Ce:Cu:Si around the 1:2:2 composition (Steglich et al.,
1996) and crystallizes in the tetragonal ThCr2Si2 structure
(space group I4/mmm) with lattice constants a = 4.1 Å
and c = 9.9 Å. However, the ground state depends very
delicately on the actual composition. Thus, Cu-rich samples
exhibit only SC (S phase) and Si-rich ones only show
magnetic order (A phase), while in stoichiometric samples
(A/S-type) a complex interaction between SC and magnetic
order occurs (Steglich, Gegenwart and Geibel, 2001). The
origin of the AF order was unraveled only very recently
(Stockert et al., 2004). First indications of magnetic order
in CeCu2Si2 were already given in the late 1980s by muon
spin rotation (µSR) and nuclear magnetic resonance (NMR)
measurements (Nakamura, Kitaoka, Yamada and Asayama,
1988; Uemura et al., 1989). Both techniques found order
with static or slowly fluctuating moments of the order
of 0.1µB. Successive neutron-scattering studies failed in
detecting any magnetic intensity. Therefore this unusual
ordered state, called A phase, was thoroughly investigated
by thermodynamic and transport properties in the 1990s.
The A phase forms below T ≈ 600−800 mK and upon
applying a magnetic field at low temperatures the magnetic
A phase is suppressed in a field of B ≈ 7−8 T giving
rise to another ordered phase, called B phase, which first
detected by ultrasound attenuation measurements (Bruls
et al., 1994). All these measurements revealed a complex
(B, T ) phase diagram (Bruls et al., 1994; Steglich et al.,
1996; Gegenwart et al., 1998) with different magnetically
ordered and superconducting phases depending on the actual
stoichiometry. Electrical resistivity measurements gave first
hints about the origin of the A phase in CeCu2Si2 (Gegenwart
et al., 1997, 1998). The relative increase of the resistivity
below the ordering temperature along a certain direction,
while along another direction a drop in the resistivity was
observed, suggested the opening of a gap. Hence, it was
speculated that the A phase was a spin-density wave.

For a better understanding of the ground-state properties
initial experiments have been performed under hydrostatic
pressure (Yuan et al., 2003; Holmes, Jaccard and Miyake,
2004; Lengyel et al., 2006) in addition to experiments on
the Ge-substituted system CeCu2(Si1−xGex)2 (Knebel et al.,
1996; Trovarelli et al., 1997; Deppe et al., 2004; Oeschler



4 Magnetic materials with outstanding properties

0.30

r
/r

30
0k

r
/r

30
0k

∆C
/T

 (
JK

−2
 m

ol
−1

)

0.25

(a) (b)T 2 (K2) T (K) T (K)T 3/2 (K3/2)

0.3

0.2

0.8

0.4

0 0.5

p = 0 p = 0.2 GPa

p = 0.55 GPa p = 0.67 GPa

1 0.5 1 4 0.5 1 40 1 2 3

0.35

A B

C D

CeCu2Si2
CeCu2Si2

TA B = 2 T

0
2

B (T)
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indicating the opening of a charge gap.

et al., 2005). They suggest that CeCu2Si2 is located quite
close to a QCP at the disappearance of the A phase. While Ge
doping expands the lattice and thus stabilizes the magnetic
A-phase order (Knebel et al., 1996; Trovarelli et al., 1997),
hydrostatic pressure acts in the opposite way, suppressing
the A phase (Yuan et al., 2003; Lengyel et al., 2006).
A-phase magnetism disappears continuously as a function
of pressure and, around the QCP, SC appears in CeCu2Si2.
When applying a magnetic field to kill SC, NFL behavior is
observed, for example, in the specific heat or the electrical
resistivity (Gegenwart et al., 1998). Thus, the specific heat
exhibits a temperature dependence C/T = γ 0 − α

√
T for

T → 0 and the electrical resistivity varies with temperature
as �ρ ∝ T 3/2 (cf. Figure 2). These results are compatible
with a three-dimensional spin-density-wave instability within
the Hertz–Millis theory.

However, SC is not only detected in a narrow range
around the critical pressure to suppress magnetism (up to
a few tenths of GPa), but extends to very high pressures
(more than 7 GPa) (cf. Figure 3). This behavior is similar to
the related compound CeCu2Ge2 (Jaccard, Wilhelm, Alami-
Yadri and Vargoz, 1999), but in marked contrast to other
Ce-based HF systems, like CePd2Si2 or CeIn3 (Mathur
et al., 1998), which can be tuned to a QCP by pressure.
In these systems, SC is detected only in a narrow pressure
range around the critical pressure, necessary to suppress
magnetic order. Pressure experiments on pure CeCu2Si2
(Holmes, Jaccard and Miyake, 2004) and lightly Ge-doped
CeCu2(Si1−xGex)2 (Yuan et al., 2003) to reduce the mean
free path and therefore weaken the SC, established in fact
two distinct superconducting regimes at low and at high
pressure. In pure CeCu2Si2 both superconducting regions
merge to form one superconducting phase extending from
low to high pressure. The superconducting high-pressure

regime seems to coincide with a weak first-order valence
transition of cerium in CeCu2Si2. Such a transition has
been reported in the related compound CeCu2Ge2 by X-ray
diffractometry (Onodera et al., 2002). For the moderately
Ge-doped CeCu2Si2 single crystals this was concluded from
recent resistivity data (Yuan et al., 2006). Since the critical
endpoint of this first-order valence-transition phase boundary
is very low (T < 20 K) for these alloys (Yuan et al., 2006),
some sufficiently soft valence fluctuations are likely to exist
under the high-pressure superconducting dome where they
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netic transition lines for all Ge concentrations coincide. (Reprinted
with permission Yuan et al., copyright 2003, AAAS.)
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may mediate Cooper-pair formation (Miyake, Narikiyo and
Onishi, 1999). Therefore, the two distinct superconducting
regimes in CeCu2Si2 may indeed arise owing to different
pairing mechanisms, related to fluctuations of the spin
density at low pressure and of the charge density at high
pressure.

The recent availability of large CeCu2Si2 single crys-
tals with well-defined physical properties allowed single
crystal neutron diffraction to be performed for the first
time (Stockert et al., 2004). Incommensurate AF order was
found in an A-type single crystal with a propagation vec-
tor Q = (0.215, 0.215, 0.530) at T = 50 mK as displayed in
Figure 4(a) (Stockert et al., 2004). The magnetic intensity
vanishes at TN = 800 mK in close accordance with thermo-
dynamic measurements and the ordered moment has been
estimated to be m0 ≈ 0.1 µB assuming a sinusoidal modula-
tion of the magnetic moments lying in the basal plane.

The incommensurate magnetic order is determined by
nesting properties of Fermi surface as suggested by renor-
malized band structure calculation (Zwicknagl and Pulst,
1993; Stockert et al., 2004). The Fermi surface of the
heavy quasiparticles (m∗ ≈ 500 m0) has been calculated
with the renormalized band method (Zwicknagl, 1993)
and indicates nesting for the incommensurate wave vec-
tor q ≈ (0.21, 0.21, 0.55) (Stockert et al., 2004). Further
hints are given by the direct calculation of the wave vec-
tor–dependent static susceptibility χ(q). The maximum of
χ(q) coincides with the propagation vector observed in the
neutron experiments as shown in Figure 4(b) (Stockert et al.,
2004). Therefore at low temperatures the renormalized Fermi
surface is indeed unstable with respect to the formation
of a spin-density wave. This observation of a low-moment
spin-density wave explains why the pronounced NFL behav-
ior in normal-state CeCu2Si2 satisfactorily agrees with the
predictions of the Hertz–Millis–Moriya theory for three-
dimensional critical AF spin fluctuations.

With the knowledge of the A-phase magnetism, A/S-type
single crystals have been investigated. These crystals are
located closer to the QCP as the Néel temperature is already
reduced to TN ≈ 700 mK. In elastic neutron-scattering exper-
iments (Stockert et al., 2005; Thalmeier et al., 2005) mag-
netic intensity has been detected below TN at the same posi-
tions as for pure A-type crystals showing that the incommen-
surate magnetic order is quite unaffected by slight changes
in the stoichiometry. Surprisingly, the magnetic intensity
vanishes inside the superconducting state well below Tc ≈
550 mK (cf. Figure 5). Therefore, SC and AF order do not
coexist on a microscopic scale. Instead, SC expels magnetism
at low temperatures. These findings are confirmed by a µSR
measurements on the same A/S-type single crystal (Stock-
ert et al., 2006). The new results are in line with previous
µSR and nuclear quadrupole resonance (NQR) experiments
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permission Thalmeier et al., copyright 2005, Springer Verlag,
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6 Magnetic materials with outstanding properties

(Feyerherm et al., 1997; Ishida et al., 1999), which were
restricted at that time to polycrystalline samples, but also
found phase separation between AF and superconducting
phases.

Current studies on CeCu2Si2 focus on the nature of the
superconducting pairing mechanism aiming to detect the
charge and/or spin excitation gap and the symmetry of
the order parameter in the superconducting state.

3.2 CeTIn5 (T = Co, Rh, Ir)

The discovery of SC in the new class of HF compounds
with the general formula CenTmIn3n+2m (T = Co, Ir, Rh)
extended the number of unusual HF systems showing an
intensive interplay of magnetism and SC.

This family of materials is composed of alternating n-fold
layers of CeIn3 and m-fold layers of TIn2 crystallizing in the
tetragonal HoCoGa5 structure-type (space group P 4/mmm)
(Grin, Yarmolyuk and Gladyshevskii, 1979). The parent com-
pound CeIn3 (n = ∞), orders in a commensurate AF struc-
ture below TN = 10 K. Magnetism is suppressed to TN = 0 K
at a critical pressure of pc ≈ 2.5 GPa, and right in the vicin-
ity of pc SC is developing below Tc = 200 mK (Mathur
et al., 1998). At the critical pressure the low-temperature
normal-state resistivity can be described by a power law
ρ = ρ0 + A′T ε, where ρ0 is the residual resistivity and the
exponent ε ≈ 1.6 is indicative of NFL behavior (Mathur
et al., 1998; Knebel et al., 2001). The single-layered descen-
dants consisting of CeIn3 layers separated by TIn2 exhibit
a variety of fascinating physical properties caused by the
intimate interrelationship of magnetism, SC, and dimen-
sionality. CeCoIn5 and CeIrIn5 are superconducting below
Tc = 2.3 K (Petrovic et al., 2001) and Tc = 0.4 K (Petro-
vic et al., 2001), respectively. CeCoIn5 exhibits the high-
est Tc among the Ce-based HF superconductors at ambient
pressure. CeRhIn5 orders antiferromagnetically below TN =
3.8 K (Hegger et al., 2000) at atmospheric pressure, and SC
develops under hydrostatic pressure (p > 0.9 GPa) (Heg-
ger et al., 2000; Llobet et al., 2004) with a maximum Tc =
2.12 K at 2.1 GPa, similar to the parent compound CeIn3, but
with a maximum Tc being one order of magnitude higher.

We want to start our discussion with the magnetic prop-
erties of CeRhIn5. Without the existence of this magnetic
representative of the CeTIn5 family the role of magnetism
in its nonmagnetic, superconducting compounds Co and
Ir homologs would be even more in disguise. CeRhIn5

orders in an incommensurate structure with a propagation
vector (0.5, 0.5, δ = 0.297) (Bao et al., 2000, 2001) corre-
sponding to a simple AF structure in the basal plane and
a tilting by δ = 107◦ between the moments in different
planes along the c axis. The magnetic moment (µ ≈ 0.8 µB)

(Llobet et al., 2004) (the originally published value (Bao
et al., 2000, 2001) was corrected in (Llobet et al., 2004))
is only 20% smaller than the full moment obtained from
crystal-electric-field (CEF) calculations (µ = 0.92 µB) not
taking into account the reduction of the measured moment by
the Kondo effect. The ordered moment in CeRhIn5 is much
larger than that, for example, in CeCu2Si2 (µ = 0.1 µB)

(Stockert et al., 2004).
CeRhIn5 has localized 4f electron states which are CEF

split into three Kramers doublets �1
7(0), �2

7(6.9 meV), and
�6(23.6 meV) (Christianson et al., 2004). Therefore, the
low-temperature properties are determined exclusively by
the ground-state doublet. De Haas–van Alphen (dHvA)
studies and local density approximation (LDA) calculations
have been carried out showing that CeRhIn5 has indeed,
as expected for localized 4f electrons, a Fermi surface
similar to that of the reference compound LaRhIn5 (Shishido
et al., 2002; Hall et al., 2001a). On the other hand, the
low-temperature Fermi surface in CeCoIn5 (Hall et al.,
2001b; Shishido et al., 2002) and CeIrIn5 (Haga et al.,
2001; Shishido et al., 2002) is best described by including
the 4f electrons and considering them as itinerant. The
layered structure produces an anisotropic electronic structure
reflected in the Fermi surface by almost cylindrical shapes.
Though these compounds should not be considered as purely
two dimensional, their structural (electronic) anisotropy has
an essential influence on their ground-state properties.

Applying pressure in CeRhIn5 first leads to a slight
increase of the Néel temperature TN to a maximum value
of TN ≈ 3.9 K at 0.8 GPa, before the magnetic ground state
becomes less favorable and TN drops, typical for a Ce-based
magnetically ordered HF compound near its magnetic insta-
bility. The staggered magnetic moment decreases little with
increasing pressure (Llobet et al., 2004; Majumdar et al.,
2002). Llobet et al. (2004) find only a slight enhancement
of the discommensuration. No magnetic order is evident
at p = 1.85 GPa and T = 1.8 K in their data anymore. In
contrast, a marked change of the wave vector at 1 GPa is
reported by Majumdar et al. (2002). Zero resistance and
the onset of a diamagnetic response in the susceptibility
indicating the development of SC is already observed deep
inside the AF phase for p >∼ 0.9 (Nicklas et al., 2004), while
clear evidence for bulk SC from specific heat experiments
inside the AF phase is reported only close to the pressure
where TN meets Tc (Knebel et al., 2004). No trace of the
Néel transition appears inside the superconducting phase at
zero magnetic field for TN < Tc suggesting that AF order
disappears abruptly as a function of pressure. It is remark-
able that at about pc ≈ 2.3 GPa a drastic change of the 4f
electron nature from localized to itinerant takes place as
evidenced by the disappearance of the dHvA frequencies
for the main branches together with those characteristic for
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the antiferromagnetism and the appearance of new branches
(p > 2.3 GPa) (Shishido, Settai, Harima and Onuki, 2005).
These new branches are qualitatively the same as those in
CeCoIn5, consistent with LDA calculation taking the 4f elec-
trons as part of the Fermi surface (Shishido et al., 2002).
A magnetic field B > 2 T induces a magnetic transition
inside the SC state which evolves smoothly from TN(p) with
increasing pressure (Park et al., 2006; Knebel et al., 2006).
The temperature, where the line of field-induced transition
crosses the superconducting upper critical field in the H−T

phase diagram [TM(H = Hc2)], extrapolates to zero at pc ≈
2.25 GPa at about the pressure where the size of the Fermi
surface changes (Shishido, Settai, Harima and Onuki, 2005).
This might be taken as evidence for a locally critical QCP (Si,
Rabello, Ingersent and Smith, 2001). However, dHvA exper-
iments are carried out at a magnetic field of the order of 10 T.
At atmospheric pressure, the Kondo temperature is of the
order of the Néel temperature (TN = 3.8 K) corresponding to
a Kondo field of about BK ∼ 1 T (Hegger et al., 2000; Curro
et al., 2003). BK is usually increasing with pressure in Ce-
based HF systems and, therefore, it is conceivable that BK(p)

will reach the measuring field of the dHvA experiments
close to pc. Here, it is worth noting that in HF compounds
commonly both local Kondo and nonlocal magnetic (AF
or ferromagnetic (FM)) correlations become frozen below
T ≈ TK(B = 0) and B ≈ BK(T = 0), respectively (Grewe
and Steglich, 1991). Thus for instance, in CeRu2Si2 (AF
correlations) the Kondo temperature and the metamagnetic
field show the same pressure-dependent increment (Mignot
et al., 1988). A similar observation was recently made for
YbRh2Si2 with dominating FM correlations in wide parts
of the B−T phase diagram (cf. Section 4.1) (Tokiwa et al.,
2005). It is therefore possible that the measuring field of
the dHvA experiments performed on CeRhIn5 under p ≈ pc

has the meaning of a metamagnetic field. This would in a
natural way explain the observed change of the Fermi sur-
face: for p < pc the measuring field would be greater than
BK explaining the local character of the 4f electrons, while
for p > pc, with further increasing BK the 4f electrons in
dHvA experiments would appear to be part of a larger Fermi
surface because of the Kondo screening. Alternatively, the
divergence of the cyclotron mass when approaching the crit-
ical pressure pc from either side (Shishido, Settai, Harima
and Onuki, 2005) may well be taken as evidence for uncon-
ventional quantum criticality (cf. Section 4).

Substituting Rh by the isoelectronic Co or Ir, CeRhIn5

slowly looses the AF phase (Pagliuso et al., 2002; Zapf
et al., 2001). As a consequence of replacing Rh by Co the
unit-cell volume shrinks and one, therefore, expects a sup-
pression of the AF order. For x >∼ 0.70 in CeRh1−xCoxIn5

no magnetic order is indeed present anymore (Zapf et al.,
2001). Already at a doping level of x >∼ 0.35, bulk SC occurs

coexisting with AF order, and persists up to stochiometric
CeCoIn5. Ir doping suppresses TN in CeRh1−xIrxIn5 at con-
centration x ≈0.65, and an extended range of microscopic
coexistence of SC and AF (0.35≤x ≤ 0.65) exists (Pagliuso
et al., 2002). The microscopic coexistence was confirmed by
susceptibility measurements conducted simultaneously with
NQR (Zheng et al., 2004) and µSR (Morris et al., 2003)
experiments. However, the SC phase does not represent an
ideal dome-shape as, for example, in CeIn3. In contrast to
Co substitution, the unit-cell volume increases slightly on Ir-
doping showing that volume is not the only relevant control
parameter. A cusplike minimum in Tc(x) appears at x = 0.9
in (Pagliuso et al., 2001; Pagliuso et al., 2002; Nicklas et al.,
2004). Under the application of hydrostatic pressure, this
minimum evolves in a region where SC is removed from
the x−T phase diagram leaving two distinct superconducting
phases, SC1 and SC2 (see Figure 6) (Nicklas et al., 2004).
Upon applying pressure, AF order is giving away for SC,
while the maximum of Tc is roughly tracking the critical
pressure pc on the Rh-rich side of the phase diagram. At
1.75 GPa, AF order has nearly completely disappeared from
the x−T phase diagram and the SC1 phase extends in the
whole range from CeRhIn5 up to x ≈ 0.75. This is taken as
a hint to spin-fluctuation-mediated SC, whereas the nature of
the SC2 phase in the immediate proximity to CeIrIn5 remains
unclear.
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CeIrIn5 seems to be far away from any magnetism. No
evidence for a magnetic phase transition appears in specific
heat, magnetization, or susceptibility data. µSR experiments
confirm the absence of any long-range magnetic order down
to T = 20 mK (Higemoto et al., 2002; Morris et al., 2003).
However, strong AF spin fluctuations play an important role,
and NQR studies are consistent with CeIrIn5 being in the
nearly AF region close to magnetic ordering (Zheng et al.,
2001; Kohori et al., 2001). In the normal state, T −1

1 does
not follow a Korringa law as expected from LFL theory,
pointing to the NFL character of CeIrIn5. Zheng et al. (2001)
explain the unusual temperature dependence of 1/T1T by
the existence of anisotropic AF spin fluctuations. Recent
NMR data show that hydrostatic pressure rapidly suppresses
the AF spin fluctuations but enhances the superconducting
transition temperature Tc (Kawasaki et al., 2005). At 2.1 GPa,
Tc = 0.8 K is twice the value at ambient pressure. It is
important to note that SC in CeIrIn5 is robust over a wide
pressure range where AF fluctuations are absent (Kawasaki
et al., 2005). These results are consistent with pressure
studies of the doping series CeRh1−xIrx In5 showing that the
SC phase on the Ir-rich side close to CeIrIn5 is disconnected
from a second SC phase coexisting with AF in a wide range
for higher Rh concentrations (Nicklas et al., 2004). Recently,
AF order has been reported in slightly Cd-doped CeIrIn5

(Pham et al., 2006), where In is partly replaced by Cd leading
to a lattice contraction. This puts up the question, what
provides the glue for the Cooper pairing in CeIrIn5 and the
role of AF spin fluctuations. In magnetic fields, LFL behavior
occurs between Tc and the crossover temperature TLFL

(Capan et al., 2004), suggesting that SC also at zero magnetic
field and at ambient pressure develops in the background
of a LFL state. With increasing field TLFL is suppressed
continuously and can be extrapolated to T = 0 at a critical
field of Bc ≈ 26 T. Close to this (Kim, Alwood, Kumar and
Stewart, 2002) extrapolate the existence of a metamagnetic
quantum critical endpoint (QCEP) inferred from (i) specific
heat measurements performed at B ≥ 30 T and T > 1.4 K
and (ii) from magnetization measurements which reveal
a metamagnetic transition around 42 T at 1.3 K (Takeuchi
et al., 2001). Detailed studies in the vicinity of this critical
field are still missing, and the detailed nature of the QCEP is
waiting to be unraveled. The relationship of this QCEP with
the substitution-controlled QCP in CeIr(In1−xCdx)5 and SC
in CeIrIn5 is still to be explored.

CeCoIn5 is the most extensively studied compound in this
series. As for CeIrIn5, no proof for any long-range mag-
netic order has yet been reported. The µSR relaxation rate
is temperature independent, clearly showing the absence of
magnetic order (Higemoto et al., 2002). The resistivity data
in the normal state exhibit a linear temperature dependence
up to T = 20 K (Petrovic et al., 2001). Also, the coefficient

of the electronic specific heat shows a logarithmic divergence
(Petrovic et al., 2001). The NFL behavior in both the resistiv-
ity and the specific heat extending to the lowest temperatures
in the normal-state point to the presence of strong AF fluc-
tuations in CeCoIn5 usually explained in a QCP scenario. In
addition, NMR and NQR experiments show the existence of
strong AF spin fluctuations (Kohori et al., 2001; Kawasaki
et al., 2003; Yashima et al., 2004). Substitution studies on
CeRh1−xCoxIn5 substantiate the closeness of magnetic order
in CeCoIn5. Similar conclusions can be drawn from the com-
parison of the pressure–temperature (p−T ) phase diagram
of CeRhIn5 (Hegger et al., 2000; Llobet et al., 2004; Nick-
las et al., 2004) and CeCoIn5 (Nicklas et al., 2001; Sidorov
et al., 2002): CeCoIn5 can be considered as under an effec-
tive pressure of peff ≈ 1.6 GPa compared to the AF CeRhIn5

(see Figure 7). This is further supported by a Cd-substitution
study where, as in CeIrIn5, In is partly replaced with Cd
imposing a small negative chemical pressure inducing AF
(Pham et al., 2006). Therefore, CeCoIn5 at atmospheric pres-
sure can be considered situated close to a QCP existing at a
small hypothetical negative pressure.

A detailed analysis of specific heat and resistivity data
obtained on CeCoIn5 in magnetic fields suggests the pres-
ence of a field-induced QCP in immediate proximity to the
upper critical field for SC [Bc2(T = 0)] (Bianchi et al., 2003;
Paglione et al., 2003; Ronning et al., 2005). The temperature
dependence of the normal-state specific heat and the resistiv-
ity taken to the lowest temperatures in fields B >∼ Bc2(T = 0)

exhibit NFL behavior for the magnetic-field orientations, par-
allel to the c axis (Bianchi et al., 2003; Paglione et al., 2003)
and within the basal plane (B ‖ ab) (Ronning et al., 2005).
With further increasing field, crossovers in C(T )/T from
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− ln T to constant behavior and in ρ(T ) from a linear to a
quadratic temperature dependence indicate the establishment
of a field-induced LFL state. An analysis of the data leads to
the conclusion that an AF QCP exists close to Bc2(T = 0) for
the field applied within the basal plane (Bianchi et al., 2003;
Paglione et al., 2003) as well as in the c direction (Ronning
et al., 2005). This holds true despite a factor of 2.4 differ-
ence between Bc2(T = 0) for B ‖ c and B ‖ ab. However,
the existence of AF ordering at B <∼ Bc2(T = 0) has yet to
be demonstrated. The normal-state thermal-expansion coef-
ficient α(T ) measured at B >∼ Bc2(T = 0) is actually inde-
pendent of temperature, 300 mK < T < 6 K (Donath et al.,
2007) (see Figure 8). These results as well as the logarith-
mic decrease of C(T )/T (Bianchi et al., 2003) and the linear
T dependence of the electrical resistivity (Petrovic et al.,
2001) are compatible with 2D quantum critical fluctuations
within the Hertz–Millis theory. Below T ∗ = 300 mK down
to 100 mK α(T ) follows a T 1/2 dependence (Donath et al.,
2007), predicted for 3D quantum critical fluctuations within
this itinerant theory.

In conclusion, the CeTIn5 compounds are located close
to QCPs, exhibit SC around the QCP, and can be
described within an itinerant spin-density-wave scenario by
the Hertz–Millis theory.

3.3 Theoretical concepts

The idea that tuning of a control parameter may change the
magnetic state of an insulator or metal at zero temperature
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is indeed a very old one. The classical Stoner–Wolfarth the-
ory of itinerant ferromagnetism (Stoner, 1938) identifies this
control parameter as x = IN(EF), where I is the exchange
integral of itinerant conduction electrons and N(EF) the
conduction-electron density of states (DOS). For x > xc = 1
a spontaneous FM moment and exchange splitting of con-
duction bands sets in. For x only marginally above the
FM QCP xc = 1 one therefore has only weak ferromag-
netism (WFM) and anomalous thermodynamic and transport
behavior due to paramagnon excitations (Berk and Schri-
effer, 1966; Doniach and Engelsberg, 1966) was observed.
The first theory to address such quantum critical phenomena
were Moriya’s self-consistent renormalization (SCR) the-
ory (Moriya and Kawabata, 1973a,b; Moriya, 1985) for the
WFM and the theory by Hertz (1976) on which much of
the later developments are based. An alternative scenario
describes lanthanide or actinide intermetallics with localized
f-electron states showing a singlet–singlet CEF splitting �

(e.g., Pr compounds) and effective RKKY exchange J (Q)

where a transition from the nonmagnetic singlet ground state
to an induced moment magnetic state with modulation vec-
tor Q may occur. This happens if the control parameter
x = α2J (Q)2/2� is larger than the critical xc = 1 (Jensen
and Mackintosh, 1991). The induced moment scenario is very
similar to the Bose–Einstein condensation (BEC) picture for
the field-induced AF transition below a critical field in some
quasi-one-dimensional spin chain compounds (Rüegg et al.,
2003).

In this section we focus exclusively on quantum critical
phenomena in HF compounds. First we discuss the basics
of an empirical scaling ansatz based on naive ideas of
universality and then discuss a phenomenological Gaussian
type spin-fluctuation model for the nearly AF FL. Finally we
briefly mention the implications of impurity effects.

The families of Ce-HF compounds discussed before show
that a magnetically ordered, SDW phase may evolve continu-
ously out of a disordered LFL phase by applying hydrostatic
pressure, by varying chemical pressure via doping, or by
varying an applied magnetic field. At zero temperature, pres-
sure (or field) may be considered as control parameter of a
QPT between LFL and SDW phases which meet at a QCP
at the critical pressure pc (or critical field Bc) where the
total energies of the two phases become equal (Continentino,
2001; Sachdev, 1999). The notion of a QPT implies that the
total energy is indeed dominated by the quantum fluctua-
tions of the order-parameter field, the effective phase-space
dimensionality is then deff = d + z rather than just the spatial
dimensionality d because at the QCP with T N = 0 quantum
fluctuations develop long-range correlations in both space
and time. Here z is the dynamic exponent which character-
izes the rescaling of energies of quantum fluctuations with
system size (τ ∝ ξz). On the other hand for a phase transition
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at finite TN > 0 the coherence of quantum fluctuations is
destroyed by thermal fluctuations for times longer than the
timescale τT = �/kBTN and hence classical phase transitions
are driven by thermal fluctuations of the order parameter
in real space with dimension d. As a consequence right
along the quantum critical line (r = 0) in Figure 9 anoma-
lous NFL temperature dependence of physical quantities like
χ(T ), C(T )/T , and ρ(T ) emerges. Its origin and theoretical
description has been the subject of much controversy. Here
we briefly outline the most important predictions of those
frequently applied models which treat QPT as classical ones
in higher dimensions, that is, scaling theory and theories of
critical spin fluctuations including disorder effects. Finally
concepts of so-called local criticality are mentioned.

3.3.1 Scaling theories for the quantum critical point

A Kondo impurity in a metallic host shows all the signa-
tures of a local LFL state (Hewson, 1993) at temperatures
T � T ∗, notably a scaling of the free-energy density with
T /T ∗. This idea has been successfully extended to the LFL
phase of HF and mixed valence compounds in a phenomeno-
logical scaling ansatz (Takke et al., 1981; Thalmeier and
Fulde, 1986) to explain observed relations between quan-
tities like specific heat, thermal expansion, magnetostriction,
and others. It is natural to apply these ideas to the vicinity of
the QCP also, where the characteristic energies T ∗(p) and
Tc(p) themselves depend on the distance r to the QCP which
then appears as a further scaling variable. The associated
correlation length, ξ , and timescales of quantum fluctuations,
τ , diverge on approaching the phase transition. Their critical
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Figure 9. Schematic phase diagram for Kondo compounds with a
QCP separating AF (left) and LFL (right) phases. Scaling of the
characteristic temperatures is indicated (Continentino, 2004b).

exponents are universal, depending only on dimension and
the degrees of freedom of the order parameter. Defining

r = X − Xc

Xc
, t = T − Tc

Tc
(X = p or H) (1)

where t , r measure the distance to the transition tempera-
ture Tc and critical control parameter Xc respectively. On
approaching the QCP (T = 0, r = 0) the correlation length,
fluctuation time, and free-energy scale as

ξ ∼ |r|−ν, τ ∼ |r|−νz, f ∼ |r|2−αf̃

(
T

T ∗ ,
H

H ∗

)
(2)

Here H ∗ has the meaning of ‘metamagnetic’ field scale,
for fields H � H ∗ the HF state is destroyed by breaking
the Kondo-singlet state. For QPT the hyperscaling relation,
which relates critical exponents to the effective dimension,
is given by

2 − α = νdeff, deff = d + z (3)

In the case of the Gaussian fixed point appropriate for
deff > 4 one has ν = 1

2 . In the free energy of equation (2),
which is a generalization of the one used in (Takke et al.,
1981; Thalmeier and Fulde, 1986), the characteristic temper-
ature, T ∗, and metamagnetic field, H ∗, have scaling relations

T ∗ ∼ |r|νz, H ∗ ∼ |r|φh (4)

In the magnetically ordered regime T ∗ has to be replaced
by the magnetic transition temperature which scales as
TN ∼ |r|ψ where ψ is the shift exponent. Below the upper
critical dimension deff = 4 one has ψ = νz, that is, TN(r)

and T ∗(r) scale symmetrically around the QCP (Figure 9),
however, for deff > 4 in general one has ψ �= νz. This is
known as breakdown of hyperscaling. Within a generalized
Landau–Ginzburg–Wilson approach this may be understood
as the effect of a dangerously irrelevant quartic interaction u

(equation (6)) which, although it scales to zero for deff > 4,
nevertheless changes the scaling behavior at finite T leading
to a modified shift exponent ψ = z/(deff − 2) for deff > 4.
The zero-temperature critical exponent α in equation (3)
satisfies the scaling relation α + 2β + γ = 2 while φh is
independent.

From the experimental view the most interesting aspect
is the temperature dependence of physical properties at the
QCP (r = 0) in the NFL regime. Very useful quantities are
specific heat C = (T /V )(∂S/∂T )p and thermal expansion
α = (1/V )(∂V/∂T )p (Küchler et al., 2003; Zhu, Garst,
Rosch and Si, 2003). At the QCP (r = 0) they scale with



Magnetism and quantum criticality in heavy-fermion compounds: interplay with superconductivity 11

0.8

0 1 2 3 4 5

1

1.2

1.4

1.6

1.8

α, B II a

CeNi2Ge2

B (T)
0
2
4
6
8

α 
/ T

 (
10

−6
 K

−2
)

T (K)

0.1 1 5
10

100

1000 vz = 1

T (K)

−Γ
cr

Figure 10. Thermal expansion showing the suppression of NFL
behavior as a function of the field. The inset shows that for B = 0,
the critical contribution to the Grüneisen ratio � of CeNi2Ge2
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temperature as

C(T ) ∼ T d/z, α(T ) ∼ T (d− 1
ν )/z and

� = α

C
∼ T − 1

νz (5)

This means that the temperature dependence of the criti-
cal ‘Grüneisen ratio’ �(r = 0) is controlled by the exponent
which directly determines the timescale of quantum fluctua-
tions (equation 2). Using this important relation a consistent
explanation of experiments in the NFL compound CeNi2Ge2

can indeed be given (Figure 10). Tables of the scaling behav-
ior of the quantities in equation (5) for various d, z have been
given in (Küchler et al., 2003).

The exponent νz at the same time determines the pressure
scaling (equation 4) of the characteristic temperature T ∗ on
the nonmagnetic side of the QCP. On the other hand the pres-
sure scaling exponent of the characteristic field H ∗ is an inde-
pendent quantity within the scaling ansatz. Experimentally
it has been investigated in detail for CeRu2Si2, which
has a metamagnetic field scale H ∗(p = 0) = 7.8 T (H ‖
c). It was found that empirically φh = 2 − α = νz is ful-
filled. According to the free energy in equation (2) this
implies with m = (∂f/∂H) that m(H ∗) = const indepen-
dent of pressure. This was indeed found experimentally

(Lacerda et al., 1989). The empirical relation 2 − α = νz

may be interpreted as hyperscaling with dimension d = 0
according to equation (3). The empirical validity of such
a relation points to a dimensional crossover as function
of pressure close to the QCP which is caused by the
different divergence of spatial and temporal correlations
(Continentino, 2004a).

3.3.2 Nearly antiferromagnetic Fermi liquid

The quantum critical behavior in the nearly AF FL has
been studied within two closely related approaches. Firstly
the SCR theory of WFM may be extended to the weakly
AF case often observed in HF compounds (Moriya and
Takimoto, 1995). It starts with a parameterized phenomeno-
logical ansatz for the dynamical conduction-electron sus-
ceptibility which is expanded around the AF wave vec-
tor Q. The moment size and spin-fluctuation spectrum
is then self-consistently determined via sum rule require-
ments as function of microscopic model parameters and
temperature. This approach has the advantage of keep-
ing the connection to the original microscopic degrees
of freedom and being also applicable away from the
QCP.

For understanding only the scaling behavior close to the
QCP (for r > 0, i.e., on the nonmagnetic side) one may
start from an even more phenomenological model based on a
Landau–Ginzburg–Wilson functional that contains only the
spatial and temporal fluctuations �(q, ω) of the incipient
magnetic order parameter treated within an renormalization
group (RNG) approach. At this stage the fermionic degrees of
freedom have already been integrated out and the frequency
dependence of the Gaussian (quadratic) term of the action
and the strength of the quartic interaction term of fluctua-
tions are determined. This elimination is possible only when
the Fermi surface has no nesting features for the Q-vector
of incipient magnetic order. In uranium-based HF systems
this is probably the case since Q is mostly that of com-
mensurate AF unrelated to nesting vectors. However for the
CeCu2(Si1−xGex)2 series the magnetism is clearly related
to nesting properties and the model described in the sub-
sequent text may not be applicable. It was first proposed by
Hertz (1976) for QPTs and extended later (Millis, 1993). The
effective action functional is given by

S[φ] =
∑
q,iωn

(r + q2 + |ωn|
�q

)|�q,iωn |2

+ u

∫ β

0
dτ

∫
ddr|�(r, τ )|4 (6)

with �q = �0q
z−2 (7)
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An essential ingredient of the theory is the assumption
of overdamped order-parameter fluctuations in the AF
case which means z = 2 as opposed to quasi-propagating
fluctuation modes in the FM case (z = 3) which are protected
by conservation laws. The dominant mechanism is Landau
damping of fluctuations via excitation of electron-hole pairs.
Solution of renormalization group equations for the preced-
ing model shows that the quartic interaction term scales with
u′/u = b4−(d+z) (b = L/L′). This means that for deff > 4 the
low-temperature behavior is determined by a Gaussian fixed
point with exponent ν = 1

2 leading to (H = 0) scaling rela-
tions for free energy, specific heat, and so on, as described
before within the scaling ansatz whose foundation becomes
now clear.

It was tacitly assumed in the preceding text that the
tuning to the QCP happens via application of hydrostatic
or chemical pressure, that is, without breaking spatial or
other symmetries. This raises the question what happens
when the QCP is reached via magnetic-field tuning (Fischer
and Rosch, 2004). Because the field introduces anisotropy
and breaks time reversal symmetry, a different nonuniversal
scaling behavior may result. It is caused by precession terms
present for nonzero field that modify the dynamics of the
order-parameter fluctuations and compete with the Landau
damping. The relative importance of the two effects has been
parameterized in (Fischer and Rosch, 2004) and the resulting
nonuniversal quantum critical scaling has been studied for
the thermodynamic coefficients. One interesting result of this
analysis is that at the QCP (H = Hc) the temperature scaling
of the uniform susceptibility is given by

1

T
[χ(T ) − χ(0)] ∼ ξ(T ) (8)

which would be a direct experimental method to extract the
(temperature) scaling exponent of the correlation length in
the quantum critical regime.

3.3.3 Impurity effects on quantum critical behavior

Resistivity measurements are a versatile method to inves-
tigate the vicinity of a QCP. Theoretically this poses the
inverse problem compared to thermodynamics. One has to
eliminate the order-parameter fluctuations and study their
effect on the quasiparticle scattering rate. At the same
time the ordinary impurity scattering and the interference
of both mechanisms has to be included. Naturally this
leads to nonuniversal behavior of ρ(T ) above the QCP and
a wide range of temperature exponents has indeed been
observed. Using a phenomenological ansatz for the spin-
fluctuation propagator, this problem may be treated with a
standard Boltzmann equation approach (Rosch, 1999; Rosch,

2000) where the total quasiparticle scattering probability is
given by

P (k, k′) = g2
i δ(εk − εk′)

+ 2g2
s

�
n(εk − εk′)Imχ(εk − εk′) (9)

where gi and gS denote the strength of scattering by
impurities or fluctuations respectively, their dimensionless
ratio is defined by x = πg2

i /2g2
S . Furthermore n(εk − εk′)

is the Bose function and εk the quasiparticle energies.
The ansatz for the order-parameter fluctuation spectrum is
defined by

χq(ω) � 1

1/(q0ξ)2 + (q ± Q)2/q2
0 − iω/�

;

1/(q0ξ)2 = r + c

(
T

�

) 3
2

(10)

where the parameters q0, � denote characteristic momentum
and energy scales of fluctuations which are related via the
second equation in the preceding text. The results for the
scaled resistivity as a function of the reduced temperature
T /�x are shown in Figure 11 for various ratios of the two
scattering strengths. In the pure limit x � 1 the scattering is
dominated by exchange of spin fluctuations with momentum
Q, this affects only quasiparticles in the ‘hot lines’ of
the Fermi surface (FS) shown in Figure 11(inset). In the
dirty limit x � 1 where impurity scattering dominates,
all quasiparticles are affected equally. For x � 1 the two
mechanisms interfere. As a consequence, the exponent α

of the resistivity �ρ(T ) ∼ T α is nonuniversal and depends
on x. As seen in Figure 11 it varies between α ∼ 1 in the
pure limit and α ∼ 3/2 in the dirty limit. This is indeed
the range of observed exponents for Ce-compounds near the
QCP.

In the scenario of the previous sections the scattering by
spin fluctuations is localized in k space, only quasiparticles
on hot lines are affected. This is due to the construction of
the model where it is assumed that the wave vector Q of
critical fluctuations is in no way related to the FS geometry.
Therefore only ‘hot lines’ but no finite ‘nested’ areas in
k-space are involved in the scattering. For this reason the
QCP anomalies of specific heat and resistivity in the model
discussed in the preceding text are not strong enough to
explain experimental results in compounds like YbRh2Si2
and CeCu6−xAux . An alternative approach of ‘local quantum
criticality’ where all electrons on the FS develop singular
scattering by construction has been proposed in (Si, Rabello,
Ingersent and Smith, 2001).
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4 UNCONVENTIONAL QUANTUM
CRITICALITY IN HEAVY-FERMION
SYSTEMS

Quantum criticality in f-electron-based heavy fermion sys-
tems arises from the competition of the on-site Kondo
effect with intersite RKKY exchange interaction as already
stated earlier. Whereas the Kondo interaction leads to a
screening of the local moments resulting in a paramag-
netic ground state with itinerant f electrons, the indirect
exchange coupling (RKKY interaction) can mediate long-
range ordering between the local moments. By variation of
the f-conduction-electron hybridization, these systems can be
tuned continuously from the nonmagnetic HF state through a
magnetic QCP into a long-range magnetically ordered state.
The important question arises whether the heavy quasiparti-
cles retain their itinerant character and form a spin-density
wave at the QCP as for CeCu2Si2 or CeTIn5 or, alter-
natively, decompose due to the destruction of the Kondo
screening (Coleman, Pépin, Si and Ramazashvili, 2001). The
first approach to capture the breakdown of the lattice Kondo
effect due to quantum critical fluctuations employs an exten-
sion of the dynamical mean-field theory (DMFT) and has
been worked out by Si et al. (2001). On the basis of the idea
that the breakdown of the Kondo screening is a local phe-
nomenon, that is, it affects each spin on the Kondo lattice
independently, a ‘locally critical’ QCP scenario, implying

Kondo-singlet destruction (Si, Rabello, Ingersent and Smith,
2001) and an electron fractionalization (Coleman, Pépin, Si
and Ramazashvili, 2001; Pépin, 2005), has been proposed.
An alternative proposal concerns fractionalized FLs (Senthil,
Sachdev and Vojta, 2003, 2005). Details on such unconven-
tional scenarios can be found in Heavy Fermions: Electrons
at the Edge of Magnetism, Volume 1.

4.1 YbRh2Si2

The tetragonal YbRh2S2 has recently attracted much interest
as a prototype for a clean HF compound located very
close to a magnetic QCP (Trovarelli et al., 2000). The low-
temperature properties are determined by the CEF-derived
doublet ground state which is well separated from the excited
levels (Stockert et al., 2006). The analysis of the magnetic
entropy reveals a single-ion Kondo scale of 25 K for this
lowest lying doublet (with effective spin 1

2 ). Upon cooling
to below TK, the electronic specific heat coefficient Cel(T )/T

displayed in Figure 12(a), shows a pronounced increase
which can be described by a − ln T dependence between
0.3 and 10 K. This is followed by a steep upturn which ends
in a sharp phase transition at TN = 70 mK (Custers et al.,
2003b). Magnetic measurements have proved the AF nature
of this transition (Trovarelli et al., 2000; Gegenwart et al.,
2002).

The electrical resistivity of YbRh2Si2 follows a quasilin-
ear temperature dependence from 10 K down to TN, below
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Figure 12. (a) Electronic specific heat of YbRh2(Si1−xGex )2 as
Cel/T versus T (on a logarithmic scale) for x = 0 and x = 0.05
(Custers et al., 2003b). Cel denotes the specific heat after subtraction
of the nuclear and phonon contributions. (b) Electrical resistivity
of YbRh2(Si0.95Ge0.05)2 as ρ versus T (Custers et al., 2003a). The
inset displays the inverse susceptibility χ−1 versus T for x = 0 and
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(T − �) with � − 0.3 K. (Reprinted with permission Custers et al.,
copyright 2003, Nature Publishing Group & Custers et al., copyright
2003, IOP.)
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which a sharp decrease, independent of the current direction,
is observed (Gegenwart et al., 2002). The AF order is
very weak; muon-spin-rotation experiments have revealed
an ordered moment of 2 × 10−3 µB (Ishida et al., 2003) in
accordance with the tiny entropy gain at TN. The weakness of
the AF order is also evidenced by the small critical magnetic
field of 0.06 T in the easy tetragonal plane and 0.7 T along
the magnetic hard direction parallel to the c axis (Gegenwart
et al., 2002).

Hydrostatic pressure causes an increase of TN as expected
in the case of Yb systems for which the ionic size of the
magnetic Yb3+ configuration is smaller than that of the
nonmagnetic Yb2+ one. Extrapolating TN(p) toward zero
temperature reveals a small negative critical pressure of
–0.3 GPa (Mederle et al., 2002). Thus, a volume expan-
sion induced by the partial substitution of Si with the larger
but isoelectronic Ge tunes the system closer to the zero-
field QCP. For a single crystal with a nominal composition
YbRh2(Si0.95Ge0.05)2, the Néel temperature is suppressed to
20 mK (cf. Figure 12a), and the electrical resistivity follows
a linear temperature dependence down to lowest tempera-
tures (Figure 12b) (Custers et al., 2003b). Correspondingly,
the critical magnetic field Hc within the easy plane has been
reduced to about 0.025 T. At H = Hc and below T ≈ 0.3 K,
the electronic specific heat coefficient follows a power-law
divergence Cel(T )/T ∼ T −1/3. This behavior is incompat-
ible with a SDW-type QCP, which at most (i.e., in the
case of 2D critical fluctuations) could result in a logarith-
mic divergence (Millis, 1993; Moriya and Takimoto, 1995).
The application of magnetic fields H > Hc results in an LFL
ground state which allows to determine the Sommerfeld coef-
ficient γ 0(H), Pauli susceptibility χ0(H), as well as A(H),
which denotes the T 2 coefficient of the electrical resistivity
contribution �ρ = AT 2. All these properties have been stud-
ied systematically starting close to Hc up to very large fields
(Custers et al., 2003b; Gegenwart et al., 2005). Figure 13(a)
displays the evolution of the Sommerfeld coefficient as a
function of the distance from the QCP, b = B − Bc. Its
power-law dependence proves the divergence of the heavy
quasiparticle mass at the QCP in this system.

As outlined before, the Grüneisen ratio, �(T ) ∼ β(T )/

C(T ), of thermal expansion, β(T ), to specific heat, C(T ), is
a most sensitive thermodynamic probe of quantum criticality
as it has to diverge in the approach of any (pressure
sensitive) QCP. The critical exponent ε in the divergence
�(T ) ∼ 1/T ε is given by ε = 1/νz (Zhu, Garst, Rosch and
Si, 2003). Here ν and z are the related critical exponents
for the correlation length and correlation time, respectively.
For a three-dimensional (3D) AF QCP (in the 2D case,
logarithmic corrections are present), the itinerant theory
predicts ν = 1/2 and z = 2 yielding ε = 1. This was, in
fact, observed for CeNi2Ge2 (Küchler et al., 2003). For
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sus B − Bc (applied within the easy magnetic plane) with Bc =
0.027 T (a). Dashed and solid lines indicate logarithmic and
power-law divergences, respectively (Custers et al., 2003b). (b):
Double-logarithmic plot of the critical Grüneisen ratio �cr =
Vm/κT · βcr/Ccr. Here Vm and κT denote the molar volume and
isothermal compressibility, respectively. A normal contribution to
thermal expansion, β, has been subtracted from the raw data, to
determine βcr (Küchler et al., 2003). The critical contribution to
the specific heat is obtained by subtracting nuclear and phonon con-
tributions from the raw data. The solid and dotted lines represent
�cr ∼ T −ε with ε=0.7 and 1, respectively. (Reprinted with per-
mission Custers et al., copyright 2003, Nature Publishing Group.)

YbRh2(Si0.95Ge0.05), by contrast, the measured Grüneisen
exponent is fractional: ε = 0.7 ± 0.1 (Küchler et al., 2003)
(cf. Figure 13b). This observation provides further evidence
for the failure of the itinerant theory and may hint at a
locally critical QCP in this system (Küchler et al., 2003).
In this latter scenario, the heavy quasiparticles decompose,
leading to unscreened f moments in close vicinity to the
QCP (Coleman, Pépin, Si and Ramazashvili, 2001; Si,
Rabello, Ingersent and Smith, 2001). Indeed, below 0.3 K
the ac susceptibility (cf. inset of Figure 12b) follows a
Curie–Weiss law, with negative Weiss temperature θ =
−0.3 K and with a surprisingly large effective moment µeff ≈
1.4 µB per Yb3+. This indicates the emergence of correlated,
non-Kondo-quenched spins at finite temperatures above the
QCP (Custers et al., 2003b). In the same temperature range,
the electronic specific heat coefficient deviates toward larger
values from the − ln T dependence observed above 0.3 K.
For the Ge-doped system, this ‘upturn’ continues down to
the lowest accessible temperature when the critical field
Hc is applied. This intrinsically electronic feature can be
attributed to the QCP as it disappears in the LFL regime
at H > Hc. The unique power-law temperature dependence
of Cel(T )/T for T < 0.3 K is disparate from the linear
temperature dependence of the electrical resistivity which
holds all the way from 10 K to 10 mK (Figure 12b): In case
of a q-independent self energy, the linear ρ(T ) dependence
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would correspond to Cel(T )/T ∼ − ln T , as in fact observed
for 0.3 K < T < 10 K. Assuming that the thermodynamic
quantity Cel(T )/T is probing mainly the dominating local
4f (‘spin’) part of the composite heavy quasiparticles, while
the latter (transport) quantity is mainly probing the itinerant
conduction-electron (‘charge’) part, the disparity between
ρ(T ) and Cel(T )/T observed in the paramagnetic state for
T < 0.3 K may be viewed as a direct manifestation of the
breakup of the heavy quasiparticles in the approach of the
QCP (Custers et al., 2003b).

Bulk magnetic susceptibility (Gegenwart et al., 2005)
as well as NMR measurements (Ishida et al., 2002) have
revealed strong FM fluctuations for H > Hc. The Pauli sus-
ceptibility follows a power-law divergence χ0(H) ∼ (H −
Hc)

0.6 and the dimensionless Sommerfeld–Wilson ratio RW

is strongly enhanced (cf. Figure 14a). Whereas typically
RW ∼ 2 for HF systems, in YbRh2(Si0.95Ge0.05)2 it equals
17.5 ± 2 away from the critical field and increases upon
lowering the field toward Hc (Gegenwart et al., 2005). NMR
measurements, while signaling the dominance of AF fluc-
tuations in the quantum critical regime, have also revealed
enhanced FM fluctuations: the Korringa ratio S = 1/T1T

2
K,

with the 4f contribution to the spin-lattice relaxation rate T1

and isotropic Knight shift K reaches only 10% of the free
electron value (Ishida et al., 2002). In YbRh2Si2, a sharp
electron spin resonance (ESR) has been observed at low tem-
peratures (Sichelschmidt et al., 2003). Typically, the spin-
fluctuation rates of Kondo ions cause much too large ESR
linewidths making ESR signals undetectable. For YbRh2Si2,
the ESR signal occurs well below TK, and its intensity fol-
lows the temperature dependence of the bulk susceptibility
which strongly increases upon cooling to low temperatures.
The possible relation between the strong FM fluctuations and
the occurrence of the ESR signal needs to be clarified. One
may argue, that (2D) FM fluctuations explain the fractional
Grüneisen exponent of 1/νz = 2/3 within the itinerant the-
ory. This picture is problematic as both the coefficient of the
T 2 component of the resistivity, A(H), as well as χ0(H)

diverge in the approach of the critical field. The ratio A/χ2
0

is nearly constant (cf. Figure 14b). Since FM spin fluctua-
tions are inefficient in affecting charge transport, the A/χ2

0
scaling implies that the q = 0 fluctuations are a part of over-
all critical fluctuations in an extended range of wave vector
scales (Gegenwart et al., 2007).

The Hall-effect evolution across the field-tuned QCP in
YbRh2Si2 has been studied in great detail at low temperatures
(Paschen et al., 2004). Most remarkably, the magnetic field-
induced suppression of the weak magnetic ordering with a
tiny ordered moment of 2 × 10−3 µB/Yb (Ishida et al., 2003)
leads to a large (about 30%) change of the Hall coefficient.
A new line in the temperature–field phase diagram has been
discovered, across which the isothermal Hall resistivity as a
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function of the applied magnetic field changes from a phase
with small Fermi-surface volume (at low fields) to a phase
with larger Fermi-surface volume (at elevated fields). Upon
decreasing the temperature, this crossover sharpens its width
obeying a T -power-law dependence. This suggests that the
crossover ends up in a sudden jump of the Fermi-surface
volume at the QCP (Paschen et al., 2004).

Very recently, a comparison of thermodynamic measure-
ments with the transport properties has been performed.
Figure 15(a) displays the remarkable similarity of the field
dependence of the Hall resistivity with both that of the mag-
netostriction and magnetization. All properties can be fitted
by an empirical ‘crossover’ function yielding a characteris-
tic field scale H0(T ) which defines a scale T ∗(H) in the
T −H phase diagram (cf. Figure 15b). This scale is seen to
be distinct from either the transition temperature (TN) for
the magnetic ordering at H < Hc or the scale (TLFL) for the
establishment of the coherent LFL state at H > Hc. For all
three quantities, the width of the crossover extrapolates to
zero at T = 0, implying that the differentials of the mag-
netostriction, magnetization, and Hall resistivity exhibit a
jump in the zero-temperature limit (Gegenwart et al., 2007).
These findings contradict the conventional order-parameter
fluctuation theory in at least two respects. First, the only
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low-energy scale in that theory is associated with magnetic
slowing down, which for H > Hc is TLFL. Second, within
that theory, only kinklike features, rather than jumps, are
expected in the differentials of the aforementioned thermo-
dynamic and transport quantities. The results of Figure 15
indicate that quantum criticality in HF systems may invoke
effects of Kondo disentanglement which are manifested
through vanishing energy scales that add to those associated
with the slowing down of the order-parameter fluctuations.

To summarize, the observed properties of YbRh2Si2
are incompatible with the predictions of the itinerant
(Hertz–Millis) theory and hint at unconventional quantum
criticality with multiple vanishing energy scales. Detailed
inelastic neutron-scattering experiments are highly desirable
to characterize the complicated magnetic fluctuation spec-
trum which consists of both AF and FM components. The
absence of SC even in high-quality single crystals with
residual resistivity of less than 0.5 µ� cm for temperatures
T > 10 mK is particularly striking. It is likely that SC still
occurs below 10 mK. On the other hand, the formation of
Cooper pairs may be prevented either by those FM quantum
critical fluctuations that are dominating at elevated frequen-
cies or by the very nature of this type of unconventional
quantum criticality.

5 OUTLOOK

In contrast to several of the U-based HF compounds whose
low-temperature behavior is characterized by the coexistence
of AF order and SC, their Ce-based counterparts often show
SC to be intimately related to an AF instability or QCP.
For the prototypical system CePd2Si2 it was proposed first
that the AF quantum critical fluctuations as main scatterers
for the heavy-mass charge carriers not only cause the pro-
nounced NFL effects in the normal state (e.g., �ρ ∝ T 1.2

below T ≈ 20 K) but also mediate the formation of Cooper
pairs (Mathur et al., 1998): Paramagnon-mediated SC in
Ce-based NFL superconductors has meanwhile been widely
accepted, although it has not yet been verified experimen-
tally. The proposal by Mathur et al. implies charge carriers
that keep their integrity at the QCP like 3d electrons in tran-
sition metals do, to which the theoretical models described
in Section 3 had been originally applied. Since inelastic
neutron-scattering and quasiparticle-tunneling experiments to
directly demonstrate paramagnon-mediated SC are yet lack-
ing in these kind of superconductors, it appears most desir-
able to check the itinerant nature of their AF ordering. In
fact, in the case of CeCu2Si2 neutron-diffraction experiments,
performed at ambient pressure, revealed an incommensurate
SDW phase with very small ordered moment. Recalling the
anomalous T -power-law dependencies of the resistivity and
the Sommerfeld coefficient in the low-temperature state of
CeCu2Si2 close to its QCP, the quantum critical fluctuations
in this material are safely of the 3D-SDW type. Of course,
neutron-diffraction measurements in other Ce-based NFL
superconductors are badly needed to reveal deeper insight
into the microscopics underlying Cooper-pair formation in
these most interesting materials. In the case of CeCoIn5,
thermal-expansion measurements conducted in overcritical
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magnetic fields also point to a field-induced QCP of 3D-
SDW type at BQCP ≤ Bc2(0). However, AF order masked by
SC could not be established for this compound until now.

Turning to the nonsuperconducting lanthanide-based
systems CeCu5.9Au0.1 and YbRh2Si2, it is fair to say that
their QCP is indeed of an unconventional nature, that is,
it differs strongly from the 3D-SDW-type QCP. It, thus,
appears straightforward to relate the lack of SC in these mate-
rials to this very fact. On the other hand, it may be argued
that the degree of disorder introduced into CeCu6 by doping
with 10 at% Au is too high for an unconventional supercon-
ducting order parameter to survive. Interestingly, this type
of reasoning fails completely in the case of YbRh2Si2. Here,
new high-quality single crystals with residual HRRR resis-
tivity ratios H ≥ 140 (residual resistivities ρ0 ≤ 0.5 µ� cm),
that is, substantially smaller than those of the best super-
conducting CePd2Si2 single crystals (Mathur et al., 1998) do
not show SC at least for T > 10 mK. Experiments at much
lower temperatures are presently in preparation to check for
the possible existence of SC in YbRh2Si2.

At the current state of the art the following conclusion may
be formulated which should also motivate future experimen-
tal and theoretical research on strongly correlated matter:
paramagnon-mediated SC is favored by a 3D-SDW QCP
[1]. However, so far no SC has been observed at uncon-
ventional AF QCPs, as in YbRh2Si2, which is characterized,
for example, by the destruction of the Kondo singlets and
by FM quantum critical fluctuations in wide parts of the
phase diagram. Therefore an unconventional AF QCP might
be detrimental to SC. Undoubtedly, the interplay between
SC and quantum criticality will remain in the focus of future
theoretical and experimental studies of correlated matter.

NOTE

[1] This does not exclude SC in compounds that are lacking
a QCP, due to the fact that the T = 0 transition from AF
ordered to LFL, induced by varying hydrostatic pressure,
is of first order. In this case, low-energy quantum critical
fluctuations are absent, but SC may nevertheless occur
because of higher-frequency AF spin fluctuations. Prime
candidates for such a scenario are CeCu2Ge2 (Jaccard,
Wilhelm, Alami-Yadri and Vargoz, 1999) and CeRh2Si2
(Movshovich et al., 2001).
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1 INTRODUCTION

The interface between classical and quantum physics has
always been an interesting area, but its importance has
nevertheless, grown with the current explosive thrusts in
nanoscience. Taking devices to the limit of miniaturization
(the mesoscale and beyond) where quantum effects become
important makes it essential to understand the interplay
between the classical properties of the macroscale and the
quantum properties of the microscale. This is particularly
true in nanomagnetism, where many potential applications
require monodisperse, magnetic nanoparticles.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

In order to put this review into perspective, let us con-
sider Figure 1, which presents a scale of size ranging from
macroscopic down to nanoscopic sizes. The unit of this scale
is the number of magnetic moments in a magnetic system.
At macroscopic sizes, a magnetic system is described by
magnetic domains (Weiss, 1907; Hubert and Schäfer, 1998)
that are separated by domain walls. Magnetization rever-
sal occurs via nucleation, propagation, and annihilation of
domain walls (see the hysteresis loop in Figure 1a, which
was measured on an individual elliptic CoZr particle of
1 × 0.8 µm2 and a thickness of 50 nm (Wernsdorfer et al.,
1995)). Shape and width of domain walls depend on the
material of the magnetic system, on its size, shape, and sur-
face, and on its temperature (Aharoni, 1996; Wernsdorfer,
2001).

When the system size is of the order of magnitude
of the domain-wall width or the exchange length, the
formation of domain walls requires a large amount of
energy. Therefore, the magnetization remains in the so-
called single-domain state. Hence, the magnetization might
reverse by uniform rotation, curling, or other nonuni-
form modes (see hysteresis loop in Figure 1b). For system
sizes well below the domain-wall width or the exchange
length, one must explicitly take the magnetic moments
(spins) and their couplings into account. The theoreti-
cal description is complicated by the particle’s bound-
aries.

Magnetic molecular clusters (also called molecular nano-
magnets or single-molecule magnets (SMMs)) are the final
point in the series of smaller and smaller units from
bulk matter to atoms (Figure 1). Till date, they have
been the most promising candidates for observing quantum
phenomena because they have a well-defined structure
with well-characterized spin ground-state and magnetic
anisotropy. These molecules can be regularly assembled in
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Figure 1. Scale of size that goes from macroscopic down to nanoscopic sizes. The unit of this scale is the number of magnetic moments
in a magnetic system (roughly corresponding to the number of atoms). The hysteresis loops are typical examples of magnetization reversal
via nucleation, propagation, and annihilation of domain walls (a), via uniform rotation (b), and via quantum tunneling (c).

large crystals where all molecules often have the same ori-
entation. Hence, macroscopic measurements can give direct
access to single-molecule properties.

This chapter introduces the basic concepts that are needed
to understand the quantum phenomena observed in molecu-
lar nanomagnets. Most tunneling studies presented here were
performed by magnetization measurements on single crystals
using an array of micro-superconduting quantum interference
devices (micro-SQUIDs) (Wernsdorfer, 2001). This chapter
concludes by mentioning new trends toward molecular spin-
tronics using junctions and nano-SQUIDs (Cleuziou et al.,
2006).

2 OVERVIEW OF MOLECULAR
NANOMAGNETS

Molecular nanomagnets or SMMs are mainly organic
molecules that have one or several metal centers with
unpaired electrons. These polynuclear metal complexes are
surrounded by bulky ligands (often organic carboxylate lig-
ands). The most prominent examples are a dodecanuclear
mixed-valence manganese-oxo cluster with acetate ligands,
short Mn12 acetate (Lis, 1980), and an octanuclear iron(III)
oxo-hydroxo cluster of formula [Fe8O2(OH)12(tacn)6]8+

where tacn is a macrocyclic ligand, short Fe8 (Wieghardt,
Pohl, Jibril and Huttner, 1984). Both systems have a
spin ground state of S = 10 and an Ising-type magnetic
anisotropy, which stabilizes the spin states with m = ±10
and generates an energy barrier for the reversal of the mag-
netization of about 67 K for Mn12 acetate (Caneschi et al.,

1991; Sessoli et al., 1993; Sessoli, Gatteschi, Caneschi and
Novak, 1993) and 25 K for Fe8 (Barra et al., 1996).

Thermally activated quantum tunneling of the magnetiza-
tion was first evidenced in both systems (Novak and Sessoli,
1995; Paulsen and Park, 1995; Friedman, Sarachik, Tejada
and Ziolo, 1996; Thomas et al., 1996; Sangregorio et al.,
1997). Theoretical discussion of this assumes that thermal
processes (principally phonons) promote the molecules up to
high levels with small quantum numbers |m|, not far below
the top of the energy barrier, and the molecules then tunnel
inelastically to the other (Abragam and Bleaney, 1970; Vil-
lain, Hartmann-Boutron, Sessoli and Rettori, 1994; Politi,
Rettori, Hartmann-Boutron and Villain, 1995; Hartmann-
Boutron, Politi and Villain, 1996; Villain, Wurger, Fort and
Rettori, 1997; Garanin and Chudnovsky, 1997; Fort et al.,
1998; Leuenberger and Loss, 2000b). Thus the transition is
almost entirely accomplished via thermal transitions and the
characteristic relaxation time is strongly temperature depen-
dent. For Fe8, however, the relaxation time becomes temper-
ature independent below 0.36 K (Sangregorio et al., 1997;
Ohm, Sangregorio and Paulsen, 1998a), showing that a pure
tunneling mechanism between the only populated ground
states m = ±S = ±10 is responsible for the relaxation of the
magnetization. On the other hand, in the Mn12 acetate system,
one sees temperature-independent relaxation only for strong
applied fields and below about 0.6 K (Perenboom et al., 1998;
Kent et al., 2000). During the last few years, many new
molecular nanomagnets were presented (see, for instance,
Caneschi et al., 1999; Aubin et al., 1998; Price et al., 1999;
Yoo et al., 2000), which also show tunneling at low tem-
peratures. The largest molecular nanomagnet is currently a
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Figure 2. Size scale spanning atomic to nanoscale dimensions. On the far right a high-resolution transmission electron microscopy view
along a [110] direction of a typical 3-nm-diameter cobalt nanoparticle exhibiting a face-centered cubic structure and containing about 1000
Co atoms (Jamet et al., 2001) is shown. The Mn84 molecule is a 4.2-nm-diameter particle. The indicated smaller Mn nanomagnets, which
are drawn to scale, are also shown for comparison. An alternative means of comparison is the Néel vector (N), which is the scale shown.
The arrows indicate the magnitude of the Néel vectors for the indicated SMMs, which are 7.5, 22, 61, and 168 for Mn4, Mn12, Mn30, and
Mn84, respectively. (Reproduced from A. Tasiopoulos et al., 2004, with permission from Wiley VCH.  2004.)

Mn84 molecule (Tasiopoulos et al., 2004) that has the size of
a magentic nanoparticle (Figure 2).

3 GIANT SPIN MODEL FOR
NANOMAGNETS

A magnetic molecule, which behaves like a small nano-
magnet, must have a large uniaxial easy-axis-type magnetic
anisotropy and a large ground-state spin. A typical example
is the octanuclear iron(III) oxo-hydroxo cluster of formula
[Fe8O2(OH)12(tacn)6]8+, where tacn is a macrocyclic ligand
(1,4,7-traiazcyclononane), short Fe8 (Figure 3) (Wieghardt,
Pohl, Jibril and Huttner, 1984).

The internal iron(III) ions are octahedrally coordinated
to the two oxides and to four hydroxo bridges. The outer
iron(III) ions coordinate three nitrogens and three hydroxyls.
Spin polarized neutron scattering showed that all Fe ions
have a spin 5/2, six spins up and two down (Pontillon et al.,
1999). This rationalizes the S = 10 spin ground state that is
in agreement with magnetization measurements.

In principle, a multispin Hamiltonian can be derived taking
into account all exchange interactions and the single-ion
magnetic anisotropies. However, the Hilbert space is very
large (68 ≈ 106) and the exchange coupling constants are
not well known. Therefore, a giant spin model that describes
the ground spin-state multiplet in an effective way is often
used. For a nanomagnet like the Fe8 molecular cluster, it has
the following Hamiltonian:

H = −DS2
z + E

(
S2

x − S2
y

) − gµBµ0
�S · �H (1)

Fe5

Fe1

Fe8

Fe4

Fe6

Fe2

Fe7

Fe3

Figure 3. Schematic view of the magnetic core of the Fe8 cluster.
The oxygen atoms are black, the nitrogen atoms are gray, and
carbon atoms are white. The arrows represent the spin structure
of the ground state S = 10. (Reproduced from W. Wernsdorfer
et al., 2000, with permission from the American Physical Society.
 2000.)

Sx , Sy , and Sz are the three components of the spin operator,
D and E are the anisotropy constants, which are determined
via high-frequency electron paramagnetic resonance (HF-
EPR) (D/kB ≈ 0.275 K and E/kB ≈ 0.046 K (Barra et al.,
1996)), and the last term of the Hamiltonian describes



4 Magnetic materials with outstanding properties

the Zeeman energy associated with an applied field �H .
This Hamiltonian defines hard, medium, and easy axes
of magnetization in x, y, and z directions, respectively
(Figure 4). It has an energy-level spectrum with (2S + 1) =
21 values, which, to a first approximation, can be labeled by
the quantum numbers m = −10, −9, . . . , 10 choosing the
z-axis as quantization axis. The energy spectrum, shown in
Figure 5, can be obtained by using standard diagonalization
techniques of the [21 × 21] matrix describing the spin
Hamiltonian S = 10. At �H = 0, the levels m = ±10 have the
lowest energy. When a field Hz is applied, the energy levels
with m < −2 increase, while those with m > 2 decrease
(Figure 5). Therefore, energy levels of positive and negative
quantum numbers cross at certain fields Hz. It turns out that
for Fe8 the levels cross at fields given by µ0Hz ≈ n× 0.22 T,
with n = 1, 2, 3, . . .. The inset of Figure 5 displays the
details at a level crossing where transverse terms containing
Sx or Sy spin operators turn the crossing into an ‘avoided
level crossing’. The spin S is ‘in resonance’ between two
states when the local longitudinal field is close to an avoided
level crossing. The energy gap, the so-called tunnel spitting
�, can be tuned by an applied field in the xy plane (Figure 4)
via the SxHx and SyHy Zeeman terms (Section 3.2).

The effect of these avoided level crossings can be seen in
hysteresis loop measurements (Figure 6). When the applied
field is near an avoided level crossing, the magnetization
relaxes faster, yielding steps separated by plateaus. As the
temperature is lowered, there is a decrease in the transition
rate due to reduced thermal-assisted tunneling.

3.1 Landau–Zener tunneling in Fe8

The nonadiabatic transition between the two states in a
two-level system was first discussed by Landau (1932),
Zener (1932), and Stückelberg (1932). The original work
by Zener concentrates on the electronic states of a biatomic
molecule, while Landau and Stückelberg considered two
atoms that undergo a scattering process. Their solution of the
time-dependent Schrödinger equation of a two-level system
could be applied to many physical systems and it became
an important tool for studying tunneling transitions. The
Landau–Zener model has also been applied to spin tunneling
in nanoparticles and clusters (Miyashita, 1995,1996; Rose
and Stamp, 1998; Thorwart, Grifoni and Hänggi, 2000;
Leuenberger and Loss, 2000a). The tunneling probability P

when sweeping the longitudinal field Hz at a constant rate
over an avoided energy level crossing (Figure 7) is given by

Pm,m′ = 1 − exp

[
− π�2

m,m′

2�gµB|m − m′|µ0dHz/dt

]
(2)

z

y

x
Htrans

j

A

B

Easy axis

Medium
axis

Hard
axis

Figure 4. Unit sphere showing degenerate minima A and B, which
are joined by two tunnel paths (heavy lines). The hard, medium,
and easy axes are taken in x-, y-, and z-direction, respectively. The
constant transverse field Htrans for tunnel splitting measurements is
applied in the xy plane at an azimuth angle ϕ. At zero applied field
�H = 0, the giant spin reversal results from the interference of two

quantum spin paths of opposite direction in the easy anisotropy yz

plane. For transverse fields in the direction of the hard axis, the
two quantum spin paths are in a plane that is parallel to the yz

plane, as indicated in the figure. By using Stokes’theorem it has
been shown (Garg, 1993) that the path integrals can be converted
in an area integral, yielding that destructive interference–that is a
quench of the tunneling rate–occurs whenever the shaded area is
kπ/S, where k is an odd integer. The interference effects disappear
quickly when the transverse field has a component in the y-direction
because the tunneling is then dominated by only one quantum spin
path. (Reproduced from A. Garg, 1993, with permission from EDP
Sciences.  1993.)
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quantum numbers m = ±10,±9, . . . , 0. The levels cross at fields
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into an avoided level crossing. The greater the tunnel splitting �,
the higher the tunnel rate.
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was swept at a constant sweeping rate of 0.014 T s−1. The loops
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is lowered, there is a decrease in the transition rate due to reduced
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ture independent below 0.35 K, demonstrating quantum tunneling
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et al., 1999, with permission from The American Association for
the Advancement of Science.  1999.)

Here, m and m′ are the quantum numbers of the avoided
level crossing, dHz/dt is the constant field sweeping rates,
g ≈ 2, µB is the Bohr magneton, and � is Planck’s constant.

With the Landau–Zener model in mind, we can now start
to understand the hysteresis loops qualitatively (Figure 6).
Let us start at a large negative magnetic field Hz. At very
low temperatures, all molecules are in the m = −10 ground
state (Figure 5). When the applied field Hz is ramped down
to zero, all molecules stay in the m = −10 ground state.
When ramping the field over the �−10,10 –region at Hz ≈ 0,
there is a Landau–Zener tunnel probability P−10,10 to tunnel
from the m = −10 to the m = 10 state. P−10,10 depends
on the sweeping rate (equation (2)), that is, the slower the
sweeping rate, the larger the value of P−10,10. This is clearly
demonstrated in the hysteresis loop measurements showing
larger steps for slower sweeping rates (Wernsdorfer and
Sessoli, 1999). When the field Hz is now further increased,
there is a remaining fraction of molecules in the m = −10
state that become a metastable state. The next chance to
escape from this state is when the field reaches the �−10,9

region. There is a Landau–Zener tunnel probability P−10,9

to tunnel from the m = −10 to the m = 9 state. As m = 9 is
an excited state, the molecules in this state desexcite quickly
to the m = 10 state by emitting a phonon. An analogous
procedure takes place when the applied field reaches the
�−10,10−n regions (n = 2, 3, . . .) until all molecules are
in the m = 10 ground state, that is, the magnetization of all
molecules is reversed. As phonon emission can only change

E
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Magnetic field Hz

∆
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1 − P
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1

Figure 7. Detail of the energy-level diagram near an avoided level
crossing. m and m′ are the quantum numbers of the energy level.
Pm,m′ is the Landau–Zener tunnel probability when sweeping the
applied field from left to right over the anticrossing. The greater the
gap � and the slower the sweeping rate, the higher is the tunnel
rate (equation (2)).

the molecule state by �m = 1 or 2, there is a phonon cascade
for higher applied fields.

In order to apply the Landau–Zener formula (equation (2))
quantitatively, we first saturated the crystal of Fe8 clusters
in a field of Hz = −1.4 T, yielding an initial magnetization
Min = −Ms. Then, we swept the applied field at a constant
rate over one of the resonance transitions and measured the
fraction of molecules that reversed their spin. This procedure
yields the tunneling rate P−10,10−n and thus the tunnel
splitting �−10,10−n (equation (2)) with n = 0, 1, 2, . . ..

We first checked the predicted Landau–Zener sweep-
ing field dependence of the tunneling rate. We found
a good agreement for sweeping rates between 10 and
0.001 T s−1 (Wernsdorfer and Sessoli, 1999). The deviations
at lower sweeping rates are mainly due to the hole digging
mechanism (Wernsdorfer et al., 1999), which slows down
the relaxation (Section 7.2). Our measurements showed for
the first time that the Landau–Zener method is particularly
adapted for molecular clusters because it works even in the
presence of dipolar fields, which spread the resonance tran-
sition provided that the field sweeping rate is not too small.

3.2 Oscillations of tunnel splitting

An applied field in the xy plane can tune the tunnel splittings
�m,m′ via the Sx and Sy spin operators of the Zeeman terms
that do not commute with the spin Hamiltonian. This effect
can be demonstrated by using the Landau–Zener method
(Section 3.1). Figure 8 presents a detailed study of the tunnel
splitting �±10 at the tunnel transition between m = ±10, as
a function of transverse fields applied at different angles
ϕ, defined as the azimuth angle between the anisotropy
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hard axis and the transverse field (Figure 4). For small
angles ϕ, the tunneling rate oscillated with a period of
∼0.4 T, whereas no oscillations were present for large angles
ϕ (Wernsdorfer and Sessoli, 1999). In the latter case, a much
stronger increase of �±10 with transverse field was observed.
The transverse field dependence of the tunneling rate for
different resonance conditions between the state m = −10
and (10 − n) can be observed by sweeping the longitudinal
field around µ0Hz = n × 0.22 T with n = 0, 1, 2, . . .. The
corresponding tunnel splittings �−10,10−n oscillated with
almost the same period of ∼0.4 T (Figure 8). In addition,
a comparison of quantum transitions between m = −10 and
(10 − n), with n even or odd, revealed a parity (or symmetry)
effect that is analogous to the Kramers’ suppression of
tunneling predicted for half-integer spins (Loss, DiVincenzo
and Grinstein, 1992; von Delft and Henley, 1992). A similar
strong dependence on the azimuth angle ϕ was observed for
all studied resonances.

3.2.1 Semiclassical descriptions

Before showing that the preceding results can be derived
by an exact numerical calculation using the quantum oper-
ator formalism, it is useful to discuss semiclassical models.
The original prediction of oscillation of the tunnel splitting
was done by using the path integral formalism (Feynman,
Leighton and Sand, 1970). Here (Garg, 1993), the oscilla-
tions are explained by constructive or destructive interfer-
ence of quantum spin phases (Berry phases) of two tunnel
paths (instanton trajectories) (Figure 4). After our experi-
ments were reported, the Wentzel–Kramers–Brillouin theory
has been used independently by Garg (1999) and Villain and
Fort (2000). The surprise is that although these models (Garg,
1993,1999; Villain and Fort, 2000) are derived semiclassi-
cally, and should have higher-order corrections in 1/S, they
appear to be exactly as written! This has first been noted in
Garg (1999) and Villain and Fort (2000) and then proved
in Kececioglu and Garg (2001). Some extensions or alter-
native explications of Garg’s result can be found in Barnes
(1999), Liang, Mueller-Kirsten, Park and Pu (2000), Yoo and
Lee (2000), and Rong et al. (2000).

The period of oscillation is given by (Garg, 1993)

�H = 2kB

gµB

√
2E(E + D) (3)

where D and E are defined in equation (1). We find a
period of oscillation of �H = 0.26 T for D = 0.275 K and
E = 0.046 K as in Barra et al. (1996). This is somewhat
smaller than the experimental value of ∼0.4 T. We believe
that this is due to higher-order terms of the spin Hamiltonian,
which are neglected in Garg’s calculation. These terms can
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Figure 8. Measured tunnel splitting � as a function of transverse
field for (a) several azimuth angles ϕ at m = ±10 and (b) ϕ ≈
0◦, as well as for quantum transition between m = −10 and
(10 − n). Note the parity effect that is analogous to the suppression
of tunneling predicted for half-integer spins. It should also be
mentioned that internal dipolar and hyperfine fields hinder a quench
of �, which is predicted for an isolated spin. (Reproduced from
W. Wernsdorfer et al., 1999, with permission from The American
Association for the Advancement of Science.  1999.)

easily be included in the operator formalism as shown in the
next section.

3.2.2 Exact numerical diagonalization

In order to quantitatively reproduce the observed period-
icity we included fourth-order terms in the spin Hamilto-
nian (equation (1)) as employed in the simulation of inelas-
tic neutron scattering measurements (Caciuffo et al., 1998;
Amoretti et al., 2000) and performed a diagonalization of
the [21 × 21] matrix describing the S = 10 system. For the
calculation of the tunnel splitting we used D = 0.289 K,
E = 0.055 K (equation (1)), and the fourth-order terms as
defined in Caciuffo et al. (1998) with B0

4 = 0.72 × 10−6 K,
B2

4 = 1.01 × 10−5 K, and B4
4 = −0.43 × 10−4 K, which are

close to the values obtained by EPR measurements (Barra,
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Figure 9. Calculated tunnel splitting � as a function of transverse
field for (a) quantum transition between m = ±10 at several
azimuth angles ϕ and (b) quantum transition between m = −10
and (10 − n) at ϕ = 0◦ (Section 3.2.2). The fourth-order terms
suppress the oscillations of � for large transverse fields |Hx |.
(Reproduced from W. Wernsdorfer et al., 1999, with permission
from The American Association for the Advancement of Science.
 1999.)

Gatteschi and Sessoli, 2000) and neutron scattering measure-
ments (Amoretti et al., 2000).

The calculated tunnel splittings for the states involved in
the tunneling process at the resonances n = 0, 1, and 2 are
reported in Figure 9, showing the oscillations as well as the
parity effect for odd resonances.

3.2.3 Spin-parity effect

The spin-parity effect is among the most interesting quantum
phenomena that can be studied at the mesoscopic level in
SMMs. It predicts that quantum tunneling is suppressed at
zero applied field if the total spin of the magnetic system is
half-integer but is allowed in integer spin systems. Enz and

Schilling (1986), and van Hemmen and Süto (1986) were the
first to suggest the absence of tunneling as a consequence of
Kramers degeneracy [1].

The predicted spin-parity effect can be observed by
measuring the tunnel splitting as a function of transverse
field (Wernsdorfer et al., 2002a). An integer spin system is
rather insensitive to small transverse fields, whereas a half-
integer-spin system is much more sensitive. However, a half-
integer-spin system also undergoes tunneling at zero external
field as a result of environmental degrees of freedom such
as hyperfine and dipolar couplings or small intermolecular
exchange interaction.

The best observation of the spin-parity effect has been seen
for two molecular Mn12 clusters with a spin ground state
of S = 10 and S = 19/2 showing oscillations of the tunnel
probability as a function of a transverse field being due to
topological quantum phase interference of two tunnel paths
of opposite windings (Section 3.2.1). Spin-parity-dependent
tunneling was established for the first time in these com-
pounds by comparing the quantum phase interference of
integer and half-integer-spin systems (Wernsdorfer, Chakov
and Christou, 2005).

3.3 A classical approach with applications to the
quantum regime

Recently, the molecular (or bottom-up) approach has reached
the size regime of the classical (or top-down) approach
to nanoscale magnetic materials (Tasiopoulos et al., 2004).
Indeed, a giant Mn84 SMM was reported with a 4-nm-
diameter torus structure, exhibiting both magnetization hys-
teresis and quantum tunneling. The study of such large sys-
tems is greatly complicated by the fact that the spin Hilbert
space is huge and it is impossible to treat such systems
with exact matrix diagonalization methods. However, since
some SMMs are now as large as some classical nanoparti-
cles, it raises the interesting possibility that classical models
commonly employed to study the latter may be used to
obtain a first-order understanding of large molecular sys-
tems. Indeed, we herein propose the use of the classical
Néel–Brown model (Néel, 1949; Brown, 1963; Coffey et al.,
1995) of thermally activated magnetization reversal of a mag-
netic single-domain particle in order to study large SMMs.
This method allows us to determine important parameters
that characterize the magnetic properties of the SMM: the
energy barrier, the magnetic anisotropy constant, the spin,
τ 0, and the crossover temperature from the classical to the
quantum regime. The method is particularly useful for SMMs
having low-lying energy states and not showing quantum
tunneling steps in hysteresis loops. In such systems, electron
paramagnetic resonance (EPR) measurements often exhibit
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only very broad absorption peaks, which do not allow the
determination of the magnetic anisotropy.

3.3.1 The Néel–Brown model of thermally activated
magnetization reversal

The method is based on the Néel–Brown model of thermally
activated magnetization reversal of a magnetic single-domain
particle, which has two equivalent ground states of opposite
magnetization separated by an energy barrier due to magnetic
anisotropy (Néel, 1949; Brown, 1963; Coffey et al., 1995).
The system can escape from one state to the other either by
thermal activation over the barrier at high temperatures or by
quantum tunneling at low temperatures. At sufficiently low
temperatures and at zero field, the energy barrier between
the two states of opposite magnetization is much too high
to observe an escape process. However, the barrier can be
lowered by applying a magnetic field in the direction opposite
to that of the particle’s magnetization. When the applied field
is close enough to the reversal field, thermal fluctuations are
sufficient to allow the system to overcome the barrier, and
the magnetization is reversed.

This stochastic escape process can be studied via the
relaxation time method consisting of the measurement of the
probability that the magnetization has not reversed after a
certain time. In the case of an assembly of identical and
isolated particles, it corresponds to measurements of the
relaxation of magnetization. According to the Néel–Brown
model, the probability that the magnetization has not reversed
after a time t is given by

P (t) = e−t/τ (4)

and τ (inverse of the reversal rate) can be expressed by an
Arrhenius law of the form:

τ (T , H) = τ 0e
�E(H)/kBT (5)

where �E(H) is the field-dependent energy barrier height
and τ 0 is the inverse of the attempt frequency. In most cases,
�E(H) can be approximated by

�E(H) ≈ E0

(
1 − H

H 0
c

)α

(6)

where H 0
c is the reversal field at zero temperature, E0 is

the barrier height at zero applied field, and α is a con-
stant of the order of unity (for most cases 1.5 ≤ α ≤ 2). In
the case of a Stoner–Wohlfarth particle (Néel, 1947; Stoner
and Wohlfarth, 1948) with uniaxial anisotropy and the field
applied along the easy axis of magnetization, all constants
can be determined analytically (Néel, 1947,1949): α = 2,

E0 = KV , and H 0
c = 2K/Ms, where K is the uniaxial

anisotropy constant, V is the particle volume, and Ms is the
saturation magnetization. For SMMs with dominating uniax-
ial anisotropy, α = 2, E0 = DS2, and H 0

c = 2DS/gµ0µB.
However, in general, all constants depend to some degree on
the fine details of the magnetic anisotropy and the direction
of the applied field H (Thiaville, 1998, 2000).

In order to study the field dependence of the relaxation
time τ (T , H) and to obtain the parameters of the model,
the decay of magnetization has to be studied at many
applied fields H and temperatures T . This is experimentally
very time consuming and complicated by the fact that
the equilibrium magnetization is temperature dependent and
difficult to obtain for long relaxation times. In addition,
for fast relaxation times the initial magnetization depends
on the field sweep rates to apply to the field. The number
of exploitable decades for τ values is therefore limited for
relaxation time measurements.

A more convenient method for studying the magneti-
zation decay is by ramping the applied field at a given
rate (Wernsdorfer et al., 1997a) and measuring the coercive
field Hc (the field value to obtain zero magnetization), which
is then measured as a function of the field sweep rate and
temperature.

The mathematical transformation from a reversal time
probability (equations (4) and (5)) to a reversal field
probability was first given by Kurkijärvi (1972) for the
critical current in SQUIDs. Later, Gunther and Barbara cal-
culated similar expressions for magnetic domain-wall junc-
tions (Gunther and Barbara, 1994). A more general calcula-
tion was evaluated by Garg (1995). Here, we use a simplified
version (Wernsdorfer et al., 1997a) [2] and approximate the
mean reversal field of an assembly of identical particles or
SMMs by the coercive field Hc:

Hc(T , v) ≈ H 0
c

(
1 −

[
kT

E0
ln

( c

v

)]1/α
)

(7)

where the field sweeping rate is given by v = dH/dt ; H 0
c

is the coercive field at zero temperature, and c = H 0
c kBT /

[τ 0αE0(1 − Hc/H
0
c)

α−1] (Wernsdorfer et al., 1997a).

3.3.2 Application to Mn12 SMMs

The method is applied here to Mn12 SMMs with a spin
ground state of S = 10 (Murugesu et al., 2005). Figure 10
shows typical hysteresis loops with a series of quantum
steps separated by plateaus. In order to apply the preceding
method, the temperature and field sweep rate dependencies
of the coercive fields Hc were measured and plotted in
Figure 11. As expected for a thermally activated process, Hc

increases with decreasing temperature and increasing field
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Figure 10. Hysteresis loops of single crystals of a Mn12 molecular
cluster at different temperatures and a constant field sweep rate
indicated in the figure. The loops display a series of steps, separated
by plateaus. As the temperature is lowered, there is a decrease
in the transition rate due to reduced thermal-assisted tunneling.
The hysteresis loops become temperature independent below 0.6 K,
demonstrating quantum tunneling at the lowest energy levels.
(Reproduced from W. Wernsdorfer et al., 2006, with permission
from the American Physical Society.  2006.)
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Figure 11. Coercive field Hc for Mn12 as a function of temperature.
Note the steps of Hc coming from the resonant tunneling steps in
the hysteresis loops (Figure 10). (Reproduced from W. Wernsdorfer
et al., 2005, with permission from the American Physical Society.
 2005.)

sweep rate. Furthermore, all measurements show an almost
logarithmic dependence of Hc on the field sweep rate. Hc

becomes temperature independent below about 0.6 K.
The validity of equation (7) was tested by plotting the

set of Hc(T , v) values as a function of [T ln(c/v)]1/2 where
c = H 0

c kBT /[τ 02E0(1 − Hc/H
0
c )]. If the underlying model

is sufficient, all points should collapse onto one straight line
by choosing the proper values for the constant τ 0. We found
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Figure 12. (a) Scaling plot of the coercive field Hc(T , v) of Mn12

for field sweep rates between 0.0001 and 0.1 T s−1 and several
temperatures: 0.1 K, 0.4 K, from 0.6 to 1 K in steps of 0.05 K, and
from 1 to 4 K in steps of 0.1 K. The arrows indicate the step index
n = −(m + m′) where m and m′ are the quantum numbers of the
corresponding level crossing. Note the parity effect of the steps:
even n have larger steps than odd n. (b) Same data of Hc(T , v) and
same scales but the real temperature T is replaced by an effective
temperature T ∗ (see inset), which restores the scaling below 1.1 K.
(Reproduced from W. Wernsdorfer et al., 2005, with permission
from the American Physical Society.  2005.)

that the data of Hc(T , v) fell on a master curve provided
τ 0 = 2.1 × 10−7 s.

At low temperatures, strong deviations from the master
curves are observed. In order to investigate the possibility
that these low-temperature deviations are due to escape from
the metastable potential well by tunneling, a common method
for classical models is to replace the real temperature T by
an effective temperature T ∗(T ) in order to restore the scal-
ing plot (Wernsdorfer et al., 1997b). In the case of tunneling,
T ∗(T ) should saturate at low temperatures. Indeed, the ansatz
of T ∗(T ), as shown in the inset of Figure 12(b), can unequiv-
ocally restore the scaling plot demonstrated by a straight mas-
ter curve (Figure 12b). The flattening of T ∗ corresponds to a
saturation of the escape rate, which is a necessary signature
of tunneling. The crossover temperature Tc can be defined as
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et al., 2005, with permission from the American Physical Society.
 2005.)

the temperature where the quantum rate equals the thermal
one. The inset of Figure 12(b) gives Tc = 0.97 K. The slopes
and the intercepts of the master curves give E0 = 72.4 K
and H 0

c = 9.1 T. The E0 values are in good agreement with
those extracted from Arrhenius plots (69 K) (Murugesu et al.,
2005). This result allows us to estimate the spin ground state
using S = 2E0/(gµBµ0H

0
c ): S = 11. This differs slightly

from S = 10 determined via magnetization measurements.
This deviation is due to quantum effects in the thermally acti-
vated regime and is considered further in the subsequent text.

Several points should be mentioned: (i) The classical
regime of the model corresponds in most SMMs to the
thermally activated tunneling regime with tunneling close
to the top of the energy barrier. Because all parameters
are deduced from this regime, small deviations from the
exact values are expected. (ii) The field dependence of the
energy barrier can be obtained directly using [2] and is
plotted in Figure 13. (iii) Equation (7) is not valid for fields
that are close to H = 0 because the model only takes into
account the transitions from the metastable to the stable well.
However, close to H = 0, transitions between both wells are
possible, leading to a rounding of the master curve at small
fields. (iv) The method can be applied to powder samples
with random orientations of the molecules. In this case,
α ≈ 1.5, νE0 = DS2 where ν can be calculated (Thiaville,
1998,2000), and the intercept of the master curve gives H 0

c /2.
(v) In the case of a distribution of anisotropies, different parts
of the distribution can be probed by applying the method at

different M values. (vi) This method is insensitive to small
intermolecular interactions when Hc is larger than the typical
interaction field. (vii) The method can be generalized for
1D, 2D, and 3D networks of spins. In this case, equation (6)
describes a nucleation barrier.

4 QUANTUM DYNAMICS OF A DIMER
OF NANOMAGNETS

We present here a new family of dimers of nanomag-
nets (Wernsdorfer, Aliaga-Alcalde, Hendrickson and Chris-
tou, 2002) in which antiferromagnetic coupling between two
SMMs results in quantum behavior that is different from that
of the individual SMMs. Each SMM acts as a bias on its
neighbor, shifting the quantum tunneling resonances of the
individual SMMs. Hysteresis loop measurements on a single
crystal of SMM dimers established quantum tunneling of the
magnetization via entangled states of the dimer. This shows
that the dimer really does behave as a quantum-mechanically
coupled dimer, and also allows the measurement of the
longitudinal and transverse superexchange coupling con-
stants (Tiron et al., 2003). The experimental evidence for
entangled states was confirmed by an EPR study (Hill,
Edwards, Aliaga-Alcalde and Christou, 2003).

The compound [Mn4O3Cl4(O2CEt)3(py)3] crystallizes in
the hexagonal space group R3(bar) with two Mn4 molecules
per unit cell lying head to head on a crystallographic S6

symmetry axis (Wernsdorfer, Aliaga-Alcalde, Hendrickson
and Christou, 2002) (Figure 14). Each Mn4 monomer has a
ground-state spin of S = 9/2, well separated from the first
excited state S = 7/2 by a gap of about 300 K (Hendrickson
et al., 1992). The Mn–Mn distances and the Mn-O-Mn
angles are similar, and the uniaxial anisotropy constant is
expected to be the same for the two dimer systems. These
dimers are held together via six C–H· · ·Cl hydrogen bonds
between the pyridine (py) rings on one molecule and the
Cl ions on the other, and one Cl· · ·Cl Van der Waals
interaction. These interactions lead to an antiferromagnetic
superexchange interaction between the two Mn4 units of the
[Mn4]2 dimer (Wernsdorfer, Aliaga-Alcalde, Hendrickson
and Christou, 2002). Dipolar couplings between Mn4

molecules can be easily calculated and are more than one
order of magnitude smaller than the exchange interaction.

Before presenting the measurements, we summarize a
simplified spin Hamiltonian describing the [Mn4]2 dimer
(Wernsdorfer, Aliaga-Alcalde, Hendrickson and Christou,
2002). Each Mn4 SMM can be modeled as a giant spin
of S = 9/2 with Ising-like anisotropy (equation (1)). The
corresponding Hamiltonian is given by

Hi = −DS2
z,i + Htrans,i − gµBµ0

�Si · �H (8)
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where i = 1 or 2 (referring to the two Mn4 SMMs of the
dimer), D is the uniaxial anisotropy constant, and the other
symbols have their usual meaning. Tunneling is allowed in
these half-integer (S = 9/2) spin systems because of a small
transverse anisotropy Htrans,i containing Sx,i and Sy,i spin
operators and transverse fields (Hx and Hy). The exact form
of Htrans,i is not important in this discussion. The last term in
equation (8) is the Zeeman energy associated with an applied
field. The Mn4 units within the [Mn4]2 dimer are coupled by
a weak superexchange interaction via both the six C–H· · ·Cl
pathways and the Cl· · ·Cl approach. Thus, the Hamiltonian

(H) for [Mn4]2 is

H = H1 + H2 + JzSz,1Sz,2 + Jxy(Sx,1Sx,2 + Sy,1Sy,2) (9)

where Jz and Jxy are the longitudinal and transverse superex-
change interactions, respectively. Jz = Jxy is the case of
isotropic superexchange. The (2S + 1)2 = 100 energy states
of the dimer can be calculated by exact numerical diag-
onalization and are plotted in Figure 15 as a function of
applied field along the easy axis. Each state of [Mn4]2

can be labeled by two quantum numbers (M1, M2) for
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and (7/2, 9/2) states are strongly split into a symmetric (labeled
5′′) and antisymmetric (labeled 5′) combination of (9/2, 7/2) and
(7/2, 9/2) states. This splitting is used to measure the transverse
superexchange interaction constant Jxy . Cotunneling and other two-
body tunnel transitions have a lower probability of occurrence
and are neglected (Wernsdorfer et al., 2002b). (Reproduced from
R. Tiron et al., 2003, with permission from the American Physical
Society.  2003.)

the two Mn4 SMMs, with M1 = −9/2, −7/2, . . . , 9/2 and
M2 = −9/2, −7/2, . . . , 9/2. The degeneracy of some of the
(M1, M2) states is lifted by transverse anisotropy terms. For
the sake of simplicity, we mainly discuss the effect of the
transverse superexchange interaction Jtrans = Jxy(Sx,1Sx,2 +
Sy,1Sy,2) = Jxy(S+,1S−,2 + S−,1S+,2)/2, where S+,i and S−,i

are the usual spin raising and lowering operators. Because
Jtrans acts on (M, M ± 1) states to first order of pertur-
bation theory, the degeneracy of these states is strongly
lifted. For example, the (9/2, 7/2) and (7/2, 9/2) states are
strongly split into a symmetric (labeled 5′′) and antisym-
metric (labeled 5′) combination of (9/2, 7/2) and (7/2, 9/2)

states. Similar results hold for the (−9/2, −7/2) and (−7/2,
−9/2) states. Measurement of this energy splitting allows us
to determine the transverse superexchange interaction con-
stant Jxy because the latter is proportional to the former.

Figure 16 shows typical hysteresis loops (magnetization
vs magnetic field scans) with the field applied along the
easy axis of magnetization of [Mn4]2, that is, parallel to
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Figure 16. Hysteresis loops for the [Mn4]2 dimer at several field
sweep rates and 40 mK. The tunnel transitions (manifested by steps)
are labeled from 1 to 5 (see Figure 1). (Reproduced from R. Tiron
et al., 2003, with permission from the American Physical Society.
 2003.)

the S6 axis. These loops display steplike features separated
by plateaus. The step heights are temperature independent
below ∼0.35 K (Wernsdorfer, Aliaga-Alcalde, Hendrickson
and Christou, 2002). The steps are due to resonant quan-
tum tunneling of magnetization (QTM) between the energy
states of the [Mn4]2 dimer (see captions of Figures 15 and 16
for a discussion of five tunnel transitions). QTM has been
previously observed for most SMMs, but the novelty for
[Mn4]2 dimers is that the QTM is now the collective behavior
of the complete S = 0 dimer of exchange-coupled S = 9/2
Mn4 quantum systems. This coupling is manifested as an
exchange bias of all tunneling transitions, and the resulting
hysteresis loop consequently displays unique features, such
as the absence for the first time in an SMM of a QTM step
at zero field (Wernsdorfer, Aliaga-Alcalde, Hendrickson and
Christou, 2002).

Even though the five strongest tunneling transitions are
observed in Figure 16, fine structure is not observed. For
example, the hysteresis loops do not show the splitting of
the (9/2, 7/2) states (labeled 5′ and 5′′), which we suspected
might be due to line broadening. Usually, line broadening
in SMMs is caused by dipolar and hyperfine interactions
(Prokof’ev and Stamp, 1998), and distributions of anisotropy

and exchange parameters. In most SMMs, the zero-field res-
onance is mainly broadened by dipolar and hyperfine inter-
actions because distributions of anisotropy parameters do
not affect the zero-field resonance. For an antiferromagnet-
ically coupled dimer, however, this resonance is shifted to
negative fields. Therefore, a distribution of the exchange cou-
pling parameter Jz can further broaden this resonance. In
fact, we showed that the latter is the dominant source of
broadening (Tiron et al., 2003). We used the ‘quantum hole
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digging’ method (see Section 7.2) (Prokof’ev and Stamp,
1998; Wernsdorfer et al., 1999, 2000; Alonso and Fernan-
dez, 2001; Tupitsyn, Stamp and Prokof’ev, 2004) to provide
direct experimental evidence for the transitions 5′ and 5′′,
which established tunneling involving entangled dimer states
and allowed us to determine Jxy (Tiron et al., 2003).

5 RESONANT PHOTON ABSORPTION IN
Cr7Ni ANTIFERROMAGNETIC RINGS

Magnetic molecules are currently considered to be among
the most promising electron-spin-based quantum systems
for storing and processing quantum information. For this
purpose, ferromagnetic (Leuenberger and Loss, 2001) and
antiferromagnetic (Meier, Levy and Loss, 2003a,b) systems
have attracted an increasing interest (Troiani et al., 2005a,b).
In the latter case, the quantum hardware is thought of as
a collection of coupled molecules, each corresponding to
a different qubit. The main advantages would arise from
the fact that they are extremely small and almost identical,
allowing to obtain, in a single measurement, statistical
averages of a large number of qubits. The magnetic properties
can be modeled with an outstanding degree of accuracy.
And, most importantly, the desired physical properties can
be engineered chemically.

The suitability of Cr-based antiferromagnetic molecu-
lar rings for the qubit implementation has been pro-
posed (Troiani et al., 2005a,b). The substitution of one metal
ion in a Cr-based molecular ring with dominant antiferromag-
netic couplings allows its level structure and ground-state
degeneracy to be engineered (Overgaard et al., 2002; Larsen
et al., 2003). A Cr7Ni molecular ring was characterized
by means of low-temperature specific-heat and torque-
magnetometry measurements, thus determining the micro-
scopic parameters of the corresponding spin Hamiltonian.
The energy spectrum and the suppression of the leakage-
inducing S-mixing render the Cr7Ni molecule a suitable can-
didate for the qubit implementation (Carretta et al., 2005;
Troiani et al., 2005a,b).

In this section, we report the first microsuperconducting
quantum interference device (micro-SQUID) (Wernsdorfer,
Müller, Mailly and Barbara, 2004) studies of the Cr7Ni
molecular ring (Wernsdorfer, Mailly, Timco and Winpenny,
2005). EPR methods are combined with high-sensitivity mag-
netization measurements. We found very narrow resonant
photon absorption lines, which are mainly broadened by
hyperfine interactions. Similar measurements were performed
on Ni4 molecules (del Barco, Kent, Yang and Hendrickson,
2004) but quantum coherence was not directly observed.

The Cr7Ni molecular ring is based on a homometallic ring
with formula [Cr8F8(O2CCMe3)16]. The eight chromium(III)

ions lie at the corners of a regular octagon (Overgaard et al.,
2002). Each edge of the octagon is bridged by one fluoride
ion and two pivalate ligands. There is a large cavity at
the center of the ring. If a single chromium(III) ion is
replaced by a metal(II) ion, for example, nickel(II), this
makes the ring anionic and a cation can be incorporated
in the cavity. Thus, we can synthesize the compound
[H2NMe2][Cr7NiF8(O2CCMe3)16] (Larsen et al., 2003). If
crystallized from a mixture of THF and MeCN, the Cr8

and Cr7Ni compounds are isostructural, crystallizing in the
tetragonal space group, P 4.

The measurements were made in a dilution cryostat using
a single crystal of Cr7Ni of size 20 µm. The magnetic probe
was a micro-SQUID array (Wernsdorfer, 2001; Wernsdorfer,
Müller, Mailly and Barbara, 2004) equipped with three coils
allowing the application of a field in any direction and with
sweep rates up to 10 T s−1. The electromagnetic radiation
was generated by a frequency synthesizer triggered with a
nanosecond pulse generator. This setup allows continuous
variation of the frequency from 0.1 Hz to 20 GHz, with pulse
lengths ∼1 ns to continuous radiation (Thirion, Wernsdorfer
and Mailly, 2003). Using a gold radio frequency (RF) loop
of size 50 µm, the RF radiation field was directed in a
plane perpendicular to the applied static field µ0H . The
microwave power of the generator could be varied from
−80 to 20 dBm (10−11 to 10−1 W). The sample absorbs
only a small fraction of the generator power. This fraction
is, however, proportional to the microwave power of the
generator. The microwave amplitude BRF can be estimated
with the method described in Wernsdorfer, Müller, Mailly
and Barbara (2004). We found BRF ≈ 1 mT at 4 GHz and
15 dBm, which is more than 1000 times larger than that
obtained in our previous work on V15 (Wernsdorfer, Müller,
Mailly and Barbara, 2004).

Figure 17(a) shows magnetization versus applied field
curves for several field sweep rates at a cryostat temperature
of 0.04 K. The magnetization loops exhibit a clear hysteresis,
which is characteristic of the phonon-bottleneck regime with
a spin–phonon relaxation time to the cryostat of a few
seconds (Chiorescu et al., 2000b). Note that the degeneracy
of the Kramers doublet is lifted owing to internal transverse
fields (mainly the transverse hyperfine fields). In order to
quantify the out-of-equilibrium effect, Figure 17(b) presents
the same data as in Figure 17(a) but the magnetization
M is converted into a spin temperature TS using the
equation (Abragam and Bleaney, 1970)

M(TS)/Ms = tanh

(
gµBSµ0H

kBTS

)
(10)

with S = 1/2 and g = 2.1 (Larsen et al., 2003). Figure 17(b)
shows clearly a strong adiabatic cooling when sweeping the
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Figure 17. (a) Magnetization (M) hysteresis loops for several field
sweep rates at a cryostat temperature of 0.04 K. The loops are
normalized by the saturation magnetization Ms at 1.5 T. (b) Spin
temperature TS for field sweeps from negative to positive fields,
obtained by inversion of equation (10), where M(TS) are the data in
(a). (Reproduced from W. Wernsdorfer et al., 2005, with permission
from the American Physical Society.  2005.)

field down to zero field. Note that this cooling mechanism
might be used before qubit operations to reach extremely low
temperatures even at relatively high cryostat temperatures.
High-frequency noise from the RF-loop around the sample
leads to spin temperatures at 1 T being higher than the
cryostat temperature.

Figure 18 shows magnetization curves M(H) in the
quasi-static regime with a field sweep rate slow enough
(0.14 mTs−1) to keep the system at equilibrium. During the
field sweep, RF pulses are applied to the sample with a
pulse length of 1 µs and a period of 4 s between each pulse.
Depending on the RF frequency, clear dips are observed,
which result from resonant absorptions of photons associated
with spin transitions between the quantum numbers ms = 1/2
and −1/2. After each pulse, the magnetization relaxes back
to the equilibrium magnetization (see the fine structure in the
inset of Figure 18).

Typical relaxation measurements at a constant applied field
after RF pulses of different durations are shown in Figure 19.
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Figure 18. Magnetization curves measured with and without irra-
diation. The cryostat temperature was 40 mK and the field sweep
rate of 0.14 mT s−1 was slow in order to keep the system at equilib-
rium. The electromagnetic radiation was pulsed with a period of 4 s
and a pulse length of 1 µs. The RF frequencies are indicated and the
RF amplitude is slightly frequency dependent. Inset: Enlargement
of the 4 GHz resonance. The fine structure is due to the RF pulses.
(Reproduced from W. Wernsdorfer et al., 2005, with permission
from the American Physical Society.  2005.)

0

0.2

0.4

0.6

0.8

1

0 3

∆M
/M

s

t (s)

4 GHz
0.158 T 

0

0.2

0.4

0.6

0.8

102 103 104

∆M/Ms

w (ns)

On-resonance

Off-
resonance

34 ns
115 ns

345 ns

1003 ns

2882 ns

8247 ns 

22 571 ns 

1 2 4 5 6 7 8

Figure 19. Relaxation of magnetization after an RF pulse of
4 GHz. The pulse lengths w are indicated. Inset: magnetization
variation �M after a RF pulse versus the pulse length w for an
on-resonance field (0.1582 T) and off-resonance field (0.1722 T).
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The relaxation is exponential with the rate being independent
of the pulse length. Detailed studies show that the relaxation
rate is dominated by the phonon-bottleneck regime, that is,
the spin–phonon relaxation time to the cryostat.

The inset of Figure 19 presents the change of magneti-
zation �M between the magnetization before and after the
pulse as a function of the pulse length w. �M increases lin-
early with w for short pulses of few tens of nanoseconds.
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It saturates for w ≈ 10 µs and decreases for very long
pulses because of cryostat heating effects. Nonresonant pho-
ton absorption is also observed for very long pulses.

The resonant photon absorption lines are often taken
to estimate a lower bound on the decoherence time of a
qubit. We therefore investigated the linewidth observed in
Figure 18 in more detail. Figure 20(a) presents a typical
power dependence of the linewidth for continuous irradiation
at 4.2 GHz. Resonant photon absorption is clearly visible for
a generator power larger than −60 dBm (1 nW). The line
saturated at about −20 dBm (10 µW). Figure 20(b) presents
the absorption line for the pulsed technique (see Figure 18)
for several pulse lengths and a generator power of 15 dBm
(32 mW, BRF ≈ 1 mT). The resonant photon absorption is
clearly visible for pulse lengths longer than 10 ns. Note that
the linewidths in Figure 20(a) are nearly twice as large as
those in Figure 20(b).

In our case of an assembly of identical spins, the line
broadening is mainly due to dipolar and hyperfine inter-
actions. The dipolar coupling energy can be estimated
with Edip/kB ≈ (gµBS)2/V ≈ 0.1 mK (S = 1/2 and V =
6.3 nm3) (Troiani et al., 2005b). The hyperfine coupling with
the nuclear spins can be obtained by considering the dipolar
interaction of one Cr ion (S = 3/2) with the neighboring F
nucleus having a nuclear spin I = 1/2. With gF = +5.26 and
the distance of d = 0.2 nm between F and Cr ions, the inter-
action energy is about 0.4 mK for each of the eight F nuclear
spins (Troiani et al., 2005b). The hyperfine line broadening
of all eight F nuclear spins is about 3 mK, which corresponds

to 5 mT, in good agreement with the observed Gaussian
linewidths of about σ = 4 mT in Figures 18 and 20.

Finally, we discuss the possibility of observing Rabi oscil-
lations with the present setup. Owing to inhomogeneous
broadening, only a lower bound of the coherence time τ c

can be estimated from the resonance lines in Figure 20:
τ c ≈ Bν/(σν) ≈ 10 ns with Bν = 0.166 T, σ = 4 mT, and
ν = 4.2 GHz. The corresponding number of coherent flips
of the spin system is given by N = τ c/τRabi with τRabi =
2π/(γBRF) ≈ 40 ns for BRF ≈ 1 mT. We obtain N ≈ 0.25,
showing that there is possibility of seeing Rabi oscillations
in the present conditions. In order to obtain N � 1, it will
be necessary to further increase the radiation field BRF, to
substantially reduce the hyperfine broadening by substitut-
ing the F ions with OH groups, and to minimize the dipolar
coupling by doping the crystal of Cr7Ni molecules with Cr8

molecules [3].

6 PHOTON-ASSISTED TUNNELING IN
SINGLE-MOLECULE MAGNET

It has also been proposed that molecular nanomagnets could
be used as quantum computers by implementing Grover’s
algorithm (Leuenberger and Loss, 2001). For this, it is
necessary to be able to generate an arbitrary superposition
of eigenstates of these systems. The method suggested
was through the use of multifrequency coherent magnetic
radiation in the microwave and radiofrequency range. This
would first introduce and amplify the desired phase for
each mS state and this information could be finally read
out by standard magnetic resonance techniques. In this
approach advantage is taken from the non-equidistance of
the mS levels of the ground multiplet (arising from the
large axial anisotropy of these systems), which allows
coherent populations of the different mS levels. A theoretical
work pointed out that a very accurate control of pulse
shape technique, both in amplitude, duration, and choice of
frequency is needed to fulfill the condition to design quantum
computing devices in molecular nanomagnets (Zhou, Tao,
Shen and Liang, 2002). In addition to such basic difficulties,
we see in the subsequent text that the total microwave power
convoyed onto the samples cannot exceed a critical value
above which nonlinear effects occur.

In order to investigate the feasibility of the proposed Pro-
cess, any preliminary experiment should aim to understand
the effects of microwave absorption on the spin dynamics
of these systems at low temperatures. The measurements
were performed using micro-Hall bars (Sorace et al., 2003).
Continuous microwave radiation was generated by a cou-
ple of Gunn diodes equipped with calibrated attenuators.
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Figure 21. Schematic representation of photon-assisted tunneling.
On irradiating an Fe8 sample with a radiation of wavelength
corresponding to the mS = −10 to −9 splitting (vertical arrow), an
enhancement of the fraction of molecules that tunnel from the first
excited state is expected (horizontal arrow). The use of circularly
polarized radiation allows selecting only one side of the well and
distinguishing between spin–phonon and spin–photon transitions.
(Reproduced from L. Sorace et al., 2003, with permission from the
American Physical Society.  2003.)

With this experimental setup, which has very good stability
of emitted power and a narrow bandwidth (100 kHz), only
relative powers at the output of the diode can be known,
which will be referred to as ρ in the following discussion.
We irradiated the sample using a 6-mm waveguide equipped
with infrared filters in order to reduce heating. The circu-
lar polarization was maximized around 97%. The study was
performed on a 0.1-mm Fe8 single crystal.

As schematically depicted in Figure 21, microwave radia-
tion with a frequency of 115 GHz corresponds to the energy
separation between the ground states mS = ±S and the first
excited states mS = ±(S − 1) of Fe8 in zero applied mag-
netic field (Barra et al., 1996; Hill et al., 2002). If the radia-
tion is linearly polarized, the populations of the first excited
states (mS = ±(S − 1)) in both wells will be enhanced
equally (equal transition probability for �mS = ±1). On the
other hand, the use of circular polarization has the advan-
tage of distinguishing between �mS = +1 (left polariza-
tion, σ− photons) or �mS = −1 (right polarization, σ+

photons) (Abragam and Bleaney, 1970), and the population
of only one of the two excited states will be enhanced
(Figure 21). An excess of tunneling from one well to the
other is then expected. Therefore, circular polarization can
help distinguish between spin–phonon relaxation, and spin-
phonon relaxation modified by the absorption of photons.
The former equally affects the two sides of the barrier, that
is, the two branches of the hysteresis loop, while the latter
modifies the population of only one side of the barrier, that is,
one branch of the hysteresis loop. Any difference observed
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Figure 22. Magnetic hysteresis loops of Fe8 at a field sweep rate
of 0.007 T s−1 and at 60 mK under irradiation with microwaves at
115 GHz and for several microwave powers ρ (a). The easy axis of
the crystal is oriented along the applied field and perpendicular to
the radiation oscillating magnetic field. The observed increasing of
the tunneling rate at zero field, as a consequence of the absorption
of photons induced by circularly polarized radiation, becomes
evident by comparing the zero-field steps after positive or negative
saturation. For comparison, the thermal behavior is presented in (b).
(Reproduced from L. Sorace et al., 2003, with permission from the
American Physical Society.  2003.)

between the two branches of the hysteresis loop has to be
traced back to photon absorption.

Figure 22(a) shows the hysteresis loops of an Fe8 single
crystal with the easy axis parallel to the applied field, mea-
sured at 60 mK under irradiation. The tunneling transition
near zero field is strongly enhanced for a radiation at
115 GHz. This is in agreement with a photon-induced pop-
ulation transfer from mS = 10 to mS = 9, and agrees with
earlier HF-EPR studies showing strong zero field absorp-
tion at about 116 GHz (Barra et al., 1996; Hill et al., 2002).
Figure 22(a) also shows the expected asymmetry of the hys-
teresis loops in the presence of circularly polarized radiation.
In particular, the height of the zero-field step (first tunnel
resonance, n = 0) obtained when sweeping the field from
negative saturation is much less affected than when sweeping
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from positive saturation. This behavior is completely differ-
ent from phonon-assisted tunneling (Figure 22b) and clearly
establishes that tunneling is assisted by photons for the
matching frequency of 115 GHz. The observation of a more
symmetric shape of the hysteresis curve at high microwave
power can be explained both by the incomplete microwave
polarization and by phonon emission, leading to relaxation
on both sides of the barrier.

A detailed study showed that at lowest powers the tunnel
probability increases linearly with power, whereas at higher
powers a strongly nonlinear regime is observed (Sorace
et al., 2003). The latter might be due to multispin and
coherent photon transitions.

7 ENVIRONMENTAL DECOHERENCE
EFFECTS IN NANOMAGNETS

At temperatures below 0.36 K, Fe8 molecular clusters display
a clear crossover from thermally activated relaxation to a
temperature-independent quantum regime, with a pronounced
resonance structure of the relaxation time as a function of the
external field (Section 3). It was surprising, however, that
the observed relaxation of the magnetization in the quantum
regime was found to be nonexponential and the resonance
width orders of magnitude too large (Sangregorio et al.,
1997; Ohm, Sangregorio and Paulsen, 1998a). The key to
understand this seemingly anomalous behavior involves the
hyperfine fields as well as the evolving distribution of the
weak dipole fields of the nanomagnets themselves (Prokof’ev
and Stamp, 1998). Both effects were shown to be the main
source of decoherence at very low temperature. At higher
temperatures, phonons are another source of decoherence.

In the following sections, we focus on the low tempera-
ture and low field limits, where phonon-mediated relaxation
is astronomically long and can be neglected. In this limit,
the m = ±S spin states are coupled owing to the tunneling
splitting �±S , which is about 10−7 K for Fe8 (Section 3.2)
with S = 10. In order to tunnel between these states, the lon-
gitudinal magnetic energy bias ξ = gµBSHlocal due to the
local magnetic field Hlocal on a molecule must be smaller
than �±S , implying a local field smaller than 10−8 T for
Fe8 clusters. Since the typical intermolecular dipole fields
are of the order of 0.05 T, at first it seems that almost all
molecules should be blocked from tunneling by a very large
energy bias. Prokof’ev and Stamp have proposed a solution
to this dilemma by proposing that fast dynamic nuclear fluc-
tuations broaden the resonance, and the gradual adjustment
of the dipole fields in the sample caused by the tunneling
brings other molecules into resonance and allows continuous
relaxation (Prokof’ev and Stamp, 1998). Some interesting
predictions are briefly reviewed in the following section.

7.1 Prokof’ev–Stamp theory

Prokof’ev and Stamp were the first to realize that there are
localized couplings of environmental modes with mesoscopic
systems that cannot be modeled with an ‘oscillator bath’
model (Feynman and Vernon, 1963) describing delocalized
environmental modes such as electrons, phonons, photons,
and so on. They found that these localized modes such
as nuclear and paramagnetic spins were often strong and
described them with a spin bath model (Prokof’ev and
Stamp, 1996). We do not review this theory (Prokof’ev
and Stamp, 2000) but focus on one particular application
that is interesting for molecular clusters (Prokof’ev and
Stamp, 1998). Prokof’ev and Stamp showed that, at a given
longitudinal applied field Hz, the magnetization of a crystal
of molecular clusters should relax at short times with a
square-root time dependence, which is due to a gradual
modification of the dipole fields in the sample caused by
the tunneling

M(Hz, t) = Min + (Meq(Hz) − Min)

√
�sqrt(Hz)t (11)

Here, Min is the initial magnetization at time t = 0 (after a
rapid field change), and Meq(Hz) is the equilibrium magne-
tization at Hz. The rate function �sqrt(Hz) is proportional to
the normalized distribution P (Hz) of molecules that are in
resonance at Hz:

�sqrt(Hz) = c
ξ 0

ED

�2
±S

4�
P (Hz) (12)

where ξ 0 is the linewidth from the nuclear spins, ED is
the Gaussian half-width of P (Hz), and c is a constant of
the order of unity, which depends on the sample shape. If
these simple relations are exact, then measurements of the
short time relaxation as a function of the applied field Hz

directly give the distribution P (Hz), and they allow one to
measure the tunnel splitting �±S , which is described in the
next section.

7.2 Hole digging method to study dipolar
distributions and hyperfine couplings

Motivated by the Prokof’ev–Stamp theory (Prokof’ev and
Stamp, 1998), we developed a new technique–which we call
the hole digging method–that can be used to observe the time
evolution of molecular states in crystals of molecular clus-
ters. It allowed us to measure the statistical distribution of
magnetic bias fields in the Fe8 system that arise from the
weak dipole fields of the clusters themselves. A hole can be
‘dug’ into the distribution by depleting the available spins
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Figure 23. Schema of the hole digging method presenting the time
dependence of temperature, applied field, and magnetization of the
sample.

at a given applied field. Our method is based on the sim-
ple idea that, after a rapid field change, the resulting short
time relaxation of the magnetization is directly related to
the number of molecules that are in resonance at the given
applied field. Prokof’ev and Stamp have suggested that the
short time relaxation should follow a

√
t−relaxation law

(equation (11)). However, the hole digging method should
work with any short time relaxation law–for example, a
power law

M(Hz, t) = Min + (Meq(Hz) − Min)(�short(Hz)t)
α (13)

where �short is a characteristic short time relaxation rate
that is directly related to the number of molecules that
are in resonance at the applied field Hz, and 0 < α < 1
in most cases. α = 0.5 in the Prokof’ev–Stamp theory
(equation (11)) and �sqrt is directly proportional to P (Hz)

(equation (12)). The hole digging method can be divided into
three steps (Figure 23):

1. Preparing the initial state: A well-defined initial mag-
netization state of the crystal of molecular clusters can
be achieved by rapidly cooling the sample from high
down to low temperatures in a constant applied field
H 0

z . For zero applied field (Hz = 0) or rather large
applied fields (Hz > 1 T), a demagnetized or saturated
magnetization state of the entire crystal can be obtained,

respectively. When quenching the sample in a small field
of few milliteslas, any possible initial magnetization Min

is achieved. When the quench is fast (<1 s), the sample’s
magnetization does not have time to relax, either by ther-
mal or by quantum transitions. This procedure yields
a frozen thermal equilibrium distribution, whereas for
slow cooling rates the molecule spin states in the crys-
tal might tend to a certain dipolar ordered ground state.
Finally, a randomly disordered state can be achieved by
sweeping the field back and forth over the zero-field res-
onance. During each sweep, few spins tunnel randomly
back and fourth. When the Landau-Zener tunnel prob-
ability is small (PLZ 
 1), and a large number of back
and forth sweeps is performed, the randomly disordered
state can be complete (Wernsdorfer, Bhaduri, Vinslava
and Christou, 2005).

2. Modifying the initial state–hole digging: After preparing
the initial state, a field Hdig is applied during a time
tdig, called digging field and digging time, respectively.
During the digging time and depending on Hdig, a
fraction of the molecular spins tunnel (back and/or forth),
that is, they reverse the direction of magnetization [4].

3. Probing the final state: Finally, a field H
probe
z is applied

(Figure 23) to measure the short time relaxation from
which one yields �short (equation (13)), which is related
to the number of spins that are still free for tunneling
after step (2).

The entire procedure is then repeated many times but at
other fields H

probe
z , yielding �short(Hz, Hdig, tdig), which is

related to the distribution of spins P (Hz, Hdig, tdig) that are
still free for tunneling after the hole digging. For tdig = 0,
this method maps out the initial distribution.

7.3 Intermolecular dipole interaction in Fe8

We applied the hole digging method to several samples
of molecular clusters and quantum spin glasses. The most
detailed study has been done on the Fe8 system. We found
the predicted

√
t relaxation (equation (11)) in experiments

on fully saturated Fe8 crystals (Ohm, Sangregorio and
Paulsen, 1998a,b) and on nonsaturated samples (Wernsdor-
fer et al., 1999). Figure 24 displays a detailed study of the
dipolar distributions, revealing a remarkable structure that
is due to next-nearest-neighbor effects (Wernsdorfer et al.,
1999). These results are in good agreement with simula-
tions (Cuccoli et al., 1999; Tupitsyn, Stamp and Prokof’ev,
2004).

For a saturated initial state, the Prokof’ev–Stamp the-
ory allows one to estimate the tunnel splitting �±S . Using
equations (3), (9), and (12) of Prokof’ev and Stamp (1998),
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Figure 24. Field dependence of the short time square-root relax-
ation rates �sqrt(Hz) for three different values of the initial magne-
tization Min. According to equation (12), the curves are proportional
to the distribution P(Hz) of magnetic energy bias due to local
dipole field distributions in the sample. Note the logarithmic scale
for �sqrt. The peaked distribution labeled Min = −0.998Ms was
obtained by saturating the sample, whereas the other distributions
were obtained by thermal annealing. Min = −0.870Ms is distorted
by nearest-neighbor lattice effects. The peak at −0.04 T as well as
the shoulder at 0.02 T and 0.04 T are originated by the clusters
that have one nearest-neighbor cluster with reversed magnetization:
the peak at −0.04 T corresponds to the reversal of the neighboring
cluster along the a crystallographic axis, which almost coincides
with the easy axis of magnetization, while the shoulder at 0.02 and
0.04 T is due to the clusters along crystallographic axes b and c.
(Reproduced from W. Wernsdorfer et al., 1999, with permission
from the American Physical Society.  1999.)

along with integration, we find
∫

�sqrtdξ = c
ξ0
ED

�2
±S

4�
, where

c is a constant of the order of unity that depends on the
sample shape. With ED = 15 mT, ξ 0 = 0.8 mT, c = 1, and
�sqrt (Wernsdorfer et al., 1999, 2000), we find �±10 =
1.2 × 10−7 K, which is close to the result of �±10 =
1.0 × 10−7 K obtained by using a Landau–Zener method
(Section 3.1) (Wernsdorfer and Sessoli, 1999).

Whereas the hole digging method probes the longitudi-
nal dipolar distribution (Hz direction), the Landau–Zener
method can be used to probe the transverse dipolar distri-
bution by measuring the tunnel splittings � around a topo-
logical quench.

7.4 Hyperfine interaction in Fe8

The strong influence of nuclear spins on resonant quantum
tunneling in the molecular cluster Fe8 was demonstrated for
the first time (Wernsdorfer et al., 2000) by comparing the
relaxation rate of the standard Fe8 sample with two iso-
topic modified samples: (i) 56Fe is replaced by 57Fe, and
(ii) a fraction of 1H is replaced by 2H. By using the hole
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Figure 25. Comparison of the short time relaxation rates of three
different Fe8 samples at T = 40 mK with Htrans = 0 and Minit = 0.
The inset displays a typical example of a hole that was dug into
the distribution by allowing the sample to relax for the time tdig at
µ0Hdig = 14 mT. (Reproduced from W. Wernsdorfer et al., 2000,
with permission from the American Physical Society.  2000.)

digging method, we measured an intrinsic broadening that
is driven by the hyperfine fields (Figure 25). Our measure-
ments are in good agreement with numerical hyperfine cal-
culations (Wernsdorfer et al., 2000; Tupitsyn, Stamp and
Prokof’ev, 2004). For T > 1.5 K, the influence of nuclear
spins on the relaxation rate is less important, suggesting that
spin–phonon coupling dominates the relaxation rate.

8 CONCLUSION

In conclusion, we presented detailed measurements that
demonstrated that molecular nanomagnets offer a unique
opportunity to explore the quantum dynamics of a large but
finite spin. We focused our discussion on the Fe8 molecular
nanomagnet because it is the first system where studies in
the pure quantum regime were possible. The tunneling in
this system is remarkable because it does not show up at the
lowest orders of perturbation theory.

A new family of supramolecular, antiferromagnetically
exchange-coupled dimers of SMMs has recently been
reported (Wernsdorfer, Aliaga-Alcalde, Hendrickson and
Christou, 2002). Each SMM acts as a bias on its neighbor,
shifting the quantum tunneling resonances of the individual
SMMs. Hysteresis loop measurements on a single crystal
of SMM dimers have established quantum tunneling of the
magnetization via entangled states of the dimer. This showed
that the dimer really does behave as a quantum-mechanically
coupled dimer. The transitions are well separated, suggesting
long coherence times compared to the timescale of the energy
splitting (Tiron et al., 2003). This result is of great impor-
tance if such systems are to be used for quantum computing.
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Molecules with small spin have also been studied. For
example, time-resolved magnetization measurements were
performed on a spin 1/2 molecular complex, the so-called
V15 (Chiorescu et al., 2000a). Despite the absence of a
barrier, magnetic hysteresis is observed over a timescale of
several seconds. A detailed analysis in terms of a dissipa-
tive two-level model has been given, in which fluctuations
and splittings are of the same energy. Spin–phonon coupling
leads to long relaxation times and to a particular ‘butterfly’
hysteresis loop (Chiorescu et al., 2000b; Dobrovitski, Kat-
snelson and Harmon, 2000). We presented magnetization
measurements on a crystal of Cr7Ni antiferromagnetic rings
with a spin 1/2. Irradiation with microwaves at frequencies
between 1 and 10 GHz leads to the observation of very nar-
row resonant photon absorption lines, which are broadened
by hyperfine and spin–spin interactions.

The use of circularly polarized microwaves allowed us
to show for the first time the phenomenon of photon-
assisted tunneling in magnetism, using an SMM Fe8 (Sorace
et al., 2003). In accordance with the selection rules for
EPR spectroscopy (Abragam and Bleaney, 1970), circularly
polarized radiation promotes the transition mS = 10 to 9
with �mS = −1, giving an effect of magnetic dichroism
at millimeter wavelengths. At lowest powers, the tunnel
probability increases linearly with power, whereas at higher
powers a strongly nonlinear regime is observed. The latter
might be due to multispin and coherent photon transitions.

What remains still debated is the possibility of observing
quantum coherence between states of opposite magnetization.
Dipole–dipole and hyperfine interactions are source of
decoherence. In other words, when a spin has tunneled
through the barrier, it experiences a huge modification of
its environment (hyperfine and dipolar), which prohibits
the back tunneling. Prokof’ev and Stamp suggested three
possible strategies to suppress the decoherence (Prokof’ev
and Stamp, 1995). (i) Choose a system where the nuclear
magnetic resonance (NMR) frequencies far exceed the tunnel
frequencies making any coupling impossible. (ii) Isotopically
purify the sample to remove all nuclear spins. (iii) Apply
a transverse field to increase the tunnel rate to frequencies
much larger than hyperfine field fluctuations. Several groups
are currently working on such proposals.

With reference to the perspectives of the field of SMMs,
we expect that chemistry will play a major role through the
synthesis of novel larger spin clusters with strong anisotropy.
We want to stress that there are already many other molecular
nanomagnets (the largest is currently an Mn84, Figure 2) that
are possible model systems. We believe that more sophisti-
cated theories that describe the dephasing effects of the envi-
ronment onto the quantum system are needed. These investi-
gations are important for studying the quantum character of
molecular clusters for applications like ‘quantum computers’.

The first implementation of Grover’s algorithm with molecu-
lar nanomagnets has been proposed (Leuenberger and Loss,
2001). Antiferromagnetic systems have attracted much inter-
est. In this case, the quantum hardware is thought of as
a collection of coupled molecules, each corresponding to
a different qubit (Meier, Levy and Loss, 2003a,b; Troiani
et al., 2005a,b). In order to explore these possibilities, new
and very precise setups are currently being built and new
methods and strategies are being developed. The field of
molecular nanomagnets is evolving toward molecular elec-
tronics and spintronics, which are both rapidly emerging
fields of nanoelectronics with a strong potential impact for
the realization of new functions and devices helpful for infor-
mation storage as well as quantum information. New projects
aim at the merging of the two fields by the realization of
molecular junctions that involve a molecular nanomagnet.
In order to tackle the challenge of controlled connection at
the single-molecule level, molecular self-assembly on nano-
junctions obtained by the technique of electromigration was
used (Heersche et al., 2006; Jo et al., 2006). Furthermore, a
new nano-SQUID with carbon nanotube Josephson junctions
has been developed (Cleuziou et al., 2006), which should be
sensitive enough to study individual magnetic molecules that
are attached to the carbon nanotube. Such techniques will
lead to enormous progress in the understanding of the elec-
tronic and magnetic properties of isolated molecular systems
and will reveal intriguing new physics.

NOTES

[1] The Kramers theorem asserts that no matter how unsym-
metric the crystal field is, an ion possessing an odd
number of electrons must have a ground state that is at
least doubly degenerate, even in the presence of crystal
fields and spin–orbit interactions (Kramers, 1930).

[2] The probability density of reversal of a stochas-
tic process is −dP/dt = P/τ and the maximum
of the probability density can be derived from
d2P/dt2 = P (1 + dτ/dt)/τ 2 = 0. This gives dτ/dt =
−1. The application to equation (5) leads to �E(H) =
kBT ln

[
kBT /

(
τ 0

dE
dH

dH
dt

)]
. Using equation (6) we find

equation (7).
[3] Very recently measurements (Ardavan et al., 2007) of

the dephasing time of the Cr7Ni molecular magnets
showed values up to three orders of magnitude higher
than originally thought (Wernsdorfer, Mailly, Timco and
Winpenny, 2005). Such a long timescale gives enough
time for about a hundred manipulations, which is a
promising figure for quantum computing (Wernsdorfer,
2007).
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[4] The field sweeping rate to be applied Hdig should be fast
enough to minimize the change of the initial state during
the field sweep.
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Néel, L. (1949). Annales de Geophysique, 5, 99.

Novak, M. and Sessoli, R. (1995). AC susceptibility relaxation
studies on a manganese organic cluster compound: Mn12-ac. In
Quantum Tunneling of Magnetization-QTM’94, Vol. 301 of NATO
ASI Series E: Applied Sciences , Gunther, L. and Barbara, B.
(Eds.), Kluwer Academic Publishers: London, pp. 171–188.

Ohm, T., Sangregorio, C. and Paulsen, C. (1998a). Local field
dynamics in a resonant quantum tunneling system of magnetic
molecules. European Physical Journal B, 6, 195.

Ohm, T., Sangregorio, C. and Paulsen, C. (1998b). Non-exponential
relaxation in a resonant quantum tunneling system of magnetic
molecules. Journal of Low Temperature Physics, 113, 1141.

Overgaard, J., Iversen, B.B., Palii, S.P., et al. (2002). Host-guest
chemistry of the chromium-wheel complex [Cr8F8(tBuCO2)16]:
prediction of inclusion capabilities by using an electrostatic
potential distribution determined by modeling synchrotron x-ray
structure factors at 16 K. Chemistry- a European Journal, 8, 2775.

Paulsen, C. and Park, J-G. (1995). In Quantum Tunneling of
Magnetization-QTM’94, Volume 301 of NATO ASI Series E:
Applied Sciences . Gunther, L. and Barbara, B. (Eds.), Kluwer
Academic Publishers: London, pp. 189–205.

Perenboom, J., Brooks, J., Hill, S., et al. (1998). Relaxation of the
magnetization of Mn12 acetate. Physical Review B, 58, 330–338.

Politi, P., Rettori, A., Hartmann-Boutron, F. and Villain, J. (1995).
Tunneling in mesoscopic magnetic molecules. Physical Review
Letters, 75, 537.

Pontillon, Y., Caneschi, A., Gatteschi, D., et al. (1999). Magnetiza-
tion density in an irob(III) magnetic cluster. A polarized neutron
investigation. Journal of the American Chemical Society, 121,
5342.

Price, D.J., Lionti, F., Ballou, R., et al. (1999). Large metal
clusters and lattices with analogues to biology. Philosophical
Transactions of the Royal Society of London. Series A, 357, 3099.

Prokof’ev, N. and Stamp, P. (1995). Spin environments and the
suppression of quantum coherence. In Quantum Tunneling of
Magnetization-QTM’94, Vol. 301 of NATO ASI Series E: Applied
Sciences , Gunther, L. and Barbara, B. (Eds.), Kluwer Academic
Publishers: London, p. 369.

Prokof’ev, N. and Stamp, P. (1996). Quantum relaxation of magneti-
sation in magnetic particles. Journal of Low Temperature Physics,
104, 143.

Prokof’ev, N. and Stamp, P. (1998). Low-temperature quantum
relaxation in a system of magnetic nanomolecules. Physical
Review Letters, 80, 5794.

Prokof’ev, N. and Stamp, P. (2000). Theory of the spin bath. Reports
on Progress in Physics, 63, 669–726.



Molecular nanomagnets 23
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zation reversal. Physical Review Letters, 78, 1791.



24 Magnetic materials with outstanding properties

Wernsdorfer, W., Orozco, E.B., Hasselbach, K., et al. (1997b).
Macroscopic quantum tunneling of magnetization of single ferri-
magnetic nanoparticles of barium ferrite. Physical Review Letters,
79, 4014.

Wernsdorfer, W. and Sessoli, R. (1999). Quantum phase interference
and parity effects in magnetic molecular clusters. Science, 284,
133.

Wieghardt, K., Pohl, K., Jibril, I. and Huttner, G. (1984). Hydrolysis
products of the monomeric amine complex (C6H15N3)FeCl3:
the structure of the octameric Iron(III) cation of [Fe8. . .].
Angewandte Chemie International Edition in English, 23, 77–78.

Yoo, J., Brechin, E.K., Yamaguchi, A., et al. (2000). Single-
molecule magnets; a new class of tetranuclear manganese mag-
nets. Inorganic Chemistry, 39, 3615.

Yoo, S-K. and Lee, S-Y. (2000). Geometrical phase effects in biaxial
nanomagentic particles. Physical Review B, 62, 3014.

Zener, C. (1932). Non-adiabatic crossing of energy levels. Proceed-
ings of the Royal Society of London, Series A, 137, 696.

Zhou, B., Tao, R., Shen, S. and Liang, J.Q. (2002). Quantum
computing of molecular magnet Mn12. Physical Review A, 66,
010301.



Spintronic Biochips for Biomolecular Recognition

Paulo P. Freitas1,2 and Hugo A. Ferreira1,2

1 INESC – Microsystems and Nanotechnologies, Lisboa, Portugal
2 Instituto Superior Técnico, Lisboa, Portugal
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1 INTRODUCTION

The past few years have witnessed a continuously growing
interest in the use of magnetic-field sensors for biological
applications and, in particular, for the detection of biomolec-
ular recognition.

Biomolecular recognition can be understood as the inter-
action between biomolecules that show affinity toward each
other or present some sort of complementarity between them.
This translates into the establishment of intermolecular forces
of varying intensity either they are Van der Waals forces,
salt bridges or hydrogen bonds. Examples of these inter-
actions can be DNA–DNA hybridization, antibody–antigen
recognition and general ligand–receptor binding (Voet, Voet
and Pratt, 1999).

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

Biomolecular recognition is in fact ubiquitous in life as
it is the means through which cell ‘machinery’ works: the
replication of the genetic code; the translation of this code
into functional units, the enzymes; the fabrication and mod-
ification of biomolecular structures such as proteins, lipids,
glycids, and nucleic acids; the intra and extracellular trans-
port; cell metabolism; cell sensing and signaling pathways;
just to name a few of general biological processes (Voet,
Voet and Pratt, 1999; Cooper, 2000). More familiar uses
of biomolecular recognition, on the other hand, include,
for instance, pregnancy tests, blood type testing, genetic
screening, and site-directed cancer treatments presently being
developed.

It is then understandable that the detection of biomolecular
recognition is becoming even more important in areas
such as healthcare, pharmaceutical industry, environmental
analysis, detection of biological warfare agents, and in broad
biotechnological applications.

Generally, the detection of biomolecular recognition
involves the use of a known biomolecule that probes a
testing sample for a specific target analyte. Hence, they
are given the names of probe biomolecule and target
biomolecule, respectively. For instance, in pregnancy tests
the presence of a specific hormone, the human Chorionic
Gonadotropin (hCG), in urine indicates that the woman is
most probably pregnant. In this case, the target molecule
is hCG and the probe biomolecule is an antibody for
hCG.

Conventional methods of detecting biomolecular recogni-
tion involve the labeling of biomolecules such that a distinct
physical property can be detected or measured in the event
of biomolecular recognition. As so, biomolecules are usually
labeled with radioactive, colorimetric or fluorescent markers,
which can be a small chemical moiety, a biomolecule, an
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Figure 1. A familiar example of biomolecular recognition: the pregnancy test. Human Chorionic Gonadotropin (hCG) molecules present
in the urine of a pregnant woman migrate through a membrane by capillarity. These molecules are first recognized by antibodies labeled
with a colored dye, which are adsorbed to the membrane. The antibody-protein moves in the membrane support and are recognized by
antibodies immobilized in a narrow region of the membrane. The result is a thin colored line in the test indicating that the woman is
pregnant. At the same time, control antibodies also labeled with a similar dye move through the membrane and are bound to the control
antibodies immobilized in the membrane indicating that the test proceeded reasonably.

enzyme, a particle or even a conjugation of several of these
elements.

Again, in present pregnancy home tests the detection of
the hCG hormone proceeds more or less as follows: the
hCG molecules carried by the urine move by capillarity
through a membrane which contains antibodies labeled with
a colored dye (detector antibody). The antibodies recognize
the hormone and the complex migrates along the membrane.
The hCG molecule complexed with the detector antibody is
then recognized by secondary antibodies immobilized in a
narrow region of the membrane (capture antibodies) forming
a ‘sandwich’ like structure. Finally, a thin colored line in the
test strip appears as a result of increased concentration of blue
dyes at that region (Unipath, http://www.unipath.com). The
pregnancy test referred in the preceding text is an example
of immunoassay, as the target is recognized by an antibody
(Figure 1).

The conventional labeling methods present a series of dis-
advantages. In the case of biomolecular radioactive labeling,
although being a sensitive technique, expensive scintillators
are required for quantitative measurement. Furthermore, the
great care necessary when working with radioactive com-
pounds limits the use of this technique. These systems are
presently being replaced by colorimetric- and fluorescent-
based ones, which do not show this drawback.

Enzyme-label-based systems usually produce a colored
compound that indicates biomolecular recognition. They
offer high sensitivity and enable multiplex analysis but
require additional reagents (the substrate that produces a
colored compound when catalyzed by the enzyme) and the
enzyme activity is sensitive to changes in the environment,

namely temperature and pH, which limits the range of use of
the method. The most widely used colorimetric system is the
enzyme-linked immunosorbent assay (ELISA) of which the
presented pregnancy test is a variation (Peruski and Peruski,
2003).

The systems that make use of fluorescent labels are also
quite sensitive and also enable multiplexing but they often
require expensive optical systems for signal detection, and
furthermore, the labels photo bleach when exposed to light.
This then limits the generalized use of these systems and
limits the reproducible retesting of the assays. The most
familiar systems of this kind are the real-time polymerase
chain reaction (RT-PCR) systems (Cirino, Musser and Egan,
2004) and the so-called DNA chips or DNA microarrays
(Ramsay, 1998) which will be discussed in more detail
further in Figure 2.

Recent advances on particle synthesis and preparation,
such as metal and semiconducting nanoparticles, have over-
come some of the limitations of the traditional labels:
radioactive, chemical, and biomolecular, such as the danger-
ous handling and the stability. These labels are also enabling
higher biomolecular detection sensitivities and conferring
new functionalities to bioanalytical assays (Katz and Willner,
2004).

Magnetic particles have been traditionally used in biolog-
ical applications for biomolecular and cell separation; has a
contrast agent in nuclear magnetic resonance (NMR) imag-
ing; in hyperthermia studies for cancer treatment or even for
drug, gene, or radionuclide delivery (Häfeli, Schutt, Teller
and Zborowski, 1997; Pankhurst, Connolly, Jones and Dob-
son, 2003). More recently, they started to be used as labels
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Figure 2. DNA chips or DNA microarrays are comprised of a
substrate (usually glass slides) patterned with different DNA probes.
These regions usually are circular spots of varying diameters (∼50
to 100 µm or more) that contain millions of copies of the same
DNA sequence. In these systems, sample DNA targets are usually
labeled with fluorophores and are incubated with the microarrays
for several hours for hybridization to occur. DNA target and probe
hybridization is detected by measuring the fluorescent emission of
the labels with complex optical systems and photodetectors.

or markers for the detection of biomolecular recognition.
They offer a number of advantages over colorimetric or flu-
orescent labels: they are more stable over a broader range
of experimental conditions (in temperature and pH) and
more stable over time (do not photo bleach, like fluorescent
labels); they enable more sensitive measurements as biolog-
ical samples usually do not contain magnetic material, but
often show a color or fluorescent background; they can be
used to discriminate between specifically and unspecifically
bound biomolecules through the application of a magnetic
field (Lee et al., 2000); they can be transported and manip-
ulated on chip (Gijs, 2004; Yellen, Hovorka and Friedman,
2005); and they can be readily detected using magnetic-field
sensors.

The idea behind magnetic biosensors and biochips is
then to use the magnetic labels instead of the conventional
ones: biomolecular recognition between target and probe
biomolecules is detected by a magnetic-field transducer
that senses the magnetic labels bound to the target–probe
complexes.

Since magnetic biosensors were first proposed as a simple
and sensitive biomolecular recognition detection technique,
by making use of coils and ferrofluids (Kriz, Radevik and
Kriz, 1996; Kriz, Gehrke and Kriz, 1998), different assay
types with different magnetic sensors and labels have been
proposed and developed. Basically, two types of assays can
be considered with respect to where biomolecular recognition
is detected: the volume detection and the surface detection
assays (Figure 3).

×

Magnetic transducer (coils)

(a) (b)

Biomolecular
recognition

Magnetic label
solution

Magnetic transducer

Biomolecular
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Figure 3. Two types of assays for biomolecular recognition using
magnetic labels. (a) In volume detection assays, biomolecular
recognition is detected by measuring the magnetic properties of
a bulk solution comprised of magnetic labels functionalized with
probe molecules that recognize particular targets. (b) In surface
detection assays, magnetic labels bound to a surface through
biomolecular recognition of probe and target molecules are detected
by a nearby magnetic transducer.

In volume detection assays (Figure 3a), biomolecular
recognition is detected in the bulk of a solution comprised
of a suspension of magnetic particles functionalized with
the probe molecules of interest. Upon binding of the target
analytes to the probes, the hydrodynamic radius of the mag-
netic particles increases causing a change in their magnetic
relaxation times. As a consequence, a shift in the frequency-
dependent magnetic susceptibility is observed (Connolly and
St. Pierre, 2001; Astalan et al., 2004; Chung et al., 2004).
In these assays, measurement devices such as ac magnetic
susceptometers, that measure changes in both the inductance
and resistance of an induction coil, are used.

In surface detection assays (Figure 3b), on the other
hand, probe biomolecules are immobilized on a solid phase.
In these assays, target biomolecules move from the bulk
solution to the solid phase surface where they are recognized
by the probes. Magnetic carriers bound to the target–probe
complexes are then immobilized to the surface. In this case,
the magnetic relaxation processes are distinct from when
the carriers are free in solution (this will be discussed later
on). This difference in relaxation times is used on surface
detection assays based on super quantum interfering devices
(SQUIDs) (Kötitz et al., 1997; Chemla et al., 2000).

Nevertheless, the generality of surface detection assays,
which correspond to the majority of biosystems being
developed, do not rely on measuring changes in the magnetic
relaxation of carriers but simply uses the fact that the
magnetic carriers create a magnetic field that can be sensed
by a transducer.
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Several transducers have been used so far, which vary
both on physical mechanisms, geometries, properties, and
applications: coils (Richardson, Hawkins and Luxton, 2001;
Richardson, Hill, Luxton and Hawkins, 2001); giant mag-
netoimpedance (GMI) sensors (Kurlyandskaya et al., 2003;
Kurlyandskaya and Levit, 2005; Chiriac, Tibu, Moga and
Hera, 2005); SQUID magnetometers (Enpuku et al., 1999;
Katsura et al., 2001); complementary metal–oxide semi-
conductor (CMOS) Hall-effect sensors (Besse et al., 2002);
quantum-well Hall effect devices (Landry et al., 2004;
Sandhu et al., 2004; Sandhu and Handa, 2005); and finally,
magnetoresistive sensors (Graham, Ferreira and Freitas,
2004; Freitas et al., 2004), which are the focus of this
chapter.

Coils and giant magnetoimpedance devices assess the pres-
ence of magnetic markers by changes in magnetic suscepti-
bility, in the resonance frequency, and in the impedance of
the sensing elements, respectively. These devices are simple
to fabricate and are better suited for volume magnetic label
detection. SQUIDs quantify the magnetic flux created by the
labels and are the most sensitive of the magnetic-field sensors
developed to date; they are able to sense fields in the order
of 100 fT (10−13 T). Nevertheless, for high-transition tem-
perature SQUID devices, they require liquid nitrogen (77 K)
and vacuum to operate. As a consequence of the necessary
apparatus, the separation between the sensor and the sam-
ple is usually of tens of micrometers, which results in a
smaller effective sensitivity of the device. Hall effect devices
do not show these constraints; they measure a voltage drop
built in a transversal direction to the sense current due to the
Lorentz force induced by the magnetic stray fields originated
from the markers. CMOS-based sensor fabrication is rela-
tively straightforward and CMOS-amplification circuitry can
be easily integrated with the sensing component. Quantum-
well based Hall devices although show a higher sensitiv-
ity than CMOS based ones, their fabrication is also more
complex, and is comparable to more advanced spintronic
devices. Briefly, magnetoresistive sensors are electrical resis-
tors whose resistance value varies with an applied magnetic
field, and as so they can be measured using a simple two-
point probe measurement scheme. In addition, they operate
at room temperature and can be made to have sensitivities
down to the pT (10−12 T). Furthermore, there is a firmly
established technology, as magnetoresistive sensors are used
in magnetic reading heads, in several sensing applications
(Freitas et al., 2000) and most recently on magnetic ran-
dom access memories (MRAM) and novel magnetoelectronic
devices, including biosensors (Freitas et al., 2006).

Magnetoelectronic sensors enable then a direct transduc-
tion of biomolecular recognition events into electrical signals,
which is a considerable advantage over the systems that use
colorimetric or fluorescent labels. These optical systems, in

their simplest form, provide a qualitative result (yes or no), or
a semiquantitative answer based on predefined scales, where
interpretation most often depends on the person analyzing
the test. On the other hand, more complex systems that
often include multiplex testing require bench-top, complex,
and expensive optical instrumentation coupled with electri-
cal transduction mechanisms and specialized data-analysis
software. Furthermore, these latter systems are usually not
portable and cannot be used at the point of care.

This chapter will then review the latest developments
on spintronic biosensors and biochips, which show that
these devices have the potential to become highly spe-
cific and sensitive platforms for low cost, high throughput
and portable bioassays. The chapter is organized as fol-
lows: first the several types of magnetoresistive sensors will
be discussed, together with a comparison of their perfor-
mance; second the discussion will focus on the magnetic
labels or markers used and their properties; afterwards a
brief discussion on biomolecular functionalization will be
given, and the architectures and detection schemes will
be shown next; some applications that have been targeted
by several groups will be present together with detection
results, while some particular considerations on the detec-
tion will be given; finally some conclusions will be drawn at
the end.

2 MAGNETORESISTIVE SENSORS

The first magnetoresistive biochip platform was developed at
the Naval Research Laboratory (NRL) and was called bead
array counter (BARC) (Baselt et al., 1998). The BARC chip
was comprised by 66 giant magnetoresistance (GMR) sensor
traces of dimensions of 5 × 80 µm2. Sensors were grouped
into eight sensing zones each comprised of eight GMR
sensors, these account for 64 sensors while the remaining 2
where used as reference sensors in a half-Wheatstone bridge
arrangement. The different sensing zones where later used
to detect different biological warfare agents (Edelstein et al.,
2000).

Since then, a number of research groups worldwide have
been developing spintronic biochip platforms based on differ-
ent magnetoresistive sensors and on distinct sensor geome-
tries, performances, and applications: anisotropic magnetore-
sistance (AMR) rings (Miller, Prinz, Cheng and Bounnak,
2002); planar Hall effect (PHE) sensors (Ejsing, Hansen
and Menon, 2003; Ejsing et al., 2004); GMR multilayer
traces (Miller et al., 2001), serpentines (Rife et al., 2003)
and spirals (Schotter et al., 2002); spin valve (SV) traces
(Graham et al., 2002; Lagae et al., 2002; Li et al., 2003),
u-shaped (Ferreira et al., 2005b, 2005c), or serpentine
(Anguelouch, Reich, Chien and Tondra, 2004); and magnetic
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tunnel junctions (MTJs) (Shen, Liu, Mazumdar and Xiao,
2005; Cardoso et al., 2006).

2.1 Anisotropic magnetoresistance (AMR) based
sensors

AMR-based ring sensors were designed and fabricated
by NRL for single micron-sized magnetic label detection
(Miller, Prinz, Cheng and Bounnak, 2002). The ring sen-
sor was fabricated in NiFe with inner and outer diameters
of 3.2 and 5 µm, respectively. The ring was designed to
detect the radial component of fringe field created by a single
4.3-µm-diameter Ni70Fe30 microsphere, when excited by an
out-of-plane alternate current (ac) magnetic field (Figure 4a).

In the setup from NRL, two AMR ring structures (sep-
arated by 50 µm) constitute half of a Wheatstone bridge,
with the other half completed off chip with resistors of
approximately the same value of the resistances of the rings.
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Figure 4. (a) Schematic showing an AMR ring sensor geometry,
current flow, voltage measure points, and external magnetic exci-
tation field directions. (b) Typical AMR sensor transfer curve as
calculated from equation (1) and using data from Miller, Prinz,
Cheng and Bounnak (2002).

An ac driven homopolar electromagnet was used to cre-
ate a perpendicular-to-plane magnetizing field with typical
field amplitudes H0 between 0 and 4 kA m−1 (or 50 Oe),
and frequencies f of 200 Hz. In most magnetic-field sen-
sor platforms, paramagnetic or nonremanent magnetic labels
are used, such that only in the presence of a magnetizing field
they have a moment and thus create a field that is sensed by
a particular transducer (this will be further discussed on the
section on magnetic labels).

A direct current (dc) bias of ∼1 V was applied to the
bridge and a single microsphere was measured by scanning
the label over one of the rings using an atomic force
microscope (AFM) tip (to where the particle was previously
glued).

The magnetoresistance of the AMR rings have roughly
quadratic magnetic-field dependence around zero applied
field, as can be seen from the equation for the electrical
response (�V ) of a single ring structure (Figure 4b).

�V = −
(

�R

R

)
S

IRsq

(
2πrav

h

) ( 〈Hlabels〉
Hk

)2

(1)

In equation (1), (�R/R)S is the magnetoresistance ratio
of the ring structure, which is defined by the difference in
resistance between the maximum resistance state (in which
the current is parallel or antiparallel to the circumferential
magnetization) and the minimum resistance state (in which
the current is normal to the magnetization), all divided by the
minimum resistance. In this case, the AMR of the NiFe ring
structures was ∼1.5% (for a film thickness of 20 nm), but
as a two-terminal device, the lead/contact resistances reduce
the effective AMR to ∼1%.

Also in equation (1), I is the sense current and Rsq is the
sheet resistance defined as Rsq = ρ/t, with ρ the resistivity
and t the thickness of the sensing layer. rav is the average
radius of the ring, (rmax + rmin)/2, and h is the height of the
sensor, rmax − rmin, with rmax and rmin being the outer and
inner radius of the ring structures, respectively. 〈Hlabel〉 is the
radial component of the field created by a magnetic particle
averaged at the sensing layer (this issue will be discussed
later on). Finally, Hk is the effective anisotropy field that
include the crystalline anisotropy and shape demagnetizing
fields.

Given the quadratic response of the sensor to the field
created by the label, the detection was realized at 2f , as
the expansion of the magnetoresistance yields the dominant
term.

Finally, this sensor was designed for the single label
detection and was proposed as a sensing unit of a MRAM-
like biosensor.
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2.2 Planar Hall effect (PHE) based sensors

The use of PHE sensors for magnetic label detection was
first proposed by the Mikroelectronik Centret (MIC) of the
Technical University of Denmark (DTU) (Ejsing, Hansen and
Menon, 2003). These devices are based on the spontaneous
resistance anisotropy occurring in ferromagnets, just like the
AMR rings.

The fabricated sensors were simple Ni crosses (20 ×
20 µm2 sensing area) and were used to detect 2.8-µm-
diameter superparamagnetic polystyrene microspheres (Dyn-
abeads M-280, DynalBiotech, http://www.dynalbiotech.com).

Using this cross geometry, two leads were used for driving
current through a sensor, while measuring the voltage drop
developed transversally to the current direction, with the
other two leads (Figure 5). This voltage drop changed as a
result of field created by the labels changing the direction
of the magnetization of the ferromagnetic sensing layer
with respect to the direction of the current, as shown in
equation (2).

�V = −1

2
�RI

〈Hlabels〉
Hk

(2)

Here, �R = (ρ‖ − ρ⊥)/t, with ρ‖ and ρ⊥ being the
resistivity of the magnetic material with the sense cur-
rent parallel or perpendicular to the material magnetiza-
tion, respectively. For Ni, the resistivity variation is ∼2%
(20-nm thick film). Again t is the thickness of the sens-
ing layer, 〈Hlabels〉 is the field created by the magnetic label
averaged over the sensing area and Hk is the crystalline
anisotropy field.

In the MIC platform, a dc sense current of 0.25 mA
was used together with an in-plane magnetizing field up
to 4.8 kA m−1 (60 Oe) perpendicular to the sense current
direction (Figure 5b). Particle detection was realized by
measuring the sensor transfer before and after adding a
magnetic label solution.

A further improvement, in collaboration with the Institute
of Engineering of Systems and Computers – Microsystems
and Nanotechnologies (INESC–MN), consisted of the design
and fabrication of exchange-biased permalloy planar Hall
sensors (Ejsing et al., 2004, 2005). Here a MnIr antiferro-
magnetic layer was used to control the anisotropy and to
achieve a well-defined single-domain initial magnetization
state. As a consequence, Hk in equation (2) represents the
sum of the crystalline anisotropy field with the exchange
field created by the antiferromagnetic layer.

In this case, PHE crosses of dimensions of 10 µm2 ×
10 µm2 were used to detect in real-time 2-µm-diameter
microspheres and 250-nm-diameter particles (Micromer-M
and Nanomag-D labels, Micromod, http://www.micromod.

M
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Figure 5. (a) Schematic showing a planar Hall cross sensor geom-
etry, current flow, voltage measure points, and external magnetic
excitation field directions. (b) Typical planar Hall effect sensor
transfer curve. Data from INESC MN, for a 10 × 10 µm2 sensor
with the structure Ta70Å/NiFe300Å/MnPt300Å/Ta70Å.

de). Direct sense currents ranging from 1 to 10 mA were used
together with an in-plane magnetizing field of 1.2 kA m−1

(Ejsing et al., 2004); in addition, it was shown that using
the sense current alone, without any external field, was
sufficient to magnetize the nonremanent magnetic particles
tested (Ejsing et al., 2005).

2.3 Giant magnetoresistance (GMR) multilayer
based sensors

GMR multilayer sensors, together with SVs, are the sens-
ing components used in the most developed biochip and
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biosensing platforms. These devices are based on the spin-
dependent transmission of conduction electrons between
magnetic layers coupled through a nonmagnetic spacer.
This transmission depends on the relative orientation of the
magnetic moments of the magnetic layers (Baibich et al.,
1988).

GMR sensors are comprised of a multilayer of magnetic
layers separated by nonmagnetic spacer layers and show
typical magnetoresistance ratios (�R/R)S from 5 to ∼15%.
The output for these sensors is given by equation (3) as is
shown in Figure 6:

�V = −
(

�R

R

)
S
IRsq

(
W

h

) 〈|Hlabels|〉
Hk

(3)

Here (�R/R)S is the magnetoresistance ratio, defined
as the difference between the maximum resistance of the
sensor (when the magnetic layers are antiparallel) and the
minimum resistance of the sensor (when the magnetic layers
are parallel), divided by the minimum resistance. W is the
width of the sensor and h is its height. |Hlabels| is the absolute
value of the component of the field created by the labels
in the sensing direction, as the sensor response is unipolar
(symmetrical with respect to the applied field, Figure 6b).
Again the field created by the labels is averaged on the
sensing layer and Hk is the effective anisotropy field that
include the crystalline anisotropy and shape demagnetizing
fields.

The BARC platform mentioned in the preceding text was
the first system to be developed. In an earlier version it
was comprised of 5 × 80 µm2 GMR sensor traces. These
were arranged in a half-Wheatstone bridge, with a sensor
for magnetic label detection in one arm of the bridge and
one reference sensor at the other arm. The full bridge was
completed with external resistors. Direct sense currents of 5
to 10 mA were used together with a perpendicular-to-plane
external magnetizing field of 4 kA m−1 rms at a frequency
of 200 Hz was to enable lock-in detection at 400 Hz, just as
in the AMR rings setup (Baselt et al., 1998). The system
was then used to detect biological warfare agents through
the fringe field created by 2.8-µm-diameter Dynabeads that
recognized the specific analytes (Edelstein et al., 2000;
Miller et al., 2001).

In a later version, in collaboration with nonvolatile elec-
tronics (NVE), the BARC system encompassed serpentine
GMR sensors, 1.6 µm wide on a 4 µm pitch, with a total
length of 8 mm within a 200-µm-diameter circular zone. This
was used to better fit the surface functionalized area to the
sensor area (this issue will be discussed later on). A bias
voltage across the bridge of 4 V was used together with
magnetizing fields of 9.6 an 6.8 kA m−1 rms at the same fre-
quencies and in the same configuration as previously. Dynal
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Figure 6. (a) Schematic showing a GMR sensor trace geometry,
current flow, voltage measure points, and external magnetic excita-
tion field directions. (b) Typical transfer curve for a GMR sensor.
Data from INESC MN for a 2 × 6 µm2 GMR sensor with the stack
NiFe60Å/[Cu19Å/NiFe13Å/CoFe4Å]20.

M-280 microsphere and Ni30Fe70 were detected (Rife et al.,
2003).

The GMR approach was followed by group at Uni-
versität Bielefeld, which used 1 µm wide spiral-shaped
GMR sensors of a total of 70 µm in diameter (Schot-
ter et al., 2002, 2004). In this platform, smaller 0.35-
and 0.86-µm magnetic microspheres Bangs Laboratories
(http://www.bangslabs.com) were detected. As in the NRL
biosystem, an out-of-plane magnetizing field is used and the
sensor response is due to the in-plane components of the
fringe field created by the magnetic labels. Particle detec-
tion is achieved by recording the dc sensor response from
−12 to 12 kA m−1 (or from −40 to 40 kA m−1) with respect
to a neighboring reference element in a half-Wheatstone
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bridge arrangement. These platforms will be discussed more
in detail later on Section 5.

2.4 Spin-valve (SV) sensors

SV based biochips were first introduced by INESC–MN
(Graham et al., 2002) and were followed, in collaboration,
by a group at Interuniversitair Micro-Elektronica Centrum
(IMEC) (Lagae et al., 2002). Later on research laboratories
at Standford University (Li et al., 2003) and at John Hopkins
University (Anguelouch, Reich, Chien and Tondra, 2004)
started independent projects on SV based biosensors.

SV sensors, in its simplest form, are comprised of only a
single trilayer: two ferromagnetic layers separated by a non-
ferromagnetic spacer, and they are also based on the GMR
effect (Dieny et al., 1991). One of these ferromagnetic layers
is called the reference layer as it is pinned by exchange
coupling to an antiferromagnetic layer, and consequently
is not sensitive to low applied magnetic fields. The other
ferromagnetic layer is called the free layer as it senses
even very small magnetic fields. As in GMR multilayer
sensors, the spin-valve sensor resistance depends on the
relative orientation of the magnetic moments of the magnetic
layers. If carefully engineered, SVs can show a linear
response to near zero applied fields. Shape demagnetizing
effects or perpendicular easy-axis definition for the free
and pinned layers during SV deposition are some means
to accomplish that, for instance. The sensor response in
this case is said to be bipolar and is given by equation (4)
(Figure 7).
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Here, symbols are the same as for the GMR sensors.
Typical values for the magnetoresistance ratio for SV sensors
are 7 to 15% (Dieny, 2004). Specular SVs on the other hand
show higher (�R/R)S values from 15 to 20% (Dieny, 2004).

At INESC–MN 2 × 6 µm2 SV sensors (with a full sen-
sor length of 14 µm) were fabricated to detect single 2-µm
microspheres (Micromer-M) (Graham et al., 2002) and sev-
eral magnetic labels of different iron oxide compositions
and different sizes ranging from 50 nm up to 1.5 µm (Fer-
reira, Graham, Freitas and Cabral, 2003). Shape demagneti-
zation effects were used to obtain a sensor linear response
(Figure 7b). Typical dc sense currents of 5 to 8 mA were used
together with small 1.2 kA m−1 dc magnetizing fields applied
in the SV sensing direction (see Figure 7a). Measurements
were done in real time in a liquid medium using a simple
multimeter.
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Figure 7. (a) Schematic showing a spin-valve sensor geometry,
current flow, voltage measure points, and used external magnetic
excitation field directions (larger scheme, INESC; smaller schemes,
Stanford). (b) Typical spin valve sensor transfer curve. Data from
INESC MN, for a 6 × 2 µm2 sensor (Graham et al., 2005).

A differential dc measurement setup comprised of
2 × 6 µm2 sensors in a half-Wheatstone bridge (with
external resistors completing the other half) was used for
detection of biomolecular recognition in the model system
biotin–streptavidin (Graham, Ferreira, Freitas and Cabral,
2003). In this case, a SV sensor was functionalized with
biotin and was then able to detect bound streptavidin-
coated magnetic labels. Another sensor (75 µm away) was
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covered with a photoresist mask and was used as a reference
sensor, as biomolecular recognition was not observed over
the photoresist layer (see details in Sections 5 and 6).

More recently, larger 2.5 × 80 µm2 u-shaped SVs were
used for an increased dynamic range (higher number of
particles to be detected), in applications for genetic disease
diagnostics (Ferreira et al., 2005c; Ferreira et al., 2006) and
for detection of pathogenic microorganisms (Martins et al.,
2005) (see Section 6). Magnetic label detection in this case
was done using a lock-in amplifier for lower noise and
decreased thermal drift dependence. Direct sense currents
of 1 mA were used together with a combination of external
ac magnetizing fields (∼1 kA m−1 rms at 30 Hz) and dc bias
fields (0.8 to 1.2 kA m−1) applied in the sensing direction of
the SVs.

Additionally, some INESC–MN sensing platforms made
use of on-chip biomolecule transport using magnetic particles
as carriers.

IMEC used 2 × 16 µm2 spin-valve sensors to detect
ensembles of nanometer-sized particles. Sensors were lin-
earized by shape anisotropy as in the INESC–MN approach.
A sense current of 10 mA was used, and the magnetization
of the superparamagnetic labels was achieved by the field
created by two metal conductors adjacent to sensor. Current
passes alternatively to one or the other conductor, resulting
in particle movement over the sensor and, consequently, on
label detection (Lagae et al., 2002).

In that respect, both approaches from INESC–MN and
IMEC are unique with respect to other magnetoresistive
biochip platforms and even to more general magnetic-
field biosensors. Both research groups make use of on-chip
conductors combined with a magnetic transducer to be able to
manipulate and move magnetic labeled biomolecules on chip
and to detect biomolecular recognition in almost real time.

In the case of INESC–MN, the use of tapered metal con-
ductors (Graham et al., 2002) or u-shaped lines (Ferreira
et al., 2005a) enabled the acceleration of biomolecular recog-
nition between complementary DNA strands (Graham et al.,
2005; Ferreira et al., 2005b). IMEC proposes to use on-chip
tapered conductors (Lagae et al., 2002) for the detection of
biomolecular recognition using a magnetic label cleaving
process (Lagae et al., 2005). These issues will be further
discussed in Sections 5 and 6.

Stanford University research group first used SV sensors
of 2.5 to 3 µm height and ∼4 µm width (active areas) to
detect a single 2.8-µm-diameter Dynabead (Li et al., 2003).
Herein, shape demagnetization was also used to achieve a
linear response from the SV. Furthermore, a half-Wheatstone
bridge arrangement was used, with one active sensor and
one reference sensor covered with hard-baked photoresist,
just like the INESC–MN approach (Graham, Ferreira, Freitas
and Cabral, 2003). Magnetizing fields were applied in plane.

A dc longitudinal bias field (in the hard axis direction) was
used to polarize the magnetic beads and an orthogonal ac
field (in the sensing direction) was used to modulate their
magnetizations. DC bias fields between 7.5 and 9.5 kA m−1

were used, together with ac orthogonal fields of ∼3 kA m−1

rms at 40 Hz.
The laboratory at Standford University detects particles

after a label solution as dried out and particles remained
settled over the sensor. A later stage, particles are dissolved
back in water and are washed away. This contrasts with
the approach followed at INESC–MN, where particle and
biomolecular recognition measurements are all performed in
liquid.

In a further conception of the system (Li, Wang and Sun,
2004), the Stanford group used smaller 0.3 × 1.5 µm2 (active
area) sensors for the detection of 16-nm Fe3O4 magnetic
nanoparticles (Sun and Zeng, 2002). The experimental setup
was similar to the previous one, but in this one a dc bias
field of 6.4 kA m−1 was applied transversely to the sensor
(in the sensing direction) to polarize the nanoparticles and ac
field of ∼8 kA m−1 at a frequency f of 208 Hz was applied
perpendicular to plane, similarly to GMR sensors. Measure-
ments were performed at 2f . In this study, a nanoparticle
monolayer was patterned over the sensor surface using a
polyethilenimine mediated self-assembly method (Sun et al.,
2002).

More recently, a collaborative work between the John
Hopkins University and NVE resulted in a platform that
uses serpentine or meander SV sensors in a full-Wheatstone
bridge arrangement on chip (Anguelouch, Reich, Chien
and Tondra, 2004). These meander lines were 4 µm wide
on a 6 µm pitch, comprising active sensing areas of
100 × 100 µm2 or 200 × 200 µm2. Two of the bridge resis-
tors were laid out as interlaced meander lines and served
as the sensing elements, while the remaining sensors
were covered by a protective layer 6 µm and served
as compensating elements. DC currents of 1 mA were
used for detection of 5 and 30 µm length ferromagnetic
nanowires. These nanowires have the potential to be used as
biomolecular labels and for cell manipulation (Reich et al.,
2003).

2.5 Magnetic tunnel junction (MTJ) sensor

These devices are based on the spin-dependent tunneling of
electrodes across an insulator that separates two ferromag-
netic layers. As with GMR sensors, the electron tunneling
through an insulating barrier depends on the relative orienta-
tion of the magnetizations of the magnetic layers (Moodera,
Kinder, Wong and Meservey, 1995).
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Just, the same way as SVs, MTJs can be fabricated to have
a linear response. In this case, which is the most suitable for
biosensing applications, the transducer output is given by:

�V = −
(

1

2

) (
�R

R

)
S
I

(
RA

Wh

) 〈Hlabels〉
Hk

(5)

In equation (5), symbols hold the same meaning as for
GMR and SV sensors, while RA represents the MTJ resis-
tance area product. A transfer curve for the MTJ sensor is
shown in Figure 8.

Of the magnetoresistive sensor family, MTJ sensors show
the highest values of the magnetoresistance ratio, ∼50 to
70% for AlOx barrier junctions (Wang, 2004) and, recently,
>200% for MgO tunnel barriers (Parkin et al., 2004; Yuasa
et al., 2004).

MTJ based biosensors have been recently proposed (Schot-
ter et al., 2002; Freitas et al., 2004; Wang et al., 2005) and
magnetic label detection has been demonstrated (Shen, Liu,
Mazumdar and Xiao, 2005; Cardoso et al., 2006).

A group from Brown University (Shen, Liu, Mazumdar
and Xiao, 2005), fabricated 2 × 6 µm2 MTJ sensors to detect
single superparamagnetic M-280 Dynabeads. The sensor was
operated in an ac bridge configuration (1 V rms at 8 kHz
bias voltage), and the sensor response was read using a lock-
in amplifier. Two external dc applied fields in the sensing
direction (1.2 kA m−1) and perpendicular to the sensing
direction (1.6 kA m−1) were applied such that the MTJ sensor
operated in the most sensitive and linear region of the transfer
curve.

Recently, INESC–MN demonstrated the detection of 250-
nm-diameter magnetic labels (Nanomag-D) using a sensing
unit comprised of a AlOx barrier MTJ in series with a
hydrogenated amorphous silicon (a-Si:H) thin-film diode
(TFD) (Cardoso et al., 2006). This sensing unit is the basis
for an MRAM-like biosensor as was previously proposed
(Baselt et al., 1998), and a 16 × 16 MTJ-diode matrix
was already fabricated (this will be further discussed in
Section 5).

2.6 Detection of magnetic labels

In magnetic biosensing applications, it is important to
quantify the number of labels that are being detected in order
to determine the number of biomolecular recognition events.

In the calculation of the response of a magnetoresistive
sensor to the presence of magnetic labels it is usually
assumed that the sensing layers respond to an average field
〈Hlabel〉, rather than to the inhomogenous local field they
create (Tondra, Porter and Lipert, 2000). In fact, a good
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Figure 8. (a) Schematic showing a magnetic tunnel junction sensor
geometry, current flow, voltage measurement points, and used
external magnetic excitation field directions (larger scheme, INESC;
smaller schemes, Brown). (b) Typical sensor transfer curve, 10 ×
2 µm2 (F. Cardoso, INESC MN, 2006).

agreement was obtained between analytical calculations,
assuming this average field, and micromagnetics simulations
(Li and Wang, 2003). Furthermore it is assumed that the
sensing layers rotate coherently with 〈Hlabel〉, as described by
the Stoner–Wohlfarth model (Stoner and Wohlfarth, 1948).
Here, the sensing layers correspond to the exchanged-bias
NiFe layer in planar Hall sensors; the GMR multilayers; or
the free layers of the SVs and MTJs.

Although, several analytical models have been developed
according to the type of sensor and to the particular detection
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methods, they all consider the assumptions made in the
preceding text together with the dipole field approximation
in SI.

Hlabel(r) =
(

3(m·r)r
r5 − m

r3

)
4π

(6)

Here, it is assumed that the magnetic moment m of the
label is located at its center, and r is the distance between

the label center and the point of the sensor where the field
is calculated.

The dipole field in equation (6) is inhomogeneous at the
sensing layer, and consequently, the sensor response depends
on the position of the magnetic label with respect to the
sensor (Figure 9a). In bipolar response transducers, such
as AMR rings and GMR sensors, labels adjacent to the
transducer also contribute to a change in resistance, though
this effect is relevant only for labels few micrometers apart

−62 62

H

m

x

y

z

H label (A
 m−1)

(a)

(b)

(c)

(d)

H

m

x

y

z

−72 15H label (A
 m−1)

0 2 4 6 8 10

0

0.8

1.6

2.4

3.2

4

4.8

5.6

(H
la

be
l,  

y)
 (

A
 m

−1
)

Distance from sensor center (µm)
Number of labels – 1

−4

−3.2

−2.4

−1.6

−0.8

0

0.8

1.6

0 2 4 6 8 10

Distance from sensor center (µm)
Number of labels – 1

(H
la

be
l,  

y)
 (

A
 m

−1
)

(Single label)
(Cumulative odd)
(Cumulative even)

(Single label)
(Cumulative odd)
(Cumulative even)

Figure 9. (a) Inhomogenous magnetic field created by a 2-µm microsphere, which shows a magnetization of 0.48 kA m−1 under a 1.2 kA m−1

external magnetizing field applied perpendicular to the plane of the sensor; 2.5-µm high sensor and particle outlines are shown in dashed
lines. (b) Magnetic field created by a single label at varying distances from the center of the sensor (solid squares); also shown are the
fields created by multiple labels placed on a row in two distinct arrangements (open squares and open circles) over a spin-valve sensor
(the number of labels in the arrangements is indicated in the horizontal axis); fields are averaged over a 2.5 × 40 µm2 spin-valve trace.
(c) Inhomogenous magnetic field created by a 2-µm microsphere under a 1.2 kA m−1 external magnetizing field applied in plane in the
spin valve sensing direction. (d) Magnetic field created by a single label at varying distances from the center of the sensor and the fields
created by multiple labels placed on a row in two distinct arrangements: a label at the center of the sensor and additional adjacent labels
(cumulative odd); two labels over the sensor and additional labels on both sides (cumulative even).
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(Figure 9a right). On the other hand, for transducers with a
unipolar response such planar Hall sensors, SVs, and MTJs,
adjacent labels can even have an opposite contribution to the
field created by the labels on top of the sensing structures
(Figure 9b). In these devices, particular care must be taken
on the surface functionalized area and the estimation of the
number of detected labels.

In addition, as will be discussed in Section 3, labels
show usually a paramagnetic behavior, that is, they only
possess a magnetic moment in presence of an externally
applied magnetic field. As such, the magnetic moment of
the label can be given in SI by m = χH/V , where χ is the
susceptibility per label, H is the total applied field and V is
the volume of the label.

Models have utilized several magnetizing field conditions,
where the only requirement is that the induced moment on
the labels gives rise to magnetic-field components in the
sensing directions of the transducer (see previous sections on
sensors). Nevertheless, these models only take into account
the externally applied field as the magnetizing field.

It has been experimentally observed that even in the
absence of an externally applied field Hext magnetic label
detection is possible. This can be attributed to either the sense
current, that itself creates a magnetizing field Hj (Ejsing
et al., 2005), or to magnetostatic field created by the magnetic
layers of the sensors Hm (Ferreira, Feliciano, Graham and
Freitas, 2005a). In reality, most of the times, it is the
combination of the several different fields H = Hext + Hj +
Hm that magnetizes the labels (Ferreira, Feliciano, Graham
and Freitas, 2005a).

Although, the possibility to detect magnetic labels without
the need of external field is advantageous, as it simplifies the
experimental setup and measurement protocols, care must be
taken when designing sensors and implementing the optimum
detection method.

At INESC–MN a study was made on the detection of
250-nm-diameter magnetic labels using 2 × 6 µm2 top pinned
SV sensors. These sensors were fabricated with the struc-
ture Ta 30 Å/NiFe 30 Å/CoFe 25 Å/Cu 26 Å/CoFe 25 Å/MnIr
60 Å/Ta 30 Å/TiW (N) 150 Å and showed a linear range
roughly between −2.5 and 1.5 kA m−1 at 8-mA sensor bias
current. Values for Hj and Hm, averaged along the sen-
sitive direction of the SV (smaller dimension) and at a
distance of ∼300 nm from the sensing layer, were 〈Hj

y 〉 ∼
−0.18 kA m−1 per mA sense current and 〈Hm

y 〉 ∼ −1.0–1.7
sin θ (field in kA m), with θ the angle between the magne-
tization of the free layer and the sense current direction (for
θ = 90◦ the sensor is in the minimum resistance state as the
pinned are free layers are parallel) (Bertram, 1994). As a con-
sequence, the intensities of the several fields were compara-
ble (Ferreira, Feliciano, Graham and Freitas, 2005a). Table 1
shows the intensities for these fields for three conditions:

Table 1. Magnetic fields acting on a 250-nm particle located on top
of a spin-valve sensor (2 × 6 µm2). The distance between the center
of the label and the sensing layer is ∼300 nm. External uniform
magnetic fields Hext were applied in the sensing direction (y axis
in Figure 9) and magnetostatic fields Hm and the field created by an
8-mA sense current Hj were averaged along the smaller dimension
of the sensor. The total magnetic field H was also calculated for
the three conditions presented.

Magnetic fields (kA m−1)

Hext −1.20 0 1.20
〈Hm

y 〉 −0.56 −1.43 −2.31

〈H j
y〉 −1.44 −1.44 −1.44

〈Hy〉 −3.20 −2.87 −2.55

In fact, for the external applied fields considered in
Table 1, the resulting total magnetic fields acting on the
labels are always negative with respect to the y axis of
Figure 9 (i.e., opposite to the pinned layer magnetization
direction). This means that in all these cases the stray
magnetic fields created by the labels contribute to a decrease
in the resistance of the transducer (see subsequent text).

The existence of magnetostatic fields had further con-
sequences on sensor operation when using an ac external
excitation field: a dc external bias field was required for opti-
mum sensor operation (Ferreira et al., 2005c; Ferreira et al.,
2006) (see Figure 10).

Without considering the effect of magnetostatic fields, an
ac excitation field results in the induction of a magnetic
moment in the same direction and consequently, the stray
fields of the labels at the sensing layer oppose the applied
field. The labels then shield the sensor from the external
field, resulting in a decrease of the peak-to-peak signal or
the rms output (see sensor transfer curve in Figure 10a top).
Figure 10(a) in the bottom shows the rms signals obtained
for a 2.5 µm2 × 80 µm2 spin-valve sensor with a 25% sensor
coverage of 250 nm particles, by applying a dc bias and
different ac excitation fields. It is observed that the sensor
output increases with the magnitude of the ac field up to
a maximum, where the ac field is large enough to surpass
the linear regime of the sensor and move into the saturation
regions.

On the other hand, when considering magnetostatic fields
the induced magnetic moment of the labels is always
negative, resulting in a decrease of the resistance of the
sensor for all applied fields. As a consequence, the peak-
to-peak signal window is shifted to lower resistances, while
maintaining the magnitude of the signal in the linear region
of the transfer curve. This results in a small or near zero
variation of the rms signals in this regime (Figure 10b
top). Applying a dc bias signal results in an increase of
the sensor output to labels (25% sensor coverage) up to a
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Figure 10. (a) Spin valve sensor transfer curve. (b) Sensor output (AC excitation field +DC bias field) calculated. Without taking into
account sensor magnetostatic fields. (c) Sensor output (AC excitation field +DC bias field) calculated taking into account6) sensor
magnetostatic fields.

maximum field where the ac excitation field goes deep into
the saturation regions (Figure 10b bottom).

Finally, in order to be sensitive only to the external
magnetizing field (or at least be the dominant magnetiz-
ing field) low sense currents may be used and sensors may
be designed and fabricated with synthetic free (SF) and
synthetic antiferromagnetic (SAF) pinned layers, such that
magnetostatic fields are minimized (Guedes, Mendes, Fre-
itas and Martins, 2006). In these conditions, the dc bias
external field is no longer necessary for ac detection (see
Figure 11).

2.7 Sensor performance

In sensing applications, the figure of merit to be considered is
the signal-to-noise ratio (SNR), although the absolute signal
is also important as the highest the signal is the lesser is the
requirement for amplification steps and simpler is the detec-
tion apparatus. For instance, in earlier INESC–MN studies
single magnetic microspheres were detected by simply mea-
suring the dc voltage drop across a spin-valve resistor using
a common multimeter (Graham et al., 2002).

For defining sensor performance is also necessary to
consider the application for which the sensor is designed,
that is, either it is required the detection of a great number
of labels with a considerable dynamic range (number of
particles to be detected) or one targets for single label and
single biomolecular recognition detection (Graham, Ferreira
and Freitas, 2004). As such, sensor geometry is something
to take into account, not only for dynamic range (as will be
discussed further in Section 5) but also in terms of sensitivity.

As sensors respond to the average field created by the
labels on the sensing layer it is natural to expect that sensor
sensitivity to a single label improves as the dimensions of the
sensor are made comparable to those of the label (Tondra,
Porter and Lipert, 2000).

On the other hand, sensor sensitivity in the broader
sense depends on the magnetoresistance ratio of the bulk
magnetoresistive material, on the sensor geometry (which
can be used to obtain a linear response through shape
demagnetizing fields) and on externally applied bias fields
(which can also be used to linearize the sensors).

Here, the SNRs of the several magnetoresistive sensors
are determined taking into account the detection of a single
2-µm microsphere (Freitas et al., 2004) and the noise levels
obtained in the linear regime of the sensor. Table 2 shows
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Figure 11. (a) Cross-section schematic of a top pinned spin-valve
sensor showing the effects of the magnetostatic fields created by the
ferromagnetic layers of the sensor. Three conditions are considered:
with the external magnetic field applied in the negative direction
(opposite to the magnetization of the pinned layer), without external
magnetic field and with the external field applied in the positive
direction (direction of the magnetization of the pinned layer). (b)
Cross-section schematic of a spin-valve sensor with synthetic free
(SF) and synthetic antiferromagnetic (SAF) layers. When these
layers are compensated the resulting magnetostatic fields are null
and labels respond only to the external magnetizing fields.

a comparison of the performance of the different types
of magnetoresistive sensors mentioned in the preceding
text, with respect to the signal-to-noise ratio. The magnetic
properties shown are typical for these sensors and the
sensor size was chosen for optimal single 2-µm microsphere
under a magnetizing field of 1.2 kA m−1 (moment of 2 ×
10−15 J T−1). Thermal or Johnson noise was calculated from√

4kbTR, where kb is the Boltzmann constant (1.38 ×
10−23 J K−1), T is the absolute temperature (taken as 300 K)
and R is the resistance of the transducer. In addition, the
noise for the MTJ sensors with AlOx or MgO barriers was
calculated from the summation of the thermal and shot noise√

(4kbTR + 2IeR2), where I is the sense current and e is
the charge of the electron (1.6 × 10−19C) (Raquet, 2001;
Almeida et al., 2006). Finally, the minimum detectable field
and the SNR was calculated for the minimum noise of these
magnetoelectronic devices.

One can observe from Table 2 that due to its highest
magnetoresistance ratio, the MgO barrier MTJ transducers
show the highest sensitivity and consequently, highest signal
per label, followed by AlOx MTJs, SVs, GMR sensors,
AMR rings, and planar Hall crosses. On the other hand,
for low resistance tunnel junctions (as shown), the minimum
noise level is comparable to the noise levels of the other

transducers, this then results in a smaller minimum detectable
field and a higher SNR.

Note that in this table, the sense current was kept constant
at 1 mA. Some of the sensor performances relations may
differ if different currents are applied through the sensors,
as the different sensors show distinct limits of operation.
As an example, MTJ sensors show a decrease in tunneling
magnetoresistance (TMR) with increasing sensing currents
(voltage bias) and there is an increase in shot noise; while
for SVs, 10-mA currents can be applied, increasing the sensor
response to a single label by a factor of 10, while maintaining
mostly the same thermal noise level.

MgO barrier based MTJ transducers show the promise
of being the most sensitive of spintronic transducers ever,
being capable of detecting magnetic fields in the picotesla
range. This may enable the detection of single 10-nm
magnetic particles and, consequently, of single biomolecu-
lar interactions. This shows that magnetoresistive biochips
have the potential to become useful tools for molecular
biology.

3 MAGNETIC LABELS

Different kinds of magnetic labels have been used in
magnetic biosensing applications, ranging from nanometer
to micrometer sized particles (Pankhurst, Connolly, Jones
and Dobson, 2003) and nanowires (Reich et al., 2003). In
addition, ferromagnetic, paramagnetic, or superparamagnetic
labels have been chosen according to the application, trans-
duction mechanism, and assay type.

Several ferromagnetic materials, such as Fe, Co, Ni,
and their alloys, and ferrimagnetic materials, such as
γ -Fe2O3 (maghemite) and Fe3O4 (magnetite), have been
used in magnetic particle preparation. Nevertheless, their
magnetic properties depend, not only on the material used but
also on the label size. For instance, large labels, of microme-
ter dimensions or more, usually present a multidomain struc-
ture, as this represents a minimum magnetic energy of the
system. Nevertheless for smaller labels (below the microm-
eter range), the energy is minimum in a single-domain state
rather than including domain walls. As such, the response
of these particles to an applied magnetic field is a large
hysteresis loop (see Figure 12). Multidomain magnetic par-
ticles, on the other hand, show a narrow hysteresis loop, as
domain walls require a smaller energy to move. Both multi-
and single-domain particles show a nonzero magnetization
under no applied field, and as such they are called remanent
magnetic particles.

Smaller particles or labels, with dimensions of the order
of tens of nanometers or less, have a magnetocrystalline
and shape anisotropy energy that are in the order of or
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Table 2. Comparison of the performance of different magnetoresistive sensors used for the detection of magnetic
labels, including magnetic tunnel junctions with AlOx and MgO barriers. Typical magnetic properties for these
sensors were used, and sensor geometries were chosen for the detection of a single 2-µm magnetic label of
magnetization of 0.48 kA m−1. t∗ represents the magnetic sensing layer thickness. Remaining symbols are as
detailed in previous sections for each of the sensor types. The field created by the label in the AMR sensor
case was averaged in an annulus of radius and height of 1 µm. For the remaining sensors the label field was
averaged in a squared area. The thermal noise is shown for the different sensors, while for MTJ sensors the
presented noise is the summation of the thermal and shot noise (see text for details). The signal-to-noise ratio
was obtained dividing the signal per 2-µm microsphere, �V , by the noise.

Width Height Rsq (� cm) �R/R Hk S
Sensor type (µm) (µm) t∗ (nm) RA (� µm2) (%) (kA m−1) (V T−1A−1)

AMR ring rext = 1.5 1 20 10.5 1.5 14.5 27
rint = 0.5

Planar Hall 2.5 2.5 30 7 1.5 2.4 17
GMR 2.5 2.5 72 2.8 10 2.4 93
Spin valve 2.5 2.5 5 20 8 2.4 265
MTJ AlOx 2.5 2.5 5 80 25 2.4 531
MTJ MgO 2.5 2.5 5 150 150 2.4 5968

〈µ0Hlabel〉 �V Thermal noise/shot 〈µ0Hlabel〉min

Sensor type I (mA) (µT) (µV) noise (nV Hz−0.5) (nT) SNR

AMR ring 1 60 1.6 0.7 27 2200
Planar Hall 1 28 0.5 0.3 20 1400
GMR 1 28 2.6 0.2 2.3 12 000
Spin valve 1 28 7.4 0.6 2.2 13 000
MTJ AlOx 1 28 15 0.5 1.0 29 000
MTJ MgO 1 28 170 0.8 0.1 220 000

smaller than the thermal energy (Kittel, 1996). The particles
are superparamagnetic and show no remanent moment.
These labels show a nonhysteretic behavior with an applied
magnetic field, which is a signature of superparamagnetism
(Figure12).

Under an externally applied field, magnetic labels align
with the field but after the field is removed the magnetization
of the particles relaxes. Relaxation occurs through two
mechanisms, Néel (1955) and Brownian (Debye, 1929), and
the predominance of one of the mechanism over the other
depends on label size.

Néel relaxation is related to superparamagnetism, as the
magnetic moment of a label fluctuates thermally inside the
particle (Figure 13a), and it is characterized by the relaxation
time τN:

τN = τ 0 exp

(
�E

kBT

)
(7)

In equation (7), τ 0 is usually taken as 1 to 100 ps
(Brown, 1963), �E is the energy barrier to the moment
reversal and includes the magnetocrystalline and shape
anisotropies. KB is the Boltzmann constant and T is the

Single domain
Multidomain
Superparamagnetic

M

H

Figure 12. Magnetization versus applied field curves for single
domain, multidomain and superparamagnetic labels.

absolute temperature (K). Néel relaxation is dominant for
particles with sizes smaller than 10–20 nm.

Larger magnetic particles have a relaxation time τN in
the order of tens or hundredths seconds and thus exhibit
remanence. Nevertheless, their magnetization relaxes through
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Figure 13. (a) Néel relaxation mechanism (dominant for superpara-
magnetic particles): labels magnetic moment, rotates with thermal
energy without being accompanied by label rotation. (b) Brownian
relaxation mechanism (more relevant in single-domain and multido-
main particles): labels magnetic moment, relaxes together with the
rotation of the whole label in the carrier liquid.

the Brownian rotation of the whole label in the carrier liquid
(Figure 13b). The moment is fixed within the particle. It is
characterized by the time constant τB:

τB = 4πηr3

kBT
(8)

Here η is the viscosity of the carrier liquid (e.g., for water,
0.001 N s m−2) and r is the hydrodynamic radius of the label.

It is these distinct magnetic properties that are used in
the different biosensing approaches. Volume assays are based
on Brownian relaxation of nanoparticles in solution. When
labels recognize a particular analyte in solution, through
probe biomolecules immobilized on the particles surfaces,
their hydrodynamic radius increases. As a consequence,
the ac susceptibility peak of the solution shifts to lower
frequencies (Connolly and St. Pierre, 2001; Astalan et al.,
2004; Chung et al., 2004).

SQUIDs, on the other hand, have been used to dis-
tinguish between surface-immobilized magnetically labeled
biomolecules and particles free in solution (Kötitz et al.,
1997; Chemla et al., 2000). In these cases, after removal
of an applied field, surface-bond labels only show a rela-
tively slow Néel relaxation, while unbound free-in-solution
labels relax mainly via the Brownian mechanism and are
distinguished by the transducers.

The remaining surface-based assays are based on the
detection of magnetic stray fields created by the labels
bound to the surface through the biomolecular recognition
between target and probe biomolecules. Here, ∼10-nm
superparamagnetic labels are used, or more frequently larger
>50 nm to micrometer sized labels. The larger labels are
comprised of smaller superparamagnetic labels dispersed in

or coated with a polymer, metallic or oxide layer, and show
a paramagnetic or a nonremanent behavior.

In magnetoresistive bioassays, magnetic labels should
comply with certain requisites: have a high saturation magne-
tization (made of materials like Fe, Co, Ni, and their alloys)
so that the signal per particle is the maximum possible; show
material stability over time (like iron oxides); be biocompati-
ble and nontoxic (like iron oxides); be monodispersed and do
not cluster, that is, be superparamagnetic; show low unspe-
cific adsorption to undesired biomolecules and surfaces; and
ideally, each particle should label or tag a single biomolecule.
In addition, material stability and biocompatibility requisites
should apply to the encompassing matrix or the coating.

The technology of magnetic particles for biosensing
applications involves several fields of knowledge, namely,
inorganic and organic chemistry, materials science, and
molecular biology. In fact, magnetic properties are as impor-
tant as suitable coating and biomolecule functionalization
chemistries.

At INESC–MN, several particles of diameters ranging
from 50 nm up to 2.8 µm were studied (Ferreira, Graham,
Freitas and Cabral, 2003; Freitas et al., 2004). Table 3 shows
some of the magnetic properties of the labels tested by
INESC–MN and other research laboratories.

As a notice, 130 and 250 nm (Nanomag-D) particles
and 2-µm microspheres (Micromer-M) do not show a pure
paramagnetic behavior at low applied fields as they do not fit
the Langevin equation in this regime (Freitas et al., 2004).

M = MS

[
coth(gH) − 1

(qH)

]
(9)

In equation (9), M is the magnetization of the label, MS

is its saturation magnetization, H is the applied field and
q = µ0mp/kBT , where µ0 is the magnetic permeability in
vacuum and mp is the average moment of each nanoparticle
that comprises the label.

These labels show an increased magnetic susceptibil-
ity near zero, which may be the consequence of inter-
acting smaller nanoparticles that comprise the larger ones
(Figure 14).

4 BIOMOLECULAR
FUNCTIONALIZATION

A magnetoresistive sensing platform can only be used for
biosensing after it has been functionalized with biomolecules.
This issue is as important as the magnetic transducers
themselves, and implies a great control on surface and label
functionalization biochemistries and assay protocols.
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Table 3. Properties of several magnetic labels used in magnetoresistive biosensing platforms. Data was obtained by vibrating sample
magnetometry at INESC–MN, unless indicated otherwise.

Label Manufacturer Diameter (nm) Magnetization kA m−1)a Susceptibilityb Materialc

4SP NiFe powderd Novamet 3300 5 4.2 Ni70Fe30(∼100%)
Dynal M-280d Dynal Biotech 2800 0.40 0.35 FeOx (17%)
Micromer-M Micromod 2000 0.48 0.22 FeOx (15%)
CM01N/7228e Bangs Laboratories 860 1.88 1.57 FeOx (27.5%)
CM01N/7024e Bangs Laboratories 350 0.99 0.825 FeOx (45.8%)
Nanomag-D Micromod 250 20.10 4.81 FeOx (75%)
Nanomag-D Micromod 130 17.80 4.44 FeOx (75%)
Nanomag-D-spio Micromod 100 0.34 0.28 FeOx (35%)
Nanomag-D-spio Micromod 50 0.85 0.71 FeOx (35%)

aMagnetization per particle at an excitation field H of 1.2 kA m−1.
bAverage susceptibility for 1 < |H| < 4 kA m−1.
cFeOx represents γ -Fe2O3 and Fe3O4. % values represent the magnetic content of the particles (data from supplier).
dMagnetization and susceptibility values were taken from magnetization curves shown on Rife et al. (2003).
eMagnetization values were estimated from data shown in Schotter et al. (2004) admitting a constant susceptibility from 0 to 40 kA m−1.
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Figure 14. Magnetization curves for 2-µm microspheres and 250-
nm-diameter nanoparticles in the low field regime. It is observed
an increased magnetic susceptibility near zero applied field and,
in particular, for smaller particles. Pure paramagnetic behavior is
represented by a dashed line.

Currently, several protocols for the functionalization
of nucleic acids and proteins (including antibodies and
enzymes) have been developed. These methods depend on
the biomolecule but also on the surface to be functionalized.
Most common biochip surfaces include glass (Joos, Kuster
and Cone, 1997), silicon dioxide (Chrisey, Lee and O’Ferrall,
1996), gold (Bamdad, 1998), and polymers (Fixe, Dufva,
Telleman and Christensen, 2004a).

Generally, surface derivatization protocols for glass or
silicon dioxide (as done in INESC–MN) consist of the
following steps: activation; silanization; cross-linking; and
probe biomolecule immobilization.

The activation step, may or may not be necessary, and con-
sists in formation of reactive hydroxyl groups at the biochip
surface (Figure 15a); for that several cleaning and oxidizing

procedures have been developed (Cras, Rowe-Taitt, Nivens
and Ligler, 1999). Nevertheless, in magnetoresistive biochip
applications mild conditions are required not only for clean-
ing but also for all derivatization protocols. As such, low
salt solutions, and weak acids or weak bases should be used;
otherwise both surface as sensors may be corroded (Freitas
et al., 2004).

The silanization protocol involves the use of trialkoxy
silane derivatives containing an organic functional group
such as an amine (Weetall, 1976). A silane molecule, such
as triaminopropyltriethoxysilane (APTES) reacts with the
hydroxyl (–OH) groups on the surface leaving amino groups
available to react further (Figure 15b).

After silanization, usually a crosslinker is used to enable
the covalent binding of two distinct chemical entities
that are unreactive toward each other (e.g., amino –NH2

and thiol –SH groups) (Figure 15c). A crosslinker serves
another important purpose: it provides a physical spacer
that gives a larger mobility and freedom to the immobilized
biomolecules. This greater accessibility is important to facil-
itate biomolecular recognition. In fact, it has been shown that
hybridization efficiency depends on the cross-linker size, as
larger spacers enable an easier access of target molecules to
the surface-immobilized probes (Southern, Mir and Shchep-
inov, 1999).

Cross-linking molecules are designated by homobifunc-
tional, if they present identical reactive groups at the each end
of the spacer (e.g., glutaraldehyde) or, on the other hand, they
are called by heterobifunctional if they have distinct func-
tional groups (like N -[ε-maleimidocaproyloxy]sulfosuccini-
mide ester or sulfo-EMCS) (Figure 15c). In bioarray appli-
cations, heterobifunctional cross-linkers are preferred as they
diminish the potential for multipoint reactions.
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Figure 15. Oxide surface biochemical functionalization protocol: (a) Surface activation: formation of hydroxyl groups on the surface; (b)
Silanization (formation of reactive amino groups) using a 3-aminopropyltriethoxysilane (APTES) solution; (c) Crosslinking with spacer
molecules such as glutaraldehyde and sulfo-EMCS; and (d) Probe biomolecule (nucleic acids, proteins, etc.) immobilization to the surface
through the covalent reactions between functional groups in the molecules and the cross-linkers.
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Finally, probe–biomolecule immobilization can also be
done using distinct protocols, depending on the biomolecule,
functional groups of the spacer and the surface type. Usually,
DNA probes modified at one end with an amino, carboxylic
(–COOH) or thiol group are covalently bound to the cross-
linker molecules (Figure 15d). In case of proteins, unreacted
functional groups of aminoacid residues are used for the
same end.

Biofunctionalization of gold surfaces (Bamdad, 1998) is
also one of the most common approaches as the protocols
are relatively straightforward. Thiolated biomolecules, such
as DNA strands modified at one end with a thiol or a thiolated
spacer, bind to the gold surface forming a self-assembled
monolayer (SAM).

Polymer functionalization may be similar to other surfaces
such as glass or silicon oxide, involving activation, amination
of the surface, crosslinking, and probe immobilization (Fixe,
Dufva, Telleman and Christensen, 2004a). Nevertheless, by
using native functional groups in the polymer, such as
methyl esters groups in poly(methylmetacrylate) (PMMA),
probe immobilization can be done in on-step (Fixe, Dufva,
Telleman and Christensen, 2004b). This has great advantages
over traditional methods, as it is both labor time and reagent-
cost saving.

Again, probe biomolecule immobilization chemistries
must be optimized for each case, and in biochip applica-
tions mild conditions should be used. The surface density
of bound probes is an important parameter, as low surface
coverage will yield low biomolecular interaction rates and,
consequently, low detection signals. High surface density
of probes, on the other hand, may result on biomolecular
steric hindrance and consequently low biomolecular interac-
tion rates and detection signals may be observed. In addition,
probe immobilization protocols should lead to a well-defined
probe orientation accessible to the target for recognition;
should be thermally and chemically stable; and finally, should
be reproducible.

A bioarray is a two-dimensional set of distinct biological
probes. These are designed to enable an analysis of several
components in the same assay in a parallel fashion. For
instance, DNA microarrays may be used to investigate the
expression of genes of an ill tissue and compared it with
the case of a healthy one; or they may be used to screen a
particular genetic mutation related to a hereditary disease.
Usually, in designing a bioarray, there is redundancy of
probes (i.e., each probe is represented in several places on a
chip) for statistical purposes; and both positive and negative
controls are included to assess the good functioning of the
assay and to determine the background noise.

Currently, there are several ways to produce a bioarray.
One of the approaches is by on-chip synthesis of oligonu-
cleotides, which uses a combination of microelectronic

photolithographic techniques and combinatorial chemistry
(Pease et al., 1994). Although, this method allows the fab-
rication of highly dense arrays, representing more than
100 000 genes in an area of 1.28 × 1.28 cm2, the procedure
is costly and time consuming, and is not applicable to pro-
teins; these aspects prevent then a widespread use of the
system (http://www.affymetrix.com). The present technology
enables the fabrication of probe regions with feature sizes of
∼10 µm.

The most common method to make DNA or protein
arrays is the immobilization of pre-synthesized DNA strands
and protein solutions, respectively, using devices called
microspotters (http://www.arrayit.com), which enable the
immobilization of up to 100 000 different biomolecules
represented in a glass slide (Ramsay, 1998; Okamoto, Suzuki
and Yamamoto, 2000). A typical biomolecule spot size
is ∼50–100 µm, but improving technologies are rapidly
reaching smaller sizes, even to the nanometer scale using
techniques such as dip-pen nanolithography (Demers et al.,
2002) and supramolecular nanostamping (Yu et al., 2005).

Alternative methods of probe immobilization include
the use of electric fields (http://www.nanogen.com), which
enable much shorter probe immobilization times in compar-
ison with the previous methods (Heller, 1996; Fixe et al.,
2003), and the potential use of magnetic fields for biomolec-
ular patterning (Yellen, Hovorka and Friedman, 2005).

Label functionalization protocols are similar to the ones
referred in the preceding text for chip surface functionaliza-
tion and, consequently, should also comply with the same
requirements: mild-conditions surface biochemistries; repro-
ducibility; thermal and chemical stability; nontoxic surface
properties; and suitable biomolecular surface density.

The chemistry will depend then on the surface or coating
of the particles: silica, gold, polymer, or other (del Campo,
Sen, Lellouche and Bruce, 2005; Bao and Krishan, 2005;
Nishibiraki et al., 2005; Joshi, Li, Wang and Sun, 2004)
and on the biomolecule to be functionalized. This later one
is related to the bioassay to be performed and the detec-
tion scheme. As such, magnetic labels may be functional-
ized with target molecules (e.g., analyte DNA) or with a
detector biomolecule (e.g., antibody or another protein) (see
Sections 5 and 6).

5 DETECTION SCHEMES AND CHIP
ARCHITECTURES

Until recently, magnetoresistive biochips were being devel-
oped mostly for DNA hybridization detection in applica-
tions concerning biological warfare agent detection (Edel-
stein et al., 2000; Miller et al., 2001) and diagnostics of
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Figure 16. Post-hybridization detection method. Spintronic biochips functionalized with DNA probes are incubated usually for several
hours with DNA targets labeled with a biotin reporter molecule. After hybridization has occurred, streptavidin-coated magnetic labels are
dispensed over the chip. The streptavidin proteins recognized biotin molecules available where hybridization occured. Finally, magnetic
labels bound to hybridized sites are detected by spintronic transducers that sense the labels stray fields.

cystic fibrosis (Graham, Ferreira and Freitas, 2004; Lagae
et al., 2005).

Two hybridization detection strategies have been followed,
the post-hybridization detection method and the magnetic-
field-assisted detection method.

In the post-hybridization detection method (followed by
both the NRL; the University of Bielefeld; and INESC–MN),
target biomolecules are labeled with a small reporter
biomolecule called biotin. After hybridization occurs with
the probe DNA strands immobilized on the chip surface, a
solution of magnetic labels is dispensed over the chip. These
labels are coated with a detector protein called streptavidin
that recognizes the reporter biotin molecules that tag the
hybridized DNA targets. Subsequently, the stray field created
by the magnetic labels is detected with the use of on-chip
magnetoresistive sensors, indicating that hybridization has
occurred (Figure 16).

In this method, the analyte solution is dispensed over the
chip and the biotinylated DNA targets diffuse, passively, in
solution until finding their complementary probe molecules
at the chip surface. This way, hybridization times alone
take usually from 3 to 12 h, which limits these systems to
applications or assays were response times are not crucial.

In order to overcome this limitation, a detection method
based on magnetic-field-assisted hybridization was devel-
oped at INESC–MN. In this method, DNA targets are labeled
with magnetic labels and are transported to probe immobi-
lized sensor sites by on-chip current carrying conductors that
generate local magnetic-field gradients. The close proximity
of target and probe biomolecules accelerates then the rate at

which biomolecular recognition reactions happen. This way
hybridization is detected almost in real time (Figure 17).

Using different designs, comprised of tapered on-chip con-
ductors (Graham et al., 2002; Lagae et al., 2002; Figure 18a)
or u-shaped current lines (Ferreira et al., 2005a; Figure 18b)
enabled the detection of hybridization between complemen-
tary DNA strands in times of less than 5 min (Graham et al.,
2005) and 30 min (Ferreira et al., 2005b). These systems
show the potential to be used in the rapid detection of biolog-
ical warfare agents, in pathogen identification or in clinical
diagnostics in the point of care.

Another variant of the magnetic-field-assisted hybridiza-
tion method involves the use of enzymatic cleavage of
the magnetic labels bound after hybridization has occurred
(Lagae et al., 2005). After release, labels can be detected by
moving them over the sensor by alternatively applying cur-
rent through tapered line structures adjacent to the sensor
(Lagae et al., 2002) (Figure 19).

These magnetoresistive DNA chips (Freitas et al., 2004)
have then ‘evolved’ in order to ‘fit’ with the biological
requirements of the bioassays and their applications. One of
such requirements is the probe-functionalized area, which,
typically, has been defined by microspotting of the chip
surface above the sensing elements.

The initial BARC chip from NRL (Baselt et al., 1998)
was comprised of eight sensing zones, each containing
eight GMR sensor traces of dimensions of 5 × 80 µm2.
Each sensing zone was ∼250 µm in diameter and was
functionalized with a particular DNA probe (Edelstein et al.,
2000; Miller et al., 2001). Since magnetic labels were only
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magnetically labeled DNA targets. On-chip current carrying conductors that create local magnetic-field gradients are used to attract the
magnetically labeled molecules to functionalized sensing regions. The proximity of target and probe molecules accelerates the hybridization
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Figure 18. Optical microscope photographs of different magnetic-field guiding lines developed at INESC–MN. (a) Tapered current
conductors create a maximum field gradient at the region nearest to a spin-valve sensor; inset: current passing through both top and
bottom lines attract 250-nm particles closer to a 2 × 6 µm2 spin-valve sensor. (b) U-shaped current conductors used in combination with
external magnetic fields are used to create an oscillatory magnetic-field gradient that focus labels in the inside of the line were a 2.5 × 80 µm2

u-shaped spin-valve sensor was fabricated; inset: 250-nm labels are concentrated at the sensing region.

detectable over or adjacent to the GMR sensors, the effective
biomolecular recognition sensing area was relatively small
(∼10% or less) in comparison with the total functionalized
area. In this case, for low DNA target concentration, target
molecules could hybridize in ∼90% of the functionalized
area and not being detected.

A later version of the BARC chip (Rife et al., 2003)
was designed to overcome this limitation, as the GMR
sensors were fabricated in a serpentine shape that comprised
a diameter of ∼200 µm and, consequently, fitted better the
functionalized area (even so the sensing area was <70% of

the total area with probe DNA). At the same time the number
of sensing areas in the latest chip increased from 8 to 64.

One aspect to take into account is that an increase in
the probe immobilized area corresponds to an increase
in the biological sensitivity of the system, as the highest
is the number of probe biomolecules on the surface the
highest is the possibility to capture a complimentary target
biomolecules that diffuses in the analyte solution being
tested.

As such, an increase of the sensing area to fit the
functionalized area resulted in the overall increase of the
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biological sensitivity of the system. With the increase of
the sensor size, the dynamic range of operation of the
sensor also increases, that is, the number of magnetic
labels that can be detected increases, and consequently
the number of detectable biomolecular interactions also
increases. Nevertheless, the sensitivity to lower number of
particles or to single particles diminishes. Thus, in sensor
design a compromise has to be made with respect to
biological sensitivity and dynamic range with the single label
sensitivity (Figure 20).

The group at the University of Bielefeld have also fol-
lowed the strategy of fitting the sensor size to the probe
immobilized area. In their case, they fabricated spiral-shaped
GMR sensors with a diameter of 70 µm in order to fit DNA
spots of 100 µm in diameter. A first version of the chip
included 30 sensing elements, with half of them being used
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Figure 20. (a) Diagram showing the dependence on sensor size
of biological sensitivity of the system, single label sensitivity
and sensor dynamic range; a compromise must be found for this
variables depending on the sensor and the application. (b) Different
strategies for fitting the sensor size to the probe functionalized area:
array of sensors and meander (NRL); and spiral sensor (University
of Bielefeld). Using on-chip current conductors overcomes the large
difference between sensor size and probe area by focusing the
magnetically labeled targets at the sensing sites.

for reference purposes (Schotter et al., 2002). In a later ver-
sion, where the magnetoresistive sensing platform was com-
pared favorably with a fluorescence-based system, the chip
included 206 spiral GMR sensors, with 6 of them being used
as references.

Alternatively, the INESC–MN group, started to target sin-
gle label detection by fabricating smaller 2 × 6 µm2 SV sen-
sors (Graham et al., 2002), and the potential for the detection
of single biomolecular recognition events (Graham, Ferreira
and Freitas, 2004). These sensors had a small dynamic range
of ∼200 nanoparticles of 250 nm in diameter (Graham et al.,
2005), which seems reasonable for applications where it is
necessary to distinguish between a yes or no answer more
than a quantitative value. Examples of such assays are the
distinction between different mutations in the same gene,
including single nucleotide polymorphisms (SNPs), or the
assessment of differences in the splicing of mRNA (splice-
site mutations), or even the detection of a single pathogenic
microorganism (see following section).

At a later stage a chip was designed to quantify differences
in gene expression of an ill tissue versus a healthy one.
In this case, a larger dynamic range was necessary and
as a consequence larger 2.5 × 80 µm2 u-shaped SV sensors
were fabricated (24 sensors per chip). These sensors allowed
the detection up to a maximum of ∼3200 nanoparticles of
250 nm in diameter (Ferreira et al., 2005b).

These sensors have a very small sensing region when
comparing to a typical probe spot size of 100 µm, and the
comparison is even more unfavorable when considering the
smaller 2 × 6 µm2 SVs. Nevertheless, these limitations are
overcome by the use of on-chip biomolecular transport and
focusing systems.

As a final note with respect to chip architecture, single
sensor proof-of-concept studies from several research labo-
ratories and more developed biochip sensing platforms all
show a design limitation. These platforms comprised a small



Spintronic biochips for biomolecular recognition 23

(a) (b)

Contact
lead
(column)

Contact
lead
(row)

MTJ

Diode

Current
line

Figure 21. (a) Matrix of 256 magnetic tunnel junction (MTJ)
sensing elements fabricated at INESC–MN (chip mounted on a
chip carrier). (b) Photograph showing four sensing elements of the
matrix. Each sensing element is addressed using thin-film diodes
of amorphous-silicon. Also shown are the row and column contacts
and u-shaped current lines for the focusing of magnetically labeled
targets.

number of sensing elements (INESC–MN, 24 sensors; NRL,
64 serpentines; and University of Bielefeld, 200 transducers),
and a further increase in the number of sensing elements
is accompanied by a prohibitively large number of contacts
and an off-chip multiplexing circuitry increasingly complex.
These designs limit the number of different probes that can
be immobilized and, consequently, the number of different
analytes that can be screened in a single sample.

Recently though, a fully scalable biosensing platform was
proposed and fabricated, based on a structure of a switching
element and a magnetic transducer previously studied at
INESC–MN for MRAM applications (Sousa, Freitas, Chu
and Conde, 1999). A first prototype of a 16 × 16 matrix
was fabricated, comprising as a sensing unit, a hydrogenated
amorphous silicon (a-Si:H) TFD in series with a MTJ with
a linear response (Cardoso et al., 2006) (Figure 21). This
system can potentially be expanded to 10 000 or more sensing
elements, and consequently, thousands of analytes could be
analyzed simultaneously.

6 BIOASSAYS AND DETECTION
RESULTS

The bioassays that have been developed concern the detec-
tion of oligonucleotides (short DNA strands) or of structural
antigens from pathogenic microorganisms.

The BARC chip was used in the detection of biolog-
ical warfare agents such as: Bacillus anthracis; Yersinia
pestis, Brucella suis, Francisella tularensis, Vibrio cholarae,
Clostridium botulinum, and Campylobacter jejuni. Here,
DNA strands 30 nucleotides (or bases) long that represent
specific bacterium, were immobilized on gold pads fabri-
cated on top of the sensitive areas, and the chip was interro-
gated with a particular complementary DNA target (Edelstein
et al., 2000; Miller et al., 2001).

The biochip from the University of Bielefeld, on the
other hand, used polymerase chain reaction (PCR) amplified
probe DNA sequences 1 kb (kilo-bases) long. The chip was
immobilized with probes that were complimentary or not
to a particular DNA target. The noncomplimentary probe
was used to assess the background signals. In this work,
a comparison with traditional fluorescence methods was
made, showing that the magnetoresistive platform was more
sensitive at low probe DNA concentrations (Schotter et al.,
2004).

At INESC–MN, and within the scope of an European
project, work has been focused on the development of
diagnostic chips, using as a model disease cystic fibrosis
(Freitas et al., 2004; Lagae et al., 2005). Cystic fibrosis is
a genetic disease characterized by mutations in the cystic
fibrosis conductance regulator (CFTR) gene which is local-
ized in the chromosome 7 (Collins, 1992). Presently, more
than 1000 mutations have been described (Cystic Fibro-
sis Mutation Database, http://www.genet.sickkids.on.ca/cftr),
and their prevalence among populations varies accord-
ing to race and geographical distribution. The majority of
these mutations consist of variations in a small number of
nucleotides of the DNA, frequently a single nucleotide is
either replaced by another base, inserted, or deleted (SNPs).
For instance the most common mutation, F508del, refers to
the deletion of 3 nucleotides that corresponds to the dele-
tion of a phenylalanine aminoacid at the position 508 in the
CFTR protein.

Two approaches are being followed for the diagnostics of
cystic fibrosis: one corresponds to screening the messenger
RNA (mRNA) resulting from the transcription of the mutated
CFTR gene; the other one corresponds to the analysis of
genes (others than the CFTR genes) whose expression is
consistently increased or diminished in cells and tissues with
cystic fibrosis than in healthy ones (Clarke, Braz and Amaral,
2004).

With respect to the first approach, a study was made using
the post-hybridization detection method (Graham, Ferreira
and Freitas, 2004; Freitas et al., 2004). Here, the chip surface
was immobilized with a 50-mer (50 nucleotide long) DNA
probe that corresponds to the region of the gene where the
F508del mutation occurs. The chip was further interrogated
with PCR products either complementary to the probe or not.
The noncomplementary target used was related to a proto-
oncogene. Typical obtained signals are shown in Figure 22.

Later on, the same probe and targets were used in
magnetic-field hybridization experiments, and hybridization
times of less than 5 min were observed using the magne-
toresistive biochip platform with on-chip tapered conductors
(Graham et al., 2005). In addition, it was shown that by
repeating the biomolecular recognition experiment on the
same chip, an increased hybridization signal was detected,
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Figure 22. Post-hybridization detection experiments on chips func-
tionalized with 50 oligomers representing the DNA sequence that
spans the region where the most common in cystic fibrosis occurs.
(a) The chip was incubated overnight with a biotinylated noncom-
plementary 75 nucleotide long target that represents the proto-
oncogene rac1; after hybridization was attempted, streptavidin-
coated magnetic labels of 250 nm in diameter were dispensed over
the chip for 5 min and a change in sensor response was observed due
to the presence of labels; after the chip was washed and unbound
labels removed the signal returned to the baseline indicating that no
hybridization occured. Inset: picture showing a 2 × 6 µm2 spin valve
clear of particles. (b) In this case, the chip was incubated with com-
plementary target (96 oligonucleotides) labeled with biotin reporter
molecules; after introducing labels into the chip for 5 min and wash-
ing the signal did not returned to zero, indicating that hybridization
between the complementary molecules occured. Inset: picture show-
ing labels bound to the sensor surface as a result of DNA–DNA
recognition.

corresponding to an increased extension of the hybridization
reaction (Figure 23).

Concerning the second approach, a new chip based on
u-shaped spin-valve sensors and on u-shaped current lines
for magnetic-field-assisted hybridization was used. Here, the
same chip surface was spotted with distinct 50-mer probe
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Figure 23. Magnetic-field-assisted hybridization and simultaneous
detection experiments. The chips were functionalized with a cystic
fibrosis-related DNA probe and were incubated with magnetically-
labeled noncomplementary or complementary targets. (a) Noncom-
plementary targets functionalized to magnetic nanoparticles were
concentrated at sensing sites using magnetic-field guiding lines with
a tapered design; after ∼5 min unbound labels were washed away
and the signal returned to zero; later on the experiment was repeated.
Insets: pictures taken from the sensor at different times during
experimentation showing that no particles bound to the surface.
(b) In this case, the same experiment was done for magnetically
labeled complementary targets; after particle focusing and washing
a residual signal was obtained indicating biomolecular recogni-
tion; later on after a second focusing step an increased signal was
observed which corresponded to an increased number of hybridiza-
tion events.

sequences that correspond to genes that are either overex-
pressed or subexpressed in diseased tissues in comparison
with healthy ones. A further control gene (whose expres-
sion does not change) was also spotted onto the chip. Dur-
ing experimentation, magnetically labeled target DNAs were
focused simultaneously at 8 to 16 sensors by local mag-
netic filed gradients created by the u-shaped lines (Ferreira
et al., 2005b), and hybridization signals were measured in
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Figure 24. Magnetic-field-assisted hybridization and simultane-
ous detection experiments using u-shaped current lines and
2.5 × 80 µm2 u-shaped spin valves. (a) Spintronic biochips were
functionalized with a 50-mer single-stranded DNA molecules that
correspond to a gene that was found to be upregulated (rpl29) in cys-
tic fibrosis-related cell lines vs healthy cell lines; in this case com-
plementary (rpl29) and noncomplementary (asah) magnetically-
labeled targets were focused for ∼15 min before washing; chips
were further washed a second time with a more stringent solution
to further remove weakly or unspecific bound labels; statistical data
is presented for six monitored sensors. Insets show pictures for com-
plementary and noncomplementary testing experiments. (b) Chips
were functionalized with both DNA probes corresponding to upreg-
ulated (rpl29) and down-regulated (asah) genes and tested with a
rpl29 magnetically labeled target; focusing occured for about 30 min
at nearly half focusing current. In these charts, saturation represents
the sensor responses to labels just before washing.

less than 30 min (Ferreira et al., 2005c). Typical statistical
results obtained are shown in Figure 24.

Furthermore, a recent study realized with 250-nm-diameter
magnetic labels has shown that this platform is sensitive
to particle concentrations down to 1 pM. This corresponds

Antibody

Spintronic transducer

Pathogenic microorganism

Antigen

Magnetic label

Figure 25. Schematic showing detection strategy for the detection
of whole cells of pathogenic microorganisms. A sensor surface,
functionalized with antibodies against a particular microorganism
such as Salmonella, is incubated with a testing solution. In the
case that the pathogen is present, the antigens present at its
membrane surface are recognized by the surface bound antibodies.
Later, magnetic labels functionalized with antibodies for the same
microorganism bind to it, indicating its presence by measurement
of the stray field of the labels.

to DNA target concentrations of 500 pM, which compares
favorably with traditional DNA assays (µM concentrations).
In addition, this system presents a dynamic range of at least
2 orders of magnitude, thus making these magnetoresistive
DNA chips attractive for fast diagnostics of genetic diseases
(Ferreira et al., 2006).

More recently, at INESC–MN the same biochip platform
was used for the detection of pathogenic microorganisms
in water (Martins et al., 2005). In this case, the chip sur-
face was functionalized with antibodies against Salmonella
species and was incubated with a solution containing viable
Salmonella cells. Subsequently, the chip was interrogated
with magnetic labels functionalized with the same antibody
against the pathogen, which bound to the immobilized cells
forming a ‘sandwich’-like structure (see Figure 25). This
showed that the chip could also successfully be used as an
immunoassay, just by changing the chip surface biomolecular
functionality.

7 CONCLUSIONS

Spintronics or magnetoelectronics is, in general terms,
the study of devices whose operation is based not only in
the electron charge like in regular electronic devices but
also the electron spin (Prinz, 1998). The understanding of
the underlying physics, together with advances in material
science and in microelectronic processing have given rise
to numerous devices that changed, are changing, and will
change the day-to-day life of mankind. Such devices include
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for instance, sensors in hard-disk readheads, which enable the
access to practically all of man’s knowledge in digital form.
Among various sensing applications in position devices or in
air-lock braking systems (ABS) in automobiles, magnetoelec-
tronic devices are being developed for memories (MRAMs)
and novel semiconducting hybrid devices such as spin tran-
sistors. More recently, spintronic sensors are finding new
applications in the ever-growing field of biomedicine and
biotechnology (Freitas et al., 2006).

Spintronic biochips and biosensors are presently being
developed by a number of research groups and companies
worldwide and they hold the promise of becoming important
tools for the rapid, sensitive, high-throughput and low-cost
detection of biomolecular recognition, such as in diagnostics
and in the detection of pathogenic microorganisms. Its appli-
cations can span areas ranging from medicine to biotechnol-
ogy and from environmental studies to the quality monitoring
of beverages and food products.

Although, future seems bright a number of challenges still
need to be addressed, such as thorough studies of biological
assays, including the assessment of the sensitivity, the speci-
ficity, and the positive predictive and the negative predictive
values of the tests. Furthermore, of quite importance is the
integration of the detection platform with sample treatment
procedures and data-analysis system. In this respect, hybrid
systems combining magnetoresistive sensors and microflu-
idics are being developed (Tamanaha, Whitman and Colton,
2002; Ferreira et al., 2004) with the ultimate goal of fab-
ricating a lab-on-chip system for complete sample analysis
(Ahn et al., 2004). Finally, the simplicity of operation and
the direct electronic read-out of biomolecular recognition
events are pushing forward the development of portable spin-
tronic biochip platforms that can be used at the point of care
(Piedade et al., 2006).
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1 INTRODUCTION

Magnetic particles (MPs) exist in our environment in greater
amounts than is commonly noticed. Huge masses of sedi-
ments contain iron oxide particles of terrigenous material.
A small number of these particles are formed from mag-
netosomes, which are special organelles of bacteria. Recent
investigations have revealed interesting details of the fac-
tors governing the size and formation of these biogenic MPs
(Schüler and Frankel, 1999; Scheffel et al., 2006).

The properties of biogenic MPs are particularly favor-
able for certain applications such as a heat source in local
magnetic hyperthermia (see Section 4). Nevertheless, their
general use in medicine and biology is restricted owing to the
fact that their growth cannot be easily controlled. Moreover,
their content of bacterial proteins, if not completely removed,

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 4: Novel Materi-
als.  2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.

causes problems for their medical application. Many meth-
ods have, therefore, been developed to artificially prepare
particles with properties suitable for particular applications.
One of the first preparation methods, chemical precipitation
of particles from a mixture of a ferrous and a ferric salt
reacting at a basic pH > 8, was described in 1938 and used
for the investigation of magnetic microstructures (Elmore,
1938). This wet method of preparing an aqueous suspension
of nanoparticles was later followed by a dry powder prepara-
tion, using the thermal decomposition of iron pentacarbonyl
(Andrä and Schwabe, 1955). Very recently, laser evaporation
has also been applied to the highly efficient production of dry
iron oxide nanoparticles (Kurland et al., 2007). During the
last few decades, different synthetic techniques have been
developed, a comprehensive review of which was done by
Tartaj et al. (2003). The most common technique, however, is
still the chemical precipitation developed by Elmore, leading
to well-controlled superparamagnetic particles of typically
10 nm diameter. Attempts to increase the particle diameter
has generally led to broader size distributions. In order to pre-
pare larger particles with a narrow size distribution, a separa-
tion of the nucleation stage from further particle growth has
been tried. Sun and Zeng (2002) were particularly successful
at this, producing well-defined particle diameters. An alter-
native method, used for the preparation of barium ferrite par-
ticles, is the glass crystallization method, which has recently
been adapted to γ -Fe2O3 nanopowders (Müller, Hergt, Zeis-
berger and Gawalek, 2005). The mean particle size can be
controlled by the parameters of the annealing procedure. In
spite of these successes, further systematic investigations for
optimizing preparation techniques are necessary in order to
provide nanoparticles with tailored magnetic properties.
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Medical applications of magnetic powders have been
known since ancient times (Häfeli, 1998), but many of these
were based on superstition and irrational ideas. It is only in
the last couple of decades that the scientific use of artificially
prepared MPs in medicine and biology has taken off.
Important medical applications include their use as contrast
media, vascular occlusion agents, localized heating sources in
hyperthermia and thermoablation, targeted drug and radiation
sources, transfectant (magnetofection) agents, and agents to
purify and separate distinct cell populations. In the sections
that follow, these topics will be covered in more detail.

Another application of MPs that can only be touched
upon owing to space limitations is their natural use, for
example, as sensing elements in living beings. Four decades
ago, the existence of biogenic magnetite as tooth capping
in a primitive sea mollusc was discovered by Lowenstam
(1962). Later, magnetic iron-oxide particles were found in
many different animal species. Recent reports have focused
on the biophysical mechanism of magnetic sensing, which
is assumed to be strongly connected with MPs in higher
organisms (Kirschvink and Gould, 1981; Kobayashi and
Kirschvink, 1995). The role of other MPs, such as the iron
cores of ferritin, is also omitted in this chapter. Interested
readers should refer to Meldrum, Heywood and Mann (1992).

2 MAGNETIC LABELING OF CELLS AND
BIOMOLECULES

Magnetic labeling of cells and biomolecules can be accom-
plished with the use of magnetic carriers, henceforth referred
to as MPs. Magnetic labeling has found extensive application
in life science research, clinical diagnostics, and therapeutics.
MPs can have a hydrophobic or affinity ligand immobilized
on their surface or can possess ion-exchange groups that act
as linkers. These specific surface structures make MPs useful
in the processing of a wide variety of test samples for anal-
ysis (= samples). Samples include crude cell lysates, whole
blood, plasma, ascites fluid, milk, whey, urine, cultivation
media, wastes from the food and fermentation industry as
well as many others (Safarik and Safarikova, 2004). When
the sample and MPs are mixed and allowed to incubate for
some time, the target compound (i.e., analyte) binds to the
MPs and the magnetic complex that is formed can be easily
and rapidly removed from the sample using an appropriate
magnetic separator (see Section 2.2). After washing out the
contaminants, the isolated target compound can be separated
and used for further work. This process is termed positive iso-
lation, that is, the direct isolation of the desired compound
(Figure 1a). Magnetic separation can also be used to remove
unwanted compounds from a heterogeneous suspension. In

this approach, the MP-bound compound is discarded and the
remaining target compounds of interest recovered. This pro-
cess is termed negative isolation (Figure 1b).

The advantages of magnetic separation far outweigh their
disadvantages, as summarized in Table 1. Magnetic separa-
tion is simple to perform and flexible compared to conven-
tional separation methods.

2.1 Magnetic carriers

Most MPs are based on inorganic magnetic materials, primar-
ily iron oxides. For their use in biotechnology, these MPs are
either coated with or embedded into matrix materials such as
polymers and silica and are then typically referred to as com-
posite particles. The first applications of coated MPs began
in the 1970s and included enzyme immobilization, radioim-
munoassay, specific cell binding, and affinity chromatogra-
phy (Pouliquen, 2001). In 1978, Kronick et al. reported the
first use of MPs for cell separation (Kronick, Campbell and
Joseph, 1978). In 1979, John Ugelstad of Norway made the
first uniform monosized polystyrene spheres (Ugelstad and
Mork, 1980) and developed them within a few years into
a highly successful commercial product, namely, monosized
composite particles (Dynabeads) (Ugelstad et al., 1992).
Critical to their success was that Dynabeads are superpara-
magnetic, which means that they can be easily resuspended
once the magnetic field is removed, with no residual mag-
netism.

Dynabeads are currently available in diameters of 1, 2.8,
and 4.5 µm. These large-sized particles have the disadvantage
that they have limited surface area per weight. Nonporous
spherical beads of 50-nm diameter contain a 20 times larger
surface area than 1-µm beads of the same weight; making the
beads porous further adds to their surface area. Decreasing
the size of MPs to 50 nm, as was done by Miltenyi
(Safarik and Safarikova, 1999), will theoretically allow for
a larger number of functional groups, and the binding of
increased amounts of ligands, for example, antibodies. MPs
of such small particle size, however, will require high-
gradient magnetic fields for separation (Miltenyi, Muller,
Weichel and Radbruch, 1990). Such high gradients typically
exceed 100 T m−1.

Most applications utilize composite magnetic nano- or
microparticles with sizes between 50 nm and 10 µm, although
even very large MPs that are 800 µm in diameter have
been used for the magnetic separation of α amylases from
porcine pancreas, starch-degrading enzymes, and wheat germ
(Teotia and Gupta, 2001). The largest and earliest com-
mercial provider of MPs in the micrometer range is Dynal
Biotech (bought by Invitrogen in 2005) and in the nanometer
range it is Miltenyi Biotec. However, there are many smaller
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Figure 1. (a) The positive isolation of genomic DNA starts with the lysis and binding of DNA under nondenaturing conditions, followed
by the addition of MPs with specific affinity ligands. After multiple wash steps, the purified DNA is obtained. (b) The negative isolation
of bacterial cells begins with the addition of MPs with affinity to the nontarget cells. Bound MPs are then attracted by a magnet and the
untouched target cells collected from the supernatant. Magnetic separation is indicated by the symbol of a horseshoe magnet.

companies that provide products for magnetic separation and
specialty applications as well as appropriate (super)magnetic
particles.

For magnetic separation, different materials can be used
to prepare MPs. A partial list of matrix materials includes
synthetic polymers such as poly (ethyl-2-cyanoacrylate)
and poly (styrene-co-maleic anhydride); biopolymers such
as dextran and albumin; and porous glass. The magnetic
components include inorganic magnetic materials such as
the iron oxides magnetite Fe3O4, maghemite γ -Fe2O3, and
mixtures thereof. Metallic iron, cobalt, nickel, and alloys
thereof can also be used. Since the largest use of these

materials is in vitro, biocompatibility is not of major concern
in the choice of materials.

In addition to size, structure, magnetic moment, and
(superpara)magnetic properties, the most important MP
parameters are surface charge, surface hydrophobicity or
hydrophilicity, porosity, and the type and density of reactive
surface groups. Chemically reactive groups on the surface
are used for covalent immobilization of affinity ligands and
target biomolecules. They must remain stable under varied
temperature and pH conditions, must be correctly oriented,
and must have low nonspecific binding even in complex sam-
ple types. Choosing relevant chemical groups and spacers,
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Table 1. General advantages and disadvantages of magnetic cell separation using magnetic
particles (MPs).

Advantages Disadvantages

• Simple method with very few handling steps
• All the steps can take place in a single test

tube. No necessity for excessive instruments
or equipment

• Separation can be directly performed on crude
samples

• Total separation time can be shortened by
combining the disintegration and separation
steps

• Magnetic absorbents can be removed easily
owing to their magnetic properties

• Useful for large-scale separations
• Magnetic separation is usually gentle on the

target proteins or peptides
• Large commercial availability of MP and MP

separation kits

• Insufficient and/or ineffective resus-
pension of the MP pellets after
washing and elution steps may
result in:

–Lower yields
–Lower purity

of the separation product compared
to other purification methods

• Magnetic component in positive
selection may interfere with subse-
quent procedures

adding blocking agents, and carrying out post-immobilization
modifications allows for the preparation of highly specific
MPs. For example, immobilization of oligonucleotides is nor-
mally achieved by introduction of specific chemical groups
at the end of the oligonucleotides, thus retaining functional
activity. NH2 groups or SH groups are often used for direct
covalent coupling to the MP surface, while the introduction
of a biotin molecule at the 5′ or 3′ end of the oligonucleotide
is used in combination with MPs coated with streptavidin.
The strong streptavidin–biotin bond is temperature stable
(up to 80 ◦C) and can withstand alkaline treatments (0.15 M
NaOH), features which make streptavidin MPs a versatile
tool in molecular biology (Bosnes et al., 1997).

Nonspecific binding of analytes to MPs during magnetic
separations can be a problem. Additional preclearing steps
are often carried out, particularly when extracting proteins
and peptides from crude samples. By studying the character-
istic MP properties such as type (hydrophilic/hydrophobic,
nonporous/macroporous), size, and functional group for use
of appropriate ligands, Korecka et al. determined the reac-
tion conditions required to develop immobilized magnetic
enzyme reactors (IMERs). These enzyme reactors con-
sist of the immobilized proteolytic enzymes trypsin, chy-
motrypsin, papain, and neuraminidase immobilized on MPs
(Korecka et al., 2005). The strategy adopted in getting min-
imal nonspecific sorption of proteins and peptides, without
the need for any additional preclearing steps before studying
heterogeneous proteins and/or glycoproteins, was the use of
different MP matrix materials. The optimal materials chosen
included hydrophilic cellulose and alginate, and hydropho-
bic polystyrene, poly(NIPAM) and poly(HEMA-co-GMA)
(Korecka et al., 2005).

2.2 Magnetic separators

Magnetic separations have been used in various areas such
as molecular biology, biochemistry, immunochemistry, enzy-
mology, analytical chemistry, and environmental chemistry
(Safarik and Safarikova, 2004). Magnetic separations with
MPs have also been successfully studied for a wide vari-
ety of applications such as the detoxification of blood-borne
toxins of humans (Mertz et al., 2005), the separation of
pathogenic bacteria from food and environmental samples
(Rotariu et al., 2005), and the extraction of surfactants from
water (Safarikova et al., 2005).

Magnetic separation techniques generally consist of two
steps. In the first step, solid phase affinity MPs with specific
target recognition capabilities are mixed with the sample
and selectively bind to the target in the sample. In the
second step, the target–MP complex formed is captured by
a magnetic field and removed from the separation medium.
Magnetic fields for separation can be produced by permanent
magnets or electromagnets. The shape and magnitude of
magnetic fields determine where and how quickly the MPs
separate in any given vessel. The magnetic field gradient
and magnitude play important roles in separation and their
product determines the strength of the magnetic force that
acts on any given MP. The higher the relative force densities,
the more quickly a given magnet can separate the MPs, and
the smaller the MPs can be.

Magnetic separators may be either batch-wise driven or
continuous driven, and one may chose between the two on
the basis of the desired application. Commercially avail-
able laboratory-scale batch magnetic separators are usually
made from magnets embedded in disinfectant-proof material.
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(a) (b)

Figure 2. Commercially available magnetic separators. (a) The 96-well plate laboratory-scale batch-type magnetic separator from Cortex
Biochem pulls the magnetically labeled samples to the bottom of the plate, close to the long stripe-shaped NdFeB magnets. (b) The
MiniMACS separator from Miltenyi Biotec is a lab scale HGMS separator, designed for extracting animal and plant cells, bacteria, viruses,
cellular organelles, and molecules such as mRNA. It is designed for the positive selection of up to 107 labeled cells, from up to 2 × 108

unseparated cells.

The batch-type separators have racks constructed for sepa-
rations and some also have a removable magnetic plate to
facilitate easy washing of separated MPs (Figure 2). Other
examples of batch-type magnetic separators include holders
for Eppendorf microtubes, standard test tubes, and centrifu-
gation cuvettes (Safarik and Safarikova, 2004). Simple mag-
net blocks in these holders typically generate field gradients
in the order of 1–6 T m−1 across the diameter of stan-
dard 15–50-ml laboratory test tubes with wall thicknesses
of 1–2 mm.

The magnetic force acting on a pointlike magnetic dipole
moment m is described by the formula

F = m∇|B| (1)

where the total magnetic dipole moment of the MPs is the
result of volume magnetization of the magnetic component
included in the MPs, M:

m = Vm M (2)

and where Vm is the total volume of the magnetic material in
the MPs. The magnetic component is free to rotate in space
(together with the MPs), and its magnetization is induced by
the external magnetic field of strength H :

M = �χH (3)

where �χ is the effective magnetic susceptibility of the
magnetic component relative to medium. In an isotropic,
weakly diamagnetic medium such as water, and for diluted

MP suspensions with no free magnetic component in the
solution, magnetic fields H and B differ only by a constant,
the magnetic permeability of vacuum µ0:

B = µ0H (4)

Combining the last four formulas and applying them to
the special case of time-independent, magnetostatic fields,
as is the case in the just described magnetic separators, one
obtains the magnetic force acting on an MP as

Fm = Vm�χ
∇B2

2µ0
(5)

For small Reynolds numbers (i.e., Reparticle < 0.1) the
magnetic drift velocity can be derived from equation (5)
when the sedimentation and buoyancy force can be neglected.
Thus, the magnetic drift velocity vm can be defined as

vm = Vm�χ

f

∇B2

2µ0
(6)

where f = 3πηD is the Stokes drag coefficient, η is the
viscosity, and D is the MP diameter (Zborowski, 1997). The
direction of the magnetic force is orthogonal to the magnetic
flux.

Flow-through separations can be useful when the
separation of large volumes of samples is desired or when
separation involves nanosized MPs. Flow-through magnetic
separations are usually carried out using a high-gradient
magnetic separator (HGMS), in which optimally designed
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(a) (b)

Figure 3. (a) The CliniMACS instrument from Miltenyi Biotec with installed tubing set is a commercially available automated cell
selection device, based on the HGMS principle. It enables the operator to perform large-scale magnetic cell selection in a closed and sterile
system. (b) The CliniMACS magnetic separation device (with separation column in the middle) consists of two strong permanent NdFeB
magnets.

magnetic circuits generate gradients from 10 to 100 T m−1

across 15–50-ml test tubes (Hatch and Stelter, 2001). HGMS
for laboratory-scale use consists of a column of densely
packed fine magnetic grade stainless steel wool or small steel
balls that is placed between the poles of a strong magnet. The
MP suspension is pumped through the column and the MPs
are retained within the matrix. The MPs are then recovered
by gentle vibration of the column after removal of the mag-
netic field (Safarik, Ptackova and Safarikova, 2001). HGMSs
create magnetic field gradients that can be used to attract
much smaller and less magnetic MPs than those required for
conventional magnetic separation techniques. The most fre-
quently used HGMS application is the labeling of cells with
submicron-sized MPs and their successful separation and/or
extraction (Thomas et al., 1993).

The separation of pathogenic microorganisms, biological
cells, or chemical compounds can be accomplished with

the help of antibody-coated MPs. This separation technique
is known as immunomagnetic separation (IMS). Current
standard IMS devices use 1–8 µm MP for test volumes of
1 ml. By increasing the sample size, the sensitivity of the
IMS process can be improved such that even the lowest
amounts of pathogens can be extracted. A flow-through
immunomagnetic separator has been designed and tested to
process large volumes of samples (>50 ml) (Rotariu et al.,
2005). The preliminary results show that between 70 and 113
times more Escherichia coli O157 can be recovered when
compared with the standard 1-ml method.

The fast and simple handling of samples and the ability
to deal with large sample volumes are major advantages of
magnetic separation techniques and make them amenable to
automation. The CliniMACS system (Figure 3), marketed
by Miltenyi Biotech in Europe since 1997, is an automated
magnetic cell selection device based on the HGMS principle.
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It enables the operator to perform large-scale magnetic cell
selection of CD34, CD133 (AC133), and CD14 positive
cells from human peripheral blood and bone marrow in a
closed and sterile system (Campbell et al., 2005). CD34 and
CD133 are protein complexes presented on the surface of
hematopoetic and endothelial cells, and CD14 is a protein
complex expressed and secreted by myeloid cells. The first
commercial automated magnetic cell selection device is
the Isolex 300i marketed by Baxter. It received European
regulatory approval in 1995 and was also approved by the
U.S. Federal Drug Administration (FDA) in 1999, for clinical
selection of CD34+ positive cells. A more detailed review
of the MACS system and its applications has been recently
published (Apel et al., 2006).

2.3 Magnetic isolation of proteins and DNA
molecules

Magnetic isolation relies on the affinity and interaction
between the MPs and the target compounds. To get the high-
est yields with low nonspecific binding and short separation
times, appropriate ligands can be coupled to the MP with
specific affinity toward the target compound(s). These MPs
are added to the analysis sample, where they bind the target
compounds. This method is called the direct method. In the
indirect method, the affinity ligands are added to the solu-
tion or suspension without MPs being present. After binding
with the target compound and forming a ligand–analyte com-
plex, the entire complex is captured by the MPs (Safarik and
Safarikova, 2004).

Magnetic separation produces superior yields of the iso-
lates with shorter separation times. Risoen et al. puri-
fied two recombinant DNA binding proteins, oncopro-
tein Myb, and full-length yeast TFIIIA, directly from an
E. coli cell lysate, in a single step with high purity and
recovery (Risoen, Struksnes, Myrset and Gabrielsen, 1995).
Holschuh et al. have accomplished purification of antibodies
from up to 100 l of cell culture supernatant, with protein
A–coated MP, called MagPrepR Protein A (Merck Bio-
sciences). The MPs were coated with 3-(2,3-epoxypropoxy)-
propyltrimethoxysilane for the direct covalent immobi-
lization of protein A. Using this technique, magnetic
separation results in a similar yield and purity of product
as a conventional column, but is much faster (Holschuh and
Schwammle, 2005).

Various separation kits are commercially available and can
be used for applications such as protein isolation, protein
screening, immunoassays, purification of immunoglobulins,
immunoprecipitation, and human cell separation for clinical
diagnostics and research. The geneMAG-DNA/Bacteria kit
(Chemicell, Germany) can serve as an example for these

novel, simple, and highly efficient tools in molecular biology.
After lysing the bacteria, adding the MPs, incubating, and
washing, genomic DNA can be efficiently extracted from
bacteria with magnetic silica beads (Figure 1a).

Even MPs without linker compounds can be used to sepa-
rate and screen biomolecules. Magnetic separation of amino
acids, using gold/iron oxide composite nanoparticles has been
reported (Kinoshita et al., 2005). Gold firmly combines with
mercapto-containing biomolecules, thus enabling the binding
of functional biomolecules without the use of a special linker
molecule for each different application. The sulfur-containing
amino acids cystine and methionine connect to gold through
Au–S bonds and can then be selectively picked up by MPs.
Similarly, aspartic acid and glutamic acid have been adsorbed
relatively well onto monolithic iron oxide particles, possibly
owing to the presence of carboxyl groups found on these
molecules (Kinoshita et al., 2005).

The literature is full of examples of successful extractions
of cells, bacteria, enzymes, proteins, and nucleic acids as
reviewed in detail by Safarik and Safarikova (2004). Table 2
gives some examples of the biologic substances that can be
isolated and/or purified by magnetic separation techniques.

2.4 Magnetic gene transfection

Nucleic acids form the building blocks for living systems
and are responsible for all the processes taking place within
the cells. Introducing nucleic acids in a controlled and
defined manner opens up an opportunity to influence the
processes within living cells. One of the most effective ways
to transport nucleic acids is gene therapy, where a ‘normal’
gene is inserted into the genome to replace an ‘abnormal’
disease-causing gene. This is normally done with a carrier
molecule called a vector, which delivers the therapeutic gene
to the target cells.

The most effective vectors are viruses that have been
genetically altered to carry normal human DNA. After the
death of Jesse Gelsinger, however, who died within two days
of being injected with adenoviral vectors during a phase I
clinical gene therapy trial for a life-threatening enzyme
deficiency, more research efforts have focused on developing
a nonviral gene transfer system, thus reducing the potential
biological risks associated with viral vectors (Somia and
Verma, 2000).

Irrespective of the type of vector (viral or nonvi-
ral/synthetic), the low efficiency of gene transfer poses a sig-
nificant challenge in gene transfection, since the transfer pro-
cess for vectors to target cells is, to a large extent, diffusion
controlled (Plank et al., 2003b). In addition, the lack of selec-
tivity creates a subsequent need for local targeting to achieve
an effective dose at the target cells and to avoid any untoward



8 Biomagnetic materials

Table 2. Examples of magnetic separation for diagnostic and analytical applications.

Type of material Isolated component Source Magnetic carrier Affinity ligand Applications References

Protozoa Toxoplasma
oocysts

Oocysts from
cat feces

Goat antimouse
IgM coated
microbeads
(BM 0829)

Monoclonal
antibody 3G4

Detection of
protozoal cells
causing
toxoplasmosis

Dumetre and
Darde (2005)

Nucleic
acids

Viral
RNA/DNA

Plasma MPVA beads Streptavidin Nucleic acid
testing for
detection of
viruses

Lutz et al. (2005)

Protein Yeast tran-
scription
factor

Heparin
agarose

DynabeadTM

M-280
streptavidin

Biotin end labeled
tRNAGlu gene

Drug discovery,
diagnostics

Risoen, Struksnes,
Myrset and
Gabrielsen
(1995)

Cells Retinal
astrocytes
(glial cells)

Retina of
transgenic
mice

Sheep antirat
DynabeadsTM

Anti-PECAM-1 Study of retinal
pathology

Scheef, Wang,
Sorenson and
Sheibani (2005)

Cells Tumor cells
(gliomas)

Brain tissue Antimouse IgG
beads

Anti-VE cadherin
Anti-E selection
Anti-CD105
Anti-CD68

Study of malignant
brain tumor

Miebach et al.
(2006)

Bacteria Lawsonia
intracellu-
laris

Rabbit feces Protein A–coated
paramagnetic
beads

Anti-LsaA
antibody

Infection diagnosis
and epidemio-
logical
investigations

Watarai, Suwa
and Iiguni
(2004)

Bacteria Escherichia
coli

Ground beef DynabeadsTM

anti-E. coli
0157

Anti-E. coli 0157 Detection and
isolation of
pathogenic
bacteria

Ochoa and
Harrington
(2005)

MPVA: magnetic polyvinyl alcohol; PECAM-1: platelet cell adhesion molecule-1; LsaA: Lawsonia surface antigen A.

effects at nontarget sites. The susceptibility to in vivo degra-
dation further reduces the efficiency of gene transfer.

Microparticles, especially MPs, as carriers of DNA can
overcome many of these challenges and may help in deliver-
ing sustained, therapeutic concentrations of DNA. Frequent
dosing regimens and protection of DNA from serum compo-
nents is possible with the use of biodegradable, biocompati-
ble polymers that are inert, safe, and do not compromise the
bioactivity of the DNA. The use of MPs for gene transfec-
tion has been termed magnetofection by Plank et al. (2003a)
and comprises the application of a magnetic field in order to
drive the magnetic vector toward the target cells or retain it
in the target tissue. Preparation of magnetic vectors can be
accomplished by linking nucleic acids or nucleic acid vec-
tors to magnetic nanoparticles (Figure 4) using physical (e.g.,
polyelectrolyte mediated), chemical (e.g., covalently linked),
and biological (e.g., biotin–streptavidin, antigen–antibody
bound) means (Plank et al., 2003b).

Moving to MPs significantly improves the transfec-
tion rates not only through magnetically forced contact
(Mah et al., 2002; Scherer et al., 2002) (Figure 4), but
also by increasing the plasmid concentration (Hughes,

Galea-Lauri, Farzaneh and Darling, 2001). Gersting et al.
(2004) compared the efficiency of magnetofection with
that of standard transfection methods and found that
the level of transgene expression resulting from mag-
netofection was 400-fold higher when compared with
dendrimer- or poly(ethyleneimine) (PEI)-mediated transfec-
tion (polyfection) and 2500-fold higher when compared
with lipofectamine-mediated transfection (lipofection) (Hirao
et al., 2003). PolyMAG100 (Chemicell) is one of the com-
mercially available MP preparations for high-efficiency
nucleic acid delivery in research. It consists of 100-nm-sized
magnetic nanoparticles that are mixed with the nucleic acid
to be transfected in a one-step procedure. Magnetic transfec-
tion with this reagent is rapid and efficient, uses low vec-
tor doses and thus less expensive transfection reagents, has
higher transfection rates (percentage of cells transfected), and
results in increased levels of transgene expression even with
short incubation times. Figure 5 shows a typical example of
magnetic transfection efficiency in endothelial cells.

Magnetic gene transfection is being studied with great
fervor and holds great promise for gene delivery. One
advantage over other methods is that an MP does not need
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Figure 4. Magnetic transfection uses a magnetic force to guide the gene vectors associated with MPs in close contact with the target cells.
Very high vector doses can thus be reached in the cells within a few minutes.

(a) (b)

Figure 5. Primary human umbilical vein endothelial cells positioned on the MagnetoFACTOR plate were incubated for 15 min with a Cy3
fluorescence-labeled antisense-oligonucleotide complexed with (a) the transfection reagent EffecteneTM (Qiagen) or (b) EffecteneTM plus
the magnetofection reagent CombiMAG (Chemicell), followed by further cultivation in cell culture medium for 24 h. (Data kindly provided
by F. Krötz, Ludwig-Maximilians University, Munich.)

receptors or membrane-bound proteins to enter the cells,
which makes it possible to also transfect cells that are not
normally susceptible to it (Scherer et al., 2002). Some recent
examples of magnetic gene transfection are given in Table 3.

3 THERAPEUTIC APPLICATIONS OF
MAGNETIC CARRIERS

3.1 Introduction

The application of MPs as a medical means to cure diseases
dates back to ancient times when pulverized magnetite was

utilized to treat different external as well as internal illnesses
(Häfeli, 2006a). It was, however, not until the middle of
the last century that this idea enjoyed a renaissance with
the proposal to treat cancer using local hyperthermia via
the heating of MPs exposed to alternating magnetic fields
(Gilchrist et al., 1957). Whereas this therapeutic modality is
described in more detail in Section 4, the initial sections deal
primarily with MPs as carriers of drugs.

The delivery of drugs to specific preidentified targets
within the body, maximizing the drug concentration in the
target and minimizing toxic effects in nontarget tissue, is
known as targeted drug delivery. Two known mechanisms
of drug delivery with carrier systems include passive and
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Table 3. Examples of gene transfection using magnetic particles (MPs).

Transfection vector Delivery system Particle size (nm) References

HVJ-E plasmid Protamine or heparin-coated
maghemite nanoparticles
(Nanotek, C.I. Kasei)

29 Morishita et al. (2005)

p55pCMV-IVS-luc+
(luciferase reporter gene)

Magnetic beads (CombiMag) 100–200 Krötz et al. (2003)

GFP-C2 plasmid Superparamagnetic iron oxide
dextran nanoparticles

59 Cao et al. (2004)

PCMVluc plasmid DNA
(luciferase reporter gene)

Cationic polymer-coated iron oxide
nanoparticles (transMAGPEI)

200 Gersting et al. (2004)

pGL3 plasmid DNA Magnetic cationic liposomes 40 Hirao et al. (2003)

GFP-C2: green fluorescent protein C2

Table 4. General advantages and disadvantages of the magnetic targeting
approach.

Advantages Disadvantages

• Increased and very high drug con-
centrations are possible in the tar-
get region, organ, and suborgan, as
compared to other systemic passive
or active targeting approaches

• Very low drug concentrations are
seen in other body parts

• Side effects and toxicity are much
reduced or missing

• Total amount of drug use can be
decreased substantially

• Local capillary diffusion of drugs is
maximized

• Extravasation of MPs into intersti-
tial/extravascular space is possible
and has been reported in several
investigations

• Magnetic targeting supports the
EPR effect

• MPs can be targeted away from the
RES

• Treatment depth (e.g., deep body
targeting) is limited owing to
rapid magnetic field fall-off

• Production of defined, directed
magnetic fields and field gradi-
ents can be a challenge

• Magnet-induced agglomeration
of MPs can lead to clogging
(embolizations) of small blood
vessels

EPR: enhanced permeation and retention.

active targeting. In passive targeting, the final biodistribu-
tion of the carriers is determined by the physical prop-
erties of the particles. For example, the ability of some
colloids to be taken up by the reticuloendothelial sys-
tem (RES), especially in the liver and the spleen, has
made them the vectors of choice for passive drug target-
ing to these organs. In active targeting, the final biodistri-
bution is determined by the way the receptors on specific
cells and organs recognize the carriers. In order to facili-
tate binding to target cells, the carriers are engineered to
contain target-specific ligands, such as antibodies, peptide
sequences, sugar moieties, charge, and other specific molec-
ular entities.

In addition to passive and active targeting, a third targeting
option is magnetic drug delivery. Magnetic drug delivery is
a physical method of delivering nano- or microsized MPs,
possibly loaded with a drug, to a target organ or region.
Like the other two methods, magnetic drug delivery has
both advantages and disadvantages. Table 4 lists them in a
comprehensive form. Combinations of all three methods are
also possible and are under investigation.

3.2 Mechanism of magnetic drug delivery

Magnetic drug delivery uses external magnets to produce or
to orient a magnetic moment in MPs, to guide drug-loaded
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Figure 6. Principle of magnetic drug targeting. The magnetic
carriers are administered into the vascular system of a patient and
then ‘pulled’ toward the target organ, in this case a tumor. Blood
flow within the capillary bed of the tumor is too weak to overcome
the magnetic forces and magnetic particles get trapped within the
target organ.

MPs to a target organ, and to hold them there for a
controlled treatment period (Figure 6). Treatment can then
be accomplished in a number of ways. These include slow
release of a chemotherapeutic drug from the MPs, local
irradiation from MPs containing radioactive β emitters, and
locally induced hyperthermia from MPs in an alternating
magnetic field.

In magnetic drug targeting, particle size is the most
important parameter with respect to biodistribution, toxicity,
magnetic responsiveness, and even drug release kinetics.
On the one hand, smaller particles can reach a larger
volume of the patient because they can enter smaller blood
vessels. Particles with a diameter of less than 50 nm (see
Figure 7a and b), especially with the help of magnetic forces,
can even pass the fenestrations of capillary walls and, in
this way, reach most of the cells in the human body. On
the other hand, smaller particles experience a dramatically
reduced magnetic force because the magnetic moment in a
magnetic field gradient decreases with decreasing particle
diameter (see equation (6)). As a result, the magnetic forces
induced in superparamagnetic particles (smaller than about
50 nm) are not likely to overcome the Stokes drag and the
collisions with red blood cells in the bloodstream (Grief and
Richardson, 2005). These theoretical calculations have not
been supported in practice. In particular, experimental studies

have provided evidence that superparamagnetic particles in
the bloodstream can be concentrated or prevented from
clearance by magnetic forces. This seeming contradiction
might be explained by an agglomeration tendency that MPs
experience in a magnetic field with magnetic moments much
larger than the ones of isolated units (see equation (6)). This
phenomenon is illustrated by the clusters in Figure 7(c),
which may disintegrate as soon as the field is switched off
and can then pass through the narrow blood vessels of the
vascular system.

The earliest experiments utilizing magnetic forces on MPs
were carried out with particle sizes well above the superpara-
magnetic range. One of the earliest studies concerned a mag-
netic selection procedure of Kupffer cells (Rous and Beard,
1934). In this investigation, particles of milled γ -Fe2O3

(diameter � 1 µm) were taken up by the Kupffer cells and
could then be manipulated with a pair of horseshoe magnets.

The most common method of producing a magnetic field
and field gradient capable of attracting MPs is through the
use of permanent magnets or electromagnets. The strongest
permanent magnets available today are rare-earth magnets
made from NdFeB, a material that has only been known since
1983 (Kirchmayr, 1996). Small-sized NdFeB button magnets
of the best grade with sizes of 1.0 cm diameter and 0.5 cm
thickness are able to stop MPs up to 2.5 cm from their sur-
face, although this is always dependent on the MPs as well.
It has been reported that, using a larger, 2.5-cm-wide and
7.5-cm-thick NdFeB magnet, magnetic iron particles coated
with carbon could be stopped within defined liver regions
up to 14 cm away (Johnson et al., 2002). The strongest elec-
tromagnets are superconducting magnets that can be bought
in easy-to-use electrically cooled configurations and produce
12 or more teslas from a barrel-sized, laboratory-compatible
instrument (JASTEC: Japan Superconductor Technology) or
2.2 T from a tonguelike desktop system (Takeda et al., 2007)
(Figure 8). A superconducting system from Stereotaxis Inc,
St. Louis, MO, USA was approved by the U.S. FDA in 2003
and is now available to direct catheters with a small mag-
netic tip to otherwise difficult or even impossible-to-reach
areas in the brain or heart. It is easy to imagine how use-
ful such systems would be for drug delivery, (micro)surgical
procedures, electrical interventions, or ablation catheter pro-
cedures. More recently, Stereotaxis developed a permanent
magnet system termed NiobeTM for the same applications
(Ernst et al., 2004). Two outer permanent magnets align a
third small magnet integrated in the tip of a mapping and
ablation catheter along its magnetic field lines. By changing
the orientation of the outer magnets, the orientation of the
magnetic field lines also change, thereby allowing navigation
of the ablation catheter. In combination with an automated
advancer system, this novel technique is the first to allow for
complete remote catheter ablation.
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(a)

(c) (d)

(b)

Figure 7. Transmission and scanning electron microscopy pictures of primary and composite magnetic particles. (a) Hydrophilic magnetite
nanoparticles prepared by the Elmore method (Elmore, 1938). (b) Monosized oleic acid–coated lipophilic magnetite nanoparticles
prepared by the iron pentacarbonyl decomposition method (Hyeon et al., 2001). (c) Clusters of iron oxide particles prepared by a wet
chemical precipitation procedure and subsequent coating done with carboxymethyldextran. (Courtesy C. Oestreich, Institute of Ceramic
Materials, Freiberg University of Mining and Technology.) (d) Magnetic biodegradable composite poly(lactide-co-glycolide) microspheres
incorporating the magnetite particles shown in (a) (Zhao, Gagnon and Häfeli, 2007).

Two other methods can produce strong, local, and directed
magnetic fields that can be used to accumulate MPs in
a target organ. The first method consists in placing small
magnets internally as unipolar probes next to the target
organ, such as in a diseased intracerebral artery (Alksne,
Fingerhut and Rand, 1966). The second method is to implant
a ferromagnetic object, such as a seed, stent, wire, or needle,
in the target area and then to place the patient in a strong
external magnetic field (Iacob, Rotariu, Strachan and Häfeli,
2004). Magnetized magnetic meshes were able to accumulate
large amounts of 2-µm or 370-nm particles, even at 5 cm s−1

flow rates, while nonmagnetized control wires attracted
no particles at all (Yellen et al., 2005). Interestingly, the
magnetic fields do not need to exceed 0.1 T according to the
authors of this study. One disadvantage of both procedures,
however, is their invasiveness, since a ferromagnetic element
or magnet must first be placed inside the patient.

Although many magnetic drug delivery investigations
were reported (see the following text), not much quantitative
information is known about the targeting efficiency of the
MPs. The reason for this is that most people are interested in

the success of an attempted therapy and therefore generally
are more interested in the biodistribution of the delivered
drug than the carrier (MP) distribution. One of the few
reported targeting efficiency studies used the old technique
of radiolabeled MPs in combination with γ camera or single
photon emission computed tomography (SPECT) imaging. A
preliminary in vivo investigation tested the binding stability
and magnetic targeting ability of 90Y-labeled iron–carbon
particles of sizes 1–5 µm (Yu et al., 2002). Eleven mCi of
90Y-MP was administered intra-arterially into the hepatic
artery of a swine. Blood samples taken following the
administration showed that less than 3% of the total injected
activity had escaped into the blood supply 30 min after
the administration. A γ -camera image taken 24 h after
the injection using the Bremsstrahlung emission associated
with 90Y qualitatively showed a single source of emission
in the region of the liver where the 90Y-MP had been
targeted with a strong permanent magnet. Even 72 h after
the injection, more than 85% of the injected activity was
still present at the target location (unpublished data). In
addition to these radioactive measurements, and histological
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Figure 8. Tonguelike magnet system producing fields of 2.2 T.

methods and magnetic resonance imaging (MRI) for the
detection of the MPs, which are at best semiquantitative,
some efforts have been made in recent years to develop new
and improved tools for quantitative in vivo measurements.
These methods include magnetorelaxometric measurements
(Eberbeck, Wiekhorst, Steinhoff and Trahms, 2006) and X-
ray or neutron-spectroscopy measurements (Brunke et al.,
2006). Both techniques are very promising, but have, to
this point, been applied only to feasibility studies and not
to complete magnetic targeting studies.

More studies are still needed to give information about
the distribution of MPs in vivo. It would be especially useful
if it was possible to simulate and predict magnetic targeting
efficiency, once the MPs, magnet, and blood flow parameters
are known. What is clear, however, is that there will always
be some loss of the injected MPs into the blood circulation as
compared to local application of a drug where there is none.
The distribution of the drug-carrying MPs throughout the
target organ, however, may be much better. Also, it has been
shown that intra-arterial application of MPs is able to deliver
much more of the drug to the target tissue than intravenous
injection. Intra-arterial injection prevents the MPs from being
filtered immediately by fixed macrophages in the liver and
lungs.

3.3 Magnetic drug delivery systems
(microspheres, nanospheres, liposomes)

The most commonly used magnetic drug delivery systems
include magnetic microspheres (see Figure 7d), nanospheres,
and liposomes filled with drugs or containing drugs bound
to their surface. The MPs contained in these drug delivery

systems are often grouped according to size. At the lower
end, we have the ferrofluids, which are colloidal iron oxide
solutions. Encapsulated MPs in the range of 10–500 nm
are usually called magnetic nanospheres and any MPs of
just below 1–100 µm are magnetic microspheres. Magnetic
liposomes, which are phospholipid vesicles incorporating
a magnetic compound, are also included when speaking
about magnetic carriers. The materials for the preparation of
MPs include both nonbiodegradable materials, such as ethyl
cellulose and the synthetic polymers polymethylmethacry-
lates (PMMAs) and polystyrene, and biodegradable materi-
als, such as albumin, phospholipids, starch, poly(lactic acid),
dextran, polyalkylcyanoacrylates, and polyethylene imines
(Schütt et al., 1997).

The amount and nature of the magnetic component incor-
porated into the MPs is an important material consideration.
Today, materials with higher magnetic susceptibility and
magnetization compared to the aforementioned iron oxides
(Gupta and Gupta, 2005) are being investigated and devel-
oped to increase the magnetic response of MPs to an applied
magnetic field further. Riffle at Virginia Tech in the United
States and Bönnemann at the Max Planck Institute in Ger-
many, for example, are independently and with different
methods spearheading the development of oxidation-proof
nanocobalt particles (Bönnemann et al., 2003; Riffle et al.,
2003). Similarly, passivated nanoiron is being developed by
Materials Modifications Inc. in the United States (Williams
and Kotha, 2003). The alloy Fe3Co has also recently been
prepared by Hütten at the University of Bielefeld in Germany
in the form of highly uniform nanoparticles, with excellent
size control between 1 and 11 nm (Hütten et al., 2005).

Smaller nanosized MPs containing up to a 100% of the
magnetic material can be made with methods such as the
decomposition of iron pentacarbonyl precursors. Typically,
however, the MPs must be protected from agglomeration,
oxidation, and further reactions, and coating materials such
as detergents and longer-chain fatty acids are thus introduced
or are already present during the synthesis.

Importantly, magnetic drug delivery systems follow the
same rules as other pharmaceutical drug delivery devices. For
example, magnetically delivering a chemotherapeutic drug to
a tumor alone does not eradicate it. The drug must first be
released from the particles in order to be efficacious. Fur-
thermore, the particles have to follow the same strict rules
regarding sterility, nonimmunogenicity, nontoxicity, and bio-
compatibility as any other invasive drug delivery systems.

MPs consisting of iron, nickel, or cobalt can be
cytotoxic owing to the production of positively charged metal
ions. Magnetite, maghemite, and superparamagnetic iron
oxide nanoparticles coated and stabilized with hydrophilic
polymers, however, have been found to be quite
thermodynamically stable under physiological conditions and
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not to exert obvious toxic effects. Pharmacokinetic studies of
small magnetite nanoparticles destined for MRI (Weissleder
et al., 1989) have shown that the magnetite nanoparticles are
taken up by the cells of the RES and are transported intracel-
lularly to lysosomes, where they slowly oxidize at low pH
and are then recycled by the body (Lawaczeck et al., 1997).
Within 20–40 days, up to 60% of the iron is recovered in
red blood cells, as determined using radiolabeled 59Fe. On
the basis of these studies, magnetic nanoparticles have been
approved as MRI contrast agents.

Recent discussions have centered on toxic effects of
(magnetic) nanoparticles in humans after inhalation. Rodent
models have shown that the potential problematic effects of
such particles include the induction of asthma, inflammation,
and even cancer (Nel, Xia, Madler and Li, 2006). Some of
these effects might be due the fact that particles smaller than
100 nm are not exhaled, but are almost completely retained in
the alveoli (Kreyling, Semmler and Möller, 2006). For this
reason, acute effects can rapidly turn into chronic effects.
Although many effects seen in rodents do not develop in
humans, it is still prudent to carefully monitor all health
effects from nanoparticles.

3.4 Magnetic drug delivery systems for
chemotherapy

Many tumors, especially those of pancreas, liver, lung, stom-
ach, brain, and head and neck, are untreatable because of
inaccessibility, inoperability, lymph node infiltration, and the
unacceptably high risk of toxicity to nearby organs. Mag-
netic drug delivery is able to concentrate the drugs in a
tumor once it has been outlined by imaging methods such as
MRI and computerized, single photon emission, and positron
emission tomography. For magnetic drug delivery, the tumor
must be accessible through the arterial system and have a
good blood supply. The magnetic delivery method promises
longer survival, fewer side effects, and shorter and less toxic
treatments.

The era of drug-filled microspheres started with the use
of albumin MPs filled with the anticancer drug doxorubicin
(adriamycin) (Widder, Senyei and Ranney, 1979). As is
typical for many other MPs, maximum magnetite contents
of up to 50 wt% were reported. The era of albumin
particles was followed by that of MPs made from many
different matrix materials incorporating or adsorbing just
about any chemotherapeutic drugs imaginable. The drugs
tested in vitro or in vivo included mitomycin C (Kato et al.,
1980, 1981), camptothecin, ara-C, tumor necrosis factor
(TNF-α), paclitaxel, mitoxanthrone, 5-fluorouracil (5-FU),
and dactinomycin, just to name a few (Häfeli, 2006b).

The application of drug-filled MPs by intravenous injec-
tion is not ideal, because it results in substantial dilution of
MPs throughout the body and in the successive MP uptake
by the RES, particularly in the spleen, liver, and lungs. As a
result, typically only a threefold increase in MP concentra-
tion is reached in the target location with the attached magnet
compared to the contralateral side of the body with no magnet
as was shown, for example, with dactinomycin-filled mag-
netic nanoparticles (Ibrahim, Couvreur, Roland and Speiser,
1983). Approximately twofold enhancement between the
effect of activated and non-activated electromagnets was seen
when another group targeted gliomas in rats (Pulfer and
Gallo, 1998; Pulfer, Ciccotto and Gallo, 1999). Even the
intravenous injection of MPs very close to the tumor only
marginally increases MP uptake, as shown in one of the first
well-controlled patient trials with 14 patients using the drug
4′-epidoxorubicin adsorbed onto MPs with an anhydroglu-
cose coating (Lübbe et al., 1996; Lübbe, Alexiou and Berge-
mann, 2001). Most of the drug was released over 30 min
after injection, and the system was shown to be nontoxic.
However, it was also not very effective, probably owing to
the small particle size (about 100 nm) and the not so strong
magnets used.

A better way to inject drug-filled MPs and achieve more
effective magnetic targeting is intra-arterial injection prox-
imal to the tumor. The first animal trials using this injec-
tion technique involved the delivery of MPs to a distinct
area of a rat’s tail (Widder, Morris, Howard and Senyei,
1981; Widder et al., 1983). It resulted in the delivery of
200 times more drug to the target area compared to what
could be achieved through intravenous application of the
same amount of free drug (Senyei, Reich, Gonczy and
Widder, 1981). The company FeRx further improved on
this method by employing MPs made of carbon-coated
pure iron with a diameter of 1 to 5 µm. Their MPs are
the most magnetic particles ever used in vivo. The drug
doxorubicin was adsorbed to the carbon coating and then
slowly released at the tumor site, as seen in a clini-
cal phase I trial performed between 2001 and 2004 in
patients with primary liver cancer (hepatocellular carcinoma
or HCC) (Goodwin, 2000; Johnson et al., 2002). X-ray
and magnetic resonance images such as those in Figure 9
confirmed excellent particle retention in the liver tumors
upon employing an 8-cm-long and 2.5-cm-diameter NdFeB
magnet.

Only one other clinical trial has been described in the lit-
erature. This trial used ferrocarbon particles of about 100 nm
diameter that within minutes adsorbed about 2 wt% of the
anticancer drug carminomycine (Kuznetsov et al., 1997).
The authors report that more than a hundred patients have
received this treatment in different Russian hospitals since
1990. Unfortunately, the clinical results were not reported in
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(a) (b)

Figure 9. Postdosing angiogram (a) and MRI (b) after magnetic targeting with doxorubicin-loaded MTC by FeRx Inc.
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Figure 10. Dependence of doxorubicin release from magnetolipo-
somes with various concentrations of ferrocolloid. The results are
mean values from four independent measurements. (Reprinted with
permission M. Babincova et al., copyright 2002, Elsevier.)

a very detailed manner and the definitive treatment outcome
is still unclear.

To date magnetic liposomes sized like nanoparticles have
yet to be used clinically. There are, however, ongoing ani-
mal experiments using magnetoliposomes that incorporate
paclitaxel (Zhang et al., 2005). Although the incorporation
of large amounts of magnetite into liposomes is more diffi-
cult than into nanoparticles, up to 25 wt% of magnetite has
been recently enclosed into dipalmitoylphosphatidylcholine
liposomes that also contained crystal violet as a model drug
(Koneracka et al., 2005). Another group made similar mag-
netoliposomes, without any drugs, to be used for hyperther-
mia treatment (Gonzales and Krishnan, 2005).

Most drug release from MPs occurs passively, by des-
orption from and diffusion out of the MP matrix. The
main driving forces are pH, osmolarity (of the blood),

and concentration differences between the MPs and the
blood/tissue. One group investigated the active release of
chemotherapeutic drugs upon local heating using an alternat-
ing current (AC) magnetic field with a frequency of ∼1 MHz
(Babincova et al., 2002). Their doxorubicin magnetolipo-
somes made with 8-nm magnetic oxide particles released
the drug upon irradiation. Depending on the ferrocolloid
concentration in the magnetoliposomes and the length of
the exposure to the alternating magnetic field, significant
amounts of doxorubicin were released (see Figure 10). The
release of drug seemed to be owing to local heating of the
liposomal membrane, which has a phase transition temper-
ature of 42 ◦C. Similar results have been reported in vivo
(Viroonchatapan et al., 1998). In particular, upon placement
in an alternating electromagnetic field, the tumor temperature
could be kept at 42 ◦C despite blood flow and the entrapped
5-FU was almost completely released within the next hour.

Overall, as already described in an excellent review
(Gupta and Hung, 1994), different chemotherapeutic drugs
have already been combined with MPs made from different
matrices, and many new ones will likely become available
in the future. Magnetic targeting of solid animal tumors has
been shown to enhance the tumor drug concentration two
to several hundred times. It is hoped that the use of more
magnetic and more uniform MPs will further extend the
indication of such particles to lung, pancreas, and breast
cancer and move them into clinical trials.

3.5 Magnetic drug delivery systems for
radiotherapy

The biggest challenge in the use of radioactive isotopes for
the killing of cancer cells is the delivery of a sufficiently
high radiation dose without harming the surrounding tissue.
MPs that incorporate radioisotopes either in the matrix or
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bound to the surface can be used to address this challenge
(Häfeli, 2001a). The advantage of this method over the
external beam therapy typically used in radiation oncology
departments is that the local dose can be very high, resulting
in improved tumor cell eradication, and that it can be given
in one application rather than in the standard six weeks of
daily radiotherapy. Different radioisotopes can be used to
treat different treatment ranges (Häfeli, 2001b). The β emitter
90Y, for example, will irradiate up to a range of 12 mm in
tissue while 131I will irradiate only up to 2.4 mm. Unlike
chemotherapeutic drugs, the radioactivity is not released.
Instead, the radioactive MPs are delivered to and held at
the target site and from there irradiate the area within the
specific treatment range of the isotope. Once the MPs are
no longer radioactive, they ideally biodegrade, as is the case
with poly(lactic acid) or gelatin microspheres.

Initial experiments in mice have shown that intraperi-
toneally injected radioactive poly(lactic acid) based MPs
could be concentrated near a subcutaneous tumor in the
belly area above which a small magnet had been attached
(Häfeli et al., 1997). The dose-dependent irradiation from
the β emitter 90Y-containing MPs resulted in the complete
disappearance of more than half of the tumors. To improve
the magnetic targeting efficiency, magnetic targeted carriers
(MTCs; from FeRx), which are more magnetically responsive
iron–carbon particles, have been recently radiolabeled with
isotopes such as 188Re (Häfeli, Pauer, Failing and Tapolsky,
2001), 111In (Häfeli, 2004), 90Y, and 125I (Yu et al., 2002),
but have yet to be tested.

Enhancement of tumor cell kill without harming the patient
can also be achieved by combining drug delivery with
internally given radioactive isotopes or external radiation.
Gelatin MPs with metronidazole, an efficient sensitizer of
hypoxic mammalian cells to the effects of radiation, have
been prepared and shown to release the drug in a defined way
(Leucuta, 1986). Such a slow drug release over a few hours
sensitizes even normally radioresistant cancer cells, lowers
the overall radiation dose necessary for successful treatment,
and prevents side effects.

Internal radiotherapy may soon be feasible not only
with β and γ emitters, but also with short-range auger
emitters given that tat peptides have recently been shown
to penetrate cell membranes and shuttle MPs inside cells
(Lewin et al., 2000). For this purpose, MPs must be able
to penetrate the cell surface efficiently. Tat peptide, a
positively charged peptide, has been shown to induce the
internalization of therapeutic agents such as radioactively
complexed 99mTc and 188Re (Polyakov et al., 2000) and
superparamagnetic iron oxides known as tat-CLIO (tat-
cross-linked iron oxides) (Wunderbaldinger, Josephson and
Weissleder, 2002). Weissleder’s group, who developed the
tat-CLIO, was able to accumulate the tat-CLIO intracellularly

in a highly specific manner (Wunderbaldinger, Josephson and
Weissleder, 2002).

Overall, the advantages of local radiation treatment using
magnetically delivered MPs are similar to those of mag-
netically delivered chemotherapy. In addition, there is no
resistance formation, the doses can be planned in advance
using treatment software, the treatment range and therefore
also the range of expected toxicity is well known, and the
targeting success can be imaged and possibly altered with
commonly used nuclear medicine techniques.

3.6 Other magnetic drug targeting applications

Magnetic drug delivery can be used to deliver not only
chemotherapeutic, radioactive, peptide, and hyperthermia
drugs, but also antiinfective, blood-clot-dissolving, anti-
inflammatory, antiarthritic, photodynamic therapy, and
paralysis-inducing drugs. The magnetic delivery of genes,
another successful example, has already been reviewed in
Section 2 of this chapter.

One of the most successful examples in this group of drug
targeting applications is the preparation of magnetite coated
with the blood-clot-dissolving drug urokinase (Inada et al.,
1987) or streptokinase (Torchilin et al., 1988), which was
used to dissolve surgically induced thrombi in the carotid
arteries of a dog (Torchilin et al., 1988). The control side
received no special treatment while the experimental side
had a magnet attached above it. One hour after the procedure,
streptokinase bound to the surface of MPs was injected into
the animal at a dose 10 times lower than the normal, non-MP-
bound streptokinase dose. The side without the magnet com-
pletely occluded within 4 h, while the side with the magnet
returned to initial blood flow after about 30 min and appeared
completely open at histological examination (Figure 11).

The magnetic drug delivery potential is enormous, espe-
cially for highly potent – and thus also potentially very
toxic – drugs. Many organs and systems in the body can be
targeted. For most applications, it is obvious that systemic
effects can be minimized or completely eliminated while the
sought-after effect is enhanced. A good example is the mag-
netic delivery of the curare-like drug diadonium to the limbs
of cats (Kharkevich, Alyautdin and Filippov, 1989), during
which their limbs became paralyzed with only slight respi-
ratory depression.

3.7 Magnetic particles that exert therapeutic
effects by embolization

Under the influence of a magnetic field, MPs align in chains
and eventually agglomerate. Depending on particle size and
shape, this can lead to embolization (clogging) of the blood
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Figure 11. Magnetically driven thrombolysis with streptokinase-coated magnetite particles is possible by placing a magnet close to the
area of the vascular flap in the carotid artery (a). Blood flow resumed in the targeted artery within 4 h, while the nontargeted carotid artery
was completely clogged (b and c) (Torchilin et al., 1988).

vessels and especially of the small capillaries 7–10 µm in
diameter. This accumulation of particles alone can be used
to starve the target tissue of oxygen, producing hypoxia
and inducing necrosis. The first embolization applications
in the 1960s and 1970s included the occlusion of cerebral
and renal aneurysms (Alksne, Fingerhut and Rand, 1966;
Hilal, Michelsen, Driller and Leonard, 1974; Roth, 1969)
and were followed by the occlusion of the feeding vessels of
carcinomas. Rand et al. described the technique of injecting
a mixture of liquid silicone and microspheres of carbonyl
iron into the intraparenchymal vascular bed followed by
intravascular vulcanization without heat transfer from the
outside (Mosso and Rand, 1973). The ferrosilicone was
retained in the required position by a strong magnetic field
generated by a superconducting coil. Another successful
example of cancer embolization therapy is the magnetic
accumulation of a so-called 10–30-µm-diameter iron sponge
in viscous solution in rabbit tumors (Sako et al., 1982).

To maximize efficacy, embolization therapy is generally
used in combination with a second treatment approach
such as radiotherapy, chemotherapy, or hyperthermia. This
was shown in the 1970s when Rand et al. continued their
above-described investigations (Snyder and Rand, 1975) with
needle-shaped γ -Fe2O3 particles and introduced additional
radiofrequency (RF) heating to more than 55 ◦C on the
renal surface of rabbits (Rand, Snyder, Elliott and Snow,
1976; Rand, Snow, Elliott and Snyder, 1981; Rand, Snow
and Brown, 1982). In this way, total coagulation necrosis
of a renal cancer model was achieved, possibly more as
a result of the hyperthermic treatment than because of the
occlusion. The treated animals survived the procedures and
the exposure to both magnetic fields and ferromagnetic
compounds without evidence of ill effects. The combination
of embolization and hyperthermia and its medical use is still
being pursued (Mitsumori et al., 1994, 1996; Moroz, Jones
and Gray, 2002).

3.8 Summary

Owing to space constraints, this section about the therapeutic
applications of magnetic carriers could only cover a limited
sampling of the literature. The interested reader is directed
to a much more complete and in-depth review of the field
(Häfeli, 2006b). Magnetic drug delivery covers a wide area of
applications, with a lot of research currently being performed
worldwide. None of the applications, with the exception
of several magnetic hyperthermia trials (Gneveckow et al.,
2005), have reached the clinical trial stage yet. Preclinical
animal research, however, is being performed in the areas of
magnetic gene delivery, tumor targeting, rheumatoid arthritis
treatment, and blood detoxification. This ongoing work, in
combination with enormous advances in the field of mag-
netic nanoparticle synthesis and analytical characterization
methods, is expected to lead to new and successful clinical
uses of magnetic carriers.

4 MAGNETIC PARTICLE
HYPERTHERMIA

4.1 Principles of magnetic particle hyperthermia

The application of heat as a traditional healing method has
been known for a long time. Soon after the discovery that the
metabolism of tumor cells is more susceptible to high temper-
atures than that of normal cells, views on how hyperthermia
could be used for tumor therapy emerged. Besides whole
body hyperthermia where the systemic temperature has to be
carefully controlled to, for example, 41.8 ◦C (Robins et al.,
1997), there is a spectrum of ways of local intracorporal heat
generation using focused microwave radiation, capacitive
or inductive coupling of RF fields, implanted electrodes,
focused ultrasound, or lasers. For the clinical state of the
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art of hyperthermia in oncology, see the review given by
Falk and Issels (2001). As an alternative therapy, magnetic
particle hyperthermia (MPH) is a method where MPs are
deposited in tumor tissue with subsequent heating by means
of an external alternating magnetic field. For biomedical
applications, the vast number of known magnetic materials
is strongly restricted by the demand of biocompatibility (e.g.,
nontoxicity, sufficient chemical stability in bioenvironment,
appropriate circulation time in blood, and finally, harmless
biodegradability). Although attempts to use metallic iron
particles, spinel ferrites, as well as special magnetic alloys
for MPH have been made, the majority of investigations
is focused on the magnetic iron oxides Fe3O4 (magnetite)
and γ -Fe2O3 (maghemite). These materials are well toler-
ated by the human body. At present, a variety of approved
types of magnetic iron oxide particles for specific contrast
enhancement in nuclear MRI are available on the market
(cf. Section 5). However, these relatively small, superpara-
magnetic particles are not well suited for MPH owing to
insufficient heating power. Besides localized heat generation,
the application of magnetic nanoparticles offers the possibil-
ity of a self-limitation of the temperature enhancement by
using a magnetic material with suitable Curie temperature
(e. g., Rand, Snow, Elliott, Haskins, 1985).

Since there is no strict borderline between tolerable and
mortal temperatures, both on the systemic as well as the
cellular level, there is a range of temperature elevation
considered to be therapeutically useful. With increasing
temperature, different mechanisms of cell damaging occur
and accordingly two therapy modalities were conceived:
Treatments at temperatures of 42–45 ◦C for up to few
hours – commonly denoted as hyperthermia – need to be
combined with other assisting toxic agents (mostly irradiation
or chemotherapy) for reliable damage of tumor cells. In
contrast, thermoablation aims at the thermal killing of all
tumor cells by applying temperatures in excess of at least
50 ◦C in the tumor region for exposure times of at least a
few minutes. Though these short treatment times and reliable
tumor damage seem advantageous, there is the risk of critical
systemic side effects such as a shock syndrome due to sudden
release of large amounts of necrotic tumor material and major
inflammatory response (Moroz, Jones and Gray, 2002).

In addition to the therapeutically useful tumor heating
effect of MPs, the alternating magnetic field can also cause
an unwanted nonselective heating of healthy tissue due to
the generation of eddy currents. According to the induction
law, the latter is proportional to the square of (H·f·D), where
H is field amplitude, f is the frequency, and D is the
induced current loop diameter. The induction heating of
iron oxide nanoparticles is practically negligible, but with
the specific electrical conductivity of tissue (0.6 �−1 m−1)

the critical current density for irreversible cell damaging

(in the order of 20 mA cm−2, e.g., Siegenthaler, 1994) may
be reached in macroscopic loops of the patient’s body.
Experimentally, Brezovich (1988) found for a loop diameter
of about 30 cm that a test person had a sensation of warmth,
but was able to withstand the treatment for more than one
hour without major discomfort if the product H·f was below
4.85 × 108 A m−1 s−1. Depending on the diameter of the
exposed body region and the seriousness of the illness, this
critical product may be exceeded. For instance, for the first
commercially developed equipment for treatment of human
patients, a frequency of 100 kHz and a field amplitude up to
18 kA m−1 was reported (Gneveckow et al., 2004).

4.2 Loss processes in magnetic particle systems

The generation of heat by magnetic substances in an external
alternating magnetic field may be caused by several physical
loss processes. The main mechanism of heat production with
magnetic nanoparticles is associated with hysteresis occur-
ring during reversal of the magnetization. With decreasing
particle size, the energy barriers for magnetization reversal
decrease and hysteresis is increasingly influenced by thermal
fluctuations. In addition to hysteresis, in fluid suspensions
of MPs viscous losses may arise owing to particle rotations
induced by the external alternating magnetic field. Particles
can be immobilized by adhesion, for example, to cell mem-
branes and tissue surfaces, or by uptake by fibroblasts. Free
rotations are thus suppressed, while the still possible oscil-
lations lead to complex loss contributions. In comparison to
magnetic losses, eddy current induced heating of small MPs
is negligibly small. The often used term inductive heating in
biomedical literature for MP heating is thus misleading.

4.2.1 Hysteresis losses

Hysteresis losses are represented in a well-known manner
by the area of hysteresis loops (e.g., Bertotti, 1998). Below
a critical particle size, domain walls do not exist and the
simplest process of magnetization reversal is the uniform
mode (Stoner and Wohlfarth, 1948). In this case, for an
ensemble of randomly oriented, noninteracting, ellipsoidal,
uniaxial single-domain particles, hysteresis loss energy den-
sity is given by twice the anisotropy energy density K . It
may be enhanced by a factor of 4 if particle axes are aligned
with the external field. Besides the simple model of uniform
magnetization reversal, there are different theoretical models
dealing with more complicated magnetization distributions
(e.g., curling, buckling, fanning; see, e.g., Aharoni, 1996;
Hubert and Schäfer, 1998), which are described in terms of
the micromagnetic theory (Kronmüller and Fähnle, 2003).
For cubic magnetite crystals, Butler and Banerjee (1975)
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derived from theoretical estimations an upper limit of about
80 nm for the single-domain size range, which increases con-
siderably with tetragonal particle elongation. The same order
of magnitude is obtained from micromagnetic calculations
(Fabian et al., 1996) considering more sophisticated magneti-
zation patterns like the so-called flower and vortex states. For
further recent theoretical and experimental results from liter-
ature, see Magnetization Configurations and Reversal in
Small Magnetic Elements, Volume 2. Experimentally, for
magnetite crystals in the mean diameter range above about
50 nm, the coercivity and remanence was found to decrease
with increasing particle size d according to an empirically
well established d−0.6 power law (Heider, Dunlop and Sug-
iura, 1987), which implies a decrease of hysteresis losses in
the multidomain size range. A strong decrease in coercivity
with increasing particle size in the range 30–100 nm mea-
sured for maghemite was interpreted by Eagle and Mallinson
(1967) as an indication for a nonuniform reversal mode.
Since, on the other hand, magnetite particles with size below
about 25 nm become superparamagnetic (see the following
text), a maximum of hysteresis losses may be expected for
single-domain iron oxide particles with a mean diameter of
close to 30 nm.

However, for utilization of the full hysteresis loop for
heat generation, alternating field amplitudes well above the
coercivity field are needed, which imposes strong technical
demands on the magnetic field generator. For instance, with a
15 kW 400 kHz AC generator in a coil for treatment of breast
cancer (Hilger, Hergt and Kaiser, 2005) using field ampli-
tudes of not more than 10 kA m−1, one is restricted to minor
loops. The large coercivities of acicular maghemite particles
(typically 50 kA m−1) used for magnetic recording are rarely
of value for medical heating problems. In general, for single-
domain particles with nearly rectangular hysteresis loop, one
may expect only minor values of hysteresis losses for field
amplitudes below the effective anisotropy field. By compar-
ing different types of MPs with respect to their suitability
for hyperthermia (Hergt et al., 1998), it was shown that hys-
teresis losses of different types of magnetite particles may
differ by orders of magnitude in the range 1–10 kA m−1 of
field amplitudes owing to differences of particle size, shape,
and microstructure. As an illustration, Figure 12 shows the
dependence of hysteresis loss on field amplitude for different
classes of magnetic iron oxide particles (e.g., a typical sample
m6.3 prepared by chemical precipitation, a sample BASF1
of acicular particles for recording applications, and magneto-
somes synthesized by bacteria) in comparison with the the-
oretical curve for a Stoner–Wohlfarth (SW) system. Though
the mean particle diameters of about 30 nm – as determined
by transmission electron microscopy – for all samples are in
the single-domain range, there are considerable deviations
between the experimental results of different particle types
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Figure 12. Dependence of hysteresis losses per cycle on field
amplitude for different types of magnetic nanoparticles (a chemi-
cally precipitated sample m6.3 (Dutz et al., 2007), bacterial magne-
tosomes (Hergt et al., 2005), and a sample of commercial magnetic
recording particles BASF1) in comparison with the theoretical curve
for randomly oriented Stoner–Wohlfarth (SW) particles. The SW
coercivity is adjusted to that of BASF1. (Reprinted with permission
Hergt R. Hiergeist et al., copyright 2005, Elsevier.)

and SW theory. In particular, experimental results for low
field amplitudes generally show a third-order power law
for the amplitude dependence of hysteresis losses, which is
known as the so-called Rayleigh law for multidomain objects
if the motion of domain walls is hindered by pinning centers
(e.g., Kronmüller and Fähnle, 2003). Many magnetite and
maghemite powders in a broad size range of about 10 nm
up to 100 nm were investigated (Dutz et al., 2007) but in no
case the high specific losses at low amplitudes of bacterial
iron oxide magnetosomes shown in Figure 12 were met.

4.2.2 Thermal relaxation effects
With decreasing particle volume V , the energy barriers
impeding the reversal of the magnetic moments decrease and
the probability of spontaneous jumps of the magnetization
due to thermal activation processes increases. As a conse-
quence, loss energy per cycle derived from hysteresis loops
becomes smaller than calorimetrically measured loss data if
the characteristic time of measurement τm is larger than the
relaxation time of the particle system. For the simple case of
two stable states separated by a barrier that is proportional
to the anisotropy energy KV, the so-called Neél relaxation
time of the system is determined by the ratio of KV to the
thermal energy kT (Néel, 1949):

τN = τ oexp[KV/(kT )] (τ o ∼ 10−9s) (7)

A critical particle volume Vc may be defined by τN(Vc)

= τm. For a measuring frequency of 300 kHz and a mag-
netic anisotropy energy density of 104 J m−3 (for magnetite
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particles of ellipsoidal shape with an aspect ratio of 1.4),
the critical diameter is about 20 nm. Below the critical size,
the relaxation effects cause remanence, coercivity as well as
hysteresis losses to vanish. This transition to the so-called
superparamagnetism (for details see Superparamagnetic
Particles, Volume 4) occurs in a narrow size range. The
frequency dependence of the relaxation of the particle sys-
tem may be well investigated by measuring spectra of the
complex susceptibility, the imaginary part χ ′′(f ) of which
is related to the loss power density P according to (e.g.,
Landau and Lifshitz, 1960)

P (f, H) = µoπχ ′′(f )H 2f (8)

where χ ′′(f ) may commonly be described by the well-known
expression (see e.g., Delaunay, Neveu, Noyel and Monin,
1995)

χ ′′(f ) = χoφ/(1 + φ2), φ = f τN,

χo = µoM
2
SV/(kT )(MS : saturation magnetization) (9)

According to these equations, at low frequencies (φ � 1),
that is, in the superparamagnetic regime, losses increase with
the square of frequency while for φ � 1 losses approach a
frequency-independent saturation value P = µoπH 2(χo/τ ).
At the transition between these two regimes, the spectrum
of the imaginary part of the susceptibility has a peak that
is related via equation (7) to the anisotropy energy KV. The
very strong size dependence of the relaxation time according
to this equation leads to a very sharp maximum of the loss
power density in dependence on particle size (Hergt et al.,
1998; Hergt, Hiergeist, Hilger and Kaiser, 2002). Accord-
ingly, a remarkable output of heating power occurs only for
particle systems with narrow size (and anisotropy) distribu-
tion. The effect of size distribution on loss power density
was elucidated theoretically by Rosensweig (2002).

In addition to Neél relaxation, which is related to the
reversal of magnetic moments inside the particles, a sec-
ond relaxation path is possible in liquid suspensions: the
so-called Brownian relaxation is due to particle reorientation,
which becomes essential if the magnetic moment direction
is strongly coupled to the particle itself, for example, by a
large value of the magnetic anisotropy, combined with easy
particle rotation due to a low viscosity η of the suspension
liquid. For spherical particles with the hydrodynamic radius
rh (which due to, e.g., particle coating may be essentially
larger than the radius of the MP core), the relaxation time is
given by

τB = 4πηr3
h/(kT ) (10)

which was first derived by Debye (1929) for rotational polar-
ization of molecules. The loss power density for Brown

relaxation is given by introducing equation (10) instead of
equation (7) into equations (9) and (8). In the general case,
if both Néel and Brown relaxation are present, an effective
relaxation time may be used according to

1

τ eff
= 1

τN
+ 1

τB
(11)

A general treatment of the relaxation in ferrofluids based
on a Fokker–Planck equation was given by Shliomis and
Stepanov (1994).

The role of Brown relaxation may be estimated from the
measured susceptibility spectra shown in Figure 13 (Hergt
et al., 2004a). By comparing the experimental data points
measured for the fluid suspension with the data of the same
particles immobilized in gel, the effect of Brown relaxation
becomes clear. The low frequency peak of χ ′′ for the
liquid suspension represents Brown losses. It has vanished
after immobilization of the particles in gel. Consequently,
a considerable reduction of specific heating power may be
expected when particles circulating in blood adhere to tumor
cells or enter a cell by (typically) endocytosis. However,
the results of Figure 13 show that this detrimental effect
may be avoided by choosing a suitable frequency of the
external magnetic field well above the Brown peak. The
experimental data points may be satisfyingly approximated
(full and dashed line) by combining equations (7–11) with
the experimental size distribution determined by electron
microscopy (for details see Hergt et al., 2004a). The loss
power density calculated by equation (8) is well confirmed
by calorimetric measurements, which give a specific loss
power (SLP) of 600 W per gram maghemite in a field of
400 kHz and 11 kA m−1. There, the loss power density given
in (W cm−3) is related to the measured SLP (W g−1) by
the mass density ρ = 4.8 g cm−3 of maghemite. In medical
literature, the SLP is often denoted as specific absorption
rate (SAR).

4.2.3 Viscous losses

Losses related to viscous friction of rotating MPs in a
liquid suspension are not restricted to the above case of
superparamagnetic particles. In general, a rotating magnetic
field H exerts a torque moment T = µoMRHV onto a
particle, which may be regarded as a permanent magnet (MR

means its remanent magnetization) rotating in a liquid of
viscosity η. In the steady state, the viscous drag in the liquid
12πηVf is counteracted by the magnetic torque T and the
loss energy per cycle is simply given by 2πT. In steady state,
the minimum field amplitude H needed to sustain stationary
rotation is related to the frequency according to the balance

12πηf = µoMRH (12)
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Figure 13. Imaginary part of the specific susceptibility as a func-
tion of frequency. Experimental results of an aqueous maghemite
ferrofluid and of the same particles immobilized in gel are plot-
ted (dots) in comparison with calculated spectra (full and dashed
line). (Reprinted with permission Hergt R. Hiergeist et al., copyright
2004, Elsevier.)

For example, for an aqueous suspension (viscosity η =
10−3 Pa·s) of magnetite (MR ≈ 2.3 × 105 A m−1), the min-
imum necessary field is 10 kA m−1 at a frequency of
70 kHz. For the latter AC-field parameters, the SLP given
by 24π2ηf 2/ρ is about 240 W g−1.

The effect of viscous losses was clearly demonstrated in
experiments with relatively large (some 100 nm) crushed
magnetite particles suspended in aqueous sol containing
commercial gelatin, which is stiff below about 30 ◦C and
a liquid at temperatures higher than 35 ◦C (Hiergeist et al.,
1999). On heating above the melting point, the SLP increases
by nearly an order of magnitude up to 200 W g−1 at a field
amplitude of 6.5 kA m−1 and a frequency of 410 kHz.

4.3 Physical limitations of magnetic particle
hyperthermia

The amount of nanoparticles necessary to increase the tissue
temperature by MPH depends strongly on the SLP of the
applied nanoparticles. In particular, for systemic delivery of
nanoparticles (in contrast to local intratumorally injection),
for instance, by means of antibody targeting (e.g., Suzuki,

Shinkai, Kamihira and Kobayashi, 1995), the expected target
concentration is very low (smaller than 1 mg of magnetite
per cm3 of tumor tissue) and, consequently, SLP must be
rather high. For a quantitative estimation of the demand of
SLP, one has to consider that the intratumoral temperature
elevation is a result of the balance of two competing
processes: Heat generation within magnetic nanoparticles is
counteracted by heat depletion into surrounding tissue due
to blood perfusion and heat conduction. In general, this
needs the consideration of the so-called bioheat equation
(e.g., Nyborg, 1988). However, if there are no large vessels
in the immediate neighborhood of the tumor, the problem
reduces to the solution of the heat conductivity equation
(Andrä et al., 1999). As a result, in nearly steady state, for
an approximately spherical tumor of radius r one gets a
correlation between the size of the particle containing volume
(i.e., the tumor size), the particle concentration c within it,
the temperature elevation �T, and the SLP:

�T = SLP ·c·r2

(3λ)
(13)

where λ is the thermal conductivity of body tissue, which
is similar to that of water. As an important result, the
demand of SLP increases with decreasing tumor size
according to an inverse power law r−2. Considering, for
instance, thermoablation (�T = 15 K) using a typical fer-
rofluid (SLP < 100 Wg−1 of iron oxide) in tissue concentra-
tions of about 10 mg cm−3 (provided by intratumoral injec-
tion), it follows from equation (13) that the diameter of the
heated tissue region must not be smaller than 1 cm even if the
tumor should be considerably smaller. In the case of antibody
targeting only a low concentration of magnetic material may
be achieved in the tumor region and a reasonable temperature
elevation may be expected only for relatively large tumors
(for details see Hergt, Hiergeist, Hilger and Kaiser, 2002;
Hergt and Andrä, 2006). A volume reduction would demand
a considerable increase of SLP according to equation (13).
In particular, a significant temperature increase for isolated
tumor cells that take up MPs cannot be expected. As stated
by Rabin (2002), thermal effects on the cellular level are
negligible as far as there is no macroscopic heating of cells
within the tissue. Insofar, there is no reason to differentiate
extracellular macroscopic heating and ‘intracellular hyper-
thermia’, which was claimed to be a particularly effective
way for damaging tumor cells by some authors (e.g., Bacri
et al., 1997; Jordan et al., 1999).

It should be pointed out that the scenario discussed is
‘best case’. In practice, tumor shape deviates considerably
from being spherical, and a homogeneous filling of tumor
tissue by MPs will rarely be achievable. Consequently, the
demand of heating power may be considerably larger than
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expected from the above given estimations. In addition, for
an optimum choice of particles with sufficient SLP, one
has to take into account the limitation for the product H·f
discussed in the preceding text (Section 4.1). The favorable
combination of AC-field amplitude and frequency depends
strongly on the type of particles provided for the therapy. For
particles with mean size in the superparamagnetic regime, the
frequency dependence of losses is mainly determined by the
imaginary part of the susceptibility given in equation (9).
On the contrary, for ferromagnetic particles, the frequency
dependence of hysteresis losses is linear. The dependence
of magnetic losses on field amplitude obeys a square law
for superparamagnetic particles as given in equation (8)
compared to a third-order power law for larger ferromagnetic
particles in the Rayleigh regime. It is reasonable that for
particles with hysteresis losses within the validity range of
the Rayleigh regime one should favor the field amplitude
against frequency in the limiting product H·f·D.

It follows from the discussion of loss mechanisms given
earlier – and is confirmed empirically – that the SLP of
different types of magnetic nanoparticles may differ by orders
of magnitude. The most important parameter is the mean
particle size in combination with a narrow size distribution.
For superparamagnetic particles, there is a steep decline
in SLP with decreasing particle size (Hergt et al., 2004b).
Insofar, the occasionally used very small particles below
about 10 nm mean diameter are not the optimum choice for
effective tumor heating. A maximum of SLP is expected
for single-domain particles in the diameter range between
the multidomain and the superparamagnetic regime, while,
however, the coercivity should be not too high. As a
confirmation, a very large value of SLP of nearly 1000 W g−1

at an AC-field amplitude of 10 kA m−1 and a frequency
of 410 kHz was found by Hergt et al. (2005) for bacterial
magnetosomes having a mean diameter of the magnetite
crystals of about 35 nm (cf. Figure 12).

In addition to mean particle diameter, the particle size
distribution has a strong effect on the value of the SLP as dis-
cussed in Section 4.2. As an experimental confirmation, by
magnetic fractionation a high-SLP fraction with a mean core
diameter of 18 nm that delivered 400 W g−1 (at 410 kHz and
11 kA m−1) could be gained from a commercial ferrofluid
(Hergt et al., 2004b). A similar value of SLP of 600 W g−1

was found for magnetite particles with mean diameter of
15 nm, which owing to a special preparation procedure show
a rather narrow normal size distribution instead of a com-
monly observed log-normal distribution (Hergt et al., 2004a).

In general, the mean particle concentration and especially
inhomogeneities within the particles may affect the magnetic
properties. The remanence of ferromagnetic particle ensem-
bles decreases with increasing packing density owing to
dipole–dipole interactions. As a consequence, the hysteresis

losses decrease as well. The situation is more complicated in
the case of superparamagnetic particles. Agglomerated clus-
ters (see, e.g., Figure 7c) tend to behave like weak ferromag-
netic bodies. The mean concentration in fluids, however, is
usually low and the mean distance between particles too large
to cause measurable modifications of magnetic properties.

Another important factor determining magnetic losses is
the effective magnetic anisotropy. Considering the relatively
small crystal anisotropy of the ferrimagnetic iron oxides in
the order of some kilojoules per cubic meter (e.g., McCurrie,
1994), even relatively small deviations from isometric shapes
lead to remarkable shape anisotropy and a wide spread of
relaxation times. Moreover, magnetic anisotropy may be
considerably influenced by the particle coating (Berkowitz
et al., 1975), which is necessary for stabilization of the
suspension as well as for coupling of functional groups.
Finally, the coating may have a direct influence on the SLP
if there is a contribution of Brown relaxation losses.

Considering all factors that may influence SLP, it is diffi-
cult to estimate a theoretical limit for the SLP of magnetic
nanoparticles but it seems very questionable whether the
above cited value of 1000 W g−1 may be exceeded by more
than an order of magnitude. If this could be achieved, treat-
ment of tumors whose diameter is a few millimeters using
MPH would need a particle concentration of only 1 mg cm−3

in tissue. However, it is open at present whether such a con-
centration may be really attained by targeting with antibody-
functionalized MPs.

To summarize, a good knowledge of structural and mag-
netic properties of magnetic nanoparticles is a prerequisite for
designing particle systems with large SLP for hyperthermia
or thermoablation. The manifold methods available for mag-
netic nanoparticle preparation has been recently reviewed
(Tartaj et al., 2003).

4.4 Biomedical results of magnetic particle
hyperthermia

4.4.1 Results with animals and cell cultures

Gilchrist et al. (1957) performed the first basic animal exper-
iments with MPH, taking into account not only physical
aspects of particle magnetism but also how the process could
be technically implemented. Work performed since then in
cell cultures and animals such as mice, rats, rabbits, dogs,
and pigs are summarized in a review (Moroz, Jones and
Gray, 2002). The conclusion of this experimental work is that
temperature elevations sufficient for tumor degradation may
be realized in animal experiments under tolerable systemic
particle concentrations. Successful tumor cell killing was
proved by histological evaluation of treated tissue. Although
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many specific questions of MPH could be cleared in those
experiments, the posttreatment survival rates – if at all deter-
mined – were rather scattered and predictions of successful
human therapy will still need to be shown. The best sur-
vival rates of 87.5% in rats with no tumor regrowth within
three months were reported by Yanase et al. (1998a). These
authors also reported on observations of an antitumor immu-
nity induction by MPH using magnetite cationic liposomes
(Yanase et al., 1998b). Successful tumor control using mag-
netoliposomes coated with antibody fragments was reported
(Le et al., 2001). For more detailed information, see the
review given by Hergt and Andrä (2006).

Research on MPH was also supplemented by a lot of
in vitro experiments using cell cultures. The main purpose
of these experiments was the testing of the biocompatibility
of coated magnetic iron oxides and investigation of inter-
actions of magnetic nanoparticles with different cell species
in aqueous suspension. Nanoparticle coatings used for MPH
are mainly dextran, carboxydextran, citrate, polyethylene gly-
col, or starch. Toxicity of various coatings was studied, for
example, by Häfeli and Pauer (1999). Several authors (cf.
Moroz, Jones and Gray, 2002) have shown the differences
of the cellular uptake of magnetic nanoparticles for different
cell types as well as particle coatings by in vitro experiments.
A very specific cellular uptake was achieved by coupling
tumor-specific monoclonal antibodies on a polyethylene gly-
col coating of magnetite particles (Suzuki, Shinkai, Kamihira
and Kobayashi, 1995). After incubation with BM314 cells,
90-pg magnetite per tumor cell was detected, which was four
times that of the unlabeled control. However, much more spe-
cific antibody labeling is necessary to achieve MP enrichment
in tumor tissue to meet the requirements of MPH. Chan, Kir-
potin and Bunn (1993) have compared survival fractions of
human lung adenocarcinoma cells following heating using
water bath and MPH. They concluded that cancer cell dam-
age was purely due to thermal effects. Being in accordance
with theoretical considerations of Rabin (2002), this result
contradicts the repeated claim of biomedical literature (e.g.,
Jordan et al., 1999) that ‘intracellular hyperthermia’ is a par-
ticularly effective way of tumor cell damaging.

To summarize, animal and cell culture experiments clari-
fied some essential preconditions for human therapy.

4.4.2 Application to human patients

Although Gilchrist et al. (1957) were very optimistic about
application of their new method in humans – and since
then promising reports have repeatedly appeared in public
media – almost half a century passed before first trials with
humans were announced (Gneveckow et al., 2005). Provided
suitable magnetic nanoparticles are available, the most crit-
ical problem to be solved is the reliable particle delivery

to tumors, which may be achieved mainly in two differ-
ent ways: first, injection of the particle suspension directly
into the tumor or, secondly, a remote application in the
blood vessel system followed by targeted delivery to the
tumor. The latter may be performed, in principle, by label-
ing of MPs with tumor-specific antibodies or by particle
guidance by means of inhomogeneous magnetic fields. At
present, only direct injection is under practical considera-
tion. The key problem of direct injection is the realization of
an adequate particle distribution in the tumor tissue. Since
the temperature elevation caused by the external alternating
magnetic field is mainly confined to tissue regions contain-
ing MPs in sufficient concentration, the tissue distribution
of the applied particle suspension should fit the tumor shape
in the ideal case. However, there are serious practical diffi-
culties in achieving this situation. Matching an infiltrative
growing tumor, such as a glioblastoma, with a magnetic
nanoparticle suspension seems difficult. On the basis of high-
resolution imaging of the tumor shape, the physician has to
realize a sufficiently homogeneous coverage of the tumor by
the particle suspension avoiding excessive involvement of
the healthy tissue. Even for a globular, well-bounded tumor,
homogeneous injection is difficult owing to the tissue inho-
mogeneity, which causes the injected suspension to spread
irregularly out of the tumor into the normal tissue, which
is softer and differently textured compared to the relatively
dense tumor tissue. To avoid these difficulties, a very slow
infiltration and/or repeated multisite injections have been rec-
ommended (Jordan et al., 1997), although the latter bears the
danger of needle track implantation or local tumor spread, as
pointed out by Moroz, Jones and Gray (2002). It is therefore
indispensable to check the particle distribution after injection
by suitable diagnostic means, including sonography, radio-
graphy, or MRI. With knowledge of the spatial distribution
of MPs and the particle concentration in tissue as well as
the SLP of the applied particle type, one may estimate the
temperature increase using the physical principles discussed
earlier (Section 4.3, equation (13)). By measuring the local
temperature increase using temperature sensors (e.g., optical
fiber sensors) introduced into the tumor tissue, it is possi-
ble to control heating by adjustment of field amplitude and
duration of the field exposure. A technically advanced hyper-
thermia and thermoablation system for clinical application
was recently reported (Gneveckow et al., 2004) and clinical
trials on the feasibility and tolerability of MPH are ongoing
(Gneveckow et al., 2005).

For improving the site specificity of MPH, the labeling
of MPs with target-specific ligands (e.g., antibodies) was
suggested. Although often mentioned in the literature, only
preliminary results of this appealing method have been
published. They are restricted to in vitro experiments with
cell cultures (Suzuki, Shinkai, Kamihira and Kobayashi,
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1995) or in vivo experiments with animals using intratumoral
injection (Shinkai et al., 1999; Le et al., 2001). The targeting
efficiency, that is, the concentration enhancement on the
tumor site in comparison to the systemic particle level and
the content in organs of the reticuloendothelial system (RES),
was not thoroughly investigated for remote (e.g., intravenous)
particle application. The expected concentrations are so
low that achieving a useful heating effect would need a
considerable enhancement of the specific heating power of
magnetic nanoparticles as discussed earlier.

The enrichment of magnetic nanoparticles in a target
region of the body by application of external magnetic fields
is in principle possible as shown by several authors. The
method, however, suffers from the limitation that the center
of attraction for the particles cannot be positioned within
the body with extracorporeal magnets. After theoretically
modeling magnetically targeted drug delivery, Grief and
Richardson (2005) concluded that this method ‘is appropriate
only for targets close to the surface of the body’. Further,
since magnetic attraction is proportional to the magnetic
moment of the particles, superparamagnetic particles develop
insufficient forces for magnetic targeting. On the other hand,
for larger single-domain particles, there is the tendency of
agglomeration with the hazard of unintended embolization.
However, it is also possible to take advantage of embolization
and use it for arterial embolization hyperthermia (for a review
see Moroz, Jones and Gray 2002).

To summarize, MPH promises highly selective cancer
therapy provided some practical problems of controlled
particle delivery are solved.

5 MAGNETIC NANOPARTICLES FOR
DIAGNOSTIC IMAGING

5.1 Contrast enhancement in magnetic resonance
imaging

5.1.1 Introduction

One of the most valuable and widely used imaging methods
in medical diagnostics is MRI. Though the diagnostic poten-
tial of conventional MRI is immense and a variety of different
contrast modes are well established, further improvements of
the method have been pursued in the last years by the appli-
cation of magnetic nanoparticles for contrast enhancement
based on functional site specificity. Since there are several
introductory books and excellent review papers on MRI (e.g.,
Oppelt, 1998), only a short summary of the principles of the
method is provided, so that the role of magnetic nanoparticles
for enhancing the diagnostic value of MRI can be understood.

In MRI, the nuclear magnetic moment of protons is used
as a sensitive probe of the chemical neighborhood of pro-
tons in different tissues and organs of the human body.
Nuclear moments are aligned by means of an external mag-
netic bias field (commonly 0.2–3 T) and precession of the
spins is excited by transverse RF pulses at the proton res-
onance frequency of about 43 MHz T−1 (NMR: nuclear
magnetic resonance). After applying the pulse sequence, the
induced magnetization decays and the longitudinal (T1) and
transverse (T2) relaxation times of the precessing nuclear
magnetic moments show tissue-specific differences that are
used to generate image contrast. Imaging is performed by
controlling external field gradients so that the resonance
condition is fulfilled only in a restricted local region, and
then scanning the resonant volume over the body part to be
imaged. Magnetic response signals are detected by pick-up
coils. The ‘read-out’ of the decaying magnetization is per-
formed at defined delay after the end of excitation pulses.
In this way, the tissue-specific differences of the relaxation
times T1 and/or T2 may be used for construction of the
so-called T1- or T2-weighted images showing optimal con-
trast of special tissue features. In practice, for optimization
of tissue contrast, a variety of different pulse sequences (e.g.,
the widely applied ‘spin echo’ methods) may be used. For
details, the specialized literature should be consulted (e.g.,
Mansson and Bjornerud, 2001).

5.1.2 Nuclear magnetic relaxation

In general, relaxation of the excited nuclear spins to equi-
librium is stimulated by fluctuations of the local magnetic
field due to random thermal agitation of the surrounding
medium. The longitudinal relaxation is governed mainly
by spin–lattice interactions, while transversal relaxation is
related to spin–spin interactions, which are sensitive to local
inhomogeneities of the magnetic field. In addition to random
fluctuations of the local magnetic field, ‘dephasing’ of the
excited spin system is caused by temporally constant inhomo-
geneities of the magnetic bias field. This latter dephasing con-
tribution may be corrected by the so-called echo techniques.

The tissue-specific differences of relaxation times T1 and
T2 bearing the main contrast information may be addition-
ally influenced by paramagnetic or superparamagnetic con-
trast media supplied to the patient’s blood vessels, to single
organs, or parts thereof. Target-specific contrast enhance-
ment may either rely on natural physiological enrichment
processes or may be mediated by special ligand tags (e.g.,
tumor-specific antibodies) coupled to the contrast agents.
Consequently, those substances may be used as markers in
physiological processes and owing to their site specificity one
may detect pathological deviations or malfunctions of organs.
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In general, the change of relaxation times is proportional
to the concentration of contrast agents in the sample volume
and, accordingly, for characterizing the ability of those agents
for imaging enhancement one uses the so-called ‘relaxivity’,
which is the change in the inverse of T1 or T2 per unit
concentration measured in (s−1 mol−1). Commonly, both T1

and T2 are reduced by usual contrast agents and for good
image contrast the pulse sequence used for imaging has to
be chosen adequately (see, e.g., Bulte and Brooks, 1997). Of
course, contrast agents approved for clinical use must show
sufficient biocompatibility and the temporal biodistribution
(e.g., circulation time in blood, elimination from organs) is
essential to obtain useful contrast.

5.1.3 Paramagnetic contrast agents

One established group of contrast media are paramagnetic
metal-ion chelates (e.g., Gd-DTPA, a chelating agent con-
taining diethylenetriaminepentaacetic acid). The chelation of
the strong paramagnetic Gd3+ ion is necessary to avoid
toxicity effects of free ions, though in this way the ‘con-
tact area’ to the bulk water protons – and correspondingly
the relaxivity – is considerably reduced. In theoretical mod-
els for explaining the effect of MRI contrast agents on
proton spin relaxation, one differentiates inner- and outer-
sphere relaxation, which determines the ‘transmission’ of the
paramagnetic fluctuations toward the bulk neighborhood of
the contrast molecule. The inner sphere is the first coor-
dination sphere of the metal ion, the chelation of which
commonly leaves room for only one water molecule. This
water molecule is in rapid exchange with the bulk water
molecules via the outer sphere, which is the next shell of
water molecules surrounding the chelate. The coupling of
the proton spin relaxation with the paramagnetic relaxation
is described by the Solomon–Bloembergen–Morgan theory.
For details, see the book edited by Merbach and Toth (2001)
on the chemistry of contrast agents for medical MRI. The
theory relates the observed relaxation rate enhancement to
microscopic time constants characterizing diffusion of pro-
ton spins, electron spin relaxation, and rotational correlation
of proton and electron spin.

Present experimental investigations aim at the develop-
ment of improved Gd chelates with enhanced relaxivity
and site preference for targeting of special epitope binding
sites (e.g., tumor antigens). The size of Gd-based water-
soluble macromolecules may be adjusted for optimum con-
trast depending on vascular distribution dynamics and the
targeting area. For instance, Winter et al. (2005) investi-
gated lipid-encapsulated perfluorocarbon nanoparticle con-
trast agents functionalized with different new Gd chelates
for the sensitive and specific detection and localization of
fibrin and molecular signatures of angiogenesis. The special

molecular design of the relatively large paramagnetic con-
structs (about 200 nm in diameter) ensures, with a paramag-
netic load of about 50 000 gadolinium ions, very high relax-
ivity per particle in the order of 106 s−1 m mol−1. In order
to guarantee sufficient accumulation at the target area, site-
specific contrast agents should circulate longer than the com-
mon blood-pool MR agents. Accordingly, adequate chemical
stability of the Gd complexes in physiological environment
ought to be provided for minimizing toxic side effects.

5.1.4 Magnetic nanoparticles as contrast agents

Local magnetic fields much larger than those due to para-
magnetic ions are caused by superparamagnetic particles of
the magnetic iron oxides (maghemite and magnetite). The
most important parameter in determining the destiny of such
particles after introduction into the vascular system (e.g.,
elimination by phagocytosis or extravasation into interstitial
compartment) is the mean size of the particles. Small objects
below about 10 nm diameter may leak from blood vessels
and distribute in the extracellular fluid (therefore occasion-
ally termed ECF agents). Agents that are normally prevented
from extravasating to the healthy brain by the blood–brain
barrier are suitable, for instance, to trace various neuropatho-
logical deviations. A prolonged intravascular circulation time
of the so-called blood-pool agents with a diameter range of
10–50 nm ensures great utility in MR angiography. Enhanced
uptake of particles in cancerous tissue related to the tumor
angiogenesis (e.g., Folkman, 1985) may lead to an initial
contrast enhancement after contrast agent application, provid-
ing an improved sensitivity for carcinoma detection. Further
examples are enrichments at thrombi or the detection of
arteriosclerotic plaques. Since particle elimination by phago-
cytosing cells is most effective in a medium size range of
50–150 nm, the group of contrast agents in this size range
and with a circulation time in the order of hours addresses
diagnostic needs for organs of the RES (e.g., liver, spleen,
bone marrow, lymphatic system). In contrast, site-specific
MRI contrast agents should have a long circulation time,
which is a prerequisite for sufficient accumulation on a spe-
cific target site. A special group is the contrast agents for
diagnostics of the gastrointestinal tract: mainly relatively
large particles of 0.3–3 µm, which must be protected by suit-
able coatings against rapid excretion. For an overview on
biomedical indications of contrast agent application includ-
ing many recent references, see, for instance, La Conte, Nitin
and Bao (2005).

The useful particle diameters discussed earlier comprise
the magnetic oxide core plus an organic coating (e.g., dex-
tran), which is necessary for stabilizing the aqueous parti-
cle suspensions against particle aggregation. The coating is
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the boundary to the physiological environment and accord-
ingly it is important for possible interactions with proteins
(e.g., immunoglobulins of the blood plasma). For instance,
hydrophilic coatings like dextran help prevent particle elim-
ination by macrophages. The coating may be functionalized
by bioactive molecular groups such as tumor-specific anti-
bodies for receptor-specific targeting.

Important particle parameters for the relaxivity are core
magnetization, mean size of the magnetic core, and size
distribution. While in the case of paramagnetic contrast
agents inner-sphere contributions are particularly important
for the relaxivity, magnetic nanoparticles create consider-
able local fluctuating field gradients and interact with proton
nuclear spins by dipolar interaction in the outer-sphere dif-
fusion range. The classical outer-sphere relaxation theory
was improved by different authors (for a review, see, e.g.,
Bulte and Brooks, 1997; Muller et al., 2001) taking into
account the dynamics of the core magnetization. For super-
paramagnetic particles with a core diameter in the order of
10 nm, the dependence of relaxivity on the magnetic field
was introduced by the Langevin function. In general, the
existing different theoretical models rely on various micro-
scopic parameters (mainly elementary time constants), which
are rarely accessible by experimental means. Consequently,
the uncertainties allow for some fitting freedom. Theoretical
predictions are often checked experimentally by measuring
the so-called NMRD (nuclear magnetic resonance disper-
sion) profiles, which is the dependence of proton relaxation
rate on the magnetic field. Fitting the observed field depen-
dence of T2 relaxivities at high fields is only successful
if a ‘susceptibility term’ corresponding to a linear nonsat-
urating component in the particle magnetization is taken
into account. This term may be explained by a ‘paramag-
netic’ surface of the nanoparticles. On the other hand, in
the low field range (roughly below 0.1 T), the observed dis-
persion of the longitudinal relaxivity may be only explained
by taking into account the anisotropy energy of the parti-
cles, which determines the Néel relaxation of the particle
moment (see, e.g., Muller et al., 2001). The T2 shorten-
ing by strongly magnetized spheres was treated by Gillis,
Moiny and Brooks (2002) using computer simulation, taking
into account partial refocusing by echo pulse sequences. For
small particle sizes (up to about 30 nm), relaxivity increases
with the square of the diameter in agreement with the outer-
sphere theory. For larger particles above 30 nm, the relaxivity
remains constant in the static dephasing regime while the
relaxivity decreases for different types of echo sequences
with increasing core size (cf. Figure 10.6 in the review by
Muller et al., 2001).

While experimental investigations are usually carried out
on well-defined dilute aqueous suspensions, modifications are
expected for particles in dense tissue, where particles could

get stuck or adhere to cell surfaces, for example, in a tumor.
The effect of clustering of magnetic nanoparticles in water
suspensions was investigated by Roch, Gossuin, Muller and
Gillis (2005). Recently, relaxivities of several paramagnetic
and superparamagnetic substances in blood as well as in
water were compared by Coroiu and Cristea (2005). Data on
commercially available superparamagnetic iron oxide–based
contrast media are compiled in a review paper of Taupitz,
Schmitz and Hamm (2003). There, an overview on several
medical applications of superparamagnetic contrast media is
given. The contrast change due to magnetic nanoparticles
may be positive or negative for ‘T1 weighting’ depending on
particle concentration and the choice of the pulse sequences
used for imaging, while for ‘T2-weighting’ negative contrast
generally arises (e.g., Bulte and Brooks, 1997). At high local
particle concentrations, artifacts may arise, which mask all
finer image details. This problem is relevant for assessment
of the particle enrichment on a target site for MPH since at
present relatively high therapeutic particle concentrations are
needed.

More complicated types of nanoparticles are under devel-
opment for tumor diagnostics and therapy. For instance,
Kopelman et al. (2005) describe photodynamic nanoparticles
consisting of a polyacrylamide core combined with photosen-
sitizer and MP MRI contrast agent. One promising goal in
MPH is the combination of diagnostics and therapy by using
the same magnetic nanoparticles for contrast enhancement
and hyperthermia. In addition, the integration of control-
ling the increase of tumor temperature under hyperthermia
as demonstrated by Carter et al. (1998) and on-line checking
of tumor damage by MRI would be important steps toward
establishment of magnetic particle hyperthermia as a reliable
tumor therapy.

5.2 Magnetic particle imaging (MPI)

When Lauterbur published his seminal paper (Lauterbur,
1973), he did not specifically restrict it to magnetic resonance
but more generally described ‘image formation by induced
local interactions’. A recent approach in applying this idea
is magnetic particle imaging (MPI), which was proposed
by Gleich (2003) and further described by Gleich and
Weizenecker (2005) and Trabesinger (2005). The principle of
the method is based on highlighting a small region within a
larger surrounding volume by marking with MPs and taking
advantage of their specific magnetization curve. The large
difference between the strongly nonlinear magnetization
dependence of MPs as a function of the magnetic field
and the magnetization of tissue, which is proportional to
the field, can be utilized for medical applications. The
particle magnetization as a function of the magnetic field
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Figure 14. Two variants of magnetic particle imaging (MPI):
(a) An alternating modulation field of the amplitude d (gray region)
is superimposed on a selection field, which is realized by a field
gradient slowly moving across the investigated volume; only if the
selection field is nearly zero, the exposed particles respond with
harmonics of the modulation frequency. (b) A strong magnetic field
with high gradient dH /dx is quickly moved across the examined
volume; all those particles that experience the field range �H of
their steep change of magnetization (gray region) respond with
a single remagnetization pulse; the spatial resolution �x (c) is
determined by the magnitude of the field gradient dH /dx and the
field range �H of steeply changing particle magnetization.

may coarsely be subdivided into three different sections:
for high strengths of positive and negative fields, there are
two regions where the magnetization is almost constant
(saturation) while in a restricted field region near zero the
magnetization changes steeply with the field (Figure 14).
This latter small field range (selection field) is moved by
either one of two scanning procedures across the examined
volume. In the first variant of MPI, an AC magnetic field
with small amplitude (modulation field) is superimposed on
the slowly moving selection field and causes only those
particles that are exposed to the selection field to respond
with harmonics of the modulation frequency, which can
be selectively measured. The second variant of MPI uses
a strong field with high gradient that is moved with high
speed across the examined volume, thereby switching the
magnetization of all particles in the small region where
the actual field is about zero. In both variants, the actual
position of the selection field must be known and, at the
same time, the responding stray field of the particles has to
be detected by suitable means, for example, by pick-up coils
carefully compensated with respect to the externally applied
fields.

The general operability of MPI was demonstrated by
Gleich and Weizenecker (2005) with an array of small holes
of 0.5 mm diameter filled with an undiluted, commercially
available MRI contrast agent (Resovist, Schering Ag,
Berlin, Germany) containing magnetic oxide particles with a
magnetic core well below 100 nm. The holes could be clearly
resolved.

For medical applications of MPI, the regions of interest
have to be marked selectively, for example, by methods of
drug targeting, including the labeling of magnetic carriers
and the guidance of the labeled particles to the corresponding
sites. Even with the moderate resolving power demonstrated
in the initial experiments mentioned earlier, the novel concept
may provide the possibility to develop relatively cheap
scanners that can be adapted to particular applications. An
interesting feature of MPI is its use of harmless radio
waves that can pass through the body without significant
attenuation.

6 CONCLUSIONS AND PERSPECTIVES

Microparticles can easily pass through the narrow capillary
blood vessels of humans. Nanoparticles that are still smaller
with a diameter of below 50 nm can even squeeze through
the fenestrations of blood vessels and, in this way, can reach
most of the cells in the human body. Nanoparticles are
therefore predestined to act as carriers for drugs and other
agents. Making micro- or nanoparticles magnetic gives them
even more favorable properties including the following:
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• Their magnetic stray field enhances the contrast in MRI
and can also act as source for other contrast mechanisms
such as MPI.

• Their magnetic moment generates forces and torques
after the application of external magnetic fields. In this
way, retention and guidance of MPs can be realized.

• Their magnetic core exhibits losses in alternating or
rotating magnetic fields, which leads to temperature
increase in MPs. Thus they can act as localized heat
sources and produce direct effects such as hyperther-
mia and thermoablation or indirect effects such as an
enhanced rate of chemical reactions.

Together with the fact that magnetic fields in the low
frequency region penetrate human tissue without significant
attenuation, these particular properties make MPs unique
tools for diagnosis and therapy. Despite numerous appli-
cations in technology, medicine, and biology, there is still
immense research going on in this field, as judged by the
large increase in relevant articles over time. Current investi-
gations comprise the synthesis of large amounts of MPs with
narrow size distributions and high magnetic susceptibilities,
the optimization of magnetic targeting and the magnets to
use, and the increasing the particles’ heat production for mag-
netic hyperthermia. Magnetosomes grown in magnetotactic
bacteria hold the record in specific heat production for mag-
netic hyperthermia, and several research groups are trying to
learn from these microorganisms and apply natural processes
to laboratory techniques.
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Andrä, W. and Schwabe, E. (1955). Eine einfache Methode,
magnetische Elementarbezirke mit trockenem Pulver sichtbar zu
machen. Annalen der Physik , 17, 55–56.

Apel, M., Heinlein, U.A.O., Miltenyi, S., et al. (2006). Magnetic
cell separation for research and clinical applications. In Mag-
netism in Medicine, Second Edition , Andrä, W. and Nowak, H.
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Hiergeist, R., Andrä, W., Buske, N., et al. (1999). Application of
magnetite ferrofluids for hyperthermia. Journal of Magnetism and
Magnetic Materials , 201, 420–422.

Hilal, S.K., Michelsen, W.J., Driller, J. and Leonard, E. (1974).
Magnetically guided devices for vascular exploration and treat-
ment. Radiology , 113, 529–540.

Hilger, I., Hergt, R. and Kaiser, W.A. (2005). Use of magnetic
nanoparticle heating in the treatment of breast cancer. IEE
Proceedings Nanobiotechnology , 152, 33–39.

Hirao, K., Sugita, T., Kubo, T., et al. (2003). Targeted gene delivery
to human osteosarcoma cells with magnetic cationic liposomes
under a magnetic field. International Journal of Oncology , 22,
1065–1071.

Holschuh, K. and Schwammle, A. (2005). Preparative purification
of antibodies with protein A-an alternative to conventional
chromatography. Journal of Magnetism and Magnetic Materials ,
293, 345–348.
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Kreyling, W., Semmler, M. and Möller, W. (2006). Health impli-
cations of nanoparticles. Journal of Nanoparticle Research, 8,
543–562, DOI 10.1007/s11051-005-9068-z.

Kronick, P.L., Campbell, G.L. and Joseph, K. (1978). Magnetic
microspheres prepared by redox polymerisation used in a cell
separation based on gangliosides. Science, 200, 1074–1076.
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netism in Medicine, Andrä, W. and Nowak, H. (Eds.), Wiley-
VCH: Berlin, pp. 305–347.



32 Biomagnetic materials

Plank, C., Scherer, F., Schillinger, U., et al. (2003a). Magnetofec-
tion: enhancing and targeting gene delivery with superparam-
agnetic nanoparticles and magnetic fields. Journal of Liposome
Research, 13, 29–32.

Plank, C., Schillinger, U., Scherer, F., et al. (2003b). The magneto-
fection method: using magnetic force to enhance gene delivery.
Biological Chemistry , 384, 737–747.

Polyakov, V.R., Sharma, V., Dahlheimer, J., et al. (2000). Novel tat-
peptide chelates for direct transduction of Tc-99m and rhenium
into human cells for imaging and radiotherapy. Bioconjugate
Chemistry , 11, 762–771.

Pouliquen, D. (2001). Magnetic Microparticles, Historical Introduc-
tion, First Edition , Citus Books: London, Vol. 3.

Pulfer, S.K., Ciccotto, S.L. and Gallo, J.M. (1999). Distribution of
small magnetic particles in brain tumor-bearing rats. Journal of
Neuro-Oncology , 41, 99–105.

Pulfer, S.K. and Gallo, J.M. (1998). Enhanced brain tumor selec-
tivity of cationic magnetic polysaccharide microspheres. Journal
of Drug Targeting , 6, 215–227.

Rabin, Y. (2002). Is intracellular hyperthermia superior to extracel-
luar hyperthermia in the thermal sense. International Journal of
Hyperthermia, 18, 194–199.

Rand, R.W., Snow, H.D. and Brown, W.J. (1982). Thermomag-
netic surgery for cancer. The Journal of Surgical Research, 33,
177–183.

Rand, R.W., Snow, H.D., Elliott, D.G. and Haskins, G.M. (1985).
Induction Heating Method for Use in Causing Necrosis of Neo-
plasm, US Patent 4,545,368.

Rand, R.W., Snow, H.D., Elliott, D.G. and Snyder, M. (1981).
Thermomagnetic surgery for cancer. Applied Biochemistry and
Biotechnology , 6, 265–272.

Rand, R.W., Snyder, M., Elliott, D. and Snow, H. (1976). Selective
radiofrequency heating of ferrosilicone occluded tissue: a prelim-
inary report. Bulletin of the Los Angeles Neurological Societies ,
41, 154–159.

Riffle, J.S., Baranauskas, V.V., Vadala, M., et al. (2003). Oxida-
tively stable cobalt nanoparticles, DARPA Biomagnetics Meeting ,
San Diego, p. 27.

Risoen, P.A., Struksnes, K., Myrset, A.H. and Gabrielsen, O.S.
(1995). One-step magnetic purification of recombinant DNA-
binding proteins using magnetizable phosphocellulose. Protein
Expression and Purification, 6, 272–277.

Robins, H.I., Rushin, D., Kutz, M., et al. (1997). Phase I clinical
trial of melphalan and 41.8 C whole-body hyperthermia in cancer
patients. Journal of Clinical Oncology , 15, 158–164.

Roch, A., Gossuin, Y., Muller, R.N. and Gillis, P. (2005). Super-
paramagnetic colloid suspensions: water magnetic relaxation and
clustering. Journal of Magnetism and Magnetic Materials , 293,
532–539.

Rosensweig, R.E. (2002). Heating magnetic fluid with alternating
magnetic field. Journal of Magnetism and Magnetic Materials ,
252, 370–374.

Rotariu, O., Ogden, I.D., Macrae, M., et al. (2005). An immuno-
magnetic separator for concentration of pathogenic micro-
organisms from large volume samples. Journal of Magnetism and
Magnetic Materials , 293, 589–596.

Roth, D.A. (1969). Occlusion of intracranial aneurysms by ferro-
magnetic thrombi. Journal of Applied Physics , 40, 1044–1045.

Rous, P. and Beard, J.W. (1934). Selection with the magnet
and cultivation of reticulo-endothelial cells (Kupffer cells). The
Journal of Experimental Medicine, 59, 577–591.

Safarik, I., Ptackova, L. and Safarikova, M. (2001). Large-scale
separation of magnetic bioaffinity adsorbents. Biotechnology
Letters , 23, 1953–1956.

Safarik, I. and Safarikova, M. (1999). Use of magnetic techniques
for the isolation of cells. Journal of Chromatography B: Biomed-
ical Sciences and Applications , 722, 33–53.

Safarik, I. and Safarikova, M. (2004). Magnetic techniques for the
isolation and purification of proteins and peptides. Biomagnetic
Research and Technology , 2, 7–7.

Safarikova, M., Kibrikova, I., Ptackova, L., et al. (2005). Magnetic
solid phase extraction of non-ionic surfactants from water.
Journal of Magnetism and Magnetic Materials , 293, 377–381.

Sako, M., Yokogawa, S., Sakomoto, K., et al. (1982). Transcatheter
microembolization with ferropolysaccharide: a new approach
to ferromagnetic embolization of tumors: preliminary report.
Investigative Radiology , 17, 573–582.

Scheef, E., Wang, S., Sorenson, C.M. and Sheibani, N. (2005). Iso-
lation and characterization of murine retinal astrocytes. Molecular
Vision , 11, 613–624.

Scheffel, A., Gruska, M., Faivre, D., et al. (2006). An acidic
protein aligns magnetosomes along a filamentous structure in
magnetotactic bacteria. Nature, 440, 110–114.

Scherer, F., Anton, M., Schillinger, U., et al. (2002). Magnetofec-
tion: enhancing and targeting gene delivery by magnetic force in
vitro and in vivo. Gene Therapy , 9, 102–109.
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Zhao, H., Gagnon, J. and Häfeli, U.O. (2007). Process and formu-
lation variables in the preparation of injectable and biodegrad-
able magnetic microspheres. Biomagnetic Research and Technol-
ogy 5.2.



Magnetic Tunnel Junctions

Stuart Parkin, Hyunsoo Yang, See-Hun Yang and Masamitsu Hayashi
IBM Almaden Research Center, San José, CA, USA
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1 INTRODUCTION

More than 70 years ago it was realized that in simple
ferromagnetic metals such as Fe, Co, and Ni, current is
carried by spin-polarized electrons because of a significant
spin-dependent scattering of the majority (‘up’) and minority
(‘down’) spin-polarized electrons (Mott and Jones, 1936).
Many of the magnetotransport properties of these elements
and their alloys can be understood within a ‘two-current’
model in which the electrical current is comprised of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

independent up- and down-spin currents. It took more
than half a century, however, before it was appreciated
that these currents can be manipulated in inhomogeneous
magnetic systems comprising magnetic and nonmagnetic
regions so as to modify the flow of current in these
systems and thereby their resistance. Examples include
magnetic multilayers composed of alternating thin magnetic
and nonmagnetic layers such as Fe/Cr, Co/Ru, and Co/Cu
(Baibich et al., 1988; Parkin, More and Roche, 1990; Parkin,
Bhadra and Roche, 1991) and granular magnetic alloys
composed of immiscible magnetic and nonmagnetic metals
such as Co and Cu (Berkowitz et al., 1992; Chien, 1995).
These systems exhibit very large changes in resistance at
room temperature in response to magnetic fields as the
magnetization directions of neighboring magnetic layers or
regions are changed. This phenomenon is often referred to
as giant magnetoresistance (GMR) (Parkin, 1994, 1995; Fert
and Bruno, 1994; Gijs and Bauer, 1997; Mathon, 1991; Levy,
1994; Parkin et al., 2003; Barthélémy et al., 2002; Parkin, Li
and Smith, 1991).

The largest GMR effects are found in Co/Cu multilayers
(Parkin, 1993) with changes in resistance exceeding 100%
at room temperature. However, these large effects are found
in multilayers in which the individual Co and Cu layers are
ultrathin – just two to three atomic layers thick – because
GMR arises largely from spin-dependent scattering, not
within the interior of the magnetic layers (‘bulk’ scattering,
as Mott had considered; Mott and Jones, 1936) but rather
from the interfaces between the individual layers (‘interface’
scattering; Parkin, 1993). The relative importance of interface
scattering as compared to bulk scattering was a topic of
considerable debate in the early days of GMR but now it
is generally agreed that the contribution of spin-dependent
scattering from a magnetic interface layer is perhaps 100
times that from an interior magnetic layer. This is very
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important technologically because of the need to minimize
and control the influence of long-range magnetic dipolar
fields emanating from the magnetic component.

GMR has found one extremely important application in
the form of a highly sensitive magnetic recording read head
for magnetic hard disk drives (see Parkin et al., 2003). The
GMR effect in magnetic multilayers is not suitable for sen-
sors but can be engineered to create useful devices through
several concepts of ‘spin engineering’ (Parkin et al., 2003).
In particular, one important concept is fixing the direction of
the magnetic moment of individual magnetic layers in a thin-
film device by the phenomenon of exchange bias (Meiklejohn
and Bean, 1956; Nogués and Schuller, 1999): exchange bias
is a magnetic exchange interaction at the interface between
a ferromagnet and an antiferromagnet, which can lead to a
unidirectional exchange anisotropy in the ferromagnet. This
interaction can be so large that the magnetic hysteresis loop
of a ferromagnetic film can be shifted from zero field by an
‘exchange bias’ field which can exceed 1 T or more in mag-
nitude. A second important concept is the use of oscillatory
interlayer exchange coupling of 3d transition-metal (TM) fer-
romagnetic layers through intermediate nonmagnetic layers
of the 3d, 4d, and 5d TMs and the noble metals, Cu, Ag,
and Au (Parkin, More and Roche, 1990; Parkin, 1991). All
these nonmagnetic metals exhibit a long-range indirect inter-
layer exchange coupling, which oscillates between ferro- and
antiferromagetic coupling. By using specific thicknesses of
these nonmagnetic metals, which give rise to antiferromag-
netic coupling, artificial antiferromagnetic (AAF) thin-film
structures that have zero or small net magnetic moment, and
consequently, significantly reduced magnetic dipolar fields
can be created. These concepts are illustrated in Figure 1.
Figure 1(d) shows the basic structure of the most commonly
used GMR read head device today. The device, a ‘spin
valve’, contains a reference magnetic electrode formed from
an exchange biased AAF separated by a thin Cu layer (sec-
ond layer from the top), ∼20 Å thick, from the sensing layer
which is typically formed from a soft ferromagnetic alloy
with the insertion of a very thin interface layer for enhanced
interface scattering. The AAF layer universally contains an
ultrathin ruthenium layer just 5–10 Å thick to provide the
antiferromagnetic coupling layer. These devices act, in some
ways, like a valve, where the flow of current through them
is modified by applying a magnetic field.

In the past two decades since the discovery of GMR
and oscillatory interlayer coupling in TM systems, the
magnitude of the GMR signal exhibited by spin-valve
structures has changed very little. The resistance of such
structures is typically about 10–15% higher when the sensing
and reference magnetic moments are antiparallel (AP) as
compared to that when they are parallel (P) to one another.
Partly for this reason, interest has been renewed in the past

decade in devices based not on spin-dependent diffusive
scattering but rather on spin-dependent tunneling through
an ultrathin dielectric layer forming a tunnel barrier. These
structures are the focus of this review.

2 FUNDAMENTALS OF MAGNETIC
TUNNEL JUNCTIONS (MTJs)

The essential element of a magnetic tunnel junction (MTJ)
is a sandwich of two thin ferro- or ferrimagnetic layers
separated by a thin insulating spacer layer which forms a
tunnel barrier. When a bias voltage is applied across the
barrier, finite current flows through the junction because of
quantum-mechanical tunneling. This means that a distinctive
property of an MTJ, compared to spin valves, but common
to any tunneling device, is the exponential dependence of
the tunneling current on the thickness of the tunnel barrier
(Simmons, 1963). From a device perspective, this is very
interesting, since the resistance of an MTJ can be varied over
many orders of magnitude simply by varying the thickness
of the dielectric spacer layer. This allows tuning of the
device resistance depending on the application. On the other
hand small variations in this layer thickness, perhaps due to
subtle variations in a deposition process, can lead to large
changes in the device resistance. Moreover, for many device
applications, it is the signal-to-noise ratio in the frequency
range of interest that determines the sensitivity of the MTJ
device (Nowak, Weissman and Parkin, 1999). The main
sources of noise in an MTJ are Johnson noise, which scales
with the square root power of the resistance of the device, and
shot noise, which increases with the square root power of the
current through the device. Thus, for many high-frequency
applications, which require that the resistance of the MTJ
must be very low (on the order of ∼20 �), the tunnel barrier
must be very thin – just a few atomic layers thick. This is a
considerable challenge.

In MTJs, the magnitude of the tunneling current depends
on the relative orientation of the magnetization direction of
the two ferromagnetic metal layers. The tunneling magne-
toresistance (TMR) is defined as:

TMR = Imax − Imin

Imin
(1)

where Imax and Imin are the maximum and minimum cur-
rents, respectively, that flow through the barrier. For MTJs
with conventional ferromagnetic metals (Ni, Fe, Co), the
current flow is maximized (minimized) when the magneti-
zation directions of the two ferromagnetic layers are parallel
(antiparallel) to each other.
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Figure 1. Spin-engineered magnetic devices. (a,b) The easy axis of the ‘free’ ferromagnetic layer in a magnetoresistive device is oriented
based on the purpose for which it is engineered. Field sensor devices such as read heads rely on a free layer with an easy axis at right
angles to the moment of the ‘pinned’ layer. Impinging magnetic fields will rotate the moment away from this middle position and the
sensor resistance changes. On the other hand, MR devices designed for use in memory applications will have a free layer easy axis parallel
to that of the pinned layer. (c) A very basic GMR/TMR stack consisting of a pinned ferromagnetic layer magnetically locked by exchange
bias to the interfacial field of an antiferromagnetic layer, and a simple ferromagnetic free layer. The ‘spin valve’ is such a stack using a
conducting spacer layer between the ferromagnetic layers. (d) In this case the pinned layer is in fact an element consisting of a pair of
ferromagnetic layers antiferromagnetically coupled through a ruthenium (Ru) spacer layer; the lower layer in this artificial antiferromagnet
is pinned via exchange bias as in (c). This flux closure increases the pinned layer magnetic stability and reduces coupling to the free layer.
(e) Pinned element consists of an AF-coupled pair of ferromagnetic layers acting as a single ‘hard’ layer. There is no exchange bias layer to
discourage rotation of the pinned element. (f) Both the pinned and free elements consist of AF-coupled pairs. (g) A double-tunnel junction.
All ferromagnetic elements consist of AF-coupled pairs. There are two pinned ferromagnets, both exchange biased by antiferromagnetic
layers. Spin filtering occurs both as current tunnels from the first pinned layer to the free element and again as it tunnels from the free
element to the second pinned element. (Reprinted with Permission from S.S.P. Parkin et al. Copyright 1999, American Institute of Physics.)
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Figure 2. Schematic illustration of the tunneling process. The densities of states for the left and right electrode are shown for (a) parallel
and (b) antiparallel configuration. The horizontal arrows represent the electron spin direction. The bottom panel shows the corresponding
magnetization configuration of the MTJ.

The origin of tunnel magnetoresistance was first described
by Julliere (1975) using a simple transport model. This model
makes two important assumptions. First, the electrons do
not change their spin direction during the tunneling process.
Second, the tunneling current is carried by two independent
conductance channels whose carriers are the electrons with
spin up and down. The total current is then the sum of
the current of the two independent channels within the
two-current model (McGuire and Potter, 1975; Mott, 1936,
1964; Fert and Campbell, 1968) which, as mentioned in the
preceding text, can account for the GMR (Baibich et al.,
1988; Valet and Fert, 1993) effect and which has also proved
valid to describe anisotropic magnetoresistance (Smit, 1951;
Campbell, Fert and Jaoul, 1970; Banhart, Ebert and Vernes,
1997). In the two-current model, the conduction electrons are
generally assumed to originate from the free electron–like s
bands. The localized d or f states act as scattering centers. By
contrast, in MTJs we take the localized d- or f-state electrons
as the carriers responsible for the tunneling currents.

Figure 2 shows a simplified density of states (DOS)
of an MTJ when the magnetization directions of the two
ferromagnetic metals are (a) parallel and (b) antiparallel
to each other. The DOS of each electron spin in the
ferromagnetic electrode is shifted against the other because
of the exchange splitting caused by the internal magnetic
field (Mott, 1964; O’Handley, 1999). In Figure 2, the DOS
of the ferromagnetic metals are weak ferromagnets, that
is, the number of electrons at the Fermi energy is larger
for the majority states as compared to the minority states.

A bias voltage is applied across the barrier to generate
tunneling current; here the voltage is applied such that the
electrons tunnel through the barrier from the left to the right
electrode. The tunneling current is predominantly carried by
the electrons whose states are near the Fermi energy (Duke,
1969; Wolf, 1989). In order to conserve the spin during the
tunneling process, the electron that travels from one spin state
on the left electrode must be accepted by the same unfilled
spin state on the right electrode. Consequently, the number of
electrons that can tunnel through the barrier is limited by the
number of filled states on the left electrode and the number
of the unfilled states on the right electrode.

The tunneling current that flows through the junction
for the parallel (IP) and antiparallel (IAP) states can be
expressed as:

IP ∝ N L
↑ N R

↑ + N L
↓ N R

↓

IAP ∝ N L
↑ N R

↓ + N L
↓ N R

↑ (2)

where N
L,R
↑↓ are the density of majority (↑) and minority (↓)

spin states at the Fermi energy for the two ferromagnetic
electrodes (L and R). Equation (2) shows that the current for
the AP state is suppressed compared to that of the P state.
This difference in the current is the origin of the TMR effect.

From equations (1) and (2), the TMR ratio is written as

T MR = IP − IAP

IAP
= 2PLPR

1 − PLPR
(3)
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Here, Pi ≡ N i
↑−N i

↓
N i

↑+N i
↓

, i = L, R is the spin polarization of the

left (L) or right (R) ferromagnetic electrodes. As evident
from equation (3), the TMR ratio is proportional to the spin
polarization Pi of the ferromagnetic electrodes. Methods to
experimentally determine the magnitude and sign of the spin
polarization are discussed later.

A more accurate theoretical description of the TMR effect
was given by Slonczewski (1989). His model included the
effect of the insulator on the TMR effect, where the tunneling
current was assumed to depend on the barrier height and
width of the insulator. The ferromagnetic electrodes were
treated within the free electron approximation with two
separate bands for each spin direction (Stearns, 1977). Since
the insulator possesses finite barrier height and width, the
electron wave function from the ferromagnetic electrodes can
penetrate inside the insulator. Consequently, an additional
factor of the spin polarization arises from the interface
between the insulator and the ferromagnetic electrode. The
effective spin polarization becomes

PEFF = PiA(−1 < A < 1) (4)

where A is a constant that depends on the barrier height and
width of the insulator as well as the DOS of the ferromagnetic
electrode. Julliere’s model (PEFF = Pi) is recovered when
the barrier height or the width becomes infinite, that is,
for a perfect insulator. Interestingly, Slonczewski’s model
predicts that the effective spin polarization can be negative
at low barrier height (A < 0). This indicates that the spin
polarization in MTJs is not an intrinsic property of the
ferromagnetic metals, but depends both on the electrode and
the barrier characteristics.

Although Slonczewski’s model does not take into account
other complications such as the multiband structure of the
ferromagnetic electrodes and the complex band structure of
the insulator, or the electron–electron interactions, spin-wave
emission and absorption, and inelastic tunneling processes,
nevertheless, it provides a reasonable basis for an apprecia-
tion of spin-dependent tunneling in MTJs. In order to include
band structure effects, one needs to perform first-principle
electronic structure calculations, such as the density function
theory. However, even using such an elaborate method, it
is difficult to predict the TMR ratio precisely in a quantita-
tive way, since it is known that the tunneling current also
depends on defects and impurities inside the barrier as well
as on the roughness of the interface layer, which are difficult
to include even in numerical calculations.

The first successful MTJ was prepared by Julliere (1975).
The MTJ consisted of Fe/Ge/Co, where the semiconducting
Ge acted as an insulating barrier. A conductance change
as high as ∼14% was observed at 4.2 K. After Julliere’s

initial discovery, other barriers, such as nickel oxide (NiO)
(Maekawa and Gafvert, 1982), gadolinium oxide (GdOx)

(Nowak and Rauluszkiewicz, 1992), and aluminum oxide
(AlOx) (Suezawa, Takahashi and Gondo, 1992; Miyazaki,
Yaoi and Ishio, 1991), were explored over a period of nearly
20 years, with the observation of modest TMR effects of up
to several percent at room temperature. In 1995, two groups
reported TMR ratios of about 10% at room temperature,
using an amorphous aluminum oxide barrier and Fe–Co
electrodes (Moodera et al., 1995; Miyazaki and Tezuka,
1995). These results sparked much interest in MTJs, largely
due to their promising applications in recording read heads
for hard disk drives and in novel magnetic random access
memories (MRAMs), as discussed later in this chapter.

Most work in this period of time used amorphous alu-
minum oxide tunnel barriers, which had been extensively
studied for Josephson junction superconducting devices. A
method of forming the tunnel barrier in which a few mono-
layers of aluminum metal were first deposited and then were
subsequently oxidized, either thermally using molecular oxy-
gen or reactively using atomic oxygen, had been successful
in creating high-quality tunnel barriers with very low leakage
currents (Rowell, Gurvitch and Geerk, 1981; Mallison, Miller
and Kleinsasser, 1995). In MTJs, it is not only the formation
of a tunnel barrier without pinholes that is important for the
observation of large TMR signals, but also the preparation
of high-quality interfaces between the barrier and the elec-
trodes which preserve the magnetic integrity of the surface
layers of the ferromagnetic electrodes. Thus, the magnitude
of the TMR ratio highly depends on the detailed prepara-
tion method of forming the tunnel junction. The observed
increase in the TMR ratio over the past decades owes much
to the improvements in these methods.

Magnetron sputtering methods are typically used for depo-
sition, including the ferromagnetic electrodes as well as the
insulator layer. To form the junction, it is ideal to grow the
MTJ in situ since the interface between the insulator and the
ferromagnetic metals needs to be extremely clean to main-
tain the polarization of the tunneling electrons. For exploring
new materials and refining MTJ device structures it is very
useful to use a in situ shadow masking technique to pattern
first, the bottom ferromagnetic electrode, second, the tun-
nel barrier and third, the top ferromagnetic counterelectrode.
Thus MTJs, which, unlike spin-valve structures, require pat-
terned top and bottom electrodes to pass current through
the device for testing purposes, can be prepared quickly
and efficiently without using conventional lithography meth-
ods, which would otherwise be needed. Figure 3 shows a
schematic illustration of a magnetron sputtering system with
an in situ computer-controlled system for placing a sequence
of shadow masks onto any 1 of 20 substrates. A shadow
mask, here formed from a thin metal sheet (black layer), is
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Figure 3. Schematic illustration of magnetron sputtering with a shadow mask (black plate) technique introduced. The middle panel shows
the deposited MTJs. Scanning electron microscopy image of the junction is shown in the right panel.
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Figure 4. TMR ratio plotted against the applied magnetic field for
an MTJ consisting of 50 TaN | 50 Ta | 150 IrMn | 35 Co70Fe30 |
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in Å). The Al layer is plasma oxidized for 240 s to form an AlOx

barrier. (a) Major loop and (b) minor loop.

inserted between the target (bottom layer) and the substrate
(second layer from the top) to define the deposited structure.
Typically, three different shadow masks are used to form,
respectively, the bottom electrode, the insulator, and the top
electrode, although many more masks can be used for the
definition of more complex structures or for the use of iso-
lation pads. Using shadow masking techniques the junction
size is limited by the apertures within metal masks, which
are typically on the order of 25–100 µm, and, in sputtering
systems by the sputter gas pressure and the distance from
the source to the substrate. It is interesting to recall that
shadow masking techniques were used in the 1960s for the
manufacture of microelectronic devices including transistors
with dimensions as small as ∼10 µm (Brody and Page, 1968;
Brody, 1996). Shadow masks, often termed stencil masks,
can be formed from silicon nitride membranes with dimen-
sions as small as 10 nm and have been used to successfully
define metal nanowires on this length scale (Deshmukh et al.,
1999). Clogging of the apertures prevents the deposition of
significant amounts of material.

In AlOx-based MTJs, the AlOx layers are usually formed
either by depositing an aluminum layer followed by a

subsequent oxidation, or by depositing Al in an oxygen
atmosphere. The oxidation of the ultrathin Al layer, typ-
ically 6–15-Å thick, needs to be optimized to achieve a
high TMR ratio. Excess oxidation of the Al layer leads to
oxidation of the bottom ferromagnetic metal, which signifi-
cantly influences the spin polarization of the interface states
that contribute to tunneling. Deficient oxidation creates local
electrically conducting paths (pinholes) in the insulator and
degrades the quality of the barrier. Such pinholes are believed
to provide conductive channels that are not spin polarized. A
number of oxidation methods have been used to optimize the
oxidation of the ultrathin Al layer. Plasma oxidation of the Al
layer has been commonly used, since the optimum oxidation
time to obtain high TMR ratio is usually faster compared to
thermal oxidation. It has been found that annealing the MTJ
typically increases the TMR ratio by improving the quality
of the interfaces between the insulator and the ferromagnetic
metal.

In a few years after 1995 the TMR of MTJs increased
rapidly with values of up to ∼60% for MTJs with CoFe
electrodes and up to ∼70% for MTJs with amorphous ferro-
magnetic electrodes formed by incorporating small amounts
(10–25 at.%) of glass forming elements such as B, Zr, or
Hf in the CoFe alloy. Interestingly, the magnitude of the
TMR signal was found to be rather insensitive to the ferro-
magnetic electrode material (Parkin et al., 1999). Figure 4
shows a plot of TMR versus applied magnetic field for
an MTJ with an AlOx barrier and ferromagnetic electrodes
formed from CoFe (lower electrode) and an amorphous fer-
romagnetic alloy (upper electrode) which shows a TMR of
about 70% at room temperature. This is the maximum value
of TMR which has yet been reported at room temperature
for MTJs using an AlOx barrier (Parkin unpublished; Wang
et al., 2004; Sakuraba et al., 2005).

MTJs with other barrier materials, such as titanium oxide
(TiO2) (Bibes et al., 2003), aluminum nitride (AlN) (Sharma
et al., 2000; Yoon et al., 2004), tantalum oxide (TaOx)
(Sharma, Wang and Nickel, 1999), strontium titanium oxide
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(STO) (de Teresa et al., 1999a,b), and magnesium oxide
(MgO) (Bowen et al., 2001; Faure-Vincent et al., 2003) have
also been studied. TiO2 barrier has found its way into
application as a magnetic recording read head (Mao et al.,
2006) owing to its ultralow resistance–area product. TaOx

and STO have been reported to show an inverse or negative
TMR ratio, which will be briefly discussed in the following
section.

The basic origin of TMR lies in the degree of spin polariza-
tion P of the tunneling current in the MTJ device. For many
years this was considered to be related to the fundamental
electronic structure of the ferromagnetic electrodes and, in
particular, to the degree of spin polarization of the DOS at
the Fermi energy of the electrodes. Similar to the two-current
model of transport in ferromagnetic metals, the tunneling
current in an MTJ device may be considered to be com-
posed of independent majority and minority spin-polarized
currents. Assuming that these currents are proportional to
the corresponding spin-polarized DOS in the emitting and
receiving magnetic electrodes, the TMR can be defined as
TMR = P1P2/(1–P1P2) where P1,2 are the spin polariza-
tions of the DOS of the two magnetic electrodes (Julliere,
1975; Meservey and Tedrow, 1994). In this simple model
the TMR is determined solely by the electronic structure of
the magnetic electrodes and is insensitive to the tunnel bar-
rier properties. It has become clear recently that this model is
much too simple and that the properties of the tunnel barrier
and its interface with the magnetic electrodes are extremely
important in determining the degree of spin polarization of
the tunnel current and, consequently, the TMR, as discussed
in the following sections.

3 INFLUENCE OF CHEMICAL BONDING
ON SPIN-POLARIZED TUNNELING

It is well known in metal–insulator–metal (MIM) tunnel-
ing structures that the tunneling characteristics are strongly
influenced by the electronic structure of the metal interface
layers (Wolf, 1989). Similarly, in MTJs the interface elec-
tronic structure and the nature of the bonding between the
ferromagnet (F) and the insulator are clearly very impor-
tant. Indeed, it was long postulated that the positive sign
(majority spin electrons) of the polarization of the tunnel-
ing current from Co and Ni ferromagnetic electrodes reflects
the predominant tunneling of the more delocalized conduc-
tion band electrons with sp character rather than the more
localized electrons with d character, even though the DOS
near the Fermi energy of the latter is considerably higher
(Stearns, 1977). Slight variations in the nature of the bonding
between Fe and Co and oxygen in alumina tunnel barri-
ers have been calculated to affect both the magnitude and

sign of the polarization of the tunneling current (Tsymbal,
Oleinik and Pettifor, 2000; Oleinik, Tsymbal and Pettifor,
2000). Unfortunately, the role of oxygen bonding is diffi-
cult to probe experimentally because of the ease of forma-
tion of TM oxides many of which are nonferromagnetic or
antiferromagnetic.

An interesting system in which to explore the role of
oxygen bonding on spin-dependent tunneling is TM alloys
formed from Fe, Ni, and Co diluted with nonmagnetic ele-
ments, in conjunction with tunnel barriers which do and
do not contain oxygen. Figure 5(a,b) compiles results on
alloys of Co–Pt and Co–V with tunnel barriers formed from
Al2O3 and AlN (Kaiser et al., 2005). The figure includes
measurements of the spin polarization of the tunneling cur-
rent measured by superconducting tunneling spectroscopy
(STS) in ferromagnet-insulator-superconductor (FIS) junc-
tions formed by replacing one of the ferromagnetic electrodes
in an MTJ with a superconducting (S) layer of Al. Analy-
sis of the voltage dependence of the conductance of such
structures at temperatures well below the superconducting
transition temperature of Al (∼2 K) allows the direct deter-
mination of the tunnel current polarization (Meservey and
Tedrow, 1994). The figure shows that for Al2O3 barriers the
tunneling spin polarization (TSP) decreases rapidly when Co
is diluted with V but hardly changes at all when Co is diluted
with up to 50% Pt. When the Al2O3 barrier is replaced with
AlN then the results are quite different. For the case of V the
TSP now decreases more slowly as the Co is diluted with V
but for the case of Pt the TSP decreases more quickly with
increasing Pt concentration.

These results can be rationalized on the basis of the
different strength of the chemical bonds formed between
the metal electrodes and O or N in the barrier as illustrated
schematically by the cartoon in Figure 5(c). Assuming that
the tunneling process is highly localized in nature and that the
tunneling current may vary significantly between neighboring
atomic sites in the metal interface layer, the net tunneling
current comprises currents tunneling from individual Co and
Pt or V atoms. If we conjecture that these currents are
directly related to the strength of the local chemical bonds
formed at the interface with the tunnel barrier, then since
Pt forms a much weaker bond with oxygen than Co does,
we conclude that the tunneling current from Co–Pt alloys
for alumina tunnel barriers will be dominated by tunneling
from the Co atoms. If we further assume that the current
from the Co component is spin polarized and that from Pt
(or V) is not then we can model the dependence of the spin
polarization of the tunneling current on the Co–Pt and Co–V
concentrations, as shown in Figure 5(a,b). For Co–Pt/Al2O3

the experimental measurements can be fit with such a model
if the probability of tunneling from Co is about 3.5 times
higher than that from Pt. Perhaps coincidentally, this is nearly
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Figure 5. (a)Tunneling spin polarization at 0.25 K and magnetiza-
tion at 5 K for (a) Co1–xVx and (b) Co1–xPtx alloys as a function of
the V and Pt atomic functions. The results show a tunneling prob-
ability from Pt sites that is ∼3.8 times lower than from Co sites
for the case of Al2O3 barriers (dotted line) and ∼1.1 times lower
for the case of AlN barriers (dashed line) (Kaiser et al., 2005).
(c) Schematic representation of the relative magnitude of the tun-
neling currents from the constituent elements in Co–Pt and Co–V
alloys for tunneling for Al2O3 and AlN tunnel barriers.

the same ratio as that of the strength of the Co–O to Pt–O
bonds (as inferred from heat of enthalpies).

By contrast with Pt, V forms a much stronger bond
with O than does Co so the same model would predict
a fast decrease of TSP as the Co is diluted with V
since the (non-spin-polarized) tunneling current from V
would increase rapidly (faster than in proportion to the
V concentration). This is as observed in Figure 5(a,b).

As mentioned above when Al2O3is substituted by AlN
the dependence of TSP on Pt and V concentrations is quite
different but the results are consistent with a model in which

the local tunneling probability is related to the local chemical
bonding. The bonding of Co, Pt, and V with nitrogen is quite
weak so the TSP is then diluted approximately in proportion
to the Pt and V concentrations, as is found experimentally
(see Figure 5). These results suggest that the magnitude of the
TSP and, consequently, the TMR can be strongly modified
by ‘chemically engineering’ the bonding at the interfaces
between the ferromagnetic electrodes and the tunnel barrier.

4 INFLUENCE OF WAVE-FUNCTION
SYMMETRY ON SPIN-POLARIZED
TUNNELING

The influence of the chemical bonds formed at the ferromag-
net/insulator interface on the magnitude of the tunneling cur-
rent can be described in terms of a tunneling matrix element.
The tunneling current is proportional to the DOS multiplied
by the corresponding tunneling matrix element. Similarly, the
tunneling matrix elements will also be strongly influenced
by the symmetry of the wave functions of the conduction
band states in the ferromagnet. The electronic wave func-
tions decay into the tunnel barrier evanescently with a decay
length that depends on the symmetry of the wave functions.
Thus states with a more delocalized character will decay less
quickly into the tunnel barrier and so have a correspond-
ing larger tunneling matrix element. This means that if the
majority and minority spin-polarized conduction band states
in the ferromagnet have significantly different symmetries
then these states will decay at different rates across the tunnel
barrier leading to an increased (or decreased) spin polariza-
tion of the tunneling current. Thus the tunnel barrier can act
as a spin filter. This scenario was predicted for MTJs formed
from single crystalline Fe/MgO/Fe sandwiches oriented in
the (100) direction (Butler et al., 2001; Mathon and Umer-
ski, 2001), where the Fe is bcc and the MgO simple cubic
and the two lattices are rotated with respect to each other by
45◦ to allow for a nearly perfect epitaxial relationship.

Theoretical calculations of the electronic DOS at zero
temperature in the Fe/MgO/Fe(100) system by Butler et al.
(2001) are shown in Figures 6 and 7. Figure 6 shows the
dependence of the transmission of electrons through a tunnel
barrier composed of eight MgO (100) layers as a function
of their in-plane momentum k‖ = kx + ky parallel to the
Fe/MgO/Fe interface. Results are shown for the majority
and minority electron channels, for P orientation of the Fe
layer magnetizations (a and b, respectively), and for electron
transmission for AP orientation of the Fe moments (c). The
most obvious feature is that the transmission probability is
much higher in the majority than in the minority channel
by about 3 orders of magnitude. This clearly shows that the
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cal Society.)

MgO barrier strongly spin filters the majority spin-polarized
electrons even when just a few atomic layers thick. The origin
of this spin-filtering effect is revealed by comparing the
transmission probability of electrons in the various majority
and minority bands at the Fermi energy. Figure 7 shows
the calculated DOS for electrons incident from the left
electrode for the individual majority and minority spin-
polarized conduction bands. There is one majority spin-
polarized band with �1 symmetry, that is, with s angular
momentum character that decays very slowly across the
MgO barrier compared to the other majority spin-polarized
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Figure 7. Tunneling density of states (TDOS) of the (a) major-
ity and (b) minority channels at k‖ = 0 from Fe(100)/8 ML
MgO/Fe(100) (Butler et al., 2001). (American Physical Society.)

bands and all the minority bands, which have predominant
p and d wave-function symmetry. One can interpret this
simplistically as the higher tunneling probability for the
electrons in the more extended s-wave character states
compared to the less extended p and d character states.

A second important feature shown in Figure 6 is the
very different k‖ dependence of the electron transmission
probability in the majority and minority bands. In the
majority band the electron transmission is very high close to
the center of the Brillouin zone at k‖ = 0. This corresponds
to that expected for free electrons incident on a thick tunnel
barrier for which the electron transmission is decreased
rapidly away from the forward direction because of an
effective increase in the barrier thickness through which the
electrons propagate. Note that the half-angle of the cone of
the forward transmitted electrons increases as the barrier
thickness is decreased. By contrast the k‖ dependence of
the transmission in the minority channel is quite unlike
the simple free electron case and the transmission near
the forward direction is very weak. Again this reflects the
different wave-function symmetries in these channels.

In summary, for coherent tunneling of electrons through
a single crystalline MgO(100) tunnel barrier, in which the
electron momentum parallel to the interface is conserved,
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very high TMR is expected, owing to the preferential
transmission of majority spin-polarized electrons in the �1

band. Fe �1 states, which are highly spin polarized at the
Fermi energy, couple with MgO �1 evanescent states at
k‖ = 0. The coupling between these states is very sensitive
to details of the Fe–MgO interface. When the surface Fe
layer is oxidized this coupling is calculated to be significantly
weakened leading to a weakened spin-filtering effect (Zhang,
Butler and Bandyopadhyay, 2003), namely, a tunneling
matrix element effect.

Following the theoretical predictions of very high TMR
values in (100) Fe/MgO/Fe a number of groups attempted
to prepare single crystalline epitaxial thin-film Fe/MgO/Fe
sandwiches and, although highly perfect structures were
prepared, only modest TMR values were obtained for several
years (Klaua et al., 2001; Bowen et al., 2001; Faure-Vincent
et al., 2003; Mitani, Moriyama and Takanashi, 2003). In 2001
Parkin et al. used magnetron sputter deposition techniques
to successfully prepare highly (100) textured, exchange
biased MTJs with MgO(100)-oriented tunnel barriers which
exhibited very high TMR values exceeding 180% (Parkin
et al., 2004; Butler and Gupta, 2004). Nearly identical
MTJ structures with amorphous alumina barriers exhibited
much lower TMR values of ∼70%. These results are
consistent with the theoretical predictions of Butler et al.
(2001). With slight modifications of the structure reported
in Parkin et al. (2004) even higher TMR values of more
than 350% at room temperature and nearly 600% at helium
temperatures are obtained, as discussed in Parkin (2006).
These structures are useful technologically both because
they are formed at room temperature using simple sputter
deposition techniques and also because they are prepared
on amorphous substrates – here an amorphous SiO2 layer
formed on Si(100). Other groups have obtained similar
results in highly textured MTJs prepared on silicon oxide
in closely related structures (Djayaprawira et al., 2005)
with reported values of more than 450% TMR at room
temperature (Ikeda et al., 2006).

A cross-section transmission electron micrograph of a
typical MTJ is shown in Figure 8. Underlayers of TaN/Ta are
deposited first on the SiO2 substrate; they form a template
on which grows a highly (100)-textured fcc antiferromagnetic
exchange bias layer of Ir76Mn24. Subsequently, a reference
ferromagnetic electrode of Co70Fe30is deposited, which is
bcc and grows (100) oriented. The MgO barrier is formed
by first depositing a thin layer of Mg, ∼4–6 Å thick,
followed by the reactive sputter deposition of Mg in an ArO2

plasma (∼2% oxygen) to form MgO. The Mg underlayer is
used to prevent oxidation of the underlying ferromagnetic
electrode but this layer is converted to MgO by the reactive
oxygen introduced into the sputter chamber during the
deposition of the MgO layer. Finally, a counterferromagnetic
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Figure 8. (a) Plots of TMR versus field for MTJs with struc-
tures of 100 TaN/250 IrMn/8 Co84Fe16/30 Co70Fe30/29 MgO/150
Co84Fe16/100 Mg. The corresponding final anneal temperature TA,
after which the data is measured at room temperature, is shown
in the figure. (a) and (b) The major and minor loop, respectively.
(c) High-resolution transmission electron micrograph along the (Sun
et al., 1998) zone axes showing atomically resolved lattice planes
with (100) planes perpendicular to the growth direction. (Reprinted
with Permission from S.S.P. Parkin et al. Copyright 2004, Nature
Publishing Group.)

electrode is formed from a nominally amorphous alloy of
[Co70Fe30]80B20. The TMR of this structure, as deposited, is
modest (∼60–80% at room temperature) but on annealing
at temperatures of up to 450 ◦C the TMR is significantly
increased to values of more than 350% at room temperature
(see Figure 8) (Parkin et al., 2004).

Giant TMR values have also been reported by Yuasa et al.
(2004) in single crystal Fe/MgO/Fe(100) MTJs prepared
by molecular-beam epitaxy on MgO(100) single crystalline
substrates. Figure 9 shows the dependence of the TMR
ratio measured at 20 and 293 K on the thickness of the
MgO barrier. As predicted by theoretical calculations (Butler
et al., 2001; Mathon and Umerski, 2001), the TMR ratio
increases as the MgO thickness is increased. This is attributed
to the suppression of the un-spin-polarized states in the
Fe band contributing to the tunnel current at large MgO
thicknesses. Surprisingly, the TMR ratio oscillates with the
MgO thickness, with an oscillation period of 0.3 nm. This
oscillation was interpreted as a consequence of coherent
tunneling across the barrier, although the detailed mechanism
is still under investigation.

Faure-Vincent et al. (2002) and Katayama et al. (2006)
have studied the interlayer exchange coupling between the
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two ferromagnetic layers across an MgO barrier. When the
spacer layer between the two ferromagnetic layers is a non-
magnetic metal, it is known that the exchange coupling
oscillates with the thickness of the spacer layer between
ferromagnetic and antiferromagnetic coupling (Parkin, More
and Roche, 1990; Parkin, 1991). This coupling is mediated by
the conduction electrons in the spacer layer, which is reminis-
cent of RKKY coupling (Bruno and Chappert, 1991; Bruno,
1995). When an insulating spacer layer is used, it is predicted
that the exchange coupling is ferromagnetic and that it decays
exponentially with the spacer thickness. Figure 10 shows the

measured interlayer exchange coupling in MTJs consisting
of a single crystal Fe/MgO/Fe. Interestingly, the exchange
coupling is antiferromagnetic when the MgO thickness is in
the range of 0.5–0.8 nm. From first-principle calculations, it
was concluded that the coupling was mediated by oxygen
vacancy states located within the MgO barrier (Zhuravlev,
Tsymbal and Vedyayev, 2005).

5 RELATIONSHIP OF TUNNELING
MAGNETORESISTANCE TO
TUNNELING SPIN POLARIZATION

The fundamental origin of TMR is the spin polarization of the
tunneling current. Therefore, the measurement of the mag-
nitude and sign of the TSP is very important for further
understanding of TMR (Julliere, 1975). The spin polarization
can be probed by a variety of techniques such as photoemis-
sion (Feder, 1985; Dedkov, Rüdiger and Güntherodt, 2002),
point-contact Andreev reflection (Soulen et al., 1998) and
STS (Meservey and Tedrow, 1994). Photoemission experi-
ments determine the unweighted DOS at the Fermi energy
and, therefore, for the 3d TM ferromagnets, are sensitive
mainly to the contribution of the d electrons, whereas most
of the tunneling current is due to electrons from the more
extended sp bands (Gadzuk, 1969). Andreev reflection mea-
sures the magnitude (but not the sign) of the polarization
of electrons at a diffusive interface between the ferromag-
netic metal and a superconductor, whereas MTJs involve
electrons tunneling across a thin dielectric layer. The STS
technique uses a superconducting electrode (S) in the pres-
ence of a large magnetic field to detect both the magnitude
and the sign of the spin polarization of current tunneling
from a ferromagnetic electrode (F) at the Fermi energy across
an insulating layer (I) in FIS junctions. Thus, STS is the
technique most closely related to spin-dependent tunneling
in MTJs.

Figure 11 illustrates the superconducting DOS in a mag-
netic field as well as the conductance of a FIS junction. Note
that the Zeeman splitting of the quasiparticle states due to the
applied magnetic field parallel to the surface of the supercon-
ducting counterelectrode displaces the spin-up and spin-down
DOS peaks of the superconductor by 2 µBH . Thus the con-
ductance curve in the presence of a magnetic field has four
peaks with the peak height being asymmetric with respect to
zero bias. Note that the inner two peaks are due to predom-
inantly one spin component of the tunneling electrons from
the ferromagnetic electrode, either spin up or spin down.
The degree of the asymmetry between these two peaks is a
measure of the TSP from the ferromagnet.
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The STS technique was first developed by Meservey and
Tedrow using aluminum superconducting electrodes (Meser-
vey and Tedrow, 1994) and has been applied to many ferro-
magnetic and ferrimagnetic metals including the 3d TMs and
many of their alloys (Kaiser et al., 2005), the rare-earth (RE)
metals (Meservey and Tedrow, 1994) and RE–TM alloys
(Kaiser, Panchula and Parkin, 2005). Al has been widely
used ever since this early work because Al has a low spin-
orbit scattering, a high superconducting critical field (∼4 T),
and readily forms an insulating barrier (Al2O3). However, the
measurements must be made at low temperatures (<0.4 K)
since the superconducting critical temperature of Al is typi-
cally below ∼2.5 K. It is possible to use other superconduct-
ing electrodes. Using NbN superconducting electrodes STS
measurements can be made at higher temperatures (∼1.2 K)
without the need for a 3He cryostat (Yang et al., 2006).

For many years, the determination of TSP was based sim-
ply on using four values of the conductance at the four nom-
inal peak positions (Meservey and Tedrow, 1994; Tedrow
and Meservey, 1973). This method tends to overestimate
the polarization, thereby requiring a more accurate method
of analysis (Worledge and Geballe, 2000). Later, spin-orbit

scattering and orbital depairing in the superconductor were
taken into account by using the DOS derived by Maki (1964).

Meservey and Tedrow determined the TSP of Co, Fe,
and Ni as well as alloys of these elements (Meservey
and Tedrow, 1994; Paraskevopoulos, Meservey and Tedrow,
1977). Results are shown in Figure 12 together with TSP data
from Monsma and Parkin (2000) and the magnetic moments
per atom from the Slater–Pauling curves (Cullity, 1972).
Monsma and Parkin’s values of TSP are slightly higher than
those of Meservey and Tedrow’s; this can be attributed to
improved sample preparation. Ni and Ni-rich alloys appear to
have low TSP values as compared to Fe- and Co-rich alloys,
but this is likely due to problems in creating a high-quality
interface with aluminum oxide tunnel barriers. Indeed, recent
experiments have found TSP values for Ni that are much
higher and similar to those of Co and Fe (Nadgorny et al.,
2000; Kim and Moodera, 2004).

The TSP is measured to be positive for Co, Fe, and Ni
as well as for all their alloys. This is not consistent with the
spin-polarized DOS in the bulk band structure of Co and Ni
at the Fermi energy in which the density of filled states is
higher for minority spin-polarized electrons. Moreover, an
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approximately linear relationship between magnetic moment
per atom and spin polarization was found by Paraskevopou-
los et al. who measured the spin polarization of ferromag-
netic alloys comprising Ni diluted with the paramagnetic
elements Cr, Cu, Mn, and Ti (Paraskevopoulos, Meservey
and Tedrow, 1977). Since magnetization and spin polar-
ization have very different physical origins, such a simple
proportionality would be surprising. Indeed, for Ni alloys,
this relationship appears to be derived from the decreasing
tendency of oxidation of Ni as impurities are added to the
metal. Indeed, with improved deposition techniques, and vac-
uum deposition systems with much lower base pressures, the
TSP of Ni, Fe, Co, and their alloys has steadily increased
over the years since the early measurements in the 1970s.
Moreover, as discussed in Section 3 the dependence of the
TSP on the magnetic moment of Co and Fe alloys is very
sensitive to the diluent (Kaiser et al., 2005).

Using conventional amorphous alumina tunnel barriers
TSP values of up to ∼55% (Monsma and Parkin, 2000)
are found for conventional 3d ferromagnets, such as CoFe,
but using highly textured crystalline MgO tunnel barriers
TSP values of more than 85% (Parkin et al., 2004) can be
achieved for otherwise the same ferromagnet, as illustrated
in Figure 13. Such TSP values rival those previously
observed only with half-metallic ferromagnets (Parker et al.,
2002).

The magnitude and the sign of the TMR are strongly
influenced by the electrode and tunnel barrier materials as
well as the barrier/ferromagnet interface structure and chem-
istry. A particularly interesting example is that of the work
by de Teresa et al. (1999b) who studied the magnetotrans-
port properties of MTJs with one ferromagnetic electrode
formed from a single crystalline thin film of the perovskite,
La1–xSrxMnO3, which is nominally a majority spin-polarized
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Figure 13. Conductance versus bias voltage curves (symbols) and
fits (solid lines) from the structure of (a) AlSi/AlOx /Co and (b)
Co70Fe30/MgO/AlSi. The measurements were taken at ∼0.25 K in
a field of 2 T applied in the plane of the films. The values for the
TSP were extracted by fitting the data curves with the following
fitting parameters indicated in the figure: superconducting gap �,
depairing parameter ζ , and spin-orbit parameter b.

half-metal, an epitaxial tunnel barrier formed from SrTiO3,
and a counterelectrode formed from a conventional 3d TM,
cobalt. As shown in Figure 14, this MTJ device exhibits a
negative TMR at zero bias, that is, the resistance is lowest
when the La1–xSrxMnO3 and the Co moments are antiparal-
lel to each other. Since the manganite is known to have only
majority spin-polarized electrons at the Fermi energy (Park
et al., 1998), de Teresa et al. concluded, therefore, that the
polarization of the empty Co states into which the electrons
tunnel across the SrTiO3 barrier in the AP configuration must
be predominantly minority spin polarized. This is exactly
the opposite sign of polarization for electrons tunneling to
and from Co through amorphous alumina tunnel barriers. de
Teresa et al. argue that the SrTiO3 barrier preferably favors
tunneling of electrons with d character rather than the s char-
acter as in alumina because of the d character provided by
the Ti. This interpretation is subject to some debate. For
example, Oleinik, Tsymbal, and Pettifor (2002) suggest that
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the inversion of the TMR sign could be due to the forma-
tion of moments on the Ti atoms in the SrTiO3 barrier which
they calculate are exchange coupled antiparallel to the Co
moments in the electrode. Another possibility is that defects
in the tunnel barrier can give rise, through resonant tunneling,
to an inversion of the TMR, as calculated by Tsymbal et al.
(2003). Indeed, Sharma, Wang, and Nickel (1999) using com-
posite tunnel barriers formed from bilayers of Ta2O5/Al2O3,
and Ni80Fe20 electrodes, report a voltage dependence of TMR
similar to that of de Teresa et al. They find negative TMR
values, albeit small values of just a few percent, for electrons
tunneling into the NiFe/Ta2O5 interface, which they find is
strongly dependent on the oxidation time used to form the
barrier, perhaps indicating the role of defects.

Another interesting system with regard to the relation-
ship between TMR and TSP is tunnel junctions formed with
RE–TM alloys, in particular, ferrimagnetic alloys formed
from Co and Fe, and the RE metal Gd. In these alloys,
which are amorphous, the TM moments are aligned antipar-
allel to that of Gd. These alloys show both negative and
positive TSP, depending on their composition, and, the tem-
perature, as shown in Figure 15 (Kaiser, Panchula and Parkin,
2005). This behavior that can be understood from the stronger
temperature dependence of the magnetization of the RE sub-
network compared to that of the TM subnetwork, and the
larger RE moment compared to the TM moment at low tem-
peratures. Thus, there is a compensation temperature where
the RE and TM subnetwork magnetizations exactly balance
and the alloy has a zero net magnetization. Correspondingly,
there is a compensation composition of the alloy at a given
temperature where the net moment goes through zero as the
RE/TM ratio is varied. As the temperature or composition
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counterelectrode (Kaiser, Panchula and Parkin, 2005). (American
Physical Society.)

is varied through the corresponding compensation point, the
sign of the TSP changes but the magnitude of the TSP is
observed to be substantial at the compensation point when
the net moment of the alloy goes to zero. This illustrates that
a magnetic material can, in principle, have zero magnetiza-
tion but a finite spin polarization, clearly proving that the two
quantities are not related to one another in any simple way.

By inserting a thin CoFe layer at the interface between a
CoFeGd alloy and a MgO tunnel barrier, large negative TMR
values of ∼ −50% can be achieved at room temperature
(Kaiser and Parkin, 2006). The high negative spin polariza-
tion, as well as the tunable coercivity, amorphous structure,
and low uniaxial anisotropy of RE–TM alloys make them
promising candidates for use in MTJ-based devices, such as
flux-closed double-tunnel junctions for MRAM memory cells
(Kaiser and Parkin, 2006).

The Julliere relationship shown in equation (3) indicates
that the magnitude of the TMR ratio diverges when the spin
polarization of the ferromagnetic electrode approaches 100%.
This is one of the reasons why half-metallic ferromagnets
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have been of considerable interest in recent years. There are
several classes of half-metals, as discussed in Half-metals,
Volume 4, which can be both minority spin polarized, as,
for example, magnetite (Fe3O4) (Walz, 2002; Ziese, 2002),
and majority spin polarized, as, for example, La1–xSrxMnO3,
mentioned in the preceding text. MTJs with La1–xSrxMnO3

electrodes and SrTiO3 (and CaTiO3) barriers have been
demonstrated to show very high TMR values, exceeding
∼1000% (Sun et al., 1998; Bowen et al., 2003), but only
at low temperatures. Though the Curie temperature of
La1–xSrxMnO3 is close to or just above room temperature
(depending on the oxygen concentration and the Sr dopant
concentration), the TSP has a much stronger dependence
than the magnetization, and typically falls to zero at about
half the Curie temperature, for reasons which are not fully
understood.

Recently, several groups have reported substantial TMR
ratios in MTJs formed with Heusler alloy electrodes (Park
et al., 1998; Webster, 1969; Kubler, Williams and Som-
mers, 1983; Galanakis, Dederichs and Papanikolaou, 2002).
Heusler alloys are a large class of ternary intermetallic com-
pounds with the chemical formula X2YZ, which have been
predicted to be half-metallic. Sakuraba et al. (2005) have
fabricated Co2MnSi/AlOx /CoFe MTJs, which display a TMR
ratio of 70% at room temperature, which is comparable to the
highest TMR ratios reported in MTJs with TM electrodes and
AlOx tunnel barriers. They have successfully grown highly
oriented Co2MnSi layers on single crystal MgO substrates.
Theoretical calculations predict that Co2MnSi with the L21

crystal structure can achieve nearly 100% spin polarization,
but chemical disorder or the formation of other crystal struc-
tures, such as B2 and A2, can significantly affect the spin
polarization (Galanakis, Dederichs and Papanikolaou, 2002;
Picozzi, Continenza and Freeman, 2004). Therefore, in addi-
tion to providing a clean interface between the ferromagnetic
electrode and the insulator, the highly textured L21-ordered
Co2MnSi was essential to finding a high TMR ratio.

A number of other reports on MTJs using various
Heusler alloys have been reported including alloys such
as Co2MnAl (Sakuraba et al., 2006a), Co2FeSi (Gercsi
et al., 2006), Co2FeAl0.5Si0.5 (Tezuka et al., 2006a,b), and
Co2Cr0.6Fe0.4Al (Marukame et al., 2007). It is interesting to
note that the TMR ratio is very sensitive to the temperature
in many MTJs with Heusler alloy electrodes. It is interest-
ing that this is similar to the case of MTJs with manganite
electrodes. For example, Sakuraba et al. (2006a) find that
an MTJ formed with a Co2MnAl electrode and a MgO bar-
rier displays a TMR ratio of 570% at 4 K, but that this is
more than eight times higher than its room-temperature value
(see Figure 16). The large TMR ratio at low temperature
indicates that Co2MnAl is nearly half-metallic. In addition,
bias-voltage-dependent conductance measurements revealed
that the energy gap (�) between the Fermi level and the bot-
tom of the minority spin conduction band is only ∼10 meV
(Sakuraba et al., 2006b), which is more than two times
smaller than the thermal fluctuation energy at room tempera-
ture (26 meV). The drop of the TMR ratio at the temperature
is thus associated with thermal mixing of the spin state of the
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electrons, which thereby obscures the half-metallic nature of
the Heusler alloy. Increasing the energy gap � by varying
the composition of the Heusler alloy leads to half-metallic
behavior at higher temperatures. Indeed, TMR values exceed-
ing ∼100% at room temperature have recently been reported
by several groups (Tezuka et al., 2006b; Marukame et al.,
2007). The highest TMR values to date at room temperature
have been reported in MTJs with L21-Co2FeAl0.5Si0.5 full
Heusler alloys for both electrodes and a MgO tunnel barrier
(Tezuka et al., 2006b).

6 TEMPERATURE AND BIAS VOLTAGE
DEPENDENCE OF TMR

In many MTJs the magnitude of the TMR decreases strongly
with increasing temperature. There are several possible
mechanisms that can be responsible for such an effect includ-
ing thermally excited magnons in the ferromagnetic elec-
trodes, thermal excitation of magnetic impurities or defects
in the tunnel barrier or at the electrode/barrier interfaces, and
thermal variations of the electronic structure at elevated tem-
peratures. These effects give rise to a decrease in the interfa-
cial magnetization and, thereby, the spin polarization (Mac-
Donald, Jungwirth and Kasner, 1998; Shang et al., 1998;
Moodera, Nowak and van de Veerdonk, 1998; Bratkovsky,
1998). A strong temperature dependence of the TMR is often
related to a poor quality of the interface between the ferro-
magnetic electrode and the tunnel barrier. Since the most
commonly used tunnel barriers are oxides, small amounts
of excess oxygen, for example, oxygen physisorbed on the
surface of the oxide barrier before deposition of the ferro-
magnetic electrode, can result in oxidation of ferromagnetic
metal electrodes. Since oxides of Ni and Co are antiferro-
magnetic, and several oxides of Fe are antiferromagnetic, any
oxidation of the electrode is likely to lead to a decrease in the
spin polarization of the tunneling current. This is likely to
be strongly temperature dependent because of the compara-
tively low Neel temperatures of the antiferromagnetic oxides.
‘Loose’ spins can readily depolarize the tunneling current.

It is interesting to note that the temperature dependence
of the tunneling current is usually much weaker in the P as
compared to the AP alignment of the magnetic electrodes
as shown in Figure 17. In the case of MgO tunnel barriers,
the temperature dependence of the junction resistance for P
alignment of the ferromagnetic electrodes is almost negligi-
ble compared to that of Al2O3 barriers. In both barriers, most
of the increase in the TMR at lower temperatures is due to
the increase in the resistance of the AP state.

Most MTJs show a substantial decrease of TMR as the
bias voltage is increased. Zhang et al. (1997) proposed that

0

20

40

60

80

100

0

400

800

1200

1600

2000

R
 (

Ω
)

T
M

R
 (

%
)

Al2O3

0

150

300

450

600

0

200

400

600

800

1000

R
 (

Ω
)

T
M

R
 (

%
)

MgO TMR
RP
RAP

TMR
RP
RAP

Temperature (K)

0 100 200 300

(a)

(b)

Figure 17. (a) Temperature dependence of TMR, parallel (RP) and
antiparallel (RAP) resistance of (a) Ta/IrMn/CoFe/26 AlOx /CoFe
and (b) Ta/IrMn/CoFe/MgO(100)/CoFe.

this was due to inelastic scattering by magnon excitations
at the ferromagnet/insulator interface. When hot electrons
tunnel from one electrode across the insulating barrier into
the opposing ferromagnet/insulator interface, they may lose
their energy by emitting a magnon, which may result in
flipping of the electron’s spin. More magnons are created
with increasing bias voltage, resulting in reduced TMR
values. The energy dependence of the spin polarization of
the DOS in the ferromagnetic electrodes due to details of
their band structure, especially the magnitude of the exchange
splitting and the energy width of the exchange split bands,
will also reduce the TMR at high bias (Moodera, Nowak and
van de Veerdonk, 1998).

Ding et al. (2003) reported the absence of a zero-bias
anomaly and an almost constant TMR with bias voltage for
spin-polarized electron tunneling between a Co(0001) surface
and an amorphous magnetic tip across a vacuum barrier using
a scanning tunneling microscopy technique. The zero-bias
anomaly, very often observed in planar tunnel junctions with
insulator barriers, was therefore attributed to defect scattering
from localized states in the barrier, rather than to magnon
creation or spin excitations at the interfaces (Zhang and
White, 1998; Tsymbal, Mryasov and LeClair, 2003). Planar



Magnetic tunnel junctions 17

0.6

0.8

1

1.2

1.4

40

60

80

100

G
 (

m
A

 V
−1

)

2.6 K

M
R

 (
%

)

30

40

50

60

G
 (

m
A

 V
−1

)

−0.4 −0.2 0 0.2 0.4

0.8

1

1.2

1.4

1.6
300 K

Bias voltage (V)
M

R
 (

%
)

(a)

(b)

Figure 18. Conductance and TMR curves for MTJs with AlOx barrier measured at (a) 2.6 K and (b) room temperature.

tunnel junctions often contain significant defects within the
barrier and at its interfaces which can lead to significant
decreases in the effective tunneling barrier height (Rippard,
Perrella and Buhrman, 2001).

The bias voltage dependence of TMR should be symmetric
with regard to positive and negative voltages when the mag-
netic electrodes are identical, and the barrier is symmetric
in shape. Figure 18 shows typical bias voltage dependences
of TMR and conductance for Al2O3 (left panels) and MgO
(right panels) barriers at 2.6 K and room temperature. The
Al2O3 barrier shows a symmetric bias dependence while the
MgO does not, which may be due to the different growth
methods (Al2O3: plasma oxidation, MgO: reactive sputter-
ing). At low temperatures, both barriers display zero-bias
anomalies in the P configuration but MgO does not show
as prominent a zero-bias anomaly as Al2O3 in the AP con-
figuration. Also the prominent broad valleys in conductance
at ∼0.27 V are shown for P configuration in MgO barrier;
these may be ascribed to the coherent tunneling of certain
symmetries as mentioned in the preceding text.

The TMR of MTJs decreases with increased voltage and
temperature. This is thought to be due to inelastic tunneling
from phonons and magnons at the interface between the
ferromagnetic electrode and the insulator, and impurities
both at these interfaces and within the interior of the tunnel
barrier, which may result in flipping of the electron spin
and so a decrease in the spin polarization of the tunneling
electrons. The predominant elastic tunneling, where incident
electrons from one electrode tunnel through the barrier

without loss of energy to the opposite electrode, gives
rise to a significant background of the conductance versus
voltage curve. It is thus important to clarify the relationship
between the tunnel conductance and the interface structure
of an MTJ. Inelastic electron tunneling spectroscopy (IETS),
is the measurement of d2I/dV 2 versus V and was first
developed by Jaklevic and Lambe (1966). This is a very
sensitive spectroscopic technique, which has been used to
study the electronic structure of chemical compounds and
complexes incorporated within insulating barriers, as well
as the detailed electronic nature of interfaces within MIM
tunnel junctions. The observation of both the vibrational as
well as electronic spectra (defects, impurities, magnons, and
phonons) has been carried out. Higher-order derivatives of
the conductance versus voltage curves often reveal peaks
at energies corresponding to those of the inelastic tunneling
channels, where incident electrons lose energy inside the
tunnel barrier or at the barrier/electrode interfaces.

A typical measurement is shown in Figure 19 for both
Al2O3 and MgO barriers. The IETS signal from the AP
configuration compared to the P configuration is large and
more sensitive to the spin-dependent scattering, indicating
that the spin-flip inelastic excitations are dominant for the AP
configuration. In case of Al2O3, typical phonon spectra of the
Al (33 mV) and the Al–O longitudinal optical (LO) modes
(20 and 120 mV) were observed as shown in Figure 19(a).
For MgO barriers in Figure 19(b), typical phonon spectra
for the MgO optical (O) phonon at 27 mV (Klein et al.,
1973) and the MgO LO surface mode at 83 mV (Plesiewicz
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and Adler, 1986) were observed. Huge peaks around zero
bias from both orientations result from magnon excitations,
which are reported to be absent with nonmagnetic electrodes
(Moodera, Nowak and van de Veerdonk, 1998; van de
Veerdonk, Moodera and de Jonge, 1999; Han et al., 2001).
The broad peaks appearing around 500–600 mV have never
been observed in the MTJs with Al–O tunnel barriers.
The high-energy peaks reveal the information on the wave-
function-dependent conductance channels in MgO that are
related to the opening of the additional conduction channels
when the applied bias is higher than the band edge of that
spin �x band (Ando et al., 2005).

7 SPIN-DEPENDENT TUNNELING
IN OTHER SYSTEMS

When a tunnel barrier is itself a ferromagnetic insulator the
tunnel barrier height will be different for spin-up and spin-
down electrons. This means that the tunneling current will be
spin filtered since the probability of tunneling is extremely

sensitive to the barrier height. This is a very efficient method
for polarizing current even when the metal electrodes are
nonmagnetic and is of interest for spin injection into semi-
conductors without the need for ferromagnetic metal elec-
trodes. However, it has so far been difficult to create MTJs
with useful properties because of the difficulty of indepen-
dently setting the magnetic moment direction of the insulat-
ing barrier and that of one of the metallic electrodes, which
is required to observe a TMR effect. One recent example is
that of Leclair et al. (2002) who reported a TMR ratio of
more than 100% at 7 K in an MTJ with a barrier formed
from EuS with one nonmagnetic electrode formed from Al
and one ferromagnetic electrode formed from Gd. However,
the magnetic switching characteristics of this device were
quite poor. Moreover, since EuS has a very low Curie tem-
perature, well below room temperature, this material is not
useful for applications at room temperature and above.

Finally, we briefly discuss spin-dependent tunneling in
granular systems. Owing to the quantized nature of electron
charge, a tunneling current is associated with a series
of events in which individual electrons tunnel across a
barrier. Consequently, Coulomb interaction of electrons can
significantly influence the tunneling process. Consider a
double barrier tunnel junction, where the electron has to first
tunnel through the first barrier and land on a middle electrode
before tunneling through the second barrier. Suppose that the
middle electrode is temporarily occupied by the preceding
electrons that tunneled through the first barrier. In order
for the next electron to tunnel through the first barrier, it
has to overcome the charging energy associated with the
Coulomb interaction with the other electrons placed in the
middle electrode. This effect is called Coulomb blockade, in
which the Coulomb interaction ‘blocks’ the electron from
tunneling through a barrier. The magnitude of this charging
energy is inversely proportional to the size of the middle
electrode. Consequently, it is possible to trap a single electron
in the middle ‘island’ (electrode) by reducing the island size
such that the charging energy exceeds the thermal fluctuation
energy. Double-tunnel junction devices capable of trapping
a single electron in the middle island are typically called
single electron transistors, since the middle island can act
as a gate, which controls the tunneling current between the
two barriers. Intensive efforts have been made to create
useful single electron transistors, in particular, by using
semiconductor quantum dots.

The Coulomb blockade effect has been observed in
tunnel junctions using ferromagnetic granular nanoparticles
as the middle islands (Mitani et al., 1998; Zare-Kolsaraki,
Hackenbroich and Micklitz, 2002). Granular nanoparticles
can be formed, for example, by cosputtering aluminum
and gold in an oxygen atmosphere (Barsadeh et al., 1994),
which results in segregated gold particles embedded in the
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aluminum oxide matrix since gold is inert to oxygen. Typical
diameter of the nanoparticles is in the range of a few
nanometers with a relatively large distribution. A number of
groups have reported observation of the Coulomb blockade
effect via nanoparticles embedded in an insulating matrix.

Coulomb blockade is a pure charge effect of the electrons.
Recently, the role of the spin degree of freedom on single
electron tunneling has attracted great interest. In particular,
much theoretical work has been carried out on the prediction
of the TMR ratio for the case of single electron tunneling
(Barnas and Fert, 1998; Takahashi and Maekawa, 1998).
Experimentally, Yakushiji et al. have reported oscillations of
the TMR ratio with the bias voltage across the barrier in
MTJs with Co nanoparticles embedded in an AlOx layer
(Yakushiji et al., 2005). Interestingly, the TMR ratio was
observed to oscillate between −10 and 15% when the
voltage was increased from 0 to ∼0.2 V. This oscillation was
attributed to an oscillation of the position of the Fermi level
lying between either the majority or the minority spin states
which are discretized due to the geometrical confinement of
the nanoparticle.

Spin accumulation occurs frequently in magnetic/non-
magnetic hybrid systems. For example, when electron flows
from a nonmagnetic layer to a ferromagnetic layer, electrons
whose spin direction are opposite to the magnetization direc-
tion of the ferromagnetic layer will be reflected from the
layer. Consequently, electrons with a certain spin direction
will pile up at the interface of the magnetic/nonmagnetic
layer. This effect can occur, for example, in current perpen-
dicular to the plane (CPP) GMR devices.

8 CONCLUSION

Spin-dependent tunneling junctions have a long history
dating back to more than 30 years but it is only in the past
decade that MTJs with significant values of TMR at room
temperature have been fabricated. A detailed understanding
of the relationship of the TMR and the corresponding spin
polarization of the tunneling current to the ferromagnetic and
tunnel barrier materials forming the MTJ is developing. It
is clear that it is not simply the electronic structure of the
ferromagnetic electrode that determines the magnitude of the
spin-dependent tunneling. Rather the spin polarization of
the tunneling current can be strongly modified by tunneling
matrix elements that themselves depend on chemical bonding
at the ferromagnet/tunnel barrier interface and also on the
symmetry of the conduction band wave functions. This
means that magnetic metals which are only weakly magnetic
can give rise, by suitable wave function or chemical bond
engineering, to highly spin-polarized currents. Conversely,

strongly magnetic metals may give only very weakly spin-
polarized tunnel currents. An important conclusion is that the
TSP is not related in any simple way to the magnetization of
the magnetic electrodes. For example, RE–TM ferrimagnetic
electrodes with no net magnetic moment can give rise
to highly spin-polarized tunneling current (Miyazaki and
Tezuka, 1995).

MTJs have a promising future both as highly sensitive
field sensors and as magnetic memory storage elements
(Parkin et al., 2003). By contrast with metallic spin-valve
sensors whose magnetoresistance is limited to 10–20% at
room temperature there is no theoretical limit to the TMR
of MTJs. Whilst the very high TMR of >350% at room
temperature observed with crystalline MgO tunnel barriers is
very attractive for sensing and memory applications it seems
likely that new materials with even higher magnetoresistance
values will be found in the future which could have even
wider technological applications.
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1 INTRODUCTION

Spin-angular momentum transfer (or spin transfer for short)
concerns the influence of a spin-polarized current on its host
magnetic conductor. This phenomenon originates from the
exchange of angular momentum between a spin-polarized
current and the magnetization – a concept that has been
developing over the years (Berger, 1978, 1984, 1988,
1992, 1996; Hung and Berger, 1986; Bazaliy, Jones and
Zhang, 1998), which resulted in the theoretical prediction
of the spin-current-induced magnetic excitation and reversal

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

(Slonczewski, 1989, 1996), and its quantitative experimen-
tal verification (Katine et al., 2000; Albert, Katine, Buhrman
and Ralph, 2000).

A sketch for the basic concept of spin-transfer effect
is shown in Figure 1. The lower left corner of the figure
presents a two-ferromagnet layered spin-valve structure. A
current passes through the left ferromagnet (F1) and becomes
spin polarized. When it passes through the second, thinner
ferromagnet on the right (F2), the spin polarization of the
current may have to change direction, depending on the
relative alignment of the magnetization between F1 and
F2. This is illustrated at the upper left of the figure. Here
N denotes a nonmagnetic conductor, or in the case of a
magnetic tunnel junction (MTJ), the N between F1 and F2
could also be a tunnel barrier.

In essence, it is the repolarization process that causes
F2 to experience an effective torque. This spin-current-
induced torque, or spin torque for short, appears along
the same direction as the damping torque experienced
by the precessing F2. The spin torque can either be in
the same direction as the damping or in the opposite
direction, depending on the direction of current flow and
the relative spin orientation between F1 and F2. When the
spin torque is in the direction opposite to the damping of
F2, the magnetization would amplify any deviation from its
equilibrium state. When the spin torque is sufficiently strong,
this amplification process can cause F2 to precess with
an ever-increasing cone angle going past π/2, eventually
settling into the opposite direction, causing a complete
magnetic reversal. The situation for reversed current direction
is a bit more complex, but the net spin torque on F2 remains
proportional to the current, and the reversal process remains
essentially the same.
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Figure 1. An illustration of the spin-torque-related dynamics for a macrospin. A uniaxial anisotropy is assumed along the ez axis, as is an
applied magnetic field H.

The presence of a spin torque affects the magnetotrans-
port problem at many levels. The spin torque is, first of all,
microscopic and quantum mechanical in nature. The collec-
tive effect of a spin-polarized current brings a torque on the
ferromagnetic conductor carrying the current. The response
of the ferromagnet to this torque would in turn affect the
current transport, making it in general a complex coupled
system. Fortunately, in most cases, the timescales are quite
different between the magnetodynamics of the ferromagnet
(which tends to be around the ferromagnetic resonance fre-
quency or of the order of tens to hundreds of picoseconds)
and that of the spin-polarized electronic transport process,
which involves spin-flip lifetimes of the order of several
picoseconds or less (Levy, 2002). This allows for an effective
separation of the two processes, and a meaningful definition
of a spin torque when used in the context of a descrip-
tion of the magnetodynamics of the ferromagnet, with the
torque strength characterizable by phenomenological param-
eters such as the spin polarization of the current and the
instantaneous angle between the two ferromagnets (F1 and
F2 in Figure 1). These phenomenological parameters can
in principle be derived from first-principle transport theo-
ries. The same set of parameters can also be used as input
for the description of the (slower) magnetodynamics of the
ferromagnet electrodes. For detailed analysis of the relation-
ship between the spin torque and the microscopic transport
properties of given materials systems, readers are referred to

more advanced discussions presented in Bazaliy, Jones and
Zhang (1998); Slonczewski (1996, 1999, 2002), Stiles and
Zangwill (2002a,b), Bauer, Tserkovnyak, Huertas-Hernando
and Brataas (2003), Stiles, Xiao and Zangwill (2004),
Waintal, Myers, Brouwer and Ralph (2000), and Polianski
and Brouwer (2004).

Here we focus on the macroscopic consequences of spin
torque. We present a brief description of the magnetodynam-
ics of a macrospin as it experiences the action of a spin
torque. We then survey a series of experiments on the effect
of spin torque, including the observation of an instability
threshold current for spin-torque-induced magnetic preces-
sion and reversal, and a spin-torque-driven amplification of
thermal fluctuation.

2 ZERO-TEMPERATURE MACROSPIN
DYNAMICS

A macrospin model treats a nanomagnet with the assumption
that its internal magnetic degrees of freedom are frozen. The
only relevant parameters are the total magnetic moment m
and the magnetic anisotropy energy U(θ, ϕ), where θ and
ϕ are the polar-coordinate angles of m. The physical shape
of the nanomagnet is relevant only in that its related shape
demagnetization energy contributes to the total anisotropy
energy function U(θ, ϕ).
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2.1 Macrospin dynamics and the presence
of a spin-torque term

The macrospin dynamics without the presence of a spin
torque is well described by the classical Landau–
Lifshitz–Gilbert (LLG) equation (Lifshitz and Pitaevskii,
1981) (

1

γ

)
dm
dt

= m × H −
(

α

γm2

)
m × dm

dt
(1)

Here m is the magnetic moment of the macrospin, γ =
gµB/� ≈ 2µB/� is the gyromagnetic ratio, and α is the LLG
damping coefficient. The first term in equation (1) describes
the magnetic-field-induced torque on a magnetic moment m.
The second term describes damping.

When a spin-polarized current passes through a ferromag-
netic electrode that is m, m will attempt to repolarize the
current in the direction of its magnetization, nm. In the pro-
cess, some of the angular momentum from the electron spins
will be absorbed by m. This exerts a net torque on m.

For a nanomagnet m within which magnetization is
uniform, the transverse component of spin torque is
(Slonczewski, 1996)

� = −g (nm, ns)

[
�

(2e)

](
ηI

m2

)
(ns × m) × m (2)

where nm is the unit vector direction of m, ns is the direc-
tion of spin polarization of the incoming current, and η =(
I↑ − I↓

)
/
(
I↑ + I↓

)
is the spin-polarization factor, where

I↑ and I↓ are the majority and minority spin-polarized cur-
rents with their polarization axis ns defined by the polarizing
magnet (F1 in Figure 1). g (nm, ns) is a numerical prefac-
tor that describes the angular dependence of the efficiency of
spin-angular momentum transfer, originating from the depen-
dence of net spin polarization of the current on the relative
orientation of the two ferromagnets. Because the net spin
polarization depends on the exact arrangements of the elec-
trodes, so does g (nm, ns) (Slonczewski, 1996; Stiles and
Zangwill, 2002a; Waintal, Myers, Brouwer and Ralph, 2000).
For all-metal spin valves, the detailed angular dependence
of g (nm, ns) is model dependent, and is microscopically
never an angle-independent quantity. Its macroscopic form
as seen in real materials systems relates to the angular depen-
dence of magnetoresistance (MR), and is to be established
experimentally.

The case of a constant g (nm, ns) ≡ 1 describes a spin cur-
rent whose polarization is independent of the relative angle,
and the macrospin simply redirects the spin-current polar-
ization direction, and in the process completely absorbs its
transverse angular momentum. For simplicity of discussion,
on a semiquantitative level, we assume a constant g (nm, ns),

and use equation (2) as the basic interaction that enters the
magnetodynamics equation for the motion of the macrospin.
The LLG equation (Lifshitz and Pitaevskii, 1981) with the
spin-torque term therefore is(

1

γ

)
dm
dt

= m ×
[

H − (α/m) m ×
(

H + η�I

2emα
ns

)]
(3)

Equation (3) can also be viewed as a local constitutive
equation for magnetodynamics studies including the nano-
magnet’s internal degrees of magnetic freedom. Together
with an exchange-stiffness term, the vector field equation
then describes the dynamics of the nanomagnet in contin-
uous medium limit, a special case of which is when the
nanomagnet is a thin film with thickness much smaller than
the lateral dimensions and the exchange length. In this case,
the in-plane degrees of magnetic freedom can be taken
into account by replacing H → H + (D/2µB) ∇2nm, where
∇2 = ∂2

x + ∂2
y with x, y being the in-plane position coordi-

nates, D the exchange-stiffness constant, and nm = M/M the
local direction of magnetization M at point (x, y).

2.2 Threshold current for magnetic amplification

For simple geometries and under a macrospin approximation,
equation (3) can be linearized and solved for its stability
boundary. For a thin, free-layer nanomagnet in a collinear
geometry, with its uniaxial anisotropy field’s easy axis
aligned to that of the field applied in the film plane, and
the easy-plane anisotropy sharing its easy plane with the
film plane, this gives a stability threshold current Ic of
(Slonczewski, 1996; Sun, 1999, 2000a)

Ic =
(

2e

�

) (
α

η

)
m (H + Hk + 2πMs) (4)

Here α is the LLG damping coefficient, m = (abt) Ms is
the total magnetic moment of the free layer, with a, b as its
lateral dimensions and t its thickness. Ms is the saturation
magnetization of the free layer (F2). Hk is the uniaxial
anisotropy field.

Equation (4) gives a current threshold, above which the
linearized LLG equation becomes unstable over time, and a
net gain of precession cone angle results. While comparing
with experimental results, however, effects of large cone-
angle precession often need to be carefully taken into
account, since the development of an initial cone-angle
increase as dictated by a linear stability threshold may not
necessarily lead to complete magnetic reversal (Sun, 2000a).
Although in many simple geometries, such as systems with
uniaxial-only anisotropy or thin-film nanomagnets with a
strong easy-plane anisotropy due to demagnetization and a
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moderate in-plane uniaxial anisotropy, oftentimes the linear
stability threshold does lead to the reversal of the magnetic
moment.

There are several other factors that determine the exper-
imentally observable switching current, making the simple
stability threshold expression equation (4) insufficient. Chief
among these factors is finite temperature. Other uncertain-
ties include the relatively poor knowledge of the actual LLG
damping coefficient for a particular device structure, and that
of the exact spin-polarization value η. Detailed calculations
for specific spin-transport models would give rise to addi-
tional angular dependences of spin torque as a function of
the relative orientation between F1 and F2. The damping
coefficient α may also become angle dependent, especially
for large-angle dynamics.

A simple way of comparing equation (3) with experiment
is to examine the intercept-to-slope ratio of the experimen-
tally observed threshold boundary Ic(H), defined as RIS =
Ic(0)/ (dIc/dH). For equation (4), RIS = Hk + 2πMs. Early
experimental data, mostly measured quasistatically over the
timescale of less than a few milliseconds, appears to consis-
tently underestimate the value of RIS, by almost an order
of magnitude (Sun et al., 2003; Sun, Kuan, Katine and
Koch, 2004). This is because equation (4) represents the
zero-temperature stability threshold. With finite temperature,
additional thermal agitation is present, making the apparent
threshold current lower and also causing it to give a dif-
ferently shaped Ic (H), resulting in smaller RIS (Sun, Kuan,
Katine and Koch, 2004), as will be discussed later.

2.3 Size consideration: why is spin torque most
visible only in nanomagnets?

There are two known mechanisms that can cause interac-
tion between a magnetic moment and a transport current:
current-induced magnetic field (the Oersted field) and spin-
polarized current-induced spin torque. A current-induced
magnetic field for a wire of radius r would give a rela-
tion between the maximum field (usually around the surface
of the wire) and the current passing through the wire I .
From Maxwell’s equations, the relation is I = (c/2) rH (in
Gaussian units, c is the speed of light). A spin valve of
similar lateral size (2r) would have a spin-torque thresh-
old current of the order (following equation (4)) of Ic ≈
(H + Hk + 2πMs)

(
4r2t

)
Ms (α/η) (2e/�). The spin-torque

threshold is proportional to r2, and the Oersted field–related
current is (for a given threshold field, such as the anisotropy
field Hk) proportional to r . Thus, at large dimensions, the
threshold from the Oersted field is the lower threshold. The
crossover point is roughly (for high-moment thin films like

cobalt with H ∼ Hk � 2πMs)

rc ∼
(

c�

4e

)( η

α

)(
1

Mst

) (
Hk

2πMs

)
(5)

which gives for 30-Å-thick cobalt, an rc ∼ 0.04 µm, assum-
ing a spin-polarization factor of η ≈ 0.1, a damping coeffi-
cient α ≈ 0.01, and Hk ∼ 100 Oe. Thus, a practical crossover
dimension for a pillar-structured, cobalt-based spin valve is
of the order of 2rc ∼ 0.1 µm, below which the spin-torque
effect is more significant. For larger spin polarization or for
free-layer materials with different moment and anisotropy,
the crossover dimensions may be larger. For example, spin-
transfer-induced magnetic switching has been observed in
MTJs with sizes around 0.1 × 0.2 µm2 (Pakala et al., 2005;
Kubota et al., 2005a).

3 EARLY EXPERIMENTAL EVIDENCE
OF SPIN-CURRENT-INDUCED
MAGNETIC EXCITATION

Spin-torque-induced magnetic excitation has been experi-
mentally observed in many different systems. Earlier exper-
iments (Berger, 1978, 1984, 1988), for example, illustrate
the effect of a carrier electron’s spin-angular momentum on
abrupt magnetic domain walls. Slonczewski (1996) predicted
the presence of a spin torque from spin-polarized current in
a metallic magnetic multilayer geometry. Experiments show
current-induced magnetic excitation in point-contact junction
on giant-magnetoresistance (GMR) multilayers (Tsoi et al.,
1998, 2000; Myers et al., 1999), and magnetic switching in
highly spin-polarized manganite junctions (Sun, 1999). These
experiments reveal the sometimes dramatic effect of the spin
torque, leading to the quantitative, experimental observation
of the spin-transfer-induced magnetic reversal (Sun, 1999),
and the eventual unambiguous experimental demonstration
(Katine et al., 2000) of the reversal and magnetic excitation
effects in lithographically defined nanomagnet spin-valve
junctions.

Tsoi et al. (1998) showed that magnetic excitation can
be the result of bringing a point-contact tip made of
silver in contact with a multilayered Cu|Co|Cu|Co . . . thin
film. The current density under the point contact is high
enough to exceed the spin-torque excitation threshold. As a
consequence, an excitation and reversal of magnetic moment
results – most likely only for the first cobalt layer. This
manifests itself as a step in the point-contact junction’s
current–voltage (IV) characteristics. The threshold voltage
(or current, since the junction is basically a linear resistor
with only small nonlinear deviations) varies linearly with
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the magnetic field, which is applied perpendicular to the
film surface and is large enough to overcome the easy-plane
demagnetization field of cobalt (which is about 4πMs ≈
17.6 kOe). This linear dependence of threshold current on
applied field is consistent with equation (4), although in
this geometry the threshold refers to the generation of spin
waves irradiating away from the point contact, as analyzed
by Slonczewski (1999). The spin-wave radiation through
exchange-stiffness coupling contributes to a finite intercept
of the threshold current versus magnetic-field line, which was
also subsequently confirmed by experiments (Rippard, Pufall
and Silva, 2003).

Another possible interpretation of this data is the presence
of a voltage threshold for spin-wave (magnon) emission
at a certain energy, with the voltage threshold determined
by the Zeeman splitting, Vc ≈ (gµB/e) H . Why these two
apparently different interpretations may have some intrinsic
relationship remains an intriguing subject (Sun et al., 2005).

Another form of the point contact onto magnetic layers
was done by Myers et al. (1999). In this experiment, a special
substrate with a SiN membrane was used, with a nanometer-
size hole lithographically fabricated into the SiN membrane.
The magnetic multilayers were then deposited on one side of
the wafer, and the metal point contact (copper in this case)
was deposited in situ on the other side, forming a metallic
constriction contact through the SiN hole, and thus a point-
contact junction. There, they not only observed signatures
of magnetic excitation, but also observed current-induced,
hysteretic magnetic reversal.

Earlier, current-induced magnetic reversal was observed in
manganites-based all-oxide trilayer magnetic junctions. The
junction is 1 × 2 µm2 in size, although the actual current
path is likely to be much smaller, perhaps of the order of
several hundred angstroms. Later, more systematic measure-
ments of junctions with similar behavior were carried out,
as the junction switching behavior was found to be consis-
tent with a spin-transfer-induced magnetic reversal process
(Sun, 1999, 2000b). The phenomena in these manganite-
based junctions occur only in a small fraction of junc-
tions prepared. The phenomenon is likely to have originated
from interface-inhomogeneity-related current paths, and the
switching occurs only for those junctions where the inter-
face inhomogeneity is at the right place with the right size.
These particular junctions, while rare, did switch with a well-
defined threshold current (Sun, 1999), whose value showed
a systematic dependence on applied magnetic field, in ways
consistent with a simple spin-angular momentum transfer
model (Slonczewski, 1996; Sun, 1999).

Other experiments during this period explored the inter-
play between spin-polarized current and the magnetic-field-
driven reversal in nanomagnet electrodes. An example was
the work by Wegrowe et al. (1999), where an electroplated

Ni wire, 80 nm in diameter and about 500 nm in length was
used. The experiment demonstrated a shift in the threshold
magnetic field for a resistance-field hysteresis loop when a
107 A cm−2 pulsed current was present. The change of thresh-
old field was about 100 Oe at 0.15 mA of current pulse, larger
than any induced magnetic field the current could generate.
The authors argue that the spin-polarized current affects the
magnetic reversal threshold field.

The quantitative proof of a spin-transfer-induced magnetic
reversal was shown in all-metal current-perpendicular (CPP)
spin-valve nanomagnets in 1999 by Katine et al. (2000)
and Albert, Katine, Buhrman and Ralph (2000). Their
experiments used electron-beam lithography to define a
CPP spin-valve nanopillar, about 100 nm across in lateral
dimension. An example of one such junction device is given
in Figure 2.

A clear signature of magnetic reversal was seen,
driven by current with a threshold current density around
mid−107 A cm−2. The threshold current demonstrated the
characteristic linear dependence on applied magnetic field
with a slope consistent with spin-transfer model prediction
(Katine et al., 2000; Albert, Katine, Buhrman and Ralph,
2000).

4 MAGNETOTRANSPORT OF A
SPIN-VALVE-BASED SPIN-TRANSFER
JUNCTION

4.1 Quasistatic magnetoresistance properties

For a spin-valve-based magnetic junction, its MR response
to the combined effect of an applied magnetic field H and a
bias current I shows distinctively different response regions
that can be readily identified in the (I, H) parameter space.

Such MR measurement is usually taken in a quasistatic
setup (with measurement response time at 1 ms or slower).
A dc-bias current is applied to the junction. Often the
junction resistance is measured by an ac lock-in method by
superimposing a small ac current on top of the dc bias. This
method is particularly useful when the junction MR is only
a small percentage of the resistance. In a typical quasistatic
measurement in our lab, the bias current is stepped at a rate
around 0.1–1 mA min−1, while the magnetic-field sweep rate
(if swept) is of the order of 100–1000 Oe min−1.

Generally speaking, the resistance response is hysteretic
against both applied-field sweep and bias-current sweep.
The values of the switching threshold current I+ and I−,
corresponding to the resistance high-to-low and low-to-high
switching thresholds, are functions of the applied magnetic
field and the current history.
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Figure 2. Current-induced reversal of magnetization in a current-perpendicular spin valve. The first definitive proof of current-induced
magnetic switching was shown by Katine et al. (2000) in 1999 using a structure similar to the one shown in (a). The lateral size of the
junction range from the earlier 120 nm or so in diameter (Katine et al., 2000) to the later geometry of 70 × 120 nm2 (Albert, Katine,
Buhrman and Ralph, 2000), as shown in the scanning electron micrograph (SEM) in (b). The resistance versus magnetic field sweep is
shown in (c), and the resistance versus bias-current sweep is shown in (d). Resistance corresponds to dV/dI measured using a lock-in
detection method with an ac-bias current superimposed on the dc-bias current. (Reused with permission from F.J. Albert, J.A. Katine, R.A.
Buhrman and D.C. Ralph, Applied Physics Letters, 77, 3809 (2000). Copyright 2000, American Institute of Physics.)

Figure 3 describes the basic experimental observations of
the hysteretic current and field dependence of the junction
resistance. This phase diagram is a simplified version from
Kiselev et al. (2003). Note that this phase diagram is
obtained with quasistatic measurements, and hence it is
not a simple stability boundary but a thermal-activation-
determined transition-rate boundary. In principle, the exact
position of the lines as well as their shape depend on the
system temperature and the measurement speed, as discussed
later.

There are generally three types of behaviors observed from
these experimental switching boundary phase diagrams. The
first corresponds to the region that shows hysteretic switching
between parallel and antiparallel states, those represented
by the area P/AP in Figure 3(a). The second region shows
a large amount of telegraph noise, often involving two-
level fluctuations, signaling thermally activated transitions
between two metastable states (Myers et al., 2002; Urazhdin,
Birge, Pratt and Bass, 2003). These two states could be two
orbits of persistent precession, or they could be between
two stable points, or they could be between one stable
point and one orbit of persistent precession. A third type of
behavior is usually observed in the high-field, high current
density region, where continuous magnetic precession at
microwave frequency is present. This can be accompanied by

a reversible step in a junction’s IV curve. It appears in dV/dI

measurement as a peak, whose amplitude and width depend
on the step’s shape as well as measurement conditions.

A direct correspondence between these quasistatically
measured R (H) phase diagrams and microwave emission
characteristics was established experimentally (Kiselev et al.,
2003). Most features observed experimentally can be found
in monodomain LLG models (Sun, 2000a; Li and Zhang,
2003; Bazaliy and Jones, 2004; Grollier et al., 2003; Valet,
2004, private communications; Özyilmaz et al., 2003), as
direct comparisons were made in a magnetic field perpen-
dicular to the junction film surface geometry (Kiselev et al.,
2004). There are, however, some features observed in the
relatively high bias region that were not accounted for by
the simple monodomain LLG model (Kiselev et al., 2003).
More recent experiment has further probed the nature of these
dynamic excitations beyond the monodomain limit (Kise-
lev et al., 2004). Modeling of these behaviors, in general,
requires numerical treatment of the LLG equation. Com-
parison of such numerical simulation (e.g., see Lee et al.
(2004)) and experiment (Kiselev et al., 2003) gives satisfac-
tory agreement to the leading order.

In general, the regions outside the hysteretic P/AP
part involve steady-state or chaotic dynamic motion, often
in large amplitudes. As such, the exact behavior is
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Figure 3. A sketch of the phase diagram of a spin-transfer device.
(a) The phase diagram in (I, H) space. P designates ‘parallel’
state and AP, antiparallel. P/AP is the hysteresis region. The
curvatures of the phase boundaries shown here are a result of finite
temperature effect that is discussed later. (b) A horizontal cut of
the phase space, showing a current-induced resistance switch. (c) A
vertical cut of the phase space, showing a magnetic-field-induced
resistance switch. The difference between the precessional states
on the upper right region of (a) and the telegraph noise/precession
states on the lower left region of (a) is not fundamental. The
nanomagnet may exhibit either a persistent precessional state or
a telegraph noise state, depending on the relative strength between
the spin torque, the effective anisotropy field experienced by the
nanomagnet, which includes the effect of applied field, as well as
the effect of temperature in relation to these magnetic energy scales.

sensitive to factors beyond simple macrospin models. Fac-
tors such as the exact shape of the nanomagnet, the
uniformity (or lack of uniformity) of the spin current
passing through, and the magnetic boundary conditions
imposed on the nanomagnet all contribute to determin-
ing the nature of the dynamics. The internal magnetic
degrees of freedoms are also involved, giving rise to var-
ious modes of spin-wave excitations, further complicating
the behavior.

At very high current densities (above 108 A cm−2, e.g., for
typical Co|Cu structures with 30 Å or so Co), spin trans-
fer can even amplify the magnetic inhomogeneities in a
single-layer, thin- film nanomagnet, be it initially structural
and static in nature or thermal and dynamic. The process
involves spin diffusion current in the lateral direction par-
allel to the film surface, which couples magnetization of
the film surfaces from different locations and amplifies the
angular deviation from equilibrium. This has been theoreti-
cally described (Polianski and Brouwer, 2004; Stiles, Xiao
and Zangwill, 2004) and experimentally observed (Özyilmaz
et al., 2004).

4.2 Time-dependent magnetoresistance during
magnetic reversal

The response of a nanomagnet to spin torque is dynamic. This
can be investigated by time-resolved transport measurements.
Time-dependent measurement also directly answers the ques-
tion of spin-torque switching time and its dependence on
the conditions of the driving current, which is important for
applications.

Spin-transfer-induced magnetic reversal follows a different
type of dynamics than magnetic-field-driven reversal. For
spin-valve-based spin-transfer devices, direct measurement
of the switching speed of spin-transfer junctions is nontrivial
because of the small signal level involved. For CPP spin
valves, even at lateral sizes of 100 nm or below, the junction
resistance still is less than 10 	 or so, and the MR change
is even smaller – usually only about 3∼5% of the total
junction resistance. This results in an MR-related voltage
signal typically below 0.1 mV. Dynamic calculations (Sun,
2000a) give the generic timescale of the precession to be
around (2πMs) γ ∼ 50–100 ps for cobalt, and places the
precessional-reversal time in the order of 1∼10 ns.

Most switching dynamics measurements were performed
at ambient temperature. One earlier experiment probed the
switching speed as a function of driving current amplitude
(Koch, Katine and Sun, 2004). Owing to the small MR signal
level on top of the large primary signal from the current
step, an elaborate signal averaging sequence was devised to
extract the time-dependent evolution of the junction voltage
related to magnetic reversal. With proper averaging, the
output voltage difference can be normalized to reflect the
ensemble-averaged reversal probability, which is presented in
Figure 4(a). The corresponding switching speed as a function
of the drive current amplitude is shown in Figure 4(b) on a
linear scale, and on a log-linear scale in Figure 4(c).

Two points are noted for the data shown in Figure 4(b–c).
First, at the high-speed limit, the dependence of τ−1 on
bias current I is linear. Second, in the subthreshold, large-
τ regime, this linearity gives way to a curved onset which
turns out to be exponentially dependent on the bias current as
shown in Figure 4(c). The linear τ−1 versus I dependence
stems from spin-transfer angular momentum conservation,
and the curved onset relates to thermal activation. Both can
be adequately described by the spin-transfer dynamics with
thermal noise. In addition, the quasistatically measured Ic

on the same sample under the same environment is more
than a factor of 2 less than the threshold current observed in
Figure 4(b). The difference is due to the different timescales
of the two measurements.

This experiment only reveals the envelope of the switching
junction’s voltage response in time. The detailed oscillation
in the voltage related to magnetic precession is sensitive
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Figure 4. (a) Time-dependent switching probability. (b) Switching speed τ−1 extracted from (a). Horizontal dashed lines with labels indicate
the switching speed corresponding to a reversal time of 1 and 2 ns, respectively; (c) Switching speed plotted on log-linear scale. Open and
closed circle symbols represent the switching threshold on the positive and the negative current step of the junction. (Reproduced from
J. Sun et al., 2004, with permission from the International Society for Optical Engineering (SPIE).  2004.)

to the initial condition which is thermally randomized and
smeared out. A more recent experiment by Krivorotov et al.
reveals not only the envelope of the switching junction’s
dynamic voltage output but also the actual oscillation that
reflects the dynamic precession accompanying the reversal
(Krivorotov et al., 2005). This was done by using a junction
with a noncollinear magnetic moment arrangement between
the fixed and the free layers. At sufficiently large angles
(around 45◦), it introduces a distinctive initial condition for
the precession dynamics upon the presence of a step-function
driving current, thus preserving the phase information of
the oscillations upon multitrace average. This way, they
directly observed the effect of spin current on the damping
characteristics of the nanomagnet by relating the oscillation
envelope to the spin-current amplitude.

5 FINITE TEMPERATURE MACROSPIN
DYNAMICS

A simple macrospin finite temperature dynamic model for
spin-transfer-induced switching was first described in Sun,
Kuan, Katine and Koch (2004) and Koch, Katine and Sun
(2004), which capture the essentials with an analysis of a
collinear geometry between the macrospin’s direction and
that of the spin-polarized current. A more careful analysis
of the model on the basis of the Fokker–Plank equation
formalism can be found in Li and Zhang (2004a) and
Apalkov and Visscher (2005a).

5.1 Review of the zero-temperature model

Define a macrospin with its magnetic moment m having
a direction described by a unit direction vector nm =
nm (θ, ϕ) = sin θ sin ϕex + sin θ cos ϕey + cos θez, where θ

and ϕ are direction angles in a polar-coordinate system.
The moment m is situated in a combined energy potential
of U = U(θ, ϕ) that includes all energy conserving torques
experienced by m. The normalized gradient of U , expressed
in terms of Heff = (1/m)∇U(θ, ϕ) includes terms of the
applied magnetic field H, a uniaxial anisotropy whose
strength can be characterized by a uniaxial anisotropy field
Hk , and an easy-plane anisotropy field that could be used to
describe a macrospin in thin-film geometry, experiencing the
demagnetization effect from the flat thin-film geometry. Here
the operator ∇ = eθ (∂/∂θ) + eϕ (1/ sin θ) (∂/∂ϕ), with unit
vectors eθ and eϕ denoting the direction of rotation for θ and
ϕ, respectively. Note that except for the applied field H, Heff

here is in general not a simple magnetic-field vector but a
function of the angular position of m.

The precession dynamics of the macrospin m under the
potential well U in the classical limit can be described by
the phenomenological LLG equation(

1

γ

)
dm
dt

= m ×
[
Heff −

( α

m

)
m × Heff

]
(6)

As was shown for equation (3), adding the spin-torque term
of equation (2) gives(

1

γ

)
dm
dt

= m ×
[
Heff −

( α

m

)
m × (Heff + Hs)

]
(7)

where Hs = Iη (�/2e) (1/mα) ns is the spin-angular momen-
tum transfer term. For simplicity g = 1 is assumed while
using equation (2).

Examine the simple case when only an applied magnetic
field H is present in Heff, and H and Hs are collinear. In this
simple limit(

1

γ

)
dm
dt

= m ×
[

H −
(

α̃

m

)
m × H

]
(8)
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with α̃ = α + �ηI/ (2emH) = α (1 + I/Ic), where Ic =
(2e/�) (α/η) (abtMs) Ha, a special case of the threshold cur-
rent as defined in equation (4). This reveals the role of
spin-polarized current I : it modifies the effective damping
coefficient of the nanomagnet. When the effective damping α

becomes negative, the nanomagnet will amplify disturbances
away from its equilibrium position, resulting in a magnetic
instability, leading to a magnetic reversal.

For more general situations, since Heff contains the angular
position (θ, ϕ) of m, a full stability analysis of equation (7)
is required. This, in the small cone-angle limit (θ � π),
can be done analytically with a linearized equation (7),
as was done in Sun (2000a) When averaged over a
timescale longer than the natural precession period 	K =
γHk , it gives an effective damping coefficient of α̃ = α +
�ηI/ [2em (H + Hk + 2πMs)] that describes the average
cone-angle evolution 〈θ (t)〉. Here, the uniaxial anisotropy
field Hk and the orthogonal easy-plane anisotropy term
are included. A thin-film demagnetization-related easy-plane
anisotropy energy is assumed, therefore Ms = m/v, where
v = abt is the volume of the nanomagnet. The resulting
instability threshold when α̃ = 0 is just equation (4) |Ic| =
(1/η) (2e/�) mα (H + Hk + 2πMs). This threshold current
Ic (H) depends linearly on the applied field H . It should
have an intercept-to-slope ratio of Hk + 2πMs. Experimen-
tal results (Sun et al., 2003), however, suggest that the actual
slope-to-intercept ratio falls well below, and finite tempera-
ture effect plays an important role.

The effect of finite temperature on the macrospin system’s
response to a spin-transfer excitation is twofold. First, it
affects the average precession motion of the macrospin by
adding thermal agitation, resulting in finite probabilities
for thermal activation over the magnetic energy barrier.
Secondly, it adds a thermally distributed initial condition to
the macrospin.

5.2 Finite temperature LLG equation

Following the approach of Brown (1963) and Grinstein and
Koch (2003), a Langevin random field HL can be added to the
effective magnetic-field term Heff. HL relates to the system
temperature T as HL,i = √

2αkBT /γmIran,i (t), (i = x, y, z);
where Iran (t) is a Gaussian random function with the first
two moments of 〈Iran (t)〉 = 0 and

〈
I 2

ran (t)
〉 = 1. Each of the

x, y, z components has its own uncorrelated Iran (t). Without
the spin-transfer effect, the finite temperature LLG equation
with a Langevin random field reads

(
1

γ

)
dm
dt

= m ×
[
Heff + HL −

( α

m

)
m × Heff

]
(9)

which describes the dynamics of a macrospin m sitting in a
potential well U(θ, ϕ), with a thermally activated motion and
a finite lifetime of staying inside the potential well, namely,
a thermal lifetime τ approximately following the Boltzmann
statistics of

τ = τ 0 exp

(
�U

kBT

)
(10)

where �U is the potential barrier height as seen from the
local minimum in which m fluctuates, and τ 0 ∼ 1/γHk is
the reciprocal attempt frequency. Equation (9) should work
well when �U/kBT  1. The thermal-activation lifetime
equation (10) is determined once a system is defined by
equation (9) and an energy landscape U(θ, ϕ), represented
in equation (9) by Heff (θ, ϕ) = (1/m)∇U (θ, ϕ).

5.3 Finite temperature LLG equation with spin
torque: amplified thermal activation

Spin-transfer excitation adds an additional torque. Similar
to equation (7), after including the spin-transfer torque and
assuming the spin-polarized current carries no entropy flow
into the macrospin, equation (9) reads(

1

γ

)
dm
dt

= m ×
[
Heff + HL −

( α

m

)
m × (Heff + Hs)

]
(11)

with Hs representing the spin-transfer torque related contri-
bution, as defined in equation (7).

It is instructive to look at a special case when Hs and H
are both collinear to the easy axis of the uniaxial anisotropy
term Hk inside Heff, and the easy-plane anisotropy is zero.
In this case and for small cone angle θ � 1, the effect of
Hs is simply to modify Heff → H̃eff = (Hk + H + Hs) ns =
(Hk + H)

(
1 + Hs

Hk+H

)
ns =

(
1 + Hs

Hk+H

)
Heff. Thus, one

can rewrite equation (11) in the form of equation (9)(
1

γ

)
dm
dt

= m ×
[

Heff + HL −
(

α̃

m

)
m × Heff

]
(12)

where α̃ = [
1 + Hs/ (Hk + H)

]
α = (1 + I/Ic) α, with Ic =

(2e/�) (α/η) (abtMs) (H + Hk), another special case of
equation (4).

Equation (12) is a mathematically equivalent descrip-
tion of a macrospin system as equation (9) with the
same amplitude of HL. This then suggests that HL,i =√

2αkBT /γmIran,i (t) remains valid for this hypothetical
macrospin’s LLG equation (12). However, in equation (12),
the damping coefficient α is replaced by α̃. To maintain HL,i ,
it means the macrospin would see a fictitious temperature T̃ ,
such that α̃T̃ = αT .
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Since equation (12) is equivalent to a macrospin situated
at temperature T̃ with damping α̃, one may further deduce
that the thermal-activation lifetime of the system can also be
expressed in the form of equation (10), with its temperature
rescaled to T̃ , that is,

τ = τ 0 exp

(
�U

kBT̃

)
= τ 0 exp

[
�U

kBT

(
α̃

α

)]

= τ 0 exp

[
�U

kBT

(
1 − I

Ic

)]
(13)

This conclusion of a linearly current-dependent apparent
temperature can be directly compared with experiment done
in subthreshold driving current (|I | < Ic).

More rigorous theoretical treatments that give
equation (13) can be found in Li and Zhang (2004a) and
Visscher and Apalkov (2005). The energy distribution of
a macrospin under spin-current excitation is calculated by
Apalkov and Visscher (2005b).

Equation (13) is the basic function that determines the
shape of the quasistatically measured magnetic switching
phase boundary as illustrated in Figure 3. The increase in
switching rate as H → Hk and/or as I → Ic gives rise to
the increased slope, making the experimentally observed
intercept-to-slope ratio well below what is expected from
zero temperature Ic (H) (Sun et al., 2003; Sun, Kuan, Katine
and Koch, 2004), as illustrated in Figure 5. The overall
shape of this quasistatic switching boundary is consistent
with what is observed experimentally (Kiselev et al., 2003),
which is illustrated in Fig.3. The boundary here corresponds
to observing a switching event during a period of τ . The
expression can be readily derived from equation (13) to be

I (H) = Ic (H)

[
1 − 1

(1 − H/Hk)
2

(
kBT

�U

)
ln

(
τ

τ 0

)]
(14)

In addition to measuring the averaged switching speed
versus switching current as shown in Figure 4, a direct
measurement of the apparent threshold current can also be
done using a pulsed current bias. These experiments (Pakala
et al., 2005; Yagami, Tulapurkar, Fukushima and Suzuki,
2004, 2005) verify the description of equation (14) and also
provide a quick estimate of the zero-temperature threshold
current without requiring full dynamic measurements down
to the nanosecond level.

5.4 Thermally distributed initial condition

In the simple collinear geometry, the initial condition
of the macrospin system under spin-transfer excitation
is most important when the spin-transfer excitation is

Ic

HHk

Zero temperature Ic(H ), intercepting at 2pMs

Finite temperature Ic(H ),
intercepts below 2pMs

Current-induced heating will
also distort the shape of the
apparent Ic (H ).

0

Figure 5. The effect of finite temperature and quasistatic measure-
ment. The quasistatic measurement over a laboratory timescale τ

allows an appreciable amount of probability for the nanomagnet to
thermally switch out of its lowest potential well, completing a mag-
netic reversal. The closer to Hk and/or Ic, the more pronounced this
thermal activation becomes, causing the observed switching bound-
ary to curve below that of the zero temperature Ic (H), and giving
an artificially low intercept on the field axis. The Joule heating of
the device is often more significant for MTJs than for spin valves.
In such cases, the apparent switching boundary may become further
distorted, as illustrated here by the thick dotted line.

large – such as when it is near or exceeding the zero-
temperature threshold current Ic. In this case, when the
spin-transfer current is applied suddenly at time t0, it will
result in a fairly quick magnetic reversal. The switching
time required at zero temperature is estimated to be (Sun,
2000a)

τ−1 = αγ

m ln (π/2θ0)
(H + Hk + 2πMs)

[
(I/Ic) − 1

]
= η (µB/e)

m ln (π/2θ0)
(I − Ic) , (I > Ic) (15)

with θ0 being the initial deviation of m from its easy-
axis direction. The last step in equation (15) reveals angular
momentum conservation. A finite temperature brings a ther-
mally distributed θ0. Thus the precise switching speed will
vary from measurement to measurement. At the same time,
the thermal agitation during the course of reversal will add
some uncertainty to the exact speed and trajectory of the
reversal. This disturbance is likely to be small compared to
the large cone-angle motion involved in these reversal events
as long as �U/kBT 1.

To see the consequence of a thermally distributed
initial θ0, examine a special case with U(θ, ϕ) =
�U

(
sin2 θ+hp sin2 θ cos2 ϕ−2h cos θ

)
, where �U=mHk/2

is the uniaxial anisotropy energy constant, hp = 4πMs/Hk

is the easy-plane anisotropy field in dimensionless unit,
and h = H/Hk is the applied field, assuming a collinear
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geometry between H and Hk . Assume further a small
thermal fluctuation amplitude when �U/kBT  1. In such
limit, the main effect of finite temperature on delay τ is
through the initial angular position of θ , which in the limit
of �U/kBT  hp  1 gives a switching speed based on
the ensemble-averaged switching time as (Sun, Kuan, Katine
and Koch, 2004)

〈τ 〉−1 ≈ ηµB

me

[
ln

(
4π2hp

)
π ln (�U/kBT )

√
1 + h

hp

]
(I − Ic) (16)

In this particular limit, the ensemble-averaged switching
speed has a current-dependence slope that is directly dictated
by the thermal-activation-induced initial angle. This is true
only if there are no transient disturbance fields during the
application of the current pulse. Such transient fields would
create a sudden rotation of the effective easy-axis direction,
and in effect create a nonzero and nonthermal initial angle
θ0, dictating the speed of the spin-transfer switch.

Summarizing the temperature-dependence results dis-
cussed so far, we conclude

〈τ 〉−1 ≈




τ−1
0 exp

[
− �U

kBT
(1 − h)2

(
1 − I

Ic

)]
,

when (I � Ic)(ηµB

me

)[
ln

(
4π2hp

)
π ln (�U/kBT )

√
1 + h

hp

]
(I − Ic) ,

when (I  Ic)

(17)
Equation (17) describes the experimental observation pre-

sented in Figure 4: a linear dependence of switching speed
and drive current amplitude above a switching threshold cur-
rent Ic, and a log-linear dependence below the threshold.

The dependence of thermal-activation dwell time as a
function of bias current on the spin valve was also directly
probed by a set of careful experiments by Krivorotov et al.
(2004), which confirmed the linear current-dependence factor
in the exponential.

In the dynamic switch region (I > Ic), the slope of switch-
ing speed versus drive current reflects angular momentum
conservation. The product (I − Ic) 〈τ 〉 is also an important
figure of merit for the possible application of this two-
terminal switch as a memory element.

Recently two other experiments have revealed a similar
set of relationships between the pulse-width and pulse-
height dependences for a spin-current-driven magnetic switch
(Tulapurkar et al., 2005; Kaka et al., 2005). A generally
similar behavior is reported, although these experiments
measure the magnetic switching probability in the long-time
limit, including switching events that may occur after the
removal of the pulsed driving current. Therefore, the statistics

for the switching probability of the nanomagnet should be
somewhat different from equation (17).

6 SPIN-TRANSFER SWITCHING IN
MAGNETIC TUNNEL JUNCTIONS

Another class of magnetoresistive two-terminal devices is
the so-called magnetic tunnel junction. Publications on MTJ
research date back to the 1970s (Julliere et al., 1975;
Suezawa and Gondo, 1987; Maekawa and Gäfvert, 1982).
Theoretical work published as early as 1989 described
the MTJ’s MR and also predicted a spin-current-induced
magnetic excitation (Slonczewski, 1989). In the 1990s,
on the experimental front, sizable room-temperature MR
was observed in a relatively simple ferromagnet–oxide–
ferromagnet stack structure (Moodera, Kinder, Wong and
Meservey, 1995; Miyazaki and Tezuka, 1995). Since then,
AlOx-barrier-based MTJs have been successfully optimized
for both low RA recording head and higher impedance
devices for magnetic random access memory (MRAM) appli-
cations. More recently, explorations of MgO as a crystalline
tunnel barrier material led further to dramatic improve-
ments in MTJ’s performance, both in terms of the mag-
nitude of MR (Parkin et al., 2004; Yuasa et al., 2004;
Djayaprawira et al., 2005) and in terms of a successful
reduction of the junction-specific resistance–area product
(the RA).

For an MTJ to show spin-transfer-induced switching
effect, it has to meet some fairly stringent requirements.
For most experimental situations, the junction is required to
support a tunnel current of the order of 107 A cm−2 across the
tunnel barrier. This can be done only with junctions having
high tunnel conductance as well as reasonable tunnel barrier
breakdown voltage. At the same time, the junction has to
be lithographically patterned down to around 200 nm in size
to avoid having excess amount of total current, as discussed
earlier. It turns out that these requirements are similar to those
of recording-head applications of MTJ, where such properties
are desirable for handling signal-to-noise ratio concerns and
for compatibility with existing read-out electronics. To a
large extent, it is the technology development surrounding
the recording-head application that brought us to the age of
spin-transfer switching in MTJs.

Spin-transfer-induced magnetic switching in MTJs was
first unambiguously observed by Huai et al. (2004). Inde-
pendently, Fuchs et al. (2004) also published their work on
spin-transfer switching of MTJs. These experiments used
AlOx-based tunnel barriers. The junctions used in Huai
et al. (2004) had MRs ranging 1–20%, for RAs in the
range of 0.5–10 	µm2. The junction stack was of the type
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‖ substrate SiO2 |PtMn|CoFe|Ru|CoFe| Al2O3 |CoFe|NiFe‖.
The junctions were patterned using deep UV photolithog-
raphy with resist trimming, followed by Ar ion-mill etch,
to about 0.1 × 0.2 µm2 in size. Junctions in Fuchs et al.
(2004) were patterned, using electron-beam lithography and
ion milling, down to a size of 40 × 130 nm2. For Fuchs et al.
(2004), because their free layer is predominantly permalloy
(Ni81Fe19), the junctions were superparamagnetic at ambient
temperature. They varied junction temperature to investi-
gate the effect of spin-transfer torque on magnetic switch-
ing as the free layer moves across its superparamagnetic
transition.

Recently a new tunnel barrier, MgO, was being explored
as a superior barrier for MTJs, because it provides much
larger tunnel magnetoresistance (TMR) than that achieved
with AlOx-based MTJs. Crystalline MgO was predicted to
allow for extremely high TMR values if interfaced with
(001)-textured Fe surfaces (Butler et al., 2001; Mathon and
Umerski, 2001). This is related to the directional electronic
states that are highly spin polarized in the direction per-
pendicular to the interface of a (001)Fe|(100)MgO|(001)Fe
stack. Such large TMR effects have now been experimentally
observed (Yuasa et al., 2004; Parkin et al., 2004) as materi-
als and device refinements are underway to further improve
the junction characteristics (Ikeda et al., 2005).

An example of spin-transfer-induced magnetic switching
in an MgO-based MTJ is shown in Figure 6. The free
layer for the junction shown here is composed of 2 nm of
CoFeB (Assefa et al., 2006). A current-induced switching
is seen between these two branches both at positive and
at negative currents. Here positive current designates the
direction where electrons tunnel from the free layer into
the fixed layer. It is clear the magnetic-field-induced switch
and the current-induced switch in this case resulted in
exactly the same change in low-bias junction resistance. One
may therefore conclude that the current-induced magnetic
switching is a complete magnetic reversal, resulting in the
same final magnetic state as the one achieved by magnetic-
field-induced reversal. The junction shown here is nominally
50 × 100 nm2 in size. The junction dynamic resistance RJ

was measured with a lock-in detection of an ac sine-wave
signal, 10 µA in rms amplitude at 331 Hz, superimposed
on the dc-bias current. When measuring RJ (H), the field
sweep speed was about 2 Oe s−1. When measuring RJ (I ),
the bias current varies with a speed of around 0.01 mA s−1.
The switching boundaries thus measured are determined by
assisted thermal activation, as described by the first equation
in equation (17).

Spin-transfer-induced magnetic switching in MTJs is in
many aspects very similar to that in all-metal spin valves.
A relationship similar to that in equation (4) exists, which
describes the instability current threshold (Slonczewski,
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Figure 6. An example of an MTJ undergoing spin-transfer-induced
magnetic switching. The solid and dash-dot lines represent the two
branches of the MTJ’s dynamic resistance RJ = dV/dI , measured
as a function of a dc-bias current. To illustrate the relationship
between the current-induced switching and magnetic switching, a
low-bias magnetoresistance versus magnetic-field curve is shown
as the faint solid line for comparison. The vertical dashed line here
represents the bias magnetic field at which the current sweep for
junction dynamic resistance is taken. (Data is related to work in
Assefa et al. (2006).) The junction shown here is 0.05 × 0.10 µm2

in size. (Reproduced from J.Z. Sun et al., 2006, Journal of Res. And
Dev, with permission from IBM.  2006.)

2005). In a stack containing an MTJ, the spin polarization
of the tunnel current is usually determined by the spin-
dependent tunnel matrices. Since a tunnel barrier usually
has much higher RA than the corresponding spin-valve
resistance, it tends to determine the transport current and
the amount of spin polarization, while the resistances from
the rest of the stack structure and that from the leads do not
affect the spin-polarization current through the free layer as
much as they did in an all-metal spin valve. However this
difference is only quantitative. With very low RA tunnel
junctions, the spin-dependent conductances from the rest of
the pillar do come into play, in ways similar to that of an
all-metal spin valve.

Another important issue is the bias dependence of the tun-
nel current’s spin polarization, and its relationship with the
bias dependence of the junction TMR. The bias-dependent
TMR is relevant to spin transfer because both phenom-
ena relate to the spin-dependent tunnel matrices. The spin
current relating to the spin transfer of an MTJ is deter-
mined by the initial states of the tunneling electrons involved
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(Slonczewski, 2005). This relates to the efficiency of
conversion between the total charge current and the spin cur-
rent responsible for spin torque on the free layer. The TMR
of an MTJ, on the other hand, depends on both the initial and
the final state densities of the tunnel electrons. It is commonly
observed experimentally that an MTJ’s TMR decreases upon
increasing the bias (Lu et al., 1998; Sun et al., 1998; Zhang,
Levy, Marley and Parkin, 1997).

Experimentally, it was shown early on that at bias currents
sufficient to induce spin-transfer switching, the TMR value
is significantly diminished from its low-bias value. This,
however, does not appear to significantly diminish the ability
of the MTJ to produce spin-transfer switching (Fuchs et al.,
2004). More recently, the same group reported (Fuchs et al.,
2005a) the observation of a rather constant spin-polarization
factor of the tunnel current over the bias range enclosing
spin-transfer switching, unlike the TMR value of the same
MTJ which shows significant bias dependence over the
same bias range. These seem to suggest that empirically,
the spin-transfer-related spin-polarization efficiency of an
MTJ is much less bias dependent than its TMR and is not
significantly diminished at high bias.

It has also been experimentally shown that a correlation
exists between the value of the low-bias TMR and the
threshold current for a spin-transfer switching (Diao et al.,
2005).

As in their spin-valve cousins, MTJ-based spin-transfer
switching was also most often observed in quasistatic mea-
surements. This is not surprising as quasistatic switching
threshold currents are usually lower than dynamic thresh-
olds, and MTJ devices have less tolerance for high current
density bias than spin valves. Experimentally, it has been
observed that a thermally activated switching process nearly
identical to those described in the previous section (Koch,
Katine and Sun, 2004; Sun, Kuan, Katine and Koch, 2004;
Yagami, Tulapurkar, Fukushima and Suzuki, 2004) is at play.
This can be quantitatively verified by careful measurements
of the statistically averaged switching threshold current as a
function of the current pulse width used to switch the junc-
tion (Pakala et al., 2005; Kubota et al., 2005b; Hosomi et al.,
2005).

To access deterministic switching requires larger current
density than necessary for thermal-activation-assisted switch-
ing. MTJs tend to have lower breakdown current density than
spin valves. Therefore, spin-transfer switching experiments
on MTJs were first done in the thermal-activation-assisted
region. Further improvement in MTJ materials will make
it easier access the precessional switching process. These
would require improvements of the tunnel barrier strength for
providing larger breakdown current densities. More impor-
tantly, this will require magnetic anisotropy engineering for
the magnetic free layer so as to eliminate the dominating

effect of shape-induced easy-plane anisotropy in threshold
current (Sun, 2000a). The same requirements will be neces-
sary for successful demonstration and application of MTJ in
producing persistent magnetic precessions necessary for the
generation of microwave emissions.

In the meantime, a convenient way of estimating the
equivalent zero-temperature switching current threshold is
to use an extrapolated value of the threshold current as
a function of the switching time in the thermal-activation
regime (Pakala et al., 2005; Diao et al., 2005) This is
equivalent to using the deviation from log-linear behavior in
Figure 4(c) as a way of estimating Ic0. The accuracy of this
estimate, however, will depend on the details of the switching
layer’s magnetic properties, especially its uniaxial anisotropy
barrier height compared to kBT . In simplistic single-domain
models, it is the value of �U/kBT .

Another important factor to be considered for MTJ-based
(and to a lesser degree, for spin-valve-based) spin-transfer
switching is Joule heating induced by the current. Esti-
mates for the amount of current-induced Joule heating in
a typical metallic spin valve run from less than 20 K (Kriv-
orotov et al., 2004) to about 50 K (Deac et al., 2005). A
tunnel junction on the other hand, because of its larger
RA value, dissipates more power, resulting in more heat-
ing (Fuchs et al., 2005b). This effect could introduce an
additional term in the current dependence of equation (13)
through a current-dependent temperature T . It modifies the
appearance of the phase boundaries and equation (14). The
net effect of this heating is to tilt the apparent switching
boundary I (H) for large I , as illustrated in Figure 5, as also
seen in experiments (Krivorotov et al., 2004; Fuchs et al.,
2005a,b).

7 POSSIBLE APPLICATIONS

Spin-transfer-induced magnetic excitation and magnetic rev-
ersal is a relatively new phenomenon that dominates mag-
netic behavior for junction devices only in high current
density transport and below about 0.1 µm in lateral size.
As the critical dimensions of the modern day electronic
devices shrink below this length scale, the spin-transfer
mechanism becomes important in several aspects. It may
be used for localized write addressing of a magnetic ran-
dom memory element or it could be used for on-chip gen-
eration of tunable microwave radiation. The mechanism
also affects the operation of a magnetic hard-disk’s read
heads.

A two-terminal spin valve or MTJ that can be current
switched between two stable resistance states constitutes
a memory element. To integrate such a memory element
into existing CMOS circuit technologies, some basic device
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requirements must be met. Chief among them are three items:
the device impedance, the voltage swing between the two
stable states, and the threshold current required to switch the
device. Switching speed and its relationship and trade-off
with switching current are also important.

To be integrable, the current density required for device
switching must be comparable to what a typical CMOS
circuit of comparable density can supply. If this were sup-
plied by a MOSFET transistor, it usually is of the order
of 0.5–1 mA µm−1 channel width for the transistors. This
determines the upper limit of the switching current. Diode
selection could in principle allow for higher current den-
sity, although there are additional concerns over impedance
(mis)match and uniformity of device characteristics over
large numbers of junctions and diodes.

The other constraint on the junction switching current
is that it has to be sufficient to switch a nanomagnet that
has the thermal stability to retain its remanent state at
room temperature. For this, one needs a magnetic anisotropy
energy Uk = (1/2)mHk of the order 40–60 kBT . It turns
out that the high-speed switching threshold current Ic in
equations (17) and (4) can be directly related to this uniaxial
anisotropy energy in the form (Sun, 1999, 2000a), Ic ≈
(2e/�) (α/η) Uk. This, depending on the damping α and
spin-polarization factor η, places Ic ≈ 10–100 µA for Uk ∼
60 kBT .

Present-day spin-transfer switching junction devices typ-
ically involve a quasistatic switching current of the order
of 0.1–1 mA for a device cross- sectional size of around
50–100 nm. This places the quasistatic switching thresh-
old current density in the order 106 A cm−2. To be useful
for CMOS integration, at least another order-of-magnitude
reduction is necessary. The high-speed switching threshold,
as shown earlier, can be significantly higher (by perhaps a
factor of 2–5 depending on device structure details).

Existing low-impedance (1–10 	 µm−2) MTJs can support
a transport current of the order 107 A cm−2 before barrier-
related breakdown. Such current density is sufficient to
demonstrate spin-transfer effect. In 2005, SONY Corporation
presented the first successful implementation of a CMOS-
integrated MTJ switch using spin-transfer as the switching
mechanism (Hosomi et al., 2005). In this device, switchings
of up to 1012 cycles were demonstrated at a write-pulse width
of around 20 ns, although write-success probability still needs
improvement.

A large part of the threshold current of a present-day
spin-transfer device comes from the easy-plane demagne-
tization field because of the thin film geometry. This type
of anisotropy does not contribute to thermal stability, yet
since the spin-transfer excitation involves significant out-of-
film-plane precession, this easy-plane anisotropy significantly
increases the spin-transfer switching current. One possibility

of reducing the switching current of the spin-transfer devices,
therefore, is to reduce or eliminate this easy-plane anisotropy
from the system (Sun, 2000a). This can be seen by generaliz-
ing equation (4) to include an additional uniaxial anisotropy
term in the form of

Ic =
(

2e

�

) (
α

η

)
m

(
H + Hk+ | 2πMs − Hp |) (18)

where | 2πMs − Hp | is the combined anisotropy field cor-
responding to an anisotropy energy expression of equation
(1) in Sun (2000a), with the perpendicular anisotropy energy
prefactor Kp = (1/2) m

(
4πMs − Hp

)
. When Kp > 0, an

easy-plane anisotropy results. For Kp < 0, this anisotropy
term becomes uniaxial with its axis perpendicular to the
film surface (and therefore perpendicular to the usually
shape-defined in-plane uniaxial anisotropy noted here as Hk).
A sizable, perpendicular anisotropy component Hp can be
achieved by the careful engineering of the free-layer’s inter-
face magnetism, or by controlling its stress field (for materi-
als with large magnetostriction coefficient), or a combination
of both. These propositions are theoretically feasible but are
likely to raise significant material and fabrication challenges
before they can be successfully implemented in a manufac-
turable fashion.

The threshold current as expressed in relations such as
equations (4) and (18) provides only an order-of-magnitude
estimate for the switching current necessary for memory cir-
cuit operation. To achieve sufficiently fast and deterministic
switching, the drive current has to be above the threshold,
sometimes by a significant amount. The switching speed ver-
sus switching time trade-off is well captured by the curves
presented in Figure 4. This trade-off is described by the lin-
ear current-dependence in second equation in equation (17).
For the 50 × 100 × 3 nm3 cobalt nanomagnet presented in
Figure 4, the figure of merit for (I − Ic) 〈τ 〉 is about 8 pC.

For finite temperature operation as a memory element, the
collinear switching is unlikely to be the best geometry, as
the initial condition of the switch will depend sensitively on
thermal distribution. A noncollinear arrangement between the
‘free’-layer nanomagnet’s orientation and that of the spin-
polarized current may be desirable. At the same time, it
may be helpful to add, through layout design, a current-
induced magnetic field as a transient ‘tipping’ field to
create a nonequilibrium initial state when switching the
nanomagnet.

In addition to possible applications as a bistable resistor
for memory circuits, spin-transfer devices have also been
explored for potential use as compact, on-chip microwave
oscillators (Rippard et al., 2004). Experiment has demon-
strated tunable microwave output from spin-transfer-based
magnetic junction structures whose frequencies range from
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1 to 20 GHz and whose full-width-half-maximum power
linewidth is at least 1000 times below its center frequency.
Phase locking between magnetic precession–induced micro-
wave oscillation and additional input tune has also been
demonstrated (Rippard et al., 2005). Future work in this
area is likely to be aimed at reducing the current density
required for microwave generation, at increasing the device
impedance, and more importantly its output signal amplitude,
as well as at the reduction of required external bias magnetic
field.

Spin transfer also affects the performance of magnetic
read heads in modern hard drives (Covington, Rebei, Parker
and Seigler, 2004; Covington et al., 2005; Zhu et al., 2004).
There it can act as a negative influence, at times amplifying
thermal and other magnetic noises of the read head, causing
stability problems and raising concerns over the signal-to-
noise ratio and dynamic characteristics.

Spin-transfer-related magnetic excitation has also been
observed to move magnetic domain walls in narrow ferro-
magnetic wires (Yamaguchi et al., 2004; Kläui et al., 2005;
Saitoh, Miyajima, Yamaoka and Tatara, 2004; Yamanouchi,
Chiba, Matsukura and Ohno, 2004; Vernier et al., 2004;
Grollier et al., 2003). In fact, the interaction between spin-
polarized current and a ferromagnetic domain wall has been
one of the first areas where a spin-angular momentum trans-
fer process was considered (Berger, 1978, 1984). Recent
experiments demonstrated unambiguous presence of a spin-
torque term in the cause of domain wall motion under
applied current. This mechanism (Li and Zhang, 2004b;
Tatara and Kohno, 2004; Thiaville, Nakatani, Miltat and
Suzuki, 2005; Waintal and Viret, 2004; Zhang and Li,
2004), if harnessed with sufficiently low current density,
could have significant implications for memory devices as
well.

In short, for applications in integrated circuits, the spin-
transfer device has to have lower threshold current den-
sity – by at least another order of magnitude than what
is demonstrated in all-metal spin valves, and it has to
have much larger voltage output than the demonstrated
values of several hundred microvolts in spin valves. The
recently demonstrated spin-current switchable MTJ devices
may prove effective as spin switches that are impedance-
matched to CMOS transistors. The switching current den-
sity, even in MTJs, remains too high. Various strategies
are being proposed for the improvement of spin-transfer
devices.

One proposal for reducing the current required to switch
a nanomagnet was presented by Berger (2003). For a
free nanomagnet sandwiched in between two oppositely
fixed magnetic polarizer layers, Berger predicted a sizable
enhancement of the spin-transfer effect and an approximately
sixfold net reduction of the threshold current.

Several recent experiments (Jiang et al., 2004) seem
to confirm the existence of this enhancement, although
quantitative comparison with model results is yet to be made.

Some recent work has further explored this three-
magnetic-layer structure in combination with an MTJ, in
which one side of the ferromagnetic (FM) free layer in the
middle is interfaced with the FM fixed layer through a tunnel
barrier (Fuchs et al., 2005b). In this case, the magnetic align-
ment between the fixed and the free layer on the spin-valve
side is seen to affect the spin-transfer threshold current for the
free-layer reversal, either to reduce the threshold when the
two fixed layers are antiparallel or to increase the threshold
when they are parallel. Furthermore, the authors have used
this extra degree of freedom in the structure to investigate
the effect of junction stack heating, using the apparent mag-
netic switching field of the free layer as a measure for the
free-layer temperature through the thermal-activation model.

8 CONCLUDING REMARKS

In this chapter, we have described how spin-transfer-induced
magnetic excitation has been demonstrated both in all-metal
spin-valve magnetic nanojunctions and in MTJs. The spin-
torque effect can generate persistent magnetic precession
as well as complete reversal of a nanomagnet moment’s
orientation, depending on the details of the bias current and
field environment. The main effect of spin torque is to oppose
or assist the effective magnetic damping of the nanomagnet,
absorbing part of the spin current depending on the relative
direction of the nanomagnet moment with respect to the spin-
polarization direction and the current flow direction of the
spin current. The spin-torque-related effects become most
visible when the magnetic junction is small – approximately
below 200 nm in lateral dimensions and a film thickness of
less than 5 nm in the case of cobalt, for example, macrospin
dynamics capture the main experimental features well. It
is a good starting point to the quantitative understanding
of these new magnetodynamics. For more quantitative and
detailed understanding, finite wavelength magnetic excitation
has to be carefully taken into account. This in most cases
can only be done numerically. Finite temperature problems
of micromagnetics with the presence of a spin torque remains
a challenge.

Spin torque has important implications for solid-state
device applications. For MRAM, it can be used to locally
write address a nanomagnet bit by passing an electrical (or
spin) current through the particular nanomagnet. This write
operation will not disturb the neighboring nanomagnet bit, as
it is easier to localize the write current path than is if the write
operation were done through current-induced magnetic field.
It may also be possible to use spin-transfer junction in its
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persistent precession mode, acting as an extremely compact
tunable microwave generator. Spin transfer and spin torque
also affect the performance of the read heads in magnetic disk
drives. In this case, the challenge is to avoid the amplification
of thermal (and other) noises present in the read head by the
spin-transfer excitation.

The current density required for spin-torque effect to result
in magnetic reversal and persistent precession is still a bit
too high for ready integration with CMOS technology. The
threshold current density is, for the moment, limited mostly
by the thin-film shape-determined easy-plane anisotropy
4πMs. Reduction or elimination of this energy could reduce
the threshold current, although the materials and processing
challenges associated with this proposition is significant.

The signal voltage output from spin-valve-based spin-
transfer junctions is too low. These are all-metal-based
junctions with very low impedances which made their
integration with CMOS difficult. MTJs, with their much
wider range of impedances, seem to have a much better future
as spin-transfer switching (or oscillation) devices for circuit
integration. This will become feasible once the spin-transfer
excitation current density is reduced to a level compatible
with MTJs with the desired impedance.

There are relatively stringent requirements on the switch-
ing current for reversing a nanomagnet if the nanomagnet
is to avoid entering its superparamagnetic state. For room-
temperature data retention of the nanomagnet state, the cor-
responding switching threshold current has been estimated
to be of the order of 10–100 µA depending on the choice of
material parameters.
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1 INTRODUCTION

Spin transfer is a newly discovered interaction between itiner-
ant electrons and the background magnetization of a ferromag-
net, first predicted by Slonczewski (1996) and Berger (1996).
This interaction is remarkable in many respects, some of which
have been discussed in previous chapters in this volume. From
a fundamental perspective, it acts contrary to conventions in
condensed matter physics. The large number of conduction
electrons in a metal (n � 1022 electrons/cm3) typically deter-
mines the characteristics of electrons or quasiparticles at the
Fermi surface, which in turn determine the material’s thermo-
dynamic and transport characteristics. The ratio of the number
of electrons at the Fermi surface to those in the Fermi sea at 4 K
is kT /EF = 10−4 for a metal. A ferromagnetic (FM) metal has
different numbers of up- and down-spin electrons in the Fermi

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

sea. The up-spin electrons are those whose magnetic moment
align with the magnetization and are known as majority elec-
trons. The excitations for spin-up and spin-down quasiparticles
are distinct, as are their conductivities, which is the basis for
the phenomena of giant magnetoresistance (GMR). However,
through the spin-transfer interaction, electrons at the Fermi
surface change the characteristics of the Fermi sea, leading to
excitations of the background magnetization and even magne-
tization reversal. So there is a role reversal: a small number of
electrons at the Fermi surface influence the entire background
charge configuration.

The phenomena of spin transfer is distinct from that associ-
ated with the flow of charge currents and the magnetic fields
that result from such flows; the Oersted fields (Figure 1).
Spin transfer is predicted and is found to lead to fundamen-
tally new types of magnetic excitations. For instance, a dc
spin current has been shown to lead to steady-state precession
of the magnetization at gigahertz frequencies (Kiselev et al.,
2003; Rippard et al., 2004). A steady-state charge current
cannot produce a steady-state precession –illustrating, per-
haps most clearly, that new physics is needed to understand
the influence of a spin current on the background magneti-
zation. Of particular interest, spin transfer is leading to new
insights into the injection, diffusion, and coherence of elec-
tron spins in materials. In addition, many questions about
the microscopic theory of the interactions remain open to
further study, both from the theoretical and experimental
view points (Zhang, Levy and Fert, 2002; Shapiro, Levy and
Zhang, 2003; Levy and Zhang, 2004; Brataas, Bauer and
Kelly, 2006; Stiles and Miltat, 2006).

Spin-current-induced magnetic excitations in single mag-
netic layer and bilayer nanopillars are discussed in this
chapter. In contrast with earlier chapters, which focus on
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J.C. Slonczewski, 1996C. Oersted, 1819

Charge current Spin current

Figure 1. Oersted discovered in 1819 that a charge current pro-
duces a magnetic field which acts on a magnet. The interaction
predicted by Slonczewski (1996) is distinct and is associated with
the flow of spin current directly through a ferromagnetic layer. In
the illustration, this is a thick ‘fixed’ magnetic layer and a thin ‘free’
layer, a prototype spin-transfer structure.

low-field switching and precession, we emphasize phenom-
ena that occur at high current and magnetic field.

We begin with an outline of the Slonczewski model. We
then present high-field experiments that reveal hysteresis
in current and magnetic field sweeps in magnetic bilayers.
These experiments suggest that even in very large magnetic
fields a spin current may induce a complete reversal of the
thin magnetic layer to align antiparallel (AP) to the applied
field – that is, to a state of maximum magnetic energy. This
is consistent with the Slonczewski model within a single
domain or macrospin picture. We then review experiments on
single magnetic layer structures that require physics beyond
the macrospin model. These experiments illustrate that spin
transfer can create nonuniform spin-wave excitations. The
most elementary samples that exhibit spin-transfer effects
thus consist of just a single thin magnetic layer, not two
magnetic layers. Nonuniform spin-wave excitations are also
seen in traditional bilayer structures, which experiment
reveals to have a rich phase diagram of current-induced
excitations. We conclude with a summary and perspectives
on spin transfer.

2 SPIN-TRANSFER INTERACTION

In Slonczewski’s model, spin-angular momentum is trans-
ferred to the background magnetization when the spin current
enters the ferromagnet – within the first few atomic lay-
ers Stiles and Zangwill (2002). The transverse component of
spin current is filtered by the FM layer and, by conserva-
tion of angular momentum, there is a back reaction on the

magnetization. Absorption of the transverse component of
spin-angular momentum by the background magnetization is
the fundamental origin of the spin-transfer torque.

In magnetic nanopillars that consist of a thick and thin
magnetic layer separated by a nonmagnetic (NM) layer, the
thick (fixed) layer polarizes the current and dynamics is usu-
ally induced in the thin (free) layer. The magnetization of the
free layer can be described by the Landau–Lifshitz–Gilbert
(LLG) equation with an additional term. In a macrospin
model, which assumes that the two layers are uniformly mag-
netized:

dm̂

dt
= −γ m̂ × �Heff + αm̂ × dm̂

dt

+ γ aJm̂ × (m̂ × m̂P ) (1)

m̂ and m̂P are unit vectors in the direction of magnetization
of the free and fixed magnetic layers, respectively. The first
term on the right leads to precession of the magnetization
about the effective field, �Heff, γ is the gyromagnetic ratio.
The second term on the right is the damping term, where α

is the Gilbert damping constant. The last term is due to spin
transfer. The vector cross product, m̂ × (m̂ × m̂P ), is in the
direction of spin angular momentum transverse to the free
layer magnetization and in the plane containing m̂ and m̂P .
To see this explicitly, note that:

m̂ × (m̂ × m̂P ) = (m̂·m̂P )m̂ − m̂P (2)

The prefactor of the spin-transfer term, aJ, depends on
the current, the spin polarization of the current, P , and
the angle between the free and pinned magnetic layers �,
aJ = �I

eMV
g(P, �) (Slonczewski, 1996). Here I is the charge

current and g is a function of the polarization P that increases
with �. V is the volume of the magnetic element. An
increase in aJ with an increase in the angle has been found
in a number of different approaches to modeling the spin-
transfer effect (Bauer, Tserkovnyak, Huertas-Hernando and
Brataas, 2003; Stiles and Zangwill, 2002; Waintal, Myers,
Brouwer and Ralph, 2000; Shapiro, Levy and Zhang, 2003).
Spin-current-induced torques of the form bJm̂·m̂P are also
possible, where bJ is proportional to the current (Zhang, Levy
and Fert, 2002). This has the form of torque due to a magnetic
field in a direction m̂P , with a magnitude proportional to the
current. This term and the spin-torque term define a basis
in the plane orthogonal to m̂ and, therefore, an arbitrary
torque on the magnetization can always be decomposed
into these two terms. There is experimental evidence for
this interaction, which is found to be somewhat smaller
in magnitude than the spin-torque term (Zimmler et al.,
2004). However, this term does not, by itself, lead to
magnetization dynamics distinct from that of Oersted fields,
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so we emphasize magnetization dynamics associated with the
spin torque in this chapter.

The effective magnetic field, �Heff, in equation (1) is the
vector sum of the applied field, �H , and the anisotropy fields.
Studies are typically conducted on thin elements with an
asymmetric shape, approximating a rectangle or ellipse. In
this case, the effective field is given by

�Heff = �H + Ha(m̂·x̂)x̂ − 4πMs(m̂·ẑ)ẑ (3)

Here Ha is an anisotropy field that accounts for the asym-
metric shape of the element (Ha = 2K/Ms, where K is in
the uniaxial anisotropy constant) and 4πMs characterizes the
easy-plane anisotropy. Ha (∼0.1 T) is typically much smaller
than 4πMs (∼1 T).

In equilibrium, the magnetization is aligned with the effec-
tive magnetic field. The spin-transfer torque competes with
damping and, at a threshold current, leads to excitation of the
magnetization. This is illustrated in Figure 2. Deviation of the
free layer magnetization direction from the effective field leads
to precession of the magnetization about the field at an angu-
lar frequency ω = γHeff. The damping torque acts to bring
the magnetization back into alignment with the effective field.
If the pinned layer magnetization is also parallel (P) to the
effective field, then the spin-transfer torque and damping are
collinear. In this case, the spin-transfer torque can enhance or
oppose the damping torque depending on the sign of the cur-
rent. In the latter case, excitation of the magnetization occurs,
which may drive the free layer magnetization into a preces-
sional state (PS) or new static configuration.

M

Damping

Spin torque

→

→

Heff

M × Heff

→ →
Precession

Figure 2. Schematic of magnetization dynamics with a spin-
transfer torque. In large fields, when the pinned layer magnetization,
effective field, and applied field are parallel, the spin-transfer torque
is collinear with the damping. Instabilities occur when the spin
torque opposes and exceeds the damping torque.

3 HIGH-FIELD STUDIES OF BILAYERS

Studies in large magnetic fields applied perpendicular to the
layers provide insight into the physics of spin transfer. For
fields greater than the layer demagnetization field (4πMs),
the Zeeman energy (E = −MsH ) becomes the dominant
term in the magnetic energy and, in equilibrium, the magne-
tization is aligned with the applied field. In this limit (i.e.,
assuming that H � Ha), there is axial symmetry about the
field direction, and the precession is circular, with the pre-
cession frequency increasing linearly with the applied field.

Initial point-contact experiments on magnetic multilayers
were conducted in high perpendicular fields (Tsoi et al.,
1998, 2000; Myers et al., 1999) (Figure 3a). A peak structure
in the differential resistance (dV/dI ) versus current graph
was observed and interpreted as the onset of current-induced
excitation of long wavelength (k � 0) spin waves (Tsoi et al.,
1998, 2000; Slonczewski, 1999) (Figure 3a). Subsequent
experiments have focused on nanopillar structures (Figure
3b), in which the magnetic bilayers, such as Co/Cu/Co
layered films, are patterned down to the 100-nm lateral
scale (Katine et al., 2000; Grollier et al., 2001, 2003; Albert,
Katine, Buhrman and Ralph, 2000; Albert et al., 2002; Sun
et al., 2002, 2003). Spin-transfer torque studies on pillar
devices (PDs) are usually conducted with small magnetic
fields applied in the layer plane. In the low-field regime, a
hysteretic jump in the differential resistance was observed
(Figure 3b). These experiments provide clear evidence for
current-induced magnetization switching (Katine et al., 2000;
Grollier et al., 2001, 2003; Albert, Katine, Buhrman and
Ralph, 2000; Albert et al., 2002; Sun et al., 2002, 2003;
Urazhdin, Birge, Pratt and Bass, 2003). Hence, the effect of
the spin-polarized current on the magnetization seemed to be
quite distinct in the low- and high-field regimes; at low fields,
switching is observed, whereas high-field data is interpreted
in terms of spin-wave excitations. Current-induced hysteretic
magnetization reversal was only observed at low in-plane
fields in nanopillar devices.

3.1 Experiments on nanopillar junctions

Nanopillar junctions were used to study current-induced
magnetization dynamics in large fields and currents in
Özyilmaz et al. (2003). The layer structure was |3-nm Co|
10-nm Cu|12-nm Co|300-nm Cu| 10-nm Pt| and the typical
lateral size of the sample was 90 × 140 nm2. The thin Co
layer has a lower coercivity and is the ‘free’ layer in the
device. The thick Co layer is the ‘fixed’ layer in the device
and acts to set up a spin-polarized current in the intervening
Cu layer. The inset in Figure 4 shows a sketch of the PD.
Details of fabrication and transport properties at low in-plane
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Figure 3. Spin-transfer experiments. (a) Initial studies were conduced using mechanical point contacts to magnetic multilayers. In high
fields perpendicular to the plane, peaks in differential resistance were observed and interpreted as the onset spin-wave excitations. (b)
Experiments on magnetic bilayer thin-film elements patterned into nanopillars showed the first evidence for current-induced magnetization
reversal in small in-plane applied magnetic fields. (Reprinted with permission of Tsoi et al. copyright 1998, American Physical Society.)

fields can be found elsewhere (Sun et al., 2003). Transport
measurements were conducted in a four-point measurement
configuration at 4.2 K to minimize the effect of thermal
fluctuations on the magnetization dynamics. Positive current
bias is defined such that electrons flow from the thin to the
thick layer.

A typical magnetoresistance (MR) measurement with
in-plane magnetic fields is shown in Figure 4(a). The device
exhibits a clean transition between a low-resistance and high-
resistance state corresponding to P and AP alignment of the
magnetization of the two Co layers. The MR of this sample is
5.4% at 4.2 K. Owing to magnetostatic interactions between
the layers, the high-resistance state is reached before the sign
of H is reversed, which is typical of pillars in which both
magnetic layers are patterned.

Figure 4(b) shows dV/dI versus I with the applied field
perpendicular to the film. Here the applied field (H = 2.2 T)
is larger than the demagnetization field of the Co thin layer

(4πMs ≈ 1.5 T). The sweep to negative currents is shown as
the dashed line in the figure. An abrupt change in resistance
occurs only for one current direction. In addition, the onset of
this change in resistance is sharp and takes place at a critical
current, Ic (jc ≈ 2.3 × 108A cm−2). The signature is a peak
in the differential resistance. In simultaneous dc measurement
(shown in an inset of Figure 4b), this feature corresponds to a
steplike increase of the dc voltage. The parabolic increase in
the background resistance for both directions of the current is
due to increased electron scattering at high current densities.

In earlier reports, the peak structure in the differential
resistance of point contacts was attributed to the excitation
of a uniform precession of the free layer (Tsoi et al., 1998,
2000; Slonczewski, 1999). However, this picture does not
explain the data on nanopillars for several reasons. First, the
resistance change is large. This can be seen by either looking
at the change of slope in the dc voltage at the critical current
Ic or by comparing the differential resistance for I greater
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Figure 4. (a) dV /dI versus H for in-plane fields and small bias
currents. The inset show the sequence of the layers (in nm) and
the four-point measurement geometry. The lateral dimensions of
the sample are 90 × 140 nm2. (b) dV /dI versus I of the same
device in an applied perpendicular field of H = 2.2 T. Differential
resistance dV /dI was measured by means of a phase-sensitive
lock-in technique with a 100-µA modulation current at f =
800 Hz added to a dc bias current. The dc voltage was recorded
simultaneously. At a critical current, a peak structure occurs in the
differential resistance. The dotted line shows dV /dI at negative
currents, for which the peak structure is absent. The inset shows the
simultaneous dc voltage measurement. (Reprinted with permission
of Özyilmaz et al. copyright 2003, American Physical Society.)

than Ic with the differential resistance at the same current
value but with opposite polarity at which the abrupt change
in resistance is absent. Either comparison shows a change
in resistance of about 5%, similar to the GMR value of the
same device (Figure 4a). Therefore, an explanation in terms
of a small deviation of the free layer magnetization from its
P alignment with respect to the static layer is not sufficient to
explain the observed resistance change. With the measurement
of a resistance change comparable to the GMR effect, it
seems plausible to assume that even at high fields the spin-
transfer effect can produce a full reversal of the magnetization.
Second, the change in device resistance is hysteretic, occurring
at higher current density for increasing current (Figure 4b).
The excitation of small amplitude spin waves would decay
rapidly on the timescale of such measurements and thus appear
reversible in such I –V measurements. Further, as we show
in the following text, this interpretation is consistent with
micromagnetic modeling.

The critical current for excitations has a nonmonotonic
dependence on the applied perpendicular field. This is shown
in Figure 5. At low fields, the critical current decreases
with increasing applied fields (Figure 5a). While at fields
greater than 1.5 T, the critical current increases with applied

field (Figure 5b). In addition, at high fields, the current
sweeps are hysteretic, particularly above 2 T. The magnetic
field dependence of the critical current is summarized in
Figure 6(a), in which the differential resistance is plotted
in grayscale. Here the current is swept up from 20 to 36 mA,
while the magnetic field is held constant for each current
sweep. For subsequent current sweeps, the field is raised from
0.34 to 2.7 T in steps of 5 mT. In this grayscale plot, a critical
current Ic separates the ‘applied field-current bias’ plane into
two regions. Below the critical current, the device remains
in its low-resistance state, in a P or nearly P magnetization
state. Above the critical current, the magnetization of the
device is in a higher resistance state, in which the relative
orientation of the magnetization of the two layers deviates
strongly from a P configuration.

The critical current for decreasing current is shown as the
dashed line in this figure. As noted in the preceding text, for
fields greater than 1.4 T, the critical current increases with
applied magnetic field. In this region, the current hysteresis,
�Ic, also generally increases with increasing field. (There
is a deviation from this behavior between 2.0 and 2.4 T, in
which �Ic actually decreases. We suspect this to be due to
the onset of nonuniform excitations.) While below 1.2 T, the
critical current decreases linearly with applied magnetic field.
In this field region (1.1 T → 0.35 T), the hysteresis is near
the limit of our experimental resolution. The resistance jumps
for both regions are similar in magnitude, that is, close to the
GMR value.

The general features of the data can be understood on
the basis of the LLG equations with the spin-torque term,
equation (1). In the large-field regime (H > 4πMs), we
neglect the in-plane magnetic anisotropy and take �Heff =
H − 4πMs(m̂·ẑ)ẑ. In this case, there is axial symmetry
and the equations of motion can be greatly simplified.
Initially, both layers are parallel to the applied field and
the z component of the free layer magnetization satisfies
(neglecting terms of order α2):

dmz

γ dt
= (1 − m2

z)[α(H − 4πMsmz) − aJ] (4)

It is clear that an initial state mz = 1 aligned with the applied
field in the z direction will become unstable when aJ >

α(H − 4πMs). The threshold current, a = α(H − 4πMs)

increases with increasing applied field, as observed in exper-
iment. More generally, this relation illustrates that the crit-
ical current for the onset of magnetic excitations is pro-
portional to the ferromagnetic resonance (FMR) frequency,
ω = γ (H − 4πMs). This follows because the spin-transfer
torque competes with the damping torque, which is propor-
tional to the precession frequency. The critical current is also
predicted to be zero when H = 4πMs.
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A solution with magnetization antiparallel to the effec-
tive field (mz = −1) occurs for aJ > α(H + 4πMs) and cor-
responds to a static magnetization ((dm̂/dt) = 0). In this
case, the spin torque leads to a state of maximum mag-
netic energy of the free layer. Similar high-energy states
have also been observed in numerical studies for the field
in-plane geometry (Sun, 2000; Li and Zhang, 2003). As
aJ increases with �, the transition between a precess-
ing state with |mz| < 1 and mz = −1 occurs rapidly with
increasing current and is hysteretic. For example, hystere-
sis occurs when aJ > α(H + 4πMs) for m̂·m̂P = −1, while
at the same current aJ < α(H − 4πMs) when m̂·m̂P =
1. In addition, for increasing applied field, the transition

occurs at a higher current and the width of the hysteresis
increases.

It is important to note that the hysteresis here is a
characteristic of the spin-transfer interaction. Hysteresis in
ferromagnets is typically associated with magnetic anisotropy
or dipolar interactions that result in local minima in the
energy (Hubert and Schäfer, 1998). In large applied fields,
however, there is only one minimum in the energy, when the
magnetization and field are aligned. Here the hysteresis is
due to the angular dependence of the spin-torque interaction.
The spin torque per unit angle for small deviations of the
layer magnetizations from collinear is largest in the AP state
and therefore starting in an AP state and reducing the current
results in a lower critical current than starting in a P state
and increasing the current.

Figure 6(b) shows the result of integration of the
equation (1) under the conditions approximating the exper-
iment (P = 0.4 for Co and α = 0.007 (Schreiber et al.,
1995)). The device resistance is plotted in grayscale versus I

and H and is computed from the angle between the fixed and
free layers using the analytic expression: Rnorm = (R(θ) −
R(0))/(R(π) − R(0)) = (1 − cos2(θ/2))/(1 + cos2(θ/2))

(Wang, Zhang and Levy, 1996; Bauer, Tserkovnyak, Huertas-
Hernando and Brataas, 2003; Shapiro, Levy and Zhang,
2003). For H < 4πMs (below the horizontal dashed line in
the figure) the pinned layer magnetization tilts into the plane
and thus the pinned layer and effective field are no longer
collinear. In this case, there are PSs of the magnetization,
with the projection of m̂ on m̂P decreasing with increasing
current. The average resistance is plotted below this line. The
dashed–dotted line shows the transition to a low-resistance
state for decreasing currents, that is, starting with the layers
initially antiparallel.
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Qualitatively, there is a good correspondence between the
data and the model. The model captures the general features
in the data, including the high-field region of increasing
critical current with increasing applied field and the low-field
region (H < 1.4 T) in which the critical current increases
with decreasing field. It is now straightforward to understand
why the critical current is a nonmonotonic function of field.
This follows because the critical current is proportional to
the FMR frequency which itself is a nonmonotonic function
of applied field. The FMR frequency for magnetization
in the film plane is given by the Kittel equation, ω =
γ
√

Ha(Ha + 4πMs) (Kittel, 1996). When a field is applied
perpendicular to the plane, the FMR frequency decreases
until the applied field is sufficient to orient the magnetization
in the field direction, when H = 4πMs. Further increase of
the field leads to an increasing resonance frequency and a
linear dispersion of the critical current with applied magnetic
field –the critical current follows the same trend.

There are also clear discrepancies between the data and the
model. In particular, the model predicts significantly lower
critical currents (factor of ∼5) and greater hysteresis than
observed in the experiment. The latter is perhaps not surpris-
ing as we have assumed single domain dynamics in the model
and likely the relaxation to the low-energy magnetic state
occurs via nonuniform magnetic states of the free layer. In
more recent experimental studies, the critical current is found
to be within a factor of ∼2 of the model, likely reflecting
the improvements in sample quality, both layer structure and
lithography (Chen et al., 2006a,b).

MR measurements at fixed current bias also show hystere-
sis at high fields. Figure 7 shows MR measurements at fixed
and large current bias. There are five field regions bounded by
H1, H2, H3, and H4, which depend on current bias. For fields,
H1 < H < H2, the field is sufficient to lead to P alignment of
the layer magnetizations. In the next region (H2 < H < H3),
PSs driven by the spin current become possible and a gradual
and reversible transition from P to AP alignment takes place.
In the interval H3 < H < H4. The layers are in an AP state.
At the boundary H4, a reversible but sharp transition from AP
back to P configuration takes place. The width of the hystere-
sis depends on the current bias and the polarity of the applied
field. In general, it increases with increasing current bias.

This behavior is distinct from that of point contacts
(Tsoi et al., 1998, 2000). It is also different from the
characteristics found when large in-plane fields are applied
to PDs (Katine et al., 2000; Grollier et al., 2003). In the
latter case, a large plateau in the MR with intermediate
resistance Rint value (RP < Rint < RAP) was observed. The
resistance plateau was attributed to a precessing spin-wave
state in between P and AP alignment. From Figure 7, it is
clear that in the field perpendicular geometry there is not
a large plateau in the MR. In comparison to point-contact

0.540

0.525

−3 −1.5 0 1.5 3
Applied field (T)

V
/I 

(Ω
)

I = +30 mA
H4 H3 H2 H1

Figure 7. Magnetoresistance measurement at large positive applied
bias current. For fields greater than |H1|, there is a low-resistance
state with parallel alignment of the layer magnetizations. In the
field range |H3| > |H | > |H2|, current-induced torques lead toward
antiparallel alignment through PS states. For |H | > |H |, the layers
are forced back to a parallel alignment. The transition to parallel
alignment is abrupt and hysteretic, whereas the gradual transition
starting at H2 is reversible. (Reprinted with permission of Özyilmaz
et al. copyright 2003, American Physical Society.)

experiments (Tsoi et al., 1998, 2000), high bias currents in
PDs appear to lead to a complete magnetization reversal even
at high magnetic fields. In addition, there is a recent report
that an energy-threshold mechanism explains spin-transfer-
induced magnetic excitations in nanopillars in the field
perpendicular geometry, based on temperature dependent
studies of the critical current (Tsoi et al., 2004). However, a
reduction in the critical current with increasing temperature
is naturally explained within the standard model of spin-
transfer model as a result of thermal fluctuations of the
magnetization (see Li and Zhang, 2004). Finally, these results
and analysis suggest that the main peak in dV /dI in large
perpendicular magnetic fields marks the end, not the onset
of magnetization dynamics. Recent high-frequency studies
in the field perpendicular geometry are consistent with this
interpretation (Kiselev et al., 2004).

3.2 Phase diagram for magnetic excitations in the
field perpendicular geometry

The phase diagram for magnetic excitations in the field per-
pendicular geometry is intricate even within the macrospin
approximation. This can be seen with a simple form for the
angular dependence of the spin torque proposed in Li and
Zhang (2004),

τ ST = aJ

1 + ηm̂·m̂P
m̂ × (m̂ × m̂P), (5)

with the single parameter η characterizing the angular
dependence of the torque and with aJ = (�IP/2eMsV ) (i.e.,
with the angular dependence removed from this factor). Note
that angular variations of the torque in equation (5) closely
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match those given by Slonczewski (1996). (For example,
η = 0.45 here corresponds to a polarization, P = 0.2, in
Slonczewski (1996)). This form of the torque was also chosen
because it permits a greater degree of analytical analysis of
spin-torque-induced magnetization dynamics.

A phase diagram computed using this form of the spin
torque and the effective field given in equation (3) is shown
in Figure 8. For fields greater than 4πMs, the P state becomes
unstable at a threshold current given by

JT−P = 2eα

�P
(1 + η)Mst (H − 4πMs) (6)

leading to a PS. Here t is the free layer thickness. Further
increase in the current results in the free layer switching
to an AP state. On decreasing the current, the AP becomes
unstable and switches back to a PS or P state when

JT−AP = 2eα

�P
(1 − η)Mst (H + 4πMs) (7)

As mentioned in the preceding text, hysteresis is associated
with the angular dependence of the spin-transfer torque; the
fact that the torque is larger in the AP state (η > 0).

JT−P and JT−AP are equal and cross when Hc = 4πMs/η.
However, hysteresis appears at a smaller field, corresponding
to the lowest field at which the AP/PS region appears in

the phase diagram. Within this model, η can be determined
from experiment, from the lowest field at which hysteresis
occurs. For example, on the basis of the data shown in
Figure 6, η must be greater than 0.3. This implies that, for
a constant current, the derivative of the torque with respect
to the angle between the layers for small deviations from
collinear alignment is approximately a factor of 2 larger for
the AP state than the P state. This is close to that found in
measurements by Smith et al. of the angular dependence of
the spin torque in GMR read heads (Smith, Katine, Childress
and Carey, 2005).

Recent experiments give a critical current threshold in
semiquantitative agreement with equations (6) and (7). The
main discrepancy is in the intercept of the threshold bound-
ary, as is the case for the data presented in Figure 6. This
discrepancy may reflect the fact that the macrospin model
greatly underestimates the principal mode frequency in the
field perpendicular geometry because of finite size effects
(McMichael and Stiles, 2005; Kakazei et al., 2004). As the
critical current is proportional to the mode frequency, this
changes the intercept of the threshold current versus field,
resulting in a greater threshold current at a given field. How-
ever, this does not change the slope of the threshold current
versus field, which is set by the gyromagnetic ratio, γ . It
would clearly be of interest to conduct full micromagnetic
simulations to better understand the experimentally deter-
mined phase diagrams and the breakdown of the macrospin
approximation in the high-field limit. Simulations of this sort
have already been conducted for small in-plane magnetic
fields (Lee et al., 2004; Montigny and Miltat, 2005). High-
frequency experiments, like those reported in Kiselev et al.
(2003) and Rippard et al. (2004), would also shed light on
magnetization dynamics in the high-field limit.

4 SINGLE MAGNETIC LAYER
EXCITATIONS

4.1 Background

It is of interest to study the most elementary sample or
device that exhibits current-induced excitations. The concept
proposed by Slonczewski requires two magnetic layers, one
which serves to polarize the current and the second which
responds to the polarized current (Slonczewski, 1996). This
bilayer structure is also considered necessary for a more prac-
tical reason. The magnetic state of the layers is inferred from
resistance measurements. The layer that polarizes the current
also serves as a reference layer, and changes in magnetization
are detected through the GMR effect. Therefore, a sample
with only a single magnetic layer would seem to preclude
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both the excitation as well as the detection of magnetic exci-
tations. Nonetheless, experiments have demonstrated current-
induced excitations in electrical transport studies, sometimes
with characteristics quite similar to those seen in traditional
bilayer structures. Further, recent theory suggests that the
same spin-transfer interaction responsible for reversal and
excitations in bilayers leads to magnetic instabilities in struc-
tures that contain only a single magnetic layer.

The spin-transfer interaction requires a component of spin-
angular momentum transverse to the direction of the back-
ground magnetization of the ferromagnet. Slonczewski and
Berger considered a one-dimensional model in a macrospin
approximation. In this case, two magnetic layers are needed
for the spin-transfer interaction –the interaction is present
when the magnetizations of the layers are noncollinear. How-
ever, going beyond the macrospin and one-dimensional trans-
port model, it is found that only one magnetic layer is needed
to have a nonzero spin-torque interaction. In this case, fluctu-
ations in the magnetization direction transverse to the current
direction are allowed. This coupled with spin diffusion par-
allel to the layer interfaces leads to a transverse component
of spin at the FM interface and magnetic excitations. This is
the basis for single-layer excitations.

Polianski and Brouwer (2004) first proposed a model for
single-layer magnetic excitations. They emphasized that the
spin-filtering characteristic of ferromagnets is the fundamen-
tal cause of the spin-transfer torque. Spin filtering occurs
whenever a current crosses a NM/FM interface. For example,
in a pillar that consists of a NM/FM/NM structure in a cur-
rent perpendicular to the plane (CPP) geometry, spin currents
flow at the interfaces and there is spin accumulation at both
FM/NM interfaces, on either side of the FM (Figure 9). Fluc-
tuations in the magnetization direction of the FM combined
with spin diffusion parallel to the NM/FM interface lead to
a transverse component of spin at the interface and a spin-
transfer torque (Figure 10). At each interface, these torques
act to align the magnetization along the direction of the spin
accumulation. In a structure that has mirror symmetry about
the center of the magnetic layer, the resulting torques are
of equal magnitude but are opposite in direction and can-
cel each other. However, if the mirror symmetry is broken,
the torques acting on each NM/FM interface have different
magnitudes. In this case, Polianski and Brouwer (2004) and
Stiles, Xiao and Zangwill (2004) predict that an unpolar-
ized current can induce spin-wave instabilities and generate
spin-wave excitations with wave vectors in the film plane.
Instabilities occur when the current bias is such that the
direction of the larger spin accumulation is antiparallel to
the direction of the magnetization of the FM. This leads to
a specific prediction for the dependence of the excitations
on current polarity. Polianski and Brouwer (2004) studied
the case of a thin FM where the magnetization does not

e−

Figure 9. Electron current flow through a single ferromagnetic
layer leads to spin accumulation on either side of the ferromagnet,
that is, a magnetization is induced in the contacts to the layer.

Figure 10. Mechanism of spin-wave generation proposed in
Polianski and Brouwer (2004). Spin diffusion of down-spin reflected
electrons are shown as dashed lines. This results in a spin torque that
enhances the spin-wave amplitude. The torque on the background
magnetization is shown as a white arrow. (Reprinted with permis-
sion Polanski et al., copyright 2004, American Physical Society.)

have any spatial variation along the current flow direction.
Here, the break in symmetry requires asymmetric contacts.
Stiles, Xiao and Zangwill (2004) relaxed this requirement
and allowed the magnetization to vary along the current flow
direction, which also breaks the mirror symmetry. In either
case, in ideal asymmetric junctions, current-induced excita-
tions are predicted to occur for only one current polarity
and are expected to be absent in perfectly symmetric struc-
tures. Both groups made predictions on how single-layer
instabilities depend on parameters such as the current bias
polarity, the FM layer thickness, the degree of asymmetry of
the single-layer junction, and the applied field.

4.2 Experiments

In order to study spin transfer, high current densities must
be injected into the ferromagnet. This has been achieved
in three different geometries: (i) lithographically patterned
point-contact junctions, (ii) mechanical point contacts, and
(iii) nanopillar junctions. The first technique was pioneered
at Cornell University and has been used in many types
of studies. In fact, in initial spin-transfer experiments in
bilayer films subject to high current densities, samples with
only one magnetic layer were also studied (Myers et al.,
1999). Here, high current densities were achieved by means
of lithographically patterned point contacts (Figure 11a).
Mechanical point contacts were used in studies of magnetic
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Figure 11. Single-layer experiments. (a) Observation of current-induced excitations in lithographically produced point-contact junctions.
(Reprinted with permission E.B. Myers et al., copyright 1999, AAAS.) (b) First systematic point-contact experiments on a single
ferromagnetic layer. (Reprinted with permission Ji et al., copyright 2003, American Physical Society.) Inset of (b) illustrates a model
for the magnetization dynamics with a highly nonuniform current density. Note that the current polarity convention is opposite in (a) and
(b). (c) Schematic of a single Co-layer pillar junction fabricated via the nanostencil mask process. (Reprinted with permission Özyilmaz
et al., copyright 2004, American Physical society.) Electron flow indicates the definition of positive current bias. Symmetric junctions are
fabricated by addition of a Pt layer (dashed box).

multilayers (Tsoi et al., 1998) and employed by Ji, Chien
and Stiles (2003) to study single FM layers (Figure 11b).
The first studies of single FM layer nanopillar junctions,
illustrated in Figure 11(c), were done by Özyilmaz, Kent,
Rooks and Sun (2005) and are discussed in detail in the
following text.

These distinct sample geometries place different boundary
conditions on the current and magnetization. In point-contact
methods, the current density is very high at the contact and
thus also highly nonuniform. This nonuniformity creates a
situation in which a single magnetic layer may act as its
own reference and polarizing layer. The region removed
from the contact and experiencing a lower current density
serves this function. The experiments of Ji, Chien and Stiles
(2003) are performed on relatively thick FM layers (300 nm
of Co) that allow for spatial variations of the magnetiza-
tion along the current direction, or longitudinal excitation of
the magnet. The excitation envisioned in this experiment is
illustrated schematically in Figure 11(b). The authors propose
that magnetic excitations localized near the contact result in a
nonuniform magnetization in the film. They suggest that the
added resistance of the contact is associated with a longitu-
dinal excitation of the magnetization–essentially, a domain
wall forms near the contact. This mechanism is similar to
that operative in bilayers. The phenomena observed are in
fact quite similar to those discussed in previous sections.
Increases in resistance and peaks in differential resistance
are observed that disperse to higher current as the magnetic
field increases.

Nanopillar junctions have several key advantages in the
study of spin-transfer excitation of single magnetic layers.
First, the current density is uniform across the nanomagnet
interface and thus there is no a priori spin-polarizing
reference magnetic layer to generate a transverse component

of spin or lead to resistance changes; these effects must come
from the same magnetic layer through which the current
passes. Second, there is the possibility of creating excitations
that are transverse to the current flow direction. In particular,
very thin magnetic layers can be realized in which the
creation of longitudinal excitations would be energetically
very costly. Excitations can also be studied as a function of
layer thickness. This geometry is thus well suited to explore
the basic physics of spin transfer in single magnetic layers.
We thus focus on such experiments in this article.

4.2.1 Single-layer nanopillar devices

Experiments on PDs were conducted by Özyilmaz, Kent,
Rooks and Sun (2005). Junctions ∼50 nm in diameter were
fabricated by means of a nanostencil mask process (Sun
et al., 2002), which has been used earlier for spin-transfer
torque studies in Co/Cu/Co bilayer spin valves (Sun et al.,
2003; Özyilmaz et al., 2003). To study the thickness depen-
dence of single-layer excitations, a nanostencil mask process
was combined with an in situ wedge growth mechanism.
With this approach, PDs were fabricated with a single Co
layer of continuously varied thickness across a single wafer.
As shown in Figure 11(c), structures fabricated by means of
an undercut template are intrinsically asymmetric due to the
requirement of an inert bottom electrode surface, usually Pt,
on top of which the pillar structure is grown. Here, asymme-
try refers to the spin-accumulation pattern generated within
the PD with respect to the Co-layer position. The strong
asymmetry due to the choice of Pt as bottom electrode is
removed by inserting a second Pt layer. Therefore, the study
of spin transfer in symmetric single-layer structures requires
the ‘capping’ of the pillar with a Pt layer, as indicated in
Figure 11(c).
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Figure 12. Typical dV /dI versus H data at zero dc bias and
4.2 K. The junction size is 50 × 50 nm2 and t ≈ 17 nm. An increase
in junction resistance (∼0.1%) is observed when j and M are
collinear. (Reprinted with permission Özyilmaz et al. copyright
2004, American Physical society.)

Junctions with an FM layer thickness varying from 2 to
17 nm and lateral dimensions from 30 × 60 nm2 up to 70 ×
140 nm2 have been studied as a function of bias current and
applied field. The range of Co-layer thicknesses covers both,
the case where the thickness t is smaller than the exchange
length lex of Co and the case where the thickness is compara-
ble to the latter (t ≥ lex). All junctions in this thickness range
exhibit single-layer excitations. To confirm that the excita-
tions are caused by asymmetric contacts, the experiments
were repeated with symmetric PDs with a stack sequence of
|PtRh 15 nm|Cu 10 nm|Co 10 nm|Cu 10 nm|Pt 15 nm|.

A typical MR measurement of a single-layer junction at
zero dc bias is shown in Figure 12. The resistance R has
its minimum when the magnetization M lies in the thin-
film plane, that is, when M is orthogonal to ĵ . It gradually
increases with applied field which tilts the magnetization
vector out of the thin-film plane. Once the applied field
exceeds 4πMs, M is parallel to ĵ and the resistance satu-
rates at its maximum. From this, it is clear that the MR is
sensitive enough to register (field-induced ) changes of rela-
tive orientation of ĵ and M . MR can also be used to detect
current-induced changes of the magnetization, as we show
in the following text.

A typical I (V ) curve for an asymmetric single-layer PD
is shown in Figure 13. Here dV /dI versus I is plotted for
fields H = 1.5, 2, 2.5, and 3.1 T for a 30 × 60 nm2 junction
with t ≈ 8 nm. At fields above the demagnetization field
(H > 1.5 T), we observe anomalies in the form of small
dips at negative current polarity only. Note that in the field
perpendicular geometry the onset of these excitations always
leads to a (small) decrease in resistance, which is opposite
to what has been observed in both point-contact experiments
(Myers et al., 1999; Ji, Chien and Stiles, 2003) and bilayer
PDs. We discuss this further in the following text.

To distinguish these excitations from the parabolic back-
ground resistance, we plot d2V/dI 2, which is sensitive to
abrupt features in dV /dI . Plotted in grayscale as a function
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Figure 13. dV /dI versus I at constant fields. (a) Asymmetric
junction (30 × 60 nm2, t ≈ 8 nm) with Pt as bottom electrode. For
H > 4πMs dips are observed at negative bias only. (b) Symmetric
junction (70 × 70 nm2, t ≈ 10 nm) with Pt on either side of the
Co layer (t ≈ 10 nm). I (V ) curves at different field values overlap
fully. (c) Phase diagram for current-induced excitations in single-
layer junctions; same junction as in Figure 13(a). d2V/dI 2 is
plotted in grayscale. The white dashed–dotted line indicates the
boundary for excitations. (Reprinted with permission Özyilmaz
et al. copyright 2004, American Physical society.)

of the applied field and the current bias, it represents a
phase diagram for single-layer excitations. An example of
such a plot is shown in Figure 13(c). Here, the current is
swept from −15 to +15 mA, while the magnetic field is
held constant for each current sweep. For subsequent sweeps,
the field is stepped from −4.6 to +4.6 T in 100 mT steps.
The ‘current bias–applied field’ plane segregates into two
regions separated by a straight line, which we associate with
the critical current Ic for single-layer excitations. For fields
with H > 4πMs, excitations only occur for negative current
polarities. At negative current bias, excitations are absent
below the critical current, whereas above the critical current
many modes are excited. Ic shows a linear dependence on
the applied field and can be extrapolated approximately to
the origin. Dividing Ic by the nominal junction area A, we
estimate the field dependence of the critical current density
jc = bH with b ≈ 1.9 × 108 A cm−2 T−1. We obtain a more
accurate estimate for jc by multiplying Ic with the junction
resistance R ≈ 2.55 
 , which is equivalent to dividing by an
effective junction area: jc ∝ IcR = βH with β ≈ 8.8 × 10−3

(A
 T−1).
A better way to distinguish the small features of current-

induced excitations from the varying background resistance
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(Reprinted with permission Özyilmaz et al. copyright 2004, American Physical society.)

is to fix the latter. This can be done by keeping the
current constant and sweeping the applied field instead.
Here, an example of such a measurement is given in
Figure 14(a) and (c). Field sweeps at fixed negative current
bias are shown in Figure 14(a), whereas Figure 14(c) shows
the MR at fixed positive currents. The strongest evidence for
current-induced excitations in single-layer junctions comes
from the comparison of these two figures. As shown in
Figure 14(c), excitations at fields H > 4πMs are absent
in the field traces. However, high current densities at
positive bias gradually increase the applied field at which
the differential resistance saturates. This effect cannot be
attributed solely to the presence of additional (Oersted) fields
related to the charge current and is not yet fully understood.

There is a dramatic change in the field traces if one applies
a negative current bias to the junction. For each fixed cur-
rent value, there is now a critical field Hc, above which the
resistance remains constant. However, below Hc, the obser-
vation of peaks and dips indicates the presence of many
(current-induced) excitations. Hc is a linear function of the
bias current and shifts to higher values as one increases
the current. As can be seen in Figure 14(b), the linear fit
of the critical fields can once more be extrapolated to the
origin. Hence, in both field sweeps at fixed currents and
current sweeps at fixed fields one obtains a linear depen-
dence of the critical parameter on the running variable, that

is, jc = bH and Hc = cj . For a particular Co-layer thick-
ness, the slopes b and c are equivalent, that is, b ∼= c−1.
From Figure 14(b) and the nominal junction area A, we
estimate the current density dependence of Hc = cj with
c ≈ 5.2 × 10−9 T A−1 cm−2. Using the junction resistance
R ≈ 2.80 
 as an approximation for the effective junction
area, we obtain Hc ∝ ζ (IR) with ζ ≈ 73.8 T/(A
). Note that
for H < 4πMs there are large changes in the hysteresis for
both current polarities. This effect cannot be explained by the
interaction of the Oersted fields with magnetic domain con-
figurations at fields H < 4πMs. In fact, recent experiments
show current-induced switching in a single layer, reflect-
ing the domain structure in low fields even in these deep
submicron magnetic elements (Özyilmaz and Kent, 2006).
Related studies also indicate MR when switching between
domain configurations of permalloy single magnetic layers
(Urazhdin, Chien, Guslienko and Novozhilova, 2006).

The thickness dependence of these excitations has also
been studied and the results are summarized in Figure
14(d). For all thicknesses, the observed boundary in the
‘current bias/applied field plane’ can be extrapolated close
to the origin. Here we only plot the slope β of the field
dependence of IcR (∝ jc) as a function of Co-layer thickness
t . We observe an increase in β with increasing t , �β/�t ≈
0.48 ± 0.05 mA
 T−1 nm−1. The critical currents increase by
approximately a factor of 2 as one increases the Co-layer
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thickness t from 2 to 17 nm. Over the same thickness range,
the junction resistance R increases only by ≈25% (not
shown).

To clarify the origin of these excitations, we have
repeated these experiments in symmetric single-layer PDs.
An example of current sweeps at fixed fields in these struc-
tures is shown in Figure 13(b). Here, the current is swept
from +32 to −32 mA in a 70 × 70 nm2 junction. In magnetic
fields up to 4 T, features such as dips or peaks are absent in
the current-voltage characteristics. Also, field sweeps at fixed
current do not exhibit any of the strong polarity dependence
observed in asymmetric PDs. To summarize, in symmet-
ric junctions, current-induced excitations are absent up to
j ≤ 7 × 108 A cm−2.

The plots in Figures 13(c) and 14 make it appear that
beyond a threshold current the excitations occur randomly
as a function of I and H . However, this reflects the data
sampling in Figure 13(c), which is too coarse to capture the
pattern of excitations. Data taken at smaller field intervals
reveal a regular pattern of excitations beyond the threshold
(Figure 15). The data were obtained with a 30 × 60 nm2

junction with t � 10 nm. Here, we plot the second derivative
of the signal in grayscale. The plot reveals distinct branches
of current-induced excitations for currents |I | > |Ic(H)|.
These new features only occur over a limited field range,
δH . Within each narrow field region, excitations shift to
higher currents with decreasing applied fields. This behavior
is opposite to the applied field dependence of the onset
of the single-layer excitations. This pattern likely reflects
the discrete spin-wave spectrum in such elements. Recently,
the theory presented in Polianski and Brouwer (2004) has
been extended beyond the critical current for spin-wave
instabilities (Adam, Polianski and Brouwer, 2006) – and this
approach seems promising toward explaining single-layer
characteristics and the data in Figure 15.

Generally, experimental results and theoretical predictions
are in good agreement. Both models give the correct cur-
rent polarity, magnitude, and thickness dependence of jc in
asymmetric structures. For the current polarity, strong spin-
flip scattering at the Pt/Cu interface effectively forces the
spin accumulation at the Pt/Cu interface to zero. This leads
to a smaller spin accumulation at the Cu/Co interface facing
the Pt bottom electrode. Excitations are therefore expected
at negative current when the large spin accumulation is in a
direction opposite to that of the magnetization, as observed.
The theory also predicts a decrease in resistance upon mag-
netization excitation, as observed. This is counterintuitive
because one might expect that the creation of spin-wave exci-
tations leads to additional energy dissipation and therefore
resistance. However, when the layer is excited and its mag-
netization is nonuniform, additional conduction channels are
opened. Qualitatively, this is because electron spins reflected
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Figure 15. Phase diagram of current-induced excitations in a 30 ×
60 nm2 junction at negative current. Smaller field steps reveal the
applied field dependence of additional features. (a) Grayscale plot of
the second derivative as a function of applied field and current bias.
(b) The excitation boundaries are retraced to render the pattern clear.
For |I | > |Ic(H)| additional features are observed. Each additional
feature takes place in a narrow field range, δH . The features shift
to higher currents with decreasing applied field value.

from the layer interface can diffuse back to the layer and
be transmitted through a region with a different magne-
tization orientation. Alternatively stated, the nonuniformly
magnetized layer leads to a smaller spin accumulation than
a uniform magnetization and thus a lower resistance.

In terms of the current magnitude for the excitations,
Polianski and Brouwer (2004) studied the case where M does
not have any spatial variation along the direction parallel
to the current ĵ. Stiles, Xiao and Zangwill (2004) extended
this model by allowing M to vary along ĵ. For this case,
excitations are expected to occur independent of current
polarity even in symmetric PDs. However, the predicted
critical currents are much larger (jc > 1010 A cm−2) than
for the asymmetric case. For example, for an asymmetric
junction with t ≈ 17 nm, the necessary positive current
densities (jc > 2.5 × 109 A cm−2) far exceed the value which
can be sustained by existing PDs. The linear dependence
of jc on H can be explained by both models. However,
the (near) zero intercept of jc is somewhat peculiar, as the
expectation is that the relevant field is the internal field in
the layer or H − 4πMs. With this reasoning, the critical
current intercept should be for H = 4πMs. There are two
possible explanations for the near zero field intercept. The
first is associated with the shape and finite size of the
pillar junction. The principle spin-wave modes in such a
disk are nonuniform and have a frequency greater than
that of an extended thin film, ω = γ (H − 4πMs). This can
be seen in micromagnetic calculations of the dependence
of the mode frequency on magnetic field (McMichael and
Stiles, 2005). For a disk geometry, the frequency of the
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modes can also be found analytically (Kakazei et al., 2004).
A second possible explanation is that the critical current
observed may not correspond to small amplitude excitations
of the magnetization. As in the case of bilayers discussed in
Section 3, large amplitude excitations occur at higher current
densities, resulting in a smaller intercept.

The increase in the critical current jc with increasing Co-
layer thickness t is in agreement with theoretical predictions.
An increase in jc with increasing t is expected because of
an increase in the (bulk) damping (Polianski and Brouwer,
2004; Stiles, Xiao and Zangwill, 2004). According to Stiles,
Xiao and Zangwill (2004), in thicker films (t � lex), the
variation of M along ĵ introduces an additional source of
asymmetry. This should activate a competing effect, which
by itself would decrease jc with increasing t . However,
to determine which effect would dominate, details of layer
structure and junction geometry need to be considered. For
the device geometry considered and for Co-layer thicknesses
up to t ∼ 17 nm (t > lex), the dominant source of the current-
induced excitations appears to be the asymmetry of the leads.

In sum, these studies have established that magnetic exci-
tations occur in single-layer asymmetric junctions and are
absent in symmetric junctions at similar current densities.
The current density for excitations in asymmetric junc-
tions increases with Co-layer thickness. While these experi-
ments demonstrate current-induced excitations in single lay-
ers, there are outstanding issues regarding the nature of the
excitations. For instance, it is important to know whether
they correspond to dynamical excitations. In this regard, it
is of interest to study the high-frequency response associated
with these excitations. Such studies would also shed light
on the nature of the nonuniform modes that are excited. It
would also be of interest to examine nanopillar structures
with thicker Co layers to examine the onset of longitudinal
excitations.

4.3 Bipolar excitations in bilayer nanopillars

The physics of single-layer or nonuniform spin-wave exci-
tations is also relevant to the more widely studied bilayer
structures. Bilayer nanopillars generally have asymmetries in
the spin-accumulation pattern either due to asymmetric con-
tacts or due to differences between the two magnetic layers
in the device. Thus, asymmetries in the spin accumulation
across the layers can induce nonuniform magnetic excita-
tions. Therefore, in such structures, nonuniform and uniform
current-induced excitation may compete, resulting in a rich
phase diagram of magnetic excitations as well as distinct
bilayer resistance states. This has been observed in experi-
ments (Özyilmaz, Kent, Rooks and Sun, 2005) and explained
in a recent theory (Brataas, Tserkovnyak and Bauer, 2006).

The consequences of single-layer excitations in asymmet-
ric bilayer nanopillars, which consist of a thick (‘fixed’)
and a thin (‘free’) magnetic layer, are outlined here. It is
important to recall that current-induced excitations have been
observed for only one polarity of the current at high field
(see Section 3), nominally because of the asymmetry in the
layer structure. This observation is considered to be clear evi-
dence for physics associated with a spin-transfer torque –as
opposed to the effects of charge-current-induced magnetic
fields. In addition, the lowest resistance state was always
considered to be the static state of P alignment of the layer
magnetizations.

Single-layer excitations modify this picture. For suffi-
ciently large current densities, anomalies in dV /dI at high
fields occur independent of current polarity, which decrease
the junction resistance. The bipolarity of the excitations and
the decrease in resistance cannot be understood in terms of
spin-transfer-torque-induced single domain dynamics. These
results show that high current densities can induce excitations
of the magnetization independent of current polarity and rel-
ative alignment of the magnetizations of the two magnetic
layers. Further, the results illustrate that at high currents the
nanopillar resistance can be lower than that of a state of P
magnetic alignment. Finally, modifying the contact geom-
etry, by making the contacts more symmetric, is shown to
suppress such excitations, consistent with theory (Chen et al.,
2006a).

4.3.1 Experiments

The layer structure studied is illustrated schematically in
Figure 16. The samples studied have lateral dimensions
∼50 × 50 nm2 and consist of a Pt 15 nm|Cu 10 nm|Co
3 nm|Cu 10 nm|Co 12 nm|Cu 300 nm multilayer.

Figure 17(a) shows typical measurements of dV /dI ver-
sus I in large applied fields (B � Bdemag ∼ 1 T). Current-
induced excitations (peaks in dV /dI ) appear to occur at pos-
itive current bias. However, a more careful look at the current
sweeps reveals the presence of excitations even at negative
currents (Figure 17b). Here, we observe anomalies in dV /dI

in the form of dips. These dips correspond to decreases in
the differential resistance of about 0.5%. These excitations
shift to higher currents with increasing field. They may be
distinguished from the parabolic background resistance by
plotting the second derivative in grayscale as a function of
current bias and applied field. From this plot (Figure 17d),
it is clear that the excitations depend approximately linearly
on the applied field for both polarities of current.

Peaks in dV /dI at positive currents are known to be
related to magnetization excitations. In Section 3, we have
discussed how their position indicates the critical current,
Ic, necessary to switch the free layer magnetization into the
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d2V /dI 2 versus current and applied field. The dispersion of the
dip in dV /dI at negative current with increasing field is clearly
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high-resistance AP state. However, excitations at negative
currents are unexpected. In the P configuration, negative
currents are expected to suppress any deviation of the free
layer from P alignment with the fixed layer. In particular, in
large applied fields, the layer magnetizations should therefore

remain in the P state. In addition, we observe dips instead
of peaks in dV /dI , indicating that excitations at negative
currents decrease the junction resistance. However, within
a single domain model, GMR should lead to an increase
in the junction resistance whenever the layer magnetizations
deviate from the P alignment.

At positive currents in a single domain model in which
the thick-layer magnetization remains fixed, there are no fur-
ther excitations once the AP state is achieved, that is, once
I > Ic, after the main peak in dV /dI (see Figure 8). How-
ever, there is structure in dV /dI beyond the main peak, again
in the form of dips in dV /dI . The results are shown in Figure
18. Here, we plot the differential resistance as a function
of current for selected applied fields, 0.7 T < B < 4.7 T. We
observe both peaks and dips in dV /dI . However, at fields
B > 1 T, dips occur only for I > Ic(H). Also, most cur-
rent sweep traces show multiple dips in dV /dI . The field
dependence of these excitations is best seen when the sec-
ond derivative d2V /dI 2 is plotted in grayscale as a function
of current bias and applied field (Figure 18a). Such a plot
reveals two boundaries, which can be best distinguished at
fields with B > 1.5 T. The first boundary (B) represents the
currents Ic(H) at which the free layer switches into the AP
state. Note that in many samples we also observe additional
peaks in dV /dI for I < Ic(H) (region A). These peaks coin-
cide with small upward jumps of the junction resistance (not
shown), which we associate with transitions between PSs
(Kiselev et al., 2004).

At higher currents, the plot reveals a second boundary
(C). The latter marks the critical currents I+(H) above
which we observe dips in dV /dI . The current bias and
field dependence of these additional excitations is nontrivial,
but the observed features are both stable and reproducible.
A good demonstration of the latter is their applied field
dependence. The latter is best described by first considering
cuts parallel to the current axis of the plots (Figure 18,
dashed–dotted line) and then cuts parallel to the field axis
(dotted line). In the first case, the applied field is constant.
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et al. copyright 2005, American Physical Society.) (b) dV /dI versus
current at large positive current.

Now, as we increase the current, we cross several branches
corresponding to distinct excitations. At each of these
crossings, we observe dips in dV /dI . From cuts parallel to the
field axis (constant current bias), we see that each excitation
exists only in a very narrow field range, that is, they
have a weak dependence on magnetic field. Note that these
excitations have a very similar structure to those observed in
single magnetic layers (Figure 15). Also, here the excitations
shift to lower currents as we increase the applied field. In
addition, different branches of excitations are separated by
narrow stripes of high-resistance regions. We suspect that
these gaps reflect the quantization of transverse spin-wave
modes in these small elements. As in the case of excitation
of single magnetic layers, current-induced excitation can also
be characterized by performing field sweeps at fixed current
bias. Such measurements were reported in Özyilmaz, Kent,
Rooks and Sun (2005).

We now discuss an interpretation of these results in terms
of spin-wave instabilities that are expected in the presence
of strong asymmetries in the longitudinal spin accumulation
(Polianski and Brouwer, 2004; Stiles, Xiao and Zangwill,
2004). The necessary condition for such instabilities is that
the current bias has to be such that the sum of the longitudinal
spin accumulation on either side of the FM layer, that is, the
net spin accumulation, is in the direction opposite to that of
the magnetization (Polianski and Brouwer, 2004; Stiles, Xiao
and Zangwill, 2004).

We have modeled the spin-accumulation pattern in our
bilayer junctions using the two-current model, with the spin-
dependent bulk and interface resistances of Yang et al. (1995)
in the limit in which the spin-diffusion length is much larger

than the layer thicknesses (λsf → ∞). Figure 16 shows that
in the P state at negative current bias the spin accumulation
about the thick layer is asymmetric; the net spin accumulation
is in the direction opposite to that of the magnetization.
According to the condition governing spin-wave instabilities
in single layers (Polianski and Brouwer, 2004; Stiles, Xiao
and Zangwill, 2004), this accumulation pattern can excite
nonuniform spin-waves in the thick layer.

To explain the new region of excitations at currents
beyond I+(H), that is, excitations at positive current bias
in the AP state, we also consider the spin accumulation
in this case (Figure 16, AP state graph). From this we
see that the switching of the free layer has an important
effect on the spin accumulation pattern at the fixed layer.
The sign of the net spin accumulation changes as the
system is switched by the current from the P state into
the AP state. Therefore, excitations of the fixed layer now
require a positive current bias. This is in agreement with
the experimental observation. From this we conclude that
dips in dV /dI at both positive and negative currents are
caused by excitation of the thick magnetic layer. While at
positive currents these excitations could be associated with
uniform excitations of the fixed layer, the pattern of the
excitations matches well the nonuniform excitations found
in single layers (Özyilmaz et al., 2004). Similar features
at high positive currents have been observed in permalloy
nanopillars. Narrow peaks are seen in the voltage spectrum at
gigahertz frequencies at these ‘dips’ in differential resistance,
which are consistent with the excitation of the thicker
layer in the nanopillar (Kiselev et al., 2005). A longitudinal
spin accumulation in the direction opposite to that of the
magnetization on both sides of this layer seems to be the
most likely cause for these excitations.

A detailed theory that explains the experiments presented
in the preceding text is in Brataas, Tserkovnyak and Bauer
(2006). A schematic phase diagram this theory provides is
shown in Figure 19. Here, layer 1 is the thin ferromagnet
and layer 2 is the thick ferromagnet. At zero current, the
layers are aligned in the large magnetic field. Applying a pos-
itive current first produces a macrospin instability of layer 1,

1 2 1 2 1 2 1 2

Macrospin
instability

Spin-wave
instability

Spin-wave
instability

1 2

j
0

Figure 19. Phase diagram for thin (1) and thick (2) ferromagnet,
starting in a parallel configuration, as a function of current.
(Reprinted with permission Brataas et al. copyright 2006, American
Physical Society.)
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leading to a reversal of magnetization in the layer. A fur-
ther increase in the current leads to a spin-wave instability
in FM2. For negative currents, a spin-wave instability of
the thick layer (FM2) is predicted. The slope of the phase
boundaries with respect to applied field (dJc/dH ) are in
semiquantitative agreement with the experiments (Brataas,
Tserkovnyak and Bauer, 2006). Further, in the model asym-
metries in the spin diffusion to the left and right of the
ferromagnets are the main origin of the short wavelength
spin-wave excitations of the magnetization. Subsequently,
we have prepared nanopillar samples with identical top and
bottom leads with respect to spin diffusion, by inserting
a thin Pt layer in the right Cu leads shown in Figure 16
(Chen et al., 2006a). In these structures, bipolar excitations
are suppressed and no excitations are observed beyond the
main peak in dV /dI , confirming theoretical predictions. This
result is also of importance in applications of spin transfer
since a macrospin response is usually desirable.

5 SUMMARY AND OUTLOOK

The discovery of spin transfer in 1996 has led to rapid
advances in the understanding of the influence of spin cur-
rents on magnetization dynamics. Spin currents have been
shown to lead to nonequilibrium magnetization dynamics,
including magnetization reversal, precession, and the exci-
tation of nonuniform spin-wave modes. The resulting phe-
nomena are clearly quite distinct from the action of charge
currents or Oersted fields on ferromagnets.

This has been highlighted in this article by emphasizing
experimental results on nanopillars in the high-field and
high-current limit. In particular, spin currents in magnetic
bilayer nanopillars have been shown to lead to magnetic
hysteresis in high fields. Micromagnetic modeling shows that
sufficient spin current results in a state of maximum magnetic
energy, with the field and magnetization antiparallel. This
modeling also shows that hysteresis may result from the
angular dependence of the spin-torque interaction –distinct
from the usual origin of hysteresis in magnets, namely,
magnetic anisotropy and the dipole interaction.

Spin transfer also results in intriguing new phenomena in
nanopillars with only a single magnetic layer. Here, current-
induced excitations lead to a decrease in resistance. These
excitations have been shown to be associated with an asym-
metry of the contact configuration to the magnetic layer, as
predicted by theory. A spin current may therefore excite
nonuniform modes of a nanomagnet. The exact nature of
the excitations is a topic of active investigation. Explain-
ing such nonuniform magnetic excitations requires physics
beyond the macrospin and one-dimensional transport models.
It requires coupling micromagnetic and three-dimensional

spin-transport calculations, a challenging but important prob-
lem. Finally, we have shown evidence for nonuniform excita-
tions in the traditional bilayer nanopillar structures. Results
illustrate that the resistance of a nanopillar may be lower
than that with the layer magnetizations aligned; the P state.
A lower resistance state is realized at high currents, with the
onset of nonuniform spin-wave excitations. The contacts to
the pillar again play an important role in these excitations.

While new phenomena have been discovered and explored,
there are still fundamental questions as to the nature of the
spin-transfer interaction. The form of the interaction and
its dependence on layer composition and structure is only
beginning to be understood quantitatively. The magnetization
dynamics excited by the spin-transfer interaction is also
poorly understood. For example, the spatial structure of the
modes excited and the relaxation and switching pathways
are unknown. Improved modeling, nanomagnet, and material
structures as well as more detailed transport and magnetic
characterization should lead to a better understanding of the
physics of spin transfer.
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Özyilmaz, B., Kent, A.D., Monsma, D., et al. (2003). Current-
induced magnetization reversal in high magnetic fields in
Co/Cu/Co nanopillars. Physical Review Letters, 91(6), 067203.
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Zimmler, M.A., Özyilmaz, B., Chen, W., et al. (2004). Current-
induced effective magnetic fields in co/cu/co nanopillars. Physi-
cal Review B: Condensed Matter and Materials Physics, 70(18),
184438.



Microwave Excitations in Spin Momentum Transfer
Devices

Frederick B. Mancoff1 and Shehzaad Kaka2,3

1 Technology Solutions Organization, Freescale Semiconductor Inc., Chandler, AZ, USA
2 National Institute of Standards and Technology, Boulder, CO, USA
3 Seagate Technology, Pittsburgh, PA, USA

1 Introduction: Spin-transfer Effects in Nanomagnets 1
2 Experimental Details 2
3 Contact Area Dependence of Spin-transfer

Resonance 3
4 Phase Locking between Spin-transfer Oscillators 8
5 Device Applications of Spin-transfer Oscillators 15
6 Summary 16

Acknowledgments 16
References 16

1 INTRODUCTION: SPIN-TRANSFER
EFFECTS IN NANOMAGNETS

Present applications of thin-film giant magnetoresistance
(GMR) spin valves (Dieny, 1994) and magnetic tunnel junc-
tions (Moodera, Nassar and Mathon, 1999) include read-
back heads for magnetic information storage in hard drives
(Wang and Taratorin, 1999), storage bits in magnetoresis-
tive random access memory (MRAM) (Åkerman et al., 2004;
Debrosse et al., 2004), and magnetic sensors for biological,
robotic, and automotive systems (Daughton, 2003; Freitas
et al., 2004). For such devices, the relative alignment of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

the individual magnetic moments, and thus also the mag-
netoresistive signal, is manipulated by a magnetic field. Spin
transfer, first predicted by Slonczewski (1996) and Berger
(1996), offers a new way to control the magnetic alignment in
nanostructured devices using applied electric current instead
of magnetic field. When a current flows through a trilayer
of two ferromagnets separated by a nonmagnetic spacer, the
electrons acquire a spin polarization after passing through the
first, or fixed, ferromagnet. As the spin-polarized electrons
are incident on the second, or free, ferromagnet, the trans-
fer of spin angular momentum produces a torque on the free
magnetization. Magnetic excitations observed as a result of
the spin transfer include both a hysteretic reversal (Myers
et al., 1999; Wegrowe et al., 1999; Katine et al., 2000; Grol-
lier et al., 2001; Mancoff and Russek, 2002; Sun et al., 2002;
Mancoff et al., 2003) or sustained high-frequency precession
(Tsoi et al., 2000; Kiselev et al., 2003; Rippard et al., 2004a;
Covington et al., 2004; Kiselev et al., 2004; Rippard et al.,
2004b) of the magnetization.

The dynamics of the free layer’s magnetic moment under
a spin-polarized applied current Idc can be described using
the Landau–Lifshitz–Gilbert equation with the inclusion of
the spin-transfer torque (Slonczewski, 1996):

d �m
dt

= −µ0γ �m × �Heff − µ0γα �m × ( �m × �Heff)

+εIdc�γ

2eMAt
�m × ( �m × �p) (1)

where �m and �p are the free and fixed layer magnetization
directions, γ is the gyromagnetic ratio, �Heff is the effective
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magnetic field including the applied and demagnetizing
fields, α is the damping parameter, µ0 is the permeability
of free space, ε is the spin-transfer efficiency, � is Planck’s
constant, e is the electron charge, M is the free layer
saturation magnetization, A is the particle area, and t is
the layer thickness. The first term on the right describes
the usual precession of �m about �Heff. The second term on
the right gives the magnetic damping, which tends to drive
�m toward �Heff. The spin-transfer torque is given by the final
term on the right, which is proportional to Idc. For the correct
sign of Idc, the spin-transfer torque opposes the magnetic
damping term and possibly cancels it out completely. In
this case, spin transfer will produce either a hysteretic
switch or a steady-state coherent oscillation of �m depending
on the relative strength of Idc and the applied magnetic
fields and anisotropies (Slonczewski, 1996, 1999). In this
single-domain model, the spin-transfer dynamics depend
on the current density Idc/A and would be identical for
devices with different diameters when driven with the same
current density. The single-domain model, however, ignores
effects due to current-generated oersted fields, nonuniform
magnetization, and associated exchange energies.

Spin transfer generally becomes significant for nanosized
ferromagnets, in which the reduced device dimension d

allows the large critical current densities of 1010 –1011 A m−2

required for large spin-transfer effects. The spin-transfer
torque is proportional to the current density and so varies
as d−2. The oersted magnetic field from the current flow
also acts on the magnetic moment and varies as d−1. Thus,
spin transfer dominates at small d (Slonczewski, 1996).
Experimental observations of spin-transfer effects have been
reported for d < 30–200 nm and include systems such as
patterned magnetic nanopillars (Katine et al., 2000; Grol-
lier et al., 2001; Mancoff and Russek, 2002; Sun et al.,
2002; Kiselev et al., 2003; Mancoff et al., 2003; Kiselev
et al., 2004; Covington et al., 2004), mechanical point con-
tacts (Tsoi et al., 2000; Rippard, Pufall and Silva, 2003; Ji,
Chien and Stiles, 2003; Pufall, Rippard and Silva, 2003),
lithographic point contacts (Myers et al., 1999; Rippard
et al., 2004a,b), magnetic tunnel junctions (Huai et al., 2004;
Fuchs et al., 2004), and magnetic nanowires (Wegrowe et al.,
1999). The possibility for electrical control of magnetiza-
tion through an applied current, as well as the increas-
ing importance of spin transfer at reduced device sizes,
makes spin transfer relevant for nanoscale device applica-
tions. Spin-transfer-induced hysteretic magnetic switching
could allow a low-power, high-density MRAM written by
applied current, rather than applied magnetic field. Also,
the microwave output power from the spin-transfer high-
frequency magnetic precession state can form the basis for
a frequency-tunable, current-controlled nanoscale oscillator.
Potential spin-transfer applications are discussed later.

In this article, we discuss spin-transfer-induced high-
frequency precession, focusing on experiments at both
Freescale Semiconductor and the National Institute of
Standards and Technology (NIST) on GMR point contacts.
We describe two issues of importance both for fundamen-
tal understanding as well as for potential applications: the
dependence of spin-transfer precession properties on the area
of a single point contact, as well as the observation of phase
locking between separate spin-transfer oscillators. First, with
regard to the area dependence, we discuss measurements at
Freescale of spin-transfer resonance in contacts with diameter
d ranging from less than 50 nm to almost 300 nm (Mancoff,
Rizzo, Engel and Tehrani, 2006). The resonance frequency f

increased nearly linearly with Idc, but the decreasing depen-
dence of the slope df/dIdc on d deviated from a simple d−2

form given by the current density. Instead, the data was fit
by an empirical model in which the large-angle precession
region extends beyond the contact diameter by a ring of width
δ ≈ 50 nm. Also, the increase of the spin-transfer precession
critical current Ic with contact area could be fit equivalently
well by the model including the ring δ or by previous theory
(Slonczewski, 1999).

Next, with regard to phase locking between spin-transfer
oscillators, we examined devices with two separate point
contacts to a single GMR spin valve film. The Freescale
group measured the dependence of spin-transfer phase lock-
ing on the intercontact spacing (Mancoff, Rizzo, Engel and
Tehrani, 2005). For two 80-nm diameter contacts electrically
connected in parallel to a single top electrode, we observed
an onset of phase locking between the two resonances for
center-to-center spacings less than around 200 nm. The NIST
group investigated devices with two contacts spaced by
500 nm and with separate electrical connections (Kaka et al.,
2005). The current bias of one contact was varied to tune
its resonance frequency toward that of the second contact
with constant current bias. Over a range in current bias,
the precession of both contacts phase locked. For both the
Freescale and NIST data, the phase-locked resonance pos-
sessed an increased output power and a decreased linewidth
due to coherence between the oscillators.

2 EXPERIMENTAL DETAILS

Figure 1(a) shows a typical cross section of a metallic point
contact through a thick insulator to a GMR spin valve. The
GMR film was patterned with lateral dimensions greater
than 8 µm, so any edge defects were far from the point
contact. The GMR film was insulated either by a cross-
linked PMMA electron-beam (e-beam) lithography resist
or SiO2. The use of SiO2 has some advantages, including
more compatibility with industrial fabrication of spintronics
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Figure 1. (a) Cross section of a via through an insulator to a
GMR film. (b) Plan-view SEM image of a nominal 60-nm diameter
contact. (c) Cross-section TEM image of a point contact to a GMR
film. (Reproduced from F.B. Mancoff et al., 2006, with permission
from the American Institute of Physics.  2006.)

devices such as MRAM, allowing optical lithography to
pattern the contact via, and avoiding the time-consuming
high-dose e-beam exposure needed to cross-link the PMMA.
The nominal lithographic contact diameter ranged from less
than 50 nm up to 300 nm. Figure 1(b) is a plan-view scanning
electron microscope (SEM) image of a nominally 60-nm
contact written by e-beam lithography and etched through
SiO2. Figure 1(c) is a cross-section transmission electron
microscope (TEM) image of a nominally 160-nm optical
lithography contact, also using a SiO2 insulator.

The GMR film typically consisted of a nonmagnetic base
electrode, a relatively thick ferromagnetic fixed layer, a non-
magnetic Cu spacer layer, a relatively thin ferromagnetic free
layer, and a nonmagnetic cap. Figure 2(a) shows a measure-
ment at low current bias of the current-perpendicular-to-plane
(CPP) GMR in a nominally 50-nm diameter contact. The
fixed layer was 20-nm Co81Fe19, the Cu spacer was 6 nm
thick, and the free layer was 4.5-nm Ni80Fe20. The CPP GMR
switching was determined by the Ni80Fe20 and Co81Fe19

coercivities.
The high-frequency electrical measurement setup (top-

down view in Figure 2b) was similar to that used for other
high bandwidth measurements of magnetic devices (Russek
and Kaka, 2000; Stutzke, Burkett and Russek, 2003; Kaka
and Russek, 2002). The GMR film was patterned into
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Figure 2. (a) Resistance R versus applied magnetic field H for a
nominally 50-nm diameter point contact to a CPP GMR spin valve
film. (b) Diagram of high-frequency measurement setup.

part of the bottom electrode. Idc flowed from a current
source into a bias tee and then into the device via a high-
frequency microwave probe. A lock-in amplifier measured
the device resistance at low frequencies (<kHz). Idc excited
spin-transfer precession of the free layer and an associated
oscillation of the device resistance through the GMR. The
microwave voltage output is the product of Idc and the oscil-
lating resistance. The high-frequency signal passed through
the bias tee into a microwave amplifier and then a spectrum
analyzer. The amplifier gain was divided out of all data pre-
sented. Measurements were at room temperature with +Idc

defined as electron flow from the free to the fixed magnetic
layer. The chip and probe were mounted on a rotatable stage
for which a magnetic field applied to the device could be
varied between in plane and out of plane.

3 CONTACT AREA DEPENDENCE OF
SPIN-TRANSFER RESONANCE

In this section, we describe measurements at Freescale of
spin-transfer resonance in devices with a single GMR point
contact, as in Figure 1, focusing on the dependence of
the spin-transfer precession as a function of the contact
size (Mancoff, Rizzo, Engel and Tehrani, 2006). In recent
measurements of high-frequency (5–40 GHz) spin-transfer
magnetization precession, the dependence on the lateral
device area has not been examined (Kiselev et al., 2003,
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Rippard et al., 2004a; Covington et al., 2004; Kiselev et al.,
2004; Rippard et al., 2004b). However, understanding the
area dependence is important in determining the details of the
spin-transfer-induced dynamics, particularly the precession’s
spatial extent and lateral coherence, the importance of
the oersted field, and the type of magnetic spin-wave
excitations generated. The area dependence is also critical
for understanding the scaling of spin-transfer devices in
applications such as low-power, high-density MRAM or
nanoscale current-driven, tunable microwave oscillators.

The measured device contact resistance versus the nominal
designed contact diameter dnominal (squares) from 50 to
300 nm is plotted in Figure 3(b). The data are averages for
35 contacts total of varied size. The dashed line is a fit of a
Sharvin–Maxwell calculation for the point contact resistance
(Wexler, 1966), for which we let the contact area differ from
the nominal area by an amount equal to a ring of constant
width. This area difference was determined by the fit as
a decrease from the nominal diameter by a ring of width
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Figure 3. (a) Voltage amplitude versus frequency for a GMR
contact of nominal diameter 300 nm. (b) Contact resistance ver-
sus nominal diameter dnominal (squares). The dashed line is a
Sharvin–Maxwell fit. Error bars in (b) are smaller than the data
points. (Reproduced from F.B. Mancoff et al., 2006, with permis-
sion from the American Institute of Physics.  2006.)

≈8 nm, likely due to a slight loss in pattern fidelity in forming
the contact.

For the experiments, the spin valve typically contained a
20-nm Co81Fe19 fixed layer, a 6-nm Cu spacer, and a 4.5-nm
Ni80Fe20 free layer. Figure 3(a) shows the frequency spec-
trum amplitude measured for a nominally 300-nm diameter
contact at Idc from 50 to 75 mA in an applied magnetic field
of approximately 1 T normal to the thin-film plane. At this
magnetic field, the Ni80Fe20 free magnetization was satu-
rated out of plane while the Co81Fe19 fixed magnetization
pointed ≈30◦ out of plane, according to Stoner–Wohlfarth
calculations. The spin-transfer precession manifested itself
as a sharp peak in the frequency spectrum above a critical
current at +Idc. The signal resulted from the GMR as the
Ni80Fe20 free layer magnetization moved while the Co81Fe19

magnetization was fixed with respect to spin transfer due
to its larger thickness and magnetization compared to the
Ni80Fe20. The peak precession frequency increased mono-
tonically with Idc (Figure 3(a)). This increasing trend is also
demonstrated in Figure 4 as a map of the voltage ampli-
tude which is a function of both the frequency spectrum
and Idc. The peak precession frequency increased with Idc

at an average rate of around 120 MHz mA−1 for this device,
demonstrating an electrically controlled resonance frequency
that may be of use in a practical oscillator device. The
peak precession frequency displays occasional discontinu-
ous jumps at certain values of Idc, such as at around 57 mA
and a larger jump at around 73 mA as seen in Figure 4. The
origin of these discontinuities is unknown (Rippard et al.,
2004a,b; Kiselev et al., 2004) but may be associated with
spin-transfer excitation of the nominally fixed magnetic layer
or a change in the mode structure within the free layer.

2

1.5

1

0.5

0

15

14

13

12

11

10
40 45 50 55 60 65 70 75

ldc (mA)

Fr
eq

ue
nc

y 
(G

H
z)

nV
 H

z−1
/2

Figure 4. Map of voltage spectrum amplitude versus frequency and
current bias Idc for the GMR contact of nominal diameter 300 nm
from Figure 3(a).
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In this geometry, with the magnetic field applied perpen-
dicular to the film plane, the fixed layer does not have a
large Zeeman energy to fix the direction of the layer in
the azimuthal direction, and motion of the fixed layer can
occur.

Figures 3(a) and 4 demonstrate spin-transfer precession in
the largest area devices to date. Such clear spin-transfer pre-
cession in larger devices is somewhat surprising since, as
described previously, spin transfer competes with the self-
generated magnetic field from the current flow and is typi-
cally dominant only at small contact diameters (Slonczewski,
1996). Nevertheless, we observed robust spin-transfer res-
onance in devices as large as almost 300 nm diameter.
Although the data in Figures 3(a) and 4 were from a contact
formed using e-beam lithography, we also observed simi-
lar spin-transfer resonance in contacts patterned with optical
lithography (Figure 1c). Optical lithography offers simplified
fabrication for applications by avoiding e-beam lithography,
which was used for almost all spin-transfer studies so far
(See Huai et al., 2004 for an exception).

As a function of the physical diameter dSM determined
from the Sharvin–Maxwell fit in Figure 3(b), the measured
frequency full-width at half-maximum (FWHM) was as small
as <10 MHz (Figure 5a) and the quality factor f/FWHM
was as large as >1700 (Figure 5b), both roughly constant
with dSM from 35 nm to almost 300 nm. Each data point in
Figure 5(a) and (b) is the minimum FWHM and maximum
f/FWHM measured for a given contact over the range of Idc

and magnetic fields examined. The solid lines are the average
of the data points for a given diameter. The maximum
integrated resonance power ranged from around 200 pW at
the smaller sizes to 1–5 pW in the largest devices.

The spin-transfer peak precession frequency f versus Idc

measured for nominal contact diameters from 50 to 300 nm
is shown in Figure 6(a), with the labels giving dSM for each
contact. For all sizes, the measured f (crosses) increased
approximately linearly with Idc (dotted lines are linear fits).
This linear dependence agrees with Landau–Lifshitz–Gilbert
calculations using a spin-transfer torque term for a single-
domain particle (Slonczewski, 1996; Lee, Redon and Dieny,
2005), and also for the spatially nonuniform case includ-
ing nonlinearities from both exchange and dipole coupling
(Hoefer et al., 2005). The physical picture is as follows: nor-
mally, the damping torque aligns the Ni80Fe20 free moment
with the effective magnetic field and produces a non-
precessing, zero torque steady state. The spin-transfer torque
opposes the magnetic damping torque so the free moment
can have a nonzero angle with the field in equilibrium
and undergo steady-state precession. Increased Idc and spin-
transfer torque drive the Ni80Fe20 free layer to larger steady-
state precession angles with the 1 T applied magnetic field.
Then, the demagnetizing field of the Ni80Fe20 is reduced
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Figure 5. (a) Minimum spin-transfer resonance full-width at half-
maximum FWHM of the voltage spectrum and (b) maximum
resonance quality factor f/FWHM versus physical contact diameter
dSM from the Sharvin–Maxwell fit in Figure 3(b). Solid lines show
the average data points.

and no longer nearly cancels the applied field, so that the
net internal field, the magnetic torque, and therefore also the
precession frequency f increase.

The slope df/dIdc (squares) versus the contact diameter
dSM from the fit to the Sharvin–Maxwell calculation is
shown in Figure 6(b). The data are averages of 17 contacts
total of varied size. The error bars are the standard error in
df/dIdc. The dashed line is a fit of df/dIdc ∝ 1/d2

SM, which
assumes f to be proportional to the current per area defined
by the contact diameter dSM. As shown, this fit was quite poor
(reduced χ2 � 1). Compared to the dashed fit, the observed
slope df/dIdc increases much more slowly with decreasing
dSM, which implies that the contacts require more current (or
torque) to increase f than expected from the physical contact
diameter. This difference is largest for the smallest contacts.
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The solid line fit to df /dIdc ∝ 1/(dSM/2 + δ)2 determines δ ≈
50 nm. A similar fit with δ = 0 (dashed line) does not match
the data. The dotted fit to df/dIdc ∝ 1/(π(dSM/2)2 + C) with a
constant area C does not fit the data as well as the solid line. (inset)
Top-down view of a GMR contact, showing dSM and δ. (Reproduced
from F.B. Mancoff et al., 2006, with permission from the American
Institute of Physics.  2006.)

As a starting model, we hypothesized that the contacts
have a larger area of precessing spins than given by ASM =
π(dSM/2)2, since the strong magnetic exchange coupling
must create a finite transition between the coherently pre-
cessing spins under the contact and the approximately static
spins far outside it. In addition, energy losses due to dipolar
radiation and spin-wave generation will increase the effec-
tive contact area. Spin-wave radiation losses were previously
included in the theory of the critical current Ic for spin-
transfer precession in point contacts (Slonczewski, 1999),
but as a constant term independent of area.

As a first approximation, we assumed that the strongly
precessing region extends into the continuous Ni80Fe20 film
by a ring of constant width δ around the physical diameter

dSM (see a schematic, overhead view of the contact in
the inset to Figure 6b). The modified fit of df /dIdc ∝
1/(dSM/2 + δ)2 to the data (solid line in Figure 6b) was
good (reduced χ2 ≈ 1.8). The fit determined δ ≈ 50 nm,
which results from magnetic excitation in the surrounding
Ni80Fe20 film. This δ value for the excitation length is
several times greater than the magnetic exchange length,
which is ≈6 nm for the Ni80Fe20 film (Hoefer et al., 2005).
For interactions between two contacts in close proximity,
each with dSM ≈ 65 nm, for example, this δ value implies
that for a center-to-center spacing of dSM + 2δ ≈ 170 nm, the
precessing regions will interact. This estimate is consistent
with our observation (see next section) of phase locking of
the spin-transfer resonances for two dSM ≈ 65 nm contacts at
center-to-center spacings <200 nm in the Freescale devices
(Mancoff, Rizzo, Engel and Tehrani, 2005).

We also fit the form df/dIdc ∝ 1/(π(dSM/2)2 + C) to
the data in Figure 6(b) (dotted line), where C is a constant
area of magnetic excitation in addition to π(dSM/2)2. We
were motivated to use this form by a theoretical expression
for Ic versus area (see Slonczewski, 1999 and equation (2)
in the following text) in which Ic is proportional to the
sum of the contact area and a constant term independent
of area due to spin-wave radiation to the surrounding film.
The fit determined a minimum spin precession area of
C ≈ π(110 nm/2)2, but did not match the data nearly as
well (reduced χ2 ≈ 8.3) as the solid line fit using the
δ-ring model. In addition, as another comparison for the data
in Figure 6(b), a decreasing trend for df/dIdc versus contact
size has also been recently calculated in the case of a spatially
nonuniform precession for the contact (Hoefer et al., 2005).

We used finite element simulations to estimate the increase
in precessing area due to current spreading from the current
injection site. The injected current density’s lateral extent was
approximately 3 nm (6 nm) outside the physical contact area
in a horizontal plane at the top (bottom) of the 6-nm-thick
Cu spacer layer. We thus conclude that current spreading is
a relatively minor contribution to the increased magnetically
active area given by the ring width δ ≈ 50 nm.

We also measured the spin-transfer critical current Ic

versus area ASM = π(dSM/2)2 for an out-of-plane applied
magnetic field of 1 T (Figure 7a). Ic is the lowest cur-
rent for which the spin-transfer peak in frequency was
observed. The data are averages of a total of 17 con-
tacts of varied size, and the error bars show the standard
error in Ic. A theoretical form for Ic versus contact area
A derived using the spin-transfer torque is (Slonczewski,
1999):

Ic = etM

�ε

[
23D

2�γ
+ 2Aα

(
Bapp − µ0M

)]
(2)
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Figure 7. (a) Spin-transfer resonance critical current Ic versus area
from the physical contact diameter dSM from the Sharvin–Maxwell
fit in Figure 3(b). A 1 T magnetic field was applied out of plane.
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measured from peaks in quasistatic dV/dI versus Idc (inset), which
correspond to the onset of spin-transfer-induced low frequency
noise. The data in the inset is from a nominally 50-nm diameter
contact. Dashed lines are fits to equation (2) for (a) or equation (3)
for (b), and the solid curves are fits to modified forms including
a ring δ in the area calculation. (Reproduced from F.B. Mancoff
et al., 2006, with permission from the American Institute of Physics.
 2006.)

where e is the electron charge, t is the free layer thick-
ness, M is the magnetization, � is Planck’s constant,
ε is the spin-transfer efficiency, D is the exchange parame-
ter, γ is the gyromagnetic ratio, α is the damping param-
eter, Bapp is the applied magnetic field, and µ0 is the
permeability of free space. The first term on the right in
equation (2) represents damping of the spin-transfer torque
due to spin-wave radiation losses to the surrounding mag-
netic film, while the second term in equation (2) results
from the conventional magnetic damping. For small con-
tact areas, the spin-wave radiation term dominates the dis-
sipation of the spin-transfer excitation, while the conven-
tional damping term becomes more significant for larger
contacts.

The fit of equation (2) is shown in Figure 7(a) (dashed
line). Using t = 4.5 nm, M ≈ 640 kA m−1 from vibrat-
ing sample magnetometry, and D = 3.5 meV-nm2 (Pufall,
Rippard and Silva, 2003) for the Ni80Fe20 free layer, we
find ε ≈ 0.18 and α ≈ 0.07. This ε is in fair agreement with
results by a different technique where ε ≈ 0.29–0.56 for
Co90Fe10/Cu multilayers or ε ≈ 0.17–0.38 for Ni80Fe20/Cu
multilayers (Pufall, Rippard and Silva, 2003). ε is reduced in
our devices since the fixed layer magnetization is ≈ 30◦ out
of plane instead of 90◦ as assumed for equation (2). The in-
plane magnetization and corresponding spin polarization do
not contribute to precession, so ε is reduced, in this case by a
factor of ≈2, compared to when the fixed layer magnetization

is 90◦ out of plane. The α value is somewhat large compared
to that measured for continuous Ni80Fe20 films (α ≈ 0.01)
but closer to that measured for large-angle precession in pat-
terned nanostructures (α ≈ 0.03) (Kaka et al., 2003).

We also fit the data to a modified form of equation (2) with
Ic ∝ (ASM + �A), where �A is the extra area of the ring of
width δ and the proportionality constant contains the same
prefactors as the area term in equation (2). This modified
form incorporates the spin-wave radiation loss term using
the additional excitation ring δ, instead of the constant term
independent of area (first term on the right in equation (2)).
The fit to this equation (solid curve in Figure 7a) determined
δ ≈ 90 nm (comparable to δ ≈ 50 nm from Figure 6) as well
as α/ε ∼ 0.16, which gave α ≈ 0.03 assuming ε ≈ 0.18 as
found previously. The quality of the two fits in Figure 7(a)
was roughly equal given the data uncertainty, though the fit
incorporating the ring δ gave a more reasonable α.

In Figure 7(b), we again plot Ic versus ASM, but now for
an in-plane applied magnetic field of 40 mT. The data are
averages of more than 80 devices of varied size. Error bars
showing the standard error in Ic are smaller than the data
points. The Ic values in Figure 7(b) were from quasistatic
measurements of the differential resistance dV/dI versus
Idc, as shown in the inset to Figure 7(b) for a nominally
50-nm diameter contact. The observed peak in dV/dI

at Idc ≈ 11 mA marks the onset of spin-transfer-induced
magnetic excitations. Corresponding frequency spectrum
measurements showed these dV/dI peaks were actually
due to low frequency (< ≈2 GHz) noise rather than a
coherent high-frequency resonance as in Figure 7(a). This
low frequency noise presumably results from switching
between multiple metastable magnetic configurations (Pufall
et al., 2004). Whereas this noise is not due to coherent
precession as in Slonczewski (1999), its onset is still due to
the spin-transfer torque exceeding a critical value. Therefore,
we fit these spin-transfer features using equation (2), but
modified for the in-plane magnetic field (Rippard, Pufall and
Silva, 2003):

Ic = etM

�ε

[
23D

2�γ
+ 2Aα

(
Bapp + µ0M

2

)]
(3)

The fit of equation (3) (dashed line in Figure 7b) gave
ε ≈ 0.14 and α ≈ 0.08, in reasonable agreement with the
field out-of-plane measurements. Figure 7(b) also shows a
fit (solid curve) using the alternate form of equation (3) Ic ∝
(ASM + �A), which determined δ ≈ 70 nm and α/ε ∼ 0.15,
or α ≈ 0.02 assuming ε ≈ 0.14. This second form for Ic

fits the data in Figure 7(b) much better (reduced χ2 ≈ 0.2
as compared to ≈9.5 for equation (3) itself) and gives a
more reasonable α. In general, an understanding of the area
dependence of spin-transfer resonance is important both for
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testing spin-transfer theory and for future applications of spin
transfer to magnetic oscillators or nonvolatile memory.

4 PHASE LOCKING BETWEEN
SPIN-TRANSFER OSCILLATORS

4.1 Introduction to phase locking

This section reviews data from two independent groups
that studied a system of two interacting nanocontact oscil-
lators. The results support a single conclusion: the local-
ized magnetic oscillations of two nanocontact oscillators in
submicrometer proximity can phase lock (synchronize) to
a single microwave frequency. These investigations, con-
ducted at Freescale Semiconductor (Mancoff, Rizzo, Engel
and Tehrani, 2005) and at NIST in Boulder, Colorado (Kaka
et al., 2005), are motivated by the technological possibilities
of increased microwave power output from a large array of
phase-locked spin-transfer oscillators. For the present geom-
etry of point contacts to an extended magnetic film, possible
coupling mechanisms between contacts include oscillating
dipolar magnetic fields, spin-wave radiation, or exchange
coupling. A related experiment at NIST demonstrated
injection locking of a single spin-transfer oscillator to a
microwave current applied from an external source (Rippard
et al., 2005). In addition, phase locking in arrays of mul-
tiple spin-transfer oscillators was recently investigated both
by analytical calculations (Slavin and Tiberkevich, 2005) and
numerical simulations (Grollier, Cros and Fert, 2005).

Phase locking via mutual interactions occurs in a variety
of settings beyond magnetic materials. Examples of solid-
state devices include arrays of phase-locked, oscillating
Josephson junctions (Wengler, Guan and Track, 1995; Benz
and Burroughs, 1991) and Metal-semiconductor transistors
(MESFETS) (Popovic, Weikle, Kim and Rutledge, 1991)
as well as coupled semiconductor oscillator designs for
achieving high-frequency purity (Rohde, Poddar and Bock,
2005). Historically, the first scientific observation of phase
locking dates back to 1665 when Christian Huygens noticed
synchronized motion of two pendulum clocks caused by
mechanical vibrations transmitted through a wall (Bennet,
Schatz, Rockwood and Wiesenfeld, 2002). Synchronized
behavior also occurs in biological systems, including the light
flashing of certain colonies of fireflies in Malaysia (Strogatz,
2003) and the dependence of the periodicity of light emission
from individual flies on the received stimulus of neighboring
light flashes (Buck and Buck, 1968). Another example is
human heart muscle, composed of thousands of pacemaker
cells that fire in synchrony to produce a single heartbeat
despite slight differences between neighbor cells. However,

under certain conditions, synchrony is lost, disrupting the
heartbeat and leading to a life threatening medical condition
(Strogatz, 2003).

4.2 Measurement of phase locking as a function
of contact separation

In this section, we focus on measurements at Freescale on
the dependence of phase locking between spin-transfer reso-
nances in two neighboring GMR point contacts as a function
of the physical separation between the contacts (Mancoff,
Rizzo, Engel and Tehrani, 2005). The two contacts are to
the same section of the GMR film and are connected elec-
trically in parallel to each other with a single top electrode
(schematic cross section in Figure 8a). The sputter-deposited
film consisted of a 5-nm Pd/25-nm Cu base electrode, a
20-nm Co81Fe19 fixed magnetic layer, a 6-nm Cu spacer,
a 4.5-nm Ni80Fe20 free magnetic layer, and a 2-nm Cu/3.5-
nm Pd cap. Figure 8(b) shows a cross-section SEM image of
the contacts. The center-to-center spacing was 120 nm, and
the nominal diameters were 80 nm. As described in the previ-
ous section, an actual diameter dSM ≈ 65 nm was determined

Top electrode

SiO2
Point contacts

Cap
Free

Spacer

Fixed

Base electrode

+ldc

e−

flow

(a)

200 nm
(c)

Point contacts

(b) 100 nm

SiO2

GMR film

Figure 8. (a) Cross section of two point contacts. (b) Cross-section
SEM image of two 80-nm diameter contacts with a 120 nm center-
to-center spacing. (c) Plan-view SEM image of two 80-nm contacts
with a 240 nm spacing. (Reproduced from Mancoff et al., 2005,
with permission from Nature Publishing Group.  2005.)
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from a Sharvin–Maxwell calculation. Figure 8(c) is a plan-
view SEM image of a similar sample with 240 nm spacing.

For high-frequency measurements on double point con-
tacts in this section, a total dc current Idc was applied to
the contact pair. Figure 9 shows the measured frequency
spectrum voltage amplitude versus Idc for three devices
with center-to-center spacings of 800 nm (Figure 9a), 150 nm
(Figure 9b), and 120 nm (Figure 9c). All the data in this
section was taken in a magnetic field of between 0.8 and
1.2 T applied perpendicular to the plane of the film. The spin-
transfer precession, or resonance, appeared as a frequency
spectrum peak at a given Idc. The peak frequencies for all
spacings increased approximately linearly with increased Idc,
over a frequency range of <10 to >24 GHz, in agreement
with similar measurements on single GMR point contacts
(Rippard et al., 2004a; Mancoff, Rizzo, Engel and Tehrani,
2006). The number and behavior of the observed spin-
transfer peaks depended on the two contacts’ relative spac-
ing. For the widely spaced device (Figure 9a) with 800 nm
spacing, we observed two separate peaks for nearly all Idc.
The two peaks had comparable resonance frequencies that

increased at similar average rates versus Idc. Each peak dis-
played frequency jumps at multiple Idc values, similar to
discontinuities observed for single point contacts (Rippard
et al., 2004a; Mancoff, Rizzo, Engel and Tehrani, 2006). The
two sets of jumps were uncorrelated, so the pair of contacts
at 800 nm spacing was undergoing independent, uncoupled
spin-transfer oscillations.

In contrast, the closely spaced contact pair (Figure 9c) at
120 nm spacing displayed only a single peak in frequency for
all Idc. The change from two independent peaks at 800 nm
spacing to a single peak at 120 nm spacing indicates inter-
actions between the point contacts at closer spacing coupled
the spin-transfer oscillations. The coupling strength is suf-
ficient to bring together in frequency the resonances from
the two different contacts that would otherwise be sepa-
rated by several hundred megahertz for uncoupled devices,
as in Figure 9(a). For the device with a somewhat greater
spacing of 150 nm (Figure 9b), we detected two separate
peaks for most Idc. However, here the two peaks progressed
nearly parallel in frequency versus Idc, compared to the
two independent sets of frequency jumps for the 800 nm
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Figure 9. Maps of spectrum amplitude versus frequency and applied current bias Idc for devices with varied center-to-center intercontact
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dc versus Idc for double point contact devices with
120 nm (crosses) and 800 nm (squares) spacings. Corresponding frequency spectra show either one or two spin-transfer peaks, respectively.
The curve for the 800-nm spaced sample includes the sum of the power in its two peaks. (Reproduced from Mancoff et al., 2005, with
permission from Nature Publishing Group.  2005.)
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spacing device (Figure 9a). Thus, the 150 nm spacing data
in Figure 9(b) behaved with a coupling strength intermedi-
ate between the two independent peaks at 800 nm spacing
and the single peak at 120 nm spacing.

We observed a significant difference in power output
between devices with a relatively close spacing and a single
resonance peak compared to devices with larger spacing and
two independent peaks. Figure 9(d) shows that the typical
integrated power normalized by Idc

2 for the single peak in
a device with 120 nm spacing (crosses) was clearly greater
than the combined power for the two peaks in a device
with 800 nm spacing (squares). Among seven devices (with
spacings of 120–200 nm) showing a single peak similar to
Figure 9(c), the average output power was 11 ± 2 nW A−2

(where specified uncertainty is the standard error) in 1 T
applied magnetic field. In contrast, for all seven devices
(with spacings of 400 and 800 nm) showing two independent
peaks similar to Figure 9(a) the average output power was
5 ± 0.5 nW A−2 for the two peaks combined in a 1 T field. A
similar factor of ≈2 difference in power was also observed in
1.2 T, with 8 ± 1 nW A−2 for devices with small spacing and
one peak and 4 ± 0.5 nW A−2 for devices with large spacing
and two peaks.

The factor of ≈2 difference in output power indicates
the closely spaced double point contacts were phase locked.
We modeled the two contacts as resistors R1 and R2

in parallel with each other and in series with a single
current source Idc. The two resistances oscillate in time
with a phase difference φ and equal amplitude �R and
frequency ω about an average value R0 : R1(t) = R0 +
(�R/2) cos ωt and R2(t) = R0 + (�R/2) cos(ωt + φ). The
ac voltage Vac generated by the device is then Vac(φ) =
Idc ((R1R2/(R1 + R2)) − (R0/2)), and the power measured
across the 50 
 load of the spectrum analyzer is P (φ) =
1
2 · (V 2

ac(φ)/50 
). For simplicity, we assumed the 50 
 load
impedance is much greater than the contact resistances, as is
in the experiment. The power for two in-phase oscillators
is found by evaluating P (φ = 0). The power for two
uncoupled contacts oscillating independently with random
φ, as expected in Figure 9(a), is given by averaging over
φ from 0 to 2π : Prandom φ = ∫ 2π

0
P(φ)dφ

2π
. Evaluating these

expressions, we find: P (φ = 0) = 2Prandom φ , so that the
modeled total power for two uncoupled contacts is half
the power for two in-phase oscillators. Thus, we conclude
that the two point contact oscillators with close intercontact
spacing (Figure 9c) are phase locked with φ = 0, whereas
those with wide spacing (Figure 9a) are uncoupled.

We measured spin transfer in over 30 devices with various
spacings and repeatedly observed the trend in Figure 9(a–c).
The statistical distributions for these measurements are
shown in Figure 10 where we plot histograms for the three
types of spin-transfer frequency-domain behavior (two peaks,
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Figure 10. Histogram of spin-transfer behavior for devices with
two contacts and varied center-to-center spacing. Squares show
the devices for which a single spin-transfer peak was observed,
as in Figure 9(c). Diamonds show the devices for which two peaks
were observed, as in Figure 9(a). Triangles show the devices with
intermediate spin-transfer characteristics. Solid lines are guides to
the eye. (Reproduced from Mancoff et al., 2005, with permission
from Nature Publishing Group.  2005.)

intermediate, and one peak) versus intercontact spacing. The
solid lines are guides to the eye. The ‘two peaks’ histogram
(solid diamonds) is maximum for the largest spacings of
400 nm and greater and drops to 0 at small spacings.
These data correspond to devices with two spin-transfer
peaks observed at each Idc and with each peak showing
its own independent frequency jumps, indicating that the
point contact pair was uncoupled. The ‘one peak’ histogram
(open squares) is maximum at the smallest spacings of
120–150 nm and decreases to 0 above 200 nm. These data
correspond to devices with a single resonance peak observed
at each Idc, indicating strong coupling and associated phase
locking between the oscillators. Finally, the ‘intermediate’
histogram (solid triangles) shows a third category of spin-
transfer data with a maximum around 200 nm spacing. These
data correspond to devices which showed a transition from
one peak to two within an Idc sweep, or a single peak over
most Idc values with an occasional weaker second peak, or
two peaks moving nearly parallel in frequency with Idc as in
Figure 9(b). This intermediate category represents devices
in a transition range between those with strong coupling
with phase locking and those with very weak or no coupling
between the two independent oscillators.

Figure 10 indicates consistent likelihood of phase locking
in the Freescale double point contact devices at center-
to-center spacings <200 nm. As described in the previous
section, the region of large-angle precession for each point
contact exceeds the physical contact area in the extended
Ni80Fe20 free layer magnetic film. For a single contact



Microwave excitations in spin momentum transfer devices 11

of nominally 80 nm diameter (with a Sharvin–Maxwell
diameter dSM ≈ 65 nm, as described in the previous section),
we estimated an effective magnetic excitation diameter of
approximately 170 nm (Mancoff, Rizzo, Engel and Tehrani,
2006). This value suggests the possibility that an overlap
in the regions of strong dynamic excitation existing for
center-to-center spacings of 200 nm (Figure 10) leads to a
spontaneously phase-locked state above the critical current of
the oscillators. We see in the next section that phase locking
can occur for a larger contact separation (500 nm) with the
requirement that each oscillator’s resonance frequency be
independently tuned to closely coincide.

Figure 11 gives another example of spin-transfer oscilla-
tions in a double point contact device with 150 nm inter-
contact spacing and an intermediate coupling strength. For
the frequency spectra map versus Idc in Figure 11(a), we
observed the onset of one spin-transfer peak for Idc >≈
28 mA followed by a second peak of comparable amplitude
for Idc >≈ 35 mA. The two separate peaks then coexisted for
Idc up to ≈47 mA followed by a transition to a single peak
above this current, likely indicating that the contacts have
phase locked. Figure 11(b) shows the corresponding inte-
grated output power normalized by Idc

2. The closed triangles
are for the single peak at high Idc, whereas the open squares
and closed diamonds are the individual powers in the two
peaks at lower Idc, with the open squares (closed diamonds)
showing the data for the lower (higher) frequency peak of
these two. We observed an average power ≈5 nW A−2 in
each of the two peaks with a total ≈10 nW A−2 just below the
transition at Idc ≈ 47 mA, as compared to ≈20 nW A−2 in the
single peak at higher current. This factor of 2 power increase
is consistent with phase locking with φ = 0, as discussed
in the preceding text. Thus, Figure 11 illustrates an electri-
cally tunable transition of the double point contact device
into phase locking. For this device, the linewidth FWHM
decreases across the transition, from ≈200 MHz for each of
the two peaks at low Idc narrowing to ≈80 MHz for the single
peak at high Idc.

A decreased linewidth upon phase locking is expected
if thermal fluctuations contribute significantly. Then for the
phase-locked pair, thermal energy fluctuations act on a device
with greater coherent magnetic volume, so the effective
fluctuation field and FWHM will decrease, as in Figure 11
(Russek et al., 2005). On average, we observed a slight
(≈10–30%) decrease in the FWHM for the closely spaced
devices with one peak compared to ≈200 MHz FWHM for
widely spaced devices with two peaks.

In this section, the Freescale devices with two nanosized
spin-transfer oscillators in parallel phase locked when the
intercontact spacing was <200 nm. We observed only one
resonance for closely spaced contacts and found the average
power was approximately twice the total for two separate
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the lower and higher frequency peaks respectively. Closed triangles
show the data for the single peak observed at larger Idc. (Reproduced
from Mancoff et al., 2005, with permission from Nature Publishing
Group.  2005.)

resonances at large spacings, indicating phase locking for
the closely spaced contacts.

4.3 Measurement of phase locking
with independent frequency control
of each oscillator

In this section, we discuss measurements at NIST on
the two-nanocontact system utilizing a slightly different
device structure and measurement method (Kaka et al.,
2005). Sputter-deposited spin valve films were patterned
into 10 µm × 20 µm rectangular mesas with the following
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layer structure: 5-nm Ta/50-nm Cu/20-nm Co90Fe10/5-nm
Cu/5-nm Ni80Fe20/1.5-nm Cu/2.5-nm Au. The Co90Fe10

layer is the fixed layer of the spin valve because its moment
and thickness are larger than the Ni80Fe20 layer. E-beam
lithography was used to pattern two 40-nm diameter metallic
contacts (nanocontacts) to the top of the mesa through a
PMMA insulator. The contacts were separated by 500 nm
and wires were fabricated connecting each nanocontact to
a separate set of probe pads. Ground contacts are made to
the sides of the mesa. This device structure (Figure 12a)
allows independent current control of each contact. Each
nanocontact is connected to its own current source through
the inductive port of a bias tee (Figure 12b). The capacitive
port of each bias tee transmits the high-frequency output
of each device, when active. Both of these high-frequency
channels are input to the isolated ports of a microwave power
combiner that has a bandwidth of 2–18 GHz. The output of
the power combiner is amplified and then measured by a
spectrum analyzer. When both nanocontacts are active, and
their respective frequencies are within the bandwidth of the

Au

Cu

PMMA

Ni80Fe20

Co90Fe10

r

dd

A

B

500 nm

S.A.

A

B

(a)

(b)

Figure 12. (a) Cross section of two nanocontacts (with diameter
d = 40 nm) made to a spin valve stack. The contacts were separated
by r = 500 nm. Arrows show assumed magnetization directions and
motion. (b) Micrograph of a two-nanocontact device. At right is
a measurement schematic including a bias tee connected to each
contact, a microwave power combiner (circle), an amplifier, and
the spectrum analyzer (designated by S.A.). (Reproduced from
Kaka et al., 2005, with permission from Nature Publishing Group.
 2005.)

power combiner, then the high-frequency signals from both
contacts can be displayed simultaneously. All the data in this
section were taken with an external magnetic field of 0.74 T
oriented at 75◦ from the film plane. This particular applied
magnetic field vector is known to produce relatively high
output power from a nanocontact oscillator (Rippard et al.,
2004b).

When only one oscillator was active (no current through
the other contact), we detected the noninteracting (free-
running) behavior of that particular oscillator. Figure 13(a)
shows the free-running peak frequencies for each oscilla-
tor as a function of applied current. The two oscillators
are designated as A and B. Figure 13(b) shows the out-
put power (area under the spectral peak) in the free-running
state for A and B. The frequencies exhibited by both oscil-
lators were close to previous measurements in nanocon-
tact oscillators at this particular field and angle (Rippard
et al., 2004b). However, small differences existed in the
frequency and power output of each oscillator. This differ-
ence, possibly due to slight variations in the geometry of
the fabricated contacts, enabled unique identification of each
oscillator.

When currents were applied to both contacts making both
oscillators simultaneously active, interactions between the
oscillators altered their frequencies from their free-running
values. First, there was a static oersted magnetic field
generated by the current through the neighboring contact.
An estimate of the in-plane field at a neighboring contact
can be given by the simple formula of field from an infinite
current: B = µ0I (2πr)−1. For a 12 mA current and a 500 nm
separation, the estimated field is only 4.8 mT, whereas the
in-plane component of the applied field in our measurement
was 191.5 mT. The result of this additional small oersted field
was an approximately linear shift in the oscillator frequency
as a function of current through the other contact as seen in
Figure 14. This effect persisted for negative current through

6 8 10 12
15

(a) (b)

15.2

15.4

15.6

fBF
re

qu
en

cy
 (

G
H

z)

I (mA)

fA

0

4

8

P
ow

er
 (

pW
)

6 8 10 12

I (mA)

PB

PA

Figure 13. Free-running oscillator behavior. (a) Frequency of oscil-
lator A alone versus current through A (triangles). Frequency of
oscillator B alone versus current through B (squares). (b) Power
from oscillator A alone versus current through A (triangles). Power
from oscillator B alone versus current through B (squares). (Repro-
duced from Kaka et al., 2005, with permission from Nature Pub-
lishing Group.  2005.)
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Figure 14. Effect of oersted field from neighboring contact on
oscillator frequency. Frequency of oscillator B versus current
through contact A.

the other contact (the other oscillator is inactive), and the
slope of the frequency shift with current changed sign if the
sign of the applied field was switched.

Second, and more remarkably, a mutual nonlinear inter-
action between the two oscillators led to phase coherence
of both oscillators at a single frequency over a range in
applied current. This behavior was experimentally examined
through the following protocol: current through A (IA) was
fixed at 8 mA, current through B (IB) was ramped, and at
each point during the ramp, the spectrum of the combined
signals from A and B was detected. Figure 15(a) shows the
evolution of the spectrum as IB is ramped for a particular
device. Color on the contour plot represents spectral inten-
sity. Initially, only the signal from A was present. As IB

was ramped, a signal from B emerged above its critical cur-
rent, and the frequency increased with the same slope as its
free-running case. In addition, the frequency of A decreased
slightly because of the ampere field from current through B.
Figure 15(b) shows the spectrum consisting of both peaks
at IB = 8.65 mA. Near IB = 9.2 mA, both oscillators sud-
denly united to produce a single frequency. This locked state
remained until about IB = 11 mA. Above 11 mA, the system
unlocked, and two separate signals reemerged. The spectrum
of the locked state in Figure 15(c) (IB = 9.5 mA) was a peak
that was both narrower and much stronger than either peak
in Figure 15(b).

The high-frequency signal from each individual oscillator
as it evolved through locking was accessed by disconnect-
ing the other oscillator’s high-frequency channel from the
power combiner. The results are shown in Figure 16. Both
oscillators emitted at the same frequencies for IB > 9.2 mA,
albeit with very different power output. Figure 16(b) shows
that power from A was roughly constant at 4.2 pW (the
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Figure 15. (a) Contour plot showing the evolution of spectra from
both oscillators as current through A was fixed at 8 mA and current
through B was ramped from 7 to 12 mA. Spectral intensity is on a
logarithmic scale. Locking occurred in the region where only one
frequency was present. (b) Spectrum taken before locking occurred
showing peaks for A and B. Current through B is 8.65 mA. (c)
Spectrum of locked state. Only one peak was visible. Current
through B was 9.5 mA. (Reproduced from Kaka et al., 2005, with
permission from Nature Publishing Group.  2005.)

free-running power at IA = 8 mA) until B activated. Inter-
action with B caused the power from A to vary, and during
locking, power from A increased. As seen in Figure 16(d),
the power from oscillator B increased with current much like
in its free-running condition. The spectral linewidths, mea-
sured as the FWHM of the signal peaks, abruptly decreased
during locking. This is shown in Figure 17 for both oscilla-
tors. During locking, the linewidth was about 2 MHz. In com-
parison, the free-running oscillator linewidths were greater
than 4 MHz. Apparently the feedback mechanism that sus-
tained a phase-locked state also ensured greater frequency
stability of the oscillators.

The phase coherence of the two oscillators during locking
was demonstrated by including a phase shifting coaxial
element in the high-frequency channel of A leading to
the power combiner. IA was again fixed at 8 mA, and IB

was fixed at 9.55 mA to lock both oscillators. The phase
shifter was fully adjusted producing about a 300◦ change
in phase length between the two high-frequency channels.
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acting oscillators A (solid circles) and B (solid triangles) showed an
abrupt drop at locking. Onset of locking is designated by the vertical
dashed line. (Reproduced from Kaka et al., 2005, with permission
from Nature Publishing Group.  2005.)

0 90 180 270
0

(a)

5

10

P
ow

er
 (

pW
)

Phase shift (°)

(b)

P
ow

er
 (

pW
)

6 8 10

0

3

7

10

I (mA)

A

B

Figure 18. (a) Combined power output versus phase shift where
the current through A was 8 mA and the current through B was
9.55 mA. An interference pattern between signals from A and B
resulted. (b) Power outputs versus current through B. Power from A
only (triangles), power from B only (squares), and combined power
(stars). Sum of power from A and B (dotted line) and coherent sum
of power from A and B (solid line) are also shown. The vertical
dashed line indicates the start of the locking range. (Reproduced
from Kaka et al., 2005, with permission from Nature Publishing
Group.  2005.)

The resulting combined power as the phase was shifted is
shown in Figure 18(a). The sinusoidal variation in time-
averaged power as the phase was shifted is an interference
pattern that can only occur because of a time-independent
phase relationship between the signals from A and B.
Although the data shows that A and B were phase coher-
ent during locking, we have not determined the absolute
phase difference (if any) between the oscillations of A and
B. However, this phase difference could be determined using
this measurement method if the phase length of each high-
frequency channel is known.

With the phase shifter set to maximize the combined out-
put with IA = 8 mA and IB = 9.55 mA, the power measured
was PMAX = 9.90 pW. Here, the phase shifter adjusted the
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phase length such that the signals from A and B were in
phase at the power combiner. At those same currents, the
individual oscillator powers were 4.37 and 1.19 pW from A
and B respectively. A and B were phase coherent ac voltage
sources, thus the combined output power was the coher-
ent sum given by Pc = (VA + VB)2(50 
)−1 = PA + PB +
2(PAPB)1/2 where Vi and Pi are the individual oscillator
voltage and power output respectively. The coherent sum
should be 10.15 pW, which is close to PMAX. Conversely, if
A and B were coincidentally at the same frequency but not
phase coherent, the time-averaged combined power would be
given by P = (VA

2 + VB
2)(50 
)−1 = PA + PB = 5.56 pW.

Figure 18(b) shows the measured combined power as well
as the individual output powers. A dotted line is added to
represent PA + PB, which is substantially less than the com-
bined power during locking. Outside the locking range, the
measured combined power (power from both peaks) was less
than the calculated coherent sum of power, yet during lock-
ing the calculated coherent sum and the actual measured
combined power matched well. Maximized power output by
coherent addition is an important and perhaps useful property
of phase-locked nano-oscillators that can lead to significantly
increased output levels for applications.

5 DEVICE APPLICATIONS OF
SPIN-TRANSFER OSCILLATORS

Synchronized nanocontact oscillators can potentially both
compete with existing microwave oscillators and drive
new applications. A single oscillator produces a wide
range of microwave frequencies depending on current and
applied field. The high-frequency output typically has narrow
linewidth, that is, a high-frequency stability, as character-
ized by a quality factor f/FWHM, where f is the oscillator
frequency and FWHM is the full-width at half-maximum
of the spectral peak. Quality factors from 102 to 104 have
been demonstrated (Rippard et al., 2004b). Furthermore, the
oscillations are generated from a small footprint device. As
mentioned previously, the region of large-angle magnetic
precession is of the same order as the contact area (diam-
eter ≈100 nm). The full device dimensions are determined
by the magnetic mesa size, which is several micrometers on
a side. In contrast, commercially available tunable oscillators
depend on resonators, such as quartz crystals, yttrium-iron-
garnet (YIG) spheres, and LC networks, which have foot-
prints ≈1 mm on a side (Burns, 2003; Rohde, Poddar and
Bock, 2005). Finally, the nanocontact oscillator is fabricated
using standard sputtered magnetic thin films. This technol-
ogy is compatible with both MRAM (Åkerman et al., 2004)
and mainstream complementary metal oxide semiconductor
(CMOS) fabrication, permitting cost effective manufacturing.

Synchronized nanocontact oscillators allow for increased
high-frequency power output. At present, the output from
a single nanocontact oscillator has been measured as high
as few nanowatts. By coherently combining the power from
N phase-locked oscillators electrically connected in a series
array, for example, the output power to a load should increase
as N2 in the case where the load resistance is much greater
than the array resistance. In addition to the increased power,
phase-locked spin-transfer oscillators also appear to provide
enhanced frequency stability.

Certain challenges exist to take advantage of spin-transfer
nanocontact oscillators in applications. Nanocontact oscilla-
tors require a large magnetic field directed out of plane to
produce the highest output powers (Rippard et al., 2004b).
This field could be introduced by compact permanent mag-
nets by an appropriate exchange bias. Another concern is the
efficiency of converting the dc input power to high-frequency
output power. For example, 10 mA is typically sufficient to
produce oscillations in a 20 
 GMR device leading to an
input power Pdc of 2 mW. The output power Pac is in the
picowatt to the nanowatt range, yielding efficiencies Pac/Pdc

from 10−8 to 10−6. Replacing the GMR signal ≈1% with
a tunneling magnetoresistance (TMR) signal of 100–200%
for MgO-based tunnel junctions could dramatically increase
the efficiency. For either GMR or TMR devices, the sub-
stantial dc current to excite spin-transfer oscillations can
create difficulties from electromigration, heating, or tunnel
barrier breakdown. Materials engineering, which has been
successful for developing disk drive read heads and MRAM
bits, may lead to an optimized device structure contain-
ing a proper internal magnetic field bias and requiring less
current. Finally, a microwave design needs to be devel-
oped that allows for dc current biasing and high-frequency
power combining of an array of phase-locked nanocontact
oscillators.

Spin-transfer oscillator properties allow for exciting appli-
cation possibilities. Compared to typical voltage controlled
oscillators, spin-transfer oscillators can offer wide frequency
tunability, small device size, and fast modulation capability
(Pufall et al., 2005). One application is as reference oscilla-
tors for portable electronics and communications. The foot-
print of a nanocontact oscillator array is 10 µm on a side.
The conventional timing reference in cellular phones, for
example, is a crystal oscillator with a footprint of a few mil-
limeters. The much smaller magnetic oscillator array would
allow the direct integration of the timing source within a
single transceiver communications chip. The small footprint,
high frequency, and frequency agility of the nanocontact
oscillators may lead to application as a local oscillator within
a heterodyne detector. This could provide RF spectrum anal-
ysis within a single chip. Finally, magnetic nanocontact oscil-
lators may find application within a wireless communication
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system that operates between the separate components within
a computer, enabling the fast electronic data transfer that
is increasingly important as computer systems move toward
multiprocessor parallel computing schemes.

6 SUMMARY

When biased with a dc current, lithographic point contacts
to GMR films can produce a microwave signal due to spin-
transfer resonance. The frequency is tunable from at least
5–40 GHz as a function of current and magnetic field, and the
linewidths can be as narrow as <5 MHz with resonance qual-
ity factors exceeding 10 000. We examined the area depen-
dence of spin-transfer precession and also observed phase
locking between neighboring excitations. First, as a func-
tion of nominal contact diameter from 50 to 300 nm, devices
at Freescale showed a decreasing slope of precession fre-
quency versus current and an increasing critical current. This
data was fit using a model in which the magnetically pre-
cessing region extends beyond the contact edge by a ring
of width ≈50 nm. Other effects, such as the oersted field,
the spin-wave radiation pattern, and other magnetic nonuni-
formities with a more detailed spatial dependence than can
be accounted for with this model, may also affect the size
dependence.

With regard to phase locking, experiments at Freescale
detected phase locking between two nominally 80-nm diam-
eter spin-transfer oscillators, electrically connected in paral-
lel to a single top electrode, when the intercontact spacing
was < ≈200 nm. On average, the total power in the sin-
gle resonance peak for these closely spaced devices was
approximately twice the combined power in the two sep-
arate peaks observed for devices with two widely spaced
contacts. The experiments at NIST examined devices with
independent electrical control of two nanocontact oscillators
spaced by 500 nm and found that the two resonances phase
locked when the current bias through one contact was var-
ied so as to shift its frequency close to that of the second
contact. The difference in the spacing length scale for phase
locking is not fully understood and may be due to the dif-
ferent bias geometries, for which the independent electrical
biasing in the NIST experiment may permit more precise
frequency matching and longer-range phase locking. Further
experiments may also identify the coupling mechanism that
causes phase locking, such as spin-wave radiation or oscil-
lating magnetic fields emitted by each contact. The increased
output power and decreased resonance linewidth for phase-
locked contacts promise to enable control of even larger
arrays of spin-transfer oscillators and make possible new
applications for these devices in microwave electronics.
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1 INTRODUCTION

In 1996, Luc Berger predicted that electric current flowing
across a normal metal spacer between two magnets could
excite forward-propagating spin waves (Berger, 1996). In the
same year, a ballistic model predicted that a steady current
may create a spin-transfer torque that would excite mag-
netic precession in one of two so separated single-domain
magnets having lithographed dimensions of order 100 nm

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

(Slonczewski, 1996). If the sign of uniaxial anisotropy is neg-
ative, this precession may remain steady, making conceivable
a radio frequency oscillator. If the anisotropy is positive, a
spiral precession followed by magnetic reversal may occur,
in which case writing for magnetic memory is conceivable.
Subsequent experiments supported these predictions and led
to the vast array of new spin-transfer phenomena under inves-
tigation today (Stiles and Miltat, 2005).

However, the first copious experimental evidence for
any current-driven magnetic excitation was that of Tsoi
et al. (1998), who passed currents through mechanical point
contacts into unpatterned (not single-domain) multilayers.
In the absence of lithography, spin waves radiate energy
transversally away from the contact region, greatly increasing
the current required for excitation (Slonczewski, 1999). The
year 1999 saw the beginning of monodomain excitation in
magnets having lithographic dimensions ≤150 nm. In one
case a magnetic oxide particle was excited, (Sun, 1999) and
in another, one layer of a lithographed all-metallic multilayer
(Myers et al., 1999).

Equivalent circuits of spin-polarized current play a large
role in the theory of giant magnetoresistance and spin-
transfer torque (Brataas, Nazarov and Bauer, 2000; Brataas,
Bauer and Kelly, 2006). Sections 2–4 present a majority-spin
transparency model for diffusive noncollinear magnetoresis-
tance and current-driven torque (Slonczewski, 2002). It takes
explicit account of the band structures of the elements Co, Ni,
and Cu used in many experiments. The question of torque is
reduced to that of solving an effective circuit whose branches
consist of the four spin-channel currents flowing through the
two ferromagnets in a device pillar. The key formulas for
cross-spacer connection of spin-channel voltages and cur-
rents enable algebraic solution of effective circuit equations.
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Their application predicts the currents and torques, requir-
ing only prior analytic solution of the linear coupled diffu-
sion equations (Valet and Fert, 1993) governing the current-
voltage relations of the separate halves of the device pillar
(see also Theory of Spin-transfer Torque, Volume 2).

Section 5 illustrates theoretical results for currents and
torques for the simple case of a symmetric pillar with purely
resistive spin channels lacking spin relaxation. Section 6
presents the barest essentials of the magnetic dynamics
resulting from spin-transfer torque. It assumes uniaxial
anisotropy and illustrates both the switching and steady
precession of a monodomain produced by a steady electric
current.

More recently, spin-transfer switching was also observed
in magnetic tunnel junctions (MTJs). Two laboratories, at
Grandis, Inc. (Huai et al., 2003) and Cornell U., (Fuchs et al.,
2004) reported it independently, thus making possible higher
signal voltages in spin-transfer memory elements. Sections 8
and 9 treat noncollinear magnetoresistance and spin-transfer
torque for the case of MTJs, employing Bardeen tunneling
theory, introduced in Section 7.

For a given voltage V , one has the two-parameter formula
J = V G0(1 + g cos θ) for the electric current density ver-
sus the angle θ between the moments. Section 8 presents the
theory for left and right-torque densities (�/2e)V G0τL,R sin θ

with respective dimensionless coefficients τLand τR. Assum-
ing elasticity of the tunneling and validity of the polariza-
tion factors PL, PR for the two electrode-and-barrier com-
positional combinations, one predicts the mutual relation
g = τLτR, with τL = PR and τR = PL.

The concept of polarization factor is less convenient at
the high voltages and small barrier thicknesses needed in
devices, for then inelastic tunneling becomes more impor-
tant. Responding to the recent advent of very highly magne-
toresistive MTJs with MgO barriers, Section 9 describes an
appropriate phenomenological model which concludes with
predicted observational signatures of conductance and torque
caused by special conditions at the ferromagnet-insulator
interfaces.

2 TWO-CHANNEL SPIN-POLARIZED
TRANSPORT

2.1 Suppression of transverse polarization

The internal exchange field giving rise to the spontaneous
magnetization of a ferromagnet such as Fe, Co, or Ni is so
strong that, in equilibrium, it creates a relative shift eVex

between spin-up and spin-down energy bands amounting
to about 2 eV for Fe and Co, and 1 eV for Ni. Suppose
that an additional out-of-equilibrium electron should initially

occupy a state in which the spin lies orthogonal to the
spontaneous magnetization. It then precesses at this terrific
frequency eVex/� which is orders of magnitude greater than
the frequencies (in gigahertz) encountered in the magnetic
dynamics of nanoscale device elements described by classical
Landau–Lifshitz equations. Consequently, the transverse
polarization and its current are very strongly suppressed
within the thickness (≥3 atomic layers) and time scales
(>100 ps) of usual interest in magnetic memory.

More precisely, it is not exchange alone, but a combination
of three effects which creates such a strong exchange
splitting of those band regions near the Fermi surface which
are important in electron transport. To begin, a free atom of
Fe, Co, or Ni has the electron configuration 3dn4s2 outside
of the argon core. The values of n are 6 for Fe, 7 for
Co, and 8 for Ni. When the atoms bond to form a pure
metal, the strong spin-diagonal (nonexchange) crystalline
electric field causes two effects. The first effect is that the
electrostatic field of neighboring point-charge nuclei disrupts
the atomic orbitals and ‘quenches’ the atomic-orbital angular
momentum, thus suppressing to a degree spin relaxation via
spin-orbit coupling. Secondly, it permits electron waves at
the Fermi level to propagate with relative freedom through
the lattice. Quantum-mechanically, both of these effects
cause the atomic s (l = 0) wave functions to mix strongly
with p (l = 1) and d (l = 2) wave functions. Indeed, the
sheer number of p (3) and d (5) states is so great compared
to the one s state per atom, that none of the band states at
the Fermi surface have predominantly s character. (The one-
electron Vsd matrix element in first-principle band structure
computations is of order 1–2 eV.) Thirdly, it follows that
this mixing generally subjects the Fermi-energy electrons to
the mean-field atomically internal d–d exchange interaction.
This exchange is extremely large, amounting to a level
splitting of order Jdd ≈ 1–2 eV. Generally, very few of the
wave functions approach the character of 4s or free-electron
waves for which the exchange splitting would be smaller
(≈0.1 eV). This fact accounts for the strong suppression of
transverse spin momentum mentioned in the preceding text.

This suppression makes credible the spin-channel model
of electron transport (Valet and Fert, 1993). Consider, for
example, the layered submicron metallic pillar joining two
nonmagnetic semi-infinite conductors NL and NR shown in
Figure 1. It is rotated 90◦ so that the deposition plane is
oriented vertically. The pillar includes left (FL) and right
(FR) magnets separated by a very thin nonmagnetic metallic
spacer N. The cross section in the plane parallel to the
substrate is an ellipse with dimensions typically 100 × 60 nm.

Of interest is electron transport through this pillar between
the voltages V = V1 deep within a relatively bulky electric
lead on the left and another voltage V = 0 deep within a
similarly bulky lead on the right. In metals a convenient
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NL N NRFL FR Dpil

dFR dNR

V = V1 V = 0

Figure 1. Magnetic multilayer pillar laid sideways. N: normal
metal; F: ferromagnet; L: left; R: right.

measure of spin relaxation is the characteristic so-called spin
‘diffusion’ (relaxation, really) length (λN or λF) measuring
the spatial decay of polarization 〈σ z〉 proportional to the
function exp(−x/λN) or exp(−x/λF) (Valet and Fert, 1993).

The dimensions of experimental pillars often approach the
condition that they are too small for relaxation to be of con-
sequence. The thickness of each sublayer component must be
less than the corresponding diffusion length. Sufficient such
conditions for the pillar of Figure 1 are

dNL, dNR � λN; dFL, dFR � λF (1)

If satisfied, they make valid the effective resistive circuit
of Figure 2 featuring four channel resistors RL±, RR±. Our
representation of spin relaxation in the external leads by
means of the shorts shown in Figure 2 requires an opposite
sort of condition, namely that dimensions of the leads are
greater than λN,R. If one of these conditions is violated,
the problem requires solution of a two-component diffusion
equation (Valet and Fert, 1993).

2.2 Half-pillar resistors

We embrace the limits (1) and the spin-channel shorts shown
in Figure 2. This will focus attention on the problem created
by noncollinear spin-quantization axes. For the moment, we
put aside the central ‘junction box’ appearing in the figure.
One may decompose each of the four half-pillar unit-area
channel resistors RL± and RR± into terms in series arising
from two-channel bulk resistivity ρ±, from two-channel unit-
area interfacial resistance r±, and from an end-effect term
occurring at the pillar-lead connection. Thus, half-pillar unit-
area resistances between either lead and the spacer (see
Figure 1), with the subscripts R and L here elided, are

R± = ρ±dF + 2r± + ρN

(
2dN + πDpil

2

)
(2)

V = V1 WL+ WR+

WL− WR−

V = 0
JL+

JL−

RL+ RR+
JR+

RR−RL−

JR−

Figure 2. Effective two-channel circuit for the pillar of Figure 1
containing an N/F/N multilayer. Properties of the central ‘junction
box’ are key to electron transport when ML and MR are not
collinear.

where dF and dN are layer thicknesses and Dpil is the
pillar diameter. (Section 3.2 justifies our neglect of bulk
resistivity within the central spacer.) The final term
πρNDpil/2 is due to the lead-to-pillar contact, approximated
by half of a constriction resistance ρN/Dpil derived long ago
by J. C. Maxwell. (The conducting constriction in Maxwell’s
case joins two semi-infinite conductors of homogeneous
resistivity.)

A group at Michigan State University (Bass and Pratt,
2001) systematically measured collinear magnetoresistance
of magnetron-sputtered periodic N/F/N/F/N . . . multilayers,
numbering as many as 40 periods, at 4.2 K. This study estab-
lished values of the specific resistance parameters appearing
in equation (2). These values, together with independent val-
ues of ρN and spin diffusion distances λF and λN occurring
in conditions (1) appear in the table below.

The low-temperature resistivity of Cu and Ag varies with
sputtering conditions but is typically about three times its
300 K value given in the table. Sometimes the magnet FL

is part of the substrate; then, in the limiting cases λFL �
Dpil and λFL � Dpil, this equation for L is replaced by the

Table 1. Transport parameters for multilayers composed of sput-
tered Co, Cu, and Ag.

Parameter (K) Units Co/Cu Co/Ag

ρN(300) n�m 17 16
λF(4.2) nm 50 50
λN(4.2, 300) nm 1500, 350

From collinear GMR experiments (Bass and Pratt, 2001) at 4.2 K

ρ+ n�m 81 111
ρ− n�m 220 320
r+ 10−15 �m2 0.24 0.17
r− 10−15 �m2 1.8 2.1

G, equation (21) 1015 �−1m−2 1.32 1.04
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estimate

RL± = r± + ρ± · min(�sf, πDpil/4) (3)

where Dpil is the diameter of the pillar. (See Spin-
transfer in High Magnetic Fields and Single Magnetic
Layer Nanopillars, Volume 5 for effects of more general
conditions of spin relaxation.)

3 EFFECTIVE CIRCUIT FOR A
NONCOLLINEAR ALL-METALLIC
PILLAR

We now address the crucial properties of the spacer N
represented by the junction box in Figure 2.

3.1 Spin polarization in a rotated reference frame

The term spin-accumulation, or spin-polarization density, in
a normal metal refers to the expectation value 〈σz〉 of σz

for the electrons occupying a unit volume. Of course, its
value depends on the orientation of the quantization axis ζ .
How it transforms in a spacer under coordinate-axis rotation
is crucial to electron transport in noncollinear magnetic
multilayers.

Consider a total of 2n0 electrons occupying only given
numbers n0 + n± of pure eigenstates |±〉 of σz = ±1,

respectively, in the unprimed spin-quantization frame. By
definition, the spin accumulation in a normal metal n is


n ≡ 〈σz〉 = n+ − n− (4)

with n+ = n− to preserve neutrality of charge density which
occurs in the absence of significant electrostatic capacitance.
Consider the primed frame, whose z′ axis lies in the xy-plane
at an angle θ from the z axis. The same electrons have the
new spin accumulation


n′ ≡ 〈σz′ 〉 = n′
+ − n′

− (5)

where n0 + n′± is the expectation value of σz′ . Applying
the square-law of probability, n′+ is obtained from the first
column of the spin rotation matrix (Sakurai, 1985)

〈σ | σ ′〉 =
(

cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)
(6)

The result is

n′
+ = n+ cos2 θ

2
+ n− sin2 θ

2
(7)

From the second column of equation (6), one finds

n′
− = n+ sin2 θ

2
+ n− cos2 θ

2
(8)

After substitution of equations (7), (8), and (4), equation (5)
reduces to


n′ = 
n cos θ (9)

Application of this equation requires caution because it
involves no interaction, no physical change in the condition
of the system during the transformation. The spins states
remain pure eigenstates |±〉 of σz in the unprimed frame
throughout.

3.2 Spin-dependent electron distribution within
the spacer

Our treatment of noncollinear spin-dependent transport here
neglects all scattering within the spacer. It is equivalent to
special cases of the computational drift-diffusion approach
of M. Stiles and coworkers (Stiles and Miltat, 2005). It
is also a special case of independent circuit theory by
Wainthal, Myers, Brouer and Ralph (2000). It differs from a
formulation leading to a general circuit theory (See Brataas,
Nazarov and Bauer, 2000 and Section 6.2 of Brataas, Bauer
and Kelly, 2006) by taking into account explicitly the
momentum dependence of spin state within a spacer free of
scatterers. Our theory is appropriate to many experiments
in which the copper spacer thickness is much smaller
than the mean free path � due to phonon scattering of
about 40 nm at 300 K. At much lower temperatures, where
the parameter values in Table 1 were determined, defect
scattering dominates � which may be three times greater
still. Nonetheless, in the appropriate limit, the general theory
(Brataas, Bauer and Kelly, 2006) reduces to our connection
formulas given in the subsequent text (Bauer, G.E.W. private
communication).

Figure 3 indicates a left ferromagnet FL, having spon-
taneous magnetization ML = −MLl, separated from a right
ferromagnet FR, having spontaneous magnetization MR =
−MRr, by a nonmagnetic metal N. Here, l and r are unit vec-
tors forming the general mutual angle θ = cos−1(l · r). We
assume the presence of steady state spin-dependent currents
within each ferromagnet The proximity of two different fer-
romagnetic polarization axes l and r implies the absence of
any single axis of spin polarization appropriate to electrons
within N. To deal with this situation, we describe in the sub-
sequent text the statistically steady electron state within N
that is consistent with the channel currents and potentials of
the ferromagnets.
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NFL
FR

−ML

l

110

111

Cu

s = +1s′ = +1

s = −1s ′ = −1

−MR

k2

k1

r

x1 xRxL

A B

−

Figure 3. Notations for a metallic trilayer including ferromagnetic
layers FL with magnetization vector ML at left and FR with
magnetization MR at right, separated by a nonmagnetic spacer N.
Shown schematically is a 112-section of the Fermi surface for a
Cu spacer with 111-axis normal to the layer plane. Arrows on the
surface depict spin-polarization axes described in the text. The right
(left) half of the Fermi surface is polarized parallel to the moment
axis of the left (right) magnet.

We distinguish alternative l- and r- quantization axes for
Pauli spin with operators σ l and σ r satisfying eigenstate
equations σ l|L,σ 〉 = σ |L,σ 〉 (σ = ±1, sometimes abbrevi-
ated as σ = ±) and σ r|R,σ ′〉 = σ ′|R,σ ′〉 (σ ′ = ±1, or ±).
The spin states satisfy

〈i, σ |i, σ ′′〉 = δσ,σ ′′ (i = L,R) (10)

and the plane spin rotation transformation

〈L,σ |R,σ ′〉 =
(

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
(11)

in equation (6).
Total absences of exchange coupling and scattering within

N are assumed. Whatever atomic-scale subregion within the
spacer, adjoining FL or FR, contains significant decaying
exchange, or any interface-related scattering centers which
may be present, is considered to belong to that magnetic
region (x1 < xL or x1 > xR) rather than to N.

Note, however, that any electron within N (xL < x1 < xR)

moving rightward, thus satisfying v1(k) > 0 and represented
by decoration with the symbol →, last either passed
through (transmitted), or backscattered from, the left (FL/N)
interface. If transmitted, its final polarization is clearly

|L,+〉 or |L,−〉 according to the two-channel model of spin-
polarized current flowing in FL. If backscattered, the electron
spin has the single polarization |L,−〉 under an assumed
condition of perfect majority-spin transmission (PMST; see
in the subsequent text.) through the interface. Therefore, a
rightward-moving electron [→,with v1(k) > 0 ] has pure
spin polarization |L,+〉 or |L,−〉, with no mixing that
would describe a spin tilt away from this quantization axis.
Similarly, a leftward-moving electron [←,with v1(k) < 0 ]
has only pure spin polarization |R,+〉 or |R,−〉. This scheme
for the case of a 111-textured multilayer is illustrated in
the 112-section of the copper Fermi surface sketched within
Figure 3.

The PMST condition is supported very well by the
very small experimental values of interfacial resistance
r+ for Co/Cu and Co/Ag interfaces seen in Table 1 of
Section 2.2. (They are one order of magnitude smaller
than the respective r−. They are consistent with a mean
reflection coefficient of ≈5%.) If this were 0% then reflected
electrons could have only the minority-spin orientation
and the polarization scheme in Figure 3 would be exact.
Therefore, for pillars composed of Co and Cu or Ag this
electron distribution is well justified.

Why do the majority-spin electrons reflect so weakly? The
answer lies in the following peculiarity of ferromagnetic elec-
tron structure: In experimental sputtered films, the metals
Co, Ni, and Cu all have face-centered cubic (fcc) structure.
As atomic number A increases in the sequence Co(A = 27),
Ni(28), Cu(29), the majority-spin electrons have the constant
configuration 3d5s1. Then in this range of A, each additional
electron enters the minority band (Kübler, 2000). Conse-
quently, the majority-spin energy bands differ very little. As
indicated in the schematic cross section shown in Figure 3,
the majority-spin Fermi surface for Co (and Ni) differs from a
free-electron sphere mainly by the presence of small ‘necks’
which lie along 111-axes and join the surface to the Brillouin-
zone boundary. The diameter of the neck increases a little
in passing to Cu, but the remainder of the Fermi surface
hardly changes. A majority-spin electron incident onto such
an interface feels little change in potential. For this reason,
majority-spin electrons reflect weakly at Co/Cu and Ni/Cu
interfaces. Results of first-principle numerical computations
(Xia et al., 2002) support this qualitative conclusion.

3.3 Connecting channels across a spacer without
scatterers

Spin-channel currents through a magnet are driven by a
chemical potential in addition to the ordinary electrostatic
potential. To explain this fact, consider T = 0 K. Begin at
thermal equilibrium with fully occupied states in the spacer
having energy ε ≤ εF0, with εF0 the Fermi level. Then
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apply the electrostatic voltage V to the spacer. Clearly,
the new Fermi level for each σ is εF → εF0 − eV and the
particle potential −eV provides impetus to drive electrons
away from (or attract them to) the spacer. Suppose that
some nonequilibrium process now adds the number nσ of
electrons per unit volume to the channel σ = ± within the
spacer. Because of the exclusion principle, the Fermi level
must rise in first-order approximation by the amount nσ /nF,

where 2nF is the electron density per unit energy and volume
at ε = εF0, in order to make room for the added electrons.
Clearly, now the Fermi level is spin-dependent and given by
εF,σ = εF0 − eV + (nσ /nF). Surely, the ‘chemical’ voltage
−nσ /enF is able to drive a channel current just as well as
the equivalent amount of electric voltage V . It follows that
transport in spin channels requires augmenting the electric
voltage to form the total electrochemical voltage defined by

Wσ = V − nσ

enF
(12)

One must hasten to add that in the absence of appreciable
electrostatic capacitance, which we assume, charge neutrality
is preserved. Thus, one has the condition n+ = −n−. It is
easy to see that this expression for Wσ is correct at T > 0 K
as long as kT is small compared to the width of the energy
band.

So now we know that electric current density Jσ in our
simplified (see Section 2.2) half-pillar spin channel σ(= ±)

must be written Jσ = Wσ /Rσ , where Rσ is the unit-area
resistance. According to the laws of electric circuits, the
ordinary electric voltage V = (W+ + W−)/2 and true elec-
tric current J = J+ + J− must be continuous everywhere,
and in particular across the central normal-metal spacer N in
Figure 1. But we need four continuity relations altogether, so
we must find two more in order to solve the complete circuit
in Figure 2. We attach the subscripts L and R to specify val-
ues for every quantity evaluated within the spacer, using the
left and right spin-coordinate axes, respectively. Thus, left
and right so-called spin-accumulation or polarization densi-
ties are


nL ≡ nL,+ − nL,− and 
nR ≡ nR,+ − nR,− (13)

Accordingly, we have


WL ≡ WL,+ − WL,− = −
(


nL

enF

)
and


WR = −
(


nR

enF

)
(14)

Finding two relations connecting 
WR and 
JR to 
WL and

JL will suffice, together with continuity of V and J, to pro-
vide the four relations needed to solve the circuit of Figure 2.

Spin-polarized states

Unoccupied
states

Doubly
occupied

states

k2

k1

−ML −MR

∆n

∆n

FRNFL N

Figure 4. Scheme of k-dependent spin accumulation within the
normal spacer N. It illustrates the parameterization of the nonequi-
librium spin polarization of the Bloch states in a metallic spacer
having a spherical Fermi surface.

To proceed further, we need to parameterize the spin-
polarization scheme shown in Figure 4. For simplicity, the
Fermi surface is spherical. This figure indicates that the spin
polarization of electrons within N is concentrated within
two hemispherical shells located on the Fermi surface and
marked with scalar partial spin accumulations

←−

n and

−→

n.

The thicknesses of these shells are infinitesimal for linear
transport. The left-(right-) arrow above the symbol

←−

n (

−→

n)

means that the electrons are moving leftward(rightward),
v1 < (>)0. In accordance with our discussion of the PMST
condition connected with Figure 3, the polarization axis for←−

n(

−→

n) is −MR(−ML). The electron states outside of these

shells are either doubly occupied or empty and therefore
unpolarized in both cases.

To evaluate 
nL, note that the shell marked
−→

n is already

polarized along axis −ML so it contributes to the total as it
stands. But the one marked

←−

n is polarized along the other

axis −MR so its contribution must be projected upon the axis
−ML. Therefore, one has from equation (9)


nL = −→

n + ←−


n cos θ (15)

One then has from equation (14), and similarly using 
nR =←−

n + −→


n cos θ


WL = − (
−→

n + ←−


n cos θ)

enF
,


WR = − (
←−

n + −→


n cos θ)

enF
(16)
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Evaluation of the current difference 
JL ≡ JL+ − JL− is
similar, except that to obtain current, one must weight the
terms

←−

n(

−→

n) in equation (15) with ∓ev, where v is the

mean of v1(k) over the right hemisphere of the Fermi surface.
(Similarly for 
JR.) Thus the current differences are


JL = ev(
←−

n cos θ − −→


n), 
JR = ev(
←−

n − −→


n cos θ)

(17)
From the four equations (16) and (17), one may eliminate
the two variables

←−

n,

−→

n to find the two desired connection

equations:


JR = [

JL(1 + cos2 θ) − G
WL sin2 θ

]
/2 cos θ (18)


WR = [−G−1
JL sin2 θ + 
WL(1 + cos2 θ)
]
/2 cos θ

(19)
where the single spacer-material parameter required is

G = e2nFv

2
(20)

These equations are verifiable by substitution of
equations (16) and (17).

Since the mean of v2
1 equals v2

F/3 where vF is the Fermi
velocity of an assumed spherical Fermi surface of the spacer
composition, the rms relation v ≈ vF/31/2 may be used to
estimate v. For a parabolic band this formula then becomes

G = e2k2
F

31/2πh
(21)

which is 2/31/2 times the Sharvin ballistic conductance GSh

(2 spins) per unit area of a constriction whose diameter is
smaller in order of magnitude than the mean free path. (Note,
however, that the Sharvin ballistic resistance phenomenon,
which occurs when the aperture diameter is smaller than �,

plays no role in the present theory because all our poten-
tials and currents are independent of x1 within the spacer
region N.) Equation (21) gives G = 1.32 × 1015 �−1m−2 for
a free-electron gas having the electron density of Cu.

The crucial role of equation (15) in this derivation must
be understood. Validity of the two-channel model in a half-
pillar does not require the spins within the adjoining spacer
to occupy pure eigenstates of σ ζ where ζ is parallel to M of
the ferromagnet. One does need a correct electron distribu-
tion within the spacer as parameterized by our model for the
partial spin accumulations

←−

n and

−→

n indicated in Figure 4.

From these, one needs to evaluate only the expectation values
of the properly evaluated expectation values of the accumu-
lations to evaluate 
WL,R and 
JL,R. The fact that not all
spins are parallel to the same axis l or r does not matter.

The connection formulas (18) and (19) may reasonably be
applied to Co, Ni, and alloys that lie on the negative-slope

side of the Neel–Slater–Pauling curve (Kübler, 2000) in
which the majority-spin 3d-band is fully occupied. For then
the majority-spin electrons at the Fermi level belong to the
sp-band and therefore approach the condition of 100% trans-
parency assumed in the derivation in the preceding text.
In particular, these formulas should not be applied when
an electrode is composed of Fe. Nor do they apply to the
case � � (spacer thickness) treated elsewhere (Barnaś et al.,
2005).

4 CURRENT-DRIVEN PSEUDOTORQUE

Our object is to calculate the electric resistance and current-
driven torque for a pillar with noncollinear moments. The
important thing is to solve the circuit equations for the
noncollinear condition considered in Section 3. As illustrated
in Section 5, the connection formulas (18) and (19) are key
to this solution. With this solution in hand, the resistance will
be simply

R(θ) = V

(JL,+ + JL,−)
or = V

(JR,+ + JR,−)
(22)

But the current-driven torque needs the detailed discussion
given in the present section.

4.1 Torque mechanism

We explain first how the exchange-reaction torque created
by scattering of preferentially polarized electrons incident
from a normal metal onto a ferromagnet concentrates on the
magnetization located within a distance equal to dimpact ≈ 4
atomic layers of the interface.

Figure 5 depicts schematically the local spin vector of
the stationary-state wave function for an electron incident
rightward onto an N/F interface located at position ξ ≡
x1 = 0. (The spin-coordinate axes η, ζ in Figure 5 have
no special relation to the position coordinates x2, x3 of the

N

F

h

Electron
motion

O

S

M

z

x

j

Figure 5. Illustration of spin precession for an electron passing
from a nonmagnetic metal (ξ < 0) into a ferromagnetic metal
(ξ > 0).
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pillar illustrated in Figure 1.) Within the region N, the
local expectation of vector spin operator s = �σ/2 for the
incident wave is a general constant. Dynamical reaction to
the spin momentum scattered by the magnet causes a torque
on M. Under the PMST assumption in Section 3.2 only
minority spin σ = − can scatter backwards into N. (This
reflected wave is not indicated in Figure 5.) But this reflected
momentum is collinear with M, therefore its reaction does
not contribute torque.

The local expectation of s for the wave component
transmitting into the ferromagnet (ξ > 0) has an azimuthal
angle with respect to the moment M of F given by

ϕ(ξ) = ϕ(0) + (kξ+ − kξ−)ξ , (ξ > 0) (23)

where kξ± are the normal components of electron wave
vectors at ε = εF for σ = + and σ = −. (For graphical sim-
plicity, Figure 5 shows M‖ζ , but actually M may have any
direction.) For a given energy, the two values of kξ±(kη, kζ )

depend on the conserved transverse momentum components
�(kη, kζ ) and differ because of internal exchange.

In diffusive metallic transport, the wave vectors of all
incident electrons having a given s lie very near all parts of
the Fermi surface. Therefore the quantity kξ+ − kξ− varies
over a great range. It follows that the averages of sξ ∝ cos ϕ

and sη ∝ sin ϕ at a given plane ξ approach 0 within an impact
depth ξ = dimpact of a few atomic layers (Xia et al., 2002;
Stiles and Zangwill, 2002). If the scale of micromagnetic
homogeneity treated in the continuum representation with the
Landau–Lifshitz equations is greater than this impact depth,
as for the monodomain treated in Section 6, the reaction
of this precession communicates to the magnet the net of
the s components transverse to M of all of the electrons
passing through the I/F interface into the magnet F. It follows
also that the reactive momentum impulse given to F acts
essentially at the interface and lies within the M–s plane
determined by the incident electrons.

Crucial is the principle of conservation of spin momen-
tum which follows from absence of spin operators in the
N-electron Hamiltonian for a solid:

H =
∑

i

p2
i

2m
+

∑
i<j

e2∣∣ri − rj

∣∣ −
∑
i,l

e2Zl

|ri − Rl | (24)

The first of three terms above is kinetic energy with pi

the electron momentum operator, the second is coulomb
interaction between electrons at positions ri,j , and the
third is the coulomb interaction between electron i and
atomic nucleus l carrying charge Zl at fixed position Rl .

(Internal exchange coupling responsible for the formation of
spontaneous magnetization of a ferromagnet arises from the

antisymmetry principle even though spin operators are absent
from H.)

Note that we neglect the small spin-orbit effect. Spin-orbit
coupling, in combination with defect scattering, determines
the spin relaxation lengths λN and λF tabulated in Table 1.
Its neglect is valid in the following derivation of torque from
currents because λN, λF, and � are much greater than dimpact

(see Section 4.1).

4.2 A general torque relation

Spin-momentum conservation causes the corresponding
effective vectorial surface-torque densities TL and TR (with
l · TL = 0 and r · TR = 0) to satisfy the vector equation

TL + TR = KRr − KLl (25)

Here

Kn ≡ �(Jn,− − Jn,+)/2e (26)

is the rightward flowing spin-momentum current (or spin
current for brevity) density within magnet n(=L or R),
−e is the electron charge and Jn± is the electric current
density flowing in the majority- or minority-spin channel
of the respective magnet in the two-channel model of
perpendicular magnetoresistance. By convention, both charge
and momentum current directions are reckoned positive
along the +x1 direction in Figure 3. (These densities are
assumed independent of x 2 and x 3.) Accordingly, the
right-hand side of equation (25) represents the net rate of
spin momentum flowing into the region enclosed by two
geometric planes A and B (see Figure 3) located inside the
magnets at the distance d impact from the F/N interfaces; the
left side gives the consequent sum of macroscopic torques
concentrated on the magnets at these interfaces. The great
strength of the internal exchange stiffness within a pillar
device insures that this torque is conveyed to their entire
thickness as a whole.

As explained in the preceding text, the coplanar orientation
of TL(t) and TR(t) with the moments ML and MR displayed
in Figure 6 are general. Their scalar magnitudes are obtained
by forming the scalar products of equation (25) alternatively
with ML and MR:

TL = (KL cos θ − KR)

sin θ
(27)

TR = (KR cos θ − KL)

sin θ
(28)

where the sign convention for the scalars is indicated in the
Figure 6.
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−ML
−MR

TL

TR

q

Figure 6. The torque vectors TL and TR lie within the plane
containing the instantaneous magnetization vectors.

Equations (26)–(28) are key to current-driven torque for,
given the spin-channel currents obtained by solving the
effective circuit, these equations predict the corresponding
torques to be included in the Landau–Lifshitz equations
used later to treat domain dynamics and switching. Thus
both questions of conductance (see equation (22)) and torque
are reduced to solution of the effective circuit equations
introduced Section 3 (see also Theory of Spin-transfer
Torque, Volume 2).

5 MAGNETORESISTANCE AND
CURRENT-DRIVEN TORQUE OF A
SYMMETRIC PILLAR

5.1 The magnetoresistance

The two relations (18) and (19) provide the connection
across spacers needed to complete the effective circuit
Kirchoff equations for angular dependence of perpendicular
magnetoresistance. A method of solution for broad classes of
pillars, with significant complication due to spin relaxation,
are published (Manchon and Slonczewski, 2006). To take a
simple example, the magnetoelectronics of a trilayer FL/N/FR

is described by the circuit diagram of Figure 7 in the special

V1 W+ −W+ 

W− −W−

−V1

I+I+

I−

R+ R+

R− R−

I−

Figure 7. Effective circuit for the trilayer when magnets FL and
FR are equal. R± are the channel resistances of each magnet and
lead combination. Equations (18) and (19) connect the currents
and voltages across the spacer and equation (32) gives the total
resistance.

case that FL and FR have identical properties and thicknesses
and spin relaxation within the magnets can be neglected.
The channel resistances R± should include both the bulk
and interfacial contributions given in equation (2).

To take advantage of the resulting odd voltage symmetry
and even current symmetry, electric voltage V1 is applied
to the left contact and −V1 to the right. Then symmetry
permits omission of the subscripts L and R and dictates the
disposition of current densities, J± ≡ JL± = JR±, voltages
W± ≡ WL± = −WR±, shown in Figure 7, as well as the
relations �J ≡ J+ − J−, 
JR = 
JL and 
WR = −
WL.
(J± is shown as I± in Figure 7.) The total unit-area
resistance is

R = 2V1

(J+ + J−)
(29)

Our neglect of spacer resistance means VL = VR = 0, imply-
ing W+ = −W− according to equation (12).

Each relation (18) and (19) now reduces to the single
independent equation

(J+ − J−)(1 − cos θ)2 = G(W+ − W−) sin2 θ (30)

Kirchoff’s laws give the two relations

W± = V1 − R±J± (31)

Simple elimination between equations (29–31) gives the
result

R(θ) = (R+ + R−) sin2(θ/2) + 2GR+R− cos2(θ/2)

2 sin2(θ/2) + G(R+ + R−) cos2(θ/2)
(32)

Experimental data is usefully reduced to the dimensionless
variable

r = R(θ) − R(0)

R(π) − R(0)
(33)

Interpretation of experiments sometimes centers on deviation
of the r data from linearity with respect to the variable
cos2(θ/2) as measured by the parameter χ in the formula

r = 1 − cos2(θ/2)

1 + χ cos2(θ/2)
(34)

Figure 8 illustrates this relation. In these terms, the formulas
(32) and (33) combine to give

χ = 1

2
G(R+ + R−) − 1 (> −1) (35)

Experimental values of χ thus far are positive, including
those for trilayers FeCo/Cu/FeCo and NiFe/Cu/NiFe having
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Figure 8. Angular dependence of reduced magnetoresistance on
angle θ between magnetic moments defined by equation (33),
according to equations (34) and (35).

equal magnets. Application of the present theory to these
experiments would require G to be about half of our expected
1.4 × 1015 �−1 m−2 (Bass, J. private communication). How-
ever, the present theory takes no account of the antiferro-
magnetic and superconducting connecting layers used in the
experiments. In addition, since the magnets are composed of
alloys that include Fe, we do not know how well they satisfy
the condition of negligible majority-spin interfacial reflection
assumed by the theory (see Section 3.2) (see also Enhanced
Magnetoresistance, Volume 1).

5.2 Torques on a symmetric trilayer

Specializing now to our illustrative case of two identical
magnets in the preceding text (see Figure 7), application of
the relations (30) and (31) reduces equation (28) to the new
torque relation for either magnet:

T = �JPr�τ(θ)

4e
(36)

with

Pr = (R− − R+)

(R+ + R−)
, � =

[
G(R+ + R−)

2

]1/2

(37)

and

τ (θ) = sin θ

� cos2(θ/2) + �−1 sin2(θ/2)
(38)

The latter reduced torque relation is plotted in Figure 9.
Section 6 treats the effect of such a current-driven torque
on the dynamic behavior of a monodomain using the
Landau–Lifshitz equation.
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Figure 9. Dependence of reduced torque on angle θ for a trilayer
with identical ferromagnetic sublayers. The parameter � is given
by equation (37).

6 DYNAMICS OF MAGNETIZATION
DRIVEN BY CURRENT

Other chapters treat this subject in depth (see also Mag-
netization Dynamics Including Thermal Fluctuations:
Basic Phenomenology, Fast Remagnetization Processes
and Transitions Over High-energy Barriers, Volume 2,
Nonlinear Magnetization Dynamics in Nanomagnets, Vol-
ume 2, Microwave Generation in Magnetic Multilayers
and Nanostructures, Volume 2, Spin Angular Momentum
Transfer in Magnetoresistive Nanojunctions, Volume 5,
and Microwave Excitations in Spin Momentum Transfer
Devices, Volume 5).

Our treatment here is minimal: For simplicity, consider a
uniformly magnetized monodomain having uniaxial effective
anisotropy field Hu = 2Ku/Ms where Ku sin2 θ is the total
energy per unit volume, including material and shape terms.
The free motion of the monodomain is a circular precession
about the easy axis with constant θ and circular frequency
ω = γHu cos θ.

In the presence of small damping (measured by the Gilbert
coefficient α) and exchange (spin-transfer) torques, the time-
dependence of the cone angle satisfies

dθ/dt = θ̇damp + θ̇ exch with (39)

θ̇damp = −1

2
γαHu sin 2θ and (40)

θ̇ exch = γ �Jg(θ)

eMsdF
sin θ (41)

The latter three functions are plotted in Figure 10 for three
values of dimensionless current I. (Units for all physical
quantities are arbitrary.) The function g(θ) employed is
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Figure 10. Instantaneous angular velocity versus angle θ of the
precession cone for a uniaxial monodomain pillar magnet subject
to viscous damping and three values of dimensionless current I ,
according to equation (39). Points of stable dynamic equilibrium
are indicated by ↑ or ↓.

from an earlier theory (Slonczewski, 1996) and corre-
sponds approximately to the symmetric pillar case � = 0.4
in Figure 9. Obvious conditions for the stability of any
cone angle are dθ/dt = 0 (equilibrium) and d[dθ/dt]/dθ < 0
(stability).

For I = −1, the remanent states θ = 0, π satisfy both
conditions, but the intermediate equilibrium point θ = 0.56π

is not stable. Therefore the current value I = −1 does not
excite either of the two remanent states. In the time domain,

consider a small initial fluctuation (e.g., thermal) θ = 0.95π

from one remanent state. Then, integration of equation (39)
shows that the current I = −1 permits the moment to relax
exponentially to the nearby remanent state as illustrated by
the top curve in Figure 11.

For I = −2, only two, (θ = 0, 0.79π) of the four equilib-
rium states are stable. Therefore this value of current drives
the moment out of the neighborhood of θ = π toward the
first stable equilibrium θ = 0.79π. (See Figure 11.) After
it relaxes to this point, the moment continues to precess
steadily at circular frequency ω = γHu cos 0.79π as long as
the constant current I = −2 is maintained. If the current is
subsequently turned off, then the moment falls to the nearer
remanent state, θ = π in this case. This example illustrates
the fact that the criterion d[dθ/dt]/dθ = 0 for instability
threshold does not necessarily imply a full moment reversal.

For I = −4, only one state has a stable equilibrium, so
that a complete reverse switch from θ = π− to θ = 0 occurs.
(See Figure 11) Note that the current speeds up the relaxation
to the final state.

Clearly, positive I of sufficient magnitude will switch in
the forward direction from θ = 0+ to θ = π . In this case
(I > 0) it happens that a steady precessing state does not
exist and the threshold current for instability of θ = 0 does
also cause a full switch. Thus for Hu > 0, the possibility of
a steady precessing state depends on the value of P and the
sign of I. However, for Hu < 0 there exists a range including
both signs of I supporting a steady precession.

(For details of dynamic micromagnetic theory, see
Nonlinear Magnetization Dynamics in Nanomagnets,
Volume 2. For pillar dynamics, see Spin Angular Momen-
tum Transfer in Magnetoresistive Nanojunctions,

0.2

0.4

0.6

0.8

1

q p

0 0.2 0.4 0.6 0.8
t

I = −1

I = −2

I = −4

1 1.2

Figure 11. Dependence of precession-cone angle θ on time com-
puted from equation (39) in arbitrary units. The initial state is
θ = 0.95π. The dimensionless current I = −1 causes no switch,
I = −2 causes a partial switch to the precessing state θ = 0.79π

and I = −4 causes a full switch to θ = 0.
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Volume 5 and Spin-transfer in High Magnetic Fields
and Single Magnetic Layer Nanopillars, Volume 5. For
point-contact excitation, see Microwave Generation in
Magnetic Multilayers and Nanostructures, Volume 2. For
devices, see Microwave Excitations in Spin Momentum
Transfer Devices, Volume 5.)

7 QUANTUM TUNNELING THEORY

Beginning with this section, we replace the metallic spacer in
the magnetic multilayer with a tunneling barrier. A powerful
way to treat tunneling is with the method of Bardeen, which
uses Fermi’s Golden Rule of time-dependent perturbation
theory to describe the flow of electrons from one electrode to
the other (Duke, 1969). It is best derived using the interaction
picture for perturbation theory (Sakurai, 1985).

7.1 Interaction picture

Let ψ satisfy the Schroedinger wave equation

i�
•
ψ = Hψ (42)

for the one-particle Hamiltonian

H = −
(

�d
dx

)2

2m
+ V (x) (43)

in one dimension. Let φn(x) (n = 0, 1, 2, . . .) be a complete
orthonormal set of basis functions. A general wave function
may be expanded thus:

ψ =
∑

n

Cn(t)φn(x) (44)

The matrix equivalent of the Schröedinger equation is found
as usual to be

i�
•
Cn = �n′Hn,n′Cn′ (45)

with • ≡ d/dt and the matrix form of the Hamiltonian

Hn,n′ = 〈
φn

∣∣H |φn′ 〉 (46)

Now let H ′ be a small general perturbation:

H = H0 + H ′ (47)

Also, let λ(x) ≡ φ0 be a single initially occupied unper-
turbed state having vanishing energy: H0λ = 0. Assume also

H ′
0,0 ≡ 0. Each of the initially unoccupied remaining unper-

turbed states φn satisfy

(H0 − �ωn)φn = 0 (n = 1, 2, . . .) (48)

with energy �ωn. Use the interaction picture (Sakurai,
1985)

Cn = an(t)e
−iωnt (49)

with initial values a0(0) = 1 and an(0) = 0 for n = 1, 2, . . .

For n �= 0, consider H ′
n,n′, an, and ωn to be first-order quan-

tities. Upon substitution of equation (49), equation (45)
reduces in first-order approximation to

•
a0 = 0,

•
an = −iH ′

n,0e
iωnt (n = 1, 2 . . .) (50)

These are the linearized perturbation equations in the inter-
action picture. Our next goal is a special expression for H ′

n,0
for the case of tunneling.

7.2 Tunneling rate

To describe tunneling from left to right, specialize to the case
of V approaching the constant barrier height B within much
of the barrier (see Figure 12). Let our λ(x) ≡ φ0 be one
initial state having energy E = 0 which is localized within
the left electrode by the potential B + VL(x) where B is
constant with VL ≤ 0 for all x, and VL = 0 for x > a. Let
the remaining φn be localized on the right of the barrier
by the potential B + VR(x) where VR ≤ 0 for all x, and
VR = 0 for x < b. The total potential of the system is V =
B + VL(x) + VR(x). The basic approximation of Bardeen is
to neglect the nonorthogonality of λ to φn (n = 1, 2, . . .) due
to the small wave function overlap within the barrier (Duke,
1969). (See Figure 12)

E = 0

B

B + VL
B + VR

a b x

l jh

Figure 12. Potentials V = B + VL and V = B + VR, plotted
above, which define left λ(x) and right φn(x) n = 1, 2, 3, . . . . elec-
trode basis functions, plotted schematically in the subsequent text,
for Bardeen tunnel theory.
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Equation (44) in the interaction picture for tunneling
becomes

ψ = λ +
∑

n
an(t)φne

−iωnt (51)

The probability Pn for occupation of the state φn and its rate

of increase
•
P n are

Pn = a∗
n an,

•
P n = (

•
a

∗
n an) + c.c. (52)

Let’s calculate this rate from perturbation theory. Substi-
tute equation (50) into equation (52) and find

•
P n = i�H ′

0,nane
−iωnt + c.c. (53)

Note that we may assume that our basis states λ and φn are
real, because we are free to use either the real or imaginary
part of any complex unperturbed solution. Therefore, the
matrix H ′

n,n′ is real and symmetric. Since the expectation
of velocity (−i�d/dx)/m for a real wave function vanishes
identically, the Bardeen method cannot describe flow of
current through the electrodes − only between them.

Now calculate the one-particle current j from the general
expression (Bohm, 1951)

j (c)= i�

2
(ψ∗

x ψ − ψ∗ ψx)x=c = i�

2

(
ψ∗

x ψ
)
x=c

+ c.c. (54)

at the point x = c, where ψx ≡ ∂ψ/∂x. We let x = c be
a point within the barrier and substitute equation (51) into
equation (54) to find

j =
[

i�

2

(
λxϕn − λϕn,x

)
x=c

an(t1)e
−iωnt

]
+ c.c. (55)

Now compare this with equation (53), identifying j =∑
n

•
P n. They are equal for all initial conditions only if we

identify

H ′
0,n = 1

2

(
λxϕn − λϕn,x

)
x=c

(56)

for all n. In this equation, c must satisfy a ≤ c ≤ b in
Figure 12. We conclude that equation (56) is the general
formula for Bardeen’s transfer Hamiltonian.

Fermi’s Golden Rule for the total transition rate gives:

dP

dt
= 2π

�
H ′2

n,0ρ(E) (57)

where ρ ≡ �(dωn/dn) is the density of states assumed to be
very closely spaced (Sakurai, 1985). This equation with the
matrix element (56) substituted comprises the essential tool
for calculating the current through an insulating barrier.

8 CURRENTS AND TORQUES IN
MAGNETIC TUNNEL JUNCTIONS

8.1 Currents

For adaptation (Slonczewski, 2005) of the Bardeen method
to the MTJ illustrated schematically in Figure 13(a), a
stationary basis state |p, σ 〉 within the left ferromagnetic
electrode FL is assigned the orbital index p and major-
ity/minority spin σ = ± quantized along axis l. It satis-
fies (H + eV − εp,σ )|p, σ 〉 = 0, and decays exponentially
within the barrier, considered semi-infinite in width when
defining the basis states, as in Section 7.2. From this point
forward, −V is the external voltage applied to FL. Here,
H = (p2/2m) + �σ |σ 〉Uσ (x, y, z)〈σ |, where the potential
Uσ depends on spin σ(= ±) within the ferromagnets but
not within the barrier. Within FR, a similar state satisfies
(H − εq,σ ′)|q, σ ′〉 = 0 with quantization axis r. Because the
barrier is assumed to dominate all other resistances of this cir-
cuit, the spin channels are shown in Figure 13(b) as shorted
in each magnet and external-contact region by spin-lattice
relaxation due to spin-orbit coupling. One may disregard spin
accumulation and the related distinction between electric and

J

J

JL+ JR+

J−,+

J+,−

JL− JR−J−,−

J+,+

J

J

JL+
JR+

JL−
JR−

l
r

TR

ML
MR

FL FR

x

TL

V

V

+

+

−

−

I

(a)

(b)

A B

Figure 13. (a) Scheme of magnetic tunnel junction and key to
notations. (b) Equivalent circuit for spin-channel currents and
further key to notations.
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electrochemical potentials which were important previously
in connection with metallic spacers. Uσ includes all elastic
terms arising from atomic disorder due to alloying, defects,
interfacial atomic interdiffusion, and so on. The state indices
p, q simply enumerate the exact eigenstates |p, σ 〉, |q, σ ′〉 of
H in the Bardeen basis. Each such state incorporates effects
of all multiple elastic scatterings without limit.

Employing the spinor transformation connecting quanti-
zation axes l and r, the transfer matrix element takes the
form

〈p, σ |H − ε|q, σ ′〉 =
[

γ p,+;q,+ cos θ
2 γ p,+;q,− sin θ

2
−γ p,−;q,+ sin θ

2 γ p,−;q,− cos θ
2

]

(σ , σ ′ = ±) (58)

Here the purely orbital factor γ p,σ ;q,σ ′ is evaluated by
extending our tunnel matrix expression (56) to three dimen-
sions. Then, inclusion of spin indices gives the expression

γ p,σ ;q,σ ′(x) = −�
2

2m

∫
dydz(ψp,σ ∂xϕq,σ ′ − ϕq,σ ′∂xψp,σ )x=c

(59)
Here the integral is over unit area with coordinate x = c lying
inside the barrier. The energies εp,σ and εq,σ ′ may differ only
infinitesimally from a fixed value ε. The Hamiltonian H, the
left (ψp,σ ) and right (ϕq,σ ′) orbital wave functions, and these
matrix elements (59) are real.

Only the neglect of cross-barrier overlaps 〈p, σ |q, σ ′〉
allows use of the Fermi golden rule (57) of perturbation
theory which is strictly valid only for an orthonormal basis.
Substitution of the perturbation (58) into this rule is followed
by summation over the initial states in the energy band
of width eV . Thus, for infinitesimal V, the partial electric
current density flowing between channel σ in FL and channel
σ ′ in FR becomes

Jσ,σ ′ = −2πe2V

�

∑′
p,q〈p, σ |H − εF|q, σ ′〉2 (60)

at T = 0 K. The ′ in
∑′

p,q imposes the conditions εF <

(εp,σ , εq,σ ′) < εF + eV .

8.2 Genesis of polarization factors

Although MTJ relations depending on polarization factors
are often used to interpret experiments, their validity is
theoretically justified only under a severe restriction: The
barrier is so thick that only a narrow selection of basis
functions on each side penetrates it. To explain, consider the

Schroedinger equation in two dimensions within the region
of a flat barrier of height B :

[−�
2

2m

(
∂2
x + ∂2

y

) + B − EF

]
ψ = 0 (61)

A solution is

ψ ∝ e−κxx cos(kyy + β) (62)

and the eigenvalue equation may be written

κ2
x = k2

y + κ, κ = [
2m(B − EF)/�

2]1/2
(63)

This equation says that the greater the y-momentum, the
steeper the decay of ψ . Therefore the tunnel current concen-
trates near the single state with ky = 0. The barrier collimates
the current. Under this extreme condition, drop the indices
p and q. On both sides of the barrier, the wave functions
ψσ ∝ e−κx and ϕσ ′ ∝ eκx are independent of y. The matrix
element (59) reduces to

γ σ,σ ′ = −�
2

m
κ

∫
dyψσϕσ ′ (64)

In the notation of Figure 13(b), the total tunnel electric
current density flowing from R to L is

J = �σ,σ ′Jσ,σ ′ (65)

with

Jσ,σ ′ =c1e
−2κw

(
ψ2

+ϕ2+ cos2(θ/2) ψ2
+ϕ2− sin2(θ/2)

ψ2
−ϕ2+ sin2(θ/2) ψ2

−ϕ2− cos2(θ/2)

)
(66)

for any x within the barrier. Here w is the barrier thickness
and the constant c1 results from integrating

∫
dky . For

a rectangular barrier, the relative error of the Bardeen
approximation is of the order exp(−kw) (Duke, 1969).

Substitute the identities

2 cos2(θ/2)=1 + cos θ and 2 sin2(θ/2)=1 − cos θ (67)

to find

J = c1

2
e−2κw

[
(ψ2

+ + ψ2
−)(ϕ2

+ + ϕ2
−) + (ψ2

+ − ψ2
−)

× (ϕ2
+ − ϕ2

−) cos θ
]

(68)

This may be written

J (θ) = J0(1 + ι cos θ), ι = PLPR (69)



Theory of spin-polarized current and spin-transfer torque in magnetic multilayers 15

where J0 is constant and the right and left tunnel-polarization
factors are

PL = ψ2
+ − ψ2

−
ψ2

+ + ψ2
−

, PR = ϕ2+ − ϕ2−
ϕ2+ + ϕ2−

(70)

Note that the polarization factor relevant to tunneling is eval-
uated at any x = c within the barrier. A realistic evaluation of
J0 generally requires ab initio numerical computation. Exper-
imental data for the resistance R(θ) are often summarized by
the magnetoresistance ratio

MR ≡ R(π) − R(0)

R(0)
= J (0) − J (π)

J (π)
(71)

Whenever polarization factors are legitimate, this formula
reduces to that of Julliere’s model (Julliere, 1975)

MR = 2PLPR

1 − PLPR
(72)

according to equation (69). (For more MTJ theory, see
Theory of Spin-dependent Tunneling, Volume 1 and Spin-
dependent Tunneling: Role of Evanescent and Resonant
States, Volume 5.)

8.3 Torques

Now apply the torque relations (27) and (28). (Some caution
is demanded by the fact that the electron collimating effect
of tunneling may cause dimpact in MTJs to be greater than
that present with metallic spacers.) Substitute the relations

JL,σ = Jσ,+ + Jσ,−, JR,σ ′ = J+,σ ′ + J−,σ ′, (σ , σ ′ = ±)

(73)
implied by the circuit diagram in Figure 13. The torque on
the right magnet becomes

TR = −
(

�τRJ0

2e

)
sin θ (74)

or, in coordinate-free form

TR =
(

�τRJ0

2e

)
r × (l × r) (75)

with the torque coefficient

τR = PL (76)

Similarly, the torque on the left magnet is

TL = −
(

�τLJ0

2e

)
sin θ, τL = PR (77)

or, in coordinate-free form

TL = �τL

2e
J0l × (r × l) (78)

The equations (69), (76), and (78) show the very close rela-
tion between current-driven torques and magnetoconduction
at the same voltage, summarized by the relation ι = τLτR

connecting observables in the limit of large barrier thickness.

9 JUNCTIONS USING MGO BARRIERS

At this time (2007), rapid improvements of magnetoresis-
tance ratio (MR) and voltage-driven torque effects in MTJs
using MgO barriers are taking place. Initially, first-principle
computations by Mathon and Umerski (2001) and by Butler,
Zhang, Schulthess and MacLaren (2001) predicted enormous
values of magnetoresistance ratio MR for epitaxial junctions
of composition (001)Fe/MgO/Fe. The large MR is due to a
selection rule prohibiting the transition of the minority band

5 wave function at transverse momentum k‖ = 0 to the
most-slowly decaying 
1 wave function within the MgO bar-
rier. Subsequently (Zhang and Butler, 2004) further predicted
even greater ratios in such junctions with Co or ordered FeCo
substituted for Fe.

Indeed, many experiments using compositions of the class
FexCoyBz/(001)MgO/FexCoyBz reported MR as great as
270% at T = 300 K, but smaller than predicted (see Mag-
netic Tunnel Junctions, Volume 5). The measured MR
depends greatly on extrinsic conditions including annealing,
dislocations, added elements inserted at interfaces, and sput-
tering conditions. It appears likely that details of microstruc-
ture at interfaces mix 
5 and 
1 states, thus permitting
greater minority-spin current which decreases MR from its
first-principle value. Switching experiments confirm spin-
transfer phenomena in MTJs (Huai et al., 2003; Fuchs et al.,
2004).

Here, we predict observable signatures of voltage-driven
torque whose measurement could discriminate between vari-
ous effects of the microstructural conditions mentioned in the
preceding text (Slonczewski and Sun, 2007). As yet no exper-
imental tests exist. Possibly applicable methods of directly
measuring the current-driven torque have appeared recently
in two reports: (Tulapurkar et al., 2005) use an external field
to orient the two magnetic moments at an angle of 30◦. The
torque created by an AC current flowing through the junction
causes the free moment to oscillate. A voltmeter detects the
DC magnetoresistive voltage proportional, by virtue of non-
linearity, to the square of the oscillation amplitude. Sankey
et al. (2006) similarly use current-driven torque to drive fer-
romagnetic resonance in the free magnet. These techniques
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show promise for the experimental investigation of the torque
signatures predicted in the subsequent text.

Sections 7 and 8 assume the tunneling is elastic. Here we
take advantage of the more general nature of relations derived
there. Our present model, includes inelastic as well as elastic
mechanisms of spin-polarized tunneling (Slonczewski and
Sun, 2007). It is inspired in part by awareness of conduc-
tance data for FexCoyBz/MgO/FexCoyBz of the sort shown
in Figure 14. We find in the subsequent text that the antipar-
allel conduction GAP resembling the nonanalytic function
a + b|V | for |V | > 80 mV (which we call pseudolinear),
apparent in the lower curve of Figure 14, does not arise from
elastic tunneling. But inelastic tunneling theory can explain
pseudolinear voltage dependence observed for various non-
MTJ tunneling junction compositions (Kirtley and Scalapino,
1990). Inclusion of inelastic tunneling is a key feature of our
model for MgO-based tunneling junctions. (For MTJ exper-
iments, see Magnetic Tunnel Junctions, Volume 5.)

9.1 Magnetoconductance and torkance

We employ notation compatible with the above-mentioned
experimental techniques for measuring differential current- or
voltage-driven torque (Tulapurkar et al., 2005; Sankey et al.,
2006). In particular, we use the coefficients Gσ,σ ′ of cross-
channel conductance amplitude, defined in the subsequent
text, for electric current flowing through any of the four spin
channel combinations σ , σ ′(= ±) (see Figure 13).

The physical electric conductance density flowing between
spin channel σ ′ (R) and σ (L) of the barrier (see

−0.4 −0.2 0 0.2 0.4

0.5

1

1.5

2

2.5 T = 2.7 K

Parallel
Anti-parallel

dI
/d

V
 (

10
−3

Ω
−1

)

V (V)

Figure 14. Measured conductance versus voltage for an MTJ hav-
ing a very large MR. The parallel conductance GP lies above, the
antiparallel GAP below. The composition is Co70Fe30/(8 Å)Mg-
(26 Å)MgO/Co70Fe30. Junction dimensions are 240 × 80 µm2.
(Unpublished data, by courtesy of S. S. P. Parkin.)

equation (66)) are

dJσ,σ ′/dV = Gσ,σ ′(V )〈σ |σ ′〉2, (Gσ,σ ′) ≤ 0 (79)

with the spin-coordinate transformation matrix elements
〈±|±〉 = cos(θ/2) and 〈±|∓〉 = ± sin(θ/2). The first-prin-
ciple calculations for MTJs with (100)MgO barriers (Mathon
and Umerski, 2001; Zhang and Butler, 2004), express, for
V = 0, the conductance density for parallel and antiparallel
moments with the formulas (in a different notation)

GP = G++ + G−−, GAP = G+− + G−+ (80)

These equations follow easily for any V from the condi-
tion of spin conservation. When tunneling is inelastic, Gσ,σ ′
necessarily varies with voltage V, as explained in the subse-
quent text.

Now we eschew use of polarization factors (70) because
their validity in inelastic tunneling is not established. In place
of equation (75), we introduce the following expression for
what we may call torkance:

dTR

dV
= �

4e
(G++ − G−− + G+− − G−+)r × (l × r) (81)

Here the factor −�/2e converts the electric current carried
by a particle flux to the equivalent current of spin angular
momentum.

Equation (81) follows from equations (28) and (79). To
verify equation (81) more transparently for the special case
l ⊥ r, define the vector spin moment per unit area of one
metallic nanomagnet:

S = (�/2)(n+ − n−)s (n+ > n−) (82)

where s is a unit vector, n± are total electron numbers
for spin-polarized subbands σ = ±. The spin-current density
flowing rightward through the magnet is

K = (K+ − K−)s ≡ (�/2)(�ivi,+ − �ivi,−)s (83)

where vi,σ is the velocity of an occupied state. Consider
the volume � lying between the planes marked A and B in
Figure 13. The mean spin components transverse to local
M vanish at all points outside �. Neglect all terms in the
Hamiltonian H except kinetic and coulomb energies as given
in equation (24). Since H contains no spin operators, the total
vectorial spin Stot contained in � changes only by inward
flow of vectorial spin currents. Then its time derivative
satisfies the equations

•
Stot =

•
SL +

•
SR = KL − KR (84)
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SL

SL⊥ = −KR

SR⊥ = KL

SR

•

•

Figure 15. (Colored on line) Illustrating relations between pseudo-
torque and spin-current vectors when moments are perpendicular.
Assumed is the usual case in which each spin-current vector KL

and KR have the same sign relative to SL and SR, respectively.

The Bardeen method predicts only pseudotorque vector
components lying within the l–r plane. Now consider the

special case l ⊥ r. Since
•
SL • l =

•
SR • r = 0, we have the

cross-relations
•
SL⊥ = −KR and

•
SR⊥ = KL. See Figure 15.

According to equation (79), the ⊥ condition implies that,
from equation (83), KL± has 1/2 the strength it would have
for the given Gσ,σ ′ if the spin axes were optimally aligned:

dKLσ /dV =
(

1

2

) (−�

2e

) (
G±,+ + G±,−

)
(85)

The result of combining this with the first of equations (83)

and substituting into
•
SR⊥ = KL agrees with equation (81).

9.2 Elastic tunneling

Consider a special phenomenological model of F/MgO/F
having symmetric chemical composition exemplified by the
MTJ whose conductances are plotted in Figure 14. Compose
each channel current density of elastic and inelastic terms:
Jσ,σ ′ = J el

σ ,σ ′ + J inel
σ,σ ′ . Define a tunnel-rate coefficient Uσ,σ ′

proportional to the mean-square matrix element for elastic
tunneling between the orbital states of spin channels σ(= ±)

and σ ′(= ±). It is averaged over the index p of real Bardeen
orbital basis states |p, σ 〉 on the left and over q of |q, σ ′〉 on
the right, with the factor depending on θ omitted. Including
all other factors in the conventional tunneling expression
for current except the state densities ρσ , ρσ ′ , it may be
approximated by the form

Uσ,σ ′ = Ce−2κd〈p, σ |H |q, σ ′〉2 (86)

where κ is the decay coefficient for a real pseudo-Bloch
function with k‖ = 0 and symmetry type 
1 having its
energy within the forbidden band of MgO (Mathon and
Umerski, 2001; Zhang and Butler, 2004). The predicted local
density in the σ = −, 
5-propagation channel at ≥3 atomic
layers of MgO from the initial F/I interface amounts to
�10−2 times that of the σ = +, 
1-channel. (See Figure 7
of Butler, Zhang, Schulthess and MacLaren, 2001.) This
prediction makes reasonable our neglect of tunneling via the

5 channel in experimental MTJs. We assume that disorder
or dislocations within the electrodes or interface regions
enables the σ = −, 
5-state of an electrode to couple to
the 
1-channel of MgO to an extent governed by details of
the atomic-scale structure.

For finite V, we may integrate the transition rate of the
golden rule (57) with respect to V . Then, in view of the
relation (60), the current density due to elastic tunneling at
T = 0 K reduces to the phenomenological form

J el
σ ,σ ′(V , θ) = Uσ,σ ′ 〈σ , σ ′〉2

∫ V

0
dvρσ (v − V )ρσ ′(v) (87)

upon adjustment of C. Here, for convenience, we have
replaced the energy ε argument in the state density ρσ ,

measured from the Fermi level εF = 0, with voltage using
ε = eV . We assume that, whatever lack of symmetry is
present in this system, it will not be in the composition,
therefore not in the state density ρσ . Rather it will lie in the
coefficient Uσ,σ ′ , reflecting asymmetry of the concentration
of defects or dopants in the interfacial microstructure; thus
we omit the subscripts L and R from ρσ .

In many cases, as in Figure 14, the relative dependence of
GP on V is much weaker than that of GAP. Thus, we take
GP constant and assume, to first order in v,

ρ+ = const., ρ− = ρ−,0 + ρ−,1v (88)

Then in view of equation (79), equation (87) reduces in first
order to

Gel
++ = U++ρ2

+, Gel
+− = U+−ρ+(ρ−,0 + ρ−,1V )

Gel
−+ = U−+ρ+(ρ−,0 − ρ−,1V ), Gel

−− = U−−ρ2
−,0 (89)

Notice here that U+− is distinct from U−+ because breaking
of the selection rule forbidding coupling of a k‖ = 0 minority
state in a magnetic electrode to 
1 in MgO is allowed only
by disorder in the electrode or interface, or presence of a
foreign interfacial layer. Thus U+− and U−+ depend on
microstructural conditions which may differ on the two sides
of the barrier. In an MTJ having large MR, such as the
one in Figure 14, Gel−− is anyway small, so no correction
is attempted.



18 Metal spintronics

Substitution of equation (89) into (80), gives the linear
form GAP = a + bV and not the broken linear form a + b|V |
which would reasonably represent the data appearing in
Figure 14. To obtain a better representation of the data,
we consider the possibility of inelastic tunneling in the
subsequent text.

9.3 Inelastic tunneling

The following argument sketches the crux of a general
theory (Kirtley and Scalapino, 1990) for the V -dependence
of inelastic tunneling current density J inel at T = 0 K: For
V > 0, write

J inel =
∫ V

0
dvρL(v − V )

∫ v

0
F inel(v − v′)dv′ρR(v′) (90)

where the excitation, proportional to the spectral weight
F inel(v − v′) (> 0) of excitation by some subsystem com-
pensates for the difference e(v − v′) between initial and final
energies in the electrodes. Then, assuming F inel, ρL, ρL are
constants, the result, written for both signs of V, is the bro-
ken linear function Ginel = dJ inel/dV = F inelρLρR|V | we
seek. In the present case, the nature of this subsystem
(maybe magnons, electron traps at oxygen vacancies, or cor-
related coulomb excitation of electrons (Slonczewski and
Sun, 2007)) is not known.

In the case of a perfectly ordered, epitaxial crystalline
MTJ having a composition in the class (Fe,Co,FeCo)/MgO/
(Fe,Co,FeCo), a quantum-theoretical selection rule forbids
mixing of the minority-spin Bloch waves at k‖ = 0, having
little-group symmetry 
5, with the MgO gap wave func-
tion having the lowest decay coefficient κ (Mathon and
Umerski, 2001; Zhang and Butler, 2004). An enormous mag-
netoconductance ratio is predicted from the consequently
small values of G+− and G−+ appearing in equation (80).
We assume that some inelastic mechanism provides chan-
nels additional to those of the defect-induced elastic coeffi-
cients U+− and U−+ for breaking this selection rule. From
the previous paragraph follow the formulas Ginel+− = DR|V |
and Ginel−+ = DL|V |, where the adjustable coefficients satisfy
DL > DR or DL < DR depending on which interface the
inelastic mechanism favors. Since the ++ connection does
not involve the selection rule, and the −− involves it twice,
we take Ginel++ = Ginel−− = 0.

Substitution of equation (89) into (80), with Ginel
σσ ′ included,

gives

GAP = (U+− + U−+)ρ+ρ−,0 + (DL + DR)|V |
+(U+− − U−+)ρ+ρ−,1V (91)

By eliminating G++ between equations (80) and (81), and
including Ginel

σσ ′ , one gets:

dTR/dV = (�/4e)[GP + (U+− − U−+)ρ+ρ−,0

+(DL−DR)|V |+(U+−+U−+)ρ+ρ−,1V ] sin θ

(92)
where we have neglected G−− altogether.

9.4 Observable signatures from
magnetoconductance and torkance

With the aid of our equations (91) and (92), combined
observation of GAP and dTR/dV may serve to reflect
interfacial microstructures of a compositionally symmetric
MTJ having a large magnetoconductive ratio GP/GAP.

To illustrate this, we assume GP is constant and plot
schematically GAP and dTR/dV in Figure 16 for 5 special
cases A–E reflecting terms in these equations:

1. Symmetric reference case, (A) with U+− − U−+ = ρ−,1

= DL − DR = 0: Here GAP has the pseudolinear depen-
dence on |V | due to inelastic scattering exemplified
by the data in Figure 14. The torkance dTR/dV =
(�/4e)GP sin θ is constant. A predicted independence
of torkance on V for magnon-induced tunneling is
one example of this broad phenomenological prediction
(Levy and Fert, 2006).
The remaining cases in the subsequent text illustrate
possible changes from case A leaving the sums U+− +
U−+ and DL + DR unchanged:

2. Asymmetry of elastic tunneling, (B): Let U+− > U−+,
which reflects the difference in degrees of disorder or
dislocation density at the two F/I interfaces. GAP does
not change. But now the torkance makes a constant shift
amounting to (U+− − U−+)ρ+ρ−,0 sin θ, according to
equation (92).

3. Dependence of state density on energy, (C): Let ρ−,1 >0.
This does not change GAP but gives the torkance a true
linear dependence.

V V

O

O

E
C

D

GAP

(a) (b)

A-D

AA
B

C

D

B
A-D

E

E

EdTR/dV

Figure 16. (Color on-line) Scheme of predicted antiparallel con-
ductance GAP (a) and torkance dTR/dV (b). The separate cases
A–E are described in the text.
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4. Asymmetry of distribution of inelastic tunneling centers,
(D): Let DL > DR. This causes no change in GAP, but
gives pseudolinear dependence to torkance. Depending
on the sign of DL − DR, the torkance rises with |V | as
shown, or falls.

5. Combine tunnel matrix asymmetry with dependence of
ρ− on energy, (E): Let both U+− > U−+ and ρ−,1 > 0.
This gives GAP a true linear bias. The torkance acquires
a superposition of the effects in cases B and C, namely
a shift and a tilt.

It is significant how much more information about spin-
dependent tunnel transport observation torkance is capable
than the conductance. For example, any one of the cases
A, B, C, or D could account for the data in Figure
14. They are indistinguishable in Figure 16(a), but in (b)
we see significant differences in the torkance signature,
potentially enabling experimental discrimination between
microstructural mechanisms.

Case E is particularly interesting because the dislocation
densities at the two interfaces of epitaxial (001)Fe/MgO/Fe
are known to differ markedly. This difference may cause the
inequality U+− �= U−+. Indeed, a plot of GAP in sample B
reported by (Tiusan et al., 2006) reveals tilted-V behavior
resembling that shown in case E of Figure 16(a). If the
present model is correct, then the torkance in a pillar of the
same composition should show, as a minimum, the shift and
true linear tilt seen in panel (b), case E.

10 A FINAL COMMENT

Worth summarizing are the complementary natures predicted
in the preceding text for currents and spin-transfer torques
through metallic versus MgO-tunneling spacers: (i) When
the spacer is metallic, current density J is the natural
independent variable; but in the case of a barrier, the voltage
V is better. (ii) At constant intermoment angle θ, the relations
for V (J ) and torque T(J ) predicted when the spacer is
metallic are linear for a significant range of J ; but the J (V ),

T(J ), and T(V ) relations predicted in MTJs for general
θ may be significantly nonlinear. (One linear exception is
GP(V ) and others are T(V ) in the special cases A and B
illustrated in Figure 16.) (iii) With a metallic spacer, the
V (θ) and T(θ) relations are typically not unique under any
condition; but with a tunneling barrier at given V, they are
simple: J ∝ cos θ and T ∝ sin θ.
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1 A BRIEF HISTORY – PART 1

The histories of superconductivity and magnetism have been
much intertwined. The discovery of the Meissner effect in
1933, where magnetic flux is expelled from a supercon-
ductor as it is cooled below its transition temperature Tc,
demonstrated that superconductors were more than just per-
fect conductors, leading to the famous proposal by London of
the existence of a macroscopic condensate that accounts for
the supercurrent. This was quite startling given the fermionic
nature of the charge carriers in a metal, whose statistics do
not prefer condensate formation as in the case of bosons.
This idea was codified by Ginzburg and Landau in 1950, who
introduced an order parameter field describing the condensate

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

of electrons. The resulting Ginzburg–Landau Hamiltonian
has been exploited in many areas of physics, including those
dealing with the origin of the universe. One of the early
successes of the Ginzburg–Landau theory was the predic-
tion of type II superconductivity by Abrikosov in 1957, in
which magnetic flux penetrates in the form of quantized vor-
tices above a lower critical field Hc1. Recently, such vortices
have been observed in cold atom condensates as well.

It was the development of a microscopic theory by
Bardeen, Cooper, and Schrieffer (BCS) in 1957 and the sub-
sequent proof by Gor’kov in 1959 of the equivalence of this
theory to the Ginzburg–Landau formalism which began the
modern era of superconductivity (Schrieffer, 1964). The cru-
cial finding of Cooper in 1956 was that in the presence of a
Fermi sea, arbitrarily weak attraction could lead to pair for-
mation. Such pairs behave as bosons, thus explaining how
a condensate could exist. The attraction that forms the pairs
is a consequence of the positive ions and the fact that the
ions and electrons have different timescales. Figure 1 illus-
trates how this works. Positive ions are attracted to negative
electrons. This polarizes the ions toward the electron. When
the electron leaves, a second electron sees this positive cloud
and is attracted to this location, leading to pair formation. As
the interaction is local in space, one forms s-wave pairs that
are spin singlets by fermion antisymmetry. The pairs form
despite the presence of the Coulomb repulsion of the indi-
vidual electrons as they are at the same place, but at different
times. Once the electrons become energetic enough relative
to the ion vibrations (phonons), the attraction goes away, and
the Coulomb repulsion wins out. This ‘retardation’ effect is
responsible for limiting the superconducting transition tem-
perature of electron–phonon systems to values significantly
smaller than room temperature.
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e−
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Figure 1. The electron–phonon interaction leads to an induced
attraction between electrons. Arrows joining circles show displaced
ions; the timescale of these ions for relaxation back to their original
positions is slow compared to the electron dynamics.

The development of the BCS theory also led to the under-
standing of why proximity to magnetism is usually detrimen-
tal to superconductivity. In 1960, Abrikosov and Gor’kov
showed, using the powerful Matsubara technique for finite
temperature quantum field theory, that magnetic impurities
are pair breaking (Abrikosov and Gor’kov, 1961). This result
is easy to appreciate, since spin flip scattering will destroy
singlet pairs. This argument was generalized to the dynamic
case by Berk and Schrieffer, who showed, by summing a
ladder series representing repeated scattering between the
two electrons of the pair, that ferromagnetic spin fluctuations
were detrimental to spin singlet superconductivity (Berk and
Schrieffer, 1966) (Figure 2).

However, Fay and Layzer (1968) turned this argument
around. The same formalism can be used to show that
ferromagnetic spin fluctuations will promote spin triplet
pairing, which is p wave due to fermion antisymmetry. This
relies on the fact that the bare contact interaction is zero in the
triplet channel (due to the Pauli exclusion principle), but the
induced interaction (again, from the ladder sum of repeated

Figure 2. Particle–particle interaction from spin fluctuations. Note
the particle–hole ladder sum buried inside this diagram.

scattering of two electrons via spin fluctuations shown in
Figure 2) is attractive. Physically, this ‘attraction’ is due to
the fact that an up spin electron prefers to have other up spin
electrons nearby. The node in the pair wave function for the
p-wave case acts to prevent the two electrons from coming
too close together, thus minimizing the detrimental effects
due to the direct Coulomb repulsion. They suggested that
this mechanism could apply to nearly ferromagnetic metals
such as Pd and also to the charge-neutral case of 3He.

In 1972, Osheroff, Richardson, and Lee indeed discovered
p-wave superfluidity in 3He. It was soon realized that there
were two superfluid phases, an anisotropic A phase and
an isotropic B phase. This was difficult to understand,
since the free energy of the isotropic phase should be the
lowest according to Ginzburg–Landau theory. But in the
following year, Anderson and Brinkman (1973) showed how
the anisotropic A phase could be stabilized. The development
of an energy gap removes some of those spin fluctuations that
lead to pairing in a spin fluctuation model, thus leading to
a decrease in the pairing kernel. This gapping effect is less
pronounced in the anisotropic A phase than in the isotropic
B phase, explaining how the A phase can be stabilized.
This would seem to have been the ‘smoking gun’ for spin
fluctuations, but in subsequent years, it was realized that
there are many contributions to the pairing kernel besides
spin fluctuations, such as density fluctuations, transverse
current fluctuations, and so on. In fact, alternates to spin
fluctuation theory have been proposed in the case of 3He,
including the ‘nearly localized’ approach of Vollhardt and the
polarization potential model of Bedell and Pines (Vollhardt
and Wolfle, 1990).

At this point, an important issue should be realized.
Unlike the electron–phonon case where electrons and ions
can be approximately treated as separate systems, the spin
fluctuations themselves are composed of electrons. This
makes the whole notion of ‘pairing glue’ suspect in this
case. One consequence of this is that spin fluctuations do
not appear to obey Migdal’s theorem. How this theorem
works for the classic phonon case is as follows. The ratio
of the electron mass to the ion mass is very small, thus
leading to a controlled perturbation expansion. For most
cases, it is sufficient to stop at lowest order when evaluating
the electron and phonon self-energies. The exception is the
pairing instability, which requires summing a ladder series
of repeated scattering. This neglect of vertex corrections,
though, is not generally valid in the case of spin fluctuations,
as shown by Hertz, Levin, and Beal-Monod (1976).

In 1979, Frank Steglich’s group discovered superconduc-
tivity in the heavy electron alloy CeCu2Si2. This came in the
face of existing wisdom that proximity to magnetism was
deadly for superconductivity in metals (3He obviously differs
in that its pairs are composed of charge-neutral atoms). Soon,
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several of these materials were discovered, and one of them,
UPt3, was known to exhibit strong spin fluctuation behav-
ior. As expected, various spin fluctuation theories based on
3He were proposed to explain the superconductivity seen in
these materials. But subsequent neutron scattering revealed
that these metals were nearly antiferromagnetic, rather than
nearly ferromagnetic. In 1986, several theories were formu-
lated for heavy fermions on the basis of neutron-scattering
data (Miyake, Schmitt-Rink and Varma, 1986; Scalapino,
Loh and Hirsch, 1986). The prediction was the formation
of a singlet pair, this time due to the fact that in the presence
of antiferromagnetic correlations an up spin electron prefers
to be surrounded by down spin electrons. To avoid the strong
on-site Coulomb repulsion, the pair state has d-wave sym-
metry. For a simple cubic lattice, the pairs take the form
(x2 –y2) ± i(3z2 –r2). In real space, this pair wave function
corresponds to six lobes that point from a given atomic site
to its near neighbors.

In hexagonal symmetry, this two-dimensional group rep-
resentation instead becomes isomorphic to L = 2, M = ±1
spherical harmonic. This E1g model is a leading candidate to
describe various experimental data in UPt3, including the
observation of the three different superconducting phases
seen in the H, T phase diagram (Joynt and Taillefer, 2002).
But problems with this model have led to a variety of other
proposals, including the A, B model of Garg (two nearly
degenerate single dimensional group representations), the p-
wave model of Machida, and the f-wave model of Norman
and Sauls. This last model (E2u) provides a particularly good
description of the H, T phase diagram, thermal conductivity,
and transverse ultrasound data (Sauls, 1994). Triplet mod-
els (p, f) for UPt3 are particularly attractive, since there has
been no observed change in the Knight shift (i.e., the static
spin susceptibility) when going below Tc, as opposed to
other heavy fermion superconductors such as UPd2Al3 and
CeCu2Si2 (Tou, Ishida and Kitaoka, 2005). The point to be
made, though, is that despite many claims in the literature,
the actual pairing symmetry of any heavy electron supercon-
ductor is unknown at present.

2 A BRIEF HISTORY – PART 2

In early 1986, high-temperature superconductivity was dis-
covered by Bednorz and Mueller in the doped perovskite
La2−xBaxCuO4 (LBCO) (Bednorz and Müller, 1986). It
was not until November of that year, though, before the
results were verified and thus led to wide-scale recognition.
By January of 1987, superconductivity above the tempera-
ture at which air liquefies was found in the related com-
pound YBa2Cu3O7 (YBCO) by Chu and collaborators. The
same month, a theory for these materials was proposed by

Anderson (1987). He recognized that the undoped compound
La2CuO4 would likely be a Mott insulator. He speculated that
the Néel (antiferromagnetic) order of the insulator would be
melted by quantum fluctuations (due to the low spin S = 1/2
of the d9 Cu ion and the two-dimensional nature of the CuO2

planes). Although Néel order was discovered subsequently,
it indeed disappears when only a few percent of holes are
doped into the material. Anderson denoted this melted Néel
state as a resonating valence bond (RVB) state, which rep-
resents a liquid of spin singlet pairs. When the system is
doped, the presence of charge carriers causes this spin pair-
ing state to condense into a superconducting state. Originally,
it was thought that the resulting pair symmetry would be
s-wave-like, but subsequent work in 1988 predicted d-wave
symmetry instead (Kotliar and Liu, 1988; Zhang, Gros, Rice
and Shiba, 1988).

It was not long after Anderson’s theory was announced in
1987 that more traditional spin fluctuation–based approaches
were brought to bear on this matter. Bickers, Scalapino,
and Scalettar observed that the 3D pairing state discussed
earlier in the context of heavy fermion materials would
reduce to dx2 − y2 in two dimensions (Bickers, Scalapino
and Scalettar, 1987). Scalapino (1995) subsequently gave
an intuitive picture of how such a pair state arises. In
momentum space, the zero frequency limit of the real part of
the effective potential coming from the Coulomb interaction
is repulsive for all wave vectors, with a maximum at a wave
vector (π, π) which would be the ordering wave vector
for the undoped antiferromagnet (Figure 3). But Fourier
transformed into real space, the effective potential has Friedel
oscillations. Although obviously repulsive at short distances,
the potential is attractive for near neighbor separations
(Figure 3). In momentum space, this is reflected in the gap
equation, where the sign change of the d-wave tight binding
gap function �(k) = cos(kxa)– cos(kya) upon translation by
(π, π) compensates for the repulsive sign of the potential
V : �(k) = �k′Vkk′�(k′) where the pairing kernel Vkk′ =
U + J (cos(qxa) + cos(qya)) with q = k–k′, U positive and
J negative.

Despite this initial success, there were no indications from
experiment at that time supporting the existence of a d-wave
pairing state. In fact, because the cuprates are somewhat
dirty systems replete with impurities, the feeling was that
the order parameter would have to be s-wave-like to avoid
pair breaking. To understand this, we note that the d-wave
order parameter changes sign under a reflection operation
xy → yx. Any impurity scattering that mixes these two
states destroys the d-wave phasing relation.

In the early 1990s, though, experimental evidence began to
emerge supporting a d-wave picture. The temperature depen-
dence of the nuclear magnetic resonance (NMR) spin relax-
ation rate, the Knight shift, and the in-plane penetration depth
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Figure 3. Effective interaction for spin fluctuation–mediated pairing (antiferromagnetic case). (a) Momentum space (a repulsive potential
peaked at q = (π, π)) and (b) real space (repulsive potential on site, attractive potential for a near neighbor separation).

did not follow the exponential behavior predicted for s-wave
pairing, but rather the power law behavior predicted for a
d-wave state due to the presence of a node (zero) in the order
parameter. This node was subsequently imaged directly by
angle-resolved photoemission. Then phase-sensitive Joseph-
son tunneling saw the predicted sign change of the d-wave
order parameter upon 90◦ rotation. Since then, a large body of
experimental evidence has accumulated, including the depen-
dence of Tc on impurities, that overwhelmingly confirms the
d-wave nature of the pairs. At the same time, there has been
great progress in the theory of spin fluctuations as applied
to cuprates, as well as in solving the underlying microscopic
theories based on the Hubbard model. In addition, there have
been recent advances made in the RVB theories as well.

3 ELECTRONIC STRUCTURE OF THE
CUPRATES

In the undoped cuprates, the copper ions are in a d9

configuration. This corresponds to a single hole in the
x2 –y2 orbital (not to be confused with the d-wave pair
state discussed earlier). Of all transition-metal oxides, the
cuprates are unusual in that the copper d orbital and the
oxygen p orbital have energies that are nearly degenerate
(Pickett, 1989). As a consequence, the dominant energy scale
in the problem is the large (∼6 eV) bonding–antibonding
splitting between the copper dx2 − y2 orbital and the oxygen
px and py orbitals (Figure 4). This leaves the highest energy
band (the antibonding one) as half filled. Adding Coulomb
repulsion, this band splits into two, a lower Hubbard band
and an upper Hubbard band. The resulting Mott insulating
gap is of the order of 2 eV. Keeping all three bands, this
is known as the three-band Hubbard model, but keeping
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Figure 4. Electronic structure of the layered cuprates. The copper d
and oxygen p levels hybridize, resulting in a partially filled
antibonding band. A Mott gap due to Coulomb correlations splits
this band, leading to the formation of an upper Hubbard band and
a lower Hubbard band, with the chemical potential, µ, inside this
gap for zero doping.

just the antibonding band it is known as the single-band
Hubbard model. Almost all treatments assume the latter,
though Varma has argued that important physics is thrown
out upon such a reduction (as will be discussed later). In the
limit of large Coulomb repulsion, U , one can then project
onto the subspace which does not allow double occupation
of the Cu site, leading to the t − J model, where J , the
superexchange interaction, is proportional to t2/U and t is
the effective hopping integral between Cu sites. J prefers
antiferromagnetic orientation of the copper spins (one spin
per site in the undoped case). This can be seen by the fact that
the Pauli exclusion principle does not allow virtual double
occupation unless the two spins are antialigned.
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There are no exact solutions of either the single band
Hubbard model or the simpler t − J model in two dimen-
sions. Approximate treatments have been done using quan-
tum Monte Carlo, density matrix renormalization group,
dynamical mean-field theory (and its various cluster exten-
sions), and exact diagonalization of small clusters. Although
there is no solid proof at this time, results are encouraging
enough that there is a strong probability that a true d-wave
pairing instability exists in these models. It is beyond the
scope of this article to review these techniques. Instead, we
give an overview of the spin fluctuation approach and its
RVB counterpart, discuss these theories in relation to exper-
imental data, and then end with a discussion of alternate
mechanisms for cuprate superconductivity.

4 SPIN FLUCTUATION THEORIES

The literature on this subject is vast, so this brief review
can only give the highlights. The basic idea is that in
spin fluctuation theories, the pair potential V is found to
be proportional to I 2Imχ(q, ω) where I is the effective
spin interaction between electrons and Imχ(q, ω) is the
imaginary part of the dynamic spin susceptibility, with
the proportionality prefactor of order unity (−3/2 for spin
singlet pairs and +1/2 for spin triplet pairs). ‘I ’ itself is
dependent on the underlying theory. For instance, in the
Hubbard model, this would be the Hubbard interaction U ,
but if one used an effective low-energy theory, then it
would be J , the superexchange interaction. At this level, the
theory is equivalent to random phase approximation (RPA)
where χ(q, ω) = χ0(q, ω)/(1–Iχ0(q, ω)) with χ0(q, ω) the
polarization bubble calculated using bare Greens functions.

There are several ways to consider going beyond RPA.
One is simply to add fluctuation corrections to χ(q, ω). To
understand this approach (Lonzarich and Taillefer, 1985), we
note that in a Ginzburg–Landau expansion for magnetism,
the free energy would be of the form aM2 + bM4 where M is
the magnetization (staggered magnetization in the antiferro-
magnetic case). With fluctuations included, we note that upon
factorization of M4 one obtains a term of the form 6〈M2〉M2

where 〈M2〉 is the expectation value of M2 averaged over all
statistical ensembles. This 6bM2〈M2〉 term then renormalizes
the aM2 term, leading to an aeff = a + 6b〈M2〉, noting that
a is simply the inverse (RPA) susceptibility (in statistical
field theory, this is often denoted as the Hartree approxi-
mation). This approach has been enormously successful in
describing transition-metal magnets, for instance, predicting
the lack of magnetic long-range order in lower dimensions,
and understanding why most magnets have transition temper-
atures strongly suppressed relative to mean-field (Stoner) the-
ory. In turn, these fluctuations enter into the pair kernel, and

this approach has been extensively studied by Moriya and
coworkers in the context of a spin fluctuation–mediated pic-
ture for cuprate superconductivity (Moriya and Ueda, 2000,
2003).

Another way to go beyond RPA is to use dressed Greens
functions rather than bare ones when constructing the polar-
ization bubble. This is the basis behind the fluctuation
exchange (FLEX) approximation (Bickers, Scalapino and
White, 1989), where the self-energy used to dress the single-
particle Greens functions is chosen to satisfy a certain
self-consistency relation involving the free energy, the self-
energy, and the Greens function (the conserving approxima-
tion of Gordon Baym). Subsequently, this method has been
applied by many authors, to address not only the single-
particle spectral function and the dynamic spin susceptibility
but also the pairing interaction.

One issue with such approximations is that it is usually
dangerous to dress the Greens functions without including
vertex corrections in the spin susceptibility. In the ‘two-
particle self-consistent’ approach of Vilk and Tremblay
(1997), a similar procedure to FLEX is done, but now the
interaction U (they assumed a Hubbard model) is replaced
by Usp, with Usp a screened interaction (again chosen to
satisfy certain self-consistent relations), which enters the
susceptibility, χ(q, ω) = χ0(q, ω)/(1–Uspχ0(q, ω)), where
as in FLEX χ0 is calculated using dressed Greens functions.
In essence, Usp represents a constant vertex correction. More
sophisticated approximations would allow Usp to depend on
momentum and frequency. Note that in such approaches, the
U 2 prefactor of the pairing kernel is now replaced by UUsp.
A recent review of this and related approaches based on
dynamical mean-field theory (and its cluster extensions) has
been offered by Tremblay, Kyung, and Senechal (2006).

One can, of course, attempt to go beyond these approxi-
mations by performing a systematic diagrammatic expansion
including vertex corrections, for instance, the work of Doug
Scalapino and coworkers (Bulut, 2002). These authors have
used quantum Monte Carlo simulations as a fundamental
check of their work (as has the Tremblay group). The limi-
tation is that such quantum Monte Carlo simulations cannot
be carried out at low temperatures because of the so-called
fermion sign problem (the many-body wave function having
both positive and negative regions in the fermionic case leads
to the problem of negative probabilities in the context of the
simulations).

And, there have been some attempts to combine all of these
ideas into a single approach. A good example is the extensive
work of Chubukov and collaborators on a quantum field
theoretical approach to the spin fluctuation problem, dealing
with matters concerning the strong influence of quantum
and thermal fluctuations, with the resulting non-Fermi liquid
behavior. Space prohibits an adequate summary of this work,
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and the reader is referred to a review article done by this
group (Abanov, Chubukov and Schamlian, 2003).

Finally, one can go via the phenomenological route and
replace χ(q, ω) in the pairing kernel by the experimen-
tal dynamic spin susceptibility. This approach has been
exploited by a number of authors, in particular David Pines
and coworkers (Monthoux and Pines, 1994), where they
modeled χ(q, ω) based on the NMR data of Slichter’s group.
Subsequent work has exploited the growing amount of data
for χ(q, ω) obtained by inelastic neutron scattering (INS).

So, what is the upshot of these approaches? For doping
ranges relevant for experiment, they predict dx2 − y2 pairing.
The physics is essentially equivalent to that discussed earlier
in this article, and in the context of the cuprates, this was
first discussed by Bickers, Scalapino and Scalettar (1987)
as mentioned before. But what does this all mean when
addressing experimental data?

5 SPIN FLUCTUATION
THEORIES – CONFRONTING
EXPERIMENT

First, we deal with the ‘if’ story; that is, does d-wave pair-
ing really emerge from the underlying Hamiltonians (single-
band Hubbard, t − J ) that underlie these spin fluctuation
approaches? Interestingly, the jury is still out on this ques-
tion. The most detailed diagrammatic studies of Scalapino
and coworkers (Bulut, 2002) have not definitely answered
this question (the issue being whether vertex corrections do
or do not suppress the pairing instability). Quantum Monte
Carlo simulations have yielded conflicting results, some indi-
cating an enhancement of pairing, others not, though the most
recent studies indicate an enhancement (Sorella et al., 2002).
The issue, of course, is the inability to access very low tem-
peratures because of the fermion sign problem.

Of course, virtually all such approaches do yield d-wave
pairing (within a given approximation), but the predicted val-
ues of Tc vary quite a bit. This even occurs in phenomenolog-
ical models, where there was an interesting debate between
two groups (Pines and Levin) concerning whether such mod-
els did or did not generate high Tc. Besides the obvious
differences of the two phenomenologies (choice of Ueff, etc.),
the main issue concerned how far in energy the dynamic sus-
ceptibility extended (Schuttler and Norman, 1996). Most INS
studies are confined to less than 100 meV, but we now know
that significant weight must be present beyond this energy
scale to obtain a high Tc. Fortunately, recent INS measure-
ments on underdoped LBCO and YBCO indicate spectral
weight up to and beyond 200 meV (for the undoped material,
spin fluctuations extend up to 400 meV). On the other hand,

the susceptibility decreases with doping, and it is certainly
not clear whether there is enough magnetic spectral weight
in overdoped materials to be consistent with the relatively
high Tc seen.

Of course, arguing about values of Tc might seem analo-
gous to asking how many angels can dance on the head of a
pin. After all, in BCS theory, Tc depends exponentially on its
coupling constant. Of more relevance is what such theories
tell us about experimental data.

Let us start with the one most debated, which is the
nature of the phase diagram in cuprates. There are (of
course) a number of versions of this, but Figure 5 gives
a representative one. Besides the well-known magnetic
(Néel) insulator at low doping and the superconducting
phase at intermediate doping, several other phases have
been proposed. Likely, at low temperatures, the Néel state
continues as a disordered (spin glass) state, though the range
of doping and the ubiquity of this phase are still debated.
At high dopings, there is increasing evidence that the normal
state is a Fermi liquid, with scattering rates roughly quadratic
in temperature and energy, and thus with well-defined single-
particle (quasiparticle) states. Near optimal doping above Tc,
one sees a ‘strange metal’ phase characterized by ‘marginal
Fermi liquid’–like behavior (Varma et al., 1989). By this,
we mean a scattering rate that is linear in temperature and
energy. But of most interest is the pseudogap phase in the
underdoped regime, first inferred from NMR measurements,
and later studied extensively by INS, infrared conductivity,
tunneling, specific heat, and perhaps most spectacularly
by angle-resolved photoemission (ARPES). These studies
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indicate that an anisotropic gap emerges in the electronic
excitations well above Tc. The question is about the nature
of this gap.

One thought is that the pseudogap is a precursor to the
superconducting gap (Randeria, Trivedi, Moreo and Scalettar,
1992). After all, in almost all magnets, the exchange splitting
exists far above the ordering temperature, this temperature
being strongly reduced by fluctuations as discussed in the
preceding text. Stated equivalently, the exchange gap is not
proportional to 〈M〉2 but rather to 〈M2〉. Superconductors,
though, usually do not demonstrate these effects. But cuprates
are characterized by small carrier densities, short coherence
lengths, and reduced (quasi-2D) dimensionality. All of these
conspire to make fluctuation effects more profound. Some
spin fluctuation models do advocate that the pseudogap is a
pairing gap. But most assume that it is actually the magnetic
exchange gap itself.

To understand this, note that because of the Mer-
min–Wagner theorem, long-range magnetic order at finite T

would not occur in two dimensions. This is why the transition
temperature of the undoped material is strongly suppressed
relative to the value of J (which is of the order of 1500 K);
that is, TN is determined by residual three-dimensional cou-
pling between the CuO2 planes. But this ‘three-dimensional’
TN is rapidly destroyed by doping. What is left then is a
pseudogap state characterized by short-range antiferromag-
netic fluctuations. As these are known to disappear with
overdoping, this provides a natural explanation of the strong
doping dependence of the T ∗ (pseudogap) crossover line. In
some sense, the pseudogap phase is the ‘renormalized clas-
sical’ regime that exists above what is presumably a T = 0
magnetic phase transition. The effect is pronounced because
of the quasi-two dimensionality (Vilk and Tremblay have
demonstrated that this pseudogap is a property of two dimen-
sions and would be very weak in the three-dimensional case
(Vilk and Tremblay, 1997)).

These approaches have emphasized the potential ‘quantum
critical’ nature of the phase diagram shown in Figure 5
(Laughlin, Lonzarich, Monthoux and Pines, 2001). The idea
is that at a critical doping, antiferromagnetic fluctuations
would disappear (T ∗ would go to zero). This purported
‘quantum critical point’ is buried under the superconducting
dome. Is this coincidental? The spin fluctuation proponents
say it is not, and note the similarity of the cuprate phase
diagram to that determined in a number of heavy fermion
magnets. In those cases, the systems are three dimensional,
and thus the T ∗ line actually corresponds to the phase line for
long-range ordering. And in several cases, a superconducting
dome appears in the vicinity of where this phase line
goes to zero temperature. This was first elucidated by Gil
Lonzarich’s group for CeIn3 and CePd2Si2 under pressure
(Mathur et al., 1998), but this has now been seen for several

other materials as well, including the first known heavy
fermion superconductor, CeCu2Si2. This quantum critical
point scenario, though, is not unique to magnetic models.

Despite first appearances, this ‘nearly antiferromagnetic’
picture of the pseudogap phase is quite different from
the RVB one presented in the next section. In the RVB
approach, the fluctuations are singlet in character, but in
the spin fluctuation approach, they are antiferromagnetic in
nature. Note that a singlet is S = 0, but an antiferromagnet
corresponds to a mixture of S = 0 and S = 1, Sz = 0. They
are obviously not the same object. This controversy is best
highlighted by two recent papers, one by Barzykin and
Pines (Barzykin and Pines, 2006) and the other, the RVB
review article by Lee, Nagaosa, and Wen (2006). In both
cases, spin susceptibility data are compared to results of the
2D Heisenberg antiferromagnet. In the former case, there
is a match (Figure 6) and in the latter case there is a
large discrepancy. Part of this disagreement is due to the
assumed ‘offset’ of the susceptibility: the former assumes a
temperature-independent but doping-dependent Fermi liquid
component and the latter, that the only offset is due to the
van Vleck contribution. But the major disagreement concerns
the magnitude of J : the latter use the value of 130 meV
appropriate for the insulator, but the former assume that T ∗

is actually J itself, and, thus, strongly doping dependent. To
justify this, these authors ironically quote the RVB result that
the effective exchange Jeff should be J − tx (where t is the
hopping and x is the doping).

The nature of the dynamic spin susceptibility itself is more
controversial. In Figure 7, the famous ‘hourglass’ plot of
the energy–momentum relation of the spin fluctuations is
presented (Tranquada et al., 2004). This was first elucidated
for underdoped YBCO in its superconducting state (Arai
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Figure 6. Comparison of the 2D Heisenberg model to experimental
susceptibility data in YBCO. (Reproduced from V. Barzykin
et al., 2006, with permission from the American Physical Society.
 2006.) The data are scaled assuming that the effective exchange
at a given doping is equal to the pseudogap onset temperature T ∗.
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Figure 7. Hourglass-like dispersion of the spin excitations in the
stripe-ordered phase of LBCO, measured with respect to q =
(π, π), as revealed by inelastic neutron scattering. (Reproduced
from J.M. Tranquada et al., 2004, with permission from Nature
Publishing Group.  2004.) A similar dispersion is seen in the
superconducting state of underdoped YBCO (Hayden et al., 2004).

et al., 1999). It is characterized by strong intensity at the
neck of the hourglass which occurs at a commensurate wave
vector of q = (π, π) known as the resonance, with two
incommensurate ‘bowls’ above and below. Although not
apparent in Figure 7, it is now known that the hourglass has
a 45◦ twist in momentum space, with the incommensurability
below resonance oriented along the CuO bond directions and
that above resonance oriented along the diagonals (Hayden
et al., 2004).

This unusual pattern has been reproduced by various RPA-
type calculations. To understand this result, note that in
the superconducting state, the polarization bubble becomes
GkGk+q + FkFk+q where Gk is the normal Greens function
and Fk the anomalous (Gor’kov) Greens function. The latter
is proportional to the gap, �k. For s-wave superconductors,
the presence of a gap causes a 2� gap in Imχ0. But because
the gap is constant in the s-wave case, these two terms (GG
and FF) destructively interfere in such a way that no pole
develops in the RPA expression χ = χ0/(1–Iχ0). On the
other hand, for the d-wave case, the two terms reinforce near
q = (π, π) since the gap product �k�k+q is negative (Fong
et al., 1995). As a consequence Imχ0 has a step jump at
the 2� threshold. By Kramers–Kronig, this translates into
a log divergence in the real part at ω = 2�, and thus a
pole in χ is guaranteed at some ω < 2�. The dispersion of

Imχ away from (π, π) can either be upward (magnonlike)
or downward (reverse magnonlike), depending on the Fermi
surface geometry. In the latter case, one reproduces the
downward part of the hourglass in Figure 7. The upper
part of the hourglass is a consequence of the fact that the
RPA response is typically incommensurate for frequencies
above that of the (π, π) resonance, and some calculations
also reproduce the 45◦ twist effect mentioned above (Eremin
et al., 2005).

There is, though, an alternate explanation for the data
based on ‘stripes’ (Tranquada et al., 2004). The idea is illus-
trated in Figure 8 (Tranquada et al., 1995). All of the above
theories assume homogeneous behavior. But what if instead
the system prefers to be inhomogeneous. To understand this,
note that each doped hole in a CuO2 plane breaks the four
magnetic bonds that connect a given copper ion to its four
neighbors. This is energetically costly, and one way to min-
imize this effect is having the holes clump together. But the
long-range part of the Coulomb interaction will not prefer
this clumping of charge. As a compromise, it was proposed
some years ago that the system would instead organize into a
lamellar phase where ‘stripes’ composed of the doped holes
would be separated by undoped (antiferromagnetic) regions
(Zaanen and Gunnarsson, 1989). This idea naturally explains
why the separation of the incommensurate wave vector from
(π, π) (width of the bottom of the ‘hourglass’ in Figure 7)
scales with the doping (the well-known Yamada plot (Fujita
et al., 2002) shown in Figure 9). In this picture, the incom-
mensurability is due to the ‘skip’ of the antiferromagnetic
structure across the stripe (that is, the antiferromagnetic

Figure 8. Stripe picture for x = 1/8 doping–circles are copper
sites, arrows represent spins, and dark circles are doped holes.
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domains themselves are commensurate), as opposed to RPA,
where the incommensurability is due to the 2D Fermi sur-
face geometry (which under certain assumptions (Si, Zha,
Levin and Lu, 1993) can also reproduce the Yamada plot).
And, detailed simulations by several groups have also repro-
duced the hourglass itself (Uhrig, Schmidt and Gruninger,
2004). The upper part of the hourglass is just the gapped
magnonlike dispersion one would obtain for an undoped
two-leg ladder (which is used to model the antiferromag-
netic domains). The lower part of the hourglass is due to
spin-wave-like excitations associated with the stripe period-
icity (in the simulations, they are due to the much weaker
exchange that couples one spin ladder across a stripe to the
next spin ladder). The ‘twist’ of the hourglass also naturally
emerges from these simulations.

The important point to emphasize is how different these
two explanations of the ‘hourglass’ are. In the RPA case, the
assumption is a homogeneous 2D material. The spin excita-
tions are derived from underlying fermionic and pair excita-
tions (from Gk and Fk). The d-wave symmetry of the gap and
the shape of the 2D Fermi surface are crucial for the obtained
results. In the stripes case, though, the simulations are essen-
tially undoped spin ladders connected by weak exchange.
There are no underlying fermionic degrees of freedom. The
physics is crucially dependent on the inhomogeneity of the
stripes and their quasi-1D character (the spin gap associated
with the upper part of the hourglass is the ladder analog of
the Haldane gap associated with a linear chain of spins). In
support of the ‘stripes’ picture, Tranquada’s group has seen
the hourglass as well for LBCO at x = 1/8 (Tranquada et al.,
2004) which is not superconducting because of the forma-
tion of static stripes (Tranquada et al., 1995). On the other
hand, it is quite possible that the RPA-like theories would
work in this case as well if the pseudogap had d-wave sym-
metry. A recent ARPES study has indicated that the T = 0
pseudogap state indeed has the same nodal structure as the
d-wave superconducting state (Kanigel et al., 2006), and new
ARPES results indicate a similar story as well for LBCO at
x = 1/8 (Valla et al., 2006).

The next experimental controversy concerns unusual fea-
tures seen in the single-particle spectral function measured
by ARPES and the resulting density of states measured by
tunneling spectroscopy. Both find a very unusual spectral
lineshape in the superconducting state (Figure 10), with a
sharp peak at the gap energy followed at higher energies
by a spectral dip and at even higher energies by a broad
hump (peak-dip hump). It was speculated early on that this
might be some strong coupling feature as seen previously
in tunneling spectra for conventional superconductors. The
idea is that the spectral dip represents a singularity in the
electron self-energy. This results in a two-branch spectrum,
the low-energy branch (associated with the sharp peak) rep-
resents a renormalized quasiparticle-like dispersion, and a
higher-energy branch (the ‘hump’), a dispersion which at
high energies traces out the bare one (Norman et al., 1997).
The theory for this had been worked out in by Engelsberg
and Schrieffer (1963) in the context of the electron–phonon
interaction. The singular energy would then be the sum of
the gap energy � and the boson energy � (in their case,
a phonon), and thus a subtraction of the gap and dip ener-
gies would yield � (the physics of this can be seen from the
Feynman diagram in Figure 11). Norman et al. noticed that
for a slightly overdoped Bi2212 sample the peak-dip-hump
structure was only visible below Tc; above Tc one simply
saw a single broad peak (Figure 10). On this basis, they felt
that the effect was unlikely to be due to a phonon (which
would of course still be present above Tc) and more likely
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Figure 10. ARPES spectra at k = (π, 0) for an overdoped (Tc =
87 K) Bi2212 sample in the normal state (dotted line) and super-
conducting state (solid line). (Reproduced from M.R Norman
et al., 1997, with permission from the American Physical Society.
 1997.)
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Figure 11. Lowest-order Feynman diagram for electron–electron
scattering. For the spin resonance case, the bubble labeled by (q,�)
is replaced by the dynamic spin susceptibility. For the phonon case,
it is replaced by the phonon propagator.

due to some kind of electronic collective excitation. Not-
ing that (i) the peak-dip-hump effect was strongest at the
(π, 0) point of the Brillouin zone that are connected to one
another by (π, π) wave vectors and (ii) the energy of the
boson was inferred to be 40 meV, the same as seen for the
(π, π) spin resonance in optimal doped YBCO (the neck of
the hourglass in Figure 7), Norman et al. speculated that the
boson instead was the spin resonance and in a later paper
by this group, they gave evidence that the doping depen-
dence of the boson energy was consistent with INS, which
finds that the resonance energy falls with underdoping (Cam-
puzano et al., 1999). This was very unusual since the gap
energy increases strongly as the doping is reduced. Subse-
quently, Zasadzinski et al. (2001) traced the mode energy
in great detail with tunneling, exploiting its higher-energy
resolution (Figure 12). They found that the boson energy
scales as 5Tc, just as the resonance does in neutron data.
Moreover, with overdoping, the boson energy approaches
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energy saturates to 2� in the overdoped limit. (Reproduced from
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but never exceeds 2�, as would be expected for a collective
mode inside of a 2� gap (as occurs in the RPA calculations
discussed above).

With the development of improved (Scienta) detector
technology, the momentum and frequency dependence of
this effect in ARPES has been mapped out in much greater
detail. The peak-dip-hump spectra in constant momentum
slices energy distribution curves (EDCs) are reflected in a
two-branch dispersion which is translated to a single ‘S’-
shaped dispersion when traced used constant energy slices
momentum distribution curves (MDCs). As with the peak-
dip hump, this ‘S’-shaped anomaly disappears when going
above Tc (Sato et al., 2003). All of these effects become less
pronounced as one moves in the zone from the (π, 0) point
toward the d-wave node (Kaminski et al., 2001). Along the
nodal direction, the MDC dispersion forms a kink behavior
(Bogdanov et al., 2000) instead of an ‘S’, and the resulting
EDC at the node itself has a ‘break’ (Kaminski et al., 2000)
rather than a clear spectral ‘dip’. But the spectral behavior
seems to continuously evolve as a function of momentum,
indicating that all the strong coupling effects have a similar
origin (Kaminski et al., 2001).

This picture, though, has been challenged by a number of
groups. Kee, Kivelson, and Aeppli (2002) have questioned
whether there is enough spectral weight in the resonance
(typically a few percent of the total spin fluctuation spectral
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weight) to account for the strong effects seen in ARPES and
tunneling. This reduces to an argument concerning the size of
the interaction I in the boson spectral function 3/2I 2χ(q, ω)

(Abanov et al., 2002). More seriously, Lanzara et al. (2001)
have seen the nodal kink in a variety of different cuprates
for different dopings at essentially the same energy. They
also see a weaker kinklike effect above Tc. Because of this,
they speculated that the boson was instead a phonon. Extra
evidence for phonons was given in later experiments that
found an oxygen isotope effect (Gweon et al., 2004) (yet to
be reproduced by other groups), and the idea was extended
by Cuk et al. (2004) to deal with other regions of the zone
(they propose a breathing mode to explain the nodal ‘kink’
and a buckling mode to explain the antinodal ‘S’). Cuk et al.
advocate that the rapid appearance of the ‘S’ below Tc is due
to the gapping of the internal fermion line in the Feynman
diagram in Figure 11. Further support for this picture has
been given in a recent scanning tunneling microscopy (STM)
study, where an analysis of the peak-dip-hump structure
indicated (i) a doping-independent boson energy and (ii)
a significant oxygen isotope effect (Lee et al., 2006). An
advantage of this study is that it was a local probe, and
thus the local gap energy (which changes significantly with
location in most STM studies of Bi2212) could be subtracted
off to determine the local boson energy. A disadvantage of
this analysis was that the boson energy was not associated
with the dip energy scale as in other studies, but rather with
a maximum in the derivative (d2I/dV 2) spectrum (which
corresponds to an energy intermediate between the dip and
hump energies). The physical significance of this alternate
energy scale is not apparent, since there is no feature in the
raw dI/dV data at this energy.

One mysterious fact concerns the doping independence of
the nodal kink energy mentioned above. From the Feynman
diagram in Figure 11, this energy should be � + � (where
� is the gap value at the antinode), but � is known to
be a strong function of doping. This requires � to have
an opposite doping dependence to compensate. There is no
evidence that this occurs for phonons, but this would occur in
the spin case for underdoped materials (with � and � having
opposite doping dependences (Eschrig, 2006)). A way out is
to assume forward (small q) scattering (Kulic and Dolgov,
2005) in Figure 11 instead (so that at the node � reduces to
zero), but this is not consistent with the q dependence of the
above-mentioned phonons (or the spin fluctuations for that
matter).

Of course, one could argue that all of these results are
suspect in that they implicitly assume Figure 11, which
is a lowest-order result (and thus inherently assumes a
Migdal approximation). It was already mentioned that such
an approximation can be suspect for spin fluctuations.
Moreover, some authors have advocated that the hump is

a polaron effect, with the hump maximum representing
multiple phonon shake offs (Shen et al., 2004). In the spin
case, the ultimate strong coupling picture is that advocated
by Anderson and coworkers based on the RVB picture
(Anderson et al., 2004).

6 RVB THEORY

This concept was proposed early on by Anderson (1987).
Anderson assumed that quantum fluctuations (due to the
low spin S = 1/2 of the Cu d9 ion and the quasi-two
dimensionality of the crystal structure) would melt the Néel
order typically associated with Mott insulators. He proposed
that the resulting state would be a liquid of spin singlets. As
a given singlet involves coupling two of the copper ions, and
each copper ion is surrounded by four other copper ions, then
each bond can be either part of a singlet or not (Figure 13).
Therefore, each bond can ‘resonate’ between being part of a
singlet or not, hence the notation ‘resonating valence bond’
(after the work of Pauling, where in benzene, say, one can
think of each carbon–carbon link as resonating between a
single electron and a double electron bond). Now, imagine
doping a hole into such a configuration. Since each copper
ion in the undoped case participates in a singlet, then one
singlet is broken. This leaves a free chargeless spin (denoted
as a spinon) and a spinless charged hole (denoted as a holon).
This implies the presence of spin-charge separation. The jury
is still out on this particular question. In one dimension,
spin-charge separation with its resulting non-Fermi liquid
characteristics do occur (and is one of the major motivations
for those pursuing models based on stripes). But to date,
there is no exact answer to this question in two dimensions.

Regardless, Anderson’s idea had a profound influence
on the field. It emphasized that the cuprates should be
thought of as doped Mott insulators, that a ‘single-band’

(a) (b)

Figure 13. Néel lattice (a) versus RVB (b). The RVB state is a
liquid of spin singlets. Circles are copper sites, arrows represent
spins, and ovals are spin singlets.
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approximation should be adequate, and that non-Fermi liquid
effects would be pronounced. It also suggested a novel
mechanism for superconductivity. Once the doped holes
became phase coherent (at temperatures below the phase
coherence temperature, which is roughly proportional to the
doping), then spin-charge recombination would occur. The
resulting charged singlets would be superconducting because
of bose condensation of the holons. Although the original
prediction for this superconducting state was s wave, it was
realized by several groups within a year that the actual lowest
free-energy state would be d wave (Kotliar and Liu, 1988;
Zhang, Gros, Rice and Shiba, 1988).

One interesting prediction of this theory is that the pair-
ing (spin) gap would be maximal at zero doping and then
decay approximately linearly with doping (the Jeff = J − tx

relation mentioned before). On the other hand, the supercon-
ducting order parameter would initially be linear in doping,
reach a maximum, and then follow the pairing gap for over-
doped materials, forming the famous superconducting dome
(Figure 14). The resulting phase diagram (also shown in
Figure 14) reveals four different states, a superconducting
state, a strange metal phase, a Fermi liquid, and a spin gap
phase (Nagaosa and Lee, 1992). The RVB spin gap was
probably the first prediction for the subsequently observed
pseudogap phase. In RVB theory, the pseudogap phase corre-
sponds to a spin singlet state (with its resulting spin gap) but
no phase coherence in the charge degrees of freedom. One
of the interesting ideas to emerge from this was an expla-
nation for transport in this phase, which reveals a metallic
behavior for in-plane conduction, but an insulating behav-
ior for conduction between the planes. In the RVB picture,
the metallic behavior is due to the fact that the holons can
freely propagate. But to tunnel between the planes, the holons
and spinons must recombine to form physical electrons, and
this costs the spin gap energy, thus one obtains insulat-
ing like behavior for the c-axis conduction (Lee, Nagaosa,
Wen, 2006). This ‘gap’ has now been directly seen in c-axis
infrared conductivity data (Homes et al., 1993).

At the mean-field level, the RVB physics is relatively
well understood. Going beyond mean-field theory has been a
challenge. One way is to note that when considering a t − J

model, the RVB ground state corresponds to a projected
BCS wave function (the projection designed to remove all
d10 copper sites, which would be at infinite energy in the
infinite U limit). One can perform variational Monte Carlo
simulations with such a wave function. At zero doping, this
state is energetically competitive with the true (Néel) ground
state (there is no sign problem in the undoped case, so
extensive Monte Carlo simulations have been performed).
Though no proof exists for finite doping, we know that
the Néel state is rapidly destroyed with doping, and it is
anticipated that the RVB state, if anything, will be more
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Figure 14. Spin gap, �, and superconducting order parameter,
�SC, as a function of doping from RVB theory (a). RVB phase
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competitive once the magnetism disappears. Recent advances
in Monte Carlo technology has allowed other quantities
besides the group state energy to be calculated. Paramekanti,
Randeria, and Trivedi have exploited this to calculate a
variety of properties at zero temperature, in particular, the
doping dependence of the spin gap, the superfluid weight,
the quasiparticle residue, the Drude weight, and the nodal
Fermi velocity (Paramekanti, Randeria and Trivedi, 2001).
The results are in favorable agreement with experiment.
Extending these studies to finite temperature and excited state
properties remains a challenge for the future. As an aside,
one can also perform a partial projection. This is the basis of
the gossamer superconductivity theory of Laughlin (2006),
that predicts a ghostly form of superconductivity for small
dopings.
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The other approach (Lee, Nagaosa, Wen, 2006) has been
to exploit the same quantum field theoretic treatments used
for heavy fermion materials (the slave boson approach for
the Kondo lattice). The spinons and holons are not physical
objects, and there is an arbitrary phase relation between
the two. This introduces a U(1) gauge degree of freedom
in the problem (that cancels for the physical electron).
Associated with this is a vector gauge field that acts to satisfy
the constraint that the spinon and holon currents balance
(the scalar component of the field satisfying the no double
occupation constraint). In this formalism, the mean-field state
is the saddle point of the resulting Lagrangian. Fluctuations
are represented by the quadratic terms associated with the
gauge fields. This theory has had some successes (some of the
calculated properties qualitatively follow the doping trends
found later by the variational Monte Carlo simulations). In
particular, it gave the first understanding of how the Fermi
surface could be large for hole doped materials (scaling
like 1 − x), whereas the quasiparticle, Drude, and superfluid
spectral weights scale as x (Kotliar, 1995). In essence, the
Fermi surface remains large as the doping is reduced, but
its spectral weight continuously disappears, so it ends up
vanishing, much in the way of the Cheshire cat in Alice
in Wonderland. This picture is more or less consistent with
photoemission and optics data.

There were problems with the U(1) theory, though. Such
a theory predicted that the linear T term in the supercon-
ducting penetration depth (due to thermally excited carriers
near the d-wave node) scales as x2, which has not been
observed. This led Patrick Lee and collaborators to look at
an SU(2) generalization (Lee, Nagaosa, Wen, 2006). In the
undoped case, the presence of a down spin on a copper site
is equivalent to the absence of an up spin (because in the
undoped case, every copper site has exactly one spin). As
Affleck et al. point out (Affleck, Zou, Hsu and Anderson,
1988), this implies that the U(1) symmetry previously men-
tioned expands to an SU(2) symmetry in the undoped case.
Connected to this is the fact that in the undoped case, the
d-wave spin pairing state is quantum mechanically equiva-
lent to the so-called π flux phase where currents flow around
a copper plaquette (Figure 15), these two states being con-
nected by a rotation in particle–hole space. Obviously, this
SU(2) symmetry is reduced to U(1) upon the introduction
of holes, but the fluctuations implied by this enlarged sym-
metry group are certainly relevant. In this SU(2) picture, the
above-mentioned problem is ‘fixed’ (the linear T term in the
penetration depth become roughly doping independent (Wen
and Lee, 1998)), and in such a formalism, the pseudogap
phase can be thought of as a state that fluctuates between
a ‘superconducting’ direction and a ‘flux phase’ direction.
In other words, the pseudogap phase is a fluctuating mother
phase, from which various long-range ordered phases emerge

(a) (b)

Figure 15. Two RVB states that are equivalent at zero doping:
d-wave spin pairing state (a) and π flux state (b). Dots are copper
ions and arrows are bond currents.

at lower temperatures (magnetic and spin glass states at low
doping, superconductivity at intermediate doping). Note that
the flux phase state is an orbital current phase, and is related
to the d-density wave state that has been advocated by oth-
ers as a phenomenological approach to the pseudogap phase
(Chakravarty, Laughlin, Morr and Nayak, 2001).

This formalism also gives some idea into the existence
of a Nernst effect above Tc (Xu et al., 2000). In normal
metals, the Nernst effect (a transverse voltage generated by
a thermal gradient) is small due to approximate particle–hole
symmetry. But in superconductors, it can be very large in the
presence of unpinned vortices (whose flow due to the thermal
gradient generates a transverse voltage). Surprisingly, in
cuprates, this Nernst effect extends significantly far above
Tc, implying the existence of vortices well above Tc. But
we know the superconducting gap is large, so how can such
vortices be energetically favorable? In the SU(2) picture, this
occurs since the vortex core is the pseudogap phase itself
(rather than some gapless normal state) (Lee, Nagaosa, Wen,
2006). This pseudogap, in fact, has been seen in the vortex
core of superconducting samples by STM measurements
(Renner et al., 1998).

One issue with these types of theories is that they predict
certain topological excitations associated with the gauge
fields that have yet to be seen by experiment. Until they are,
there will always be doubts about such approaches, since they
are difficult to employ and the gauge fluctuation expansion
is not well controlled, a common bane of strong coupling
theories.

On more general grounds, one can ask how different
these strong coupling approaches are from the more ‘weak
coupling’ approaches discussed earlier. A famous debate has
arisen on this subject, with Laughlin claiming that RVB
and spin fluctuations represent two different limits of the
same underlying theory (Laughlin, 1998), whereas Anderson
has strongly differed (Anderson, 1997). As we pointed out
earlier, there is one significant difference between these two
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types of approaches. The spin fluctuation based approaches
assume antiferromagnetic fluctuations, whereas in RVB, the
fluctuations are singlet in character. It is somewhat surprising
that this fundamental distinction has yet to be definitely
cleared up by experiment.

7 ALTERNATE MECHANISMS

Space prohibits a detailed summary of the countless theories
that have been proposed in the context of cuprate super-
conductors. But in this section, those of some note will be
mentioned, especially in connection to what was discussed
in the preceding text. This section (and article) is then ended
with a brief discussion of the ‘phonon’ question.

The SO(5) approach of Zhang and collaborators (Demler,
Hanke and Zhang, 2004) is similar in spirit to the SU(2)
approach just mentioned. Instead of fluctuating between
a flux phase and a superconducting phase, one fluctuates
between the two known ground states (antiferromagnetism
and superconductivity). The minimal group which contains
these two order parameters is SO(5) (the ‘five’ being the real
and imaginary values of the superconducting order parame-
ter, and the three spatial components of the Néel vector).
SO(5) has 10 generators, 4 of them being the charge oper-
ator and the 3 spin components, the other 6 are so-called π

operators that connect the superconducting and Néel sectors
of the theory. These operators, acting on the superconduct-
ing ground state, create the previously mentioned (π, π)
resonance – that is, this resonance can be thought of as
an excited triplet pair state with center of mass momentum
(π, π). In the SO(5) case, though, this resonance is a property
of the particle–particle channel, and only appears in neutron
scattering because of particle–hole mixing in the supercon-
ducting state. This theory thus naturally explains why the
resonance is only seen below Tc, and why its doping and tem-
perature dependences scale with the superconducting order
parameter (a property which does not obviously follow from
the RPA calculations previously discussed). It also predicts
that the vortex core is antiferromagnetic (Arovas, Berlinsky,
Kallin and Zhang, 1997) and that charge modulation effects
seen in tunneling for underdoped samples are from a checker-
board pair density wave state (Chen et al., 2002) (as opposed
to stripes). There are some issues connected with this theory,
though. The (π, π) resonance in this theory is an antibound
state, as opposed to RPA where it is a bound state. Avail-
able data are much more consistent with the latter, as the
resonance energy is less than 2� (that is, it lies below the
particle–hole continuum rather than above (Tchernyshyov,
Norman and Chubukov, 2001)). Moreover, although the the-
ory incorporates the fact that the undoped material is an
antiferromagnet, it does not take into account the fact that it

is a Mott insulator (where the charge excitations are strongly
gapped). To correct this obvious deficiency, a modified the-
ory known as projected SO(5) has been developed, and the
reader is referred to the literature for a discussion of this tech-
nique and how it addresses spectroscopy data like photoemis-
sion in the low doping regime (Zacher, Hanke, Arrigoni and
Zhang, 2000). Space also prohibits a discussion of other ‘pre-
formed’ pairs scenarios, such as the QED3 theory of Franz
and Tesanovic that advocates that the pseudogap phase is a
phase disordered superconductor characterized by a prolifer-
ation of vortexlike excitations (Franz and Tesanovic, 2001).

The π flux phase mentioned in the context of RVB theories
is an orbital current phase with an associated wave vector of
(π, π). Such a phase is characterized by point nodes, that
have been recently inferred as the T = 0 ground state of
the pseudogap phase by thermal conductivity (Sutherland
et al., 2005) and more recently photoemission data (the latter
directly imaging the nodes (Kanigel et al., 2006)). On the
other hand, there is no evidence from photoemission that the
pseudogap (at least the low-energy one associated with the
leading edge of the ARPES spectrum) has a finite q vector
associated with it. In fact, current ARPES data are consistent
with the pseudogap being tied to both the Fermi surface and
to the Fermi energy, as would be expected for a q = 0 state
(a superconductor is a q = 0 state, since the center of mass
momentum of the pair is zero). But the π flux phase state
is not the only orbital current phase that has been proposed.
Varma has argued that when one reduces from the three-
band model (copper dx2 − y2 orbital and oxygen px and
py orbitals) to the commonly employed single-band model
(the antibonding mixture of the copper and oxygen states),
one has thrown out the baby with the bathwater so to speak
(Varma, 2006). He believes a complete theory must keep all
of these degrees of freedom. Although a discussion of this
important topic would take us far outside the bounds of this
review, it should be noted that optics data have revealed
changes in spectrum when passing through Tc which extend
up to several electronvolts (Rübhausen et al., 2001). If these
degrees of freedom are important for superconductivity, then
indeed neglecting higher-energy degrees of freedom could be
dangerous. In Varma’s theory, a unique orbital current phase
emerges because of a nontrivial (Berry) phase involving the
three different orbitals. This shows up in the antibonding
band at the Fermi energy as an orbital current which flows in
the subplaquette formed by a copper ion and its surrounding
oxygen neighbors (Figure 16). Since the structure is based on
the unit cell itself, it is a q = 0 state. Originally, the theory
had a current pattern such that would generate magnetic
reflections for diagonal aligned Bragg vectors (Figure 16b).
These were searched for by neutron scattering and not found.
A related circular dichroism experiment was performed
in photoemission by Kaminski et al. (2002) and found a
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(a) (b)

Figure 16. Two orbital current patterns proposed by Varma. Solid
dots are copper ions, open dots are oxygen ions, and arrows are
bond currents. The pattern in (a) has been used to interpret recent
polarized ARPES and neutron results in the pseudogap phase.

dichroism shift along the (π, 0)–(π, π) direction (not yet
reproduced by other groups, though). To account for this,
Varma rotated his current pattern by 45◦ (Figure 16a). The
resulting magnetic reflections would then be along the bond
directions, and these were recently seen by neutron scattering
(Fauque et al., 2006) (but again, not reproduced by other
groups). Varma’s theory also predicts nodes in the pseudogap
phase, as has been recently inferred from experiment (as
mentioned in the preceding text). Recently, a dichroism
signal has been found by X rays that matches the ARPES
one (Kubota, Ono, Oohara and Eisaki, 2006), but the claim
was that the signal was structural, not magnetic, in origin.

Another inhomogeneous pattern, as mentioned before, is
stripes. These patterns have been seen in several transition-
metal oxides, and in the low temperature tetragonal (LTT)
structural phase of doped lanthanum cuprate near x = 1/8
(Tranquada et al., 1995). As mentioned before, stripes give a
natural explanation of the Yamada plot, have been proposed
(in their dynamic version) as an explanation for the unusual
hourglass-shaped spin dispersion seen in neutron scattering,
and can account for various Fourier charge peaks seen in
STM data (Kivelson et al., 2003). From a theoretical perspec-
tive, the advantage is that the quasi-1D nature of the stripes
naturally yields spin-charge separation and its resulting non-
Fermi liquid properties (which are more difficult to generate
in homogeneous 2D models). The holes pick up their pairing
gap by virtually hopping from the stripes to the undoped anti-
ferromagnetic domains (Emery, Kivelson and Zachar, 1997)
(even leg spin ladders having a spin gap). The much lower
value of Tc as compared to the gap is determined by Joseph-
son coupling of the stripes. The stripes picture has been
important in focusing the physics community on the fun-
damental question of real space–based approaches as com-
pared to the traditional momentum space–based approaches
used in the past to address superconductivity. It emphasizes

the role of inhomogeneity, which has been spectacularly
seen in STM experiments (Pan et al., 2001). It provides a
unique (quasi-1D) approach to the cuprate problem. But this
approach has also raised a number of questions. A recent
X-ray analysis of the x = 1/8 stripe phase in LBCO has
found a smooth sine wave for the charge modulations, as
opposed to the square wave picture of Figure 8 (Abbamonte
et al., 2005). Charge modulation effects seen in STM are
weak in intensity and, moreover, tend to trace out a checker-
board pattern (Hanaguri et al., 2004) as opposed to a stripe
one (a checkerboard has been advocated for the spin pat-
tern in doped LSCO as well in a recent neutron-scattering
study (Christensen et al., 2004)). Even the large inhomo-
geneity effects seen by STM have been challenged by others
(the group of Oystein Fischer typically does not observe
them). Alternate explanations have also been given with ref-
erence to the STM Fourier peaks (McElroy et al., 2003) (for
instance, similar ARPES autocorrelation studies are consis-
tent with a joint density of states explanation for the Fourier
peaks (Chatterjee et al., 2006)). But an interesting aspect of
the stripes scenario is the possible coupling of lattice and
charge/spin degrees of freedom. It is well known that certain
phonons show anomalies that are thought to be connected
with static stripes or their dynamic variants (Reznik et al.,
2006).

Having mentioned the lattice, it is time to end this
review with a discussion of the ‘phonon’ question. As
mentioned earlier, it has been advocated that the peak-dip-
hump lineshape seen in tunneling and ARPES is a strong
polaron effect. Polarons are certainly prominent in other
transition-metal oxides, such as manganites, and in fact were
an integral part of the guiding principle that led Bednorz
and Mueller to their original discovery. Whether they are
present at optimal doping is an entirely different matter (the
normal state actually being quite a good metal with well-
developed screening as characterized by the 1-eV plasmon).
And, as mentioned before, it has been advocated by several
photoemission and STM groups that the strong coupling
anomalies seen in those spectra are caused by phonons rather
than magnetic excitations.

Of course, the one known thing in superconductivity is
that phonons can definitely cause pairing. All finite frequency
phonons contribute positively to the s-wave pairing channel
(Bergmann and Rainer, 1973). Obviously, only some of
them do for the d-wave channel. An advantage of the
d-wave channel is the strong reduction in the direct Coulomb
repulsion (due to the nodes in the pair wave function), but
then again, we do not know of any s-wave electron–phonon
superconductors which occur at 150 K, much less in the
d-wave channel with its reduced coupling constant. So,
it is a rather far stretch to believe that phonons can
account for cuprate superconductivity. This does not mean
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that they cannot be responsible for certain anomalies in
experimental spectra, and even those authors advocating such
are careful not to claim that phonons are solely responsible
for superconductivity. But what is somewhat disturbing is
the trend to fit the entire spectrum assuming phonons (or
polarons) and ignore the underlying strong electron–electron
interactions that presumably give rise to the various states
(Mott insulator, d-wave superconductor) to begin with. It is
difficult, of course, to properly treat all degrees of freedom
(charge, spin, lattice), particularly for doped systems, and
then one is faced with the ‘everything but the kitchen sink’
scenario for describing the material. In 3He, it is a known fact
that many degrees of freedom enter the various interactions,
including the pairing one. But there, a spin fluctuation–based
approach captures the fundamental essence of the problem.
It is quite likely that such a spin fluctuation approach (or
a strong coupling analog like RVB) will also capture the
essence of the cuprate problem. But only time will tell.
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1 INTRODUCTION

The concept of magnetic polarons is by now ubiquitous in
any discussion concerning the physical properties of both
concentrated and diluted magnetic semiconductors [1]. It
is the goal of this brief overview to provide a histor-
ical perspective of the conceptual development of mag-
netic polarons based, in large part, on selected experi-
mental findings. Our theme is to highlight the importance
of the magnetic state of semiconductors in any discus-
sion of their physical properties. The chapter describes the
most important magnetic semiconductors, the europium and
other rare-earth chalcogenides, having the NaCl- or thorium

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

phosphide–type cubic structures, the mixed valence per-
ovskites (see also Ferromagnetic Manganite Films, Vol-
ume 5), and the magnetically dilute II–VI and III–V
semiconductors (see also Ferromagnetic Semiconduc-
tors, Volume 5 and Diluted Ferromagnetic Semiconduc-
tors – Theoretical Aspects, Volume 5). The development
of the concept of the magnetic polaron will be outlined and
experimental evidence for the existence of this many-body
state will be presented. This description borrows much from
the well-studied dielectric polaron, in which the local envi-
ronment around a charge defect is modified due to the effec-
tive dielectric susceptibility function. In a magnetic polaron
the magnetic susceptibility plays a similar role. The discus-
sion will end with a description of applications of these ideas
to magnetically dilute oxides, where, however, experimental
evidence is far more controversial.

2 MIXED VALENCE PEROVSKITES
(see also Ferromagnetic Manganite Films,
Volume 5)

The most important early work on (diluted) magnetic semi-
conductors was the discovery by Jonker and van Santen
(1950) (Jonker, 1956) that the (La1−xCax)MnO3 manganite
perovskites are ferromagnetic and conducting. Volger (1954)
showed that La0.8Sr0.2MnO3 displayed very large negative
magnetoresistance which peaked near the Curie temperature,
depending on the dopant concentration of manganese. As is
now known, these effects have been reborn within the past
13 years (von Helmolt et al., 1993; Jin, McCormack, Tiefel
and Ramesh, 1994) as ‘colossal magnetoresistance’ and have
been the subject of massive research activities to this day. A
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review by Coey, Viret and von Molnár (1999) gives a detailed
account of work done up to the year 1999. The materials are
very complicated, however, and spin and charge ordering,
the Jahn–Teller distortion, as well as magnetic polaron for-
mation may all contribute energetically over various portions
of the phase diagram in describing the transport and spectro-
scopic properties of these materials. Direct evidence for the
formation of small magnetic clusters in LaMnO3 came from
small angle neutron scattering (SANS) experiments and the
concomitant anomalous volume lattice distortions observed
by De Teresa et al. (1997).

To explain the origin of conductivity-induced ferromag-
netism in LaMnO3, Zener and others (Zener, 1951; Ander-
son and Hasegawa, 1955) proposed a spin-dependent electron
transfer between 3d levels of the magnetic transition element
ions. de Gennes, considering both antiferromagnetic superex-
change and the Zener double exchange term (Zener, 1951),
was able to describe in detail the magnetic phase diagram of
the mixed valence manganites (de Gennes, 1960). He was also
the first to point out that the presence of localized carriers
results in a large deformation of the magnetic environment
provided by the Mn spins. This realization and the sugges-
tion of motion of the magnetic disturbance in the presence
of a magnetic or electric field provided an initial guide for
subsequent experimental observations (von Molnár and Meth-
fessel, 1967). de Gennes’ work foreshadowed the concept of
the magnetic impurity state which was first investigated in
detail by Kasuya and Yanase (1968), and independently by
Nagaev (1974), for the case of the NaCl-type Eu chalcogenides.
Before discussing Kasuya’s model of the magnetic impurity
state or bound magnetic polaron in detail, we summarize in the
following paragraphs the physical properties of the rare-earth
chalcogenides that led to the theoretical model.

3 RARE-EARTH CHALCOGENIDES

3.1 NaCl-type Eu chalcogenides (O, S, Se, Te)

The discovery in 1961 of the first ferromagnetic insulator,
europium oxide (Matthias, Bozorth and Van Vleck, 1961),
focused almost all research effort in the following years
on the development and understanding of this general class
of concentrated magnetic semiconductors, and interests in
the perovskites abated. The europium chalcogenides are a
particularly simple crystal structure, NaCl, and therefore
are far more amenable to both experimental and theoretical
analysis. It might be mentioned, parenthetically, that the
observation of ferromagnetism in an insulating material
was in itself a major theoretical challenge since conduction
electrons, which normally provide the magnetic glue among
magnetic ions, are in this case absent. Furthermore, the

seven electrons having an 8S7/2 ground state are very tightly
bound to the atom core with a radial extent maximum
at ≤0.1 nm (1 Å) (Friedman, Choppin and Feuerbacher,
1964). Kasuya (1970a) was the first to provide a theoretical
basis for ferromagnetism that involved the virtual excitation
of 4f electrons of the europium ion to a more extended
d state which could overlap the wave function of the
nearest-neighbor 4f electrons. The idea that (empty) 3d
and 2s conduction band states could be partially filled
by doping with trivalent rare earths (initially to produce
impurity states and at more concentrated levels to lead to
degenerate magnetic semiconductors), and thus increase the
ferromagnetic transition temperatures was an almost natural
consequence of the early findings (Matthias, Bozorth and Van
Vleck, 1961). Experimental evidence was provided by the
work of Holtzberg, Methfessel, Suits, and McGuire (1964).
The figure of their data (Figure 1) gives dramatic proof of the
interdependence of magnetism and carrier concentration or
more broadly of magnetism and all other carrier-dependent
physical properties in these concentrated systems.

3.1.1 Evidence for polaron formation

To the best of these authors’ knowledge, the first reference to
magnetic polaron formation was given by Heikes and Chen
(1964) in a discussion concerning transport in sintered La-
doped EuS that displayed a strong temperature-dependent peak
in the resistivity near ferromagnetic order. Since this is an
obscure reference, it is generally not recognized as part of the
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history of the development of these ideas. Heikes suggested
a model of impurity band conductivity in which the radius of
the overlapping impurity wave function critically depended
on magnetic order (magnetic polaron formation). The high
resistivity near TC results from a thermally activated hopping
mechanism between occupied and unoccupied impurity sites.
This suggestion is analogous to dielectric polaron formation
and transport, discussed by, for example, Snyder et al. (1996),
for mixed valence perovskites.

Figure 2 is a characteristic example of the effects observed
and summarizes findings for a single crystal of EuS contain-
ing nominally 5% La. The observed experimental increase
in resistivity above the paramagnetic Curie temperature θρ

(∼35 K), which decreases with decreasing temperature as
magnetic order increases, and the dramatic negative mag-
netoresistance clearly demonstrate that the transport prop-
erties depend on the magnetic state of the sample. These
findings confirm the first detailed magnetotransport study in
single crystal EuGdSe (von Molnár and Methfessel, 1967)
and, combined with Hall and thermoelectric power measure-
ments that point toward a mobility effect in EuGdSe, led to
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Figure 2. The peak in the resistivity of Eu0.95La0.05S measured in
various applied fields. (Reproduced from Methfessel et al., 1968,
with permission from Springer-Verlag GmbH.  1968.)

the conclusion that magnetic polarons are formed in these
systems near and above TC, only to be destroyed as ferro-
magnetic order develops. We quote verbatim from that paper:

‘The possibility of reducing the kinetic energy by hop-
ping to neighbors with parallel spin increases the effective
ferromagnetic exchange interaction between neighboring 4f

ions by an “indirect” type of double exchange mechanism
resulting from the intra-atomic 4f –5d exchange. Therefore,
we find here again the trapped electron surrounded by a
polaron-like spin cluster. With decreasing temperature we
expect the size of the polarons to increase and the acciden-
tal overlap of neighboring polarons to become more and more
abundant. The proposed spin clusters, it should be pointed out,
are not stationary in the lattice, but fluctuate by their inter-
action with phonons and spin waves. For temperatures below
TC, we visualize the electrons to move along chains of fer-
romagnetically aligned spin groups, which are interrupted by
unordered spins. The decrease in the number of unordered
spins with temperature is a function of the reduced (i.e., nor-
malized) magnetization, and results in the observed resistivity
decrease below TC.’

It is to be noted that this description applies to many
of the physical effects that will be discussed presently. In
particular, the suggestion of magnetic phase separation plays
an important role in theories of the metal insulator phase
transition in the perovskite manganites (Gor’kov and Kresin,
1998, 2004), and was first mapped out experimentally in
a detailed neutron diffraction study by Wollan (1955). It
has also been seen in tunneling microscopy (Fath et al.,
1999), noise spectroscopy (Raquet et al., 2000; Merithew
et al., 2000), and in many other techniques (von Molnár
and Coey, 1998). An analysis of critical scattering near the
ferromagnetic transition temperature in the Eu compounds by
von Molnár and Kasuya (1968) gave further credence to the
magnetic polaron model. Critical scattering, first discussed by
de Gennes and Friedel (1958) and later elaborated by Fisher
and Langer (1968), was unable to explain the magnitude
and width in temperature of the observed effect. Since
the scattering amplitude depends on the correlation of spin
fluctuations with respect to the Fermi wavelength of electrons
in metals or degenerate semiconductors, larger objects, the
magnetic polarons, were invoked as an explanation.

Other than the transport properties already mentioned,
experimental evidence for magnetic polarons in concentrated
magnetic semiconductors came from optical studies, reported
first by Busch, Streit and Wachter (1970), in which they
studied the emission and excitation spectrum of the photo-
luminescence of insulating EuTe, an antiferromagnet. These
authors found that an observed increase in the luminescence
intensity with decreasing temperature could be accounted for
by the formation of magnetic polarons. The physical idea was
that the polaron would shrink the wave function, and thereby
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increase the probability of recombination. These authors also
discovered that applying a large magnetic field reversed this
process. The intensity became much smaller, presumably
because the magnetic polaron was no longer bound, thereby
reducing the probability of recombination.

3.2 Thorium phosphide–type rare-earth
chalcogenides

von Molnár and colleagues (von Molnár, Holtzber, McGuire
and Popma 1972; von Molnár and Holtzberg, 1973; von
Molnár, Briggs, Flouquet and Remenyi, 1983; Washburn et al.,
1984) studied the transport properties of Gd3−xvxS4. Here v
means vacancies that can be considered as donor dopants. The
end member Gd2S3 is an antiferromagnetic insulator, whereas
Gd3S4 is a ferromagnetic metal. Principal results are shown in
Figure 3, where the logarithm of the resistivity at various fields
and temperatures is presented. The main result is that while
resistivity rises without bound with decreasing temperature at
zero and low magnetic fields, a field of approximately 3.2 T
transforms the material into a metal with a resistivity that is
independent of temperatures below 10 K. The study by Penney,
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Holtzberg, Tao and von Molnár (1974) of the magnetic proper-
ties of these compounds provided the first magnetic proof that
magnetic polarons in this otherwise antiferromagnetic material
do exist. These results, given in Figure 4, show the magneti-
zation of several samples with various carrier concentrations
as a function of the applied magnetic field at 4.2 K. The sig-
nificance of these data is that the pure material without any
carriers (lowest curve) shows a magnetization rising linearly
from zero with the field, as would be expected for a canting
antiferromagnet, whereas with increasing electron concentra-
tion the extrapolated slope of magnetization versus field to zero
field has a positive intercept on the magnetization axis. This
remnant ferromagnetic component represents the polaron.

Finally, we again emphasize that the material undergoes a
magnetic field–driven insulator-to-metal transition (Washburn
et al., 1984), demonstrating, once again, that the electron,
bound principally by magnetic interactions, can become a free
carrier if the magnetic state of the lattice becomes similar to that
of the polaron. A detailed study by Shapira, Foner, Reed and
Oliveira (1972) in defect doped EuTe (also an antiferromagnet
insulator) had arrived at this conclusion independently.

4 THE POLARON MODEL

In this section, we describe the polaron model originally
envisioned to account for experimental observations in Eu
chalcogenides, but also applicable with minor modifications
to any magnetic system in which the magnetic species with
moment

⇀
S may be thought of as localized and interacting

with the spin, ⇀s , of an electron. Magnetic semiconductors
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are interesting because this exchange coupling gives rise to
an extraordinarily large Zeeman splitting expressed in the
mean-field approximation as

E = g∗µB
⇀
s ·H + 2J

⇀
s ·

〈
⇀
S

〉
(1)

where g∗ is the spectroscopic splitting factors for the carriers,
µB is the Bohr magneton, and H is the applied magnetic
field. 〈S〉 is the average value of the local moments over
the region occupied by the band electrons. The second term
of equation (1) can produce enormous splitting, amounting
to fractions of an electron volt in Eu compounds below the
magnetic ordering temperature and as large as 10 meV T−1 in
(paramagnetic) diluted magnetic semiconductors. However,
when the electronic states are not extended, the exchange
J can lead to an additional localization beyond the normal
Coulomb binding and correlations observed in nonmagnetic
semiconductors. In an antiferromagnet (a paramagnet is much
the same), this can lead to the formation of ‘ferromagnetic’
clusters – the magnetic polarons (Kasuya and Yanase, 1968;
Dietl and Spalek, 1982; Heiman, Wolff and Warnock, 1983).

As has already been mentioned, Zener (1951) and de Gennes
(1960) introduced spin-dependent electron transfer and spin
polarons, respectively, to account for conductivity-induced
ferromagnetism in LaMnO3. Here we present Kasuya’s argu-
ments for the stability of the spin polaron (Kasuya, 1970a;
Coey, Viret and von Molnár, 1999). It is assumed that a single
electron or hole is introduced into an otherwise antiferro-
magnetic or paramagnetic lattice. In the absence of defects
or impurities, the differential free energy �Ff, of a spherical
polarized cluster in this background may be expressed as

�Ff = E0

γ 2
− J

2γ 3
(2)

where E0 = (π2h2/2ma2), γ = R/a and a is defined by the
equation 4πa3 = 1/NEu. Here, we are specifically addressing
the case for Eu chalcogenides, in which a magnetic Eu spin
sits at every lattice site, and NEu is the number of Eu2+ ions
per unit volume. Minimizing this free energy with respect to
the radius, R, results in a nonphysical solution with R → 0 or
∞. A more realistic model introduces the additional energy
term found in equation (3) due to the Coulomb attraction of
an electron to an oppositely charged center:

�F = �Ff − e2

εR
(3)

Of course, this is the situation most often encountered in
bulk semiconductors, since the (concentrated) magnetic semi-
conductors are insulators, unless doped, and the dopant acts
as an attractive center, just as it would in any ordinary semi-
conductor. Under these conditions, minimization with respect

to R yields a stable configuration, and Kasuya referred to this
as the bound magnetic polaron or magnetic impurity state.
Although the second term in equation (3) describes a simple
Coulomb attraction, a screened Coulomb or other inverse R

dependence should also lead to a solution at finite R. More
complex descriptions may be appropriate when the Coulomb
attractive term is weak or absent, such as the recent devel-
opments in (Cd,Mn)Te (Jaroszynski et al., 2006). Below the
Neél temperature of an antiferromagnet, the polarons will
not move easily in the presence of an electric field, since
they have to drag their polarization cloud along, which
leads to a large effective mass (diffusive motion) (Kasuya,
1970b; Wolfram and Callaway, 1962) or localization. It also
becomes clear how an applied magnetic field can produce
an insulator–metal transition. The magnetic contribution to
the localization comes about from the difference between
the antiferromagnetic or paramagnetic order of the host and
the ferromagnetic order of the polaron. In a magnetic field,
as the sublattice develops an ever increasing net magneti-
zation, this energy difference decreases and ultimately the
carrier becomes unbound. If there are defects present, this
polaron, which might be describable as a heavy but band-
like particle moving diffusively (Kasuya, 1970b; Wolfram
and Callaway, 1962), will typically be bound to defects such
as the Coulomb potential described earlier. Transport under
these conditions occurs via ‘hopping’, which may also be
magnetic field dependent. The previous description is in the
limit of small carrier concentration in a concentrated mag-
netic lattice. These ideas, however, may be applied also to
situations where carrier concentration is large, but the mag-
netic lattice is diluted. As will be seen (Ohno et al., 1996), a
large polaron results. The type of transport will still be stip-
ulated by the proximity of the Fermi energy with respect to
the mobility edge, a concept that also embraces the physi-
cal picture of percolating clusters more magnetically ordered
and more conducting than the sublattice background.

5 II–VI DILUTED MAGNETIC
SEMICONDUCTOR (see also
Ferromagnetic Semiconductors, Volume 5)

The prototypical example of this class of semiconductors is
CdTe doped with Mn (Mn2+ is a 6S5/2 ion), which substi-
tutes for Cd sites in this zinc blende structure. In this case,
however, additional doping of, for example, In is necessary
to provide carriers to this otherwise insulating system. Sev-
eral magnetotransport studies have been interpreted in terms
of magnetic polaron formation (Sawicki et al., 1986; Woj-
towicz et al., 1986). A number of transport and concomitant
magnetic studies made use of the fact that In:Cd1−xMnxTe
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is a persistent photoconductor in which, for suitably low
temperatures, the carrier concentration may be varied con-
tinuously by temporary illumination, that is, the material
may be photodoped (Terry et al., 1992b). Over the con-
centration range between 4 × 1016 and 2 × 1017 cm−3, in
a regime where low-temperature transport occurs by hop-
ping, the conductivity changes from a 1/T 1/2 law, charac-
teristic of variable range hopping with Coulomb interac-
tions to simple activation, 1/T , as temperature is decreased.
This ‘hard gap’ of inaccessible states was interpreted as
the difference between unrelaxed magnetically disordered
empty states and the magnetically relaxed state, which occurs
after the electron has hopped and formed a bound mag-
netic polaron. Applying a large magnetic field eliminates
the energy difference between magnetically disordered and
ordered states and the T 1/2 law is recovered (Terry, Pen-
ney and von Molnár, 1992a). The most direct evidence,
however, comes from a number of ingenious optical stud-
ies (Dietl and Spalek, 1982; Heiman, Wolff and Warnock,
1983; Harris and Nurmikko, 1983; Awschalom et al., 1985;
Awschalom, Warnock and von Molnár, 1987). Dietl and
Spalek (1982) and Heiman, Wolff and Warnock (1983) inde-
pendently developed theories introducing magnetic polarons
to explain spin-flip Raman data, with finite spin-flip energies
even at zero applied magnetic field. They concluded that
the effective field is provided by the fluctuating magnetic
polaron. More recent Raman studies of the Eu chalcogenides
and their interpretation utilizing polaron concepts have
been reported by Cooper et al. (Rho et al., 2002a,b; Snow
et al., 2001).

Some of the most exciting developments in the study of
magnetic polarons have, however, employed time-resolved
techniques. Polaron formation has been studied by observa-
tions of the time evolution of the polaron-binding energy,
on picosecond timescales, in transmission and luminescence
(Harris and Nurmikko, 1983; Awschalom et al., 1985). A
remarkable innovative experiment by Awschalom, Warnock
and von Molnár (1987) succeeded in direct observations
of spin dynamics responsible for polarons through time-
resolved magnetic measurements. This elegant magnetic
spectroscopy employs a planar DC SQUID as a detector
to measure the statically and dynamically induced magne-
tization as a function of impinging radiant energy. Finally,
this spectroscopy was employed to study polaron forma-
tion even in confined geometries (Awschalom et al., 1991).
These results are shown in Figure 5. Samples were con-
structed of multiple quantum wells of (zinc-blende type)
Cd1−xMnxSe confined by ZnTe barriers. These magnetic
heterostructures are type II, that is, optically excited elec-
trons are confined to the Cd1−xMnxSe layer and holes to
the ZnTe layer. The magnetization induced by electrons
optically excited from the valence to the conduction bands

of the heterostructure are then monitored as a function
of excitation energy, both statically and dynamically. Here
we focus on the static results. For an excitation energy
of the impinging circularly polarized light in the vicin-
ity of the quantum well ground state, a magnetic peak is
observed for energies somewhat lower than the n = 1 quan-
tum level. This is due to magnetic polaron formation. For
energies lower than the polaron energy, the absorption is
minimal.

Magnetization rises, however, with the onset of absorp-
tion into the impurity level at which polarons form. The
subsequent decrease for higher energies is due to spin scat-
tering, which results in a relaxation of polaron orientation
and a much smaller net magnetization in a direction per-
pendicular to the pickup loop of the SQUID. It is to be
noted that the polaron peak exists despite the fact that the
bulk polaron radius is estimated to be approximately 9 nm,
whereas the thinnest quantum well is only 1.8 nm wide.
Clearly, the polaron can no longer be thought of as being
spherical, but must by necessity, take on a pancake-like
shape. The observed time-dependent polaron magnetization
also deserves comment. It grows and decays at relatively
long timescales, on the order of 400 ps, characteristic of spin
lattice relaxation times. This means that this process leaves
a magnetic imprint that lasts far longer than the lifetime of
the photoexcited electron (femtosecond) which caused it in
the first place.

1.80 1.85 1.90 1.95

Energy (eV)

M
ag

ne
tiz

at
io

n 
(a

rb
 u

ni
ts

)

2.00 2.05

Lw = 84 Å

Lw

Lw = 56 Å

Lw = 28 Å

2.10

Figure 5. Magnetic excitation spectra measured at 1.5 K for three
quantum well structures with widths Lw as indicated. (Reproduced
from Awschalom et al., 1991, with permission from the American
Physical Society.  1991.)



Magnetic polarons 7

6 III–V DILUTED MAGNETIC
SEMICONDUCTORS (see also
Ferromagnetic Semiconductors, Volume 5
and Diluted Ferromagnetic
Semiconductors – Theoretical Aspects,
Volume 5)

Following seminal work by Story, Galazka, Frankel and
Wolff (1986), who discovered ferromagnetism in PbSnMnTe
diluted magnetic semiconductors, III–V diluted magnetic
semiconductors were first produced in InAs and GaAs
(Munekata et al., 1989). Although transition-metal (TM) ions
have by now been introduced into many additional members
of the III–V semiconductor family, in this discussion, we
confine ourselves to InMnAs and GaMnAs, since these
materials have been studied in the greatest detail and
evidence for magnetic polaron formation exists.

The first evidence comes from an analysis of magnetotrans-
port and magnetization in thin films of p-doped InMnAs close
to the insulator–metal transition by Ohno et al. (1992). These
authors observed an anomalous Hall effect which dominates
Hall measurements for temperatures between ∼0.4 K and close
to room temperature. Partially ferromagnetic order is observed
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below ∼7.5 K (Figure 6). The coexistence of remanent magne-
tization and unsaturated spins, as well as large negative magne-
toresistance at low temperatures, was interpreted as being due
to the formation of large magnetic polarons with average mag-
netic correlation lengths exceeding 10 nm. The measured hole
concentration of ∼2 × 1019 cm−3 implies that many electrons
contribute to the magnetic cluster. A theoretical description
of these large magnetic polarons in diluted systems was first
advanced by Isaacs and Wolff (1987).

Other evidence comes from magnetic circular dichroism
studies in GaMnAs by Beschoten et al. (1999). These authors
show that the evolution of ferromagnetism in p-type GaMnAs
can be separated into two distinct spectral contributions as a
function of applied field depending on the excitation energy.
A high-energy ferromagnetic and lower-energy antiferromag-
netic signal is observed. The low-energy signal is attributable
to antiferromagnetic exchange between holes and Mn2+ ions,
which leads to a polaron cloud that forms below TC.

The renaissance in studies of diluted systems following the
discovery that GaMnAs can reach ferromagnetic transition
temperatures in excess of 110 K (Ohno et al., 1996; Ohno,
1998, 1999; Furdyna et al., 2002; Ku et al., 2003; Maksimov
et al., 2004) has also resulted in theoretical reexamination of
magnetic polaron formation and transition to the ferromag-
netic (conducting) state. In particular, a magnetic polaron
model has been developed for purely insulating or highly
resistive III–V materials, which often exhibit Mott variable
range hopping at low temperatures, consistent with carriers
localized in polarons (Wolff, Bhatt and Durst, 1996; Bhatt,
Berciu, Kennett and Wan, 2002; Kaminski and Das Sarma,
2002; Durst, Bhatt and Wolff, 2002; Das Sarma, Hwang and
Kaminski, 2003). The magnetic polaron percolation descrip-
tion assumes that the carrier density nc is much lower than
the impurity dopant density ni. The carriers are localized in
hydrogenic orbitals forming polarons. The polaron radius, rH,
depends on the dielectric constant, ε, and the effective mass
m∗ viz.

rH = ε
( m

m∗
)

a0 (4)

where a0 is the Bohr radius, 5.3 × 10−11m. The dopant
impurities are assumed to be substitutional at the cation site.
Magnetic exchange between the magnetic moment of the
dopant impurities and the moment of the localized carrier
results in ferromagnetic alignment of the impurity moments
and a large effective moment that naturally depends on the
impurity density in the cation site. The radius, rP, over which
the impurity moments are bound to those of the carrier,
varies inversely with temperature, as (Bhatt, Berciu, Kennett
and Wan, 2002; Das Sarma, Hwang and Kaminski, 2003;
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Figure 7. A schematic diagram showing the interaction between
two bound magnetic polarons (gray circles). The large arrows
represent impurity spins while the small arrows represent carrier
spins. The lens-shaped shaded region indicates the region that is
important for the interaction of the two polarons. (Reproduced from
Kaminski et al., 2002, with permission from the American Physical
Society.  2002.)

Kaminski and Das Sarma, 2002)

rP = rH

2
ln

(
sSJ

T

)
(5)

where J is the effective exchange constant. If the polarons
are spaced sufficiently far apart, the magnetic exchange
between polarons will be small, and the material will be
paramagnetic. As the temperature decreases, the polaron
radius increases, allowing overlap. Ferromagnetic exchange
between neighboring magnetic polarons (Figure 7), the
mechanism for which was detailed by Wolff, Bhatt and Durst
(1996), results in bulk ferromagnetic ordering of the material.

Assuming the polarons to act as rigid spheres, percolation
will be achieved when

rP (nc)
1/3 = 0.86 (6)

From this, an expression for the Curie temperature below
which percolation (and magnetic ordering) is achieved can
be obtained.

TC ≈ sSJ
(
r3

Hnc
)1/3

n
1/2
i n−1/2

c exp

(
−0.86(
r3

Hnc
)1/3

)
(7)

No attempt has been made to compare the theoretical
TC with experimental values owing to the experimental
difficulty in obtaining accurate values for nc in highly
insulating specimens as well as uncertainties in actual dopant
concentration. In addition, as pointed out by Gor’kov and
Kresin (1998), the assumption of a rigid sphere model should
be modified owing to site correlation.

The magnetic moment as a function of temperature below
TC can be calculated on the basis of the number of impurity

atoms contained within the percolating cluster, and yields
concave M(T ) curves similar to those obtained in low carrier
concentration samples of InMnAs (Ohno et al., 1992) and
Ge1−xMnx (Park et al., 2002; Li et al., 2005). This model
also explains the lower-than-anticipated magnetic moment
observed in these III–V materials, since at a given temperature
not all impurity atoms are within the percolating cluster and
do not contribute to the observed ferromagnetic moment. The
bound magnetic polaron picture has also been used, with some
expansion, to explain some of the properties of the dilute
magnetic oxides discussed in the following section.

7 DILUTE MAGNETIC OXIDES

Triggered by the prediction, in 2000 (Dietl et al., 2000),
of room-temperature ferromagnetism in p-type ZnO doped
with 5% Mn, considerable research has been focused on
the development of dilute magnetic semiconductors based
on wide-band gap oxides such as ZnO, TiO2, and SnO2

doped with small amounts of TMs. A large body of
work already exists and has been reviewed elsewhere
(Pearton et al., 2003a, 2004; Janisch, Gopal and Spaldin,
2005). Several overall trends have been revealed as fol-
lows:

1. Lack of reproducibility: Samples of nominally the same
material prepared by different research groups often
appear to have very different properties, ranging from
paramagnetic to ferromagnetic.

2. Anomalously large moments: Some materials doped with
small amounts of TM have been reported to have mea-
sured moments per dopant atom larger than that expected
for the spin-only moment of the dopant atom (Fitzgerald
et al., 2005; Ogale et al., 2003; Hong et al., 2005a;
Hong, Sakai, Prellier and Hassini, 2005b). However, it
should be noted that these large moments per impurity
atom occur for TM concentrations of typically 1% or
lower. This leads to very small sample moments on the
order of 10−5 –10−4 emu, which are difficult to measure
accurately. Also, small uncertainties in dopant concen-
tration can lead to large uncertainties in the calculated
moment per impurity atom.

3. Decrease in moment with dopant concentration: A gen-
eral trend of reduced moment per dopant atom is
observed as a function of increased TM dopant con-
centration (Ogale et al., 2003; Fitzgerald et al., 2005;
Janisch, Gopal and Spaldin, 2005).

4. High-transition temperatures: Observed Curie tempera-
tures are above room temperature. These transition tem-
peratures are very high for such low magnetic dopant
concentrations.
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5. Magnetism/carrier concentration: Ferromagnetism has
been reported in both conducting and insulating spec-
imens. To our knowledge, there has been no convinc-
ing conclusive evidence of the relationship between
magnetism and carrier concentration, which would be
expected if the magnetic exchange is carrier mediated.
In some cases, it has been observed that the addition of
a donor codopant, such as lithium in ZnO (Lee, Jeong,
Hwang and Cho, 2003), increases the magnetic prop-
erties of the material. In contradiction though, recent
results show that H doping results in significant ferro-
magnetism but little change in carrier concentration (Lee
et al., 2006).

6. Substrate dependence: A number of groups have shown
that the magnetic properties of the thin films are strongly
dependent on the substrate on which the material is
grown. In general, the lowest quality film crystallinity
gives the most magnetic films (Hong et al., 2005a; Hong,
Sakai, Prellier and Ruyter, 2005c; Kaspar et al., 2005).

7. Moment in d0systems: There have also been reports
of magnetism in ZnO films doped with Sc and in
HfO2, both materials with no intrinsic magnetism (Coey,
Venkatesan and Fitzgerald, 2005a; Coey et al., 2005c).

8. Anisotropy: Several researchers have noticed a strong
dependence of the saturation magnetization on the direc-
tion of the applied field (Coey et al., 2005b).

These features have led to a debate over whether the
magnetism in these materials is truly intrinsic or extrinsic.
In particular, the lack of reproducibility and giant moments
has led to suggestions of the formation of secondary phases
or contamination during sample preparation. For example,
it has been shown that the ferromagnetic moment in bulk
Mn:ZnO prepared by sintering (Sharma et al., 2003) can be
explained by the formation of such ferromagnetic secondary
phases (Kundaliya et al., 2004). Recently, Colis et al. have
been able to detect secondary phases in Mn-doped ZnO via
the presence of additional signatures in Raman spectroscopy
data (Colis et al., 2005), even though X-ray data on the same
sample showed a single phase material. The authors conclude
that the observed ferromagnetism results solely from these
secondary effects. There also exists the possibility of clusters
of the ferromagnetic dopant occurring as seen in TiO2:Co
(Kim et al., 2002; Kennedy et al., 2004). It is clear therefore
that detailed microstructural characterization must be done
before analysis of the origin of ferromagnetism can be made.
Although such measurements have been done for much of
the data presented in the literature, secondary phases that
could cause ferromagnetic signals at room temperature can be
very small in size, and are close to the current measurement
limitations. This makes it difficult to preclude definitely
extrinsic sources of magnetism in these doped oxides.

In most experimental setups, starting materials and finished
samples are handled numerous times by metal implements
such as stainless-steel tweezers, which can transfer small
amounts of ferromagnetic material to a specimen (Abraham,
Frank and Guha, 2005). In addition, the growth environment
(furnace, vacuum chamber) can contain amounts of mag-
netic impurities, which, unless great care is taken, can be
transferred to the sample. Varying amounts of contamination
could easily be a cause for the lack of reproducibility between
research groups worldwide, and may explain the spread in
reported results.

Despite these reservations, there has been a growing con-
sensus that a number of these features can be explained using
models based on magnetic polarons. Although the polaron
percolation model described earlier appears to explain the
doped III–V materials, it is not clear whether it can be
applied equally well to the dilutely doped magnetic oxide
materials described earlier. Owing to the large Curie temper-
atures observed in the oxides, there are few measurements
of M(T ) and even of TC with which to compare. Also, the
magnetic oxides often exhibit moments higher than expected,
rather than the lower moments predicted by the above model.

Defects are expected to play a key role in both the
magnetic and transport properties of the doped magnetic
oxides. In these materials, it is generally considered that the
TM dopant cations substitute for the cation in the crystal
structure. We let the symbol x, with values from 0 to 1,
represent the degree of substitution in the cation site, that is,
Zn1−xMxO and Ti1−xMxO2, where M is the TM dopant. It
should be noted that while in ZnO the TM cation substitutes
for a cation with a valency of 2 (Zn2+), in TiO2 and SnO2, the
TM cation substitutes for a cation with a valency of 4. Most
TMs form ions with valencies of either 2 or 3. This means
that when substitutional in either TiO2 or SnO2, oxygen
vacancies will form in order to ensure charge neutrality of
the crystal. Also, ZnO and SnO2 show a tendency toward
the formation of cation intersitials, further increasing the
nonstoichiometry. In general, then, the chemical formula
for these oxides should include the possibility of oxygen
nonstoichiometry, that is, TixM1−xO2−δ . In this case δ is a
representation of the defect concentration in the material.

Recently, Coey has expanded the polaron percolation
model to incorporate conduction through the formation of
a conducting impurity band at sufficiently high defect con-
centration in the oxides (Coey, Venkatesan and Fitzgerald,
2005a; Coey, 2005). It is assumed that the n-type carriers
are localized at donor defect sites, and thus the polaron dis-
tribution is directly dependent on defect concentration and
distribution. In the high dielectric oxides under consideration
here, the polaron radius rH can be on the order of several
nanometers, since it is directly proportional to the dielec-
tric constant of the material. This large polaron radius can
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encompass hundreds of cation sites and thus a number of
dopant sites.

At low defect concentrations the carriers are trapped and
the material is insulating. As the defect concentration (and
carrier concentration) increases, the wave functions of the
weakly bound localized carriers overlap. This forms an
impurity band, and the material becomes metallic. Gener-
alized phase diagrams for such a system have been proposed
(Janisch, Gopal and Spaldin, 2005; Coey, Venkatesan and
Fitzgerald, 2005a). Figure 8, from Coey, Venkatesan and
Fitzgerald (2005a), shows an oxide system in which the
magnetic state changes as a function of both TM dopant
concentration and defect concentration. The shaded regions
in the figure denote regions in which the carrier concen-
tration is low, and the system is insulating. Clearly, as
observed in experimental systems, ferromagnetism is pre-
dicted in both conducting and insulating films. In this model,
the degree of magnetic coupling is strongly dependent on
the defect (polaron) density, and thus the growth conditions.
This argument could be used to explain the wide variation in
moments reported by different groups for materials produced
by different methods or in different conditions. This could
also explain why poorer-quality, defect-rich films have been
observed to exhibit stronger moments than high-quality films
(Kaspar et al., 2005; Hong et al., 2005a).

When the dopant concentration, x, increases sufficiently
to form pairs of dopant ions on neighboring sites, superex-
change interactions will occur. The superexchange interac-
tion is expected, in general, to be antiferromagnetic, so these
pairs will yield a net reduction in the observed moment. Once
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Figure 8. Proposed phase diagram for TM-doped oxides. The
shaded region indicates insulating material. (Reproduced from
Coey et al., 2005, with permission from Nature Publishing Group.
 2005.)

the dopant concentration exceeds the percolation threshold,
xp, nearest-neighbor pairs will form throughout the mate-
rial and it will become antiferromagnetic. The experimen-
tally observed trend toward reduced moment with increased
dopant agrees with the prediction of the formation of anti-
ferromagnetically coupled pairs of magnetic dopant ions at
high dopant concentrations.

The Curie temperatures calculated for this model using
typical material parameters are much lower than those
actually observed, suggesting the need for extension of
the model. Potentially, reasonable values for TC could
be obtained by hybridization of the donor impurity band
orbitals with empty 3d bands from the magnetic impurities.
Such hybridization would be most likely to occur near the
beginning and the end of the 3d series of TM dopants where
empty 3d bands cross the Fermi level. In support of this,
experiments on a series of ZnO samples doped with small
amounts of TM elements have shown that the magnetization
of the resultant material varies across the TM series with
peaks near the beginning and end of the series where
hybridization is most likely to occur (Coey et al., 2005c).

Further supporting evidence is needed to confirm the
impurity band model. In particular, it would be necessary
to be able to quantify the defect concentration in a specimen
in order to allow it to be compared with films grown by
others or within the same group. Then the samples could
be arranged by defect and dopant concentration to determine
whether the phase diagram is reproduced. Another potential
method for confirming the proposed phase diagram would
be to vary the defect concentration within a specimen with
a given dopant concentration to allow the effect of defect
concentration on the magnetic and electrical properties to be
reproducibly measured.

Finally we mention briefly the work on nitride materials.
Magnetic doping of nitrides has paralleled the research on
oxides, although to a large extent the research has concen-
trated primarily on Mn as the magnetic dopant. It is possible
that magnetism in these materials may be described using
similar models. Reviews of work on nitrides can be found in
Pearton et al. (2003a,b). There have been two recent experi-
mental reports of giant magnetic moments (400–4000 µB) in
insulating material (Dhar et al., 2005a,b), GaN:Gd epilayers,
and a theoretical description for conducting samples (Dalpian
and Wei, 2005). Verification of these observations and the
existing band structure calculations are necessary to provide
impetus to further consider polarization effects in this system.

7.1 New developments

In this context, we note that a very recent analysis of magne-
totransport effects in (Cd,Mn)Te quantum wells indicates that
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a magnetic field induced increase in magnetic cluster size
leads to large negative magnetoresistive effects (Jaroszyn-
ski et al., 2006) near but on the metallic side of the metal
insulator transition. The change in carrier concentration in
one and the same sample is achieved by gating of the
device. The authors note the resemblance of these effects
to mixed valence perovskites. Although the negative mag-
netoresistance is absent at higher temperatures, our view is
that the effects in both systems are in the spirit of mag-
netic polarons described earlier in this text (von Molnár and
Methfessel, 1967) and theoretically by Gor’kov and Kresin
(1998, 2004). The authors point out, correctly, that in the
present 2D modulation-doped system, the coulomb binding
term is weak and thus the stability of the polarization cloud
is not describable in the spirit of a strongly bound mag-
netic polaron. In fact, an observed concentration-independent
conductivity requires that the polarization cloud maintain a
constant radius regardless of carrier concentration. This is
in striking contrast to, for example, Penney, Holtzberg, Tao
and von Molnár (1974) and requires a modified model for the
stability of the ferromagnetic conducting local polarization,
that is, the magnetic polaron. Some of the physics associ-
ated with the formation of these magnetic polarons may have
their origin in newly published data in the cobaltites. While
La1−xSrxCoO3 can be described by classic magnetic polarons
in the dilute limit (Giblin et al., 2005), in the more concen-
trated regions, the physical properties are more like those of
conducting clusters in a dielectric matrix (Wu et al., 2005).
This is similar to the mode of formation suggested by the
results mentioned earlier on modulation-doped II–VI diluted
heterostructures (Jaroszynski et al., 2006). Wu et al. prove
conclusively, utilizing SANS, that La1−xSrxCoO3 phase sep-
arates into ferromagnetic metallic clusters having limited
size distribution embedded in an insulating nonferromagnetic
matrix. This, the authors argue persuasively, is a result of
spontaneous magnetoelectronic, not chemical, phase separa-
tion. There is, furthermore, no direct spectroscopic evidence
of the latter (Wu et al., 2005). Other indirect experimen-
tal evidence, such as a hopping transport signature with
ln ρ ∼ T −1/2 (Kennedy et al., 2004) as well as an intergran-
ular giant magnetoresistance, however, are characteristic of
chemically multiphase materials as well. It is apparent that
these novel experimental results will require further theoret-
ical understanding of magnetic polarons.

8 CONCLUSION

In summary, we have shown, utilizing specific experimen-
tal evidence drawn principally from transport, optics, and
scattering experiments that magnetic polaron descriptions
can explain many of the observed properties of magnetic

semiconductor systems, both dilute and concentrated. They
also show promise of being able to describe the proper-
ties of systems of recent interest such as the dilute mag-
netic oxides. Extensions of these concepts to the cobaltites
and modulation-doped II–VI diluted two dimensional elec-
tron systems (2DES) will require improved understanding of
polaron stability.

NOTES

[1] This chapter represents an expansion on and an update of
a review published earlier. von Molnár, S., Terry, I. and
Penney, T. (1995) in Polarons and Bipolarons in High-
TC Superconductors and Related Materials (Eds, Salje,
E. K. H., Alexandrov, A. S. and Liang, W. Y.) Press
Syndicate of the University of Cambridge, Cambridge,
pp. 437.
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1 INTRODUCTION

At low temperatures, a small concentration of magnetic imp-
urities – atoms or ions with a nonzero magnetic moment –
can dramatically affect the behavior of conduction electrons
in an otherwise pure metal. This phenomenon, known as the
Kondo effect (Kondo, 1964), has been a leitmotif of solid-
state physics since the 1960s. Nearly a decade ago, the Kondo
effect was discovered in a new system (Goldhaber-Gordon
et al., 1998a), in which the local magnetic moment belongs
not to an atom but to a lithographically defined droplet of
electrons known as a quantum dot or artificial atom (Kastner,
1993). When the droplet contains an odd number of electrons,
it has a net spin and hence may be thought of as a magnetic
artificial atom. Nearby metal or semiconducting electrical
leads play the role of the host metal.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

The artificial atom system offers several important advan-
tages for the study of the Kondo effect:

1. A single site is measured, rather than a statistical average
over many sites.

2. The microscopic states of the system are better defined
and easier to tailor than in bulk systems.

3. Most of the important parameters can be precisely
measured and tuned in situ.

4. The local site can be studied out of equilibrium and in
regimes that are inaccessible in other contexts.

In this chapter of the handbook, we review how researchers
around the world have applied these advantages to create
a renaissance in the study of the Kondo effect. Though
this approach was initially inspired by theory (Glazman and
Raikh, 1988; Ng and Lee, 1988) and continues to be strongly
informed by it, we organize our review around experimental
developments in mesoscopic systems.

1.1 Background of the Kondo effect: dilute
magnetic alloys

At relatively high temperatures, the resistivity of a metal
is dominated by electron–phonon scattering. As the tem-
perature is lowered well below the Debye temperature, the
scattering rate, and hence the phonon contribution to resis-
tivity, decreases as T 5. At sufficiently low temperatures,
phonon-induced scattering becomes insignificant and resis-
tivity saturates at a finite value determined by scattering from
defects in the crystal lattice. In the 1930s, researchers noticed
that this simple picture did not always hold. Measurements
of Au cooled below 10 K sometimes showed a resistivity
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rise rather than saturation as the temperature was lowered
further (de Haas, de Boer and van den Berg, 1934). The effect
remained an enigma until the 1960s when experimental evi-
dence correlated the low-temperature resistivity rise with the
presence of dilute magnetic impurities in the metal (Sarachik,
Corenzwit and Longinotti, 1964). Inspired by the strong evi-
dence that individual magnetic impurities were responsible
for the resistivity rise, Kondo considered a model involving
an antiferromagnetic interaction between the local moment
and the sea of conduction electrons (Kondo, 1964). Using
perturbation theory, Kondo found that the antiferromagnetic
interaction leads to a logarithmic rise in electron-impurity
scattering with decreasing temperature.

Though Kondo’s work was a crucial breakthrough, calcu-
lations using this theoretical framework inherently produced
unphysical logarithmic divergences. Finding a solution to this
conundrum became known as the Kondo Problem. The prob-
lem was finally solved by Wilson (1975), who developed
a new renormalization group (RG) technique for the pur-
pose. Wilson’s RG calculations showed that at temperatures
below a characteristic Kondo temperature TK, a magnetic
impurity would form a singlet with the surrounding sea of
conduction electrons. Despite this success in determining the
ground state (and thermodynamic properties) of a magnetic
impurity in a metal, nearly two decades would pass before
the development of numerical renormalization group (NRG)
techniques that could accurately calculate transport proper-
ties such as resistivity over a broad range of temperatures
(Costi, Hewson and Zlatic, 1994).

1.2 Tunneling: Kondo in a new geometry

Since the Kondo effect is a property of magnetic impurities
in a host metal, it should also be observable in transport
through magnetic impurities sandwiched between two metal
leads (Appelbaum, 1966). This was borne out in both large
tunnel junctions with many impurities (Wyatt, 1964) and
more recently in a nanometer-scale junction containing a
single impurity (Gregory, 1992; Ralph and Buhrman, 1994).
In this geometry, the Kondo effect enhances conductance
rather than resistivity at low temperature and low bias voltage
(Appelbaum, 1966).

The advent of high-mobility GaAs heterostructures in the
1980s ushered in the modern era of mesoscopic semicon-
ductor physics: the study of electronic phenomena at inter-
mediate spatial scales, between atomic and macroscopic.
Through concurrent advancement in lithographic technol-
ogy, the first artificial atoms were created in patterned GaAs
heterostructures in the late 1980s (Reed et al., 1988; van
Wees et al., 1989; Meirav, Kastner and Wind, 1990). Around
the same time, two theoretical teams pointed out that this

type of system can behave like a magnetic impurity and
hence should exhibit the Kondo effect (Glazman and Raikh,
1988; Ng and Lee, 1988). Indeed, ten years later the Kondo
effect was observed in lithographically defined quantum dots
(Goldhaber-Gordon et al., 1998a; Cronenwett, Oosterkamp
and Kouwenhoven, 1998; Simmel et al., 1999). Due to the
unprecedented degree of flexibility and control available in
artificial atom systems, a wave of experimental work fol-
lowed, exploring a variety of Kondo regimes untouched by
previous efforts.

Several other new and interesting Kondo systems have
emerged in recent years, as well. The Kondo effect has also
been observed in scanning tunneling microscopy (STM) mea-
surements of individual surface adatoms (Madhavan et al.,
1998; Li, Schneider, Berndt and Delley, 1998) and metal
complexes (Zhao et al., 2005), allowing, for example, the
study of the spatial characteristics of Kondo interactions
(Madhavan et al., 1998; Manoharan, Lutz and Eigler, 2000).
Electrons localized on a single molecule or a single carbon
nanotube can exhibit Kondo effects stemming from local
degeneracies not easily achieved in a GaAs artificial atom
(Park et al., 2002; Liang et al., 2002), and can be coupled
to reservoirs with exotic properties (superconducting, ferro-
magnetic). Though a wide range of Kondo systems have
played important roles in developing our understanding of
the Kondo effect, this review will focus mainly on the diverse
set of experiments performed using mesoscopic quantum dot
systems.

2 EXPERIMENTAL SIGNATURES OF THE
SPIN-1/2 KONDO EFFECT

In this section, we review the characteristic signatures of
the Kondo effect in the context of a spin-1/2 quantum dot
coupled to two reservoirs. Consideration of more complex
scenarios is left to later sections.

2.1 Quantum dots

Our discussion of experimental results draws primarily on
work performed on three types of quantum dots, each offer-
ing a different set of advantages: lateral and vertical semicon-
ductor dots, and carbon nanotube quantum dots (Figure 1).
Lateral quantum dots are formed by depleting a subsurface
two-dimensional electron gas (2DEG) using lithographically
defined metallic gates, as shown in Figure 1(a). The 2DEG
resides at the interface of a semiconductor heterostructure
(e.g., GaAs/AlGaAs), located tens to hundreds of nanome-
ters below the surface. The quantum dot consists of a pool of
confined electrons, tunnel coupled to extended sections of the
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Figure 1. The Kondo effect has been seen in a variety of quantum dot geometries such as (a) lateral quantum dots (scanning electron
microscopy (SEM) image). (b) Vertical quantum dots (schematic). (Reproduced from S. Sasaki et al., 2000, with permission from Nature
Publishing Group.  2000.) (c) Carbon nanotubes (SEM and schematic). (Reproduced from Jesper et al., 2000, with permission from
Nature Publishing Group.  2000.)

2DEG, which serve as leads. Several nearby gate electrodes
electrostatically control the quantum dot electron occupancy,
as well as the dot–lead couplings. In principle, the number
of electrons can be reduced to zero; however, in many lat-
eral quantum dot geometries, the conductance through the
quantum dot’s contacts is ‘pinched off’ by the increasingly
negative gate voltage before the dot is entirely emptied.

The vertical quantum dot geometry, shown in Figure 1(b),
allows the formation of a small, well-coupled, few-electron
quantum dot whose conductance remains measurable all
the way down to the expulsion of the last electron. This
allows accurate determination of the electron occupancy, as
discussed later in this section. Another important difference
between lateral and vertical quantum dots is the number of
tunneling modes, or channels, that couple the dot to the
leads [1]. Typically, the dot–lead contacts in lateral dots
are single-mode quantum point contacts (QPCs), while the
wide lead–dot contact area in vertical dots contains several
partially transmitting modes.

A carbon nanotube quantum dot is created using a single
carbon nanotube deposited on a conducting substrate covered
by a thin insulator (e.g., SiO2/n++-Si). Lithographically
defined metal leads contact the nanotube, and the conducting
substrate is biased to modify the electron occupancy of the
nanotube (Figure 1c). While the nanotube–lead couplings
cannot be finely controlled, this geometry allows for the
creation of a wide variety of leads, such as superconducting
and magnetic, which are difficult, if not impossible, to
achieve in semiconductor heterostructures. For a further
discussion of quantum dots, including the Kondo effect,
we encourage readers to examine several recent reviews
(Kouwenhoven et al., 1997; Kouwenhoven, Austing and
Tarucha, 2001; Yoffe, 2001; Pustilnik and Glazman, 2004;
Giuliano, Naddeo and Tagliacozzo, 2004).

2.2 Theoretical background

Here, we present only a brief theoretical description of the
Kondo effect. The reader may consult several references for

a more complete theoretical description (Gruner and Zawad-
owski, 1974; Wilson, 1975; Nozières and Blandin, 1980;
Andrei, Furuya and Lowenstein, 1983; Hewson, 1993; Costi,
Hewson and Zlatic, 1994; Pustilnik and Glazman, 2004 (See
also The Kondo Effect, Volume 1).

2.2.1 Kondo Hamiltonian

The Kondo effect arises when a degenerate local state is
coupled to a reservoir of mobile electrons. The system is
well described by the Anderson Hamiltonian

H =
∑
k,σ

εkc
†
kσ ckσ +

∑
σ

ε0d
†
σ dσ + Ud

†
↑d↑d

†
↓d↓

+
∑
k,σ

(
vkd

†
σ ckσ + v∗

k c
†
kσ dσ

)
(1)

which was originally proposed to describe a magnetic
impurity atom in a metal (Anderson, 1961). The first term
represents the kinetic energy of electrons in the reservoir,
labeled by their momentum (k) and spin (σ ). The second
term is the quantized energy of localized electrons in a
single spin-degenerate state near EF – all other quantum dot
levels are assumed to be either completely full (well below
EF) or completely empty (well above EF), and hence can
be safely ignored. The third term accounts for interactions
among localized electrons: a second electron added to the
local site costs more than the first electron, by an amount
denoted as the charging energy U . This is crucial, since it
allows for the possibility that the doubly degenerate site can
be occupied by just a single electron. In this case, the site
acts as a magnetic impurity and can exhibit the Kondo effect.
The final term describes spin-conserving tunneling on and off
the local site, with strength vk . A schematic of the Anderson
model is shown in Figure 2. A spin-degenerate quantum dot
is probably the most exact experimental realization of the
Anderson model.

With a few simple assumptions, which are generally
well justified for a quantum dot with odd occupancy,
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Figure 2. Schematic diagram of the Anderson model as applied to
a singly occupied spin-degenerate quantum dot state coupled to an
electron reservoir. The parameters are discussed in the text.

the interaction between the conduction electrons and the
quantum dot (final term in equation (1)) can be approximated
as an antiferromagnetic coupling,

Hint = J scond · SQD (2)

Equation 2 is known as the s–d or the Kondo Hamiltonian
(Kondo, 1964; Schrieffer and Wolff, 1966; Kasuya, 1956;
Yosida, 1957), as alluded to previously. SQD is the net spin of
the quantum dot, while scond is the sum of spin operators for
the conduction electrons (cf. Pustilnik and Glazman, 2004).
The strength of the antiferromagnetic coupling depends
on the microscopic parameters of the Anderson model,
according to

J ∼ |v|2
(

1

−ε0
+ 1

ε0 + U

)
(3)

Here, ε0 is measured relative to EF and the interaction
strength is taken to be a constant (vk = v) over a finite
bandwidth (D) and zero otherwise, as indicated in Figure 2.

2.2.2 Kondo ground state

The ground state of the Kondo Hamiltonian is not twofold
degenerate, but is instead a spin singlet in which the spin
of a localized electron is matched with the spin of delo-
calized electrons to yield a net spin of zero. This ‘Kondo
screening cloud’ is shown schematically in Figure 3. Due to
phase space constraints, the Kondo interaction predominantly
affects electrons near the Fermi surface. This mixing of con-
duction and local electron states leads to the characteristic
signature of the formation of the Kondo singlet: the appear-
ance of a narrow resonance at the Fermi energy with width
proportional to the strength of the Kondo interaction [2].

T >> TK T < TK

(a) (b)

Figure 3. A magnetic impurity in a sea of conduction electrons.
(a) Above the Kondo temperature (TK), the conduction electrons
are only weakly scattered by the magnetic impurity. (b) Below TK,
the conduction electrons screen the local spin to form a spin singlet.
The formation of the Kondo screening cloud enhances the effective
scattering cross section of the magnetic impurity.

Owing to its nonconventional nature, the Kondo singlet’s
‘binding energy’ is not simply proportional to J . Typically
expressed as a Kondo temperature (TK), the binding energy
can be calculated perturbatively using equation (2) to give

TK ∼ D
√

ρJ exp (−1/2ρJ ) (4)

where ρ is the density of states in the reservoir at energy
EF (Hewson, 1993). The formation of the Kondo singlet is a
continuous phase transition, and TK should be interpreted as
the cross-over energy scale for this transition. It is important
to realize that TK is not a well-defined energy scale: equally
valid definitions can differ by a constant multiplicative factor.
In this review, we use a definition suggested by Costi,
Hewson, and Zlatic (1994) and introduced for quantum dots
by Goldhaber-Gordon et al. (1998b): TK is the temperature
at which the Kondo conductance has risen to half its
extrapolated zero-temperature value (see Section 2.3.3).

The expression for TK can be rewritten in terms of
quantities that are more easily controlled and measured in
quantum dot experiments (Haldane, 1978):

TK ∼
√

�U exp (πε0(ε0 + U)/�U) (5)

Here, � is the rate for electron on and off the dot. The
spin-1/2 Kondo effect occurs only when the local site is
singly occupied (ε0 < 0 and ε0 + U > 0), so the exponent
in equation (5) is negative, as expected from equation (4).
These equations break down near the charge degeneracy
points (ε0 = 0 and ε0 + U = 0), where charge fluctuations
produce mixed valence rather than Kondo behavior (Costi,
Hewson and Zlatic, 1994). Coupling additional leads to the
quantum dot modifies �, but does not affect the overall
Kondo behavior. The leads behave as a single collective
reservoir, as long as Kondo processes can freely exchange
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electrons between each pair of reservoirs (Glazman and
Raikh, 1988).

TK is maximized when the quantum dot state is energeti-
cally close to EF (ε0 ∼ 0) and strongly coupled to the leads
(large �). Finite charging energy (U) and level spacing (�)
put a limit on TK in quantum dots, since electrons are no
longer localized on the dot for � > min(U, �). U and �

increase with decreasing device size, yielding a maximal TK

in the range of 0.1–1 K for typical semiconductor quantum
dots and up to 10 K in carbon nanotube–based devices. For
comparison, TK in excess of 500 K has been observed for
atomic impurities in bulk systems (Gruner and Zawadowski,
1974).

The formal spatial scale of the Kondo cloud is given by

ξK ∼ �vF/kBTK (6)

where vF is the Fermi velocity (Sorensen and Affleck,
1996). ξK ∼ 1 µm for typical semiconductor quantum dots
in the Kondo regime, which gives an estimate of the spatial
extent of Kondo correlations. The spatial properties of the
Kondo cloud have proved difficult to measure for several
reasons. The Kondo screening cloud mainly involves spin
rearrangement. However, local spin density is dynamic, since
the spin on the local site is rapidly changing, and the
exponential decay is modulated further by polynomial decay
factors (Barzykin and Affleck, 1996). In addition, charge
rearrangement due to Kondo singlet formation is minimal and
occurs only at length scales on the order of λF. Local probes,
such as STM, generally measure the total density of states,
which is modified on similar short spatial scales (Madhavan
et al., 1998; Újsághy, Kroha, Szunyogh and Zawadowski,
2000). This is understood to stem from oscillations and
polynomial decay that modulate the slow exponential decay
of spin polarization in the electron gas at distances greater
than λF from the local moment (Barzykin and Affleck, 1996).

2.3 Kondo transport in quantum dots

The formation of the Kondo screening cloud enhances the
scattering of conduction electrons by the local magnetic site.
Hence, the resistivity of a bulk metal with a small concentra-
tion of magnetic impurities rises as temperature is decreased
below the characteristic Kondo temperature for that impu-
rity/metal system. In a geometry where transport is domi-
nated by tunneling through a magnetic site, the enhanced
scattering has the opposite effect: conductance rises for
T < TK, as a new mechanism for transport becomes available
(Appelbaum, 1966; Ng and Lee, 1988; Costi, Hewson and
Zlatic, 1994). In transport through semiconductor quantum
dots, the Kondo effect emerges whenever the dot contains
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Figure 4. Linear conductance through the lateral quantum dot
shown in Figure 1(a), as a function of gate voltage. From left to
right, the quantum dot electron occupancy increases by four and
three in (a) and (b) respectively. (a) Kondo regime: For strong
lead–dot coupling, the Kondo effect enhances conductance for
odd occupancy at 90 mK. At higher temperatures (800 mK), the
Kondo effect is partially suppressed and transport proceeds through
temperature-broadened single-particle levels. (b) Coulomb blockade
(CB) regime: For weak dot–lead coupling (� � U, �), the Kondo
temperature is lower than the base temperature of the experiment
(90 mK) and transport occurs only at the charge degeneracy points.
Note: the peaks in (b) have been shifted by +120 mV and do
not correspond to the same electronic states as in (a). (Reproduced
from D. Goldhaber-Gordon et al., 1998, with permission from the
American Physical Society.  1998.)

an unpaired spin, as is the case when an odd number of
electrons occupy the dot. As the occupancy of a dot is tuned
by a nearby gate, the low-temperature conductance alternates
between high (odd occupancy) and low (even occupancy),
as seen in Figure 4(a). The high conductance for odd occu-
pancy disappears as the coupling to the leads (�) is reduced
(Figure 4b): TK becomes lower than the base temperature
of the measurement apparatus (cf. equation (5)). In this
‘Coulomb blockade’ (CB) regime, conduction occurs only
near the charge degeneracy points.

The Kondo-mediated transport through a quantum dot may
be distinguished from other mechanisms for conductance
enhancement by the following distinctive features:

1. Even–odd alternation of conductance as a function of
dot occupancy (the Kondo effect occurs only for odd
occupancy).

2. Enhanced conductance at low temperature, with a char-
acteristic temperature dependence.

3. Enhanced conductance at zero bias relative to finite bias.



6 Exotic materials

4. Suppression of conductance by magnetic field, which
splits the local spin degeneracy.

5. Recovery of enhanced conductance at finite magnetic
field by application of a bias voltage equal to the Zeeman
splitting.

The above list is useful for demonstrating the occurrence
of a Kondo effect, but is not an exhaustive or quantitative
description of spin-1/2 Kondo. Note that some of the listed
features can only be observed in systems where the local site
occupancy can be tuned (i.e., 1) or where a finite bias can
be applied across the local site(s) (i.e., 3 and 5).

2.3.1 Even–odd effect

The low-temperature Kondo conductance enhancement is
expected to occur whenever a local state is degenerate and
partially filled. In the absence of additional degeneracies, this
occurs whenever the number of electrons on the dot is odd.
Though early Kondo dot measurements exhibited conduc-
tance enhancements in alternating CB valleys, the researchers
could not directly demonstrate that the enhancement occurred
for odd rather than even occupancies, since the initial occu-
pancy of the dot was unknown (Goldhaber-Gordon et al.,
1998a). Indeed, in later sections, we discuss a variety of
Kondo effects that do not require a spin-1/2 dot state and
hence do not follow the even–odd rule. More recent quan-
tum dot devices use either of two methods to conclusively
determine the total electron occupancy. In one method, the
electron number is determined by counting CB peaks as the
quantum dot is emptied by an increasingly negative gate
voltage. This technique works best in vertical quantum dots
(Tarucha et al., 1996) (Figure 1b), as well as certain lateral
dots (Ciorga et al., 2000), which remain conducting as the
occupancy is reduced and counted down to zero. A second
technique uses a QPC fabricated close to the quantum dot, to
serve as a detector of the dot’s occupancy (Sprinzak et al.,
2002). Each electron added to the quantum dot electrostati-
cally alters the conductance of the QPC. This method works
even if transport through the quantum dot is so slow as to be
immeasurable with conventional methods (fewer than around
1000 electrons per second). These methods confirm that in
small GaAs quantum dots spin-1/2 Kondo and even–odd
conductance alternation are the rule rather than the exception.

2.3.2 Dependence on external parameters

Kondo conductance through a quantum dot has a character-
istic and calculable dependence on external parameters such
as temperature, magnetic field, and voltage across the dot
(Pustilnik and Glazman, 2004). We can consider two regimes:
low energy and high energy, distinguished by whether the

perturbations kBT , eV, and gµBB are small or large com-
pared to kBTK. At low energy, a Kondo impurity acts as
an elastic scatterer, and nearby conduction electrons behave
as in a conventional Fermi liquid, albeit with slightly modi-
fied numerical parameters (Nozières, 1974). Hence, for kBT ,
eV, and gµBB � kBTK the Kondo spectral function and the
associated transport through a spin-1/2 Kondo dot display
quadratic dependence on external parameters, reflecting the
E2 scattering rate of quasiparticles in a Fermi liquid,

G(X) ∼ G0(1 − C(X/kBTK))2

X = kBT , eV, gµBB � kBTK (7)

G0 = G(X = 0), and the constant C is slightly different for
the three perturbations.

In the opposite extreme, kBT , eV, or gµBB � kBTK,
Kondo transport is well described by a perturbative treatment
of the excitation and shows a logarithmic dependence on
energy,

G(X) ∼ 1/ln2(X/kBTK)

X = kBT , eV, gµBB � kBTK (8)

The two regimes evolve smoothly and monotonically into
one another with no sharp features appearing at TK. No
analytic expression linking the two regimes has been derived,
though an empirical expression for G(T ) that matches
NRG calculations (Costi, Hewson and Zlatic, 1994) over
the entire temperature range has been widely adopted by
experimentalists (Goldhaber-Gordon et al., 1998b). We note
that even though the three perturbations have similar effects
on conductance, the mechanism is slightly different in each
case, as discussed in the next two sections. The evolution of
shot noise is predicted to follow forms similar to equations
(7) and (8) (Meir and Golub, 2002), but with an effective
fractional charge of 5/3e, reflecting the presence of both
elastic and inelastic scattering even at low temperatures (Sela,
Oreg, von Oppen and Koch, 2006).

2.3.3 Temperature dependence

The conductance behavior predicted by equations (7) and (8)
can be seen in temperature-dependent conductance measure-
ments of a Kondo dot, as shown in Figure 5. As tempera-
ture is raised, the conductance in the odd valleys decreases
because of suppression of the Kondo effect. In contrast, con-
ductance in the even valleys increases because of thermal
broadening of the bare quantum dot levels (Pustilnik and
Glazman, 2004). The scaled temperature-dependent conduc-
tance for several gate voltage values in the Kondo valley
is shown in Figure 5(b). The Kondo conductance shows
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Figure 5. (a) Temperature dependence of the conductance in the
Kondo valley. The vertical dashed lines indicate the location of the
charge degeneracy points (i.e., ε0 = 0 or ε0 + U = 0), as deduced
from data for T � TK. Inset: The extrapolated linear temperature
dependence of the Coulomb blockade peak width at T = 0 gives
� = 295 ± 20 µeV. The slope of the line determines the conversion
factor between the applied gate voltage (Vg) and ε0. (b) Normalized
conductance (G/G0) as a function of normalized temperature
(T/TK) for several points along the Kondo valley. Here ∼ε = ε0/�.
G0 and TK were extracted by fitting the temperature dependence to
equation (9). The data shown here are from the lateral quantum
dot device shown in Figure 1(a). (Reproduced from D. Goldhaber-
Gordon et al., 1998, with permission from the American Physical
Society.  1998.)

the characteristic T 2 saturation at low temperatures, cross-
ing over to a logarithmic temperature dependence as T

approaches TK. The empirically derived formula alluded to
above,

G(T ) = G0(T
′2

K /(T 2 + T ′2
K ))s (9)

provides a remarkably good fit over the whole temperature
range (Goldhaber-Gordon et al., 1998b). The constant s

determines the slope of the conductance falloff. Using a value
s = 0.22 matches the slope found in NRG calculations for
spin-1/2 Kondo systems (Costi, Hewson and Zlatic, 1994).
Here, T ′

K = TK/(21/s − 1)1/2, which is equivalent to defining
TK such that G(TK) = G0/2, as noted earlier. The extracted
values of TK and G0 across the Kondo valley are shown in
Figure 6. As predicted by equation (5), TK is maximal when
the quantum level resides close to EF.

At temperatures above TK, non-Kondo conductance chan-
nels can develop (Pustilnik and Glazman, 2004), and this
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Figure 6. (a) Values of TK across the Kondo valley shown in
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tance to the Kondo form (equation (9)). The behavior is well
described by equation (5) (solid line). Inset: Expanded view of
the left side of the figure, showing the quality of the fit. (b) Val-
ues of G0 across the Kondo valley extracted from the temperature
fits in part (a) (open circles) or from base temperature conduc-
tance (crosses). The solid line shows G0(ε0) predicted by Wingreen
and Meir (1994). Gmax = 0.49e2/h and 0.37e2/h for the left and
right peak, respectively. (Reproduced from D. Goldhaber-Gordon
et al., 1998, with permission from the American Physical Society.
 1998.)
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leads to deviations from equation (9). Occasionally a bet-
ter fit to G(T ) can be achieved by adding a temperature-
independent offset to the Kondo form (equation (9)). Though
convenient, using such an offset in analyzing Kondo behavior
is not yet well-established as physically valid.

2.3.4 Dependence on bias and magnetic field

The E2 dependence of the Kondo spectral function can be
probed by applying a bias across the dot (Goldhaber-Gordon
et al., 1998a; Cronenwett, Oosterkamp and Kouwenhoven,
1998). The spectrum shows a narrow zero-bias anomaly,
referred to as the Kondo resonance, that is present across the
whole odd-occupancy Coulomb valley (Figure 7). For small
biases, the Kondo conductance peak falls off with V 2. The
Kondo peak broadens with increasing temperature, and the
extrapolated zero-temperature half width at half maximum
is approximately 2TK (Costi, 2000). Exact interpretation of
the Kondo peak shape is complicated by nonequilibrium
processes (Wingreen and Meir, 1994; Schiller and Hershfield,
1995), which are discussed further in Section 3.2.

An applied magnetic field lifts the degeneracy between
the two spin states on the quantum dot. The asymme-
try between the two spin states acts to suppress Kondo
correlations in much the same way as the asymmetry cre-
ated by an applied bias. Progressively higher magnetic fields
split the Kondo spectral function, which can be probed by
the measurement of differential conductance as a function
of bias (Goldhaber-Gordon et al., 1998a; Cronenwett, Oost-
erkamp and Kouwenhoven, 1998). These measurements are
discussed in Section 3.2.

2.3.5 Universal scaling

The similarity of the effects of temperature, bias, and
magnetic field on the Kondo effect is neatly encompassed by
a series of theoretically predicted universal scaling relations.
In the context of Kondo transport, the behavior of different
Kondo systems can be collapsed onto a single curve once
each curve is scaled appropriately using only the Kondo
temperature and the zero-temperature conductance, TK and
G0, respectively (Ralph, Ludwig, von Delft and Buhrman,
1994; Schiller and Hershfield, 1995). The relation between
temperature and bias can be expressed as

(G(V = 0, T ) − G(V, T ))/G0

CT α
= F(eV/kBT ) (10)

Here, F(eV/kBT ) is a universal function that depends on
the type of Kondo effect, but not on the exact details of
the Kondo system at hand. The scaling constants G0 and
C are defined by the low-temperature expansion for G(T )

(equation (7)). The exponent α = 2 for a spin-1/2 quantum
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Figure 7. (a) Low-temperature (T = 12 mK) differential conduc-
tance (dI /dV ) through a lateral quantum dot, as a function of gate
voltage and applied bias in the Kondo regime. In the absence
of the Kondo effect, dI /dV is nonzero only when a quantum
dot energy level is aligned with the Fermi energy of one of the
leads (cf. Kouwenhoven, Austing and Tarucha, 2001). The result-
ing ‘Coulomb diamonds’ are modified by the Kondo effect: a Kondo
resonance appears at zero bias across the whole Coulomb val-
ley for odd occupancy. The Kondo effect also alters finite bias
conduction through the quantum dot levels. (b) Temperature depen-
dence of the Kondo resonance in the middle of the Kondo valley
(Vg = −203.5 mV).

dot, but can take on different values in more exotic Kondo
systems (Ralph, Ludwig, von Delft and Buhrman, 1994).
Though the scaling properties of Kondo systems are fre-
quently used in analyzing Kondo measurements (Figure 5b),
few experimental measurements of universal Kondo scal-
ing functions or the expected deviation from universal-
ity (Majumdar, Schiller and Hershfield, 1998) have been
reported to date (Ralph, Ludwig, von Delft and Buhrman,
1994).
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2.4 Transmission phase shift and unitary limit

The zero-temperature Kondo conductance through a two-lead
quantum dot can also be derived via the Landauer formalism
and Friedel sum rule, giving

G0 = 2e2

h

[
2�1�2

�2
1 + �2

2

]2 1

2

∑
σ

sin2(δσ ) (11)

where �i is the rate of tunneling between the local site
and the ith lead and δσ is the transmission phase shift of
the σ spin channel (see Pustilnik and Glazman, 2004). For
tunneling through a quantum dot in the CB regime, the
transmission phase shift is changed by π each time one CB
peak is tuned through the Fermi energy. Surprisingly, owing
to the equivalence of the two spin states brought about by the
Kondo effect, the transmission phase shift evolves instead by
π/2 in the Kondo regime at T = 0 (Figure 8d) (Gerland, von
Delft, Costi and Oreg, 2000). As the temperature is raised to
T ∼ TK, the phase shift evolves to the more conventional π

phase shift, as seen in Figure 8(b).
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Figure 8. Theoretical temperature and coupling dependence of the
transmission amplitude (|dσ |) and phase (�dσ ) for transport through
a quantum dot, as a function of the normalized energy of the
quantum dot level (ε0/U ). Each pane plots results for three values
of dot–lead coupling (�). The transmission amplitude is normalized
to 2e2/h. (a and b) The two panels on the left show calculations
for T = � > TK. In this regime, transport occurs mainly through
thermally broadened quantum dot levels. (c and d) The two panels
on the right show calculations for T = 0. The Kondo effect is in
the unitary limit, giving a 2e2/h conductance throughout the Kondo
valley. In this regime, the phase shift is π/2 in the Kondo valley.
(Reproduced from Ulrich Gerland et al., 2000, with permission from
the American Physical Society.  2000.)

While the Kondo phase shift cannot be determined in
bulk measurements, several mesoscopic measurements can
determine it directly (Ji et al., 2000; Sato et al., 2005). One
of the most successful approaches to measuring transmis-
sion phase shifts involves using an Aharonov–Bohm (AB)
interferometer geometry like the one shown in Figure 9(a)
(Yacoby, Heiblum, Mahalu and Shtrikman, 1995). Electrons
can either tunnel through the quantum dot or travel bal-
listically through a reference arm. The relative phase of
these two paths depends on the magnetic flux through the
loop and the transmission phase shift acquired in tunneling
through the quantum dot. The transmission phase shift is
deduced by examining how the interference pattern changes
as a function of the energy ε0 of a localized state on the
quantum dot. The Kondo phase shifts extracted from these
experiments are somewhat larger than the theoretically pre-
dicted value, as seen in Figure 9(c) (Ji et al., 2000; Ji,
Heiblum and Shtrikman, 2002). Transmission phase shifts
can be measured using other two-path interference geome-
tries, such as a quantum wire side-coupled to a quantum
dot (Sato et al., 2005). In these devices, the measured phase
shift is closer to the theoretically predicted value of π /2.
More recent experiments (Avinun-Kalish et al., 2005; Neder
et al., 2006) and theoretical work (Aharony, Entin-Wohlman
and Imry, 2003; Aharony and Entin-Wohlman, 2005; Jerez,
Vitushinsky and Lavagna, 2005) have elucidated some of the
intricacies of phase shifts measured in mesoscopic electron
interferometers.

An additional consequence of the equivalence of the
two spin transport channels is that the zero-temperature
conductance through a Kondo dot is 2e2/h for symmetric
reservoir–dot coupling (equation (11)). In contrast, the
maximum conductance on a conventional Coulomb charging
peak is only e2/h in the absence of Kondo correlations,
since only one spin state can be transmitted at a time.
The configuration of equal reservoir coupling and T = B =
V = 0 is commonly referred to as Kondo in the unitary
limit. This limit can be achieved experimentally as long
as kBT , eV, gµBB � kBTK and the coupling asymmetry is
small compared to �, as observed by van der Wiel et al.
(2000).

3 KONDO EFFECT IN MODIFIED
ENVIRONMENTS

In the previous section, we briefly discussed how the
Kondo state is suppressed by external perturbations such
as temperature and magnetic field. In this section, we
provide a more general description of how the spin-1/2
Kondo state evolves in response to modified environments.
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In addition to temperature, magnetic field, and bias, nonideal
conduction reservoirs and other external couplings can affect
the Kondo behavior. The effects of perturbations on the
Kondo state can be categorized as follows: (i) the Kondo
state is suppressed because of the decoherence of the Kondo
singlet (e.g., suppression of Kondo by thermal fluctuations),
(ii) a non-Kondo ground state becomes the lowest-energy
ground state (e.g., formation of spin-polarized ground state
in high magnetic field), or (iii) a new Kondo state is
created. The Kondo energy scale (kBTK) is a useful scale
for determining how a perturbation will affect the Kondo
state. Weak perturbations (E < kBTK) typically only partially
suppress the Kondo state, while stronger perturbations (E >

kBTK) are needed to significantly alter or destroy the Kondo
singlet.

3.1 Decoherence of the Kondo state

We first discuss how various processes can lead to deco-
herence of the Kondo singlet. The Kondo singlet state is
created by spin-flip cotunneling processes between conduc-
tion electrons and the local state. Non-Kondo processes, such
as emission or absorption of a phonon or photon, disturb
the necessary superposition of electronic states in the Kondo
singlet. At zero temperature and bias, the phase space avail-
able for these non-Kondo processes is nearly eliminated
and delocalized electrons within length ξK (equation (7))
form a Kondo singlet with the local spin. At finite temper-
ature, thermal fluctuations drive non-Kondo transitions, pro-
gressively destroying these correlations. These non-Kondo
transitions are facilitated by smearing of the sharp Fermi
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distribution of the leads with temperature, which increases
the available phase space for the transitions. Similarly, a
small bias (eV < kBTK) applied across the dot also opens
up phase space for non-Kondo transitions, leading to a sup-
pression of the Kondo state. Larger biases have a more
profound affect on the Kondo state, as discussed later in
this section.

Coupling the quantum dot to other noise sources can
have similar decohering effects. Avinun-Kalish et al. (2004)
experimentally investigated the suppression of the Kondo
state due to a capacitively coupled QPC. Conceptually, the
QPC can be treated either as a source of shot noise or as
a quantum dot charge measurement device, as discussed in
Section 2.3.1. The authors observed stronger-than-expected
suppression of Kondo transport, which they attributed to
the long residence time of an electron in the Kondo cloud
that extends well into the leads (Avinun-Kalish et al., 2004).
The Kondo state can also be decohered by irradiating the
sample with microwave radiation (Kaminski, Nazarov and
Glazman, 1999; Elzerman et al., 2000). Here the random
population and decay of excited states by photons takes
over the role of thermal fluctuations in destroying the Kondo
state.

3.2 Nonequilibrium Kondo effect

An applied bias across the quantum dot can have several
interesting consequences on the Kondo state. For a quan-
tum dot coupled equally to two leads at the same potential,
the Kondo screening cloud spans both leads. An applied bias
between the leads exposes the quantum dot to different Fermi
levels, which opens up inelastic (decohering) channels for
electron scattering between different leads. Kondo exchange
with each individual lead, however, is not affected. For biases
above kBTK, the Kondo spectral function splits into two res-
onances centered on the Fermi energies of each reservoir, as
shown in Figure 10(a) (Wingreen and Meir, 1994; Schiller
and Hershfield, 1995). The two Kondo resonances slowly
fade with increasing bias because of decoherence associ-
ated with the exchange of electrons between the leads, but
they remain visible for biases far exceeding kBTK. Two-
terminal quantum dot measurements cannot accurately map
out the nonequilibrium spectral function, but instead mea-
sure a convolution of two evolving spectral functions. The
splitting can be observed experimentally through the addi-
tion of a weakly coupled third lead (Lebanon and Schiller,
2001; Leturcq et al., 2005), as shown in Figure 10(b). An
alternative approach to probing the out-of-equilibrium Kondo
spectral function has been investigated using a split Fermi
distribution in a quantum wire side-coupled to a quantum
dot (de Franceschi et al., 2002).
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Figure 10. (a) A schematic of the splitting of the Kondo spectral
function with an applied bias. The relative amplitude of the Kondo
resonance in each lead depends on the respective dot–lead coupling.
In the extreme case, where one lead is well coupled and the other is
weakly coupled (typical of STM experiments), the weakly coupled
lead can be treated as a spectroscopic probe (Lebanon and Schiller,
2001; Nagaoka, Jamneala, Grobis and Crommie, 2002). (b) The
splitting of the Kondo resonance with applied bias can be probed
by weakly coupling an additional lead. The plot shows the current
through the weakly coupled lead as a function of the voltage
difference (�V ) between the two strongly coupled leads. A Kondo
conductance enhancement is observed when the Fermi energy of the
weakly coupled lead is aligned with the Fermi energy of either one
of the strongly coupled leads, leading to the cross pattern seen in the
figure. (Reproduced from R. Leturcq et al., 2005, with permission
from the American Physical Society.  2005.)

3.2.1 Recovery of the Kondo state

An applied bias can also provide the necessary energy to
form a Kondo singlet when the Kondo ground state is not
otherwise the favored configuration. The first example of
this phenomenon is the recovery of the Kondo effect at
finite bias in an applied magnetic field. A magnetic field
breaks the spin degeneracy of the quantum dot ground state
favoring a spin-polarized ground state over the Kondo sin-
glet. As a result, spin-flip transitions incur an energy cost,
leading to a characteristic suppression of Kondo conduc-
tance, as described in Section 2.3.2. The spin-flip energy
cost can be compensated by applying a bias across the
quantum dot. Here, the Kondo state reemerges when the
applied bias is equal to the spin-flip energy (eV ∼ gµBB)
(Goldhaber-Gordon et al., 1998a; Cronenwett, Oosterkamp
and Kouwenhoven, 1998; Kogan et al., 2004a). Experi-
mentally, this produces two Kondo peaks, separated by
twice the spin-flip energy (Figure 11). Surprisingly, the
measured splitting of the Kondo resonance exceeds the
expected Zeeman splitting, an effect which is not fully under-
stood (Kogan et al., 2004a; Costi, 2000; Moore and Wen,
2000).
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Figure 11. Evolution of the Kondo resonance and the inelastic spin-flip cotunneling gap with applied magnetic field for two different
quantum dot devices. Device 1: (a) The solid line (dots) shows the evolution of the Kondo peak (cotunneling gap) with applied field. (b)
The Kondo peak splitting (2�K, solid squares) is larger than the spin-flip cotunneling gap (2�, open circles), indicating that �K > gµBB.
Device 2: (c) The split Kondo peak seamlessly evolves into an inelastic spin-flip cotunneling signal as the magnetic field is increased. (d)
The transition to inelastic cotunneling is marked by a decrease in the measured gap, indicating again that �K > gµBB. (Reproduced from
A Kogan et al., 2004, with permission from the American Physical Society.  2004.)

High-frequency microwave radiation (hf > kBTK) can
break up the Kondo singlet and destroy the Kondo effect,
as described previously. On the other hand, microwave radi-
ation can also drive Tien–Gordon photon-assisted tunneling
processes (Kouwenhoven et al., 1994). By tuning the applied

bias to the photon energy (eV ∼ hf), a unique Kondo state
can exist in which coherent spin-flip tunneling events coin-
cide with simultaneous absorption or emission of photons.
Kogan and coworkers found that such a state can be achieved
experimentally if the monochromatic microwave radiation
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intensity is tuned so that eVosc ∼ hf (Kogan, Amasha and
Kastner, 2004b). These conditions ensure that the photon
field is strong enough to modify Kondo processes, but not
strong enough to decohere them altogether. The experimental
signature of this state is a splitting of the Kondo peak into
two peaks separated by twice the photon frequency, as seen
in Figure 12.

3.2.2 Crossover to cotunneling

In the examples of nonequilibrium Kondo effects presented
here, a finite bias is essential for the creation of the Kondo
state even though it also introduces decoherence processes.
Inevitably, the Kondo state will decohere completely when
exposed to strong enough perturbations (E � kBTK). Inco-
herent, or inelastic, cotunneling processes can still enhance
conductance in this regime, though to a much lesser extent
than the analogous coherent processes that compose the
Kondo effect (de Franceschi et al., 2001). The transition from
coherent Kondo tunneling to incoherent cotunneling has been
investigated by several groups (Sasaki et al., 2000; Kogan
et al., 2004a). Figure 11(c) and (d) shows the seamless tran-
sition from Kondo to incoherent cotunneling as a function
of an applied magnetic field (Kogan et al., 2004a; Heinrich,
et al., 2004).

3.3 Kondo in Landau levels

Though an applied magnetic field generally suppresses the
Kondo state, several novel Kondo states can form at inter-
mediate fields. The electronic states of a 2DEG in mag-
netic fields are Landau levels (LLs), which for our purposes
are circular orbits at quantized multiples of the cyclotron
energy. Quantum dot states can acquire an LL character once
the electron cyclotron radius is comparable to the spatial
dimensions of the dot. The quantum dot LL states behave
in much the same way as regular quantum dot states and
can exhibit Kondo behavior (Schmid, Weis, Eberl and von
Klitzing, 2000; Sprinzak et al., 2002; Stopa et al., 2003;
Keller et al., 2001). Typically, the lowest spin-degenerate LL
is most strongly coupled to the leads, and Kondo processes
occur when this level contains an unpaired spin (Stopa et al.,
2003; Keller et al., 2001). The occupancy of the LL can
be tuned by changing the total number of electrons with an
applied gate voltage or by redistributing the existing electrons
among the LLs using an applied magnetic field. As a result,
the Kondo conductance shows a ‘checkerboard’ pattern as
a function of gate voltage and magnetic field, as shown
in Figure 13 (Schmid, Weis, Eberl and von Klitzing, 2000;
Sprinzak et al., 2002; Stopa et al., 2003; Keller et al., 2001).
At higher magnetic fields, the Zeeman splitting spin polar-
izes the leads, and the Kondo conductance vanishes. In high
magnetic fields, electrons can form closed orbits around a
depleted region of a 2DEG. The resulting ‘antidot’ can act as
a magnetic impurity and exhibit the Kondo effect (Kataoka,
Ford, Simmons and Ritchie, 2002).

3.4 Modified conduction reservoir

In order for Kondo correlations to persist, the quantum dot
must be able to freely exchange electrons with the leads.
Metallic leads facilitate electron exchange by providing a
large smooth density of states near the Fermi level. However,
distinctive Kondo states can exist even if the leads have
additional electronic structure.

3.4.1 Finite level spacing (Kondo box)

A natural question to ask is what happens to Kondo
processes when the mean level spacing of the leads (�)
becomes comparable to the Kondo temperature (TK) (Thimm,
Kroha and von Delft, 1999; Simon and Affleck, 2002).
Thimm, Kroha, and von Delft (1999) explored this question
theoretically in the context of a single-electron transistor and
found three unique signatures: (i) the Kondo resonance splits
up into a series of subpeaks, (ii) the conductance depends on
the even/odd occupancy of the combined lead–quantum dot
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system, and (iii) quantum dot transport exhibits Fano-like line
shapes with anomalous temperature dependence. A ‘Kondo
box’ exhibiting these features has yet to be quantitatively
studied experimentally despite several interesting approaches
(Odom, Huang, Cheung and Lieber, 2000; Manoharan, Lutz
and Eigler, 2000; Booth et al., 2005).

3.4.2 Magnetic leads

Ferromagnetic leads create spin imbalances, which affect
the dynamics of Kondo spin-flip exchange. The behavior of
these systems depends on the relative magnetic orientation
of the two leads connected to the quantum dot (Sergueev
et al., 2002; Martinek et al., 2003; Choi, Sánchez and López,
2004). If both leads have the same magnetic orientation, the
reservoir spin imbalance acts similar to a magnetic field.
Here, the Kondo spectral function is suppressed and split,
whenever the quantum dot is not electron–hole symmetric
(ε0 	= −U/2) (Choi, Sánchez and López, 2004). The Kondo
effect for antiparallel magnetic lead alignment is equivalent
to the nonmagnetic case, though with a different nonequi-
librium behavior. Experimental realizations of ferromagnetic
coupled leads in mesoscopic systems have been hampered
by the difficulty in reliably creating magnetic semiconduc-
tor structures. Some of the predicted magnetic behavior has

been seen, however, in single molecular transistors (Pasupa-
thy et al., 2004).

3.4.3 Superconducting and Luttinger-liquid leads

More exotic systems have also been considered, such as
coupling a quantum dot to superconducting (Fazio and
Raimondi, 1998; Sun, Guo and Lin, 2001) or Luttinger-
liquid leads (Kane and Fisher, 1992; Lee and Toner, 1992;
Furusaki and Nagaosa, 1994). In both cases, the leads have
no density of single-electron states at the Fermi level, where
the Kondo screening cloud would normally form. Therefore,
the Kondo ground state competes with the native ground
state of the leads. For superconducting leads, the Kondo
effect will develop if the Kondo energy scale, kBTK, exceeds
the superconducting single-electron excitation energy gap,
�, as seen experimentally in carbon nanotube quantum
dots (Buitelaar, Nussbaumer and Schönenberger, 2002).
Kondo behavior in Luttinger liquids depends sensitively
on the Luttinger parameter of the leads (Komnik and
Gogolin, 2003), but has not been examined in mesoscopic
experiments.

4 EXOTIC KONDO SYSTEMS

The Kondo effect, as described by the Anderson model
(equation (1)), arises when a localized degenerate state is
coupled to a reservoir of conduction electrons. Though
our discussion has focused on spin-1/2 degeneracy, the
Kondo effect can also arise from a twofold degeneracy with
other physical origins (Figure 14), or from a higher local
degeneracy. In this section, we review recent mesoscopic
systems that demonstrate such scenarios.

4.1 Nonspin Kondo systems

4.1.1 Twofold electrostatic degeneracy

One of the most striking examples of a non-spin-1/2 Kondo
system is the spinless Kondo effect observed in a capacitively
coupled double quantum dot system (Wilhelm, Schmid, Weis
and von Klitzing, 2002). The experimental configuration
(shown in Figure 15a) consists of two parallel quantum
dots, each coupled to its own independent set of leads.
The two dot–lead systems cannot exchange electrons with
each other, but can communicate via electrostatic coupling
between the two quantum dots. A charge degeneracy can
be created by tuning the two quantum dots so that the
quantum state corresponding to having an extra electron on
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quantum dot states with magnetic field. Degeneracies occur at level
crossings, such as the one indicated by the circle. (Reproduced from
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Society.  2004.)

dot 1 (N1 + 1, N2) is degenerate with the state corresponding
to an extra electron on dot 2 (N1, N2 + 1). This charge
degeneracy takes over the role normally played by spin
degeneracy, mapping this system onto the Anderson impurity
model (Pohjola et al., 2000; Wilhelm, Schmid, Weis and von
Klitzing, 2001).
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dot system used to observe the spinless Kondo effect (scenario (i)
in Figure 14(a)). (b) Current through the upper quantum dot as
a function of VG1 and Vu,d shows a honeycomb pattern because
of electrostatic interaction with the lower quantum dot (VDS,u =
80 µV; ‘white’ = no current). The spinless Kondo effect leads to the
faint conductance observed along the line marked ‘b’. (Reproduced
from U. Wilhelm et al., 2002, with permission from Elsevier.
 2002.)

Transport through one of the dots as a function of the occu-
pancy of both dots reveals a honeycomb pattern (Figure 15b),
similar to that seen in transport through double quantum dot
systems (van der Wiel et al., 2003). The faint conductance
feature on side b of the hexagon in Figure 15(b) (at the
charge degeneracy point described earlier) is the feature of
interest in this experiment. While single-electron transport is
forbidden because of CB, two-electron processes give rise to
nonzero conductance. Here an electron jumps off one dot,
while another electron simultaneously jumps onto the other.
These processes drive the Kondo effect, screening the elec-
trostatic (as opposed to magnetic) degeneracy and giving rise
to a nonzero conductance.
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4.1.2 Twofold orbital degeneracy

A more common nonspin degeneracy in quantum dot systems
is orbital degeneracy, which typically arises from spatial
symmetries. The orbital Kondo effect has been observed in a
circular quantum dot (Sasaki et al., 2004). Carbon nanotubes
have an intrinsic orbital degeneracy due to their structure,
and several groups have reported Kondo effects stemming
from this degeneracy (Nygård, Cobden and Lindelof, 2000;
Jarillo-Herrero et al., 2005a,b). Nondegenerate orbital states
can be brought into degeneracy by applying a magnetic field,
as shown in Figure 14(b), leading to analogous Kondo effects
(Sasaki et al., 2004). Spin degeneracy may also combine
with orbital degeneracy, leading to exotic Kondo physics as
described in the following subsections.

4.2 Multiple-degeneracy Kondo systems

Quantum dots with a multiple degenerate grounds state
can exhibit a variety of interesting Kondo effects. The
Kondo behavior of these systems depends on the allowed
transitions between the N degenerate states. If transitions
can occur equally between any pair of degenerate states,
the system has SU(N ) symmetry and is described by the
Coqblin–Schrieffer model (Coqblin and Schrieffer, 1969).
The Kondo temperature is predicted theoretically to be larger
in these systems than in equivalent spin-1/2 Kondo systems
and depends exponentially on N :

TK ∼ De−1/Nρ(EF)J (12)

where J, ρ(EF), and D are the exchange coupling, density
of states, and interacting electron bandwidth, respectively.
Like the spin-1/2 Kondo ground state, the SU(N ) Kondo
ground state is no longer degenerate. In contrast, for an
impurity with a high spin degeneracy (S > 1/2), a single
conduction channel will only couple states with �Sz = 1.
In these systems, the Kondo effect will underscreen the
magnetic moment, leaving behind a ground state of lower
degeneracy, associated with a net spin reduced by 1/2 from
its native value (Mattis, 1967). Other systems, such as the
singlet–triplet degeneracy discussed later, can have a more
complicated coupling structure (Eto, 2005).

4.2.1 Spin and orbital degeneracy: SU(4) Kondo
effect

When the electronic state of a system contains both orbital
and spin degeneracy, the same delocalized lead electrons
that magnetically screen the unpaired spin may also elec-
trostatically screen the orbital degeneracy. The two degrees

of freedom can produce an SU(4) Kondo effect, which has
been observed in vertical GaAs dots (Sasaki et al., 2004)
and carbon nanotubes (Jarillo-Herrero et al., 2005b). In the
vertical quantum dot system, TK is not large enough for
the spin-1/2 Kondo effect to be observed in the absence of
orbital degeneracy (odd valleys in Figure 16a). Kondo con-
ductance enhancement is observed, however, when the dot
is tuned to an orbital crossing point using an applied mag-
netic field. Here an SU(4) fourfold degeneracy is present,
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Figure 16. (a) Zero-bias conductance measured in a vertical quan-
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1.5 K (dashed line). Both systems show a similar Kondo tempera-
ture. (Reproduced from S. Sasaki et al., 2004, with permission from
the American Physical Society.  2004.)
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which enhances the Kondo temperature (Eto, 2005). This
‘doublet–doublet’ Kondo state produces a zero-bias Kondo
peak, as seen in Figure 16(b).

Carbon nanotubes have an intrinsic orbital degeneracy in
addition to a spin degeneracy, which can lead to SU(4)
Kondo physics (Jarillo-Herrero et al., 2005b). Owing to
electron–hole symmetry, the SU(4) Kondo effect is observed
when the two orbitals are occupied by either one or three
electrons (Figure 17a). The fourfold degeneracy responsible
for the Kondo ground state is demonstrated by the splitting
of the Kondo resonance into four peaks with magnetic
field (Figure 17b). The magnetic field suppresses the SU(4)
Kondo effect by first lifting the orbital degeneracy. The
resulting spin-1/2 Kondo effect survives until the Zeeman
splitting becomes comparable to the Kondo temperature. A
pure orbital SU(2) Kondo effect is attained at orbital level
crossings, which one can attain by applying a magnetic
field (dashed lines in Figure 17a). In these experiments,
the Kondo temperature for the SU(4) Kondo effect is
larger than the Kondo temperature for the SU(2) Kondo
effect, as predicted by equation (12). It is not yet clear
why the electrons in the (metal) leads have the requisite
fourfold symmetry to fully screen the local state on the
nanotube.

4.2.2 Triplet and singlet–triplet Kondo effect

The ground state of a quantum dot with an even number
of electrons is usually a spin singlet at zero magnetic field,
where each occupied orbital contains a pair of electrons.
The triplet state will have lower energy, however, if the

exchange energy gained for parallel spin filling exceeds the
level separation between adjacent orbitals (Tarucha et al.,
2000). A quantum dot with S = 1 no longer has the same spin
symmetry as the spin-1/2 reservoir electrons. As discussed
earlier, Kondo correlations will partially screen the S = 1
quantum dot, leaving behind a residual spin-1/2, as long as
only a single reservoir mode is coupled to the quantum dot.
Perhaps owing to a low TK predicted for these systems (Wan,
Phillips and Li, 1995; Izumida, Sakai and Shimizu, 1998),
a pure spin-1 Kondo effect has not been unambiguously
observed in mesoscopic systems.

Alternatively, the singlet and triplet state can be brought
into degeneracy using an applied magnetic field. At low mag-
netic fields, the Zeeman splitting of the triplet is negligible
and the singlet–triplet degeneracy point is fourfold degener-
ate, though not SU(4) symmetric (Eto and Nazarov, 2000;
Pustilnik and Glazman, 2000). The singlet–triplet Kondo
temperature is expected to be higher than for spin-1/2 Kondo
systems and comparable to that found in SU(4) Kondo sys-
tems (Eto, 2005). A singlet–triplet Kondo effect has been
observed in transport measurements through vertical quan-
tum dots (Sasaki et al., 2000, 2004) (shown in Figure 16),
lateral quantum dots (Schmid, Weis, Eberl and von Klitz-
ing, 2000; van der Wiel et al., 2002; Kogan et al., 2003),
and carbon nanotubes (Nygård, Cobden and Lindelof, 2000;
Jarillo-Herrero et al., 2005a,b) (Figure 17a). Even if the sin-
glet and triplet states are not energetically degenerate, a
finite bias can compensate for the energy difference and lead
to a nonequilibrium singlet–triplet Kondo effect, as seen
recently in a carbon nanotube quantum dot (Paaske et al.,
2006).
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4.2.3 Two-stage Kondo effect

A system on the border of a singlet–triplet transition can
exhibit a remarkable two-stage Kondo effect. If coupled to
two reservoir modes, the transport properties of an S = 1
quantum dot are theoretically predicted to have a nonmono-
tonic dependence on temperature and bias (Pustilnik and
Glazman, 2001). The two modes create two different Kondo
screening channels with different associated Kondo temper-
atures, TK1 and TK2. At unitary coupling, the two modes
interfere and reduce Kondo conductance when T is below
both TK1 and TK2. A second screening channel can form in
systems containing only one tunneling mode if the dot–lead
couplings are asymmetric (Pustilnik and Glazman, 2001). A
quantum dot just on the singlet side of the singlet–triplet
transition is also predicted to undergo a similar two-stage
Kondo effect, even if only a single tunneling mode is coupled
to the dot (Hofstetter and Schoeller, 2002). Such two-stage
Kondo effects have been observed in lateral quantum dots
(van der Wiel et al., 2002; Granger et al., 2005). In experi-
ments by van der Wiel, a magnetic field tunes the quantum
dot near a singlet–triplet degeneracy point. Conductance
measurements show a dip in the zero-bias anomaly at low
temperatures (Figure 18). From the available data, it is not
possible to unambiguously distinguish whether a singlet or
triplet ground state is responsible for the observed effect.
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Figure 18. The two-stage Kondo effect is characterized by
enhanced conductance at intermediate energies and suppressed con-
ductance at low energies, as demonstrated by the dip in the zero-bias
Kondo resonance. Shown here is the temperature dependence of the
Kondo peak from 15 mK (solid line) to 800 mK. (Reproduced from
W.G. van der Wiel et al., 2002, with permission from the American
Physical Society.  2002.)

5 RECENT DEVELOPMENTS AND
FUTURE DIRECTIONS

As we have seen, the designability and in situ control of
parameters in semiconductor quantum dots have enabled
highly quantitative tests of Kondo physics and observation
of Kondo effects in new regimes and scenarios. This new
approach has brought fresh insight and excitement to what
was legitimately considered one of the best-understood phe-
nomena in solid-state physics. The continuing flow of theo-
retical predictions and experimental investigations – around
100 papers per year in mesoscopic physics alone – attests
that Kondo physics remains a rich and vibrant field. We
conclude our review with a few remarks about the future
of mesoscopic Kondo experiments, as suggested by recent
trends.

5.1 Spatial and temporal Kondo physics

Mesoscopic experiments have illuminated the effect on
Kondo transport of external parameters (e.g., temperature,
magnetic field) and dot–lead coupling. In short, spin-1/2
Kondo phenomenology is broadly well understood. However,
several important issues remain on the cutting edge: How
do a pair of magnetic impurities interact (Jeong, Chang and
Melloch, 2001; Craig et al., 2004; Simon, Lopez and Oreg,
2005; Vavilov and Glazman, 2005)? What are the dynamics
and spatial extent of the Kondo screening cloud (Sorensen
and Affleck, 1996; Nordlander et al., 1999) and how do these
depend on the dimensionality of the screening reservoirs
(Simon and Affleck, 2002)? How can we understand and
control the processes that lead to decoherence of the Kondo
state, especially out of equilibrium (Avinun-Kalish et al.,
2004; Kogan et al., 2004a; Leturcq et al., 2005)?

5.2 Novel Kondo systems

As discussed in Sections 3 and 4, design of a quantum
dot’s states has enabled studies of a broad family of Kondo
effects with different local degeneracies. However, sev-
eral proposed exotic Kondo systems have not yet been
addressed by extensive experiments. Controlling the elec-
tronic properties of the conduction reservoir, as discussed in
Section 3.4, has proved difficult in mesoscopic systems.
Manipulating the coupling of quantum dots to superconduct-
ing, magnetic, or one-dimensional leads will be exciting and
is likely to advance fastest in hybrid molecular-metal sys-
tems, in which the material of the metal leads can be selected
to yield desired electronic structure (Buitelaar, Nussbaumer
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and Schönenberger, 2002; Pasupathy et al., 2004). Tantaliz-
ing theoretical predictions abound for multichannel Kondo
systems, such as the two-channel Kondo effect (Cox and
Zawadowski, 1998; Matveev, 1995; Oreg and Goldhaber-
Gordon, 2003; Pustilnik, Borda, Glazman and von Delft,
2004), which occurs when two reservoirs independently
attempt to screen a spin-degenerate state. The resulting frus-
trated system is predicted to exhibit both local non-Fermi
liquid behavior and a model quantum phase transition, as
recently observed by some of the present authors in a novel
double-dot geometry (Potok et al., 2007). This offers hope
that the tools of mesoscopic physics can bear on complex
correlated electrons systems normally realized only in bulk
systems. Finally, several experimental observations indicate
that the celebrated 0.7 structure seen in QPC transport might
have Kondo origins (Cronenwett et al., 2002; Rejec and
Meir, 2006). This effect is yet to be fully understood and
should continue to attract both experimental and theoretical
attention.

NOTES

[1] Though the terms tunneling channels and tunneling
modes are often used interchangeably, we will avoid
using the former to avoid confusion with the concept
of independent Kondo screening channels, which lead to
the multichannel Kondo effect (Section 5.2).

[2] In the mixed-valence regime, the Kondo resonance is
expected to move away from EF and no longer be
symmetric about its maximum (Costi, Hewson and Zlatic,
1994; Wahl et al., 2004).
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Goldhaber-Gordon, D., Göres, J., Kastner, M.A., et al. (1998a).
From the Kondo regime to the mixed-valence regime in a single-
electron transistor. Physical Review Letters, 81, 5225–5228.

Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., et al. (1998b).
Kondo effect in a single-electron transistor. Nature, 391,
156–159.

Granger, G., Kastner, M.A., Radu, I., et al. (2005). Two-stage
Kondo effect in a four-electron artificial atom. Physical Review B,
72, 165309.

Gregory, S. (1992). Experimental-observation of scattering of
tunneling electrons by a single magnetic-moment. Physical
Review Letters, 68, 2070–2073.

Gruner, G. and Zawadowski, A. (1974). Magnetic-impurities in non-
magnetic metals. Reports on Progress in Physics, 37, 1497–1583.

de Haas, W.J., de Boer, J. and van den Berg, G.J. (1934).
The electrical resistance of gold, copper, and lead at low
temperatures.Physica, 1, 1115.

Haldane, F.D.M. (1978). Scaling theory of asymmetric Anderson
model. Physical Review Letters, 40, 416–419.

Heinrich, A.J., Gupta, J.A., Lutz, C.P. and Eigler, D.M. (2004).
Single-Atom Spin-Flip Spectroscopy. Science 306, 466.

Hewson, A.C. (1993). The Kondo Problem to Heavy Fermions,
Cambridge University Press: Cambridge.

Hofstetter, W. and Schoeller, H. (2002). Quantum phase transition
in a multilevel dot. Physical Review Letters, 88, 016803.

Izumida, W., Sakai, O. and Shimizu, Y. (1998). Kondo effect in
single quantum dot systems – study with numerical renormaliza-
tion group method. Journal of the Physical Society of Japan, 67,
2444–2454.

Jarillo-Herrero, P., Kong, J., van der Zant, H.S.J., et al. (2005a).
Electronic transport spectroscopy of carbon nanotubes in a
magnetic field. Physical Review Letters, 94, 156802.

Jarillo-Herrero, P., Kong, J., van der Zant, H.S.J., et al. (2005b).
Orbital Kondo effect in carbon nanotubes. Nature, 434, 484–488.

Jeong, H., Chang, A.M. and Melloch, M.R. (2001). The Kondo
effect in an artificial quantum dot molecule. Science, 293,
2221–2223.

Jerez, A., Vitushinsky, P. and Lavagna, M. (2005). Theoretical
analysis of the transmission phase shift of a quantum dot in
the presence of Kondo correlations. Physical Review Letters, 95,
127203.

Ji, Y., Heiblum, M. and Shtrikman, H. (2002). Transmission phase
of a quantum dot with Kondo correlation near the unitary limit.
Physical Review Letters, 88, 076601.

Ji, Y., Heiblum, M., Sprinzak, D., et al. (2000). Phase evolution in
a Kondo-correlated system. Science, 290, 779–783.

Kaminski, A., Nazarov, Y.V. and Glazman, L.I. (1999). Suppression
of the Kondo effect in a quantum dot by external irradiation.
Physical Review Letters, 83, 384–387.

Kane, C.L. and Fisher, M.P.A. (1992). Transmission through
barriers and resonant tunneling in an interacting one-dimensional
electron-gas. Physical Review B, 46, 15233–15262.

Kastner, M.A. (1993). Artificial Atoms. Physics Today, 46, 24–31.

Kasuya, T. (1956). A theory of metallic ferromagnetism and
antiferromagnetism on Zener’s model. Progress of Theoretical
Physics, 16, 45–57.

Kataoka, M., Ford, C.J.B., Simmons, M.Y. and Ritchie, D.A.
(2002). Kondo effect in a quantum antidot. Physical Review
Letters, 89, 226803.

Keller, M., Wilhelm, U., Schmid, J., et al. (2001). Quantum dot in
high magnetic fields: correlated tunneling of electrons probes the
spin configuration at the edge of the dot. Physical Review B, 64,
033302.

Kogan, A., Amasha, S., Goldhaber-Gordon, D., et al. (2004a).
Measurements of Kondo and spin splitting in single-electron
transistors. Physical Review Letters, 93, 166602.

Kogan, A., Amasha, S. and Kastner, M.A. (2004b). Photon-induced
Kondo satellites in a single-electron transistor. Science, 304,
1293–1295.

Kogan, A., Granger, G., Kastner, M.A., et al. (2003). Singlet-triplet
transition in a single-electron transistor at zero magnetic field.
Physical Review B, 67, 113309.

Komnik, A. and Gogolin, A.O. (2003). Resonant tunneling between
luttinger liquids: a solvable case. Physical Review Letters, 90,
246403.

Kondo, J. (1964). Resistance minimum in dilute magnetic alloys.
Progress of Theoretical Physics, 32, 37.

Kouwenhoven, L.P., Austing, D.G. and Tarucha, S. (2001). Few-
electron quantum dots. Reports on Progress in Physics, 64,
701–736.

Kouwenhoven, L.P., Jauhar, S., McCormick, K., et al. (1994).
Photon-assisted tunneling through a quantum-dot. Physical
Review B, 50, 2019–2022.

Kouwenhoven, L.P., Marcus, C.M., McEuen, P.L., et al. (1997)
Electron transport in quantum dots. In Mesoscopic Electron
Transport, Sohn, L.L., Kouwenhoven, L.P. and Schon, G. (Eds.),
Kluwer.

Lebanon, E. and Schiller, A. (2001). Measuring the out-of-
equilibrium splitting of the Kondo resonance. Physical Review B,
65, 035308.

Lee, D.H. and Toner, J. (1992). Kondo effect in a luttinger liquid.
Physical Review Letters, 69, 3378–3381.

Leturcq, R., Schmid, L., Ensslin, K., et al. (2005). Probing the
Kondo density of states in a three-terminal quantum ring.
Physical Review Letters, 95, 126603.



The Kondo effect in mesoscopic quantum dots 21

Li, J.T., Schneider, W.D., Berndt, R. and Delley, B. (1998). Kondo
scattering observed at a single magnetic impurity. Physical
Review Letters, 80, 2893–2896.

Liang, W.J., Shores, M.P., Bockrath, M., et al. (2002). Kondo
resonance in a single-molecule transistor. Nature, 417, 725–729.

Madhavan, V., Chen, W., Jamneala, T., et al. (1998). Tunneling
into a single magnetic atom: spectroscopic evidence of the Kondo
resonance. Science, 280, 567–569.

Majumdar, K., Schiller, A. and Hershfield, S. (1998). Nonequi-
librium Kondo impurity: perturbation about an exactly solvable
point. Physical Review B, 57, 2991–2999.

Manoharan, H.C., Lutz, C.P. and Eigler, D.M. (2000). Quantum
mirages formed by coherent projection of electronic structure.
Nature, 403, 512–515.

Martinek, J., Utsumi, Y., Imamura, H., et al. (2003). Kondo effect
in quantum dots coupled to ferromagnetic leads. Physical Review
Letters, 91, 127203.

Mattis, D.C. (1967). Symmetry of ground state in a dilute magnetic
metal alloy. Physical Review Letters, 19, 1478.

Matveev, K.A. (1995). Coulomb-blockade at almost perfect trans-
mission. Physical Review B, 51, 1743–1751.

Meir, Y. and Golub, A. (2002). Shot noise through a quantum dot
in the Kondo regime. Physical Review Letters, 88, 116802.

Meirav, U., Kastner, M.A. and Wind, S.J. (1990). Single-electron
charging and periodic conductance resonance in GaAs Nanos-
tructures. Physical Review Letters, 65, 771–774.

Moore, J.E. and Wen, X.-G. (2000). Anomalous Magnetic Splitting
of the Kondo Resonance. Physical Review Letters, 85, 1722.

Nagaoka, K., Jamneala, T., Grobis, M. and Crommie, M.F. (2002).
Temperature dependence of a single Kondo impurity. Physical
Review Letters, 88, 077205.

Neder, I., Heiblum, M., Levinson, Y., et al. (2006). Unexpected
behavior in a two-path electron interferometer. Physical Review
Letters, 96, 016804.

Ng, T.K. and Lee, P.A. (1988). On-site Coulomb repulsion and
resonant tunneling. Physical Review Letters, 61, 1768–1771.

Nordlander, P., Pustilnik, M., Meir, Y., et al. (1999). How long
does it take for the Kondo effect to develop? Physical Review
Letters, 83, 808–811.

Nozières, P. (1974). Fermi-liquid description of Kondo problem
at low temperatures. Journal of Low Temperature Physics, 17,
31–42.

Nozières, P. and Blandin, A. (1980). Kondo effect in real metals.
Journal de Physique, 41, 193–211.
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1 INTRODUCTION

As a starting point in the history of perovskite manganites
one should note 1950 as the year in which Jonker and
van Santen (1950) published the first paper on mixed
valent manganites with perovskite structure and composition
La1−xAexMnO3 (Ae = Ca, Sr, Ba). They demonstrated for
the first time the existence of positive or ferromagnetic
(FM) exchange interaction between Mn3+ and Mn4+ ions
in an oxide compound and found optimal compositions x =
25–40% to obtain maximum values of Curie temperatures,
TC, and magnetization close to saturation.

However, it has taken a long time up to the last decade
of the twentieth century, when the discovery of the high-
TC superconductivity in perovskite cuprates (Bednorz and
Müller, 1986) and related huge progress in oxide thin-film
technologies have renewed a great interest in other oxide
systems, including perovskite manganites. In 1993, the so-
called colossal magnetoresistance (CMR) was discovered

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

in thin manganite films (von Helmolt et al., 1993; Cha-
hara, Ohno, Kasai and Kozono, 1993). The effect, quan-
tified as difference between the resistance in zero (ambi-
ent) field, R(0), and the resistance in applied field, R(B),
normalized to R(B), that is, CMR = 100% × {[R(0) −
R(B)]/R(B)}, can be extremely large: CMR = 105 –108%
(McCormack et al., 1994). This means that electrical resis-
tance of a magnetic material can drop by few orders of
magnitude by applying an external magnetic field B ∼ 5 T.
The discovery of the CMR effect has initiated a boom
both in fundamental and technological research in the
nineties.

During the past few years, perovskite manganites examine
the second renaissance, which is naturally connected with
great progress in nanoscience and nanotechnology. It was
observed experimentally (Uehara, Mori, Chen and Cheong,
1999) and also argued theoretically (Moreo, Yunoki and
Dagotto, 1999) that the electronic properties of manganites
may be spatially inhomogeneous. Metallic and insulating
electronic phases can coexist within the same sample of a
definite chemical composition over different length scales:
from micrometer down to few nanometers. The mesoscopic,
nanometer-scale, electronic inhomogeneities might be inter-
esting for the future nanotechnology – self-organized nanos-
tructures with different functionality may be created within a
chemically homogeneous medium (Mathur and Littlewood,
2003). Closely connected to the preceding issue are nanos-
tructured manganite films and manganite-based nanocompos-
ites. Reduced dimensions of manganites as well as novel
architecture and second-phase counterpartners in composites
offer additional opportunity to control the magnetotransport.
Therefore, thin manganite films and corresponding thin-film
technologies become important also for fundamental research
because they allow creation of some specific conditions, like
negative pressure (Moshnyaga et al., 2003), which cannot be
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realized in bulk samples and single crystals. In summary,
immense and continuous research interest in the perovskite
manganites is directly related to their complexity: they pos-
sess a number of crystallographic, electronic, and magnetic
phases. These phases are not ‘static’, they can interact with
each other as well as can be strongly influenced by exter-
nal factors (temperature, pressure, magnetic field, electro-
magnetic radiation), yielding very interesting and potentially
useful effects.

The chapter is organized in the following way. In
Section 2, crystalline structure, the phase diagram, and
phase transitions in perovskite manganites are discussed.
Moreover, experimental evidences and theoretical ideas on
the inhomogeneous electronic ground state in mangan-
ites are briefly overviewed. Special attention is paid to
the lattice strain and disorder effects, which are impor-
tant to understand the electronic properties of mangan-
ites. Section 3 is devoted to thin-film deposition techniques,
mostly used for the preparation of multinary oxide films.
Physical vapor deposition (PVD) techniques and chemical
routes are compared. Moreover, the peculiarities of the struc-
ture and microstructure of manganese thin films as well
as thin-film composites are reviewed. Section 4 is focused
on the different magnetoresistance (MR) effects in indi-
vidual manganese thin films, multilayers, and nanocom-
posites. CMR effect at the metal–insulator (MI) transi-
tion is discussed in relation to electronic phase separa-
tion (EPS) and percolation models. Artificially grown thin-
film phase-separated systems containing second insulating
phase is also discussed. Low-field MR effects in mul-
tilayers (tunneling magnetoresistance, TMR) as well as
in individual epitaxial manganite films (domain–wall and
anisotropic MR) may have potential for spintronics due to
full spin polarization of charge carriers on the Fermi level in
manganites.

2 FUNDAMENTAL ASPECTS

Since the discovery of CMR effect, the manganites are
still in the focus of both fundamental and applied research.
During this intense study, a few comprehensive reviews
(Tokura, 2000; Coey, Viret and Molnar, 1999; Dagotto,
Hotta and Moreo, 2001; Dagotto, 2003) have been published,
where practically all aspects of crystalline and electronic
structure as well as their relations to electronic properties
and phase transitions were discussed in detail. Here, we limit
ourselves to summarizing remarks on the preceding topics
with a special focus on the lattice strain and cation disorder
effects, which, in our opinion, are of great importance for
understanding magnetotransport phenomena and different
MR effects in thin manganite films.

2.1 Crystalline structure and lattice strain effects

As was revealed earlier (Jonker and van Santen, 1950),
the most interesting manganites, which later were shown
to possess CMR effect (von Helmolt et al., 1993; Cha-
hara, Ohno, Kasai and Kozono, 1993), crystallize in ABO3

perovskite–type structure as shown in Figure 1. The man-
ganites can be described by the general chemical formula
Re1−xAexMnO3, where Re = La, Nd, Pr are rare-earth triva-
lent elements, and Ae = Ca, Sr, Ba are divalent alkali earth
elements. Large three-(La) and divalent (Ca) cations, shown
by green color, are located in the so-called A-site positions,
which are 12-coordinated. The small Mn ions fill the B sites,
coordinated by six oxygen atoms. The structure can be also
viewed as a cubic close-packed array, formed by oxygen
anions and A cations, in which Mn cations occupy octahedral
interstitial sites.

A very important feature of the perovskite structure is
the ability to accommodate lattice distortions by means
of lowering the symmetry from the cubic one down to
rhombohedral, orthorhombic, tetragonal, and monoclinic.
Accommodation of lattice strain seems to be a driving
force for the formation of different perovskite structural
modifications with contrasting electronic behavior. There are
two possible reasons for lattice distortions in the perovskite
manganites. First is the Jahn–Teller (JT) effect (Jahn and
Teller, 1937), which assumes the change of local symmetry at
the Mn3+ ion of the isolated Mn3+ O6 octahedron from cubic
to tetragonal with elongation along z axis and compression
in the (a, b) plane when a high spin state (S = 2) is
realized. JT effect lifts orbital degeneracy and stabilizes
electronic occupation of the lowest eg orbital. The second
source of lattice distortions is the size mismatch between the
Re and Ae cations, occupying A-site positions. Perovskite

Figure 1. Fragment of perovskite structure: large Re, Ae (La, Ca)
cations are shown by green color, small Mn cations (red) any
oxygen anions (blue).
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structure tries to expel the resulting internal or chemical
pressure by corresponding cooperative rotations and tilting
of MnO6 octahedra, which form a 3D network according
to orthorhombic or rhombohedral structures as shown in
Figure 1.

Various perovskite structures are described by the toler-
ance factor, t :

t = (rA + rO)/
√

2(rB + rO) (1)

where rA and rB are ionic radii of A and B cations,
respectively, and rO is the ionic radius of oxygen. Toler-
ance factor is a geometrical parameter, which quantifies the
ionic size mismatch when A cation is too small to fit into
the space between MnO6 octahedra. In the cubic structure
with perfect matching of (A–O) and (B–O) planes t = 1,
which implies rA = rO = 0.140 nm and rB = (

√
2 − 1)rO =

0.058 nm (Coey, Viret and Molnar, 1999). For the parent
compound LaMnO3 (LMO) with well-defined radius of A-
site cation rLa = 0.136 nm and rMn3+ = 0.0645 nm (Shan-
non and Prewitt, 1976), one can get t ≈ 0.954. This value
is significantly smaller than t = 1 and is in accordance
with observed O′-type orthorhombic structure (Urushibara
et al., 1995). Prototypic optimally doped CMR compounds,
such as La0.7(Ca or Sr or Ba)0.3MnO3, which are of most
interest in the present review, possess t ≈ 0.969, t ≈ 0.979,
and t ≈ 0.997, respectively. Thus, only the La0.7Ba0.3MnO3

(LBMO) compound with the largest average radius of A-site
cation, 〈rA〉 = 0.1435 nm shows the structure close to cubic.
LSMO (〈rA〉 = 0.1384 nm) and LCMO (〈rA〉 = 0.1354 nm)
manganites possess rhombohedral, R-3c (Urushibara et al.,
1995), and orthorhombic, Pnma (Radaelli et al., 1995), struc-
tures, respectively.

A very important structural characteristic is the (Mn–
O–Mn) bond angle, the value of which is close to 180◦ for
the cubic as well as for rhombohedral structures. However,
the bond angle for the orthorhombic structure becomes
significantly smaller than 180◦ (Mitchel et al., 1996) and
decreases continuously with decreasing tolerance factor in
the region 0.89 < t < 0.96 (Radaelli et al., 1997). The bond
angle distortions provide a mechanism for the so-called
bandwidth control (Hwang et al., 1995). It was shown that
isovalent substitutions in the A-site positions, affecting both
〈rA〉 and t values to a large extent, control the Curie
temperature, TC, and MI transition temperature, TMI, in a
broad range from 50 K for t = 0.89 up to 370 K (t = 0.98).
Another possibility provided by the perovskite structures is
the so-called filling control. As was shown already (Jonker
and van Santen, 1950), the perovskite structure is extremely
robust against chemical substitutions on the A-site positions,
allowing to obtain a complete row of solid solutions like
La1−xCaxMnO3 for 0 < x < 1. Therefore, the doping by

charge carriers (holes) through divalent substitutions in the
A-site positions becomes available.

2.2 Phase transitions and phase diagram

Perovskite manganites, depending on their composition and
structural modifications, show a rich variety of electronic
phases such as metallic and insulating; ferromagnetic and
antiferromagnetic; charge and orbitally ordered states. These
phases interact with each other and can be strongly influenced
by different external fields (temperature, magnetic field,
pressure, etc.), resulting in a peculiar electronic transport and
magnetic behavior.

Traditionally viewed, a parent stoichiometric compound
LMO with t = 0.954 and orthorhombic Pnma structure is well
known as A-type antiferromagnet with a Neel temperature
TN = 140 K (Wollan and Kohler 1955). The spins of Mn
ions are ordered ferromagnetically within the (a, b) plane
along the a axis. The sublattice moment, 3.87 µB, is close
to the spin-only contribution of the Mn ions. However,
adjacent planes are ordered antiferromagnetically, yielding
zero or very weak total moment. Moreover, LMO shows
insulating behavior because of the localized electrons on
the lowest occupied eg orbitals of the Mn3+ ions due to
the JT distortions of the MnO6 octahedron. The insulating
gap EJT ∼ 0.25 eV (Dessau and Shen, 2000) is provided by
JT splitting of previously orbitally degenerated eg states.
JT distortions in LMO are coherent, that is, long and
short (Mn–O) bonds alternate in a ‘checkerboard’ pattern
leading to the so-called “cooperative JT distortion” or
“orbital ordering” (OO). The OO state is characterized by
ordering of the lowest occupied 3z2 − r2 in a real space as
shown in Figure 2 (Ishihara, Inoue and Maekawa, 1997).
As was first argued by Goodenough (1955), the reason
for OO is minimization of elastic strain originated due to
different lengths of Mn–O bonds. The OO state becomes
energetically favorable for TST ≤ 873 K, at which a transition
from the high-temperature rhombohedral phase to the low-
temperature orthorhombic phase occurs (Wold and Arnott,
1959). Note that OO phase transition takes place at much
higher temperature than antiferromagnetic Neel temperature,
TN = 140 K.

As we have mentioned in the preceding text, the filling
control occurs by means of hole doping when a part of
La cations are substituted with Ca, Sr, or Ba, forming a
compound like La1−xCaxMnO3. This is equivalent to the
creation of xMn4+ ions with 3d3 configuration and one hole
on their eg orbital, which can take part in charge transfer. The
Mn4+ ion is not a JT ion in contrast to that of Mn3+ and can
be viewed as a perturbation of the long-range OO state in
LMO matrix. By increasing the doping level ‘x’, the OO state
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Figure 2. Ordering of 3z2-r2 orbitals in LaMnO3. (Reproduced
from S. Ishihara et al., 1997, with permission from the American
Physical Society.  1997.)

will be progressively diluted and eg holes become mobile
(itinerant) dominating the charge transport by means of
hopping between different Mn sites. Itinerancy of eg electrons
(holes), or strictly speaking, one-electron bandwidth, W , is
provided by covalent mixing of eg orbitals of Mn and those
of 2p of oxygen (Goodenough, 1955). Another part of 3d
electrons occupying the orbital triplet t2g states stabilized by
crystal-field splitting is localized, forming the local spin (S =
3/2) and being responsible for magnetic properties. Thus, the
covalent character of Mn–O bonds as well as strong on-site
Hund coupling between conducting eg electrons with spin
S = 1/2 and those of t2g(S = 3/2) both lead to the long-
range FM ordering between Mn3+ and Mn4+ ions via the
so-called double exchange (DE ) interaction (Zener, 1951;
Anderson and Hasegawa, 1955; de Gennes, 1960). In the
framework of tight-binding approximation, the following
expression for the spin-dependent hopping resonance integral
dij was obtained (Anderson and Hasegawa, 1955):

dij ≈ εσ λ2
σ cos θ cos(ϕ/2) (2)

where εσ is a one-electron energy, λσ is the covalent-mixing
parameter between eg orbitals of Mn ions and σ -bonding
oxygen p orbitals, (180◦ − θ ) is the O–Mn–O bond angle,
and ϕ is the angle between the spins of adjacent Mn3+ and
Mn4+ ions. In this formalism, the hopping probability, or
in other words bandwidth W , can be increased (the carriers
become more itinerant) (i) by decreasing angle θ down to 0,
that is, increasing the tolerance factor t up to 1; (ii) by apply-
ing external hydrostatic pressure, which increases covalent-
mixing parameter λσ , that is, reduces Mn–O bond length;

and (iii) by means of long-range magnetic ordering for
T < TC, which aligns adjacent Mn spins parallel to each
other and thus reduces angle ϕ down to 0. The phase dia-
gram for prototypic La1−xCaxMnO3 (Schiffer, Ramirez, Bao
and Cheong, 1995), shown in Figure 3, demonstrates com-
plex behavior of different electronic and magnetic phases as a
function of doping level, x. Low-doped LMO, being an anti-
ferromagnetic insulator (AFI), transforms into a canted anti-
ferromagnet (CA) for 0 < x < 0.07, and then to a ferromag-
netic insulator (FI) for 0.1 < x < 0.15. Insulator-to-metal
transition occurs at x = 0.175 and further for 0.2 < x < 0.45
ferromagnetic metallic (FMM) phase becomes stable below
Curie temperatures, TC ≈ 170–250 K. The optimal doping
level is found to be around x = 0.33, thus yielding maxi-
mal TC ≈ 250–270 K. With further increasing of Ca doping
0.45 < x < 0.87 a charge ordered insulating (COI) phase
appears for 100 < T < 250 K, which transforms into an AFI
at low temperatures. The COI phase first observed by Chen
and Cheong for LCMO with x = 0.5 (Chen and Cheong,
1996) represents itself the ordering of Mn3+ and Mn4+ ions
in real space in the form of Mn3+/Mn4+ stripes with corre-
sponding OO. Therefore, in spite of increased charge density
(x ∼ 0.5), charges are localized within these stripes owing to
cooperative JT effect, which is manifested by superstructural
ordering of Mn3+ O6 and Mn4+ O6 octahedra as reflected by
electron diffraction. The end member of the family, CaMnO3,
shows AFI phase of G-type, in which the spin of each Mn4+

ion is ordered antiparallel to its six nearest neighbors owing
to the antiferromagnetic superexchange Mn–O–Mn interac-
tion (Goodenough, 1955).
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Figure 4. Phase diagram for isovalent substituted manganites
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Another phase diagram with data from Hwang et al. (1995)
and Urushibara et al. (1995) is shown in Figure 4 in the form
adopted from Archibald, Zhou and Goodenough (1996). It
illustrates the influence of lattice effects or internal chemical
pressure, quantified by the tolerance factor, t , and average A-
site cation radius, 〈rA〉. Modification of internal lattice strain
can be achieved either by isovalent substitutions on the A
site for Ln0.7Ae0.3MnO3 system (see Figure 4a), while keep-
ing doping level constant, or by changing doping level as
well, as exemplified for canonic DE system La1−xSrxMnO3

(Figure 4b). Maximal Curie temperature, TC = 360 K, and
the strongest DE were reported for La0.7Sr0.3MnO3 with
t = 0.98. Remarkably, LBMO with the largest value 〈rA〉 =
0.1435 nm and practically cubic structure (t = 0.998) has a
lower TC = 320 K in disagreement with the DE model. A
similar TC –〈rA〉 phase diagram was reported in Hwang, Pal-
stra, Cheong and Battlog (1995), where the lattice strain was
additionally increased by hydrostatic pressure for the same

manganites as in Figure 4(b). TC increases with hydrostatic
pressure in accordance with DE predictions. Remarkably,
the strongest changes of TC occurs for 0.96 < t < 0.98, that
is, for the LCMO system, in which the DE contribution is
weakened compared to that in LSMO. A competing electron-
lattice (EL) interaction (Millis, Littlewood and Shraiman,
1995) due to the JT effect becomes dominant in manganites
with small values of 〈rA〉, that is, for t < 0.96, which show
distorted perovskite structure. For example, Pr0.7Ca0.3MnO3

(PCMO) with t = 0.95 is no more ferromagnetic, instead a
COI state becomes stable for T < TCO ∼ 240 K and trans-
forms into an AFI state at lower temperatures. Thus, the
tolerance factor may be viewed as a structural parameter,
which reflects a relative strength of the DE and EL interac-
tions (Hwang et al., 1995). Perovskite manganites are clas-
sified with respect to their bandwidth, W , as large band-
width materials, which are definitely LSMO and LBMO with
t ∼ 1 and DE < EL; middle bandwidth (LCMO) t = 0.97
and DE ∼ EL; and small bandwidth (PCMO) t = 0.95 and
EL > DE.

2.3 Cation disorder

As we have seen in the previous paragraph, both bandwidth
and filling control are carried out by chemical substitutions
on the A sites in the perovskite lattice with corresponding
changes of the average ionic radius of the A-site cation, 〈rA〉,
and the tolerance factor, t . This inevitably leads, in most
cases, to the A-site cation disorder because of the different
ionic radius of A-site cations.

Rodriguez-Martinez and Attfield (1996) have quantified
the disorder in terms of the variance of ionic radii σ 2 =∑

yir
2
i − 〈rA〉2 about the mean 〈ra〉 (yi is the fractional

occupancy,
∑

yi = 1). They performed a systematic study of
bulk compounds R0.7M0.3MnO3 (R = La-Sm; and M = Ca,
Sr, and Ba) with the same 〈ra〉 = 0.123 nm but different
values of disorder, σ 2 = 0.001 − 0.024. Surprisingly, they
found that Curie temperature, TC, decreases linearly with
increasing σ 2, as shown in Figure 5, from 363 down to
60 K. The samples with very large disorder, σ 2 > 0.015 Å2,
seem to be not more microscopically homogeneous due to
possible segregation of A-site cations, although they look
single phased in X-ray powder diffraction. These samples
show electronically inhomogeneous behavior, indicated by
two maxima on the R(T) curves, and by disparity between TC

and TMI for σ 2 = 0.024 Å2. A mixture of antiferromagnetic
and ferromagnetic regions for T > TC was also suggested
for ‘disordered’ samples, based on the observed deviation
of the inverse magnetization from the classical Curie–Weiss
behavior.
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The disorder-induced reduction of TC was assigned to the
size mismatch–induced strain fields with corresponding JT
distortions of the MnO6 octahedra, resulting from oxygen
displacements, and shown to obey the following form:

Tm = Tm(0) − pQ2 (3)

Here, Tm(0) is the transition temperature for an ideal
cubic (t = 1) manganite with rA

0 ≈ 1.4 nm and without
cation disorder, σ 2 = 0. The strain term is proportional to
anion displacements Q = σ (p is force constant), which
are random due to A-site disorder, or can be ordered
due to changing of average A-site radius: Q0 = rA

0 –〈rA〉.
The important conclusion was that for relatively small
average ionic radii 〈rA〉 < 0.122 nm the A-site disorder is
small and a true variation of TC with tolerance factor,
as shown in Figure 4, can be observed. For large 〈rA〉 >

0.123 nm (Ba doping) the A-site disorder dominates, yielding
to almost no dependence of TC on 〈rA〉 (see Figure 4).
Thus, the A-site disorder seems to be responsible for the
lowering of the Curie temperature for LBMO (TC = 320 K),
which despite the optimal large 〈ra〉 reveals a very large
disorder, σ 2 = 0.0131 Å2. In comparison, the LSMO with
small disorder, σ 2 = 0.0018 Å2, shows TC = 370 K. Another
important result of Rodriguez-Martinez and Attfield (1996) is
that so-called ideal cubic manganite without disorder, σ 2 =
0, would show the highest TMI ≈ 530 K. The calculations
based on the DE model alone give TMI = 2500–5000 K
(Millis, Littlewood and Shraiman, 1995), whereas those
considering the JT distortions of MnO6 octahedra result
in a more realistic value ∼500 K (Millis, Littlewood and
Shraiman, 1995; Roder, Zang and Bishop, 1996), similar to
the estimated TMI without disorder.

The A-site disorder seems to play a key role in the
CMR effect. Well-known small bandwidth Pr1−xCaxMnO3

(PCMO) has a very small size variance, σ 2 < 10−4 Å2,
because of close matching of the ionic radii of Pr3+

and Ca2+. Remarkably, Pr0.75Ca0.20Sr0.05MnO3 (additional
Sr doping is necessary to obtain an insulator-to-metal
transition) also with small disorder σ 2 = 1.3 × 10−3 Å2

demonstrates extremely large value of CMR = 108% for
T = 85 K (Raveau, Maignan and Caignaert, 1995). In
contrast, other small bandwidth manganites with similar
〈ra〉 and TMI, for example, La0.6Ca0.3Y0.1MnO3, but with
larger disorder, σ 2 = 2.5 × 10−3 Å2 show only CMR =
4 × 103% at T = 120 K (Maignan, Simon, Caignaert and
Raveau, 1996).

Recently, the A-site ordered configuration was reported
for the so-called half-doped manganites, Ln1Ba1Mn2O6

(Arima et al., 2002; Akahoshi et al., 2003). Owing to specific
composition (ratio La/Ba = 1), they form a layered structure,
in which both size and charge mismatch can result in
A-site ordering. The microstructure of the ordered half-
doped manganites, visualized by high-resolution transmission
electron microscopy (TEM) and shown in Figure 6, contain
the LnO and BaO layers alternately stacked along the
c axis with intervening MnO2 sheets, which thus suffer
from no random Coulomb potential. Such an ordering for
Ln = Y with small 〈rA〉 = 1.18 Å was found to stabilize
long-range charge/orbital ordered (COO) insulating phase at
high temperatures up to TCO = 500 K. In contrast, in the
disordered LnBMO a random distribution of the Ln and
Ba cations between the A positions generates a random
Coulomb potential and/or local strain in the MnO2 sheets.
This leads to the collapse of long-range COO insulating
phase due to Mn3+/Mn4+ frustrations, yielding a spin-glass
(SG) state at low temperatures. Remarkably, as shown for
disordered Eu0.5Ba0.5MnO3 (Mattheu et al., 2004), such an
SG state can be responsible for a pronounced CMR effect.
Thus, the size mismatch as well as different charge of
the constituting A-site cations may strongly influence the
phases and the magnetotransport properties in manganites,
depending on whether A-site disordered or ordered structure
is realized.

2.4 Electronic inhomogeneity of manganites

As we have seen in the previous sections, the spin, charge,
and lattice degrees of freedoms compete with one another
leading to complex phase diagram of perovskite mangan-
ites. However, the complexity of manganites can be even
higher – a lot of experimental results (Urushibara et al.,
1995; Hennion et al., 1998; Allodi, De Renzi and Guidi,
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1998; de Teresa et al., 1997; Linn et al., 1996; Fernandez-
Baca et al., 1998; Mori, Chen and Cheong, 1998) as well
as theoretical computational models (Moreo, Yunoki and
Dagotto, 1999; Dagotto, Hotta and Moreo, 2001; Moreo
et al., 2000; Burgy et al., 2001; Ahn, Lookman and Bishop,
2004) evidence the coexistence of mixed electronic phases or
electronic inhomogeneity. In the literature one can also find
a term electronic phase separation (EPS ). Actually, a pro-
nounced tendency to EPS has been usually observed for the
intermediate (LCMO) and small bandwidth (PCMO) man-
ganites in which FM–DE interaction is weakened in compar-
ison with competing COO. Moreover, for these manganites,
the phase transition from para- to ferromagnetic phase was
found to be of the first order. In contrast, canonical DE
compounds like LSMO and LBMO with second-order phase
transition for TC = 320–360 K and no signatures for COO
(no static JT effect) show no EPS to the best of our knowl-
edge. Thus, it was supposed that electronic inhomogeneity
is intimately related to the first-order phase transition what-
ever the phase coordinate such as temperature, doping level,
magnetic field, or hydrostatic pressure is considered. The
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Figure 7. Generic phase diagram as a function of electron-phonon
coupling. (Reproduced from N. Mathur et al., 2003, with permission
from the American Institute of Physics.  2003.)

parameter controlling the EPS tendency seems to be electron-
phonon coupling, λ, as summarized in generic phase diagram
in Figure 7 (from Mathur and Littlewood, 2003). For λ < λ0,
the lattice effects are small and FM–PM transition is contin-
uous or of the second order; one finds no reasons for mixed
phases. There is a critical value λ0, exceeding of which the
transition becomes discontinuous (first order) with discontin-
uous jump in order parameter and latent heat. Thus, mixed
electronic phases were assumed to appear in the vicinity
of FM/paramagnetic (PM) or FM/COI phase boundaries as
illustrated by the hatched area in Figure 7. Equilibrium coex-
istence of thermodynamically stable phases at the first-order
phase transition is well known to occur owing to disor-
der or imposed conservation law (Mathur and Littlewood,
2001). The peculiarity of manganites is the quite large scale,
compared to the lattice parameter, of the phase coexistence,
which can vary from tens to hundreds of nanometers, as well
as its sensitivity to quite small external forces.

One of the first direct experimental observations of
remarkable electronically inhomogeneous state was the TEM
study in LCMO with x ≈ 0.5 (Mori, Chen and Cheong,
1998), that is, at the border between the FMM/AF-COI
phases (see Figure 3). Note that such coexistence contradicts
the DE model because charge localization (precursor state
to charge ordering) assumes exclusively an AF insulating
but not an FMM state. The latter one requires delocaliza-
tion (hopping) of charge carriers. However, these phases
were indeed observed as a mixture between incommensurate
charge ordered (CO) and ferromagnetic metallic (FM) charge
disordered clusters with a size of 20–30 nm. CO domains
consist of paired and unpaired JT distorted Mn3+ stripes.
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A phase separation (PS) on a much larger submicrometer
scale was observed by Uehara, Mori, Chen and Cheong
(1999) for La0.625−yPryCa0.325MnO3 system (y = 0.25–0.4),
in which a CO state is stable for T < TCO = 210 K. The
CO AF- and charge-disordered FM domains with character-
istic sizes of about 0.3–0.5 µm were revealed by electron
microscopy at T = 17 K in the macroscopically FM state.

A useful local probe technique, scanning tunneling spec-
troscopy (STS), combined with scanning tunneling micros-
copy (STM), allows one to study tunneling conductivity, σ ,
at the surfaces of thin films and single crystals for ultrahigh
vacuum conditions. In such experiments, the change of local
σ can be observed as a function of temperature as well as
magnetic field. We will consider STS/STM observations for
thin films in detail in Section 4.

Another group of experiments provide indirect evidences
for PS in manganites related to macroscopic effects observed
close and far away from phase boundaries in Figure 3.
For example, a small angle neutron scattering (SANS)
(Hennion et al., 1998) and magnetic resonance experiments
(Allodi, De Renzi and Guidi, 1998) reported on the FM/AF
coexistence in La1−xCaxMnO3 bulk samples for x = 0.05,
0.08, that is, far away from the MI phase boundary, x =
0.175. de Teresa et al. (1997) have found short-range FM
correlations in LCMO with optimal doping, x = 0.33, in the
form of small magnetic clusters or magnetic polarons with
diameter ∼1.2 nm, which exist in the macroscopically PM
state for T > TC. Moreover, FM–PM transition according
to SANS (Linn et al., 1996; Fernandez-Baca et al., 1998)
has an unconventional character, that is, in contrast to
conventional ferromagnet the spin-wave excitations decrease
as the temperature approaches TC from below but a new
contribution due to quasielastic spin diffusion grows and
then dominates at the transition region. Thus, a two-phase
model, FMM with well-defined spectrum of spin waves and
PM insulating (spin diffusion), was proposed (Linn et al.,
1996), in which the fractions of two phases depend on the
temperature.

After first experimental observations, some new theoretical
computational models appeared, which account for the com-
petition between FM and atomic force microscopy (AFM)
phases in the presence of electronic density fluctuations,
chemical disorder, and very recently, lattice strain. Within
EPS scenario (Moreo, Yunoki and Dagotto, 1999), it was
assumed that the observed inhomogeneities are due to dif-
ferent hole densities in competing FM and AFM phases
(Figure 2). However, mesoscopic scale coexistence (Uehara,
Mori, Chen and Cheong, 1999; Mori, Chen and Cheong,
1998) of electrically charged domains is energetically unfa-
vorable due to a drastic increase of the Coulomb energy.
Another model, disorder-induced PS, was also proposed
by the Dagotto’s group (Dagotto, Hotta and Moreo, 2001;

Moreo et al., 2000; Burgy et al., 2001) to avoid the problems
related to Coulomb energy. The model focuses on the first-
order transition, for example, FMM/AFI insulator at x ∼ 0.5,
in the presence of A-site cation disorder discussed in the
preceding text. Such a transition without disorder is char-
acterized by a discontinuous jump of the order parameter
and latent heat over the phase boundary. The stable ground
state is then essentially metallic or insulating depending on
the location on the phase diagram. Moreo et al. (2000) have
shown by means of Monte Carlo simulations within ‘one’-
and ‘two’-orbital models that cation disorder, resulting in
random distribution of hopping probabilities and exchange
interactions, generates mixed phases with coexisting FM and
AF domains in the vicinity of the phase transition, which now
becomes continuous or percolative. Qualitatively, a phase-
separated state can be stable due to two competing opposite
tendencies. Firstly, the increase of the interface energy in
coexisting FM and AF domains makes PS energetically unfa-
vorable, thus tending to increase the domain size. Secondly,
the disorder tends to minimize the size of domains down to
the lattice spacing, at which the system can be either the FM
or AF according to disorder, fluctuating over the FM/AF
phase boundary. As a result, an equilibrium size of PS
domains is stabilized. Note that the hole density, for instance,
x ∼ 0.5, is constant and no limitations from the Coulomb
energy on the size of competing clusters arise. Thus, even
micrometer cluster sizes become possible. Another interest-
ing feature is that the larger the disorder, the smaller the
competing AF and FM domains. This seems to be important
for understanding the CMR results on Pr-based compounds
with small disorder, which assume that very large CMR is
compatible with a large size of AF and FM domains.

A recent model (Ahn, Lookman and Bishop, 2004)
assumes that strain, instead of electron density or disorder, is
a driving force of the PS. The basic assumptions of the new
model are (i) without strain (undistorted state) the system
is metallic and under strain (distorted state) it is insulating
and (ii) there exist coupled short- and long-wavelength lat-
tice distortions of the JT type, which modify elastic energy
of the system yielding local (undistorted) and global (dis-
torted) energy minima. Such a ‘structural template’ governs
the formation and topology of the coexisting mixed phases.

3 THIN MANGANITE FILMS

Usually, the preparation of thin films and study of their
structure and physical properties are believed to be the top-
ics of applied research. This is mainly because films due
to their planar geometry can be easily integrated into dif-
ferent electronic devices. However, as for manganites and
likely for other complex oxides, the thin-film aspects become
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interesting not only with respect to potential applications,
which sometimes even look quite illusive now, but rather
for fundamental research. First, because of extreme chem-
ical and structural complexity, even single crystals are not
perfect – owing to macroscopic structural defects like twin-
ning and mosaic blocks (Eremenko et al., 2001) and cor-
responding mechanical stress, their electrical and magnetic
properties can be far from ideal. Stress-free epitaxial thin
films look very attractive because at least along the growth
direction due to reduced size their structure is quite per-
fect. Even more interestingly, thin films with their reduced
dimensionality down to nanometer scale provide new bound-
ary conditions and new effects, which cannot be obtained in
single crystals. The new branches of fundamental research,
nanoscience and nanotechnology, are definitely based on
thin-film aspects. Thus, oxide thin-film growth techniques
as well as understanding of the processes of film growth
become very important.

3.1 Preparation techniques

It is widely accepted that all known oxide thin-film tech-
niques can be subdivided into two large classes: (i) PVD
and (ii) chemical deposition techniques. PVD can be realized
as a co-evaporation process, that is, when different metals
condense on a substrate under ultrahigh vacuum (usually
within molecular-beam epitaxy technique) with subsequent
or simultaneous oxidation. Another possibility is material
transfer from the preliminary synthesized target to the sub-
strate realized by means of laser ablation, pulsed-laser depo-
sition (PLD) or by magnetron sputtering techniques. In the
following text, we will discuss PLD, because this is a tech-
nique that is mostly used for the preparation of complex
oxide thin films.

Chemical deposition techniques imply that the desired
oxide compound grows as a result of a chemical reaction
between the precursor compounds (metal-halogenides or
metal-organics), that is, chemicals with required metal atoms,
bound to a ligand group, containing oxygen, carbon, and
hydrogen, usually. The precursors can react being in vapor
phase or in a solid phase. The former is the so-called chemi-
cal vapor deposition (CVD), one of which modifications met-
alorganic chemical vapor deposition technique (MOCVD)
is a basic industrial technique for the preparation of AIIIBV

semiconductors. The techniques with precursors reacting in
solid phase are called chemical decomposition routes; they
are compatible with spin and deep coating techniques as
well as with spray pyrolysis technique. In Section 3.1.2, a
chemical deposition route, for example, metalorganic aerosol
deposition (MAD), combining the principles of MOCVD and

technical arrangement of spray pyrolysis, will be discussed
in detail.

3.1.1 Pulsed-laser deposition

In Figure 8, a schematic diagram of a typical PLD set up is
shown (Krebs et al., 2003). Short (few nanoseconds) pulses
of high-energy laser radiation (usually KrF laser with wave-
length λ = 248 nm) are focused on the surface of a target,
yielding to rapid heating or superheating of all constituting
elements up to their evaporation temperature. The removal
of the material from the target occurs by means of an explo-
sion mechanism with the resulting plume containing the ions,
atomic aggregates as well as liquid droplets. In contrast to
thermal evaporation, which yields a vapor composition in
accordance with equilibrium vapor pressures of the target ele-
ments, the laser-induced expulsion produces a plume of mate-
rial with stoichiometry similar to the target. This is a decisive
advantage of PLD in obtaining complex oxides, containing
elements with significantly different evaporation tempera-
tures. Despite the quite clear operation setup, preparation of
films by PLD seems to be very complex phenomenon, includ-
ing different stages such as interaction of laser beam with the
target, dynamics of ablated materials, deposition of ablated
materials on the substrate, and finally nucleation and growth
of a thin film. These processes as well as recently developed
modifications of PLD were discussed in detail in the literature
(Venkatesan, 1994; Willmott, 2004). Here we note only that
stimulated by the discovery of high-TC superconductivity,
PLD technique has been succeeded with Y–Ba–Cu–O films
in Dijkkamp et al. (1987). The main further developments
include the ‘off-axis’ variant (Holzapfel et al., 1992), which
has essentially solved the problem of droplets, and later the
‘molecular-beam’ PLD (DeLeon et al., 1998) with realization
of controllable layer-by-layer (LL) growth. Thus, PLD has
become a basic technique for the preparation of multicompo-
nent oxide films as well as oxide multilayers and superlattices

Laser pulse

Substrate

Plasma plume

Target

UHV chamber

Figure 8. Schematic diagram of a typical PLD setup. (Reproduced
from H.-U. Krebs et al., 2003, with permission from Springer-
Verlag GmbH.  2003.)
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of different functionality. As was already emphasized, first
manganite films, showing pronounced CMR effect (von Hel-
molt et al., 1993; Chahara, Ohno, Kasai and Kozono, 1993;
McCormack, et al., 1994), were also obtained by PLD.

With respect to the growth of high temperature supercon-
ductivity (HTSC) as well as of manganite oxide thin films,
the oxygen deficiency still remains a problem for PLD or for
other PVD techniques using vacuum. As was shown in many
papers, the film structure and magnetotransport properties
of manganite films are very sensitive to oxygen deficiency,
which may result due to insufficient oxygen partial pressure
(usually 1 mbar) during deposition. Preparation of oxide films
at higher oxygen partial pressures within a vacuum technique
seems to be quite sophisticated. In this sense, chemical depo-
sition routes compatible with up to 1 bar oxygen pressure
look more appropriate.

3.1.2 Metalorganic aerosol deposition (MAD)

Thin manganite films can be grown by means of uncon-
ventional MAD technique (Moshnyaga et al., 1999). MAD
is a chemical route, originally developed for the prepara-
tion of HTSC YBa2Cu3O7−x films (Khoroshun et al., 1990)
and also used for other oxide films of different function-
ality (Ivashchenco et al., 1995; Kuliuk et al., 1995; Mosh-
nyaga et al., 1997). Similar to other chemical deposition
techniques (CVD, MOCVD) to obtain an oxide film within
MAD, one should be able to carry out the following pyrolysis
reaction:

Me(C3H5O2)x + O2
T

◦C−−−−−→ MeOx/2 + yCO2 ↑ +zH2O ↑
(4)

Here, Me(C3H5O2)x is an organometallic precursor,
Me(acetylacetonate) (Me = La, Ca, or Mn), which decom-
poses under heating or electron beam or UV radiation
with the formation of a metal oxide compound in an oxy-
gen containing media. Two types of chemical reactions
are important for applications: (i) homogeneous pyrolysis,
which occurs in a gas phase, is used for the preparation
of oxide nanoparticles (Konrad et al., 1999) and (ii) het-
erogeneous pyrolysis, which takes place at the interface
between gas and a solid, is suitable for growth of thin
films. CVD and MOCVD techniques require volatile pre-
cursors, large quantities of which can be congruently vapor-
ized at relatively low temperatures (20–100 ◦C). Sol–gel
and spray pyrolysis both use the nonvolatile precursors,
which react being in solid state. The MAD technique uses
β-diketonates of metal chelates as precursors, which have
low decomposition temperature ∼ 250–300 ◦C and usually
low volatility or even are thought to be nonvolatile (precur-
sors for rare-earth elements). Very fine droplets (aerosols)
of a few micrometer sizes allow one to perform the so-
called flash or fast evaporation (Wahl, Stadel, Gorbenko

and Kaul, 2000), which is advantageous for precursors with
low volatility. The decomposition/vaporization of aerosols
occurs on the heated substrate, thus preventing gas-phase
reaction and possible contamination of the growing film with
nanoparticles.

The scheme of the MAD is shown in Figure 9. The
mixture of organometallic precursors, typically acetylacet-
onates of the corresponding metals, has been dissolved in
an organic solvent. The precursor solution in the form of
aerosols with diameter of about 10–20 µm, obtained by a
pneumatic nozzle, was transferred onto heated substrate by
a carrier gas (compressed air or oxygen). Aerosol flow rate
was controlled in the range v = 0.05–10 mL min−1 by mea-
suring diffusion light scattering on the droplets. The sub-
strate temperature can be controlled in the region TS =
400–1000 ◦C by detecting the radiation emitted from the
substrate heater, using a photodiode optically coupled to
the heater by a fiber-optic waveguide. Deposition rate can
be varied in the range v = 5–300 nm min−1 by changing
the concentration of the precursor solution and aerosol flow
rate. MAD, compared with other techniques, possesses sev-
eral advantages: (i) precise control of the film composition,
(ii) no vacuum and gas transport lines, (iii) high depo-
sition rates, and (iv) high oxygen partial pressure up to
105 Pa.

3.2 Thin-film effects

3.2.1 Growth mechanisms

There are two well-known basic growth modes of thin films:
(i) LL growth, also named by Frank and van der Merwe
(1949), which takes place when the atoms of growing film

Solution
Pneumatic nozzle

Spraying gas

Substrate

Temperature
sensor

Exhaust
Heater

Figure 9. The scheme of the MAD process. (Reproduced from
V. Moshnyaga et al., 2005, with permission from Springer-Verlag
GmbH.  2005.)
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bound preferentially to the substrate surface as to each other
promoted by fast diffusion as well; and (ii) 3D island nucle-
ation (Volmer and Weber, 1926), which takes place when
the adatoms bound more to each other than to the substrate,
favored by slow diffusion. Quantitatively, these two cases
can be described within the Young’s equation (Lüth, 2001):

γ SV = γ SF + γ FV cos θ (5)

Here γ sv, γ sf, and γ fv are interface energies between sub-
strate (s) and vacuum (v), substrate/film (f) and film/vacuum,
respectively. θ is the contact angle between the nucleus
and the substrate (see Figure 10). LL growth take place
if θ = 0 or undefined, which requires γ SV ≥ γ SF + γ FV,
whereas 3D growth occurs when 0 < cos θ < 1 and thus
γ SV ≤ γ SF + γ FV. Energetically, this means that in the case
of LL growth the energy gain (γ sv) due to coating of a sub-
strate by a film exceeds the energy cost (γ sf + γ fv) related
with the formation of new interfaces; the film ‘wets’ the
substrate completely. In contrast, for 3D growth the grow-
ing film tries to minimize the interface energy, γ sf, and
its own surface energy, γ fv, thus ‘balling up’ on the sub-
strate. Actually, due to condensation of a film from a super-
saturated vapor phase, there is an additional energy gain
proportional to the Gibbs’s free enthalpy per unit volume
GV = kBT ln(p0/p) (kBT is thermal energy, p and p0 are
partial pressures in the supersaturated vapor phase and equi-
librium pressure for the film material for given substrate
temperature T ) (Willmott, 2004). The supersaturation degree,
S = p0/p, is an important parameter, which describes how
far away from equilibrium the process of film growth is.
S values can be significantly different for various deposi-
tion techniques. For example, the PLD technique can be
viewed as essentially nonequilibrium – the plasma nature
of ablated material plume leads to extreme high supersat-
uration, S ∼ 109, yielding very high fractional density of
stable nucleating sites NS = 0.6 (Willmott, 2004). The rate
of nucleation (growth rate) is proportional to NS as well as to
the rate of impingement, therefore the high supersaturation
in turn results in films composed of large amount of small
crystallites similar to rapid thermal deposition at low tem-
peratures. The PLD technique operates close to this regime
(Krebs, Bremert, Störmer and Luo, 1995). For comparison
within molecular-beam epitaxy, the growth of films can be

γsv

γvf

γsf

Figure 10. Nucleation site of a film on the substrate.

close to thermal equilibrium (S ∼ 104 and NS ∼ 5 × 10−4),
resulting in perfect large crystal domains (Tersoff, Johnson
and Orr, 1997). Thus, growth conditions close to equilibrium,
that is, low supersaturation and impingement rate as well as
high diffusion rate would inhibit nucleation tendency, that is,
3D growth and would promote LL growth with atomically
smooth and large terraces. As for complex oxides like man-
ganites with perovskite crystalline structure, the preparation
of LL films is intimately coupled to heteroepitaxial growth
on the appropriate single crystalline oxide substrates.

3.2.2 Epitaxial growth, misfit stress

Preparation of atomically smooth manganite films with per-
fect crystalline structure is a challenging task not only
for the better understanding of intrinsic magnetotransport
phenomena but also for the so-called interface engineer-
ing (Yamada et al., 2004). The latter was recently shown
to be extremely important both for low-field TMR in
LSMO/SrTiO3 (STO)/LSMO structures (Kwon et al., 1997)
as well as for architecting and growth of novel synthetic mag-
netic (Ogawa et al., 2003) and ferroelectric (FE) materials
(Haeni et al., 2004). In many earlier reports, epitaxial man-
ganite thin films can be successively grown using deposition
techniques as discussed in Section 3.1 on single crystalline
standard substrates like STO, LaAlO3 (LAO) and NdGaO3

(NGO), which have similar perovskite structure. Less used
were the substrates of cubic MgO or ZrO2:Y (YSZ).

In Figure 11, we present an example of heteroepitaxy
of LSMO film on STO substrate, obtained by PLD tech-
nique (Izumi et al., 1998) within LL-growth mode, controlled
by reflection of high-energy electron diffraction (RHEED).
Oscillations of specular spot in RHEED patterns as a function
of deposition time with a period corresponding to one unit
cell clearly demonstrate LL growth. The surface of the film
studied by AFM was extremely smooth and flat – one can
evidently see flat terraces of about 100 nm width and steps
of 0.4 nm height. The alignment and spacing between steps
were found to be the same as those of the STO substrate. By
means of coaxial impact collision ion scattering technique
(CAICISS) (Kawasaki et al., 1994), it was observed that the
top atomic layer is MnO2. Thus LSMO film is considered
to be an alternative stack of (La,Sr)O and MnO2 atomic
layers along the [001] direction. The in- and out-of-plane
lattice parameters of the LSMO/STO film were found to be
significantly different, a = 0.391 nm and c = 0.383 nm, indi-
cating that film structure changes from the rhombohedral (see
Section 1) with pseudocubic lattice constant a = 0.387 nm
(see Section 1) to a tetragonal, a ≈ b > c. The reason is epi-
taxy misfit stress, ε = (aSTO − aLSMO)/aSTO ∼ 0.9%, which
being relatively small prevents the formation of misfit dis-
locations at the interface and results in coherently strained
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Figure 11. Layer-by-layer grown La0.6Sr0.4MnO3 film. (Repro-
duced from Izumi et al., 1998, with permission from the American
Institute of Physics.  1998.)

atomic planes. The strain has biaxial nature, that is, the film is
tensile strained in (a, b) plane, that is, afilm > abulk and com-
pressively strained along the [001] direction, afilm < abulk,
yielding tetragonal large lattice distortion in the film. Surpris-
ingly, the strain persists up to the thickness of about 100 nm
and leads to the significant change of the bulk film proper-
ties: (i) Curie temperature TC = 310 K instead of 370 K seen
in the bulk and (ii) the resistance of the films was about 1
order of magnitude larger than that for single crystal.

Substrate-induced lattice strain effects in thin mangan-
ite films were studied in a number of papers (Gommert,
Cerva, Wecker and Samwer, 1999; Wang et al., 2000; Bibes
et al., 2001; Wiedenhorst et al., 1999; Lebedev et al., 1998;
Rao et al., 1998, 1999) by means of changing the sub-
strate nature and film thickness. Usually, the substrates of
STO (a = 0.3905 nm), resulting in tensile in-plane stress,
and LAO (a = 0.3793 nm), yielding a compressive in-plane

stress, were used. The dependence of lattice strain in epi-
taxial La0.8Ca0.2MnO3 films as a function of their thickness
is shown in Figure 12 both, for films grown on STO and
LAO substrates (Rao et al., 1998, 1999). A clear difference
between STO and LAO can be seen, namely, the LCMO/STO
films are coherently strained up to the thickness of about
100 nm. In contrast, the LCMO/LAO films do not overtake
the in-plane lattice constant of the substrate, that is, they
are not coherently strained even down to 2–5 nm. This was
ascribed to a very large lattice misfit between LCMO and
LAO, ε = 2.7%, which cannot be elastically accommodated,
thus resulting in interface dislocations and stress relaxation.
Moreover, as was also shown (Rao et al., 1998, 1999; Biswas
et al., 2000), stress relaxation under large lattice misfit yields
3D- rather than LL-growth mode.
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Figure 12. Stress effect induced by substrate-film lattice misfit.
(Reproduced from Rao et al., 1999, with permission from the
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As is shown in Figure 12(b), the MI transition at Tp as
well as Curie temperature, TC, are extremely sensitive to the
lattice strain and decrease about 80–100 K. Millis, Darling
and Migliori (1998) quantified the lattice strain effect on TC

due to both bulk strain, εb, and JT stress, εJT, which acts as
tetragonal distortion. The obtained dependence of TC on the
lattice strain is described by equation (3):

TC(ε) = TC(0)(1 – αεb − 1/2	ε∗2) (6)

Here α = 1/TC(dTC/dεb) and 	 = 1/TC(d2TC/dε∗2) are
the strain coefficients for bulk and JT strain respectively. The
second, symmetry conserving, term in equation (4) describes
the change of kinetic energy as a function of strain, which
can be either positive due to compressive strain or neg-
ative (tensile) leading to increasing or decreasing of TC,
respectively. The bulk strain can be naturally assigned to the
change of Mn–O distances as a result of applying pressure.
The third, symmetry braking, term relates to the electron
localization due to splitting of eg states of Mn ions caused
by static JT effect (see Section 1); the Mn–O–Mn bond
angle is corresponding structural parameter, which changes
due to JT strain (Radaelli et al., 1997). Being in qualita-
tive agreement with experimental results, the model lacks
in detailed description because the strain effects were found
to be accompanied with increasing disorder (Aarts, Freisem,
Hendrikx and Zandbergen, 1998). This is because the change
of film volume due to epitaxy (contraction or expansion) can
be stabilized also by the formation of defects like oxygen
deficiency (Sun et al., 2000) or partial cation substitution
(Rao et al., 1997). Summarizing, the stress-induced effects
usually lead to degradation of magnetic and electric prop-
erties of manganite films. Hence, preparation of strain-free
manganite films on appropriate substrates becomes extremely
important problem.

Single crystalline perovskite NGO with (110) orientation
possesses lattice constant a = 0.386 nm, which is very close
to lattice parameter of manganite films, a = 0.387 nm; the
lattice misfit is only about 0.2%. Recently, (Mitra et al.,
2005) have demonstrated LL growth of strain-free LCMO
films on NGO substrates by PLD technique. The morphology
of the films studied by STM shows large terraces of about
360 nm width and mean square roughness, RMS = 0.03 nm.
High MI transition temperature TP ≈ TC = 268 K accompa-
nied by very sharp transition were observed. Earlier (Gom-
mert, Cerva, Wecker and Samwer, 1999), a potential of cubic
MgO substrates (a = 0.421 nm) for the preparation of high
quality manganite films by PLD was shown. In this case
the lattice misfit is extremely large, ε = 8%, and misfit dis-
locations, indeed, were present in a 2 nm thick interface
region with enhanced disorder but then after the film was
almost defect free showing magnetization close to the bulk

LCMO. Using MAD technique, we have demonstrated a pos-
sibility to grow LL LCMO films on MgO substrate (Mosh-
nyaga, 2005). Typical surface morphology image, obtained
by STM, is shown in Figure 13. The film is very smooth,
RMS = 0.1 nm, and contains large terraces of 100–200 nm,
divided by one unite cell steps of ∼0.4 nm height. Interest-
ingly, the LCMO/MgO interface looks quite different from
that in Gommert, Cerva, Wecker and Samwer (1999) – it is
sharp and smooth with only two to three distorted atomic lay-
ers of LCMO. Remarkably, misfit dislocations are present,
but located almost exactly on the film-substrate interface,
causing an effective mechanism of misfit stress accommoda-
tion already in the first atomic layers of growing LCMO film.

3.2.3 Grain boundaries and interfaces

In early studies of manganites, it was already shown that
despite intrinsic magnetotransport, related to MI transition
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Figure 13. (a) Surface morphology and (b) HREM image (Cour-
tesy of O. Lebedev, EMAT RUCA, University of Antwerp.) of the
film interface of a layer-by-layer LCMO/MgO(100) film grown by
MAD technique.
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and CMR, extrinsic effects like TMR (Hwang, Cheong, Ong
and Battlog, 1996) due to static disorder on the interfaces
like Grain boundaries (GB) look interesting for low-field
applications. Another important feature is that manganites
can be viewed as half-metallic compounds (Park et al.,
1998) with almost fully spin polarized charge carriers on
the Fermi level for T < TC. This causes the importance of
manganites for spin electronics, which along with charge of
electron takes into account also the spin degree of freedom,
thus dealing with spin-dependent electron transport. In the
following text, we discuss the structure and properties of
artificially made interfaces.

GB in bulk materials are of limited interest because it is
very difficult to control them. To obtain controllable GB in
thin films, the bicrystal substrates, usually of STO, were used
(Gupta et al., 1996; Steenbeck et al., 1998; Phillip et al.,
2000). Such substrates are composed of two misoriented
crystalline blocks, thus forming one well-defined wide angle
GB. The misorientation angle can be varied usually in the
range 8–36◦. A manganite film then grows epitaxially on
these crystalline blocks, resulting in a well-defined one GB
in the film as schematically shown in Figure 14(a). The local
structure of grain boundary (Gross et al., 2000), visualized
by high-resolution electron microscopy (HREM), is shown
in Figure 14(b). The GB interface in the film looks as a
straight line and is composed of about few nanometer-wide
structurally distorted region likely due to accumulation of
misfit dislocations and/or nonstoichiometry defects. More-
over, charge carrier concentration in the GB region can be
also reduced due to band bending effects similar to that
known for high-TC superconductors (Chisholm and Penney-
cook, 1991). Hammerl et al. (2000) have demonstrated that
the GB in Y–Ba–Cu–O films can be additionally doped with
Ca to compensate the depletion of charge carrier concentra-
tion and thus to increase critical current density.

Another way to design TMR elements is to create inter-
faces containing manganite/insulator/manganite layers. The
in-plane heterostructures with insulating STO layer grown
by PLD technique were used for magnetic tunnel junctions
(Lu et al., 1996; Sun et al., 1996; Luo and Samwer, 2001;
Pailloux et al., 2002; Bowen et al., 2003). An example of
such trilayer heterostructure is reproduced in Figure 15; it
demonstrates sharp and coherent LSMO/STO/LSMO inter-
faces. No indications on the appearance of misfit dislo-
cations were observed. Köster et al. (2002) have shown
a possibility to obtain vertical LSMO/MgO/LSMO inter-
faces by means of self-assembled simultaneous growth of
nanocomposite (nanocolumnar) in (LSMO)1−x :(MgO)x on
sapphire substrates by MAD technique. The films exhibit
pronounced TMR at low temperatures due to MgO insu-
lating layer working as a vertical tunneling barrier. In
Figure 15 (b) one can see two types of 45◦-misoriented

Substrate

Film

a a

b b

5 nm

(a)

(b)

Figure 14. (a) Schematic view of a film epitaxially grown on
bicrystal substrate. (b). HREM image of grain boundary region.
(Reproduced from Gross et al., 2000, with permission from Else-
vier.  2000.)

interfaces: (a) undoped LSMO/LSMO interfaces which show
no TMR and are similar to epitaxial films and (b) ‘doped’
of ‘filled’ LSMO/MgO/LSMO interfaces, composed of crys-
talline LSMO domains, separated by MgO layer. The lat-
ter interfaces build a network of vertical tunneling bar-
riers. Very recently (Esseling et al., 2005), the verti-
cal LSMO/MgO/LSMO interfaces were characterized with
respect to (1/f)-noise, which is a well-known limiting factor
for device applications. The noise level characterized by a
dimensionless parameter, 〈aV〉 ∼ 10−27 m3, was found to be
comparable with the noise from epitaxial films: strained film
on STO has 〈aV〉 ∼ 10−24 m3 and unstrained grown on NGO
substrate possess 〈aV〉 ∼ 10−30 m3 (Reutler et al., 2000).
These data confirm high quality of LSMO/MgO/LSMO
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Figure 15. (a) HREM image of the tunnel magnetic junction inter-
face. (Reproduced from Y. Lu et al., 1996, with permission from
the American Physical Society.  1996.) (b). Vertical interfaces in
LSMO/MgO/LSMO nanocomposite films. (Reproduced from S.A.
Köster et al., 2002, with permission from the American Institute of
Physics.  2002.)

interfaces, prepared by self-assembled growth within MAD
technique.

4 MAGNETORESISTANCE EFFECTS IN
MANGANITE FILMS

4.1 Metal–insulator transition and colossal
magnetoresistance

4.1.1 General comments

As was mentioned in Section 2 continuous and broad inter-
est to the perovskite manganites is basically caused by the
fact that they show MI transition and CMR effect. To illus-
trate the interrelations between different phase transitions, in
Figure 16 we present temperature dependence of the resis-
tance (a), magnetization (b), and CMR (c) for an epitax-
ial LCMO/MgO film, grown by MAD technique. One can
see that for T > TMI∼270 K, the film shows insulating-like
behavior in the sense that dρ/dT < 0, which changes to
a metallic-like dependence with dρ/dT > 0 for T < TMI.
Very close to the preceding transition is the Curie temper-
ature, TC = 263 K, defined as the temperature of the mini-
mum of the function (1/M)(dM/dT ), where M is the film

160 180 200 220 240 260 280 300
0

100

200

300

400

500

50

100

150

200

250

2

4

6

8

10

12

Temperature (K)

M
ag

ne
tiz

at
io

n 
(e

m
u 

cm
−3

)
C

M
R

 =
 (

R
(O

) 
− 

R
(5

T
))

/R
(5

T
) 

× 
10

0%

B = 10 mT

TC = 263 K

B = 5T

R
es

is
tiv

ity
, r

 (1
0−

3  
Ω

cm
)

B = 0

TMI = 270 K

Figure 16. Temperature dependences of resistance (a), magnetiza-
tion (b) and CMR (c) for an epitaxial LCMO film.

magnetization (Rajeswari et al., 1998). Apparently, CMR is
very large only in a narrow region in the vicinity of TC,
or in other words, large CMR is coupled to the highest
level of magnetic disorder (Ashckroft and Mermin, 1981),
which is very sensitive to applied magnetic field as well
as other factors like temperature, hydrostatic pressure, or
even electromagnetic radiation. For completely ferromagnet-
ically ordered material, for T < TC as well as for noncor-
relating (disordered) PM spins (T  TC) CMR is negligibly
small.

Basically, the CMR phenomenology is in accordance with
DE model (Zener, 1951; Anderson and Hasegawa, 1955; de
Gennes, 1960). See Section 2 for the large bandwidth man-
ganites like LSMO, showing highest TC ∼ 370 K, second-
order para-ferromagnetic phase transition (Mira et al., 1999)
and metallic-like behavior also in PM phase. For mid-
dle bandwidth manganites like LCMO with moderate TC ∼
260 K and first-order MI phase transition as was first sug-
gested by Millis, Darling and Migliori (1998), the larger
resistance as well as an insulating-like behavior in PM phase
cannot be explained within the DE model. An additional EL
interaction due to JT effect should be taken into account.
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The charge localization (see Section 2.1) occurs by means of
static or dynamic JT distortions of MnO6 octahedra resulting
in the formation of lattice polarons for T > TC, that is, local-
ized carriers tightly bound to the local lattice deformation
(Billinge et al., 1996; Kim et al., 1996; Jaime et al., 1997).
Such a carrier with corresponding local distortion can move
through the lattice by means of a temperature activated hop-
ping mechanism (Mott, 1990) with insulating-like tempera-
ture dependence of the resistivity, ρ ∼ exp(T0/T )1/4 (Viret,
Ranno and Coey, 1997). Moreover, PM state shows the cor-
related lattice distortions observed by small angle neutron
(SANS) and X-ray scattering techniques (Dai et al., 2000;
Adams et al., 2000; Kiryukhin et al., 2003). The correlation
length was found to be of several lattice constants, varying in
the range 1.2–2.8 nm for LCMO with different doping level
(Dai et al., 2000). Remarkably the scattering intensity, pro-
portional to the concentration of these nanoscaled correlated
regions, increases approaching TC and can be suppressed
by applied magnetic field (Koo et al., 2001), thus mim-
icking temperature dependence of the resistivity and CMR
effect. Furthermore (Kiryukhin et al., 2003), it was shown
that correlated polarons are compatible with orthorhombic
structure but not with the rhombohedral one. Figure 17 illus-
trates the temperature behavior of the nanoscaled structural
correlations in the La0.75(Ca0.45Sr0.55)0.25MnO3 system, for
which (Pnma/R-3c) structural phase transition occurs for
T0 = 370 K. One can see that polaron correlations are sup-
pressed both for T < TC due to the increase of DE in FM
phase and for T > T0 in PM state within the rhombohedral
structure. The latter, being a more symmetric pseudocubic
structure with three equivalent crystallographic axes, seems
to be incompatible with the existence of long-range strain
fields in nanoscaled regions with static JT effect.

Summarizing, one can view correlated polarons in the form
of nanoscaled structural correlations as a precursor state for
the long-range COO state, which builds up when DE con-
tribution is progressively suppressed by means of bandwidth
or filling controls. By enhancing delocalizing tendencies due
to DE in an optimally doped materials for T < TC, the cor-
related polaron regions will ‘melt’ at the expense of metallic
regions, characterized by conventional spin-wave excitations
rather than by diffusive inelastic contribution from corre-
lated polarons, both detected by SANS (Linn et al., 1996;
Fernandez-Baca et al., 1998). Metallic phase can be also
treated as charge and orbitally disordered. Thus, compet-
ing DE and electron–lattice interactions may result in an
electronically inhomogeneous ground state with coexisting
domains of FMM and AFI phases. On the basis of effec-
tive medium approach, Jaime et al. (1999) proposed a two-
phase model with magnetic field and temperature dependent
concentration of metallic regions, embedded in a polaronic
background, having an activated electrical conductivity.
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Figure 17. (a) Temperature dependence of the intensity of the peak
due to the structural correlations in La0.75(Ca045Sr0.55)0.25MnO3;
(b) Temperature dependence of the electrical resistivity (solid) line
and inverse magnetic susceptibility (dashed line). (Reproduced from
Kiryukhin et al., 2003, with permission from the American Physical
Society.  2003.)

4.1.2 Phase separation studied by local probe
techniques

To study the phase coexistence in manganites, the local probe
techniques like STM coupled to STS were used (Fäth et al.,
1999; Becker et al., 2002; Renner et al., 2002; Chen et al.,
2003; Moshnyaga et al., 2006). These techniques allow one
not only to visualize the surface morphology of a manganite
thin film or single crystalline sample under ultrahigh vacuum
(UHV) conditions but also by measuring the I –V character-
istics, to obtain the information on the local surface electronic
structure with very high spatial resolution. Owing to mod-
ern developments of the STM, such measurements can be
performed additionally by varying temperature and magnetic
field. Fäth et al. (1999) have done the first STS study on the
single crystals of La1−xCaxMnO3 (x = 0.25 and 0.3) as well
as on epitaxial LCMO film grown on STO substrate. STS on
the LCMO film was measured both for T < TC and T > TC;
unfortunately the temperatures were not specified. For all
temperatures the (I –V ) curves were found to be essentially
nonlinear in the range of voltages V = 0–4 V. Even for
small voltages, one can hardly see linear behavior. However,
there was observed a correlation between measurements of
four-probe bulk resistivity and tunneling resistivity. Namely,
for T < TC, that is, in macroscopically FM and metallic
state, the film shows relatively high values of differential
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tunneling conductivity dI/dVV =0 ∼ 1 ns, which were thus
assigned to be ‘metallic’ (M). In contrast, a low conductiv-
ity, dI/dVV=0 ∼ 10−2 –10−3 ns, measured for T > TC in the
macroscopically PM and insulating state were assigned to be
‘insulating’ (I). In Figure 18 the distribution of the tunneling
conductance σ = dI/dV taken at 3 V on LCMO/STO film
from Fäth et al. (1999) is shown for temperature close but
lower than TC. One can see that σ is inhomogeneously dis-
tributed over the measured area (500 × 500 nm2), containing
more conducting regions, colored on the ‘red’ to ‘black’ color
scale, and less conducting regions (‘yellow’ to ‘white’), both
having a cloudlike shape. Characteristic sizes of these elec-
tronic structures vary within several tens of nanometers. By
applying magnetic field, the average conductivity increases at

least for fields close to 9 T (one can see that the conductivity
map becomes darker). This behavior is in qualitative agree-
ment with the bulk CMR effect and DE model (Zener, 1951;
Anderson and Hasegawa, 1955; de Gennes, 1960), assum-
ing the decrease of electrical resistance in magnetic field
due to suppression of magnetic disorder and increase of one-
electronic bandwidth (see equation (2). However, locally, σ

still remains inhomogeneous in contradiction with DE even at
9 T. A remarkable feature, which was not discussed by Fäth
et al. (1999), is that magnetic field does not necessary lead to
the increase of local σ . Indeed, in some regions (follow, for
instance, the ‘red’ central part at B = 0 in Figure 18), one
can evidently see that σ decreases (the color changes from
red to yellow) with increasing field. Very similar behavior

Insulator

Metal

(a)

(c)

(e)

(b)

(d)

(f)

Figure 18. Conductivity maps at 3 V bias for LCMO thin film for magnetic fields of 0, 0.3, 1, 3, 5, and 9 T (a–e). The color represents
the slope of the local (I –V ) curve at a bias of 3V. (Reproduced from M. Fäth et al., 1999, with permission from Science AAAS.  1999.)
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was also seen by Chen et al. (2003). Moreover, they have
observed that after the field was scanned from 0–5 T and
back to 0, the tunneling conductivity map was looking sig-
nificantly different from the initial STS map, taken before the
application of magnetic field. This clearly indicates that field-
induced changes in tunneling conductivity are irreversible.
Thus, nonmonotonous local σ (H ) behavior, if considered on
a scale 50–100 nm, which is comparable to the size of cloud-
like features in Figure 18, may be in disagreement with bulk
CMR-like behavior, assuming decrease of the resistance in
applied field, and DE model as well. One can rather say that
external magnetic field induces rearrangement of metallic and
insulating regions. This, likely, indicates that M and I phases
are not free – they are coupled together leading to a peculiar
magnetic field behavior.

Becker et al. (2002) have studied local tunneling conduc-
tivity, taken however at V = 0, for different temperatures
for LSMO and LCMO films. STS images, qualitatively sim-
ilar to those from Fäth et al. (1999) and Chen et al. (2003),
with coexisting M and I regions were obtained. Moreover,
the evaluated concentration of metallic phase was found to
be temperature dependent similar to temperature dependence
of the bulk material. This confirms similarity between the
bulk and surface measurements and rules out a possible
‘surface’ nature of the observed PS in thin films and sin-
gle crystals. Renner et al. (2002) have obtained STS with
atomic resolution on Bi0.24Ca0.76MnO3 single crystal, which
behaves as CO insulator for T < TCO∼240 K and orders anti-
ferromagnetically at low temperatures. Remarkably, they also
observed a coexistence of metallic and insulating domains,
which occurs at room temperature, that is, higher than TCO.
Owing to success in atomic resolution, a structural characteri-
zation of both metallic and insulating phases have been done.
The M-phase was found to be cubic with O–Mn–O angle
close to 180◦, whereas the I phase was orthorhombic show-
ing a ‘zig-zag’ type structural distortion of Mn–O bonds.
Very sharp M/I phase boundary was observed. Thus, as
could be expected from structural consideration discussed in
Section 1, the manifestation of metallicity is directly related
to a more symmetric cubic (or rhombohedral R-3c) structure,
while the insulating behavior is caused by lattice distortions
within less symmetric orthorhombic Pnma structure due to JT
effect.

These results make a quantitative basis to discuss other
local STS studies, which could be more or less related to
extrinsic PS in thin films. Biswas et al. (2000) have seen
inhomogeneous electronic behavior caused by incomplete
strain relaxation in LCMO/LAO films grown according to
3D growth mode. They found an insulating-like tunneling
conductivity near the edges of crystalline grains, whereas
the central part of the grain was metallic. Bibes et al.
(2001) observed nanoscale PS on LCMO/STO interfaces

and interpreted it within a stress-induced PS due to coher-
ently strained LCMO on the interface. These data seem to
be important for the experiments on TMR (see Section 4.2)
because stress-induced PS, accompanied by weakening of
DE interaction, can decrease spin polarization of a man-
ganite layer at the interface. Mitra et al. (2005) have
demonstrated that stress-free LL LCMO/NGO films do not
show nanoscale or mesoscopic PS; they possess rather
homogeneous distribution of tunneling conductivity σ =
dI/dV0.1V = 1.07–1.13 nA V−1 over the measured area (1 ×
1 µm2) for T < TC. The temperature dependence of tunnel-
ing conductivity shows a pronounced minimum by T ∼ TC,
reflecting a bulk MI transition. No real insulating behav-
ior with σ = 0 for T > TC was observed in agreement with
results of Fäth et al. (1999). Very recently, Moshnyaga et al.,
(2006) have prepared LCMO/MgO films, showing unusual
rhombohedral R-3c crystalline structure and unique order-
ing of A-site cations (La and Ca). Note that the relatively
small ionic radius of Ca leads to the formation of orthorhom-
bic Pnma structure (Radaelli et al., 1995, 1997) in LCMO
manganites for the whole range of Ca doping (0 < x < 1).
The A-site ordered film shows a unique superstructure with
superlattice constant as = 4aper ≈ 1.55 nm due to ordered 3D
arrangement of La and Ca cations. Such ordering suppresses
(compensates) La/Ca size mismatch lattice stress within one
supercell, resulting in a stress-free state of LCMO film.
Remarkably, no PS on the scale down to 1 nm for T < TC

was detected by STM/STS technique. In sharp contrast, an
orthorhombic LCMO/MgO film does show PS for T < TC,
similar to the results of Fäth et al. (1999); Becker et al.
(2002); Chen et al. (2003) with the size of insulating clusters
10–50 nm. No correlation with morphology (microstructure)
was observed, indicating intrinsic nature of PS.

Thus, we believe that realization of tendencies to PS
should be closely related to the crystallographic structure. As
was shown in Section 1, the structure close to cubic (t ∼ 1)
favors DE interaction resulting in FMM behavior. Typical
example is a canonic DE material LSMO, which being
optimally doped shows high-TC∼360 K, accompanied by
second-order phase transition; to the best of our knowledge
no PS was observed in such LSMO up to now. By lowering
the crystal symmetry down the orthorhombic, the competing
EL interaction increases, leading to PS in the presence of
cation disorder, imposed on the first-order phase transition
(LCMO).

4.1.3 Percolative MI transition and CMR effect

The electronic inhomogeneity revealed by STM/STS tech-
nique in thin manganite films (Fäth et al., 1999; Becker et al.,
2002; Chen et al., 2003; Moshnyaga et al., 2006) seems to
be incompatible with polaronic scenario. This is because the



Ferromagnetic manganite films 19

PS length scale, which varies in the range 10–100 nm, is
much larger than the size of homogeneously distributed small
polarons (Billinge et al., 1996; Kim et al., 1996; Jaime et al.,
1997) and even larger than characteristic length of correlated
polarons (Dai et al., 2000; Adams et al., 2000; Kiryukhin
et al., 2003), which does not exceed 1–3 nm. The observed
PS state rather assumes the existence of spatial fluctuations
of stress and/or Coulomb potential due to quenched disor-
der (Moreo, Yunoki and Dagotto, 1999; Moreo et al., 2000;
Dagotto, Hotta and Moreo, 2001; Burgy et al., 2001), dis-
cussed in Sections 2.3 and 2.4. Moreo et al. (2000) have
obtained theoretically within one- and two-orbital models
that the size of competing FM and AF clusters close to
first-order phase transition in the presence of quenched dis-
order can be much larger than the lattice spacing. The cluster
size varies in the range of few tens to few hundreds of
lattice spacing; that is, within 10–400 nm. Moreover, the
cluster size depends on the strength of disorder, σ 2, that
is, the larger the disorder, the smaller the cluster size. The
disorder-induced PS explains the observed inhomogeneities
by STM/STS (Fäth et al., 1999; Becker et al., 2002; Chen
et al., 2003; Moshnyaga et al., 2006) as well as those seen
by TEM (Uehara, Mori, Chen and Cheong, 1999).

The important theoretical prediction was the percolative
character of PS scenario as a function of magnetic field or
temperature, intuitively concluded already in earlier experi-
ments (Uehara, Mori, Chen and Cheong, 1999). Moreo et al.
(2000) have shown that under applied magnetic field, the
previously disconnected FM clusters grow in size and start
to connect each other. Thus, a percolation, that is, formation
of an infinite metallic cluster (Shklovsky and Efros, 1979),
accompanied with formation of a current path emerges. The
MI transition in the PS scenario occurs as a percolation
transition within the two-phase model, simulated by the
resistor network (Mayr et al., 2001). By decreasing temper-
ature, starting from PM state, the concentration of metallic
phase increases from zero up to a value called percolation
threshold, p0, which consists of 40 and 50% for 2D and
3D percolation models, respectively (Shklovsky and Efros,
1979). For p > p0 a metallic filament builds up, forming
the current path through the whole sample. Very large val-
ues of CMR ∼ 105% (McCormack et al., 1994) can be
quantitatively explained within the resistor network model,
which shows that the resistance close to percolation thresh-
old is very sensitive to small changes in concentration of
metallic phase p, resulting in extreme large, up to sev-
eral orders of magnitude, changes of the resistance (Mayr
et al., 2001).

We proposed an approach (Moshnyaga et al., 2003; Lebe-
dev et al., 2002) to create artificial phase-separated system,
based on epitaxial nanocomposite manganite (LCMO) thin
films, containing a second insulating phase (MgO), which

chemically and crystallograhically fits the primary manganite
phase. Such composites can be viewed also as an artificially
created ‘phase-separated’ system, consisting of 3D mangan-
ite nanoclusters, imbedded in an appropriate insulating oxide
matrix. Thus, chemical PS will lead to an artificial EPS of
the MI type, parameters, and the scale of which can be
controlled by processing conditions. Magnetotransport prop-
erties can then be compared with those recently observed
in ‘naturally existing’ electronic phase-separated samples
(Uehara, Mori, Chen and Cheong, 1999). The microstruc-
ture of (LCMO)1−x :(MgO)x nanocomposite films grown on
MgO substrate by MAD technique is shown in Figure 19. In
the cross-sectional image (Figure 19a), one can see that both
LCMO and MgO phases grow epitaxially on the MgO sub-
strate. The mean diameter of the LCMO domains varies as
D = 40–50 nm. Sharp interfaces are also seen in an HREM
plane view image in Figure 19(b). Remarkably, we did not
observe misfit dislocations at these LCMO/MgO interfaces
similar to the case of individual LCMO films grown on

MgO

MgO MgO

MgO

MgO(001)

MgO

LCMO

LCMO

LCMO

3 nm

2 nm

20 nm

(a)

(b)

(c) (d)

Figure 19. Cross section (a) and plane view (b) HREM images of
epitaxial nanocomposite (LCMO):(MgO) films. Mg (bright) map
obtained by EELS (c) and plane view TEM image (d) of the same
region showing clear chemical phase separation between LCMO
and MgO. (Reproduced from V. Moshnyaga et al., 2003, with
permission from Nature Publishing Group.  2003.)
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MgO substrate by MAD technique (see Section 3.3). Energy
filtered TEM in a plane view, shown in Figure 19(c), demon-
strates no chemical intermixture between LCMO and Mg
(bright regions), which is in good agreement with the
sharp contrast between these phases in the HREM image
(Figure 19d). Thus, we conclude that composite films contain
chemically well-separated nanocrystalline LCMO and MgO
domains, which are epitaxially oriented with respect to each
other as well as to the substrate. By varying the concentra-
tion of MgO, x, one can control magnetotransport behavior
as we as the structure of the LCMO phase. The percola-
tion threshold in conductivity was found for xc = 0.33. This
means that for x > xc resistivity at room temperature drasti-
cally increases as shown in Figure 20 and no MI transition at
zero (ambient) magnetic field was observed for temperatures
down to 4.2 K. Remarkably, in such artificial PS system, the
CMR effect is manifested as a field-induced MI transition
(see Figure 20) and exactly at the percolation threshold CMR
reaches very large values of more than 105% for B = 5 T.
This is in very good agreement with computational mod-
els (Mayr et al., 2001) and probably explains the nature of
very large CMR in earlier experiments (McCormack et al.,
1994) as really caused by the PS scenario. Another inter-
esting result of this study (Moshnyaga et al., 2003) was the
observation of strong elastic coupling between the LCMO
and MgO nanophases. This coupling provides an additional
opportunity to control the behavior of LCMO by means
of volume tensile stress or ‘negative’ pressure, actuated by
MgO second phase. As a result, the structure of LCMO
changes from a usual orthorhombic (Pnma) to the rhom-
bohedral (R-3c), which is shown on the phase diagram in
Figure 20(b). The structural phase transition (see Figure 20b)
occurs also at the percolation threshold, when an infinite
MgO cluster emerges, connecting all LCMO domains and
yielding homogeneous and very large volume stress. Accord-
ing to Lebedev et al. (2002), this structural phase transition
to a more symmetric rhombohedral phase provides a stress
accommodation mechanism, which is necessary to release
very large bulk tensile stress induced by the MgO second
phase.

4.2 Low-field magnetoresistance

As is commonly believed, the CMR effect being limited
within narrow temperature region close to TC and strong
magnetic fields of several Tesla has no potential for appli-
cations. The device applications like magnetic sensors or
magnetic random access memory (MRAM) require both low-
field sensitivity and broad operation temperature region. The
low-field sensitivity is provided with the TMR effect on the
interfaces between manganite and insulating phase (usually
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transition at the percolation threshold for x = 0.33 (a) and phase
diagram of LCMO:MgO system (b), showing tight coupling
between structural, magnetic, and electronic properties. (Repro-
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STO). The structure of such interfaces realized in planar
geometry or as GB was discussed in Section 3.2. Another
possibility for low-field MR provides intrinsic magnetic dis-
order, that is, magnetic domain structure naturally existing
in a FM material. For low-field applications one can try to
use the interaction between the transport current, �J , and fluc-
tuations of magnetization vector

−→
M in a structurally homo-

geneous ferromagnet because of two different MR effects:
(i) direct scattering of charge carriers on domain walls, called
domain-wall magnetoresistance (DWMR) and (ii) spin-orbit
interaction induced difference in scattering amplitude when
the current flows parallel and perpendicular to the magnetiza-
tion direction, called anisotropic magnetoresistance (AMR).
In the following text we discuss these low-field MR effects
with respect to manganite films, but concentrate first on the
TMR effect.
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4.2.1 Tunneling magnetoresistance (TMR)

The main idea of TMR is based on spin-dependent scattering
of charge carriers (Moodera, Kinder, Wong and Meservey,
1995), which are assumed to be spin polarized, that is,
the electrons possess a definite projection of spin, on the
interfaces (see Figure 21). Because of broken translational
symmetry of the manganite films on the interfaces, there are
two magnetically decoupled manganite layers (electrodes),
having in between an insulating tunneling transparent barrier
layer with the thickness typically about 1–2 nm. When a dc
bias is applied electrons can tunnel through the barrier. The
resistance of such magnetic tunnel junction depends on the
relative orientation of magnetization in FM electrodes for
T < TC, which can be controlled by applied magnetic field.
The TMR ratio is

T MR = (RAP − RP)/RAP (7)

With RAP and RP are resistances of magnetic tunnel junc-
tion for antiparallel and parallel orientation of magnetization
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Figure 21. Field dependence of the resistance of a magnetic tunnel
junction from (upper panel) and temperature dependences of the
TMR effect (lower panel). (Reproduced from M. Bowen et al.,
2003, with permission from the American Institute of Physics.
 2003.)

of electrodes, respectively (Bowen et al., 2003). RP < RAP

because, under assumption that spin of charge carrier does
not changes by tunneling process, the parallel configuration
account for minimum energy while to realize the antiparal-
lel configuration an additional energy to reorient spin of an
electron is required. Julliere (1975) has formulated that TMR
ratio of a magnetic tunnel junction depends on the spin polar-
ization of electrons on the Fermi level in both electrodes, P1

and P2, as the following:

T MR = 2P1P2/(P1 − P2) (8)

The advantage of manganites for TMR is that the spin
polarization, as measured by spin resolved photoemission
spectroscopy, can be very high reaching almost 100% (Park
et al., 1998). One calls manganites half-metallic with prac-
tically fully spin polarized electrons on the Fermi level.
In comparison, spin polarization of transition element FM
metals like Fe, Ni, or Co does not exceed 50% (Monsma
and Parkin, 2000), yielding usually maximum TMR ∼ 60%.
According to Julliere’s model, manganites should show very
high TMR, which even can diverge when P1 = P2 = 1. On
the other hand, by constructing a magnetic tunnel junction,
one electrode of which has known P value, one can estimate
the spin polarization for another electrode. Indeed, mangan-
ite base tunnel junctions (Bowen et al., 2003), prepared as
trilayer structure LSMO/STO/LSMO, reveal extremely high
TMR = 1800% as shown in Figure 21. One can see that resis-
tance change can exceed 1 order of magnitude for very low
magnetic fields, comparable to coercive field HC ∼ 100 Oe.
The estimated spin polarization degree in LSMO was 95%
in good agreement with spectroscopy measurements (Park
et al., 1998). However, such high TMR value was observed
only for low temperatures. In Figure 21(b) one can see that
TMR decreases strongly with increasing temperature and
even for T ∼250 K, that is, much lower than bulk TC = 360 K
for LSMO TMR vanishes. Similar temperature dependences
were obtained on TMR structures prepared by different tech-
niques with tunneling barriers grown between planar inter-
faces, vertical interfaces as well as a GB (Hwang, Cheong,
Ong and Battlog, 1996; Steenbeck et al., 1998; Gupta et al.,
1996; Phillip et al., 2000; Lu et al., 1996; Sun et al., 1996;
Pailloux et al., 2002; Luo and Samwer, 2001; Köster et al.,
2002), thus indicating a common temperature behavior of
TMR in manganite-based magnetic tunnel junctions. The
degradation of TC and, hence, of spin polarization in the
manganite layer close to the interface caused, likely, by
stress effect or interface doping was suggested. Commonly
used barrier material, STO, with small lattice mismatch,
ε ≈ 0.9% indeed induces coherent strain in LSMO layer
up to about 100 nm distance from the barrier, leading to
decrease of TC for LSMO from the bulk value 360 down
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to 310 K in the strained film (Izumi et al., 1998). How-
ever, such reduction of TC does not explain the suppres-
sion of TMR for temperatures much lower than room tem-
perature. Moreover, the LCMO/NGO/LCMO tunnel junc-
tions (Moon-Ho, Mathur, Evetts and Blamire, 2000) with
perfectly matched NGO barrier also show drastic reduc-
tion of TMR for temperatures around 150–200 K, that is,
far away from bulk TC of LCMO as discussed in the
following text.

An interesting way to increase the interface magnetiza-
tion of LSMO and thus to increase spin polarization at room
temperature was proposed by Yamada et al. (2004). They
suggested that degradation of the interface magnetization
occurs because of the doping effect, that is, of increased
Sr concentration on the interface resulted from the SrO ter-
mination layer of SrTiO3 barrier. By means of interface
LL engineering, they introduced a two-unit-cell-thick LMO
between the LSMO/STO interface. As a result, the inter-
face magnetization, probed by second-harmonic-generation
(SHG) technique, was significantly increased at room tem-
perature. Without LMO layer no magnetic SHG was observed
already for T ∼ 250 K. Another source of interface degrada-
tion (Bibes et al., 2001), is related to a nanoscale PS on
the LCMO/STO interfaces induced by coherent strain effect.
As a result, the FM coupling within the metallic regions is
depressed. This accounts for the reduction of the Curie tem-
perature and conductivity in the manganite layer close to
the interface. Although the precise cause for the reduction
of interface magnetism (stress, disorder, doping, PS, etc.)
is difficult to determine in any concrete case, from struc-
tural considerations it seems probably that the problem is
closely related to the interface symmetry of d orbitals of
Mn, resulting in the change of Mn–O bond length and/or
O–Mn–O angle, which both are crucial for magnetism in
manganites. In this sense very important becomes the prob-
lem of termination layer, that is, whether (La,Sr)O or MnO2

layer terminates a manganite film at the interface. Pailloux
et al. (2002) have shown that (La,Sr)O termination does not
disturb average valence of Mn close to interface and allows
one to keep TMR still measurable close to the bulk TC in
Co/STO/LSMO tunnel junctions. Interesting interface prop-
erties were shown by Giesen et al. (2004), who observed that
all-manganite multilayers like (LSMO/LCMO)n, prepared by
PLD technique, do not show PS induced reduction of mag-
netic and electric properties of LCMO layer down to the
thickness of 6 nm. This was interpreted within the preserva-
tion of Mn–O–Mn chains at the interfaces. In this context, an
insulating manganite barrier layer for TMR structures looks
very interesting (Kleine, Luo and Samwer, 2006). One can
suppose that LMO with the same perovksite structure and
practically the same lattice parameter as electrodes (LSMO)
would not suppress interface magnetism in LSMO.

4.2.2 Domain-wall and anisotropic
magnetoresistance (DWMR and AMR)

The information on the DWMR in manganite films (Mathur
et al., 1999; Wolfman et al., 2001; Ziese, 2002) is limited and
contradictory. This is caused by the fact that both DWMR
and AMR effects lead to very small relative changes in the
resistance, 	R/R ≤ 0.1–1 %, which can be hardly separated
between DWMR and AMR effect and/or can be even
hindered by other extrinsic (TMR) or intrinsic (CMR) effects
(Ziese, 2002). Moreover, the observation of DWMR requires
a definite geometry of magnetic domain structure, which
is usually achieved by the preparation of nanocontacts and
nanoconstrictions. Micromagnetic simulations of the domain
structure accounting additionally for stress-induced changes
in magnetic anisotropy in thin manganite films (O’Donnell,
Rzchowski, Eckstein and Bozovic, 1998) are also extremely
important. To obtain reliable experimental data, well-defined
samples made from epitaxial thin films of high crystalline
quality, usually grown by LL mode, are required. Mathur
et al. (1999) have seen a step like of about 1% jumps
in the resistance at T = 77 K of a LCMO thin-film array,
containing constricted areas of micrometer size, which were
assumed to pin the domain walls close to constrictions. The
estimated value of domain wall × area resistance, DWRA =
8 × 10−14�m2, was about 4 orders of magnitude smaller
than that for a grain boundary, but much larger than DWRA
in FM cobalt. The DWMR = 16% at room temperature
was obtained for a LSMO film with a nanoconstricted
area, produced by electron beam lithography (Wolfman
et al., 2001). In Figure 22, the vertical nanoconstriction
geometry with h = 90 nm-wide gaps lying in the film plane
is shown. The resistance of a such nanobridge as a function
of magnetic field shows very sharp 1.8 k� large jumps
for H ∼ 0.75–1.5 kOe with a hysteresis in switching, thus
evidencing magnetic origin of the resistance change. The
very large resistance × area product DWRA = 10−11�m2

implies that the width of domain wall is strongly reduced
due to nanoconstriction.

The AMR effect, which is governed by the magnetization
state of a structurally homogeneous FM material, seems to
be more appropriate for low-field applications (Ciureanu and
Middelhoek, 1992) – at least no special geometric limitations
like nanoconstrictions are required. Spontaneous AMR, orig-
inating from spin-orbit interaction (Smit, 1951; McGuire and
Potter, 1975; Malozemoff, 1985), results in the anisotropy of
the resistivity, 	ρ = ρ || − ρ⊥, with respect to the magneti-
zation direction. Here ρ|| and ρ⊥ is the resistivity parallel and
perpendicular to the magnetization direction, respectively,
of a single-domain ferromagnet. Depending on whether the
voltage is probed parallel (VX) or perpendicular (VY ) to the
current density, the electric field related to the AMR is given
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Figure 22. (a) Scheme of a nanoconstriction device and (b) field
dependence of the resistance at room temperature. (Reproduced
from J. Wolfman et al., 2001, with permission from the American
Institute of Physics.  2001.)

by Li et al. (1999):

Ex = jρ⊥ + j (	ρ) cos2 α (Longitudinal geometry) (9)

Ey = (j/2)(	ρ) sin(2α) (Transverse geometry) (10)

Here, j is the transport current density in x direction, and
α is the angle between current and the magnetization. AMR
is quantified by a ratio γ = 	ρ/ρ0 (ρ0 is bulk resistively of
the material at zero filed), which is only about 1% for most
FM materials as well as for magnates (Mathur et al., 1999;
Malozemoff, 1985; Li et al., 1999). Therefore, AMR, usually
hardly seen in longitudinal geometry (	ρ � ρ⊥ρ0), can be
detected in the transverse geometry (equation (10) using a
properly microstructured epitaxial films.

We have studied in detail the AMR effect in transverse
geometry (also known as planar Hall effect) for epitax-
ial La0.7(Ca0.5Sr0.5)MnO3 (LSCMO, TC = 310–320 K) thin
films grown by MAD technique (Moshnyaga, Damaschke,
Tidecks and Samwer, 2003) and built a prototype low-field
manganite sensor operating at room temperature. The film
was patterned photo-lithographically as shown in Figure 23.
The length of the current line was L = 6 mm and the width
W = 0.3 mm. The transverse voltage was detected with the
VY contacts placed in the perpendicular direction. The mag-
netic field was aligned parallel to the film surface. The
angle dependence of the transverse voltage, VY (α), measured
at room temperature and magnetic field H = 0.5 kOe (see
Figure 23) obeys equation (9) for the AMR effect, corrected
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Figure 23. Angle (a) and magnetic field (b) dependences of trans-
verse voltage of a La0.7(Ca, Sr)0.3MnO3 thin film. The sample
geometry is shown in the inset of (b): the current flows between
contacts (1,2) and the voltage, VY , is measured between the oppo-
site contacts (3,4). Magnetic field is aligned parallel to the film
plane at angle α to the current line. (Reproduced from V. Mosh-
nyaga et al., 2003a, with permission from the American Institute of
Physics.  2003.)

by small isotropic offset voltage, V0, due to longitudinal mis-
fit of the transverse contacts:

VY (α, H) = V0(H) + VAMR(H) × sin(2α) (11)

here: V0 = 0.27 mV and VAMR = 1 mV for H = 0.5 kOe.
As one can see in Figure 23(b) the magnetic field depen-
dence of the AMR voltage in the LSCMO films is extremely
sharp for very low fields H = 0–20 Oe, yielding a max-
imum room-temperature field sensitivity of S ≈ 20%/Oe.
Another important quantity is the magnetovoltage ratio,
MV = 100%[VAMR(H)/V0], which describes the relative
change of the transverse voltage in an applied magnetic field.
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For α = 45◦ and H = 500 Oe with VAMR = 1 mV and V0 =
0.25 mV (see Figure 18) we get MV = 400%. Even for very
low fields, H < 40 Oe, it is MV (40 Oe)= 220%. The men-
tioned parameters for manganite films considerably exceed
S = 6%/Oe and MV = 130 % at H = 35 Oe, observed for
the transverse AMR structures based on Co/Ni multilayers
at room temperature (Prados et al., 1995). Very recently,
by improving the measurement conditions of LSCMO-based
prototype thin-film sensor, we obtained the output sensitivity
as large as S = 400 µV Oe−1 for very low-field H ∼ 1 Oe.
With the actual noise level, VN ∼ 0.1 µV, the dc magnetic
field sensitivity was HN = VN/S ≈ 2 × 10−4 Oe at room
temperature. All this makes manganite-based MR sensors
very attractive for a low-field sensing, which was already
demonstrated by us at the International Hannover fair, 1–24
April 2004.

5 SUMMARY AND OUTLOOK

We hope that in spite of limited space, the main features
of the physics of manganite thin films were discussed. The
most important and most intriguing aspect of the manganites
is definitely their complexity, related to a rich variety of
experimentally observed physical effects like MI transition,
CMR, charge, and OO. These phenomena, mediated by
different electronic and structural phase transitions, can be
strongly influenced by external stimuli (field, temperature,
pressure, electromagnetic radiation), resulting in potentially
useful effects.

Furthermore, the complexity of manganite also includes
the coexistence of different electronic and structural phases
(PS ) as well as the interaction between them. The nature
of phase competition or in other words the mechanisms
of interaction between different phases within PS scenario
seems to be most difficult and thus unexplored problem
both for experimental and theoretical physics. Taking into
account the major role of lattice strain and disorder effects
on the structure and electronic properties of manganites,
discussed in Section 1, one can suppose that the phases,
FMM and AFI, counteracting in the PS scenario, may be
coupled elastically. From earlier fundamental studies it is
known these phases differ by their crystalline structure
(AFI phase is orthorhombic and FMM phase is cubic
or rhombohedral) and thus by degree of lattice strain.
This point seems to be in good agreement with local
STM/STS. Moreover, the observed nonmonotonous magnetic
field dependence of the local tunneling conductivity map
as well as the irreversibility and ‘magnetic history’ effects
in the PS in thin films of LCMO strongly support the
coupling between phases. Note that the irreversibility close to
the orthorhombic-rhombohedral structural phase transition in

bulk La1−xSrMnO3 (x = 0.17) was clearly seen not only by
changing temperature but also as a function of magnetic field,
known as structural phase transition induced by magnetic
field (Asamitsu et al., 1995). More generally temperature
and magnetic field behavior of the PS in thin films as
well as its characteristic scale (10–100 nm) agrees well with
the disorder (stress)-induced PS scenario close to the first-
order phase transition. Very important becomes the issue of
controlling cation disorder, which will allow one to study
CMR and electronic manifestations of small and correlated
polarons on a very fine scale (1–3 nm) in a so-called clean
limit. We believe the first step along this line is done by
means of preparation of A-site ordered LCMO films.

Along the fundamental importance, the controlling of
stress and disorder on the nanoscale seems to be interest-
ing also for future applications. We would like to draw the
attention of the reader to the following, may be unexpected,
aspect of the PS model: the interaction between metallic and
insulating phases occurs at the interfaces and by means of
changing of the interface properties. This implies also that
PS dynamic as a function of field or temperature should be
strongly dependent on the interface quality. One can find a
very clear analogy with the magnetic tunnel junctions, the
performance (spin polarization) of which as we have seen in
Section 2.2 depends crucially on the interface quality. Thus,
to control PS with a possibility to make a step in nanoscale
physics and technology down to at least 10 nm as well as
to control the TMR device performance means to be able
to control the interfaces. The term interface engineering is
already known. With respect to the PS problem such interface
nanoengineering can be done by creating ‘static’ interfaces in
the preliminary homogeneous electronic template chemically
by doping during self-assembled growth of nanophases, like
in LCMO:MgO nanocomposites. In this sense, the search
of new phase counterparts and further technological devel-
opment are necessary. Even more interesting seems to be
‘dynamic’ interfaces created by electromagnetic radiation. It
is known that electromagnetic radiation (X ray or visible
light) can significantly change the ground state of a man-
ganite resulting even in insulator–metal transition (see for
example, Kiryukhin et al., 1997; Mishina et al., 2004); this
topic is out of the frame of this review). However, locally the
effect of electromagnetic radiation on the PS was not studied
to the best of our knowledge.

Recently, multiferroic behavior has become a very hot
topic. Such materials combining FM and FE properties are
extremely interesting both for fundamental and applied sci-
ence (Spaldin and Fiebig, 2005). Such materials would, in
principle, allow one to get new functions due to magneto-
electric effect, that is, magnetization can be controlled by
electric field and, vice versa, electrical polarization can be
changed by magnetic field. Because of a limited amount of
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intrinsic multiferroic materials (note that FM-FE coexistence
in the same chemically homogeneous material seems to be
mutually exclusive – FE needs empty but FM requires par-
tially filled transition-metal orbitals (for details see Spaldin
and Fiebig, 2005)), there is a great demand of composite
multiferroic materials, among which thin-film composite will
play a major role owing to the possibility of obtaining very
large interface area and thus of optimizing elastic coupling
between FM and FE constituents with corresponding opti-
mization of magnetoelectric effect. In this case, the problem
of controlling thin-film interfaces becomes extremely impor-
tant. Recently, Zheng et al. (2004) have prepared multiferroic
BaTiO3 –CoFe2O4 film nanostructures, in which elastically
coupled nanocolumnar phases are also coupled magneto-
electrically, that is, magnetization of CoFe2O4 changes at
the FE Curie temperature. It seems reasonable to substitute
CoFe2O4 in such a composite with a manganite (LCMO)
phase; the latter should be much more sensitive to mechanic
deformation actuated anyway by the FE BaTiO3 component.
However, to realize chemical PS (not multilayer geometry)
between two phases (LCMO and BaTiO3) having the same
perovskite structure looks quite a challenging task for thin-
film technology.

REFERENCES

Aarts, J., Freisem, S., Hendrikx, R. and Zandbergen, H.W. (1998).
Disorder effects in epitaxial thin films of (La,Ca)MnO3. Applied
Physics Letters, 72, 2975–2977.

Adams, C.P., Lynn, J.W., Mukovskii, Y.M., et al. (2000). Charge
ordering and polaron formation in the magnetoresistive oxide
La0.7Ca0.3MnO3. Physical Review Letters, 85, 3954–3957.

Ahn, K., Lookman, T. and Bishop, A.R. (2004). Strain-induced
metal–insulator phase coexistence in perovskite manganites.
Nature, 428, 401.

Akahoshi, D., Uchida, M., Tomioka, Y., et al. (2003). Random
potential effect near the bicritical region in perovskite manganites
as revealed by comparison with the ordered perovskite analogs.
Physical Review Letters, 90, 177203.

Allodi, G., De Renzi, R. and Guidi, G. (1998). 139La NMR in
lanthanum manganites: indication of the presence of magnetic
polarons from spectra and nuclear relaxations. Physical Review
B, 57, 1024–1034.

Anderson, P.W. and Hasegawa, H. (1955). Considerations on double
exchange. Physical Review, 100, 675–681.

Archibald, W., Zhou, J-S. and Goodenough, J.B. (1996). First-order
transition at TC in the orthomanganites. Physical Review B, 53,
14445–14449.

Arima, T., Akahoshi, D., Oikawa, K., et al. (2002). Change in
charge and orbital alignment upon antiferromagnetic transition
in the A-site-ordered perovskite manganese oxide RBaMn2O6

(R = Tb and Sm). Physical Review B, 66, 140408(R).

Asamitsu, A., Moritomo, Y., Tomioka∗, Y., et al. (1995). A
structural phase transition induced by an external magnetic field.
Nature, 373, 407–409.

Ashckroft, N.W. and Mermin, N.D. (1981). Solid State Physics,
Holt Saunders Japan, Ltd,: Tokyo.

Becker, T., Streng, C., Luo, Y., et al. (2002). Intrinsic inhomo-
geneities in manganite thin films investigated with scanning tun-
neling spectroscopy. Physical Review Letters, 89, 237203.

Bednorz, J.G. and Müller, K.A. (1986). Possible highTc supercon-
ductivity in the Ba–La–Cu–O system. Zeitschrift fur Physik B,
64, 189–193.

Bibes, M., Balcells, Ll., Valencia, S., et al. (2001). Nanoscale
multiphase separation at La2/3Ca1/3MnO3/SrTiO3 interfaces.
Physical Review Letters, 87, 067210.

Billinge, S.J.L., Di Francesco, R.G., Kwei, G.H., et al. (1996).
Direct observation of lattice polaron formation in the local
structure of La1−xCaxMnO3. Physical Review Letters, 77,
715–718.

Biswas, A., Rajeswari, M., Srivastava, R.C., et al. (2000). Two-
phase behavior in strained thin films of hole-doped manganites.
Physical Review B, 61, 9665–9668.

Bowen, M., Bibes, M., Barthelemy, A., et al. (2003). Nearly total
spin polarization in La2/3Sr1/3MnO3 from tunneling experiments.
Applied Physics Letters, 82, 233–235.

Burgy, J., Mayr, M., Martin-Mayor, V., et al. (2001). Colossal
effects in transition metal oxides caused by intrinsic inhomo-
geneities. Physical Review Letters, 87, 277202.

Chahara, K., Ohno, T., Kasai, M. and Kozono, Y. (1993). Magne-
toresistance in magnetic manganese oxide with intrinsic antiferro-
magnetic spin structure. Applied Physics Letters, 63, 1990–1992.

Chen, C.H. and Cheong, S-W. (1996). Commensurate to incom-
mensurate charge ordering and its real-space images in La0.5Ca0.5

MnO3. Physical Review Letters, 76, 4042–4045.

Chen, S.F., Lin, P.I., Juang, J.Y., et al. (2003). Metallic percolation
in La0.67Ca0.33MnO3 thin films. Applied Physics Letters, 82,
1242–1244.

Chisholm, M.F. and Penneycook, S.J. (1991). Structural origin
of reduced critical currents at YBa2Cu3O7−δ grain boundaries.
Nature, 351, 47–49.

Ciureanu, P. and Middelhoek, S. (1992). Thin Film Resistive
Sensors, Institute of Physics Publishing: New York.

Coey, J.M.D., Viret, M. and Molnar, S. (1999). Mixed-valence
manganites. Advances in Physics, 48, 167–293.

Dagotto, E. (2003). Nanoscale Phase Separation and Colossal
Magnetoresistance, Springer-Verlag: Berlin- Heidelberg.

Dagotto, E., Hotta, T. and Moreo, A. (2001). Colossal magnetoresis-
tant materials: the key role of phase separation. Physics Reports,
344, 1–153.

Dai, P., Fernandez-Baca, J.A., Wakabayashi, N., et al. (2000).
Short-range polaron correlations in the ferromagnetic La1−xCax

MnO3. Physical Review Letters, 85, 2553–2556.

DeLeon, R.L., Joshi, M.P., Rexer, E.F., et al. (1998). Progress in
thin film formation by laser assisted molecular beam deposition
(LAMBD). Applied Surface Science, 127–129, 321–329.



26 Magnetic semiconductors and oxides

Dessau, D.S. and Shen, Z-H. (2000). Direct electronic structure
measurements of the colossal magnetoresistive oxides. In Colos-
sal Magnetoresistive Oxides, Tokura, Y. (Ed.), Gordon & Breach
Science Publishers: Amsterdam, pp. 149–185.

Dijkkamp, D., Venkatesan, T., Wu, X.D., et al. (1987). Preparation
of Y-Ba-Cu oxide superconductor thin films using pulsed laser
evaporation from high TC bulk material. Applied Physics Letters,
51, 619–621.

Eremenko, V., Gnatchenko, S., Makedonska, N., et al. (2001).
X-ray study of Nd0.5Sr0.5MnO3 manganite structure above
and below the ferromagnetic metal–antiferromagnetic insula-
tor spontaneous phase transition. Low Temperature Physics, 27,
930–934.

Esseling, M., Moshnyaga, V., Samwer, K., et al. (2005). Low-
frequency 1/f-noise in (La0.7Sr0.3MnO3)0.95:(MgO)0.05 nanocom-
posite films. Applied Physics Letters, 87, 082509.
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1 INTRODUCTION

Ferromagnetic semiconductors are semiconductors that
exhibit ferromagnetism. Owing to spontaneous spin split-
tings in the band structure caused by exchange interac-
tion, they exhibit a variety of spin-dependent optical and
transport properties that are not readily available in other
materials. Owing to this additional spin degree of freedom,
ferromagnetic semiconductors can combine semiconductor
heterostructure physics and ferromagnetism, which may lead
us to new usage of semiconductor properties and ferromag-
netism that was not realized by other systems (Awschalom,
Loss and Samarth, 2002; Žutić, Fabian and Das Sarma,
2004). The study of ferromagnetic semiconductors was ini-
tiated by extensive theoretical and experimental studies on

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

rare-earth chalcogenides and chromite spinels since the 1960s
(Methfessel and Mattis, 1968; Holtberg et al., 1980; Mauger
and Godart, 1986). However, difficulties in preparation of
materials and their heterostructures made these materials less
attractive. Recent progress in ferromagnetic semiconductors
was made in a class of semiconductors called diluted mag-
netic semiconductors (DMSs), where a part of host atoms
is replaced by magnetic elements. In the early stage of the
DMS research, studies were done on paramagnetic II–VI
compound semiconductor-based DMSs (Furdyna and Kos-
sut, 1988; Kossut and Dobrowolski, 1993; Dietl, 1994).
These paramagnetic II–VI DMSs showed antiferromagnetic
superexchange interaction among magnetic ions and exhib-
ited a number of new spin-dependent phenomena including
giant Zeeman splitting of band states induced by an exter-
nal magnetic field H . Giant Zeeman splitting is caused by
the exchange interaction among band carriers (sp states) and
magnetic spins (d states), which is often called the sp –d
exchange interaction. This interaction is the source of most
of the unique properties of II–VI DMSs and determines prop-
erties such as the magnitude of the Faraday effect and allows
one to realize a new class of low-dimensional structures, such
as spin superlattice (Kossut, 2001; Dobrowolski, Kossut and
Story, 2003).

Synthesis (Munekata et al., 1989) and subsequent discov-
ery of ferromagnetism in III–V-based DMSs, (In,Mn)As and
(Ga,Mn)As, in the 1990s (Ohno et al., 1992, 1996) added
a new dimension to the magnetic semiconductor research
because of possible seamless integration of ferromagnetism
with well-established III–V heterostructures and devices.
(Ga,Mn)As and (In,Mn)As are now most well-investigated
and well-understood ferromagnetic semiconductors and the
material and their heterostructures provide an ideal test
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bench for demonstrating new concepts in physics and device
operation (Ohno, 1999; Matsukura, Ohno and Dietl, 2002;
Jungwirth et al., 2006). It has been established that the exis-
tence of holes brings about the ferromagnetic interaction
among Mn spins in (Ga,Mn)As and (In,Mn)As. The p–d
Zener model has been shown to describe qualitatively and,
in many cases, even quantitatively a number of experimen-
tal results on these materials (Dietl, Ohno and Matsukura,
2001; Dietl et al., 2000). In this review, we intend to sum-
marize the present state of the experimental results on ferro-
magnetic semiconductors focusing mainly on the prototypal
(Ga,Mn)As and (In,Mn)As and their device structures.

2 PREPARATION AND BASIC
CHARACTERIZATION

A number of methods have been employed for the synthesis
of DMSs. These include Bridgman and Czochralski meth-
ods for bulk materials, and molecular-beam epitaxy (MBE),
diffusion, ion implantation, and pulsed-laser deposition meth-
ods for thin films. The Bridgman method was adopted to
obtain single-crystal bulk II–VI DMSs, in which the solubil-
ity of transition metals can be high due to the isoelectronic
nature of magnetic ions; for example, highest Mn compo-
sition x ∼ 0.8 for representative II–VI DMS, Cd1–xMnxTe
(Furdyna and Kossut, 1988). MBE growth has been adopted
for nearly all heterostructures and low-dimensional structures
based on II–VI materials. It has also been used to prepare
(In,Mn)As with x < 0.18 (Munekata et al., 1989), overcom-
ing the solubility limit of transition metals in III–V, which
is of the order of 1018 –1019 cm–3, together with the sur-
face segregation and phase separation (DeSimone, Wood and
Evans, 1982; Kordoš, Janšák and Benč, 1975). The growth
of single-crystal (In,Mn)As was achieved by employing low-
temperature molecular-beam epitaxy (LT-MBE), performing
epitaxial growth at low growth temperature TS below 300 ◦C
compared to typical TS ∼ 500 ◦C for InAs, where, impor-
tantly, TS was still high enough to provide metastable single
crystal and low enough to suppress the formation of ther-
modynamically stable second phases such as MnAs. This
initial success of (In,Mn)As was followed by the growth of
(Ga,Mn)As (Ohno et al., 1996). Most of Mn in III–V DMSs
substitute the third-group cation site and provide both local-
ized spins and holes due to their acceptor nature.

2.1 Molecular-beam epitaxy of (Ga,Mn)As

Typical MBE of (Ga,Mn)As is carried out in an ultrahigh
vacuum MBE chamber with elemental sources, Ga, Mn,

and As, on GaAs(001) substrates with surfaces under As-
stabilized conditions. After the removal of surface oxide and
the growth of buffer layer for the preparation of a flat start-
ing surface, the growth of (Ga,Mn)As is initiated by simply
commencing the Mn flux during the LT-GaAs growth while
keeping TS constant at ∼250 ◦C. The reflection high-energy
electron diffraction (RHEED) pattern is used as a common
tool to monitor the growth front. The RHEED pattern for
(Ga,Mn)As shows a streaky (1 × 2) pattern, confirming the
growth of (Ga,Mn)As with a zinc-blende structure. Maxi-
mum x reported so far is 0.15 (Chiba, Takamura, Matsukura
and Ohno, 2003). When TS and/or Mn flux is too high,
one can recognize the segregation of the hexagonal MnAs
phase from a spotty RHEED pattern (Shen et al., 1997a).
Further decreasing TS or employing the migration-enhanced
epitaxy (MEE) method, where Ga + Mn and As fluxes are
supplied alternately, have been reported to help increase
maximum x, but not dramatically (Takamura, Matsukura,
Ohno and Ohno, 2001; Sadowski et al., 2001). If the growth
condition is appropriate, a clear RHEED intensity oscilla-
tion is observed at the initial stage of growth (Shen et al.,
1997a), where the surfactant effect of Mn and excess As
may be responsible for the two-dimensional growth at low TS

(Shen, Horikoshi, Ohno and Guo, 1997b; Yasuda and Ohno,
1999; Guo et al., 2000). Magnetic and electrical properties
of (Ga,Mn)As are strongly affected by the growth condi-
tion, such as V/III beam-flux ratio and TS as well as x

(Matsukura et al., 1999; Shimizu, Hayashi, Nishinaga and
Tanaka, 1999; Ohno, 1998; Myers et al., 2006), which is
related to the degree of compensation due to the existence
of As antisites and Mn interstitials, both known as donors
in GaAs.

2.2 Determination of Mn composition and lattice
constants

Mn composition in the epitaxial film can be calculated from
the beam-equivalent pressure (BEP) measured by an ion
gauge inserted in the path of the beam flux and later cal-
ibrated to relate BEP to the beam flux and/or from the
periods of the RHEED intensity oscillation observed at
the initial stage of growth (Ohno et al., 1996; Sadowski
et al., 2000). Other conventional analyses are also appli-
cable, such as Auger microprobe measurement, electron
probe-microanalysis (EPMA), and secondary ion mass spec-
troscopy (SIMS) (Ohno et al., 1996; Sadowski et al., 2001).
Of all others, the most widely used method is the use of
lattice constant a determined by X-ray diffraction (XRD)
as the measure of x due to its experimental simplicity.
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(Ga,Mn)As on a GaAs buffer layer has compressive lat-
tice strain, and the free-standing lattice constant a is cal-
culated with assumptions that the (Ga,Mn)As layer is fully
strained, that is, the lateral lattice constant of the epitax-
ial layer is equal to the GaAs one, and that (Ga,Mn)As
has the same elastic constant as GaAs (Ohno et al., 1996).
The pseudomorphic growth without the indication of strain
relaxation has been confirmed by asymmetric XRD at least
up to a thickness of 2 µm with x = 0.057 (Shen et al.,
1999). For (Ga,Mn)As, a is known to follow the Vegard’s
law, a = aLT-GaAs(1–x) + aZB-MnAsx, where aLT-GaAs and

aZB-MnAs are the lattice constants of low-temperature-grown
GaAs (LT-GaAs) ∼0.566 nm and hypothetical zinc-blende
MnAs ∼0.598 nm respectively (Ohno et al., 1996). However,
this way of determining a is known to suffer from uncer-
tainties due to the degree of incorporation of defects like
As antisites and Mn interstitials (Shimizu, Hayashi, Nishi-
naga and Tanaka, 1999; Hayashi, Hashimoto, Katsumoto and
Iye, 2001; Schott, Faschinger and Molenkamp, 2001; Schott
et al., 2003; Sadowski and Domagala, 2004).

Most of Mn in (Ga,Mn)As substitutes Ga; that is why
we write this alloy as (Ga,Mn)As. For Mn-doped GaAs,
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Figure 1. Angular scans of RBS and PIXE about 〈110〉 along {110} planar channel and 〈111〉 axes for three (Ga,Mn)As samples with
x ∼ 0.08 before and after LT annealing. (Reproduced from Yu et al., 2002, with permission from the American Physical Society.  2002.)
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with the doping level less than 1019 cm−3, substitutional Mn
was confirmed by an electron paramagnetic resonance (EPR)
and cross-sectional scanning tunneling microscopy (XSTM)
(Ilegrams, Dingle and Rupp, 1975; Schneider et al., 1987;
Tsuruoka et al., 2002). For (Ga,Mn)As, the extended X-ray
absorption fine structure (EXAFS) study showed that most of
Mn are in the substitutional position, that is, on the Ga sub-
lattice of the zinc-blende lattice (Shioda, Ando, Hayashi and
Tanaka, 1998). The ion-channeling measurements (Ruther-
ford backscattering (RBS) and particle-induced X-ray emis-
sion (PIXE)) shown in Figure 1 later revealed that those
Mn atoms (∼17% of the introduced Mn atoms in the case
of Figure 1) that were not incorporated in the substitional
site reside in the interstitial sites (Yu et al., 2002a). Post-
growth low-temperature annealing (LT annealing) at or below
the growth temperature (Hayashi, Hashimoto, Katsumoto and
Iye, 2001) was found to decrease the number of Mn inter-
stitials, MnI, and simultaneously increases hole concentra-
tion p (Potashnik et al., 2001; Edmonds et al., 2002a,b),
indicating that the MnI is unstable and mobile donor. The
double-donor nature of MnI is also shown from the ab ini-
tio calculation (Máca and Mašek, 2003). Further annealing
at 350 ◦C results in MnAs precipitates having NiAs struc-
ture, which has TC of ∼310 K. Theoretical study shows
that double-donor MnI does not participate in ferromagnetic
order and may form pairs with substitutional Mn, MnGa. This
results in antiferromagnetic coupling by superexchange inter-
action and reduces net Mn moment (Blinowski and Kacman,
2003).

2.3 Determination of carrier concentration
of (Ga,Mn)As

Since the presence of holes stabilizes ferromagnetism in
(Ga,Mn)As, it is important to determine the hole concen-
tration p. In conventional semiconductors, p can readily
be determined by magnetotransport measurements, using the
Hall effect. For ferromagnetic semiconductors, however, it
is not straightforward due to the presence of the anomalous
Hall effect, which can play a role even at room temperature,
and of the negative magnetoresistance (MR) at low tempera-
tures. Hall resistance RHall in ferromagnetic semiconductors
is expressed as the sum of the ordinary Hall resistance and
anomalous Hall resistance,

RHall = R0

d
µ0H + RS

d
M (1)

where R0 and RS are the ordinary and anomalous Hall
coefficients respectively, d is the thickness of the ferro-
magnetic layers, M is the component of the magnetization

perpendicular to the sample surface. RS is usually propor-
tional to R

γ

sheet (Rsheet: sheet resistance) with γ = 1 or
2, depending on the origin of the scattering (Chien and
Westgate, 1980) or γ = 2 due to a scattering-independent
topological contribution (Jungwirth, Qian and MacDonald,
2002). The dominance of the anomalous Hall term hinders
the straightforward determination of the carrier type and
concentration from the ordinary Hall term; the carrier con-
centration is given as 1/(eR0) (e: elementary charge) and its
positive (negative) sign corresponds to p-type (n-type) con-
duction. Only at low temperatures and under very high H ,
the anomalous Hall term almost saturates, so that R0 can
be determined from the remaining linear change of RHall in
the H dependence, as shown in Figure 2 (Omiya et al., 2000;
see also Sadowski et al., 2002; Edmonds et al., 2002a). Note
that, although M saturates at relatively low H , negative MR
persists to high H , and generates the H dependence of the
anomalous Hall effect through the change in the anomalous
Hall coefficient. Thus, this method is applicable only for
(Ga,Mn)As with metallic conductivity because of the very
large MR and resistance for insulating (Ga,Mn)As.
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Another powerful method for determining p is the elec-
trochemical capacitance–voltage (ECV) profiling. The reli-
ability of this method was confirmed by comparison of p

obtained from ECV and Hall measurements for Be-doped
LT-GaAs (Yu et al., 2002b; see also Koeder et al., 2003;
Moriya and Munekata, 2003). The determination of p by
other methods, such as thermoelectric power measurements
(Osinny et al., 2001) and the Raman scattering analysis of the
coupled plasmon-LO-phonon modes, is also possible (Lim-
mer et al., 2002; Seong et al., 2002).

These measurements revealed that p is often less than
1021 cm−3 (smaller than nominal x) for as-grown samples,
and increases significantly to p = x, consistent with the
acceptor nature of Mn, after appropriate annealing as long
as x is below 0.07 and the film is thin enough (Wang et al.,
2004).

3 PROPERTIES OF (Ga,Mn)As

3.1 Magnetic properties

Magnetization M of (Ga,Mn)As is usually measured using
a superconducting quantum interference device (SQUID)
magnetometer. The diamagnetic response of thick GaAs
substrate determined by a separate measurement must be
subtracted from the measured magnetization curve in order to
obtain the response from the thin epitaxial layer. When H is
applied in the direction of magnetic easy axis of (Ga,Mn)As,
M shows a sharp and clear hysteresis in its H dependence
at low temperatures, which is one of the evidences of the
presence of extended ferromagnetic order in the film. TC can
be determined by measuring the temperature dependence of
the remanent magnetization, from the Arrott plots, and/or
from the Curie–Weiss plot. The value of TC has a strong
correlation with the electrical conductivity, that is, for a
given x, the TC is higher for more metallic samples. The
highest TC reported so far is 173 K for (Ga,Mn)As with x =
0.09 after annealing (Wang et al., 2005a; Jungwirth et al.,
2005). The p–d Zener model with mean-filed approximation
is capable of explaining the observed magnetic properties,
including the magnitude of TC (Dietl et al., 2000; Dietl, Ohno
and Matsukura, 2001).

The magnetic domain structure, which is another evidence
of the presence of the extended ferromagnetic phase, has been
observed in (Ga,Mn)As samples by a scanning Hall micro-
scope and magneto-optical microscopes (Shono et al., 2000;
Welp et al., 2003; Thevenard et al., 2006). The computed
value of the domain width in (Ga,Mn)As by the p–d Zener
model combined with micromagnetic theory (Dietl, König
and MacDonald, 2001) is in reasonable agreement with the
experimental ones.

3.2 Electrical properties

The spin–orbit interaction and the p–d exchange interaction
manifest themselves in sizable magnetotransport phenom-
ena, including the anomalous Hall effect, anisotropic magne-
toresistance (AMR), and the planar Hall effect, which pro-
vide valuable information on the magnetism of (Ga,Mn)As.
Because of the high sensitivity, the determination of mag-
netization behavior from transport is an important tech-
nique for thin films of diluted magnets, where the total
of the magnetic moments is small. In addition, the sensi-
tivity of transport measurements does not depend on the
lateral size of the device with the fixed lateral aspect
ratio.

The temperature and magnetic field dependence of RHall

reflects the temperature and field dependence of magneti-
zation because RHall is dominated by the anomalous Hall
effect term of equation (1) (Matsukura, Ohno, Shen and
Sugawara, 1998; Matsukura et al., 2004). From the same
procedure as that for magnetization measurements, TC can
be determined by the Arrott plots and the Curie–Weiss plot,
as shown in Figure 3 (Ohno and Matsukura, 2001). Since
the (Ga,Mn)As layers grown directly on GaAs usually have
in-plane magnetic easy axis, RHall measured in perpendicular
H probes the magnetization process along the hard axis for
the magnetization.

In contrast with RHall measured in perpendicular H , the
planar Hall resistance is the transverse resistance measured
by the same probes as RHall in an in-plane H (Jan, 1957). For
(Ga,Mn)As, the signal of the planar Hall resistance is large
and can be used to detect the in-plane M reversal (Tang,
Kawakami, Awschalom and Roukes, 2003).

It has been found that MR of (Ga,Mn)As depends on
the relative orientation of the current direction, the magnetic
field direction, and their direction with respect to crystal axes
(Hayashi et al., 2000). For metallic (Ga,Mn)As, the lowest
resistance is observed when H is parallel to the current, as
shown in Figure 4 (Baxter et al., 2002; Matsukura et al.,
2004). The direction of H for the highest resistance, however,
was predicted theoretically to be different for compressive
and lattice strain (Jungwirth et al., 2002). This is corrobo-
rated by experiments; for the sample with compressive strain,
the highest resistance is measured when H is perpendicular
to the surface, and for the sample with a tensile strain it is
observed when H is in-plane perpendicular to the current
(Matsukura et al., 2004).

Resistance maximum observed around TC and the negative
MR associated with it are attributed to the critical scatter-
ing. The resistance maximum can be interpreted in terms
of a spin-dependent scattering by packets of ferromagneti-
cally coupled spins, whose correlation length is comparable
to the wavelength of the carriers at the Fermi level. The
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negative MR occurs because the H -induced spin alignment
reduces the spin-disorder scattering (Matsukura, Ohno, Shen
and Sugawara, 1998). From the numerical fitting to the data
of the temperature dependence and H dependence of the
resistance reproduces the data well and gives the magnitude
of p–d exchange interaction as |N0β| = 1.5 ± 0.2 (Omiya
et al., 2000), which compares favorably with that determined
by photoemission experiments, N0β = −1.2 eV (Okabayashi
et al., 1998).

At low temperatures, the negative MR extends to rather
high H , where magnetic spins are fully ordered ferromagnet-
ically according to the anomalous Hall effect response. This
cannot be accounted for by the suppression of spin-disorder
scattering. Here, one should note that the giant splitting of
the valence band makes both spin-disorder and spin-orbit
scattering ineffective. Under such conditions, negative MR
due to weak localization can show up at low temperatures,
where phase breaking scattering ceases to operate. The weak
localization MR is expressed as

�ρ

ρ
∼ −�σ

σ
= −nve

2C0ρ(eB/�)1/2

(2π2�)
(2)

where C0 ∼ 0.605, ρ is resistivity, σ is conductivity, � is
the reduced Planck constant, and 1/2 ≤ nv ≤ 2, depending
on whether one or all four hole subbands (spin-split bands
of light and heavy holes) contribute to the charge transport
(Kawabata, 1980). The fitting to equation (2) with nv as a
fitting parameter reproduces the data at 2 K quite well for
samples under compressive as well as for those under tensile
strain (Matsukura et al., 2004). Metal–insulator transition
(MIT)-associated feature can also be observed for insulating
(Ga,Mn)As, which shows an anisotropic hopping conduction
with 2 orders of magnitude difference between the resistiv-
ity along [110] and [–110] directions below 1 K (Katsumoto
et al., 1998).

The Baukhausen noise caused by the scattering due to
the existence of magnetic domain walls (DWs) has been
observed in the resistance measurement (Hayashi et al.,
2000). Magnetic DW is known to contribute to the elec-
trical resistance. The domain wall resistance (DWR) of a
single DW has been measured for (Ga,Mn)As; a negative
sign of DWR was reported for (Ga,Mn)As with in-plane easy
axis, and a positive was reported for that with perpendicu-
lar easy axis (Tang et al., 2004; Chiba et al., 2006). The
former negative DWR may be explained by the destruction
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of quantum coherence of electrons at the DW (Tatara and
Fukuyama, 1997) and/or by the AMR contribution. The lat-
ter positive DWR can be decomposed into the extrinsic
and intrinsic DWR components. Numerical calculation can
explain well, as shown in Figure 5, that the extrinsic DWR is
dominated by the zigzag current due to the alternating polar-
ity of the anomalous Hall effect at DW (Partin, Karnezos,
de Menezes and Berger, 1974), and that the remaining DWR
is shown to be of the same order of the resistance due to
the mistracking of the carrier spins inside DW (Chiba et al.,
2006; Levy and Zhang, 1997).

The spin polarization of holes in (Ga,Mn)As has been
measured by the Andreev reflection to be as high as
∼80% and similar effective polarization determined from the
magnitude of tunneling magnetoresistance (TMR) (290%)
at low temperatures (Barden et al., 2003; Chiba, Matsukura
and Ohno, 2004). These results are consistent with the
theoretical calculations of (Ga,Mn)As (Ogawa, Shirai, Suzuki
and Kitagawa, 1999; Dietl, Ohno and Matsukura, 2001).
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Figure 5. The temperature dependence of experimental and numer-
ical DW resistance per one DW for (a) extrinsic and (b) intrinsic
components. (After Chiba et al. (2006).)

3.3 Magnetic anisotropy

The direction as well as the magnitude of the magnetocrys-
talline anisotropy of (Ga,Mn)As can be tuned by the direction
and the magnitude of the lattice strain as well as p. A
number of methods have been employed to determine the
magnetic anisotropy of (Ga,Mn)As, for example, magne-
tization, ac susceptibility, ferromagnetic resonance (FMR),
anomalous Hall effect, planar Hall effect, AMR, TMR, and
magneto-optical microscope measurements (Sawicki et al.,
2004, 2005; Wang et al., 2005b; Liu, Sasaki and Furdyna,
2003; Liu, Lim, Dobrowolska and Furdyna, 2005; Shen
et al., 1997a; Tang, Kawakami, Awschalom and Roukes,
2003; Hamaya et al., 2003, 2004; Uemura, Sone, Matsuda
and Yamamoto, 2005; Welp et al., 2003). The layers under
compressive strain, (Ga,Mn)As on GaAs, usually show in-
plane magnetic easy axis, while the layers under tensile
strain, like (Ga,Mn)As on (In,Ga)As, show magnetic easy
axis perpendicular to the plane (Shen et al., 1997a). The sin-
gle ion anisotropy of Mn in GaAs is confirmed to be too
small to explain this sizable magnetic anisotropy (Fedorych,
Hankiewicz, Wilamowski and Sadowski, 2002). The origin
of this strain-dependent magnetic anisotropy is explained in
terms of the warped anisotropic valence band due to the
spin–orbit interaction and the lattice stain in the framework
of the p–d Zener model, which also predicts that the mag-
netic anisotropy is p dependent (Dietl et al., 2000; Dietl,
Ohno and Matsukura, 2001; Abolfath, Jungwirth, Brum and
MacDonald, 2001). The p-dependent part has later been con-
firmed experimentally in (Al,Ga,Mn)As, where Al reduces
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hole concentration, and in (Ga,Mn)As with a high degree
of compensation. There the direction of magnetic easy axis
is temperature dependent and changes its direction from in
plane to perpendicular as temperature decreases, as shown
in Figure 6 (Takamura, Matsukura, Chiba and Ohno, 2002;
Sawicki et al., 2003, 2004), in accordance with what is pre-
dicted for the low p case by the p–d Zener model. Further-
more, (Ga,Mn)As shows fourfold in-plane easy axis along
〈100〉 and uniaxial easy axis along [110] or [−110] (Hayashi
et al., 2000; Sawicki et al., 2005). The in-plane uniaxial
anisotropy cannot be explained by the p–d Zener model,
without assuming the presence of shear strain, which has
not yet been confirmed experimentally, and its exact origin
remains unclear. It has been suggested that it may be related
to the anisotropic (1 × 2) surface reconstruction during MBE
growth, the lack of top–bottom symmetry in epilayers, or the
existence of a trigonal distortion (Welp et al., 2003; Sawicki
et al., 2004, 2005).

The magnetic overlayers on (Ga,Mn)As can induce the
additional anisotropy to (Ga,Mn)As. The pinning of the M

direction or exchange biasing of (Ga,Mn)As is shown to
be possible with overlayers of spin glass (Zn,Mn)Se and
antiferromagnetic MnO (Liu, Sasaki and Furdyna, 2001; Fid
et al., 2004).

3.4 Low-temperature annealing

Low-temperature annealing (Hayashi, Hashimoto, Katsumoto
and Iye, 2001) is now a standard process to improve the
quality of (Ga,Mn)As. An appropriate LT-annealing process
increases the electrical conductivity due to the increase in p

and at the same time increases TC. LT annealing allows us to
measure the correlation between the electrical conductivity

and TC using a set of samples cleaved from the same wafer,
where a monotonic positive dependence of TC on the conduc-
tivity was observed. This is one of the evidences of the hole-
induced ferromagnetism (Edmonds et al., 2002b). Initially,
the effect was suspected to be due to As antisites, which act
as a double donor in GaAs. A series of studies established
that the annealing effect is coming from reducing the number
of MnI. As shown by the EXAFS and the channeling mea-
surements (Shioda, Ando, Hayashi and Tanaka, 1998; Yu
et al., 2002a), Mn occupies two distinct positions, Ga and
interstitial sites, in zinc-blende host GaAs lattice. MnGa acts
as a single acceptor, while MnI as a double donor. When Mn
can be considered the only dopant, p can be expressed by the
concentrations of MnGa and MnI, as p = [MnGa] − 2[MnI].
This relationship was confirmed experimentally by a combi-
nation of channeling and ECV measurements, as shown in
Figure 7 (Wojtowicz et al., 2004). In addition, MnGa and MnI

can form antiferromagnetic pairs, in which the Mn moments
are cancelled. Thus, if all MnI form a pair with MnGa, the
effective Mn composition contributing to ferromagnetic order
is the difference in the compositions of MnGa and MnI,
xeff = ([MnGa] − [MnI])/N0, where N0 is the density of the
cation sites. If one assumes this relation, the magnetization
data have been shown to yield ∼5 µB per Mn atom, con-
sistent with the expected value for Mn2+, in a wide range
of x from 0.02 to 0.09, as shown in Figure 8 (Wang et al.,
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2004). The good agreement for both as-grown and annealed
samples seen in Figure 8 also indicates that the increase in
TC after LT annealing is a combined result of increased p

and xeff due to the reduction of [MnI].
The self-compensation of Mn is enhanced at higher x,

and results in almost the same p for as-grown (Ga,Mn)As
with x greater than 0.02, but overcompensation has never
been observed. Thus, the self-compensation is believed to
be related to the Fermi level pinning effect (Walukiewicz,
1988). This suggests that once the Fermi level reaches a
certain position in the valence band, it becomes energeti-
cally favorable to form MnI as a counterdopant (Yu et al.,
2003).

The effect of the LT annealing is strongly structure
dependent. The increase in TC by LT annealing is greater for
thinner (Ga,Mn)As and is observed for the (Ga,Mn)As layers
with bare surface, that is, LT-annealing effect is suppressed
with a cap GaAs layer with thickness beyond 10 monolayers
(Chiba, Takamura, Matsukura and Ohno, 2003; Stone et al.,
2003). These results indicate that diffusion to and/or from the
surface plays a role in the LT-annealing process. The surface
Mn Auger signal increases after annealing, indicating that

Mn out diffuses and accumulates at the surface during the
process (Edmonds et al., 2004). This is shown to be modeled
by a one-dimensional out-diffusion model (Edmonds et al.,
2004). It has also been suggested that the diffusion of Mn
to the substrate side may be limited electrostatically by the
formation of a p–n junction by MnI and MnGa. According
to this scenario, MnI becomes electrically inactive at the
surface and is trapped as a result of oxidation or some
other unknown reasons; thus, the LT annealing is expected
to depend on the atmosphere and an additional layer on the
surface. More efficient LT-annealing effects are observed
for (Ga,Mn)As annealed in O2 and (Ga,Mn)As with an
amorphous As capping layer, where the formation of Mn–O
and Mn–As at the surface may work to reduce the number
of MnI (Malfait et al., 2005; Adell et al., 2005). Another
important effect is that the LT annealing can produce a more
homogeneous magnetization depth profile than that of an as-
grown sample, which was confirmed by polarized neutron
reflectometry measurements (Kirby et al., 2004).

Postgrowth hydrogenation of (Ga,Mn)As results in reduc-
tion of p and is shown to lead to suppression of ferromag-
netism (Gonnenwein et al., 2004).

3.5 Magneto-optical properties

Magneto-optical properties have been studied to elucidate
the origin of ferromagnetism of (Ga,Mn)As because they
can probe the spin-split band structure induced by the sp–d
exchange interaction. When the origin of the ferromag-
netism is intrinsic, a large magneto-optical response should
be observed at the critical points of the host zinc-blende
semiconductors. This is indeed the case for (Ga,Mn)As,
and a large Faraday rotation and magnetic circular dichro-
ism (MCD) signals have been observed at critical points
E0 and E1, whose H dependence traces the magnetiza-
tion curves well (Kuroiwa et al., 1998; Ando, Hayashi,
Tanaka and Twardowski, 1998; Beshoten et al., 1999). The
sign of these signals is opposite to that of most of the
II–VI DMSs with a negative p–d exchange. This can
be explained by a spin-dependent Burnstein–Moss shift
caused by hole redistribution that is taken into consider-
ation (Szczytko et al., 1999; Dietl, Ohno and Matsukura,
2001).

4 HETEROSTRUCTURES AND DEVICE
STRUCTURES

In order to show new spin-dependent phenomena and to
explore the possibility of their future device application, a
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number of ferromagnetic semiconductor-based heterostruc-
tures are now being investigated experimentally as well
as theoretically. In this section, we review the results of
heterostructures and device structures, which exhibit new
phenomena that are not available in existing semiconductor
devices.

4.1 Control of magnetism and magnetization
reversal by external means

Since the ferromagnetism in (Ga,Mn)As and (In,Mn)As
is stabilized by the presence of holes, it is expected
that one can switch magnetic phases without changing
the temperature by electrical means, which controls the
value of p. This has been shown to be possible using a
metal–insulator–semiconductor field-effect transistor (MIS-
FET) structure with a thin (In,Mn)As layer (≤5 nm) as a
semiconductor channel (Ohno et al., 2000). The (In,Mn)As
layers are grown on a GaAs substrate with a thick (Al,Ga)Sb
buffer layer to relax the large lattice mismatch between
(In,Mn)As and GaAs. The devices have a Hall-bar shape, in
order to probe the magnetization through the anomalous Hall
effect. Since the channel is p-type, the application of positive
(negative) gate electric field EG decreases (increases) p; for
the structure under discussion |EG| = 1.5 MV cm−1 changes
several percents of total p. In the vicinity of TC, the mag-
netization curves show a more square shape under negative
EG, indicating an enhanced ferromagnetic order, while they
show a paramagnetic-like response under positive EG, as
shown in Figure 9. This reversible change of TC by EG =
±1.5 MV cm−1 determined using the Arrott plots can be as
large as 4 K for 4-nm-thick (In,Mn)As (Chiba, Yamanouchi,
Matsukura and Ohno, 2003). Control of TC by electrical
means is also a proof that the ferromagnetism in this material
is carrier induced.

Another important effect of EG is the change of the
coercive force HC below TC; larger (smaller) HC for neg-
ative (positive) EG. By using this phenomenon, a new
scheme of electrical magnetization reversal, electric-field-
assisted magnetization reversal, has been demonstrated as
follows: After saturation of magnetization at positive H

under EG = −1.5 MV cm−1, one reduces H through zero to
a small negative H but still less than the coercive force, HC.
Then, EG is switched to zero, which reduces |HC| below |H |
and switching takes place (Chiba, Yamanouchi, Matsukura
and Ohno, 2003).

Although there has only been limited success on
(Ga,Mn)As (Chiba et al., 2003), recent progress in low-
temperature deposition of high-quality insulators made it
possible to observe a similar electrical modulation of TC and
HC in (Ga,Mn)As (Chiba, Matsukura and Ohno, 2006a).
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The change in magnetic properties and HC in (In,Mn)As
has also been demonstrated by light irradiation, where
the photogenerated carriers play a role (Koshihara et al.,
1997; Oiwa, Słupinski and Munekata, 2001; Kanamura
et al., 2002; Liu et al., 2004). Owing to the existence of
persistent photoconductivity, the phenomena are occasionally
not isothermal: in which case one needs to warm up the
sample to return to the original state. The magnetization
enhancement of (Ga,Mn)As by circularly polarized light
illumination has also been observed for (Ga,Mn)As and
Mn δ-doped GaAs (Oiwa et al., 2002; Nazmul, Kobayashi,
Sugahara and Tanaka, 2004).

4.2 Tunneling magnetoresistance and
current-induced magnetization switching

Magnetic tunnel junctions (MTJs) based on (Ga,Mn)As, such
as (Ga,Mn)As/AlAs/(Ga,Mn)As and (Ga,Mn)As/GaAs/(Ga,
Mn)As, show TMR (Hayashi, Shimada, Shimizu and Tanaka,
1999; Chiba et al., 2000), where parallel and antiparallel
configurations of the magnetization of the two (Ga,Mn)As
layers result in low- and high-resistance (RP and RAP) states,
just as metal MTJs. Note that GaAs acts as a barrier layer
for holes in (Ga,Mn)As (Ohno, Arata, Matsukura and Ohno,
2002). The highest TMR ratios [= (RAP − RP)/RP] so far are
75 and 290% for AlAs and GaAs intermediate barrier layer,
as shown in Figure 10, respectively. The latter corresponds
to effective carrier spin polarization P = 77%, according to
the Julliere’s formula, TMR ratio = 2P 2/(1–P 2) (Tanaka
and Higo, 2001; Chiba, Matsukura and Ohno, 2004).

In submicron (Ga,Mn)As MTJs, current-induced magne-
tization switching (CIMS) has been observed (Chiba et al.,
2004; Elsen et al., 2006). On the RP state, the current pulse,
injected from the thicker to thinner (Ga,Mn)As, induces
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the magnetization reversal in the thinner (Ga,Mn)As, and
results in the RAP state. The opposite sign of current induces
the magnetization reversal again in the thinner (Ga,Mn)As
layer and results in the RP state, as shown in Figure 11.
The critical current density JC for switching is of the order
of 104 ∼105 A cm−2. The CIMS in (Ga,Mn)As-based MTJ
can be explained qualitatively by the Slonczewski’s spin-
transfer torque model (Slonczewski, 1996), although the
model predicts an order of magnitude greater JC than the

observed one. The large bias dependence of TMR ratio and
its possible role in the CIMS process is not understood at
the moment, along with the nature of the possible incoherent
switching process, such as the formation of domain struc-
ture (Chiba et al., 2004; Chiba, Matsukura and Ohno, 2006b;
Chiba, Kita, Matsukura and Ohno, 2006; Elsen et al., 2006;
Moriya, Hamaya, Oiwa and Munekata, 2004).

A very large tunnel anisotropic magnetoresistance (TAMR)
up to 150 000% has been reported in (Ga,Mn)As-based MTJs
in vertical and lateral device structures (Rüster et al., 2003,
2005; Giddings et al., 2005). Although it needs further work
to firmly establish the origin of TAMR (Saito, Yuasa and
Ando, 2005), it has been attributed to anisotropic valence
band structure induced by the spin–orbit interaction and lat-
tice strain in combination with the MIT.

4.3 Current-induced domain wall motion

By the application of a current pulse across the DW, it
has been found that the position of DW can electrically be
manipulated in the absence of a magnetic field (Yamanouchi,
Chiba, Matsukura and Ohno, 2004). The electrical channel
made from (Ga,Mn)As used in the experiment has magnetic
easy axis perpendicular to the surface by inserting the
(In,Ga)As or (In,Al)As buffer layer. This easy axis direction
is not only useful in monitoring the DW position through
the anomalous Hall effect and by the magneto-optical Kerr
effect (MOKE) microscope but also essential in observing
the effect, as discussed in the following text. The DW
switching was observed for the channel with three regions
with different thickness, where the thinnest region was set
to the center of the channel. Note that this stepped structure
allows patterning HC due to slight nonuniformity in the film
and each step acts as a confinement potential for DW. The
DW position was initialized to one of the stepped boundaries
of the thinnest region by H . After setting H = 0, a current
pulse of 105 A cm−2 for 100 ms at 80 K (TC of this film
is 90 K) was applied. Both the anomalous Hall signals and
MOKE images indicated that the DW moved to the other step
boundary, in the direction opposite to the current direction.
The application of a subsequent current pulse in the opposite
direction switched back the DW to its initial position. The
DW was confined by the two stepped boundaries, as expected
from the increase in the DW energy in the adjacent layers.

The temperature dependence as well as the current density
(j) dependence of the DW velocity have been measured
systematically using a 5-µm-wide (Ga,Mn)As channel with
a single step (Yamanouchi et al., 2006). The DW initially
at the step was moved by the current pulse, and the DW
swept area was monitored by MOKE to obtain the effective
DW speed, veff, from the effective DW displacement, the
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value of the area being divided by the width, for a given
pulse width; the displacement was linearly dependent on
the pulse width. The change in the device temperature by
the Joule heating was calibrated by measuring the device
resistance during the pulse application and compared with
the temperature dependence of the device resistance. The j

dependence of veff at a fixed temperature showed that there
are at least two regimes separated by a critical current density
jC, which is of a few hundreds of thousands of amperes per
centimeter square, as shown in Figure 12. Beyond jC, veff

increased linearly with j , while below jC the DW velocity
was slow and its functional form much more involved. The
linear dependence of veff above jC and the value of jC

were found to be explained quantitatively well, including the
direction of the movement by the spin-transfer mechanism
with an intrinsic DW pinning (Tatara and Kohno, 2004). The
j dependence of veff below jC obeys an empirical scaling
law, suggesting the existence of current-induced DW creep
(Lemerle et al., 1998).

We note that in metallic structures this intrinsic jC is too
high and is beyond one’s reach, and thus the velocity versus
current density curves are the first of this kind determined in
ferromagnetic materials. Even with (Ga,Mn)As, the in-plane
anisotropy is expected to result in an order of magnitude
higher jC due to magnetocrystalline anisotropy.

4.4 Spin injection into nonmagnetic
semiconductors

Owing to spontaneous magnetization, spontaneous spin pola-
rization of carriers exists in ferromagnetic semiconductors

below TC. Thus, these materials can be used as a spin-
polarized carrier emitter into the nonmagnetic structures
under the absence of magnetic field. Spin injection from
(Ga,Mn)As to nonmagnetic GaAs has been demonstrated by
devices combining a GaAs-based nonmagnetic light-emitting
diode (LED) structure as spin-polarized carrier detectors
(Ohno et al., 1999). In the electroluminescence (EL) mea-
surements, partial spin polarization of injected carriers from
(Ga,Mn)As through GaAs to (In,Ga)As quantum well, where
they recombine with unpolarized electrons from backside
n-type GaAs, was detected in the form of circular polariza-
tion of the EL signals. Injection of spin-polarized electrons
has also been demonstrated successfully using an Esaki tun-
nel diode structure as a spin emitter, where spin-polarized
holes in the valence band of (Ga,Mn)As are injected into the
conduction band of an adjacent n-GaAs by interband tunnel-
ing (Kohda et al., 2001; Jonston-Halperin et al., 2002; Van
Dorpe et al., 2004). By the use of a three-terminal device
structure to control bias voltages of Esaki diode and LED
independently, as shown in Figure 13, the efficiency of the
spin injection to LED has been measured as a function of the
bias voltage. EL polarization up to 32.4% was obtained, sug-
gesting that the injected electrons have high spin polarization
of over 85% (Kohda et al., 2006).

5 TOWARD HIGH CURIE
TEMPERATURE FERROMAGNETIC
SEMICONDUCTORS

5.1 Other ferromagnetic semiconductors

Following theoretical predictions (Dietl et al., 2000; Dietl,
Ohno and Matsukura, 2001; Sato and Katayama-Yoshida,
2000), a worldwide effort for synthesizing ferromagnetic
semiconductors with high TC is now underway. Ferromag-
netic semiconductors based on wide-gap semiconductors
such as GaN and ZnO have extensively been investigated
(Pearton et al., 2003), as the chemical trend pointed out by
the theoretical studies indicates that this is the right direction
to be followed. There are many encouraging reports on the
observation of room-temperature ferromagnetism in wide-
gap materials doped with transition metals or rare earths.
Some of them have shown to be able to see a correlation
between magnetization and MCD signals at semiconduc-
tor critical points and/or the anomalous Hall effect (Saito,
Zayets, Yamagata and Ando, 2003; Toyosaki et al., 2004).
In order to firmly establish whether the observed ferromag-
netic order is intrinsic and is what one is looking for, it
is now becoming increasingly clear that one needs to do a
series of measurements to carefully rule out the possibilities
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of having magnetic precipitates (Dietl, this volume). These
precipitates can be of the same crystal structure stabilized by
the host lattice, meaning that there is no bulk counterpart.
They may have an elongated structure (Singh et al., 2005)
with a high blocking temperature, thereby exhibiting hys-
teresis and anisotropy. They can even be antiferromagnetic
clusters with uncompensated spins.

In an effort to integrate room-temperature ferromag-
netic materials to nonmagnetic semiconductor monolithi-
cally, metal materials that have the same crystal structure
as that of the host semiconductor have also been investi-
gated. So far, single-crystal zinc-blende CrAs and CrSb were
grown by MBE and were confirmed to show ferromagnetism
over 400 K (Akinaga, Manago and Shirai, 2000; Zhao et al.,
2001). Theoretical calculation predicts that these materials
have half-metallic band structure (Shirai, 2003).

5.2 Perspective and remarks

According to the p–d Zener model, higher values of xeff and
p are keys to increase TC of (Ga,Mn)As, and more material
science is needed in this direction, where challenges are the
solubility limit and self-compensation. In order to overcome
these obstacles, there are several proposals, such as codoping
of donors to reduce the number of MnI, the optimization
of annealing condition, and the use of high-index substrate
to increase Mn incorporation efficiency (Yu et al., 2003;
Wang et al., 2005c). The artificial structure to increase local
Mn composition and hole concentration simultaneously is
another promising direction to be followed; TC of 250 K was
observed in a Mn δ-doped structure with modulation doping
to increase hole concentration (Nazmul et al., 2005).

Synthesis of ferromagnetic semiconductors based on wide-
band gap semiconductors, which are expected to have greater
p–d exchange, is another method that was adopted to

increase TC. Although there are a number of encouraging
reports, recent theoretical work has pointed out the pres-
ence of attractive chemical interactions between magnetic
ions and the possibility of having spinodal decomposition
(Sato, Katayama-Yoshida and Dederichs, 2005; Fukushima,
Sato, Katayama-Yoshida and Dederichs, 2006). It has also
been argued that high x is necessary due to the lack of long-
range exchange interaction among magnetic spins in these
materials (Bergvist et al., 2004; Sato, Scheika, Dederichs and
Katayama-Yoshida, 2004).

If one is searching for carrier-induced ferromagnetism,
then the dependence of magnetic properties on carrier type
and its concentration is one of the critical indicators of
intrinsic ferromagnetism. The existing theories imply that TC

depends on x, for example, TC ∝ x by the p–d Zener model
and TC ∝ x1/2 by the double-exchange model (Dietl et al.,
2000; Dietl, Ohno and Matsukura, 2001; Sato, Dederics and
Katayama-Yoshida, 2003), and thus the dependence of mag-
netic properties on x conveys important information. The
existence of the correlation among magnetization, magneto-
optical, and magnetotransport properties is one of the neces-
sary conditions of intrinsic ferromagnetism, although large
magneto-optical and magnetotransport phenomena for the
material with small spin–orbit interaction are not expected.
The measurement of carrier spin polarization includes typical
properties for ferromagnetic semiconductors reflecting spin-
split subband states induced by sp–d exchange interaction
(Barden et al., 2003; Chiba, Matsukura and Ohno, 2004). The
controllability of magnetism by external means is important
to confirm the intrinsic ferromagnetism and to demonstrate
the possibility in applications (Ohno et al., 2000).

Finally, we point out that even if the ferromagnetism-like
response has turned out to be originating from precipitates,
having ferromagnetic-like inclusion seamlessly integrated
into a host semiconductor can be useful depending on what
we want to do with semiconductor-magnetism integration.
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6 SUMMARY

Ferromagnetic semiconductors are providing an excellent
test bench for exploring spin-dependent phenomena in semi-
conducting materials and to demonstrate new phenomena,
ranging from electric-field manipulation of ferromagnetism
through CIMS and current-induced DW motion to spin injec-
tion in an integrated semiconductor structure for possible
spintronic applications, where both charge and spins play
critical roles. Directions as well as precautions to be taken
for pursuing high transition temperature ferromagnetic semi-
conductors are also discussed.
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1 INTRODUCTION

The family of diluted magnetic semiconductors (DMS)
encompasses standard semiconductors, in which a sizable
portion of atoms is substituted by such elements, which
produce localized magnetic moments in the semiconductor
matrix. Usually, magnetic moments originate from 3d or 4f
open shells of transition metals (TMs) or rare earths (REs)
(lanthanides), respectively, so that typical examples of DMS
are Cd1−xCoxSe, Ga1−xMnxAs, Pb1−xEuxTe and, in a sense,
Si:Er. A strong spin-dependent coupling between the band
and localized states accounts for outstanding properties of
DMS. This coupling gives rise to spin-disorder scattering,
giant spin splittings of the electronic states, formation of
magnetic polarons, and strong indirect exchange interactions

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

between the magnetic moments, the latter leading to col-
lective spin glass, antiferromagnetic, or ferromagnetic spin
ordering. Owing to the possibility of controlling and prob-
ing magnetic properties by the electronic subsystem or vice
versa, DMS have been successfully employed to address a
number of important questions concerning the nature of vari-
ous spin effects in various environments and at various length
and timescales. At the same time, DMS exhibit a strong
sensitivity to the magnetic field and temperature as well as
constitute important media for generation of spin currents
and for manipulation of localized or itinerant spins by, for
example, strain, light, electrostatic, or ferromagnetic gates.
These properties, complementary to both nonmagnetic semi-
conductors and magnetic metals, open doors for application
of DMS as functional materials in spintronic devices.

Extensive studies of DMS started in 1970s, particularly in
the group of Robert R. Gała̧zka in Warsaw, when appro-
priately purified Mn was employed to grow bulk II–VI
Mn-based alloys by various modifications of the Bridgman
method (Gała̧zka, 1978). Comparing to magnetic semicon-
ductors, such as Eu chalcogenides (e.g., EuS) and Cr spinels
(e.g., CdCr2Se4) investigated earlier (Nagaev, 1983), DMS
exhibited smaller defect concentrations and were easier to
dope by shallow impurities. Accordingly, it was possible
to examine their properties by powerful magneto-optical
and magnetotransport techniques (Dietl, 1994; Gała̧zka,
1978, 1981; Furdyna and Kossut, 1988; Awschalom and
Samarth, 2002). Since, in contrast to magnetic semiconduc-
tors, neither narrow magnetic bands nor long-range magnetic
ordering affected low-energy excitations, DMS were named
semimagnetic semiconductors. More recently, research on
DMS have been extended toward materials containing mag-
netic elements other than Mn as well as to III–VI, IV–VI
(Bauer, Pascher and Zawadzki, 1992), and III–V (Matsukura,
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Ohno and Dietl, 2002) compounds as well as group IV ele-
mental semiconductors and various oxides (Prellier, Fouchet
and Mercey, 2003). In consequence, a variety of novel phe-
nomena had been discovered, including effects associated
with narrow bands and magnetic phase transformations, mak-
ing the borderline between properties of DMS and magnetic
semiconductors more and more elusive.

A rapid progress of DMS research in 1990s stemmed, to
a large extent, from the development of methods of crystal
growth far from thermal equilibrium, primarily by molecular-
beam epitaxy (MBE) but also by laser ablation. These meth-
ods have made it possible to obtain DMS with the content of
the magnetic constituent beyond thermal equilibrium solubil-
ity limits (Ohno, 1998). Similarly, the doping during MBE
process allows one to increase substantially the electrical
activity of shallow impurities (Haury et al., 1997; Ferrand
et al., 2001). In the case of III–V DMS (Matsukura, Ohno
and Dietl, 2002), in which divalent magnetic atoms supply
both spins and holes, the use of the low-temperature MBE
provides thin films of, for example, Ga1−xMnxAs with x up
to 0.08 and the hole concentration approaching 1021 cm−3, in
which ferromagnetic ordering is observed up to 170 K (Wang
et al., 2005). Remarkably, MBE and processes of nanostruc-
ture fabrication, make it possible to add magnetism to the
physics of semiconductor quantum structures. Particularly
important are DMS, in which ferromagnetic ordering was
discovered, as discussed here and in the chapter Ferromag-
netic Semiconductors, Volume 5.

Owing to novel functionalities (Ohno et al., 2000) and
theoretical expectations (Dietl et al., 2000), an enormous
activity has been directed to developing diluted ferromag-
netic semiconductors sustaining ferromagnetic order up to
high temperatures (Dietl, 2005; Liu, Yun and Morkoç, 2005)
as well as to describing their properties theoretically (Jung-
wirth et al., 2006a). In fact, a ferromagnetic response, often
persisting up to above room temperature, has been detected
in a number of semiconductor and oxide thin layers doped
with minute amount of magnetic ions (Dietl, 2005; Liu, Yun
and Morkoç, 2005). As known, a highly sensitive SQUID
magnetometer is necessary to detect the corresponding small
signals, which are often inferior to those coming from typ-
ical remanent fields, sample holders, substrates, or residual
magnetic nanoparticles originating from nominally nonmag-
netic source materials or processing procedures. In rather rare
cases, the ferromagnetic signal of DMS layers could univo-
cally be assigned to precipitates of a known ferromagnetic
or ferrimagnetic material. In few other cases, its magni-
tude has been greater than that evaluated from the nominal
concentration of magnetic ions. More often, however, the fer-
romagnetic response of the layer coexists with paramagnetic
characteristics, indicating that only a fraction of magnetic
spins remains correlated at high temperatures.

A particularly important question that arises in this context
is whether at the length scale appropriately greater than the
mean distance between magnetic ions a spatially uniform
ferromagnetic spin order is a real ground state of ferromag-
netic DMS. Actually, the existence and the role of spatially
nonuniform ferromagnetic spin order was an important theme
in research on both magnetic semiconductors (Nagaev, 1983)
and colossal magnetoresistance oxides (Dagotto, Hotta and
Moreo, 2001). Nanoscale phase separation effects that were
invoked to explained pertinent properties of those materi-
als may a priori be even more relevant in ferromagnetic
DMS, in which carrier correlation and electrostatic disorder
associated with ionized impurities coexist with alloy dis-
order in the magnetic sublattice. We recall in this context
that uncoupled nanoscale ferromagnetic regions of the vol-
ume V give rise to macroscopic ferromagnetic signatures,
such as spontaneous magnetization and magnetic hysteresis,
below the blocking temperature (e.g., Shinde et al., 2004),
TB = KV/[kB ln(tlab/τ)], where K is the density of the mag-
netic anisotropy energy, and ln(tlab/τ) ≈ 25 for a typical
ratio of a relevant spin-flip relaxation time τ to the time
of hysteresis measurements, tlab.

In the remaining part of this review, we focus on semi-
conductors which under doping with TM or RE become
ferromagnetic but remain in the initial crystal structure or, in
the other words, do not undergo any crystallographic phase
separation. Therefore, the ferromagnetism of DMS consid-
ered here does not result simply from the precipitation of
any known ferromagnetic or ferrimagnetic material. In par-
ticular, in the next section, we describe the present theoret-
ical understanding of DMS showing uniform ferromagnetic
order, such as (Ga,Mn)As or heavily doped p-(Zn,Mn)Te,
in which interactions between randomly distributed mag-
netic ions are mediated by delocalized holes in the valence
band. We then turn to DMS, in which a competition between
long-range ferromagnetic and short-range antiferromagnetic
interactions and/or the proximity to the localization bound-
ary lead to the electronic nanoscale phase separation into
areas of differing spin orders. Finally, we discuss, in some
detail, systems exhibiting the chemical nanoscale phase sep-
aration into regions with a small and a large concentration
of magnetic atoms, respectively.

2 SPATIALLY UNIFORM
FERROMAGNETIC DMS

2.1 Overview

Since for decades, III–V semiconductor compounds have
been applied as photonic and microwave devices, the dis-
covery of ferromagnetism first in (In,Mn)As (Ohno et al.,
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1992) and then in (Ga,Mn)As (Ohno et al., 1996) came as
a landmark achievement. In these materials, substitutional
divalent Mn ions provide localized spins and function as
acceptor centers that provide holes which mediate the ferro-
magnetic coupling between the parent randomly distributed
Mn spins (Dietl, Haury and Merle d’Aubigné, 1997; Mat-
sukura, Ohno, Shen and Sugawara, 1998; Jungwirth, Atkin-
son, Lee and MacDonald, 1999). In another technologically
important group of semiconductors, in II–VI compounds,
the densities of spins and carriers can be controlled inde-
pendently, similar to the case of IV–VI materials, in which
hole-mediated ferromagnetism was discovered already in the
1980s (Story, Gała̧zka, Frankel and Wolff, 1986). Stimu-
lated by the theoretical predictions (Dietl, Haury and Merle
d’Aubigné, 1997), search for carrier-induced ferromagnetism
in II–IV materials containing Mn was undertaken. Experi-
mental studies conducted with the use of magneto-optical and
magnetic methods led to the discovery of ferromagnetism in
2D (Haury et al., 1997) and 3D (Ferrand et al., 2001) II–VI
Mn-based DMS doped by nitrogen acceptors.

Since magnetic properties are controlled by band holes,
an appealing possibility is to influence the magnetic ordering
isothermally, by light or by the electric field, which affect the
carrier concentration in semiconductor quantum structures.
Such tuning capabilities of the materials systems in question
were put into the evidence in (In,Mn)As/(Al,Ga)Sb (Koshi-
hara et al., 1997; Ohno et al., 2000) and modulation-doped
p-(Cd,Mn)Te/(Cd,Mg,Zn)Te (Haury et al., 1997; Boukari
et al., 2002) heterostructures. Actually, these findings can
be quantitatively interpreted by considering the effect of the
electric field or illumination on the hole density under sta-
tionary conditions and, therefore, on the Curie temperature
in the relevant magnetic layers. Interestingly, according to
experimental findings and theoretical modeling, photocarri-
ers generated in II–VI systems by above barrier illumination
destroy ferromagnetic order in the magnetic quantum well
residing in an undoped (intrinsic) region of a p–i–p structure
(Haury et al., 1997; Boukari et al., 2002) but they enhance
the magnitude of spontaneous magnetization in the case of a
p–i–n diode (Boukari et al., 2002). Furthermore, the current-
induced magnetization reversal was demonstrated in submi-
cron pillars of (Ga,Mn)As/GaAs/(Ga,Mn)As (Chiba et al.,
2004; Elsen et al., 2006). Spin-polarized current was also
shown to displace magnetic domain walls in (Ga,Mn)As with
the easy axis perpendicular to the film plane (Yamanouchi,
Chiba, Matsukura and Ohno, 2004, 2006).

Guided by the growing amount of experimental results,
including informative magnetic resonance (Szczytko et al.,
1999; Fedorych, Hankiewicz, Wilamowski and Sadowski,
2002) and photoemission (Mizokawa et al., 2002; Rader
et al., 2004; Hwang et al., 2005) studies, a theoretical model
of the hole-controlled ferromagnetism in III–V, II–VI, and

group IV semiconductors containing Mn was proposed (Dietl
et al., 2000, 2001). These materials exhibit characteristics
specific to both charge transfer insulators and strongly corre-
lated disordered metals. Moreover, complexities specific to
strongly correlated systems coexist in DMS with features
exhibited by heavily doped semiconductors and semicon-
ductor alloys, such as Anderson–Mott localization (Dietl,
1994), defect generation by self-compensation mechanisms
(Dietl, Ohno and Matsukura, 2001; Mašek and Máca, 2001;
Yu et al., 2002), and the breakdown of the virtual-crystal
approximation (Benoit à la Guillaume, Scalbert and Dietl,
1992). Nevertheless, the theory built on p–d Zener’s model
of carrier-mediated ferromagnetism and on either Kohn-
Luttinger’s kp (Dietl et al., 2000; Dietl, Ohno and Mat-
sukura, 2001; Abolfath, Jungwirth, Brum and MacDonald,
2001) or multiorbital tight-binding (Vurgaftman and Meyer,
2001; Sankowski and Kacman, 2005; Timm and MacDonald,
2005) descriptions of the valence band in tetrahedrally coor-
dinated semiconductors has qualitatively, and often quantita-
tively, described thermodynamic, micromagnetic, transport,
and optical properties of DMS with delocalized holes (Dietl,
2004; Jungwirth et al., 2006a; Sankowski, Kacman, Majew-
ski and Dietl, 2006a), challenging competing theories. It is
often argued that owing to these studies (Ga,Mn)As has
become one of the best-understood ferromagnets. Accord-
ingly, this material is now serving as a testing ground for
various ab initio computational approaches to strongly cor-
related and disordered systems.

2.2 Magnetic impurities in semiconductors

A good starting point for the description of DMS is the
Vonsovskii model, according to which the electron states
can be divided into two categories: (i) localized magnetic
d or f shells and (ii) extended band states built up of s,
p, and sometimes d atomic orbitals. The former give rise
to the presence of local magnetic moments and intracenter
optical transitions. The latter form bands, much alike as in the
case of nonmagnetic semiconductor alloys. Indeed, the lattice
constant of DMS obeys the Vegard low, and the energy gap
Eg between the valence and the conduction band depends
on x in a manner qualitatively similar to nonmagnetic
counterparts. According to the Anderson model, the character
of magnetic impurities in solids results from a competition
between (i) hybridization of local and extended states, which
tends to delocalized magnetic electrons and (ii) the on-
site Coulomb interactions among the localized electrons,
which stabilizes the magnetic moment in agreement with
Hund’s rule.

Figure 1 shows positions of local states derived from 3d
shells of TM impurities with respect to the band energies
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Figure 1. Approximate positions of transition-metal levels relative to the conduction and valence band edges of II–VI (a) and III–V
(b) compounds. By triangles the dN /dN−1 donor and by squares the dN /dN+1 acceptor states are denoted. (Adapted from Langer, Delerue,
Lannoo and Heinrich, 1988 and Zunger, 1986.)

of the host II–VI and III–V compounds. In Figure 1, the
levels labeled ‘donors’ denote the ionization energy of the
magnetic electrons (TM2+ → TM3+or dn → dn−1), whereas
the ‘acceptors’ correspond to their affinity energy (TM2+ →
TM1+or dn → dn+1). The difference between the two is the
on-d-shell Coulomb (Hubbard) repulsion energy U in the
semiconductor matrix. In addition, the potential introduced
by either neutral or charged TM can bind a band carrier in
a Zhang-Rice-type singlet or hydrogenic-like state, respec-
tively. Such bound states are often experimentally important,
particularly in III–V compounds, as they correspond to lower
energies than the competing d-like states, such as presented
in Figure 1.

In the case of Mn, in which the d shell is half-filled, the
d-like donor state lies deep in the valence band, whereas the
acceptor level resides high in the conduction band, so that
U ≈ 7 eV according to photoemission and inverse photoe-
mission studies. Thus, Mn-based DMS can be classified as
charge transfer insulators, Eg < U . The Mn ion remains in
the 2+ charge state, which means that it does not supply any
carriers in II–VI materials. However, it acts as a hydrogenic-
like acceptor in the case of III–V antimonides and arsenides,
while the corresponding Mn-related state is deep, presum-
ably due to a stronger p–d hybridization, in the case of
phosphides and nitrides. According to Hund’s rule, the total
spin S = 5/2 and the total orbital momentum L = 0 for the
d5 shell in the ground state. The lowest excited state d∗5 cor-
responds to S = 3/2 and its optical excitation energy is about
2 eV. Thus, if there is no interaction between the spins, their
magnetization is described by the paramagnetic Brillouin
function. In the case of other TMs, the impurity-induced
levels may appear in the gap, and then compensate shal-
low impurities, or even act as resonant dopant, for example,
Sc in CdSe, Fe in HgSe or Cu in HgTe. Transport studies
of such systems have demonstrated that intersite Coulomb

interactions between charged ions lead to the Efros-Shklo-
vskii gap in the density of the impurity states, which makes
resonant scattering to be inefficient in semiconductors (Wil-
amowski, Świa̧tek, Dietl and Kossut, 1990). Furthermore,
spin-orbit interaction and Jahn–Teller effect control posi-
tions and splittings of the levels in the case of ions with
L �= 0. If the resulting ground state is a magnetically inactive
singlet there is no permanent magnetic moment associated
with the ion, the case of Fe2+, whose magnetization is of the
Van Vleck type at low temperatures.

2.3 Exchange interaction between band and
localized spins

The important aspect of DMS is a strong spin-dependent
coupling of the effective mass carriers to the localized d
electrons, first discovered in (Cd,Mn)Te (Komarov et al.,
1977; Gaj, Gała̧zka and Nawrocki, 1978) and (Hg,Mn)Te
(Bastard et al., 1978; Jaczyński, Kossut and Gała̧zka, 1978).
Neglecting nonscalar corrections that can appear for ions
with L �= 0, this interaction assumes the Kondo form,

HK = −I (�r − �R(i))�s �S(i) (1)

where I (�r − �R(i)) is a short-range exchange energy operator
between the carrier spin �s and the TM spin localized at
�R(i). When incorporated to the kp scheme, the effect of
HK is described by matrix elements 〈ui |I |ui〉, where ui are
the Kohn-Luttinger amplitudes of the corresponding band
extreme. In the case of carriers at the � point of the
Brillouin zone in zinc-blende DMS , the two relevant matrix
elements α = 〈uc|I |uc〉 and β = 〈uv|I |uv〉 involve s-type
and p-types wave functions, respectively. There are two



Diluted ferromagnetic semiconductors – theoretical aspects 5

mechanisms contributing to the Kondo coupling (Dietl, 1981;
Bhattacharjee, Fishman and Coqblin, 1983; Kacman, 2001):
(i) the exchange part of the Coulomb interaction between the
effective mass and localized electrons; (ii) the spin-dependent
hybridization between the band and local states. Since there is
no hybridization between �6 and d-derived (eg and t2g) states
in zinc-blende structure, the s–d coupling is determined by
the direct exchange. The experimentally determined values
are of the order of αNo ≈ 0.25 eV, where No is the cation
concentration, somewhat reduced comparing to the value
deduced from the energy difference between S1/2 states of
the free singly ionized Mn atom 3d54s1, αNo = 0.39 eV. In
contrast, there is a strong hybridization between �8 and t2g

states, which affects their relative position, and leads to a
large magnitude of |βNo| ≈ 1 eV. If the relevant effective
mass state is above the t2g level (the case of, e.g., Mn-based
DMS, β < 0 but otherwise β can be positive (the case of,
e.g., Zn1−xCrxSe (Mac et al., 1993)).

2.4 p–d Zener model

It is convenient to apply the Zener model of carrier-controlled
ferromagnetism by introducing the functional of free-energy
density, F [ �M(�r)]. The choice of the local magnetization
�M(�r) as an order parameter means that the spins are treated

as classical vectors, and that spatial disorder inherent to mag-
netic alloys is neglected. In the case of magnetic semiconduc-
tors F[ �M(�r)] consists of two terms, F[ �M(�r)] = FS[ �M(�r)] +
Fc[ �M(�r)], which describe, for a given magnetization pro-
file �M(�r), the free energy densities of the Mn spins in the
absence of any carriers and of the carriers in the presence
of the Mn spins, respectively. A visible asymmetry in the
treatment of the carries and of the spins corresponds to
an adiabatic approximation: the dynamics of the spins in
the absence of the carriers is assumed to be much slower
than that of the carriers. Furthermore, in the spirit of the
virtual-crystal and molecular-field approximations, the clas-
sical continuous field �M(�r) controls the effect of the spins
upon the carriers. Now, the thermodynamics of the sys-
tem is described by the partition function Z, which can be
obtained by a functional integration of the Boltzmann fac-
tor exp(−∫

d�rF[ �M(�r)]/kBT ) over all magnetization profiles
�M(�r), an approach developed for bound magnetic polarons

(Dietl and Spałek, 1983; Dietl, 1983), and directly applicable
for spin physics in quantum dots as well. In the mean-field
approximation (MFA), which should be valid for spatially
extended systems and long-range spin–spin interactions, a
term corresponding to the minimum of F[ �M(�r)] is assumed
to determine Z with a sufficient accuracy.

If energetics is dominated by spatially uniform magneti-
zation �M , the spin part of the free energy density in the

magnetic field �H can be written in the form (Świerkowski
and Dietl, 1988)

FS[ �M] =
∫ �M

0
d �Mo �h( �Mo) − �M �H (2)

Here, �h( �Mo) denotes the inverse function to �Mo(�h), where
�Mo is the available experimentally macroscopic magnetiza-

tion of the spins in the absence of carriers in the field h and
temperature T . In DMS, it is usually possible to parameterize
Mo(h) by the Brillouin function BS(T , H) that takes the pres-
ence of intrinsic short-range antiferromagnetic interactions
into account. Near TC and for H = 0, M is sufficiently small
to take Mo(T , h) = χ(T )h, where χ(T ) is the magnetic sus-
ceptibility of localized spins in the absence of carriers. Under
these conditions,

FS[M] = M2

2χ(T )
(3)

which shows that the increase of FS with M slows down with
lowering temperature, where χ(T ) grows. Turning to Fc[M]
we note that owing to the giant Zeeman splitting of the bands
proportional to M , the energy of the carriers, and thus Fc[M],
decreases with |M|, Fc[M] − Fc[0] ∼ −M2. Accordingly, a
minimum of F[M] at nonzero M may develop in H = 0 at
sufficiently low temperatures signalizing the appearance of a
ferromagnetic order.

The present authors and coworkers (Dietl et al., 2000)
found that the minimal Hamiltonian necessary to describe
properly effects of the complex structure of the valence band
in tetrahedrally coordinated semiconductors upon Fc[M]
is the Luttinger 6 × 6 kp model supplemented by the
p–d exchange contribution taken in the virtual-crystal and
molecular-field approximations,

Hpd = β�s �M
gµB

(4)

This term leads to spin splittings of the valence sub-
bands, whose magnitudes – owing to the spin-orbit cou-
pling – depend on the hole wave vectors �k in a complex
way even for spatially uniform magnetization �M . It would
be technically difficult to incorporate such effects to the
Ruderman-Kittel-Kasuya-Yosida (RKKY) model, as the spin-
orbit coupling leads to nonscalar terms in the spin–spin
Hamiltonian. At the same time, the indirect exchange asso-
ciated with the virtual spin excitations between the valence
subbands, the Bloembergen-Rowland mechanism, is auto-
matically included. The model allows for strain, confinement,
and was developed for both zinc-blende and wurzite mate-
rials (Dietl, Ohno and Matsukura, 2001). Furthermore, the
direct influence of the magnetic field on the hole spectrum
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was taken into account. Carrier–carrier spin correlation was
described by introducing a Fermi-liquid-like parameter AF

(Dietl, Haury and Merle d’Aubigné, 1997; Haury et al., 1997;
Jungwirth, Atkinson, Lee and MacDonald, 1999), which
enlarges the Pauli susceptibility of the hole liquid. No disor-
der effects were taken into account on the ground that their
influence on thermodynamic properties is relatively weak
except for strongly localized regime. Having the hole ener-
gies, the free energy density Fc[ �M] was evaluated according
to the procedure suitable for Fermi liquids of arbitrary degen-
eracy. By minimizing F[ �M] = FS[ �M] + Fc[ �M] with respect
to �M at given T , H , and hole concentration p, Mn spin
magnetization M(T, H) was obtained as a solution of the
mean-field equation,

�M(T, H) = xeffNogµBSBS


gµB

(
− ∂Fc[ �M]

∂ �M + �H
)

kB(T + TAF)


 (5)

where the carrier energy and entropy as well as peculiarities
of the valence band structure, such as the presence of
various hole subbands, anisotropy, and spin-orbit coupling,
are hidden in Fc[ �M]. Near the Curie temperature TC and
at H = 0, where M is small, we expect Fc[M] − Fc[0] ∼
−M2. It is convenient to parameterize this dependence by
a generalized carrier spin susceptibility, which is related to
the magnetic susceptibility of the carrier liquid according to
χ c = AF(g

∗µB)2χ̃ c. In terms of χ̃ c,

Fc[M] = Fc[0] − AFχ̃ cβ
2M2

2(gµB)2
(6)

By expanding BS(M) for small M one arrives to the mean-
field formula for TC = TF − TAF, where TF is given by

TF = xeffNoS(S + 1)AFχ̃ c(TC)β2

3kB
(7)

For a strongly degenerate carrier liquid |εF|/kBT 	 1, as
well as neglecting the spin-orbit interaction χ̃ c = ρ/4, where
ρ is the total density of states for intraband charge excita-
tions, which in the 3D case is given by ρ = m∗

DOSkF/π
2
�

2. In
this case and for AF = 1, TF assumes the well-known form,
derived already in 1940s in the context of carrier-mediated
nuclear ferromagnetism (Fröhlich and Nabarro, 1940). In
general, however, χ̃ c has to be determined numerically by
computing Fc[M] for a given band structure and degeneracy
of the carrier liquid. The model can readily be generalized
to various dimensions as well as to the case, when �M is not
spatially uniform in the ground state, a case of spin-density
waves expected in the case of 1D systems.

The same formalism, in addition to TC and Mn magneti-
zation M(T, H), as discussed in the preceding text, provides

also quantitative information on spin polarization and mag-
netization of the hole liquid (Dietl, Ohno and Matsukura,
2001). Furthermore, it can be exploited to describe chemical
trends as well as micromagnetic, transport, and optical prop-
erties of ferromagnetic DMS (Jungwirth et al., 2006a). In
particular, a detail theoretical analysis of anisotropy energies
and anisotropy fields in films of (Ga,Mn)As was carried out
for a number of experimentally important cases within the
p–d Zener model (Dietl, Ohno and Matsukura, 2001; Abol-
fath, Jungwirth, Brum and MacDonald, 2001). The cubic
anisotropy as well as uniaxial anisotropy under biaxial epi-
taxial strain were examined as a function of the hole con-
centration p. Both shape and magnetocrystalline anisotropies
were taken into account. The perpendicular and in-plane ori-
entation of the easy axis is expected for the compressive
and tensile strain, respectively, provided that the hole con-
centration is sufficiently small. However, according to the-
ory, a reorientation of the easy axis direction is expected at
higher hole concentrations. Furthermore, in a certain concen-
tration range the character of magnetic anisotropy is found to
depend on the magnitude of spontaneous magnetization, that
is on the temperature. The computed phase diagram for the
reorientation transition compared to the experimental results
for a (Ga,Mn)As film is shown in Figure 2. In view that
theory is developed with no adjustable parameters the agree-
ment between experimental and computed concentrations and
temperature corresponding to the reorientation transition is
very good. Furthermore, the computed magnitudes of the
anisotropy field Hu (Dietl, Ohno and Matsukura, 2001) are
consistent with the available findings for both compressive
and tensile strain.
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It should be emphasized that the preceding description of
ferromagnetic DMS is strictly valid only in the weak cou-
pling limit (Dietl et al., 2000). On going from antimonides
to nitrides or from tellurides to oxides, the p–d hybridization
increases. In the strong-coupling limit, the short-range part
of the TM potential may render the virtual-crystal approx-
imation and molecular-field approximation invalid (Benoit
à la Guillaume, Scalbert and Dietl, 1992; Matsukura and
Ohno, 2002), leading to properties somewhat reminiscent
of those specific to alloys which cannot be described by
the virtual crystal approximation, like Ga(As,N) (Wu, Shan
and Walukiewicz, 2002). Here, dynamic mean-field approxi-
mation (DMFA) may capture relevant physics (Chattopad-
hyay, Das Sarma and Millis, 2001). In particular, in the
strong-coupling limit, the short-range potential of the TM
ion admixes to the itinerant carrier wave function a local
component. This, together with quantum effects of Ander-
son–Mott localization, may generate modifications in optical
and transport characteristics, such as an apparent increase in
the carrier effective mass (Burch et al., 2006).

The issue how various corrections to the mean-field p–d
Zener model (Dietl et al., 2000) affect theoretical values of
TC was recently examined in some detail for (Ga,Mn)As
(Brey and Gómez-Santos, 2003; Timm and MacDonald,
2005; Jungwirth et al., 2005; Popescu et al., 2006) with the
conclusions that the overall picture remains quantitatively
valid. Figure 3 shows one of the recent theoretical mod-
elings of TC in comparison to experimental findings for
(Ga,Mn)As (Jungwirth et al., 2005). These results confirm, in
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is the lattice constant. Gray line is theoretical computed within the
tight-binding and coherent potential approximations. (Reproduced
from Jungwirth et al., 2005, with permission from the American
Physical Society.  2005.)

particular, that TC values above 300 K could be achieved in
Ga0.9Mn0.1As if such a large magnitude of the substitutional
Mn concentration could be accompanied by a corresponding
increase of the hole density (Dietl et al., 2000).

2.5 Theory of modulated structures of diluted
ferromagnetic semiconductors

The discovery of carrier-induced ferromagnetism in zinc-
blende III–V and II–VI compounds has made it possi-
ble to consider physical phenomena and device concepts
for previously unavailable combinations of quantum struc-
tures and magnetism in semiconductors. Indeed, it has
already been demonstrated that various modulated structures
of (Ga,Mn)As show functionalities relevant for spintronic
devices including spin injection of holes (Ohno et al., 1999;
Young et al., 2002) and electrons (Kohda et al., 2001, 2006;
Johnston-Halperin et al., 2002), interlayer coupling (Chiba
et al., 2000; Sadowski et al., 2002), exchange bias (Eid et al.,
2005), giant magnetoresistance (GMR) (Chiba et al., 2000),
tunneling magnetoresistance (TMR) (Tanaka and Higo, 2001;
Mattana et al., 2003; Chiba, Matsukura and Ohno, 2004),
tunneling anisotropic magnetoresistance (TAMR) (Ruster
et al., 2005; Giddings et al., 2005), and domain-wall resis-
tance (Tang et al., 2004; Chiba et al., 2006).

Because of paramount importance of interfaces as well of
Rashba and Dresselhaus terms, spin properties of modulated
semiconductor structures cannot be meaningfully modeled
employing a standard kp theory. Accordingly, an empirical
multiorbital tight-binding theory of multilayer structures has
been developed (Oszwałdowski, Majewski and Dietl, 2006;
Sankowski and Kacman, 2005; Sankowski, Kacman, Majew-
ski and Dietl, 2006a,b). The employed procedure describes
properly the carrier dispersion in the entire Brillouin zone
and takes into account the presence of magnetic ions in the
virtual-crystal and molecular-field approximations. Further-
more, since the phase coherence and spin diffusion lengths
are comparable in these devices and, moreover, they are
typically longer than the length of the active region, the for-
mulation of spin transport model in terms of the Boltzmann
distribution function f for particular spin orientations is
not appropriate. Recently, theory that combines a Landauer-
Büttiker formalism with tight-binding approximation has
been developed (van Dorpe et al., 2005; Sankowski, Kac-
man, Majewski and Dietl, 2006a,b). In contrast to the stan-
dard kp method (Petukhov, Chantis and Demchenko, 2002;
Brey, Fernández-Rossier and Tejedor, 2004), this theory, in
which sp3d5s∗ orbitals are taken into account, describes prop-
erly the interfaces and inversion symmetry breaking as well
as the band dispersion in the entire Brillouin zone, so that
the essential for the spin-dependent tunneling Rashba and
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Dresselhaus terms as well as the tunneling via �k points away
from the zone center are taken into account.

The approach in question, developed with no adjustable
parameters, provided information on sign of the interlayer
coupling (Sankowski and Kacman, 2005), explained experi-
mentally observed large magnitudes of both electron current
spin polarization up to 70% in the (Ga,Mn)As/n-GaAs Zener
diode (van Dorpe et al., 2005) and TMR of the order of
300% in a (Ga,Mn)As/GaAs/(Ga,Mn)As trilayer structure
(Sankowski, Kacman, Majewski and Dietl, 2006b), as shown
in Figure 4. Furthermore, theory reproduced a fast decrease
of these figures with the device bias as well as it indi-
cated that the magnitude of TAMR should not exceed 10%
under usual strain conditions and for hole densities corre-
sponding to the metal side of the metal-to-insulator transition
(MIT) (Sankowski, Kacman, Majewski and Dietl, 2006a). A
similar model was employed to examine an intrinsic domain-
wall resistance in (Ga,Mn)As (Oszwałdowski, Majewski and
Dietl, 2006).

3 NONUNIFORM FERROMAGNETIC
DMS – ELECTRONIC NANOSCALE
PHASE SEPARATIONS

3.1 Effects of competing magnetic interactions

A number of effects has been identified, which may lead
to deviations from a simple ferromagnetic spin order in
carrier-controlled diluted ferromagnetic semiconductors even

if the spatial distribution of magnetic ions is uniform. In
particular, spin-density waves appear to be in the ground
state in the case of 1D systems (Dietl, Cibert, Ferrand
and Merle d’Aubigné, 1999). Another proposal involves
canted ferromagnetism stemming from a nonscalar form of
spin–spin interactions, brought about by spin-orbit coupling
(Zaránd and Jankó, 2002), though a large value of saturation
magnetization in (Ga,Mn)As indicates that the effect is
not large (Jungwirth et al., 2006b). Finally, a competition
between long-range ferromagnetic interactions and intrinsic
short-range antiferromagnetic interactions (Kȩpa et al., 2003)
may affect the character of magnetic order (Kechrakos,
Papanikolaou, Trohidou and Dietl, 2005). It appears that
the effect is more relevant in II–VI DMS than in III–V
DMS where Mn centers are ionized, so that the enhanced
hole density at closely lying Mn pairs may compensate
antiferromagnetic interactions (Dietl, Ohno and Matsukura,
2001).

The above-mentioned competition between the long-range
RKKY merely ferromagnetic interaction and short-range
merely antiferromagnetic superexchange was shown to affect
in a nontrivial way magnetic properties of modulation-doped
p-type (Cd,Mn)Te quantum wells (Kechrakos, Papanikolaou,
Trohidou and Dietl, 2005). In this system, the temperature
TC at which spontaneous spin splitting of electronic lev-
els appears as well as its temperature dependence (Haury
et al., 1997; Kossacki et al., 2000, 2002; Boukari et al.,
2002) follow predictions of a simple mean-field Zener-
like model of ferromagnetism (Dietl, Haury and Merle
d’Aubigné, 1997). A reasonable accuracy of the MFA in
this low-dimensional system was linked to the long-range
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Figure 4. Difference in resistance for antiparallel and parallel magnetization orientations normalized by resistance for parallel orientation
for tunneling structures p-Ga1−xMnxAs/GaAs/p-Ga1−xMnxAs as a function of: (a) hole concentration p (for x = 0.08); (b) Mn content x

(for p = 3.5 × 1020 cm−3 ) in the limit of small bias voltage. (Reproduced from Sankowski, P. et al., 2006, with permission from Elsevier.
 2006.)
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character of the ferromagnetic interactions as well as to
the combined effects of spin-orbit interaction and confine-
ment that lead to the Ising-type universality class (Haury
et al., 1997). At the same time, however, wide hysteresis
loops and the associated spontaneous macroscopic magneti-
zation in zero magnetic field, which are expected within this
model (Lee, Jungwirth and MacDonald, 2002), have not been
observed. Instead, according to polarization-resolved photo-
luminescence measurements, the global spin polarization of
the carrier liquid increases slowly with the external magnetic
field along the easy axis, reaching saturation at a field by a
factor of 20 greater than what could be accounted for by
demagnetization effects (Kossacki et al., 2000, 2002).

In order to explain this behavior, Monte Carlo simula-
tions were employed (Kechrakos, Papanikolaou, Trohidou
and Dietl, 2005), in which the Schrödinger equation was
solved at each Monte Carlo sweep. Such a model is capa-
ble to assess the influence of magnetization fluctuations,
short-range antiferromagnetic interactions, disorder, mag-
netic polaron formation, and spin-Peierls instability on the
carrier-mediated ferromagnetism in two-dimensional elec-
tronic systems. It has been found that the determined critical
temperatures and hystereses are affected in a nontrivial way
by the presence of short-range antiferromagnetic interactions,
as shown in Figure 5. In particular, the antiferromagnetic
interactions decrease TC less than expected within the MFA.
However, the presence of competing interactions reduces
strongly the remanence and the coercive field. It appears that
in order to satisfy both ferromagnetic and antiferromagnetic
spin couplings in an optimum way, the system breaks into
nanoscale ferromagnetic domains, so that the global magne-
tization averages to zero. At the same time, the magnitude
of the external magnetic field that can align these domains is

set by the strength of the antiferromagnetic interactions, not
by demagnetization or magnetic anisotropy energies.

3.2 Effects of Anderson–Mott localization

Similar to other doped semiconductors, p-type DMS undergo
MIT, when an average distance between the carriers becomes
2.5 times greater than the Bohr radius. The insulator regime
can be reached not only by reducing the acceptor density
but also by increasing the concentration of compensation
donors or by depleting the film of holes either by electrostatic
gates or by charge transfer to surface states or to neighbor
undoped layers. In has been found that, in contrast to charge
transport characteristics, the Curie temperature, like other
thermodynamic properties, does not show up any critical
behavior on crossing the MIT (Matsukura, Ohno, Shen and
Sugawara, 1998; Ferrand et al., 2001).

Two competing models have been put forward in order to
explain the existence of ferromagnetic order on the insulator
side of the MIT. According to the magnetic polaron scenario
(Durst, Bhatt and Wolff, 2002; Kaminski and Das Sarma,
2002) the holes stay localized by the individual parent
acceptors, so that their localization length corresponds to
the Bohr radius, usually diminished – particularly in the
strong-coupling regime – by the hole interaction with the
short-range part of the TM potential. In such a case, the
ferromagnetic transition can be viewed as the percolation
threshold of bound magnetic polarons.

Another scenario was put forward by the present author
and coworkers (Dietl, Haury and Merle d’Aubigné, 1997;
Dietl et al., 2000; Ferrand et al., 2001). Within this model,
the hole localization length, which diverges at the MIT,
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Figure 5. (a) Upper branch of the magnetization hysteresis loop of hole spins in a Cd0.96Mn0.04Te quantum well at T = 0.7TC, where
TC is the Curie temperature, as determined by Monte Carlo simulations neglecting (open symbols) an taking into account (full symbols)
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remains much greater than an average distance between
the acceptors for the experimentally important range of the
hole densities. Accordingly, the holes can be regarded as
delocalized at the length scale relevant for the coupling
between magnetic ions. Hence, the spin–spin exchange
interactions are effectively mediated by the itinerant carriers,
so that the p–d Zener or RKKY model can be applied
also on the insulator side of the MIT. At the same time,
however, large mesoscopic fluctuations in the local value
of the density of states are expected near the MIT. As
a result, nanoscale phase separation into paramagnetic and
ferromagnetic regions takes place below and in the vicinity
of the apparent Curie temperature. The paramagnetic phase
persists down to the lowest temperatures in the locations
that are not visited by the holes or characterized by a low
value of the blocking temperature TB defined in Introduction.
The ferromagnetic order develops in the regions, where
the carrier liquid sets long-range ferromagnetic correlation
between the randomly distributed TM spins. According
to this model, the portion of the material encompassing
the ferromagnetic bubbles, and thus the magnitude of the
saturated ferromagnetic moment, grows with the net acceptor
concentration, extending over the whole sample on the
metallic side of the MIT.

It is still a formidable task, even in nonmagnetic semicon-
ductors, to describe quantitatively effects of both disorder and
carrier–carrier correlation near the Anderson–Mott transi-
tion. However, there is a growing amount of experimental
results indicating that the model outlined in the previous
paragraph is qualitatively correct. In particular, for samples
on the insulator side of MIT, the field dependence of magne-
tization shows the presence of superimposed ferromagnetic
and paramagnetic contributions in both (Ga,Mn)As (Oiwa
et al., 1997) and p-(Zn,Mn)Te (Ferrand et al., 2001). Inter-
estingly, the paramagnetic component is less visible in the
anomalous Hall effect data, presumably because it probes
merely the regions visited by the carriers (Ferrand et al.,
2001). At the same time, colossal negative magnetoresistance
is observed, leading to the field-induced insulator-to-metal
transition in samples with the appropriate acceptor densities
(Ferrand et al., 2001; Katsumoto et al., 1998). The enhanced
conductance in the magnetic field can be linked to the order-
ing of ferromagnetic bubbles and to the alignment of the
spins in the paramagnetic regions. Remarkably, the corre-
sponding effects have recently been found in modulation-
doped quantum well of (Cd,Mn)Te, where no localization of
carriers by individual ionized impurities and, thus, no for-
mation of bound magnetic polarons is expected (Jaroszyński
et al., 2005). The question whether the holes bound by indi-
vidual acceptors or rather the holes residing in weakly local-
ized states mediate ferromagnetism in DMS on the insulating
side of the MIT was also addressed by inelastic neutron

scattering in (Zn,Mn)Te:P (Kȩpa et al., 2003). In that work,
the difference in the nearest-neighbor Mn pairs exchange
energy J1 in the presence and in the absence of the holes was
determined. The hole-induced contribution to J1 was found
to be by a factor of 4 smaller than that calculated under the
assumption that the holes reside on individual acceptors. By
contrast, if the hole states are assumed to be metallic-like at
length scale of the nearest-neighbor distance, the calculated
value is smaller than the experimental one by a factor of 1.5,
a discrepancy well within combine uncertainties in the input
parameters to theory and experimental determination.

4 NONUNIFORM FERROMAGNETIC
DMS – CHEMICAL NANOSCALE
PHASE SEPARATIONS

4.1 Spinodal decomposition

It is well known that phase diagrams of a number of alloys
exhibit a solubility gap in a certain concentration range. This
may lead to spinodal decomposition into regions with a low
and a high concentration of particular constituents. If the
concentration of one of them is small, it may appear in a
form of coherent nanocrystals embedded by the majority
component. For instance, such a spinodal decomposition
is known to occur in the case of (Ga,In)N (Farhat and
Bechstedt, 2002), where In-rich quantum-dot-like regions are
embedded by an In-poor matrix. However, according to the
pioneering ab initio work of van Schilfgaarde and Mryasov
(2001) and others (Sato, Katayama-Yoshida and Dederichs,
2005) particularly strong tendency to form nonrandom alloy
occurs in the case of DMS: the evaluated gain in energy
by bringing two Ga-substitutional Mn atoms together is
Ed = 120 meV in GaAs and 300 meV in GaN, and reaches
350 meV in the case of Cr pair in GaN (van Schilfgaarde and
Mryasov, 2001).

Since spinodal decomposition does not usually involve a
precipitation of another crystallographic phase, it is not easy
detectable experimentally. Nevertheless, its presence was
found by transmission electron microscopy (TEM) (Moreno
et al., 2002; Yokoyama, Yamaguchi, Ogawa and Tanaka,
2005) in (Ga,Mn)As, where coherent zinc-blende Mn-rich
(Mn,Ga)As nanocrystals led to the apparent Curie tempera-
ture up to 360 K (Yokoyama, Yamaguchi, Ogawa and Tanaka,
2005). Furthermore, coherent hexagonal and diamond-type
Mn-rich nanocrystals were detected by spatially resolved
X-ray diffraction in (Ga,Mn)N (Martinez-Criado et al., 2005)
and by TEM in (Ge,Mn) (Bougeard, Ahlers, Trampert and
Abstreiter, 2006), respectively.

In view of typically limit solubility of magnetic atoms in
semiconductors, it may, therefore, be expected that such a
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spinodal decomposition is a generic property of a number of
DMS. Owing to the high concentration of the magnetic con-
stituent, the nanocrystals form in this way order magnetically
at a relatively high temperature Tm, usually much greater than
room temperature. Obviously, either ferromagnetic or ferri-
magnetic nanocrystals possess a nonzero magnetic moment.
Interestingly enough, nanocrystals in which antiferromag-
netic interactions dominate can also show a nonzero magnetic
moment owing to the presence of uncompensated spins at
their surface, whose relative magnitude grows with decreas-
ing nanocrystal size (Trohidou, Zianni and Blackman, 2002).

As an example we consider (Zn,Cr)Se (Karczewski et al.,
2003) and (Zn,Cr)Te (Saito, Zayets, Yamagata and Ando,
2003), which show (Karczewski et al., 2003; Kuroda et al.,
2005) the well-known superparamagnetic behavior (Shinde
et al., 2004; Goswami et al., 2005), indicating that the system
is to be viewed rather as an ensemble of noninteracting fer-
romagnetic particles than a uniform magnetic alloy. In such
a case the temperature dependencies of magnetization and
magnetic susceptibility are described by four distinguished
temperatures: Tm, the blocking temperature TB that corre-
sponds to a maximum of zero-field cooled magnetization;
the apparent Curie temperature T

(app)

C of the composite mate-
rial, and the Curie–Weiss temperature 
 characterizing a
weighted magnitude of the exchange interactions between
the Cr spins within the nanocrystal. A maximum value of
T

(app)

C ≈ 320 K is obtained for (Zn,Cr)Te with xCr above the
percolation limit for 3D, x ≈ 0.2.

These remarkable observations can readily be interpreted
under the assumption that the relevant magnetic nanopar-
ticles are built of a metallic zinc-blende CrTe or Cr-rich
(Zn,Cr)Te characterized by Tm ≈ 320 K and by the lattice
constant imposed by a paramagnetic semiconductor host,
either ZnTe or (Zn,Cr)Te with a rather small Cr concentra-
tion. This conjecture is consistent with ab initio computations
(Zhao and Zunger, 2005) predicting zinc-blende CrTe to be a
ferromagnetic half-metal as well as with experimental results
for CrTe in a bulk NiAs-type structure for which Tm ≡ TC =
340 ± 10 K (Ohta, Kanomata, Kaneko and Yoshida, 1993).
Within this scenario, for small ferromagnetic nanocrystals we
expect TB < T

(app)

C < TC, TB being proportional to a mean
nanoparticle volume V , TB ≈ KV/(25kB), where K is the
density of the magnetic anisotropy energy. Similarly, T

(app)

C
provides information on the upper bound of the V distribu-
tion. Furthermore, we note that broken magnetic bonds at the
nanocrystal surface reduce the Curie–Weiss temperature 


from its anticipated value for large V , 
max ≥ TC.
It is, therefore, legitimate to suppose that coherent

nanocrystals with a large concentration of magnetic con-
stituent account for high apparent Curie temperatures
detected in a number of DMS. This model explains, in partic-
ular, a long staying puzzle about the origin of ferromagnetic

response in DMS, in which an average concentration of
magnetic ions is below the percolation limit for the near-
est neighbor coupling and, at the same time, the free-
carrier density is too low to mediate an efficient long-range
exchange interaction. Remarkably, the presence of magnet-
ically active nanocrystals leads to an enhanced magneto-
optical (Yokoyama, Yamaguchi, Ogawa and Tanaka, 2005)
and magnetotransport (Shinde et al., 2004; Ye et al., 2003)
properties. This opens doors for various applications of
such hybrid systems provided that methods for control-
ling nanocrystal characteristics and distribution would be
elaborated. So far, the most rewarding method of self-
organized growth of coherent nanocrystals or quantum dots
has exploited strain fields generated by lattice mismatch
at interfaces of heterostructures (Stangl, Holý and Bauer,
2004). Remarkably, it becomes possible to fabricate highly
ordered three-dimensional dot crystals under suitable spatial
strain anisotropy (Stangl, Holý and Bauer, 2004). A further
progress in this direction is particularly timely as it could
result in the development of high-density 3D memories and
spatial light modulators for advanced display technologies. A
new method of self-organized growth has recently been pro-
posed by the present author (Dietl, 2006). In this approach,
long-range Coulomb forces serve to control the aggregation
of alloy constituents.

4.2 Controlling spinodal decomposition by
interion coulomb interactions

It is well known that in most DMS the levels derived from
the open d or f shells of magnetic ions reside in the band
gap of the host semiconductor (Dietl, 2002). This property
of magnetic ions has actually been exploited for a long
time to fabricate semi-insulating materials, in which carriers
introduced by residual impurities or defects are trapped by
the band-gap levels of magnetic impurities. The essential
ingredient of the proposal in question (Dietl, 2006) is the
observation that such a trapping alters the charge state of
the magnetic ions and, hence, affect their mutual Coulomb
interactions. Accordingly, codoping of DMS with shallow
acceptors or donors modifies Ed and thus provides a mean
for the control of ion aggregation. Indeed, the energy of
the Coulomb interaction between two elementary charges
residing on the nearest-neighbor cation sites in the GaAs
lattice is 280 meV. This value indicates that the Coulomb
interaction can preclude the aggregation, as the gain of
energy associated with the bringing two Mn atoms in
(Ga,Mn)As is Ed = 120 meV.

It is evident that the model in question should apply
to a broad class of DMS as well to semiconductors and
insulators, in which a constituent, dopant, or defect can exist
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in different charge states under various growth conditions. As
important examples we consider (Ga,Mn)N and (Zn,Cr)Te,
in which remarkable changes in ferromagnetic characteristics
on codoping with shallow impurities have recently been
reported (Reed et al., 2005; Ozaki et al., 2005). In particular,
a strong dependence of saturation magnetization Ms at 300 K
on codoping with Si donors and Mg acceptors has been
found (Reed et al., 2005) for (Ga,Mn)N with an average
Mn concentration xMn ≈ 0.2%. Both double exchange and
superexchange are inefficient at this low Mn concentration
and for the midgap Mn level in question. At the same time,
the model of nanocrystal self-organized growth in question
explains readily why Ms goes through a maximum when
Mn impurities are in the neutral Mn3+ state, and vanishes if
codoping by the shallow impurities makes all Mn atoms to
be electrically charged.

It has also been found that T
(app)

C depends dramatically
on the concentration of shallow N acceptors in (Zn,Cr)Te.
Actually, T

(app)

C decreases monotonically when the concen-
tration xN of nitrogen increases, and vanishes when xCr and
xN become comparable. This supports the model as in ZnTe
the Cr state (Godlewski and Kamińska, 1980) resides about
1 eV above the nitrogen level (Baron, Saminadayar and Mag-
nea, 1998). Accordingly, for xN ≈ xCr all Cr atoms become
ionized and the Coulomb repulsion precludes the nanocrystal
formation. At the same time, the findings are not consistent
with the originally proposed double exchange mechanism
(Ozaki et al., 2005), as undoped ZnTe is only weakly p type,
so that TC should be small for either xN ≈ 0 and xN ≈ xCr,
and pick at xN ≈ xCr/2, not at xN ≈ 0.

Finally, we mention the case of Mn doped GaAs, InAs,
GaSb, and InSb. In those materials, owing to a relatively shal-
low character of Mn acceptors and a large Bohr radius, the
holes reside in the valence band. Thus, the Mn atoms are neg-
atively charged, which – according to our model – reduces
their clustering, and makes it possible to deposit, by low-
temperature epitaxy, a uniform alloy with a composition
beyond the solubility limit. Codoping with shallow donors,
by reducing the free-carrier screening, will enhance repul-
sions among Mn, and allow one to fabricate homogenous
layers with even greater xMn. On the other hand, codoping
by shallow acceptors, along with the donor formation by a
self-compensation mechanism (Yu et al., 2002), will enforce
the screening and, hence, lead to nanocrystal aggregation.

5 SUMMARY

The findings discussed here demonstrate that a number of
pertinent properties of spatially uniformed carrier-controlled
diluted ferromagnetic semiconductors and their heterostruc-
tures can be understood qualitatively, if not quantitatively,

by the present theory. The accumulated data point clearly
to the importance of spin-orbit interactions in the physics
of hole-mediated ferromagnetism in semiconductors. These
interactions control the magnitude of the Curie temperature,
the saturation value of the magnetization, the anomalous Hall
effect as well as the character and magnitude of magnetic
and transport anisotropies. A growing amount of evidences
shows that under various conditions the spatial distribution
of carriers and/or magnetic ions is by no means uniform. The
nanoscale phase separation can be driven either by random-
ness in the carrier and spin subsystems or by limited solubil-
ity of TMs in the host semiconductor, which leads to spinodal
decomposition into regions with a small and a large concen-
tration of the magnetic constituent. Interestingly, by manipu-
lating the charge state of magnetic ions, it becomes possible
to control the spinodal decomposition. This constitutes an
appealing avenue toward self-organized coherent epitaxy of
magnetic nanocrystals over a wide range of their dimensions.
It is expected that further works will indicate how to tailor
nanocrystal size dispersion and spatial distribution. In this
context, engineering of local strains by exploiting various
combinations of dopants and hosts may turn out to be of rel-
evance. The self-organized growth mode in question (Dietl,
2006) is rather universal – it applies to dopants exhibiting
a solubility gap, and different charge states that are stable
under the growth conditions. The existence of this nano-
assembling mechanism, as exemplified here by the case of
(Zn,Cr)Te and (Ga,Mn)N codoped with shallow impurities,
explains outstanding properties of a broad class of composite
DMS, and offer prospects for exploiting their novel function-
alities. In particular, the nanocrystals, rather than the host, are
shown to account for ferromagnetic signatures in magnetic
and magneto-optical characteristics of these systems. These
findings imply also that today’s ab initio methods of com-
putational materials science, assigning the high-temperature
ferromagnetism of, for example, (Zn,Cr)Te (Bergqvist et al.,
2004; Fukushima, Sato, Katayama-Yoshida and Dederichs,
2004) to the uniform diluted alloy, overestimate substantially
long-range ferromagnetic correlation, presumably because
effects of Mott–Hubbard and Anderson–Mott localization
of paramount importance in the case of the narrow d band
are implicitly disregarded in the codes developed so far. It
thus appears that delocalized or weakly localized valence
band holes are necessary to transmit magnetic information
between the diluted spins (Dietl et al., 2000; Jungwirth et al.,
2006a). In addition to (Ga,Mn)As, (Zn,Mn)Te:N, and related
systems, recent indications of ferromagnetism in p-(Ga,Mn)N
(Edmonds et al., 2005; Sarigiannidou et al., 2006) and p-
(Ga,Mn)P (Scarpulla et al., 2005) appear to support this
conclusion. However, in those and other experimentally rel-
evant cases, nonuniformity associated with hole localization
is seen to affect strongly ferromagnetic properties. It is still



Diluted ferromagnetic semiconductors – theoretical aspects 13

to be found out experimentally whether nitrides, oxides or
diamond containing 5% of randomly distributed magnetic
impurities and more than 3 × 1020 valence band holes/cm3

show ferromagnetic ordering above the room temperature.
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Jungwirth, T., Wang, K., Mašek, J., et al. (2005). Prospects of
high temperature ferromagnetism in (Ga,Mn)As semiconductors.
Physical Review B, 72, 165204.

Kacman, P. (2001). Spin interactions in diluted magnetic semicon-
ductors and magnetic semiconductor structures. Semiconductor
Science and Technology, 16, R25–R39.

Kaminski, A. and Das Sarma, S. (2002). Polaron percolation in
diluted magnetic semiconductors. Physical Review Letters, 88,
247202.

Karczewski, G., Sawicki, M., Ivanov, V., et al. (2003). Ferromag-
netism in (Zn,Cr)Se layers grown by molecular beam epitaxy.
Journal of Superconductivity/Novel Magnetism, 16, 55.

Katsumoto, S., Oiwa, A., Iye, Y., et al. (1998). Strongly Anisotropic
Hopping Conduction in (Ga, Mn)As/GaAs. Physical Status Solidi
A, 205, 115.

Kechrakos, D., Papanikolaou, N., Trohidou, K.N. and Dietl,
T. (2005). Monte Carlo simulations of ferromagnetism in
p-Cd1−xMnxTe quantum wells. Physical Review Letters, 94,
127201.
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1 INTRODUCTION

The band engineering afforded in heterostructures
(Kroemer, 2001) can be tailored at monolayer length
scales by using layer-by-layer growth techniques, such as
molecular-beam epitaxy (MBE) (Gossard, 1986). Deposit-
ing a thin (∼10–100 Å) narrow band-gap material within
a wider band-gap material confines band electrons in one
dimension at length scales at which this confinement quan-
tizes the wave functions, energy levels, and band structure.
These quantum wells (QWs) are essential components in
countless optoelectronic devices, such as QW laser diodes,
avalanche photodiodes, quantum cascade lasers, and high
electron mobility transistors to name a few. In addition to
modern device application, QWs have been at the forefront of
condensed matter research, providing systems in which band

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

structure, density of states, carrier density, and confinement
energy are adjustable.

Recently, the possibility of utilizing the spin of electrons
for additional or fundamentally new device functionality,
spintronics, has sparked a broad research effort in semicon-
ductors. QWs offer a unique means for controlling the inter-
actions between free carrier spins and localized magnetic-ion
or nuclear spins and have the advantage of a high level of
technological versatility via advanced growth techniques like
MBE. Additionally, QWs have advantageous optical prop-
erties for probing and polarizing spin. In spin-LEDs, for
example, the degree of circular polarization of electrolumi-
nescence from QWs is used as a probe of spin-polarized
current through these devices, which is made possible by the
unique spin-sensitive optical selection rules.

We review recent developments in semiconductor spin-
tronics, in which electric and magnetic fields are used to
polarize, orient, and couple quantum-confined spins. Het-
erostructure band engineering is used to modify the spin-
dependent terms in the Hamiltonian of carriers confined to
QWs. This is accomplished in nonmagnetic semiconductors
by exploiting the dependence of the spin-orbit interaction
on the effective band gap, which is modified by chemi-
cal composition and quantum confinement. Vertically biased
QWs provide electronic control of the spatial position of
carrier wave functions in QWs. Such carrier shifting mod-
ifies the spin-dependent terms in the Hamiltonian owing to
g-factor gradients or local exchange interactions in magneti-
cally doped QWs. High-frequency modulation of these inter-
actions can be used in lieu of an external transverse magnetic
field to resonantly manipulate electron and nuclear spins.
These techniques are applied in magnetic structures, where
the strong exchange interaction between local moments and
band electrons massively enhances the energy of the spin
interactions compared with nonmagnetic wells. The intrinsic
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coupling of magnetic and carrier spins can be tailored in
QWs to engineer exchange effects through modulation dop-
ing or kinetic confinement effects. Increasing the hole carrier
density in magnetic wells results in the creation or enhance-
ment of ferromagnetism, while confinement energy modifies
the exchange interactions due to band mixing.

2 g-FACTORS IN QUANTUM WELLS

2.1 Electron g-factor

Band structure strongly alters the spin-orbit interaction in
semiconductors QWs. The change in band structure between
QW and barrier materials leads to a change in the effective
g-factors. Figure 1(a) plots g-factors as a function of
band gap for a number of semiconductors and their alloys
(Madelung, 2004; Kosaka et al., 2001), the traditional map of
band gap versus lattice constant is plotted in Figure 1(b), and
the g-factor versus lattice constant is in Figure 1(c). The spin
splitting between spin-up and spin-down electrons (�E↑↓)
per unit of magnetic field is also plotted in Figure 1(a),
�E↑↓ = gµBB, showing the range of conduction-band spin
splittings possible in these systems, where µB is the Bohr
magneton and B is the applied magnetic field. The sign
change of �E↑↓ corresponds to a change in orientation
of the electron spin ground state with magnetic field,
with electron spins pointing opposite the field when g >

0 (�E↑↓ > 0) and spins pointing parallel with the field for
g < 0 (�E↑↓ < 0). The origin of the sign and magnitude
change of the effective g-factor for electrons in bulk crystals
is the spin-orbit interaction and interband mixing (Roth,
Lax and Zwerdling, 1959). Following from a perturbative
treatment in k·p theory, the following expression describes
the effective g-factor (Hermann and Weisbuch, 1977),

g = g0 − 2

3

(
2p2

sp

m0

)
�

(Eg[Eg + �])
(1)

where g0 ∼ 2.002 is the g-factor for free electrons, psp

is proportional to the conduction and valence band mix-
ing, and � is the spin-orbit splitting of the valence band
(spin-split-off band). Equation 1 explains, for example,
why wider band-gap materials, such as GaN and ZnO
exhibit g-factors close to the free electron value (∼2) and
why narrow band-gap semiconductors exhibit negative g-
factors, such as GaAs (∼−0.44) and InAs (∼−15). Further,
the unusually large and negative value of the conduction-
band electron g-factors in InSb (∼−51) and InAs are
due to the large � in these materials. Alloying semicon-
ductors provides one route for engineering g-factors. In
GaAs, by alloying with Al the conduction-band g-factor
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Figure 1. (a) Summary of electron g-factors versus band gap in
several semiconductors. Lines connect alloy systems. The corre-
sponding spin splitting in the conduction band is plotted in the
right vertical axis per unit of magnetic field. (b) Band gap versus
lattice constant for several semiconductors. (c) Electron g-factor
versus lattice constant. (Data from Madelung, 2004; Kosaka et al.,
2001 and references therein.)

can be increased from −0.44 in pure GaAs to +0.6 in
Al0.4Ga0.6As (Chadi, Clark and Burnham, 1976; Weisbuch
and Hermann, 1977). It was also shown that alloying GaAs
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with In decreases the g-factor from −0.44 to −0.8 in
In0.1Ga0.9As (Weisbuch and Hermann, 1977) and reaches
−4.07 in In0.53Ga0.47As lattice matched to InP (Kowalski,
Linke and Omling, 1996). An additional modification of
g-factors exists in QWs, where spatial confinement of car-
riers along the growth direction increases the effective band
gap (Ivchenko and Kiselev, 1992). The simple substitution
of Eg → E∗

g in equation (1) provides a rough estimate for
the effective g-factor in QWs.

Optical measurements of electron g-factors in a num-
ber of QW systems experimentally demonstrate the effect
of confinement on carrier spin splittings. Snelling et al.
used measurements of polarization-resolved photolumines-
cence (PL) in the Voigt geometry–the Hanle effect–to
extract effective electron g-factors and spin lifetimes in
GaAs–AlxGa1−xAs QWs (Snelling et al., 1991). These mea-
surements demonstrated that for Al concentrations of 30%,
QW width modifies the g-factor from negative values in
wide wells to positive values in narrow wells and an effec-
tive g = 0 for widths near 5.5 nm. These time-averaged
measurements were later confirmed by optical measurement
of electron spin dynamics in the time domain of simi-
lar structures using the technique of time-resolved Kerr
or Faraday rotation (Malinowski and Harley, 2000; Pog-
gio et al., 2004; Myers et al., 2005b). Note that such
measurements only provide information about the mag-
nitude of the g-factor and not its sign. Figure 2 plots
the effective electron g-factor and �E↑↓ from (Snelling
et al., 1991; Malinowski and Harley, 2000; Poggio et al.,
2004; Myers et al., 2005b) showing the wide range in sign
and magnitude available in GaAs–AlGaAs and InGaAs–
GaAs QWs.
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Figure 2. Effective in-plane electron g-factors in some III–V
quantum wells plotted as a function of well width (w). (Data
reproduced from Snelling et al., 1991; Malinowski and Harley,
2000; Poggio et al., 2004; Myers et al., 2005b.)

2.2 Hole g-factor

The energy landscape for electron spins in the valence band
is more complex than for the conduction band due to the
strong spin-orbit interaction and band mixing of the heavy,
light, and spin-split-off bands. In QWs, the degeneracy of
the heavy and light hole bands is lifted due to symmetry
breaking from confinement and/or strain, whereby the heavy
hole band becomes the ground state for holes. The label
of these valence bands becomes somewhat of a misnomer
in QWs since the heavy hole band in bulk becomes lighter
in QWs (larger d2E/dk2) and the light hole band becomes
heavier (smaller d2E/dk2). Away from k = 0, the bands
therefore cross and result in strong mixing. This results in
an anisotropy of the angular momentum that pins the heavy
hole spin (3/2) parallel to the growth axis and light hole spin
(1/2) perpendicular to the growth axis (Martin et al., 1990).

Polarization-resolved PL was used to measure the Zee-
man splittings in GaAs–AlGaAs and InGaAs–GaAs QWs
(Snelling, Blackwood, McDonagh and Harley, 1992; Traynor,
Harley and Warburton, 1995). From these excitonic spin
splittings, the g-factor for heavy holes and heavy hole exci-
tons were extracted. In such experiments, the g-factor of
the exciton is defined as the sum of the hole and electron
g-factors, which implicitly assumes that exciton binding and
electron–hole exchange coupling does not significantly mod-
ify the g-factor. In the GaAs–AlGaAs system, heavy hole
g-factors undergo a similar sign change as does the electron
g-factor near 5.5 nm well width. In the GaAs–AlGaAs sys-
tem, however, the complexity of the valence band results in
nonlinear Zeeman splittings at high magnetic fields making
precise determination of the hole g-factors difficult. Usually,
the short spin lifetimes (∼110 fs in GaAs) (Hilton and Tang,
2002) of hole spins in bulk semiconductors renders it inacces-
sible in the time domain, resulting from the fourfold degen-
eracy of the valence band at k ∼ 0. However, the degeneracy
lifting of the heavy and light hole bands in QWs, dis-
cussed in the preceding text, increases the hole-spin lifetime
(Uenoyama and Sham, 1990). Measurements of polarization-
resolved PL at zero field have shown hole-spin lifetimes of
up to 1 ns in 7.5 nm GaAs–Al0.33Ga0.67As QWs (Roussig-
nol et al., 1992). In n-doped QWs of GaAs–AlGaAs, time-
resolved/polarization-resolved PL was used to measure the
spin precession of optically injected heavy holes in a trans-
verse field, allowing for the observation of heavy hole-spin
precession with lifetimes up to 700 ps (Marie et al., 1999).
Surprisingly, hole-spin procession has not been observed in
almost identical samples using the technique of time-resolved
Kerr rotation, where only electron spin precession has been
observed (Malinowski and Harley, 2000; Poggio et al., 2004;
Myers et al., 2005b). The difference in Fermi level is a pos-
sible explanation since the sensitivity of these techniques
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changes depending on the density of states. PL is sensitive
only to nonequilibrium spin polarization that is optically
injected, whereas Kerr and Faraday rotation are sensitive
to any spin polarization. It should also be considered that
sample-to-sample variation could alter the relaxation pro-
cesses, especially in samples where both electron and hole
g-factors change in sign and magnitude with small changes
in well width.

2.3 g-factor anisotropy in quantum wells

Quantum confinement alters the g-factor (g‖) parallel and
perpendicular to the growth axis (g⊥) leading to anisotropic
spin splittings (Ivchenko and Kiselev, 1992). This results
from the anisotropy inherent to the valence band, where the
heavy and light hole bands are split in QWs. Such a splitting
affects the anisotropy of both holes and electrons. Heavy
hole spins are pinned along the growth axis, while light
holes align perpendicular to it, and consequently the g-factors
have large anisotropy. The anisotropy of the hole g-factors
in QWs has been measured in GaAs–AlGaAs QWs. The
g-factors parallel to the growth axis for heavy holes vary
from about −2 to +1 with QW width as measured from
the Zeeman splitting in the Faraday geometry (Snelling,
Blackwood, McDonagh and Harley, 1992). The in-plane
heavy hole g-factor is more than 10 times smaller, ∼0.03
as measured from hole-spin precession in a transverse field
(Marie et al., 1999) (Voigt geometry), reflecting the strong
pinning of heavy hole spins along the growth axis.

The effective band gap has an anisotropy depending on
whether the band gap from the light hole or heavy hole
is considered. Following from equation (1), the electron
g-factor is therefore anisotropic in QWs depending on the
splitting between the heavy and light hole bands. Optically
detected magnetic resonance (ODMR) was used to measure
the anisotropy of the electron g-factor in single–sided
modulation p-doped InGaAs–InP QWs (Kowalski et al.,
1994). In the bulk limit of In0.53Ga0.47As, the g-factor was
measured to be isotropic with g ∼ 4. In QWs, the anisotropy
increases as the well width narrows, which is plotted in
Figure 3. In the narrowest wells measured the ratio, g‖/g⊥ =4.
Strain was also modified by changing the concentration of Ga
while maintaining the same QW width. Both g‖ and g⊥ were
modified by the change in strain; however, the ratio of the
two remained roughly constant, suggesting that the g-factor
anisotropy was strain independent. Similar measurements of
g-factor anisotropy by angle-dependent time-resolved Kerr
rotation in strained InGaAs–GaAs wells and in unstrained
GaAs–AlGaAs wells confirm the strong g-factor anisotropies
owing to quantum confinement and weaker dependence on
strain (Malinowski and Harley, 2000; Sih et al., 2004; Salis,
Awschalom, Ohno and Ohno, 2001).
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Figure 3. Anisotropic electron g-factor in In0.53Ga0.47As–InP
quantum wells measured at a temperature of 1.6 K. The g-factor
parallel to the growth axis, g‖ (solid circles), and perpendicular to
the growth axis, g⊥ (open circles), are plotted as a function of well
width (w). (Reproduced from Kowalski et al., 1994.)

Electron spin precession in a transverse magnetic field
is altered by g-factor anisotropy. Since the g-factor is a
tensor, the Larmor frequency (�L) gains vector dependence.
It is necessary to define the spin precession vector, �L =
ĝµBB/�, which defines the frequency and axis about which
electron spins precess. The g-factor anisotropy is responsible
for an enhancement of dynamic nuclear spin polarization
(DNP) (Salis, Awschalom, Ohno and Ohno, 2001). In a later
section, we discuss how these anisotropies can be controlled
with a vertical bias leading to a new form of electron spin
resonance (ESR) based on manipulation of �L through the
g-tensor.

3 EXCHANGE INTERACTIONS IN
MAGNETIC QUANTUM WELLS

In addition to the spin-orbit interaction, magnetically doped
QWs contain the exchange interaction between carriers and
localized magnetic-ion spin. In dilute magnetic semiconduc-
tor (DMS) theory, the exchange interaction appears as a
δ-function-like operator centered on the magnetic-ion impu-
rities in the crystal, which usually consist of transition-metal
(TM) ions occupying cation sites. This approximation is suc-
cessful at modeling a wide range of magnetic semiconductor
systems, most notably the II1−xTMxVI systems (Dietl, 1994).
Here, the exchange-induced spin splitting between spin-up
and spin-down electrons is given as

�Es–d = −xN0α〈Sz〉, �Ep–d = xN0β〈Sz〉 (2)

where x is the concentration of TM impurities, N0 is the
cation density, 〈Sz〉 is the projection of the 3d electron spins
of the TM ions along the applied field Bz, and α(β) is
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the s–d (p–d) exchange parameter for conduction (valence)
band electrons. The 3d electron spins of the TM ion usually
maintain a stable configuration in semiconductors with
constant g-factor, for example, Mn2+ in II–VI maintains
g ∼ 2 and spin −5/2. Thus 〈Sz〉 is known through the
magnetic moment of the TM, and for high enough x, the
magnetic moment is measurable by magnetometry. By this
token, the magnetic field dependence of the exchange terms,
�Es,p–d, simply tracks the magnetic moment of the TM, such
that in paramagnetic semiconductors the carrier spin splitting
will follow a Brillouin function and exhibit a hysteresis loop
in a ferromagnetic semiconductor.

An important distinction in the definition of x is made
between the case for bulk or QW DMS. In QWs, the spatial
confinement for carrier wave functions along the growth axis
leads to a modification for the effective exchange splitting.
This can be understood from equation (2) as a modification
of the effective TM concentration experienced by carriers
confined to the QWs, such that the effective x is equal to
the overlap integral of the carrier probability density |ψ s,p|2
with the TM concentration profile along the growth axis (z).

The exchange interactions tend to have energy scales with
orders of magnitude larger than the spin-orbit or hyperfine
interactions, and in the case of ferromagnetic semiconduc-
tors, they have a strong hysteretic low-field response. Thus,
in principle, magnetic semiconductors are more ideal candi-
dates for a practical semiconductor spintronics. In practice,
magnetic doping of semiconductors contains many unique
challenges owing to the increased complexity of the physical
interactions and to the unintentional formation of crystallo-
graphic defects.

3.1 II–VI magnetic wells

In II–VI DMS, magnetic impurities are electrically inert,
and the solubility of these impurities is relatively high; for
example, 10% Mn in ZnCdSe is easily attainable while
maintaining high optical quality. These systems enjoy a
long and successful history in the literature including the
engineering of spin interactions via quantum confinement
in II–VI DMS QWs (Awschalom and Samarth, 1999).
Giant Faraday rotations, the high solubility of magnetic
impurities, and the large energy scale of the resulting
exchange splittings enabled these structures to be ideal test
systems for confinement and exchange interactions.

Since TM doping usually increases the band gap in II–VI
materials, magnetic QWs can be constructed by simply dop-
ing the barrier (Gunshor, Kolodziejski, Nurmikko and Otsuka,
1988). In this case, exchange overlap between carriers in the
well and magnetic impurities in the barrier occurs through the
penetration of the wave function into the barrier, leading to

relatively small x values as compared to bulk DMS alloys.
Alternatively, magnetic ions can be doped directly in the well.
This can be accomplished, for example, by digital doping sub-
monolayers of MnSe layers into ZnSe–ZnCdSe square QWs
(Crooker et al., 1995). By changing the thickness and posi-
tion of the digital MnSe layers within a QW, the effective
x values are significantly increased, leading to giant Faraday
rotations as large as ∼107 deg cm−1 T−1. Finally, uniform
magnetic doping in both QWs and barriers is possible in CdM-
nTe–CdMnMgTe, where the exchange constants in both the
QW and Mg containing barriers are identical (Mackh et al.,
1994). The uniform magnetic doping profiles in these struc-
tures allow for reliable measurements of the effects of quan-
tum confinement on the exchange parameters (Mackh, Ossau,
Waag and Landwehr, 1996; Merkulov et al., 1999) discussed
in later sections.

3.2 III–V magnetic wells

Although most work in magnetic QWs, to date, has been lim-
ited to II–VI paramagnetic DMS systems, III–V magnetic
semiconductors offer the prospect of ferromagnetic interac-
tions. Most notably, Ga1−xMnxAs (0.01 < x < 0.08) grown
by MBE exhibits ferromagnetism in the bulk phase (Ohno
et al., 1996; Ohno, 2002) with Curie temperatures as high as
∼150 K reported after postgrowth annealing (Ku et al., 2003;
MacDonald, Schiffer and Samarth, 2005). Unlike for the case
of II–VI, Mn doping in GaAs is electronically active, such
that a Mn ion occupying a Ga site acts as an acceptor pro-
viding a free hole that takes part in long-range ferromagnetic
interaction between Mn-ion spins (Jungwirth et al., 2006).
Unfortunately, the solubility of Mn in GaAs is small at high
substrate temperature (∼580 ◦C) such that GaMnAs is usu-
ally grown at ∼250 ◦C in order to attain high enough Mn
densities for ferromagnetism (∼5%). At these temperatures
and Mn-doping levels, growth defects such as As antisite
(AsGa) and interstitial Mn (MnI ) are incorporated at high
concentrations. Subsequently, electronic and optical perfor-
mance is severely reduced in comparison to high-temperature
grown GaAs. Despite this constraint, several recent experi-
ments in quantum-confined GaMnAs structures have been
successful, all involving unique layer structures and growth
conditions.

4 VERTICALLY BIASED QUANTUM
WELLS

QWs may have tilted bands owing to internal electric fields
from electronic doping, surface depletion, electric-dipole
polarization, and band-gap gradients. Applying a vertical
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bias to QWs provides a convenient means for controlling
the carrier density and band bending within these structures.
Thus, wave function position and shape can be controlled
with vertical bias. In this section, we describe how vertically
biased QW structures can be used to manipulate the spin of
electrons and local moments. The g-factor gradient and band
profiles are tailored by heterostructure design. Applying a
vertical bias shifts the electron wave function into regions
of varying g-factor allowing control over the sign and
magnitude of the electron spin splitting using an electric field.
Spatial control of the electron wave function is also used to
selectively polarize and depolarize local nuclear spins via the
hyperfine coupling. Finally, by applying a high-frequency
vertical bias, electron and nuclear spin can be resonantly
modulated and depolarized.

The g-factor will shift with band bending owing to wave
function penetration into the barriers. This g-factor gradient
in semiconductor QWs provides a means for controlling
the effective g-factors by changing the position of carrier
wave functions confined to these structures. This effect
was observed in a two-dimensional electron gas (2DEG) of
GaAs–AlGaAs in which the ESR frequency was measured
as a function of gate bias (Jiang and Yablonovitch, 2001).
A shift in the ESR frequency corresponding to a change in
effective electron g-factor of ∼0.003 (change in �E↑↓ ∼
0.17µeV T−1) was observed due to gate bias. In the square
well and 2DEGs, the application of an electric field along
the growth axis (gate bias) results in a triangular distortion
of the QW, in which case, wave function distortion and
energy shifting owing to the quantum-confined Stark effect
are the main results. Although the wave function minimum
is displaced, penetration into the energetically forbidden
barriers remains a small effect.

4.1 Parabolic quantum wells

A convenient band structure for spatial wave function control
exists in parabolic QWs, in which the first-order effect of
linear band bending (constant electric field) is to shift the
parabola’s minimum (Salis et al., 1997). Since the potential
maintains the same curvature under a linear distortion, the
electronic wave functions remain undistorted and shift their
center position to the new potential minimum (Figure 4a).
The wave function position and effective g-factor of holes
will also be changed by the vertical bias, but electrically
tunable hole-spin dynamics have not yet been observed by
the optical techniques discussed here.

4.1.1 Heterostructure design

GaAs–AlGaAs-type parabolic QWs can be grown using
MBE digital-alloying techniques. The Al concentration is

digitally graded to achieve the desired harmonic oscillator
potential along the growth axis (Gossard, 1986; Miller, Gos-
sard, Kleinman and Munteanu, 1984). This is accomplished
by shuttering the Al beam to grow a digital alloy (bilayer)
in which the thickness of AlGaAs and GaAs are varied to
attain the desired average Al concentration throughout the
QW region. Each bilayer period is typically ∼20 Å, in order
for enough GaAs to be grown in each bilayer to maintain
purity and smoothness throughout the structure. Concen-
tration grading is possible by analog alloying (Kopf et al.,
1992), in which the flux of each effusion cell is adjusted by
changing its temperature, but has the disadvantage that the
effusion cell must be stabilized at each temperature setting
during which time the growth is paused for several min-
utes. Such pauses are undesirable during QW growths since
the probability of impurity incorporation increases with wait
time. Digital alloys are controlled through shutter timing and,
therefore, require no growth interrupts to grade composition.

As seen in Figure 4(b), energy-resolved PL measurements
confirm the harmonic shape of the potential since the rich
excitonic spectrum shows a large family of equally spaced
energy levels. The analytically soluble nature of the harmonic
potential allows for the determination of conduction and
valence band offsets from these spectra.

To attain significant displacements of the electron wave
function in these structures, large electric fields need to
be applied across the front- and backgates. This requires
the application of DC voltages at which typical backgated
structures breakdown (Linfield, Jones, Ritchie and Thomp-
son, 1993). The development of low-temperature (LT) grown
GaAs conduction barriers by Maranowski et al. allows for the
application of untypically large electric fields to GaAs-based
heterostructures (Maranowski, Ibbetson, Campman and Gos-
sard, 1995). LT GaAs resistive layers are grown between the
active layer and the conducting backgate, usually n + GaAs.
At a substrate temperature of 250 ◦C and in an As overpres-
sure, the excess As incorporates into GaAs at concentrations
of ∼1–2% (∼1020 cm−3). After annealing such layers at
high temperature, metallic As precipitates form creating a
highly resistive metal/semiconductor/metal composite (War-
ren et al., 1990), massively reducing leakage currents. Fur-
ther modification of these layers can be performed to reduce
photocurrent leakage. Simply increasing the Al content of the
LT layer shifts the absorption edge to higher energy remov-
ing the photocurrent while maintaining the highly resistive
character of LT GaAs (Poggio et al., 2003).

4.1.2 Optical detection of electron spin precession

Electron spin dynamics can be observed in the Voigt geom-
etry, where a static magnetic field is perpendicular to the
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Figure 4. Parabolic quantum wells of GaAs–AlGaAs. (a) Schematic conduction band-edge diagram in a parabolically graded quantum
well. The ground state electron wave function displaces along the growth axis (z) with vertical bias. (b) Photoluminescence as a function of
excitation energy (PLE) in a 51-nm parabolic quantum well graded from 30% Al in the barriers to 0% in the center of the well. (Reprinted
with permission Miller et al., copyright 1984, American Physical Society.) (c) g-factor tuning in vertically biased GaAs–Al0.4Ga0.6As
parabolic quantum wells from optical measurements of electron spin dynamics via time-resolved Kerr rotation at a temperature of 5 K in
a 6 T magnetic field. The wells are 100 nm wide and the percent value represents the concentration of Al in the center of the well. The
corresponding spin splitting in the conduction band is plotted in the right vertical axis. (Reprinted with permission G. Salis et al., copyright
2001, Nature Publishing Group.) (d) Photoluminesence spectrum showing the quantum-confined Stark effect in a parabolic quantum well at
5 K. (Reprinted with permission G. Salis et al., copyright 2001, Nature Publishing Group.) (e) The g-factor versus vertical bias for parabolic
quantum well with the corresponding wave function position (z). (Reproduced from Poggio et al., 2003.)

optical axis. In this geometry, a circularly polarized exci-
tation pulse excites spin-polarized electrons and holes in
the sample that are perpendicular to the magnetic field
and thereby induce quantum beating of the spins. The spin
dynamics can be optically measured in semiconductor QWs
by time-averaged techniques, such as Hanle (Chadi, Clark
and Burnham, 1976), or directly in the time domain by
using the technique of time-resolved Kerr (or Faraday) rota-
tion (Crooker et al., 1996). In the latter technique, the Kerr
(or Faraday) rotation of a probe pulse is mapped out in
time by controlling the time delay between excitation and
probe pulses using a mechanical delay line. The electron
spin precession frequency (�L) measures the total spin split-
ting in the conduction band (along the magnetic field) since
�E↑↓ = ��L = gzµBBz. Hole-spin precession has not been
observed in GaAs–AlGaAs using this technique, as discussed
previously. In wide parabolic QWs, the weak confinement

may not be adequate to increase the hole-spin lifetimes above
their usual small values (<1 ps), while electron spin preces-
sion is typically observable well into the nanosecond regime.

4.1.3 g-Factor control

Parabolic QWs of GaAs–AlGaAs with LT GaAs (or LT
AlGaAs) backgates were used to demonstrate electric-field
control of the electron g-factor (Salis et al., 2001, 2003).
By measuring the electron spin dynamics optically using
time-resolved Kerr rotation, the effective electron g-factor
was extracted for various bias voltages. Figure 4(c) plots
the effective electron g-factor as a function of gate bias
in a number of these structures along with the �E↑↓. In
particular, for samples with 7% Al at the center of the well,
g-factor tuning through zero is possible. The g-factor remains
constant over a large bias range between 0 and +2 V owing
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to exciton binding as evidenced by the loss of PL at biases
outside this range, Figure 4(d). PL of these structures displays
the quantum-confined Stark effect appearing as a red shift in
PL with gate bias, a typical spectroscopic feature of gated
QWs (Miller et al., 1984). Once the exciton binding between
electrons and holes is overcome, PL disappears, electron
wave function shifting occurs with less impedance, and the
g-factor response to gate bias increases.

The effective electron g-factor in parabolic QWs changes
as a function of position along the growth axis because of its
dependence on Al concentration (Weisbuch and Hermann,
1977). It can be calculated quantitatively as a weighted
average between the electron probability density (|ψ s(z)|2)
and the g-factor at any given position along the QW axis,

g∗ (z) = ∫ g(z)|ψ s(z)|2dz + �gc (3)

where g∗ (z) is the effective electron g-factor, g(z) is the g-
factor of electrons at each position in the QW due to the local
Al concentration, and �gc is a phenomenological constant
that accounts for confinement effects not included in this
simple model. On the basis of the measured values of g∗

as a function of gate bias, shown in Figure 4(c), the center
position of the wave function (z) can be calculated using
equation (3). Figure 4(e) plots the results of this calculation
for a 100-nm-wide parabolic QW with 7% Al at the center.
The wave function can be displaced ∼20 nm at 5 nm V−1.

Recent models of these structures using five-level k·p
theory show close agreement with the experiment indicating
that the simple picture of g-factor tuning, described above,
captures the essential physics (Pfeffer and Zawadzki, 2005).

4.1.4 Shaping nuclear spin profiles

The spatial wave function control in parabolic QWs has
also been used to shape nuclear spin profiles (Poggio
et al., 2003). This experiment exploits the contact hyperfine
interaction between electron and nuclear spins to selectively
polarize and depolarize nuclear spin profiles at specific
positions within a QW (Tifrea and Flatte, 2003). Optically
injected spin-polarized electrons in the conduction band
of a semiconductor polarize nuclear spins through DNP
(Lampel, 1968). This effect only occurs, however, if a
longitudinal component of electron spin polarization exists
(Salis, Awschalom, Ohno and Ohno, 2001). This is easily
accomplished in the Faraday geometry, where the field is
parallel to the optical axis, and therefore injects spins parallel
to the field. In the Voigt geometry, which is necessary to
observe spin precession, spins are, in principle, injected
perpendicular to the field and DNP should not be observed
since the transverse spin polarization averages to zero. In

large magnetic field, the average longitudinal electron spin
polarization will not be zero and DNP may occur through
the equilibration of electron spins along the field, which
were originally polarized transverse to the field (Kikkawa
and Awschalom, 2000). Additionally, a direct longitudinal
component of spin injection can be created by simply
tilting the sample since the excitation beam refracts slightly
along the field. In QWs, the g-factor anisotropy leads to
a spin precession axis (�L), which is not parallel with the
optical axis (Kalevich and Korenev, 1992). This provides a
component of spin injected along the quantization axis and
enhances DNP (Salis, Awschalom, Ohno and Ohno, 2001).

If electrons overlap with nuclear spin, the contact hyperfine
interaction will modify their spin Hamiltonians, such that the
spin splitting is �E↑↓ = ��L = gzµBBz + AH〈Iz〉, where
AH is the hyperfine constant and 〈Iz〉 is the component of
nuclear spin along the magnetic field. In analogy to the
exchange interaction described in equation (2), the hyperfine
constant is weighted by the overlap between electrons and
nuclear spin. Thus, control over the electron probability
density, as shown in Figure 4(e), will modify the effective
strength of the hyperfine term. Nuclear spin profiles were
created at arbitrary positions within parabolic QWs by fixing
the gate bias, and therefore the electron wave function
position, and waiting for 20 min for DNP to saturate.
Time-resolved Kerr rotation was used to measure �E↑↓
as a function of gate bias once the nuclei were polarized.
Subtracting the signal in the unpolarized case allows the
extraction of the hyperfine term plotted in Figure 5(a), where
the vertical lines plot the center position of the electron wave
function during the polarization process (Poggio et al., 2003).
These nuclear spin profiles can be resonantly depolarized
by applying RF to the vertical gates at isotope specific
frequencies.

Electrical control over nuclear spin polarization in QWs
was recently accomplished in square QWs using a quali-
tatively different biasing effect than wave function shifting
(Sanada et al., 2005). In these structures, vertical bias tunes
the electron density, which strongly alters the efficiency of
the DNP process. Hysteresis in the DNP process has also
been reported in similar square QW structures (Sanada et al.,
2003). Finally, the use of both an RF coil and optical detec-
tion of nuclear spin polarization (Poggio and Awschalom,
2005) was used to demonstrate coherent control of nuclear
spin in QWs implementing traditional NMR pulse sequences
to induce Rabi oscillations (Sanada et al., 2006).

4.1.5 Electron spin resonance by g-tensor modulation

So far, we have limited the discussion of electric-field effects
to the case of DC bias. It is also possible to apply AC
biases to parabolic QWs at frequencies close to the spin
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Figure 5. Nuclear and electron spin manipulation in parabolic quantum wells of GaAs–AlGaAs. (a) Spatial profiling of nuclear spin
polarization in parabolic QWs of GaAs–AlGaAs at a temperature of 6 K and magnetic field of ∼4 T. The contact hyperfine energy
(AH〈Iz〉) due to nuclear spin polarization is plotted along the growth axis (z) with Gaussian fits shown as solid lines. Vertical lines mark the
center of the electron wave function when dynamic nuclear polarization was performed. (Part (a) Reproduced from Poggio et al., 2003, with
permission from the American Physical Society  2003.) (b) Frequency-modulated electron spin precession due to microwave modulation
of the electron g-factor at a temperature of 5 K and magnetic field of 6 T. The microwave signal (2.356 GHz) applied across the front- and
backgates is plotted as a sinusoid. (c) The change in electron spin polarization (Kerr rotation) due to the microwave signal (2.66 GHz) as
a function of both magnetic field and DC vertical bias. Black squares plot the expected position of g-TMR resonance calculated from the
measured anisotropy of the g-factor. (d) Linecut of data in (c) at fixed DC bias showing the resonance structure. (Parts (b), (c), and (d)
Reprinted by permission from Kato et al., copyright 2003, AAAS.)

precession frequency and resonantly control electron spins
(Kato et al., 2003). This spin resonance technique, called
g-tensor modulation resonance (g-TMR), does not require
a transverse magnetic field, but makes use of the inherent
g-factor anisotropy of QWs. As described in a previous
section, the g-factor in a QW is anisotropic because of
lateral confinement. Since g⊥ and g‖ have different gate
bias dependences, electron spins precess about different axes
depending on the vertical bias. In gated parabolic QWs,
the g-factor anisotropy is modulated by applying AC bias
between the front- and backgates, effectively modulating
the spin precession vector. Microwave frequency is applied
across the front- and backgates of a parabolic QW, while
measuring the electron spin precession using time-resolved
Kerr rotation. The repetition rate of the laser (∼76 MHz) is
used as a reference clock for a frequency tunable microwave

amplifier. Thus, nearly gigahertz frequency voltages are
applied to the QWs in phase with the laser. Additionally,
the laser is operated in a phase-locked loop to maintain a
stable repetition rate. Figure 5(b) plots the Kerr rotation as
a function of time showing electron spin precession in the
presence of ∼2 GHz gate bias. Since the effective g-factor is
modulating at ∼2 GHz, electron spin precession is frequency
modulated.

When the modulation frequency is brought into resonance
with the spin splitting along the quantization axis (g-TMR),
electron spins can be tipped either toward or away from
the magnetic field. The requirements to observe g-TMR are
that the g-tensor must be modulated at the spin-splitting
frequency and that the g-factor must be anisotropic. Both
criteria are satisfied in these parabolic QW structures. Lock-
in amplification was used to measure the microwave-induced
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Kerr rotation as a function of magnetic field and an additional
DC vertical bias (Figure 5c). The measurements show a clear
resonance line that shifts with magnetic field and vertical
bias. The position of the resonance matches calculated values
(black squares) based on angle-dependent measurements of
the g-factor anisotropy. Line cuts at fixed bias voltage
(Figure 5d) reveal the shape of the resonance lines and match
numerical simulations (solid line).

4.2 Coupled quantum wells

In parabolic QW structures, the electron wave function
shifts in a continuous manner. It is also possible to achieve
discrete changes in electron position in coupled QWs. These
structures consist of adjacent QWs connected by barriers
that are thin enough for wave function tunneling to occur
(Dingle, Gossard and Wiegmann, 1975). Vertically biased
coupled QWs have been used for transition from the spatially
direct exciton state, where the exciton resides in one well, to
the spatially indirect exciton state, where the exciton is split
between adjacent wells (Chen, Koteles, Elman and Armiento,
1987). The resulting change in spatial overlap between the
electron and hole drastically alters the transition rates and
can be used to modulate absorption (Islam et al., 1987). If
the widths of the coupled wells are different, then shifting the
electron wave function between wells changes the electron
g-factor owing to its strong width dependence (Figure 2).

The electron g-factor was measured in coupled QWs of
GaAs–AlGaAs as a function of vertical bias for samples
with different tunnel barriers widths (Poggio et al., 2004).
Figure 6 plots the g-factors in these structures measured
by time-resolved Kerr rotation together with the schematic
band-edge diagrams. For uncoupled QWs with a large 20-nm
tunnel barrier (Figure 6a), two g-factors are visible over the
full bias range corresponding to the different g-factors in the
two wells. Tunneling between the wells does not occur within
the carrier recombination time. A sharp g-factor transition
with vertical bias occurs for a sample with a 6-nm tunnel
barrier (Figure 6b), where electron tunneling is incoherent.
Finally, strong coupling of the wells is observed in narrow 2-
nm tunnel barriers (Figure 6c), where the g-factor is smoothly
varied between its value in the two wells.

5 ENHANCEMENT OF MAGNETIC
INTERACTIONS IN QUANTUM WELLS

Magnetic doping alters the magnetic field response of �E↑↓
from its typical linear field dependence in nonmagnetic struc-
tures, to a Brillouin function in paramagnetic structures,
and finally showing hysteretic behavior in ferromagnetic
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Figure 6. Tuning the electron g-factor in coupled quantum wells
of GaAs–Al0.3Ga0.7As. The two wells are 7 and 10 nm wide. Color
intensity plots the Fourier transform of electron spin precession as a
function of vertical bias and g-factor at a temperature of 5 K in a 6 T
magnetic field. Schematic band-edge diagrams show the effect of
vertical bias for coupled wells with different tunnel barrier widths.
Vertical arrows indicate the strong (solid line) and weak (dashed
line) photoluminescence transitions and curved arrows show the
interwell tunneling. (a) Two distinct g-factors in uncoupled wells
with 20-nm-wide tunnel barrier. (b) Sharp g-factor switching for
incoherently coupled wells with 6-nm tunnel barriers. (c) Smooth
g-factor tuning in coherently coupled wells with 2-nm tunnel
barriers. (Reprinted with permission M. Poggio et al., copyright
2004, American Physical Society.)

structures. Electronic and magnetic doping can be indepen-
dently engineered in QWs with exchange interactions that are
orders of magnitude larger than the spin-orbit induced spin
splittings. Confinement also increases the density of carri-
ers near the magnetic impurities, which can have a dramatic
effect on the carrier-mediated ferromagnetism. Quantum con-
finement alters the strength of the exchange interactions
extrinsically by increasing the effective TM density experi-
enced by carriers in the wells and intrinsically through more
complex kinetic energy effects.

5.1 Vertically biased magnetic wells

The vertical biasing techniques used in nonmagnetic QWs
can also be employed in magnetically doped structures to
electrically tune the interaction between carrier spin and
magnetic-ion spin. The electronic characteristics of magnetic
impurities in semiconductors may complicate this task since
their associated charges will screen the electric field, damping
the effect of bias. This is not a problem in II–VI systems
where TM impurities are neutral, but occurs in III–V, for
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example, GaMnAs, where the Mn ions act as acceptors. The
ionized impurities will screen the electric-field and can act as
nonradiative recombination centers. These constraints can be
balanced by moving the magnetic layers into the QW barriers
or reducing the doping level.

5.1.1 II,Mn-VI parabolic wells

In previous sections, we described the use of digital magnetic
doping to achieve large effective magnetic doping densi-
ties in II–VI magnetic QWs. This doping technique allows
the local placement of magnetic impurities within optically
active QWs. Also, we discussed the use of vertically biased
parabolic QWs to control the wave function position. Both
schemes have been incorporated into parabolic QWs contain-
ing local magnetic impurities in which the exchange overlap
between carriers in the wells and magnetic impurities can
be controlled with vertical bias (Myers et al., 2005a). Sam-
ples of ZnSe–Zn0.85Cd0.15Se parabolic QWs were grown by
MBE. Submonolayers of MnSe were deposited in the center
5 nm of the structures. Electron spin precession at the absorp-
tion edge of the QWs was measured using time-resolved Kerr
rotation to extract the effective electron g-factor. The inset
of Figure 7(a) plots the electron g-factor as a function of
vertical bias for a nonmagnetic control sample showing a
g-factor shift due to the spatial translation of the electron
wave function under vertical bias into regions of varying
Cd concentration. For magnetically doped sample, the effec-
tive g-factor was increased by an order of magnitude and
can be tuned over 400% (Figure 7a, open circles). As the
conduction-band exchange term increases, the electron spin
lifetime decreases since the spin-flip scattering decoherence
mechanism is proportional to the exchange splitting (Crooker
et al., 1995). At low bias, the exchange overlap is maximized
and the spin lifetime is small, whereas at large negative bias
when the exchange overlap is minimized the electron spin
lifetime increases.

Equally large shifts in the effective g-factor were observed
as a function of the optical excitation and probe energy
(Ep). As Ep was increased at zero bias, the electron
g-factor decreased from 18 to 6 (Figure 7b). This dramatic
change was explained as being due to the large difference in
exchange overlap, which is due to sublevel filling effects. The
wave function ground state has a maximum at the QW center,
a position at which the excited state has a node. Estimates
of the sublevel spacing and subsequent exchange overlap are
consistent with this picture.

In addition to electron spin precession, Mn-ion spin pre-
cession is observed in these samples which originates from a
spin-flip interaction between optically injected hole spin and
Mn-ion spin (Crooker et al., 1996). Thus, the amplitude of
the Mn-ion spin precessions should be proportional to the
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g-factor versus bias in nonmagnetic control samples (closed
squares) is enlarged in the inset. (b) Effective electron g-factor
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ing spin-splitting energies are plotted on the right vertical axes.
Measurements performed at a temperature of 5 K in a 3 T magnetic
field. (Reprinted with permission R.C. Myers et al., copyright 2005,
American Physical Society.)

exchange overlap between holes and Mn ions, which is sig-
nificantly altered under vertical bias. At negative bias, the
Mn-ion spin precession amplitude was observed to decrease
by an order of magnitude and can be explained by the
decrease in hole-Mn exchange overlap under negative bias.
We have discussed only the effect of exchange interactions on
the amplitude of the Mn spin precession. Although Mn-ion
spin precession has been observed, the back-action of elec-
tron spins on Mn-ion spin splitting has not been observed;
the Mn precession frequency always remains constant. Such
a shift in the Mn effective g-factor is expected and has been
observed, for example, in paramagnetic resonance measure-
ments of n-CdMnTe quantum wells (Teran et al., 2003).

5.1.2 III–V wells with a ferromagnetic barrier

In the previous structure, Mn ions are paramagnetic and
large magnetic fields (∼10 T) must be applied to fully sat-
urate their moments. Ferromagnetic layers provide lower
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saturation field and a hysteretic response. The coupling of
ferromagnetic spins to carrier spins in a QW results in strong
spin splittings and polarizations at low field. This strategy is
advantageous over bulk systems, since QW structures contain
an inherent localization of the interactions that can be con-
trolled via heterostructure design. As discussed in previous
sections, however, defect control remains a barrier to com-
bine both robust ferromagnetism and high-quality QWs in
which spin-sensitive optical or electronic measurements are
possible. In the GaMnAs, the level of Mn doping required for
ferromagnetism leads to a degenerate hole gas and the incor-
poration of interstitial Mn defects and As antisites, which
limit the optical performance of this material. An alternative
approach incorporates submonolayer ferromagnetic layers of
MnAs embedded within a GaAs matrix, so-called digital fer-
romagnetic heterostructures (Kawakami et al., 2000). These
structures have the advantage that ferromagnetism in the
MnAs layers can be independent of the electronic doping
in the surrounding GaAs matrix (Johnston-Halperin et al.,
2003).

Such layers have been incorporated into the top AlGaAs
barriers of GaAs QWs, where optical quality in the QW
is maintained by combining both the growth of QWs at
high temperature with the growth of the magnetic barrier
at LT. Design constraints of such hybrid structures dictate
that magnetic layers must be grown after the QW layers
since high-temperature annealing of the magnetic layers
would lead to the formation of Mn-containing second phase
defects. Additionally, the ferromagnetic layer must be spaced
sufficiently far from the QW to maintain an optical response
in the wells, but close enough for coupling effects to be
observed.

Polarization-resolved PL in these structures revealed that
initially unpolarized photoexcited holes in a GaAs QW
become spin polarized opposite to the magnetization of
the ferromagnetic barrier (Myers, Gossard and Awschalom,
2004). The optical selection rules in QWs dictate that the
spin-polarized holes or electrons will emit circularly polar-
ized photons, thus PL polarization is an indicator of spin
polarization. Figure 8(a) shows the circular polarization
of the PL emission in the QW, tracking the magnetiza-
tion of the ferromagnetic layers. A negative vertical bias
increases this polarization indicating that its origin is spin-
polarized heavy holes coupled through wave function over-
lap with spins in the ferromagnetic layer. As shown in
Figure 8(b) and (c), vertical bias changes the polarization
from positive to negative while maintaining the same field
response as the ferromagnetic layer. These structures pro-
vide a means for electrically controlling spin polarization
at low magnetic fields in a QW through wave function
overlap.
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the sample shown in (b) (solid squares) and for the control sample
(solid line). (Reprinted with permission R.C. Myers et al., copyright
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5.2 Ferromagnetism in modulation doped wells

The inherent coupling of TM spins in II–VI semiconduc-
tors is antiferromagnetic (Dietl, 1994). However, upon hole
doping, the strong p–d exchange coupling between valence
band and magnetic-ion spins enables a long-range ferromag-
netic coupling. Here, the itinerant hole spins couple to more
than one localized magnetic-ion spin and results in ferromag-
netism in both II–VI and III–V systems (Dietl et al., 2000).
In QW structures, modulation doping may be used to locally
increase the hole density over the TM spins and create or
enhance the ferromagnetic state.

5.2.1 Ferromagnetic II,Mn-VI wells

As previously discussed, TM doping in II–VI semiconduc-
tors is isoelectronic providing no free holes. The direct cou-
pling between magnetic spins is antiferromagnetic, which
is observable at high doping levels where these nearest-
neighbor interactions dominate. Magnetic spins display
paramagnetism when sufficiently diluted. A long-range
and hole-mediated ferromagnetic interaction occurs when
holes are present. Ferromagnetism has been created in
Cd0.976Mn0.024Te QWs by modulation doping holes using
specially designed Cd0.66Mg0.27Zn0.07Te:N barriers (Haury
et al., 1997). Figure 9(a) plots the polarization-resolved PL
spectra of these QWs at very low magnetic field. A giant
Zeeman splitting is observed because of the exchange split-
ting in the conduction and valence bands (equation (2)). The
strong low-field dependence of the spin splitting is indica-
tive of the ferromagnetic state. Quantitative analysis of the
field-dependent exchange splitting was used to extract the
magnetic susceptibility (χ ) as a function of temperature
(Figure 9b). The temperature intercept of the inverse sus-
ceptibility is the mean-field ordering temperature, essentially
the Curie temperature, which is 1.8 K for these structures.
In samples without modulation hole doping (open squares
in Figure 9b) ferromagnetism is not observed and can be
destroyed in the hole-doped samples by illumination (open
circles).

5.2.2 Enhanced Curie temperature in III,Mn-V
2DHGs

The creation of ferromagnetism in II,Mn-VI QWs by mod-
ulation hole doping is an impressive demonstration of the
controllable coupling between magnetic-ion and free carrier
spin in semiconductors. The low ferromagnetic transition
temperature, however, makes these structures technologi-
cally impractical. Ferromagnetism in GaMnAs is a robust
phenomenon, as previously discussed, since Mn acts as an
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Figure 9. Ferromagnetism in Cd0.976Mn0.024Te quantum wells by
modulation hole doping. (a) Polarization-resolved photolumines-
cence (PL) at 1.65 K. The σ+ (solid line) and σ –(dotted line)
spectra are plotted at several fields, showing a giant Zeeman split-
ting at low field indicative of ferromagnetism. (b) Inverse magnetic
susceptibility (1/χ) as a function of temperature. Data points were
calculated from fits to the field-dependent Zeeman splitting mea-
sured by polarization-resolved PL. Data are shown for the mod-
ulation hole-doped sample displaying ferromagnetic order (solid
circles), for the same sample under white light illumination which
destroys the ferromagnetic ordering (open circles), and for a sam-
ple without modulation hole doping (open squares). (Reprinted
with permission Haury et al., copyright 1997, American Physical
Society.)

acceptor GaAs providing free holes that mediate the ferro-
magnetism. Additionally, postgrowth annealing of GaMnAs
has been shown to increase the Curie temperature (Ku et al.,
2003) by diffusing interstitial Mn to the surface that would
otherwise compensate holes (Edmonds et al., 2004). Thus,
GaMnAs is an ideal system for investigating the effects of
modulation doping on ferromagnetism.

This strategy has been used in GaAs–AlGaAs two-
dimensional hole gases (2DHG) where modulation hole
doping in the AlGaAs barrier controls the hole density
in the 2DHG which contains a magnetic layer (Nazmul,
Sugahara and Tanaka, 2002). Submonolayers of MnAs were
incorporated into the 2DHG region using a two-step growth
process resulting in the valence band-edge profile shown
in Figure 10(a) (Nazmul, Sugahara and Tanaka, 2003a).
As discussed previously, such structures contain a design
constraint that the substrate temperature cannot be increased
after the magnetic layer is grown. Thus the Be-doped
AlGaAs barrier and a thin layer of GaAs were grown
first at high temperature, while submonolayers of MnAs
were deposited within the GaAs 2DHG region at LT. The
magnetization of the layers are probed indirectly using
the anomalous Hall effect, which is particularly strong in
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(a) Valence band edge (EV) along the growth axis (z) showing
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ions. (b) Hysteretic field sweeps of the Hall resistance for a sample
containing a MnAs layer without hole doping, and (c) for a sample
containing hole doping. (d) Resistance as a function of temperature
for hole-doped samples with various MnAs positions (ds) relative
to the AlGaAs barrier. (Reprinted with permission Nazmul et al.,
copyright 2003, American Physical Society.)

the GaMnAs system (Ohno, 2002). The Hall resistance in
a magnetic layer contains an additional term that tracks
the magnetization. Figure 10(b) plots the Hall resistance
as a function of field in a sample without modulation
hole doping. A hysteresis appears in samples containing
modulation doping (Figure 10c) indicating that the MnAs
layers are ferromagnetic. Features in the sheet resistance
appear near the Curie temperature of the MnAs layer
(Figure 10d).

Optimization of the magnetism in these layers has been
performed by adjusting the position of the MnAs layers for
maximum overlap with the 2DHG. However, postgrowth
annealing of the samples leads to the largest increase in
Curie temperature (up to 172 K) (Nazmul, Sugahara and
Tanaka, 2003b). More recently, the Curie temperature has
been further increased in these structures by inverting the
2DHG, such that the p-doped AlGaAs layer is grown
after the magnetic layer at LT. After postgrowth annealing,
a hysteresis in the Hall resistance was observed up to
250 K, the highest Curie temperature in the GaMnAs system
reported to date (Nazmul et al., 2005).

The magnetic anisotropy of these layers remains an
open question. Hall measurements are performed with the
magnetic field applied out of plane. Thus, the appearance of
a hysteresis indicates the magnetic easy axis to be out of
plane of the film. In submonolayer MnAs layers, the easy
axis is typically in plane and shows no hysteresis along the
out of plane hard axis (Kawakami et al., 2000).

5.3 Kinetic exchange effects in quantum wells

As discussed in a previous section, the conduction-band spin
splitting includes both the regular Zeeman splitting plus the
exchange interaction,

�E↑↓ = gµBB + �Es–d, �Es–d = −xN0α〈Sz〉 (4)

The s–d exchange parameter (α) is typically small (0.2 eV)
and positive resulting from direct exchange interaction
between s-like conduction-band electrons. This contrast with
the p–d exchange parameter (β), which is large (∼1 eV) and
negative in magnetic semiconductors due to hybridization
between p-like valence electrons and the d orbitals localized
on the TMs (Dietl, 1994), a mechanism known as kinetic
exchange (Dietl, 1981; Bhattacharjee, Fishman and Coqblin,
1983). The hybridization occurs due to the virtual transi-
tion of electrons from the valence band into d states. The
relative strength of these interactions varies with the con-
finement energy since electrons with larger k values increase
their probability of occupying the d states.
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5.3.1 II,Mn-VI wells

Quantum confinement has been observed to alter the
exchange splittings in II,Mn-VI QWs. Polarization-resolved
PL measurements in CdMnTe–CdMnMgTe wells showed
a reduction in the exciton exchange splitting of ∼15%
compared with bulk (Mackh, Ossau, Waag and Landwehr,
1996). This effect was modeled taking into account the con-
finement dependence of the p–d exchange parameter, but
a full quantitative agreement was lacking (Bhattacharjee,
1998).

Measurements of the conduction-band exchange splitting
in these QWs indicated that in addition to a kinetic modi-
fication of the p–d exchange term, the s–d exchange term
is reduced by quantum confinement by up to 25% of its
bulk value (Merkulov et al., 1999). Figure 11 plots the nor-
malized s–d exchange parameter in CdMnTe–CdMnMgTe
QWs as a function of confinement energy, Ee. The exchange
splitting was measured by spin-flip Raman scattering as a
function of magnetic field and representative scans are plot-
ted in the inset of Figure 11. The data were modeled (line in
Figure 11) by modifying the theory in (Bhattacharjee, 1998)
to include the effect of band mixing and virtual transitions,
that is, kinetic exchange, of conduction-band electrons into
d states. The s–d exchange parameter decreases with con-
finement mostly because the conduction electrons get larger
k values and mix with the valence band. The contribution of
the valence band exchange parameter is negative since these
p-like states hybridize readily with the magnetic d states, that
is, p–d is large and negative.
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5.3.2 III,Mn-V wells

The exchange parameters in III,Mn-V semiconductors,
in particular GaMnAs, are usually not accessible using
traditional band-edge optical techniques because of the
high defect densities inherent to these materials. Such
measurements have recently become possible in GaM-
nAs–AlGaAs QWs grown by MBE with low doping lev-
els (1017−1019 cm−3) at intermediate substrate temperatures
(Myers et al., 2005b). Electronic and structural measure-
ments indicate that most of the Mn resides on substitutional
Ga sites (Poggio et al., 2005). Time-resolved Kerr rotation
measurements were used to measure the total conduction-
band spin splitting for a range of Mn-doping concentrations
and QW widths. Using equation 4, the effective exchange
constant (xN0α) was extracted based on measurements of
the g-factor in identical nonmagnetic samples (Figure 2).
Figure 12(a) plots the effective exchange constant as a
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wells of the same width. (b) The exchange parameter (N0α) as a
function of electron confinement energy with a linear fit (dashed
line). Data points correspond to linear fits in (a). (Reprinted with
permission R.C. Myers et al., copyright 2005, American Physical
Society.)
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function of Mn density demonstrating that the exchange
parameter increases linearly with Mn-doping density, while
the slope varies with QW width. This indicates that the
II,Mn-VI exchange model (equation (4)) is valid in the
GaMnAs system, and that quantum confinement appears
to alter the exchange parameter as in II,Mn-VI QWs.
Figure 12(b) plots the exchange constant as a function of
confinement energy for electrons in GaMnAs QWs. Sur-
prisingly, the exchange parameter is negative in all the
QWs in contrast to II–VI magnetic semiconductors. How-
ever, the confinement leads to a negative contribution to
the exchange parameter, the same as observed in (Merkulov
et al., 1999). Measurements in quantum wells with lower bar-
riers confirms this trend (Stern et al., 2007). Recent theoret-
ical investigations predict the confinement-induced negative
s–d exchange coupling in GaMnAs QWs (Dalpian and Wei,
2006).

6 SUMMARY

In semiconductor QWs, a control over the interactions
between a variety of spin systems are possible, which
are unfeasible in the bulk. The atomic layer precision of
MBE allows for a precise engineering of g-factor sign and
magnitude by quantum confinement and band engineering.
In vertically biased wells, the controllable band bending
spatially shifts carrier wave functions, thereby modulating
their spin splitting through g-factor gradients and through
local interactions with nuclear spin. Continuous shifting
of the wave function is possible in parabolic QWs, while
tunneling between coupled square wells provides more
discrete changes in the wave function position. Adding a
high-frequency component to the vertical bias allows for
resonant control of spin, such as g-TMR and nuclear spin
resonant depolarization.

The measurement of these effects relies on the ability to
resolve electron spin precession, through ultrafast optical
spectroscopy, which in turn places requirements on the
transverse electron spin lifetime. Despite much theoretical
and experimental work, engineering electron spin lifetimes
in QWs remains mostly an empirical endeavor of trial
and error. This arises due to competing variables that
may enhance or limit spin lifetime, such as electronic
doping (either modulation or direct doping), Fermi level,
and carrier temperature. This may offer some explanation
for the discrepancy between time-resolved Kerr (or Faraday)
rotation measurements and time-resolved PL in which hole-
spin precession has and has not been observed in nominally
identical structures, respectively. Since hole wave functions
shift with vertical bias, g-factor tuning of hole spin must

also occur. Engineering structures for improved hole-spin
lifetimes by carrier doping, strain, or confinement, may allow
these hole-spin effects to become observable.

Spin splittings in nonmagnetic structures tend to be of
the order of 10 µeV T−1 and this energetic fragility usually
requires low sample temperatures and high magnetic fields
to observe the effects. Magnetically doped semiconductors
offer orders of magnitude larger and more robust spin split-
tings that in principle can scale to technologically practical
temperatures and magnetic fields. In vertically biased mag-
netic QW structures, analogous to those used in nonmag-
netic wells, such an enhancement of the spin interactions
has been observed. In these structures, the exchange over-
lap between carrier and magnetic-ion spins is electrically
controlled, which changes the spin polarization and spin
dynamics of carriers in the wells. In principle, the manip-
ulation of Mn-ion spins through electron or hole-spin polar-
ization should be possible; so far only the reverse has been
observed. These techniques contrast with indirect spintronic
devices such as spin-LED structures, where magnetic layers
are remote from the optically active region and measurements
of direct spin couplings are not possible.

Engineering the carrier density and quantum confinement
in QWs provides, also, a means to alter or enhance the
intrinsic interactions between free carriers and magnetic ions.
Modulation doping holes in magnetic wells enhances the fer-
romagnetic ordering temperature above what is achievable
in bulk systems. Changing confinement by QW width and
depth strongly alters the conduction-band exchange param-
eter. This is observed in both II–VI and III–V magnetic
wells where the kinetic exchange mechanism adds a nega-
tive contribution to conduction-band exchange splitting. The
use of QW design to engineer spin interactions in mag-
netic materials could be applied to many materials sys-
tems, for example, GaN–AlGaN, in which the effect of
magnetic doping in bulk materials has proven difficult to
determine. The exchange interactions responsible for fer-
romagnetic interactions can be probed at low magnetic
doping levels since exchange splitting effects are observ-
able at these densities, for example, 1019 cm−3 in GaM-
nAs QWs. At low doping levels, materials constraints, such
as magnetic impurity solubility and associated defect for-
mation can be avoided, which frequently render the ori-
gin of ferromagnetism, in some systems, ambiguous and
controversial.

ACKNOWLEDGMENTS

The authors thank M. Poggio and Y. K. Kato for helpful
discussion and comments.



Spin engineering in quantum well structures 17

REFERENCES

Awschalom, D.D. and Samarth, N. (1999). Spin dynamics and quan-
tum transport in magnetic semiconductor quantum structures.
Journal of Magnetism and Magnetic Materials, 200, 130–147.

Bhattacharjee, A.K. (1998). Confinement-induced reduction of the
effective exchange parameters in semimagnetic semiconductor
nanostructures. Physical Review B, 58, 15660–15665.

Bhattacharjee, A.K., Fishman, G. and Coqblin, B. (1983). Virtual
bound state model for the exchange interaction in semimagnetic
semiconductors such as Cd1−xMnxTe. Physica B+C, 117–118,
449–451.

Chadi, D.J., Clark, A.H. and Burnham, R.D. (1976). 	1 conduction
electron g factor and matrix elements in GaAs and AlxGa1−xAs
alloys. Physical Review B, 13, 4466–4469.

Chen, Y.J., Koteles, E.S., Elman, B.S. and Armiento, C.A. (1987).
Effect of electric fields on excitons in a coupled double-quantum-
well structure. Physical Review B (Rapid Communications), 36,
4562–4565.

Crooker, S.A., Tulchinsky, D.A, Levy, J., et al. (1995). Enhanced
spin interactions in digital magnetic heterostuctures. Physical
Review Letters, 75, 505–508.

Crooker, S.A., Baumberg, J.J., Flack, F., et al. (1996). Terahertz
spin precession and coherent transfer of angular momenta in mag-
netic quantum wells. Physical Review Letters, 77, 2814–2817.

Dalpian, G.M. and Wei, S. (2006). Electron-mediated ferromag-
netism and negative s − d exchange splitting in semiconductors.
Physical Review B, 73, 245204-1–245204-4.

Dietl, T. (1981). In Proceedings of the Oji International Seminar,
Physics in High Magnetic Fields, Chikazumi, C. and Miura, M.
(Eds.), Springer-Verlag: Berlin, p. 344, Vol. 24.

Dietl, T. (1994). Diluted magnetic semiconductors. In Handbook on
Semiconductors, Moss, T.S. (Ed.), North Holland: Amsterdam,
p. 1251, Vol. 3B.

Dietl, T., Ohno, H., Matsukura, F., et al. (2000). Zener model
description of ferromagnetism in zinc-blende magnetic semicon-
ductors. Science, 287, 1019–1022.

Dingle, R., Gossard, A.C. and Wiegmann, W. (1975). Direct obser-
vation of superlattice formation in a semiconductor heterostruc-
ture. Physical Review Letters, 34, 1327–1330.

Edmonds, K.W., Boguslawski, P., Wang, K.Y., et al. (2004). Mn
interstitial diffusion in (Ga,Mn)As. Physical Review Letters, 92,
037201-1–037201-4.

Gossard, A.C. (1986). Growth of microstructures by molecu-
lar beam epitaxy. IEEE Journal of Quantum Electronics, 22,
1649–1655.

Gunshor, R.L., Kolodziejski, L.A., Nurmikko, A.V. and Otsuka, N.
(1988). Semimagnetic and magnetic semiconductor superlattices.
Annual Review of Materials Science, 18, 325–350.

Haury, A., Wasiela, A., Arnoult, A., et al. (1997). Observation of
a ferromagnetic transition induced by two-dimensional hole gas
in modulation-doped CdMnTe quantum wells. Physical Review
Letters, 79, 511–514.

Hermann, C. and Weisbuch, C. (1977). k · p perturbation-theory in
III-V compounds and alloys: a re-examination. Physical Review
B, 15, 823–833.

Hilton, D.J. and Tang, C.L. (2002). Optical orientation and fem-
tosecond relaxation of spin-polarized holes in GaAs. Physical
Review Letters, 89, 146601-1–14660-14.

Islam, M.N., Hillman, R.L., Miller, D.A.B., et al. (1987). Electroab-
sorption in GaAs/AlGaAs coupled quantum well waveguides.
Applied Physics Letters, 50, 1098–1100.

Ivchenko, E.L. and Kiselev, A.A. (1992). Electron g-factor of
quantum-wells and superlattices. Soviet Physics Semiconductors,
26, 827–831.

Jiang, H.W. and Yablonovitch, E. (2001). Gate-controlled electron
spin resonance in GaAs/AlxGa1−xAs heterostructures. Physical
Review B (Rapid Communications), 64, 041307-1–041307-4.

Johnston-Halperin, E., Schuller, J.A., Gallinat, C.S., et al. (2003).
Independent electronic and magnetic doping in (Ga,Mn)As based
digital ferromagnetic heterostructures. Physical Review B, 68,
165328-1–165328-9.

Jungwirth, T., Sinova, J., Masek, J., et al. (2006). Theory of
ferromagnetic (III,Mn)V semiconductors. Reviews of Modern
Physics, 78, 809–864.

Kalevich, V.K. and Korenev, V.L. (1992). Anisotropy of the
electron g-factor in GaAs/AlGaAs quantum-wells. JETP Letters,
56, 253–259.

Kato, Y., Myers, R.C., Driscoll, D.C., et al. (2003). Gigahertz
electron spin manipulation using voltage controlled g-tensor
modulation. Science, 299, 1201–1204.

Kawakami, R.K., Johnston-Halperin, E., Chen, L.F., et al. (2000).
(Ga,Mn)As as a digital ferromagnetic heterostructure. Applied
Physics Letters, 77, 2379–2381.

Kikkawa, J.M. and Awschalom, D.D. (2000). All-optical magnetic
resonance in semiconductors. Science, 287, 473–476.

Kopf, R.F., Herman, M.H., Schnoes, M.L., et al. (1992). Band offset
determination in analog graded parabolic and triangular quantum
wells of GaAs/AlGaAs and GaInAs/AlInAs. Journal of Applied
Physics, 71, 5004–5011.

Kosaka, H., Kiselev, A.A., Baron, F.A., et al. (2001). Electron g

factor engineering in III-V semiconductors for quantum commu-
nications. Electronics Letters, 37, 464–465.

Kowalski, B., Linke, H. and Omling, P. (1996). Spin-resonance
determination of the electron effective g value of In0.53Ga0.47As.
Physical Review B, 54, 8551–8555.

Kowalski, B., Omling, P., Meyer, B.K., et al. (1994). Conduction-
band spin splitting of type-I GaxIn1−xAs/InP quantum wells.
Physical Review B (Rapid Communications), 49, 14786–14789.

Kroemer, H. (2001). Nobel lecture: quasielectric fields and band
offsets: teaching electrons new tricks. Reviews of Modern Physics,
73, 783–793.

Ku, K.C., Potashnik, S.J., Wang, R.F., et al. (2003). Highly
enhanced Curie temperature in low-temperature annealed [Ga,
Mn]As epilayers. Applied Physics Letters, 82, 2302–2304.

Lampel, G. (1968). Nuclear dynamic polarization by optical elec-
tronic saturation and optical pumping in semiconductors. Physical
Review Letters, 20, 491–493.

Linfield, E.H., Jones, G.A.C., Ritchie, D.A. and Thompson, J.H.
(1993). The fabrication of a back-gated high electron mobility
transistor-a novel approach using MBE regrowth on an in situ ion



18 Semiconductor spintronics

beam patterned epilayer. Semiconductor Science and Technology,
8, 415–422.

MacDonald, A.H., Schiffer, P. and Samarth, N. (2005). Ferromag-
netic semiconductors: moving beyond (Ga,Mn)As. Nature Mate-
rials, 4, 195–202.

Mackh, G., Hilpert, M., Yakovlev, D.R., et al. (1994). Exciton mag-
netic polarons in the semimagnetic alloys Cd1−x−yMnxMgyTe.
Physical Review B, 50, 14069–14076.

Mackh, G., Ossau, W., Waag, A. and Landwehr, G. (1996).
Effect of the reduction of dimensionality on the exchange
parameters in semimagnetic semiconductors. Physical Review B,
54, R5227–R5230.

Madelung, O. (2004). Semiconductors: Data Handbook, Third
Edition, Springer-Verlag: Berlin.

Malinowski, A. and Harley, R.T. (2000). Anisotropy of the electron
g factor in lattice-matched and strained-layer III-V quantum
wells. Physical Review B, 62, 2051–2056.

Maranowski, K.D., Ibbetson, J.P., Campman, K.L. and Gossard,
A.C. (1995). Interface between low-temperature grown GaAs and
undoped GaAs as a conduction barrier for back gates. Applied
Physics Letters, 66, 3459–3461.

Marie, X., Amand, T., Le Jeune, P., et al. (1999). Hole spin
quantum beats in quantum-well structures. Physical Review B,
60, 5811–5817.

Martin, R.W., Nicholas, R.J., Rees, G.J., et al. (1990). Two-
dimensional spin confinement in strained-layer quantum wells.
Physical Review B (Rapid Communications), 42, 9237–9240.

Merkulov, I.A., Yakovlev, D.R., Keller, A., et al. (1999). Kinetic
exchange between the conduction band electrons and magnetic
ions in quantum-confined structures. Physical Review Letters, 83,
1431–1434.

Miller, D.A.B., Chemla, D.S., Damen, T.C., et al. (1984).
Band-edge electroabsorption in quantum well structures: the
quantum-confined Stark effect. Physical Review Letters, 53,
2173–2176.

Miller, R.C., Gossard, A.C., Kleinman, D.A. and Munteanu, O.
(1984). Parabolic quantum wells with the GaAs-AlxGa1−xAs
system. Physical Review B, 29, 3740–3743.

Myers, R.C., Gossard, A.C. and Awschalom, D.D. (2004). Tun-
able spin polarization in III-V quantum wells with a ferromag-
netic barrier. Physical Review B (Rapid Communications), 69,
161305-1–161305-4.

Myers, R.C., Ku, K.C., Li, X., et al. (2005a). Optoelectronic control
of spin dynamics at near-terahertz frequencies in magnetically
doped quantum wells. Physical Review B (Rapid Communica-
tions), 72, 041302-1–041302-4.

Myers, R.C., Poggio, M., Stern, N.P., et al. (2005b). Antiferro-
magnetic s − d exchange coupling in GaMnAs. Physical Review
Letters, 95, 017204-1–017204-4.

Nazmul, A.M., Amemiya, T., Shuto, Y., et al. (2005). High tem-
perature ferromagnetism in GaAs-based heterostructures with Mn
delta doping. Physical Review Letters, 95, 017201-1–017201-4.

Nazmul, A.M., Sugahara, S. and Tanaka, M. (2002). Transport
properties of Mn δ-doped GaAs and the effect of selective doping.
Applied Physics Letters, 80, 3120–3122.

Nazmul, A.M., Sugahara, S. and Tanaka, M. (2003a). MBE growth,
structural, and transport properties of Mn δ-doped GaAs layers.
Journal of Crystal Growth, 251, 303–310.

Nazmul, A.M., Sugahara, S. and Tanaka, M. (2003b). Fer-
romagnetism and high Curie temperature in semiconductor
heterostructures with Mn δ-doped GaAs and p-type selec-
tive doping. Physical Review B (Rapid Communications), 67,
241308-1–241308-4.

Ohno, H. (2002). Ferromagnetic III-V semiconductors and their
heterostructures. In Semiconductor Spintronics and Quantum
Computation, Awschalom, D.D., Loss, D. and Samarth, N. (Eds.),
Springer-Verlag: Berlin, pp. 1–30.

Ohno, H., Shen, A., Matsukura, F., et al. (1996). (Ga,Mn)As: a new
ferromagnetic semiconductor based on GaAs. Applied Physics
Letters, 69, 363–365.

Pfeffer, P. and Zawadzki, W. (2005). Theory of spin splitting in
Ga1−xAlxAs parabolic quantum wells controlled by an electric
field. Physical Review B, 72, 035325-1–035325-6.

Poggio, M. and Awschalom, D.D. (2005). High-field optically
detected nuclear magnetic resonance in GaAs. Applied Physics
Letters, 86, 182103-1–182103-3.

Poggio, M., Myers, R.C., Stern, N.P., et al. (2005). Struc-
tural, electrical, and magneto-optical characterization of para-
magnetic GaMnAs quantum wells. Physical Review B, 72,
235313-1–235313-15.

Poggio, M., Steeves, G.M., Myers, R.C., et al. (2003). Local
manipulation of nuclear spin in a semiconductor quantum well.
Physical Review Letters, 91, 207602-1–207602-4.

Poggio, M., Steeves, G.M., Myers, R.C., et al. (2004). Spin transfer
and coherence in coupled quantum wells. Physical Review B
(Rapid Communications), 70, 121305-1–121305-4.

Roth, L.M., Lax, B. and Zwerdling, S. (1959). Theory of optical
magneto-absorption effects in semiconductors. Physical Review,
114, 90–103.

Roussignol, Ph., Rolland, P., Ferreira, R., et al. (1992). Hole polar-
ization and slow hole-spin relaxation in an n-doped quantum-
well structure. Physical Review B (Rapid Communications), 46,
7292–7295.

Salis, G., Graf, B., Ensslin, K., et al. (1997). Wave function
spectroscopy in quantum wells with tunable electron density.
Physical Review Letters, 79, 5106–5109.

Salis, G., Kato, Y., Ensslin, K., et al. (2001). Electrical control
of spin coherence in semiconductor nanostructures. Nature, 414,
619–622.

Salis, G., Awschalom, D.D., Ohno, Y. and Ohno, H. (2001). Origin
of enhanced dynamic nuclear polarization and all-optical nuclear
magnetic resonance in GaAs quantum wells. Physical Review B,
64, 195304-1–195304-10.

Salis, G., Kato, Y., Ensslin, K., et al. (2003). Electrical con-
trol of spin precession in semiconductor quantum wells.
Physica E: Low-Dimensional Systems and Nanostructures, 16,
99–103.

Sanada, H., Kondo, Y., Matsuzaka, S., et al. (2006). Optical
pump-probe measurements of local nuclear spin coherence in
semiconductor quantum wells. Physical Review Letters, 96,
067602-1–067602-4.



Spin engineering in quantum well structures 19

Sanada, H., Matsuzaka, S., Morita, K., et al. (2003). Hysteretic
dynamic nuclear polarization in GaAs/AlxGa(1–x)As (110) quan-
tum wells. Physical Review B (Rapid Communications), 68,
241303-1–241303-4.

Sanada, H., Matsuzaka, S., Morita, K., et al. (2005). Gate control of
dynamic nuclear polarization in GaAs quantum wells. Physical
Review Letters, 94, 097601-1–097601-4.

Sih, V., Lau, W.H., Myers, R.C., et al. (2004). Control of electron-
spin coherence using Landau level quantization in a two-
dimensional electron gas. Physical Review B (Rapid Communi-
cations), 70, 161313-1–161313-4.

Snelling, M.J., Blackwood, E., McDonagh, C.J. and Harley, R.T.
(1992). Exciton, heavy-hole, and electron g factors in type-I
GaAs/AlxGa1−xAs quantum wells. Physical Review B (Rapid
Communications), 45, 3922–3925.

Snelling, M.J., Flinn, G.P., Plaut, A.S., et al. (1991). Magnetic g

factor of electrons in GaAs/AlxGa1−xAs quantum wells. Physical
Review B, 44, 11345–11352.

Stern, N.P., Myers, R.C., Poggio, M., et al. (2007). Confinement
engineering of s-d exchange interactions in GaMnAs/AlGaAs
quantum wells. Physical Review B, 75, 045329.

Teran, F.J., Potemski, M., Maude, D.K., et al. (2003). Collective
character of spin excitations in a system of Mn2+spins coupled
to a two-dimensional electron gas. Physical Review Letters, 91,
077201-1–077201-4.

Tifrea, I. and Flatte, M.E. (2003). Electric field tunability of nuclear
and electronic spin dynamics due to the hyperfine interaction
in semiconductor nanostructures. Physical Review Letters, 90,
237601-1–237601-4.

Traynor, N.J., Harley, R.T. and Warburton, R.J. (1995). Zeeman
splitting and g factor of heavy-hole excitons in InxGa1−xAs/GaAs
quantum wells. Physical Review B (Rapid Communications), 51,
7361–7364.

Uenoyama, T. and Sham, L.J. (1990). Carrier relaxation and
luminescence polarization in quantum wells. Physical Review B,
42, 7114–7123.

Warren, A.C., Woodall, J.M., Freeouf, J.L., et al. (1990). Arsenic
precipitates and the semi-insulating properties of GaAs buffer lay-
ers grown by low-temperature molecular beam epitaxy. Applied
Physics Letters, 57, 1331–1333.

Weisbuch, C. and Hermann, C. (1977). Optical detection of
conduction-electron spin resonance in GaAs, Ga1−xInxAs, and
Ga1−xAlxAs. Physical Review B, 15, 816–822.



Hot Electron Spintronics

Xin Jiang1, Sebastiaan van Dijken2, and Stuart Parkin1

1 IBM Almaden Research Center, San José, CA, USA
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1 INTRODUCTION

Spin-dependent electron transport in ferromagnetic metals
has been extensively investigated, especially in view of
its importance for the functionality of spintronic devices.
When electron transport occurs at energies much larger
than thermal energies of the order of kT (kT ∼ 26 meV
at 300 K), it is often referred to as ‘hot’ electron trans-
port. When hot electrons are transmitted through ferromag-
netic metals, they interact with the electrons and atoms in
the metal and can be scattered. It is well known that the
hot electron mean free paths are spin dependent in fer-
romagnetic metals. The minority electrons usually have a
smaller mean free path than the majority electrons, that
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and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
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is, they are more heavily scattered than the majority elec-
trons. This spin-dependent scattering provides a means of
studying the interaction between the hot electron spins and
the more localized spins constituting the ferromagnet and
also forms the basis for building hot electron spintronic
devices.

Various techniques have been developed to study hot
electron transport in ferromagnetic metals. These tech-
niques usually require a source of hot electrons with a
well-defined energy, a medium in which the electrons
travel, and an analyzer for the transmitted electrons. Com-
monly used electron sources include a semiconductor pho-
tocathode, a scanning tunneling microscope (STM) tip, a
metal/semiconductor Schottky barrier, and a metal/insulator
tunnel barrier. The transmission medium normally contains
one or more ferromagnetic-metal layers, separated by non-
magnetic metal or dielectric layers. The electron analyzer
may detect both the electron spin’s polarization and inten-
sity, such as a Mott detector, or may simply be an energy
analyzer, such as a metal/semiconductor Schottky barrier.

Spin-resolved electron transmission is one of the most
important techniques for studying hot electron transport in
ferromagnetic thin films. Moreover, highly spin-polarized
hot electron currents can be obtained after transmission
due to the highly efficient spin-filtering effect. Under-
standing of the spin-filtering effect is key to a variety
of applications, including, for example, ballistic electron
emission microscopy (BEEM), and the spin-valve tran-
sistor and magnetic tunnel transistor devices. The high
spin polarization, resulting from spin-filtering, also makes
it an attractive approach for hot electron spin injection
into semiconductors, which is an important ingredient for
the development of useful semiconductor-based spintronic
devices.
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2 SPIN-RESOLVED ELECTRON
TRANSMISSION

When a hot electron beam impinges on a ferromagnetic sur-
face or interface, the electrons can be reflected, absorbed, or
transmitted. Siegmann, Pierce, Celotta (1981) studied elec-
tron absorption of a Ni40Fe40B20 film for electron ener-
gies between 2 and 500 eV. They found that the absorption
depends on the orientation of the incident electron spins with
respect to the magnetization of the ferromagnetic film. They
attributed this dependence to the influence of exchange inter-
actions on elastic spin-dependent electron scattering. They
further proposed that the measurement of the absorption cur-
rent could be utilized for detecting electron spin polarization
and probing surface magnetization.

It was later pointed out by Schönhense and Siegmann
(1993) that spin-resolved electron transmission through fer-
romagnetic metals provides a more efficient way of detecting
the spin dependence of hot electron transport due to the
large asymmetry in the majority and minority electron mean
free paths. In typical transmission experiments the ferro-
magnetic film can only be a few nanometers thick because
the transmission efficiency is quite small, ∼10−3 or less, so
that the transmitted beam currents lie in the picoampere to
nanoampere range, or even less. The first measurement of
spin-dependent electron inelastic mean free paths was con-
ducted by Pappas et al. (1991) using spin-resolved photoe-
mission. In these experiments, ultrathin Fe overlayers were
grown on Cu(100). When photons from the light source
impinge on the sample, hot electrons are emitted from the
Cu substrate through the Fe overlayer (Figure 1). In order to

Light source Detector

Electron beam

Fe

Cu

Figure 1. Spin- and energy-resolved photoemission measurements
of hot electron transmission through a thin Fe overlayer grown on
a Cu substrate.

track the transport of the hot electrons generated in the Cu
substrate, energy-resolved spectra were taken so that these
electrons could be identified from their element-specific bind-
ing energy. The intensity and spin polarization of the hot
electrons after transmission through the Fe overlayer was
analyzed by a Mott detector. Pappas et al. found that the
mean free path of the majority electrons is larger than that
of the minority electrons in the energy range of ∼10–40 eV,
and that the mean free paths increase with decreasing elec-
tron energy. The rate of increase is larger for the majority
electrons than for the minority electrons. Similar experiments
were carried out by Getzlaff, Bansmann, and Schönhense
(1993) and Vescovo et al. (1995) for hcp Co and bcc Fe
overlayers on W(110), and fcc Co overlayers on Cu(111),
respectively. A spin asymmetry in electron inelastic mean
free paths was also observed in these structures.

In theexperimentsdiscussedabove, thephotogeneratedelec-
trons are initially unpolarized. They acquire spin polarization
while traversing the ferromagnetic overlayer. In a different
experiment, Gröbli et al. (1995) grew a thin Fe overlayer on
a GaAs substrate with a Ag buffer layer between the Fe and
GaAs. The Ag layerwas used to prevent interdiffusion and reac-
tion between the Fe film and GaAs. Using circularly polarized
light (Meier and Zakharchenya, 1984), spin-polarized electrons
were created in GaAs and subsequently extracted through the
Ag and Fe overlayers. Gröbli et al. analyzed the intensity and
polarization of the photocurrents as a function of the photon
energy and initial electron spin polarization. They found that
the transmission was about 1.7 times larger when the electron
spin direction was oriented parallel to the Fe magnetization
compared to the case when it was antiparallel.

One complication in the overlayer experiments is that the
incident light also creates hot electrons inside the overlayer,
thereby giving rise to a large background signal. To over-
come this problem, self-supporting thin-film structures have
been used to study spin-dependent hot electron transmis-
sion (Figure 2). The preparation of such structures usually
involves deposition of an intermediate layer onto a substrate.
Afterwards, the film stack of interest is deposited onto the
intermediate layer. Finally, the intermediate layer is removed
by dissolving it in a suitable solution, such as water, to obtain
freestanding thin films. A GaAs photocathode is often used as
the electron source, in which circularly polarized light is used
to generate spin-polarized electrons with a polarization vector
�P (Meier and Zakharchenya, 1984). By using self-supporting

films, the creation and transmission of hot electrons are no
longer intertwined. Consequently, the background signal can
be reduced. Lassailly et al. (1994) and Drouhin et al. (1996)
measured hot electron transmission through Au/Co/Au film
stacks with the electron spin polarization parallel or antipar-
allel with the Co magnetization �M . For inelastically scattered
electrons, the transmission probability was found to be four
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Figure 2. Spin-resolved hot electron transmission measurements
through a freestanding ferromagnetic thin-film structure. θ is the
angle between the spin polarization of the incident electron beam
and the magnetization of the ferromagnet.

times higher for the majority electrons than for the minority
electrons. For elastically scattered electrons, the asymmetry
in transmission was much smaller, which might be related to
the sample preparation (Drouhin et al., 1996). Oberli et al.
(1998) also carried out spin-dependent transmission experi-
ments using a Au/Co/Au film stack. They observed a large
transmission asymmetry for elastic electron scattering of up
to ∼80%.

When the spin polarization vector of the incident elec-
tron beam is perpendicular to the magnetization of the fer-
romagnetic thin film (θ = 90◦ in Figure 2), the spin state
of the hot electrons can be regarded as a superposition of
two components, one parallel and one antiparallel to the
film magnetization, with equal amplitude. After the electrons
are transmitted through the ferromagnet, the amplitudes of
the two components are no longer the same due to spin-
dependent absorption. As a result, the spin vector is rotated
toward the magnetization direction. Meanwhile, a phase dif-
ference between the two components develops and the spin
vector precesses around the magnetization. Weber, Riesen,
and Siegmann (2001) measured the precession angles of hot
electron spins after passing through Fe, Co, and Ni thin films.
At an electron energy of 7 eV, they obtained a precession
rate of 33, 19, and 7◦ nm−1 for Fe, Co, and Ni, respectively.
Owing to the conservation of total angular momentum, there
must be a corresponding precession of the magnetization
of the ferromagnet around the spin vector of the injected
hot electrons. It therefore follows that the injection of hot
electron spins can be utilized for precessional magnetization
reversal (Siegmann et al., 1995; Back et al., 1998, 1999).
Assuming realistic parameters, Weber et al. estimated that
the switching time using the precession method could be
as short as a few picoseconds, which is much faster than
conventional magnetic field driven magnetization reversal.

The spin dependence of hot electron scattering in ferro-
magnetic metals is often considered to be a consequence

Fermi level

s–p band

Majority
d band

Minority
d band

Figure 3. Illustration of spin-dependent electron scattering in 3d
transition metals. The horizontal and vertical axes represent the
density of states and electron energy, respectively. The filled region
represents occupied states. Only the minority electrons (spin-down)
can be effectively scattered into the empty minority d band.

of electron–electron scattering. In ferromagnetic 3d transi-
tion metals the electron d band is split into the majority
and minority bands. A portion of the minority electron band
is empty, while the majority electron band is almost fully
occupied. As a result, minority electron scattering into the
empty d band is very effective, giving rise to a shorter mean
free path. In contrast, the majority electrons can only be
scattered into the less abundant s–p band and thus have a
larger mean free path. This simple picture is illustrated in
Figure 3. It was found that the inelastic scattering length of
hot electrons in transition metals can be described by a sim-
ple formula (Schönhense and Siegmann, 1993; Siegmann,
1992), as follows,

1

λ
= σ = σ 0 + σ d (5 − n) (1)

where λ and σ are the spin-averaged electron mean free path
and scattering cross section, respectively. σd accounts for
scattering into the empty d bands while σ 0 accounts for other
scattering processes. n is the number of occupied d orbitals
available to one spin state and since the total number of d
orbitals there is 5, 5 − n is the number of holes in the d band
for one spin state. To account for the different mean free
paths of the majority and minority electrons in ferromagnets,
Schönhense and Siegmann (1993) extended equation (1) to
a spin-dependent format,

1

λ±
= σ± = σ 0 + σd [5 − (n ± �n)] (2)

where ‘+’ and ‘−’ indicate the corresponding quantities
for the majority- and minority-spin electrons, respectively.
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2�n is the Bohr magneton number of the ferromagnet.
Schönhense and Siegmann obtained good agreement with
existing experimental data using equation (2) with a single
fitting parameter σ 0/σ d . They described the spin-dependent
hot electron transmission in ferromagnetic transition metals
as a spin-filtering effect since the majority electrons are
preferentially transmitted while the minority electrons are
mostly eliminated after passing through the ferromagnet.

The concept of spin-filtering was successfully used to
explain the lack of negative spin polarization observed in
photoemission experiments for Co. In strong ferromagnets,
such as Co and Ni, the minority d band has a much larger
density of states at the Fermi level than the majority d
band. Therefore, a negative spin polarization is expected
in the photoemission experiments close to the threshold
photon energy. This was indeed observed in the case of Ni.
For thick Co films, however, the observed polarization is
positive at photothreshold (Gröbli et al., 1995). This puzzle
was understood in light of the spin-filtering effect inside the
Co film. Although the light initially excites more minority
electrons than majority electrons, they are eliminated from
the photocurrent due to their short mean free path. As a
result, the majority electrons dominate in the photoemission
and a positive spin polarization is observed. If a thin Co film
is used with thickness on the order of the minority electron
mean free path, a negative spin polarization at photothreshold
should be observed since the spin-filtering effect is small for
very thin films. Gröbli, Oberli, and Meier (1995) evaporated
ultrathin fcc Co overlayers onto Cu(001) and measured the
spin polarization of the photocurrent as a function of the Co
film thickness. At photo threshold, they obtained a negative
spin polarization for film thicknesses up to ∼27 Å. These
results provided clear evidence for the spin-filtering effect in
ferromagnetic films.

For ultrathin films, the electron mean free path is no
longer a well-defined quantity since the motion of the
electrons cannot be divided into a succession of single steps.
In this sense, spin-dependent electron lifetimes may be a
more appropriate quantity to study hot electron transport in
ferromagnetic thin films (Aeschlimann et al., 1997; Knorren
et al., 2000). The first direct measurement of spin-dependent
electron lifetimes was conducted by Aeschlimann et al.
(1997) using two-photon photoemission (2PPE) (Figure 4).
In the 2PPE experiment, a first laser pulse excites electrons
from their ground state into an intermediate state below the
vacuum level. After a certain time delay, a second laser
pulse excites these electrons above the vacuum level, giving
rise to photoemission. The lifetime of the electrons in the
intermediate energy state can be extracted by analyzing the
intensity and spin polarization of the emitted electrons as
a function of the delay time. The energy dependence of
the lifetime can be obtained by varying the energy of the

First photon

Second photon

Co

EF

EInt

Evac

Ek

Figure 4. Illustration of the two-photon-photoemission process.
EInt and EVac indicate the energy level of the intermediate state
and the vacuum level, respectively. Ek is the kinetic energy of the
emitted electrons.

laser pulse. Aeschlimann et al. measured spin lifetimes in
fcc Co films deposited on a Cu(001) single crystal. They
found that the electron lifetimes were on the order of a few
femtoseconds to 20 fs in the energy range of 0.6–1.1 eV
above the Fermi level. The electron lifetime decreased with
energy, which was attributed to the increased phase space
into which the electrons could be scattered at high energy
(Quinn, 1962). The ratio between the majority and minority
electron lifetimes was found to be ∼2 at 1 eV and decreased
to ∼1.2 at 0.6 eV, which was attributed to the band structure
of Co. The density of states of the Co minority electron
band has a maximum at ∼1 eV above the Fermi level. When
the hot electron energy is less than 1 eV, the number of
empty states available for scattering decreases in the minority
electron band. On the other hand, the density of states in the
majority electron band is more or less constant in this energy
range. Therefore, a larger increase in the lifetime of minority
electrons than of majority electrons may be expected as the
energy is decreased from 1.0 to 0.6 eV.

Spin-resolved electron transmission is a powerful tech-
nique for investigating spin-dependent hot electron transport
in ferromagnetic thin-film structures. Important parameters,
such as electron mean free paths and lifetimes, can be
extracted from these experiments. These studies provide a
solid foundation for developing spintronic devices based on
hot electron transport.

3 BALLISTIC ELECTRON EMISSION
MICROSCOPY

BEEM was first implemented by Kaiser and Bell (1988). In
BEEM, an STM tip is positioned above a metal/semiconductor
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Figure 5. Ballistic electron emission microscopy.

Schottky barrier, where the semiconductor is doped n type
(see Figure 5). When a tip bias voltage (VT) is applied, hot
electrons are generated by tunneling from the STM tip into
the metal base through the vacuum barrier. If these elec-
trons retain an energy larger than the height of the Schottky
barrier (�S) at the metal/semiconductor interface, they can
be transmitted into the semiconductor conduction band. The
magnitude of the collector current (IC) is very sensitive to the
details of the band structure at the metal/semiconductor inter-
face. Therefore BEEM has been extensively used to probe
the electronic structure of buried interfaces (Kaiser and Bell,
1988; Bell and Kaiser, 1988; Schowalter and Lee, 1991;
Ludeke and Bauer, 1993; Garcia-Vidal, de Andres and Flo-
res, 1996; Smith and Kogan, 1996; Bell, 1996; Guthrie et al.,
1996; Smith, Lee and Narayanamurti, 1998; Weilmeier, Rip-
pard and Buhrman, 1999; Smith et al., 2000). In these stud-
ies, the base layer is usually comprised of noble metals,
such as Au, which have very large electron mean free paths
(Weilmeier, Rippard and Buhrman, 1999).

The hot electrons injected into the metal base have a very
high kinetic energy of ∼EF + eVT . Once they are transmitted
into the semiconductor conduction band, their kinetic energy
is reduced to eVT − �S. As a result, the electrons lose a large
fraction of their normal momentum component. On the other
hand, the transverse momentum component is often assumed
to be conserved. This leads to a critical angle of collection
(θC), and only electrons propagating within this angle may be
collected in the semiconductor. θC can be calculated using the
following formula,

θC = arcsin

√
mt

m

eVT − �S

EF + eVT

(3)

where mt is the transverse electron effective mass in the
semiconductor conduction band and m is the electron mass in
the metal base. Assuming typical values of mt

m
∼ 0.1, eVT −
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Figure 6. Ballistic hole emission microscopy operating in the
normal (a) and reverse (b) modes.

�S ∼ 0.5 eV, EF + eVT ∼ 5 eV, the critical angle is esti-
mated to be less than 6o. Therefore, the lateral resolution of
BEEM can be as high as ∼1 nm if the base layer thickness
is on the order of 10 nm. The ability to probe subsurface
interfaces with such a high resolution is probably the most
attractive property of BEEM. Another advantage of BEEM
is that the energy of the hot electrons can easily be changed
by varying the tip bias voltage, thus allowing for investiga-
tions of the energy dependence of hot electron transport over
a wide range of energy.

The ballistic transport of hot holes can be studied in a
similar manner if the semiconductor collector is doped p
type rather than n type (Bell et al., 1990; Hecht et al., 1990).
This technique is called ballistic hole emission microscopy
(BHEM). Figure 6 shows two operation modes of BHEM.
When the STM tip is positively biased with respect to the
metal base, hot holes are directly injected into the valence
band of the collector (Figure 6a). This is the normal operation
mode of BHEM. If the STM tip is negatively biased, on the
other hand, BHEM operates in the reverse mode (Figure 6b).
In this case, hot electrons are first injected into the base,
where they are inelastically scattered and lose energy. The
energy is transferred to secondary electrons, exciting them to



6 Semiconductor spintronics

higher energy states and creating hot holes inside the base
layer. Some of these holes then traverse ballistically through
the base layer and form the collector current. BHEM has
been used to study the transport properties of hot holes,
complementary to the study of hot electrons, as well as to
probe the electron–hole scattering process in materials.

In order to study the spin dependence of hot electron
transport using BEEM, Rippard and Buhrman replaced the
noble metal base with single Co films or Co/Cu/Co trilayers
(Rippard and Buhrman, 1999, 2000). This variation of BEEM
is called ballistic electron magnetic microscopy (BEMM).
When the hot electrons traverse the Co/Cu/Co base layers, the
scattering rate depends on the alignment of magnetization of
the two Co layers since the electron mean free paths are spin
dependent. As a result, the collector current is maximized
when the moments of the two Co layers are parallel and
minimized when the moments are antiparallel. By varying the
thickness of the Co layers, Rippard and Buhrman extracted
spin-dependent electron attenuation lengths of ∼21 and ∼6 Å
for the majority and minority electrons in the energy range
of 1–2 eV above the Fermi level.

Similar to BEMM, a modification of BHEM allows for
the study of the spin dependence of ballistic hole transport in
ferromagnetic base layers. This variation is, not surprisingly,
referred to as ballistic hole magnetic microscopy (BHMM).
Banerjee et al. (2005) used BHMM to study hot hole
transport in Co single layer films and NiFe/Au/Co trilayers
grown on a p-type Si collector. For the single layer Co films,
they found that the hot hole attenuation length increases
from 6 to 10 Å in the energy range from 0.8 to 2 eV at
150 K. For the NiFe/Au/Co base, the transmission of hot
holes is clearly spin dependent. The collector current is
about 2.3 times larger when the Co and NiFe moments are
aligned parallel compared to antiparallel. This corresponds
to a large transmission ratio of ∼4.4 for majority and
minority holes. Banerjee et al. tentatively attributed this
spin asymmetry to the difference in group velocities for
the majority and minority holes. Further investigation is
necessary to determine the origin of the observed spin
dependence. BHMM can also operate in the reverse mode.
Haq et al. (2005) used reverse BHMM to measure hot hole
transport in a NiFe/Au/Co spin-valve base. They observed
a large collector current change of ∼2.8 times when the
alignment of the Co and NiFe moments is switched from
antiparallel to parallel.

Another interesting application of BEEM is to study hot
electron transport through insulating tunnel barriers, such as
Al2O3. Tunnel barriers are a key ingredient for spintronic
devices such as magnetic tunnel junctions (MTJs) (Julliere,
1975; Miyazaki and Tezuka, 1995; Moodera et al., 1995).
Understanding the properties of tunnel barriers is there-
fore crucial for the development of MTJ-based technologies

(Parkin et al., 1999, 2003). Rippard, Perrella, and Buhrman
(2001) fabricated Au/Cu/Co/Al2O3/Co/Cu tunnel structures
on Si(111), where the Al2O3 layer was formed by oxidation
of an ultrathin Al film deposited by evaporation or sputtering.
They found that evaporated Al formed a uniform tunnel bar-
rier at a much thinner thicknesses (∼6 Å) than sputtered Al.
For even thinner films, a significant variation in BEEM cur-
rent was observed, indicating a nonuniform or discontinuous
barrier. The barrier height, on the other hand, was deter-
mined to be ∼1.2 eV, independent of the deposition method,
barrier thickness, and oxidation conditions. Kurnosikov et al.
(2002) studied hot electron transport in Ta/Co/Al2O3/Ru tun-
nel junctions without any auxiliary Schottky barriers. A lock-
in technique was used in order to extract the small BEEM
current from the large background current of the tunnel junc-
tion itself. For very thick barriers (∼40 Å), they obtained a
barrier height of ∼1.7 eV.

It is worth mentioning that BEEM can be used to
probe the luminescence properties of buried structures if
a quantum well light-emitting structure is incorporated into
the semiconductor collector. This is called ballistic electron
emission luminescence (BEEL) (Appelbaum et al., 2004).

4 SPIN-VALVE TRANSISTOR AND
MAGNETIC TUNNEL TRANSISTOR

The use of an STM tip in BEEM as the electron source
places a limitation on possible device applications. Monsma
et al. (1995) introduced a three-terminal solid-state hot elec-
tron device–the spin-valve transistor (Figure 7). Similar to
BEEM, the spin-valve transistor has a metal base and a semi-
conductor collector. But instead of an STM tip, a semicon-
ductor emitter is used to create hot electrons by thermionic
emission from the emitter Schottky barrier. These elec-
trons subsequently travel across the base layers and are col-
lected by the collector Schottky barrier. To operate the spin-
valve transistor, the emitter Schottky barrier height must be

Fermi level

IC

Emitter

Base

Collector

Figure 7. Schematic band diagram of a spin-valve transistor.
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Figure 8. Schematic band diagrams of a magnetic tunnel transistor
for a parallel (a) and antiparallel (b) alignment of the emitter and
base magnetic moments.

larger than the collector Schottky barrier height. This can be
achieved by inserting different metal seed layers at the emit-
ter/base and base/collector interfaces. The base comprises a
ferromagnetic-metal/normal-metal/ferromagnetic-metal spin-
valve. Thus the magnitude of the collector current can be
varied by changing the alignment of the magnetic moments
within the spin-valve base. The first room-temperature opera-
tion of a spin-valve transistor was realized by Monsma, Vlut-
ters, and Lodder (1998). Spin-dependent hot electron trans-
port in the spin-valve transistor was extensively explored
and a very large magnetic field sensitivity was demonstrated
at room temperature (Monsma, Vlutters, and Lodder, 1998;
Monsma et al., (1995); Anil Kumar et al., 2000, 2001; Jansen
et al., 2000, 2001a,b; Vlutters et al., 2001, 2002; van ’t Erve
et al., 2002). A detailed review of the spin-valve transistor
was given by Jansen (2003).

In the spin-valve transistor, the hot electron energy is
determined by the emitter Schottky barrier height. Thus it
is not possible to vary the electron energy continuously in
one single device. In addition, the difference between the
emitter and collector Schottky barrier heights is typically
small. Therefore, the collection efficiency of the spin-valve
transistor is limited. In order to overcome these problems,

a hot electron device called a magnetic tunnel transistor
was developed (Mizushima et al., 1997, 1998; Sato and
Mizushima, 2001; van Dijken, Jiang and Parkin, 2002a).
One form of the magnetic tunnel transistor consists of a
ferromagnetic-metal emitter, a ferromagnetic-metal base, and
a semiconductor collector (Figure 8). The emitter and the
base are separated by a thin insulating tunnel barrier. A
Schottky barrier is formed between the base and the collector
with a barrier height �S. Hot electrons are injected from
the emitter into the base when an emitter/base bias voltage
(VEB) is applied across the tunnel barrier, forming the emitter
current (IE). These electrons traverse the ferromagnetic base
layer and are scattered as they do so. The transmitted
electrons are subsequently collected in the semiconductor
collector but only if their energy remains greater than the
Schottky barrier height. Since minority electrons have a
short mean free path, they are easily scattered in the base
layer. As a result, they lose energy and only a few of them
will be collected. In contrast, majority electrons are more
likely to maintain their energy due to their large mean free
paths. Therefore, more majority electrons will overcome the
Schottky barrier and will subsequently be collected. The
collector current is very sensitive to the relative alignment
of the magnetic moments of the emitter and the base. In
the parallel alignment, most of the electrons injected into
the base are majority electrons and are scattered less in the
base, giving rise to a large collector current (Figure 8a). In
the antiparallel alignment, most of the injected electrons are
minority electrons and are more heavily scattered, leading to
a small collector current (Figure 8b). The switching between
the parallel and antiparallel alignment of the magnetic
moments can be realized by growing an antiferromagnetic
IrMn layer on top of the emitter layer. This IrMn layer
is exchange coupled to the emitter and pins the emitter
magnetization along a fixed direction. In this case, by
applying an appropriate magnetic field, the magnetic moment
of the base can be aligned to be either parallel or antiparallel
to that of the emitter. The relative change in the collector
current when the alignment is switched from antiparallel
to parallel can be quantified by the magnetocurrent (MC)
parameter, defined as,

MC = IC,P − IC,AP

IC,AP
(4)

where IC,P and IC,AP are the collector current for parallel
(P) and antiparallel (AP) alignment of the emitter and base
magnetic moments, respectively.

Figure 9(a) shows the collector current as a function
of magnetic field at 77 K for a magnetic tunnel transistor
with the following structure, GaAs(100)/30-Å Co84Fe16/25-
Å Al2O3/50-Å Co84Fe16/300-Å Ir22Mn78/50-Å Ta. As the
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Figure 9. Collector current as a function of the magnetic field for
a magnetic tunnel transistor with a single base layer (a) and a spin-
valve base (b) at 77 K. The bias voltage is VEB = 1.0 V for (a) and
0.8 V for (b).

magnetic field is swept between ±80 Oe, the base magnetic
moment switches at ∼ ± 20 Oe, while the emitter magnetic
moment remains fixed in the applied field range. At VEB =
1.0 V, IC,P (∼11.5 nA) is almost twice as large as IC,AP,
giving rise to an MC value of 97%.

The moderate MC value in Figure 9(a) is a consequence
of the modest tunneling spin polarization of the CoFe/Al2O3

emitter, which is typically ∼45% (Monsma and Parkin,
2000). Even if spin-filtering in the base is perfect, the
maximum MC is of the order of 100%. To enhance the
MC effect, a different type of magnetic tunnel transistor
was developed using a nonmagnetic metal emitter and
a ferromagnetic spin-valve base. In such a device, the
initially unpolarized electrons are spin-filtered by the two
ferromagnetic layers in the spin-valve base. Much larger
MC values can be obtained as spin-filtering can create spin
polarization of more than 90% (van Dijken, Jiang and Parkin,
2003a,b). As shown in Figure 9(b), an MC value exceeding
3400% is demonstrated in a magnetic tunnel transistor
with the following structure, GaAs(100)/50-Å Co70Fe30/40-
Å Cu/50-Å Ni81Fe19/25-Å Al2O3/300-Å Cu. Note that the
collector currents shown in Figure 9 are quite small. This is
because most of the hot electrons are lost due to scattering
in the base and at the base/collector interface. Increasing the
hot electron energy can give rise to larger collector currents,

up to several microamperes. By optimizing film growth and
improving interface properties, the magnitude of the collector
current may be further improved (van Dijken, Jiang and
Parkin, 2005).

In a simple model ignoring spin-flip processes, the collec-
tor current of a magnetic tunnel transistor is carried indepen-
dently by majority- and minority-spin electrons. The attenua-
tion of hot electron current in each spin channel is described
by the corresponding bulk attenuation length and the inter-
face collection efficiency. The collector current for parallel
and antiparallel alignments of the emitter and base magnetic
moments can be described by the following formula,

IC,P(AP) = IE
1 + PE

2
e−t/λ↑(↓)αC↑(↓)

+IE
1 − PE

2
e−t/λ↓(↑)αC↓(↑) (5)

where IE is the tunnel current, PE is the spin polarization of
the electrons injected from the emitter into the base, t is the
base layer thickness, λ↑(↓) is the attenuation length for the
majority (minority) electrons within the ferromagnetic base
layer, and αC↑(↓) is the electron collection efficiency at the
base/collector interface.

van Dijken, Jiang, and Parkin (2002b) fabricated a series
of magnetic tunnel transistors with different CoFe base layer
thicknesses and measured the thickness dependence of the
collector current for parallel and antiparallel alignments at
various emitter/base bias voltages VEB (i.e., hot electron
energy). By fitting the data to equation (5), they obtained hot
electron attenuation lengths in the energy range of 1–1.9 eV.
As shown in Figure 10, the attenuation length of majority
electrons is about 5–6 times larger than that of the minority
electrons. Moreover, the attenuation length of majority elec-
trons decreases with electron energy, whereas the attenuation
length of minority electrons hardly shows any energy depen-
dence. The difference in scattering cross sections for the
majority and minority electrons �σ = σ ↓ − σ ↑ = 1/λ↑ −
1/λ↓ can be calculated using the attenuation lengths. This
result is plotted in the inset of Figure 10 together with some
data obtained by Oberli et al. for Co thin films at electron
energies of ∼5–16 eV (Oberli et al., 1998).

The decrease of the attenuation length of majority elec-
trons at elevated energies is due mainly to an enhanced
electron–electron scattering rate, which is the most impor-
tant scattering mechanism for majority electrons (Quinn,
1962; Zarate, Apell and Echenique, 1999; Drouhin, 2001).
On the other hand, the minority electrons are subject to
more efficient scattering because of the abundant availabil-
ity of empty minority d band states near the Fermi level
and additional scattering mechanisms such as spontaneous
spin-wave scattering (Vlutters et al., 2002). As a result, the
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minority electron attenuation length is much smaller. The
large spin asymmetry in the attenuation lengths implies that
the hot electron current in the magnetic tunnel transistor, after
spin-filtering in the base region, can be highly spin-polarized
(van Dijken, Jiang and Parkin, 2002b). Using the attenuation
lengths plotted in Figure 10, the spin polarization of the hot
electron current at the base/collector interface is more than
95% when the CoFe base layer thickness exceeds ∼35 Å.

The collector current in a magnetic tunnel transistor is
determined not only by the electron transmission in the fer-
romagnetic base layer, but also by the conduction band struc-
ture of the semiconductor collector. For example, the bias
dependence of the MC is very different for magnetic tunnel
transistors with GaAs and Si collectors. This is illustrated in
Figure 11, where the MC is measured as a function of VEB for
two magnetic tunnel transistors with GaAs and Si collectors
(van Dijken, Jiang and Parkin, 2003c; Jiang et al., 2004).
In the case of a GaAs collector, a pronounced nonmono-
tonic bias dependence of the MC is observed (Figure 11a).
When the bias voltage VEB exceeds the Schottky barrier
height (∼0.78 V), a large MC is obtained. The MC decreases
with VEB up to ∼1.1 V, then increases slightly, and finally
decreases gradually. In contrast, for the magnetic tunnel tran-
sistor with a Si collector, the MC decreases continuously as
a function of the bias voltage (Figure 11b).

In the magnetic tunnel transistor, the spin-polarized hot
electrons that are injected from the emitter into the base
initially have very narrow energy distribution because the
tunneling process is highly sensitive to the height of the
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Figure 11. Bias dependence of the MC in magnetic tunnel transis-
tors with a GaAs (a) and Si (b) collector (van Dijken, Jiang and
Parkin, 2003c; Jiang et al., 2004). The symbols and lines indicate
experimental data and model calculation results, respectively.

tunnel barrier. Specifically, the electrons are injected with
energies close to the emitter Fermi level. As these electrons
traverse the base region, they experience inelastic scattering
and lose energy. As a consequence, the energy distribution
of the hot electrons broadens. Since the scattering rate
is normally higher for the minority electrons than for
the majority electrons, the minority electrons are more
likely to lose energy and thus have a broader energy
distribution. Additional electron scattering occurs at the
base/collector interface, after which a fraction of the incident
electrons are collected by the semiconductor. This interface
scattering likely broadens the angular distribution of the hot
electrons.

The GaAs conduction band has an energy minimum at
the center of the Brillouin zone (� valley). At an energy
of ∼0.29 eV above the top of the Schottky barrier, there
are eight local minima along the 〈111〉 axis (L valleys). At
even higher energy, ∼0.48 eV above the Schottky barrier
height, there are six local minima along the 〈001〉 axis (X
valleys) (Blakemore, 1982). When the bias voltage exceeds
the Schottky barrier height by a small margin, a hot electron
current is collected through the central � valley. Because
of their narrow energy distribution, a relatively large portion
of the majority electrons is able to surmount the Schottky
barrier and hence contributes to the collector current. On the
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other hand, only a small portion of the minority electrons has
enough energy to be collected. This large spin asymmetry
results in a large MC. At elevated emitter/base bias voltages,
increasingly more of the scattered minority electrons are
able to surmount the Schottky barrier. The increase of the
minority electron current gives rise to a smaller MC. If
all the collector conduction bands open up at the same
energy level, a monotonic decrease of the MC with bias is
expected, as observed in the magnetic tunnel transistor with
a Si collector. However, for GaAs, the L and the X valleys
open up at higher energies than the � valley. When these
valleys just become available for hot electron injection, they
favor the collection of the majority electrons and thus tend to
increase the MC. This leads to the observed nonmonotonic
bias dependence of the MC when the collector is GaAs. An
implication in this argument is that the hot electrons at the
base/collector interface have a broad angular distribution,
thus allowing them to access the L valleys in GaAs with
large transverse momentum components. This can be justified
by strong electron scattering at the base/collector interface
(Smith, Lee and Narayanamurti, 1998; van Dijken, Jiang
and Parkin, 2002b, 2003; Jiang et al., 2004). The calculated
results based on this model are shown as lines in Figure 11.
An excellent agreement is obtained between the experiments
and calculations.

5 HOT ELECTRON SPIN INJECTION

The development of modern-day electronics has followed
Moore’s law for several decades, in which the channel length
of a silicon MOSFET is halved about every 18–24 months,
allowing for a doubling of the number of transistors (Moore,
1965). However, as the transistor size continues to shrink
towards fundamental physical limits, there is an increasing
interest in exploring alternate technologies to both silicon
and purely charged based devices. Spintronics is a particu-
larly promising technology, where the spin states of carriers
are utilized as an additional degree of freedom for improved
information processing and data storage (Zutic, Fabian and
Sarma, 2004). The electron’s spin has already played an
important role in magnetoelectronic devices, such as the spin
valve and the magnetic tunnel junction. The discovery of the
giant magnetoresistance and the tunneling magnetoresistance
effects has had a profound impact on the magnetic recording
industry (Julliere, 1975; Miyazaki and Tezuka, 1995; Mood-
era et al., 1995; Parkin et al., 1999, 2003; Baibich et al.,
1988; Binasch et al., 1989; Parkin, More and Roche, 1990;
Parkin, Bhadra and Roche, 1991). In semiconductor electron-
ics, however, the role of spins is rather passive. It is interest-
ing to note that semiconductors have many desirable proper-
ties as far as spins are concerned. In particular, the electron

x
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InAlAs
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Figure 12. Schematic drawing of the Datta–Das transistor. FM1
and FM2 are two ferromagnetic contacts to the 2DEG.

spin relaxation time in semiconductors can be several orders
of magnitude longer than the electron momentum and energy
relaxation times (Kikkawa and Awschalom, 1998). Using
an electric field, electrons in GaAs can be dragged over
a distance of 100 µm without losing their spin coherence
(Kikkawa and Awschalom, 1999). In addition to the long spin
lifetimes and large spin diffusion lengths, semiconductors
offer the flexibility of electrically controlled variable carrier
doping densities and profiles and spin relaxation rates, which
could be useful for building interesting spintronic devices.
For example, Ohno et al. (2000) showed that it is possi-
ble to control the ferromagnetism of InMnAs thin films by
modulating the hole concentration. Sandhu et al. (2001) and
Karimov et al. (2003) demonstrated that the electron spin
relaxation rates in GaAs heterostructures can be varied by
applying a gate voltage. Murakami et al. predicted that a dis-
sipationless spin current flows in GaAs in the presence of an
electric field (Murakami, Nagaosa and Zhang, 2003). These
studies suggest that spin-based semiconductor electronics has
the potential to develop an entirely new generation of devices
with high speed, high density, low power consumption, and
nonvolatility (Wolf et al., 2001).

One of the first semiconductor spintronic devices was pro-
posed by Datta and Das (1990) (Figure 12) and is often
referred to as the Datta–Das ‘transistor’. This device is com-
prised of two ferromagnetic contacts placed on top of a semi-
conductor two-dimensional electron gas (2DEG) formed at
an InAlAs/InGaAs interface. The two ferromagnetic contacts
serve as the injector and detector of spin-polarized elec-
trons, respectively. The 2DEG forms a channel for electron
transport between the contacts. Owing to the Rashba effect
(Rashba, 1960; Bychkov and Rashba, 1984), the mobile elec-
trons in the 2DEG sense an effective magnetic field and
precess around this field. The strength of the magnetic field
can be controlled by applying a gate voltage across the 2DEG
(Nitta et al., 1997). Therefore, it is possible to modulate the
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electron spin precession inside the 2DEG and, consequently,
the magnitude of the current. Although simple in concept, the
Datta–Das transistor contains all the essential components
of a semiconductor spintronic device, the creation, transport,
manipulation, and detection of spin-polarized electrons, by
electrical means. The first step, the creation of spin-polarized
electrons inside semiconductors, can be realized by elec-
trical spin injection. It is a prerequisite for semiconductor
spintronics.

It has long been known that spin-polarized electrons
can be generated in direct band gap semiconductors by
optical pumping with circularly polarized light (Meier and
Zakharchenya, 1984). For device applications, however, elec-
trical means of spin injection is more desirable. The first
attempts at electrical spin injection were carried out using
Ohmic contacts formed by ferromagnetic metals (Monzon
and Roukes, 1999; Gardelis et al., 1999; Filip et al., 2000).
Since the electrons in the ferromagnetic metals are spin-
polarized, it was expected that the electrons injected into
the semiconductors would maintain their spin orientation and
thus give rise to successful spin injection. Despite signif-
icant effort, however, unambiguous spin injection was not
demonstrated. Later on, it was realized that the conductivity
mismatch between the metal and the semiconductor might
present a fundamental obstacle to spin injection (Schmidt
et al., 2000). The conductivity mismatch can be understood
in a simple picture, as shown in Figure 13. In the spin injec-
tion experiment, the resistance of the device can be divided
into a spin-independent part R

↑
0 = R

↓
0 and a spin-dependent

part R
↑
S �= R

↓
S , where the up (down) arrow represents the

majority (minority) electron channel. The semiconductor
resistance is normally spin independent, whilst the ferro-
magnet/semiconductor contact resistance is spin dependent.
When an Ohmic contact is used, R

↑,↓
S is much smaller than

R
↑,↓
0 . Therefore, the electron transport is dominated by the

spin-independent semiconductor resistance. As a result, the
electron current is not polarized. In order to achieve efficient

V

I

RS
↑

RS
↑  ≠ RS

↓, R0
↑  = R0

↓

RS
↓

R0
↑

R0
↓

Figure 13. A simplistic picture to illustrate the conductivity mis-
match problem in spin injection experiments.

spin injection, the spin-dependent conductivity needs to
be smaller than its spin-independent counterpart. Note that
Figure 13 is a rather simplistic picture of the conductivity
mismatch problem. A more detailed treatment of this subject
was given by Schmidt et al. (2000).

The first evidence of electrical spin injection was reported
by Hammar et al. (1999). They used NiFe contacts to inject
electrons into an InAs 2DEG, with a thick AlGaSb insulating
barrier inserted between the NiFe and the 2DEG. Owing
to the Rashba effect, the spin degeneracy of the electron
density of states in the 2DEG is lifted. As a result, electron
transport in the 2DEG channel is spin dependent. When the
magnetization of the NiFe contacts is varied by a magnetic
field, the resistance of the device is expected to change
(Johnson, 1998). Indeed, Hammar et al. observed a resistance
change of ∼0.9%. This observation, although a small effect,
was an encouraging step towards spin injection. Hu et al.
(2001) also reported spin injection from NiFe into an InAs
2DEG, with a smaller resistance change of ∼0.2%.

Much larger spin injection effects were obtained using
diluted magnetic semiconductors whose conductivity matches
that of normal semiconductors. The use of magnetic semi-
conductors was proposed by Oestreich et al. (1999). Using
time-resolved photoluminescence, they showed that the mag-
netic semiconductor Cd0.98Mn0.02Te could serve as a very
good spin aligner in a magnetic field of 2.5 T. Moreover,
the spin-polarized electrons generated in the Cd0.98Mn0.02Te
layer could be efficiently transported into an adjacent CdTe
layer. Shortly afterwards, Fiederling et al. (1999), Ohno
et al. (1999), and Jonker et al. (2000) demonstrated electri-
cal spin injection using BeMnZnSe, GaMnAs, and ZnMnSe
spin injectors, respectively. In these experiments, a quan-
tum well light emitting diode (LED) was used as an optical
detector to measure the spin polarization of the injected
electrons (Figure 14). The injected electrons recombine with

AlGaAs AlGaAsGaAs

HH
LH

Spin-polarized
electrons

Unpolarized
holes

Circularly
polarized

light

Polarization
analyzer

Figure 14. Schematic drawing of a quantum well LED detector
used for measuring the spin polarization of injected electrons. HH
and LH represent the heavy and light holes in the quantum well,
respectively.
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holes inside the quantum well and emit light. The degree
of circular polarization of the emitted light is correlated to
the spin polarization of the electrons prior to recombina-
tion through optical selection rules (Meier and Zakharchenya,
1984). Therefore, the spin polarization can be inferred
from the luminescence polarization. Very large spin polar-
izations of more than 80% were reported for magnetic
semiconductor injectors (Jonker et al., 2001). Such a high
spin polarization is very desirable for spintronic applica-
tions. However, magnetic semiconductors have limitations.
These materials, to date, only possess the desired mag-
netic properties at temperatures well below room tempera-
ture and/or in a large magnetic field, thereby limiting their
usefulness.

Ferromagnetic 3d transition metals have Curie temper-
atures much higher than room temperature, making them
attractive for spin injection into semiconductors. However,
care must be taken to overcome the conductivity mismatch
between the metal and the semiconductor. Rashba pointed
out that the mismatch problem can be resolved if the fer-
romagnetic metal forms a tunnel contact with the semi-
conductor since the tunneling process is spin dependent
and tunnel contacts can have a high impedance (Rashba,
2000). This predication was confirmed by Zhu et al. (2001).
Using a Fe/GaAs Schottky tunnel contact, they observed a
spin polarization of ∼2% in GaAs/InGaAs quantum wells.
Following the same route, higher spin polarizations were
reported by the Jonker group at the Naval Research Lab-
oratory (Hanbicki et al., 2002, 2003) and the Crowell and
Palmstrøm groups at the University of Minnesota (Adel-
mann et al., 2005), reaching ∼30% at low temperatures.
Crooker et al. used a magneto-optical Kerr technique to
directly image electrical spin injection and accumulation in
a lateral GaAs device with Fe Schottky contacts (Crooker
et al., 2005). Electrical detection of spin injection and accu-
mulation was recently demonstrated by Lou et al. (2006,
2007) who show that the nonequilibrium spin population
in the semiconductor gives rise to a measurable voltage
signal. Moreover, they show that the suppression of the volt-
age signal by a small transverse magnetic field is consistent
with spin precession and dephasing induced by the magnetic
field.

Besides Schottky tunnel contacts, oxide tunnel barriers
were also utilized for spin injection. Manago and Akinaga
utilized ferromagnetic metals in conjunction with Al2O3

tunnel barriers as the spin injector and observed a sig-
nal of ∼1% at room temperature (Manago and Akinaga,
2002). van ’t Erve et al. (2004) fabricated Fe/Al2O3 tun-
nel injectors and measured a spin polarization of 40%
at 5 K. Motsnyi et al. (2002, 2003) and Van Dorpe et al.
(2003) used the oblique Hanle effect (Meier and
Zakharchenya, 1984) to investigate spin injection from

a ferromagnetic-metal/Al2O3-tunnel-barrier injector into a
GaAs LED. They applied a magnetic field at an angle to
the ferromagnetic-metal film plane and measured the circu-
lar polarization of the light emitted from the LED. Motsnyi
et al. (2003) obtained a light polarization of ∼4% at 80 K
and ∼1% at room temperature. By model fitting, they con-
cluded that the actual spin injection efficiency is about 21
and 16%, respectively.

When a Schottky or Al2O3 tunnel contact is used for
spin injection, the maximum spin polarization that can be
achieved may be limited by the tunneling spin polarization of
the ferromagnetic metal. For instance, for 3d ferromagnetic
metals and their alloys, the tunneling spin polarization is
normally no more than 50% when an Al2O3 tunnel barrier
is used (Monsma and Parkin, 2000). To overcome this
limit, two approaches can be adopted for spin injection of
highly spin-polarized electrons. One is to take advantage
of the spin-filtering effect of hot electrons in ferromagnetic
metals to obtain high spin polarization. The other is to
develop new materials which give rise to high tunneling
spin polarization. These two approaches will be discussed
below.

In the previous section, it has been shown that the spin
polarization of the hot electron current in a magnetic tunnel
transistor can be as high as 95% at the base/collector interface
due to efficient spin-filtering in the base. Moreover, the
presence of a tunnel barrier in the magnetic tunnel transistor
solves the conductivity mismatch problem. Because of these
properties the magnetic tunnel transistor holds promise
as a highly efficient spin injector. To detect the injected
electron spin polarization, a quantum well LED structure
is incorporated into the collector of the magnetic tunnel
transistor. In this scheme, the injected electrons recombine
with unpolarized holes from the substrate in the quantum
well and emit light. By analyzing the circular polarization
of the light, the spin polarization of the electrons can be
determined using the optical selection rules (Meier and
Zakharchenya, 1984). As shown in Figure 15, there are two
types of holes in the quantum well, the heavy holes (HHs)
and the light holes (LHs). They both can recombine with
the electrons and emit photons with opposite helicity. In
general, careful analysis of these data must be made in
order to properly extract the electron’s spin polarization from
the luminescence spectra. However, in the quantum well,
the energy degeneracy of the heavy and light hole states
is lifted due to confinement and/or strain effects. If the
energy splitting between the two hole states (�E) is larger
than the spectral resolution, it is possible to measure the
circular polarization of the HH emission only. In this case,
the luminescence polarization is simply equal to the electron
spin polarization. Note that the selection rules in Figure 15
are only valid in the Faraday geometry, that is, with the spin
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Figure 15. Optical selection rules for electron–hole recombination
in the Faraday geometry.

and light propagation directions both perpendicular to the
quantum well plane. Experimentally, this requires the use of
a large magnetic field to rotate the electron spin moment out
of the film plane.

In the spin injection experiment, the quantum well detec-
tor is buried inside the semiconductor heterostructure. The
injected electrons are first transported into the quantum
well region, where they spend a certain amount of time
(described by the recombination time) before recombining
with the holes and emitting light. The measured electro-
luminescence (EL) polarization does not take into account
any spin relaxation effects prior to recombination and,
therefore, sets a lower bound on the spin polarization of
the injected electrons. To properly interpret the experi-
mental data, it is necessary to take into account various
spin relaxation processes in the semiconductor. Three spin
relaxation mechanisms are known to be particularly impor-
tant, the Elliott–Yafet (EY), D’yakonov–Perel’ (DP), and
Bir–Aronov–Pikus (BAP) mechanisms. The EY process
derives from the mixing of electron wave functions of oppo-
site spin states due to spin-orbit coupling (Elliott, 1954;
Yafet, 1963). As a result, electron momentum scattering leads
to spin relaxation, with a rate proportional to the momen-
tum scattering rate. The DP process is present in semicon-
ductors without inversion symmetry (D’yakonov and Perel’,
1971; D’yakonov and Kachorovskii, 1986). The mobile elec-
trons see an effective magnetic field whose magnitude and
orientation depend on the electron momentum. Spin preces-
sion around this magnetic field gives rise to spin relaxation.
Momentum scattering randomizes the direction of the effec-
tive magnetic field and reduces the average precession effect.
The DP spin relaxation rate is therefore inversely propor-
tional to the momentum scattering rate, which is opposite to
the EY process. The BAP process is due to electron–hole

exchange and annihilation interactions (Bir, Aronov and
Pikus, 1976). The relative importance of the three processes
depends on the details of the sample structure and the experi-
mental conditions, such as the semiconductor doping profile,
experiment temperature, and so on.

Jiang et al. (2003) conducted spin injection experiments at
1.4 K using a magnetic tunnel transistor as the spin injector.
The emitter of the magnetic tunnel transistor was made up
of 50-Å CoFe. The base consisted of 35-Å NiFe and 15-
Å CoFe with the NiFe layer adjacent to the collector. The
tunnel barrier was Al2O3 with a thickness of ∼22 Å. Three
GaAs/In0.2Ga0.8As quantum wells were incorporated in the
collector as the optical detector. Figure 16 shows the EL
spectra at a hot electron energy of ∼2 eV, where the thin
and thick lines represent the left (σ+) and right (σ−) hand
circular polarization components, respectively. Note that the
width of the luminescence peaks is only ∼25 Å, which is
limited by the spectrometer resolution for the given signal
level. According to absorption studies, the separation in
wavelengths between the HH and LH emissions is ∼400 Å
in these GaAs/In0.2Ga0.8As quantum wells. Therefore, the
narrow luminescence linewidth enables the unambiguous
detection of recombination between electrons and HHs. As
mentioned before, in this case the circular polarization of
the EL is equal to the spin polarization of the electrons just
before recombination.

The EL in Figure 16 clearly depends on the magnetic
field. At zero field, the intensities of the σ+ (I+) and
σ− (I−) components are equal. At high fields, there is a
significant difference between I+ and I−. Here, the intensities
are calculated by integrating the areas under the peaks. The
EL polarization is defined as,

PEL = I+ − I−

I+ + I− (6)

PEL is ∼13% at 2.5 T and ∼ − 13% at −2.5 T. The sign of
PEL indicates injection of majority electron spins into the
quantum wells. This result is consistent with the sign of the
collector current polarization observed in electrical transport
measurements in magnetic tunnel transistors. Excitons in
In0.2Ga0.8As have a large g factor, leading to a large Zeeman
splitting energy in the quantum wells, which is shown by
the shift of the EL peak center positions for σ+ and σ−
components at high fields.

The relatively small collector current of the magnetic tun-
nel transistor requires the device to operate at high electron
energy in order to obtain enough signal in the spin injec-
tion experiments. Electron spin relaxation, however, is very
efficient at high energy (Meier and Zakharchenya, 1984;
Krishnamurthy, van Schilfgaarde and Newman, 2003), lead-
ing to a moderate EL polarization of the order of ∼10%. To
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Figure 16. Electroluminescence spectra measured in magnetic
fields of 0 and ±2.5 T at 1.4 K for a magnetic tunnel transistor
spin injector. The thin and thick lines represent the σ+ and σ−
circular polarization components, respectively. (Jiang et al., 2003.)

increase the electron current at lower energy while maintain-
ing a high spin polarization, crystalline CoFe/MgO tunnel
injectors have been used. The tunneling spin polarization of
a CoFe/MgO(100) structure was predicted to be very high
using first principle calculation (Butler et al., 2001; Mathon
and Umerski, 2001; Zhang and Butler, 2004). Experimen-
tally, tunneling spin polarization as high as 85% was reported
by Parkin et al. (2004). Therefore, a CoFe/MgO tunnel injec-
tor is capable of injecting highly spin-polarized electrons into
semiconductors.

Successful spin injection using a CoFe/MgO tunnel injec-
tor was demonstrated for the first time by Jiang et al. (2005).
In their experiment, the injector consists of 50-Å Co70Fe30

and 30-Å MgO capped with 100-Å Ta, and the detec-
tor contains a GaAs/AlGaAs quantum well light-emitting
diode. A large electroluminescence polarization of ∼47%
was observed at room temperature in a magnetic field of
5 T, as shown in Figure 17. A nonmonotonic temperature
dependence of the EL polarization was observed, which was
related to the temperature dependence of spin relaxation rate
and electron recombination time in the quantum well detec-
tor. In spin injection experiments, the measured luminescence
polarization P in a steady state is given by (Meier and
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Figure 17. Temperature dependence of the electroluminescence
polarization at 5 T for a CoFe/MgO tunnel spin injector (Jiang et al.,
2005).

Zakharchenya, 1984),

P = τS

τS + τR

P0 (7)

where P0 is the initial spin polarization of the electrons
injected into the quantum well, τS and τR are the spin and
electron lifetimes, respectively. Both τS and τR vary with
temperature and contribute to the temperature dependence
of the luminescence polarization (Meier and Zakharchenya,
1984; Krishnamurthy, van Schilfgaarde and Newman, 2003;
Ohno et al., 1999; Malinowski et al., 2000; Lau, Olesberg
and Flatté, 2001; Puller et al., 2003; Feldmann et al., 1987;
Gurioli et al., 1991; Tignon et al., 1998; Fernández-Alonso
et al., 2003). Salis et al. (2005) measured τS and τR in
GaAs/AlGaAs quantum well detectors using a spin-resolved
Kerr technique. They found that the observed dip in the
luminescence polarization was largely due to a maximum
electron lifetime at intermediate temperatures. On the basis of
these measurements, Salis et al. suggested that the initial spin
polarization of the injected electrons was ∼70%, independent
of temperature.

The observation of efficient spin injection at room temper-
ature using a CoFe/MgO tunnel injector is consistent with
the high Curie temperature of CoFe and the weak temper-
ature dependence of spin-dependent tunneling. The actual
spin injection efficiency is higher than that inferred from the
polarization of the quantum well EL because of spin relax-
ation in the quantum well detector. The MgO-based spin
injector can readily be fabricated by sputter deposition. In
addition, the MgO barrier prevents intermixing of the ferro-
magnetic metal and the semiconductor, leading to improved
thermal stability (Wang et al., 2005). These desirable features
make MgO-based tunnel spin injectors attractive for future
semiconductor spintronic applications.
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6 CONCLUSION

A great deal of progress has been made in the field of hot
electron spintronic physics over the decade. These materials
and devices are particularly interesting for the study of
the physics of the spin-dependent scattering properties of
electrons with energies just above the Fermi energy, an
energy range which is difficult to access by other techniques.
Moreover, spin-based hot electron devices have promise for
semiconductor-based spintronic devices, particularly for the
purpose of the injection of highly spin-polarized current into
semiconductors.
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1 INTRODUCTION

Broadly speaking, spin-dependent transport phenomena in
semiconductors can be divided into two categories. On the
one hand, we have those effects such as spin drift, spin dif-
fusion, and spin precession that refer to the transport of
spin-polarized carriers. These effects are of central impor-
tance for spintronics device concepts where the generation
of spin-polarized distributions of carriers are spatially sep-
arated from those elements that manipulate and detect the
spins. On the other hand, we also have spin-dependent phe-
nomena such as the spin Coulomb blockade or weak localiza-
tion and spin-split Shubnikov–de Haas oscillations visible in
magneto-transport of two-dimensional (2D) electron systems.
The latter effects provide important insights into the nature of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

the spin-dependent interactions, such as exchange and spin-
orbit coupling, that can be exploited for the manipulation of
spin systems. In this review, we will focus mostly on the
former class of phenomena. Also, we will focus mostly on
homogenous systems and touch only briefly on the properties
of structured devices that are discussed in Semiconductor
Spintronic Devices, Volume 5.

We begin with a discussion of optical orientation of
electron spins in semiconductors (Section 2). Then we review
nonequilibrium spin flow including spin drift and diffusion
(Section 3.1), and spin precession (Section 3.2). Coulomb
effects in spin transport are discussed in Section 3.3. Finally,
we review in Section 4 spin photocurrents and the reverse
effect, the electrical generation of a spin polarization.

2 OPTICAL ORIENTATION
OF ELECTRON SPINS

Various schemes have been developed to generate spin-
polarized carrier distributions in nonmagnetic semiconduc-
tors. Broadly speaking, these fall into three categories. First,
optical excitation allows creation of spin-polarized elec-
trons inside the semiconductor. Second, magnetic layers
can be used to inject spin-polarized carriers into the semi-
conductors. These magnetic layers can be semimagnetic
semiconductors (see also Diluted Ferromagnetic Semicon-
ductors – Theoretical Aspects, Volume 5), ferromagnetic
semiconductors (see also Ferromagnetic Semiconductors,
Volume 5) or ferromagnetic metal electrodes attached to the
semiconductor (Jonker, 2003). Finally, dynamic phenomena
based on electric fields and charge currents can give rise to
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spin polarization inside the semiconductor or spin accumula-
tion at the edges of the sample (see Section 4.2 and Theory
of Spin Hall Effects in Semiconductors, Volume 5).

Here, we will focus on the optical orientation of electrons
that has proven to be a powerful technique since some of the
earliest studies of spin-related phenomena in semiconductors
were performed (Lampel, 1968; Meier and Zakharchenya,
1984). In direct semiconductors like GaAs, the electron
states in the conduction band have spin S = 1/2, whereas
the hole states in the valence band have an effective spin
S = 3/2. The hole states with spin z component Sz = ±3/2
are denoted heavy-hole (HH) states, whereas the light-hole
(LH) states have Sz = ±1/2. Left (right) circularly polarized
photons carry a z component of angular momentum of −1
(+1) so that conservation of angular momentum results in the
selection rules for optical transitions depicted in Figure 1.
A more detailed analysis shows that the probabilities for
transitions from the HH states to the conduction band are
three times larger than the probability for optical transitions
from the LH states. In bulk semiconductors, the maximum
attainable degree of spin polarization is thus P = 50%, where
P is defined as

P = N+ − N−
N+ + N+

(1)

and N+ (N−) is the number of electrons with spin up (down),
respectively. In 2D systems, the degeneracy of the HH and
LH states is lifted as sketched in Figure 1. For resonant
excitation at the HH energy we thus expect a rise of the
maximum attainable degree of polarization up to P = 100%.

T = 3

T = 1 T = 1

T = 3

σ+

σ+

σ−

σ−

VB

CB

LH

3D

2D

+1/2 –1/2

HH+3/2 –3/2

+1/2 –1/2

Figure 1. Selection rules and relative transition rates T for optical
transitions between valence band (VB) states having an effective
spin S = 3/2 and conduction band (CB) states with S = 1/2
(Dyakonov and Perel, 1984)). In bulk semiconductors, the HH
states (Sz = ±3/2) are degenerate with the LH states (Sz = ±1/2)
whereas in quasi-2D systems the LH states (dashed bold lines) are
lower in energy than the HH states.

A particular advantage of the optical orientation scheme
lies in the fact that it holds both for absorption and emis-
sion, so that it can be used for creating and for detect-
ing spin-polarized carrier distributions. However, the holes
lose their spin orientation significantly faster than the elec-
trons, and the oriented electrons can recombine with any
hole. Therefore, Figure 1 implies that the polarization of the
recombination photoluminescence (PL) in bulk semiconduc-
tors does not exceed ∼25%. (This does not apply to 2D
systems where the recombination PL is due to a transition
from the lowest electron to the lowest HH state.)

Even in a single-particle picture for the optical excitation,
the 3:1 ratio of HH and LH transitions is obtained only if
HH–LH coupling of the hole states at nonzero wave vectors
k is neglected. Owing to this HH–LH coupling, the hole
states with k > 0 are not spin eigenstates. Furthermore, a
realistic picture must take into account that optical absorption
gives rise to the formation of excitons, that is, Coulomb
correlated electron-hole pairs. Thus even for excitations
close to the absorption edge we get substantial HH–LH
coupling because the exciton states consist of electron and
hole states with k of the order of 1/a∗

B , where a∗
B is

the effective Bohr radius. The Coulomb coupling between
different electron and hole states yields a second contribution
to the mixing of single-particle states with different values of
Sz. Finally, we must keep in mind that for higher excitation
energies we get a superposition of exciton continua that
are predominantly HH- or LH-like. These different excitons
contribute oppositely to the spin orientation of electrons. We
note that these arguments are valid for the optical excitation
of bulk semiconductors and quasi-2D systems (Pfalz et al.,
2005).

Optical orientation in bulk systems was reviewed by
Dyakonov and Perel (1984). Early works on 2D systems were
published by Weisbuch et al. (1981) and Masselink et al.
(1984) who reported on polarization-resolved transmission
and PL experiments on GaAs/AlGaAs quantum wells (QWs)
under cw excitation. In later works, the electron-spin polar-
ization in quasi-2D systems was studied using time-resolved
PL excitation spectroscopy. For excitation energies even
slightly above the HH resonance, several authors (Freeman,
Awschalom and Hong, 1990; Dareys et al., 1993; Mũnoz,
Pérez, Vĩna and Ploog, 1995) observed a polarization that
was significantly smaller than one. These measurements were
carried out on fairly narrow GaAs/AlGaAs QWs. A first well-
width dependent study of optical orientation was performed
experimentally by Roussignol et al. (1992). For energies near
the HH resonance, they found initial spin polarizations in the
range of 60–80%.

Twardowski and Hermann (1987) as well as Uenoyama
and Sham (1990) studied the polarization of QW PL
theoretically, taking into account HH–LH coupling in
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the valence band. However, these authors neglected the
Coulomb interaction between electron and hole states. On
the other hand, Maialle, de Andrada e Silva and Sham
(1993) investigated the spin dynamics of excitons taking into
account the exchange coupling between electrons and holes,
but disregarded the HH–LH coupling in the valence band.
Recently, a detailed experimental and theoretical study of
optical orientation in 2D systems was performed by Pfalz
et al. (2005) confirming that the polarization of the mea-
sured PL reflects the spin polarization of the excited electrons
(equation (1)) over a wide range of excitation energies. As an
example, Figure 2 shows the measured and calculated degree
of spin polarization P as a function of excitation energy of
a 198-Å-wide GaAs/AlAs QW.

3 NONEQUILIBRIUM SPIN FLOW
IN SEMICONDUCTORS

3.1 Spin drift and diffusion

Similar to electric charge distributions in semiconductors, a
nonequilibrium spin distribution can spread out diffusively
or it can drift in the presence of an electric field. However,
these phenomena behave qualitatively different in p- and
n-type semiconductors (D’yakonov and Perel’, 1971a).
In p-type semiconductors, only the spins of the nonequilib-
rium electrons become oriented. Their number is proportional
to the intensity of the light, but the degree of orientation does
not depend on the intensity (Figure 1). As drift and diffu-
sion of the spin orientation must preserve charge neutrality,
the kinetics of the spin orientation follows the kinetics of
the charge distribution. Charge diffusion in doped semicon-
ductors is characterized by the diffusion coefficient of the
minority carriers (Smith, 1978). Therefore, electron-spin dif-
fusion in p-type semiconductors is essentially characterized
by the charge diffusion coefficient for electrons[1].

In n-type semiconductors, the situation is qualitatively
different due to the fact that the optically excited electrons
augment the equilibrium electrons (D’yakonov and Perel’,
1971a). Therefore, significant optical orientation of electron
spins is possible at moderate degrees of excitation when
the excess photoelectron density is still much less than the
equilibrium electron density. The mechanism underlying this
effect is the following. Absorption of circularly polarized
light creates electrons with mainly a single spin orientation.
The spin relaxation time τ s of these electrons is typically
much greater than the excess carrier lifetime. Holes, on the
other hand, have a short spin relaxation time so that the
spin orientation of the optically created holes is quickly
lost. Therefore, any electron can recombine with these holes
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Figure 2. (a) Measured and (b) calculated degree of spin polariza-
tion P and (c) calculated absorption coefficient α(ω) as a function
of excitation energy of a 198-Å-wide GaAs/AlAs QW. The lowest
peak in the absorption spectrum is an HH exciton that gives rise to a
large positive spin orientation. The next peak slightly above the first
peak is due to the LH exciton, and it results in a strongly negative
spin orientation. The peaks at higher energies are Fano resonances,
which give mixed contributions to the spin polarization. (Adapted
from Pfalz et al., 2005.)

with a recombination rate that is usually independent of the
sign of the spin. Thus, optical excitation is a source for
spin-polarized electrons whereas recombination represents
a drain for electrons with the ‘wrong’ spin orientation.
Under stationary excitation, the oriented electrons are the
equilibrium ones.

In a bulk sample, the light is usually absorbed in a narrow
layer near the surface of the crystal. In this case, the excess
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carriers penetrate a distance of the order of the diffusion
length L = √

Dpτ , where Dp is the hole diffusion coefficient
in the n-type sample (which is usually small), and τ is
the lifetime of the nonequilibrium carriers. On the other
hand, the orientation penetrates a depth of the order of the
spin-diffusion length Ls = √

Dsτ s , where Ds is the spin-
diffusion coefficient of the electrons (which is usually large;
it is approximately equal to the electron diffusion coefficient
De). Under typical experimental conditions we thus have
Ls � L in an n-type sample (D’yakonov and Perel’, 1971a).
Beyond a layer of thickness ∼L, recombination cannot
change the degree of polarization P that falls off like P (z) =
P (0) exp(−z/Ls), that is, a spin orientation of the order of
P (0) penetrates into a layer of depth ∼Ls , where there are no
excess carriers. (A small number of photoexcited carriers can
be present within this layer because of reabsorption (Dzhioev,
Zakharchenya, Korenev and Stepanova, 1997).)

In general, the motion of the spin density S is characterized
by a drift-diffusion equation (D’yakonov and Perel’, 1976;
Garbuzov, Merkulov, Novikov and Fleisher, 1976; Dyakonov
and Perel, 1984)

∂S
∂t

= Ds∇2S + eE · ∇S
kBT

+ � × S − S
τ s

− S − S0

τ
(2)

similar to the drift and diffusion of charge. Here E is a built-
in or external electric field; T is the temperature; and �

is the spin precession frequency, which can be due to an
external magnetic field B, that is, � = g∗µBB/�, or due to
spin-orbit coupling at B = 0 (see Section 3.2). The last two
terms reflect two reasons for the spin orientation to vanish,
spin relaxation and recombination, where S0 is the average
spin orientation at the moment of photocreation. Recently,
the drift-diffusion equation (2) was reconsidered by Flatté
and Byers (2000) and Yu and Flatté (2002).

Spin drift and diffusion have been studied experimen-
tally by several groups. Dzhioev, Zakharchenya, Korenev and
Stepanova (1997) estimated that the spin diffusion length in
their n-type GaAs sample was Ls = 10 µm. Hägele et al.
(1998) found that the spin orientation in intrinsic GaAs
was almost completely preserved over a distance of 4 µm.
Kikkawa and Awschalom (1999) performed a detailed study
of spin transport in intrinsic and n-type GaAs samples in
which gates allowed one to stir the drift of the spin-polarized
electrons. Using nonlocal Faraday rotation, they found that
the drift distance of the spin-oriented electrons was linear in
the electric field, and it could exceed a distance of 100 µm
for electric fields of 16 V cm−1. Fiederling et al. (1999) used
semimagnetic BexMnyZn1−x−ySe to inject spin-polarized
electrons into a 0.1-µm-thick layer of n-type AlGaAs fol-
lowed by a 15-nm-wide GaAs, where the spin-polarized
electrons recombined with holes that were injected from the

other side of the QW (a spin light-emitting diode). Similar
experiments were also performed by Jonker et al. (2000) and
Ohno et al. (1999) who used semimagnetic ZnMnSe and fer-
romagnetic GaMnAs, respectively, to create spin-polarized
electrons that were injected into a nonmagnetic layer fol-
lowed by a light-emitting diode[2].

It has been found that interfaces between different semi-
conductors do not affect spin transport. This was first noticed
by Garbuzov, Merkulov, Novikov and Fleisher (1976),
who studied spin orientation for a sample that contained
a GaAs QW embedded in thick graded layers of p-type
AlxGa1−xAs. Malajovich et al. (2000) found that even the
interface between ZnSe and GaAs, a II–VI and a III–V
semiconductor, did not suppress spin transport.

Lateral spin diffusion was studied by Cameron, Riblet and
Miller (1996). When two laser beams with crossed polariza-
tions interfere, the light intensity on the sample is uniform,
but the polarization alternates between left polarized, linear,
and right polarized. Therefore, a spin grating is generated
in the sample where the optical orientation of the elec-
trons alternates across the excitation region. By analyzing
the orientation decay as a function of time, these authors
could determine the spin-diffusion coefficient Ds and the spin
relaxation time τ s . The spin-diffusion length Ls = √

Dsτs

appeared to be approximately 8 µm (Kavokin, 2002). Stotz,
Hey, Santos and Ploog (2005) achieved a controlled lat-
eral spin transport using two interfering traveling beams of
coherent acoustic phonons. These beams resulted in dynamic
quantum-dot like confining potentials that could take along
the spin-polarized electrons.

3.2 Spin precession

The magnetic-field-dependent term � × S in equation (2)
describes the precessional motion of the oriented spins in
an external field B or an effective field due to spin-orbit
coupling. For a transverse external field B, this term gives
rise to the Hanle effect, a depolarization of luminescence
induced by the field B (Dyakonov and Perel, 1984). In a
homogenous system (i.e., ∇S = 0 in equation (2)), we get
the expression for the Hanle curve

Sz(B) = Sz(0)

1 + (�Ts)2
, where Sz(0) = S0

1 + τ/τ s

(3)

Here we have assumed that the z direction is the direction
of the exciting radiation with S0 ⊥ B, and Ts is the ‘spin
lifetime’ defined by T −1

s = τ−1 + τ−1
s . From the Hanle

curve as a function of field B, one can thus extract the
lifetime τ and the spin relaxation time τ s of the carriers
(provided the effective Landé factor g∗ is known). However,
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a particular situation arises in n-type semiconductors where
recombination is not possible past the surface layer of
thickness ∼L. The depolarization induced by the magnetic
field thus changes the gradient of the degree of polarization
within the layer where electrons are oriented. Therefore, the
spin-diffusion rate becomes magnetic-field-dependent, which
results in a distinct change of the functional form of the Hanle
curve as a function of magnetic field (D’yakonov and Perel’,
1976).

In the presence of both time-inversion symmetry and
space-inversion symmetry, all electron states in a solid with
a given wave vector k are twofold degenerate. When the
potential through which the carriers move is inversion-
asymmetric, however, the spin degeneracy is removed even
in the absence of an external magnetic field B. We then
obtain two branches of the energy dispersion, E+(k) and
E−(k). This spin splitting can be the consequence of a
bulk inversion asymmetry (BIA) of the underlying crystal
(e.g., a zinc blende structure; Dresselhaus, 1955), and of
a structure inversion asymmetry (SIA) of the confinement
potential (Ohkawa and Uemura, 1974; Bychkov and Rashba,
1984). Strain gives rise to a third contribution to B = 0
spin splitting (Seiler, Bajaj and Stephens, 1977; Howlett and
Zukotynski, 1977). A fourth contribution can be the low
microscopic symmetry of the atoms at an interface (Rössler
and Kainz, 2002). B = 0 spin splitting has been reviewed,
for example, by Pikus, Marushchak and Titkov (1988) and
Winkler (2003). In the present context, it is important that
the spin splitting can be ascribed to an effective Zeeman term
H = (�/2)σ · �(k) with an effective magnetic field �(k). In
leading order of k, the effective field in a 2D electron system
on a (001) surface reads

�(k‖) = 2γ

�


 kx

(
k2
y − 〈k2

z 〉
)

ky

(〈k2
z 〉 − k2

x

)
0


 + 2α

�


 ky

−kx

0−


 (4)

The first term characterizes the BIA spin splitting of the
electron states. It is called the Dresselhaus or k3 term
(Dresselhaus, 1955; Braun and Rössler, 1985). It exists
already in bulk zinc blende semiconductors due to the broken
inversion symmetry. In quasi-2D systems only the in-plane
wave vector k‖ = (kx, ky, 0) is a continuous variable. In
first-order perturbation theory, the wave vector components
kz and powers thereof are replaced by expectation values
with respect to the subband wave functions. The field
�(k‖) due to BIA is depicted in Figure 3(a). We note
that in 2D systems, the Dresselhaus term depends on
the crystallographic orientation of the substrate. For 2D
systems on an [mmn] surface with integers m and n,
the Dresselhaus term was given by Braun and Rössler
(1985).

kx

ky

0 kx

ky

0

0BIA SIA

(a) (b)

0

Figure 3. Effective magnetic field �(k‖) along a contour of
constant energy (a) due to the Dresselhaus term in a system with
BIA and (b) due to the Rashba term in a system with SIA.

The momentum scattering of electrons off other electrons,
impurities, phonons, etc., results in a random-walk type
precession of the electron spins in the field �(k), which
gives rise to the so-called Dyakonov–Perel spin relaxation
(D’yakonov and Perel’, 1972; Pikus and Titkov, 1984).
A controlled precession of electrons in the Dresselhaus
field �(k) was first demonstrated by Riechert et al. (1984),
who investigated the polarization of photoemission following
optical orientation. After deposition of Cs and O on the (110)
surface of their strongly p-doped GaAs sample, a surface
inversion layer was formed where the bands were strongly
bent downward. Electrons moving through this layer gain a
large kinetic energy. Yet if the layer is very narrow, they
move ballistically with k normal to the surface so that the
direction of � is the same for all escaping electrons. The
photoelectron orientation is thus rotated away from the initial
direction defined by the pumping light beam, as observed by
Riechert et al[3].

In asymmetric QWs, SIA gives rise to the second term
in equation (4), which is frequently called the Rashba term
(Rashba, 1960; Bychkov and Rashba, 1984). The coefficients
γ and α depend on the underlying semiconductor bulk
material; but α depends also on the asymmetry of the QW
in the growth direction (Winkler, 2003). It can be tuned by
means of front and back gates (Nitta, Akazaki, Takayanagi
and Enoki, 1997). This is exploited in the famous spin-
field-effect transistor proposed by Datta and Das (1990), see
Semiconductor Spintronic Devices, Volume 5. The field
�(k‖) due to SIA is depicted in Figure 3(b).

A third contribution to �(k) at B = 0 is obtained by means
of strain. In lowest order of k and of the components εij of
the strain tensor we get (Pikus and Titkov, 1984)

�(k) = C3

�


 εxyky − εxzkz

εyzkz − εyxkx

εzxkx − εzyky


 + C ′

3

�


 kx(εyy − εzz)

ky(εzz − εxx)

kz(εxx − εyy)



(5)
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The first term depends on the off-diagonal components of
the strain tensor, that is, these components describe a shear
strain. They are nonzero, for example, when uniaxial stress
is applied in the crystallographic directions [111] or [110]
of a bulk crystal (Trebin, Rössler and Ranvaud, 1979). The
prefactor C ′

3 of the second term in equation (5) is nonzero
only because of coupling to remote bands outside the usual
8 × 8 Kane Hamiltonian. Therefore, this term is rather small,
so usually it can be neglected (Pikus and Titkov, 1984;
D’yakonov, Marushchak, Perel’ and Titkov, 1986).

For bulk InSb, the effect of strain on spin splitting
has been studied by measuring Shubnikov–de Haas oscil-
lation (Seiler, Bajaj and Stephens, 1977) and cyclotron
resonance (Ranvaud, Trebin, Rössler and Pollak, 1979).
D’yakonov, Marushchak, Perel’ and Titkov (1986) ana-
lyzed the Hanle effect in the presence of strain in order
to obtain C3 = 20 eVÅ for GaSb, C3 = 5 eVÅ for GaAs,
and C3 = 3 eVÅ for InP. The decrease of these values
from GaSb to InP correlates with the decrease in the
spin-orbit interaction gap in these crystals from 0.82 to
0.11 eV.

The effect of strain on spin transport in n-type (001) GaAs
was first studied by Kato, Myers, Gossard and Awschalom
(2004a) using time and spatially resolved Faraday rotation
spectroscopy. However, they did not quantify or tune the
strain in their samples. The implications of equation (5)
have been confirmed in detail in experiments by Crooker
and Smith (2005). Similar experiments have been published
also by Beck, Metzner, Malzer and Döhler, 2005. Crooker
and Smith used a small vise to apply tunable uniaxial strain
along the [110] or [110] direction of their n-GaAs sample,
while a circularly polarized 1.58-eV laser focused to a 4-µm
spot was used to create locally a spin orientation along
[001]. In spatially resolved measurements using Kerr rotation
they studied the electron-spin precession while the electrons
drifted and diffused away from the position of the laser spot,
where the spin orientation was created (see Figure 4).

Crooker and Smith found that the spin precession of
electrons drifting and diffusing in the strain field (5) is more
robust than the precession of electrons moving in an external
magnetic field. The reason is that in a transverse magnetic
field the ensemble spin orientation dephases quickly when the
precession period falls below the spin-diffusion length (the
Hanle effect discussed in the preceding text). The strain-
induced field (5), on the other hand, is linear in the wave
vector k so that slowly moving electrons experience a smaller
field �(k) than the faster electrons. But the distance the
electrons must travel for a complete precession period is the
same for slow and fast electrons so that the electrons remain
in phase (Figures 4c and d). This argument also implies that
the precession period should be independent of the magnitude
of the external electric field used to push the electrons, as
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Figure 4. Images of the electron-spin flow in a 1-µm-thick n-GaAs
epilayer (n = 1 × 1016 cm−3) at 4 K, acquired via Kerr-rotation
microscopy. (a) Shows the spin polarization due to spin diffusion
alone. In (b)–(d), a lateral electric field E = 10 V cm−1 was applied.
Finally, E was complemented by (c) weak and (d) large uniaxial
stress along [110]. The white bar in (b) gives the length scale for
all four panels. (Adapted from Crooker and Smith, 2005.)

confirmed by the experiments of Crooker and Smith and
Beck, Metzner, Malzer and Döhler.

The strain-induced field (5) has a pronounced dependence
on the wave vector k. If a uniaxial strain is applied along
the direction [110], we have � = 0 for k along [001].
This is analogous to the fact that we have no Dresselhaus
spin splitting in symmetric QWs on a (110) surface for k‖
along [001] (Winkler, 2003). Within the (001) plane the k
dependence of � is the same as for the Rashba term, see
Figure 3(b). If, in addition to the strain-induced field (5)
an external magnetic field B is applied, the electrons with
�(k) approximately parallel to B precess faster than the
electrons with �(k) approximately antiparallel to B. This
was confirmed by the experiments of Crooker and Smith. To
show this they used the fact that the radial diffusion in a
pure strain-induced field (5) or an external magnetic field B
is independent of the direction of k, which reflects the fact
that the magnitude of � does not depend on the direction
of the k vector of the electrons. The superposition of both
fields, on the other hand, results in an anisotropic total field
� the magnitude of which depends on the direction of k.
This is similar to the fact that, to lowest (i.e., linear) order in
k‖, the magnitude of both the Dresselhaus and Rashba spin
splitting in 2D systems are independent of the direction of
k‖ (see Figure 3), yet the superposition of both terms gives
rise to anisotropic spin splitting even in linear order of k‖
(de Andrada e Silva, 1992).
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The interplay of diffusion, drift in electric fields, and
precession in external magnetic fields was studied theo-
retically by Qi and Zhang (2003) using a semiclassical
Boltzmann equation for the 2 × 2 spin density matrix in
order to cope with the different length scales of this prob-
lem, such as the diffusion length L, the spin-diffusion length
Ls , and the spin precession length. Spin diffusion equations
for systems with Rashba spin-orbit interaction in an electric
field were studied by Bleibaum (2006). Drift and diffusion
were also studied theoretically by Hruška et al. (2006) for an
experimental setup similar to the one used by Crooker and
Smith (2005) as described in the preceding text.

3.3 Coulomb effects

So far, we have completely neglected the Coulomb interac-
tion between the electrons. Although this interaction does not
couple to the spin degree of freedom of the electrons, it has
a great influence on spin-dependent transport. This has long
been known in the context of spin diffusion in spin-polarized
liquid 3He. Leggett and Rice (1968) and Leggett (1970) have
shown that the spin polarization gives rise to a molecular
field, and any given spin will then see (and precess around) a
total field that is the sum of the molecular field and the exter-
nal field. This molecular field cannot affect the precession
of the total spin density S, since it is automatically paral-
lel to it. However, it produces a torque on the spin current,
which is present in the equation of continuity for the latter.
Leggett showed that, as a result, the equation for S in the
hydrodynamic limit no longer has a simple form similar to
equation (2) but he derived a significantly more complicated
hydrodynamic-type spin-diffusion equation. More recently,
Takahashi, Shizume and Masuhara (1999) have applied these
ideas to the spin diffusion and drift in 2D electron systems.
They solved the quantum kinetic equation derived from the
equation of motion for the nonequilibrium real-time Green’s
functions in order to show that the spin rotation term known
for 3He is indeed also present in degenerate 2D electron
systems at low temperatures.

In a sequence of papers, D’Amico and Vignale (2000,
2001, 2002, 2003) performed a detailed theoretical analysis
of how the Coulomb interaction affects spin-polarized trans-
port and diffusion in electron systems (see also Flensberg,
Jensen and Mortensen (2001)). D’Amico and Vignale showed
that the Coulomb interaction gives rise to a spin Coulomb
drag between the electrons moving with spin up and the elec-
trons moving with spin down, similar to the Coulomb drag
that has been observed for electrons in two spatially separated
layers (Gramila et al., 1991; Rojo, 1999). The spin Coulomb
drag reflects the fact that while, in the absence of impurities,
the total momentum P = ∑

i pi of the electrons is preserved,

the ‘up’ and ‘down’ components of the total momentum,
P↑ = ∑

i pi (1 + σzi)/2 and P↓ = ∑
i pi (1 − σzi)/2, are not

separately preserved, even in the absence of impurities. Here
pi is the momentum of the ith electron, and σ zi is the Pauli
matrix for the z component of the ith electron spin. Coulomb
scattering can transfer momentum between spin-up and spin-
down electrons, thereby effectively introducing a ‘friction’
for the relative motion of the two spin components, which
tends to equalize the net momenta of the spin components
(see Figure 5).

In a more rigorous formulation, Ohm’s law can be written
in the form

(
E↑
E↓

)
=

(
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

) (
j↑
j↓

)
(6)

Here, the effective electric fields Eσ are the sums of a spin-
independent external electric field plus the gradient of the
local chemical potential, which can be spin-dependent, and
jσ is the electric current carried by the electrons with spin σ .
The spin Coulomb drag gives rise to a spin transresistivity
ρ↑↓ in equation (6), which is the ratio of the gradient of the
spin-down electrochemical potential to the spin-up current
density when the spin-down current is zero. D’Amico and
Vignale (2000) evaluated ρ↑↓ in a generalized random-phase
approximation.

D’Amico and Vignale (2001) showed that the Coulomb
interaction usually gives rise to a significant reduction of the
spin-diffusion coefficient Ds in equation (2) as compared to
its value Dni in a noninteracting system. They obtained

Ds = µkBT

e

S
Sc

1

1 − ρ↑↓/ρD
(7)

where µkBT /e is the diffusion constant of a noninteracting
system in the high-temperature limit (Einstein’s relation),
S is the spin stiffness (i.e., the inverse of the spin

Js(t > 0)

Js(t < 0)

t0

Figure 5. At t < 0 both electrons contribute equally to an upward
spin current Js = (e/m)(P↑ − P↓). At t = 0, the directions of the
orbital motions of the electrons are inverted due to Coulomb scat-
tering. The direction of the spin current Js at t > 0 is thus reversed.
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susceptibility), Sc = kBT n/(4n↑n↓) is the Curie spin stiff-
ness of an ideal classical gas, and ρD = m∗/(ne2τD) is the
Drude resistivity. Figure 6 shows the ratio Ds/Dni as a func-
tion of density n, assuming a dielectric constant ε = 12
appropriate for GaAs and mobility µ = 3 × 103 cm2 V−1 s−1.
Different line styles correspond to different temperatures as
indicated. The curves labeled SD correspond to the case in
which interactions in Ds are taken into account only through
the spin Coulomb drag (i.e., the third factor in equation (7)).

Figure 6 shows that the interaction correction is quite
significant and reduces the value of Ds . For large densities
or T <∼ TF, where TF is the Fermi temperature for density
n, the dominant effect in the full calculation stems from
the softening of the spin stiffness. On the other hand, the
spin drag contribution dominates at small densities (the
nondegenerate limit T � TF). Note that TF = 1.6, 20, and
300 K correspond to n = 7.4 × 1015, 3.2 × 1017, and 1.9 ×
1019 cm−3, respectively.

The spin Coulomb drag in a 2D electron gas was studied
theoretically by D’Amico and Vignale (2003) and Flensberg,
Jensen and Mortensen (2001), giving results quantitatively
similar to three-dimensional (3D) electron systems. It was
also observed experimentally by Weber et al. (2005). These
authors used spin gratings as discussed at the end of
Section 3.1 to measure the spin-diffusion coefficient Ds

in a 2D electron gas in a GaAs/AlGaAs QW (circles
in Figure 7). Its value as a function of temperature is
significantly smaller than the charge diffusion coefficient Dc

obtained from transport measurements for samples from the
same wafer (solid lines in Figure 7). Yet good agreement is
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Figure 6. Ratio Ds/Dni between the spin-diffusion coefficient Ds

of an interacting electron system and the spin-diffusion coefficient
Dni of the corresponding noninteracting system, plotted as a
function of density n, and assuming a dielectric constant ε = 12
appropriate for GaAs and mobility µ = 3 × 103 cm2 V−1 s−1. The
curves labeled SD correspond to the case in which interactions in
Ds are taken into account only through the spin Coulomb drag (i.e.,
the third factor in equation (7)). (Reprinted figure with permissions
from D’Amico et al., Phys. Rev. B, Vol 65, 085109, 2002. Copyright
2002 by the American Physical Society.)
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Figure 7. Measured (circles) and calculated (dashed line) spin-
diffusion coefficient Ds and charge diffusion coefficient Dc (solid
line) in a 2D electron gas in a GaAs/AlGaAs QW. The electron
concentration is n = 4.3 × 1011 cm−2, which corresponds to a
Fermi temperature TF = 220 K. The inset shows the ratio between
the measured Ds and Dc. (Reproduced from Weber et al., 2005,
with permission from Nature Publishing Group.  2005.)

achieved between the measured Ds and calculations taking
into account the spin Coulomb drag effect (i.e., the last factor
in equation (7)), see the dashed line in Figure 7.

4 SPIN POLARIZATION AND CHARGE
CURRENTS

4.1 Spin photocurrents

The optical creation of spin-oriented electrons can give rise
to charge currents, the so-called spin photocurrents, which
are characterized by the fact that these currents reverse their
direction when the radiation helicity is changed from left-
handed to right-handed and vice versa. Spin photocurrents
are described by an axial tensor (or pseudotensor) of second
rank. Such tensors play an important role in the context of
gyrotropy, so that systems permitting nonzero axial second-
rank tensors are often denoted gyrotropic systems. We
note that gyrotropy is found neither in inversion-symmetric
systems nor in systems with a zinc blende structure. The
18 gyrotropic crystal classes are listed, for example, by
Agranovich and Ginzburg (1984)[4]. Semiconductors with a
zinc blende (or diamond) structure become gyrotropic when
the symmetry is reduced by means of, for example, quantum
confinement or uniaxial strain. We note that gyrotropy is
also a required and sufficient condition for the existence of
k-linear spin splitting of the energy spectrum of spin-1/2
electron systems.

Two mechanisms contribute to spin photocurrents in
gyrotropic media, the circular photogalvanic effect (CPGE)
and the spin-galvanic effect (SGE) (Ganichev and Prettl,
2003). The CPGE was independently predicted by Ivchenko
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Figure 8. Microscopic picture of the circular photogalvanic effect
(after Ganichev et al. (2001)). σ+ excitation with photon energy
�ω induces optical transitions between the valence subband hh1
and the conduction subband e1 (vertical arrows). The concurrence
of energy conservation, spin splitting of the electron and hole states,
and optical selection rules results in an unbalanced occupation of
the positive (k+

x ) and negative (k−
x ) states yielding a spin-polarized

photocurrent. (Reprinted from Journal of Magnetism and Magnetic
Materials, vol 300, Ganichev et al., p127, 2006 with permission
from Elsevier.)

and Pikus (1978) and Belinicher (1978). Subsequently, this
effect was observed in bulk Te by Asnin et al. (1978).
The mechanism is illustrated in Figure 8. Excitation with
σ+-polarized light induces direct optical transitions between
the valence subband hh1 and the conduction subband e1
(vertical arrows in Figure 8). For a given photon energy
�ω, the optical selection rules and spin splitting result in
an unbalanced occupation of the positive (k+

x ) and negative
(k−

x ) states such that the ‘center of mass’ of these transitions
is shifted from kx = 0 to some average value 〈kx〉 = 0. This
wave vector 〈kx〉 translates into an average electron veloc-
ity v = �〈kx〉/m∗ of the optically oriented electrons, which
corresponds to a spin-polarized charge current, that is, the
current is carried by electrons with one spin orientation. For
interband transitions in 2D systems, as depicted in Figure 8,
a detailed theory for the CPGE has been formulated by Golub
(2003). Spin photocurrents can also be generated in a similar
way by means of intersubband and intrasubband transitions
(Ganichev et al., 2001; Ganichev and Prettl, 2003). Sherman,
Najmaie and Sipe (2005) and Tarasenko and Ivchenko (2005)
have shown that pure spin photocurrents not accompanied
by charge transfer or spin orientation can be generated by

means of absorption of unpolarized light in low-dimensional
semiconductor systems.

Up to now, we have discussed spin photocurrents obtained
by means of one-photon absorption. These currents can also
be generated by means of two-photon excitation (Bhat and
Sipe, 2000). In this case, the spin polarization of the resulting
charge currents has been confirmed directly by measuring the
phase-dependent spatial shift of the circularly polarized PL
(Hübner et al., 2003). Pure spin photocurrents not accompa-
nied by charge transfer have been generated through quantum
interference of one- and two-photon absorption by Stevens
et al. (2003).

Besides the CPGE, the SGE is a second mechanism that
contributes to spin photocurrents (Ivchenko, Lyanda-Geller
and Pikus, 1989; Ganichev et al., 2002). The SGE is caused
by asymmetric spin-flip relaxation of spin-polarized elec-
trons. The mechanism is illustrated in Figure 9. An unbal-
anced population of spin-up and spin-down subbands is
generated, for example, by optical orientation. The current
flow is caused by k-dependent spin-flip relaxation processes.
Spins oriented in the up direction are scattered along kx from
the more occupied, for example, spin-up branch, to the less
filled spin-down branch. Four quantitatively different spin-
flip scattering events exist and are sketched in Figure 9 as
bent arrows. The spin-flip scattering rate depends on the val-
ues of the wave vectors of the initial and the final states.
Therefore, the spin-flip transitions marked by solid arrows
in Figure 9 have the same rates. They preserve the distri-
bution of carriers in the branches and, thus, do not yield
a current. However, the two scattering processes shown by
dashed arrows are inequivalent and generate an asymmetric
carrier distribution around the branch minima. This asymmet-
ric population results in a current flow along the x-direction.
Within this model of elastic scattering the current is not spin
polarized, since the same number of spin-up and spin-down

e1
(–1/2)

e1
(+1/2)

kx

E

Figure 9. One-dimensional microscopic picture of the spin-
galvanic effect (after Ganichev et al. (2001)). If one spin subband
is preferentially occupied, for example, by optical excitation, asym-
metric spin-flip scattering results in a current in the x direction.
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electrons move in the same direction with the same velocity
(Ganichev et al., 2002).

Assuming a linear relation between the components Sβ

of the electrons’ averaged spin density and the compo-
nents jα of the resulting spin photocurrent, we get for
the SGE

jα =
∑
β

TαβSβ α, β = x, y, z (8)

where Tαβ is an axial tensor of second rank[5]. This equation
shows clearly that, unlike the case of the CPGE, optical
excitation is not required for the SGE. The CPGE, however,
is always accompanied by the SGE. Formally, this is due to
the fact that both effects are characterized by axial tensors
of second rank. Even in a completely optical experiment,
CPGE and SGE can be distinguished by their different
behaviors when the light source is switched off. Then the
circular photogalvanic current decays with the momentum
relaxation time whereas the spin-galvanic current decays
with the spin relaxation time. If spin relaxation is absent,
the spin-galvanic current vanishes (Ganichev and Prettl,
2003).

In recent years, detailed experimental and theoretical
investigations of the CPGE and SGE in different systems
have been performed by Ganichev et al. This work and
related work have been reviewed by Ganichev and Prettl
(2003, 2006).

4.2 Electrical generation of a spin polarization

In general, two possibilities exist for orienting electron
spins with electric currents in a semiconductor. The first
one is the spin Hall effect. For semiconductor systems,
this idea was first discussed by D’yakonov and Perel’
(1971b). It yields a spin accumulation at the edges of the
sample in the direction perpendicular to the current. A
detailed discussion of the spin Hall effect can be found
in Theory of Spin Hall Effects in Semiconductors, Vol-
ume 5. In gyrotropic media, a second mechanism exists
that yields a spin polarization in the bulk of the sam-
ple (Aronov and Lyanda-Geller, 1989; Edelstein, 1990).
We note that equation (8), relating the given spin orien-
tation S with the resulting current j, can obviously be
inverted, that is, an electric current j can give rise to
a spin density S (Ivchenko and Pikus, 1978). As dis-
cussed in detail by Aronov, Lyanda-Geller and Pikus (1991),
the different mechanisms contributing to the spin polar-
ization of electrons induced by a current j can be clas-
sified analogously to the different spin relaxation mech-
anisms for j = 0: for j = 0, these mechanisms drive the
system toward its equilibrium configuration characterized

by equal occupations of the spin states. For j = 0, on the
other hand, the nonequilibrium configuration is characterized
by an unequal filling of the spin states. Apart from a
prefactor Q of order one, the details of which depend on
the scattering mechanisms present in the electron system,
the spin polarization is given by the ratio between the spin
splitting ��(kE) (assumed to be linear in k) and the average
energy E of the involved electrons (Aronov, Lyanda-Geller
and Pikus, 1991)

S = Qn
��(kE)

E
(9)

Here kE = eEτp/� is the shift of the Fermi sphere caused
by the electric field E , and τp is the momentum relaxation
time. In degenerate systems, we have E = �

2k2
F/(2m∗). In

nondegenerate systems we have E = (d/2)kBT , where d is
the dimension. Finally, n = kd

F/(dπ) is the number density.
The prefactor Q for different scattering mechanisms in d = 2
and d = 3 dimensions is given in Table I of Aronov, Lyanda-
Geller and Pikus (1991).

The electric-field-induced spin orientation inside a semi-
conductor was also studied theoretically by Magarill, Chaplik
and Éntin (2001) in 2D and Culcer, Yao, MacDonald and
Niu (2005) in 2D and 3D. The effect was first observed
experimentally in bulk Te by Vorob’ev et al. (1979). More
recently, it was used by Hammar, Bennett, Yang and Johnson
(1999, 2000) to analyze the spin injection from a ferromag-
netic film into a 2D electron system, see also Monzon, Tang
and Roukes (2000) van Wees (2000) and Silsbee (2001).
Moreover, the effect was measured in strained bulk InGaAs
by Kato, Myers, Gossard and Awschalom (2004b) and in
2D GaAs systems by Silov et al. (2004) and Ganichev et al.
(2004, 2006). As an example, we want to discuss the experi-
ment of Ganichev et al. They used a p-type GaAs multi-QW
grown on an intentionally miscut (001) surface (tilted by 5◦

toward the [110] direction). The symmetry of this system
is thus fully characterized by one mirror plane (110) (i.e.,
point group Cs), and electric spin orientation is expected
only for a current in the (‘active’) direction [110] of the 2D
plane, but not for the perpendicular (‘passive’) direction. In
a transmission measurement using linearly polarized light, it
is then possible to identify the current-induced spin orien-
tation via a rotation of the polarization vector of the trans-
mitted light (dichroic absorption and Faraday rotation) in a
crossed polarizer setup, see the inset of Figure 10. For the
‘active’ direction [110], Ganichev et al. observed a signifi-
cantly larger signal in the photodetector than for the ‘passive’
direction (Figure 10). The nonzero signal for the ‘passive’
direction was ascribed to imperfections of the infrared polar-
izers and carrier heating by the current, as confirmed by
control experiments.
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Figure 10. Transmission of a GaAs multi-QW as a function of
current I in a crossedpolarizer setup (sketched in the inset).
The sample was grown on a miscut (001) surface so that spin
orientation is expected for the ‘active’ direction [110] but not for
the perpendicular ‘passive’ direction. (Reproduced from Ganichev
et al., 2006, with permission from Elsevier.  2006.)

Finally, we note that Kalevich and Korenev (1990) pre-
dicted and observed a current-induced spin precession in the
field �(kE).

5 OUTLOOK

We focused here on the fundamental physics underlying the
spin-dependent transport of carriers in semiconductors. These
phenomena have many important and fascinating applica-
tions in the field of spintronics that are discussed elsewhere in
this volume. Particularly important are various laterally struc-
tured systems such as the Datta-Das spin transistor (Datta and
Das, 1990) and hybrid devices combining nonmagnetic semi-
conductors with semimagnetic and ferromagnetic materials.
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NOTES

[1] When a semiconductor has a large absorption coefficient
near the band edge, an emitted photon is usually reab-
sorbed before it can escape the crystal (Dumke, 1957).

The detailed analysis of spin diffusion in p-type semi-
conductors performed by Garbuzov, Merkulov, Novikov
and Fleisher (1976) and Gioev, Zakharchenya, Kavokin
and Pak (1994) showed that allowance for diffusion and
reabsorption was essential for the proper interpretation
of their experimental data. Even in n-type GaAs it was
found that reabsorption can be important for spin diffu-
sion (Dzhioev, Zakharchenya, Korenev and Stepanova,
1997). Please note that the first authors of the latter two
publications are, in fact, the same.

[2] The broad field of spin injection into semiconductors was
recently reviewed, for example, by Jonker (2003).

[3] The Rashba spin splitting discussed below was not
taken into account by Riechert, Alvarado, Titkov and
Safarov (1984) for the interpretation of their experiment.
However, this does not change the qualitative picture.

[4] As certain aspects of gyrotropy require a symmetric
material tensor, the discussion of gyrotropy is often
restricted to those 15 crystal classes that permit a sym-
metric axial tensor of second rank (Nye, 1957; Landau
and Lifshitz, 1984), thus excluding the crystal classes
C3v , C4v, and C6v (the latter includes wurtzite materials).
Spin photocurrents and the electric generation of spin
discussed below do not require that the corresponding
material tensors are symmetric. Therefore, these effects
can be observed for all 18 crystal classes that permit an
axial tensor of second rank. A general discussion of the
symmetry of material tensors was given, for example, by
Bir and Pikus (1974).

[5] For many crystal classes permitting nonzero axial tensors
of second rank it is nonetheless required by symmetry
that certain components of these tensors must vanish,
see, for example, the discussion of the experiment of
Ganichev et al. (2004, 2006) in Section 4.2 below.
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Hübner, J., Rühle, W.W., Klude, M., et al. (2003). Direct observa-
tion of optically injected spin-polarized currents in semiconduc-
tors. Physical Review Letters, 90, 216601.

Ivchenko, E.L., Lyanda-Geller, Y.B. and Pikus, G.E. (1989).
Photocurrent in structures with quantum wells with an optical
orientation of free carriers. JETP Letters, 50, 175–177.

Ivchenko, E.L. and Pikus, G.E. (1978). New photogalvanic effect
in gyrotropic crystals. JETP Letters, 27, 604–608.

Jonker, B.T. (2003). Progress toward electrical injection of spin-
polarized electrons into semiconductors. Proceedings of IEEE,
91, 727–740.

Jonker, B.T., Park, Y.D., Bennett, B.R., et al. (2000). Robust
electrical spin injection into a semiconductor heterostructure.
Physical Review B, 62, 8180–8183.

Kalevich, V.K. and Korenev, V.L. (1990). Effect of electric field
on the optical orientation of 2D electrons. JETP Letters, 52,
230–235.

Kato, Y., Myers, R.C., Gossard, A.C. and Awschalom, D.D.
(2004a). Coherent spin manipulation without magnetic fields in
strained semiconductors. Nature, 427, 50–53.

Kato, Y.K., Myers, R.C., Gossard, A.C. and Awschalom, D.D.
(2004b). Current-induced spin polarization in strained semicon-
ductors. Physical Review Letters, 93, 176601.

Kavokin, K.V. (2002). Optical manifestations of electron spin
transport and relaxation in semiconductors. Physical Status Solidi
A, 190, 221–227.

Kikkawa, J.M. and Awschalom, D.D. (1999). Lateral drag of spin
coherence in gallium arsenide. Nature, 397, 139–141.

Lampel, G. (1968). Nuclear dynamic polarization by optical elec-
tronic saturation and optical pumping in semiconductors. Physical
Review Letters, 20, 491–493.

Landau, L.D. and Lifshitz, E.M. (1984). Electrodynamics of Con-
tinuous Media, Second Edition, Pergamon: Oxford.

Leggett, A.J. (1970). Spin diffusion and spin echoes in liquid 3He
at low temperature. Journal of Physics C: Solid State Physics, 3,
448–459.

Leggett, A.J. and Rice, M.J. (1968). Spin echoes in liquid He3 and
mixtures: a predicted new effect. Physical Review Letters, 20,
586–589.

Magarill, L.I., Chaplik, A.V. and Éntin, M.V. (2001). Spin response
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1 INTRODUCTION

Semiconductors, more than any other class of material, are
very sensitive to external electrical perturbations, and as a
result the properties of a semiconducting material can often
be dramatically changed with gate contacts. This ability
to drive a material far from equilibrium using external
controls permits the amplification and switching behavior of
transistors, as well as a variety of other nonlinear properties.
For transistors based on charge motion, such as field-
effect transistors, the typical modification of equilibrium
achieved with the gate contact is the back-and-forth change
of the material’s conductance between the insulating and
the metallic regime. For spin-based devices, it will be the
controllable and reversible change of a spin-dependent or
magnetic property.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

The first demonstration that the fundamental magnetic
properties of a ferromagnetic semiconductor could be manip-
ulated with an external contact was the demonstration of a
voltage dependence of the Curie temperature in the ferro-
magnetic semiconductor InMnAs (Ohno et al., 2000). Since
then an electric field has been shown to modify the coercive
field of InMnAs (Chiba, Yamanouchi, Matsukura and Ohno,
2003) and as a result permit magnetization reversal. These
demonstrations rely on the unusual nature of ferromagnetism
in these materials. In order to modify the magnetic properties
of these materials with an electric field, a sufficient number of
carriers must be removable from the material with a modest-
sized voltage, and the ferromagnetic state must depend on
the density of these carriers. The requirement of carriers that
mediate the magnetism suggests magnetic insulators would
be poor candidates for gate control of magnetism. Magnetic
metals are also poor candidates, for the density of carriers in
a typical metal is orders of magnitude higher than in ferro-
magnetic semiconductors, and therefore it is not possible to
remove enough carriers with a modest voltage to significantly
modify the magnetic properties of a metal. Thus electri-
cally switchable magnets, and the potential applications of
such materials (e.g., electrically switchable magneto-optical
elements or voltage-tunable sources of spin-polarized cur-
rent) are likely restricted to devices made from ferromagnetic
semiconductors.

The spin-dependent properties of carriers moving through
nonmagnetic semiconductors can also be modified by the
application of electric fields. Even though there is no equilib-
rium magnetization in these materials, the orbital properties
of a specific electronic state are entangled with the spin prop-
erties of that state through the spin-orbit interaction. Semi-
conductors with inversion-symmetric crystal structures (such
as silicon, germanium, and diamond) have doubly degener-
ate electronic states for all crystal momenta, but owing to the
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spin-orbit interaction, the wave functions cannot be factored
into a spin component multiplying an orbital component. This
entanglement of spin and orbit leads to transport-dependent
spin dynamics, including relaxation of spin-polarized distri-
butions of carriers toward an equilibrium unpolarized state.
For semiconductors with inversion-asymmetric crystal struc-
tures (such as gallium arsenide, zinc selenide, and other
materials with zincblende or wurtzite crystal structures),
the effect of the spin-orbit interaction is even more pro-
nounced, leading to momentum-dependent spin splittings of
the electronic states throughout the zone. An applied exter-
nal electric field provides an additional inversion-asymmetric
contribution to the overall crystal potential, and thus intro-
duces a nonzero spin splitting into the electronic states of an
inversion-symmetric material or modifies the spin splittings
of an inversion-asymmetric material.

A seminal proposal (Datta and Das, 1990) described
this mechanism for electric-field manipulation of the spin
orientation of electrons moving through a high-mobility
semiconductor channel. Since then many other manipulation
proposals and device configurations have been discussed in
the literature. These include both the use of electric fields
to change the electronic structure of a region of the device
(modifying the spin splittings of moving electrons) and the
use of electric fields to change the average velocity of carri-
ers which thus experience different average electronic struc-
tures (Koga, Nitta, Takayanagi and Datta, 2002). Some recent
transistor suggestions have focused on simply modifying the
spin relaxation time of carriers within a nonmagnetic semi-
conductor as a way of achieving gain (Hall et al., 2003b).
Electric-field manipulation of the spin relaxation time has
been demonstrated in GaAs/AlGaAs and InAs/AlSb quantum
wells. On the basis of these observations and theoretical
estimates of the fundamental limits of transistor perfor-
mance (both for charge-based and spin-based devices) it
has been suggested that spin-based transistor devices have
superior fundamental performance limits than charge-based
devices (Hall and Flatté, 2006).

The final category of devices to be considered here are
those in which the electric fields, rather than controlling the
properties of a single layer (magnetic or nonmagnetic), are
used to control the relative potentials of two elements of the
device. This type of control is commonly used in charge-
based electronics, such as changing the relative potential of
the p and n regions of a diode. These adjustments are then
used to change the carrier transport through the device as
a whole. When the elements of the structure are magnetic,
then the magnetic properties of the current can be adjusted in
addition to the total current, or the device functionality itself
can be manipulated. One example of this type of device is
a ferromagnetic semiconductor with 100% or nearly 100%
spin-polarized carriers. A domain wall in such a material

behaves similar to a p−n diode, but can be removed if desired
to replace a nonlinear circuit element with a linear one (Flatté
and Vignale, 2001).

2 GATE-CONTROLLED MAGNETS
AND SEMICONDUCTOR SPINTRONIC
DEVICES

2.1 Gate control of the properties
of carrier-mediated ferromagnetic
semiconductors

The fundamental physical properties of carrier-mediated
ferromagnetic semiconductors differ significantly from those
of magnetic insulators or magnetic metals and provide clues
to the potential applications of such materials when they
become available at and above room temperature. Magnetic
semiconductors of this type, such as InMnAs (Munekata
et al., 1989) and GaMnAs (Ohno et al., 1996) are grown
by adding both magnetic ions and carriers to an initially
nonmagnetic, insulating semiconductor. If only magnetic
ions are added to a nonmagnetic semiconductor, such as
in the case of Mn substituted for the group-II atom in a
II–VI semiconductor such as ZnSe, then these ions are very
weakly coupled and do not establish ferromagnetic order.
This situation is shown in Figure 1. Although these materials
are not ferromagnetic, their magnetic response can be very
unusual. When the magnetic ion Mn replaces the group-III
atom in a III–V semiconductor, such as InAs or GaAs, then
the different valence of Mn provides an additional hole for
each substitutional Mn. At low concentrations, each hole is
bound to a substitutional Mn in an acceptor state with a
radius of ∼1 nm, as shown in Figure 1. Shown in Figure 2 is
a scanning tunnelling microscope (STM) measurement of the
acceptor state associated with Mn when substituted in GaAs.
The state itself is highly anisotropic due to the breaking of
spherical symmetry by the cubic lattice of GaAs.

Although the hole would bind to the Mn location simply
because of the attractive Coulomb potential from the effec-
tive negative charge of the Mn site, the acceptor level is
much more strongly bound than would be expected for a
shallow level. This additional binding originates from p−d
hybridization, the coupling of the p-like valence states of
GaAs with the core electronic d-like states of the Mn ion.
As this coupling is highly spin-selective, the bound accep-
tor state is nearly 100% spin polarized, with the hole spin
direction oriented antiparallel to the S = 5/2 core spin of
the Mn ion. At the valence band edge the holes are mem-
bers of a Jh = 3/2 multiplet, and thus the ground state of
the combined core-spin-valence-hole Mn complex is J = 1.
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Figure 1. (a) When magnetic ions are placed in a nonmagnetic semiconductor without additional carriers the spins are very weakly coupled
and not ferromagnetic. (b) Magnetic ions with bound holes placed in a nonmagnetic semiconductor are weakly coupled when at very dilute
concentrations. (c) When the density of magnetic ions with bound holes is high enough, the carriers overlap, coupling the magnetic ions
and producing ferromagnetism.
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Figure 2. (a) STM image of neutral Mn. Big and small round fea-
tures correspond to As and Ga related surface states, respectively.
Mn is located in the fifth subsurface atomic layer; (b) simulated
image of the Mn situated in the fifth subsurface atomic layer.
(Reprinted with permission Yakunin et al., copyright 2004, Ameri-
can Physical Society.)

These properties of the ground state have been confirmed
by electron-spin-resonance measurements on individual sub-
stitutional Mn ions (Schneider, Kaufmann, Wilkening and
Baeumler, 1987).

When a sufficient density of Mn has been added these
acceptor states overlap. If the spin orientations of the holes
on two neighboring Mn are parallel then each hole can delo-
calize into a molecular state around both Mn. If, however,
the spin orientations are antiparallel then the two accep-
tor states cannot hybridize with each other and each hole
must remain localized around its own Mn. As the holes are

more delocalized for parallel Mn alignment, and thus have
lower energy, the ferromagnetic configuration is energeti-
cally favored. The energy splittings between these molecular
states are observable with scanning tunneling spectroscopy
and confirm the ferromagnetic alignment between neighbor-
ing Mn (Kitchen et al., 2006). As the acceptor state itself,
seen in Figure 2, is spatially anisotropic, it is not surprising
that the Mn–Mn coupling mediated by the bound holes is
also spatially anisotropic. The consequence of this carrier-
mediated coupling is a ferromagnetic state when the Mn
doping density is sufficiently high (as shown in Figure 1).

Impressive quantitative calculations of the properties of
ferromagnetic GaMnAs and other Mn-doped III–V ferro-
magnetic semiconductors have been achieved using a highly
simplified picture of the electronic structure in Figure 1.
In the ‘mean-field’ approach (Dietl, Ohno and Matsukura,
2001; Abolfath, Jungwirth, Brum and MacDonald, 2001;
MacDonald, Schiffer and Samarth, 2005), the effective spin-
dependent potential of the individual Mn ions is smeared out
to a uniform spin-dependent potential throughout the solid.
The hole density is also smeared out to a uniform value and
the polarization of the Mn ions and the holes is determined
self-consistently given the hole–Mn–ion interaction energy.
This mean-field approach has successfully described the
conductivity of GaMnAs, the magnetic anisotropy and mag-
netoelastic constants (Masmanidis et al., 2005), the depen-
dence of the Curie temperature on doping and strain, and
some of the chemical trends of other magnetic semicon-
ducting materials. Limitations include predictions of room-
temperature ferromagnetism in the semiconductors GaMnN
and ZnMnO – predictions that have yet to be convincingly
demonstrated.

Figure 1 also suggests how reducing the density of holes
can reduce the Curie temperature of such a magnetic semi-
conductor. As the coupling between neighboring Mn core
spins is mediated by the carriers, if there are fewer carriers
the coupling will be weaker. The density of Mn required
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to achieve the ferromagnetic state is only around 1% (with
the largest Curie temperatures achieved for doping densities
>5%). This means that only one hole for every 10–100 unit
cells must be removed to fully deplete the material of carri-
ers (and the Curie temperature can be observably modified
even if only a small fraction of the carriers present have been
removed). This behavior is possible because the host mate-
rial for the magnetic ions is a nonmagnetic semiconductor.
If the host material were a nonmagnetic insulator rather than
a semiconductor any carriers would be strongly bound to the
magnetic atoms inserted into the lattice. Thus the overlap
with nearby spins would be of far shorter range, and fer-
romagnetism would not be achievable via carrier mediation
until magnetic atoms were placed on a much larger fraction
of lattice sites than required for these ferromagnetic semicon-
ductors. If the host were a nonmagnetic metal then the density
of carriers present at the start (typically of order one per unit
cell) would be much larger than the density in these magnetic
semiconductors, precluding the possibility of gating the mag-
netism. Carrier-mediated ferromagnetism itself would be less
effective, for the sign of the spin–spin interaction mediated
by a dense sea of carriers would oscillate rapidly in space
(Ruderman–Kittel–Kasuya–Yosida coupling) owing to the
Fermi surface structure. As a result, the behavior of a dilute
alloy of magnetic atoms in a nonmagnetic host would be
characterized by varying magnitudes and signs of spin–spin
coupling, which tends to produce a spin glass rather than a
ferromagnet.

2.2 Switchable Faraday isolators

Potential applications of gateable ferromagnets include
switchable magneto-optical elements and voltage-tunable
sources of highly spin-polarized current. One popular
example of a magneto-optical element is the Faraday iso-
lator, shown schematically in Figure 3. This device, com-
monly used to prevent feedback into laser cavities, provides
one-way transmission of light. A one-way mirror violates
time-reversal invariance, so a magnetic element is required
to implement the device. In a magnetic material, the index
of refraction differs for left and right circularly polarized
light, an effect called magnetic circular dichroism. In the
configuration of Figure 3, light that is linearly polarized
passes through a Faraday rotator. A linearly polarized light
beam can be decomposed into a coherent sum of a left
and right circularly polarized beam. The index difference
for these two components in the Faraday rotator generates a
phase difference between the two that results in a rotation
of the linear polarization direction for the beam as it passes
through the material. In the schematic, the magnetization and
length of the material is chosen so the beam rotates 45◦

counterclockwise. That beam can then pass through another
linear polarizer mounted at the other end of the device and
oriented at 45◦ to the initial polarizer. If light enters from
the far end, however, it is filtered by the linear polarizer to a
45◦ polarization and is rotated an additional 45◦ while pass-
ing in the other direction through the Faraday rotator. As
the sense of rotation is the same for light traveling in either
direction through the Faraday rotator, when light enters from
the far side it is rotated into a 90◦ oriented beam that cannot
pass through the original linear polarizer. For communication
wavelengths the material commonly used is yttrium iron gar-
net (YIG), which provides a large Faraday rotation and low
optical loss. Use of a switchable ferromagnet would permit
the one-directional transmission to be turned on or off, or the
direction of the allowed transmission to be changed dynam-
ically. Such magnetically switchable mirrors may find appli-
cations in high-speed switching and in high-speed displays.

2.3 Voltage-tunable sources of spin-polarized
current

As the spin polarization of a carrier-mediated ferromagnetic
semiconductor depends sensitively on the carrier density,
applying a voltage to deplete the carriers will also modify
the carrier spin polarization. This produces a voltage-tunable
source of spin-polarized carriers. The spin polarization of
this current, however, can be amplified by placing this
ferromagnetic semiconductor in a transistor-like structure
called a magnetic bipolar transistor (Flatté, Yu, Johnston-
Halperin and Awschalom, 2003).

Shown in Figure 4 is a schematic of an n−p↑−n transistor
structure, consisting of an emitter and collector that are
nonmagnetic n-doped semiconductors and a base that is
a p-doped ferromagnetic semiconductor. In this structure,
three general types of spin-selective processes can potentially
cause minority electrons injected from the nonmagnetic n-
doped emitter into the p-doped base to become spin polarized
before passing into the collector. The first is a dramatic spin-
filtering effect on carriers passing from the emitter to the
p↑ base, the second is spin-selective conduction electron-
spin flipping within the p↑ region, and the third is spin-
selective recombination within the p↑ region. The result
is a large current of highly spin-polarized electrons into
the nonmagnetic collector of the device. This spin-polarized
current can be controlled by any scheme that controls the
orientation or magnitude of the base magnetization.

The spin-filtering effect originates from the spin splitting
of the minority (conduction electron) band edges in the p↑
base (shown in Figure 4). Estimates of the spin splitting of
the valence band in a p-doped magnetic semiconductor, such
as GaMnAs, range from 20–100 meV. The conduction band
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Figure 3. Schematic of a Faraday isolator. The breaking of time-reversal invariance for light propagation through the Faraday rotator leads,
in combination with polarizers, to one-way transmission of light. Magnetic semiconductors may permit switchable Faraday isolators.

is split as well (Myers et al., 2005) through hybridization
with the valence band and the d-levels, although by a smaller
energy (Sc). The influence of the conduction band spin
splitting on this proposed device is quite dramatic even
for small splittings, for the equilibrium spin polarization of
minority carriers in the base,

nB↓0 − nB↑0

nB↓0 + nB↑0
= tanh(Sc/2kBT ) (1)

where nBs0 is the equilibrium density of spin s conduction
electrons in the base. When the device is biased the Shockley
approximations fix the minority carrier quasichemical poten-
tial on the emitter side of the base equal to the chemical
potential in the emitter (Figure 4). In an ordinary transistor
this gives rise to the exponential dependence of the base’s
minority carrier density on the emitter–base voltage, VEB.
For a magnetic base, the enhanced minority carrier densities
nBs injected from the emitter will likewise increase exponen-
tially, and retain the spin polarization of equation (1),

nB↓
nB↑

= nB↓0

nB↑0
(2)

If the band alignment is as shown in Figure 4 then
nB↓ > nB↑, however, the other case is straightforward. The
degree of spin polarization is considerably more dramatic
than that expected for tunneling through a spin-split bar-
rier (Moodera, Hao, Gibson and Meservey, 1988; Hao,
Moodera and Meservey, 1990) and occurs in any base region
thick enough to eliminate tunneling from emitter to collector.

A related structure, the spin-valve transistor (Monsma,
Lodder, Popma and Dieny, 1995; Jansen, 2003; van Dijken,
Jiang and Parkin, 2003), places a metallic spin valve (Ziese
and Thornton, 2001) in the base region of a silicon transistor.
Large variations in the collector current were found in

Spin-polarized
conduction
band edges

Valence
band edge

Emitter Collector
Magnetic

base

Conduction band
chemical potential

VEB VEC

Spin-dependent
recombination or

spin-flip rate

Spin filtering

Figure 4. n−p↑−n transistor. Thermally excited unpolarized elec-
trons in the emitter are filtered at the emitter–base interface and
can be further polarized through spin relaxation or carrier recom-
bination in the base. The spin-split conduction and valence band
edges are shown in the magnetic base, as well as the conduction
band quasichemical potential. Dashed (solid) lines are for spin-down
(spin-up). Occupied states (electron or hole) are indicated with shad-
ing. (Reprinted with permission M.E. Flatte et al., copyright 2003,
American Institute of Physics.)

such a device; however, in the spin-valve transistor the
collector current is very small compared to the emitter and
base currents. The magnetic bipolar transistor, however,
potentially has a collector current that greatly exceeds the
base current, yielding a gain much larger than one.

The unusual device functionalities suggested by elec-
trically tunable ferromagnetic semiconductors have yet
to become practical for commercial devices. Limitations
include the Curie temperatures of carrier-mediated ferro-
magnets (which remain far below room temperature at this
time) and the material quality of the known ferromagnetic
semiconductors. Increases in the highest Curie temperatures
achieved for true carrier-mediated ferromagnets over the past
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several years suggest that room-temperature carrier-mediated
ferromagnets may be possible. Even if those are demon-
strated, however, there are additional characteristics that must
be improved before such materials could be used in the
devices described in the preceding text. For Faraday isolators
the optical loss must be small compared to the rotation angle,
and current ferromagnetic semiconductor tend to have very
poor optical properties, characterized by high optical losses
at all wavelengths. The electric fields required to modify
the magnetic properties of gate-tunable devices should be
as small as possible; now the voltages required to deplete
enough carriers to change the Curie temperature by as little
as a single degree are much larger than practical for high-
speed integrated devices.

3 CONTROL OF SPIN RELAXATION IN
NONMAGNETIC SEMICONDUCTORS

Semiconductor spintronic devices may not require magnetic
materials. It has already been established experimentally that
the flow of current through nonmagnetic semiconductors
can produce spin-polarized distributions, either uniformly in
space (Kato, Myers, Gossard and Awschalom, 2004a; Silov
et al., 2004) or by spatially separating a moving, initially
unpolarized distribution into two oppositely polarized distri-
butions (Kato, Myers, Gossard and Awschalom, 2004c; Wun-
derlich, Kaestner, Sinova and Jungwirth, 2005; Sih et al.,
2005). Both effects, current-induced spin polarization and
the spin-Hall effect, have recently been demonstrated at
room temperature (Stern et al., 2006). The spin-orbit inter-
action, which couples the motion of the electrons to the
spin dynamics, plays an important role in these phenom-
ena (D’yakonov and Perel’, 1971; Levitov, Nazarov and
Éliashberg, 1985; Edelstein, 1990; Hirsch, 1999; Murakami,
Nagaosa and Zhang, 2003; Sinova et al., 2004). See also
Theory of Spin Hall Effects in Semiconductors, Volume 5
in this volume will address these topics in more detail.

Once an initial nonequilibrium spin polarization has been
generated, then additional methods can be used to manipulate
the population’s spin orientation. One method is interfer-
ing one population with another (Kato, Myers, Gossard and
Awschalom, 2005). As the spin coherence lengths in semi-
conductors are exceptionally long (Kikkawa and Awschalom,
1999; Sogawa et al., 2001) and can exceed 100 µm in some
materials, manipulations that rely on spin population interfer-
ence can work over much longer length scales than possible
for devices relying on orbital coherence. Distributions can
also be moved into regions with different spin lifetimes to
either store or destroy spin coherence (Malajovich, Berry,
Samarth and Awschalom, 2001).

In addition to these effects, the simple act of transporting
the spin population through a nonmagnetic semiconductor
with spin-orbit interaction can cause the spin orientation
to precess, even without applied magnetic fields. When
electrons move through a crystal, the electric fields associated
with the crystal potential are relativistically transformed into
effective magnetic fields acting in the rest frame of the
electrons. These effective magnetic fields depend on the
direction of electron motion through the crystal, and thus
will cause the spin orientation to precess in a path-dependent
way (Kato, Myers, Gossard and Awschalom, 2004b; Crooker
and Smith, 2005; Crooker et al., 2005).

3.1 Electric-field control of internal effective
magnetic fields

As the internal effective magnetic fields arise from a rela-
tivistic transformation of the crystal’s electric fields into the
rest frame of a moving electron, those magnetic fields can be
controlled in any way that changes the crystal’s electric fields
in the laboratory frame. A simple way to do this is to apply
a uniform electric field. The tunable effective magnetic field
experienced by moving electrons that arises from this elec-
tric field provides additional strategies to manipulate a spin
population. In the seminal work of Datta and Das (1990), the
spin orientation of carriers moving ballistically from source
to drain in a transistor geometry is controlled by such an
effective magnetic field induced with a uniform electric field
applied to the crystal. This ‘Rashba’ field B (Rashba, 1960;
Bychkov and Rashba, 1984) has the form

B = α E × k (3)

where E is an effective electric field, k is the carrier’s crystal
momentum, and α depends on the strength of the spin-orbit
interaction in the material. Even in the absence of a true
applied electric field, the presence of inversion-symmetry
breaking in a structure (‘structural inversion asymmetry’)
can produce an effective electric field and a resulting Rashba
field. For an electric field generated by a gate and pointing
parallel to z, the Rashba field will point in the xy plane per-
pendicular to k. When carriers move ballistically along x

from source to drain in a transistor geometry, for example
in a quantum wire, all the carriers have the same k, and
the Rashba field (parallel to y) is the same for all carriers.
In more general situations in which carriers are distributed
through momentum space, the spins of the individual car-
riers will precess relative to each other (in a phenomenon
called dephasing), and the total spin polarization moving
from source to drain will decay.
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Figure 5. Schematic of the spin transistor of (Hall et al., 2003b) in (a) the ‘off’ and (b) the ‘on’ state. The spin injector (source) and
collector (drain) are configured to select opposite spin polarizations. If the spin lifetimes are very long (gate voltage off) in the channel
then no current will flow from source to drain. If the spin lifetimes are short (gate voltage on), then current can flow easily from source to
drain. (Reprinted with permission K. Hall et al., copyright 2003, American Institute of Physics.)

If carriers move through a material by diffusion, rather
than by ballistic transport, the varying momenta of the car-
riers leads to dephasing of the carriers relative to each other
and an overall loss of spin polarization. Through the choice
of a clever geometry, balancing the gate electric field with the
internal electric fields from a crystal structure (Schliemann,
Egues and Loss, 2003), partially coherent spin manipulation
is possible even for diffusing carriers. In current structures
near room temperature, however, the propagating carriers
lose their spin polarization in less than 1 ns (Lau and Flatté,
2005). Thus an alternate approach for diffusive carriers is
desirable.

A simpler design relies on the controllable decay of
spin polarization rather than its reorientation. In zinc-blende
semiconductors, the spin lifetime originates from differing
effective magnetic fields for different carriers (D’yakonov
and Perel’, 1972; Dresselhaus, 1955). Zinc-blende quantum
wells grown in the (110) direction are special, for the spin
lifetime for spins oriented parallel to the (110) direction
is very long (D’yakonov and Kachorovskii, 1986; Winkler,
2004; Ohno et al., 1999a; Hall et al., 2003a). If an electric
field is applied in the (110) direction, however, a Rashba
field is generated perpendicular to (110), causing the spin
lifetimes to shorten (Lau and Flatté, 2002) by several orders
of magnitude. Reductions of a factor of 10 in the spin lifetime
in a GaAs/AlGaAs quantum well (Karimov et al., 2003) and
of a factor of 4 in the spin lifetime in an InAs/AlSb quantum
well (Hall et al., 2005) have been observed experimentally.

3.2 Spin transistor action in a nonmagnetic
semiconductor

This controllable spin lifetime forms the basis for tran-
sistor action in the device (Hall et al., 2003b) shown in

Figure 5. Once polarized spins (to be specific, spin-up) have
been injected into a channel, either from a magnetic mate-
rial (Fiederling et al., 1999; Ohno et al., 1999b; Hanbicki
et al., 2002; Adelmann et al., 2005) or using a nonmag-
netic spin filter (Andrada e Silva and La Rocca, 1999;
Voskoboynikov, Lin, Lee and Tretyak, 2000; Koga, Nitta,
Takayanagi and Datta, 2002; Hall et al., 2003b), their motion
through the device can be controlled according to whether
they remain spin polarized or not (Hall et al., 2003b). If
they remain spin polarized and the drain contact spin fil-
ter only accepts spin-down carriers, then current does not
flow from source to drain. This is the situation (Figure 5a)
when no electric field is applied using the gate contact.
When an electric field is applied (Figure 5b) then the spin
polarization decays rapidly in the channel. In this situa-
tion, current flows easily from source to drain. Hence, in
this design, there is no moveable barrier between source
and drain. The spin-dependent barriers in this device per-
mit carriers of one spin orientation to pass while prevent-
ing those of the other spin polarization. The spin-dependent
barriers are not raised or lowered. The switching is per-
formed instead by changing the spin orientation in the
channel.

Transistor action in a CMOS field effect transistor (FET),
by contrast, requires raising and lowering a barrier whose
height is set by the gate voltage. When the barrier is high
the source–drain current cannot flow, whereas when it is low
the source–drain current flows easily. For low standby power
(LSTP) CMOS (Semiconductor Industry Association, 2003)
the switchable range of the height of the barrier, Vth, must
be at least 400 mV, corresponding to 16kBT , or a thermally
excited current over the barrier in the ‘off’ state of 10−7 the
‘on’ current. Here kB is Boltzmann’s constant and T is the
temperature. The gate capacitance of the CMOS FET, Cg,
is proportional to the area of the region of the channel that
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is blocked with this barrier. The power-delay product (twice
the switching energy) is CgV

2
th and the switching time is

proportional to Cg. If the gate capacitance is too low then the
barrier becomes thin enough that carriers can tunnel through
it and the leakage current rises above that expected from Vth,
but if the capacitance is too high the switching time is long
and the switching energy high.

Although the difference in ‘on’ and ‘off’ gate voltages for
low standby power (LSTP) CMOS cannot be reduced below
400 mV for a 107 on–off current ratio at room temperature
(∼280 mV for a 105 on–off current ratio), the difference in
‘on’ and ‘off’ gate voltages for the spin transistor described
in the preceding text can be much less. The source–drain
current is proportional to the spin relaxation rate, so for a
10 ps spin lifetime in the ‘on’ state and a 105 on–off ratio
the spin lifetime must be 1 µs in the off state (100 µs for a
107 on–off ratio). Spin lifetimes in excess of 150 ns have
been observed experimentally in bulk GaAs (Kikkawa and
Awschalom, 1998), so here the 1 µs value will be used. It only
requires an average 1 meV spin splitting (associated with a
random effective magnetic field direction) to cause a spin to
relax within 1 ps. This spin splitting is not generated directly
by the gate voltage, but is induced by the applied electric field
and the spin-orbit interaction of the material as described by
equation (3). For the 20 nm thick InAs quantum well of Hall
et al., 2003b the required electric field to reduce the spin
lifetime to 10 ps at room temperature is 50 kV cm−1. Thus,
the threshold voltage will be 100 mV, a factor of 4 less. It
can be reduced even further if a material with a larger spin-
orbit interaction than InAs (such as InSb or an InAs/GaSb
superlattice) is used instead.

The other quantity entering the dynamic power dissipation
(power-delay product) is the gate capacitance, from

Cg = ε0εs

A

d
(4)

where ε0 is the dielectric permittivity of vacuum, εs the
relative dielectric constant of the semiconductor, A the area
of the gate, and d the thickness of the region the electric
field is applied to. In CMOS the thickness of the oxide layer
determines d, whereas for the spin transistor the quantum
well thickness determines d. For a spin transistor based on
InAs/AlSb with a gate of the same area as a CMOS gate the
gate capacitance is a factor of 5 smaller (as the 20 nm thick
quantum well is much thicker than the CMOS gate oxide).
The threshold voltage and the gate capacitance indicates that
the dynamic power dissipation would be a factor of 500
times smaller for the spin transistor than LSTP CMOS in
2018 (Hall and Flatté, 2006).

The other important form of power dissipation is the static
power dissipation. In CMOS, the dominant source of static
power dissipation is the source–drain leakage current. The

target value for 2018 LSTP CMOS is 100 pA/µm−1. In the
spin transistor, the dominant source is the spin relaxation
in the ‘off’ state. For the gate length target in 2018 LSTP
CMOS of 10 nm, a quantum well doping of 2 × 1012 cm−2

and a 1 µs spin relaxation time, the leakage current for the
spin transistor will be 16 pA/µm−1, a factor of 6 smaller than
for LSTP CMOS in 2018.

The switching speed is also an important metric and
depends on the source–drain current in the ‘on’ state, the
threshold voltage, and the gate capacitance. For a 10 ps ‘on’
spin relaxation time and the parameters above, the switching
time will be 3 ps, 10 times longer than the target for 2018
LSTP CMOS. Increasing the carrier doping level in the
quantum well reduces the switching time, although it also
increases the static leakage current. The switching time can
be reduced without increasing the leakage current if the spin
transistor quantum well uses a material with a larger spin-
orbit interaction, such as InSb or InAs/GaSb superlattices.

Direct comparisons are possible between spin transistor
design performance and CMOS performance. These com-
parisons suggest that the static power dissipation and the
dynamic power dissipation would be smaller for the spin
transistor (Hall and Flatté, 2006). This improved perfor-
mance originates from the lower threshold voltage and the
lower gate capacitance of the spin transistor design. The
switching speed of the design of Hall et al., 2003b is slower
than CMOS. It can be made faster if the InAs quantum
well is replaced with a material that has a larger spin-orbit
interaction.

Progress toward implementing a scalable side-gate struc-
ture that would permit spin injection from a nonmagnetic
material has been achieved; a prototype of the side-gated
structure has been demonstrated using fabrication techniques
that are scalable to deep submicron scales, although the
spin-switching properties have yet to be confirmed in that
prototype (Moon et al., 2004). Use of the (110) growth
direction as described here reduces the effect of spin-orbit
interaction on the spin lifetime in the ‘off’ state, for the
spin lifetime for (110)-oriented spins should be very long.
The rapid spin relaxation in the ‘on’ state is still retained
for the (110) growth direction. Narrow-gap semiconductor
materials are the subject of intense investigation for high-
speed low-power integrated circuit applications, although
the considerations that will determine whether they are
competitive with other material systems (especially silicon
CMOS) differ for spin-based devices relative to charge-based
devices.

The spin transistor described here works through electric-
field control of the decay of spin polarization, and hence
could be considered an incoherent semiconductor spintronic
device. Spin transistors also permit the manipulation of their
output currents through reorienting the source and drain
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magnetic layers (Hall et al., 2003b; Sugahara and Tanaka,
2004) in a fashion similar to spin valves (Ziese and Thornton,
2001). Other logical elements may be possible which depend
on electrical control of the coherent propagation properties of
spin in semiconductors, including the spatial period of spin
precession originating from the Rashba field described in the
preceding text. Such devices may be able to perform more
complicated operations than a transistor or may provide an
efficient method of implementing analog logic. The behavior
of such devices, and comparisons with competing charge-
based devices, is not as thoroughly explored as those of ‘spin
transistors’ and offers fertile ground for future theoretical
device physics research.

4 NONLINEAR TRANSPORT IN
MAGNETICALLY INHOMOGENEOUS
STRUCTURES

The low carrier density of carrier-mediated ferromagnetic
semiconductors, which permits electric-field control of mag-
netism, also suggests that unusual transport phenomena might
occur near interfaces and edges. If the carrier density is very
high, such as in magnetic metals, or the range of spin–spin
interaction is short, such as in magnetic insulators, then bulk
behavior is usually recovered within one atomic layer of the
interface. Frequently the final atomic layer of a magnet is a
‘magnetically dead’ region, with much lower or negligible
spin polarization, or very high levels of spin-flip scattering.
In a tunnel-junction geometry, this magnetically dead region
can dominate the transport, greatly reducing the apparent spin
polarization of the magnetic material.

4.1 Depletion and spin polarization near the edge
of a magnetic semiconductor

Ordinarily if there are no carriers in the carrier-mediated
ferromagnet then the spin polarization of the region van-
ishes and the material ceases to be magnetic. However, the
lower carrier density and the long-range spin–spin interac-
tion in magnetic semiconductors (see Figure 1) suggest that
the region of modified magnetic properties should extend a
distance of order the radius of the acceptor state away from
the interface. Over this region of ∼1−2 nm there is a strong
exchange interaction even though there are few or no carri-
ers. The situation is shown schematically in Figure 6 for an
electron-doped carrier-mediated ferromagnetic semiconduc-
tor, although the situation for a hole-doped material is very
similar. If the length scale of the variation in carrier density is
small compared to the range of the exchange interaction (this

L

L

P < 100% P = 100%

Evanescent
decay faster
for spin-up

P < 100%P = 100%

Depletion leads to larger spin polarization at the interfaces

Fermi energy Band edges

Figure 6. Schematic of the spin-split band edges of a carrier-
mediated ferromagnetic semiconductor as the carrier density is
varied from metallic to insulating and back to metallic. If the
variation occurs over a length scale small compared to the range
of the exchange interaction then the bands remain spin split even
without carriers. Thus depleted ferromagnetic semiconductors can
be natural half-metals.

∼1−2 nm), then the spin splitting of the band edge should
roughly remain constant through the region of carrier density
change.

As shown in Figure 6, upon moving from a region with
higher carrier density to one of lower carrier density it is
possible that the remaining carriers would become much
more highly spin polarized than they would be either in the
bulk of the magnetic semiconductor or in a bulk material
with the same carrier density as the depleted region near
the edge. Thus, a 100% spin polarized or nearly 100%
spin-polarized material might be achievable near the edge
of an ordinary magnetic semiconductor whose carriers are
polarized significantly less than 100%. If the carrier depletion
is continued until all carriers have been depleted (of both
spin polarizations), then the remaining spin splitting in the
electronic structure can still affect the transport by modifying
the evanescent decay of the wave functions differently for
spin-up and spin-down carriers. As shown in Figure 6,
the width of the effective depleted region of the electron
gas for carriers oriented spin-up, L↑, is much wider than
that for carriers oriented spin-down, L↓. The evanescent
decay of spin-up wave functions should also be much more
rapid than that of spin-down wave functions. As a result,
the resistance of this interface region to the tunneling of
spin-up carriers should be much larger than the tunneling
resistance for spin-down carriers. A treatment of the interface
behavior when the depletion length is shorter than the
exchange interaction predicts tunneling magnetoresistances
much larger than would be expected from the bulk spin
polarization of the magnetic semiconductor. This effect was
seen in GaMnAs nanoconstrictions (Rüster et al., 2003),
for which 2000% magnetoresistances were observed even
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though GaMnAs in bulk has a spin polarization closer to
85% (Braden et al., 2003).

4.2 Unipolar spin diodes and transistors

Although the very large magnetoresistance described in the
preceding text is considerably greater than that seen in
metallic systems, it remains a linear resistive property. Most
of the interesting properties of semiconductor charge-based
devices are nonlinear transport properties, which suggests
examining the nonlinear transport properties associated with
inhomogeneous magnetic materials for unusual behavior.
One interesting situation, that will now be analyzed, is that
of the transport properties of a domain wall between 100%
spin-polarized ferromagnetic semiconductors.

The current–voltage characteristics of this domain wall
can be simply understood through an analogy between
unipolar ferromagnetic semiconductors and nonmagnetic
bipolar materials. This analogy is best visualized in the
relationship between transport through the 180◦ domain wall
between 100% spin-polarized semiconductors, which will
be referred to as a ‘spin diode’, and transport through the
traditional p−n diode. Shown in Figure 7(a) are the band
edges of the conduction and valence band for a traditional
p−n diode in equilibrium. The quasi Fermi levels are
shown as dashed lines. To assist in exploring the analogy
with the spin diode, Figure 7(b) shows the energies of the
elementary carriers in those bands: conduction electrons and
valence holes. This unfamiliar diagram is obtained merely
by noting that the energy of a hole in the valence band is
the negative of the energy of the valence electron (relative to
the chemical potential). Figure 7(b) more clearly illuminates
the similarities with the band edges for the spin diode, which
are shown in Figure 7(c). Just as for the p−n diode, in the
unipolar spin diode the majority carriers on one side are the
minority carriers on the other side.

A major difference, however, is that the two types of
carriers in the p−n diode have opposite charge, whereas in
the spin diode they have the same charge. One implication of
this is that in the p−n diode the interface between the layers
is a charge depletion layer, whereas in the spin diode the
interface is a spin depletion layer. Another major difference
resulting from the charges of the carriers is the way the carrier
energies shift under bias.

In the p−n diode under forward bias, the barriers for
both valence hole and conduction electron transport across
the junction are reduced. As shown in Figure 7(d) and 7(e)
this leads to an increase in the conduction electron current
to the left-hand side and the valence hole current to the
right-hand side. Because the carriers have opposite charge,
both increases result in an increased charge current to the

right-hand side. For the spin diode (Figure 7(f)), only the
barrier for spin-up electrons moving to the left-hand side
is reduced – the barrier for spin-down electrons moving to
the right-hand side is increased. The charge current is thus
directed to the right-hand side and the spin current to the
left-hand side. Under reverse bias, the barriers for carrier
transport are both increased in the p−n diode Figure 7(g) and
7(h), yielding rectification of the charge current. For the spin
diode Figure 7(i), again one barrier is reduced and the other
increased. Thus the charge current is not rectified but the
spin current is. With analogous assumptions to the Shockley
assumptions for an ideal diode, the charge current density
Jq and the spin current density Js depend on the voltage V

according to:

Jq = 2qJosinh(qV/kBT ) (5)

Js = 2�Josinh2(qV/2kBT ) (6)

where Jo = Dnm/Lm, q is the electron charge, � is the
Planck’s constant, D is the diffusion constant, nm is the
minority carrier density, and Lm is the minority spin diffusion
length. The resulting spin polarization of the current is

P = (2qJs/�Jq) = tanh(qV/2kBT ) (7)

Thus the spin polarization approaches unity as V gets large,
and approaches 0 for small V . The relative directions of the
charge and spin currents are shown on Figure 7 for the cases
of forward and reverse bias.

For ease of use as components in integrated circuits, a
magnetoelectronic device should allow for magnetic manip-
ulation of the charge current gain – to achieve this, back-to-
back spin diodes are required (shown in Figure 8). Analyzing
this structure in a similar way to a bipolar nonmagnetic tran-
sistor, the collector current density is

IC = − qJo

sinh(W/L)

× [(e−qVEB/kBT − 1) − (e−qVCB/kBT − 1) cosh(W/L)]

− qJo[eqVCB/kBT − 1] (8)

and the emitter current is

IE = − qJo

sinh(W/L)

× [(e−qVEB/kBT − 1) cosh(W/L) − (e−qVCB/kBT − 1)]

+ qJo[eqVEB/kBT − 1] (9)

The base width is W , the voltage between emitter and
base is VBE < 0, and the voltage between collector and
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of Physics.)
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Figure 8. Carrier energy diagram for the unipolar spin transistor in
the normal active configuration. (Reprinted with permission from
M.E. Flatte & G. Vignale, copyright 2001, American Institute of
Physics.)

base is VCB > 0. The base current is IB = IE − IC. When
W/L is small, IB � IC, which is the desired situation for
transistor operation (current gain IC/IB � 1). Leakage from
the base to the collector (a process in this device similar to
leakage from the base to the emitter in an ordinary bipolar
transistor) can be suppressed (Flatté and Vignale, 2005) by

making the collector spin splitting larger than that of the base
or emitter (a similar approach to making a heterostructure
bipolar transistor).

Thus it should be possible to program a logical circuit
which behaves like a bipolar logical circuit using a uniformly
doped unipolar magnetic material. The p-like regions corre-
spond to regions with the magnetization pointing one way
and the n-like regions correspond to region with the magneti-
zation pointing in the opposite direction. Such logical circuits
can include memory circuits, thus indicating that nonvolatile
memory can be constructed as well.

Spin-flip of carriers moving through the domain wall
acts like a recombination current in a bipolar device, and
so should be reduced if at all possible. This can be done
by making the domain wall thinner. Calculations of bal-
listic spin-preserving transport through domain walls, both
with (Vignale and Flatté, 2002) and without (Deutsch, Vig-
nale and Flatté, 2004) a bias applied to the spin diode, indi-
cate that the transport can be predominately spin-preserving
under reasonable conditions for transistor operation.
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5 SUMMARY

The semiconductor spintronic devices described here function
because of either the unique properties of carrier-mediated
ferromagnetic semiconductors or the possibility of control-
ling the internal effective magnetic fields in nonmagnetic
semiconductors. Many of the same characteristics that make
semiconductors tremendously useful for ordinary charge
transport, such as the ability to modify the electronic structure
and carrier concentration with relatively weak electric fields,
the intrinsic nonlinearities of transport in semiconductor sys-
tems, and the large length scales over which semiconductors
return to equilibrium (compared with both metals and insu-
lators), are essential to the subtle spin-dependent phenomena
described here.

The single improvement in material properties that would
be most helpful in the commercialization of these devices is
the demonstration of a true carrier-mediated ferromagnetic
semiconductor at a temperature exceeding room temperature.
Ideally the carrier density in such a semiconductor would
be relatively low, permitting modification of the Curie tem-
perature with a small electric field. For the magneto-optical
elements described here, such as Faraday isolators, such
room temperature carrier-mediated ferromagnetic semicon-
ductors would also need to generate large Faraday rotation
angles with relatively small optical losses. For nonmagnetic
spin transistors, the demonstration of extremely efficient spin
injection (the injection of distributions that are nearly 100%
spin polarized) is the next significant technological step. For
unipolar and bipolar spin diodes and transistors, the key road-
block is to reduce the carrier density of the ferromagnetic
semiconductors to the point where a voltage can be sustained
across the depletion layer.
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Hall, K., Gündoğdu, K., Hicks, J.L., et al. (2005). Room-tem-
perature electric-field controlled spin dynamics in (110) InAs
quantum wells. Applied Physics Letters, 86, 202114.



Semiconductor spintronic devices 13

Hanbicki, A.T., Jonker, B.T., Itskos, G., et al. (2002). Efficient elec-
trical spin injection from a magnetic metal/tunnel barrier contact
into a semiconductor. Applied Physics Letters, 80, 1240–1242.

Hao, X., Moodera, J.S. and Meservey, R. (1990). Spin-filter effect of
ferromagnetic europium sulfide tunnel barriers. Physical Review
B, 42, 8235–8243.

Hirsch, J. E. (1999). Spin Hall effect. Physical Review Letters, 83,
1834–1837.

Jansen, R. (2003). The spin-valve transistor: a review and outlook.
Journal of Physics D, 36, R289–R308.

Karimov, O.Z., John, G.H., Harley, R.T., et al. (2003). High
temperature gate control of quantum well spin memory. Physical
Review Letters, 91, 246601.

Kato, Y., Myers, R.C., Gossard, A.C. and Awschalom, D.D.
(2004a). Current-induced spin polarization in strained semicon-
ductors. Physical Review Letters, 93, 176601.

Kato, Y.K., Myers, R.C., Gossard, A.C. and Awschalom, D.D.
(2004b). Coherent spin manipulation without magnetic fields in
strained semiconductors. Nature, 427, 50–53.

Kato, Y.K., Myers, R.C., Gossard, A.C. and Awschalom, D.D.
(2004c). Observation of the spin Hall effect in semiconductors.
Science, 306, 1910–1913.

Kato, Y., Myers, R.C., Gossard, A.C. and Awschalom, D.D. (2005).
Electron spin interferometry using a semiconductor ring structure.
Applied Physics Letters, 86, 162107.

Kikkawa, J.M. and Awschalom, D.D. (1998). Resonant spin ampli-
fication in n-type GaAs. Physical Review Letters, 80, 4313–4316.

Kikkawa, J.M. and Awschalom, D.D. (1999). Lateral drag of spin
coherence in gallium arsenide. Nature, 397, 139–141.

Kitchen, D., Richardella, A., Tang, J-M., et al. (2006). Atom-by-
atom substitution of Mn in GaAs and visualization of their hole-
mediated interactions. Nature, 442, 436–439.

Koga, T., Nitta, J., Takayanagi, H. and Datta, S. (2002). Spin-filter
device based on the Rashba effect using a nonmagnetic resonant
tunneling diode. Physical Review Letters, 88, 126601.

Lau, W.H. and Flatté, M.E. (2002). Tunability of electron spin
coherence in III-V quantum wells. Journal of Applied Physics,
91, 8682–8684.
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1 INTRODUCTION

In the simplest version of a spin Hall effect, an electrical
current passes through a sample with spin-orbit interaction,
and induces a spin polarization near the lateral edges,
with opposite polarization at opposing edges (D’yakonov
and Perel’, 1971). This effect does not require an external
magnetic field or magnetic order in the equilibrium state
before the current is applied. If conductors are connected
to the lateral edges, spin currents can be injected into
them. Electrical current in a sample can also produce a
bulk spin polarization, far from the edges, which is not
generally classified per se as a spin Hall effect, though it
is intimately related and is an important ingredient of spin
Hall calculations.

Spin Hall effects have received a great deal of theoretical
attention recently, in part because the subject includes

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

ingredients of spintronics, electrical generation, transport,
and control of nonequilibrium spin populations, and also
because analysis has shown that the problem has remarkable
subtlety. Theoretical efforts were also fueled by recent
experimental observations of these effects.

In the following we consider semiconductors, where the
various mechanisms of spin-orbit coupling are well known
and can be roughly classified into two categories. First, the
extrinsic mechanism is only present in the vicinity of impu-
rities and leads to spin-dependent scattering, including Mott
skew scattering. Second, the intrinsic spin-orbit coupling
remains finite away from impurities and can be understood
as a (often spatially homogeneous) spin-orbit field inherent
in the band structure. Furthermore, the spin-orbit couplings
are strongly symmetry dependent and are therefore different
for electron and for hole carriers, and are different for two-
and three-dimensional systems. Thus, the microscopic pro-
cesses involved in generating a spin Hall effect can depend
critically on such system properties. Initially, there was hope
that spin-transport theory can be formulated in terms of uni-
versal spin currents that would simplify our understanding;
however, it turned out that there is no such universality. As
there is no unique description of the spin Hall effect, we
should rather refer to it as a set of spin Hall effects.

There is already a vast amount of theoretical literature
available on spin Hall effects and on the related spin
currents. It is beyond the scope of this chapter to provide
a historical overview or to give an explanation of all the
theoretical techniques used. We rather provide an overview
of the various mechanisms, explain them using intuitive and
qualitative physical pictures, and give a summary of some
key theoretical descriptions and results.

In contrast, the number of experiments on spin Hall effects
is small and an overview is straightforward. In the exper-
iment by Kato, Myers, Gossard and Awschalom (2004b),
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electrical currents in three-dimensional n-GaAs layers (2 µm
thick) induced a spin Hall effect, which was optically
detected via Kerr microscopy. Measurements in strained sam-
ples showed little dependence of the effect on the crystal
orientation and it was concluded that the extrinsic mecha-
nism proposed by D’yakonov and Perel’ (1971) was causing
the spin Hall effect (Kato, Myers, Gossard and Awschalom,
2004b). Indeed, the experimental data can be described
with reasonable accuracy by the extrinsic mechanism in a
model based on scattering by screened Coulomb impuri-
ties (Engel, Halperin and Rashba, 2005), as well as one
based on short-range scatterers (Tse and Das Sarma, 2006a)
(see Section 4.3). Similar experiments in ZnSe (Stern et al.,
2006) were also in agreement with theory, and a spin Hall
effect was observed at room temperature. In another experi-
ment, Wunderlich, Kaestner, Sinova and Jungwirth (2005)
observed a spin Hall effect in two-dimensional layers of
p-GaAs by detecting the polarization of recombination radi-
ation at the edges of the sample. They ascribed this effect
to the intrinsic mechanism, which is consistent with the
magnitude of the observation (Schliemann and Loss, 2005;
Nomura et al., 2005). Furthermore, in measurements on a
two-dimensional electron system in an AlGaAs quantum
well, a spin Hall effect was also observed and ascribed to
the extrinsic mechanism (Sih et al., 2005). Finally, Valen-
zuela and Tinkham (2006) observed a reciprocal spin Hall
effect in Al, where a spin current induced a transverse volt-
age via the extrinsic mechanism (Hirsch, 1999).

In addition to theoretical works in the traditional sense,
there is also a large amount of numerical simulations on
concrete realizations of disordered systems, for example, on
a finite lattice. It has generally been difficult to make direct
comparisons between numerical simulations and theoretical
predictions, in part because theoretical works usually assume
that the spin-orbit splittings are much less than the Fermi
energy, whereas simulations tend to employ larger spin-orbit
splittings in order to obtain numerically significant results.
See, for example, (Ando and Tamura, 1992; Sheng, Sheng
and Ting, 2005; Nikolić, Zârbo and Souma, 2005; Li, Hu and
Shen, 2005).

In Section 2 below, we review the mechanisms for spin-
orbit coupling in the semiconductors of interest, and we
discuss forms of the effective Hamiltonians that describe
the carriers in various situations. In Section 3, we see
how the various effective Hamiltonians can influence spin
transport and accumulation. We discuss spin precession,
produced by the intrinsic spin-orbit coupling, as well as skew
scattering and the so-called side-jump effect, resulting from
the extrinsic spin-orbit coupling. We introduce Boltzmann-
type kinetic equations which can describe spin transport
and accumulation in various situations, and we discuss the
simpler spin and charge diffusion equations which can be

typically used in situations where the spin-relaxation rate is
much slower than momentum relaxation.

In Section 4, we discuss explicitly the spin polarization
and spin transport arising from an electrical current in a
semiconductor with spin-orbit coupling. We introduce the
notion of a spin current and the spin Hall conductivity, and
we discuss results that have been obtained for these quantities
in various situations. We also discuss a relation between
the spin Hall conductivity and the so-called anomalous
Hall effect that can result from spin-orbit coupling in a
ferromagnet or in semiconductor with a spin polarization
induced by an external magnetic field.

Spin currents are not directly observed in experiments,
however. If spin-relaxation rates are slow, one may expect
that spin currents with a nonzero divergence can lead
to observable local spin polarizations, in which relaxation
of excess spin balances the accumulation of spin that is
transported into a region by the spin current. Furthermore,
boundary effects may be important and nontrivial; in the
presence of an electric current, spin polarization may be
generated directly at a sample boundary. These issues are
discussed in Section 4.5. We also briefly discuss mesoscopic
systems, where all parts of the sample are close to a
boundary.

A different type of spin Hall effect, associated with edge
states, has been predicted to occur in certain systems that
are insulating in the bulk, where the topology of the band
structure has been altered due to spin-orbit coupling. In
Section 5, we discuss this concept, along with the possibility
that such effects may occur and be observable in a number
of materials.

2 SPIN-ORBIT COUPLING
IN SEMICONDUCTORS

For a nonrelativistic electron in vacuum, the Dirac equation
can be reduced to the Pauli equation, describing a two-
component spinor and containing the Zeeman term. The Pauli
equation also contains relativistic corrections – including the
spin-orbit coupling

HSO, vac = λvac σ · (k × ∇Ṽ ) (1)

Here, we used λvac = −�
2/4m2

0c
2 ≈ −3.7 × 10−6 Å2,

vacuum electron mass m0, velocity of light c, and k = p/�.
In a semiconductor, we split the total potential Ṽ = Vcr + V

into the periodic crystal potential Vcr and an aperiodic part V ,
which contains the potential due to impurities, confinement,
boundaries, and external electrical field. One then tries to
eliminate the crystal potential as much as possible and to
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describe the charge carriers in terms of the band structure.
The simplest systems of this sort can be exemplified by elec-
trons in cubic direct-gap semiconductors. Then, the minimum
of the energy spectrum is usually near the center of the Bril-
louin zone, and the twofold Kramers degeneracy is the only
degeneracy of the spectrum at k = 0. It follows from sym-
metry arguments that for slow electrons in such crystals,
and for slow carriers (electrons and holes) in high sym-
metry two-dimensional systems, the effective single-particle
Hamiltonian is

Heff = εk + V + Hint + Hext (2)

Hint = −1

2
b(k) · σ (3)

Hext = λ σ · (k × ∇V ) (4)

where k is the crystal wave vector relative to the zone
center, and we assumed that V is only slowly varying on
the scale of the lattice constant. Here, σ is the vector of
Pauli matrices for the pseudo spin- 1

2 of the Kramer’s doublet
at k = 0; it is customarily called a spin- 1

2 system. b(k) is the
intrinsic spin-orbit field, with b(k) = −b(−k) due to time
reversal symmetry. Thus, for a three-dimensional system, b
can only be present if the inversion symmetry of the host
crystal is broken. In the case of a two-dimensional system,
it is conventional to talk about its two-dimensional band
structure, and to include the confinement potential in εk and
b(k) (instead of including it explicitly in V ); in this case b
can also result from an asymmetry in the confinement.

In contrast, Hext does not require broken inversion sym-
metry of the pure crystal or of the structure. It is important to
note that λ in equation (4) can be many orders of magnitude
larger than the vacuum value λvac; this is due to the large
spin-orbit interaction when the Bloch electrons move close
to the nuclei, with velocities that are close to relativistic.
Both Hint and Hext may be important for the spin Hall effect,
as we will discuss in this chapter. We present specific forms
of these effective Hamiltonians in Sections 2.3 and 2.4.

2.1 Band structure of materials with spin-orbit
interaction

We now consider the electron wave functions near the
forbidden gap of a semiconductor. These wave functions are
often described by the Kohn–Luttinger k · p method, where
one expands the Hamiltonian in terms of band-edge Bloch
functions. Here, we present a brief overview of this method;
more detailed explanations can be found, for example, in
Blount’s (1962) review article or in the books by Bir and
Pikus (1974) and by Winkler (2003).

For a given k, the solutions of the Schrödinger equation
are Bloch functions eik·ruν′,k(r). Here, ν ′ is the band index
and includes the spin degree of freedom. The lattice-periodic
part uν′,k(r) of these Bloch functions can be expanded in
the functions uν, k=0(r) = 〈r|uν,0〉, which provide a complete
basis when all bands ν are taken. For semiconductors with
a direct gap at the center of the Brillouin zone, which we
discuss here, one may consider states in close vicinity of
k = 0, truncate this expansion, and only take the closest
bands into account. Therefore, it is sufficient to know the
matrix elements of the full Hamiltonian H in the truncated
basis |φν〉 = eik·r|uν,0〉, that is, one considers Hνν′(k) =〈
φν |H |φν′

〉
. More concretely, one evaluates

Hνν′(k) = Eνδνν′ + �
2k2

2m0
δνν ′ + �

m0
k · 〈uν,0|π |uν′,0〉 (5)

where Eν is the energy offset of the band at k =
0, that is, [p2/2m0 + Vcr + (λvac/�) σ · (p × ∇Vcr)]|uν,0〉 =
Eν|uν,0〉. Further, π = p + (λvac/�) (∇Vcr × σ ), and one
usually approximates π ≈ p; then the last term of
equation (5) is proportional to the matrix element of k · p,
giving this method its name. Finally, this finite-dimensional
Hamiltonian H(k) now describes the band structure in terms
of a few parameters – band offsets and momentum matrix
elements of k = 0 Bloch functions – and is well suited for
analyzing charge carriers.

Alternatively, one can use a second method and construct a
Hamiltonian by allowing all contributions (up to some order
in k) that are invariant under the symmetry operations of
the system – the coupling constants are material-dependent
parameters. For example, when considering the top of the
valence band in Figure 1 and in the absence of inversion
asymmetry, magnetic field, and strain, the most general
form up to quadratic terms in k (i.e., in the effective mass
approximation), is the 4 × 4 Luttinger Hamiltonian,

HL = �
2

m0

[(
γ 1 + 5

2
γ 2

)
k2

2
− γ 3(k · J)2

+ (γ 3 − γ 2)
∑

i

k2
i J

2
i

]
(6)

which is consistent with the cubic symmetry. Here, J =
(Jx, Jy, Jz) and Ji are the angular momentum matrices
for spin 3

2 , and γ i are the material-dependent Luttinger
parameters. HL describes p-doped Si and Ge; for GaAs, due
to broken inversion symmetry, terms linear in k arise as well.

By contrast, using the first method (k · p method) instead,
the Hamiltonian Hνν′(k) (equation (5)) is evaluated directly
for the eight bands ν (including spin) shown in Figure 1, and
one arrives at the simplest version of the 8 × 8 Kane model.
It only includes three parameters, namely, the energy gap E0,
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Conduction band

Heavy holes (HH)

Light holes (LH)

Spit-off holesk

E0

E

D0

Figure 1. Schematic band structure of a cubic direct gap semi-
conductor. When spin-orbit interaction is disregarded, one finds an
s-like conduction band and a p-like threefold degenerate valence
band. The spin-orbit interaction due to crystal potential Vcr (enter-
ing as Ṽ in equation (1)) partially lifts this degeneracy and leads to
a substantial splitting between the valence bands with total angular
momentum J = 3/2 (heavy and light holes) and those with J = 1/2
(split-off holes).

the energy of the split-off holes �0, and the matrix element
P of the momentum (multiplied by �/m0) between s- and
p-type states. P is nearly universal for III–V compounds,
while the other parameters depend on the material. This
eight-dimensional description is accurate for narrow band
materials; for wider gaps it still provides understanding at a
qualitative level.

Furthermore, one can then derive an effective, lower-
dimensional Hamiltonian by block diagonalizing Hνν′ ; this
is an efficient way to calculate the band structure in the
vicinity of k = 0. One can do this either exactly or by
using time-independent degenerate perturbation theory (see
Section 2.2). Considering a particular block, this allows
estimating the magnitude of the symmetry-allowed terms.
Terms that were not present before block diagonalization are
called contributions from remote bands. For example, using
the 8 × 8 Kane model, one can calculate the parameters γ i
that enter the 4 × 4 Luttinger Hamiltonian (equation (6)) for
the top of the valence band; because the model is isotropic,
one gets γ 2 = γ 3. To estimate corrections due to the cubic
symmetry, one needs to take more bands into account.

In addition to the crystal field, we also wish to consider
electric fields that are applied externally or that result from
charged impurities. Assuming that the corresponding poten-
tial V (r) varies slowly on the scale of a lattice constant, we
can apply the envelope function approximation (EFA), that is,
we replace the plain waves eik·r by slowly varying envelope
functions ψν(r). Evaluating matrix elements of V in the basis
〈r|ψ, ν〉 = ψν(r)uν, k=0(r), the main contribution is diagonal

with respect to the band index ν. However, because k and
V (r) do not commute, off-diagonal elements (in ν) can arise
in the Hamiltonian when expanding in k, see, for example,
equation (4). Magnetic fields can be included in a similar
way, using the Perierls substitution �k = −i�∇ − (e/c)A.
Here, we use e < 0 for electrons and e > 0 for holes. Then,
the components of k no longer commute, k × k = i(e/�c)B;
this leads to Zeeman coupling, which is described by an
effective g factor.

2.2 Effective Hamiltonian

The k · p method leads to high-dimensional Hamiltonians
(equation (5)), for example, an 8 × 8 matrix for the Kane
model, thus further simplifications are desirable. For this, one
can use time-independent degenerate perturbation theory and
describe a subset of states (say, the lowest conduction-band
states) with an effective Hamiltonian. Löwdin partitioning is
a straightforward and convenient method to implement such
a perturbative expansion (Winkler, 2003); it is also known
as Foldy-Wouthuysen transformation in the context of the
Dirac equation and as Schrieffer-Wolf transformation in the
context of the Anderson model. The idea is to find a unitary
transformation e−S (i.e., S is anti-Hermitian) such that the
transformed Hamiltonian e−SHeS is block diagonal, that is,
contains no off-diagonal elements between the states we are
interested in and any other states. This procedure assumes
that the states of interest (e.g., the conduction band) are
separated from the other states (all other bands) by an energy
much larger than the Fermi energy. Then, because these
off-diagonal elements are small, one can eliminate the off-
diagonal blocks of e−SHeS order by order (or even exactly).
In our example, the transformed Hamiltonian consists of
one 2 × 2 and one 6 × 6 block. The smaller block describes
the conduction-band electrons – we can understand the two
dimensions as (pseudo-) spin 1

2 . At the level of wave
functions, the periodic part of the electron wave function
at a given k �= 0 is mainly described by the conduction band
Bloch function at k = 0, but also contains a small admixture
from the valence band Bloch functions.

2.3 Intrinsic spin-orbit coupling

One generally distinguishes between intrinsic and extrinsic
mechanisms of spin-orbit coupling; however, this classifica-
tion is not unique across the literature. In this section, we
classify it according to the individual terms of the effective
Hamiltonians. Namely, we refer to the spin-orbit contribu-
tions to the Hamiltonian that depend on impurity potentials as
extrinsic. The other spin-orbit contributions arise even in the
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absence of impurities and we call them intrinsic – we also
call effects resulting from these contributions intrinsic, even
if we have to allow for a small concentration of impurities
to make the theory of dc transport properties consistent [1].

For a (pseudo-) spin- 1
2 system, the spin-orbit part of the

intrinsic one-particle Hamiltonian has the general form Hint

(equation (3)). In the following, we discuss the origin and the
functional form of such spin-orbit fields. We focus on such spin-
1
2 descriptions, because they are relevant for low-dimensional
systems and are the basis of most theoretical works.

We first consider a n-doped bulk (3D) semiconductor
and the effective Hamiltonian of conduction-band electrons.
III–V and II–VI semiconductors lack inversion symmetry
and are available in two modifications: in cubic zinc blende
or in hexagonal wurtzite structure. In zinc blende modi-
fication, the bulk inversion asymmetry (BIA) leads to the
Dresselhaus term

HD, 3d = B kx(k
2
y − k2

z )σ x + c.p. (7)

where ki are along the principal crystal axes. Here, c.p. stands
for cyclic permutation of all indices, and the symmetrized
product of the components ki must be used if a magnetic
field is applied. The Dresselhaus term originates from bands
further away than the basic eight bands, and one finds the
coupling constant in terms of the band parameters; when
using the extended 14 × 14 Kane model its numerical value
is B ≈ 27 eVÅ3, for both GaAs and InAs (Winkler, 2003).
However, tight-binding calculations and interpretation of
weak-localization experiments indicate lower values, at least
for GaAs (Knap et al., 1996; Krich and Halperin, 2007).

When the electrons are confined to two dimensions,
the expectation value of the Dresselhaus term along the
confinement direction (that we always assume to be along
[001]) should be taken,

〈
HD, 3d

〉
. While 〈kz〉 = 0, we see that

the terms in
〈
k2
z

〉 ≈ (π/d)2 are large for small confinement
width d, thus the main BIA contribution becomes

Hβ = β(kxσ x − kyσ y) (8)

with β ≈ −B(π/d)2. In addition to the k-linear term in
equation (8), there is also a k3 term,

HD, 2d = B kxky(kyσ x − kxσ y) (9)

which is small compared to Hβ in the strong confinement
(low carrier density) limit π/d � kF, where kF is the Fermi
wave vector. Additionally, a spin-orbit coupling term arises
if the confinement potential V (z) along the z direction is
not symmetric, that is, if there is a structure inversion asym-
metry (SIA). Equation (4) provides an explicit connection
between such a potential and spin-orbit coupling. Taking the

expectation value 〈Hext〉 along the z direction and noting that
the only contribution of the confinement field is ∝〈∇zV 〉, one
finds the Rashba Hamiltonian,

Hα = α(kyσ x − kxσ y) (10)

corresponding to b(k) = 2α ẑ × k. More generally, for
spinors with Jz = ±1/2, Hα is the only k-linear invariant
of the group C∞v that takes into account the confinement
potential V (z) but disregards the discrete symmetry of the
crystal. The magnitude of the coupling constant α depends
on the confining potential and it can be modified by applying
an additional field via external gates. It also defines the spin-
precession wave vector kα = αm/�

2. Finally, such a term Hα

is also present for three-dimensional electrons in systems of
hexagonal wurtzite structure (or in cubic systems with strain,
see Section 2.5).

Next, we consider a p-doped three-dimensional semicon-
ductor, that is, the J = 3/2 valence band, described by the
four-dimensional Luttinger Hamiltonian. Remote bands lead
to a BIA contribution to the Hamiltonian, which is given
by equation (7) after replacing σ i by the angular momentum
matrices Ji for spin 3

2 and using a different coupling constant.
If the system is reduced to two dimensions, size quantization
lifts the fourfold degeneracy at k = 0 and creates heavy-hole
(HH) bands with Jz = ±3/2 and light-hole (LH) bands with
Jz = ±1/2 (for confinement along the [001] axis). Usually
the HH bands are higher in energy, thus for small doping it is
sufficient to consider only them. For spinors with Jz = ±3/2,
the only invariant of the group C∞v (again, we do not dis-
cuss invariants of discrete symmetries here) respecting time
reversal symmetry is

Hα,h = iαh
(
k3
−σ+ − k3

+σ−
)

(11)

where a± ≡ ax ± iay for any a. As distinct from Hα

(equation (10)), the Rashba Hamiltonian for HHs is cubic
in k, as it was discussed in (Winkler, 2000; Schliemann and
Loss, 2005).

2.4 Extrinsic spin-orbit coupling

Electric fields due to impurities lead to extrinsic contribu-
tions to the spin-orbit coupling. Externally applied electrical
fields lead to analogous contributions. To derive the dom-
inant extrinsic term, it is sufficient to restrict ourselves to
the simplest 8 × 8 Kane Hamiltonian; higher bands will
give rise to small corrections. Using third-order perturba-
tion theory and for conduction-band electrons, we find Hext

as given in equation (4), with (Nozières and Lewiner, 1973;
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Winkler, 2003)

λ ≈ P 2

3

[
1

E2
0

− 1

(E0 + �0)
2

]
(12)

and where V is the potential due to impurities and an
externally applied field. It is noteworthy that equation
(4) has the same analytical form as the vacuum spin-
orbit coupling (equation (1)); this is because both the
Dirac equation and the simplest Kane Hamiltonian have
spherical symmetry and because both the Pauli equation
and equation (4) are obtained in a low-energy expansion.
However, for �0 > 0 the coupling constant λ has the
opposite sign as in vacuum.

One finds λ ≈ 5.3 Å2 for GaAs and λ ≈ 120 Å2 for InAs,
that is, spin-orbit coupling in n-GaAs is by 6 orders of
magnitude stronger than in vacuum, and even larger for
InAs due to its smaller gap. This enhancement of spin-
orbit coupling is critical for developing large extrinsic spin
currents. Furthermore, for a two-dimensional system, when
considering V as averaged along the ẑ direction, both ∇V

and k are in plane, thus we have Hext, e = λ σz(k × ∇V )z.
For a 3D hole system, we consider the J = 3/2 valence

band. Then, the dominant extrinsic spin-orbit term in
third-order perturbation theory describing the valence band
states is

Hext, v = λv J · (k × ∇V ) (13)

with λv = −P 2/3E2
0 , that is, for GaAs λv ≈ −15 Å

2
(Win-

kler, 2003) and has to be added to the Luttinger Hamiltonian
HL (equation (6)). When considering a two-dimensional hole
system with HH–LH splitting, we can restrict equation (13)
to the HH states, where Jz = ±3/2. Expressing this two-
dimensional subspace in terms of a pseudo spin 1

2 leads to

Hext, v = − P 2

2E2
0

(k × ∇V )zσ z (14)

Thus, the extrinsic spin-orbit interaction for two-dimen-
sional HH states has the same form as for two-dimensional
electrons.

Finally, we point out that extrinsic spin-orbit coupling
arises because the long-range Coulomb potential of the impu-
rities does not commute with the intrinsic Hamiltonian of the
hosting crystal. The extrinsic Hamiltonian Hext (equations (4)
and (13)) is obtained in the framework of the EFA, which dis-
regards short-range contributions to the spin-orbit coupling
arising from the chemical properties of dopants. This is why
the coupling λ depends only on the parameters of the perfect
crystal lattice.

2.5 Strain

Nonhydrostatic strain reduces the symmetry of the system
and in this way leads to additional spin-orbit terms in the
Hamiltonian. In third-order perturbation theory of the Kane
Hamiltonian, the effective conduction-band Hamiltonian due
to strain is dominated by

Hε, e = −2C2�0P

3E0(E0 + �0)
σ · (k × εs) ≡ 1

2
C3 σ · (k × εs)

(15)
where εs = (εyz, εxz, εxy) describes the shear strain. Here,
C2 is the interband deformation-potential constant that arises
in noncentrosymmetric semiconductors (Winkler, 2003; Tre-
bin, Rössler and Ranvaud, 1979). Note that Pikus and Titkov
(1984) as well as Ivchenko and Pikus (1997) use the opposite
sign in the definition of this constant, C

PT/IP
2 = −C2. Further,

if a shear is applied such that only εxy �= 0, equation (15) has
the same form as the Rashba Hamiltonian (equation (10)).

For three-dimensional J = 3/2 valence band states, the
main strain contribution is (Pikus and Titkov, 1984)

Hε, v = 2C2P

3E0
J · (k × εs) (16)

Note that when the system is confined to two dimensions,
equation (16) implies a k-linear spin-orbit contribution for
HH states due to strain, (C2P/E0) (k × εs)z σ z. This linear
term arises due to the low symmetry of the strained material,
in contrast to the Rashba term (cf. equation (11)), which is
dominated by terms cubic in k and where the k-linear terms
are numerically small (Winkler, 2003).

2.6 Anomalous velocity and coordinate

As a consequence of the spin-orbit interaction, velocity and
coordinate operators are modified and become spin depen-
dent – this will be important when considering currents.
When an effective Hamiltonian is derived in perturbation
theory, as explained in Section 2.2, a unitary transformation
e−S is applied. Thus, the coordinate operator r = i(∂/∂k) is
also transformed, r �→ r̃ = e−SreS = r + δr and we call δr
the anomalous coordinate. In particular, because S couples to
spin, δr is spin dependent. This correction δr is known as the
Yafet term (Yafet, 1963); also, it can be expressed in terms of
a Berry connection,

〈
uν′, k |i∇k|uν, k

〉
(Kohmoto, 1985; Sun-

daram and Niu, 1999; Nagaosa, 2006). In perturbation theory,
one finds

δrSO, e = λ(σ × k) (17)

δrSO, v = λv(J × k) (18)
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for conduction-band electrons and for J = 3/2 HH states,
respectively. Note that coordinate operators no longer com-
mute, r × r = iλσ and r × r = iλvJ, respectively. Finally,
δrSO leads to an extra term in the equations of motion that
can be understood as anomalous velocity (Blount’s, 1962).

Formally, we can derive the anomalous velocity similar
to the coordinate, namely, v �→ e−SveS = v0 + δv, where δv
is the anomalous velocity and, for a parabolic band, v0 =
�k/m∗. Alternatively, one can obtain the velocity operator
from the Heisenberg equation, v = (i/�)

[
H, r̃

]
. For H =

H0 + HSO, where HSO contains the (small) spin-orbit cou-
pling, we get v = v0 + (i/�) [HSO, r] + (i/�) [H0, δrSO].
Thus, HSO leads to an anomalous velocity because it does not
commute with the unperturbed coordinate r, and, addition-
ally, the contribution from the anomalous coordinate δrSO

should also be taken into account, as it can be significant.
When the impurity potential V is included, the above

argument remains the same, but now HSO contains the
extrinsic contribution as well. Note that for extrinsic spin-
orbit HSO = Hext, e (equation (4)) the commutator

[
Hext, e, r

]
and the anomalous coordinate δrSO give equal contributions
to δv (Nozières and Lewiner, 1973).

3 MECHANISMS OF SPIN TRANSPORT

We now address how the microscopic mechanism of spin-
orbit interaction, given by effective Hamiltonians, influences
spin transport and accumulation. In the following, we assume
a noninteracting system in the absence of a magnetic field.
Because we ignore electron–electron interaction, we do not
consider the spin-drag effect here (Hankiewicz and Vignale,
2006), which can lead to a suppression of spin transport
at high temperatures, and suppression of spin relaxation
(Glazov and Ivchenko, 2002). We also restrict ourselves to
Boltzmann transport and do not discuss the hopping regime
(Entin-Wohlman et al., 2005).

3.1 Intrinsic: spin precession

In a system with weak intrinsic spin-orbit coupling Hint

(equation (3)), consider a carrier with spin aligned along
the spin-orbit field b(k). When an electrical field E = Ex̂ is
applied, the particle is accelerated: k̇ = eE/� in lowest order
in spin-orbit interaction; and its spin-orbit field changes: ḃ =
(∂b/∂kx) eE/�. For a small acceleration, the spin follows
adiabatically the direction of b(k). Additionally, there will
be a nonadiabatic correction that can be derived as follows.
Suppose that the direction of b rotates in the xy plane (as it
is the case for Rashba interaction Hα). Because the rotation
frequency ω is the component of ḃ/b perpendicular to b, it

is ω = (b × ḃ)z/b
2. In the corotating frame, there is a field

b along the x axis and a field �ω along the z axis. As we are
interested in the next-to-adiabatic correction, we assume that
ω changes slowly and that the spin remains aligned along the
total field in the rotating frame, thus it has a component sz ≈
(�/2) �ω/b. Therefore, the first nonadiabatic correction to the
spin is δs(k) = �

2(b × ḃ)z/2b3. In particular, the electrical
field drives this spin precession (via ḃ), leading to such out-
of-plane component δs(k), which could be important in spin
transport (Sinova et al., 2004), see Section 4.3. However,
when considering dc properties, one must be careful and
also allow for impurities that decelerate the carriers to reach
a steady state. In particular, if b(k) is linear in k, it turns
out that the deceleration at impurities cancels this spin
precession, see Section 4.3.

3.2 Extrinsic: skew scattering

When a carrier scatters at an impurity potential V , because
of the extrinsic spin-orbit interaction (equations (4) and
(14)) the scattering cross section depends on the spin state
(Smit, 1958), see Figure 2. This effect is known as Mott
skew scattering (Mott and Massey, 1965) and was originally
considered for high-energy electrons that are elastically
scattered by an atom and that are described by the vacuum
Hamiltonian, equation (1). Skew scattering does not appear
in the first-order Born approximation, thus is at least of
the order V 3. For band electrons, skew scattering was
originally considered as the origin of the anomalous Hall

x, E

y
z

Figure 2. Spin-dependent scattering of electrons at an attractive
impurity. We show the classical trajectories (solid lines), for a
screened Coulomb potential and for strongly exaggerated extrinsic
spin-orbit coupling (using equation (4) with λ > 0) and with spin
quantization axis perpendicular to the plane. The skew-scattering
current results from different scattering angles for spin-↑ and spin-↓
electrons and leads to a positive spin Hall conductivity, σ SH

SS =
−jz

SS,y/Ex > 0. The dashed lines show the horizontal displacement
due to the side-jump effect, contributing to the spin current with
opposite sign.
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effect, see Section 4.4. As applied to spin Hall effect, the
relevance of this extrinsic mechanism was recognized early
on (D’yakonov and Perel’, 1971; Hirsch, 1999; Zhang, 2000).

3.3 Extrinsic: side-jump mechanism

The side-jump mechanism (Berger, 1970) describes the lat-
eral displacement of the wave function during the scattering
event. (Such a displacement does not modify the skew scat-
tering cross section introduced in Section 3.2, because it does
not change the scattering angle measured at large distances.)
The side-jump contribution is obtained when the anomalous
velocity δv (see Section 2.6) is integrated over the duration
of the scattering process. As indicated in Section 2.6, the
anomalous coordinate for electrons (equation (17)) leads to
an anomalous-velocity contribution λ(σ × k̇); and there is
an equal term due to (i/�)[Hext, e, r]. For impurity scatter-
ing with momentum transfer δk, this results in a total lateral
displacement 2λ(σ × δk) (and analogously for holes, using
equation (18)). When the effect of the anomalous veloc-
ity owing to an applied electrical field is considered, the
side-jump contribution to spin transport becomes a subtle
issue; for a detailed analysis and intuitive description see
(Nozières and Lewiner, 1973). Because the side-jump mech-
anism is not contained in the Boltzmann approach, in such
a framework it needs to be evaluated separately. The side-
jump contribution can be found using the Kubo formula
and diagrammatic approaches; see (Lewiner, Betbeder and
Nozières, 1973; Crépieux and Bruno, 2001; Tse and Das
Sarma, 2006a).

3.4 Kinetic equation

We consider the Hamiltonian Heff (equation (2)) containing
both intrinsic (Hint) and extrinsic (Hext) spin-orbit contribu-
tions, and with V that describes the electrical field E and
the impurity potential Vi. For a homogeneous system of
noninteracting particles, one can derive the kinetic equation
(Khaetskii, 2006; Shytov, Mishchenko, Engel and Halperin,
2006)

∂f̂

∂t
+ 1

�
σ · (b × f) + eE · 1

�

∂f̂0

∂k
=

(
∂f̂

∂t

)
coll

(19)

that is, a spin-dependent Boltzmann equation, where the
distribution function is written as a 2 × 2 spin matrix
f̂ = f̂0(k) + 1

2n(k) 11 + f(k) · σ , with equilibrium distribu-
tion function f̂0. Here, n is the excess particle density and
f describes the spin-polarization density. Formally, the Boltz-
mann equation is obtained by an expansion in 1/kF�, where

� is the mean free path, that is, it is applicable for dilute
impurities. Traditionally, the Boltzman equation describes the
distribution function n(k), which is the probability density
of a state k to be occupied – in contrast, here it describes
f̂ (k), which corresponds to the 2 × 2 density matrix for a
spin- 1

2 particle.
All terms on the lhs of equation (19) arise in the absence of

impurities. The first term is the derivative of f̂ with respect
to its explicit time dependence. The second term describes
the spin precession; it is obtained from the Heisenberg
equation, f · σ̇ = f · (i/�)

[ − 1
2 b (k) · σ , σ

]
. The third term

is the driving term due to the electrical field, given in lowest
order of E. Finally, for inhomogeneous particle and spin
distributions, the term v · ∇f̂ has to be added to the lhs.

The rhs of the Boltzmann equation (equation (19)) is the
collision term, symbolically given by(

∂f̂ (k)

∂t

)
coll

= niv
∑

k′; ε′=ε

d
↔
σ

d�

[
f̂ (k′) − f̂ (k)

]
(20)

Here, ni is the impurity density and we only consider
elastic scattering k → k′ and k′ → k. The scattering cross-
section tensor d

↔
σ/d� and the summation over final states k′

are spin dependent because (i) the extrinsic interaction Hext

leads to skew scattering, (ii) the intrinsic spin-orbit Hamilto-
nian Hint induces a spin-dependent density of states (DOS),
and (iii) Hint causes spin-dependent momentum transfer – in
general, the spin dependence of scattering is rather complex.
The description of scattering is simplified for weak spin orbit
coupling, as the collision term can be expanded in spin-orbit
coupling, and we can discuss the individual corrections sepa-
rately. Note that the Boltzmann equation does not include the
side-jump effect (cf. Section 3.3), which is of higher order
in 1/kF�.

When considering only spin-orbit coupling due to Hext,
the collision term including skew scattering for a central
symmetric impurity potential is (Engel, Halperin and Rashba,
2005)(

∂f̂ (k)

∂t

)
coll

=nivε

∫
d�(k′)

{
I (ϑ)

[
f̂ (k′) − f̂ (k)

]

+ 1

2
I (ϑ)S(ϑ) σ · m[n(k) + n(k′)]

}
(21)

where m = k′ × k/
∣∣k′ × k

∣∣ is the unit vector normal to
the scattering plane and ϑ = ϑkk′ is the angle between k′

and k. The coefficient I (ϑ) is the spin-independent part
of the scattering cross section, while S(ϑ) is the so-called
Sherman function (Mott and Massey, 1965; Motz, Olsen
and Koch, 1964; Huang, Voskoboynikov and Lee, 2003),
describing the polarization of outgoing particles (which is
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normal to the scattering plane) scattered into direction k from
an unpolarized incoming beam of momentum k′. Note that
I S, as mentioned earlier in Section 3.2, vanishes in first-
order Born approximation; the lowest term is ∝ V 3. Also,
S is proportional to spin-orbit coupling, this is why in the
second term in equation (21), only the spin-independent part
of f̂ , 1

2n, is retained.
So far, we considered the distribution function f̂ (k) as

density in k space. In the presence of intrinsic spin-orbit
interaction, the energy spectrum contains two branches: for
a given k, there are two energies, split by the intrinsic
field b(k). Thus, for elastic scattering, energy is conserved
but |k| is not. It is now more convenient to choose a
distribution as function of energy ε and direction ϕ in k
space. Namely, the distributions �c(ϕ, ε) and �(ϕ, ε) are
derived from the distributions n(k) and f(k), and can again
be written as matrix �̂(ϕ, ε). Note that �̂ contains the
spin-dependent DOS. We now consider a two-dimensional
system, k = (k cos ϕ, k sin ϕ), and assume that the spectrum
εk in the absence of spin-orbit interaction is isotropic (cf.
equation (2)), and we define kε such that εkε = ε and
define vε = ε′

kε
/�. For E = Ex̂ and for b � EF, the kinetic

equation becomes (Shytov, Mishchenko, Engel and Halperin,
2006)

∂�̂

∂t
+ σ ·

[
b × �

�
− �c

4�2vε

b × ∂b
∂k

]

+ eE

(2π)2

∂f0

∂ε

[
kx

�
+ 1

2�2vε

∂

∂ϕ
(b · σ sin ϕ)

]

=
(

∂�̂

∂t

)
coll

(22)

where f0 is the Fermi distribution function and b is evaluated
for |k| = kε .

Now, considering only Hint, the collision integral can be
found in a Golden Rule approximation (Shytov, Mishchenko,
Engel and Halperin, 2006),(

∂�̂(ϕ, ε)

∂t

)
coll

=
∫ 2π

0
dϕ′ K(ϑ)

[
�̂(ϕ′) − �̂(ϕ)

]

+
∫ 2π

0
dϕ′ σ · [

M(ϕ, ϕ′)�c(ϕ
′)

− M(ϕ′, ϕ)�c(ϕ)
]

(23)

Here, the first term describes the spin-independent scat-
tering, with K(ϑ) = K(ϕ′ − ϕ) = W(q)kε/2π�

2vε and q =
2kε sin(|ϑ | /2). The factor W(q) = 〈 |Vi(q)|2 〉

does not
depend on the direction of the momentum transfer q because
the problem is isotropic (while, of course, the individual scat-
tering event is anisotropic, that is, depends on the scattering

angle ϑ). This spin-independent term coincides with first
term of equation (21), with K(ϑ) = nivεI (ϑ), and should
only be included once. The second term in equation (23)
is given in first order in the intrinsic spin-orbit interaction
b and contains the kernel (Shytov, Mishchenko, Engel and
Halperin, 2006)

M(ϕ, ϕ′) = vε

4kε

K (ϑ)
∂

∂ε

[
kεb (ϕ)

vε

]

+ b (ϕ) + b
(
ϕ′)

4�kεvε

∂K (ϑ)

∂ϑ
tan

ϑ

2
(24)

where the first term results from the spin-dependent DOS of
the outgoing wave. The second term in M arises, because
for a given energy ε, |k| depends on the spin state. Thus the
incoming and outgoing states can have different momenta,
leading to spin-dependent corrections to q.

For a very smooth scattering potential such that typically
q < b/vF, the spin motion is adiabatic and should be
treated differently (Govorov, Kalameitsev and Dulka, 2004;
Khaetskii, 2006).

3.5 Diffusion equation

A spin-diffusion equation can be derived, starting from the
Boltzmann equation, for a dirty system when the spin-
relaxation time τ s is much longer than the momentum
relaxation time τ , that is, τ s � τ . It describes the carrier
density N(r) and spin-polarization density s(r); say, sz is the
excess density of particles polarized along ẑ. For conduction-
band electrons, the (pseudo-) spin density is S = (�/2)s.
The diffusion equation is simpler to solve than the kinetic
equation (19), as the dependence on k is integrated out.
Also, it is usually sufficient to know s, because it is an
experimentally accessible quantity, while f̂ (k) is not directly
accessible, cf. Sections 4.2 and 4.5 below. For a two-
dimensional system with Rashba spin-orbit interaction Hα

(equation (10)), the diffusion equation is (Burkov, Núñez
and MacDonald, 2004; Mishchenko, Shytov and Halperin,
2004)

Ṅ =D∇2(N + ρ0VE) + �sc(∇ × s)z (25)

ṡi =D∇2si − τ−1
i si + �ss[(ẑ × ∇) × s]i

+ �sc (ẑ × ∇)i(N + ρ0VE) (26)

with diffusion constant D = 1
2v2

Fτ , anisotropic
Dyakonov–Perel (1972) spin-relaxation rates τ−1

x =
τ−1

y = τ−1
⊥ = 2τ(αkF/�)2 and τ−1

z = 2τ−1
⊥ , spin-charge

coupling �sc = −2α(αkFτ )2/�3, spin–spin coupling
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�ss = 4αEFτ/�
2, density of states ρ0 = m/π�

2, and poten-
tial energy VE of a carrier in the electrical field. The charge
current is

Jc = −D∇(N + ρ0VE) + �sc ẑ × s (27)

Further, Mal’shukov, Wang, Chu and Chao (2005) derived
diffusion equations for two-dimensional electrons with the
Dresselhaus Hamiltonian HD, 2d (equation (9)).

The boundary conditions of the diffusion equation for a sys-
tem with spin-orbit interaction are not trivial and one expects
that they depend on the microscopic properties of the bound-
aries. A number of papers have been written about the boundary
conditions corresponding to various physical circumstances,
and have partly clarified this issue (Govorov, Kalameitsev
and Dulka, 2004; Mal’shukov, Wang, Chu and Chao, 2005;
Adagideli and Bauer, 2005; Galitski, Burkov and Das Sarma,
2006; Bleibaum, 2006; Tserkovnyak, Halperin, Kovalev and
Brataas, 2006). Depending on the particular boundary condi-
tion, there may or may not be an sz spin accumulation near the
boundary of a 2D system, see Section 4.5. Somewhat related to
this question, Shekhter, Khodas and Finkel’stein (2005) con-
sidered the boundary between a diffusive and ballistic system
and allowed for spin-dependent scattering at the boundary,
resulting from a spatially dependent Rashba Hamiltonian Hα .

4 ELECTRICALLY INDUCED SPIN
POLARIZATION AND SPIN
TRANSPORT

4.1 Spin current and spin Hall conductivity

In this section, we define the spin current in a homogeneous
system with density n as

j i
k ≡ 1

2
n〈σ ivk + vkσ i〉 (28)

where 〈·〉 is the expectation value of single-particle operators
and with 〈1〉 = 1. Thus, the spin current is defined as the
difference of the particle current densities (measured in
numbers of particles) for carriers with opposite spins. This
is in accordance with many studies (Murakami, Nagaosa and
Zhang, 2003; Sinova et al., 2004; Sinova, Murakami, Shen
and Choi, 2006), where a definition as in equation (28) was
chosen, up to numerical prefactors. In many definitions, an
additional prefactor of 1

2 is used, which results from �/2
angular momentum per electron spin and setting � = 1. With
the same argument, for the HH band, sometimes a prefactor
3/2 is used; but sometimes only a factor 1

2 is used to have the
same definition of jµ for electrons and holes. Furthermore,

the rhs of equation (28) is sometimes multiplied by the charge
e to obtain the same units for charge and for spin currents.
In particular, this means that the sign of the definition of jµ

may change if e < 0 for electrons is taken.
Next, we define the spin Hall conductivity

σ SH ≡ − jz
y

Ex

(29)

where jz
y is the spin current density resulting from a small

applied electrical field Ex . The negative sign in equation (29)
results from writing a formal similar definition for σ SH as for
the charge conductivity σxy ; however, sometimes a definition
with an opposite sign for σ SH is used.

These various prefactors are only some technicality – the
main question is whether defining j i

k as in equation (28)
makes sense. To describe spin transport it sounds attractive to
find a scheme similar to the charge transport theory. Because
of charge conservation, charge densities ρc and charge
currents j c satisfy the continuity equation ρ̇c + div j c = 0.
For spin transport, we can consider the spin density Si

instead of ρc. Mott’s (1936) two-channel model of electron
transport in ferromagnetic metals is based on independent
and conserved currents of up- and down-spin electrons, and
S and j i

k obey a continuity equation. Definition (28) is
the natural generalization of Mott’s model; however, spin-
orbit coupling violates spin conservation, and the continuity
equation for spin densities and currents does not hold.
In this chapter, we still use equation (28) as definition
of the spin current, as it is widely used, but we remain
aware of its limitations. Despite the fact that it cannot be
directly related to spin accumulation, it is a useful model
quantity to compare the effect of different spin-orbit coupling
mechanisms. While the continuity equation does not hold,
one can, for a concrete Hamiltonian, evaluate source terms
arising on the rhs (Burkov, Núñez and MacDonald, 2004;
Erlingsson, Schliemann and Loss, 2005), which is often
termed as torque (Culcer et al., 2004).

Other definitions of spin currents have also been pro-
posed. Zhang and Yang (2005) analyzed the current of the
total angular momentum Lz + Sz and argued that it van-
ishes for the Rashba Hamiltonian Hα in the absence of
impurities (owing to the rotational invariance of Hα) and
that thus the impurity scattering would determine angular
momentum currents. Shi, Zhang, Xiao and Niu (2006) dis-
cussed spin currents, introducing a definition that is not
proportional to our j i

k , but is given as time-derivative of
the ‘spin displacement’ Si(r) rk. A somewhat related def-
inition was used by Bryksin and Kleinert (2006), who
found that such spin currents diverge when the frequency
ω → 0.
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4.2 Spin polarization

In experiments, the spin polarization can be detected opti-
cally (Meier and Zakharchenya, 1984). Electrically induced
polarizations were inferred from measurements of the Kerr
rotation, where the polarization of a linearly polarized beam
of light rotates when the beam is reflected at a spin-polarized
sample (Kato, Myers, Gossard and Awschalom, 2004b; Sih
et al., 2005). Alternatively, the circular polarization of the
recombination light at a p–n junction can be used to deter-
mine the initial polarization of the carriers (Wunderlich,
Kaestner, Sinova and Jungwirth, 2005). Finally, the inverse
effect, the photo-galvanic effect, can be observed, where
a spin polarization is produced by polarized light and the
induced electrical current is detected (Ganichev and Prettl,
2003).

In the bulk of a two- or three-dimensional sample, spin
polarizations arise because an electrical field shifts the Fermi
sea; 〈k〉 = eEτ/� for small E and with transport lifetime τ .
This implies that owing to intrinsic terms, there is on
average a finite spin-orbit field, 〈b(k)〉. This leads to a bulk
spin polarization, which, in simple cases, is aligned along
〈b〉 (Ivchenko and Pikus, 1978; Vas’ko and Prima, 1979;
Levitov, Nazarov and Eliashberg, 1985; Edelstein, 1990;
Aronov, Lyanda-Geller and Pikus, 1991). Such a polarization
was observed experimentally in two-dimensional GaAs hole
systems: Silov et al. (2004) used a (001) surface and detected
the polarization of the photoluminescense from the side of the
cleaved sample, while Ganichev et al. (2006) used samples of
low crystallographic symmetry and detected the polarization
along the growth direction. Furthermore, in the presence of
anisotropic scattering (see Section 3.4), a magnetic field B
can lead to polarization perpendicular to both 〈b〉 and B
(Engel, Rashba and Halperin, 2007) – such a perpendicular
polarization was already observed by Kato, Myers, Gossard
and Awschalom (2004a).

4.3 Spin currents in bulk

The bulk spin current j i
k was analyzed for many different

spin-orbit Hamiltonians. For a two-dimensional electron
system, the intrinsic effect of the Rashba coupling Hα lead to
some debate. Because j i

k is invariant under time reversal, it is
allowed to be finite in equilibrium. Indeed, such equilibrium
spin currents are predicted theoretically; however, they are
of order α3 and usually small (Rashba, 2003).

Now we discuss bulk spin currents driven by an external
electrical field for systems with either intrinsic or extrinsic
spin-orbit interaction. We do not discuss the more compli-
cated case when both terms are present.

When an electrical field is applied and the electrons are
accelerated, the precession described in Section 3.1 was
considered. Because the initial spin density for a given
direction of k is proportional to α, but the nonadiabatic
correction is proportional to 1/α, the spin-orbit coupling
constant cancels. Initially, it was believed that a small
concentration of impurities has no effect and a ‘universal’
spin Hall conductivity σ SH = e/4π� was predicted (Sinova
et al., 2004). However, it turns out that when the impurities
are properly taken into account, the vertex correction cancels
the bubble term, see Figure 3. Thus, the dc conductivity σ SH

vanishes (Inoue, Bauer and Molenkamp, 2004; Raimondi and
Schwab, 2005),

σ SH = 0 (30)

which was confirmed in numerical calculations (Sheng,
Sheng, Weng and Haldane, 2005). Only when the ac conduc-
tivity σ SH(ω) is considered, in the regime 1/τ � ω � b/�

the universal value is recovered (Mishchenko, Shytov and
Halperin, 2004).

That there are no bulk spin Hall currents can be understood
by the following argument given by Dimitrova (2005). Using
the Heisenberg equation and for parabolic bands, one finds
the identity dσy/dt = −(mα/�

2)(σ zvy + vyσ z) for single-
particle operators (Burkov, Núñez and MacDonald, 2004;
Erlingsson, Schliemann and Loss, 2005). For a homogeneous
system, one then takes the expectation value of this identity
and finds that jz

y ∝ dSz/dt . When we consider dc properties,
we must assume that the system is in a stationary state (i.e.,
we need impurity scattering). Then, the spin polarization Sz

is constant and thus jz
y = 0. These arguments, as well as

spin current cancellation in a magnetic field in the absence
of scatterers (Rashba, 2004) show that the cancellation is
an intrinsic property of the free electron Hamiltonian Hα

and is not related to any specific property of the scatterers.

j zy j c
x = +

(a) (b)

Figure 3. Diagram for spin Hall conductivity. The Kubo formula
for σ SH is proportional to Tr 〈〈jz

yGRj c
xGA〉〉, with charge current

operator j c
x and retarded and advanced Green’s functions GR/A, and

where 〈〈·〉〉 includes averaging over impurity configuration. In lowest
order in 1/kF�, we can neglect crossed impurity lines and σ SH is
given by the diagram shown in (a). Here, the full lines symbolize
the renormalized Green’s functions including self-energy. In (b),
the vertex renormalization due to impurity scatterings (connected
by dashed line) is defined recursively. When only the first term of
(b) is taken, we get the bubble contribution to σ SH; when all terms
are summed, this leads to the additional (ladder) vertex correction.
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Furthermore, Chalaev and Loss (2005) find that the weak
localization contribution to jz

y vanishes, and show more
generally that jz

y vanishes even if both Hα and Hβ are
present. Grimaldi, Cappelluti and Marsiglio (2006) find
vanishing jz

y for arbitrary values of αkF/EF.
This cancellation is special to k-linear spin-orbit inter-

action (for nonparabolic bands, there can be a small finite
contribution, proportional to α2 (Krotkov and Das Sarma,
2006)). For example, for two-dimensional hole systems, the
coupling Hα,h is cubic in k (equation (11)). Then, if isotropic
scattering is assumed, the vertex correction vanishes, and
a ‘universal’ value σ SH = 3e/4π� is found in the clean
limit bτ � � (Murakami, 2004; Schliemann and Loss, 2005).
Quite generally, for a 2D system where the spin-orbit field
b(k) winds N �= 1 times around a circle in the xy plane when
k moves once around the Fermi circle (i.e., N = 3 for Hα,h),
a universal value

σ SH = eN

4π�
(31)

is found in the clean limit and for isotropic scattering
(Shytov, Mishchenko, Engel and Halperin, 2006; Khaetskii,
2006).

Also for the k3-Dresselhaus couplings, HD, 3d and HD, 2d

(equations (8) and (9)), the vertex corrections vanish for
isotropic scattering. This leads to a finite spin Hall conduc-
tivity for two-dimensional systems when HD, 2d is included
(Mal’shukov and Chao, 2005). Similarly, σ SH is finite for
HD, 3d (Bernevig and Zhang, 2004).

The results cited above are only valid for isotropic scat-
tering, except equation (30), which holds more generally.
Recently, more general descriptions using kinetic equation
(cf. Section 3.4) allowed to include arbitrary angular depen-
dence of impurity scattering (Shytov, Mishchenko, Engel and
Halperin, 2006; Khaetskii, 2006). It turns out that σ SH signif-
icantly depends on the shape of the scattering potential and
does not reduce to a simple form, in general. For example, in
the clean limit bτ � � and in the regime of small angle scat-
tering (but still for a typical momentum transfer q > b/vF,
i.e., not too small angles), one finds

σ SH = − eN

2π�

(
N2 − 1

N2 + 1

)
(Ñ − ζ − 2) (32)

where ζ describes the nonparobalicity of the band, vε ∝ k
1+ζ
ε ,

and for |b| ∝ kÑ (Shytov, Mishchenko, Engel and Halperin,
2006). For example, taking ζ = 0 and Hα,h, with N = Ñ =
3, we see that the sign of σ SH in equation (32) is opposite
to the case of isotropic scattering (equation (31)). Similarly,
Liu and Lei (2005) found in a numerical study of system
with spin-orbit coupling Hα,h that σ SH strongly depends on
the type of the scattering potential. Therefore, the spin Hall

conductivity is not a universal quantity, as its numerical
prefactor and its sign depend on sample parameters. On
the other hand, for clean systems with N �= 1, the order of
magnitude is consistently

∣∣σ SH
∣∣ ∼ e/4π�.

The above results are valid for weak spin-orbit coupling,
kα � kF. Conversely, there are also materials with strong
spin-orbit coupling, as it was recently found in Bi/Ag
(111) and Pb/Ag (111) surface alloys (Ast et al., 2007).
This motivated Grimaldi, Cappelluti and Marsiglio (2006)
to generalize the theory, however, relying on an extensive
numerical procedure.

The extrinsic contribution Hext, e for electrons also leads
to spin currents (D’yakonov and Perel’, 1971; Hirsch, 1999).
These currents are often evaluated only for isotropic impurity
scattering (Zhang, 2000; Shchelushkin and Brataas, 2005).
Assuming absence of intrinsic spin-orbit interaction, for
arbitrary angular dependence of scattering, the extrinsic spin
Hall conductivity equals (Engel, Halperin and Rashba, 2005)

σ SH = − γ

2e
σ xx + 2nλ

e

�
(33)

where the first term is due to skew scattering (see
Section 3.2). The second term is due to the side-jump mecha-
nism (Section 3.3); as this mechanism goes beyond transport
equation, this term has to be evaluated separately. Here, σxx

is the electrical conductivity and we defined the transport
skewness

γ =

∫
d� I (ϑ)S(ϑ) sin ϑ∫

d� I (ϑ) (1 − cos ϑ)

(34)

that depends on the structure of the scattering center and on the
Fermi energy, and I , S are defined below in equation (21). For
screened Coulomb scatterers, equation (33) can be evaluated
without any free parameters (Engel, Halperin and Rashba,
2005) and the resulting absolute value of spin current is in
quantitative agreement (within error bars) with the observation
by Kato, Myers, Gossard and Awschalom (2004b) in GaAs
and seems comparable with the data by Stern et al. (2006) in
ZnSe – implying that the observed spin currents are due to the
extrinsic effect. Note that in equation (33) the skew scattering
and the side-jump contributions have opposite signs. The skew-
scattering term dominates in standard transport theory where
one expands in �/Eτ where E is a typical electron energy;
however, for dirty samples both terms can be of comparable
magnitude. Stern et al. (2006) found that the measured σ SH in
ZnSe has the sign of the skew-scattering contribution and that
the same is likely to be the case for the σ SH observed by Kato,
Myers, Gossard and Awschalom (2004b). Finally, assuming
short-range scatterers, Tse and Das Sarma (2006a) found the
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same order of magnitude for extrinsic spin currents. However;
later they concluded that intrinsic spin-orbit coupling can
cancel skew-scattering and reduce side-jump contributions to
σ SH (Tse and Das Sarma, 2006b).

Remarkably, despite the fact that the side-jump term in
equation (33) was derived by including electron dynamics dur-
ing the scattering event, it does not contain any factors related
to the scattering probability – it only depends on the coupling
constant λ, which is an intrinsic property of the material and
is directly related to a Berry connection through the spin-
orbit contribution to the operator of electron coordinate, cf.
Section 2.6. Thus, while in this review and commonly in the
literature the side-jump contribution is considered as extrinsic,
it is clear that the distinction between intrinsic and extrinsic is
somewhat arbitrary for this contribution.

4.4 Anomalous Hall effect and its relation to spin
Hall effect

In the anomalous Hall effect (AHE), equilibrium polarization
of a ferromagnet combined with spin-orbit interaction leads
to electrical Hall currents transverse to an applied field. The
theory of AHE has a long history and reveals many problems
typical of spin transport in media with spin-orbit coupling,
including the competing mechanisms of spin-orbit scattering
by impurities and the role of intrinsic spin precession; for
reviews see (Nozières and Lewiner, 1973; Crépieux and
Bruno, 2001; Nagaosa, 2006). For noninteracting electrons and
negligible spin relaxation, AHE and SHE are closely related;
this is true for extrinsic spin-orbit interaction because λ is small
and spin relaxation is of order λ2 (Elliott, 1954; Yafet, 1963). In
the SHE, we can decompose the spin currents jµ as a difference
in particle currents of two spin species with polarizations ±ε̂µ.
Regarding these species separately, each carries the anomalous
Hall current J↑,↓

AH of a system with spins fully aligned along
the ±ε̂µ direction and with density nAH = 1

2n, because we
consider the SHE in nonmagnetic media, where electrons
are unpolarized in equilibrium. We can express the spin Hall
current as (Engel, Halperin and Rashba, 2005)

jµ

SH = e−1
(

J↑
AH − J↓

AH

)
(35)

This relation allows to make use of the extensive literature
on the AHE to gain further insights into mechanisms of the
SHE, at least on its extrinsic part.

4.5 Spin accumulation and transport
at boundaries

For only extrinsic spin-orbit coupling, because the spin
relaxation is negligible for small λ, the spin is almost a

conserved quantity and thus spin density and spin current
satisfy a continuity equation with a small relaxation term. In
this case, bulk spin currents will produce a spin polarization
at the edge of the sample, that is, spin currents and spin
accumulation are directly related (D’yakonov and Perel’,
1971; Hirsch, 1999; Zhang, 2000). The polarization at a
y = 0 edge is Sz = (�/2) sz = (�/2)

√
τ s/Ds jz

y , with spin-
relaxation time τ s and spin-diffusion coefficient Ds (which is
identical to the electron diffusion coefficient D in the absence
of electron–electron interaction).

For intrinsic spin-orbit interaction, it is not clear whether
any general relation exists between spin accumulation and
bulk spin currents, but spin accumulation can be studied
directly. We discuss here the situation of a semi-infinite two-
dimensional electron system, with Rashba coupling, located
in the upper half-plane (y > 0). We assume a uniform applied
electric field parallel to the x axis, and we consider the
diffusive limit, where the spin diffusion length is large
compared to the mean free path, so equations (25) and
(26) apply far from the boundary. The spin density near
the edge will depend on the boundary conditions for the
diffusion equations at y = 0, and these will depend, in turn,
on the boundary conditions of the microscopic Hamiltonian,
as discussed in the various articles cited in the last paragraph
of Section 3.5.

In the case of an ideal reflecting boundary, the spin density
s(y) is found to be constant, and the same as in the bulk, right
up to the edge (Bleibaum, 2006). Thus, one finds sz = 0,
while sy has a value proportional to the charge current and
to the Rashba coupling constant α. By contrast, if there is
strong spin-orbit scattering at the boundary, all components
of s should vanish there. In this case, the coupled diffusion
equations predict that for y > 0, there will be nonzero values
of both sz and sy , with oscillating behavior, in a region near
the edge whose width is of the order of spin-precession
length k−1

α = �
2/mα, which is about the Dyakonov–Perel

spin-diffusion length
√

Dsτ s (Rashba, 2006).
What happens if the boundary at y = 0 is partially or

completely transmitting and there is a second conductor
in the region y < 0 which has no spin orbit coupling? As
noted by Adagideli and Bauer (2005), one should expect, in
general, to find nonzero oscillatory values of both sz and sy in
the Rashba conductor near the boundary, and injection of spin
into the non-spin-orbit material. However, it was found by
Tserkovnyak, Halperin, Kovalev and Brataas (2006) that this
actually will not happen in the simplest case that one might
consider: a boundary between a pair of two-dimensional
systems with identical properties except for different values
of α. There will quite generally be a discontinuity in the spin
densities at a lateral boundary between systems with different
Rashba coupling. If the electron mobility is a constant across
the boundary, the discontinuity turns out to be equal to the
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difference between the bulk spin densities of the systems.
Then, on each side of the boundary one finds sz = 0, while
sy is the same as the respective bulk value. There will thus
be no spin injection if the second two-dimensional electron
system has α = 0.

Mal’shukov, Wang, Chu and Chao (2005) have argued that
there should be spin accumulation near a reflecting edge,
in the diffusive case, when the cubic Dresselhaus coupling
HD,2d is important. In the opposite limit of ballistic transport
and near a sharp specular edge, Usaj and Balseiro (2005)
have found spin magnetization due to Hα that oscillates
rapidly with a period of k−1

F and shows beating on a length
scale of k−1

α .
There are also numerical approaches analyzing the edge

spin accumulation. Nomura et al. (2005) simulated a two-
dimensional hole system, using the coupling Hα,h (equation
(11)). They found a spin accumulation that was consistent
with the experiments by Wunderlich, Kaestner, Sinova and
Jungwirth (2005).

4.6 Mesoscopic systems and spin interferometers

So far we have not considered interference effects – for
example, in Section 3.4, we used an expansion in lowest
order 1/kF� which does not include interference between
electron propagation paths that follow different trajectories.
To include such coherent effects in systems with impurities,
one needs to consider the next order in 1/kF�: the weak
localization corrections. Alternatively, one can consider clean
systems that are ballistic on length scales of the device.
Spin interference effects in mesoscopic systems open up
a new set of technical possibilities, for example, in rings
or ringlike arrays with spin-orbit interaction, one can use
Berry phase and Aharonov–Casher phase effects to study a
variety of phenomena. In the presence of an applied magnetic
field, spin-orbit effects can modify the Aharonov–Bohm
or Altshuler–Aronov–Spivak oscillations in the electrical
conductance. For theoretical discussions, see (Aronov and
Lyanda-Geller, 1993; Bulgakov et al., 1999; Engel and Loss,
2000; Frustaglia, Hentschel and Richter, 2001; Koga, Nitta
and van Veenhuizen, 2004; Aeberhard, Wakabayashi and
Sigrist, 2005). For experimental results, see (Morpurgo et al.,
1998; Yau, Poortere and Shayegan, 2002; Yang, Yang and
Lyanda-Geller, 2004; Koga, Sekine and Nitta, 2006; Koenig
et al., 2006; Bagraev et al., 2006).

For practical applications, it is not only important to gener-
ate nonequilibrium spin polarization in media with spin-orbit
coupling, but also inject spin currents produced by such pop-
ulations into ‘normal’ conductors, that is, conductors with
negligible spin-orbit coupling. In normal conductors, spin is
conserved and spin currents are well defined. Spin injection

can be achieved using spin-orbit coupling, even in devices
without magnetic fields and without ferromagnetic compo-
nents. Proposals for such devices, in the mesoscopic regime,
have been made by (Kiselev and Kim, 2003; Shekhter, Kho-
das and Finkel’stein, 2005; Souma and Nikolić, 2005; Eto,
Hayashi and Kurotani, 2005; Silvestrov and Mishchenko,
2006).

Generally, spin interference devices make use of the intrin-
sic and extrinsic spin-orbit couplings presented in Section 2
and the spin-transport mechanisms discussed in Section 3
are important. However, we do not present more concrete
descriptions of interference effects or details of microscopic
structures; this could be done by solving the Schrödinger
equation analytically, by simulating it numerically, or by
using weak localization calculations. On the other hand,
we can assess the length scales on which spin precession
effects are expected: both diffusion equation (Section 3.5)
and its solution near boundaries (Section 4.5) indicate spin-
precession length �α = 1/kα as a characteristic length for
spin distributions. Furthermore, for clean systems, responses
to an inhomogeneous field diverge at the wave vector q =
2kα of the field (Rashba, 2005). This ‘breakdown’ sug-
gests the length �α as an optimal size for achieving large
spin polarizations. For a more generic Hamiltonian Hint, this
scale can be estimated as �eff ∼ �

2kF/m |b|, establishing a
‘mesoscopic’ scale at which one can expect largest static spin
responses to electric fields. Because �eff is also of the order
of the Dyakonov–Perel spin-diffusion length, this estimate
seems applicable both to the ballistic and diffusive regimes.

5 SPIN HALL EFFECT DUE TO EDGE
STATES IN INSULATORS

In the previous parts of Section 4, we discussed spin currents
jz
y driven by electric field Ex , their relevance to spin

transport and spin accumulation, and also the techniques
for calculating conductivities σ SH (equation (29)). Even
when these nondiagonal components of the tensor j i

j were
not directly influenced by dissipation, they were calculated
for ordinary metallic conductors whose longitudinal electric
conductivity σxx was controlled by electron scattering,
hence, electron transport in the bulk was dissipative. More
recently, Murakami, Nagaosa and Zhang (2004) proposed
that some centrosymmetric 3D systems possess properties
of ‘spin insulators’. These are media with gapped electron
spectra and zero bulk electrical conductivities σxx but finite
and dissipationless spin conductivities σ SH.

The basic idea is as follows. A set of electron bands that
in absence of SO coupling belongs to orbital momentum L,
in presence of SO coupling is described by the total angular
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momentum J = L + S. When some of the bands belonging
to the J multiplet are filled, while different bands of the
same multiplet are empty and are separated from the filled
bands by a gap, all filled bands contribute to spin current.
Uniaxially strained zero-gap semiconductors α-Sn and HgTe,
and narrow-gap semiconductors of PbTe type were proposed
as model systems. Spin conductivity σ SH is large in these
materials: it is about e/�a in 3D, a being the lattice constant.
In 2D, σ SH is quantized when the Fermi level is inside
the gap (Qi, Wu and Zhang, 2006; Onoda and Nagaosa,
2005). However, for reasons similar to those discussed in
Section 4.1, the relation of this σ SH to spin transport is not
obvious and was already questioned (Kane and Mele, 2005a;
2005b).

A different concept of spin transport in an insulating phase
has been developed by Kane and Mele as applied to graphene
(Kane and Mele, 2005a; 2005b). It is based on the Haldane
model of quantum Hall effect (QHE) with spinless fermions
under the conditions of zero total magnetic flux across the
unit cell (Haldane, 1988). It has been emphasized (Onoda
and Nagaosa, 2005; Kane and Mele, 2005a) that this model
differs fundamentally from the model by Murakami, Nagaosa
and Zhang (2004), in particular, in the properties of edge
channels. Their crucial role for the QHE has been clarified
by Halperin (1982), and they play a similar role in the
physics of spin Hall effect in graphene. In what follows, we
consider properties of graphene in more detail. The graphene
model is not only of conceptual interest but is also attractive
because of the very recent experimental achievements in
measuring electron transport in graphene (Novoselov et al.,
2004; Zhang, Tan, Stormer and Kim, 2005).

Graphene is a monoatomic layer of graphite. Its honey-
comb 2D lattice is shown in Figure 4. The elementary cell
includes two atoms shown as A and B. The phase diagram of

B
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B

A

A

B

B

A

A

B

KK′

K

K′ K

K′x

y

Figure 4. Schematics of honeycomb lattice of graphene. The
hexagon in the center is an elementary cell containing two carbon
atoms that belong to two sublattices. Atoms of these sublattices are
marked as A and B and are shown by empty and filled circles,
respectively. Brillouin zone is shown by a dashed line. K and K′
indicate nonequivalent corners of the zone where the gap opens.

graphene can be understood from the tight-binding Hamilto-
nian (Kane and Mele, 2005b)

H = t
∑
〈ij〉

c+
i cj + 2i√

3
λSO

∑
〈〈ij〉〉

ν ijc
+
i σ zcj

+ iλR

∑
〈ij〉

c+
i (σ × d̂ij )zcj + λv

∑
i

ξ ic
+
i ci (36)

where ci are annihilation operators at lattice cites i, spin
indices in them being suppressed. The first term is the
nearest neighbor hopping term between two sublattices. For
the following, of the critical importance is the second term
with νij = (2/

√
3)(d̂1 × d̂2)z = ±1 that describes second

neighbor hopping. Here d̂1 and d̂2 are unit vectors along two
bonds that an electron traverses when going from the site
j to the site i. The cross product of d̂1 and d̂2 produces a
screw that in the Haldane model of spinless fermions couples
them to inhomogeneous magnetic flux, while in the present
model it couples the orbital motion of an electron to Pauli
matrix σ z. Hence, λSO is a coupling constant of a mirror
symmetric, z → −z, spin-orbit interaction. The third term is
a nearest neighbor Rashba term, d̂ij being a unit vector in
the direction connecting i and j nodes. It explicitly violates
z → −z symmetry and originates from the coupling to the
substrate or from an external electric field. The fourth term is
a staggered sublattice potential with ξ i taking values ξ i = ±1
for A and B lattice sites. It vanishes for graphene but would
be present for a similar boron nitride (BN) film. Including
this term is a clue for explaining the difference between the
‘quantum spin Hall’ (QSH) phase and a usual insulator (Kane
and Mele, 2005a; 2005b).

The remarkable spin properties of graphene are seen
from the one-dimensional projection of its energy spectrum,
Figure 5, found by solving the Hamiltonian of equation (36)
in the geometry of a strip with finite extent in the y direction
(defined in Figure 4), that is, having ‘zigzag’ edges aligned
along the x direction. The spectrum comprises four energy
bands, of which the two lower bands are occupied; each
bulk band is twofold spin degenerate. Narrow gaps at K and
K′ open because of λSO, λv �= 0 – for λSO, λv = 0, electrons
possess a k-linear spectrum of Dirac fermions, ε(k) = �c∗k.
In addition to bulk states, there are edge states connecting K
and K′ bulk continua. Their topology in the panels (a) and
(b) is rather different.

In the panel (a) drawn for a small λv, edge states traverse
the gap. For each edge of the strip, there are two such
states. They are Kramers conjugate and propagate in opposite
directions. This behavior reflects unusual cross-symmetry of
bulk states that manifests itself in the opposite signs of the
gap function at K and K′ points. The small-λv phase has been
dubbed as QSH phase by Kane and Mele (2005a). It is the
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Figure 5. Energy bands of a one-dimensional strip of graphene
with ‘zigzag’ edges, that is, the strip has finite extent along the y

direction shown in Figure 4. Narrow gaps in the bulk spectrum are
achieved at the K- and K′ vertices of the Brillouin zone. Branches
of the spectrum originating from the edges of bulk continua show
energies of edge states. Edge states at a given edge of the strip cross
at ka = π , a being the lattice spacing. (a) QSH phase for λv = 0.1t ;
edge states at a given edge of the strip cross at ka = π , a being
the lattice spacing. (b) A normal insulating phase for λv = 0.4t .
In both cases, λSO = 0.06t and λR = 0.05t . The inset shows the
phase diagram in the λv –λR plane for 0 < λSO � t . (Reproduced
from C.L. Kane et al., 2005, with permission from the American
Physical Society.  2005.)

distinctive property of this phase that at any energy inside
the gap there is one pair of edge modes (more generally, an
odd number of such pairs).

When λR = 0, σz is conserved, and the pattern of dis-
sipationless spin transport become especially simple. Each
of independent subsystems of σ z = ↑ and σ z = ↓ electrons
is equivalent to Haldane spinless fermions (Haldane, 1988).
One pair of such ‘spin filtered’ states propagates along each
edge. The states with opposite σz polarizations propagate in
opposite directions. Because they form a Kramers doublet,
potential backscattering is forbidden and transport is dissipa-
tionless. This model predicts two-terminal electric conductiv-
ity G = 2e2/h. Propagation of charge current through edge
states results in antisymmetric spin accumulation at these
edges. In four-terminal geometry, spin currents flow between
adjacent contacts, and related spin conductances are quan-
tized; when normalized on a number of transported spins,
Gs = ±e/2π�. For λR �= 0, however, σz is not conserved.
Nevertheless, spin currents persist (if λR is small, see the
following text) but they are no longer exactly quantized. An
early argument that the spin Hall conductance can be quan-
tized was given by Froehlich, Studer and Thiran (1995) when
considering incompressible 2D systems.

Panel (b) of Figure 5, drawn for a larger staggered
potential λv, shows properties of a normal narrow-gap
insulator. The gap function has the same sign at K and K′, as
a result, one pair of edge states runs between two conduction-
band valleys and the second pair between two valence band
valleys. For some boundary conditions at the strip edges,
edge states can penetrate the gap. However, there is always

an even number of Kramers conjugate pairs of edge states at
any given energy inside the gap, hence, backscattering is no
longer forbidden. Therefore, it is the topology of edge states
that defines the difference between the QSH and insulating
phases in a simple and concise form.

The QSH phase is formed due to the bulk spin-orbit
coupling λSO. Increasing asymmetric λR or staggered λv

potentials destroy it when they become large enough. A
phase diagram of the competing phases, QSH phase, and
a normal insulator, is shown in the inset to Figure 5. The
QSH phase exists inside an ovaloid in the λv/λSO –λR/λSO

plane. Outside it, graphene shows properties of a normal
narrow-gap insulator.

Another factor suppressing the gap and spin conductivity is
electron scattering in the bulk. Its effect has been investigated
numerically by Sheng, Sheng, Ting and Haldane (2005) for
a four-probe spin Hall setup using the Landauer–Büttiker
formula (Landauer, 1988; Büttiker, 1988); their spin con-
ductivity σ SH describes real spin transport. Disorder was
modeled as

∑
i εic

+
i ci with εi randomly distributed in the

interval [−W/2, W/2]. They found that σ SH remains within
a few percent of its quantized value when W < t and the
Fermi level stays inside the gap; and σ SH drops fast with
increasing W for W >∼ 1.5t . Under the same conditions, σ SH

remains stable for λR <∼ 0.2t . These results allow to establish
the parameter range inside which edge spin channels remain
robust and carry dissipationless and nearly quantized spin
currents. Inside this range, there exist close analogy between
QSH and QHE systems.

Currently, there is no direct experimental indication of
the spin gap in graphene. A crude theoretical estimate of
it by Kane and Mele (2005a) results in the gap 2�SO ∼
2.4 K which is in a reasonable agreement with different data
(Brandt, Chudinov and Ponomarev, 1988). However, more
recent calculations indicate that the actual value of �SO is
considerably smaller. Meantime, estimates of �/τ based on
transport data result in �/τ >∼ 25 K for typical mobilities of
µ ≈ 10 000 cm2 V−1 s−1, τ being the momentum relaxation
time. Comparison of these data can easily explain suppres-
sion of spin-polarized transport through edge channels by
disorder in the samples that are currently available. An inde-
pendent mechanism of suppression is the λR constant that
develops when electron concentration is controlled by a gate,
and the ratio λR/λSO is unknown. Unfortunately, all esti-
mates are crude because electron transport in graphene is still
not understood. Novoselov et al. (2005) recently reported the
minimum metallic conductivity 4e2/h when the Fermi level
passes through the conic point of the spectrum; it is nearly
independent of the mobility µ. A nonuniversal and even
larger conductivity of about 6e2/h was reported by (Zhang,
Tan, Stormer and Kim, 2005). The closest theoretical value
2e2/h comes from the spin channel model (Kane and Mele,
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2005a), followed by 4e2/πh and 2e2/πh found from differ-
ent models of the bulk transport of Dirac fermions (Ziegler,
1998; Shon and Ando, 1998). Because there exists a region of
parameter values where spin transport through edge channels
is robust, honeycomb lattices lithographically produced from
semiconductors with strong spin-orbit coupling may also be
of interest (Zheng and Ando, 2002).

Abanin, Lee and Levitov (2006) argued that in the QHE
regime, the exchange-enhanced gap for chiral edge modes,
originating from Zeeman splitting, may be as large as 100 K.
Another system where edge spin channels may play a role
was proposed by Bernevig and Zhang (2006); it includes
parabolic confinement in conjunction with inhomogeneous
shear deformation. More recently, Fu and Kane (2006) pro-
posed Bi1−xSbx semiconductor alloys and α-Sn and HgTe
under uniaxial strain as materials that satisfy the neces-
sary symmetry requirements for the QSH phase and that
are expected to have a large �SO. Independently, Bernevig,
Hughesm, and Zhang (2006) showed that HgTe/CdTe quan-
tum wells are also good candidates for the QSH phase.

NOTES

[1] This is reminiscent of the definition of an ‘intrinsic
semiconductor’, which is so pure that (at a sufficiently
high temperature) the impurity contribution to the carrier
density is negligible. The conductivity of such a sample is
known as intrinsic conductivity (again, a finite transport
lifetime τ is required to make the conductivity well
defined). At lower temperatures, the carrier density
mainly results from the impurities and now one refers
to extrinsic properties.
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1 INTRODUCTION

The physics of spins in semiconductors was first seriously
explored in pioneering theoretical and experimental work
in the 1960s (Meier and Zakharechenya, 1984). Since then,
advances in materials science and semiconductor processing
technology have opened up vast new territories of concep-
tual space, rich in fascinating spin-related phenomena. This
chapter highlights recent measurements involving spin coher-
ence in semiconductor structures.

There is currently significant interest in the potential
applications of spins in semiconductors (referred to as spin-
tronics (Wolf et al., 2001)). Existing semiconductor devices

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

rely solely on the charge of the electron and the orbital part
of the electron wave function. However, it is becoming evi-
dent that the electron spin, previously ignored, can also be
manipulated and detected in a number of ways in semicon-
ductor systems. Novel interactions between spins and light
have been explored, allowing for all-optical control of spin
coherence (Gupta, Knobel, Samarth and Awschalom, 2001;
Hübner et al., 2003; Gurudev Dutt et al., 2006); structures
can be engineered for spin manipulation through the intro-
duction of magnetic dopants; and significantly, all-electrical
methods for spin generation, manipulation, and detection
have been developed that do not require magnetic fields or
magnetic materials (Kato, Myers, Gossard and Awschalom,
2004a,b,c; 2003, Hanbicki, van ‘t Erve and Magno, 2003;
Lou et al., 2006). To date, no commercially viable device
has been demonstrated in the field of semiconductor spintron-
ics, but as we gain understanding of the underlying physical
phenomena, it seems increasingly evident that God would
not have created such an extraordinary garden if man were
not meant to enjoy its bounty.

2 COHERENT SPIN ENSEMBLES AND
OPTICAL MEASUREMENT

A significant barrier to the practical use of spins in semi-
conductors is the ephemeral nature of the spin state – unlike
charge, spin is not a conserved quantity. The average time for
the loss of spin information is described by two quantities,
the longitudinal spin lifetime, T1 (also known as the spin-
flip time), and the transverse spin lifetime T2 (also known as
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the coherence time). In general, T1 refers to the time for the
relative amplitudes of the spin eigenstates (e.g., spin-up and
spin-down) to become scrambled and T2 refers to the time
for the relative phase of the eigenstates to be lost. In the
case where many spins are measured simultaneously, inho-
mogeneities in the spin dynamics over the ensemble result
in a reduced effective transverse spin lifetime, referred to
as T ∗

2 .
There are several mechanisms that contribute to the

decay and decoherence of spins in semiconductors. Through
spin–orbit (SO) coupling in a noncentrosymmetric crys-
tal (e.g., zinc blende, wurtzite), an electron’s momentum
acts as a magnetic field seen by the electron spin (Yu
and Cardona, 1996). In the D’yakonov–Perel mechanism
(D’yakonov and Perel, 1971a), as the electron momentum
is repeatedly scattered, the electron spin state is random-
ized as it precesses about this fluctuating effective field.
Furthermore, the SO interaction mixes the spin and momen-
tum eigenstates, directly linking momentum scattering with
spin scattering. This path to spin decoherence is known as
the Elliot–Yafet mechanism (Elliot, 1954). These two spin-
orbit mediated mechanisms show opposite dependence on the
momentum scattering rate. In the Elliot–Yafet mechanism,
more momentum scattering leads to more spin scattering. In
contrast, as momentum scattering increases, the fluctuating
effective field of the D’yakonov–Perel mechanism tends to
‘cancel out’, in an effect akin to motional narrowing seen in
nuclear magnetic resonance (NMR) (Abragam, 1961).

Electron spins can also be flipped through interactions
with other spin systems, such as through the electron–hole
exchange interaction (Bir–Aronov–Pikus mechanism (Bir,
Aronov and Pikus, 1976)), or through the hyperfine inter-
action with nuclear spins (Lampel, 1968). These mecha-
nisms become significant when the electron wave func-
tion has significant overlap with the holes or with nuclei,
respectively.

Despite the inevitability of spin decoherence, relatively
long spin lifetimes have been measured in some semi-
conductor systems. In bulk n-type GaAs, T ∗

2 has been
found to exceed 100 ns at low temperature (Kikkawa and
Awschalom, 1998). The spin lifetime in GaAs is found to
depend strongly on the donor concentration, with a maxi-
mum occurring near the metal–insulator transition owing to
the changing strength of the different spin relaxation mech-
anisms (Dzhioev et al., 2002). Some II–VI semiconductors,
such as ZnSe, show robust spin coherence up to room tem-
perature (Kikkawa, Smorchkova, Samarth and Awschalom,
1997). Such materials have relatively large band gaps and
small SO coupling, and therefore less spin decoherence
owing to the D’yakonov–Perel or Elliot–Yafet mechanisms.
Furthermore, by confining electrons within a quantum dot
(QD), momentum scattering is suppressed, leading to longer

spin lifetimes. T1 times up to 0.85 ms have been measured in
GaAs QDs at 300 mK in a magnetic field of 8 T (Elzerman
et al., 2004) and 20 ms in InAs QDs at 1 K in a 4 T field
(Kroutvar et al., 2004). A time-averaged transverse electron
spin lifetime, T ∗

2 , of 16 ns has been observed in single GaAs
QD (Bracker et al., 2005). In variants of the spin-echo tech-
nique used in NMR (Abragam, 1961), the T2 time of InAs
QDs has been measured to be ∼3 µs at 6 K (Greilich et al.,
2006), and the singlet–triplet coherence time in a double QD
structure has been found to be greater than 1 µs at 135 mK
(Petta et al., 2005).

The selection rules governing optical transitions from
the valence band to the conduction band of noncentrosym-
metric crystals provide a useful means for initializing and
detecting spin polarization in these materials (Meier and
Zakharechenya, 1984) (see Figure 1). The conduction band
minimum (the �-point) is twofold degenerate, corresponding
to the two spin states (S = 1/2, Sz = ±1/2). The six states at
the valence band maximum are split into the fourfold degen-
erate heavy holes (J = 3/2, Jz = ±3/2) and light holes
(J = 3/2, Jz = ±1/2), and the doubly degenerate split-off
holes (J = 1/2, Jz = ±1/2). The split-off band is typically
sufficiently far from the heavy and light holes that split-off
hole transitions can be ignored for excitation near the band
edge.

A circularly polarized photon carries angular momentum
of 1 �, and thus can only drive transitions with �Lz = ±1.
For example, absorption of a photon with l = 1 can drive
the transition from a heavy-hole state with Jz = −3/2 to an
electron state with Sz = −1/2, or the transition from a light-
hole state with Jz = −1/2 to an electron state with Sz = 1/2.
Calculating the dipole transition matrix elements for these

Sz = 1/2

Jz = 3/2 Jz = 1/2 Jz = −1/2 Jz = −3/2

Sz = −1/2

hh lh hhlh

s.o.

hh

lh

c

Eg

(a) (b)

σ+ excitation
σ− excitation

∆

Figure 1. (a) Schematic of the band structure of a zinc-blende
semiconductor, showing the conduction band (c), heavy-hole band
(hh), light-hole band (lh), and split-off hole band (s.o.). Also
indicated are the energy gap, Eg, and the spin-orbit splitting �.
(b) Diagram of the four band-edge transitions and selection rules
for circularly polarized light. The width of the lines indicates the
strength of the transition.
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two transitions, one finds that the heavy-hole transition is
more likely than the light-hole transition by a factor of 3. In
this way, circularly polarized optical excitation near the band
edge results in the pumping of a net electron spin polarization
in the conduction band.

The situation is improved further in strained crystals or
with quantum confinement, which can lift the degeneracy
between the heavy and light holes. In this case, transitions
from only one hole band can be driven resulting in nearly
100% spin polarization.

These spin-dependent selection rules not only allow for the
initialization of spin-polarized electrons and holes, but also
the measurement of spin polarization. In the opposite process
of optical spin pumping, when spin-polarized electrons and
holes recombine radiatively, the resulting luminescence is
circularly polarized. By measuring this polarization, the spin
polarization at the time of the recombination can be inferred.

In a Hanle measurement (Figure 2a), spins are optically
initialized using circularly polarized light perpendicular to an
applied magnetic field. As the injected spins precess about
this field, the steady-state spin polarization is reduced. The
resulting curve of polarization versus magnetic field typically
shows a Lorentzian lineshape, with width proportional to
the transverse spin lifetime. The Hanle technique was used
extensively in early measurements of spins in semiconduc-
tors (Meier and Zakharechenya, 1984), and have been used
more recently in experiments to measure a single electron
spin in a GaAs QD (Bracker et al., 2005) and in measure-
ments of spins injected from a ferromagnetic metal into a
semiconductor light-emitting diode (Strand et al., 2003).

A more direct measurement of spin polarization can be
obtained through the Faraday effect (Faraday, 1846). Here,
a net spin polarization in a material results in a different
index of refraction for left and right circularly polarized light.
Thus when linearly polarized light is transmitted through the
material, the two circularly polarized components acquire a
relative phase shift, yielding a rotation of the polarization
of the transmitted light. The angle through which the
polarization is rotated is proportional to the spin polarization
along the axis of the light propagation. The same effect
occurs upon reflection off the sample, in this case known
as Kerr rotation (KR).

Faraday rotation (or KR) can be used to probe the steady-
state spin polarization, similar to the Hanle measurement
discussed in the preceding text (Figure 2b). By using Faraday
rotation instead of a traditional Hanle measurement, one
gains the ability to measure spins that do not undergo radia-
tive recombination. Additionally, Faraday rotation provides
spectroscopic information about the energy levels occupied
by the spins through the energy-dependence of the Faraday
effect (Meier and Awschalom, 2005). This measurement
technique proves especially useful for spins that are not
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Figure 2. (a) Schematic of a Hanle measurement. Spins are injected
with circularly polarized excitation, and the degree of circular
polarization of the photoluminescence is measured. (b) Schematic of
a DC Faraday rotation measurement. Spin polarization is measured
through the rotation of a linearly polarized probe beam. (c)
Schematic of a time-resolved Faraday rotation measurement. A
circularly polarized pump pulse excites spins, which are probed
a time �t later through the rotation of a linearly polarized probe
pulse.

optically injected. DC Faraday or KR measurements have
recently been used for studying electrical spin injection and
accumulation in ferromagnetic metal/nonmagnetic semicon-
ductor heterostructures (Stephens et al., 2004; Crooker et al.,
2005). Also, measurements of intrinsically generated spin
polarizations through the spin Hall effect (Kato, Myers,
Gossard and Awschalom, 2004c) or current-induced spin
polarization (Kato, Myers, Gossard and Awschalom, 2004b)
are also possible using this method.

The Faraday and Kerr effects can be used in conjunc-
tion with ultrafast optical techniques for time-resolved mea-
surements of spin coherence in semiconductors (Awschalom
et al., 1985; Baumberg et al., 1994; Östreich, Schönhammer
and Sham, 1995; Crooker et al., 1997), (Figure 2c). In such
measurements, a mode-locked Ti:Sapphire laser provides a
train of pump and probe pulses with subpicosecond duration,
which are both focused to a spot on the sample. The pump
pulse is circularly polarized, and serves to optically inject
spin-polarized electrons into the conduction band. The arrival
of the probe pulse is delayed from the pump by changing
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Figure 3. Coherent spin precession in GaN measured by time-
resolved Faraday rotation. (Adapted from Beschoten et al., 2001.)

the optical path length of the probe. The probe is linearly
polarized, and the resulting Faraday (or Kerr) rotation of the
probe serves as an instantaneous measurement of the spin
polarization at the moment of incidence on the sample. If
the spins are initialized into a coherent superposition of spin
eigenstates, the projection of the resulting dynamics along
the probe direction can be observed as a function of time.
For example, Figure 3 shows the coherent quantum beating
between electron spin levels Zeeman-split by a transverse
magnetic field in GaN at room temperature. By fitting such
a curve, the transverse spin lifetime and the electron g-factor
can be extracted.

3 ELECTRICAL GENERATION
AND MANIPULATION OF SPIN
POLARIZATION

In the previous section, we have demonstrated the ability
to create and detect electron spin coherence using optical
means. Here, we address the issue of using electric fields
to create, manipulate, and transport spin-polarized electrons
in semiconducting materials. A significant challenge in the
transport of spin-polarized carriers over useful length scales
and through heterointerfaces is the ability to do so without
destroying the spin coherence. Spatially resolved KR allows
the study of mesoscopic lateral spin transport in devices
with an externally applied, in-plane electric field. In this
pump-probe technique, two beams are normally incident
on the sample and focused to a 15-µm spot. The KR
of the probe maps the electron spin polarization as the
relative separation d of the pump and probe is varied in the
direction of the electric field. Figure 4 follows the optically
injected spin packet as it is dragged along the channel
by an electric field of 60 mV µm−1 in the n-type ZnSe
channel (n = 5 × 1016 cm−3). Extracting the drift velocity
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Figure 4. Schematic of the device geometry for spin drag mea-
surements l = 300 µm, w = 100 µm. Spatial profiles of the opti-
cally injected spin packet, in n-type bulk ZnSe, extracted from
Fourier transforms of θK at E = 60 mV µm−1 for �t = 13.1 ns,
�t = 26.2 ns, �t = 39.3 ns, �t = 52.4 ns, and �t = 65.5 ns, in the
order of decreasing amplitude. (Reprinted with permission Stern
et al., copyright 2006, American Physical Society.)

from the center of the spin packets allows an estimate of the
spin mobility of µs = 89 ± 14 cm2 V−1s−1. This is 20 times
less than that measured in GaAs, where time and spatially
resolved measurements show that spin lifetimes can exceed
hundreds of nanoseconds, and spin packets can be transported
over a hundred microns (Kikkawa and Awschalom, 1999).
These lateral spin drag experiments in both II–VI and III–V
semiconductors demonstrate that spin polarization can be
transported over micron-scale distances in semiconductors
with the application of an electric field.

The interaction between a spin magnetic moment and a
magnetic field B gives rise to the Zeeman energy splitting
and the precession of a spin about a transverse magnetic field
mentioned in Section 2:

HZ = µB
�B · ↔

g · �σ (1)

where µB is the Bohr magneton, �σ is the spin operator,

and
↔
g is the Landé g-tensor. Semiconductors allow a

great amount of control of this interaction through the
material-dependent g-factor (See also Spin Engineering
in Quantum Well Structures, Volume 5). For example,
spin precession can be modulated at GHz frequencies using
an electric field to control the g-factor of electrons in
parabolically graded heterostrcutures (Kato, Myers, Gossard
and Awschalom, 2003). Conventional spin manipulation
through the g-factor is limited, however, in that it still
requires the application of an external magnetic field. But,
the capability of manipulating electron spins in nonmagnetic
semiconductors in the absence of such an external magnetic
field has practical implications for spin-based quantum
information processing (Loss and DiVincenzo, 1998) and
spin-based electronics (Awschalom, Loss and Samarth, 2002;
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Wolf et al., 2001). Single qubit operations require a local
Hamiltonian, which is tunable within coherence times that
generally do not exceed a few nanoseconds. The scaling
down of devices for on-chip integration requires precise
control of magnetic fields at micron-scale dimensions or
even smaller. External magnetic fields are limited on both
accounts – it is both difficult to create large fields in a short
timescale, as well as to spatially localize a field without
complicated architectures.

The SO interaction provides a unique pathway for spin
manipulation through electric fields without magnetic fields
or magnetic materials (Aronov, Lander-Geller and Pikus,
1991). The SO Hamiltonian, given by

HSO = �

4m2
0c

2
[ �∇V (�r) × �p] · �σ (2)

is a consequence of relativity arising from the transformation
of an electric field into a magnetic field in the frame of
a moving electron. According to the form of equation 2,
the electric field and orbital momentum create an effective
magnetic field that acts on the spin operator in the same
way as the magnetic field in equation 1. This electric
field need not be a real field, but a ‘quasi electric field’,
arising from asymmetries in the crystal field, the band
gap, or strain-induced spin splitting. In this part of the
chapter, we describe experiments investigating the existence
of strain-induced internal magnetic field in n-GaAs and
n-ZnSe and show electrical generation of spin polarization
in these semiconductors through SO coupling, performed
at low temperatures in GaAs (Kato, Myers, Gossard and
Awschalom, 2004b) and at higher temperatures persisting to
300 K, in ZnSe (Stern et al., 2006).

The GaAs samples are grown by molecular-beam epi-
taxy (MBE) and consist of a 2-µm n-GaAs layer (n =
3 × 1016 cm−3) acting as a spin probe layer at the surface
and a 2-µm film of Al0.4Ga0.6As underneath serving as a
stressor/etch layer. The semi-insulating GaAs (001) substrate
is removed by chemical etching in order to form a rectan-
gular membrane with dimensions ∼100 by ∼300 µm. The
processed membrane has curvature, possibly due to the larger
lattice constant or the oxidation of the Al0.4Ga0.6As layer,
thereby straining the n-GaAs film. Ohmic contacts are evapo-
rated on the surface in order to apply an in-plane electric field
E along the [110] crystallographic direction. The in-plane
strain, estimated using optical interference fringes at room
temperature, is ∼10−5.

Electron spin dynamics is probed using the same time-
resolved KR technique mentioned earlier for studying
spin transport. Figure 5(a)–(d) shows the spatiotemporal
evolution of a coherent electron spin packet with zero
external field, under various applied E. The spin packet
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Figure 5. Spatiotemporal evolution of the photoexcited spin packet
at zero magnetic field. (a)–(d) FR as a function of pump-probe sep-
aration and time delay for E = 0, 33, 67, 100 V cm−1, respectively.
The dotted lines are determined by the drift velocity of the spin
packet. (e) Linecuts along the dotted lines in (b)–(d). (Reprinted
by permission from Nature Kato et al., copyright 2004 Nature Pub-
lishing Group.)

drifts in the electric field, as expected, but it also coherently
precesses in time about an internal magnetic field Bint gen-
erated by SO coupling for momentum k �= 0. The precession
angle is in excess of 3π over 60 µm in 13 ns and is propor-
tional to the electric field. To accurately characterize Bint,
KR is measured as a function of an external magnetic field
Bext. As in the case of time-resolved KR, the spin polar-
ization signal oscillates and decays in time according to
θ0exp(−�t/T ∗

2 )cos(gµBB�t/�), where �t is the pump-
probe time delay (in these measurements, fixed at 13.1 ns),
θ0 is the initial amplitude at �t = 0, T ∗

2 is the transverse
spin coherence time, g is the electron g-factor, and B is
the magnitude of the transverse magnetic field experienced
by the electron spins. In the absence of an applied electric
field (Figure 6, top trace), the average k = 0 and therefore
Bint = 0 and the oscillations are centered at B = Bext = 0.
With an applied E perpendicular to Bext (center trace), both
the external and internal magnetic fields are along y and add
directly so that B = Bext + Bint and the oscillatory signal is
centered at −Bint. For E parallel to Bext, Bint is perpendicu-
lar to Bext (Kato, Myers, Gossard and Awschalom, 2004a;
Sih et al., 2006a) resulting in a total field magnitude of

B =
√

B2
ext + B2

int which is always greater than zero for a
nonzero Bint, causing suppression of the center peak (bottom
trace).

In both cases in the preceding text, with nonzero electric
field the amplitude of the signal decreases with increasing
voltage, which is further investigated by spatially separating
the pump and the probe by a distance d along the direction
of E (Figure 7). Owing to the laser profile of the pump
beam, the optically injected spins have a Gaussian spatial
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profile which is centered at d = 0 when E = 0. An applied
voltage (E �= 0) imparts a nonzero average momentum k to
the injected spin packet, causing it to drift with an average
velocity vd. Spins at the leading edge of the packet experience
a larger Bint than the trailing edge. This variation is due to
the spread in the drift velocities of the spin packet arising
from spin diffusion. The reported value of Bint for each E are
obtained from a linear fit at the center of the spin packet, and
is observed to be more than 20 mT. The spin splitting arising
from this Bint, �0 = gµBBint, is plotted as a function of vd.
Figure 7 (inset) shows a phenomenological linear relation
�0 = βvd. In the data presented, β = 99 neV ns µm−1, while
in an unstrained sample (without substrate removal) β is

almost an order of magnitude smaller, decisively linking the
internal magnetic field to the strain-induced spin splitting in
the semiconductor.

The electrical manipulation of spin states discussed so
far still requires the creation of coherent spins by opti-
cal injection. Encoding of spin information without opti-
cal or magnetic techniques offers a significant step toward
an all-electrical protocol for spintronic devices. Early the-
oretical work points out the possibility of using a current
flow to obtain magnetization in materials lacking inversion
symmetry (Levitov, Nazarov and Eliashberg, 1985) (such
as the zinc-blende semiconductors n-GaAs and n-ZnSe).
Prior experiments for detection of current-induced spin
polarization (CISP) in other systems (Hammar, Bennet,
Yang and Johnson, 1999; Vorob’ev et al., 1979) had added
complications.

The same materials and techniques described above can be
used to investigate CISP. Figure 8(a) shows the measurement
geometry for studying CISP in an n-In0.07Ga0.93As channel
with a built-in strain field. An alternating electric field with
amplitude E = Vpp/(2l) is established along the InGaAs
channel of width w and length l. The current-induced KR is
lock-in detected and is measured as a function of magnetic
field Bext applied parallel to the alternating E (Figure 8b).
The curves in Figure 8(b) can be explained by assuming
a constant orientation rate γ for spins polarized along the
y axis. In a similar process to the Hanle measurement
(Figure 2a), the z component of spin per unit volume ρz

can be written as

ρz =
∞∫

0

dtγ exp(−t/T ∗
2 )sin(ωLt) = ρel

ωLT ∗
2

(ωLT ∗
2 )2 + 1

(3)

where γ is the number of spins oriented along the y

axis per unit time per unit volume, T ∗
2 is the transverse

spin coherence time, ωL = gµBB/� is the electron Larmor
frequency, and ρel = γ T ∗

2 is the steady-state spin density
due to electrical excitation. The upper limit for the integration
is taken as infinity because the modulation period is much
longer than T ∗

2 . This odd Lorentzian shape is indicative of
spins generated in plane and perpendicular to E. Temperature
dependence of this effect shows ρel(∼10 µm−3) not varying
significantly up to T = 60 K. At higher T , ρel becomes
smaller due to the decline of T ∗

2 , and is below the noise
level for T > 150 K. Similar measurements in 1.5 µm-thick
n-ZnSe samples yield a ρel ∼ 12 µm−3 at T = 20 K, with
CISP signal persisting up to room temperature.

Although qualitatively understood as arising from SO
coupling, the microscopic origin of CISP is not well
understood. Strain-enhanced inversion asymmetry terms in
the Hamiltonian manifest as Bint and could generate the
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Figure 8. (a) Schematic of the device and geometry in measuring
current-induced spin polarization. Squares are the metal contacts at
the ends of the channel. (b) Voltage-induced FR as a function of
Bext for E = 5 and 20 mV µm−1 with E||[110]. Open circles are
data and the solid lines are the fits to equation (3). (Data originally
presented in Kato, Myers, Gossard and Awschalom, 2004b.)

spin polarization. In general, the internal magnetic field
strength shows a close correlation to the amount of strain
in n-GaAs structures, but the CISP shows little correlation
to the strength of Bint. In the experiment with n-ZnSe epilay-
ers, the CISP is comparable in magnitude to that observed
in GaAs, which is most surprising, since no Bint is measured
in these thick n-ZnSe samples.

4 EXPERIMENTAL OBSERVATION
OF THE SPIN HALL EFFECT

Electrically induced spin polarization can also be generated
when current flows in a semiconductor with SO coupling,
where carriers can be deflected in spin-dependent directions
through the spin Hall effect. The spin Hall effect refers
to the generation of a spin current transverse to a charge
current in the absence of an applied magnetic field. A
pure spin current can be interpreted as an equal number
of spin-up and spin-down electrons moving in opposite
directions, resulting in a flow of a spin angular momentum
with no net charge current. The source of the transverse
spin current can be either extrinsic or intrinsic spin-orbit
mechanisms, analogous to the origin of the anomalous Hall
effect. The extrinsic spin Hall effect was first predicted due to
spin-dependent scattering off impurities in a semiconductor

crystal (D’yakonov and Perel, 1971b). SO coupling mixes
spin and momentum eigenstates leading to skew and side-
jump scattering mechanisms which drive the transverse
spin current (Engel, Halperin and Rashba, 2005). More
recently, an intrinsic spin Hall effect was predicted as arising
from the momentum-dependent internal magnetic field Bint

which arises from SO coupling (Murakami, Nagaosa and
Zhang, 2003; Sinova et al., 2004). These Dresselhaus and
Bychkov–Rashba fields arise from bulk inversion asymmetry
or structural inversion asymmetry, respectively, and generate
spin splitting in the electron bands for momentum k �= 0 in
semiconductors without an inversion center. These effective
internal magnetic fields are inherent in the band structure of
the crystal and do not depend on the presence of impurities.

4.1 Observation of the spin Hall effect in bulk
Gallium arsenide

The first optical detection of the spin Hall effect (Kato,
Myers, Gossard and Awschalom, 2004c) was performed on
a series of 2 µm-thick GaAs epilayers with a Si doping
density n = 3 × 1016 cm−3 grown by MBE on a (001) semi-
insulating GaAs substrate. The epilayers were patterned by
photolithography and etched into a semiconducting channel
with a metallic contact on each end. The structures are cooled
to T = 30 K in a helium flow cryostat. When current is
sent through the semiconducting channel, a transverse spin
current develops due to the spin Hall effect. This pure spin
current cannot be measured directly, but it does result in a
spin accumulation on the edges of the channel, which can be
detected optically.

Figure 9(a) shows an unstrained GaAs sample with
a channel of width w = 77 µm and length l = 300 µm
patterned parallel to the [110] crystallographic direction.
The sample is measured with a scanning Kerr micro-
scope (Stephens et al., 2003) which provides ∼1 µm spatial
resolution to detect the KR of a linearly polarized 825-nm-
wavelength probe beam. Figure 9(b) shows KR as a func-
tion of external applied magnetic field Bext. The curves are
analogous to the Hanle effect (Meier and Zakharechenya,
1984) previously discussed in terms of both luminescence
polarization and DC Kerr measurements. Spin polarization
is generated out of the plane of the channel by the spin Hall
effect, which precesses about the transverse magnetic field
Bext as it decoheres. The KR of the spatially resolved probe
measures the time-averaged polarization projected along the
beam direction (z axis), which is well-fit by a Lorentzian
function given by

θK = θ0

(ωLτ )2 + 1
(4)
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Figure 9. The spin Hall effect in unstrained GaAs. Data are taken at T = 30 K and a linear background has been subtracted from each Bext

scan. (a) Schematic of the unstrained GaAs sample and the experimental geometry. (b) Typical measurement of KR as a function of Bext

for x = −35 µm (top) and x = +35 µm (bottom) for E = 10 mV µm−1. Solid lines are fits as explained in text. (c)–(d) Spatial dependence
of peak KR A0 and spin lifetime across the channel, respectively, obtained along the linecut in (a). (e) Reflectivity R as a function of x.
R is normalized to the value on the GaAs channel. The two dips indicate the position of the edges and the width of the dips gives an
approximate spatial resolution. (Reprinted with permission Kato et al., copyright 2004, AAAS.)

where θ0 is the amplitude of KR and ωL = g µBB/�.

(g = −0.44 for this sample as measured using time-resolved
KR). This Lorentzian form is analogous to equation 3, except
the spin polarization is generated out of plane along the
probe beam direction rather than in the plane. θ0 is of
equal magnitude and opposite sign for the two edges of
the sample (Figure 9c), as expected for the spin Hall effect
(Hirsch, 1999; Zhang, 2000). The density of accumulated
spin polarization (which is proportional to θ0) is a maximum
at the edges of the channel and decreases with distance
from the edge. The accumulation can be quantitatively
analyzed using solutions to a drift-diffusion model for the
spin current (Zhang, 2000), giving a spin diffusion length of
Ls∼3 − 4 µm.

A two-dimensional spatially resolved image of the entire
channel shows the electrically induced spin accumulation of
opposite sign on either edge of the sample (Figure 10). The
polarization is uniform over the length of the channel but
decreases near the contacts as would be expected from the
unpolarized electrons injected at the contacts.

The origin of the spin Hall effect in the GaAs epilayers is
likely extrinsic spin-dependent scattering. The k-dependent
spin splitting in unstrained GaAs is weak, and similar

observations in strained InGaAs show no marked crystallo-
graphic direction dependence that would link the spin accu-
mulation to the band structure. Measurements in strained
InGaAs channels show similar spin accumulation with an
additional Bint, but the presence of this intrinsic SO field
does not qualitatively change the effect.

4.1.1 The intrinsic spin Hall effect
in a two-dimensional hole gas

The spin Hall effect was also observed in a two-dimensional
hole gas (Wunderlich, Kaestner, Sinova and Jungwirth,
2005). In this experiment, a novel p−n junction light-
emitting diode microdevice in coplanar geometry was fab-
ricated using optical and electron beam lithography in
modulation-doped AlGaAs/GaAs heterostructures grown by
MBE (see Figure 1 in Wunderlich, Kaestner, Sinova and
Jungwirth, 2005). The sample was cooled to a temperature
of 4.2 K, and an in-plane electric field is applied along the
p channel of the microdevice (see Figure 3 in Wunderlich,
Kaestner, Sinova and Jungwirth, 2005) generating a nonzero
out-of-plane hole spin polarization. The polarization of the
emitted light depends on the direction of the hole spins,
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allowing optical detection of the spin polarization at the
edges of the p channel. The polarization of this light changes
sign for the opposite edges of the channel. In addition, the
polarization of the emitted light also changes sign when the
direction of the applied electric field is reversed, consistent
with the predicted spin Hall effect. In contrast to the measure-
ment of extrinsic spin Hall effect through KR, microscopic
quantum transport calculations suggest that the observed spin
Hall effect is intrinsic owing to the strong SO coupling of
the two-dimensional hole gas (Wunderlich, Kaestner, Sinova
and Jungwirth, 2005).

4.1.2 The spin Hall effect in a two-dimensional
electron gas

The spin Hall effect can also be measured in two-dimensional
electron systems, first done in modulation-doped single
quantum wells are grown by MBE on (110) semi-insulating
GaAs substrates (Sih et al., 2005). Similar devices and
measurement techniques are used as those used in the original
KR measurement of the spin Hall effect. Figure 11(c) shows
a one-dimensional spatial profile of the spin accumulation
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near the edges of the channel. Two spin Hall peaks at each
edge of the channel are visible, one at x = ±58.6 µm and
one of smaller amplitude at x = ±56.4 µm. This structure
could be due to an additional contribution from spin-
polarized carriers undergoing spin precession about the in-
plane Bychkov–Rashba field as they diffuse from the edges
toward the center of the channel.

Optical measurements in (110)-oriented quantum wells
also allow study of the two spin-orbit mechanisms respon-
sible for internal magnetic fields by allowing one to isolate
the contributions of the Dresselhaus and Bychkov–Rashba
effects. In two-dimensional systems, the Dresselhaus field is
oriented along the growth direction in (110) quantum wells,
whereas this field is in plane in (001) quantum wells. Since
the Dresselhaus and Bychkov–Rashba fields are mutually
perpendicular, one can observe a dependence of the CISP on
the direction of the current flow in the semiconductor and
the interplay of the Dresselhaus and Bychkov–Rashba fields
(Sih et al., 2005).

4.1.3 Evidence of pure spin current generated
by the spin Hall effect

Despite the strong evidence for the observation of the spin
Hall effect, the source of the spin accumulation is not
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clear. Theory of the spin Hall effect would suggest that
a transverse spin current is created in the bulk of the
semiconductor channel, but since spin is not a conserved
quantity in a material with SO interactions, the very concept
of a spin current is not well defined (Sih et al., 2005). This
difficulty causes uncertainty about the existence of a real pure
spin current causing spin accumulation in the experiments.
Indeed, models of spin accumulation are sensitive to the
boundary conditions imposed at the edges (Tse, Fabian,
Zutic and Das Sarma, 2005). Edge effects such as carrier
depletion can cause local effective magnetic fields, which
could potentially give rise to spin accumulation without the
production of a bulk spin current.

Devices can be engineered to distance the boundary of
the current in the channel from the edges of the sample,
thereby separating spin accumulation from the physical
edge of the sample (Sih et al., 2006b). Using the same
GaAs material described previously, 60-µm-wide channels
are fabricated along the [110] crystallographic direction
with smaller 40-µm-wide channels extending from the main
channel transverse to the current flow, shown schematically
in Figure 12(a).

The spin polarization amplitude for a 60-µm-wide channel
and for 10-, 20-, and 40-µm-wide side arms are displayed in
Figure 12(b). The spin polarization amplitude near the left
edge at x = −30 µm is unaltered in the presence of the side
arms. In contrast, the spin polarization amplitude near the
right edge x = 30 µm is modified by the addition of the
side arms. The spin polarization amplitude is not always
largest near the edge of the channel, indicating that the spin
accumulation is not a local effect caused by the sample’s
physical boundary. The amplitude of the spin polarization is
smaller for longer side arms at any position x, consistent with
spins drifting from the main channel toward the end of the
side arms. The measurements can be successfully modeled
by a spin drift-diffusion model (Crooker et al., 2005; Lou
et al., 2006) of a spin current being generated throughout the
bulk of the channel and drifting into the side arms, where
there is no generation of spin polarization since there is
negligible electron current (Figure 12). These measurements
demonstrate that the spin polarization from the spin Hall
effect is not restricted to the sample edges. The spin current
generated in the bulk of the channel can drive spin transport
over length scales significantly longer than the spin diffusion
length Ls = 9 µm in the sample.

4.2 Electrical measurement of the spin Hall effect

Optical measurements enable measurement of the spin Hall
effect through the direct connection between light polariza-
tion and carrier spin through the selection rules in zinc-blende
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permission Sih et al., copyright 2006, American Physical Society.)

semiconductors. Since the spin Hall effect is an example of
all-electrical generation of spin, it is desirable to be able to
detect spin accumulation entirely on-chip without the need
for external laser systems. Further, electrical detection may
enable a more direct measurement of the spin Hall conduc-
tivity of a material. Various proposals have been made to
measure the spin Hall effect electrically in metals and semi-
conductors (Hankeiwicz, Molenkamp, Jungwirth and Sinova,
2004; Shchelushkin and Brataas, 2005).

Direct electronic detection of the spin Hall effect was first
demonstrated in a diffusive metallic conductor (aluminum)
(Valenzuela and Tikham, 2006). In this measurement, the
device, which consists of an aluminum strip with side
arms and a ferromagnetic electrode, was fabricated using
electron beam lithography and a shadow mask evaporation
technique (see Figure 1 in Valenzuela and Tikham, 2006).
The measurements are performed at 4.2 K. Spin-polarized
electrons are injected from the ferromagnetic electrode into
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the Al strip by applying a voltage between the electrode and
one end of the Al strip. The spin-polarized charge current
flowing in the Al strip creates a spin current flowing in the
opposite direction due to diffusion of spin-polarized carriers.
SO interactions separate the spin-up and spin-down electrons
generating a transverse spin current that leads to spin
accumulation at the edges of the Al strip. Unequal numbers
of spin-up and spin-down electrons in the Al strip leads to
a charge imbalance across the strip producing a spin Hall
voltage proportional to the spin polarization. This process is
based on the same principles as the anomalous Hall effect,
but occurs in a nonmagnetic material. The measured spin
conductivity is consistent with the result of the theoretical
calculations using semiclassical Boltzmann approximation
(Zhang, 2000). The measured spin Hall voltage in this
experiment is of the order of 10 nV, and the corresponding
spin Hall conductivity (σ SH) is approximately 10−3�−1 m−1

which is 10−4 times smaller than the charge conductivity
(σ C) in Al.

4.3 The spin Hall effect at room temperature
in Zinc selenide

Optical measurements of the spin Hall effect and other forms
of all-electrical spin generation were typically performed in
the III–V semiconductor GaAs, which has long spin coher-
ence times as well as strong SO coupling effects. Despite
the typically weaker SO coupling in II–VI semiconductors
(Winkler, 2003), both CISP and the spin Hall effect have
been observed through KR in 1.5-µm-thick n-type Cl-doped
ZnSe epilayers with n = 9 × 1018 cm−3 (Stern et al., 2006).
Observation of the spin Hall effect is highly dependent on
n-doping, as no spin Hall signature is measured in samples
with lower n.

In this experiment, careful attention was paid to measure
the sign of the spin accumulation, with the results shown
in Figure 13(a). The spin Hall conductivity is measured
to be of the same order of magnitude and the same sign
to what has been predicted by theory for GaAs with a
dominant extrinsic spin Hall effect (Engel, Halperin and
Rashba, 2005; Tse and Das Sarma, 2006). ZnSe exhibits
long spin coherence times even up to room temperature
(Malajovich et al., 2000), and both the CISP and the spin
Hall effect persist up to room temperature as well (Figure 13d
and e) with little decrease in the spin diffusion length and
only an order of magnitude decrease in spin polarization
and spin Hall conductivity. The spin Hall conductivity is
proportional to the charge conductivity, suggesting extrinsic
spin-orbit mechanisms. This result is the first evidence of
all-electrical generation and separation of spin polarization
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at room temperature, hinting at the possibility of utilizing
these phenomena in functional spintronics devices.

5 SPIN COHERENCE IN MAGNETIC
SEMICONDUCTORS

In previous sections, we discussed the possibilities for
generating and manipulating coherent ensembles of spins in
semiconductors using optical and electrical techniques. Spins
also interact with local moments in a semiconductor, such as
magnetic impurities. The interactions between coherent spins
and magnetic moments in a semiconductor offer a pathway
for realizing hybrid materials which can take advantage
of the long-lived spins of localized impurities and the
ability to optically and electrically manipulate coherence in
semiconductors.

Magnetic coupling between two spins in most semicon-
ductors is dominated by the electrostatic exchange inter-
action. In semiconductors doped with only small amounts
of magnetic atoms, even the exchange interactions are too
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short-ranged for magnetic ordering to occur. But, the itinerant
band carriers are strongly affected by exchange with the
doped magnetic atoms in the lattice due to their spatial over-
lap with the random local magnetic moments. Even in dilute
magnetic systems, exchange interactions are not negligible,
causing a giant Zeeman spin splitting in a magnetic field
where the energy difference between spin-up and spin-down
states of electrons can be increased by orders of magnitude.

Carrier–ion spin interactions in dilute magnetic semicon-
ductors include both direct and kinetic exchange processes
(Kacman, 2001). The interaction between the s-symmetry
conduction band or p-symmetry valence band and the local-
ized d states of magnetic impurities are known and the s−d
and p−d exchange interactions, respectively. In this section,
we will discuss a series of phenomena that arise in mag-
netic semiconductors due to the sp−d exchange interactions
between spin-polarized carriers and a dilute system of mag-
netic moments doped into the host semiconductor.

5.1 Manipulating carrier exchange interactions
in semiconductors

Early experiments on spins in magnetic semiconductors were
typically performed in II–VI semiconductors where high
solubility of magnetic dopants is achieved because of the
compatible valence between typical transition-metal dopants
and the group II cations. Conduction and valence band spins
can be accessed through optical techniques such as photolu-
minescence and absorption, where spin energy splittings can
be readily extracted. Treating sp−d exchange as a mean-field,
dilute paramagnetic impurities induce an additional effective
magnetic field on the carriers. Time-resolved measurements
of coherent spin precession in paramagnetic semiconductors
reveal an enhanced spin-flip scattering due to the magnetic
impurities and an enhanced spin-splitting energy. The Larmor
precession νL in a transverse magnetic field (e.g., along the
x axis) is proportional to the total conduction band spin-
splitting energy between spin-up and spin-down electrons
(�E = E↑ − E↓) and can be expressed in terms of the Zee-
man splitting (�Eg), and the s−d exchange splitting (�Esd):

hνL = �E = �Eg + �Esd = gµBBx − xN0α 〈Sx〉 (5)

Here 〈Sx〉 is the component of Mn2+ spin along B, x is the
concentration of magnetic ions, and N0α is the s−d exchange
parameter. Measuring the precession frequency of electron
spins in a paramagnetic semiconductor allows extraction the
s−d exchange energy in the material (Figure 14).

The strength of sp−d exchange interactions depends
directly on the overlap of the carrier wave functions and
the d orbitals of magnetic atoms. A graded parabolic
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quantum well allows for direct tuning of the exchange energy
of electrons by electrical gating after the heterostructure
growth. In an experiment by Myers et al. (2005a), a gated
quantum well of Zn1−xCdxSe with x parabolically graded
from x = 0 in the barriers to x = 0.15 at the center is grown
by MBE. Four submonolayer digital regions of MnSe are
deposited in the center of the well. When an electrical bias is
applied to a parabolic potential, the center position of the con-
fined electron will shift with minimal distortion in the wave
function (Figure 15a). The tails of the electron wave func-
tion will overlap with the MnSe layers less than the center,
thereby allowing direct electrical tuning of the s−d exchange
in the device. Time-resolved Kerr rotation (TRKR) is used to
measure the precession frequency of the electrons as a func-
tion of the electrical bias (Figure 15b). Whereas spins in a
nonmagnetic quantum well show little tuning, the precession
frequency of the electrons in the magnetic quantum well have
an effective enhancement to their g-factor from the magnetic
layers which tunes as the bias is changed. The TRKR mea-
surements also reveal that the Mn spin system is tipped by the
p−d exchange away from its equilibrium magnetization in a
process that will be discussed in more detail later. The pre-
cession frequency of the photoexcited carriers can be further
tuned by laser excitation energy. The s−d exchange is effec-
tively reduced using higher laser energy, At higher excitation
energies, the carriers are injected in higher exciton sublevels
of the quantum well whose wave functions do not overlap as
efficiently with the Mn2+-doped layers as the s-symmetry
ground state. The resulting effective electron g-factor is
reduced closer to the nonmagnetic value (Figure 15c).

The sp−d exchange interactions are sensitive to changes in
band symmetry caused by quantum confinement. Figure 16
shows measurements of the s–d exchange energy extracted
from TRKR of coherent spin precession in Ga1−xMnxAs
quantum wells of varying confinement energy (Myers et al.,
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2005b; Poggio et al., 2005). The quantum well confinement
is controlled varying the quantum well width. The s−d
exchange becomes more antiferromagnetic with increasing
confinement energy. This trend was first observed in CdM-
nTe quantum wells (Mackh, Ossau, Waag and Landwehr,
1996) and explained as a confinement-induced band mixing
(Merkulov et al., 1999). Quantum confinement increases the
kinetic energy of electrons in the quantum wells, bringing

the electrons away from the zone center in k space. Away
from k = 0, mixing of the conduction and valence bands
alters the symmetry of electron states. Since p−d exchange
is antiferromagnetic (negative), the partial p symmetry of
the conduction band for k �= 0 causes the s−d exchange to
become more antiferromagnetic. This phenomenon is gen-
eral to both II–VI and III–V paramagnetic quantum wells,
providing a broad method of engineering electron exchange
interactions in heterostructure devices.

5.2 Coherent spins and local magnetic moments

In addition to the effects of magnetic interactions on car-
rier spins discussed in the preceding text, spin polarization
in the bands also influences the magnetic atoms in the semi-
conductor, in some cases inducing magnetic order. One of
the earliest indications of the importance of carrier spin to
the magnetic ordering of a magnetic semiconductor was the
bound magnetic polaron, invoked to explain a decrease of
resistivity with increasing magnetic field in Eu-chalcogenides
(von Molnar and Methfessel, 1967; Kasuya and Yanase,
1968). A bound magnetic polaron forms when carriers are
captured near magnetic donors or acceptors. Exchange inter-
actions between the trapped spins and the paramagnetic
impurities align nearby magnetic spins, causing an indi-
rect, band-mediated ferromagnetism between the magnetic
impurities. The resulting ‘ball’ of polarized atoms around
the trapped carrier is the magnetic polaron. This dynamic
magnetic ordering into polarons has been found to be a uni-
versal phenomenon in magnetic semiconductors (Kasuya and
Yanase, 1968).

The dynamics of polaronic spin ordering can be observed
optically with TRKR, as was first done in CdMnTe
(Awschalom et al., 1985). In this experiment, a strong laser
pump pulse injects spin-polarized acceptor bound excitons
into the material. A subsequent probe pulse does not mea-
sure the bound excitons, but rather detects a low-temperature
magnetization signal which increases rapidly over ∼200 ps
before decaying away. Exchange interactions between the
photoexcited electron and the Mn ions surrounding the exci-
ton polarize the spins of the magnetic impurities forming
the polaron. Larger magnetic fields increase the strength of
the resulting Mn polarization detected. The magnetization
disappears above T = 10 K, but at low temperatures the time-
resolved technique captures this dynamical magnetization of
the semiconductor in real time.

Angular momentum from photo-injected spin-polarized
carriers can be coherently transferred to the magnetic sys-
tem. TRKR measurements from magnetic ZnSe/(Zn, Cd,
Mn)Se quantum wells reveal THz-frequency electron spin
precession at the enhanced g-factor due to s−d exchange
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(Figure 17). Further, the decoherence time of the electrons
is only ∼20 ps due to the enhanced spin-flip relaxation from
the magnetic impurities (Crooker et al., 1996).

The measurements from these quantum wells also reveal
an oscillating component, which persists for nanoseconds
longer than the spin polarization of the optically injected
electrons (Figure 17). The frequency of this long-lived pre-
cession corresponds to g = 2, and is unchanged with tem-
perature or sample parameters. The photoexcited carriers
impart a transverse magnetization to the ensemble of Mn
spins, which then precess at microwave frequencies about
the applied magnetic field independently of the electron
spins. This transfer of angular momentum from the opti-
cally injected spin-polarized carriers occurs through the p−d
exchange coupling. The hole magnetization provides an
effective exchange field which tips the Mn spin polarization
away from the equilibrium direction of the external field. The
magnetization vector precesses around the magnetic field at
g = 2 as detected in the TRKR as if it were optically injected
by the pump beam. This result demonstrates that spin infor-
mation can be coherently transferred to the magnetic lattice
where it will remain long after the original spin-polarized
carriers have recombined.

5.3 Ferromagnetic semiconductors and outlook

When the concentration of magnetic atoms and carriers is
high enough in some magnetic semiconductors, the delo-
calized carriers can mediate a ferromagnetic interaction
between the magnetic impurities (Kacman, 2001). This
carrier-mediated ferromagnetism was first observed in the

III–V dilute magnetic semiconductors InMnAs and GaMnAs
(Ohno et al., 1992, 1996) grown through low-temperature
MBE to increase the solubility of Mn in the III–V lat-
tice. Beyond the rich scientific interest, carrier-mediated
ferromagnetism is attractive from a technological stand-
point because the magnetic interaction can be electrically
tuned through the electrical properties of the semiconductor
(Ohno et al., 2000). Ferromagnetic semiconductors provide
a medium to combine the capabilities of magnetic and semi-
conductor devices in a single material, driving research in
the fields of spintronics and materials science to improve the
understanding and engineering of these materials.

Because of the low-temperature MBE necessary to increase
the solubility of magnetic dopants to ferromagnetic levels, the
defect levels in ferromagnetic semiconductors are high. As
such, optically injected spin coherence has not yet been mea-
sured in ferromagnetic III–V semiconductors. Coherent spin
dynamics have recently been observed in GaMnAs quantum
wells (Myers et al., 2005b), but the materials are only para-
magnetic because of the low Mn2+ concentration required
to observe coherent dynamics. It would be revolutionary to
combine ferromagnetic semiconducting materials with the
ability to manipulate coherent spin phenomena. Such a union
would not only allow the scientific study of dynamic mag-
netization by coherent spin-polarized carriers, but also bring
powerful new functionality to spintronic devices relevant for
both logic and memory applications.
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1 INTRODUCTION

Recent advances in semiconductor spintronics and, more
specifically, spin-based quantum computing in solid-state
systems, have encouraged significant research efforts in
the last years (Prinz, 1998; Wolf et al., 2001; Awschalom,
Loss and Samarth, 2002). Much of this research is moti-
vated by pressure on the electronics industry to maintain
Moore’s-law growth in systems with components that are
very quickly approaching the nanoscale, where quantum
mechanics becomes important (ITRS, 2005). Additionally,
nanoscale devices provide a unique opportunity to study the

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

fundamental physics of quantum phenomena in a controllable
environment.

Independent of the particular motivation, if quantum
information processing is to progress beyond basic proof-of-
principle experiments, it must be based on a viable, scalable
qubit (a quantum-mechanical two-level system, which can be
placed in an arbitrary superposition of its basis states: |ψ〉 =
a |0〉 + b |1〉). The two states of single electron spins (|↑〉 =
|0〉 and |↓〉 = |1〉), confined to semiconductor quantum dots
(the Loss–DiVincenzo proposal), are one such qubit (Loss
and DiVincenzo, 1998). These qubits are viable, in the sense
that they make use of fabrication techniques and electrical
control concepts that have been developed over the last five
decades in research laboratories and industry. The secret to
scalability in the Loss–DiVincenzo proposal lies in local
gating; this proposal would implement gating operations
through the exchange interaction, which can be tuned locally
with exponential precision, allowing pairs of neighboring
qubits to be coupled and decoupled independently. This is to
be contrasted with proposals that make use of long-ranged
interactions (e.g., dipolar coupling) for which scalability
may be called into question. The local, tunable nature
of interqubit interactions in the Loss–DiVincenzo proposal
is what makes it possible to consider first isolated one-
qubit (single quantum dot), then isolated two-qubit (double
quantum dot) systems. Once single and double quantum
dots are understood, along with environmental coupling
mechanisms, a quantum computation can proceed through
a series of one- and two-qubit operations, without great
concern regarding interactions between three, four, and more
qubits.

There are many other proposals for qubits and associated
quantum control processes. Some examples include vari-
ous proposals that use superconducting devices (for reviews,
see Makhlin, Schön and Shnirman, 2001; Burkard, 2004),
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proposals for ‘adiabatic quantum computing’, in which
quantum computations are performed through adiabatic
manipulation of coupling constants in physically realiz-
able Hamiltonians (Farhi, Goldstone, Gutmann and Sipser,
2000; Farhi et al., 2001; Wu, Zanardi and Lidar, 2005)
(this might be used to perform fast quantum simula-
tions of, for example, superconducting pairing models (Wu,
Byrd and Lidar, 2002)), electron-spin qubits encoded in
two-spin states (Levy, 2002) or many-spin chains (Meier,
Levy and Loss, 2003a,b) (recent work showing that such
spin chains can be built-up atom-by-atom on a surface
(Hirjibehedin, Lutz and Heinrich, 2006) is a possible
first step to implementing such a proposal), cavity-QED
schemes (Sleator and Weinfurter, 1995; Domokos, Raimond,
Brune and Haroche, 1995), trapped-ion proposals (Cirac
and Zoller, 1995), and so on. Each of these proposals
has advantages and disadvantages. Here we do not com-
pare the relative merits of all proposals, but instead focus
on proposals involving electron spins confined to quan-
tum dots.

Before a quantum computation can begin, the qubits in
a working quantum computer must be initialized to some
state, for example, |0〉. These qubits must be sufficiently
isolated from the surrounding environment to reduce deco-
herence, there must be some way to perform fast single-
and two-qubit operations in a timescale much less than the
qubit decoherence time, and it must be possible to read
out the final state of the qubits after any quantum com-
putation (DiVincenzo, 2000). In the following sections, we
address these issues and others which are important for the
Loss–DiVincenzo proposal. In the process, we survey some
recent work on quantum computing with electron spins in
quantum dots.

Owing to the rapid development of this field, there have
been many recent reviews on quantum-dot quantum comput-
ing. Among these numerous reviews, there has been work
that focuses on single-electron charge qubits in double dots
(Fujisawa, Hayashi and Sasaki, 2006), the implementation
of single-electron spin resonance (ESR), and the molecular
wave functions of coupled double dots (van der Wiel et al.,
2006), various proposals for spin-based quantum comput-
ing (Cerletti, Coish, Gywat and Loss, 2005), silicon-based
proposals for quantum computing (Koiller et al., 2005), gen-
eral quantum computing in the solid state, including both
quantum dots and superconducting systems (Burkard, 2004),
experiments and experimental proposals for quantum-dot-
confined electrons (Engel, Kouwenhoven, Loss and Marcus,
2004), the many coupling schemes and decoherence mech-
anisms for quantum-dot spin qubits (Hu, 2004), and opti-
cal properties of quantum dots (Hohenester, 2004). In this
review, we analyze the Loss–DiVincenzo proposal from the
viewpoint that this proposal can be decomposed into first

single and then double quantum dots, with a special emphasis
on double-dot physics.

This review is organized as follows: in Section 2, we
give a brief summary of the Loss–DiVincenzo proposal
for quantum computing. In Section 3, we discuss the
characterization and manipulation of spin and charge states
of electrons in single quantum dots. Section 4 contains a
description of double quantum dots that emphasizes the
single-electron regime, which is relevant for quantum-dot
quantum computing. In Section 5 we survey important
decoherence mechanisms for electron spins in single and
double quantum dots. In Section 6, we briefly review
some proposals for the generation and detection of nonlocal
entanglement of electron spins in nanostructures, and in
Section 7 we conclude with a brief summary of important
topics for future study.

2 SPINS IN QUANTUM DOTS: AN
OVERVIEW OF THE
LOSS–DIVINCENZO PROPOSAL

In the original Loss–DiVincenzo proposal, the qubits are
stored in the two spin states of single confined electrons. The
considerations discussed in (Loss and DiVincenzo, 1998) are
generally applicable to electrons confined to any structure
(e.g., atoms, molecules, defects, etc.), although the original
proposal focused on applications in gated semiconductor

SL SR

Figure 1. A double quantum dot. Top gates are set to an elec-
trostatic voltage configuration that confines electrons in the two-
dimensional electron gas (2DEG) below to the circular regions
shown. Applying a negative voltage to the back gate, the dots can
be depleted until they each contain only one single electron, each
with an associated spin-1/2 operator SL(R) for the electron in the
left (right) dot. The |↑〉 and |↓〉 spin-1/2 states of each electron
provide a qubit (two-level quantum system).
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quantum dots, as shown in Figure 1. Voltages applied to the
top gates of such structures provide a confining potential
for electrons in a two-dimensional electron gas (2DEG),
below the surface. A negative voltage applied to a back-
gate depletes the 2DEG locally, allowing the number of
electrons in each dot to be reduced down to one (the
single-electron regime). Advances in materials fabrication
and gating techniques have now allowed for the realization
of single electrons in single vertical (Tarucha et al., 1996)
and gated lateral (Ciorga et al., 2000) dots, as well as double
dots (Elzerman et al., 2003; Hayashi et al., 2003; Petta et al.,
2004).

Initialization of all qubits in the quantum computer to
the Zeeman ground state |↑〉 = |0〉 could be achieved by
allowing all spins to reach thermal equilibrium at temperature
T in the presence of a strong magnetic field B, such that
|gµBB| > kBT , with g-factor g < 0, Bohr magneton µB, and
Boltzmann’s constant kB (Loss and DiVincenzo, 1998). For
example, assuming g = −0.44 (the bulk value for GaAs)
and a temperature of T = 100 mK, initialization with a
probability p > 99% is achieved in a field of B > 1 T. (For
further initialization schemes, see Section 3.2.)

Once the qubits have been initialized to some state, they
should remain in that state until a computation can be
executed. In the absence of environmental coupling, the
spins-1/2 of single electrons are intrinsic two-level systems,
which cannot ‘leak’ into higher excited states. Additionally,
since electron spins only couple to charge degrees of freedom
indirectly through the spin-orbit (or hyperfine) interactions,
they are relatively immune to fluctuations in the surrounding
electronic environment.

Single-qubit operations in the Loss–DiVincenzo quantum
computer could be carried out by varying the Zeeman
splitting on each dot individually (Loss and DiVincenzo,
1998). It may be possible to do this through g-factor
modulation (Salis et al., 2001), the inclusion of magnetic
layers (Myers et al., 2005) (see also Figure 2), modification
of the local Overhauser field due to hyperfine couplings
(Burkard, Loss and DiVincenzo, 1999), or with nearby
ferromagnetic dots (Loss and DiVincenzo, 1998). There are
a number of alternate methods that could be used to perform
single-qubit rotations (see Section 3.2).

Two-qubit operations would be performed within the
Loss–DiVincenzo proposal by pulsing the exchange coupling
between two neighboring qubit spins ‘on’ to a nonzero value
(J (t) = J0 �= 0, t ∈ {−τ s/2 . . . τ s/2}) for a switching time
τ s, then switching it ‘off’ (J (t) = 0, t /∈ {−τ s/2 . . . τ s/2}).
This switching can be achieved by briefly lowering a center-
gate barrier between neighboring electrons, resulting in an
appreciable overlap of the electron wave functions (Loss
and DiVincenzo, 1998), or alternatively, by pulsing the rel-
ative back-gate voltage of neighboring dots (Petta et al.,

Back gates Magnetized or
high-g layer

Heterostructure
quantum well

B ||
ac

e e ee
B⊥

I

Figure 2. A series of exchange-coupled electron spins. Single-qubit
operations could be performed in such a structure using electron-
spin resonance (ESR), which would require an ac transverse
magnetic field Bac

‖ , and a site-selective Zeeman splitting g(x)µBB⊥,
which might be achieved through g-factor modulation or magnetic
layers. Two-qubit operations would be performed by bringing two
electrons into contact, introducing a nonzero wave function overlap
and corresponding exchange coupling for some time (two electrons
on the right). In the idle state, the electrons can be separated,
eliminating the overlap and corresponding exchange coupling with
exponential accuracy (two electrons on the left).

2005a) (see Section 4.3). Under such an operation (and in
the absence of Zeeman or weaker spin-orbit or dipolar inter-
actions), the effective two-spin Hamiltonian takes the form of
an isotropic Heisenberg exchange term, given by (Loss and
DiVincenzo, 1998; Burkard, Loss and DiVincenzo, 1999)

Hex(t) = J (t)SL·SR (1)

where SL(R) is the spin-1/2 operator for the electron in the
left (right) dot, as shown in Figure 1. The Hamiltonian Hex(t)

generates the unitary evolution U(φ) = exp [−iφSL·SR],
where φ = ∫

J (t)dt/�. If the exchange is switched such that
φ = ∫

J (t)dt/� = J0τ s/� = π , U(φ) exchanges the states
of the two neighboring spins, that is, U(π)

∣∣n, n′〉 = ∣∣n′, n
〉
,

where n and n′ are two arbitrarily oriented unit vectors and∣∣n, n′〉 indicates a simultaneous eigenstate of the two oper-
ators SL·n and SR·n′. U(π) implements the so-called SWAP

operation. If the exchange is pulsed on for the shorter time
τ s/2, the resulting operation U(π/2) = (U(π))1/2 is known
as the square-root-of-SWAP (

√
SWAP). The

√
SWAP operation

in combination with arbitrary single-qubit operations is suf-
ficient for universal quantum computation (Barenco et al.,
1995; Loss and DiVincenzo, 1998). The

√
SWAP operation has

now been successfully implemented in experiments involving
two electrons confined to two neighboring quantum dots (as
in Figure 1) (Petta et al., 2005a; Laird et al., 2006). Errors
during the

√
SWAP operation have been investigated due

to nonadiabatic transitions to higher orbital states (Schlie-
mann, Loss and MacDonald, 2001; Requist, Schliemann,
Abanov and Loss, 2005), spin-orbit interaction (Bonesteel,
Stepanenko and DiVincenzo, 2001; Burkard and Loss, 2002;
Stepanenko et al., 2003), and hyperfine coupling to surround-
ing nuclear spins (Petta et al., 2005a; Coish and Loss, 2005;
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Klauser, Coish and Loss, 2006; Taylor et al., 2006). The
isotropic form of the exchange interaction given in equation
(1) is not always valid. In realistic systems, a finite spin-orbit
interaction leads to anisotropic terms which may cause
additional errors, but could also be used to perform uni-
versal quantum computing with two-spin encoded qubits,
in the absence of single-spin rotations (Bonesteel, Stepa-
nenko and DiVincenzo, 2001; Lidar and Wu, 2002; Stepa-
nenko and Bonesteel, 2004; Chutia, Friesen and Joynt, 2006)
(see also Section 4.4 below for more on two-spin encoded
qubits).

In the Loss–DiVincenzo proposal, readout could be per-
formed using spin-to-charge conversion. This could be
accomplished with a ‘spin filter’ (spin-selective tunneling)
to leads or a neighboring dot, coupled with single-electron
charge detection (see also Section 3.2).

3 SINGLE QUANTUM DOTS

There are many different types of quantum dot that can be
manufactured, each with distinct characteristics. Gated lateral
quantum dots (as shown in Figures 1 and 2) offer the benefit
that their shape and size can be controlled to suit a particular
study, and the tunnel coupling between pairs of these dots
can be tuned in a straightforward manner: by raising or
lowering the barrier between the dots. Gated vertical dots
(Tarucha et al., 1996) are created by etching surrounding
material to form a pillar structure, with vertical confinement
provided by a double-barrier heterostructure. Vertical dots
allow for the controlled fabrication of quantum dots with
large level spacing, although tunability of the coupling in
these structures is restricted due to the fabrication process.
To resolve this issue, hybrid laterally coupled vertical double-
quantum dots have been manufactured, in which the interdot
tunnel coupling is controllable (Hatano, Stopa and Tarucha,
2005). Self-assembled quantum dots are yet another type of
dot that can be used for quantum information processing.
Self-assembled dots form spontaneously during epitaxial
growth due to a lattice mismatch between the dot and
substrate materials. These dots can be made with very large
single-particle level spacing, but typically form at random
locations, which makes controlled coupling through a tunnel
junction difficult. Such dots can, however, potentially be
coupled with optical cavity modes (Imamoğlu et al., 1999),
and new techniques have now allowed the fabrication of
cavities with modes that couple maximally directly at the
positions of isolated dots (Badolato et al., 2005).

In the rest of this section, we focus on lateral quantum dots,
as shown in Figures 1 and 2. After a brief review of charge
and spin control in single quantum dots, we will address
issues specific to double quantum dots in Section 4.

3.1 Charge control: Coulomb blockade

To ensure a single two-level system is available to be
used as a qubit, it is practical to consider single isolated
electron spins (with intrinsic spin 1/2) confined to single
orbital levels. A natural first step to implementing the
Loss–DiVincenzo proposal was therefore to demonstrate
control over charging electron-by-electron in a single gated
quantum dot. This is typically done by operating a quantum
dot in the Coulomb-blockade regime, where the energy for
the addition of an electron to the dot is larger than the
energy that can be supplied by electrons in leads coupled
to the dot. In this case, the charge on the quantum dot is
conserved, and no electrons can tunnel onto or off of the
dot. For a general review of Coulomb blockade phenomena
and the characterization of many-electron states in single
quantum dots, see Kouwenhoven, Austing and Tarucha
(2001).

3.2 Spin control: initialization, operations, and
readout

As mentioned in Section 2, initialization of all electron
spins to the ‘up’ state |↑〉 could be achieved by allowing
all spins to equilibrate in a strong magnetic field. Depend-
ing on the particular architecture, this may take a long
time or it may be inconvenient to have large magnetic
fields in the region of the apparatus. Initialization could
also be achieved through spin injection from a ferromagnet,
as has been performed in bulk semiconductors (Fiederling
et al., 1999; Ohno et al., 1999), with a spin-polarized cur-
rent from a spin-filter device (Prinz and Hathaway, 1995;
Prinz, 1998; Loss and DiVincenzo, 1998; DiVincenzo, 1999;
Recher, Sukhorukov and Loss, 2000), or by optical pump-
ing (Cortez et al., 2002; Shabaev, Efros, Gammon and
Merkulov, 2003; Gywat et al., 2004; Bracker et al., 2005),
which has now allowed the preparation of spin states with
very high fidelity, in one case as high as 99.8% (Atature
et al., 2006) [1].

Single-qubit operations could be performed in the
Loss–DiVincenzo proposal whenever the Zeeman energy of
the quantum-dot spins can be tuned locally, as mentioned
in Section 2. Alternative single-qubit-rotation schemes may
require global magnetic field gradients with pulsed magnetic
and electric fields (Wu, Lidar and Friesen, 2004) or static
magnetic, but ac electric fields (Tokura, van der Wiel, Obata
and Tarucha, 2006), ESR (see Figure 2) or, in the presence of
spin-orbit interaction, electric-dipole spin resonance (EDSR)
techniques. EDSR has been analyzed in great detail for two-
dimensional systems in theory (Rashba and Efros, 2003;
Duckheim and Loss, 2006) and experiment (Kato, Myers,
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Gossard and Awschalom, 2004), and can also be applied
to lower-dimensional systems (quantum wires and quantum
dots) (Levitov and Rashba, 2003; Golovach, Borhani and
Loss, 2006), with the advantage that single-qubit operations
could then be performed using fast all-electrical control. New
experiments have now shown that it may be possible in
practice to perform single-spin operations on spins in single
quantum dots using ESR, as depicted in Figure 2 (Koppens
et al., 2006).

In an alternative to the above proposals, it has recently
been shown that arbitrary single-spin rotations could be
performed with high fidelity in a quantum dot with a pulsed
electric field, but a time-independent magnetic field gradient
(Coish and Loss, 2006). This scheme would avoid ‘heating’
effects due to ac power dissipation (van der Wiel et al., 2006)
since this scheme involves no ac electromagnetic fields, and
could make use of large permanent magnetic field gradients
(
 1 T/µm) arising from, for example, nanomagnets on the
surface of semiconductors (Wróbel et al., 2004).

As mentioned in Section 2, quantum-dot spin readout can
be performed using a spin filter. Experimentally, spin fil-
ters have been reported in the open (Potok, Folk, Marcus
and Umansky, 2002) and Coulomb-blockade regimes (Folk,
Potok, Marcus and Umansky, 2003), and have even been
used to determine the longitudinal spin decay (T1) time (Han-
son et al., 2003; 2004) using an n-shot readout scheme,
which has been analyzed in detail (Engel et al., 2004). A
single-shot readout has also been demonstrated (Elzerman
et al., 2004) and improved upon (Hanson et al., 2005). Non-
invasive readout schemes using spin-to-charge conversion
and quantum-point-contact (QPC) measurements have been
used on two-spin encoded qubits (Johnson et al., 2005a; Petta
et al., 2005a; Petta et al., 2005b; Johnson et al., 2005b) (see
also Section 4.4).

To measure the transverse spin coherence time T2, there
have been proposals to perform ESR and detect the result-
ing resonance in stationary current (Engel and Loss, 2001),
changes in the resistivity of a neighboring field-effect tran-
sistor (FET) (Martin, Mozyrsky and Jiang, 2003), optically
(Gywat et al., 2004), or from current noise (Schaefers and
Strunz, 2005). ESR in single quantum dots has not been
observed until very recently, in part because it is challeng-
ing to generate high-frequency magnetic fields with suffi-
cient power for single-spin manipulation without ‘heating’
electrons on the quantum dot or in the surrounding leads
through the associated electric field (van der Wiel et al.,
2006). Recent experiments overcome this problem (Koppens
et al., 2006) by employing a double-quantum dot in the spin-
blockade regime, where a smaller Zeeman splitting can be
resolved, allowing the use of low-power ac magnetic fields
(Burkard, 2006) (see also the discussion on spin blockade
near the end of Section 5.2 below).

4 DOUBLE QUANTUM DOTS

Single qubits are the fundamental unit of quantum infor-
mation in quantum computing. However, universal quantum
computation still requires both single-qubit and two-qubit
operations (Barenco, Deutsch, Ekert and Jozsa, 1995). In the
Loss–DiVincenzo proposal, two-qubit gates are performed
with exchange-coupled electron spins confined to two neigh-
boring quantum dots (double dots). Double dots are also
important for two-electron encoded qubits (Levy, 2002), in
which qubits are encoded into a two-dimensional pseudospin-
1/2 subspace of a four-dimensional two-electron spin system.

In this section, we discuss characterization and manipu-
lation techniques that are commonly used to extract micro-
scopic parameters of double quantum dots. In Section 4.1,
we review the charge stability diagram and illustrate its con-
nection to a commonly used microscopic model Hamiltonian.
In Section 4.2, we review work on the coherent coupling of
double quantum dots, which is required to generate a large
exchange interaction for two-qubit gating. In Section 4.3, we
discuss the use of double quantum dots as two-qubit gates,
and in Section 4.4 we review some work on using dou-
ble quantum dots to control single ‘encoded’ qubits (Levy,
2002), a topic which has now come into vogue (Petta et al.,
2005a; Taylor et al., 2005; Burkard and Imamoglu, 2006;
Hanson and Burkard, 2007).

4.1 The double-dot charge stability diagram

Just as transport through a single quantum dot and Coulomb
blockade phenomena give information about the orbital level
spacing, charging energy, and spin states of single quantum
dots, similar studies can be carried out on double quantum
dots. Whereas for single dots, transport phenomena are
typically understood in terms of one-dimensional plots of
conductance versus gate voltage, the primary tool used to
understand double quantum dots is the double-dot charge
stability diagram. The stability diagram is a two-dimensional
plot of current or differential conductance through the double
dot or through a neighboring QPC, given as a function of two
independent back-gate voltages (one applied locally to each
dot). The plot differentiates regions where the double-dot
ground state has a charge configuration (N1, N2), for various
N1, N2, where N1 is the number of charges on the left dot
and N2 is the number of charges on the right. Transport
through double quantum dots and the relevant charge stability
diagram have been discussed thoroughly in (van der Wiel
et al., 2003). In the rest of this section, we review some
features of the double-dot stability diagram with an emphasis
on the connection to a model Hamiltonian that is commonly
used in the literature (Klimeck, Chen and Datta, 1994; Pals



6 Semiconductor spintronics

and MacKinnon, 1996; Golden and Halperin, 1996; Ziegler,
Bruder and Schoeller, 2000).

An isolated double quantum dot is described by the
Hamiltonian

Hdd = HC + HT + HS (2)

where HC gives the single-particle and interparticle charging
energies due to Coulomb interaction as well as the orbital
energy, HT is the interdot tunneling term due to a finite over-
lap of dot-localized single-particle wave functions, which
ultimately gives rise to exchange, and HS contains explicitly
spin-dependent terms, which may include spin-orbit inter-
action, dipole–dipole interaction, and the contact hyperfine
interaction between the confined electron spins and nuclear
spins in the surrounding lattice.

There are several approaches that can be taken to writing
the various components of the double-dot Hamiltonian Hdd,
corresponding to several degrees of microscopic detail. In the
simplest form, the Hubbard model, details of the electron
wave functions are neglected and the Coulomb interaction
is modeled by on-site and nearest-neighbor terms. Since
this description relies only on very few parameters, it is
the most commonly used in the literature on transport
phenomena through quantum dots. The shape of the confining
potential, quantum-dot localized wave functions, and form of
the Coulomb interaction may become important in certain
circumstances, in which case it is more appropriate to
apply either the Heitler–London method (which neglects
doubly occupied dot levels), or the Hund–Mulliken method,
which includes the effects of double-occupancy. These
methods predict, for instance, a variation of the interdot
exchange interaction through zero with increasing out-of-
plane magnetic field (Burkard, Loss and DiVincenzo, 1999).
Experimentally, it has been confirmed that the exchange
coupling can be tuned with an out-of-plane magnetic field
in single vertical (Fujisawa et al., 2002) and single lateral
quantum dots (Zumbühl, Marcus, Hanson and Gossard,
2004), which behave effectively as double-dot structures.
Here we ignore these effects and focus on the simplest
Hubbard model that reproduces much of the double-dot
physics that can be seen in transport phenomena.

We model the Coulomb interaction with simple on-site
(U1(2) for the left (right) dot) and nearest-neighbor (U ′)
repulsion. The single-particle charging energy is given in
terms of a local dot potential V1(2). The charging Hamiltonian
is then

HC = 1

2

∑
l

UlNl (Nl − 1) + U ′N1N2 − |e|
∑

l

VlNl

+
∑
kl

εlknlk (3)

V1 V2

ms

md

hw0

Figure 3. Ground state configuration for a double quantum dot
with large orbital and charging energies, and negligible dot-lead and
interdot coupling. µs(d) is the source (drain) chemical potential, V1(2)

is the left (right) local dot potential, which is related to applied gate
potentials by a linear transformation (see equation (5), below), and
both dots are assumed to have the same uniform level spacing �ω0.

where Nl = ∑
k nlk counts the total number of electrons in

dot l, with nlk = ∑
σ d

†
lkσ dlkσ , and here dlkσ annihilates an

electron on dot l, in orbital k, with spin σ . εlk is the energy
of single-particle orbital level k in dot l, which gives rise
to the typical orbital level spacing εlk+1 − εlk ≈ �ω0 (see
Figure 3).

Within the capacitive charging model described by the
equivalent circuit in the inset of Figure 4(a), the microscopic
charging energies are related to capacitances by (Ziegler,
Bruder and Schoeller, 2000; van der Wiel et al., 2003)

Ul = C1C2

C1C2 − C2
m

e2

Cl

, U ′ = 2e2Cm

C1C2 − C2
m

(4)

where C1 = Cs + Cm + Cg1, C2 = Cd + Cm + Cg2, and all
capacitances are defined in the inset of Figure 4(a). In exper-
iments, the local quantum-dot potentials V1,2 are controlled
indirectly in terms of gate voltages Vg1,2, which are capac-
itively coupled to the dots through gate capacitances Cg1,2.
For fixed quantum-dot charges (Q1, Q2) = − |e| (N1, N2) =
const., differences in the dot voltages �V1 and �V2 are
related to differences in the gate voltages �Vg1 and �Vg2

through (Ziegler, Bruder and Schoeller, 2000; van der Wiel
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Figure 4. Stability diagram plotted in terms of (a) local dot potentials V1,2 and (b) applied gate potentials Vg1,2, with on-site charging
energies Ul = U, l = 1, 2, nearest-neighbor charging energy U ′, and dot orbital level spacing �ω0 satisfying U :�ω0:U ′ = 3:2:1. In addition,
for (b) we have assumed the voltage scaling factors are the same for both dots, and are given by α1 = α2 = α = 1/2. (a) inset: capacitive
charging model for a double quantum dot, indicating the source (drain) chemical potential µs(d), the charge on the left (right) dot Q1(2),
the capacitances to source (drain) Cs(d), the mutual capacitance Cm, and gate capacitances Cg1,2. (b) Horizontal lines in the |e| V1(2) plane
become skewed with slope δVg1/δVg2 = −CmCg2/C2Cg1 when plotted versus |e| Vg1(2).

et al., 2003)(
C1 −Cm

−Cm C2

)(
�V1

�V2

)
=

(
Cg1�Vg1

Cg2�Vg2

)
(5)

The double-dot stability diagram can then be given equiv-
alently as a two-dimensional plot with energy axes |e|V1,

|e|V2, or with axes |e|Vg1, |e|Vg2, which are skewed and
stretched with respect to the original axes according to the
transformation given in equation (5). The end effect is that
parallel horizontal (vertical) lines in the |e| V1(2) plane sep-
arated by a distance dV1(2) transform to skewed parallel
lines, separated by dVg1(2) = dV1(2)/α1(2) along the verti-
cal (horizontal) of the new coordinate system, where (see
Figure 4).

αl = Cgl

Cl

, l = 1, 2 (6)

Additionally, horizontal lines in the |e|V1(2) plane become
skewed with a slope δVg1/δVg2 = −CmCg2/C2Cg1 (see
Figure 4b), and vertical lines are skewed with slope
δVg1/δVg2 = −C1Cg2/CmCg1.

The Hamiltonian in equation (3) conserves the number
of electrons on each dot: [HC, Nl] = 0, so we label the

ground state by the two dot occupation numbers, (N1, N2),
and indicate where each configuration is the ground state
in Figure 4 for equivalent quantum dots that satisfy α1 =
α2 = α = 1/2, U1 = U2 = U , εlk+1 − εlk = �ω0 for all k, l,
and U : �ω0 : U ′ = 3 : 2 : 1. The charge stability diagram
is described by a ‘honeycomb’ of irregular hexagons with
dimensions that are determined by three typical energy
scales: (i) The on-site repulsion U , (ii) the nearest-neighbor
repulsion U ′, and (iii) the typical orbital energy �ω0. Figure 4
assumes a ground state electron filling as shown in Figure 3,
with constant orbital energy �ω0. In this case, the orbital
energy appears in the dimensions of only every second
honeycomb cell of the stability diagram, along the horizontal
or vertical direction, since the spin-degenerate orbital states
fill with two electrons at a time according to the Pauli
principle. This even–odd behavior may not be visible in
dots of high symmetry, where the orbital levels are manifold
degenerate (such an orbital degeneracy may make it difficult
to generate a well-defined two-level system for electron
spins in carbon nanotubes or gated graphene, although there
are potential solutions to this problem (Trauzettel, Bulaev,
Loss and Burkard, 2007)). Alternatively, the absence of an
even–odd effect in low-symmetry single dots has previously
been attributed to the absence of spin degeneracy due to
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many-body effects (Stewart et al., 1997; Fujisawa, Tokura
and Hirayama, 2001; van der Wiel et al., 2003).

Each vertex of a honeycomb cell corresponds to a triple-
point, where three double-dot charge states are simultane-
ously degenerate. For a double dot connected to source and
drain leads at low temperature, and in the absence of relax-
ation or photo-assisted tunneling processes, it is only at these
points where resonant sequential transport can occur, through
shuttling processes of the form (0, 0) → (1, 0) → (0, 1) →
(0, 0). This picture changes when a strong interdot tunnel
coupling HT is considered in addition.

4.2 Molecular states in double dots

Molecule-like states have been observed and studied in
detail in two-electron single vertical (Fujisawa et al., 2002)
and lateral quantum dots (Zumbühl, Marcus, Hanson and
Gossard, 2004) (the latter behave as an effective double-dot
structure, showing good agreement with theory (Golovach
and Loss, 2004)). Evidence of molecular states forming
also in double quantum dots due to a strong interdot
tunnel coupling has been found in a variety of systems
(Schmidt et al., 1997; Schedelbeck, Wegscheider, Bichler
and Abstreiter, 1997; Blick et al., 1998; Brodsky et al., 2000;
Bayer et al., 2001; Ota et al., 2005; Hüttel et al., 2005;
Fasth, Fuhrer, Bjork and Samuelson, 2005; Mason, Biercuk
and Marcus, 2004; Biercuk et al., 2005; Graeber et al.,
2006). For example, molecular states have been observed in
many-electron gated quantum dots in linear transport (Blick
et al., 1998) (solid lines of Figure 5b) and transport through
excited states (Hüttel et al., 2005) (dashed lines in Figure
5b). In addition, molecular states have been observed in
vertical-lateral gated double-quantum dots (Hatano, Stopa
and Tarucha, 2005), gated dots formed in quantum wires
(Fasth, Fuhrer, Bjork and Samuelson, 2005) and gated
carbon-nanotube double dots (Mason, Biercuk and Marcus,
2004; Biercuk et al., 2005; Graeber et al., 2006). A large
interdot tunnel coupling is essential for generating a large
exchange interaction J (see equation (23) below), and is
therefore very important for the implementation of fast two-
qubit gates in the Loss–DiVincenzo proposal.

In this section, we analyze changes to the double-dot
stability diagram that occur due to the interdot tunneling term
HT. We focus on the relevant regime for quantum computing,
where only a single orbital state is available for occupation
on each quantum dot (the lower-left region of Figure 4a
and b). In the subspace of these lowest dot orbital states,
HT is given by:

HT = t12

∑
σ

d
†
1σ d2σ + H.c. (7)

where t12 is the tunneling amplitude between the two dots,
and dlσ , l = 1, 2, annihilates an electron in the lowest single-
particle orbital state localized on quantum dot l with spin σ .

When the double dot is occupied by only N = 0, 1 elec-
trons and is coupled weakly to leads, an explicit expression
can be found for the current passing through a sequentially
coupled double dot, as shown in Figure 5(a) (Ziegler, Bruder
and Schoeller, 2000; Graeber et al., 2006). It is straightfor-
ward to diagonalize HC + HT in the subspace of N = 1 elec-
trons on the quantum dot. This gives the (spin-degenerate)
eigenenergies and corresponding eigenvectors:

E±(�, ε) = − 1√
2

(
� ±

√
ε2 + 2t2

12

)
(8)

|E±〉 = cos

(
θ±
2

)
|1, 0〉 + sin

(
θ±
2

)
|0, 1〉 (9)

tan

(
θ±
2

)
=

ε ∓
√

ε2 + 2t2
12√

2t12
(10)

Here, E±(�, ε) is written in terms of new energy coordinates
ε, �, which are related to the old (voltage) coordinates
through a rotation of the axes by 45◦ (see also Figure 5b):

(
�

ε

)
= 1√

2

(
1 1

−1 1

) (|e| V1

|e| V2

)
(11)

We then define double-dot chemical potentials:

µ±(�, ε) = E±(�, ε) − E0 (12)

where E0 = 0 is the energy of the (0, 0) charge config-
uration. In the presence of a strong tunnel coupling, the
eigenstates of the double dot are no longer labeled sepa-
rately by the quantum numbers N1, N2. Instead, the sum
N = N1 + N2 is conserved. If we add to Hdd the double-
dot-lead coupling Hamiltonian Hdd−L = ∑

kσ tsc
†
skσ d1σ +

tdc
†
dkσ d2σ + H.c., where c

†
s(d)kσ creates an electron in the

source (drain), in orbital k with spin σ , then N can fluctuate
between 1 and 0 if the double-dot and lead chemical poten-
tials are equal. We identify double-dot sequential-tunneling
processes as those that change the total charge on the double-
dot by one: N → N ± 1 (Golovach and Loss, 2004). One can
evaluate golden-rule rates for all sequential-tunneling pro-
cesses, taking the dot-lead coupling Hdd−L as a perturbation
to obtain the stationary current from a standard Pauli master
equation (the Pauli master equation is valid for sufficiently
high temperature, kBT > �s(d), so that off-diagonal elements
can be ignored in the double-dot density matrix). For weak
dot-lead coupling, at low temperature kBT < �ω0, and at
zero bias (µ = µs = µd + �µ, with �µ → 0), transport
occurs only through the N = 1 ground state, with chemical
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Figure 5. (a) A tunnel-coupled double quantum dot, with tunneling amplitude t12. The source and drain leads, at chemical potentials µs
and µd, are connected to the left and right dots through tunnel barriers with tunneling amplitudes ts and td, respectively. The left and right
dots are set to local potentials V1 and V2. (b) Modification of the stability diagram in the case of a significant tunnel coupling t12. To
generate this figure we have chosen the ratio of tunnel coupling to the mutual (nearest-neighbor) charging energy to be t12/U ′ ≈ 1/5. At
solid lines, transport occurs via the double-dot ground state |E+〉 and at dashed lines additional transport can occur through the first excited
state |E−〉 (see equations (9) and (10) below).

potential µ+. The differential conductance near the N = 0, 1
boundary is then given by

dI

d (�µ)
= |e| �

( −2f ′(µ+)

1 + f (µ+)

)

� = sin2 (θ+) �s�d

4
(

cos2
(

θ+
2

)
�s + sin2

(
θ+
2

)
�d

) (13)

where f (E) = 1
/ [

1 + exp
(

E−µ

kBT

)]
is the Fermi func-

tion at chemical potential µ and temperature T , f ′(E) =
df (E)/dE, and �s(d) = 2πν

�

∣∣ts(d)
∣∣2

is the tunneling rate to
the source (drain) with a lead density of states per spin ν

at the Fermi energy. If spin degeneracy is lifted, the quan-
tity in brackets in equation (13) is replaced by the famil-

iar term −f ′(µ+) = 1
/ [

4kBT cosh2
(

µ+−µ

2kBT

)]
(Beenakker,

1991). The differential conductance (equation (13)) reaches
a maximum near the point where the double-dot chemical
potential matches the lead chemical potential, µ+(�, ε) = µ,
which we indicate with a solid line in Figure 5(b). Trans-
port through the excited state can occur where µ−(�, ε) =
µ, and when the bias �µ = µs − µd or temperature T

are sufficiently large to generate a significant population
in the excited state |E−〉. Dashed lines indicate where
µ−(�, ε) = µ in Figure 5(b).

There are several qualitative changes to the double-dot
stability diagram that take place in the presence of strong
tunnel coupling. First, the number of electrons on each
dot is not conserved individually. Instead, the sum N =
N1 + N2 is conserved, which means that there are no longer
lines separating, for example, the (1,0) and (0,1) states in
Figure 5(b). Second, sequential-tunneling processes allow
current to be transported through the double dot along the
length of the ‘wings’ that define the boundaries between N

and N ± 1-electron ground states. This is in contrast to the
case where t12 is weak, in which resonant sequential transport
can only occur at triple points, where the shuttling processes
of the type (0, 0) → (1, 0) → (0, 1) → (0, 0) are allowed by
energy conservation.

4.3 Two-qubit gates in double quantum dots

The
√

SWAP operation described in Section 2 requires sig-
nificant control of the exchange coupling J . The value of
J can be controlled by raising/lowering the interdot barrier,
thus changing the tunnel coupling t12 (Loss and DiVincenzo,
1998), or with an out-of-plane magnetic field or weak in-
plane electric field (Burkard, Loss and DiVincenzo, 1999).
More recently, experiments have controlled J by varying the
back-gate voltages on two neighboring quantum dots through
a large parameter regime, independently (Petta et al., 2005a).
Here we discuss this last method to control J , which has been
analyzed in several recent papers (Petta et al., 2005b; Coish
and Loss, 2005; Taylor et al., 2006; Stopa and Marcus, 2006).

We consider a double quantum dot in the region of
the charge stability diagram indicated in the lower inset
of Figure 6. Specifically, we consider the regime of gate
voltages where the double dot contains N = 2 electrons near
the degeneracy point of the (1, 1) and (0, 2) charge states,
and aim to diagonalize the Hamiltonian HC + HT in the basis
of three spin triplets and two relevant singlets:

|S(0, 2)〉 = d
†
2↓d

†
2↑ |vac.〉 (14)

|S(1, 1)〉 = 1√
2

(
d

†
2↓d

†
1↑ − d

†
2↑d

†
1↓

)
|vac.〉 (15)

|T0〉 = 1√
2

(
d

†
2↓d

†
1↑ + d

†
2↑d

†
1↓

)
|vac.〉 (16)
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|T+〉 = d
†
2↑d

†
1↑ |vac.〉 (17)

|T−〉 = d
†
2↓d

†
1↓ |vac.〉 (18)

In the absence of additional spin-dependent terms, the triplets
are degenerate, with energy ETriplet = E(1,1) = −√

2�′,
whereas the two singlet states have energies and associated
eigenvectors

E±
Singlet = ETriplet − 1√

2

(
ε′ ±

√
(ε′)2 + 4t2

12

)
(19)

∣∣∣E±
Singlet

〉
= cos

(
θS

±
2

)
|S(1, 1)〉+sin

(
θS

±
2

)
|S(0, 2)〉 (20)

tan

(
θS

±
2

)
=

ε′ ∓
√

(ε′)2 + 4t2
12

2t12
(21)

Here, �′ and ε′ are related to the previous coordinates (�, ε)

through a simple translation of the origin:

(
�′

ε′

)
=

(
�

ε

)
+ 1√

2

( −U ′

U ′ − U

)
(22)

This gives rise to the Heisenberg exchange for large negative
ε′ (from equation (19)):

J (ε′) = ETriplet − E+
Singlet ≈

√
2t2

12

|ε′| , ε′ < 0,
∣∣ε′∣∣ � 2t12

(23)
By pulsing ε′ = ε′(t), the exchange J (ε′(t)) can be pulsed
on and off again in order to implement the

√
SWAP operation,

as described in Section 2 (see the inset of Figure 6). This
operation has now been achieved experimentally with a
gating time on the order of 180 ps (Petta et al., 2005a), in
good agreement with the predictions in (Burkard, Loss and
DiVincenzo, 1999) for an achievable switching time.

4.4 Initialization of two-spin encoded qubits

Fluctuations in a nuclear spin environment can lead to rapid
decoherence of single-electron spin states due to the contact
hyperfine interaction (see Section 5). The effects of these
fluctuations can be reduced, in part, by considering a qubit
encoded in two-electron singlet |0〉 = |S(1, 1)〉 and triplet
states |1〉 = |T0〉, as defined in equations (15) and (16). A
qubit encoded in this two-dimensional subspace would be
immune to global magnetic field fluctuations, and is then
only susceptible to fluctuations in the difference of the
magnetic field on the two dots. With this encoding scheme,
the qubit energy splitting would be provided through the
exchange coupling (equation (23)), and single-qubit rotations

gmBB
T0〉

T−〉

T+〉

J (e ′ )

S(0, 2) 〉

S(0,2) 〉

E
n

e
rg

y √2t12

e V2

eV1 (2, 0)
(1, 1)

(0, 2)
(0, 1)

(1, 0)

Detuning

′

2

S (1, 1)〉

∋

∋′

Figure 6. Energy level spectrum for two electrons in the two lowest
orbital states of a double quantum dot. The triplet states |T±〉 are
split off from |T0〉 and |S(1, 1)〉 by the Zeeman splitting gµBB (see
the upper inset). The exchange coupling J (which gives the splitting
between |T0〉 and |S(1, 1)〉) can be changed by varying the detuning
ε′ (pictured in the lower inset).

could be performed using an inhomogeneous magnetic field
(Levy, 2002). Two-qubit operations in this scheme could be
performed, for example, using capacitive coupling due to the
relative charge distributions of the triplet and singlet states in
neighboring double dots (Taylor et al., 2005), although the
difference in these charge distributions can lead to additional
dephasing due to fluctuations in the electrical environment
(Coish and Loss, 2005) (see also Section 5, below). An
alternative scheme to couple such encoded qubits over long
distances with optical cavity modes has also been proposed
(Burkard and Imamoglu, 2006). One additional advantage of
the two-spin encoded qubit scheme is that adiabatic tuning
of the gate voltages can be used to initialize and read out
information stored in the singlet–triplet basis (Johnson et al.,
2005a; Petta et al., 2005a). We discuss this initialization
scheme in the rest of this section.

We consider the singlet ground state
∣∣∣E+

Singlet

〉
, given by

equations (20) and (21). For large positive detuning,
∣∣ε′∣∣ �

t12, ε′ > 0, the mixing angle in equation (21) is θS
+ ≈ π

and the singlet ground state is approximately given by
|S(0, 2)〉. For large negative detuning

∣∣ε′∣∣ � t12, ε′ < 0, we
find θS

+ ≈ 0 and the lowest-energy singlet is instead given by
|S(1, 1)〉 (see Figure 6). If the two-electron system is allowed
to relax to its ground state |S(0, 2)〉 at large positive detuning
ε′ and the detuning is then varied adiabatically slowly to
large negative values, the encoded qubit can be initialized
to the state |0〉 = |S(1, 1)〉 (see Figure 6 and insets). It is
a straightforward exercise to estimate the error in such an
operation for a two-dimensional Hamiltonian.

For a linear ramp of ε′ over an infinite interval (i.e., ε′ =
(�ε/τ sw) t, t = −∞ . . .∞ with characteristic switching
time τ sw to sweep over an interval �ε), the result of Zener,
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Figure 7. Leakage (the occupation probability of the state |S(0, 2)〉
at the end of the sweep) due to nonadiabatic transitions after
sweeping from ε′ = 0.7 meV to ε′ = −6 meV. Leakage is given
as a function of the characteristic sweep time τ sw, where ε′(t) =
ε0 − �ε

2 tanh (2t/τ sw), with ε0 = −2.65 meV and �ε = 6.7 meV.
We show results for t12 = 5, 7, 10, 20 µeV. Solid lines show the
results of numerical integration of the Schrödinger equation and
dashed lines give exponential fits, which decay with the time
constants τ fit, given in Table 1.

for the nonadiabatic Landau–Zener transition probability is
(Zener, 1932)

P = exp

(
− τ sw

τLZ

)
, τLZ = �

√
2�ε

4πt2
12

(24)

Here, the Landau–Zener tunneling probability is controlled
in terms of two timescales: the switching time τ sw for a
typical range of �ε and the Landau–Zener time constant
τLZ, which has a strong dependence (∝ 1/t2

12) on the interdot
tunnel coupling. For a realistic voltage pulse, ε′ is swept over
a finite interval, and the pulse shape, in general, will not be
linear for the entire sweep. Performing an analysis similar
to that used for single-spin gates (Schliemann, Loss and
MacDonald, 2001; Requist, Schliemann, Abanov and Loss,
2005) for this case, one can perform a numerical integration
of the time-dependent Schrödinger equation in the subspace
formed by the two singlets for an arbitrary pulse shape.
We have done this for a pulse of the form ε′(t) = ε0 −
�ε
2 tanh (2t/τ sw) , t = −5τ sw . . . 5τ sw [2], where we find

an approximately exponential dependence of P on the
switching time τ sw (see Figure 7). Fitting to this exponential
dependence, we find a time constant τfit analogous to the
Landau–Zener time τLZ. The time constants τLZ (from
equation (24)) and τfit from the numerical data in Figure
7 are compared in Table 1 for various values of the interdot
tunnel coupling t12. The results of Figure 7 and Table 1
suggest that (for this set of parameters) adiabatic switching
for initialization or readout on a timescale of τ sw <∼ 1 ns

Table 1. Landau–Zener time constant
τLZ for a linear ramp of ε′ and the
time constant τ fit for fits to numerically
evaluated data at various values of the
tunnel coupling t12.

t12 (µeV) τLZ (ns) τ fit (ns)

5 20 7.4
7 10 3.8

10 4.9 1.9
20 1.2 0.43

can only be performed without significant error if the tunnel
coupling t12 is made larger than t12 > 20 µeV. It is important
to note that this analysis ignores additional effects due to
magnetic-field inhomogeneities, spin-orbit coupling, or the
hyperfine interaction, all of which can lead to additional sing-
let–triplet anticrossings (see Section 5.2, below) and hence,
to additional initialization or readout errors.

5 DECOHERENCE

Decoherence is the process by which information stored
in a quantum bit is lost. There are two timescales used
to describe decoherence processes for a spin that decays
exponentially in the presence of an applied magnetic field. T1

is the longitudinal spin decay time, or spin-flip time, which
describes the timescale for random spin flips: |↑〉 → |↓〉.
T2, the transverse spin decay time, describes the decay of
a superposition state a |↑〉 + b |↓〉. Both of these timescales
are important for quantum computing, since both effects lead
to qubit errors.

An experiment performed on an ensemble of systems with
different environments can lead to additional decoherence,
beyond that described by the ‘intrinsic’ T2 time (Slichter,
1980). For such an experiment, the ensemble-averaged trans-
verse spin decay time is therefore often denoted T ∗

2 to
distinguish it from the single-spin decay time. Other symbols
such as τ c (the correlation time) and TM (the magnetization
envelope decay time) are often used to distinguish decay that
is nonexponential.

For a quantum-dot-confined electron-spin state to decay,
it is necessary for the spin to couple in some way to
fluctuations in the environment. There are two important
sources of this coupling for electron spins in quantum dots.
First, the spin-orbit interaction couples electron spin states
to their orbital states, and therefore makes spins indirectly
sensitive to fluctuations in the electric environment. Second,
the Fermi contact hyperfine interaction between electrons and
surrounding nuclear spins in the host material can lead to
rapid decay if fluctuations in the nuclear spin environment
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are not properly controlled. In the rest of this section we
discuss recent progress in understanding decoherence due to
these two coupling mechanisms.

5.1 Spin-orbit interaction

For a 2DEG formed in GaAs, the spin-orbit interaction is
given in terms of two terms:

HSO = α
(
pxσy − pyσ x

) + β
(
pyσy − pxσx

) + O
(|p|3)

(25)
where σx,y are Pauli matrices and p = (px, py) is the
momentum operator in the plane of the 2DEG. The first
term, proportional to α, is the Rashba (or structure-inversion-
asymmetry) spin-orbit coupling term. The Rashba term is due
to asymmetry in the confining potential and can therefore
be tuned to some degree with applied gates. The second
term, proportional to β, is the Dresselhaus (bulk-inversion-
asymmetry) term, and is due to the fact that GaAs, which has
a zinc-blende lattice, has no center of inversion symmetry.
Corrections to this spin-orbit Hamiltonian of order |p|3 are
smaller than the linear-momentum terms in quantum dots
by the ratio of z-confinement length to the quantum-dot
Bohr radius, and are negligible in the two-dimensional limit
(Cerletti, Coish, Gywat and Loss, 2005).

HSO obeys time-reversal symmetry (i.e., HSO is invari-
ant under the operation p → −p,σσσ → −σσσ ). Thus, in the
absence of a magnetic field, the ground state of a single
electron confined to a quantum dot is twofold degenerate due
to Kramer’s theorem, and HSO alone cannot cause decoher-
ence. The character of the ground-state doublet does change,
however, due to the presence of HSO, mixing orbital and
spin states. Thus, any fluctuations that couple to the orbital
degree of freedom can cause decoherence in combination
with spin-orbit coupling. These fluctuations can come from
lattice phonons, surrounding gates, electron-hole pair excita-
tions, and so on (Golovach, Khaetskii and Loss, 2004). The
longitudinal spin relaxation rate 1/T1 due to spin-orbit cou-
pling and lattice phonons has been calculated, and shows
a strong suppression for confined electrons (with large level
spacing �ω0) in weak magnetic fields B: 1/T1 ∝ B5/ (�ω0)

4

(Khaetskii and Nazarov, 2000; 2001). This calculation has
been extended to a larger range of magnetic fields, show-
ing that the B-field dependence of 1/T1 saturates and is
then suppressed when the wavelength of the phonons with
energy gµBB is comparable to the dot size (Golovach, Khaet-
skii and Loss, 2004). Further, this calculation has also been
extended to include the transverse spin decay time due to
spin-orbit interaction alone, showing that dephasing is limited
by relaxation, or T2 = 2T1 to leading order in the spin-orbit
coupling, independent of the particular source of fluctuations
(Golovach, Khaetskii and Loss, 2004). Additionally, 1/T1

has been shown to have a strong dependence on the magnetic
field direction, relative to the crystal axes (Fal’ko, Altshuler
and Tsyplyatyev, 2005), shows a strong enhancement near
avoided level crossings, which may allow independent mea-
surements of the Rashba and Dresselhaus coupling constants
(Bulaev and Loss, 2005a), and plays a role in phonon-assisted
cotunneling current through quantum dots (Lehmann and
Loss, 2006). The relaxation rate of quantum-dot-confined
hole spins due to spin-orbit coupling and phonons has also
been investigated. In some cases, recent work has shown that
the hole spin relaxation time may even exceed the relaxation
time of electron spins (Bulaev and Loss, 2005b). In addi-
tion to lattice phonons, electric-field fluctuations can result
from the noise in a QPC readout device, which results in
spin decoherence when considered in combination with spin-
orbit coupling. This mechanism shows a strong dependence
of the decoherence rate

(∼1/r6
)

on the dot-QPC separation
r (Borhani, Golovach and Loss, 2005), and can therefore be
controlled with careful positioning of the readout device.

Measurements of relaxation times for single-electron spins
have been performed in gated lateral quantum dots (Hanson
et al., 2003; Elzerman et al., 2004), giving a T1 time in
good agreement with the theory of Golovach, Khaetskii and
Loss (2004) and in self-assembled quantum dots (Kroutvar
et al., 2004), which confirmed the expected magnetic field
dependence: 1/T1 ∝ B5 (Khaetskii and Nazarov, 2001).
Additionally, singlet–triplet decay has been measured in
single vertical (Fujisawa et al., 2002), and lateral (Hanson
et al., 2005) dots, as well as lateral double dots (Petta et al.,
2005b; Johnson et al., 2005a).

There is a general consensus that spin relaxation for
quantum-dot-confined electrons proceeds through the spin-
orbit interaction and phonon emission at high magnetic fields.
However, in weak magnetic fields, and for the transverse
spin decay time T2, there are stronger effects in GaAs. These
effects are due to the contact hyperfine interaction between
confined electron spins and nuclear spins in the surrounding
lattice.

5.2 Hyperfine interaction

For a collection of electrons in the presence of nuclear spins,
the Fermi contact hyperfine interaction reads

Hhf =Av
∑

k

Ik·S(rk), S(rk)= 1

2

∑
σ ,σ ′=↑,↓

ψ†
σ (rk)σσσσσ ′ψσ ′(rk)

(26)
where A is the hyperfine coupling strength, v is the volume
of a crystal unit cell containing one nuclear spin, Ik is
the spin operator for the nuclear spin at site k, S(rk)

is the electron spin density at the nuclear site, given
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in terms of field operators ψσ (r) = ∑
n �n(r)cnσ . Here,

cnσ annihilates an electron with orbital envelope function
�n(r) and spin σ . The �n(r) form a complete orthonormal

set, from which it follows that
{
ψσ (r), ψ

†
σ ′(r′)

}
= δ(r −

r′)δσ,σ ′ ,
{
ψσ (r), ψσ ′(r′)

} = 0, and we have denoted matrix
elements by σσσσσ ′ = 〈σ |σσσ ∣∣σ ′〉, where σσσ = (σ x, σ y, σ z) is
the vector of Pauli matrices. The significance of the general
form given in equation (26) is that there can be interplay
of orbital and spin degrees of freedom due to the contact
hyperfine interaction. When the orbital level spacing is
not too large, this interplay can be the limiting cause of
electron-spin relaxation (Erlingsson, Nazarov and Fal’ko,
2001; Erlingsson and Nazarov, 2002) in weak magnetic
fields, where the spin-orbit interaction is less effective, and
leads to enhanced nuclear spin relaxation in the vicinity
of sequential-tunneling peaks for a quantum dot connected
to leads, where S(r) fluctuates significantly (Lyanda-Geller,
Aleiner and Altshuler, 2002; Hüttel et al., 2004).

The orbital level spacing in lateral quantum dots is usually
much larger than the typical energy scale of Hhf. In this
case, it is possible to solve for the ground state orbital
envelope wave function �0(r) in the absence of the hyperfine
interaction, and write an effective hyperfine Hamiltonian
for a single electron projected onto the quantum-dot orbital
ground state:

Hhf,0 ≈ h0·S0, h0 = Av
∑

|�0(rk)|2 Ik (27)

where here S0 is the spin-1/2 operator for a single electron in
the quantum-dot orbital ground state. The primary material
used to make lateral quantum dots is GaAs. All natural
isotopes of Ga and As carry nuclear spin I = 3/2. Each
isotope has a distinct hyperfine coupling constant, but
the average coupling constant, weighted by the relative
abundance of each isotope in GaAs gives A ≈ 90 µeV (Paget,
Lampel, Sapoval and Safarov, 1977).

Dynamics under Hhf,0 have now been studied extensively
under many various approximations and in many parameter
regimes. Here we give a brief account of some part of this
study. For an extensive overview, see reviews in (Schlie-
mann, Khaetskii and Loss, 2003; Cerletti, Coish, Gywat and
Loss, 2005). The first analysis of the influence of equation
(27) on quantum-dot electron-spin dynamics showed that the
long-time longitudinal spin-flip probability, P↑↓ ≈ 1/p2N

(Burkard, Loss and DiVincenzo, 1999) was suppressed in
the limit of large nuclear spin polarization p and number of
nuclear spins in the dot, N . It may be possible to reach
high polarizations in a 2DEG by allowing the system to
equilibrate at low temperature, below which the nuclei are
predicted to undergo a ferromagnetic phase transition (Simon
and Loss, 2007). An exact solution for the case of a fully

polarized nuclear spin system (p = 1) has shown that both
the longitudinal and transverse components of the electron
spin decay by a fraction ∼ 1/N according to a long-time
power law ∼ 1/t3/2 on a timescale of τ ∼ �N/A (Khaet-
skii, Loss and Glazman, 2002) (�N/A ∼ 1 µs for a GaAs dot
containing N 
 105 nuclei). This exact solution for p = 1,
which shows a nonexponential decay, demonstrates that the
electron spin decay is manifestly non-Markovian since the
timescale for motion in the nuclear spin bath is much longer
than the decay timescale of the electron spin. For unpolarized
systems, the ensemble-averaged mean-field dynamics show
a transverse spin decay on a timescale τ ∼ �

√
N/A ∼ 5 ns

(Khaetskii, Loss and Glazman, 2002; Merkulov, Efros and
Rosen, 2002). The exact solution has been extended to the
case of nonzero polarization p �= 1 using a generalized mas-
ter equation, valid in the limit of large magnetic field or
polarization p � 1/

√
N (Coish and Loss, 2004). This work

has shown that, while the longitudinal spin decay is bounded
by ∼ 1/p2N , due to the quantum nature of the nuclear field,
the transverse components of spin will decay to zero in a
time tc ≈ 5 ns/

√
1 − p2 (without necessarily ensemble aver-

aging and without making a mean-field ansatz), unless an
electron spin-echo sequence is performed or the nuclei are
prepared in an eigenstate of the operator hz

0 through mea-
surement (Coish and Loss, 2004). There are several recent
suggestions for methods that could be used to measure the
operator hz

0 (Giedke et al., 2006; Klauser, Coish and Loss,
2006; Stepanenko, Burkard, Giedke and Imamoglu, 2006)
in order to extend the electron-spin decay times. Once the
nuclear spin system is forced into an eigenstate of hz

0, the
lowest-order corrections for large magnetic field still show
incomplete decay for the transverse spin (Coish and Loss,
2004), suggesting that dynamics induced by the nuclear
dipolar interaction may limit spin coherence in this regime
(de Sousa and Das Sarma, 2003), although higher-order cor-
rections have been reported to lead to complete decay (Deng
and Hu, 2006), even when the nuclear spin system is static.
There have been several efforts to understand the hyperfine
decoherence problem numerically (Schliemann, Khaetskii
and Loss, 2002; Shenvi, de Sousa and Whaley, 2005b), and
other studies have investigated electron spin-echo envelope
decoherence under the hyperfine interaction alone (Coish and
Loss, 2004; Shenvi, de Sousa and Whaley, 2005b; Shenvi,
de Sousa and Whaley, 2005a) or the combined influence of
hyperfine and nuclear dipolar interactions (de Sousa and Das
Sarma, 2003; de Sousa, Shenvi and Whaley, 2005; Witzel,
de Sousa and Das Sarma, 2005; Yao, Liu and Sham, 2006,
2007). Other approaches to understanding the hyperfine deco-
herence problem include semiclassical theories that replace
the quantum nuclear field by a classical dynamical vec-
tor (Erlingsson and Nazarov, 2004; Yuzbashyan, Altshuler,
Kuznetsov and Enolskii, 2005) or a classical distribution
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function (Al-Hassanieh, Dobrovitski, Dagotto and Harmon,
2006).

Experiments on electron-spin decoherence in single quan-
tum dots (Bracker et al., 2005; Dutt et al., 2005) and double-
quantum dots (Petta et al., 2005a; Koppens et al., 2005) have
now confirmed that the ensemble-averaged electron-spin
dephasing time is indeed given by τ ∼ �

√
N/A ∼ 5–10 ns.

For two electron spins confined to a double quantum dot,
the hyperfine Hamiltonian (equation (26)) can be cast in the
form (Coish and Loss, 2005)

Hhf,dd = εz

∑
l

Sz
l +

∑
l

hl ·Sl

= εzS
z
l + S·h + δS·δh (28)

Sl = 1

2

∑
σ ,σ ′=↑,↓

d
†
lσσσσ σσ ′dlσ ′ (29)

where εz = gµBB is the Zeeman splitting, d1(2)σ annihilates
an electron in the single-particle orbital state with enve-
lope wave function �1(2)(r) and spin σ , we define h =
(h1 + h2) /2, δh = (h1 + h2) /2, where the quantum nuclear
field operators are h1(2) = Av

∑
k

∣∣�1(2)(rk)
∣∣2 Ik , the sum of

electron spins is S = S1 + S2 and the difference is δS =
S1 − S2. While the sum S conserves the total squared electron
spin, and can only couple states of different z-projection (e.g.,
|T0〉 to |T±〉), the difference δS does not preserve the total
spin, and therefore couples singlet to triplet (e.g., |S(1, 1)〉 to
|T0〉 and |T±〉). The difference term ∝ δS will therefore lead
to anticrossings in the energy level spectrum, where |S(1, 1)〉
and |T±〉 or |T0〉 cross. Adding equation (29) to the previous
double-dot Hamiltonian, Hdd = HC + HT + Hhf,dd, and mak-
ing a mean-field ansatz for the nuclear field operators, that is,
replacing operators by their expectation values: h → 〈h〉 [3],
leads to the energy level spectrum shown in Figure 6. In the
limit of large Zeeman splitting εz and large negative detun-
ing ε′, an effective two-level Hamiltonian can be derived
in the subspace of lowest-energy singlet and Sz = 0 triplet
(|S〉 , |T0〉) (Coish and Loss, 2005):

Hdd,eff = J

2
S·S + δhzδSz + O

(
1

εz

)
(30)

An exact solution can be found for pseudospin dynamics
in the two-dimensional subspace of |S〉 and |T0〉 under the
action of Hdd,eff. This solution shows that a singlet–triplet
correlator undergoes an interesting power-law decay in a
characteristic timescale that can be extended by increasing J

(Coish and Loss, 2005), and has been verified in experiment
(Laird et al., 2006). As is true for the transverse compo-
nents of a single-electron spin, the singlet–triplet correlator
shows a rapid decay if the nuclear spin environment is not

in an eigenstate of the relevant nuclear field operator (in this
case, δhz). The decay time can be significantly extended by
narrowing the distribution in δhz eigenstates through mea-
surement (Klauser, Coish and Loss, 2006) or by performing
a spin-echo sequence (Petta et al., 2005a). Remaining sources
of dephasing include the corrections to Hdd,eff (of order 1/εz,
which cannot be removed easily) and fluctuations in the
electrostatic environment, although the effect of these fluc-
tuations can be removed to leading order at zero-derivative
points for the exchange interaction (Coish and Loss, 2005),
where:

dJ (ε)

dε
= 0 (31)

Recent calculations suggest that these zero-derivative points
should be achievable with appropriate control of the confine-
ment potential or magnetic field (Hu and Das Sarma, 2006;
Stopa and Marcus, 2006).

Since the hyperfine interaction does not preserve the total
spin quantum number of electrons, this interaction plays a
very important role in studies on spin-dependent transport.
In particular, spin blockade (Weinmann, Häusler and Kramer,
1995; Weinmann, 2003) occurs in double quantum dots
(Ono, Austing, Tokura and Tarucha, 2002) when tunneling
is allowed between spin singlet |S(1, 1)〉 → |S(0, 2)〉, but
not between spin triplets |T (1, 1)〉 � |T (0, 2)〉, because of a
large energy cost due to orbital level spacing and the Pauli
principle. This blockade allows for the extraction of features
at energy scales much less than temperature, making it an
ideal parameter regime in which to perform spectroscopy on
double dots (Pioro-Ladrière et al., 2003) and spin-resonance
experiments, which previously suffered from ‘heating’ effects
in single dots (van der Wiel et al., 2003; Koppens et al.,
2006). The hyperfine interaction mixes the |S(1, 1)〉 and
|T (1, 1)〉 states, allowing transport, and effectively removing
spin blockade when these states are nearly degenerate. This
behavior leads to a number of intriguing effects, including
stable undriven oscillations in transport current (Ono and
Tarucha, 2004; Erlingsson, Jouravlev and Nazarov, 2005),
and a striking magnetic field dependence of leakage current,
which allows the extraction of information about the nuclear
spin system (Koppens et al., 2005; Jouravlev and Nazarov,
2006). Even–odd effects in the spin blockade of few-electron
quantum dots have further revealed the shell-filling illustrated
in Figure 3 (Johnson et al., 2005b).

The influence of spin-dependent terms, causing decoher-
ence or unwanted evolution, is a central issue in quantum-dot
spin quantum computing. The requirements for fault-tolerant
quantum information processing are very stringent. This
raises the bar for required understanding of these environ-
mental influences to a very high level, and guarantees that
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Table 2. Experimentally determined energy relaxation and decoherence times in single and double quantum dots. (Reproduced by
permission of W.A. Coish et al., copyright 2006 Wiley VCH.)

Decay type Measured decay time (s)

(i) Energy relaxation time T1 between
Zeeman-split sublevels

T1 > 50 µs (Hanson et al., 2003) (lateral GaAs dot),
T1 = 0.85 ms at B = 8 T (Elzerman et al., 2004) (lateral GaAs dot),
T1 = 20 ms at B = 4 T (Kroutvar et al., 2004) (self-assembled Ga(In)As dot),
T1 = 170 ms at B = 1.75 T (Amasha et al., 2006) (lateral GaAs dot).

(ii) Single-spin coherence time τ c due to
the hyperfine interaction

τ c = 1 − 10ns (Bracker et al., 2005; Braun, et al., 2005; Dutt et al., 2005).

(iii) Singlet–triplet energy relaxation time
T1,ST

T1,ST 
 10 − 500 µs (Fujisawa et al., 2002; Sasaki, Fujisawa, Hayashi and
Hirayama, 2005) (vertical dot),
T1,ST 
 0.2 − 2.5 ms (Hanson et al., 2005) (lateral dot),
T1,ST 
 1 µs − 10 ms (Petta et al., 2005b; Johnson et al., 2005a) (lateral double
dot).

(iv) Singlet–triplet coherence time due to
hyperfine τ c,ST

τ c,ST 
 10 ns (Petta et al., 2005a) (free-induction decay time),
τ c,ST,echo 
 1.2 µs (Petta et al., 2005a) (spin-echo envelope decay time).

(v) Orbital inelastic relaxation time T1,orb

for a single-electron charge state in a
double quantum dot

T1,orb 
 16 ns (Petta et al., 2004).

(vi) Orbital dephasing time τφ for a
single-electron charge state in a dou-
ble quantum dot

τφ 
 1 ns (Hayashi et al., 2003),
τφ 
 400 ps (Petta et al., 2004),
(see also the comprehensive review in Fujisawa, Hayashi and Sasaki, 2006).

quantum-dot spin decoherence will remain a challenge for
some time to come.

5.3 Experimentally measured decay times

To complete this section on decoherence, here we include
a table with some of the most relevant measurements of
decoherence and energy relaxation times found in single and
double quantum dots (see Table 2).

6 ENTANGLEMENT GENERATION,
DISTILLATION, AND DETECTION

In addition to the usual requirements for control and coher-
ence, to demonstrate the true quantum nature of qubits,
there have been many suggestions to create and mea-
sure nonlocal multiparticle entanglement of electron spins
in nanostructures (DiVincenzo and Loss, 1999; Burkard,
Loss and Sukhorukov, 2000; Loss and Sukhorukov, 2000;
Choi, Bruder and Loss, 2000; Egues, Burkard and Loss,
2002; Burkard and Loss, 2003; Samuelsson, Sukhorukov and
Büttiker, 2004; Recher, Sukhorukov and Loss, 2001; Leso-
vik, Martin and Blatter, 2001; Mélin, 2001; Costa and Bose,
2001; Oliver, Yamaguchi and Yamamoto, 2002; Bose and
Home, 2002; Recher and Loss, 2002, 2003; Bena, Vishvesh-
wara, Balents and Fisher, 2002; Saraga and Loss, 2003;
Bouchiat et al., 2003; Beenakker and Schoenenberger, 2003;

Saraga, Altshuler, Loss and Westervelt, 2004; Egues et al.,
2005). These proposals include suggestions to extract a spin
singlet from a superconductor through two quantum dots
(Recher, Sukhorukov and Loss, 2001) or nanotubes (Recher
and Loss, 2002; Bena, Vishveshwara, Balents and Fisher,
2002), or to create entanglement near a magnetic impu-
rity (Costa and Bose, 2001), through a single quantum dot
(Oliver, Yamaguchi and Yamamoto, 2002), from biexcitons
in double quantum dots (Gywat, Burkard and Loss, 2002), or
through a triple dot (Saraga and Loss, 2003). It may also be
possible to distill entanglement (Bennett et al., 1997) from
an unentangled Fermi gas through Coulomb scattering in a
2DEG (Saraga, Altshuler, Loss and Westervelt, 2004).

As well as providing a proof of quantum-mechanical
behavior, entanglement can be used as a resource for
measurement-based quantum computing. Some measure-
ment-based schemes rely on the creation of highly entan-
gled cluster states (Raussendorf and Briegel, 2001), which
could be generated in quantum-dot arrays using the Heisen-
berg exchange interaction (Borhani and Loss, 2005). Other
measurement-based schemes generate entanglement through
partial Bell-state (parity) measurements (Beenakker, DiVin-
cenzo, Emary and Kindermann, 2004), which could also be
implemented for spins in quantum dots using spin-to-charge
conversion (Engel and Loss, 2005; Coish, Golovach, Egues
and Loss, 2006). Independent of the method used, the gen-
eration or purification and subsequent detection of entangled
electron spins would present a significant milestone on the
road to a working quantum-dot quantum computer.
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7 CONCLUSIONS AND OUTLOOK

We have presented some of the theoretical and experimental
challenges to quantum-dot quantum computing with electron
spins. The last few years have seen an extremely rapid
rate of progress in experiments which show that many of
the required elements of a spin-based quantum-dot quantum
computer can be realized in principle. The most significant
advances include the reduction of the number of electrons
confined to gated quantum dots down to a single electron
(Ciorga et al., 2000), the demonstration (Hanson et al.,
2003) and improvement (Hanson et al., 2005) of electron-
spin readout in gated lateral dots, which has led to the
measurement of a spin T1 time (Elzerman et al., 2004),
the demonstration of the

√
SWAP operation, allowing for the

extraction of an ensemble-averaged T ∗
2 time, and spin-

echo methods to extend the decay time within a two-spin
encoded subspace (Petta et al., 2005a), and most recently
the demonstration of single-spin rotations under resonant
conditions (Koppens et al., 2006, 2007).

To demonstrate viability of the Loss–DiVincenzo pro-
posal, more experiments are needed. Although the
Loss–DiVincenzo proposal is scalable in principle, it remains
to be seen if there are significant practical obstacles to
scaling-up the number of electrons involved well beyond two.

NOTES

[1] Optical initialization is likely more practical for the pro-
posal of (Imamoğlu et al., 1999), in which the qubit
spins can be widely separated and addressed individ-
ually or coupled with optical excitation, rather than
the Loss–DiVincenzo proposal, where quantum dots are
close, in order to maximizing wave function overlap for
exchange-mediated qubit coupling.

[2] Note that this type of pulse will generally lead to a
smaller value of P for a given set of parameters since
here, dε′/dt ≤ �ε/τ sw, whereas for the linear pulse
dε′/dt = �ε/τ sw for the entire sweep.

[3] In general, great care should be taken in making such a
replacement. See the discussion, for example, in (Coish
and Loss, 2005) or (Coish, Yuzbashyan, Altshuler and
Loss, 2006).
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Weinmann, D., Häusler, W. and Kramer, B. (1995). Spin blockades
in linear and nonlinear transport through quantum dots. Physical
Review Letters, 74, 984–987.

van der Wiel, W.G., de Franceschi, S., Elzerman, J.M., et al.
(2003). Electron transport through double quantum dots. Reviews
of Modern Physics, 75, 1–22.

van der Wiel, W.G., Stopa, M., Kodera, T., et al. (2006). Semi-
conductor quantum dots for electron spin qubits. New Journal of
Physics, 8, 28.

Witzel, W.M., de Sousa, R. and Das Sarma, S. (2005). Quantum
theory of spectral-diffusion-induced electron spin decoherence.
Physical Review B, 72, 161306.

Wolf, S.A., Awschalom, D.D., Buhrman, R.A., et al. (2001). Spin-
tronics: a spin-based electronics vision for the future. Science,
294, 1488–1495.
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1 INTRODUCTION

The emerging technique of magnetic resonance force
microscopy (MRFM) (Sidles, 1991) was conceived by
Sidles (1992) as a tool that could provide the revolution-
ary capability for three-dimensional imaging of single-copy
biomolecules. This challenging goal has been augmented by
a growing interest in applying it to imaging, especially sub-
surface imaging, of a broad range of materials and devices
including those that are the subject of this handbook.

New materials and devices with unprecedented capabilities
and levels of performance are being created by tailoring the
structure and composition of multicomponent materials at
the nanometer scale. Some of the most important examples
are systems incorporating and exploiting electronic spin in
its many manifestations including ferromagnetism. A central
component of a successful materials development program

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

is the availability of characterization tools. Progress in the
development of spin electronics materials and devices will
depend on tools capable of providing detailed microscopic
information about the electronic, magnetic, and structural
properties of these materials systems. In addition to studying
the constituents of these systems the ability to image and
characterize buried interfaces in multicomponent systems is
a particularly important requirement.

The MRFM is a novel scanned-probe instrument which
combines the three-dimensional imaging capabilities of mag-
netic resonance imaging (MRI) with the high sensitivity and
resolution of atomic force microscopy. It will enable non-
destructive, chemical-specific, high-resolution microscopic
studies and imaging of subsurface properties of a broad
range of materials. Dramatic improvements in the capa-
bilities of the MRFM in the last decade have confirmed
the validity of the approach in nuclear magnetic resonance
(NMR) (Rugar et al., 1994), electron spin resonance (ESR)
(Rugar, Yannoni and Sidles, 1992; Hammel, Zhang, Moore
and Roukes, 1995; Bruland et al., 1998) and ferromagnetic
resonance (FMR) experiments (Zhang, Hammel and Wigen,
1996; Wago, Botkin, Yannoni and Rugar, 1998; Zhang et al.,
1998; Hammel, Zhang and Midzor, 1998). In the quest for
improved sensitivity a recent milestone – the detection of a
single electronic spin using by MRFM – has been demon-
strated by the IBM group (Rugar, Budakian, Mamin and
Chui, 2004). Several good reviews are available (Sidles et al.,
1995; Yannoni, Züger, Rugar and Sidles, 1996; Pelekhov
et al., 2002; Wigen, Roukes and Hammel, 2006).

Because spatial resolution in MRI is limited by the require-
ment that adequate signal (compared to detection noise)
be obtained from the resolved volume, this breakthrough
heralds new horizons in magnetic resonance imaging. This
is a unique accomplishment amongst single spin detectors
in that MRFM couples directly to the electron’s magnetic
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dipole moment. Other high sensitivity approaches exploit
mechanisms that couple the spin of the electron to its spatial
degrees of freedom, hence allowing the spin to be detected
through its coupling to the electronic charge. The much larger
interaction force afforded by coupling to the charge carries
the limitations associated with the particular environment
required to obtain the needed interaction between the elec-
tron spin and orbital degrees of freedom. MRFM is a general
technique applicable wherever conventional magnetic reso-
nance would apply, this generality of applicability is a central
strength of the MRFM.

The development of MRFM instruments capable of ful-
filling these goals will be built on techniques that improve
sensitivity and overcome the challenges inevitable in apply-
ing them under various the experimental conditions these
applications entail. In this chapter, we focus on these two
aspects of MRFM: Sections 2–4 discuss the fundamentals
of the technique and the various components of a micro-
scope, and in Section 5 several applications to problems will
be discussed.

2 UNDERLYING TECHNOLOGIES

2.1 Magnetic resonance

2.1.1 Fundamentals

Electrons and many atomic nuclei possess a magnetic
moment µ. This moment is related their spin angular momen-
tum J by the gyromagnetic ratio γ which is unique for each
moment

µ = γ J (1)

The electronic moment µe = 9.28 × 10−24 J T−1 ≈ µB is
approximately 103 times larger than nuclear moments.
Because spin moments possess both magnetic moment and
angular momentum, the torque exerted by an external magne-
tic field H results in precession of the moment about the field:

dµ

dt
= µ × γ H (2)

The precession frequency (the Larmor frequency) is ωL =
γH .

A magnetic moment in a magnetic field H exhibits a res-
onant response to a transverse magnetic field H1 oscillating
at frequency ωL. This effect emerges in a simple quantum
mechanical as well as classical picture. The Hamiltonian for
a magnetic moment in a magnetic field H applied along the
ẑ direction, is

H = −µ · H (3)

hence,

Em = −γ �Hm (4)

where m = J, J − 1, . . . , −J + 1, −J is the projection of
the spin angular momentum J along the field axis H. There-
fore the energy of the transition between states having initial
and final spin projections mi and mf is

�E = −γ �H�m (5)

where �m = mf − mi . The transition is stimulated by a
transverse oscillating field H1 = H1x̂ cos(ωt). The matrix
element for this perturbation is

〈
mf |−γ�H1Jx |mi

〉
(6)

Writing Jx = (1/2)(J+ + J−) we see it is nonzero only for
�m = ±1. Thus the energy of the allowed resonant transi-
tions is

|�E| = γ �H = �ωL (7)

and therefore energy is absorbed at the resonant excitation
frequency ωL = γH .

2.1.2 Spin susceptibility

The spin polarization of an ensemble of N particles of spin
J in thermal equilibrium at temperature T with a magnetic
field of magnitude H0 is governed by Boltzmann statistics
(Abragam, 1961). The populations of energy levels of the
spin system are proportional to exp(−Em/kBT ). The net
equilibrium magnetization M of the ensemble is

M = Nγ�

∑J
m=−J m exp(−Em/kBT )∑J
m=−J exp(−Em/kBT )

(8)

Exploiting the high-temperature approximation (usually an
excellent approximation) Em/kBT � 1 we obtain the fol-
lowing expression for M and the spin susceptibility χ0 =
M/H0:

M = Nγ 2
�

2J (J + 1)

3kBT
H0 = χ0H0 (9)

2.1.3 Spin relaxation

A spin system that is removed from this thermal equi-
librium state will regain it through interactions with its
environment, a thermal reservoir, typically the crystal
lattice hosting the spin, at temperature T . This pro-
cess requires transitions between spin states, and these
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require fluctuating magnetic fields analogous to the field
H1 described in Section 2.1.1 above. These fields must
fluctuate at ωL and have a component oriented perpen-
dicular to the direction of the polarizing magnetic field
H0. The time evolution of ensemble magnetization M is
given by

dMz

dt
= −Mz − M0

T1
(10)

where T1 is the longitudinal spin relaxation time that is
determined by the intensity of fluctuations of the trans-
verse local field at the frequency ωL = γH0. It describes
the process of realigning the spin with the direction of
polarizing magnetic field. It can be expressed (Abragam,
1961) in terms of the transverse fluctuating fields H±
capable of driving �m = ±1 transitions between |m〉
states:

1

T1
= γ 2

∫ ∞

−∞
〈H±(0)H±(τ )〉eiγH0τ dτ (11)

The integral is the spectral density J± of the field fluctuations,
given by the Fourier transform of the time autocorrelation
function of the field fluctuations, and it describes the intensity
of these fluctuations at frequency ω:

J±(ω) =
∫ ∞

−∞
〈H±(0)H±(τ )〉eiωτ dτ (12)

Hence we see that the rate at which spins relax is proportional
to this spectral density evaluated at the Larmor frequency,
that is, those fluctuating fields capable of causing �m = ±1
transitions.

A monochromatic transverse field H1 can coherently
rotate Mz into the x̂ – ŷ plane thus generating a trans-
verse magnetization Mx and My ; this magnetization will
subsequently decay for two reasons. Inhomogeneous relax-
ation results if different spins experience different mag-
netizing fields due to spatial inhomogeneity. Different
spins will precess at different frequencies causing loss of
coherence and eventually loss of the transverse magne-
tization. A Lorentzian distribution of fields with a half-
width �H will decohere the transverse magnetization on a
timescale:

T ∗
2 = (γ�H)−1 (13)

Interactions between nuclear spins also cause decoherence of
the transverse magnetization; these are described by trans-
verse spin relaxation time T2: (Abragam, 1961)

dMx

dt
= −Mx

T2
,

dMy

dt
= −My

T2
(14)

2.1.4 Rotating frame of reference

It is helpful in understanding the dynamics of spins simulta-
neously experiencing static and oscillating transverse fields
to apply a simple transformation (Slichter, 1989) into a frame
of reference that rotates about the axis defined by the applied
field H0 (typically ẑ). The linearly polarized transverse oscil-
lating rf field Hx = 2H1 cos(ωrft) that is applied in magnetic
resonance can be written as a superposition of two oppositely
circularly polarized fields of amplitude H1 rotating with fre-
quencies ±ωrf (Abragam, 1961). In practice, only one of the
circularly polarized components need be considered since the
counter-rotating component is far off resonance (2ωrf) and
has little effect on the spin system. In a frame rotating at ωrf

the first oscillating field is static, so the magnetic field seen
by a spin (see Figure 1) is given by:

Heff =
(

H tot
z − ωrf

γ

)
ẑ + H1x̂ (15)

Here H tot
z = H0 + H

tip
z to explicitly allow for the fact that

in MRFM the field of the micromagnetic tip Htip adds to the
field experienced by the sample. In the rotating frame, the
resonance condition leads to a particularly simple situation:

�ω

γ
= H tot

z − ωrf

γ
= 0 ⇒ Heff = H1x̂ (16)

∆w
g

wrf

gH0z z

H1x

Heff

Figure 1. Diagram of magnetic fields in a frame of reference
rotating about ẑ with angular frequency ωrf. The resulting effective
field Heff is the vector sum of the applied magnetic field H0, the
transverse field H1 and the field −(ωrf/γ )ẑ that accounts for the
transformation to the rotating frame of reference.
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Hence the magnetization precesses about H1x̂ at a frequency
γH1, the Rabi frequency. The x̂ component of H tip is static
and much less than H0, so it can be neglected.

2.1.5 The Bloch equations

The equations of motion (equation (2)) for the magnetization
M can be written in the rotating frame of reference including
longitudinal and transverse spin relaxation as

dM
dt

= γ (M × Heff) − Mxx̂ + Myŷ

T2
− Mz − M0

T1
ẑ (17)

The steady-state solutions of these, the well-known Bloch
equations (Bloch, 1946; Abragam, 1961), are

Mx = �ωγH1T
2

2

1 + (T2�ω)2 + γ 2H 2
1 T1T2

M0 (18)

My = γH1T2

1 + (T2�ω)2 + γ 2H 2
1 T1T2

M0 (19)

Mz = 1 + (�ωT2)
2

1 + (T2�ω)2 + γ 2H 2
1 T1T2

M0 (20)

where �ω = ωrf − ωL. The frequency dependence of Mz(ω),
related to the magnetic resonance lineshape, is a (negative-
going) Lorentzian whose minimum occurs at �ω = 0. The
linewidth, or full width at half intensity, δω is

δω = 2

√
1 + γ 2H 2

1 T1T2

T2
(21)

2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a large and rich field that
employs an applied magnetic field gradient to map the spatial
location of a particular volume onto either the frequency or the
applied homogeneous field of a detected magnetic resonance
signal. The relationship between the frequency ωL of a spin
and the magnetic field H it experiences is

ωL = γH (22)

A magnetic field gradient applied along the ẑ direction dH/dz

creates a spatial distribution of spin resonant frequencies:

ωL(z) = γ

(
H0 + dHz

dz
z

)
(23)

Conventional MRI (Callaghan, 1991) employs pulsed
magnetic resonance techniques that produce a time-domain
spin echo signal. This signal will decay rapidly as a

consequence of the broad range of fields present, that is,
it will exhibit a short T ∗

2 (see equation (13)). The Fourier
transform of this time-domain decay will produce spectrum
in which the signal intensity at a particular frequency corre-
sponds to the number spins at the z-coordinate prescribed by
the field gradient.

Alternatively, one can employ monochromatic rf radiation
of frequency ωrf, then only those spins lying on a surface of
constant field (perpendicular to the field gradient) at zres will
contribute to the signal:

zres =
(

ωrf
γ

− H0

)
dHz

dz

(24)

The thickness δz of the resonance volume is determined by
the homogeneous linewidth of the sample (γ T2)

−1

δz = (γ T2)
−1

dHz

dz

(25)

This width determines the spatial resolution of MRI.
The resolution of MRI is limited by detection sensitivity

and the requirement that the resolved volume be large enough
to provide acceptable signal-to-noise ratio. Pulsed MRI
protocols employ pulsed spatial field gradients applied along
three orthogonal directions combined with rf pulses to assign
a unique value of spin precession frequency and phase to
spins within a resolved region having volume (δz)3. We see
from equation (25) that spatial resolution can be improved
by increasing the field gradient strengths. This improvement
comes at the price of diminished signal which is proportional
to the number of spins Nspins = n(δz)3 in the volume element
(n is the spin density). Conventional spectrometers can detect
the signal from 109 electron spins (∼1015 nuclear spins)
in bandwidths of order 1 Hz. The finest spatial resolution
reported in inductively detected nuclear micro-MRI is at the
level of (∼3 µm)3 (Ciobanu, Seeber and Pennington, 2002).

2.3 Scanned-probe microscopy

Scanned-probe microscopy (SPM) refers to a large family
of experimental techniques based on detection of a local
interaction between a sample and a microscale probe that
can be precisely positioned over the sample. Raster scanning
of the microprobe over the sample surface provides a spatial
map of the detected interaction.

2.3.1 Scanning tunneling microscopy

The first scanned-probe microscope was the scanning tun-
neling microscope (STM) invented by Gerd Binnig and
Heini Rohrer in 1982. In this instrument an atomically sharp
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conducting needle is brought close to conducting surface,
close enough for electrons tunnel through the vacuum gap
(typically ∼1 Å) between the tip and the surface in the pres-
ence of a potential difference. The extremely short range of
the tunneling interaction allows mapping of the local density
of electronic states with atomic scale resolution. Mapping
of surface topography, local state spectroscopy, and atomic
manipulation have all been accomplished with the STM. The
STM is, however, limited to conducting surfaces.

2.3.2 Atomic force microscopy

The atomic force microscope (AFM) uses as a probe a
flexible micromechanical cantilever with a sharp tip. The
interaction between this probe and the surface is detected by
measuring the resulting displacement of the cantilever. The
typical magnitude of the forces involved is 10−9 –10−12 N.
The displacement of the cantilever is measured using optical
displacement detection. The AFM can operate on insulating
as well as conducting surfaces, and also provides information
about the surface of the sample. AFM can be used for
mapping surface topography, stiffness, local friction, and for
surface manipulation. It is usually operated in one of two
modes: contact mode and noncontact mode. In contact mode
the cantilever is in hard contact with the surface and the
displacement of the cantilever under the influence of the
force of Pauli repulsion is measured. In noncontact mode, an
oscillating cantilever hovers above the sample surface and
the local gradient of the long-range dipolar (Van der Waals)
force is measured by detecting the consequent shift of the
natural frequency of the cantilever ωc. The spatial resolution
of AFM is defined, depending on the mode of operation, by
parameters such as the radius of the cantilever tip (typically
∼10 nm) and the probe–sample separation. Under proper
conditions atomic resolution is achievable (Giessibl, 2003).

2.3.3 Magnetic force microscope

The magnetic force microscope (MFM) is a form of AFM
that detects the dipolar magnetostatic interaction between the
magnetic tip and magnetic dipoles in a ferromagnetic sample.
The tip is scanned at a controlled distance above the sample
without direct contact. The typical probe–sample interaction
has similar magnitude: 10−9 –10−12 N.

3 THE MRFM INSTRUMENT

MRFM is similar to MFM; the essential difference is
the addition of an applied rf field to enable the sample
magnetization to be manipulated by magnetic resonance
techniques. Because the goal is high spatial resolution

imaging, the signal detected is, in general, from a small
number of paramagnetic spins, hence the forces are much
smaller than in the case of other force microscopies.

A micromechanical cantilever with a micromagnetic probe
tip is brought close to the sample surface. The force F

exerted on the magnetic tip by magnetic moments in the
sample is

F = −(m · ∇)B (26)

where m is the magnetic moment of the sample and ∇B is
the gradient of the magnetic field of the micromagnetic tip.
This force will deflect the compliant cantilever; sensitive dis-
placement detection allows this force to be measured. Using
magnetic resonance techniques, the sample magnetization is
manipulated at or near the resonant frequency ωc of the can-
tilever. The amplitude of the cantilever response is multiplied
by Q thus reducing the demands on the displacement detec-
tion. Forces as small as 10−18 N have been detected (Hoen
et al., 1994). MRFM can be applied for detection of any kind
of magnetic resonance: ESR, NMR, and FMR. Force detec-
tion of magnetic resonance detection is far more sensitive
than conventional inductive detection, and recently Rugar
and coworkers demonstrated MRFM detection of a single
electron spin (Rugar, Budakian, Mamin and Chui, 2004).
By comparison, the sensitivity of a commercially available
inductively detected ESR spectrometer is ∼109 spins.

3.1 Micromechanical resonator

The heart of the MRFM is the resonant micromechani-
cal force sensor. The most commonly used structure is a
micromechanical beam of length L, width W and thick-
ness T typically clamped at one end, that is, configured as
a cantilever, though doubly clamped is also feasible. Other
structures such as torsional oscillators (Barrett et al., 1998)
have also been used for MRFM force detection however,
cantilevers are by far more popular and we will focus on
them here. MRFM cantilevers with characteristic dimen-
sions L ≈ 300–500 µm, W ≈ 20 µm and T ≈ 0.5 µm (see
Figure 2) can be fabricated by standard surface microma-
chining techniques (Madou, 2002). Most commonly MRFM
cantilevers are made from Si and Si3N4.

3.1.1 The cantilever as a simple harmonic oscillator

The motion of a micromechanical beam resonator is
described by the Euler- Bernoulli equation

∂2

∂x2

[
EI (x)

∂2

∂x2
z(x, t)

]
+ ρA(x)

∂2

∂t2
z(x, t) = F(x, t)

(27)
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T

W

L

Figure 2. Schematic diagram of simple rectangular micromechan-
ical cantilever.

where z(x, t) is the transverse displacement of the beam,
x is the coordinate along the beam, t is time, E is Young’s
modulus, ρ is the mass density, I (x) is the moment of inertia
about the centroid of the beam, A(x) is the cross-sectional
area of the beam and F(x, t) is the external applied force.
It can be shown that small vibrations at a coordinate x on
the beam can be described by a point mass-on-spring model
with effective parameters obtained from equation (27) using
appropriate boundary conditions. The resulting equation of
motion, with dissipation terms included, is that of a simple
harmonic oscillator (SHO):

m
∂2

∂t2
z(t) + mωc

Q

∂

∂t
z(t) + kz(t) = F(t) (28)

where the effective parameters are the resonant frequency of
the cantilever ωc, the effective mass m of the resonator, the
quality factor Q and the spring constant k of the resonator.

3.1.2 Resonator parameters

The effective parameters in equation (28) for the fundamental
vibration mode are obtained from equation (27)

ω0 = a1

√
ET 2

ρL4
(29)

k = a2
ET 3W

L3
(30)

m = a3ρLT W (31)

The numerical prefactors depend on x and the boundary
conditions used to solve equation (27). If x corresponds

to the free end of a simple rectangular cantilever (shown
in Figure 2), the prefactors are a1 ≈ 1.0, a2 ≈ 0.25 and
a3 ≈ 0.25.

3.1.3 Resonator response to oscillatory excitation

MRFM force detection exploits the response of a cantilever
to an oscillatory force

F(t) = F0eıωt (32)

In the low damping approximation (Q 
 1) the cantilever
displacement is

z(ω, t) = A0eı(ωt+θ0) + e− ωc
2Q

t (
C1e−ıωct + C2eıωct

)
(33)

where

A0(ω) = F0/m√
(ω2

c − ω2)2 + (ωcω/Q)2
(34)

θ0(ω) = arctan

[
ωcω

Q(ω2 − ω2
c)

]
(35)

where C1 and C2 are complex coefficients determined by
initial conditions.

The first term of equation (33) gives the steady-state
response of the cantilever. While the response of the can-
tilever to a static force F0 is A0(0) = F0/k the response
to an oscillatory force of the same magnitude at ω = ωc is
A0(ωc) = QF0/k, that is the oscillation amplitude is mul-
tiplied by the quality factor Q of the cantilever, typically
104 –105, compared to the off-resonant response. This has the
important consequence of reducing the displacement readout
sensitivity (see Section 3.2) needed to ensure that it doesn’t
limit overall sensitivity.

The second term in equation (33) represents the transient
response of the cantilever which decays on the oscillator
response timescale

τ = 2Q

ωc

(36)

This reflects the fact that changing the amplitude involves
changing the oscillator energy by means of the rather small
signal force. When an oscillatory force is applied to an
otherwise undriven resonator its oscillation amplitude will
grow until a steady state is reached in which the work done
by the external force (on resonance the force is in phase
with the velocity, so it performs work) is balanced by the
energy dissipated per cycle (∝ Q−1). The response time
τ reflects the time required to increase the energy of the
resonator to this equilibrium. This time can be long for the
high Q cantilevers used in MRFM: typically Q ∼ 5 × 104

and ω0 = 2π × 104 Hz, so τ ≈ 1.6 s. This slow response
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can be substantially improved by the application of negative
force feedback without significantly degrading the cantilever
force sensitivity (Mertz, Marti and Mlynek, 1993; Bruland,
Garbini, Dougherty and Sidles, 1996) if necessary.

3.2 Displacement detection

3.2.1 Optical interferometry

Optical displacement detection based on fiber-optic interfer-
ometry (Albrecht, Grütter, Rugar and Smith, 1992) is cur-
rently nearly universal in MRFM experiments. Laser light
launched into one port of a directional fiber coupler (see
Figure 3) propagates to the end of the fiber positioned a dis-
tance δ from the backside of the cantilever. The gap between
the end of the fiber and the reflective cantilever surface forms
an interferometric cavity. Cantilever motion changes this gap
altering the interference between the reference beam inter-
nally reflected off the end of the fiber and the signal beam
reflected off the cantilever and back into the fiber. The depen-
dence of the light power on δ is

Pp ∝ Ps0 + Pr0 + 2
√

Ps0Pr0 cos

(
4π

λ
δ

)
(37)

where λ is the wavelength of the laser light and Ps0 and
Pr0 are the powers of the signal and reference beams respec-
tively. To maximize the displacement sensitivity dPp/dδ, the
interferometric cavity should be tuned such that

δ = λ

4

(
1

2
± n

)
, n = 1, 2, 3 . . . (38)

The amplitude of the reference and the signal beams depends
on the power of the laser light Plaser and on the reflectivity
Rs of the cantilever and Rr of the end of the fiber, so the
displacement sensitivity is∣∣∣∣dPp

dδ

∣∣∣∣ = 8π

λ
Plaser(1 − Rr)RsRr (39)

The sensitivity can be optimized by tuning the reflectivity
of the interferometric surfaces with a metallic coating. A
displacement noise floor of 10−13 m Hz−1/2 can be straight-
forwardly achieved.

3.2.2 Alternative displacement detection methods

While optical fiber interferometric displacement detection is
quite popular, there are other approaches that offer advan-
tages, for instance, in applications to photosensitive samples
or where straightforward electrical readout is desired, perhaps
at the expense of displacement sensitivity.

Piezoresistive
Piezoresistive displacement detection is based on measuring
the change in resistance of the cantilever material result-
ing from stress induced by cantilever displacement. This
approach has been implemented (Arlett et al., 2006) with
good sensitivity in Si cantilevers supported by two thin legs
with a thin piezoresistive (p+ Si) top layer. The p+ layer
forms a continuous current path through the legs, and bend-
ing will induce a stress σ leading to a change �R in the
resistance of this path. This can in turn be related to dis-
placement �z of the end of the cantilever:

D ≡ �R

R

1

�z
= effσ

�z
= eff

3

2
E

h

L2

(
1 − λ

2L

)
(40)

where eff is the effective piezoresistive coefficient of the
material, E is Young’s modulus, L is the length of the
cantilever, h is its thickness and λ is the length of the
piezoresistive region.

The minimum detectable displacement δzmin of the can-
tilever, limited by the Johnson noise in the resistor and 1/f

noise (Yu et al., 2001), is

δzmin = 4

DV

[
αV 2

N
ln

f1

f2
+ 4kBT R(f1 − f2)

]1/2

(41)

d

Signal beam

Laser diode

Photo diode

Reference beam

Directional (90/10, 50/50, 99/1) fiber coupler
Prevents back light reflection into the laser diode

Intensity monitor

Figure 3. Schematic diagram of the optical fiber interferometer. δ is the distance between the end of the fiber and the cantilever.
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where V is the bias voltage, α the 1/f noise parameter, N the
number of carriers and f1 and f2 the upper and the lower lim-
its of the measurement bandwidth. The typical displacement
noise floor reported with piezoresistive cantilevers is of the
order of 10−11 m Hz−1/2 at room temperature. Experimental
force sensitivities of 235 aN Hz−1/2 and 17 aN Hz−1/2 have
been obtained at room temperature and 4.2 K, respectively
(Arlett et al., 2006); optimal performance was obtained at an
excitation current that balanced the opposing influences of
readout noise and self heating.

Though this detection scheme has yet to be used in MRFM
experiments, an integrated piezoresistive displacement detec-
tor offers the advantage that there is no need for precision
alignment of the cantilever with the detector. This step can
be time consuming and its elimination could simplify MRFM
experiments and hasten the dissemination of MRFM tech-
niques to a broad research community.

Capacitive displacement detection using a microwave
tank circuit
The capacitance between two electrodes varies with separa-
tion, so the displacement of a cantilever can be detected by
measuring the capacitance Cp between the micromechanical
resonator and a sensing electrode. Assuming small cantilever
displacements, the corresponding change of the capacitance
δCp is

∣∣δCp

∣∣ = Cp

δd

d
= εε0

A

d

δd

d
(42)

where A is the area of capacitor plates, d the distance
between the plates and δd is the displacement of the
resonator.

When added in parallel to the capacitance of a microwave
tank circuit, Cp will lead to a measurable shift in its reso-
nance frequency ωres. The analysis of the noise performance
of a tank circuit is identical to that of an SHO. The minimum
detectable displacement (Pelekhov et al., 2005) depends on
temperature T and the quality factor Q of the tank cir-
cuit. Capacitive displacement detection promises extremely
high displacement detection sensitivity. For typical can-
tilever parameters we can expect a displacement noise floor
of 10−13 m Hz−1/2 at room temperature. Because the sig-
nal depends on the area of the electrode on the cantilever,
this approach does not scale well as cantilevers become
smaller.

This method has been used for MRFM signal detection
(Pelekhov et al., 2005) but self heating of the tank circuit
by the drive was evident at low temperatures. The trade-
off between displacement sensitivity and self heating can be
helped by lithographic integration of the detection circuit
with the cantilever.

Capacitive displacement detection using a single
electron transistor
Another approach to capacitive displacement detection
(LaHaye, Buu, Camarota and Schwab, 2004) exploits the
excellent charge sensitivity of the radio frequency single elec-
tron transistor (rf SET) (Devoret and Schoelkopf, 2000). The
SET is a superconducting island coupled to drain and source
contacts through two tunnel junctions. The conductivity and
hence the impedance of the SET arises from the tunneling
of individual electrons through the tunnel contacts, and is
very sensitive to the alignment of the chemical potential of
the drain and source contacts. Slight changes of the island
potential are evident in the SET conductance. A microwave
tank circuit is used to match a room temperature detector to
the impedance of the SET. On resonance, the impedance of
the tank circuit is small and therefore the reflectance of the
circuit is determined by the differential resistance Rd of the
SET. This enables continuous, sensitive readout of the SET
impedance.

When the cantilever is voltage biased and capacitively
coupled to the SET, its displacement will modify Rd and
hence the reflected rf power. At the low temperatures (below
300 mK) where the SET is typically operated its displacement
noise is dominated by the tunnel current shot noise and the
back action noise of the SET on the cantilever (LaHaye, Buu,
Camarota and Schwab, 2004; Zhang and Blencowe, 2001).
Theoretical estimates predict a displacement noise floor as
low as 10−16 m Hz−1/2; in the lab 3.8 × 10−15 m Hz−1/2

has been demonstrated using a 20 MHz beam resonator
(LaHaye, Buu, Camarota and Schwab, 2004). Although it
requires ultralow temperatures and has only been applied to
doubly clamped beams to date, SET displacement detection
is currently the most sensitive available.

3.3 Radio frequency magnetic fields

A fundamental requirement for MRFM is the transverse rf
magnetic field used to manipulate the sample magnetization.
The quality of the resulting force signal depends sensitively
on the strength of the transverse oscillatory magnetic field
H1 that manipulates the magnetization. Standard rf field
generation techniques are difficult to apply for MRFM
because its scanning probe microscope arrangement makes
placement of the sample and the MRFM probe inside of an
rf coil (NMR) or a microwave cavity (ESR, FMR) virtually
impossible. Instead, the sample must be placed as close as
possible to the microstrip resonator or a microcoil used to
generate the field which must be impedance matched to the
50 � source impedance of the rf/microwave signal generator.
The nature of the impedance matching network depends on
the frequency.
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In the rf regime (∼100 MHz) a standard NMR tank
circuit using lumped capacitive elements works well (see,
e.g., Fukushima and Roeder, 1981). The microwave field
needed for ESR or FMR experiments is somewhat more
involved since lumped capacitive elements become imprac-
tical at these frequencies (3–10 GHz). Design strategies
based on distributed microwave structures constructed from
microstriplines (50 � planar transmission geometry with a
signal line separated from a planar ground plane by a dielec-
tric sheet) are useful. Resonant structures are desirable to
increase the field; these can be based on either resonant
microstriplines or microcoils.

3.3.1 Microstrip resonator

A microstrip resonator (Wallace and Silsbee, 1991) is a
section of a microstrip line whose length is half the wave-
length λ of the electromagnetic wave at the desired frequency
ωrf. The rf power is delivered by a transmission line that is
capacitively or inductively coupled to the conducting island.
The planar nature of microstrip resonators is convenient
for use in scanned-probe experiments as the sample can be
placed directly on the resonator (Zhang et al., 1998).

3.3.2 Microcoil

A conventional coil provides a somewhat larger H1 since
the field is a sum of contributions from several windings
of the coil. The need to generate rf field in GHz regime
limits the inductance of the coil and therefore its size and
the number of windings. The coil can be matched to the
rf source by a distributed impedance matching network
(Wallace and Silsbee, 1991; Zhang et al., 1998; Mamin,
Budakian and Rugar, 2003). Typically, ∼250 µm diameter
coils with 2–2.5 windings are used. The sample is placed
outside the coil on its main axis within one coil radius of
the coil to achieve reasonable H1 intensity so alignment is
more demanding than for a microstrip resonator. A normal
metal coil implementation delivers 1–3 G (up to ∼9 GHz)
with about 10 mW of rf power delivered to the circuit.

Superconducting circuits provide strong H1 at low power
input (Mamin, Budakian and Rugar, 2003). Using this
approach, a 7 G microwave field has been demonstrated
∼100 µm from a 220 µm diameter coil with 2.5 windings
using only 400 µW of applied power (Mamin, Budakian and
Rugar, 2003). Low applied power is important in a cryo-
genic environment where the heat load must be minimized.
There is, however, a significant limitation imposed by super-
conducting resonators: the applied static field must be well
below the superconducting critical field of Nb which lim-
its the applied field to ≈2000 G. This is sufficient for ESR
experiments but limiting for NMR detection.

3.4 Micromagnetic probe tips

One of the most powerful means of increasing the tip-sample
interaction (equation (45)) and hence MRFM sensitivity is
to increase the magnetic field gradient of the probe tip. The
component of the field gradient that generates the needed
force perpendicular to the plane of the cantilever will depend
on the orientation of the cantilever relative to the sample sur-
face and on the polarization of magnetic moments in the
sample. For a typical geometry (as in Figure 6) we seek
to maximize dBz/dz. In a ∼105 T m−1 field gradient, a sin-
gle electron spin generates a force of 10−18 N; much higher
gradients will be needed for single nuclear spin sensitiv-
ity. This will require close approach to a micromagnetic
probe tip.

Although not necessarily the optimal shape, we can
consider a spherical ferromagnetic micromagnet to illustrate
the challenge. A sphere of radius a uniformly magnetized
along ẑ with saturation magnetization Ms will have total
moment m0 = (4/3)πa3Ms (see Figure 6). The field gradient
a distance z from the center of the sphere is given by

dBz

dz
= −6

µ0

4π

m0

z4
(43)

Here z = a + d, where d is the gap between the sample
an the magnetic sphere. For a given operating distance d,
the maximum field gradient of a spherical probe magnet
is achieved for a radius a = 3d. Given state-of-art force
detection sensitivity (Rugar, Budakian, Mamin and Chui,
2004) gradients of 107 –108 T m−1 will be needed for single
nuclear spin detection. To obtain this from an (µ0Ms =
2.2 T) nanosphere will require d = 46 nm and a = 138 nm
(107 T m−1) or d = 4.6 nm and a = 14 nm (108 T m−1).

The selection of the magnetic tip goes beyond the size
of magnetic particle. Depending on the goals of the experi-
ment, which might not necessarily be a single nuclear spin
detection, magnetic coercivity, material stability, ease of fab-
rication, and the response of the magnetic tip to applied
magnetic and rf fields should be considered.

3.4.1 Tip materials

Magnetic materials available for MRFM tip fabrication can
be divided into magnetically ‘soft’ and ‘hard’ magnetic
materials according to their coercivity.

Typically transition metals such as Co, Fe, and Ni have
low coercivity, but high saturation magnetization. Fabrication
is straightforward and compatible with typical microlitho-
graphic processes. This makes soft magnets attractive fabri-
cating magnetic tips.

Hard magnetic materials such as the rare-earth alloys
SmCo5, Sm2Co17 and Nd2Fe14B exhibit coercive fields as
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high as 2–3 T. Magnetic tips fabricated out of hard magnetic
materials have the advantage that they can be used in
MRFM experiments where an externally applied field Bext

antiparallel to the orientation of the tip magnetization is
desired; there are applications for which this is valuable (see
Section 5).

High coercivity offers another advantage. When mounted
on an oscillating cantilever in an applied magnetic field, soft
magnets are dissipative (Stipe et al., 2001a) due to magnetic
‘friction’ occurring as the particle’s moment rotates while
trying to follow the direction of the external magnetic field.
This dissipation reduces the quality factor Q of the cantilever
thus reducing MRFM sensitivity.

We will see in Section 5.2.1 that a long spin lifetime
is crucial for ultrasensitive MRFM detection as the noise
bandwidth is set by the inverse of this lifetime. Magnetic
field fluctuations arising from thermal fluctuations of the
tip moment will contribute to spin relaxation in the sample
(see Section 2.1.3). Magnetic materials with large magnetic
anisotropy K (typically larger in hard magnetic materials)
reduce this effect.

3.4.2 Tip fabrication

High coercivity tips are important for high sensitivity MRFM
to minimize relaxation due to tip moment fluctuations.
Micromagnetic rare-earth tips are fabricated by a two step
process: first small particles of the tip material are glued
to the cantilever in the presence of an applied magnetic
field to orient the tip moment in the desired direction. The
tip is then shaped using focused ion beam milling (FIB).
This technique can generate tips with gradients exceeding
105 T m−1 (1 G nm−1). An example is shown in Figure 4.

3.4.3 Tip characterization

Characterizing the magnetic moment and the field gradient
of the micromagnetic probe tip is essential and challeng-
ing due to the very small magnitude the probe magnetic
moment and the need to accurately map the spatial vari-
ation of the tip field on the scale of tens or hundreds of
nanometers.

Vibrating cantilever magnetometry (Zhang and Hammel,
1999; Chabot and Moreland, 2003; Stipe et al., 2001b)
is a convenient method uniquely capable of measuring
the magnetic moment of a small ferromagnetic particle
mounted on a micromechanical cantilever. This approach
is sensitive to moments as small as 104µB (Stipe et al.,
2001b) and so is suitable for the study of nanoscale magnetic
tips. The motion of a magnetic particle at the end of a
cantilever entails rotation its magnetic moment with respect
to the externally applied magnetic field; this leads to a

restoring torque that depends on the position of the cantilever
and so changes the effective cantilever spring constant.
The cantilever is driven at constant amplitude its natural
frequency ωc by means of positive feedback, and the change
of its frequency is measured as a function of external
magnetic field. The resulting frequency shift �ω (Stipe et al.,
2001b) is

�ω = ωc

mHHk

2kL2
e(H + HK)

(44)

where m is the magnetic moment of the particle, Le is
the effective length of the cantilever, Hk is the anisotropy
field of the tip and H is the applied magnetic field. Typical
cantilever magnetometry data is shown in Figure 5. The mag-
netic moment of the magnetic tip can be extracted from the
slope of the field dependence. Parameters such as coerciv-
ity can also be extracted. Reversals of the magnetization in
response to field reversal in a soft magnet are clearly evident
as slope changes.

4 FORCE DETECTION OF MAGNETIC
RESONANCE

At the heart of MRFM is sensitive detection of the force F
between a magnetic tip generating a field gradient ∇B and
the magnetization m in a localized region of the sample

F = −(m · ∇)B (45)

The characteristic force scale for MRFM is 1 atto-newton
(1 aN = 10−18 N) set by the interaction between a single
electronic moment interacting through a field gradient of
105 T m−1 (1 G nm−1). Detecting the force exerted by a single
nuclear spin will require higher field gradients and improved
force sensitivity. Detecting such forces is challenging; for
comparison, forces measured in conventional SPM are usu-
ally not lower than 10−12 N.

The transduction of a force signal into a voltage involves
two stages of signal detection: first the mechanical resonator
converts the oscillatory force to displacement, then this
displacement is detected by a position sensitive readout.
Sensitive force detection then requires the following

• System noise should be minimized
– System noise should be dominated by thermal

fluctuations of the cantilever.
– Noise spectral density and bandwidth should be

minimized.
• The signal force must be comparable to or larger than

the system noise (referred to the input):
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Figure 4. FIB fabricated rare-earth micromagnets (provided by P. Banerjee and R. Steward).
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Figure 5. Cantilever magnetometry data for ‘hard’ NdFeB and
‘soft’ permalloy probe magnets. The magnetic moment of the
particle can be extracted from the slope of the cantilever frequency
dependence on the applied magnetic field. It can be seen that,
unlike the soft-probe magnet, the hard-probe magnet preserves the
direction of its magnetization as the direction of the applied field is
reversed. (Provided by P. Banerjee.)

– The field gradient should be as large as possible.
– The force signal can be imprinted with an optimal

time signature to aid detection and reject nonthermal
noise.

• The noise added in reading out the resulting cantilever
displacement must be negligible compared to the thermal
noise of the cantilever.

This entails engineering the interaction in such a way that the
resulting cantilever displacement exceeds both the cantilever
displacement noise in the measurement bandwidth and the
noise floor of the displacement detection scheme. The readout
requirement essentially requires driving the cantilever at its
resonant frequency to enhance the oscillation amplitude for
a given drive.

4.1 Sensitive oscillatory force detection

The response of a cantilever to an externally applied force is
well described by the model of a linear harmonic oscillator.
The displacement δz of the end of a cantilever under the
influence of a static force F is

δzstat = F

k
(46)

where k is the mechanical spring constant of the cantilever.
Thus, a 1 aN force acting on a soft (k = 10−3 N m−1)
cantilever will produce a static displacement δzstat = 10−15

m, well below the noise floor of available displacement
detection schemes. By driving on resonance, the amplitude
of the steady-state oscillations are increased by the quality
factor Q:

δzosc = Q
F

k
= Qδzstat (47)

Typically Q is 104 − 105, resulting in an amplification of the
cantilever response sufficient to render displacement readout
noise negligible.

4.1.1 Fundamentals of force detection

Force sensitivity for resonant force detectors
The sensitivity of force detection using a micromechanical
resonator is ultimately limited by the thermal motion δzth of
the resonator. By the equipartition theorem, the average ther-
mal energy per degree of freedom of an SHO is (Albrecht,
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Figure 6. Schematic diagram of an MRFM experiment with probe magnet mounted on the cantilever. The cantilever is parallel to the
sample surface. The sensitive slice is shown schematically.

Grutter, Horne and Rugar, 1991)

k〈δz2
th〉

2
= kBT

2
(48)

Equivalently we can consider the cantilever to be driven by
a white noise force Fth given by (Stowe et al., 1997)

Fth =
√

4kkBT �ν

Qωc

(49)

where �ν is the measurement bandwidth. This expression
provides a guide to the steps that can be taken to reduce
Fth such as increasing Q and working at low temperature.
In order to be detectable the force arising from the magnetic
resonance signal should be greater than Fth.

Frequency shift detection
It is often convenient, as discussed in the subsequent text,
to detect the magnetic resonance signal by measuring the
small induced shift in the cantilever resonance frequency
ωc. This approach requires that the cantilever be driven at
its resonance frequency; we call the oscillation amplitude
zosc. The fundamental limit of the sensitivity of frequency
detection also arises from the thermal excitation of cantilever.
The resulting thermal frequency noise δωth is given by
Albrecht, Grutter, Horne and Rugar (1991)

δωth =
√

ωckBT �ν

kQ
〈
z2

osc

〉 (50)

Displacement detection sensitivity
It is important that displacement readout add negligibly to
the total detection noise. A resonant oscillatory force of
10−18 N acting on a soft (k = 10−3 N m−1), high Q cantilever
will produce cantilever oscillations δzosc ∼ 10−10 − 10−11 m.
Hence we require displacement readout sensitivity better than
10−12 m Hz−1/2. Thus, displacement sensitivity can be well
managed by working at the cantilever resonance frequency.

4.1.2 Amplitude detection

Amplitude detection is the most straightforward approach to
MRFM signal detection: a signal force oscillating at ωc is
applied to the cantilever, and the amplitude of the steady-state
oscillations, proportional to the applied force, is measured.
This approach is the most straightforward to implement
and will deliver reliable results in the case of a strong
magnetic resonance signal. However, amplitude detection
has several disadvantages that complicate its application for
high sensitivity measurements. One is the long response
time τ (see equation (36) and associated discussion) required
for the high Q micromechanical resonator to increase its
energy and achieve its steady-state oscillation amplitude.
This determines the waiting time between two consecutive
signal measurements and thus the rate at which data can
be acquired. For a high Q cantilever this time can be as
long as 1–10 s, making acquisition of large amounts of data
unacceptably time consuming. This problem can be mitigated
by using negative feedback (Bruland et al., 1998; Bruland,
Garbini, Dougherty and Sidles, 1998) to nondissipatively
increase signal bandwidth without increasing Fth.
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Another problem encountered in amplitude detection is the
sensitivity of the cantilever frequency to conditions such as
the applied field and temperature. This leads to a mismatch
between the signal frequency and ωc thus introducing a spu-
rious variation in the oscillation amplitude that can obscure
the desired signal. This is more severe the higher the Q. The
solution is to update the frequency ωmod at which the signal
force is modulated to match real-time cantilever frequency
measurements. This leads naturally to signal detection based
on frequency shift detection (Albrecht, Grutter, Horne and
Rugar, 1991), a powerful alternative to amplitude detection.

4.1.3 Frequency detection

The magnetic resonance force signal can be transduced into
a shift in the cantilever resonance frequency by arranging
that the signal force be applied in phase with the cantilever
position (note that the displacement of a harmonic oscillator
driven at its resonance frequency lags the driving force by
90◦). Using the equation of motion for an SHO

m
∂2

∂t2
z + mωc

Q

∂

∂t
z + kz = k1z (51)

where m is the effective mass of the cantilever and the term
on the right side is the signal force F = k1z, manifestly
synchronized with cantilever position z. This requires that
the cantilever be separately driven (by means of e.g., a
piezoelectric actuator) at its resonance frequency at constant
amplitude zosc by means of a positive feedback circuit in
which the cantilever is the frequency determining element.
The frequency shift is given by

δω

ωc

= F

2kzosc
(52)

The magnitude of F is given by the change in signal force
over a half cycle of cantilever oscillation; the frequency
shift is

4.2 Spin manipulation protocols

There are several methods that can be used to manipu-
late spin magnetization at the resonance frequency of the
micromechanical force sensor. The choice of a preferred spin
manipulation protocol will depend on spin system properties
such as relaxation time T1.

4.2.1 Cyclic suppression

The Bloch equation (25) show that Mz is suppressed by
the application of a strong resonant (ωrf = ωL) field H1.

Either shifting the frequency off resonance or reducing the
amplitude allows Mz to recover (on a timescale T1). In order
to achieve the goal of modulating Mz at ωc the magnetization
must substantially recover during one period of cantilever
oscillation. Hence 1/T1 must be larger than ωmod.

Cyclic suppression is straightforward to apply and effec-
tive (Zhang, Roukes and Hammel, 1996). Its primary dis-
advantage arises from the potential for spurious feedthrough
forces due to the modulation of the rf field at ωc. This unde-
sired excitation can easily swamp the magnetic resonance
signal which is occurring at the same modulation frequency.

4.2.2 Anharmonic modulation

A solution to this problem (Bruland, Krzystek, Garbini and
Sidles, 1995) lies in simultaneous anharmonic modulation of
two experimental parameters such as rf field strength and
applied magnetic field H0:

H0(t) = H0 + H mod
0 cos(ωzt) (53)

H1(t) = H 0
1 + H mod

1 cos(ω1t) (54)

with modulation frequencies satisfying |ωz − ω1| = ωc. The
intrinsic nonlinearity of magnetic resonance leads to a term
in the spin magnetization oscillating at ωc, whereas spurious
excitations occur at frequencies far from ωc and therefore
have negligible influence.

4.2.3 Adiabatic inversion

For systems with long spin relaxation times 1/T1 � ωmod

a method based on coherent, periodic rotation of the spin
orientation is preferable. This approach is based on the
fact that orientation of the magnetization will follow that
of Heff if Heff is rotated sufficiently slowly, that is if
the rotation is adiabatic. This amounts to requiring that
the magnetization precess many times about Heff in the
time required to significantly rotate Heff itself. Heff can be
periodically rotated by modulating either the magnitude of
external magnetic field H0 or by frequency modulation (FM)
of H1 (see Figure 1). Initially a spin ensemble is prepared
with a thermal equilibrium magnetization Mz parallel to H0

and with �ω sufficiently large that Heff is essentially parallel
to H0. The magnetization is inverted by rotating of Heff

through 180◦, that is, �ω is swept from a large positive
value through zero (resonance) to a large negative value.
Adiabaticity is determined by the rate of rotation of Heff

compared to the magnitude of γHeff; which passes through
a minimum on resonance where its magnitude is γH1. The
values of H1 ∼ 1–10 G achievable in MRFM set a limit on
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the allowed modulation rate ωmod. For inversion by FM the
adiabatic condition requires

ωmod � γ 2H 2
1

�ω
(55)

4.2.4 MRFM excitation by adiabatic reversals

Examination of equation (15) in Section 2.1.4 reveals two
ways to modulate the ẑ-component of Heff: modulation of
ωrf or modulation of H tot. We first consider FM to cyclically
reverse Heff:

ωrf = �FM cos(ωmodt) (56)

In order to generate a frequency shift signal the cantilever
is driven into oscillation at its natural resonance frequency
ωc with oscillation amplitude zosc, and we set ωmod = ωc

and phase lock the reversals to the cantilever position (see
Section 4.1.3).

Starting with the magnetization parallel to H0, ωrf is set
to be far below ωL for the spins of interest (remember that
due to the tip field gradient ωL varies with position). At the
moment the cantilever is at an extremum of its oscillation we
begin FM centered on ωL thus generating adiabatic reversals
of the magnetization that will shift the cantilever resonant
frequency ωc. This frequency shift is continuously monitored
as it decays with time (Figure 7).

The spins will follow Heff only if it is rotated sufficiently
slowly that the adiabatic condition is satisfied, that is, only
if spins precess about Heff much faster than its orientation
rotates. The most demanding moment is at resonance when
|Heff| is minimum and equal to H1; typically ∼1–10 G in the
microwave regime. Hence, the magnitude of H1 sets the limit
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Figure 7. ESR signal at T = 4 K from E′-centers in silica detected
using OSCAR. The sign of the signal is reversed by preparing the
spin system in an inverted state. (Provided by P. Banerjee.)

on the modulation rate ωmod achievable with this method. If
Heff is inverted by rf FM the adiabatic condition is

ωmod � γ 2H 2
1

�FM
(57)

The lifetime τm of the signal generated by cyclic adiabatic
inversion cannot exceed the spin relaxation time in the rotat-
ing frame T1ρ . In practice it is also limited by unavoidable
violations of adiabatic condition due to insufficient applied
rf field strength H1.

The sign of the frequency shift can be reversed selecting
an opposite sign of the signal force relative to the cantilever
position, that is, by reversing the cantilever extremum at
which FM is commenced. This allows the sign of the signal to
be reversed with minimal change to the spurious background
providing a means to subtract off this background.

4.2.5 Oscillating cantilever-driven adiabatic
reversals

The technique dubbed oscillating cantilever-driven adiabatic
reversals (OSCAR) (Stipe et al., 2001c) was pioneered
explicitly for situations where few spins are detected and
hence very large gradients are used. OSCAR relies on field
modulation in equation (15) to rotate Heff, but uses a clever
trick: rather than modulate H0 advantage is taken of the large
field gradient generated by the tip. As the cantilever oscillates
this large gradient means that Htip experienced by the spins
of interest will be modulated:

δH tot
z = δH tip

z = zosc
dH tip

dz
(58)

OSCAR naturally inverts the effective field Heff and hence
the magnetization with a phase appropriate for frequency
shift detection: because the modulation of the field is due to
cantilever motion the oscillations are perfectly synchronous
with the position of the cantilever (see Figure 1). Conse-
quently, as long as the adiabatic condition (equation (57)) is
satisfied the force on the cantilever will be explicitly phase-
locked to the position of the cantilever and so the force will
shift the resonance frequency of the cantilever.

The OSCAR protocol also begins with the magnetization
polarized along H0. The rf field with its frequency ωrf

well below γHtot is turned on when the cantilever is at an
extremum so the effective field Heff is nearly aligned with
H0. The tip motion will modulate the field causing adiabatic
reversals that shift ωc.

The sign of the frequency shift depends on the phase of
the cantilever oscillations relative to the magnetization rever-
sals again providing a means to subtract off spurious back-
grounds. This relative phase can be changed, for example, by
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preparing spins in a state aligned in the direction opposite to
H0 by means, for example, of an rf π pulse such as is shown
in Figure 7. This enables detection of the spin polarization
state using MRFM.

We return to the requirement OSCAR places on the field
gradient. Successful adiabatic reversal requires �Htot 
 H1,
and since �Htot = zoscdH tip/dz we need

dH tip

dz

 H1

zosc
(59)

It is unproductive to make zosc much larger than 100 nm
because this reduces the frequency shift (see equation (52)),
so for H1 ∼ 1–10 G, gradients of order of 0.1–1 G nm−1 are
needed.

4.3 Probe–sample interactions

The MRFM probe–sample interaction is given by equa-
tion (45). Though this expression is convenient it fails to
convey many salient features of the general case. Let us
consider a probe magnet creating a spatially nonuniform
magnetic field Htip(r), where r is the spatial coordinate,
interacting with a time dependent spin magnetization of the
sample m(r, t) = m0(r) + δm(r, t) with the time dependent
component originating from rf manipulation of spins in the
sample. In this case, the time dependent component of the
total force between the MRFM probe and the sample will be

F(t) =
∫

V

(δm(r, t) · ∇) Btip(r) dr (60)

where the integration done over the entire sample volume.
The static component of the interaction with m0(r) will not
be detected by the resonant detection scheme employed in
MRFM. To understand MRFM probe–sample interaction, we
must analyze the spatial and time dependence of δm(r, t) and
the spatial variation of the gradient of the magnetic field H(r)
of the micromagnetic tip.

4.3.1 Sensitive slice evolution

The spatial variation of δm(r, t) will depend on the method
used for spin manipulation. As an illustrative example we
consider the case of cyclic suppression (Section 4.2.1) by
means of a 100% amplitude modulation of the intensity of
the rf field. The frequency of the rf radiation is ωrf. For
simplicity, we assume that the sample is placed in the exter-
nal magnetic field H0 ‖ ẑ such that |H0| 
 |Htip(r)|. The
thermal spin polarization in this case is m0 = m0ẑ. The
probe magnet is a small magnetic sphere magnetized in the

ẑ direction. The (spatially dependent) response of the mag-
netization to the applied rf field is given by equation (25);
we find

δmz(r) = m0γ
2H 2

1 T1T2

1 + [T2(γ
∣∣H0 + Htip(r)

∣∣ − ωrf)]2 + γ 2H 2
1 T1T2

(61)
This equation shows that the applied rf radiation will have
the greatest effect on the spins in the spatial volume known
as the sensitive slice where the following condition is
satisfied:

∣∣γ ∣∣H0 + Htip(r)
∣∣ − ωrf)

∣∣ ≤ δω

2
(62)

Here δω = T −1
2 is the linewidth of the magnetic resonance

signal (see equation (25)). The shape of the sensitive slice,
a bowl centered on the probe magnet, is defined by both
H0 and Htip(r); this shape is shown in Figure 8 for various
values of H0. The radius of the bowl increases with increas-
ing |H0| until it transforms into a doughnut-like shape when
|H0| > ωrf/γ .

(a)

(b)

(c)

Figure 8. Evolution of the sensitive slice (left panel) and the force
slice (right panel) with applied field H0 increasing from (a) to
(c), with (c) corresponding to H0 = ωrf/γ . The probe magnet of
diameter a (shown as the black circle above the sample) and the
magnet-sample separation are presented to scale, with the sample
width being 5 a. The dashed line marks the line of the zero gradient
dHz/dz. (A color version of this figure is presented in Suter,
Pelekhov, Roukes and Hammel, 2002.) (Reprinted with permission
A Suter et al., copyright 2002, Elsevier.)
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4.3.2 Evolution of the force

The magnetization couples to the cantilever through the
ẑ component of the force −(m · ∇)B(r), hence for the
geometry shown in Figure 6 the component of primary
interest is dHz/dz. The dipolar nature of the probe field
means the sign dHz/dz reverses for magnetization off to
the side of the tip (see Figure 8), therefore different parts
of the sample contribute forces of different sign and, under
certain conditions, can cancel one another. Figure 8 shows
the evolution of the ‘force slice’ which is essentially the
‘sensitive slice’ convolved with the position dependence of
the tip gradient. Spins located along the lines of zero gradient
do not contribute to the interaction.

4.3.3 Leading edge signal

The spectrum, that is, the evolution of the signal force with
field H0, can be simulated by integrating the force over the
entire sample for a series of applied fields. It is typical that the
signal changes sign as the shape of the sensitive slice evolves
with H0 (Suter, Pelekhov, Roukes and Hammel, 2002). An
important feature of the spectrum is its ‘leading edge’, that is,
the minimum field H0 at which the signal appears; this occurs
as the sensitive slice just enters the surface of the sample. The
field offset of this feature from ωrf/γ measures the strength of
the field due to the probe magnet for a particular tip-sample
separation.

Measuring the tip field as a function of separation is
useful for mapping the spatial variation of tip field with
nanometer scale resolution. From this the gradient of the tip
field can be accurately obtained. Precise characterization of
MRFM probe magnets is essential for correct interpretation
of MRFM data.

5 APPLICATIONS

MRFM is a powerful and inventive approach to imaging and
characterization of a broad variety of materials. As in the
case of conventional magnetic resonance, MRFM is based on
direct coupling of the detector to the dipole moment of the
target spin. As we have seen in the preceding text because
this interaction is quite weak this entails great care in the
detection of the signal and has implications for quality and
bandwidth of the signal detected. On the other hand, this
allows the approach to be applicable to the detection of any
spin or spin ensemble that can be brought into the proximity
of the micromagnetic probe tip. This excellent breadth of
applicability and flexibility distinguishes it from the array of
powerful spin sensitive detection techniques currently in use
and development.

The true power of MRFM will be determined by the
impact of its application to problems studying and devel-
oping electronic, magnetic, and structural materials as well
as to the biomedical community with extensive need for
structural and functional characterization and visualization
of biological materials. The rapid pace at which MRFM has
improved capabilities such as sensitivity, signal bandwidth,
and the rapidly expanding range of materials to which it
has been successfully applied suggest a robust technique
with the broad flexibility necessary to adapt to the diver-
sity of experimental conditions that will be encountered
in performing compelling studies of currently interesting
materials.

MRFM offers the excellent sensitivity required to achieve
very high spatial resolution. Just as important, this excel-
lent sensitivity comes with a noninvasive probe that will
benefit fields from nano-electronics to biomolecular imag-
ing. As electronic elements become smaller, they become
sensitive to even individual impurities and dopants; hence
three-dimensional atomic scale characterization becomes cru-
cial. Perhaps most notably, the field of spin-based quantum
computation will require single spin detection technology
both for quantum state readout and for device characteriza-
tion; single spin MRFM promises to aid in this challenging
undertaking.

5.1 Ferromagnetic resonance

There are two motivations for performing FMR experiments
using the MRFM. First is the tremendous promise of micro-
scopic FMR experiments for elucidating the nature of sci-
entifically and technologically important magnetic materials
such as layered magnetic systems exploiting spin depen-
dent electron transport phenomena. It is important to under-
stand how the performance of such devices is influenced
by microscopic spatial variations in properties like interface
quality, exchange coupling, and magnetic anisotropy. Con-
ventional FMR has proved to be a powerful technique in
evaluating the average values of these properties within the
sample.

With the addition of the microscopic imaging capa-
bility of MRFM, FMR/MRFM could become one of
the primary characterization techniques for such devices
(see Wigen, Roukes and Hammel, 2006) for a review of
FMR microscopy. Furthermore, unlike conventional induc-
tive detection force detection of magnetic resonance is
uniquely sensitive to Mz, the longitudinal component of
the magnetization. In the subsequent text, we outline some
experiments that exploit these strengths and demonstrate the
potential MRFM holds for studies of ferromagnetic materials
and devices.
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Figure 9. An experimental FMR/MRFM spectrum (cantilever
oscillation amplitude as a function of applied field in Gauss) of a
single crystal YIG film (Reprinted with permission Z Zhang et al.,
copyright 1996, American Institute of Physics.) which shows the
nonresonance (NR) mode and a family of magnetostatic modes
(labeled m1, m2, . . . ). The locations of the magnetostatic modes
are indicated by arrows in the inset. The resonance was excited by
a 2 G, 825 MHz magnetic field; the rf field was 100% amplitude
modulated at 41.27 kHz. The bias field was ramped at 1.5 G s−1

and modulated at a frequency of 36.01 kHz and with a modulation
amplitude of 4 G.

5.1.1 MRFM detection of FMR

The first MRFM detection of FMR (see Figure 9) was
demonstrated on a film sample of yttrium iron garnet (YIG)
by Zhang, Hammel and Wigen (1996). The sample was an
approximately rectangular parallelepiped 20 × 40 × 3 µm3

YIG chip that was mounted on the cantilever; the gradient
magnet was stationary. The signal was sufficiently large that
the experiments were performed in ambient air to reduce
Q and the cantilever’s oscillatory response. The signal was
generated by anharmonic modulation (Bruland, Krzystek,
Garbini and Sidles, 1995). The applied magnetic field ranged
from 150 to 400 Oe, so the sample was not entirely saturated.
As a consequence strong spurious coupling was observed at
lower fields where the field was just sufficient to saturate the
center of the sample, so modulation of the field significantly
altered Mz.

At higher fields, a family of resonance modes, the magne-
tostatic modes first calculated by Damon and Eshbach (DE)
(1961) were observed. The application of DE theory was
complicated by the small size and irregular shape of the sam-
ple and by the fact that the sample is not fully saturated at
resonance. Nonetheless, the results agreed qualitatively with
estimates based on DE theory in a rectangularly-shaped, sat-
urated YIG medium. The tip field strength was insufficient
to enable local imaging, so the resonance modes observed
arose from the resonance behavior of the entire sample.

Wago, Botkin, Yannoni and Rugar (1998) performed FMR
on a similar sample, but with gradients as large as 10 G µm−1

and found similar behavior, namely, that the detected modes
were collective modes of the entire sample defined by sample
dimensions. Images consistent with this conclusion were
observed.

5.1.2 Damping in ferromagnets

Klein and coworkers have performed experiments in which
they used MRFM to perform FMR experiments on a 160 µm
diameter YIG disk (Klein, Charbois, Naletov and Fermon,
2003; de Loubens, Naletov and Klein, 2005). They exploited
both the fact that force detection is sensitive to the lon-
gitudinal component of the magnetization rather than the
transverse component as in inductive detection and the high
sensitivity of MRFM to allow measurements not possi-
ble by conventional means. Their measurements were per-
formed on the entire YIG disk with the tip far removed.
This work has provided quantitative results that provided
unique insights into fundamental dynamic behaviors in
ferromagnets.

MRFM detection of FMR differs from conventional
approaches in that Mz is directly measured in contrast to mea-
surement of the absorption of microwave power as in con-
ventional FMR detection. They compared power absorbed
(proportional to the square of the transverse magnetiza-
tion M2

t ) to Mz to identify various contributions to the
observed FMR linewidth. The enhanced sensitivity provided
MRFM detection also allowed detection of the longitudi-
nal moment across a broad range of microwave frequencies
even far from the resonance frequency of the microwave
resonator.

Their MRFM measurement of the FMR linewidth as a
function of frequency from 5 to almost 14 GHz revealed a
linear response, that a frequency dependent component and a
frequency independent component. The frequency dependent
component that is associated with Gilbert damping because
of the proportionality to ∂M/∂t , while frequency indepen-
dent component can have various origins including inhomo-
geneous broadening and impurity scattering of magnons. The
frequency dependence revealed a peak in the linewidth at
the resonant frequency of the microwave resonator that was
attributed to loading of the resonator by the sample so as to
reduce the intensity of H1 near the Larmor frequency.

While providing insight the homogeneous and inhomoge-
neous contributions to the linewidth cannot be distinguished
on the basis of the frequency dependence alone. It is known
that by measuring the dependence of the FMR signal ampli-
tude on the frequency at which the microwave excitation
frequency is modulated the relaxation times associated with
relaxation via magnetostatic and exchange modes can be
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extracted. MRFM detection of the longitudinal magnetization
as a function of modulation frequency was used for this
measurement in addition to traditional FMR techniques to
measure the dependence of the transverse magnetization on
the same quantity. For MRFM detection the signal must be
generated at ωc (see Section 4); in order to allow modula-
tion at a broad range of frequencies, Klein et al. employed
anharmonic modulation (Bruland, Krzystek, Garbini and
Sidles, 1995) involving simultaneous frequency and ampli-
tude modulation (at ωa) of the microwave excitation such
that

∣∣ωf ± ωa

∣∣ = ωc.
The group took advantage of MRFM’s unique ability to

directly measure Mz They observed a rapid suppression
of Mz as saturation of the resonance is approached. This
provides new insight into the spin dynamics occurring
at saturation. Spin relaxation arises from the generation
of spin waves (Suhl and Phys, 1957; Fletcher, LeCraw
and Spencer, 1960), but the transverse magnetization is
largely insensitive to short wavelength spin wave modes
because their transverse component averages to zero, so
only measures the number of fundamental mode spin waves.
However each spin wave mode reduces the longitudinal
magnetization by γ � so the longitudinal magnetization
measures the total number of spin waves of all wavelengths.
As shown in Figure 10, at saturation 1/T1 decreases rapidly
as the generation of fundamental mode spin waves saturates.
Instead there is a rapid increase in the generation of short
length spin waves that cannot be detected in conventional
transverse linewidth measurements.
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Figure 10. A plot of the ratio of the transverse component of
the magnetization relative to the longitudinal component versus
microwave power. (Reprinted with permission de Loubens et al.,
copyright 2005, American Physical Society.) This ratio is equal to
1/γ T1. By comparing conventional and MRFM detected linewidth
data, the authors showed the rapid decrease of 1/T1 at saturation.

5.1.3 FMR imaging

Mewes et al. have demonstrated the ability of MRFM to
observe spin dynamics of ferromagnets in micron-scale fer-
romagnetic structures (Mewes et al., 2006). The experiments
were performed on an array of permalloy disks 50 nm thick
and 1.5 µm in diameter. Experiments were performed both
with the tip far from the dots and very close. When dis-
tant the tip field was very small and magnetostatic modes
in good agreement with theoretical expressions (Kalinikos,
1980) were observed. The MRFM tip used was characterized
by means of ESR experiments on DPPH (1,1-Diphenyl-2-
picrylhydrazyl) to determine the dependence of the tip field
on tip-sample separation.

The sample experiences tip fields in excess of 400 Oe
when the tip approaches closely. The external magnetic
field was tuned to the spectral feature associated with the
fundamental magnetostatic mode and the tip was scanned
over the sample (Figure 11). The resolution of the image is
much better than that achievable using the same tip (tip width
∼1 µm) for MFM of the dots. In fact the spatial resolution
is roughly consistent with the ratio of the linewidth of the
mode selected for imaging (∼40 Oe) and the field gradient
(∼300 G µm−1); the same ratio that sets spatial resolution
in MRI of paramagnetic materials. Thus MRFM allows
studies of static and dynamic spin properties in patterned
magnets with resolution not set by the tip dimensions as in
MFM. However the detailed mechanism of imaging is not
understood and the question of spatial resolution achievable
in extended ferromagnets remains an area of active study
(Mewes et al., 2006; Midzor et al., 2000; Urban et al., 2006).

5.2 Electron spin resonance

Mechanical detection of magnetic resonance was first demon-
strated using ESR (Rugar, Yannoni and Sidles, 1992) using
an organic molecule DPPH with an unpaired spin that has
a rapid (and temperature independent) spin relaxation rate
(T1 ≈ T2 ≈ 60 ns) and a high spin density (2 × 1021 cm−3).
Because ωc � 1/T1 cyclic suppression must be used to mod-
ulate Mz (see Section 4.2.1).

The push to improve detection sensitivity has relied on
samples with very long spin relaxation times (
 ω−1

c ) to
enable long data collection times and therefore reduced noise
bandwidths. In this case, modulation of Mz is accomplished
by means of cyclic adiabatic inversion (Section 4.2.3).

That effort produced the milestone of MRFM detection of
a single electron spin by (Rugar, Budakian, Mamin and Chui,
2004). This is a signal achievement that dramatically alters
the horizons for high-resolution imaging and experimentation
on nanoscale systems. It confirms the extraordinary sensitiv-
ity of MRFM and underlines the breadth and flexibility of
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Figure 11. Images obtained at a tip-sample separation of 150 nm and a microwave frequency of fmw = 7.7 GHz 60% amplitude modulated
at the cantilever frequency are shown. (b) shows the MRFM spectrum obtained with the tip located over the center of the permalloy dot
(indicated by the star). (a) shows the cantilever response obtained in lateral scans over an area 2.5 × 2.5 µm2 at a field H = 11 960 Oe.
The external magnetic field was aligned parallel to the moment of the tip.

the method. The experiment was done on a silica sample
containing a low density (∼1014 cm−3) of electronic spins
known as E′ centers that are created by γ -irradiation of
the silica. The low spin density ensured that an isolated
spin could be found for detection by the MRFM micromag-
netic tip.

5.2.1 Single electron spin detection

The ultrahigh sensitivity regime involves several extreme
parameter values that lead to new phenomena:

• Very high sensitivity enables detection of ensembles
sufficiently small that the thermal fluctuations of the net
spin polarization dominate over the thermal equilibrium
polarization.

• The large tip field gradients necessary for high sensitivity
lead to large temporal variations of the magnetic field
as a consequence of cantilever motion; these can be
beneficial or detrimental.

Statistical spin polarization
For sufficiently small ensembles thermal fluctuations of the
net spin polarization can be an important effect: the net spin
polarization is proportional to

�N = N↑ − N↓ =
√

N (63)

This ‘statistical polarization’ becomes comparable to the
thermal equilibrium Boltzmann polarization at T = 4 K and
H = 1 kOe for samples containing of order 104 spins. One
can then achieve larger signals and can collect data contin-
uously avoiding the need to wait for the spin polarization
to recover to thermal equilibrium by means of spin-lattice
relaxation before the next measurement.

On the other hand the average polarization and hence
average signal is zero, and so the spin magnetic resonance
response is manifested only in the variance of the force
signal (Budakian, Mamin, Chui and Rugar, 2005). Instead
of a definite frequency shift the cantilever undergoes random
frequency fluctuations (see Figure 12) of magnitude

δfc = ±fc

2µB

√
N∇Hz

πkzosc
(64)

With field gradient ∇Hz ≈ 2 G nm−1 and a very small
cantilever spring constant k ≈ 0.1 mN m−1 the frequency
shift per electronic spin is ∼3–5 mHz assuming zosc =
16 nm.

Interrupted OSCAR
This challenge led to the development of a variant of the
OSCAR (Rugar, Budakian, Mamin and Chui, 2003) tech-
nique (Section 4.2.5) in which the motion of the micro-
magnetic tip mounted on the driven cantilever cyclically
reverses the orientation of Heff and hence the spin orienta-
tion. Dubbed iOSCAR (Mamin, Budakian, Chui and Rugar,
2003) it employs an interruption of the rf field for half a
cantilever period that allows the cantilever to move from
one extremum to another without rotating Heff. The spin
force remains proportional to the cantilever position, but the
phase of the oscillatory force exerted on the cantilever rela-
tive to its position is reversed thus changing the sign of the
resulting frequency shift (see Figure 13). This modulates the
OSCAR signal and imprints the signal with a time signature
that allows it to be identified at nonzero offset frequency
from fc = ωc/2π .

If the rf power is interrupted at a frequency fint = 86 Hz
the cantilever frequency is modulated at fsig = fint/2 =
43 Hz. The frequency shift associated with the magnetic
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Figure 12. Trace showing a time record of the statistical fluctuations. (Reprinted with permission Budakian et al., copyright 2005, AAAS.)
The frequency shift recorded in a 83-mHz bandwidth is converted to equivalent number of spins (right-hand axis) by dividing �f by the
average frequency shift per spin (|δf | = 0.8 mHz/spin).
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Figure 13. Timing diagram for the interrupted OSCAR protocol.
(Reprinted with permission Mami et al., copyright 2003, American
Physical Society.) The cantilever is oscillated continuously at
its resonance frequency, and the microwave field (curve B) is
normally on, but is periodically interrupted for one-half cantilever
cycle. The z component of the magnetization (C) oscillates in
response to the cantilever motion due to adiabatic rapid passage
when the microwaves are on, but is left static when they are
off. The oscillating magnetization reverses phase with respect to
the cantilever for each microwave interruption, giving a cantilever
frequency shift (D) that oscillates at one-half the microwave
interrupt frequency (F).

resonance alone will manifest itself at this frequency with
an intensity

�f (t) = 4

π
|δfc|A(t) (65)

where A(t) represents the random statistical fluctuations
(Rugar, Budakian, Mamin and Chui, 2004).

Signal averaging presents an unusual challenge in this
case since the average signal is zero: 〈A(t)〉 = 0, hence
〈�f (t)〉 = 0, and 〈[A(t)]2〉 = 1. Hence to obtain a signal
the square of the frequency shift [�f (t)]2, that is, the

signal energy (Rugar, Budakian, Mamin and Chui, 2004)
was detected. The phase sensitive lock-in detection can be
adjusted such that the signal force appears only in the in-
phase variance of the measured signal can be written as
σ 2

I = σ 2
spin + σ 2

noise, where σ 2
spin and σ 2

noise are uncorrelated
variances of the spin signal and the noise respectively; the
quadrature variance σ 2

Q will then contain only noise, that
is, σ 2

Q = σ 2
noise. The spin signal is σ 2

spin = σ 2
I − σ 2

Q and the
signal-to-noise ratio SNR = σ 2

spin/σ
2
I .

Using this technique the signal from a single electron spin
was detected. The low spin density of the sample provides for
a 200–500 nm spacing between the spins, whereas while the
detected spin sufficiently dilute that the probe can interact
only with one spin at a time (see Figure 14). The force
variance was |δfc| = 4.2 mHz in very good agreement with
the expected value. The consistency spatial shift of the signal
with change of microwave frequency and the expected value
of the force signal variance verified that the signal originates
indeed from a magnetic resonance signal.

5.2.2 Spin relaxation by thermal motion of high
gradient tip

The lifetime of a spin signal during a cyclic inversion
measurement is a crucial parameter as short lifetimes spread
the signal in frequency space requiring wider bandwidth and
hence increased noise. Sensitive experiments require close
approach of the magnetic tip to the spin to be detected, but
early ESR MRFM experiments showed substantial reduction
of the rotating frame electron spin relaxation time τm as
the tip approached the spin. Rugar et al. found that τm was
reduced from 275 ms to 68 ms as the tip-spin spacing was
reduced from 1500 nm to 800 nm (Stipe et al., 2001c).

The excess relaxation was found to arise from the magnetic
field fluctuations that result when thermal vibrations displace
the high gradient tip (Mozyrsky, Martin, Pelekhov and Ham-
mel, 2003). As discussed in Section 2.1.3 the component of
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Figure 14. A graph (Reprinted with permission D Rugar et al.,
copyright 2004, Nature Publishing Group.) showing the spin signal
as the probe magnet is scanned laterally in the x direction across a
single electron in a SiO2 for two values of external field: (a), Bext

= 34 mT, and (b), Bext = 30 mT. The smooth curves are Gaussian
fits to guide the eye. The 19 nm shift in peak position reflects the
movement of the resonant slice induced by the 4 mT change in
external field. The difference in absolute peak height is primarily
due to different lock-in amplifier detection bandwidths: 0.18 Hz and
0.59 Hz for (a) and (b), respectively.

these transverse magnetic field fluctuations at the Larmor fre-
quency ωL will induce spin relaxation. During the adiabatic
inversion the magnetization precesses at frequency ωL(t) =
γHeff(t); the minimum frequency will be ωL = γH1, corre-
sponding to a precession frequency of ωL/2π ≈ 3–10 MHz.
Though the fundamental cantilever mode is at ωc/2π , typ-
ically in the range 1–10 kHz, higher cantilever harmon-
ics can significantly contribute to spin relaxation. It was
shown (Mozyrsky, Martin, Pelekhov and Hammel, 2003;
Berman, Gorshkov, Rugar and Tsifrinovich, 2003) that the
electron spin relaxation rate due to the higher order cantilever
modes is

1

τm

≈ 3.4µB∇Hprobe

�


 kBT

k

√
z2

0 − z2
1


(

ωc

γH1

)3/2

(66)

where z0 is the amplitude of thermal cantilever motion, z1 is
the tip-sample separation, k is the cantilever spring constant
and T is temperature. As the probe is brought close to the
sample the strength of the probe field gradient ∇Hprobe and
hence the induced relaxation rate increases. It is noteworthy
that increasing H1 also reduces excess relaxation.

This problem was conclusively addressed in the single
spin experiment (Rugar, Budakian, Mamin and Chui, 2004)
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Figure 15. Control of the spin magnetization of few spin ensembles
using MRFM (Reprinted with permission Budakian et al., copyright
2005, AAAS.) is shown. (a) An average polarization of about
3.7 µB was created in an ensemble of N ≈ 70 spins through active
feedback, stored in the laboratory frame for 2.5 seconds, and
subsequently read out. (b) Data taken under the same conditions
as (a) except that the storage time has been extended to 10 s.

where a cantilever designed with an extra mass at its tip to
suppress high order vibrational modes effectively eliminated
the excess relaxation (Chui et al., 2003). H1 intensity was
increased to 7 G through use of a superconducting microwave
circuit (Mamin, Budakian and Rugar, 2003). As a result
the rotating frame electron spin relaxation τm of a single
electron was estimated to be 760 ms in the tip field gradient
of 2.0 G nm−1 ≈250 nm away from the detected spin.

5.2.3 Creating order in spin ensembles

Complementary to high-resolution imaging is the ability
MRFM provides to controllably manipulate spin magnetiza-
tion using spatially localized magnetic resonance. This kind
of close control has been nicely demonstrated in experi-
ments that have built on the high sensitivity ESR detection
(Budakian, Mamin, Chui and Rugar, 2005).

The first experiment involved hyperpolarizing an electron
spin ensemble by capturing an especially large statistical
fluctuation (Budakian, Mamin, Chui and Rugar, 2005). In
this experiment, the cantilever signal frequency shift �f (t)

was continuously monitored, and when the frequency shift
exceeded a certain threshold value the rf field was turned off
(see Figure 15). Without an rf field cantilever electron spins
remain oriented along ẑ and are unaffected by cantilever
oscillation so their polarization is effectively preserve for
times of order T1 (measured to be ≈30 s). Spin polarization
exceeding anything achievable by thermal polarization could
be generated and used in other experiments.
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The second experiment building on this idea controlled the
spin dynamics of the through real-time feedback. Whenever
the frequency shift fell below a certain value a π-inversion
was applied. This prevented the system from evolving
beyond the predefined polarization. By this means the spin
system was locked into a relatively well defined polarization
state.

5.3 Nuclear magnetic resonance

NMR is a powerful tool for material studies. Nuclear spins
are prevalent in most materials and chemical specificity is
achieved since each nuclear spin has a unique gyromagnetic
ratio. This has made high sensitivity MRFM detection of
NMR a key goal. Excellent progress has been made since
the first detection of NMR by means of MRFM in 1993
(Rugar et al., 1994).

5.3.1 Detection and manipulation of statistical
polarization

State-of-the-art sensitivity has been demonstrated in an
experiment (Mamin, Budakian, Chui and Rugar, 2005) that
detected the statistical spin polarization of nuclear spins.
Nuclear moments are ∼103 times smaller than electronic
moments, so this approach requires very high sensitivity. The
ability to achieve substantial polarization without waiting T1

is even more advantageous than for electron spin detection
because nuclear T1s can exceed hours at low temperatures.

Three nuclear spin systems were used in this study: 19F
nuclei in CaF2, and 1H spins in the polymer polymethyl-
methacrylate (PMMA) and collagen. The CaF2 experiment
demonstrated spin sensitivity of ≈2000 nuclear spins with a
2.5 h averaging time.

Techniques based on short rf pulses inserted into the
interrupted OSCAR protocol described in Section 5.2.1 were
developed for spin nutation and transverse spin relaxation
measurements using statistically polarized spin ensembles.
During the nutation experiment, an rf pulse of length tp was
inserted during the cantilever cycle when the nuclear spins
are precisely on resonance causing them to precess about
the Heff which lies in the x̂ plane in the rotating frame of
reference. As the pulse length, and therefore the angle of
spin rotation, is changed the signal oscillates with period
T = 2π/γH1 as shown in Figure 16.

The inhomogeneous transverse spin relaxation time mea-
surement is similar but is based on sequence of two π/2
pulses separated by a time τ inserted into the iOSCAR
sequence. The first pulse rotates spins into the x̂-ŷ plane
where the spin polarization decays due to transverse spin
relaxation in a time T ∗

2 = 4 µs. For τ significantly longer
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Figure 16. Nutation of the statistical polarization in CaF2.
(Reprinted with permission H J Mamin et al., copyright 2005,
American Physical Society.) The signal is shown as a function of
the pulse width tp . The spin oscillation period about the effective
field indicates an rf field strength H1 = 17 Oe.

than T ∗
2 , the final polarization vanishes so the signal will be

half of the value observed for short τ .
This demonstration of standard pulse techniques in com-

bination with ultrasensitive NMR detection reinforces the
expectation that MRFM detected NMR will be a powerful
tool for microscopic studies of materials.

5.3.2 NMR double resonance in force microscopy

We have seen that MRFM allows NMR detection with the
sensitivity much higher than that of the conventional NMR
(2000 spins in the IBM experiment, (Mamin, Budakian, Chui
and Rugar, 2005) compared to at least 1012 –1013). To fully
exploit this strength the conventional pulsed NMR techniques
must be brought to bear. Important steps in this direction have
been demonstrated by (Lin et al., 2006). Here we briefly
describe their application of solid-state double resonance
techniques in an MRFM experiment performed on 19F and
31P nuclei in a KPF6 crystal.

A useful and commonly used solid-state NMR double
resonance technique is Hartmann–Hahn cross polarization
(CP) in which polarization transfer from a more easily
polarized spin species (e.g., due to a higher gyromagnetic
ratio) to a less polarized species provides increased detection
sensitivity for the latter. The technique employs irradiation at
two rf frequencies (ωI

L and ωII
L ) with H1 intensities chosen

such that γ IH I
1 = γ IIH II

1 .
The applicability of these techniques to MRFM detection

in the presence of the gradient from a 0.5-mm iron wire has
been explored in samples containing ∼1015 spins. Figure 17
shows the growth of the 31P spin polarization as a function
of the time τ cp the cross polarization rf field is applied. The
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Figure 17. The buildup of the 31P spin polarization as a function of
τ cp of the CP pulse sequence was measured using cyclic adiabatic
inversion (◦). Data acquired in a conventional NMR experiment on
the same spin system (�). (Reprinted with permission Q Lin et al.,
copyright 2006, American Physical Society.)

MRFM data are in good agreement with data acquired in a
conventional NMR experiment.

Spin decoupling
Another application of double resonance is to narrow reso-
nance lines in to enhance the resolution of solid-state NMR
spectroscopy. A common broadening mechanism in solids
results from the interaction between the target spin and neigh-
boring dissimilar spins (heteronuclear coupling). This inter-
action can be reduced by irradiating at the Larmor frequency
of the offending species to average the interaction to zero.
During decoupling the target signal is detected at its Larmor
frequency.

The Meier group has also demonstrated (Lin et al., 2006)
narrowing of the 31P line through continuous wave (CW)
decoupling applied at the 19F Larmor frequency. The 31P
linewidth was measured using a Hahn echo technique in which
the echo amplitude is measured using cyclic adiabatic inversion
to generate the MRFM signal (Degen et al., 2005). The Hahn
echo alone will also reduce heteronuclear line broadening but
CW decoupling is superior. The linewidth after the echo was
1.4 kHz, this was reduced to 900 Hz by decoupling.

The ability to use pulsed techniques to improve spectral
resolution in MRFM is an important advance: when com-
bined with high sensitivity MRFM detection it points toward
the potential for local NMR spectroscopy with unprecedented
spatial resolution.

5.3.3 1D NMR MRFM imaging of GaAs

The demonstration of NMR/MRFM imaging of Ga in GaAs
by D. Smith and colleagues (Thurber, Harrell and Smith,
2003) indicates the promise MRFM holds for studies of

microelectronic devices composed of important electronic
semiconductors. For multicomponent devices the unique abil-
ity of MRFM to observe buried structures is a key strength.

Thurber and Smith et al. have obtained 1D NMR/MRFM
images of a GaAs sample mounted on the cantilever. Even
at T = 5 K in a 4 T applied magnetic field the nuclear spin
polarization is small, so they optically pumped the electron
spin polarization with circularly polarized light to enhance
the nuclear polarization. Distinct NMR signals from three
nuclear isotopes: (71Ga, 69Ga, and 75As), were detected
using cyclic adiabatic inversion. In addition, they obtained
high resolution, 1D 71Ga MRFM images from the GaAs
sample whose nuclear spin polarization was controllably
modified prior to imaging. The optically pumped nuclear
magnetization was artificially suppressed by prolonged cyclic
adiabatic inversion in two spatial regions separated by a
volume of unperturbed magnetization. The MRFM signal
was subsequently recorded as the sensitive slice was swept
through the sample during the imaging cycle; this revealed
the two regions of diminished magnetization at different
values of the applied field as shown in Figure 18. The regions
can still be resolved as their separation is reduced to 500 nm.
The authors estimate their limiting 1D spatial resolution in
the experiment to be 170 nm with detection sensitivity of
∼4 × 1011 71Ga Hz−1/2.
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Figure 18. Demonstration of spatially resolved NMR in optically
pumped 71Ga. (Reprinted with permission K R Thurber et al.,
copyright 2003, Elsevier.) The spin polarization was suppressed in
two closely spaced slices and then imaged for two slice separations:
670 nm (�) and 500 nm (◦). For comparison, spectra obtained from
optically pumped sample with no slice saturation are shown (�
and �). (The difference in offset between the unmodified (�, offset
−0.02 T) and the 670 nm (�, offset −0.025 T) data is believed to
be caused by a slight change <1 µm in the separation between the
sample and magnet for these data runs done on different days.
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6 CONCLUSIONS

We have discussed the methods and techniques of MFRM,
an emerging fully three-dimensional high-resolution scanned-
probe technique. While focusing on detailed discussions of
the experimental approaches used, we have also pointed out
several successful applications. The rapid improvement in
the capabilities of the technique culminating notably in the
detection of individual electronic spins demonstrate that it is
a robust and flexible technique. The range of successful appli-
cations serve to confirm this and indicate its broad potential.

ACKNOWLEDGMENTS

We thank P. Banerjee and R. Steward for allowing us to
use unpublished figures. We also gratefully acknowledge the
Department of Energy Office of Basic Energy Sciences, the
Army Research Office and the National Science Foundation
for their support of the authors’ work reported in this article.

REFERENCES

Abragam, A. (1961). The Principles of Nuclear Magnetism, Claren-
don: Oxford.

Albrecht, T.R., Grutter, P., Horne, D. and Rugar, D. (1991).
Frequency Modulation detection using High-Q cantilevers for
enhanced force microscopy sensitivity. Journal of Applied
Physics, 69, 668.

Albrecht, T.R., Grütter, P., Rugar, D. and Smith, D.P.E. (1992).
Low temperature force microscope with all-fiber interferometer.
Ultramicroscopy, 42–44, 1638–1646.

Arlett, J.L., Maloney, J.R., Gudlewski, B., et al. (2006). Self-
sensing micro- and nanocantilevers with attonewton-scale force
resolution. Nano Letters, 6(5), 1000–1006.

Barrett, T.A., Miers, C.R., Sommer, H.A., et al. (1998). Design
and construction of a sensitive nuclear magnetic resonance force
microscope. Journal of Applied Physics, 83, 6235.

Berman, G.P., Gorshkov, V.N., Rugar, D. and Tsifrinovich, V.I.
(2003). Spin relaxation caused by thermal excitations of high-
frequency modes of cantilever vibrations. Physical Review B, 68,
94402.

Bloch, F. (1946). Nuclear induction. Physical Review, 70, 460.

Bruland, K.J., Dougherty, W.M., Garbini, J.L., et al. (1998). Force-
detected magnetic resonance in a field gradient of 250,000 Tesla
per meter. Applied Physics Letters, 73, 3159.

Bruland, K.J., Garbini, J.L., Dougherty, W.M. and Sidles, J.A.
(1996). Optimal control of force microscope cantilevers. II.
Magnetic coupling implementation. Journal of Applied Physics,
80, 1959.

Bruland, K.J., Garbini, J.L., Dougherty, W.M. and Sidles, J.A.
(1998). Optimal control of ultrasoft cantilevers for force
microscopy. Journal of Applied Physics, 83, 3972.

Bruland, K.J., Krzystek, J., Garbini, J.L. and Sidles, J.A. (1995).
Anharmonic modulation for noise reduction in magnetic reso-
nance force microscopy. Review of Scientific Instruments, 66,
2853.

Budakian, R., Mamin, H.J., Chui, B.W. and Rugar, D. (2005).
Creating order from random fluctuations in small spin ensembles.
Science, 307, 408.

Callaghan, P.T. (1991). Principles of Nuclear Magnetic Resonance
Microscopy, Clarendon Press: Oxford.

Chabot, M.D. and Moreland, J. (2003). Micrometer-scale magne-
tometry of thin Ni80Fe20 films using ultrasensitive microcan-
tilevers. Journal of Applied Physics, 93, 7897.

Chui, B.W., Hishinuma, Y., Budakian, R., et al. (2003). TRANS-
DUCERS ’03. 12th International Conference on Solid-State Sen-
sors, Actuators and Microsystems, Digest of Technical Papers,
IEEE: Piscataway, pp. 1120–1123, Vol. 2.

Ciobanu, L., Seeber, D.A. and Pennington, C.H. (2002). 3D
MR microscopy with resolution. 3.7 µm by 3.3 µm. Journal of
Magnetic Resonance, 158, 178.

Damon, R. and Eshbach, J. (1961). Magnetostatic modes of a
ferromagnet slab. Journal of Physics and Chemistry of Solids,
19, 308.

Degen, C.L., Lin, Q., Hunkeler, A., et al. (2005). Microscale local-
ized spectroscopy with a magnetic resonance force microscope.
Physical Review Letters, 94, 207601.

Devoret, M.H. and Schoelkopf, R.J. (2000). Amplifying quantum
signals with the single-electron transistor. Nature, 406, 1039.

Fletcher, R.C., LeCraw, R.C. and Spencer, E.G. (1960). Electron
spin relaxation in ferromagnetic insulators. Physical Review, 117,
955.

Fukushima, E. and Roeder, S.B.W. (1981). Experimental Pulse
NMR a Nuts and Bolts Approach, Addison-Wesley: Reading.

Giessibl, F.J. (2003). Advances in atomic force microscopy.
Reviews of Modern Physics, 75, 949.

Hammel, P.C., Zhang, Z., Midzor, M. (1998). In Frontiers in
Magnetism of Reduced Dimension Systems, Wigen, P.E. (Ed.),
Kluwer Academic Publishers: Dordrecht.

Hammel, P.C., Zhang, Z., Moore, G.J. and Roukes, M.L. (1995).
Subsurface imaging with the magnetic-resonance force micro-
scope. Journal of Low Temperature Physics, 101, 59.
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1 INTRODUCTION

Over the past few years, tunneling magnetoresistance (TMR)
and related phenomena have been extensively studied in
magnetic tunnel junctions (MTJs) composed of ferromagne-
tic semiconductors (FMSs), such as (In,Mn)As (Munekata
et al., 1989; Ohno, Munekata, Molnar and Chang, 1991;
Ohno et al., 1992) and (Ga,Mn)As (Ohno et al., 1996;
Hayashi et al., 1997a; Van Esch et al., 1997). These FMS-
based MTJs are fully epitaxial and single crystalline, and
have atomically flat interfaces; thus reductions of leak current
and roughness scattering are expected, leading to large TMR.
Moreover, novel functions induced by quantum-size effects
are expected in FMS-based quantum heterostructures.

Among these semiconductor-based MTJ structures,
(Ga,Mn)As-based MTJs have been extensively studied,
because (Ga,Mn)As is a ferromagnetic (FM) p-type semi-
conductor with a zinc blende–type crystal structure hav-
ing almost the same lattice constant as GaAs and AlAs.

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

Therefore, (Ga,Mn)As/(GaAs or AlAs) III–V-based het-
erostructures can be epitaxially grown with abrupt interfaces
and with atomically controlled layer thicknesses (Hayashi
et al., 1997b; Ohno, 1999; Ohno et al., 1999; Tanaka et al.,
2000a,b). Several advantages are expected in MTJs of
GaMnAs-based III–V heterostructures: (i) One can form
high-quality single crystalline MTJs made of all-semicon-
ductor heterostructures, which can be easily integrated with
other III–V-based structures and devices. (ii) In principle,
many parameters such as the barrier height, barrier thickness,
and the Fermi energy of FM electrodes are controllable. (iii)
Introduction of quantum heterostructures, such as double-
barrier resonant tunneling diodes, is probably easier than any
other material system. In Section 2, we mainly focus on the
GaMnAs-based single-barrier MTJs. The basic characteris-
tics of TMR and the theoretical understanding in these single-
barrier structures are presented. In the last part of Section 2,
recent progress of TMR studies in semiconductor-based
single-barrier MTJs including other materials is reviewed.

Combining the quantum-size effect and TMR is one of
the very important issues for adding novel functionalities
to semiconductor-based spin-electronic devices. Recently,
theoretical calculations and experiments of GaMnAs-based
double-barrier MTJs have been carried out. The theoreti-
cal calculations predict that TMR is largely enhanced by
the quantum-size effect. In Section 3, these theoretical pre-
dictions and experiments on GaMnAs-based double-barrier
MTJs are reviewed.

In Section 4, recently observed novel phenomena, mate-
rials, and structures related to TMR in semiconductors are
described. The first of them is the tunneling anisotropic mag-
netoresistance (TAMR), which was observed in GaMnAs-
based heterostructures (Gould et al., 2004; Rüster et al.,
2005). TAMR seems very similar to TMR, but the
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characteristics differ considerably. Although the mechanism
of TAMR has not been fully understood, experimental results
and present understandings of TAMR are briefly mentioned
in this section. Second, the recent observation of TMR in
MnAs/AlAs/GaAs:MnAs MTJ structures, where the bottom
electrode is composed of FM MnAs nanoclusters embedded
in GaAs (we refer to as GaAs:MnAs), is presented (Hai,
Yokoyama, Ohya and Tanaka, 2006). In this structure, TMR
is induced by spin-polarized carriers moving through the
MnAs nanoclusters. Because the TC value of MnAs is above
room temperature, it is expected that TMR devices operating
at room temperature could be realized. Also, it was clari-
fied that the bias voltage Vhalf at which the TMR ratio is
reduced by half is surprisingly as high as 1200 mV, which
is much higher than Vhalf(∼40 mV) of FMS-based MTJs.
Here, the basic characteristics of GaAs:MnAs-based MTJs
are introduced. Finally, application of TMR to three ter-
minal devices is described. In the recently proposed spin
transistors of metal-oxide-semiconductor (MOS) gate struc-
ture (spin MOSFET; Sugahara and Tanaka, 2004, 2005), spin
injection from the FM source into the semiconductor channel
via spin-polarized tunneling is essential for device operation.
The device structure, operation principle, and applications of
the spin MOSFET are reviewed.

2 TMR IN SINGLE-BARRIER MAGNETIC
TUNNEL JUNCTIONS

2.1 Early studies of TMR in GaMnAs-based
MTJs

The first observation of TMR in a GaMnAs-based hetero-
structure was reported by Hayashi, Shimada, Shimizu,
and Tanaka (1999). TMR was observed in a fully epi-
taxial MTJ structure of Ga0.961Mn0.039As (200 nm)/AlAs
(3 nm)/Ga0.961Mn0.039As (200 nm) grown by low-tempe-
rature molecular-beam epitaxy (LT-MBE). Figure 1 shows
the TMR curve observed in GaMnAs/AlAs/GaMnAs MTJ
with a magnetic field applied in plane along the [110] direc-
tion at 4.2 K. Because the lattice constant of
GaMnAs is slightly larger than that of GaAs, the GaMnAs
film grown on GaAs receives a compressive strain, having an
in-plane magnetic anisotropy, so as to minimize the magne-
tostatic energy. Thus, hysteretic MR curves can be obtained
when a magnetic field is applied along the in-plane direc-
tion of the GaMnAs film. In this study, the TMR ratio of
around 5% was obtained at 4.2 K. Here, we define the TMR
ratio as (RAP − R0)/R0, where RAP and R0 are resistances
in antiparallel magnetization and in parallel magnetization
at zero magnetic field, respectively. (When the TMR ratio
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Figure 1. Magnetic-field dependence of tunneling resistance mea-
sured at 4.2 K on Ga0.961Mn0.039As (200 nm)/AlAs (3 nm)/Ga0.961

Mn0.039As (200 nm). (Reproduced from Hayashi et al., 1999, with
permission from Elsevier.  1999.)

is defined as (Rmax − Rmin)/Rmin, where Rmax and Rmin

are the maximum and minimum resistances respectively,
in Figure 1, it is 36% at 4.2 K). After this experiment, in
2000, Chiba et al. observed TMR in a Ga0.95Mn0.05As/AlAs
(3 nm)/Ga0.97Mn0.03As MTJ (Chiba et al., 2000). They grew
this structure on an InGaAs buffer layer whose lattice con-
stant is larger than GaMnAs. In this case, the GaMnAs
films receive a tensile strain, leading to an out-of-plane mag-
netic anisotropy. They applied magnetic field perpendicular
to the film plane, and observed the TMR ratio of around
5.5% at 20 K.

2.2 Basic characteristics of TMR in
GaMnAs-based MTJs

In 2001, a large TMR ratio (>70%, maximum 75%) was
observed by Tanaka and Higo in GaMnAs/AlAs/GaMnAs
MTJs at 8 K (Tanaka and Higo, 2001, 2002). This large
increase of TMR was achieved by the improved quality of
the GaMnAs layers and the tunnel barrier, and by optimiza-
tion of the device structures. In the GaMnAs MTJ struc-
tures, it is known that there are many defects such as the
As antisites (Grandidier et al., 2000) and the Mn intersti-
tials (Yu et al., 2002), whose concentration strongly depends
on the MBE growth conditions. Thus, controlling these
defects is important for fabricating the GaMnAs MTJ struc-
tures. In this study, systematic investigations, such as AlAs
barrier-thickness dependence, temperature dependence, and
magnetic-field-direction dependence of TMR, were carried
out. Here, these basic characteristics of TMR in GaMnAs-
based single-barrier MTJs are reviewed.

Figure 2 illustrates the sample structure and preparation
process, using LT-MBE and patterning by photolithography.
After a 100-nm-thick Be-doped GaAs buffer layer was grown
at 580 ◦C on a p+-GaAs(001) substrate, a Ga1−xMnxAs
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p+-GaAs substrate (001)

p+-GaAs substrate (001)

Patterning

Shutter

200 µm

GaMnAs 3.3% 50 nm

Be-doped GaAs

GaMnAs 4.0% 50 nm

GaAs 1 nm
AlAs

GaAs 1 nm

Figure 2. Preparation of a wedge-type ferromagnetic semiconduc-
tor trilayer heterostructure by LT-MBE and mesa-etched round-
shaped MTJs, 200 µm in diameter. (Reproduced from Tanaka
et al., 2001, with permission from the American Physical Society.
 2001.)

(x = 4.0%, 50 nm)/AlAs (dAlAs)/Ga1−xMnxAs (x = 3.3%,
50 nm) trilayer was grown at 250◦C. By using a shutter
moving linearly in front of the substrate, the barrier thickness
dAlAs was changed from 1.3 to 2.8 nm within a wafer of
20 × 20 mm2. The slope of the wedge was estimated by
the growth rate of AlAs, which was obtained by reflection
high-energy electron diffraction (RHEED) oscillations and
the moving speed of the shutter. Preparation of wedge-type
samples is important in order to characterize the dependence
of the TMR of MTJs on the barrier thickness, because
the electronic and magnetic properties of the GaMnAs
layers are very sensitive to the growth conditions (Shimizu,
Hayashi, Nishinaga and Tanaka, 1999). In addition, undoped
1-nm-thick GaAs spacers were inserted between GaMnAs
and AlAs to make the interfaces smooth and to avoid
Mn diffusion into the barrier, which may cause spin-flip
scattering. In order to measure the tunneling transport,
the sample was patterned by photolithography and mesa
etching, into arrays of round-shaped mesa junctions, 200 µm
in diameter with various barrier thicknesses ranging from
1.3 nm to 2.8 nm.

2.2.1 Experimental results of TMR in the
GaMnAs/AlAs/GaMnAs MTJs

The magnetization of the Ga1−xMnxAs (x = 4.0%, 50 nm)/
AlAs (3 nm)/Ga1–xMnxAs (x = 3.3%, 50 nm) trilayer mea-
sured by superconducting quantum interference device
(SQUID) at 8 K is shown in Figure 3(a). In the SQUID
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Figure 3. (a) Magnetization of a Ga1−xMnxAs (x =
4.0%, 50 nm)/AlAs (3 nm)/Ga1−xMnxAs (x = 3.3%, 50 nm)
trilayer measured by SQUID at 8 K. The specimen size was
3 × 3 mm2. The vertical axis shows the normalized magneti-
zation M/Ms, where Ms is the saturation magnetization. (b)
TMR curves at 8 K of a Ga1–xMnxAs (x = 4.0%, 50 nm)/AlAs
(1.6 nm)/Ga1−xMnxAs (x = 3.3%, 50 nm) tunnel junction. The
tunnel junctions were mesa-etched diodes 200 µm in diameter. Bold
solid and dashed curves are major loops, with the magnetic-field
sweep direction from positive to negative and negative to positive,
respectively. A minor loop is shown by a thin solid curve. In both
(a) and (b), the magnetic field was applied along the [100] axis in
the plane. (Reproduced from Tanaka et al., 2001, with permission
from the American Physical Society.  2001.)

measurements, the trilayer sample was cleaved into a square
shape with an area of 3 × 3 mm2. The magnetic field was
applied along the [100] axis in the plane. Pairs of arrows
in the figure indicate the magnetization directions of the
top and bottom GaMnAs layers at different fields. Owing
to the different coercivity of the two GaMnAs layers, a
double-step magnetization curve with coercive fields of about
60 and 100 Oe was observed. The easy magnetization axis
of the FM GaMnAs layers lies in the film plane.

Figure 3(b) shows tunnel resistance versus magnetic field,
that is, TMR curves measured at 8 K on a junction with
dAlAs = 1.6 nm when the magnetic field was applied along
the [100] axis in the plane. The measurements were done at
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a constant bias of 1 mV, and so there is no hot carrier effect.
Bold solid and dashed curves (major loops) in Figure 3(b)
were obtained by sweeping the field from positive to neg-
ative and negative to positive, respectively. As shown by
the bold solid curve, when the magnetic field H was swept
from the positive saturation field down to negative, the tun-
nel resistance R(H) increased from 0.014 to 0.025 � cm2

(corresponding TMR was 72%) at H = −110 Oe, where
the magnetization of one GaMnAs layer reversed and the
magnetization configuration changed from parallel to antipar-
allel. Sweeping the field further to the negative direc-
tion, R(H) and TMR decreased to their initial values
(R(H) = 0.014 � cm2) at H = −125 Oe, where the magne-
tization of the other GaMnAs layer reversed and the magne-
tization configuration became parallel again. The difference
of the coercive fields between the M–H curve in Figure 3(a)
and the TMR curve in Figure 3(b) is caused by the differ-
ence in the shape and size of the measured specimens. Note
that the TMR value is over 70%, much higher than the TMR
previously reported. A thin solid curve in Figure 3(b) shows
a minor loop, indicating that the antiparallel magnetization
configuration is stable, as well as the parallel magnetiza-
tion configuration. The switching fields of the major and
minor loops are different. This is a general feature of the
coercivity in GaMnAs films and it depends on the maxi-
mum magnetic field applied just before the switching. This
is probably related to the domain wall pinning, whose unpin-
ning energy depends on the maximum magnetic field applied
just before the switching of magnetization. In this case, the
minor loop is measured with the maximum magnetic field
of −120 Oe, while the major loops are measured with the
maximum magnetic fields of ±1 T. Therefore, the switching
field of the minor loop is smaller than that of the major loop.

Figure 4(a) shows the tunnel resistance R for the tunnel
junctions measured at 8 K as a function of the barrier
thickness dAlAs. The resistance exponentially increased over a
wide range from 10−3 to 10 � cm2 as dAlAs increased, which
means that high-quality tunnel junctions were formed with a
constant barrier height. In the WKB approximation, the slope
of ln R–dAlAs characteristics is given by 2[2m∗ Vb]1/2/�,
thereby estimating the product m∗ Vb to be 0.32m0 kg·eV,
where m0 is the free-electron mass, m∗ is the effective mass
of holes, and Vb is the barrier height. The valence band offset
between GaMnAs and AlAs is unknown but it is considered
to be close to that (∼0.55 eV) of GaAs and AlAs, and the
Fermi energy of holes in GaMnAs is 0.1 to 0.2 eV, thus the
barrier height Vb is ∼0.45 eV. Therefore, the effective mass
m∗ of holes that are responsible for tunneling is roughly
estimated to be ∼0.7m0.

Figure 4(b) shows barrier-thickness dependence of TMR
at 8 K when the magnetic field was applied in plane along
the [100] and [110] axes. The maximum TMR was 75%
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Figure 4. Barrier-thickness dependence of (a) the tunnel resis-
tance and (b) the TMR in Ga1−xMnxAs (x = 4.0%, 50 nm)/AlAs
(dAlAs)/Ga1−xMnxAs (x = 3.3%, 50 nm) tunnel junctions measured
at 8 K. In (b), the TMR values were measured with the magnetic
field applied along the [100] and [110] axes. (Reproduced from
Tanaka et al., 2001, with permission from the American Physical
Society.  2001.)

at dAlAs = 1.46 nm when the field was applied along the
[100] axis. In both field directions, with increasing dAlAs

(>1.5 nm), the TMR was found to rapidly decrease. At all
the values of dAlAs, the TMR was higher when the field was
applied along the [100] axis than along the [110] axis. The
difference of the TMR between the two directions of the field
is due to the cubic magnetocrystalline anisotropy induced
by the zinc blende–type GaMnAs crystal structure, where
the easy magnetization axis of GaMnAs is 〈100〉, the details
of which is reported in the literature (Higo, Shimizu and
Tanaka, 2001). Although the reason for the drop in the TMR
for the junction with dAlAs < 1.4 nm is not clear at present,
this drop could be caused by the decrease of the effective
barrier height because of the interface roughness or the
image potential. Another possible reason is the FM interlayer
exchange coupling between GaMnAs layers separated by a
very thin AlAs layer.
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When TMR was measured on many round-shaped mesa
tunnel junctions, a variety of different characteristics were
observed, as shown in Figure 5(a)–(d). Here, the magnetic
field was applied in plane along the [100] axis. Because
the present tunnel junctions are totally monocrystalline
and GaMnAs is considered to have the magnetocrystalline
anisotropy with the easy magnetization axis of 〈100〉, the
magnetization direction of the top and bottom GaMnAs
layers favors to be along one of the four easy axes ([100],
[010], [100], [010]) in the film plane. These TMR behaviors
are attributed to the different magnetization configurations, as
illustrated in the lower panel of Figure 5. Here, solid and gray
arrows are the magnetization directions of the two GaMnAs

layers, and time evolutions of magnetization configuration
are depicted when the applied magnetic field is changed
from positive (+200 Oe) to negative (−200 Oe). These TMR
behaviors are well explained by the analysis of magnetization
rotation based on the single domain theory. The multivalue
characteristics of TMR owing to the magnetocrystalline
anisotropy could lead to interesting applications such as
multivalue recording and novel logic circuitry.

Temperature dependence of the TMR for these vari-
ous junctions with different dAlAs are measured and the
normalized conductance difference data �G = �G(T )/�G

(8 K) are plotted in Figure 6, where T is temperature,
�G(T ) = GP(T ) − GAP(T ), GP(T ) and GAP(T ) are the
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Figure 5. A variety of TMR characteristics of round-shaped mesa tunnel junctions at 8 K. The magnetic field was applied in plane along the
[100] axis. In the lower panel, time evolutions of magnetization configuration are depicted when the applied magnetic field is changed from
positive (+200 Oe) to negative (−200 Oe). Solid and gray arrows are the magnetization directions of the two GaMnAs layers. (Reproduced
from Tanaka et al., 2002, with permission from Elsevier.  2002.)
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different dAlAs = 1.46, 1.58, 1.70, 1.82 nm. The solid line is the fit
to the theory based on thermal spin-wave excitations (Tanaka and
Higo, 2001, 2002). (Reproduced from M. Tanaka et al., 2002, with
permission from Elsevier.  2002.)

junction conductances at T K for parallel and antiparallel
magnetization, respectively. �G (equivalently, TMR) basi-
cally decreased with increasing temperature and vanished
at ∼50 K, which is the Curie temperature of one of the
GaMnAs layers. �G dropped once at ∼20 K, because the
coercivity of the top and bottom GaMnAs layers is so close
(almost same) that the window for antiparallel magnetization
is too small, which was confirmed by temperature-dependent
magnetization measurements, thus �G was difficult to be
observed at around 20 K. A solid line in Figure 6 is the fit
to the theory �G(T ) = �G0(1 − αT 3/2)2, where �G0 is
a constant and α is fitted to 1.5 × 10−3 K−3/2, based on
thermal spin-wave excitations (Shang, Nowak, Jansen and
Moodera, 1998). The theory can explain the present data,
as it did for conventional Co/Al2O3/Co(NiFe) MTJs. This
means that the dominant contribution to the tunnel con-
ductance is direct elastic tunneling with the tunneling car-
rier spin polarization P decreasing as 1 − αT 3/2. Both the
excellent scaling of the junction resistance with the AlAs
barrier thickness (Figure 4a) mentioned earlier and this tem-
perature dependence of �G give strong evidence for TMR
junctions.

2.2.2 Tight binding calculations of TMR

In the conventional Jullière’s model (Jullière, 1975), the
TMR depends only on the spin-dependent density of states
(DOSs) in the two FM electrodes and does not depend on
the barrier thickness d, and hence the Jullière model cannot
explain these experimental results. Because the present GaM-
nAs/AlAs/GaMnAs heterostructures are epitaxially grown
single crystals, the wave vector k‖ of carriers parallel to
the interface should be conserved in tunneling. Calculations

using the tight binding theory including k‖ conservation by
Mathon (1997) is consistent with the experimental results of
barrier-thickness dependence of TMR mentioned earlier.

The experimental results can be qualitatively explained
as follows: Figure 7 shows the Fermi surfaces for up
and down spins in two FM electrodes, calculated by the
single orbital, tight binding model, when the magnetization
configuration is (a) parallel and (b) antiparallel. Also, the
dispersion of the decaying factor κz in the barrier layer
was calculated and shown in the middle of the figure.
The wave vector kz(EF, k‖) normal to the interface in the
FM electrodes is determined from EF = E0 + 2t cos(kza) +
w(k‖), and the decaying factor κz(EF, k‖) in the barrier layer
is determined from EF = E0 + 2t cosh(κza) + w(k‖), where
w(k‖) = 2t[cos(kxa) + cos(kya)], k‖ = (kx, ky) is the wave
vector parallel to the film plane, EF is the Fermi energy, E0

is the on-site energy in each layer, t is the nearest-neighbor
hopping parameter, and a is the lattice constant (Mathon,
1997). The spin polarization in the FM electrodes was
regarded as the difference of E0 between the majority and
minority carriers. When the magnetizations of the two FM
electrodes are parallel as shown in Figure 7(a), the majority
(minority) spin is the up (down) spin in both electrodes, so
that the carriers can tunnel through all the channels (k‖, σ ).
When the magnetizations of the two FM electrodes are
antiparallel as shown in Figure 7(b), the down spin is the
majority spin in the right electrode, thus the carriers with
k‖ = |k‖| > kcutoff cannot tunnel, where kcutoff is the cutoff
wave vector which is the largest k‖ in the minority spin band.
This difference of tunneling between parallel and antiparallel
configurations indicates that the TMR is mainly caused by
carriers with large k‖(>kcutoff). However, these carriers with
larger k‖ exponentially decay more rapidly during tunneling
in the barrier because of larger κz, as shown in the middle of
Figure 7. Because of this in-plane dispersion of κz(k‖), when
the barrier thickness d is large, the tunneling conductance
is dominated by the carriers with smaller k‖, which do not
contribute much to the TMR. Therefore, the TMR decreases
as d increases.

In order to compare with the experimental TMR obtained
in the GaMnAs/AlAs/GaMnAs tunnel junctions, the depen-
dence of TMR on dAlAs was calculated using the spin-orbit
nearest-neighbor sp3s∗ model (Vogl, Hjalmarson and Dow,
1983; Chadi, 1977). The tight binding parameters reported by
Schulman and Chang were used to obtain the realistic band
structures of GaAs and AlAs (Schulman and Chang, 1985).
The effect of Mn ions in GaMnAs was simplified by intro-
ducing an additional term �Jx into the intralayer coupling
matrices in the sp3s∗ Hamiltonian. Here Jx is a 10 × 10
matrix derived from the x component of the total angular
momentum J in the planar-orbital basis. Jx was used because
the magnetization was along the [100] axis. This additional
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term causes the changes of the on-site energies proportional
to Jx . The scalar proportional coefficient � corresponds to
the spin-splitting energy between the two holes |3/2, 1/2 >

and |3/2, −1/2 > at the � point.
In order to calculate TMR, tunneling probability T was

first calculated, as shown in Figure 8, and plotted in the k‖
plane (−0.3π/a < kx < 0.3π/a, −0.3π/a < ky < 0.3π/a),
both for parallel and antiparallel magnetization. The k‖
dependence of T is complex because of the complexity of
the valence band structure of GaMnAs and AlAs. The band
parameters used here are shown in the inset of Figure 9.
Despite the complexity, the essential point is as follows.
When the AlAs barrier thickness is as thin as 1 monolayer

(ML), T has some nonzero values even at large k‖ for parallel
magnetization, whereas T is zero at large k‖ for antiparallel
magnetization. This difference in T between parallel and
antiparallel magnetization leads to large TMR. In contrast,
when the AlAs barrier thickness is greater (5 MLs), T is
significantly suppressed at large k‖ for parallel magnetization
due to large κz, as described above, thus the difference in T

between parallel and antiparallel magnetization is smaller,
resulting in smaller TMR.

Figure 9 shows the calculated (solid curve) and measured
(solid circles) barrier-thickness dependences of the TMR in
the present GaMnAs/AlAs/GaMnAs tunnel junctions. We
assumed that EF, V , and � were 0.2, 0.67, and 0.08 eV,
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respectively. The Fermi energy EF and the valence band
offset V were measured from the top of the valence band in
the calculated GaMnAs band structure, as shown in the inset
of Figure 9. V = 0.67 eV gives the valence band offset of
0.55 eV when � = 0, that is, the case for normal GaAs/AlAs
interfaces, which is a reasonable value. Compared with the
experimental results, the calculated TMR decreases rapidly
in the thinner barrier region. The barrier thickness was
evaluated from RHEED oscillations and the moving speed
of the shutter, as mentioned before. Because completely
accurate alignment of the moving shutter with the substrate
in the MBE chamber is difficult, the absolute values of the
estimated barrier thickness may not be reliable (though the

relative values are reliable), hence the calculated dependence
was horizontally shifted towards right by 0.7 nm (only
2.5 ML) to fit to the experimental results, as shown by a
dashed curve in Figure 9. The fitting is fairly good, but
not perfect partly because the band structure of GaMnAs
is not fully known yet, the model is simple compared with
the more complex band structure, and/or partly because
there could be spin scattering at the interfaces or in the
tunnel barrier which is not taken into account. However, the
present spin-orbit nearest-neighbor sp3s∗ model is found to
explain the most essential part of the experimental barrier-
thickness dependence of the TMR. Note that there are three
essential points in this model. (i) The cutoff wave vector
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[100] axis), because the absolute barrier thicknesses of the junctions
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kcutoff in the plane exists in the antiparallel configuration.
(ii) The decaying factor κz in the barrier increases with
increasing k‖. (iii) k‖ is conserved in tunneling. Although
these points may not be valid in the conventional MTJs
with polycrystalline metallic electrodes, they are valid in the
present Ga1−xMnxAs/AlAs/Ga1−xMnxAs tunnel junctions,
which are epitaxially grown single crystals.

2.3 More recent works on single-barrier MTJ

Recently, many materials have been used in the studies of
semiconductor-based single-barrier MTJs, and furthermore
the TMR ratio is increasing. Chiba et al. used GaAs as a
tunneling barrier of the GaMnAs-based MTJ (Chiba, Mat-
sukura and Ohno, 2004). They fabricated a Ga0.926Mn0.074As
(20 nm)/GaAs (6 nm)/Ga0.956Mn0.044As (20 nm) MTJ, and
observed high TMR ratios of 90% at 15 K, 105% at 4.7 K,
and 290% at a very low temperature of 0.39 K with a mag-
netic field applied in plane along [100]. They also real-
ized current-driven magnetization reversal in the GaMnAs
(80 nm)/GaAs (6 nm)/GaMnAs (15 nm) MTJs (Chiba et al.,
2004). The critical current densities, which are necessary
to change parallel magnetization to antiparallel magneti-
zation and vice versa, were jAP = 1.92 × 105 A cm−2 and
jP = 1.4 × 105 A cm−2 at 30 K, respectively. These values
are two orders of magnitude smaller than those observed

in metal systems, resulting from the smaller magnetization
of GaMnAs. For the current-driven magnetization rever-
sal, a lower energy barrier is more appropriate. Elsen
et al. fabricated a GaMnAs-based MTJ with a 6-nm-thick
In0.25Ga0.75As barrier, and realized current-driven magneti-
zation reversal with smaller current densities of jAP = 1.23 ×
105 A cm−2 and jP = 1.37 × 105 A cm−2 at 3 K (jAP =
9.39 × 104 A cm−2 and jP = 9.86 × 104 Acm−2 at 30 K)
(Elsen et al., 2006). In the structure, also, a high TMR ratio
of 155% was observed at 3 K.

Chun et al. used a FM metal of MnAs as a top elec-
trode in order to investigate the spin injection from a metal
to a semiconductor (Chun et al., 2002). They fabricated
MnAs(45 nm)/GaAs(1 nm)/AlAs(d = 1, 2, 5, 10 nm)/GaAs
(1 nm)/Ga0.97Mn0.03As(120 nm) MTJ structures, and obtained
a TMR ratio of around 30% at 4.2 K when d is 5 nm.

Saito et al. used wide-gap (2.8 eV) II–VI semiconduc-
tor ZnSe as a barrier of the GaMnAs MTJ structure (Saito,
Yuasa and Ando, 2005). The lattice constant of ZnSe
(0.5669 nm) is very close to that of GaAs (0.5654 nm),
and its optimum growth condition is comparable to that
of GaMnAs (∼250 ◦C). These structural properties make
it possible to grow epitaxial ZnSe/GaMnAs heterostruc-
tures. They fabricated a Ga0.928Mn0.072As (50 nm)/ZnSe
(1 nm)/Ga0.928Mn0.072As (50 nm) MTJ structure, observing a
TMR ratio of around 100% at 2 K. This result is expected to
open a new possibility of realizing II–VI/III–V spin devices.

As mentioned earlier, large TMR ratios were obtained
in GaMnAs-based MTJs, therefore GaMnAs is an excel-
lent model material for realizing spin-electronic devices. For
device application, however, there is a problem of low Curie
temperature (TC) of GaMnAs. When the FM transition of
GaMnAs was first observed, TC was only around 60 K (Ohno
et al., 1996; Hayashi et al., 1997a). After that, the TC value of
GaMnAs was increased year after year and has reached 173 K
in GaMnAs alloy films (Wang et al., 2005) and 250 K in the
Mn δ-doped GaAs heterostructures (Nazmul et al., 2005).
However, it is still lower than room temperature. On the
other hand, the fabrication of new FMSs with TC higher than
room temperature has also been reported. TiCoO2 is one of
the recently developed FSs whose TC is above 400 K (Mat-
sumoto et al., 2001a,b). Toyosaki et al. used TiCoO2 as a
bottom electrode of MTJ (Toyosaki et al., 2005). They fabri-
cated a Fe0.1Co0.9/AlOx /TiCoO2 MTJ, and observed a TMR
ratio of ∼11% at 15 K. TMR was observed up to 180 K, but
it disappeared above 180 K, which is much lower than TC of
TiCoO2 (∼400 K). They pointed out that this was the result
of inelastic tunneling in the amorphous barrier layer or the
junction interface. If an epitaxial tunnel barrier can be grown
on the TiCoO2 bottom layer with high-quality interfaces, it
is expected that the operating temperature of TMR can be
improved.
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3 DOUBLE-BARRIER MTJs

3.1 Theoretical predictions of the TMR behavior
in GaMnAs-based resonant tunneling diodes

Combining spin-dependent tunneling and quantum-size effect
is one of the very important issues for future semiconductor-
based spintronic devices. By combining these effects, a large
TMR enhancement and novel functions are expected to be
realized, hence, theoretical calculations on the TMR behavior
in GaMnAs-based resonant tunneling diodes (RTDs) have
been carried out.

Hayashi et al. calculated the transmission probability of an
RTD structure composed of GaMnAs/AlAs (28 Å)/GaMnAs
(80 Å)/AlAs (28 Å)/GaMnAs, using a transfer matrix formal-
ism (Hayashi, Tanaka and Asamitsu, 2000). They assumed
a valence band profile along the direction perpendicular
to the material interfaces shown in Figure 10(a). In this
model, the magnetization directions of both GaMnAs elec-
trodes are parallel to one another, and only the magneti-
zation direction of the GaMnAs FM quantum well (angle
θ , as shown in Figure 10(a) is changeable relative to the
magnetization directions of the electrodes, because the coer-
cive force of thin GaMnAs films is larger than that of
thick GaMnAs films. Figure 10(b) and (c) show the calcu-
lated results of the energy dependence of the transmission
probability (TT*(Ez)) from one majority spin band to the
other majority spin band. Figure 10(b) and (c) correspond to
heavy holes (mhh = 0.45m0) and light holes (mlh = 0.08m0),
respectively. The peak energies shift in both cases, depend-
ing on the magnetization direction of the FM quantum well.
This result indicates that a FM quantum well works as a
very sharp spin filter as well as an energy filter, leading to
the enhancement and unique bias dependence of TMR.

Petukhov et al. calculated the TMR behavior in GaM-
nAs/AlAs/GaAs/AlAs/GaMnAs RTD structures comprising
a nonmagnetic quantum well between two insulating AlAs
barriers (Petukhov, Chantis and Demchenko, 2002). In the
calculation, they used a multiband transfer matrix method
with a Luttinger–Kohn and an exchange mean-field Hamil-
tonian (Dietl, Ohno and Matsukura, 2001). They predicted
that a large TMR enhancement occurs even with such a non-
magnetic GaAs quantum well. This mechanism is depicted in
Figure 11, and is explained as follows: (a) and (b) show the
majority and minority spin bands in parallel magnetization,
respectively; (c) and (d) show those in antiparallel magne-
tization, respectively. In this model, the resonant level ER

is assumed to exist between the bottoms of valence up-spin
and down-spin bands. In parallel magnetization, the up-spin
carriers can go through the RTD structure. In antiparallel
magnetization, however, no carrier can go through, thus the

0.5 eV

GaMnAs GaMnAs GaMnAsAlAs AlAs

q

z1 z2 z3 z4

z28 Å 80 Å 28 Å

1.E+00

1.E−03

1.E−06

1.E−09

1.E−12

1.E−15Tr
an

sm
is

si
on

 p
ro

ba
bi

lit
yT

∗ T

0 0.1 0.2 0.3 0.4 0.5 0.6−0.1

Energy (eV)

Parallel
Antiparallel

1.E+00

1.E−03

1.E−06

1.E−09

1.E−12

1.E−15Tr
an

sm
is

si
on

 p
ro

ba
bi

lit
yT

∗ T

0 0.1 0.2 0.3 0.4 0.5 0.6−0.1

Energy (eV)

Parallel
Antiparallel

(a)

(b)

(c)

Figure 10. (a) Valence band profile of the GaMnAs-based double-
barrier heterostructure. (b) Transmission probability for heavy holes
(mhh = 0.45m0 for GaMnAs and 0.75m0 for AlAs, respectively). (c)
Transmission probability for light holes (mlh = 0.08m0 for GaMnAs
and 0.143m0 for AlAs, respectively). (Reproduced from Hayashi
et al., 2000, with permission from the American Physical Society.
 2000.)

TMR ratio becomes very large. Figure 12 shows the calcu-
lated TMR ratio as a function of the thickness of the GaAs
quantum well when the AlAs thickness w is 1, 1.5, and 2 nm.
The inset is the schematic valence band diagram of these
RTD structures. At a specific quantum well width, the TMR
ratio is enhanced to 800% when the AlAs thickness is 2 nm.

3.2 Experimental studies on TMR
in GaMnAs-based double-barrier MTJ
structures

In order to observe the quantum-size effect in the GaMnAs-
based RTD, Hayashi et al. fabricated a Ga0.955Mn0.045As/
AlAs (2.8 nm)/Ga0.965Mn0.035As(8 nm)/AlAs (2.8 nm)/Ga0.955

Mn0.045As RTD structure on a p+-GaAs(001) substrate, and
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investigated TMR (Hayashi, Tanaka and Asamitsu, 2000). In
this RTD structure, TMR ratio of around 7% was observed at
4.2 K; when it is defined as (RAP − R0)/R0, where RAP and
R0 are resistances in antiparallel magnetization and in paral-
lel magnetization at zero magnetic field, respectively. (When
the TMR ratio is defined as (Rmax − Rmin)/Rmin, where Rmax

and Rmin are the maximum and minimum resistance in the
TMR loop, it is about 170% at 4.2 K). This value is higher
than the TMR value observed in the GaMnAs-based single-
barrier MTJ at that time (∼5%). Although the shape of the

derivative dI/dV − V of this RTD sample looked wavy,
negative differential resistance was not clearly observed in
the I –V curve. It has not been clarified whether this TMR
enhancement is induced by the quantum-size effect.

Mattana et al. fabricated a GaMnAs/AlAs (1.5 nm)/GaAs
(5 nm)/AlAs (1.5 nm)/GaMnAs double-barrier MTJ struc-
ture, investigating the TMR behavior (Mattana et al., 2003).
Figure 13(a) shows the TMR curve and (b) shows the bias
dependence of TMR obtained in this double-barrier MTJ
structure at 4 K. The inset of (b) shows the I–V curve. Nei-
ther TMR enhancement nor negative differential resistance
was observed. They explained that this is attributable to
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from the American Physical Society.  2003.)
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the sequential tunneling without spin relaxation in the GaAs
middle layer, where the spin relaxation time is longer than
the mean time τn spent by holes in the GaAs middle layer
between tunneling in and tunneling out. Considering the tun-
nel resistance as a function of the barrier thickness observed
by Tanaka and Higo (2001) (shown in Figure 4), τn is esti-
mated to be a few 100 ps at a typical energy of some tens of
millielectron volts in a few nanometer-thick quantum well.
This is much longer than the time of the phase breakdown,
which generally does not exceed a few picoseconds at 4 K.
They concluded that this condition does not fulfill that of the
coherent resonant tunneling and that sequential tunneling is
dominant in their double-barrier MTJ structure.

Ohya et al. suggested that one of the possible reasons
for the difficulty in the observation of TMR associated with
the resonant tunneling effect in GaMnAs/AlAs/GaAs/AlAs/
GaMnAs RTDs is its band profile. Because the valence band
bottom energy of GaAs is higher than the Fermi level of
GaMnAs by 87–140 meV (≡ v) in terms of hole energy
(Ohno, Arata, Matsukura and Ohno, 2002), the energy of the
valence band bottom of the GaAs quantum well is higher
than the Fermi level of GaMnAs. Therefore, a high bias
voltage of at least about 200 mV (≈2v/e) has to be applied
in order to observe the resonant levels formed above the
valence band bottom of the GaAs quantum well. However,
as shown in Figure 13(b), and reported by Mattana et al.
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In0.4Ga0.6As (0.42 nm)/AlAs (d nm)/Ga0.94Mn0.06As RTD junctions
with d of (a) 1.24, (b) 2.07, (c) 2.28, and (d) 2.49 nm. The mea-
surements were done at 7 K with a bias voltage of 10 mV and a
magnetic field applied in plane along the [100] axis. In (a), bold
and thin curves indicate a major loop and a minor loop, respectively
(Ohya, Hai and Tanaka, 2005). (Reproduced from Ohya et al., 2005,
with permission from the American Institute of Physics.  2005.)
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Ga0.94Mn0.06As RTD. The measurements were carried out at 7 K
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permission from the American Institute of Physics.  2005.)

(2003), when a bias voltage higher than 200 mV is applied
to the GaMnAs-based double-barrier structure, the TMR ratio
becomes very small or almost zero because of the strong bias
dependence of TMR. Therefore, it is difficult to observe TMR
and the resonant tunneling effect at the same time in this
structure.

For these reasons, Ohya et al. used an In0.4Ga0.6As quan-
tum well instead of GaAs. The energy of the heavy-hole band
of In0.4Ga0.6As is estimated to be about 200 meV lower than
the Fermi level of GaMnAs (Van de Walle, 1989). Owing to
the strong strain in the In0.4Ga0.6As quantum well, it is diffi-
cult to grow a thick InGaAs layer, hence a very thin InGaAs
quantum well of 4.2 Å was used. Ga0.94Mn0.06As/AlAs
(d nm)/In0.4Ga0.6As (0.42 nm)/AlAs (d nm)/Ga0.94Mn0.06As
RTD junctions were grown with the AlAs thickness d varied
from 0.8 to 2.7 nm by controlling the in-plane position of
the mobile shutter in front of the sample surface equipped
with the MBE growth chamber. Figure 14(a), (b), (c), and (d)
show the TMR curves of this sample with d of 1.24, 2.07,
2.28, and 2.49 nm at 7 K, respectively. In (a) and (b), usual
positive TMR was obtained, while in (c) and (d) inverse
TMR was observed. Figure 15 shows the TMR ratio as a
function of d. With increasing d, the TMR ratio oscillated
between positive and negative values with a period of around
0.8 nm.

It is difficult to explain this peculiar TMR behavior by
the multiple magnetic domain formation, the impurity level
in the barrier (Tsymbal, Sokolov, Sabirianov and Doudin,
2003), or the interference of two states with complex
wave vectors in the barrier (Yuasa et al., 2004; Bultler,
Zhang, Schulthess and MacLaren, 2001). The most possible
mechanism for explaining this TMR behavior is the resonant
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and (c) and (d) show those with d = 0.56 nm in parallel magneti-
zation and in antiparallel magnetization, respectively. (Reproduced
from Ohya et al., 2005, with permission from the American Institute
of Physics.  2005.)

tunneling effect. To evaluate the influence of the resonant
tunneling effect, the TMR ratios were calculated for the
GaMnAs/AlAs/In0.4Ga0.6As/AlAs/GaMnAs RTDs using the
transfer matrix method with 4 × 4 Luttinger–Kohn k · p

Hamiltonian and the p–d exchange Hamiltonian (Dietl, Ohno
and Matsukura, 2001). Figure 16 shows the calculated TMR
ratio of GaMnAs/AlAs (d nm)/In0.4Ga0.6As (0.42 nm)/AlAs
(d nm)/GaMnAs RTD structures as a function of d when
EF is 270 meV. Inset figures are tunneling probabilities
as functions of k‖ with d = 0.11 nm in (a) parallel and
(b) antiparallel magnetization, and with d = 0.56 nm in (c)
parallel and (d) antiparallel magnetization, respectively. The
calculated TMR ratio oscillated with a period of around 0.8–
1.5 nm. When d is less than 0.7 nm, the contribution of the
resonant tunneling effect is small. For example, in (a) and
(b), the shape of the tunneling probabilities are almost the
same as those obtained in GaMnAs/AlAs/GaMnAs single-
barrier heterostructures, where resonant peaks are hardly
seen. Therefore, the TMR ratio decreases with increasing
d like the case of GaMnAs/AlAs/GaMnAs single-barrier
heterostructures, as can be seen when d is 0.4 − 0.7 nm in
Figure 16. When d becomes 0.5 nm, the resonant tunneling
effect begins to occur. For example, as shown in (c) in
parallel magnetization, octagon-shaped sharp resonant peaks

are formed at |k‖| around 0.2 − 0.3π/a. On the other hand,
as shown in (d) in antiparallel magnetization, resonant peaks
are hardly formed because the k‖ region contributing to the
tunneling is smaller than the octagon at which the resonant
peaks are formed in parallel magnetization. As d increases
above 0.7 nm, the resonant tunneling effect becomes stronger,
thus the TMR ratio increases. In this way, TMR oscillation
occurs. Such a TMR oscillation was obtained when EF was
higher than 210 meV, and a similar resonant tunneling effect
was also obtained.

In this calculation, the oscillatory behavior was obtained,
but the inverse TMR was not reproduced. This is possibly
because diffusive scattering induces inverse TMR. This
mechanism of inverse TMR induced by diffusive scattering
was proposed by Itoh, Inoue, Umerski, and Mathon (2003),
and their calculations reproduced the experimental results
well in the NiFe/Al2O3/Cu/Co MTJ (Yuasa, Nagahama and
Suzuki, 2002). In GaMnAs-based heterostructures, it is
known that there are point defects, such as Mn interstitials
(Yu et al., 2002) and As anti-site defects (Grandidier et al.,
2000), thus this scenario may occur. However, further
theoretical investigations are needed to verify it.

At present, in FMS-based quantum heterostructures, clear
observation of the negative differential resistance in I–V

characteristics or TMR enhancement induced by the qua-
ntum-size effect has not been accomplished. The reason
has not been clarified yet. In future, more considerations
on how to realize the quantum-size effect should be done,
and TMR enhancement and realization of novel functions by
quantum-size effect are to be expected. Very recently, TMR
enhancement associated with resonant tunneling. (Ohya, Hai,
Mizuno and Tanaka, 2007).

4 NOVEL PHENOMENA AND
STRUCTURES RELATED TO TMR IN
SEMICONDUCTORS

4.1 Tunneling anisotropic magnetoresistance
(TAMR)

Recently, a novel phenomenon called TAMR was observed
in GaMnAs-based heterostructures. TAMR is very similar
to TMR, but the characteristics of TAMR are significantly
different from those of TMR. While TMR is a phenomenon
caused by the difference of the tunnel resistance between par-
allel and antiparallel magnetization, TAMR is a phenomenon
where the tunnel resistance differs depending on the magne-
tization direction in GaMnAs. In contrast to TMR, which is
observed in the MTJ structures composed of two FM lay-
ers, TAMR can be observed even in a ‘single’ FM GaMnAs
layer. TAMR was observed in Au/AlOx /GaMnAs structures
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annealed at 580 °C for 1 h

Figure 17. Cross-sectional transmission-electron microscopy (TEM) image of MnAs nanoclusters with different GaAs:MnAs thicknesses
of 50, 20, 10, 5, and 2 nm. These layers are sandwiched by 3-nm-thick AlAs spacer layers. The Mn concentration is fixed at 4.8% in all
the GaMnAs layers (as-grown), which turned into GaAs:MnAs layers by phase separation during annealing at 580 ◦C. (Reproduced from
Shimizu and Tanaka, 2001, with permission from the American Institute of Physics.  2001.)

containing only one FM GaMnAs layer (Gould et al., 2004).
They observed spin-valve-like MR curves which are very
similar to those of TMR. However, the switching field, at
which the resistance state changes from low to high or high
to low, and the sign of the (TA)MR ratio (∼3% at 4.2 K)
change depending on the magnetic-field angle and tempera-
ture. From the measurement results of magnetic-field angle
dependence of TAMR, it was clarified that the tunnel resis-
tance becomes high when the magnetization lies along the
[100] or the [100] crystallographic direction of GaMnAs, and
becomes low when it is along [010] or [010]. These results
suggest that TAMR is induced by the anisotropic DOSs of
GaMnAs. They calculated the anisotropic DOS of GaMnAs
using the k · p envelope function description, and indicated
that TAMR is reproduced when assuming a small in-plane
uniaxial strain of around 0.1%. Because GaMnAs has a large
spin-orbit interaction, such a small strain can induce the
anisotropic DOS, leading to a TAMR of several percent.

Large TAMR, up to 150 000%, was observed in a GaM-
nAs/GaAs (2 nm)/GaMnAs MTJ structure with a bias voltage
of 1 mV at 1.7 K (Rüster et al., 2005). As in the case of
TAMR observed in the single GaMnAs layer mentioned ear-
lier, the sign of TAMR observed in this MTJ structure also
changes when the direction of the magnetic field is rotated. It
was found that TAMR has a very strong bias dependence and
temperature dependence. For these mechanisms, they pro-
posed several factors, such as the zero-bias anomaly (Lee,
Tejedor and Fernández-Rossier, 2004) in tunneling from a
dirty metal which appears because of the opening of an
Efros–Shklovskii gap (Efros and Shklovskii, 1975) at EF

when crossing the metal–insulator transition, disorder and
impurity-mediated tunneling, and so on. At present, however,
the mechanism of TAMR has not been completely understood
yet, thus further studies are needed.

4.2 TMR in MTJ structures with MnAs
nanoclusters embedded in GaAs

Recently, it was reported that FM MnAs nanoclusters embed-
ded in GaAs, that is GaAs:MnAs, can be used as the magnetic
electrode of semiconductor-based MTJs (Hai, Yokoyama,
Ohya and Tanaka, 2006). GaAs:MnAs is a granular mate-
rial formed by annealing GaMnAs at 500 ∼ 700 ◦C. It has
good compatibility with III–V heterostructures (Tanaka,
Shimizu and Miyamura, 2001). Also, because of the high
TC of MnAs around 313 ∼ 318 K, GaAs:MnAs-based struc-
tures are expected to be used for semiconductor-based spin-
electronic devices operating at room temperature. Figure 17
shows the transmission-electron microscopy (TEM) image
of the GaAs:MnAs layers sandwiched by thin AlAs layers
(Shimizu and Tanaka, 2001). The black dot regions corre-
spond to the hexagonal MnAs nanoclusters. A high-quality
heterostructure without any dislocations was obtained. One
important feature of the GaAs:MnAs-based heterostructures
is the controllability of the size of the MnAs clusters. When
the distance between the AlAs layers decreases, the size of

Surface
MnAs

AlAs

AlAs
GaAs:MnAs

GaAs

50 nm

Figure 18. Cross-sectional TEM image of the MnAs (type-A,
20 nm)/GaAs (1 nm)/AlAs (2.2 nm)/GaAs:MnAs (5 nm)/AlAs
(1.5 nm)/p-GaAs(001) heterostructure (from top to bottom), in
which uniform (5 nm in diameter) MnAs nanoparticles are found
between the two AlAs layers. (Reproduced from Hai, P. et al.,
2006, with permission from Elsevier.  2006.)
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Figure 19. TMR at 7 K with a bias voltage of 300 mV of an MTJ, whose structure is MnAs (20 nm)/GaAs (1 nm)/AlAs (2.2 nm)/GaAs:MnAs
(5 nm)/AlAs (1.5 nm)/p-GaAs(001). The diameter of the MTJ was 20 µm. The solid and gray curves are major and minor loops, respectively.
The magnetic field was applied in the film plane and parallel to the GaAs [110] azimuth. (Reproduced from Hai, P. et al., 2006, with
permission from Elsevier.  2006.)

the MnAs clusters becomes uniform, because it is limited
by the distance between the two AlAs layers. By using this
technique, the magnetic characteristics of MnAs nanoclusters
can be controlled.

Hai et al. fabricated MnAs (type-A, 20 nm)/GaAs(1 nm)/Al
As(2.2 nm)/GaAs:MnAs(5 nm)/AlAs (1.5 nm)/p-GaAs(001)
heterostructures and mesa-shaped MTJs with 20-µm diam-
eter. Figure 18 shows cross-sectional TEM image of this
MTJ structure, in which uniform (5 nm in diameter) MnAs
nanoparticles are embedded between the two ultrathin AlAs
layers. Figure 19 shows the TMR loops of this MTJ at
7 K with a bias voltage of 300 mV. The magnetic field
was applied along the easy magnetization axis of type-A
MnAs thin film, which is parallel to the in-plane GaAs
[110] azimuth. Clear TMR with major and minor loops was
observed. The jump of the major loop at ±2.2 kG corre-
sponds to the abrupt magnetization reversal of the top MnAs
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Figure 20. Bias voltage dependence of TMR of the same MTJ of
Figure 19 at 7 K. The magnetic field is applied in the film plane
and parallel to the GaAs [110] azimuth. The Vhalf is as high as
1200 mV. (Reproduced from Hai, P. et al., 2006, with permission
from Elsevier.  2006.)

electrode. The hysteresis of the minor loop indicates that
the thermal magnetization fluctuation of the MnAs nanoclus-
ters is quenched. The appearance of TMR shows that MnAs
nanoclusters with 5-nm diameter can work as spin injectors.
Figure 20 shows the bias voltage dependence of the TMR
ratio. The bias polarity is defined by the voltage of the top
electrode with respect to the substrate. Up to +300 mV, the
TMR increases monotonously and reaches a maximum value
of 4.5% at +300 mV. Over +300 mV, the TMR decreases
slowly but the bias voltage Vhalf at which the TMR is reduced
by half is surprisingly as high as +1200 mV. This value of
Vhalf is much higher than that (∼40 mV) of FMS-based MTJs.
The peak of TMR at 300 mV reflects a local maximum of
spin polarization at an energy level above the Fermi level of
MnAs, which is predicted by theoretical calculations (Ravin-
dran et al., 1999; Pangulur et al., 2003). A similar picture
is also observed at the negative biases. The appearance of
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Figure 21. Temperature dependence of TMR of the same MTJ of
Figure 19. TMR was observed up to room temperature. (Repro-
duced from Hai, P. et al., 2006, with permission from Elsevier.
 2006.)
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TMR at negative biases shows that MnAs nanoclusters can
also work as spin detectors. Figure 21 shows the tempera-
ture dependence of TMR. TMR was observed up to room
temperature and remains at 300 K. Theoretically, the TMR
value increases by increasing the size of the MnAs clusters.
Higher TMR ratio is expected to be obtained in the future.

4.3 TMR in spin transistor structures

A recently proposed metal-oxide-semiconductor field-effect-
transistor (MOSFET) type of spin transistor, referred to as
spin MOSFET, is expected to give new functionalities in
semiconductor integrated electronics (Sugahara and Tanaka,
2004; Matsuno, Sugahara and Tanaka, 2004). The spin MOS-
FET has a simple device structure consisting of an ordi-
nary MOS structure and FM (or half-metallic) contacts for
the source/drain, resulting in good compatibility with well-
established Si technology. Figure 22 shows the structures
of the spin MOSFET. In this device, spin-polarized carri-
ers are injected from the source through the Schottky tunnel
barrier at the FM source/channel contact into the semicon-
ductor channel, are transported in the channel keeping the
spin polarization, and reach the drain. It can be regarded as
a three terminal device with magnetoresistance (or TMR) and
transistor functions (Sugahara, 2005; Sugahara and Tanaka,
2006).

The most important feature of the spin MOSFET is
magnetization-dependent output characteristics: The current-
drive capability of the spin MOSFET can be controlled

by the relative magnetization configuration of the two FM
components in the device (for example the source and the
drain in Figure 22a and b), that is, the output current (or
current-drive capability) is large (small) in parallel (antiparal-
lel) magnetization, as shown in the lower panel of Figure 22.
Furthermore, it is predicted from theoretical calculations that
the spin MOSFET exhibits excellent transistor performance,
such as high transconductance and low power-delay product
that are important requirements for integrated circuit appli-
cations. These features make the spin MOSFET a functional
building-block device for nonvolatile memory and reconfig-
urable logic (Sugahara, 2005; Tanaka, 2005; Sugahara and
Tanaka, 2006).

Here we show how the TMR effect is used in the spin tran-
sistors, taking the structure of Figure 22(c) as an example,
where the device has a MOS structure with an FMS channel,
and a FM source and drain, as shown in Figure 23 (Sug-
ahara and Tanaka, 2005). The interfaces between the FM
source/drain and the FMS channel are Schottky junctions.
(It is not necessary that both the source and the drain are
FM/FMS Schottky junctions.) A nonmagnetic metal/FMS
Schottky junction can be used for one of the source and
drain contacts. Possible candidates for the channel materials
are FMSs using Si, Ge, and SiGe as host material. Recently,
it has been well recognized that SiGe and Ge, as well as
Si and strained Si, are important as channel materials for
advanced MOSFETs with high performance. Si1−xMnx and
Ge1−xMnx are theoretically predicted to be FMSs (Araki,
Sato and Katayama-Yoshida, 2002; Araki, Shirai, Sato and
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Katayama-Yoshida, 2003; Stroppa, Picozzi, Continenza and
Freeman, 2003), and experimental investigations have been
performed by several groups. The successful epitaxial growth
of FM Ge1−xMnx films and their field-effect control of ferro-
magnetism were demonstrated (Park et al., 2002; D’Orazio
et al., 2003). High Curie temperatures close to room tempera-
ture were also reported for Ge1−xMnx and Ge1−x−yMnxCoy

(Cho et al., 2002; Tsui et al., 2003). Recently reported n-
type iron silicide–based FMSs, FexCo1−xSi and FexMn1−xSi
(Manyala et al., 2004), may also be candidates for the chan-
nel material. Possible materials for the source/drain are FMs
with a large spin polarization, such as iron-based alloys
and half-metallic ferromagnets (HMFs). CoFe and CoFeB
are commonly used in MTJs as the FM electrodes, which
exhibit a large TMR, indicating a large spin polarization
(Han et al., 2000; Wang et al., 2004; Maehara, Djayaprawira,

Nagai and Watanabe, 2006). Fe3Si is also an attractive
candidate (Nakane, Tanaka and Sagahara, 2006), since Fe3Si
is a Heusler alloy and thus half-metallicity or an extremely
large spin polarization is expected. Recently, a high-spin
injection efficiency from Fe3Si into a semiconductor was
reported using an Fe3Si/GaAs Schottky junction (Ramsteiner
et al., 2004).

In the following, an n-channel accumulation-type spin
MOSFET with the channel of a nondegenerate FMS is
presented to explain its operating principle. Hereafter, it is
assumed that the FMS channel is a free layer and the FM
source/drain is a pinned layer, and that the magnetization
direction of the FM drain is always the same as that of
the FM source. Figure 23(b) schematically shows the band
diagram of the spin MOSFET under a common source bias
condition with and without a gate–source bias VGS, where the
relative magnetization configuration of the FMS channel and
FM source/drain is parallel. Assuming that the nonmagnetic
metal/FMS Schottky junction model given by Lebedeva
and Kuivalainen (Lebedeva and Kuivalainen, 2003) can be
extended to the FM/FMS Schottky junction, a spin-dependent
Schottky barrier (SB) appears due to the energy splitting �

of the up- and down-spin bands at the conduction band edge
of the FMS channel, that is, a lower SB height φ for up-
spin electrons and a higher SB height φ + � for down-spin
electrons, as shown in Figure 23(b). When a drain–source
bias VDS(>0) is applied with VGS = 0, neither up-spin nor
down-spin electrons are injected from the source to the
channel because of the reverse-biased SB of the source (as
shown by the upper two dotted curves in Figure 23b). By
applying VGS(>0), the SB width is reduced (as shown by
the upper two solid curves in Figure 23b), and thus up- and
down-spin electrons in the FM source can tunnel through
the thinned SB into the channel. When the magnetization
configuration of the FMS channel and FM source is parallel,
the SB height is low for the majority spin (up spin) electrons
in the FM source. Thus, a large output (drain) current
can flow. When the magnetization configuration becomes
antiparallel because of flipping the magnetization of the FMS
channel, the SB height for the majority spin electrons in the
FM source is higher, as shown in Figure 23(c). Thus, current
by majority spin electrons is drastically reduced, since the
tunnel current decreases exponentially as the barrier height
increases. Although the SB height is lower for the minority
spin (down spin) electrons in the FM source, tunneling
current through the SB is small due to the small carrier
density of the minority spin electrons. Therefore, the output
current depends on the relative magnetization of the FMS
channel and FM source/drain, as shown in Figure 22(c).
A large magnetocurrent ratio can be obtained and it is
insensitive to the drain–source bias conditions, owing to
the spin filter effect of the FMS/FM Schottky junction.
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Furthermore, excellent transistor performance such as high
transconductance and small subthreshold swing is predicted.
This device can be applied to a new nonvolatile memory
architecture using a single spin MOSFET cell, in which the
programming current can be drastically reduced using the
electrical manipulation of magnetization reversal of the FMS
channel (Sugahara and Tanaka, 2005).
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1 INTRODUCTION

The phenomenon of spin-dependent tunneling (SDT) is an
imbalance in the electric current carried by up- and down-
spin electrons tunneling from a ferromagnetic metal through
an insulating barrier. The field of SDT was founded by
the pioneering experiments of Tedrow and Meservey (1971,
1973). They used ferromagnet/insulator/superconductor
(FM/I/S) tunnel junctions and measured the spin polariza-
tion (SP) of the tunneling current originating from various
ferromagnetic metals across an amorphous alumina barrier
(Meservey and Tedrow, 1994).

The phenomenon of tunneling magnetoresistance (TMR),
first observed in experiments by Jullière (1975), is the man-
ifestation of SDT in magnetic tunnel junctions (MTJs).

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

An MTJ consists of two ferromagnetic metal electrodes sep-
arated by a thin insulating barrier layer. The most important
property of an MTJ is that the tunneling current across the
barrier depends on the relative orientation of the magneti-
zations of the two ferromagnetic electrodes, which can be
changed by an applied magnetic field. This phenomenon is
called tunneling magnetoresistance (TMR). The discovery
of a large reproducible TMR at room temperature in MTJs
based on amorphous Al2O3 by Moodera, Kinder, Wong, and
Meservey (1995) has attracted considerable interest due to
the potential application of MTJs in spin-electronic devices
such as magnetic sensors and magnetic random access mem-
ories (MRAMs). This interest was further boosted by a recent
discovery of large TMR values in crystalline Fe/MgO/Fe
and similar MTJs by Parkin et al. (2004) and Yuasa et al.
(2004), and triggered tremendous activity in the experimen-
tal and theoretical investigations of the electronic, magnetic,
and transport properties of MTJs (for reviews on MTJs
see Levy and Zhang (1999), Moodera and Mathon (1999),
Tsymbal, Mryasov and LeClair (2003), Zhang and But-
ler (2003), Heiliger, Zahn and Mertig (2006) and Parkin
(2006)).

Theoretical understanding of SDT has an interesting his-
tory. Tedrow and Meservey analyzed their experiments in
terms of SDT currents carried from a ferromagnet through an
amorphous alumina barrier into the up- and down-spin states
of a superconductor (Tedrow and Meservey, 1971, 1973).
They measured a SP of the tunneling conductance which is
defined by

P = G↑ − G↓

G↑ + G↓ (1)
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where G↑ and G↓ are the up- and down-spin conductance
of the tunnel junction. The results of these early experiments
on SDT were interpreted in terms of spin-dependent density
of states (DOS) of the ferromagnetic electrodes at the
Fermi energy, ρ

↑
F and ρ

↓
F. Assuming that the spin-dependent

conductance is proportional to ρ
↑
F for majority-spin electrons

and is proportional to ρ
↓
F for minority-spin electrons, the

measured values of the SP of the tunneling conductance, P ,
should be equal to the SP of the DOS at the Fermi energy
of the ferromagnet,

PFM = ρ
↑
F − ρ

↓
F

ρ
↑
F + ρ

↓
F

(2)

This result demonstrates, however, inconsistency between
the measured and predicted values of the SP. Experimentally
it was found that the SP of the tunneling conductance from
all the 3d ferromagnetic metals and their alloys is positive,
which implies that the majority-spin electrons tunnel more
efficiently than the minority-spin electrons (Meservey and
Tedrow, 1994). This is in the contradiction with the bulk
band structure, at least, for the two ferromagnetic metals,
Co and Ni, which have the dominant contribution of the
minority spins at the Fermi energy causing the respective
SP of the DOS to be negative. This fact was later explained
by Stearns (1977), who assumed that the most dispersive
bands provide essentially all the tunneling current. On the
basis of this argument and using a realistic band structure of
Fe and Ni, Stearns was able to explain experimental values
(measured at that time) of the SP for these ferromagnets.
Despite the success of Stearns’ idea, this model did not
provide a clear understanding of the origin of the dominance
of the ‘itinerant’ electrons in transport properties.

The relationship between SDT and TMR was explained
by Jullière within a simple model assuming that the SP of
the tunneling current is determined solely by the SP of the
electronic DOS of the ferromagnetic electrodes at the Fermi
energy (Jullière, 1975). Although Jullière’s model served as
a useful basis for interpreting a number of experiments on
TMR, this model is too simple to describe all the avail-
able experimental data. In particular, experimental results
show that the tunneling SP strongly depends on the struc-
tural quality of MTJs. Improvements in the quality of the
alumina barrier and the metal/alumina interfaces resulted in
the enhancement of the measured values of the SP (Mon-
sma and Parkin, 2000). Experiments also show that the SP
depends on the choice of the tunneling barrier. De Teresa
et al. (1999a,b) found that Co exhibits a negative value of
the SP when tunneling occurs through a SrTiO3 barrier. This
is opposite to the tunneling SP across an Al2O3 barrier, for
which all 3d ferromagnets show positive SPs. Also, exper-
iments by LeClair et al. demonstrated the decisive role of

the electronic structure of the interfaces in SDT (LeClair
et al., 2000, 2001a,b). It is evident, therefore, that the tun-
neling SP is not an intrinsic property of the ferromagnet
alone but depends on the structural and electronic proper-
ties of the entire junction including the insulator and the
ferromagnet/insulator interfaces.

More recent theoretical studies provided a new insight into
the phenomenon of SDT. It was stated that the expected spin
dependence of the tunneling current can be deduced from
the symmetry of the Bloch states in the bulk ferromagnetic
electrodes and the complex band structure of the insulator
(MacLaren, Zhang, Butler and Wang, 1999; Mavropoulos,
Papanikolaou and Dederichs, 2000). By identifying those
bands in the electrodes that are coupled efficiently to the
evanescent states decaying most slowly in the barrier, one
can make conclusions about the SP of the conductance. It
was emphasized that for a broad class of insulating materials
the states that belong to the identity representation should
have minimum decay rates. This representation is comparable
to the s character suggesting that s bands should be able
to couple most efficiently across the interface and decay
most slowly in the barrier. For Fe, Co, and Ni ferromagnets
the majority-spin states at the Fermi energy have more
s character than the minority-spin states, which tend to
have mainly d character. Thus, the majority conductance
is expected to be greater than the minority conductance
resulting in a slower decay with barrier thickness for the
former. These symmetry arguments satisfactorily explain
large values of TMR predicted for epitaxial Fe/MgO/Fe
junctions (Butler, Zhang, Schulthess and MacLaren, 2001;
Mathon and Umerski, 2001). These conclusions are also
expected to be valid for MTJs with an Al2O3 barrier which is
consistent with the experimental observations (Meservey and
Tedrow, 1994). They are also in agreement with the earlier
hypothesis by Stearns (1977).

Despite the undoubted importance, the symmetry argu-
ments have their limitations. First, they assume that the
barrier is sufficiently thick so that only a small focused region
of the surface Brillouin zone contributes to the tunneling cur-
rent. For realistic MTJs with barrier thickness of about 1 nm
this assumption is usually unjustified. Moreover, for amor-
phous barriers like alumina where the transverse wave vector
is not conserved in the process of tunneling, the entire sur-
face Brillouin zone might contribute almost equally to the
conductance. Second, despite the presence of certain selec-
tion rules for tunneling, there is no general rule preventing
the Bloch states composed mostly of the d orbitals from tun-
neling through the barrier states that have no d character.
For example, it was demonstrated experimentally that the
tunneling current from a ferromagnetic Ni tip (Alvarado and
Renaud, 1992) and from a hcp Co(0001) surface (Okuno,
Kishi and Tanaka, 2002) through vacuum is negatively spin
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polarized. The negative SP is due to the dominant contribu-
tion of the d electrons in tunneling, despite the fact that there
are no d states in vacuum. Therefore, symmetry considera-
tions alone applied to bulk materials are not always sufficient
to predict the SP. It is critical to take into account the elec-
tronic structure of the ferromagnet/barrier interfaces which,
as was shown experimentally, control the SP (LeClair et al.,
2000, 2001a,b).

An important mechanism by which the interfaces affect
the SP of the conductance is the bonding between the ferro-
magnetic electrodes and the insulator (Tsymbal and Pettifor,
1997). The interface bonding determines the effectiveness
of transmission across the interface, which can be different
for electrons of different orbital character (and/or symme-
try) carrying an unequal SP. Also the interface bonding is
responsible for the appearance of interface states which, as
was predicted theoretically (Wunnicke et al., 2002), affect
the conductance dramatically. Experimentally, the effect of
bonding at the ferromagnet/insulator interface was proposed
to explain the inversion of the SP of electrons tunneling
from Co across a SrTiO3 barrier (De Teresa et al., 1999a,b).
The bonding mechanism was also put forward to eluci-
date positive and negative values of TMR depending on
the applied voltage in MTJs with Ta2O5 and Ta2O5/Al2O3

barriers (Sharma, Wang and Nickel, 1999). Interface states
in MgO-based tunnel junctions were indirectly observed in
transport measurements (Tiusan et al., 2004, 2006). Theoreti-
cally, strong sensitivity of the magnitude of TMR to the sp–d
mixing at the ferromagnet/alumina interface was predicted
in the presence of imperfectly oxidized Al or O ions (Itoh
and Inoue, 2001). It was found that oxygen deposited on the
Fe(001) surface reverses the SP of the DOS in vacuum due to
the strong exchange splitting of the antibonding oxygen states
(Tsymbal, Oleinik and Pettifor, 2000). It was predicted that
an atomic layer of iron oxide at the interface between Fe and
MgO layers greatly reduces TMR in Fe/MgO/Fe junctions
because of the bonding between Fe and O atoms (Zhang,
Butler and Bandyopadhyay, 2003). The significant effect of
the interface atomic structure on current–voltage characteris-
tics was predicted for Fe/MgO/Fe junctions (Heiliger, Zahn,
Yavorsky and Mertig, 2006).

The main objective of this article is to discuss two impor-
tant factors that control the SP in MTJs: the complex band
structure of the insulating barrier which determines selection
rules for tunneling of spin-polarized bands from ferromagnets
and the bonding at the ferromagnet/barrier interface resulting
in the appearance of resonant interface states that signifi-
cantly affect the SP of the conductance. We consider several
theoretical models illustrating the significance of these two
mechanisms in different kinds of MTJs. We start our discus-
sion from Jullière’s model and a simple description of SDT
within a free-electron model.

2 JULLIÈRE’S MODEL

Jullière’s model for TMR is based on two assumptions. First,
it assumes that spin of electrons is conserved in the tunneling
process. It follows, then, that tunneling of up- and down-
spin electrons are two independent processes, so that the
conductance occurs in the two independent spin channels.
Such a two-current model has also been used to interpret
the closely related phenomenon of giant magnetoresistance
(see, Tsymbal and Pettifor, 2001 for a review). According
to this assumption, electrons originating from one spin state
of the ‘left’ ferromagnetic electrode are accepted by unfilled
states of the same spin of the ‘right’ electrode. If the two
ferromagnetic films are magnetized parallel, the minority
spins tunnel to the minority states and the majority spins
tunnel to the majority states. If, however, the two films
are magnetized antiparallel, the identity of the majority-
and minority-spin electrons is reversed so that the majority
spins of the left electrode tunnel to the minority states in
the right electrode and vice versa. Second, Jullière’s model
assumes that the conductance for a particular spin orientation
is proportional to the product of the DOS of the two
ferromagnetic electrodes. According to these assumptions,
the conductance for the parallel and antiparallel alignment,
GP and GAP respectively, can be written as follows:

GP ∝ ρ
↑
Lρ

↑
R + ρ

↓
Lρ

↓
R

GAP ∝ ρ
↑
Lρ

↓
R + ρ

↓
Lρ

↓
R

(3)

where ρ
↑
n and ρ

↓
n are the DOS of the left and right

ferromagnetic electrodes (designated by index n = L, R) for
the majority- and minority-spin electrons. It follows from
equation (3) that the parallel- and antiparallel-magnetized
MTJs have different conductances, which implies a nonzero
TMR. If we define a TMR ratio as the conductance difference
between parallel and antiparallel magnetizations, normalized
by the antiparallel conductance, we arrive then at Jullière’s
formula

T MR ≡ GP − GAP

GAP
= 2PLPR

1 − PLPR
(4)

which expresses the TMR in terms of the SPs of the two
ferromagnetic electrodes

Pn = ρ
↑
n − ρ

↓
n

ρ
↑
n + ρ

↓
n

(5)

where n = L, R.
This approach allows linking the known values of the

SP obtained from the Tedrow–Meservey experiments to the
values of TMR. It is important to note, however, that the
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correlation between the SP and TMR using equation (4)
disregards the nature of the DOS entering equation (3). As
long as the conductance per spin can be represented as a
product of two quantities characterizing the left and right
electrodes (and may be left and right interfaces), we arrive at
equation (4) for TMR and equation (5) for the SP. Therefore,
ρ

↑
n and ρ

↓
n can be interpreted as an effective tunneling DOS

of the ferromagnetic electrodes which make the applicability
of Jullière’s formula more general.

It appears that the most recent SP values with Al2O3

barriers obtained via the SDT technique agree well with
the maximum TMR values reported with Al2O3 barriers
within Jullière’s model (see Tsymbal, Mryasov and LeClair,
2003 for details). The possible reason for this agreement
is discussed in the next section. However, we caution that
Jullière’s model is only a phenomenological guide to estimate
the magnitude of the TMR effect when SPs of the tunneling
current across the same barriers are known.

3 A FREE-ELECTRON MODEL

A little more insight into TMR can be obtained using a simple
free-electron model for tunneling through a rectangular
potential barrier. Within this model the exchange splitting
of the free-electron bands is included by using different
potentials for the up- and down-spin electrons, V σ

n , where
index n = L, R denotes the left or right ferromagnetic
electrode and σ is the spin index, σ =↑, ↓. A solution for
the free-electron model can be obtained taking into account
the fact that the transverse wave vector k‖ is conserved in
the tunneling process. Assuming that the barrier thickness d

is not too small, the transmission coefficient per spin is given
by

T σ (k‖) = 16κ2 kσ
L

κ2 + kσ2
L

kσ
R

κ2 + kσ2
R

e−2κd (6)

Equation (6) assumes that transmission occurs between two
bulk states in the ferromagnetic electrodes that are charac-
terized by the wave vector normal to the interfaces kσ

n =√
(2m/�2)(EF − V σ

n ) − k2
‖ . κ =

√
(2m/�2)(U − EF) + k2

‖
is the decay constant in the barrier, and U is the potential bar-
rier height. As follows from equation (6), for a given value
of k‖ the transmission coefficient can be decoupled into the
product of two interface transmission functions T σ

L (k‖) and
T σ

R (k‖) characterizing the left and right electrodes interfaces
respectively and the exponential decay factor (see Zhang and
Butler, 2003 and Belashchenko et al., 2004 for discussion of
the validity of this approximation in a more general case)

T σ (k‖) = T σ
L (k‖)e−2κdT σ

R (k‖) (7)

where

T σ
n (k‖) = 4κkσ

n

κ2 + kσ2
n

(8)

The physical meaning of T σ
n (k‖) is the transmission prob-

ability from the left (right) electrode to the barrier across
the interface. For a given value of k‖ the interface transmis-
sion function determines the transport SP of the ferromag-
net/interface.

The total spin-resolved conductance Gσ is determined by
the sum of equation (6) over transverse wave vectors k‖

Gσ = e2

h

∑
k‖

T σ (k‖) (9)

This implies that, in general, the total conductance is not
factorized, which makes Jullière’s formula (4) inapplicable.
However, for a sufficiently thick barrier only electronic
states that lie in the vicinity k‖ = 0 primarily contribute
the conductance because of the dependence of the decay
constant κ on k‖. In this case the total conductance is
proportional to the product of T σ

L (k‖ = 0) and T σ
R (k‖ = 0),

and Jullière’s formula becomes valid if the effective SP of
the two ferromagnetic electrodes are defined by

Pn = T
↑

n (k‖ = 0) − T
↓

n (k‖ = 0)

T
↑

n (k‖ = 0) + T
↓

n (k‖ = 0)
(10)

where n = L, R. Equation (10) is identical to Slonczewski’s
result (Slonczewski, 1989):

Pn = k
↑
n − k

↓
n

k
↑
n + k

↓
n

κ2 − k
↑
n k

↓
n

κ2 + k
↑
n k

↓
n

(11)

Note that here k
↑,↓
n =

√
(2m/�2)(EF − V

↑,↓
n ) are the spin-

dependent Fermi wave vectors, and EF is the Fermi energy.
As follows from equation (11), the SP of the tunneling
current is not uniquely defined by the wave vector of
the ferromagnet and contains a factor that depends on the
barrier height. For a high potential barrier (κ � k

↑
n , k

↓
n ) this

expression reduces to

Pn = k
↑
n − k

↓
n

k
↑
n + k

↓
n

(12)

which might be considered as the original definition of the
SP within Jullière’s formula in terms of bulk DOS of the
ferromagnet at the Fermi energy. Indeed, within a free-
electron model the bulk DOS is proportional to the Fermi
wave vector which makes equations (12) and (5) identical.



Spin-dependent tunneling: role of evanescent and resonant states 5

In real experiments, however, the barriers may not be
sufficiently thick to provide the only contribution to the
conductance from electrons tunneling normal to the inter-
faces. In this case the SP depends on the barrier thickness
and height due to the redistribution of tunneling electrons
in the k|| space which makes Jullière’s formula inapplica-
ble (MacLaren, Zhang and Butler, 1997). This fact makes it
surprising that Jullière’s formula provides a reasonable agree-
ment between measured values of the tunneling SP and the
TMR values measured for alumina barriers.

The likely reason for this consistently is the fact that
alumina barrier is amorphous. In this case, it is natural to
expect that the transmission through the insulator is nonzero
between states in the electrodes characterized by different
values of k||. In the limit of strong disorder, scattering in
the insulator becomes random and hence the transmission
between k|| states occurs with equal probability. In this case
the total conductance is proportional to a product of the
average transmission functions characterizing the left and
right interfaces

Gσ ∝ 〈
T σ

L

〉 〈
T σ

R

〉
(13)

where
〈
T σ

n

〉 = ∑
k‖ T σ

n (k‖) and n = L, R. Thus the effective
tunneling DOS entering the expression for polarization (5)
in Jullière’s formula is determined by the average interface
transmission functions so that

Pn =
〈
T

↑
n

〉
−

〈
T

↓
n

〉
〈
T

↑
n

〉
+

〈
T

↓
n

〉 (14)

This explains the agreement between the SPs measured
in Tedrow–Meservey experiments with values of TMR
obtained using Jullière’s formula (see Belashchenko et al.,
2004 for further discussion).

Although free-electron models capture some important
features of SDT, they cannot be used for the quantitative
description of TMR. In particular, free-electron models
ignore the multiband electronic structure of the ferromagnetic
electrodes and the ferromagnet/insulator interfaces. Also the
free-electron models do not take into account the complex
band structure of the insulator that, as we will see in the
next section is decisive for selecting bands which tunnel most
efficiently across the barrier.

4 COMPLEX BAND STRUCTURE AND
SYMMETRY

A powerful method to make qualitative predictions about
SDT in epitaxial tunnel junction taking into account a

multiband electronic structure was proposed by Mavropou-
los, Papanikolaou, and Dederichs (2000). Using a notion of
the complex band structure they emphasized the importance
of symmetry of the evanescent gap states in the tunneling
barrier for SDT. Below we describe the basic idea of this
method.

Electronic transport in tunnel junctions is largely deter-
mined by the electronic properties of the insulator within
the band gap. These properties are described by a complex
band structure and evanescent electronic states. Although
such states can exist only at a surface or interface, their gen-
eral properties can be derived from the bulk band structure of
the material by letting the wave vector to be complex. Perfect
epitaxial tunnel junctions have two-dimensional periodicity
and therefore the wave vector, k||, parallel to the interface is
conserved. For each (real) value of k|| one can then describe
the evanescent states in terms of dispersion relations E(kz),
where kz = q + iκ is the complex wave vector perpendicu-
lar to the interface. The imaginary part κ is the decay rate,
so that the corresponding wave functions fall off exponen-
tially as e−κz. Obviously, those evanescent states that have
reasonably small decay rate play the decisive role in electron
tunneling. In fact, in the limit of large barrier thickness the
state with the smallest decay rate, κmin, controls the tunneling
current.

Similar to real bands, complex bands can be described in
terms of irreducible representations of the symmetry group.
Symmetry of the evanescent states determines which Bloch
states of the metal electrodes can couple to the evanescent
states and thus contribute to the conductance. Symmetry of
the evanescent state with the smallest decay rate determines
bands of the electrode that can most efficiently tunnel through
the insulator. For ferromagnetic electrodes, at the Fermi
energy the majority-spin bands may have symmetry different
from that of the minority-spin bands, resulting in a different
coupling to the evanescent states. These considerations allow
conclusions about the SP of the conductance and the TMR
in MTJs to be made.

4.1 Fe/MgO/Fe tunnel junctions

Let us consider epitaxial Fe/MgO/Fe(001) tunnel junctions
as an example of the application of this method. We will see
that symmetry arguments predict very large values of TMR in
these junctions consistent with first-principles (Butler, Zhang,
Schulthess and MacLaren, 2001) and tight-binding (Mathon
and Umerski, 2001) calculations.

MgO, like many other insulators, has a direct band gap at
the � point and for not too thin MgO barriers the dominant
contribution to the conductance comes from electrons near
the � point (k|| = 0). Decay constants of the two relevant
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Figure 1. (a) Complex band structure of MgO at the � point. Two
evanescent states which have lowest decay rates are shown. The
position of the Fermi level, EF, in a Fe/MgO/Fe MTJ and the top
of the valence band, Ev, and the bottom of the conduction band, Ec,
are displayed by dashed lines. (b) Spin- resolved band structure of
Fe along the [001] direction. Bands are labeled by their symmetry
representation. Thick lines mark the �1 bands which match the
symmetry of the evanescent state in MgO which has the lowest
decay rate. (Courtesy of J.P. Velev.)

evanescent states with k|| = 0 are shown in Figure 1(a)
as a function of energy. We see that the state that has a
minimum decay constant κmin belongs to a �1 symmetry
(the identity representation). If any electron originating from
the Fe electrode is to tunnel via this state, it must belong
to a state in Fe that also belongs to �1 symmetry, so that
it can couple to the evanescent state. In the Fe electrode,
the k-space direction � corresponding to the (001) surface is
� − H . Looking at the band structure of Fe in this direction
(Figure 1b), we see that the relevant band of symmetry �1

at the Fermi energy appears only within the majority-spin
channel. This band couples to the �1 evanescent state in
MgO and passes to the other side of the barrier. Electrons of
other symmetries are cut off by a thick enough MgO barrier.
For example, electrons of �5 symmetry which appear at the
Fermi energy of Fe both within the majority- and minority-
spin channels (Figure 1b) are coupled to the evanescent state
of �5 symmetry which has larger decay constant (Figure 1a)
and therefore decay faster in the barrier. This makes the SP of
the conductance across Fe/MgO interface to be positive and
close to 100% for sufficiently thick barriers. Therefore, when
coupled to MgO barrier, Fe(001) behaves like a half-metal
because it has the �1 band contributing to the conductance
only in the one spin channel.

When the electron has reached the interface of the sec-
ond electrode, it will or will not be allowed to continue,
depending on the relative magnetization orientation of the
two electrodes. For the parallel orientation, it will couple effi-
ciently to the majority �1 state and continue. For the antipar-
allel orientation, however, majority-spin electrons tunnel to

minority-spin bands which have no �1 symmetry states at
the Fermi energy. This implies that there is no conductance
for the parallel configuration and hence infinitely large TMR.
These arguments are exact for the state of κmin, at k|| = 0, but
for reasons of continuity they will almost hold for k|| near the
� point. The presence of the spin-dependent electron reflec-
tion from MgO thin films grown on Fe(001) has recently
been demonstrated experimentally using spin-polarized low-
energy electron microscopy (Wu, Schmid and Qiu, 2006).

In addition to bcc Fe, other crystalline ferromagnetic
metals such as bcc Co and bcc FeCo alloys have the �1

symmetry band at the Fermi energy only within the majority-
spin channel. Using the symmetry arguments discussed
above, we can conclude that large values of TMR are
expected for MTJs with these electrodes and MgO barriers if
they are stacked in the (001) direction. This is confirmed by
first-principles calculations (Zhang and Butler, 2004) and has
recently been observed experimentally (Yuasa et al., 2006).
The considerations based on symmetry explain large values
of TMR which are observed experimentally in crystalline
MgO-based tunnel junctions (Faure-Vincent et al., 2003;
Parkin et al., 2004; Yuasa et al., 2004; Djayaprawira et al.,
2005; Hayakawa et al., 2006).

In a broad class of insulating materials the states that
belong to the identity representation have minimum decay
rates. For semiconductors (insulators) with a direct band
gap (such as GaAs, ZnSe, or semiconductors with a higher
atomic number or/and ionicity) these states are centered on
the � point. One would therefore expect a large TMR in
epitaxial MTJs with these barriers and bcc Fe (Co, FeCo)
if they stacked along the (001) direction. For example, a
large TMR has been predicted for Fe/ZnSe/Fe(100) MTJs
(MacLaren, Zhang, Butler and Wang, 1999). Unfortunately,
experimentally epitaxial Fe/ZnSe/FeCo MTJs show much
less impressive behavior compared to MgO-based MTJs
demonstrating a sizable magnetoresistance of 16% only at
low temperatures (Gustavsson, George, Etgens and Eddrief,
2001). This is a consequence of a semiconducting nature of
the ZnSe barrier which makes the mechanism of conductance
to be different from that considered theoretically. Owing to a
smaller band gap the presence of impurity/defect states close
to the Fermi energy makes the ballistic approach inadequate
for the description of SDT in these junctions at such barrier
thicknesses where according to the symmetry arguments the
TMR should be large.

We note that the presence of disorder in the barrier
layer may also produce notable effects on electronic trans-
port in MgO-based tunnel junctions. Localized states in
MgO have been observed using scanning tunneling spec-
troscopy measurements (Klaua et al., 2001; Mather, Read
and Buhrman, 2006). These states are attributed to O vacan-
cies or other structural defects, arising because of nonideal
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growth conditions. It is known that the mechanism of elec-
tron transport in such imperfect MTJs is very different com-
pared to ideal junctions (Tsymbal and Pettifor, 1998), which
may affect significantly the transport SP (Vedyayev, Bagrets,
Bagrets and Dieny, 2001) and even lead to the reversal of
TMR (Tsymbal, Sokolov, Sabirianov and Doudin, 2003).
Recent first-principles calculations predict that O vacancies
in MgO produce nonresonant scattering of tunneling elec-
trons causing a reduction of TMR (Velev, Belashchenko,
Jaswal and Tsymbal, 2007). For thicker barriers, tunneling
mediated by O vacancies may explain the observed slope of
the logarithm of resistance as a function of MgO thickness
independent of the magnetization orientation (Yuasa et al.,
2004). This behavior is inconsistent with direct tunneling,
because in perfect Fe/MgO/Fe MTJs the decay lengths of
the evanescent states controlling the conductance for parallel
and antiparallel magnetizations are different (Butler, Zhang,
Schulthess and MacLaren, 2001).

4.2 Co/SrTiO3/Co tunnel junctions

A completely different behavior is predicted for perovskite
barrier electrodes, such as SrTiO3, in which the symmetry of
the complex band structure of SrTiO3 enables efficient tun-
neling of the minority d electrons from bcc Co, causing the
SP of the conductance across the SrTiO3interface to be nega-
tive (Velev et al., 2005). Using the structural model of an epi-
taxial Co/SrTiO3/Co(001) MTJ (Oleinik, Tsymbal and Petti-
for, 2002) a very large TMR was predicted for this junctions.

The fact that the tunneling current is dominated by
minority-spin electrons can be explained by taking into
account the band structure of bcc Co and decay rates of the
Co states in SrTiO3. The majority-spin 3d band in bcc Co is
filled, so that the DOS at the Fermi level has a large negative
SP (Bagayoko, Ziegler and Callaway, 1983). Actually, the
band structure of bcc Co along the � direction is very similar
to that of bcc Fe shown in Figure 1(b) with the Fermi energy
shifted up by about 1 eV. Owing to the symmetry of the
evanescent states with lowest decay rates in SrTiO3 the 3d
states could efficiently tunnel through the barrier. Indeed, as
is seen from the complex band structure of SrTiO3 shown in
Figure 2(a) at the � point (k|| = 0), the �5 and �1 states
have comparable decay rates in the gap of SrTiO3. Therefore,
both the majority-spin �1 band and the minority-spin �5

band of bcc Co can tunnel efficiently through the SrTiO3

barrier.
While the � point analysis is instructive, it is not sufficient

in this case because the conductance is not dominated by this
point. This fact can be understood from Figure 2(b), showing
the three lowest decay rates of the evanescent states at the
Fermi energy. It is seen that a very large area of the Brillouin

zone, forming a cross pattern along the �–M directions,
exhibits two lowest decay rates that are very close to those
at the � point. Clearly, at large barrier thickness the states
lying in this ‘cross’ area should dominate the conductance.
This feature is in sharp contrast to sp-bonded insulators like
MgO and Al2O3 where the decay rate has a deep parabolic
minimum in the vicinity of the � point. This difference is
due to the conduction band of SrTiO3, which is formed
by fairly localized 3d states of Ti instead of free-electron-
like states of a metal atom in simple oxides. Therefore,
the minority-spin d states which have much larger DOS at
the Fermi energy than the majority-spin states dominate the
conductance providing a negative SP of the tunneling current
in Co/SrTiO3/Co MTJs. This finding is in agreement with
the experimental observations of (De Teresa et al., 1999a,b),
who found that the transport SP of the Co/SrTiO3 interface
is negative, opposite to that of the Co/Al2O3 interface.

5 INTERFACE RESONANT STATES AND
INTERFACE BONDING

The presence of surface electronic states on a surface
of a metal is well known. If these states are coupled
to bulk Bloch states, they are called surface resonant
states or surface resonances. For example, the presence
of minority-spin resonant states on the Fe(001) surface
is well established experimentally, for example, by STM
measurements (Stroscio et al., 1995).

Interface resonances may appear in MTJs and influ-
ence their transport properties (Wunnicke et al., 2002).
The minority-spin interface resonances are present at the
Fe(001)/MgO interface, as was found from first-principle cal-
culations (Butler, Zhang, Schulthess and MacLaren, 2001)
and was indirectly observed in tunneling experiments (Tiu-
san et al., 2004, 2006). Within a two-dimensional Brillouin
zone these resonant states represent a surface band sharply
peaked near the Fermi energy. Calculations show that the
interface Fe(001)/MgO band is very flat making it extremely
sensitive to electron energy (Belashchenko, Velev and Tsym-
bal, 2005). This can be seen from Figure 3, which shows
the density of electronic states resolved with respect to the
transverse wave vector k|| for different energies. It is evident
that a significant change in the location of these bands within
the first Brillouin zone occurs when energy is shifted by a
tiny amount of 0.02 eV.

The formation of interface resonant states is largely
controlled by the atomic structure and bonding at the
interface. This can already be seen within a simple tight-
binding model (Tsymbal and Belashchenko, 2005) which
shows that the interplay between the interface on-site atomic
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Figure 2. (a) Complex band structure of SrTiO3 at the � point showing evanescent states which have lowest decay rates. The position of
the Fermi level EF in a Co/SrTiO3/Co MTJ is indicated by a dashed line. (b) Three lowest decay rates (in units of 2π /a) of the evanescent
states in SrTiO3 as a function of k|| at the Fermi energy. (Reproduced from J. Velev et al., 2005, with permission from the American
Physical Society.  2005.)

energies and the strength of interface bonding may result
in the appearance of an interface resonance. The width of
this resonance is controlled by its coupling to bulk states
that is determined by the interface bonding and the interface
potential.

Theoretically, interface resonant states can produce a very
large tunneling current if they match identical resonances
at the opposite interface (Wunnicke et al., 2002; Tusche
et al., 2005). In practice, however, this situation is unlikely
because the interface resonances are always mismatched by
structural disorder, inelastic scattering and a small applied
bias voltage (Velev, Belashchenko and Tsymbal, 2006). This
is the consequence of the fact that the intrinsic damping of
resonant states is very small as a result of their weak coupling
to bulk states. Inelastic scattering and structural disorder
broaden the resonant states thereby strongly reducing the
conductance through this channel. A small applied bias
voltage produces a similar effect due to a mismatch of
resonances at the opposite interfaces. The detrimental effect

of disorder is seen from calculations using realistic structure
models (Xu et al., 2006; Mathon and Umerski, 2006).

The situation described above does not, however, diminish
the role of interface resonant states and interface bonding in
transport properties of MTJs. Actually, as was mentioned
in the introduction, in many cases the interface atomic and
electronic structure play a decisive role in spin transport.
Below we consider three examples where interface bonding
and interface resonant states control the SP of the tunneling
current in MTJs.

5.1 Interface resonant states in Fe/MgO/Fe tunnel
junctions

First, we consider epitaxial Fe/MgO/Fe(001) MTJs. As
explained in Section 4.1 on the basis of symmetry arguments,
these junctions should possess very large values of TMR
for sufficiently thick MgO barriers. This is due to the
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Figure 3. k||-resolved minority-spin density of states (in arb units) for Fe(001)/MgO interface calculated for three different energies near
the Fermi energy (EF): (a) E = EF − 0.02 eV, (b) E = EF, (c) E = EF + 0.02 eV. Interface resonant states are denoted by IR. (Reproduced
from K.D. Belashchenko et al., 2005, with permission from the American Physical Society.  2005.)

contribution from the �1 band which is present at the �

point only in the majority-spin channel of Fe at the Fermi
energy. At small barrier thickness, however, the conductance
is not dominated by the � point, and symmetry arguments
are no longer valid. Calculations of Belashchenko, Velev and
Tsymbal (2005) show that the contribution from the interface
resonant states becomes appreciable at MgO thickness below
six monolayers (MLs) which results in the decrease of
TMR. This is consistent with the experimental results which
show that TMR in Fe/MgO/Fe(001) MTJs drops down
precipitously for barrier thickness below 1.5 nm (Yuasa et al.,
2004). The interface resonant states may also affect the bias-
voltage dependence of TMR (Zhang et al., 2004).

Figure 4(a–c) shows the spin-resolved conductance for the
MTJ with four MLs of MgO for the parallel and antiparal-
lel magnetization. The large contribution to the conductance
near the � point (Figure 4a) is due to the matching of the
majority �1 band in Fe and the respective evanescent state
in the MgO. The conductance for the minority-spin channel
(Figure 4b) and the conductance for the antiparallel mag-
netization (Figure 4c) are strongly enhanced for certain k||
points in the Brillouin zone. The comparison to Figure 3(b)
indicates that this is due to the contribution from a reso-
nant interface band. The enhancement of the conductance
is most pronounced for small barrier thickness, because the
interface band lies away from the � point, and therefore
the resonant contribution to the transmission decays faster
with barrier thickness compared to the nonresonant contribu-
tion. The enhanced contribution of these interface resonances
leads to the decrease of TMR at low barrier thickness. Indeed,
on grounds explained above (Velev, Belashchenko and Tsym-
bal, 2006), the contribution from the minority-spin channel
for the parallel magnetization should be disregarded. On the
other hand, the interface resonances do contribute to the con-
ductance in the antiparallel configuration, where they tunnel

into majority-spin states of the other electrode. The latter
have no fine structure in the Brillouin zone, and hence the
conductance is weakly sensitive to a potential mismatch at
the two interfaces that might occur in real junctions.

The contribution from the interface resonance can be
suppressed and consequently, the TMR can be enhanced if
a thin epitaxial Ag layer is deposited at the two Fe/MgO
interfaces. It is known that an epitaxial Ag overlayer on
Fe(001) surface notably modifies the electronic structure of
the surface states (Vescovo et al., 1995). If the minority-spin
interface DOS is reduced by Ag, the antiparallel conductance
will be suppressed. On the other hand, the majority-spin
conductance should not be strongly affected due to almost
perfect transmission through the Fe/Ag(001) interface (Stiles,
1996). This is indeed what is predicted by the theory
(Belashchenko, Velev and Tsymbal, 2005).

Figure 4(d–f) shows the k||- and spin-resolved conduc-
tance of Fe/MgO/Fe junctions with Ag interlayers. Not
unexpectedly, for parallel magnetization the conductance is
weakly affected by the Ag interlayers, whereas for antipar-
allel magnetization the conductance changes dramatically.
The most pronounced difference is the disappearance of the
contribution from interface resonances that dominated the
conductance of the Fe/MgO/Fe junction with no Ag inter-
layers (compare Figure 4c and f). This strong change occurs
owing to the Fe–Ag hybridization which makes the inter-
face resonant band more dispersive and removes the Fermi
level crossing responsible for the highly conductive resonant
states. The significant reduction of the conductance in the
antiparallel configuration leads to a dramatic enhancement
of the TMR. Thus, Ag interlayers practically eliminate the
contribution from the interface resonances and enhance TMR
for thin barriers.

The noble metal interlayer may also enhance the TMR
because of quantum-well states formed within the interlayer
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(Mathon and Umerski, 2005). With increasing the interlayer
thickness, a theory predicts an oscillatory dependence of
TMR (Vedyayev et al., 1997; Mathon and Umerski, 1999)
with a possibility of strong enhancement of the conduc-
tance and TMR at resonant conditions (Lu, Zhang and Pan-
telides, 2005) and tuning of quantum-well states by impuri-
ties (Kalitsov et al., 2004). Yuasa, Nagahama, and Suzuki
(2002) found experimentally quantum-well oscillations in
Co/Cu/Al2O3/Ni80Fe20 tunnel junctions with the bottom epi-
taxial Co/Cu(001) electrodes. Recently, quantum oscillations
of the tunneling conductance in fully epitaxial double barrier
Fe(001)/MgO/Fe/MgO/Fe MTJs were observed experimen-
tally (Nozaki, Tezuka and Inomata, 2006) and calculated
from first principles (Wang, Lu, Zhang and Han, 2006).

5.2 Tunneling from clean and oxidized Co
surfaces through vacuum

Another interesting example that demonstrates the impor-
tance of interface states is tunneling from clean and oxidized
Co surfaces through vacuum studied by Belashchenko et al.
(2004). It shows the crucial role of bonding between Co
and O atoms on the surface for SDT. This work investigates
the SP of the tunneling current from a Co(111) electrode
to a nonmagnetic Al(111) which serves as a detector of the

tunneling SP in the spirit of the Tedrow–Meservey experi-
ments.

Figure 5(a) and (b) show the k||-resolved conductance for
the majority- and minority-spin electrons within the first
surface Brillouin zone for a clean Co(111) surface. The Co
Fermi surface viewed along the [111] direction has holes
close to the � point with no bulk states in both spin channels,
which results in zero conductance in this area. The majority-
spin conductance (Figure 5a) varies rather smoothly and is
appreciable over a relatively large area of the Brillouin zone.
On the other hand, the minority-spin conductance (Figure 5b)
has a narrow crown-shaped ‘hot ring’ around the edge of the
Fermi surface hole. The analysis of layer and k||-resolved
DOS shows that it is not associated with surface states, but
rather with an enhancement of bulk k||-resolved DOS near
the Fermi surface edge. As is seen from Figure 5(a) and
(b), the Fermi surface hole is smaller for majority spins.
Therefore, the conductance should become fully majority-
spin polarized in the limit of very thick barriers. This occurs,
however, only at barrier thickness d ∼ 10 nm, while for
typical values of d ∼ 2 nm the SP is about −60% and
depends weakly on d.

An oxidized Co surface is modeled by placing an O
monolayer on top of the Co(111) electrode such that O
atoms lie in the threefold hollow-site positions above the
subsurface Co layer (Figure 5f). The oxygen monolayer



Spin-dependent tunneling: role of evanescent and resonant states 11

(e)

(f)

AI

Co

Al

0

Co

(a)

(c) (d)

(b)

15

3

1

0

30

4

1

0

Figure 5. k||-resolved conductance (in units of e2/h) from clean and oxidized (111) Co surfaces through vacuum into Al: (a) clean surface,
majority spin; (b) clean surface, minority spin; (c) oxidized surface, majority spin; (d) oxidized surface, minority spin. Vacuum layer
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Figure 6. k||-resolved minority-spin local DOS (arb units) at the Fermi energy for the oxidized Co(111) surface: (a) bulk Co; (b) subsurface
Co monolayer; (c) surface O monolayer. (Reproduced from K.D. Belashchenko et al., 2004, with permission from the American Physical
Society.  2004.)

dramatically changes the electronic structure reducing the
magnetic moment of the underlying Co to 0.17 µB. Interest-
ingly, the presence of the almost magnetically dead mono-
layer of Co at the interface does not kill the SP of the
conductance; it rather changes sign of the SP from nega-
tive to positive. This fact is evident from Figure 5(c) and (d)
which indicates that the overall reduction in the conductance
due to oxidation is accompanied by the dominant suppression
of the minority-spin transmission.

The origin of this behavior can be understood from
Figure 6 which displays the k||- and layer-resolved minority-
spin DOS at the Fermi energy. For bulk Co the Fermi surface
edges are strongly emphasized in the DOS (Figure 6a). One
of them representing a ring around the � point dominates the
minority-spin conductance for the clean Co surface (compare
to Figure 5b). The oxidation results in the strong covalent
bonding between Co and O atoms at the surface producing
an antibonding band which is clearly seen in the k||-resolved

DOS for Co and O surface monolayers (Figure 6b and c).
This resonant band appears only in the minority-spin channel
and removes the spectral weight from the center of the
Brillouin zone. As a result, the bulk minority-spin states
responsible for most tunneling transmission from the clean
surface encounter a band gap in the surface Co and O
layers which is equivalent to adding an additional tunneling
barrier. Thus, the tunneling conductance for the MTJ with the
oxidized Co surface is fully dominated by the majority-spin
channel, resulting in the SP of about +100%.

Experimentally, the reversal of the SP associated with
surface oxidation may be detected using spin-polarized STM
measurements (Bode, 2003). Since the ferromagnetic tip is
sensitive to the SP of the total local DOS above the surface,
the TMR in the system surface/vacuum/tip should change
sign when Co surface is oxidized. In other words, for the
clean Co(111) surface the tunneling current should be higher
when the magnetizations of the tip and the surface are aligned
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parallel, but for the oxidized surface it should be higher for
the antiparallel alignment.

5.3 Role of interface Co–O bonding in
Co/Al2O3/Co tunnel junctions

Interface bonding plays a decisive role in SDT in Co/Al2O3/
Co MTJs as is shown by Belashchenko, Tsymbal, Oleinik
and van Schilfgaarde (2005). Assuming crystalline epitaxy
at the interface between fcc Co(111) electrodes and an
Al2O3 barrier this work considers two fully-relaxed atomic
configurations of the O-terminated interface that differ only
by the presence or absence of an adsorbed oxygen atom at
the interface (Figure 7). Model 1 (Figure 7a and b) represents
the O-terminated Co/Al2O3/Co structure with three oxygen
atoms per unit cell (Oleinik, Tsymbal and Pettifor, 2000).
These oxygen atoms participate in bonding with the two
adjacent Al atoms, making the bonds of the latter fully
saturated. Model 2 (Figure 7c and d) adds an additional
O atom in the threefold hollow site. This O atom and the
neighboring Co atoms are labeled ‘II’ in Figure 7(c) and
(d), whereas the other O and surface Co atoms are labeled
‘I’. Structural sites occupied by O(I) and O(II) atoms are
very dissimilar. O(II) atoms lie much closer to the Co
surface compared to O(I) atoms and, hence, are more strongly
coupled to Co than O(I) atoms.

This distinction is evident in the local DOS for the
interfacial atoms shown in Figure 8. Similar to the Co(111)
surface with an adsorbed oxygen monolayer, Co(II) and O(II)
atoms in model 2 form bonding and antibonding orbitals
which are clearly seen in the local DOS plots. The bonding
states lie below the bottom of the Co 3d band, while the
antibonding states are slightly above the Fermi level. While
the magnetic moment of Co(II) atoms is notably reduced
(1.30 µB), this effect is much smaller compared to the
oxidized Co surface, because in model 2 there is only one
‘adsorbed’ O(II) atom per three Co(II) atoms. The local DOS
for Co(I) atoms remains quite similar to bulk Co, while the
local DOS for O(I) atoms shows a small but notable ‘echo’
of the Co(II)–O(II) antibonding states.

The spin asymmetry of the conductance for these tunnel
junctions can be analyzed by calculating the spin-resolved
conductance per unit cell area for the parallel orientation
of electrodes. Model 1 shows that the majority-spin con-
ductance G↑↑ = 0.0042e2/h is smaller than the minority-
spin conductance G↓↓ = 0.023e2/h. This implies that the
SP P = (

G↑↑ − G↓↓
)
/
(
G↑↑ + G↓↓

)
is negative and equals

−70%. Note that, although this quantity is not directly mea-
surable, it correlates with the measurable SP. This situation
changes dramatically when an additional O atom is placed at
the interface. The model 2 exhibits a reversal of the SP from

Co

O

AI

II
II

I

II
II

I

I

(a) (c)

(b) (d)

Figure 7. Interface structure of the Co/Al2O3/Co MTJ for model 1
(a, b) and model 2 (c, d). (a) and (c) ‘Front’ views from a direction
normal to the threefold axis. (b) and (d) ‘Top’ views along the
threefold axis. There are two types of Co and O atoms at the
interface for model 2: three O(I) atoms, one O(II) atom, one Co(I)
atom, and three Co(II) atoms per unit cell. (Reproduced from K.D.
Belashchenko et al., 2005, with permission from the American
Physical Society.  2005.)

negative to positive. The total conductances per cell area are
G↑↑ = 0.087e2/h and G↓↓ = 0.045e2/h, and the P = +32%.

Thus, we see that the strong interface bonding with O
atoms is responsible for the positive SP of the tunneling
current in Co/Al2O3/Co tunnel junctions. This bonding
produces antibonding Co–O states that are present at the
Fermi level in the majority-spin channel. These interface
states moderately mix with the bulk states, forming interface
resonances, which strongly assist tunneling. On the other
hand, the minority-spin antibonding Co–O states lie above
the Fermi energy because of exchange splitting and do not
affect the conductance.

These results suggest that the common argument of the
dominant s-electron contribution to tunneling, which is often
used to explain the positive SP of the alumina-based tunnel
junctions is not justified. The strong interfacial bonding
between Co and O atoms at the interface may be the
major factor resulting in the positive SP as is observed in
experiment.

6 CONCLUSIONS

It was believed for a long time that the tunneling SP
in MTJs is solely determined by the electronic and mag-
netic properties of ferromagnetic electrodes (such as the
total DOS or the DOS of itinerant bands the at the Fermi
energy). This idea was, in particular, based on the agree-
ment between measured values of the SP of the tunneling
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Figure 8. Local DOS per atom for interfacial atoms in model 2. In each panel, top half shows the majority-spin DOS, and bottom half,
the minority-spin DOS per atom. The vertical line denotes the position of the Fermi level. (Reproduced from K.D. Belashchenko et al.,
2005, with permission from the American Physical Society.  2005.)

current across Al2O3 barriers using the Tedrow–Meservey
technique and the maximum TMR values reported for
Al2O3 barriers within Jullière’s model. However, later it
became clear that not only the electronic structure of fer-
romagnets but also the electronic structure of the fer-
romagnet/insulator interface and the evanescent states in
the insulator control the tunneling SP. It is now com-
monly accepted that the SP entering the Jullière’s for-
mula is due to the ferromagnet/barrier complex rather than
the ferromagnet alone. Theoretically, this concept can be
explained in terms of the interface transmission function
(Belashchenko et al., 2004), which explains the essence
of the effective tunneling DOS used in the Jullière’s
formula.

We have considered a few examples that illustrate the role
of evanescent states in the insulating barrier and bonding
at the ferromagnet/barrier interface in controlling the SP of
the tunneling current in epitaxial tunnel junctions (MTJs).
Symmetry of the evanescent states selects spin-polarized
bands in the ferromagnetic electrodes that are able to
efficiently tunnel through the barrier. In particular, the
matching of the majority-spin �1 band in ferromagnetic
Fe(001) to the �1 complex band in MgO which has the
lowest decay rate at the Fermi energy and the absence of the
minority-spin �1 band at the Fermi energy in bulk Fe are
responsible for large values of TMR observed in crystalline
Fe/MgO/Fe and similar junctions.

The complex band structure of SrTiO3 explains a large
negative tunneling SP in bcc Co/SrTiO3/Co(001) MTJs.
This is the consequence of the localized 3d states of
Ti, which contribute to the band structure of SrTiO3 and
allow efficient tunneling of minority d electrons of Co that

have a large weight at the Fermi energy. This behavior
is a drastic departure from the mechanism of tunneling in
MTJs based on sp-bonded insulators such as Al2O3 and
explains the experimental observation of the negative SP
of electrons tunneling from Co through SrTiO3 (De Teresa
et al., 1999a,b).

The interface bonding may result in the appearance of
interfaces resonant states which dramatically affect the SP
of the tunneling current. These states are responsible for a
decrease of TMR in Fe/MgO/Fe(001) MTJs for small barrier
thickness. A monolayer of Ag epitaxially deposited at the
interface between Fe and MgO suppresses tunneling through
the interface band and may thus be used to enhance the TMR
in these junctions.

The SP of the tunneling current from Co(111) through
vacuum is predicted to be negative but can be reversed by
deposition of a monolayer of oxygen on the Co(111) surface
which makes the SP close to +100%. This effect occurs
owing to the formation of surface bands that mix well with
bulk majority-spin states but create an additional tunneling
barrier for minority-spin states. This phenomenon could be
observed using STM measurements.

The strong interface bonding between Co and O atoms
at the interface in Co/Al2O3/Co MTJs explains positive
values of the SP observed experimentally. These results
show that the common argument suggesting that s electrons
dominate tunneling, which is often used to explain positive
SPs observed experimentally in Al2O3-based tunnel junctions
is quantitatively incorrect. In reality, the SP in these junctions
is controlled by the interfacial structure and bonding. The
strong interface bonding between a ferromagnetic atom and
O is likely responsible for the positive SP in these junctions.
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The sensitivity of the tunneling SP and TMR to the inter-
face atomic and electronic structure expands the possibilities
for engineering optimal MTJ properties for device applica-
tions.
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1 INTRODUCTION

The continuing technological demand for high sensitivity,
fast, and inexpensive magnetic macro and nanosensors for
use in a number of applications including ultrahigh-density
magnetic recording (Childress and Fontaua, 2005), medical
instrumentation (Rinck, 1993), consumer electronics (Fraden,
1993), machine tool positioning (Kuze and Shibasaki, 1997),
and for rotation and speed sensing in vehicles (Heremans,
1997), has, during the past two decades, stimulated an
extensive worldwide research effort to improve the properties
of magnetic sensors in general and magnetic nanosensors
in particular. The natural focus of this research has been
on materials and material structures that exhibit significant
magnetoresistance (MR) at room temperature.

Two classes of fundamental physical phenomena that
give rise to MR have received the overwhelming bulk of

Handbook of Magnetism and Advanced Magnetic Materials. Edited
by Helmut Kronmüller and Stuart Parkin. Volume 5: Spintronics
and Magnetoelectronics.  2007 John Wiley & Sons, Ltd. ISBN:
978-0-470-02217-7.

this research attention. One which is based on spintronic
effects associated with the perturbation to the interfacial
spin-dependent scattering cross section (Dieny, 1994) by the
applied magnetic field, usually in layered structures com-
posed of ferromagnetic metals, nonmagnetic metals and/or
nonmagnetic insulators, gives rise to the well-known giant
magnetoresistance (GMR) (Egelhoff, 1995) and tunneling
magnetoresistance (TMR) (Mitra et al., 2001) effects that
have been addressed elsewhere in this volume. The other
which is based on the change in resistance associated with a
bulk magnetic phase transition is responsible for the colossal
magnetoresistance (CMR) (Rao and Raveau, 1998) effect.
While GMR has had huge technological impact in the form
of read-head sensors in modern computer hard disk drives
(Daughton and Chen, 1993) and TMR represents the next
generation read-head device (Song et al., 2000), CMR has
and is unlikely to have a concomitant effect because it
requires relatively low temperatures and high magnetic fields
to exhibit acceptable sensing properties (Rao and Raveau,
1998).

The high sensitivity of magnetic devices exhibiting GMR,
TMR, and CMR is based on the physical or intrinsic contri-
butions to the MR (Popovic, 1991). Such physical contribu-
tions involve the dependence of carrier mobility, energy-band
structure, spin–spin interactions and carrier concentration on
the applied magnetic field. However, the magnetotransport
property of any physical object also depends on a geometric
contribution (Popovic, 1991). These geometric contributions
depend on the shape of the device, the location of the
contacts, and the location, shape, and relative conductiv-
ity of any macroscopic or nanoscopic inhomogeneities that
might be present in the device structure. For most of the
familiar MR devices such as those based on GMR, TMR
or CMR, it is the physical contribution that dominates the
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transport properties. Nevertheless, it has been recently shown
that by judicious design of simple structures, the geomet-
ric contribution can be made to play an important, indeed
even dominant role (Lee, Wingreen, Solin and Wolff, 1994;
Lee, Solin and Hines, 1993; Thio and Solin, 1998; Thio
et al., 1998a,b; Solin, Thio, Hines and Heremans, 2000).
An example of the former is the phenomenon of ballistic
magnetoresistance (BMR) while an example of the latter
is extraordinary magnetoresistance (EMR). It is these two
unconventional phenomena that we address in this chapter.
To facilitate an in-depth discussion of EMR and BMR it is
useful to illustrate the impact of geometry on magnetotrans-
port with a succinct example.

To establish the magnetotransport properties of a material
it is usual to perform a measurement of the Hall effect
(Seeger, 1985; Popovic, 1991) by fabricating a Hall bar
structure from (what is assumed to be) homogeneous material
as indicated in Figure 1(a). Here, a bias current is applied
along the x axis, the Hall voltage is measured along the y

axis and the magnetic field is applied along the z axis (e.g.,
into the plane of the figure). One can also employ the Hall
bar to measure the MR along the x axis. Now assume that
the material being measured has one dominant carrier, say
electrons whose mobility is typically much larger than that of
holes (Zawadzki, 1974), and assume that these carriers have a
δ-function velocity distribution, for example, they all move
with the same velocity, the drift velocity. On application
of a magnetic field, there will be a transient period during
which the electrons are deflected, by the Lorentz force, to
one side of the Hall bar. Eventually, a steady state excess
of electrons will accumulate on one side of the Hall bar to
form a negative space charge. This space charge generates
a Hall field as indicated in Figure 1(a), and the force on

W
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Figure 1. (a) A schematic representation of a Hall bar with the
semiconductor region in dark gray and the metallic contacts in light
gray. The current density, magnetic field are represented by J , H ,
and Eha, respectively. For the conduction model discussed in the
text, the magnetoresistance of this structure measured along the long
axis is identically zero. (b) A schematic representation of a Corbino
disk structure. For the conduction model discussed in the text, the
magnetoresistance of this structure is (µH )2 where µ is the carrier
mobility.

the carriers from the Hall field just counter balances the
Lorentz force. Thus, after the short transient during which
the space charge is developed, there is no net force in the
y direction and the current flows unperturbed along the x

axis. Then, no current flows in the y direction and the x

current is independent of the magnetic field. In this case,
the MR �ρ(H)/ρ0 ≡ [ρ(H) − ρ0]/ρ0 ≡ 0, where H is the
applied field, ρ(H) is the field-dependent resistivity, and
ρ0 = ρ(H = 0).

Now consider the measurement configuration shown in
Figure 1(b). Here the same material employed in Figure 1(a)
is arranged in a so-called Corbino disk (Kleinman and
Schawlow, 1960) with a cylindrical inner electrode and a
concentric outer electrode between which is embedded the
material to be measured. Current flows from the inner to the
outer electrode or vice versa and the magnetic field is applied
normal to the plane of the disk. Since the outer electrode is
an equipotential, no asymmetric space charge can build up
on its surface. Therefore, no Hall field develops to quench
the effect of the Lorentz force on the carriers, which now
follow a curved path to the outer electrode. The larger the
applied field, the longer is this path and the higher is the field-
dependent resistance of the disk. In this case, the MR is given
by �ρ/ρ0 = µ2H 2 where µ is the dominant carrier mobility
(Popovic, 1991). The MR of the Corbino disk structure can
be quite large, depending on the magnitudes of µ and H .

Obviously, the only difference between the measurements
depicted in Figures 1(a) and (b) is in the geometry of the
contact configurations since the intrinsic material properties
are the same for both measurements. Moreover, for a
homogeneous material with a two-contact configuration, it
can be shown using the Onsager relations (Streater, 1999)
that the maximum MR is obtained with a Corbino disk or
its topological equivalent (Thio et al., 1998), for example,
an electrode within an electrode but not constrained to
cylindrical symmetry. Now that we have illustrated the
general impact of geometry on magnetotransport, we will
address specific examples in the following discussions of
EMR and BMR.

2 EXTRAORDINARY
MAGNETORESISTANCE

2.1 Background

During the course of their attempted study of a one-dimen-
sional Mott transition in GaAs/Ga1−xAlxAs superlattices,
Solin and coworkers observed a room-temperature MR
that was quadratic in the magnetic field, similar to that
of a Corbino disk but much larger, and characterized
the effect as GMR despite the fact that the system was
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composed of nonmagnetic materials (Solin and Lee, 1995).
Indeed, the effect was also larger than the GMR that is
normally associated with ferromagnetic/metallic multilayers.
Realizing that if the material in the Corbino structure was
inhomogeneous and/or contained more than two contacts,
then the ‘Corbino maximum’ MR could be exceeded, they
quantitatively accounted for their observations by attributing
the GMR to Corbino-like regions associated with interface
fluctuations in the superlattice structure but with three or
more isolated contacts on the outer edge of the disk.

Reasoning that for a given H , maximal MR is achieved
with a material of maximum µ because, for semiconductors,
µ is inversely proportional to carrier effective mass, m*,
and m* is proportional to the energy gap, Solin, Thio
and Hines (2000) concluded that narrow-gap materials were
attractive candidates for nonmagnetic MR devices (Solin
et al., 1999). They therefore launched a series of studies
(Thio and Solin, 1998; Thio et al., 1998a,b) of Hg1−xCdxTe
a material with an x-dependant gap that could be tuned
through zero (Dornhaus and Nimtz, 1976). This nonmagnetic
material also exhibited GMR (Thio and Solin, 1998; Thio
et al., 1998a,b) which was associated with the presence
of phase separated Hg precipitates that acted as metallic
inhomogeneities but in a symmetric four-contact van der
Pauw disc configuration (Wolfe, Stillman and Rossi, 1972)
such as that shown in the inset of Figure 2. Clearly, it was
much more desirable to control the shape and properties
of the metallic inhomogeneity by lithographic patterning
than to rely on nature. Accordingly, Solin et al. focused
on InSb, a high-mobility narrow-gap semiconductor, which
when patterned into vdP disks with concentric metallic
inhomogeneities yielded such a large room-temperature MR
(Solin, Thio, Hines and Heremans, 2000) that it was dubbed
EMR (Solin et al., 2002a).

2.2 EMR in internally shunted circular
macroscopic structures – experimental results

The proof of principal demonstration of EMR was accom-
plished with symmetric four-probe macroscopic vdP disc
structures such as the one depicted in Figure 2 inset. Struc-
tures of this type are referred to as metal–semiconductor
hybrids (MSH). The centered vdP disks which had an
outer radius of 1 mm were prepared from metal organic
vapor phase epitaxy (MOVPE) grown epilayers of Te-doped
n-type InSb (Solin, Thio, Hines and Heremans, 2000). A
buffer layer of 200 nm undoped InSb was grown on a 4 in
semi-insulating GaAs substrate (resistivity >1 × 1017 � cm).
A 1.3 µm active layer of InSb (concentration n = 2.11 ×
1016 cm−3and mobility µ = 40 200 cm2 Vs−1) was deposited
on the buffer layer and capped by a 50-nm InSb contacting
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Figure 2. The field dependence of the magnetoresistance, (R −
R0)/R0, of a Te-doped InSb van der Pauw disk of radius rb in
which is embedded a concentric right circular cylinder of Au of
radius ra . The filling factor is a = ra/rb. Inset: a schematic diagram
of the hybrid disk structure. (Reprinted with permission Solin et al.,
copyright 2000, AAAS.)

layer (n ∼ 1.5 × 1017 cm−3). This epitaxial sequence was
passivated by a 200 nm layer of Si3N4. The wafers were
photolithographically patterned into chips bearing mesas for
the vdP disks. The internal circular shunt embedded in the
disk, together with the mesa contact pads were simultane-
ously metallized with a Ti/Pt/Au stack, with Au the dominant
component. Additional details of the sample preparation and
measurement are given elsewhere (Solin and Zhou, 2001).

Solin et al. also showed that in general,

EMR (�H, Hbias) = Reff (�H + Hbias) − Reff (Hbias)

Reff (Hbias)
(1)

where �H is the applied (signal) field normal to the plane of
the device, Reff(H) is the effective field-dependent resistance
measured in a four-probe configuration, Hbias is the bias field
and �H is the applied or signal field (not the field gradient;
Solin, 2005). For small signals

EMR (�H → 0, Hbias) =
[

1

Reff (Hbias)

]

×
[

dReff(H)

dH

]
Hbias

�H (2)

where
[
dReff (H) /dH

]
Hbias

is the current sensitivity. In the
zero bias large signal but still low field limit, µ�H � 1, the
EMR can be defined relative to either the zero-field resistance
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or to the minimum resistance, the latter definition yielding
the larger value which is comparable to the usual definition
of MR adopted by the GMR community (Levy, 1994). Thus,

EMR(�H) = Reff(�H) − Reff
j

Reff
j

= GS
j (�H) [µ�H ]2

+ GAS
j (�H) [µ�H ] j = 0, min (3)

Here GS
j (�H) and GAS

j (�H) are, respectively, symmetric
and antisymmetric geometric factors which depend on the
shape, location, and physical properties of the conducting
inhomogeneity and contacts. (For the symmetric structure
shown in the inset of Figure 2, GAS(�H) = 0.) Clearly,
narrow-gap high-mobility semiconductors such as InSb and
InAs are choice materials for EMR devices (Madelung,
1991).

The room-temperature magnetotransport properties of the
macroscopic vdP structure shown in the inset of Figure 2
are shown in the main panel of Figure 2 as a function of
the radius ratio α = ra/rb, where ra is the variable radius
of a cylindrical embedded Au inhomogeneity and rb is the
fixed radius of the bulk thin film Te-doped InSb matrix. As
can be seen from Figure 2, the room-temperature EMR is
of order 106% at an applied field of 5 T. More importantly,
the EMR exceeds 100% at the low field of 0.05 T. Values as
high as 600% at 0.05 T have been achieved with galvano-
magnetically equivalent externally shunted rectangular vdP
plate structures (Zhou, Solin and Hines, 2000).

The EMR phenomenon can be readily understood using a
simple though nonintuitive classical physics analysis based
on diffusive transport (Seeger, 1985). The magnetoconduc-
tivity tensor for the semiconductor in the axial configuration
shown in the inset of Figure 2 is

σ (H) =




σ

1 + β2

−σβ

1 + β2 0

+σβ

1 + β2

σ

1 + β2
0

0 0 σ


 (4)

with σ being the dc conductivity and β = µH . If the
electric field on the vertical surface of the inhomogeneity
is �E = Exx̂ + Eyŷ, the current density is �J = σ (H) �E.
The electric field is everywhere normal to the equipotential
surface of a highly conducting inhomogeneity. At H =
0, σ (H) is diagonal so �J = σ �E and the current flows into
the inhomogeneity which acts as a short circuit. At high
H(β > 1), the off-diagonal components of σ (H) dominate
so �J = (σ/β)

[
Eyx̂ − Exŷ

]
and �J⊥ �E. Equivalently, the Hall

angle (Popovic, 1991) between the electric field and the
current density approaches 90◦, and the current becomes
tangent to, that is, deflected around, the inhomogeneity. Thus,
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Figure 3. Resistance of an EMR van der Pauw plate device
with W 520 mm at 4.2 K before illumination to increase carrier
density by the persistent photo effect. (�) represents the data set
of the symmetric configuration R1,3. –(∇) and (◦) symbolize the
asymmetric ones, R2,3 and R1,2, respectively. Inset: a schematic
diagram of the EMR device with the semiconductor in gray and the
metal in black. (Reprinted with permission Moeller et al., copyright
2002, American Institute of Physics.)

the inhomogeneity acts as an open circuit. The transition of
the inhomogeneity from short circuit at low H to open circuit
at high H results in a geometric enhancement of the MR
of the semiconductor even if its resistivity (conductivity) is
field-independent (i.e., the physical MR is zero).

Following the demonstration of EMR in macroscopic
InSb–Au MSHs, Grundler and coworkers demonstrated low
temperature (4.2 K) EMR in microscopic MSHs with dimen-
sions of order 100 µm constructed from an InAs/InGaAs two-
dimensional electron gas (2DEG) contacted by Au electrodes
and a Au shunt (Moeller et al., 2002). This choice of mate-
rials provided an extremely low specific contact resistance
of 10−8 � cm2 which is important for technological appli-
cations. The results of Grundler and coworkers are shown
in Figure 3 which depicts the field dependence of the resis-
tance of their devices which were rectangular analogues of
off-centered vdP disks (see further discussion in the subse-
quent text). They achieved an EMR as high as 115 000% at
a field of 1 T (Moeller et al., 2002). In addition, they showed
that the transport properties of low temperature EMR devices
based on a 2DEG could be tailored for applications by manip-
ulating the carrier mobility, density, and the geometry of the
device. Moreover, they confirmed that EMR was due to cur-
rent reallocation as outlined in the model proposed by Solin,
Thio, Hines and Heremans (2000).

2.3 EMR in circular macroscopic
structures – theoretical analysis

The centered vdP structure shown in the inset of Figure 2
was selected, in part, because its high symmetry allows one
to readily obtain an analytic solution for the electric field
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and current distribution by solving the Laplacian boundary
value problem (Zhou, Solin and Hines, 2000). Indeed, this
same construct and the analytic solution was first employed
by Wolfe, Stillman and Rossi (1972) to explain the unusually
large mobility exhibited by inhomogeneous GaAs. A similar
approach was used by Solin et al. to analytically calculate
the magnetotransport properties of the centered vdP disks
with a series of discrete but increasing geometric factors with
0 ≤ α ≤ 15/16 (Zhou, Hines and Solin, 2001).

In Figure 4(a) is shown the room-temperature field depen-
dence of the resistance of a series of InSb–Au vdP disks of
the type and measuring configuration shown in the inset of
Figure 2. This is the raw data from which the curves shown
in Figure 2 were deduced. The corresponding plots shown in
Figure 4(b) were obtained from the above-described solution
to the Laplacian boundary value problem with no adjustable
parameters (Zhou, Hines and Solin, 2001; Wolfe, Stillman
and Rossi, 1972). As can be seen by comparing Figures 4(a)
and (b), the calculated curves are in quantitative agreement
with the measurements with one notable exception. The curve
for α = 0, for example, for the response of an un-shunted
semiconductor shows a small MR effect as evidenced by the
concave curvature near H = 0 whereas the calculated curve
for α = 0 is flat. The origin of this discrepancy is the fact
that the small MR for α = 0 is due to the physical contribu-
tion which has not been including in the analytic calculation.
This also highlights the clear dominance of the geometric
contribution at higher values of α.

An alternate and more versatile approach to the calculation
of the magnetotransport properties of EMR structures is
the finite element method (FEM) (Ram-Mohan, 2002). The
coauthors and their colleagues have shown that FEM is
the ideal approach to modeling EMR since it can account
for the spatially varying properties of arbitrarily shaped
hybrid structures (Moussa et al., 2001). This method can
also accommodate every type of boundary condition at
interfaces and at boundaries/edges. In this case, the governing
relation is the constitutive relation between the current
and the field: ji = σ ij (H)Ej . With Ei = −∂iφ, the current
continuity condition takes the form ∂i

(
σ ij ∂jφ(x, y)

) = 0.
This partial differential equation has been solved using the
FEM (Moussa et al., 2001) together with an approach based
on the principle of least action (Zienkiewicz and Taylor,
1994; Hughes, 1987). In the EMR case, the action integral
is given by

A = 1

2

∫∫
dx dy (∂iφ(x, y))σ ij (∂jφ(x, y))

+
∫

�1

dl
[
φ(x, y)

]|�1jin −
∫

�2

dl
[
φ(x, y)

]|�2jout (5)

where the current boundary conditions at the leads are easily
incorporated into the calculations. The action is defined with
an integral over time of the Lagrangian. Here the system
is represented in the steady state. Consequently, the integral
over time is suppressed for convenience. The double integral
in equation (5) is just the electrostatic energy in the system.
The presence of the field-dependent conductivity tensor poses
no issue. In the FEM, the physical region is subdivided into
triangles and action is evaluated in each triangle by repre-
senting the potential in terms of interpolation polynomials
multiplied by unknown coefficients. On integrating the spa-
tial dependence, the action is expressed as a binomial in the
nodal coefficients with

A = 1

2
φαMαβφβ +

∫
�1

dl
[
φ(x, y)

] |�1jin

−
∫

�2

dl
[
φ(x, y)

]|�2jout (6)

The variational principle then leads to a matrix equation rep-
resenting the discretized differential equation. This is solved
for the unknown nodal values of the potential function. With
no adjustable parameters, using the standard inputs for the
conductivity of Au and InSb in the FEM calculations, excel-
lent agreement is obtained between the experimental magne-
totransport (or EMR) and its theoretically predicted values,
as shown in Figure 4(c). The field-dependent current flow
patterns for the centered vdP disk can also be determined
from the FEM as indicated in Figures 5(a) and (b) (Moussa
et al., 2001). Notice from Figure 5(a) that for zero field, cur-
rent flows into the shunt along paths that are normal to the
metal–semiconductor interface, whereas at high field cur-
rent is mostly ejected from the shunt along paths that are
approximately tangent to the interface.

2.4 Externally shunted rectangular EMR
macroscopic structures based on conformal
mapping

The centered vdP structure shown in the inset of Figure 2
is not compatible with the scaling of EMR devices to
the nanoscale regime for applications such as read-head
sensors because of the difficulty of fabricating and filling
nanoscopic holes. However, one can use the concept of
bilinear conformal mapping (Churchill, 1960) to generate
structures that will exhibit EMR and at the same time will
be compatible with nanoscale fabrication.

It is known (Popovic, 1991; Solin, 2004; Zhou, Hines and
Solin, 2001) that any homogeneous device with a circular
boundary of unit radius in the two-dimensional complex t
plane with orthogonal axes r and is where t = r + is can be
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Figure 4. (a) The measured room-temperature field-dependent resistance up to 1 T of a composite van der Pauw disk of Te:InSb and Au
for a number of values of α = ra/rb. This is the data that was used to compute the EMR shown in Figure 2. The data traces in the region
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resistance calculated analytically using Laplace’s equation with no adjustable parameters. (c) Field-dependent resistance calculated using
the finite element method with no adjustable parameters. (Reprinted with permission Solin et al., copyright 2000, AAAS and Moussa et al.,
copyright 2001, American Physical Society.)

mapped into the complex upper half Cartesian z plane with
orthogonal axes x and iy where z = x + iy (see Figure 6a)
by using the bilinear transformation (Popovic, 1991).

z(t) = −i
t + i

t − i
(7)

The preceding mapping equation transforms the four sym-
metrically spaced electrical contacts on the perimeter of the
disk in the t plane (shown in Figure 6a in the configuration
for a MR measurement) to the corresponding contacts on the
line y = 0 in the z plane. Although the mapped contacts are
symmetric about the line x = 0 they are not of equal size
as they are when viewed in the t plane. If one embeds an
off-centered hole of radius r1 into the homogeneous disk of
Figure 6(a) as shown in Figure 6(b), that hole maps to a line
that truncates the upper half plane at height y1 = 1/(r1 + 1).

In other words, the vacuum inside the hole of radius r1 in the
disk in the t plane maps to the vacuum above the line y1 in
the z plane. Consider now the circle of radius r2 which cre-
ates an evacuated notch in the disk in the t plane as shown
in Figure 6(c). That circle maps to a line which truncates
the z plane at the position x = x2 = 1/r2 as is also shown in
Figure 6(c). A symmetrically displaced circle of equal radius
on the left of the vertical bisector of the disk in the t plane
truncates the z plane with a line at position −x2 = −(1/r2)

as shown in Figure 6(d). By a selection of circular cuts in
the t plane, the truncated disk can be exactly mapped to a
rectangular structure of appropriate dimension in the z plane.

Of the structures depicted in Figures 6(a–d), that shown
in Figure 6(b) is the simplest one which contains a fully
enclosed inhomogeneity, for example, a circular hole dis-
placed from the center of the disk. Zhou, Hines and Solin
(2001) showed that if one embeds this hole with a highly
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Figure 5. The current flow in the van der Pauw geometry for a
circular InSb wafer with a concentric metallic inhomogeneity and
α′ = 8/16, (a) at H = 0 and (b) at H = 1 T. The lengths of the
arrows are not to scale. (Reprinted with permission Moussa et al.,
copyright 2001, American Physical Society.)

conducting metal, then the resultant structure which they
called an off-center vdP disk is similar to the centered vdP
disk which yielded the large EMR values cited in the pre-
ceding text. However, the corresponding rectangular mapped
structure in the z plane would be of infinite extent in the +x

and –x directions and would contain an external shunt of
infinite height in the +y direction. To avoid these compli-
cations, Solin et al. defined a structure which contains not
only the r2 cuts of Figure 6(d) but also an additional cir-
cle of radius r3 in the t plane as shown in Figure 6(e). The
latter maps to the line y = y3 in the z plane. The modified
off-centered vdP disk now contains a metallic inhomogeneity
embedded into the space between the circles of radii r1, r2,

and r3 while the space between the circle of radius r1 and the
disk perimeter contains a narrow-gap semiconductor. Thus,
the t-plane disk with an internal embedded shunt maps to
a rectangle in the z plane with a corresponding external
metallic shunt, which was called a van der Pauw plate (Zhou,
Hines and Solin, 2001). Moreover, for the exact mapping
depicted in Figure 6(e), the galvanomagnetic behavior of the
two structures will be identical (Popovic, 1991).
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Figure 6. Schematic diagram of bilinear mapping of (a) a van der
Pauw disk in the t plane mapped to the upper half space of the
z plane. Also shown is the contact configuration for measuring
magnetoresistance. (b) an off-center hole in the t plane mapped
to a line in the z plane, (c) a circular perimeter cut in the t plane
mapped to a line in the z plane, (d) repeat of (c) with a symmetric
perimeter cut, (e) an internal shunt in the t plane mapped to an
external shunt in the z plane. (Reprinted with permission T. Zhou
et al., copyright 2001, American Institute of Physics.)

Although the mapping technique described in the preced-
ing text, has been known, (Popovic, 1991) the adaptation of
this technique to the design of rectangular structures with
external shunts (Zhou, Hines and Solin, 2001) had not been
previously considered. Furthermore, for mapped plates with
x2 > 4, the cuts represented by the circles of radius r2 in the
left panel of Figure 6(e) are small/negligible. Therefore, the
externally shunted plate structure shown on the right panel of
Figure 6(e) is, to a good approximation, electrically equiva-
lent to the vdP disk shown in the left panel of Figure 6(e)
without the r2 cuts. Moreover, an expression for the
filling factor of the rectangular EMR structure, though more
complex than that of the concentric circular structure has
been derived as a function of the geometric properties of the
structure (Zhou, Hines and Solin, 2001).
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In order to confirm that the mapping procedure described
in the preceding text is viable it was tested using symmetric
and asymmetric four-probe macroscopic vdP plate EMR
structures of the type shown in the insets to Figures 7(a)
and (b) (Solin, 2005). The results of these tests are shown
in the main panels of Figure 7. The material constituents of
the vdP plate structures depicted in the insets of Figure 7
were the same as those used for the internally shunted
circular hybrid structures depicted in the inset Figure 2. Two
features are noteworthy in the data of Figure 7(a) the room-
temperature EMR is very large reaching values in excess
of 100% at a field of 0.05 T. In Figure 7(b) the EMR
is asymmetric with respect to the applied field when the
leads are placed asymmetrically on the rectangular narrow-
gap semiconductor plate. The latter feature constitutes a
condition of self-biasing which is important for a number
of applications in which the sign of the applied magnetic
field must be determined.

The magnetotransport properties of the externally shunted
vdP plate clearly depend strongly on the placement of the
current and voltage leads, for example, on lead geometry.
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electrode configurations as a function of the width, W, of the
external shunt. The dark (light) rectangle represents Te:InSb (Au).
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These properties also depend strongly on the shape and
relative dimensions of the semiconductor and metal com-
ponents of the hybrid structure itself as can be seen from the
dependence of the EMR in Figure 7 on the width, W , of the
shunt for a semiconductor region of fixed width. Note that
in the range of filling factors addressed in Figure 7 which
is below the optimum filling factor of 13/16, as depicted in
Figure 3, the EMR systematically increases with increasing
filling factor. In addition, an added feature of the data of
Figure 7 is the enhancement of the EMR in the structure
with asymmetric leads relative to the structure with symmet-
ric lead placement.

Moussa, Ram-Mohan, Rowe and Solin (2003) have used
the FEM to calculate the EMR of four-probe vdP plates
as a function of the position of a magnetic spot along the
long axis of the semiconductor. They showed that the EMR
response was strongly dependent on the wiring configuration
of the four leads of the vdP plate and on the spot position
along the long axis of the plate. For instance, as can be seen
from Figure 8, the IVVI configuration gives an asymmetric
response for the position dependent MR while the VIVI
configuration yields a larger but inverted quasisymmetric
response. Holz, Kronenwerth and Grundler (2005a) also
employed the FEM to extend the theoretical studies of
Moussa, Ram-Mohan, Rowe and Solin (2003). They showed
that for an inhomogeneous field of a spot, the field-dependent
resistance exhibits a symmetry reversal (vis-à-vis symmetric
and antisymmetric) relative to that of a homogeneous field
and that the active device area depended not only on the
voltage probe positions but also on the locations of the
current probes.

Holz, Kronenwerth and Grundler (2005a) also developed
a clever method for assessing and illustrating the effect of
an inhomogeneous field. They defined the MR of a dot as
MRdot = [R (Bdot = +50 mT) − R (Bdot = −50 mT)] /R (0)

and displayed MRdot for different lateral positions as a
grey-scale pattern as shown in Figure 9. Holtz et al. have
also studied the response of vdP plate EMR structures with
the FEM to determine the optimal EMR as a function of
the geometry, for example, length (L) to width (W) ratio
and material parameters (Holz, Kronenwerth and Grundler,
2003). They confirmed the correlation of the asymmetric
(symmetric) response with and IVVI (IVIV) lead config-
uration and found that EMR is optimal for devices with
L/W = 0.025. Most importantly, they showed (i) that EMR
vdP plates are inversely scalable, for example, their perfor-
mance improves with decreasing size, (ii) that the EMR can
be further enhanced/optimized by selective placement of the
voltage and current leads (Holz, Kronenwerth and Grundler,
2005b), and (iii) that for the IVIV configuration, the Hall
effect and EMR cooperate to enhance sensitivity (Holz, Kro-
nenwerth and Grundler, 2005b).
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Figure 8. (a) The calculated magnetoresistance of a symmetric van
der Pauw plate structure (see insets of Figure 7) as a function
of the position of an 80 × 50 nm2 magnetic bit with a magnetic
field of 0.05 T. The external leads are 20 nm thick, with the leads
centered at ±150 nm and ±30 nm. The leads are wired in the IVVI
configuration. (b) The same as (a) but with the leads wired in
the IVIV configuration. (Reprinted with permission Moussa et al.,
copyright 2003, American Institute of Physics.)

2.5 Nanoscopic EMR devices

Several applications of state-of-the-art magnetic sensors
including imaging, medical devices, and read heads for
ultrahigh-density magnetic recording require structures with
three-dimensional spatial resolution at the nanoscale. In the
case of EMR sensors, one requires an ultrathin (<100 nm)
film, which can be patterned into device structures with
lateral dimensions of order 50 nm. Unfortunately, the mobil-
ity of InSb on GaAs (100) drops drastically with thickness
for thicknesses below 1000 nm as a result of carrier scat-
tering from dislocations induced by the 14% lattice mis-
match (Zhang et al., 2004). To overcome this problem, Solin
and coworkers designed a nanoscopic four-lead vdP plate
EMR device (Solin et al., 2002a,b) based on an InSb/AlInSb
quantum-well heterostructure (Chung et al., 1999) which
exhibits relatively high mobility for carriers in the very
thin well.
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Figure 9. Magnetoresistance, MRdot = [R(Bdot = +50 mT) −
R(Bdot = −50 mT)]/R(0), of the hybrid structure for different
voltage probe configurations: (a) V1 − V3, (b) V2 − V3, and (c)
V3 − V4 as a function of the dot’s position in the semiconductor.
For clarity, the metal is not shown here. In each figure, black
represents the lowest and white the highest possible value. Note
that the dynamic range in each sub figure is the same. (Reprinted
with permission M. Holz et al., copyright 2005, American Institute
of Physics.)
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Figure 10. A schematic representation of the process used to
fabricate nanoscopic EMR structures.

In Figure 10 is shown schematically the nano-EMR quan-
tum well layer stacking arrangement together with the (sim-
plified) fabrication steps that are required. To achieve lat-
eral feature sizes below 100 nm, a multistep state-of-the-art
electron beam (e-beam) lithography process was utilized
(Solin et al., 2002a). First, a 30-nm-thick insulating film of
Si3N4 was deposited on the thin-film-quantum-well wafer
as a cap layer and macroscopic Au strips for wire bonding
were deposited. Then a 30-nm-thick film of calixarene, a
new high-resolution negative resist (Yasin, Hasko and Care-
cenac, 2001) was spin-coated on. The desired lithographic
pattern was delineated in the calixarene by e-beam lithogra-
phy. This calixarene pattern and the macroscopic Au strips
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serve as a mask for reactive ion etching (RIE) (Roosmalen,
Baggermann and Brader, 1995) of the Si3N4 layer using
standard methods (Sugawara, 1998). This etching process
produces a raised mesa of the thin film on its supporting sub-
strate. For InSb films, the appropriate etchant is a CH4+H2

mixture. The residual Si3N4 and Au strips serve as an RIE
mask. Au leads and Au bridging contacts were then deposited
using a Ge stencil mask and shadow evaporation technique.
To minimize leakage current through the floor of the mesa,
as evidenced by finite EMR observed in shuntless devices,
an insulating Al2O3 barrier was first prepared by depositing
and subsequently oxidizing a layer of Al close to the mesa
sidewall. In addition, extremely high alignment accuracy of
about ±10 nm was required to effect sidewall contacting of
the Au strips to mesa at the location of the quantum well.

The above-described e-beam lithographic methods, were
used to fabricate the nano-EMR structure shown in Figure 11.
The active volume of this structure has dimensions of order
the width of the mesa at the height of the quantum well
(30 nm) × the spacing of the voltage probes (40 nm) × the
thickness of the quantum well (25 nm). The field depen-
dence of the room-temperature MR of that device is shown
in the main panel and upper-right inset of Figure 12. As
can be seen, the EMR reaches values as high as 5% at
zero bias and a signal field of 0.05 T. This was claimed
to be the highest room-temperature MR level obtained to
date for a patterned magnetic sensor with this spatial resolu-
tion (Solinet al., 2002b). Moreover, with a modest bias field
of 0.2 T corresponding to the zero-field offset (Solin et al.,
1996) in Figure 12, the measured EMR is 35% at a signal
field of 0.05 T. (The offset is associated with the asymmetric
placement of the voltage leads.) Also, note that the device can
be biased into a field region where the EMR response is lin-
ear with field, a feature that can simplify signal amplification.
Equally significant is the fact that the current sensitivity, at
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Figure 11. An electron micrograph of a hybrid nanoscopic van
der Pauw EMR plate structure fabricated from an InSb/In1−xAlxSb
quantum-well heterostructure. The current leads, voltage leads, and
external shunt are labeled as indicated. The four contacts shown
in the micrograph extend along the mesa floor and up the side of
the mesa to the upper 25 nm Al0.15In0.85Sb barrier. (Adapted from
Figure 3 of Solin, 2005.)
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Figure 12. The field dependence of the magnetoresistance of the
mesoscopic van der Pauw plate structure shown in Figure 11. The
bias current density is 5 × 103 A cm−2.

a magnetic field bias of 0.2 T has a large measured value of
585 � T−1 at room temperature. It is this figure that enters
directly into the calculation of the signal-to-noise ratio (SNR)
as will be discussed in the subsequent text.

The room-temperature mean free path of the carriers
in an InSb quantum well is 
 = �

√
2πñ(µ/e) = 200 nm

(Jablonski et al., 1984). Thus one would expect the transport
in a nanostructure to be ballistic in which case it can be
shown that the expected EMR would be at least a factor
of 5 lower than what is observed in Figure 12. However,
Solin et al. have suggested that the transport is in fact still
diffusive as a result of the randomization of the carrier
velocities due to scattering off of the rough mesa sidewalls
(Solin et al., 2002a,c) (see Figure 11). The scattering process
is enhanced because the roughness wavelength is of the
order of the Fermi wavelength of the carriers λF = √

2π/ñ =
48 nm (Jablonski et al., 1984). Given the assumption of
diffusive transport, the EMR of the nanoscopic device though
noteworthy, is still about a factor of 20 lower than that
obtained with a macroscopic plate of the same geometry
fabricated from thin film Te-doped InSb with a room-
temperature mobility of 4.5 × 104 cm2 Vs−1 (Zhou, Hines
and Solin, 2001). Part of this difference is due to the mobility
difference thus yielding a reduction in EMR of a factor
of (4.5 × 104/2.3 × 104)2 = 3.8. The additional order of
magnitude reduction derives from current leakage through
the mesa floor (quantum well lower barrier) which carries a
much higher proportion of the current than does the quantum
well itself.

The performance of a magnetic sensor is, of course,
measured by the SNR at the operating conditions under
which it will be employed. For nano-EMR devices of the
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type shown in Figure 11, only two noise sources are relevant,
1/f noise and thermal or Johnson noise. In this case, if
the effective resistance is quadratic with field, for example,
Reff = Reff

0

[
1 + Gµ2(H − H0)

2
]

where H0 is the zero-field
offset, the voltage SNR can be written in the following form
(Weissman, 1988; Solin 2007):

SNR(f ) =
Iin

∣∣∣∣( dReff

dH

)
Hbias

∣∣∣∣ �H

[(
V
L

)2
γµeRout

�f

f
+ 4kT Rout�f

] 1
2

=
∣∣El[(2GSµ2HBias ± GASµ)�H ]

∣∣
[

E2γ l

nwt

�f

f
+ 4kT l�f

nwteµ

] 1
2

(8)

where Iin is the input current, V is input voltage, L(l)

is the spacing of the current (voltage) leads, γ is the
dimensionless Hooge parameter (van der Ziel, 1988), e is
the electron charge, f is the operating frequency, �f is
the detection bandwidth, k is Boltzmann’s constant, T is
temperature in Kelvin, Rout is the two terminal resistance
between the voltage probes including the contact resistance at
the interface between the voltage probes and the device, E =
V/L is the bias electric field, l is the voltage probe spacing, n

is the carrier (electron) density, wt is the cross-sectional area
for bias current flow and the other variables in equation (8)
have been previously defined. The first term in each of the
denominator brackets is the 1/f noise while the second term
is the thermal noise. By equating these two terms we can
deduce the crossover frequency fc = E2 (γ eµ/4kT ). For
f � fc thermal noise dominates and the SNR is frequency
independent, while for f � fc 1/f noise dominates and the
SNR is independent of the bias field.

It is useful to estimate the crossover frequency for a
nanoscopic EMR sensor of the type shown in Figure 11. The
relevant parameters are γ ∼10−8, µ∼2.3 × 104 cm2 V−1 s−1,
E ∼ 4 × 102 V cm−1 in which case fc ∼ 400 Hz at 300 K.
Clearly, it is desirable to operate the EMR nanosensor at
sufficiently high frequency to be in the thermal noise limited
region. Note that l, w, and t are set by the required three-
dimensional resolution, and �H is set by the available signal
so these parameters are deemed uncontrollable.

In the thermal noise regime, the SNR increases as nµ5/2.
Therefore, it is advantageous to maximize this product.
Since for n(T ) > nc(T ) mobility decreases with increasing
n (Seeger, 1985), where nc(T ) is a critical concentration,
EMR nano sensors operate optimally at or near nc(T ) =
nc(300 K)5 × 1017 cm−3 for InSb (Madelung, 1991). For an
EMR nanosensor with this carrier concentration and dimen-
sions shown in Figure 11, the calculated noise equivalent
field (NEF) (Deeter, Day, Beahn and Manheimer, 1993)

that is obtained from equation (8) by setting SNR (f ) = 1
and solving for the resultant value of �H/

√
�f is NEF =

4.1µ T Hz−1/2 for a bias current of 2.2 × 10−6 A, a current
sensitivity of 585 � T−1. For comparison, nano-Hall sensors
with active area 50 × 50 nm2 made from bismuth have a
reported NEF of 100 µT(Hz)−1/2 (Sandu, Kurosawa, Dede
and Oral 2004), while micron-size Hall devices based on
GaAs/AlGaAs quantum wells have been demonstrated in
scanning probe systems that show NEF of 4 µT(Hz)−1/2,
but only at low temperature (<77 K) (Bending, 1999). Also
TMR and GMR sensors with flux concentrators show NEF
as low as 0.1 nT(Hz)−1/2 at room temperature but this corre-
sponds to spatial resolutions of the order of microns (Stutzke,
Russek, Papas and Tondra, 2006).

3 BALLISTIC MAGNETORESISTANCE

3.1 Transport through a point contact

In the BMR phenomenon (Garcia, Munoz and Zhao, 1999),
we again see a manifestation of the geometric enhancement
of the MR. The resistance in a point contact between two
ferromagnetic wires, as shown in Figure 13, is governed
by quantum-mechanical effects associated with the ballistic
transport of electrons from one wire to the other through
a channel of nanometer dimensions. The wires can be
considered to be reservoirs of electrons with a difference
in their chemical potentials due to a bias, so that a current
can flow from one side of the device to the other. The actual
resistance depends on the size of the diameter at the contact,
which is typically over several atomic ‘channels’ all the way
down to a single atomic point contact. Each channel acts as a
waveguide for the electron, and the transmission coefficient
for the waveguide defines the strength of the contribution
for each mode in the waveguide; the transmission coefficient
depends strongly on the geometry of the waveguide.

1

1 2

2

I↑↓

I↑↑

(a)

(b)

Figure 13. A schematic of a cluster of Ni or Co atoms deposited
between two ferromagnetic wires for which the magnetization in
the two wires is (a) parallel, or (b) antiparallel.



12 Magnetoresistance

For normal metallic point contacts with N noninteracting
independent channels and with unit transmission, the quanti-
zation of the conductance G is described by Landauer (1957,
1970, 1988), and Buttiker, Imry, Landauer and Pinhas (1985)
to be

G = 2e2 N

h
= N

(25.8 k�)
(9)

Because this result is central to our understanding of BMR
we provide, in Appendix A, a detailed derivation of it.
The factor of 2 in the conductance formula accounts for
the fact that in such metallic contacts electrons of both
spin polarization are transported across the contact. For
ferromagnetic leads with a point contact between them, the
transport of electrons across from one wire to the other is, in
general, a spin-dependent process. We are then concerned
with spin-ballistic transport through the junction. In the
case of BMR, the two reservoirs are ferromagnetic and
have particular spin polarizations which are either parallel
or antiparallel to each other. The unit of conductance is
defined by G0↑↑ = e2/h, without the factor of 2 of the
usual theory that accounts for both electron spins (Ono,
Ooka and Miyajima, 1999). In Figure 13, which show a
schematic of a BMR contact structure, the magnetization
of the two ferromagnetic wires is parallel in configuration
(a), and antiparallel in configuration (b). The nanoscale
point contact between the wires is represented by a cluster
of atoms between the tips of the wires. The switching of
the magnetization in the wire labeled 2 on the right can
be controlled by an external magnetic field applied to this
wire. The conductance of the nanochannel changes with the
application of the external magnetic field leading to the BMR
which is defined as

[BMR] = �G

G
= G↑↑ − G↑↓

G↑↓
(10a)

or equivalently as

[BMR] = �R

R
= R↑↓ − R↑↑

R↑↑
(10b)

In 1999, the initial observations (Garcia, Munoz and Zhao,
1999, 2000; Landauer, 1957; Ono, Ooka and Miyajima,
1999; Zhao, Munoz, Tatara and Garcia, 2001) at room
temperature were of a BMR of 280% with 3d transition
metals (Fe, Co, Ni) using atomic size contacts. These were
followed by a BMR of 700% in electrodeposited Ni–Ni
nanocontacts of 30 nm (Garcia et al., 2001). More recently,
Chopra and Hua (2002) have observed a room-temperature
BMR of 3150% using electrodeposition of the nanocontact.

The reader should beaware that the experimental evi-
dence for BMR is still in a state of flux because of the

difficulties and pitfall with the experiments (Eglekoff et al.,
2005).

3.2 Theoretical aspects of domain wall scattering

Theoretical considerations suggest that the BMR effect is
generated by spin scattering at domain walls (DWs). The
presence of a DW in the nanochannel for the antiparallel
configuration, then leads to enhanced scattering that depends
on the geometry of the contact and the structural (and spatial)
details of the DW. The width of the wall depends on the
area of contact and the size of the junction. The enhanced
scattering in the antiparallel configuration corresponds to the
relation

G↑↑ > G↑↓ (11)

The early work of Cabrera and Falicov (1974) on the scat-
tering mechanism for an electron scattering off a DW in a
bulk material provides a framework to consider the effect of
scattering. Their work was based on a classical Boltzmann
equation model, and was in the limit that the thickness of the
DW, dw, is much less than the mean free path. It showed that
the resistivity is large only when the spin splitting is com-
parable to the Fermi energy and kFdw ≤ 1, where kF is the
Fermi wave vector. A limitation of their work is that it con-
siders only one-dimensional motion for the electrons. Tatara
and Fukuyama (1997) treated the three-dimensional motion
of the electrons and considered the effect of a DW on the
resistivity in a mesoscopic wire of width LT with the DW
thickness dw ≥ LT � k−1

F . However, again, in this case, the
electron spin can accommodate itself adiabatically from one
side of the DW to the other. Thus, the reflection of the elec-
tron at the wall is negligible, resulting in a very small MR.

In both cases, the overall MR effect is small as compared
with nanoscale point contacts. In thick DWs, the MR is
reduced because the spin can rotate and align with the local
magnetization adiabatically as the electron travels through
the wall. Conversely, for very thin DWs (∼1 nm) the spin
is almost completely conserved as the electron crosses the
wall. However, this is no longer true if the contact size
is of nanometer scale and we have quantized conductance.
The thickness of the DW may then be very thin, of the
order of the contact size, and yet the BMR should be
very large even at room temperature (RT) because, in this
case, the adiabatic accommodation of the spin polarization
as the electron traverses the DW does not hold. This has
indeed been indicated in the calculation in the limit of a
vanishing DW width by van Hoof et al. (1999). Through
the use of realistic band structure calculations they were
able to show that the DW MR is enhanced by orders of
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magnitude over the results from earlier theories. Tatara,
Zhao, Munoz and Garcia (1999) calculated the resistivity
based on the exchange interaction between the local spin
S of the ferromagnetic ions and the electron spin. Using a
Hamiltonian of the form

H =
∑
kσ

εkc
+
kσ

ckσ − J

∫
dxS(x)(c+σ c) (12)

with εk = �
2k2

2m
− εF and a local spin S having the spatial

dependence of a DW (Sz = S0 tanh (x/dw)), they showed
that the resistance due to the DW is given by

Rw = h

e2

1

N

π2

4

ζ 2

1 − ζ 2 F(ζ , dw) (13)

with N being the number of channels in the cross-sectional
area of the contact, while ζ = (kF↑ − kF↓)/(kF↑ + kF↓), and
kF = (kF↑ + kF↓)/2. The parameter ζ is the spin polarization
at the Fermi level εF and it also corresponds to the ratio of the
density of states at εF, so that ζ = (D↑ − D↓)/(D↑ + D↓).
The function F(ζ , dw) is

F(ζ , dw) = 1

2

[
1

cosh2 π kFdw
+ 1

cosh2 π kFζ dw

]
(14)

and is shown in Figure 14. In the absence of a DW the
conductance is given in terms of the number, N , of channels
through the contact as G↑↑ = Ne2/h. The DW resistance
Rw and G−1

↑↑ arise from different mechanisms and the total

resistance is R = G−1
↑↑ + Rw. We can then identify the BMR

as arising from the presence or absence of Rw in G = R−1

1

F(ζ, dw)

ζkF dw

0.8

0.6

0.4
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0
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Figure 14. The function F(ζ , dw) is plotted as a function of
the spin polarization parameter ζ and the effective domain wall
thickness expressed as kFdw. As dw → 0, we have F(ζ , dw) → 1.
For large values of kFdw, the function F(ζ , dw) shows a peak at
ζ → 0 with a maximum of 0.5.

and we have

�G

G
= G↑↑ − G↑↓

G↑↓
= π2

4

ζ 2

1 − ζ 2 F(ζ , dw) (15)

For further details of the derivation, the reader is referred
to the article by Tatara, Zhao, Munoz and Garcia (1999).
The function F(ζ , dw) → 1 as the DW dw goes to zero (see
Figure 14). This prediction of the theory is in agreement with
the model of Julliere (1975), who investigated the tunneling
across an interface between two ferromagnetic films, when
the spin is conserved across the interface. In other words,
the BMR is given by the degree of polarization only. Also,
F(ζ , dw) → 0 as the DW thickness increases, so that kFdw ≥
1, and the electron spin accommodates the spin variation in
the DW. When the material has only one spin-polarized band
we have ζ → 1, and the magnetoconductance (MC) goes to
infinity, according to equation (15). This corresponds to total
reflection at the interface.

In explicitly obtaining F(ζ , dw), for the ferromagnetic
materials, it is necessary to know the density of states at the
Fermi level from band structure calculations (Moruzzi, Janak
and Williams, 1978), since both s and d bands contribute to
the density of states at the Fermi level. The ratio of the total
density of states for the two bands to that of the s band
at the Fermi level, β = Dd+s/Ds, is large since it is the
d-band density of states that dominates in these materials.
Assuming that the band structure in the thin ferromagnetic
wires on either side of the nanocontact is close to that of
the bulk material we can‘ theoretically estimate for Ni that
β ≈ D↑/D↓ = 13, and that ζ = 0.87. Garcia et al. (2001)
estimated that this provides a maximum MR of 400% which
agrees remarkably well with experiments (Garcia, Munoz and
Zhao, 1999). For Co, the values of the parameters are β ≈ 11
and ζ = 0.83. The number of channels N participating in the
ballistic transport can be estimated using Sharvin’s formula
(Sharvin, 1965a,b) in which the β parameter, representing the
large density of states at the Fermi level, and the geometric
parameter a, the radius of the contact, play a role. We have

N = β
(kFa)2

4
(16)

Now, dw, is also related to the number of channels through
the fact that in nanocontacts the restricted channels alter the
geometry of the DW so that with the assumption dw ≈ a,
equation (16) leads to the relation

kFdw = kFa =
(

4N

β

)1/2

(17)

Analytical calculations showing that dw ≈ a have been
performed by Bruno (1999).
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Thus, the MC, equation (15) is large, even for small N ,
when ζ ≈ 1 and decreases rapidly as the number of channels
increases beyond N ≥ β/4.

The ballistic transport through a connecting narrow
nanochannel between two ferromagnetic regions has been
modeled by Tagirov, Vodopyanov and Efetov (2001, 2002)
and Tagirov, Vodopyanov and Garipov (2003) by consider-
ing actual circular and rectangular geometries for the contact.
The effect of a DW and its width, in comparison with the
spin mean free path, on the BMR can then be studied, and the
models reproduce the experimental results of Garcia, Munoz
and Zhao (1999) fairly well. The location of the DW in
the ballistic channel, between the two ferromagnetic regions,
is included in their discussion. A tight-binding model for
the theory of tunneling magnetoresistance has been devel-
oped by Mathon (1997), who shows that the tunneling MR
approaches rapidly the same saturation value when either
the interelectrode hopping decreases or the height of the
insulating barrier increases. When the insulating barrier is
high (i.e., the band gap is large), the tunneling MR depends
only weakly on the thickness of the insulating layer. How-
ever, when the band gap is small compared to the conduction
bandwidth, the tunneling MR decreases rapidly with increas-
ing thickness of the insulator. Mathon’s numerical results for
a Co(001) junction, based on a fully realistic band structure
of the Co electrodes, show a very similar behavior. As the
tight-binding hopping matrix between the Co electrodes is
gradually turned off, the tunneling MR ratio drops initially
very rapidly from its value of 280% in the metallic regime
to about 40% but then stabilizes in the range 40–65%. This
is in a very good agreement with the observed value of 40%.
It is thus noteworthy that he obtains very reasonable val-
ues for MR, using the tight-binding model, that agree with
experiment. The tunneling MR in this model calculation is
the BMR.

Micropositioner

Ferromagnetic
electrode

dc ac

Teflon packaging

V R

Nanocontact

Figure 15. A schematic of the experimental setup employed by
Garcia et al. is shown. (Reprinted with permission Chung et al.,
copyright 2003, American Institute of Physics.)

3.3 Experimental results on BMR

We now turn to the experimental results reported by Garcia,
Munoz and Zhao (2000) and Garcia et al. (2001). A typ-
ical experimental schematic (Chung et al., 2003) is shown
in Figure 15. The nanocontacts are formed by mechanically
putting into contact the polished ends of two Ni wires of
2 mm diameter. The Teflon packaging mechanically holds
and aligns the structure in place. By systematically moving
the position of one of the wires, the contact area can be
adjusted. The two ferromagnetic wires have wires wrapped
around them to provide control in the direction of mag-
netization. At the tip of the nickel rods a field of up to
150 Oe is generated at 0.2 A. Alternating the current in
one of the wire wrappings, leads to an alternating field on
one of the ferromagnetic wire. This permits a clean mea-
surement of the BMR. To determine the BMR, a 100 mV
bias voltage was applied across the junction. Other mate-
rials could be deposited at the tip to investigate the BMR
in nanochannels made with these materials. To summarize
the experimental outcomes, the results (Garcia, 2003) of
several measurements of the MC plotted against the con-
ductance, or equivalently the number of channels N , is
shown in Figure 16. Data from Co, Ni, and Fe nanochan-
nels are presented in the same figure simultaneously. Repro-
ducible results have been reported for the BMR (Chung
et al., 2003). The measurements of BMR ranging from over
300% for narrow (atomic) channels of size ∼0.5 nm with
N = 1, to 20% with N ∼ 20 channels with 2 nm2 area of
contact are shown. The full and dashed curves in Figure 16
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Figure 16. Magnetoconductance as a function of the contact con-
ductance (bottom x axis) and the contact resistance (top x axis) for
Ni, Co, and Fe contacts. Solid and dashed curves are the theory
approximations in the limits of a small and large number of con-
ducting channels, respectively. (Adapted from Figure 1 of Garcia,
2003.)
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correspond to values of β ≈ 11 and β ≈ 40, respectively.
It is seen that all the data lie between these two curves.
While the lower value of the ratio of the density of states,
β, is given by theoretical estimates of the band structure
of the bulk material, this does not necessarily apply to the
nanostructure.

3.4 Scaling and universality in BMR experiments

On putting together all the data on MC (or equivalently
MR, as seen from equations (10a and b) for nanocontacts
between Ni–Ni, Co–Co, Fe–Fe, CrO2 –CrO2, and CrO2 –Ni
heterojunctions, it was noticed by Chung et al. (2002)
that the largest MR was observed at a conductance of
0.05 G0 where G0 = 2e2/h. This is shown in Figure 17(a).
This is different from the maximum for MR of ∼210%
observed in Ni–Ni nanojunctions at a conductance of G0.
The behavior of CrO2 –Ni nanojunction is similar to that
of CrO2−CrO2 in that the peak MC occurs at very low
conductance although the maximum MR is lower, as seen
in Figure 17(b). Chung et al. then combined the data for
all nanocontacts by plotting the MC that is scaled by the
maximum value of the MC in each of the heterojunctions.
The quantity (�G/G↑↓)/(�G/G↑↓)max was plotted against
the conductance G0. All the experimental data essentially
fit around the solid curve and within the cross-hatched area
between the solid and dashed curves of Figure 18. The solid
and dashed curves are obtained from Tatara, Zhao, Munoz
and Garcia (1999) for small N and for large N , the number
of conducting channels, or equivalently when the DW
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Figure 17. The experimental data for magnetoconductance versus
contact conductance for (a) CrO2-CrO2, and (b) CrO2-Ni nanocon-
tacts. (Reprinted with permission Chung et al., copyright 2003,
American Institute of Physics.)
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Figure 18. The universality of scaled BMR discovered by Garcia
et al. is shown. The normalized magnetoconductance scaled by the
ratio of the maximum BMR for the material. All experimental
data essentially fit around the solid curve and within the cross-
hatched area between the solid and dashed curves. The curves are
obtained from Tatara et al. for small and large number of conducting
channels. (Reprinted with permission Chung et al., copyright 2003,
American Institute of Physics and Chung et al., copyright 2002,
American Physical Society.)

magnetization profile varies smoothly or is constant in the
DW, respectively. In the case of the CrO2 –Ni heterojunction,
the scaling was performed using the conductance value of
CrO2. Figure 18 is a summary of the data for Ni, Co, Fe, the
half-metallic CrO2, Ni–CrO2, and for the Verwey insulator
Fe3O4 (Versluijs, Bari and Coey, 2001).

A universal picture for BMR for such a wide variety
of materials occurs when the scaling of the data proposed
by Chung et al. (2002) is performed. The normalized MC
in nanocontacts has a universal behavior versus the scaled
conductance, and is independent of the electron transport
mechanism. The only consideration is spin conservation in
the ballistic transport through the DW at the nanocontact. We
follow the arguments of Chung et al. (2002) in presenting
their analysis of the BMR. The behavior of the normalized
MC is defined by the spin scattering function F(ζ , dw) that
incorporates the influence of the dependence on dw and
density of states at the Fermi level. When the Landauer
conductance, G = G0

∑
i Ti , where Ti are the transmission

coefficients, is reexpressed using Sharvin’s version (Sharvin,
1965a,b), we have

G = G0

(
dw

λF

)2

γ (18)

where the number of channels N = (dw/λF)
2, λF is the elec-

tron wavelength at the Fermi level, and γ is the trans-
mission coefficient per channel. We can analyze the data
after scaling using equation (18). Here the various factors
take into account the different material resistivities since the
DW scattering occurs in the nanochannel and the channel
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transmission coefficient depends on the transport process and
hence the resistivity. Therefore if γ � 1, then the conduc-
tance can be much smaller than G0 even if the number of
channels is larger than 1. The half-metallic oxide samples
manifest this behavior whereas normal metals do not, and this
explains the difference in scale on the graphs in Figures 16
and 17.

The theoretical work of Tagirov, Vodopyanov and Efetov
(2001, 2002) and Tagirov, Vodopyanov and Garipov (2003)
shows that large MR can occur in nanocontacts even in
the diffusive regime. According to their quasiclassical the-
ory of spin transport through magnetic nanocontact, large
MR can be obtained if strong spin scattering at the DW is
achieved for antiparallel alignment of magnetization in the
magnetic nanocontact. Figure 19 provides a schematic rep-
resentation of the DW within a nanocontact. To realize such
large spin scattering, the electron spin orientation should be
preserved during transit through nanocontacts. If DW width
dw is shorter than the mean distance between spin-flip scatter-
ing dspn = vFTspin, where vF is the Fermi velocity and Tspin

is the spin-relaxation time, the spin can be preserved and
large MR can be obtained even in the diffusive transport
regime. Furthermore, they have predicted that the nanocon-
tact of highly spin-polarized metals such as LSMO and CrO2

would show very large MR of 1000% or higher. The mean
free path 
 of CrO2 is about 1.4 nm or less at room tem-
perature, as shown theoretically by Lewis, Allen and Sasaki
(1997). The value is very small compared to that of normal
metals, which is in the range of a few tens of nanome-
ters. Also, Park et al. do obtain short spin diffusion lengths
∼ 3 ± 1 nmin another system, VIZ., NiCr (Park et al., 1999).
Therefore, diffusive transport seems to be dominant at CrO2

nanocontacts when 
 < dw . On the other hand, the spin ori-
entation can be preserved even after many scattering events.
Therefore, when the DW width, assumed to be of the order
of the square root of the nanocontact cross section, is smaller
than the spin-relaxation length, the electron spin relaxation

a

dw

Nanocontact

Figure 19. The nanocontact between two ferromagnetic wires is
shown schematically. The domain wall in the nanocontact has a
lateral thickness of dw and a width corresponding to that of the
nanochannel, a. The current through the nanochannel is shown by
the horizontal arrows. The magnetization vector rotates across the
domain between the initial and final magnetization directions in the
two wires.

cannot be accommodated by the abrupt magnetization gra-
dient and thus strong spin scattering, that is, high MR, can
be achieved. The reader interested in further details of the
scaling and universality in BMR and the nuances for each
material is referred to Chung et al. (2002, 2003).

4 CONCLUDING REMARKS

In summary, geometry plays an important role in determining
the magnetotransport properties of EMR and BMR structures
on both the macroscale (EMR) and on the nanoscale (EMR
and BMR). EMR derives from the orbital motion of carriers
in nonmagnetic materials while BMR results from the
interactions of spins with domains in magnetic materials.
EMR has been observed in both InSb and InAs narrow-
gap semiconductors with a variety of structures and at a
range of temperatures down to that of liquid helium. The
narrow-gap semiconductors are choice materials for EMR
devices because of their concomitantly high carrier mobility.
Following the discovery of EMR it has been realized
that it is but one example of a broad class of geometry-
driven interfacial ‘EXX’ effects in MSHs where proof of
principal has been demonstrated for XX = piezoconductance
(PC) (Rowe, Hines and Solin, 2003), optoconductance (OC)
(Wieland et al., 2006) and electroconductance (EC) (Wang,
Wieland and Solin, 2007).

The initial controversy about BMR, and the uncertainties
about the governing mechanisms (e.g., as to whether it is
due to magnetostriction), have now been resolved (Sullivan
et al., 2005) by more careful experiments from several
research groups. It is evident that the phenomenon of BMR
is dependent heavily on the geometry of the nanocontact.
A large value of BMR depends on the two key parameters,
a large value for the ratio of the density of states at the
Fermi level associated with the electron distributions with
the two electron spin polarizations, and on a small value
for the ratio of the DW thickness dw to the mean free
path 
 for spin reversal. In ballistic nanocontacts, the length

 is essentially the length of the nanochannel. With the
anticipated technological applications, research on BMR in
novel materials, the dependence on quantum effects, and
its geometric enhancement will continue to be a fascinating
aspect of research on the physical behavior of materials at
the nanoscale.

Both EMR and BMR portend significant potential for
impact on magnetic sensor technology, particularly in the
area of ultrahigh-density magnetic recording. Nevertheless,
neither of these new phenomena have, to date, had any
‘kinetic’ impact on technology as is usually the case for
discoveries that represent a new paradigm competing with
an established conventional technology, for example, GMR
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and TMR. Accordingly, it will be very interesting to monitor
the development of EMR and BMR over the next few years
to see if their promise as novel magnetic sensors is actually
fulfilled.

ACKNOWLEDGMENTS

Our work on the EMR and FEM described in this review has
benefited from the stimulating interactions and major contri-
butions of our collaborators and students. Included among
the former group are D.R. Hines, T. Thio, J. Bennett, the
late R.A. Stradling, J. Heremans, J.S. Tsai, Y. Pashkin, M.B.
Santos, A.C.H. Rowe, M. Lee, N. Wingreen, P.A. Wolff,
S. Schwed, T. Zhou, S.J. Chung, and N. Goel. In the lat-
ter group, we include A. Girgis, J. Moussa, K. Weiland,
Y. Shao and Y. Wang. Naturally, the responsibility for
any errors or omissions in the content of this article rests
solely with the authors. We gratefully acknowledge the
support of the US National Science Foundation (NSF)
under grant ECS-0329347. SAS also acknowledges sup-
port of the US National Institute of Health (NIH) under
grant 1U54CA11934201 and of the UK Engineering and
Physical Sciences Research Council (EPSRC) under grant
EP/C511816/1 (L.F. Cohen, PI).

REFERENCES

Baranger, H.U. and Stone, A.D. (1989). Electrical linear-response
theory in an arbitrary magnetic-field - a new fermi-surface
formation. Physical Review B, 40, 8169.

Beenakker, C.W.J. and van Houten, H. (1991). Quantum transport in
semiconductor nanostructures. In Solid State Physics, Ehrenreich,
H. and Turnbull, D. (Eds.), Academic Press: New York, Vol. 44.

Bending, S.J. (1999). Local magnetic probes of superconductors.
Advances in Physics, 48, 449–535.

Bruno, P. (1999). Geometrically constrained magnetic wall. Physi-
cal Review Letters, 83, 2425.

Buttiker, M., Imry, Y., Landauer, R. and Pinhas, S. (1985).
Generalized manychannel conductance formula with application
to small rings. Physical Review B, 31, 6207.

Cabrera, G.G. and Falicov, L.M. (1974). Theory of residual
resistivity of Bloch walls. Physical Status Solidi B, 61, 539.

Childress, J.R. and Fontaua, R.E. (2005). Magnetic recording read
head sensor technology. Comptes Rend us Phisique, 6, 997–1012.

Chopra, H.D. and Hua, S.Z. (2002). Magnetoresistance of half-
metallic oxide nanocontacts. Physical Review B, 66, R020403.

Chung, S.J., Goldammer, K.J., Lindstrom, S.C., et al. (1999). A
study of factors limiting electron mobility in InSb quantum wells.
Journal of Vacuum Science and Technology B, 17, 1151.

Chung, S.H., Munoz, M. and Garcia, N. (2003). Universal scaling
of magnetoconductance in magnetic nanocontacts. Journal of
Applied Physics, 93, 7939.

Chung, S.H., Munoz, M., Garcia, N., et al. (2002). Universal scaling
of ballistic magnetoresistance in magnetic nanocontacts. Physical
Review Letters, 89, 287201–287203.

Churchill, R.V. (1960). Complex Variables and Applications,
McGraw-Hill: New York.

Daughton, J. and Chen, Y. (1993). GMR materials for low field
applications. IEEE Transactions on Magnetics, 29, 2705.

Deeter, M.N., Day, G.W., Beahn, T.J. and Manheimer, M. (1993).
Magneto-opticmagnetic field sensor with 1.4 pT/*(Hz) minimum
detectable field at 1 kHz. Electronics Letters, 29, 933.

Dieny, B., (1994). Giant magnetoresistance in spin valve mul-
tilayers. Journal of Magnetism and Magnetic Materials, 136,
335–359.

Dornhaus, R. and Nimtz, G. (1976). Springer Tracts in Modern
Physics, Springer-Verlag: New York, Vol. 78 references therein.

Eglekoff, W.F., Ettedgui, G.H., Kadmon, Y., et al. (2005) Artifacts
that mimic ballistic Magnetoresistance. Journal of Magnetism and
Magnetic Materials, 287, 496–500.

Egelhoff, W.F., Jr., Ha, T., Misra, R.D.K., et al. (1995). Magnetore-
sistance values exceeding 21% in symmetric spin valves. Journal
of Applied Physics, 78, 273.

Fraden, J. (1993). AIP Handbook of Modern Sensors: Physics
Designs and Applications, American Institute of Physics: New
York, pp. 243–262.

Garcia, N. (2003). Magnetoresistance and magnetostriction in
magnetic contacts. Europhysics News, 34(6), 1–10.

Garcia, N., Munoz, M., Qian, G.G., et al. (2001). An effective gate
for spintronics. Applied Physics Letters, 79, 4550.

Garcia, N., Munoz, M. and Zhao, Y-W. (1999). Magnetoresistance
in excess of 200% in Ballistic Ni Nanocontacts at Room
Temperature and 100 Oe. Physical Review Letters, 82, 2923.

Garcia, N., Munoz, M. and Zhao, Y-W. (2000). Ballistic magne-
toresistance in transition-metal nanocontacts: The case of iron.
Applied Physics Letters, 76, 2586.

Heremans, J.P. (1997). Magnetic Field Sensors for Magnetic
Position Sensing in Automotive Applications. Materials Research
Society Symposia Proceedings, 475, 63.

van Hoof, J.B.A.N., Schep, K.M., Brataas, A., et al. (1999).
Electronic transport through magnetic domain walls’. Physical
Review B, 59, 138.

Holz, M., Kronenwerth, O. and Grundler, D. (2003). Optimization
of semiconductor–metal hybrid structures for application in
magnetic-field sensors and read heads. Applied Physics Letters,
83, 3344.

Holz, M., Kronenwerth, O. and Grundler, D. (2005a). Semicon-
ductor-metal hybrid structures as local magnetic-field probes:
magnetoresistance and spatial sensitivity profile. Applied Physics
Letters, 87, 172501.

Holz, M., Kronenwerth, O. and Grundler, D. (2005b). Enhanced
sensitivity due to current redistribution in the Hall effect of
semiconductor-metal hybrid structures. Applied Physics Letters,
86, 172513.

van Houten, H., Beenakker, C.W.J. and van Wees, B.J. (1992).
Semiconductors and Semimetals, Reed, M. (Ed.), Academic
Press: New York, Vol. 35.



18 Magnetoresistance

Hughes, T.J.R. (1987). The Finite Element Method, Prentice-Hall:
Englewood Cliffs.

Imry, Y. (1986). Physics of mesoscopic systems. In Directions in
Condensed Matter Physics, Grinstein, G. and Mazenko, G. (Eds.),
World Scientific: Singapore.

Jablonski, A., Mrozek, P., Gergely, G., et al. (1984). The inelastic
mean free path of electrons in some semiconductor compounds
and metals. Surface and Interface Analysis, 6, 291.

Julliere, M. (1975). Tunneling between ferromagnetic films. Physics
Letters, 54A, 225.

Kleinman, D.A. and Schawlow, A.L. (1960). Corbino Disk. Journal
of Applied Physics, 31, 2176.

Kuze, N. and Shibasaki, I. (1997). MBE research and production
of hall sensors, MBE review. III-V’s Review, 10, 28.

Landauer, R. (1957). Spatial variation of currrents and fields due
to localized scatterers in metallic conduction. IBM Journal of
Research and Development, 1, 223.

Landauer, R. (1970). Electrical resistance of disordered one-
dimensional lattices. Philosophical Magazine, 21, 863.

Landauer, R. (1988). Generalizd many-channel conductance for-
mula with application to small rings. IBM Journal of Research
and Development, 32, 306.

Lee, M., Solin, S.A. and Hines, D.R. (1993). Electron-
localization mechanisms in GaAs/Ga0.7Al0.3As superlattices.
Physical Review, B48(11), 921.

Lee, M., Wingreen, N.S., Solin, S.A. and Wolff, P.A. (1994). Giant
growth axis longitudinal magnetoresistance from In-plane con-
duction in semiconductor superlattices. Solid State Communica-
tions, 89, 687.

Levy, P.M. (1994). Giant Magnetoresistance in Magnetic Layered
and Granular Materials. Solid State Physics, 47, 367.

Lewis, S.P., Allen, P.B. and Sasaki, T. (1997). Band structure and
transport properties of CrO2. Physical Review, 55, 10253.

Madelung, O. (Ed.) (1991). Semiconductors: Group IV Elements
and III –V Compounds, Springer-Verlag: New York.

Mathon, J. (1997). Tight-binding theory of tunneling giant magne-
toresistance. Physical Review B, 56, 11810.

Mclennan, M.J., Lee, Y. and Datta, S. (1991). Voltage drop in
mesoscopic systems: a numerical study using a quantum kinetic
equation. Physical Review B, 43, 13846.

Mitra, C., Raychaudhuri, P., Kobernik, G., et al. (2001). p-n diode
with hole-. and electron-doped lanthanum manganites. Applied
Physics Letters, 79, 2408.

Moeller, C.H., Kronenwerth, O., Grundler, D., et al. (2002).
Extraordinary magnetoresistance effect in a microstructured
metal-semiconductor hybrid structure. Applied Physics Letters,
80, 3988.

Moruzzi, V.L., Janak, J.F. and Williams, A.R. (1978). Calculated
Electronic Properties of Metals, Pergamon Press: New York.

Moussa, J., Ram-Mohan, L.R., Sullivan, J., et al. (2001). Finite
element modeling of extraordinary magnetoresistance in thin film
semiconductors with metallic inclusions. Physical Review B, 64,
184410.

Moussa, J., Ram-Mohan, L.R., Rowe, A.C.H. and Solin, S.A.
(2003). Response of an extraordinary magnetoresistance read
head to a magnetic bit. Journal of Applied Physics, 94, 1110.

Ono, T., Ooka, Y. and Miyajima, H. (1999). 2e2/h to e2/h switching
of quantum conductance associated with a change in nano-
scale ferromagnetic domain structure. Applied Physics Letters,
75, 1622.

Park, W., Loloee, R., Caballero, J.A., et al. (1999). Test of unified
picture of spin-dependent transport in perpendicular (CPP) giant
magnetoresistance and bulk alloys. Journal of Applied Physics,
85, 4542–4544.

Popovic, R.S. (1991). Hall Effect Devices, Adam Hilger: Bristol.

Rao, C.N.R. and Raveau, B. (Eds.) (1998). Colossal Magnetore-
sistance, Charge Ordering and Related Properties of Manganese
Oxides, World Scientific: Singapore.

Ram-Mohan, L.R. (2002). Finite Element and Boundary Element
Applications to Quantum Mechanics, Oxford University Press:
Oxford.

Rinck, P.A. (1993). Magnetic Resonance in Medicine, Third Edition,
Blackwell Scientific Publishing.

Roosmalen, A.J., Baggermann, G. and Brader, S.J.H. (1995). Dry
Etching for VLSI, update in Applied Physics and Electrical
Technology, Plenum Press: New York.

Rowe, A.C.H., Hines, D.R. and Solin, S.A. (2003). Enhanced room-
temperature piezoconductance of metal–semiconductor hybrid
structures. Applied Physics Letters, 83, 1160.

Sandu, A., Kurosawa, K., Dede, M. and Oral, A. (2004). 50 nm Hall
Sensors for room temperature scanning Hall probe microcopy.
Japanese of Journal of Applied Physics, 43, 777–778.

Seeger, K. (1985). Semiconductor Physics, Third Edition, Springer-
Verlag: Berlin.

Sharvin, Yu.V. (1965a). A possible method for measuring Fermi sur-
faces. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 48, 984.

Sharvin, Yu.V. (1965b). A possible method for studying fermi
surfaces. Soviet Physics Jetp, 21, 655–656.

Solin, S.A. (2007). Design and properties of a scanning EMR
probe microscope in Proc. of the Indo-US workshop on nanoscale
materials. Sahu, S.N. and Rao, B.K. (eds.) Puri, 2004, in press.

Solin, S.A. (2004). Proceedings of the International Conference on
Condensed Matter Theory, Louis, St. and Clark, J.W. (Ed.) (in
press).

Solin, S.A. (2005). In Clusters and Nano-Assemblies: Physical and
Biological Systems, Jena, P., Khanna, S.N. and Rao, B.K. (Eds.),
World Scientific: New Jersey, p. 247.

Solin, S.A., Hines, D.R., Rowe, A.C.H., et al. (2002a). Nonmag-
netic semiconductors as read-head sensors for ultra-high-density
magnetic recording. Applied Physics Letters, 80, 4012.

Solin, S.A., Hines, D.R., Rowe, A.C.H., et al. (2002). In Physics
of Semiconductors 2002, Proceedings of the 26th International
Conference on the Physics of Semiconductors, Conference Series
No. 171, Long A.R. and Davies, J.H. (Eds.), Institute of Physics:
Edinburgh, paper N1-2.

Solin, S.A., Hines, D.R., Tsai, J.S., et al. (2002b). Room tempera-
ture extraordinary magneto resistance of non-magnetic narrow-
gap semiconductor/metal composites: application to read-head
sensors for ultra high density magnetic recording. IEEE Transac-
tions on Magnetics, 38, 89.

Solin, S.A. and Lee, M. (1995). Temperature dependence and
angular dependence of the giant longitudinal magnetoresistance in



Geometry-driven magnetoresistance 19

GaAs-AlGaAs superlattices. Materials Science and Engineering,
B31, 147.

Solin, S.A., Thio, T., Bennett, J.W., et al. (1996). Self-biasing
nonmagnetic giant magnetoresistance sensor. Applied Physics
Letters, 69, 4105.

Solin, S.A., Thio, T. and Hines, D.R. (2000). Controlled GMR
enhancement from conducting inhomogeneities in non-magnetic
semiconductors. Physica, B279, 37.

Solin, S.A., Thio, T., Hines, D.R. and Heremans, J.J. (2000).
Enhanced geometric magnetoresistance at room-temperature in
inhomogeneous narrow-gap semiconductors. Science, 289, 1530.

Solin, S.A., Thio, T., Hines, D.R., et al. (1999). Large enhancement
of the giant magnetoresistance in inhomogeneous semiconduc-
tors: dependence on magnetic field direction. Journal of Applied
Physics, 85, 5789.

Solin, S.A. and Zhou, T. (2001). Proceedings of the International
Conference on Solid State Devices and Materials. Tokyo, Japan
p. 570.

Song, D., Nowak, J., Larson, R., et al. (2000). Spin tunneling heads
above 20 Gb/in/sup 2/. IEEE Transactions on Magnetics, 36,
2545.

Streater, R.F. (1999). Onsager symmetry in statistical dynamics.
Open Systems and Information Dynamics, 6, 87.

Stutzke, N.A., Russek, S.E. Papas, D.P. and Tondra, M. (2006).
Low-frequency noise measurements on commercial magnetore-
sistive magnetic field sensors. Journal of Applied Physics, 97,
10Q107–10Q109.

Sugawara, M. (1998). Plasma Etching: Fundamentals and Applica-
tions, Oxford: New York.

Sullivan, M.R., Boehm, D.A., Ateya, D.A., et al. (2005). Ballistic
magntoresistance in nickel single-atom conductors without mag-
netostriction. Physical Review B, 71, 024412.

Tagirov, L.R., Vodopyanov, B.P. and Efetov, K.B. (2001). Ballistic
versus diffusive magnetoresistance of a magnetic point contact.
Physical Review B, 63, 104428.

Tagirov, L.R., Vodopyanov, B.P. and Efetov, K.B. (2002). Mul-
tivalued dependence of the magnetoresistance on the quantized
conductance in nanosize magnetic contacts. Physical Review B,
65, 214419.

Tagirov, L.R., Vodopyanov, B.P. and Garipov, B.M. (2003).
Magnetoresistance of a semiconducting magnetic wire with a
domain wall. Journal of Magnetism and Magnetic Materials,
258–259, 61.

Tatara, G. and Fukuyama, H. (1997). Resistivity due to a domain
wall in ferromagnetic metal. Physical Review Letters, 78, 3773.

Tatara, G., Zhao, Y-W., Munoz, M. and Garcia, N. (1999). Domain
wall scattering explains 300% ballistic magnetoconductance of
nanocontacts. Physical Review Letters, 83, 2030.

Thio, T. and Solin, S.A. (1998). Giant magnetoresistance enhance-
ment in inhomogeneous semiconductors. Applied Physics Letters,
72, 3497.

Thio, T., Solin, S.A., Bennett, J.W., et al. (1998a). Giant mag-
netoresistance in Hg1−xCdxTe and applications for high den-
sity magnetic recording. Journal of Crystal Growth, 184–185,
1293.

Thio, T., Solin, S.A., Bennett, J.W., et al. (1998b). Giant magnetore-
sistance in zero-bandgap Hg1−xCdxTe. Physical Review, B57(12),
12,239–12,244.

Versluijs, J.J., Bari, M.A. and Coey, J.M.D. (2001). Magnetore-
sistance of half-metallic oxide nanocontacts. Physical Review
Letters, 87, 026601.

Wang, Y., Wieland, K.A. and Solin, S.A. (2007). Electroconduc-
tance in In-GaAs metal-semiconductor hybrid structures. Journal
of Applied Physics, in press.

van Wees, B.J., Kouwenhoven, L.P., Willems, E.M.M., et al.
(1991). Quantum ballistic and adiabatic electron transport stud-
ied with quantum point contacts. Physical Review B, 43,
12431–12453.

van Wees, B.J., van Houten, H., Beenakker, C.W.J., et al. (1988).
Quantised conductance of point contacts in a two-dimensional
electron gas. Physical Review Letters, 60, 848.

Weissman, M.B. (1988). 1/f noise and other slow, nonexponen-
tial kinetics in condensed matter. Reviews of Modern Physics,
60, 537.

Wieland, K.A., Wang, Yun., Ram-Mohan, L.R., et al. (2006).
Extraordinary optoconductance in metal-semiconductor hybrid
structures. Applied Physics Letters, 88, 052105.

Wharam, D.A., Thronton, T.J., Newbury, R., et al. (1988). One-
Dimensional transport and the quantization of the ballistic
resistance. Journal of Physics C: Solid State Physics, 21,
L209.

Wolfe, C.M., Stillman, G.E. and Rossi, J.A. (1972). High apparent
mobility in inhomogeneous semiconductors. Journal of the Elec-
trochemical Society: Solid-State Science and Technology, 119,
250–255.

Yasin, S., Hasko, D.G. and Carecenac, F. (2001). Nanolithography
using ultrasonically assisted development of calixarene negative
electron beam resist. Journal of Vacuum Science and Technology
B: Microelectronics and Nanometer Structures, 19, 311.

Zawadzki, W. (1974). Electron transport phenomena in small-gap
semiconductors. Advances in Physics, 23, 435.

Zhang, T., Clowes, S.K., Debnath, M., et al. (2004). High-mobility
thin InSb films grown by molecular beam epitaxy. Applied
Physics Letters, 84, 4463–4465.

Zhao, Y-W., Munoz, M., Tatara, G. and Garcia, N. (2001).
Extraordinary magnetoresistance in externally shunted Van Der
Pauw plates. Journal of Magnetism and Magnetic Materials,
223, 169.

Zhou, T., Hines, D.R. and Solin, S.A. (2001). Extraordinary
magnetoresistance in externally shunted Van Der Pauw Plates.
Applied Physics Letters, 78, 667.

Zhou, T., Solin, S.A. and Hines, D.R. (2000). Extraordinary
magnetoresistance of a semiconductor-metal composite van der
Pauw Disk. Journal of Magnetism and Magnetic Materials, 226,
1976.

van der Ziel, A. (1988). Semiclassical derivation of Handel’s
expression for the hooge parameter. Journal of Applied Physics,
63, 2456.

Zienkiewicz, O.C. and Taylor, R.L. (1994). The Finite Element
Method, Fourth Edition, McGraw-Hill: New York.



20 Magnetoresistance

APPENDIX

A LANDAUER FORMULA FOR
QUANTIZED CONDUCTANCE

In this Appendix, it is useful to provide a brief derivation
of the Landauer formula (Landauer, 1957; Buttiker, Imry,
Landauer, and Pinhas 1985) for quantized conductance in
ballistic electron transport through very narrow structures
since it provides a frame of reference for the discussion on
BMR. Electrons in the devices of dimensions ≈50 nm or less,
so-called mesoscopic devices, start behaving more like waves
than particles. With the mean free path becoming comparable
to the dimensions of the electronic device, an electron is
transmitted through the device ballistically with no scattering.
The electron waves will display phase coherence, however,
and undergo quantum interference effects as defined by
the geometry of the mesoscopic device. These features of
electron transport change the usual macroscopic nature of
resistance, leading to a quantization of resistance. We give
a qualitative derivation of the Landauer relation defining
the quantized conductance in terms of the transmission
coefficient of electron waves through the device. The electron
waves are guided through the device in a manner similar to
optical waveguides.

It is useful to visualize the structure used in the original
experiments. A two-dimensional electron gas (2DEG) created
at the interface between a thin layer of GaAs and n-doped
AlGaAs was used. By placing contacts for gates on the
surface of the GaAs layer, as in Figure 20, it is possible
to measure the electrical resistance, R, of the 2DEG in its
flow through the split-gate channel. When the channel is
constricted by the application of a gate voltage, the resistance
of the device is essentially the resistance of the channel. In
the absence of any scattering one might anticipate that the
carriers will go through ballistically with no resistance at
all; however, this is not so, and the resistance of the device
remains finite.

One of the results of Landauer’s theory (Landauer, 1957;
Buttiker, Imry, Landauer, and Pinhas 1985) of conductance
in mesoscopic devices is that the device may be thought of
as two-contact reservoirs of carriers maintained at constant
electro-chemical potentials µ1 and µ2 with the ‘quantum
device’ in between, as shown in Figure 20. The current
I through the device is proportional to µ1 − µ2, and its
conductance G = 1/R is given by

G = 2e2

�

∑
µν

Tµν (A1)

The device is treated as a waveguide with input and output
modes labeled by µ and ν with the transmission coefficients
Tµν at the Fermi energy being labeled accordingly.

2DEG
reservoir

m1

GaAs
reservoir

m2

Gate

Gate

Figure 20. A narrow channel created by a split-gate structure in
a 2DEG under bias. The electrons flow from the reservoir with
Fermi level µ1 to the reservoir with Fermi level µ2 through the
narrow channel. The arrow indicates the direction of the electron
flow under bias.

Experiments performed independently by Wharam et al.
(1988) and by van Wees et al. (1988, 1991) confirmed this
remarkable quantization of resistance. Here we follow the
arguments given by Wharam et al. (1988) and by Sharvin
(1965a,b) to derive this result. The waveguide of Figure 17,
which is an idealization of an actual experimental structure,
has transverse modes, labeled by an index µ, having energy

E(µ)
y = �

2k2
µ

2m∗ = �
2

2m∗
π2µ2

L2
(A2)

Here L is the transverse width of the waveguide and m∗ is
the electron’s effective mass in the medium. The current in a
given subband µ associated with the energy of motion along
the lateral direction of the waveguide is given by

Iµ = nµe δvµ (A3)

where nµ is half of the number of carriers per unit length
in the subband, since only half the electrons have wave
vectors in the +x direction. In the preceding equation, e is
the electron charge and δvµ is the increase in velocity. The
number of carriers nµ contributing to the current, including
a spin degeneracy factor of 2, is

nµ = 2

2π

∫ kmax

0
dk = 2m∗ vF

2π�
(A4)

The change in kinetic energy is given in terms of the applied
voltage as

eV = µ1 − µ2 = 1

2
m∗ (vF + δvµF)

2 − 1

2
m∗ v2

F (A5)

so that for δvµF � vF we have

δvµF = eV

m∗ vµF
(A6)
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Now the current in the channel is given by

I = 2e2

2π�
V (A7)

and the conductance corresponding to carriers in one sub-
band is

G0 = 2e2

h
(A8)

This conductance is dependent only on fundamental physical
constants and is the same for any transmission mode. The
resistance standard defined by this relation has the value:
R = 1/G0 = 25, 812.8056 ± 0.0012 �. For transmission in
more than one transverse mode of the waveguide, we can
estimate the total conductance assuming that the transport of
carriers in the various modes is independent of each other. In
this case, the double sum over incoming and outgoing modes
reduces to just one and we have

G = 2e2

h
N (A9)

for N channels.
The preceding derivation leads to a resistance quantization

essentially because there is a cancellation of the velocity

dependence of the number density and the change in the
velocity, in the expression for the current in one dimension.
The resistance of the system may be thought of as arising
from the contacts between the waveguide and the reservoirs
at the two ends.

For more elaborate treatments for the calculation of the
quantized resistance the reader is referred to the original
articles of Landauer (1957), and Buttiker, Imry, Landauer,
and Pinhas (1985) and the review articles by Beenakker
and van Houten (1991) and van Houten, Beenakker and
van Wees (1992) and by Imry (1986) A treatment using
quantum kinetic equations is given by Mclennan, Lee and
Datta (1991). A derivation using the usual Kubo formalism
for linear response theory is also available (Baranger and
Stone, 1989).

Similar considerations apply for the BMR in point con-
tacts, except that the spin polarization of the electrons has
to be taken into account. The transport through the point
contact from one ferromagnetic lead into another depends
on the spin polarizations of the initial and the final leads.
The factor of 2 arising from spin in equation (A9) is then
dropped and the conductances in the parallel and antiparallel
spin polarizations in the leads are denoted by G↑↑ and G↑↓,
respectively. These are used in the definition of the BMR in
the earlier sections.
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